

Juniper Networks SRX300, SRX340, SRX345, SRX550M, SRX5400, SRX5600 and SRX5800 Services Gateways with JUNOS 17.4R1-S1

Non-Proprietary FIPS 140-2 Cryptographic Module Security Policy

Version 1.4
25 September 2019

Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA

> 408.745.2000 1.888 JUNIPER www.juniper.net

Table of Contents

1	Intro	oduction	6
	1.1	Hardware and Physical Cryptographic Boundary	9
	1.2	Mode of Operation	15
	1.3	Zeroization	16
2	Cryp	otographic Functionality	18
	2.1	Approved Algorithms	18
	2.2	Allowed Algorithms	21
	2.3	Supported Protocols	22
	2.4	Disallowed Algorithms	23
	2.5	Critical Security Parameters	23
3	Role	es, Authentication and Services	25
	3.1	Roles and Authentication of Operators to Roles	25
	3.2	Authentication Methods	25
	3.3	Services	26
	3.4	Non-Approved Services	29
4	Self-	Tests	30
5	Phys	sical Security Policy	33
	5.1	General Tamper Seal Placement and Application Instructions	33
	5.2	SRX300 (6 seals)	34
	5.3	SRX 340/345 (29 seals)	36
	5.4	SRX550M (28 seals)	38
	5.5	SRX5400 (20 seals)	42
	5.6	SRX5600 (19 seals)	44
	5.7	SRX5800 (42 seals)	47
6	Secu	ırity Rules and Guidance	50
7	Refe	erences and Definitions	51

List of Figures

Table 1 – Cryptographic Module Configurations	6
Table 2 - Security Level of Security Requirements	8
Table 3 - Ports and Interfaces	15
Table 4 – Data Plane Approved Cryptographic Functions	18
Table 5 – Control Plane Authentec Approved Cryptographic Functions	18
Table 6 – OpenSSL Approved Cryptographic Functions	20
Table 7 – OpenSSL Approved Cryptographic Functions	20
Table 8 – OpenSSH Approved Cryptographic Functions	21
Table 9 – LibMD Approved Cryptographic Functions	21
Table 10 - Allowed Cryptographic Functions	21
Table 11 - Protocols Supported in FIPS Mode	22
Table 12 - Critical Security Parameters (CSPs)	23
Table 13 – Public keys	24
Table 14 - Authenticated Services	26
Table 15 – Unauthenticated Traffic	26
Table 16 - CSP Access Rights within Services	27
Table 17: Public Key Access Rights within Services	28
Table 18 - Authenticated Services	29
Table 19 - Unauthenticated traffic	29
Table 20 – Physical Security Inspection Guidelines	33
Table 21– References	51
Table 22 – Acronyms and Definitions	52
Tahle 23 – Datasheets	53

List of Figures

Figure 1 - SRX300 (Front)	9
Figure 2 - SRX300 (Rear)	9
Figure 3 - SRX340 (Front)	9
Figure 4 - SRX340 (Rear)	9
Figure 5 - SRX345 (Front)	10
Figure 6 - SRX345 (Rear)	10
Figure 7 – SRX550M (Front)	10
Figure 8 – SRX550M (Rear)	10
Figure 9 – SRX5400 (Front/Top)	11
Figure 10 – SRX5400 (Rear)	11
Figure 11 – SRX5600 (Front/Top)	12
Figure 12 – SRX5600 (Rear)	12
Figure 13 – SRX5600 (Left)	13
Figure 14 – SRX5800 (Front/Top)	14
Figure 15 – SRX5800 (Rear)	14
Figure 16 – SRX5800 (Left)	15
Figure 17 - SRX300 Tamper-Evident Seal Placement (Chassis Screws (4) Seals)	34
Figure 18 - SRX300 Tamper-Evident Seal Placement (USB Ports (2) Seals)	35
Figure 19 - SRX340/SRX345 Tamper-Evident Seal Placement (Top Cover, Nine (9) Seals)	36
Figure 20 - SRX 340/345 Tamper-Evident Seal Placement (Rear Panel, Two (2) Seals)	37
Figure 21 - SRX340/SRX345 Tamper-Evident Seal Placement (Side Panels, Eight on each side – Sixteen (16) Seals)	37
Figure 22 - SRX345 Tamper-Evident Seal Placement (USB Ports, Two (2) Seals)	37
Figure 23 – SRX550 Tamper-Evident Seal Placement (Front, Fifteen (15) Seals)	39
Figure 24 – SRX550 Tamper-Evident Seal Placement (Side, Three a side (6) Seals)	40
Figure 25 – SRX550 Tamper-Evident Seal Placement (Rear, Seven (7) Seals)	41
Figure 26 - SRX5400 Tamper-Evident Seal Locations (Front, Ten (10) Seals)	42
Figure 27 - SRX5400 Tamper-Evident Seal Locations (Rear, Ten (10) Seals)	43

Figure 28 - SRX5600 Tamper-Evident Seal Locations (Front, Eleven (11) Seals)	44
Figure 29 - SRX5600 Tamper-Evident Seal Locations (Rear, Nine (9) Seals)	45
Figure 30 - SRX5600 Tamper-Evident Seal Locations (USB Port, One (1) Seal)	46
Figure 31 - SRX5800 Tamper-Evident Seal Locations (Front, Thirty-six (36) Seals)	48
Figure 32 - SRX5800 Tamper-Evident Seal Locations (Rear. Six (6) Seals)	40

1 Introduction

The Juniper Networks SRX Series Services Gateways are a series of secure routers that provide essential capabilities to connect, secure, and manage work force locations sized from handfuls to hundreds of users. By consolidating fast, highly available switching, routing, security, and applications capabilities in a single device, enterprises can economically deliver new services, safe connectivity, and a satisfying end user experience. All models run Juniper's JUNOS firmware – in this case, a specific FIPS-compliant version, when configured in FIPS-MODE called JUNOS-FIPS-MODE, version 17.4R1-S1.

This Security Policy covers the:

- SRX300, SRX340, SRX345 and SRX550M ("Branch") models. These models are meant for corporate branch offices
 of various sizes (intended size is proportional to model number); and
- SRX5400, SRX5600 and SRX5800 models. These models are meant for service providers, large enterprise networks, and public-sector networks.

