
FEBS 28532 FEBS Letters 570 (2004) 87–92

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Facilitated folding and subunit
 assembly in Escherichia coli and
in vitro of nucleoside diphosphate kinase from extremely halophilic

archaeon conferred by amino-terminal extension containing hexa-His-tag
Matsujiro Ishibashia, Tsutomu Arakawab, Masao Tokunagaa,*

aApplied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
bAlliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, USA

Received 13 April 2004; revised 25 May 2004; accepted 26 May 2004

Available online 22 June 2004

Edited by Peter Brzezinski
Abstract We have previously reported that nucleoside diphos-
phate kinase (HsNDK) from extremely halophilic archaeon
Halobacterium salinarum was expressed in Escherichia coli as a
soluble, but inactive form and required high salt concentrations
for in vitro folding and activation. Here, we found that fusion of
extra sequence containing hexa-His-tag at amino-terminus of
HsNDK (His-HsNDK) facilitated folding and activation
of HsNDK in E. coli. This is a first observation of active folding
of halophilic enzyme from extremely halophilic archaeon in E.
coli. The in vitro refolding rate of His-HsNDK after heat
denaturation was greatly increased over the native HsNDK.
Folded His-HsNDK isolated from E. coli formed a hexamer in
both 0.2 M and 3.8 M NaCl at 30 �C, while the native HsNDK
purified from H. salinarum dissociated to dimer in 0.2 M NaCl.
The observed hexameric structure in 0.2 M NaCl indicates that
amino-terminal extension also enhances dimer to hexamer
assembly and stabilizes the structure in low salt. These results
suggest that positive charges in fused amino-terminal extension
are effective in suppressing the negative charge repulsion of
halophilic enzyme and thus, facilitate folding and assembly of
HsNDK.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Extremely halophilic archaea live in very salty environments

such as the Dead Sea or Salt lakes and accumulate compatible

concentrations of solute inside the cells [1–3]. Enzymes from

extremely halophilic archaea are attractive in that they can

function under such extreme conditions as high ionic strength

where most enzymes from non-halophilic organisms cannot. In

addition to the stability in high salt environments, several

enzymes from halophilic archaea were reported to show sta-

bility against high temperature [4]. We have isolated nucleoside

diphosphate kinase (HsNDK) from extreme halophile Halo-

bacterium salinarum and shown that the enzyme is, as ex-
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pected, active in high salt concentrations and stable against

heat treatment when concentrated salts are present [5,6]. Most

enzymes from extremely halophilic archaea rapidly lose their

tertiary and quaternary structures, and hence activity, in low

salt, e.g., below 1 M [1–3]. Although primary structure of

HsNDK shows a typical characteristic of halophilic proteins,

being highly acidic, it shows exceptional stability in low salt [5].

We have shown that HsNDK associates into a hexamer at 3.8

M NaCl and dissociates into a dimer at 0.2 M NaCl reversibly

depending on the salt concentrations without converting into

enzymatically inactive monomer [6]. We also studied the re-

folding of denatured-HsNDK to elucidate the salt effects on

the structures of HsNDK, and indicated that salts enhance

folding and enzymatic activity through both their electrostatic

effects and their effects on hydrophobic interaction [7,8].

To further characterize this novel halophilic enzyme, we have

attempted to generate a recombinant protein in Escherchia coli.

Expression of the native protein, however, resulted in low ex-

pression of an inactive enzyme [5]. Here, we attempted to pro-

duce hexa-His-tag fusion of HsNDK. When an extra sequence

containingHis-tagwas fused to the amino-terminus ofHsNDK,

unexpectedly the fusion resulted in a fully active enzyme with

increased expression. Results of production and characteriza-

tion of hexa-His-tag-HsNDK are reported in this paper.
2. Materials and methods

2.1. Bacterial strains and growth medium
Escherichia coli JM109 and BL21(DE3) were used for DNA ma-

nipulation and for expression of proteins encoded on pET series vec-
tors (Novagen), respectively. LB-ampicillin (100 lg/ml) was used. For
preculture of the transformant harboring pET-derived vectors, LB-
ampicillin containing 0.4% glucose was used.

