M odules for A Igebraic G roups with Finitely M any Orbits on Subspaces

R obert M. Guralnick*
University of Southern California, Los Angeles, California 90089

metadata, citation and similar papers at core.ac.uk

Imperial College, 180 Queen's Gate, London, SW7 2BZ, United Kingdom
Dugald M acpherson
University of Leeds, Leeds, LS2 9JT, United Kingdom
and
G ary M. Seitz*
University of Oregon, Eugene, Oregon 97403
Communicated by Robert Steinberg
Received N ovember 21, 1996

INTRODUCTION

Let G be a connected linear algebraic group over an algebraically closed field K of characteristic $p \geq 0$. In this paper we determine all finitedimensional irreducible rational $K G$-modules V such that G has only a finite number of orbits on the set of vectors in V. We shall call such a module a finite orbit module for G. When $K=\mathbb{C}$, the finite orbit modules were classified by Kac in [Ka, Theorem 2]. Note that the problem is essentially equivalent to that of determining all V such that G has a finite number of orbits on $P_{1}(V)$, the set of all 1-dimensional subspaces of V, since in such a situation, the group $K^{*} G$ will have finitely many orbits on V.

[^0]This is part of the larger problem of classifying pairs of closed subgroups G, H of a reductive algebraic group S such that there are only finitely many (G, H)-double cosets in S. (The case above has $S=G L(V), G$ an irreducible subgroup, and H the stabilizer in S of a 1-space.) O ur methods also yield a classification of irreducible $K G$-modules V such that G has finitely many orbits on the set of k-dimensional subspaces of V for some k (i.e., there are finitely many (G, H)-double cosets in $S L(V)$, where H is the stabilizer of a k-space). M oreover, we classify all pairs X, Y of maximal closed subgroups of $S L(V)$ such that there are finitely many (X, Y)-double cosets. Further results on double cosets can be found in [$\mathrm{Br} 1, \mathrm{Br} 2$].

If V is a finite orbit module for G, then G has an open dense orbit on V. Those $K G$-modules on which a connected algebraic group G has an open dense orbit are called prehomogeneous spaces. Prehomogeneous spaces over algebraically closed fields of characteristic zero were classified by Sato and Kimura in [SK]; this was extended to arbitrary characteristic by Chen in [Ch1, Ch2]. Thus a list of candidates for finite orbit modules can be obtained from these papers. H owever, this is not very useful for our proof; as we shall see, obtaining a list of candidates for V is not hard-but given a candidate for V, deciding whether or not G has finitely many orbits on V can be far from trivial. For example, if $G=A_{1} A_{2 n}$ and $V=V\left(\lambda_{1}\right) \otimes V\left(\lambda_{2}\right)$, then V is a prehomogeneous space for all n (see [SK]), but there are finitely many orbits only for $n \leq 3$. Despite this, a curious corollary of our results is that in the case where G is simple, every prehomogeneous irreducible $K G$-module is also a finite orbit module for G (see Corollary 1 below).

One way to obtain finite orbit modules for algebraic groups is the following. Let H be a simple algebraic group over K and let $P=Q G$ be a proper parabolic subgroup of H with unipotent radical Q and Levi subgroup G. Let

$$
1=Q_{0}<Q_{1}<\cdots<Q_{r}=Q
$$

be a G-invariant composition series for Q. By [ABS], each factor Q_{i+1} / Q_{i} has the structure of a rational irreducible $K G$-module. The following theorem is an immediate consequence of [Ri , Theorem E ; ABS, Theorem 1].

Richardson's Theorem. The Levi subgroup G has only finitely many orbits on each of the modules Q_{i+1} / Q_{i}.

Richardson's Theorem naturally gives rise to many examples of finite orbit modules Q_{i+1} / Q_{i}. We shall call such examples internal Chevalley modules for G. A list of all internal Chevalley modules can be written using [A BS, Theorem 2], and we do so in Table I. In the table, we use the

TABLE I
Internal Chevalley M odules

G	V	Simple group H containing $Q G$
$A_{n}, B_{n}, C_{n}, D_{n}$	λ_{1}	$A_{n+1}, B_{n+1}, C_{n+1}, D_{n+1}$ (resp.)
$A_{n}(p \neq 2)$	λ_{2}	D_{n+1}
$A_{n}(p \neq 2)$	$2 \lambda_{1}$	C_{n+1}
$A_{n}(n=5,7)$	λ_{3}	E_{n+1}
$A_{1}(p \neq 2,3)$	$3 \lambda_{1}$	G_{2}
B_{3}, C_{3}	λ_{3}	F_{4}
$D_{n}(n=5,6,7)$	$\lambda_{n-1}, \lambda_{n}$	E_{n+1}
E_{6}	λ_{1}	E_{7}
E_{7}	λ_{7}	E_{8}
$A_{m} A_{n}, A_{m} B_{n}, A_{m} C_{n}, A_{m} D_{n}$	$\lambda_{1} \otimes \lambda_{1}$	$A_{m+n+1}, B_{m+n+1}, C_{m+n+1}, D_{m+n+1}$ (resp.)
$A_{1} A_{n}(p \neq 2)$	$2 \lambda_{1} \otimes \lambda_{1}$	B_{n+2}
$A_{3} A_{n}$	$\lambda_{2} \otimes \lambda_{1}$	D_{n+4}
$A_{1} A_{1} A_{n}$	$\lambda_{1} \otimes \lambda_{1} \otimes \lambda_{1} D_{n+3}$	
$A_{1} A_{n}(n=4,5,6)$	$\lambda_{1} \otimes \lambda_{2}$	E_{n+2}
$A_{n} A_{4}(n=2,3)$	$\lambda_{1} \otimes \lambda_{2}$	E_{n+5}
$A_{1} A_{2}(p \neq 2)$	$\lambda_{1} \otimes 2 \lambda_{1}$	F_{4}
$A_{n} D_{5}(n=1,2)$	$\lambda_{1} \otimes \lambda_{4}$	E_{n+6}
$A_{1} E_{6}$	$\lambda_{1} \otimes \lambda_{1}$	E_{8}
$A_{1} A_{2} A_{n}(n=2,3,4)$	$\lambda_{1} \otimes \lambda_{1} \otimes \lambda_{1} E_{n+4}$	

ordering of fundamental dominant weights given in [Bo, p. 250]; in the G-column we write just the semisimple part of the Levi subgroup; and in the column headed V, for G simple we write just λ to indicate that $V=V_{G}(\lambda)$, the rational irreducible $K G$-module with high weight λ, and for G non-simple we write $\lambda \otimes \mu \otimes \ldots$ to indicate that V is the tensor product of irreducible modules for the factors of G with high weights λ, μ, \ldots. In each row of the final column we give a simple algebraic group H containing a parabolic subgroup $Q G$ which gives rise to the internal Chevalley module of that row. Finally, each irreducible module for each simple factor of G is specified only up to graph and field twists (by a field or graph twist of a module V, we mean a module V^{α} obtained from V by twisting the action of the group by a field or graph automorphism α (i.e., replacing the action $v \rightarrow v g$ by $\left.v \rightarrow v g^{\alpha}\right)$).
We now come to the classification of irreducible finite orbit modules. O bserve that if V is an irreducible faithful $K G$-module then G must be reductive. Also $G=G^{\prime} Z$ where $Z=Z(G)$ acts on V as scalars; thus if V is a finite orbit module then the semisimple group G^{\prime} has finitely many orbits on $P_{1}(V)$, the set of 1 -spaces in V. Conversely, given such a semisimple group G^{\prime}, V is a finite orbit module for the group $K^{*} G^{\prime}$ (where K^{*} is the group of all scalars). Thus the problem will be solved if
we determine all connected semisimple groups having finitely many orbits on $P_{1}(V)$ for some rational irreducible module V.

Theorem 1. Let G be a connected semisimple algebraic group over an algebraically closed field K of characteristic $p \geq 0$. Suppose that V is a faithful rational irreducible finite-dimensional $K G$-module such that G has finitely many orbits on $P_{1}(V)$. Then one of the following holds, where we give V up to field or graph twists:
(i) V is an internal Chevalley module for G (listed in Table I);
(ii) G and V are as in Table II.

Conversely, if G and V are as in (i) or (ii), then G has finitely many orbits on $P_{1}(V)$. (The reference given in the last column of Table II shows where a proof of this fact can be found in the paper.)

Remarks. (1) $\mathrm{Kac}[\mathrm{Ka}$, Theorem 2] obtains the list of finite orbit modules over \mathbb{C}. H is list of course includes all internal Chevalley modules, and also the examples $B_{n}, G_{2}, A_{n} B_{3}, A_{1} C_{n}, A_{1} G_{2}$, and $A_{1} A_{2} A_{n}$ in Table II. The other examples in Table II occur only in finite characteristics.
(2) O ur proofs that the modules in Table II are finite orbit modules sometimes give more information, such as the actual number of orbits, orbit representatives, and point stabilizers.

The next result could be verified by comparing the lists of irreducible prehomogeneous spaces for simple algebraic groups given in [SK, Ch. 1, Ch. 2] with Theorem 1. For completeness, however, we include a proof at the end of Section 2.

TABLE II

G	V	$\operatorname{dim} V$	R eference
$A_{n}(p \neq 0)$	$\lambda_{1}+p^{i} \lambda_{1}, \lambda_{1}+p^{i} \lambda_{n}(i>0)$	$(n+1)^{2}$	2.6
$A_{2}(p=3)$	$\lambda_{1}+\lambda_{2}$	7	2.5
$A_{3}(p=3)$	$\lambda_{1}+\lambda_{2}$	16	2.7
$B_{n}(n=4,5)$	λ_{n}	2^{n}	$2.9,2.11$
$C_{3}(p=3)$	λ_{2}	13	2.12
G_{2}	λ_{1}	$7-\delta_{p, 2}$	2.5
$F_{4}(p=3)$	λ_{4}	25	2.11
$A_{n} B_{3}(n=1,2)$	$\lambda_{1} \otimes \lambda_{3}$	$8(n+1)$	3.5
$A_{n} C_{3}(n=1,2, p=2)$	$\lambda_{1} \otimes \lambda_{3}$	$8(n+1)$	3.5
$A_{1} C_{n}(p \neq 2)$	$2 \lambda_{1} \otimes \lambda_{1}$	$6 n$	4.4
$A_{1} G_{2}(p \neq 2)$	$\lambda_{1} \otimes \lambda_{1}$	14	3.4
$A_{n} G_{2}(p=2)$	$\lambda_{1} \otimes \lambda_{1}$	$6(n+1)$	3.4
$A_{1} A_{2} A_{n}(n \geq 5)$	$\lambda_{1} \otimes \lambda_{1} \otimes \lambda_{1}$	$6(n+1)$	4.5

Corollary 1. Let G be a simple algebraic group over K, and let V be a rational irreducible $K G$-module. Then G has finitely many orbits on $P_{1}(V)$ if and only if G has a dense orbit on $P_{1}(V)$.

As remarked above, the conclusion of Corollary 1 is false if G is only assumed to be semisimple.

We now consider the corresponding problem of classifying irreducible modules with finitely many orbits on k-spaces for some $k>1$. Let G be an irreducible closed connected subgroup of $G L(V)$. Let $P_{k}(V)$ denote the variety of k-dimensional subspaces of V. Note that if G has finitely many orbits on $P_{k}(V)$, then G has finitely many orbits on $P_{n-k}(V)$ as well (because we can identify $P_{n-k}(V)$ with $P_{k}\left(V^{*}\right)$ and V^{*} is equivalent to V via an automorphism of G). In conclusion (i) below, by the natural module for a classical group G, we mean the module $V_{G}\left(\lambda_{1}\right)$.

Theorem 2. Let G be a connected semisimple algebraic group over an algebraically closed field K of characteristic $p \geq 0$. Suppose that V is a faithful rational irreducible finite-dimensional $K G$-module such that G has finitely many orbits on $P_{k}(V)$ for some k with $1<k \leq(\operatorname{dim} V) / 2$. Then one of the following occurs (up to field or graph twists) and conversely in each of the cases listed G has finitely many orbits on $P_{k}(V)$:
(i) G is a classical group, V is the natural module for G, and k is arbitrary;
(ii) $G=S L_{r} \otimes S L_{s}, V=V\left(\lambda_{1}\right) \otimes V\left(\lambda_{1}\right)$, and one of $k=2, r \leq 3, s$ arbitrary; or $k=3, r=2, s \geq 3$ arbitrary;
(iii) G and V are as in Table III.

We show in Section 6 that if there are only finitely many (X, Y) -double cosets in $S L_{n}$, where X and Y are proper closed subgroups, then either X

TABLE III

G	V	k
$A_{2}(p \neq 2)$	$2 \lambda_{1}$	2
$A_{n}(4 \leq n \leq 6)$	λ_{2}	2
A_{4}	λ_{2}	3,4
B_{3} or $C_{3}(p=2)$	λ_{3}	2,3
D_{5}	λ_{5}	2,3
E_{6}	λ_{1}	2
G_{2}	λ_{1}	2
$G_{2}(p=2)$	λ_{1}	3

or Y is contained in a parabolic subgroup. M oreover, if Y is a maximal parabolic subgroup, we determine all examples with X maximal:
Theorem 3. Let V be an n-dimensional vector space over K, and let $G=S L(V)$. Suppose that X, Y are maximal closed subgroups of G such that there are only finitely many (X, Y)-double cosets in G. Then either X or Y is a parabolic subgroup. Moreover, if $1 \leq k \leq n / 2$ and $Y=P_{k}$ (the stabilizer of a k-subspace) or P_{n-k}, then one of the following holds:
(i) X is parabolic;
(ii) X is a classical group and V is the natural module for X;
(iii) $X^{0}=\left(G L_{n / r}\right)^{r} \cap G$ with $r \mid n$, and either $r \leq 3, k$ arbitrary; or $r \geq 4, k=1$;
(iv) $X^{0}=S L_{r} \otimes S L_{s}(r s=n)$, and one of: $k=1 ; k=2, r \leq 3, s$ arbitrary; or $k=3, r=2, s \geq 3$ arbitrary;
(v) X^{0}, V, k are as in Table IV.

Conversely, if $Y=P_{k}$ and X is as in (i)-(v), then there are only finitely many (X, Y)-double cosets in G.
Notice that in conclusion (iii), X^{0} is not maximal connected in G, but $N_{G}\left(X^{0}\right)$ is maximal closed.

The next result is an immediate consequence of Theorems 1 and 2.
Corollary 2. Let G be a connected semisimple algebraic group over an algebraically closed field K of characteristic $p \geq 0$. Suppose that V is a faithful rational irreducible finite-dimensional $K G$-module. Then G has finitely many orbits on the set of all subspaces of V if and only if one of the following occurs (up to field and graph twists):
(i) G is a classical group and V is the natural module for G;
(ii) $G=S L_{2} \otimes S L_{3}$ and $V=V\left(\lambda_{1}\right) \otimes V\left(\lambda_{1}\right)$;
(iii) $G=G_{2}, p=2$, and $V=V\left(\lambda_{1}\right)$.

TABLE IV

X^{0}	V	k
$A_{n}(p \neq 2)$	λ_{2}	1
$A_{n}(p \neq 6)$	$2 \lambda_{1}$	1
$A_{n}(n=6,7)$	λ_{3}	1
$A_{3}(p=3)$	$\lambda_{1}+\lambda_{2}$	1
$D_{n}(n=5,7)$	λ_{n}	1
$A_{2}(p \neq 2)$	$2 \lambda_{1}$	2
$A_{n}(n \leq 6)$	λ_{2}	2
A_{4}	λ_{2}	3,4
D_{5}	λ_{5}	2,3
E_{6}	λ_{1}	1,2

A well known result concerning finite linear groups states that if G is a subgroup of $G L_{n}(q)$ (q a prime power), and $j \leq k \leq n / 2$, then the number of orbits of G on $P_{j}\left(V_{n}(q)\right)$ is less than or equal to the number of orbits on $P_{k}\left(V_{n}(q)\right)$ (see Lemma 7.1 in Section 7). Theorems 1 and 2 imply a weak analogue of this for irreducible connected semisimple subgroups G of $G L_{n}(K)$: if G has finitely many orbits on $P_{k}\left(V_{n}(K)\right.$), then G also has finitely many orbits on $P_{j}\left(V_{n}(K)\right)$. The next result, which we shall prove directly using model theory, shows that the same conclusion is true under a much weaker hypothesis on G :

Theorem 4. Let V be an n-dimensional vector space over K, and let G be a closed subgroup of $G L(V)$. Let $j \leq k \leq n / 2$. If G has finitely many orbits on $P_{k}(V)$, then G also has finitely many orbits on $P_{j}(V)$.

The paper has seven further sections. In the first we give some preliminary results. One of these (Proposition 1.2) provides a list of candidates for finite orbit modules for simple groups. Section 2 of the paper is concerned with determining which modules in this list actually are finite orbit modules. In the third section, we classify simple groups having finitely many orbits on k-spaces for $k>1$. The following two sections concern the non-simple groups; the case $k=1$ for non-simple groups depends upon the result for $k>1$ for simple groups. Section 6 deals with the proof of Theorem 3. In the final section we prove Theorem 4.

1. PRELIMINARIES

We begin with a result which shows that the finite orbit property of a G-module is independent of the algebraically closed field of characteristic p over which we work.

