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Abstract

Three types of unimodality (central convex, block, and star) are considered and the

corresponding sets of unimodal copulas determined. Examples of star unimodal copulas,

absolutely continuous, with a nonnull singular part, and even singular, are given. Necessary

and sufficient conditions for a diagonal to be the diagonal section of a star unimodal copula

are also indicated. Attention is also paid to the Archimedean case.
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1. Introduction

It is Sklar [9] who in 1959 coined the term copula for a distribution whose margins
are uniform on I ¼ ½0; 1�: Since then the literature devoted to this notion continues to
grow, mainly for its use as a tool in measuring the dependence or association
between random variables. The recent book by Nelsen [8] gathers the most
important information about copulas. Recent papers which appeared after the
publication of this book are to be added: on the characterization of quasi-copulas by
Genest et al. [7] and on a new class of copulas by Capéraà et al. [2]. We also mention
our papers [3,4] concerning extreme value attractors for star unimodal copulas.
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An important property of a distribution is unimodality. It is then natural to ask
whether copulas are unimodal. Multivariate unimodality takes different forms so we
choose here the most used ones and examine copulas with respect to them.

The paper is organized as follows. Section 2 has an auxiliary character; here we
indicate three notions of bivariate unimodality as well as definitions, notations, and
results to be used throughout this paper. In Section 3 we determine the structure of
unimodal copulas according to the concept of unimodality used. We also indicate in
Section 4 examples of star unimodal copulas, absolutely continuous, with a nonnull
singular part, and even singular, are given. In Section 5 we examine diagonals of a
class of star unimodal copulas and we give several examples; these copulas can be
explicitly (recursively) constructed. The special case of Archimedean copulas is
examined in Section 6. For the sake of simplicity we restricted ourselves in the
preceding section to the bivariate case, although the results generally hold for higher
dimension as we briefly mention in Section 7.

2. Prelude

We shall use the term probability measure or distribution at our convenience. For
the sake of simplicity we consider the bivariate case.

2.1. Copulas

Copula terminology and notation is that in Nelsen [8]. A copula C is a distribution

on I2 with both margins uniform on I (the image of a measure m by a map f is

m3f �1ð . Þ ¼ mðf �1ð . ÞÞ). Its diagonal section is the function t/dCðtÞ ¼ Cðt; tÞ; it also
may be viewed as a distribution obtained as the image of C by the map
ðu; vÞ/ðmaxðu; vÞ;maxðu; vÞÞ: A diagonal is a function d : I-I which satisfies the
following: (a) for all tAI ; dðtÞpt; (b) dð1Þ ¼ 1; (c) for all spt in I ; 0pdðtÞ �
dðsÞðt � sÞ: According to Nelsen [8, Theorem 3.2.11, p. 75] the class of all d’s
coincides with the class of all dC ’s. In the sequel ðf nÞðBÞ stands for

R
B

f dn:
The following result holds:

Lemma 2.1. The set D of all diagonals is convex and compact with respect to uniform

convergence. Its extreme elements (in Choquet’s sense) are the diagonals d for which:
ðEÞ for almost all x’s (with respect to Lebesgue measure m) we have either dðxÞ ¼ x or

the derivative d0ðxÞ ¼ 0 or 2:

Remark 2.2. Simple examples (as those in Example 5.4) show that D is not a
Choquet simplex.

Let Wðu; vÞ ¼ maxðu þ v � 1; 0Þ and Mðu; vÞ ¼ minðu; vÞ be the lower and the
upper Fréchet–Hoeffding bounds; W and M are copulas. Further set Pðu; vÞ ¼ uv

for the ‘independence’ copula. W is the uniform distribution on the segment joining
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the points ð0; 1Þ and ð1; 0Þ; M the uniform distribution on the segment joining ð0; 0Þ
to ð1; 1Þ; and P the uniform distribution on I2: Fréchet’s [6] family of copulas
consists of all convex combinations of W ;M; and P:

We now consider a continuous, convex, and strictly decreasing function

f : I-½0;N� with fð1Þ ¼ 0; and we denote by f½�1� its pseudo-inverse given by

f½�1�ðtÞ ¼ f�1ðtÞ for 0ptpfð0Þ;
0 for fð0ÞptpN:

(

If fð0Þ ¼ N then f½�1� ¼ f�1: For the sake of simplicity we shall use in what follows

only the notation f�1 ¼ c: We observe that c is also convex. A copula C is
Archimedean if

Cðu; vÞ ¼ cðfðuÞ þ fðvÞÞ; u; vAI ; ð1Þ
and f is its generator. The partial derivative

C0
uðu; vÞ ¼ c0ððfðuÞ þ fðvÞÞf0ðuÞ

exists for almost all u; vAI : C0
uðu; . Þ (viewed as a conditional distribution) appears in

the decomposition C ¼ 1I m#C0
uðu; . Þ (# stands for measure product). This

disintegration of C leads to:

Remark 2.3. Let C be an Archimedean copula with generator f: (1) If C charges

every subinterval of a segment J (J cannot be vertical) then c0 is discontinuous in

almost every fðuÞ þ fðvÞ; ðu; vÞAJ: (2) If C has a null singular part then f0 is
continuous.

2.2. Unimodality

For unimodality we refer to the monographs Dharmadhikari and Joag-dev [5] and
Bertin et al. [1].

In what follows we list three notions of bivariate unimodality.
Central convex unimodality (Dharmadhikari and Joag-dev [5, p. 44], Bertin et al.

[1, p. 77]): A distribution m is said to be central convex unimodal about xAR2 if it
belongs to the closed convex hull of the set of all uniform distributions on convex
sets having x as an interior point and which are symmetric with respect to x:

Block unimodality (Dharmadhikari and Joag-dev [5, p. 42], Bertin et al. [1, p. 74]):

A distribution m is said to be block unimodal about xAR2 if it belongs to the closed
convex hull of the set of all uniform distributions on rectangles containing x and
having edges parallel to the coordinate axes.

Star unimodality (Dharmadhikari and Joag-dev [5, p. 38], Bertin et al. [1, p. 72]): A

distribution m is said to be star unimodal about xAR2 if it belongs to the closed
convex hull of the set of all uniform distributions on sets which are star-shaped
about x (i.e. which contain together with an y the whole segment joining x to y).
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Remark 2.4. Since the uniform distributions in the definition of block unimodality
are all star unimodal, the set of all distributions block unimodal about x is a proper
subset of the set of all star unimodal distributions about x (Dharmadhikari and
Joag-dev [5, Theorem 2.12, p. 57]).

Now let Ua;b denote the uniform distribution on ða; bÞ or ðb; aÞ according

as b4a or boa; Ua;a will correspond to the point mass ea at a: The following

lemma summarizes known results concerning unimodality which we need in our
proofs.

Lemma 2.5. The following hold:
(1) A distribution C is star unimodal about ða; bÞ if and only if it is a mixture of the

form

C ¼
Z

sða;bÞ;ðu;vÞ dmðu; vÞ;

where m is a probability measure on R2; sða;bÞ;ða;bÞ ¼ eða;bÞ; sða;bÞ;ðu;vÞ; for ðu; vÞaða; bÞ; is

concentrated on the segment joining ða; bÞ to ðu; vÞ and has with respect to the uniform

distribution a probability density function f ðu0; v0Þ which is proportional to the distance

between ðu0; v0Þ and ða; bÞ: For a given C m is unique.
(2) The first margin of sða;bÞ;ðu;vÞ; denoted by Ha;u; depends only on a and u whereas

the second one depends only on b and v and is Hb;v: We have Ha;a ¼ ea and, for uaa;
Ha;u is concentrated on the segment with endpoints a and u with a probability density

function hðtÞ which is proportional to jt � aj: When ðu; vÞ runs over I2 the pair of

margins of sða;bÞ;ðu;vÞ runs over all pairs ðHa;u;Hb;vÞ:
(3) The distribution 1ð0;1Þm is symmetric only with respect to 0:5: For a given

aA½0; 1�; 1ð0;1Þm represents uniquely as
R

Ha;u dnðuÞ with n ¼ ð1ð0;1Þm þ ae0 þ ð1 �
aÞe1Þ=2: The same assertion also holds for 1ð0;aÞm and 1ða;1Þm with n ¼ ð1ð0;aÞm þ ae0Þ=2
and n ¼ ð1ða;1Þm þ ð1 � aÞe1Þ=2; respectively.