The firmware image is junos-srxsme-17.4R1-S1.9.tgz for SRX300/SRX340/SRX345/SRX550-M and junos-install-srx5000-x86-64-17.4R1-S1.9.tgz for SRX5400/SRX5600/SRX5800. The firmware Status service identifies itself as "Junos OS 17.4R1-S1".

The cryptographic modules are defined as multiple-chip standalone modules that execute JUNOS firmware on any of the Juniper Networks SRX-Series Services Gateways listed in the table below.

Table 1 - Cryptographic Module Configurations

Model	Hardware Versions	Firmware	Distinguishing Features
SRX300	SRX300	JUNOS 17.4R1-S1	6x 10/100/1000
			2x SFP
			1x 10/100/1000 management port
SRX340	SRX340	JUNOS 17.4R1-S1	8 x 10/100/1000
			4x SFP
			4x MPIM expansion slots
			1x 10/100/1000 management port
SRX345	SRX345	JUNOS 17.4R1-S1	8 x 10/100/1000
			4x SFP
			4x MPIM expansion slots
			1x 10/100/1000 management port
SRX550-M	SRX550-M	JUNOS 17.4R1-S1	6x 10/100/1000
			4x SFP
			6x GPIM expansion slots
			1x 10/100/100 management port

Model	Hardware Versions	Firmware	Distinguishing Features
SRX5400	SRX5400	JUNOS 17.4R1-S1	Routing Engine: SRX5K-RE-1800X4
			Switch Control Board: SRX5K-SCBE
			Service Processing Card: SRX5K-SPC-4-15-320
			Module Interface Card: SRX-MIC-10XG-SFPP, SRX-MIC-20GE-SFP, SRX-MIC-2X40G-QSFP, SRX- MIC-1X100G-CFP
			Power: AC, HC or DC
SRX5600	SRX5600	JUNOS 17.4R1-S1	Routing Engine: SRX5K-RE-1800X4
			Switch Control Board: SRX5K-SCBE
			Service Processing Card: SRX5K-SPC-4-15-320
			Module Interface Card: SRX-MIC-10XG-SFPP, SRX-MIC-20GE-SFP, SRX-MIC-2X40G-QSFP, SRX- MIC-1X100G-CFP
			Power: AC, HC or DC
SRX5800	SRX5800	JUNOS 17.4R1-S1	Routing Engine: SRX5K-RE-1800X4
			Switch Control Board: SRX5K-SCBE
			Service Processing Card: SRX5K-SPC-4-15-320
			Module Interface Card: SRX-MIC-10XG-SFPP, SRX-MIC-20GE-SFP, SRX-MIC-2X40G-QSFP, SRX-MIC-1X100G-CFP
			Power: AC, HC or DC
All	JNPR-FIPS-TAMPER-	N/A	Tamper-Evident Seals
	LBLS (P/N 520-052564)		(FIPS Label for PSD Products)

The modules are designed to meet FIPS 140-2 Level 2 overall:

Table 2 - Security Level of Security Requirements

Area	Description	Level
1	Module Specification	2
2	Ports and Interfaces	2
3	Roles and Services	3
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A
7	Key Management	2
8	EMI/EMC	2
9	Self-test	2
10	Design Assurance	3
11	Mitigation of Other Attacks	N/A
Overall		2

The modules have a limited operational environment as per the FIPS 140-2 definitions. They include a firmware load service to support necessary updates. New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into these modules is out of the scope of this validation and require a separate FIPS 140-2 validation.

The modules do not implement any mitigation of other attacks as defined by FIPS 140-2.

1.1 Hardware and Physical Cryptographic Boundary

The physical forms of the module's various models are depicted in Figures 1-16 below. For all models the cryptographic boundary is defined as the outer edge of the chassis.

Figure 1 - SRX300 (Front)

Figure 2 - SRX300 (Rear)

SRX340/345 only: The SRX340 and SRX345 exclude the TI TMP435ADGSR temperature sensor from the requirements of FIPS 140-2.

Figure 3 - SRX340 (Front)

Figure 4 - SRX340 (Rear)

Figure 5 - SRX345 (Front)

Figure 6 - SRX345 (Rear)

Figure 7 - SRX550M (Front)

Figure 8 - SRX550M (Rear)

SRX5400/5600/5800 only: The modules exclude the power supply and fan components from the requirements of FIPS 140-2. The power supplies and fans do not contain any security relevant components and cannot affect the security of the module. The excluded components are identified with red borders in the following figures. The module does not rely on external devices for input and output.

Figure 9 – SRX5400 (Front/Top)

Figure 10 - SRX5400 (Rear)

Figure 11 – SRX5600 (Front/Top)

Figure 12 – SRX5600 (Rear)

Figure 13 – SRX5600 (Left)

Figure 14 – SRX5800 (Front/Top)

Figure 15 – SRX5800 (Rear)

Figure 16 - SRX5800 (Left)

The following table maps each logical interface type defined in the FIPS 140-2 standard to one or more physical interfaces.

Table 3 - Ports and Interfaces

Port	Description	Logical Interface Type
Ethernet	LAN Communications	Control in, Data in, Data out, Status out
Serial	Console serial port	Control in, Status out
MGMT	Out-of-band management port	Control in, Data in, Data out, Status out
Power	Power connector	Power in
Reset	Reset button	Control in
LED	Status indicator lighting	Status out
USB	Firmware load port	Control in, Data in
WAN	SHDSL, VDSL, T1, E1	Control in, Data in, Data out, Status out

1.2 Mode of Operation

The cryptographic module provides a non-Approved mode of operation in which non-Approved cryptographic algorithms are supported. The module supports non-Approved algorithms when operating in the non-Approved mode of operation as described in Sections 2.4 and 3.4. When transitioning between the non-Approved mode of operation and the Approved mode of operation, the CO must zeroize all CSPs by following the instructions in Section 1.3.

