Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Available at

www.MATHEMATICSwWEB.ORG

Cﬁ Multivariate
POWERED BY SCIENCECDIHEOT' Analysis

ACADEMIC
PRESS Journal of Multivariate Analysis 86 (2003) 48—71

http://www.elsevier.com/locate/jmva

Are copulas unimodal?

Ioan Cuculescu® and Radu Theodorescu®*

* Facultatea de matematicd, Universitatea Bucuresti, str. Academiei 14, RO-70109 Bucuresti, Romania
® Département de Mathématiques et de Statistique, Université Laval, Sainte-Foy, Québec GI1K 7P4, Canada

Received 3 April 2000

Abstract

Three types of unimodality (central convex, block, and star) are considered and the
corresponding sets of unimodal copulas determined. Examples of star unimodal copulas,
absolutely continuous, with a nonnull singular part, and even singular, are given. Necessary
and sufficient conditions for a diagonal to be the diagonal section of a star unimodal copula
are also indicated. Attention is also paid to the Archimedean case.
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1. Introduction

It is Sklar [9] who in 1959 coined the term copula for a distribution whose margins
are uniform on I = [0, 1]. Since then the literature devoted to this notion continues to
grow, mainly for its use as a tool in measuring the dependence or association
between random variables. The recent book by Nelsen [8] gathers the most
important information about copulas. Recent papers which appeared after the
publication of this book are to be added: on the characterization of quasi-copulas by
Genest et al. [7] and on a new class of copulas by Capéraa et al. [2]. We also mention
our papers [3,4] concerning extreme value attractors for star unimodal copulas.
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An important property of a distribution is unimodality. It is then natural to ask
whether copulas are unimodal. Multivariate unimodality takes different forms so we
choose here the most used ones and examine copulas with respect to them.

The paper is organized as follows. Section 2 has an auxiliary character; here we
indicate three notions of bivariate unimodality as well as definitions, notations, and
results to be used throughout this paper. In Section 3 we determine the structure of
unimodal copulas according to the concept of unimodality used. We also indicate in
Section 4 examples of star unimodal copulas, absolutely continuous, with a nonnull
singular part, and even singular, are given. In Section 5 we examine diagonals of a
class of star unimodal copulas and we give several examples; these copulas can be
explicitly (recursively) constructed. The special case of Archimedean copulas is
examined in Section 6. For the sake of simplicity we restricted ourselves in the
preceding section to the bivariate case, although the results generally hold for higher
dimension as we briefly mention in Section 7.

2. Prelude

We shall use the term probability measure or distribution at our convenience. For
the sake of simplicity we consider the bivariate case.

2.1. Copulas

Copula terminology and notation is that in Nelsen [8]. A copula C is a distribution
on I? with both margins uniform on I (the image of a measure u by a map f is
pof ~H() = u(f~1(+))). Its diagonal section is the function t+— ¢ (1) = C(t,1); it also
may be viewed as a distribution obtained as the image of C by the map
(u,v) — (max(u, v), max(u,v)). A diagonal is a function J : I - I which satisfies the
following: (a) for all rel, 5(¢)<t; (b) o(1) =1; (¢) for all s<z in I, 0<5(¢) —
d(s)(t —s). According to Nelsen [8, Theorem 3.2.11, p. 75] the class of all d’s
coincides with the class of all d¢’s. In the sequel (fv)(B) stands for [, f dv.

The following result holds:

Lemma 2.1. The set A of all diagonals is convex and compact with respect to uniform
convergence. Its extreme elements (in Choquet’s sense) are the diagonals 6 for which:
(E) for almost all x’s (with respect to Lebesgue measure m) we have either 6(x) = x or
the derivative §'(x) =0 or 2.

Remark 2.2. Simple examples (as those in Example 5.4) show that 4 is not a
Choquet simplex.

Let W(u,v) =max(u+v—1,0) and M(u,v) = min(u,v) be the lower and the
upper Fréchet—Hoeffding bounds; W and M are copulas. Further set IT(u,v) = uv
for the ‘independence’ copula. W is the uniform distribution on the segment joining
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the points (0, 1) and (1,0), M the uniform distribution on the segment joining (0, 0)
to (1,1), and IT the uniform distribution on /2. Fréchet’s [6] family of copulas
consists of all convex combinations of W, M, and II.

We now consider a continuous, convex, and strictly decreasing function

¢ : 1[0, 0] with ¢(1) = 0, and we denote by o its pseudo-inverse given by

¢FHU%:{¢_%0 for 0<1<(0),

0 for ¢(0)<t< 00.

If ¢(0) = oo then ¢/~ = ¢!, For the sake of simplicity we shall use in what follows

only the notation ¢ ' =1. We observe that ¥ is also convex. A copula C is
Archimedean if
C(u,v) :¢(¢(“)+¢(U))v u,vel, (1)

and ¢ is its generator. The partial derivative

Co(u,v) =Y/ ((¢(u) + ¢ (v))d'(u)
exists for almost all u,vel. C/(u, -) (viewed as a conditional distribution) appears in
the decomposition C =1m®C,(u,-) (® stands for measure product). This
disintegration of C leads to:

Remark 2.3. Let C be an Archimedean copula with generator ¢. (1) If C charges
every subinterval of a segment J (J cannot be vertical) then ¥/’ is discontinuous in
almost every ¢(u) + ¢(v), (u,v)eJ. (2) If C has a null singular part then ¢’ is
continuous.

2.2. Unimodality

For unimodality we refer to the monographs Dharmadhikari and Joag-dev [5] and
Bertin et al. [1].

In what follows we list three notions of bivariate unimodality.

Central convex unimodality (Dharmadhikari and Joag-dev [5, p. 44], Bertin et al.
[1, p. 77]): A distribution u is said to be central convex unimodal about xeR? if it
belongs to the closed convex hull of the set of all uniform distributions on convex
sets having x as an interior point and which are symmetric with respect to x.

Block unimodality (Dharmadhikari and Joag-dev [5, p. 42], Bertin et al. [1, p. 74]):
A distribution y is said to be block unimodal about x e R? if it belongs to the closed
convex hull of the set of all uniform distributions on rectangles containing x and
having edges parallel to the coordinate axes.

Star unimodality (Dharmadhikari and Joag-dev [5, p. 38], Bertin et al. [1, p. 72]): A
distribution g is said to be star unimodal about xeR? if it belongs to the closed
convex hull of the set of all uniform distributions on sets which are star-shaped
about x (i.e. which contain together with an y the whole segment joining x to y).
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Remark 2.4. Since the uniform distributions in the definition of block unimodality
are all star unimodal, the set of all distributions block unimodal about x is a proper
subset of the set of all star unimodal distributions about x (Dharmadhikari and
Joag-dev [5, Theorem 2.12, p. 57]).

