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Cardiovascular diseases 

In the last century tremendous advances in hygiene, technology and 
medicine have improved living conditions and average life span of the world’s 
population. Unfortunately, these advances also give rise to new medical 
challenges as they are accompanied by a dramatic increase in age-associated 
diseases, such as cancer, neurodegenerative diseases, type 2 diabetes and 
cardiovascular diseases (CVDs). In addition, industrialization and the growing 
world population led to an increase in pollution, not only a topic that is hotly 
debated on by environmental researchers and activists, but also a contributing 
factor to many of the above mentioned diseases. Moreover, some attributes of 
the Western life style such as insufficient exercise, smoking, diet and stress 
represent risk factors that further enhance the development of age-associated 
diseases. In numbers, of the roughly 150,000 worldwide deaths per day, about 
100,000 are due to age-related causes (source: CIA - Population Reference 
Bureau & The World Factbook), and this number is likely to increase in the 
future.  

CVD is still the leading cause of mortality worldwide accounting for 
31% of all global deaths (source: WHO). The underlying cause of most CVDs, 
such as myocardial infarction or stroke, is atherosclerosis, a lipid-driven chronic 
inflammatory disease. Research efforts in the past decades have significantly 
advanced the understanding of the pathogenesis of disease and have led to 
the development of new therapies, such as lipid lowering drugs (e.g. statins, 
ezetimide, fibrates) and antihypertensive drugs (e.g. ACE inhibitors, AT 
receptor antagonists, Ca blockers). Nevertheless, atherosclerosis remains the 
driving force behind cardiovascular mortality and therefore more research is 
needed to develop better tools and therapies for preventing/treating this 
disease.  

While originally atherosclerosis was perceived to be a lipid-storage 
disorder of the arterial wall (1), it is now recognized not only as a lipid storage 
but also as a chronic inflammatory disease (2), with innate as well as adaptive 
immune cells playing crucial roles. The initial development of atherosclerotic 
lesions is characterized by activation, dysfunction and structural alterations of 
the endothelium leading to subendothelial retention of lipid components from 
the plasma, such as low-density lipoprotein (LDL). Subendothelial modification 
of these lipids initiates the vascular inflammatory process as it leads to 
endothelial activation. Upregulation of adhesion molecules (e.g. E-selectin and 
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VCAM-1) and secretion of chemokines (e.g. CCL2) by these cells promote 
leukocyte infiltration. Early lesions contain monocytes, which differentiate into 
macrophages, and dendritic cells (DCs), that both engulf lipids and become 
‘foam’ cells. Further accumulation of lipids and recruitment of leukocytes, such 
as T cells, boost the inflammatory process, resulting in cell death and the 
subsequent formation of a necrotic core. Necrotic core expansion and 
secretion of matrix-degrading proteases (e.g. matrix metalloproteases (MMPs), 
elastases and cathepsins) by inflammatory cells eventually lead to plaque 
destabilization. Plaque rupture or erosion results in formation of thrombi and 
shedding of emboli, resulting in clinical complications, such as mycocardial 
infarction or stroke. Chapter 2 discusses the pathogenesis of atherosclerosis in 
more depth, with a focus on the immunological aspects of the disease. 

 
As immune processes play an important role in all stages of 

atherosclerosis disease progression, a better understanding of the relevant 
immunological processes, be it innate or adaptive, will identify new 
possibilities for primary and secondary therapeutic intervention.  This general 
introduction (with references to Chapter 2 and 3) will give an overview on the 
immune system and the most important players of the immune responses 
involved in atherosclerosis, with particular focus on dendritic cells. 
 
The immune system 

The body’s immune system effectively eradicates and eliminates 
invading pathogens such as viruses, bacteria and parasites, to prevent them 
from harming the host. To efficiently do so, they need soldiers, called white 
blood cells or leukocytes and specialized infrastructures being the bone 
marrow and the complex network of lymphoid organs. The immune system 
can be divided into an innate (fast, non-specific) and an adaptive (acquired, 
specific) arm. The innate immunity is the body’s first line of defense and is able 
to control the majority of infections. It includes natural barriers (skin, 
mucosae) and phagocytes (granulocytes, macrophages) that secrete 
microbicidal substances. Innate immunity is activated through microbial 
constituents called pathogen associated molecular patterns (PAMPs), which 
are recognized by pattern recognition receptors (PRRs). The best known PRRs 
are c-type lectin receptors (CLRs) and Toll-like receptors (TLRs). These are 
mainly expressed by the sentinels of the innate system, such as macrophages 
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and dendritic cells, which are strategically positioned throughout the body, 
such as in barriers (intestinal tract, lungs and skin) and in lymphoid organs 
(lymph nodes, spleen and thymus). The innate immune response acts very fast 
and the responses are identical for repeated encounters with the same micro-
organism, although the latter criterion has recently been challenged (3). 
However, some pathogens evolved with the host and developed immune 
evasion mechanisms, which render innate immunity inadequate for their 
clearance. Here is where the adaptive arm kicks in. Adaptive immunity elicits 
very specific and strong immune responses, but is slower as it requires antigen 
presentation by antigen presenting cells (APCs), as well as selection and clonal 
expansion of its highly specialized effector cells. In contrast to the innate 
system, the adaptive immune system recognizes both microbial and non-
microbial substances with high specificity and is able to generate memory cells. 
Immune memory will generate faster, stronger and more efficient immune 
responses upon exposure to a previously encountered antigen. Adaptive 
immunity includes humoral and cell-mediated mechanisms that are executed 
by B and T lymphocytes respectively. These effector cells are able to generate 
unique, non-germline encoded, antigen receptors, by de novo rearrangement 
of their gene segments (4). This event leads to a unique and highly diverse 
repertoire of immune receptors that harbor the strength of the adaptive 
system. Adaptive immune responses are initiated by innate immunity and 
there is a permanent and bidirectional crosstalk between both arms of the 
immune system. As antigen uptake, processing, presentation and stimulation 
of lymphocytes towards clonal expansion are key features in initiating strong 
adaptive immune responses, there is a need for highly specialized forces called 
the (professional) antigen presenting cells (APCs), namely the dendritic cells 
(DCs).  



General Introduction | 1 

11 
 

 
 
Figure 1 – Schematic representation of DC maturation and function 
Immature DCs are very efficient in capturing Ags from their local environment, using 
several pathways (micropinocytosis, receptor mediated endocytosis (PPR, Fc 
receptors), phagocytosis). Trigger of surface receptors and local inflammatory signals 
induce DC conversion (DC maturation). In addition, maturing DCs upregulate 
chemokine receptors, such as CCR7, for efficient migration towards secondary 
lymphoid organs. DC maturation is a continuous process that starts in the periphery 
and is completed during DC-T cell interaction. DC-CD40 interaction with CD40L on T 
cells is a key event for full DC maturation. Mature DCs are characterized by increased 
expression of CD40, MHC and costimulatory molecules, such as B7 family members. DC 
activation leads to enhanced DC effector functions, such as cytokine secretion and T 
cell priming ability. In turn, Priming of T cells can lead to formation of helper T cell 
subsets that activate B cells to become antibody secreting plasma cells. 
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Dendritic cells: translating innate to adaptive immunity 

DCs are characterized by their capability to efficiently engulf and 
process antigen for presentation to naïve T cells, and are therefore called 
‘professional’ APCs. They localize in both lymphoid and non-lymphoid tissues 
throughout the body, where they form sophisticated and complex networks 
allowing them to interact with different lymphocyte populations (5). DCs, as 
orchestraters of innate and adaptive immunity, do not only play a critical role 
in host defense to pathogens and cancer, but are also regulators of tolerance 
to self, preventing autoimmunity (6). In steady-state conditions, DCs exert an 
immature phagocytic phenotype (Figure 1). Triggering of PPRs such as TLRs, 
CLRs and CD1 receptors induce DC maturation (7), leading to loss of endocytic 
capacity, increased migratory ability, upregulation of major histocompatibility 
complex (MHC) and costimulatory molecules, and production of cytokines, 
such as TNFα, IL-12, IL-23 and IL-10 (7) (Figure 1). 

 
DC differentiation and categorization 

DCs represent a heterogenous cell population and over the last decade 
different DC subsets have been identified. They vary in immune function 
specialization and therefore differ in their ontogeny, localization, migration 
and cytokine secretion pattern (8) (Figure 2). Here I will mainly, but not 
exclusively, discuss the murine conventional and plasmacytoid DC subsets, as 
they are the main focus of this thesis. 
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– adapted from Belz & Nutt, Nat Rev Immunol, 2012, 101-13 

 
Figure 2: Characterization of murine DC subsets. 
Figure shows key phenotype markers of different DC subsets. DCs are grouped 
according to the type of DC and their localization in secondary lymphoid tissues. 
Monocyte-derived DCs are generated during infection and are rapidly recruited to sites 
of inflammation, whereas other DC subsets are normally present in the steady state. 
 
Conventional DCs 

Conventional DCs (cDCs) share strict dependence of Flt3L for their 
development (9) (Figure 3) and represent the scouts of the immune system. 
They constantly scan their immediate environment by capturing environmental 
and cell-associated antigens and persistently interact with the cavalry of  
T lymphocytes. Uniquely, cDCs are equipped with superior antigen processing 
and presentation machinery that not only allows them to efficiently present 
endogenous and exogenous antigens on their MHC I and MHC II molecules 
respectively, called conventional presentation, but also render them capable of 
unconventional presentation of exogenous noncytosolic Ags in an MHC I 
context (8, 10) (Figure 4). The latter process is referred to as cross-presentation 
and has been shown to be critical in immunity against viruses, cancer cells and 
intracellular bacteria (8, 11). 
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– adapted from Belz & Nutt, Nat Rev Immunol, 2012, 101-13 

 

Figure 3: Growth and transcription factors regulating murine DC development 
Figure shows the developmental pathways of bone marrow progenitors (lymphoid and 
myeloid) to T and B cells, macrophages and DC subsets. Vertical lines represent 
essential growth factors or transcription factors. Presence of progenitors in the bone 
marrow is indicated by the red line. Monocyte and DC development depend on strong 
expression of PU.1, which regulates the expression of the cytokine receptors FLT3R,  
M-CFSR, and GM-CSFR. The development of CD8α+ and CD103+ DCs depends on IRF8, 
ID2, E4BP4 (also known as NFIL3) and BATF3, as well as on FLT3 signaling. CD11b+ DCs 
development relies on expression of RelB, IRF2, IRF4, Notch2 and RBP-J, as well as the 
growth factors GM-CSF and M-CSF. CD11b+ cDCs are also reduced in FLT3 and FLT3L 
deficient mice, although to a lesser extent than CD8α+ cDCs (10, 12). pDC can develop 
from CDPs requiring expression of E2-2, Ikaros and IRF8, low level of PU.1 and absence 
of ID2. However lymphoid progenitors were also shown to have pDC-generating 
potential (dotted arrow). LMPP: lymphoid-primed multipotent progenitor, CMP: 
common myeloid progenitor, MDP: macrophage and DC progenitor, CDP: common DC 
progenitor, CLP: common lymphoid progenitor, pDC: plasmacytoid DC, M-CSF: 
Macrophage colony-stimulating factor, GM-CSF: Granulocyte Macrophage colony-
stimulating factor, FLT3: FMS-related tyrosine kinase 3, FLT3L: FLT3 ligand, M-CSFR: 
macrophage colony-stimulating factor receptor, GM-CSFR:  granulocyte–macrophage 
colony-stimulating factor receptor, IRF: interferon-regulatory factor, Notch2: 
Neurogenic locus notch homolog protein 2, ID2: inhibitor of DNA binding, E4BP4: 
promoter-binding protein 4, NFIL3: Nuclear factor interleukin 3 regulated, BATF3:  
basic leucine zipper transcription factor ATF-like 3, GFI1: growth factor independent 1,  
RBP-J: Recombining binding protein suppressor of hairless. 
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– adapted from Villadangos & Schnorrer, Nat Rev Immunol, 2007, 543-55 

 

Figure 4: Conventional antigen presentation and cross-presentation pathways in 
dendritic cells. 
All dendritic cells (DCs) have the capacity to present antigens (Ags) using the MHC class 
I and MHC class II pathways. MHC class I molecules present cytosolic peptides, which 
comprise almost exclusively endogenous proteins. MHC class II molecules present 
peptide Ags generated by proteolytic degradation in endosomal compartments. 
Therefore, these Ags can represent endogenous or endocytosed exogenous material. 
CD8+ and CD103+ DCs (and to some extent monocyte-derived DCs) have a unique 
ability to present exogenous antigens in an MHC class I context (cross-presentation 
pathway). However, the mechanisms involved are not completely understood. TAP, 
transporter associated with antigen processing.  

 
To increase the efficiency of DCs in finding their cognate lymphocyte 

for antigen presentation, the body uses compartmentalization (the lymphoid 
system), restricting the area of the lymphocyte pool for interaction with 
dendritic cells to about 10% of the body’s volume. To reach naïve T cells in  
T cell zones of the lymphoid organs cDCs require exceptional directional 
migration ability (8, 10). cDCs are dependent on CCR7 to migrate through 
afferent lymphatics along CCL19 and CCL21 chemokines gradients . To regulate 
adaptive immune responses DCs are specialized in T cell crosstalk (being 
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bidirectional interaction influencing both cell types) (6, 10) and can both initiate 
naïve T cell responses and restimulate memory T cells. cDCs (and to some 
extent also pDCs) steer protective T cell responses, T helper (Th) cell 
polarization, memory formation but also T cell tolerance and silencing (8), and 
this depends on three different signals: cognate MHC-peptide encounter, 
costimulatory signals (such as CD40 and B7 family members) and cytokine 
secretion. Inflammatory mediators can amplify responses but all three signals 
are needed to initiate responses (8). In addition, lack of costimulation leads to  
T cell tolerance, as is the case in steady-state conditions. It should be noted 
that cDCs can also actively silence T cells through inhibitory molecules such as 
Programmed cell death 1 ligand (PD-L1) (8). Furthermore, DC-T cell crosstalk is 
bidirectional as T cells can also promote DC maturation (8). The role of 
costimulatory and coinhibitory molecules in the context of atherosclerosis is 
discussed in Chapter 2. 

 

cDCs develop from bone marrow precursors (CDPs and pre-DCs) 
(Figure 3) and migrate via the blood to peripheral tissues (such as skin, lung, 
liver, intestinal tract, etc.) or lymphoid organs (spleen, lymph nodes, thymus, 
peyer patches, etc.), where they give rise to migratory or lymphoid resident 
DCs, respectively (13). Migratory DCs cannot be found in the spleen but migrate 
from the periphery towards lymph nodes (Figure 2). Classification of cDCs is 
quite complex, unique for most species and is a recent topic of debate (DC 
conference in Tours, France)(14). In humans, two main subsets with different 
functions can be found in blood: BDCA1/CD1c+ DCs and BDCA3/CD141+ DCs (15). 
The main subsets in human skin, liver, lung, and intestine are CD1c+CD1a+ DCs 
and CD141+Clec9A+ DCs (15). In mice, cDCs are subdivided by their expression of 
CD8α (and CD103) or CD11b (Figure 2). 
 

CD8α+ (CD11b-) cDCs and CD103+ (CD11b-) cDCs 

The lymphoid resident CD8α+ DC and its migratory counterpart CD103+ 
DC are the best characterized cDC subsets thus far. Both subsets uniquely 
express XCR1, which was shown to be crucial for efficient cytotoxic immunity 
(16). Functionally, CD8α+ DCs are superior in cross-presentation of exogenous 
antigens to CD8+ T cells in a MHC-I restricted context (17, 18) (Figure 4). 
Development of CD8α+ and CD103+DCs depends on expression of IRF8, 
inhibitor of DNA binding 2 (ID2), E4BP4 and basic leucine zipper ATF-like 3 
(BATF3) (5, 8) (Figure 3). 
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CD11b+ cDCs 

CD11b+ cDCs are less well defined. They are a heterogeneous group of 
cells and represent the most abundant DC type in most lymphoid tissues 
(lymphoid resident DCs), but can also be found in nonlympoid tissues 
(migratory DCs) (8).  CD11b+ lymphoid resident DCs can be subdivided into CD4+ 
DCs and CD4-CD8- (DN) DCs (Figure 2). However, massive parallel single cell 
RNA-seq revealed that this categorization is not fully correct in that the 
resulting classes do not represent homogenous subpopulations (19).  CD11b+ 
migratory DCs include dermal and interstitial DCs (Figure 2). The transcription 
factors involved in CD11b+ cDC development and their hierarchy during 
development is complicated by CD11b+ cDC heterogeneity (8), however 
following transcription factors have been shown to control CD11b+ cDC 
development: RelB (20), IRF2 (21), IRF4 (22), NOTCH2 (23) and RBP-J (24) (Figure 3). 
Because of their heterogeneity CD11b+ DC function is mostly characterized by 
lack of CD8α+ DC associated functions (8). CD11b+DCs are less efficient in cross-
presentation and production of specific cytokines, like IL-12 (8). However, 
CD11b+ DCs are efficient in production of IL-6 (25) and IL-23 (26), compared to 
CD8a+DCs they are better in inducing CD4+ T cell responses, what might be 
attributed to their prominent expression of MHCII presentation machinery (8, 

27). In addition, CD11b+ DCs are also potent producers of chemokines, for 
instance CCL3, CCL4 and CCL5 (8, 28). 
 

Monocyte derived DCs 
During inflammation circulating monocytes can be mobilized to 

migrate to the inflammatory focus and to give rise to DCs which are therefore 
called monocyte-derived DCs (moDCs) or inflammatory DCs (iDCs) (5, 8) (Figures 
2&3). MoDCs are difficult to distinguish from bona fide cDCs as they also 
express CD11c, MHC II and CD11b, however they keep some signatures from 
their ontogeny, such as expression of CD64 (8), Fc gamma receptor 1 (FcγRI)(8), 
MAC3 (5) or DC-SIGN (5). Like cDCs, moDC have potent antigen-presenting 
capabilities and some even attribute them the ability of cross-presentation (29, 

30) (Figure 4). Consequently, moDCs might represent a crucial reservoir of 
professional APCs during inflammation. However, moDCs remain poorly 
defined and, as they share similarities with CD11b+ cDCs, further 
understanding of this subset might contribute to unravelling the 
heterogeneous CD11b+ cDC compartment. 
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Plasmacytoid DCs 
Plasmacytoid DCs (pDCs) are a distinct subset of DCs (Figures 2&3). 

They originate in the bone marrow from a common DC progenitor and their 
development depends on the expression of E2-2, IRF8 and Ikaros (5) (Figure 3). 
However, there is also evidence that pDCs can be generated from the 
lymphoid lineage (8, 31, 32). They are round-shaped and, in contrast to most DCs, 
non-dendritic and relatively long-living circulating cells (13). Human pDCs are 
defined by a unique cell surface phenotype, expressing blood leukocyte 
antigen 2 (BDCA-2), CD123 (IL-3Rα), immunoglobin-like transcript 7 (ILT7), ILT3, 
some CD4 and CD68, but lack expression of the lineage markers (CD3, CD19, 
CD14, CD16) and CD11c (33). The murine counterpart is characterized by 
expression of bone marrow stromal antigen 2 (BST-2), sialic acid binding 
immunoglobulin –like lectin H (Siglec-H), B220 and Ly6C (33). In contrast to 
human pDCs, mouse pDCs also express intermediate levels of CD11c (33) and 
can express CD8α in some cases (33). Following their development in the bone 
marrow, pDCs circulate in the blood, but can also migrate into peripheral 
tissues and lymphoid organs. In healthy steady-state conditions pDCs are 
present in relatively low numbers in blood and peripheral organs, however 
during infection they migrate and accumulate in inflamed tissues (34). pDCs 
specialize in the rapid secretion of large quantities of type I interferons (IFNs) 
upon stimulation, a critical feature during viral responses. They do so by 
sensing oligonucletides and pathogens (such as viruses), through endosomal 
TLR7 and TLR9 (35). Furthermore, pDCs were also shown to deploy other innate 
sensors such as TLR2, TLR12, DHX9 for pathogen detection (33). Besides IFNs, 
they can also secrete cytokines, such as interleukin 12 (IL-12), IL-6 and tumor 
necrosis factor (TNFα), and release pro-inflammatory chemokines, such as 
CXC-chemokine ligand 8 (CXCL8), CXCL10, CC-chemokine ligand 3 (CCL3) and 
CCL4 (34). In this manner, they attract and stimulate other immune cells. In 
addition, inflammatory stimuli induce conversion of pDCs into a dendritic cell 
like phenotype with upregulation of membrane MHCII and costimulatory 
molecule expression. This enables them to present antigens to  
CD4+ T cells (13, 34), although their T cell stimulating properties remain relatively 
low compared to conventional DCs (cDCs). All these features indicate that 
pDCs are a multifaceted subset of DCs influencing both innate and adaptive 
immune responses.  
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Modulating DC development and function 

Post-transcriptional regulators of DC differentiation and function 

Cell differentiation and function in general is regulated at 
transcriptional level by transcription factors (TFs) and at post-transcriptional 
level by microRNAs (miR) and RNA binding proteins (RBPs), respectively. 
Transcription factors guide DC development by controlling gene expression, as 
can be appreciated from Figure 3. For example E2-2 is essential for pDC 
development, loss of Batf3 blocks development of CD8+DCs and IRF4 is critical 
in CD11b+ DC development.  Moreover several TF play important roles in DC 
maturation/activation (e.g. NF-κB, STAT, RelB, IRF-8), migration (e.g. Runx3), 
and survival (e.g. NF-κB, AP-1) (36), and in that sense represent targets for 
intervention in DC function. In addition, numerous studies have identified 
critical roles for both miRs and RBPs in regulating immune cell biology, for 
example in monocytes (37, 38) and macrophages (39-42). RBPs are emerging to be 
particularly interesting modulators of cell biology, as they, in contrast to miRs, 
are able to mediate both quantitative and qualitative changes to the 
transcriptome (43-45). They do so by  (alternative) splicing or editing of (pre-) 
mRNA, but also by influencing mRNA stability, subcellular localization and 
translational activation or repression (43-45 and de Bruin et al, Nat Commun, 
2016, in press).  Recently, we and others have identified RBPs, such as Quaking 
(QKI) as multifunctional regulators of lymphocyte and monocyte/macrophage 
development and function (40, 46 and de Bruin, Nat Commun, 2016, in press). 
Extrapolating these findings, it is conceivable that RBPs also influence DC 
development and function. 
 
DC maturation/activation, a crucial role for CD40 

As described earlier productive T cell priming is depend on three 
signals: cognate MHCp-TCR interaction, costimulation and instructing  
cytokines (8). Immature DCs have low expression of costimulatory molecules on 
their surface and therefore have poor T cell priming capacity. However upon 
activation, DCs switch from an antigen-capturing cell towards to a professional 
APC, upregulating MHC and costimulatory molecule expression (Figure 1). 
CD40 signaling has shown to be an important inducer of this transition (47). 
Interaction of CD40 on DCs with CD40L (CD154) on T cells leads to proper DC 
activation and renders them potent in T cell priming (and cytokine production) 
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(47). Inefficient DC activation leads to lack or inadequate secondary signals, such 
as CD80 and CD86, resulting in apoptosis or anergic response by the 
lymphocyte. 

 

CD40-CD40L interactions between non-immune as well as immune 
cells have been extensively studied in atherosclerosis and a crucial role for this 
axis in the pathogenesis of the disease is established. The role of CD40 as a 
driver of the atherosclerosis disease process will be elaborately discussed in 
Chapter 2. As abrogation of CD40 signaling under the MHC II promoter 
prevents atherosclerosis and DCs express high amount of MHCII and CD40, it is 
of interest to study the specific contribution of dendritic cell restricted CD40 in 
atherosclerosis. 
 
Dendritic cells in atherosclerosis 

The role for DCs in atherosclerosis is reviewed in Chapter 2, and is 
discussed in a broader context of cardiovascular diseases in Chapter 3. We 
here supplement this topic by discussing the most recent literature and current 
state of knowledge. DCs have been associated with many processes important 
in the pathogenesis of atherosclerosis, such as cholesterol homeostasis, lipid 
uptake and regulation of pro- and anti-atherosclerotic immune responses (see 
Chapter 2). Most of these studies however yielded indirect evidence of DC 
involvement, only recently a few studies have addressed the direct 
contribution of DCs in the immune response during atherosclerosis. For 
example, DCs were shown capable of processing and presenting model 
antigens to CD4+ T cells in a MHC II context (48). In addition, CD4+ T cells 
interacted with Ag-specific DCs in aorta explants (48, 49), leading to T cell 
proliferation and cytokine secretion (48). Nevertheless, little is known regarding 
the outcome of these DC-T cell interactions, and studies manipulating the total 
DC pool show conflicting outcomes (50 , and Chapter 2). It is likely that the 
broad functions of the diverse DC pool blur the interpretation of the rather 
unspecific approaches used. For example, antibody-mediated depletion of 
pDCs yielded conflicting results regarding the role for pDCs in atherosclerosis, 
suggesting either a protective (51) or deleterious (52, 53) effect on disease 
outcome. However, recently Sage et al. adopted elegant genetic approaches 
for selective deficiency in pDCs combined with model Ag presentation to study 
the role of pDCs in the development of atherosclerosis (49). This work presents 
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strong evidence for a critical role for MHCII-restricted antigen presentation by 
pDCs, generating proatherogenic T cell responses (49). Besides effort on 
unraveling the role of the pDC subset, little is known regarding the role for cDC 
subsets and their functions in atherosclerosis pathogenesis. Flt3 deficient  
LDLr-/- mice indicated a protective role for flt3 signaling dependent DCs (54) and 
MyD88 signaling in CD11c+ DCs was shown to be important for an 
atheroprotective Treg response (55). However, cDC heterogeneity complicates 
interpretation as it is likely that different DC subsets affect T cell-mediated 
responses and disease severity very differently; therefore approaches 
targeting specific cDC subsets are needed to unravel the mechanisms of cDC 
involvement in the pathogenesis of atherosclerosis. Lack of specific tools, 
however, hamper research in that direction and few studies address this issue. 
Recently though, CCL17-expressing DCs, described as a subset of CD11b+DCs, 
were shown to drive atherosclerosis by restraining T cell responses (56). 
Whether these different effects depend on Ag presentation by DC subsets 
remains to be elucidated (49). Moreover, many efforts shed some light on  
CD4+ T cell responses in atherosclerosis, nevertheless the role of CD8+ T cells 
and cross-presentation in atherosclerosis pathogenesis is still unclear. 
 

In conclusion, dendritic cells, as regulators of innate and adaptive 
immunity, hold potential for the development of new efficient therapy, 
however the mechanisms by which DCs and more in particular specific DC 
subsets influence the pathogenesis of atherosclerosis remain to be unraveled. 
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Hypothesis and study aims of this thesis 

The last decade, noticeable progress has been made in understanding 
the contribution of innate and adaptive immune responses in atherosclerosis 
disease initiation and progression. Dendritic cells regulate both arms of the 
immune system and are therefore an interesting cell type to study in the 
context of atherosclerosis. Accumulating evidence indicates a crucial role for 
these cells in the pathogenesis of atherosclerosis. However, how DC subsets 
function in a hyperlipidemic environment and what their individual 
contribution is to atherosclerosis remains poorly understood.  
 
The hypothesis of this thesis is that the diverse dendritic cell subsets exert 
distinct roles in the pathophysiology of atherosclerosis by priming and 
tweaking immune responses, and that the local environment can influence 
DC function.  
 

The central goal of my studies is to explore the involvement of several 
DC subsets, such as CD8+ dendritic cells and pDCs in the inflammatory process 
of atherosclerosis. In addition, I will zoom in on the impact of potential 
modulators of DC differentiation and functions relevant for atherosclerosis, 
such as hypercholesterolemia, costimulatory signals like CD40 and 
(post)transcriptional regulators of myeloid function, such as the RNA-binding 
protein Quaking. 
 
In Chapter 2, I have reviewed the current insights regarding the pathogenesis 
of atherosclerosis as chronic inflammatory disorder, with particular emphasis 
on the involvement of the different immune cells of the innate as well as the 
adaptive immune system, along with the costimulatory and coinhibitory 
interactions which are relevant to atherosclerosis related immune processes. 
Chapter 3 summarizes the potential role of various DC subsets in 
cardiovascular diseases (CVDs), and their potential as therapeutic target in 
CVDs.  As the exact role of CD8+DCs, and more in general of cross-presentation, 
in atherosclerosis was largely unknown, we sought to investigate their (causal) 
involvement in the pathogenesis of disease in Chapter 4. To study their impact 
on atherosclerosis, we made use of the Bat3f -/- mouse model, which 
essentially lacks CD8+DCs and is defective in cross-presentation. In Chapter 5, 
we hypothesized that a hyperlipidemic environment may interfere with pDC 
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differentiation and function, thereby compromising pDC’s innate function and 
T cell priming capacity. To this end, we investigated whether exposure of 
human pDCs to (modified) lipoproteins in vitro, affects human pDC maturation, 
TLR7 and 9 activation and T cell polarizing capability. Along the same line, we 
addressed in Chapter 6, whether a hyperlipidemic environment is influencing 
DC homeostasis, their maturation and T cell priming ability in vivo in mice. In 
Chapter 7 and 8, we investigated whether modulation of DC function can 
improve atherosclerosis disease outcome. Hereto we pursued genetic gain or 
loss of function approaches, interfering with DC differentiation at post-
transcriptional level or modifying DC costimulatory abilities. In Chapter 7, we 
postulated in analogy to earlier studies by our group and that of Prof 
Zonneveld on other myeloid subsets, that DC development and function is 
regulated by the RNA-binding protein Quaking, and that its deficiency would 
influence atherosclerosis disease progression. Hence, we used the  
CD11c-cre x Quakingfloxed conditional knockout mouse model to specifically 
study the impact of its loss in the dendritic cell lineage and its consequence in 
atherosclerosis. In Chapter 8, we used a model containing a constitutive active 
form of CD40 (Cd11c-LMP mice) to investigated the role of dendritic cell CD40 
in atherosclerosis. Finally, Chapter 9 summarizes and discusses the most 
important findings of this thesis, puts them in a broader context and defines 
the most relevant, outstanding questions and future perspectives. 
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Abstract 
Cardiovascular disease (CVD) is the leading cause of mortality 

worldwide, accounting for 16.7 million deaths each year. The underlying cause 
of the majority of CVD is atherosclerosis. In the past, atherosclerosis was 
considered to be the result of passive lipid accumulation in the vessel wall. 
Today’s picture is far more complex. Atherosclerosis is considered a chronic 
inflammatory disease that results in the formation of plaques in large and mid-
sized arteries. Both cells of the innate and the adaptive immune system play a 
crucial role in its pathogenesis. By transforming immune cells into pro- and 
anti-inflammatory chemokine and cytokine producing units, and by guiding the 
interactions between the different immune cells, the immune system 
decisively influences the propensity of a given plaque to rupture and cause 
clinical symptoms like myocardial infarction and stroke. In this review, we give 
an overview on the newest insights in the role of different immune cells and –
subtypes in atherosclerosis. 
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Introduction 
The most common underlying cause of cardiovascular diseases, such as 

myocardial infarction or stroke, is atherosclerosis (1, 2). Atherosclerosis is a 
slowly progressing disease in which lesions (plaques) are formed in large and 
mid-sized arteries. Risk factors are hypertension, diabetes, smoking, excessive 
food intake, but also previous infections (influenza, oral pathogens) or 
underlying (auto)immune diseases like lupus, Wegener’s granulomatosis or 
rheumatoid arthritis (3-6).  Although plaques can grow to a sufficiently large size 
to compromise blood flow, most of its clinical complications are attributable to 
arterial occlusion due to plaque erosion or rupture (7). Plaques form at 
predisposed regions characterized by disturbed blood flow dynamics, such as 
curvatures and branch points (7). The past 2-3 decades, experimental and 
patient studies have fueled the notion that atherosclerosis is a lipid driven 
chronic inflammatory disease of the arterial wall in which several components 
of both the innate and adaptive immune system play a pivotal role.  

The development of atherosclerosis is initiated by activation, 
dysfunction and structural alterations of the endothelium cells leading to 
subendothelial retention of lipid components from the plasma, such as low-
density lipoprotein (LDL). Here, lipids are susceptible to modification by oxygen 
radicals (like reactive oxygen species) and enzymes (such as myeloperoxidase 
and lipoxygenases) initiating the inflammatory process. The endothelium 
becomes activated, secretes chemokines such as CCL2, and starts expressing 
adhesion molecules, such as E-selectin and VCAM-1, thereby promoting the 
adhesion of leukocytes and activated platelets to the endothelium. Activated 
platelets secrete additional chemokines (like CCL5 and CXCL4) and undergo 
interactions with leukocytes to further boost immune cell infiltration (8). 
Monocytes, T cells and dendritic cells (DCs) are the first cell types present in 
the lesions. In the intima, monocytes differentiate into macrophages (or DCs). 
Subsequently, these phagocytes start to ingest (modified) lipids and become 
‘foam cells’. T cells are recruited in parallel with macrophages and also 
produce atherogenic mediators. DCs are already present in normal arteries but 
are actively recruited during atherosclerosis (9). 

Most of our recent insights are derived from experiments performed in 
atherosclerotic mouse models, i.e. the ApoE-/- mouse and the LDLr-/- mouse, 
which have slightly different characteristics. ApoE-/- mice have a spontaneously 
hyperlipidemic profile, and develop atherosclerosis without dietary 
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intervention, whereas LDLr-/- mice only develop atherosclerosis when fed a 
high fat diet. By varying the amount of cholesterol and fat in the diet, 
atherosclerotic plaque progression in both mouse models can be modulated, 
and atherosclerotic plaque burden, activation of the immune system and lipid 
levels are thus dependent on the setting and model in which the experiment 
has been performed (10). These factors can potentially influence the outcome of 
the results. Therefore, the findings listed in this review should be interpreted 
with some caution. Moreover, atherosclerosis is not a homogeneous disease, 
but can differ in its progression in the different sites of the arterial tree. Data 
obtained from one site are therefore not necessarily true for the other sites, 
although in most of the cases, the effects of an intervention are similar at 
different sites (10-12). 

In this review we discuss the newest insights on the role of the 
individual immune cell-types and their interactions during innate and the 
adaptive immune responses in atherosclerosis. The review is based on data 
that are obtained from, and confirmed by, multiple experiments performed by 
different laboratories in humans and mouse models of atherosclerosis. 
 

