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1. I N T R O D U C T I O N  

H-functions in several variables defined by multiple Mellin-Barnes contour integrals have been 
discussed in various forms by a number of authors (see, for example, [1-8]). In this paper, we 
consider the most general case of these H-functions in N variables, which is defined as follows: 

H [x; (a, A); (f~, B); Ls] -- (2~ri) - g  [ O(s)x -s  ds, (1.1) 
d b  

s 

where 
N 

j=l  
O(s) = (1.2/ N 

j--1 

Here F(.) is a Gamma function; s = [ S l , . . . ,  SN], x ---- [Xl , . . .  , XN] , Oz = [OLI,... , OZN] , and 
f~ ---- [ f~ l , . . . ,  ~N] denote vectors of complex numbers; and 

A = (aj,k)mxN 

are matrices of real numbers aj,k (j = 
k = 1 . . . .  , N).  Also 

N 

and B = (bj,k)~×N 

1 , . . . , m ; k  --- 1 , . . . , N )  and bj,k 

N 

(j = 1 , . . . , n ;  

x - ' =  H x ;  "k; d s :  H d s k ;  L s = L s l  × ' " × L s N ,  (1.3) 
k = l  k = l  
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where Ls~ is an infinite contour in the complex sk-plane such that O(s) has no singularities for 
s6Ls. 

Since aj,k and bj,k denote real numbers (i.e., they may be positive, negative or equal to zero), we 
see that the H-function (I.I) for N = 1 is essentially the known Fox's H-function of one variable 
and there is only a difference of notational representations in theIn (see, for example, [9]). 

The H-function (1.1) is different from the H-function considered by Buschman [1] only in the 
replacement of x" by x - t  Here we make this replacement for convenience in our further studies 
and applications of the H-functions. 

Properties and applications of the H-function (1.1) (and its special case when N -- 2) are 
considered in the earlier works [9,10]. In particular, when N = 2, the necessary and sufficient 
conditions for the convergence of the corresponding integral in (1.1) are described in detail in [10]. 

In the present paper, we consider the analogous problem of the convergence of the integral 
in (1.1) for any natural number N. In the short note [11], the first author has formulated the 
theorem classifying the exponential convergence of the considered multiple integral. In Section 2, 
we give the complete proof of this theorem and its several useful consequences. Finally, in 
Section 3, we consider many illustrative examples. 

2.  M A I N  R E S U L T  

Our main result is contained in the following theorem. 

THEOREM. Let the contours Lsk (k = 1, . . . ,  N) have a verticM form, i.e., ~(sk) are restricted 
for sk 6 Lsk. Also, let 

Aj = (aj,1,...,aj,N) 

arg(x) = [arg(xl ) , . . . ,  arg(xN)] ; 

for j ---- 1 , . . . , m ;  

for j = 1 , . . . ,  n; (2.1) 

fAil, .  A 7- • " ' Jk]k×N -~ 

n i l , l ,  • • .  ,ajl,N ) 

\ajk,1, • • • , a j ~ , N  I kxN 

(2.2) 

Then the integral in (1.1) converges if, for any sequence {ji , .  . . , iN-1 } of  integers such that 

l < j l < . . . < j N _ l < _ m + n ,  rank [Aj, . . . .  ,Aj~_I]T ---- N -  1, (2.3) 

the following two sets of inequalities are satisfied: 

m+n ( 1 j )  det [ A j , A j , , . . . , A j N _ I ] T I  > 0; (2.4) p(jl . . . .  ,YN-1)-  sgn 
j = l  

2 p ( j , , . . . , j N _ l  ) > det [ a rg (x ) ,A j , , . . . ,A jN_ l ]T ] .  (2.5) 

Otherwise, if there does not exist at least one sequence { j l , . . - , i N - l }  satisfying (2.3), then the 
integra/ in (1.1) will diverge• (Here sgn means the signum function: sgn(0) = 0; sgn(x) = 1 if 
x > 0; sgn(x) = - 1  f i x  < 0.) 

Moreover, ff we replace the inequality symbol (>) in (2.4) and (2.5) by the opposite one (<) 
for a t / eas t  one sequence {jl . . . .  , iN - l }  satisfying the conditions (2.3), then the integral in (1.1) 
will be divergent. 

