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Abstract

BACKGROUND: The effects of foliar applications of microdoses of sucrose to reduce the damage by the codling moth have
been reported from nine trials carried in France and Algeria from 2009 to 2014. The activity of sucrose alone was assessed by
comparison with an untreated control and some treatments with the Cydia pomonella granulovirus or a chemical insecticide.
The addition of sucrose to these different treatments was also investigated.

RESULTS: The application of sucrose at 0.01% reduced the means of infested fruits with a value of Abbott’s efficacy of
41.0±10.0%. This involved the induction of resistance by antixenosis to insect egg laying. Indeed, it seems that acceptance of
egg laying on leaves treated with sucrose was reduced. The addition of sucrose to thiacloprid improved its efficacy (59.5%±12.8)
by 18.4%. However, the sucrose had no added value when associated with C. pomonella granulovirus treatments.

CONCLUSION: Foliar applications of microdoses of sucrose every 20 days in commercial orchards can partially protect against
the codling moth. Its addition to thiacloprid increases the efficacy in integrated control strategies, contrary to C. pomonella
granulovirus treatments. This work opens a route for the development of new biocontrol strategies.
© 2016 Society of Chemical Industry
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1 INTRODUCTION
Cydia pomonella L. (Lepidopetera: Tortricidae) is regarded as one
of the most damaging insect pests in apple orchards worldwide.1

Larvae bore into fruits and feed on the core, causing damage.
Tolerance levels of C. pomonella infestations in apple production
are extremely low, with infested apples being unmarketable. The
extensive use of chemical insecticides has, however, resulted
in the development of insecticide-resistant field populations of
C. pomonella, with resistance against various active ingredients.2

Biological control of C. pomonella has become a solution to
counteract the increase in insecticide resistance of codling
moth populations and to minimise the use of chemical insecti-
cides. The application of C. pomonella granulovirus (CpGV) and
pheromone-based mating disruption are the most commonly
used control measures of C. pomonella in organic production.
CpGV is an extremely specific and highly virulent pathogen of
C. pomonella and has comparable efficacy to many chemical
insecticides.3,4 CpGV was first based on the Mexican isolate
CpGV-M (product Madex® and Carpovirusine™ 2000). Since 2004,
local C. pomonella have been reported to show a reduced sus-
ceptibility to CpGV-M in some organic orchards in Germany and
France,5 and this resistance has now extended to other European

countries. In order to bypass this resistance occurring by repetitive
applications of CpGV, research was conducted to obtain new viral
variants able to control these resistant insect populations. Various
natural isolates were found to be able partially to overcome the
resistance, such as NPP-R5 (Carpovirusine® Evo2, registered in
2012).
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In the current evolution of pesticide reduction, the development
of new biocontrol strategies is necessary. Plant defence induction
can be considered as a new challenge in agriculture. Priming
is defined as increased readiness of defence induction. Priming
has often been considered in the context of plant–pathogen
interactions, but plants can also be primed by signals associated
with herbivore feeding.6 Research on priming of antiherbivore
attack has been focused on herbivore-inducible plant volatiles
(HIPVs) that are produced and released by neighbouring plants
(or plant parts) under herbivore attack.7 Different mechanisms of
defence other than HIPVs have been reported, including priming
of defence by insect oviposition.8

Very few studies have been carried out on primary metabo-
lites at the leaf surface that act as signals to lepidopteran females
upon recognition of the plant site to lay their eggs. Most leaf
sugars (glucose, fructose, sucrose) are thought to originate as
photosynthates from the plant interior and to end up on the sur-
face by passive diffusion in a process called leaching.9 Their quan-
tities at the leaf surface follow a dynamic equilibrium between
the inside and outside of the plant and are influenced by epi-
phytic microorganisms.10 Although it remains to define precisely
the role of phyllosphere microflora on the bioavailability of leaf
sugars, several models predict the diffusion of sugars and other
plant metabolites from the apoplast across the leaf cuticule and
their consumption by epiphytic microorganisms.11 The studies12,13

show the important role of primary metabolites and particularly
sugars on C. pomonella. Egg laying site preference within the apple
tree and its intensity are related to a blend of three soluble carbo-
hydrates (sucrose, D-fructose and glucose) and three sugar alco-
hols (sorbitol, quebraquitol, myo-inositol) present at the surface of
the apple tree. The quantities and proportions of the blend com-
pounds can vary with the organ, stage of development and variety.
The exogenous foliar application of sucrose and D-fructose can
induce resistance by antixenosis to insect egg laying.13 Actually,
these foliar applications of microdoses of sucrose (10−3%) or
D-fructose (10−4%) induced changes in the composition of the
water-soluble metabolome at the bourse shoot leaf surfaces that
are usually preferred for egg laying. The modified ‘blend signal’
composition reduces egg laying in the laboratory. This concept of
exogenous application of sugars every 20 days on apple trees to
modify the egg laying of C. pomonella to reduce the damage it
causes was tested in commercial orchards of several countries and
on several years.14 The methods enabled a significant reduction in
damage with Abbott’s efficacies of 40.6± 8.4% and 37.2± 11.0%,
respectively, for D-fructose 0.01% and sucrose 0.001%, the effi-
cacies of which were similar and not significantly different. This
paper describes new experiments with this alternative method,
and the sugars can be envisaged as non-HIPV-mediated priming
of defence.