Now let U,; denote the uniform distribution on (a,b) or (b,a) according
as b>a or b<a; U,, will correspond to the point mass ¢, at a. The following
lemma summarizes known results concerning unimodality which we need in our
proofs.

Lemma 2.5. The following hold:
(1) A distribution C is star unimodal about (a,b) if and only if it is a mixture of the
form

€= / O (ab),(ur) Ap(U; ),

where w is a probability measure on R?, Tlab),(ab) = Eab)> Oab),(up)> Jor (u,v)#(a,b), is
concentrated on the segment joining (a,b) to (u,v) and has with respect to the uniform
distribution a probability density function f(u',v') which is proportional to the distance
between (W',v') and (a,b). For a given C p is unique.

(2) The first margin of 6 (up) (), denoted by H,,, depends only on a and u whereas
the second one depends only on b and v and is Hy,,. We have H,, = ¢, and, for u#a,
H,, is concentrated on the segment with endpoints a and u with a probability density
function h(t) which is proportional to |t —a|. When (u,v) runs over I* the pair of
margins of 0 (qp) (uw) runs over all pairs (Hyy, Hp,).

(3) The distribution 1 ym is symmetric only with respect to 0.5. For a given
ael0,1], liqym represents uniquely as [ Hg, dv(u) with v = (11ym+ ag + (1 —
a)er)/2. The same assertion also holds for 1 ,m and 1, ym with v = (1 ,m + agg) /2
and v = (1, ym+ (1 — a)e) /2, respectively.

In order to construct star unimodal copulas we establish two simple formulas.
Let Uyp and Up 4 p be the uniform distribution on the segment with endpoints
A and B and on the triangle with vertices P, A, and B respectively, both non-
degenerate.

Lemma 2.6. The following hold.
(1) For every measurable g on the segment with endpoints A and B we have

[ onrdlgUas)(X) = 01U

where g1 (P + s(Q — P)) = g(Q) for se(0,1] and Q on the segment with endpoints A
and B. Particularly [opx dU,p(X) = Up 4 5.
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(2) The distribution fapg( dUp 4 5(X) is concentrated on the triangle PAB, is
absolutely continuous, and its probability density function is 2(logh —log h(X))/q,
where q is the area of the triangle PAB, h is the distance from P to the line AB, and
h(X) is the distance from P to the line parallel to AB passing through X .
Proof. (1) Since

1
/GP,X d(gUyp)(X) = / g(tA+ (1 = 1)B)op1ar(-np dt
0

we have, for every measurable f : triangle PAB— [0, o),

/fd</(7p7x d(gUA,B)(X))
_ /0 1 < / fdop,,A+(1,>B)g[zA+ (1 — 1)B] dt

1 1
- /0 2(/0 sf[PJrs(t(AP)Jr(lt)(BP))]ds)g[tAJr(lt)B]dt

1 s
2/0 </0f[P+u(A—P)Jr(s—u)(B—P)]g[(u/s)A
+ (1 — (u/s))B] du) ds

-2 /0](/Osf(Ql(sa”))g‘(Ql(Sv”))du)ds,
Qi(s,u) = P+ u(A = P) + (s —u)(B — P).

The map (s,u)—>P+u(d—P)+ (s—u)(B— P) is linear, maps the triangle
{(s,u): 0<u<s<1} onto the triangle PAB, the image of the uniform measure
2m®@m by this map is Up 4 p, hence the preceding integral is

/fgl dUp 4 p = /fd(glUP,A,B)-

(2) By virtue of the first part of the proof we can write

1 1

/GP,X dUp 4 3(X) =2 /0 S( /0 OP_Psu(A—P)+s(1—u)(B—P) du) ds
1

=2 /0 s ( / opx AUpsu—p)prsB—p)(X ))ds

1
=2 /0 SUp pis(4—P),P+s(B—P) dS-

If ¢ is the area of the triangle PAB then the area of the triangle with vertices
P,P+s(A—P), P+s(B—P) is s*q, hence the probability density function of
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JopxdUp,4p(X) at an interior point X = P+ u(v(4 — P)+ (1 —0v)(B—P))
of the triangle PAB is ful (2s/s°q) ds = 2log(1/u)/q. 1t is easily seen that
u=h(X)/h. O

3. Unimodality of copulas
We have the following result concerning central convex unimodality:

Proposition 3.1. A4 copula may be central convex unimodal only about (0.5,0.5). It is
so if and only if it belongs to Fréchet’s family.

The next result concerns block unimodality:

Proposition 3.2. A copula block unimodal about an interior point (a,b)el® has the
probability density function

S =qloaxos + (1= ag)(1 = a) " Vanwop + (1= bg)(1 = b)) oax)
=+ (1 —a—b+ abq)(l — b)71(1 — a)ill(a"l)X(le),
where max((1/a) + (1/b) — (1/ab),0)<g<min(l/a,1/b). If (a,b) is not an interior
point then the only block unimodal copula is I1.

Let us now examine copulas in the class of star unimodal distributions, broader
than that of block unimodal distributions (Remark 2.4).

Proposition 3.3. A copula C star unimodal about a point (a,b)el* is a mixture of the
form C = fa(ay;,)’(,,,v) du(u,v) with the unique probability measure

H= Y Gy
o,fe{0,1}
+ doeo ® (fym) + dier ® (fim) + di (fm) @ eo + di (fim) ®e1 +¢&, (2)
where ¢ =3, sc (0.1} Cups the remaining ¢’s and d’s are nonnegative such that
c00+c01+d(}:a/2, C1()+6‘11+d11=<1—a)/2,
Coo—l—Clo—l—dg:b/Z, Co]+611+d12=(1—b)/2, (3)
and f} are probability density functions on I satisfying

(dofy +difm + c&y = (difg + diffym + c&) = 1, m)2,

& being a probability measure and &, and &, its margins.
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Proof. Star unimodality about (a,b) implies the representation C =
J 0 (ap),(ur) du(u, v) with the probability measure u on I* (Lemma 2.5(1)). Since C
is a copula (Lemma 2.5(2)) u satisfies

/Hg,x dp(x) =1m = /Hb,y dii (y),

where p; and pu, are the margins of u. The relation involving yu; splits into
/ Haxd:ul( )_10(1 / Haxd:ul( )—l(al) (4)
[0,a) (a,1]

we observe that one of these equalities is absent if either ¢ = 0 or ¢ = 1. The unicity
of the representations of 14m and 1, ;ym shows (Lemma 2.5(3)) that (4) are
equivalent to

w =ag/2+ (1 —a)e /24 1;m/2. (5)
In the same way we obtain
U =beo/2+ (1 —b)ey /2 + 1m/2. (6)