Then, the CO must run the following commands to configure the module into the Approved mode of operation:

co@fips-srx# set system fips level 2

co@fips-srx# commit

When AES-GCM is configured as the encryption-algorithm for IKE or IPSec, the CO must also configure the module to use IKEv2 by running the following commands:

co@fips-srx:fips# set security ike gateway <name> version v2-only (<name> - the user configured name for the IKE gateway)

co@fips-srx:fips# commit

When Triple-DES is configured as the encryption-algorithm for IKE or IPsec, the CO must configure the IPsec proposal lifetime-kilobytes to comply with [IG A.13] using the following command:

co@fips-srx:fips# set security ipsec proposal <ipsec_proposal_name> lifetime-kilobytes
<kilobytes>

co@fips-srx:fips# commit

When Triple-DES is the encryption-algorithm for IKE (regardless of the IPsec encryption algorithm), the lifetime-kilobytes for the associated IPsec proposal must be greater than or equal to 12800. When Triple-DES is the encryption-algorithm for IPsec, the lifetime-kilobytes must be less than or equal to 33554432.

The CO must also apply the tamper seals to the device by following the instructions in Section 5. Once the tamper seals have been applied, the JUNOS firmware image is installed on the device, and configured into Approved mode and rebooted, and integrity and self-tests have run successfully on initial power-on, the module is operating in the Approved mode.

While the module automatically creates a backup of the stored firmware image upon upgrade, the CO must ensure that the backup image of the firmware is also a JUNOS-FIPS-MODE image by issuing the "request system snapshot slice alternate" command when initial configuration is complete. This ensures that the backup image is operating in Approved mode if fallback is required.

The operator can verify the module is operating in the Approved mode by verifying the following:

- The "show version" command indicates that the module is running the Approved firmware (i.e. JUNOS Software Release 17.4R1-S1).
- The command prompt ends in ":fips", which indicates the module has been configured in the Approved mode of operation.
- The "show security ike" and "show security ipsec" commands show IKEv2 is configured when either an IPsec or IKE proposal is configured to use AES-GCM.

1.3 Zeroization

The following command allows the Cryptographic Officer to zeroize CSPs contained within the module:

co@fips-srx> request system zeroize

2 Cryptographic Functionality

The module implements the FIPS Approved, vendor affirmed, and non-Approved-but-Allowed cryptographic functions listed in Table 4 through Table 10 below. Table 11 summarizes the high level protocol algorithm support.

2.1 Approved Algorithms

References to standards are given in square bracket []; see the References table.

Items enclosed in curly brackets { } are CAVP tested but not used by the module in the Approved mode.

Table 4 – Data Plane Approved Cryptographic Functions

CAVP Cert.	Algorithm	Mode	Description	Functions
#5347, #5336,	A 50 [407]	CBC [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
#5335, #5334	AES [197]	GCM [38D]	Key Sizes: 128, 192, 256	Encrypt, Decrypt, AEAD
#3544,		SHA-1	λ = 96	
#3532, #3531, #3530	HMAC [198]	SHA-256	λ = 128	Message Authentication
#4298, #4286, #4285, #4284	SHS [180]	SHA-1 SHA-256		Message Digest Generation
#2705, #2696, #2695, #2694	Triple-DES [67]	TCBC [38A]	Key Size: 192	Encrypt, Decrypt

Table 5 – Control Plane Authentec Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
#5227	AES [197]	CBC [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
#5337		GCM [38D]	Key Sizes: 128, 256	Encrypt, Decrypt, AEAD

Cert	Algorithm	Mode	Description	Functions
N/A ¹	CKG	[133] Section	n 6.2	Asymmetric key generation using unmodified DRBG output
#1799	CVL	IKEv1 [135]	SHA 256, 384	- Key Derivation
#1/33	CVL	IKEv2 [135]	SHA 256, 384	Rey Derivation
#1435, #1436, #1437, #1438	ECDSA [186]		P-256 (SHA 256) P-384 (SHA {256}, 384)	KeyGen, SigGen, SigVer
#3534	HMAC [198]	SHA-256	λ = 128, 256	IKE Message Authentication,
#3334		SHA-384	λ = 192, 384	IKE KDF Primitive
N/A	KTS	AES Cert. #53	337 and HMAC Cert. #3534	Key establishment methodology provides between 128 and 256 bits of encryption strength
		Triple-DES Co	ert. #2697 and HMAC Cert.	Key establishment methodology provides 112 bits of encryption strength
#2894, #2895, #2896, #2897	RSA [186]	PKCS1_V1_ 5	n=2048 (SHA 256) n=4096 (SHA 256) ²	SigGen, SigVer
#4288	SHS [180]	SHA-256 SHA-384		Message Digest Generation
#2697	Triple-DES [67]	TCBC [38A]	Key Size: 192	Encrypt, Decrypt

 $^{^{\}rm 1}\,\mbox{Vendor}$ Affirmed and in accordance with SP 800-133.

 $^{^{2}}$ RSA 4096 SigGen was tested to FIPS 186-4; however, the CAVP certificate lists 4096 under FIPS 186-2.

Table 6 – OpenSSL Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
#2060	DRBG [90A]	НМАС	SHA-256	Control Plane Random Bit Generation/ Open SSL Random Bit Generator

Table 7 – OpenSSL Approved Cryptographic Functions

CAVP Cert.	Algorithm	Mode	Description	Functions			
#5386	AES [197]	CBC [38A] CTR[38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt			
N/A³	CKG	[133] Section [133] Section		Asymmetric key generation using unmodified DRBG output			
#1422	FCDCA [196]		P-256 (SHA 256) {P-384 (SHA 256)}	SigGen			
#1422	ECDSA [186]		P-256 (SHA 256) P-384 (SHA {256}, 384)	KeyGen, SigVer			
	HMAC [198]	SHA-1	λ = 160	661144			
#3567		SHA-256	λ = 256	SSH Message Authentication DRBG Primitive			
		SHA-512	λ = 512	220.1			
N/A			86 and HMAC Cert. #3567	Key establishment methodology provides between 128 and 256 bits of encryption strength			
N/A KTS		Triple-DES Ce	rt. #2713 and HMAC Cert.	Key establishment methodology provides 112 bits of encryption strength			
#2880	#2880 RSA [186]		n=2048 (SHA 256) n=4096 (SHA 256) ⁴	SigGen			
			n=2048 (SHA 256)	SigVer			

 $^{^{\}rm 3}$ Vendor Affirmed and in accordance with SP 800-133.

 $^{^4}$ RSA 4096 SigGen was tested to FIPS 186-4; however, the CAVP certificate lists 4096 under FIPS 186-2.

