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LEARNING STRUCTURAL DESCRIPTIONS FROM EXAMPLES*

Abstract

The research here described centers on how a machine
can recognize concepts and learn concepts to be recognized.
Explanations are found in computer programs that build and
manlpulate abstract descriptions of scenes such as those
children construct from toy blocks. One program uses sample
scenes to create models of simple configurations like the
three-brick arch. Another uses the resulting models in
making identifications. Throughout emphasis is given to
the importance of using good descriptions when exploring
how machines can come to perceive and understand the wvisual
envirenment.

*This report reproduces a thesis of the same title submitted to
the Department of Electrical Engineering, Massachusetts Institute
of Technology, in partial fulfillment of the requirements for the
degree of Doctor of Philesophy, January 1970,
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1 FKey Ideas

How do we recoonize examples of various concents?

How ¢o we learn to make such recoanitiens?

How can machines 410 these thinas?

How important {is careful teachina?

In this naper I describe a svstem that sheds some lieht
on these ouestions ty demonstratine hew a machine can be
tauoht to see and learn new visval concepts, It works in the
domain ef three-d irensional structures made of bricks,
wedoes, and cthter simple objects.

Good descrirtive metheds are of central importance to
this work., This is denonstrated repeatedly in my system's
facilities for scene descriptien, descriptinn cemparison,
concept learning, and identification,

It is my opinion that the framework for lTearning that 1
describe suqgests a unity between learnina frem examples,
learnine Ly imitatien, and learnina ty beineo told, This
unity lies in the necessary ability to cenerate and
manipulate good abstract descrintions,

I also arcue the irmpertance of aood trainino sequences
prepared by cood teachers, I think it is reascrnakle to
belfeve that neither machines nor children can be expected to
learn much without then,

Equally important is the notion of the near miss, ©&y



near miss | mean a sample in a traininan seouence auite 11ike
the concept to be learned but which differs from that concept
in only a few sianificant points at most. These near misses
prove to convey essential points much more directly than
repetitive exposure to ordinary examples,

1.1 Scene Description and Comparison

Much of the system to he described focuses on the
problem of analyzino scenes consistinn nf the simple objects
that one finds in a child's toy box. There are two very
simple examples of such scenes in fiaure 1-1.

From such visual images, the system builds a very coarse
description., (fiqure 1-2) Structurinn the scene's description
in terms of objects is already a certain commitment, for
structuring it in other terms is ponssible, 1In any case,
analysis proceeds, inserting more detail, (fiaure 1-3) And
finally there is the very fine detail about the surfaces,
lines, vertexes, and their relations,

Such descriptions permit one to compare and contrast
scenes throuah proarams that compare and contrast
descriptions, 0f course, one hopes that the descriptions
will be similar or dissimilar to the same dearee that the
scenes they represent seem similar or dissimilar to human
intuition, Then with a neneral plan for such manipulations,

there is further hope that the same machinery can be useful
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in situations ranaina far from visual ones, aoivino the work a
certain generality.

Certainly the necessary matchina pronrams must be well
endowed with ability, for a rich description capability
requires a matchina pronram that can cope with and perfeorm
reasonably in an environment where many matches are possible,
btoth good and bad,

After two scenes are descrited and corresponding parts
related by the matchino prooram, differences in the
descriptions must be found, catecorized, and themselves
described, The prooram that does this must be able to
examine the descriptions of fioure 1-=3 with the help of a
matching program and deduce that the difference tetween the
scenes is that there is a surported-ty relatior in one case,
while there is an in=front-of relation in the other, Dut the
faculty must be much more powerful than this simple example
indicates in order to face more complex pairs of scenes
exhibiting the entire spectrum between the nearly identical
and the completely different,

1.2 Concept Generation and Learning

To build a machine that can analyze line drawinas and
build descriptions relevant to some comparison procedure is
useful in itself. But this is just a step toward the more

ambitious goal of creating a program that can learn to
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recognize structures. [ will describe a program that can use
samples of simple concepts to aenerate models.

Figure 1-4 and the next few following it show a sequence
of samples that enables the machine to learn what an arch is,
First it gets the qeneral idea by studying the first sample
in figure 1-4, Then it learns refinements to its orininal
conception by comparinn its current impression of what an
arch is with successive samples, It learns that the supports
of an arch cannot touch from figure 1-5, It learns that it
does not matter much what the top cbject 1s from finure 1.6,
find then from fiqure 1-7 it learns the fact that for one
ocbject to be supported by the others is a definite
requirement, not just a coincidence carrying throuah all of
the samples,

Such new concepts can in turn help in makine ather, more
complex abstractions, Thus the machine uses previous
learning as an aid toward further learning and further
analysis of the environment., As yet these procedures are
clumsy, and the descriptions uncomfortably restricted, but
the results are encouraning enouch to sugnest that these

methods may lead to increasingly powerful performance,
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1.3 Identification

Ident ification requires additional proarams that use the
results of comparison programs., There are many problems and
many alternative methods involved because identification can
be done in a variety of contexts.

In one simple form of identification, the machine
compares the description of some scene to be identified with
a repertoire of models, or stored concepts. Then at the very
least there must be some methed of evaluating the comparisons
between the unknown and the models so that some match can be
defined as best,

But many sophistications lie beyond this skeletal
scheme, For one thing, the identificaticn can be sensitive
to context., In fiaqure 1-8, for example, one hidden object is
more likely to bte a wednqe than in the other case, althoungh
both hidden objects present exactly the same 1ine
configuration, The jdentification could be further
prejudiced if the objective is to locate a particular type of
object., Thus the hidden object in fiqure 1-9 should be
tentatively identified as a possitle trapezoidal solid,

rather than a wedne, if trapezoidal scolids are in demand.
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1.4 Psychological Modeling

Simulation of human intell igence is not a primary goal
of this work. Yet for the most part I have desinned proarams
that see the world in terms conforming to human usage and
taste. These proarams produce descriptions that use notiens
such as left-of, on-top=-of, behind, btiq, and part-of,

There are several reasons for this. One is that 1f a
machine is to learn from a human teacher, then {t is
reasonable that the machine shoud understand and use the same
relations that the human does, Otherwvise there would be the
sort of difference in point of view that orevents
inexper jenced adult teachers from interactina smoothly with
small children.

Moreover, if the machine §s to understand its
env ironment for any reason, then understanding it in the same
terms humans de helps us humans to understand and improve the
machine's operation. Little i1s known about how human
intell inence works, but it would be foelish te ignore
conjectures about human methods ard abilities if those things
can help machines. Much has already been learned from
programs that use what seem like human methods, There are
already proarams that prove mathematical theorems, play qood
chess, work analoagy problems, understand restricted forms of

Engl ish, and more, Yet in contrast, little knowledne about
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intelligence has come from perceptron work and other
approaches to intell foence that do not exploit the planninn
and hierarchical orocanization that is characteristic of human
t houaht,

Another reason for desianing programs that describe
scenes in human terms is that human judnement then serves as
a standard. There will be no contentment with machines that
only do as well as humans. P[Rut until machines become Letter
than humans at seeing, doing as well is a reasonable qoal,
and comparina the performance of the machine with that of the

human is a convenient way to measure success,
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2 Duilding Uescriptions
2,1 The letwork

There arc many ways to store facts about a scene, One

simple format is the unordered list:

A is on top ¢f [

Al is a side of /A

B is in front of C
Such an arrancerment is desperately inefficient because the
whole of memory must be searched to cather all facts about
some particular ccmponent of the sceme, It is natural,
therefore, to record facts in a mere structured vayv to
facilitate retrieval,

In this connection, one hears such terms as 1ists,
trees, rinas, and nets, each of which sunaests a forn of
storace. In selecting one, attentfon must be paid to several
criteria. I have already mentioned the problem of rapid
access, There may also be a need to use merory space
eff iciently, But in the rescarch nhase, perhaps it 1s most
important that the storace format be in some sense natural
with respect to the information to be stored. This means
that the transfecrmation from a situation to fits
representation should be simple, not awkward., Sinnle lists
suffice for a trip to the agrocery store, while tree-like

charts frequently picture command hierarchies nr genealcgical
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histories.

But many more complex situations require the net, A
nood example is the description of the words in a natural
lannuane, Each word is described easily in terms of
relationships with other words which in turn are similarly
described, The result is a dictionary in which each word may
be thouaht of as a node which is related to other nodes
through the pointers that constitute its definition.

Similarly the network seems to have the appropriate
Blend of flexibility and elenance needed to deal
straightforwarly with scenes. It is the natural format.
Like words in a dictionary, each ohject is naturally thought
of in terms of relationships to other cbjects and te
descriptive concepts 1ike large, rectanqular, and standina.
In fioure 2-1, for example, one has concepts such as OBJECT -
ABC and OBJECT-DEF, These are represented diaorammatically
as circles, (fiqure 2-2) Labelled arrows or pointers define
the relationships between the concepts. (finure 2-3) Other
pointers indicate membership in general classes or specify
particular properties, (figure 2-4) And pointers to circles
representing the sides extend the depth of the description
and allow more detail. (fiqure 2-5)

Now notice that notions 1ike SUPPORTED-BY, ABRCVE, LEFT-

OF, BENEATH, and A-KIRD-0OF may be used not only as relations,
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but also as concepts. Consider SUPPORTED-BY, The statement,
"The WEDGE is SUPPORTED-BY the BLOCK,"™ uses SUPPORTED-BY as a
relation., But the statement, "SUPPORTED-BY is the opposite
of NOT-SUPPORTED-EY," uses SUPPORTED-BY as a concept
undergoing explication. Consequently SUPPORTED-BY is a node
in the network as well as a pointer label, and SUPPORTED-CY
itself is defined in terms of relations to other nodes,
Figqure 2-6 shows some of the surrounding relations and
concepts,

SUPPORTEL-BY may therefore apoear in diagrams as a
circle label or as a pointer label denending an its function.
A circle pierced by an arrow indicates simultanecus use as a
relation and as a concept. (figure 2-7)

Thus, descriptions of relationships can be stored in a
homogeneous network alono with the descriptions of scenes
that use those relationships, This permits bing steps toward
program generality, A program to find neaatives need only
know about the relation NEGATIVE-SATELLITF and have access to
the general memory net. There is no need for the proqgram
itself to contain a distended table., This way proarams can
operate in many environments, both anticipated and not
anticipated, Algorithms desioned to manfpulate networks at
the level of scene description can work as easily with

descriptions of objects, sides, or even of objects'
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functions, given the appropriate network.
.2 Preliminary Processing

Consider now the aeneration of a scene description., The
starting point is a line drawinn, without perspective
distortion, and the result is to be a network relating and
describing the various objects with pointers such as IN=-
FRONT-OF, ABOVE, SUPPORTED-BY, A-KIND-OF, ABUTS, and HAS-
PROPERTY=-0F,

First, drawinas of three-dimensional scenes are
communicated to the machine using a proaram by B, K, P, Horn
tegether with a special pen whose position on a companion
tablet can be read Ly the machine directly., Then a proaram
written by M, N, Mahabala [1] classifies and labels the
vertexes according to the number of converaing lines and the
angles between them, Figure 2-8 displays the available
categories, Hotfice that Mahabala's proqram finds pairs of Ts
where the crossbars 1ie between collinear upriohts. These
are called matched Ts., Such pairs occur frenuently when one
object partially occludes another as in fiqure 2-9,

The program then proceeds to create names for all of the
reqfons in the scene. Riaorously "reaion" as used here simply
refers to any maximal area in which one can move from any
point to any other point without crossine a 1ine, Includine

the backqground ficure 2-9 has eiaght reaions, Various
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properties are calculated and stored for these renions.
Among these are a list of the vertexes surrounding each
region and a 1ist of the neiohboring reaions,

These results are then supplied to the elegant proaram
named SEE developed by A, Guzman [2]. This proaram
conjectures about which regions belong to the same objects.
For fioure 2-9, the end result of the program is the
commentary:

Body 1 consists of A P C

Body 2 consists of D EF G 1!
Surprisingly the program contains no explicit mocdels for the
objects it expects to see, It simply examines the vertexes
and uses the vertex classifications to determine vhich of the
neighboring reaions are likely to be part of the same object.
Arrows, for example, stronoly suagest that the tvo narrow-
angle regions belong to the same body, (fiaqure 2-10) This
sort of evidence, together with a moderately sophisticated
executive, can sort out the reecions in scenes as complicated
as that in fiqure 2-11, borrowed from Guzman's thesis,
Twelve objects are reported and the reogions of each are
remembered,

This, then, is the sort of information ready for further

processina by my description-building proaorams,
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2.3 The Alnorithms

The followinn sections describe the ideas behind
proarams that lock for the relations ABOVE, SUPPORT, [N~
FRONT=-0OF, LEFT, RIGHT, and MARRYS, FGenerally these proarams
produce descriptions that are in remarkable harmony with
those of human observers. Sometimes, however, they make
conjectures that most humans disaoree with, On these
occasions one should remember that there is no intentinon to
précisely mimic psycholocgical phenomena. The npal is simply
to produce reasonable descriptions that are easy to work
with, Riaht now ft is important to desian and experiment
with a capable set of programs and rostpone the ouestion of
how the proqrams mioht be refined to be more completely
1ifelike,

2.3.1 Above and Support

T joints are strona clues that one cbject partly
obscures another, but thken one may ask if the obscuring
occurs because one object is above the other or because one
is in front of the other, Even in the simple two brick case
there seems to be an enormous number of confiourations.
Figure 2<12 shows just a few possibilities.

But in spite of this variety, there is a simple
procedure that often seems to correctly decide the ABOVE

versus IN<FEONT-0F question. Consider the 1ines that form
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the bottom border of the obscurina objects in fiqure 2-12,
Finding these lines is the first job of the program. Next
the program finds other objects whose reaions share these
lines, In general these other objects are below the
orininal, cbscurine object.

This alagaorithm works on all the simple two-bBlock
situations depicted in fiaure 2-12. It even works correctly
on the much more complicated, many-object scene in
fiqure 2-13, shown with the bottom lines highlighted,

The difficult part is to find the so-called bottom
lines, which correspond roughly te one's intuitive notion of
bottem border. The process proceeds by first notinn those
lines that lie between two reaqions of the object in ocuestion,
I call these interior 1ines, Hext the prooram examines the
lower of each interior line's vertexes, This is iancored
unless it is an arrow, X or a K. Then information about
bottom lines is gleaned from cach of the arrows, Xs, and Ks
in the following way:

1., If the vertex is an arrow, then the two lines
forming the laroest argle, the barbs, are bottom
line candidates. See fioure 2-14,

2. If the vertex is an X, then the two non-collinear
lines are bottom line candidates. See figure 2-15,

3. If the vertex is a K, then the two adjacent lines,
those formina the smallest clockwise and the
smallest counter-clockwise angles with the interior
line are bottom line candidates, See figure 2-16,
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This is really a rule and two cornllaries, rather than three
separate rules, Xs and Ks result primarily when arrows
appear fncognito, camouflaned by an alianment of objects as
illustrated by fiqure 2-15 and 2-16, Consequently, the
corresponding rules amount to locatine the arrow=forminag
parts of the vertex and then actinag on that basic arrow,

One further step is necessaryv btefore a line can become
an approved bottom.line, /s shown by ficure 2-17, some of
the 1ines aualifying so far must be eliminated, They fail
because they are too vertical, or more preciselyv, Lecause
they are too vertical with respect tn the arrow's shaft, The
effective way to weed out bad Tines is as follows:

Pule: FEliminate any bottom 1ine candidate which is more

vertical than the shaft of the arrow surnestino that

cand idate,

Of course the proaram extends rudimentary bottaom lines
throuah certain vertexes., Figqure 2-10 skows the obvious
situations in which the bottom line propertv is extended
through the crossbar of a T or the shafts of a pair of
matched Ts.

