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Abstract

A necessary and sufficient condition is given for approximation with weighted expressions of the form
wnPn, where w is a given continuous weight function and Pn are polynomials of degree n = 1,2, . . . . The
condition is that the extremal measure that solves an associated equilibrium problem is smooth (asymptoti-
cally optimal doubling). As corollaries we get all previous (positive and negative) results for approximation,
as well as the solution of a problem of T. Bloom and M. Branker. A connection to level curves of homoge-
neous polynomials of two variables is also explored.
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1. Introduction and main results

Let Σ be a closed subset of the real line and w a nonnegative continuous function on Σ such
that w(x)x → 0 as x → ±∞ if Σ is unbounded. Various problems ranging from orthogonal
polynomials to some questions in statistical physics (see e.g. [21, Section IV.7 and Chapter VII])
lead to approximation by weighted expressions of the form wnPn, where Pn is an algebraic poly-
nomial of degree at most n. Note that here the degree of the polynomial matches the exponent in
the weight wn, so this is a very different sort of question than ordinary weighted approximation.

For the literature related to this problem see the discussion below. In this paper we give match-
ing necessary and sufficient conditions for approximation. On the one hand, these completely
solve the global problem, and on the other hand, provide local results that are stronger than any
previous theorems. As an illustration let us state the following corollary of our main theorems,
which gives necessary and sufficient condition for global approximation.

All the measures in this article are Borel measures on R, therefore we shall not state that
separately. We say that a measure μ is smooth on the interval (a, b), if for every ε > 0 there is a
δ > 0 such that for any two adjacent subintervals I, J ⊆ (a, b) of equal length smaller than δ we
have

1

1 + ε
� μ(I)

μ(J )
� 1 + ε (1.1)

(the definition is the same for a set consisting of finitely many intervals). In the literature such
measures are also called “asymptotically optimal doubling” (see e.g. [5]). Smooth and doubling
measures (see below) play important role in various parts of mathematics, e.g. in the theory of
quasiconformal mappings (see [4]) or in polynomial inequalities (see [16]).

Theorem 1.1. Let Σ = ⋃m
j=1[a2j−1, a2j ] consist of finitely many intervals and let w be a positive

continuous function on Σ . Then every continuous f is the uniform limit of a sequence {wnPn}∞n=1
if and only if there is a probability measure μ with support equal to Σ such that

(a) the measure
√∏2m

j=1 |x − aj |dμ(x) is smooth on Σ , and
(b) with some constant F we have

logw(x) = F +
∫

log
1

|x − t | dμ(t), for all x ∈ Σ.

In a moment we shall see how to find μ: it is the solution of an energy problem in the presence
of an external field, i.e., the theorem is not as vague as it looks at first glance: the measure μ = μw

solving the minimum problem (1.3) must satisfy conditions (a) and (b).
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Condition (b) means that, modulo an additive constant, logw is the logarithmic potential of μ.
The solution of the approximation problem requires the solution of a related equilibrium prob-

lem: if we write w = e−Q, then the energy integral∫ ∫
log

1

|x − t | dμ(x)dμ(t) + 2
∫

Qdμ (1.2)

is to be minimized for all unit Borel measures μ supported on Σ , i.e., we seek(∫ ∫
log

1

|x − t | dμ(x)dμ(t) + 2
∫

Qdμ

)
→ min. (1.3)

We assume that w is not identically zero and that C \ Σ is regular with respect to the Dirichlet
problem. Then there is a unique minimizing measure μw , called the equilibrium measure with
respect to the external field Q. This equilibrium measure has compact support Sw lying in the
set {x | w(x) > 0}; its logarithmic potential

Uμw(x) =
∫

log
1

|x − t | dμw(t) (1.4)

is continuous, and with some constant Fw we have

Uμw(x) = Fw − Q(x) for all x ∈ Sw, (1.5)

while

Uμw(x) � Fw − Q(x) for all x ∈ Σ (1.6)

(see [21, Theorem I.1.3], and for the continuity of Uμw and equality everywhere in (1.5), see [21,
Theorems I.4.4, I.5.1]). Actually, (1.5)–(1.6) characterize the equilibrium measure μw (see [21,
Theorem I.3.3]). As we shall see, the behavior of μw decides what functions can be uniformly
approximated by weighted polynomials wnPn.

Let Aw be the set of functions f for which there is a sequence {wnPn}∞n=1 converging to
f uniformly on Σ (we emphasize that here, and everywhere in what follows, convergence is
required for the full sequence, i.e., we require approximating weighted polynomials wnPn for
all integer n). Clearly, Aw is a subalgebra of C0(Σ) (the space of continuous functions on Σ ;
tending to 0 at infinity when Σ is unbounded) and it is easy to see that A separates the points
of Σ where this subalgebra does not vanish. Therefore, by the Stone–Weierstrass theorem [27],
there is a closed subset Zw of Σ such that f ∈ Aw if and only if f is continuous on Σ and
vanishes on Zw (see [11]). Hence, the approximation problem mentioned above takes the form
of determining the algebra Aw , which in turn is the same as determining the zero set Zw . Thus,
we are interested in the question if a given x0 ∈ Σ belongs to Zw or not. The inclusion x0 ∈ Zw

means a “bad” point from the point of view of approximation, for then all approximated functions
must vanish at x0; on the other hand, points with x0 /∈ Zw are the “good” points, at which we can
freely approximate.

One of the most basic features is that non-trivial approximation is possible only on the support
Sw of the equilibrium measure: Σ \Sw ⊆ Zw , i.e., if f is uniformly approximable by wnPn on Σ

and x0 /∈ Sw , then necessarily f (x0) = 0 [28, Theorem 4.1]. In other words, all points outside Sw
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are “bad” points. If a point x0 ∈ Sw belongs to Zw or not, is a delicate question that is intimately
connected to the (global and local) behavior of the equilibrium measure μw . For example, if
Σ = R, w(x) = e−|x|λ , λ > 0, then 0 /∈ Zw for λ > 1 because then μw has continuous and
positive density around 0; while 0 ∈ Zw for 0 < λ < 1 because the density of μw has a |t |λ−1

type singularity at 0. Finally, when λ = 1, the density behaves like log 1/|t | and this still allows
0 /∈ Zw (see Section 3). The difficulty in this type of approximation can be seen from the fact that
earlier papers were exclusively devoted to solving the problem for concrete weights, like [17] for
Σ = R, w(x) = exp(−x2); [15] for Σ = R, w(x) = exp(−|x|λ), λ > 1; [6,22] for Σ = [0,1],
w(x) = xα ; [25] for Σ = R, w(x) = exp(−|x|); [7] for Σ = [−1,1], w(x) = (1 + x)α(1 − x)β ;
etc. General results appeared in [1,28–30], but so far in the literature there has been no necessary
condition for x0 /∈ Zw , let alone a necessary and sufficient one.

Let Int(Sw) denote the (one-dimensional) interior of Sw . In the first part of this paper we give
a necessary condition (namely smoothness of μw in a neighborhood) for an x0 ∈ Int(Sw) not to
belong to Zw . We also show that under weak additional conditions (doubling of μw , or its strict
positivity in a neighborhood) this condition is also sufficient. These two theorems cover every
previous results in the subject (see Section 3, where, with the help of them, we also give the
solution to an open problem raised by T. Bloom and M. Branker), and in all practical situations
they give necessary and sufficient conditions for approximability. Later, in Section 8, we shall
treat the case when x0 is an endpoint of a subinterval of Sw .

One of the main results of this paper is

Theorem 1.2. If x0 ∈ Int(Sw) does not belong to Zw , then μw is smooth on some neighborhood
(x0 − δ, x0 + δ) of x0.

Next we state the converse under some mild additional conditions. To this end call a measure μ

doubling on the interval [a, b], if there is a constant M such that for any two adjacent subintervals
I, J of [a, b] of equal length we have

1

M
� μ(I)

μ(J )
� M. (1.7)

In particular, a smooth measure in the sense of (1.1) is doubling. The term “doubling” comes
from the fact that (1.7) is clearly equivalent to the following: with some constant M

μ(2I ) � Mμ(I), 2I ⊂ [a, b]
for all subintervals I of [a, b] (here 2I is the twice enlarged I enlarged from its center), and this
is the classical doubling condition used frequently in classical analysis (see e.g. [26]).

We say that μ has a positive lower bound on the interval (a, b) if there is a c > 0 such that
μ([α,β]) � c(β−α) for any subinterval (α,β) ⊂ (a, b). This is clearly the same as dμ(t)/dt � c

on (a, b), where dμ(t)/dt is the Radon–Nikodym derivative of μ with respect to Lebesgue
measure, which we shall often call the density of μ.

Theorem 1.3. Suppose that μw is smooth on some neighborhood (x0 − δ, x0 + δ) of x0. Then
x0 /∈ Zw , provided either of the following two conditions is true:

(a) the support Sw of μw can be written as the union of finitely many intervals Jk , and the
restriction of μw to each Jk is a doubling measure on Jk ,

(b) μw has a positive lower bound in a neighborhood (x0 − δ0, x0 + δ0).
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It should be mentioned that the condition, that μw is a doubling measure on each Jk , does
not imply that μw is doubling on Σ , consider e.g. Σ = [−1,1], J1 = [−1,0], J2 = [0,1] and
dμw(t) = t dt for t > 0 and dμw(t) = t2 dt for t � 0.

We also mention that part (b) of this theorem is known, see [30, Theorem 1.2] (in that paper
only absolutely continuous μw’s were considered, but the proof is much the same in the general
case). However, [30] was based on the book [28], and here we present a unified and compact
approach.

Theorem 1.3 provides a converse to Theorem 1.2 in all practical situations, and the two the-
orems cover all known cases (see Section 3). In general, however, some additional condition is
needed, for the local smoothness condition alone is not sufficient.

Example 1.4. There is a positive continuous weight w on Σ = [−1,1] ∪ [3,4] such that Sw =
[−1,1] ∪ [3,4], μw is smooth on [−1,1], and yet 0 ∈ Zw .

It is a natural question to ask what structural properties of w imply the smoothness of μw (say,
around a point). It is known that if Q = log 1/w is convex, then μw is smooth inside Sw [30];
what is more, the same is true if logQ is convex [2]. On the other hand, even analyticity of w

does not guarantee smoothness of μw . In fact, if Σ = [−1,1] and w(x) = ex2
, then [28, p. 110]

dμw(t) = 2t2

√
1 − t2

dt (1.8)

is not smooth around 0.
In Section 8 we shall prove the analogue of Theorems 1.2 and 1.3 for endpoints. Theorem 1.1

is an immediate consequence of the local results in Theorems 1.2, 1.3 and 8.1, therefore we shall
have to prove only these latter ones.

The first (senior) author would like to mention that Theorem 1.2, which is the only necessity
result known in the literature, is due to the second author.

2. Homogeneous polynomials

The problem we address in this paper has a connection to homogeneous polynomials and their
level curves. Let P(x, y) be a real homogeneous polynomial such that P(x, y) > 0 if x2 +y2 > 0,
and let (in polar coordinates) r = lP (ϕ) be the P(x, y) = 1 level curve of P . Clearly, lP ∈ Cπ ,
the space of π -periodic continuous functions.

Let W ∈ Cπ be a positive function, and consider the curve r = W 2(ϕ). First we address the
question if this curve can be uniformly approximated by level curves of homogeneous polyno-
mials. Approximation can be understood in Hausdorff metric or, equivalently, in the uniform
convergence along rays ϕ = ϕ0. In other words, the question is if there is a sequence of homoge-
neous polynomials P2n(x, y) of degree 2n, n = 1,2, . . . , such that lP2n

→ W 2 uniformly.
È.È. Shnol [24] proved

Theorem 2.1. Let

logW(t) ∼
∞∑

gmeimt ,
m=−∞
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be the Fourier expansion of logW , and define cm = 2|m|gm for m �= 0 and c0 = 1. Then the
curve r = W 2(ϕ) is uniformly approximable by level curves of homogeneous polynomials if and
only if the sequence {cm} is positive definite.

Notice that P2n(cosϕ, sinϕ)l2n
P2n

(ϕ) = 1, thus lP2n
(ϕ) = (T2n(ϕ))−1/2n with a trigonometric

polynomial T2n of degree at most 2n. On the other hand, using the identity cos2 ϕ + sin2 ϕ = 1,
it is easy to see that for each π -periodic trigonometric polynomial T2n of degree at most 2n there
is a homogeneous polynomial P2n such that lP2n

(ϕ) = (T2n(ϕ))−1/2n.
By Herglotz’ theorem [9, p. 41], the sequence {cm} is positive definite if and only if there is a

positive unit measure μ on the unit circle whose Fourier coefficients are {cm}. If such a measure
exists, then

Uμ
(
eiϕ

) = logW(ϕ) + C, ϕ ∈ R, (2.1)

with some constant C (see Section 5). Therefore, Theorem 2.1 is equivalent to the following (as
n
√

W 2 → 1, we may take T2n+1 = T2n)

Corollary 2.2. There is a sequence of trigonometric polynomials Tn of degree at most n =
1,2, . . . , such that

n

√
W 2n(ϕ)Tn(ϕ) → 1

uniformly on R, if and only if there is a probability measure μ on the unit circle such that (2.1)

holds.

For better approximation we have the following result, in which we use smooth measures on
the unit circle, the definition of which is analogous to their real-line counterpart in (1.1).

Theorem 2.3. There is a sequence of trigonometric polynomials Tn of degree at most n =
1,2, . . . , such that

W 2n(ϕ)Tn(ϕ) → 1 (2.2)

uniformly on R, if and only if there is a smooth probability measure μ on the unit circle such that
(2.1) holds.

The necessity of smoothness follows from Theorem 5.1, while the sufficiency is proven
(though not explicitly stated) in [31].

Theorem 2.3 has an equivalent form in which approximation by homogeneous polynomials
is considered. Let K be a centrally symmetric continuous Jordan curve such that its interior is
a starlike domain. The problem is what continuous functions f can be uniformly approximated
on K by homogeneous polynomials. This problem was raised recently by A. Kroó, but it has
appeared in a preprint of Shnol ([23], personal communication) before. Since a homogeneous
polynomial is either even or odd, we must assume the same about f . It turns out (see [31])
that the even and odd cases are equivalent, therefore the question we address is this: when is it
true that for every even and continuous function f on K there is a sequence of homogeneous
polynomials P2n uniformly converging to f ?
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K can be parametrized as r = W 2(ϕ), and with this parametrization the answer is

Theorem 2.4. For every even f ∈ C(K) there a sequence of homogeneous polynomials P2n, n =
1,2, . . . , uniformly converging on K to f if and only if there is a smooth probability measure μ

on the unit circle such that (2.1) holds.

