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ORIGINAL ARTICLE

Signaling role of CD36 in platelet activation and thrombus
formation on immobilized thrombospondin or oxidized
low-density lipoprotein
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Departments of *Biochemistry and �Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University,
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Summary. Background and Objective: Platelets abundantly

express glycoprotein CD36 with thrombospondin-1 (TSP1)

and oxidized low-density lipoprotein (oxLDL) as proposed

ligands. How these agents promote platelet activation is still

poorly understood. Methods and Results: Both TSP1 and

oxLDL caused limited activation of platelets in suspension.

However, immobilized TSP1 and oxLDL, but not LDL,

strongly supported platelet adhesion and spreading with a

major role of CD36. Platelet spreading was accompanied by

potent Ca2+ rises, and resulted in exposure of P-selectin and

integrin activation, all in a CD36-dependent manner with

additional contributions of aIIbb3 and ADP receptor stimula-

tion. Signaling responses via CD36 involved activation of the

protein tyrosine kinase Syk. In whole blood perfusion,

co-coating of TSP1 or oxLDL with collagen enhanced

thrombus formation at high-shear flow conditions, with

increased expression on platelets of activated aIIbb3, P-selectin
and phosphatidylserine, again in a CD36-dependent way. Con-

clusions: Immobilized TSP1 and oxLDL activate platelets

partly via CD36 through a Syk kinase-dependent Ca2+

signaling mechanism, which enhances collagen-dependent

thrombus formation under flow. These findings provide novel

insight into the role of CD36 in hemostasis.

Keywords: CD36, outside-in signaling, oxidized low density

lipoprotein, platelets, thrombospondin, thrombus.

Introduction

The 80- to 90-kDa protein CD36, or glycoprotein (GP) IV, is a

major platelet protein with 10 000–25 000 copies expressed on

the platelet surface and additional copies present in the a-
granules [1,2]. As a double membrane-spanning protein, CD36

has two short N- and C-terminal cytoplasmic domains and a

large glycosylated extracellular domain with partly overlapping

binding sites for thrombospondin-1 (TSP1), oxidized low-

density lipoproteins (oxLDL), oxidized forms of phospholipids

and long-chain fatty acids [3,4]. The various CD36 ligands are

considered to bind at or near the CLESH-1 domain (for CD36

LIMP II Emp structural homology-1 domain), which contains

two consensus glycosylation sites and is located next to a

proline- and cystein-rich domain, determining the conforma-

tion of the extracellular loop [5].

In spite of its abundant presence, the function of platelet

CD36 is still unclear. In the early days, CD36was considered to

be a collagen receptor [6,7], but it then appeared that platelets

from CD36-deficient patients display normal collagen-induced

responses [8–10]. Peptide studies with platelets and other cells

have pointed to a role of CD36 in the binding of TSP1 [11,12].

For platelets, this might provide a mechanism for autocrine

activation, as TSP1 similarly to CD36 is expressed in the

a-granules [13,14]. Other papers have shown that TSP1

can also recognize other platelet membrane proteins in a

Ca2+-dependent way, including several integrins, integrin-

associated protein (CD47) and GPIb [15–17]. In macrophages

and other cell types, CD36 acts as a scavenging receptor for

oxLDL and oxidized phospholipids [18,19]. Such role of CD36

has also been reported in platelets, next to other scavenger

receptors such as SR-A [20,21].

The binding of oxLDL to platelets and other cells is

considered to trigger intracellular signaling events, but the

precise contribution of CD36 is a matter of debate [3,5]. One

suggestion is that oxLDL induces or enhances activation of the

platelet Src family and Syk kinases, accompanied by Ca2+

entry, which events have been attributed to stimulation of
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lysophosphatidate receptors [22]. Other authors show that

interaction of oxLDL with CD36 activates members of the

mitogen-activated protein kinase family (MAPK: Erk2, p38,

JNK) [20,23]. A similar uncertainly exists on the signal

transduction triggered by TSP1 binding to platelets. Throm-

bospondin peptides can evoke, partly integrin aIIbb3-indepen-
dent, signaling via Src kinases, LAT, Syk and phospholipase

Cc2 [24,25]. Under conditions of shear stress, the binding of

TSP1 to CD36 can activate platelets via the receptor complex

GPIb–V–IX [17,26]. Another report proposes that TSP1

binding cancels the inhibiting effects of nitric oxide on platelets

[27]. Furthermore, also integrin-dependent ways of TSP1

action on platelets have been reported [28]. Altogether, there

appears to be a similarity in the action mechanisms of oxLDL

and TSP1 on platelets, which raises the question whether this

involves common signaling events via CD36.

