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Abstract 

In recent years a new class of queueing networks with "negative and positive" customers was 
introduced by one of the authors [5], and shown to have a nonstandard product form. This 
model has undergone several generalizations to include triggers or signals which are special 
forms of customers whose role is to move other customers from some queue to another queue 
[9, 10, 6, 7-1. Positive customers are identical to the usual customers of a queueing network, 
while a negative customer which arrives to a queue simply destroys a positive customer. We call 
these generalized queueing networks G-networks. In this paper we extend the basic model of 
[5] to the case of multiple classes of positive customers, and multiple classes of negative 
customers. As in other multiple class queueing networks, a positive customer class is character- 
ized by the routing probabilities and the service rate parameter at each service center while 
negative customers of different classes may have different "customer destruction" capabilities. 
In the present paper all service time distributions are exponential and the service centers can be 
of the following types: F IFO (first-in-first-out), L IFO/PR (last-in-first-out with preemption), PS 
(processor sharing), with class-dependent service rates. 

1 Introduction 

In recent work  [5], a new class of queueing ne tworks  in which cus tomers  are ei ther 

"negat ive"  or  "posi t ive" was in t roduced.  Posi t ive  cus tomers  enter  a queue and  receive 

service as o rd ina ry  queueing ne twork  customers.  A negat ive cus tomer  will vanish if it 

arr ives to  an empty  queue, and  it will reduce by one the number  of posi t ive cus tomers  

in queue otherwise.  Negat ive  cus tomers  do  not  receive service. Posi t ive  cus tomers  
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which leave a queue to enter another queue can become negative or remain 
positive. 

It has been shown [5] that networks of queues with a single class of positive and 
negative customers have a product form solution if the external positive or negative 
customer arrivals are Poisson, the service times of positive customers are exponential 
and independent, and if the movement of customers between queues is Markovian. 

The single server queue with negative and positive customers has been examined in 
[9]. Stability conditions for these networks have been discussed in [10], while 
"triggers" which are specific customers which can order the rerouting of customers 
[6], and batch removal of customers by negative customers, have been introduced in 
[7, 13]. We call these generalized queueing networks "G-networks" in order to 
distinguish them from the usual queueing network models. Additional primitives for 
these networks have also been introduced in [12]. On the other hand, the computa- 
tion of numerical solutions to the nonlinear traffic equations of some of these models 
have been discussed in [3]. 

G-networks can be used to represent a variety of systems. The initial model in [5] 
was motivated by the analogy with neural networks [4]: each queue represents 
a neuron, and customers represent excitation (positive) or inhibition (negative) signals. 
Note that signals in biophysical neurons also take the form of random trains of 
impulses of constant size, much as customers traveling through a queueing network. 
Several other applications, including to some networking problems [14] have also 
been developed. 

Specifically, the results presented in this paper, have been used in some of our 
earlier work [1] to represent colors in image texture, within a texture generation 
algorithm. 

Another possible application is to multiple resource systems: positive customers can 
be considered to be resource requests, while negative customers can correspond to 
decisions to cancel such requests. An application of G-networks to doubly redundant 
systems, where work is scheduled on two different processors and then cancelled at one 
of the processors if the work is successfully completed at the other, is detailed in [11]. 

The extension of the original model [-5] to multiple classes has also been recently 
suggested by [16]. Other applications of G-networks are summarized in a recent 
survey article [8]. 

In this paper we extend the model to G-networks with multiple classes of positive 
customers and one or more classes of negative customers. In particular, we consider 
three types of service centers with their corresponding service disciplines: 

Type 1: first-in-first-out (FIFO), 
Type 2: processor sharing (PS), 
Type 4: last-in-first-out with preemptive resume priority (LIFO/PR). 
With reference to the usual terminology related to the BCMP theorem [2], we 

exclude from the present model the Type 3 service centers with an infinite number of 
servers since they will not be covered by our results. Furthermore, in this paper we deal 
only with exponentially distributed service times. 
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In Section 2 we will prove that these multiple class G-networks, with Type 1, 2 and 
4 service centers, have product form. Due to the non-linearity of the traffic equations 
for these models I-5] the existence and uniqueness of their solutions have to be 
addressed with some care. This issue will be examined in Section 4 with techniques 
similar to those developed in 1-10]. 