It has long been known that injured plants have increased
sugar levels, known as ‘high sugar resistance’.15 Defence responses
are tightly linked to the upregulation of sink metabolism to sat-
isfy the energy requirements of the activation of the cascade of
defence reactions.16 The role of sugar signalling in plant defence
responses against fungal pathogens being increasingly studied
and discussed in the literature.17 Increasing interest is being
shown in the relationships between sugars and plant immu-
nity and defence/resistance to biotic and abiotic stresses.18 – 20

Oligosaccharides are widely accepted as players in plant innate
immunity, but knowledge has led to the new concept of ‘sweet
immunity’ and ‘sugar-enhanced defence’, in which saccharide ana-
logues should also play an important role in such processes21,22

as well as tolerance to stress.23 Sugars could act as ‘priming’
molecules inducing preparation of the plant to defend itself more
quickly and intensely in the case of microorganism attack or
stress.24,25 The mechanisms involved in ‘sweet immunity’ have not
been elucidated, but it seems that the response of plant innate
immunity to pathogens through sugar signalling and hormonal
pathways could depend greatly on the actual status of the cir-
cadian clock. In Arabidopsis cell suspensions, sucrose or glucose
induces the expression of several pathogen-related (PR) genes
through a salicylic acid (SA)-dependent pathway.26 Exogenous
applications of sucrose in minor wounds change its concentra-
tion in the apoplast and plant cells and thus constitute signals
stimulating jasmonic-acid-dependent defence pathways.27 Sugars
may function as extracellular indicators of pathogen infection.27

Sucrose induces isoflavonoid synthesis as a defence response
against Fusarium oxysporum in lupine.28 There is a highly sophis-
ticated network between different signal transduction pathways,
including reactions to biotic and abiotic stresses, hormone and
reactive oxygen species (ROS) signalling, growth and plant devel-
opment and metabolic regulation, the whole interacting with diur-
nal and circadian rhythms.22,29 – 34 Moreover, a key functional link
between the circadian clock and plant immunity was shown for
the first time in Arabidopsis mutants.35

Thousands of plant genes are sugar responsive. Sucrose,
D-fructose and D-glucose regulate 209 genes divided into seven
subgroups, representing their responsiveness to a specific set of
sugars; only ten genes are common to the three sugars.36 Each
sugar should be perceived by separate specific sensing mech-
anisms. Research is continuing to help understand how sugars
are specifically transported37– 40 and sensed by plants. Glucose
and sucrose transporters are located at the plasma membrane.
The first fructose transporter was described recently in A. thaliana
leaves. The carrier protein SWEET17 is localised at the vacuolar
membrane and can act as an importer and exporter of fructose.41

Hexokinase enzymes act as glucose sensors,42 – 47 and sucrose
should be sensed at the level of the plasma membrane or by an
intracellular sensor.44,48,49 Then, hydrolysed in the apoplast by
invertases in hexoses (glucose and fructose), the sucrose/hexose
ratio should be perceived by membrane or cytosolic sensors.17,21

Yeast invertase in the apoplast of tobacco induces the production
of PR proteins and increases resistance against virus infection in
tobacco.50

The progressive discovery of the multiple roles of sugars in
defensive and resistance systems of the plant leads to their explo-
ration for use in plant protection management against their biotic
and abiotic environment.51,52 Their safety for the environment
and organisms make the task even more attractive. In most cases
the polysaccharides (glucan laminarin, chitosan, etc.) have been
tested individually53 and in combination54 against pathogens.
Their limited current use in crop protection may be attributed
(i) to discrepancy between the efficacies observed for a single
stress in the laboratory and for the multitude of stresses in the
field, (ii) to difficulties in separating antimicrobial activities from
defence/resistance elicited in plants and the tissue regeneration
induced, (iii) to varietal selection, which might lower defence
capacities and/or innate immunity, (iv) to difficulties in finding
molecules and formulations to make sugars at the leaf surface that
are less susceptible to external factors before passing through the
cuticle and (v) to competitiveness with plant protection products
still currently authorised in terms of their effectiveness.