This whole alaorithm is based on an assumption that the
machine observes the scene from akove. If the conficuration
danagles from the ceiling, simple channes adapt the proecram to

discriminate between UHDER ard IN-FPONT-DF, rather than ABMVE
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and IN-FRONT-CF, O(One examines instead the hioher vertexes of
the interior 1ines, substitutes the term top lines for bottom
1ines in the vertex inspection rules, and the resultino lines
usually separate objects from those above them,

By searchinn for both the ABOVE and the EELOW
relations, the machine may often be able to nuess its
own heinht, Ceonsider finure 2-19, Fioure 2-20 shows
the same scene with top and bottom lines highliahted and
with the conseauent above and below relations., At least
in this case, the machine can correctly deduce that its
eve is level with obiect ¥ because btoth a chain of above
relations and a chain of below relations orininate at ™,

2,3.1.1 Discussion

This algorithm works effectively because of

circumstances all likely but not certain to ke true in anv
particular scene, The method works best when a scene
consfists of bricks and wednes with one side parallel to the
table. In many other cases, the method works anvway,
sometimes by coincidence and sometimes ty principles not vet
fully explored.

Unfortunately, in explanation I am frequently
forced to appeal to intuitive notinns about what is
1ikely and what is not., [ know of no way to establish a
reasonable probability metric on the situations I
discuss. A1l that can be said now is that any such
metric should reflect human disposition toward
confiqurations exhibitina alinnment and symmetry,

The first 1ikely circumstance or principle is that
otbtjects tend to support other objects by contact throuah

relatively horizontal sides. Objects nnt so supported tend
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to slip, althouoh not always as demonstrated by fioure 2-21,

Imagine now that the top object in finure 2-22 were
completely transparent except for a layer of paint on the
crucial, relatively horizontal bottom side., Since the scene
is viewed from above, this bared bottom side will obscure
part or sometimes all of the supporting object, See
fioure 2-23. Consequently, some faces of the supportinn
object generally border on lines resultinn from the edoges of
the bottom side,

Of course many of the bottom side's ednes vanish when
the object is restored to opacity, MNevertheless, the ones
that remain still tend to form part of the seam between the
supported and the suppertinn objects,

Now most of the vertexes of objects are formed by three
edges meeting together as in the tip of a pyramid. This
forms the sc-called trihedral angle. Consequently, when two
observable edoes of the bettom side form a concave annle, one
can expect a third edoe of the object tn leave the same
vertex and form the shaft of a downward directed arrow,

S1iaht alteration could permit the proaram to deal
with many objects with non-trihedral vertices, The
object in fiocure 2-24, for example, has two interior

Tines meraing at vertex V, By treatina this as a

neneralized arrow, with multiple shafts, the same

algorithm can be used to define bottom lines,

So far the looic is as follows: 1If one object ohscures
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another because it is on top of the other, then the seam
between the two is 1ikely to form the barbs of one or more
downward directed arrows belonging to the top object.
Reversina this, one would hope for the statement: The barbs
of downward directed arrows define seams across which one
1ikely finds the supportina object or objects. Unfortunately
one often finds non-supporting objects as well.

2.3.1.2 Refinement

Figure 2-25 sugqcests a serious ¥ind of over enthusiasm.
The pillar, brick B, elevates the bottom Vines of brick A and
they appear between the viewer's eye and a side of the
massive bLackoround brick, brick C. In the two brick case, a
brick's bottoms lines border on the side of another brick
only when the one is in fact supported by the other. UWhen
more objects are involved, wrong answers may result because
the bottom lines can wander into regions of objects that do
not offer support.

Te handle this oroblem, | use a two part procedure. The
first part is simply the above alcorithm as described so far,
which now may be thought of as neneratino a set of possible
supports, The second part, described below, criticizes these
possible supports and filters out some of the bad ones,.

How one reason brick A in ficure 2-25 clearly does not

lie on brick C is that it is absurd to think that an object
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can rest on a vertical side of some other object. Part 2 of
the support alcorithm makes sure that just such conjectured
supports are eliminated from the list of candidates. To do
this, it el iminates a candidate if the only bottom=l ine-
bordering side seems vertical, It assumes a side is vertical
if an edge belongine te it is vertical,

There are two exceptions to this rule that occur when an
object obscures the entire tap of its supportino obiect as
block A obscures block [ and as block B obscures block C in
fiqure 2-20. First, if two bricks are alioned as are brick
A and brick B, forming the familiar X vertex, no rejection
takes place., Second, if the top brick overlaps the support
as brick B overlaps brick C, at least one unmatched T appears
and again no rejection takes place,

If ty this time zero or one support candidate remains,
then part 2 terminates, and the sunport, if any, is
announced. There are some common situations, however, that
reouire part 2 to undertake additicnal computation, Cornare
figure 2-27 with fiqure 2-20. Tke vertical-side filter
cannot eliminate the possibility of support from brick C in
either fioure because one of C's bottom=-1ine borderine sides
is clearly not vertical. Yet human observers aoenarally claim
the top brick in fioure 2-27 cannot be other than sinaly

surperted, whereas they admit therc may well be support from
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the larne rear block, C, in fiaure ?-28,

Since the only difference is in the heiaht of brick C,
this judoement must be the result of a heiaht comparision,

Stated simply, the prooram makes heinht judnements by
assuminag an object is supported by the tallest of the support
candidates survivina so far., It is simply above the others,
The heiaht of a stack cannot always be computed ricorcusly,
hewever. In sinple cases it is sufficient to locate a
vertical Tine telonging to the obhject and measure it, Brick
C in fiaure 2-27 is such a htlock, But the verticals of Elock
B disappear into T joints and only minimum heiohts can be
calculated from such lines without complicated and unexplored
object extranolation techniques. Consequently, as the
algorithm reviews the heights and minimum heiaklits presented
to it, it first selects the maximum of thase. Then anv
candidate whese heioht is known exactly is rejected if that
height is Tess than the maximum just calculated, AJ1 whose
exact heiaohts are unknown are allowed to pass,

Figure 2-29 shows why the support alnorithm frequently
resorts to recursion. If the support for block C is to be
calculated, the hejoht of blocks D and E must be compared,
But this in turn reocuires knowledoe of their supnort so that
total heiohts can be added up from the chain of supports and

used in this last filterina operation of part 2.
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This completes discussion of the support algorithm as it
now stands, It is not hard to delude it deliberately, but it
nevertheless operates with a reliability suffic jent for use
by programs that build upon its results,

Improvements can be made in many ways. The follawinag
are a few ideas hioh on my priority 1ist: 1, A planned
med ification invelves usina Ls in the search for bottom
lines., So far the system gacs on the scene in fiaqure 2-30,
finding no bottom 1ines, GLut if one 1ine of an L 1s nearly
vertical and the other is nearly hnrizontal, then the nearly
horizontal 1ine should be an excellent tottom line, Of
course Ls are frequently buried just as arrows are, Buried
Ls are found in certain Ts, Xs and forks as shown in
fiagure 2-31., 2, The discovery of bottom lines can be fouled
by introducina small objects that obscure crucial vertexes.
Fioure 2-32 shows how, This could be corrected by a
procedure that extends 1ines, perhaps after the object is
identified, 3, The filterinn operation could be strenathened
in its ability to detect vertical sfides. So far it knows a
side is vertical only if the side has a vertical edne,

Fioure 2-33 shows how it camn run anround as a result, None
of the sides of brick C appear vertical and the alogorithm
consequently reports brick A is on top of brick C as well as

on brick B,
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2.3.2 In-front-of

Once a program can discover the SUPPORTED-EY relation,
then it can frequently deduce IN-FRONT-OF relations by
default., That is, if one of two blocks appears to obscure
another but is not above it, then the relation IN-FRONT=-OF is
a strong possibility, In pursuing this I again use a two
part proaram: the first part propecses possible objects that
a aiven object may be in front of; the second part rejects
the bad ones, While simple and direct, this program also
succeeds admirably on complex scenes,

Part 1 tries to find a1l objects that the object in
gquestion obscures, First it gathers up most of the obscured
objects through search for particular types of T joints on
the periphery of the object., Supoose one defines a line to
be physically associated with a particular ohject when that
line in the two dimensional drawino results from an edae or
intersection of planes on the object, rather than from some
obscuring object. Fiqgure 2-34 illustrates. Then the types
of Ts sought are just those for which cne can be reasonably
sure that the crossbar belongs to the obhject conjectured to
be the obscuror,

Figure 2-35 shows two kinds of qualifying T joints, The
first kind occurs when the wide angle region assocfated with

the T belonas to or is physically associated with the object
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from which IN-FRONT-OF relations are souqht, Both of the
other regions, the ones borderina the shaft of the T, belona
to a second object, This nearly always indicates the second
object 1s obscured,

The second kind of T jeint illustrated in figure 2-35
occurs when one shaft-borderine region belongs to an object
while the other belongs to the backecround, This again
assures the machine that the crosstar belonas to the
potentially obscuring object.

Figure 2-36 indicates by counter example why nothing can
be deduced if the shaft-borderina regqions belong to distinct
objects, The trouble is that the crossbar of the T is not a
real edoe of block C, but rather the crosstar is composed of
edges belonging to A and B,

Still another way to locate appropriate Ts is more
global. The idea is to use whatever means are available to
find genuine edges belonging te a body and then to see if any
Tz 1ie along such lines. Recall that the seiection of bottom
1ines involves inspection of arrows, Xs and Ks at the bottom
ends of interior lines, Furthermore the raticnale behind the
support algorithm depends on the likelihood that such bottom
lines are physically assocfated with the same object as the
interior line of the arrow, X, or K, Conseauently the machine

can generate a whole family of peripheral lines 1ikely to be
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physical edges by simply examining the arrows, Xs, and Ks at
both ends of the interfor lines, rather than just those at
the bottom ends, Then if any of these physically assoc iated
lines end at anm L, the other line forming the L 1s added to
the 1ist. It is very unusual for one leg of an L te belong
to an object without the other lea belonoinn alse,

How if any physically assocfated 1ine is the crossbar of
a T, then the parent object obscures some other object or
objects, Fioure 2-37 demonstrates what ¥ind of edges and Ts
are found by this method.

Hotice that the Ts referenced by figure 2-37 are also
notfced by the previously discussed local inspection since
they exhitit the recuired cenfiouration of objects about the
Ts lines, Figure 2-38 demonstrates that both methods
contribute, however, since only the lecal method works on Ts
marked L while only the med ified bottom-line finder helps on
those marked G,

A1l of this yields obscured objects which are candidates
for relatine to the object studied by the relation IN-FRONT-
0F, MNext, part 2 requests help from the support proaram and
then fmmediately rejects all the candidates for which the
RBOVE relation is known to hold, This however is often not
completely sufficient. In figure 2-39, the machine knows

brick A obscures brick C by virtue of vertex vV, But A is not
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directly above C, Clearly, the above check must be expanded
te the presence of chains of ABOVE relations in order to
bring the algorithm into line with human taste, In the
course of this check, the proaram for ABOVE may be called
many times if the ABOVE relations have not yet been
established, Any candidate that survives this check is
thought to be behind the object studied.

The most annoying weakness of this algorithm is that the
seam between the obscured and the obscuring obfect may not
exhibit the required type of 7 joints, Figure 2-40 shows how
this can happen., [ suspect that further progress can be made
in these situations of alfionment through close consideration
of Xs and perhaps Ks,

2.3.3 An Example
Figure 2-41 provides a somewhat mere comnlex scene for
the IN-FRONT<0OF and SUPPORTED-BY findinn programs to try,

The results are as follows:
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A supported-by B C in-front-of F G
B K -
C D E -
U - E
E - -
F E -
G - -
H I -
I - -
J - -
K H E

The only bad choice is the neglect of G as a supnort of F,
The reason is that the support criticizing procram has a
built in assumption that a supported object's bottom is
level, Therefore it believes E is the only support for F
because it §is higher than G, the other possibility.
2.3.4 Left and Right

Two programs exist for decidina if one object is left
of, right of, or neither with respect to another, The first
computes in a strafghtforward, simple way, It simply
compares the x coordinates of the vertexes of both objects.

If there is no overlap, that is if
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xcor{any vertex of one object)

<

xcor(any vertex of other object)

then the first object is to the left of the other, If there
is overlap, then no statement can be made,

This program, based on the no-cverlap criterien, could
be greatly improved through the use of an object extending
program, The machine is naive to think that object C in
figure 2-42 is left of object A. Humans tend to fill in the
obscured portions of object C to form a complete block.

But even with an ability to imagine the hidden parts of
objects, such a program refuses to really aoree with human
judgements, Consider the spectrum of situations in
figure 2-43, For the first pair of objects, the relations
LEFT=0F and RIGHT=OF are clearly approporiate. For the last,
they are clearly not appropriate. To me, the crossover point
seems to be between the situations expressed by pairs 4 and
5.

Now notice that the center of area of one object s to
the left of the left-most point of the other object in those
cases where LEFT-0F seems to hold. It is not so positioned
if LEFT-0F does not hold, Such a criterfon seems in

reasonable agreement with intuitive pronouncements for many
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of the cases I have studied, It alsc yields reasonrable

answers in figure 2-44 where in one case A is to the left of
B and in the other case it is not, HNotice that the relation
is not symmetric, however, as the center of area of the much

longer brick, brick B, indicates B is to the right of A in

both cases,

Figure 2-45 reguires extra attention., MNo matter what
the center of mass relations, humans are reluctant to use
either LEFT-0F or P IGHT-0F if one object extends beyond the
other in both directions, One must additionally specify a
rule against this, leaving the following for LEFT-OF:

Say A is left of B <=

| P The center of area of A is left of the leftmost
point of B.

2a The rightmost point of A is left of the rightmost
point of B.

The rule for RIGHT-GF s of course parallel in form,

Many people feel their perception of the relation
LEFT-0F differs considerably from either of the two
possibilities exhibited here. I believe the center-of-
area method is reasonable for the machine now, but it
would be interesting to more fully explore the question
of what humans think to see if other formulas are
better, Intuitive notions of LEFT=-0F vary wildly and
the prn?ram can only te said to generally reflect my
personal preferences., Indeed, deciding if one object is
to the left of another stimulates far more argument than
do questions invelving relations 1ike IN-FRONT-OF and
SUPPORTED-BY. People have difficulty verbalizing how
they perceive LEFT-0F and tend to waver in their
methods, but implications are that criteria change
depend ing on whether the objects involved are also



=

FIGURE 2-44




FIGURE 2-45

FIGURE 2-46




66

related by IN<FRONT-DF, ON-TOP-0OF, BIGREP-THAN, and so
on.

Professor Marvin Minsky has pointed out to me that
the orientations of objects are also a strona influence,
In figure 2-46, for example, the cube seems left of the
arch's entrance even thouah all its vertexes are clearly
right of all the arch's vertexes, In view of this
cbservation, m{ procedure could probably do better by
asking basically the same questions as before, but about
lines through the left-most, right-most, and center-of-
area points in the direction of orientation instead of
what amounts to vertical projection of the points to the
x=-axis, Put then there is the problem of finding an
object's intrinsic orientation., At the moment I know of
no general heuristics for this,

2.3.5 Marrys

The abuts and aligned-with relations arise frequently,
perhaps because of some human predilection to order, As
intuitively used, however, neither of these words corresponds
te the notion T want the machine to deal with, To avoid
confusion, I therefore prefer to use the term marry which I
define as follows:

Definition: An cbject marrys another if those objects

have faces that touch each other and have at least one

common edoe.
Thus the objects in fioure 2-47 are said to marry one
another. Those in fiocure 2-48 do not because they have no
common edge, Similarly those in figure 2-49 do not because
they have no touching faces.