Let $G=G(K)$ be a connected reductive algebraic group over the algebraically closed field K. If k is an algebraically closed subfield of K, denote by $G(k)$ the group of k-rational points of $G(K)$. Similarly, if $V=V(K)$ is an affine K-variety defined over k, let $V(k)$ be the set of k-rational points of V.

Proposition 1.1. Suppose that $G(K)$ acts algebraically on the affine variety $V(K)$, and the action is defined over the algebraically closed subfield k. Then $G(K)$ has finitely many orbits on $V(K)$ if and only if $G(k)$ has finitely many orbits on $V(k)$. Moreover, if this holds, then the number of orbits is the same in each case, and each $G(K)$-orbit has a representative in $V(k)$.

Proof. We begin by establishing
(1) Let $V(K), W(K)$ be affine K-varieties defined over k. If $f: V(k) \rightarrow$ $W(k)$ is a surjective morphism, then the morphism $f_{0}: V(K) \rightarrow W(K)$ which restricts to f on $V(k)$ is also surjective.

To see this, let A be the automorphism group of K / k. Observe that k is the fixed field of A, and since k is algebraically closed, every orbit of A either has size 1 or is infinite. Note that A acts on $V(K)$ and $W(K)$ with fixed points $V(k)$ and $W(k)$, respectively. View $W(K)$ as a closed subvariety of affine n-space over K.

Suppose that f_{0} is not surjective, and choose $w \in W(K)$ not in the image. Since f_{0} is defined over k, it commutes with the action of A and so the A-orbit of w misses the image of f_{0}. Since f_{0} is surjective over k, we have $w \notin W(k)$, and hence the A-orbit of w is infinite.

The image of f_{0} contains $W(k)$, which is dense in $W(K)$. Therefore the image of f_{0} is dense in $W(K)$, and hence contains a dense open subset of $W(K)$. If $W(K)$ has dimension 1 , this implies that the image of f_{0} is cofinite, contradicting the previous paragraph. This completes the proof when $W(K)$ has dimension 1.

Now assume that $W(K)$ has dimension greater than 1; in particular, $n>1$. We may certainly assume that K has finite transcendence degree over k (adjoin the coordinates of w to k, and replace K by the algebraic closure of this); by induction then, we may assume that K has transcendence degree 1 over k. Write $w=\left(w_{1}, \ldots, w_{n}\right)$. We may take it that $w_{1} \notin k$. Then each w_{i} is algebraically dependent on w_{1} over k, and thus satisfies an equation $g_{i}\left(w_{1}, w_{i}\right)=0$ with g_{i} a nonzero polynomial over k. Therefore w lies in the subvariety $C=C(K)$ of $W(K)$ defined by $g_{i}\left(y_{1}, y_{i}\right)=0$ for $2 \leq i \leq n$, where the y_{i} are the coordinate functions on affine space intersected with $W(K)$. Every A-conjugate of w also lies in C, so C has positive dimension. Then C is defined over k and has dimension 1 (if we project to the first coordinate, the inverse image of any point is finite). Let $U(k)$ be the inverse image of $C(k)$ under f. Then $f: U(k) \rightarrow$ $C(k)$ is surjective; applying the dimension 1 case proved above, we deduce that $f_{0}: U(K) \rightarrow C(K)$ is surjective. But this means that w lies in the image of f_{0}, a contradiction. This completes the proof of (1).
Next we show
(2) If $v, w \in V(k)$ are in distinct $G(k)$-orbits, then they are in distinct $G(K)$-orbits.

To see this, define $X=\{g \in G: v g=w\}$. Then X is a closed subvariety of G, defined over k. If $X(k)$ is empty then the ideal defining $X(k)$ is the whole coordinate ring over k; hence the ideal defining $X(K)$ is the whole coordinate ring over K, which implies that $X(K)$ is empty. This gives (2).

We now complete the proof of the proposition. A ssume that $G(k)$ has m orbits on $V(k)$, with representatives v_{1}, \ldots, v_{m}. By (2), v_{1}, \ldots, v_{m} lie in distinct orbits of $G(K)$ on $V(K)$. Now define $f: G(k) \times\{1, \ldots, m\} \rightarrow V(k)$ by $f(g, i)=v_{i} g$ for all $g \in G(k)$ and all i. Then f is a surjective morphism. H ence (1) implies that the v_{i} form a complete set of orbit representatives for $G(K)$ on $V(K)$.

Conversely, assume that $G(K)$ has m orbits on $V(K)$. Then by (2), $G(k)$ has at most m orbits on $V(k)$, and the previous paragraph applies. This completes the proof.

The next result provides a list of candidates for the finite orbit modules of a simple algebraic group.

Proposition 1.2. Let G be a simple algebraic group in characteristic p, and suppose that the nontrivial rational irreducible $K G$-module $V=V_{G}(\lambda)$ satisfies $\operatorname{dim} V \leq \operatorname{dim} G+1$. Then, up to graph and field twists, either
(i) V is a composition factor of the adjoint module for G, or
(ii) G, λ are as follows:

G	λ
A_{n}	$\lambda_{1}, 2 \lambda_{1}, \lambda_{2}, \lambda_{1}+p^{i} \lambda_{1}(i>0), \lambda_{1}+p^{i} \lambda_{n}(i>0)$,
	$3 \lambda_{1}(n=1), \lambda_{1}+\lambda_{2}(n=p=3), \lambda_{3}(n=5,6,7)$
B_{n}, C_{n}	$\lambda_{1}, \lambda_{2}, \lambda_{3}(n=3), \lambda_{n}\left(4 \leq n \leq 6, p=2\right.$ if $\left.G=C_{n}\right)$
D_{n}	$\lambda_{1}, \lambda_{2}, \lambda_{n}(n \leq 7)$
G_{2}	λ_{1}
F_{4}	λ_{4}
E_{6}	λ_{1}
E_{7}	λ_{7}

Proof. This follows from [Li2, 2.2, 2.7, and 2.10] for types A_{n}, C_{n}, and for exceptional types, and from [Li1, 1.1] for types B_{n}, D_{n}.

Corollary 1.3. Let G and $V=V_{G}(\lambda)$ be as in conclusion (i) or (ii) of Proposition 1.2. Then one of the following holds (V given up to graph and field twists):
(i) V is an internal Chevalley module for G;
(ii) V is a composition factor of the adjoint module for G;
(iii) G and λ are as follows:

G	λ
A_{n}	$\lambda_{1}+p^{i} \lambda_{1}(i>0), \lambda_{1}+p^{i} \lambda_{n}(i>0), \lambda_{1}+\lambda_{2}(n=p=3)$
C_{n}	λ_{2}
$B_{n}, C_{n}(n=4,5,6)$	$\lambda_{n}\left(p=2\right.$ if $\left.G=C_{n}\right)$
G_{2}	λ_{1}
F_{4}	λ_{4}

Proof. The result follows from Proposition 1.2 and the list of internal Chevalley modules given in Table I in the Introduction.

2. PROOF OF THEOREM 1 FOR G SIMPLE

Suppose that G is a connected simple algebraic group over the algebraically closed field K of characteristic p. In this section we prove Theorem 1, classifying those $K G$-modules $V=V_{G}(\lambda)$ such that G has finitely many orbits on $P_{1}(V)$. Certainly if V is such a module, then $\operatorname{dim} G \geq \operatorname{dim} V-1$, so G and V are as in Corollary 1.3. By Richardson's Theorem, we may assume that V is not an internal Chevalley module for G. Hence by Corollary 1.3, we may assume that either V is a composition factor of the adjoint module $L(G)$ or G, λ are as in Corollary 1.3(iii).

M ost of the results in this section concern actions on $P_{1}(V)$, but there are also a couple (Corollary 2.2 and Lemma 2.10) which deal with actions on $P_{k}(V)$ with $k>1$; these will be used in Section 3, via Proposition 3.2.
We begin with three preliminary results, in which V is an arbitrary rational G-module. Let T be a maximal torus of G, and $W=N_{G}(T) / T$ the W eyl group.

Lemma 2.1. Let v, v^{\prime} be vectors in the zero weight space of V relative to T. Then v and v^{\prime} are in the same G-orbit if and only if they are in the same W-orbit.

Proof. Let Σ be the root system of G relative to T, Π a basis of fundamental roots, and Σ^{+}the set of positive roots determined by Π. Let U be the group generated by the root groups $U_{\alpha}\left(\alpha \in \Sigma^{+}\right)$, and for $w \in W$, let U_{w} be the subgroup generated by those root groups U_{α} such that α is a positive root and $w(\alpha)$ is a negative root.

Suppose $g(v)=v^{\prime}$ for some $g \in G$. By the Bruhat decomposition we may write $g=u n u^{\prime}$, where $u \in U, n \in N_{G}(T)$, and $u^{\prime} \in U_{w}$ with $w=$ $n T \in W$. Then

$$
\left(n u^{\prime} n^{-1}\right)(n v)=u^{-1}\left(v^{\prime}\right)
$$

The right hand side is a sum of v^{\prime} and weight vectors whose weights are sums of positive roots, while the left hand side is a sum of $n v$ and weight vectors whose weights are sums of negative roots. Hence $n v=v^{\prime}$, and so v and v^{\prime} are W-conjugate.

Corollary 2.2. Let V_{0} be the zero weight space of V relative to T. Suppose one of the following holds:
(i) G has finitely many orbits on either $P_{1}(V)$ or $P_{2}(V)$;
(ii) G has a dense orbit on $P_{1}(V)$, and this dense orbit has a representative in $P_{1}\left(V_{0}\right)$.

Then $\operatorname{dim} V_{0} \leq 1$.
Proof. First suppose (i) holds, and assume that V_{0} has dimension at least 2. By Lemma 2.1 and the finiteness of W, there are infinitely many 1 -spaces $L_{i}(i=1,2, \ldots)$ in V_{0} such that the L_{i} are in distinct G-orbits. This shows that G has infinitely many orbits on $P_{1}(V)$. Hence by (i), G has finitely many orbits on $P_{2}(V)$.

Let v be a weight vector for T of nonzero weight and let M_{i} be the 2 -space spanned by v and L_{i}. Note that T stabilizes M_{i} and has 3 orbits on the set of 1 -spaces in M_{i}, for each i. Thus, for fixed i, the set $M_{i} \cap\left(G \cdot L_{j}\right)$ is empty for all but finitely many j. Consequently there must be infinitely many distinct G-orbits represented by the M_{i}, contradicting (i).

Now suppose (ii) holds. If Δ is the open dense orbit of G on $P_{1}(V)$, then $\Delta \cap P_{1}\left(V_{0}\right)$ is dense in $P_{1}\left(V_{0}\right)$. This forces $\operatorname{dim} V_{0} \leq 1$ by Lemma 2.1. 【

Lemma 2.3. Let V_{0} be the zero weight space of V relative to T, and let $C=C_{G}\left(V_{0}\right)^{0}$. Suppose $\operatorname{dim} G-\operatorname{dim} C=\operatorname{dim} V-\operatorname{dim} V_{0}$ and $\operatorname{dim} V_{0}>1$. Then G has no dense orbit on $P_{1}(V)$.

Proof. A ssume G has a dense orbit on $P_{1}(V)$. If $v \in V_{0}$ then $C_{G}(v)$ contains T, so there are only finitely many possibilities for $C_{G}(v)$. Therefore $\left\{v \in V_{0}: C<C_{G}(v)^{0}\right\}=\cup_{C<D=D^{0}} C_{V_{0}}(D)$ is a finite union of proper closed subsets of V_{0}, hence is proper closed in V_{0}. It follows that $\Delta=\{v \in$ $\left.V_{0}: C_{G}(v)^{0}=C\right\}$ is an open dense subset of V_{0}.

We now claim that the dense orbit of G on $P_{1}(V)$ contains $\left\langle v_{0}\right\rangle$ for some $v_{0} \in \Delta$. Let $\phi: G \times \Delta \rightarrow V$ be the morphism $(g, v) \rightarrow g(v)$. Pick $v_{0} \in \Delta$. Then by Lemma 2.1, $\phi^{-1}\left(v_{0}\right)$ has a component $\left\{\left(g, v_{0}\right): g \in\right.$ $\left.C_{G}\left(v_{0}\right)^{0}=C\right\}$, and hence $\operatorname{dim} \phi^{-1}\left(v_{0}\right)=\operatorname{dim} C$. Therefore, by the hypothesis of the lemma,

$$
\operatorname{dim} I m \phi=\operatorname{dim} G+\operatorname{dim} V_{0}-\operatorname{dim} C=\operatorname{dim} V .
$$

Thus $G \Delta$ contains an open dense subset of V, and hence the dense orbit of G on $P_{1}(V)$ has a representative in $P_{1}\left(V_{0}\right)$, which is a contradiction by Corollary 2.2(ii).

We now use Lemma 2.1, Corollary 2.2, and Lemma 2.3 to deal with some of the candidates for the finite orbit module $V=V_{G}(\lambda)$ given by Corollary 1.3.

Lemma 2.4. Suppose that one of the following holds:
(i) V is a nontrivial composition factor of the adjoint module $L(G)$, and V is not an internal Chevalley module;

$$
\begin{align*}
& \text { (ii) } G=C_{n}(n \geq 3), V=V_{G}\left(\lambda_{2}\right) \tag{ii}\\
& \text { (iii) } G=F_{4}, V=V_{G}\left(\lambda_{4}\right)
\end{align*}
$$

If G has a dense orbit on $P_{1}(V)$, then $p=3$ and $(G, \lambda)=\left(A_{2}, \lambda_{1}+\lambda_{2}\right)$, $\left(G_{2}, \lambda_{1}\right),\left(C_{3}, \lambda_{2}\right)$, or $\left(F_{4}, \lambda_{4}\right)$ (up to graph and field twists).

Proof. Suppose G has a dense orbit on $P_{1}(V)$. Let V_{0} be the zero weight space of V relative to T.

First assume (i) holds. The composition factors of $L(G)$ can be found in [LS3, 1.10]. Suppose (G, p) is not one of the special pairs $\left(B_{n}, 2\right),\left(C_{n}, 2\right)$, ($G_{2}, 3$), or ($F_{4}, 2$). A ssuming (as we may) that G is simply connected, we have $V=L(G) / Z$, where $Z=Z(L(G))$ has dimension at most 2 (and has dimension 2 if and only if $G=D_{n}$ with n even and $p=2$). The zero weight space V_{0} is equal to $L(T) / Z$ and has dimension $\operatorname{rank}(G)-\operatorname{dim} Z$. Hence, excluding the case (G, p) $=\left(A_{2}, 3\right.$) in the conclusion, and also the case where $G=A_{1}$ (in which case V is an internal module), we have $\operatorname{dim} V_{0} \geq 2$. Now $C_{G}\left(V_{0}\right)^{0}$ centralizes $L(T)$. As $C_{G}(L(T))^{0}=T$ by [LS3, 1.11], we have $C_{G}\left(V_{0}\right)^{0}=T$. But now Lemma 2.3 gives a contradiction.

Now assume (i) holds with (G, p) a special pair $\left(B_{n}, 2\right),\left(C_{n}, 2\right),\left(G_{2}, 3\right)$, or $\left(F_{4}, 2\right)$. By $[L S 3,1.10]$, up to graph and field twists we have $V=V_{G}(\lambda)$, where $\lambda=\lambda_{2}, \lambda_{2}, \lambda_{1}, \lambda_{4}$, respectively (recall that internal modules are excluded in (i)). The first two cases are dealt with under (ii) below (note that B_{n} and C_{n} have the same image group in $S L(V)$), and the F_{4} case is handled under (iii) below. Finally, the G_{2} case occurs in the conclusion.

Next consider (ii), so $(G, \lambda)=\left(C_{n}, \lambda_{2}\right)$ with $n \geq 3$. Let M be the usual module $V_{G}\left(\lambda_{1}\right)$ for G. By [CPS, Table 4.5], $V_{G}\left(\lambda_{2}\right)$ is a section of $\wedge^{2} M$, of dimension $\operatorname{dim}\left(\wedge^{2} M\right)-1-\delta$, where $\delta=1$ if $p \mid n$ and $\delta=0$ otherwise. Since T has zero weight space on $\wedge^{2} M$ of dimension n, it follows that either $\operatorname{dim} V_{0} \geq 2$ or $(n, p)=(3,3)$. Exclude the latter case, which occurs in the conclusion. Thus $\operatorname{dim} V_{0} \geq 2$. Now T lies in a commuting product A_{1}^{n} of fundamental A_{1} 's, and $C_{G}\left(V_{0}\right)$ contains $\left\langle A_{1}^{n}, N_{G}(T)\right\rangle$. From this it is easy to see that $C_{G}\left(V_{0}\right)^{0}=A_{1}^{n}$. Now Lemma 2.3 gives a contradiction.

Finally, consider case (iii), $(G, \lambda)=\left(F_{4}, \lambda_{4}\right)$. The case where $p=3$ occurs in the conclusion, so assume $p \neq 3$. Then $\operatorname{dim} V=26$, and if we let D be a maximal rank subgroup D_{4} of G generated by long root subgroups, then by [LS2, 2.3], $V \downarrow D$ has composition factors of high weights $\lambda_{1}, \lambda_{3}, \lambda_{4}, 0,0$. Therefore $\operatorname{dim} V_{0}=2$. Since $V_{D}\left(\lambda_{i}\right)(i=1,3,4)$ do not have indecomposable extensions by the trivial module, $C_{G}\left(V_{0}\right)^{0}$ contains D; and as the only connected subgroup property containing D is B_{4}, which does not fix a 2 -space, we conclude that $C_{G}\left(V_{0}\right)^{0}=D$. Now Lemma 2.3 gives a contradiction.