CAVP Cert.	Algorithm	Mode	Description	Functions
			n=2048 (SHA 256) {n=3072 (SHA 256)}	{KeyGen}
#4320	SHS [180]	SHA-1 SHA-256 SHA-384		Message Digest Generation, SSH KDF Primitive
		SHA-512		Message Digest Generation
#2713	Triple-DES [67]	TCBC [38A]	Key Size: 192	Encrypt, Decrypt

Table 8 – OpenSSH Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
#1848	CVL	SSH [135]	SHA 1, 256, 384	Key Derivation

Table 9 – LibMD Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
#4287	SHS [180]	SHA-256 SHA-512		Message Digest Generation

2.2 Allowed Algorithms

Table 10 - Allowed Cryptographic Functions

Algorithm	Caveat	Use
Diffie-Hellman [IG] D.8	Provides 112 bits of encryption strength.	Key agreement; key establishment
Elliptic Curve Diffie- Hellman [IG] D.8	Provides 128 or 192 bits of encryption strength.	Key agreement; key establishment
NDRNG [IG] 7.14 Scenario 1a	Provides 256 bits of entropy.	Seeding the DRBG

2.3 Supported Protocols

Table 11 - Protocols Supported in FIPS Mode

Protocol	Key Exchange	Auth	Cipher	Integrity
IKEv1	Diffie-Hellman (L = 2048, N = 2047) EC Diffie-Hellman P-256, P-384	RSA 2048 RSA 4096 Pre-Shared Secret ECDSA P-256 ECDSA P-384	Triple-DES CBC ⁵ AES CBC 128/192/256 AES GCM 128/256	SHA-256,384
IKEv2 ⁶	Diffie-Hellman (L = 2048, N = 2047) EC Diffie-Hellman P-256, P-384	RSA 2048 RSA 4096 Pre-Shared Secret ECDSA P-256 ECDSA P-384	Triple-DES CBC ⁷ AES CBC 128/192/256 AES GCM ⁸ 128/256	SHA-256,384
IPsec ESP	IKEv1 with optional: Diffie-Hellman (L = 2048, N = 2047) EC Diffie-Hellman P-256, P-384	IKEv1	3 Key Triple-DES CBC ⁹ AES CBC 128/192/256	HMAC-SHA-1-96 HMAC-SHA-256-
	IKEv2 with optional: Diffie-Hellman (L = 2048, N = 2047) EC Diffie-Hellman P-256, P-384	IKEv2	3 Key Triple-DES CBC ¹⁰ AES CBC 128/192/256 AES GCM ¹¹ 128/192/256	128
SSHv2	Diffie-Hellman (L = 2048, N = 2047) EC Diffie-Hellman P-256, P-384	ECDSA P-256	Triple-DES CBC ¹² AES CBC 128/192/256 AES CTR 128/192/256	HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-512

No parts of the IKEv1, IKEv2, ESP or SSHv2 protocols, other than the KDF, have been tested by the CAVP or CMVP.

 $^{^{\}rm 5}$ The Triple-DES key for the IETF IKEv1 protocol is generated according to RFC 2409.

 $^{^{\}rm 6}$ IKEv2 generates the SKEYSEED according to RFC7296.

 $^{^{7}\,\}mbox{The Triple-DES}$ key for the IETF IKEv2 protocol is generated according to RFC 7296.

⁸ The GCM IV is generated according to RFC5282. Rekeying is triggered after 2³² AES-GCM transforms. Transforms are tracked on a Per key basis.

 $^{^{9}}$ The Triple-DES key for the ESP protocol is generated by the IETF IKEv1 protocol according to RFC 2409

 $^{^{10}}$ The Triple-DES key for the ESP protocol is generated by the IETF IKEv2 protocol according to RFC 7296.

 $^{^{11}\,\}text{The}$ GCM IV is generated according to RFC4106. Rekeying is triggered after $2^{32}\,\text{AES-GCM}$ transforms.

¹² The Triple-DES key for the IETF SSHv2 protocol is generated according to RFCs 4253 and 4344.

The IKE and SSH algorithms allow independent selection of key exchange, authentication, cipher and integrity. In Table 11 - Protocols Supported in FIPS Mode above, each column of options for a given protocol is independent, and may be used in any viable combination. These security functions are also available in the SSH connect (non-compliant) service.

2.4 Disallowed Algorithms

These algorithms are non-Approved algorithms that are disabled when the module is operated in an Approved mode of operation.

- ARCFOUR;
- Blowfish;
- CAST;
- DSA (SigGen, SigVer; non-compliant);
- HMAC-MD5;
- HMAC-RIPEMD160; and
- UMAC.

2.5 Critical Security Parameters

All CSPs and public keys used by the module are described in this section.

Table 12 - Critical Security Parameters (CSPs)

Name	Description and usage	CKG
DRBG_Seed	Seed material used to seed or reseed the DRBG	N/A
DRBG_State	V and Key values for the HMAC_DRBG	N/A
Entropy Input	Entropy input string for the HMAC_DRBG	N/A
SSH PHK	SSH Private host key. 1 st time SSH is configured, the keys are generated. ECDSA P-256. Used to identify the host.	[133] Section 6.1
SSH DH	SSH Diffie-Hellman private component. Ephemeral Diffie-Hellman private key used in SSH. Diffie-Hellman (N = 256 bit, 320 bit, 384 bit, 512 bit, or 1024 bit ¹³), EC Diffie-Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
SSH-SEK	SSH Session Key; Session keys used with SSH. Triple-DES (3key), AES, HMAC.	[135] Section 5.2
ESP-SEK	IPSec ESP Session Keys. Triple-DES (3 key), AES, HMAC.	[135] Section 4.1

 $^{^{13}}$ SSH generates a Diffie-Hellman private key that is 2x the bit length of the longest symmetric or MAC key negotiated.

