GEGARARCE TLOWOGETERATED TRARSVERSE FORCES AT THE ROTORS OT THERMAI TURBOMACHINES

Rarl Uritchs

Translation of "Durch Spaltstroemungen hervorgerufene Querkraefte an den Laufern Thermischer Turbomaschinen" Muenchen. Technische Universitaet, Fachbereich Maschinenwesen, Doctoral Dissertation, 1975, pp. 1-159.

I ment to express my specida grabirude to prozeccor Dro Engo
 the stimulus zor this work and who amays ancouraged ieg progess mith hie inerere.

I owe debt or gratitude to al my colreagues at the Tnstitute especidaly engineer Ro wohnreb, for sedmutaing discussions and Valuable suggestions. I also want to thank the Thatitute's machinershops; wich contributed aubstantielly co the accomplishing of this egrort. The test eurbine menuracture was undertaben in part by ArGokanis. The measurements mere performed within the research project motor instabinity due to chearance carcticctora.

The numetical calculations mere performed at the Letbose Computer Center of the Bevarian Acedemy of Sciences. thone collabosetors I would 1 ike to thank tor theis triendiy assis stance。

Mundicho Juny 1975

Kagl UrIichs

CLDARANCE FLOW－GENERATED TRANSVERSE EORCES AT TLE ROTORS OE THERMAI TUUBOMACHINES

［Dusch Spaltstrommanen hergorgerurene Querkreerte and den Laeurern thermischer Turbomechinen］

Dissertation
authorized by the Professional area Mechanical Engineertng or the Technicel Universitey of Munich
to obtain the degree of Doctor in Engineering

Submicted by
Eng。Kazl Uslichs

1st Reporter：Proz。 Dro Eng。 Homo Thomas 2nd Reporter：Prof．Dr．Engo J．Rabe

Submission dete：07－03－1975
Acceptance date：09－25－1975
Graduation date：09－29－1975

Page

1. Tneroduceion 5
2. Fundamencal coneddegebions and current status at zecearch 7
2.1. Ceneral derindition based on a Botor model 7
2.2. Simple sotoz stabinity behevior 10
2.3 Fiowngenerated Eorces - 家tetum os research 13
2.3.1. Fosces from the variabre bangentiad Eosce ae the rotor grid 13
2.3.1.1. Eccentric rotor position 13
2.3.1.2. Rocor=to-housing incidnation
2.3.2. rorces trom the pressure distsibution at the sealing clearance 21
2.3.3. Processes at the metidian chanel and the clearance entrance 25
3. Calculation procedure for the transverse rorces at the turbine blades caused by the clearance flow 29
3.1. Definition of the control spaces at the seainig cleazance 30
3.1.1. Location of the support points 31
3.1.2. Calculation of the control surgaces 37
3.2. Basic stream tube equations 39
3.2.1. Boundary conditions at the clearance entry and exte 40
3.2.2. Momentum equation 42
3.2.3. Enezgy equation 42
3.2.4. Impulse equation 47
3.2.5. Throughput calculation 53
3.2.6. Discussion of the besic equations using a simple clearance form 56
3.3. Coestictents to describe 10 w processes at the clearance 62

Page

3.3.3. Precurre zone coosedajency 63
3.3.1.2. Smooth clearance 63
3.3.2.2. Debytizeh G2easance 67
3.3.1.3. Tntrance bend and exit tonees 69
3.3.8. Momentum coefficients as a Eunction of pressure 205 s 72
3.3.2.1. Ancrogy with a strajght stream tube 72
3.3.2.2. Consteretions besed on the encrgy equetion 74
3.3.2.3. Constepertons on a bebyemek cleasance 75
3.3.3. Misted Frictional zorce at the chamel easit 81
 measured prescure :natribrump 82
3.4 Calculation of the ternveme thas acting on a sotos 83
3.4.1. Transuerse sorcer ferm ne pruetro distribution 83
3.4.2. Trangerse socces wh than wee Joss 85
3.4.3. Torces due to Trict $\%$ rive treor surtace 87
3.5. Iterative solution to the zodem 88
3.6. Testing the celculation procedure usting simple clearance zorms 91
4. Experimental determination of the transverse Eorces acting on the rotor 115
4.1. Teve assembly 115
4.1.1. Instaliation consteruction 115
4.1.2. Installation operation 119
4.1.3. Measurement instruments and test method 120
4.2. Test progitam 124
4.3. Measurement evaluation 126
4.3.1. Turbine data and zorce measurements 126
4.3.2. Relationship bebueen exciting zosce and exticiency measurements 131
4.3.3. Pressure distribution at the shroud band 134
4.4. Tramsverse sorces Erom an eccencric rotor position and comperison to exticiency distribution 136
4.4.1. Mruclects mithout shroud bend 137
Bage
A.4.2. "Enclsces with shmoma band 140
4.5. Frembre dinketbuthon ovez the rotor skrome band anc comparison witu theosy 342
4.5.1. Shroud band mith mooth chearance 143
4.5.2. Tebysines wite emo ghands 150
4.5.3. OEx-sct ghroud band with thzee glande 155
4.6. Forees due to the zotorotorhousing tnelinction 159
5. Sumasy 164
6. Designations used 166
7. Rezerences 169
8. Appendixs Tables of measured velues 174

In an cneinocinc extoxt to gignificently zaisc the output of

 rotetionel gpeed, plecing gevere operetine restrictiong on sotors thet are thermodynamicajy properiy desitned. This outputmopendent excitetion of seliocenerated vibretions is not caused by beeninc insbapility, but by sorces produced as a consequence of the cleasence slow genereted between rotor and housing [1-4]. The develoment of these forces is generally mumenited under the concept of clearance excibation.

A theoreticel description of the vibretional system is already availeble [9, 10]. Tow multi-supported sharts of any sorm. however, the treetment assumes knowledge of the support cherecteristies and the clearence ercitation Sorces. Recently several important papers have been published (for instance, [6]) in the area of friction bearing rescarch; with their help, bearine instabioty (oin whip) can be substantielly avoided by means of constructive measures. In addition, it is possible to determine system damping, which in a Fibretine turione shart is predominenty caused by the bearings. In publicetions to date on rotor instability due to clearence escitation, the exciting roress are detemined alnost exclusively Fie theoreticel stetements besed on Thomes ${ }^{\circ}$ [1] Tundenentel consideretions. Only recently have measurements become available [5] thet 2llow a reliable estimation of the limiting output.

The clearamee excitation forces originate in the sealing olearance - Veniabie around the perimeter o thet owewe rher a dexiestion exigty between turbine rotor and casing. Due tu the rhanging clearance Ioss, the rotor blades are aubjected to fisfering periphexel rorces, the resultent or which hes an exciting
\because Numbers in the mergin indicete coreign pegination

 Felocity ig FOxy lerge the ziow through the scajine cleazence is or gpirel type Tor an eccentiper rotor positeion, the consequence is m prescure distwibution the vemies along the perimeter o due to the dixfereat Tlow crostowcctions o which in the cese or banded "bucletg considemebly mecnixies the cacibine sorees.

The goal of this guvay is the measurement of the trenswaree forces acting on the rotor, as well en the detemanetion of the charecteristic pressure distribution in the rotor clearenee. In addition, a procedure is provided with which the eleesence riow, aftected by torsionel forces, cen be calculated ror eccentric rotor positioning, by means of anpiricel loss coerricient, The reswit contains the variable clearence throughput and the pressure distribution at the sceling cleasance undex consideration. Whis provides the two characteristies of the clearance Blow through which transverse Sorces proportional to the laterel denlection act on the rotor.

2.1. Gonoral dectintion becsed on a rotor model

$$
\varphi_{x}=0 \frac{\partial y}{\partial z}: \quad \varphi_{y}=\frac{\partial x}{\partial z} .
$$

The complea conciguretion ot e turbine rotor can be reprosented

Tisure 2.1 Rotor model
by sections of constant crossosection provided the subdivisions are surciciently small. The dynmics of each section is described by a system or differential equations which can be golved closed. in the linear case. Matrix transter procedures are best suited to the description of such elestomechenic problems. They allow a particulaxly clear expression of the quantities describing the rotor elements. The knowledge of the external Torces acting through the plow processes is of essential inportance. They shall be dexined below in a generally valid manner.

Figure 2.1, ebove, shows a simple vibration model, suitable Ros Tundamental studies. For the spatial coordinates \mathbb{Z}, x and g, the quans describes the shart's stationery rest position. IT we represent the shatt's derormed centeraline in a top and side projection, according to figure 2.2, below, then we have, tor the
bending ong ic

召

Figure 2.2 Foree decinition on rotor model

As usual. the extemal Sorces acting on the rotor are cerined as positive in the direction of the coordinates. The sane applies also for emtemal moments. in the rightohended mystem chosen.

Assuming small dyamic displacements. the external rorces and moments occurring in addition to the stationary load cen be assumed to be linear. In terms of this linear theory, the load vector is as a function of the motion vector io can be described es rollows, in metrix notation:

$$
\begin{equation*}
\alpha=\alpha=\alpha+\bar{x} \frac{\partial \theta}{\partial t} . \tag{2.1}
\end{equation*}
$$

If we now consider only the forces I and moments M acting rrom the outside on the turbine shast, then the load vector 8 and
tho mothon vectors as are derined by

Considering the symetry conditions - appicable becume of $/ 5$ the problen's isotropy the Sorces and noments ceused by the flow will in generel be described by the coexticienter of the deflection metriss ${ }^{2}$ and the velociby metriss sts o The coescicients of this matriz heve the dimencions of a spring or respectively, daming constent. Fox a shart rotating cloclwise. their aign will be given by the coordinete systen to be introduced later, which sotates with the vibrational motion.

$$
r_{S}=\left[\begin{array}{cccc}
q_{1} & -q_{2} & q_{3} & q_{4} \\
q_{2} & q_{1} & -q_{6} & q_{3} \\
p_{1} & -p_{2} & p_{3} & p_{4} \\
p_{2} & p_{1} & -p_{5} & p_{8}
\end{array}\right], \quad \tilde{q}_{5}=\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{46} \\
a_{2} & a_{4} & a_{46} & a_{3} \\
b_{1} & b_{2} & b_{3} & b_{48} \\
b_{2} & b_{8} & -b_{46} & b_{3}
\end{array}\right] \cdot \text { (2.3) }
$$

The bearings dyamic restoring forces can be represented in the spatiel coordinate system $x_{0} y$ in a similar manner. In general. bhe symmetry conditions expressed above are not setistied here. On the other hando assuming point-bearings. the externel moments vanish. In addition, forces due to the bearingso tilt as a rule can be neglected. The dexlection metris \mathbb{R}_{2} and the velocity matriss ${ }^{4}$ for the bearing forces then are

$$
\left.R_{R_{b}}=\left[\begin{array}{cccc}
-c_{x y} & -c_{x y} & 0 & 0 \\
-c_{y z} & -c_{y y} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \widetilde{R}_{L_{0}}=\left[\begin{array}{cccc}
-d_{x y} & -d_{x y} & 0 & 0 \\
-d_{y x}-d_{y y} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] . \quad 62.6\right\}
$$

 volume of tests renults is already aveizeble eron citeniche [6]. It should be pointed out thet in those papers the direction or rotation is decined invorcely. with the concequence that the gigns must be changed during the treneser to the coordinate mysten chocen heze.

2.2 Simple rotor stebility behevior

In turbiae engineering the toree θ_{2} described by the coersicient a_{2} is of decisive signixicance. It actis perpendicularly to the direction or deviation and for a codirectionally vibrating shast ects against the damping force This can incite the system to selp-generated vibretiono Figure 2.3. below shows, in a derined coordinate mystem x_{0} y the intergection point. displaced by the quantity e with the angle ψ, for a shart rotating with angular velocity ω_{0} the temporal derivative of the engle 4 represents the carcular treauency ω_{s} of the vibrational movement.

Tigure 2.3 Vector diagran Por circumpoler vibrations
 contwisugal zoser mow weta ha dovitetion direction "an and

 the vibrethonal motion. yhite the zectoring lorce con be
 comperison to the cyring zoscea, the detominmetion of tho

 contein theoraticel consideretions on the excect ot externel Lorces on the stabintey behavior of simple robor modejb. In melogy to Thomas, Gesch [7] inventigeter - 20 rigid bearings the exfect of oxly the excitetion constant q_{2} for a centrel errencement of the mess, while Piltw [13] tatres into ecount all the coexicients of the matrices n, and i_{5} in an asymetricel rotor. The gbabilby linite for the mimply ongaged Iavel shert. beking the cxect of Priction bearings into account through concideration of the clearance excitation torce θ_{2}, was cenculated by Premer [2]. Poliman [3] and Vogel [9].

An example of guch calculations is shown in pigure 2.4, below. A geboiniby value wey fomsd with the ghext rigidity g and the excitation constant q_{2} which is plotied against the shaft's

$$
6=\frac{q_{2}}{c}
$$

ajusbment $\omega / \omega_{l^{\prime}}$ Besides the bearing type, the relative shaft

$$
a=\frac{m n}{c} \frac{1}{2 k+}
$$

elesticity wes varied, which indicates the ratio of static ilezure under its own weight, to the triction bearing' s diameter play. The

Tigure 2.4 Stebinity chart Sor the symmetrical unitomess vibretor with Eriction bearings. $\mathrm{So}_{\mathrm{k}}=0.2 \mathrm{~b} / \mathrm{d}=0.5$
and the bearing's width ratio b/d is kept constent. Below the characteristic limiting curve the shart is stable, while above it instebility begins. The steep drop of the rotational rate - which increases with $\omega / \omega_{\text {le }}$ - characterizes instability due the Priction bearing's so-called oil whip.

Essential information regarding the construction of a turbine shat can be derived from stability charts or this kind. However, a quantitatively accurate vibration calculation is possible only when the rotor's geometry has been defined more accurately, by subdivision into individual cields, and once the sherting's
mulbiphe support can bo toten into acconat. This was solved, Pos incemee, by mesmex brancres procedures, by Schimer [10] and Voged [9], ลs weld en by Gemch with Tinite olemente [8].
3.3 BLownererated Sorces - Research gitut

Then turbine rotorg exe mounted in casings, at the non-contact gealing clearancey of the stator and the rotor of necessity clearence widths will dixter along the circumerence. This leads to clearence lowe and tencential force differences at the rotor and in turn, to a resultinc twanverse torce at the shatt. In addition, on asymetrical preasure distribution appears at the sealing clearances, which generates a Lorce that acts on the rotor. For a vibretion calculation, both components - the transverse Toze from clearance loss θ_{S} and that Srom the pressure distribution Q_{D} - must be added.

$$
Q=Q_{S}+Q_{D} . \quad(2.5)
$$

To the extent thet those Torces Q are linear and a function or the deflection Q, the constents $\mathbb{Q}=Q /$ of the deflection matrix of equation (2.3) are easily determined.

The Elow velocity caused by these Sorees in the usual turbines are two orders or magnitude higher than the rotor's vibration velocity. It is for this reason that forces from the matriss in equation (2.3) that are proportional to the velocity, can \mathbb{d}_{s} usuelly be neglected.
2.3.1 Forces Trom the variable tangential force at the rotor grid
2.3.1.1. Eccentric rotor position
 Trom the prowise that o tumbino rotow en shown in pigure 2.马. below, will experionce mevon targential rosecs, 80 a dorlection g. Tor a mail local sealinc cloernnce ($\psi=0$), due to the jow ciearence loss the pexipheral force will be lergez, while it will be cosrespondingly smeller at the diemetricelly opposed side.

Figure 2.5 Derivation of the clearance excitation forces

The peripheral or tangentiel force U_{i} of a turbine stage is obtained from the specicic work, a_{1}. the throughput, \dot{m}_{9} and the tangential velocity, ua:

$$
\begin{equation*}
U_{i}=\frac{\cdot a_{i} \dot{m}}{t} . \tag{2.6}
\end{equation*}
$$

The dependence of the internal tangential force U_{i} on the sealing clearance width can be represented either by the minimum worls, $a_{s p}$ [14], or as in [1], by a quantity-loss, $\dot{i n}_{s p}$. Both errects can be combined in the tangential velocity lost due to
the cioazance.

$$
U_{0,0}=U_{b}-U_{i}
$$

where u_{u} is the tangential corce whthout cloarance losses. It we decing the isentrovic tangential corce, U_{S}, thet would be atbasned with a loscerrec flow, then the incernal and the peripheral exticiency, es well as the clearance loss can be reprecented as lozce ratios

$$
u_{u}=\frac{u_{u}}{u_{s}}, \quad \text { ii }=\frac{u_{i}}{u_{s}}, \quad s_{s p}=\frac{u_{s p}}{u_{s}} .
$$

For the local tangential sorce we thereby obtain the simple equabion

$$
\begin{aligned}
& d U_{i}=U_{i} \frac{\psi_{p}}{2 \mu}=U_{\Omega}\left(\eta_{\mu}-\xi_{s_{p}}\right) \frac{d \varphi}{2 \pi} . \\
& \text { (2.9) }
\end{aligned}
$$

The integral of this roree along the rotor perimeter yieids using the coordinates of pigure 2.5 - the rorces acting on the rotor: the constant tangential exiciency, n_{u}, cancels out.

$$
\begin{aligned}
& Q_{1 s}=-\int_{0}^{2 \pi} d d_{i} \sin \varphi=\frac{U_{s}}{2 \pi} \int_{0}^{2 \pi} \xi_{s p} \sin \varphi d \phi_{i}, \\
& \left.Q_{2 . s}=\int_{0}^{2 \pi} d U d_{i} \cos \varphi=-\frac{U_{s}}{2 \pi} \int_{0}^{2 \pi} \xi_{s p} \cos \varphi d \varphi \cdot\right)
\end{aligned}
$$

This integral can be solved only it the local cleazence loss along the perimeter of the variable sealing clearance is known.

There are equations for the dependence of clearance loss on clearance width in several of the papers comparatively reviewed by Winter [11]. According to Traupel [14], clearance loss can be expressed as the ratio of lost work, $a_{s p}$ caused by the sealing clearance to the available isentropic heat gradient, Δh_{s},

$$
\begin{equation*}
\xi_{s p}=\frac{\theta_{0 p}}{\Delta h_{g}} \tag{2.18}
\end{equation*}
$$

Is the isentropic tengentind forec is desined by

$$
\begin{equation*}
U_{S}=\frac{\dot{m} \Delta h_{s}}{11}, \tag{2.92}
\end{equation*}
$$

/12
then the clearance loss, $\zeta_{S p}$ is iocnejcal to equation (2.8), where the tangential rorce, reduced by the clearence ersect takes the value of equation (2.6).

The stage clearance loss is composed of a loss at the stator blades, $\zeta^{\prime} \mathrm{sp}^{\prime}$ and a loss at the rotor blades, $\zeta^{\prime \prime} \mathrm{sp}^{*}$

$$
\xi_{s p}=\xi_{s p}^{\prime}+\xi_{s p}^{\prime \prime}=\frac{A_{s p}^{\prime}}{A^{\prime}} \frac{K^{\prime}}{\sqrt{z^{\prime}}}+\frac{A_{s p}^{\prime \prime}}{A^{\prime \prime}} \frac{K^{\prime \prime}}{\sqrt{E_{B}^{\prime \prime}}} .
$$

It depends primerily on the retio of the clearance area, $A_{\text {sp }}$ to the grid transverse area, A, and on a factor K, which essentially depends on the design and the inclination of the seal.

Figure 2.6 Clearance loss coerficient ("bucrets" without shroud band)

For biades or "buckets" without shrowd bend, according to rigure 2.6. ebove, [r' or, pespectively, is", depend ony on the angle $\Delta 0$, or sespectivoly, $\Delta \beta$, on flow derlection. For buctets with shrove bends and stator bases a dependency results on the ajready mentioned incinetion ot the stator, $2 \Delta n^{\prime}{ }_{5} / \mathrm{C}_{1}{ }^{2}$ o or the rotor, respecively, 2ah" $/$ when $_{2}^{2}$ according to pigure 2.7, below. Heze

Figure 2.7 Clearance loss coerricient ("buclets" with shroud band)
we must appropriately use the inclination at the base of the blade for the stator, and for the rotor that at the blade head. For labyrinth seals, the clearance loss is reduced depending on the number of clearance peaks. z^{\prime}, or respectively, $z^{\prime \prime}$. For the areas, in the general case of a chamber step according to Tigure 2.5 , we shall have

$$
\begin{aligned}
& A^{\prime}=\pi d_{m} l^{\prime} \sin \alpha_{1}, \quad A^{\prime \prime}=\pi d_{m} l^{\prime \prime} \sin \beta_{2}, \\
& A_{s p}^{\prime}=\pi d_{n} s^{\prime}, \quad A_{s p}^{\prime \prime}=\pi d_{l} s^{\prime \prime}
\end{aligned}
$$

Wis thus obtain, for the clearance lose,

Consequently, the clearance loss at the stator and at the rotor depend linearly on the clearance width. It we assume neglecting compensating flows - that the dependence is applicable also to local clearance widths

according to Figure 2.5, then we obtain, from equation (2.10)

Because of the direct proportionality between clearance loss and clearance width, the force vanishes in the direction of deflection.

The clearance excitation force, $Q_{2 s^{*}}$ depends linearly on the eccentricity ell" mentioned, the isentropic tangential force, $\mathrm{u}_{\mathbb{s}}$ and the coefficient $K_{2 s}$ which basically describes the construction form of the seal.

$$
\begin{align*}
& \frac{Q_{2 s}}{U_{s}}=K_{2 s} \frac{e}{l^{n}} \tag{2.16}\\
& K_{2 s}=\frac{1}{2}\left[\frac{K^{\prime}}{\sqrt{z^{\prime} \sin \alpha_{s}}} \frac{d_{n}}{d_{m}} \frac{l^{n}}{l^{\prime}}+\frac{K^{\prime \prime}}{\sqrt{z^{n}} \sin \alpha_{2} \alpha_{2}} \frac{d_{n}}{d_{30}}\right] . \tag{2.17}
\end{align*}
$$

In the dimensionless representation of equation (2.16), \mathbb{K}_{2} s indicates the slope of the excitation force mentioned, $Q_{2 s} / 0_{s}$, over the relative eccentricity ${ }^{1 / 1}$ and is therefore referred to as clearance excitation coefficient In as $^{\text {a }}$

In principle, non-linces clecsence lons cquations could also be usod lor the intogration ot the locas tancentiol rosce, such as those contesned in the zad odition os [34], tor ingexne. This oxect is discussed in nection 4.4. 2 , in conection with a measured exticiency distribution. It is shown there thet even with a non-linear approwch for $\zeta_{\text {gp }}$ (s), fowes can devolop thet depend linearly on the eccentriciby o, just as here.
2.3.1.2. Rotor-toohousing incination
rorces acting on the rotor can also be caused by an inclinetion or the rotow with respect to the housings it the arial scaling expect of the clearance is signiricant. In general, according to Figure 2.5, the inclination of the rotor along the shart's bending line is coupled to a certain eccentricity. Is we stext Trom the premise that the radial clearance width is large in comparison to the axial sealing clearence, then the clearance loss will be determined only by the axial clearance. For this type of construction clearance loss equations exist. as in [14], conforming to pigure 2.7 that make it possible to calculate the Lorces acting on the rotor, which in this case will be due only to the incination. The local axial clearance of the rotor

$$
\tilde{s}_{c \pi}=s_{\mathrm{as}}=a \cos \varphi \quad \text { with } \quad a=\frac{d}{2} \operatorname{tg} \alpha \quad \text { (2.18) }
$$

shroud band towards the housing changes along the perimeter according to Figure 2.5 , for an inclination of the dige equal to the bending angle α. The megnitude of the non-unitomity it depemels on the angle of inclination α, and on the demeters d_{2} of bhe seal. The clearance loss is again tazen as lineor with rospoct to the ratio or the seal area and the rotor area.

As wes tho ceso cor tho radial neal, the cleasence loss

 25cure 80%

In analocy to an eccontzic rotor pocition, a Iocel tengential
 and the inchtropic tangenticl rozer u_{S} (equetion (2.12)). Intocration along the perimeter yields the trensverse Porces घcting on the rotors

$$
\left.\begin{array}{l}
Q_{u_{5}}=0, \tag{2.20}\\
Q_{35}=\frac{1}{2} U_{s} \frac{a}{b^{1}} \frac{K_{a}}{\sin \beta_{2}} \frac{d s}{d m} \cdot
\end{array}\right\}
$$

In accondence with its derinition in the deflection matris, the Sores $\mathrm{A}_{3 \text { s }}$ hess a destabilizing effect on the rotor. It depends linearily on relative deflection $2 / 1^{10}$ and on the iscneropic tancential rorce, and it can be represented by the coerenejent $\mathbb{R}_{3 \mathrm{~s}}$, as the slope of the dimensioniess exeiting Rorce, over the reletive deflection.

$$
\begin{align*}
& \frac{Q_{2 s}}{U_{s}}=K_{36} \frac{a}{i^{1}} \tag{2.80}\\
& K_{3 s}=\frac{1}{2} \frac{K_{a}}{\sin B_{2}} \frac{d_{1}}{d_{m}} .
\end{align*}
$$

The exciting toree due to the inclination oithe rotor cisc ean be calculated only ror a purely axial seal exrecto with the clearance loss equations given. However, it would be on the cere side to consider this exect, in addition to the clearence ercitation coerticient lor a radiel seal. For a clearance thet shows both a radial and an axial seal extect, in a rotor position as shown in figure 2.5, due to the inciination a non-unicorm clearance loss will occur along the perimeter. For

Bhis seeron tho inlet turbine stages will be
 2ncไ3่

2.3 .2 Forces due to the prescure disbribution et the geaine cleerance

Trutnowstry [15] provides a comprehensive review ot the celculations 2 or non-contact seals. While most of the procedures demeribed there deternine oniy the chroughput of a clearence thet is unisome elong the entire perimeter, we are interested here primerily in the orecter by means of which trensverse Sorees ect on the rotor due to cle\% ance Slow.

Tow an eceentric position of the rotor with respect to the housing: not only the throughput but also the pressure gradient along the direction of flow changes with the local clearance width. Assuming thet at the exit the Plow will be subject to atmospheric pressure, a cherecteristic pressure distribution will develop along the perinetex, whose marimun value will coincide with the narrowest clearance. This extect was rirst described by Lomakin [17] using a mooth clearance with purely axiel flow. A similar derivation can be found in [18]. Because of the assumption of a purely axial flow without compensation at the perineter, the pressure drop is linear. If we apply this to the shroud band of a tuxbine rotor, as in Figure 2.8, below, we

Figure 2.8 Rotor clearance

$$
\frac{\rho(2, \varphi)-p_{2}}{\rho_{1}-p_{2}}=\frac{1-\frac{Z}{B}}{1+2 \frac{\text { bencal }}{b \lambda}} .
$$

(2.23)

The Exiction coexticiont λ hron pupe hydraujice is assumed constan, here. In addition, ontrance lomses and a possible prescure recovery at the exit heve been neglected.

The incegretion ox a vaxieble prowsure veriation yicldso sixat, the forces ecting on the rotor in ceneral.

$$
\left.\begin{array}{l}
Q_{10}=-\int_{0}^{b} \int_{0}^{2 \pi} d P \cos \varphi=-\int_{0}^{0} \int_{0}^{2 \pi} p(z, \varphi) \cos \varphi r d \varphi d z \\
Q_{2 D}=-\int_{0}^{0} \int_{0}^{2 \pi} d P \sin \varphi=-\int_{0}^{2 \pi} \int_{0}^{\pi} p(z, \varphi) \sin \varphi r d \varphi d z \tag{2.24}
\end{array}\right\}
$$

Using equation (2.23), we obtein the forces

$$
\begin{align*}
& Q_{10}=-\left(p_{1}-p_{2}\right) \frac{\pi}{8}\left(\frac{6}{s}\right)^{2} \frac{\lambda}{\left(1+\frac{\lambda b}{2 s}\right)^{2}} d_{1} e, \tag{2.25}\\
& Q_{20}=0 .
\end{align*}
$$

The force $\theta_{1 D}$, because of its negative sign, acts againsit the deflection e and at lerger pressure diperences $p_{1}-p_{2}-2 s$ they occur, for instance, with boiler Teed pumps o heve an essentiel effect on the system's vibration behavior. Because of a simplixied integration of the pressure variation, this rosce depende linearly on the eccentricity, while the dinenstions of clearance d_{1}, b and s occur in some non-linear terms. Since the pressure variation is symmetrical with respect to the deviation, the roxce $Q_{2 D}$, perpendicular to it vanishes.
 at the clearace, which in ces bocringe, tos tnctanco thozoughzy invostscated by stincelin [27]- conezates a proscumo
 ase developed thet could initiatc a vibrational sygtea, Towevez, thoy become important only tor surciciontly long clearances with a very manl radial clearance wideho wheh in ceneral can no longer be implemented in the blade channel of a burbonechane.