In the present study, we investigated how TSP1 and oxLDL

can stimulate platelets via interaction with CD36. When

immobilized on a surface, both TSP1 and oxLDL appear to

trigger amechanism of outside-in signal transduction via CD36

with support of aIIbb3, involving the tyrosine kinase Syk, Ca
2+

rises, and an autocrine feed-forward loop relying on ADP

receptor activation.

Materials and methods

Materials

Native LDL, freshly isolated from human plasma (Intracel,

Frederick,MD,USA), was processed and used within 2 weeks.

Human trimeric, platelet-derived TSP1 as well as PP1, PP2,

PP3, Src-family kinase (SFK) inhibitor I, and Syk inhibitors II

and IV were from Merck (Darmstadt, Germany). Human

fibrinogen, MRS-2179, bovine serum albumin (BSA) and

fucoidan from Fucus vesiculosus were from Sigma (St Louis

MO, USA); H-Phe-Pro-Arg chloromethyl ketone (PPACK)

from Calbiochem (La Jolla, CA, USA); and low-molecular-

weight heparin (fragmin) from Pfızer. The P2Y12 receptor

antagonist, cangrelor (AR-C69931MX) was kindly provided

by the Medicines Company (Parsippany, NJ, USA). Fibrillar

Horm type I collagen was from Nycomed Pharma (Munich,

Germany); and annexin A5 labeled with fluorescein isothiocy-

anate (FITC) from PharmaTarget (Maastricht, the Nether-

lands). Human fibrinogen labeled with Oregon green (OG)488,

Alexa Fluor (AF)647-labeled annexin A5, pluronic F-127,

dimethyl BAPTA (DM-BAPTA) and Fluo-4 acetoxymethyl

esters came from Invitrogen (Leiden, the Netherlands). Anti-

human CD36 mAb FA6-152, directed against the TSP1 and

oxLDL binding site, was from Santa Cruz Biotechnology

(Santa Cruz, CA, USA), as well as 4D10 anti-Syk mAb.

Human IgG1 isotype control was from Genway Biotech (San

Diego, CA, USA). CD36 peptide P(93–110) and thrombin

receptor-activating peptide SFLLRN were from Bachem

(Bubendorf, Switzerland). FITC-labeled anti-CD62 mAb was

from Immunotech (Marseille, France); FITC-PAC1 mAb

from BD Biosciences (San Jose, CA, USA); anti-phospho-

Syk (Tyr525/526) mAb C87C1 from Cell Signaling (Danvers,

MA, USA); rabbit anti-a-tubulin Ab from Abcam (Cam-

bridge, UK); horseradish peroxidase (HRP)-conjugated IgG

ECL Ab from GE Healthcare (Hoevelaken, the Netherlands).

Chrono-Lume luciferase-luciferin reagent was fromChronolog

(Havertown, PA, USA). Other materials were from sources as

described previously [29].

Blood collection and platelet preparation

Donors gave full informed consent according to the Helsinki

declaration, and had not taken medication for 2 weeks. Blood

wascollected intoacidcitratedextrose (85 mMtrisodiumcitrate,

67 mM glucose, 42 mM citric acid) for the preparation of

platelet-rich plasma and washed platelets. For flow perfusion,

blood was collected into 40 lM PPACK and 20 U mL)1

fragmin; additional 10 lM PPACK was added after 1 h [30].

Washed platelets were resuspended in Hepes buffer pH 7.45

(10 mM Hepes, 136 mM NaCl, 2.7 mM KCl, 2 mM MgCl2,

0.42 mMglucose and 0.1%BSA) in the presence of 0.1 U mL)1

apyrase.Where indicated, plateletswere loadedwith8 lMFluo-

4 acetoxymethyl ester and/or 50 lM DM-BAPTA acetoxym-

ethyl ester in the presence of 0.4 mg mL)1 pluronic F-127 [31].