This is equivalent to Theorem 2.3. If P2n is a homogeneous polynomial of degree at most 2n,
then on K we have

P2n

(
W 2(ϕ) cosϕ,W 2(ϕ) sinϕ

) = W 4n(ϕ)T2n(ϕ) (2.3)

with a π -periodic trigonometric polynomial T2n of degree at most n. On the other hand, we
can find a homogeneous polynomial P2n for any T2n such that (2.3) holds. In view of this, ap-
proximating the identically 1 function by homogeneous polynomials is equivalent to (2.2). On the
other hand, suppose that (2.2) holds, and let AW be the set of functions f ∈ C(K) for which there
exists a sequence of homogeneous polynomials P2n(x, y) of degree 2n = 2,4, . . . , converging
to f uniformly on K . This AW is a closed subalgebra of C(K) that separates non-diagonally op-
posite points of K (note that if g ∈ AW , then so is every g(x, y)(ax +by)2). Therefore, (2.2) and
the general form of the Stone–Weierstrass theorem ([27], [14, p. 4, #7]) show that AW coincides
with the set of continuous even functions on K .

Theorem 2.4 solves the problem (in the case of two variables) in the sense, that it gives a
necessary and sufficient condition for approximability. However, it is desirable to state the con-
dition of approximability directly in terms of the curve K . It was shown in [31], that if K is
convex then there exists a smooth measure μ satisfying (2.1), thus, approximation is possible on
convex curves. This was a conjecture of Kroó, which was also verified independently by Benko
and Kroó [3] using different methods. For more on this topic see [3,10,31].

3. Corollaries

In this section we list some immediate consequences of the main theorems. Let us assume
that dμw(t) = v(t) dt in a neighborhood of x0, where v is the density of the equilibrium mea-
sure μw . First of all, it immediately follows from Theorem 1.3 that if v is continuous and positive
in a neighborhood of x0, then x0 /∈ Zw , and this is (in a different form) [28, Theorem 4.2]. This
positivity and continuity is the most common feature that occurs for the equilibrium measure μw ,
e.g. if Σ = R, w(x) = exp(−|x|λ), then Sw = [−aλ, aλ] is an interval, and positivity and con-
tinuity of v holds for all x0 ∈ (−aλ, aλ) except possibly for x0 = 0. They still hold at x0 = 0
for λ > 1 (but no longer for λ � 1), therefore, any f ∈ C(R) that vanishes outside [−aλ, aλ] is
uniformly approximable by weighted polynomials e−n|x|λPn(x) provided λ > 1.

More generally, if v is slowly varying in around x0 (i.e., v(t)/v(s) tends to 1 as t, s → x0 in a
way that |t − x0|/|s − x0| is bounded away from 0 and ∞), and either

• μw is piecewise doubling in the sense of Theorem 1.3(a) or
• v(t) � c0 > 0 in a neighborhood of x0,

then x0 /∈ Zw , which is essentially (actually stronger than) [29]. Example 1.4 will show that here
slow variation alone is not enough. When Σ = R and w(x) = exp(−|x|), then v(x) is slowly
varying around 0 (it has log 1/|x| behavior), hence in this case 0 /∈ Zw , and we get again that any
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f ∈ C(R) that vanishes outside [−a1, a1] is uniformly approximable by weighted polynomials
e−n|x|Pn(x), which is [25].

It was shown by Kuijlaars [13] that if v(t) ∼ c|t − x0|−α with some c,α > 0 (here ∼ means
that the ratio of the two sides tends to 1 as t → x0), i.e., if v has a power-type singularity at x0,
then x0 ∈ Zw . This happens e.g. at x0 = 0 when Σ = R and w(x) = exp(−|x|λ), 0 < λ < 1
(then v(t) has c|t |λ−1 type behavior), hence, in this case an f can be uniformly approximated by
e−n|x|λPn(x) if and only if it vanishes outside [−aλ, aλ] and at the origin.

We can easily get from Theorem 1.2 the following stronger

Corollary 3.1. If in a neighborhood of x0 we have v(t) � c|t − x0|−α with some c,α > 0, then
x0 ∈ Zw .

In fact, it was proven in [30, Lemma 3] that if μ is smooth on [a, b], then for every τ > 0
there is a C > 0 such that for arbitrary intervals J ⊂ I ⊂ [a, b]

μ(J ) � C

( |J |
|I |

)1−τ

μ(I), (3.1)

and

μ(J ) � C

( |J |
|I |

)1+τ

μ(I) (3.2)

(actually, that paper dealt with absolutely continuous measures, but there is no change in the
proof when μ is not absolutely continuous). The bound (3.1) clearly prevents a v(t) � c|t −x0|−α

behavior when dμ(t) = v(t) dt , hence Theorem 1.2 implies Corollary 3.1.
Corollary 3.1 was stated as an open problem for the conference “Constructive Functions Tech-

04 (Atlanta, 2004).”
Corollary 3.1 is seemingly only a slight extension of [13], but actually, it is much stronger.

To show its strength, we solve the following problem of T. Bloom and M. Branker (raised in
Branker’s talk at the pluripotential meeting in Banff, 2004): is it possible for a continuous w

that Sw = [−1,1], and still the only function that is uniformly approximable by wnPn is the
identically zero function? The answer is yes, and all we have to do is to take a unit measure μ of
the form dμ(t) = c · v(t) dt ,

v(t) =
∞∑

n=1

2−n|t − rn|−1/2,

where {rn} is an enumeration of the rationals in (−1,1), and set w(x) = exp(Uμ(x)), where Uμ

is the logarithmic potential of μ (see (1.4)). In fact, it is easy to see that w is continuous; and if
we solve the equilibrium problem (1.3), then μw = μ [21, Theorem I.3.3]. Corollary 3.1 can be
applied with x0 = rn for each rational number rn ∈ (−1,1), hence each rational number belongs
to Zw . Since this latter is a closed set, it follows that Zw = [−1,1], and so only the zero function
can be approximated by wnPn.

Another result of Kuijlaars [13] states that if v(t) ∼ c|t −x0|α with some c,α > 0, i.e., if v has
a power-type zero at x0, then, again, x0 ∈ Zw . This is the case e.g. for x0 = 0 when Σ = [−1,1]
and w(x) = exp(|x|2) (see (1.8)). As a strengthening we state
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Corollary 3.2. If in a neighborhood of x0 we have v(t) � c|t − x0|α with some c,α > 0, then
x0 ∈ Zw .

This immediately follows again from (3.1)–(3.2).
This corollary allows solving the Bloom–Branker problem in a different sense. In fact, the

first solution produced a w for which μw was too strong around every rational point; and that
prevented approximation. Now we show a dual example, in which μw is too weak around
every rational point, and this is what prevents approximation. In fact, let again {rn} be an
enumeration of the rational points of (−1,1), and for an n consider the continuous function
gn that is defined on R, it is 1 outside (rn − 2−n, rn + 2−n), it is zero at rn, and it is lin-
ear on (rn − 2−n, rn) and on (rn, rn + 2n) (an upside down wedge with vertex at rn). Define
v(t) = ∏

n gn(t), and the probability measure dμ(t) = c · v(t) dt , t ∈ [−1,1]. It is easy to see
that 0 � v � 1 is positive almost everywhere, and w(x) = exp(Uμ(x)) is continuous. Since we
have again μw = μ and v(t) � gn(t), n = 1,2, . . . , Corollary 3.2 shows that every rn belongs
to Zw . Hence Zw = [−1,1], and the only function that is approximable by wnPn is the identi-
cally zero function.

Finally, we show an example to the Bloom–Branker problem when μw has neither infinite
singularities, nor zeros. Let again {rn} be an enumeration of the rational numbers in (−1,1), and
set v(t) = 1 + ∑

rn<t 2−n, t ∈ [−1,1]. This v is an increasing function that lies in between 1
and 2 on [−1,1]. Therefore, if for the probability measure μ we have dμ(t) = c · v(t) dt and
w(x) = exp(Uμ(x)), then w is continuous, and μw = μ. But v has a jump at every rn, hence μ

is not smooth in any neighborhood of any such rn. By Theorem 1.2 this means that rn ∈ Zw , i.e.,
in this case we have again Zw = Σ .

4. Z-set arguments and transformations

We need to transform the approximation problem. As before, let Σ be a closed subset of the
real line, w �≡ 0 a nonnegative continuous function on Σ and Zw ⊆ Σ the associated zero set.
Thus, f ∈ C(Σ) is a uniform limit of weighted polynomials wnPn if and only if f vanishes
on Zw . We have seen that if Sw is the support of the equilibrium measure μw (see Section 1),
then Σ \ Sw ⊆ Zw . First we show that we can replace w by

w̃ = exp
(
Uμw

)
and Σ by an interval. To this end we prove

Lemma 4.1. Let (x0 − δ, x0 + δ) ⊂ Sw and f0 a continuous function on Sw that vanishes outside
(x0 − δ, x0 + δ). If w̃nPn converges uniformly to f0 on Sw , then it converges to 0 uniformly on
compact subsets of R \ (x0 − δ, x0 + δ).

Proof. Suppose to the contrary, that there is some ε > 0 and some subsequence w̃nkPnk
such that

w̃nk (ynk
)|Pnk

(ynk
)| � ε with some points ynk

lying in some compact subset of R\(x0 −δ, x0 +δ).
We may assume ynk

→ y /∈ (x0 − δ, x0 + δ), and then that {ynk
} is a subsequence of a sequence

{yn} converging to y.
Let I be a closed interval containing Sw and all yn, and let Ã be the set of functions

f ∈ C(I) with the property: for every sequence zn converging to y, there is a sequence {Rn}
of polynomials of degree n = 1,2, . . . such that Rn(zn) = 0 and w̃nRn → f uniformly on I .
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It is clear that Ã is a linear space. It is also an algebra: if g,h ∈ Ã, zn → y, then there are
{Rn}, {Qn} with Rn(z2n) = 0, Qn(z2n−1) = 0 and w̃nRn → g, w̃nQn → h uniformly on I . But
then w̃2nRnQn → gh, and w̃2n+1RnQn+1 → gh uniformly on I , and here (RnQn)(z2n) = 0,
(RnQn+1)(z2n+1) = 0, which show that gh ∈ Ã. Let Z̃ be the zero set for this algebra. Note also
that if f ∈ Ã and f (z) �= 0 at some z, then f (x)w(x)(x − z) also belongs to Ã (if Rn(zn+1) = 0
and w̃nRn → f uniformly on I then w̃n+1(x)Rn(x)(x − z) → f (x)w(x)(x − z) uniformly), and
this latter function vanishes at z. Therefore, the elements of Ã separate the points I \ Z̃, hence,
by the Stone–Weierstrass theorem,

Ã = {
f ∈ C(I)

∣∣ f = 0 on Z̃
}
.

By assumption w̃n+1(x)Pn(x)(x − zn+1) → f0(x)w(x)(x − y) whenever zn → y, therefore,
this latter function is in Ã. As a consequence, Z̃ does not contain any point where f0 does
not vanish. Hence, f0 ∈ Ã, i.e., there is a sequence {Rn} of polynomials with Rn(yn) = 0 and
w̃nRn → f0 uniformly on I . Thus, w̃n(Pn − Rn) → 0 uniformly on Sw , but

w̃nk (ynk
)
∣∣(Pnk

− Rnk
)(ynk

)
∣∣ � ε. (4.1)

However, this leads to a contradiction. Indeed, the functions

nUμw(z) + log
∣∣Pn(z) − Qn(z)

∣∣
are subharmonic on C \Sw (including the point ∞) and tend uniformly to −∞ on Sw . Therefore,
they should tend to −∞ uniformly on C by the maximum principle, which contradicts (4.1).

This contradiction proves the claim in the lemma. �
Corollary 4.2. Let Σ , w as before, and let μw be the associated equilibrium measure. Let Σ̃ be
any compact set containing the support Sw of μw , and set w̃ = exp(Uμw). If x0 ∈ Int(Sw), then

x0 /∈ Zw ⇐⇒ x0 /∈ Zw̃.

Here, of course, Zw̃ is the zero set of the algebra of the functions that are uniform limits of
sequences w̃nPn on Σ̃ .

Proof. Consider the constant Fw from (1.5)–(1.6). Suppose x0 /∈ Zw̃ , and choose a δ such that
(x0 − δ, x0 + δ) ⊂ Sw , (x0 − δ, x0 + δ)∩ Zw̃ = ∅. Choose an f0 ∈ C(R) that is not zero at x0 but
vanishes outside (x0 − δ, x0 + δ). There is a sequence {Pn} with w̃nPn → f0 uniformly on Σ̃ ,
in particular, on Sw . Therefore, by Lemma 4.1, w̃nPn → f0 on any compact subset of R. This is
the same as

exp
(
nUμw − nFw

)(
enFwPn

) → f0 (4.2)

uniformly on compact subsets of R. Since w = exp(Uμw − Fw) whenever f0 �= 0 and otherwise
w � exp(Uμw − Fw) (see (1.5) and (1.6)), it follows that

wn
(
enFwPn

) → f0 (4.3)
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uniformly on compact subsets of Σ . If Σ happens to be unbounded, then w(x)x → 0 as
x → ∞, x ∈ Σ , hence we can choose a finite interval J such that outside J we have w �
exp(Uμw − Fw − 1) (note that |z|w(z) → 0, while |z| exp(Uμw(z)) → 1 as |z| → ∞). This and
the subharmonicity of n(Uμw −Fw)+ log|enFwPn| on C \ J implies via (4.2) and the maximum
principle that on Σ \ J we have wn(enFwPn) � C/en with some constant C. This and (4.3) give
wn(enFwPn) → f0 uniformly on Σ , and hence x0 /∈ Zw .

Conversely, if x0 /∈ Zw , then let f0 be as before, and let {Pn} be a sequence of polynomials
such that wnPn → f0 uniformly on Σ . In particular, this convergence is true uniformly on Sw ,
and, in view of (1.5), this is the same as w̃n(e−nFwPn) → f0 uniformly on Sw . An application of
Lemma 4.1 gives the same uniformly on Σ̃ , which shows that x0 /∈ Zw̃ . �

In view of Corollary 4.2, we may always assume that Σ is an interval, say [−1,1], and w =
exp(Uμ) with μ = μw . Next we transform the problem to the unit circle.