In turbine stages a large velocity component in a tangential directionoccurs espectally bhead or the rotor's seel clearance, with the consequence that the clearance flow is no longer axial but develops a diagonal flow. With eccentric rotor positioning this leads to veriable crossosections dong a sbrean tabe. A problem thet ean be adaged to ours was treated by Thesewtiter and [rolter [19], who calculated transwerse Forees acting on a conical piston with longitudinal slow against it, as An rigure 2.9:

Tigure 2.9 Conical piston with Longitudinal flow

With the Slow as shown, Sorces act in the deflection direction that can cause hydraule lock in velves, for instance.

If we apply the basic geometrical relations froin [19] to a cylinder eccentrically placed with respect to the housing, with a. diagonal Plow egainst it, then the lowest tlow will occur arready becore the narrowest clearance ($\psi=0$), causing a pressure maximuin according to the qualitabive representation in

Figume 2.10 (b), below.

T上gure 2.10 enalitative pregsure variation a: Purcly azial Rlow
b: Thow extected by torsionel forees

Integration of this pressure distribution along the perimeter yields, bestides the rectoring lorce, also an excting torce. Similar considerations $\mathfrak{L o r}$ the hlow effected by torsionel rorces and for purely axial flow can also be transcerred to the labyninth seals regularly used in turbines, is one assunes that the pressure drop caused by the seal peaks depend on the local radial clearance widh (cx. also section 3.3.1).

Kostyuk [21], however, starts from the premise that at a seal peat the rinetic energy is completely turbulent. Without the exfect of an arriving torsional flow, under this assumption there are no transverse forces to act on the rotor, if it is displaced with regard to the housing in a direction parellel to the axis. If the shart is inclined with respect to the housing. vibration-causing Sorees are generated, due to the non-unisorin clearance width in the Tlow direction. Assuming a spiral flow pattern through the clearance, which could be caused either by shett rotation or an incomine rotationel flow, Rosenberg [28] studied a labyrinth seal with two peaks.

We obtained the pressure distribution (b) in Pigure 2.10, which agreed well with his own measurenents. But since here the llow Ine pattern is fixed, only qualitative statements may be made about the effect of torsional flow.

 [21] obtein tho opporite ronule by batine this osece inco coscideretion.

Rocheuthes [29] persomed a Sudemontel stuey on clearence Phow, which geemb by solving the degeribing dixterentiel oguebion at a plain clearence, using a dircerence method. Under the exfects of sotetion, bownery conditions cas be metisciod Sos both leminer and turbulent Elow, according to Iomakin. The procedure wes then widenod to include lebyrinth clecrences; here, complete turbulence ot the rinetic enerey was escumed at tho geal peaks.
2.3.3. Processeg et the neridian chanel and the clearance entrance

IT the clearance width is variable alone the perimeter, the local throughput will vary, as will the tangential exticiency at the rotor blades of a turbine stage. This was taken into consideretion in equetion (2.7), in section 2.3.1. For constant preesure blaming without shroud band, pilte [12] investigated both exeects. by determining pressure changes in the blades. in addition to changea in the local triangle of velocities. Hexe at Least tor blading without shroud band - pressure-caused Zosces can act on the rotor. With an occasionally severe cinimlitication of the threcodinensions Rlow, Pilta calculated all the coerticients lor the deflection and velocity matrices in Qquation (2.3). However, he showed by means of vibration /21 celculations thet at least for a central rotor arwangement between the bearincs, the additional oxfects deternined by him
 somee θ_{2} uccoradac to [1].

If wo mbext iron the premine the despite locel pelocity variationg the percentege reaction is constent along the Deziphexy, even for an ccc catitic rotor poctiton, thers o in conbrest to [12] - by introducins cmpirical cleazence loss cocercionts, 211 efrects thet can cerse locel verietions or the peripherat Poree have becn taken into consideration. Dismegarding belwncing flows, this is velid especialiy also sor an exfictency digtribution measured an f Punction ot the clearence width, which was used to calculete locel clearence IOSEGS.

At congtant pressure ahead or and behind the turbine step, a variation in the percent reaction aiong the periphery accordine to section 4.4.1. - ceused by the locel cleerence Loss, is conceivable. Here the turbine stage percent reaction is calculated from the pressure wadient and the turbine ${ }^{\circ}$ throughput. the only quentity verieble along the periphery to be considered here is the stetor"t clearance throughput according to equation (4.13). It turns out thet it can very substantialyy artect the result, it one diswegards balancing flows ahead or the stetor. Thus, for a large local stetor clearence, a lerger pressure exadient should be observed at the rotor. This would displace the local stator to rotor clearance loss ratio, which could arrect the Porces Trom the variable tangential or peripheral force to very dixpexing degrees. The pressure distribution in the sealing cleanances could be afected also. However, a variable percent reaction in the blading's flow channel does not necessarily heve to cause compressive rovees. since varying pressure distributions could cancel each other, in the case of banded "buctet"-channels.

Since the exfect of a percent reaction varying along the periphery is not yet sufeiciently established theoretically, now
documentod by measurementr, wo choll havo to neglect it, at
 in the meridicn chame3 will cancel out much more roadily due to compersebtac elows in bancentiel direction, then in radial /22 secting elearences, fince the relative eccentricity - rexemred to chamel hoight - will be gmejlow. Only in extreme cases, with high tangential volocities in the mewician chanol, compressive Rorces will be exerted on long, cylindrieal rotor parts, such as those observed during flow control in best turbines [5] with

The influm conditions at the clearance entrence are of great importance to the developaent of a pressure distribution in a redial clearence. La Roche [23] investigated the erfect of a point of ixregularity in the side-wall of the bladed flow chenmel, between the stator and the rotor, both theoretically and experimentelly. To begin with, he showed thet the off-set heifht ie (sce figure 2.8) is of substantiel signiricance to the initial pressure at the clearance and hence also to its throughput.

The calculations and basic experimentation were performed by La Roche Sor a bidimencional model in which the slow was perpendicular to the orfoctit. Apparently an optimum ofeset height could be lound, here, for which the losses would be minimized. In contrant to the usual construction, it was cheracterized by a negative value for the offeset and a well-rounded entrance edge. However, transfer to an ofeset with an oblique inciux still appears to be somewhet of a problem, even though Ia Roche obtained good agreement with the bidinensional model, with a uniform-pressure turbine.

Since the overlapping $\ddot{\underline{i g}}$ of the rotor "bucket" height, as compared to the gtator blading, varies as the local radial clearance width, for an eccentric rotor position, La Roche's equations should be included in the calculations of local
clearence losmes. It tumn ont homever, thet this Lose is veay strongly dependent on secondery excecta (displecensmit cerect of the rotor bledes, well boundery hayer at the stetor, Torur of the shroud band edec), which mate e relisble applicateon mpossible. [unde the oftact cerbainiy hes an cerect, for the above reepome Ia Roche's resulis cen not be applied to thís study.

By introducing the appropriete control surtaces, it is possible to represent a seal clearence of arbitwary gemetry as a series of conciguous strean tubes with variable crossosections. If we consider averege velocities, at certain reserence points in the clearance, then they can be described by the continuity equetion, as a function of the local crossosection. The throughput and the pressure drop along a strean tube can be calculated by means of the energy equation, using empirical loss coerficients the flow directions are determined with the aid or the theorem of momentum, under special consideration for the torsional ereect at the entrance. The application or energy and momentum equations to such stream tubes thus does not require a. knowledge of the processes inside the flow domein under consideration. It does, however, assume loss coetricients, to be determined trom lnown empirical laws.

From this View, the separation of clearance flow from the flov along the meridian chanel must be possible; this will occur only in the blade ends are fitted with shroud bands or similar Eeatures. Free-standing "buckets" or blades, coupled to the loss of volume, also show losses at the blade ends. caused by the energy exchange between the clearance flow and the main Plow. For this reason, such constructions shell be precluded, here. For the same reasons we must establish restrictions for blading with discontinuous shroud bands, or for stator bottoms with balance holess since the continuity equation of a stream tube can not be appised in the manner described, due to a pressure equalizing llow.

In the calculation method below, we study the clearance flow for a stetionaxy displacement of the rotor with respect to the
housing which would allow the determination of all the cocreicients lor the devietion metris (2.3). However, beceuge or theiv much greater signilicance to the vibretion behavior, we mhall only deternine here the Sorees relevant to an eccentric /34 rotor position. Since the ratio of the clearance Llow to the main 8 low in the meridian chennel is elways small. we shall consider the latter independent of the rotor's eccentricity, as a first approximetion. In addition, the calculation method shall be limited to cases in which the clearance flow may be considered incompressible.
3.1. Dexinition of the control spaces at the seal clearence

The non-contact seals predominantly used for turbines are shown

Figure 3.1 Seal clearance at a turbine step
in Figure 3.1, above. For reasons of operating sarety the clearance at the radial entrance \mathbb{E} and exit A is usually much larger than the radial clearnce S, which in the newer machines is fashioned in labyrinth form.

Some constructions show a plain clearance at the rotor, in which
eate the sealing exect can aiso be accomplished by an entrance adfe (H). We shanl concider, as a ceneral case, the rotor clearence in pigure 3.1, where either a plain or a labyrinth clearence can be used at section S. However, the calculation procedure chosen will also be applicable to the seal clearance施 the stator, it the corresponding radij are used. By appropriate modisications to the boundary conditions, it is readily possible to climinate the radial entrance or exit, which allows for other areas of application, such as shaft seals of the housing.

The Elow processes at a seal clearance may be considered unidimensional, provided the control spaces can be varied eccording to the course or the Llow lines. These are described by support rererence points which in the entrance and exit lie on constant radij: in the radial clearance they lie on planes perpendicular to the axis of rotation. In the tangential direction the support points are variable and are determined by the local angle of the llow-line tangent to the rererence line. The variable crossesections of a stream tube are then given by the distencer between neighboring support points on the perimeter and by tho local clearance width. In this procedure, the Ilow anclice are obtained by iteration of the basic equations for a gescan tube they are assumed known in the following sections.
3.1.1. Location of the support points

The clearance is divided into \mathfrak{j} stream tubog in the peripheral direction, as shown in Pigure 3.2, below, where the selection of their reference points is axbitraxy, wince the strean tube ${ }^{\circ}$ s width is also derined, thereby. While for cortein calculation cases it may be appropriate to arrange the cupport points localiy eloses to the perineter, here we have establiched a unisorm gubdivision on the radius re of the entrance. The support points located on this radius have the subscript \mathbb{E}_{1} o being characterized by the mubcroipt If in the periphrel direction. bith the constant step width

pigure 3.2 Stream tube subdivision along the periphery

Tigher 3.3 Iocetion or suppoxt points in the Ilow dipection

$$
\Delta p_{E q, k}=\frac{2 \pi}{3}, \quad(k-i, \ldots j)
$$

thy mapor jotnts at the ontrance are detomined by tho exge at そうo comem.

$$
\begin{aligned}
& \varphi_{E q, 1}=0, \\
& \varphi_{E 1, k}=\varphi_{E_{1, k-1}}+\Delta \varphi_{E 1, k} ;(k-2, \ldots j) .
\end{aligned}
$$

Stasting with theme support point locations the remaining points in the Llow direction are determined using oniy the local flow anclec. For this reason, together with the angle at the center, W, in the Slow direction the corresponding distances, $\Delta \psi$ - more precisely deterinined in section 3.1.2.-also change.

The clearance (T, S and A) is divided respectively into ne, ns and nA support points, in the llow direction, as shown in Tigure 3.3. above, characterized by the subscript i. Using the peripheral angle ψ as an example, the complete indering is shows Por the radial clearance S. We have lert it out whenever there is no possibility of confusion. It we require the support points to lie on a llow line, the tangents to the flow lines are given together with the corresponding flow angles. These can be approximated by straight line segments. if appropriate assumptions are made regarding the intersection of two consecutive bangents.

If we subdivide the radial entrance E of radius x_{E} to r_{S} into $n \mathbb{E}$ support points, as in Figure 3.4, below, then at constant step width,

$$
\Delta T_{E}=\frac{1}{2} \frac{\left|r_{5}-r_{E}\right|}{n E-1}
$$

[^0]

Tigure 3.4 Support point location at radial entrance

$$
\begin{aligned}
& P_{E_{n}} \partial P_{E}
\end{aligned}
$$

are fixed. With know Tlow angles $\alpha_{\text {p }}$, the location of the support points is then determined by the peripherel angles

$$
\begin{aligned}
\varphi_{E_{2, k}}= & \varphi_{E_{j-1}, k}+\frac{\Delta E_{E}}{T_{E i-1}} \operatorname{etg} \alpha_{E_{i-1, k}}+\frac{\Delta r_{E}}{\gamma_{E i}} \operatorname{ctg} \alpha_{E l, k}, \quad \text { (3.2) } \\
& \left(i-\bar{z}_{j} \ldots \mathrm{nE}\right)(k=1, \ldots j)
\end{aligned}
$$

For the angular composition shown in pigure 3.4 this equation is valid only as an approximation, assuming small step width, Δr 。

In radial clearances, according to Figure 3.5 , below, the same quations are used for plain clearances. However, in order to obtain a better comparison with measurements, a variable subdivision of the support points wes chosen. If the peripheral angles remain unchanged as the flow moves around the corners, then we have, for all support points $\underline{5}$ at the beginning or the radial clearance

$$
\varphi_{s_{1, k}} \cdots \varphi_{E_{n, k}}
$$

$$
\varphi_{S i i_{i}} \varphi_{s_{i-1, k}}+\frac{\Delta z_{i-1}}{T_{5}} \operatorname{tg} \alpha_{s_{i-i, 1}}+\frac{\Delta z_{i}}{r_{5}} \operatorname{tg} \alpha_{3 i, k}
$$

Tigure 3.5 Location of support points for a smooth redial clearance

Pigure 3.6 Iocation of support points for a labywinth clearance
 at the poek, dinco no usocul oscumptions rocerdinc a Fozocity
 the relation- 90 botween the wxport point locetion and the Elow anglen at tho $=20$ acquire portheutar signiricanco. Starting with the lact according to … 3ace 3.6, ebove, that the slow in the tivet chamer becor cuspulent, following a peth at the peximeter of the labysiry chaber that is proportional to the hoight hat the chamer cind to the flow angles at the end of the redial entrance.

$$
\varphi_{s_{i, k},} \varphi_{E_{n, h}}+\frac{h}{i k} \operatorname{ctg} \alpha_{E_{m ; k}}+\frac{\Delta E_{9}}{v_{s}} \operatorname{ctg} \alpha_{s_{1, k}} .
$$

According to this, as in the case or the smoth clearence, the thow line is composed of straight line segments, where the point of interaction of the Ilow lines can be changed by means of the the weightine tactor $0<\mathcal{G}_{\mathrm{g}}<1$, wheh in rigure 3.6 is drewn Tor $\Xi_{\mathrm{z}}=0.5$ 。

In the radial exit, the peripherel angles can be calculated in the same menner as in the entrance. Is a moth radiel clearance precedes the exit, than as a Pirst approzinetion there will be no change in the peripheral angle at the comer to the exit

$$
\varphi_{A_{1, k}}=\psi_{s, n, k}
$$

while in a labyrinth the width of the last chamber must still be taken into consideration:

$$
\varphi_{A, k}=\varphi_{s_{n s, k}}+\frac{\Delta z_{n s}}{r_{s}} d g \alpha_{S_{n, k}} .
$$

Tow the somening powibhozal meger we mhal heve, $2 n$ manocy to T2,

Thus, the path Pollowed by the Pluid Srom the ciearance entrance to tog exit is debemined only by local tlow angles and the aistances to the reterence lines. Obviously, compliceted clearance Sorms can also be studied in this manner, provided an adequats relethonship ean be Lound between the Elow angles at the support points and the peripheral angles. Nore precise predictions - especially in the case of labyrinth seals - can be made only when it becomes possible to obtain empiricel incormation tron flow lines rendered fisible.
3.1.2. Calculation of the control surgeces

In order to determine the locel llow crossosections, some assumptions heve to be made regarding the corresponding width of the strean tube, rat. IE, in agreement with Figure 3.7 , below,

Pigure 3.7 Determination of channel width
we place the lateral limit of the control space between two support points, then we shall have, taking into consideration the derinition of the peripheral angle as shown in Pigure 3.2

$$
\begin{aligned}
& \Delta \varphi_{i, 4}=\frac{1}{2}\left(\varphi_{i, 2}-\varphi_{i, j, j}+2 \pi\right), \\
& \Delta \varphi i, k=\frac{1}{2}\left(\varphi_{i, k+1}-\varphi_{i, k-1}\right), \quad(6-2, \ldots j j) \quad(3.0) \\
& \Delta \varphi_{i, j, j}=\frac{1}{2}\left(\varphi_{i, 1}+2 \pi-\varphi_{i, j, j-1}\right),
\end{aligned}
$$

Assuming a rotor displacement with regard to the housing perellel to the axis, according to Figure 3.1 the local clearance widths remain constant in the redial entrance si en and exit s_{A}, while the radial clearance is dependent on both the peripheral angle ψ and the eccentricity e. To reduce the Gomel structure, we desisted at this point tron also including an inclination of the rotor with respect to the housing. Because or the bending line of the vibrating turbine sheet, the inclinations in the domain of the steps are smell, in any event For this reason we may neglect the expect, at this point.

The local radial clearance width according to figure 3.2 can be satisfactorily approximated by

$$
\tilde{S}=S-. e \cos \varphi
$$

where it is assumed that at a support point ψ_{i} 步 that width will correspond to the average value of $\Delta \psi_{i, k}$. For a sufficiently narrow subdivision at the perimeter, this approximation has no effect on the final result, in comparison to an exact integration. Thus we have, for the local surfaces of all stream tubes,

 sishod by the strean; Tor labysineh soals, Nouman!s [24] monaured values cen be uscd. At conctant scal peak width s, the oseceity hlow crossoscetion cocreases with increasinc radial cleexence widh g, es รhown in figuxe 3.8.

According to it, talning the strean contraction into account, a clearance that is variable along the perimeter becomes somewht more uniform. It remains to be ostablished, however, whether this contraction coexticient is irrestrictedly applicable also to a seal peat with a diagonal flow through it.
3.2 Besic streari bube equetions

An essential adventage of the decomposition into individual strean tubes is that the basic equations of fluid slow mechenies can be setisfied unidimensionelly for every control space.
 1ebyminth theory, as woll as the lews of tubo hydreuidec. In painciple, one could alco calculate conprescibly along the вtroan bube, ucing procedures already trown [15]. However, the conteat of this รbudy essumes incomprosxible Rluide, which scems particulariy permissible, constdering the relatively low pressure drop and Nach numbers hat <0.5 at the clearances considered, especially thet of the zotor.
3.2.1. Boundary conditions at clearance ontry and exit

The pressures and velocities caused in the blede strean must be known immediately at the elearance entrance and exit. Starting trom these conditions, the throughput of each atrean tube will result from the losses in the clearance. Once the averaee crossosection calculations have been performed row a turbine step (ct. section 4.4.1.) it can be generally assumed that the flow will obey the potential vortes law. Through itt we obtein, srom a tangential component $c_{\text {uni }}$ at velocity $c_{\text {nn }}$ at a radius $r_{\text {ma }}$. the tangential component c_{u} at radius re

$$
c_{u} r-c_{u_{m}} r_{m} .
$$

IT we further assume that the axial velocity c sin α is constant along the radius. then we have

$$
c \sin \alpha=c_{m} \sin \alpha_{m} .
$$

Let the density be uniform throughout the channely we can then apply the energy equation

$$
\frac{1}{2} c^{2}+\frac{\rho}{\rho}=\frac{1}{2} c_{m}^{2}+\frac{\rho}{\rho}
$$

It is thus possible to calculate the velocity \underline{e}, the pressure p and the angle of flow of at a radius $\underline{\underline{r}}$.

$$
\left.\begin{array}{l}
c^{2}=c_{m}^{2}\left[\left(\frac{m_{m}^{m}}{w} \cos c_{m}\right)^{2}+\sin ^{2} \alpha_{m}\right] \\
p=p_{m} i \frac{9}{2} e_{m}^{2}\left[1-\left(\frac{c}{c_{m}}\right)^{2}\right] \tag{3.8}\\
\alpha=\arcsin \left(c_{m}^{m} \sin \alpha_{m}\right)
\end{array}\right\}
$$

As a Tixst approximetion this yields the prescures and Volocitien bexore the clearance, at the redif I_{T} of the entrence and E_{A} of the essit.

We may now assume thet at the clearance entrances according to Figure 3.3, 2 flow line exists that separetes the mass strean flowing through the stream tube Erom the main Ilow. Thereby the clearance throughput is no longer detemined only by the static pressure drop, but also by the energy of the incoming Felocities, whose tmpulse detemined the flow direction inside the clearence. By the same tolsen, shearing torees due to mized Iriction at the separeting flow line could act on the clearance Slow, which can be neglected here, however, in comparison to the incoming impulse. The expect of an overlepping in ta Roche's senge (ct. section 2.3.3.) shall be neglected, at this point. But it could be described generally by merns of the loss coerriciente to be introduced later.

At the exit. the clearance flow becomes mixod with the meridian chennel flow; here beceuse or the difrerences in velocity, mixed Triction Torees from the main Slow will act on the clearence ${ }^{\circ}$ s stream tubes. It is conceivable thet during this process part of the kinetic energy of either the clearance flow or main hlow is converied into pressure. However, according to the trenswerse pressure equetion of flow nechanics (cr. [16]), it can be assumed or Por most seal constructions o thet the exiting clearance flow will be subject to the static pressure behind the clearance.

The processce desczibod above Tor the ctomrence ontrence and
 this end we mute pizg theroduce romel coersicsents ros the pressure loss and incowing impulse, whose meraitude will be eramined more closely oniy in section 3.3.

3.2.2. Continuity equetion

For each support point it the continusty equation can be satisried with the throughput of strean tube 5 . It mey be assumed thet in the crossocection, perpendicularly to the Slow direction A_{i}, ginina $_{i}$, there is an average velocity, since in equation (3.7) we already introduced contraction coexricients $\mu_{i, k}$ that take into account a variable velocity distribution within the erfective Rlow cross-section. Theresore the velocitics

$$
w_{i, k}=\frac{\dot{m}_{k}}{\rho A_{i, k} \sin \alpha_{i, k}}
$$

can be calculated for all support points in the cleaxances \mathbb{E}, S and A, from the throughput $\dot{m}_{\text {gr }}$ or the stream tube and at constent density.

3.2.3. Energy equation

In each stream tube, the energy equations cen be set up tron one support point to the next. According to section 3.2. we must distinguish here between three basic types of control speces. which are sumarized in Figure 3.9, below. The pressure losses caused by friction against the channel walls or by velocity vortering can be assumed to be proportional to the kinetic energy of the flow, with a loss coerficient $5_{\text {, }}$

$$
\begin{equation*}
p_{v}=\frac{9}{3} u_{\operatorname{ta}}^{2} \xi . \tag{3.10}
\end{equation*}
$$

Doponding on the deatnition in the energy equation, this pressure jose cen occur ahead of or behind the reserence point at which the wveraec volociby is w.

Figure 3.9 Control spaces in a stream tube

The control spaces were selected such that the velocities at locetions I and II could be determined with the continuity equation, from the local surfaces and thow angles. The total pressure loss occurcing in the control space is composed of two portions, proportional to the finetic energy of the entrance and exit velocity. Hence the energy equation is

$$
\frac{P_{2}}{9}+\frac{1}{2} w_{3}^{2}\left(1-\xi_{g}\right)=\frac{P_{1}}{9}+\frac{1}{2} w_{I}^{2}\left(1+\xi_{I}\right)
$$

The lose cooticionts 5 depond escontiajiy on the locel clearance form and the Lencth of bhe strean bube under consideretion. They are discucced in nore detait in sectson 3.3. Tor a plain radial clearance, according to picure 3.5, two noighboring control spaces will heve loss coexticients of the same megnitude ancad and behind a supgost point, beceuse the Slow paths ere of qual length due to the compostiton on the slow line. Hence we heve

$$
\begin{equation*}
\xi_{2 i}=\xi_{I+1}, \quad(i-1, \ldots, n-1) . \tag{3.82}
\end{equation*}
$$

This equation can also be used as an approsimetion for the clearance in the radial eatrance and exit, as in ficure 3.4. In a labyrinth, the loss coexpicient ζ_{I} in enerey equation (3.11) describes the portion of Einetic energy thet is conserved due to incomplete vortexing. SII describes the entrance loss caused by the flow towards the peak. However, since lossen are smaller during llow acceleration then they are for hlow retardation, in a lebyrinth we can generally set $\zeta_{I I}=0$ 。

With a diagonel or transverge flow around a comer, as in rigure 3.8, the determination of the loss coercicients is particulariy problematic. Here we can derine coerficients ζ^{2} and ζ^{ψ} tor the pressure losses, caused by the normel, or respectively, the tengential velocity components. The energy equetion then becomes

$$
\begin{aligned}
\frac{P_{I}}{\rho} & +\frac{1}{2} W_{I}^{2}\left[\sin ^{2} \alpha_{I}\left(1-\xi_{I}^{z}\right)+\cos ^{2} \alpha_{I}\left(1-\xi_{I}^{\varphi}\right)\right] \\
& =\frac{P_{I}}{\rho}+\frac{1}{2} W_{I I}^{2}\left[\sin ^{2} \alpha_{I}\left(1+\xi_{I}^{z}\right)+\cos ^{2} \alpha_{I I}\left(1+\frac{\rho}{I}\right)\right]
\end{aligned}
$$

The above description makes a simpler estinate of the pressure loss at a corner possible: for $\zeta^{2}=\zeta^{\psi}$ wo obtain the same relationship of equation (3.11), in which the entire pressure loss in the control room is divided into inclow and outllow
velocity components.

Ritur tine cenczol chergy equetions (3.11) and 3.13) wo can deseribe the prossure drop (see wable 3.1. below) along the

TABLH 3.1 Tnergy equetions Tor the strean tube

 BLiminoting bin velocities by meanc ox the continuity equetion (3.9), wo obtein the prescure direcroncos between noichborine support points as a function of the strean tube sthroughput, the local elow crossmections and angles, and the ompiricelly determined pressure loss coerticients. For the angles we introduced the transtometion

$$
\frac{1}{\sin ^{2} \alpha}=1+\operatorname{ctg}^{2} \alpha
$$

we shall need later. The relationships of the loss coercicients for smoth clearances in accordance with equation (3.12) is also taken into consideration. Introducing the control megnitude

$$
\left.\begin{array}{ll}
f_{\mathrm{L}}=1 & \text { P1ain clearance } \\
\mathrm{f}_{\mathrm{L}}=0 & \text { Labyrinth }\left(\zeta_{I I}=0\right)
\end{array}\right\} \quad(3.14)
$$

the equations given can be applied also to a labyrinth with a lossriree afrlus to the seal peak. In general the loss coefricients contain the subscript of the support point under consideration; a complete compilation is presented in Table 3.5.

By addition of all the energy equations in Table 3.1, we obtain a single equation that allows us to determine the throughput of a stream tube as a function of the total pressure diferential available, provided the areas, angles and loss coerficients are known. Since the kinetic energy (velocity energy) of the tangential components before and after the clearance have no effect on the throughput (cr. section 3.2.6.), we derine the total pressure loss without that portion:

$$
\left.\Delta P_{B}=P_{E}-P_{A}+\frac{\rho}{2} c_{E}^{2} \sin ^{2} \alpha_{E}(1-\}_{E G}^{z}\right)-\frac{\rho}{2} c_{A}^{2} \sin ^{2} \alpha_{A}\left(1-\oint_{C A}^{z}\right)
$$

The throughput equation then is of the form

$$
\begin{align*}
\Delta p_{a}= & -\frac{\rho_{2}}{2} e_{k}^{2} \cos ^{2} \alpha_{E}\left(1-g_{E E}^{\varphi}\right)+Y_{2}^{2} c_{A}^{2} \cos ^{2} \alpha_{A}\left(1-\xi_{e A}^{\varphi}\right) \\
& +\frac{1}{2} \frac{\dot{n}^{2}}{3} \sum_{x}^{n} \frac{1}{\dot{H}_{x}^{2}} \xi_{x}\left(1+\operatorname{ctg}^{2} \alpha_{x}\right) . \tag{3.10}
\end{align*}
$$

However, since the angles are also a Tunction of the throughput - as we mhall see in the following section - some special considerations (see section 3.2.5.) must still be applied to these caleulations. Accordingly, Table 3.1 provides the entire pressure distribution through all support goints ist in the seal cleaxance.

