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ABSTRACT

The purpose of this work is to analyze and evaluate the

effect of jamming waveforms on both coherent and noncoherent

digital communications receivers. Specifically, random processes

are utilized as jamming models in which it is assumed that the

jamming waveforms have been produced by a shaping filter driven

by white Gaussian noise. Such jamming waveforms are then

assumed to be present at the input of known receiver

structures (in addition to- the signals and channel noise

normally present) , and optimum jamming waveform spectra are

determined for different receiver schemes and modulation

techniques

.

Graphical results based on numerical analyses are presented

in order to demonstrate the effect of different jamming

strategies on receiver performance. In order to quantify

receiver performance, bit error probabilities are determined for

binary modulation systems and symbol error probabilities are

determined for M-ary modulation systems. In each case, the

error probabilities are functions of signal-to-noise ratio

(SNR) and jammer-to-signal ratio (JSR) . Results show that

it is generally possible to significantly degrade the

performance of binary as well as M-ary modulation communica-

tion receivers by introducing suitably chosen jamming waveforms.
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I. INTRODUCTION

The theory of statistical signal detection and estimation

in the presence of additive white Gaussian noise is widely

described in many textbooks [Refs. 1,2,3]. Signal detectors

are typically designed and built to either optimize the

receiver output signal to noise -ratio, or as is the case with

digital communications receivers, to minimize the error

probability

.

While it has been demonstrated that receivers designed

under a white noise interference assumption tend to perform

reasonably well even when the interference is not white

[Ref. 4], the assumption of white noise interference is often

invalid, especially when the receiver must operate in a jamming

environment.

The goal of this thesis is to analyze the vulnerability of

certain digital communications receivers designed to operate

in a white noise interference environment, that must operate

in the presence of jamming also. The mathematical model of

the jamming utilized is a colored Gaussian noise process

whose power spectral density is to be shaped in such a manner

so as to cause a large increase in the receiver probability

of error. While it is not always possible to solve certain

spectral shaping optimization problems, it is possible to

postulate techniques that intuitively achieve efficient

utilization of the available jammer power.

10



This thesis is divided up as follows. In Chapter II, we

present results on colored noise interference effects in

coherent M-ary Phase Shift Keyed (MPSK) receivers, and receiver

symbol error probability in the presence of noise and jamming

is derived. In Chapter III we analyze and determine performance

of a coherent M-ary Frequency Shift Keyed (MFSK) receiver

operating in the presence of noise and jamming. Chapter IV

deals with non-coherent Binary Frequency Shift Keyed (BFSK)

signal detection in the presence of noise and jamming. The

performance of the well-known quadrature receiver is analyzed

under dual channel and single channel operation. In Chapter V

graphical results are presented and discussed, and performance

comparisons are carried out. The conclusions and interpreta-

tions of the results obtained are presented in Chapter VI.

11



II. COLORED NOISE INTERFERENCE EFFECTS IN COHERENT
M-ARY PHASE SHIFT KEYED MODULATION

A. SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

The system whose performance is to be analyzed is described

in Fig. 2.1. The structure shown is the optimum receiver for

recovery of MPSK modulated data", in the presence of additive

white Gaussian noise. In PSK modulation, the source (or

modulator) transmits one of M signals s. (t) , where

i = 1,2,...,M, over a prescribed time interval. Because in

transmissions and reception these signals are interfered with

by noise, at the receiver one observes the signal r(t) rather

than just one of the transmitted signals. Using hypothesis

testing concepts, we say that under hypotheses H. , r(t)

takes on the form

H.: r(.t) = VE S.(t) + w (t) + n (t) (2.1)

0<t<T, i = 1,2, . . . ,M

where for M-ary PSK modulation

S
j

_(t) = /27T cos (^|^ +
2TT(

^
-1)

) (2.2)

i = 1 , 2 , . . . , M

k is an integer

Here W(t) is a sample function of a white Gaussian noise

process of Power Spectral Density level N /2 and n (t) is a

12
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sample function of a colored Gaussian noise process having

autocorrelation function K (x ) . We assume also w(t) and

n (t) are statistically independent random processes.