2 The model 

We consider networks with an arbitrary number N of queues, an arbitrary number 
of positive customer classes K, and an arbitrary number of negative customer classes 
S. As in 1-5] we are only interested in open G-networks. Indeed, if the system is closed, 
then the total number of customers will decrease as long as there are negative 
customers in the network 

External arrival streams to the network are independent Poisson processes con- 
cerning positive customers of some class k or negative customers of some class c. We 
denote by A~.k the external arrival rate of positive customers of class k to queue i and 
by ~.~.m the external arrival rate negative customers of class m to queue i. 

Only positive customers are served, and after service they may change class, service 
center and nature (positive to negative), or depart from the system. The movement of 
customers between queues, classes and nature (positive to negative) is represented by 
a Markov chain. 

At its arrival in a nonempty queue, a negative customer selects a positive customer 
in the queue in accordance with the service discipline at this station. If the queue is 
empty, then the negative customer simply disappears. Once the target is selected, the 
negative customer tries to destroy the selected customer. A negative customer, of some 
class m, succeeds in destroying the selected positive customer of some class k, at service 
center i with probability Ki,,,.k. With probability (1 - Ki,,n,k) it does not succeed. 
A negative customer disappears as soon as it tries to destroy its targeted customer. 
Recall that a negative customer is either exogenous, or is obtained by the transforma- 
tion of a positive customer as it leaves a queue. 

A positive customer of class k which leaves queue i (after finishing service) goes to 
queuej  as a positive customer of class I with probability P+ [i,j] l-k, l], or as a negative 
customer of class m with probability P-[i, j] [k, m]. It may also depart from the 
network with probability d[i, k]. 

Obviously, we have for all i, k, 

N R N S 

~ P+[i,j]1-k,l] + ~, ~ P-Ei, j][k,m] +d[i,k] = 1. (1) 
j = l l = l  j = l m = l  

We assume that all service centers have exponential service time distributions. In 
the three types of service centers, each class of positive customers may have a distinct 
service rate #~.k. 
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When the service center is of Type 1 (FIFO), we place the following constraint on 
the service rate and the destruction rate due to incoming negative customers: 

S 

/.ti, k + ~, Ki, m,k~.m = ci. (2) 
m = l  

Note that this constraint, together with the constraint (3) given below, has the effect 
of producing a single positive customer class equivalent for service centers with FIFO 
discipline. 

The following constraints on the deletion probability are assumed to exist. Note 
that because services are exponentially distributed, positive customers of a given class 
are indistinguishable for deletion because of the obvious property of the remaining 
service time. 
• The following constraint must hold for all stations i of Type 1 and classes of 

negative customers m such that y.~Y= 1 ~ =  1 P -  [J, i] [l, m] > 0. 

for all classes of positive customers k and p, K~.,,,k = K~.m.r, (3) 

This constraint implies that a negative customer of some class m arriving from the 
network does not "distinguish" between the positive customer classes it will try to 
delete, and that it will treat them all in the same manner. 

• For a Type 2 server, the probability that any one positive customer of the queue is 
selected by the arriving negative customer is 1/c if c is the total number of 
customers in the queue. 
For Type 1 service centers, one may consider the following conditions which are 

simpler than (2) and (3): 

/2ik = 12ip ~ 

Ki,,,.k = Ki, m,p (4) 

for all classes of positive customers k and p, and all classes of negative customers m. 
Note however that these new conditions are more restrictive, though they do imply 
that (2) and (3) hold. 

2.1 State representation 

We denote the state at time t of the queueing network by a vector x( t )=  
(xl(t), ...,Xs(t)). Here x~(t) represents the state of service center i. The vector 
x = (xl . . . . .  XN) will denote a particular value of the state and I x~l will be the total 
number of customers in queue i for state x. 