3.2.4. Momentum equation

The chenge in a monentum entering and leaving a control surface is equal to the sum or all extemal rorces acting on the control space. If the momentum change is to be calculated in this manner. the extemal forces have to be sureiciently known. On a control space as shown in rigure 3.9 there act - disregerding gravitational and centritugal torces - compressive lorces at the limits as well as supporting forces due to Triction against channel walls. Applying the monentum theorem perpendicularly to the entrance and exit surfaces is unfavoreble for the control space selected, since it requires knowledge of the pressures acting on the end plenes A_{I} and $A_{I I}$ from the energy equation. If the momentum theorein is applied in the tancential direction, then these compressive torces are eliminated. Then only the much smaller forces acting on the lateral himits of the stream tube must be determined by iteration rrom a pressure distribution along the perineter.

If we tale into consideration variable radii at the entrance and emit of a control space, as in rigure 3.9 , then the momentum

$$
\begin{array}{r}
m\left[r_{I} w_{I} \cos \alpha_{I}-r_{I} w_{I} \cos \alpha_{I}\right]+r_{I} P_{I}+r_{I} P_{I} \\
 \tag{3.17}\\
-r_{I} S_{I} \cos \alpha_{I}=r_{I} S_{I} \cos \alpha_{I} * 0
\end{array}
$$

The Ping t tem contains the changes in torgionej forcer Trom entrance I to exit II, where the dixfexing yodij heve an exiect only in clearances with m reaiel Tlow directione The nexst term Gefers to the compressive and supporting torces entective at the control space surteces, which due to wall friction on kinetic energy vortexing ect egeingt the Thow dixection, in e inest approximetion. Fox the momentum equetion above it must be assumed that no moments mpe exerted on the control space due to the Porces acting on it, which is pleusible ix we take into consideration the inpulse iorces nommel to the peripherai direction.

From considenetions besed on e imple control mpeces it cen be reasoned thet inictionel Tonces as well as those thet belance the flow during vortexing. must be proportional to the throushput nid the velocity dexined as retencnce velocity in the energy equetion. Thus, by means of coerijcients $\bar{\zeta}$ we can in generei encompess the support forces

$$
S=\dot{m} W_{m} \xi
$$

(3.18)
that are active due to wall friction. The magnitude of these impulse loss coerricients $\bar{\zeta}$ is determined in section 3.3 in connection with the pressure loss coefficients ζ.

The compressive rorces P acting on the control space are determined tron clearance geometry and the pressure distribution. Hence, the calculation of the compressive forces

Is poscebie oniy when the procsure dictribution in al2 stroan tubes hes been deternined. The variation of the pressure along tho portineter ean be reprosented at locations it by means of the Fowsice sexies

$$
\begin{align*}
P_{1}(\varphi)=a_{0} & +a_{n} \cos \varphi=a_{2} \cos 2 \varphi+\ldots+a_{m} \cos m \varphi \\
& +b_{1} \sin \varphi+b_{2} \sin 2 \varphi+\ldots+b_{m} \sin m \varphi . \tag{3.10}
\end{align*}
$$

From \mathfrak{d} known pressures $p_{i, k}$ in a support plane i and the corresponding peripheral angles ψ_{1}, $\mathrm{m}_{\text {p }}$ a meximum of in $=(j / 2)-1$ coerticients cen be detemined for the runction $\mathrm{p}_{\mathrm{i}}(\psi)$, for instance by a least squares fit method. However, since due to their iterative determinetion (section 3.5.) the pressures are not given exactly, a curveritting with fewer coefficients can lead to bettor convergence of the calculation procedure, especially for labyrinths.

According to Figure 3.10 , the resulting tangential compressive

Figure 3.10 Compressive Torees acting on the control space
 sides on the tree portions of the stream trbe. To this must be added the gupporiting force S_{i}, erezted on the riuid as a consequence of the chanme curvature. Tor a minple celculation of these 2 orces it is ascumed thet the pressure distribution and the variable clearance width of a support plane $i=$ are constant over the width Δz_{i}. Tror a sniooth clearence, it is possible to attein on exact solution with surciciently nerrow apacing of the support points in the glow direction: Sor a labysinth, inctead. beceuse of the unknown pressure distribution inside the chember, no nore precise considerations are possible. with a variable clearance wideh

$$
\widetilde{s}_{H}=h+s-e \cos \varphi
$$

which tates into consideration the height of the labyrinth chamber, the individual Sorces can be determined across the wideh Δz.

$$
\left.\begin{array}{l}
P_{a}=\Delta z \tilde{S}_{H}\left(\varphi_{a}\right) p\left(\varphi_{a}\right), \\
P_{b}=\Delta z \tilde{s}_{1}(\varphi b) P\left(\varphi_{b}\right), \tag{3.20}\\
S_{t}=\Delta z \int_{\varphi_{a}}^{q} \frac{d s_{H}}{d \varphi} p(\varphi) d \varphi=\Delta z e \int_{\varphi_{a}}^{\varphi_{b}} p(\varphi) \sin \varphi d \varphi .
\end{array}\right\}
$$

Ey introducing the coerficients a_{n} and b_{m} of the pressure distribution (3.19), these Torces can be calculated within the prescribed interval ψ_{2} to ψ_{b} in the control space. The determined integrals occurring for the support loree S_{t} are of the form

$$
\begin{aligned}
& \int_{\varphi_{0}}^{\varphi_{0}} a_{x} \cos x \varphi \sin \varphi d \varphi, \\
& \int_{\varphi_{0}} b_{x} \sin x \varphi \sin \varphi d \varphi .
\end{aligned}
$$

Their solution is ceneramy possible, with the usueniy tabulated Sommies, for may numbes of coexticients and shall be assumed mown, here. The nesulting tangential compressive force acting on the control spece now is

$$
\begin{aligned}
P_{i, k}=\Delta z_{i}\{ & {\left[(h+s)\left[p\left(\varphi_{a}\right)-p\left(\varphi_{b}\right)\right]\right.} \\
& -e\left[\cos \varphi_{p} p\left(\varphi_{a}\right)-\cos \varphi_{b} p\left(\varphi_{b}\right)\right] \\
& \left.+e \int_{\varphi_{a}}^{\varphi_{b}} p(\varphi) \sin \varphi d \varphi\right\}_{i, k}
\end{aligned}
$$

It can be shown thet in we assume $p(\psi)=$ constant, the resulting compressive Toree vanishes. In a labyrinth the exfect of the compressive Sorces increases with increasing chamber height and Tor variable radial clearance widths is dependent on the local gradient ds/d 4 . However, the sum of all the compressive forces along the perimeter must be zero. For the radial entrance E and exit A the calculation pereomed above Sor the compressive Porces acting on the tree portion of the control space is much simpler, since the supportive Sorces $S_{t}(3.20)$ vanish, because of the constant clearance width.

Once all external forces in the impulse monent equation (3.18) have been calculated, that equation can be used to calculate the Slow angles at a support point II, ix thet angle is known for the imediately preceding support point I. Since at the entrance the flow angle is given by the main flow in the mexidian chennel, in conformence to Figure 3.3, the angles at all other
support points cen be calcunated. Using continuiby equetion (3.9), wo obtein the bystem of equabions of babio 3.2 gos the ancular changes along the strean tube f. The bapulse lows cocrcicients $\overline{5}$ ers indersed here in a mencer giniler to thet ot

TABLT 3.2 Strem tube impuise equejions

 the cloarnnce oxit, the liow ancle of the lant mupport location
 is detominca in section 3.3.4. in connection with the Locs cocreiciones.

It cen be interred directiy from the monentur equetions thet Sor a reduction of the crowsosectional arees A, Srow one gupport point to the next, the thow enegle must inereese. Becouse of triction or vortezing, $\bar{\zeta}>0$, of the velociby enerey a reduction in the torginnal tores is obteined almo ror constant suxecen.
3.2.5. Throughput calculation

The Ilow angles in teble 3.2 can be represented, tor any arbitrasy aupport point, as a function of the gerean tube throughput. in the Sorm

$$
\operatorname{sictg} a_{i, k}=A_{i, k}\left[\sum_{i_{i k}}^{g} c_{E} \cos \alpha_{E} b_{i, k}+\sum_{i=1}^{g} c_{i, k}\right] . \quad(3.22)
$$

Hare, the coexticients bindicate the angular changes due to the support forces. while the coexricients e rexlect the exxect of external compressive Torces. Besed on the impulse equations in Teble 3.2, these coexticients were calculated ros all the support points in a strean tube, as shown in Table 3.3.

IT equetion (3.22) is repleced in the energy equation in table 3.1, an equation is obtained for the calcuiation of the throughure, thet in comparison to equation (3.16) contains a combination of the coerricients mentioned above, instead of the angles:

$$
\begin{align*}
& S_{B}-\frac{1}{2} \frac{\dot{m}^{2}}{\xi} 亏_{3}+\frac{g}{2} c_{E}^{2} \cos ^{2} c_{\varepsilon}\left[S_{b}-\left(1-\xi_{G E}\right)\right] \\
& +\frac{\rho}{2}\left[\frac{c_{E} \cos \alpha_{E}}{\dot{m}} S_{b c}+\frac{1}{\dot{m}^{2}} S_{C}\right]+\frac{\rho}{2} C_{A}^{2} \cos ^{2} \alpha_{A}(1-\text { gci }) . \tag{3.23}
\end{align*}
$$

The cums $\$$ are cosctrmeted very ginilerig to oceh others and cen bo stably represented using the some in table 3.4

TABLe 3.4 Sw as to calculate blaroughout with equation (3.23)

$$
\begin{aligned}
& +\frac{\xi_{A S}^{2}}{A_{A_{i}}^{2}}+\sum_{i-1}^{n A-1}\left(\frac{\xi_{A_{i}}}{A_{A i}^{2}}+\frac{\zeta_{A_{i+1}}}{A_{A i+9}^{2}}\right)+\frac{\xi_{W_{A}}^{2}}{A_{A K A}^{2}} \\
& S_{b}=S_{y \text { with: }} Y_{E_{i}}=b_{E_{i}}^{2} \quad Y_{S i}=b_{S_{i}}^{2} \quad Y_{A i}=b_{A i}^{2} \\
& S_{b c} \hat{} \hat{} S_{y} \text { with: } Y_{E_{i}}=2 b_{E_{i}} G_{\varepsilon_{i}} Y_{S_{i}}=2 b_{S_{i}} c_{S_{i}} Y_{a_{i}}=2 b_{A i} c_{A_{i}} \\
& S_{C} \equiv S_{y \text { with: }} Y_{E i}=C_{E i}^{2} \quad Y_{S i}=C_{S i}^{2} \quad Y_{A i}=c_{A i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\oint_{A S}^{\varphi} Y_{A 1}+\sum_{i=1}^{m a n-1}\left(\xi_{A_{i}} y_{A_{i}}+\xi_{A i+1} y_{A i+1}\right)+\oint_{W A}^{\varphi} y_{A n A}
\end{aligned}
$$

By combining the energy and momentum equations, the throughput is now given by a single equation, readily solved by iteration. It is possible in principle, however, to first calculate the angles from table 3.2 and then the throughput using equation
(3.16). 02 cousse, in thet casc the celculations zequirod increase conciderably, depending on the meynitude ot the torgional Lorces at the entrance. Rowever, the underiying assumpion in throuchput calculations according to the ebove equetion is a knowledge or the locel thow crocsosections and lose coesticients, which can be obteined by iteration tron the courge of the Rlow lines.
3.2.6. Discussion or the besic equations using a simple clearance shape

A dimensionless description of the basic equations for a strean tube is possible only ir the boundary conditions ahead of and behind the clearance are eliminated, while retaining the exfect of the seal geometry. Since as will be shown later, the loss coetricients introduced depend on the local Tlow angle and Reynold's number, a complete similerity can not be attained for difrerent initial pressures and velocities.

The total pressure differential trom equetion (3.15) is chosen as the reierence magnitude, which besides the static pressure difference conteins only the axial components of the velocities ahead ot and behind the clearance. To describe the torsionel forces, the dynmic pressure of the tangential component of the corresponding velocity is related to this total pressure diprerential:

$$
\begin{align*}
& C_{E}^{*}=\frac{\frac{\rho}{2} c_{E}^{2} \cos ^{2} \alpha_{E}}{L_{P_{B}}}, \tag{3.28}\\
& C_{A}^{*}=\frac{\frac{1}{2} c_{A}^{2} \cos ^{2} \alpha_{A}}{\Delta P_{B}} . \tag{3.25}
\end{align*}
$$

While the magnitudes included above are independent of the
 chronchave

$$
A_{6}=2=\Gamma_{8} s_{3} . \quad,(3.20)
$$

For a centrel rotos position, $36 \% \xi_{B}$ be the smajest clearance width et a redius x_{2}. Trom the prescure drop ΔD_{B} we can now detemine a throughputs.

$$
\begin{equation*}
\dot{m}_{\mathrm{B}}=A_{\mathrm{B}} \sqrt{2 \varrho \Delta p_{B}}, \tag{3.27}
\end{equation*}
$$

which corresponds to a meximu value, it we start srom the premice that only the velocity energy at the smallest crossesection A_{B} is completely turbulent. We thus obtain a geterence magnitude to judge the quality of the seai. On the other hand, with the introduction of the reserence area mentioned, we can plot the variable throughput $\dot{m}_{\text {g }}$ of the strean pipe, as a Tunction or the seal clearance's perimeter. To obtain a simple description of a strean tube's besic equations, we shall neglect here the compressive forces at the surtaces of the control space, which appears permissible at least for smooth clearences (ci. section 3.6). IT we Turthermore consider a Ilow not arrected by mired friction torces at the exit, then in equation (3.23) the sums S_{b} and $S_{b c}$ are eliminated. With the recerence magnitudes introduced eaziler, we now have for the throughput

$$
\begin{equation*}
\frac{m_{k}}{m_{B}}=\sqrt{\frac{\left.1+C_{E}^{*}\left[11-g_{E G}^{\varphi}\right)-S_{b}\right]-C_{A}^{*}\left(1-f_{A A}^{\varphi}\right)}{S_{g} A_{B}^{2}}} \tag{3.28}
\end{equation*}
$$

Since the sums S_{f} and S_{b} in Teble 3.4 are quite large, we shall show the essential relationships with the example of a labyrinth with n sealing peats and without radial entrance or exit. Here we need consider only the coerficients ζ_{CT} and $\bar{\zeta}_{\mathrm{CE}}$ of the velocity ahead of the clearance, as well as the pressure loss
 poets. We thus have the following conditions:

$$
\begin{aligned}
& n E=0, \quad n A=0, \\
& A_{E_{1}}=A_{S_{1}} \approx A_{1}, \quad A_{A_{n A}}=A_{S_{r 5}} \approx A_{n} ; \\
& \xi_{W E}^{z}=\xi_{W E}^{Q}-\xi_{W E}=0, \quad \xi_{W A}^{z}-\xi_{W M A}^{(G)} \xi_{n}, \xi_{W A A}=\xi_{n}, \\
& \oint_{C A}^{Z}=\int_{C A}^{Q}=1 .
\end{aligned}
$$

153

For the coefficients of table 3.3 we now have

$$
\begin{aligned}
& b_{s_{1}}=\left(1-\xi_{c \varepsilon}\right), \\
& b_{s_{i+1}}=\left(1-\xi_{c E}\right) \prod_{v * 1}^{i}\left(1-\xi_{v}\right), \quad(i-2, \ldots, n),
\end{aligned}
$$

From this we obtain the sums of Table 3.4,

$$
\begin{aligned}
& S_{g}=\sum_{i=1}^{n} \frac{S_{i}}{A_{i}^{2}}, \\
& S_{b}=\left(1-\bar{\xi}_{c s}\right)^{2} \sum_{i=1}^{n}\left(\xi_{i} \prod_{v=1}^{i-1}\left(1-\bar{\xi}_{r v}\right)^{2}\right),
\end{aligned}
$$

where $\mathfrak{F o r} i=1$ the product above takes the value

$$
\prod_{v=1}^{0}\left(1-\tilde{\xi}_{v}\right)^{2}=1
$$

If we take the dependence on the peripheral angle into account. described by the subscript of the stream tube k, then we have, using equation (3.28), the referred throughput

The structure of the cquetion in meintained even it we tate into consideretion 017 the 2oss coesticients deeined in the previous sections sor more cenerel cleazence town. In this cese, just the sumberms in the numeretor and the denominetor wis become 2arger.

Is cor 0 centrei rotor position we assume cqually siged flow crossoscctions at all peaks, then the throughput - Sor complete Vortexing of the velocity enerey -will be proportionel to $1 / \sqrt{2}$ in the known mennex, where n is the number oi seel peats. Assuming equel totel pressure dirferentials, d decrease in throughput could occur due to an arflux affected by torgional forces, if the expression in the rounded bracket of equetion (3.29) becomes less than qero. For this, the relationship between the coexticients ζ and $\bar{\zeta}-$ which will be discussed in more detail in section 3.3.2. - is of primery importence.

The local flow angles can be determined, in the example chosen, at an arbitrary support point $1>x \geq n$ in stream tube Eg from Teble 3.2

$$
\operatorname{ctg} \alpha_{x, k}=c_{E} \cos \alpha_{E} \frac{\rho}{\dot{m}_{k}} A_{x, k}\left(1-\bar{j}_{G \sigma}\right) \prod_{\nu=1}^{x \cdot m}\left(1-\bar{j}_{\nu, k}\right) . \quad(3.30)
$$

In a similar manner it is possible to calculate local pressures in the clearance from the differences for location x, in Teble 3.1

$$
P_{x, k}=P_{A}+\frac{1}{2} \frac{\dot{m}_{k}^{2}}{\rho}\left\{\sum_{i=x}^{n}\left(\xi_{i} \frac{1+\operatorname{ctg}^{2} \alpha_{i}}{A_{i}^{2}}\right)-\frac{1+\operatorname{ctg}^{2} \alpha_{x}}{A_{x}^{2}}\right\}_{k} \cdot(3.31)
$$

With the throughput (3.29) and the Llow angles above it is now possible to describe the pressure distribution only in terms of
loss coerticients and the locel surtaces. As a spectel casc, and玉s shejt bo shown yet (ct. equation (3.49)), we cen ascume a dependence of the monentun loss coexticients $\overline{\mathrm{F}}$ on the pressure loss coexticients ζ, of the Porm

$$
\left(1-j_{i}\right)^{2}=1-\xi_{i} \quad \text { and } \quad\left(1-\xi_{c c}\right)^{2}=1-\xi_{c E}^{\ell}
$$

In this manner the throughput wouid be independent of the magnitude of the relative arclux enerey $C_{\text {Cl }}$ and we obtein. from equation (3.29),

$$
\begin{equation*}
\frac{\dot{m}_{k}}{\dot{m}_{8}}=\frac{1}{\sqrt{\sum_{i=1}^{n}\left(\xi_{i, k} \frac{A_{i}^{2}}{A_{i, k}^{2}}\right)}} \tag{3.32}
\end{equation*}
$$

Under these assumptions, the flow angles calculated above (3.30) can be described very simply as a Tunction of the race areas A of the control spaces and the loss coerricients, for a oocation过

$$
\operatorname{ctg}^{2} \alpha_{x, k}=C_{E}^{*} A_{x, k}^{2}\left(1-\xi \xi_{j k}^{\varphi}\right) \prod_{k=1}^{x-1}\left(1-\xi_{p, k}\right) \cdot \sum_{i=1}^{n} \frac{\xi_{i, k}}{A_{i, k}^{2}} \cdot(3.33)
$$

According to this equation, for equal surfaces, with increasing torsional exfects at the entrance and lerger pressure loss coefricients, there will be snaller flow angles in the clearance. Along the clearanui ($3>1$), however, with complete vortexing ($\zeta=1$) a purely axial flow will be achieved, with $\operatorname{ctg} \alpha=0$. Pressure at the supporit points can be rendered in a dimensionless manner with equations (3.31) to (3.33)

$$
\begin{equation*}
\frac{p \times, k-p A}{\Delta p_{B}}=\frac{-\frac{1}{\beta_{i, k}}+\sum_{i=x}^{w} \frac{\xi_{i, k}}{A_{i, k}}}{\sum_{i=1}^{n} \frac{\xi_{i, k}}{A_{i, k}}} . \tag{3.34}
\end{equation*}
$$

Here the exfect of corsional influx can no longer be directly recognized, gince now it is limited to changes in the local sursaces (3.7), which depending on the course of the flow lines (3.3) are e tunction of the angles (3.33). It can be shown, however, thet gor strean pipes with decreasing cross-sections there is a pressure increase, compared to those in which the crossosections increase in the flow direction. If, for an eccentrically positioned rotor, we staxt fron the premise that the flow through the elearance proceeds in the same direction anywhere along the perimeter, then there will be a higher pressure ahead of the narrowest clearance than behind it, due to the surface retios. For the rest, equation (3.34) applies to any clearance form, provided the local flow crossesections and loss coefricients are known. This equation is hence particularly well suited to qualitative studies unarfected by a balancing flow (ce. section 2.3.2.)

If one assumes that the flow through the clearance is purely arial, then for equal radial clearance widths, the crossosections along a strean tube become constant, and we / 5h obtain the pressure distribution

$$
\begin{equation*}
\frac{P_{i k}, P_{A}}{\Delta P_{B}}=\frac{-1+\sum_{i=x}^{n} \xi_{i, k}}{\sum_{i=1}^{n} \xi_{i, k}} . \tag{3.35}
\end{equation*}
$$

For constant vortexing coerficients ζ, there hence will be no pressure diPterences along the perimeter even for eccentric rotor positions. However, if the pressure loss cosfficient is inversely proportional to the clearance width o as in the plain
cleasence - then a prescuro marimun will occus at the nersoweet cleasance, as in Lomasin's case (ce. section 2.3.2.). Fumbes prescure distzibution tondencies in a ceed cleerance with axthus aftected by torsionel forces enn be derived tron the smple calculation in gecetion 3.6.
3.3. Coerricients to describe llow processes within the clearance

Table 3.5 is a compilation of all the coerticients introduced to describe the clearance Rlow. The tirst column lists the pressure

TABLE 3.5 Characterigation of loss coericients

loss cooctictonts, whilo the second dispieys the mematures recponaible for encular chenges according to the monantua theorem. Eroan the corresponding rexerence velocities it is poscible to readily recognize the nigniricance of the individuel gubeciptg, in conjunction with the locetion designetions shown in Pigure 3.3.

Below we shall determine the pressure loss coexticients 5 along the strean tube with equations tron the litereture, while the monentur loss coetricients $\bar{\zeta}$ can be determined only by means of analocy conciderations. Since the relation between these two megnitudes is very essential to the throughput of the strean tube, an additional condition at the clearance entrance must be setisfied, which establishes the relation between the incominc velocity energy and the entrance mement (ce section 3.3.2.3.)
3.3.1 Pressure loss coexricients

3.3.1.1. Plein clearance

The loss coexticient ζ, already introduced for the energy equation (cT. equation 3.10), can be determined - in the case of a plain clearance - according to the laws of hydraulics: from the length $\underline{\underline{D}}$ o the htorraulc diameter $d_{\text {hydr }}$ and the tube's friction coexticient $\lambda_{\text {. According to [16], the bydraulic }}$ diameter

$$
d_{\text {hydr }}=\frac{4 \mathrm{~A}}{U_{\text {ben }}}=2 \mathrm{~s}
$$

is derined as the ratio of four tines the flow eross-section to the wetted perimeter, and corresponds here to twice the cleazance width. The tube's iriction coerticient depends on the tube wall roughness and on Reynold's number

$$
R_{e}=\frac{w 2 s}{v}
$$

Tos hydreulically mooth wo11s, meerured valuen on those in Ficerape 3.11 (cx. Truckenbrod [16]) can be used. At tho seed

Fitgure 3.11 Tube Triction coexticients for hydraulically smooth wells
clearances in turbine stators, we shall assume here, without restrictions, the calculation procedure for turbulent /57 Slow. Thus we have, for the friction coexticient in von Karmen's rown

$$
\begin{equation*}
\frac{1}{\sqrt{\lambda}}=2,0 \lg (\operatorname{Re} \sqrt{\lambda})-1,0 . \tag{3.36}
\end{equation*}
$$

Since the flow lines in the clearance cen be represented sectionally by straight lines, the flow gaths 1 cen be represented (see pigure 3.12, below) as a runction of the Slow angle and the distance 2 to the recerence line. We then obtain, for the loss coorcicients in the case or plain clearances

$$
\xi_{j, k}=\lambda\{\operatorname{Re}\} \frac{a}{2 \xi \sin \alpha_{i, k}},
$$

Entrance:

$$
\tilde{s}^{\hat{2}} s_{\mathrm{A}}: \quad a \hat{m} \Delta r_{\mathrm{A}}
$$

Figure 3.12 For the calculation of loss coefticients in a plain clearance

In the considerations above it wes assumed that both channel wells were at rest. In order to take into consideration the modisied preasure loss for rotating channel walls, we stert from the premise - as we did betore - that the velocities w and their directions α represent arerage values across the clearance. Thus, the reletive motion will then afrect only the direction of the stream tube and the pressure drop. The resistance rorces o which in a Triction bearing, for instances ozuse the cheracteristic pressure build-up ahead of the nerrowest clearance - are diswegarded here, because or "ie considerations in section 2.3. 2 .

Accoxding to Figure 3.13, below, at the wali rotating with a tangential velocity u, the relative velociby y will exist, as opposed to the absolute velocity at a fixed wall. W. If we consider only a wetted sumace of the clearance, then the

Figure 3.13 Velocities cumg channel well rotation
hydreulic dinmeter becones $d_{h y d r}=4$. Accordingly, the friction coersicient moving alone the rixed wall from i to II will be only halt that or equetion (3.36). At the rotating surface, the fiuid treverses the path Irom I to II at relative velociby v and suffers the pressure drop

$$
p_{v_{r c t}}=\frac{\rho}{2} v^{2} \frac{\lambda l}{45 \sin \beta} .
$$

in the process, as a Tirst approximetiono

If we assume an average friction coctricient λ Tor the pressure loss of both clearance surtaces, then the total pressure loss using the dexinition in equetion (3.10) -wil be

$$
\begin{equation*}
\xi_{R}=\frac{1}{2} g\left(1+\frac{\sin \alpha}{\sin \beta} \frac{v^{n}}{w^{2}}\right) \tag{3.37}
\end{equation*}
$$

The coerficient ζ to be used for the pressure loss at a eised channel wall is that of equation (3.36). The local relative velocities v and their angles β are easily calculated, from the geometry in Figure 3.13, ws Eunction si the absciute velocity w, its angle α and the tancential velocity u. At leest for lows with a strong torsionel exrect, the equetic. above will provide an estimate of the modiried pressure loss.
3.3.1.2. Labyminti clearenco
 vorbering or tho velocitics were inverticeted in deteit by crodeck [26]. Trinc an oxprossion tow the misod kriction botwoon tho clujd elowing away 2rom the seal peats and that at rest in the chenber. whito bexime into accomit the triction againet the tised chanel wa2l. the Lapulse equation wes satistied witn the gtipulation that the prencure analned constent during vortexing. By means of a Traction coctricasmb $\lambda_{I_{0}}$-which conteins both the wall Triction and the mired frietion o $2 t$ is possible to calculate the velocity reduced along the length in in the chamber.

$$
w_{K}=w_{1} \frac{1}{1+\lambda_{l} \frac{1}{20}}
$$

as a punction os the velocity wit the preceding peats. Teking this residual velocity into account, the energy equation becomea

$$
p_{1}+\frac{g}{2} w_{w x}^{2}=p_{13}+\frac{9}{2} w_{w}^{2} .
$$

With the detinition of equation (3.11), we obtain Groddeck's loss cospricient

$$
\delta_{G}=1-\left(\frac{1}{1+\lambda_{2} \frac{t}{2 s}}\right)^{2} . \quad\{3.30\}
$$

By applying the impulse equation nomally to the thow, Grodeck 2ano obtains a dependency on the pressure increase in the labyminth chamber, due to the broadening of the strean upon leaving the peak. This cauces an additionsl increase in the throughput, which according to Grodeck, however, can be neglected in most prectical cases. The efiect or wall rotation
cor2d bo handed by Groddoct' oquation es in the cero or the plain cloasenco. ise mhell diseggre st hore, howover, ,ince a
 Co vortexine is poessible oniy mith ascescusty.

