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Abstract—Convergence regions for certain multiple Mellin-Barnes contour integrals representing
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1. INTRODUCTION

H-functions in several variables defined by multiple Mellin-Barnes contour integrals have been
discussed in various forms by a number of authors (see, for example, {1-8]). In this paper, we
consider the most general case of these H-functions in N variables, which is defined as follows:

HIx; (@, A); (8, B); Ly = (2mi)~~ / O(s)x~* ds, (1.1)
L,
where
m N
IIr (aj + 2 aj,kSk)
_j=1 =
O(s) = — ~ . (1.2)
H r (,5-{- Z bj,ksk)
i=1 k=1
Here I'(.) is a Gamma function; s = [s1,...,8n], X = [z1,...,2ZN], @ = [a1,...,an], and
B = [b1,-..,0n] denote vectors of complex numbers; and
A= (aj'k)me and B= (bj,k)an
are matrices of real numbers a;x (j = 1,...,m;k = 1,...,N) and b;x (j = 1,...,m;
k=1,...,N). Also
N N
X% = Hm;”‘; ds = Hdsk; Ls=1L, x:-- X% Ly, (1.3)
k=1 k=1
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where L,, is an infinite contour in the complex sig-plane such that ©(s) has no singularities for
s € L,.

Since a; x and bj ;. denote real numbers (i.e., they may be positive, negative or equal to zero), we
see that the H-function (1.1) for N =1 is essentially the known Fox’s H-function of one variable
and there is only a difference of notational representations in them (see, for example, [9]).

The H-function (1.1) is different from the H-function considered by Buschman [1] only in the
replacement of x® by x™*. Here we make this replacement for convenience in our further studies
and applications of the H-functions.

Properties and applications of the H-function (1.1) (and its special case when N = 2) are
considered in the earlier works [9,10]. In particular, when N = 2, the necessary and sufficient
conditions for the convergence of the corresponding integral in (1.1) are described in detail in {10].

In the present paper, we consider the analogous problem of the convergence of the integral
in (1.1) for any natural number N. In the short note [11], the first author has formulated the
theorem classifying the exponential convergence of the considered multiple integral. In Section 2,
we give the complete proof of this theorem and its several useful consequences. Finally, in
Section 3, we consider many illustrative examples.

2. MAIN RESULT

Our main result is contained in the following theorem.

THEOREM. Let the contours Ly, (k = 1,...,N) have a vertical form, i.e., R(sg) are restricted
for sy, € L, . Also, let

Aj=(aj,lv'--aaj,N) forj=1,...,m;
Aptj = (bj1,---,bjN) forj=1,...,m; (2.1)
arg(x) = [arg(zy),...,arg(zn)];
a,'hl, N ’a'jl,N
Ajy
T .
[Agiy- s ALy = : = . (2.2)

Ajk kxN
Cjr, 15+ -9, N/ kx N

Then the integral in (1.1) converges if, for any sequence {j1,...,jn-1} of integers such that
1<ji<--<jyo1<m+n, rank[A;,...,A;,_,] =N-1, (2.3)

the following two sets of inequalities are satisfied:

m+n
} , 1
p(J1,. .. iN=-1) = Z sgn (m+ 3 —]) Jdet [Aj,A,... ’AJ'N—JTI > 0; (2.4)
j=1
T o, . T
Ep(Jl)-w 7.7N—1) > ldet [a'rg(x)’Ajl" o ’A'jN—l] l . (2'5)

Otherwise, if there does not exist at least one sequence {ji,...,jn-1} satisfying (2.3), then the
integral in (1.1) will diverge. (Here sgn means the signum function: sgn(0) = 0; sgn(z) = 1 if
z>0;sgn(z) =-1ifz <0.)

Moreover, if we replace the inequality symbol (>) in (2.4} and (2.5) by the opposite one (<)
for at least one sequence {j1,...,jn—1} satisfying the conditions (2.3), then the integral in (1.1)
will be divergent.