For types 1 and 4 servers, the instantaneous value of the state x~ of queue i is 
represented by the vector (r~j) whose length is the number of customers in the queue 
and whosejth element is the class index of thej th customer in the queue. Furthermore, 
the customers are ordered according to the service order (FIFO or LIFO); it is always 
the customer at the head of the list which is in service. We denote by r~. ~ the class 
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number of the customer in service and by r~. oo the class number of the last customer in 
the queue. 

For a PS (Type 2) service station, the instantaneous value of the state x~ is 
represented by the vector(x~.k) which is the number of customers of class k in queue i. 

3 Main results 

Let H(x) denote the stationary probability distribution of the state of the network if 
it exists. The following result establishes the product form solution of the network 
being considered. 

Theorem 1. Consider a G-network with the restrictions indicated above. I f  the system of 
nonlinear equations 

Ai,k  + Ai,+k 

ql.k #i.k + ~S= xKi,,,,k[~,i,m + 217m]' (5) 

N R 

A,+k = ~ ~, P+ [j, i] [l, k]#3,tqj.,, (6) 
j = l l = l  

N R 

)t~m = ~ ~ P -  [j, i] [l, m]#j,, q j,,, (7) 
j = 1 / = 1  

has a solution such that 

R 
for each pair i, k: 0 < q~.k and for each station i: ~ qi,k < 1, 

k = l  

then the stationary distribution of the network state is 

N 

U(x) = G 1-I g,(x+), (8) 
i = l  

where each gi(xl) depends on the type of service center i. The gi(xi) in (5) have the 
following form. 

FIFO: I f  the service center is of Type 1, then 

Ixil 

g,(x,) = VI qi ..... • (9) 
r l = l  

PS: I f  the service center is of Type 2, then 

R { ~xi.k 

g,(x,) -- Ix, Ilk,=% ~ . (10) 
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LIFO/PR:  I f  the service center is of  Type 4, then 

Ixil  

Oi(xl) = H qi ...... 
I1=1 

and G is the normalization constant. 

(11) 

and 

Lemma 1. The following flow equation is satisfied: 

N R N R N S 

E E q , , k # , , k ( l  - -  d[i, k]) = E E A,+k + E E 2,#,. .  (12) 
i = l k = l  i = l k = l  i = l m = l  

Proof. Consider (6); then sum it for all the stations and all the classes and exchange 
the order of summations in the right-hand side of the equation 

i,k = gj, tqj., ~=, ~=1P [ j , i ] [ l , k ]  . 
i = l k = l  j = l / = l  i k 

Similarly, using Eq. (7), 

E ~ )"-~,. = #J.tqJ,' [j, i] [l, m] 
i = l m = l  i= l l  i= = 

N R N S 

E E + 2 E 
i = l k = l  i = l m = l  

= I~+.lq+.t P + [ j , i ] [ l , k ]  + P - [ j , i ] [ l , m ]  . 
j = l / =  i = k = l  i = l m = l  

According to the definition of the routing matrix P (Eq. (1)), we have 

N R N S N R 

E E A  + = _ i.k + E E ~,-rn E E l~J, lqJ, 1(I d [ j ,  l ] ) .  
i = l k = l  i = l m = l  j = l l = l  

Thus, the proof of the lemma is complete [] 

Note that the conditions requiring that qi.k > 0 and on that their sum over all 
classes at each center be less than 1, simply insure the existence of the normalizing 
constant G in (8). 

The proof is based on simple algebraic manipulations of global balance equations, 
since it is not possible to use the "local balance" equations for customer classes at 
stations because of the effect of negative customer arrivals. We begin with some 
technical lemmas. 
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In order  to carry out  algebraic manipulat ions of the stat ionary C h a p m a n - K o l -  
mogorov  (global balance) equations, we introduce some notat ion and develop inter- 
mediate results: 
• The state-dependent service rates for customers at service center j will be denoted 

by M j, t(xs) where xj refers to the state of the service center and I is the class of the 
customer concerned. F rom the definition of the service rate #j.~ we obtain for the 
three types of stations: 
F I F O  and L I F O / P R :  Ms, t(xj) = #s, ll~r~.l = t~, 
PS: MS, 1(x j) = #j, t xj, l/I xs I 

• N j. ~(Xl) is the deletion rate of class I positive customers due to external arrivals of all 
the classes of negative customers 

F I F O  and L I F O / P R :  Nj, t(xj) = l{rj .  1 = t } ~ S m =  iKj ,  m,l,~jd, 

PS: N j, t(xs) = (x j,,~ I xj I)ES = i Kj,  m, t2s,.. 