2.2. Construction of plasmids and expression of proteins
DNA manipulation was carried out using standard procedures [9].

Plasmid pETHsndk for expression of HsNDK in E. coli was described
previously [5]. For the expression of amino-terminal His-tag-HsNDK
(His-HsNDK), pETHisHsndk was constructed as follows. The cloned
ndk gene was amplified by PCR using forward primer 50-
CCCATATGACCGATCACGACGAGCG-30 which encodes an NdeI
site (underlined) followed by the coding sequence starting at Met1 to
Glu6, and reverse primer 50-CCGGATCCTCAGTCGTGGTCTGC-
GAGGT-30 which contains up to the termination codon of ndk gene
followed by a BamHI site (underlined). This amplified fragment was
ligated to NdeI/BamHI-digested pET15b to construct pETHisHsndk.
This plasmid encodes a fusion protein containing HsNDK preceded by
hexa-His-tag and a thrombin cleavage site (LVPRGS).
blished by Elsevier B.V. All rights reserved.
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For the expressionofHsNDKwith carboxy-terminalHis-tag, plasmid
pETHsndkHis was constructed as follows. The ndk gene was amplified
by PCR using the same forward primer as above and reverse primer 50-
CCCTCGAGGTCGTGGTCTGCGAGGTC-30 which contains up to
the carboxy-terminal Asp followed by an XhoI site (underlined). This
amplified fragment was ligated to NdeI/XhoI-digested pET20b.
The plasmid was introduced into E. coli BL21(DE3) and the syn-

thesis of protein was induced by the addition of 0.2 mM isopropyl-1-
thio-b-DD-galactopyranoside.

2.3. Purification of His-HsNDK and native HsNDK, and assay of
enzymatic activity

The standard method for the purification of His-HsNDK is as fol-
lows. E. coli cells expressing His-HsNDK were disrupted by sonication
in E buffer (50 mM Tris–HCl buffer, pH 8.0 and 2 mM MgCl2) con-
taining 3 M NaCl, and supernatant after centrifugation at 14 000 rpm
for 20 min was applied to an ATP-agarose (Sigma A2767) column.
Bound protein was eluted with 3 mM ATP in E buffer containing 3 M
NaCl. The presence of 3 M NaCl prevents binding of E. coli proteins to
ATP-agarose. Native HsNDK was purified fromH. salinarum using an
ATP-agarose column in the presence of 0.2 M NaCl as described
previously [5] and used for all experiments except Fig. 1. Enzyme ac-
tivity was measured by coupling assay as described previously and one
unit was defined as the activity which forms 1 lmol product/min [5].

2.4. Refolding assay in vitro in the presence of NaCl or trimethylamine
N-oxide

Purified His-HsNDK and HsNDK were dialyzed against 50 mM
Tris–HCl buffer, pH 7.5. Dialyzed sample was denatured either by
heat-treatment at 90 �C for 5 min or by dialysis against 6 M urea/50
mM Tris–HCl buffer, pH 7.5, overnight. Heat-denatured sample (5 ll)
was added to 45 ll of refolding solution (50 mM Tris–HCl buffer, pH
7.5 or pH8.3, containing 3.0 M NaCl or 4 M trimethylamine N-oxide
(TMAO), respectively) and enzyme activity was measured. For ex-
periments in Table 1, urea-denatured sample was dialyzed against 50
mM Tris–HCl buffer, pH 7.5, containing 0.2–3.0 M NaCl, and enzyme
activity was measured. The protein amount in each refolding mixture
was described in Table and Figure legends.

2.5. Thrombin digestion of His-HsNDK to remove His-tag
Purified His-HsNDK (1 mg) bound to Ni–NTA (Novagen) resin was

digested with 100 U of bovine thrombin (Amersham Biotech) in 10
mM Na-phosphate buffer, pH 7.5, containing 2 mM MgCl2 and 154
Table 1
Refolding of urea-denatured HsNDK and His-HsNDK in the presence of 0

Protein concentration in refolding
mixture (lg/ml)

Specific activity (unit/mg)

HsNDK

NaCl (M) 0.2

170 13.5
340 11.0
340a 15.7a

680 –
1100 –
aAfter 6 days refolding.

Fig. 1. ATP column chromatography of HsNDK and His-HsNDK expressed
column in the presence (lane 2) and absence (lane 1) of 4.0 M NaCl. (B) Flow
His-HsNDK to ATP column in the presence (lanes 3 and 4) and absence (la
mM NaCl at 22 C overnight. Resulting His-tag-removed HsNDK was
purified by ATP agarose column.