In order to prove the theorem, we will apply the method used in [10,12] for the case N = 2.
Here we need the following auxiliary result.
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LEMMA. Let all vj,ajr € R (j = 1,....M; k = 1,...,N); u = (uy,...,un) € RV,
Aj = (a1, ,a5n); 1A% = T4, lajkl? # 0, and

N
Alu= Z aj k Uk- (2.6)
k=1
Then the function
M
fw)=> 7;|ATu/>0 forallueR" and |jull #0, (2.7

=1

if and only if the following two statements are true:

(1) rank[A,...,Apm]ixn = N.
(2) For any sequence {31, ...,jn—1} of integers satisfying the conditions (2.3) with M in place
of m + n, the following inequality holds true:

M
. . T
pT(Jl, e ,JN—-I) = Z’Yj |det [Aj,Aj,, e 7A.1N—1] ’ > 0. (28)
Jj=1
PRrROOF. To prove the necessity part, we assume that
rank [A;,,...,A;,]" < N.
Then, evidently, the following system of M linear equations (see equation (2.6))
Afu=0, j=1,...,M,

has at least one nontrivial solution u* € RY. Hence, f(u*) = 0 and ||u*|| # 0, but it contradicts
the condition (2.7). Consequently, the statement (1) in the lemma holds true.
Further, since ||A;|| # 0, then the set

Li={ueR":Afu=0} (2.9)

is a hyperspace in R". Hence, for any sequence {ji,...,jn_1} satisfying (2.3) with M in place
m + n, the intersection
L(j1,-osjn-1) = Ly N---N Ly, (2.10)

is some line containing the origin of co-ordinates of the space R". Now let
uw = (ud,...,uY),

where
Qjy,1y o1 gy k-1y Qg k15 -+ -5 G5y N

u) = (—1)%1 det (2.11)

Ajn_1,1y- 3 Oin_1,k—1y Qjn_y k4151 Qjn_1 N

for k = 1,...,N. We shall show that the point u® belongs to the line L(ji,...,jn-1) given
by (2.10). In fact, from the definition of a matrix determinant and in connection with (2.6)
and (2.11), we have

N
T
A;r u’ = Z aj,kug = det [Aj, Aj,..., AjN—l] . (2.12)
k=1
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Hence, AJTuo =0forj=jx (k=1,...,N—=1),ie., u® € L(j1,...,in-1). On the other hand,
from (2.7), (2.12) and (2.8), we have f(u®) = p'(j1,...,jn~1). Since f(u) > 0 for all u € RV,
luj| # 0, we have f(u°) = pf(j1,...,jn-1) > 0. (Here, according to the conditions (2.3), it is
not difficult to show that ||u®|| # 0.) The necessity part of the lemma is thus proved.

In order to prove the sufficiency part of the lemma, let the inequality (2.8) hold true for any
sequence {j1,--- ,jn—1} satisfying (2.3) with M in place of m 4+ n. As was shown above, this
allows us to get p'(j1,...,jn-1) = f(u®) > 0, where u®, defined by (2.11), belongs to the line
L{j1,...,jN-1) given by (2.10). Evidently, for A € R, we have

fw) = f(Auy, ..., Aun) = [A|f(u).

Hence, we get f(u) > 0 for all u € L(jy,...,jn-1) \ {0}.

Further, note that the hyperspace L; in (2.9) separates the N-dimensional space RY into
two nonintersecting parts: A;-ru > 0 and A;u < 0. Hence, all hyperspaces L; (j = 1,...,M)
separate RY into several nonintersecting sectors, which contain the origin of co-ordinates as their
common vertex. Although the function f(u) in (2.7) is not linear in RN, we see that it is linear
in each of the above-mentioned nonintersecting sectors (since there we can remove the modulus
symbol in |AT ul).

Now let a point u be located in some sector W. Then there exist several suitable points uy,
which belong to the lines of type (2.10) such that the following vector equation is true:

u=3"u,
I3
Therefore, due to the linearity of the function f(u) in the sector W, we get

fu)=3" f(u).