Notice that each of the exceptions in the previous lemma occurs in Table II of Theorem 1. We establish the finite orbit property for two of these in the next lemma, and postpone this for the other two.

Lemma 2.5. Suppose $p=3$ and $(G, \lambda)=\left(A_{2}, \lambda_{1}+\lambda_{2}\right)$ or $\left(G_{2}, \lambda_{1}\right)$. Then G has finitely many orbits on $P_{1}(V)$.

Proof. This is well known for the G_{2} case (see [LSS, 1.3, 1.4] for example).

Now consider $(G, \lambda)=\left(A_{2}, \lambda_{1}+\lambda_{2}\right)$. Here $V=L / Z$, where L is the space of 3×3 matrices of trace zero over K and Z is the 1-dimensional subspace of scalar matrices (note that $Z<L$ as $p=3$); G acts on L by conjugation. Every matrix in L is G-conjugate to a matrix in Jordan canonical form; modulo Z, the Jordan forms are $\operatorname{diag}(\alpha,-\alpha, 0)(\alpha \in K)$, E_{12}, and $E_{12}+E_{23}$, where $E_{i j}$ denotes the matrix with 1 in the $i j$-entry and 0 elsewhere. Thus G has three orbits on $P_{1}(V)$ in this case.

In the rest of this section we deal with the remaining possibilities for the finite orbit module V given by Corollary 1.3(iii).

Lemma 2.6. Suppose that $G=S L_{n}(K), p \neq 0$, and $V=V_{G}(\lambda)$ with $\lambda=\lambda_{1}+p^{i} \lambda_{1}$ or $\lambda_{1}+p^{i} \lambda_{n-1}(i>0)$. Then G has finitely many orbits on $P_{1}(V)$.

Proof. Let W be the usual n-dimensional module $V_{G}\left(\lambda_{1}\right)$. D efine the $K G$-module $W^{\left(p^{i}\right)}$ to be the space W with G-action $w * g=w g^{\sigma}$ ($w \in$ $W, g \in G$), where σ is the Frobenius morphism of G which raises matrix entries to the power p^{i}. Then $V_{G}\left(\lambda_{1}+p^{i} \lambda_{1}\right) \cong W \otimes W^{\left(p^{i}\right)}$ and $V_{G}\left(\lambda_{1}+\right.$ $\left.p^{i} \lambda_{n-1}\right) \cong W \otimes W^{*\left(p^{i}\right)}$.

We first consider $W \otimes W^{*\left(p^{i}\right)}$. In fact it is convenient to deal with the dual of this, so let $V=W^{*} \otimes W^{\left(p^{i}\right)}$. We can identify V with $M_{n}(K)$, the space of $n \times n$ matrices over K, with G-action given by

$$
g: A \rightarrow g^{-1} A g^{\sigma} \quad\left(A \in M_{n}(K)\right),
$$

where σ is as above. We shall show that $G_{1}=G L_{n}(K)$ has finitely many orbits on V in this action.
To do this, we begin by reinterpreting the question. W rite σ also for the p^{i}-power automorphism of K, and let $L=K[x ; \sigma]$ be the twisted polynomial ring consisting of polynomials in x over K, with multiplication determined by $x a=a^{\sigma} x$ for $a \in K$. This is a (noncommutative) left and right principal ideal domain (see [J a] for a general reference). Given an $n \times n$ matrix A over K, we can define an L-module $M(A)$ as follows: $M(A)$ is the space of column vectors in K^{n}, and for $v \in M(A)$, we set $x v=A v^{\sigma}$.

In fact, any L-module which is n-dimensional over K is of this form. For if M is such a module, choose a K-basis for M. Then x defines a K-semilinear map from M to itself. Let A denote the matrix of x with respect to this basis and identify M (as a K-space) with the space of column vectors via this basis. Then $x v=A v$ for each v in the basis, whence by the definition of L, it follows that $x v=A v^{\sigma}$ for v arbitrary. Thus, $M \cong M(A)$.

Suppose $A, B \in M_{n}(K)$, and f is a K-linear mapping of $M(A)$ into $M(B)$. D efine $U \in M_{n}(K)$, by $U e_{i}=f\left(e_{i}\right)$, where e_{1}, \ldots, e_{n} is the standard basis for the space of column vectors. Then $f(x v)=f\left(A v^{\sigma}\right)=U A v^{\sigma}$, while $x f(v)=B(U v)^{\sigma}=B U^{\sigma} v^{\sigma}$. Thus $\operatorname{Hom}_{L}(M(A), M(B))=\{U \in$ $\left.M_{n}(K): B U^{\sigma}=U A\right\}$. In particular, $M(A) \cong M(B)$ if and only if both A and B lie in $M_{n}(K)$ and there exists $g \in G L_{n}(K)$ such that $g^{-1} \mathrm{Ag}^{\sigma}=B$. Thus the number of $G L_{n}(K)$-orbits on V is equal to the number of isomorphism classes of L-modules which are K-spaces of dimension n.

Let M be an L-module which is a K-space of dimension n. The structure of finitely generated modules over noncommutative principal ideal domains is given in [J a]. We deduce that $M \cong M_{1} \oplus M_{2}$, where M_{1} is a direct sum of modules of the form $L / x^{i} L$, and x induces a bijection on M_{2}.

We know that $M_{2} \cong M(C)$ for some $m \times m$ matrix C, where $m=$ $\operatorname{dim}_{K} M_{2}$. If C is singular, then $C w=0$ for some nonzero $w \in M_{2}$, and so the submodule $\left\{v \in M_{2}: x v=0\right\}$ is nonzero, a contradiction. Therefore C is nonsingular. By Lang's Theorem [La], $C=D^{-1} D^{\sigma}$ for some $D \in$ $G L_{m}(K)$. Thus $M_{2} \cong M\left(I_{m}\right)$; in particular, the isomorphism class of M_{2} is determined by its dimension.

The above arguments show that the number of isomorphism classes of L-modules which are K-spaces of dimension n is at most $1+\sum_{i=1}^{n} p(i)$, where $p(i)$ is the number of partitions of i (in fact it is equal to this). In particular this number is finite, as required.

Now consider $V=W \otimes W^{\left(p^{i}\right)}$. Here we can identify V with $M_{n}(K)$, with G-action given by

$$
g: A \rightarrow g^{T} A g^{\sigma} \quad\left(A \in M_{n}(K)\right)
$$

(where g^{T} is the transpose of g). By Lang;'s theorem applied to the morphism $g \rightarrow\left(g^{\sigma}\right)^{-T}$ (which has finite unitary fixed point group), in the above action G is transitive on nonsingular matrices. We need to show that there are only finitely many orbits on singular matrices.

In fact, this conclusion follows from [Ga; RS, Sect. 9]; we sketch the argument. Let $A \in M_{n}(K)$ and let X be the space of n-dimensional column vectors. Then A determines a σ-sesquilinear form f_{A} on X defined by $f_{A}(u, v)=u^{T} A v^{\sigma}(u, v \in X)$. We say that $\left(X, f_{A}\right)$ is a σ-sesqui-
linear module over K. There is an obvious notion of morphisms of σ-sesquilinear modules. It is immediate that A and B are in the same G-orbit if and only if (X, f_{A}) $\cong\left(X, f_{B}\right.$). A lso A is nonsingular if and only if the space $\left(X, f_{A}\right)$ is non-degenerate. Thus by our observation above, the only invariant for a non-degenerate sesquilinear module is its dimension. It follows (see [RS, Sect. 9]) that a sesquilinear space X can be decomposed into an orthogonal sum of indecomposable sesquilinear spaces. By the previous sentence we may assume that X has no non-degenerate summands. Then $X=X_{I I} \perp X_{I I I}$ where the Kronecker modules $K\left(X_{I I}\right)$ and $K\left(X_{I I I}\right)$ have only indecomposable summands of a certain type (again, see [RS, Sect. 9]). M oreover, the isomorphism classes of $X_{I I}$ and $X_{I I I}$ are determined by the isomorphism classes of their K ronecker modules. Since the dimensions of the Kronecker modules are bounded by a function of $n=\operatorname{dim} X$, and there are only finitely many possibilities for indecomposable K ronecker modules of a given dimension [RS, Sect. 9], it follows that there are only finitely many isomorphism types possible for X. The conclusion follows.

Lemma 2.7. If $p=3$, then the group $G=G L_{4}$ has finitely many orbits on the vectors of the 16 -dimensional module $V_{G}\left(\lambda_{1}+\lambda_{2}\right)$.

Proof. This is proved by Cohen and Wales in [CW], following preliminary work of Chen [Ch3] on this module.

Lemma 2.8. If $G=B_{6}$ and $V=V_{G}\left(\lambda_{6}\right)$, then G has no dense orbit on $P_{1}(V)$. In particular, G has infinitely many orbits on $P_{1}(V)$.

Proof. Suppose G has a dense orbit on $P_{1}(V)$. We have $G<D<$ $S L(V)$, where $D=D_{7}$ and $V=V_{D}\left(\lambda_{6}\right)$. Choose a subgroup $B_{3} B_{3}$ of D; then $V \downarrow B_{3} B_{3}=V_{B_{3}}\left(\lambda_{3}\right) \otimes V_{B_{3}}\left(\lambda_{3}\right)$ (see [LS2, 2.7]). A subgroup G_{2} of B_{3} fixes a unique 1-space in $V_{B_{3}}\left(\lambda_{3}\right)$. Hence there is a 1-space $\alpha \in P_{1}(V)$ such that D_{α} contains $G_{2} G_{2}$.

We claim that $D_{\alpha}^{0}=G_{2} G_{2}$. Suppose this is false. As $G_{2} G_{2}$ lies in no parabolic, D_{α}^{0} is reductive. Since G_{2} is maximal in B_{3}, D_{α}^{0} must contain a subgroup $B_{3} G_{2}$. But $B_{3} G_{2}$ does not fix a 1-space of V, so this is impossible.

Thus $D_{\alpha}^{0}=G_{2} G_{2}$, as claimed. Since $\operatorname{dim} D-\operatorname{dim} G_{2} G_{2}=63=$ $\operatorname{dim} P_{1}(V), \alpha^{D}$ is the dense orbit of D on $P_{1}(V)$. Therefore, as we are assuming G has a dense orbit also, this orbit lies in α^{D}, and so there is a dense ($G, G_{2} G_{2}$)-double coset in D. Therefore $G_{2} G_{2}$ has a dense orbit on the coset space ($D: G$), hence on the set of nonsingular 1 -spaces in V_{14}, the natural 14 -dimensional module for D.

A ssume $p \neq 2$. Then $V_{14} \downarrow G_{2} G_{2}=V_{7} \oplus V_{7}$, a sum of two non-degenerate 7 -spaces. The group G_{2} has two orbits on $P_{1}\left(V_{7}\right)$, with connected stabilizers A_{2} and P_{1} (see [LSS, 1.2, 1.3]). Hence the smallest possible
dimension of the stabilizer in $G_{2} G_{2}$ of a nonsingular 1-space in V_{14} is $\operatorname{dim} A_{2} A_{2}=16$. But $\operatorname{dim} G_{2} G_{2}-16=12<\operatorname{dim}\left(D_{7}: B_{6}\right)$. Hence $G_{2} G_{2}$ has no dense orbit on nonsingular 1-spaces in V_{14}, a contradiction.

Finally, assume $p=2$. Here G fixes a nonsingular vector $v \in V_{14}$. Let $\langle w\rangle$ be a representative of the dense orbit of $G_{2} G_{2}$ on nonsingular 1 -spaces in V_{14}. Then $w \notin v^{\perp}$; take $(v, w)=1$.

Let $W=\langle v, w\rangle$, and let H be the stabilizer of W in $G_{2} G_{2}$. We claim that H^{0} centralizes W. To see this, observe that since W is non-degenerate, $\left(H / C_{H}(W)\right)^{0}$ is a (possibly trivial) torus. As $G_{2} G_{2}$ fixes v and H fixes w modulo v^{\perp}, this torus is trivial. The claim follows. Thus H induces a finite group on W.

Suppose $\left\langle w^{\prime}\right\rangle \subseteq W$ is in the $G_{2} G_{2}$-orbit of $\langle w\rangle$. Then $g(w)=\lambda w^{\prime}$ for some $g \in G_{2} G_{2}, \lambda \in K^{*}$. Since g fixes v, we then have $g \in H$. Hence by the previous paragraph, $\langle w\rangle^{G_{2} G_{2}} \cap P_{1}(W)$ is finite (and non-empty, as it contains $\langle w\rangle$). But this is a contradiction, as $\langle w\rangle^{G_{2} G_{2}}$ is an open dense orbit, so must intersect $P_{1}(W)$ in a dense subset.
Lemma 2.9. If $G=B_{n}(n=4,5), V=V_{G}\left(\lambda_{n}\right)$, a spin module of dimension 2^{n}, and $p \neq 2$, then G has finitely many orbits on $P_{1}(V)$.

Proof. The orbits on these spin modules are described for $p \neq 2$ in [lg, Propositions 5 and 6]; there are three orbits when $n=4$ and five orbits when $n=5$.

By Corollary 1.3 together with Lemmas 2.1-2.9, to complete the proof of Theorem 1 for G simple, it remains to show that for the following pairs $(G, \lambda), G$ has finitely many orbits on $P_{1}\left(V_{G}(\lambda)\right)$:

$$
\begin{array}{ccccc}
G: & B_{4}(p=2) & B_{5}(p=2) & F_{4}(p=3) & C_{3}(p=3) \\
\hline \lambda: & \lambda_{4} & \lambda_{5} & \lambda_{4} & \lambda_{2}
\end{array}
$$

We handle all but the C_{3} case using a method which involves first determining the orbits of corresponding finite groups; the C_{3} case will be deduced from the F_{4} case in Lemma 2.12.
The next result is somewhat more general than what we need for the above modules, and will also be useful in the ensuing sections.

A ssume that $p>0$, and as always let K be an algebraically closed field of characteristic p, and V a finite-dimensional vector space over K. For each power q of p, let σ_{q} be the Frobenius morphism of $S L(V)$, raising all matrix entries to the q th power relative to some fixed basis of V. A ssume that G is a closed connected subgroup of $\operatorname{SL}(V)$ which is σ_{q}-stable for some q. For $e \geq 1$, let $G\left(q^{e}\right)$ denote the group of fixed points of $\sigma_{q^{e}}$ on G and $V\left(q^{e}\right)$ denote the fixed points of $\sigma_{q^{e}}$ on V.

Lemma 2.10. Under the assumptions of the previous paragraph, the subgroup G of $S L(V)$ has only finitely many orbits on $P_{k}(V)$ if and only if there exists a constant c such that $G\left(q^{e}\right)$ has at most c orbits on $P_{k}\left(V\left(q^{e}\right)\right)$ for all $e \geq 1$. In that case G has at most c orbits on $P_{k}(V)$.

Proof. Since G is σ_{q}-invariant, it is defined over $\overline{\mathbb{F}}_{q}$, the algebraic closure of \mathbb{F}_{q}. Let P_{k} be the stabilizer in $S L(V)$ of a k-dimensional space, with P_{k} invariant under σ_{q}. By Proposition 1.1, we may assume that $K=\bar{F}_{q}$ (we apply Proposition 1.1 to the group $G \times P_{k}$ acting on $S L(V)$ by $\left(g_{1}, g_{2}\right) x=g_{1} x g_{2}^{-1}$).

A ssume that $G\left(q^{e}\right)$ has at most c orbits on $P_{k}\left(V\left(q^{e}\right)\right)$ for all $e \geq 1$. If G has at least $c+1$ orbits on $P_{k}(V)$, then choose $c+1$ representatives. These are subspaces of $V\left(q^{e}\right)$ for some e (since $K=\overline{\mathbb{F}}_{q}=\cup_{e \geq 1} \mathbb{F}_{q}$), whence $G\left(q^{e}\right)$ has at least $c+1$ orbits on $P_{k}\left(V\left(q^{e}\right)\right)$, a contradiction. So G has at most c orbits.

Conversely, assume that G has exactly m orbits on $P_{k}(V)$ (with m finite). Denote these orbits by O_{i} and let $o_{i} \in O_{i}$ be a representative. Let G_{i} denote the stabilizer in G of o_{i}. If O_{i} is σ_{q}-invariant, by [SS, I, 2.7], $O_{i}\left(q^{e}\right)$ breaks up into at most $m_{i} G\left(q^{e}\right)$ orbits, where $m_{i}=\left|G_{i}:\left(G_{i}\right)^{0}\right|$. Thus, we may take $c=\Sigma m_{i}$. 【

We now return to consideration of the remaining modules listed above for B_{4}, B_{5}, and F_{4}.

