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ABSTRACT 

 

MYH9-related disease (MYH9-RD) is a rare autosomal dominant disease caused by mutation of MYH9, the 

gene encoding for the heavy chain of non-muscle myosin IIA (NMMHC-IIA). MYH9-RD patients have 

macrothrombocytopenia and granulocyte inclusions (pathognomonic sign of the disease) containing wild 

type and mutant NMMHC-IIA. During life they might develop sensorineural hearing loss, cataract, 

glomerulonephritis, and elevation of liver enzymes. One of the MYH9 mutations, p.R705H, was previously 

reported to be associated with DFNA17, an autosomal dominant non-syndromic sensorineural hearing loss 

without any other features associated. We identified the same mutation in two unrelated families, whose 

four affected individuals had not only hearing impairment but also thrombocytopenia, giant platelets, 

leukocyte inclusions, as well as mild to moderate elevation of some liver enzymes. Our data suggest that 

DFNA17 should not be a separate genetic entity but part of the wide phenotypic spectrum of MYH9-RD 

characterized by congenital haematological manifestations and variable penetrance and expressivity of the 

extra-haematological features. 
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INTRODUCTION 

 

MYH9-related disease (MYH9-RD) is an autosomal dominant syndromic disorder caused by mutations in 

MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (NMMHC-IIA) (1, 2). Myosin IIA is a 

cytoplasmic, non sarcomeric myosin expressed in most cell types and tissues, where it participates in 

several processes requiring generation of chemomechanical forces by the cytoskeleton (3). As the other 

conventional myosins, it exists as a hexameric complex containing a dimer of NMMHC-IIA moieties and two 

pairs of regulatory and essential light chains (4). 

MYH9-RD is characterized by a complex clinical phenotype. All the MYH9-RD patients have congenital 

haematological alterations, namely platelet macrocytosis, thrombocytopenia, and characteristic inclusions 

in the cytoplasm of granulocytes containing both mutant and wild-type NMMHC-IIA. These inclusions are 

always detectable by immunofluorescence staining for NMMHC-IIA and, when large, they are also visible as 

basophilic inclusions (also known as Döhle-like bodies) upon conventional staining of blood slides (5-7). The 

majority of MYH9-RD patients develop additional non-congenital extra-haematological manifestations: 

sensorineural hearing loss (SNHL), presenile cataract, proteinuric nephropathy, and/or a chronic or 

intermittent elevation of liver enzymes (7, 8). Each of these non-haematological manifestations can occur 

alone or variably associated with the other ones. 

For many years, patients with MYH9-RD were diagnosed as having different disorders, such as May-Hegglin 

anomaly (MHA, OMIM 155100), Sebastian (SBS, OMIM 605249), Epstein (EPTS: OMIM 153650) or Fechtner 

syndrome (FTNS: OMIM 153640). After the cloning of MYH9 and identification of mutations in these 

patients, it was clear that MHA, SBS, EPTS, and FTNS represented different clinical presentations of the 

same disease (7, 9-11). 

At least 70 different mutations causing MYH9-RD have been identified so far (12, 13). Only one MYH9 

alteration, p.R705H, was not associated with MYH9-RD but with DFNA17 (OMIM 603622), an autosomal-

dominant SNHL described in two large unrelated pedigrees (14-15). DFNA17 was reported as a non-

syndromic form of SNHL, without any of the other features associated with MYH9-RD. Therefore, the 

current nosography of disorders caused by MYH9 mutations consists of two entities, the non-syndromic 

DFNA17 hearing loss due to p.R705H and the syndromic MYH9-RD caused by all the other mutations 

identified in MYH9.  

We studied four individuals from two unrelated families who also carried the p.R705H substitution. After a 

comprehensive clinical characterization, they had not only SNHL but also the haematological defects and 

elevation of liver enzymes typical of MYH9-RD, suggesting that DFNA17 should not be considered a 

separate entity. 
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PATIENTS AND METHODS 

 

Patients 

All the patients or their legal guardians gave written informed consent for this investigation, which was 

performed according to the Declaration of Helsinki. 

Family 1. The proband (III-1; Fig. 1A) was a male suffering from progressive SNHL since the age of 3 years, 

who became a candidate for cochlear implantation at the age of 12. Both his 36-year-old mother (II-2) and 

62-year-old grandmother (I-2) had received a cochlear implant for progressive SNHL, which was associated 

with chronic thrombocytopenia. Moreover, individual II-2 had received a clinical diagnosis of FTNS 

syndrome for the finding of Döhle-like bodies at examination of a bone marrow aspirate. 