In order to construct star unimodal copulas we establish two simple formulas.
Let UA;B and UP;A;B be the uniform distribution on the segment with endpoints

A and B and on the triangle with vertices P; A; and B respectively, both non-
degenerate.

Lemma 2.6. The following hold:
(1) For every measurable g on the segment with endpoints A and B we haveZ

sP;X dðgUA;BÞðXÞ ¼ g1UP;A;B;

where g1ðP þ sðQ � PÞÞ ¼ gðQÞ for sAð0; 1� and Q on the segment with endpoints A

and B: Particularly
R
sP;X dUA;BðXÞ ¼ UP;A;B:
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(2) The distribution
R
sP;X dUP;A;BðX Þ is concentrated on the triangle PAB; is

absolutely continuous, and its probability density function is 2ðlog h � log hðX ÞÞ=q;
where q is the area of the triangle PAB; h is the distance from P to the line AB; and

hðXÞ is the distance from P to the line parallel to AB passing through X :

Proof. (1) SinceZ
sP;X dðgUA;BÞðXÞ ¼

Z 1

0

gðtA þ ð1 � tÞBÞsP;tAþð1�tÞB dt

we have, for every measurable f : triangle PAB-½0;NÞ;Z
fd

Z
sP;X dðgUA;BÞðXÞ

� �

¼
Z 1

0

Z
fdsP;tAþð1�tÞB

� �
g½tA þ ð1 � tÞB� dt

¼
Z 1

0

2

Z 1

0

sf ½P þ sðtðA � PÞ þ ð1 � tÞðB � PÞÞ� ds

� �
g½tA þ ð1 � tÞB� dt

¼ 2

Z 1

0

Z s

0

f ½P þ uðA � PÞ þ ðs � uÞðB � PÞ�g½ðu=sÞA
�

þ ð1 � ðu=sÞÞB� du

�
ds

¼ 2

Z 1

0

Z s

0

f ðQ1ðs; uÞÞg1ðQ1ðs; uÞÞ du

� �
ds;

Q1ðs; uÞ ¼ P þ uðA � PÞ þ ðs � uÞðB � PÞ:

The map ðs; uÞ/P þ uðA � PÞ þ ðs � uÞðB � PÞ is linear, maps the triangle
fðs; uÞ: 0pupsp1g onto the triangle PAB; the image of the uniform measure
2m#m by this map is UP;A;B; hence the preceding integral isZ

fg1 dUP;A;B ¼
Z

fdðg1UP;A;BÞ:

(2) By virtue of the first part of the proof we can writeZ
sP;X dUP;A;BðXÞ ¼ 2

Z 1

0

s

Z 1

0

sP;PþsuðA�PÞþsð1�uÞðB�PÞ du

� �
ds

¼ 2

Z 1

0

s

Z
sP;X dUPþsðA�PÞ;PþsðB�PÞðX Þ

� �
ds

¼ 2

Z 1

0

sUP;PþsðA�PÞ;PþsðB�PÞ ds:

If q is the area of the triangle PAB then the area of the triangle with vertices

P;P þ sðA � PÞ; P þ sðB � PÞ is s2q; hence the probability density function of
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R
sP;X dUP;A;BðX Þ at an interior point X ¼ P þ uðvðA � PÞ þ ð1 � vÞðB � PÞÞ

of the triangle PAB is
R 1

u
ð2s=s2qÞ ds ¼ 2 logð1=uÞ=q: It is easily seen that

u ¼ hðX Þ=h: &

3. Unimodality of copulas

We have the following result concerning central convex unimodality:

Proposition 3.1. A copula may be central convex unimodal only about ð0:5; 0:5Þ: It is

so if and only if it belongs to Fréchet’s family.

The next result concerns block unimodality:

Proposition 3.2. A copula block unimodal about an interior point ða; bÞAI2 has the

probability density function

f ¼ q1ð0;aÞ�ð0;bÞ þ ð1 � aqÞð1 � aÞ�11ða;1Þ�ð0;bÞ þ ð1 � bqÞð1 � bÞ�11ð0;aÞ�ðb;1Þ

þ ð1 � a � b þ abqÞð1 � bÞ�1ð1 � aÞ�11ða;1Þ�ðb;1Þ;

where maxðð1=aÞ þ ð1=bÞ � ð1=abÞ; 0Þpqpminð1=a; 1=bÞ: If ða; bÞ is not an interior

point then the only block unimodal copula is P:

Let us now examine copulas in the class of star unimodal distributions, broader
than that of block unimodal distributions (Remark 2.4).

Proposition 3.3. A copula C star unimodal about a point ða; bÞAI2 is a mixture of the

form C ¼
R
sða;bÞ;ðu;vÞ dmðu; vÞ with the unique probability measure

m ¼
X

a;bAf0;1g
cabeða;bÞ

þ d1
0 e0#ðf 1

0 mÞ þ d1
1 e1#ðf 1

1 mÞ þ d2
0 ðf 2

0 mÞ#e0 þ d2
1 ðf 2

1 mÞ#e1 þ cx; ð2Þ

where c ¼
P

a;bAf0;1g cab; the remaining c’s and d’s are nonnegative such that

c00 þ c01 þ d1
0 ¼ a=2; c10 þ c11 þ d1

1 ¼ ð1 � aÞ=2;

c00 þ c10 þ d2
0 ¼ b=2; c01 þ c11 þ d2

1 ¼ ð1 � bÞ=2; ð3Þ

and f i
a are probability density functions on I satisfying

ðd1
0 f 1

0 þ d1
1 f 1

1 Þm þ cx2 ¼ ðd2
0 f 2

0 þ d2
1 f 2

1 Þm þ cx1 ¼ 1I m=2;

x being a probability measure and x1 and x2 its margins.
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Proof. Star unimodality about ða; bÞ implies the representation C ¼R
sða;bÞ;ðu;vÞ dmðu; vÞ with the probability measure m on I2 (Lemma 2.5(1)). Since C

is a copula (Lemma 2.5(2)) m satisfiesZ
Ha;x dm1ðxÞ ¼ 1I m ¼

Z
Hb;y dm2ðyÞ;

where m1 and m2 are the margins of m: The relation involving m1 splits intoZ
½0;aÞ

Ha;x dm1ðxÞ ¼ 1ð0;aÞm;

Z
ða;1�

Ha;x dm1ðxÞ ¼ 1ða;1Þm; ð4Þ

we observe that one of these equalities is absent if either a ¼ 0 or a ¼ 1: The unicity
of the representations of 1ð0;aÞm and 1ða;1Þm shows (Lemma 2.5(3)) that (4) are

equivalent to

m1 ¼ ae0=2 þ ð1 � aÞe1=2 þ 1I m=2: ð5Þ

In the same way we obtain

m2 ¼ be0=2 þ ð1 � bÞe1=2 þ 1I m=2: ð6Þ

The conclusion now follows by decomposing m into a sum of nine measuresP
A;B mA;B with mA;B not charging the complementary of A � B; the sets A and B

running over the singletons f0g; f1g and the interval ð0; 1Þ: For singletons A ¼ fag
and B ¼ fbg we have mA;B ¼ cabeða;bÞ and for a singleton A ¼ fag and B ¼ ð0; 1Þ we

have mA;B ¼ d1
a ea#n1a; where n1a is a probability measure on the interval ð0; 1Þ; a

similar conclusion (with superscript 2) is valid when A ¼ ð0; 1Þ and B ¼ fbg: We set
cx ¼ mð0;1Þ;ð0;1Þ; where x is a probability measure. From (5) and (6) we now obtain (3)

involving the c’s and d’s and also

di
0n

i
0 þ di

1n
i
1 þ cx3�i ¼ 1I m=2; i ¼ 1; 2: ð7Þ

Equalities (7) (together with (3)) show that c ¼
P

a;bAf0;1g cab and that ni
a (when

di
a40) is absolutely continuous with respect to m; let f i

a be its probability density

function. &

Remark 3.4. Let C be a copula star unimodal about a vertex of I2; say ð0; 0Þ: The
representation (2) reduces to

m ¼ c11eð1;1Þ þ d1
1 e1#ðf 1

1 mÞ þ d2
1 ðf 2

1 mÞ#e1 þ c11x

and the relations between the elements involved become

c11 þ d1
1 ¼ c11 þ d2

1 ¼ 0:5;

d1
1 f 1

1 m þ c11x2 ¼ d2
1 f 2

1 m þ c11x1 ¼ 1I m=2: ð8Þ
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Hence d1
1 ¼ d2

1 ¼ 0:5 � c11; therefore

m ¼ c11½eð1;1Þ þ x� þ ð0:5 � c11Þ½e1#ðf 1
1 mÞ þ ðf 2

1 mÞ#e1�: ð9Þ

Moreover if c11 ¼ 0:5 then x is a copula.