The conclusion now follows by decomposing p into a sum of nine measures
ZA,B Map With p, p not charging the complementary of 4 x B, the sets 4 and B

running over the singletons {0}, {1} and the interval (0, 1). For singletons 4 = {«}
and B = {fi} we have p, 5 = cyp¢(,p) and for a singleton 4 = {«} and B = (0, 1) we

have p, p = d,e, ®v), where v} is a probability measure on the interval (0,1); a

similar conclusion (with superscript 2) is valid when 4 = (0, 1) and B = {f}. We set
c€ = fi0,1),(0,1)» Where ¢ is a probability measure. From (5) and (6) we now obtain (3)
involving the ¢’s and d’s and also

divy +divi +c&_ ;= 1m/2, i=1,2. (7)

Equalities (7) (together with (3)) show that ¢ = Z%ﬁe (0.1} Cap and that v/ (when

d!>0) is absolutely continuous with respect to m; let f] be its probability density
function. [

Remark 3.4. Let C be a copula star unimodal about a vertex of /2, say (0,0). The
representation (2) reduces to

f=ciieq +dier @ (fim) + di(fim) ®e + 11 é
and the relations between the elements involved become
c + alll =y +d12 =0.5,
dllfllm—i—c“iz:dlzﬁzm+cnfl = 1;m/2. (8)
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Hence d} = d} = 0.5 — ¢y; therefore
u= 011[8(1.1) + é] + (0.5 — 611)[81 ®(fllm) + (flzm)®81]. (9)

Moreover if ¢ = 0.5 then & is a copula.

Remark 3.5. Let u be a probability measure in R” with probability density function f
such that the level set B, = {f' >a} is convex for all >0. From the geometric point
of view such a probability measure corresponds to the idea of what might be a
‘unimodal’ one. Take

ce () B
B, #0

where B, is the closure of B,. Then y is star unimodal about ¢. Consequently for such
w’s applies Proposition 3.3.

4. Examples of star unimodal copulas

Finding examples or constructing star unimodal copulas generally relies on the
representation (2) of u and therefore implicitly on an appropriate choice of the
measure ¢ appearing in it.

Example 4.1. Fréchet’s copulas are star unimodal about (0.5,0.5). Indeed such a
copula may be written as C = ¢ M + (1 — q1 — ¢2)I[I + ¢; W and we obtain it by
taking in (2)

coo = ¢ = q1/4,

clo = ¢ = q2/4,

E=(@M+qaW)/(q1+ q),

fi=1, i=12 a=01,

d=(1-q—-q)/4, i=12 a=0,1.
On the other hand, any convex combination of M and IT is star unimodal about any

x on the segment with endpoints (0,0) and (1, 1), and any convex combination of IT
and W is star unimodal about any x on the segment with endpoints (0, 1) and (1,0).

Example 4.2. We determine the set of all absolutely continuous copulas star
unimodal about (a,b). We examine two cases according to the position of (a, b).

(1) Let (a,b) be a vertex of I?, say (0,0). If C is absolutely continuous
representation (9) implies ¢;; =0, hence d} =d? =0.5. Thus f! =/ =1 and
therefore (Lemma 2.6(1)) the only copula C is I1. This assertion holds for any vertex
of I*.
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(2) Let (a,b) be an interior point of /2. C absolutely continuous implies ¢,; = 0
therefore ¢ = 0; hence u in (2) becomes

f=dyeo® (fym) +dle1 ® (flm) + di (fgm) @ eo + di (fim) @ (10)
with

dy =a/2, dl =(1—a)/2, d}=5b/2, di =(1-b)/2 (11)
and

afy +(1—a)fl =bff + (1 =b)ff = 1. (12)

We note that (10)—(12) are also sufficient for C to be absolutely continuous (Lemma
2.6(1)). Contrary to the first case, we have a great freedom in the choice of the f;’s.
Namely f, /¢ are arbitrary probability density functions with values in [0, 1/a],
[0, 1/b] respectively, and f|!, /7 result from (12).

Remark 4.3. For a copula C star unimodal about (a, b) with a nonnull singular part
at least one of the four c,s’s in (2) is positive (Example 4.2(2)), so ¢#0, and the
singular part of C may have a contribution coming from &. If (a, b) is not an interior
point of I? then an (o, B) with ¢,5>0 must be different from the vertices of I? lying
on the edges passing through (a, b) (i.e. two or three such vertices). The singular part
of C charges every subinterval of the segment with endpoints (a,b) and (o, f5).

The following example uses (9) in order to obtain a simple (neither absolutely
continuous nor singular) copula star unimodal about (0,0) not belonging to
Fréchet’s family.

Example 4.4. According to (9) with ¢;; = 0.5
C = 0.50‘(0,0)’(1,1) + 0.5/0’(0_’0%){ dII(X)

is a copula star unimodal about (0,0). Let us express it explicitly. The unit square is
the union of two triangles with vertices in (0,0),(1,0), (1,1) and (0,0), (0, 1), (1, 1),
respectively, each having an area equal to 0.5 and the distance from (0,0) to its
opposite edge is equal to 1. From Lemma 2.6(2), we obtain for u>v

v u
C(u,v)zO.sz—Z/ llogtdt—v/ log ¢ dt,
0 v
Le.
C(u,v) = (u,v)(1 — logmax(u,v)) (u,v)el*.
The probability density function of the absolutely continuous part of C is

—log max(u, v).

Remark 4.5. As in Example 4.4, Lemma 2.6 enables us to determine explicitly star
unimodal copulas C given by (2) when ¢ is a convex combination of uniform
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distributions on segments and polygons, while f}, i = 1,2, are piecewise constant.
Particularly if the polygons are rectangles with edges parallel to the axes then I?
splits up into polygons on each of which the (continuous) probability density
function of the absolutely continuous part of C is linear in log u and logv.

Let us have a deeper insight into the relationship between Lebesgue decomposi-
tions of C and p when C is star unimodal about (0,0).

Put J = ({1} x [0,1])u(]0,1) x {1}), i.e. J is the union of the right and the
upper edges of I?, and let p:I2\{(0,0)}—»J be defined by p(u,v)=
(u/max(u,v),v/max(u,v)). Then (u,v) (p(u,v),max(u,v)) is a bijection p*
between 72\{(0,0)} and J x (0, 1]. Every probability measure u on 72\{(0,0)} has
an image by p* which disintegrates as (uop~')® Q,. Copula C = J00)x du(X)
L — jop!
probability measure Q¢(Y, +) = fol 0,0),(.0) Qu( Y, dt) since 7o),y is the image of
0(0,0),(10) by s>sY; 0(00),,0) is absolutely continuous when considered on the
interval (0, 1) (identified with (0, 1] x {0}). Thus Q¢(Y, -) is absolutely continuous.
Hence we conclude that C has no discrete part and has as absolutely continuous and

satisfies Cop~ and its image by p* disintegrates with the transition

singular parts C,. and C the images by (p* )" of (pop™),. ® Oc and ((pop™'), +

(ep™1) ;) ® Oc, respectively.
When p is given by (9) we have

pep~t = cneqn + (0.5 = enn)[er ® (f{ m) + (fim) ®er] + cndop.