Innate immune cells in atherosclerosis (Figure 1) 
The innate or non-specific immune system is the first line of defense in the 
body and includes anatomical (e.g. the skin) and humoral barriers (e.g. 
complement), as well as cellular components (e.g. phagocytes). In contrast to 
the adaptive immune system, the innate immune system has no memory, 
recognizes, responds to and combats pathogenic substances fast and in a non-
specific manner. 
 

1.1. Monocytes and Macrophages 

Monocytes are short-lived mononuclear phagocytes of myeloid origin 
that represent about 3-8% of total leukocytes in the blood (13).  In mice, two 
monocyte subsets have been identified (14): The inflammatory monocyte, which 
is preferentially recruited to inflamed tissues and has a Ly6ChighCX3CR1lowCCR2+ 
profile; and the resident or patrolling monocyte, that is characterized by 
CX3CR1-dependent homing to non-inflamed tissues and has a 
Ly6ClowCX3CR1highCCR2- profile (13-16). Both subsets can differentiate into 
macrophages and dendritic cells and Ly6C+ cells are able to convert to Ly6C- 
cells in vivo (13, 15). In humans, three major monocyte subsets exist (17, 18). The 
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“classical” CD14++CD16- subset resembles the mouse Ly6Chigh inflammatory 
subset and also highly expresses CCR2, whereas the “non-classical” 
CD14+CD16++ monocytes are a possible counterpart of mouse Ly6C- cells, 
expressing high levels of CX3CR1 and CCR5 but low levels of CCR2 (19). 
Additionally, an “intermediate” CD14++CD16+CCR2+ subset can be distinguished 
(20).  
 

1.1.1. Monocyte recruitment and adhesion to atherosclerotic plaques 

Hypercholesterolemia induces monocytosis in ApoE-/- mice and 
especially increases inflammatory Ly6Chigh monocyte counts (21), which are 
more prone to enter the atherosclerotic plaque (21, 22). The increase in 
monocytes is due to an increase in hematopoietic stem and progenitor cells 
(HSPCs) in the bone marrow, which are outsourced to the spleen and exert 
extra-medullary hematopoiesis, thereby generating a splenic reservoir of 
monocytes that are also able to ‘feed’ the atherosclerotic plaque (23, 24). 
Interestingly, proteins involved in cholesterol efflux pathways tightly regulate 
proliferation and migration of HSPCs. The ATP binding cassette transporter A1 
and G1, as well as apolipoprotein E are strong inhibitors of myelopoiesis in the 
bone marrow, and their inhibition induces increased proliferation and 
mobilization of HSPCs, resulting in monocytosis and neutrophilia, and 
increased atherosclerosis (25, 26). 

Besides a rise in monocyte numbers, chemokine dependent monocyte 
recruitment and survival is also increased in atherosclerosis (16, 22, 27). Tracking 
of blood monocytes in mice indicates their continuous recruitment to plaques, 
which increases proportionally with lesion size (28). Chemokines and their 
receptors direct cells towards sites of inflammation via interactions with 
glycosaminoglycans (GAGs) (29). Blocking CCR2, CX3CR1 or CCR5 or deficiency in 
their ligands CCL2, CX3CL1 or CCL5 invariably leads to a reduction of monocyte 
influx in the plaque (both Ly6Chigh and Ly6Clo) and an attenuation of 
atherosclerosis (27, 30-34). Cheng et al. reported an increase in CX3CL1 expression 
in advanced plaques. Other studies report only a minor effect of CCR2 
blockade or bone marrow deficiency at later stages of atherosclerosis, 
suggesting that Ly6Chi are mainly important at earlier stages, whereas, Ly6Clo 
or Ly6C– are particularly prominent at later stages of plaque development (35-37).  

 



2 | Inflammation and Immune System Interactions in Atherosclerosis 

34 
 

Following chemokinesis, monocytes adhere to and roll on endothelial 
cells through interaction with selectins (such as E- and P-selectin) (38, 39). During 
rolling, monocytes upregulate integrins, like α4β1, leading to firm adhesion, 
arrest and subsequent diapedesis. Within the intima, monocytes secrete 
lipoprotein-binding proteoglycans resulting in increased accumulation of 
modified LDL, which sustains inflammation (40, 41). The endothelial cell itself also 
becomes activated and expresses chemokines and proteases, thereby 
perpetuating the inflammatory response (42-44).  

Platelets can promote monocyte-endothelial cell interactions by their 
expression of P-selectin (8). Repeated injections of P-selectin deficient platelets 
into ApoE-/- mice resulted in smaller lesions compared to mice injected with  
P-selectin expressing platelets (8). Platelet P-selectin is important in the 
formation of platelet-leukocyte aggregates, which promote the release of 
chemokines, such as CCL2, CCL5, and cytokines, like IL-1β, enhancing 
endothelial activation, leukocyte recruitment, rolling and transmigration (45, 46). 
In addition, platelets can deposit chemokines, like CCL5, on activated 
endothelium, which enhances monocyte recruitment and adhesion to the 
vascular wall (8).  

An alternative route for inflammatory cells to enter the arterial wall is 
via the adventitia through vasa vasorum (47, 48). However, the relative 
contribution of this process to atherosclerotic plaque development and 
progression is still under debate. 
 

1.1.2. Macrophages and atherosclerosis 

Once in the intima, differentiation factors like macrophage-colony 
stimulating factor (M-CSF) differentiate monocytes into macrophages (39, 49). 
Macrophages are phagocytic cells, but can also instruct other immune cells by 
producing various immune effector molecules and by acting as antigen 
presenting cells (APCs).  

Osteopetrotic (op/op) mice, mice that are deficient in M-CSF and lack 
macrophages, are extremely resistant to atherosclerosis (50, 51). CD11b-DTR 
mice, in which monocytes/macrophages are selectively depleted by diphtheria 
toxin, show a profound reduction in early plaque development. However, 
when macrophages are depleted when established plaques have formed the 
reduction in atherosclerosis is less clear suggesting a more important role for 
macrophages in the initiation of atherosclerosis (52). 
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1.1.2.1. Foam cell formation and cholesterol efflux 

Once macrophages start to ingest and process LDL they acquire lipid 
droplets in their cytoplasm. When uptake exceeds efflux, or efflux is disturbed, 
lipids accumulate and macrophages become ‘foam cells’. Scavenger receptors 
SRA and CD36 mediate LDL uptake, and gene-deletion or bone-marrow 
transplantation experiments emphasize their function in (ox)LDL uptake and 
atherosclerosis (53-56). However, other studies indicate that SRA and CD36 
deficiency do not completely abolish foam cell formation (57, 58), therefore 
additional mechanisms, like macropinocytosis or other classes of scavenger 
receptors, may also play a role. 

Once taken up, lipoproteins release entrapped cholesterol, which 
downregulates the expression of LDL receptors and decreases endogenous 
cholesterol synthesis. Intracellular free cholesterol undergoes re-esterification 
by ACAT (acyl-CoA cholesterol ester transferase) (39, 59), but can also traffic to 
the plasma membrane to become available for efflux (39, 60). Impairment of 
efflux or ACAT function leads to cytotoxicity, and macrophage death (60). 
Removal of cholesterol from the cell occurs at the plasma membrane by 
passive diffusion or transfer to apolipoprotein A1 and HDL, a process involving 
ATP-binding cassette (ABC) transporters, in particular ABCA1 and ABCG1 (60). 
Deficiency of ABCA1 or both ABCA1 and ABCG1 in bone marrow derived cells 
enhances atherosclerosis, and mice expressing the human ApoA-1 transgene, 
which increases HDL and cholesterol efflux, have reduced leukocytosis and 
atherosclerosis (60-62).  
 

1.1.2.2. Macrophages mediate plaque inflammation 

Macrophages express a myriad of receptors including pattern 
recognition receptors (PPRs, e.g. TLRs, CLRs, NLRs, scavenger receptors) and 
cytokine receptors (e.g. TNFRs, interleukin receptors, growth factor receptors) 
through which they scan their environment for activation or polarization 
signals (e.g. PAMPs (pathogen associated molecular patterns), DAMPS (danger 
associated molecular patterns), cytokines, growth factors) (63-66). Upon 
activation, macrophages/foam cells produce inflammatory cytokines and 
chemokines that enhance inflammation and further regulate monocyte/T cell 
infiltration (67-70). Macrophages in the atherosclerotic plaque are capable of 
releasing a large repertoire of proinflammatory cytokines including IL-1, IL-6, 
IL-12, IL-15, IL-18, TNF family members (such as TNFα), and MIF, as well as 
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anti-inflammatory cytokines like IL-10 and TGF-β family members (TGF-β1, 
BMPs, GDFs) (67, 71, 72). In particular, TLR 2 and 4 were shown to be important 
stimulators of macrophage cytokine production in an atherosclerotic context 
(73-76).  

Macrophage exposure to crystalline material, like cholesterol crystals 
that form in the macrophage foam cell after massive uptake of (modified) 
lipids, but also increased oxidative stress within plaques can lead to the 
formation of an inflammasome complex affecting protein maturation and 
secretion (77). Inflammasome formation leads to activation of caspase-1 that 
rapidly cleaves pro-IL1β and pro-IL18 into their mature forms, which are both 
pathogenic inflammatory cytokines. Transplantation of Nlrp3, ASC and IL-1 
(essential components of the inflammasome complex) deficient bone marrow 
in LDLr-/- mice revealed a crucial involvement of the inflammasome in 
atherosclerosis as both plaque size and serum IL-18 were significantly reduced 
(77).   

Within the atherosclerotic plaque, sustained inflammation, growth 
factor deprivation, oxidative stress accompanied by prolonged activation of 
endoplasmic reticulum (ER) stress pathways result in macrophage apoptosis 
and necrosis. The unfolded protein response (UPR) (78), with factors like C/EBP 
homologous protein, Ca2+/calmodulin-dependent protein kinase II, STAT1 and 
NOX,  plays a major role in this process (79-82). Necrosis and apoptosis, and the 
subsequent defective efferocytosis of macrophage cell debris result in the 
formation of a necrotic lipid core within the plaque, and can induce a 
vulnerable plaque (83).  

Besides producing inflammatory mediators, macrophages as well as 
SMCs and neutrophils, produce proteases, such as matrixmetalloproteases, 
tPA, uPA, elastases and cathepsins (84), capable of degrading extracellular 
matrix components. These proteases significantly contribute to thinning of the 
fibrous cap, making atherosclerotic plaques more vulnerable for rupture. 
 

1.1.2.3. Macrophage heterogeneity in plaques 

Macrophages are a heterogeneous population that can be divided into 
classically activated (M1) and alternatively activated (M2) macrophages. M1 
macrophages are induced by TLR ligands (such as LPS) or IFNγ (39). They 
enhance and sustain inflammatory responses via production of TNFα, IL-6,  
IL-1β and IL-12 (39), and produce killing agents like iNOS. Continuous M1 
activation results in tissue damage and eventually impaired wound healing. M2 
macrophages are stimulated by cytokines such as IL-4 or IL-13, but also by 
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immune complexes and parasitic antigens (39) and secrete IL-10 and TGFβ.  
M2 macrophages promote tissue repair and healing, stimulate angiogenesis, 
scavenge debris and dampen immune responses (85, 86). M1/M2 macrophages 
can switch phenotype depending on their microenvironment (87). 

The concept of M1 and M2 macrophages in atherosclerosis is not so 
clear-cut. Both M1 and M2 subsets are present in human atherosclerotic 
plaques (88) in all plaque stages (89) , with M1 macrophages present at sites of 
plaque rupture, and  M2 macrophages far from the lipid core (90) and in the 
adventitia (91). M2 macrophage foam cells contain smaller lipid droplets than 
M1 macrophages, suggesting less lipid uptake than M1 macrophages (90). 
However, other reports show that ER stress promotes M2 polarization and that 
M2 macrophages contain a higher expression of SR-A and CD36 (91, 92). In ApoE-/- 
mice, early plaques predominantly contained M2 (arginase I+) macrophages. 
With plaque progression, a phenotypic switch towards an M1 (arginase II+) 
dominant profile was observed (93). Upon plaque regression macrophages 
reduce the expression of M1 markers (i.e. MCP-1, TNF) and exhibit more M2 
markers (i.e. Arg I, MNR) (94). These data indicate that the microenvironment at 
later stages of atherosclerosis promotes M1 polarization, and thus 
atherosclerotic plaque progression.  Interestingly, when macrophages in  
ApoE-/- mice were polarized towards M2 by schistosoma infection, circulating 
cholesterol levels decreased and plaque sized was reduced or not affected (95-

97). 
Kadl et al. described a new macrophage subset, Mox, present in 

advanced murine atherosclerotic plaques (98). Mox are macrophages stimulated 
with oxidized phospholipids and are characterized by an anti-oxidant response 
(through NRF2). They have low phagocytic and chemotactic capacity and 
typically express Heme oxygenase-1 (HO-1). Whether Mox macrophages are 
atheroprotective needs further investigation. Gleissner et al. introduced M4 
macrophages, being human macrophages differentiated by CXCL4 (99). This 
subset is weakly phagocytic, shows lower expression of scavenger receptors, 
but increased levels of cholesterol efflux transporters.  

 

In conclusion, macrophages, as the most abundant cell type in 
atherosclerotic plaques, strongly affect plaque formation and progression 
through a profound effect on intra-plaque cholesterol homeostasis, 
inflammation, necrotic core formation as well as extracellular matrix 
degradation. Affecting atherosclerosis on multiple levels makes macrophages 
an interesting cell type for the development of therapeutic strategies.  
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Figure 1: Role of monocytes and neutrophils in atherosclerosis  
(a) Lipoproteins enter the intima, bind to proteoglycans, accumulate, become modified 
and activate the endothelium. (b) Platelets deposit C-C motif chemokine ligand 5 
(CCL5) on the endothelium, promoting neutrophil recruitment to the vessel wall. 
Activated neutrophils secrete granule proteins such as myeloperoxidase, azurocidin, 
and proteinase-3 that will enhance endothelial activation and dysfunction by inducing 
adhesion molecule expression, permeability changes and limiting the bioavailability of 
nitric oxide. Moreover, granule proteins secreted or deposited on the endothelium 
induce adhesion and recruitment of inflammatory monocytes, but can also modify 
chemokines, enhancing their ability to attract monocytes. (c) Activated endothelial 
cells release chemokines, such as MCP-1, that attract circulating monocytes. 
Monocytes bind to P and E selectin on endothelial cells, roll and finally come to arrest 
by adherence of their adhesion molecules (VLA-4, LFA-1) to VCAM-1 and ICAM1 on the 
endothelium. Platelets promote monocyte-endothelial interactions by expression of  
P-selectin, but can also form monocyte-platelet aggregates that further promote 
recruitment. Eventually, monocytes enter the intima through trans-endothelial 
diapedesis. (d) Infiltrated monocytes differentiate to macrophages, involving M-CSF, 
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after which they polarize into various macrophage subsets (M1, M2, M4 or MOX) that 
exert numerous effects and can become foams cells. Subset functions reviewed in 
Butcher et al. (e) Plaque neutrophils trap LDL in the vessel wall by secretion of α-
defensin that binds LDL. (f) Neutrophils promote M1 polarization of macrophages.  
(g) Neutrophil-derived MMPs and MPO-dependent oxidative stress induces apoptosis 
of endothelial cells and degradation of basement membrane, leading to endothelial 
desquamation. (h) Neutrophil MMPs can also degrade ECM components affecting 
plaque stability. ECM, extracellular matrix; MMP, matrix metalloproteinase; MPO, 
myeloperoxidase; LDL, low-density lipoprotein; M-CSF, macrophage colony stimulating 
factor; IFN, interferon; TNF, tumor necrosis factor; OxPAPC, Oxidation products of 1-
palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine; EC, endothelial cell; HOCl, 
hypochlorous acid; PSGL-1, P-selectin glycoprotein ligand-1; VLA-4, Very Late Antigen-
4; VCAM-1, Vascular cell adhesion molecule-1; LFA-1, Leukocyte function-associated 
molecule 1 ;ICAM-1, intercellular adhesion molecule; SMC, Smooth Muscle Cell.  
 

1.2. Neutrophils 

Neutrophils are among the first cell types to respond to invading 
micro-organisms or tissue damage by inducing rapid neutralization and 
clearance of pathogens via endocytosis of foreign material and production of 
reactive oxygen species, myeloperoxidase (MPO) and proteolytic enzymes. In 
humans, an association between intra-plaque neutrophil numbers and 
features of unstable plaques (large lipid core, low collagen and smooth muscle 
cell content) (100) was reported. In ApoE-/- mice, neutrophils interact with 
endothelial cells and accumulate in regions of high inflammatory activity (101-

103). In early atherosclerotic mouse plaques, neutrophils localize in the sub-
endothelial space while in more advanced to rupture prone plaques they can 
be found in the shoulder region, fibrous cap, adventitia and in areas of intra-
plaque bleeding (101, 102, 104).  

 

1.2.1. Neutrophil granule proteins and atherosclerosis 

Much of the neutrophil proinflammatory activity can be attributed to 
the release of granule proteins. MPO, azurocidin, LL-37, α-defensins, and 
NGAL, have been identified inside human atherosclerotic lesions (105-109) and 
are also secreted into the plasma upon neutrophil activation. 

Recently, Soehnlein et al. reported that Cramp-/- ApoE-/- mice had 
smaller plaques with reduced macrophage numbers compared to ApoE-/- mice 
(110). This effect was attributed to the lack of endothelial CRAMP deposition by 
neutrophils, resulting in reduced adhesion of classical monocytes and 
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neutrophils. α-defensin, another granule protein, is able to trap LDL in the 
vessel wall, leading to accumulation of LDL that will be oxidized and eventually 
contribute to local inflammation and plaque growth (111, 112).  

Neutrophils also affect advanced atherosclerosis by secretion and 
activation of different matrix metalloproteinases and elaborate MMP8 and a 
few cathepsins amongst others, which in turn degrade the basement 
membrane as well as components of the extracellular matrix leading to plaque 
fragility and eventually erosion or rupture (113, 114).  

 

In conclusion, various cell types of the innate immune system play 
important roles in both initiation and progression of atherosclerosis, either 
reducing or aggravating disease burden. However, as the local inflammation of 
the arterial wall sustains, many of the immunomodulatory agents secreted by 
innate immune cells have the capacity to tune or even activate adaptive 
immune responses, directly or by recruiting key players in adaptive immunity 
to inflammatory foci.  
 

The adaptive immune system in atherosclerosis (Figure 2) 
The adaptive immune system comprises highly specialized cell-types 

that respond to both microbial as well as non-microbial substances in a very 
specific way. Adaptive immune responses are slow, are initiated by the innate 
immune system and require antigen presentation by APCs. Adaptive immunity 
includes humoral as well as cell-mediated mechanisms, which are executed by 
B and T lymphocytes respectively. Important features of the adaptive immune 
response are antigen recognition, clonal expansion and differentiation of 
lymphocytes to effector or memory cells. Upon exposure to a previously 
encountered antigen, the appropriate memory cells will generate faster, 
stronger and more efficient immune responses. 
 

1.3. Dendritic cells 

Dendritic cells (DCs) are professional APCs that play a critical role in 
innate, but also in regulation of adaptive immune responses (9). DCs originate 
from DC precursors, coming from the bone marrow, or from monocytes. They 
can be found in both lymphoid and non-lymphoid tissues throughout the body 
where they form sophisticated and complex networks allowing them to 
interact with different lymphocyte populations. DCs provide an important link 
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between innate and adaptive immune responses and play a critical role in host 
defense to pathogens and cancer, but also in tolerance to self and prevention 
of autoimmunity (9). 

 

1.3.1. DC heterogeneity 

The dendritic cell population is heterogeneous and can be divided into 
four major categories (115): Conventional DCs (cDCs), plasmacytoid DCs (pDCs), 
monocyte-derived DCs and Langerhans cells. cDCs predominate in a steady 
state and are specialized for antigen processing and presentation. Two main 
classes of cDCs exist: migratory DCs (mDCs) and lymphoid tissue resident DCs 
(rDCs). mDCs are antigen sampling sentinels originating from early precursors 
in peripheral tissues, are restricted to lymph nodes and cannot be found in the 
spleen. rDCs are found in lymph nodes, spleen and thymus. They can be 
subdivided into CD4+DCs, CD8α+DCs and CD4-CD8α- DCs. CD8α+ DCs are 
professional cross-presenting cells and play a major role in priming cytotoxic 
CD8+ T-cell responses, whereas CD4+DCs and CD4-CD8α- DCs are more efficient 
at presenting MHC class II-associated antigens to CD4+T cells. rDCs do not 
traffic from other tissues but develop from local lymphoid tissue precursor 
DCs. 

During inflammation and in response to growth factors like GM-CSF or 
TLR4 ligands, monocytes fully differentiate into monocyte-derived DCs. Similar 
to cDCs these cells express CD11c, MHC II, CD24 and SIRPα, but also MAC3. 
Monocyte-derived DCs have antigen-presenting capacity, including the ability 
to cross-present antigens. 

 
Acting at the interface of innate and adaptive immunity, pDCs have the 

unique ability to rapidly produce large amounts of type I interferons, but have 
only poor antigen presenting capacity. pDCs are broadly distributed over the 
body and, at least in mice express SIGLEC-H, BST2 and CD45RA. Human pDCs 
also are CD45RA+ but also express BDCA-2 and LILRA4 (ILT7). 
 

1.3.2. DCs and macrophages 

One of the major problems in studying the role of DCs in non-lymphoid 
tissues, and especially in the aorta, is that the distinction between 
macrophages and DCs is not so clear. There is little agreement about the utility 
of specific markers for identifying distinct cell types in tissues. In a recent 
paper by Becker et al. (116), a proteomic approach was applied to find 
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membrane markers specific for macrophages, M1 and M2 macrophages, and 
dendritic cells. Although unique membrane signatures for (M1 vs M2) 
macrophages vs DCs could be detected, some frequently used markers proved 
to be not cell-type specific. One of those common markers to distinguish DCs 
in mice is CD11c (116). In atherosclerosis, this problem is even more relevant, 
since macrophage foam cells in the plaque, as well as lipid filled DCs both show 
an abundant expression of CD11c (117). However, macrophages and DCs also 
have unique membrane expression profiles, morphological different features, 
and exert specific functions, and are therefore truly different cell types.  
 

1.3.3. DCs in atherosclerosis 

Although DCs were discovered in 1973 by Steinman & Cohn (118), it took 
until 1995 before DCs were described in the aorta (119). Few DCs are present in 
the normal aorta of healthy mice, where they preferentially reside in the 
adventitia, apart from a few scattered intimal DCs (120). DCs are mainly found at 
sites prone to develop atherosclerosis, such as the lesser curvature and branch 
points of the aortic arch (121, 122). CD11c+ DC numbers dramatically increase in 
both intima and adventitia during atherosclerosis (123-125). In advanced lesions, 
DCs cluster with T cells and localize in the plaque shoulder and rupture-prone 
regions of plaques (121, 126, 127). In patients with angina pectoris or acute 
myocardial infarction, blood-derived DC precursors are reduced, while in CAD 
patients blood-DC numbers are down, which might be explained by increased 
recruitment to plaques (128-130).  

 

Dendritic cells are central to atherogenesis as they are directly 
implicated in both cholesterol homeostasis and the immune response. 
Selective ablation of DCs or extension of their lifespan both were found to 
result in an increase or decrease in plasma cholesterol levels respectively (131). 
However, increasing DC-lifespan did not affect atherosclerosis progression 
since the protective effects of cholesterol lowering were counterbalanced by 
enhanced Th1 and Th17 mediated autoantibody responses. Transfer of DCs 
pulsed with atherosclerosis specific antigens results in either protection or 
aggravation of atherosclerosis depending on environmental signals during DC 
pulsing and animal model used (132, 133). Moreover, vaccination strategies with 
oxLDL-pulsed DCs before atherosclerosis induction showed a promising 
reduction in plaque size and overall amelioration of immune-inflammatory 
responses (134).  
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Two papers were published recently showing opposing roles for pDCs 
in atherosclerosis. Daissormont et al. reported a protective role for pDCs as 
depletion of these cells in LDLr-/- mice using an anti-PDCA-1 antibody resulted 
in enhanced T-cell accumulation and CD4+ T cell activation and exacerbation of 
plaque development (135). In the ApoE-/- mouse, Döring et al. (136) as well as 
Macritchie et al. (137) recently observed decreases in early plaque formation 
upon treatment with an antibody against PDCA-1, an effect that was attributed 
to a TLR9 dependent IFNα release upon pDC activation by the neutrophil 
derived DNA/CRAMP complexes (136). These divergent findings might be 
explained by the different methodologies used, such as the kind of depletion 
antibodies and administration regimens. 
 

1.3.3.1. DC accumulation in plaques 

DC accumulation in plaques can result from three different events: 
direct recruitment, local proliferation and/or impaired egress. Different 
immune cells in the aorta can attract preDCs and monocytes by expression and 
secretion of different receptors and cytokines. Absence of CX3CR1, CCR2 or 
VCAM-1 reduces atherosclerosis not only by an effect on monocyte 
recruitment, but also correlates with decreased DC accumulation (27, 125, 138, 139). 
Accumulation of DCs in the arterial wall can also be influenced by interactions 
with platelets. For example, through P-selectin for rolling and mac1 for firm 
adhesion (8). DCs might predominantly differentiate from Ly6Clow monocytes 
that act as precursors for inflammatory DCs (22). Recruited or resident DCs can 
proliferate locally, as was recently demonstrated in the aorta and secondary 
lymphoid organs (140, 141), contributing to increased numbers of DCs. In early 
atherosclerotic lesions, monocyte-derived DCs can emigrate from lesions, 
however in hyperlipidemic mice, the egress from developed plaques might be 
impaired (142, 143).  

 

1.3.3.2. DCs and lipid uptake  

In addition to macrophages, DCs can accumulate lipids and contribute 
to disease initiation and progression (144). Only a few days after high-fat diet 
feeding of LDLr-/- mice, lipid-loaded CD11c+ DCs can be detected in the aorta. 
OxLDL promotes differentiation of macrophages into DCs (145). Uptake of lipids 
induces DC maturation markers and enhances antigen presentation to NKT and 
T cells (146), but does not affect the antigen presenting capacity of monocyte-
derived macrophages (142), and impairs CD40 or TLR induced dendritic cell 
maturation (147).  



2 | Inflammation and Immune System Interactions in Atherosclerosis 

44 
 

1.3.3.3. DCs and antigen presentation 

In atherosclerotic plaques, T cells are found in close proximity with 
DCs, implying DC-T-cell interactions (127, 148). Several studies indicated that 
oxLDL induces several changes that are characteristic for DC maturation, 
including enhanced expression of co-stimulatory molecules and increased 
ability to stimulate T cells (146, 149). Moreover, deficiency of co-stimulatory 
molecules involved in antigen-loading, immunological synapse formation and  
T cell activation (CD80, CD86, CD40) all led to reduced atherosclerosis (150, 151). 
Several studies using DC transfer, depletion or modulation, indicated that DCs 
are capable of skewing immune responses in atherosclerosis either towards an 
athero-protective or promoting profile (131-134). It is likely that under 
atherosclerotic conditions, DCs take up atherosclerosis-specific antigens (152), 
become locally activated and migrate out of the plaque towards either local 
draining or distant lymph nodes, where they induce T cell activation and 
proliferation. Indeed, DCs sorted from the aorta have the capacity to induce 
antigen-specific proliferation of T cells (122, 124, 153). Moreover, aortic DC were 
reported to take up injected OVA from the blood, cross present it to CD8+ TCR 
transgenic OT-I T-cells and subsequently induce OT-I T cell proliferation after 
isolation (122), while another study showed that OVA-loaded bone marrow 
derived DCs induced OT-I T cell proliferation in the adventitia of OT-I Rag2-/- 
mice (123). It is also possible that T cells, originally primed in secondary lymphoid 
organs, migrate into the plaque to be re-stimulated by DCs locally, which may 
be more important at later stages of atherosclerosis where DC egress is 
reduced (154). Overall these processes perpetuate local inflammation and 
increase plaque growth. 

 

1.3.3.4. DCs and cytokine production 

Dendritic cells have the ability to produce various anti- and pro-
inflammatory cytokines. TLR engagement, for example, can lead to the 
production of pro-inflammatory cytokines, including TNF, IL-6 and IL-12, all of 
which have been shown to be atherogenic (152, 155-160), but TLR induction can 
also lead to IL-10 production which is atheroprotective (161). IL12p40-/-ApoE-/- 
mice have smaller lesions (157), whereas recombinant IL-12 injection increases 
lesion size (158).  IL-12 affects atherosclerosis by driving Th1 polarization and  
T cell recruitment (160). Dendritic cells also produce many other cytokines, like 
IL-23 or IL-27 of which the role in atherosclerosis remains unclear (162). pDCs 
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typically produce high amounts of IFNα and β upon TLR9 activation, of which 
the latter has been shown to promote atherosclerosis by stimulation of 
macrophage recruitment (163).  

 

Some cytokines produced by DCs in an atherosclerotic environment 
are chemokines that influence immune cell recruitment into the lesion. Most 
DC chemokines are involved in T cell recruitment. For example CCL17 (TARC) 
and CCL22 (MDC) (164) are expressed in the plaque and attract T cells by 
interaction with the CCR4 receptor. Recently Weber et al (124) described CCL17-
expressing cDCs in the aorta of ApoE-/- mice. These cells associated with T-cell 
recruitment, however Treg accumulation was decreased combined with 
restrained Treg homeostasis in lymph nodes, contributing to atherosclerosis. 
Secretion of CCL2 by DCs was shown to play a role in the recruitment of 
monocytes, memory T cells and DCs to the site of inflammation (165). In addition 
DCs also produce CCL4 that attracts NK cells, monocytes and some other 
immune cells (166).  

 

1.3.3.5. DCs and tolerance 

Under homeostatic conditions DCs are known to have a tolerogenic 
effect (167). In the normal artery wall, resident DCs are thought to promote 
tolerance to antigen by silencing T cells. However, the inflammatory 
atherosclerotic microenvionment can activate DCs to switch from tolerance to 
activation of the immune system (168, 169). Interestingly, Hermansson et al. 
recently showed that this switch can be reversed as injection of DCs pulsed 
with ApoB100 in the presence of the immunosuppressive cytokine IL-10 
conferred protection against atherosclerosis in ApoB100tgLDLr-/-mice (133). 
Therefore, inducing tolerance to atherosclerosis specific antigens might be a 
promising therapeutic target for the treatment of atherosclerosis. 

 

In conclusion, dendritic cells influence atherosclerosis by production of 
chemokines and cytokines, antigen presentation and lipid uptake either 
promoting inflammation or inducing tolerance. However, the exact role of 
dendritic cells in directing different T and B cell subsets during atherosclerosis 
is not yet fully understood.  
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1.4. T cells 

T cells are lymphocytes that are characterized by the presence of a  
T cell receptor (TCR) on their cell surface. They originate from haematopoietic 
stem cells in the bone marrow that give rise to progenitors which migrate to 
the thymus for further development, maturation and selection to become  
T cells. After maturation, T cells are released from the thymus and are present 
in the blood and lymph nodes, where they play a central role in adaptive 
immunity. However, subsets of T-cells, such as the CD4+ T-cells also exert 
innate immune cell functions by activating various innate immune cells and 
helping macrophages to kill intracellular pathogens (170). When T cells 
encounter an antigen-presenting cell (APC) that presents a peptide specific for 
their TCR an efficient T cell response can be initiated.  

First evidence for a role of T cells in atherosclerosis was their  detection 
in human plaques in 1985 (171), followed by the observations that HLA/MHCII  
and T cell cytokines, such as IFNγ, were present as well. The detection of 
antibodies and T cells specific for oxLDL, combined with the presence of 
oligoclonal T cell populations in lesions confirmed a role for adaptive immunity 
in atherosclerosis (171-176). Further confirmation came from Rag knockout 
studies in atherosclerosis mouse models (ApoE-/- or LDLr-/-) showing a 
reduction in atherosclerosis (29, 83). Interestingly, these affects were less 
profound upon prolonged diet or using diet containing higher cholesterol 
content, suggesting that T and B cells play a more important role early in 
atherogenesis. Of note, work by Reardon et al showed that reduced 
atherosclerosis by T and B cell deficiency is site-specific depending on genetic 
background (84).  

T cells are recruited to the vessel wall in parallel with macrophages, but 
in less quantity. Mechanisms involved are similar to monocyte recruitment (177). 
In the arterial wall, T cells become activated in response to antigens and start 
to produce pro-inflammatory mediators (e.g. IFNγ), which further amplify the 
inflammatory response, aggravating disease progression (177, 178). Different T cell 
subsets exist that can influence atherosclerosis in various ways both at early 
plaque stages as well as advanced lesions.  CD4+ T cells and to a lesser extent 
CD8+ and γδ T cells are present in plaques of atherosclerotic mice. Knockout, 
depleting antibodies and cell transfer experiments suggest an overall pro-
atherogenic role for CD4+ T cells starting early during atherosclerotic disease 
progression (179-181). However, in one report, CD4-/-ApoE-/- females exhibited an 
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increased load of atherosclerosis, predominantly at the lower aorta (11). This 
increase could be due to the absence of CD4+ Tregs and a compensatory 
increase in CD8+ T cells in this mouse model (11). The role of CD8+ T cells in 
atherogenesis is still controversial (182, 183).  

Classically, T cell responses are initiated by APCs (DCs, macrophages 
and B cells), but can also be antigen independent.  After antigen presentation, 
T cell activation occurs through simultaneous interaction of the TCR with 
cognate peptide antigen loaded on MHC class complexes and co-stimulatory 
molecules with their ligands. In atherosclerosis, the antigen that triggers the 
immune response and induces T-cell proliferation and polarization is still not 
completely identified. However, recent evidence points towards 
atherosclerosis-specific antigens such as (the ApoB100 part of) LDL, and 
postulate that intimal DCs present these in draining or even distant lymph 
nodes (126, 184). As the plaque itself contains classical as well as non-classical 
APCs (e.g. SMCs and endothelial cells), effector T cells immigrating into the 
lesion can be (re)activated by antigen presentation inside lesions (171, 172, 184). In 
line with this, oligoclonal T-cell populations have been identified inside the 
plaque (176, 185, 186). 