The MARRYS relation is sensed by methods resembling
those previously described. First the vertexes along the

border are collected. Then the Xs, Ts and Ks are further
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examined:

The Xs are simple to handle. If exactly two of the
lines are collinear and if the other two separate two
objects, then those objects are very likely to deserve the
MARRYS relationship because such a vertex is strongly
associated with al igned stacks or rows. Ffioure 2-50
illustrates these situations. Fioure 2-51 shows why the two
objects must be separated by the two non-collinear 1ines.
There three sides belorg to the same object and the MARPYS
relation does not hold.

If there are four objects at the vertex and there are
two pairs of collinear 1ines, then the 1ikely situation is a
field of objects with those sharing lines marrying each
other, See figure 2-52.

Ks are strongly correlated with the sort of alionment
illustrated Ly fiqure 2-53. The rule is simple: If there
are two objects with sides at a K vertex, then they probatly
narry.

When three objects meet at a T one of the focllowing

holds:

1, The objects with the stem in between marry each
other and both obscure the third object.

2, The third object is the obscuring object. In
this case the two other objects may or may not
marry.
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3. A1l three objects marry.
4, Something else,

Of these, my programs check for case 1 only., The
central program looks for chains of IN-FRONT-OF and SUPPORTS
relations between the shaft-bordering objects and the larce=-
angle object, If such chains are found for both, they 1ikely
both obscure the large anale side and marry each other,
Figure 2-54 shows examples,

Mow consider the situation where only two objects meet
at a T with the wide angle side and one of the other sides
be longing to one object. As fiaure 2-55 suggests, this sort
of T freouently becomes a K when seen from some other angle.
Like the K, the machine considers it strono enouogh evidence
for a MARRYS relation.

Figure 2-56 illustrates both of the T joint situations
that confirm marryment,

Note that the machine is conservative in using this
MARRYS relation; the relation is not placed in ambiouous
situations such as these of fiqure 2-57,

2.3.6 Shape

Before an object can be identified, the 1ines that are
really edages of that object must be sorted from those that
are edoes of obscuring objects. It would not do to think

cbject B in figure 2-58 has sides shaped 1ike those in
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figure 2-59.

The idea of an edge belonging to a boedy has been
discussed. The shape program I use first cathers together
those 1ines found to be genuine physically associated edaes
by the program that lTooks for IN-FRONT-OF relatiens. To
these it adds any 1ines that lie between two recions of a
bedy, the interior 1ines. Then if these lines include both
uprights in a pair of matched Ts, it adds a line joininag the
two Ts. And finally, any 1ine shared with the backaround or
other body known to bte below or behind is certainly included,
These rules are sufficient to identify many of the lines that
belong to any qgiven object, while refecting many that do not
belong,

Figure 2-60 shows how this proagram sees object B of
figure 2-58, Lines L, M, N, and 0 are finterifor lines. Line
P is a segment between matched Ts with the required kind of
uprights, Q gualifies by way of the IN-FRONT-OF algorithm,
while R, §, T, U, and V¥ qualify both by way of the IN-FRONT-
OF algorithm and the rule adding lines lying between the
object and the background. Figure 2-61 shows how the rest of
the scene in figure 2-58 is dissected by this program.

Motice that the shapes are reasonably well defined,.
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2.3.7 Size

Piaget has shown that at a certain age children
generally associate physical size with greatest dimension
[3]. They will, for example, adamantly maintain that a tall
thin beaker has more water in it than a short fat one even
though they have seen them filled from other beakers of equal
size,

Adults do not develop as far beyond this as might be
expected, I do not think we really use the notion of volume
naturally. Apparent area seems much more closely related to
adult size judgement. 1llotice that beaker A in fiqure 2-62
appears to have about the same amount of water in it as does
beaker B, even thougoh it must contain twice as much., Unless
a subject consciously exercises a formula for volume, he is
Tikely to report that object B in figure 2-€3 is
approximately ten times larcer than object A, even if told
both objects are cubes, The true factor of twenty-seven
times seems large when the trouble is taken to calculate it.

Consequently, the size generating program does not
trouble with volume. Instead it calculates the area of each
shape produced by the shape detecting algorithm, MNext it
adds together the areas of all shapes belonging to an object
to get its total area. Then using these areas it can compare

two objects in size or consult the following table for a
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3 Discovering Groups of Objects

When a scene has more than a few objects, 1t 1s usually
useful to deepen the heirarchy of the description by dividina
the objects into smaller groups which can be described and
thought of as individual concepts. Fiaoure 3-1, for example,
seems to divide naturally into three aroups of objects, one
being three objects tied together by SUPPORTED-EY pecinters,
another being three similar objects on top of a fourth, and
the third bteinc a set of objects in the arch configuration,
There are other kinds of grouping humans use, but in this
work I primarily explore only the three jllustrated by this
figure 3-1, Grouping by identificaticen with a known model is
discussed later in the chapter on identification. This
chapter deals with grouping on the basis of peinter chains
and on the basis of property similarities,

3.1 Sequences

A simple kind of group consists of chains of SUPPORTED-
BY or IN-FRONT=-CF pointers as in the tower of figure 3-1.
The first act of the aroupina program is to find sets of
objects that are so chained together. A1l such sets with
three or more elements cualify as groups.

In the event the secquence of pointers closes on itself,
a ring is formed. In fiqure 3-2 there is such a group

because each of the three objects rests partly on cne of the
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other two, The result is a circular chain of SUPPORTED-BY
pointers as shown in figure J-3.

Using chains to define groups can become fairly complex
as 1llustrated by the scene in fiaure 3-4, A chain of
SUPPORTED=-BY pointers splits into two branches in scene one
at the point where object C is supported by two objects, D
and E. In scene two, two chains of SUPPORTED-BY pointers join
at M which supports both I and L. The current version of the
grouping program terminates chains at junction points without
further fuss., This seems reasonable for it seems natural to
think of the scenes in ficure 3-4 as a set of aqroups
consisting of N-B-C, G-H-I, and J=-K-L.

Another kind of problem arises when objects tied
together bty a simple chain of relations should not
constitute a aroup because of other factors., Figure 3-5
shows one kind of situation that can occur, for which 1
have only ideas but no programs. In this scene the
machine perceives a sinale ocbject conalomerate, grouped
together by virtue of an unbroken chain of SUPPORTED-BY
pointers, But most humans see a short tower on top of a
board on top of another tower. This must be partly
because of the size differences and partly because of
the fact that the top group is not directly over the
other objects, In any case, it would seem that radical
change in object properties should be possible grounds
for breaking a chain. With this, one s into territory
where irrevocable committments should be avoided,
Perhaps the best thine would be to have the arouping
program offer alternative groupinas of tricky scenes and
postpone decision until hiogher level identification
programs indficate which arrangement leads to the best
match of the scene against known models.



o
=

OME-PART-15 ——i}* ——{P__"

FIGURE 3-3



e

FIGURE 3-4

FIGURE 3-5




87

3.2 Common Propert ies

When several cbjects have the same or very nearly the
same description, they are immedifately solid candidates for a
group, The leas on the table in figure 3-6 are typical. A1l
are bricks, all are standing, and all are supports for the
top board.

This kind of manipulation is slightly dangerous in that
my criteria for forming a qroup and admitting members to it
are a bit flimsy. So far the rules are based on the
following demands:

1. A1l candidates for group membership must be related

to one or more particular objects in the same way.
For the tabkle case, all four objects are related to
the board by SUPPORTED-BY, This restriction appears
necessary because uniform relationship to a single
object seems to have strong binding power, The
standing bricks in figure 3-7 naturally constitute
two groups, not one.

2. There must be three or more members in the group, and
the members of iLhe oroup must share many of their
properties.

Figure 3-8 outlines the procedure for forming such
groups. The basic idea is to make a generous guess as to
what objects to include in a group and then to eliminate
objects which seem atypical until a fairly homogeneous set
remains,

To de this, a preogram first finds a candidate group by

lecating a set of objects that relate to one particular
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object in the same way.

relationships-]ist

exhibited by more

through a Tisting of all relationships
than half of the candidates in the set,.

Figure 3-9 helps explain this process. Objects A

through F are immedjately perceived to be a possible group

because they all have a relationship, SUPPORTED-BY, with a

single object, G.

candidates are:

The relationships exhibited by the

A, B, and C:

1
2
3

2
3
a

E and F:

1
2
3
a4

Three relations appear in the common-relationships-1ist

because they are found in more than half of the candidates'

SUPPORTED-BY pointer to G

MARRYS pointer to 6

A-KIND-OF pointer to BRICK
HAS-PROPERTY-0OF pointer to MEDIUM-SIZE

SUPPORTED-BY pointer to G

MARRYS pointer to G

A-KIND=OF pointer to BRICK
HAS-PROPERTY=-0OF pointer to SMALL

SUPPORTED-BY pointer to G

MARRYS pointer to G

A-KIND=-OF pointer to WEDGE
KAS-PROPERTY=-OF pointer to SMALL

relationships 1ists:

Next comes formation of a common-
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common-relationships=-1ist:

1 SUPPORTED-BY pointer to G

2 MARRYS pointer to G

3 A-KIND-OF pointer to BRICK

After this common-relationships=-list is formed, all

candidates are next compared with it to see how typical each
is. The measure is simply the fraction of the total number
of properties of the candidate and the common-relationships-
1ist that are shared, Said in a more formal way, the measure

is

number of properties in intersection

e e O I RS - -

number of properties in union

where the union and intersection are of
the candidate's relationships 11st and
the common=-relationships-1ist.

Figure 3-10 represents abstractly a sftuation in which the
candidate and the common-relationships-1ist are auite
different, The shared properties, represented by the shaded
area, 1s but a very small fraction of the total area, both
shaded and unshaded, Figure 3-11 gives the opposite extreme.

There is considerable overlap and the value is near one, the
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max imum possible,

Using this similarity formula to compare the various

objects of the figure 3-9 example with the common~-
relationships=-1ist, one has:
A versus the common-relationships=list --% 3/4
B versus the commen-relationships=-1ist --» 3/4
C versus the common-relationships=list <> 3/4
D versus the common-relationships-list --» 3/4
2/5

]
]
-~

E versus the common-relationships=]ist

F versus the common-relationships=1ist <> 2/5

=
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4, B, C, and D do not have sceres of 1 only because the

common=-relationships-1ist does not yet have a property

indicating size, The reason is that there s no size common

to more than half of the currently possible aroup members, A,

BO Cl D, E. al"ld F-

The much lower scores of E and F reflect the additional

fact that as wedges they are different from the standard

type. They are jmmediately eliminated according to the

following general rule:

Eliminate a1l candidate objects whose similarity scores
are less than 80% of the best score any object attains,

This insures that the qroup will have members all with a

nearly eoual right to belong.

Next the process is repeated because those properties
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common to the remaining candidates may differ from those

properties common to the original group enough that one or

more changes should be made to the common-relationships-1ist.

This repetition continues until the elimination process fails

to oust a candidate or fewer than three candidates remain.
After the first elimination of objects leaves A, B, C,

and 0, there is a new common-relationships-list:

common-relationships-1ist:
SUPPORTED-BY pointer to G
MARRYS pointer to G

A-KIND-OF pointer to ORICK
HAS-PROPERTY=-OF pointer to MEDIUM-SIZE

I PO

Notice that there is now a size property since three of the
four remaining objects have a pointer to med jum size. The
new comparison scores are:

A versus the common-relationships-list =< 4/4 = ]

B versus the common-relationships-1ist == 4/4 = ]

C versus the common-relationships=list --» 4/4 = ]

D versus the common-relationships-list == 3/5 = .6

This time 0 is rejected because its uncommon size causes

a low score, leaving a stable agroup in which the objects are

all quite 1ike one another.
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3.3 Other Kinds of Grouping

There cbviously cannot be a single universal groouping
procedure because attention must be paid not only to the
scene involved, but also to the needs of the varfous proorams
that may request the grouping activity, I have discussed two
grouping modes that programs can now do in response to
varicus demands. There remain many others to be explored,

One of these invelves looking for things that fit
together, Children frequently do this at play without
prompting, and adults do it extensively in solving jinsaw
puzzles.

Another kind of grouping, one particularly sensitive to
the goals of the request, is grouping or the pasis of some
specified property. The idea is to pick out all things
satisfying some criteria, such as all the big standing
bricks. The result could be a focusing of attention,

Sti11 ancother way to qroup invelves overall properties
that are not obvious from purely local observations,
Technigues here are again laroely unexplored, but it seems
that overall shape can sometimes impose unity on a complete
hodge-podge. Figure 3-12 illustrates this point, A1l of
the objects fit together to form a brick-shaped aroup. This
is clearly not inherited from any consistency in how the

parts are shaped or how they interact with their immediate
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neighbors,
3.4 Describing a Group; The Typical Member

The machine needs some means of describina groups. The
method it uses seems to work, but there is room for
fmprovement,

First, the parts of the group are gqathered together
under a node created specifically to represent the group as a
conceptual unit., Figure 3-13 illustrates this step for a
group of three objects, A and C,

Mext comes a concise statement of what membership in the
group means, This is done throuqh the use of a typical-
member node, Properties and relations that most of the group
members share contribute to this node's description, If some
oroup were composed of three standina bricks arranced in a
tower, then the result would be the description shown in
figure 3-14, The typical member is there described as a kind
of brick, as standing, and as on top of ancther member of the
group. MNotice also the FORM peointer to SEQUENCE which

indicates the kind of group formed.
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4 Similarities and Differences
4.1 Network Matching

Powerful scene description proarams are essential to
scene comparison and identification. Matching is equally
important since the machine must know which parts of two
descriptions correspond before it can compute similarities
and differences, Figure 4-1 briefly illustrates. A process
explores the two descriptive networks and decides which nodes
of the twe best correspond in the sense that they have the
same function in their respective networks, The nodes in a
pair that so correspond are said to be Tinked to each other.
The job of the matching program is simply to find the linked
pairs, MNode LC and node RC in figure 4-1 both have only A-
KIND-0OF pointers to BRICK. Since no other nodes have similar
descriptions, it is clear that LC and RC should be a linked
pair, Similarly, LB and RE should be a linked pair since
both have A=-KIND-0OF pointers to WEDGE and both have
SUPPORTED -BY pointers to parts of a pair of nodes already
known to be linked,

0f course the job of the matching program is not so easy
when the two scenes and the resultino two networks are not
identical. 1In this case the process forms 1inked pairs
involvine nodes that may not have identical descriptions, but

seem most similar nevertheless, More details are described
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in the appendix.
4.2 The Skeleton

Once the matching process has examined twe netwerks and
has established the linked pairs of nodes, then description
of network similarities proceeds. The result is simply a new
chunk of network that describes those parts of the compared
networks that correspond. This chunk is called the skeleton
because it is a framework for the rest of the comparisaon
description, As fioure 4-2 suggests, each linked pair
contributes a node to the skeleton. Certain pointers connect
the new nodes together. These occur precisely where the
compared networks both have the same pointer from one member
of some linked pair to a member of some other linked pair.
Notice that the skeleton 1s basically a copy of the structure
that the compared networks duplicate.