LDL oxidation

Native LDL (1.0 g mL)1) was dialyzed against phosphate-

buffered saline (PBS) at 4 �C, and oxidized under controlled

conditions, as described [32]. Briefly, LDL was incubated with

25 lM CuSO4 at 37 �C during 8 h, after which oxidation was

stopped with 50 lM EDTA. Preparations were immediately

dialyzed against PBS with 10 lM EDTA (4 �C), and were

checked for oxidation by electrophoresis with 1% agarose gels.

Only preparations were used that were oxidized for�90% and

had a relative electrophoretic mobility vs. LDL of �3.5. These
were stored for amaximum of 2 weeks underN2 at 4 �C. Over-
oxidized preparations were not used. For specific experiments,

native LDLwas oxidized for 48–72 hwith 5 lMFeSO4 at 4 �C,
and dialyzed as described previously [33].

Flow cytometry

Washed platelets (2 · 108 mL)1) in Hepes buffer containing

2 mM CaCl2 were activated with ADP or SFLLRN in the

presence or absence of TSP1 (2.5 lg mL)1) or oxLDL

(250 lg mL)1) without stirring. After 10 min, activation of

integrin aIIbb3 and a-granule secretion was detected with

OG488-fibrinogen (150 lg mL)1) and FITC-labeled anti-

CD62 mAb (1:50), respectively. Fluorescence was measured

with a FACScan flow cytometer counting a minimum of

10 000 events [29].

Platelet aggregation and adhesion

Aggregation of platelets in plasma was determined by light

transmission aggregometry [34]. For static adhesion assays,
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96-well plates were coated with human fibrinogen, TSP1 or

oxLDL (100 lg mL)1 each), and then blocked with saline

containing 1%BSA. Platelets (1.5 · 108 mL)1) inHepes buffer

plus 2 mM CaCl2 were pretreated with indicated inhibitors for

10 min, and then allowed to adhere to the coated wells. After

45 min, unbound platelets were washed out, and adherent

platelets were solubilized with Triton X-100. Acid phosphatase

activity was determined in lysates from the cleavage of p-

nitrophenyl-phosphate at 405 nm using a microplate reader

[35]. Numbers of adhered platelets per well were calculated by

comparing with platelet suspensions of known counts.

Spreading and activation responses of adhered platelets

Glass coverslips were coated with fibrinogen, TSP1, LDL or

oxLDL (100 lg mL)1 each), and blocked with Hepes buffer

plus 1% BSA. Coated proteins on the coverslip surface were

verified by immune-fluorescence microscopy. After blocking

with BSA (1%), the coverslips were mounted in open cham-

bers, and incubated with platelets (1.5 · 108 mL)1) in Hepes

buffer containing 2 mM CaCl2 and inhibitors, as indicated.

Spreading of adhered platelets was monitored by real-time

capturing of microscopic brightfield contrast images [36].

Surface expression of activation markers on adhered platelets,

that is P-selectin (FITC-anti-CD62 mAb), activated aIIbb3
integrin (FITC-PAC1 mAb) and phosphatidylserine (AF647-

annexin A5), was measured by two-color confocal microscopy

and differential interference contrast imaging [29], using a Leica

TCS SP5 multiphoton system (Rijswijk, the Netherlands).

Images were analyzed with the software package Metamorph

(MDS, Sunnyvale CA, USA). For ATP measurements, coated

six-well plates were incubated with 500 lL platelets in Hepes

buffer (1.5 · 108 mL)1), and supernatants were collected after

45 min for analysis with luciferase-luciferin reagent using a

Spectramax luminescence microplate reader and ATP stan-

dards (Molecular Devices, Downingtown, PA, USA).