The receiver of Fig. 2.1 is, as previously pointed out, an

optimum processor (in minimum error probability sense) when

n (t) = . The analysis that follows evaluates the effect
c J

of n (t) on the performance of this receiver. Since n (t)
c c

may represent some form of jamming, the error probability

expression to be derived can be used to determine the vulnera-

bility of such a receiver to colored noise jamming, or

conversely, to determine the colored noise spectrum that most

effectively causes poor or inadequate receiver performance,

namely, high error probability.

The signals S.(t) , i = 1,2,3,...,M can be shown to

have cross-correlation coefficients

p ij

T

/ S . (t) S. (t) dt = cos
27T(

;T J)
( 2 -3)

n 1 J u

i,j = 1,2, ... ,M

The receiver takes advantage of the fact that we can express

the S.(t) functions, i = 1,2,...,M, as an exact (rather

than approximate) expression of a linear combination of two

functions ip, (t) and ip_ (t) . In other words

14



2

S. (t) =
I S. lb (t) i = 1,2,3, ...,M (2.4)

1
n=l

in n

with

S.
in

T

/ S
i
(t) ipn (t)dt- n = 1,2; (2.5)

i = 1,2, ... ,M

These basis functions ib- (t) and ip^ (t) can be derived via a

Gramm-Schmitt orthonormalization procedure (or almost by

inspection in this case) . It turns out that ip, (t) and \p- (t)

(which must be orthogonal) are given by

* x
(t:

Cos 2^kt/T
(2 6

/tTI

and

= Sin 2rrkt/T
(2>?)

2
/T/2

where k is an integer.

It can be easily shown that

and

S., = Cos 2tt(
^

1}
; i = 1,2, M (2.8

ll M

S., = - Sin
27T(

,

j

;

1}
. i = 1,2, ...,M (2.9)

i2 M '

15



We define

= 2tt(:L-1)/M i = 1,2, ...,M (2.10

and assuming equal prior probabilties , namely, each signal is

equally likely to be transmitted, the receiver computes

2

l\ = s. r i = 1,2, . . .
,M (2.11)

l u
, in n

n=l

and makes decisions based on which l\ value is largest. Thus

with

T
r = / r(t) if, (t) dt n = 1,2 (2.12)
n

Q

we have

.[ = Tcos ej / r(t)
ip-L

(t) dt

T
+ [- Sin el / r(t) ip

2
(t) dt i = 1,2,..,M (2.13

and using simple trigonometric identities,

l\ = V Cos (6. +n) i=l,2,...,M. (2.14

16



Clearly

2 2
1/2

V = {V + V } (2.15)

where

V
c

T

/ "_r(t) ip

1
(t) dt

, (2.16)

T
Va = / r(t) >K(t) dt (2.17

Zs

and

-1 V
s= Tan ^ (2.18)
c

B. RECEIVER PERFORMANCE

Since conditioned on any hypothesis H., i = 1,2,...,M,

V and V are Gaussian random variables, we can obtain the
c s

statistics of the appropriate random variables, in the follow-

ing manner. First, we have

E{V/H.} = E{ / [/E S.(t) + w(t) + n (t)]iK(t) dt}
c j q j ci

= /E / S . (t) ij^U) dt = /E S.
x j = 1,2,...,M .

(2.19

17



E{V/H. } = E{ / [/E S. (t) + w (t) + n (t)]^ (t) dt

}

5 J Q J O Z

= /E / S . (t) ip 9 (t) dt =
J J

= /E S-
9 (2.20)

j = 1,2,3, ... ,M

also

T 2

Var{V/H.} = E{[ / [w(t)+n (t) ]tK (t)dt] }c j CO.