First of all note that the equilibrium problem (1.3) is meaningful if Σ is the unit circle and
w = e−Q �≡ 0 on Σ ; and for the solution the relations (1.5)–(1.6) are true again (see [21]).

Assume that Σ = [−1,1], Σ ′ = {|z| = 1} is the unit circle and for eix′
, eit ′ ∈ Σ ′ let x = cosx′,

t = cos t ′. For a non-atomic measure μ on [−1,1] let the measure μ′ be the pullback of μ

under the transformation eix′ → x, i.e., if E′ is a subset of the upper or lower half circle, then
μ′(E′) = μ(E)/2, where E is the image of E′ under the mapping exp(ix′) → x. Here μ(E) is
divided by 2, because x runs through [−1,1] twice as exp(ix′) runs through the unit circle once.
Thus, the total masses of μ′ and μ are the same. For the logarithmic potentials we have

Uμ(x) =
∫

log
1

|x − t | dμ(t) =
∫

log
1

| cosx′ − cos t ′| dμ′(eit ′),
Uμ′(

eix′) =
∫

log
1

|eix′ − eit ′ | dμ′(eit ′).
Here

log|cosx′ − cos t ′| = log
1

2
+ log

∣∣∣∣2 sin
x′ − t ′

2

∣∣∣∣ + log

∣∣∣∣2 sin
x′ + t ′

2

∣∣∣∣
= log

1

2
+ H1(x

′, t ′) + H2(x
′, t ′),

while

∣∣eix′ − eit ′ ∣∣ =
∣∣∣∣2 sin

x′ − t ′

2

∣∣∣∣.
Thus, the integral of −H1(x

′, t ′) against dμ′(eit ′) is Uμ′
(eix′

). But the integral of −H2(x
′, t ′)

against dμ′(eit ′) is the same because the latter measure is symmetric with respect to the real line.
Therefore, we obtained the formula

Uμ(x) = 2Uμ′(
eix′) + (log 2)μ

([−1,1]). (4.4)

As before, let w be supported on Σ = [−1,1] and w = exp(Uμ) with some unit measure μ

supported on [−1,1]. Define the weight W on the unit circle as W(eix′
) = √

w(cosx′)/2. From
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(4.4) and from the properties of equilibrium measures, namely (1.5)–(1.6) and the fact that these
characterize μw (see [21, Theorem I.3.3]) we obtain

Lemma 4.3. We have μW = (μw)′ and W = exp(UμW ).

For f ∈ C([−1,1]) set F(eix′
) = f (cosx′) = f (x). Define the zero set Z

trig
W 2 in analogy

with Zw , i.e., the set of real functions that are uniform limits on the unit circle of some W 2nTn

with (real) trigonometric polynomials Tn of degree at most n = 1,2, . . . is an algebra Atrig
W 2 , and

Z
trig
W 2 is the zero set for this algebra. On the unit circle by a trigonometric polynomial (Laurent

polynomial) of degree at most n we mean any expression of the form

Tn

(
eix′) =

n∑
k=−n

cke
ix′

.

Tn is called a real trigonometric polynomial if its values on the unit circle are real.

Lemma 4.4. With the above notations Z
trig
W 2 = (Zw)′.

Proof. To show Z
trig
W 2 ⊆ (Zw)′, let x0 /∈ Zw , and let f ∈ C([−1,1]) be such that f (x0) �= 0 and

wnPn → f uniformly on [−1,1] with some Pn. Setting Tn(e
ix′

) = 2nPn(cosx′) (with cosx′ =
(eix′ + e−ix′

)/2) we get

W 2n
(
eix′)

T n
(
eix′) = wn(cosx′)Pn(cosx′) → F

(
eix′)

uniformly on the unit circle, and hence eix′
0 /∈ Z

trig
W 2 .

For proving Z
trig
W 2 ⊇ (Zw)′, let eix′

0 /∈ Z
trig
W 2 , and let G be a continuous function on the unit

circle such that G(eix′
0) �= 0, but G(e−ix′

0) = 0 (if eix′
0 = ±1, then drop the second requirement),

and G is uniformly approximable by W 2nTn. As W is symmetric to the x-axis, we have

W 2n
(
eix′)(

Tn

(
eix′) + Tn

(
e−ix′)) → G

(
eix′) + G

(
e−ix′) =: F (

eix′)
.

Here Tn(e
ix′

) + Tn(e
−ix′

) is a cosine-polynomial, and F is symmetric with respect to the x-
axis, i.e., F(eix′

) = f (cosx′) with some f ∈ C([−1,1]). Thus, with Pn(cosx′) := (Tn(e
ix′

) +
Tn(e

−ix′
))/2n we have wnPn → f uniformly on [−1,1], and so x0 /∈ Zw . �

Another variant of the problem is when we approximate nonnegative continuous functions by
Wn|Qn| on the unit circle, where Qn is a complex polynomial of degree at most n. This problem
is equivalent to approximation by weighted trigonometric polynomials:

Proposition 4.5. Let F be a nonnegative continuous function on the unit circle. Then F is uni-
formly approximable by Wn|Qn| with some complex polynomials Qn if and only if it is uniformly
approximable by W 2nTn with some real trigonometric polynomials Tn.
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Proof. If Wn|Qn| → F , then (Wn|Qn|)2 = W 2n|Qn|2 → F 2, and here |Qn|2 is a real trigono-
metric polynomial of degree at most n. Thus, F 2 belongs to the algebra Atrig

W 2 defined before

Lemma 4.4, and since F 2 and F have the same zeros, so is F .
For the converse, assume that F is approximable by W 2nTn. As the functions F , F/W vanish

on the same set, there are real trigonometric polynomials T
(1)
n and T

(2)
n such that W 2nT

(1)
n → F

and W 2nT
(2)
n → F/W uniformly. Thus, by setting T2n = (T

(1)
n )2 and T2n+1 = (T

(2)
n )2, we get

nonnegative trigonometric polynomials Tn such that W 2nTn → F 2 uniformly. By the Fejér–Riesz
lemma [20, p. 117], for a nonnegative Tn there exists a polynomial Qn such that Tn = |Qn|2 on
the unit circle, hence we can finish the proof by taking square root in W 2nTn → F 2. �
5. Necessity, proof of Theorem 1.2

By Corollary 4.2, we may assume that Σ = [−1,1] and w = exp(Uμw). It is clear, that with
the notation of the previous section, μw is smooth in a neighborhood of x0 ∈ (−1,1) exactly if
μ′

w(eix′
) is smooth in a neighborhood of x′

0. Thus, by Lemmas 4.3 and 4.4, for Theorem 1.2 it is
enough to prove

Theorem 5.1. Let μ′ be a measure supported on the unit circle |z| = 1, and set W = exp(Uμ′
).

If −π < ϕ0 < π does not belong to Z
trig
W 2 , then μ′(eiϕ) is smooth in a neighborhood of ϕ0.

Now we continue with several lemmas that will be needed in the proof.
In this section we identify the interval [−π,π] with the unit circle |z| = 1 via t = eit . If a

function or a non-atomic measures is defined on [−π,π], then we extend it 2π -periodically to R
(all of the measures in this paper are non-atomic).

In the basic notations of harmonic analysis we follow [9], and we collect them here due to the
role of constants. The Fourier coefficients of a summable function f ∈ L1([−π,π]) or a measure
μ ∈M([−π,π]) are

f̂ (n) = 1

2π

π∫
−π

e−intf (t) dt, μ̂(n) =
π∫

−π

e−int dμ(t).

The convolution of two functions f1, f2 or a function f and a measure μ are

(f1 ∗ f2)(t) = 1

2π

π∫
−π

f1(t − s)f2(s) ds, (f ∗ μ)(t) =
π∫

−π

f (t − s) dμ(s).

The trigonometric conjugate function of f is

f̃ (ϕ) = 1

2π
PV

π∫
−π

cot

(
ϕ − t

2

)
f (t) dt.

To simplify our formulas we introduce the function

I (t) =
{−π − t if t ∈ [−π,0),
π − t if t ∈ [0,π].
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Notice that if f̂ (0) = 0 and μ̂(0) = 0, then we have

(I ∗ f )(b) − (I ∗ f )(a) =
b∫

a

f (t) dt,

(I ∗ μ)(b) − (I ∗ μ)(a) = 2πμ
([a, b]) (5.1)

for −π � a < b � π .
Let μ be a measure supported on the unit circle. Then

Uμ
(
eit

) =
∫

|z|=1

− log
∣∣z − eit

∣∣dμ(z) =
π∫

−π

− log

(
2

∣∣∣∣sin

(
s − t

2

)∣∣∣∣)dμ(s) = L ∗ μ,

where L(t) = − log(2|sin(t/2)|). Notice that 2L′ = − cot(t/2) and L̂(n) = 1
2|n| for n �= 0, there-

fore, for the potential of μ we have

L ∗ μ = L′ ∗ I ∗ μ = −1

2
˜I ∗ μ.

Let f be a function on [−π,π] and set

‖f ‖ = sup
t∈[−π,π]

∣∣f (t)
∣∣.

We want to estimate ‖L ∗ μ‖ from below, and to this end we need a norm which estimates ‖ · ‖
from below and commutes with conjugation. Set fh(t) = f (t − h),

‖f ‖Λ = sup
h>0

∥∥∥∥fh + f−h − 2f

2h

∥∥∥∥,

and Λ = {f : ‖f ‖Λ < ∞, and f̂ (0) = 0}. It is known that the space Λ is closed under conjuga-
tion, see [9, Theorem I.8.8]. Thus, by a simple argument based on the closed graph theorem (see
[9, Section II.1.4]), we get that conjugation is a bounded linear operator on the space Λ. There-
fore the open mapping theorem yields, that there is a constant c > 0 such that ‖f̃ ‖Λ � c‖f ‖Λ

for all f ∈ Λ. (Note that f̂ (0) = 0 for f ∈ Λ.) On the other hand, it is clear from the definition
of ‖ · ‖Λ, that ‖f ′‖ � ‖f ‖Λ. Denote Λ′ the class of summable functions f for which f̂ (0) = 0,
and

‖f ‖Λ′ := sup
h>0

∥∥∥∥ (I ∗ f )h + (I ∗ f )−h − 2I ∗ f

2h

∥∥∥∥ < ∞.

Now it is clear, that ‖f̃ ‖Λ′ � c‖f ‖Λ′ , and ‖f ‖ � ‖f ‖Λ′ for any f ∈ Λ′.
For a measure μ we write μ = μ+ − μ−, where μ+ and μ− denote the positive and the

negative part of μ, respectively.
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Lemma 5.2. There is a constant C1 > 0 with the following property. Let μ be a measure on
[−π,π] such that μ([−π,π]) = 0. Let −π � t1 < t2 � π , and assume that s := μ+([t1 + h/k,

t2 − h/k]) − μ−([t1, t2]) > 0, where h = t2 − t1 and k > 2 is an integer. Then

‖L ∗ μ‖ � C1
s

k
.

Proof. Let τj = t0 + jh/k for 0 � j � k and f = I ∗μ. f is clearly bounded, thus f ∈ Λ′. Now
we have

k−1∑
j=1

(
(I ∗ f )(τj−1) + (I ∗ f )(τj+1) − 2(I ∗ f )(τj )

)
= (I ∗ f )(τ0) − (I ∗ f )(τ1) − (I ∗ f )(τk−1) + (I ∗ f )(τk),

and by dividing by 2(τj+1 − τj ) = 2h/k we get

(k − 1)‖f ‖Λ′ � (I ∗ f )(τ0) − (I ∗ f )(τ1) − (I ∗ f )(τk−1) + (I ∗ f )(τk)

2h/k

= k

h/k∫
0

f (τk−1 + t) − f (τ0 + t)

2h
dt.

As μ([−π,π]) = 0, we have (see (5.1)) f (t ′′) − f (t ′) = 2πμ([t ′, t ′′]), which is greater than
2πs for any τ0 � t ′ � τ1 and τk−1 � t ′′ � τk . Now the claim follows from L ∗ μ = −f̃ /2, and
‖f̃ ‖ � ‖f̃ ‖Λ′ � c‖f ‖Λ′ . �

In what follows, we use the following notation: Let −π < t0 < t1 < t2 < t3 < π be such that
t1 − t0 = t2 − t1 = t3 − t2 =: h, and set

I1 = [t0 + h/k, t1 − h/k], I2 = [t1 − h/k, t2 + h/k] and

I3 = [t2 + h/k, t3 − h/k], (5.2)

where k is a (large) integer. Note that here I1 and I3 are shorter, while I2 is longer than h.
In the proof of Theorem 5.1 we shall use Lemma 5.2 via

Corollary 5.3. Let x �= 1 be any positive number. Let μ and η be two positive measures such that
μ([−π,π]) = η([−π,π]), and set sj = μ([tj , tj−1]) for j = 1,2,3. If

γ = min

{
xη(I1) + x−1η(I3) − 2η(I2)

η(I2)
,1

}
> 0,

and

xs1 + x−1s3 − 2s2 < 0,



586 V. Totik, P.P. Varjú / Advances in Mathematics 212 (2007) 571–616
then ∥∥L ∗ (μ − η)
∥∥ � C2

s2γ

k
,

where C2 is a constant depending only on x, being independent of tj , h, k, μ and η.

Proof. Set

a = min

{
s2γ

2(x + x−1 − 2)
,
s2γ

2

}
.

First consider the cases, when one of the inequalities

η(I1) � s1 + a, (5.3)

η(I2) � s2 − a, (5.4)

η(I3) � s3 + a (5.5)

hold. In case of (5.3) we have

(η − μ)+(I1) − (η − μ)−
([t0, t1]) = (η − μ)(I1) − (η − μ)−

([t0, t1] \ I1
)

� (η − μ)(I1) − μ
([t0, t1] \ I1

) = η(I1) − s1 � a,

and we get the claim by applying Lemma 5.2 to the measure η − μ on [t0, t1]. The case of (5.5)
is completely similar, while (5.4) yields

(μ − η)+
([t1, t2]) − (μ − η)−(I2) = (μ − η)

([t1, t2]) − (μ − η)−
(
I2 \ [t1, t2]

)
� (μ − η)

([t1, t2]) − η
(
I2 \ [t1, t2]

) = s2 − η(I2) � a,

and the claim follows from Lemma 5.2 applied to the interval [t1 − h, t2 + h] rather than to
[t1, t2], and from the fact that k + 2 < 2k.