Family 2. The proband (II-1; Fig. 1A) was a 13-years-old female referred for evaluation of congenital 

thrombocytopenia. MYH9-RD was suspected for the association of giant platelets with SNHL. There was no 

family history with clinical features of MYH9-RD.  

 

Mutational screening and phenotype studies 

Mutational screening of MYH9 was carried out as previously described (6). The effect of the missense 

variations was evaluated using four pathogenicity prediction programs, such as PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/), Mutation Taster (http://www.mutationtaster.org/) Mutation 

Assessor (http://mutationassessor.org/), and SIFT (http://sift.jcvi.org). 

The methods used for investigation of the patients’ phenotypes are summarized in the notes of Table 1 and 

in Supporting Information.  
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RESULTS 

 

Identification of the p.R705H mutation 

In the probands of both families, mutational screening of the MYH9 gene identified a heterozygous 

c.2114G>A mutation in exon 17. The substitution changes an arginine (R) to a histidine (H) at position 705 

(p.R705H), a residue located in the head domain of NMMHC-IIA. The same mutation was identified in 

members I-2 and II-2 of family 1 (Fig. 1A). The parents of the proband of family 2 did not carry c.2114G>A, 

demonstrating that the substitution occurred as a de novo mutation. The amino acid alignment of the 13 

human myosin heavy chains of class II showed conservation of arginine 705 in all the proteins (Fig. 1B). 

Arginine 705 is also conserved among orthologs (Canis lupus familiaris, Bos Taurus, Mus musculus, Rattus 

norvegicus, Gallus gallus, and Danio rerio; at http://www.ncbi.nlm.nih.gov/homologene; data not shown), 

suggesting that it exerts a fundamental role in structure and function of the class II myosins. Consistent 

with conservation data, the bioinformatics tools assigned a pathogenetic score to the mutation (data not 

shown).  

 

Individuals carrying p.R705H have the congenital haematological features of MYH9-RD  

The individuals with the p.R705H substitution presented the full typical haematological picture of MYH9-RD 

(Table 1). The immunofluorescence study identified the pathognomonic NMMHC-IIA inclusions in 

granulocytes in all the four affected individuals but not in their healthy relatives (Fig. 1C). In the three 

affected subjects of family 1, the inclusions were also evident as basophilic Döhle-like bodies after 

conventional staining (data not shown). The four patients also had mild thrombocytopenia and marked 

platelet macrocytosis with giant platelets (Table 1 and Fig. 1C). The degree of platelet macrocytosis was 

similar to that reported in a cohort of 17 consecutive MYH9-RD patients (16). 

 

Non-congenital extra-haematological features of MYH9-RD 

All the affected individuals had SNHL (Table 1). The patients from family 1 underwent several serial 

audiometric examinations prior to cochlear implantation, allowing us to characterize the progression of 

their hearing defect in more detail (Fig. S1; Supporting Information). The self-reported ages at onset of 

hearing loss were 3, 4, and 19 years for individuals III-1, II-2 and I-2, respectively. Hearing defect was fairly 

symmetrical, starting in the high frequencies and rapidly deteriorating with age and eventually resulting in 

profound deafness affecting all frequencies. In individual III-1 the middle and high frequencies were already 

nearly equally affected at relatively young age. At presentation in our clinic (24 years old), individual I-2 

already had severe SNHL (binaural mean AC Pure Tone Average at 0.5, 1, 2, and 4 kHz > 70 dB). The 

individuals II-2 and III-1 developed severe deafness at the age of 19 and 8 years, respectively. All the 

affected individuals of family 1 showed significant progression at all frequencies, except for I-2 at 4 and 8 

kHz (Fig. S2; Supporting Information); hearing level at 4 kHz was already at 130 dB since the age of 26 years 
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and hearing level at 8 kHz was already 130 dB since the first audiometric measurement in our clinic at the 

age of 24 years.  

All four affected individuals did not present any signs of kidney damage or cataract (Table 1). Instead, they 

had mild or moderate elevations of liver alanine aminotransferase (ALT), aspartate aminotransferase (AST) 

or gamma-glutamyltransferase (GGT), which could not be explained by any concurrent other possible 

causes of liver damage. The proband of family 2 had ALT 2.2-fold more elevated than the upper normal 

limit (UNL), whereas AST and GGT were normal. In family 1, individuals I-2 and III-1 had slightly elevated 

ALT (1.2 and 1.15-fold the UNL, respectively). Individual II-2 only showed elevated GGT of 1.6-fold the UNL. 