Lemma 2.11. Let (G, λ, p) be $\left(B_{4}, \lambda_{4}, 2\right),\left(B_{5}, \lambda_{5}, 2\right)$ or $\left(F_{4}, \lambda_{4}, 3\right)$ and let $V=V_{G}(\lambda)$. Identify G with a subgroup of $S L(V)$ which is σ_{p}-stable. Then for all $q, G(q)$ has the following number of orbits on $P_{1}(V(q))$:

$$
\begin{array}{rrrr}
G: & B_{4} & B_{5} & F_{4} \\
\hline \text { No. of orbits: } & 3 & 6 & 5
\end{array}
$$

Consequently (by 2.10), G has finitely many orbits on $P_{1}(V)$.
Proof. For $G=F_{4}$, this is proved in [CC, (B.1)].
Consider now $G=B_{4}$. Here $G(q)=B_{4}(q)<D_{5}(q)<S L_{16}(q)=X_{\sigma_{q}}$, where $X=S L(V)$, and the orbits of $D=D_{5}(q)$ on $P_{1}(V(q))$ are given in [L i2, 2.9]; there are just two orbits, with corresponding point-stabilizers D_{1}, D_{2}, where D_{1} is an A_{4}-parabolic subgroup of D and $D_{2} \cong\left(\mathbb{F}_{q}\right)^{8} \cdot B_{3}(q)$. $(q-1)$. If $U=V_{10}(q)$ is the usual $\mathbb{F}_{q} D$-module, then $G(q)$ is the stabilizer of a nonsingular 1-space in U. Let Ω be the set of all nonsingular 1-spaces in U. Thus, denoting by $\operatorname{orb}(A, S)$ the number of orbits of a group A on a set S, we have

$$
\operatorname{orb}\left(G(q), P_{1}(V(q))\right)=\operatorname{orb}\left(D_{1}, \Omega\right)+\operatorname{orb}\left(D_{2}, \Omega\right) .
$$

It is easy to see that D_{1} is transitive on Ω, while D_{2} has two orbits (with point-stabilizers $\left(\mathbb{F}_{q}\right)^{7} \cdot G_{2}(q) \cdot(q-1)$ and $\left.B_{3}(q)\right)$.

Finally, consider $G=B_{5}$. We handle this in a similar fashion. First, observe that $G(q)=B_{5}(q)<D_{6}(q)<S L_{32}(q)$. We argue first that $E=$ $D_{6}(q)$ has just five orbits on $P_{1}(V(q))$, with point-stabilizers E_{1}, \ldots, E_{5} as follows:
(i) $E_{1}=A_{5}$-parabolic in E, orbit size $\left|E: E_{1}\right|=\left(q^{8}-1\right) \times$ $\left(q^{5}+1\right)\left(q^{3}+1\right) /(q-1) ;$
(ii) $E_{2}=A_{5}(q) \cdot 2$, orbit size $\frac{1}{2} q^{15}\left(q^{8}-1\right)\left(q^{5}+1\right)\left(q^{3}+1\right)$;
(iii) $E_{3}={ }^{2} A_{5}(q) \cdot 2$, orbit size $\frac{1}{2} q^{15}\left(q^{8}-1\right)\left(q^{5}-1\right)\left(q^{3}-1\right)$;
(iv) $E_{4}=\left[q^{17}\right] \cdot\left(B_{3}(q) \times A_{1}(q)\right) \cdot(q-1)$, orbit size $q^{3}\left(q^{10}-1\right) \times$ $\left(q^{8}-1\right)\left(q^{6}-1\right) /\left(q^{2}-1\right)(q-1) ;$
(v) $E_{5}=\left[q^{14}\right] \cdot B_{3}(q) \cdot(q-1)$, orbit size $q^{7}\left(q^{10}-1\right)\left(q^{8}-1\right) \times$ $\left(q^{6}-1\right) /(q-1)$
(in (iv) and (v), we use [q^{n}] simply to denote a group of order q^{n}). To see this, let $Y=E_{7}(q)$, with root system as in [Bo]. If α_{0} is the longest root, then $P=N_{Y}\left(U_{\alpha_{0}}\right)=Q E H$ is a parabolic subgroup of Y, with $E=D_{6}(q)$, $|H|=q-1$, and $|Q|=q^{33}$. M oreover, $Q=\left\langle U_{\alpha}: \alpha\right\rangle 0$ involves $\left.\alpha_{1}\right\rangle$, and $Q / U_{\alpha_{0}}$ has the structure of the spin module $V_{E}\left(\lambda_{5}\right)$ over \mathbb{F}_{q} (cf. [ABS, Theorem 2]); so we may take $V(q)=Q / U_{\alpha_{0}}$.
O bserve first that E_{1} is the stabilizer of a 1-space containing a maximal vector.

We next obtain the stabilizer E_{4}. W rite $a_{1} \ldots a_{7}$ for the root $\sum a_{i} \alpha_{i}$. Let $\alpha=1123321, \beta=1223221$ (roots for Y), and define $y=u_{\alpha}(1) u_{\beta}(1)$. We shall show that E_{4} is the stabilizer of the 1 -space containing y (modulo $\left.U_{\alpha_{0}}\right)$. Let $P_{6}=Q_{6} L_{6}$ be the $D_{5} A_{1}$-parabolic subgroup of Y obtained by deleting α_{6} from the Dynkin diagram. By [AS, p. 60], we have $C_{Y}(y)=$ $U_{0} L_{0}$, where $U_{0}=Q_{6}$ and $L_{0} \cong B_{4}(q) \times A_{1}(q)$ is a subgroup of L_{6}. We find that $U_{0} \cap E=U_{1}$ has order q^{17} and $L_{0} \cap E=B_{3}(q) \times A_{1}(q)$. M oreover, conjugation by the element $h_{\alpha_{2}}\left(t^{-1}\right) h_{\alpha_{6}}(t)$ sends $u_{\alpha}(1) u_{\beta}(1)$ to $u_{\alpha}(t) u_{\beta}(t)$ for $t \in \mathbb{F}_{q}^{*}$. Hence the stabilizer of the 1 -space $\langle y\rangle$ contains $E_{4}=U_{1}\left(L_{0} \cap E\right) .(q-1)$. Since the stabilizer lies in $U_{0} L_{0} \cdot(q-1)$, it is easy to see that it is in fact equal to E_{4}.

We obtain E_{5} similarly as the stabilizer of the 1 -space containing $z=u_{\gamma}(1) u_{\delta}(1) u_{\epsilon}(1)$, where $\gamma=1223210, \delta=1122221$, and $\epsilon=1123211$.

To obtain stabilizer E_{2}, consider the action of a Levi subgroup $A=$ $A_{5}(q)$ of E on $V(q)$. There are two nontrivial composition factors of dimension 15 (with high weights λ_{2}, λ_{3}), and a fixed 2 -space $F=$ $\left\langle U_{\alpha_{1}}, U_{\alpha_{0}-\alpha_{1}}\right\rangle / U_{\alpha_{0}}$. The normalizer $N_{Y}(A)=G L_{6}(q) .2$ acts on the $q+1$ points in F with orbits of size $q-1$ and 2; the orbit of size 2 contains points with stabilizer of type E_{1}, and the orbit of size $q-1$ contains points with stabilizer $S L_{6}(q) .2$.

Finally, stabilizer E_{3} is obtained in the same way as E_{2} starting with a subgroup ${ }^{2} A_{5}(q)$ of E.

We have now obtained the stabilizers in (i)-(v) above. Since the corresponding orbit sizes add up to $\left(q^{32}-1\right) /(q-1)$, there are no further orbits of E on $P_{1}(V)$.

As in the previous case, if Ω is the set of nonsingular 1-spaces in the usual 12 -dimensional E-module over \mathbb{F}_{q}, we have

$$
\operatorname{orb}\left(G(q), P_{1}(V(q))\right)=\sum_{i} \operatorname{orb}\left(E_{i}, \Omega\right) .
$$

We find that E_{1}, E_{2}, E_{3}, and E_{5} are transitive on Ω (with point-stabilizers A_{4}-parabolic in $G(q), A_{4}(q) \cdot 2,{ }^{2} A_{4}(q) \cdot 2$, and $\left[q^{14}\right] . B_{2}(q) .(q-1)$, respectively), while E_{4} has two orbits on Ω (with point-stabilizers [q^{15}]. $\left(G_{2}(q) \times\right.$ $\left.A_{1}(q)\right) \cdot(q-1)$ and $\left.\left[q^{9}\right] \cdot B_{3}(q) \cdot(q-1)\right)$. Therefore $G(q)=B_{5}(q)$ has 6 orbits on $P_{1}(V(q))$.

Lemma 2.12. If $G=C_{3}, p=3$, and $V=V_{G}\left(\lambda_{2}\right)$, then G has finitely many orbits on $P_{1}(V)$.

Proof. Let $Y=F_{4}$, and let M be the 25 -dimensional Y-module $V_{Y}\left(\lambda_{4}\right)$. If A_{1} denotes a fundamental $S L_{2}$ in Y, then $N_{Y}\left(A_{1}\right)=A_{1} C_{3}$, and

$$
M \downarrow A_{1} C_{3}=\left(V_{A_{1}}\left(\lambda_{1}\right) \otimes V_{C_{3}}\left(\lambda_{1}\right)\right) \oplus V_{C_{3}}\left(\lambda_{2}\right)
$$

(see [LS2, 2.3]). Therefore we may take $V=C_{M}\left(A_{1}\right)$.
We claim that if two 1 -spaces in V are Y-conjugate, then they are conjugate under $N_{Y}\left(A_{1}\right)$. To see this, let α, β be 1 -spaces in V, and suppose $\alpha g=\beta$ for some $g \in Y$. Then A_{1}, A_{1}^{g} are fundamental $S L_{2}$'s of Y, both contained in Y_{β}. O ver finite fields \mathbb{F}_{q}, the stabilizers in $Y(q)=F_{4}(q)$ of 1-spaces in $M(q)$ are given by [CC, (B.1)]; these stabilizers contain groups $D_{4}^{\epsilon}(q),\left[q^{15}\right] \cdot B_{3}(q)$ and $\left[q^{14}\right] \cdot G_{2}(q)$. Therefore Y_{β} contains such a subgroup, and it follows that modulo its unipotent radical, Y_{β} can have only one simple factor, Y_{0} say. W rite $Q=R_{U}\left(Y_{\beta}\right)$. U sing [LS1, 2.2], we see that the images modulo Q of $Q A_{1}$ and $Q A_{1}^{g}$ are fundamental A_{1} 's in the simple group Y_{0}. Thus $Q A_{1}$ and $Q A_{1}^{g}$ are conjugate in Y_{β}. M oreover, if t is the central involution in A_{1}, then $C_{Y}(t)$ normalizes A_{1}, whence $C_{Q A_{1}}(t)=$ $A_{1} \times Q_{0}$ for some $Q_{0} \leq Q$. It follows that A_{1} and $A_{\text {P }}^{q}$ are conjugate in Y_{β}, say $A_{1}^{g}=A_{1}^{y}$ with $y \in Y_{\beta}$. Then $\alpha g y^{-1}=\beta$ with $g y^{-1} \in N_{Y}\left(A_{1}\right)$, proving the claim.

By Lemma 2.11, Y has finitely many orbits on $P_{1}(M)$. Therefore the result follows by the previous paragraph.
O bserve that Lemmas 2.1-2.12 constitute the proof of Theorem 1 for G simple.

To conclude the section, observe that we have also proved Corollary 1: for if G is simple and has a dense orbit on $P_{1}(V)$, where V is a faithful irreducible rational G-module, then V is in the conclusion of Proposition 1.2. For each candidate given by Proposition 1.2, we have shown that either G has finitely many orbits on $P_{1}(V)$, or G has no dense orbit on $P_{1}(V)$. Corollary 1 follows.

3. PROOF OF THEOREM 2 FOR G SIMPLE

Let G be a connected simple algebraic group over the algebraically closed field K. Let V be an irreducible rational $K G$-module, and let $P_{k}(V)$ denote the variety of k-dimensional subspaces of V. In this section, we classify all such modules such that G has finitely many orbits on $P_{k}(V)$ for some $k>1$ (the case $k=1$ was settled in the previous section).

Let $n=\operatorname{dim} V$. Then G has finitely many orbits on $P_{k}(V)$ if and only if G has finitely many orbits on $P_{k}\left(V^{*}\right)$ (because the dual representation is obtained by applying an automorphism of G) if and only if G has finitely many orbits on $P_{n-k}(V)$. Hence we need only classify V up to graph and field twists and we may assume that $k \leq n / 2$. N ote that $P_{k}(V)$ is a variety of dimension $k(n-k)$ and so if G has finitely many orbits on $P_{k}(V)$, then $\operatorname{dim} G \geq k(n-k)$. This eliminates many possibilities.

Proposition 3.1. Let V be an irreducible rational $K G$-module of dimension n and suppose that $\operatorname{dim} G \geq k(n-k)$ for some integer k with $2 \leq k \leq$ $n / 2$. Then (up to graph and field twists) one of the following holds:
(i) G is a classical group and V is the natural module for G;
(ii) G, V are as in Table \vee below.

Proof. Clearly G, V are as in the conclusion of Proposition 1.2. One checks which of these satisfy the necessary inequality.

The next proposition gives a relationship between the property of having finitely many orbits on k-spaces and that of having finitely many orbits on 1 -spaces, for a tensor product. Write W_{n} for a K-vector space of dimension n.

Proposition 3.2. Let a, b be positive integers, let H be a subgroup of $G L\left(W_{b}\right)$, and let $G L_{a}(K) \times H$ act on $W=W_{a} \otimes W_{b}$ in the usual way. Then $G L_{a}(K) \times H$ has finitely many orbits on W if and only if, for all $i \leq a, H$ has finitely many orbits on the set of i-spaces in W_{b}.

Proof. Let w_{1}, \ldots, w_{a} be a basis for W_{a}. Every vector in W can be written uniquely in the form $\sum_{j=1}^{a} w_{j} \otimes w_{j}^{\prime}$ with $w_{j}^{\prime} \in W_{b}$. There is an

TABLE V

G	V	k
$A_{2}(p \neq 2)$	$2 \lambda_{1}$	2
$A_{l}(l \geq 4)$	λ_{2}	2
A_{4}	λ_{2}	3,4
B_{3} or $C_{3}(p=2)$	λ_{3}	$2,3,4$
B_{4} or $C_{4}(p=2)$	λ_{4}	2
D_{5}	λ_{5}	2,3
D_{6}	λ_{6}	2
E_{6}	λ_{1}	2,3
E_{7}	λ_{7}	2
F_{4}	λ_{4}	2
G_{2}	λ_{1}	2,3

element of $G L_{a}(K) \times H$ sending $\sum_{j=1}^{a} w_{j} \otimes w_{j}^{\prime}$ to $\sum_{j=1}^{a} w_{j} \otimes w_{j}^{\prime \prime}$ if and only if there is an element of H sending the subspace $\left\langle w_{j}^{\prime}: 1 \leq j \leq a\right\rangle$ of W_{b} to the subspace $\left\langle w_{j}^{\prime \prime}: 1 \leq j \leq a\right\rangle$ (see [Li2, 1.1]). The result follows.

We now consider the various possibilities given in Table V.
Lemma 3.3. Let $G=A_{n}(n \geq 3)$ and $V=V_{A_{n}}\left(\lambda_{2}\right)$. Then G has finitely many orbits on $P_{2}(V)$ if and only if $n \leq 6$.

Proof. By Richardson's Theorem (stated in the Introduction), for $n \leq 6$ the group $A_{1} A_{n}$ has finitely many orbits on $P_{1}\left(V\left(\lambda_{1}\right) \otimes V\left(\lambda_{2}\right)\right)$. Hence by Proposition 3.2, G has finitely many orbits on $P_{2}(V)$ for $n \leq 6$.

Set $m=n+1$ and assume now that $m \geq 8$. Identify V with the space $S_{m}(K)$ of skew-symmetric $m \times m$ matrices over K, with $S L_{m}$-action given by $g: A \rightarrow g^{T} A g$ for $g \in S L_{m}, A \in S_{m}(K)$. Let J be a nonsingular 2×2 skew-symmetric matrix over K. For $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right) \in K^{3}$ with $0, a_{1}, a_{2}, a_{3}$ all distinct, define block-diagonal matrices $v_{0}, w_{\mathrm{a}} \in S_{m}(K)$ as

$$
v_{0}=\operatorname{diag}\left(J, J, J, 0^{m-6}\right), \quad w_{\mathrm{a}}=\operatorname{diag}\left(a_{1}^{-1} J, a_{2}^{-1} J, a_{3}^{-1} J, J, 0^{m-8}\right),
$$

and let $U_{\mathrm{a}}=\left\langle v_{0}, w_{\mathrm{a}}\right\rangle$, a 2-space in $S_{m}(K)$.
We claim that among the 2-spaces U_{a} there are infinitely many orbit representatives of $S L_{m}$ on 2 -spaces of $S_{m}(K)$. To see this, let $a_{i}, b_{i} \in K^{*}$ ($i=1,2,3$) with a_{1}, a_{2}, a_{3} distinct and b_{1}, b_{2}, b_{3} distinct, and suppose $g \in S L_{m}$ sends $U_{\mathrm{a}} \rightarrow U_{\mathrm{b}}$. The matrices of rank 6 in U_{a} are scalar multiples of v_{0} and $v_{0}-a_{i} w_{\mathrm{a}}(i=1,2,3)$. Hence if we define $a_{0}=b_{0}=0$, there is a permutation τ of $\{0,1,2,3\}$ such that $\left(v_{0}-a_{i} w_{\mathrm{a}}\right) g$ is a scalar multiple of $v_{0}-b_{i \tau} w_{\mathrm{b}}$ for $i=0,1,2,3$. Adjusting g by a scalar, we may take

$$
v_{0} g=v_{0}-b_{0 \tau} w_{\mathbf{b}} .
$$

We have $\left(v_{0}-a_{1} w_{\mathbf{a}}\right) g=\lambda\left(v_{0}-b_{1 \tau} w_{\mathbf{b}}\right)$ for some $\lambda \in K^{*}$, and hence

$$
w_{\mathrm{a}} g=a_{1}^{-1}(1-\lambda) v_{0}+a_{1}^{-1}\left(\lambda b_{1 \tau}-b_{0 \tau}\right) w_{\mathbf{b}} .
$$

The fact that for some $\mu \in K^{*}$,

$$
\left(v_{0}-a_{2} w_{\mathbf{a}}\right) g=\mu\left(v_{0}-b_{2 \tau} w_{\mathbf{b}}\right)
$$

determines λ in terms of $a_{1}, a_{2}, b_{0 \tau}, b_{1 \tau}$, and $b_{2 \tau}$. Finally, for some $\gamma \in K^{*}$ we have

$$
\left(v_{0}-a_{3} w_{\mathbf{a}}\right) g=\gamma\left(v_{0}-b_{3 \tau} w_{\mathbf{b}}\right),
$$

which gives an equation for $b_{3 \tau}$ in terms of $a_{1}, a_{2}, a_{3}, b_{0 \tau}, b_{1 \tau}$, and $b_{2 \tau}$. It follows that there are infinitely many orbit representatives among the 2-spaces U_{a}, as claimed.
Lemma 3.4. Suppose that $G=G_{2}$ and $V=V\left(\lambda_{1}\right)$. If $p=2$ then G has finitely many orbits on $P_{k}(V)$ for all k; and if $p \neq 2$ then G has finitely many orbits on $P_{k}(V)$ if and only if $k \leq 2$.

