CS 3214: Project 3

Memory Allocator

Help Session

Topics

- Overview of Memory Management
- Basics / Getting Started
- Project Structure
- GNU Perf Utils & Tools
- Logistics / Grades
- Testing Framework

- Heap Inspector Tool

Overview of
Memory
Management

Virtual memory address

(hexadecimal)

0x (0000000

Top of
stack

Program

—
break

0x08048000

i.n-:.rcasing virtual addesses

0x00000000

Kernel

(mapped into process
virtual memory, but not
accessible to program)

argy, environ

Stack
(grows downwards)

_______ e

(unallocated memory)

_______ L.

Heap
(grows upwards)

/proc/kallsyms
provides addresses of
-+— kernel symbols in this
region (/proc/ksyms in
kernel 2.4 and earlier)

Uninitialized data (bss)

Initialized data

Text (program code)

- Crend
- CTedata
- CTetext

The Heap

- Persistent, unmanaged memory granted to
processes

- Sometimes memory allocation strategies will
be coupled with Garbage Collector (GC)

- Hold on to memory for too long: memory
leak

- Free memory too early: memory corruption
- Usually managed by malloc() in libc

brk() and sbrk()

— sbrk()
- Increases the size of the data segment
— brk()

- Sets the ending address of the data
segment

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE]
MAP_ANONYMOUS, -1, 0) = Ox7facdc778000

brk(0x1830000)
munmap(0x7facdc7al000, 4096)

The Goal

- Lots of allocators out in the wild

- Some general purpose, some for specific
applications

- Google’s TCMalloc
- Time versus space tradeoff

- Instantly know an available place in the heap
to fit the allocation request exactly

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Basics / Getting
Started

Getting Started

- Fork the repo
- https://qgit.cs.vt.edu/cs3214-staff/malloclab

- Set to private
- Similar to shell: grading on git usage

https://git.cs.vt.edu/cs3214-staff/malloclab

Functions

- You will write these functions, each following
the conventions of malloc():

Nt mm_init (void);

void * mm_malloc (size t size);

void mm_free (void * ptr);

void * mm_realloc(void * ptr, size t size);

- Like the real malloc(), you must be able to
handle a variety of allocation sizes

Getting Started

- Writing one file, mm.c

- Write helper functions to perform pointer
math

- Makes debugging easier

- Review the provided sample implementation,
mm-gback-implicit.c

Provided Functions

- Extend the heap bytes and return the start
address:

void * mem_sbrk(int incr);

- Return address of the first heap byte:

void * mem_heap_lo(void);

- Return address of the last heap byte:

void * mem_heap hi(void);

Provided Functions

- Returns the current size of the heap in bytes:

size t mem_heapsize(void);

- Returns the system’s page size in bytes (4K
on Linux systems):

size t mem_pagesize(void);

mm-gback-implicit.c

- Sample solution which might be a good
starting point

- Be mindful of word conversions

- Determine if size should be inclusive to the
boundary tag

- Know the design decisions / function
preconditions you are inheriting!

/\/\/\

5 4 6 >
E,X {)\\ _chl.)\'
free 2 — P Ve
W\eawzzzzZF) Wlaetwzzan
Hea ¢
B TFI0\ ek [ZZ 2t | [F)

w U se M~ / Iﬂ (}Se.

Tn Free st

Alignment
R\ //ETHT IH[F]
71

A |

1271 O116 g/(é)2*/{6 O e
A\\ m\o&c\,") MU St be 0\\{3\/\6& AT
O /1@

and foo‘cé\f')' ace U \a:)#;w
cachh , need 6 pad and algn & ((axdingl vy

Fragmentation /
Coalescing

Z\.’.reg b\&c.l!\ G&*'S'*"ze 128

w2727 7 Z]F Y4l R

|\ — [F W 77T \F[HY I F)
7

SP\;)F jl'\f\e —?'(\E’,Q \O\O(_\L- SO Hhat +he

U sed space bcorm Yhne 16 bU%g pa\:j[oad

Fragmentation /
Coalescing

SN F N2\ F 1) W=

| he user Makes> « Yree ca\l +o e lasr block

]_Prk F \HWF W\ 22 v _F)

lye vow Nave v adyorcente Pree L\ocks.