In order to prove the theorem, we will apply the method used in [10,12] for the case N = 2. 
Here we need the following auxiliary result. 
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LEMMA. Let a/l ~j,aj,k • R ( j  = 1 , . . . , M ;  k = 1 , . . . , N ) ;  

Aj (a j ,1 , . .  a j ,N);  IIAjll 2 N - -  " ,  = ~ k = l  la.~,kl 2 ~ 0, and 

N 

19 

u = ( u l , . . . , U N )  • RN;  

Ayu = ~ a~,~ ~ .  (2.6) 

T h e n  the  funct ion  

k = l  

M 

S(u) ~ ~ ~ IAyul > o for all u • R N and HuH ~ 0, (2.7) 
j = l  

i f  and on ly  i£ the  [ollowing two s t a t e m e n t s  are true: 

(1) rank[A1,...  T ,AM]MxN = N. 
(2) For any  sequence { j l ,  . . . , j N - 1  } o f  integers sat i s fy ing the  condi t ions (2.3) wi th  M in place  

o f  m + n, the fol lowing inequal i ty  holds true: 

(2 . s )  
M 

. . . . .  A T pt(jl ,  , j N _ I ) - - Z 7  j d e t [ A j , A j , , . ,  iN-l] >0 .  
j----1 

PROOF. To prove the necessity part, we assume that 

rank [Aj~,.. . ,  AjM] T < N. 

Then, evidently, the following system of M linear equations (see equation (2.6)) 

A f u  = 0, j = 1 , . . . ,M ,  

has at least one nontrivial solution u* E R g. Hence, f(u*) = 0 and [[u*[[ ~ 0, but it contradicts 
the condition (2.7). Consequently, the statement (1) in the lemma holds true. 

Further, since [[Aj [[ ¢ 0, then the set 

Lj - {u • RN:  A f u  = 0} (2.9) 

is a hyperspace in R N. Hence, for any sequence { J l , . . - , j g - 1 }  satisfying (2.3) with M in place 
m ÷ n, the intersection 

L ( j l , .  . . , j N - 1 )  =-- L j ,  A . . . N LjN_,  (2.10) 

is some line containing the origin of co-ordinates of the space R N. Now let 

where 

U 0 - -  (U0 . . . , U  O ) ,  

I a31,1, • . . ~ a j l , k - 1  , ajl ,k-F1, • . . ~Gj l ,N  

J u ° = ( - 1 )  k-~ det  (2.11)  

a jN_ l ,1 ,  . . .  , a jN_l ,k - -1 ,  a j N - l , k + l , .  • . , a j N _ I , N  

for k = 1 , . . . , N .  We shall show that the point u ° belongs to the line L ( j l , . . . , j N - 1 )  given 
by (2.10). In fact, from the definition of a matrix determinant and in connection with (2.6) 
and (2.11), we have 

N 
AT u ° = ~ aj ,ku  ° = det [ A j , A j , , . . . ,  AjN_,] T. (2.12) 

k=l 
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Hence, A~-u ° = 0 for j = Jk (k = 1,... ,N  - 1), i.e., u ° • L(jl . . . .  ,JN-1). On the other hand, 
from (2.7), (2.12) and (2.8), we have f (u  °) = pt(j l , . . .  ,jN-1). Since f (u)  > 0 for all u E R N, 
Ilull ¢ 0, we have f ( u  °) = pt( j l , . . .  , jN-I)  > 0. (Here, according to the conditions (2.3), it is 
not difficult to show that Ilu°ll ~ 0.) The necessity part of the lemma is thus proved. 

In order to prove the sufficiency part of the lemma, let the inequality (2.8) hold true for any 
sequence { j l , " "  , iN-l}  satisfying (2.3) with M in place of m + n. As was shown above, this 
allows us to get pt(jx,. . .  , iN- l )  = f (u  0) > 0, where u °, defined by (2.11), belongs to the line 
L(ja,. . .  , iN-x) given by (2.10). Evidently, for A • R, we have 

f(Au) = f (Aul , . . . ,  AUN) = lAir(u). 

Hence, we get f (u)  > 0 for all u E L(j l , . . .  ,jN-1) \ {0}. 
Further, note that the hyperspace Lj in (2.9) separates the N-dimensional space R N into 

two nonintersecting parts: A y u  > 0 and A~-u < 0. Hence, all hyperspaces Lj (j = 1 , . . . ,  M) 
separate R g into several nonintersecting sectors, which contain the origin of co-ordinates as their 
common vertex. Although the function f(u)  in (2.7) is not linear in R N, we see that it is linear 
in each of the above-mentioned nonintersecting sectors (since there we can remove the modulus 
symbol in [A~ul). 

Now let a point u be located in some sector W. Then there exist several suitable points up, 

which belong to the lines of type (2.10) such that the following vector equation is true: 

u ~ - y ~  Up. 