In an analocers conetideration, Touman [24] toot tnto eccount in a dioptric lebysinth - the portion ot slow onercy, (which in contrest to a true labysinth is retesned) sor which the velocity energy is completely turbuleat. When he applice it to a seel whth a nuber ig or peats, he obtained a so-celled ercess pressure tector, which can be described by means of the loss coescicient $\zeta_{\text {, dexined in equetion (3.10): }}$

$$
k u=\sqrt{\frac{z}{\xi x+1-\xi}} .
$$

For a large number of seal peaks $4 \rightarrow \infty$, eccording to [24] this excess pressure tactor is a linear Tun.tion ot the ratio between clearance width and distance it of the pealss

$$
k_{0}=1+m \frac{5}{4},
$$

where the proportionelity factor m can be determiner trom comparaive studies between dioptric and true labyrinths. We then obtain as loss coefricient for a seal peok,

$$
\begin{equation*}
\rho_{N}=\left(\frac{1}{1+m \frac{s}{t}}\right)^{2} . \tag{3.39}
\end{equation*}
$$

This pressure loss coetrictent after Neunenn is shown in Figure 3.14, below, in compasison to Groddeck's equation (see equetion (3.38)). With the ratio t / s, both equations a Eunction only of the seal's geonetry, while at least for the hydraulicelly /61 snooth tube there is always the additional influence of the Reynolds number. For the resistance coercicient λ_{I}, Croddect

Tigure 3.14 Toss coespicient tor a labyrinth seal - after Neumenn [24]: -om after Groddeck [26]
gives e value of 0.1. Nemmenn using Dgijo method (ct. also [15]) Tinds a proportioneliby Pactor on $=16.6$: from his own calculetons [25], it is m $=8.9$. At mall clearance widths os respectively, lerge distences t between the seal peaks, the 1indting value $\zeta=1$ ig attained, corresponding to complete vortering. Tquetions of this kind can be used also, as epprosimetions, for tlow astected by torsionel forces. is instead of the chember width we use the length of the locel flow Iine, in accordance with Figure 3.12. Using a local clearance width a at a seal peat, according to [24] the pressure loss coerepcient for a labyrinth will be

$$
\begin{equation*}
\oint s_{i, k}=\frac{1}{\left(1+m_{i} \frac{s-e \cos \varphi_{s i, k}}{\Delta z_{i} / \sin \alpha_{s_{i, h}}}\right)^{2}} \tag{3.40}
\end{equation*}
$$

Fente, a more meried vortexing of the velocity is achieved ror snell flow angles.
3.3.1.3. Entrance, bend and exit losses
 perpendicularly to the rexeronce odgos. While at the ontrance and the oxit the thow through the turhine geators is ot importance to the lose coerticionts decined hore, at the elow around odges in the radial clearence (bend lons) oniy the locel ceonetry cen be of migniricence.

If we aswum that at the clearance entrance the available velocity energy is Tully used, then the loss coexficients will be taken as $\breve{C H E}_{\mathrm{CL}}^{2}=5 \mathrm{CE}_{\mathrm{E}}=0$ (ct. equation (3.50)). In addition, we must teke an entrance loss into account, relative to the velocity at the rirst support plane. Since the tangentiel component does net change direction in space, we can set the loss coerricient $\boldsymbol{b}^{\mathbb{V}}=0$, while the loss coesricient for the normel component is assumed to be approximetely $\zeta_{\mathrm{fve}}^{2}=0.2$, 2lthough much larger vaiues are also possibie. In principle, loss coerticients could occur here that are dependent on, sey. clearance throughput or, according to section 2.3.3., on local overlapping.

If two plain clearances follow one another, then we can start by applying the bend losses trom tube hydraulies. It must be remembered though, that the llow around such a bend is diagonel and additionally, that it can show very variable entrance and exit surpeces. However, with the energy equation given in (3.15), the possibility exists to concider separately the losses in tangential and in normal direction; here the total pressure loss at a bend can be expressed as a tunction or incluz and outtlow velocities. The pressure losses ceused by the peripherel or tangentiel component of the velocity can be disregerded as ζ. $=0$, following the same considerations as earlier. This means that ir the control space's entrance and exit sureaces are equal, the peripheral velocity is sully meintained. Considering only the normal component, we can use conventional bend losses. although according to [16] these strongly depend on the
conntruchion foma Tow applicetson to ceej cleazances, we could use conctant values $5^{2}=0.2$ to 2.0 , at the pexiphery, whero /63 the cerect of varicine surtace chametemistics cas be descmibed at loast approxtmately by a corresponding subdivision fito local Bnivas and outllow velocities.

II a labyinth seal Rollows a radial catrance, then the velocity vortesing at support locetion $\mathbb{T}_{\text {ne }}$ can be expressed in a manner similas to thet used for a seal peat. It we assume the pessure loss coerticients to be the same por the tangential and the axial components of thet velocity,

$$
\oint_{E S}^{Z}-\zeta_{E S}^{\varphi}=\oint_{E S}
$$

then, in anelogy to equation (3.40), we chould heve

In addition, it would be possible here to provide loss coerricients $\zeta_{S T}$ for the entrance loss at the rixst peak. However, with $\zeta_{S E}^{2}=\zeta_{S E}^{\psi}=0 w e$ shail have to assume that the pressure loss occurring here is negligible compared to the vortering of the tlow-ori velocity at support location $\mathbb{E}_{n T}$. An anologous procedure is possible if a plain seal (outleb) follows a labyrinth seal. In this case we describe the vortering at the last peat by

$$
\xi_{S A}^{z=}-\xi_{S A}^{\varphi}=\xi_{S A}
$$

where the coerricient $\zeta_{S A}$ is to be calculated using equation (3.40). With $\zeta_{A S}^{2}=\zeta_{A S}^{\psi}=0$, any loss at the entrance to the radial exit can be neglected, once again.

Bohind the geal cleaxance, the 320 m in the meridian chemmel trenceers no velocity suergy ($丂_{\mathrm{CA}}=0$) to the eleexance riow. Hence the static pressure of the main strean will be imposed on the exiting 2 tow. Unidez cemtain conditions, whicin depend vexy gtrongly on the geometry of the clesrence exit, a portion on /64 the exitine slow energy can be trencrommed into prescure. This is taken into account by means of exit losses $\zeta_{\text {wh }}^{2}=\zeta_{\text {wis }}^{\psi}<1$, which very sienixicantly axcect the pressure distwibution within the clearance. In the nomal case, however, with $\zeta_{\text {wA }}=1$, we heve to assume thet the velocity is completely turbulent, at the exit.
3.3.2. Tmpulsenloss cocricients as a xunction or pressure loss
3.3.2.1 Anology with a strajght strean tube

The coerricients $\bar{\zeta}$ (equation (3.18)) introduced in the impulse equation $20 r$ the support forces s. which act on the control space due to priction, can be determined - in a straight stream tube with the length I, from Figure 3.12. From the impulse equation 20 the direction of flow

$$
\dot{m}\left(w_{I}-w_{I I}\right)+p_{I} \bar{A}_{I}-p_{I I} \bar{A}_{I I}-S=0
$$

and the energy equetion

$$
\left|P_{I}-p_{2}\right| \frac{1}{g}-\frac{1}{2} w_{I}^{2}-\frac{1}{2} w_{I}^{2}+P_{v} \frac{1}{9}
$$

WE obtain, considering a constant flow crossosection $A_{I}=A_{I I}=$ A sin α, the frictional rorce

$$
S=p_{y} A
$$

2g e Eunction or the prescure homs

$$
f_{v}=\frac{9}{2} w^{2} \xi
$$

 obteined trom the decrease in the spectric kinetic enexgy $\mathrm{P}_{\mathrm{v}}(1 / 0)$ multiplied by the mess hamide the ntrean bube undex consideration,

$$
E_{v}=\frac{i}{\rho} P_{v} \cdot \rho \bar{A} L=S L .
$$

Since this logsoworl must, in turn, be equal to tho groduct between the rwictionel Torce and the Triction path lencth we obtain the same result above. Uning the continuity eguation (3.9) and the pressure loss rron cquetion (3.10). we now obtein the trictional lorce

$$
S=\dot{m} w \frac{1}{2} \delta
$$

(3.42)
at any axbitrary suppor' point. A comperison with the expression chosen for equetion (3.18) provides a simple reletionship between the impulse loss coerricient $\bar{\zeta}$ and the Triction coerticient 5 after equetion (3.36)

$$
\begin{equation*}
\xi_{i, k}=\frac{1}{2} \xi_{i, k} . \tag{3.43}
\end{equation*}
$$

It is assumed bere, however, that both channel walls are at rest. The support force genereted by the triction against the rotating wall is determined similarly to the previous derivation, from a stream tube with an inclination angle β_{0}

$$
S_{106}=P v r o t \quad \bar{A}=\frac{\rho}{2} v^{2} \frac{\lambda 1}{4 \tilde{s} \sin \beta} A \sin \beta, \quad(3.08)
$$

where the relative velocity vis calcusated Eron Ficuxe 3.13. Whe frictional Porces againct the direction of siow - deseribed by the argle 0 o are described by moma of cquation (3.18), in the impulse equetions tor the twacential direction. The zbove rrictional roree on the rotating part, however, according to Figure 3.13 acts at the support point at an angle β. In order to detemine en impulse loss coerticient $\bar{\zeta}_{R}$ which cosresponds to deainition (3.18) at both channel walls. we must hence introduce a correction ractor. As a Tunction or the pressure loss coeflicient 5 Sor two walls at rest (equation (3.36)) we then obtain

$$
\begin{equation*}
\bar{\zeta}_{R}=\frac{1}{4} \zeta\left(1+\frac{v^{2}}{W^{2}} \frac{\cos \beta}{\cos \alpha}\right) \tag{3.45}
\end{equation*}
$$

For large tangential velocities and small torsional expect the iterative consideration of any rotation, using the impulse loss coefricient above, can fail for numerical reasons. In calculations for such cases, the frictional Corce from equetion (3.44) would have to be introduced directly in the impulse equation.
3.3.2.2. Considerations besed on the energy equation

Especially in the application to Slow around bends, we may assume - certainly for a central rotor position - that in the tangential direction there is no pressure loss, but merely a decrease in that velocity component. Consequently, the energy equation (3.16) can be divided into two partial equations, for the pressure loss in nomal direction and the velocity decrease in tangential direction.

$$
\begin{align*}
\frac{1}{\xi}\left(P_{I} w \beta_{I}\right) & =\frac{1}{2} w_{I}^{2} \sin ^{2} \alpha_{I}\left(1+\xi_{I I}^{2}\right)-\frac{1}{2} w_{I}^{2} \sin ^{2} \alpha_{I}\left(1-\xi_{I}^{2}\right), \\
0 & =\frac{1}{2} w_{I I}^{2} \cos ^{2} \alpha_{I}\left(1+\xi_{I}^{4}\right)-\frac{1}{2} w_{I}^{2} \cos ^{2} \alpha_{I}\left(1-\xi_{I}^{\varphi}\right) . \tag{3.46}
\end{align*}
$$

The becond equetzon zielde the seme result as the inpulse cquathon (3.17) is external compressive Torees are neglected,

$$
\left.\begin{array}{l}
1-f_{I}=\sqrt{1-\xi_{I}}, \tag{3.47}\\
1+\xi_{I}=\sqrt{1+\xi_{I}} .
\end{array}\right\}
$$

These reletionships can also be appied to a plain ciearance, and Sor gnall clearance widths - i.e., large pressure loss coerticients - yields more precise results. there. Increasing the number of support locetions, for the same clearance length. the llow paths in a control space will be shorter, and hence the pressure loss coerficients will be smaller. Test calculations show that using equation (3.4 .7), the number of support locations has no noticeable effect provided $\zeta<1$ is maintained. In contresti, this is not valid for equation (3.43), obtained from a simpliried description, on a straight strean tube. Nevertheless, it will lead to the sane result, provided the pressure loss coexficients axe surciciently small.
3.3.2.3. Considerations on a labyinth clearance

The support Sorces that cause a decrease in the torsional errect in a labysinth have already been taken into consideration by impulse equetion 3.17). Since the afllux from the labyrinth chember to an immediately subsequent seal peak wos assumed to occur without losses, the support force acting on the entire control space (cr. Figure 3.9) can be determined by a consideration of only the processes of velocity energy vorteming inside the chember. If it is ascuiac that in a lanyainth chamex as that in Figure 3.15 there is no pressure change due to the turbulence of velocity W_{I}, then the

Figure 3.15 Direction chenge in the labyrinth chamber
residual velocity w_{R} can be detemined by the energy equation

$$
\frac{9}{2} w_{I}^{2}(1-j \Sigma)=\frac{9}{2} w_{15}^{2}
$$

independently of the pressure loss coefficient 5 . Eliminating the chamber velocity, the impulse equations in the tangential direction and perpendicularly to it will be provided thet for a concentric rotor position and constant chamber pressure we disregard the compressive Porces on the control spece's surfaces -

$$
\begin{array}{ll}
\dot{m} w_{I}\left[\cos \alpha_{I}-\cos \alpha_{K} \sqrt{1-\xi_{I}}\right] & -\bar{S} \cos \alpha_{S}=0 \\
\dot{m} w_{I}\left[\sin \alpha_{I}-\sin \alpha_{K} \sqrt{1-\xi_{I}}\right] & -\bar{S} \sin \alpha_{S}=0
\end{array}
$$

The angle α_{K} depends on the processes in the labyrinth chember and can be detemined precisely only from measured flow line courses. It is possible to determine - depending on this angle o the
nupgoting some 5 and jta nacle α_{g},

Sinee impulse equation (3.17) already includes the aswungtion thet the support torce works ageinst the velocity wit the seal peak, it is necessery to introduce a correction factor γ that will taks into account the redirection of flow inside the labyrinth chamber. With the dexinition or the support Sorce by equation (3.18) and the direction established in equation (3.17), using the impulse equation for the tangential direction, we obtain the impulse loss coerticients

$$
\left.\xi=1-\gamma \sqrt{1-\xi} \quad \text { where } \quad \gamma=\frac{\cos \alpha_{k}}{\cos \alpha_{I}} \text {. (} 3.49\right)
$$

According to Figure 3.14, for $\gamma>1$ the stream tube would be redirected in a peripheral direction, for instance, through rotation of the channel well: for $\gamma<1$, larger aftlux angles to the nerit seal peat would be attained. The latter is conceivable ir the vortering of the tengential component were enhanced, for instance by building special devices, such as crossbars, into the labyrinth chambers. On the one hand, this would improve turbulence within the labyrinth chamber. On the other hand, in this manner the velocity becomes only partially turbulent, which corresponds to redirection without pressure loss. This exfect is more thoroughly studied in section 3.6 , using a calcuiation example.

For a total loss of the velocity energy $\zeta=1$, equation (3.49) alwa; ${ }^{3}$ provides, with impulse equation (3.17) - independentily of
 peak; in contreat, without sodirection and without volociby burbuence ($\gamma=1, \zeta=0$) the sewe Xlow ancle as thet at bhe previous peat will be repeated. Thus, the oxece of the redirection sector introduced increases with lower burbulence corricients 5 . Tor the usun seal constructions. however, it /69 should be $\gamma \simeq 1$; then the wanc ingulec loss coexticient is obtained as was Tound trom energy considerations, in the previous section.

Tigure 3.16, below, shows the exfect of the redirection factor on a strean tube. For the sene arslus angle and the sene velocities at the seal peaks, we calculated the outclow angles and the magnitude and direction of support force S. from the

Figure 3.16 Stream tube changes due to the constant $\gamma\left(\zeta=0.3: \alpha_{1}=200 \% A_{I}=A_{I I}\right)$
above relationships. Due to redirection within the chembers, the strean tube is changed considerably. However, as a first approximation we shall assume thet the llow-line course -

ฐbsicity spearinc valid only for $\gamma=1-\cos$ be celculatod as owthmed in section 3.1.1. Due to the paritiv velocity turbuzence, the outhlow ancle alwayg becomes lareger and depende on the redirection γ. Theough the impuzse equetion, an anguias chance is coupled to the gtream tuve throughput which, on the other hand, depends mubsentially on the Ilow angle within the clearance. this relationship is describod by the discharge cquation (3.29).

For a relative arclum encrgy C_{B}°, the round brackets contain a combination of the pressure and impulse loss coefticients, which we simplitied here for the case of two seel peats ($n=2,5_{2}=$ $\left.\zeta_{A}=1\right):$

$$
\left.0=\left\{10-\operatorname{gicec}_{\varphi+c}\right)-\left(1-g_{a c}\right)^{2}\left[\rho_{1}+\left(1-\xi_{1}\right)^{2}\right]\right\} .
$$

Using the impulse loss coerficient of equation (3.49), we obtain Tor the aase, for instance, that the arclus energy and the torsionel force can be used completely, ror $\zeta_{\mathrm{CE}}=\bar{\zeta}_{\mathrm{CE}}=0$,

$$
0 .\left\{1-\left[\xi_{1}+\left(1-\xi_{1}\right) g_{1}^{2}\right]\right\} .
$$

Since $\zeta_{1}<1$ must be, a redirection to the tangential direction $\gamma>1$ with $D<0$ would bring a throughput decrease, as a consequence, according to equation (3.29), and viceversa. The cause for this lies in the modirication of the outflow angle which occurs (see Figure 3.15)) due to the throughput-related redirection. For $\gamma=1$ 。 with $D=0$ we obtain the special case already mentioned in section 3.2.6. Physically, an exfect of the arclus torsion on the throughput is not meaningrux, aince it must be assuned thet an additional support lowee, acting on the strean tube due to the redirection, is balaneed by correspondingly changed boundary conditions at the clearance
oxtrence. IS, in analogy to eduction (3.49), wo assume the 50letionchip
then $\mathcal{E N} D=0$ (idea, no effect of the argus torsion on the throughput), we en define the Sector

$$
\gamma_{\mathrm{cE}}=\frac{1}{\sqrt{\sum_{i=1}^{n}\left(\xi_{j} \prod_{v=1}^{i+1}\left(1-\bar{\xi}_{v}\right)^{2}\right)}} .
$$

for the labyrinth clearance considered in equation (3.29).
For $\gamma_{C E}<1$, the torsional expect supplied at the clearance in less than the flow before the entrance makes possible: hence the impulse coefficient hes to be corrected by

$$
\tilde{\xi}_{C E}=1-\gamma_{C E} \sqrt{1-j_{C E}^{q}}
$$

In contrast. . "the flow is redirected in an axial direction in the labyrinth chamber, with $\gamma<1$, then it may be assumed that at the entrance a smaller proportion of the velocity energy will be supplied to the tangential component. the equation
takes this into account The condition (3.50), above, must be satisfied for each of the stream tubes variable along the perimeter, which is readily possible, in connection with the iterative determination of the loss coerticients, also for the more general clearance torn with radial entrance and exit.

Pert tho stertor seal cloczence, the tangential velocity in the
 here a rise frictional sore e bets on the clarence plow Urine

 sememe men and the rinctic energy of the difference between the local bengentiel velocities

$$
R_{M A}=\bar{\lambda}_{A} A_{A_{G A}} \frac{9}{2}\left(c_{A} \cos \alpha_{A}-w_{A_{\Gamma A}} \cos \alpha_{A_{1 A}}\right)^{2} \quad(3.51)
$$

The differences between the tengentien velocities is determined iteratively tor each stream tube, according to section 3.4. Simultaneously with the loss coexpicientg To begin withe the Sore above only acts to modisy the outflow angle of the lest control space since due to the fluid 5 viscosity the frictional Sores were disregarded in the remaining control pees. with Q torsionotree arius and eccentric rotor position. an QQueliginc slow occurs which along the perimeter is symmetrical to the position of the narrowest clearance width. Taking this modified outflow angle into consideration. larger mixer. Frictional forces in the tangential direction are generated in Front of the narrowest clearance then behind it. Due to the outflow angles corrected by these additional forces, tie pressure losses at the exit now change, as does the pressure distribution within the radial clearance. Due to this. in spite or a torsion-iree afflux and without considering rotation, a transverse force now also acts perpendicularly to the deviation (ce section 3.6.)

This simplified description at least permits a qualitative evaluation of the mixed friction beyond the clearance: according to [26], Tor the mixed friction coerticient we can use A 0.1. According to Table 3.2, the outflow angle caused by the mired
 bum, depends strongly on the exsit lown (and honee, also on bre outclow ancic): at tho oxit a ciniles condition ought to be Getisfied as thet sor the entrance, in the grevious necthon, by mems of which it is essumed that the throughyut rewains constant under the exsect of mirse heiction.
3.3.4. Dotermination of 10 ss cospricients from a measured pressure distrisbution

IT the pressure distributions are known tron meesuremente for a few essential reterence planes, then it should be possible to determine the zoss coexticients trom these in such a maner thet there is agreement between measurements and theory. Jowever, knowledge ot the course ot the llow lines in assumed, here. since smal. chenges in the torsional forces can decisively aftect the pressure drop in the strean tube. It one meres assumptions regarding the impulse loss coezticients os their relationship to the pressure loss coetricients, then it must be possible to determine them from the measured pressure distributions, by means of the existing theory. To this end we can apply the sane iterative calculation procedure we use in section 3.5, in which we calculate the loss coexticients rrom Table 3.1 , by means of the pressure disterences obtained rrom measurements. In this manner. we obtain the pressure loss coercicients for each measurement plane or, in conjunction with Table 3.2, also the impulse loss coetricients. The two quantities can be determined simulaneously only if, for instence, the rlow lines are rendered visible so that the angle change becomen known, and the losses become known by pressure measurements. In a labyrinth, however, the assumptions nade on the composition of the tlow lines from hlow angles are additionally of imporvance, as are twose mede about stream contraction.

In addibion to the trancerse forces discusced below, there ere Ago moments thet ect on the cecentriceliy loceted rotor, due bo bhe cleczence riow They are gencreted espeaidity by the compegnive torces on the geel's tront side while moments due to disterences in the prescure drop are reletively smeli, within the zeader clearence. Because of the mode of construction on tuzbinc steps, such moment cen oceux especially in the case of the so-celied recesc stops, which heve lexge rrontal areas at the ciemrance entrance and exit. Since et these surtaces the pressure distribution still strongly depends on the estimeted values tor the bend-losses. and because the extect or such monents presumehiy is only smelis we shall torego their numerical eveluetion, in the context of this study.
3.4.1. Trensverse Sorces from the pressuxe distribution

The generel integrals sor the Sorces due to the variable pressure $p\left(z_{0}\right)$, acting along the perimeter and the length of a cylinder were indicated in equation (2.24). Since the calculated pressure distribution is given only at support points. an appropriate interpolation procedure must be sound to solve these integrals. For the longitudinal direction g, as an approsimation the pressure caleulated sor the support point should be cone /74 stant across the control space's width. Δz. Hence the Torces acting on the rotor cen be expressed as sums that result trom the integration of the pressure distributions $p(\psi)_{i}$ gor each support plane.

$$
\left.\begin{array}{l}
Q_{10}=-\sum_{i=1}^{n}\left(\Delta x_{i} \tau_{5}^{2 \pi} p(\varphi)_{i} \cos \varphi d \varphi\right) \tag{3.52}\\
Q_{20}=-\sum_{i=1}^{a}\left(\Delta z_{i} r_{5}^{2 \pi} p(\varphi)_{i} \sin \varphi d \varphi\right)
\end{array}\right\}
$$

The pressure dittributions cen be doseribed by means of a Toumios seriens bo be dotermined lor the support pointy given in analocy to equation (3.19). IT we select a danembionlegt description or the prescure distribution, eccording to equetion (3.34), then we heve

$$
\begin{aligned}
& \frac{P(f))_{i}-P A}{\Delta \rho B}=A_{0}+A_{1} \cos \varphi+A_{2} \cos 2 \varphi+\ldots A_{m} \cos m \psi \\
& +B_{1} \sin \varphi+B_{2} \sin 2 \varphi+\ldots B_{m} \sin \min \quad \text { (3.53) } \\
& \therefore \frac{P_{i, k}-P_{A}}{\Delta P_{B}} .
\end{aligned}
$$

For is support points, the number or coexticients is m $=(j / 2)+1$, to meintain the functions $p(\psi)_{1}$ as exactiy os possible。 If we herewith integrate equation (3.52) alone the perimeter, the Fourier terms of higher order cancel or . as is readily shown. Thus the compressive forces acting on a rotor are obtained as a sum of the rixst fourier coericients A_{1} or respectively, B_{1} of each support plene is or a redial clerance, multiplied by the widths Δz_{i} of their control spaces.

$$
\left.\begin{array}{l}
Q_{10}=-\Delta P_{B} r_{S} \pi \sum_{i=1}^{n S f_{L}}\left(A_{i+} \Delta z_{i}+f_{L} A_{i+1}\right. \\
\left.Q_{20}=-\Delta z_{i+1}\right) \\
Q_{s} r_{s} \pi \sum_{i=1}^{n s-f_{L}}\left(B_{i l} \Delta z_{i}+f_{L} B_{i+1} \Delta z_{i+1}\right)
\end{array}\right\}
$$

Because of the difrerent detinitions for the control space in a labysith and a plain clearance, we again introduced the control quantity S_{L} : as in equation (3.14). Because or the dimension?ass description of the compressive forces, the above transverse forces are a linear tunction of the total pressure drop and aiso of the shroud band radius, while the exrect of the total width. $b=\Sigma \Delta z_{i}$ is coupled to the amplitudes of the pressure distributions.

Fow tull rotow eccentricity $e=s$, in general the pressure
disperences at the cloarence entrence can anount only to $\Delta \mathrm{D}_{\mathrm{B}}{ }^{9}$ makine a double maplitude 2A ≤ 1 posgible. Aswuming 2 1incers pressure decrease in exiel direction we then obtesn e tores

$$
Q_{B}=\frac{\Delta F B}{2} p_{5} \pi \frac{b}{2} \frac{e}{6}
$$

This maximun atteinable compressive Toree - in which the reletive eccentricity has been assumed to be linear o can be telren as m reqerence maghitude sor the above trensverse Torces. srom the pressure distribution.
3.4.2. Trensverse Iorces Trom the clearance loss

The local tangential roxce changes with the variable nlearance throughput at the entrance to the rotor bleding. The integral of the components of this Soree along the perimeter yields the trensverse forces acting on the rotor, as indicated in generel in equetion (2.10). This requires a knowledge of the locel clearance loss. which can also be calculated from the ratio

$$
\begin{equation*}
\dot{\mu}=\frac{\dot{m}_{3 p}}{\dot{m}_{0}} \tag{3.56}
\end{equation*}
$$

of the clearance throughput to the total mass tlow. in we introduce a correction factor

$$
\begin{equation*}
\xi_{s_{p}}=\vec{\mu} g(\vec{\mu}) . \tag{3.57}
\end{equation*}
$$

The Iunction $g(\mu)$ takes into account that the decrease in the tangential force included in ζ_{Sp} is not directly proportional to the throughput ratio \bar{H}. Any indication on this - also
available in [14] - can be made only based on expiciency measurements for the entire turbine step. It must be assumed. however, that the Punction $g(\vec{\mu})$ is disterent Tor stator and rotor clearance losses, since the tangential roree at the
blading is erected in one cense by the approaching mess show and in the other, by the outgoing one.