Name	Description and usage	СКС
IKE-PSK	Pre-Shared Key used to authenticate IKE connections.	N/A
IKE-Priv	IKE Private Key. RSA 2048, ECDSA P-256, or ECDSA P-384	[133] Section 6.1 [186]
IKE-SKEYID	IKE SKEYID. IKE secret used to derive IKE and IPsec ESP session keys.	[135] Section 4.1
IKE-SEK	IKE Session Keys. Triple-DES (3 key), AES, HMAC.	[135] Section 4.1
IKE-DH-PRI	IKE Diffie-Hellman private component. Ephemeral Diffie-Hellman private key used in IKE. Diffie-Hellman N = 224 bit, EC Diffie-Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
CO-PW	ASCII Text used to authenticate the CO.	N/A
User-PW	ASCII Text used to authenticate the User.	N/A

Table 13 – Public keys

Name	Description and usage	СКС
SSH-PUB	SSH Public Host Key used to identify the host. ECDSA P-256.	[133] Section 6.1
SSH-DH-PUB	Diffie-Hellman public component. Ephemeral Diffie-Hellman public key used in SSH key establishment. DH (L = 2048 bit), EC Diffie-Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
IKE-PUB	IKE Public Key RSA 2048, ECDSA P-256, or ECDSA P-384	[133] Section 6.1
IKE-DH-PUB	Diffie-Hellman public component. Ephemeral Diffie-Hellman public key used in IKE key establishment. Diffie-Hellman L = 2048 bit, EC Diffie-Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
Auth-UPub	SSH User Authentication Public Keys. Used to authenticate users to the module. ECDSA P-256 or P-384	N/A
Auth-COPub	SSH CO Authentication Public Keys. Used to authenticate CO to the module. ECDSA P-256 or P-384	N/A
Root CA	Juniper Root CA. ECDSA P-256 or P-384 X.509 Certificate; Used to verify the validity of the Juniper Package CA at software load.	N/A
Package CA	Package CA. ECDSA P-256 X.509 Certificate; Used to verify the validity of Juniper Images at software load and boot.	N/A

3 Roles, Authentication and Services

3.1 Roles and Authentication of Operators to Roles

The module supports two roles: Cryptographic Officer (CO) and User. The module supports concurrent operators, but does not support a maintenance role and/or bypass capability. The module enforces the separation of roles using either identity-based operator authentication.

The Cryptographic Officer role configures and monitors the module via a console or SSH connection. As root or superuser, the Cryptographic Officer has permission to view and edit secrets within the module.

The User role monitors the router via the console or SSH. The user role may not change the configuration.

3.2 Authentication Methods

The module implements two forms of Identity-based authentication - username and password over the Console and SSH as well as username and public key over SSH.

Password authentication: The module enforces 10-character passwords (at minimum) chosen from the 96 human readable ASCII characters. The maximum password length is 20 characters.

The module enforces a timed access mechanism as follows: For the first two failed attempts (assuming 0 time to process), no timed access is enforced. Upon the third attempt, the module enforces a 5-second delay. Each failed attempt thereafter results in an additional 5-second delay above the previous (e.g. 4th failed attempt = 10-second delay, 5th failed attempt = 15-second delay, 6th failed attempt = 20-second delay, 7th failed attempt = 25-second delay).

This leads to a maximum of nine (9) possible attempts in a one-minute period for each getty. The best approach for the attacker would be to disconnect after 4 failed attempts and wait for a new getty to be spawned. This would allow the attacker to perform roughly 9.6 attempts per minute; this would be rounded down to 9 per minute, because there is no such thing as 0.6 attempts. Thus the probability of a successful random attempt is $1/96^{10}$, which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one-minute period is $9/(96^{10})$, which is less than 1/100,000.

ECDSA signature verification: SSH public-key authentication. Processing constraints allow for a maximum of 56,000,000 ECDSA attempts per minute. The module supports ECDSA (P-256 and P-384). The probability of a success with multiple consecutive attempts in a one-minute period is $56,000,000/(2^{128})$.

3.3 Services

All services implemented by the module are listed in the tables below. Table 16 - CSP Access Rights within Services lists the access to CSPs by each service.

Table 14 - Authenticated Services

Service	Description	со	User
Configure security	Security relevant configuration	х	
Configure	Non-security relevant configuration	х	
Secure Traffic	IPsec protected connection (ESP)	х	
Status	Show status	х	х
Zeroize	Destroy all CSPs	х	
SSH connect	Initiate SSH connection for SSH monitoring and control (CLI)	х	х
IPsec connect	Initiate IPsec connection (IKE)	х	
Console access	Console monitoring and control (CLI)	х	х
Remote reset	Software initiated reset	х	
Software load	Firmware update	х	

Table 15 – Unauthenticated Traffic

Service	Description
Local reset	Hardware reset or power cycle
Traffic	Traffic requiring no cryptographic services

Table 16 - CSP Access Rights within Services

		CSPs												
Service	DRBG_Seed	DRBG_State	Entropy Input	SSH PHK	SSH DH	SSH-SEK	ESP-SEK	IKE-PSK	IKE-Priv	IKE-SKEYID	IKE-SEK	IKE-DH-PRI	CO-PW	User-PW
Configure security	14	E		GWR				WR	GWR				W	w
Configure														
Secure traffic							Е				E			
Status														
Zeroize		Z		Z				Z	Z				Z	Z
SSH connect		E		E	GE	GE							E	E
IPsec connect		E					G	E	E	GE	G	GE		
Console access													E	E
Remote reset	GZE	GZ	GZE		Z	Z	Z			Z	Z	Z	Z	Z
Local reset	GZE	GZ	GZE		Z	Z	Z			Z	Z	Z	Z	Z
Traffic														
Software load														

 $^{^{\}rm 14}$ G = Generate: The module generates the key.

R = Read: The key is read from the module (e.g. the key is output).

 $^{{\}sf E}$ = Execute: The module executes using the key.

W = Write: The key is written to persistent storage in the module.

Z = Zeroize: The module zeroizes the key.

Table 17: Public Key Access Rights within Services

	Public key							
Service	SSH-PUB	SSH-DH-PUB	IKE-PUB	IKE-DH-PUB	Auth-UPub	Auth-COPub	Root-CA	Package-CA
Configure security	GWR ¹⁵		GWR		W	W		
Configure								
Secure traffic								
Status								
Zeroize	Z		Z	Z	Z	Z		
SSH connect	E	GE			E	Е		
IPsec connect			E	GE				
Console access								
Remote reset		Z		Z	Z	Z		E
Local reset		Z		Z	Z	Z		E
Traffic		-						
Software load				1			EW	EW

 $^{^{15}\,\}mathrm{G}$ = Generate: The module generates the CSP

R = Read: The CSP is read from the module (e.g. the CSP is output)

E = Execute: The module executes using the CSP

W = Write: The CSP is written to persistent storage in the module

Z = Zeroize: The module zeroizes the CSP.

