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Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, 
and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor 
knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and 
molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of 
established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, 
several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transi-
tion, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated 
tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, 
non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum 
stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting 
these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the 
lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and 
progression of IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF), the most common 
form of idiopathic interstitial pneumonia, is an irrevers-
ibly progressive and usually lethal disease. IPF patients 
typically succumb to respiratory failure secondary to loss 
of respiratory function from extensive fibrotic scarring of 
the lung parenchyma. Following diagnosis, the average 
life expectancy is 3–5 years. IPF is more common in males 
and individuals older than 60 years. The histopathologi-
cal hallmarks include subpleural fibrosis, subepithelial 
fibroblastic foci, and microscopic honeycombing [1–4]. 
The clinical progress is usually complicated by acute epi-
sodes of respiratory function deterioration, termed IPF 
exacerbations. No effective treatments are available in 
preventing and controlling the acute exacerbations of IPF 
[5, 6]. The most common complications of IPF include 
lung cancer, depression, pulmonary hypertension, mus-
cle weakness, heart failure, thrombosis, acute respiratory 
distress syndrome (ARDS), and respiratory failure. The 
recent introduction of two anti-fibrotic drugs, pirfenidone 
and nintedanib, will likely lead to a significant retardation 
in lung-function decline and a reduction in the incidence 
and severity of associated complications. However, as 
these agents are not curative, new therapeutic approaches 
are needed [7] Given that the exact pathophysiological 
mechanisms involved in IPF remain elusive. Additional 
studies on the cellular processes and molecular pathways 
involved are essential for the development of effective 
IPF therapies. A number of processes and factors, such as 
the role of aging and cellular apoptosis, oxidative stress, 

endoplasmic reticulum stress, cellular plasticity, and non-
coding RNAs are the focus of intense research. Their bet-
ter understanding might lead to the effective modulation of 
aberrant cellular processes and the maintenance of tissue 
homeostasis in the lung. This review discusses the key 
evolving concepts in IPF pathogenesis, the cellular and 
molecular mechanisms involved in the onset and progres-
sion of the disease, and the identification and development 
of novel targeted therapies.

IPF risk factors

The exact causes of IPF remain unknown. Several studies 
have identified potential risk factors, including genetic alter-
ations, viral infections, lifestyle habits, environmental influ-
ences, occupational hazards. However, current evidence sug-
gests that IPF is the result of complex interactions between 
genetic and environmental factors, e.g. cigarette smoking, 
metal and wood dust exposures, and comorbid diseases, such 
as gastroesophageal reflux, diabetes mellitus, and obstructive 
sleep apnea (Fig. 1) [8].

Cigarette smoking

As with other lung diseases, cigarette smoking has a strong 
association with IPF. This association is particularly strong 
in frequent smokers or in those who have smoked for a long 
time [9]. For example, a study showed that long-term smok-
ing was an independent factor for IPF development and that 
IPF patients who were smokers exhibited lower overall cel-
lularity but higher and more severe alveolar space cellularity. 

Fig. 1  Schematic representation of IPF risk factors



Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis  

1 3

This resulted in increased local inflammation, due to the 
progressive accumulation of macrophages [10]. Subse-
quently, consistent evidence confirmed that tobacco smok-
ing is associated with an increased rate of lung-function loss 
over time [11, 12]. Six case–control studies showed a strong 
association between cigarette smoking and the development 
of IPF [11, 12]. Further studies reported that current smok-
ers developed the disease at a younger age in comparison 
to non-smokers and ex-smokers [13], and that IPF patients 
with a smoking history have a shorter survival when com-
pared to never smokers history [14, 15]. The mechanisms 
by which tobacco smoking influences IPF onset and pro-
gression are not fully understood. It has been reported that 
cigarette smoke stimulates in vitro overexpression of genes 
associated with epithelial-to-mesenchymal transition (EMT) 
and fibroblast-like phenotype [16], in vivo acceleration of 
telomere shortening [17], endoplasmic reticulum stress [18], 
repetitive mechanical stretch, and multiple other effects that 
need to be further investigated [19].

Environmental factors

The main environmental factors contributing to the patho-
genesis of IPF include dust, fibers, fumes, and particulate 
matter. Studies have identified a significant increase in IPF 
rates in populations exposed to inorganic and animal dusts, 
as well as to chemical fumes including wood dusts and 
fumes, metal dusts from brass, lead, and steel, other than 
bird droppings, and other pollutants [20]. Some of the most 
common professions involving exposure to such pollutants 
include, metallurgy, farming, textile work, welding, veteri-
narians and others [11, 21]. In a multicenter case–control 
study, Baumgartner et al. identified a dose–response rela-
tionship between metal dust exposure and IPF, especially in 
those with more than five years of exposure [22]. This study 
was included in a subsequent meta-analysis which showed 
a significant association between metal dust exposure and 
the development of IPF (OR 2.44, 95% CI 1.74–3.40) [20]. 
Hubbard et al. found that there was a significant relationship 
between the duration of exposure and the risk of IPF-related 
death in metal-exposed workers in UK [23]. In addition, 
studies in Sweden and the United States reported a direct 
relationship between exposure to wood dusts and risk of IPF 
[24–27]. Nevertheless, a significant number of IPF patients 
do not have any history of occupational pollutants inhala-
tion. A study from Sweden failed to identify associations 
between metal dust exposure and IPF among patients on 
oxygen therapy [28], suggesting that the impact of profes-
sional exposure to pollutants on the development and pro-
gress of IPF needs to be further elucidated.

Other occupational and environmental risk factors for IPF 
have been described, including hairdressing, bird breeding, 
dental work, and residing in an urban or polluted area [20].

Comorbidities

There is an increased risk of developing IPF in patients 
affected by other diseases, mainly gastroesophageal reflux 
disease (GERD), diabetes mellitus (DM), and obstructive 
sleep apnea (OSA).

The first report linking GERD with IPF was published 
by Pearson and Wilson in 1971 in 6 patients [29]. Five 
years later, it was reported that GERD was more common 
in patients with radiologic evidence of pulmonary fibrosis 
of unknown origin than in controls [30]. Other studies in 
GERD patients reported that the reflex of gastric acid con-
tents into the airways, in the presence of impaired esopha-
geal peristalsis, may lead to local irritation and respiratory 
symptoms [31]. In a retrospective study, Lee et al. observed 
a lower radiologic fibrosis score in patients with IPF treated 
with anti-GERD medications, and anti-reflux therapy was 
identified as an independent predictor of longer survival time 
[32]. Furthermore, a slower decline in forced vital capacity 
(FVC) and fewer acute exacerbations were reported in IPF 
patients receiving anti-acid treatments in three randomized 
controlled trials [33]. Clinical guidelines for the treatment 
of IPF that include specific indications for the use of anti-
acid medications or anti-GERD interventions in association 
with anti-fibrotic regimens have been published [34–36]. 
Despite the early identification of the association between 
IPF and GERD, its pathophysiological mechanisms remain 
largely unknown. In a post hoc analysis of anti-acid use from 
the CAPACITY/ASCEND pooled trial data, there was no 
significant difference in disease progression at 52 weeks 
between anti-acid users and non-users. Furthermore, use of 
anti-acids was shown to be potentially associated with an 
increased risk of infection in advanced disease stages [37].