Finally, assume that (5.3)–(5.5) fail. As a � s2/2, we have

xη(I1) + x−1η(I3) − 2η(I2)

η(I2)
<

x(s1 + a) + x−1(s3 + a) − 2(s2 − a)

s2 − a

� 2a
x + x−1 − 2

s2
� γ,

which contradicts the definition of γ . Hence, this case cannot occur, at all. �
Let

P(r, t) = 1 − r2

2
and dμr,τ (t) = 1

P(r, t − τ) dt.

1 − 2r cos t + r 2π
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We shall invoke Corollary 5.3 with μ′ in place of μ and a part of η will be a sum of measures of
form μr,τ . As we shall see, the logarithm of trigonometric polynomials can be represented as the
potential of sums of these measures. Therefore, we need the following

Lemma 5.4. Let 1/2 < x �= 1 < 2 be a positive real number. There are positive constants λ, γ1,
K1 and h1 depending only on x with the following property: If

μr,τ (I1) + μr,τ (I2) + μr,τ (I3) < λ

with some 0 < r < 1, −π < τ < π and intervals Ij , j = 1,2,3 (see (5.2)), such that k > K1 and
h < h1, then

xμr,τ (I1) + x−1μr,τ (I3) − 2μr,τ (I2)

μr,τ (I2)
� γ1.

Proof. For an interval I let I ∗ be the set {eit | t ∈ I }. Let ω(z, I,G) be the harmonic measure
of the boundary arc I ⊂ G with respect to the domain G at the point z ∈ G. If D is the unit disk,
I ∗ is a boundary arc and z = reiτ ∈ D, then

ω(z, I ∗,D) = 1

2π

∫
I

P (r, t − τ) dt,

therefore we have to show that if

ω
(
z, I ∗

1 ,D
) + ω

(
z, I ∗

2 ,D
) + ω

(
z, I ∗

3 ,D
)
< λ,

then we have

xω(z, I ∗
1 ,D) + x−1ω(z, I ∗

3 ,D) − 2ω(z, I ∗
2 ,D)

ω(z, I ∗
2 ,D)

� γ1,

which is the same as

x
ω(z, I ∗

1 ,D)

ω(z, I ∗
2 ,D)

+ x−1 ω(z, I ∗
3 ,D)

ω(z, I ∗
2 ,D)

− 2 � γ1.

Without loss of generality we may assume that 1 is the center of I ∗
2 . Let z → Ci(1 − z)/

(1+z), C > 0, be the conformal map of D onto the upper half plane C+ that maps 1 to 0, and the
interval I ∗

2 into [−1,1]. Then I ∗
1 is mapped into some interval [−3 + 2δ,−1] and I ∗

3 is mapped
into [1,3 − 2δ]. Under the mapping z → i(1 − z)/(1 + z) the image of eit is tan(t/2), therefore

3 − 2δ

1
= tan((3/4 − 1/2k)h)

tan((1/4 + 1/2k)h)
,

and hence δ can be arbitrary small if we set K1 large and h1 small enough. The harmonic measure
is conformal invariant, so we have to show

x
ω(z, [−3 + 2δ,−1],C+) + x−1 ω(z, [1,3 − 2δ],C+) − 2 � γ1 (5.6)
ω(z, [−1,1],C+) ω(z, [−1,1],C+)
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provided

ω
(
z, [−3 + 2δ,−1],C+

) + ω
(
z, [−1,1],C+

) + ω
(
z, [1,3 − 2δ],C+

)
< λ. (5.7)

Let Angle(z, [a, b]) be the angle in which [a, b] is seen from z ∈ C+. Then ω(z, [a, b],C+) =
Angle(z, [a, b])/π (see [19, p. 100]), hence, by symmetry it is enough to show (5.6) for �z � 0.
From the area of the triangle (a, b, z) we get

|z − a||z − b| sin
(
Angle

(
z, [a, b])) = (b − a)�z,

and hence for z → ∞ we have

ω
(
z, [a, b],C+

) = (
1 + o(1)

) 1

π
sin

(
Angle

(
z, [a, b])) = (

1 + o(1)
)
(b − a)

�z

π |z|2 ,

which proves (5.6) for |z| � R with some R since x(1 − δ) + x−1(1 − δ) − 2 � 2γ1 for small
δ > 0 and γ1 > 0.

The condition (5.7) means Angle(z, [−3+2δ,3−2δ]) < λπ , therefore it is left to verify (5.6)
for z lying in the set{

z
∣∣ Angle

(
z, [−3 + 2δ,3 − 2δ]) < λπ, |z| < R, �z > 0, �z > 0

}
,

which is a crescent-like region enclosed by the real axis, and the circles |z| = R and
Angle(z, [−3 + 2δ,3 − 2δ]) = λπ . Note that in this region the ratio �z/(�z − (3 − 2δ)) is
as small as we wish if λ is sufficiently small. From the external angle of the triangle (a, b, z)

lying at b we get for any [a, b] ⊆ [−3 + 2δ,3 − 2δ] the formula

Angle
(
z, [a, b]) = arctan

(�z/(�z − b)
) − arctan

(�z/(�z − a)
)

=
( �z

�z − b
− �z

�z − a

)
1

1 + ξ2

= �z
b − a

(�z − a)(�z − b)

1

1 + ξ2

with some ξ lying close to 0 (depending on λ). Therefore, with u = �z (5.6) takes the form

(
1 + oλ(1)

)
x(1 − δ)

u − 1

u + 3 − 2δ
+ (

1 + oλ(1)
)
x−1(1 − δ)

u + 1

u − 3 + 2δ
− 2 � γ1 (5.8)

(where oλ(1) is a quantity that tends to 0 as λ → 0). For δ < 1/10 and u ∈ [3 − 2δ,3.1] the
second term on the left is larger than 5, provided oλ(1) is small enough, therefore we may assume
u ∈ [3.1,R]. But to prove (5.8) on this interval it is enough to show that as δ → 0 and oλ(1) → 0,
which amounts the same as λ → 0, the left-hand side is strictly positive on the interval u ∈
[3.1,R], because the convergence is uniform in u ∈ [3.1,R] as δ → 0 and o(1) → 0. In other
words, it is left to show

x
u − 1 + x−1 u + 1 − 2 � 2γ1, u ∈ [3.1,R] (5.9)

u + 3 u − 3
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with some γ1 > 0. This easily follows from the well-known inequality between the geometric
and arithmetic mean:

x
u − 1

u + 3
+ x−1 u + 1

u − 3
� 2

√
x(u − 1)(u + 1)

x(u − 9)(u + 9)
� 2

√
R2 − 1

R2 − 9
. �

Denote by C1
2π the space of 2π periodic continuously differentiable real functions. We also

need the following

Lemma 5.5. Let ω ∈ C1
2π , such that with some d > 0 we have ω(ϕ) = maxω = 1 if −d < ϕ < d .

Then there is a signed measure ν which is positive on [−d, d], such that ν[−π,π] = 0 and

L ∗ ν = logω + D (5.10)

with a constant D. Furthermore, if x �= 1 is a positive number, then there are positive constants
h2, γ2 and K2 depending only on x and d , being independent of ω, with the following property:
If −d/2 < t0 < t3 < d/2, h < h2 and k > K2, then with the notation of (5.2) we have

xν(I1) + x−1ν(I3) − 2ν(I2)

ν(I2)
� γ2.

Proof. It is easy to see (compute the Fourier coefficients, or see [18, Corollary 1.3]), that (5.10)
holds if dν(ϕ) = v dϕ with

v(ϕ) = 1

2π2
PV

2π∫
0

cot

(
ϕ − t

2

)
ω′

ω
(t) dt.

If −d < ϕ < d , then by integrating by parts we find:

v(ϕ) = 1

2π2

2π−d∫
d

−1

2 sin2(ϕ−t
2

) logω(t) dt,

and this is clearly positive.
Let 0 < τ < 1. Choose h2 such that for any −d/2 < ϕ1, ϕ2 < d/2 with |ϕ2 − ϕ1| < 2h2 and

d < t < 2π − d we have

sin2(ϕ2−t
2

)
sin2(ϕ1−t

2

) > τ.

This implies
v(ϕ1)

v(ϕ2)
> τ . Thus

xν(I1) + x−1ν(I3) − 2ν(I2)

ν(I2)
> xτ

K2 − 2

K2 + 2
+ x−1τ

K2 − 2

K2 + 2
− 2,

and we get the claim after suitable choice of τ , K2 and γ2. �
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Now we are ready for

Proof of Theorem 5.1. We may assume ϕ0 = 0. Assume to the contrary that 0 /∈ Z
trig
W 2 , but

μ′ is not smooth in any neighborhood of 0. Then there is a positive function f ∈ C2π such
that f (ϕ) = maxf = 1, if −d < ϕ < d with some d > 0, and for any ε > 0 there is an Nε

such that for each n > Nε there exists a trigonometric polynomial Tn of degree at most n with
‖f − W 2nTn‖ < ε.

Consider the intervals Jj,m = [(j − 1)h, jh] for −m < j � m with h = hm = d/m and a
sufficiently large integer m. There is a 1 < x < 2 such that we can find m1 < m2 < · · · and
j1 < j2 < · · · such that

xμ′(Jjl−1,ml
) < μ′(Jjl ,ml

) or μ′(Jjl−1,ml
) > xμ′(Jjl,ml

), (5.11)

and these intervals get arbitrarily close to 0 as l increases. Indeed, otherwise μ′ would be smooth
in a neighborhood of 0. For the sake of simplicity we assume that the first inequality holds in
(5.11) and 0 < jl < ml/6 for each l.

Now we show that for sufficiently large l there are intervals

Jj ′
l ,ml

, Jj ′
l +1,ml

, Jj ′
l +2,ml

⊂ [0, d/2]

such that

xμ′(Jj ′
l ,ml

) < μ′(Jj ′
l +1,ml

) and xμ′(Jj ′
l +1,ml

) > μ′(Jj ′
l +2,ml

).

If this fails, then we have xμ′(Jj−1,ml
) < μ′(Jj,ml

) for each jl � j � ml/2. Thus,
μ′(Jml/2−j,ml

) < x−j and hence μ′([d/6, d/3]) < O(x−ml/6), which cannot hold for arbitrarily
large l.

Let ε > 0 be any number, and choose l so large that h = d/ml < min{h1, h2} and μ′(J ) <

λ/2Nε for any interval J of length at most 3h, with h1, h2 and λ from the previous lemmas. Let
t0, t1, t2 and t3 be the endpoints of the intervals Jj ′

l ,ml
, Jj ′

l +1,ml
and Jj ′

l +2,ml
. Thus, we clearly

have

xμ′([t0, t1]) + x−1μ′([t2, t3]) − 2μ′([t1, t2]) < 0. (5.12)

Choose n > Nε such that nμ′([t0, t3]) < λ/2, but nμ′([t1, t2]) > λ/10. In view of (5.12) and
μ′([t0, t3]) < λ/2Nε , this is possible. Now we have a trigonometric polynomial Tn of degree at
most n for which ‖f − W 2nTn‖ < ε. We may assume Tn > 0, thus, by the Fejér–Riesz represen-
tation [20, p. 117], we have a polynomial Pn of a complex variable and degree at most n, such
that Tn(t) = |Pn(e

it )|2. Let rj e
iτj be the zeros of Pn and dμn(t) = 1

2π

∑n
j=1 P(rj , t − τj ) dt

with the notation P(rj , t − τj ) = P(1/rj , t − τj ) if rj > 1. Then, by simple calculation, we get
logTn = −2L ∗ μn + B with a constant B .

There is a continuously differentiable positive function ω = ωn for which ω(ϕ) = maxω = 1
if −d < ϕ < d and ∥∥∥∥W 2nTn − 1

∥∥∥∥ < ε.

ω
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Using Lemma 5.5 we find a measure ν for which L ∗ ν = logω + D. Putting things together we
get

2ε >
∥∥log

(
W 2nTn

) − logω
∥∥ = ∥∥L ∗ (2nμ′ − 2μn − ν) + B − D

∥∥
for small ε. Now by

∥∥L ∗ (2nμ′ − 2μn − ν) + B − D
∥∥

� 1

2π

∣∣∣∣∣
π∫

−π

(
L ∗ (2nμ′ − 2μn − ν)(t) + B − D

)
dt

∣∣∣∣∣ = |B − D|

we get

∥∥L ∗ (2nμ′ − 2μn − ν)
∥∥ �

∥∥L ∗ (2nμ′ − 2μn − ν) + B − D
∥∥ + |B − D|

� 2
∥∥L ∗ (2nμ′ − 2μn − ν) + B − D

∥∥ < 4ε.

Let k > max{K1,K2} with the constants K1, K2 from the previous lemmas, and with this k

and the points t0, t1, t2, t3 defined above, form the intervals I1, I2 and I3 according to (5.2). Now
if μn([I1 ∪ I2 ∪ I3]) � λ, then(

μn + ν+/2
)([I1 ∪ I2 ∪ I3]

) − (
nμ′ + ν−/2

)([t0, t3]) > λ/2

(recall that ν is positive on [−d, d]), and hence by Lemma 5.2

2ε >
∥∥L ∗ (nμ′ − μn − ν/2)

∥∥ � C1
λ

6k
. (5.13)

On the other hand, if μn([I1 ∪ I2 ∪ I3]) < λ, then, by Lemmas 5.4 and 5.5, we have for
η = μn + ν+/2 (which is μn + ν/2 on [−d, d])

xη(I1) + x−1η(I3) � γ η(I2) + 2η(I2)

with γ = min{γ1, γ2,1}, where γ1 and γ2 are the constants from Lemmas 5.4 and 5.5. Therefore,
using (5.12) we can invoke Corollary 5.3 with μ = nμ′ + ν−/2 (which is nμ′ on [−d, d]) and
η = μn + ν+/2 to get

2ε >
∥∥L ∗ (nμ′ − μn − ν/2)

∥∥ � C2
nμ′([t1, t2])γ

k
. (5.14)

Here, on the right, nμ′([t1, t2]) � λ/10 independently of ε (though n depends on ε). Since ε

is arbitrarily small on the left-hand side of (5.13) and (5.14), we have arrived at the desired
contradiction. �
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6. Sufficiency, proof of Theorem 1.3, part (a)

In part (a) of Theorem 1.3 we work with doubling weights (see (1.7)). For properties of dou-
bling weights on an interval [a, b] see [16, Theorem 2.1]. For example, the doubling property
implies (actually equivalent to) either of:

• there is a σ and a K such that

μ(I) � K
(|I |/|J |)σ

μ(J ) for all intervals J ⊂ I ⊂ [a, b], (6.1)

• there is a τ > 0 and a K such that

μ(J ) � K
(|J |/|I |)τ

μ(I) for all intervals J ⊂ I ⊂ [a, b]. (6.2)

In particular, a doubling measure is non-atomic, and its logarithmic potential is continuous.
We shall prove part (a) of Theorem 1.3 through a series of propositions.