Consequently (uop~!),., if nonnull, is a convex combination of 0.5[¢; ® (f{'m) +
(fim)®e] and (Eop1),. ((pop~'),. = 0is equivalent to ¢;; = 0.5 and (Eop~ 1), = 0),
(nep™'), is a convex combination of & 1y and (¢op™"),, and (uep™"), = (Eep~'),. We
finally are led to the conclusion: C is singular if and only if ¢,y =0.5 and
(Eep71),. = 0. In this case (Remark 3.4) ¢ is a copula.

We note that when ¢ is a copula, op~! may a priori not be taken arbitrarily
especially such that (éop~!),. =0 and different from Fréchet's M (copula C
calculated with ¢;; = 0.5 and ¢ = M is again M). In the following examples we
construct copulas &% M such that op~! is either discrete (Example 4.6) or singular
(Example 4.7). They lead (with ¢;; = 0.5) to singular copulas C# M star unimodal
about (0,0). Since in this case u = 0.5¢(1,1) + 0.5¢ and therefore Cop™' = pop™! =
0.5¢(1,1 +0.5¢op7!, if ¢ does not charge a set of rays originating in (0,0), not
containing the main diagonal of I, then C also will not charge that set of rays.

We now set

Ka(X) = ax, 1(x,y) = (1,%),  ha(x,y) = (ax,ay).

For a>0 we have

_ 1
(l(uﬁv)m)OKa f= ; l(au,av)m (13)
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since the integral of an f with respect to this measure is

[ raac= [“rody= [} am)

The margins of the image of a (generic) measure v by ¢ are those of v but in reverse
order, and the margins of the image of v by 4, are the images of the margins of v
by x,.

The next example yields (with ¢;; = 0.5) a discrete parameter class of singular
copulas C# M star unimodal about (0,0) which do not charge the complementary of
a finite or denumerable set of rays originating in (0, 0).

Example 4.6. (1) For a finite integer k=2 we denote by r = r(k)e(0.5,1) the real
number satisfying r + --- + 7 = 1. Let { = {(k) be the measure charging the mass
(1 — r) uniformly to the segment (with slope different from 1) with endpoints
(r,r"*1y and (1,7) for p = 1, ..., k. The special position of these k segments and the
choice of r imply that the margins of { are 1 ym and 11 ,ym. The measure
5 = g(k) = Z (et-Dn (C + (ot l)oh;(klﬂ)n
n=0
is a copula, as it follows from (13) and the properties following it. £ does not charge

the complementary of a set of 2k rays originating in (0,0); thus éop~! is a discrete
distribution.

(2) For k = oo we set { = {(0) (r(c0) = 0.5) for the measure charging 2~ +!
uniformly to the segment with endpoints (27!,2-?*+1) and (1,277), p>1. Its margins
are 1,1 ymand 1o, ymand ¢ = ¢(c0) =+ {ot~!is a copula for the same reasons,
& does not charge the complementary of an infinite sequence of rays originating in
(0,0); thus Eop~! is a discrete distribution.

(3) More generally let ki, k>, ... be a sequence, finite or infinite, of integers in
{2,3, ..., o0 }; infinity possible occurs only at the end of a finite sequence. Let uy = 1
and for n>1, u, = r(k;)" - r(k,)™"". Then

E= un(llknir) + ((kngr)or")oh,!

n=0

! is also a discrete distribution.

is a copula; Eop~

The next example yields a class of singular copulas C# M star unimodal about
(0,0) which charges no individual ray originating in (0,0) except the segment with
endpoints (0,0) and (1,1).

Example 4.7. (1) Let k=2, let s€(0, 1), and define r = (1 — s%)/(1 — s**!). Further
consider the interval I, with endpoints (s,rs) and (1,r) and the interval Ji , with
endpoints (s,7s?) and (1,rs). We observe that Ii. s and Jj 5 are situated on the rays
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y =rx and y = rsx, respectively. Denote by Uy the uniform distribution on the
segment J and set

k—1

Ck )8 = Z (OCP USpIk.x + ﬁp USka,s)? (14)

p=0
where

o =r(1—"+s" =1, B,=(1-r(1-s">0, p=0,1,....k—1
Extending the definition of o, for p = k we obtain o, — 0,1 = s”(1 — 5)(1 —rs5) >0,
i.e. og>-- >0 = 0. Thus {  is indeed a measure; we note that ([} op™!

point measure concentrated on {(r, 1), (rs, 1)}.
(2) We now verify that the margins of CZ’S are 1 ym and 1. ym. Indeed the first

is a two-

margins of Uy and Uy, coincide and are equal to Uy, while o, + ﬁp = — st
hence the first margin of the p-term in (14) is (s" — ") Uy » = Lt gym (by (13))
and they sum up to 1 ym. The second margins of Uy, and Uy, are Uy, and Uyp .y,
respectively. We now rewrite (14) as

k=1

Go=r(1=9)Upy, + > (41 Upsiy, + B,Uss,,)- (15)
p=0

The second margin of r(1 —s)Uy,  is 1y,,ym, while that of the p-term in (15) is
((x]’+l + ﬁp) rsp+2 sl = r(sp-H Sp+2) rsP+2 psptl = l[rser7 rsr+1171.

These margins sum up to I} ym.

(3) Let T be the closed triangle with vertices (0,0), (1,0), and (1,1). Fix
0<b;<by<1 and take s = 1 — bk~ with be (b, b,). Denote by {; , the measure {j
for this s. We show that there exists k; >4 such that for k>k; the following hold:
(a) r<s® (e [rs"",r]n[s*,1] =0 implying that {, does not charge I*\T);
(b) s I>1-2/k (e Ay, = [T AU e[l =2/k1); (¢) m(4L,) =
2(1 —s5)=b/k.

The existence of k; follows from the expansions with respect to 1/k:

(F =) (1 =) =b(1 =)k + Ok,
(iK1 — (1 = 267" (1 = 1) = b(1 = b)Yk + O(k),
2(1 — sy =2b/k + O(k™?),

the O’s being uniform in 5. We note that both margins of (;‘h are concentrated on
subsets of 4 , according to Step 2 and the definition 4 , in (b).

(4) For every d€(0, 1) and b we denote by {,, the measure C;va and Ay = Ay, for
the minimal k = k(d)>k, such that d<1—2/k. In the next steps we need the
following inequality:

m(Aqp) =201 —5)=q(1 - d), (16)
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where ¢ = by /k;. In fact if k =k; then m(A44;) =2(1 — ) =b/ky=bi(1 —d)/k,
while for k>k; we have d=1-2/(k—1), 1 —d<2/(k—1)<4/k<k [k, ie.
m(Aap) =2(1 —s5)=bi(1 — d)/ky; inequality (16) is established. By Step 3(b)
and by the choice of k both margins of {;, are concentrated on subsets of
Aap<=[1 —2/k,1]<=[d,1]. Thus, by Step 3(a), (s does not charge I*\(T U [d, 1%).