The lungs are among the target organs affected by DM 
[38, 39]. In a systematic review, Klein et al. identified seven 
cross-sectional studies between 1975 and 2009 that reported 
an association between DM and restrictive patterns based 
on FVC and diffusion capacity of the lung for carbon mon-
oxide (DLCO) values [23, 40]. The incidence of diabetes 
in 65 IPF patients was fourfold higher than in 164 controls 
in a study performed in Japan, [41]. Furthermore, diabetes 
was found to be an independent risk factor for IPF [14]. The 
potential mechanisms by which diabetes contributes to the 
development of IPF are not clear. It has been shown that the 
accumulation of advanced glycation-end products (AGEs) 
in alveolar macrophages contributes to IPF, and that inhibi-
tion of the formation of AGEs prevents the disease in animal 
models [42, 43]. In vivo studies in bleomycin mouse models 
of pulmonary fibrosis have shown that the administration of 
the hypoglycemic agent metformin attenuates lung fibrosis 
[44]. However, other studies on the relationship between DM 
or metformin use in IPF have reported contrasting results 
[45].
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Obstructive sleep apnea (OSA) is common in IPF, with 
prevalence estimates ranging between 59 and 88% [19]. 
However, whether OSA precedes IPF or vice versa remains 
to be determined. It has been hypothesized that OSA causes 
a recurrent stretch injury of the alveoli in proximity to the 
pleura. Although this resembles the characteristic distribu-
tion of fibrosis in IPF, further studies are warranted to inves-
tigate the link with OSA [46].

Viral infections

Viral agents, particularly Hepatitis C Virus (HCV) [47, 48], 
Adenovirus [49], Torque-Teno (Transfusion-Transmitted) 
(TT) virus [50], and Herpesviruses may increase the risk 
of pulmonary fibrosis, the acute exacerbations, and the 
progression of the disease [51]. Among herpesviruses, the 
Epstein–Barr Virus (EBV), cytomegalovirus (CMV) and 
Kaposi’s sarcoma-associated herpesvirus (KSHV) seem to 
play a particularly important role in this context.

Studies performed in the UK reported that EBV was 
detected in lung tissues in 40–60% of IPF patients, using 
immunohistochemistry or protein chain reaction (PCR), but 
only in 0–4% of control patients [52–54]. Tanget al. showed 
that 97% of IPF lung samples, but only 36% of healthy con-
trol samples, harbored at least one of EBV, CMV, KSHV 
or human herpes virus 7 (HHV-7) [55]. In this study, 57% 
of IPF cases were infected by two of the aforementioned 
viruses, in comparison to 8% of the control cases [55]. Addi-
tionally, Folik et al. detected Herpesvirus Saimiri DNA in 
the regenerative epithelium of 21 IPF biopsies, while no 
virus was identified in healthy control lung epithelial cells 
[56]. Potential mechanisms linking latent viral infection 
with the pathogenesis of IPF include activation of EMT and 
tumoral growth factor (TGF-β) [19]. Animal models of Th2-
biased mice lacking IFN-gamma or the IFN-gamma recep-
tor have been used to demonstrate that Herpes viruses can 
promote pulmonary fibrosis and that antiviral therapy can 
prevent or limit exacerbations in patients with IPF [57–60].

Cellular and molecular mechanisms in IPF

Research on the pathogenesis of IPF has focused on chronic 
inflammation [61], abnormal wound healing [62], and mod-
els combining multifactorial and heterogeneous disease 
processes, such as cellular senescence, oxidative stress, 
endoplasmic reticulum stress, cellular plasticity, and the 
role of non-coding RNAs. Exposure to risk factors, such 
as those previously discussed, leads to phenotypic changes 
in the structure and function of lung cells, mainly due to 
EMT and endothelial-mesenchymal transition (EndMT), 
and ultimately fibrosis. Therefore, IPF can be considered as 
a pathological and phenotypical result of alterations in the 

homeostasis and communication between cell populations 
of the lung and their environment.

Apoptosis and senescence

A seminal study in 1996 showed that patients over 65 years 
of age had a higher incidence of IPF than younger patients 
[63]. The higher incidence rates of IPF in advanced age has 
been subsequently confirmed in numerous epidemiological 
studies in European and Asian populations [64–68]. Patients 
under 50 years of age diagnosed with IPF are more likely 
to be affected by familiar forms [69]. In addition, mortality 
rates are positively related to older age at diagnosis and to 
the temporal increase in the number of older people world-
wide [70].

Aging is a process characterized by the interplay of 
multiple complex factors, such as physiological abnormali-
ties, accumulation of the negative effects of risk factors, 
abnormal cell populations and tissues, with consequent 
progressive functional impairment of the whole organism 
[71]. Senescence occurs when the cell cycle is progres-
sively interrupted at abnormal stages, leading to impaired 
cell replication and tissue regeneration. The impaired tis-
sue homeostasis favors the release of intermediates, such 
as pro-inflammatory cytokines and metalloproteinases, col-
lectively referred to as the ‘secretory phenotype related to 
aging’ (SPRA). Factors which further affect premature aging 
include telomere deficiency, mitochondrial dysfunction, oxi-
dative stress, DNA damage, and altered protein function; 
most of these factors have been reported to play pivotal roles 
in the pathophysiology of IPF [72–75].

The concentrations of a number of SPRA-related media-
tors including TGF-β and IL-6 in rat lungs have been found 
to be increased with advancing age. By contrast, the elimina-
tion of senescent cells in IPF models reduced SPRA-related 
factors, such as IL-6, TGF-β and matrix metalloproteinase 
12 (MMP12) [76]. An “anti-aging” agent that kills senes-
cent type II alveolar epithelial cells (AECs), ABT-263, has 
been reported to reverse fibrosis in mice models of radiation-
induced lung fibrosis [77]. In other studies, an increase in 
p16 and p21 concentrations in AEC type II from pulmonary 
tissues in IPF patients might be associated with higher dis-
ease severity, possibly as a result of an impaired transport 
of carbon monoxide [78].

Bone marrow-derived mesenchymal stem cells (BMSCs), 
which have the potential to differentiate into lung epithe-
lial cells, have shown slower proliferation, shortening tel-
omeres, and overall low levels of activity in older adults 
[79]. Because of the gradual instability of this stem cell, 
any epithelial cells that derive from it are more prone to 
errors resulting in premature cell-mediated death and genetic 
instability. This concept was shown in a paper in which the 
properties of BMSCs were studied in mice of varying ages 
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[80]. Because the BMSCs of older mice failed to differenti-
ate, the B-MSCs of younger mice were administered to the 
older mice. This restored stem cell potency, further reinforc-
ing the concept that the ability of stem cells to proliferate 
decreases with age (Fig. 2).

Chemokines, cytokines, and growth factors

The role of serum chemokines and cytokines in the devel-
opment of lung fibrosis remains controversial. Studies have 
shown that some cytokines and chemokines are potential 
pro-fibrotic agents as their concentrations are increased in 
the bronchoalveolar lavage fluid (BALF) and/or lung sam-
ples of IPF patients. The concentrations of these molecules 
have been investigated in various cell populations (mac-
rophages, fibroblasts, neutrophils and alveolar epithelial 
cells) of lungs of IPF patients and healthy controls. Despite 
the functional roles and pathways of each molecule in the 
pathogenesis and development of IPF are not extensively 
known, it is possible that they participate in a complex con-
cert of cellular and extracellular matrix interactions, leading 
to fibrosis and disease progression (Fig. 3). Their effects tend 
to be cell-specific, thus causing different effects on different 
types of lung cells [81, 82]

TGF-β has been identified as a central factor in the 
development of pulmonary fibrosis. TGF-β has numerous 
biological effects, such as promoting wound repair through 
increased extracellular matrix deposition, inflammatory 
cell recruitment, and fibroblast differentiation. Overexpres-
sion of TGF-β via an adenovirus vector caused fibrosis in 
rat lungs, characterized by proliferation of myofibroblasts 
and extracellular matrix deposition [83–85]. In addition, 

overexpression of the TGF-β gene in pulmonary fibro-
blasts, as well as increased concentrations in BALF from 
IPF patients, has been reported [86]. However, concentra-
tions of TGF-β in BALF increase also in other sclerosing 
diseases, such as stage IV sarcoidosis and systemic sclerosis 
[87]. Other than in fibroblasts, TGF-β is located in alveolar 
epithelial cells and macrophages, as well as in the bronchial 
epithelium and extracellular matrix [87, 88]. These findings 
suggest that TGF-β plays a pivotal role in the development 
of IPF.