Results concerning the role of sugars in the egg laying of
C. pomonella,12,13 the efficacy of sugar application in apple
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Table 1. Comparison of the percentage of infested fruits in apple orchards (n= 9) in organic farming (OF) or in integrated pest management (IPM).
Control treatments of C. pomonella were as follows: foliar application of sucrose 0.01% according to Section 2.1.1, C. pomonella granulosis virus (CpGV),
CpVG with the addition of sucrose 0.01%, chemical insecticide (thiacloprid), chemical insecticide (thiacloprid) with the addition of sucrose 0.01% and
the untreated modality with no product applieda

Year/country/cultivar/IPM or OF
Untreated

control
Sucrose
0.01% CpVG

CpVG+ sucrose
0.01%

Chemical
insecticide

Chemical
insecticide+

sucrose 0.01%

2009/Algeria/‘Anna’/IPM 29.9(±0.5) a 26.0(±0.2) b – – 22.0(±1.0) b 15.6(±2.2) b
2010/Algeria/‘Golden Delicious’/IPM 38.6(±6.0) a 10.5(±0.4) b – – 3.4(±0.6) c 1.8(±0.9) d
2011/Algeria/‘Golden Delicious’/IPM 46.8(±2.8) a 15.2(±0.2) b – – 8.5(±0.4) c 4.5(±0.4) d
2013/France/‘Granny Smith’/IPM 12.0(±1.5) a – – – 2.5(±2.5) b 4.1(±0.8) b
2013/Algeria/‘Anna’/OF 34.3(±3.0) a 6.6(±1.3) b 7.4(±0.7) c – 22.4(±0.99) b –
2013/France/‘Gala’/OF 14.9(±2.5) a 13.5(±3.9) ab 8.8(±2.0) ab 5.1(±2.8) ab – –
2014/Algeria/‘Starkrimson’/OF 32.4(±1.4) a 28.3(±1.4) b 25.8(±1.0) b 19.9(±1.0) c – –
2014/Algeria/‘Royal Gala’/OF 26.5(±2.4) a 17.5(±0.8) b 11.4(±2.5) c 10.3(±1.9) c – –
2014/Algeria/‘Anna’/OF 37.3(±3.0) a 22.0(±3.1) b 12.3(±1.5) c 11.2(±0.7) c – –

a Within a line, means followed by a different letter are significantly different according to the Student–Newman–Keuls test, P = 0.05. (±SE): standard
error value A dash (—) denotes no experimental data.

orchards14 and the new concept of ‘sweet immunity’21,22 still
under investigation present challenges in exploiting sugars
to reduce the susceptibility of plants to biopests. Our studies
determined the efficacy of the foliar application of sucrose in
microdoses against fruit damage due to C. pomonella. Orchard
tests were conducted over a 5 year period with sucrose applied
with or without CpGV or chemical insecticide. The effectiveness
of these seasonal programmes against codling moth and their
integration in apple production are reported. The potential of
using this method to develop an effective codling moth control in
strategies for protecting apple trees in orchards in organic farming
and in integrated fruit production is discussed.

2 EXPERIMENTAL METHODS
2.1 Field experiments
Nine experiments were conducted in apple orchards in Algeria
and France from 2009 to 2014. Several treatment controls on
C. pomonella were applied on apple trees (Malus domestica Borkh.)
under agricultural production with specification of production
conditions, e.g. integrated apple production and organic farming
(Table 1). Cultivars tested in this work all exhibit a susceptibility
to codling moth. The level of sensibility is difficult to ascertain
because it depends on years, on the climate and on the popu-
lations of C. pomonella. Each bioassay was randomised in block.
Plots were arranged in a randomised Fisher block design. In all tri-
als in several countries over several years, the variable ‘percentage
of infested fruits at harvest’ is based on the ratio of the total num-
ber of infested fruits (fallen and damaged) and the total number of
infested fruits (fallen and damaged) per plot. Abbott’s formula55 is
very commonly used in field trials. Its efficacy at harvest measures
the percentage of C. pomonella-infested fruits versus untreated
controls according to the formula

T0 − Tt

T0

× 100

where T 0 is the percentage of infested fruits in the untreated
plots and T t is the percentage of infected fruits in the treated
plots.

2.1.1 Foliar applications of sucrose at 0.01%
The first application of sucrose at 0.01% (0.1 g L−1) took place 20
days before the maximum egg laying period of the second genera-
tion and was renewed within a 20 day interval until harvest. Sugars
and insecticide spray solutions were applied between 7:30 a.m.
and 9:30 a.m. Sucrose (CAS number 57-50-1) was purchased from
Sigma-Aldrich (St Louis, MO).