(5) We now extend {; to a symmetric measure about the main diagonal of 1 2 with
margins not exceeding 1 j)m. Set ié,vb =Cap+ Cdﬁbofl. It is clear that: (a) 1, , does
not charge 12\[d, 1]*); (b) both margins of Jqp are equal to 1g,,m = (1w, +
L )m with k=k(d), s=1—-bk2, r=(1-s")/(1—s*") (Step 3(a)). These
margins do not charge 1\[d, 1] due to d<1 — 2/k<rs**! (Step 3(b)); (¢) (17,)op~"
is a two-point measure concentrated on {w(b), zx(b)}, where wy(b) = r, zi(b) = rs;
(d) wg and z; are C* functions which are not constant on any interval.

(6) For every be(by,by) we now construct a copula 4, as a sum of a sequence
of measures of the form cZ,,0h,! (with h,(x,y) = (ax,ay)); hence (l17y)op~!
will not charge the complémentary of the denumerable set of points
{Owr(b), 1), (z (), 1): k=k1}. Namely we set 4, =), 4;. The measures A, will
be defined, as symmetric measures with both margins equal to 1p,m with pairwise
disjoint D,,, I\(D; U --- U D,) being a union of open intervals (a,;, c,;), i =1, ...,2",
ay1 =0, cpi<ayiy (for i<2"), in the following recursive way:

n,i

277

n+1 2! —1

=3 iy oo 120, (17)
i=1

starting with ap; = 0 and ¢p; = 1.
We now verify that both margins of /IZJ” are of the form 1p,, ,m. Namely both
margins of ¢, A, ohgni are (by (13) and Step 5(b)) equal to

Qp i/ Cnish

Cn,i(l[mw,r]m + 1[sk,1]m)°’€;,,_li = (1[cn,,~rsk+‘7cn,,~r] + l[c,,.lskvc,l,f])mv

where k,s,r are calculated with d = a,;/c,; and b. We have ¢, ;rs""' >dc,; = a;
according to Step 5(b). Hence the intervals appearing in the margins of the terms in
(17) are disjoint and do not overlap with D; U --- U D,,, consequently both margins of
2! are equal 1p,, m, where
2}1
Dyt = (enirs™™!, cuirlUlenis®, cnil).
i=1
Moreover
o
I\(DyU -+ UDyp1) = ((@ni €airsd™) U (cnir, enis”)),
i=1
i.e. is the union of a total number 2! nonoverlapping open intervals, and not 3 x 2"
since ¢, is the left endpoint of the interval [¢,;, @y i+1] = (D1 U --- U D,) (With @20
taken as 1). It remains to show that A, is a copula. This assertion follows from
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m(I\(Dyv --- v D,))—0 which in its turn follows from

m(I\(Dy -~ UDpy)) =m(I\(Dy U ---UD,)) =2 icn,f(l — 59
i=1

by(16) 2
< m(I\(DyU-UD,) —q > cni(l —d)
i=1

o
=m(I\(Dyv---uD,))—q Z (Cni — any)
i=1

=(l —gym(I\(Dyv ---UDy,)),

leading to m(I\(Dyu ---uD,))<(1 — ¢)"—0.

(7) We choose a singular nonatomic probability measure  on (b, b;) and set
&= [Apdew(b). Copula ¢ is symmetric with respect to the main diagonal of 7*> and
the image of 17¢ by p is a convex combination of the images of ¢« by the maps wy
and zi, k>k;. By Step 5(d) all these images are singular. Hence the image (17¢)op~!
of 17¢ by p is also singular. Copula ¢ yields a singular copula C# M star unimodal
about (0,0) which charges no individual ray originating in (0, 0) except the segment
with endpoints (0,0) and (1, 1).

Let us observe that choosing zo concentrated on a set of Hausdorff dimension
a<1 copula C will be concentrated on a set of Hausdorff dimension 1 + o (Bertin
et al. [1, Lemma 3.3.44, p. 97)).

5. Diagonals
We now characterize diagonals of copulas star unimodal about (0,0).

Proposition 5.1. Let 0 be a diagonal and c€|0,0.5]. There exists a copula C star
unimodal about (0,0) such that 6 = ¢ and

C/(L,v)=(1l=c, Ci(u1)=(1-c)u, u,v<1, (18)
if and only if &'(u)/u is absolutely continuous nonincreasing and

J(1)y=2(1-c¢), W)/ u)=—4ac/®, u)—ud(u)/2<cu. (19)
If ¢ =0 then C =1II and 5(u) = 5c(u) = u>.
Proof. The case ¢ = 0 follows immediately, so let ce(0,0.5].

Part I: Consider a copula C star unimodal about (0,0) such that 6 = d¢ and
satisfying (18).
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(1) From (9) we deduce
C =cn0(0),1,1) + (0.5 —c1) (/f1 G(0,0),(1,0) dv+/f1 00(u1)d>

+ ¢ /0(0,0)7(%@ d&(u,v).
We have
G0.0),ue) (P, 9) = min(1, (p/u)*, (q/v)°) (20)

since the measure 7o) (. is the image of (o) (1,0) by the map ¢+ (u, tv), hence the
left-hand side of (20) becomes a(9,9) (1,0)([0,p/ u] [0, g/v]). Particularly from (20) we
obtain

6(00).(ue) (P> p) = min(1, p* /max(u, v)?).
Hence the diagonal section d¢(p) is a convex combination of four functions p?,

P2 [f ) dv=p* p* and [min(1,p?/max(u,v)?) d&(u,v) = [min(1,p*/22) dn(1),
where ;1( ) = &(t,t). Summarizing we obtain

5c(p) = (1 — C1|)]72 + c11 /min(l,pz/tz) di’[(l). (21)

We emphasize that ¢ depends on ¢ only via 7.

(2) We now show that ¢ is a copula (thus n = ¢ is a diagonal) and that ¢;; = c,
by using (18). In view of (8) the margins of the measure cy1¢ are 1o ym/2—
(0.5 —¢11)fim, i =1,2. We have to prove that f{ =1, i=1,2.

From (20) we deduce

(00.0).0) (P 9)), = 2p/u)1 4, (u, 0),

where Ap, = {(u,v) : p<u,p<ug/v}. For p=1, g<1 the preceding derivative
equals 2 x 1y (u)1}94(v). Hence

q
G =(-an) [ flwa
0
this relation together with the first condition in (18) imply f! =1 and ¢, = c.