Proposition 6.1. Let μ be a doubling measure of mass 1 on a closed interval I , and set w(x) =
exp(Uμ(x)). Then, for every n, there are polynomials Pn of degree at most n with all their zeros
in I , such that wnPn are uniformly bounded on R, and wn(x)|Pn(x)| → 1 uniformly on compact
subsets of R \ I .

Proof. The proof is modelled after [21, Theorem 4.2], but there are new features.
We have to construct polynomials Pn such that

− log
∣∣Pn(x)

∣∣ − nUμ(x) � C (6.3)

for all x ∈ R, and

− log
∣∣Pn(x)

∣∣ − nUμ(x) = o(1) (6.4)

locally uniformly on R \ I .
Let n be given. Partition I =: [a, b] by the points a = t0 < t1 < · · · < tn = b into n intervals

Ij = Ij,n, j = 1,2, . . . , n, with μ(Ij ) = 1/n, and let ξj be the weight point of the restriction of
μ to Ij ; i.e.,

ξj = n

∫
Ij

t dμ(t). (6.5)

By (6.1)–(6.2), there is a constant C0 such that

1

C0
� |Ij |

|Ij+1| � C0, (6.6)

and it is also easy to see from (6.1)–(6.2) that

min{ξj − tj−1, tj − ξj } � c0|Ij |, j = 1,2, . . . , n, (6.7)
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with some c0 > 0. Set

Pn(t) =
n∏

j=1

(t − ξj ).

We claim that these Pn satisfy (6.3)–(6.4).
The left-hand side of (6.3) is harmonic on C \ I and lower semi-continuous on I , therefore,

by the minimum principle, it is enough to prove (6.3) only for x ∈ I . Let x ∈ I , say x ∈ Ij0 for
some j0. We write

− log
∣∣Pn(x)

∣∣ − nUμ(x) =
n∑

j=1

n

∫
Ij

log

∣∣∣∣ x − t

x − ξj

∣∣∣∣dμ(t) =:
n∑

j=1

Lj (x). (6.8)

The estimates (6.6) and (6.7) show that |x − t |/|x − ξj |, t ∈ Ij , is uniformly bounded from below
(and above) for j �= j0, j0 ± 1. But the integrals themselves (i.e., the terms Lj (x)) are bounded
from below also for j = j0, j0 ± 1. In fact, by (6.6) it is enough to prove that if x ∈ Ij0 , then

n

∫
|x−t |�2C0|Ij0 |

log
|x − t |

2C0|Ij0 |
dμ(t) � −C (6.9)

with some C. Write the integral as the sum of the integrals over

2−k−12C0|Ij0 | � |x − t | � 2−k2C0|Ij0 |, k = 0,1, . . . ,

and note that, according to (6.2), the μ-measure of this latter set is at most K12−kτμ(Ij0) with
some K1 and τ . Therefore, the integral in (6.9) is at least as large as

∞∑
k=0

(−k − 1)K12−kτ nμ(Ij0) � −C.

Thus, the individual terms in (6.8) are uniformly bounded from below.
(6.1) implies that there is an L � 1 such that for x ∈ Ij0 and t ∈ Ij with |j − j0| � L we have

ξj − t

x − ξj

� −1

2
. (6.10)

From the previous discussion on the lower boundedness of individual terms, for |j − j0| � L we
have Lj (x) � −C1 with an absolute constant C1. Hence,∑

|j−j0|�L

Lj (x) � −C1(2L + 1). (6.11)

For other j ’s (6.10) holds, and we write, for x ∈ Ij0 and |j − j0| > L, the integrand in Lj(x) as

log

∣∣∣∣1 + ξj − t

x − ξ

∣∣∣∣ = ξj − t

x − ξ
+ O

(∣∣∣∣ ξj − t

x − ξ

∣∣∣∣2)
.

j j j
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Thus, we have for such j ’s

Lj (x) = n

∫
Ij

O

(∣∣∣∣ ξj − t

x − ξj

∣∣∣∣2)
dμ(t)

= O

( |Ij |2
(ξj − ξj0)

2

)
= O

( |Ij |2
(
∑j

k=j0
|Ik|)2

)
, (6.12)

because the integrals ∫
Ij

ξj − t

x − ξj

dμ(t)

vanish by the choice of the points ξj .
Since

μ(Ij ) = 1

n
, μ

(
j⋃

k=j0

Ik

)
= |j − j0| + 1

n
,

(6.1) implies that with some K2 and 1/σ > 0

|Ij |∑j
k=j0

|Ik|
� K2

|j − j0|1/σ
.

Hence, to bound

∑
|j−j0|>L

Lj = O

( ∑
|j−j0|>L

|Ij |2
(
∑j

k=j0
|Ik|)2

)
,

it is enough to give an upper bound for

∑
|j−j0|>L

1

|j − j0|1/σ

|Ij |∑j
k=j0

|Ik|
.

We shall estimate here the sum
∑

j−j0>L, the other part
∑

j−j0<−L can be similarly handled.
We set

Sj =
j∑

l=j0+L+1

|Il |∑l
k=j0

|Ik|
,

and summation by parts gives
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n∑
j=j0+L+1

1

(j − j0)1/σ

|Ij |∑j
k=j0

|Ik|

=
n∑

j=j0+L+1

1

(j − j0)1/σ
(Sj − Sj−1)

= Sn

1

(n − j0)1/σ
+

n−1∑
j=j0+L+1

Sj

(
1

(j − j0)1/σ
− 1

(j + 1 − j0)1/σ

)
. (6.13)

Notice now that Sj is a Riemannian sum (actually, a lower Darboux sum) for

tj∫
tj0+L

1

u − tj0−1
du

(recall that Ij = [tj−1, tj ]), hence

Sj �
tj∫

tj0+L

1

u − tj0−1
du = log

tj − tj0−1

tj0+L − tj0−1
.

Since

μ
([tj0−1, tj ]

) = j − j0 + 1

n
and μ

([tj0−1, tj0+L]) = L + 1

n
,

(6.2) gives that in the last estimate for Sj on the right the ratio is bounded by a fixed constant
times (j − j0)

1/τ , and hence

Sj = O
(
log(j − j0)

)
.

If we substitute this into (6.13) and make use of

1

(j − j0)1/σ
− 1

(j + 1 − j0)1/σ
� 1/σ

(j − j0)1+1/σ
,

we obtain ∑
|j−j0|>L

|Ij |2
(
∑j

k=j0
|Ik|)2

= O(1).

In view of (6.8), (6.11) and (6.12), this proves (6.3).
The proof of (6.4) follows the same argument: if x belongs to some interval [A,B] which is

of distance � d from I , then, exactly as in (6.12),

Lj (x) = n

∫
I

O

(∣∣∣∣ ξj − t

x − ξj

∣∣∣∣2)
dμ(t) = O

(|Ij |2
)
,

j
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because now |x − ξj | � d . Hence, uniformly in x ∈ [A,B],
∑
j

Lj � C
(

max
j

|Ij |
)∑

j

|Ij | = C|I |
(

max
j

|Ij |
)

→ 0

because the length of the longest subinterval Ij = Ij,n tends to 0 as n → ∞. �
In what follows [A] denotes the integral part (largest integer � A) of A.

Proposition 6.2. Let μ be a doubling measure of mass α > 0 on a closed interval I , and set
w(x) = exp(Uμ(x)). Then, for every n, there are real polynomials P[αn] of degree at most [αn]
such that wnP[αn] are uniformly bounded on R, and {wnP[αn]}∞n=1 is a precompact family of
non-zero continuous functions on any compact subset of R \ I .

The last property means that if [A,B] is any interval disjoint from I , and C([A,B]) is the
space of continuous functions on [A,B] with supremum norm, then in this space both the closure
of {wnPn}∞n=1 and of {(wnPn)

−1}∞n=1 is compact.

Proof. Let μ1 = μ/α, w1 = exp(Uμ1) = w1/α . We can apply Proposition 6.1 to construct poly-
nomials P[αn] of degree at most [αn] such that all their zeros are in I , w

[αn]
1 |P[αn]| are uniformly

bounded on R, and tend to 1 uniformly on compact subsets of R \ I as n → ∞. Since

P[αn]wn = (
w

[αn]
1 P[αn]

)
wn−[αn]/α,

the boundedness property follows (for a doubling weight the logarithmic potential is continuous
and tends to −∞ at ∞). The precompactness property is also clear, as 0 � n−[αn]/α � 1/α, and
the functions wγ , −1/α � γ � 1/α form a compact subset of any C([A,B]), [A,B] ∩ I = ∅
(recall also, that w

[αn]
1 |P[αn]| have a uniform lower bound on [A,B] because they uniformly

converge to 1 and are not zero). �
Proposition 6.3. Let μ be a smooth measure of mass 1 on a closed interval I , and set w(x) =
exp(Uμ(x)). Then, for every n, there are complex polynomials Pn of degree at most n such that
wn|Pn| are uniformly bounded on R, they tend to 1 uniformly on compact subsets of the interior
Int(I ) of I and to 0 uniformly on compact subsets of R \ I .

Proof. We partition again the interval I into n subintervals

Ij,n = Ij , j = 1, . . . , n

by the points tj,n = tj , j = 0, . . . , n, for which μ(Ij ) = 1/n. In particular, t0 is the left endpoint
of I and tn is the right endpoint of I . Let again

ξj = ξj,n = n

∫
I

t dμ(t) (6.14)
j,n
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be the weight point of μ on Ij,n, and with some large, but fixed, positive integer L � 2 we define
the polynomial

Qn(x) =
n∏

j=1

(
x − ξj,n + iL|Ij,n|

)
of degree n. We claim that an appropriate constant multiple of these polynomials satisfy the
requirements, provided we shall let L → ∞ very slowly compared to n.

Since

wn(x)
∣∣Qn(x)

∣∣ = enUμ(x)
∣∣Qn(x)

∣∣ = exp
(
nUμ(x) + log

∣∣Qn(x)
∣∣),

and here

nUμ(x) + log
∣∣Qn(x)

∣∣ =
n∑

j=1

n

∫
Ij,n

(
log

∣∣x − ξj,n + iL|Ij,n|
∣∣ − log |x − t |)dμ(t),

we have to estimate

n∑
j=1

n

∫
Ij,n

log

∣∣∣∣x − ξj,n + iL|Ij,n|
x − t

∣∣∣∣dμ(t),

which is the difference of

Σ1 :=
n∑

j=1

n

∫
Ij,n

log

∣∣∣∣x − t + iL|Ij,n|
x − t

∣∣∣∣dμ(t)

and

Σ2 :=
n∑

j=1

n

∫
Ij,n

log

∣∣∣∣ x − t + iL|Ij,n|
x − ξj,n + iL|Ij,n|

∣∣∣∣dμ(t).

It was proved in [30, Section 2] that there are constants cL depending only on L (actually, cL =
πL), with the property that cL → ∞ as L → ∞, and

(a) Σ1 = (1 + o(1))cL + O(L−1/2), uniformly on every compact subset of the interior of I ,
(b) Σ1 = O(L−1/2), uniformly on compact subsets of R \ I ,
(c) Σ1 � (1 + o(1))cL + O(L−1/2) uniformly on R, and
(d) Σ2 = O(L−1/2) uniformly on R,

as n → ∞, where, for sufficiently large n (depending on L), the constants in the O(L−1/2) terms
are independent of L and x, and the o(1) terms are uniform in the range indicated. To be more
precise, the proof for (a), (c) and (d) in [30, Section 2] was for even n and for the case when
μ was absolutely continuous with density v; but the proof holds word for word for all n and in
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the not necessarily absolutely continuous setting, just replace every integral with v by integral
against μ (Lemmas 2–7 in [30], that the proof was based on, are true without any change). As
for (b), that was not directly stated in [30, Section 2], but it was implicitly mentioned at the end
of Section 2.1, and the proof given in Section 2.1 directly verifies (b), as well.

Now (a)–(d) show that if L = Ln tends to ∞ very slowly compared to n, then for the polyno-
mials Pn(x) = e−cLn Qn(x) the weighted expression exp(nUμ(x))|Pn(x)| is uniformly bounded
on the real line, uniformly converges to 1 on every closed subinterval of Int(I ) and to 0 on every
closed subinterval of R \ I . �

According to Corollary 4.2, in the proof of Theorem 1.3 we may assume that Σ = Sw =
supp(μw), and w = exp(Uμw). Hence, the following proposition proves part (a) of Theorem 1.3.

Theorem 6.4. Let μ be a measure on a compact set Σ ⊂ R and let w(x) = exp(Uμ). Suppose
that Σ can be written as the union of finitely many intervals Jk and the restriction of μ to each
Jk is a doubling measure on Jk . If μ is a smooth measure in a neighborhood of x0 (x0 belongs
to the support of μ), then x0 /∈ Zw .

Proof. Let (a, b) be an interval around x0 where μ is smooth. Choose a small r > 0 such that
[x0 − r, x0 + r] ⊂ (a, b), and μ([x0 − r, x0 + r]) = 1/m is the reciprocal of a positive integer.
We set

μ1 = μ|[x0−r,x0+r], μ2 = μ − μ1 = μ|Σ\[x0−r,x0+r]

(for the latter equality note that a doubling measure cannot have mass points). We also set w1 =
exp(Uμ1) and w2 = exp(Uμ2), for which w = w1w2.