 

1.4.1. CD4+ T cell subsets in atherosclerosis 

1.4.1.1. Th1 response in atherosclerosis 

The majority of T cells in atherosclerosis are of the Th1 profile, 
characterized by the production of high levels of IFNγ. IFNγ promotes the 
recruitment of T cells and macrophages to the plaques contributing to plaque 
growth, augments macrophage uptake of lipids leading to the formation of 
foam cells, increases the activation of APCs and enhances their MHC II 
expression, and enhances the secretion of Th1-promoting cytokines (67, 187, 188). 
These events lead to an expansion of atherosclerotic plaque burden and 
aggravation of the pathogenic Th1 response (189). IFNγ also contributes to 
plaque vulnerability and rupture by inhibition of SMC infiltration, proliferation 
and collagen production, but also by increasing the production of matrix 
metalloproteinases (67, 190-192). Studies deleting IFNγ or its receptors report 
reduced atherosclerosis, while injection of recombinant IFNγ leads to 
increased lesion size (193-196). Besides their role in T cell activation by antigen 
presentation, DCs and macrophages are instrumental in Th1 differentiation 
through secretion of IL-12. IL-12 activates Th1 transcription factors (such as 
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STAT4 and T-bet), upregulates IFNγ expression, while downregulating IL-4 and 
IL-5 in T cells (197). Patients with coronary artery disease (CAD) show increased 
STAT4 levels in CD4+ T lymphocytes (198). Moreover, a study on cytokine 
expression in advanced human atherosclerotic plaques confirmed the 
dominance of pro-inflammatory Th1 cytokines (199). In addition, Zhao et al. 
reported Th1 and Th17 activation in patients with CAD (200). Interference in  
IL-12 or IL-18 gene or receptor function reduces plaque development in mice, 
while administration of these cytokines accelerates disease progression, 
suggesting atherosclerosis is affected by an imbalance in T cell subsets (157, 158, 

201-205). Collectively, these data point towards a pro-atherogenic function of  
Th1 responses. 

 

1.4.1.2. Th2 response in atherosclerosis 

Th2 cells are known for their secretion of IL-4, IL-5, IL-10, and IL-13, but 
also provide help for antibody production by plasma cells (189, 197). Although Th2 
cells are rare in atherosclerotic lesions, their number is increased in 
hyperlipidemia. Th2 cells were thought to be atheroprotective as they oppose 
the pro-atherogenic Th1 differentiation. However, the role of Th2 cells in 
atherosclerosis is still controversial and depends on the site and stage of the 
lesions as well as on the experimental model used (197). Studies on IL-4, the 
prototypic Th2 cytokine, report either no (in ApoE-/- mice given angiotensin II) 
(206) or pro-atherogenic (in LDLR-/- mice) effects (207). Possible pro-atherogenic 
effects of IL-4 might include activation of mast cells or MMPs (208). 
Administration of IL-13, another prominent Th2 cytokine favorably affects 
atherosclerotic plaque morphology by reducing plaque inflammation and 
inducing plaque fibrosis in LDLR-/- mice, and inducing a protective M2 
macrophage phenotype (197). Accordingly, IL13-/-LDLR-/- mice have accelerated 
atherosclerosis (197). IL-5 and IL-33 show overt anti-atherogenic properties (209, 

210). IL-5 protects against atherosclerosis by promoting B-1 cell development 
and, ensuing production of protective antibodies (211), while IL-33 may exert its 
effect through induction of IL-5 (189, 209).  
 

1.4.1.3. Treg response in atherosclerosis 

Natural regulatory T cells (Tregs) are characterized by expression of 
CD4, CD25 and the transcription factor FoxP3. Tregs maintain self-tolerance 
and prevent autoimmunity by suppression of immune responses, such as Th1 
and Th2 responses. Natural Tregs (Th3) develop in the thymus and recognize 



Inflammation and Immune System Interactions in Atherosclerosis | 2 

49 
 

specific self-antigens. However, Treg cells can also be generated in the 
periphery in the presence of TGFβ or IL-10, the so-called induced Tregs (iTregs, 
Tr3).  

Regulatory T cells are present in plaques (212, 213) and depletion using 
anti-CD25 antibodies in atherosclerotic mice results in increased lesion size 
(214). Furthermore, transfer of bone marrow cells from CD80-/-CD86-/- or CD28-/- 
mice (which do not contain T regs) in LDLr-/- mice resulted in increased lesion 
size, whereas transfer of Tr1 cells, regulatory T-cells that produce high levels of 
IL-10 and low levels of TGFβ, or natural CD4+CD25+ Tregs significantly reduced 
atherosclerosis (214, 215), showing a protective role for regulatory T-cells in 
atherosclerosis. 

Regulatory T cells are known to produce large amounts of TGFβ and  
IL-10. Although TGFβ has an atheroprotective role (214), it is not clear whether 
Tregs exert their protective function directly through secretion of TGFβ, or 
through other immunosuppressive mechanisms (208, 216). Interestingly, DCs are 
able to induce Treg formation and play a role in the maintenance of Treg 
function through production of TGFβ (217, 218). Production of IL-10 by regulatory 
T cells may also contribute to their athero-protective effects, as IL-10 was 
shown to repress atherosclerotic development (219, 220).  

Regulatory T cells play an important role in the development of 
atherosclerosis by repressing immune function and provide an interesting 
target for the modulation of the disease.  

 

1.4.1.4. Th17 cells 

IL-17-producing helper T cells (Th17 cells) are protective against fungal 
and bacterial infections, but are also involved in the development of some 
autoimmune diseases (208, 221). Th17 cells mainly produce IL-17A and IL-17F as 
well as IL-21 and IL-22. In mice, both TGFβ and IL-6 are necessary for  
Th17 differentiation (222), whereas IL-21 and IL-23 are respectively required for 
Th17 proliferation and maintenance.  

 

Although Th17 cells are present in both murine and human 
atherosclerotic lesions (223-225), their role remains controversial as both 
atherogenic as well as atheroprotective effects have been reported. Both  
Th17 cells and IL-17 protein accumulate in lesions. Increased IL-17 expression 
in human lesions was associated with lower macrophage numbers, higher SMC 
content and an overall more fibrotic phenotype, suggesting that IL-17 
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promotes plaque stability (221). However, others report increased IL-17 mRNA 
expression in symptomatic plaques compared to non-symptomatic ones, with 
a correlation between IL-17 expression and complicated, unstable and lipid-
rich lesions (221, 224). Many studies interfered with IL-17 signaling in 
atherosclerosis (223, 226-228): Transplantation of IL17 receptor deficient bone 
marrow into LDLr-/- mice, as well as antibody treatment against IL17A reduced 
plaque size (223, 227, 228). IL17A-/-ApoE-/- mice show a profound reduction in 
atherosclerosis, and a decreased recruitment of immune cells in the aortic arch 
region, but not in the abdominal aorta, suggesting a site-specific effect (229).  In 
contrast, Taleb et al. (230) found a protective role for Th17 cells in 
atherosclerosis by using T cell specific SOCS3 deletion in LDLr-/- mice. 
Suppressor of cytokine signaling 3 (SOCS3) is a major negative feedback 
regulator of STAT3, a transcription factor crucial for Th17 differentiation. In 
this same study, administration of an anti-IL17A antibody accelerated 
atherosclerosis, indicating that Th17 cells may be protective (230).  
 

The interplay and imbalances between the different T-cell subsets are 
important in the pathogenesis of atherosclerosis. An imbalance in Th1/Th2 
towards the Th1 response promotes the progression of atherosclerosis, 
whereas prominent Th2 and Treg responses are anti-inflammatory and result 
in a reduction of atherosclerosis and/or a more favourable plaque morphology. 
How Th17 cells affect atherogenesis still needs to be determined. 

 

1.4.2. CD8+ T cells in atherosclerosis 

CD8+ T cells are important in cell-mediated immunity, capable of 
inducing death in infected or dysfunctional somatic cells. CD8+ T cells express 
T-cell receptors that recognize specific antigens presented on MHC class I 
molecules, present on all nucleated cells. As MHCI molecules mainly present 
cytosolic peptides, this represents an effective mechanism for clearing viruses 
and other intracellular pathogens. Once activated, CD8+ T cells induce 
apoptosis in their target cells by releasing cytotoxins, like perforin, granzymes, 
and granulysin. However, CD8+ T cells also secrete cytokines such as IFNγ and 
TNFα. 

CD8+ T cells are present in both murine and human plaques (231, 232). 
Although CD8+ T cells are only present in low numbers in early lesions, they 
appear to be the dominating T cell type in advanced human lesions (232). While 
no effects on plaque size are observed in CD8+T cell deficient ApoE-/- mice, 
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atherosclerosis is reduced in MHC class I deficient C57Bl/6 mice on high-fat 
diet (170). In addition, stimulation of CD8+ T cells responses with a CD137 agonist 
resulted in increased lesion size accompanied by enhanced CD8+ T cell 
recruitment to the lesions, suggesting a proatherogenic role for this T cell 
subset (183). Kolbus et al. recently reported activation of CD8+ T cells after 
feeding ApoE-/- mice a high-fat diet (233).  Interestingly, these cells were 
detected in plaque draining lymph nodes and preceded CD4+ T cell activation, 
suggesting a role for CD8+ T cells in early atherogenesis.  
 

1.5. NKT cells in atherosclerosis 

Unlike conventional T cells, which recognize peptide antigens 
presented by MHC molecules, NKT cells recognize a variety of (glyco)lipid 
antigens presented by a unique TCR on CD1d molecules APCs. Upon activation, 
NKT cells secrete both pro-inflammatory cytokines, such as IFN, and anti-
inflammatory cytokines, like IL-4, IL-10 and IL-13 (234). Activated NKT cells can 
interact in a CD1d dependent manner with other immune cells, promoting DC 
maturation and monocyte activation (234) and can induce tolerance by 
communicating with Tregs (235).  

 

NKT cells are present in the shoulder region of human carotid artery 
plaques, and in abdominal aortic aneurysms (236). Both CD1d-/- mice (lacking 
NKT cells) on a high fat diet or CD1d-/- mice on ApoE-/-background show 
decreased atherosclerosis (237-239). Moreover, repeated exogenous activation of 
NKT cells by α-GalCer in ApoE-/- mice, or adoptive transfer of unstimulated NKT 
cells in Rag1-/-LDLR-/- mice aggravate atherosclerosis (237-239 240). Other studies 
showed that invariant V alpha 14 NKT cells are responsible for increasing early 
plaque formation (241), that the CD4+NKT cell subset is responsible for the pro-
atherogenic activity of NKT cells (242), and that the contribution of NKT cells in 
atherosclerosis is restricted to early lesion development (243). 

 

1.6. B cells 

B cells originate from the bone marrow and play an important role in 
humoral immune responses. They are characterized by the presence of a B-cell 
receptor and are classically known for their ability to produce antibodies 
important for the clearance of antigens. B cells possess antigen presenting 
capacities, activating both CD4+ and CD8+ T cells. In addition, they can also 
secrete a variety of cytokines (e.g. IFN-γ, IL-2, IL-12, IL-4, IL-6 and IL-10) and 
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promote chemokine production (e.g. CXCL12, CXCL13, CCL19 and CCL21), key 
players in modulating chronic immune responses by promoting leukocyte 
recruitment and polarizing T cells (244, 245). 

 

According to their surface antigens, mature B cells can be categorized 
into B1, conventional B2 or marginal zone B cells (244). B1 cells reside in serosal 
cavities and participate in innate immunity by T cell independent production of 
the majority of natural IgM antibodies. Conventional B2 cells are present in 
bone marrow and lymphoid organs and are the B cells important in adaptive 
immunity by production of specific IgG antibodies to their cognate antigen. 
Marginal zone B cells can be found in the spleen, where they play a role in the 
first-line defense against blood-borne antigens. Upon antigen recognition, all 
mature B cells can differentiate into plasma cells. However, only B2 cells have 
the ability to become memory B cells. 

 

Although B cells are only occasionally detected in the atherosclerotic 
intima (246), early plaques contain large amounts of (SOCS3) and IgG (247). 
Furthermore, both IgM and IgG antibodies have been described in plaques at 
all stages of lesion development (248).  

 

Recent studies evaluated the role of B cells in the immune response 
during atherosclerosis. Splenectomy in mice resulted in larger plaques, which 
could be prevented by adoptive transfer of unfractionated splenic B cells (249). 
Furthermore, transfer of B cell-deficient bone marrow (µMT) into LDLr-/- mice 
resulted in increased lesions size in parallel with reduced antigen presentation 
and antibody and cytokine production in both early and late atherosclerosis 
(250). These data indicate that atheroprotective immunity develops during 
atherosclerosis progression with B cells playing a beneficial role. Paradoxically, 
some studies also reported detrimental effects for B cells. CD20-targeted B cell 
depletion in mouse models of atherosclerosis reduced lesions size (251, 252). 
Furthermore, deficiency or adoptive transfer of B2 B cells revealed this B cell 
subtype to be pro-atherogenic (253). These findings not only imply that B cells 
have both pro and anti-atherogenic roles in atherosclerosis, but also indicate 
that different B cell subtypes are involved in atherosclerosis immunity, 
complicating the role of B cells in the disease. However, these studies do not 
discriminate between cellular B cell functions and production of antibodies. 
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OxLDL is highly immunogenic and anti-oxLDL antibodies can be 
detected in atherosclerotic plaques as well as in the circulation of mice and 
men (254, 255). OxLDL specific antibody IgG titers correlate with atherosclerosis 
(256-258), while oxLDL-specific IgM titers are associated with  
atheroprotection (259, 260). Accordingly, Binder et al. showed that pneumococcal 
vaccination of LDLr-/- mice reduced atherosclerosis by expanding T15 (anti-
oxLDL) natural IgM antibodies (261). In addition, the same group indicated that 
the atheroprotective effect seen after immunization with MDA-LDL was due to 
increased T15 antibody titers that resulted from IL-5 production by Th2 T cells 
(210).  This was confirmed as deficiency in bone marrow IL-5, a cytokine 
important in non-cognate maturation and Ig secretion of B1 cells, reduces 
oxLDL-reactive IgM levels and accelerates atherosclerosis (210). In addition, 
Lewis et al. reported a dramatic increase in atherosclerosis in mice lacking IgM 
in their serum, again supporting a protective role for IgM in atherosclerosis 
(262). Similar conclusions were drawn from some well-powered human clinical 
studies (256, 263, 264). IgM antibodies are therefore considered anti-atherogenic, 
while antigen-driven IgG responses are considered to be pro-atherogenic.  

 

As with T cells, the B cell population also contains B cell subsets 
capable of dampening immune responses. These regulatory B cells modulate 
the immune response through mechanisms similar to T cells, via secretion of 
IL-10 and TGFβ (265), or via their Ag presentation ability or interactions with 
other immune cells via their secretion of Abs (265). This way regulatory B cells 
might suppress both Th1 and Th2 polarization and reduce antigen presentation 
and pro-inflammatory cytokine production by dendritic cells and macrophages. 
Regulatory B cells may act on atherosclerotic lesions either remotely (LNs or 
ATLOs) or within lesions. However, their functions and impact on 
atherosclerosis remains to be investigated.  

 

In conclusion, we can state that B cell subtypes, exerting both pro and 
anti-atherogenic effects, are important in atherosclerosis and provide some 
interesting therapeutic options. However, there is still much to learn about  
B cell subsets and their mechanisms influencing atherosclerosis. 
 



2 | Inflammation and Immune System Interactions in Atherosclerosis 

54 
 

 
 
Figure 2: Dendritic cell functions in atherosclerosis  
(a) Dendritic cells (DC) accumulate in the plaque through direct recruitment from the 
lumen, local proliferation and differentiation from either monocytes (preferentially 
Ly6Clow) or DC precursors. Recruitment of DCs from the plaque to the lumen is 
CX3CR1, CCR2 and VCAM-1 dependent. (b) Plaque DCs take up (atherosclerosis-
specific) antigens, become activated and mature. (c) DCs take up oxLDL and can 
become foam cells. OxLDL induces DC maturation, but can also trigger DC apoptosis 
that might contribute to necrotic core formation. (d) Mature DCs are professional 
antigen presenting cells, however whether direct antigen presentation occurs in the 
plaque is not known. (e) Dendritic cells can emigrate from the plaque into the lumen, a 
process that is inhibited by both CCR7 deficiency as well as dyslipidemia. Dendritic cells 
can also emigrate from the plaque via lymphatics. (f) Emigrated DCs migrate towards 
secondary lymphoid organs (spleen & lymph nodes), where they present the antigens 
to T and B lymphocytes. T cells become activated and clonally expand, after which they 
enter the blood stream and are attracted to the plaque. After DC antigen presentation 
B cells divide and eventually differentiate into plasma cells. Plasma cells produce 
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various types of Immunoglobulin antibodies that will end up in the blood and affect 
immune responses. Stimulated T (and B cells) can enter the plaque where they exert 
different effector functions, either promoting or reducing atherosclerosis. (g) Dendritic 
cells inside the plaque can restimulate primed T cells entering the plaque, boosting 
immune responses. (h) Dendritic cells secrete several chemokines that influence 
leukocyte recruitment to the plaque. Most DC-derived chemokines, like CCL17 and 
CCL22, are involved in T cell recruitment. Dendritic cells also secrete various pro-
inflammatory (e.g. TNFα, IFNγ, IL-6, IL-12) and anti-inflammatory (e.g. IL-10) cytokines 
that either stimulate or dampen immune responses. (i) DC antigen presentation and 
cytokine production directly activate various B and T cell subsets that all affect 
atherosclerosis in specific ways. (j) DCs also contribute to the formation of arterial 
tertiary lymphoid organs (ATLOs), that affect plaque development remotely. MMP, 
matrix metalloproteinase; LDL, low-density lipoprotein; EC, endothelial cell; VCAM-1, 
Vascular cell adhesion molecule-1; pre-DC, DC precursor; Ig, immunoglobin; SMC, 
smooth muscle cell; Mɸ, macrophage, MHC major histocompatibility; TGF, 
transforming growth factor.  
  

Costimulatory/coinhibitory interactions 
The interaction between the different immune cells, and the 

(consequent) secretion of immune-regulatory and activating cytokines and 
chemokines determines the progression of atherosclerosis.  

 

Key players in modulating these complex immune interactions and 
responses are the group of co-stimulatory and co-inhibitory molecules 
belonging to the CD28/B7 family and the tumor necrosis factor (TNF)/TNF-
receptor family. Classically, co-stimulatory molecules provide the signal for 
proliferation and polarization of T-cells and thereby also regulate the 
phenotype of the APC upon interaction of a T-cell (TCR) with an antigen-
presenting cell (MHCII/HLA). However, expression of co-stimulatory molecules 
is ubiquitous, and we know now that most of them are not only present on the 
majority of immune cells, but also on platelets, endothelial cells and vascular 
smooth muscle cells where they regulate inflammation (266). 

 

In atherosclerosis, co-stimulatory molecules play a major, but diverse 
role in atherosclerosis (266). In the B7/CD28 family, genetic deficiency or 
inhibition of B7-1, B7-2, ICOS and PD-L1/2 affected atherosclerosis. Deficiency 
of B7-1 and B7-2 in LDLR-/- mice was shown to inhibit early atherosclerotic 
lesion development, and reduced the amount of MHCII expression in 
atherosclerotic plaques, and their CD4+ T-cells produced less IFN (48, 151). 
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However, different results were obtained when B7-1/B7-2-/- or CD28-/- bone 
marrow was given to irradiated LDLR-/- mice. These chimeric mice developed 
more atherosclerosis and this was attributed to their impaired Treg 
development (267). Similar contradictory results were obtained by studying 
inhibition of ICOS, a positive co-stimulatory molecule for CD4+ cells. Instead of 
the expected reduction in atherosclerosis, both immunization with ICOS as well 
as bone marrow transplantation of ICOS-/- bone marrow into LDLR-/- mice 
showed an aggravation of atherosclerosis, which was also due to an impaired 
Treg function (268, 269).  Moreover, deficiency of PD-PD-L1/2 interactions, a  
co-inhibitory dyad, aggravated atherosclerosis, and induced a  
pro-inflammatory plaque phenotype (270). These studies with sometimes 
opposing results illustrate the complexity of co-stimulatory and co-inhibitory 
pathways which can influence functions of both pro-inflammatory effector  
T-cells and Treg suppression.  

 

For the TNF and TNF-R family members, the results are more 
consistent. Inhibition of Ox40-Ox40L signalling results in an impaired 
atherosclerosis development while mice over-expressing Ox40L have 
accelerated atherosclerosis (271, 272). The same is true for CD137-CD137L  
(4-1BB/4-1BBL), where treatment with an agonistic CD137 antibody results in 
accelerated atherosclerosis and the development of an inflammatory, 
vulnerable plaque phenotype (183).  

 

 One of the most elaborately studied co-stimulatory molecules in 
atherosclerosis is the CD40L-CD40 dyad. Inhibition of CD40L not only 
decreased atherosclerotic plaque burden, but also induced plaques with a 
beneficial plaque phenotype that were rich in collagen and only contained a 
limited amount of immune cells (273, 274). Blocking of CD40L when 
atherosclerotic plaques had established was even capable of transforming 
vulnerable plaques with a high level of inflammation and a low level of 
collagen towards the inflammatory-poor beneficial plaque phenotype (275, 276). 
CD40L antagonists are therefore known as the most potent plaque reducers 
and plaque stabilizers in a laboratory setting. For CD40, the results are 
somewhat divergent. In one study, CD40-/-ApoE-/- mice, as well as the CD40-/- 
bone marrow chimeras showed a clear decrease in atherosclerosis (277), while 
in another study, CD40-/-LDLr-/- mice showed no reduction in atherosclerosis 
(278). 
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The actions of CD40 and CD40L are rather cell type specific. Bone 
marrow transplantation of CD40-/-, but not CD40L-/- bone marrow results in a 
decrease in atherosclerosis, suggesting that bone marrow derived CD40, but 
not CD40L is crucial in atherosclerosis (277, 279, 280). Transfer of CD40L-/- platelets 
prevented the platelet induced increased in atherosclerosis, by impairing 
leukocyte-platelet interactions and inducing a transient increase in Tregs (281). 

 

Interestingly, different cell-type specific CD40-signal transduction 
pathways tightly regulate atherosclerosis. CD40 does not have intrinsic signal 
capabilities, but needs adaptor molecules, the TNF-receptor associated factors 
(TRAFs) to exert signaling. By using CD40-/- mice that carried chimeric 
human/murine CD40 transgenes with mutations in the TRAF2/3/5 or TRAF6 
binding domains or both under MHCII, we found that mice deficient in the 
CD40-TRAF2/3/5 binding site develop normal atherosclerosis, have more CD4+ 
effector T cells, but also more regulatory T cells. Mice deficient in CD40-TRAF6 
interactions hardly develop any atherosclerosis and their plaques contain only 
few inflammatory cells (277), which is also true for neointima formation (282). 
Systemically, the different CD40-TRAF interactions induce several 
immunological patterns in blood, spleen and lymph nodes. Deficiency of CD40-
TRAF6 interactions results in low numbers of CD4+ effector T cells, pDCs and a 
switch towards Ly6Clow monocytes and an M2 macrophage phenotype, 
whereas deficiency of CD40-TRAF2/3/5 interactions induce increased Treg 
numbers and a change in DC phenotype (277).  

 

The family of co-stimulatory molecules is very powerful in mediating 
immune cell interactions and immune cell phenotypes in atherosclerosis. 
However, most of the actions of co-stimulatory molecules are cell-type 
specific, and dependent on a variety of signaling pathways. Although the first 
pathways of co-stimulation in atherosclerosis have been unraveled, many 
more of these pathways will be discovered in the upcoming years. 
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Conclusions 
Over the past few years, new immune cell subsets, among which are 

several that have immune-modulating properties, have been discovered to 
play an important role in atherosclerosis.  

 

Skewing the vascular immune response towards an anti-inflammatory 
profile would be beneficial for patients suffering from atherosclerosis, and 
immune-based cell-therapies are therefore of interest. Dendritic cells, as 
potent regulators of immune responses, represent an important cell type in 
this view. Several studies using vaccination strategies in animals already 
showed promising results for such techniques. M2 macrophages, regulatory T- 
and B-cells and B1 cells are other cell-types with an immune regulatory 
function, which should be exploited as potential therapy options for 
atherosclerosis.  

 

A major challenge is to tweak immune responses to avoid 
compromising the patient’s host defense. An interesting therapeutic option is 
therefore to modulation of the immune system by co-stimulatory molecules.  

 

However, the precise functions, and the interactions of these 
immune(modulatory) cells with other immune cells within the plaque, but also 
systemically, still needs to be unraveled. Only then, we will be successful in 
developing immunemodulatory strategies to treat atherosclerosis safely and 
effectively.
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Introduction 

Cardiovascular diseases (CVDs) are one of the leading causes of 
mortality worldwide (1). A growing body of evidence points to a pivotal role of 
the immune system in the pathophysiology of a variety of CVDs such as 
atherosclerosis, ischemic stroke, chronic heart failure, and other myocardial 
conditions like myocardial ischemia and reperfusion, viral myocarditis and 
cardiac transplantation (2-4). In many of these disorders so-called danger-
associated molecular patterns (DAMP), released from necrotic tissue and dying 
cells, can lead to the activation of certain immune cell populations such as 
monocytes/ macrophages, granulocytes and T cells, thus aggravating ongoing 
inflammatory processes at the lesion site. Dendritic cells (DCs) are key 
modulators of immunity, pivotal in directing innate and adaptive immune 
responses against microbial, but also modified self-antigens present at sites of 
injury (5). Given the tissue trauma underlying various CVDs, it is not surprising 
that recent observations have allocated a regulatory role for DCs in CVD-
associated immune responses. Interestingly, non-diseased arteries of young 
individuals were seen to host a network of resident vascular DC (6), a finding 
that was confirmed for the atherosclerotic-prone lesser curvature and sinus of 
aorta in mouse models of atherosclerosis (7). DCs, exhibiting an immature 
phenotype with low expression of co-stimulatory molecules, are present in the 
subendothelial space with occasional probing into the vascular lumen. DCs 
have also been observed in human heart and in cardiac valves of healthy 
C57BL/6 mice (8). It is assumed that these immature, resident DCs contribute to 
the maintenance of vascular homeostasis and tolerance by scanning their 
microenvironment for self and non-self antigens. Indeed, Choi et al. were able 
to show that resident DCs, isolated from the aorta and the valves of wild-type 
mice, have the capacity to present antigens to CD8+ T cells in vitro and in vivo, 
indicating that they are fully functional in eliciting a T cell response (9). 

In diseased vessels, heart and brain of human CVD patients, but also in 
the circulation, DC subset numbers were reported to be modified, associating 
DCs with CVD onset and progression (10-12). This notion is substantiated by a 
wealth of experimental animal studies addressing the involvement of DCs in 
CVDs. However, it remains mainly unsettled whether actions of different DC 
subsets are either detrimental or beneficial for lesion formation. Then again, 
DCs might function both-ways, dependent on the lesion stage. This review thus 
aims to provide an in depth overview of the role of DC subsets in several 
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cardiovascular conditions in human and experimental animal models to reveal 
underlying patterns, expose lacunae in our current understanding of DC’s 
function in CVDs, and explore possible therapeutic opportunities, exerted by 
modified DCs.  
 

Dendritic cells: conductors of innate and adaptive immune responses  

DC are professional antigen-presenting cells (APC) that originate from 
hematopoietic precursors in the bone marrow and are distributed throughout 
the whole body. DCs have the unique ability to induce T cell responses by 
capturing, processing and presenting antigens to naïve T cells. As such, they 
are central mediators of adaptive immune responses, and, depending on 
subset and activation status, of the development of immunological memory 
and tolerance (5).  Since the discovery by Steinmann and Cohn (13), DCs were 
seen to represent a heterogeneous family of cells, differing in terms of 
development, migratory cues, compartmentalization, phenotype and 
immunological functions. DCs are categorized into conventional DCs(cDCs) and 
non-conventional DCs, the latter comprising plasmacytoid DCs (pDCs) and 
monocyte-derived inflammatory DCs,(5) characterized by the expression of a 
panel of specific surface markers. For further details we refer the reader to a 
variety of excellent reviews on DC development, phenotyping and/or DC 
functions (14, 15). 
 

Circulating DC subsets in patients with coronary and peripheral arterial 
disease 

As an indirect measure of DC’s association with CVDs, DC (precursor) 
numbers and functionality have been evaluated in blood of patients with CVD, 
such as coronary and peripheral artery disease.(16, 17) In 2006, van Vre et al. 
were the first to describe a marked decrease in circulating DC precursors 
(circulating cDC and pDC) in patients with coronary artery disease (CAD), 
defined by angiography as > 50% stenosis in one or more coronary arteries (18). 
Until now, several studies confirmed a significant decrease in blood DCs (cDC 
and pDC) in CAD patients, irrespective of CAD grade (stable vs unstable angina 
pectoris, AMI), number of diseased vessels, or subset markers used for DC 
enumeration (16, 19-25). In sharp contrast, Shi et al. reported increased circulating 
cDC and unaltered pDC numbers in patients with stable CAD (26). By 
investigating the distribution of circulating DCs in patients with different stages 
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of peripheral arterial disease, including patients with intermittent claudication 
and critical limb ischemia, Dopheide and coworkers showed that blood cDC 
numbers were increased, whereas pDC numbers were reduced in peripheral 
arterial disease patients compared to healthy controls (17). Of note, both cDCs 
and pDCs from critical limb ischemia patients revealed an immature 
phenotype, suggesting that severe ischemia and/or prolonged inflammation in 
this ailment might lead to an attenuation in the pro-inflammatory membrane 
patterns of circulating DC subsets (17). Generally, most patient studies show 
declined blood DC numbers in CAD patients. Inconsistent results may be 
explained by differences in the extent and localization of disease, the timing of 
blood sampling (before/ after a surgical intervention; lesion onset versus 
progression), the prevalence of risk factors across the patients included in 
these studies, and the cohort sizes consulted (Table 1).  Nevertheless, the 
actual cause for reduced circulating DC numbers remains unaddressed. One 
possibility for the decrease in circulating DCs might be their enhanced 
recruitment to the disease site (hence plaque or the ischemic heart) (10). 

Alterations in circulating DCs have been described in other autoimmune 
diseases as well, such as systemic lupus erythematosus (SLE) (27), where 
markedly lowered blood DC numbers correlated with an accumulation of 
activated DC in the inflamed tissue. In analogy, DCs could well be recruited to 
secondary lymphoid organs to prime naïve T cells (28). Circulating oxidized low-
density lipoprotein (oxLDL) or circulating immunocomplexes (29), but also 
ischemic tissue derived DAMPs were seen to induce DC activation (30), thus 
promoting their extravasation to spleen or lymph nodes. Actually, several 
studies have shown in CAD patients a more mature phenotype on a minor 
subset of circulating CD11chigh (BDCA-1+) cDCs, BDCA-2+ pDCs, as well as on 
monocyte-derived DCs, represented by the up-regulation of CD83, CD80, CD86 
and/ or CCR7 (31, 32). Second, the apparent blood DC depletion could however 
also be explained by increased DC turnover, due to increased circulating 
cholesterol levels. Indeed, Alderman et al. have demonstrated in vitro that high 
concentrations of oxLDL provoke DC apoptosis (33). Otherwise, declines in DC 
numbers could be a temporary response to acute ischemia. Third, reduced 
blood DC numbers might also result from decreased release from bone 
marrow. Interestingly, van Brussel et al. have shown diminished plasma levels 
of FMS-like tyrosine kinase 3 ligand (Flt3L) in CAD patients, a growth factor that 
is responsible for DC differentiation and release from bone marrow (22).  
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Fourth, the altered blood DC abundance, phenotype and function could be 
owing to CAD patient’s medication, including aspirin, statins, beta-blockers and 
angiotensin-converting enzyme (ACE-) inhibitors. While supported by several in 
vitro studies (34-37), the validity of this notion needs further investigation.  
Recapitulating, circulating DC decline cannot be exclusively linked to the 
compartmentalization of this subset, be it to atherosclerotic plaque or 
lymphoid organs, as other covariates may as well modify blood DC numbers 
and functionality. This needs to be further addressed in future studies. 
Moreover, these observational studies leave unaddressed whether DCs are 
active contributors or just casual bystanders.  
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Table 1. Circulating DC populations in human CVDs 
Overview of the most important studies describing DC numbers in blood of patients 
suffering from various cardiovascular conditions. Publications are grouped per 
condition, and results on total DC, cDC and pDC numbers are summarized. In addition, 
information about the build-up of the cohort size is given as well as the article citation. 
CAD: coronary artery disease, PAD: peripheral artery disease, T2D: type 2 diabetes,  
HF: heart failure, CTR: control, EXP: experimental group, SAP: stable angina pectoris, 
UAP: unstable angina pectoris, AMI: acute myocardial infarction, mDC: myeloid DCs, 
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STEMI: ST-segment elevation myocardial infarction, NSTEMI: non-STEMI,  
IC: intermittent claudication, CLI: critical limb ischemia, ACI-S: asymptomatic cerebral 
infarction stenosis, TIA: transient ischemic attack, AIS: acute ischemic stroke,  
AHS: acute haemorrhagic stroke, NYHA: New York Heart Association (classification for 
heart failure). 
 

DC involvement in vascular inflammatory processes 

Beside their presence in atherosclerosis, DC attendance has been 
described in other chronic inflammatory vasculopathies, such as giant cell 
arteritis, Takayasu’s arteritis and Kawasaki disease (38-40). It is hypothesized that 
they contribute to the first critical steps in disease pathogenesis through 
breakdown of vascular tolerance. In these vasculopathies resident DCs are 
located in the adventitia and adventitia-media border, and (c)DC numbers are 
seen to increase with disease progression (40). Dense infiltrates of mature cDCs 
and T cells have been described at later stages as well, reflective of DC-
initiated, antigen-specific immune responses. Considering that DC networks 
are present in healthy arteries and that they function as professional APCs, 
they might well be involved in disease onset and progression through 
presentation of modified (self-) antigens to T cells. The actual triggers to 
activate vascular DCs are yet unknown, as is their relative contribution to 
immune priming in comparison to other vascular resident APCs such as 
macrophages. Altogether, a functional role for DCs in the pathogenesis of 
these diverse inflammatory vasculopathies remains to be established, as 
studies are of rather descriptive nature. 
 

A functional role for dendritic cells in atherosclerosis 

In human atherosclerotic plaques, fully mature DCs (CD83+ CD86+) 
accumulate within the rupture-prone atherosclerotic plaque shoulder where 
they produce T cell chemotactic (CCL19 and CCL21), and pro-inflammatory 
cytokines (interleukin-12 (IL-12), IL-23 and tumor necrosis factor α (TNF-α)) (41). 
Mapping of plaque-residing DCs revealed a close contact between DCs and 
activated T and NKT cells, suggesting that DCs tune or even orchestrate 
immune responses relevant to atherosclerosis (41). Of note, many of the 
histology studies are thwarted by the moderate/poor specificity of most DC 
markers, rendering DC’s immunohistochemical detection a delicate issue. The 
additional use of other techniques, such as flow cytometric cell isolation, could 
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help here to better appreciate DC presence and phenotype in different stages 
of atherosclerosis. 