P 

Therefore, due to the linearity of the function f(u)  in the sector W, we get 

f (u)  = y ~ f ( u p ) .  
P 

As was shown above, we have f(up) > 0 for all Up • L(j l , . . .  , iN- l )  \ {0}. Consequently, from 
the last equality, we obtain f(u)  > 0, where u belongs to the considered sector W and Ilu°[I # 0. 

Thus the sufficiency part of the lemma is proved. 

PROOF OF THE THEOREM. Note that, for complex numbers c, t and z, we have the following 
asymptotic estimates (cf. [10,13]): 

Iz-tl = I exp{-t[log Izl + i arg(z)]}l _~ Z2 exp{~(t) arg(z)}, 

where ~($) is restricted, I~(t)l --* +c~, and E1 and E2 are of lower order than exponential. Hence, 
for Ilsll (s • Ls),  we have 

[O(S)x--S[ ~-~ "~'3 exp 

= E3 exp 

I 71" 

-7  

f i  [ A f g ( s ) [ -  f i  [B~9(s)[] + arg(x)q- ~(s) } 
j=l j=l 

" ] } 
j=l 

(2.13) 

where Aj (j = 1 . . . . .  m + n) and arg(x) are defined by (2.1) and, as usual, 

N N 
A y  = arg(x) T = 

k=l  k----.1 
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Writing ~(s) = [ ~ ( 8 1 ) , . . .  , ~ (8N)]  ------ ( U l , . . . ,  UN) ---- U E R N and 

~r 1 
F 0 ( u ) = 7  Z sgn m + ~ - j  I A f u  I - a r g ( x )  Tu,  

j----1 

we note that 

21 

(2.14) 

lr 1 
F 0 ( - u ) = ~  Z sgn m + ~ - j  IA~-u]+arg(x) Tu.  (2.15) 

j = l  

Consequently, from (2.13), (2.14) and (2.15), it follows that the integral in (1.1) converges if 

F(u) = 7~r Z sgn m + ~1 _ j lAir ul _ ]arg(x)T ul --, +co, (2.16) 
j----1 

for u E R N and Hull ~ +oo. 
Since F(Au) = IAIF(u) for all A E R, the last condition (2.16) is equivalent to the inequality 

F(u)  > 0 for all u E R N and Hul]# 0. Now, applying the lemma to the function F(u)  in (2.16), 
after some calculations, we obtain the inequalities (2.4) and (2.5). 

Finally, it is not difficult to see that the integral in (1.1) diverges if there is at least one point 
u E R such that F(u) < 0. 

Thus the theorem is proved completely. 

The theorem shows that the inequality 

rank [ h l , . . . ,  Am+n] T _> N - 1 

is necessary for the convergence of the integral in (1.1). Next, we give the following stronger 
result. 

CONSEQUENCE 1. For the convergence of  the integral in (1.1), it is necessary that 

rank[Ai , . . . ,Am] T = N N _< m, 

and that there is at /east  one sequence {Jl, . . .  , i N }  such that 

1 . . . . .  < j l  < "'" < j N  < m and rank [Ajl , ,AjN]T = N .  

In fact, from condition the (2.16) and the convergence of the integral in (1.1), we have 

m 
7~ 

El(U) -- ~ ~ [A~ u I _> F(u) -~ +co, 
j = l  

where u E R N and Ilull --* +o0. Now, applying the lemma to the function Fi(u), we get 
Consequence 1. 

CONSEQUENCE 2. For the convergence of the integral in (1.1), it is necessary that P ( j l , . . .  , iN- l )  
> 0 for any sequence { J l , ' ' "  ,iN-l} SUCh that 

l<_ j l  < ' " < j N - i < m + n .  

CONSEQUENCE 3. I f  there exists at least one sequence {jl , - . .  , i N - l } ,  satisfying the condi- 
tions (2.3), such that P(ji ,  i N - l )  = O, then the integral in (1.1) diverges for all x 6 C N \ R N • . . ,  . ~ . ,  

i.e., for 
N 

II arg(x)ll 2 = ~ ]  [arg(xk)L 2 # 0. 
k----1 

Consequences 2 and 3 can easily be derived from inequality (2.5) in the theorem. 
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REMARK 1. Let all numbers P( j l , . . .  , jN-1) in (2.4) be positive. Then, in connection with (2.11), 
the inequality (2.5) can be written in the following manner: 

N 

:__~u ° a~g(~k) < p(A,... ,jN-~). (2.17) 

Therefore, the projection of the convergence region of the integral in (1.1) in the real [arg(xl ) , . . . ,  
arg(xN)]-space is the intersection of all N-dimensional strips (2.17) for every possible sequence 
{J l , . - - ,  iN-1} satisfying (2.3). It is not difficult to note that  this intersection is an N-dimensional 
convex polygon containing the origin of co-ordinates as the symmetry center. For any point x, 
which does not belong to this polygon, the integral in (1.1) will diverge. 

