
Memory Allocator

Help Session

CS 3214: Project 3

Topics
– Overview of Memory Management
– Basics / Getting Started
– Project Structure
– GNU Perf Utils & Tools
– Logistics / Grades

– Testing Framework

– Heap Inspector Tool

REVISED

Overview of
Memory
Management

The Heap
– Persistent, unmanaged memory granted to

processes
– Sometimes memory allocation strategies will

be coupled with Garbage Collector (GC)
– Hold on to memory for too long: memory

leak
– Free memory too early: memory corruption

– Usually managed by malloc() in libc

brk() and sbrk()
– sbrk()

– Increases the size of the data segment
– brk()

– Sets the ending address of the data
segment

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|
MAP_ANONYMOUS, -1, 0) = 0x7facdc778000

brk(0x1830000)

munmap(0x7facdc7a1000, 4096)

The Goal
– Lots of allocators out in the wild

– Some general purpose, some for specific
applications

– Google’s TCMalloc
– Time versus space tradeoff
– Instantly know an available place in the heap

to fit the allocation request exactly

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Basics / Getting
Started

Getting Started
– Fork the repo

– https://git.cs.vt.edu/cs3214-staff/malloclab
– Set to private
– Similar to shell: grading on git usage

https://git.cs.vt.edu/cs3214-staff/malloclab

Functions
– You will write these functions, each following

the conventions of malloc():

– Like the real malloc(), you must be able to
handle a variety of allocation sizes

int mm_init (void);

void * mm_malloc (size_t size);

void mm_free (void * ptr);

void * mm_realloc(void * ptr, size_t size);

Getting Started
– Writing one file, mm.c

– Write helper functions to perform pointer
math
– Makes debugging easier

– Review the provided sample implementation,
mm-gback-implicit.c

Provided Functions
– Extend the heap bytes and return the start

address:

– Return address of the first heap byte:

– Return address of the last heap byte:

void * mem_sbrk(int incr);

void * mem_heap_lo(void);

void * mem_heap_hi(void);

Provided Functions
– Returns the current size of the heap in bytes:

– Returns the system’s page size in bytes (4K
on Linux systems):

size_t mem_heapsize(void);

size_t mem_pagesize(void);

mm-gback-implicit.c
– Sample solution which might be a good

starting point
– Be mindful of word conversions
– Determine if size should be inclusive to the

boundary tag
– Know the design decisions / function

preconditions you are inheriting!

Alignment

Fragmentation /
Coalescing

Fragmentation /
Coalescing

Project Structure
& Suggestions

Suggestions
– Consider performance implications from the start

– Can I only include this structure in the tag in
certain situations?

– Do I have all the fields I need?

– Am I willing to trade space for performance
here?

– Consider edge conditions

– Define suitable C structures to minimize casting

– Use assert() statements liberally

– Explicitly state pre and post conditions

Assert Statements
– Figure out where the bug occurs, rather than

a side effect of the bug
– Is find_fit actually returning a block?
– Is the block actually not in a list?

Suggestions
– Use void * pointer arithmetic encapsulated in

helper functions
– Do your implementation in stages
– Use a profiler such as gprof
– Start early

– Try different implementation strategies
– Performance will take the majority of the

time
– Always think about design!

– Alter the CFLAGS to include -g

Suggestions
– Make sure the start of all memory addresses

returned from mm_malloc() are aligned
correctly:

– Be careful about lists and traversals
– As with thread-pool: iterate and empirically

test
– Explicit list
– Segregated list
– Red-Black tree

size = (size + ALIGNMENT - 1) & ~(ALIGNMENT - 1);

Segregated Free Lists

mm_checkheap()
– Sanity checker that can print out the blocks

in the heap
– Written for your benefit
– Based off of an implicit list traversal

– Remember to remove during test!

GDB
– Dump the contents of the heap out
– Can now use the heap inspector instead!

(gdb) define xxd

>dump binary memory dump.bin $arg0 $arg0+$arg1

>shell xxd dump.bin

>end

(gdb) xxd mem_heap_lo() 200

0000000: 0100 0000 0104 0000 0000 0000 0000 0000

0000010: 0000 0000 0000 0000 0000 0000 0000 0000

0000020: 0000 0000 0000 0000 0000 0000 0000 0000

0000030: 0000 0000 0000 0000 0000 0000 0000 0000

Allocation Patterns
– Empirically test!
– Many smaller requests which are short lived
– Fewer larger requests which are held for

longer periods of time

GNU Perf Utils &
Other Tools

Perf Utils
– Add the -pg flag during compilation

– This will create a file gmon.out when your
code is run

– Check the output:

– Remember to remove this flag during
performance testing!