Insulin-like growth factor (IGF-1) is another mediator 
potentially involved in IPF development. IGF-1 modulates 
cell migration and differentiation, and its concentrations 
have been found increased in the lungs of IPF patients [83]. 
Different cell types, particularly macrophages, lymphocytes 
and epithelial cells produce IGF-1 [89]. IGF-1 contributes 
to lung re-epithelialization, acting as an anti-apoptotic fac-
tor, and stimulates the in vitro synthesis of collagen by 
fibroblasts, thus leading to the production of extracellu-
lar matrix [83, 90, 91]. Fibroblasts from the lungs of IPF 
patients exhibit increased secretion activity in comparison 
with healthy tissue fibroblasts, especially in the production 
of fibronectin [92]. This occurs partly through the interaction 
between IGF-1 and several binding proteins [93]. In par-
ticular, proteins associated with IGF (IGFBP)-3 and -5 were 
found increased in vivo in IPF lung samples, and in vitro in 
models of IPF fibroblasts [90–94].

Concentrations of platelet-derived growth factor (PDGF) 
have also been found increased in BALF and lung samples 
from patients with IPF [94]. Similarly to IGF-1, in the 
early stages of IPF, PDGF has been detected in alveolar 
macrophages, mononuclear phagocytes, fibroblasts, type 

Fig. 2  Aging-associated 
molecular and cellular events 
linked to IPF the pathogenesis 
(red lines indicate activation, 
black lines indicted inhibition)
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II pulmonary cells, as well as in endothelial and vascular 
smooth muscle cells [95]. In later stages, the localization of 
PDGF, in alveolar macrophages, a type of cells that is con-
sistently increased in this phase, becomes similar to that of 
healthy controls [96]. PDGF is involved in lung angiogenesis 
and pulmonary hypertension, as evidenced by its overexpres-
sion in vascular endothelial and smooth muscle cells, but the 
exact mechanisms remain to be elucidated [95–97].

The connective tissue growth factor (CTGF) is a pro-
fibrotic cytokine that stimulates fibroblast proliferation and 
increased deposition of extracellular matrix [98]. In lung 
tissues from IPF patients, CTGF was detected in both type 
II alveolar cells and interstitial fibroblasts [99]. CTGF is 
likely to be an important mediator of fibrosis but its role 
depends on the concentrations of TGF-β; low TGF-β activity 
is necessary for CTGF-dependent fibrosis [100]. Indeed, in 
experimental animal models, the overexpression of CTGF 
alone leads only to mild fibrosis [98–102].

IL-1β is a pro-inflammatory cytokine with prominent 
roles in wound repair. Adenovirus IL-1β gene transfer in rat 
lungs resulted in increased pro-inflammatory cytokine IL-6 
and tumor necrosis factor-α (TNF-α), as well as increased 
PDGF and TGF-β concentrations [103]. In addition, in vivo 
studies showed that fibroblasts treated with IL-1β differen-
tiated to myofibroblasts, which led to increased extracellu-
lar matrix (ECM) deposition [103]. Alveolar macrophages 

increase the production of TNF-α in response to lipopoly-
saccharide (LPS) treatment [104]. In addition, radiation 
exposure increases TNF-α concentrations in mice, which 
increases their susceptibility to fibrosis [105, 106]. In experi-
mental rats treated with bleomycin, there was an increased 
TNF-α and TGF-β expression [107]. Excessive expression of 
TNF-α in rats resulted in fibrosis and alveolar inflammation, 
whereas TNF-α receptor knockout mice were protected from 
fibrosis caused by asbestos [108–110]. In another study, the 
use of TNF-α receptor knockout mice exposed to bleomycin 
showed that TNF-α expression was increased, as opposed 
to that of TGF-β [107]. Taken together, these findings sug-
gest that TNF-α and TGF-β are significantly involved in the 
development of pulmonary fibrosis.

IL-6 concentrations were shown to be mildly increased 
in a rat model of experimental fibrosis [111]. While IL-6 
is found to have anti-proliferative effects in normal fibro-
blasts, in IPF fibroblasts a proliferative response has been 
reported [111–113]. IL-8 is also increased both in the BALF 
and serum from IPF patients [114, 115]. In pulmonary fibro-
sis, alveolar and neutrophil macrophages are the main cells 
producing IL-8 [114–116]. Furthermore, IL-4 and IL-5, two 
inflammation mediators of T helper cell type 2 (Th2), have 
been found expressed, using immuno-histochemical meth-
ods, in infiltrating mononuclear cells within the interstitial 
space of IPF patients [117]. Both colony-stimulating factor 

Fig. 3  Inflammation-activated molecular and cellular events associated with IPF pathogenesis (red lines indicate activation)
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(M-CSF) and CC Chemokine Ligand 2 (CCL2)/Monocyte 
chemoattractant protein-1 (MCP-1) have been found to 
be increased in the BALF of IPF patients compared with 
healthy controls [118, 119]. In addition, M-CSF and CCL2 
knockout mice exhibit a lesser degree of pulmonary fibrosis 
following bleomycin treatment [117–120]. Finally, in vitro 
studies identified prostaglandin E2 (PGE2) as a regulator 
of fibroblast proliferation, differentiation and collagen syn-
thesis [121, 122]. Specifically, fibroblasts retrieved from 
IPF lung tissue showed less PGE2 production in response 
to IL-1β, LPS, and TGF-β than healthy controls [123, 124]. 
Overexpression of COX2 in rats increased PGE2 expression 
in the lungs and subsequently reduced fibroblast prolifera-
tion. Although this finding supports the hypothesis that the 
decrease in PGE2 concentrations contributes to the develop-
ment of IPF, increased PGE2 concentrations in the BALF of 
IPF patients have also been reported [121, 122, 124–128].

The above-mentioned mediators are differently produced 
by the cells involved in the pathological process. A recent 
in vitro study identified numerous clusters of endothelial, 
epithelial, and mesothelial cells as well as hematopoietic 
cells including macrophages, monocytes, neutrophils, den-
dritic cells, natural killer cells, and lymphocytes with dif-
ferent profiles. In addition, the study described 12 different 
clusters of collagen-producing cells which are involved in 
the genesis of fibrosis. These clusters were categorized into 
two sub-clusters: the first, including clusters 0, 1, 2, 4, 6, 
8, 10 with higher collagen a1 expression, and the second, 
including clusters 3, 5, 7, 9 with higher Acta2 expression. 
Cluster 11 was characterized by proliferating cells that 
expressed Mki67 and Cdc20. Clusters 5 and 7 expressed 
smooth muscle cell markers, such as Acta2 and Myh11. 
Cluster 9 expressed pericyte markers [129].

Adenosine

It has been recently proposed that adenosine, an endogenous 
autocoid regulating several body functions, plays a pivotal 
role in both tissue regeneration and fibrotic processes [130]. 
Adenosine regulates cell function by binding to specific cell 
surface receptors [131]. There are four adenosine receptor 
subtypes. Three of them, subtypes, A1, A2A, and A2B, are 
highly conserved during evolution, while the A3 receptor 
subtype differs significantly among species [132]. A2B 
receptor stimulation has been reported to drive the differenti-
ation of pulmonary fibroblasts [133], and its expression was 
increased in the lungs of mice deficient in adenosine deami-
nase, an enzyme responsible for adenosine catabolism [134]. 
In this context, compared with control animals, Sun et al. 
reported an increased number of fibroblasts and the accu-
mulation of α-smooth muscle actin in adenosine deaminase-
deficient mice, a phenomenon that was prevented by the 
A2B receptor antagonist CVT-6883 [135]. When compared 

with adenosine deaminase-deficient mice, CVT-6883-treated 
animals showed significantly lower levels of lung histologi-
cal inflammatory markers and reduced fibrosis, collagen 
deposition and alveolar airspace enlargement. Macrophages-
mediated production of pro-fibrotic mediators, such as TGF-
β1, was also suppressed by administration of A2B receptor 
antagonists [135]. A2B receptor-mediated antagonism pro-
tection on lung fibrogenesis was also linked with a decreased 
secretion of chemokines and cytokines including CCL17, 
chemokine (CXC motif) ligand 1 (CXCL1), chemokine (CC 
motif) ligand 11 (CCL11) CXCL2, TNF-α and IL-6 [135]. 
The A2B receptor has also been studied in a model of lung 
fibrosis caused by bleomycin, where it seems to have dif-
ferent roles during both the acute and the chronic stages 
of lung injury [136]. Genetic ablation of the A2B receptor 
in mice systemically exposed to bleomycin (chronic treat-
ment) reduced lung fibrosis exerting modest effects on lung 
injury, while A2B receptor ablation in mice intra-tracheally 
treated with bleomycin (acute treatment) increased pulmo-
nary inflammation with little effect on pulmonary fibrosis 
[136]. Following bleomycin treatment, the effect of the A3 
adenosine receptor in lung fibrogenesis has also been inves-
tigated in mice [137]. Although this receptor appears to play 
an important role as anti-inflammatory modulator, it appears 
unlikely to be primarily involved in the control of lung fibro-
genesis [137]. As adenosine appears to exert a key role in 
the pathophysiological control of pulmonary fibrosis, the 
development of A2B receptor antagonists may represent a 
therapeutic option in IPF (Fig. 4).