• AS, t(xj) is the condit ion which establishes that  it is possible to reach state x s by an 
arrival of a positive customer of class l 
FIFO: Aj. l(xj) = 1{,~.~ = t}, 
L I F O / P R :  Aj, l(Xs) = l{,-j., = ~), 

PS: aj,  t(xj) - -  l{Ix, . , I  > 0 } .  

• Zs,~,m(xj) is the probabil i ty that a negative customer of class m, arriving from the 
network,  will delete a positive customer of class I. 
F I F O  and L I F O / P R :  Zs, l , . (xi)  = 1{~,., = trKj, m.~, 
PS: Zj, l,,.(xs) = xs. t /Ixj lKs, . ,  ! 

• Yj, .(x~) is the probabil i ty that  a negative customer of class m which enters 
a nonempty  queue, will not  delete a positive customer. 
F I F O  and L I F O / P R :  Yj, m(xs) = E~= 11~,,~ = t~(1 - Kj,m,l), 

PS: Yj, m(xj) ---- ~.~=1(1 -- Kj,m,l ) Xj,~/iXjI. 

Denote  by (x s + es.z) the state of station j obtained by adding to the server a 
positive customer o f  class I. Let (x~ - e~,k) be the state obtained by removing from the 
end of the list a class k customer (it it exists, since otherwise (x~ = e~,k) will not be 
defined). 

Lemma 2. For any type 1, 2, or 4 service center, the following relations hold: 

.#s(xs + es t) 
Mj ,~(x j+e j~)  - - - '  =#s,~qs, t, 

' g j ( x s )  
(13) 

e l) gj(xj  s + ej, l) ~. (Ks,m.t2S, m)qs,l , (14) N j, ~(xj + S, gl(Xj) = m = 1 

+ ej. t) 
Zj, z.m(xj + ei, l)gj(x~_ (xj = Kj,.,,zqj,l. (15) 

The proof  is purely algebraic. 
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Remark.  As a consequence, we have from Eqs. (6), (7) and (13), 

N x ej t) Oj(xj + eJ'l)P+[j,i][l,k] Ai+k = ~., ~ M~.t(xi+ (16) 
j = ~ , =  ~ ' oj(xj) 

and 

N R ej l) aj(xj + ej.l)p_ [j,i] [l,m]. (17) ,~?.. = Z Z Mj,,(xj + 
j = ~ ~= ~ " O~(xj) 

Lemma 3. Let i be any Type 1, 2, or 4 station, and let Ai(x3 be 

S 

at(x,) = Y, ;t?,. v,...(x,) 
m = l  

II 
~, (Mi,k(X,) + N,,k(x,)) 

k = l  

+ . +. Vi(x~ - e~,k) 
Z Ai,k(X,)(ai,k + Ai,j,} ~ i ~  " 

Then for the three types of  service centers, 1 {ix,i > o}Ai(xi) = ~ s  = 12i.-m 1 {Ix, I > 0}. 

The proof  of Lemma 3 is in the appendix. 