To determine Ca2+ responses during adhesion, coated

coverslips were incubated with Fluo-4-loaded platelets

(5 · 107 mL)1) in Hepes buffer with 2 mM CaCl2. Fluores-

cence changes of adhering platelets were recorded in real-time

at 5 Hz using a sensitive EM-CCD camera system, controlled

by VISITECH software (Sunderland, UK) [34]. Single-cell traces

of nanomolar Ca2+ concentrations were obtained by off-line

analysis of selected regions-of-interest, each representing one

adhered platelet, using pseudo-ratio calibration [37].

Thrombus formation under flow

Glass coverslips were coated with fibrillar type I collagen,

TSP1, LDL or oxLDL, either alone or in combinations (all

applied at 100 lg mL)1) [30]. For co-coatings, collagen was

allowed to form fibers, after which TSP1, oxLDL or LDL was

post-coated. The presence of TSP1 or (ox)LDL on coverslips

was confirmed by immuno-fluorescence microscopy. After

blocking with 1% BSA, coverslips were mounted into a

transparent parallel-plate flow chamber (depth 50 lm, width

3 mm). Chambers were perfused with PPACK/fragmin-anti-

coagulated blood at a shear rate of 1000 s)1, and microscopic

brightfield and fluorescence images of thrombus formation

were taken [36]. Expression of activation markers on platelets

in thrombi was analyzed with probes as described above and

the Leica TCS SP5 multiphoton system.

Gel electrophoresis and western blotting

Tyrosine phosphorylation was measured by western blot

analysis of lysates from suspended or adhered platelets. Six

well plates were coated with TSP1 or oxLDL and incubated for

45 min with 500 lL platelets in BSA-free Hepes buffer

(5 · 108 mL)1). After washing, the surface-adhered platelets

were lysed with ice-coldNP-40-based lysis buffer pH 7.45 in the

presence of protease and phosphatase inhibitors [38]. Protein in

lysates was quantified with a BioRad DC protein kit

(Veenendaal, the Netherlands). Samples with equal protein

amounts were separated on 10% SDS-PAGE gels, and

transferred to blotting membranes by semi-dry transfer. The

membranes were immuno-stained with anti-phospho-Syk

(Tyr525/526) mAb (1:1000) and colored with HRP-coupled

anti-rabbit Ab (1:5000), using ECL detection technology [29].

Membranes were reprobed with anti-Syk mAb (1:1000) and

coloring with anti-mouse HRP. Duplicate blots were stained

with anti-a-tubulin Ab (1 lg mL)1) as sample loading control.

Analysis of stained blots was by densitometry [38].

Statistical analysis

Significance of differences was determined with a parametric t-

test or a non-parametric Mann–Whitney U-test, as appropri-

ate, using the statistical package for social sciences (SPSS 15.0,

Chicago, IL, USA).

Results

Role of CD36 in platelet adhesion and spreading on

immobilized TSP1 or oxLDL

Initially, platelets in suspension were stimulated with the two

alleged CD36 ligands, TSP1 and oxLDL. We employed a

commercial preparation of TSP1, isolated from human plate-

lets. However, oxLDL was prepared freshly from LDL by

controlled oxidation [32]. Using flow cytometry, TSP1

(2.5 lg mL)1) did not significantly influence ADP- or

SFLLRN-induced integrin aIIbb3 activation or a-granule
secretion, which was measured as fibrinogen binding and P-

selectin expression, respectively (Fig. S1A,B). On the other

hand, oxLDL (250 lg mL)1) moderately stimulated integrin

activation and granule secretion, but did not enhance the

effects of ADP or SFLLRN. The blocking anti-CD36 mAb,

FA6-152, antagonized the stimulating effects of oxLDL (not

shown, but see below). Together, these results confirmed that

oxidation-modified LDL has a mild activating effect on

platelets in suspension via CD36 [20,39].