We apply Proposition 6.3 to the weight mμ1. We get that there are polynomials Qk of degree
at most k = 1,2, . . . such that wmk

1 |Qk| are uniformly bounded on R, they tend to 1 locally
uniformly in (x0 − r, x0 + r) and they tend to 0 locally uniformly in R \ [x0 − r, x0 + r] as
k → ∞ (the behavior around x0 ± r is then necessarily not uniform). But then

w
2m(k+1)
1 (x)

∣∣Qk(x)
∣∣2(

(x − x0)
2 − r2) → h(x)

uniformly on Σ , where h is the function that is 0 outside [x0 − r, x0 + r] and is w2m
1 (x)((x −

x0)
2 − r2) on [x0 − r, x0 + r]. Let B be the set of continuous functions g on Σ for which there are

real polynomials S2k , k = 1,2, . . . , of degree at most 2k such that w2mk
1 S2k uniformly converges

to g. It is immediate that B is a subalgebra of C(Σ). We have verified that h ∈ B, and along with
this we also have

h(x)w2m
1 (x)(x − y)2 ∈ B

for any y ∈ (x0 − r, x0 + r). Hence, B separates the points of (x0 − r, x0 + r) and it does not
vanish in any point of (x0 − r, x0 + r) (note that h is negative on (x0 − r, x0 + r)). Thus, by
the Stone–Weierstrass theorem [27, Theorem 5], every function g ∈ C(Σ) that vanishes outside
(x0 − r, x0 + r) belongs to B.

Let now V ⊂ C(Σ) be a compact subset of C(Σ) such that every element of V vanishes
outside (x0 − r, x0 + r). For every ε > 0 we can find finitely many functions g1, . . . , gl ∈ V

such that every g ∈ V is of distance at most ε from one of the gj ’s. Since each gj is uniformly



V. Totik, P.P. Varjú / Advances in Mathematics 212 (2007) 571–616 599
approximable by weighted polynomials w2mk
1 S2k , for all large k and all g ∈ V there is such a

polynomial the distance of which from g is less than 2ε. In other words, the elements of V are
equi-uniformly approximable by weighted polynomials w2mk

1 S2k .
Next we turn to the measure μ2. It has total mass (m − 1)/m, and along with μ it also has the

property that its support is the union of finitely many intervals on each of which μ2 is a doubling
weight. Therefore, if we apply Proposition 6.2 to each such subinterval and multiply the so
obtained functions together, we get polynomials R[(m−1)n/m] of degree at most [(m − 1)n/m],
n = 1,2, . . . , such that wn

2R[(m−1)n/m] are uniformly bounded on R, and {wn
2R[(m−1)n/m]}∞n=1 is

a precompact family of non-zero continuous functions on any compact subset of (x0 − r, x0 + r)

(see the definition after Proposition 6.2).
Choose now a g ∈ C(Σ) which is positive at x0 but vanishes outside [x0 − r/2, x0 + r/2]. It

is immediate that the family{
g

wn
2R[(m−1)n/m]ws

1

∣∣∣ n = 1,2, . . . , s = 0,1, . . . ,2m − 1

}
(6.15)

is precompact in C(Σ) (this is clear on [x0 −r/2, x0 +r/2], and all these functions vanish outside
this interval). Let V be the closure of this family in C(Σ). Thus, the functions in V , in particular
all the functions in (6.15), are equi-uniformly approximable by weighted polynomials w2mk

1 S2k .
We also know that there is a constant M such that

wn
2 |R[(m−1)n/m]|ws

1 � M, n = 1,2, . . . , s = 0,1, . . . ,2m − 1 (6.16)

uniformly on R (see Proposition 6.2 and also use the fact that, as we have already remarked,
logarithmic potentials tend to −∞ at infinity, hence w1 is bounded on R).

Let now n and ε > 0 be arbitrary. We write n = 2mk + s with 0 � s < 2m. We have verified
that for large n there are polynomials S2k of degree at most 2k such that∣∣∣∣w2mk

1 S2k − g

wn
2R[(m−1)n/m]ws

1

∣∣∣∣ � ε

M

on Σ . Multiply here through by wn
2R[(m−1)n/m]ws

1 and use (6.16) to conclude∣∣w2mk+s
1 wn

2S2kR[(m−1)n/m] − g
∣∣ � ε.

But w2mk+s
1 wn

2 = wn
1wn

2 = wn, and S2kR[(m−1)n/m] is a polynomial of degree at most 2k +
[(m − 1)n/m] � n, hence we have proved the existence of a sequence {wnPn} of weighted poly-
nomials uniformly converging to g on Σ . Since g(x0) �= 0, we have x0 /∈ Zw , and the proof is
complete. �
7. Sufficiency, proof of Theorem 1.3, part (b)

According to Corollary 4.2, we can prove part (b) of Theorem 1.3 in the form

Theorem 7.1. Let μ be a measure of compact support Σ on R and of total mass 1, and let
w = exp(Uμ). If in a neighborhood of x0 the measure μ is smooth and has positive lower bound,
then x0 /∈ Zw .
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For the proof we need

Proposition 7.2. Let μ be a measure of mass 1 on a closed interval I , and set w(x) =
exp(Uμ(x)). If w is continuous, then, for every n, there are polynomials Pn of degree at most n

with all their zeros in I , such that wn|Pn| = eo(n) uniformly on R, and wn|Pn| form a precompact
family of non-zero continuous functions on any compact subset of R \ I .

See the definition of a precompact family after Proposition 6.2 in Section 6.

Proof. Follow the construction in the proof of Proposition 6.3, i.e., divide the interval I into n

subintervals Ij,n, consider the weight points ξj,n and consider the polynomials

Pn(x) =
n∏

j=1

(x − ξj,n).

The only difference is that in the present case some of the subintervals Ij,n may be large, i.e.,
their maximal length may not tend to zero (note that the measure may vanish on subintervals
of I ). At any rate, it is immediate that if

νn = 1

n

n∑
j=1

δξj,n

is the counting measure on the zeros of Pn, then νn → μ in the weak∗ topology. In particular, if
ε > 0 is fixed, then uniformly in z = x + iε, x ∈ I , we have

1

n
log

∣∣Pn(z)
∣∣ + Uμ(z) → 0.

By the continuity of Uμ, the difference Uμ(z) − Uμ(x) tends to 0 uniformly in x ∈ I as ε → 0.
Since |Pn(x)| � |Pn(z)|, these two relations show (select ε small and then n large) that∣∣Pn(x)

∣∣ exp
(
nUμ(x)

)
� exp(τnn), x ∈ I,

with some τn → 0. By the harmonicity on C \ I of the logarithm of the left-hand side, this
inequality is preserved for all x ∈ R, and this proves wn|Pn| = eo(n) uniformly on R.

Let x ∈ R \ I , say let x lie to the left of I , and is of distance at least d and at most D from I .
Then

log
∣∣Pn(x)

∣∣ + nUμ(x) =
∑
j

log|x − ξj | +
∑
j

n

∫
Ij,n

log
1

|x − t | dμ(t).

Here

log
1

|x − ξj+1| � n

∫
I

log
1

|x − t | dμ(t) � log
1

|x − ξj−1| ,

j,n
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by which we get

log
∣∣Pn(x)

∣∣ + nUμ(x) � n

∫
I1,n

log
1

|x − t | dμ(t) + log|x − ξn| � log
1

d
+ log

(
D + |I |),

and

log
∣∣Pn(x)

∣∣ + nUμ(x) � n

∫
In,n

log
1

|x − t | dμ(t) + log|x − ξ1| � log
1

D + |I | + logd.

These show that log|Pn(x)| + nUμ(x) is uniformly bounded on compact subsets of R \ I . Thus,
to complete the proof it is sufficient to show that it is also uniformly equicontinuous, or, what
is stronger, that the derivatives (log|Pn(x)| + nUμ(x))′ are also uniformly bounded on compact
subsets of R \ I . This can be done exactly as above, since (note that x /∈ I )

(
log

∣∣Pn(x)
∣∣ + nUμ(x)

)′ =
∑
j

1

x − ξj

−
∑
j

n

∫
Ij,n

1

x − t
dμ(t),

and (say, for x lying again to the left of I )

1

ξj+1 − x
� n

∫
Ij,n

1

t − x
dμ(t) � 1

ξj−1 − x
.

The rest of the argument is the same as before. �
Proposition 7.3. Let μ be a measure of compact support and of mass 1, and set w(x) =
exp(Uμ(x)). Suppose that w is continuous everywhere and μ is smooth on a closed interval J .
Then, for every n, there are complex polynomials Pn of degree at most n such that wn|Pn| = eo(n)

uniformly on R, and wn|Pn| form a precompact family of non-zero continuous functions on any
compact subset of the interior of J .

Proof. Let J1 and J2 be two intervals, one to the left and one to the right of J , so that together
with J they cover the support of μ. Let J0 = J , αj = μ(Jj ), j = 0,1,2, and

μj = 1

αj

μ

∣∣∣
Jj

, j = 0,1,2.

Since μ0 is smooth, its potential is continuous, hence, from the assumption of the proposition, it
follows that the potentials of μ1 and μ2 are also continuous. Now apply Proposition 6.3 to the
measure μ0 on the interval J0 = J and to the degree [α0n] and Proposition 7.2 to the measures
μ1 and μ2 on the intervals J1 and J2 and to the degrees [α1n] and [α2n], respectively. Let Pn is
the product of the so constructed polynomials. Then wn|Pn| form a precompact family of non-
zero continuous functions on any compact subset of Int(J ) by the construction and by the fact
that

logwn = α0nUμ0 + α1nUμ1 + α2nUμ2
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and (
α0n − [α0n])Uμ0 + (

α1n − [α1n])Uμ1 + (
α2n − [α2n])Uμ2

form a precompact family. Finally, wn|Pn| = eo(n) uniformly on R is also true by the construc-
tion. �

After these we return to the proof of Theorem 7.1.

Proof of Theorem 7.1. Let I be a closed interval around x0 such that μ is smooth on I and
dμ(t)/dt � c > 0 for t ∈ I , and let J be a closed subinterval of Int(I ) containing x0 in its
interior. For λ > 1 consider the weight wλ = exp(λUμ), and solve the equilibrium problem (1.3)
for this weight function. We get an equilibrium measure μλ = μwλ , and for this we shall prove
below

Lemma 7.4. For λ > 1 sufficiently close to 1 the support of μλ contains the interval J , and μλ

is smooth on J (and has a positive lower bound there).

Taking this for granted, we choose such a λ > 1 and apply Proposition 7.3 to the measure μλ

and the interval J , but with the degree [n/λ]. With wλ = exp(Uμλ) we get polynomials Qn/λ

of degree at most [n/λ] such that w
[n/λ]
λ |Qn/λ| = eo(n) uniformly on R, and w

[n/λ]
λ |Qn/λ| form

a precompact family of non-zero continuous functions on any compact subset of the interior
of J . Since w

nλ−[n/λ]
λ , n = 1,2, . . . , is also such a family, it follows that {wn/λ

λ |Qn/λ|}∞n=1 is
a precompact family of non-zero continuous functions on any compact subset of Int(J ). Let
a0 < a1 < x0 < b1 < b0 be points in Int(J ), and choose a nonnegative continuous function g that
is positive at x0 and vanishes outside [a1, b1].

By the Weierstrass approximation theorem there are nonnegative polynomials S√
n of degree

at most [√n ], such that

S√
nw

n/λ
λ |Qn/λ| → g

uniformly on [a0, b0]. Here we use that the Weierstrass theorem implies that any compact family
of functions can be equi-uniformly approximated by polynomials of sufficiently high degree (see
the proof of Theorem 6.4). If we apply the Bernstein–Walsh lemma [32, p. 77] to the polynomial
S√

n and to the interval [a0, b0], we get

|S√
n| �

{
C

(
1 + |z|)}√

n
, z ∈ C (7.1)

with some constant C.
By (1.5)–(1.6), for the weights wλ and w we have with some constant Tλ the inequality

wλ(x) � Tλw(x)λ for every x ∈ R, and this inequality becomes equality for x ∈ Swλ . Since J is a
subset of Swλ , wλ(x) = Tλw(x)λ everywhere on J . In particular, on J we have w

n/λ
λ = T

n/λ
λ wn,

hence it follows that

T
n/λ
λ S√

nw
n|Qn/λ| → g on [a0, b0]. (7.2)



V. Totik, P.P. Varjú / Advances in Mathematics 212 (2007) 571–616 603
Choose an interval Σ∗ containing Σ . Since Σ∗ \ [a0, b0] and [a1, b1] are disjoint, there is a
0 < δ < 1 and for each m polynomials Rm of degree at most m such that

∣∣Rm(x) − 1
∣∣ � δm for x ∈ [a1, b1], (7.3)∣∣Rm(x)
∣∣ � δm for x ∈ Σ∗ \ [a0, b0], (7.4)

and

0 � Rm(x) � 1 for x ∈ [a0, b0] \ [a1, b1] (7.5)

(see e.g., [8, Theorem 3], where such polynomials were constructed for two disjoint intervals,
from which the Rm’s with the stated properties can be easily patched together).

Let 1/λ < τ < 1, and set

Pn(x) = T
n/λ
λ Qn/λ(x)S√

n(x)R[(1−τ)n](x),

which has degree at most n/λ + √
n + (1 − τ)n � n for large n. By (7.2) and (7.3) the weighted

expression wn|Pn| converges uniformly to g on [a1, b1], and to 0 = g on [a0, b0] \ [a1, b1] by
(7.2) and (7.5). Finally, on Σ∗ \ [a0, b0] we have w

n/λ
λ |Qn/λ| = eo(n) and |S[√n ]| = eC

√
n = eo(n)

(see (7.1)). Furthermore, as we have remarked above, wλ(x) � Tλw(x)λ everywhere, hence (7.4)
implies that wn|Pn| tends uniformly to 0 = g on Σ∗ \ [a0, b0]. �

We still have to give

Proof of Lemma 7.4. The proof is similar to that of Lemma 5.8 in [28].
Since w is defined from μ, we have μw = μ [21, Theorem I.3.3].
Let Σ∗ be a large interval containing the support of μ. We shall use that x belongs to the

support Sw of μw if and only if for every neighborhood B of x there is an n and a polynomial
Pn of degree at most n such that wn|Pn| attains its maximum in B and nowhere in Σ∗ \ B [28,
Lemma 5.3].