4.3 Comparison Notes

Complete comparison descriptions consist of the skeleton
together with a second group of nodes attached to the
skeleton 1ike arapes on a arape cluster, Each of the nodes
in this second category is called a c-note, short for
compar ison note. The most common type of c-note 1s the
intersection c-note which describes the situation in which
both members of a 1inked pair point to the same concept with

the same pointer. Suppose, for example, that a pair of
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corresponding objects from twe scenes are both wedges, Then
both concepts exhibit an A-KIND=-OF pointer to the concept
WEDGE, (figure 4-3) In English one can say:
I. There is something to be said about a certain
linked pair.
2. There is an intersection involved,
3. The associated pointer is A-KIND-OF,
4. The intersecticn occurs at the concept WEDGE,
Figure 4-4 shows how each of these simple facts translates to
a network entry. First, a pointer pamed C-HOTE extends from
the skeleton concept corresponding te the linked pair to a
new concept that anchors the intersection description, The
A-KIND-OF pointer identifies this concept as a kind of
intersection, Finally other pointers identify the pointer,
A-KIND=-0OF, and the concept, WEDGE, associated with the
intersection.
A1l of the c-notes look 1ike this intersection paradigm,
+3.1 Digression: Evans' Program
Embodying difference descriptions in the same network
format permits operation on those descriptions with the same
network programs. Thus two difference descriptions can be
compared as handily as any cother pair of descriptions,.
Those familiar with Tom Evans' vangquard program, ANALOGY

(4], can understand why this is a powerful feature, rather
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than simply a contribution toward memory homogenefity. Evans'
program worked on two dimensional geometric figures rather
than drawings of three dimensional configurations.
Mevertheless his ideas general ize easily and fit nicely into
the vocabulary used here.

Figure 4-5 suggests the standard sort of intelligence
test problem involved. The machine must select the scene X
which best completes the statement: A is to B as C is to X.
In human terms one must discover how B relates to A and find
an X that relates to C in the same way.

Using the terminoloay of nets and descriptions, one
solution process can be formal ized in the following way:
First compare A with B and denote the resulting comparison=-
describing network by

d[A:8].
Similarly compare C with the answer finures generating
descriptions of the form d[C:X]. The result is a complete
set of comparisons describing the transformations that carry
one figure into another. Next one should compare the
description of the transformation from A to B, d[A:B], with
the others to see which is most 1ike it. The best match is
assoc fated with the best answer to the problem, If M is a
metric on comparison networks that measures the difference

between the compared networks, one can say
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choose X such that
M(d[d[A:B]:d[C:X]])
is minimum

The metric I use is not fancy, It is the one discussed
later in chapter 7 that serves to jdentify some scene with
some member of a group of models. It' works because that
problem entirely parallels the problem of identifying a given
transformation description with some member of a group, The
identification program, together with a short executive
routine, handles the problem of figure 4-5 easily, correctly
reporting scene three as the best answer., Reasonably enough,
the machine thinks scene one is the second best answer.,

The machine does as well on the slightly altered problem
in figure 4-€, reporting four as the best answer,

0f course if the machine's answers are to be those of
the problem's formulator, then the machine's describing,
comparing, and comparison measuring processes should all give
results that resemble his, Moreover, a really good analogy
program should have available alternatives to its basic
describing, comparing, and comparison measuring processes,
Then in the event no single answer is much better than the
others, the program can try some of jts alternatives as one
or more of its basic functions must not be operating

according to what the problem maker intended., Evans' program
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is superior to mine in this respect because it can often
compare two drawings in more thanmn one way, It can visualize
the change in figure 4-7, for example, as either a reflection
or any one of several rotations,

Given my formulation of the analogy problem, it is easy
to see how certain interesting generalizations can be made,
After all, once an X is selected, the network symbolized by
d(d[A:B):d[C:X]] describes the prohlem, and as a description,
it can be compared with the descriptions of other problems,
By thus applying the comparison programs for the third time,
one can deal with the question, Analogy problem alpha is most
like which other analogy problem? Alternatively, one can
apply the analogy solving program to problen descriptions
instead of scenes and answer the question, Analogy problem
alpha is to analogy problem beta as anmnalogy problem gamma is
to which other analogy problem? This involves four levels of
comparison, DBut of course there is no limit, and with time
and memory machines could happily think about extended
analogy problems involving an arbitrary number of comparison
level s,

$.3.2 Another Digression: HNewell, Shaw, and Simen's Program

A classic piece of work in artificial intell igence 1is

that of Newell, Shaw, and Simon on the scheme known as the

General Problem Solver, always abreviated GPS [5]., One form
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of GPS provides another example of how comparisons may be
usefully compared with other comparisons,

From an abstract point of view, GPS involves the notion
that problems may be thought of in terms of some solution or
goal, G, tegether with a current state C, Additonally there
are operators, 0(1), that convert classes of states into
others, (One may abreviate their action by writing

O(1):F=IN(i) -=» F-OUT(1),
meaning that operator 0(i) tends to convert states of the
form F-IN(1) into states of the form F-DUT(1).

GPS notices the difference between the current state C
and the desired state G and then tries to apply an operator
relevant to reducing that difference, This produces a new
current state somewhat closer to the desired state., Applying
this process iteratively, GPS may eliminate the difference
between C and B, thereby sclving the problenm.

In early versions of GFS the programmers supplied a
table giving the relevant cperations for all the differences
between C and G that might be observed. But later on Hewel]
descrited an approach [6] that I think may be more
transparently represented using the same notions of second
order comparison minimization that is useful in discussing
analogy problems., The idea is that the operators, 0(i), may

be described by the difference between their input and cutput
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forms,
dlF=IN(1):F=0UT(i)].
Then Newell feels it is heuristically scund to apply the
operator whose description is most 1ike the difference
between the current and desired states,
d{C:6].
One can say more formally,
choose the operator 0(i) such that
M(d[d[F=IN(i):F=-0uT(i)]:d[C:G]])
is minimum,

Notice that the selection of an operator is curiously
like solving an analoay problem for which one chooses a pair,
(X(i),¥(i)) from a set of offered pairs that best completes
the statement: A is to B as X(1) is to Y(i).

4.4 A Catalogue of C-note Types
4,4,1 The Supplementary-pointer

Consider the scenes in figure 4-8 and their descriptions
in figure 4-9, Scene L has the pointer SUPPORTED-BY between
LA and LB, but scene R does not have a pointer between the
objects linked to LA and LE, The note describing this
situation is called a supplementary-pointer c-note and has
the form shown in figure 4-10.

Figure 4-11 suggests a related situation. Here the

linked concepts L and R differ only in that L has an
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additional pointer identifying it as standing. This differs
from the supplementary-pointer case in that STANDING is not
linked to anything in the other scene. A pointer to the
concept EXIT signals this sftuaticn, (figure 4-12) Exits
involve concepts generated by the scene description proaram
as well as concepts 1ike STANDING that reside in the net
permanently, If one scene contains more objects than
another, the concepts left over and not matched end up in
exit packages.

4.4,2 Pointer Modifications

Suppcse the networks in figure 4-13 are compared.

Notice the MARRYS pointer between LA and LB and the DOES=HDT-
MARRY pointer between RA and R8, These could be handled
ind ividually as unrelated supplementary-pointer c-notes, but
this would ignore the close relationship between MARRYS and
DOES-NOT-MARRY, Consequently a different type of c-note is
used that recoqnizes the relationship. It is the negative=-
satellite-pair c-note, With it, the comparison looks as
shown in figure 4-14, To find such negative-satellite-pair
c-notes, the comparison programs peruse the descriptions of
unma tched pointers between 1inked pairs for evidence of
relationship. For example, MARRYS is described in part by a
MEGATIVE-SATELLITE pointer to DOES-HOT-MARRY. HNow of course

there are other pointers that are also just one step removed
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from a basic relation. A1l such pointers that are

mod ifications of the basic relation are called satellites
because they cluster around the basic relation to which they
are attached by the pointer MODIFICATION-OF, Uncertainty,
for example, is expressed by PROBABLY satellites or MAYBE
satellites. The MUST satellites and the MUST-NOT satellites
are others of particular importance in model construction.
These inform the model matching programs that the presence or
absence of some pointer is vital if some unidentified network
is to be associated with a particular model network
containing such a pointer. Figure 4-15 shows some of the
satellites of MARRYS.

Each type of satellite is associated with a type of c-
note forming an open ended family., Thus in addition to
negative-satellite-pair c-notes, there are probably-
satell ite-pair c-notes, maybe-satell ite-pair c-notes, must-
satell ite-pair c-notes, must-not-satellite-pair c-notes and
S0 on.

4,.4.3 Concept Modifications |

Freguently the members of a linked pair both have
pointers to closely related concepts. For example, if a
brick in one scene is 1inked to a cube in another, the
situation is as shewn in figure 4-16. This is very much 1ike

the pointer-satell ite idea with A-KIND-OF replacing
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MODIFICATION-OF. In any case, the description generator
recognizes this and similar situations and again generates a
group of c-note types. The first of these is the A-KIND-OF
chain illustrated by the above situation., This causes the c~
note of figure 4-17.

The a-kind-of=-chain c-note also includes situations in
which one concept is related to another not directly, but
rather through two or three A-KINKD-OF relations. Suppose,
for example, a cube is Tinked with an object for which no
jdent ification can be made, There is still an a-kind-of-
chain c-note because cube is Tinked to the general concept,
OBJECT, by a sequence of A-KIND-OF relations. (fiqure 4-18)

Anot her kind of pooular concept modification is the a-
kind=of=-merge c-note, These a-kind-of-merge c-notes occur if
there is no A-KIND-OF chain as described above, but each
concept has a chain of A-KIND-OF pointers to some third
concept., For example, WEDGE and BRICK are both connected to
the concept, OBJECT, by A-KIND-OF, (figure 4-19)
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5 Learning and Model Building
5.1 Learning

In this chapter I discuss learning to recoanize simple
block configurations. Although this may seem 1ike a very
special kind of learning, I think the implications are far-
ranging,

It is possible to assuime extreme positions on the
subject of learnino. One person may think learning to do
things is very complicated, while learning to recognize
things is comparatively simple, because one merely aquires
templates or some such., Conversely, ancther persen may think
learnine to do is simple, but learnina to recognize involves
deep Gestaltist problems of synthesis or other impedimenta.

My opinion is that learning by examples, learning by
be ing told, learning by imitation, learning by reinforcement
and other forms are much like one another,

In the literature there is frequently an unstated
assumt ion that these various forms are fundamentally
different. But I think the classical boundaries between the
various kinds of learning will disappear, conce superficially
different kinds of learning are understood in terms of
processes that construct and manipulate descriptions. No
kind of learning need be desperately complicated once the

descriptive machinery is available, but all constitute
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opagque, intractable processes without it.

Then once the problem of using descriptions is
thoroughly understood, it will be possible to give meaningful
thought to a deeper problem, that of learning to use
descriptions, It does not seem simple, but usina this point
of view, it seems less than impossible.

The notions of learning and teaching are broad and
confused, Generally, people think of these things as
occurring together, so that whenever something learns,
something else teaches. But somehow intuitive notions
fail when it comes to thinking about machines,
Computers can now play tolerable and improvina chess and
do marvelous symbolic integqrations. Yet while people
freely use the word "teach" in descriting what the
programmers do, hardly anyone thinks of the machine as
learning.

The reason seems to be that the human programmer
has supplied so much detail that the machine is more a
mimic than a thine with Tearning ability., The machine
acquires its skill without ever really knowing what is
going on or how it might improve without the laborious
services of an information processing surgeon. The
unfortunate machine is in the pesition of school pupils
who know facts and perhaps memorize simple algorithms,
but are never proarammed to learn. The programs to be
discussed here are an effort to show that a machine can
d; better and can Tearn in a realistic sense, given a
chance.

5.2 Descriptions and Models
I want to make a clear distinction between a description
of a particular scene and a model of a concept. A model is
1ike an ordinary description in that it carries information
about the various parts of a configuration. But a model is

more in that it exhibits and indicates those relations and
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properties that must and must not be in evidence in any
example of the concept inveolved.

Suppose, for example, the description generating
programs report the following facts in connection with the
arch in figure 5-1:

1. Object A is a brick,
2, 0Object A is supported by B and C.

Now suppose the description containing these facts were
compared with the scene in figure 5-2, where object A is a
wedge, and with the scene in figqure 5-3, where object A lies
on the table., In both cases comparison could ce made and
differences appropriately noted, but the identification of
one or the other of these new scenes as arches would be risky
indeed because so far the machine knows only what one arch
looks 1ike without knowing what in that description is
important!

Humans, however, have no trouble identifying the scene
in figure 5-2 as an arch because they know that the exact
shape of the top object in an arch is unimportant, On the
other hand, no one fajls to reject the scene in figure 5-3
because the support relations of the arch are crucial.
Consequently, it seems that a description must indicate which
relations are mandatory and which are inconseguential before

that description qualiffes as a model. This does not require
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any descriptive apparatus not already on hand. One need only
subst itute emphatic forms like MUST -BE~SUPPORTED-BY for basic
pointers like SUPPORTED-BY or, in some cases, add new
pointers. Discovering where and when to perform these
operations can be somewhat involved, however, and requires
the bulk of this chapter for discussien.
5.3 Examples, Near-misses, and Non-examples

Suppose it is desirable to train a machine to recoanize
the letter A without restriction as to type size or font,.
The designer then has two sets of options: He must dec ide
how his machine is to work; and he must decide what to show
the machine. One idea is to shoy the machine vast numbers of
As and hope that it will benefit from such an experience by
scme how noticing the features which apnear repeatedly. But
this assumes that the frequently seen properties are
essential ones, which can be a bad rule. Moreover, there is
little possibility for skillful teaching, There is no
obvious way the teacher could ouickly convey a particular
idea such as the notion that the crossbar of an A is
important, even if the teacher realized it. Finally, such
samples aenerally only suogest properties a candidate for
match should have =-- it is hard for them to indicate
forbidden properties.

This is true because expert description proarams



131

would be needlessly overburdened and would promote

confusion if they were always to indicate all necative

properties and those not observed. Therefore a

property's consistent absence can be easily overlooked,

If the description program does 1ist all properties in

spite of inefficiency, then many properties are

statistically 1ikely to be missing from a short training
sequence. But the statistic-gcathering machinery would
think such properties should not be present in examples
of the model, even thouoh their absence was by
coincidence,

One might attempt to train basically the same machine to
handle a whole repertoire of concepts by showing examples of
each member, Thus if the repertoire were the alphabet,
examples of all the letters would be shown, rather than just
As, This shifts the question to lhich description does an
un known best match? It still avoids the more fundamental
question, What is it about each character that {is essential
and permits it to be recoanized? The machine now may use As
and non=-As, but the difficulties are only obscured, not
circumvented, There remains no way to directly convey an
idea, and there remains the fallacy that freguent appearance
means importance. The problem of indicatinao what properties
preclude identification with a particular model is only
tangentially and occasionally addressed in that sometimes a
property converts one description into another, as in the
case of adding a forbfidden midline crossbar to a C. The
machine does not know a C cannot have a crossbar; it only

knows such a crossbar makes a figure more 1ike an E.
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In my judaement, near misses are the really important
examples in learnino. In conveyina the idea of an arch, an
arch certainly should be shown first., But then there should
be some samples that are not arches, but do not miss being
arches by much. Small differences permit the machine to
localize some part of its current opinion about a concept for
improvement. If one wants the machine to learn that the
uprights of an arch cannot marry, one should show it a scene
that fails to be an arch only in this respect, If the
machine is to know a C cannot have a crossbar, it should see
a character that fails to be a C only because of a crossbar,
Such carefully selected near misses can sugnest to the
machine the important oualities of a concept, can indicate
what properties are never found, and permit the teacher to
convey particular ideas ouite directly.