2.1.2 Studies in Algeria
Seven studies in Algeria were conducted in a commercial orchard
managed similarly to organic farming requirements allocated in
the region of Batna in the dominant steppe climate. The apple
orchards consisted of 4–6 rows, with 12–18 trees per row of
the apple cultivars ‘Anna’, ‘Golden Delicious’, ‘Strakrimson’ and
‘Royal Gala’. These trials were conducted on three generations of
C. pomonella.

Three treatment modes were compared in organic farming pro-
duction: (i) sucrose at 0.01% as described in Section 2.1.1; (ii) the
product Madex® alone (isolat GV-0006); (iii) sucrose 0.01% com-
bined with the Madex® product. The sucrose in (i) and (iii) was
applied 7 times as described in Section 2.1.1, 20 days apart, in the
morning.

Three treatment modes were compared in chemical production:
(i) sucrose at 0.01% as described in Section 2.1.1; (ii) thiacloprid;
(iii) sucrose 0.01% added to thiacloprid. The sucrose in (i) and
(iii) was applied 6 times as described in Section 2.1.1, 20 days
apart, in the morning. Thiacloprid was used at the registered
dose (0.25 L ha−1, 2 times), and Madex® was used at the doses
recommended (0.1 L ha−1, every 8 days from caterpillars of the first
generation).

Each block (group of experimental units) was as homogeneous
as possible in equal numbers of treatment modes. Four replicates
of each modality (treatment) were included in the experimental
design. The number of trees was calculated to be able to observe
a minimum of 250 fruits in each elementary plot harvest (250–530
fruits).

Applications were conducted with a towed jet sprayer using a
spray volume of 1000 L ha−1 to ensure effective wetting of the
vegetation according to good agricultural practice. The quantities
were 0.1 L ha−1 for the Madex® and 0.1 g L−1 for sucrose (0.01%).

Pest Manag Sci (2016) © 2016 Society of Chemical Industry wileyonlinelibrary.com/journal/ps



www.soci.org I Arnault et al.

Table 2. Comparison of the means of Abbott’s efficacy in apple orchards (n= 9) in organic farming (OF) or in integrated pest management (IPM).
Control treatments of C. pomonella were as follows: foliar application of sucrose 0.01% according to Section 2.1.1, C. pomonella granulosis virus (CpGV),
CpVG with the addition of sucrose 0.01%, chemical insecticide (thiacloprid) and chemical insecticide (thiacloprid) with the addition of sucrose 0.01%

Year/country/cultivar/IPM or OF
Sucrose
0.01% CpVG

CpVG+ sucrose
0.01%

Chemical
insecticide

Chemical insecticide+
sucrose 0.01%

2009/Algeria/‘Anna’/IPM 13.6 – – 25.9 47.7
2010/Algeria/‘Golden Delicious’/IPM 71.8 – – 90.2 94.5
2011/Algeria/‘Golden Delicious’/IPM 67.3 – – 81.7 90.3
2013/France/‘Granny Smith’/IPM – – – 65.8 79.1
2013/Algeria/‘Anna’/IPM 80.8 78.4 – 33.7 –
2013/France/‘Gala’/OF 9.5 40.6 65.8 – –
2014/Algeria/‘Starkrimson’/OF 11.9 19.6 34.0 – –
2014/Algeria/‘Royal Gala’/OF 31.7 54.0 58.7 – –
2014/Algeria/‘Anna’/OF 41.2 66.2 69.5 – –
Mean 41.0(±10.3) b 51.8(±10.2) ab 57.0(±8) ab 59.5(±12.8) ab 77.9(±10.6) a

a Within a line, means followed by a different letter are significantly different according to Fisher’s test at P = 0.05. (±SE): standard error value. A dash
(—) denotes no experimental data.

2.1.3 Studies in France
Two field trials in France were conducted in commercial orchards
managed according to organic farming requirements and located
in four localities in the region of Avignon. They took place in
a warm, temperate Mediterranean climate. The apple orchards
consisted of four rows, with 12–18 trees per row of the apple
cultivars ‘Granny Smith’ and ‘Gala’. These trials were conducted on
two generations of C. pomonella.

Three treatment modes were compared in organic farm-
ing production: (i) sucrose at 0.01%; (ii) Carpovirusine® Evo2
(isolat NPP-R5) in first-generation larvae, applied every 20 days,
and Carpovirusine™ 2000 (isolat CpGV-M), applied every 20
days in second-generation larvae; (iii) sucrose 0.01% added
to Carpovirusine® Evo2 in first-generation larvae, and sucrose
0.01% added to Carpovirusine™ 2000 in second-generation lar-
vae. Carpovirusine® Evo2 is more effective than Carpovirusine™
2000 on C. pomonella populations resistant to CpGV-M isolate.
Carpovirusine® Evo2 is an effective solution to resistance when
alternated with Carpovirusine™ 2000. The sucrose in modalities (i)
and (iii) was applied 5 times as described in Section 2.1.1, 20 days
apart, in the morning. Carpovirusine™ 2000 and Carpovirusine®
Evo2 were used at the doses recommended (1 L ha−1, every 8 days
from caterpillars of the first generation).