2.6. Circular dichroism spectroscopy
Circular dichroism (CD) measurements were carried out on a Jasco

J-715 spectropolarimeter equipped with a Peltier cell holder and a
PTC-348WI temperature controller. A 0.1 cm cell was used throughout
the experiments. For wavelength scan, a scan rate of 10 nm/min was
used at a time constant of 4 s and 10 scans were accumulated. The
protein concentration was 0.2 mg/ml for all the CD measurements. The
solvent spectrum was subtracted from the sample spectrum. The sub-
tracted spectrum was then converted to the mean residue ellipticity
using the mean residue weight (112), the path-length of the cell (0.1 cm)
and the protein concentration (0.2 mg/ml). The CD spectra (expressed
as the mean residue ellipticity) were analyzed by a secondary structure
analysis program, CDNN version 2.1, Guid223 (10/9/98) [10]. Thermal
melting was carried out at a scan rate of 20 �C/h. The ellipticity at 216
nm was used to follow conformational changes.

2.7. Cross-linking of His-HsNDK or HsNDK in the presence of 0.2 M
NaCl

His-HsNDK or HsNDK (7.5 lg/50 ll) was dialyzed against 10 mM
Na-phosphate buffer, pH 7.5, containing 2 mM MgCl2 and 0.2 M
NaCl. To these dialyzed samples, 5 ll of 50 mM 3,30-dithio-bis(pro-
pionic acid N-hydrosuccinimide ester) (DSP) was added and incubated
at 30 �C for 90 min. For cross-linking in Fig. 6B, His-HsNDK was
preincubated at 30 or 40 �C for 10 min, and DSP was added to cross-
link at 30 or 40 �C, respectively.

2.8. Other methods
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) was per-

formed according to Laemmli [11]. The amount of protein was mea-
sured as described by Lowry et al. [12].
3. Results

3.1. Expression of HsNDK with hexa-His-tag in E. coli

HsNDK has been expressed in E. coli as a soluble, but in-

active form [5]. The inactive form, which did not bind to ATP

column (Fig. 1A, lane 1), was activated by treatment with 4.0

M NaCl, as shown by binding to the column (lane 2). In order
.2, 1.0 and 3.0 M NaCl for 24 h

His-HsNDK

1.0 3.0 0.2 1.0 3.0

14.5 316.8 12.3 90.8 330.6
19.8 408.0 10.9 54.6 544.4
33.0a 527.0a 11.9a 259.9a 437.0a

– – 12.3 237.5 –
– – 10.8 232.7 –

in E. coli. (A) Bound fractions of HsNDK expressed in E. coli to ATP
through (FT, lanes 1 and 3) and bound (E, lanes 2 and 4) fractions of
nes 1 and 2) of 4.0 M NaCl.
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to facilitate expression and purification of HsNDK, here we

have expressed HsNDK in E. coli as an amino-terminal fusion

of an extra sequence containing hexa-His-tag, MGS-hexa-H-

SSGLVPRGSH, provided by pET15b vector. His-HsNDK

was expressed in large amount as a soluble form. (Fig. 2, lanes

5 and 6): the expression is �3 mg/100 ml culture which is �60-

fold higher than that of HsNDK (Fig. 2, lanes 3 and 4). To our

surprise, the His-HsNDK was found to bind to the ATP col-

umn before (Fig. 1B, lane 2) and after (lane 4) 4 M NaCl

treatment, suggesting that His-HsNDK was expressed as an

active form in E. coli. This is a first observation of active

folding of halophilic enzyme from extremely halophilic ar-

chaeon in E. coli. The amounts of major chaperones, DnaK

and GroE, in E. coli cells, when either HsNDK or His-

HsNDK was expressed, were indistinguishable (data not

shown). HsNDK with a carboxy-terminal His-tag was

expressed in very low amount (not shown). Both E. coli

-expressed His-HsNDK and refolded HsNDK showed a spe-

cific activity of 340� 10 unit/mg protein, identical to that of

native HsNDK purified from H. salinarum.