TP we combine *hem tooeiner, the Free

blac\d s avle o e \d \c,wfb@p Y loc\<s
ol data.

W FWreC 27— 1F)

Ne header &Ad oy 'n Middle

Project Structure
& Suggestions

Suggestions

- Consider performance implications from the start

- Can | only include this structure in the tag in
certain situations?

- Do | have all the fields | need?

- Am | willing to trade space for performance
here?

- Consider edge conditions
- Define suitable C structures to minimize casting
- Use assert() statements liberally

- Explicitly state pre and post conditions

Assert Statements

- Figure out where the bug occurs, rather than
a side effect of the bug

- Is find_fit actually returning a block?
- |Is the block actually not in a list?

T LAS TRYING To | TURNS OUT IT WASNT | DEBUGGING THAT™ LED | | ANYWAY LONG STORY SHORT,
FIGURE OUTr WHY | THEBROWSER-THE | ME O A MYSTERIOUS | | T FOUND THE SWORD OF

MY BROLISER LA | 1SSUE WAS UITH MY | ERROR MESSAGE. FROM mﬁrw THE LUARRIOR.
ACTNG WEIRD | KEYBOARD DRIVER. A SYSTEM UTILITY,

T THINK. AT SOME
))) POINT THERE. YOU
SWITHED PUZ2LES,

FY | ¥y W

Suggestions

Use void * pointer arithmetic encapsulated in
helper functions

Do your implementation in stages

Use a profiler such as gprof

Start early

- Try different implementation strategies

- Performance will take the majority of the
time

- Always think about design!

Alter the CFLAGS to include -g

Suggestions

- Make sure the start of all memory addresses
returned from mm_malloc() are aligned
correctly:

size = (size + ALIGNMENT - 1) & ~(ALIGNMENT - 1);

- Be careful about lists and traversals

- As with thread-pool: iterate and empirically
test

- Explicit list
- Segregated list
- Red-Black tree

Segregated Free Lists

~ 6H
e
uu% 1 17 ff_t,,:@
—_

We Know oo plock of size Wt weo'F

Qk)r A N 32 -bute \a\at.,\fj s6 we \ook
Thcouan the QY- Ebsfe, bodk &ee st Since thak
ot 35 @mply , W 0 on ks dwe pext biaaest

\iSXN) oyl we knd o free Wack ¢ atk€iwing
wo §ree blacks:

mm_checkheap()

- Sanity checker that can print out the blocks
In the heap

- Written for your benefit
- Based off of an implicit list traversal
- Remember to remove during test!

GDB

- Dump the contents of the heap out
- Can now use the heap inspector instead!

(gdb) define xxd
>dump binary memory dump.bin $arg0 $arg0+$argl

>shell xxd dump.bin
>end
(gdb) xxd mem_heap_lo() 200

0000000: 0100 0000 0104 0000 0000 0000 0000 0000
0000010: 0000 0000 0000 0000 0000 OO00 0000 0000
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
0000030: 0000 0000 0000 0000 0000 OO00 0000 0000

Allocation Patterns

- Empirically test!
- Many smaller requests which are short lived

- Fewer larger requests which are held for
longer periods of time

GNU Perf Utils &
Other Tools

Perf Utils

- Add the -pg flag during compilation

- This will create a file gmon.out when your
code is run

- Check the output:

$ gprof mdriver gmon.out > prof _output

- Remember to remove this flag during
performance testing!