P r o o f  o f  t h e  Theorem 1. Consider the global balance equat ion the networks con- 

sidered is 

II(x Aj, l + Mj.t(xj) l{txjl >o} + Nj, l(xj)l{,xjL >o~ 
j l 

At R 

= Z Z / ' / (X  - -  ej, l)hj, lhj.l(xj,)l{ixj I >o} 
j = l  l = 1  

+ 
N R 

Z E H(x  + e j. 1) Nj. l(xj + e j. ,) 
j = l  l = l  

N R 
+ ~ ~., H(x  + ej.,)Mj.l(x j + ej.z)d[j, l] ..... 

j=ll=x 

N N R R 

+ 2 • 2 2 Mj. , (xj  + ei . , ) lI(x - e,.k + ej. ,)P + [j,i] [l,k]A,.k(X,)l{,x,i >o~ 
i = l  j = l k : l  1=1 

N N R R S 

+ Z E Z Z E Mj, l(Xj + ej . , )n(x -- e,,k + ej. ,)P- [j,i] [l,m]Z,,k.,,(x, + e,.k) 
i = l j = l k = l l = l m = l  
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N N R R 

+ ~ ~ ~ ~, Mj.l(xj+ ei,,)H(x + ej, z)P-[j,i][l,m]Yi,~(x,)l(l~,l>o I 
i = l  j =  11=1  m = l  

N N R S 

+ ~ ~ ~ ~, Mj, l(x~ + ej.,)H(x + ej.,)P-[j,i][l,m]l~l~,,=ol. 
i = 1  j = l l = l  r a = l  

We divide both sides by ll(x) and we assume that there is a product form solution. 
Then, we apply Lemma 2: 

N R 

E E (At, 
j = l  l = l  

+ Mj, l(x~)l{ix~l >o} + Ni, z(xi)l/ixjl >o)) 

j = , / = l  g / ( - X ~  A j ' I A j ' t ( x j ) 1 { I x j l > ° } )  

N R S N R 

+ E Y E ~.,Kj.,.,q~.,+ Y X~j.,q~.,drj, q 
j = l  l = l  m = l  j = l  1=1 

N N x x + . k.]hi ,k(Xi)gi(xi  - + X X X X~.,q~.,P [ j , i ] [ l ,  e,,k) 
/=1 j=l k=l 1=1 g~(xf) l~tx~, >0) 

N N R R S 

+ E E E E EVj. ,qj . ,P-[j , i ][ l ,m]Ki.m.kq, .k 
i = 1  j = l  k = l  / = l m = l  

N N R S 

+ E ~, ~, ~, #J,,q~,,P-[-J,i'][l,m]Yi,m(x,)l{Ix, l>o} 
i = 1  j = l l = l  m = l  

N N R S 

+ ~-, E E E #i.,q~.,P-[-J,i][l,m]l{Ix, l=o}. 
i = l j = l l = l m = l  

After some substitution, we group the first and the fourth terms of the right-hand side 
of the equation: 

N R 

E E (AJ, 1 + MJ, l(xJ)l{Ix, I >o) + Nj, l(gj)l{Ix~l >o}) 
j = 1 1 = 1  

N R g~(Xj -- e~.t) 
= 2 2 II,x~t>o) ~ ,  , Aj, t(xj)(Aj, i +  + A~,t) 

N R S 

+ E E E ~.,gJ.,.,q~., 
j = l  / = l m = l  

N R 

+ E E#J.'qj.,d[J, l] 
j = l l = l  

N R S 

+ E E E ZC.K,...,q,,~ 
i = 1  k = l  m = l  
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N S 

+ ~ ~ 2~7,,,Yi,m(xi)l{Ix~l=o} 
i = l k = l  

/V S 

+ ~ ~ AiT-l{,;,l>o}. 
i = 1  m = l  

We add to both sides the quantity ' ~ N =  1 ~'~jR_-1 /~j, lqj, z(1 - d[j, /])  and factorize three 
terms in the right-hand side 

lq R 

~. ~ (Aj, lMj, t(xj) l{l~jl ~o} + Nj, l(xj)l{l~l >o}) + #j, lqj, t(1 -- d[j, 1]) 
j = l  l = 1  

N R Oj(xj_ej. t  ) 
-- ~ ~ l{tx, I >o1 Aj, I(xj)(AL! + At+I) 

j= t ~= 1 oj(xj) 