Consistent with the other phenotypic features, the liver enzyme abnormalities were interpreted as part of 

the MYH9-RD syndrome (8, 17).  
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DISCUSSION  

 

Before the cloning of the disease-causing gene, patients with MYH9-RD were diagnosed as having MHA, 

SBS, EPTS or FTNS, four distinct disorders characterized by associations of the different manifestations of 

MYH9-RD, including macrothrombocytopenia, Döhle-like bodies in granulocytes, SNHL, cataract, and 

glomerulonephritis (7). MHA and SBS were haematologic diseases with platelet and leukocytes defects. In 

addition to macrothrombocytopenia, patients with EPTS had the hearing and kidney anomalies (but not 

Döhle-like bodies and cataract), whereas those with FTNS had the most severe phenotypes with all the 

features of MYH9-RD associated. 

However, as patients with MYH9 mutations were identified, MHA, SBS, EPTS and FTNS lost their distinctive 

peculiarities (9-11). First of all, finding that Döhle-like bodies were aggregates of NMMHC-IIA allowed the 

recognition of the granulocyte inclusions in all MYH9-RD individuals (18). Independently of their size, they 

are always detectable using immunofluorescence analysis on peripheral blood smears (5, 7). Moreover, 

platelet macrocytosis and thrombocytopenia are also present in all the affected individuals, though there 

are rare exceptions of platelet counts at the lower limit of the normal range (12). Moreover, individuals 

with MYH9 mutations, including those previously classified as having MHA or SBS, are at risk of developing 

SNHL, kidney damage, and/or cataract during life. Finally, studies of large cohorts allowed us to further 

extend the phenotypic spectrum of MYH9-RD finding that more than 50% of affected individuals have 

elevated liver enzymes (8, 17). 

DFNA17 remained the last distinct clinical entity due to MYH9 mutations. Reported in two families affected 

by an apparently non-syndromic form of progressive SNHL, DFNA17 was specifically associated with the 

p.R705H mutation (14,15). To the best of our knowledge, it was not reported whether the affected 

individuals had defective platelet count and size, or bleeding tendency despite they underwent cochlear 

implantation. 

On the contrary, the patients in this study had thrombocytopenia and large platelets, alterations that 

associated with SNHL led to a diagnostic suspicion of MYH9-RD. The diagnosis was confirmed by finding the 

NMMHC-IIA aggregates in their granulocytes and identifying the same MYH9 mutation as that described in 

the DFNA17 families (14,15). Consistent with the phenotypic spectrum of MYH9-RD, our patients also had 

mild to moderate elevation of some liver enzymes. Of note, the p.R705H mutation was also found to be 

associated with macrothrombocytopenia, granulocyte inclusions, and SNHL in two patients from the French 

MYH9 network (13). 

These data indicate that patients with the p.R705H mutation have the syndromic phenotype of MYH9-RD. 

Indeed, the association of macrothrombocytopenia with SNHL, as the only extra-haematological feature, is 

one of the most frequent presentation of MYH9-RD, being reported in 18% of patients at a mean age at 

evaluation of 35 years (12). Therefore, we conclude that there is no significant evidence to consider 

DFNA17 as a separate nosological entity from MYH9-RD.  
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FIGURE LEGEND 

 

Fig. 1. Identification of the p.Arg705His mutation in families 1 and 2. A) Family pedigrees with all the 

affected individuals carrying a heterozygous c.2114G>A (p.R705H) mutation in exon 17 of MYH9; B) 

Alignment of all human muscle and non muscle myosins of class II with the conserved 705 residue boxed. 

MYH1 (NM_005963), MYH4 (NM_017533), MYH2 (NM_017534), MYH8 (NM_002472), MYH3 

(NM_002470), MYH13 (NM_003802), MYH7 (MN_000257), MYH6 (NM_002471), MYH9 (AB191263), 

MYH10 (NM_005964), MYH11 (NM_002474), and MYH14 (AY165122). C) Haematological phenotypes in 

probands of families 1 and 2. In upper panels, immunofluorescence staining for NMMHC-IIA in individuals 

1/III-1 (family 1) and 2/II-1 (family 2). Immunofluorescence analysis of a granulocyte from a healthy 

individual (wt) is also shown for comparison. In the bottom right panel, representative example of platelet 

macrocytosis of proband 2/II-1 (family 2). At examination of blood smears stained by May-Grünwald-

Giemsa, platelets appear exceedingly large, with some platelets even larger than red blood cells. Scale bars 

correspond to 10 microns.  
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Table 1. Summary of the results of phenotype investigation of four patients carrying the p.R705H mutations of NMMHC-IIA.  
 