3.2. In vitro refolding of denatured His-HsNDK in the presence

of NaCl

We examined the refolding rate of denatured His-HsNDK

and HsNDK in vitro. We have shown before that refolding of

heat-denatured HsNDK takes days in 3.0 M NaCl [7]. As

shown in Fig. 3, curve (a), His-HsNDK in the presence of 3.0
Fig. 2. Expression of HsNDK and His-HsNDK in E. coli. Crude
homogenates of BL21(DE3, pET15b) (control, lanes 1 and 2),
BL21(DE3, pETHsndk) (lanes 3 and 4), and BL21(DE3, pET-
HisHsndk) (lanes 5 and 6) were analyzed by SDS–PAGE. S, soluble
fraction; P, pellet fraction. Dots represent expressed HsNDK and His-
HsNDK.

Fig. 3. Refolding of heat-denatured His-HsNDK and HsNDK in the
presence of 3.0 M NaCl at pH 7.5. Protein amount in refolding mixture
was 37 lg/ml. (a) His-HsNDK, (b) Thrombin-digested and purified
HsNDK portion from His-HsNDK, (c) Native HsNDK purified from
H. salinarum.
M NaCl almost completes refolding in 8 h, unlike HsNDK

(curve (c)), indicating that amino-terminal extension sequence

facilitates refolding of HsNDK. Removal of extension se-

quence by thrombin digestion resulted in decrease in refolding

rate to the level of HsNDK (Fig. 3, curves (b) and (c)). In

separate experiment, refolding was not facilitated in thrombin-

digested His-HsNDK without removal of detached His-tag-

portion from the refolding mixture (not shown), suggesting

amino-terminal extension functions in cis position but not in

trans. The final specific activity of both refolded His-HsNDK

and HsNDK after 3 days incubation was the same, about 300

unit/mg protein, at 3.0 M NaCl (Fig. 3). Enhancement of re-

folding with fused His-tag was observed in the presence of 1.0

M NaCl, but not at 0.2 (Table 1) or 0.5 M (data not shown)

NaCl. To prepare samples containing high concentration of

protein, urea-denatured samples were used in Table 1. The

refolding efficiency of His-HsNDK in salt increased with

protein concentration in refolding mixture (Table 1). This re-

sult suggests that the rate-limiting step of activation in salt

solution is oligomerization.

3.3. In vitro refolding of heat-denatured His-HsNDK in the

presence of 4 M TMAO

We have shown that below pH 8.0, a non-ionic osmolyte,

TMAO, can lead to a complete refolding of HsNDK at high

concentrations, e.g., 4.0 M [7]. Above pH 8.0, however, 4 M

TMAO is insufficient to induce refolding of HsNDK due to the

pH effects on total negative charges, and hence an additional

charge shielding, such as the addition of low concentration of

NaCl, was required [7]. Here, we found that His-HsNDK was

refolded at pH 8.3 in 4 M TMAO alone, i.e., no additional

NaCl (Fig. 4), indicating that the amino-terminal extension

sequence makes low concentration of NaCl unnecessary for

refolding of His-HsNDK.

3.4. CD spectra and thermal melting of His-HsNDK

HsNDK purified from H. salinarum associates into a hexa-

mer at 3.8 M NaCl and dissociates into dimer at 0.2 M NaCl

reversibly depending on the salt concentrations [6]. The ob-

served change of the subunit structure from hexamer to dimer

was accompanied by a large decrease in a-helical content
Fig. 4. Refolding of heat-denatured His-HsNDK and HsNDK in the
presence of 4.0 M TMAO at pH 8.3. Protein amount in refolding
mixture was 50 lg/ml.



Fig. 6. Thermal melting of His-HsNDK in the presence of 0.2 M and
3.8 M NaCl. Thermal melting was measured in the presence of 0.2 M
(a) and 3.8 M (b) NaCl.
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(Fig. 5B, [6]) and lowered thermal stability [6]. Here, we found

that the helical content of His-HsNDK in 0.2 M NaCl is 17%,

increasing to 22% in 3.8 M NaCl (Fig. 5A) and that the CD

pattern of His-HsNDK at 0.2 M NaCl (Fig. 5A, curve (a)) was

exactly identical to that of HsNDK at 3.8 M NaCl (Fig. 5B,

curve (b)). This observation suggests that His-HsNDK may be

a hexamer in 0.2 M NaCl. We examined the thermal melting of

His-HsNDK at low- and high-salt conditions (Fig. 6). Melting

curve in 0.2 M NaCl (curve (a)) shows a biphasic transition:

the first transition occurs in 29–36 �C, while the second occurs

in 42–52 �C. The second transition is almost the same as that

of HsNDK in 0.2 M NaCl (43–53 �C, [6]), meaning that the

first transition in this low salt condition is unique to His-

HsNDK. It is likely that the first transition in low-salt was

caused by the thermal melting of unstable His-HsNDK-hex-

amer formed in low salt at low temperature, as suggested by

CD profile of His-HsNDK in low salts (Fig. 5A, curve (a)).