Proof. Suppose first that $p=2$, so that $\operatorname{dim} V=6$ and $G<S p(V)=$ $S p_{6}$. By [As, 5.1], G is transitive of rank 4 on $P_{1}(V)$. Hence G has finitely many orbits on $P_{1}(V)$ and on $P_{2}(V)$.

Now consider $P_{3}(V)$. F or this case it is convenient to deal with the finite group case $G(q)=G_{2}(q)<S p_{6}(q)=S p(V(q))$, where q is a power of 2 , and then apply Lemma 2.10. Let R_{1} be the set of 3 -spaces in $V(q)$ with 1 -dimensional radical, and let R_{2} be the set of totally singular 3 -spaces in $V(q)$.

Let $W \in R_{1}$ have radical $\langle v\rangle$. Then the stabilizer in $G(q)$ of $\langle v\rangle$ is a parabolic P. The action of P on the symplectic 4-space $v^{\perp} /\langle v\rangle$ induces a parabolic subgroup P_{2} of $S p_{4}(q)$, and $W /\langle v\rangle$ is a nonsingular 2-space in $v^{\perp} /\langle v\rangle$. Thus the number of orbits of $G(q)$ on R_{1} is equal to the number of (P_{2}, N_{2})-double cosets in $S p_{4}(q)$ (where N_{2} is the stabilizer of a nonsingular 2 -space). A pplying a graph automorphism, this is equal to the number of ($P_{1}, \Omega_{4}^{+}(q)$)-double cosets in $S p_{4}(q)$, which is just the number of orbits of $\Omega_{4}^{+}(q)$ on 1-spaces. This number is 2 . Thus $G(q)$ has 2 orbits on R_{1}.

Now consider R_{2}. The parabolic P of $G_{2}(q)$ stabilizes a 3 -space in R_{2}; and so does a subgroup $S L_{3}(q)$ of $G_{2}(q)$. We calculate that

$$
\begin{aligned}
& \left|G_{2}(q): P\right|+\left|G_{2}(q): S L_{3}(q)\right| \\
& \quad=\frac{q^{6}-1}{q-1}+q^{3}\left(q^{3}+1\right)=(q+1)\left(q^{2}+1\right)\left(q^{3}+1\right)=\left|R_{2}\right| .
\end{aligned}
$$

Therefore $G(q)$ also has 2 orbits on R_{2}.

We conclude that for any $q=2^{e}, G(q)$ has 4 orbits on $P_{3}(V(q))$. By Lemma 2.10 therefore, G has at most 4 orbits on $P_{3}(V)$. This completes the proof for $p=2$.

Now suppose $p \neq 2$. Here $\operatorname{dim} V=7$ and $G<\mathrm{SO}(V)=\mathrm{SO}_{7}$. By [LSS, 1.2, 1.3], G is transitive on the set of singular 1-spaces and on the set of nonsingular 1-spaces in V, hence has 2 orbits on $P_{1}(V)$.

Now consider $P_{2}(V)$. By [A s, 5.1], G is transitive of rank 4 on the set of singular 1 -spaces in V, hence has finitely many orbits on the set of non-degenerate 2 -spaces and on the set of totally singular 2 -spaces in V. Let R_{3} be the set of 2 -spaces remaining. If $W \in R_{3}$, then W has 1-dimensional radical $\langle v\rangle$. The stabilizer in G of $\langle v\rangle$, acting on the orthogonal space $v^{\perp} /\langle v\rangle$, induces a parabolic P_{2} of $S O_{5}$, and $W /\langle v\rangle$ is a nonsingular 1-space in $v^{\perp} /\langle v\rangle$. Hence the number of orbits of G on R_{3} is equal to the number of $\left(P_{2}, N_{1}\right)$-double cosets in SO_{5} (where N_{1} is the stabilizer of a nonsingular 1-space). A pplying an isomorphism $\mathrm{SO}_{5} \rightarrow \mathrm{Sp}_{4}$, we see that this is equal to the number of $\left(P_{1}, N_{2}\right)$-double cosets in $S p_{4}$, which is 3 . Thus G has finitely many orbits on $P_{2}(V)$.
To complete the proof, we show that G has infinitely many orbits on $P_{3}(V)$. Let f be a nontrivial alternating trilinear form on V preserved by G (see [As]). If f restricts trivially to every non-degenerate 3 -space then $f=0$ (because the set of triples of vectors which span a non-degenerate 3 -space is dense). So we may choose a non-degenerate 3 -space L with f nontrivial on L. Let e_{1}, e_{2}, e_{3} be an orthonormal basis for L and normalize f so that $f\left(e_{1}, e_{2}, e_{3}\right)=1$. Note that if $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ is another basis for L, then $f\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)=d$ where d is the determinant of the linear transformation of L sending e_{i} to e_{i}^{\prime}. In particular, f^{2} takes on the same value for any orthonormal basis. Choose a vector $w \in V$ such that w is orthogonal to e_{1} and e_{2} with $f\left(e_{1}, e_{2}, w\right)=0$ (there is a 4 -space of such vectors w). We can choose w of norm 1 as well (since a 4 -space cannot consist of singular vectors). Set $w_{a}=a e_{3}+b w$ where $a^{2}+b^{2}+$ $2 a b\left(w, e_{3}\right)=1$. (Note that given a, we can solve for b.) Then $f\left(e_{1}, e_{2}, w_{a}\right)$ $=a$. It follows that $\left\langle e_{1}, e_{2}, w_{a}\right\rangle$ and $\left\langle e_{1}, e_{2}, w_{c}\right\rangle$ are not in the same G-orbit unless $a^{2}=c^{2}$. Therefore G has infinitely many orbits on the set of non-degenerate 3 -spaces in V, hence on $P_{3}(V)$.

Lemma 3.5. Suppose that $G=B_{3}$ and $V=V\left(\lambda_{3}\right)$. Then G has finitely many orbits on $P_{k}(V)$ if and only if $k \leq 3$.

Proof. View B_{3} as a subgroup of $D_{4}=\mathrm{SO}_{8}(V)$. It follows from [LSS, Theorem B] that G is transitive on singular 1 -spaces, on nonsingular 1 -spaces, and on one D_{4}-orbit of totally singular 4 -spaces.

We next claim that G has finitely many orbits on totally singular j-spaces for any $j \leq 3$. Let U be such a j-space. Then U is contained in a totally singular 4 -space W of either D_{4}-orbit. Choose W to be in the
D_{4}-orbit of such 4 -spaces on which G is transitive. Thus, every G-orbit on totally singular j-spaces is represented by a subspace of W. The stabilizer S of W is an A_{2}-parabolic subgroup of B_{3}. In particular, if S_{0} is a Levi subgroup of this parabolic, then $W \downarrow S_{0}$ is the direct sum of a 1-dimensional and a 3 -dimensional module (with the latter being the natural A_{2}-module). It follows that S has finitely many orbits on subspaces of W, whence G has finitely many orbits on totally singular j-spaces.

Now suppose $p \neq 2$. We will show that G has finitely many orbits on j-dimensional subspaces for $j \leq 3$. By the previous paragraph, we need only consider subspaces containing a nonsingular vector v. Since G is transitive on nonsingular 1-spaces, it suffices to show that the stabilizer S of v has finitely many orbits on j-dimensional spaces containing v. This follows from Lemma 3.4, since $S=G_{2}$ and $V / K v \cong V_{G_{2}}\left(\lambda_{1}\right)$.

Next assume $p=2$. By [LSS, 1.2, 1.3], G has 2 orbits on $P_{1}(V)$. As for 2 -spaces, we have already established that G has finitely many orbits on totally singular 2 -spaces, and G is transitive on non-degenerate 2 -spaces by [LSS, Theorem C, A ppendix]. Let R be the remaining set of 2 -spaces. If $W \in R$, then W contains a nonsingular vector v. By Lemma 3.4, $G_{v}=G_{2}$ has finitely many orbits on 1 -spaces in $v^{\perp} / K v$. Therefore G has finitely many orbits on R, hence on $P_{2}(V)$.

Now consider $P_{3}(V)$ (still assuming $p=2$). For 3 -spaces with radical containing a nonsingular vector v, we may pass to $v^{\perp} / K v$, which is the 6 -dimensional module for $G_{v}=G_{2}$, and the result follows from Lemma 3.4. So we need only consider 3 -spaces with a 1 -dimensional radical L which is singular. Then the stabilizer in G of L acting on the orthogonal 6 -space L^{\perp} / L induces an A_{2}-parabolic subgroup P_{3} of SO_{6}. Hence the number of orbits of G on such 3 -spaces is equal to the number of $\left(P_{3}, N_{2}\right)$-double cosets in SO_{6}. This is equal to the number of ($P_{1},\left(S L_{2} \oplus\right.$ $\left.S L_{2}\right) T_{1}$)-double cosets in $S L_{4}$, which is finite.
Thus we have shown that G has finitely many orbits on j-dimensional subspaces for $j \leq 3$.

To complete the proof, we show that G has infinitely many orbits on non-degenerate 4 -dimensional subspaces. A ssume otherwise. Applying a triality automorphism of $D_{4}=P S O(V)$ (which fixes the stabilizer of a non-degenerate 4-space), we deduce that the reducible subgroup SO_{7} of D_{4} has finitely many orbits on non-degenerate 4-spaces. Equivalently, the stabilizer of a non-degenerate 4 -space M has finitely many orbits on nonsingular 1 -spaces in V. However, if $m \in M$ and $m^{\prime} \in M^{\perp}$ are nonsingular vectors, then the 1 -spaces $\left\langle m+\alpha m^{\prime}\right\rangle$ give infinitely many $G_{M^{-}}$-orbit representatives as α ranges over K, which is a contradiction. This completes the proof.

Lemma 3.6. Suppose that $G=D_{6}, E_{7}$, or E_{6}, with $V=V\left(\lambda_{5}\right), V\left(\lambda_{7}\right)$, or $V\left(\lambda_{1}\right)$, respectively. Then G has infinitely many orbits on $P_{k}(V)$ for $k=2,2$, and 3 , respectively.

Proof. We begin with the first two cases. Let $W=V\left(\lambda_{1}\right) \otimes V$ for $H=A_{1} G$. Let X be a simply connected group over K of type E_{7} if $G=D_{6}$, of type E_{8} if $G=E_{7}$. Fix a maximal torus T of X, and let $\Sigma(X)$ be the root system of X relative to T. Pick a fundamental system $\Pi(X)=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ in $\Sigma(X)$, and label the extended Dynkin diagram of X as in [Bo, p. 250]. The subgroup of X obtained by deleting α_{1} (respectively α_{8}) from the extended Dynkin diagram is $A_{1} D_{6}$ (respectively $A_{1} E_{7}$), and we identify H with this subgroup. Let $\left\{h_{\alpha}, e_{\beta}: \alpha \in \Pi(X), \beta \in\right.$ $\Sigma(X)$ \} be the usual Chevalley basis of the Lie algebra $L(X)$. We claim that we may identify W with the subspace of $L(G)$ spanned by all $e_{ \pm \beta}$ with $\beta=\sum b_{i} \alpha_{i}$ and $b_{1}=1$ (respectively $b_{8}=1$). For H certainly fixes this subspace, since the root elements generating H fix it; moreover, $-\alpha_{1}$ (respectively $-\alpha_{8}$) is equal to the weight $\lambda_{1} \otimes \lambda_{5}$ (respectively $\lambda_{1} \otimes \lambda_{7}$) of H when written in terms of fundamental dominant weights of H, so this subspace is H-isomorphic to W, establishing the claim.

With this identification, choose orthogonal roots α, β such that e_{α}, e_{β} $\in W$. For $a, b \in K$, define

$$
x_{a, b}=a\left(e_{\alpha}+e_{-\alpha}\right)+b\left(e_{\beta}+e_{-\beta}\right) .
$$

When $p \neq 2$, these elements are commuting and semisimple, and lie in a 2-dimensional toral subalgebra of $L(X)$; since fusion in a toral subalgebra is controlled by the action of the Weyl group, it follows that the set of 1 -spaces $\left\langle x_{a, b}\right\rangle(a, b \in K)$ contains infinitely many H-orbit representatives. When $p=2$, we apply the above argument, this time using the semisimple parts of the elements $x_{a, b}$. Therefore $H=A_{1} G$ has infinitely orbits on $P_{1}(W)$. By Proposition 3.2, it follows that G has infinitely many orbits on either $P_{1}(V)$ or $P_{2}(V)$. It has finitely many orbits on $P_{1}(V)$ by Richardson's Theorem (see the Introduction). H ence it has infinitely many on $P_{2}(V)$.

Now we consider the last case, $G=E_{6}$, this time with $H=A_{2} G$; the argument is rather similar to the first two cases. Let $X=E_{8}$, and identify H with the subgroup of X obtained by deleting α_{7} from the extended Dynkin diagram of X. If we define

$$
\begin{aligned}
& V_{1}=\left\langle e_{\beta}: \beta=\sum b_{i} \alpha_{i} \in \Sigma(X)^{+}, b_{7}=1\right\rangle, \\
& V_{2}=\left\langle e_{-\beta}: \beta=\sum b_{i} \alpha_{i} \in \Sigma(X)^{+}, b_{7}=2\right\rangle,
\end{aligned}
$$

then $\operatorname{dim} V_{1}=54, \operatorname{dim} V_{2}=27$, and we may identify $W:=V\left(\lambda_{1}\right) \otimes V$ with $V_{1} \oplus V_{2}$. Now pick roots $\alpha, \beta, \gamma, \delta \in \Sigma(X)^{+}$, all with α_{7} coefficient 1, such that $\langle\alpha, \beta\rangle$ and $\langle\gamma, \delta\rangle$ are both A_{2} systems, perpendicular to each other: for example, take

$$
\alpha=\alpha_{7}, \quad \beta=11222211, \quad \gamma=12232210, \quad \delta=00011111 .
$$

For $a, b \in K$, define

$$
x_{a, b}=a\left(e_{\alpha}+e_{\beta}+e_{-\alpha-\beta}\right)+b\left(e_{\gamma}+e_{\delta}+e_{-\gamma-\delta}\right) .
$$

Now the above argument goes through, showing that H has infinitely many orbits on $P_{1}(W)$. Note that by Richardson's Theorem and Proposition 3.2, G has finitely many orbits on $P_{k}(V)$ for $k \leq 2$. Thus, by Proposition 3.2, G has infinitely many orbits on $P_{3}(V)$.

Lemma 3.7. If $G=B_{4}$ with $V=V\left(\lambda_{4}\right)$, then G has infinitely many orbits on $P_{2}(V)$.

Proof. There is a subgroup $D \cong D_{5}$ of $S L(V)$ such that $B_{4}<D<$ $S L(V)$. Pick a subgroup $A_{1} B_{3}$ of D (acting on the natural 10 -dimensional D-module N as $\mathrm{SO}_{3} \times \mathrm{SO}_{7}$). Then $V \downarrow A_{1} B_{3}=\lambda_{1} \otimes \lambda_{3}$ (see [LS2, 2.7]). If we choose a subgroup G_{2} of the factor B_{3}, then G_{2} fixes a 1 -space in $V_{B_{3}}\left(\lambda_{3}\right)$, and hence the subgroup $A_{1} G_{2}$ of D fixes a 2-space in V; call this 2-space A.

We claim that $A_{1} G_{2}$ is the full connected stabilizer of A in D. For suppose $A_{1} G_{2}<S=\left(D_{A}\right)^{0}$. As $A_{1} G_{2}$ lies in no parabolic of D, S is reductive. If S is irreducible on N then $S=D_{5}$, which is clearly impossible; and if S is reducible, then S must be $A_{1} B_{3}$ or B_{4} (with $p=2$ in the latter case)—but both of these are irreducible on V. Hence $\left(D_{A}\right)^{0}=A_{1} G_{2}$, as claimed.