Remark 3.5. Let m be a probability measure in Rn with probability density function f

such that the level set Ba ¼ ffXag is convex for all a40: From the geometric point
of view such a probability measure corresponds to the idea of what might be a
‘unimodal’ one. Take

cA
\

Baa|

Ba;

where Ba is the closure of Ba: Then m is star unimodal about c: Consequently for such
m’s applies Proposition 3.3.

4. Examples of star unimodal copulas

Finding examples or constructing star unimodal copulas generally relies on the
representation (2) of m and therefore implicitly on an appropriate choice of the
measure x appearing in it.

Example 4.1. Fréchet’s copulas are star unimodal about ð0:5; 0:5Þ: Indeed such a
copula may be written as C ¼ q1M þ ð1 � q1 � q2ÞPþ q2W and we obtain it by
taking in (2)

c00 ¼ c11 ¼ q1=4;

c10 ¼ c11 ¼ q2=4;

x ¼ ðq1M þ q2WÞ=ðq1 þ q2Þ;

f i
a ¼ 1; i ¼ 1; 2; a ¼ 0; 1;

di
a ¼ ð1 � q1 � q2Þ=4; i ¼ 1; 2; a ¼ 0; 1:

On the other hand, any convex combination of M and P is star unimodal about any
x on the segment with endpoints ð0; 0Þ and ð1; 1Þ; and any convex combination of P
and W is star unimodal about any x on the segment with endpoints ð0; 1Þ and ð1; 0Þ:

Example 4.2. We determine the set of all absolutely continuous copulas star
unimodal about ða; bÞ: We examine two cases according to the position of ða; bÞ:

(1) Let ða; bÞ be a vertex of I2; say ð0; 0Þ: If C is absolutely continuous

representation (9) implies c11 ¼ 0; hence d1
1 ¼ d2

1 ¼ 0:5: Thus f 1
1 ¼ f 2

1 ¼ 1 and

therefore (Lemma 2.6(1)) the only copula C is P: This assertion holds for any vertex

of I2:
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(2) Let ða; bÞ be an interior point of I2: C absolutely continuous implies cab ¼ 0

therefore c ¼ 0; hence m in (2) becomes

m ¼ d1
0 e0#ðf 1

0 mÞ þ d1
1 e1#ðf 1

1 mÞ þ d2
0 ðf 2

0 mÞ#e0 þ d2
1 ðf 2

1 mÞ#e1 ð10Þ
with

d1
0 ¼ a=2; d1

1 ¼ ð1 � aÞ=2; d2
0 ¼ b=2; d2

1 ¼ ð1 � bÞ=2 ð11Þ
and

af 1
0 þ ð1 � aÞf 1

1 ¼ bf 2
0 þ ð1 � bÞf 2

1 ¼ 1: ð12Þ
We note that (10)–(12) are also sufficient for C to be absolutely continuous (Lemma

2.6(1)). Contrary to the first case, we have a great freedom in the choice of the f i
a ’s.

Namely f 1
0 ; f 2

0 are arbitrary probability density functions with values in ½0; 1=a�;
½0; 1=b� respectively, and f 1

1 ; f 2
1 result from (12).

Remark 4.3. For a copula C star unimodal about ða; bÞ with a nonnull singular part
at least one of the four cab’s in (2) is positive (Example 4.2(2)), so ca0; and the

singular part of C may have a contribution coming from x: If ða; bÞ is not an interior

point of I2 then an ða;bÞ with cab40 must be different from the vertices of I2 lying

on the edges passing through ða; bÞ (i.e. two or three such vertices). The singular part
of C charges every subinterval of the segment with endpoints ða; bÞ and ða; bÞ:

The following example uses (9) in order to obtain a simple (neither absolutely
continuous nor singular) copula star unimodal about ð0; 0Þ not belonging to
Fréchet’s family.

Example 4.4. According to (9) with c11 ¼ 0:5

C ¼ 0:5sð0;0Þ;ð1;1Þ þ 0:5

Z
sð0;0Þ;X dPðXÞ

is a copula star unimodal about ð0; 0Þ: Let us express it explicitly. The unit square is
the union of two triangles with vertices in ð0; 0Þ; ð1; 0Þ; ð1; 1Þ and ð0; 0Þ; ð0; 1Þ; ð1; 1Þ;
respectively, each having an area equal to 0:5 and the distance from ð0; 0Þ to its
opposite edge is equal to 1: From Lemma 2.6(2), we obtain for u4v

Cðu; vÞ ¼ 0:5v2 � 2

Z v

0

t log t dt � v

Z u

v

log t dt;

i.e.

Cðu; vÞ ¼ Pðu; vÞð1 � log maxðu; vÞÞ ðu; vÞAI2:

The probability density function of the absolutely continuous part of C is
�log maxðu; vÞ:

Remark 4.5. As in Example 4.4, Lemma 2.6 enables us to determine explicitly star
unimodal copulas C given by (2) when x is a convex combination of uniform
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distributions on segments and polygons, while f i
a ; i ¼ 1; 2; are piecewise constant.

Particularly if the polygons are rectangles with edges parallel to the axes then I2

splits up into polygons on each of which the (continuous) probability density
function of the absolutely continuous part of C is linear in log u and log v:

Let us have a deeper insight into the relationship between Lebesgue decomposi-
tions of C and m when C is star unimodal about ð0; 0Þ:

Put J ¼ ðf1g � ½0; 1�Þ,ð½0; 1Þ � f1gÞ; i.e. J is the union of the right and the

upper edges of I2; and let r : I2
\fð0; 0Þg-J be defined by rðu; vÞ ¼

ðu=maxðu; vÞ; v=maxðu; vÞÞ: Then ðu; vÞ/ðrðu; vÞ;maxðu; vÞÞ is a bijection r%

between I2
\fð0; 0Þg and J � ð0; 1�: Every probability measure m on I2

\fð0; 0Þg has

an image by r% which disintegrates as ðm3r�1Þ#Qm: Copula C ¼
R
sð0;0Þ;X dmðXÞ

satisfies C3r�1 ¼ m3r�1 and its image by r% disintegrates with the transition

probability measure QCðY ; . Þ ¼
R 1

0 sð0;0Þ;ðt;0ÞQmðY ; dtÞ since sð0;0Þ;tY is the image of

sð0;0Þ;ðt;0Þ by s/sY ; sð0;0Þ;ðt;0Þ is absolutely continuous when considered on the

interval ð0; 1Þ (identified with ð0; 1� � f0g). Thus QCðY ; . Þ is absolutely continuous.
Hence we conclude that C has no discrete part and has as absolutely continuous and

singular parts Cac and Cs the images by ðr%Þ�1 of ðm3r�1Þac#QC and ððm3r�1Þs þ
ðm3r�1ÞdÞ#QC ; respectively.

When m is given by (9) we have

m3r�1 ¼ c11eð1;1Þ þ ð0:5 � c11Þ½e1#ðf 1
1 mÞ þ ðf 2

1 mÞ#e1� þ c11x3r�1:

Consequently ðm3r�1Þac; if nonnull, is a convex combination of 0:5½e1#ðf 1
1 mÞ þ

ðf 2
1 mÞ#e1� and ðx3r�1Þac (ðm3r�1Þac ¼ 0 is equivalent to c11 ¼ 0:5 and ðx3r�1Þac ¼ 0),

ðm3r�1Þd is a convex combination of eð1;1Þ and ðx3r�1Þd ; and ðm3r�1Þs ¼ ðx3r�1Þs: We

finally are led to the conclusion: C is singular if and only if c11 ¼ 0:5 and

ðx3r�1Þac ¼ 0. In this case (Remark 3.4) x is a copula.