As was shown above, we have f(u,) > 0 for all u, € L(j1,...,j~-1) \ {0}. Consequently, from
the last equality, we obtain f(u) > 0, where u belongs to the considered sector W and ||u®|| # 0.
Thus the sufficiency part of the lemma is proved.

PROOF OF THE THEOREM. Note that, for complex numbers ¢, ¢t and 2z, we have the following
asymptotic estimates (cf. {10,13]):

T(c+1t) ~E; exp (_72_r S(t)) ;
|27%| = | exp{~t[log|2| + i arg(2)]}| ~ E3 exp{(t) arg(2)},

where R(2) is restricted, |I(t)| — +o0, and E; and E; are of lower order than exponential. Hence,
for |s|| — 4oo (s € Ls), we have

|6(s)x~%| ~ Ezexp {—g— Z |ATS(s)| - Z |B}-8(s)|:| + arg(x) " S‘(S)}

=1

m+n
= Egexp {——72E Z sgn (m + % —j) |A] S‘(s)]} + arg(x)" s‘(s)} ,

=1

(2.13)

where A; (j =1,...,m + n) and arg(x) are defined by (2.1) and, as usual,

N N
ATS(s) =) a;kS(sk),  arg(x)" (s) = ) _ arg(zr) (s)-
k=1 k=1
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Writing S(s) = [3(s1),...,3(sn)] = (u1,...,un) =u € RY and

m+n
T 1. T T
Fy(u) = 5 JS:: sgn (m + 3~ ]) |Aj u| - arg(x) " u, (2.14)
we note that
T m+n 1 ) T T
Fo(-u) = 3 ; sgn (m + 3 —]) |AJ- u| +arg(x)" u. (2.15)

Consequently, from (2.13), (2.14) and (2.15), it follows that the integral in (1.1) converges if

m+n

F(u) = -;E Z sgn <m + % —j) |A;r u| - |aurg(x)T u| — 400, (2.16)
j=1

for u € RV and |lu}| — +oo.

Since F(Au) = |A|F(u) for all A € R, the last condition (2.16) is equivalent to the inequality
F(u) > 0 for all u € RN and |juf| # 0. Now, applying the lemma to the function F(u) in (2.16),
after some calculations, we obtain the inequalities (2.4) and (2.5).

Finally, it is not difficult to see that the integral in (1.1) diverges if there is at least one point
u € R such that F(u) < 0.

Thus the theorem is proved completely.

The theorem shows that the inequality
rank [Ag, ..., Apmin] >N -1

is necessary for the convergence of the integral in (1.1). Next, we give the following stronger
result.

CONSEQUENCE 1. For the convergence of the integral in (1.1), it is necessary that
rank[Aj,...,An]' =N N<m,
and that there is at least one sequence {j1,...,jn} such that
1<ji<---<jv<m and rank[A;,...,A;y]" =N.

In fact, from condition the (2.16) and the convergence of the integral in (1.1), we have
T m
Fi(u) = 3 Z |A] u| > F(u) - +oo,
Jj=1

where u € RY and |ju] — +o0o. Now, applying the lemma to the function Fj(u), we get
Consequence 1.

CONSEQUENCE 2. For the convergence of the integral in (1.1), it is necessary that p(j1,...,jN-1)
> 0 for any sequence {ji,...,jn—-1} such that

1<i < <jn-1<m+n.