Oxidative stress

Oxidative stress is defined as an imbalance between oxidant 
production and antioxidant defense, favoring oxidants. This 
leads to the production of several reactive oxygen species 
(ROS), containing one or more unpaired electrons in their 
atomic or molecular orbitals. These unpaired electrons gen-
erate highly reactive radicals, such as the superoxide radical 
(O2 ˉ), hydrogen peroxide (H2O2), hydroxyl radical (OH), 
hypochlorous acid (HOCl), and peroxynitrite (ONOO). 
Excessive ROS production causes oxidative stress, leading 
to cell damage. Numerous studies have reported that oxida-
tive stress is involved in the pathogenesis of IPF [138–141]. 
Recently, Fois et  al. performed a systematic review to 
describe the type of markers of oxidative stress identified 
in different biological specimens of patients with IPF [142]. 
In each of the 30 identified studies, the authors critically 
appraised the type, site (systemic vs. local, e.g. breath, spu-
tum, expired breath condensate, epithelial lining fluid, bron-
choalveolar lavage, and lung tissue specimens), and method 
used for measuring the specific oxidative stress biomarkers. 
Subsequently, Paliogiannis et al. performed a meta-analysis 
of 15 studies in patients with IPF, which showed either an 
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increase in the concentrations of oxidative stress markers or 
a reduction in antioxidant markers, independent of the type 
of biological sample [143]. These observations strongly sup-
port the proposition that oxidative stress is one of the most 
relevant pathophysiological mechanisms involved in IPF.

The specific mechanisms by which oxidative stress favors 
the development of IPF are not yet fully understood although 
they are likely to target both the cell phenotype and life-
cycle promoting aging and apoptosis. This, in turn, would 
lead to alterations in tissue micro-environment that favor 
fibrosis upon regeneration. It has been shown that increased 
oxidative stress induces the premature aging of cells [144, 
145]. As a result, fibroblasts acquire features of apoptosis 
resistance [146, 147], and remain metabolically active pro-
ducing higher levels of ROS [148]. Furthermore, pulmonary 
myofibroblasts secrete hydrogen peroxide (H2O2), which 
mediates fibrotic effects in tissues through induction of epi-
thelial apoptosis though paracrine mechanisms [149], or 
spatial alterations of the extracellular matrix in presence of 
extracellular cells [150]. In the lungs, various factors con-
tribute to the generation of oxidative stress. Environmental 
factors, such as cigarette smoking stimulate ROS produc-
tion through endoplasmic reticulum (ER) stress, disconnec-
tion of the mitochondrial enzymatic system [150, 151], and 
production of NADPH oxidases (NOX), especially NADPH 
oxidase-4 (NOX4), by both inflammatory and lung cells. 
ROS stimulate apoptosis in airway epithelial cells, as well as 

production of cytokines and growth factors (such as TGF-β 
[152]) which play an important role in myofibroblast differ-
entiation and collagen deposition, resulting in pro-fibrotic 
events and further reduced antioxidant capacity (Fig. 4).

In a recent study, an increase of reactive oxygen spe-
cies (ROS) generation induced by sera from IPF patients 
determined both collagen type I deposition and prolifera-
tion of primary human pulmonary artery smooth muscle 
cells (HPASMCs). IPF sera-induced cellular effects were 
significantly blunted by the NADPH oxidase inhibitor diphe-
nyleneiodonium (DPI), supporting the causative role of 
ROS and their cellular source. In contrast to what observed 
in treatment-naïve IPF patients, serum from IPF patients 
treated with pirfenidone failed to induce the generation of 
ROS and collagen synthesis in HPASMC (Fig. 4) [153]. The 
use of antioxidants in IPF is a focus of current research. 
N-acetylcysteine has been widely used in IPF as antioxi-
dant and anti-fibrotic agent since it is relatively inexpensive, 
well-tolerated, and orally available. However, the evidence 
for its effectiveness is not robust, mainly due to the lack of 
adequately designed studies using placebo arm comparators 
[142]

Mitochondrial dysfunction

Mitochondrial-generated increase of ROS has been found 
to induce lung fibrosis [154, 155]. Although a potentially 

Fig. 4  Schematic representation of the cellular and molecular 
events linked to the IPF-pathogenesis in the lung environment. NOX 
NADPH oxidase, ROS reactive oxygen species, cAMP cyclic adeno-
sine monophosphate, DAG diacylglycerol, IP3 inositol trisphosphate, 

DPI diphenyleneiodonium, CVT-6883A 2B-adenosine receptor antag-
onist, ER endoplasmic reticulum (Red arrows indicate activation, 
black lines indicate inhibition)
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vicious cycle of TGF-β and ROS interaction exists, where 
ROS activate TGF-β and TGF-β activates ROS [156–158]), 
TGF-β1 appears to be the most important trigger of mito-
chondrial (mtROS) production associated with the pro-
fibrotic phenotype reprogramming of lung cells [159]. This 
proposition is further supported by the observation that the 
deletion of NOX4 abrogates TGF-β1-induced fibrosis in 
mice [160]. Moreover, TGF-β1 has been reported to acti-
vate NOX4-mediated collagen production in myofibroblasts 
[161], and this signaling pathway is strongly implicated in 
IPF pathogenesis [162, 163]. Although the role of mito-
chondrial mtROS in IPF onset and progression is not fully 
understood approaches to beneficially modulate mtROS 
levels with antioxidants are currently under investigation 
(Fig. 4) [164, 165].

Besides ROS homeostasis, healthy mitochondrial func-
tion is also maintained by the coordinated activities of 
mitochondrial biogenesis, dynamics, and mitophagy, also 
known as Mitochondrial Quality Control (MQC). In this 
context, emerging evidence suggests that MQC is one 
of the major contributors to the pathophysiology of IPF 
[166]. Key proteins involved in controlling MQC include 
GTPases, those that require oxidative phosphorylation 
(OXPHOS)-mediated ATP generation, such as mitofusin 
(MFN1, MFN2), ubiquitinated autophagy-related proteins, 
and dynamin-related protein [166–168]. As mitochondrial 
OXPHOS provides energy for the above-mentioned pro-
cesses, the modulation of mitochondrial bio-energetic 
processes can simultaneously affect mitochondrial func-
tion [166]. Alterations in aerobic metabolism have been 
reported in fibroblasts involved in pulmonary fibrosis 
[166], particularly increased glycolysis, resistance to apop-
tosis, and propensity to develop a metabolic-driven fibrotic 
phenotype, which appears to be linked to decreased ATP 
synthesis and increased mtROS production [169, 170]. 
Fatty acid oxidation (FAO) has also been linked with lung 
fibrosis as pulmonary macrophages with enhanced FAO 
appear to enhance their pro-fibrotic reprogramming in the 
lung [171]. This is also facilitated by the tight association 
between FAO and OXPHOS [172, 173]. This association 
has been confirmed in a mice model of bleomycin-induced 
lung fibrosis, where macrophages metabolic reprogram-
ming shifts glycolysis to FAO [171, 174]. Macrophages 
pro-fibrotic metabolic reprogramming seems to be essen-
tial to maintain both regenerative cell activity and apop-
totic resistance in the lung [168, 173, 175, 176]. Moreover, 
while II AECs differentiation into I AECs and subsequent 
re-epithelialization represents the normal lung response 
to injury, during pulmonary fibrosis the accelerated bio-
genesis and mitophagy in type II AECs is associated with 
increased glycolysis-driven metabolism, leading to apop-
tosis due to reduced ATP and increased mtROS produc-
tion [177]. Indeed, while the induction of type II AEC 

apoptosis is linked with increased fibrotic phenotype [178] 
its inhibition attenuates pulmonary fibrosis [178–180]. In 
line with these observations, a higher number of cells 
with compromised mitochondria [167, 181] and elevated 
mtROS production [182, 183] has been reported in IPF 
subjects (Fig. 4).