 

Mouse models have been very insightful in elucidating DC functions in 
atherosclerosis. For instance, lipid accumulation in the initial stages of 
atherosclerosis was recently shown to be directed and regulated by intimal 
CD11c+ DCs, residing in the atherosclerotic-prone lesser curvature of the aortic 
arch (42). The impact of lipid uptake by resident vascular DCs on their 
functionality remains a controversial subject. Dyslipidemia was seen to lead to 
a retention of DCs and macrophages in the atherosclerotic plaque (43, 44). 
However, as reported in several studies antigen-presentation and T cell 
priming ability by DC remains unaffected under hyperlipidemic conditions, 
even after excessive lipid-loading (45, 46). In a transgenic mouse model with cDC 
specific overexpression of the anti-apoptotic gene hBcl-2, the induced 
enhanced lifespan and immunogenicity of circulating cDCs  was associated 
with enhanced T cell activation, elevated levels of T helper 1 (Th1) and Th17 
cytokines and increased production of Th1-driven IgG2c antibodies under 
hyperlipidemic conditions (45). This major functional DC expansion did not 
aggravate lesion formation, as it was compensated for by decreased plasma 
cholesterol levels. Further support for a link between DC function and lipid 
metabolism was derived from the augmented plasma cholesterol levels after 
cDC depletion in hyperlipidemic ApoE-/- mice crossed to CD11c diphtheria toxin 
receptor (CD11c-DTR) transgenic mice (45). Precise mechanisms that underlie 
cDC involvement in cholesterol homeostasis have only scarcely been explored. 
Cholesterol lowering by DCs is suggested to occur in the periphery where DCs 
are amongst others exposed to lipoproteins. The behavior of circulating cDCs 
in patients with familial hypercholesterolemia has not yet been analyzed. Such 
data will allow to elucidate whether DCs are involved in lipoprotein clearance 
and how this is influencing DC functionality. Several lines of evidence suggest 
that oxLDL, present in the plaque, can impact DC maturation already in the 
initial stages of atherosclerosis. In vitro exposure to oxLDL during 
differentiation of human monocytes resulted in phenotypically mature DCs 
with upregulated HLA-DR, CD40 and CD86 and induced capacity to T cell 
activation (33, 47). However, incubation with high concentrations of oxLDL 
attenuated DC function and induced apoptosis (33). A strong inhibition of oxLDL 
on expression of CCR7 and its ligand CCL21 by monocyte-derived DCs was 
recently reported by Nickel et al., which likely will impact their migratory 
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capacity in plaque (48). As shown by Kopf and coworkers, dyslipidemia also 
affects CD8α- cDC function, impairing their response to Toll-like receptor (TLR) 
stimulation in vitro and in vivo during Leishmania major infection. OxLDL 
appeared to be directly responsible for this effect, as it uncoupled TLR-
mediated signaling in DCs, leading to decreased DC activation and dampened 
Th1 responses (49). Similarly, Blueml et al. have shown that oxidized 
phospholipids impair DC maturation by blocking TLR3 and TLR4 mediated up-
regulation of co-stimulatory molecules and induction of pro-inflammatory 
cytokines in human DCs (50). These data are in line with previous studies, 
showing an anti-inflammatory effect of oxLDL in LPS-stimulated macrophages 
(51, 52). 
Taken together, considerable controversy exists on DC function(s) in 
hyperlipidemia-associated atherosclerosis. The still ongoing characterization of 
classical DC subsets within the vasculature (30, 53) makes it even more complex 
to comprehend DC (subset) contribution to plaque burden. It will be of 
importance to uncover how early and more advanced stages of hyperlipidemia 
impair DC (precursor) homeostasis, including their development in the bone 
marrow, DC mobilization into the circulation, peripheral phenotype, and 
migratory routes. In addition, extensive knowledge about DC actions within a 
lipid-rich environment such as the atherosclerotic plaque is lacking. How lipid 
uptake and prolonged intracellular storage interfere with signaling pathways 
responsible for DC activation is still controversial and will require further study.  
 
A functional role for plasmacytoid dendritic cells in atherosclerosis 

The group of Weyand and coworkers has recently shown the presence 
of CD123+ pDCs in human carotid atherosclerotic plaques, mainly located in 
the shoulder region that was also enriched in interferon-α (IFN-α) positive 
cells, thus associating pDC presence with IFN-α production (54). Furthermore, 
pDC numbers were significantly increased in unstable compared to stable 
human lesions. In vitro CpG-induced IFN-α release by pDCs induced a 10-fold 
up-regulation of tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) expression on CD4+ T cells, thus promoting apoptosis of vascular 
smooth muscle cells (vSMC) and endothelial cells (ECs), processes that 
tremendously contribute to plaque destabilization (54). However, these data 
leave unaddressed whether pDCs are functional in the atherosclerotic plaque 
in vivo. We and others have recently shown that CD123 displays only moderate 
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specificity for human pDCs, being co-localized also with CD68+ macrophages 
and with ASMA+ vSMC (10, 55). Use of the human pDC specific marker blood 
dendritic cell antigen 4 (BDCA-4) by our group revealed the scanty and 
equivalent presence of pDCs in human stable and unstable plaques. Moreover, 
we demonstrated that expression of IFN-α in human unstable versus stable 
carotid endarterectomy tissue specimens did not differ, suggesting that in 
chronic low grade inflammatory processes, such as atherosclerosis, pDC 
activation may not be a prominent feature (55). 

 

Our group has recently shown that selective depletion of pDCs by 120G8 
monoclonal antibody administration in Ldlr-/- mice fed a high fat diet (HFD) 
exacerbated lesion size in the carotid artery and the aortic roots, and 
promoted plaque T cell accumulation as well as peripheral CD4+ T cell 
activation. pDCs isolated from atherosclerotic mice suppressed CD4+ T cell 
proliferation in an indoleamine-2,3-dioxygenase (IDO)-dependent manner, 
pleading for an athero-protective role for pDCs in atherosclerosis (55). In 
contrast to our study, Doering et al. and MacRitchie et al. reported significantly 
decreased diet-induced lesion formation in the aortic root and the aorta of 
pDC-depleted ApoE-/- mice, while plaques showed a more stable phenotype. 
Both groups investigated the impact of pDC depletion by use of the PDCA-1 
depletion antibody on early lesion development (4 weeks of HFD feeding) (29, 

56). These controversial findings are intriguing. A seeming paradox was in the 
presence of pDCs in the atherosclerotic plaque. While pDCs could barely be 
detected in mouse atherosclerotic lesions in Ldlr-/- mice (55), Doering et al. 
showed the presence of pDCs in lesions of ApoE-/- mice, mainly in the plaque 
shoulder, at which pDC abundance was increased with HFD feeding and lesion 
progression (29). Conversily, MacRitchie et al. described the constitutive 
presence of mostly immature pDCs in non-inflamed aortic tissue of 
normolipidemic mice, at numbers similar to those seen in atherosclerotic 
ApoE-/- mice. Nevertheless, antigen presentation capacity of aortic pDCs from 
ApoE-/- mice was enhanced (56). In line, Doering et al. showed that sorted aortic 
pDCs from hyperlipidemic mice, ex vivo primed, were capable to trigger T cell 
stimulation in vivo (29). Finally, baseline IFN-α levels were below detection 
levels or not affected by pDCs in our study and the study of MacRitchie et al. 
(55, 56), whereas Doering et al. demonstrated elevated IFN-α levels in plaque 
(mRNA) and serum in HFD fed ApoE-/- mice, being reduced after pDC depletion 
(29). It has to be noted that the groups employed different methodologies, such 
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as the use of the depletion antibody, administration regimen and mouse 
models. As instance, ApoE-/-, the model used by Doering et al. and MacRitchie 
et al., displays more aggressive atherosclerosis than the Ldlr-/-, which may favor 
pDC switching to an immunogenic mode. Regarding the complex 
pathophysiology of atherosclerosis, pDCs could well exert dual functions in 
early and advanced stages of disease, dependent on their microenvironmental 
context. During episodes of fulminant plaque inflammation pDCs acquire pro-
atherogenic functions by rapid secretion of type I IFNs and pro-inflammatory 
cytokines, while during low grade chronic inflammatory stages, pDCs may act 
tolerogenic by inhibiting proliferation of CD4+ T cells. Indeed, pDCs are 
involved in the pathogenesis of a range of autoimmune diseases characterized 
by a type I IFN-signature (57), whereas alternatively activated pDCs are 
considered to contribute to tolerance induction (57). Further studies are 
warranted to elucidate the actual pathways that are activated in pDCs during 
different stages of atherosclerosis by using more advanced animal models, 
such as conditional E2-2 knockout (57, 58). Nevertheless, the above findings 
clearly identify this cell type as an interesting new target for future therapeutic 
intervention studies in the treatment of atherosclerosis. 
 

CVD risk factors: contribution of DCs? 

Type 2 diabetes mellitus (T2D) and hypertension are major risk factors 
for the development of atherosclerosis and its cardiovascular complications. 
Chronic inflammation is thought to accelerate the progression of these 
pathological conditions (59, 60), DCs are likely to contribute here by triggering 
cell-mediated immune responses. The following two sections outline the 
current knowledge on potential DC functions in T2D and hypertension. 
 

A role for DCs in type 2 diabetic patients with atherosclerotic complications 

Insulin resistance and hyperglycemia in T2D are associated with a 
systemic pro-inflammatory state (increase in pro-inflammatory cytokines such 
as IL-6, activation of immune cells) that facilitate the development of 
atherosclerosis (52). In vitro studies have shown that advanced glycosylation 
end products (AGEs) (61) and hyperinsulinemia (62) enhance DC maturation and 
induce an antigen-specific T cell activation, thus supporting a contributory role 
of DC (subsets) on the immune reactions in diabetic atherosclerosis. Yao et al. 
recently reported a significant decline in circulating cDCs in T2D patients with 
unstable angina pectoris (UAP) vs. healthy controls and T2D patients, while 
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pDC numbers remained mainly unaltered.  cDCs showed a more mature and 
activated phenotype, evidenced by the up-regulation of CD86 and the 
enhanced capability to stimulate T cell proliferation in vitro (63). Reduced 
circulating DC numbers in T2D patients with atherosclerotic complications was 
attributed to an increased trafficking into the inflamed vulnerable plaque or to 
neighbouring lymph nodes as patients had significantly increased levels of 
fractalkine, an important chemokine for DC attraction to sites of  
inflammation (63). In contrast to these findings, Orfao and coworkers showed 
both quantitatively and functionally impaired pro-inflammatory cytokine 
response by circulating DCs from T2D patients  with atherosclerotic 
complications (64). Conceivably, the increased plasma TNF-α levels observed in 
patients with diabetic atherosclerosis may underlie this impairment, as it can 
tone blood DC differentiation(65). This notion is encouraged by studies, 
describing an inverse correlation between blood DC numbers and plasma TNF-
α concentrations in T2D (66, 67). Of note, medication employed for glycemic 
control and/or for the treatment of diabetes-related comorbidities  
(ACE antagonists, angiotensin receptor blockers, or statins) could be partly 
causal in the altered blood DC abundance (60). Altogether, although DC function 
is clearly perturbed in T2D, the present state of knowledge does not allow to 
segregate atherosclerosis from T2D intrinsic DC effects. 
 

A role for DCs in hypertension 

T cells have been described to contribute to hypertension (68), a process 
that likely involves their priming by APCs, such as DCs, with the capacity to 
present neoepitopes, generated by necrotic and apoptotic cells (59). However, 
less is known regarding the role of DCs in hypertension. DC accumulation in 
alveolar lesions of human and experimental pulmonary arterial hypertension 
has been described (69). Recently, Vinh et al. have shown that the CD28 
blocking agent Abatacept prevents angiotensin II (Ang II)-induced hypertension 
in mice, supporting a contributory role for DCs as APCs in hypertension (70). 
Additionally, they observed increased activated DC numbers in spleen and 
lymph nodes of hypertensive mice (70). However, these data leave unaddressed 
whether DCs are the primary cell type responsible for antigen presentation. 
The more abundant vascular macrophages in the vessel wall might as well 
function as APCs. Interestingly, the renin-angiotensin-aldosterone system can 
by itself initiate/ modulate innate and adaptive immune responses and inflict 
target-organ damage as shown by the group of Mueller and coworkers in a 
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compound transgenic rat model harboring human renin/angiotensin genes (59). 
Activation of the AT-IA receptor, amongst others expressed on DCs, promoted 
DC migration to the kidneys and their activation, potentially inducing renal 
damage (59). Moreover, Id2-/- mice – lacking Langerhans cells (LC) and  
CD8+ DCs - infused with Ang II remained normotensive and failed to develop 
albuminuria and renal damage, firmly establishing a role for LCs and CD8+ DCs 
in Ang II-induced hypertension (59). These data support the idea that Ang II 
itself can influence T cell ‘fate’ both directly or indirectly.  
 

DC contribution to ischemic stroke: friend, foe or bystander? 

Only recently immune mechanisms were recognized to contribute to 
the pathophysiology of ischemic stroke, and involve both the innate and 
adaptive immune system (4). A potential role for DCs as potent mediators of 
inflammation in stroke has not been investigated extensively. Yilmaz et al. 
have shown that circulating cDC as well as pDC numbers were transiently 
reduced in patients with acute stroke (11). They postulated that circulating DCs 
are recruited into the infarcted brain to elicit antigen-specific immune 
responses through T cell activation. Indeed, HLA-DR expressing cDCs co-
localized with T cells in dense infiltrates around cerebral vessels in the stroke 
area (60). The pro-oxidant conditions of ischemia-reperfusion may give rise to 
the formation of neoepitopes, which can well be presented by APCs, such as 
HLA-DR expressing residential microglia or recruited DCs. It cannot be excluded 
that other factors, such as increased cell apoptosis may contribute to the 
declined circulating DC numbers, as it has been shown for lymphocytes after 
stroke (71). Interestingly, Gelderblom et al. revealed in a rodent stroke model 
(temporary middle cerebral artery occlusion) the early accumulation of DCs, 
peaking on day 3 after reperfusion (72). DCs showed strong and sustained up-
regulation of MHC class II, but an absent concomitant up-regulation of co-
stimulatory molecules, possibly leading to disrupted T cell activation. While 
such a phenotype is conceivable, this warrants further study on whether DCs 
are active contributors to local immune responses after stroke, either in an 
immunogenic or immunosuppressive way.  
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DC involvement in the diseased heart 

Circulating DCs in heart failure patients  

The association between circulating DCs and heart failure has only 
been subject of a few scattered studies and study outcomes are rather 
divergent. Athanassopoulos et al. have revealed an increase in total blood DCs 
in patients with chronic heart failure (non-ischemic dilated cardiomyopathy) 
compared to controls due to an increase in the mature fraction of the cDC 
subset (CD83+ CCR7+), suggesting a possible Th1 response in end-stage heart 
failure (73, 74). In seeming contrast, Sugi et al. showed that total circulating DC 
numbers were transiently declined, but residual DCs appeared more activated 
during the acute decompensated phase of heart failure (12). Comparable to the 
decline in circulating DC counts in CAD patients, the authors associate 
diminished DC numbers in heart failure with DC recruitment from systemic 
circulation into the damaged tissue in response to released DAMPs. Clearly, 
other confounders with the potential to modify circulating DC counts (e.g. 
development in the bone marrow and release into the circulation, cell 
apoptosis, trafficking routes) have to be taken into account. To conclude, a 
direct involvement of DCs in the pathophysiology of heart failure, while 
plausible, remains elusive. Moreover, further studies are warranted to 
precisely define the cause of systemic DC modifications, taking different 
disease stages (acute versus chronic) into account.  

 

Myocardial Ischemia and Reperfusion 

A role for DCs in the pathogenesis of cardiac ischemia/ reperfusion 
injury (IRI) is not well-established. In 1993, Zhang et al. demonstrated the rapid 
accumulation of interstitial DCs in the border zones 7 days post myocardial 
infarction (left coronary artery ligation) in the rat heart (75). DCs tended to be 
assembled in small clusters with CD4+ T cells, which disappeared 21 days after 
coronary ligation. It is assumed that these DCs are involved in post-ischemic 
short-term cytoprotective responses through TLR2 and TLR4 stimulation by 
tissue released DAMPs (76). Maekawa et al. on the contrary demonstrated in a 
murine myocardial infarction model (left coronary artery ligation) that deletion 
of interleukin-1 receptor-associated kinase-4 (IRAK-4), a downstream effector 
of the TLR/MyD88 axis, had beneficial effects on survival and function after 
myocardial infarction by blunting DC mobilization into the heart and 
attenuating local inflammatory processes (77). Of note, cardiomyocytes and 
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residential macrophages also express TLR2 and TLR4, and are able to respond 
to endogenous DAMPs, thereby contributing to inflammatory processes after 
myocardial infarction (3). 

 

Altogether, the presence of DCs in the heart and their post-ischemic 
accumulation has been demonstrated. Concerning their role as professional 
APCs in parallel to phagocytes and cardiomyocytes, DCs likely exert functions 
in acute myocarditis by steering cell-mediated immune responses.  
 

Viral myocarditis  

Even less is known about a contribution of DCs to the pathogenesis of 
viral myocarditis. Virus infections can inflict significant damage on 
cardiomyocytes by (1) immune-response mediated, (2) autoimmune-mediated, 
or (3) direct virus-induced myocardial injury, which can cause myocarditis and 
dilated cardiomyopathy. Many animal studies have been performed in this 
field using models of myocarditis caused by coxsackievirus B3 (CVB3) (78). In 
response to viral infections, immune cells, such as cardiomyocytes, endothelial 
cells, fibroblasts, and DCs were reported to infiltrate up to five days 
postinfection, supposed to limit viral replication by the release of pro-
inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-18, TNF-α, TNF-β, and IFN-γ) (79, 80). 
In the subacute phase (within two weeks after viral infection) the release of 
progeny virus into the interstitium stimulates the infiltration of pro-
inflammatory natural killer (NK) cells and macrophages, followed by a 
considerable influx of antigen-specific CD4+ Th and cytotoxic CD8+ T cells, which 
recognize viral antigens presented via MHC molecules on the surface of 
infected cardiomyocytes (80, 81). Interestingly, in a mouse model of 
Coxsackievirus myocarditis it has been shown that CD8+ DCs, next to 
cardiomyocytes, are implicated in CD8+ T cell priming, thereby curtailing viral 
infection in the acute phase (within 8 days postinfection) (82). Whether or not 
DCs are implicated in low-grade inflammation during chronic myocarditis (days 
15-90 postinfection) remains unclear. In particular pDCs, the major type I IFN 
producers in response to viral infection, have not received much attention so 
far, but may be likely mediators in anti-viral defense in the heart, although 
endogenous type I IFN release by infected cardiomyocytes could as well limit 
viral replication in the heart.  
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Figure 1. Schematic overview representing the possible impact of DCs in CVDs 
(a) Risk factors critically contributing to ischemic stroke and heart failure can directly 
interfere with the activation state of DCs. (b) Epitopes released from necrotic tissue or 
dying cells of the damaged organs could additionally induce phenotypic changes in DCs 
(indirect effect), thus finally leading to (c) DC immunogenicity or tolerance. (d) Chronic 
DC activation potentially constitutes detrimental effects due to release of pro-
inflammatory cytokines and the activation of CD4+ and CD8+ T cells, which in turn 
causes further organ damage. Otherwise, (e) induction of tolerance by DCs may thwart 
immunogenic responses by eliciting T cell anergy/ apoptosis and the generation of 
regulatory T cells. (f) Pathogen-derived signals, and (g) the local environment most 
likely impair DC functionality sustained through (a) or (b), thereby boosting or abating 
DC-mediated immune responses. 
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DC targeted therapeutic opportunities in cardiovascular disease 

Targeting DCs in cardiac transplantation: contributors to graft rejection or 
useful tools in tolerance induction 

The role of DCs as modulators of alloreactive and autoreactive T cell 
responses after transplantion has been extensively studied (83). DCs hold 
promise as therapeutic tools to ameliorate or prevent graft rejection or graft-
versus-host disease (GVHD), and to treat autoimmune diseases (84, 85). DCs are 
implicated in the recognition of allo-antigens by the host’s immune system. As 
Larsen et al. demonstrated, mature donor-derived DCs are homing to T cell 
areas in the draining lymph nodes in the first days after transplantation, where 
they trigger naïve T cells by presenting graft-derived epitopes. Thus potentially 
contributes to acute rejection of cardiac allografts (86). Similarly, Kofler et al. 
reported pronounced infiltration of recipient DCs into the cardiac allograft, 
picking up and processing the donor antigens, and activating the recipient’s 
adaptive immune system in the first postoperative year after human heart 
transplantation (87). Summarized, DCs appear to be main culprits in organ 
rejection, but have otherwise been shown to mediate transplant tolerance by 
preventing T cell-mediated immunity. Ochando et al. have demonstrated an 
essential role for pDCs as phagocytotic APCs in tolerance induction in 
vascularized cardiac grafts, in that adoptive transfer of tolerized pDCs induced 
regulatory T cell development and prolonged graft survival in mice (88). 
Likewise, a single pre-operative infusion of donor-mobilized immature pDCs in 
combination with anti-CD154 monoclonal antibody was able to effectively 
suppress allograft rejection and prolonged graft survival in mice (89). These 
findings are concordant with a recent study in human that examined total 
peripheral blood DC numbers in patients with clinical heart transplantation 
(HT), revealing significantly diminished DC frequency one week post HT, which 
probably reflects immunological quiescence through adequate 
immunosuppression (90). 
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In summary, adoptive transfer of pre-primed (tolerogenic) DCs seems to hold 
great promise for preventing graft rejection after cardiac transplantation. For 
all that, a better understanding of how graft-infiltrating DCs function, may also 
help to appreciate their contributory roles in chronic heart failure and post-
myocardial infarct healing. At first glance these processes seem unrelated, but 
similar immune pathways activated in the different disease settings may help 
to refine DC’s contribution to certain CVD. 
 

DCs as potential therapeutic tools in the treatment of atherosclerosis  

As alluded to, DC-based vaccination and immunization strategies, 
based on application of ex vivo antigen loaded or genetically engineered 
autologous DCs to tune T cell responses have meanwhile evolved into a viable 
therapeutic option for cancer (91). This success has inspired several groups to 
explore the potential of DC-based vaccination for atherosclerosis. Studies in 
animal models so far are at least encouraging and support the notion that DC-
based vaccination and immunization hold promise for therapeutic 
immunomodulation of atherosclerosis (92). Kuiper and coworkers have shown 
that transferred oxLDL-pulsed mature DCs into Ldlr-/- mice reduce 
atherosclerotic lesion size. DC vaccination led to quenched Th1 responses and 
elevated oxLDL-specific IgG titers indicating that oxLDL-pulsed DCs may confer 
protection against atherosclerosis, by favoring humoral immune responses to 
oxLDL (93). Other groups have shown that repeated injection of antigen-loaded 
immunogenic DCs (oxLDL or malondialdehyde modified LDL (MDA-LDL)) 
aggravated atherosclerosis (94). A recent study proposed immunotherapy with 
DCs, pulsed with apolipoprotein B100 in the presence of IL-10 to render them 
immunosuppressive, as an effective strategy to attenuate atherosclerosis. DC 
immunotherapy resulted in reduced proliferation of effector T cells, dampened 
Th1 and Th2 immunity and diminished atherosclerotic lesion formation in mice 
(95). Taken together, the outcome of these studies indicates that DC vaccination 
emerges as a new, potentially powerful approach in the treatment of 
atherosclerosis, although translation of these largely animal experimental 
findings to human disease needs further investigation. A second thwart will be 
the establishment of exclusively atherosclerosis-specific antigens to avoid 
systemic immunity.  
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Furthermore, therapy timing and the immunological status of the patient are 
additional important issues that need to be considered carefully, given that 
atherosclerosis mainly affects the elderly. Indeed, age-dependent alterations in 
expression and function of innate immune receptors and signal transduction 
pathways may translate in defective DC activation, thus diminishing the DC-
based vaccination efficacy (96). Nevertheless, promising developments in the 
cancer field, where ex vivo pulsed DC have been successfully applied in phase 
I/II clinical trials, stem hopeful and prompt to further investigations in DC 
therapy for CVD treatment.  
 
Concluding remarks 

This review summarizes the current state of knowledge on the role of 
different DC subsets in the pathogenesis of CVDs, pinpoints shortcomings/gaps 
and delineates the future perspectives for DCs as therapeutic target in CVDs. 
By now several DC subsets have been reported to accumulate not only in 
atherosclerotic or hypertensive vessels, but also in failing, cardiomyopathic or 
ischemic heart tissue and in ischemic brain, suggestive of a role in the 
underlying pathophysiology. DC (precursor) numbers and functionality in blood 
of patients with CVD have been embraced as measure of DC association with 
disease onset and progression, although cause and implications of these 
disease-associated changes in DC homeostasis still are subject of discussion. 
Moreover, the actual value of circulating DCs as biomarkers in CVDs needs to 
be established, but it is fairly improbable that DC subset numbers will offer the 
precision, specificity and discriminative power to be useful as biomarkers. Of 
all cardiovascular disorders, atherosclerosis is by far most extensively studied 
for impact of DC subsets in its disease ontogenesis, albeit that the majority of 
these studies involve murine animal models. Much less is known about the 
contribution of DCs to cardiovascular pathologies such as stroke, heart failure 
and myocardial diseases. Conceivably, also here injury associated DAMP 
release will lead to the recruitment and subsequent activation of DCs with  
T cell priming ability at the inflamed locus, skewing the adaptive immune 
system towards Th1/17-like immune responses or towards a state of 
tolerance, dependent on disease stage and environmental context.  
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Recent findings in mice plead for a beneficial role for pre-primed DCs 
as therapeutic agents in the treatment of atherosclerosis. Nevertheless, the 
efficacy of DC immunotherapy for preventing plaque progression and 
destabilisation in humans remains to be seen. In this regard, it will be vital to 
target the relevant disease-associated antigens for DC pulsing. Donor-
mobilized DCs could be otherwise cultured in vitro without further adjuvants, 
as the use of non-pulsed immature DCs has been proven to be an attractive 
approach to induce tolerance. Alternatively strategies could be employed to 
instruct endogenous DCs in situ, f.e. by receptor-specific manipulation, albeit 
that the options for targeting DC subset specific surface receptors are rather 
limited.  

 
Summarizing, despite the limitations in our current understanding in DC 
functions in various CVDs, the recently shown efficacy of DC-based tolerance 
and immunization strategies in ameliorating murine atherosclerosis and 
diminishing allograft rejection, in combination with the current dynamics in 
this rapidly progressing research field inspire confidence that (some of) these 
approaches will evolve into viable modalities for the treatment and may be 
even prevention of human cardiovascular disorders. 
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Abstract 

Clinical complications of atherosclerosis are almost exclusively linked 
to destabilization of the atherosclerotic plaque. Batf3-dependent dendritic 
cells specialize in cross-presentation of necrotic tissue-derived epitopes to 
directly activate cytolytic CD8 Tcells. The mature plaque (necrotic, containing 
dendritic cells and CD8 Tcells) could offer the ideal environment for cross-
presentation, resulting in cytotoxic immunity and plaque destabilization.  

Ldlr-/- mice were transplanted with batf3-/- or wt bone marrow and put 
on a western type diet. Hematopoietic batf3 deficiency sharply decreased 
CD8α+ DC numbers in spleen and lymph nodes (>80%; P<0,001). Concordantly, 
batf3-/- chimeras had a 75% reduction in OT-I cross-priming capacity in vivo. 
Batf3-/- chimeric mice did not show lower Tcell or other leukocyte subset 
numbers. Despite dampened cross-presentation capacity, batf3-/- chimeras had 
equal atherosclerosis burden in aortic arch and root. Likewise, batf3-/- chimeras 
and wt mice revealed no differences in parameters of plaque stability: plaque 
Tcell infiltration, cell death, collagen composition, and macrophage and 
vascular smooth muscle cell content were unchanged.  

These results show that CD8α+ DC loss in hyperlipidemic mice 
profoundly reduces cross-priming ability, nevertheless it does not influence 
lesion development. Taken together, we clearly demonstrate that CD8α+ DC-
mediated cross-presentation does not significantly contribute to 
atherosclerotic plaque formation and stability. 
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Introduction 

Immune responses play a significant role in the pathophysiology of 
atherosclerosis (1, 2). They offer a promising new therapeutic angle to directly 
touch on pathogenic mechanisms of cardiovascular disease. Necrosis - a prime 
hallmark of clinical atherosclerosis - was recently linked to immunity. Necrotic 
tumor cell-derived epitopes are able to elicit a strong cytolitic immune 
response, allowing tumor elimination (3, 4). Key to this finding is a process called 
cross-presentation: direct presentation of exogenous antigen on an MHCI 
molecule followed by a potent CD8+ T cell activation (5). Mouse dendritic cells 
(CD8α+  or CD103+ DCs) appear to be highly efficient cross-presenting cells (6), 
uniquely qualified to cross-present dead cell-associated antigens (7). 
Identification of their human counterparts (8-12) emphasizes the importance of 
cross-presentation in human health and disease.  
 

In a mature atherosclerotic plaque, necrotic cell or tissue-associated 
epitopes, dendritic cells (13) and CD8+  T cells (14, 15) are abundantly present and 
in close contact. Significantly more DCs are found in rupture-prone, vulnerable 
plaques (16), and CD8+ T cells increase to up to 50% of the total lymphocyte pool 
in human advanced plaques (17), linking both DC and cytotoxic T cell presence 
to plaque stability. In addition, CD8+ T cells isolated from human plaque 
atherectomy specimens are highly activated, much more so than plaque CD4+ 
T cells or T cells isolated from the blood of the same patients (18). Moreover, 
reflective of plaque-directed immunity, different auto-antigens are identified 
targets of immune responses in atherosclerosis. Oxidized low density 
lipoprotein (oxLDL) is the most well described (19), but T cells isolated from 
patients with advanced atherosclerosis also respond to F-actin, a known target 
in necrosis-associated cross-presentation (20, 21). Lastly, a recent study has 
demonstrated that cytotoxic CD8+ T cells promote development of a vulnerable 
atherosclerotic plaque in mice, implicating cytolytic T cell immunity in plaque 
destabilization (22). Combining these arguments led to the following intriguing 
hypothesis: Cross-presentation, by mounting a cytolytic CD8+ T cell immune 
response against cap/plaque material, might be crucial in the destabilization of 
the advanced plaque which generally precedes plaque rupture, thrombi 
formation and infarcts. 
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However, complete knockout of the CD8 gene in atherosclerosis-
susceptible ApoE-/- mice, presumably affecting both CD8α+ DC and CD8+ T cell 
function, did not lead to the expected reduction in atherosclerosis (23). 
Similarly, ApoE-/- mice deficient in Antigen Peptide Transporter 1 (TAP1, 
involved in antigen cross-presentation), displayed an equivalent atherogenic 
response (24). Moreover, MHCI knockout (KO) mice on a 15 week high fat diet 
showed increased plaque formation (+150%), suggesting that MHCI-dependent 
antigen presentation, inducing cytotoxic CD8+ T cells, is atheroprotective (25). 
Possible protection by cross-presenting DCs was also observed in the 
flt3-/- ldlr-/- mouse, where depletion of Flt3L-dependent DCs resulted in 
aggrevated atherosclerosis (26). Unfortunately, each of these studies implies 
severe modifications of the entire immune system, which greatly impedes 
assessment of purely cross-presentation related effects. Thus, evidence for a 
direct role of cross-presentation in a “plaque-targeted” immune response 
remains circumstantial and inconclusive. 
 

This study aimed at dissecting the mechanism behind the strong 
cytotoxic T cell response in advanced atherosclerosis. We hypothesized that 
cross-presentation of necrotic plaque epitopes will prime CD8+ T cells to attack 
plaque components. In order to investigate this, we took a loss-of-function 
approach making use of chimeric batf3-/- mice, which specifically lack CD8α+ 

DCs and CD103+ DCs, the most important cell populations for cross-
presentation (27, 28). Unexpectedly, the severe defect in cross-presentation in 
batf3-/- chimeras did not translate into apparent differences in CD8+ T cell 
numbers, nor did it significantly affect atherosclerotic plaque size or 
composition. 
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Methods 

RNA isolation from human atherosclerotic plaque lesions 

Total RNA was extracted from freshly frozen atherosclerotic tissue 
samples obtained from endarterectomy surgery.  Collection, storage in the 
Maastricht Pathology Tissue Collection (MPTC) and patient data confidentiality 
as well as tissue usage were in accordance with the “Code for Proper 
Secondary Use of Human Tissue in the Netherlands” (http://www.fmwv.nl, 
http://www.federa.org/sites/default/files/digital_version_first_part_code_of_
conduct_in_uk_2011_12092012.pdf). Tissue samples destined for RNA 
isolation were snap-frozen immediately after resection, staged by histological 
analysis of adjacent tissue sections according to Virmani et al. (29) and grouped 
as early lesions (IT: intimal thickening/PIT: pathological intimal thickening, 
n=5), advanced lesions (Tk/Tn FCA: thick or thin fibrous cap atheroma, n=6) or 
advanced unstable lesions (IPH: intra plaque hemorrhage, n=5). RNA was 
isolated with the Guanidine Thiocyanate (GTC)/CsCl gradient method and the 
NucleoSpin RNA II kit (Macherey-Nagel GmbH & Co. KG) (30). RNA concentration 
was determined using the Nanodrop ND-1000 (Thermo Scientific) and quality 
was assessed by RNA 6000 Nano/Pico LabChip (Agilent 2100 Bioanalyzer, Palo 
Alto, CA, USA) analysis based on RIN (RNA integration number) values. RIN 
values above 5.6 were considered acceptable. 

  

RNA isolation from mouse aorta 

Total RNA was extracted from freshly frozen mouse aorta. For early 
plaques 6 8 weeks old C57BL/6 mice were used, for advanced plaques  
5 C57BL6 ApoE-/- mice of over 35 weeks old were used. Snap-frozen aorta was 
disrupted using Trizol (Life Technologies), glass beads and a Mini-Beadbeater. 
RNA isolation was then performed using the Qiagen RNAeasy Micro Kit 
following manufacturer’s instructions. RNA concentration and purity was 
determined on a Nanodrop 2000 spectrophotometer. 