Melting in 3.8 M NaCl (Fig. 6, curve (b)) occurs in 70–76 �C,
which is slightly lower than that of HsNDK in 3.8 M NaCl

(73–80 �C, [6]). CD of His-HsNDK showed a higher helical

content than the HsNDK in 3.8 M NaCl. This may be related

to the decreased stability of His-HsNDK in high salt condi-

tion, although the reason for the differences is not clear.
3.5. Cross-linking of His-HsNDK subunit assembly

Cross-linking experiments were carried out to confirm the

oligomeric structures of His-HsNDK inferred by CD: we

found that a cross-linker, DSP, could function in the presence

of 0.2 M NaCl (but not in 3.8 M NaCl). His-HsNDK and

HsNDK were cross-linked with DSP in 0.2 M NaCl, and the

resultant products were analyzed by SDS–PAGE. As shown in

Fig. 7A, we detected a hexamer for His-HsNDK (lane 4) and a

dimer for HsNDK (lane 3). We also detected a tetramer, a

dimer as well as a monomer for His-HsNDK (lane 4) and only

a monomer for HsNDK (lane 3). It is not possible to estimate

the ratio of these oligomers from cross-linking experiments,

which depend strongly on the cross-linking efficiency of two

functional groups in the oligomers by the cross-linker used. We

have reported that HsNDK forms homogeneous dimer in 0.2
Fig. 5. CD spectra of His-HsNDK and HsNDK in the presence of 0.2 M an
presence of 0.2 M (a) and 3.8 M (b) NaCl were measured.
M NaCl by means of an equilibrium centrifugation [6]. Some

dimer molecules dissociated to monomer during chemical re-

actions of cross-linker in lane 3. Cross-linked oligomers were

largely converted to the monomers on reducing SDS–PAGE

(lanes 1 and 2) because of cleavage of disulfide bond in DSP.

We then examined temperature effects on the subunit assembly

of His-HsNDK in 0.2 M NaCl (Fig. 7B). At 30 �C, a hexamer

of His-HsNDK was detected (lane 5), while a dimer was de-

tected at 40 �C (lane 6). This result suggests that the first

transition in CD thermal melting represents dissociation of

hexamer to dimer and the second represents denaturation of

dimer to monomer of His-HsNDK in 0.2 M NaCl (Fig. 6,

curve (a)). The melting points of His-HsNDK dimer at 0.2 M

NaCl and that of hexamer at 3.8 M NaCl were almost the

same as those of HsNDK (Fig. 6, [6]).
d 3.8 M NaCl. CD spectra of His-HsNDK (A) and HsNDK (B) in the



Fig. 7. Cross-linking of His-HsNDK and HsNDK in the presence of
0.2 M NaCl. (A) SDS–PAGE with (+ME) and without ()ME) addi-
tion of b-mercaptoethanol. Lanes 1 and 3, HsNDK; lanes 2 and 4, His-
HsNDK. (B) Cross-linking was carried out at 30 �C (lane 5) and 40 �C
(lane 6). SDS–PAGE was performed without addition of b-mercap-
toethanol.
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4. Discussion

In this paper, three significant observations have been made.

First, His-HsNDK is folded and active when expressed in E.

coli under the conditions, in which the native protein, i.e.,

without an amino-terminal His-tag, is soluble, but inactive.