CONSEQUENCE 3. If there exists at least one sequence {ji,...,jn—1}, satisfying the condi-
tions (2.3), such that p(j1,...,jn-1) = 0, then the integral in (1.1) diverges for all x € CV \RY,
i.e., for

N
larg(x)|2 =Y larg(zx)|* # 0.

k=1

Consequences 2 and 3 can easily be derived from inequality (2.5) in the theorem.
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REMARK 1. Let all numbers p(j1,...,j5~-1) in (2.4) be positive. Then, in connection with (2.11),
the inequality (2.5) can be written in the following manner:

N
T .
D uf arg(zk)| < 5P UL N-1). (2.17)

=1

Therefore, the projection of the convergence region of the integral in (1.1) in the real [arg(z;),. ..,
arg(zn)]-space is the intersection of all N-dimensional strips (2.17) for every possible sequence
{1,---,3n-1} satisfying (2.3). It is not difficult to note that this intersection is an N-dimensional
convex polygon containing the origin of co-ordinates as the symmetry center. For any point x,
which does not belong to this polygon, the integral in (1.1) will diverge.

From (2.17), it follows that there exists a sufficiently small positive number € such that the
integral in (1.1) converges for x € CV and

1
|arg(zk)|<§1re k=1,...,N.

REMARK 2. After combining all proportional sequences A;, = AA;,, i.e.,
(ajhl, e ,ath) = ()\ajz,l, sy /\aj,,N) ,

according to (2.16), (2.3) and (2.4), we get, respectively,

,
F(w) = 3 36 D] u| - arg(x)T u| - +oo, 219
i=1

where 7 < m +n, D; = (dj, 1,...,d;,,N), rank[D;, Di]T =2 for j #k (j,k=1,...,7) and

0" (i, rdn-1) = 36 ’det [D,-,Djl,...,DjN_l]T] >0, (2.19)
=1
gP* Grs---riN—1) > ‘det [arg(x), Djl,...,DjN_l]Ti, (2.20)
for all ordered sequences {j1,...,jn~-1} such that
1<j1 < <jn1 <™ (2.21)

Remark 2 is more convenient to apply in practical examples than the theorem.

3. ILLUSTRATIVE EXAMPLES

For convenience, we introduce the following notation (see [10,13]):

g (o7 ﬁlr(a])
F[ m]z -
ﬁla'-',ﬁn jl____llr‘(ﬁj)

EXAMPLE 1. Let N = 1. Then, from the theorem, we easily obtain the following condition for
the convergence of the corresponding simple integral in (1.1):

e m n
z (Z jajal —Z|b-,11) > [arg(z1)].
j=1 j=1
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The above inequality completely coincides with the convergence condition for the defining
integral for Fox’s H-function of one variable.

Various cases of H-functions when N = 2 are considered, in detail, in [10,12]. Here we give only
one specific example showing that the double integral (when N = 2) in (1.1) may be divergent,
although both the iterated integrals (for s; and s9) converge.

EXAMPLE 2. Let N =2 and

O (s1,89) =T [m + 281 + 583, g + 81 + 382, ag — 0.181, g — 0.132] ‘

Br+ 81+ 82
Here m = 4, n = 1, and the array (a;,1,a;,2) (1 < j < 5) is given as follows:
(2,5), (1,3), (=0.1,0), (0,-0.1); (1,1).
Then, from (2.4), we have

13 -0.1 0 0 —0.1 11
sl o e 3" g elemls 2|-foela

=1405+02-3=-13<0.

p(l) =

Hence, according to Consequence 2, it follows that the corresponding double integral in (1.1)
will diverge.

EXAMPLE 3. Let N = 3 and (see Buschman and Srivastava [14], who also corrected some earlier
observations of Tandon [15])

O (51, 83)__P[a1+31+32,a2+52+33,a3+33+81,a4—81,05—32,016—33
Y 9 - .
B + 81, B2 + 52, B3 + s3

In view of (2.18), we obtain

3

s
F (u1,uz,u3) = 5 (Jur + ug| + |uz + ua| + |ug +w1) - > uk arg (zx)| - +oo.
k=1
In accordance with (2.19) and (2.20), we get
. . 101 arg(z1) arg(zz) arg(zs)
-2—p‘(1,2)=—2- det [1 1 Of]|> |det 1 1 0 ,
011 0 1 1

that is,
larg (z1) — arg (z2) + arg (z3)] < 7.