Similarly we obtain ff = 1.
(3) Set g(1) = ¢. By virtue of Part I(1) and (2) we have

1
5(p) =(1— P +c—c / (1 - p?/2) d (1)

P

=(l—c)p*+c—c /p1 (/pt(2w/t2) dw)dn(t)
(- op zﬂ_c/plzw(/ (1)) d ())dw

(1= C_c/pl (v, 1]) dw.
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Since 7 is continuous it follows that § has a continuous derivative

§'(p) =2(1 = c)p+ 2¢p(g*n)([p, 1]) (22)

and §'(1) = 2(1 — ¢), i.e. the first condition in (19). Moreover &' as well as &' (p) /p are
absolutely continuous and

(&' (p)/p) = =2¢1(p)/p?, (23)

hence &'(p)/p nonincreasing and (§'(p)/p) = — 4¢/p* (second condition in (19))
follow from the defining properties of the diagonal # (Part 1(2)).
(4) We now express 7(p) in terms of (g~2n)([p, 1]):

1
1) =1—n(lp.1) =1 - / W2 d(g~n)(w)

p

1
— 1= g 2)(Ip 1)) — / (w2 — p) d(g>n)(w)
1 w
1P ) - [ ( / 2qdq)d<gzn)<w>
)4

=12 ) - [ 2q( / d(g-2n><w>)dq
— 1 p(g2n)([p. 1)) — / 24(g2n)((,1)) dg. (24)

From (22) we obtain
(g7 n)([p: 1)) = 8'(p)/2ep) — (1 =€) ¢ (25)

and introducing (25) in (24) it follows that

1
n(p) =1-pd'(p)/(2e) + (1 = c)p* /e — / (0'(g)/c = 2(1 = ¢)q/c) dg
P

=1-pd(p)/(2c) + (1 = )p* /e = (3(1) = 6(p))/c + (1 = ) (1 = p*) /¢
= —pd(p)/(2c) +8(p)/c. (26)

Now n(p)<p implies —pé'(p)/(2¢) + 8(p)/c<p, i.e. the third condition in (19). This
ends Part I of the proof.

Part II: Let 6 be a diagonal with an absolutely continuous nonincreasing &' (u)/u
satisfying (19).

(1) We determine (g725)([p,1]) from (25). This quantity is nonnegative since
d'(p)/p=6'(1) = 2(1 — ¢). Moreover it is nonincreasing in p since & (p)/p has this
property. It follows that g=25 is a positive measure on (0, 1], absolutely continuous
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since &' is so. Its density function is —(¢'(u)/u)’/(2¢) <2/u? according to (19). Now it
follows that n = g*>(g~%n) is a measure and its density function is <u? x (2/u?) = 2.
If we regard # as a function by 5((a,b]) = n(b) — n(a) and (1) = 1, n has defining
properties (b) and (c) of a diagonal. We observe that (26) also holds for our # and 9.
Therefore n(0) = 0; hence 7 is a probability measure. Defining property (a) of a
diagonal #n(u) <u follows from the last condition in (19).

(2) We now consider a copula ¢ such that ; = n and the measure u given by (9)
with ¢ and with ¢; = ¢, f! =f2 =1, i.e.

= ceq 1)+ (0.5 = c)[er @ (1j,ym) + (1o, ym) ®e1] + €. (27)

Then copula C = [ 0(0,0),(uv) dpt(u, v) is star unimodal about (0,0). Calculations in
Part I(2) show that conditions (18) are valid while calculations in Part I(1) lead to
(21) for 8¢, which in its turn leads to (22) for .. Thus § and J¢ have the same
derivative and coinciding at 1, say, they are equal. [

Example 5.2. An admissible ¢ as in Proposition 5.1 is

5u) = (1+c)u? for uel0,0.5],
| (1= 3¢)u? + 4cu—c for ue(0.5,1].

A copula C star unimodal about (0,0) such that ¢ =0 is
C(u,v) = eM?(u,v) + I (u,v) — sy W2 (u,v).

Remark 5.3. For every ce(0,0.5] we considered in Proposition 5.1 the class of
copulas C star unimodal about (0, 0) satisfying (18). In the proof of this proposition
(Part I(2)) we also established that these C’s are in bijective correspondence with the
class of all copulas &. Namely C = [ 6(9,0), () d(u, v) with u given by (27) leads to
(Lemma 2.6(1))

C = co),1,1) + (1 =2c)1 + C/O-(O,O),(uﬁv) dé(u,v).

Moreover in the same proof we saw that the diagonal section é¢ and # = ¢ are in a
bijective correspondence expressed in different ways by (21), (22), or (26).

Example 5.4. Let us construct copulas C star unimodal about (0,0) satisfying (18)
and indicate their diagonal section d¢. In view of Remark 5.3 we start with a class #
of diagonals 7, chosen among the extreme elements in Lemma 2.1, we construct
for every ne# a family 5, of copulas ¢ (different from that in Nelsen
[8, Theorem 3.2.11, p. 75]) with Jé; =5, and then the associated C’s as well as
their 6.’s follow.
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(1) A diagonal in our class % is determined by a partition of /.
Namely let n>1 and let 7, be a partition 0 = ty, <tp, 1 <--- <ty = 1 with

n n

> (w2 —tu1) =05, Y (2=t 1)<0.50p 2,  p=2,...,m
k=1 k=p

(29)

for n = 1 the second condition does not appear. We determine the continuous n =
1., depending on the partition t,, satisfying #(0) = 0, n constant on [, t—1], and
n' =2 on (ty-1,tu-2), k=1,...,n. By virtue of (29), we conclude that 7 is a
diagonal. This 7, runs over all the diagonals n* with n* piecewise equal to 0 or 2
when n = 1,2, ... and 1, runs over the set of all such partitions of the interval [0, 1].

(2) For every given n we now construct, by induction on the cardinal of the
partition defining #, the class Z,,.