If there were only finitely many B_{4}-orbits on the 2 -spaces in V, then in particular, the D-orbit containing A would split into finitely many $B_{4}{ }^{-}$ orbits; equivalently, there would be finitely many ($B_{4}, A_{1} G_{2}$) double cosets in D. H owever, we claim that there are infinitely many such double cosets -there are even infinitely many ($B_{4}, A_{1} B_{3}$) double cosets. To see this, observe that the latter double cosets are in bijective correspondence with the orbits of $\mathrm{SO}_{3} \times \mathrm{SO}_{7}$ on the set of nonsingular 1-spaces in the natural D-module N. Write $N=V_{3} \oplus V_{7}$ correspondingly, and let v, w be nonsingular vectors in V_{3}, V_{7}, respectively. Then there are infinitely many orbit representatives for $\mathrm{SO}_{3} \times \mathrm{SO}_{7}$ among the 1-spaces $\langle v+c w\rangle(c \in K)$. This completes the proof.

Lemma 3.8. If $G=F_{4}$ and $V=V\left(\lambda_{4}\right)$, then G has infinitely many orbits on $P_{2}(V)$.

Proof. If $p \neq 3$, then, by the proof of Lemma 2.4, the zero weight space V_{0} has dimension 2 and $C_{G}\left(V_{0}\right)^{0}=D_{4}$. Hence Corollary 2.2 gives the conclusion.

Now suppose $p=3$, so that $\operatorname{dim} V=25$. Pick a subgroup D_{4} of F_{4} generated by long root groups in a D_{4} subsystem, and choose a subgroup G_{2} in this D_{4}. Let $C=C_{F_{4}}\left(G_{2}\right)^{0}$, a group of type A_{1}; then the fixed point space $X=C_{V}\left(G_{2}\right)$ is 4-dimensional, and $X \downarrow C=1 \otimes 1^{(3)}$ (see [LS2, 2.5]). View X as an orthogonal 4 -space for C.

We now claim that the connected stabilizer in F_{4} of any non-degenerate 2-space in X is either G_{2} or B_{3}. For let Y be such a 2 -space, and let $S=\left(\left(F_{4}\right)_{Y}\right)^{0}$, a subgroup containing G_{2}. If S is reductive then it is G_{2}, $A_{1} G_{2}, B_{3}, D_{4}$, or B_{4}, and all are determined up to conjugacy by [LS2]. Of these, only G_{2} and B_{3} can fix a 2 -space in V (see [LS2, 2.3, 2.5]). Now suppose S is not reductive. Then it lies in a B_{3}-parabolic of F_{4}; let Q be the unipotent radical of this parabolic. Thus $S \triangleright U G_{2}$ or $U B_{3}$, where $1 \neq U=R_{u}(S) \leq Q$. If $U \leq C$ then U fixes 1-dimensional subspaces in Y and $Y^{\perp} \cap X$; however, by the representation theory of $S L_{2}$, the unipotent radical of a parabolic of C fixes only one 1 -space in X, a contradiction. Hence $U \nless C$. A s G_{2} acts irreducibly on $Q^{\prime}\left(\cong V\left(\lambda_{1}\right)\right)$, and as $00 \oplus V\left(\lambda_{1}\right)$ on Q / Q^{\prime}, it follows that $Q^{\prime} \leq U$. N ow $Q^{\prime} G_{2}<Q^{\prime} B_{3}<B_{4}<F_{4}$. We have $V \downarrow B_{4}=V_{1} \perp V_{2}$, where $V_{1}=V_{B_{4}}\left(\lambda_{1}\right), V_{2}=V_{B_{4}}\left(\lambda_{4}\right)[\mathrm{LS} 2$, Table 8.7]. Consequently $C_{V}\left(Q^{\prime}\right)$ is the perpendicular sum of a singular 1-space in V_{1} and a totally singular 8 -space in V_{2}, hence is totally singular. But the nondegenerate 2 -space Y lies in $C_{V}\left(Q^{\prime} G_{2}\right)$, which is a contradiction. This proves our claim.

Next, observe that the non-degenerate 2-spaces in X with stabilizer B_{3} form a single C-orbit: for any two subgroups B_{3} in F_{4} containing our subgroup G_{2} must be conjugate in the normalizer of this G_{2}, hence by an element
of C.
From the previous two paragraphs, we deduce that the number of orbit representatives for F_{4} among the 2 -spaces in X is at least the number of orbits of C on the set of non-degenerate 2 -spaces in X, minus 1 . The non-degenerate 2 -spaces form a variety of dimension 4 , so this number of orbits is infinite.

In all the cases in Table V not covered by Lemmas 3.3-3.8, it follows by Proposition 3.2 and Richardson's Theorem (see the Introduction) that G has finitely many orbits on $P_{k}(V)$. This completes the proof of Theorem 2 for G simple.

4. PROOF OF THEOREM 1 FOR G NON-SIMPLE

Let G be a connected semisimple algebraic group over the algebraically closed field K, and let V be a faithful irreducible rational $K G$-module. A ssume in this section that G is not simple, so $G=G_{1} \cdots G_{r}$, a commut-
ing product of simple algebraic groups G_{i} with $r \geq 2$, and $V=V_{1} \otimes \cdots \otimes V_{r}$ with each V_{i} a nontrivial irreducible $K G_{i}$-module.
As in the previous section, we denote by W_{n} a K-vector space of dimension n. We begin with a result which will be useful in several contexts.

Proposition 4.1. (i) For $n \geq 2$ there are infinitely many $\left(S p_{2 n}(K), S p_{2 n}(K)\right)$-double cosets in $S L_{2 n}(K)$.
(ii) For $n \geq 2$ there are infinitely many $\left(\operatorname{Sp}_{2 n}(K), S O_{2 n}(K)\right.$)-double cosets in $S L_{2 n}(K)$.

Proof. (i) Let $G=S L_{2 n}(K)$. There is an involutory graph automorphism τ of G such that $G_{\tau}=S p_{2 n}(K)$. The ($\left.G_{\tau}, G_{\tau}\right)$-double cosets in G are in bijective correspondence with the orbits of G_{τ} on τ^{G}. Choose a 1-dimensional torus T_{1} in G which is inverted by τ (for example, with the usual notation for a Cartan subgroup T and graph automorphism τ, take $\left.T_{1}=\left\{h_{\alpha_{1}}(c) h_{\alpha_{2 n-1}}\left(c^{-1}\right): c \in K^{*}\right\}\right)$. Then for $h \in T_{1}$, we have $\tau \tau^{h}=h^{2}$, and this can take infinitely many possible orders. Therefore G_{τ} has infinitely many orbits on τ^{G}, proving (i).
(ii) If $p=2$ then $S O_{2 n}(K) \leq S p_{2 n}(K)$, and so (ii) follows from (i). So assume now that $p \neq 2$. There exists an involution $t \in T$ such that if $\delta=\tau t$, then $G_{\delta}=S O_{2 n}(K)$. A s above, for $h \in T_{1}$, the element $\tau \delta^{h}$ can take infinitely many different orders. H ence G_{τ} has infinitely many orbits on δ^{G}, and (ii) follows.

Denote by $C l_{n}$ a simple classical algebraic group with natural module W_{n} of dimension n over K.
The next lemma provides a useful reduction.
Lemma 4.2. Suppose that $G=G_{1} \otimes C l_{n}$ acting on $V=W_{m} \otimes W_{n}$. Let U be a non-degenerate subspace of W_{n} (any subspace if $C l_{n}=S L_{n}$), and let S be the stabilizer of U in $C l_{n}$. If G has finitely many orbits on the set of k-subspaces of V, then $G_{1} \otimes S$ has finitely many orbits on the set of k subspaces of $W_{m} \otimes U$.
Proof. Let v_{1}, \ldots, v_{m} be a basis for W_{m}, and suppose that M and M^{\prime} are k-dimensional subspaces of $W_{m} \otimes U$ in the same G-orbit. It suffices to prove that M and M^{\prime} are in the same $G_{1} \otimes S$-orbit. Suppose that $M g=M^{\prime}$ with $g=x \otimes y \in G$. Let U^{\prime} be the largest subspace of U such that $U^{\prime} y \subseteq U$. By Witt's Lemma (and a much easier argument in the case where $C l_{n}=S L_{n}$), there exists $y^{\prime} \in S$ such that $w y^{\prime}=w y$ for all $w \in U^{\prime}$. Let $v \in M$ and write $v=\sum v_{i} \otimes w_{i}$ with $w_{i} \in U$. Since $v g \in M^{\prime} \subseteq W_{m} \otimes U$, it follows that $w_{i} y \in U$, whence $w_{i} y=w_{i} y^{\prime}$. Therefore $v(x \otimes y)=v(x \otimes$ y^{\prime}), and hence $M g=M\left(x \otimes y^{\prime}\right)$. So M and M^{\prime} are in the same $G_{1} \otimes S$ orbit, as required.

In the next two lemmas we consider $G=C l_{m} \otimes C l_{n}$ with $V=W_{m} \otimes W_{n}$; if the first factor is $S L_{m}$ or the second is $S L_{n}$, then $W_{m} \otimes W_{n}$ is an internal Chevalley module for G (see Table I in the Introduction), and G has finitely many orbits on $P_{1}(V)$.

Note that if one of the factors Cl_{m} or C_{n} is an orthogonal group $\mathrm{SO}_{2 l+1}$ in odd dimension, then we take $p \neq 2$, since $S O_{2 l+1}$ is reducible on $W_{2 l+1}$ when $p=2$.

Lemma 4.3. Suppose that $G=C l_{m} \otimes C l_{n}$ with $C l_{m} \neq S L_{m}, C L_{n} \neq S L_{n}$, and $V=W_{m} \otimes W_{n}$. If G has finitely many orbits on $P_{1}(V)$, then $m=3$, $n=2 l$, and $G=S O_{3} \otimes S p_{2 l}$ (with $p \neq 2$).

Proof. Suppose G has finitely many orbits on $P_{1}(V)$. W hen $G=S p_{m} \otimes$ $S p_{n}$ we have $m, n \geq 4$ by hypothesis, and Lemma 4.2 implies that $G_{0}=$ $S p_{4} \otimes S p_{4}$ has finitely many orbits on $P_{1}\left(W_{4} \otimes W_{4}\right)$. Let $H=G L_{4} \times S p_{4}$ and identify $W_{4} \otimes W_{4}$ with $M_{4}(K)$, where $(a, b) \in H$ acts as $A \rightarrow a^{-1} A b$ for $A \in M_{4}(K)$. The stabilizer of the 1-space $\langle I\rangle$ is $H_{\langle I\rangle}=\{(\lambda b, b): b \in$ $\left.S p_{4}, \lambda \in K^{*}\right\}$. Now there are finitely many ($G_{0}, H_{\langle I\rangle}$) double cosets in H. Projecting to the first factor of H, we deduce that there are finitely many ($S p_{4}, K^{*} S p_{4}$) double cosets in $G L_{4}$, hence finitely many ($S p_{4}, S p_{4}$) double cosets in $S L_{4}$. This contradicts Proposition 4.1.

If $G=S O_{m} \otimes S O_{n}$ then $m, n \geq 3$ (as SO_{2} is reducible), so Lemma 4.2 implies that $\mathrm{SO}_{3} \otimes \mathrm{SO}_{3}$ has finitely many orbits on $P_{1}\left(W_{3} \otimes W_{3}\right)$. This is impossible by dimension considerations.

Finally, let $G=S O_{m} \otimes S p_{n}$ with $m \geq 3, n \geq 4$. If $m \geq 4$ then Lemma 4.2 implies that $\mathrm{SO}_{4} \otimes \mathrm{Sp}_{4}$ has finitely many orbits on $P_{1}\left(W_{4} \otimes W_{4}\right)$. Arguing as above, this means that there are finitely many $\left(S O_{4}, S p_{4}\right)$ double cosets in $S L_{4}$, contrary to Proposition 4.1. Therefore $m=3$ and $G=S O_{3} \otimes S p_{n}$, as in the conclusion.

Lemma 4.4. $\quad \mathrm{SO}_{3} \otimes \operatorname{Sp}_{2 l}(p \neq 2)$ has finitely many orbits on $P_{1}\left(W_{3} \otimes\right.$ $W_{2 l}$).

Proof. A ny vector $v \in W_{3} \otimes W_{2 l}$ lies in a subspace of the form $W_{3} \otimes U$ with $\operatorname{dim} U \leq 3$. Since $S p_{2 l}$ has finitely many orbits on subspaces, it suffices to prove that $S_{3} \otimes H$ has finitely many orbits on $P_{1}\left(W_{3} \otimes U\right)$ for each U, where H is the group induced on U by the stabilizer of U in $S p_{2 l}$.

If $\operatorname{dim} U \leq 2$, or if U is totally singular, then H contains $S L(U)$ and the result follows from Proposition 3.2. Thus we may assume that $\operatorname{dim} U=3$, and U has radical of dimension 1 , spanned by e_{1}, say. Extend to a basis e_{1}, e_{2}, e_{3} of U. N ote that $S O_{3} \otimes H$ has finitely many orbits on 1 -spaces of $\left(W_{3} \otimes U\right) /\left(W_{3} \otimes\left\langle e_{1}\right\rangle\right)$, since the action on this quotient is $S O_{3} \otimes S L_{2}$.

Let $v_{1}, v_{2}, v_{3} \in W_{3}$, and write $v=\sum_{1}^{3} v_{i} \otimes e_{i}$. By the last remark in the previous paragraph, it suffices to show that there are only finitely many orbits on 1 -spaces spanned by vectors of this form, with fixed $v_{2} \otimes e_{2}+v_{3}$
$\otimes e_{3}$. When the v_{i} are linearly dependent, there are only finitely many orbits, by the case where $\operatorname{dim} U \leq 2$; hence we may assume that the v_{i} are linearly independent. By applying an element of the form $1 \otimes h$ with h in the unipotent radical of H, we may add any element in the span of v_{2}, v_{3} to v_{1}; and for $a \in K^{*}$, there is an element $g \in H$ sending $e_{1} \rightarrow a e_{1}$ and fixing e_{2}, e_{3}, whence $1 \otimes g$ multiplies $v_{1} \otimes e_{1}$ by a. The result follows.

Lemma 4.5. Suppose that $r \geq 3$ and $G=G_{1} \ldots G_{r}$ has finitely many orbits on $P_{1}\left(V_{1} \otimes \cdots \otimes V_{r}\right)$, where each G_{i} is simple and each V_{i} is an irreducible rational G_{i}-module. Then $G=S L_{2} \otimes S L_{k} \otimes S L_{n}(k=2$ or 3$)$, acting in the usual way on $V=W_{2} \otimes W_{k} \otimes W_{n}$. Conversely, $S L_{2} \otimes S L_{k} \otimes$ $S L_{n}(k=2$ or 3$)$ has finitely many orbits on $P_{1}\left(W_{2} \otimes W_{k} \otimes W_{n}\right)$.

Proof. If $r \geq 4$, then Lemma 4.2 forces $S L_{2} \times S L_{2} \times S L_{2} \times S L_{2}$ to have finitely many orbits on $P_{1}\left(W_{2} \otimes W_{2} \otimes W_{2} \otimes W_{2}\right)$, which is not the case, by consideration of dimensions. Thus $r=3$. Let $V=W_{a} \otimes W_{b} \otimes W_{c}$ with $a \leq b \leq c$, so $G \leq S L_{a} \otimes S L_{b} \otimes S L_{c}$. If $a \geq 3$ then Lemma 4.2 implies that $S L_{3} \times S L_{3} \times S L_{3}$ has finitely many orbits on $P_{1}\left(W_{3} \otimes W_{3} \otimes\right.$ W_{3}), which is again impossible by dimensions. Therefore $a=2$.

Suppose $b \geq 4$. Then by Lemma 4.2, $S L_{2} \times S L_{4} \times S L_{4}$ has finitely many orbits on $P_{1}\left(W_{2} \otimes W_{4} \otimes W_{4}\right)$. This implies (by Proposition 3.2) that $S L_{4} \times S L_{4}$ has finitely many orbits on 2 -spaces in $W_{4} \otimes W_{4}$. We show that this is not the case. We can identify $W_{4} \otimes W_{4}$ with $M_{4}(K)$, the space of 4×4 matrices over K, so that the action of $(g, h) \in S L_{4} \times S L_{4}$ sends $A \rightarrow g^{-1} A h\left(A \in M_{4}(K)\right)$. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \in K^{4}$ not a multiple of $(1,1,1,1)$, let $D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ and define the 2 -space W_{λ} by

$$
W_{\lambda}=\left\langle I, D_{\lambda}\right\rangle,
$$

where I denotes the 4×4 identity matrix. Suppose that $(g, h) \in S L_{4} \times$ $S L_{4}$ sends W_{λ} to W_{μ} (where $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)$). Then there exist $a, b, c, d \in K$ such that

$$
g^{-1} h=a I+b D_{\mu}, \quad g^{-1} D_{\lambda} h=c I+d D_{\mu}
$$

Therefore $g^{-1} D_{\lambda} g=\left(c I+d D_{\mu}\right)\left(a I+b D_{\mu}\right)^{-1}$, and so the right hand side has eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ in some order. Thus there is a permutation $\tau \in S_{4}$ such that for $1 \leq i \leq 4, \lambda_{i \tau}=\left(c+d \mu_{i}\right)\left(a+b \mu_{i}\right)^{-1}$, and hence

$$
\lambda_{i \tau} a+\lambda_{i \tau} \mu_{i} b-c-\mu_{i} d=0
$$

for $1 \leq i \leq 4$. Regard this as a system of 4 linear equations in a, b, c, d. The system has a nonzero solution if and only if a certain determinant, which is a polynomial in λ_{i}, μ_{i} is zero. This means that the W_{λ} contain infinitely many orbit representatives for $S L_{4} \times S L_{4}$ on 2-spaces of $M_{4}(K)$, which is a contradiction.