+ qj ,  l I-tj, l + ,~j,mKj,m,t + "~f, mKj,ra,l 
j = l  l =  m = l  m = l  

N S 

+ ~ ~ 2& Vi,~(x,)l{lx, ,>or 
i = l m = l  

N S 

+ E Z 2~,,,l{Ix, b>o}" 
/ = 1  m = l  

We substitute on the r.h.s the value of ql,k in the second term. Then we cancel the term 
A j, ~ which appears on both sides and we group terms to obtain 

N R N R N N S 

2 #j.tqj.t(1 - d[j , /])  = y '  2 AJ+.' + Z l{l:,,, .o}Ai(xi) + E 2 2i~-,,,l{,,,,I >o}, 
j = l  l = 1  j = l  1=1  i = 1  i = 1  m = l  

where 
(18) 

S R R 
A,(x,) = 2 • 

m = l  k = l  k = l  

+ 
R 

Ai.k(xi)(Ai, i + Ai+k ) Oi(Xi -- el.i) 

S In Lemma 3, we have shown that 1 ~lx,, > o} A i(x~) is equal to Y. m = 1 ~.~7,~ l{ix, i > 0} for the 
three types of service centers. Thus. 

N R N R N S 

2 2 I~j,,qj,,(1 - d[j, 13) = 2 2 AJ +, + 2 2 21-,-(l{Ix,t=o} + l{,x,, >o~). 
j = l  1=1  j = l  / = 1  i = 1  m = l  

Finally, Lemma 1 shows that this flow equation is satisfied. This concludes the 
proof. [] 
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As in the BCMP [2] theorem, we can also compute the steady-state distribution of 
the number of customers of each class in each queue. Let y~ be the vector whose 
elements are (Y~.k) the number of customers of class k in station i. Let y be the vector of 
vectors (Y0- We omit the proof of the following result. 

Theorem 2. 
distribution ~(y) is given by 

N 

n(y) = l-I hi(Yi), 
i=1  

where the marginal probabilities hi(yi) have the following form: 

I f  the system of equations (5), (6) and (7) has a solution then the steady state 

R 

(19) 

(20) 

4 Existence of the solution to the traffic equations 

Unlike BCMP or Jackson networks [2], the customer flow equations (5), (6) and (7) 
of the model we consider are nonlinear. Therefore, issues of existence and uniqueness 
of their solutions have to be examined. 

In particular, our key result depends on the existence of solutions to (5)-(7). Thus, 
the existence and uniqueness of solutions to these traffic equations is central to our 
work. 

Note that if existence is established, then uniqueness follows easily for a simple 
reason. We are dealing with the stationary solution of a system of Chapman-Kol-  
mogorov equations, which is known to be unique if it exists [10]. 

Define the following vectors: 
A + with elements [Ai.k]+ 
2- with elements C~.i.k] 
A with elements A~.k, and 
2 with elements ~.~,k- 
Furthermore, denote by P+ the matrix of elements {P+ [i,j] [k, l] }, and by P -  the 

matrix whose elements are {P- [i,j] [k, m] }. 
Let F be a diagonal matrix with elements 0 ~ F~.k ~< 1. Eq. (6) and (7) inspire us to 

write: 

A + = A + F P  + + A ,  2-  = A + F P  - + 2  

or, denoting the identity matr ix/ ,  as 

A + ( I -  FP +) = A, 

2-  = A + F P  - + 2 .  

(21) 

(22) 

(23) 
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P r o p o s i t i o n  1. I f  P + is a substochastic matrix which does not contain eroodic classes, 
then Eqs. (22) and (23) have a solution (A+,2-) .  

oo + n Proof. The series Y,,=0(FP ) is geometrically convergent, since F ~</, and because 

- by assumption - P+ is substochastic and does not contain any ergodic classes [15]. 
Therefore, we can write (22) as 

A + = A ~ (FP+) ", (24) 
t t = 0  

so that (23) becomes 

2-  - )~ = A ~ (FP+)"FP - .  (25) 
n = 0  

Now denote z = 2- - 2, and call the vector function 

~(z)  = , t  ~ (F( z )P+)"F(z )P  - . 
n = O  

Note that the dependency of G on z comes from F, which depends on 2-.  
It can be seen that G; [0, G(0)] ~ [0, G(0)] and that it is continuous. Therefore, by 

Brouwer's fixed point theorem, 

z = G(z) (26) 

has a fixed point z*. This fixed point will yield the solution of (22) and (23) as 

2-(z*) = 2 + z*, A+(z *) = a ~ (F(z*)P+) ", (27) 
n = O  

completing the proof of Proposition 1. [] 

P r o p o s i t i o n  2. Eqs. (6) and (7) have a solution. 