With the above definition ot the clearance loss we obtain tor the integral of equation (2.10), bearing in mind the guentiticq that are constant along the perimeter,

$$
\left.\begin{array}{l}
Q_{15}=\frac{u_{5}}{i_{5}} \int_{2}^{2 q} g(\bar{\mu}) \sin \varphi d \dot{m}_{5 p}, \\
Q_{25}=-\frac{u_{5}}{i_{0}} \int_{0}^{2 \pi} g(\bar{j}) \cos \varphi d \dot{m}_{5 p} .
\end{array}\right\} \quad(3.58)
$$

The local throughput per exc length cen be described by means of a Fourier series

$$
\begin{aligned}
& \frac{d \dot{m}_{\underline{~}}}{d \varphi}-C_{\theta}+C_{1} \cos \varphi+C_{2} \cos 2 \varphi+\ldots C_{m} \cos m \varphi \\
& \cdot \dot{D}_{1} \sin \varphi+D_{2} \sin 2 \varphi+\ldots D_{m} \sin m \varphi \\
& \quad=\frac{\dot{m}_{k}}{\Delta \varphi \varphi_{k}}
\end{aligned}
$$

whose coefficients are determined by the calculated throughputs $\dot{m}_{\mathrm{l}} / \Delta \psi_{\mathrm{k}}$ per arc length of the stream tubes. While at the rotor clearance we must use the channel widths $\Delta \psi$ and the tangential angles ψ or the first support locations $\mathrm{E}_{1, k} \mathrm{k}^{2}$ at the stator it is appropriate to use values for the last support location. $A_{n A} E^{-}$If in equation (3.58) as a first approximation we set $g(\vec{\mu})=1$, then its integration will yield the transverse forces acting on the rotor, with the higheroorder fourier coefficients canceling out, again:

$$
\left.\begin{array}{l}
Q_{1 s}=\frac{U_{s}}{\dot{m}_{s}} D_{1} \pi \tag{3.60}\\
Q_{2 s}=-\frac{U_{s}}{\dot{m}_{0}} C_{1} \pi
\end{array}\right\}
$$

The clcarence throughput tor the catire seal cen also be obteined by integretion or equation (3.59), with the sum or the throughputs of all stroair tubes ot course yielding the seme result.

$$
\begin{equation*}
\dot{m}_{\mathrm{sp}}=\int_{0}^{2 \pi} d \dot{m}_{\mathrm{Sp}}-C_{0} 2 \pi-\sum_{k=1}^{j} \dot{m}_{k} . \tag{3.61}
\end{equation*}
$$

In principle, the above transverse Sorees can also be determined as the sum of the individual fores at each support location. although this could lead to larger errors, depending on their number. For the description ot the transverse forces due to clearance loss reterred to, the ratio ot the isentropic tangential rorce to the turbine step's throughput must be known; for test calculations it may be assumed to be proportional to the tangential component of the aftlus velocity.
3.4.3. Forces due to triction on the rotor surface

The Trictional forces at the rotor surface also cause a resulting transverse force: however. for the usual cases of calculation, it is two orders of magnitude smaller then those mentioned previously. Equation (3.18) shows an expression Tor the frictional force acting on any arbitrary support point on the rotor surcace, derined as positive in the direction contreary to thet of rotation. Is the components of this force are added for all support points in the entrance, the radial clearance and the exit, then we obtain the reaulting transverse forces

$$
\begin{align*}
& Q_{1 R}=-\sum_{k=1}^{j}\left(\sum_{i=1}^{n E} S_{E_{i, k}} \sin \varphi_{E_{i, k}, ~}+\sum_{i=1}^{n S} S_{S_{i, k}} \sin \varphi_{S_{i, k}}+\sum_{i=1}^{n A} S_{A_{i, k}} \sin \varphi_{A_{i, k}, k}\right) \\
& Q_{2 R}=\sum_{k=1}^{L}\left(\sum_{i=1}^{n E} S_{E_{j k}} \cos \varphi_{E_{i, k}}+\sum_{i=1}^{n S} S_{S_{i, k}} \cos \varphi_{S_{i, k}, k}+\sum_{i=1}^{n A} S_{A i_{j}} \cos _{\varphi_{i, k}}\right) . \tag{3.62}
\end{align*}
$$

The Trictionel moment to which the rotor is subjected boceuse of these torces can be calculated in 0 similer maner,

$$
M_{R}=\sum_{k=i}^{i}\left(\sum_{i=1}^{n E} S_{E_{i, k}, k} r_{E_{i}}+\sum_{i=1}^{n S} S_{S_{i, k}} r_{S}+\sum_{i=1}^{n A} S_{A_{i, k}} r_{A_{i}}\right) \cdot(3.63)
$$

The expiciency decrease Tor the turbine step resulting thereby is negligibly small, at least por the rotor.
3.5. Iterative solution to the problem

The solution of the equations in the preceding sections requires the extensive iteration outioned in Figure 3.17. which also follows the steps of the calculation program. The rirst inputs are the number of subdivisions n in the Tlow direction and in in tangentiel direction, as well as the seal geometry, including all radij. clearance widths. length and recess or chamber heights. Next come the pressures. velocities and angles for the main thow ahead ot and behind the seal. as well as the average density and ininematicel viscosity. In addition, the input must include the bend loss coetficients and the constants for the celculation of the turbulence or vortexing cosfincients in the labyrineh。

The calculation itselt starts with the estimated average Ilow ancles α_{0} established tor each strean tube with its support points at peripheral locations ψ, chanmel widths $\Delta \psi$ and surfeces A。In 0 Rirst itcration step, the loss coefricients along each Elow line are determined. According to section 3.3., they depend on the llow peths and hence. both on the ancles and the local Reynold s number. Once the loss coersicients heve been

Figure 3.17 Iteration plan
 precision, the throughput of the serewn tubos is celeulated and iteratively harroved beyond the desined level in, already toming into account the changes in the Rlow angle, in accorcence with section 3.2.5. This process is pertormed independently for ell strean tubes 5 , es indicated in pigure 3.17, above, by the subseript tield.

In a further block, the geonetry of the strean tube is calculated in accordance with section 3.1 and subsequently the throughput is corrected (to level wh). Since through the chennel width the strean tubes arrect each other. the calculation mast be performed each time $\mathfrak{C o r} 211$ strean tubes. If the dirferchce between the new throughput $\dot{i n}_{b}$ and old throughput \dot{n}_{2} of a strean tube is too large, then the loss coerticients must be recalculated, beyond level M.

Once the throughputs, angles, loss coefticients and surtaces of all stream tubes are precisely known, the pressure distribution is calculated. Once the Fourier coerricients have been obtained. this allows the determination of the compressive Torces acting at each support location on the control space surfaces. These primarily change the geometry of the strean tubes: lor this reason the iteration need not start from the begiming, but from indess P. Subdividing throughput calculations into two paritial iterations, staxting at inders or respectively, Nia, was chosen only to save calculation time, since the loss coelcietents apparently only change very little.

For normel application cases the convergence is very good. However, Sor large torsional exfects at the entrance and large accentricities, the Llow angles vary considerably along the perimeter, causing signiticant changes in the channel widths. It is recommended not to periorm further iterations directly with the new value, but with a weighted average of the old and the
 monewne more siowiy, e divergence ceused by excessive chences in the individual velues will be avoided bhereby. A similaz procedure may anc be nccescery in the iterative calculation of the compressive sorees, especielly row lexge lebyrinth chamberg.

At the end of the overall iteretion, the compressive forces A_{D} actine on the rotor cen be calculated srom the pressure discribution, and the Torces Q_{S} caused by the variable tengential Torce, from the veriations in the clearence throughput. No new initiel values need be set to calculate Surther eccentricities.

Besed on the similasity or conditions favoreble initial velues are obtained rether by increasing the eccentricity gredualiy. Since the course of the Torces in general is only weakly non-linear, a few individuel forces can cause an increase beyond the deviation as required for the vibration calculations in section 2.1.
3.6. Testing the calculation procedure using simple clearance Torms

The essential parameters describing the clearance flow afrected by torsional torees can be studied in Figure 3.18, using simple clearance Porms. The clearance's dianeter and lengih were chosen Tor their similasity to a test turbine but without radial entrance or exit. Besides the radial ciearance width and the chember height h, the geometry or the seal remains unchanged and is supplemented only in pigure 3.37 with a radial entrance and exit.

Table 3.6 clarities the most important equetions tor the

Tigure 3.18 Calculation exmmples of cleaxence Pomas

TABLT 3.6 Loss coerticients, effiux conditions and dimensionless quantities rox calculation examples

 çivos by a moin liow uncicocied by the elearence liow. A 182 conetant volocity componert ϵ_{8} is ascumed ahead of the clearence, in nownel derection, which in sully used with the asmumed coexricients $\bar{C}_{\text {Ce }}$. Bohind the clearence, only a nownel velocity oxiste; however, becauce $\mathrm{C}_{\mathrm{CA}}=3$, it has no exect on the clecrence 2 low. By chenging the explus ancle, it is now posexble to describe conditions such as they may occur ahead ot the rotor clearance of a turbine step. Under these conditions. sos a constan static prossure drop, the availabie total pregmure drop Δp_{B} according to equation (3.15) also remains constant. To calculate the trensverse Torces thet act on the turbine rotor due to the clearance loss, we set the ratio between the isentropic tangential roxce in equation (2.12) and the throughput equel to the velocity direrence Δc_{u}. It corresponds to the tencential component of the arslus velocity, since the tengential or perirerel veiocity disappears, beyond the clearance. The reitative arlux energy C ean be modiried by either the ancles α_{D} or the pressure decrease ΔD_{B}.

For dimensioniess descriptions Q^{*}, the transverse Porees acting on the xotor are expressed in terms of the rorce C_{B} as the unit. according to quation (3.55). This also replects in a quelitatively correct uanner the ratio between the compreasive Sorees Q_{D} and the rorces Q_{S} trom the clearence loss. To clemify the results. we have in part also provided the dimensionless pressure distributions po along the perinetore at suppot lacations ig, according to migure 3.18. Next to these pressur.
 has also been recorded, here relerred to the totel throughput according to equation (3.27).

The erraples of calcuiations, below, are intended to illustrate the extect of the arhur conditions as well as that of the pressure and mpuise lose coerticients on the brensverse Toress actinc on the rotor. Intitially, in a dinensioned description, we

2nvath the presture dicterence, ainee thoy aro hachucee fin the rezerence quantiby. Tow a puroly axiol exturs. Thgre 3.29 whow

OREGNAL PAGE IS OR POOR QUALITY

Figure 3.19 Plain clearance. $\mathrm{S}=1 \mathrm{mma}, \alpha_{\mathrm{T}}=90, \Delta \mathrm{p}_{\mathrm{b}}=50 \mathrm{mbar} \mathrm{O}_{\mathrm{R}}=0$ $\zeta_{A}=1$

Tigure 3.20 Lebyroinchs gwimo $\mathrm{H}=4 \mathrm{man} \quad \alpha_{\mathrm{R}}=90$ 。 $\Delta \mathrm{D}_{\mathrm{R}}=50 \mathrm{mber}, \zeta_{\mathrm{R}}=$ $=0, \zeta_{A}=1, \zeta_{2}\left(\mathrm{~m}_{1}=9\right), \mu(\xi)=1$
the veriation of the restoring force - $\theta_{1 D}$ (ex. desinition in Fizure 2.5) across the ecentricity. Since the compressive roree $Q_{2 D}$ vanishes perpendiculariy to the deviation due to a symuetricel pressure distribution, the rowees O $_{\mathrm{S}}$ caused by the variable tengential Coxes at the turbine blading must be anulled, because of the assumption recarding the relocity increase Δc_{u} in table 3.6. The approwinate integration of the pressure variation in equation (2.25) yields a linear dependence on the ecremtricity, which in comparison to nomplete calc tions is ralid only for saml deviations. Due to the retatht, fain elearance leneth the expect of a balaneing thow
is necifibibe in comparison to the calculation of the pressure variation from equation (3.35) o xor which a purely axial flow was assumed. Taking into account a variable tube friction socericient λ (Re) , larger restoring Poxes are obtained. whose / 84 dependence on the eccentricity is also nonlinear. The same calculations were performed for the labyrinth clearance in Figure 3.20. above. Due to the incomplete velocity vortering in the labyrinth chamber, restoring core $-Q_{1 D}$ acts on the rotor. which varies nearly linearly across the eccentricity. Here ton the effect of the equalizing flow is only slightly larger then Sos the plain clearance. In accordance with equation (3.35), taking into consideration a contraction coefficient μ that varies with the local clearance width does have en effect. for a purely axial flow since the surfaces at all seal peaks are reduced in the same manner.

Figure 3.21 Plain clearance $s=1 \mathrm{~mm}$

$$
c-2
$$

For a flow exected by torsionel Sosces. Figure 3.21. above. Show thet there are trensverse forces acting on the rotor, in the direction of the deviation Q_{1} and perpendicularly to ito Q_{2}. The cause for these forces can be seen from the pressure variations. next to the figure. For a central positioningo e/s = 0 and the throughput and the pressure along the perineter are constant. The strongest pressure decrease occurs between the conditions anead of the clearance. $p^{*}=1$ a and the first support location, $P_{1}^{x}(c \underline{y}$ also Figure 3.18) while pressure losses along the clearance and to the end state, $p^{x}=0$ ore relatively small. For an eccentric rotor position this pressure decrease varies in an inversely proportional manner with the local clearance width, which is smallest for $\psi=0$ 。 Due to the torsional effect, there is a spiral flow in the clearance, which results in variable crossosections along the stream tubes, and causes the characteristic pressure maximum ahead of the nerrowest clearance, as seen in the direction of torsion. As a / 86 consequence, compressive forces arise, $Q_{2 D^{\prime}}$ perpendicular to the deviation which for a plain clearance are of the same magnitude as the restoring forces $-Q_{1 D}$. The local throughput (broken line) modifies the tangential forces at the rotor blading, whose resultant generates a Porce $Q_{2 s}$ perpendicular to the deviation and the much smaller force Q_{1} s which acts in the direction of the deviation. If the variations in the throughput were symmetrical around $\psi=0_{0}$ then according to equation (2.15) that rorce would have to vanish. Across the eccentricity. the transverse Iorces are Iinear, with a small departure at $Q_{1 D^{\circ}}$ This is also true of the flow with torsional effecto in a labyrinth clearance. Because of this it is possible to bujld dimensionless increases Q^{\times}of the forces across the deviaition e, using the reference quantity or equation (3.55) and in accordance with Table 3.6. In all further calculations, this increase is determined from this force only for a relative eccentricity $\mathrm{e} / \mathrm{s}=0.5$. We thereby also obtain an approximately

Querege palue for a minimaliy linearioed increase

The efiect of the redial clearence width is shown - with a view towerds a vibretion calculation on the basis of an increase $q=$ Q/e of the force Q_{0} assumed linear across the deviation e_{0} Qualitatively this also corresponds to the representation of transverse forces for equal rotor eccentricity. As Figure 3.22

Figure 3.22 Plain clearance
shows. for a plain clearance the forces from the pressure distribution increase steeply for smaller radial clearance widths. The amplitudes of the pressure variations depicted are approximately equal. since they are valid, in each case, for half the maximum eccentricityo $e / s=0.5$. For smaller clearance widths, the pressure loss increases along the clearance, thus increasing the pressure level at the entrance $p_{1}{ }^{*}$ s

As already explained in section 3.3 .2 .20 in a plain clearance and with decreases in the radial clearance widtho under some circumsiances inadmissibly large values can arise $\underset{\text { Ior the }}{ }$ pressure loss coefficient ζ in a control space. Since the pressure losses depend on the flow paths within the control space. is necessaxy the number of support locations in the flow direction may have to be increased. Using equation (3.4.). the calculations here were performed for all clearance widths with $\mathrm{nS}=11$ support points. However, no deviations worth mentioning/87 were observed for radial clearance widths $s \geq 0.5 \mathrm{~mm}$ o even for nS = 3. The determination of impulse loss coefficients from sectionally straight stream tubes in accordance with equation (3.43) is also valid only for correspondingly short flow paths. However. the use of this relationship yields the same result for a sufficiently large number of support locations - and was applicable, in particular and without restrictions, to ns $=3$ and $s=1 \mathrm{~mm}$ 。

For labyrinth clearances the number of support locations is determined by the number of seal peaks. In addition. only pressure loss coefficients $\zeta<1$ can occur. As Figure 3.23 shows. the increase in the forces due to the pressure distribution. with small radial clearance widths is very much less than with a plain clearance. While the exciting force $Q_{2 s}$ is independent of the radial clearance width, in accordance with equation 2.15 , this results in a change based on the variable pressure loss coeficient. By disregarding the flow contraction $y=1$, the exciting force $Q_{2 s}$ is proportionally increased to the throughput. However, the pressure distribution forces are not similarly altered, as the cross-sections along the flow tube become more equal because of the flow coritraction $\mu(s)$, which is dependent on the local clearance width (c.p. fig. 3.8). A flow contraction which is constant along the perimeter would therefore cause an increase in the exciting force from the pressure distributor.

Figure 3.23 labrainth $h=4$ ma

$$
a_{E}=20^{\circ} \quad \Delta F_{B}=50 \text { mbar le } / \mathrm{s}=0,51
$$

$$
\zeta_{E}=0 \quad \zeta_{A}=1 \quad \zeta_{1}\left(m_{1}=9\right), \gamma_{1}=1
$$

$$
\left.\left.\sum_{m=0}\right\}_{\mu=1}=-=\right\}_{\mu(5)}
$$

For a flow affected by torsional forces, the influence of a pressure drop on a plain clearance is shown in fig. 3.24, while fig. 3.25 shows the influence on a labyrinth. The lateral forces Q_{S} from the asymmetrical tangential force at the turbine blading indicate a parabola-shaped curve, as they are solely dependent on the throughput (which represents the square root of the pressure drop), based on the assumptions of tangential force according to table 3.6 (c.p. equation 3.27). Calculation of the exciting force $Q_{2 s}$ with a calculation of clearance loss according to Traupel (equation 2.15), results in reduced forces, as complete vorticity at both seal peaks is assumed.

Figure 3.24 Plain

$$
\begin{aligned}
& \quad \text { clearance } \quad S=1 \\
& \alpha_{E}=20^{\circ} \quad e=0,5 \mathrm{~mm} \\
& \zeta_{E}=0 \quad \zeta_{A}=1 \quad \lambda(\mathrm{Re})
\end{aligned}
$$

 sen enc y

Assuming a purely axial flow, the restoring force 1 according to the pressure distribution shown in equation 3.9 wh a pressure drop of $A p_{B}$. This dependence also seems to be valid for a flow affected by torsional forces, at least for a labyrinth. However, the exciting force $Q_{2 D}$ at the two clearance dividers is non-linearly dependent on the pressure loss, as the relative afflux energy changes simultaneously, for which the significant influence is shown in the following figures. The pressure drop $\& p_{B}=50$ mbar, which could be chosen from the weak reaction stage at the rotor clearance, was chosen as the initial value for further sample computations.

As all parameters contained in the reference values were changed, an additional dimensionless representation according to tabie 3.6 may be selected, in which the forces Q^{x} and the throughput m^{x} is plotted on the 190 same scale. The relative afflux energy C_{E}^{X} was varied (see Figure 3.26) with the angle α_{E} ahead of the clearance, and with the pressure drop $A p_{B}$, starting from the average value marked. The pressure distributions depicted next to the figure show the effect of the

Figure 3.26 Plain clearance $s=1 \mathrm{~mm}$
afflux angle, due to which the location of the pressure maximum is displaced towards the direction of torsion, with a simultaneous increase in amplitude。

The local throughput changes in the same manner. with increasing torsional effects at the entrance. Because of the spiral flow within the clearance, the flow paths become longer, which leads to a slight decrease in the throughput of reference, $\dot{m}_{x} 0$ as a function of the relative arflux energy。 C_{E}^{x} Variations in the $/ 21$ angle or the pressure gradient do not yield the same results here either, for the transverse forces, since Reynold ${ }^{\circ}$ s number and hence the friction coerficient λ changes somewhat with the throughputis absolute quantity. However, within the range
depicted, the relative arflux energy C_{E}^{x} is characteristic for the generation of the compressive forces that act on the rotor. On the other hand, this also follows from the calculation of flow angles using equation (3.33) owhich for a given geometry and pressure loss coefficients are only a function of C_{E}. It follows that exciting sorces $Q_{2 p}$ from the pressure distribution are generated only in turbine steps with small reaction. Thus. besides a high tangential velocity ahead of the clearance, a relatively low pressure gradient inust exist simultaneously. In contrast。 the restoring forces $Q_{1 D^{\prime}}$ due to the changed friction values depend only on the relative afrlux energy.

The exciting force $Q_{2 s}$ acting in the same direction as the compressive force $Q_{2 D}$, also increases with the relative afflux energy, on the basis of our assumptions regarding the tangential force at the turbine blading, in accordance with Table 3.6. As the angle α_{E} varies, this increase is caused by the volocity difference, Δc_{u}, for an approximately constant clearance loss. In contrast. as the pressure difference Δp_{B} changes. the velocity difference Δc_{u} remains constant. while the clearance throughput changes. Obviouslyo both effects cause the force $Q_{1 s}$ - which acts in the direction of the deviation - to follow the same course.

In a similar representation Figure 3.27 shows the effect of the afflus energy in a labyrinth clearance. Here, variations in the afflux angle and the pressure gradient yield exactly the same results, since the loss coefficients depend only on the geometry. Thus, at the clearance, for different throughputs but the same relative afflur energy, the flow angles will be the same. Due to stream contraction, the throughput (for the same reference quantity \dot{m}_{B}; is smaller than it is for a plade clearance, and hence the transverse forces $Q_{y j}$ generated rut smaller. Since according to equation (3.40) the turbulence coefficients ζ depends on the flow angle, the throughput becomes

Constant flow angle $\alpha_{i, k}=\alpha_{E}, \Delta p_{B}=50 \mathrm{mbar}$

Figure 3.27 Labyrinth $s=1 \mathrm{~mm}$ $H=4 m_{0} \quad \zeta_{E}=0, \quad \zeta_{A}=1_{0} \quad \zeta_{1}\left(m_{1}=9\right)$ 。 $\gamma_{1}=1$

Figure 3.28 Labyrinth。 $s=1 \mathrm{~mm}$ $H=4 m_{0} \quad \zeta_{E}=0 \quad \zeta_{A}=1, \zeta_{1}\left(m_{1}=9\right) 。$ $\gamma_{1}=10 \mu(\bar{s})$
smaller with $C_{\mathbb{E}}^{\times}$．Compared to the restoring force $-Q_{1 D^{\prime}}$ the excitation force $Q_{2 D}$ from the pressure distribution is relatively small．However，Figure 3.28 shows that this changes considerably，if it is assumed that no compressive forces are acting on the surfaces of the control spaces（ci．Figure 3．10）。 Because of the chamber height，these forces are much larger for a labyrinth than for a plain clearance。 They act at the perimeter，in the direction of the lower pressure and modify the stream tubes in such a way that not only does a pressure equalization take place，but there also is a phase displacement。 This effect shall be further elucidated with the variation of
chamber height. Because of the unordered flow in the Iabyrinth chamber, we could assume thet the compressive porces acting on the stream tubes are xach smaller then indicated by equation /23 (3.21). On the other hand. it is conceivable that the effect is balanced by a corresponding chenge in the local loss coafficients. If we neglect the pressure equalization flow in the labyrinth chamber. as above. the transverse forces acting on the rotor are of approximately the same magnitude as in the plain clearance. in accordance with pigure 3.26。

Figure 3.28 shows a strongly simplified calculationo under the assumption that all flow angles in the clearance are constant and correspond to the afflux velocity angle. This allows a closed solution for the pressure variation with equation (3.34) since the local surfaces for all stream tubes are given. The excitation force from the pressure distribution, $Q_{2 D}$ increases considerably as the angle decreases. In fact. the maximum of the pressure distribution could be displaced so far. by prescribing the flow angle, that the force $Q_{1 D}$ will aet in the direction of the deviation. Such a calculation could be very illuminating, qualitatively (cr. Rosenberg [28]). However, the excitation forces it yields from the pressure distributiono $Q_{2 D}$ are too large unless one assumes an average flow angle that is considerably larger than the arflux velocity angle。 It is possible to perform an approximated calculation for this average flow angle, as a function of the relative afflux energy, in accordance with equation (3.33) , for instance assuming constant flow cross-sections and loss coefricients.

Flow-line course in a rolled out (to scale)
seal clearance (Figure 3.18)
—_ without pressure equalization flow
------ with pressure equalization flow for $h=12 \mathrm{~mm}$

Figure 3.29 Labyrintho $s=1 \mathrm{~mm}_{0} \mathrm{H}=4 \mathrm{~mm}$

In Figure 3.29, above, the height of the labyrinth chamber was varied (cr. Figure 3.18) . While the forces related to the clearance loss. Q_{s}, were only marginally aifected. especially the excitation force, $Q_{2 D}$ related to the pressure distribution decreased very markedly with increasing chamber height. An explanation for this arises out of the course of the flow-lines in a rolled-out, true to scale representation of the clearance
as that shown at the bottom of page 102．above，for a laxge chamber heighto in comparison to a calculation without pressure equalizing flow．Due to the laterel forces acting on the tree portion of the control speces．the tlow lines are deflected somewhat more strongly just ahead of the narrowest clearance location（ $\psi=0$ ）．Based on this minimal variation in the outhlow angle and the channel width of the stream tubes，the pressure／25 variations in the labyrinth chamber are substantially affected． since the crossosections normel to the direction of flow appear squared in the energy equation．Viewed in the tangential direction ahead of the narrowest clearance are generated smaller exit velocities，and hence smaller pressure losses． whereby the characteristic pressure maximum in the labyrinth chamber is weakened with increasing chamber height。For very large chamber heights，even negative excitation forces $Q_{2 D}$ may occur．The calculation with a chamber height $h=0$ corresponds to the same assumptions made for a plain clearance：taking the pressure equalizing flow into consideration changes the transverse forces by a maximum of 5% 。

In subsequent test calculations，we shall now investigate the effect of changes in the loss coefficients．Starting from the standard case Figures 3.30 and 3.31 。 below，show the variation in entrance and exit losses for both clearance forms．With increasing entrance loss ζ_{E} ，the throughput and the transverse／ L_{E} forces acting on the rotor become smaller．Maintaining the exit loss $\zeta_{A}<1$ 。 the static pressure at the end of the clearance is lowered．since a part of the velocity energy is used as pressure again．This increases the throughput，which may become larger than the reference throughput（ $\dot{m}^{\times}>1$ ）。 since the latter is calculated only for a loss $\zeta_{A}=1$ 。With increasing throughput． the averuge flow angles in the clearance also become larger（cf． equation（3．30））．This，in turn displaces the maximum in the pressure distributiono peripherally to the location of the narrowest clearance，causing an increase in the restoration force $-Q_{1 D}$ ，while the excitation force $Q_{2 D}$ becomes smaller．

Figure 3.30 Plain clearance． $s=1 \mathrm{~mm}_{0} \mathrm{C}_{\mathrm{E}}^{\mathrm{K}}=1.6 \quad \lambda(\mathrm{Re})$

Figure 3．31 Labyrinth clearance $\mathrm{s}=1 \mathrm{~mm}, \mathrm{H}=4 \mathrm{~mm}, \mathrm{C}_{\mathrm{E}}=1.6, \zeta_{1}\left(\mathrm{~m}_{1}=9\right)$ 。 $\gamma_{1}=10 \quad \mu(\bar{s})$

Assuming similar effects as in Figure 3.29 ，this could become negative for the labyrinth．

Figure 3.32 ，below，shows the effect of the friction coerficient λ_{0} which in the normal case is calculated from the local Reynold ${ }^{\circ}$ s number．For the restoring force a maximum is obtained． which also occurs with a purely axial flow。 At low friction the throughput increases，and at $\lambda=0$ it takes the value of the rererence quantity，$\dot{m}^{\times}=1$ 。 in which only the exit loss was taken into consideration．The pressure distributions choser．show very clearly that at lower friction coefficients the decrease in the torsional effect in the clearance also is smaller． whereby the compressive force $Q_{2 D}$ increases．In Figure 3．33． below，the pressure loss or，respectively，the impulse loss

Figure 3.32 Plain learance
$r=1 \mathrm{~mm} \mathrm{C}_{\mathrm{E}}=1 . \sigma_{0} \zeta_{\mathrm{E}}=0 \zeta_{\mathrm{A}}=1$

Figure 3.33 Plain clearance, $s=1 \mathrm{~mm}$
cospicients are calculated rem cquations（3．37）or reapectively．（3．45）。to investigete＂he ersect of e rotating channel wall．The throughput hes a tlet meximun at a tangential Felocity of $60 \mathrm{~m} / \mathrm{s}_{0}$ which can be attributed to chences in the Loss cosicicients caused by the eriction path（cro pigures 3.12 and 3．：3）．Correspondingly．the compressive forces acting on the rotor axe arsected in menner gimiler to the expect caused by a chance in the rejction coereicient λ 。

Figure 3.34 Labyrinth，$s=1 \mathrm{~mm}$ ， $\mathrm{H}=4 \mathrm{~mm}$

In Figure 3.34 ，above，a loss coefficient ζ_{1} constant along the perimeter was assumed．at the first seal peak．In contrast to purely axial flow because of the variable flow cross－sections， different pressure distributions occur within the clearance．For a flow without loss $\left(\zeta_{1}=0\right)$ the throughput attains its limiting value，$\dot{m}=1$ ．since the stream contraction was disregarded， here．While the restoration force $-Q_{1 D}$ disappears completely for $\zeta_{1}=1$ 。 the excitation energy $Q_{2 D}$ retains a finite value．

However，this value can increase no surther with larger numbere or seal peats．gince due to complete turbulence，the flow with an impulse loss coesricient of $\vec{亏}_{1}=1$ zuns nowmel to the second seel peak－Loe．purely axiel flow The pressure level in the labyrinth chamber is significantly afected by the loss coesticient and attains the values．approximetelyo that would be expected for purely axial flow（cro equetion（3．35））．Assuming a pressure loss coerficient constant along the perimeter，the excitation force from the pressure distrinution is larger，here． then the restoring force，which also substantially changes the relations in Figure 3.27 or 3．28，respectively。

For a variable pressure loss coefficient ζ_{1}（from equation （3．40）），Figure 3.35 shows the effect of the coersicient m_{1} 。

Figure 3.35 Labyrinth，$s=1 \mathrm{~mm}$ ，$H=4 \mathrm{~mm}$

It is inveresely proportional to the loss coefficiento as can already be seen from the behavior of the throughput．In a manner
similar to that of the Priction coefricient for the plein clearance (rieure 3.32) , the restoretion force $-\theta_{1 D}$ hes a maximum thet can be displaced with changing asplus tosgion. Due to the pressure equalining slow the excitation sorce $\theta_{2 D}$ is considerably smaller than for the plain clearance.