CD36 signaling in platelet activation and thrombus formation 1837
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The matrix of a (damaged) vessel wall contains surface-

immobilized forms of TSP1 and oxLDL [13,40,41]. Knowing

that surface-bound fibrinogen can activate platelets via outside-

in aIIbb3 signaling [1], we evaluated whether immobilized TSP1

and oxLDL can activate platelets via CD36. As determined in a

well-plate assay, the surface coating of fibrinogen, TSP1 or

oxLDL, but not of native LDL, provoked high platelet

adhesion (Fig. 1). Involvement of CD36 in platelet adhesion

was demonstrated with two inhibitors: the blocking FA6-152

mAb, directed against the TSP1 and oxLDL binding sites on

CD36 [42]; and the CD36-derived peptide, P(93–110), corre-

sponding to theTSP1 binding site and competing with CD36-

TSP1 interaction [11]. Control measurements showed that

neither the FA6-152 mAb nor the P(93–110) peptide affected

platelet adhesion to fibrinogen (Fig. 1A). However, both

inhibitors substantially reduced adhesion to TSP1, whereas

only FA6-152 mAb interfered with adhesion to oxLDL,

confirming the specificity of P(93–110) for TSP1 binding.

Isotype control IgG1 did not influence adhesion. With either

immobilized TSP1 or oxLDL, platelet adhesion was partly

reduced by blocking the P2Y1 and P2Y12 receptors for ADP

(MRS-2179 and AR-C69931MX, respectively), or by blocking

the aIIbb3 integrin with tirofiban (Fig. 1B). Similarly, the

loading of platelets with intracellular Ca2+ chelating agent,

DM-BAPTA, resulted in a partly reduced adhesion. Tirofiban

did not increase the effect of anti-CD36 mAb (not shown, but

see below).

Time-lapse video microscopy was applied to monitor the

morphological changes of platelets adhering to the coated

surfaces. As reported before [43,44], platelets on fibrinogen

formed filopods and lamellipods, causing a> six-fold increase

in surface area coverage in 45 min (Fig. 2A). Strikingly, also

platelets adhering to immobilized TSP1 or oxLDL actively

produced filopods and lamellipods (Fig. 2B,C). In contrast,

immobilized LDL did neither provoke stable adhesion nor

changes in morphology (Fig. 2D).

Both CD36 inhibitors, FA6-152 mAb and P(93–110)

peptide, suppressed the spreading of platelets on TSP1 by

50%, but only the antibody reduced the spreading on oxLDL

by 70% (Fig. 3A,B). Again, the isotype control IgG1 was

without effect, while the loading of platelets with DM-BAPTA

fully abrogated spreading on TSP1 or oxLDL. As established
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Fig. 1. Role of CD36 in platelet adhesion to immobilized thrombospondin-1 (TSP1) and oxidized low-density lipoprotein (oxLDL). Washed platelets
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(10 lM cangrelor and 100 lM MRS-2179), tirofiban (2 lg mL)1) or were preloaded with dimethyl BAPTA (DM-BAPTA). Data are means ± SEM

(n = 3–4), NS, not significant, *P < 0.05 vs. vehicle control.
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for fibrinogen-adhered platelets [45], blocking of the platelet

ADP receptors (MRS-2179 and AR-C69931MX) or aIIbb3
(tirofiban) diminished the spreading on TSP1 or oxLDL

(Fig. 3A,B). Combined blocking of CD36, ADP receptors and

aIIbb3 nearly eliminated spreading on TSP1, but not on

oxLDL. Post-addition of anti-CD36 mAb, but not of isotype

control IgG1, after 10 min resulted in a halt of spreading or

even in detachment of partially spread platelets from the

surface (not shown). This could explain the major reduction by

FA6-152 mAb in the platelet adhesion assay (Fig. 1A).

The potential involvement of SR-A as oxLDL receptor was

investigated using the SR-A antagonist fucoidan [20]. By itself

this compound (50 lg mL)1) was inactive on platelet spread-

ing. However, in combination with FA6-152 mAb, fucoidan

reduced the size of platelets on oxLDL with 28 ± 2%

(mean ± SEM, n = 3), approaching the pixel size of resting,

non-adhered platelets. Together, these data point to CD36 as a

main activating receptor for platelet spreading on immobilized

TSP1 and oxLDL, with additional effects of ADP receptor and

aIIbb3 activation. The contribution of aIIbb3 is in agreement

with evidence for a functional association of CD36 with aIIbb3
and the tetraspannin CD9 in platelet membranes [46].