TT
= E{ / J[w(t)+n_(t) ] [w (x)+n (t) ]^n (t)-j, ( T )dtd T }cxi

N T T

y+ / / K
c

(t-T)T|»
1
(t)^

1
(T)dt dT (2.21

2

and

T 2

Var{V /H . } = E{[ / [w ( t ) +n ( t) ] .j, ? ( t) dt] }
b j

Q
c z

T T
E{ / / [w(t)+n_(t) ] [wd)+n (t) H 9

(t) ^ ( T )dt dT }

N T T
-^ + J / K (t- T ).j; 9

(t),|;
9
(T)dt d T (2.22

2

In Appendix A we demonstrate that

18



T T

/ / K (t-T)if;, (t)iK (x)dt dx
c L L

T T
A 2

= I j K (t-T)iMt)^ (T)dt dx = a (A.

7

c

so that V and V conditioned on H. have identical variances.
c s _ ... j

Observe also that

E{ [V
c
-E{V

c
/H

j
}] [V

s
-E{V

s
/H

j
}]/H

j
}

T T
E{ / [w(t)+n„(t)]ih (t)dt / [ W (T)+n (t) ] 'K(T)d T

•

T'T N

// -^5(t-x)^ (t)ip (T)dt dx
00 2 z

T T
+ / / K (t-x)'jj, (t)^ 9 ( T )dt dx (2.23

We can observe that the first double integral in Eq. 2.23

is zero, so that

E{ [V -E{V /H
. }] [V -E{V c

/H
. } ] /H . }

T T
= // K (t-T)-Ut)iK(!)dt dx = o

2
(2.24

00 '

2
We demonstrate in Appendix A that in general a, ~ is not zero

so that V and V conditioned on H- may not be uncorrelated.
c s j

J

19



However we are still able to express the joint probability

density function of V and V by using the general form [Ref

5] of an N-dimensional Gaussian random vector X, namely,

P
x

(X)

(2,)
N/ 2

|A|
1/2

exp<-i(X-m )

T
A"

1 (X-m )\ (2.25r
I 2 — —x ~x — —x )

where

m = E{X} (2.26

and

A = E:<j(x - m
x
)(X-m

x )

T

}
(2.27

In our case, we have a 2-dimensional problem in which (see

Eqs. 2. 19 and 2.20) ,

m—

x

/E Sjl

/E S
jl J

j = 1 , 2 , . . . , M (2.28

and

A
~x

M
o 2
2- +Q c

1,2

1.2

N
o 2
2- +

°c

(2.29

so that

N

x
o ^ 2,2
2" +a c J

2 A
Aa

l,2
= A 2. 30

It is simple to show that

20



A
-1

N .

-°1,2/A

-°l,2/a

N ,
2. 31)

Thus

PV ,V /H.'VVV
C S J

J

1 J 1
exp i

\/(2tt)
2
A

2

V -/ES..
C ]1

V - /ES . ni- s j 2

r N
C-£ + c£>/A

-a
1/2

/A

-a
1/2

/A

N

V - /ES .

,

c jl

,_ V - /ES . ~u s ] 2'

2. 32)

with j = 1 , 2 , . . . ,M

Now we need to obtain from this probability density function the

joint probability density function of V and n conditioned on H.

This type of transformation [Ref. 6] is well known and can be

used here to obtain

]

P
v,n/H.

(v ' n/V = vp (vcosn,vsinn/H
] c s j

J

+ v.P. T „ /u (-V Cos n,-V Sin n/H. ) , v 0,

c s j
J 0n<fT

2. 33

Using the probability density function of V and V (Eqn. 2.32

yields

V

J v(2tt) A

exp

r r

_1

2

VCosn-vES

VSinn-/ES

jl

J2J

a -b

-b a

VCosn-vES

VSinn-vESJ
2

v

• 2ttA

exp W -VCosn-vES
jl

-VSinn-/ES . ,•

a -b

-o a

-VCosn-vES.
jl

-VSinn-vES .