We note that when x is a copula, x3r�1 may a priori not be taken arbitrarily

especially such that ðx3r�1Þac ¼ 0 and different from Fréchet’s M (copula C

calculated with c11 ¼ 0:5 and x ¼ M is again M). In the following examples we

construct copulas xaM such that x3r�1 is either discrete (Example 4.6) or singular
(Example 4.7). They lead (with c11 ¼ 0:5) to singular copulas CaM star unimodal

about ð0; 0Þ: Since in this case m ¼ 0:5eð1;1Þ þ 0:5x and therefore C3r�1 ¼ m3r�1 ¼
0:5eð1;1Þ þ 0:5x3r�1; if x does not charge a set of rays originating in ð0; 0Þ; not

containing the main diagonal of I2; then C also will not charge that set of rays.
We now set

kaðxÞ ¼ ax; tðx; yÞ ¼ ðy; xÞ; haðx; yÞ ¼ ðax; ayÞ:

For a40 we have

ð1ðu;vÞmÞ3k�1
a ¼ 1

a
1ðau;avÞm ð13Þ
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since the integral of an f with respect to this measure isZ v

u

f ðaxÞ dx ¼ 1

a

Z av

au

f ðxÞ dx ¼
Z

f d
1

a
1ðau;avÞm

� �
:

The margins of the image of a (generic) measure n by t are those of n but in reverse
order, and the margins of the image of n by ha are the images of the margins of n
by ka:

The next example yields (with c11 ¼ 0:5) a discrete parameter class of singular
copulas CaM star unimodal about ð0; 0Þ which do not charge the complementary of
a finite or denumerable set of rays originating in ð0; 0Þ:

Example 4.6. (1) For a finite integer kX2 we denote by r ¼ rðkÞAð0:5; 1Þ the real

number satisfying r þ?þ rk ¼ 1: Let z ¼ zðkÞ be the measure charging the mass
rpð1 � rÞ uniformly to the segment (with slope different from 1) with endpoints

ðr; rpþ1Þ and ð1; rpÞ for p ¼ 1;y; k: The special position of these k segments and the
choice of r imply that the margins of z are 1ðr;1Þm and 1ðrkþ1;rÞm: The measure

x ¼ xðkÞ ¼
X
nX0

rðkþ1Þnðzþ z3t�1Þ3h�1
rðkþ1Þn

is a copula, as it follows from (13) and the properties following it. x does not charge

the complementary of a set of 2k rays originating in ð0; 0Þ; thus x3r�1 is a discrete
distribution.

(2) For k ¼ N we set z ¼ zðNÞ ðrðNÞ ¼ 0:5Þ for the measure charging 2�ðpþ1Þ

uniformly to the segment with endpoints ð2�1; 2�ðpþ1ÞÞ and ð1; 2�pÞ; pX1: Its margins

are 1ð2�1;1Þm and 1ð0;2�1Þm and x ¼ xðNÞ ¼ zþ z3t�1 is a copula for the same reasons,

x does not charge the complementary of an infinite sequence of rays originating in

ð0; 0Þ; thus x3r�1 is a discrete distribution.
(3) More generally let k1; k2;y be a sequence, finite or infinite, of integers in

f2; 3;y;Ng; infinity possible occurs only at the end of a finite sequence. Let u0 ¼ 1

and for nX1; un ¼ rðk1Þk1þ1?rðknÞknþ1: Then

x ¼
X
nX0

unðzðknþ1Þ þ zðknþ1Þ3t�1Þ3h�1
un

is a copula; x3r�1 is also a discrete distribution.

The next example yields a class of singular copulas CaM star unimodal about
ð0; 0Þ which charges no individual ray originating in ð0; 0Þ except the segment with
endpoints ð0; 0Þ and ð1; 1Þ:

Example 4.7. (1) Let kX2; let sAð0; 1Þ; and define r ¼ ð1 � skÞ=ð1 � skþ1Þ: Further
consider the interval Ik;s with endpoints ðs; rsÞ and ð1; rÞ and the interval Jk;s with

endpoints ðs; rs2Þ and ð1; rsÞ: We observe that Ik;s and Jk;s are situated on the rays
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y ¼ rx and y ¼ rsx; respectively. Denote by UV the uniform distribution on the
segment V and set

z00k;s ¼
Xk�1

p¼0

ðapUspIk;s
þ bpUspJk;s

Þ; ð14Þ

where

ap ¼ rð1 � spþ1Þ þ sp � 1; bp ¼ ð1 � rÞð1 � spþ1Þ40; p ¼ 0; 1;y; k � 1:

Extending the definition of ap for p ¼ k we obtain ap � apþ1 ¼ spð1 � sÞð1 � rsÞ40;

i.e. a04?4ak ¼ 0: Thus z00k;s is indeed a measure; we note that z00k;s3r
�1 is a two-

point measure concentrated on fðr; 1Þ; ðrs; 1Þg:
(2) We now verify that the margins of z00k;s are 1½sk ;1�m and 1½rskþ1;r�m: Indeed the first

margins of UIk;s
and UJk;s

coincide and are equal to Us;1; while ap þ bp ¼ sp � spþ1;

hence the first margin of the p-term in (14) is ðsp � spþ1ÞUspþ1;sp ¼ 1½spþ1;sp�m (by (13))

and they sum up to 1½sk ;1�m: The second margins of UIk;s
and UJk;s

are Urs;r and Urs2;rs;

respectively. We now rewrite (14) as

z00k;s ¼ rð1 � sÞUIk;s
þ
Xk�1

p¼0

ðapþ1Uspþ1Ik;s
þ bpUspJk;s

Þ: ð15Þ

The second margin of rð1 � sÞUIk;s
is 1½rs;r�m; while that of the p-term in (15) is

ðapþ1 þ bpÞUrspþ2;rspþ1 ¼ rðspþ1 � spþ2ÞUrspþ2;rspþ1 ¼ 1½rspþ2;rspþ1�m:

These margins sum up to 1½rskþ1;r�m:

(3) Let T be the closed triangle with vertices ð0; 0Þ; ð1; 0Þ; and ð1; 1Þ: Fix

0ob1ob2o1 and take s ¼ 1 � bk�2 with bAðb1; b2Þ: Denote by z0k;b the measure z00k;s
for this s: We show that there exists k1X4 such that for kXk1 the following hold:

(a) rosk (i.e. ½rskþ1; r�-½sk; 1� ¼ | implying that z0k;b does not charge I2
\T);

(b) rskþ141 � 2=k (i.e. A0
k;b ¼ ½rskþ1; r�,½sk; 1�C½1 � 2=k; 1�); (c) mðA0

k;bÞ ¼
2ð1 � skÞXb=k:

The existence of k1 follows from the expansions with respect to 1=k:

ðsk � rÞð1 � skþ1Þ ¼ bð1 � bÞk�2 þ Oðk�3Þ;

ðrskþ1 � ð1 � 2k�1ÞÞð1 � skþ1Þ ¼ bð1 � bÞk�2 þ Oðk�3Þ;

2ð1 � skÞ ¼ 2b=k þ Oðk�2Þ;

the O’s being uniform in b: We note that both margins of z0k;b are concentrated on

subsets of A0
k;b according to Step 2 and the definition A0

k;b in (b).

(4) For every dA½0; 1Þ and b we denote by zd;b the measure z0k;b and Ad;b ¼ A0
k;b for

the minimal k ¼ kðdÞXk1 such that dp1 � 2=k: In the next steps we need the
following inequality:

mðAd;bÞ ¼ 2ð1 � skÞXqð1 � dÞ; ð16Þ
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where q ¼ b1=k1: In fact if k ¼ k1 then mðAd;bÞ ¼ 2ð1 � skÞXb=k1Xb1ð1 � dÞ=k1;
while for k4k1 we have dX1 � 2=ðk � 1Þ; 1 � dp2=ðk � 1Þp4=kpk1=k; i.e.

mðAd;bÞ ¼ 2ð1 � skÞXb1ð1 � dÞ=k1; inequality (16) is established. By Step 3(b)

and by the choice of k both margins of zd;b are concentrated on subsets of

Ad;bC½1 � 2=k; 1�C½d; 1�: Thus, by Step 3(a), zd;b does not charge I2
\ðT,½d; 1�2Þ:

(5) We now extend zd;b to a symmetric measure about the main diagonal of I2 with

margins not exceeding 1ð0;1Þm: Set l0d;b ¼ zd;b þ zd;b3t
�1: It is clear that: (a) l0d;b does

not charge I2
\½d; 1�2); (b) both margins of l0d;b are equal to 1Ad;b

m ¼ ð1½rskþ1;r� þ
1½sk ;1�Þm with k ¼ kðdÞ; s ¼ 1 � bk�2; r ¼ ð1 � skÞ=ð1 � skþ1Þ (Step 3(a)). These

margins do not charge I\½d; 1� due to dp1 � 2=kprskþ1 (Step 3(b)); (c) ð1Tl
0
d;bÞ3r�1

is a two-point measure concentrated on fwkðbÞ; zkðbÞg; where wkðbÞ ¼ r; zkðbÞ ¼ rs;
(d) wk and zk are CN functions which are not constant on any interval.