To further support the link between altered cell metab-
olism and fibrotic cell reprogramming in the lung, an 
impaired mitochondrial lipid metabolism associated with 
the fibrotic process in type II AECs has been reported 
[184]. The impaired synthesis of phospholipids and cho-
lesterol affects the lung surfactant synthesis and alveolar 
homeostasis by disrupting the epithelial barrier integrity 
and promoting fibrogenesis [184]. Increased levels of lipids 
and plasmatic cholesterol have been linked to disease acute 
exacerbation and high mortality in IPF subjects [185]. In 
this regard, mitochondrial MFN1 and MFN2 play a crucial 
role in regulating lipids and cholesterol production and their 
knockdown affect lipid synthesis in AEC2 cells and exacer-
bates bleomycin-induced lung fibrosis [184]. Altered lipid 
profiles have been reported IPF BAL fluid [186], IPF lung 
[187], and IPF type II AECs [188]. In line with these find-
ings, the cholesterol-lowering agent simvastatin has been 
shown able to reduce atherogenic diet-elicited pulmonary 
fibrosis by downregulating Hsp70/Hsp90 protein concentra-
tion in the lung [189].

The TGF-β1/NOX4/ROS pathway also appears to be 
linked with the mitochondrial metabolic pathways impli-
cated in lung fibrogenesis. NOX4 activation has been 
reported to suppress both mitochondrial biogenesis and 
bioenergetics in lung fibroblasts, while NOX4′s pharmaco-
logical inhibition, or its genetic silencing, has been shown 
to restore them [190]. Association between ROS and choles-
terol in IPF pathogenesis has also been reported in a recent 
paper indicating the ability of the antioxidant Epigallocat-
echin Gallate (EGCG) to affect the expression of genes 
involved in cholesterol synthesis and cholesterol-associated 
metabolic processes [191]

Mitochondrial DNA (mtDNA) is also emerging as an 
important player in IPF pathogenesis. As apoptosis is a 
key step in fibrosis, the lack of appropriate mtDNA repair 
mechanisms makes the mitochondrion an important trigger 
of apoptotic-associated fibrogenesis [166, 192]. Exacerbated 
lung fibrosis has been detected in several animal models with 
altered mtDNA repair mechanisms, making this phenom-
enon more than an indicator of excessive oxidative stress 
[193, 194]. Secreted mtDNA, as well as its putative recep-
tor TLR9, resulted increased in many fibrotic lung diseases 
and positively correlated with increased mortality [195]. 
Therapies targeting mitochondria with organ-specific drugs 
are under development. In this regard, MitoQ, an antioxi-
dant that targets mitochondria, has been shown to decrease 
the expression of TGF-β1 and NOX4 in IPF pulmonary 
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fibroblasts [154]. Further research in mitochondrial biology 
might lead to the identification of new druggable cellular 
and molecular targets (Fig. 4).

Endoplasmic reticulum stress

In physiological conditions, a cell produces up to 4 × 106 
proteins per minute, and the role of the ER is to fold and 
process at least one-third of these proteins [196]. The ER 
coordinates processing, folding, assembly and protein trad-
ing, as well as the degradation of faulty proteins. Its function 
is regulated by a combination of factors including protein 
load, cell metabolism, redox balance, and calcium homeosta-
sis. Alterations in any of these factors can lead to ER stress, 
and activate unopened protein reaction (UPR) [197–206]. 
Numerous proteins are related to UPR, including ER pro-
teins, such as Grp78 (BiP), ER kinase-like PKR (PERK), 
ATP-4, and ATF-6 [207]. UPR tends to limit protein pen-
etration into the ER, facilitating both the folding and the 
degradation of ER proteins and protecting from cell death 
[207]. When ER stress occurs due to prolonged or excessive 
protein mismatch, the process of apoptosis through the Bcl-2 
signaling pathway is activated and cell death occurs [207].

The onset and progression of fibrotic diseases, includ-
ing IPF, have been linked to ER stress (Fig. 4). Gene muta-
tions affecting the surfactant protein A2 coding (SP-A2, 
SFTPA2) lead to the production of proteins that are unable 
to be secreted. This leads to their accumulation in the cyto-
plasm and the activation of ER-association degradation path-
ways with increased EC stress. This phenomenon has been 
reported in A549 cells and primary type II alveolar epithelial 
cells [208]. Mutation in the Surfactant Protein C gene has 
also been associated with Familial Interstitial Lung Disease 
[209]. Gene mutations affecting the C-terminal domain of 
Surfactant Protein C leads to both ER aberrant processing 
and toxic intracellular accumulation, ultimately promoting 
alveolar epithelial cell injury [210], a pivotal trigger in the 
development and progression of IPF [211].

Furthermore, both ER stress and unfolded protein 
response (UPR) have been reported to be associated with 
pulmonary fibrosis through AEC apoptosis, EMT, altered 
myofibroblast differentiation, and M2 macrophage polariza-
tion [207, 212, 213]. Studies on IPF lung samples showed 
increased staining of the ER stress- and UPR activation-
associated proteins ER chaperone immunoglobulin heavy-
chain-binding protein (BiP), X-box-binding protein 1 
(XBP-1), and ER degradation enhancing α-mannosidase-
like protein (EDEM) in epithelial cells, in comparison with 
healthy control lung tissues [214]. In addition, expression 
of the pro-SP-C mutant protein in A549 cells increased the 
expression of BiP, demonstrating the presence of ER stress 
in these cells due to improper fold of the pro- SP-C protein 
[215, 216]. A relationship between ER stress and aging has 

also been reported in vitro, and seems to be related to an 
increase in p16 and p21 in lung epithelial cells in older IPF 
patients [217–220].

Cellular plasticity

Cellular "plasticity", the ability of some cells to acquire the 
characteristics of other cells, is usually manifested under 
specific conditions, such as tissue regeneration, restoration 
and fibrosis, and involves particular cell types, including 
epithelial, endothelial, and mesenchymal cells. Alterations 
in cellular plasticity, associated with the onset and progres-
sion of IPF, can be broadly classified in EMT and EndMT.

Epithelial‑mesenchymal transition (EMT)

Since the 1980s, EMT has been recognized as one of the key 
mechanisms involved in fibrosis in IPF. EMT consists in the 
loss of a subset of epithelial proteins, such as E-Cadherin, 
which leads to the conversion of epithelial cells into a mes-
enchymal phenotype characterized by a different milieu of 
specific proteins including N-Cadherin [221–225], Vimen-
tin, and Fibronectin, as well as fibroblast transcription fac-
tors, such as Snail, Slug and Twist [226].