 

Real-time PCR on human and mouse atherosclerotic plaque lesions 

500 ng total plaque RNA was cDNA transcribed with the iScript cDNA 
Synthesis Kit (BioRad) following manufacturer’s instructions. Real time PCR was 
performed for expression of human TAP1, ADFP, BDCA3, IRF8, Rab11b, Necl2 
and Batf3 or mouse Rab11b, TAP1 and XCR1 using SensiMix SYBR Green (Bio-

http://www.fmwv.nl,
http://www.federa.org/sites/default/files/digital_version_first_part_code_of_
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Rad) on a Bio-Rad CFX96 Real-Time System, C1000 Thermal Cycler. Gene 
expression of one housekeeping gene, i.e. human β-actin or mouse GAPDH, 
was assessed for normalization. Due to the limited quantity of plaque material, 
more house-keeping genes could not be included in the analysis. Nevertheless, 
for analysis of plaque material human β-actin and mouse GAPDH are both 
considered stable housekeeping genes within our laboratory, based on various 
qPCR experiments to select a viable housekeeping gene for atherosclerotic 
plaques (data not shown). Gene specific intron-spanning primers (Eurogentec) 
were designed with Roche Applied Science’s Universal ProbeLibrary Assay 
Design Center (Supplemental Table I). For validation of primer specificity a 
primer BLAST (NCBI) specificity analysis was performed. Real time PCR data 
was analyzed using Bio-Rad CFX Manager v2.0 Software. 

 

Immunohistochemistry and colocalization on human plaque sections 

The co-localization of the DC marker with a marker for cross-
presentation in human plaques was measured by multispectral imaging of 
immunohistochemical staining. Frozen human plaque sections were stained for 
CD11c (BD Pharmingen) and XCR1 (Novus Biologicals).  From double staining, 
spectral imaging data sets from maximal three random regions of interest 
were taken between 420-720 nm (10 nm interval) at a 5x as well as at a 20x 
magnification using a Nuance spectral imaging system (Perkin Elmer/Caliper 
Life Sciences, Hopkinton, MA, USA) mounted on a Zeiss Axiophot microscope. 
Slides stained for a single chromogen (Vector Red and Vector Blue, both Vector 
Laboratories) only were used to create a spectral library. The spectral library 
was used for computational segregation of the individual image components 
using the NuanceTM 3.0.2 software as described (31). After spectral unmixing, 
pseudo-colors were assigned to unmixed images, and composite images 
showing co-localization were generated with the Nuance 3.0.2 software. 

  

Animals 

All animal work was approved by the local regulatory authority of 
Maastricht University and in accordance with EU and Dutch government laws 
and guidelines. Mouse experiments performed in Cincinnati (US) complied 
with approved Institutional Animal Care and Use Committee guidelines and the 
guidelines of the Association for Assessment and Accreditation of Laboratory 
Animal Care International. Male ldlr-/- mice were obtained from the Jackson 
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Laboratory (Bar Harbor, ME) and had been backcrossed at least 10 generations 
on a C57BL/6J background. For CD45.1/2 studies male ldlr-/- mice have been 
crossed in-house at our SPF breeding facility into the CD45.1 background. 
Batf3-/- mice were a kind gift from Prof. Dr. K. Hildner (Uniklinikum Erlangen, 
Germany) or purchased directly from the Jackson Laboratory. OT-I mice were a 
gift from Prof. Dr. M. Zenke (Uniklinikum Aachen, Germany) or purchased at 
the Jackson Laboratory and crossed to the CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ) 
background at the Cincinnati in-house SPF mouse breeding facility. B6.  
PL-Thy-1a/Cy (CD90.1) mice and C3H Act-mOVA mice were bred in the 
Cincinnati in-house SPF mouse breeding facility. All mice were fed a standard 
diet (Cat# V1535, sniff Spezialdiäten GmbH, Soest, Germany) unless indicated 
otherwise, had ad libitum access to food and water and were housed under a 
12 hour light-dark cycle.  

 
Bone marrow transplantation and atherosclerosis induction in mice 

Male C57BL/6 CD45.2 ldlr-/- mice of at least 12 weeks of age were 
housed under filter top cages and given antibiotics supplemented water 
(Neomycin (100mg/L; Gibco, Carlsbad, CA, USA) and Polymyxin B sulfate 
(60.000 U/L; Gibco)), starting 2 weeks before until 6 weeks after bone marrow 
transplantation. To induce bone marrow aplasia, ldlr-/- mice (n=69) were 
exposed to two doses of 6 Gy total body irradiation (0.5 Gy/min, Philips 
MU15F/225kV, Hamburg, Germany) one day before bone marrow 
transplantation, with 12 hrs recuperation time in between each dose. 
Irradiated recipients (Maastricht study n=15 wt, n=12 batf3-/-, Cincinnati study 
n=15 for both groups, CD45.1/2 study n=12) were injected via tail vein with 
bone marrow cell suspensions (106 cells/mouse), prepared from homozygous 
C57BL/6J batf3-/- female donor mice or wt littermate controls by tibia/ femur 
lavage. For the CD45.1/2 study, donor mice were male C57BL/6 CD45.1 ldlr-/-. 
For atherosclerosis induction, mice were allowed to recover for 6 weeks after 
bone marrow transplantation, blood samples were taken from the tail vein and 
mice were put on a Western type diet (WTD) containing 0,25% cholesterol 
(Special Diets Services, Witham, Essex, UK) for 10 weeks. At sacrifice, mice 
were euthanized by a pentobarbital overdose (115mg/kg), injected 
intraperitoneally. Blood was taken by left ventricular puncture. Spleen, aortic 
lymph nodes and a mix of peripheral lymph nodes (axillary, mesenteric, 
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mandibular, aorta-draining lymph nodes (lnn. mediastinalis dorsalis, located in 
the precordial mediastinum: a group of two to four larger dorsal nodes 
attached to the thymus cranial to the aortic arch and lateral to the cranial caval 
veins) were isolated. For flow cytometry experiments, aorta and carotids were 
dissected before perfusion. For histological sampling, mice were perfused with 
phosphate buffered saline (PBS) (NaCl/Na2HPO4/KH2PO4, pH 7.4) containing 
sodium nitroprusside (0.1mg/ml, Sigma) and 1% paraformaldehyde (PFA) and 
heart, aorta and carotids were dissected. 
  

Histology and immunohistochemistry of mouse atherosclerotic lesions 

After isolation, the carotid arteries, aorta and the heart were fixed 
overnight in 1% PFA and paraffinembedded sections (4 μm) were cut. For 
frozen sections, aortic root was snap-frozen in OCT, and 4 μm frozen sections 
were cut. To determine plaque volume and necrotic core content in the aortic 
arch and aortic root, plaque area and necrotic core were measured on four 
consecutive H&E stained sections at 20 μm intervals that covered the entire 
lesion and averaged, as described before (32) . In the aortic root, measurements 
were calculated for each valve separately and then added to obtain total root 
plaque area and necrotic core size. 

Collagen content was detected by Sirius Red (Sigma) staining and 
expressed as a percentage of plaque area. Slides were analyzed in a blinded 
manner using a Leica DM3000 light microscope (Leica Microsystems, Wetzlar, 
Germany) coupled to a computerized morphometric system (Leica Qwin 3.5.1). 
Immunohistochemical stainings were performed on paraffin or frozen aortic 
root sections for CD3 (DAKO, Glostrup, Denmark), α‐smooth muscle actin 
(ASMA) (DAKO), Mac3 (BD), cleaved caspase 3 (Cell Signaling), CD11c 
(supernatant of N418 Hybridoma Cells), CD8α (Thermo Scientific), biotinylated 
CD45.1 (BD Biosciences) or biotinylated CD45.2 (BD Biosciences). Slides were 
analyzed blindly using a Leica Qwin program (for ASMA and Mac3) or counted 
manually (for CD3 and cleaved caspase 3). The amount of positive cells was 
expressed as percentage positively stained area per total plaque area (for 
ASMA and Mac3) or as number of positive cells per mm2 plaque area (for CD3 
and cleaved caspase 3).  
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Plasma cholesterol analysis 

Cholesterol levels in plasma were measured in duplicate using a 
colorimetric assay (DiaSys, Diagnostic Systems) according to the kit’s 
instructions. 

  

Flow cytometry 

Blood, spleen, aortic lymph nodes and peripheral lymph nodes (a 
mixture of mesenteric, mandibular and axillary lymph nodes) were removed 
before perfusion, gently dissociated through a 70 µm cell strainer (Greiner), 
treated with erylysis buffer (8.4 g NH4Cl, 0.84 g NaHCO3 in 1l PBS) and stained 
for total leukocytes (CD45+, BioLegend), total T cells (CD3+, eBioscience),  
T helper cells (CD4+, BD Bioscience), cytotoxic T cells (CD8α+, BD Bioscience),  
B cells (B220+, BD Bioscience), NK cells (CD3‐ NK1.1+, BD Bioscience) monocytes 
(CD11bhigh Ly6Glow, BD Bioscience), granulocytes (CD11bhigh Ly6Ghigh, BD 
Bioscience), conventional dendritic cells (cDCs; CD11chigh MHCIIhigh, either  
CD8‐ CD11b+, double negative CD8‐ CD11b- or CD8+/CD103+ CD11b-, 
eBioscience) and plasmacytoid DCs (pDCs; PDCA‐1high B220+, eBioscience).  
T cell subtypes were analyzed performing additional cell surface staining on 
FoxP3 (eBioscience), CD44 (BD Bioscience) and CD62L (eBioscience).  
Cross presenting macrophages were analyzed using a cocktail of CD45 
(BioLegend), CD3 (eBioscience), CD19 (eBioscience), CD11c (eBioscience), 
CD11b (BD Bioscience), F4/80 (BioLegend), and CD169 (BioLegend), and 
defined as CD45+ CD3/CD19- CD11c- CD11b+ F4/80+ CD169+. For cDC and pDC 
analysis, spleen and lymph nodes were pretreated for 30 minutes with a 
cocktail of liberase (32μg/ml, Roche) and DNase (0.8μg/ml, Roche) in RPMI 
medium (Gibco). Absolute cell numbers in blood were calculated by use of 
Trucount tubes (BD Bioscience). All flow cytometry analysis was performed on 
a BDCanto II (BD Bioscience) using FACS Diva Analysis Software vs6.  
 

Flow cytometry of mouse aorta 

Aortic arch, carotids and thoracic aorta were dissected, transferred to 
an enzymatic cocktail consisting of  hyaluronidase (85U/ml, Sigma), liberase 
(32μg/ml, Roche) and DNase (0.8μg/ml, Roche) in RPMI medium (Gibco) and 
with forceps and syringe dissociated in pieces small enough to be taken up 
with a 1 ml Greiner pipet. Tissue was incubated in this enzymatic cocktail for  
1 hour at 37 degrees with regular shaking and filtered through a 70 µm cell 
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strainer (Greiner). Two aortas were pooled together for consequent FACS 
analysis and samples were stained with a cocktail of CD45 (BioLegend), CD3 
(eBioscience), CD19 (eBioscience), NK1.1 (eBioscience), Ly6G (eBioscience), 
F4/80 (eBioscience), CD11c (eBioscience), MHCII (eBioscience), CD45.1 (BD 
Biosciences) and CD45.2 (BD Biosciences). CD3, CD19, Ly6G and F4/80 were 
used as dump gate to identify CD45+CD11chigh, MHCIIhigh dendritic cells. Analysis 
was performed on a BDCanto II (BD Bioscience) using FACS Diva Analysis 
Software vs6. 

 

OT – I cross presentation analysis 

Batf3-/- or wt ldlr‐/‐ recipient mice (n=3-8) on chow or high fat diet 
received intravenous 5x104 CFSE‐labeled (Life Technologies) purified OVA 
specific OT‐I/CD45.1 CD8+ T cells together with 5x105 purified CD90.1 wt CD8+ 
T cells that served as an internal control. All injected CD8+ T cells were purified 
using the CD8+ T Cell Isolation Kit II (Miltenyi Biotec GmbH, Bergisch Gladbach, 
Germany) according to the kit’s manual. The next day, mice received i.v. 5x105 
irradiated (1500 rad) C3H‐actmOVA splenocytes. Three days later, spleen and 
lymph nodes were isolated and stained for CD8 (BioLegend), Vα2 (BioLegend), 
CD45.1 (BD) and CD90.1 (BioLegend). Subsequently, OT‐I/CD90.1 proliferation 
and expansion were determined based on CFSE dilution and the ratio of 
OT‐I/CD45.1 to CD90.1 control CD8+ T cells.  

 

Statistics 

All data is presented as mean + SEM. Data was processed using 
GraphPad Prism 5 (Graph Pad Software Inc., San Diego, CA, USA). Individual 
groups of normally distributed data were analyzed with a Student’s t-test, 
otherwise a non-parametric Mann-Whitney U test was used. Data containing 
more than two groups was analyzed with 1-way ANOVA or the non-parametric 
Kruksal-Wallis test, and results were corrected for multiple testing. Correlation 
analysis was performed using a Spearman correlation test. Different outcomes 
were considered significant on several levels: *: p<0.05, **: p<0.01, ***: 
p<0.001. 
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Results 

Cross-presentation markers increase in advanced atherosclerotic plaques 

First, to evaluate the validity for a role of cross-presentation in plaque 
destabilization, expression of key cross-presentation markers in human and 
mouse atherosclerotic lesions was examined. We investigated RNA expression 
levels of Thrombomodulin, Basic leucine zipper transcription factor, ATF-like 3, 
Interferon regulatory factor 8 and nectin-like molecule 2 (BDCA3, Batf3, IRF8 
and Necl2: markers of the main cross-presenting DC population in humans (33)) 
and of Antigen Peptide Transporter 1, Ras-related protein 11b, and Adipocyte 
Differentiation-related Protein (TAP1, Rab11b and ADFP: involved in antigen 
processing and presumed cross-presentation pathways (34-36)) in early, 
advanced and unstable human plaque material. BDCA3, IRF8 and ADFP were all 
significantly upregulated in ruptured plaques compared to initial lesions, and 
Batf3, TAP1 and Necl2 all showed a similar trend (Figure 1a). Rab11b 
expression did not correlate with plaque progression (data not shown). XCR1 
(12) and CD11c immunohistochemical staining revealed few cross-presenting 
cells were present in advanced and unstable human plaques, while they could 
not be found in early plaques (Figure 1b, Supplementary Figure 1a). In mouse 
advanced plaques, Rab11b, TAP1 and XCR1 RNA expression levels were 
increased compared to early plaques (Figure 1c). Similar to human plaques, 
cross-presenting DCs were scarce in mice and only found in advanced plaques 
(Figure 1d, Supplementary Figure 1b). Overall, RNA expression patterns of 
cross-presentation markers correlated with a phenotype of increased plaque 
burden and instability, and cross-presenting cells were almost exclusively 
found in the more advanced plaque types, pointing to a potential role for 
cross-presentation in plaque progression and destabilization in human and 
mouse atherosclerosis. 
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Figure 1. Expression of cross presentation markers in human and mouse 
atherosclerosis 
(a) Total RNA was isolated from fresh-frozen human atherosclerotic plaques. Real-time 
PCR results of expression levels of BDCA3, IRF8, ADFP, Batf3, TAP1 and Necl2 are 
shown as mean ± SEM. All expression levels were first normalized for levels of β-actin 
expression, and are depicted as fold induction when compared to expression levels in 
early plaques. Samples were grouped based on histological qualification of plaque 
stage according to Virmani et al. 57. Early: Intimal Thickening/ Pathological Intimal 
Thickening (n=5), Advanced: Thick/Thin Fibrous Cap Atheroma (n=6), Unstable: Intra 
Plaque Hemorrhage (n=5). *: p<0.05, ***: p<0.001. (b) Representative images of 
frozen human carotid plaque sections (n=8-10) doublestained with antibodies against 
XCR1 (green) and CD11c (red) to identify cross-presenting DCs. Colocalization was 
determined using a Nuance Spectral Imaging System and is indicated in yellow.  
(c) Total RNA was isolated from fresh-frozen mouse aorta’s. Real-time PCR results of 
expression levels of Rab11b, TAP1 and XCR1 are shown as mean ± SEM. All expression 
levels were first normalized for levels of GAPDH expression, and are depicted as fold 
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induction when compared to expression levels in early plaques. Early: 8 wk old C57Bl6 
mice (n=6), Advanced: >35 wk old C57Bl6 ApoE-/- mice (n=5)  
(d) Representative images of frozen mouse aortic root sections doublestained with 
antibodies against CD8α (red) and CD11c (blue) to identify cross-presenting DCs. Nuclei 
were lightly counterstained with MethylGreen. Arrow: doublestained cell. 

 

Cross-presentation occurs under hyperlipidemic conditions 

Hyperlipidemia is known to affect the behavior and activation state of 
many immune cell types (1), and could thus influence the efficacy of immune 
responses mediated by these cells. Therefore, efficiency of cross-presentation 
in hyperlipidemic conditions was evaluated. Ldlr-/- mice on chow or western 
type diet (WTD, 0.25% cholesterol) were injected with fluorescently labeled  
T cells isolated from OT-I mice. These cells express a T cell receptor (TCR) 
engineered to recognize a specific chicken ovalbumin (OVA) antigen (SIINFEKL) 
only when it is presented in context of mouse MHCI-Kb (37). Mice also received 
OVA-expressing necrotic cells, which are taken up and processed by 
endogenous dendritic cells. Only cross-presentation of the OVA epitope leads 
to direct activation and proliferation of the OT-I T cells. In chow-fed mice most 
OT-I T cells had proliferated. OT-I T cell mitogenic capacity was unaffected in 
WTD fed mice, establishing normal, functional cross-presentation is able to 
occur in a hyperlipidemic environment (Figure 2a, b).  
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Figure 2. Cross-presentation occurs under hyperlipidemic conditions 
Ldlr-/- mice (n=3) on a normal chow diet or fed a Western type diet (WTD) for three 
weeks were i.v. injected with irradiated OVA-expressing splenocytes and CFSE-labeled 
OT-I T cells. After 72 hrs, spleens were harvested and cross-presentation was assessed 
by flow cytometry, quantifying the proportion of proliferating OT-I T cells (cells with a 
diluted CFSE signal) within the total OT-I T cell population, normalized for amount of 
injected cells. (a) Bar graph of proliferated OT-I T cells (% of total OT-I T cells) in spleen 
of chow or WTD-fed ldlr-/- mice. (b) Representive CFSE dilution peaks of the OT-I T cell 
population. Data are presented as mean + SEM. 
 
Batf3-dependent  DCs are efficiently depleted in atherosclerotic batf3-/- 
chimeric mice 

Local inflammatory processes are very important in atherosclerosis. To 
ensure the effectiveness of our planned approach we tested whether vascular 
dendritic cells could be successfully depleted and reconstituted by a bone 
marrow transplant experiment. CD45.2 ldlr-/- mice were lethally irradiated and 
received bone marrow from CD45.1 mice. Without induction of 
atherosclerosis, dendritic cells in the aortas of the transplanted mice were very 
scarce (0.8% of immune cells), and they were completely ablated 4 days after 
irradiation treatment (Supplementary Figure S2a, b). In addition, we could 
show by flow cytometry that 6 weeks after irradiation, only 1.3% of immune 
cells in the vessel wall are CD45.2 positive (i.e. from the host), instead they 
were almost exclusively CD45.1 positive, demonstrating effective 
reconstitution of the resident immune cells in the vessel wall by donor cells 
(Supplementary Figure S2e, f). Antibody stainings against CD45.1 and CD45.2 
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confirm the flow cytometry results (Supplementary Figure S2g). We therefore 
concluded that we could use a bone marrow transplantation approach to 
efficiently disturb cross-presentation in atherosclerosis. 

 
In order to investigate the relative contribution of Batf3-dependent 

cross-presentation in development and progression of atherosclerosis, lethally 
irradiated ldlr-/- mice were reconstituted with bone marrow from batf3-/- mice 
or wild type (wt) control mice. Batf3-/- mice selectively lack CD8α+  and CD103+ 
DCs and are not able to effectively cross-present necrotic cell exposed epitopes 
(27). After recovery, mice were given a Western type diet (WTD) for 10 weeks to 
induce atherosclerotic plaque formation (Figure 3a). Batf3-/- transplanted ldlr-/- 
mice (hereafter batf3-/- chimeras) showed more than 80% reductions in CD8α+ 

DCs in spleen (Figure 3b, c) and lymphoid organs (data not shown). As 
expected, CD103+ DCs were equally diminished by Batf3 deficiency (Figure 3d), 
because their development is also Batf3 dependent (28). Illustrating specificity 
of the batf3-/- model, other leukocyte populations in blood (Supplementary. 
Figure S3), spleen (Supplementary Figure S4) or peripheral lymph nodes 
(Supplementary Figure S5) were not affected. At sacrifice, batf3-/- chimeras did 
not differ in body weight from mice transplanted with wt bone marrow (Figure 
3e). Both groups showed equivalent and significant increases in plasma 
cholesterol (Figure 3f). These parameters indicate efficient induction of the 
atherosclerosis model. 
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Figure 3. Batf3 deficiency results in severe CD8α+ DC depletion in the atherosclerosis 
model 
(a) Lethally irradiated ldlr-/- mice were reconstituted with wt (n=15) or batf3-/- (n=12) 
bone marrow, and after 6 weeks recovery, put on a WTD containing 0,25% cholesterol 
for 10 weeks. (b) Representative flow cytometry gating of CD8α+ DC population (Lin-, 
CD11chigh, MHCIIhigh, CD8α+). (c) Bar graph of CD8α+ DCs as percentage of cDCs. (d) Bar 
graph of CD103+ DCs as percentage of cDCs. (e) Body weight at sacrifice. (f) Total 
cholesterol content in serum at sacrifice. Data are presented as mean + SEM,  
**: p<0,01, ***: p<0,001. 
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We next investigated if other DC populations with, albeit lower, 
capacity to cross-present might have expanded to compensate for the loss of 
Batf3-dependent DCs. Merocytic DCs can cross-present in a context of diabetes 
(38), and even plasmacytoid DCs (pDCs) were reported to have some cross-
presentation abilities (39). However, no differences were found in merocytic DC 
or pDC numbers in spleen (Supplementary Figure S6a, b) and lymph nodes 
(data not shown). Recently, a subset of CD169+ macrophages  
(CD11b+ CD11c+ CD169+ F4/80+) efficiently cross-presenting tumor antigens 
was described in spleen (40). This population did not change in spleens of mice 
on a normal diet compared to mice on a western type diet (Supplementary 
Figure S6c), rendering their role in atherosclerosis-related cross-presentation 
not very likely. In summary, we did not identify other DC or DC-like populations 
likely to have taken over cross-presentation from the depleted CD8α+ DCs in 
this atherosclerosis model. 
 

Hyperlipidemic CD8α+ DC depletion profoundly affects systemic cross-
presentation ability 

In accordance with the severe CD8α+ DC depletion observed, 
hematopoietic Batf3 deficiency in atherosclerotic mice had a profound effect 
on cross-presentation. Batf3-/- chimeras and control mice were injected with 
fluorescently labeled OT-I T cells and with necrotic OVA-expressing cells as 
described above. OT-I T cell proliferation was severely diminished from 80% in 
control mice to 23% in batf3-/- animals (Figure 4a, b). Interestingly, the number 
of residual CD8α+ DCs in batf3-/- chimeras correlated with the cross-presenting 
capacity (r2=0.89, p=0.01), establishing the significant role of this DC subset in 
cross-presentation, even in a hyperlipidemic setting (Figure 4c). 
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Figure 4. Cross-presentation is affected in batf3-/- chimeric mice 
Batf3-/- chimeric or wt ldlr-/- mice (n=7) were i.v. injected with necrotic OVA-expressing 
splenocytes and CFSE-labeled OT-I T cells. After 72 hrs, spleens were harvested and 
cross-presentation was assessed by flow cytometry, quantifying the proportion of 
proliferating OT-I T cells (cells with a diluted CFSE signal) within the total OT-I T cell 
population, normalized for amount of injected cells. (a) Bar graph of proliferated  
OT-I T cells (% of total OT-I T cells) in spleen. (b) Representive CFSE dilution peaks of 
the OT-I T cell population. (c) Correlation analysis between amount of residual CD8α+ 
DCs and the remaining cross-presentation capacity in batf3-/- chimeras. Data are 
presented as mean + SEM, ***: p<0,001. 

 
CD8α+ dendritic cell depletion does not affect atherosclerosis 

First, we analyzed aortic roots from batf3-/- chimeras and control mice 
which had been fed a normal chow diet to evaluate whether CD8α+ DC 
depletion affected initial plaque formation. However, while some mice 
exhibited very small initial lesions, plaque sizes of both groups were similar 
(Supplementary Figure 7). Next, the effect of significantly hampered cross-
presentation ability on atherosclerosis could be analyzed. Unexpectedly, 
neither advanced plaques in the aortic root nor initial plaques in 
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brachiocephalic artery showed differences in plaque size, necrotic core size or 
necrotic core percentage between batf3-/- chimeras and control mice (Figure 
5a, b). Plaques from batf3-/- chimeras and control mice also contained the 
same amount of macrophages (Figure  6a, b: first panel). In addition, features 
of plaque stability were similar in both groups, as we observed no changes in 
vascular smooth muscle cell content or collagen (Figure 6a, b: second and 
third panel, Supplementary Figure S9). To exclude unknown local 
environmental or other contributory factors, we repeated the study in the 
same setup in the laboratory of our collaborator Prof. Dr. E. Janssen, 
Cincinnati, US, with ldlr-/- and batf3-/- mice from Jackson Laboratories. Again, 
cross-presenting CD8α+ DCs were severely depleted in batf3-/- chimeras, yet no 
differences were seen in atherosclerosis phenotype (Supplementary Figure 
S8). Thus, CD8α+ DC depletion does not alter plaque size or the stable plaque 
phenotype in atherosclerotic mice. 
 

 
 
Figure 5. Batf3 deficiency does not influence atherosclerotic plaque size 
Aortic arch and root were dissected from wt (n=15) or batf3-/- (n=12) ldlr-/- mice and 
analyzed by histology.  (a) Aortic arch and root were H&E stained for plaque size 
analysis. (b, c) Plaque area, necrotic core area and percentage necrotic core relative to 
plaque area are did not differ in the brachiocephalic artey (b) and aortic root (c). Data 
are presented as mean + SEM. 
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T cell activation is unchanged in CD8α+ DC depleted atherosclerotic mice 

We postulated that cross-presentation of plaque epitopes would lead 
to expansion of cytolytic plaq²ue-targeted CD8+ T cells, resulting in plaque 
destabilization. However, consistent with the observations regarding plaque 
size or phenotype, T cell content and plaque apoptosis did not differ between 
batf3-/- chimeric mice and control mice  (Figure 6a, b: fourth and fifth panel). 
Moreover, total CD4+ and CD8+ T cell numbers in blood, spleen and peripheral 
lymph nodes and were not changed by batf3 deficiency (Supplementary Figure 
S3-5). As we would primarily expect effects on T cell biology at the site of 
atherosclerosis, we also analyzed T cell phenotype in the aorta-draining lymph 
nodes (lnn. mediastinalis dorsalis, strongly enlarged in atherosclerosis) but no 
relevant differences in the proportion of regulatory T cells (Figure 7a) were 
found. Naïve (CD44low, CD62Lhigh), effector memory (CD44high, CD62Llow) and 
central memory T cell counts (CD44high, CD62Lhigh) in the aorta-draining lymph 
nodes were not affected by Batf3 deficiency (Figure 7b, c) as well. These data 
suggest that cross-presentation does not play an active role in the clonal 
expansion of atherosclerosis-relevant T cells, neither locally in the aorta-
draining lymph node nor systemically in the lymphoid organs. 
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Figure 6. Batf3 deficiency does not influence atherosclerotic plaque composition 
Aortic arch and root were dissected from wt (n=15) or batf3-/- (n=12) ldlr-/- mice and 
analyzed by immunohistochemistry. (a) Representative images of Macrophages (Mac3 
staining), vascular smooth muscle cells (αSMA staining), T cells (CD3 staining), collagen 
(Sirius Red staining) and apoptosis (cleaved caspase 3 staining) in the aortic roots of wt 
and batf3-/- chimeric mice. (b) Quantification of immunohistochemical stainings shown 
in (a). Data are presented as mean + SEM. 
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Figure 7. T cell numbers are unchanged in batf3-/- chimeras 
T cell subset numbers were analyzed in the aorta-draining lymph node by flow 
cytometry. (a) CD25+, FoxP3+ regulatory T cells are presented relative to the CD4+ T cell 
population. (b) Naïve (CD62Lhi, CD44lo), central memory (CD62Lhi, CD44hi) and effector 
memory (CD62Llo, CD44hi) populations are presented as percentages of CD8+ T cells. (c) 
Naïve (CD62Lhi, CD44lo), and effector memory (CD62Llo, CD44hi) populations are 
presented as percentages of CD4+ T cells. Data are presented as mean + SEM. 
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Discussion 

Cytotoxic immunity is emerging as a key process in advanced 
atherosclerosis (22), but its actors and triggers are hitherto largely unknown. We 
opted for cross-presentation as plausible candidate, considering that all 
components for effective cross-presentation are present in the advanced 
atherosclerotic plaque and that several genes involved in cross-presentation 
were more expressed in ruptured compared to early atherosclerotic lesions of 
CVD patients. Moreover, exposure to high LDL/VLDL levels in advanced 
atherosclerosis would most likely not interfere with the cross-presentation 
machinery, as we showed that systemic cross-presentation efficacy in mice 
was not affected by hyperlipidemia. Likewise, CD11c+ DCs under conditions of 
hyperlipidemia take up and process antigens normally, and are able to activate 
T cells (41). 
 

Cross-presentation of necrotic plaque epitopes could theoretically take 
place in the plaque itself, in analogy to antigen presentation by DCs to  
CD4+ T cells (42), or in plaque-draining lymphoid organs. CD103+ DCs increase in 
the atherosclerotic aortic wall (26) and might activate CD8+ T cells in situ or 
migrate to adjacent lymph nodes. Alternatively, CD8α+ DCs could cross-present 
shed plaque material in lymphoid organs, as they very efficiently do so with 
dying cell particles during intracellular pathogen infections (43), upon which 
activated CD8+ T cell clones may travel to the plaque. Here, both routes of 
cross-presentation were ablated by depleting CD8α+ DC and CD103+ DC in a 
well-established mouse model of atherosclerosis. Concordant with previous 
studies in whole-body batf3-/- mice (27, 28), chimeric batf3-/- mice exclusively 
targeted the aforementioned Batf3 dependent cell populations, leaving other 
leukocyte subsets unaffected. In addition, cross-presentation capability – again 
similar to the full batf3-/- phenotype – was profoundly reduced in  
batf3-/- chimeras with a more than 70% loss of OVA-OT-I cross priming 
capacity. Moreover, a strong correlation between the amount of residual 
CD8α+ DCs and the ability to cross-present OVA to OT-I T cells could be 
established. CD8α+ DCs can develop independently of Batf3 and in conditions 
of infection compensatory batf3-/- CD8α+ DC development was reported (44, 45). 
Nevertheless, effective numerical as well as functional depletion of this subset 
suggests that any batf3-independent CD8α+ DC development is not opportune 
for the present study setup.  
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Remarkably, the severe CD8α+ and/or CD103+ DC cross-presentation 
defect did not alter atherosclerotic plaque phenotype in batf3-/- chimeric mice. 
This is in agreement with the reported lack of effect of TAP1 deficiency, which 
transports antigen-MHCI complexes to the cell surface, on plaque formation in 
ApoE-/- mice (24), albeit that the interpretation of this study was complicated by 
reductions in peripheral CD8+ T cell numbers (46). By contrast, MHCI KO mice 
develop 150% bigger plaques when fed a high fat diet for 15 weeks (25). 
However, apart from being unable to cross-present, MHCI deficiency 
influences a broad range of stromal and hematopoietic cells. These mice suffer 
from CD8+ lymphocytopenia, and profound iron overload (47), which can both 
impact atherosclerosis development (22, 48). Similarly, loss of function studies in 
flt3-/- ldlr-/- mice suggested an athero-protective role of aortic CD103+ DCs, 
possibly by increasing regulatory T cells in the lesion (26). Of note, Flt3 is 
involved in the development of several types of hematopoietic cells (49), and its 
deficiency affects T cells and several DC subsets systemically and directly as 
well (50). Our study setup differs from the above-mentioned studies in the fact 
that we achieve specific functional targeting of cross-presenting cell 
populations, allowing us to evaluate for the first time their single contribution 
to atherosclerosis development. 

 
Moreover, compared to murine plaques, human lesions are more 

advanced, vulnerable to rupture and contain more CD8+ T cells (51). Although 
the lesions observed in our model were quite advanced and contained large 
necrotic cores, we cannot exclude that cytotoxic CD8+ T cells and cross-
presentation are of more importance in the human setting. 
 

Even so, cross-presentation of necrotic plaque epitopes could be 
mediated by other cell populations, which were not targeted with the batf3-/- 
model. Therefore, subsets with reported cross-presentation ability such as 
merocytic DCs (38), pDCs (39) or CD169+ macrophages (40) were analyzed. PDCs 
are present in scarce amounts in the intima of atherosclerotic arteries, but 
their role in atherosclerosis remains inconclusive (52, 53). The role of merocytic 
DCs or CD169+ macrophages in CVD is hitherto unknown. Investigating  
cross-presentation of plaque epitopes by those cell types would require a 
specific merocytic DC knockout model (not available to date) or combining the 
inducible CD169-DTR macrophage knockout model (54) with an atherosclerosis 
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model. Nevertheless, we did not find any relevant expansion of these 
populations in batf3-/- chimeras, rendering a compensatory effect in Batf3 
deficiency unlikely. 
 