(6) For every bAðb1; b2Þ we now construct a copula lb as a sum of a sequence

of measures of the form cl0d;b3h
�1
a (with haðx; yÞ ¼ ðax; ayÞ); hence ð1TlbÞ3r�1

will not charge the complementary of the denumerable set of points
fðwkðbÞ; 1Þ; ðzkðbÞ; 1Þ: kXk1g: Namely we set lb ¼

P
nX1 l

n
b: The measures ln

b will

be defined, as symmetric measures with both margins equal to 1Dn
m with pairwise

disjoint Dn; I\ðD1,?,DnÞ being a union of open intervals ðan;i; cn;iÞ; i ¼ 1;y; 2n;
an;1 ¼ 0; cn;ioan;iþ1 (for io2n), in the following recursive way:

lnþ1
b ¼

X2n

i¼1

cn;il
0
an;i=cn;i ;b

3h�1
cn;i
; nX0; ð17Þ

starting with a0;1 ¼ 0 and c0;1 ¼ 1:

We now verify that both margins of lnþ1
b are of the form 1Dnþ1

m: Namely both

margins of cn;il
0
an;i=cn;i ;b

3h�1
cn;i

are (by (13) and Step 5(b)) equal to

cn;ið1½rskþ1;r�m þ 1½sk ;1�mÞ3k�1
cn;i

¼ ð1½cn;irskþ1;cn;i r� þ 1½cn;isk ;cn;i �Þm;

where k; s; r are calculated with d ¼ an;i=cn;i and b: We have cn;irskþ1
Xdcn;i ¼ an;i

according to Step 5(b). Hence the intervals appearing in the margins of the terms in
(17) are disjoint and do not overlap with D1,?,Dn; consequently both margins of

lnþ1
b are equal 1Dnþ1

m; where

Dnþ1 ¼
[2n

i¼1

ð½cn;irskþ1; cn;ir�,½cn;is
k; cn;i�Þ:

Moreover

I\ðD1,?,Dnþ1Þ ¼
[2n

i¼1

ððan;i; cn;irskþ1Þ,ðcn;ir; cn;is
kÞÞ;

i.e. is the union of a total number 2nþ1 nonoverlapping open intervals, and not 3 � 2n

since cn;i is the left endpoint of the interval ½cn;i; an;iþ1�CðD1,?,DnÞ (with an;2nþ1

taken as 1). It remains to show that lb is a copula. This assertion follows from
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mðI\ðD1,?,DnÞÞ-0 which in its turn follows from

mðI\ðD1,?,Dnþ1ÞÞ ¼mðI\ðD1,?,DnÞÞ � 2
X2n

i¼1

cn;ið1 � skÞ

p
byð16Þ

mðI\ðD1,?,DnÞÞ � q
X2n

i¼1

cn;ið1 � dÞ

¼mðI\ðD1,?,DnÞÞ � q
X2n

i¼1

ðcn;i � an;iÞ

¼ ð1 � qÞmðI\ðD1,?,DnÞÞ;

leading to mðI\ðD1,?,DnÞÞpð1 � qÞn-0:
(7) We choose a singular nonatomic probability measure $ on ðb1; b2Þ and set

x ¼
R
lb d$ðbÞ: Copula x is symmetric with respect to the main diagonal of I2 and

the image of 1Tx by r is a convex combination of the images of $ by the maps wk

and zk; kXk1: By Step 5(d) all these images are singular. Hence the image ð1TxÞ3r�1

of 1Tx by r is also singular. Copula x yields a singular copula CaM star unimodal
about ð0; 0Þ which charges no individual ray originating in ð0; 0Þ except the segment
with endpoints ð0; 0Þ and ð1; 1Þ:

Let us observe that choosing $ concentrated on a set of Hausdorff dimension
ao1 copula C will be concentrated on a set of Hausdorff dimension 1 þ a (Bertin
et al. [1, Lemma 3.3.44, p. 97]).

5. Diagonals

We now characterize diagonals of copulas star unimodal about ð0; 0Þ:

Proposition 5.1. Let d be a diagonal and cA½0; 0:5�: There exists a copula C star

unimodal about ð0; 0Þ such that d ¼ dC and

C0
uð1; vÞ ¼ ð1 � cÞv; C0

vðu; 1Þ ¼ ð1 � cÞu; u; vo1; ð18Þ

if and only if d0ðuÞ=u is absolutely continuous nonincreasing and

d0ð1Þ ¼ 2ð1 � cÞ; ðd0ðuÞ=uÞ0X� 4c=u2; dðuÞ � ud0ðuÞ=2pcu: ð19Þ

If c ¼ 0 then C ¼ P and dðuÞ ¼ dCðuÞ ¼ u2:

Proof. The case c ¼ 0 follows immediately, so let cAð0; 0:5�:
Part I: Consider a copula C star unimodal about ð0; 0Þ such that d ¼ dC and

satisfying (18).
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(1) From (9) we deduce

C ¼ c11sð0;0Þ;ð1;1Þ þ ð0:5 � c11Þ
Z

f 1
1 ðvÞsð0;0Þ;ð1;vÞ dv þ

Z
f 2
1 ðuÞsð0;0Þ;ðu;1Þ du

� �

þ c11

Z
sð0;0Þ;ðu;vÞ dxðu; vÞ:

We have

sð0;0Þ;ðu;vÞðp; qÞ ¼ minð1; ðp=uÞ2; ðq=vÞ2Þ ð20Þ
since the measure sð0;0Þ;ðu;vÞ is the image of sð0;0Þ;ð1;0Þ by the map t/ðtu; tvÞ; hence the

left-hand side of (20) becomes sð0;0Þ;ð1;0Þð½0; p=u�-½0; q=v�Þ: Particularly from (20) we

obtain

sð0;0Þ;ðu;vÞðp; pÞ ¼ minð1; p2=maxðu; vÞ2Þ:

Hence the diagonal section dCðpÞ is a convex combination of four functions p2;

p2
R

f 1
1 ðvÞ dv ¼ p2; p2; and

R
minð1; p2=maxðu; vÞ2Þ dxðu; vÞ ¼

R
minð1; p2=t2Þ dZðtÞ;

where ZðtÞ ¼ xðt; tÞ: Summarizing we obtain

dCðpÞ ¼ ð1 � c11Þp2 þ c11

Z
minð1; p2=t2Þ dZðtÞ: ð21Þ

We emphasize that d depends on x only via Z:
(2) We now show that x is a copula (thus Z ¼ dx is a diagonal) and that c11 ¼ c;

by using (18). In view of (8) the margins of the measure c11x are 1ð0;1Þm=2�
ð0:5 � c11Þf i

1m; i ¼ 1; 2: We have to prove that f i
1 ¼ 1; i ¼ 1; 2:

From (20) we deduce

ðsð0;0Þ;ðu;vÞðp; qÞÞ0p ¼ ð2p=uÞ1Apq
ðu; vÞ;

where Apq ¼ fðu; vÞ : ppu; ppuq=vg: For p ¼ 1; qo1 the preceding derivative

equals 2 � 1f1gðuÞ1½0;q�ðvÞ: Hence

C0
pð1; qÞ ¼ ð1 � c11Þ

Z q

0

f 1
1 ðvÞ dv;

this relation together with the first condition in (18) imply f 1
1 ¼ 1 and c11 ¼ c:

Similarly we obtain f 2
1 ¼ 1:

(3) Set gðtÞ ¼ t: By virtue of Part I(1) and (2) we have

dðpÞ ¼ ð1 � cÞp2 þ c � c

Z 1

p

ð1 � p2=t2Þ dZðtÞ

¼ ð1 � cÞp2 þ c � c

Z 1

p

Z t

p

ð2w=t2Þ dw

� �
dZðtÞ

¼ ð1 � cÞp2 þ c � c

Z 1

p

2w

Z 1

w

ð1=t2Þ dZðtÞ
� �

dw

¼ð1 � cÞp2 þ c � c

Z 1

p

2wðg�2ZÞð½w; 1�Þ dw:
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Since Z is continuous it follows that d has a continuous derivative

d0ðpÞ ¼ 2ð1 � cÞp þ 2cpðg�2ZÞð½p; 1�Þ ð22Þ

and d0ð1Þ ¼ 2ð1 � cÞ; i.e. the first condition in (19). Moreover d0 as well as d0ðpÞ=p are
absolutely continuous and

ðd0ðpÞ=pÞ0 ¼ �2cZ0ðpÞ=p2; ð23Þ

hence d0ðpÞ=p nonincreasing and ðd0ðpÞ=pÞ0X� 4c=p2 (second condition in (19))
follow from the defining properties of the diagonal Z (Part I(2)).