From (2.17), it follows that  there exists a sufficiently small positive number e such that  the 
integral in (1.1) converges for x E C N and 

1 
larg(xk)l < ~ r e  k = 1 , . . . , N .  

REMARK 2. After combining all proportional sequences A A -- AAO4:, i.e., 

(ao4~,1, . . . , ao4~,N ) = ( ' ~ a j 2 , 1 ,  " " " , ~aj2 ,N ) , 

according to (2.16), (2.3) and (2.4), we get, respectively, 

r 

~r 5 F(u)  = ~ E O41D~ u l -  I arg(x)T ul--* +(x), (2.18) 
o4=1 

where r < m + n, Dj  = (dA,1,. . . ,  do4~,N),  rank[Do4, Dk] T = 2 for j ¢ k (j, k = 1 , . . . ,  r) and 

r 

P* ( j l , . . - , j N - 1 )  --= E h j  det [DO4,DO41,...,DO4N_l] 7- > 0, 
j = l  

r . , det [arg(x), Dj , , .  ,DO4N_I] T p (J~, . . .  jN-~)  > .. , 

for all ordered sequences { j l , . . . ,  i N - 1  } such that 

(2.19) 

(2.20) 

l < _ j l  < " ' ' <  j N - 1  ~ r .  (2.21) 

Remark 2 is more convenient to apply in practical examples than the theorem. 

3. I L L U S T R A T I V E  E X A M P L E S  

For convenience, we introduce the following notation (see [10,13]): 

m 

[ I  r (~o4) o4:1 
r L ~ l , . . . , ~ n  J = 

fI r ( o4) 
j = l  

EXAMPLE 1. Let N -- 1. Then, from the theorem, we easily obtain the following condition for 
the convergence of the corresponding simple integral in (1.1): 

lao4,1]- Ibo4,11 > larg(xl)l. 
O4=I O4=I 
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The above inequality completely coincides with the convergence condition for the defining 
integral for Fox's H-function of one variable. 

Various cases of H-functions when N = 2 are considered, in detail, in [10,12]. Here we give only 
one specific example showing that the double integral (when N = 2) in (1.1) may be divergent, 
although both the iterated integrals (for Sl and s2) converge. 

EXAMPLE 2. Let N = 2 and 

O(s1,s2) _..: F [(~l + 2Sl W 582, ot2+ Sl + 3S2, Ot3-O.lsl, oL4-O.ls2] 
131 + Sl + s2 

Here m = 4, n = 1, and the array (aj,a, aj,2) (1 _< j _< 5) is given as follows: 

(2, 5), (1, 3), (-0.1, 0), (0, -0.1); (1, 1). 

Then, from (2.4), we have 

p(1)= det[12 35]l+ det[-02"l 05][+ det[02 -05"1][-det[12 151 

= 1 + 0 . 5 + 0 . 2 - 3  = -1.3 < 0. 

Hence, according to Consequence 2, it follows that the corresponding double integral in (1.1) 
will diverge. 

EXAMPLE 3. Let N = 3 and (see Buschman and Srivastava [14], who also corrected some earlier 
observations of Tandon [15]) 

O(Sl ,S2,83)=F [ O Q + s l + s 2 , ~ 2 + s 2 + s 3 , O ~ 3 + s 3 + s l ' O L 4 - s l ' O ~ 5 - s 2 , a 6 - 8 3 ]  
~a + Sl, ~2 + S2, ~3 + S3 

In view of (2.18), we obtain 

3 

F(ul,u2,u3)=~(lUl+U2[+[u2+u3l+[u3+ul[)- uk arg (xk) -* +cx~. 

In accordance with (2.19) and (2.20), we get 

W p*(1, 2) = 1 
1 

> 

that is, 

Analogously, we obtain 

and 

d e t [  arg (xl) 01 arg (x2)1 1 arg (x3) ] 0 1 

larg (Xl) - arg (x2) + arg (x3)[ < r. 

[arg (x2) - arg (x3) + arg (xl)[ < ~r, 

[arg (x3) - arg (xl) + arg (x2)[ < ~r. 