Assume that dμ(t)/dt � 2ε0 for t ∈ I . Let K be a closed interval such that J ⊂ Int(K) ⊂
K ⊂ Int(I ), and let ε1 be smaller than the distance from K to R \ I and the distance from J to
C \ K . For x1 ∈ K let ν1 be the measure the density of which is ε0 on [x1 − ε1, x1 + ε1] and 0
otherwise. Consider the positive measure

ν2 = 1

1 − ε0ε1
(μw − ν1)

of total mass 1, and the weight function

w2(x) = exp
(
Uν2(x)

)
that it generates. The extremal measure μw2 corresponding to w2 coincides with ν2 [21, The-
orem I.3.3], and so x1 ∈ Sw2 . Hence, if B is a symmetric neighborhood of x1, then there is a
polynomial Pn such that wn|Pn| attains its maximum in B and nowhere in Σ∗ \ B .
2
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The potential of the measure

1

1 − ε0ε1
ν1

is symmetric about x1, attains its maximum at x1 and decreases to the right and increases to the
left of x1. But then for the weight

w̃(x) = w2(x) exp
(
Uν1/(1−ε0ε1)(x)

)
the weighted polynomial w̃nPn can also attain its maximum only in B (remember that B was a
symmetric neighborhood). Since this can be done for every symmetric neighborhood B of x1, it
follows that x1 ∈ Sw̃ . Since w̃ = wλ with λ = 1/(1 − ε0ε1), it follows that x1 ∈ Swλ , and since
x1 ∈ K was arbitrary, also K ⊆ Swλ .

We shall also need that

dμwλ(t)

dt

∣∣∣∣
t=x1

� 1

1 − ε0ε1
ε0 � ε0, x1 ∈ J, (7.6)

i.e., μwλ has a positive lower bound on J . To prove this, let ωS denote the equilibrium measure of
a compact set S. If K =: [α,β] ⊂ S, then ωS |K � ωK (in fact, ωK is the balayage of ωS onto K ;
see the next paragraph), and here, for t ∈ J ,

dωK(t) = dt

π
√

(t − α)(β − t)
� dt

πε1
.

Thus, since K ⊆ Swλ , we have

dωS
wλ

(t) � dt

πε1
, t ∈ J. (7.7)

It follows from the characterizing properties (1.5)–(1.6) of equilibrium measures and from
Swλ ⊆ Sw (see [21, Theorem IV.1.6(f)]) that the balayage of μw onto Swλ is

1

λ
μwλ +

(
1 − 1

λ

)
ωS

wλ
,

and hence on Swλ we have

dμw(t)

dt
� 1

λ

μwλ(t)

dt
+

(
1 − 1

λ

)
dωS

wλ
(t)

dt
.

Now (7.7) gives that for t ∈ J the second term on the right-hand side is smaller than
(1 − 1/λ)/πε1 = (ε0ε1)/πε1 < ε0, and since, by assumption, the left-hand side is at least 2ε0,
the inequality (7.6) follows.

It is left to show that μwλ is smooth on J , which interval lies in the interior of K . Let − denote
the operation of taking balayage onto K out of C \ K (for the concept of balayage measure see
[21, Section II.4]). In what follows we shall use various restrictions to K , which are denoted
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by ·|K . Thus, μw|K is the equilibrium measure associated with the restriction of w to K , while
μw|K is the restriction to K of the equilibrium measure associated with w.

By Lemmas 5.5 and 5.6 in [28] we have

μw|K = μw, μwλ|K = μwλ

and

μw|K = 1

λ
μwλ|K +

(
1 − 1

λ

)
ωK.

From these we get the formula

μwλ|K = μwλ − μwλ|(R\K)
= λμw|K − (λ − 1)ωK − μwλ|(R\K)

= λμw|K + λμw|(R\K)
− (λ − 1)ωK − μwλ|(R\K)

,

i.e.,

μwλ|K + (λ − 1)ωK + μwλ|(R\K)
= λμw|K + λμw|(R\K)

.

The balayage measures in this formula have C∞ density inside K , hence all the measures in the
formula, possibly with the exception of the very first one on the left-hand side (for which we
need to show smoothness), are smooth on J (note that for μw this is the assumption). Thus, the
sum of μwλ and a C∞ positive measure ρ is smooth on J . As we shall see, these already imply
the smoothness of μwλ on J because it has a positive lower bound there, and this completes the
proof.

In fact, if U and V are adjacent subintervals of J and A = μwλ(U), B = μwλ(V ), C = ρ(U)

and D = ρ(V ), then D � MB with some fixed constant M (recall (7.6)). For any κ > 0 and
small |U | = |V | we have (A + C)/(B + D) < 1 + κ and C/D > 1 − κ . Hence,

A < (1 + κ)(B + D) − C < (1 + κ)(B + D) − (1 − κ)D � (1 + κ + 2Mκ)B,

that is A/B < 1 + (2M + 1)κ , and this is precisely the indicated smoothness. �
8. Endpoint results

In this section we prove the analogue of Theorems 1.3 and 1.2 for endpoints of subintervals
of Sw . We use the technique of [12] combined with a careful analysis of how smoothness is
transformed under symmetrization.

Let us suppose that a is an endpoint of a subinterval of Sw , e.g. with some d > 0 we have
[a −d, a +d]∩Sw = [a, a +d]. If a is an interior point of Σ , then, of course, a ∈ Zw , but this is
not necessarily the case when a is also an endpoint of a subinterval of Σ . The simplest example
is when w ≡ 1 on Σ = [−1,1]. In this case Zw = ∅, and so ±1 /∈ Zw . Note that in this example
dμw(t) = dt/π

√
1 − t2, hence at a = ±1 the density of μw behaves like |x − a|−1/2. We shall

show, that this is a general feature if an endpoint does not belong to Zw .

Theorem 8.1. Suppose that with some d > 0 we have [a −d, a +d]∩Sw = [a −d, a +d]∩Σ =
[a, a + d].
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(1) If a /∈ Zw , then
√|x − a|dμw(x) is smooth on some right-neighborhood [a, a + δ) of a.

(2) Conversely, suppose that
√|x − a|dμw(x) is smooth on some right-neighborhood [a, a + δ)

of a. Then a /∈ Zw provided either of the following two conditions is true:
(a) the support Sw of μw can be written as the union of finitely many intervals Jk , and the

restriction of μw to each Jk is a doubling measure on Jk ,
(b)

√|x − a|dμw(x) has a positive lower bound in a right-neighborhood (a, a + δ0).

We shall reduce this theorem to Theorems 1.2 and 1.3 in several steps.

Step I. First of all, with the argument applied in Corollary 4.2, we may assume that Σ = Sw (is
compact), and w = exp(Uμw) on Σ (now Lemma 4.1 takes the form that if f0 is a continuous
function on Sw that vanishes outside [a, a + δ), and w̃nPn converges uniformly to f0 on Sw ,
then it converges to 0 uniformly on compact subsets of R \ (x0 − δ, x0 + δ)).

Step II. Next we show that we may assume a to be the minimum of Σ . Indeed, let p < a be
a point such that [p,a) ∩ Σ = ∅, and set z = 1/(p − x), x = p − 1/z and w∗(z) = w(x)/|z| =
w(p − 1/z)/|z|. Let Σ∗ be the image of Σ under the mapping x → z, and let μ∗ be the pullback
of the measure μw under the transformation z → x. If w∗(z) = exp(−Q∗(z)), then Q∗(z) =
Q(x) + log|z| = Q(x) − log|x − p|, and on Σ∗ we have

Uμ∗
(z) =

∫
log

1

|z − τ | dμ∗(τ ) = −
∫

log

∣∣∣∣ 1

p − x
− 1

p − t

∣∣∣∣dμw(t)

=
∫

log
1

|x − t | dμw(t) + log|x − p| +
∫

log|t − p|dμw(t),

i.e., it is Uμ∗
(z) = −Q∗(z)+ const. Since (1.5)–(1.6) characterize equilibrium measures, we ob-

tain μw∗ = μ∗. Now the point A = 1/(p−a), which is the image of a, is the left endpoint of Σ∗,
and since both x → z and its inverse is a C∞ transformation on Σ , it is easy to see (see below for
more involved arguments regarding transformations of smooth measures) that

√|x − a|dμw(x)

is smooth on an interval [a, a + δ] if and only if
√|z − A|dμw∗(z) = √|z − A|dμ∗(z) is smooth

on the corresponding interval [A,A + D].
Suppose now that a /∈ Zw , and wnPn tends to an f uniformly on Σ such that f (a) �= 0. Then

with F(z) = f (x) we have

w∗(z)2n
(
z2nP 2

n (p − 1/z)
) = w2n(x)P 2

n (x) → f 2(x) = F 2(z)

uniformly on Σ∗, and here F 2(A) = f 2(a) �= 0. Since z2nP 2
n (p−1/z) is a polynomial of degree

at most 2n, standard Z-set argument (see Section 4) gives that A /∈ Zw∗ . Similar consideration
shows that A /∈ Zw∗ implies a /∈ Zw , i.e., these two relations are equivalent.

Step III. Thus, we may assume that a = 0 = minΣ . We say that μw is smooth on [0,B] with
respect to the measure dω(x) = x−1/2 dx, if for every ε > 0 there is an η > 0 such that if I, J ⊂
[0,B] are adjacent intervals such that ω(I) = ω(J ) < η, then 1 − ε � μw(I)/μw(J ) � 1 + ε.

Next we prove

Lemma 8.2. dν(x) := √
x dμw(x) is smooth on [0,B] if and only if μw is smooth on [0,B] with

respect to ω.
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Proof. Suppose first that ν is smooth on [0,B]. We shall repeatedly use the following property
of smooth measures (see [30, Lemma 2]): if ε,λ,Λ > 0 are given, then there is a δ > 0 such that
if J ⊂ [0,B] is an interval of length at most δ, and H ⊂ [0,B] is another subinterval of length
λ|J | � |H | � Λ|J | and of distance � Λ|J | from J , then

(1 − ε)
ν(J )

|J | |H | � ν(H) � (1 + ε)
ν(J )

|J | |H |. (8.1)

First we show that for every ε > 0 there is a d > 0 such that for any 0 � a < b � B we have

a+d(b−a)∫
a

1√
x

dν(x) � ε

b∫
a+d(b−a)

1√
x

dν(x), (8.2)

which implies

b∫
a

1√
x

dν(x) � (1 + ε)

b∫
a+d(b−a)

1√
x

dν(x). (8.3)

Indeed, let Sn be the integral of x−1/2 against ν on Kn = [a + 2−n(b − a), a + 2n−1(b − a)],
n = 1,2, . . . . Let K−

n (respectively K+
n ) be the left (respectively right) half of Kn. The ratio of

the largest value of 1/
√

x on Kn+1 and of the smallest value of it on K−
n is at most

√
3, while

the ratio of the largest value of 1/
√

x on Kn+1 and of the smallest value of it on K+
n is at most√

4 = 2. Hence, (8.1) gives for |Kn| � δ∫
Kn+1

1√
x

dν(x) � (1 + ε)
√

3
∫

K−
n

1√
x

dν(x)

and ∫
Kn+1

1√
x

dν(x) � (1 + ε)
√

4
∫

K+
n

1√
x

dν(x).

Since the ratio of the minimum of 1/
√

x over Kn+1 and of its maximum over K+
n is

√
3/2, we

also have ∫
K+

n

1√
x

dν(x) �
√

2

3
(1 + ε)

∫
Kn+1

1√
x

dν(x).

These imply ∫
Kn+1

� 1

2
(1 + ε)

(√
3

∫
−

+√
4

∫
+

)

Kn Kn
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� 1

2
(1 + ε)

√
3

( ∫
K−

n

+
∫

K+
n

)
+ 1

2

(√
4 − √

3
)
(1 + ε)2

√
2

3

∫
Kn+1

.

Since for small ε > 0 we have

(1/2)(1 + ε)
√

3

1 − (1/2)(
√

4 − √
3 )(1 + ε)2

√
2/3

:= θ < 1,

it follows that ∫
Kn+1

1√
x

dν(x) � θ

∫
Kn

1√
x

dν(x),

which clearly implies (8.2) for small d .
After these let I, J ⊆ [0,B] be adjacent intervals of equal ω-length: ω(I) = ω(J ). Then

|I |/|J | lies in between two positive constants. Let e.g. I = [a, b], J = [b, c]. If we set Φ(x) =
ν([a, x]), then we infer from (8.1) that

(1 − ε)
ν(J )

|J | (x − a) � Φ(x) � (1 + ε)
ν(J )

|J | (x − a), x ∈ [
a + d(b − a), c

]
, (8.4)

provided |J | � δ. Integration by parts gives

b∫
a+d(b−a)

1√
x

dν(x) = Φ(b)√
b

− Φ(a + d(b − a))√
a + d(b − a)

+ 1

2

b∫
a+d(b−a)

Φ(x)

x3/2
dx. (8.5)

In the first and third terms on the right we use the upper estimate from (8.4), while in the second
term we use the lower one to obtain the upper bound

(1 + ε)
ν(J )

|J |

[
b − a√

b
− (a + d(b − a)) − a√

a + d(b − a)
+ 1

2

b∫
a+d(b−a)

x − a

x3/2
dx

]

+ 2ε
ν(J )

|J |
(a + d(b − a)) − a√

a + d(b − a)

for the integral. Here the expression in the square bracket is

b∫
a+d(b−a)

1√
x

dx,

and since

(a + d(b − a)) − a√
a + d(b − a)

�
a+d(b−a)∫

1√
x

dx
a
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is also true, finally it follows that

b∫
a+d(b−a)

1√
x

dν(x) � (1 + 2ε)
ν(J )

|J |
b∫

a

1√
x

dx.

Combine this with (8.3) and notice

b∫
a

1√
x

dν(x) =
b∫

a

1√
x

√
x dμw(x) = μw(I)

to conclude

μw(I) � (1 + 2ε)2 ν(J )

|J | ω(I). (8.6)

If in (8.5) we use the lower estimate from (8.4) in the first and third terms and the upper one
in the second term, then parallel reasoning gives

μw(I) � (1 − 2ε)2 ν(J )

|J | ω(I). (8.7)

Completely analogous consideration gives (just replace I by J )

(1 − 2ε)2 ν(J )

|J | ω(J ) � μw(J ) � (1 + 2ε)2 ν(J )

|J | ω(J ). (8.8)

Now the claimed smoothness of μw with respect to ω is a consequence of (8.6)–(8.8).
The proof of the converse is similar. In fact, if μw is smooth on [0,B] with respect to ω, then

selecting two adjacent intervals I, J ⊂ [0,B], I = [a, b], J = [b, c] of small equal length, the
analogue of (8.4) is

(1 − ε)
μw(J )

ω(J )
ω

([a, x]) � μw

([a, x]) � (1 + ε)
μw(J )

ω(J )
ω

([a, x]),
x ∈ [

a + d(b − a), c
]
. (8.9)

Using this instead of (8.4) and using the function
√

x instead of 1/
√

x, similar reasoning as above
gives

(1 − 2ε)2 μw(J )

ω(J )

∫
I

√
x dω(x) �

∫
I

√
x μw(x) � (1 + 2ε)2 μw(J )

ω(J )

∫
I

√
x dω(x),

i.e.,

(1 − 2ε)2 μw(J ) |I | � ν(I ) � (1 + 2ε)2 μw(J ) |I |.