Three treatment modes were compared in one field trial in inte-
grated fruit production: (i) sucrose at 0.01% as described in Section
2.1.1; (ii) thiacloprid; (iii) sucrose 0.01% added to thiacloprid. The
sucrose in modalities (i) and (iii) was applied 7 times as described
in Section 2.1.1, 20 days apart, in the morning. Each block (group
of experimental units) was as homogeneous as possible in equal
numbers of treatment modes. Four replicates of each modality
(treatment) were included in the experimental design. The num-
ber of trees was calculated to be able to observe a minimum of
250 fruits in each elementary plot harvest.

Applications were conducted with a mechanical jet sprayer
using a spray volume of 1000 L ha−1 to ensure effective wetting
of the vegetation according to good agricultural practice. The
quantities were 0.1 L ha−1 for the Madex® and 0.1 g L−1 for sucrose.
Thiacloprid was used at the registered dose (0.25 L ha−1, 2 times).

2.2 Statistical analysis
The percentages of infested fruits were separately analysed in
each trial by ANOVA, followed by post hoc analysis using the
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Figure 1. Comparison of the means of the percentage of infested fruits in
apple orchards in Algeria (n= 3) for ‘Anna’ and ‘Golden Delicious’ cultivars.
Control treatments of C. pomonella were as follows: foliar application of
sucrose 0.01% according to Section 2.1.1 and the untreated control with
no product applied. Data in columns with different letters are statistically
different according to Fisher’s test at P = 0.05. Bars represent standard
errors.

Student–Newman–Keul test (Table 1). The means between each
field trial were compared by a non-parametric Kruskal–Wallis
ANOVA on ranks test, followed by post hoc analysis using Fisher’s
and Tukey’s tests (Table 2 and Figs 1 to 3). A P-value of 0.05 was
used to establish significance in all tests. Comparison of the per-
centages of infested fruits in the modality of sucrose application at
0.01% and the untreated orchard was done by the Mann–Whitney
test at P < 0.05 (Fig. 4). All analyses were performed using XLSTAT
software v.2012.2.02 (Addinsoft, Brooklyn, NY).

3 RESULTS
3.1 Effects of sucrose 0.01% alone on codling moth fruit
damage in orchards
The data of the nine orchard trials since 2009 were analysed.
Table 3 shows the percentages of infested fruits with the dif-
ferent control treatments applied against C. pomonella. There
were significant differences in the fruit damage occurring among
treatments in each field trial. The infestation of the untreated
control varied from 12 to 46.8%, which represented a very high
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Figure 2. Comparison of the means of the percentage of infested fruits in
apple orchards in Algeria and in France (n= 5). Control treatments of C.
pomonella were as follows: foliar application of sucrose 0.01% according
to Section 2.1.1, C. pomonella granulosis virus (CpGV) and the untreated
control with no product applied. Data in columns with different letters are
statistically different according to Fisher’s test at P = 0.05. Bars represent
standard errors.

pressure of the pest. Each application of sucrose alone reduced
significantly the percentages of infested fruits, except for the field
trial in France on the ‘Gala’ cultivar, i.e. 87.5% of the field trials
(Table 1). The mean percentage of damaged fruits with the sucrose
treatment was 17.5± 2.7%, significantly lower than the untreated
modality (32.6± 3.3%) (Fig. 4). This result showed the efficacy of
the single sucrose treatment, as described in Section 2.1.1, against
C. pomonella fruit damage. The mean Abbott’s efficacy (Table 2)
for the sucrose 0.01% treatment was 41.0± 10.0%. As shown in
Fig. 1, treatment with sucrose 0.01% on both cultivars ‘Anna’ and
‘Golden Delicious’ gave similar results. We concluded that there
was no varietal effect of the sucrose treatment on these cultivars
used for the interpretation of the data. In any case, variations in
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Figure 3. Comparison of the means of the percentage of infested fruits
in apple orchards in Algeria and in France (n= 4). Control treatments of C.
pomonella were as follows: foliar application of sucrose 0.01% according to
Section 2.1.1, chemical insecticide (thiacloprid) and the untreated control
with no product applied. Data in columns with different letters are statisti-
cally different according to Tukey’s test at P = 0.05.

efficacy between years are more important than those observed
between varieties.