3.4 Non-Approved Services

The following services are available in the non-Approved mode of operation. The security functions provided by the non-Approved services are identical to the Approved counterparts with the exception of SSH Connect (non-compliant).

SSH Connect (non-compliant) supports the security functions identified in Section 2.4 and the SSHv2 row of Table 11 - Protocols Supported in FIPS Mode.

Table 18 - Authenticated Services

Service	Description	со	User
Configure security (non-compliant)	Security relevant configuration	х	
Configure (non-compliant)	Non-security relevant configuration	х	
Secure Traffic (non-compliant)	IPsec protected connection (ESP)	х	
Status (non-compliant)	Show status	х	х
Zeroize (non-compliant)	Destroy all CSPs	х	
SSH connect (non-compliant)	Initiate SSH connection for SSH monitoring and control (CLI)	х	х
IPsec connect (non-compliant)	Initiate IPsec connection (IKE)	х	
Console access (non-compliant)	Console monitoring and control (CLI)	х	х
Remote reset (non-compliant)	Software initiated reset	х	

Table 19 - Unauthenticated traffic

Service	Description
Local reset (non-compliant)	Hardware reset or power cycle
Traffic (non-compliant)	Traffic requiring no cryptographic services

4 Self-Tests

Each time the module is powered up, it tests that the cryptographic algorithms still operate correctly and that sensitive data has not been damaged. Power-up self—tests are available on demand by power cycling the module.

On power up or reset, the module performs the self-tests described below. All KATs must be completed successfully prior to any other use of cryptography by the module. If one of the KATs fails, the module enters the Critical Failure error state.

The module performs the following power-up self-tests:

- Firmware Integrity check using ECDSA P-256 with SHA-256
- Data Plane KATs
 - AES-CBC (128/192/256) Encrypt KAT
 - AES-CBC (128/192/256) Decrypt KAT
 - Triple-DES-CBC Encrypt KAT
 - Triple-DES-CBC Decrypt KAT
 - HMAC-SHA-1 KAT
 - o HMAC-SHA-256 KAT
 - AES-GCM (128/192/256) Encrypt KAT
 - o AES-GCM (128/192/256) Decrypt KAT
- Control Plane Authentec KATs
 - RSA 2048 w/ SHA-256 Sign KAT
 - RSA 2048 w/ SHA-256 Verify KAT
 - ECDSA P-256 w/ SHA-256 Sign/Verify PCT
 - Triple-DES-CBC Encrypt KAT
 - Triple-DES-CBC Decrypt KAT
 - HMAC-SHA2-256 KAT
 - HMAC-SHA2-384 KAT
 - AES-CBC (128/192/256) Encrypt KAT
 - AES-CBC (128/192/256) Decrypt KAT
 - AES-GCM (128/256) Encrypt KAT
 - AES-GCM (128/256) Decrypt KAT

- KDF-IKE-V1 KAT
- KDF-IKE-V2 KAT
- HMAC DRBG KAT
 - SP 800-90A HMAC DRBG KAT
 - Health-tests initialize, re-seed, and generate.
- OpenSSL KATs
 - ECDSA P-256 Sign/Verify PCT
 - EC Diffie-Hellman P-256 KAT
 - Derivation of the expected shared secret.
 - o RSA 2048 w/ SHA-256 Sign KAT
 - RSA 2048 w/ SHA-256 Verify KAT
 - Triple-DES-CBC Encrypt KAT
 - Triple-DES-CBC Decrypt KAT
 - HMAC-SHA-1 KAT
 - HMAC-SHA2-256 KAT
 - o HMAC-SHA2-384 KAT
 - o HMAC-SHA2-512 KAT
 - AES-CBC (128/192/256) Encrypt KAT
 - AES-CBC (128/192/256) Decrypt KAT
- OpenSSH KAT
 - o KDF-SSH KAT
- Libmd KATs
 - HMAC-SHA2-256 KAT
 - o SHA-2-512 KAT
- Critical Function Test
 - The cryptographic module performs a verification of a limited operational environment.

Upon successful completion of self-tests, the module outputs "FIPS self-tests completed." to the local console. If a self-test fails, the module outputs "<self-test name>: Failed" to the local console and automatically reboots.

The module also performs the following conditional self-tests:

- Pairwise consistency test when generating ECDSA and RSA key pairs.
- Firmware Load Test (ECDSA P-256 with SHA-256 signature verification)
- Continuous RNG Test on the SP 800-90A HMAC-DRBG
- Continuous RNG test on the NDRNG

In addition to the continuous RNG tests, the module implements health-checks on the internal operating temperature. If the temperature of the device exceeds 75°C (167° F) the module transmits a warning and shuts down. This ensures that the entropy source will be within the range of the operating conditions under which it generates random data.

5 Physical Security Policy

The module's physical embodiment is that of a multi-chip standalone device that meets Level 2 Physical Security requirements. The module is completely enclosed in a rectangular nickel or clear zinc coated, cold rolled steel, plated steel and brushed aluminum enclosure. There are no ventilation holes, gaps, slits, cracks, slots, or crevices that would allow for any sort of observation of any component contained within the cryptographic boundary.

Tamper-evident seals allow the operator to tell if the enclosure has been breached. These seals are not factory-installed and must be applied by the Cryptographic Officer. (Seals are available for order from Juniper using part number JNPR-FIPS-TAMPER-LBLS.) The tamper-evident seals shall be installed for the module to operate in a FIPS mode of operation.

The Cryptographic Officer is responsible for securing and having control at all times of any unused seals and the direct control and observation of any changes to the module, such as reconfigurations where the tamper-evident seals or security appliances are removed or installed, to ensure the security of the module is maintained during such changes and the module is returned to a FIPS Approved state.