It is curious how little there is in the 1 iterature
of machine learning about mechanisms that depend on good
training sequences. This may be partly because previous
sc hemes have been too inadequete to bear or even invite
extensive exploration of this centrally important tepic.
Perhaps there is also a feeling that creatino a training
sequence is too much like direct proarammino of the
machine to involve real learning., This is probably an
exaggerated fear, I aqgree with those who believe that
the learning of children is better described by theories
using the notions of proaramming and self-proaramminag,
rather than by theories advocating the idea of self-
crganization, It is doubtful, for example, that a child
could develop much intelligence without the programminag
implicit in his instruction, guidance, closely
ﬁuparvised activity, and general interaction with other

umans.
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5.4 Model Development

The machine's model building program starts with a
description of some example of the concept to be learned.
This description is itself the first model of the concept.
Subsequent samples are either examples of the concept or near
misses, These examples and near misses reveal weaknesses and
lead to @ new models, Section 5.5 shows in some detail how
the comparison between the current model and the description
of a new sample produce a new model in the case where only
one difference is found.

One then has a seouence of more and more sophisticated
models, See figure 5-4, Frequently, several responses may
appropriately address the comparison between the current
model and a new sample. When this happens, branches occur in
the model development sequence and it is convenient to talk
about a tree of models, Figure 5-5 shows such a tree,
Section 5.6 discusses how the alternative branches come
about. The machine selects one branch at each point for
further development, The meandering path lTeading from the
top of the tree down to the current model is called the main
line. The main line changes course when a particular
sequence of branch selections leads to untenable situations,

Section 5.7 describes how and when this happens.
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5.5 The Elementary Model Building Operations

This section considers the case in which the matching
program finds only one difference between the current model
and a new example or near miss. The table at the end of this
sect ijon summarizes the results,

5.5.1 The A-kind-of-merae: Current Model and Example

First consider the model and example in figure 5-6,
Figure 5-7 shows the resulting compariscn description, GCnly
one difference is found: the object of the model points to
BRICK while the object of the example points to WEDGE., But
since both BRICK and WEDGE relate by A-KIND-0OF to OBJECT, the
a=kind -of -merge c-note occcurs. Several explanations and
companion responses are possible. One is that the source of
the c-note may in general point to either of the things
pointed to by the A-KIND-OF pointer in the two scenes. Thus
the cbject could be either a WEUGE or a BRICK, Another
possibility s that the A-KIND-OF pointers from the object do
not matter at all and can be dropped from the model., Still
another option and the one preferred by the program is that
the object may be any member of some class in which both
HEDGE and BRICK are represented. In the example one such
class is simply the concept OBJECT and has already been
located as the intersection of A-KIND-OF paths. The program

responds by replacing the pointer in the comparison network
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that points to the a-kind-of-merge c-note by an A-KIND=-OF
pointer to the intersection or merqge concept. 1In this case
an A-KIND<QF pointer is installed between the c-note oriqin
and the concept OBJECT, Then the altered compariscn network
is the new model shown in figure 5-8,

The primary response 1 have selected for the
machine represents a moderate stand with respect to a
rather serious induction problem. I could have been
more conservative and used an A-KIND-0OF pointer to a
concept represanting the ordinary 0% of BRICK and WEDGE,
On the other hand, I could have been far more radical by
pointing the A-KIND<OF pointer to THING, the universal
class, My actual choice of pointing to the node
ind icated by the merge concept to be the intersection of
A=KIND=OF chains seems more flexible than either of the
extreems,

Since the merge concept is itself defined in terms
of the network's content, the general izations made will
change as the net grows, LCut since the apnropriate
response should after all depend on the universe the
machine is operating in, the generalfzation changes are
likely to be improvements. And in any case this
commitment is only one among many.

5.5.2 The Supplementary-pcinter C-note

Now suppose scene 1 in figure 5-9 represents the current
model while scene 2 contributes as a near miss. The matching
routine soon discovers that scene 1 produces a SUPPORTED-BY
relation between the two objects whereas scene 2 does not, A
supplementary-pointer c-note results, Of course the
implication is that the concept studied reouires the two
objects to stand together under the support relation,

Consequently, when such a supplementary-pointer c-note turns
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up, it transforms to the emphatic MUST version of the pointer
involved., Thus the new model is the one in fiqure 5-10,

Of course the supplementary pointer can turn up in the
near miss as well as in the current model. Suppese scene |
in figure 5-9 is the near miss instead of the current model.
One concludes A cannot be on B, The supplementary-peointer c-
note now indicates a relation that apparently cannot hold.
Appropriately, the MUST -ROT version of the supplementary
pointer is substituted in and the new net appears as in
figure 5=11.

5.,5.3 The Must-satell ite-pair C-note

Frequently comparison between the current model and a
new sample displays c-notes that do not reveal any new
feature, but rather result because of previous refinements in
the model, Suppose, for example, that the current model has
a MUST-MARRY pointer in a given location, while the sample
has a MARRYS pointer, Now clearly the MARRYS pointer is
appropriate in the description and the must-satellite-pair c-
note consequent to matching it with MUST-MARRY should be
replaced again by MUST-MARRY. Thus the emphatic form in a
must-satell ite-pair situation is retained and not interfered
with by refinement operations attempted subsequent to its

formation,
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5.5.4 The A<kind-of -merge: Current Model and Near Miss

Scemet imes a c-note offers twe or more nearly equal
explanations, Consider the super simple current model and
near miss in figure 5<12, The cencte is an a-kind-of-peroe
announc ing that the current model points with HAS-PROPERTY-OF
to STANDING, the near miss to LYING, and both LYING and
STANDING have A-KIND-OF paths to ORIENTATIONS, low the near
miss may fail either because it is lying or because it is not
standing, Responding to these explanations, the model
builder might replace the a-kind-of-merge c-note by a MUST-
NOT-HAVE-PPOPERTY-0OF pointer to LYING or by a MUST-HAVE-
PRGPERT¥-0F pointer to STANDING, Since most concepts humans
discuss are defined in terms of properties rather than anti-

properties, the MUST version is considered more likely.
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ACTION OF CONCEPT GENERATOR; EXAMPLE CASE

c-note type

a-kind-of-chain

a-kind-of-merge

negative-satellite

pair

mus t-be-satellite
pair

must-not-be
satellite pair

supplementary-pointer
or exit

pointer involved

negative-satellite or
fundamental pointer
in the model

negative-satellite or
fundamental pointer
in the example

must-be-satellite

must-not-be-satellite

response

point to intersection
with model's pointer

1. point to intersection
with model's pointer
2, drop model's pointer
drop model's pointer
retain model's pointer

contradiction

drop model's pointer

ignore

contradiction

retain model's pointer
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ACTION OF CONCEPT GENERATOR; NEAR MISS CASE

c-note type

a-kind-of=-chain

a-kind-of-merge

negative-satellite
pair

must-not-be-extension
pair

supplementary-pointer

pointer involved

fundamental pointer
in the model

fundamental pointer
in the near miss

negative-satellite
in the model

negative-satellite
in the near miss

response

1. if model's node is at
the end of the chain
add must-not-be satellite
2, if near miss' node is
at the end of the chain,
use must-be satellite
to model's node

1. replace model's pointer
by its must-be satellite

2. replace model's pointer
by must-not-be satellite
of near miss' pointer

replace model's pointer by
its must-be satellite

retain model's pointer

replace pointer with its
must-be satellite

insert pointer into the
using must-not-be satellite

replace pointer with its
mus t-not-be satellite

insert pointer into model
using must-be satellite
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5.6 Multiple C-notes

Cemparisons yielding sinnle c-notes are rare. More
often, the model builder must make sense out of a whele group
of c-notes, If the comparison involves a near miss, any one
of the c=notes might be the key to proper model refinement,
Moreover, many of the c-notes have alternative
interpretations that make further demands on executive
expertise.

The model builder must therefore consider the c-notes
and all the possible interpretations of each, Then it must
produce the set of kypctheses that form the model tree's
branches, These in turn must be ranked so that the best may
be pursued first,

The case of refinement throuah an example is simpler
than throuah near misses, Since none of the observed
differences are sufficient to remove the example from the
class, it is assumed that all of the differences found act in
cancert to loosen the definition embodied in the model,
Ccnsequently each c-note can be transformed independently and
a new model oenerated Ly their combined action, There is no
problem of deciding if one difference is more important than
another,

Consequently, if all the c-notes had but one

fnterpretation, only one new branch would be aenerated, The
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a=-kind-of-merge c-note has three possible interpretations,
however, and if one such c-note occurs, it is only reascrable
to create three branches instead of just one, The action on
the other c-notes is the same for all three branches.

Hear misses cause more severe problems, If two
differences are found, either of them may be sufficient to
cause the sample to be a near miss, while the other
difference mav be equally sufficient or merely irrelevant.

If the differences have multiple interpretations or more than
two differences occur, the number of possibilities explodes
and the machine cannot work sinply by generating an
alternative for each possibility.

The model builder clearly must decide which
interpretaticn of which differences are most likely to cause
the near miss,

The machine first fcorms two lists: a primary list and a
secondary list, Each c-note eventually ends up in one list
or the other.

Now some c-notes can never make the primary 1ist because
they are of themselves insufficient to explain why a given
sample is a near miss. A1l of these go immed iately to the
secondary c=-note list. One example is the situation in which
a pointer in the near miss corresponds in the current model

to an instance of the MUST-SATELLITE version of the peinter,
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A must-satell ite-pair c-note results but certainly 1is no
arounds for excluding the near miss from the class since the
required pointer is in fact present. Some other explanation
mu st be found.

The next and most obvious way to sort differences is by
level, This assumes only that the differences nearer the
or fgin of the comparison description are the more important,
This certainly is a reasonahle heuristic since a missinog
group of btlocks generally impresses a human as being more
important than a shape change, which in turn dwarfs a minor
blemish, Consequently, the program determines the depth of
the remainina c-notes which are nearest the oriqin of the
comparison description. A1l those candidatas found at
greater depth are relegated to the secondary 1list,

The primary c-note list allows quick formation of little
theories about why the near miss misses and what to do as a
consequence, These theories are called hypotheses., A
complete hypothesis specifies one c-note as the scle cause of
the miss and it further specifies which interpretatiocon of
that c-note is assumed., Consequently there is a hypothesis
for each interpretation of each c-note on the primary list.

The c-note specified as crucial by a hypothesis is
transformed as if it were the only c-note, The other c-

notes, toth on the secondary and primary 1ists, are assumed
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by the hypothesis to be fnsufficient cause for the near miss.
Consequently as a new model is formulated accordino to the
hypothesis, all of the c-notes but one are treated exactly as
if the near miss were not a miss at all!

So far a single c-note is assumed to be the exclusive
cause of the miss, lere all possible combinations considered
as well, not only would the branchinn increase enormously,
but the ranking of those branches would be Aifficult, Rather
than face this, [ have decided that only one special
combination of two c-notes is ever permitted to form a
hypothesis,

In this I have exercised what one miaht call the
first heuristic of science: Fenin with the 1inear
model, the one that assumes all thinos act
independently; them consider interactions as necessary.
I next discuss a particular case in which it does seem
necessary to consider the joint action of two
differences, It would be unreasonable, haowever, to try
for a general method for handling multiple differences,
In science as a whole, each particular metheod for
treating interacting effects is usally a major problem
in 1tself and over-ambitious search for completely
general methods is of low wutility when premature,

Further justification for my appproch lies in
certain observations of Piaget's that indicate that
children seem to pay sharp attention to only a sinale
feature at any one time [3]. In comparine volumes, for
example, they use mainly heioht. Yet, in spite of using
what appear to be linear comparisons, these same
children can learn physical concepts with a talent far
in excess of my goal for this thesis.

Hypotheses based on two contributing c-notes are added

to the hypothesis 1ist only when twe c-notes with nearly
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identical descriptions occur. Consider figure 5-13. Since
exactly the same thing characterizes both blocks in the near
miss, there is no particular reason to suppose that one
difference should be singled out. Conseouently a third
hypothesis is formed, namely that both differences act
cooperatively, This additicnal hypothesis takes precedence
over the two hypotheses that consider the differences
separately, It seems heuristically sound that coincidences
are significant, The machine creates new models with such
hypotheses by transforminog both of the specified c-notes in
the miss-explanation mode,
5.7 Contradictions and Backina !p

Cy now one may woender why the pronram should deal with
alternatives to the nain 1ine of model development at all.
To be sure, max inum 1ikelihood assumptions mav be wrong, but
then how could the machine ever know when such a decision is
an error? The answer is that the main line assumptions may
lead to contradiction crises which in turn cause the model
buflding program to retreat up the tree and attempt model
development along other branches.

Consider again the very simple situation presented in
figure 5-14, The current model and the near miss
combination generate an a-kind-ef-merge c-note for which the

priority interpretation is that examples of the conccot must
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be standing, The alternative, that examples must not be
lying, causes a side branch in the model development tree,
But suppose one really wants the concept to exclude lying but
not insist on standing. Showina the machine the example in
figure 5-15 does the job., The tilted btrick certainly is not
standing and its description has no HAS-PRCPERTY-OF pointer
to STANDING, Yet the current model has a "WWST-HAVE-PROPERTY-
OF pointer to STAWDING. This is a contradictory situation,

When contradictory situations occur, the program assumes
it has made an incorrect choice somewhere, closes the branch
to further exploraticn, and backs up one level to select
another alternative if any are available there., I[If no
alternatives are available, the program backs up still more
levels until either an unexplored alternative is found, or
the top level is reached, If the top level is reached with
no other options found, the program succumbs and admits
failure., More often an acceptable unexplored alternative is
soon found and an effort is made to extend the model tree
down that branch, Of course, the first alternative a
contradiction causes to be explored may itself lead to
contradiction. Back up then starts from the new
contradiction and proceeds as before,.

In the case at hand, an alternative is found and the

must-=not=-be=-1ying interpretation of the comparison between






the scenes in figure 5-14 leads to a new intermediate model.
This in turn is refined by the scene of fioure 5-15 which
originally caused the contradiction on the former main 1line,.
flo contradiction occurs on the new path because the MUST-NOT-
HAV E-PROPERTY-0F - LYING combinatien of the intermediate
model has nothing to clash with in the example, Indeed the
new example lends no new informatien to model devel opment
along this path, the model heing the same before and after
comparison, The new example served solely to terminate
development of an improper path in the model development
tree,
5.8 Other Backina Up PossilLilities

Many pessible refinements to the elementary backina up
procedure invite attention. For one thino there are other
reasons why the learning program mioht want to back up. In
add ition to the situation of direct contradiction, attention
should move back up the model tree if there are so many
differences between the current model and the sample that
hopeless confusion is suggested, The cause of such confusion
fs Tikely to lie in the selectien of a wrong branch at some
higher point in the model tree. Similarly retreat is in
order if the program is forced to propose an unlikely
explanation to account for observed differences.

Rieht now the learning program backs up level by level,



156

blindly exploring all possible paths from one branch point
before backino up to the next higher branch point. It would
be better if attention could move directly to the point in
the tree where the problem benman. There a better alternative
could be elected and learning could more likely procede in an
orderly way,

Certainly the selection cf the appropriate point is easy
in the case of direct contradiction, As explained before,
these situations occur when some relation is found to be
essential at some point in model develepment only to be
absent from some subseauent example of the concept. The
crucial point is the place where the dec ision was made that
the relation was essential, This is the point where

attention should gqo and an alternative explanation should be

sought,
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6 Some Generated Concepts
6,1 Physical Models and Functional Models

In this chapter I explore some of the properties of the
model generator through a series of examples. In the course
of this discussion, words 1ike house, arch, and tent occur
frequently as they are convenijent names for the ideas the
machine assimilates. PRe cautieoned, however, to avoid
thinking of these entities in terms of functional
definitions. To a human, an arch may be somethino to walk
through, as well as an appropriate alionrent of bricks, And
certainly, a flat rock serves as a table te a hungry person,
although far removed from the image the word table usually
calls to mind.