We postulated that cross-presentation deficiency would reduce 
atherosclerosis by failing to induce cytotoxic CD8+ T cells involved in plaque 
vulnerability (22). However, in accordance with the unchanged plaque 
phenotype, T cell subset numbers in blood and lymphoid organs as well as in 
plaques of chimeric batf3-/- mice were similar to those in wt controls. This 
suggests that CD8α+ and CD103+ DCs cannot account for the marked increase in 
CD8+ T cells in advanced atherosclerotic plaques (17). In analogy to 
Cytomegalovirus infection, where priming of CD8+ T cells is largely dependent 
on Batf3-cross-presentation only in disease onset and not during latent 
infection (55), cross-presentation by Batf3-dependent cells in the chronic stages 
of advanced atherosclerosis could be obsolete. In support of this view, it has 
been reported that only apoptotic cells (much more abundant in initial 
atherosclerotic lesions) elicit mature functional CD8+ T cells (56). Therefore 
studying the impact of cross-presentation deficiency in early atherosclerosis 
can be of interest. Necrotic cells, which hallmark advanced atherosclerosis, 
may well fail to induce sufficient CD40 expression on DCs, which is an essential 
step to subsequent CD8+ T cell activation. Alternatively, it has been shown that 
apoptotic tissue antigens are cross-presented to tolerize autoreactive  
CD8+ T cells (57) and that sustained cross-priming by CD8α+ DCs can result in 
tolerance (58). Vaccination studies using tolerogenic DCs loaded with oxLDL or 
ApoB100 have a positive effect on atherosclerotic disease progression (59, 60). 
However, as severe CD8α+ DC depletion did not increase plaque burden, a 
cross-tolerogenic role for CD8α+ DCs in atherosclerosis seems unlikely.  
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In summary, Batf3 deficiency in hyperlipidemic conditions leads to a 
highly specific, severe defect in cross-presentation, with no effect on T cell 
immunity or other leukocyte subsets. We clearly demonstrate that 
CD8α+/CD103+ DC-dependent cross-presentation does not impact 
atherosclerotic plaque size or features of plaque stability and consequently has 
no major causal role in plaque rupture or the generation of a cardiovascular 
event. Taken together, we present convincing evidence that the contribution 
of cross-presentation of atherogenic antigens to atherosclerotic plaque 
progression is marginal at best. Our study thereby raises the intriguing 
possibility that in advanced atherosclerosis CD8+ T cell immunity is steered by 
other mechanisms, involving for instance Th1 T cell activation (61), which 
warrants further efforts to dissect the driving forces in cytolytic plaque-
attacking T cell generation. 
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Supplementary Figures 

 
Supplementary Figure S1. Overview images of human and mouse plaque 
immunohistochemistry 
(a) Representative images of frozen human carotid plaque sections (n=8-10) 
doublestained with antibodies against XCR1 (green) and CD11c (red) to identify cross-
presenting DCs. Images were acquired with the Nuance Spectral Imaging System and 
colocalization was analyzed. Background structure of the tissue is indicated in blue. 
White rectangles indicate regions used in Figure 1b. (b) Representative images of 
frozen mouse aortic root sections doublestained with antibodies against CD8α (red) 
and CD11c (blue) to identify cross-presenting DCs. Nuclei were lightly counterstained 
with MethylGreen. Black rectangles indicate regions used in Figure 1d. 
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Supplementary Figure S2. CD45.2 immune cells in the vessel wall are replaced by 
CD45.1 donor cells after bone marrow transplantation 
(a) Flow cytometry of mouse aorta showing CD45+ gate and DC subgate (CD11chigh, 
MHCIIhigh). (b) Using gating strategy shown in (a), DC populations in mouse spleen as 
well as aorta were determined by flow cytometry. t0: control CD45.2+ ldlr-/- mouse 
(n=5), t4: CD45.2+ ldlr-/- mouse 4 days after total body irradiation and transplantation 
with CD45.1+ bone marrow (n=4), t42: CD45.2+ ldlr-/- mouse 6 weeks after total body 
irradiation and transplantation with CD45.1+ bone marrow (n=8). Data is shown as 
mean + SEM. **: p<0.01. (c) CD45.1/CD45.2 flow cytometry plot of the CD45+ 
population in aorta of an acceptor CD45.2+ ldlr-/- mouse. (d) CD45.1/CD45.2 flow 
cytometry plot of the CD45+ population in aorta of a donor CD45.1+ ldlr-/- mouse. (e) 
Aortic CD45.1+ donor-descendant cells (left panel) and CD45.2+ acceptor-descendant 
cells (right panel) were quantified by flow cytometry 4 days (n=4) and 6 weeks after 
bone marrow transplantation (n=8). (f) Representative flow cytometry plots of aortic 
CD45+ cells in CD45.1-transplanted CD45.2+ ldlr-/- mice 4 days and 6 weeks after 
transplantation. (g) Immunohistochemical staining of CD45.1 (blue) or CD45.2 (blue) 
positive cells in frozen aortic root sections of CD45.1-transplanted CD45.2+ ldlr-/- mice 4 
days and 6 weeks after transplantation (n=4). Counterstaining: Nuclear Fast Red. 
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Supplementary Figure S3. Blood leukocyte patterns in wt and batf3-/- transplanted 
ldlr-/- mice after 10 weeks of WTD 
TruCount tubes and flow cytometry were used to determine exact cell numbers of  
(a) leukocytes (CD45+), (b) granulocytes (CD11bhigh Ly6G+), (c) NK cells (CD3- NK1.1+), 
(d) monocytes (CD11bhigh Ly6G-), (e) B cells (B220+), (f) T cells (CD3+ NK1.1-),  
(g) CD4+ T cells (CD3+ NK1.1- CD4+) and (h) CD8+ T cells (CD3+ NK1.1- CD8+) in wt and 
batf3-/- transplanted ldlr-/- mice after 10 weeks of WTD (n=8). Graphs show number of 
cells per microliter blood, and depict mean + SEM.  
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Supplementary Figure S4. Spleen leukocyte subset counts in wt and  
batf3-/- transplanted ldlr-/- mice after 10 weeks of WTD 
Splenic cell populations were determined by flow cytometry in wt and batf3-/- 
transplanted ldlr-/- mice after 10 weeks of WTD (n=8): (a) granulocytes (CD11bhigh 
Ly6G+), (b) monocytes (CD11bhigh Ly6G-), (c) B cells (B220+) and (d) T cells (CD3+ NK1.1-) 
are shown as percentage of leukocytes (CD45+), (e) CD4+ T cells (CD3+ NK1.1- CD4+) and 
(f) CD8+ Tcells (CD3+ NK1.1- CD8+) as percentage of total Tcells. Graphs depict  
mean + SEM. 
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Supplementary Figure S5. Lymph node leukocyte subset distribution in wt and  
batf3-/- transplanted ldlr-/- mice after 10 weeks of WTD 
Lymphocyte cell populations were determined in a mix of peripheral lymph nodes 
(axillary, mandibular, mesenteric) by flow cytometry in wt and batf3-/- transplanted 
ldlr-/- mice after 10 weeks of WTD (n=8): (a) B cells (B220+) and (b) T cells (CD3+ NK1.1-) 
are shown as percentage of life cells. (c) CD4+ T cells (CD3+ NK1.1- CD4+) and  
(d) CD8+ T cells (CD3+ NK1.1- CD8+) as percentage of total T cells. Graphs depict  
mean + SEM. 
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Supplementary Figure S6. Prevalence of other cross-presenting populations in  
batf3-/- chimeric and wt ldlr-/- mice 
(a, b) Splenocytes were analyzed by flow cytometry in batf3-/- chimeric and wt ldlr-/- 
mice after 10 weeks of WTD. Graphs depict (a) merocytic DCs as percentage of Lin- 
CD11chigh MHCIIhigh cDCs, (b) pDCs as percentage of Lin- cells. (c) CD169+CD11c+ cross-
presenting macrophages were compared in mice on chow and after being fed 3 weeks 
WTD. Data is presented as mean + SEM. 
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Supplementary Figure S7. Plaque analysis in wt and batf3-/- transplanted ldlr-/- mice 
on normal chow diet 
(a) Representative H&E stainings and (b) measurements of plaque area, are shown for 
aortic root plaques of wt (n=3) and batf3-/- (n=4) transplanted ldlr-/- mice. Data is 
presented as mean ± SEM. 
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Supplementary Figure S8. Plaque analysis, plasma cholesterol and CD8α+ DC 
depletion in wt and batf3-/- transplanted ldlr-/- mice of the Cincinnati study 
(a) Representative H&E stainings and (b) measurements of plaque area, necrotic core 
size and percentage necrotic core relative to plaque area are shown for aortic root 
plaques of wt (n=15) and batf3-/- (n=15) transplanted ldlr-/- mice. (c) Cholesterol 
quantity in serum before start of Western Type Diet (baseline) and at sacrifice 
(endpoint) are shown for wt and batf3-/- chimeras. (d) Flow cytometry of splenocytes 
showing CD8α+ DCs as percentage of cDCs (Lin- CD11chigh MHCIIhigh). Data are presented 
as mean ± SEM, ***: p<0.001. 
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Supplementary Figure S9. Staining control for αSMA immunohistochemistry 
Aortic arches of wt and batf3-/- transplanted ldlr-/- mice were taken along as staining 
controls for the αSMA immunohistochemistry performed on aortic root sections 
shown in Figure 6. Top panels: positive control showing clear αSMA staining in the 
media, lower panel: negative isotope control. 
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Supplementary Table I: Primers for cross-presentation 
markers used in real-time PCR 

Gene NCBI Refseq ID Forward primer sequence 
(5’→3’) 

Reverse primer sequence 
(5’→3’) 

hTAP1 NM_000593.5 gcaagaaataaagacactcaacca cccactttcagcagcatacc 
hADFP NM_001122.3 tcagctccattctactgttcacc cctgaattttctgattggcact 
hBDCA3 NM_000361.2 aattgggagcttgggaatg tgaggacctgattaaggctagg 
hIRF8 NM_002163.2 gaggtggtccaggtcttcg cggccctggctgttatag 
hNecl2 NM_014333.3 gagttaacatgtgaagccatcg cgactctcacccaagttacca 
hBatf3 NM_018664.2 cagcgtcctgcagaggag cttcggaccttcctgtcatc 
hRab11b NM_004218.3 gcattcaagaacatcctcacag tgatgtccaccacgttgttc 
hβ-actin NM_001101.3 tcacccacatgtgcccatctacga cagcggaaccgctcattgccaatgg 
mRab11b ENSMUST00000172894.1 ggaggttggtaggatggaca gcggtttcgatctctgaagt 
mTAP1 ENSMUST00000171148.1 gggtgaggcccagaagtt gcagcattcccgagacac 
mXCR1 NM_011798.4 ctcaacctgtgtctctcagacct aaccaactccattgtgctga 
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Abstract 

The co-stimulatory molecule CD40 is a major driver of atherosclerosis. 
It is expressed on a wide variety of cell types, amongst which mature dendritic 
cells (DCs), and is required for optimal T cell activation and expansion, an 
important process in atherosclerosis. It remains to be determined if and how 
CD40 on DCs impacts the pathogenesis of this disease. Here, we examined the 
effects of constitutively active CD40 in DCs on atherosclerosis, using ldlr-/- 
chimeras that express an engineered latent membrane protein 1 (LMP), /CD40 
fusion protein conferring constitutive CD40 signaling, under the DC specific 
CD11c promoter (CD40ca) and wild-type littermates (CD40wt) served as 
controls. As expected, DCs of CD40ca ldlr-/- chimeras show increased antigen 
presenting capacity and T cell numbers, but develop extensive neutrophilia. 
Despite overt T-cell expansion and neutrophilia, we observed a profound, 8.8-
fold reduction in atherosclerosis (22.080 ± 3.763 μm2 vs 2.511 ± 1.256 μm2, 
p=0.0004). Further study revealed that cholesterol and triglyceride levels had 
decreased by 36% and 37%, in CD40ca ldlr-/- chimeras, as well as indicated 
gastrointestinal tract inflammation, characterized by massive influx of 
leukocytes into the muscularis externa, submucosa, and, in some cases, in the 
mucosa, resulting in villous degeneration. In conclusion, constitutive activation 
of CD40 in dendritic cells results in inflammation of the gastrointestinal tract, 
thereby impairing lipid uptake, which consequently results in attenuated 
atherosclerosis.  
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Introduction 

Atherosclerosis is a lipid-driven inflammatory disease, and is 
characterized by accumulations of lipids and immune cells, i.e. plaques, in the 
arterial intima (1, 2). In the past few years, dendritic cells (DCs) have been 
recognized to play an important role in atherogenesis. DCs were found to be 
present in atherosclerosis-prone areas of healthy aortas, and to accumulate at 
this location at onset of atherosclerosis (3). Upon antigen exposure, DCs 
upregulate MHCII, as well as the co-stimulatory molecules CD40, CD80 and 
CD86 (4). Moreover, antigens derived from lipoproteins, more in particular 
ApoB100, are internalized in DCs and can subsequently be presented via MHC 
complexes, thereby activating naïve T cells (5, 6). Activated CD4+ T cells of the 
Th1 type and CD8+ T cells are well known drivers of atherosclerosis (1, 7). 

Co-stimulatory molecules are crucial for antigen presentation 
associated priming of T cells (8, 9). The co-stimulatory molecule CD40 is 
constitutively expressed on DCs, and is strongly upregulated upon encounter 
of antigen and subsequent DC maturation. Upon interaction with T-cell CD40L, 
both CD8+ and CD4+ T cells expand and polarize, often with concomitant 
generation of Tregs (10). 

Previously, we, and others have demonstrated the importance of CD40 
and CD40L for atherosclerosis. Inhibition of CD40-CD40L interactions not only 
led to reduced atherosclerosis, but also was seen to induce a favorable fibrotic 
plaque phenotype that only contains few immune cells and small necrotic 
cores (11-14).However the relative contribution of CD40 expression by DCs to 
atherosclerosis remains unclear. Here, we have investigated the role of 
constitutively active CD40 signaling in DCs in atherosclerosis, using the cd11c-
CD40ca mouse, which express engineered latent membrane protein 1 (LMP)-
CD40 fusion protein, which confers constitutive activation of CD40 signaling, 
under the DC specific CD11c promoter. 
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Materials and Methods 

Animals 

Cd11c-CD40ca mice (further referred to as CD40ca) were generated at 
the Ludwig Maximilians University, Munich by breeding cd11c-cre mice to 
LMP/cd40flStop mice which express a loxP-flanked stop-codon protected latent 
membrane protein 1 (LMP1)/CD40 chimeric protein from the Rosa26 locus. 
The LMP1/CD40-fusion protein consists of the signaling domain of CD40 and 
the transmembrane domain of LMP1. It has previously been shown that 
expression of this chimeric LMP/CD40 fusion protein in B cells leads to 
constitutive CD40 signaling (15, 16). Male ldlr-/- mice (The Jackson laboratories) 
(n=30) were bred and housed at the animal facility of the Academic Medical 
Center, Amsterdam. All study protocols were approved by the committee for 
Animal Welfare of the University of Amsterdam. 

 

Bone marrow transplantation 

CD40ca and CD40wt mice (n=4) were sacrificed and bone marrow from 
femurs and tibias was harvested in ice cold PBS, and subsequently diluted in 
RPMI medium containing 5 U/ml of heparin (Heparin Leo). Recipient ldlr-/- mice 
(n=30) were housed in filter top cages and received drinking water containing 
antibiotics (polymixin B sulfate, 60000 U/L and neomycin, 100 mg/L) starting 1 
week before the bone marrow transplantation. Recipient mice were sub-
lethally irradiated on two consecutive days (2x 6 Gy). After the second 
irradiation, each ldlr-/- recipient received 2x106 bone marrow cells of either 
CD40ca or CD40wt mice. After a 6-week recovery period, chimeric ldlr-/- mice 
were fed a high cholesterol diet (0.15% cholesterol, 16% fat, Hope Farms) for 6 
weeks. 
 

Hematology, lipoproteins & autopsy 

Blood was obtained by cardiac puncture and collected into EDTA 
containing tubes. Hematological parameters (cell counts, hemoglobin (Hb), 
hematocrite (Ht)) were determined using a ScilVet abc plus (Scilvet). 
Cholesterol and triglyceride levels were determined according to 
manufacturer’s protocols (CHOD-PAP, Roche Diagnostics). Autopsy was 
performed and >20 organs were analyzed macroscopically and microscopically 
on 4 μm, paraffin embedded, hematoxylin & eosin (HE) stained sections. 
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Flow cytometry 

Spleen and lymph nodes were harvested in ice cold PBS. Single cell 
suspensions were prepared and filtered through a 70 μm mesh. Spleens were 
digested using 1 mg/ml collagenase D (Roche) and 20 μg/ml DNase I (Roche). 
Blood and spleens were treated with red blood cell lysis buffer. Staining 
against CD45, CD3, CD4, CD8, CD44, CD62L, FoxP3, CD25, CD11c, MHCII, CD80 
was performed using anti-mouse antibodies (BD Bioscience, Biolegend). Non-
specific binding was prevented using the Fc receptor blocking antibody 
CD16/32 (BD Bioscience). Intracellular staining was performed using the 
Fixation/Permeabilization Solution kit (BD bioscience). Flow cytometry was 
performed using a FACS Canto II (BD Bioscience). 
 
Atherosclerosis 

Upon sacrifice, aortic roots and aortic arches containing its main 
branch points were dissected, fixed in 1% paraformaldehyde, processed and 
sectioned. Twenty consecutive sections were selected for histological analysis, 
and stained for HE, picrosirius red, CD3 (AbD Serotec) or CD68 (Abcam). 
Morphometric analyses were performed using the Las4.1 software (Leica), as 
described before (14). 
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Results 

Constitutive overexpression of CD40-signaling in DCs reduces atherosclerosis 

During the 6 wk high cholesterol diet feeding period, 4 out of 15 
CD40ca ldlr-/- chimeras died or had to be sacrificed at the 4th week of diet 
feeding because of wasting syndrome and excessive weight loss (>8% body 
weight in one week) (Figure 1A). None of the wild type chimeras died. At 
sacrifice, body weights of the remaining CD40ca ldlr-/- chimeras did not differ 
significantly compared to the CD40wt ldlr-/- chimeras (Figure 1A). However, 
plasma cholesterol and triglyceride levels were significantly reduced by 37% 
and 36%, respectively in these mice (Figure 1B).  

Consistent with the decrease in plasma cholesterol and triglyceride 
levels, atherosclerotic plaque area in the aortic root was profoundly decreased 
by 8.7 fold in CD40ca ldlr-/- chimeras, indicating lesion progression was reduced 
in these mice (data not shown). Comparing root plaque areas of mice with 
equivalent cholesterol levels, revealed that CD40ca ldlr-/- chimeras still 
displayed a decrease in aortic root plaque area by 2.3 fold  
(CD40ca ldlr-/- 3.789 ± 829 µm2 and CD40wt ldlr-/- 1.635 ± 985 µm2; p=0.001); 
and similar findings were obtained when adjusting for differences in 
triglyceride levels (Supplementary Figure S1), suggesting that constitutive 
overexpression of CD40 on DCs exerts beneficial effects on atherosclerosis in 
addition to its cholesterol lowering (Figure 1D). A similar atheroprotective 
effect was observed in the aortic arch, with 3.5 fold smaller plaques compared 
to controls (CD40ca ldlr-/- 2.949 ± 275 µm2 and CD40wt ldlr-/- 835 ± 49 µm2; 
p=0.001) (Figure 1D). Of note, the aortic arch only contained very small intimal 
xanthomas at this stage. Both number and size of individual lesions per aortic 
arch were decreased in the CD40ca ldlr-/- compared to CD40wt ldlr-/- chimeras 
(data not shown).  

Regarding plaque composition, initial lesions in the aortic arches 
mainly contained macrophages and were devoid of T cells or collagen in either 
genotype (data not shown). In the aortic root collagen  
(2,29 ± 0,04 µm2 and 3.56 ± 0.18 µm2, p=0.87) and macrophages  
(97,33 ± 3,29 µm2 and 96,54 ± 6.94 µm2, p=0.90) were observed with no 
relative difference between the genotypes, whereas T cells were not present in 
the lesions (data not shown).  
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Figure 1. Constitutive overexpression of CD40-signaling in DCs reduces 
atherosclerosis  
(A) Body weight of CD40wt (n=15) and CD40ca (n=15) ldlr-/- chimeras upon 4 weeks 
(left panel) and 6 weeks (right panel) of high cholesterol diet (HCD), grey circles 
represent sick mice. (B) Cholesterol (left panel) and triglyceride (right panel) level of 
CD40wt (n=15) and CD40ca (n=11) ldlr-/- chimeras. (C) Representative photos of 
hematoxylin and eosin stained aortic roots of CD40wt and CD40ca ldlr-/- chimeras. Bars 
represent 500 µm. (D) Mice with comparable cholesterol levels were selected from 
CD40wt (n=11) and CD40ca (n=5) ldlr-/- chimeras (left panels) to analyze atherosclerotic 
lesion formation independent of cholesterol level. Lesion formation in hematoxylin 
and eosin stained sections from aortic arch and root was quantified from the selected 
mice (right panels). (E) Representative photos of hematoxylin and eosin stained cecum 
specimens from CD40wt and CD40ca ldlr-/- chimeras. Error bars represent 100 µm. 
mean ± SEM. *, p < 0.05; *** , p < 0.001. 

 

Constitutive overexpression of CD40-signaling in DCs causes neutrophilia, DC 
and T-cell activation 

CD40ca ldlr-/- chimeras developed leukocytosis (Figure 2A) and flow 
cytometry analysis of blood and lymphoid organs indicated that this was 
attributable to pronounced neutrophilia, accompanied by an increase in the 
number of Ly6Chigh monocytes (Figure 2B, C). Spleens and LNs of CD40ac ldlr-/- 
chimeras had reduced numbers of CD11c+ MHCII+ DCs (Figure 2D), with a shift 
from CD8-CD4- DCs (CD40wt ldlr-/- 35,14 ± 0.76 of DCs and  
CD40ca ldlr-/- 47,44 ± 1,44 p<0,0001) to CD8a+ DCs (CD40wt ldlr-/- 29,14 ± 0,94 
of DCs and CD40ac ldlr-/- 17,27 ± 1,26 p<0,0001) (data not shown) (17). 
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Interestingly, the CD8+ DC skewed DC differentiation was not mirrored by a 
shift in CD4/CD8 T cell balance. Compatible with the constitutive CD40 
signaling of the CD40ca, DCs of CD40ca ldlr-/- chimeras were more activated as 
judged by the increased CD40 and CD80 expression. This was paralleled by an 
increase in CD44+CD62L- effector memory CD4+ T-cells (Figure 2E, F) and of 
CD8+ T cells (data not shown). 

 

 

 

Figure 2. Constitutive CD40-signaling in DCs causes neutrophilia, DC and T-cell 
activation 
(A) Blood count of leukocyte numbers in CD40wt (n=15) and CD40ca ldlr-/- (n=11) 
chimeras; Flow cytometry analysis in CD40wt (n=15) and CD40ca ldlr-/- (n=11) chimeras 
of (B) blood neutrophil; (C) Ly6Chigh monocyte; (D) splenic dendritic cell (CD11c+MHCII+) 
numbers; (E) splenic dendritic cell CD40 and CD80 expression; (F) blood effector 
memory T cell numbers. Error bars represent mean ± SEM. *, p < 0.05; *** , p < 0.001. 
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Constitutive overexpression of CD40-signaling in DCs causes colitis 

Analysis of >20 organs revealed that high cholesterol diet fed  
CD40ca ldlr-/- chimeras developed severe inflammation of the gastro-intestinal 
tract. Pathological examination of gastrointestinal specimens revealed massive 
infiltration of leukocytes in the tunica muscularis, the submucosa and mucosa, 
resulting in dysplasia of the villous epithelium in CD40ca ldlr-/- chimeras  
(Figure 1E). This phenomenon was most prominent in the cecum. No 
abnormalities or enhanced leukocyte infiltration was observed in any of the 
other organs. 

 

Discussion 
The co-stimulatory molecule CD40 has a profound role in DC 

maturation, antigen presentation and DC dependent T-cell expansion (2) . In our 
previous studies using CD40-/- mice or CD40-/- bone marrow chimeras, we 
indeed showed altered immune status in CD40 deficient mice, with a reduction 
in effector T cells and CD4-CD8- DCs as most prominent features, resulting in a 
profound reduction of atherosclerosis (14). 

 
Here, we deployed the CD11c-CD40ca model, with CD11c+ DC specific 

expression of the late membrane protein LMP, fused to CD40 intracellular 
domain to confer constitutive activation of CD40 signaling, to study the impact 
of DC CD40 signaling on atherosclerosis. We confirm that constitutive 
activation of CD40 on DCs results in an expansion of CD4+ and CD8+ effector  
T cells. Moreover, DCs from CD40ca ldlr-/- mice had augmented costimulatory 
capacity with increased MHCII and CD80 expression. Moreover CD40ca 
featured increased neutrophil counts. This is probably caused by inflammation 
of the gastro-intestinal tract, with signs of ulcerative colitis and inflammation, 
especially in the cecum, in CD40ca mice. As known from patients suffering 
from inflammatory bowel disease, colitis can induce a decrease in plasma 
cholesterol level (18). The involvement of CD40-signaling in IBD has been 
reported before (19). Immunodeficient SCID mice reconstituted with CD45RBhigh 
CD4+ T cells increases the CD40 expression in colitis colon through infiltration 
of granulomatous cells. Anti-CD40L antibody administration to these mice 
prevented signs of colitis, showing the CD40-CD40L dyad essential in colitis 
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development (20). Given this strong pro-atherogenic phenotype, we were 
surprised to observe sharply reduced atherogenic responses in this model, 
which may be partly due to the reduced plasma cholesterol and triglyceride 
levels.  

Dendritic cell numbers and their immunogenicity are implicated in the 
regulation of the plasma cholesterol level. Increased DC lifespan as seen upon 
Bcl2 overexpression or bim deficiency not only led to increased DC numbers 
and activation status, as well as an expansion of autoreactie T/B-cells (bim) but 
was also accompanied by decreased cholesterol levels (21). Similarly, CD11c+ DC 
ablation by DT-treatment of cd11c-DTR Apoe-/- mice caused a transient 
decrease in plasma cholesterol level (21). How cholesterol levels are impacted 
by conventional DC numbers is still not elucidated, but DCs might promote 
lipoprotein uptake and clearance from the circulation (21). Our data suggests 
that the enhanced activation status of CD40ac DC rather than absolute DC 
numbers is causative for reduction in plasma cholesterol level. 
 
The original aim of our study was to investigate the role of CD40 on dendritic 
cells in atherosclerosis. Although constitutive expression of CD40 on DCs in 
CD40ca ldlr-/- resulted in the expected inflammatory phenotype of T cells and 
DCs in CD40ca ldlr-/- chimeras, the animals developed gastro-intestinal tract 
inflammation and a reduction in lipid levels, which makes the model less 
suitable to study the role of DC CD40 in atherosclerosis. 
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Supplementary figures 

 
 
Supplementary Figure 1. Constitutive overexpression of CD40-signaling affects 
triglyceride levels 
(A) Mice with comparable triglyceride levels were selected from CD40wt (n=7) and 
CD40ca (n=6) ldlr-/- chimeras to analyze atherosclerotic lesion formation independent 
of triglyceride level. (B) Lesion formation in hematoxylin and eosin stained sections 
from aortic arch and root was quantified from mice selected in A. Error bars represent 
mean ± SEM. *, p < 0.05. 
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General Discussion 

The aim of this thesis was (1) to better understand the impact of 
different DC subsets in atherosclerosis, (2) to study whether the 
hyperlipidemic milieu, associated with atherosclerosis, influences DC function, 
and (3) to explore new strategies to modulate DC function in order to 
ameliorate disease. 
 
Goal 1: Dissecting the role of DC subsets in atherosclerosis 

Genetic approaches aimed to expand or deplete the complete DC pool 
provided disappointing results as these interventions did not influence 
atherosclerosis burden (1). However, DCs were also found to influence 
cholesterol modulation (1) along with controlling myelogenesis (2), masking any 
potential role of DCs in atherogenesis. In addition, depleting the complete DC 
population might result in a net neutral effect as both protective as well as 
detrimental DC processes are lost. Therefore studies unraveling DC subset 
specific contributions to atherosclerosis are necessary. 
 
A role for the CD8+DC subset and cross-presentation? 

Research on T cell responses in atherosclerosis has so far mainly 
focused on CD4+ T cell responses, nevertheless there are also indications for a 
role of CD8+ T cells in vascular inflammation. CD8+ T-cells can be detected in 
the atherosclerotic plaque (3), at numbers that increase with disease 
progression, as well as in the arterial tertiary lymphoid organs (4). In advanced 
human lesions, they can even comprise ≥50% of the lymphocyte pool (5, 6).  
Moreover, even less is known regarding CD8+ T cell priming in atherogenesis. 
In that sense, the CD8+ DC subset is of particular interest, as they possess the 
unique ability to prime cytotoxic CD8+ T cell responses to exogenous antigens 
via cross-presentation on MHC I molecules. In a cancer setting, CD8+DCs were 
shown to take up dead cell remnants from the tumor and elicit potent 
cytotoxic T cell responses that are essential for tumor clearance (7, 8). In analogy 
to tumors, the plaque also contains apoptotic/necrotic cell derived vesicles 
that may function as a substrate for cross-presentation in atherosclerosis. 
However, information on the impact of CD8+DCs in atherosclerosis and cross-
presentation in general was lacking. In Chapter 4, we therefore examined the 
impact of hematopoietic Batf3 deficiency in LDLr-/- mice. Loss of Batf3 induced 
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a selective loss of CD8+DC and CD103+ DCs, resulting in a severe defect in cross-
presentation. As atherosclerosis burden and composition was unaffected in 
these mice, our findings suggest that CD8+DCs and potentially cross-
presentation only play a minor role in the pathogenesis of atherosclerosis. 

 

Three possible conclusions can be drawn from our study.  
1. Cross-presentation of plaque derived peptides is irrelevant in the 

pathophysiology of atherosclerosis 
2. Cross-presentation of plaque derived peptides is relevant for 

atherosclerosis, but it is not mediated by Batf3 dependent CD8+ or 
CD103+DCs. 

3. Cross-presentation does play a role in atherosclerosis and is mediated 
by Batf3 dependent DCs, but its effects are counteracted by other 
protective functions of these DC subsets. 

 

Option 1: Cross-presentation of plaque derived peptides is irrelevant in the 
pathophysiology of atherosclerosis. 

CD8+DCs are abundantly present in the spleen and LNs, but are very 
scarce in the plaque. It is possible that plaque derived antigens for cross-
presentation are retained in the plaque and do not make it to LNs or spleen. 
Therefore, there is no possibility of cross-presentation of plaque neo-epitopes 
and likewise no contribution of cross-presentation to atherosclerosis 
progression. However, migratory and cross-presentation capable CD103+DC 
were shown to be present inside atherosclerotic lesions (9). These cells could 
therefore potentially sample and present antigen locally or migrate to draining 
LNs for cross-presentation or cross-dressing. However, and in analogy with our 
findings of Chapter 5 and 6, it may be that the CD103+DCs in the 
atherosclerotic plaque are dysfunctional and/or unable to migrate to LNs 
because of the high lipid environment. Nevertheless, as our Batf3-/- model 
targets both cell types we can rule out the alternative cross-presentation via 
CD103+DCs. 

 

Importantly, our data do not rule out a role for CD8+T cells in 
atherosclerosis, but indicate that the conventional MHC I presentation rather 
than cross-presentation is likely the way to influence CD8+ T cell responses in 
atherosclerosis. Conventional MHC I presentation primarily leads to 
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presentation of cytosolic antigens, such as viral components upon infection. As 
atherosclerosis has been associated with viral infections (e.g. cytomegalovirus, 
Epstein-Barr virus) (10), this might be an interesting topic for further research. 
Along the line of presenting cytosolic antigens, DCs are known to take up 
(modified) lipoproteins (11). Moreover, CD8+T cells recognizing lipoprotein 
derived epitopes, such as the ApoB100 peptide p210, have indeed been 
identified (12). Therefore, it is of interest to investigate whether lipoprotein 
constituents are able to leak into the cytosol of DCs and eventually end up in 
the conventional MHCI presentation pathway, leading to the generation of 
lipid-specific CD8+T cells.  
 
Option 2: Cross-presentation of plaque derived peptides is relevant for 
atherosclerosis, but it is not mediated by Batf3 dependent CD8+ or CD103+DCs. 

It is possible that deletion of the main cross-presenting DCs (CD8+ and 
CD103+DC) leads to compensation by other cell populations. Functional testing 
using OT-1 cells indicated we achieved >70% reduction of cross-presentation in 
our model. Nevertheless, we cannot completely rule out that the other 30% is 
still enough to induce atherosclerosis-relevant CD8+T cell priming. 
Interestingly, another non-dendritic cell population was recently described to 
have cross-presentation ability, the CD169+ marginal zone metallophilic 
macrophages (MPs) (13). Remarkably, these MPs seem able to generate CTLs 
with broader repertoires as compared to CTLs induced by CD8+DCs (14) (see also 
discussion disease related epitopes below). Moreover, CD169+ macrophages 
are present in the plaque and CD169 expression was shown to increase during 
(chronic) inflammation (15). Therefore, these MPs might just be the cell 
responsible for atherosclerosis-related Ag cross-presentation to CD8+T cells. 
One way to answer this question would be to study the CD169-DTR mouse in 
an atherosclerosis context. Moreover, it would be interesting to know whether 
cross-presentation is completely blunted in CD169-DTR Batf3-/- double 
knockout mice. However, one needs to be cautious in interpreting the results 
as CD169-DTR leads to deletion of CD169+ macrophages in the marginal zone 
as well as in the sinus, affecting not only the cross-presenting cells, thus 
potentially masking any effects of compromised cross-presentation on 
atherosclerosis. Another option would be to use a CD169-targetting adenoviral 
construct, as previously described to selectively target CD169+ metalophillic 
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macrophages (14), and employ this in the Batf3-/- LDLr-/-model. However, a 
drawback of this system is that repeated injection of the viral vector, necessary 
due to the chronic nature of atherosclerosis, might induce immune responses 
that will neutralize the viral vector, although this has to be investigated. 

Another point is that the OT-I/OVA system used to test the 
functionality of cross-presentation in our model is an atherosclerosis-unrelated 
model antigen system. Therefore, one could argue that this system does not 
truly reproduce the regulation of disease-specific immune responses. 
Unfortunately, there aren’t any atherosclerosis Ag-related tools available to 
solve this issue. For example, comparing atherosclerosis relevant cytotoxic  
T lymphocyte (CTL) priming responses requires the use of athero-epitope 
specific MHC multimers, which have not been generated so far. Interestingly, 
Hermansson et al developed a murine CD4+T cell hybridoma recognizing 
human ApoB100 (16), which was recently used to study MHCII presentation by 
pDCs (17). Generating a CD8+ T cell equivalent might help in understanding  
CD8+ T cell responses in atherosclerosis. 
 
Option 3: Cross-presentation does play a role in atherosclerosis and is mediated 
by Batf3 dependent DCs, but its effects are counteracted by other protective 
functions of these DC subsets. 