This establishes that $b \leq 3$ and $G \leq S L_{2} \otimes S L_{b} \otimes S L_{n}$. By Proposition 3.2, the third factor of G has finitely many orbits on i-subspaces of W_{n} for $i \leq 2 b$, so by the results of Section 3 it satisfies the conclusion of Theorem 2 for simple groups. It follows from this and dimension considerations that one of the following holds:
(i) $G=S L_{2} \otimes S L_{k} \otimes S L_{n}$ ($k=2$ or 3);
(ii) $G=S L_{2} \otimes S L_{k} \otimes C l_{n}$ (where $C l_{n} \neq S L_{n}$ and $k \leq 3$);
(iii) $G=S L_{2} \otimes S O_{3} \otimes C l_{n}$.

We claim that in cases (ii) and (iii), G has infinitely many orbits on $P_{1}(V)$. Consider (iii). By Lemma 4.3, $C l_{n}=S L_{n}$ or $S p_{n}$. Hence by Lemma 4.2, we only need to prove that there are infinitely many orbits when $G=S L_{2} \otimes S O_{3} \otimes S L_{2}$. This is clear by consideration of dimensions. Now consider (ii). If $C l_{n}=S O_{n}$, then we may reduce to (iii) (or, if $p=2$, to $S L_{2} \otimes S L_{k} \otimes S O_{4}$, which is out by dimension considerations again). If $C l_{n}=S p_{n}$, then Lemma 4.2 shows that we need only consider $G=S L_{2} \otimes$ $S L_{2} \otimes S p_{4}$. However, this is $S O_{4} \otimes S p_{4}$, which is excluded by Lemma 4.3.

For the converse, note that $S L_{2} \otimes S L_{3} \otimes S L_{5}$ is a Levi factor acting on an internal Chevalley module (see Richardson's Theorem in the Introduction). Hence by Proposition 3.2, $S L_{2} \otimes S L_{3}$ has finitely many orbits on i-spaces of $W_{2} \otimes W_{3}$, for all i. Now another application of Proposition 3.2 shows that $S L_{2} \otimes S L_{3} \otimes S L_{n}$ has finitely many orbits for all n. By Lemma 4.2, $S L_{2} \otimes S L_{2} \otimes S L_{n}$ also has finitely many orbits.

We can now complete the proof of Theorem 1 for G non-simple. Suppose G has finitely many orbits on $P_{1}(V)$. In view of the previous result, we can suppose that G has just two simple factors, so $G=G_{1} G_{2}$ and $V=V_{1} \otimes V_{2}$. By Lemmas 4.3 and 4.4, we may assume that $G \neq$ $C l_{m} \otimes C l_{n}$; say $G_{1} \neq C l\left(V_{1}\right)$.

Now by Proposition 3.2, G_{1} has finitely many orbits on $P_{i}\left(V_{1}\right)$ for all $i \leq \operatorname{dim} V_{2}$. Hence by Theorem 2 for simple groups (established in Section 3), G_{1} and V_{1} are as in Table III. Let k be the largest integer given in the third column of Table III. If $\operatorname{dim} V_{2}>k$ then by Proposition 3.2, G_{1} has finitely many orbits on $P_{k+1}\left(V_{1}\right)$, which is a contradiction unless $k+1>\frac{1}{2} \operatorname{dim} V_{1}$; this occurs only in the last row of Table III. (In the last row G_{1} has finitely many orbits on the set of all subspaces of V_{1}.) Therefore, except when G_{1} is as in the last row, we have $\operatorname{dim} V_{2} \leq k$.

If $G_{2}=S L\left(V_{2}\right)$, then $G=G_{1} \otimes S L\left(V_{2}\right)$, with G_{1} as in Table III and $\operatorname{dim} V_{2} \leq k$ (except for the last row), and all these groups occur in Table I or II. M oreover, by Proposition 3.2 and Theorem 2 for simple groups, all these groups do have finitely many orbits on $P_{1}(V)$.

Thus it remains to establish that $G_{2}=\operatorname{SL}\left(V_{2}\right)$. Suppose this is not the case. Then $k \geq 3$, so from Table III $\left(G_{1}, V_{1}\right)=\left(A_{4}, V\left(\lambda_{2}\right)\right.$), (B_{3} or C_{3}, $V\left(\lambda_{3}\right)$), $\left(D_{5}, V\left(\lambda_{5}\right)\right.$), or ($G_{2}, V\left(\lambda_{1}\right)$); moreover, $\lambda_{3} G_{2}$ lies in $S O\left(V_{2}\right)$ or $\operatorname{Sp}\left(V_{2}\right)$. Lemma 4.3 rules out all possibilities except ($A_{4}, V\left(\lambda_{2}\right)$) and ($D_{5}, V\left(\lambda_{5}\right)$). In the first case $\operatorname{dim} G<\operatorname{dim} P_{1}(V)$. The second case is handled in the following lemma.

Lemma 4.6. Let $G=D_{5} \otimes S_{3}(p \neq 2)$ acting on $V=V\left(\lambda_{5}\right) \otimes W_{3}$. Then G has infinitely many orbits on $P_{1}(V)$.

Proof. Suppose this is false, and write $V_{16}=V_{D_{5}}\left(\lambda_{5}\right)$. Then by Lemma 4.2, $D_{5} \otimes S O_{2}$ has finitely many orbits on $P_{1}\left(V_{16} \otimes W_{2}\right)$. In other words, $D_{5} T_{1}$ has finitely many orbits on $V_{16} \oplus V_{16}$, where the torus T_{1} acts as $\left\{c I_{16} \oplus c^{-1} I_{16}: c \in K^{*}\right\}$. It follows that for any 1-space $\langle v\rangle$ in $V_{16},\left(D_{5}\right)_{\langle v\rangle}$ has finitely many orbits on $P_{1}\left(V_{16}\right)$.

Choose $\langle v\rangle$ in the dense orbit of D_{5} on $P_{1}\left(V_{16}\right)$, so that $\left(D_{5}\right)_{\langle v\rangle}^{0}=$ $U_{8} B_{3} T_{1}$ (see [Ig, Proposition 2]), lying in a parabolic $U_{8} D_{4} T_{1}$ of D_{5}. Then $C_{V_{16}}\left(U_{8}\right)$ is an 8 -dimensional space on which $B_{3} T_{1}$ acts as $V_{1} \oplus V_{7}$ with T_{1} inducing scalars, and hence B_{3} has finitely many orbits on $P_{1}\left(V_{1} \oplus V_{7}\right)$. However, for suitable vectors $v \in V_{1}, w \in V_{7}$, the 1 -spaces $\langle v+c w\rangle$ ($c \in K^{*}$) give infinitely many orbit representatives for $B_{3} T_{1}$, which is a contradiction.

The proof of Theorem 1 is now complete.

5. PROOF OF THEOREM 2 FOR G NON-SIMPLE

We first consider the case where $G=S L_{m} \otimes S L_{n}$ acting on $V=W_{m} \otimes W_{n}$ (where as always, W_{m}, W_{n} are the natural modules for the factors). Of course, G has finitely many orbits on $P_{1}(V)$.

Lemma 5.1. Assume that $m \leq n$ and $1<k \leq m n / 2$. Then $G=S L_{m} \otimes$ $S L_{n}$ has finitely many orbits on $P_{k}(V)$ if and only if one of the following holds:
(i) $m=2$ and $k \leq 3$;
(ii) $m=3$ and $k=2$.

Proof. By Lemma 4.5, for any $r, S L_{2} \otimes S L_{3} \otimes S L_{r}$ has finitely many orbits on 1 -spaces (of the tensor product of the three natural modules). A pplication of Proposition 3.2 shows that G has finitely many orbits on k-spaces if (i) or (ii) holds.

Now assume that neither (i) nor (ii) holds. Then one of the following holds:
(1) $m \geq 4, k=2$;
(2) $m \geq 3, k \geq 3$;
(3) $m=2, k \geq 4$.

In case (1), Lemma 4.2 implies that $S L_{4} \otimes S L_{4}$ has finitely many orbits on 2 -spaces of the tensor product, a possibility ruled out in the proof of Lemma 4.5.

Now consider (2), and suppose G has finitely many orbits. If $k \leq m$, then Lemma 4.2 implies $S L_{k} \otimes S L_{k}$ has finitely many orbits on k-spaces; if $m<k \leq n$, then Lemma 4.2 implies $S L_{m} \otimes S L_{k}$ has finitely many orbits on k-spaces. Both of these are impossible by dimension considerations, which also rule out the case $k \geq n$.

Finally consider (3). By Lemma 4.2, we just have to show $S L_{2} \otimes S L_{k}$ has infinitely many orbits on k-spaces. First observe that the proof of Lemma 4.5 shows that $S L_{k} \otimes S L_{k}$ has infinitely many orbit representatives on 2 -spaces of the form $\left\langle\sum_{1}^{k} v_{i} \otimes w_{i}, \sum_{1}^{k} \lambda_{i} v_{i} \otimes w_{i}\right\rangle$ (where the v_{i}, w_{i} are bases for k-spaces, and $\lambda_{i}=1$ for $i>4$). Now the proof of Proposition 3.2 shows that $S L_{2} \otimes S L_{k} \otimes S L_{k}$ has infinitely many orbit representatives on 1 -spaces of the form $\left\langle x_{1} \otimes\left(\sum_{1}^{k} v_{i} \otimes w_{i}\right)+x_{2} \otimes\left(\sum_{1}^{k} \lambda_{i} v_{i} \otimes w_{i}\right)\right\rangle$ (where x_{1}, x_{2} is a basis of 2-space). Finally, the proof of Proposition 3.2 now shows that $S L_{2} \otimes S L_{k}$ has infinitely many orbit representatives on k-spaces of the form $\left\langle\left(x_{1}+\lambda_{1} x_{2}\right) \otimes w_{1}, \ldots,\left(x_{1}+\lambda_{k} x_{2}\right) \otimes w_{k}\right\rangle$, as required.
Lemma 5.2. Let $G=S L_{a} \otimes S L_{b} \otimes S L_{c}$ with $2 \leq a \leq b \leq c$, and let V be the tensor product of the three natural modules. Then G has infinitely many orbits on $P_{k}(V)$ for all $2 \leq k \leq a b c / 2$.

Proof. Assume this is false, for some k. Comparing the dimension $k(a b c-k)$ of $P_{k}(V)$ with that of G, it follows that $k \leq c$. As usual, Lemma 4.2 reduces us to the case $a=b=2$ and $c=k$. But in this case the dimension of $P_{k}(V)$ is larger than the dimension of G.

Lemma 5.3. Let $G=C l_{m} \otimes C l_{n} \neq S L_{m} \otimes S L_{n}$ with $m \leq n$, acting on $V=W_{m} \otimes W_{n}$. Then G has infinitely many orbits on $P_{k}(V)$ for $2 \leq k \leq$ $m n / 2$.

Proof. A ssume this is false for some k. It follows from Lemma 5.1 that $m \leq 3$.

Suppose first that $m=3$. If $G=\mathrm{SO}_{3} \otimes S L_{n}$ has finitely many orbits on $P_{k}(V)$, then by dimension, $k<n$ and as usual, we may reduce to the case $S O_{3} \otimes S L_{k}$, where again a dimension argument gives a contradiction. If $G=S L_{3} \otimes C l_{n}$ with $C l_{n}<S L_{n}$, then by dimension, $k \leq n$. By Lemma 4.2, if $k \geq 4$ then it suffices to consider $C l_{n}=S p_{k}, S p_{k+1}, S O_{k}$, or $S O_{k+1}$; and if $k<4$ then it suffices to consider $\mathrm{Cl}_{n}=\mathrm{Sp}_{4}, \mathrm{SO}_{4}$, or SO_{3}. All cases give a contradiction by dimension considerations.

Thus $m=2$ and $C l_{m}=S L_{2}$. By hypothesis, $k \leq n$.
If $C l_{n}=S p_{n}$ for $n>4$, then by Lemma 4.2, we may reduce to $S L_{2} \otimes$ $S p_{n-2}$ (if $k \leq n-2$, this group still satisfies the hypothesis, while if $k>n-2$, we replace k with $k^{\prime}=2 n-4-k \geq 2$). Thus, we find that $S L_{2} \otimes S p_{4}$ has finitely many orbits on $P_{j}(V)$ for some $2 \leq j \leq 4$. By
dimension considerations, $j=2$. This implies by Proposition 3.2 that $S L_{2} \otimes S L_{2} \otimes S p_{4}=S O_{4} \otimes S p_{4}$ has finitely many orbits on 1-spaces, contradicting Lemma 4.3.
If $C l_{n}=S O_{n}$, then arguing as above, we reduce to the case where $n=3$ or 4 . Then G has dimension strictly less than $P_{k}(V)$, a contradiction.

We now complete the proof of Theorem 2. A ssume G has finitely many orbits on $P_{k}(V)$ with $1<k \leq(\operatorname{dim} V) / 2$. If G is simple, the theorem is already proved in Section 3, so assume that G is not simple. By Lemma 5.2, $G=G_{1} G_{2}$ with G_{1}, G_{2} simple, and $V=V_{1} \otimes V_{2}$ with each V_{i} an irreducible G_{i}-module. And by Lemma 5.1 we may assume that G is not $S L_{m} \otimes S L_{n}$ (with $V=W_{m} \otimes W_{n}$). Take $\operatorname{dim} V_{1} \leq \operatorname{dim} V_{2}$. By Lemmas 5.1 and 5.3, we have $G_{1}=S L_{2}$ or $S L_{3}$, with V_{1} the natural module, and $k \leq 3$. A lso by Lemma 5.3, G_{2} is not contained in $\operatorname{SO}\left(V_{2}\right)$ or $S p\left(V_{2}\right)$ (and so V_{2} is not self dual). It is clear that G_{2} has finitely many orbits on $P_{k}\left(V_{2}\right)$ (by considering subspaces of the form $e \otimes W$ where e is a fixed vector in V_{1} and W is a subspace of V_{2}). We now have a short list of possibilities for G_{2} (by Theorem 2 for simple groups). In all cases, one checks easily that $\operatorname{dim} G<\operatorname{dim} P_{k}(V)$, a contradiction. This completes the proof of Theorem 2.

6. PROOF OF THEOREM 3

We now prove Theorem 3. Suppose X and Y are maximal closed subgroups of $S L_{n}$ such that there are finitely many (X, Y)-double cosets.
W rite $G=S L_{n}=S L(V)$. Suppose neither X nor Y is a parabolic subgroup. Then X^{0} and Y^{0} are both reductive and X, Y are irreducible on V.

If X^{0} is reducible on V, we claim that $X^{0}=\left(G L_{n / r}\right)^{r} \cap G$ for some r dividing n. When $V \downarrow X^{0}$ is not homogeneous, this is clear from Clifford's theorem and the maximality of X. Otherwise, $V \downarrow X^{0}$ is homogeneous; but then $C_{G}\left(X^{0}\right)^{0} \neq 1$, so $X<N_{G}\left(X^{0}\right)$, contradicting the maximality of X. This establishes the claim.

If X^{0} is irreducible on V, then it is either tensor-decomposable, in which case $X^{0} \leq S L_{r} \otimes S L_{s}$ ($r s=n$), or tensor-indecomposable, in which case X^{0} is simple.
To summarize, either $X^{0}=\left(G L_{n / r}\right)^{r} \cap G$, or $X^{0} \leq S L_{r} \otimes S L_{s}$, or X^{0} is simple; the same applies to Y^{0}.

We may assume that $\operatorname{dim} X \geq\left(n^{2}-1\right) / 2$. Then X^{0} must be simple, and it follows easily using Proposition 1.2 that $X=S p_{n}$ (and n is even). Then $\operatorname{dim} Y \geq n(n-1) / 2-1$, from which we deduce (again using Proposition 1.2) that $Y^{0}=S p_{n}, S O_{n}$ or $\left(G L_{n / 2}\right)^{2} \cap G$. The first two possibilities are ruled out by Proposition 4.1, and the last by the following lemma.

Lemma 6.1. For $m \geq 2$, there are infinitely many $\left(S p_{2 m}, G L_{m} \times G L_{m}\right)$ double cosets in $G L_{2 m}$.

Proof. The action of $G L_{2 m}$ on the cosets of $S p_{2 m}$ is equivalent to its action on the set Ω of all invertible skew-symmetric $2 m \times 2 m$ matrices (the latter action being $g \cdot X=g^{T} X g$ for $g \in G L_{2 m}, X \in \Omega$). Thus it is enough to show that $G L_{m} \times G L_{m}$ has infinitely many orbits on Ω.