ω(J ) ω(J )
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An analogous formula holds for the integrals over J , and since |I | = |J |, we can conclude

(1 − 2ε)2

(1 + 2ε)2
� ν(I )

ν(J )
� (1 + 2ε)2

(1 − 2ε)2
,

which is the smoothness of ν. �
Step IV. The last step is a symmetrization argument (see [12], [21, pp. 291–293 and Theo-
rem IV.1.10(f)]). A consequence of Steps I and II is that we may assume Σ to be compact and
a = 0 = minΣ , w = exp(Uμw). Consider the mapping z → x, x = z2, let Σ̃ = {z | z2 ∈ Σ} be
the inverse image of Σ under this mapping, and define on Σ̃ the weight w̃(z) := w(z2)1/2. Then
both Σ̃ and w̃ are symmetric with respect to the origin. If dμ̃(t) = dμw(t2)/2 is the pullback of
the measure μw , then

Uμw(x) =
∫

1

|x − t | dμw(t) =
∫

τ�0

log
1

|z2 − τ 2|2dμ̃(τ )

=
∫

τ�0

log
1

|z − τ |2dμ̃(τ ) +
∫

τ�0

log
1

|z + τ |2dμ̃(τ ),

and since μ̃ is even, this gives

Uμw(x) = 2Uμ̃(z).

In view of the characterization (1.5)–(1.6) of the equilibrium measure this implies (see [21, The-
orem IV.1.10(f)]) that μw̃ = μ̃.

Under the mapping z → z2, intervals I, J ⊂ [0,∞) ∩ Σ̃ of equal length are mapped into
intervals on Σ of equal ω-length. Hence, μ̃ is smooth on some interval [0,

√
B ] if and only

if μw is smooth on [0,B] with respect to ω. Therefore, in view Lemma 8.2, it follows that√
x dμw(x) is smooth on some [0,B] if and only if μ̃ = μw̃ is smooth on [0,

√
B ]. But μw̃ is

even, and then it is easy to show that its smoothness on [0,
√

B ] is equivalent to its smoothness
on [−√

B,
√

B ], so we can finally conclude that
√

x dμw(x) is smooth on some [0,B] if and
only if μw̃ is smooth on [−√

B,
√

B ].
Finally, we show that 0 /∈ Zw if and only if 0 /∈ Zw̃ . In fact, if wnPn converges uniformly

on Σ to a function f that is not zero at 0, then w̃2n(z)Pn(z
2) = wn(x)Pn(x) → f (x) uni-

formly on Σ̃ , and hence a standard Z-set argument (see Section 4) gives 0 /∈ Zw̃ . Conversely,
if 0 /∈ Zw̃ , then we can approximate an even f with f (0) �= 0 by w̃2nP2n uniformly on Σ̃ .
Here we may assume P2n even (replace it by (P2n(z) + P2n(−z))/2 if necessary), and then
w̃(

√
x )2nP2n(

√
x ) = wn(x)P2n(

√
x ) → f (

√
x ) uniformly on Σ , which shows that 0 /∈ Zw

(notice that P2n(
√

x ) is a polynomial of degree at most n).

Proof of Theorem 8.1. We have just seen that

√
x dμw(x) is smooth on [0,B] ⇐⇒ μw̃ is smooth on

[−√
B,

√
B

]
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and

0 /∈ Zw ⇐⇒ 0 /∈ Zw̃.

Here w̃ is a weight for which 0 ∈ Int(supp(μw̃)), and hence Theorems 1.2 and 1.3 are applicable.
Now Theorem 1.2 implies part (1) of Theorem 8.1.

In a similar manner, Theorem 1.3 implies part (2) once we notice that

(a) μw is doubling on a subinterval of Σ if and only if μ̃ = μw̃ is doubling on the corresponding
subinterval of Σ̃ ,

(b)
√

x dμw(x) is of positive lower bound on some interval (0, δ) if and only if μw̃ = μ̃ is of
positive lower bound on the corresponding interval (−√

δ,
√

δ )

(see the arguments in Steps III and IV above). �
9. Construction of Example 1.4

Let ωK be the density (with respect to linear Lebesgue measure) of the equilibrium measure
of the set K ⊂ R.

We set Σ = [−1,1] ∪ [3,4] and with some probability measure μ on Σ we define w =
exp(Uμ). The measure μ will be of the form

dμ(t)

dt
= c0

(
log|t/2|)−2

, t ∈ [−1,1],

and

dμ(t)

dt
= 1

2
ω[3,4](t)

(
1 −

∞∑
j=1

ρj

)
+ 1

2

∞∑
j=1

vj (t), t ∈ [3,4],

where c0 is chosen so that μ([−1,1]) = 1/2, ρj < 1/2j+1 and vj is a nonnegative piecewise
constant function with

4∫
3

vj = ρj .

We also set μm to be the measure which agrees with μ on [−1,1] and which has density

dμm(t)

dt
= 1

2
ω[3,4](t)

(
1 −

m∑
j=1

ρj

)
+ 1

2

m∑
j=1

vj ,

on the interval [3,4], and define wm = exp(Uμm).
We choose the numbers ρm and the function vm as follows, and along with them we also

choose a sequence of increasing numbers Nm. Given μm−1, Nm−1, our aim is to define ρm, vm

and Nm in such a way that for large m the following hold:
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(a) 1 − 2−m−1 � wk
m(x)

wk
m−1(x)

� 1 + 2−m−1

for all x ∈ Σ and all 1 � k � Nm−1,

(b) 1 − 2−m−1 � wk
m(x)

wk
m−1(x)

� 1 + 2−m−1

for all x ∈ [−1,1] and all 1 � k � Nm,
(c) if for a polynomial PNm of degree at most Nm we have wNm |PNm | � 1/2 on Σ , then

wNm(0)|PNm(0)| � 1/m.

With k = 1 the first property shows that wm → w uniformly, and hence w is a continuous
function (because all wm are), and again by the first property

1

2
�

(
w(x)

wm(x)

)Nm

� 2, x ∈ Σ, (9.1)

while on [−1,1] the stronger

1

2
�

(
w(x)

wm−1(x)

)Nm

� 2, x ∈ [−1,1], (9.2)

is true.
Property (c) shows that 0 ∈ Zw , even though μ is smooth on [−1,1].
Let us thus assume that μm−1 and Nm−1 are already known. Consider for a large integer M

and for 0 < η < 1 the set

E(M,η) =
M−1⋃
k=0

[
3 + k

M
,3 + k

M
+ η

M

]
,

and let

vm = 1

2m+2Nm−1

1

log(1/cap(E(M,η)))
ωE(M,η).

This has total integral

4∫
3

vm = 1

2m+2Nm−1

1

log(1/cap(E(M,η)))
=: ρm

and (with the self-explaining notation)

0 � Uvm(x) � 1

2m+2Nm−1
, x ∈ [3,4],

while

−(log 5)ρm � Uvm(x) � 0, x ∈ [−1,1].
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Since

wm(x)

wm−1(x)
= exp

(
1

2
Uvm(x) − (ρm/2)Uω[3,4](x)

)
,

it follows that property (a) is true, and so is property (b) provided

Nmρm < 2−m−4. (9.3)

As for property (c), let wNm |PNm | � 1/2 on Σ . Then, by (9.1)–(9.2), we have

w
Nm

m−1|PNm | � 1 (9.4)

on [−1,1] and w
Nm
m |PNm | � 1 on [3,4]. Note now that

Uvm(x) = 1

2m+2Nm−1
, x = 3 + k

M
, k = 0,1, . . . ,M − 1,

hence at these points

wm(x)Nm

wm−1(x)Nm
= exp

(
1

2
Nm

(
Uvm(x) − (ρm/2)Uω[3,4](x)

))
= exp

(
Nm/

(
Nm−12m+3) + Nmρm(log 2)

)
> exp

(
Nm/

(
Nm−12m+4))

provided

ρm log 2 <
1

Nm−12m+4
. (9.5)

Thus, we have

wm−1(x)Nm
∣∣PNm(x)

∣∣ � exp
(−Nm/

(
Nm−12m+4)), x = 3 + k

M
, 0 � k < M.

Whatever Nm is (to be chosen below), we can choose M = Mm so large (depending on Nm) that
this latter condition implies

wm−1(x)Nm
∣∣PNm(x)

∣∣ � exp
(−Nm/

(
Nm−12m+5)) (9.6)

for all x ∈ [3,4] and all PNm .
Summing up, we have (9.6) on [3,4] and at the same time (9.4) on [−1,1]. Below we shall

show that then

wm−1(0)Nm
∣∣PNm(0)

∣∣ � exp
(−c1Nm/

(
Nm−12m+7 exp

(
mNm−12m+5))) (9.7)
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with some absolute constant c1 > 0, and in view of (9.2) this gives

w(0)Nm
∣∣PNm(0)

∣∣ � 2 exp
(−c1Nm/

(
Nm−12m+7 exp

(
mNm−12m+5))). (9.8)

This implies property (c) provided Nm is sufficiently large, say

Nm = [
mNm−12m+7 exp

(
mNm−12m+5)].

Let ε = εm > 0 be selected below, and with this consider the measure νε that has density
c0/(log|t/2|)2 on [−ε, ε] and 0 elsewhere, and we also set με = μm−1 − νε . Then Uμε � Uμm−1

on [−1,1], and Uμε � Uμm−1 +c′
0ε/(log ε)2 on [3,4] with some absolute constant c′

0. Therefore,
(9.4) and (9.6) imply

NmUμε(x) + log
∣∣PNm(x)

∣∣ � 0, x ∈ [−1,−ε] ∪ [ε,1], (9.9)

and

NmUμε(x) + log
∣∣PNm(x)

∣∣ � −Nm/Nm−12m+5 + c′
0Nmε/(log ε)2, x ∈ [3,4].

This latter yields for ε = εm = exp(−mNm−12m+5) and for large m the inequality

NmUμε(x) + log
∣∣PNm(x)

∣∣ � −Nm/
(
Nm−12m+6), x ∈ [3,4]. (9.10)

Let Gε = C \ ([−1,−ε] ∪ [ε,1] ∪ [3,4]), gGε(z,∞) the Green’s function of Gε with pole at
infinity and ω(z, [3,4],Gε) the harmonic measure of [3,4] at z with respect to the domain Gε .
Then (9.9) and (9.10) imply

NmUμε(x) + log
∣∣PNm(x)

∣∣ + Nm/
(
Nm−12m+6)ω(

x, [3,4],Gε

)
− Nm

(
1 − με(C)

)
gGε(x,∞) � 0, x ∈ ∂Gε. (9.11)

Hence, this inequality also holds in Gε , in particular, at x = 0, because the left-hand side is
subharmonic there including the point infinity (where it is harmonic). Below we show that with
some absolute constant c1

ω
(
0, [3,4],Gε

)
� c1ε, (9.12)

and it is easy to see that

gGε (0,∞) � gC\([−1,−ε]∪[ε,1])(0,∞) = 1

2
gC\[ε2,1](0,∞) � 2ε.

Since

1 − με(C) � Cε/(log ε)2,

(9.7) follows from the x = 0 case of (9.11) by the choice of

ε = εm = exp
(−mNm−12m+5),
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and by the fact that with some constant C1

Uμm−1(0) − Uμε(0) = Uνε(0) � C1

(
log

1

ε

)
ε/(log ε)2 <

1

4
c1ε/Nm−12m+6

for large m.
Thus, it is left to prove (9.12). Let Δ2 be the disk |z| = 2. We have

ω
(
z, [3,4],Gε

)
� ω

(
z, [3,4],C \ ([−1,1] ∪ [3,4])).

The function on the right-hand side is strictly positive for |z| = 2, say bigger than some c2 > 0
there. By comparing the two harmonic functions in the next inequality on the boundary of the set
Δ2 \ ([−1,−ε] ∪ [ε,1]), we get with the same c2

ω
(
z, [3,4],Gε

)
� c2ω

(
z, ∂Δ2,Δ2 \ ([−1,−ε] ∪ [ε,1])), |z| � 2. (9.13)

Since the Green’s function gC\([−1,−ε]∪[ε,1])(z,∞) is at most 2 for |z| = 2, for |z| = 2 we
can bound the right-hand side of (9.13) from below by c2/2 times this Green’s function.
Hence, we obtain from (9.13) and from comparison of ω(z, ∂Δ2,Δ2 \ ([−1,−ε] ∪ [ε,1])) and
gC\([−1,−ε]∪[ε,1])(z,∞) on the boundary of Δ2 \ ([−1,−ε] ∪ [ε,1]) the inequality

ω
(
z, [3,4],Gε

)
� c2

2
gC\([−1,ε]∪[ε,1])(z,∞)

for all |z| � 2. But

gC\([−1,ε]∪[ε,1])(z,∞) = 1

2
gC\[ε2,1]

(
z2,∞)

,

and since the Green’s function gC\[ε2,1](y,∞) on the right is obtained from

gC\[−1,1](w,∞) = log
∣∣w +

√
w2 − 1

∣∣
(with that branch of the square root which is positive for positive values) by the transformation
y = (1− ε2)(w +1)/2+ ε2, the inequality (9.12) follows (note that gC\[−1,1](−1− δ2,∞) � δ).

This completes the construction, but for clarity we state the order of selections: select

ε = εm = exp
(−mNm−12m+5),

then

Nm = [
mNm−12m+7 exp

(
mNm−12m+5)],

then M = Mm so large that (9.6) is true, and finally η = ηm so small that with

ρm = 1

2m+2Nm−1

1

(log 1/cap(E(M,η)))

(9.3) and (9.5) are true.
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