Finally, as Batf3 deficiency leads to complete lack of Batf3-dependent 
DC rather than affecting certain aspects of these cells it is possible that 
interference with the generation of pro-atherogenic CD8+T cell responses is 
counterbalanced by interference with possible atheroprotective effects of 
these DCs, resulting in a net effect that is neutral. In this regard it is of interest 
to mention that immunization with p210 yielded an atheroprotective effect 
through generation of atheroprotective CD8+ T cells (12). Another possibility is 
that the atheroprotective effect of losing the cytotoxic priming capacity of the 
CD8+DCs is counterbalanced by loss of the atheroprotective effect ascribed to 
CD103+DCs (9). 
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In summary, studies on DC subset specific roles in atherosclerosis are 
necessary but limited up to now.  Regarding pDCs, Sage et al confirmed a pro-
atherogenic role for pDC favoring the notion that pDCs are detrimental in the 
disease process (17). Interestingly, our work on the CD8+DC subset, using the 
genetic Batf3-/- model, (Chapter 4) showed no contribution of this subset to 
atherosclerosis. Furthermore, as our CD8+DC study as well as earlier work on 
pDCs did not observe any changes in cholesterol levels or myeloid cell 
populations, these observations indicate that both CD8+DCs and pDC are not 
the DC subsets responsible for the myeloproliferative or cholesterol 
modulating effects observed in the CD11c-DTR model. By exclusion this would 
mean that either DN DCs or monocyte-derived (mono)DCs are responsible. 
This underpins the diverse functions exerted by separate DC subsets in 
atherosclerosis and refines the rather gross insights obtained from CD11c DC 
depletion studies. Once again, this emphasizes the importance of precise 
models to be able to dissect the involvement of particular cell 
subsets/processes in disease. Unfortunately, lack of these specific tools 
hamper the investigation of other DC subsets (such as CD4+CD11b+ DC,  
CD4-CD11b+, and monocyte derived DCs) in atherosclerosis. In that respect, 
some progress was made by the work of Satpathy et al, as they identified the 
transcription factor Zbtb46 to be selectively expressed by cDCs, but not by 
pDCs, monocytes, macrophages, or other lymphoid or myeloid lineages (18). 
Even though Zbtb46 is also expressed on some non-immune cells, such as 
erythroid progenitors and endothelial cells, Zbtb46 promoter driven genetic 
approaches might help unravel the role of cDCs in the future.  
 
Goal 2: is DC function affected by hyperlipidemia? 

Recognition of danger signals by pattern recognition receptors (PRRs) 
is a pivotal step in DC maturation and activation and subsequent generation of 
innate and adaptive immune functions. DC subsets differ in the profile and 
activity of expressed PRRs, and hence in their innate/adaptive immune 
functions.   For instance, pDCs are crucial in host defense against viral and 
bacterial antigens through rapid secretion of large amount of cytokines, such 
as type I IFNs, upon TLR7 and TLR9 mediated recognition of pathogens (19, 20). 
cDCs on the other hand, are superior in T cell priming upon DC activation. PRR 
activity and expression is modulated by several stimuli present in the direct 



General Discussion | 9 

261 
 

microenvironment and immediate stimulation history, for example endotoxin 
tolerance upon secondary stimulation (21, 22), as is the case upon recovering 
from sepsis.  

Therefore, it is conceivable that exposure of dendritic cells to factors in 
the microenvironment influences DC signaling pathways which will impact on 
host immune responses against yeast, bacteria, viruses and cancer. In this 
regard, the literature on the effects of hyperlipidemia is somewhat 
controversial as studies describe DC activation or no effect by hyperlipidemia 
(23, 24), while others show that hyperlipidemia impairs the immune response 
against infections (25-27). For example, dyslipidemia was shown to interfere with 
CD8- cDC but not CD8α+ cDC responses by uncoupling of TLR-mediated 
signaling, a process in which oxLDL appeared to be the key player (28). Thus, 
impairment of DC maturation and function seems to be DC subtype specific. 
The contradictarory literature clearly demonstrates that the relevance and 
kinetics of lipid loading by DC subsets and the underlying mechanisms are not 
completely understood. Moreover, studies investigating the influence of 
hypercholesterolemia on the pDC subset are lacking. In Chapter 5, we 
therefore studied the influence of lipoproteins on human pDC functionality. 
We were able to demonstrate that human pDCs accumulate lipoproteins, 
resulting in dampening of CpG induced maturation, decreased cytokine 
secretion and failure to mount effective Th cell polarization in vitro. Effective 
incorporation of oxLDL by pDCs is in line with previous findings, however in 
contrast to our findings oxLDL exposure in vitro did not lead to altered surface 
expression of maturation markers in that study (24). This discrepancy could be 
due to the fact that we used human pDCs and human lipoproteins compared 
to the use of pDCs isolated from C57Bl6 mice. Although mouse and human 
pDCs share many characteristics, such as expression of TLR7 and TLR9 and 
their production of high amounts of type 1 IFN upon pathogen exposure, they 
are not identical. For example, they differ in expression of CD11c, CD123 and 
TLR8 (29).   Therefore, extrapolating the results from murine models (in vitro or 
in vivo ) to human diseases is sometimes difficult.  

 

Another note of caution relates to the context.  Obviously, the local 
pDC microenvironment in vivo under conditions of atherosclerosis and/or 
hyperlipidemia is much more complex than plain oxLDL exposure in cell 
culture. In addition, one could wonder whether DC get into close contact with 
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oxLDL as is the case in culture. Indeed, pDCs are relatively scarce in the 
atherosclerotic lipid-rich plaque, however they are also present in blood, which 
is the transport route of lipoproteins, and in LNs, which drain from lipid rich 
areas such as atherosclerotic lesions. Therefore, it will be of interest to 
investigate whether the effects of hyperlipidemia on pDCs seen in vitro also 
hold true in vivo. 

While (ox)LDL interferes with TLR7 and 9 induced pDC-activation, our 
preliminary data indicate that oxLDL does not interfere with CpG uptake or 
binding to TLR9. Thus, interference probably takes place further downstream 
in the TLR signaling cascade, although the mechanism of action remains 
elusive. Interestingy, oxLDL binds to several pDC surface receptors, such as 
BDCA2, dendritic cell immune-receptor (DCIR), CXCL16 or immunoglobulin-like 
receptor 7 (ILT7)), which were shown to regulate/impair type I IFN production 
(30-33). Another option may be through oxLDL induced uncoupling of TLR-NF-κB 
signaling, as has been described for dyslipidemia-induced impairment of  
CD8- DC (28) and macrophage (34) activation. Whether oxLDL also interferes with 
TLR signaling in other immune cells or with activation induced by other 
receptors important in host defense, such as CD40, remains to be elucidated. 
In addition oxLDL may influence the TLR response by acting on nuclear 
receptors, such as LXR or PPAR. Transcriptome analysis studies are currently 
underway to unravel the relevant pathways by which oxLDL tones TLR7/9 and 
pDC activation.  

As lipids have a pronounced effect on human pDCs in vitro we were 
also interested in studying the effect of hyperlipidemia on DC subsets in an in 
vivo mouse model. In Chapter 6 we therefore mapped the early adaptive 
effects of DCs to hyperlipidemia in vivo. High fat diet feeding of LDLr-/- mice 
resulted in a rapid increase of myeloid dendritic cell progenitor (MDP) 
frequency, but did not result in increased DC numbers in peripheral 
compartments, such as blood and lymphoid organs. High blood cholesterol 
resulted in increased granularity of classical DC subsets, correlating with 
intracellular lipoprotein accumulation. Lipid loading was most apparent in the 
CD8-DC population and interestingly only the lipid-loaded fraction of the  
CD8-DC population showed increased ROS activity, costimulatory molecule 
expression and cytokine production, but impaired CD4+ T cell priming. The 
latter is in line with previous observations in ApoE-/-, where also reduced T cell 
proliferation was observed (28). However and in contrast to our results, the 
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authors also described a reduction in cytokine production and costimulatory 
molecule expression by CD8-DCs. This discrepancy may be due to the fact that 
the authors fed ApoE-/- mice a HFD for 10 weeks, therefore studying the long-
term effects in a more aggressive model, while we studied rather short-term 
effects in a milder model (3 wks diet in LDLr-/- mice). It may be that the long-
term exposure eventually leads to exhaustion of the CD8-DCs, leading to 
reduced cytokine production and costimulatory molecule expression. In 
addition, Shamshiev et al studied the whole CD8-DC population, while we were 
able to show that only the lipid-laden fraction of the CD8-DCs show impaired 
function. Transcriptome analysis (in progress) of these cells is therefore of 
biological interest. 

 

Our data from Chapters 5 and 6 clearly indicate that lipoprotein 
exposure in vitro or in vivo impairs intrinsic functions of DC subsets, such as 
pDCs and CD8- DCs. As hyperlipidemia interferes with dendritic cell immune 
responses, this may have implications for (TLR driven) host defense against 
pathogens and trauma, but also for tolerance to self, resulting in vulnerability 
to infections, increased cancer risk or development of auto-immune diseases 
(35, 36). 

Indeed epidemiological and basic studies associate 
hypercholesterolemia with cancer risk (37-40). Although some papers ascribed 
this to a direct impact of cholesterol (metabolites) on tumor growth (41, 42), it 
may very well be that a hypercholesterolemic microenvironment also 
compromises DC responses to eradicate cancer cells. In addition, the tumor 
microenvironment is known to be tolerogenic, reducing effectiveness of 
immune responses that target the tumor. As the tumor is often lipid rich this 
hyperlipidemic micromilieu may therefore induce hyporesponsiveness of 
certain DCs contributing to impaired T cell priming and tumor clearance. 
Therefore, lowering cholesterol levels might not only reduce the risk of 
cardiovascular events, but also lower the risk of cancer. Of note, we have to be 
cautious in using statins as additional therapy in cancer, as these have anti-
inflammatory and immunomodulating properties that might worsen cancer 
outcome. Regarding cytotoxic T cells, cross-presentation has been implicated 
as an important feature in priming CD8+ T cells for tumor immune responses  
(7, 43-45). Concordant with the observation by others on general CD8+DC function 
(28), our results from Chapter 4 indicate that cross-presentation by CD8+DC is 
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not affected by hyperlipidemia. Thus, priming of tumor-specific cytotoxic 
CD8+T cells by CD8+DCs in the periphery likely is not affected hyperlipidemia, 
whereas the effect of the lipid-rich tumor environment on the CD8-DC subset 
needs further investigation. 

As said, impaired DC activation and functionality by excessive (ox)LDL 
in the DC environment may also compromise the host defense against 
infections. In line with our data, dyslipidemia in general was shown to increase 
host susceptibility to yeast (26), protozoa (28), viruses (27) and  bacteria (25) in mice, 
and was suggested to result in impaired contact hypersensitivity  and delayed-
type hypersensitivity in Apolipoprotein E-/- mice (46). These findings can at least 
in part be explained by our results on the effects of lipids in DCs. Whether 
hyperlipidemia also renders humans more susceptible to infections needs 
further investigation. Of note, hyperlipidemia is often accompanied by lower 
or dysfunctional HDL. HDL can further affect immune responses as it indirectly 
influences inflammatory processes, for example HDL was shown to act anti-
inflammatory on endothelial cells and smooth muscle cells (47, 48) and to have 
both anti- and pro-inflammatory effects on macrophages (49, van der Vorst, in 
press).  

One could argue that the dyslipidemia-induced reduction in DC 
immune responses would be beneficial for atherosclerosis. However, besides 
initiating immune responses, DCs also regulate anergy and immune tolerance, 
for example by thymic selection of T cells or by priming Tregs in the periphery 
(50). As Tregs have strong protective properties (51) in cardiovascular disease, 
especially in atherosclerosis, suppression of their formation by impaired DC 
function may be detrimental in the disease process. Along this line, Flt3 
deficiency resulted in accelerated atherosclerosis attributed to lower Treg 
numbers induced by loss of protective CD103+DC (9). However, little is known 
regarding which DC subsets act tolerogenic and their mechanisms of action.  
In addition to inference with tolerance induction, hyperlipidemia-induced 
impairment of emigration of matured/activated DCs from plaque to secondary 
lymphoid organs will lead to entrapment of DCs in the atherosclerotic plaque. 
As the plaque environment, not only contains lipids but also many pro-
inflammatory factors, these might overrule the lipid-related dampening effect 
and therefore promote atherosclerosis. Finally, depletion of DCs using CD11c-
DTR mice indicated that interference with immune function is not necessarily 
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beneficial for atherosclerosis (1), but involves a delicate and complex balance of 
different (immune) mechanisms. 

 
In conclusion, hyperlipidemia leads to impaired immune function in 

certain DC subsets, such as pDC and CD8-DCs. Whether these findings have 
implications for human health and disease remains uncertain, therefore 
further research is needed to understand the effect of hyperlipidemia-induced 
reduction of DC function and their implications for host defense and disease. In 
that regard, it will be of particular interest to analyze the phenotype and 
functionality of DCs as well as the association between cholesterol levels and 
infections, cancer and auto-immune diseases in patients with familial 
hypercholesterolemia or between patients with high and low cholesterol levels 
in general. 
 
Goal 3: Modulating DC activity to ameliorate atherosclerosis   

As dendritic cells play crucial roles in various diseases, it is, from a 
therapeutic point of view, important to know whether and how DC function 
can be modulated to improve disease outcome. Here we discuss three 
important levels of DC modulation to influence disease outcome. 
 

a. Influencing DC differentiation/function post-transcriptionally (Chapter 7)  

b. Influencing DC costimulation (Chapter 8) 

c. DC-based immunization/vaccination (not in this thesis) 

 
a. Influencing DC differentiation/function post-transcriptionally (chapter 7)  

DC differentiation and function is a complex process regulated at 
several levels: transcriptionally, via transcription factors (52), post-
transcriptionally via miRNA (53), such as miR-24, and likely also by RNA binding 
proteins. RNA binding proteins are emerging as key regulators of cell 
differentiation. Recently, the RBP Quaking (QKI) has been identified as a 
master regulator of differentiation and/or function of lymphocytes (54), vascular 
smooth muscle cells (55) as well as monocytes/macrophages (de Bruin, in press). 
As dendritic cells partly share their ontogeny and have overlapping functions 
with macrophages, it is plausible that QKI also functions as a master switch in 
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DC differentiation and function.  In Chapter 7, we have studied whether DC 
function can be manipulated at a post-transcriptional level by quenching RNA-
binding protein Quaking (QKI) expression and whether this affects 
atherosclerosis. For this purpose we used a CD11c-restricted QKI deletion 
model. Our data indicate that loss of QKI in DCs reduces DC development, 
skews DC differentiation and T cell profile towards CD8+ and reduces pro-
inflammatory cytokine production by DCs. The observed reduction in DC 
generation is in line with previous literature on oligodendrocytes (56), vSMCs (55) 
and monocytes/macrophages (de Bruin et al, Nat Commun, 2016) describing 
decreased proliferation/differentiation of these cells, indicating QKI as a 
master regulator of the cell cycle. Furthermore, QKI deficiency in these cells 
also reduced their migratory capacity. Therefore, it is likely that also DC 
migration is impaired by blunted QKI expression. As migration is an important 
feature in DC biology, this is an interesting topic for further research. In 
addition, vSMCs from Qkvb mice show reduced ECM production, whereas QKvb 

macrophages have reduced foam cell formation. In line, we describe a 
decrease in DC cytokine production upon QKI loss, indicating that QKI is 
involved in specialized cell functions.  

Loss of Quaking in the total DC population reduced atherosclerosis. 
However, loss in specific DC subsets may influence atherosclerosis very 
differently. In this regard, the results from Chapter 4, suggest that studying QKI 
in pDCs or CD8-DCs is of more importance for atherosclerosis then studying the 
CD8+DCs. Of not contribution of different subset could be studied by using 
different promoter driven cre mice (not all are available yet): Siglec H/BDCA2-
cre  (pDCs), Zbtb46-cre (cDCs), Batf3-cre (CD8+DCs) . However, as our data 
indicate that QKI impacts on DC development and differentiation, the effects 
on DC functionality may be blurred because of defective DC differentiation. 
Therefore temporal control of QKI expression is preferred, which can be 
achieved by using lentiviral vectors or CreER models. 

 
Quaking follow-up 

Models using full QKI deficiency are probably not the best way to go as 
the murine QKI gene generates different QKI protein isoforms through 
alternative splicing. These isoforms (e.g. Qk-5, Qk-6 and Qk-7) partly reside in 
distinct cellular compartments. Depending on its location and the presence of 
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QKI responsive targets, each isoform may regulate distinct biological 
processes, even within the same cell (57-59). Therefore it is of importance to 
elucidate the role of the separate isoforms in the different DC subsets. This 
can, for example, be achieved by using lentiviral vectors targeting different QKI 
isoforms in vitro. 

Another problem however, is that QKI proteins are ubiquitously 
expressed and have a broad set of functions, therefore targeting of QKI in DCs 
specifically without side effects will be therapeutically challenging. Thus, a 
better strategy to study QKI function is to focus on finding the molecular (DC 
specific) targets of QKI. This could be achieved by combining RNA-sequencing 
(RNAseq) of QKI deficient and control DCs with in silico analysis. One option 
would be to filter RNAseq results for targets containing a Quaking responsive 
element (QRE) and subsequently screen these for DC relevance (and proximity 
to a splicing construct).  

 
In conclusion, QKI may represent an interesting target for therapy as it 

has the ability to influence key DC functions. Interestingly, QKI deficiency in 
DCs reduced its pro-inflammatory cytokine production in vitro and ameliorated 
the Th17/Treg balance in vivo, therefore this RBP not only holds potential for 
atherosclerosis therapy but is also an interesting target for other inflammatory 
and auto-immune diseases (60). However, extensive research into the molecular 
targets of QKI and more in-depth knowledge on its biological functions is 
required to unravel and validate QKI RBPs potential as a therapeutic target.  
 

b. Influencing DC costimulation (chapter 8 ) 

Another way to influence DC functions is by modifying DC 
costimulatory abilities. In Chapter 8, we investigated the role of dendritic cell 
CD40 in atherosclerosis, through a gain of function approach using mice with 
constitutively active CD40 signaling in CD11c+ DCs. Previous studies showed an 
anti-inflammatory state in mice with hematopoietic CD40 deficiency or with 
hematopoietic MHCII+ cells expressing TRAF6 signaling defective CD40, as 
judged from the reduced effector T cell levels (61, 62). As these mice were 
protected against atherosclerosis, we actually expected increased, not reduced 
plaque formation in our constitutive active CD40 model. However, mice with 
constitutively active CD40 had strongly reduced plaque size, an effect that 
could be attributed to the decreased cholesterol levels resulting from strong 



9 | General Discussion 

268 
 

intestinal inflammation. In general, these data indicate that the atherosclerosis 
outcome of altering CD40 activity strongly depends on the context. Moreover, 
we confirmed that modifying CD40 activity in DCs can profoundly affect the 
status of the immune system, rendering CD40 a strong candidate for targeted 
immune therapy. As systemic anti-CD40 intervention is not feasible, more 
specific approaches are required. In this regard, modulation of TRAF6 signaling 
by CD40 through genetic approaches or through peptides that interfere with 
TRAF6-CD40 binding is more specific and resulted in a strong reduction of 
atherosclerosis (61). Although this method might circumvent the problems with 
thromboembolemic events seen using anti-CD40 antibodies, it is likely that this 
approach is still too broad to use in a clinical setting as long-term treatment 
during atherosclerosis could compromise the patients immune system. Cell 
specific targeting might resolve this issue, for example by targeting specific DC 
subsets using specialized viral vectors, although this has to be investigated. Of 
note, the CD40/LMP construct might by of interest in the development of 
effective DC vaccination in cancer, where a maintained pro-inflammatory state 
of the Ag-loaded DC is of critical importance. 
 

c. DC-based immunization/vaccination 

Vaccination is one of the greatest advances in human health in the past 
100 years. Given the central role of the immune system in atherosclerosis, it is 
of therapeutic interest to develop immunization strategies that fine-tune these 
responses towards a beneficial clinical outcome with reduced 
atherothrombotic events. Current studies focus on dampening pro-atherogenic 
immune responses, activating atheroprotective responses or neutralizing 
atherosclerosis promoting agents. Immunization of experimental animals 
against known endogenous atherosclerosis-related antigens such as 
apolipoprotein fragments (63-65) and modified LDL (66-68) demonstrated 
atheroprotective effects. The choice of adjuvants as well as the route of 
administration used, are critical factors in order to achieve efficient and safe 
vaccination. As DCs are potent antigen-presenting cells they can be used as an 
alternative route for delivery of antigens to the host in order to provoke an 
efficient immune response (69). This can be achieved by loading DCs with a 
specific antigen ex vivo and subsequently transferring them in recipients (70). 
Because of the potential of DCs to either stimulate or dampen immune 
responses they can be used to influence both pro-atherogenic as well as anti-
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atherogenic responses. In this regard, Habets et al used LPS as a maturation 
marker in oxLDL-loaded DC vaccination. Transfer of these DCs, resulted in 
oxLDL-specific T cells with a reduced Th1 profile and  increased titers of 
protective oxLDL IgG, leading to diminished atherosclerosis (71). Similarly,  
Hermansson et al  have rendered ApoB100 peptide pulsed DCs tolerogenic by 
incubation with IL10 and tested their vaccination potential in mice, observing 
significantly reduced atherosclerosis (72).  

Despite the incomplete understanding of DC functions in 
atherosclerosis, DC-based immunotherapy may be a valid option in the 
prevention or treatment of atherosclerosis. However, before DC vaccination 
can be used as a therapy some aspects have to be critically addressed. What 
are the best antigens, adjuvants etc. to use? Is DC vaccination effective in 
already established atherosclerosis? What is the ideal time point for 
vaccination? Is DC vaccination still effective in aged people (73)? Does it affect 
the patients’ comorbidities or defense against pathogens? Is DC vaccination 
compatible with current medication? Furthermore, data from Chapters 5  
and 6 suggest that DC vaccination may be influenced by the hyperlipidemic 
context of the patient. In addition, Chapter 4 indicates that the CD8+DCs are 
not the subset of choice for the development of DC-vaccination in 
atherosclerosis. 
 
Conclusions and future perspectives 

The continuing impact of atherosclerosis on morbidity and mortality in 
the western society, despite the advances in its diagnosis and therapy, 
indicates the importance to understand its pathogenesis in order to enable the 
development of effective treatment/prevention. New therapeutic approaches 
might induce selective suppression of pro-atherogenic immune responses or 
activation of anti-atherogenic responses to treat atherosclerosis. In that 
respect, knowledge regarding DCs as immune regulators is of particular 
interest. The role of DCs in atherosclerosis development and progression has 
been studied quite extensively in recent years. Nevertheless, DC subset 
contribution to atherosclerosis and their mechanisms of action remain poorly 
understood. In this thesis we were the first to describe that CD8+DCs and the 
process of cross-presentation are not major contributors to atherosclerosis 
progression (Chapter 4). Although we cannot completely exclude that cross-
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presentation via other subsets is implicated in the pathogenesis of 
atherosclerosis, our data seem to disqualify CD8+ DC cross presentation as a 
target for intervention.  This thesis also explored the potential modulators of 
DC differentiation and function relevant to atherosclerosis, such as 
hypercholesterolemia, CD40 and the RNA-binding protein Quaking, in human 
cells as well as in mouse disease models. We showed that hyperlipidemia leads 
to lipid loading in pDCs and subpopulations of cDCs, leading to 
hyporesponsiveness and reduced DC functionality (Chapters 5 & 6). These 
observations indicate that hyperlipidemia could have profound implications to 
host defense against pathogens and cancer, as well as to tolerance to self. 
Further investigation (RNA-sequencing, functional assays, etc.) is needed to 
unravel the mechanism of lipid loading, quenching of immune responses, as 
well as the total impact on the human immune system and diseases. Our 
attempts to modulate DC function at a post-transcriptional level establish a 
role for the RNA-binding protein (RBP) Quaking (QKI) in DC development and 
function and identified it as an interesting therapeutic target in the treatment 
of atherosclerosis and/or other inflammatory or auto-immune diseases 
(Chapter 7). However, knowledge regarding this emerging class of expression 
pattern regulators is still in its infancy, and strong research efforts are needed 
to unravel the targets of QKI or to discover the role of the different QKI 
isoforms in the various subsets of both murine and human DCs. Although these 
RBPs or their downstream targets hold promise for new therapeutic options, 
more knowledge regarding its mechanism of action is required before one can 
start developing QKI based CVD therapies. Finally, we show that constituve 
activation of CD40 signaling in DCs reduced atherosclerosis by strong intestinal 
inflammation resulting in reduced cholesterol levels, a critical driver of 
atherosclerosis (Chapter 8).  

In conclusion, despite the efforts of recent years to characterize DC 
biology in the context of hyperlipidemia associated atherosclerosis, further 
studies defining DC (subset) functionality are required before targeted DC 
therapy will become a valid and safe option to treat cardiovascular diseases. 
This thesis provides novel insights into the biology of DC subsets in 
atherosclerosis, establishing  the profound impact of hypercholesterolemia on 
DC function and a minor relevance for cross-presentation and CD8+DCs in the 
disease process. Moreover, we identified two interesting avenues for further 
research in DC modulation as potential therapy for cardiovascular disease. 
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Summary 
Cardiovascular diseases are still the leading cause of mortality 

worldwide. Its most common underlying cause, atherosclerosis, is a lipid-
driven chronic inflammatory disease of the arterial wall, involving both innate 
and adaptive immune responses. Specialized immune cells such as monocytes, 
macrophages, granulocytes, B and T cells, exert a range of inflammatory 
processes that drive disease progression. Data from the last decade indicate 
that another set of immune cells, the dendritic cells (DCs), known immune 
orchestrators, are involved in the disease process. DCs are present in 
atheroscleris-prone regions in healthy vessels and accumulate during disease 
progression. Moreover, they are in close contact with T cells inside the 
atherosclerotic lesion and were shown to present prototype/model antigens to 
CD4+T cells in aortic explants. Although dendritic cells hold potential for the 
development of new efficient therapies, knowledge regarding the mechanisms 
by which DCs, in particular DC subsets, influence the pathogenesis of 
atherosclerosis is largely lacking. In addition, how DC subsets function in an 
atherosclerosis relevant hyperlipidemic environment and how DCs can be 
efficiently modulated to improve disease outcome remain poorly understood. 
Consequently, this thesis focuses on elucidating the contribution of DC subsets 
in hyperlipidemia-associated atherosclerosis and discusses potential 
modulators of DC differentiation and function relevant to atherosclerosis. In 
Chapter 2, we reviewed the current knowledge on the pathogenesis of 
atherosclerosis as a chronic inflammatory disorder, discussing the involvement 
of different innate and adaptive immune cells, as well as their interactions. 
Chapter 3 summarizes the current view on the role of particular DC subsets in 
cardiovascular diseases, identifying underlying patterns, gaps in knowledge, as 
well as describing their potential as therapeutic targets in CVDs. In Chapter 4, 
we made use of the Batf3-/- model to investigate the role of CD8+ cDCs, and 
more general cross-presentation in atherosclerosis. As CD8+cDC deficiency did 
not alter atherosclerosis outcome, we concluded that CD8+cDCs and cross-
presentation exerted by this subset play only a minor role in atherosclerosis. 
As hyperlipidemia, a key risk factor for atherosclerosis, was suggested to 
interfere with DC function we investigated its impact on DC progenitors, on 
mature DC subsets and on their activation status and function in Chapters 5 
and 6. Chapter 5 focuses on the impact of hyperlipidemia on human pDCs. We 
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demonstrated that human pDCs engulf lipids when exposed to excessive 
amounts of LDL or oxLDL in vitro, resulting in ablation of Toll-like receptor 7 
and 9 induced pDC activation as witnessed by quenched production of pro-
inflammatory cytokines as well as by downregulation of maturation markers. 
Eventually, oxLDL- abrogation of pDC activation resulted in impaired CD4+ T 
cell polarization. In Chapter 6, we addressed the early adaptive effects of 
hypercholesterolemia in DC (precursor) homeostasis, on DC lipid accumulation 
and on its consequences for T cell priming capacity in vivo. Our results indicate 
that HFD feeding augments MDP proliferation and numbers, but did not affect 
DC subset numbers in lymphoid compartments. However, HFD resulted in lipid 
accumulation by CD8-, and to a lesser extent CD8+ conventional DCs (cDC), but 
not plasmacytoid DCs (pDCs). Lipid loading resulted in increased costimulatory 
molecules expression, accumulation, and baseline TLR activation-associated 
cytokine release (IL-1β, IL-6, TNF-a) by CD8- cDCs, but caused a reduction in 
CD8-DCs’ capacity to stimulate naïve CD4+ T cells. Whether hyperlipidemia 
results in impaired host’s defense against pathogens in humans remains 
elusive. In Chapters 7 and 8, we investigated potential targets to modulate DC 
function in order to improve atherosclerosis disease outcome. Chapter 7 
focused on the role of the RNA-binding protein Quaking (QKI) in DC 
development and function, and its impact on atherosclerosis. We used a model 
in which QKI was conditionally deleted in CD11c expressing DCs. QKI deficiency 
resulted in reduced DC generation and proinflammatory cytokine production 
by DCs in vitro and skewed DC differentiation towards CD8-DC in vivo. CD11c-
restricted loss of QKI indirectly resulted in a CD8+ shifted T cell profile and 
decreased CD4+ Th17 to Treg ratio. In the context of atherosclerosis, CD11c 
restricted loss of QKI expression attenuated plaque development and necrotic 
core size formation, indicating the potential as a target for therapy. In Chapter 
8, we show that constituve activation of CD40 signaling in DCs reduced 
atherosclerosis by strong intestinal inflammation resulting in reduced 
cholesterol levels, a critical driver of atherosclerosis. Finally, Chapter 9 
summarizes and discusses the most important findings of this thesis and 
defines the most relevant outstanding questions and future perspectives.  
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Altogether, this thesis provides novel insights into the biology of DC 
subsets in atherosclerosis, establishing  the profound impact of 
hypercholesterolemia on DC function and a minor relevance for cross-
presentation and CD8+DCs in the disease process. Moreover, we identified two 
interesting avenues for further research in DC modulation as potential therapy 
for cardiovascular disease. 
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Samenvatting 
Hart- en vaatziekten (HVZ) zijn tot op heden nog steeds de 

belangrijkste doodsoorzaak wereldwijd. Het meest voorkomende 
pathologische proces dat hieraan ten grondslag ligt is atherosclerose. 
Atherosclerose is een lipide gedreven chronische ontstekingsziekte van de 
vaatwand, waarbij zowel aangeboren als verworven immuunreacties een grote 
rol spelen. Gespecialiseerde immuuncellen, zoals monocyten, macrofagen, 
granulocyten, B en T cellen, zijn verantwoordelijk voor een groot aantal 
ontstekingsreacties die samen bijdragen aan de progressie van de ziekte. Uit 
bevindingen van de laatste tien jaar blijkt dat ook een andere groep 
immuuncellen, namelijk de dendritische cellen (DCs), betrokken zijn in het 
ziekteproces. DCs zijn sleutelfiguren in het regelen van het immuunsysteem en 
het koppelen van aangeboren en verworven immuunreacties. Ze zijn aanwezig 
in atherosclerose-gevoelige gebieden van gezonde bloedvaten en stapelen 
daar op naarmate de ziekte verergert. Bovendien worden ze in 
atherosclerotische leasies aangetroffen in nauw contact met T cellen en heeft 
men aangetoond dat ze in gedissecteerde aortas in staat zijn om 
prototype/model antigenen te presenteren aan CD4+ T cellen. Hoewel 
dendritische cellen potentieel hebben voor het ontwikkelen van nieuwe 
efficiënte behandelingen ontbreekt voor een groot deel de kennis van de 
mechanismen waarbij DCs, en in het bijzonder hun specifieke subsets, de 
pathogenese van de ziekte beïnvloeden. Verder is er nog maar weinig bekend 
over hoe DC subsets functioneren in een ovematig vetrijke omgeving (relevant 
in atherosclerose) en over hoe DCs efficiënt kunnen worden beïnvloed om de 
uitkomst voor de patient te verbeteren. Dit proefschrift focust dan ook op de 
bijdrage van DC subtypes tot hyperlipidemia-geassocieerde atherosclerose. 
Daarnaast bespreken we potentiële regelmechanismen van DC ontwikkeling en 
functie relevant voor de behandeling van atherosclerose. In hoofdstuk 2 geven 
we een overzicht van de stand van zaken over de pathogenese van 
atherosclerose als chronische ontstekingsziekte. Hierbij wordt zowel de 
betrokkenheid van,  alsook de onderlinge interacties tussen, cellen van het 
aangeboren en verworven immuunsysteem besproken. Hoofdstuk 3 beschrijft 
de huidige kennis over de rol van DC subtypes in HVZ. Hierbij ontrafelen we 
onderliggende patronen en brengen we tekortkomingen en mogelijkheden van 
DCs als therapeutische targets in HVZ in kaart. In hoofdstuk 4 maken we 
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gebruiken van het Batf3-/- model om de rol van CD8+cDCs, en meer algemeen 
kruis-presentatie, in atherosclerose te bestuderen. Gezien verlies aan 
CD8+cDCs en hun kruispresentatie geen impact hadden op atherosclerose 
kunnen we besluiten dat deze slechts een beperkte rol spelen in 
atherosclerose. Aangezien hyperlipidemie, een belangrijke risicofactor van 
atherosclerose, mogelijks een invloed heeft op DC functie hebben we het 
effect hiervan op DC voorlopercellen, mature DC subsets, DC activatie status 
en hun functies bestudeerd in hoofdstukken 5 en 6. Hoofdstuk 5 focust op de 
impact van hyperlipidemie op humane plasmacytoide DCs (pDCs). We tonen 
aan dat human pDCs lipiden opnemen wanneer ze in vitro worden blootgesteld 
aan overmatige hoeveelheden LDL of oxLDL. Dit resulteert in een remming van 
Toll-like receptor 7 en 9 geïnduceerde activatie van pDCs, leidend tot 
verminderde productie van pro-inflammatoire cytokines alsook een verlaagde 
expressie van maturatie merkers. Uiteindelijk zorgt de blokkering van pDC 
activatie door oxLDL voor verminderde CD4+T polarisatie. In hoofdstuk 6 
onderzoeken we in vivo de vroege adaptieve effecten van 
hypercholesterolemie op DC (voorloper) homeostase, opstapeling van lipiden 
door DCs en de gevolgen voor hun T cel priming capaciteit. Onze resultaten 
tonen aan dat vetrijke dieet (HFD) zorgt voor een verhoging van monocyt en 
dendritische cell voorloper (MDP) deling en aantallen, maar geen invloed heeft 
op DC subset aantallen in lymfoïde compartimenten. Echter, HFD resulteert 
wel in opstapeling van lipiden in CD8-cDCs en in mindere mate ook CD8+cDCs, 
maar niet in pDCs. Lipide lading in CD8-cDCs zorgt voor een verhoogde 
expressie van costimulatoire moleculen en verhoogde secretie van cytokines 
(IL-1β, IL-6, TNF-α), maar veroorzaakt een vermindering van de capaciteit CD8-

cDCs om naïeve CD4+ T cellen te stimuleren. Desondanks moet nog bevestigd 
worden of de effecten van hyperlipidemie leiden tot een verminderde afweer 
tegen ziekteverwekkers bij de mens. In hoofdstuk 7 en 8 bestuderen we 
potentiële mechanismen om DC functie te regelen om zo atherosclerose te 
verbeteren. Hoofdstuk 7 focust op de rol van de RNA-bindende eiwitten 
Quaking (QKI) in DC ontwikkeling en function, en hun impact op de 
ontwikkeling van atherosclerose. We gebruiken een model waarbij QKI 
conditioneel wordt verwijderd in cellen die CD11c tot uitdrukking brengen. 