Role of CD36 in platelet activation on TSP1 or oxLDL surfaces

Studies were carried out to determine the CD36-dependent

signaling events in spreading platelets. Real-time measurement

of Ca2+ fluxes in single, Fluo-4-loaded platelets showed high-

amplitude, repetitive spiking rises in cytosolic [Ca2+]i, which

started after several minutes of platelet adhesion to TSP1or

oxLDL (Fig. 4A). The Ca2+ spikes decreased in amplitude,

but were not abolished with anti-CD36 FA6-152 mAb. The

TSP1 peptide P(93–110) reduced only the Ca2+ rises in TSP1-

adhered platelets, but not those in oxLDL-adhered platelets.

Recording of fluorescence images at a low frequency of

0.25 Hz during longer time periods (30 min) indicated that the

Ca2+ rises persisted during the whole period of spreading.

Control studies with LDL oxidized for 72 h with FeSO4 [33]

provoked similar long-term rises in Ca2+ (data not shown).

Quantitative analysis indicated that the blockade of CD36

(FA6-152 mAb) caused a 40–50% reduction in mean Ca2+

rises after stable platelet adhesion to TSP1 or oxLDL (Fig. 4B).

Control IgG1 was without effect, while platelet treatment with

DM-BAPTAcompletely suppressed theCa2+ signal. Tirofiban

alone suppressed the mean Ca2+ rises with �30%, while also

blockage of ADP receptors caused a partial reduction in the

absence and complete reduction in the presence of FA6-152

mAb (Fig. 4C,D). Combined application of tirofiban and

FA6-152 mAb prevented the Ca2+ rises of platelets on TSP1,

but not on oxLDL (Fig. 4D). Together, this pointed to

additional roles of aIIbb3 and ADP receptors, next to CD36 in

platelet Ca2+ signal generation.

Using confocal microscopy with differential interference

contrast optics, activation-dependent surface characteristics

were determined of the adhered platelets. Spreading platelets

were labeled with AF647-annexin A5 to probe phosphatidyl-

serine exposure, and with FITC-anti-CD62 mAb to detect P-

selectin exposure, both of which are Ca2+ -dependent

responses. Quantitative analysis of overlay images showed that

the majority (81%) of TSP1-adhered platelets had P-selectin
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expressed, whereas a smaller fraction (17%) exposed phospha-

tidylserine (Fig. 5A). Staining with FITC-PAC1 mAb indi-

cated that most TSP1-adhered platelets had activated aIIbb3
integrins (74%). Blockage of CD36 with either FA6-152 mAb

or P(93–110) reduced the staining for P-selectin and activated

aIIbb3 (Fig. 5C). In comparison, platelets on oxLDL were

slightly lower in activation markers (Fig. 5B,D). In this case

only the FA6-152 mAb was inhibitory.

Combined application of FA6-152 mAb and ADP receptor

blockers further reduced the fractions of adhered platelets

staining for P-selectin and activated aIIbb3 to 10%–15%

(TSP1) or 8%–10% (oxLDL) of control. These results thus

support the concept that CD36-mediated adhesion to TSP1 or

oxLDL triggers Ca2+ -dependent secretion, which in combi-

nation with ADP receptor activation promotes the integrin

activation and spreading process.

Integrin aIIbb3-induced signaling in fibrinogen-adhered

platelets is mediated by activation of Src-family and Syk

protein tyrosine kinases [1,44]. We investigated a possible role

of these kinases in the adhesion and spreading on TSP1 and

oxLDL. Platelet pretreatment with Src-family kinase inhibitors

(PP1, PP2, SKF inhibitor I) or Syk inhibitors II or IV, but not

with the control substance PP3, greatly reduced adhesion to

either surface (Fig. 6A,B). In the presence of the inhibitors, PP1

and Syk inhibitor II, spreading of the remaining adhered

platelets was diminished with > 40% on TSP1 and with

> 60% on oxLDL (Fig. 6C,D).

To verify the roles of CD36 and aIIbb3 in protein tyrosine

kinase activation, we evaluated the phosphorylation of Syk at

Tyr525/526 in platelets adhered to TSP1 or oxLDL. Western

blots from lysates, prepared after 45 min of adhesion, were

probed with anti-phospho-Syk mAb and showed a 72-kDa

band corresponding to the band detected with mAb against

total Syk (Fig. 7A,B). For the platelets adhered to TSP1 or

oxLDL, Syk phosphorylation partly reduced upon blocking of

aIIbb3 (tirofiban), but it almost completely abrogated with Syk

inhibitor II or blocking anti-CD36 mAb, FA6-152.