When tissues are damaged by various insults (i.e. viruses, 
bacteria, parasites, toxic environmental particles), a series of 
immunity activating signals are produced, leading to inflam-
mation and promoting EMT. Immune cells, such as mac-
rophages, neutrophils, and eosinophils, are recruited in this 
process and release cytokines and growth factors to maintain 
inflammation and tissue repair [227–232]. However, when 
this process is sustained, the development of a chronic 
inflammatory state enhances and prolongs EMT through 
increased fibroblast proliferation. In addition, activated 
fibroblasts stimulate the production of myofibroblasts as well 
as an excessive amount of mediators that favor extracellular 
matrix deposition. The accumulation of fibrous tissue pro-
gressively replaces functionally normal tissue, resulting in 
a gradual functional and structural dysfunction of the lung 
parenchyma [233–235].

Numerous cytokines and chemokines involved in the 
pathogenesis of IPF, included those mentioned before, also 
play a role in EMT. In particular, TGF-β1 favors EMT by 
directly activating a series of signaling pathways including 
Smad, ERK/MAP kinases, and networks involving microR-
NAs, through the binding with type I and type II TGF recep-
tors (TBR-I and TBR-II). This triggers a series of intracellu-
lar signals that ultimately stimulate the transcription of Snail 
and Twist, which inhibit endothelial markers production and 
activates mesenchymal markers expression (Fig. 5a–b). As 
a consequence, there is a loss of the integrity of the epi-
thelium, resulting from alterations of the tight junctions 
and the intercellular matrix [16, 236–240]. A wide range 
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of additional mediators that trigger EMT through TGF-β1 
activation have been described, including hypoxia-medi-
ated ROS, Fibroblast Growth Factor-2 (FGF-2), Epidermal 
Growth Factor (EGF), CTGF and Transglutaminase 2 (TG2) 
[241–244] (Fig. 1). This network of mediators is essential 
for several cellular processes involved in EMT, including 
proliferation, cell differentiation and apoptosis (Fig. 5a–b).

Previous studies have shown that AEC could differenti-
ate into fibroblasts/myofibroblasts increasing fibrotic tissue 
deposition and that EMT contributes to fibroblast accumu-
lation and consequent development of pulmonary fibrosis 
in animal models [245–248]. Studies in models of fibrosis 
secondary to bleomycin treatment or TGF-β1 overexpres-
sion have reported decreased expression of E-cadherin and 
C-surfactant protein and increased expression of α-smooth 
muscle actin (α-SMA) and S100A4 [244, 248]. In the study 
by Tanjore et al., approximately one-third of fibroblasts in 
mice treated with bleomycin derived from the pulmonary 
epithelium and stained consistently for S100A4, an EMT-
related protein. By contrast, only a few S100A4-positive 
cells were detected in the lung epithelium of untreated mice 
[248].

In vitro studies suggest a synergistic effect of TGF-β1 
and EGF in stimulating EMT [248]. Immunohistochemi-
cal methods have been also used to study the role of the 
Wnt/β-catenin signaling pathway in IPF [249]. Furthermore, 

the different expression levels of S100A4 in fibroblasts in 
several in vivo models suggest that different fibroblast cell 
subtypes and myofibroblasts coexist during the development 
of pulmonary fibrosis [248, 250].

Recent studies have investigated the effects of anti-fibrotic 
drugs, such as tannic and triptolide acid, to better under-
stand the molecular mechanisms underlying IPF. Tannic acid 
caused TGF-β1 overexpression and a reduction in smad2 
and Smad3 phosphorylation. This led to the reversal of the 
morphological changes observed in epithelial cell cultures. 
Other medications have been tested, including thalidomide 
(inhibits Smad pathways), Pirfenidone (inhibits myofibro-
blast differentiation through inhibition of ROS production, 
PDGFR-PI3K and Akt) and Tubastatin (inhibits HDAC6 and 
TGF-β1-PI3K-AKT signaling) [251–255]. Nevertheless, the 
clinical effectiveness of most of these medications has been 
shown to be poor.

Endothelial‑mesenchymal transition (EndMT)

As previously discussed, both an increase in local fibro-
blasts and their differentiation in myofibroblasts have been 
shown to favor the progression of fibrosis. Compared to 
fibroblasts, myofibroblasts upregulate the expression 
of α-SMA, and increase the production of extracellular 
matrix proteins, such as collagen type I, III, V and VI 

Fig. 5  a Transforming growth factor-β (TGF-β) signaling. Schematic representation of the cellular and molecular events involved in EMT (b) 
and EndMT (c). (Red arrows indicate activation, black lines indicate inhibition)
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[256, 257]. Furthermore, expression of tissue inhibitors 
of metalloproteinases (TIMPs) is increased by myofibro-
blasts, leading to reduced extracellular matrix degradation 
[257, 258]. Experimental evidence showed that myofibro-
blasts can originate from cell sources other than fibro-
blasts. In particular, endothelial cells (ECs) are a potential 
source acting through EndMT. During this process, ECs 
acquire a mesenchymal phenotype and present typical 
markers of myofibroblast differentiation, such as α-SMA, 
vimentin and collagens, while reducing the expression of 
vascular endothelial cadherin (VE-cadherin) [259]. It has 
been reported that 16% of fibroblasts expressing α-SMA 
and collagen type I were derived from the EC in lungs of 
mice with bleomycin-induced IPF [259].

The importance of EndMT in experimental fibrosis has 
been demonstrated both in vitro and in vivo. These studies 
showed that TGF-β has a central role in promoting EndMT, 
through a wide network of molecular interactions (Fig. 5a, 
c). Signals from TGF-β are mediated through Smad tran-
scription modifiers [260, 261]. TGF-β can also activate 
factors of the mitogen-activated protein kinase (MAPK) 
pathways, such as the extracellular signal-regulated kinase 
(ERK), p38 mitogen-activated protein kinase (MAPK) and 
c-Jun-N-terminal kinase (JNK) [262, 263]. MAPK-mediated 
TGF-β responses can be Smad-dependent or independent 
[262]. TGF-β-induced ERK activation can either potentiate 
or interfere with Smad signaling [264]. By contrast, p38 
MAPK and JNK usually potentiate TGFβ/Smad-induced 
responses [265, 266]. TGF-β was shown to activate PI3 
kinase/Akt and Rho GTPase pathways [263]. Moreover, 
TGF-β signaling exerts its effects by interacting with other 
signaling cascades, including Wnt and Notch (Fig. 5a, c) 
[267–269].

The co-activation of the RAS and TGF-β signaling 
cascades could favor EndMT in pulmonary ECs, with 
an increase in fibronectin and type I collagen expression 
[270]. Caveolin-1 (CAV-1) is the main protein component 
of caveolae, associated with TGF-β receptors localization, 
trafficking and degradation, and plays an important role in 
the pathogenesis of different fibrosing diseases. A study 
by Jimenez et al. investigated the role of CAV-1 in EndMT 
caused by TGF-β in mice [271]. The authors found that mice 
lacking CAV-1 exhibited EndMT in pulmonary ECs, which 
was demonstrated by expression of α-SMA marker, high 
production level of collagen type I, and high expression of 
Snail and Slug. Accordingly, spontaneous EndMT and TGF-
β1 were reversed by restoring functional CAV-1 [141, 271, 
272].

Choi et al. found increased EndMT in blood vessels due 
to hypoxic injury in radiation-induced pulmonary fibrosis 
[272]. In this study, EMT was also observed in alveolar 
epithelial cells, but only after the occurrence of EndMT. 
In human pulmonary arterial ECs, radiation-induced 

HIF-1α-dependent EndMT through activation of TGFβ-R1/
Smad signals has been also detected (Fig. 5a) [273, 274].

Hypoxia

One feature of many pathological fibrotic disorders is the 
decreased oxygen availability in the cellular environment, 
a condition known as hypoxia [275–277]. By activating 
the hypoxia-inducible factors (HIFs), a set of transcription 
factors that respond to low oxygen tension, the hypoxic 
environment is able to modulate the expression of several 
genes [278, 279]. So far, three HIFs isotypes, HIF1, HIF2 
and HIF3 have been identified. Each of them is formed by 
one subunit beta (β) and one alpha (α), with the latter being 
more sensible to oxygen levels and prominently implicated 
in disease development [278, 280].