We begin by letting n = 1. Then ¢, = 0.5, 5(¢) = 0 for 1<0.5 and 5(¢) = 2t — 1 for
t=0.5. For this y all &’s with : = 5 are of the form

E(+) =0.5"((900.5,905.1) " (+)) + 0.58%((90.5.15 go05) ' (+)), (30)

where g,,(f) = a + t(b — a) and ¢! , ¢* are arbitrary copulas. In fact, copula & charges
17(0.5) =0 on [0,0.5] x [0,0.5] and 1 —0.5—0.54+7(0.5) =0 on [0.5,1] x [0.5, 1],
hence it represents as & + & with & concentrated on [0,0.5] x [0.5,1] and ¢&"
concentrated on [0.5,1] x [0,0.5]. Then 1y g.5m = lj90.510,1m is the first margin of
110058 = 110,0.5)(&" + &") which is the margin of 1} 5;¢'. Three other similar relations
show that & and &”, translated by —0.5 along the x, and x; axes, respectively, and
transformed homothetically with center 0 and ratio 2, become 0.5{; and 0.5{,, with
{; and {, copulas. The inverse maps for the corresponding composed maps are

exactly (go0.5,90.5.1) and (gos.1,90,0.5), respectively.
We define the class Z, as that formed by all copulas £ given by (30). In view of (9)
and of Lemma 2.6(1) we obtain

C = CO—(O,O),(LU + (1 — 20)”
+ 0.5¢ (/ 0(0,0),(g0,0.5(u),g0.5.1 (1)) dCl (”a U) + / 0(0,0),(g0.5.1 (1),90.05(v)) déz (u7 U))

In the sequel we proceed by induction. We suppose that for a given n we already
defined the sets =, with y’s determined by partitions with cardinals less 2n. Take an
n =1, . Let >0 be minimal such that there exists k#0,n with n(ty) = to — a. Fix
such a k. We observe that n(x) =0 and 5(1 —a) =1 — 20; we also have that
n(t)<t—o for tefn, 1 — o). For t€[0, 1] we set

ﬂl(l) = (o + t(tn — o))/ (tor — o),
(1) = [tk + 1(1 — o — tox)) = n(tax)] /(1 = o0 — 12¢).
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n' and n* are diagonals corresponding to the partitions ! , and 17, respectively

o—o Ily_1—0 t —o b —o
1’11 0= 2n—1 <. LKt bk —1,

by — o by — o b — o b — o
2.0= bk — bk _lk—1 — bk _ I — Iy l—d—lzk_l
ke l—o—ty 1—o—1txy l—o—ty 1—oa—1ity '

We now define =, to be the set of all copulas ¢ which represent as

E(+) =" (9o g1-01) "' (+)) + 2l (9121, 902) " (+))
+ (t2k - a)él ((g%,fzkv gaz,tz/()il(' ))
+ (1 — o — t2k)§2((gr2k,]—oc7gtzk,l—oc)_l('))7

where fieE,1f, i=1,2,and ¢! and (* are arbitrary copulas. We can check that for
such &’s we have 0 = #.

(3) Let us look more closely at the form of {eZ,. We observe that there exists a
partition 0 = sy <---<sp =1 and a permutation n of {I,...,2r} such that the
following hold: () Sx()—1 — Sz = 8i-1 — si; (jj) denoting the square [s;,s; 1] X
[Sx(i)> Sz(i)—1] by Si, we have

2r
f( : ) = Z (Si - Si—l)ﬁi((gsiﬂ[il 3 sty (i1 )71 ( : ))7
i=1

where f are copulas, i =1,...,2r. Then copula C (star unimodal about (0,0))
corresponding to & is

2r
C = copo.an + (1 =200+ ¢ (si—si1) / G000y 0y gy, () DB (05 0).

i=1

If each ' is a Fréchet copula we may use Lemma 2.6 to determine the density
function of the absolutely continuous part of C.

(4) Diagonal section d¢ of the resulting C’s given by (28) with £ e 5, are the same,
say 6. This 6 may be explicitly determined by using 6(1) = 1, §' continuous, §'(1) =
2(1 —¢) (first condition in (19)) and (23). For a partition 7, we obtain J(f) =
rit? + et + sy for t€(ta 1, ta_a), 8(t) = art> + by, for te[toy, tye_1], k=1, ...,n. For
simplicity we extend & to [l,00) by (¢) = apt> + by, ap=1—c=1—by. The
recurrence relations determining the a, b, r, s’s are

b = sk + 2ctop—1, ax = rr + 2¢/try
and

Sp = bi_1 = 2ctok—a, 1 = ax_1 — 2c/try,
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for k =1, ...,n. For instance we observe that by = by_; — 2¢(tor—> — t2—1), hence

k

by =c— 2CZ (lzj,Q — lzj,l)ZO
J=1

and b, = 0 due to the conditions imposed to the partition.

Remark 5.5. We observe that there exists a relationship between Examples 4.6, 5.2,
and 5.4.

(1) For n =1 in Example 5.4 (Step 2) we have ¢t; = 0.5 hence (Step 4) ap = 1 — ¢,
by=c,r1=1-3¢,51 = —c,a; =1+ ¢, by =0, i.e. the diagonal ¢ is that in Example
5.2. Copula { = {(o0) in Example 4.6(2) is one of the &’s in Step 2 of Example 5.4.
Hence d¢ for

C = 0.50’(0_0)’(171) + 0.5/0’(0’0),1\/ dC(X)

is the diagonal 6 in Example 5.2 for ¢ = 0.5.

(2) In Example 4.6(3) we have 0:(u,) = uy, ¢ is constant on [uy,, r(k,)u,—1], and its
derivative is 2 on [r(k,)u,—1,u,—1]. Hence o coincides, on every [u,, 1], with an 7 in
Example 5.4 for t5, = u, ty,-1 = r(ky)u,_1,p=1,....n

The diagonal section d¢ of copula

C= 050’001])+05/ (]OXdé( )

may be determined by using the recurrence relations in Example 5.4 (Step 4):

)4
Z 1—}" u, 1y
;
2, ik

ap —05+ i*l’
S[, = bp_1 — up_1,

_ -1
rp =dp—1 — up_].

Remark 5.6. Every diagonal 5 is the limit of a nondecreasing sequence of diagonals
n, as in Example 5.4. Namely #,(7) = n(k/2") for k/2"<t<ank, n,(t) =n((k +
/2" =2((k+1)/2" —¢t) for aux<t<(k+1)/2", where au;=(k+1)/2"—
(n((k+1)/2") —n(k/2"))/2. We can find (Example 5.4) copulas ¢, with 5z, =1,,.
Since the set of all copulas is compact with respect to the uniform convergence,
we can extract a convergent subsequence &, . Its limit ¢ satisfies 6; = 5. In other
words we obtained as a by-product an alternative proof of Theorem 3.2.11 in
Nelsen [8, p. 75] since we found a copula having as diagonal section given
diagonal 7.
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6. Unimodality of Archimedean copulas
Let us now examine Archimedean copulas.

Proposition 6.1. An Archimedean absolutely continuous star unimodal copula C
(particularly block unimodal) coincides with II.

Proof. (1) Let C be star unimodal about (a,b). From the absolute continuity of C
and from (10) and (11) we deduce that

1= 0.5laa ® (fym) + (1 - @)ar @ (L m) + b{fm) @eo + (1 - b)(fPm) @z,
(31)

where the f7’s are probability density functions satisfying (12). Suppose C# I1. Then
we know from Example 4.2(1), that (a,b) is not a vertex of I>. Moreover if C is
Archimedean (a,b) is not on the boundary of I?. Indeed if » = 0 and 0<a<1 then
the term in (31) with factor b is missing and the probability density function f of C is
such that f(1,u) = f3(u) = 1 (Lemma 2.6(1)). Being Archimedean, C as well as f is
symmetric, hence 1 = f(u,1) = f{ (u), f§ =1 (by (12)) and C = II. Therefore (a,b)
must be an interior point of 7.