Proof. This result is a direct consequence of Proposition 1, since we can see that (5), (6) 
and (7) are a special instance of (21). Indeed, it suffices to set 

Fi,k ---- ]/i,~ (28) 
/~,k + zs=  1K~,m.k[2,.,, + ;q.m] 

and to notice that 0 ~< Fi, k <~ 1, and that (6) and (7) now have taken the form of the 
generalized traffic Eqs. (21). This completes the proof of Proposition 2. [] 

The above two propositions state that the traffic equations always have a solution. 
Of course, the product form (8) will only exist if the resulting network is stable. The 
stability condition is summarized below and the proof is identical to that of a similar 
result in [10]. 



J.-M. Fourneau et al. / Theoretical Computer Science 155 (1996) 141-156 153 

Theorem 3. Let z* be a solution of z = G(z) obtained by setting F as in (27). Let 2-(z*), 
A+(z *) be the corresponding traffic values, and let qi,k(Z*) be obtained from (5) as 
a consequence. Then the G-network is stable if all of the 0 <<. qi,k(z*) < 1 for all i,k; 
otherwise it is unstable. 

5 Conclusions 

In this paper we have considered networks of queues with multiple classes of 
positive and negative customers. We have shown that these new networks have 
product form when all service centers - with the exception of the "infinite server" case 
- are similar to the service centers considered in the BCMP theorem [2], with 
class-dependent service time distributions. However, all service times in the present 
paper are exponentially distributed. 

Further extensions of these results to more complex service distributions and more 
complex interactions between positive and negative customers, as well as to other 
customer types (such as "signals") are currently being considered. 

The results of this paper have already been applied to an algorithm for texture 
generation, which uses a neural network analogy with colors being represented by 
customers of different types. 

Appendix 

Proof  of  Lemma 3. The proof consists of algebraic manipulations for the three types 
of stations. 

LIFO/PR: First consider an arbitrary LIFO station and recall the definition of Ai: 

R A~..k)g,(xi_ei.k ) 
l(l~,l >o) Ai(x~) = l(Ix, I >0) ~ A~.k(xi)(Ai, k + 

= 1 ' gi(xi) 

R R 

-- l{Ix, I >0} ~ Mi.k(Xi)-  l{Ix,I >0} ~ Ni, k(xi) 
k = l  k = l  

S 

+ l(Ix, I >o} ~ 2iTmY~.m(X~). 
m = l  

Then we substitute the values of Y~, m, M~, k, Ni, k and Ai, k for a LIFO station: 

R 

l{I,,,I >o} d~(x~) = l{ix, I >o} ~ 1{ .... =k}(A~.k + A~+.k)/q~,k 
k = l  

R 

- l ( ix , l>o  } ~ l{r,.l=k}~li, k 
k = l  
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We use the value of qi. k from 

l{ix,i >o}A~(x~) = l{ix, i >o} 

R S 

- - l { I x ,  l>O} E l{r/ . l=k} E Ki.,.kg~i.m 
k=l  m=l  

S R 

+ l{ix, l>o ) ~ 2, . ,  2 1{,,.1 =k}(1 - Ki, m,k). 
m=l  k=l 

Eq. (5) to obtain after some cancellations of terms: 

~ l{~,.l=k}(~ K,.,.k2~.at+ ~ 2,.at(1--Ki.,.k)) 
k=l  m=l  m=l  

S R 

= l{ix,l>o } ~ .Ai7 ,  ~ l{,,.,=k} 
at=l  k= l  

and as l{ix, I > o}~ ~= t l{r,.l= k} = l{ix, i > o}, we finally get the result 

S 

l{ix, l>o}Ai(xi) = l{ix, l>o } ~ 2i~-m. 
m=l 

FIFO: Consider now an arbitrary F I F O  station: 