Several studies have shown a correlation between hypoxia 
and IPF, mediated by signaling mechanisms triggered by 
the activation of HIFs (Fig. 5).[281–284]. These include 
the augmented expression of myofibroblast differentiation 
markers, such as αSMA and β-actin, in response to increased 
levels of HIF-1α and HIF-2α in human normal fibroblasts 
exposed to hypoxic conditions and in lung tissue from IPF 
patients [284]. Noteworthy, in the same model, HIF-3α 
expression was decreased, probably as consequence of its 
hypermethylation, which negatively regulates the hypoxia 
signaling pathway [284, 285]. In a mice model of bleomy-
cin-induced fibrosis, HIF-1α knockout reduced lung fibrosis 
and alveolar epithelial cells proliferation [283]. Comparative 
Expression Profiling experiments performed in the lung of 
bleomycin-induced mice fibrosis showed significant over-
expression of several HIF-1 targets, including VEGF-A, 
VEGF-C; Siah1, Flt1, Bnip3l and Bhlhb2 [281]. Similarly, 
high expression levels of HIF-1α and its targets VEGF and 
p53 have been reported in lung tissue from patients with IPF 
or cryptogenic organizing pneumonia [281].

The molecular mechanisms involved in HIFs signaling 
have also been investigated. Activation and nuclear translo-
cation of the transcription factor Nuclear Factor Activated T 
cell (NAFT) has been reported to be an essential mechanism 
of the hypoxia signaling pathway in human lung fibroblasts 
[286]. Hypoxia-induced IPF fibroblast proliferation has been 
reported to be driven by the miR-210-mediated overexpres-
sion of c-Myc [282]. Interestingly, while moderate hypoxia 
(2%  O2) increases human lung fibroblasts proliferation in 
a p21-dependent and a p53-independent fashion, a more 
severe hypoxic environment (0.1%  O2) leads to cell cycle 
arrest through both p53 and p21 [287].

The interaction between hypoxia and other factors 
involved in IPF development has also been reported. For 
instance, hypoxia and TGF-β act synergistically in regulating 
a number of mRNAs and lncRNAs in lung fibroblasts, poten-
tially contributing to IPF pathogenesis [288]. Compared to 
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wild-type mice, bleomycin-treated mice deficient of the ER 
stress-regulated transcription factor C/EBP homologous pro-
tein (CHOP) are protected from the exacerbated lung fibrosis 
elicited by hypoxia [289]. In vitro experiments revealed the 
involvement of the inositol-requiring enzyme 1α (IRE1α) 
and the PKR-like ER kinase (PERK) pathways in CHOP-
mediated AECs apoptosis [289]. Moreover, both CHOP and 
hypoxia markers, such as HIF1α, carbonic anhydrase IX, and 
pyruvate kinase, were found to be increased in the lung tis-
sue of IPF patients when compared to controls [289].

The link between hypoxia and IPF and the underpinning 
mechanisms controlling this interaction require further 
investigation. Pending further research addressing this issue, 
therapeutic strategies ameliorating the hypoxic environment 
by targeting specific regulating mechanisms might be useful 
in IPF.

Hyaluronan and other glycosaminoglycans

IPF is characterized by an extensive cellular and molecular 
restructure of the lung tissue that primarily involves compo-
nents of the extracellular matrix (ECM), such as collagens, 
glycoproteins, and proteoglycans, ultimately resulting in the 
formation of fibrotic tissue and decrease of lung function 
[290]. ECM plays an essential role in modulating lung struc-
ture and function [291, 292], and its alteration can result in 
lung disease [291, 293, 294]. The latter can also be favored 
by an abnormal interaction between ECM components, 
growth factors, such as TGF-β and connective tissue growth 
factor (CTGF), and lung epithelial, alveolar and fibroblast 
cells [295, 296].

The role of specific ECM components, particularly the 
glycosaminoglycans (GAG), in IPF onset and progression is 
still under investigation. There are two main types of GAGs 
in the EMC, the non-sulfated GAG hyaluronic acid (HA) and 
the sulfated GAG (heparan sulphate, heparin, chondroitin 
sulphate, dermatan sulphate and keratan sulphate) [297]. 
GAGs play a key role in modulating pulmonary function 
[297]. Their increased deposition, reported in IPF subjects 
[298], can aggravate lung inflammation and contribute to 
disease progression [299].

A number of studies have investigated the association 
between GAG and IPF. HA synthase 2 (HAS2) deletion 
affect AECs renewal capacity in vitro, prompting severe 
fibrosis and mortality in vivo [300]. Furthermore, reduced 
levels of cell membrane HA and impaired renewal capac-
ity have been observed in AECs from subjects with severe 
lung fibrosis [300]. Lung fibroblasts appear to be the pri-
mary source of HA production. The latter, has been found 
to be increased in IPF patients when compared to control 
subjects [301]. Inhibition of HS synthesis ameliorates IPF-
associated conditions including pulmonary hypertension 
[302]. Interestingly, HA-regulated signals in IPF might be 

mediated by ER stress as the latter appears to be responsi-
ble for the regulation of HA secretion in airway epithelial 
cells [303]. Fibroblasts derived from IPF subjects show an 
HAS2-dependent invasive phenotype while myofibroblasts 
overexpressing HAS2 display an aggressive fibrotic pheno-
type [304]. Further, through the p27-CDK2-SKP2 signaling 
pathway, HAS2 regulates fibroblast senescence, a phenom-
enon strongly implicated in the fibrotic process in IPF [305].

The HS-associated effects in IPF appear to be mediated 
by its primary receptor CD44 as the blockage of this signal-
ing pathway can revert or counteract several HS-induced 
phenomena, including the development of a cell fibrotic/
invasive phenotype (Fig. 6) [304]. In a bleomycin-induced 
model of fibrosis, CD44 deficient mice, or mice treated 
with a CD44 blocking antibody, display both reduced lung 
fibrosis and fibroblast/myofibroblast invasion ability [304]. 
Similarly, targeting CD44 with monoclonal antibodies has 
been shown to prevent the migration/invasion of fibroblasts 
derived from subjects with acute alveolar fibrosis [306]. 
In vivo, IPF lungs of bleomycin-exposed rat display an up-
regulated expression of CD44 receptors [307]. Additionally, 
as a source of altered fibroblasts in IPF, the CD44/HA sign-
aling pathway appears to play a pivotal role in IPF onset and 
development [308–310].

The increased deposition, or altered structure, of other 
GAGs, such as heparan, chondroitin, and dermatan sulfate, 
has also been reported in IPF [298, 311, 312]. In this con-
text, heparan sulphate has been reported to mediate the bind-
ing of Coagulation factor XII to IPF fibroblasts, promoting 
a heparinase-inhibitable cell migration [313].

Therefore, recent studies have highlighted the role of 
ECM in regulating lung structure and functions, paving the 
way for the discovery of new therapeutic strategies targeting 
ECM-driven processes in IPF.

Alternative polyadenylation

Alternative polyadenylation (APA) is a widespread mech-
anism by which eukaryotic cells regulate gene expression 
ultimately generating distinct 3′ ends in different tran-
scripts created by the RNA polymerase II [314]. APS is 
one of the most important post-transcriptional regulatory 
mechanisms involved in mRNA metabolism modulation, 
and its dysregulation has been implicated in many disease 
states [315–317]. A number of studies have reported a 
link between APA and fibrotic conditions including IPF 
[318–321]. Recently, Zhou et al. reported that matrix 
stiffness induces cell fibrotic responses by a signaling 
mechanism involving the modulation of APA by the mam-
malian cleavage factor I (CFIm) [318]. These authors 
demonstrated that a stiff matrix acts as a down-regulator 
of the CFIm subunits CFIm68, CFIm59 and CFIm25, pro-
moting the APA-dependent up regulation of collagen and 
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fibronectin production in primary human lung fibroblasts 
[318]. In vivo experiments have also reported a strong 
association between matrix stiffness and CFIm subunits 
in a bleomycin-induced mouse model of pulmonary fibro-
sis [318]. By regulating APA, the CFIm subunit CFIm25 
appears to play an essential role in fibroblast-to-myofi-
broblast differentiation [321]. CFIm25 has been found 
to be decreased in the lungs of human and mice harbor-
ing pulmonary fibrosis and its proteins levels are down-
regulated in IPF fibroblasts [321]. CFIm25 silencing in 
normal lung fibroblast induced the expression of fibrotic 
markers by a mechanism involving APA-mediated 3′-UTR 
shortening while its overexpression reverted the same 
phenomena in IPF lung fibroblast [321]. The association 
between APA and lung fibrosis is also supported by the 
link between the pro-fibrotic factor TGFβ1 and CFIm25 
[320]. Treatment of primary human lung fibroblasts with 
TGFβ1 downregulates CFIm25 with a mechanism that 
implicates miR203. In vivo experiments using TGFβ1 
transgenic mice confirmed the TGFβ1-mediated inhibi-
tion of CFIm25 [320]. APA analysis in TGFβ1-treated 
human lung fibroblasts revealed a differential mRNA 
transcript regulation with APA target genes mostly linked 
to pro-fibrotic-associated pathways.[320].