Perf Utils Output

- Shows each time a function is called, along
with a call graph, to identify bottlenecks:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name
59.20 3.25 3.25 eval_ mm_valid_inner
1220 3.92 0.67 182955 0.00 0.00 add_range
12.02 458 0.66 1696347 0.00 0.00 mm_malloc
8.38 5.04 0.46288964584 0.00 0.00 list_next
7.10 543 0.39300120288 0.00 0.00 list_end
0.36 5.45 0.02 1696347 0.00 0.00 mm_free
0.36 547 0.02 330 0.06 0.06 mm_init

0.18 5.48 0.01 11155704 0.00 0.00 list_begin
0.18 549 0.01 330 0.03 4.33 eval mm_speed

Structs / Bithelds

- Allow information to densely packed, if size
constraints are known

- Performance considerations?

struct packed_data {
unsigned int in_use:1;
unsigned int size:31;

char payload|O];
}

Project Logistics

Logistics

- Please submit code that compiles
- Test using the driver before submitting!
- Don’t just run the tests individually

- When grading, these tests will be run 3-5
times, and if you crash a single time, it's
considered failing

- Parts:

- Correctness

- Performance

- Multi-threading (extra-credit)
- Refer to mm_ts.c

Logistics: Grading

- Grade breakdown (100 points total):

- 40 points for correctness (MIN
REQUIREMENT)

- 40 points single threaded performance
- Space utilization
- Throughput

- 20 points for documentation/style/qgit
- At least 5 assert statements

- Extra credit: Additionally support
multithreading

Test Driver

cd malloclab/
Jmdriver

- Run with -v / -V for verbose output
- Run with -f to customize traces
- Run with -s vary allocation size

Performance

Perf index = 44 (util) + O (thru) = 45/100

- Throughput
- Number of requests per second
- Utilization

- How much space the heap has been

expanded by versus the space user data
takes

- Overhead
- Fragmentation

Results for mm malloc:

trace

0

© 00 N O 01 b W N PP

=
o

Total

name valid utii ops secs Kops
amptjp-bal.rep yes 99% 5694 0.010260 555
cccp-bal.rep yes 99% 5848 0.009955 587
cp-decl-bal.rep yes 99% 6648 0.016045 414
expr-bal.rep yes 100% 5380 0.010824 497

coalescing-bal.rep yes 67% 14400 0.000665 21659

random-bal.rep yes 92% 4800 0.007215 665

random2-bal.rep yes 92% 4800 0.007079 678

binary-bal.rep yes 55% 12000 0.173721 69

binary2-bal.rep yes 51% 24000 0.326384 74

realloc-bal.rep yes 27% 14401 0.100668 143

realloc2-bal.rep yes 34% 14401 0.003196 4506
74% 112372 0.666013 169

Test Trace Files

3000000 /[Heap size
2847 // Unique identifiers
5694 /[Number of operations

1
a 02040
fO

- Located in /home/courses/cs3214/malloclab/traces
- Allocation sizes and references

Reference

- [L-MEM11 Dynamic Memory Management (ma

lloc/free)

- Implicit vs Explicit
- Fragmentation

- Coalescing Policies

https://courses.cs.vt.edu/cs3214/videos/Lecture-MemoryAllocation.pdf
https://courses.cs.vt.edu/cs3214/videos/Lecture-MemoryAllocation.pdf

Heap Inspector
Demo

Questions?

Thank you for attending!

	Slide 1
	Topics
	Slide 3
	Slide 4
	The Heap
	brk() and sbrk()
	The Goal
	Slide 8
	Getting Started
	Functions
	Getting Started
	Provided Functions
	Provided Functions
	mm-gback-implicit.c
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Suggestions
	Assert Statements
	Suggestions
	Suggestions
	mm_checkheap()
	Slide 25
	GDB
	Allocation Patterns
	Slide 28
	Perf Utils
	Perf Utils Output
	Struct Unions
	Slide 32
	Logistics
	Logistics: Grading
	Test Driver
	Performance
	Slide 37
	Test Trace Files
	Reference
	Slide 40
	Slide 41