3.2 Effects of sucrose 0.01% on codling moth fruit damage
in organic farming using CpVG
The mean percentage of infested fruits of the CpGV treatment
(13.6± 3.3%) was significantly lower than the untreated con-
trol (29.5± 2.7%) (Fig. 2). The percentage of infested fruits of
the CpGV+ sucrose treatment was significantly lower than in
the untreated control (Table 1), except for the field trial with
Carpovirusine™ 2000+Carpovirusine® Evo2 (France, cultivar Gala)
where populations of C. pomonella were identified as resistant
to the CpVG. However, the results were not statistically differ-
ent for the sucrose treatment. Actually, the mean damage in
the sucrose treatment had an intermediate level of fruit dam-
age (17.6± 3.7%) between the untreated control and the CpVG

Table 3. Description of the field trials (n= 9) with control treatments of C. pomonella in organic farming (OF) or in integrated pest management
(IPM). An untreated control without any foliar application was included in each field triala

Control treatments of C. pomonella

Year/country/locality/IPM or OF Apple cultivar
Control

treatment 1
Control

treatment 2
Control

treatment 3

2009/Algeria/Ain Djasser/IPM ‘Anna’ Sucrose 0.01% Thiacloprid Thiacloprid+ sucrose
0.01%

2010/Algeria/Yabous/IPM ‘Golden Delicious’ Sucrose 0.01% Thiacloprid Thiacloprid+ sucrose
0.01%

2011/Algeria/Ain Djasser/IPM ‘Golden Delicious’ Sucrose 0.01% Thiacloprid Thiacloprid+ sucrose
0.01%

2013/France/Paluds de Noves/IPM ‘Granny Smith’ Sucrose 0.01% Thiacloprid Thiacloprid+ sucrose
0.01%

2013/Algeria/Tilatou/IPM ‘Anna’ Sucrose 0.01% Thiacloprid Madex®

2013/France/Paluds de Noves/OF ‘Gala’ Sucrose 0.01% Carpovirusine™ 2000
+ Carpovirusine®
Evo2

Carpovirusine™ 2000 +
Carpovirusine®
Evo2+ sucrose 0.01%

2014/Algeria/Ain Touta/OF ‘Starkrimson’ Sucrose 0.01% Madex® Madex®+ sucrose 0.01%
2014/Algeria/Ain Touta/OF ‘Royal Gala’ Sucrose 0.01% Madex® Madex®+ sucrose 0.01%
2014/Algeria/Ain Djasser/OF ‘Anna’ Sucrose 0.01% Madex® Madex®+ sucrose 0.01%

a Common names of CpVG: Isolat GV-0006=product Madex®; Isolat CpGV-M=product Carpovirusine™ 2000; Isolat NPP-R5=product Carpovirusine®
Evo2.
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Figure 4. Comparison of the means of the percentage of infested fruits in
apple orchards in Algeria and in France (n= 8). Control treatments of C.
pomonella were as follows: foliar application of sucrose 0.01% according
to Section 2.1.1 and the untreated control with no product applied. Bars
represent standards errors. The asterisk (*) indicates differences according
to Wilcoxon–Mann–Whitney, P = 0.015.

treatment. The CpGV reduced significantly the codling moth fruit
damage, contrary to the sucrose application. Furthermore, the
sucrose+CpGV treatments did not reduce fruit damage signifi-
cantly compared with CpGV alone. The means of Abbott’s efficacy
(Table 2) for sucrose, CpGV and CpGV+ sucrose were respectively
41.0± 10.0%, 51.8± 10.2% and 57.0± 8.0% and were significantly
different for sucrose and CpVG+ sucrose.

3.3 Effects of sucrose 0.01% on codling moth fruit damage
in integrated fruit production
In integrated fruit production (or integrated pest management),
the chemical insecticide thiacloprid and the sucrose treatment
alone showed higher efficacies than the untreated modality
(Table 1) in all field trials. The sucrose treatment was as efficient
as or superior to the thiacloprid treatment in damage reduction.
Indeed, the results in similar trials (n= 4) showed that the sucrose
treatment (14.6± 4.2%) was equivalent in fruit damage reduction
to the thiacloprid treatment (15.1± 5.4%) (Fig. 3) for two field
trials in Algeria on the ‘Anna’ cultivar. Both treatments reduced the
damage by more than half compared with the untreated control
(37.4± 3.6%). In field trials in Algeria on the ‘Golden Delicious’
cultivar, thiacloprid was more efficient than sucrose. Furthermore,
the sucrose treatment added to thiacloprid treatment enhanced
the reduction in fruit damage compared with thiacloprid alone.
The means of Abbott’s efficacy (Table 2) for the treatments with
sucrose, with thiacloprid and with thiacloprid+ sucrose were
respectively 41.0± 10.0%, 59.5± 12.8% and 77.9± 8.0% and were
significantly different. The observed effect on efficiency was syner-
gistic and more like a potentiation because the sucrose improved
the efficacy of thiacloprid by 18.4%.