J2J

, V > 0,

o < n < fT

(2. 33)

21



and

N
a =

{~Y
+

°c
)/A (2.34)

b = a^
2
/A (2.35)

This probability density function can be expressed in the form

P.. ,„ (V,n/H.) =
V

exp{-4ta(V Cos n +/ES-, )

V/n/rl. J / 2 z J

-

1

J v(2tt) A

+ a(V Sin n - /ES .-)

-2b (V Sin n - /ES .,) (V Cos n -/ES.,)] }

y 2.
— 2 2

+ —==== exp{--[a (V Cos n + /ES . , ) + a (V Sin n + /ES . )

/ 2 ^ ^ ^

v(2tt) A

- 2b(V Sin n + /ES .

? ) (V Cos n + /ES .

1
) ] } (2.36)

3

which can be simplified somewhat.

Observe that the exponential of the first term simplifies to

2 ,— 2
a [V + E - 2WE (S . -, Cos n + S . ~ Sin n) ]

- 2b [V Sin n Cos n
J -L J Z

- V/E(S . , Sinn +S . 2 Cos n ) + ES S ] (2.37)
J J- J Z J L J Z

and the exponential of the second term simplifies to

22



2 — 2
a [V + E + 2V/E (S .

i
Cos n + S .

9 Sin n) ] - 2b [V Sin n Cos n
J J. j z

+ V/E(S.-i Sinn + S.~ Cosn) + ES.,S.~] (2.3;jl j2 J 1 D 2 J

We can now group certain terms together. Observe from Eq. 2.8,

Eq. 2.9 and Eq. 2.10 that

S.-, Cosn +S._ Sinn = Cos 6. Cosn -Sin 6- Sin n
3 -1- J ^ J J

= Cos (6 + n) (2. 39

also

S . -, Sinn+S. Cosn = Cos e.Sin n
_ Sin 0. Cos n

J 1 J 2
J J

= Sin (n - 9 • ) (2.40

for j = 1,2,...,M, so from Eq. 2.3 6 we have

P.. / (V,n/H.) = — V exp{-4[a[V
2
+E-2VvECos(9 .+n) ]

3 v(2tt) A

2 —
- 2b [V Sin n Cos n - V/ESin (n-^)-E Cos3- Sin 6 • ] }

+ — V exp(-T [a[V +E+2V/ECos (0 .+n) ]

/ T~ z ]

v (2tt) A

2 —
- 2b [V Sin n Cos n + V/ESin(n-6 ) -E Cos 9 . Sin 9 • ] } (2.41

for V >_ and <_ n tt.

Since

Cos(9. +n) = - Cos(9- +n +tt) (2.42)

23



and

Sin(n-6.) = - Sin(n - 6 . +tt) (2.43)

we have

D (X7 n/H )

— V [exp{-^a[V
2
+E-2V/ECos(9 .+ n ) ]P

V,n/H
j

(V ' n/H
j

) " /^2~, __ ^ 3

2 —
- 2b[V Sin n Cos n - V/ESin(n~9 .

) -ECos 6 .Sin 9
. ] J }

1 2 — 2
+ exp{-y[a[V +E-2V/ECos(9 .+n+n) ] - 2b [V Sin n Cos n

V/ESin(n-9 .+Tr)-E Cos 9 . Sin 9 . ] ] }] (2.44

for V > and < n < tt .

It is apparent from the range of v that the two exponential

terms can be replaced by a single term with v ranging from

to 2 tt .

Thus , we have

P., /u (V,n/H.) = — V exp{-4[a[V
2
+E-2V/ECos (9 .+n) ]V,n/ri. J / 2

z J
J V(2tt) A

2 —
-2b[V Sin n Cos n-V/ESin(n-9 .

) -E Cos 9 • Sin 9 • ] ] } (2.45)

for V and <_ r\ 2 tt . The probability density function of

n conditioned on H is obtained via integration of P t7 (V,n/H.),
] V, n j

namely

,

24



P
n/H,

(n/V I P
v,n/H.