But the machine does not yet know anything of walking,
resid ing, or eating, so the proagrams discussed here handle
only seme of the physical aspects of these human notions,

There i1s nothing mystical about this. There is no
inherent obstacle forbidding the machine to enjoy
functional understanding. It is a matter of
generalizing the machine's descriptive ability to acts
and properties reouired by those acts. Then chains of
pointers can link TAELE to FOOD as well as to the
physical image of a table, and then the machine will be
perfectly happy to draw up its chair to a flat rock with

the human, given that there is somethina on that table
which it wishes to eat.
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i.2 The House

Figure €-1 fllustrates what hcuse means here, EBasically
the scene is just one uedge on top of one brick., But lacking
human experience, this one picture is insufficient to convey
much of the notion house to the machine., The model builder
must be used, and it must be permitted to observe other
samp les.

Suppose the model builder starts with the scene in
figure €-1, Then its description generation apnaratus
contributes the network which serves as the first unrefined,
unembellished model., (figure 6-5) llow suppose the scene 1in
figure €-2, a near miss, is the next sample, Its net is that
shown in fioure 6-6. The only difference is the
supplementary pointer SUPPORTED-EY. fGlancino at the table of
section 5,5, it is clear that the overall result is
conversion of the SUPPORTED-BY pointer in the old medel to
MUST-CE-SUPPCRTED-EY in the new model. Thus the new model fs
that of figure €-7., Figure €6-£ shows the current model
development tree.

Much is yet to be learned. For one thina, the top
cbject certainly must be a wedae. Shewing the machine the
near miss of figure G-3 conveys this point immed iately.
Similarly the near miss of fiqure €-4 makes the brick

property of the bottom object mandatory. Eut notice that
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both of these steps cause bifurcation of the model tree, The
reason is that the machine cannot be completely sure the miss
occurs because the old property is lost or because the new
property is added, The proaram prefers the old-propertyv-is-
lost theory and moves down the correspondina branch unless
contradicted, In both of these situations, the preferred
theory is correct resulting in the final model and tree shown
in fioure 6-9 and finure G-10,
6.3 The Pedestal

vevelopmert of a pedestal model proceeds much as does
the house with only Lwo essential differencas, First, the
top object must be a brick rather than a wedoe, Second, the
upper nbhject must not marry the lower, The scene in
filoure 6=11 yields tne starting model, Fioure E-12 forces
the top cbject to he a brick while fioure F=13 forces the
bot tom object to be a brick as well, Finqure 6-14 emphasizes
support. And finally, finure €=15 forbids the “ARRYS
relation,

£.4 The Tent

Think of the tent as two vedoes, marryino each aother,
As such it fllustrates the handline of twe similar
differences simultaneously.

Suppose the base model is the description of the scene

in finqure €<1E and the first sample is the near miss in
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figure 6=17, Two a=-kinc=-of=-merae c=-notes result, one from
each of the two objects because they are bricks not wedges.
Since they differ only in source, the hynothesis that btoth
act together is the priority one, which leads to the result
in figure &£-19%, llow this is complemented by the near miss in
figure 6-18 which informs the machine of the importance of
the "ARRYS relation. Acain dual c-notes announce the loss of
a pair of MARRYS pointers and twin MUST-ARRY rointers are
installed, (figure 6-2C)
€E.5 The Arch

The arch involves a mixture of the elements seen in the
previous examples, GCecause of the wider variety of
differences encountered, it produces a bushy tree and a
challenge to routines that select priority hvnotheses,

The scene in fiqure 6-21 forms the first model,
Combining this with the scene in figure 6-22, the machine
deduces that the "APKYS relations between the top and the
supports are not crucial,

llext the near miss of fioure 6-23 indicates that the
suppart relations are crucial. Again, both new MUST-BE -
SUPPORTED -BY pointers are handled jointly, and are installed
at once,

The machine learns perhaps the most important fact from

the near miss in figure 6-24, Here the twe supperts touch,
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supplying two MAPRYS pointers to the description, This
cannot be allowed. PResponding, the machine inserts MUST-HOT-
MARRY pointers between the two supports in the model.
Some may think that in assertina the MUST-HOT-MARRY
relations, the machine overlooks what they consider the

real principle, that of a hole or passaae., But for a

child building with blocks, to have a hole and to have

two non=touching supports are very nearly the same idea,

Consequently the machine's opinion seems adequate for

the moment., Experiments such as these may help to

expose exactly what kinds of network relations are
adequate for a model of human thinking, from infant to
adult,

Finally, the top object 1s not necessarily a brick. The
sample in figure 6-25 teaches the machine that anything in
the class CBJECT will do, since OBJECT lies but one step
removed by an A-KINU-OF pointer from both WEDRE and ERICK,

6.6 The Wedge

The capabilities of the medel builder certainly extend
beyond the level of object confiqurations, whose descriptions
allow the machine to learn about scenes, Here the
development of the wedge model illustrates the point.

Given the wedge in figqure 6-26, the description
aenerated is that of figure 6-27.

Hext, comparison with a brick establ ishes a MUST-BE=-A~-
KIND -OF pointer to TRIANGLE., (figure 6-28)

But now suppose the partly occluded object in

fiqure G-29 is compared first with the current model of wedae
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and then with a description of a brick, As figqure £-30
illustrates, the surprisineg result is that both compariscons
have nearly the same descriptions. In both cases two
rectanoles are matched and a third side left unmatched. In
one case the unmatched side is another rectancle, and in the
other, it is a trianole, But there is as yet no way to
prefer one match above the other!

The problem is a 1ittle dinveclved. Mo severe mismatch is
evident to the difference description evaluation program
because the "UST=-BE-A-KIND=-NF pointer is anchored to a node
that is not matched, The model as it stands asserts firmly
that if three sides are seen, cne of them must be a triangle,
but it does not assert that such a third side must be
present,

This may seem to be a bug at first, but the problem is
really the machine's lack of experience. So far only two
configurations have contributed to the model. Censider the
result of refining the model with the scene in fiqure 6-29
which is causing the trouble, It 95 a near miss, But the
difference between it and the current model is an exit c-note
to the triangular side., The model builder perceives the need
for an emphatic pointer and ONE-PART-MUST-BE 1s inserted.
(figure 6-31)

How if this model is compared again with the scene that
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just refined the model, the one in figure 6-29, the result is
an exit c-note bearing an emphatic pointer, CHE-PART-MUST-RE,
Such a c-note strongly sunoests bad match to the evaluation
program, and the apparent inadequacy disappears.

The scene in figure 6-32 establishes a final refinement.
This wedge shows only two sides. After a bit of thinking,
the program dec ides one of the two rectangular sides is
optional and produces its final model, (figure 6-33)

€.7 The Composite Calumn

When a concept involves groups of objects, the model
neneration problem really is no nore difficult, It just
Lecomes a matter of concentratina on relationships between
the typical nembers of the groups studied,

Consider the notion of the compnsite column, hereafter
referred to simply as the column, Figure E-34 shows such a
column and ficure 6-40 shows part of the corresponding
descriptive network, This description is gradually
transformed into a reasconable model in the following way:

Figure €=35, with fts bLricks askew but ntherwise the
same, introduces the "UST-MARRY pointer., Fiaure €-36, made
of wedges instead of bricks, relaxes the fnclination toward
bricks, And fiqure 6-37 causes replacenent of SUFPCRTED-RY
by MUST=-BE=SUPPCRTED-BEY,

iext, figure 6-38 contributes the most important part of
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the model, the part that demands a group. The scene in
figure 6-38 consists of only two objects and is not grouped
because the grouping program requires a minimum of three
objects, The resulting c-notes reflect the mandatory need
for a qroup by way of a ONE-PART-MUST -BE pointer to the node
representing the group.

Finally, figure €-39 general izes the model in an
important way because its typical-member node differs from
the model's principally because a different number of cbjects
is indicated., In one case the NUMBER-OF -MEMBERPS pointer
points to 3; 1in the other, 4, But since both 3 and 4 are
integers and have A-KIND-0OF pointers to INTEGER, when the
comparison bctween the twe is made an a-kind-of-merge c-note
results, The next medel consequently has a MUMBER-OF-MEMECERS
poeinter to INTEGER, rather than 3, MNew columns may have any
number of objects greater than two.

Figure 6<41 displays the overall result,
3.8 The Arcade

The problem of learning about the arcade shown in
figure 6-42 adds another interesting d imension to the model
generation problem., HNothing new is needed in developing a
sequence of models for the arcade, with one important
exception:

The arcade is a conglomeration of substructures, rather
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than of simply objects. As such the arcade development shows
how the model builder can appeal to thinas already learned in
the process of understanding more complex structures.

In building a description of an arcade, the description
programs identify arches using the previously assimilated
arch model, This lTeads to the description partially shown in
figure 6-43, Then subsequent samples, shown in fiqure 6-44,
figure 6-45, and fiqure 6-46 inform the machine that there
must be a group, that the group elements must be arches, and
that the relation must be IN=FRONT-OF.

The deduction that one arch is in front of another
involves methods less explored and less scund than
techniques previously described for dealing with
ind ividual objects, Indeed this is a virgin field of
inquiry that I have thought atout only enouah to write
programs which can handle these few examples, It is not
clear, for example, if each structure will require its
own set of heuristics for determinina inter-qroup
relations, or if eeneral principles can be enunciated,

So far my prinitive procrams assume only the followina
rules:

1. If there is a chain of support relations
between every object in structure A to some object
in structure B, the B can be said to support A,
2. If scme object in A 1s in front of some object
in B, but not vice versa, then & can be said to be
in front of B,
6.9 The Table
The table is much 1ike previous examples except that
grouping is done on the basis aof object form and function,

rather than relation chains.
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Study the table in figure 6-47 and the description in
figure ©6-48, The essential features of the table are
introduced by the following segquence of steps:

First the table should have bricks fer legs, This idea
is easily conveyed by the non-table of figure 6-49,
Moreover, this conceptfion of table excludes structures such
as that in figure €6-50, a fact which is handily incorporated
through a MUST-KOT-MARRY pointer, Next, since the nons-table
in figure 6-51 has only two supports, no grouping occurs,
which Teads to insistence on a group in the next model
refinement, This entirely parallels the process by which
the column was found to involve a aroup. Finally, the scene
in figure 6-52 leads to replacement of the SUPPORTED=-BY
pointer by MUST-BE-~SUPPORTED-BY. Figure €-53 shows the last
model in this development,

10 The Arch in Depth

So far the illustrations have shown networks only to
that depth appropriate for understanding, Figure 6-54 shows
the model for the arch in somewhat fuller bloom and better
ind icates the breadth of the information available to

proarams that use the model.
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6.11 Uirections for improvement

Experiments with the concept generator titillate rather
than satisfy, for each success sungests new ideas to be
explored, As it stands, the concept generator is a healthy
baby but not a contributing adult, The possibilities are
staggering, however.

(ine way to improve model oeneration abilities is self-
evident; the system improves as the ability to describe
improves, The heuristic determination of support and
occlusion and the rest can be improved, and more important,
other so far neqlected relations and pronerties 1fie
unexplored, Description programs should and can be tauaht
to differentiate between cubes, bricks, bnards, and sheets,
They should know in general when the terms 1yinn and standing
are meaningful, They should be able to relate structures
more carefully, They should present alternative descriptions
if situations are plainly ambiguous. They should know about
color and texture, They should know atout holes.

But as description becomes Letter, the burden on the
model builder becomes qgreater, for the proliferation of
properties and relations means that the number of c-notes
multiplies, thereby complicating all of the decision
precesses, To cope, it will probably be necessary to

institute further techniques for Tocatina the centrally
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important c-notes,

For one thina, c-notes involvina certain pointers might
rate priority attention. These might, for example, be
pointers that frequently played central roles in the
development of other models in the past. Additionally, some
pointers might be tentatively converted to NUST-BE versions
by virtue of frequent occurrence in the samples under
consideration. Previous objections to this idea still stand,
but done with care, with the assumptions behind the action
somehow indicated, some good might come from this.

If the machine could ask the teacher auestions, it would
open up another powerful kind of finesse, In situations
becoming precariously ambiguous, the medel builder would ask
directly if some relation is important, or perhaps display
several imagined scenes to the teacher, recuestina a
statement about which are in the class to be learned.

Finally, and perhaps crucial, some confrontation needs
to be made with functien, \lhat to do, however, is unclear,
In dealing with the table, the development was already
strained. It is not really adequate to think of legs solely
as standing bricks, and generalization to the class of all
objects seems specious. So far all models and
identifications deal only with descriptions of concepts'

parts, but this is not adequate to handle the notion of the
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leq. What is needed is the idea that somethinao is a leg, not
because of what its parts are and how they are related, but
rather because that something relates to something else in a
particular way, namely through the SUPPORTED-BY relaticn,
Given the ability to think this way, programs could identify
round legs, square legs, or legs made of several parts,
Functional use would serve as a very powerful interpretive
and grouping tool adding immeasurably to the limited

understand ing now attained,

I emphasize that no fundamental barrier prevents
programs from thinking functionally, Indeed sone
pessibly useful programs already exist. As work
progresses, further analysis can be attempted and
identification can be expanded to include the
relationships that suggest function., At first work
should concentrate on thinns that are defined in terms
of currently observed use, rather than thines that are
defined in terms of conjectured potential use, A table
leg, for example, is a leg because it currently is
cbserved to support something., The same object would be
far less 1ikely to be identified by a human as a len
were it seen separated from any table. There is little
possibility of identifyino somethino as a table leg on
the basis of potential use unless a leg s specifically
searched for.
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7 Identification
7.1 Matching and Identification Alternatives

Once there are programs that describe scenes, compare
description networks, and build models, one may go on to
using these programs as elements in a variety of other goal-
oriented programs. The problem-solving proarams described in
this chapter have the following kind of responsibilities:

To see if two scenes are identical.

To contrast two scenes and report the differences
between them, roughly in order of importance, This
supplies information that may prove useful to programs
that use a mechanical hand and arm to build copfes of
scenes,

To compare some scene with a 1ist of models and report
the most acceptable match, This is the identificat ion
problem in its simplest form.

To identify some particular subset of the objects in a
scene, This is not the same as identifying an entire
scene because important properties may be hidden and
because context may make some identificaticns more
probable than others.

To find instances of some particular model in a scene,
It is frequently the case that the presence of some
configuration can be confirmed even though it would not
be found in the ordinary course of scene description.
This requires the ability to discern groups with the
requ ired properties in spite of a shroud of irrelevant
and distracting information. It is not unlike the
precblem of finding the bunny on a Playboy cover,



7.2 Exact Match

If two scenes are identical, then the networks
describing those scenes must be isomorphic. The nodes of the
two networks must relate with each other in the same ways,
and the nodes must relate to general concepts such as BRICK
and STAHDING in the same ways. Consequently, comparing two
such networks produces a simple kind of comparison
description, There is a skeleton, which indicates how the
parts of the scenes interrelate, and there is a qgroup of
intersection c-notes that describe how the parts of the scene
are anchored to the general store of concepts. flone of the
other types of c-notes appear because identical scenes cannot
produce two networks with the necessary aberrations of form,

Conversely, if comparison of two networks results in
intersection c-notes only, then the parent scenes must be
identical in the sense that the description generating
mechanisms employed produce exactly matching networks, There
can be varifation, but nothing so great as to vary the action
of the description cenerator., The scenes in fiogure 7-1 are
identical with respect to the descriptive power of my
programs because in both cases the relations observed are
LEFT-0F and RIGHT-OF, #ore capable programs miaght complain
that FAR-TO-THE-LEFT=-0F and FAR=-TO=-THE=-R IGHT =CF hold in one
scene, while only LEFT=-0F and R IGHT-0F hold in the other.
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The scenes are clearly not identical with respect to a
program with such a capability.