3.4 Practical efficacies of the addition of sucrose
to thiacloprid or to the granulovirus treatments versus
pesticides alone
Among the five treatments studied, the one that was the most
improved by sucrose in apple orchards under agricultural
production, organic farming and integrated fruit production
(Table 2) was the thiacloprid (77.9± 10.6%). No significant dif-
ferences were observed between CpGV, CpGV+ sucrose and
thiacloprid alone. The CpVG has comparable efficacy to chemical

insecticide. The efficacy of sucrose 0.01% was significantly differ-
ent from that of thiacloprid+ sucrose and was slightly less than
those of CpVG, CpVG+ sucrose and thiacloprid alone.

4 DISCUSSION AND CONCLUSION
One objective was to induce immunity or resistance to the
pest in agriculture as a complement and/or alternative to phy-
tosanitary products. Hitherto, the use of sugars has concerned
large molecules as polysaccharides added to formulations to
facilitate their penetration through the cuticle. Very few trials
have been reported to be consistent. Here, we show that small
molecules such as sucrose can induce partial resistance to C.
pomonella by foliar applications of aqueous solutions at the very
low dose of 0.01%. Abbott’s efficacy obtained for sucrose 0.01%
alone was 41.0± 10.0% versus 36.1± 10.1% with sucrose 0.001%
(0.01 g L −1),14 and no varietal effect was observed between
the ‘Anna’ and ‘Golden Delicious’ cultivars. Increasing doses
from 0.1 to 10 g per 100 L did not change the effects.14 Higher
doses could have a direct influence on the epiphytic flora or
the epiphytic phase of some pathogens before contamination.
Sucrose+ thiacloprid was the most effective treatment; sucrose
enhanced the efficacy of thiacloprid treatment by 18%. The
effect of this combination is not additive but rather potentiating,
because the sucrose increased the efficiency of the classic treat-
ment. We can hypothesise that the insecticide or its formulation
elicits signalling pathways, which are partly the same as those
elicited by the sucrose alone. The commercial formulations of
many phytosanitary products are introduced in order to improve
the adhesion to the surface and the penetration through the cuti-
cle. This could possibly lead to a risk of modification of the cuticular
permeability and therefore of the composition of the blend and
its effects on pest behaviour. On the other hand, we know that in
the formulation of granulovirus there are simple sugars. They may
elicit sucrose and/or fructose signalling pathways. In this case, it is
likely that the addition of sucrose cannot enhance the induction
of resistance already elicited by sugars in the formulation. We have
already shown that the application of Madex® induced modifi-
cations of the blend of metabolites, with decreased egg laying, C.
pomonella oviposition and larval performance.56 Changes to this
blend by the application of sucrose or fructose alone also reduce
the number of egg-laying females and the intensity of egg laying
for females that lay eggs.

The strategy of foliar applications of sucrose solution is rather
simple and consists of application in the morning before 7 a.m.
(solar time), just after its preparation, every 20 days. Birch
et al.57 observed regulation of defence signalling pathways
(Jaz-1 marker) 4–6 h after foliar applications on tomatoes of
D-fructose, D-glucose and sucrose. The delay in observing any
effects on insect behaviour was longer, between 15 and 20 days,
on O. nubilalis.58 The duration of the resistance induced could last
20 days and had to be repeated to be maintained (unpublished
on maize). The advantage of a rapid systemic signal induction
and its impact for a relatively long period (20 days) facilitates the
positioning of the treatment throughout the phytosanitary course
and is less dependent on rainy days for applications. The partial
effect of the resistance obtained, which may be equivalent to
that of some products currently used against the codling moth
in orchards, nevertheless needs to be improved. This could be
done either by optimising the activity of sugars to their perfor-
mance as a function of the plant growth stage when applied.
The susceptibility of the cultivar to codling moth or by addition
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to other products. Other compounds from the formulation, such
as sugars, are introduced into commercial products as phagos-
timulants for more effective ingestion by larvae. Many products
can elicit plant reactions59 and/or alter cuticular permeability.60,61

Signalling pathways elicited by products may be common with
those elicited by sugars; the worst case would be elicitation of
antagonist signalling pathways to those elicited by the sugars.

The damage reductions achieved across several years, cultivars
and countries with different climates and insect generation num-
bers confirm the robustness of our assumptions. Surveillance of
C. pomonella populations will be important because it could in the-
ory adapt its oviposition on apple trees treated with sucrose over
several years. Moreover, direct or indirect effects on auxiliary and
parasitic organisms cannot be completely excluded.