Further studies are needed to elucidate the role of 
APA in the IPF pathogenesis and its potential therapeu-
tic applications.

Epithelial cell migration

The presence of mechanisms involving the reduced ability to 
restore lung tissue chronic micro-injury due to impairment 
of epithelial cell migration abilities has also been hypoth-
esized in IPF. It has been reported that epithelial-specific 
deletion of the focal adhesion kinase (FAK), which is neces-
sary for cell migration, leads to epithelial cell apoptosis and 
enhanced bleomycin injury, while enhancement of the Notch 
signaling pathway leads to functional impairment of Tp63-
expressing stem cells in the bronchiolar epithelium; these 
cells proliferate and migrate to areas of denuded alveolar 
epithelium to restore lung damage [322]

Non‑coding RNAs in extracellular matrix remodeling 
and fibrosis

Recently, studies have shown that microRNAs (miRNAs), 
small non-coding RNAs (21–25 nucleotides) that bind 
by base pairing to the 3′ untranslated region of their tar-
get mRNAs, play important roles in the evolution of IPF. 
Several miRNAs showed altered concentrations in blood 
and lung samples from IPF patients both during early and 
advanced disease stages. Those miRNAs were generally 
associated with one or more pathophysiological mechanisms 
of IPF, including EMT, fibroblast activation, myofibroblast 
differentiation, pulmonary epithelium repair, macrophage 

Fig. 6  GAGs-activated molecular and cellular events associated with IPF pathogenesis (red lines indicate activation, blue lines indicted bidirec-
tional interplay)
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polarization, AEC senescence, and collagen production 
[323]. Milosevic et al. identified 43 significantly up-regu-
lated microRNAs in IPF lungs [324]. Twenty four of these 
43 microRNAs were localized in the chromosome 14q32 
microRNA cluster. The authors validated the increased 
expression of miR-154, miR-134, miR-299-5p, miR-410, 
miR-382, miR-409-3p, miR-487b, miR-31, and miR-127 by 
quantitative RT-PCR. Furthermore, they showed that trans-
fection with miR-154 caused activation of the WNT pathway 
in normal human lung fibroblasts. In another study, miR-29 
was downregulated in mice lungs during remission of ble-
omycin-induced fibrosis [325]. mir-29b is a key suppressor 
of many downstream target genes involved in fibrogenesis, 
including COL1A1, COL3A1, and FBN1, which are regu-
lated by the TGF-b/smad3 pathway, and transfection with 
miR-29 mimics and miR-29 inhibitors suggests that miR-29 
regulates the expression of mortality receptor Fas, leading to 
apoptosis [326, 327]. Other miRNAs, such as let-7, mir199, 
mir21, mir-31, mir200, and mir17-92 cluster [328], have 
been found altered in IPF studies, and active research testing 
a large number of further molecules is still ongoing. Several 
miRNAs also appear to contribute to the pathogenesis of 
IP by inducing the trans-differentiation of lung cells, such 
us fibroblast, epithelial and endothelial cells (Fig. 7) [329].

Another class of non-coding RNAs currently under 
investigation in the pathogenesis of IPF is the long non-
coding RNAs (lncRNAs). LncRNAs are greater than 200 
nucleotide long molecules which attracted increasing atten-
tion in recent years as studies reported their crucial roles in 
regulating embryogenesis, stem cell biology, development 

and cancer [330]. Only a few studies have been published 
to date investigating lncRNAs in IPF. A microarray study 
by Cao et al. using the bleomycin-induced lung fibrosis rat 
model was one of the first to identify differential expression 
levels of multiple lncRNAs and mRNAs, most significantly 
lncRNAs AJ005396 and S69206 [331]; in situ hybridiza-
tion confirmed the expression of these lncRNAs and located 
their expression in the cytoplasm of interstitial lung cells. 
Hadjicharalambous et al. used next-generation sequencing 
to identify 14 lncRNAs that are differentially expressed in 
human lung fibroblasts following the induction of inflam-
mation using interleukin-1β [332]. Knockdown of the two 
most highly expressed lncRNAs, IL7AS, and MIR3142HG, 
showed that IL7AS negatively regulated IL-6 release whilst 
MIR3142HG was a positive regulator of IL-8 and CCL2 
release, supporting their potential role in regulating the 
inflammatory response in IPF.

Lu et al. showed that the expression of lnc RNA H19 
was significantly increased in transforming growth factor-β 
(TGF-β)-induced fibroblast proliferation and bleomycin 
(BLM)-induced lung fibrosis (p < 0.05) [333]. The authors 
also showed that H19 was a direct target of miR-196a 
and was associated with COL1A1 expression by spong-
ing miR-196a. Moreover, downregulation of H19 allevi-
ated fibroblast activation and lung fibrosis, and this effect 
was blocked by a miR-196a inhibitor. The expression of 
lncRNA NONMMUT065582, also known as pulmonary 
fibrosis-associated RNA (PFAR), was found to be elevated 
in the fibrotic lungs of mice as well as mouse fibroblasts 
[334]. The LncRNA, PFAR, was shown to promote the 

Fig. 7  miRNAs-activated molecular and cellular events associated with IPF pathogenesis (red lines indicate activation)
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development of fibrosis by acting as ceRNA for miR-138 
and regulating the expression of yes-associated protein 1 
(YAP1). Other lnc RNAs, MRAK088388, MRAK081523, 
CD99P1, n341773, CHRF, IL7AS and MIR3142GHG, 
have also been associated with IPF [335]

Conclusion and future perspectives

IPF is a lethal disease of unknown etiology. Numerous 
pathophysiological factors are implied in the genesis and 
progression of the disease, and most of them are not yet 
fully elucidated. Medications currently employed in clini-
cal practice display therapeutic effects that target most of 
the pathophysiological processes involved in IPF, especially, 
aging, oxidative stress and EMT. Senescence and apoptosis, 
stimulated by a large number of mediators, including several 
cytokines and growth factors, such as interleukines 1β, 6 and 
8 and TGF-β, play a central role. Several new drugs under 
evaluation, e.g. bosentan, macitentan, ambrisentan, inter-
feron, sildenafil, TNF-α inhibitors and imatinib mesylate, 
target cytokines or chemokines. Similarly, oxidative stress is 
essential for the development of IPF, and has been the target, 
albeit with poor results to date, of therapeutic agents, such as 
N-acetylcysteine. Further research is likely to identify novel 
therapeutic agents, to use singly or in combination with 
anti-fibrotic agents, to improve clinical outcomes. Promis-
ing results have been reported with non-coding RNAs, how-
ever, translation into clinical use is premature. Interestingly, 
targeted therapies used in lung cancer patients have shown 
promising results in IPF; this is a noteworthy observation, 
given the epidemiological association between lung cancer 
and IPF patients, which is likely to stimulate additional stud-
ies to identify the cellular and molecular mechanisms under-
pinning these conditions.
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