In Pigure 3.36, below, the Sactor γ was modixied. which in

Figure 3.36 Labyrinth。 $\mathrm{s}=1 \mathrm{~mm}_{0} \mathrm{H}=4 \mathrm{~mm}$
equation (3.49) describes the relationship between the pressure loss and the impulse loss in the labyrinth chamber. Starting from the standard value $\gamma=1$, it was assumed that the flow, for instance due to the shaft's rotation suffers a small decrease in the torsion ($\gamma>1$)。 The pressure level in the chamber is thereby raised. since the pressure loss at the second seal peak increases because of the increased velocity (ci. Figure 3.16).

Because of the chanced pressure distributiono somewhet larger excitetion forces $Q_{2 D}$ are fenereted. If the velocity is redirected, in the labyrinth chember, without rurther pressure logess ($\gamma<1$) , then only a little of the velocity energy cen be destroyed at the clearance esit. This ceuses e lowering of the pressure level in the labyrinth chember. with a simultaneous displacement in the location of the pressure marimum. A strong reduction in the torsional effect on the flow caused for instance by croscbars within the labyrinth chamber. leads to a considerable reduction in the excitation force θ_{2} o taking into consideration the leteral compressive Torces acting on the free portions of the control spaces. This force can even adopt negative values, as has been observed during tests with these fittings [30]. The calculations above were performed. as a first epproximation, with the composition of Ilow-lines from the $/ 100$ tangents to the flow angles. with a weighting factor $g_{z}=0.50$ destribed in equation (3.4). Changes in this factor, even in extreme cases. caused no deviation worth mentioning in the remaining calculation examples. Taking into account the pressure equalizing flow in the application case described $(\gamma<1)$ is also only approximately valid. since by adding features in the chamber. additional compressive forces act on the stream tube。

Figure 3.37 Plain clearance with radial entrance and exit (croFigure 3.18)

Figure 3.37. above, shows two Turther clearance roms. in which the 1 Low's radiug remeined as in Figure 3.18. Form A approstimetely corresponds to the shroud band on a rotor. while / 101 Torm B could be used as the stator clearance of a turbine step in chamber construction. The effect of the redial entrance in form A is shown in Figure 3.38, belowo With a modification to the entrance clearence - to correspond to the axial clearance between stator and rotor blading - the Porces due to the pressure distribution, A_{D}, remain nearly constant. even though vecy large pressure differences occur in the entrance clearance. due to the higher velocities. In contrast, the forces θ_{S} decrease due to the lower clearance loss in a smaller axial clearance, something confirmed also by measurements to be discussed later.

Figure 3.38 Clearance as in Fig. 3.37(A)

Figure 3.39 Clearance as in Fig。 $3.37(B)$
$/ 102$
In the case of clearance form B_{0} the clearance of the radial exit - which in a turbine corresponds to the axial clearance was changed simultaneously with the entrance clearance, as shown in Figure 3.39, above. The velocity difference $\Delta c{ }_{u}$, which according to Table 3.6 determines the transverse forces arising out of the rotor blading's variable tangential force, is caused here by the tangential velocity behind the clearance. If the entrance or exit clearance is reduced. the clearance throughput will be lowered and this will lead to a decrease in the excitation force $Q_{2 s}$. Because the afflux is parallel to the axis. the forces $Q_{1 s}$ and $Q_{2 D}$ vanish, since the pressure equalizing flow occurs in peripheral or tangential direction。 symmetrically to the deviation. The trensverse force $Q_{1 D}$ acts in the direction of the deviation for small exit clearances since here the pressure distribution depends very strongly on the exit velocity. Assuming even larger pressure loss coefficients ζ^{2} at
the elbows, a decrease in the restoration force occurs, which eventually disappears completely, if only pressure losses occur that are independent of the local clearance width.

While we have assumed, so sar. that the tangential velocity of the main flow behind the clearance has no effect on the clearance flow, in Figure 3.40 below, we took into account a

Parameters as in Figure 3.39
$s_{E}=s_{A}=4 \mathrm{~mm}$
Figure 3.40 Clearance as in Fig. 3.37(B)
mised friction force in the sense of section 3.3.4. It increases proportionally to the coefficient λ_{A} and causes an asymmetry in the clearance flow。
$/ 103$
Because of it, the force $Q_{1 s}$ and the excitation force $Q_{2 D}$ are additionally generated from the pressure distribution. Since under the assumptions stated the mixed friction force affects the clearance flow significantly only at the exit. its effect is
relatively small. From this we may conclude thet the excitation Torces related to the pressure distribution are mainly generated at the rotor clearance of a turbine step. At the stator clearance besides the excitation forces caused by the ciearance loss. transverse torces are generated by the pressure distribution that may act against or even in the direction of the deviation if we take a radial entrance or exit into account.

4 EXPERIMETTAL DERERUTNATTON OP THE TRANSVERSE FORCES ACRTNG ON THE RONOR

In agreament with their definition the individual coerficients 02 the matriz T_{3} proportional to the deviation (see equation 2. 2. ean be detemined by means of the measurement of the tunaverse Sorces acting at the turbine rotor, as a Iunction or Its stetic displecement. In contrast. the forces proportional to the velocity, in matrix ofs $_{s}$ can be determineu only from a predetermined vibratory rotor movement. Kinetic tests (cfo Wohlrab. [30]y make it possible to study the simultaneous erfect of all the coefficients of the matrices proportional to the deviation and to the velocity, from the rading of the aisturbing vibration for known system damping. This study focuses only on the static method. which has the advantage - besides the separate determination of the forces proportional to the deviation - that the effect of a pressure distribution inside the seal clearance is relatively easy to investigate。

```
4.1. Test assembly
```

4.1.1. Installation construction

The transverse forces caused by the flow medium at a turbine stop are many times smaller than the rotor's inertia, representing at most 10% of the tangential force acting on the rotor. Since the clearances between rotor and housing are very small. special problems arise in the exact positioning of the rotor. The force measuring apparatus is arranged around the rotor in its stationary position; an eccentric positioning can be simulated by moving the housing。

Figure 4.1 Test assembly schematic

Figure 4.1. above shows a schematic representation of the arrangement chosen. From the fixed piping \underline{o}_{0} the tuid (air) streams into the housing b. This is placed on a twofold support \underline{c} in such a manner that it can be displaced both in axial and in horizontal direction in relation to the stationary rotor. This makes it possible to vary the axial clearance between the $/ 105$ bladings, and the eccentricity of the rotor with respect to the housing. In an expansion of this arrangement。 the housing \underline{b} can also be rotated in the horizontal plane making it possible to adjust the rotor's inclinetion with respect to the housing. The rotor d is held in the bearings e, whose retaining rings are fixed to the bar structure E. The latter connects the two bearing brackets and exits the housing without contact.

By means of pressure gauges Q_{1} and Q_{2}, which in principle

a Tubing b Movable housing c floving mechanism: ca Axial clearance cb Eccentricity cc Inclination cd Clamping arrangement $\underset{\text { d Rotor }}{ }$ e Bearings $\underset{\sim}{f}$ Rod arrangement g Guide \underline{h} Ball rollers \underline{i} Axial prestressing \underline{j} Coupling \underline{k} Housing $\underline{1}$ Rubber grommet m Sealing for rod arrangemnt n Turbine step 응 Sheetmetal guide p Flow guide q Spent air rial gauge (housing position) s Longitudinal guide (Ball boxes) \underline{t} Balance beam (Q2) \underline{u} Dynamometer adjustment \underline{x} Tachometer \bar{d} Deviating roller \underline{y} Position plane of housing $\underline{2}$ Measuring surfaces on rotor

$$
\text { Figure } 4.2 \text { Test installation }
$$

(to Figure 4.2, above)
are very rigid spring dynamometers the bar structure is horizontally and vertically fissed. Moments acting through the bearing on the structure, on the one hand are picked up by the guide g, which is freely movable over ball rollers $\underline{h}_{\text {. On }}$ On the other hand. cables ${ }^{i}$ 。 prestressed at Iocation ${ }^{\text {Lo }}$ prevent rotation in the horizontal plane. In the coordinate system reqerred to the test apparatus. for a turbine rotating to the righto the excitation porce is indicated at gauge Q_{2} and the restoration force at Q_{1}. Through a bending coupling is the rotor \underline{d} is connected to a vibration generator, at which the tangential force U_{B} is measured. Force measurements at Q_{1} and Q_{2} are not affected by the coupling, since its spring rigidity is very low. In addition, such side effects are eliminated by calibration of the pressure gauges under actual conditions. The frictional
moment of the turbine beaxings is transerqed to the guide gie the rod structrre and hence can aspect only the tangential force $U_{B^{\prime}}$ but not the force measurements at Q_{1} and $Q_{2}{ }^{\circ}$

Figure 4.2, above, shows the test assembly built, with the construction elements a through i corresponding to the schematic on page 117. In order to relieve the vertical pressure gauge from a part of the rotor weighto a balance beam \dot{t} provides a counterweight, through two ball-bearings. at the rod arrangement E. The pressure gauges are insed to the rod arrangement through cross guides of two ball boxes each. The distance and the angle of the pressure gauges can be adjusted - by means of a tightening screw and three lifting screws \underline{u} - in such a monner that all guide elements are perpendicular to each other. The longitudinal guides used permit a nearly frictionless rotor suspension, which is also free of play due to the prestressing applied. The central rotor d positioning with respect to the housing and that parallel to the axis. is established prior to assembly by means of four dial gauges and can be reproduced atter assembly.
$/ 109$
4.1.2. Installation operation

The test turbine was operated on an open circuit. with the air supply being provided through the compressed air pipeline of the Technical Iniversity of Munich's heating power plant。 Figure 4.3. below, shows a diagram of the plant, approximately to scale, with a schematic of the air supply lines.

A two-stage cell compressor a transfers the air through filter b into pressure tank c. From there, a pipeline (nominal diameter 80) leads through a restrictor d to the quickacting gate valve e. After a long diffusor g with subsequent straightener. the air reaches the afflux tube (nominal diameter 230) to the turbine \underline{h}. Together with the vibration generator \underline{k}_{0} they are mounted on a

Figure 4.3 Axrangement of the installation
baseplete. The spent air is blown into the machine room via a / 110 silencer. On one side of the control panel m are mounted the essential control elements for the test turbine h. The pressures are recorded at a U-tube wall n_{0} and can be fotographed with a camere D, Prom the measuring site。 The measurement amplifying and indicating instruments are located approximately at g. Shielded cables lead from there to a recording facility r equipped with selector switcho digital voltmeter and printer.
4.1.3. Measurement instruments and test method

The forces were determined by means. of Hottinger pressure gauges, whose spring elements are outiitted with wire strain gauges. The table below provides a review of the gauges used and their spring rieidity, the possible measurement ranges - which are much larger than the forces actually measured at the Sacility. The precision is not areected hereby, since a

Poree Measurement renge Spring rigidity

θ_{1}	20 kp	$800 \mathrm{kp} / \mathrm{ca}$
O_{2}	10 kp	$350 \mathrm{kp} / \mathrm{cm}$
U_{B}	50 kp	$1600 \mathrm{kp} / \mathrm{cm}$

calibretion is always persomed in the range indicated by the prestressing. Because of the relatively high pressure gauge spring rigidity a path change due to force interterence can be discegreded. The wire strain gauges were balanced with a Wheatstone bxidge and recorded on the indicator of a carrier Srequency amplifiex. Since due to the eccentric rotor vibration high Irequency oscillations with large amplitudes are superimposed on the signals to be measured, the working range chosen for the amplifiers had to be very large. With a low-pass Gilter in line behind them and digital readour. it was possible to attain the required measurement precision.

Pigure $4.4 \begin{gathered}\text { Test turbine Iongitudinal section } \\ \text { with measurement points }\end{gathered}$

Figure 4.4: above, shows the pressure measurement points on a longitudinal section of the turbine. The static pressure $p_{0, s t}$ and the total pressure $p_{o_{0} \text { tot }}$ ahead of the step are measured
with two Prandtlotubes，arranced rotated by 90° 。 The pressures $\mathrm{p}_{2,5 t}$ and $\mathrm{P}_{2, t o t}$ behind the step are measured in the same $/ 111$ manner．For control purposes．several drill holes $\mathrm{P}_{2} w$ are made on the inside of the outlow channel wall．For standing blades． large underpressures were cbserved at this flow guide．due to the high exit velocity，which depending on the rotor ${ }^{\circ}$ s eccentricity，showed an uneven distribution along the perimeter． In order not to afeect the measurement of the transverse forces with this additional effect，the flow guide was bolted to the housing．During some of the measurement series．an attempt was made to measure the pressure $p_{1 w}$ between the stator and the rotor，in a xing chamber above the rotor＇s covering．However， this was in part very imprecise，since the corresponding housing portions could not be sealed off in the manner desired．During tests with shroud band，the pressure distribution in the rotor clearance was measured using a maximum of 24 wall holes． $p_{0,1-24: ~ t h e i r ~ e x a c t ~ l o c a t i o n ~ a n d ~ s i z e ~ i s ~ d e s c r i b e d ~ i n ~ s e c t i o n ~}^{\text {a }}$ 4．2。

All pressure measurements are performed with Uotubes which are fotographed for fast and reliable recording．Figure 4．5．below． shows such a fotograph．for instance one taken in measurement sequence $115(e=0.7 \mathrm{~mm})$ ．At the extreme lert are the mercury columns for the restrictor pressures $p_{B 1} \circ p_{B 2}$ and the pre－step $/ \underline{112}$ pressure $p_{0, s t}$ of the turbine．Next to these，to the righto appear the pressure differentials in the two Prandtl tubes ahead and behind the turbine step．The pressure $p_{1 w}$（center）had to be measured with a mercury column，here．To the right are collected the pressures p_{d} along the shroud band，whose single－arm manometer shows different levels for the labyrinth chambers Kl． K2 and K3．The barometric pressure is recorded from an aneroid barometer b。Asides from this method of evaluation，the most important pressures were also recorded by means of the pressure sensors of the data acquisition system used，whose code number （at bottom）appears on every fotograph．However，because the

Rugure 4.5 Pressure recording

wegsurement range of the pressure gensors was unguthed to the test faclitwy, tho eqaluation was performed primerily with the photographic ata.

The tanperatureg were measured by moans of the corcesponding 1ton-conctantan thermoelaments at the measurement orifica tpi"
 on the dicitat valtmeter ot the reoordine equipment. sinee onyy stathonacy displacomente are studted wth the tost instaltation. all paths couta bo moasured whth orduary alal gaugee at ftxad houstig partel hence the precheion of adjustment was usuriuy at Less than 0.01 mo the armangenent of the measuroment giteg to detemmine the motor position as ether contral or parallew to The axisy will respect to the housing - in patrey displaced by goo wth respect to each other was shown fin rugure 4.4 .

At the beginning of a test sequence, the static rotor was placed in the desired position with respect to the rixed housing perts. and the arrangenent checked for freedom from friction. For a precise adjustment or the central position with respect to the movable housing, airrlow was established across the step without rotationg hereby it was possible to reduce measurement errors caused by arrangenent elasticity to a minimurn. Once the dial gauges were removed. the rotor was brought to operating speed and the pressure geuges were calibrated using weights. It was then possible to change the housing position without modifying the operating conditions and record all forces, temperatures and ressures for each position. Thus a measurement sequence yields the variations in the transverse forces across the deviation and on the basis of repetitive measurements provides relatively precise average values for all turbine data. Within the precision of the measurements, these were independent of the eccentricity - or respectively, inclination - or the rotor.

4.2 Test program

The constant-pressure step represented in Figure 4.6. below, was used primarily to investigate the effect of the seal form on the clearance excitation forces. With the rotor suspension chosen, it was possible to measure simultaneously the forces acting in the direction or the deviation and perpendicularly to it: because of the test arrangement. the moments acting on the rotor were not included. Because of the non-variable compressor, the turbine throughput was fixed at approximately $0.4 \mathrm{~kg} / \mathrm{s}$. For an operating speed of $8,000 \mathrm{rpm}$, the pressure coerficient ψ was 5.2 to 6.2. The Reyncld's numbers calculated from the afflux velocity and the blades chord length was approximately $8 \cdot 10^{4}$.

From measurements performed with standing blades - listed completely in one report [5] - it was possible to derive

Figure 4.6 Constant pressure step geometry
essential trends in the clearance excitation forces. which also served as orientation for the remainder of the test programo Because they are more applicable, we shall mention here only tests with rotating blading, which are in agreement with the /115 measurements above, once differences in operating conditions are taken into account.

The seal geometry was varied by placing certain inserts in the turbine housing, shown in Figure 407 , above, for blading with shroud band. Table 4.10 below, provides an overview of the sequentially numbered insert conditions, indicating the characteristic magnitudes. The variations in the radial

clearance widths were performed only for blading without shroud band (form A): for reasons of tolerances. the stator clearance was slightly larger than that for the rotor. Since distinct pressure differences could already be observed along the rotor shroud band for standing blading special attention was paid to banded blading. First. the plain clearance was investigated with a simple gauge ring B1, for different operating speeds. However, the pressure drop in axial direction could be measured more accurately only after adding a second gauge ring. B2. To conclude the test program, two labyrinth seals commonly used with turbines (C and D) were installed at the rotor. In addition this made it possible to study the effect of rotor inclination with respect to the housing.
4.3. Measurement evaluation

4.3.1. Turbine data and force measurements

The turbine ${ }^{\circ}$ s mass flow is determined from the temperature at
the measurement orivice。 $t_{B 1}$, and the pressures $p_{B 1}$ and $p_{B 2^{\circ}}$ according to DIN: 1952

$$
\begin{equation*}
\dot{m}=\alpha \in m \frac{\sigma}{4} D^{2} \sqrt{2 \rho\left(p_{B 4}-p_{B 2}\right)} . \tag{4.1}
\end{equation*}
$$

The pipe diameter is given as $D=80 \mathrm{~mm}$ and the opening ratio or the orifice as $m=d^{2} / D^{2}=0.366$. The density ρ can be calculated from the gas equation as a function of temperature at the orifice. The expansion coefficient $\varepsilon\left(p_{B 2} / p_{B 1}{ }^{\circ} m\right.$) and the throughput coefficient $\alpha(R e, m)$ were determined from DIN 1952。 toking into consideration the temperature dependence of the kinematical viscosity for Reynold's number. Because of the dependence of Reynold 's number on the mass flow iteration is necessary.

The turbine's isentropic gradient is obtained from the pressures $P_{0, s t} P_{2, s t}$ and the temperature T_{0} by

$$
\begin{equation*}
\Delta h_{S}=C_{p} T_{0}\left[1-\left(\frac{C_{2}}{T_{0}}\right)^{\frac{2-9}{2}}\right] \tag{4.2}
\end{equation*}
$$

The rorce U_{B} at the brake's lever arm I_{b} is first recalculated using the calibration factor of the gauge, then the turbine step ${ }^{\circ}$ s tangential force

$$
\begin{equation*}
U=\frac{l_{n}}{d_{m} / 2} U_{0} \tag{0.3}
\end{equation*}
$$

is determined. With the angular velocity ω at the rotor, we obtain the effective efficiency

$$
\begin{equation*}
\eta e=\frac{U_{c} d_{m} d Q_{2}}{\Delta h_{3} \dot{m}} . \tag{4.4}
\end{equation*}
$$

$\overline{D I N}=$ Deutsche Industrienorm $=$ German Industrial standards

Correspondingle the tibemel exsicjency cen be calculated sron the temperature. in ad T_{2} (ahead of and behind the step):

$$
\begin{equation*}
\eta_{:}=\frac{c_{p}\left(T_{n}-T_{k}\right)}{\Delta \theta_{s}} \tag{8.5}
\end{equation*}
$$

$/ 117$
Prom the tangential velocity $u=\omega^{\circ} r$ we can now calculate the reserence quantity U_{s} - srom equation (2.12) - for the measured Qacitatiot Posces. To determine the theoretical excitation forces requireg knowledge of the step's triangle of velocities. Prom the mess flow \dot{m}_{0} othe surface A_{0} and the density $\rho_{0}{ }^{\circ}$ we obtain the explus velocity at the stator blading.

$$
\begin{equation*}
c_{0}=\frac{\dot{m}}{A_{0} 9_{0}} \tag{4.6}
\end{equation*}
$$

According to Traupel [14] the blading efficiencies can be taken as $\eta^{\circ}=0.89$ and $\eta^{\prime \prime}=0.82$ for the existing step. From the energy equation we obtain the stator exit velocity

$$
\begin{equation*}
\frac{c_{1}^{-}}{2}=\eta^{\prime}\left(\Delta H_{0}^{\prime}+\frac{c_{0}^{2}}{2}\right) \tag{4.7}
\end{equation*}
$$

as a runction of the stator blading's isentropic gradient

$$
\begin{equation*}
\Delta h_{s}^{\prime}=C_{p} T_{0}\left[1-\left(\frac{P_{1}}{P_{0}}\right)^{\frac{x-1}{x}}\right] . \tag{4.8}
\end{equation*}
$$

An iterative solution is possible for the pressure p_{1} if the stator's exit surface A_{1} sin α_{1} has been very precisely determined, for instance through measurements of the individual channel widths. From the continuity equation we now calculate the velocity

$$
\begin{equation*}
\epsilon_{4}=\frac{\dot{m}-\dot{m}_{s \rho}^{\prime}}{A_{1} \sin \alpha_{1} \rho_{4}}, \tag{4.9}
\end{equation*}
$$

and the density fron the gas equationg as a function of the turbine condition

$$
\begin{equation*}
\frac{\Omega_{3}}{S_{0}}=\frac{P_{0}}{P_{0}} \frac{L_{0}}{T_{A}} . \tag{4.10}
\end{equation*}
$$

The temperature T_{1} can be calculated from the energy equation for the stettor bladingo

$$
\begin{equation*}
\Delta h^{\prime}-e_{p}\left(T_{0}-T_{0}\right)=\Delta h_{3}^{\prime} \eta^{\prime}+\frac{C^{2}}{2}\left(\eta^{\prime}-1\right) \tag{4.11}
\end{equation*}
$$

From (4.10) we now obtain the density ratio

$$
\frac{g_{0}}{\rho_{0}}=\frac{\rho_{0}}{p_{0}} \frac{1}{1-\frac{1}{c_{0} T_{0}}\left(8 n_{s}^{\prime} \eta^{\prime}+\frac{c_{0}^{2}}{2}\left(\eta^{\prime}-1\right)\right)}
$$

(4.12)
/118
If herefrom we now calculate the velocity c_{1} from equation (4.9) and replaces this value in the energy equation (4.7), then we obtain. with (4.8), the initial equation for the pressure p_{1}.

$$
\begin{gather*}
\frac{1}{2}\left(\frac{\dot{m}-\dot{m}_{g p}^{\prime}}{A_{1} \sin x_{1} \varphi_{0}}\right)^{2}\left(\frac{P_{0}}{P_{1}}\right)^{\frac{2}{t}}\left[\left(1-\eta^{\prime}\right)\left(1+\frac{c_{0}^{2}}{2 c_{p} T_{0}}\right)\left(\frac{p_{0}}{F_{1}}\right)^{\frac{x-1}{x t}}+\eta^{\prime}\right]^{2}= \tag{4.13}\\
-\eta^{\prime}\left[c_{p} T_{0}\left[1-\left(\frac{p_{1}}{p_{1}}\right)^{\frac{x-1}{x t}}\right]+\frac{c_{0}^{2}}{2}\right]
\end{gather*}
$$

If we solve the right-hand side for p_{1} o an estimated value \bar{p}_{1} can be improved by iteration. We then obtain the step ${ }^{\circ}$ s percentage eaction

$$
\begin{equation*}
r=1-\frac{\Delta h_{s}^{\prime}}{\Delta h_{s}}= \tag{4.14}
\end{equation*}
$$

However, the result of this calculation strongly depends on the surface A_{1} sin α_{1} and the stator's exit angle contained in it.

Disregarding the stator clearance loss in equation 4.9 yields a much lower percentage reaction for the existing test giep, while for lossolree flow ($\eta^{\circ}=1$) there is an increase againo Since the two effects appromimately cancel each other, all further measurenents - considering the possibility or further sources of error - were performed assuming $\eta^{\circ}=1$ and $\dot{m i n}_{\text {sp }}=0$ 。It was observed. in addition, that even small changes in the throughput or the turbine's pressure gradient had a large effect on the percentage reaction following the above calculations. However. the latter is needed in the theoretical determination of the pressure distribution across the shroud band and hence also impairs the comparison between theory and measurements.

With the known pressure p_{1} we obtain the velocity c_{1} from equation (4.7) and the complete triangle of velocities

$$
\left.\begin{array}{l}
w_{4}^{2}=c_{4}^{2}+u^{2}-2 u c_{1} \cos \alpha_{1}, \tag{4.15}\\
w_{2}^{2}=\eta^{0}\left(2 \pi \Delta h_{s}+w_{1}^{2}\right), \\
c_{2}^{2}=w_{2}^{2}+u^{2}-2 u w_{2} \cos \beta_{a}, \\
\alpha_{2}=\arctan \frac{w_{2} \sin \beta_{2}}{w_{2} \cos \beta_{2}-u},
\end{array}\right\}
$$

as a function of the tangential velocity and the angles indicated in Figure 4 6. We thus obtain the peripheral efficiency

$$
\begin{equation*}
\eta_{u}=\frac{u\left(c_{1} \cos \alpha_{1}-c_{2} \cos \alpha_{2}\right)}{\Delta h_{s}} \tag{4.16}
\end{equation*}
$$

for the step, assuming $c_{0}=c_{2}$. Furthermore, the abscissa values for Figure 2.7 can be giveng to facilitate calculation of the theoretical excitation constants from equation (2.15). Since no equations are given in [14] for the clearance loss for plain clearances, as an approximation to it we used the value for a single seal peak.