A role of Syk was confirmed by measuring the Ca2+ rises in

Fluo-4-loaded platelets. While CD36 blockage suppressed

45 ± 4% and 39 ± 3% of the mean Ca2+ signal of platelets

on TSP1 and oxLDL, respectively, the combined presence of

FA6-152 (2 lg mL)1) plus Syk inhibitor II (1 lM) suppressed
this response with 91 ± 4% and 79 ± 6% (mean val-

ues ± SEM, n > 10). Syk inhibitor II, with our without

tirofiban, reduced these Ca2+ rises with 87 ± 4% and

85 ± 6%, respectively, the remainder relying on ADP. In

agreement with this, the inhibitor suppressed the majority of

ATP secreted by the surface-adhered platelets (Fig. S2). Taken

together, these results indicate that both CD36 and aIIbb3
contribute to tyrosine kinase activation, likely via stimulated

Src-family and Syk kinases and Ca2+ signaling of platelets on

TSP1 and oxLDL.

Role of CD36 in collagen-dependent thrombus formation in

combination with TSP1 or oxLDL

Immobilized collagen promotes thrombus formation at high

shear flow conditions [29,31]. We investigated whether also

immobilized TSP1 and oxLDL could contribute to this

process. Whole blood was thus perfused at an intermediate

shear rate of 1000 s)1 over surfaces, consisting of collagen,
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Platelets were incubated with vehicle buffer, P(93–110) peptide

(50 lg mL)1), FA6-152 anti-CD36 mAb (2 lg mL)1), IgG1 isotype con-

trol (2 lg mL)1), DM-BAPTA (preloading), ADP receptor blockers

(10 lM cangrelor and 100 lM MRS-2179) or tirofiban (2 lg mL)1), as

indicated. Microscopic images were taken after 45 min of platelet inter-

action with immobilized TSP1 (A) or oxLDL (B). Graphs indicate

inhibitor effects on platelet spreading (in pixels numbers relative to control

condition). Images at bottom show one representative platelet per condi-

tion (bars, 10 lm). Means ± SEM (n = 6–8); *P < 0.05 vs. vehicle

control.
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TSP1, oxLDL or LDL, or over collagen surfaces that were

post-coated with these proteins. Immobilized TSP1 supported

adhesion of only single platelets, but TSP1 in combination with

collagen markedly increased platelet deposition and formation

of large-sized platelet aggregates, when compared with collagen

alone (Fig. 8A,B). Immobilized LDL (as control) or oxLDL

were unable to form such aggregates. However, oxLDL (but

not LDL) in combination with collagen significantly increased

the aggregate formation. The enhanced thrombus formation

with post-coated TSP1 or oxLDL was annulled in the presence

of anti-CD36 mAb (Fig. 8C). Confocal fluorescence micros-

copy showed increased staining for P-selectin, aIIbb3 activation,
phosphatidylserine exposure of the thrombi that were formed

on collagen/TSP1 or collagen/oxLDL (Fig. S3A,B). Accord-

ingly, we concluded that immobilized TSP1 and oxLDL

increase collagen-dependent thrombus growth and platelet

activation under flow conditions.

Discussion

The present study provides novel evidence that surface-

immobilized TSP1 and oxLDL can act as strong platelet-

stimulating agents. This is a relevant finding, since both

TSP1 and oxLDL accumulate in the healthy and atheroscle-

rotic vessel walls and, hence, may contribute to the

thrombogenic response upon vascular endothelial dysfunc-

tion [13,40,47]. Similarly to fibrinogen surfaces [44], it

appears that immobilized TSP1 and oxLDL trigger out-

side-in signaling events in platelets with a major role herein

of CD36. Signaling responses of platelets in contact with

TSP1 or oxLDL – inhibitable by blockage of CD36 or

tyrosine kinases – are pseudopod formation, Ca2+ rises,

integrin aIIbb3 activation, granule secretion to produce

autocrine mediators and limited phosphatidylserine exposure.