(4) We now express ZðpÞ in terms of ðg�2ZÞð½p; 1�Þ:

ZðpÞ ¼ 1 � Zð½p; 1�Þ ¼ 1 �
Z 1

p

w2 dðg�2ZÞðwÞ

¼ 1 � p2ðg�2ZÞð½p; 1�Þ �
Z 1

p

ðw2 � p2Þ dðg�2ZÞðwÞ

¼ 1 � p2ðg�2ZÞð½p; 1�Þ �
Z 1

p

Z w

p

2q dq

� �
dðg�2ZÞðwÞ

¼ 1 � p2ðg�2ZÞð½p; 1�Þ �
Z 1

p

2q

Z 1

q

dðg�2ZÞðwÞ
� �

dq

¼ 1 � p2ðg�2ZÞð½p; 1�Þ �
Z 1

p

2qðg�2ZÞð½q; 1�Þ dq: ð24Þ

From (22) we obtain

ðg�2ZÞð½p; 1�Þ ¼ d0ðpÞ=ð2cpÞ � ð1 � cÞ=c ð25Þ

and introducing (25) in (24) it follows that

ZðpÞ ¼ 1 � pd0ðpÞ=ð2cÞ þ ð1 � cÞp2=c �
Z 1

p

ðd0ðqÞ=c � 2ð1 � cÞq=cÞ dq

¼ 1 � pd0ðpÞ=ð2cÞ þ ð1 � cÞp2=c � ðdð1Þ � dðpÞÞ=c þ ð1 � cÞð1 � p2Þ=c

¼ � pd0ðpÞ=ð2cÞ þ dðpÞ=c: ð26Þ

Now ZðpÞpp implies �pd0ðpÞ=ð2cÞ þ dðpÞ=cpp; i.e. the third condition in (19). This
ends Part I of the proof.

Part II: Let d be a diagonal with an absolutely continuous nonincreasing d0ðuÞ=u

satisfying (19).

(1) We determine ðg�2ZÞð½p; 1�Þ from (25). This quantity is nonnegative since

d0ðpÞ=pXd0ð1Þ ¼ 2ð1 � cÞ: Moreover it is nonincreasing in p since d0ðpÞ=p has this

property. It follows that g�2Z is a positive measure on ð0; 1�; absolutely continuous
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since d0 is so. Its density function is �ðd0ðuÞ=uÞ0=ð2cÞp2=u2 according to (19). Now it

follows that Z ¼ g2ðg�2ZÞ is a measure and its density function is pu2 � ð2=u2Þ ¼ 2:
If we regard Z as a function by Zðða; b�Þ ¼ ZðbÞ � ZðaÞ and Zð1Þ ¼ 1; Z has defining
properties (b) and (c) of a diagonal. We observe that (26) also holds for our Z and d:
Therefore Zð0Þ ¼ 0; hence Z is a probability measure. Defining property (a) of a
diagonal ZðuÞpu follows from the last condition in (19).

(2) We now consider a copula x such that dx ¼ Z and the measure m given by (9)

with x and with c11 ¼ c; f 1
1 ¼ f 2

1 ¼ 1; i.e.

m ¼ ceð1;1Þ þ ð0:5 � cÞ½e1#ð1½0;1�mÞ þ ð1½0;1�mÞ#e1� þ cx: ð27Þ

Then copula C ¼
R
sð0;0Þ;ðu;vÞ dmðu; vÞ is star unimodal about ð0; 0Þ: Calculations in

Part I(2) show that conditions (18) are valid while calculations in Part I(1) lead to

(21) for dC ; which in its turn leads to (22) for d0C : Thus d and dC have the same

derivative and coinciding at 1; say, they are equal. &

Example 5.2. An admissible d as in Proposition 5.1 is

dðuÞ ¼
ð1 þ cÞu2 for uA½0; 0:5�;
ð1 � 3cÞu2 þ 4cu � c for uAð0:5; 1�:

(
ð28Þ

A copula C star unimodal about ð0; 0Þ such that dC ¼ d is

Cðu; vÞ ¼ cM2ðu; vÞ þPðu; vÞ � c1fuþv41gW
2ðu; vÞ:

Remark 5.3. For every cAð0; 0:5� we considered in Proposition 5.1 the class of
copulas C star unimodal about ð0; 0Þ satisfying (18). In the proof of this proposition
(Part I(2)) we also established that these C’s are in bijective correspondence with the

class of all copulas x: Namely C ¼
R
sð0;0Þ;ðu;vÞ dmðu; vÞ with m given by (27) leads to

(Lemma 2.6(1))

C ¼ csð0;0Þ;ð1;1Þ þ ð1 � 2cÞPþ c

Z
sð0;0Þ;ðu;vÞ dxðu; vÞ:

Moreover in the same proof we saw that the diagonal section dC and Z ¼ dx are in a

bijective correspondence expressed in different ways by (21), (22), or (26).

Example 5.4. Let us construct copulas C star unimodal about ð0; 0Þ satisfying (18)
and indicate their diagonal section dC : In view of Remark 5.3 we start with a class F
of diagonals Z; chosen among the extreme elements in Lemma 2.1, we construct
for every ZAF a family XZ of copulas x (different from that in Nelsen

[8, Theorem 3.2.11, p. 75]) with dx ¼ Z; and then the associated C’s as well as
their dC ’s follow.
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(1) A diagonal in our class F is determined by a partition of I :
Namely let nX1 and let tn be a partition 0 ¼ t2not2n�1o?ot0 ¼ 1 with

Xn

k¼1

ðt2k�2 � t2k�1Þ ¼ 0:5;
Xn

k¼p

ðt2k�2 � t2k�1Þp0:5t2p�2; p ¼ 2;y; n;

ð29Þ

for n ¼ 1 the second condition does not appear. We determine the continuous Z ¼
Ztn

; depending on the partition tn; satisfying Zð0Þ ¼ 0; Z constant on ½t2k; t2k�1�; and
Z0 ¼ 2 on ðt2k�1; t2k�2Þ; k ¼ 1;y; n: By virtue of (29), we conclude that Z is a

diagonal. This Ztn
runs over all the diagonals Z% with Z% piecewise equal to 0 or 2

when n ¼ 1; 2;y and tn runs over the set of all such partitions of the interval ½0; 1�:
(2) For every given Z we now construct, by induction on the cardinal of the

partition defining Z; the class XZ:

We begin by letting n ¼ 1: Then t1 ¼ 0:5; ZðtÞ ¼ 0 for tp0:5 and ZðtÞ ¼ 2t � 1 for
tX0:5: For this Z all x’s with dx ¼ Z are of the form

xð . Þ ¼ 0:5z1ððg0;0:5; g0:5;1Þ�1ð . ÞÞ þ 0:5z2ððg0:5;1; g0;0:5Þ�1ð . ÞÞ; ð30Þ

where ga;bðtÞ ¼ a þ tðb � aÞ and z1; z2 are arbitrary copulas. In fact, copula x charges

Zð0:5Þ ¼ 0 on ½0; 0:5� � ½0; 0:5� and 1 � 0:5 � 0:5 þ Zð0:5Þ ¼ 0 on ½0:5; 1� � ½0:5; 1�;
hence it represents as x0 þ x00 with x0 concentrated on ½0; 0:5� � ½0:5; 1� and x00

concentrated on ½0:5; 1� � ½0; 0:5�: Then 1½0;0:5�m ¼ 1½0;0:5�1½0;1�m is the first margin of

1½0;0:5�x ¼ 1½0;0:5�ðx0 þ x00Þ which is the margin of 1½0;0:5�x
0: Three other similar relations

show that x0 and x00; translated by �0:5 along the x2 and x1 axes, respectively, and
transformed homothetically with center 0 and ratio 2; become 0:5z1 and 0:5z2; with
z1 and z2 copulas. The inverse maps for the corresponding composed maps are
exactly ðg0;0:5; g0:5;1Þ and ðg0:5;1; g0;0:5Þ; respectively.