Second, refolding of His-HsNDK after denaturation is much

more efficient than is the HsNDK. Third, the His-HsNDK is a

hexamer in 0.2 and 3.8 M NaCl, while HsNDK is a hexamer

only in 3.8 M NaCl. The observed sensitivity of HsNDK to

salt concentration was ascribed to two factors unique to hal-

ophilic proteins, insufficient hydrophobic amino acids and

excess negative charges [1–3,13,14]. Stabilization of the hexa-

mer and hence enzyme activity of the HsNDK and enhanced

refolding by NaCl at high concentration are ascribed at least in

part to charge shielding effects of the salt. The observed ac-

tivity and hexameric structure of His-HsNDK in low salt may

be ascribed to neutralization of negative charges by an amino-

terminal fused extension sequence containing 6 histidine resi-

dues. This extra sequence contains 6 histidine and one arginine

residues for providing positive charges. At the pH of the ex-

periments, however, histidine (pKR ¼ 6.04) is theoretically only

partially protonated. This means that the effects of charge

neutralization by the 6 histidine residues can occur if they have

unusually high pK values. Alternatively, even with low pro-

tonation, a cluster of 6 histidine residues could interact with a

critical region of HsNDK which is responsible for the forma-

tion of a correct higher-order structure. Another possibility is

that an arginine (pKR ¼ 12.48) at thrombin-cleavage site might

function solely or cooperatively with hexa-His-tag to neutral-

ize negative charges of HsNDK. Upon thrombin cleavage,

both hexa-His-tag and arginine are removed from the HsNDK

sequence, resulting in the loss of the effects of the amino-ter-

minal extension. It is still possible that factors other than

charge neutralization are involved in the hexa-his-tag effects on

His-HsNDK.
Although the active form of His-HsNDK is formed in

E. coli, unfolded His-HsNDK cannot be refolded in low salt

media. This suggests that during in vivo folding in E. coli,

certain factors, not present in in vitro folding, assist folding of

His-HsNDK. We have shown before that charge shielding by

salts is not the only factor in facilitating in vitro refolding. For

example, MgCl2 induces refolding at low salt concentration,

which is offset by a salting-in effects of this salt at 2 M or above

[8]. Unfavorable interactions of a non-ionic TMAO with

HsNDK can facilitate refolding, in which case no charge

shielding is involved [7]. The observed in vivo refolding may be

ascribed to molecular crowding in the cytoplasm of E. coli

[15,16]. Molecular crowding effect is identical to the effect

conferred by TMAO, since solutes causing crowding effect

interact with the proteins unfavorably, just as in the case for

TMAO. Another possible in vivo factor assisting folding of

His-HsNDK is the presence of molecular chaperones. Chap-

erones and foldases might facilitate folding of HsNDK dis-

criminating one with amino-terminal extension sequence from

the one without.

Halophilic enzymes such as HsNDK are more active in

concentrated salt solutions. Concentrated salt solutions are not

compatible with most enzymes from non-halophilic organisms

including E. coli. This may allow the use of crude preparations

of halophilic enzymes expressed in E. coli in the presence of

concentrated salts, which should inactivate E. coli enzymes. In

addition to optimal activity, halophilic enzymes are resistant to

thermal melting at high salt concentrations [4–6]. Both salt and

heat resistance should allow a simple preparation of re-

combinant halophilic enzymes expressed in non-halophilic

organisms such as E. coli.

One problem of expressing HsNDK in E. coli was the in-

complete folding and hence low activity due to low salt envi-

ronment of the cytoplasm. Although limited to HsNDK, the

addition of amino-terminal tag was shown sufficient to neu-

tralize the excess acidic charges and lead to the production of

active protein. In addition, His-tag should allow a simple pu-

rification of recombinant enzymes. Thus, His-tag can be a

versatile technology for expressing and purifying recombinant

halophilic enzymes in an active form using non-halophilic or-

ganisms as a host. These characteristics of halophilic enzymes,

along with hexa-His-tag fusion, make them attractive for in-

dustrial applications.

As a final remark, many studies have been carried out to

elucidate the mechanism of salt requirements for halophilic

proteins; e.g., structure analysis in concentrated salt solutions

[17–19], analysis of protein refolding [7], and mutational

analysis [20]. These studies gave us a clue as to the uniqueness

of halophilic enzymes in interacting with salts, but no clue as

to the way to reduce salt dependence while keeping halophilic

natures. This study is consistent with the notion that acidic

characteristic confers halophilic properties to halophilic pro-

teins and demonstrates that a simple addition of hexa-His-tag

is sufficient for in vivo folding of HsNDK without losing

halophilic character. Fusion of a short sequence to the mature

proteins may be one approach to be considered for production

of folded structure, in the current demand of recombinant

proteins in genomic and proteomic era.
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