In each measurement sequence the calibxation factors tos the pressure gauges were determined pirst．by linear regression on the electrical readings obtuined for different calibration weights．After recelculation of the measured trensverge forces． their increases g across the devietion e_{0} or respectively。 a were calculated by linear rogessiono For better applicability of these results．in conformese to the theory（see equation （2．16）），these increases aro related to the ratio between the isentropic tangential force and the rotor＂bucket＂lengtho We thereby obtain the so－called clearance excitation and restoration coefficients K_{1} through K_{40} which describe the step＇s trensverse forces．in a dimensionless form．The most important operating parameters and measurement results here discussed for the test turbine，are compiled for selected measurement sequences in tables in the Appendix．

4．3．2．Relationship between excitation forces and efficiency measurements

The measurement；of the clearance loss can be accomplished indirectily，via the efficiency $\eta_{i}=\eta_{u}-\zeta_{s p}$ where the peripheral efficiency is determined neglecting the additional losses due to extrapolation to radial clearance width $s=0$ 。 Since the excitation forces are very sensitively affected by efficiency variations，exact measurements are necessary，for many radial clearance widths．It hence seems appropriate to proceed inversely，i。e。o to establish comparisons to erficiency variations based on the meny excitation force measurements available．It can be shown at least for blading without shroud band that the efficiency varies non－linearly with the radial clearance width．This can be taken into account by means of a polynomial of the clearance loss

$$
\begin{equation*}
\xi_{s p}=a_{8} s+a_{2} s^{2}+a_{3} s^{3} \tag{4.17}
\end{equation*}
$$

as a function of the clearance width. It we assume disregarding equelizing flows, that this clearance loss is valid also for local radial clearance widths E according to equation (2.14). then the integretion of equation (2.10) yields the transverse Sorces acting on the rotor.

$$
\begin{aligned}
& Q_{4 s}=O_{1} \\
& \left.Q_{2 \varepsilon}=\frac{U_{s}}{2}\left[\left(a_{1}+2 a_{2} s+3 a_{3} s^{2}\right) a+\frac{3}{4} a_{3} e^{s}\right]\right\} \text { (4.18) }
\end{aligned}
$$

Since the clearance loss was assumed proportional to the local clearance width, the force in the direction or deviation vanishes. While for a linear equation $a_{2}=a_{3}=0-$ as we already established - the force is independent of the radial clearance width s, this effect can already be noticed for a parabolic equation $a_{3}=0$. However, it is only for higher-order clearance loss equations that an "s"-shaped course of the excitation force across the eccentricity is obtained.

If we assume that the excitation forces $Q_{2 D}$ caused by pressure distributions can be disregarded for bladings without shroud band. then the coefficients of equation (4.18) can be determined by the least squares method applied to the measured excitation forces $Q_{2} \simeq Q_{2 s}$. Here we obtain a family of curves of the
 across the eccentricity, whose coefficients determine the course ζ_{sp}^{0} of the clearance loss that would result as a consequence of the excitation forces. By further adapting this course to the measured efficiency

$$
\begin{equation*}
\eta_{i}=\eta_{u}-\xi_{S p}^{Q} \gamma_{Q} \tag{4.19}
\end{equation*}
$$

we can determine the peripheral expiciency η_{u} and a sactor γ_{0} by which the clearance loss $\mathrm{S}_{\mathrm{Sp}}^{\mathrm{O}}$ from the excitation force measurements would have to be corrected. for $\gamma_{Q}=1$. there would be complete agrement (see figure 4.8, below) between excitation

Figure 4.8 Variation of the effciency across the radial clearance width

Force and efficiency measurements. For $\gamma_{Q}<1$. the measured excitation forces are larger than the forces that can be explained based on the clearance loss, which leads to the conclusion that there are additional effects, for instance due to the pressure distribution, at work. In general the factor will be $\gamma_{Q}>1_{0}$ since the local clearance loss can be reduced by means of equalizing flows along the perimeter. In this case the measured excitation forces are smaller than those one would calculate from a precise course of the efficiency $\eta_{i}(s)$.

It was assumed, in the evaluation of the results, that the effective efficiency determined from output measurements at the electric dynamometer are to be set equal to the intemal
erefejencyo $\eta_{i}=\eta_{e}$ o The measurement of the internel equiciency fron the tenperatures ahead of and behind the turbine is axiecter by meanurement exqors thet are teo laxece 80 these consideretions. But it is to be ergected ritet the friction et the test turbine ${ }^{\circ}$ bell bearinge will axpect the erficiency η_{e} in the seme maner 0 or all parameter chances.

Especially important to the above correletion is the assumption thet viewed across the perimeter, the smellest clearence I, ss will also occur et the nexrowest clearance width. Because of the torsionel expect on the llow according to section 3.6 this will not alweys be true。As Figure 4.90 below, shows, a small phese displacenent occurs also because the clearance loss securring / 122

Figure 4.9 Flow-line course
at the stator reduces the tangential force only after an arc length b_{s}. Because of this. in contrast to equation (4.18) there are transverse forces $Q_{1 s}$ active here that must be taken into accounto in the correlation with the erficiency variations. The measured restoration forces Q_{1} however point towards the sact that in spite of the relatively large flow-line advance ($\psi_{s}=$ $2 \mathrm{~b}_{\mathrm{b}} / \mathrm{d}_{\mathrm{m}} \simeq 170$) this effect is small.
4.3.3. Pressure distribution at the shroud band

The purpose of the pressure measurements at the rotor seal
clearence is the determinetion of the torces arising there. Intogration oi a pressure curve along the perimeter 4 and in asial direction g presugposes e two-dimensional Punction $p\left(\varepsilon_{0}, \psi\right)$ 2t the rotor suxtece. Assuming thet the pressures measuxed at the housing wall are constant across the locel clearanca widtho this function can be determined from a limited number of meenurement points. Tor the axial direction it is essumed - Gor a plein clearence o thet in conformence to Figure 4010 . below.

Figure 4.10 Evaluation of measured pressure curves
the neasured pressures p_{d} correspond to the average values across the widths $\Delta \mathrm{Z}$: for a labyrintho instead. constant pressure may be assumed along the chamber width. On this base it is possible to calculate the compressive forces acting on the rotor as was done in section 3.4 . Since in the peripheral direco tion a maximum of only eight measurement points is available Sor a pressure curve $p(\psi)$, it is described by means of three Fourier coefficients from equation (3.55) 。This corresponds /123 to the fitting of a sinusoidal function of variable amplitude。 with phase displacement with respect to the course of the local clearance width; it will be recorded with the measurement values submitted later.

Based on the assumptions regarding the course of the pressure curve, the forces determined from it could be subject to systematic error. Despite some deviations, the prescription of a sinusoidal pressure curve in the tangential or peripheral
dixection appears to lead to only small exrors since hicher order Fourier coesticients (equetion (3.54)) drop out during integretion. In contrest, the result ig severely ascected by how the widths $\Delta \mathrm{z}$ in Figure 4.10 are estabished since the pressure cuswe is non-lineax in axial direction. It would be possible in principle to fit a two-dimensionel function $p\left(z_{0} \psi\right)$ to the measurement points. but it would lead to substantial calculation esforts. since the paraneters would no longer be independent of each other. This would make restrictions necessary such that no increased precision in the results could be expected. in comparison to the above evaluation. Qualitatively moreover. measurements with only one measurement plane perpendicular to the carrying axis (cr. Figure $4.10 b$) yield userul results.

Within a measurement sequence, the pressure variations are recorded for each eccentricity and the forces Q_{D} are computed. from whose course across the eccentricity the increases q_{D} are calculated by linear regression. Whether the rotor is displaced in a positive or a negative direction (cif Figure 2.5) for a corresponding definition of the tangential angles the same pressure curves should be obtained. However. due to minute differences in the seal ${ }^{\circ}$ microgeometry, in part substantial deviations can occur. Therefore, in order to obtain representative descriptions of the pressure course, presures for equally large positive and negative eccentricities re averaged.
4.4. Transverse forces from an eccentric rotor position and comparison to the exficiency curve

Staring from the central position of the turbine step within the housing, the eccentricity could be adjusted to up to 75% of the radial clearance width, in both directions. The transverse

Sorces acting on the rotor were measured at 15 points, within this renge: the course of the forces wes approximately linear across the deviation (cTo[5]), Tor 21$]$ paremeter combinations here investigated. The pressure gredient at the turbine occurred as a function of the throughput, which was fised because the compressor could not be varied. Correspondingly. similar test conditions are best differentieted for equal throughput, which is recorded in the Appendix. together with other measured turbine step parameters. However, the necessarily somewhat different turbine operating conditions had only little effect on the consideration of the dimensionless slopes K_{1} through K_{4} of the Torces across the deviation.
4.4.1. Blading without shroud band

Figure 4.11. below shows the clearance excitation coefficients determined from force measurements for rotor blading

Figure 4.11 Rotor without shroud-band

Figure 4.12 Rotor without shroud-band
without shroud－bend．Tos the turbine step investigated．the clearence lows increases as the arial cleerence increases． thereby causing an increase in the clearance ersitetion coefricients K_{2} 。 In contrast to the linear theory of equation （2．17）．they depend strongly on the radial clearance widtho The restoretion coerricients $-K_{1}$ shown in figure 4.12 above。 increase from an axial clearance $s_{a x}=1 \mathrm{~mm}$ ono which can be attributed to the flow line displacement illustrated in Figure 4.90 or to discerences in the pressure distribution in the stator clearance。 We can not state here，with any certaintyo whether these restoration forces－which according to equation （2．15）should vanish－are caused by stator or rotor clearance losses．Such a statement is possible only if the housing portion of the rotor clearance can be displaced independently from that of the stator，eccentrically to the rotor（cf．［30］）．For a／125 very small axial clearance there may be a finite value for the restoretion coefricient，which could be measured somewhat more clearly during tests with standing blading［5］．For this Extreme position of the rotor with respect to the housing，due to the step＇s construction there will be a clearance loss only at the rotor blading，which according to equation（2．15）should not give rise to restoration forces．It is thus not impossible for transverse forces to be caused by a non－uniform pressure distribution along the perimeter，even for blading without shroud－band．

In order to explain the relatively large deviations of the measured clearance axcitation coefficients in figure 4.11 from those expected in theory，we performed a correlation between the excitation forces and the measured efficiencies．in accordance with section 4．3．2．Figure 4.13 below shows the course of the thus referenced excitation forces for various radial clear－／126 ance widths，across the eccentricity．The family of curves plotted corresponds to the function（4．18），whose parameters

Figure 4.13 Blading without shroud-band Curve fitted w/2nd order polynomial for clearance loss from clearance loss,[14],eq.(2.15) were determined from the measurement points, by linear regression, as a function of the two variables e and s. Since the course of the excitation forces is linear across the eccentricity, a second order polinomial (4.17) will be sufficient for the clearance loss. However, a higher-order polinomial was able to explain measurements for a standing rotor [5] very well. even though there the course of the excitation forces is non-linear across the eccentricityo characterized by a steeper slope for increasing eccentricity.

It is possible to establish a comparison between the parameters of the functions (4.18) o determined from excitation force measurements, and the measured efficiencies, for all axial clearances investigated. Starting from the calculated peripheral efficiency (for $s=0$) o the broken straight line records the course of the clearance losses from [14], which for this turbine


```
O 5AXm0.5 mim ORNa1.002,10
* SRMal.0 tif 0ntw.l.10 *.06
O SQva2.0 HM ORMOL.17 t.02
x 5RYO5.0 %M ORH2%id 4.OB
Eff.curve from excit.fce.measurement,
2nd order polynomial fit
--From clearance loss, [14]
```

Figure 4.14 Blading without shroud-band
step agree only very little with the measurements. The slope and curvature of the curves plotted were determined for each axial / 127 clearance from the measured excitation forces. If together with equation (4.19) we were to introduce a correction factor $\gamma \simeq 1.2$ 。 the agreement between these curves and the measured efficiency would improve. In other words, the excitation forces are only 83% of the forces one should calculate, from the actual course of the efficiencies. Taking into consideration the certainty required for vibration calculations, the excitation forces in bladings without shroud-band can be calculated from a known efficiency curve, using equations (2.16) or (4.18).
4.4.2. Blading with shroud-band

In order to reduce clearance losses, the blading is fitted with

- Plain shroud-band (EB 25, 28)
- Two seal-peaks (EB 26, 27)
- Three seal-peaks (EB 29)
- w/o shroud- band (EB 21)

Figure 4.15 Efect of the clearance form
shroud-bands. Figure 4.15, above, shows the cource of the measured efficiencies for equal radial clearance widths, as a function of the axial ciearance. The efficiencies are significantly improved with respect to blading without shroud band. The recessed labyrinth with three peaks is the most favorable: here the seal effect of the radial clearance is little affected by variations in the axial clearance. Due to the smaller clearance losses, smaller clearance excitation forces are to be expected for banded blading. Figure 4.16, below. /128 shows however that the clearance excitation coefficients are much larger than for blading without shroud-band. As shall be explained in section 4.5 , because of a pressure distribution that varies along the perimeter, in the rotor clearance, the measured forces are approximately twice as large as those calculated from equation (2.17) from the clearance loss only. With increasing axial clearance the clearance excitation to the efficiencies of Figure 4.15. Because for increasing clearance loss - i.e. smaller efficiency - the clearance excitation coefficients become larger in the same manner. However, an exact correlation between the excitation forces and

- Plain shroud-band (EB 25+28)
- Two seal-peaks (EB 26+27)
- Three seal-peaks (EB 29)
\because From clear.loss, eq. (2.17)

- Plain shroud-band (EB 25+28)
* Two seal-peaks (EB 26+27)
- Three seal-peaks (EB 29) ∞ w/o shroud-band (EB 21)

$$
\begin{array}{rr}
\text { Figure } 4.16 \text { Erfect of the } & \text { Figure } 4.17 \text { Effect of the } \\
\text { clearance form } & \text { clearance rorm }
\end{array}
$$

the erficiencies is possible onlyo when the dependence of the curve on the radial clearance width is mowno Figure 4.17, below, shows the restoration coefficients across the axial clearance, which depend strongly on the form of the rotur clearance. For a plain rotor clearance the restoring forces are largest and can be primarily attributed to a pressure distribution over the rotor shroud-band, as the comparison to blading without shroud-band shows.
4.5. Pressure distribution over the rotor shroud-band and comparison with theory
4.5.1. Shroud-band with plain clearance

Figure 4.18 shows a two-dimensional representation of the

Figure 4.18 Pressure distribution across a plain shroud-band, $e=0.7 \mathrm{~mm}$
pressure course, measured for an eccentricity of 0.7 mm at a plain rotor clearance, both along the perimeter and in axial direction. The static pressure drop at the rotor blading's extemal section was approximately 60 mbar. in this measurement sequence (cio Appendix), with an arflux velocity of $140 \mathrm{~m} / \mathrm{s}$. Starting from the entrance edge ($z=0 ; c r$. Figure 2.8), the pressure courses for five measurement planes normal to the axis. in accordance with Figure 4.7 (B2), are shown along the shroud band: the axial direction was considerably magnified in comparison to the perimeter. The clearance at the entrance side of the shroud-band here is only half as large as the average radial clearance width. In agreement with the delinition in Figure 2.5: the smallest local radial clearance width is found at the tangential angle $\psi=0$ 。 Because the flow is subjected to
torsional exsects．there is a pressure masimum just before the narrowest clearence。 which E or individuel measurement planes along the shroud－bend trevels amost 80° against the direction of rotation．Due to the charecteristic pressure maximum in 130 Eront of the naxrowest clearance，a rore aets on the rotor that has a component in the direction of the ceviation and another one perpendicular to it．In tangential direction the pressure curve does not correspond to a pure sire function，since the maxima are steeper than the minima．

Figure 4．19，below shows．for three selected measurement sequences，the effect of the axial clearance on the measured pressure courses．with the fitted sine function plotted in each case．Measurement sequences 90 and 93 are only qualitatively comparable to sequence 89 ，already in axonometric representation．Because of a defective seal．the turione＇s throughput and hence also the pressure and the velocity in front of the clearance were much smaller，as can be seen from the recorded pressure $P 1$ of the central section．

Abstract

$/ 132$ To calculate the theoretical pressure courses－also plotted on Figure 4.19 －the pressure and the velocity were recalculated． from the turbine step＇s central section to the entrance radius． using the potential vortex law（cy。 section 3．2．1．）。 The loss coefficients introduced in section 3 to describe the clearance flow affected by torsional forces，were used：their effect has already been thoroughly investigated by means of test calculations．The radial clearance was subdivided in the flow direction in such a manner that the pressure courses represented are valid for the position of the measurement planes．In addition．we plotted the course of the throughput－variable along the perimeter－and for small axial clearances，the course of the pressure at the end of the radial entrance．Due to the manner of construction of the seals studied，the radial exit ．can be ignored．

MEASUREMENT: For housing insert B2, fitted to sine function

- 1. © 2. © 3. $\times 4+$ 5. Meas. plane
- radial entrance (calculation)
-- local throughput (calculation)

Figure 4.19 Pressure distribution for a plain rotor clearance, for various axial clearances

When the axial clearance is changed. it must be remembered that from Figure 4.7, simultaneously the position of the measurement drill-holes with respect to the shroud-band is displaced. For the gauge ring $B 2$ considered here, with five holes perpendicular to the axis, one can obtain for $s_{a x}=4 \mathrm{~mm}$, for instance, the interesting special case in which the drill-holes of the first
plane are already over the radial entrance. In agreement with theory, we obtain here a nearly constant pressure course along the peximetex. by decreasing the axial clearances. the velocities at the shroud-band's front side increase and cause very large pressure differences along the perimeter. as shown by the calculations for $s_{a x}=0.5 \mathrm{~mm}$ for instance。A direct compaxison with measurements is not possible. since the drill-holes for the first measurement plane are already over the shroud-band (cf. Figure 4.7). This measurement plane 's low pressure must be attributed, at the tangential angle $\psi=180^{\circ}$, For instance, to a flow separation due to crossosection enlargement, which passes from a clearance width $s_{0 x}=0.5 \mathrm{~mm}$ Sor the radial entrance, to the locally large radial clearance \mathfrak{s} $=1.7 \mathrm{~mm}$. During calculations, this would be taken into account by means of contraction coefficients. In addition the bend-loss coefficients could not be considered constant, as here, but dependent on the local geometry.

Experiments with modified afflux conditions are particularly suited to test the calculations procedure. In a turbine。 these conditions can be affected by the percentage reaction which essentially can be modified with the rate of rotation and the pressure differential for the entire step. Starting from a central operating condition, the pressure curves for both possibilities of variation are shown in Figure 4.20 ; the simple gauge ring B1 (see Figure 4.7) was used. It has only two drill-holes in the frontal and back measurement planes. which however are so arranged along the perimeter that the course of the curve can be determined from positive and negative eccentricity. With increasing pressure differentials the amplitudes of the pressure curves become larger and at lower rotation rates the position of the pressure maxima shifts.

Figure 4.21, below, shows the slopes of the transverse forces acting on the rotor, as a function of its pressure differential. Due to the reduced number of measurement points, these forces $/ 134$

Figure 4.20 Pressure distribution for a plain rotor clearance, $e=0.6 \mathrm{~mm}_{0} s_{\text {ax }}=1.0 \mathrm{~mm}$ measurement: for housing insert Bl with matched sine function

Figure 4.21 Plain shroud-band (B1) measurement calculation

Inear course for .o.

were determined based only on the pressure curves of the central measurement plane. Since according to Figure 4.18 the course of the pressure is nonminear in axial direction, the transverse

Soxess bhus determined must be considered only qualitetively nevertheless. the seme assumptons were mede in the comperetive celculations shown. The clearance ercitetion and restoretjon coersicients measured increage with increasing rotor pressure gredients. However. difeerent tendencjes are noticed tor the two pressure gredient vaxiation possibilities. The cause for this is not so much the change in the loss coesficients brought about by the rotating chennel wall (cs. Figure 3.24). but must be attributed meinly to the exfect of the arflux velocity c_{1}. During the tests performed at constant rete of rotation $\eta=$ 8000/min. the relative afflux enexgy was of approximately the same magnitude (cr. Appendix) and hence, according to Figure 3.26 and equation (3.55), the compressive forces are a linear Tunction of the pressure differential. In contrasto during the variation of the rotation rete the afflux velocity c_{1} was nearly constant. due to which according to Figure 3.24 the excitation Porces increase parabolically with the pressure differential.

Both tendencies were well lescribed by means of the calculations performed using the data in Figure 4.20 . If more precise results can not be expected. it is only because due to a measurement uncertainty of 1% in the throughput and a reading error of 1 mm Hg in the pressure differential for the step, the pressure difference p_{1} - p_{ε} for the rotor may already be affected by an error of 5 mbar. Systematic errors that could be included in the simplified calculation of p_{1} from equation (4.13) have not been taken into consideration here.
/135
Figure 4.22 below, shows the clearance excitation constants over the axial clearance, for measurement sequences with approximately equal throughput. On the one hand, these constants were determined from the transverse forces acting on the entire step $\left(q_{2}\right)$. In comparison to them the portion $q_{2 D}^{\prime \prime}$ has been plotted which on the other hand is obtained by integration of the measured pressure distribution over the rotor shroud-band. Starting from the measurement, point at $s_{a x}=0.5 \mathrm{~mm}_{\mathrm{a}}$ a constant

8ores measurement on entlre stege from pressure diserybutlon (cover band) theory for rotor fep

Figure 4.22 Plain shroud-band (B2)

Figure 4.23 Plain shroud-band (B2)
course acxoss the axial clearance may be assumed for the slope of these forces, which is qualitatively confirmed by measurements with the housing insert B1 (ci. Appendix. $19 R 62$ to 64). These slopes $q_{2 D}^{\prime \prime}$ are also confirmed very clearly by calculation. Besides the compressive Iorces, the calculated slope $q_{2}^{\prime \prime}$ contains the portion $q_{2 s}^{\prime \prime}$ caused by the variable rotor clearance loss. The transverse forces arising from the stator clearance loss. represented by the difference $q_{2}^{\prime}=q_{2}-q_{2}^{\prime \prime}$ were not calculated here (however. see Q_{2}° in Figure 3.39 for a qualitative comparison)。

Figure 4.23, above, shows the restoration coefficients on a similar ploti the portion due to the pressure distribution was again plotted as a qualitative course from comparable measurements. The restoration coefficients calculated from the
sotor clearence pressure distribution agree with the measurements only for large gujel clearances．due to the devietion erpleined on the besis of Figure 4.19 ．The transverse Soress $\left(q_{1}\right)$ Sor the entire step increase with increasing asial clearance：evidently the portion $q_{1}^{\prime}=q_{1}-q_{1}^{\prime \prime}$ can not se neglected hese．for the smell axial clearence $s_{\text {ax }}=0.5 \mathrm{mmo}$ a trenswerse force acting in the direction of deviation is genereted in the stator clearance，which based on a sample calculation for a similar clearance rormo had already been shown in Figure 3.39 （ $\mathbb{E}_{\mathrm{ax}} \simeq \mathrm{SA}$ ）。 The restoration constant $q_{1}^{\prime \prime}$ calculated only from the rotor clearance flow is always somewhat lower than the portion $q_{10}^{\prime \prime}$ srom the pressure distributiono for torsional flow。

4．5．2．Labyrinths with two seal－peaks

The pressure curves measured in the chambers of the dioptric Iabyrinth（cr．Figure 4.7 C ）for an eccentric rotor position are shown in Figure 4.24 for three axial clearance widths．Also drawn was the pressure $P 1$ in front of the rotor，calculated for the central section from measured values：it increases with decreasing axial clearance，because a better seal effect is then achieved．Recalculated for the radius of the clearance entrance． a pressure is obtained that for a large axial clearance approximately corresponds to that measured in front of the first seal peak．Noticeable pressure differences are observed in this chamber only for a very mmall asial clearance for $s_{a x}=$ 2.0 mmo the measured value deviates a little from the fitted ssine function，which can be attributed to an untight seal at $\psi=$ 0 and $\psi= \pm 180$ ．Due to it．locally higher velocities and hence。 somewhat lower pressures，could occur．In the chamber between the two peaks the pressure curve＇s amplitudes depend only little on the magnitude of the axial clearance．Behind the last peak／138 the pressure is nearly constant along the perimeter and corresponds approximately to the pressure $P 2$ measured in the

MEASUREMENT: for housing insert C with fitted sine function

Δ before first peak, θ labyrinth chamber, \quad after last peak
-- local throughput (calculated)
Figure 4.24 Pressure distribution for a rotor clearance with two seal peaks, e $=0.7 \mathrm{~mm}$
central section behind the rotor.

For the labyrinth, a calculation of the pressure curves depends very much - as shown in section 3.6 - on the assumptions made for the pressure and impulse loss coefficients at the seal-peaks. Assuming a constant contraction coefficient $\mu=0.7$. the calculations were performed with the pressure loss
coerricienter froin equations (3.40) and (3.41). Through the constants applicable to the seal geometry, these coexjeients depend on the local clearance widths and Rlow angles. The impulse loss coeflicient was determined as a factor $\gamma=1$ from equation (4.49), as a runction of the corresponding pressure loss coefficients. Based on the considerations in relation to Figure 3.29, a pressure equalizing flow was not taken into consideration. In addition, the channel widths for the individual stream tubes were assumed to be constant, based on the same assumption, i.e.o that this erfect is balanced by corresponding local variations in the loss coerficients.

In agreement with the measurements, a relatively low pressure level is observed in the central chamber, caused by the first peaks's low loss coefficient and the changes in the flow angles within the clearance. The amplitudes for these pressure curves are approximately as high as those measured. The very smail axial clearance $s_{a x}=0.5 \mathrm{~mm}$ caused considerable pressure differences in front of the first peak (cif. Figure 4.19), due to the variable velocities in the radial entrance. With the existing empirical loss coefficients, no better agreement between measurement and theory can be attained in this chamber. It remains unclear, in addition, whether the assumption is warranted that the pressure in the chamber before the first seal-peak remains constant. with turbulence and simultaneous redirection of the velocity. It would be conceivable that due to crosscourrents within the chamber, the pressures determined through existing measurement drill-holes (cr. Figure 4.7) are not representative for the entire chamber.

By means of section $3.3 .4 \%$ the loss coefficients can be determined in such a way from the available measurements, that complete agreenent exists between the measured and the calculated pressure curves. But this approach also depends on assumptions that limit the general validity or the result. Agreement will especially not be achieved, with the contraction
coefincients chosen。 if we start from a relationship between pressure and impulse loss coefficients described by means of a Eactor γ assumed constant along the perimeter (cro equation (3.49)). Because according to Figure 3.36. the pressure curves are considerably affected by even small changes in the flow angle。

Assuming constant impulse loss coefficients. for instance, the pressure loss coefficients shown in Figure 4.25 (A) below

- $\zeta_{E S}$ chamber before 1 st peak, $\zeta_{S l}$ after lst peak A from measured pressure curves (Fig.4.24), $\bar{\zeta}=0.2$
B used for calculation in Fig. 4.24 with $\bar{\zeta}(\gamma, \zeta)$

Figure 4.25 Loss coefficients for rotor clearance with two seal peaks
are obtained. which are confirmed qualitatively also for other assumptions regarding the impulse loss coefficients. Disregarding small deviations obtained for the limiting values ζ $=0$ and $\zeta=10$ the measured pressure curves are described exactly by means of these coefficients. However, no unequivocal dependence on the local geometry can be formulated. described for instance in terms of clearance widths, flow angles and distances between peaks. or also by the seal peaks edge sharpness. For a large axial clearance the loss coefficients $\zeta_{E S}$ for the radial entrance become very small. For this reason the equations taken from the literature (Figure 4.25 (B)) - as shown in Figure 4.24 - yield userul results that are sufficient for turbine steps. since for the usual axial clearance construction approaches, the axial clearance at the radial entrance is much larger than the radial clearance width.