If the Cryptographic Officer observes tamper evidence, it shall be assumed that the device has been compromised. The Cryptographic Officer shall retain control of the module and perform zeroization of the module's CSPs by following the steps in Section 1.3 of the Security Policy and then follow the steps in Section 1.2 to place the module back into a FIPS-Approved mode of operation.

Table 20 – Physical Security Inspection Guidelines

Physical Security Mechanism	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Tamper seals, opaque metal enclosure.	Once per month by the Cryptographic Officer.	Seals should be free of any tamper evidence.

5.1 General Tamper Seal Placement and Application Instructions

For all seal applications, the Cryptographic Officer should observe the following instructions:

- Handle the seals with care. Do not touch the adhesive side.
- Before applying a seal, ensure the location of application is clean, dry, and clear of any residue.
- Place the seal on the module, applying firm pressure across it to ensure adhesion. Allow at least 1 hour for the adhesive to cure.

5.2 SRX300 (6 seals)

A tamper-evident seal must be applied to the following locations:

- Four (4) seals. Applied to base of the chassis, covering the four chassis screws
- Two (2) seals. Applied to the front of the device covering the USB ports.

Figure 17 - SRX300 Tamper-Evident Seal Placement (Chassis Screws (4) Seals)

Figure 18 - SRX300 Tamper-Evident Seal Placement (USB Ports (2) Seals)

5.3 SRX 340/345 (29 seals)

Tamper-evident seals must be applied to the following locations:

- Five (5) seals. Applied to the top of the chassis, covering one of the five chassis screws each.
- Four (4) seals. Applied vertically covering the front I/O Slots.
- Two (2) seals. Applied to the rear panel, covering the blank faceplate and the SSD expansion slot.
- Sixteen (16) Seals, Eight on each side. Covering the side panels screw holes.
- Two (2) Seals. Covering the Front USB and Micro USB Ports.

Total of 29 seals.

Figure 19 - SRX340/SRX345 Tamper-Evident Seal Placement (Top Cover, Nine (9) Seals)

Figure 20 - SRX 340/345 Tamper-Evident Seal Placement (Rear Panel, Two (2) Seals)

Figure 21 - SRX340/SRX345 Tamper-Evident Seal Placement (Side Panels, Eight on each side – Sixteen (16) Seals)

Figure 22 - SRX345 Tamper-Evident Seal Placement (USB Ports, Two (2) Seals)

5.4 SRX550M (28 seals)

The IOCs in the SRX550 are considered non-security relevant and are excluded from the requirements of FIPS 140-2. They do not perform cryptography and a malfunction cannot cause other components to malfunction, disclose CSPs, or output plaintext data.

Tamper-evident seals must be applied to the following locations:

- The front of the module fifteen (15) Seals:
 - Fifteen (13) Seals, Place vertically connecting each subplane to their vertically adjacent neighbors. And additionally connection each the top most and bottom most subplanes to the main chassis of the device.
 - Two (2) Seals, Place to cover the USB and Micro USB ports on the front of the device.
- On the Sides of the module three a side (6) Seals:
 - One (1) seal on each side wrapping horizontally around to the front of the device.
 - Two (2) seals on each side placed vertically over screws and wrapping around onto the base of the device.
- On the back Seven (7) Seals:
 - Six (6) seals placed vertically to secure the power supplies and expansion slots to the main casing of the device.
 - One (1) seal placed horizontally to secure the rightmost subplane to the main casing.

Figure 23 – SRX550 Tamper-Evident Seal Placement (Front, Fifteen (15) Seals)

Figure 24 – SRX550 Tamper-Evident Seal Placement (Side, Three a side (6) Seals)

Figure 25 – SRX550 Tamper-Evident Seal Placement (Rear, Seven (7) Seals)

5.5 SRX5400 (20 seals)

Tamper-evident seals shall be applied to the following locations:

- Front Pane (10 seals)
 - o Two seals (2), Vertical Covering the screws on the information panel at the top of the device.
 - Seven (7) seals, vertical, connection each expansion plane to its neighbors and the top and button plane to the chassis.
 - One (1) seal, vertical covering the USB port.
- Back Pane (10 seals)
 - o Four (4) seals, vertical: one on each of the top four sub-panes, extending to the large chassis plate below.
 - Two (2) seals, vertical: on the horizontal screwed-in plate resting on the large central chassis. Placed over screws.
 - Two (2) seals, horizontal: placed on the low side sub-panes, extending to the large central chassis area and wrapping around to the neighboring side panes.

Figure 26 - SRX5400 Tamper-Evident Seal Locations (Front, Ten (10) Seals)

Figure 27 - SRX5400 Tamper-Evident Seal Locations (Rear, Ten (10) Seals)

5.6 SRX5600 (19 seals)

Tamper-evident seals must be applied to the following locations:

Front Pane

- Nine (9) seals, vertical: one for each horizontal sub-pane (excluding the honeycomb plate on the top and the thin sub-pane a little below). The seals should attach to vertically adjacent sub-panes. The extra on the bottom attaches to the lowermost sub-pane and wraps around attaching to the bottom pane. It should be ensured that one of the seals spans across the thin plate with ample extra distance on each side.
- o Two (2) seals,

USB Port

o One (1) Seal, Vertical Covering the front USB port.

Back Pane

- Four (4) seals, vertical: one on each of the upper four sub-panes, attaching to the large plate below.
- Two (2) seals, horizontal: one on each of the vertical side sub-panes, extending to side the panes.
- One (1) Seal, Horizontal: connecting the small access pane on the lower right of the chassis to the main panel.

Figure 28 - SRX5600 Tamper-Evident Seal Locations (Front, Eleven (11) Seals)

Figure 29 - SRX5600 Tamper-Evident Seal Locations (Rear, Nine (9) Seals)

Figure 30 - SRX5600 Tamper-Evident Seal Locations (USB Port, One (1) Seal)

5.7 SRX5800 (42 seals)

Tamper-evident seals shall be applied to the following locations:

Front Pane

- Thirty (30) seals, horizontal: two on each of the long vertical sub-panes, extending to the neighboring two. If on an end sub-pane, seal should wrap around to the side.
- Three (3) seals, vertical: One over each of the thin panes two near the bottom, one near the top of the lower half.
- Two (2) seals, vertical: both on the console area at the top of the module, one extending to the top and the other extending to the chassis area below.
- One (1) Seal, Diagonal covering the front USB port.