Consequently, the last three inequalities describe the convergence region for the corresponding 
triple integral in (1.1). In view of Remark 1, this integral converges if (for instance) 

7r 
larg(x~)l < ~,  k = 1,2,3. 
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EXAMPLE 4. Let N = 3 and 

e (81,82,$3) ..~ r [ oQ -~- 81+ 82 Jc- $3, 0t2 -~- 81, 0t3 -}- 82, 0~4 -~- 83, -81, -82, -83 l 
~I -'~ 81 J¢" 82 "}- 83 

According to (2.18), we have 

F ( U l ,  'U,2, US) = 7r ( lUl  I -~- [~t2l "~" lU3[) --  '0, k aE'g ( ~ k )  --4 -4-00. 

Evidently, it is equivalent to 
]arg (xk)[ < r ,  k = 1,2,3. 

EXAMPLE 5. Let N = 3 and 

~ (81,82,83) = F [ oQ -JC Sl + 82 "l- s3, oL2 Jc 81, 0t3 -1- 82, 0t4 '{- 83, --81, --82, --83 ] 
I~1 '{-$1, /~2 +82, t03-]-83 

We have 

3 a~g (=k) 
F(ul,u2,u3)= ~([uz +u2+u3[+lux[+lu2[+lu3[)- uk ~+oo.  

Hence, applying (2.19) and (2.20) to p*(1, 2), we get 

la~g (=~)1 - larg (=3)1 < ~, 

and analogously for p*(1, 3) and p*(1,4): 

[arg (x3 ) l -  [arg (Xl)l < r and [arg (=1) [ - l a r g  (=2)1 < ~'. 

Further, for p*(2, 3), p*(2, 4), and p*(3, 4), we obtain 

[arg(x3)[ < "/r, [arg(xz)[ < lr and [arg(x2)[ < 7r. 

Finally, the corresponding convergence region can be described as follows: 

max {la~g(=k)l ,  I ~ g ( = k ) - a r g ( = j ) l }  < ~ .  k,j= l,2,3; kyk j 

EXAMPLE 6. Let N -- 3 and 

~(81'82'83) =~' [ OLl'{-81,OL2"[-82, 0~3"}-83' OL4+sl'O~5Jc$2'O~6Jc83' - $ 1 ' - $ 2 '  - 8 3 ] f l l  Jr- 81+82 Jr- 83 

In this case, we have 

3 (xk) 
7r (31ual+31u21+31u31_lu1+u2+u31) - k~flukarg ---*+oo. F (Ul, U2, U3) = 

Hence, applying (2.3) and (2.4) to p*(1,2), p*(2,3), and p*(3, 1), we get 

[arg (=k)l < Ir, k = 1,2,3. 

Further, for p*(1,4), p*(2,4), and p*(3,4), we have 

larg (xk) - arg (=j) I < 31r, k , j  = 1,2,3; k ~ j. 
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Fina l ly ,  i t  is not  difficult  to  see t h a t  the  convergence region of  the  cons idered  t r ip le  in tegra l  is 

desc r ibed  as  follows: 

m a x  {larg(xk)l} < ~'. 
k=I,2,3 

Note that the three H-functions whose kernels e(Sl, s2, s3) are considered in Examples 4, 5, 
and 6 are, in fact, Lauricella's functions FA, FB, and FD of three variables. 

EXAMPLE 7. Let N >_ 2 and 

O (St ,  . . . , SN)  : F [ Cq + Sl + " " " + SN, O~2 + Sl + " " " + SN,  --Sl  . . . .  , - -SN ] 

~1 -}- S l , . . . ,  ~ N  -}- 8N 

F r o m  (2.18), i t  follows t h a t  

N N 

F ( U l , . . . , U N )  = ~r k~=lUk -- Z u k a r g ( x k )  ---* +00.  
k=l 

Evident ly ,  accord ing  to  (2.4), p ( 1 , . . .  , N )  = 0. Hence, from Consequence  3, i t  follows t h a t  t he  

co r r e spond ing  in tegra l  in (1.1) is d ivergent  if x e C g \ R N.  

In  conclusion,  we r e m a r k  t h a t  the  t heo rem does not  give us any  in format ion  a b o u t  t h e  conver-  

gence (or d ivergence)  of  in tegra l  (1.1) for x E R g .  I t  is no t  difficult to  see t h a t  the  co r r e spond ing  

mu l t i p l e  in tegra l  in (1.1) converges if the re  axe some add i t i ona l  condi t ions .  For  N --  2, a de t a i l ed  

desc r ip t ion  of  these  condi t ions  is avai lable  in [10] in a sys t ema t i c  manner .  For  larger  values  of  N ,  

s imi la r  cond i t ions  (necessary  and sufficient) are  r a the r  unwie ldy  and  we will  t r y  to  fo rmula te  

t h e m  in our  fur ther  papers .  
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