One generalization adds a deqree of flexibility to this
procedure that humans seem to exercise. The kind of question
to be answered is not of the simple form "Are two given
scenes identical?" but rather, "Are two given scenes
identical with respect to a certain degree of detail?"

An approach to this new problem is to modify the
intersection-only criterion. Instead of requiring all c-
notes to be intersection c-notes, one requires that all c-
notes be intersection c-notes at or above a certain level,
Thus if level one is specified, then the scenes in fiqure 7-2
are indeed identical because the comparison description shows
nothing but intersection c-notes at or above that level,
(figure 7-3) But if level two is also of concern, then the
scenes are not identical because an a-kind-of-merge c-note
describing the difference in shape between face C and face C'
appears on that level.

This use of level plainly defines a concrete substitute
for the otherwise vague notion of dearee of detail, One
simply says two scenes either are or are not identical down
to some particular level and the existence of non-
intersection type c-notes beyond that level is not of

concern,
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7.3 Digression
The exact match detector is a major part of a curfously
simple program that checks for 2 certain kind of left-rinht
symmetry, The method is as follows:
1. Copy the description of the scene exactly.

2. Convert all LEFT=0F peocinters in the copy to RIGHT-OF,
and all RIGHT <=0F pointers to LEFT=0F,

3. Compare the original description against the modified
copy. If the match is exact, the scene is symmetric,

This is, of course, an abstraction of the familiar
condition for y-axis symmetry in the mathematical sense,
whereby symmetry is confirmed if and only if for every point
in the scene, (x,y), the point (-x,v) is also in the scene,
Switching LEFT-0F and RIGHT-0F pointers is the analonue of x-
coord inate negation and network matching corresponds to a
check for invariance,.

To see how this works, consider the scene in fioure 7-4.
The center object, A, is flanked by B on the left and by C on
the right., Figure 7-5 shows the resulting description,

There are nodes correspondina to objects A, B, and C, and
there are LEFT-0F and RIGHT -CF pointers indicating their
relationships,

Figure 7-6 shows the copy of the network with the LEFT-
OF and RIGHT-0F pointers switched, MNotice that the oricinal

network and the copy are identical. Hode A matches with B8',
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C with C', and B with A', Since there are no differences,
the machine concludes the scene is in fact symetric,

Of course, a oeneralization of symmetry is possible,
just as generalization of identity is. The machine need only
perform the same copying and exchange operations and then
check for non-intersecticn c-notes only to some particular
depth, Thus the scene in fiqure 7-7 is symmetric to depth
one because the aroups of objects are symmetrically placed,
It is not symmetric to depth two, hewever, hecause the
placement of objects within the groups is wrong. The scene
in figure 7-8 differs from that in figure 7-7 because there
is not only symmetry in the location of qroups of objects,
there is also symmetry in the placement of objects within the
groups., This means that the scene is more symetric to the
machine in the sense that the symmetry detection program
remains happy at a deeper level of inauiry.

The machine knows LEFT-0F and PIGHT-OF are opposites
btecause information akout these peinters lies in the general
memory net, (finure 7-9) Consequently, it is unnecessary to
tel1l the program explicitly to substitute RIGHT-OF for LEFT-
OF and vice-versa, Cne need only ask the symmetry proaram if
there is symmetry with respect to either the pointer LEFT-0OF
or RIGHT-0OF, The machine itself can conjure up the

appropriate substitutions by working throuaoh the OPPOSITE
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pointer from whichever relation is suprlied, be it LEFT-0F or
PIGHT-0F . Similarly, if one asks for symmetry with respect
to ABOVE, the proaram realizes that the proper substitutions
are BELOW for ABOVE and ABOVE for BELOY, IN-FRONT-OF gives
EEHIND for IN-FRONT-0OF and vice-versa for a somewhat unusual
kind of symmetry cquestion,

Certainly mixtures are also possitle. One can ask for
baoth left-right and above-below substitutions which is an
abstraction of symmetry with respect to a point.

Mathematically speakino, there is symmetry with
respect to the particular peint (0,0) if for every point
(x,¥) in the scene, there is also a point (-x,-y). The
way to check a drawing is to imanine moving every point
straight throuoh the origin until it is acain the same
distance from the origin but 1ies in the opposite
guadrant, For example, point P in the symmetric drawino
in figure 7-10 goes to point P'. When the end result is
the same as the original drawing, then the drawing is
symmetric.

More fmportant is a combinaticn of a left-rioht and an
in-front-of =~ behind switch, This one gives the machine a
chance of realizing thet two sceres are just front and back
views of the same confiouration as are the scenes in
figure 7-11.

Eventually I think the machine can come upon the
symmetry notion in the same way it now learns about
arches and houses, But at this point I do not think
there 15 enough comparison describing capability., The
needed step s the introduction of a prooram that
generates global c-notes from the local ones already at
hand, thereby introducing the kind of hierarchy into the
comparison descriptions that is already the standard in
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scene descriptions, One obvious ability of such a
program would be that of noticing a preponderance of
similar c-notes. I think that this and some of the
double comparison ideas proven useful in doing analoay
problems are just the things the machine needs to learn
about symmetry.

7.4 Elementary Identification

Suppose a scene is to be identified, if possible, as a
HOUSE, PEDESTAL, TENT, or ARCH. The obvious procedure is to
match its description against these for each of the models
and then somehow determine which of the four resultinag
difference descriptions implies the best match,

Recall that models generally contain nust-be satellites
and must-not-be satel]itgs while ordinary descriptions do
not, Consequently, comparing an ordinary description against
a model leads to a variety of c-notes not found when ordinary
descriptions are compared. /Ffmong these are must-be-satell ite
pairs, must-not-be-satellite pairs, and various flavors of
exits and supplementary-pointers. Such c-notes are decisive
in the identification process.

Consider the case where some pointer in a scene's
description corresponds to its must-not-be satellite in the
model, This clearly means a relation is present that the
model specifically forbids. The resulting must-not-be-
satellite-pair c-note in the difference network fs such a

ser fous association impediment that fdentification of the
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unknown with the model is rejected outright, without further
consideration. This means that the near-arch in figure 7-12
cannot be identified as an arch because the network
describing the near-arch has MARRYS pointers between the two
supports while the model has MUST-NOT-MARRY pointers in the
same place, The combination produces a comparison
description with a must-not-be-satellite-pair c-note that
positively prevents match.

Identification with a particular model is also rejected
if the difference description contains exits or
supplementary-pointer c-notes which involve must-be
satellites. Such c-notes occur when essential relations or
properties are missing in the unknown., Thus the two bricks
in figure 7-13 do not form a pedestal because the model for
the pedestal has a MUST-CC-SUPPORTED=-EY pointer where the
scene of figure 7-13 has nething, The result is a
supplementary-pointer c-note involving the must-be satell ite
MUST-BE-SUPPORTED-EY. Again match fails,

The case of a-kind=-of-merge c-notes involves a slightly
more complicated rule, Recall that merge c-notes occur
generally when two nodes share properties that are not
ident ical, but which fall into the same general class. The
s ituation must be one where two linked nodes exhibit closely

related pointers to two other nodes from which paths of A-
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KIND=0OF pointers lead to a common 1nter5ectjnn. Fiqure 7-14
shows such a situation. In this case the unknown is a kind
of wedge while the coerresponding object in the model must be
a kind of brick. Both WEDGE and BRICK are kinds of objects,
which directly leads to a merge c-note associated with a
MUST «BE=A=KIND =0F pointer in the model, But the fact that
the unknown has a property in the same class as a property
required by the model is insufficient. To insure rejection
of such matches, the rule is: Refuse identification if the
model's pointer contributing to the merae c-note is a must-
be-satell ite.

Figure 7-15 summarizes the procedure used on each c-
note.

Match of the scene in fiqure 7-16 against the PEDESTAL,
the TENT, and the ARCH all lead to difference descriptions
with c-notes that forbid identification. The PEDESTAL fails
because a merge indicates that the required A-KIND-OF
relation between the top object and BRICK is missinag. The
TENT similarly fails because both of its objects must be
wedges, The ARCH fails because the model has a MUST-BE -
SUPPORTED=-BY pointer to an object missing in the unknown,
This in turn causes a fatal exit c-note in the difference
description,

(f course the machine canr also match the samnle
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pedestal, tent, and arch of fiqure 7-17, fiqure 7-18, and
figure 7-19 against the same list of models. It makes the
correct identification in each case.

The next problem emerges because some unknown may
acceptably match more than one model in a trial 1ist,

Suppose one defines a new sort of arch that is just 1ike the
old arch except that the top object must be a wedage rather
than just any object. Call this new model the WEDGE=-ARCH,
Then the scene in figure 7-20 certainly matches with both the
ORD INARY-ARCH and the new WEDGE-ARCH, There is only one
slight variation in the difference descriptions. In the
WEDGE-ARCH case, one has a must-be-satellite-pafir c-note
because the unknown has an A-KIND-CF pointer te WEDGE and the
model has a MUST-BE-A-KIND-0OF pointer. In the ORDINARY-ARCH
case, there is simply an A=-KIND=OF pointer from the model to
OBJECT, which with the unknown's A-KIND-OF pointer to WEDGE
forms an a-kind-of-merge c-note,

Of course there is nothing really wrong with reporting
both ORD INARY-ARCH and MEDGE-ARCH as the identification of
the unknown, Still, given several possible identifications,
there should be some way of ordering them such that one could
be reported to be best in some sense. To do this I associate
each kind of difference with a number and combine the numbers

to form a score for each comparison., Figure 7=-21 shows the
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scale associatinae difference types with numbers. It evolves

heuristically from observations like the followina:

1. The intersection c-note has an assigned value of 1.

3.

This anchors the scale as all other numbers are fixed
according te how qgood or bad the corresnondino c=-note
seems relative to the intersection c=-note,

A must-be-satellite-pair c-note suguests good match
even more strongly than the intersection because it
indicates that relations are present that are known
to be essential, A value of 3 aives it three tines
the weight of a simple intersection,

Ex it or supplementary-pointer c-notes that involve
must-be-satellites are distinctively bad because they

indicate vital properties arc missinn, The value is
a damagine =5,

Cther exit and supplementary=-pointer c-notes are bad

but not nearly so bad, A scere of -2 seems about
right,

fust-not-be-satellite pairs are very had evidence
indead, The worst scorc of -6 is desorved,

The a-kind-of-merqge is ncsitive or negative dependine
cn whether either of the poiniers are must=-be
satellites, If a must-be satellite is involved, an
important property is missinn, resulting in a =4,
Ctherwise, it indicates lorse association, not as

tight as that announced by an intersection, A ,5 is
used,

(ince differences are noted and number associations

are made, a program must combine the numbers in a

reasonable way., If SCORE[U:"] represents the scere of

comparing unknown U against model ", then I use
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SCORE[U:M] = WOIIN(1) +  +u(n)N(n)
where

H(i) = exp[-L(1)]

and

M(1) is the number associated with the 1th
difference,

W(i) is the weighting factor that reduces the
influence of lower level differences.

L{i) is the level of the ith difference,

Combining the terms additively is convenient, and the
we ight ing terms, the Ys, handily reduce the influence of
the lower level differences. I have no stronaer reasons
for usinag this 1 inear formula, and it is not somethino to
be defended to the death. GEut I do not think it would pay
to put nuch effort into tunina such a fornula because more
knowledee about the priorities of differences should lead
to far better programs that do rot use numbers at all,
7.5 Ildentification in Context

Examine fiqure 7-22, MNHotice that object E seems to
be a brick while object U seems to be 2 wedge, This is
curious because B and D show exactly the same arranaement
of lines and faces, The result also seems at odds with
the machine's models and identification proacess, as

descriled so far, because so far anything identified as a
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wedge must have a triangular face,

But of course context is the explanation, Different
rules must be used when programs try to identify objects
or qroups of objects that are only parts of scenes, rather
than the whole scene. In the case where the question fis
whether or not the whole scene can be identified as a
particular model, it is reasonable to insist that all
relations deemed essential by the model be present, while
all those forbidden, be absent. But when the question is
whether or not a few parts of a scene can be identified as
a particular model, then there is the possibility that
some important part may be ohscured bty other objects. In
these sfituations, my identification prooram uses two
spec ial heuristics:

First, the coincidence of objects lying in a 1ine
seems to sugqgest that each object is the same type as the
one obscurina it unless there is nood reason to reject
this hypothesis, This is what suggests object D 1is a
wedae in figure 7-22,

Second, essential properties in the model may be
absent in the unknown btecause the parts involved are
hidden. This is why identification of object D with wedge
works even thouah D lacks the otherwise essential

trianoular face. The reauirement that forbidden



properties do not occur remains in force, however,

Elaborate work can be done on the problem of deciding
if the omission of a particular feature of scome model is
admissable in any particular situation. My program takes
a singularly crude view and ignores all omissions,
Rejection of the hypothesis that the obscured is 1ike the
obscuror happens only if the machine notices details
specifically forbidden by relations in the model. Thus
the effort is not to select! the test matching model, but
only to verify that a particular identification is not
contradictory. This means that object B in figure 7-23
is confirmed to be brick-like while brick-ness is denied
to D because of the ruinous apparent triangularity of the
side face.

0f course if the propacation of a property like
brick-ness or wedge-ness down a series of objects is
interrupted, then the unknown must ke compared with a
battery of models, with the program still foroiving
omissions, but now searchino for the best of many possible
identifications,

No matter what the method by which a partly obscured
object is identified, the use of a PROBABLY-A-KIND-OF
pointer instead of the basic A-KIND-OF is used to qualify

the conjectured relationship between the object and the
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model it is identified with,

Fioure 7-24 shows how the various pieces of this
procedure fit tooether, and fiqure 7-25 shows what happens
when it moves down a simple row of nobhjects,

7.6 Learnina from Mistakes

Suppose the program attempts to identify the scene in
figure 7-26 as a pedestal, Identification fails because
the resulting type of a-kind=nf-meroe c-note cannot be
tolerated, Still it would be a pity to throw away the
information about why the match failed, Instead the
otherwise vwasted matching effort can be used to suagest
new identification candidates.

The way this works is guite simple. First the
machine spends idle time comparinc the various models in
its armamentorium with each other, Whenever the number of
differences observed are few, a simnlified descripticon of
those differences is stored. Thus the machine knows that
a house is similar to a nedestal, from which it differs
only in the nature of the top object.

These descriptions 1ink the known mndels tooether in
a sort of similarity network, (fiqure 7-27)

This network and the difference descriptions noted in
the course of identification faflure help decide what

model should be tried next., The description describing
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the differences between an unknown and a particular model
is compared with the descriptions of the similarity net,
If the difference between the unknown and a particular
model matches the difference between that model and scome
other model, then identification with that other model is
Tikely.

For example, the scene of fiqure 7-26 relates to the
model of a pedestal in roughly the same way that the model
of a house relates to the model of a pedestal, House is
consequently elevated to the top of the list of trial
models. Fiqure 7-20 clarifies the procedure,

7.6.1 Similarity Lescriptions

The similarity descriptions are simplifications of
the comparison descriptions and are part of the
description of each pointer that relates similar concepts.
When a losing identification reminds the proaram of some
difference structure it has seen, no serfous commitment fis
made and mistaken conjectures do not hurt much,
Consequently it is desirahle to strip the difference
descriptions to the important elements, thereby saving
storage space and increasing matchino speed, even thouah
some wrong models may be proposed as 1ikely
identifications. The simplified description therefore

consists in part of a sort of skeleton, (fiqure 7-29)
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Intersection c-notes and others associated with positive
numbers on the evaluation scale are ignored because only
the disruptive c-notes are of interest here. These
disruptive c-notes, which sucagest poor match, are huna on
the skeleton.