In vitro resulteert QKI deficiëntie in een afname van DC ontwikkeling 
en pro-inflammatoire cytokine productie door DCs. In vivo duwt CD11c-QKI 
deletie de differentiatie van DC in de richting CD8-cDC en resulteert het 
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indirect in een meer CD8+ getint T cel profiel en een vermindere CD4+ Th17 
over Treg balans. In een context van atherosclerose leidt deletie van QKI in 
CD11c+ cellen tot een vermindering van plaque ontwikkeling en tot een 
kleinere necrotische kern. Dit wijst op een mogelijkheid voor QKI als doelwit 
voor therapie. In hoofdstuk 8 tonen we aan dat aanhoudende activatie van 
CD40 signalisatie in DCs atherosclerose vermindert door het induceren van 
ernstige intestinale inflammatie resulterend in cholesterol verlaging, een 
belangrijke factor in atheroslcerose. Tot slot bediscussiert hoofdstuk 9 de 
meest opmerkelijke bevindingen van deze thesis en geeft het de meeste 
relevante openstaande vragen en toekomstperspectieven aan.  

Samenvattend, bieden de resultaten van deze thesis nieuwe inzichten 
in de biologie van DC subtypes en hun rol in atherosclerose, duidend op de 
grote invloed van hypercholesterolemie op DC functie en draagt het bij aan de 
kennis betreffende de rol van kruispresentatie en CD8+cDCs in het 
ziekteproces. Bovendien definieren we twee interessante mogelijkheden voor 
verder onderzoek naar het regelen van DCs als potentiële therapie voor hart- 
en vaatziekten. 
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Valorisation  
 
Cardiovascular diseases, more than a killer 

As mentioned previously, cardiovascular diseases (CVDs) are still the leading 
cause of mortality worldwide, accounting for 17.5 million deaths in 2012 
(World Health Organization, WHO). These numbers are even expected to rise 
to 24 million by 2030. Besides the enormous impact on human health, CVD 
also has a profound effect on healthcare costs. In the United States (US) alone 
CVD was responsible for 17% of national health expenditures in 2010 and this 
percentage is expected to increase dramatically in the coming years. Between 
2010 and 2030 medical costs of CVD in the US are projected to triple, from 
$273 billion to $818 billion (Heidenrich et al., 2011, Circulation). Importantly, 
CVD also impacts on the patietns social life as clinical events can lead to 
immobilization, brain damage etc. 
 
CVDs and their socio-economic impact can be combatted by multiple 
approaches. First, primary prevention is a key determinant as reduction of 
behavioural risk factors such as tobacco use, unhealthy diet, obesity, physical 
inactivity and alcohol abuse, will in the long run strongly diminish CVD 
incidence (WHO). Moreover, these factors can be addressed at low cost. 
Second, secondary prevention in people with already established disease 
should be addressed. Current treatment such as lipid lowering drugs (e.g. 
statins, ezetimide, fibrates), antihypertensive drugs (e.g. ACE inhibitors, AT 
receptor antagonists, beta-blockers) and antithromobtic therapy (e.g. aspirin, 
clopidogrel) have shown their effectiveness. Third, costly surgery (e.g. coronary 
bypass, valve replacement) sometimes is an option to treat CVD (WHO) and to 
reduce the risk of clinical complications. Fourth, improving (early) diagnosis 
and fine tune the appropriate treatment groups for tailored therapy,is 
important as today people are often only diagnosed upon an overt clinical 
event. Although progress in all of these areas has been made, CVD remains the 
major cause of death. Therefore, development of new therapies that show 
effectiveness, preferably at a low cost, is required.  
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CVD reduction by targetting atherosclerosis 

The main underlying cause of most CVDs is atherosclerosis. A better 
understanding of the complex disease pathology is necessary in order to 
discover new therapeutic options, indicating the importance of fundamental 
research in parallel to applied research. Here, we discuss some contributions of 
this thesis towards valorization possibilities and discuss future perspectives. 
 
CD8+DCs can be excluded as interesting therapeutic target for atherosclerosis 

The role of the immune system in atherosclerosis has been studied extensively, 
however research on dendritic cells (DCs) is relatively new. DCs hold potential 
as therapeutic target as they play a major function in regulating the immune 
system. However, they are a heterogenous population of cells and each subset 
probably contributes to the disease in a different way. Except for pDCs, little is 
known regarding DC subset contribution to atherosclerosis. This thesis 
provides new insight in the DC biology in atherosclerosis, as our findings in 
Chapter 4 indicate that CD8+DCs and possibly cross-presentation are at most 
minor contributors to atherosclerosis progression. In addition, DCs have been 
implicated in regulating cholesterol homeostasis, we here show that CD8+DCs 
are not the DC subset responsible for this effect. Altogether, our study 
suggested that CD8+DC can be exluded as interesting therapeutic target option 
for atherosclerosis treatment.  
 
Quaking as potential therapy for inflammatory and auto-immune diseases 

In Chapter 7, we show that QKI deficiency was able to reduce atherosclerosis, 
suggesting it has potential as a new target for treatment of vascular disease. 
Moreover, loss of QKI augmentated Treg and reduced Th17 T cell numbers. 
Both cell types and their balance are important in inflammation as well as 
auto-immune disease, rendering QKI also a possible candidate for the 
treatment of these disorders.  
 
Quaking isoforms are ubiquitously expressed and influence a wide range of 
cellular functions, making it difficult to specifically target certain cell types for 
therapy without inducing undesireable side effects. Therefore, identifying the 
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disease-relevant targets of Quaking will help to develop specific, efficient and 
safe therapy. We are currently analyzing RNA sequencing data that will provide 
us this new information. Moreover, delivery systems, like viral vectors, have 
greatly improved over the past years. Specific targeting of certain cell types by 
use of specially designed viral vectors may reduce the risk for off target effects. 
 
A possibility to implement Quaking targeting drugs into therapy may involve 
Quaking (or the Quaking target) gene therapy, in analogy to miRNA regulation 
or CRISPR/Cas9-based genome engineering in the treatment of cardiovascular, 
inflammatory or auto-immune diseases (Rincon et al., 2015, Cardiovascular 
Research). miRNAs have emerged as potential therapeutic targets in CVD as 
they are able to mediate quantitative and coordinate changes to the 
transcriptome of disease relevant gene sets. RNA-binding proteins like Quaking 
represent an additional level of control as they are also able to qualitatively 
influence the transcriptome. However, this approach also has its limitations as 
Quaking is ubiquitously expressed and is involved in the regulation of many 
critical processes (neural development and maintenance, myeloid cell 
regulation, smooth and cardiac muscle cell regulation). Therefore, influencing 
specific Quaking targets will be required in order to minimize side effects.  
 
Influencing CD40 signaling as a new generation of atherosclerosis therapy 

Inhibition of CD40-CD40L interactions strongly reduces atherosclerosis. 
However, complete inhibition of CD40-CD40L signaling is not therapeutically 
feasible as long-term treatment will compromise systemic immune responses 
and was shown to entail thromboembolic complications (Lutgens E, 2010, J Exp 
Med). Therefore, more specific approaches which induce fewer and less severe 
side effects are required. Cell-specific targeting could reduce side effects and 
CD40 signaling on both platelets and leukocytes were shown responsible for 
the beneficial effect on atherosclerosis. DCs are interesting candidates for 
CD40 treatment as they strongly express these molecules and are able to 
influence immune reponses. However, as we showed that altering CD40 
activity can have a profound effect on the autoimmune control (as reflected by 
the gastro-intestinal inflammation in CD11c-LMPca) , more specific approaches 
are necessary (Chapter 8). In that respect, interference in CD40 TRAF6-
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signaling, genetically or with targeted small molecule drugs, was shown to 
confer an almost equal atheroprotective effect as seen with complete CD40 
deficiency. Therefore, these drugs may hold promise for the development of a 
new effective therapy for atherosclerosis. 
 
Hypercholesterolemia, more than a risk factor for CVD 

Dendritic cells play a crucial role in host immune responses to pathogens. 
Chapter 5 and 6 show that hypercholesterolemia profoundly impacts DC 
function, therefore people suffering from hypercholesterolemia are not only at 
risk for developing CVD, but are possibly also more vulnerable to viral and 
bacterial infections. Treating these patients with lipid-lowering drugs may 
therefore not only benefit CVD outcome but also restore patient’s defense 
against pathogens. 
 
Implications of thesis findings for cancer therapy 

A possible role for Quaking in DC-based cancer vaccination 

Cancer immunotherapy, at least in part, focusses on designing vaccines to 
promote strong tumor specific T cell responses in order to eradicate tumors. 
DCs as the most potent antigen presenting cells play key roles in this process.. 
In the past, various strategies of DC-based immunotherapy were adopted in 
clinical studies, however clinical responses remain relatively low (van Lint, 
2014, Cancer immunology, immunotherapy). Besides antigen choice also the 
immune state of the dendritic cell is of great importance. Better outcome can 
therefore be achieved by enhancing the maturation state of the DCs, for 
example by co-electroporation of antigen with mRNA encoding for CD40L, 
CD70 and a constitutive active form of TLR4 (van Lint, 2014, Cancer 
immunology, immunotherapy). As our results in Chapter 7, indicate that 
Quaking influences DC cytokine production and likely also maturation, Quaking 
could be an interesting candidate to improve DC activation state for DC 
immunotherapy. 
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A role for constitutive CD40 signaling in tumor-DC vaccination? 

As mentioned previously, the immune state of the DC is a cricital factor for 
succesfull tumor-DC vaccination. As CD40 signaling is important in DC 
maturation and function, the constitutive CD40 signaling chimeric LMP/CD40 
protein may provide a beneficial contribution in DC activation required for 
effective DC immunotherapy (Chapter 8). Currently, scientist are using 
electroporation of mRNA of CD40 or CD80 along with the Ag loading in DCs to 
boost the immune state of DCs. Electroporation of LMP-CD40 mRNA might 
improve these results. 
 
In conclusion, noticeable progression has been made in the treament of 
atherosclerosis. However, as CVD remains the major cause of death we need 
to continue our efforts. With the inflammatory component of atherosclerosis 
pathogenesis being well established, developing new drugs that influence 
atherosclerosis specific immune responses is of importance. 
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List of abbreviations  
(N)STEMI (non) ST-segment elevation myocardial infarction 
7-AAD 7-Aminoactinomycin D 
Ab Antibody 
ABCA1 ATP-binding cassette transporter ABCA1 
ABCG1 ATP-binding cassette sub-family G member 1 
Abs antibodies 
ACAT acyl-CoA cholesterol ester transferase 
ACE inhibitor angiotensin-converting-enzyme inhibitor 
ACI-S asymptomatic cerebral infarction stenosis 
ADFP Adipose differentiation-related protein 
Ag antigen 
AGEs advanced glycation end products 
AHS acute haemorrhagic stroke 
AIS acute ischemic stroke 
AMI acute myocardial infarction 
Ang II angiotensin II 
AP-1 activator protein 1  
APC antigen presenting cell 
APC allophycocyanin 
ApoA Apolipoprotein A 
ApoB100 Apolipoprotein B100 
ApoE Apolipoprotein E 
Arg arginase 
ASMA alpha smooth muscle actin 
AT receptor  Angiotensin II receptor  
ATLO Artery Tertiary Lymphoid Organs  
ATP Adenosine triphosphate 
BATF3, Batf3 basic leucine zipper transcription factor ATF-like 3 
BCA bicinchoninic acid  
BDCA-2 blood leukocyte antigen 2 
BDCA-3 Thrombomodulin 
BDCA-4 blood dendritic cell antigen 4 
BM bone marrow 
BrdU 5-bromo-2’-deoxyuridine 
BSA bovine serum albumin 
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BST2 bone marrow stromal antigen 2 
BW body weight 
C/EBP  CCAAT-enhancer-binding proteins 
Ca blockers Calcium blokkers 
CAD coronary artery disease 
CBA Cytometric Bead Array 
CCL2 chemokine (C-C motif) ligand 2 
CCR4 C-C chemokine receptor type 4 
CCR7 C-C chemokine receptor type 7 
CD cluster of differentiation 
CD11c-Qk-/- CD11c-cre x Quakingflox/flox 

cDC conventional dendritic cell 
CDP common DC progenitor 
CEA carotid endarterectomy 
centr. memory central memory 
CFSE Carboxyfluorescein succinimidyl ester 
CIA Central Intelligence Agency 
CLI critical limb ischemia 
CLP common lymphoid progenitor 
CLR c-type lectin receptor 
CMP common myeloid progenitor 
CRAMP cathelin-related antimicrobial peptide, cathelicidin  
cre cre recombinase 
CreER tamoxifen inducible cre recombinase 
CTL cytotoxic T lymphocyte 
CTLA-4 cytotoxic T lymphocyte antigen 4 
Ctr, Ctrl control 
CVD cardiovascular diseases 
CX3CR1 CX3C chemokine receptor 1 
CXCL CXC-chemokine ligand 
DAMPs danger associated molecular patterns 
DC dendritic cell 
DCF 2’, 7’ –dichlorofluorescin 
DCFDA 2′,7′-dichlorofluorescein diacetate 
DCIR dendritic cell immuno-receptor  
DC-SIGN dendritic Cell-Specific Intercellular adhesion molecule-3-

Grabbing Non-integrin 
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DEPC Diethylpyrocarbonate 
DiI 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 

perchlorate 
DN DC double negative dendritic cell, being CD4-CD8- 

DNA Deoxyribonucleic acid 
DTA diphtheria toxin fragment A 
DTR diphtheria toxin receptor 
e.g. exempli gratia, for example 
E4BP4 promoter-binding protein 4 
EC endothelial cell 
ECM extracellular matrix; 
EDTA Ethylenediaminetetraacetic acid 
eff. memory effector memory 
ELISA enzyme-linked immunosorbent assay 
ER endoplasmic reticulum 
etc. et cetera, "and so forth" 
FACS fluoresence activated cell sorter 
FCS fetal calf serum 
FcγRI Fc gamma receptor 1  
FITC fluorescein isothiocyanate 
FLT3 Fms-like tyrosine kinase 3 
FLT3L Fms-like tyrosine kinase 3 ligand 
FLT3R Fms-like tyrosine kinase 3 receptor 
FoxP3 forkhead box P3 
FSC forward scatter 
GAGs glycosaminoglycans 
GAPDH Glyceraldehyde 3-phosphate dehydrogenase  
GFI1 growth factor independent 1. 
GM-CSF Granulocyte Macrophage colony-stimulating factor 
GM-CSFR granulocyte–macrophage colony-stimulating factor receptor 
GVHD graft-versus-host disease  
Gy gray 
H&E or HE hematoxylin eosin 
Hb hemoglobin 
HDL high-density lipoprotein 
HDL high-density lipoprotein 
HF heart failure 
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HFD high fat diet 
HFD-hi high fat diet high granular/high SSC 
HFD-lo high fat diet low granular/low SSC 
HLA human leukocyte antigen 
HO-1 Heme oxygenase-1 
HOCl hypochlorous acid 
hrs hours 
HSC hematopoietic stem cell 
HSP heat-shock protein 
HSPCs hematopoietic stem and progenitor cells  
HT heart transplantation 
Ht Hematocrite 
i.e. id est, that is 
i.p. intraperitoneal injection 
i.v. intravenous 
IC intermittent claudication 
ICAM-1 intercellular adhesion molecule 
ICOS(-L) Inducible T-cell COStimulator (-ligand) 
ID2 inhibitor of DNA binding 2 
iDCs inflammatory DCs 
IDO indoleamine-2,3-dioxygenase  
IFN interferon 
Ig Immunoglobulin 
IL- interleukine- 
ILT immunoglobin-like transcript  
ILT7 immunoglobulin-like receptor 7  
IMI imiquimod  
iNOS inducible Nitric oxide synthases 
IPH intra plaque hemorrhage 
IRAK-4 interleukin-1 receptor-associated kinase-4  
IRF interferon-regulatory factor 
IRI Ischemia reperfusion injury 
IT intimal thickening 
KO knockout 
L.major Leishmania major 
LAL Limulus Amebocyte Lysate 
LC Langerhans cells 
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LDL low-density lipoprotein 
LDLr, ldlr low-density lipoprotein receptor 
LFA-1 Leukocyte function-associated molecule 1 
Lin- lineage negative 

LMP1 laten membrane protein 1 
LMPP lymphoid-primed multipotent progenitor 
LN lymph node 
LPS Lipopolysaccharide 
mAb monoclonal antibody 
MAPK Mitogen-activated protein kinases  
MCP-1 CCL2 
M-CSF Macrophage colony-stimulating factor 
M-CSFR macrophage colony-stimulating factor receptor 
MDA-LDL malondialdehyde modified LDL 
MDP monocyte/macrophage and DC progenitor 
MFI mean fluorescence intensity 
MHC Major histocompatibility complex 
MHCp MHC containing peptide antigen 
MIF Macrophage migration inhibitory factor 
miR microRNA 
mLN, MLN mesenteric lymph node 
MLR mixed leukocyte reaction (MLR) 
MMPs matrix metalloproteases  
MNR mannose receptor 
Mn-SOD Manganese superoxide dismutase 
moDCs monocyte-derived DCs  
mOVA membrane bound ovalbumin 
Mɸ macrophage 
MPO myeloperoxidase 
MPs CD169+ marginal zone metallophilic macrophages 
mRNA messenger RNA 
MyD88 Myeloid differentiation primary response gene 88 
Necl2 nectin-like molecule 2  
NFIL3 Nuclear factor interleukin 3 regulated 
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 
NGAL neutrophil gelatinase-associated lipocalin 
NK cell natural killer cell 
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NKT cell Natural killer T cell 
NLR NOD-like receptor 
NLRP3 also known as NACHT, LRR and PYD domains-containing protein 

3 (NALP3) 
Notch2 Neurogenic locus notch homolog protein 2 
NRF2 NFE2L2, Nuclear factor (erythroid-derived 2)-like 2  
NYHA New York Heart Association (classification for heart failure) 
ORO Oil-red O staining 
OVA ovalbumin 
oxLDL oxidized low-density lipoprotein 
OxPAPC Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-

phosphatidylcholine 
PAD peripheral artery disease 
PAMPs pathogen associated molecular patterns 
PBMC Peripheral blood mononuclear cells  
PBS phosphate buffered saline 
PD-1 programmed cell death 1 
pDC plasmacytoid dendritic cell 
PD-L1 Programmed cell death 1 ligand 
PE phycoerithrin 
Pen/Strep Penicillin/Streptomycin 
PerCp Peridinin chlorophyll  
PFA paraformaldehyde 
PIT pathological intimal thickening 
pre-DC DC precursor 
PRRs pattern recognition receptors  
PSGL1 P-selectin glycoprotein ligand-1 
PSGL-1 P-selectin glycoprotein ligand-1 
QKI Quaking 
QKI-5, QKI-6 and 
QKI-7. 

Quaking isoform 5, 6 or 7 

Qkvb Quaking viable model 

qPCR quantitative real-time polymerase chain reaction 
QRE Quaking responsive element 
Rab11b Ras-related protein 11b 
Rag2 Recombination activating gene 2 
RBP RNA binding protein 
RBP-J Recombining binding protein suppressor of hairless 
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RNA Ribonucleic acid 
RNAseq RNA sequencing 
ROS reactive oxygen species 
RT PCR Real-time PCR 
Runx3 Runt-related transcription factor 3 
SAP stable angina pectoris 
SEB Staphylococcus Enterotoxin B 
SEM standard error of the mean 
SFD standard fat diet 
Siglec-H sialic acid binding immunoglobulin –like lectin H  
SLE systemic lupus erythematosus 
SMC smooth muscle cell 
SOCS3 Suppressor of cytokine signaling 3 
SPF specific pathogen free 
SR-A, SRA Scavenger receptor A 
SSC side scatter 
STAT Signal transducer and activator of transcription 
T2D type 2 diabetes 
TAP transporter associated with antigen processing,  
T-bet T-box transcription factor TBX21 
TCR T cell receptor 
TF transcription factor 
TGF Transforming growth factor  
Th T helper cell 
TIA  transient ischemic attack 
Tk FCA thick fibrous cap atheroma 
TLR Toll-like receptor 
Tn FCA thin fibrous cap atheroma 
TNF Tumor necrosis factor 
TNFR Tumor necrosis factor receptor 
tPA Tissue plasminogen activator 
TRAFs TNF-receptor associated factors  
TRAIL tumor necrosis factor-related apoptosis-inducing ligand 
Treg regulatory T cell 
UAP unstable angina pectoris 
uPA urokinase plasminogen activator 
UPR unfolded protein response 
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VCAM-1 Vascular cell adhesion molecule-1 
VLA-4 Very Late Antigen-4 
vSMC vascular smooth muscle cell 
WHO World Health Organization 
wks weeks 
wt or WT wild type 
WTD western type diet 
αCD3 anti-CD3 antibody 
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Dankwoord 
Graag wil ik iedereen bedanken die op welke manier dan ook hebben 
bijgedragen aan de totstandkoming van dit boekje. 
 
Professor Biessen, beste Erik, 4.5 jaar geleden werd ik aan je voorgesteld als 
‘de nieuwe AIO van Esther’. Door omstandigheden werd je plots de promotor 
van iemand waarvan je geen idee had wie hij was of wat hij wel of niet kon, 
maar zonder aarzelen sprong je in het ongewisse en nam je de uitdaging aan. 
Bedankt om mij die mogelijkheid te geven! De afgelopen jaren in je lab hebben 
mij veel bijgebracht, zowel op wetenschappelijk als op persoonlijk gebied. 
Bovendien heb ik door jou voor het eerst voet kunnen zetten op een ander 
continent, een ervaring die me bij zal blijven. Je bent een wetenschapper in 
hart en nieren. Je blijft me fascineren met je ongelooflijk grote berg aan kennis 
en bruisend vat vol goede ideeën en inzichten. Respect! Verder heb ik je ook 
leren kennen als een warm en sympathiek persoon, ik ben dan ook blij om jou 
als promotor te hebben gehad. 
 
Professor Lutgens, beste Esther, onze paden kruisten voor het eerst toen ik in 
mijn 4e jaar biomedische wetenschappen samen met Dirk het lab kwam 
bezoeken. Het voelde meteen goed en vroeg dan ook om stage te lopen in 
jouw lab. Na een leerrijke periode in Maastricht keerde ik terug naar Brussel 
om er mijn laatste jaar in te zetten. Halfweg dat jaar wist je me te overhalen 
om na mijn studies in jouw lab een doctoraat te doen. Hoewel door 
omstandigheden onze paden al snel splitsten wil ik je graag bedanken om mijn 
Maastrichtse avontuur mogelijk te maken. Graag wil ik je ook bedanken voor 
de leerrijke stage in je lab in Munchen, waar ik naast een fantastische 
wetenschappelijke ervaring ook een geweldig sfeervol team heb leren kennen. 
 
Erwin, my buddy and roommate, waar moet ik beginnen? Al vanaf mij 
masterstage konden we het goed met elkaar vinden. Je hebt me 
geïntroduceerd in de fantastische wereld van flow cytometrie, maar je bijdrage 
aan mijn boekje reikt veel verder dan dat. Je wetenschappelijke input en de 
vele malen waarbij je na de reguliere werktijden bent gebleven om mij te 
helpen met pipeteren van grote proeven zal ik nooit vergeten. Naast een 
ijverige en fantastische wetenschapper ben je ook een vriend voor het leven. 
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We hebben vele leuke momenten samen beleefd, maar je stond ook altijd 
klaar als het eens iets minder goed ging. Dus ook als mijn persoonlijke mental 
coach heb je een grote bijdrage geleverd aan dit boekje . Je blijft voor mij de 
zotte sympathieke assertieve (en stiekem ook beetje West-Vlaamse) 
Nederlander met een groot hart. Dank je voor alles! Ik hoop dat we in de 
toekomst contact blijven houden! 
 

Beste Lieve, mede-Belg en begeleidster van mijn Maastrichtse avontuur. Dank 
je voor je begeleiding, alle wetenschappelijke input en bijdrage aan het Batf3 
project, het is een solide verhaal geworden om trots op te zijn. Als 
spraakwaterval vol enthousiasme wist je steeds de lunchpauze te vullen en de 
groep te inspireren. Samen vormden we ook een sterk team om het op te 
nemen tegen de Nederlanders/Duitsers tijdens de grote voetbalfurie. Dank je 
voor het aanleren van de vele labtechnieken en je bijdrage aan dit boekje. 
 

Beste Judith, Marjo, Sylvia, Marion en Jack, dank jullie voor de 
wetenschappelijke bijdrage tijdens de labmeetings, jullie kritische vragen en 
interesse. Marion, ook bedankt voor je bijdrage aan alle histologie aanwezig in 
het boekje. Jack, dank je voor je quantimet en microscopie kennis, dit heeft mij 
het analyseren van de plaques een stuk makkelijker gemaakt! 
 

Graag wil ik de analisten bedanken: Mat, Anique, Clairy, Petra en natuurlijk nog 
eens Erwin. Dank jullie voor alle info betreffende qPCR, kweek, flow 
cytometrie, histologie en het beantwoorden van de vele logistieke vragen die 
ik op jullie heb afgevuurd. Cor, Elly, Danielle en alle andere dames van het 
secretariaat bedankt voor jullie ondersteuning gedurende de afgelopen 4.5 
jaar. 
 

Dank aan alle AIOs, ex-AIOs en (ex)post-docs. Thomas, Elke, Kosta, Anke, 
Margaux, Marchy, Emiel, David, Timo, Jeroen, Karen, Anette, Anjana en Floor, 
dank jullie voor de hulp bij opofferingen, tips, tricks, de leuke sfeer in het lab 
en natuurlijk ook de vele feestjes. Jullie zijn allemaal hard werkende en slimme 
AIOs waarvoor ik veel respect heb. Veel succes met jullie carrière in de 
toekomst. Thomas, naast alle hulp bij het uithalen van boogjes wil ik je nog 
eens extra bedanken voor alle i.v. injecties die je voor mij hebt uitgevoerd en 
de zachte verblijfplaats die je hebt aangeboden tijdens mijn nachtelijke 
werkdagen. Je bent een topkerel en ik wens je veel succes met je verdere 
carrière in Brussel. Elke, je bent een briljante wetenschapster en ik ben dan 
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ook niet verwonderd dat je een post-doc positie hebt verkregen bij een toplab! 
Hartelijk dank ook voor het aanbieden van je appartement in mijn laatste 
maanden als kamperende AIO . Kosta, de grappige Nederlander met Griekse 
roots. Dank je voor alle hulp in het lab, de gyros uit Roermond , en voor je 
immer opgewekte persoonlijkheid. Ik wens je veel succes in het afwerken van 
je doctoraat. Anke, de MD onder de PhDs. In het begin kwam je nogal verlegen 
over, maar na een tijdje door te brengen in de zotte AIO kamer kwam je 
helemaal los. Dank je voor alle hulp tijdens de opofferingen en het afnemen 
van liters bloed voor mijn proeven! Veel succes met je PhD, en *wrijf over 
bolletje* . Margaux, j’essaierai d’écrire quelques mots de merci en Français. 
Tu es une femme très sympathique qui s’est immédiatement intègré dans le 
groupe de AIOs. J’ai aimé nos conversations en Français/Néerlandais. Merci 
pour m’aider avec les sacrifices des souris. Je te souhaite beaucoup de succès 
avec votre PhD, et je suis sûr qu’avec votre intelligence et enthousiasme votre 
thèse sera bonne. Dear Marchy, thank you for your assistance during sacrifices 
and for being the sunshine within our AIO team. Good luck with finishing your 
thesis. Karen and Anette, my ex-roommates, thank you both for all your help 
during my first years as a PhD student. Thank you for teaching me the 
necessary lab skills, giving me scientific input, answering all my questions and 
being a beacon during hard times. Special thanks to Anette for all oversees 
scientific input and the contribution to my thesis chapters. David, special 
thanks to you for functioning as my supervisor during my master internship in 
Maastricht. You prepped me to become a successful PhD student.  
 

Thanks to Tammy and Joris for all the work and scientific input on the lipid 
chapters. Thanks to Joep, Erik, Aimee and Boukje, the students who 
contributed to the research in this thesis during their internships in our lab. 
 

Professor Edith Janssen, Jared, Maria and Cassie, thank you for all your help 
during my internship in Cincinnati. Special thanks to Jared and Maria for 
making me feel welcome and giving me a tour in the city center and welcoming 
me at your home. 
 

Dank aan Benoit en zijn team voor de vele HE coupes die jullie gekleurd 
hebben en voor het gebruik van jullie materiaal bij het uitvoeren van de Sirius 
Rood kleuringen. Extra dank aan Kathleen voor de leuke gesprekken, hulp met 
het sectie materiaal en voor het meermaals gebruik van droogijs. 
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Dank aan volgende leden van het Esther team: Tom, voor het helpen met i.v. 
injecties tijdens het Batf3 project en voor de assistentie tijdens mijn periode in 
Amsterdam; kleine Esther, dank je voor je bijdrage aan het LMP hoofdstuk, 
veel succes in de VS.  Norbert, Dirk, Holger, Tobias, Geli and Yvonne, thank you 
for all your help during the experiments in Munich, and thank you for making 
this trip a memorable experience. Extra dank aan Dirk, je hebt mij ook 
geholpen in het maken van de beslissing om naar Maastricht te komen voor 
mijn PhD. Grote dank aan Linda, dank je voor alles wat je mij geleerd hebt 
gedurende zowel mijn stage als het prille begin van mijn PhD traject: boogjes 
uithalen en snijden, histologie en zoveel meer. Bedankt ook voor je hulp bij de 
AMS offeringen en voor het zijn van de warme persoon die je bent. 
 
Thanks to all collaborators: Prof. Martin Zenke, Prof. Christian Weber, 
Associate Prof.E.Janssen, Prof. Thomas Brocker, Prof. Hildner, Prof. S. Richard, 
Prof.CG Schalkwijk, Prof. E. van der Veer, Prof. AJ Zonneveld, dr. Germeraad, 
dr.K.Sere, dr. Kristiaan Wouters, Gillian Vogel. Thank you for your scientific 
input, use of antibodies, breeding of mice etc.  
 
Liefste papa en mama, dank jullie voor alles! Zonder jullie liefde en volharding 
in mijn prille leventje had ik waarschijnlijk nooit de mogelijkheid gehad dit 
avontuur aan te gaan. Dank jullie om er altijd voor mij te zijn, om het voor mij 
mogelijk te maken om te studeren en voor de oneindige steun die jullie steeds 
bieden. Ik heb het jullie niet gemakkelijk gemaakt afgelopen jaren door zo 
weinig thuis te zijn (jobstudent, basket, kot, werken,…), maar ik kijk er naar uit 
om terug meer te doen samen nu ik in Brugge woon. Ik weet dat jullie fier 
zullen zijn met mijn doctoraatstitel, maar weet dat ik superfier ben om jullie als 
ouders naast me te hebben. Dit boekje is dan ook stiekem een beetje van 
jullie. Dank je wel!  
 
Lieve broer en zus, dank jullie voor de steun en het luisterend oor. Sorry dat 
jullie mij de afgelopen jaren zo weinig hebben gezien en ik niet veel tijd kon 
doorbrengen met jullie en met Niels, Lukas, Jonas en Simon, ik hoop daar 
verandering in te brengen nu we in Brugge wonen. 
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Liefste moesje en paps, dank jullie voor alle steun tijdens mijn doctoraat 
ondanks dat het feit dat ik jullie dochter meenam naar de andere kant van 
België. Dank jullie ook voor het opvangen van onze kleine zieke Kobe, voor de 
vele uren werk tijdens onze verbouwingen en voor mijn warme plaatsje in 
jullie familie. Ik had mij geen betere schoonouders kunnen inbeelden. Ook Rolf 
en Fien, bedankt voor alle hulp bij het maken van de cover van deze thesis, 
voor de opluchtende gesprekken over het doctoreren en voor het zijn wie jullie 
zijn. Veel succes met jullie trouw, het zal een spetterend feest worden! Fien, ik 
wens je ook superveel succes met het afwerken van je eigen doctoraat. Ik ben 
ervan overtuigd dat het een mooi verhaal zal worden. 
 
Liefste keppe, mijn elfje en super mama, dank je voor je onvoorwaardelijke 
liefde en steun! Het is niet altijd even gemakkelijk/eerlijk geweest voor jou. 
Vele keren bleef je alleen achter in Hasselt (buitenlandse stages, congressen, 
overwerken), maar je hebt je er altijd weten door te slaan. Afgelopen jaren zijn 
intens geweest en we hebben in die korte periode al een heel traject 
doorlopen: samenwonen, trouwen, huisje kopen, verbouwen en kindje krijgen! 
Dit boekje is dan ook voor jou. Het einde van een moeilijk hoofdstuk in ons 
leven, maar het begin van een spannend nieuw avontuur! Als supermama 
vorm je samen met Kobe voor mij het perfecte gezinnetje, een veelbelovend 
uitzicht voor de toekomst! 
 
Flinke Kobe, al ben je nog veel te klein om dit allemaal te lezen, graag zeg ik je 
even dat je geboorte een hele nieuwe wending bracht in mijn leven. Je was het 
zonnetje in een moeilijke periode voor mij. Je lach, je speelsheid, je vrolijkheid 
en ja ook je luiers  hebben mij telkens gesterkt en gemotiveerd om alles 
efficiënt en succesvol af te werken zodat ik er meer voor je kon zijn. Je beseft 
het nog niet, maar ook jij hebt een belangrijke bijdrage geleverd aan dit 
verhaal. 
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