(v ' n/H
j
)dv (2 - 46)

J _0°
J

Returning to our decision rule, (Eq. 2.14), recall that we

decide based on which

*[ = VCps(6
i
+n) i = 1,2, ...,M (2.14

is largest

So, if H . is the true hypothesis, then a correct decision

is made if

v cos (9 .+n) > v Cos (9
i
+n) ; i = 1,2,. . . ,M (2.47

i * J

Since Cos x is maximum when |x| is minimum, we see that if

H. is the true hypothesis, a correct decision is made if

| e .+n |

<
|
e.+n

I

i = 1,2, . .

.

,m (2.4

i + j

Now from Eq. 2 . 9 we know that,

. = 2tt(j-1)/M

So Eq. 2.54 is satisfied for n in the region

-e .

- J < n < -e . + ^ (2.49
j M J M

Thus, the probability of making a correct decision, given that

H. is the true hypothesis, Pr{c/H.}, is given by
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j M

Pr(c/H.} = / p,„ (n/H.)dn (2.50)

^ M

If we make the variable change

6 = n + .0^ (2.51

Then Eq . 2.5 becomes

tt/M

Pr(c/H.} = / P . (S-e"./H.)de (2.52
J -tt/M

n/tl
j

D D

Now from Eq. 2.4 5 and Eq. 2.4 6 we have

oo

P n/„ (n/H.) = /
V

• exp{-^[a[V
2
+E-2V/E Cos (6 -+n) ]n/H. J Q

J
I

— 2 ^
J U

V(2tt) A

2 —
2b [V Sin n Cos n-V/ESin(n-9 • )-E Cos 9 • Sin 9 • ] ] }dV (2.53

< n < 2tt

so that

oo

P /u (3-6.)/H.) = / — V
exp{-^-[a[V +E-2V/E Cos

D U
V(2tt) A

- b[V Sin2 (S-6 )-2V/ESin(S-29 •

) -E Sin 28 • ] ] } dV (2.54
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and Eq. 2.52 now becomes

tt/M °°

Pr{c/H.} / / — V exp{-4[a[V2
+E-2V/ECos 6

"VM fJZ ,2.
Z

V (2tt) A

- b[V
2
Sin 2(8-e.)-2V/ESin(B-29 .)-E Sin 2 6 .] ] } dV dB (2.55

Since the hypotheses have been assumed to be equally likely,

we have

so that

1
M

Pr(c} = - [ Prtc/Hj} (2.56)

p 1 - Pr{c}
e

1
M 7T/M

\7 l 7
= 1 ~ £ [ / / exp{-^[a[V

Z
+E

J-l-ir/M y (2^2 A

- 2V/ECosS-b[V Sin 2 (3-0 . ) -2V/ESin(S-2e .
) -E Sin 29 • ] ] }dV d3

(2.57

Observe that if colored noise is not present, then from Equations

2.24, 2.30 and 2.35, A = (N /2) and b = , so that Eq . 2.57

simplifies to the well-known expression for the performance of

the M-PSK receiver operating in the presence of additive WGN.

That is,
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tt/M °° N

-TT/M O.

- 2V/E Cos B+E] ] }dV dB (2.58)

where in Eq. 2.57, the dependence on the index j disappears

when b = 0. While Eq. 2.57 yields a mathematical result on

the performance on the M-PSK receiver in the presence of

WGN and colored noise jamming, its further analysis represents

a separate project in itself. Not only must Eq. 2.57 be

optimized for energy constrained jamming but also it must be

evaluated when the jamming spectrum takes on some simple forms.