Back Pane

- Five (5) seals, horizontal: Three spanning the gaps between the vertical sub-panels, and then two more, one each on the far edges of the left and right panels. (These last two should wrap around to the sides.)
- One (1) Seal, Vertical: At the top of the case connecting the DC system pane to the mesh fan cover.

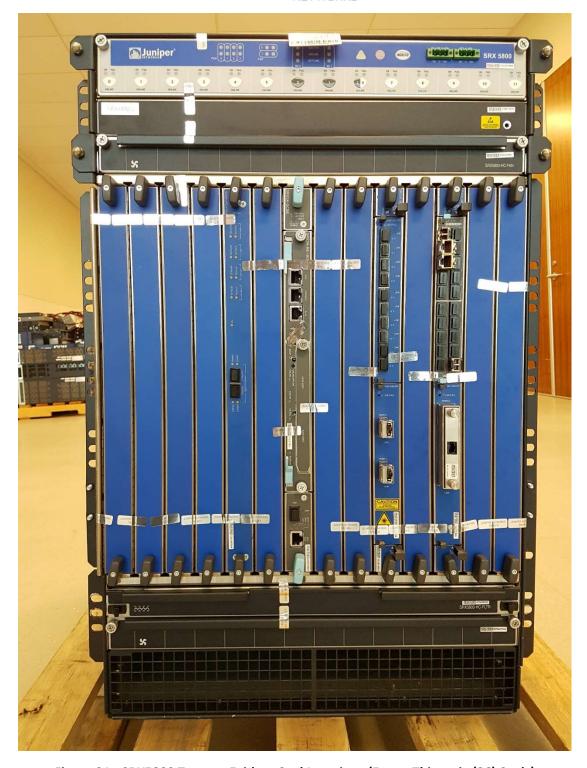


Figure 31 - SRX5800 Tamper-Evident Seal Locations (Front, Thirty-six (36) Seals)

Figure 32 - SRX5800 Tamper-Evident Seal Locations (Rear, Six (6) Seals)

6 Security Rules and Guidance

The module design corresponds to the security rules below. The term *must* in this context specifically refers to a requirement for correct usage of the module in the Approved mode; all other statements indicate a security rule implemented by the module.

- 1. The module clears previous authentications on power cycle.
- 2. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 3. Power up self-tests do not require any operator action.
- 4. Data output is inhibited during key generation, self-tests, zeroization, and error states.
- 5. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 6. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 7. The module does not support a maintenance interface or role.
- 8. The module does not support manual key entry.
- 9. The module does not output intermediate key values.
- 10. The module requires two independent internal actions to be performed prior to outputting plaintext CSPs.
- 11. The cryptographic officer must determine whether firmware being loaded is a legacy use of the firmware load service (legacy being those Junos firmware images signed with RSA signatures instead of ECDSA).
- 12. The cryptographic officer must retain control of the module while zeroization is in process.
- 13. The cryptographic officer must configure the module to use IKEv2 when GCM is configured for IKE or IPsec ESP.
- 14. If the module loses power and then it is restored, then a new key shall be established for use with the AES GCM encryption/decryption processes.
- 15. The cryptographic officer must configure the module to IPsec ESP lifetime-kilobytes to ensure the module does not encrypt more than 2³² blocks with a single Triple-DES key when Triple-DES is the encryption-algorithm for IKE and/or IPsec ESP.
- 16. To load and update the module's firmware with another FIPS 140-2 validated version using the USB port, the cryptographic officer must first remove the tamper-evident seal blocking the front USB port and ensure that a new seal is applied, following the instructions of Section 5.1, to the USB port once the firmware is loaded and configured in FIPS-MODE.

7 References and Definitions

The following standards are referred to in this Security Policy.

Table 21- References

Abbreviation	Full Specification Name	
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001	
[SP800-131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, January 2011	
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program	
[133]	NIST Special Publication 800-133, Recommendation for Cryptographic Key Generation, December 2012	
[135]	National Institute of Standards and Technology, Recommendation for Existing Application- Specific Key Derivation Functions, Special Publication 800-135rev1, December 2011.	
[186]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July, 2013.	
[186-2]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-2, January 2000.	
[197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001	
[38A]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001	
[38D]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007	
[198]	National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198-1, July, 2008	
[180]	National Institute of Standards and Technology, Secure Hash Standard, Federal Information Processing Standards Publication 180-4, August, 2015	
[67]	National Institute of Standards and Technology, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, Special Publication 800-67, May 2004	
[90A]	National Institute of Standards and Technology, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication 800-90A, June 2015.	

Table 22 - Acronyms and Definitions

Acronym	Definition	
AES	Advanced Encryption Standard	
DSA	Digital Signature Algorithm	
EC Diffie-Hellman	Elliptic Curve Diffie-Hellman	
ECDSA	Elliptic Curve Digital Signature Algorithm	
EMC	Electromagnetic Compatibility	
ESP	Encapsulating Security Payload	
FIPS	Federal Information Processing Standard	
НМАС	Keyed-Hash Message Authentication Code	
ICV	Integrity Check Value (i.e. Tag)	
IKE	Internet Key Exchange Protocol	
IOC	Input/Output Card	
IPsec	Internet Protocol Security	
MD5	Message Digest 5	
NPC	Network Processing Card	
RE	Routing Engine	
RSA	Public-key encryption technology developed by RSA Data Security, Inc.	
SHA	Secure Hash Algorithms	
SPC	Services Processing Card	
SSH	Secure Shell	
Triple-DES	Triple - Data Encryption Standard	

Table 23 - Datasheets

Model	Title	URL
SRX300 SRX340 SRX345	SRX300 Line of Services Gateways for the Branch	http://www.juniper.net/assets/us/en/local/pdf/datas heets/1000550-en.pdf
SRX550M	SRX550 High Memory Services Gateway Hardware Guide	https://www.juniper.net/documentation/en_US/rele ase-independent/junos/information- products/pathway-pages/hardware/SRX550/srx550- hm-index.pdf
SRX5400 SRX5600 SRX5800	SRX Series Service Gateways for service provider, large enterprise, and public sector networks.	http://www.juniper.net/assets/us/en/local/pdf/datas heets/1000254-en.pdf