Let $X \in \Omega$, and write

$$
X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
$$

(so X_{11}, X_{22} are skew-symmetric and $X_{21}=-X_{12}^{T}$). Define $d(X)=\operatorname{det}(X)$ and $e(X)=\operatorname{det}\left(X_{12}\right)$. If $h=(A, B) \in G L_{m} \times G L_{m}$, then $d(h \cdot X)=$ $\operatorname{det}(A B)^{2} d(X)$ and $e(h \cdot X)=\operatorname{det}(A B) e(X)$. Therefore e^{2} / d is a nonconstant H-invariant regular function on the variety Ω. Consequently H has no dense orbit on Ω, and the result follows.

W e have now established that either X or Y is a parabolic subgroup, say Y is. W rite $Y=P_{k}$ or P_{n-k}, where $k \leq n / 2$. We may assume that X is not parabolic. The (X, Y)-double cosets in $S L_{n}$ are in bijective correspondence with the orbits of X on k-spaces (or ($n-k$)-spaces). Thus X has finitely many orbits on $P_{k}(V)$.

We next handle the case where X^{0} is reducible.
Lemma 6.2. Suppose X^{0} is reducible on V. Then $X^{0}=\left(G L_{n / r}\right)^{r} \cap G$ with $r \mid n$, and one of: $r \leq 3, k$ arbitrary; or $r \geq 4, k=1$. Conversely, if either of these holds, then X does have finitely many orbits on $P_{k}(V)$.

For inductive purposes in the proof, it is convenient to deduce Lemma 6.2 from the following more general result.

Lemma 6.3. Let $V=V_{1} \oplus \cdots \oplus V_{r}$, with each V_{i} nonzero, and let $H=$ $G L\left(V_{1}\right) \times \cdots \times G L\left(V_{r}\right) \leq G L(V)$. Then H has finitely many orbits on $P_{k}(V)$ ($k \leq n / 2$) if and only if one of: $r \leq 3, k$ arbitrary; or $r \geq 4, k=1$.

Proof. Fix r with $r \geq 4$. We first establish by induction on $\operatorname{dim} V$ that for $1<k<\operatorname{dim} V-1, H$ has infinitely many orbits on $P_{k}(V)$. We may assume that $k \leq \operatorname{dim} V / 2$.

If all V_{i} are of dimension 1, then $\operatorname{dim} H / K^{*}=r-1$, and this is less than $\operatorname{dim} P_{k}(V)$ as $r \geq 4$, giving the conclusion in this case. Thus we may assume that $\operatorname{dim} V_{1} \geq 2$.

Suppose $k>2$. For $0 \neq v \in V_{1}$, define

$$
\Omega_{v}=\left\{W \in P_{k}(V): v \in W\right\} .
$$

By induction, $H_{\langle v\rangle}$ has infinitely many orbits on ($k-1$)-spaces in $V /\langle v\rangle$, hence on k-spaces in Ω_{v}. Also, if $W, W^{\prime} \in \Omega_{v}$ are in the same H-orbit,
then they are in the same $H_{\langle v\rangle}$-orbit. It follows that H has infinitely many orbits on $P_{k}(V)$.
Thus we may assume that $k=2$. Suppose some V_{i} has dimension 3 or more, say $\operatorname{dim} V_{1} \geq 3$. By induction, given a 2-space $X \subset V_{1}, H_{X}$ has infinitely many orbits on 2-spaces in $X \oplus V_{2} \oplus \cdots \oplus V_{r}$. Therefore H has infinitely many orbits on 2-spaces in V which project to a 2-space of V_{1}, hence on $P_{2}(V)$.
We are now down to the case where $k=2$ and $\operatorname{dim} V_{i} \leq 2$ for all i. For each i, let π_{i} be the projection $V \rightarrow V_{i}$, and let X_{i} be a 1-space in V_{i}. By the second paragraph, $H_{X_{1}, \ldots, X_{r}}$ has infinitely many orbits on the set

$$
\left\{W \in P_{2}(V): \pi_{i}(W)=X_{i} \text { for all } i\right\}
$$

Therefore H has infinitely many orbits on the set

$$
\left\{W \in P_{2}(V): \operatorname{dim} \pi_{i}(W)=1 \text { for all } i\right\}
$$

hence on $P_{2}(V)$. This completes the proof of the assertion in the first paragraph.

To complete the proof of the Iemma, we must show that if $r \leq 3$ or if $k=1$, then H has finitely many orbits on $P_{k}(V)$. This is clear if $k=1$.

Suppose $r=2$. A s above, by induction H has finitely many orbits on the set of k-spaces W such that $\pi_{i}(W) \neq V_{i}$ for some i. If there are any remaining k-spaces W, then $\operatorname{dim} W=\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$; the set of such k-spaces W (projecting onto both V_{1} and V_{2}) forms a single orbit of H.

Finally, suppose $r=3$. This case appears to be more complicated than the others, and rather than argue directly, we apply the theory of quivers as follows. For background, see [Be], for example.

Suppose W and W^{\prime} are subspaces of $V=V_{1} \oplus V_{2} \oplus V_{3}$. Then W gives rise to a representation of the D_{4} quiver, by putting W on the central node of the D_{4} diagram, and the V_{i} at the outer nodes, and letting the corresponding maps $W \rightarrow V_{i}$ be the projections.

If the representations of the D_{4} quiver corresponding to W and W^{\prime} are equivalent, then W and W^{\prime} are in the same H-orbit. However, by a result of G abriel (see [Be, 4.7.6]), any quiver corresponding to a Dynkin diagram has finite representation type, hence has only finitely many representations of any given dimension type, up to equivalence. Consequently H has finitely many orbits on $P_{k}(V)$ for each k, as required.

By Lemma 6.2 we can now assume that X^{0} is irreducible, and hence is given by Theorems 1 and 2. If X^{0} is tensor-decomposable, then by the maximality of X we have $X^{0}=S L_{r} \otimes S L_{s}$ (note that $X^{0}=S L_{2} \otimes S L_{2} \otimes$ $S L_{2}$ has normalizer contained in $S p_{8}$). Hence conclusion (iv) of Theorem 3 holds.

It remains to handle the case where X^{0} is simple and tensor-indecomposable. If $X=C l_{n}$ then (ii) of Theorem 3 holds; so we may assume that the representation of X in $S L_{n}$ is not self-dual. The possibilities are listed in Table IV.

7. PROOF OF THEOREM 4

We begin with a well known result concerning finite linear groups. For completeness, we sketch a proof.

Lemma 7.1. Let q be a prime power and let H be a subgroup of $G L_{n}(q)$. If $j \leq k \leq n / 2$, then the number of orbits of H on $P_{j}\left(V_{n}(q)\right)$ is less than or equal to the number of orbits of H on $P_{k}\left(V_{n}(q)\right)$.

Proof. For $i \leq n / 2$, let ϕ_{i} denote the permutation character of $G L_{n}(q)$ on the set of i-dimensional subspaces. Then, ϕ_{i} is a sum of i distinct irreducible characters, and $\phi_{i}=\phi_{i-1}+\chi_{i}$ where χ_{i} is irreducible. The number of orbits of H on i-dimensional subspaces is the inner product $\left(1_{H}^{G L_{n}(q)}, \phi_{i}\right) \geq\left(1_{H}^{G L_{n}(q)}, \phi_{i-1}\right)$, giving the conclusion.

We now prove Theorem 4. A s usual, K denotes an algebraically closed field of characteristic $p \geq 0$, and V is a finite-dimensional vector space over K. When $p>0, q$ denotes a power of p, and σ_{q} a Frobenius q-power morphism of $G L(V)$.
The strategy of proof is first to show using model theory that the field K can be assumed to be locally finite; then we use Lang's Theorem [SS, I, 2.7] to reduce to finite groups, in which case we can apply Lemma 7.1.

Regard K as a first order structure in the usual language $L=$ $(+, .,-, 0,1)$ for rings. We shall use the following well-known model-theoretic facts. (In fact (4) and (5) hold without the algebraic closure assumption.)
(1) (Corollary A.5.2 of [H o]) A ny two algebraically closed fields of the same characteristic satisfy the same L-sentences.
(2) If an L-sentence τ is true of an algebraically closed field of characteristic 0 , then for all but finitely many primes p, it is true of all algebraically closed fields of characteristic p. (This follows easily from (1) by compactness or an ultraproduct argument.)
(3) (2.10(i) of [DS]) There is a natural number $B=B(n, d)$ (not depending on K) with the following property. Let $f_{1}, \ldots, f_{m} \in K[\bar{X}]=$ $K\left[X_{1}, \ldots, X_{n}\right]$, each of total degree at most d, and let I be the ideal in $K[\bar{X}]$ generated by the f_{i}. Then I is prime provided $1 \notin I$, and whenever $f, g \in K[\bar{X}]$ have total degree at most B and $f g \in I$, we have $f \in I$ or $g \in I$.
(4) ((I) of [DS]) There is a natural number $C=C(n, d)$ (not depending on the field K) with the following property. Let f_{1}, \ldots, f_{m}, I be as in (3), and $f \in I$ have total degree at most d. Then there are $g_{1}, \ldots, g_{m} \in$ $K[\bar{X}]$ each of total degree at most C such that $f=\sum_{i=1}^{m} g_{i} f_{i}$.
(5) There are integers $D=D(n, d), E=E(n, d)$ such that if I is as in (3), the radical \sqrt{I} is generated by polynomials of degree at most D, and if $f \in \sqrt{I}$ then $f^{E} \in I$.

From (3), (4), and (5) we deduce
(6) Let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{m}\right)$. A lso let $\phi(\bar{x}, \bar{y})$ be an L-formula which is a finite conjunction of formulas each expressing (without quantifiers) that a certain polynomial $p_{i}(\bar{x}, \bar{y})$ over \mathbb{Z} vanishes $(i=1, \ldots, k)$. Then there is a first order formula $\psi(\bar{y})$ such that for any algebraically closed field F and $\bar{a} \in F^{m}$, the variety $V(\bar{a})=\left\{\bar{x} \in F^{n}: F \vDash\right.$ $\phi(\bar{x}, \bar{a})$ \} is irreducible if and only if $F \vDash \psi(\bar{a})$.

To deduce this, observe that $V(\bar{a})$ is irreducible if and only if the radical of $I(\bar{a})=\left(p_{1}(\bar{x}, \bar{a}), \ldots, p_{k}(\bar{x}, \bar{a})\right)$ is prime. By (3) and (5) there are D, E such that the latter holds if and only if $1 \notin I(\bar{a})$ and for any $f, g \in K[\bar{X}]$ of degree at most $D,(f g)^{E} \in I$ if and only if $f^{E} \in I$ or $g^{E} \in I$. By (4), the latter is first order expressible (uniformly in \bar{a}).

Suppose now that G is a counterexample to Theorem 4. Thus G is a closed subgroup of $G L(V)$, and G has finitely many orbits on $P_{k}(V)$ and infinitely many orbits on $P_{j}(V)$, where $j<k \leq \operatorname{dim} V / 2$. Let $\Omega_{1}, \ldots, \Omega_{d}$ be the G-orbits on $P_{k}(V)$, and for each i pick $\omega_{i} \in \Omega_{i}$ and define $G_{i}=G_{\omega_{i}}, e_{i}=\left|G_{i}: G_{i}^{0}\right|$, and $e=e_{1}+\cdots+e_{d}$. We regard $G L(V)$ as a subset of K^{n} for some n. The domain of $G L(V)$, its group operation, and its action on V are also L-definable (by a single formula which works in all fields). Let \bar{a} be a finite sequence from K over which G, G_{i}, G_{i}^{0} are defined. There are quantifier free formulas $\phi(\bar{x}, \bar{a}), \psi_{i}(\bar{x}, \bar{a})$, and $\chi_{i}(\bar{x}, \bar{a})$ whose solution sets in K^{n} are respectively G, G_{i}, and G_{i}^{0} (for $i=1, \ldots, d$). There is also a sentence $\rho(\bar{a})$ which expresses that G is a subgroup of $G L(V)$, that the ω_{i} form a set of orbit representatives for the action of G on $P_{k}(V)$, with stabilizers G_{i}, that $\left|G_{i}: G_{i}^{0}\right|=e_{i}$, that each G_{i}^{0} is connected (this uses (5) above-we express this connectedness in a way which works in all algebraically closed fields), and also that G has at least $e+1$ orbits on $P_{j}(V)$. The formula $\rho(\bar{y})$ is chosen so that in any algebraically closed field F and for any \bar{b} from F, it expresses that the corresponding group defined over \bar{b} has the corresponding properties.

Suppose first $p>0$, and let F be the algebraic closure of \mathbb{F}_{p}. Since $K \vDash \exists \bar{y} \rho(\bar{y})$, by (1) also $F \vDash \exists \bar{y} \rho(\bar{y})$ so there is \bar{b} from F with $F \vDash \rho(\bar{b})$. Hence, we may suppose that $K=F$ and $\bar{b}=\bar{a}$. Choose a power q of p large enough so that \bar{a} is fixed by σ_{q} and at least $e+1$ orbits of $G(F)$ on
$P_{j}(V(F))$ have representatives in $P_{j}(V(q))$. Then $G(q)$ has at least $e+1$ orbits on $P_{j}(V(q))$, but, by Lang's Theorem, has at most e orbits on $P_{k}(V(q))$, contradicting Lemma 7.1.
Finally, suppose that $p=0$. Since $K \vDash \exists \bar{y} \rho(\bar{y})$, by (2) there is a prime r such that the algebraically closed field F of characteristic r and transcendence degree 0 satisfies $\exists \bar{y} \rho(\bar{y}$) (in fact, any sufficiently large prime will do). Now argue as in the last paragraph.
This completes the proof of Theorem 4.
Remark. The methods used here, combined with the fact that in any algebraically closed field, any formula is equivalent to a quantifier-free formula (Corollary A.5.2 of [Ho]), also give an alternative short proof of Proposition 1.1.

REFERENCES

[As] M. Aschbacher, Chevalley groups of type G_{2} as the group of a trilinear form, J. Algebra 109 (1987), 193-259.
[AS] M.A schbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1-91.
[A BS] H. A zad, M. Barry, and G. M. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), 551-562.
[Be] D. Benson, "Representations and Cohomology. I. Basic Representation Theory of Finite Groups and Associative Algebras," Cambridge Univ. Press, Cambridge, UK, 1991.
[Bo] N. Bourbaki, "G roupes et A lgebres de Lie," Chaps. 4-6, H ermann, Paris, 1968.
[Br1] J. Brundan, Double coset density in exceptional algebraic groups, J. London Math. Soc., in press.
[Br2] J. Brundan, "D ouble Cosets in A Igebraic Groups," Ph.D. Thesis, Imperial College, London, 1996.
[Ch1] Z. Chen, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic 2, Acta Math. Sinica 2 (1986), 168-177.
[Ch2] Z. Chen, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic p, II, Chinese Ann. Math. Ser. A 9 (1988), 10-22.
[Ch3] Z. Chen, A prehomogeneous vector space of characteristic 3, in "Group Theory, Beijing, 1984" (H. F. Tuan, Ed.), pp. 266-276, Lecture Notes in M athematics, V ol. 1185, Springer-V erlag, New Y ork/Berlin, 1986.
[CPS] E. Cline, B. Parshall, and L. Scott, Cohomology of finite groups of Lie type, I, Inst. Hautes Etudes Sci. Publ. Math. 45 (1975), 169-191.
[CC] A. M. Cohen and B. N. Cooperstein, The 2-spaces of the standard $E_{6}(q)$-module, Geom. Dedicata 25 (1988), 467-480.
[CW] A. M. Cohen and D. Wales, $G L(4)$-orbits on a 16 -dimensional module in characteristic 3, J. Algebra 185 (1996), 85-107.
[DS] L. van den Dries and K. Schmidt, Bounds in the theory of polynomial rings over fields. A non-standard approach, Invent. Math. 76 (1984), 77-91.
[G a] P. Gabriel, D egenerate bilinear forms, J. Algebra 31 (1974), 67-72.
[H o] W. Hodges, "M odel Theory," Cambridge Univ. Press, Cambridge, UK, 1993.
[Ig] J. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997-1028.
[J a] N. J acobson, "The Theory of R ings," A mer. M ath. Soc., N ew Y ork, 1943.
[K a] V. K ac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213.
[La] S. Lang, A Igebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563.
[Li1] M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. 50 (1985), 426-446.
[Li2] M. W. Liebeck, The affine permutation groups of rank 3, Proc. London Math. Soc. 54 (1987), 477-516.
[LS1] M. W. Liebeck and G. M. Seitz, Subgroups generated by root elements in groups of Lie type, Ann. of Math. 139 (1994), 293-361.
[LS2] M.W. Liebeck and G. M. Seitz, R eductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121, N o. 580 (1996), 1-111.
[LS3] M. W. Liebeck and G. M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc., to appear.
[LSS] M. W. Liebeck, J. Saxl, and G. M. Seitz, Factorizations of simple algebraic groups, Trans. Amer. Math. Soc. 348 (1996), 799-822.
[R i] R. Richardson, Finiteness theorems for orbits of algebraic groups, Indag. Math. 88 (1985), 337-344.
[RS] C. Riehmn and M. A. Shrader-F rechette, The equivalence of sesquilinear forms, J. Algebra 42 (1976), 495-530.
[SK] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.
[SS] T. A. Springer and R. Steinberg, Conjugacy classes, in "Seminar on A Igebraic Groups and R elated Topics" (A. Borel et al., Eds.), pp. 168-266, Lecture N otes in M ath., V ol. 131, Springer-V erlag, Berlin, 1970.

[^0]: * The first and fourth authors acknowledge the support of NSF grants and NATO Grant CRG 931394.