Furthermore, immobilized TSP1 and oxLDL appear to

enhance the potency of collagen surfaces to form thrombi

under flow conditions. Jointly, these results reveal a so far

unknown way of outside-in signaling by surface-bound TSP1

and oxLDL and a novel mechanism of CD36 signaling in

the adhered platelets.

Other authors have reported small activating effects of

oxLDL on platelets in suspension stimulated with ADP and

SFLLRN [21–23]. LDL oxidized under controlled conditions

has also been found to activate the pathway of p38
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mitogen-activated protein kinase in part via CD36 [20].

Reports on TSP1-induced activation of suspended platelets

are mostly limited to the use of C-terminal TSP1 peptides,

which trigger platelet aggregation via Fc receptor c-chain
phosphorylation, protein tyrosine kinases and autocrine-

dependent events [24,25]. In our hands, the full TSP1 protein

did not evoke platelet aggregation up to a dose of

2.5 lg mL)1. However, when immobilized, TSP1 as well as

oxLDL were more potent in platelet activation than when

used as soluble agonists. This is suggestive either for a

conformation change of the immobilized proteins, for

example in a way resembling that of surface-bound fibrin-

ogen [43], or even for a receptor (CD36?) cross-linking effect

such as was reported for collagen-related peptide [48]. Other

authors also showed that TSP1 can trap platelets under

shear, which was ascribed to adhesion via GPIb or von

Willebrand factor next to CD36 [17,40].

Our data point to a major role of CD36 in the spreading and

Ca2+ responses of platelets on TSP1 or oxLDL, such in

junction with signaling via autocrine stimulation via ADP

receptors and mechanisms involving aIIbb3 activation. Re-

sponses of platelets on TSP1 were markedly suppressed by the

CD36 peptide P(93–110), representing the TSP binding site,

and by the blocking mAb FA6-152. For platelets on oxLDL

only the FA6-152mAbwas effective. This is in good agreement

with the non-identical (but adjacent) ligand binding sites for

TSP1 and oxLDL on CD36 [3,5]. Importantly, ADP receptor

inhibitors and integrin blockers were both active in reducing

platelet responses on both surfaces. Involvement of integrin

activation, likely in cross-talk with ADP-mediated events [49],

can be explained by the reported linkage of CD36 with CD9

and aIIbb3 in the platelet membrane [46]. Cross-over effects

from CD36 to integrin signaling may explain why immobilized

TSP1 (this paper) and TSP1 peptides [24,25] seem to trigger

similar Src-family and Syk kinase signaling events as those

arising from aIIbb3 outside-in signaling of platelets on fibrin-

ogen [44,50].

The present studies furthermore shed new light on the early

reports of CD36 as a platelet collagen receptor, which were

corroborated by a reduced platelet-collagen interaction in

patients with CD36 deficiencies [7,51]. The co-coating of TSP1

or oxLDL enhances collagen-dependent thrombus formation

via CD36. This implies that under flow platelet interaction on

these surfaces in fact occurs via multiple adhesive receptors.

Hence, under physiological conditions where (platelet-derived)

TSP1 or (plasma-derived) oxLDL is expected to bind to

collagen, CD36 is likely to play a role in platelet adhesion and

activation.

Taken together, in this report we propose a model

for platelet activation by immobilized TSP1 or oxLDL via
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Fig. 5. Role of CD36 in activation of platelets adhered to thrombospondin-1 (TSP1) or oxidized low-density lipoprotein (oxLDL). Platelets were
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green and red fluorescence, overlaid with differential interference contrast images (bars, 10 lm). (C, D) Fractions of adhered platelets exposing P-selectin,
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CD36-dependent outside-in signaling to protein tyrosine kin-

ases, in particular Syk, resulting in Ca2+ rises and other

downstream platelet responses (Fig. 9). This pathway is

enforced by autocrine ADP-mediated activation, integrin

activation and ensuing signaling events. In cases of deposited

TSP1 and oxLDL, this CD36 route will enhance collagen-

dependent thrombus formation.
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