We define the class XZ as that formed by all copulas x given by (30). In view of (9)

and of Lemma 2.6(1) we obtain

C ¼ csð0;0Þ;ð1;1Þ þ ð1 � 2cÞP

þ 0:5c

Z
sð0;0Þ;ðg0;0:5ðuÞ;g0:5;1ðvÞÞ dz1ðu; vÞ þ

Z
sð0;0Þ;ðg0:5;1ðuÞ;g0;0:5ðvÞÞ dz2ðu; vÞ

� �
:

In the sequel we proceed by induction. We suppose that for a given n we already
defined the sets XZ with Z’s determined by partitions with cardinals less 2n: Take an

Z ¼ Ztn
: Let aX0 be minimal such that there exists ka0; n with Zðt2kÞ ¼ t2k � a: Fix

such a k: We observe that ZðaÞ ¼ 0 and Zð1 � aÞ ¼ 1 � 2a; we also have that
ZðtÞpt � a for tA½a; 1 � a�: For tA½0; 1� we set

Z1ðtÞ ¼ Zðaþ tðt2k � aÞÞ=ðt2k � aÞ;

Z2ðtÞ ¼ ½Zðt2k þ tð1 � a� t2kÞÞ � Zðt2kÞ�=ð1 � a� t2kÞ:
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Z1 and Z2 are diagonals corresponding to the partitions t1n�k and t2k; respectively

t1n�k : 0 ¼ a� a
t2k � a

o
t2n�1 � a
t2k � a

o?o
t2kþ1 � a
t2k � a

o
t2k � a
t2k � a

¼ 1;

t2k : 0 ¼ t2k � t2k

1 � a� t2k

o
t2k�1 � t2k

1 � a� t2k

o?o
t1 � t2k

1 � a� t2k

o
1 � a� t2k

1 � a� t2k

¼ 1:

We now define XZ to be the set of all copulas x which represent as

xð . Þ ¼ az1ððg0;a; g1�a;1Þ�1ð . ÞÞ þ az2ððg1�a;1; g0;aÞ�1ð . ÞÞ

þ ðt2k � aÞx1ððga;t2k
; ga;t2k

Þ�1ð . ÞÞ

þ ð1 � a� t2kÞx2ððgt2k ;1�a; gt2k ;1�aÞ�1ð . ÞÞ;

where xiAXZi ; i ¼ 1; 2; and z1 and z2 are arbitrary copulas. We can check that for

such x’s we have dx ¼ Z:
(3) Let us look more closely at the form of xAXZ: We observe that there exists a

partition 0 ¼ s2ro?os0 ¼ 1 and a permutation p of f1;y; 2rg such that the
following hold: (j) spðiÞ�1 � spðiÞ ¼ si�1 � si; (jj) denoting the square ½si; si�1� �
½spðiÞ; spðiÞ�1� by Si; we have

xð . Þ ¼
X2r

i¼1

ðsi � si�1Þbiððgsi ;si�1
; gspðiÞ;spðiÞ�1

Þ�1ð . ÞÞ;

where bi are copulas, i ¼ 1;y; 2r: Then copula C (star unimodal about ð0; 0Þ)
corresponding to x is

C ¼ csð0;0Þ;ð1;1Þ þ ð1 � 2cÞPþ c
X2r

i¼1

ðsi � si�1Þ
Z

sð0;0Þ;ðgsi ;si�1
ðuÞ;gspðiÞ ;spðiÞ�1

ðvÞÞ dbiðu; vÞ:

If each bi is a Fréchet copula we may use Lemma 2.6 to determine the density
function of the absolutely continuous part of C:

(4) Diagonal section dC of the resulting C’s given by (28) with xAXZ; are the same,

say d: This d may be explicitly determined by using dð1Þ ¼ 1; d0 continuous, d0ð1Þ ¼
2ð1 � cÞ (first condition in (19)) and (23). For a partition tn we obtain dðtÞ ¼
rkt2 þ 4ct þ sk for tA½t2k�1; t2k�2�; dðtÞ ¼ akt2 þ bk for tA½t2k; t2k�1�; k ¼ 1;y; n: For

simplicity we extend d to ½1;NÞ by dðtÞ ¼ a0t2 þ b0; a0 ¼ 1 � c ¼ 1 � b0: The
recurrence relations determining the a; b; r; s’s are

bk ¼ sk þ 2ct2k�1; ak ¼ rk þ 2c=t2k�1

and

sk ¼ bk�1 � 2ct2k�2; rk ¼ ak�1 � 2c=t2k�2;
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for k ¼ 1;y; n: For instance we observe that bk ¼ bk�1 � 2cðt2k�2 � t2k�1Þ; hence

bk ¼ c � 2c
Xk

j¼1

ðt2j�2 � t2j�1ÞX0

and bn ¼ 0 due to the conditions imposed to the partition.

Remark 5.5. We observe that there exists a relationship between Examples 4.6, 5.2,
and 5.4.

(1) For n ¼ 1 in Example 5.4 (Step 2) we have t1 ¼ 0:5 hence (Step 4) a0 ¼ 1 � c;
b0 ¼ c; r1 ¼ 1 � 3c; s1 ¼ �c; a1 ¼ 1 þ c; b1 ¼ 0; i.e. the diagonal d is that in Example
5.2. Copula z ¼ zðNÞ in Example 4.6(2) is one of the x’s in Step 2 of Example 5.4.
Hence dC for

C ¼ 0:5sð0;0Þ;ð1;1Þ þ 0:5

Z
sð0;0Þ;X dzðXÞ

is the diagonal d in Example 5.2 for c ¼ 0:5:
(2) In Example 4.6(3) we have dxðunÞ ¼ un; dx is constant on ½un; rðknÞun�1�; and its

derivative is 2 on ½rðknÞun�1; un�1�: Hence dx coincides, on every ½un; 1�; with an Z in

Example 5.4 for t2p ¼ up t2p�1 ¼ rðkpÞup�1; p ¼ 1;y; n:

The diagonal section dC of copula

C ¼ 0:5sð0;0Þ;ð1;1Þ þ 0:5

Z
sð0;0Þ;X dxðXÞ

may be determined by using the recurrence relations in Example 5.4 (Step 4):

bp ¼ 0:5 �
Xp

i¼1

ð1 � rðkiÞÞui�1;

ap ¼ 0:5 þ
Xp

i¼1

ðrðkiÞ�1 � 1Þu�1
i�1;

sp ¼ bp�1 � up�1;

rp ¼ ap�1 � u�1
p�1:

Remark 5.6. Every diagonal Z is the limit of a nondecreasing sequence of diagonals
Zn as in Example 5.4. Namely ZnðtÞ ¼ Zðk=2nÞ for k=2nptpan;k; ZnðtÞ ¼ Zððk þ
1Þ=2nÞ � 2ððk þ 1Þ=2n � tÞ for an;kptpðk þ 1Þ=2n; where an;k ¼ ðk þ 1Þ=2n �
ðZððk þ 1Þ=2nÞ � Zðk=2nÞÞ=2: We can find (Example 5.4) copulas xn with dxn

¼ Zn:

Since the set of all copulas is compact with respect to the uniform convergence,
we can extract a convergent subsequence xnp

: Its limit x satisfies dx ¼ Z: In other

words we obtained as a by-product an alternative proof of Theorem 3.2.11 in
Nelsen [8, p. 75] since we found a copula having as diagonal section given
diagonal Z:
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6. Unimodality of Archimedean copulas

Let us now examine Archimedean copulas.