Figure 7-30 shows the simplified difference
description resultina from compariscn of the house model
with the pedestal mcdel, MNotice that it is exactly the
same under this simplification transformation as that
resulting from comparison of the pedestal model and the
scene in figure 7-26.

7.6.2 Definition of Quantitatively Small

This whole similarity scheme depends on the fact that
two models may have only one or a few differénces that
ma ke them strongly different in a qualitative sense,
Indeed, the similarity links should exist only when the
models involved are reasonably close in the sense of
produc ing few differances, I!hen this is true, an unknown
that nearly identifies with one model in the sense of few
differences is assured of matching well with the other,
particularly when the two sets of differences match, Thus
there must be scme rule for deciding i1f the number of
differences is sufficiently small to warrant a pair of

pointers in the similarity network. Currently the machine
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considers sufficiently small to mean the number of
mismatch=-causing c-notes is either less than two or less
than one-third of the number of other c-notes,
7.7 The Meedle fn the Haystack

The scene of figure 7-31 is curious in that one can
find an arch, a pedestal, a house, and a tent in it if one
is looking for them, But if they are not specifically
searched for, menticn of these particular models is
unlikely to appear in a description of the scene,
Although the configurations are present, they are hidden
by extraneous objects sn well that general orouping
programs are unlikely to sort them out. Yet the ouestion,
"Does a certain model appear in the scene?" is certainly a
reasonable one, One way to attack it divides nicely inteo
three parts:

1. Find those obhjects in the scene that have the best
chance of heing identified with the model, If the
model has unusual pointers or references unusual
concepts, the program pays particular attention to
them, Similarly, extra attention is paid to the
emphasized parts of the model, for if mates cannot
be establ ished for them, solid identification
cannot be affirmed. Happily, my standard network
matching program does these things without
augmentation, The result is a set of links
between the ohjects of the mondel and their nearest
analoques in the scene. The other parts of the
scene remain unlinked and end up appearina in exit

c=notes,

2, Once a good qroup of objects is picked, then the
pointers relating these objects to the other
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objects in the scene are temporarily forgotten.

In human terms, this is 1ike painting the subgroun
a special color or otherwise reducing possible
confusion from relatfons with the surrounding
objects,

3, Finally, with the best group of objects set into
relief by the previous excision, the ordinary
identificaten routines are applied with the
expectation of reascnable performance,

The folly of direct application of the identification
programs lies in the myriad irrelevant ex it c-notes that
the extra objects in the scene weuld cause., Such clutter
leaves the machine as bewildered as it does humans.

7.8 Reacting to Identification

Once identification of a substructure happens, the

discovery should contribute to the store of knowledaoe,
Figure 7-32 illustrates some of the more obvious thinas
done after identification of the house and arch in
fiqure 7-33. The highest lTevel node no longer connects
directly to the individual objects. Instead, those
objects dangle from new subscene nodes by ONE=PART-IS
pointers. Similarly the old top level concept points to
the new subscenes with ONE-PART-IS, The subscene nndes
naturally point by A-KIND-OF to the models they identify
with,

Rather more can be done if the machine knows

something about how the relations of a qroup's components
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to external objects dictate the relations of the arcup.
Any knowledgeable machine knows that a house confiocuration
rests on whatever its bottom object rests on, More
generally, the following rule seems reasonable:
Suppose A and B are aroups of objects identified as
substructures, then if an object of A relates to an
object of B by SUPPORTED-BY, then substructure A
relates to substructure B by SUPPORTED-DY,
In consequence, the net in ficure 7-32 becomes that in
figure 7-34,
7.8,1 Examples
Using this same procedure, the scene ir fiaure 7-35
soon reaches the state of illumination shown fin
figure 7-37. By examining either the picture or the net,
it is easy to see that the arches AT, AL, and AR
themselves constitute a sort of super-arch with arches as
parts instead of objects., The machine does not refuse
this substitution since the model for ARCH has only ONE-
PART=-IS pointers to BRICK and OBJECT, not ONE-PART-MUST-EBE
pointers., The matching score is simply lower than it
would be for arches made of bricks, The final description
essentially states that the scene consists of a sort of
arch supported by an arch composed of three arches,
Figure 7-36 shows a richer example includinag

instances of a pedestal, Again the machine identifies



. SUFPORTED-BY

A-KIND-OF —

ONE-FART-1I5

SUPPORTED-BY

FIGURE 7-34



AL

AS

JZ / | AT

AR

FIGURE 7-35

FIGURE 7-36



SUPPORTED-RY

ONE-PART-1S
(to parts of AL)

FIGURE 7-37



246

groups, establishes relations between the fdentified
groups, and then tries to identify aqroups of qroups,
reporting eventually that there 1is an arch composed of an
arch on top with two pedestals for supnorts. It then
notices that this generalized arch is supported by two
ord inary arches, But the generalized arch on top of two
supporting arches again is a kind of arch, the fifth and
last discovered,
7.8.2 Other Relations

I have not thouqht much about the calculation of
other group properties, It seems reascnable, however,
that a set of programs using the following ideas should
work to scme extent, albeit crudely, To find IN-FRONT-OF
relations between groups one can use the above rule for
SUPPORT with the obvious exchanae of IN=-FRONT-0OF for
SUPPORTED=-BY., To establ ish the size of a group one can
add together the individual areas of its cbjects, To
check for LEFT-OF and BIGIT-0F, one uses the center of
area and extreme points of the entire group rather than
those of an individual object, But otherwise the left-

right algorithm may remain the same.
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8 Closing Remarks
8.1 A System

The flow diagram in figure 8-1 shows how the
techniques fit together with those of others to form a
primitive scene-perceiving system, At the very becinning
1ies the scene, from which all information ultimately
derives, A program developed by Griffith [7] watches the
scene through an eye resembl ing television camera, The
result is a line drawing, Hext proarams of Mahabala [1]
and Guzman [2] classify vertexes and group regions into
bod ies. Next is a stage in which object identification
is done, Following closely, one has the determination of
object-object relations and then group identification.
Finally there is identification of group-group relations,

Ceyond this, action depends on intent, (n one path
one finds attempted identification of the entire scene
with a known model or models, On another, an effort is
made to find an instance of some particular model in the
scene, Stil1l another path involves use of the
description to help form new concepts,

8.2 Conclusions

This collection of ideas and techniques supports four

major contentions, each of which depends on those

preced ing it., These things are small steps for a man, but
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qiant leaps for a machine,
1. A computer can produce a detailed scene
descript fon consistina of the same sort of facts
humans observe,

2. These descriptions lead in turn to descriptions of
how scenes compare with one another,

3. An understanding of how scenes compare permits the
computer to learn models for new concepts from
examples and leads to a new way of thinkino about
learning,

4, These models finally endow the machine with the
ability to recoqnize instances of previously
learned concepts,

8.3 Background Issues

In a more cosmic sense, the goal behind this work is
to make a machine that can understand the environment Jjust
as we humans seem to. Some critics of Artificial
Intell igence think that this is not possible, perhaps
because they cannot imagine how it can be done, I think
the real hang up must 1ie in the understanding cone has
about the notfon of understandinn, A review of a few
dictionaries convinces me that the editors are hard
pressed to define the word without usina it. It is as if
it were a word so basic that it cannot be described in
simpler terms,

But surely to understand must involve the formation

of a descriptive plateau of knowledge lyina somewhere

between raw, totally unprocessed data and detailed answers
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to problems, I do nect wish to belabor this point, but I
feel that the sort of abstraction represented by the
network description of a scene can be viewed as
constituting a sort of understandina, If so, depth of
understanding corresponds roughly to the elaborateness of
a description, dense networks suggesting more
understanding than sparse ones,.

Another notion of lono standing concern to philosophy
is that of the ideal form, VYet 1ittle work seems to have
gone intc careful study of what humans mean by such simple
concepts as that of the TABLE, I believe study and
improvement of the concept generator constitutes a fresh
approach to this protlem and may lead to interesting new
results.,

B.4 Suggesticns for Further lork

Improvements to and extensions of this work can be
understood in terms of two extremes: minor change and
major overhaul, The minor-chanae catengory is larce
because the hichest priority goal in such work must be a
complete system, A complete system, however flimsy,
serves to guide resource allocation into the mest deserved
problem areas. Without experience with such a system, one
risks suffering from the phenomenon of diminishina

returns, expending great effort for marocinal improvements
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on relatively stronqg pieces of the system, Put the

natural

result is that there is much roon for further

improvement of the system's parts. Seme possibilities

have already been mentioned, but it is appropriate to

mention them here as a convenience for these whe wish to

work in the area,

1.

Hearly all the programs that establish relations
between objects can be improved. The prearam that
looks for support blunders sometimes because
obvicus bottom lines are overlooked and sometimes
because a scene has tipped btackoround objects.
The program that loocks for in-front-of
relationships cannot handle situations in which
objects are aligned., ™any of these programs could
?enafit from a progran that could iwagine hidden
ines,

Ho distinctions arc made between obtvious,
unarquakble prorerties and border]line cases. It
mioht be ocod if the analytic proagrars could
repert things Tike certainly-left-of or sort-of-
left-of instead of invariable, und ifferentiated
left-of,

The rules for the jdentificatior of a scene with a
medel need refinement, The weightino associated
with the various differences and the way those

we ights are combined have a specious auality. It
would be fine if some way could be devised to
eliminate the numbers altogether, perhans throuah
a2 more intellioent proaram with a built-in
understand ing of priorities.

The schemes for recoanizing reasonable clusters of
objects is particularly primitive and has
undergone too 1ittle testing. Mechanisms must be
found for producingo and handline alternatives to
the first partition devised,

The entire concept generation procedure and fits
ramifications certainly should absorb great



attention., [ore powerful methods for recoonizine
important differences are needed, The machine
sktould have a faculty by which it can complain or
ask nuestions if the teacher is doina poorly,
fieneralization to functional properties is a must,

6. The network matching progran, althouah it is at

the core of the entire system, is a hastily
programmed, slow and stubborn stumblebum., Ar
improved version would simultaneously increase the
pover of the many system activities that use it,

The nther kind of improvement is the major overhaul,
This is not aimed at sophisticatine an existing part of
the system, but rather focuses on the spectacular
increases in power derived from bolder, hianer ideas, I
discuss two such possibilities below, Regretalbly, these
problems are difficult to formuylate and delimit.

First is the general problem of introducing bi-
directional information flow, Glance acain at the flow
diagram of figure 8-1. lNotice that all of the arrows
point froem bottom to top, indicating that all informat ion
moves in one direction only, There is as yet no way a
process can discourse with and mod ify the behavior of any
process acting below it,

It seems clear that for high level command to affect
low level operation in a non-trivial way, there must be
some alternative or additional method that can be thrown
into battle, As yet few such points of influence exist in

my system, There are two left-of -- right-of procedures,
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and there is the option of using or not usinn various
relation-finding and arouping procedures. Eut the forte
of an internally interactive system will probably involve
selection of one method from several possibilities amonqg
which there are trades between speed and accuracy.

Another amorphous problem is that of wedding the
visual capabilities of this system with other systems that
specialize in different kinds of perception. A real robot
should understand the environment not only in terms of
vision but alse in terms of touch, sound, lanquage, and
perhaps other mediums, Understandinn each of these is a
ma jor problem, but as work proceeds, there will be the
super-problem of understand ing how various perceptions of
the environment should interact to form a unified
understanding.

I understand neurcanatomical evidence is that
evolution has come to arins with this problem only
lately and only in man with any finesse. ‘tlorman
Geschwind reports that monkeys have very limited
ability to correlate thinos they learn via the
visual, auditory, and somesthetic senses [8)]. Indeed
ft may be reasonable to say each monkey is really
three monkeys occupying the same skull, a visually
oriented monkey, 2 auditory one, and a somesthetic
one, !an apparently avoids this through a chunk of
cortex that somehow matches up these perceptions,

The chunk believed responsible by Geschwind is called
the inferior parietal lobule.
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fppendix

This appendix is a cursory introduction to the
network matchina proaram essential to many of the system's
operations., Its job is to determine which nodes of two
descriptions best ceorrespond, The corresponding nodes are
safid to be the linked pairs.

The program starts with the entry nodes of two
descripticns. [t immediately inonuires if there 1is
evidence that the two nodes should ke considered a linked
pair. The answer is yes if beth nedes have a comman
pointer to some common intersectfion node. Thus X and X'
are a lirked pair in figure A-1, but they are certainly
not in fiqure A=2, since nodes X and X' have neither
peinters nor nodes in common,

If no linking can occur, the program moves down cne
level through the most common pointer present to dauahters
of the currently inspected nodes and tries to find 11inked
pairs among them. In fiqure A-3, the entry nodes are not
linked on first inspection since there are no common
pointers to any common node, They both have dauohter
nodes, however, and these are next examined. P is the
most numerous pointer, so nedes C1, C2, C1', and C2' form

two groups in which the program tries to find good pairs
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to establish as linked. (figure A-4) Since C1 and C1' both
have the same pointer to a common node they are good

cand idates for the formation of a linked pair. HNodes C2
and C2' are even more alike, however, since they have two
pointers to two common nodes, Conseauently, CZ2 and C2'
are linked first, with action on C1 and C1' postponed,.

Each time a pair of nodes is linked, the proaram trys
to link up any of their daughter nodes that are not
intersections, In the example this means that an effort
is made to find a linked pair between the left node, EI,
and the right nodes, E1' and E2', all of which are found
at the end of P pointers. (ficure A=5) This is the first
example of a contest, Goth E1' and [2' share common
intersections with C1. The winnina pair picked by the
machine is always the one with the hiohest count of common
pointers to intersectons or previously l1inked pairs, In
this case, E1-E1"' scores higher because there is not only
2 set of pointers to the intersecticn node, but also a set
to the previously linked pair C2-C2°.

The 1inking of El and E1' causes examination of their
daughters, F1 on the left, F1' and F2' on the riaht,
(figure A-6) F1 and F2' both have a pointer " to a comroen
node, F1', hovever, has the must-be version of the

pointer ' to the same node., Such satellites occur
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frequently in models, indicating mandatory relations,
Priority is given to matches in which satellites
correspond to the pointers they are modifications of,
This means the R with WUST-BE-I pointer match between
nodes F1 and F1' has somewhat more weioht than the match
of R with R that one would have between F1 and F2', The
F1-F1' match therefore is considered the better one and
results in a linked pair,

F1 and F1' have no daughters to be paired so no
further penetration of the net occurs. The next job is to
re-examine the next higher parent nodes because links just
formed may provide enouagh new evidence to 1ink two higher
nodes. In this case backup first considers nodes EI1 and
e, EY and E1' are already linked., Attention therefore
pops up still ancther level to C1 and C1', C1 and C1' are
linked, Re-examination of their unlinked daughters, D and
EZ2, reveals nothing new.

Once more the programs attention shifts upward, this
tine to A and A', MNow there is a pair of pointers to
Tinked nodes supplying linkina evidence., (fiqure A-7) A is
consequently linked to A',

Hext comes further examination of the remaining
daughters of A and A'., 0 is now the most common pointer

to unaccounted for nodes, pointing as it does to G1, G2,
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and G2', (figure A-8) Among these nodes there is the same
amount of evidence for linking 61 and G2' as there is for
linking G2 and G2', When this is the case and no further
evidence can be collected from linkineg lower level nodes,
a linking is selected randomly from those possible. Here
GZ and GZ2' are linked,

This leaves only reexamination of C2 and C2', The
intersectien evidence is clear ard they are linked., Since
A and A' have no more dauahters and since they are the
entry nodes, the process terminates reportinog the linkages

ind fcated on the fully displayed netvork of figure A-9,
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