Recent research has led to the concept of ‘sweet immunity’
and ‘damage self-recognition’, in which sugar signalling pathways
are involved. Small sugar sucrose transport and its perception
are still being investigated. In our experiments, the quantities
of sucrose applied on the leaves in the morning (best diffusion
through the cuticle while the apoplast concentrations are low)
are those usually found on apple leaves in the evening. Several
days later this resulted in an induction of partial antixenosis at
the C. pomonella egg laying step by modifications of the compo-
sition of sugars in blend. Several hypotheses can be advanced.
A single sugar applied on leaves without any injury can induce a
plant response and could be the origin of a stress or a self-damage
signal. The output and input of the sugars through the cuti-
cle follow the photosynthesis rhythm. Once sprayed, the sug-
ars can penetrate the leaf by transcuticular hydrophilic pores12

and induce some changes in apoplastic/cell sugar content and
source-to-sink transition, increased cell-wall invertase activity and
also changes in the sucrose/hexose ratio in plants.17 At this point,
plant immunity could be stimulated. Bolouri Moghaddam and
Van den Ende22 showed the importance of circadian rhythms
in the regulation of sucrose-mediated signalling associated with
immunity and abiotic stress response. Stress may be localised at
the cuticle and/or stomata.62,63 The majority of guard cells have
chloroplasts, which would therefore provide an ideal and con-
venient location for sensory or regulatory mechanisms. Guard
cell aploplastic sucrose can also exert an osmotic effect, which
can lead to stomatal closure, acting as a possible signal between
the mesophyll assimilation rate and transpiration.64 It was pos-
tulated that sucrose concentrations near the guard cell regulate
gene expression, as has been shown in many other tissues.65

The leaf as the support at the origin of the stress is emphasised
by experiments consisting in watering the soil with a fructose
analogue, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine (DMDP),
which induced root resistance in tomato against nematodes, but
lower than by foliar applications.66 This remains still to be studied.
The resistances could be expressed at various levels and at differ-
ent times against females and larvae.

The modification of egg laying of C. pomonella after sucrose
applications correlates with unbalanced sugar and sugar alcohols
at the leaf surface. Leaf surface blend signals indicate to females
that the plant may be unsuitable for their offspring. Sorbitol is
already known to play a role in biotic and abiotic plant responses,
e.g. reactions to pathogen infections and tolerance to environ-
mental stress.67 Its high levels are a deterrent for C. pomonella,
indicating a plant under stress. The situation here is even more
complex, as the induced resistance consists in females avoiding a
defence (priming) that should be triggered only by its progeny. The
target reached and the time when this is achieved are two criteria

that must be kept in mind in order to understand the mechanisms
of plant immunity. The extremely complex networks in which
sugars are involved suggest that resistance induction may be
expressed in agronomic conditions under a multitude of stresses.

Host-specific non-pathogen-associated epiphytic microorgan-
isms can induce the leaking of metabolites from plants68 and/or
produce them.69 Their possible contribution to chemical signals
given by the leaf surface is an issue that should not be ignored.70,71

Chemical changes in the water-soluble metabolome in tissues and
at plant surfaces owing to the application of the sugars are not
entirely similar (unpublished), and we cannot exclude the effects of
epiphytic microorganisms in the biochemical composition of leaf
surfaces after sugar applications.

No related evidence between our results and the ‘sweet immu-
nity’ concept has been provided in this paper. However, it should
stimulate research on this concept for the development of biocon-
trol strategies. Further studies on, for example, invertase activity
and/or hormonal (e.g. jasmonic acid) responses, as well as on PR
levels, is needed to understand the different mechanisms involved
in the plant. It will also be interesting to combine sugars with some
reduced doses of chemicals. The experimental designs could be
improved with a water application, which represents the best con-
trol treatment in our conditions. Indeed, as such a control treat-
ment (i.e. foliar spray of water) could be perceived by the plant
as an abiotic stress and could induce some defence reactions in
the plant, it is not easy to discern a difference between the plant
reactions induced in response to sucrose and those induced in
response to foliar spray. In other experiments and in preliminary
field experiments against C. pomonella,12 D-fructose (0.01%) gave
better results than sucrose. These field trials are going to continue,
and many tests against pathogens and herbivory are programmed
in the French project ‘SWEET’ (2016–2018) financed by the French
Ministry of Agriculture.

Moreover, the EU approved sucrose in August 2014 (No. 916/
2014) as a basic substance for plant protection purposes (for apple
trees against C. pomonella and for maize against Ostrinia nubilalis
at the vegetative stage). An application has been received from
the Institute Technique de l’Agriculture Biologique in France for
approval.
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