Proposition 6.1. An Archimedean absolutely continuous star unimodal copula C

(particularly block unimodal) coincides with P:

Proof. (1) Let C be star unimodal about ða; bÞ: From the absolute continuity of C

and from (10) and (11) we deduce that

m ¼ 0:5½ae0#ðf 1
0 mÞ þ ð1 � aÞe1#ðf 1

1 mÞ þ bðf 2
0 mÞ#e0 þ ð1 � bÞðf 2

1 mÞ#e1�;
ð31Þ

where the f i
a ’s are probability density functions satisfying (12). Suppose CaP: Then

we know from Example 4.2(1), that ða; bÞ is not a vertex of I2: Moreover if C is

Archimedean ða; bÞ is not on the boundary of I2: Indeed if b ¼ 0 and 0oao1 then
the term in (31) with factor b is missing and the probability density function f of C is

such that f ð1; uÞ ¼ f 2
1 ðuÞ ¼ 1 (Lemma 2.6(1)). Being Archimedean, C as well as f is

symmetric, hence 1 ¼ f ðu; 1Þ ¼ f 1
1 ðuÞ; f 1

0 ¼ 1 (by (12)) and C ¼ P: Therefore ða; bÞ
must be an interior point of I2:

(2) As an Archimedean copula, C is defined by the generator f: We have fð0Þ ¼
N: Indeed in the contrary case, C does not charge the domain below the curve
fðuÞ þ fðvÞ ¼ fð0Þ; the boundary of this domain contains the segments f0g � ½0; 1�
and ½0; 1� � f0g: It follows, since ab40; that f 1

0 ¼ f 2
0 ¼ 0 which contradicts the fact

that they are probability density functions. Hence

f ðu; vÞ ¼ c00ðfðuÞ þ fðvÞÞf0ðuÞf0ðvÞ; ð32Þ

where c is the classical inverse of f:
(3) For almost all pairs x; y with x; yAðb; 1Þ; f ðu; vÞ is a.e. constant on each of the

segments Ix and Iy joining ða; bÞ with ð1; xÞ and ð1; yÞ; respectively (Lemma 2.6(1)).

On each of these segments u/fðuÞ þ fðvÞ is a decreasing and absolutely continuous
function. Hence the ranges are ½fðxÞ;fðaÞ þ fðbÞ�\Ax and ½fðyÞ;fðaÞ þ fðbÞ�\Ay

respectively, Ax and Ay having null Lebesgue measure. When zeAx,Ay;

limzmfðaÞþfðbÞc
00ðzÞ exists by (32) and Remark 2.3(2). Substituting z by fðuÞ þ fðvÞ

and restricting the pair u; v to Ix we find that this limit is f 1
1 ðxÞ=ðf0ðaÞf0ðbÞÞ while on

Iy this limit is f 1
1 ðyÞ=ðf0ðaÞf0ðbÞÞ; again by Remark 2.3(2). Hence f 1

1 ðxÞ ¼ f 1
1 ðyÞ; i.e.

f 1
1 is constant on the interval ðb; 1Þ:
(4) Similar arguments as in Step 3, in all of them using segments with positive

slopes (with one endpoint in ða; bÞ), lead to f 1
0 constant on the interval ð0; bÞ; f 2

0

constant on ð0; aÞ; and f 2
1 constant on ða; 1Þ: From (12) we deduce that the f i

a ’s are

also constant on the remaining subintervals of ð0; 1Þ:
(5) If we show that f i

a are constant on the whole ð0; 1Þ; then it will follow that

f i
a ¼ 1; i.e. C ¼ P; contradiction.
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We consider f 1
1 : Its constancy follows from its continuity in b: The first step to this

conclusion is to observe that c00 is continuous on ð0;fðaÞ þ fðbÞÞ: Now we consider

u0Aða; 1Þ: Since fðu0Þ þ fðbÞAð0;fðaÞ þ fðbÞÞ; c00ðfðuÞ þ fðvÞÞ is continuous in

ðu0; bÞ (as well as f0ðuÞf0ðvÞ). In a neighborhood of ðu0; bÞ we have f ðu; vÞ ¼
f 1
1 ðb þ ðv � bÞ=ðu � aÞÞ (Lemma 2.6(1)), f ðu; vÞ is continuous by (32), and when ðu; vÞ
varies in that neighborhood, b þ ðv � bÞ=ðu � aÞ covers an open interval containing

b: Continuity of f 1
1 follows (Remark 2.3(2)). &

Proposition 6.2. An Archimedean star unimodal copula C having a nonnull singular

part coincides with W :

Proof. (1) We have seen in Remark 4.3 that a nonabsolutely continuous copula C

star unimodal about x charges every subinterval of a segment J with endpoints x and

yax; y being a vertex of I2:
(2) We suppose that the Archimedean copula C is determined by the generator f:

By virtue of Remark 2.3(1) c0 has to be discontinuous in all the points fðuÞ þ fðvÞ;
ðu; vÞAJ: If fðuÞ þ fðvÞ is not constant on J; then the points fðuÞ þ fðvÞ; ðu; vÞAJ;

cover an interval and c0 cannot be discontinuous in all these points. So we deduce
that fðuÞ þ fðvÞ is a constant c0 on J: Let J be the graph of a linear function
v ¼ vðuÞ; uA½u0; 1�; i.e. x ¼ ðu0; vðu0ÞÞ: If J has positive slope, u/fðuÞ þ fðvðuÞÞ is
decreasing, particularly not constant. Hence J must have negative slope. It follows

that the vertex y of I2 in Step 1 is either ð0; 1Þ or ð1; 0Þ; say ð1; 0Þ:
(3) Since fðuÞ and fðvðuÞÞ are convex and their sum is constant we deduce that

they are both linear, i.e. f is linear on ½u0; 1� and on ½0; vðu0Þ� as vð1Þ ¼ 0: If f is linear
on the whole ½0; 1� it follows that C ¼ W : So let us assume that CaW :

(4) Copula C being star unimodal about x does not charge any segment situated
on a line not passing through x since the sx;z’s in the representation of C do not

charge such segments. On the other hand, C being Archimedean is symmetric about

the main diagonal of I2; so C will charge the symmetric J 0 of J with respect to this
diagonal. Thus the line L containing J 0 passes through x: Since J 0 is also a subset of
the level curve fðuÞ þ fðvÞ ¼ c0; the convexity of the level curves of C shows that L

may pass through x only either C ¼ W or LNJ and x is an endpoint of J 0 (the other
being ð0; 1Þ).

(5) From the conclusion of Step 4 it follows that vðu0Þ ¼ u0 and that f is linear on

½0; u0� and ½u0; 1�: Hence f0 has a discontinuity point at u0 leading to a discontinuity

point fðu0Þ of c0: Thus the level curve G defined by fðuÞ þ fðvÞ ¼ fðu0Þ will be
charged by C: We have fðu0Þofð0Þ ¼ c0; i.e. GaJ,J 0: But G consists of two
segments, each having a negative slope and one endpoint at ðw;wÞ with fðwÞ ¼
fðu0Þ=2; i.e. w4u0: The lines defined by these two segments cannot pass through
x ¼ ðu0; u0Þ: Contradiction with the beginning of Step 4. &

As a by-product we obtain
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Corollary 6.3. With the exception of P and W ; Fréchet’s copulas are not

Archimedean.

Remark 6.4. Propositions 6.1 and 6.2 show that, with the exception of P and W ;
there do not exist star unimodal Archimedean copulas. It is then natural to explore
the possibility of enlarging the class of Archimedean copulas and then to search for
unimodal ones. Such a class may be that of Archimax copulas recently introduced in
Capéraà et al. [2].

7. A brief discussion on the case of higher dimension

For higher dimension c42 unimodality of probability measures was studied in
Dharmadhikari and Joag-dev [5] and Bertin et al. [1] while copulas (including
Archimedean) were examined in Nelsen [8]. We remind that there is no analogue of
W as a copula for c42:

Proposition 3.2 is valid for c42 with self-explanatory modifications: Ic splits

generally into 2c parallelepipeds, the probability density function is constant on each
of them, the constants depending on a parameter analogous to q:

Proposition 3.3 has also a direct extension to the case c42; with 3c terms in (2).
When copula C is absolutely continuous only 2cþ 1 of these terms may be nonnull.

The extension to higher dimension of the results in Section 5 has to start with a
study of the corresponding diagonal section.

As far as Section 6 is concerned, it appears that the methods used may also work
for c42:
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