Analogously, we obtain
larg (x2) — arg (z3) + arg (z1)| <,

and
jarg (z3) — arg (z1) + arg (z2)| < 7.

Consequently, the last three inequalities describe the convergence region for the corresponding
triple integral in (1.1). In view of Remark 1, this integral converges if (for instance)

m
2!

3 k=1,2,3.

larg (zx)| <
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EXAMPLE 4. Let N =3 and

©(s1,82,83) =T

ai + 81 + 82 + 83, a2 + 81, a3 + 82, ag + 83, —81, —82, —83
B1+ 81+ 83+ 83 )

According to (2.18), we have

3

Z uy, arg (zx)

k=1

F(ulyu27u3) =7T(|U1|+|U2|+I’U,3I)— — +00.

Evidently, it is equivalent to
larg (zi)l <m,  k=1,2,3.

EXAMPLE 5. Let N =3 and

01 + 81 + 82 + 83, a3 + 81, a3 + 2, g + 83, —81, —82, —8
9(31,82,83)=P 35 1, &3 2, (4 3y 1, 2, 3 .

B1 + 81, B2 + 82, B3 + 83

We have
3
F (u1,ug,u3) = g (lwr + ug + us| + |u1| + Jug| + Jus|) — kz:luk arg (zx)| — +oo.
Hence, applying (2.19) and (2.20) to p*(1,2), we get
|arg (z2)| — |arg (z3)| <,
and analogously for p*(1,3) and p*(1,4):
|arg (z3)| — larg (z1)| <m  and  |arg(z:)| — |arg (z2)| < .
Further, for p*(2,3), p*(2,4), and p*(3,4), we obtain
jacg (zo)l <7, latg(z)] <7 and  |arg(zy)| < .

Finally, the corresponding convergence region can be described as follows:

o, {larg @), Jarg (o) - arg (2]} < .

EXAMPLE 6. Let N =3 and
ay + 81, ag + 82, 03 + 83, 4 + 81, Q5 + 82, O + 83, —S1, —82, —83
©(81,89,83) =T
(1’ > 3) [ b1+ 51+ 83+ 83

In this case, we have

— 400.

3
> up arg (zx)

k=1

(s
F(ul,U2,U3) = 2 (3 |U1[ + 3IU2| + 3|U3| - |’U,1 + ug +u3|) -

Hence, applying (2.3) and (2.4) to p*(1,2), p*(2,3), and p*(3,1), we get
jarg (zx)| < , k=1,23.
Further, for p*(1,4), p*(2,4), and p*(3,4), we have

larg (zx) — arg (z;)| <37,  k,j=1,2,3; k # j.
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Finally, it is not difficult to see that the convergence region of the considered triple integral is
described as follows:

(Joax {larg (zx)[} <7

Note that the three H-functions whose kernels ©(si, s2, 83) are considered in Examples 4, 5,
and 6 are, in fact, Lauricella’s functions F4, Fg, and Fp of three variables.

EXAMPLE 7. Let N > 2 and

O(s1,...,8 )—r[al+sl+---+sN,az+s1+---+sN, —sl,...,~sn]
bt B1+s1,...,Bn + 8N '
From (2.18), it follows that
N N
F(ui,...,un)=7x Zuk — Zukarg(a:k) — 4-00.
k=1 k=1

Evidently, according to (2.4), p(1,...,N) = 0. Hence, from Consequence 3, it follows that the
corresponding integral in (1.1) is divergent if x € CV \ RY.

In conclusion, we remark that the theorem does not give us any information about the conver-
gence (or divergence) of integral (1.1) for x € RY. It is not difficult to see that the corresponding
multiple integral in (1.1) converges if there are some additional conditions. For N = 2, a detailed
description of these conditions is available in [10] in a systematic manner. For larger values of N,
similar conditions (necessary and sufficient) are rather unwieldy and we will try to formulate
them in our further papers.
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