(2) As an Archimedean copula, C is defined by the generator ¢p. We have ¢(0) =
o0. Indeed in the contrary case, C does not charge the domain below the curve
¢ (1) + ¢(v) = ¢(0); the boundary of this domain contains the segments {0} x [0, 1]
and [0,1] x {0}. It follows, since ab>0, that f] = f? = 0 which contradicts the fact
that they are probability density functions. Hence

fluv) =" (¢(u) + (v))¢' ()¢’ (v), (32)

where 1 is the classical inverse of ¢.

(3) For almost all pairs x, y with x,ye (b, 1), f(u,v) is a.e. constant on each of the
segments /, and I, joining (a,b) with (1,x) and (1,y), respectively (Lemma 2.6(1)).
On each of these segments ur— ¢ (u) + ¢(v) is a decreasing and absolutely continuous
function. Hence the ranges are [¢p(x),¢d(a) + ¢(b)\Ay and [¢d(y), d(a) + $(D)\A,
respectively, A, and A, having null Lebesgue measure. When z¢A,UA,,
lim_ 1 g0+ pp¥" (2) exists by (32) and Remark 2.3(2). Substituting z by ¢(u) + ¢(v)
and restricting the pair u, v to I, we find that this limit is £} (x)/(¢(a)¢' (b)) while on
I, this limit is /' (»)/(¢(a)¢’ (b)), again by Remark 2.3(2). Hence f}' (x) = £ (»), i.e.
/il is constant on the interval (b, 1).

(4) Similar arguments as in Step 3, in all of them using segments with positive
slopes (with one endpoint in (a,b)), lead to f; constant on the interval (0,5), /3
constant on (0,a), and f7 constant on (a, 1). From (12) we deduce that the f’s are
also constant on the remaining subintervals of (0, 1).

(5) If we show that f7 are constant on the whole (0, 1), then it will follow that

f, =1,1ie. C = II; contradiction.
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We consider f|!. Its constancy follows from its continuity in b. The first step to this
conclusion is to observe that ¥ is continuous on (0, ¢(a) + ¢(b)). Now we consider
upe (a,1). Since ¢(up) + ¢(b)€(0,¢(a) + ¢(b)), ¥"(¢(u) + ¢(v)) is continuous in
(up,b) (as well as ¢'(u)¢'(v)). In a neighborhood of (uy,b) we have f(u,v) =
fl(b+ (v—>b)/(u— a)) (Lemma 2.6(1)), f (u, v) is continuous by (32), and when (u, v)
varies in that neighborhood, b + (v — b)/(u — @) covers an open interval containing
b. Continuity of f! follows (Remark 2.3(2)). O

Proposition 6.2. An Archimedean star unimodal copula C having a nonnull singular
part coincides with W.

Proof. (1) We have seen in Remark 4.3 that a nonabsolutely continuous copula C
star unimodal about x charges every subinterval of a segment J with endpoints x and
y#x, y being a vertex of I°.

(2) We suppose that the Archimedean copula C is determined by the generator ¢.
By virtue of Remark 2.3(1) ¥/ has to be discontinuous in all the points ¢ () + ¢(v),
(u,v)eJ. If ¢p(u) + ¢(v) is not constant on J, then the points ¢(u) + ¢(v), (u,v)eJ,
cover an interval and i/’ cannot be discontinuous in all these points. So we deduce
that ¢(u) + ¢(v) is a constant ¢y on J. Let J be the graph of a linear function
v=uv(u), uelup, 1], i.e. x = (uop,v(up)). If J has positive slope, ur— p(u) + ¢(v(u)) is
decreasing, particularly not constant. Hence J must have negative slope. It follows
that the vertex y of I? in Step 1 is either (0,1) or (1,0), say (1,0).

(3) Since ¢(u) and ¢(v(u)) are convex and their sum is constant we deduce that
they are both linear, i.e. ¢ is linear on [ug, 1] and on [0, v(up)] as v(1) = 0. If ¢ is linear
on the whole [0, 1] it follows that C = . So let us assume that C# W.

(4) Copula C being star unimodal about x does not charge any segment situated
on a line not passing through x since the o, .’s in the representation of C do not
charge such segments. On the other hand, C being Archimedean is symmetric about
the main diagonal of I?, so C will charge the symmetric J’ of J with respect to this
diagonal. Thus the line L containing J' passes through x. Since J’ is also a subset of
the level curve ¢(u) + ¢(v) = ¢o, the convexity of the level curves of C shows that L
may pass through x only either C = W or L J and x is an endpoint of J’ (the other
being (0, 1)).

(5) From the conclusion of Step 4 it follows that v(uy) = uy and that ¢ is linear on
[0,u0]) and [ug, 1]. Hence ¢ has a discontinuity point at u leading to a discontinuity
point ¢(uy) of Y. Thus the level curve I' defined by ¢(u) + ¢(v) = ¢(uo) will be
charged by C. We have ¢(up) <¢p(0) = ¢p, i.e. T#JuJ'. But I' consists of two
segments, each having a negative slope and one endpoint at (w,w) with ¢(w) =
¢ (up)/2, i.e. w>uy. The lines defined by these two segments cannot pass through
x = (up, up). Contradiction with the beginning of Step 4. [

As a by-product we obtain
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Corollary 6.3. With the exception of II and W, Fréchet’s copulas are not
Archimedean.

Remark 6.4. Propositions 6.1 and 6.2 show that, with the exception of IT and W,
there do not exist star unimodal Archimedean copulas. It is then natural to explore
the possibility of enlarging the class of Archimedean copulas and then to search for
unimodal ones. Such a class may be that of Archimax copulas recently introduced in
Capéraa et al. [2].

7. A brief discussion on the case of higher dimension

For higher dimension #>2 unimodality of probability measures was studied in
Dharmadhikari and Joag-dev [5] and Bertin et al. [1] while copulas (including
Archimedean) were examined in Nelsen [8]. We remind that there is no analogue of
W as a copula for />2.

Proposition 3.2 is valid for #>2 with self-explanatory modifications: I’ splits
generally into 2/ parallelepipeds, the probability density function is constant on each
of them, the constants depending on a parameter analogous to g.

Proposition 3.3 has also a direct extension to the case /> 2, with 3/ terms in (2).
When copula C is absolutely continuous only 2/ + 1 of these terms may be nonnull.

The extension to higher dimension of the results in Section 5 has to start with a
study of the corresponding diagonal section.

As far as Section 6 is concerned, it appears that the methods used may also work
for />2.
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