$ gprof mdriver gmon.out > prof_output

Perf Utils Output
– Shows each time a function is called, along

with a call graph, to identify bottlenecks:

Each sample counts as 0.01 seconds.

 % cumulative self self total

time seconds seconds calls ms/call ms/call name

 59.20 3.25 3.25 eval_mm_valid_inner

 12.20 3.92 0.67 182955 0.00 0.00 add_range

 12.02 4.58 0.66 1696347 0.00 0.00 mm_malloc

 8.38 5.04 0.46 288964584 0.00 0.00 list_next

 7.10 5.43 0.39 300120288 0.00 0.00 list_end

 0.36 5.45 0.02 1696347 0.00 0.00 mm_free

 0.36 5.47 0.02 330 0.06 0.06 mm_init

 0.18 5.48 0.01 11155704 0.00 0.00 list_begin

 0.18 5.49 0.01 330 0.03 4.33 eval_mm_speed

Structs / Bitfields
– Allow information to densely packed, if size

constraints are known
– Performance considerations?

struct packed_data {

 unsigned int in_use:1;

 unsigned int size:31;

 char payload[0];

}

Project Logistics

Logistics
– Please submit code that compiles
– Test using the driver before submitting!

– Don’t just run the tests individually
– When grading, these tests will be run 3-5

times, and if you crash a single time, it’s
considered failing

– Parts:
– Correctness
– Performance
– Multi-threading (extra-credit)

– Refer to mm_ts.c

Logistics: Grading
– Grade breakdown (100 points total):

– 40 points for correctness (MIN
REQUIREMENT)

– 40 points single threaded performance
– Space utilization
– Throughput

– 20 points for documentation/style/git
– At least 5 assert statements

– Extra credit: Additionally support
multithreading

Test Driver

– Run with -v / -V for verbose output
– Run with -f to customize traces
– Run with -s vary allocation size

cd malloclab/

./mdriver

Performance

– Throughput
– Number of requests per second

– Utilization
– How much space the heap has been

expanded by versus the space user data
takes

– Overhead
– Fragmentation

Perf index = 44 (util) + 0 (thru) = 45/100

Results for mm malloc:

trace name valid util ops secs Kops

 0 amptjp-bal.rep yes 99% 5694 0.010260 555

 1 cccp-bal.rep yes 99% 5848 0.009955 587

 2 cp-decl-bal.rep yes 99% 6648 0.016045 414

 3 expr-bal.rep yes 100% 5380 0.010824 497

 4 coalescing-bal.rep yes 67% 14400 0.000665 21659

 5 random-bal.rep yes 92% 4800 0.007215 665

 6 random2-bal.rep yes 92% 4800 0.007079 678

 7 binary-bal.rep yes 55% 12000 0.173721 69

 8 binary2-bal.rep yes 51% 24000 0.326384 74

 9 realloc-bal.rep yes 27% 14401 0.100668 143

10 realloc2-bal.rep yes 34% 14401 0.003196 4506

Total 74% 112372 0.666013 169

Test Trace Files

– Located in /home/courses/cs3214/malloclab/traces

– Allocation sizes and references

3000000 // Heap size

2847 // Unique identifiers

5694 // Number of operations

1

a 0 2040

f 0

Reference
– [L-MEM1] Dynamic Memory Management (ma

lloc/free)
– Implicit vs Explicit
– Fragmentation
– Coalescing Policies

https://courses.cs.vt.edu/cs3214/videos/Lecture-MemoryAllocation.pdf
https://courses.cs.vt.edu/cs3214/videos/Lecture-MemoryAllocation.pdf

Heap Inspector
Demo

Questions?

Thank you for attending!

	Slide 1
	Topics
	Slide 3
	Slide 4
	The Heap
	brk() and sbrk()
	The Goal
	Slide 8
	Getting Started
	Functions
	Getting Started
	Provided Functions
	Provided Functions
	mm-gback-implicit.c
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Suggestions
	Assert Statements
	Suggestions
	Suggestions
	mm_checkheap()
	Slide 25
	GDB
	Allocation Patterns
	Slide 28
	Perf Utils
	Perf Utils Output
	Struct Unions
	Slide 32
	Logistics
	Logistics: Grading
	Test Driver
	Performance
	Slide 37
	Test Trace Files
	Reference
	Slide 40
	Slide 41