Family/ 

patient 

Age/ 

gender 

Platelet 

count
1
 

(x10
9
/L) 

MPD
2
 

(µµµµm) 

Spontaneous 

bleeding 

NMMHC-IIA 

leukocyte 

inclusions
3
 

Döhle-like 

basophilic 

inclusions
4
 

Sensorineural 

hearing loss
5
 

Proteinuria/ 

kidney 

failure
6
 

Cataract 

Liver 

enzymes 

elevation
7
 

1/III-1 12/M 96 

 

4.0 

 

None Yes Yes Yes No / No No Yes 

1/II-2 36/F 115 4.1 Easy bruising  Yes Yes Yes No / No No Yes 

1/I-2 62/F 142 3.8 Easy bruising Yes Yes Yes No / No No Yes 

2/II-1 13/F 107 4.3 None Yes No Yes No / No No Yes 

1
Normal range of platelet count: 150-350 x 10

9
/L. 

2
MPD (Mean Platelet Diameter) calculated by software-assisted image analysis on blood slides stained by May-Grünwald-Giemsa (MGG) as previously 

described (19). The MPD median (25
th

-75
th

 percentiles) obtained in a series of 17 consecutive MYH9-RD patients and in 50 consecutive healthy individuals is 4.2 

(3.8-4.5) and 2.4 (2.2-2.6), respectively (16). 
3
According to immunofluorescence analysis of NMMHC-IIA (non-muscle myosin heavy chain IIA) performed as previously reported (6). 

4
According to examination of blood smears stained by MGG. 

5
Pure tone audiograms were obtained according to standard clinical practice (ISO-389). 

6
Kidney involvement was evaluated by measurement of the protein/creatinine ratio on morning urine samples and by calculation of estimated glomerular 

filtration rate using the CKD-EPI  creatinine equation (20), on at least two different occasions. 
7
Liver involvement was assigned by ratios of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase (GGT) 

levels with respect to the upper normal limits (UNL) of the laboratories where the analyses were carried out (8). 
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III-1 

II-2 II-1 

I-2 I-1 

Family 1 

II-1 

I-2 I-1 

Family 2 

A 
MYH1 VLEGIRICRKGFPSRIL   718 

MYH4 VLEGIRICRKGFPSRIL   718 

MYH2 VLEGIRICRKGFPSRIL   720 

MYH8 VLEGIRICRKGFPSRIL   717 

MYH3 VLEGIRICRKGFPNRIL   715 
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Supporting information 

 
R705H mutation of MYH9 is associated with MYH9-related disease 

and not only with non-syndromic deafness DFNA17 

 

Material and Methods  

Hearing evaluation. Pure tone audiograms were obtained according to standard clinical 

practice (ISO-389). Air conduction (AC) and bone conduction (BC) thresholds were measured 

at 0.25, 0.5, 1, 2, 4 and 8 kHz. The binaural mean AC threshold at a given frequency was 

included in the data analysis only if the mean air-bone-gap (ABG) averaged for 0.5-2 kHz was 

15 dB or less, and if the thresholds were fairly symmetric. A difference between left and 

right ear AC of >25 dB for at least 3 consecutive frequencies was labeled as asymmetric. 

Binaural mean AC thresholds (decibel hearing level) were plotted against age for each 

frequency for each family member. A commercial program (Graph Pad Prism version 3.0, 

1999) was used for linear regression analyses. 

 

 

 

 
Fig. S1. Longitudinal binaural mean air conduction threshold data of the 4 affected 

individuals of family 1 and 2. Age in years is shown by symbols next to each graph. For the 

clarity of the figure not all audiometric measurements are shown. 
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Fig. S2. Longitudinal individual measurement for the 3 affected individuals (I-2, II-2, and III-1) 

of family 1, with individual linear regression lines (solid lines) are shown for each frequency 

separately. The annual threshold deterioration (ATD, in decibels per year) is shown above 

each individual linear regression line. 
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