R 

l{ix,i >o}A,(x,)= l{ix,i >o } E Ai, k(xl)(A,,k + A~,k)O'(X~,(X,~ ''k) 
k=l  

R R 

- l { i x ,  L>o } ~ M,.k(x,)-- ~., l{ix,l>o}Ni,~(xi) 
k=l  k= l  

S 

+ l{,x,. >o) ~ ,~7.Y~,.(x~). 
m=l  

Similarly, we substitute the values of Y~,at, Mi, k, Ni,~, Ai, k and q~,k: 

|{Ixil>O}Ai('~i) = l{[xfl>o} ~ l{ri'~=k}( ~i'k m=l~Ki'ra'kt~i'ra'Jt- a t=l~Ki 'a t 'k~i"ra)  

-- l{Ix, I >0} 

+ l{Ix, I >o} 

We separate the last term into 

1{Ix d >o}Ai(xi) = l{Ix d >o} 
k=l  

- l{tx,I >o} 

+ l{Ix, I >o} 

(A.1) 

R R S 

l {r,, , = k} #,, k -- l { Ix, l>0) ~ l{r,,,=k} ~ KLat, k~i, ra 
k=l  k= l  at=5. 

S R 

E 2,.,,, E l (~ , . ,=k}(1-  K,.at.k). 
m=l  /=1  

two parts, and regroup terms: 

l{r,.~=k} lZi, k + Ki.m,/)~i,m + E Ki, at, k2[-,ra 
ra=l m=l 

k=l  at=l  m=l  

S R 

E 2[,. E l{r,,, = k}. 
at=l  k= l  
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Conditions (2) and (3) imply that the following relation must  hold: 

E .,.k+ E E 
k = l  m = l  m = l  

Thus, as l{ix,i >0}~=1  l{r,.l =k} = l{Ix, I >o}, we finally get the expected result 

s 

l{ix,i >o}Ai(xl) = l{ix,i >0} ~, ~-~.. (A.2) 
m = l  

PS: Consider now an arbitrary PS station: 

R + gi(xi - el, k) 
l{ix,i >o}Ai(xi) = l{ix, i >o} E Ai.k(x,)(Ai.k + A,.k) -~i-(x~ 

k = l  

R R 

- -  l{ixd>O } ~ Mi, k(xl)-- ~ l{Ix, l>o}Ni, k(Xi) 
k = l  k = l  

S 

+ l{Ix, I >o} ~ 2~.Yi.=(x~). 
m = l  

As usual, we substitute the values of Y~..,, Mi. k, Ni. k, Ai. k: 

g (h i .  k + Ai+k) Xi, I c 
l{l~,l>olAdxO-- l{b,,,l>o} ~ 1{i .... I>o} 

k = l  qi.k I g i l  

R 

-- l{Ix, I >o} ~ #i,k Xi'k 
k = a  Ixil 

R S 

V xi, k V Ki ,. kai . ,  l{Ix, l>°}k=~llxd ,-~__1 , , . 

s R 

+ l{Ix, I >o} X X 2':,..x/~'k.( 1 - K ,  ,..,). 
m=Ik=l IXi l  ' 

Then, we apply Eq. (5) to substitute q~,k. After some cancellations of terms we 
obtain 

l{Ix, I >o}Ai(xi) = l{ixd >o} ~--~'1 Ixd ,,=~ gi.~.k&7,. 

s R 
x? 2-  x i ' k ¢ l -  , + l{Ix, I >0}" Y~ £., i.m , Ki ,.,k)" 

m = l k = l  IXil 
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Finally, we have 

R S 

l{Ix,I >o}Ai(xi) = l{Ix,I >0} k=~X Ix~l . ,=x  ' (A.3) 

As l{ix, L >0} Y~=xxi,~/lxl[ = I{N >0}, once again, we establish the relation we need. 
This concludes the proof of Lemma 3. [] 
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