Figure 4.26 shows the measured clearance excitation constants as a function of the axial cleaiance in comparison to calculations

Figure 4.26 Two seal peaks

Figure 4.27 Two seal peaks
performed with the data Irom Figure 4.24 . While the transverse Sorce out of the pressure distribution is nearly constant. the total sorce increases, because the clearance loss increases with increasing axial clearance width. This course is conrimmed also by calculations containing only the portion of clearance flow coming from the rotor. The excitation force from the stator seal can be determined as the diference $\left(q_{2}-q_{2}^{\prime \prime}\right)$ between the 1140 measured total force and the forces determined from the rotor's clearance flow. While the stator clearance loss of the turbine steps studied is just as large as the rotor's (cr. Appendix). due to the equalizing flows only weak excitation forces are generated here.
$/ 141$
The restoration constants are shown over the axial clearance in Figure 4.27, above. The transverse force out of the rotor clearance's pressure distribution is larger, at $s_{\text {axs }}=0.5 \mathrm{~mm}$ 。 than the total force measured at the runner. since the stator clearance has the same effect as in Figure 4.23. The theoretically determined restoration force increases very steeply at small axial clearance widths. which may be attributed to the course of the pressure ahead of the first seal peak (see Figure 4.24). Disregaxding a small axial clearance the calculation procedure provides good agreement with measurements. despite the uncertain loss coefficients for the transverse forces ($q_{1 D}^{\prime \prime} q_{2 D}^{\prime \prime}$) out of the rotor clearance's pressure distribution. Taking into consideration the transverse forces generated in the stator clearance (cfo qualitatively Q_{1}^{x} and Q_{2}^{x} in Figure 3.39), the forces measured for the entire turbine step $\left(q_{1}, q_{2}\right)$ can also be completely explained.
4.5.3. OPr-set shroud band with three ser. peaks

While the dioptric labyrinth was somewhat more favorable as to its seal erfect than the plain shroud band. it, was possible to considerably increase the step's effiency by means of the off-set labyrinth common in turbine construction (cr. Figure
4.15). The pressure distributions along the perimeter. shown in Figure 4.28 , below were neasured in the chambers before the

MEASUREMENT: for housing insert D with fitted sine function

$S_{a n}=0.5 \mathrm{~mm}$

$S_{0 x}=1 \mathrm{~mm}$

$S_{a n}=3 \mathrm{~mm}$

- before lst peak 1st o 2nd labyrinth chamber ---local throughput (calculated)

Figure 4.28 Pressure distribution for a rotor clearance with three seal peaks. e $=0.7 \mathrm{~mm}$
first seal peak and between the first and second peaks (see Figure 4.7 (D)). From the results obtained for the diopiric
labyrintho it can be anticipated thet the pressure is constant. beyond the last peak and corresponds to the pressure P2 measured beyond the rotor.

Along the peximeter the pressure distributions are similar to those for the dioptric labyrinth: the measurements in the chamber berore the first peak again lead us to suspect an untight seal. The pressure course for an arial clearance sar $=3$ ma constitute an exception. Here the clearance between the last peak and the front of the shroud-bend shoulder becomes very small. and the pressure in the chamber increases. due to the better seal effect. In this arrangement of the seal peaks with respect to shroud-band shoulder. the position of the pressure naximum is also displaced considerably against the direction of torsion.

The theoretical pressure curves were calculated under assumptions similar to those made for the dioptric labyrintho wi.th the constants for the variable loss coefficients given according to the seal peak positions. Here too, because uf the small clearance at the radial entrance, excessive pressure differences occur, while the agreement is better for the amplitudes and phase angles of the pressure curves corresponding to the central chambers. For the large axial clearance $s_{a x}=3$ mm . the pressure levels in the individual chambers can be reflected by corresponding loss coefficients. The pressure distributions along the perimeter, however, agree only little with the measurements, since the flow cross-sections changed due to the peak positions were not taken into account. In addition. from the position of the measured pressure maxima it must be $/ 144$ concluded that due to the oblique oncoming flow at the last peak, a redirection of the flow occurs in tangential direction.

The slopes of the measured excitation constants are shown in Figure 4.29, in comparison to the calculated values. The portion due to the pressure distribution is practically independent of

Figure 4.29 Three seal peaks

\Longrightarrow Force meas. (entire stage)
-- from press. distrib. (shroud-band)
$=$ Theo.for rotor clear.

Figure 4.30 Three seal peaks
the axial clearance, as was true of other clearance forms. The slope of the excitation force at the stator - formed as the difference $q_{2}-q_{2}^{\prime \prime}$ between the measured value for the entire step and the value calculated for the rotor - agrees with the results for plain rotor clearances and for the dioptric labyrinth。

The restoration constants decrease with increasing axial clearance, under the effects of compressive forces, as shown in Figure 4.30. The restoration constants calculated from the rotor pressure distributions agree only qualitatively with the measured values, due to deviations in the pressure curves already explained in connection with Figure 4.28. The difference $q_{1}-q_{1}^{\prime \prime}$, between the measured total force and and the $/ 145$ compressive force, corresponds to the compressive forces generated in the stator clearance. if we disregard the small restoration forces out of the rotor clearance loss. This course. which can also be recognized in Figure 4.27 . is qualitatively
confirmed by the complete calculation in accordance with Figure 3.39 for a stator clearance with radial entrance and exit.

It was also possible for the setoff shroud band to determine the loss coerricients in such a maner that the measurements are reproduced esactly. However, it is not possible to provide a generally valid dependence on the local seal geometry, which is here expanded with the shroud-band shoulder. It should nevertheless be expected for the calculated transverse forces to provide better agreement, for t..e axial clearances that are usually much larger than the radial clearance widths. Special cases, though. resulting from the position of the seal peaks with respect to the shroud band shoulder - as occur in Figure 4.28 for $s_{a x}=3 \mathrm{~mm}$ - are excepted.
4.6. Forces due to a rotor-to-housing inclination

Normally, according to Figure 2.5, an inclination of the rotor with respect to the housing occurs only coupled to rotor eccentricity, with the ratio of the axial clearance change a to the eccentricity e being a function of the deflection bending Iine, the rotor diameter and the arrangement of the turbine step between the bearings. In order to test whether the forces due to both kinds of deviation are additive, a separate and a common displacement were performed on the test turbine. Figure 4.31. below. shows a plot of the relative excitation force Q_{2} / U_{s} over the eccentricity e ($M R 76$) and the force Q_{3} / U_{S} over the inclination $a=0.535 e(M R 80)$. Furthermore, the displacement was performed in such a manner that under the action of both effects the forces became larger in one case (NR 84), but smaller in the other (NR 83)。 Within the measurement precision, they can be readily composed from individual measurements. with the same conclusions also being applicable to the restoration

ORIGINAE PAGE IS

 DF POOR QUALITY

Figure 4.31 Relative excitation forces over the eccentricity and the inclination of the rotor with respect to the housing

Figure 4.32 Two seal peaks

Figure 4.33 Two seal peaks
forces Q_{1} and respectively，Q_{4} ．The ratio of the two deviations selected here corresponds approximately to the maximum to be $/ 146$ expected for a high－power turbine。 The excitation \mathcal{E} orces rer the steps at the turbine entrance were increased here by arprosimately 10% ，with those at the exit being correspondingly reduced（cx．Figure 2．5）。

Figure 4.32 above，shows a plot of the dimensionless slope of the excitation force generated due to the rotor ${ }^{\circ}$ stinination． The clearance excitation coefficient decreaser tror \quad y with increasing axial clearance and then attains：\because tant limiting value：the portion oxiginating in the pressure austribution acts similarly．In the calculation of the theoretical coefficient according to equation（2．22），it was assumed that the entire clearance loss at the rotor was due to the axial seal effect． For this reasono for the large axial clearance the sum of the theoretical forces out of the clearance loss and out of the pressure distribution yields excessively high values．Due to the linear clearance loss equation，the theoretical coefficient is independent of the axial clearance．The restoration coerfi－／ 147 cients are shown in Figure 4．33，above．The forces originating in the pressure distribution depend particularly strongly on the axial clearance width，here。

The pressure differences generated due to an inclination of the rotor with respect to the housing are shown in Figure 4.34. below，for various axial clearances．In accordance with its definition，the axial clearance－now variable along the perimeter because of the inclination－is smallest at $\psi=0$ 。 Correspondingly。 this is also where the highest velocities occur，which cause a minimum in the pressure curve in the chamber before the first seal peak．For a large axial clearance this effect no longer exists，due to the smaller pressure differences．The position of the now only weakly marked pressure maximum in the central chamber depends on the axial clearance width．The pressure differences are small in comparison to those

MEASUREMENT: for housing incert \mathcal{C}, with fitted sine function

Figure 4.34 Pressure distribution for a rotor clearance with two seal pealss
generated for an eccentric ro r position even though very large axial clearance changes were tested. such as would hardly be possible with a vibrating turbine shart.

1148
Assuming a linear clearance excitation theory it is possible to formulate a relationship between the excitation force caused by the inclination of the rotor, and efficiency curve. From equations (2.19) to (2.22) we obtain the slope of the local clearance loss over the axial clearance.

$$
\frac{s_{s p, e}}{s_{a x}}=2 \frac{a_{3 s}}{u_{s} / l^{\prime \prime}}=2 \frac{K_{3 s}}{!}
$$

as a function of the clearance excitaticn coefficient $\mathrm{K}_{3 \text { s }}$ 。 caused by the changes in the local tangenticl force. It can be determined as the difference $K_{3 s}=K_{3}=K_{3 D}$ between the total clearance excitation coefficient and the portion due to the pressure distribution from the available measurements. Figure

Figure 4.35 Two seal peaks
4. 35 , above, shows the efficiency curve, as a function of the axial clearance. Starting from the calculated tangentiai efficiency for the step。 the linear efficiency decrease which results from the clearance loss due to the shroud-band entrance shoulder, is plotted, according to equation (2.19). The slopes / 149 determined from the excitation force measurements are qualitatively in agreement with the non-linear efficiency curve. However, there are deviations for large axial clearances, caused either by compressive forces at the stator clearance or due to the fact that an inclination of the rotor can also cause small radial clearance changes. If we take these side effects into consideration, the relationship between the excitation forces and the efficiency course seems sufficiently confirmed also for the case of an inclination between rotor and housing.

The rotore of themal turbomachines can become endangered by self－excited vibrations that may impose severe output restrictions on the affected power plants，if these vibrations are caused by clearance excitation．For a theoretical description of the system。 it is necessery to know the transverse forces that act in dependance on a deviation of the rotor from its centered position with respect to the housing。 The component perpendicular to the direction of deviation acquires special significance．since in circumpolar vibrational movement it act；by setting up vibrations in the turbine shaft。

The excitation force can be described as the resultant of the turbine stage＇s tangential force，which becomes variable for an eccentric rotor position．Therefore，for a given rotation rate， it is a function of the stage＇s output and of the course of the clearance loss over the radial clearance width．In the case of blading with shroud－band．the excitation forces can be considerably enharced due to a variable pressure distribution in the rotor＇s seal clearance。 This effect was studied in detail by means of a calculation procedure in which the torsionally affected flow at the clearance－caused by the main flow，in turbine stages－was especially taken into account．

Sample calculations show that the excitation forces due to a pressure distribution in the seal clearance increase with increasing pressure gradient and especiallyo with increases in the tangential velocity before the clearance．However，the characteristic quantity is the relative afflux energy，to be obtained from the dynamic pressure of the tangential velocity before the clearance，related to the pressure gradient operating at the seal clearance．Correspondingly，because of the large relative afflux energy at turbine stages in impulse
construction larger emcitation forces becone active due to the pressure distribution over the rotor's shroud-band, than in /151 reaction stages. However, the form or the seal clearance and the empirical loss coerficients, which describe the clearance Ilow as a function of the geometry, also have a signilicant effect on the magnitude of the excitation forces.

The experimental studies were performed on an impulse turbine stage, varying the rotor's clearance rorm. The rotor was mounted in a kind of two-component balance, connected to a dynamonetrical brake: the transverse forces were measured as a function of its deviation with respect to the housing. By means of efficiency measurements at various radial clearance widths. it was possible to show that for blading without shroud-band the excitation forces could be calculated from the clearance loss alone. In contrast, for the bladings with shroud-bard investigated, in spite of lower clearance losses, larger excitation forces were observed; these could be explained by means of measurements of the pressure distribution at the rotor clearance.

Considering the complexity of the flow processes in a seal clearance, the agreement between the measured pressure curves and the theory is relatively good; minor deviations - especially for small axial clearance widths, can be explained in terms of the simplifying assumptions made regarding the loss coefficients. For the usual constructions, the transverse forces acting on a turbine stage - caused by the clearance loss, on the one hand, and the pressure distribution along the rotor perimeter, on the other - can be determined with sufficient accuracy.

A
a
b
$\mathrm{C}_{\mathrm{E}}^{\mathrm{E}}$
c

EB insert condition to describe stage geometry
$\Delta h_{s} \quad$ isentropic gradient
K° 。 $K^{\prime \prime}$ clearance loss coefficients
K coefficient for the transverse forces of the flow medium
1
NR
m
\dot{m}
n
P
p
Q
q coefficient for the transverse force depending on the deviation
Re Reynold ${ }^{\circ}$ s number
r radij
S support force
s clearance width
I temperature
t distance of the seal peaks
$U_{0} U_{S}$ tangential or peripheral force, isentropic tangential force

u	tangential or peripheral velocity
Vow	velocities within the clearance
W	relative velocity at the blading
2toyoz	spatial coordinates
$2^{0} 03^{00}$	number of seal peaks

a Slow angle, angle of rotor inclination
$\alpha, \beta \quad$ flow angles at turbine blading
ζ, $\bar{\zeta}$ pressure loss and impulse loss coefricients
η erficiency

* isentropy exponent
λ rriction coefficient
$\mu \quad$ contraction coefficient
ρ density
ψ tangential or peripheral angle, bending angle
$\phi \quad$ pressure coefficient of the turbine stage
ω angular velocity
\&っt load vector
$\mathbb{R} \quad$ load matrix proportional to the deviation
F load matrix proportional to the velocity
* percentage reaction

Subscript and superscripts:
\times dimensionless representation
~ clearance width variable along perimeter

- stator
" rotor
1 in the direction of deviation
2 perpendicular to direction of deviation (preceding the direction of rotation)
A radial exit
B reference magnitude
D from pressure distribution
E radial entrance
i.n support point in flow direction
$k_{0} j$ support point in tangential direction

```
    S radial clearance
    s originating in clearance loss
Stage control surfaces:
    0 before the stator
    1 between bladings
    2 behind rotor
```

1 Thomes．$H_{0}-J_{0}$ Instabile Eigenschwingungen von Turbinenlaeufern，angetacht durch die Spaltstroemung in Stoprbuchsen und Beschauflung［Unstable natural vibration of turbine rotors induced by the clearance llow in glands and blading］．Bull．de $I^{\prime} A \cdot I_{0} M$ ．71．No．11／12，1039－1063（1958）．

2 Sraemer，Eo，Selbsterregte Schwingung von Wellen infolge von Querkraften［Selfoexcited vibration of shafts due to transverse forces］．BWK 20，No．7．307－312（1968）。

3 Pollmann，E．Stabilitaet einer in Gleitlagern rotierenden Welle mit Spalterregung［Stability of a shaft rotating in friction bearings，under clearance excitation］． Fortschrittsbericht VDI－Zeitschrift Reihe 1 ［Progress Report，VDI（Association of German Engineers）Journal Series 1］．No。 15 （1969）。

4 Thomas．Ho－Jo，Grenzleistungsprobleme bei thermischen Turbomaschinen［Limiting output problems in thermal turbo－machines］．Mitt。VGB 51。No．4．286－293（1971）

5 Thomas，$H_{0}-J_{0}$ Urlichs，K ，and Wohlrab。 Ro。 Laeuferinstabilitatet infolge Spalterregung［Rotor instability due to self－excitation］Forschungsvereiningung Verbrennungskraftmaschinen［Research Association for Internal Combustion Engines］，Frankfurt，Issue 167（1974）

6 Glienicke，Jo．Experimentelle Ermittlung der statischen und dyamischen Eigenschaften von Gleitlagern fuer
Gchellaufende Wellen．Einfluss der Schmierspaltgeometrie und der Lagerbreite［Experimental determination of the static and dynamic characteristics of friction bearing for
hich speed shafts．Effect of the lubrication clearance geonetry and of the bearing width］．Progress Report．VDI Journal Series 1。 No。 22 （1970）．

7 Gasch．Ro，Stabiler Lauf von Turbinenrotoren［Stable running of turbine rotors］。Konstruktion 17．No．11，447－452（1965）．

8 Gasch．Ro．Unwucht－erzwungene Schwingungen und Stabilitaet von Turbinenlaeufern［Unbalance－forced vibrations and stability of turbine rotorsl．Konstruktion 25．No．5。 161－168（1973）．

9 Vogel．D．H．Die Stabilitatet gleitgelagerter Rotoren von Turbomaschinen unter besondere Beruecksichtigung einer Erregung durch Spaltstroeme［The stability of friction bearing－supported turbowinachine rotors with special consideration to clearance flow excitation］。 Dissertation。 Munich Institute of Technology．1969。

10 Schirmer，Go Fo。 Zur Stabilitaet der Schwingungen von Turbinenwellen［On the stability of turbine shaft vibrations］．Dissertation，Darmstadt Institute of Technology，1969。

11 Winter，Como，Lastabhaengige instabile Bewegung von Turbinenlaeufern［Load dependent，unstable motion of turbine rotors］．Dissertation，Darmstadt Institute of Technology， 1968。

12 Piltz，E．，Belastunsen von Damprturbinenlaufraedern bei Auslenkung der Welle［Stress on steam turbine rotors under shaft deviation］，Konstruktion 24，No．4．141－148（1972）．

13 Piltz。 E．，Einfluss von Dampibelastung auf die Stabilitaetsgrenze einer einstufigen Modellturbine［Effect of steam charge on the limit of stability of a single－stage
model turbine］．Konstruktion 25，［vo．4．130－135（1973）．

14 Traupel．W．，＂Thermische Turbomaschinen＂［Thermal
Tubo－machines］Vol．1。（1st Ed．），Springer（Berlino Goettingen，Heidelberg）1958．（2nd．Ed．a 1967）．

15 Trutnowsky．K．。＂Beruehrungsfreie Dichtungen＂［No－contact seals］．VDI Pubiishers．Duesseldorf 1973.

16 Truckenbrodt．E．＂Stroemungsmechanik＂［Flow Mechanics］。 Springer（Berlin，Heidelberg，New York）1968．

17 Lomakin．A．A．。 Die Berechnung der kritischen Drehzahl und der Bedingungen fuer Sicherung der dynamischen Stabilitatet des Laeufers von hydraulischen Hochdruck－Maschinen unter Beruecksichtigung der Kraefte，die in den Dichtungen entstehen［Calculation of the critical speed and the conditions to insure the dynamic stability of hydraulic high－pressure machine rotors，taking into consideration the forces generated in the seals］。 Energomasinostroenie 4，No． 4．1－5（1958）．

18 Dorm，U．Dernedde，R．and Handwerker，Tho，Der Einfluss der Stufenabdichtung auf die kritische Drehzahl von Kesselspeisepumpen［The effect of stage sealing on the critical speed of boiler feeders］．VDI Report No． 113 （1967）．

19 Kiesewetter，Ho and Wolter，Wo．Einige Bemerkungen ueber die dezentrierende Kraft aur umstroemten Kolben［Some remarks on the decentering force on pistons immersed in flow］． Maschinenbautechnik 12．No．2。69－73（1963）．

20 Alford，J．S．，Protecting turbomachinery from self－excited rotor whirl。 Transactions ASME，Jo of Eng．f．Power 87，No． 10，333－344（1965）．

21 Spurk。J． H_{k} and Keiper，Ro，Selbsterregte Schwingungen bei Turbomaschinen intolge der Labyrinthstroemung［Self－excited vibration in turbo－machines due to the labyrinth flow］。 Ingenieur－Archiv 43．No．2／3．127－135（1974）．

22 Kostyuk．A。Go．A theoretical analysis of the aerodynamic forces in the labyxinth glands of Turbonachines． Teploenergetika（Thermal Engineering）19．No．11．29－33 （1972）。

23 La Roche，U．。Untersuchung der Stroemung ueber einen Absatz im Zusammenhang mit den Injektionsverlusten bei Dampi und Gasturbinen［Study of the flow across a set－off in relation to the injection losses in steam and gas turbines］． Communication from the Institute for Thermal Turbomachines． Swiss Institute of Technology at Zurich．No． 10 （1965）

24 Neumann．Ko．Zur Frage der Verwendung von Durchblickdichtungen im Dampfturbinenbau［On the question of using dioptric seals in steam turbine construction］． Maschinenbautechnik 13．No．4．188－195（1964）．

25 Neumann，K_{0} ．Untersuchungen von Wellendichtungen fuer Dampfturbinen bei hohen Dampfparametern［Study of shaft seals for steam turbines under high steam parameters］。 Maschinenbautechnik 15。27－31（1966）。

26 Groddeck，K．－H．Probleme der beruehrungsfreien Hochdruckstopfbuchsen［The problems of non－contact high－pressure glands］．Forschung Ingo－Wesen 23．No．5． 183－195（1957）。
$/ 156$

27 Stingelin．V_{0} ．Theoretische und experimentelle Untersuchungen an Gaslagern［Theoretical and experimental
studies on gas bearings］．Communicatina from the Institute Sor Aerodynamics，Swiss Institute or Technology at Zurich． No． 32 （1963）．

28 Rosenberg．So Scho，Orlik．W．Go and Rarcenko，U．A。o Untersuchung aerodynamischer Querluaefte bei einer Wellenexzentrizitaet［Study of aerodynamic transverse Sorces in the case of shaft eccentricity］．Energomasinostroenie 8． 15－17（1974）．

29 Hochreuther，Wo．Kraette bei axial durchstroemten Spalten ［Forces in clearances with axial flow］。 Dissertation。 Stuttgart University 1975.

30 Wohlrab，Ro。Spalterregung bei thermischen Turbomaschinen ［Clearance excitation in thermal turbo－machines］． Dissertation．Munich Institute of Technology（1975）。

The Table below lists the mid-section magnitudes of the test turbine and the slopes of the forces over the eccentricity for selected measurement sequences. The stage geometry is described by means of the insert as defined in section 4.2 . The individual magnitudes are explained in the sequence of the computer print-out, with a listing for the equation number.

MR Measurement sequence number
SAX axial clearance
NB operating speed
Mi throughput。 (4.1)
DHS isotropic gradient. (4.2)
PSI pressure coerficient. $\phi=2 \Delta h_{S} / u$
US isentropic tangential force
ETAE effective efficiency. (4.4)
ETAJ tangential efriciencyo (4.5)
KEAK percentage reaction. (4.14)
REAM percentage reaction from measurement $p_{1 w}$ (ci. Figure 4.4)
KSI ratio $\zeta=\zeta^{\prime \prime} / \zeta_{S p}$ corresponds to $q_{2 s} / q_{2 s}$
Q2S theoretical exeitation force. (2.15)
US/I reference magnitude U/l for following constants
Q2 excitation coefficient (entire stage)
Q1 restoration coefficient (entire stage)
Q2D excitation coefficient from pressure distribution
Q1D restoration coefficient from pressure distribution
CES relative afflux energy for rotor clearance. (3.24). recalculated for external tadius using (3.8)
Po pressure before turbine stage p_{0}
DP02 pressure difference $p_{0}-p_{2}$
DP12 pressure difference $p_{1}-p_{2}$ from (4.13)
TO temperature before stage [$\left.{ }^{\circ} \mathrm{C}\right]$
CO afflux velocity, (4.6)
C1 stator exit velocity. (4.15)
C2 velocity behind rotor. (4.15)
AL2 outflow angle. (4.15)

Insert cond. $231 \mathrm{w} / 0$ shroud band ($\mathrm{s}=0.5 \mathrm{~mm}$) Form A

390.3	0000	. 389	d,	5,50	78.	1720	. 704	.7608	. 222	. 068		
4080	8000	. 389	14.7	5.60	78.2	.722	. 694	. 780	. 213	. 068	. 57	7.2
412.0	8000	. 389	14.8	5,51	70.7	. 710	.725	. 769	. 249	.068	. 57	7.2
-2 3.0	0080	. 309	14.7	5.48	78,	. 716	. 720	.750	.212	, 068	.57	. 2

Insert cond. $211 \mathrm{w} / \mathrm{o}$ shroud-band $(s=1.0 \mathrm{~mm})$, Form A

170.5	8000	.393	14.45 .39	77.3	.628	. 600	. 764	1845		.57	7.1
16 1.0	8000	. 393	14.025026	75.8	. 394	.651	-764	.121	\ldots	.57	7.0
142.0	8000	- 392	14.0 5,20	74.7	. 579	. 644	. 776	1117		. 57	0.9
153.0	8000	-392	24, 15.25	75.6	.378	. 639	. 769	-828	\cdots		7.0
Insert cond. $221 \mathrm{w} / \mathrm{O}$ shroud-band ($\mathrm{s}=1.5 \mathrm{~mm}$), Form A											
301.0	8000	. 398	14.05022	76.3	. 521	. 359	. 772	18U5	. 091	59	7.0
382,0	8000	. 398	14.05022	70.2	. 459	. 357	. 772	- 105	. 071	99	0
3720	8000	. 399	14.05 .21	70.1	.456	0.331	. 772	.105	. 072	. 59	0
3220	-900	. 388	14.05 .22	76.3	. 440	. 357	.772	Q 205	.078	- 97	0

Insert cond. 251 Plain shroui-band, Form Bl

Insert cond. 281 Plain shroud- band, Form B2

Insert cond. 271 Two seal-peaks, Form C

Insert cond. 291 Three seal-peaks, Form D

313	00.5	0000	. 400	14.8	5.52	82. 3	. 700	0776	. 750	- 895	ω	. 37	5.2
184	1.0	0000	-407	14.0	5.52	82. ${ }^{\circ}$	-600	. 702	. 750	88^{7}	\because	037	5.2
d 15	2.0	8000	. 407	$4^{4} 89$	5.540	日2.0	${ }^{6} 687$	8764	. 175	-872	0	837	5.2
886	3.0	8000	.407	14.8	5.50	$\mathrm{g} 2.8_{8}$. 696	. 756	.754	- IH°	ต	- 27	5.2

 og N/AM N/MF H/NH N/MM NPMA nom MEAR HEAR MEAR G MIS H/S H/S GRO Insert cond. 231 w/o shroud-band ($s=0.5 \mathrm{~mm}$), Form A

Insert cond. $211 \mathrm{w} / \mathrm{o}$ shroudmand $(s=1.0 \mathrm{~mm})$, Form A

17	4.1	4.8	0.9			8.81129	879	24.5	25	25	850	37	71
10	4.0	0.1	0.3		0	2.088125	179	20.0	25	25	158	35	74
14	3.8	800	1.1	-	-	20 ${ }^{\text {d }} 1123$	173	89,2	24	25	850	36	75
85	4.0	804	1.7	-	\cdots	3.08825	175	49,9	24	25	150	35	*

Insert cond. $221 \mathrm{~m} / \mathrm{o}$ shroud-band, $(s=1.5 \mathrm{~mm}$), Form A

30	4.0	5.0	$=0.2$			2.28838	279	17.3				$3{ }^{3}$	9
36	4.0	0.9	0.5	-	.	2.88835	878	17,4	25	25	85.	34	70
27	4.0	0.3	0.5	-	-	3.18134	175	87.4	23	25	158	34	70
32	4.0	7.6	108	-		7.2 2135	175	17.3	25	25	158	34	76

Insert cond. 251 Plain shroud-band, Form Bl

59	0.5	9.5	308	$40_{0} 9$	2.4	2.01092	149	24	24843	72	32
60	4.4	40.1	\square^{8}	4.0	3.1	2818100	154	17.234	14 242	47	40
do 0	3.8	d0.7	7.5	5.0	386	8, 81117.	170	23.321	24 240	34	5
69	4.0	12.a	8.6	5.9	4.2	8.98250	202	20.421	¢6 158	42	64
64	5.8	8 d 3	$0 \cdot 8$	508	3,3	2.78161	214	33.48	20259	45	59
62	3.1	$66^{0} 0$	8.9	0.6	4.0	4.8 21850	211	34.619	10 189	44	0.
00	3.0	$\underline{10.2}$	10,	0.2	4.1	4098854	207	23.620	26160	42	83

Insert cond. 281 Plain shrourl-band, Form B2

											20			
00	2.9	7.5	0.2	4.0	00.6	2.2	2067	819	$1{ }^{1}$	25	22	d28		
98	2.3	0.7	7. ${ }^{\text {c }}$	3.9	3.0	200	1069	120	19.	26	22	120	27	09
92	204	4.7	8.7	3.	5.4	$2 \cdot 8$	2069	822		36	2	129	27	12
93	204	9.5	9.2	3.6	4.	8.3	2070	223		-	22	31	27	122

Insert cond. 271 Two seal-peaks Form C

Inser, cond. 291 Three seal-peaks, Form D

113	4.3	0.7	58.3	4.0	0.2	8.01104	291	36.5	23	25	149	30	00
114	4.3	0.1	404	3.7	4.4	8078104	291	36.3	23	39	250	39	60
115	4.3	9.4	200	302	0.3	1601164	291	31.0	23	25	150	39	00
880	4.6	0.0	109	3.8	-330	8068105	122	32.7	23	\% 1	249	40	00

[^0]: the radiz