For this reason, no effort has been made to further develop

the above results.
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III. COLORED NOISE INTERFERENCE IN COHERENT M-ARY
FREQUENCY SHIFT KEYED MODULATED SYSTEMS

A. SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

The structure of the demodulator whose performance is

to be analyzed is shown in Fig:. 3.1. This receiver is

known to be optimum for deciding with minimum probability of

error, which one of M different signals forming an orthogonal,

equal energy set received in additive white Gaussian noise was

actually transmitted. The problem analyzed here, can be

stated as follows: A waveform r(t) , received in the interval

(0,T), contains one of the M signals, S.(t), i = 1,2,...,M,

with equal probability, as well as white Gaussian noise w(t)

of Power Spectral Density level N /2 and colored Gaussian noise

n (t) having autocorrelation function K (t) . The signals are

orthogonal with energy e. That is

T ( e i =
j

p. . = / S. (t)S (t)dt { (3.1
13 x J

( i ? j

The decision rule used by the receiver, is to choose S- (t)

as the transmitted signal if G. is a maximum, where

T
G. = / r(t) S

i
(t) dt i = 1,2,. ..,M . (3.2)
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While this is an optimum test (in minimum probability of error

sense) in the absence of the colored noise n (t) , the analy-

sis of the next section is carried out in order to determine

the effect of n (t) on the receiver performance. Since n (t)

will typically be inserted in the channel by an unfriendly

jammer, it is reasonable to assume that n(t) and n (t) are

statistically independent random processes.

B. RECEIVER PERFORMANCE

Since G- is the output of the ith correlator, and, condi-

tioned on any hypothesis, G- is a Gaussian random variable,

we can obtain the appropriate conditional statistics that allow

determination of P , namely the receiver error probability.

Thus

E(G./H
i

} = e{ / [S
i
(t)+w(t)+ nc (t)]S (t)dt}

3

T

I S. (t)S. (t)dt = e 6 .

.

(3.3

and

T 2

Var{G./H.} = E{[ / [ w(t) + n (t) ] S . (t) dt] }

J i c j

TT
= Eijj [w(t) + n (t)] [ w(t) + iu (t)]S. (t)S. (x)dtdT)

c c D :
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( ) TT N
Var|G./H = // [_£5(t-f) + K (t-i) ] S . (t) S . (t) dtd-

NT T T
-% ! S. (t)S. (t)dt + // K (t-T)S. (t)S. (T)dtdi
z

Q -> J 00 C JJ
N TT

= -% e + // K (-t-i)S. (t)S. ( T )dt dx (3.4)
2

00 c : 3

Define

Tt
a = // K (t-i)S. (t)S. (i)dt dx (3.5

so that

N
7

Var{G./H. } = -£ e + a (3.6)

Observe furthermore that

E{ [G.-E{G./H. }] [G. -E{G, /H . }]/H. }
j j l k k l ' l

T T
= E{ / [w(t)+n (t) ]S. (t)dt / [w(i)+n (x)]S, (T)di}

C D c K

T T N T T

// -£6(t-T)S. (t)S, (T)dtdT +f j K (t-i)S. (t)S, (i)dtd-
00 2

3
k uV C

=>
k
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E{ [G
j
-E(G

j
/H

i
}] [G

k
-E{G

k
/H

i
}]/H

i
}

NT TT
o= -2- / S. (t)Sv (t)dt + // K (t-T)S.(t)S.(T)dtd
1 J K c D

T

NTT
= ~ e 6 .. + // K (t-x)S. (t)S,(T)dt di (3.7

2 3
k

50 c D
-

As can be seen from Eq . 3.7, due to the presence of the colored

noise, the random variables {G./H-} are not uncorrelated.

However we will show that for MFSK with signal frequencies

that are sufficiently separated, the integral

TT
// K (t-i)S. (t)S, (r)dt di (3.8
00 =i

k

vanishes for j f k, so that the random variables are indeed

uncorrelated.

Thus, conditioned on H-, the G. are statistically indepen-

dent. Assume now that S- (t) is transmitted and G- = x. Then
i l

the conditional probability of a correct decision, Pr{c/H^,

G • = x } becomes
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P{c/H
i
,G

i
=x} = P{G, < x, . . . ,G. , <X,G. +1 < x, . . . ,G < x/H . ,G. = x}

M
IT P{G, < x/H. ,G. =x}

k=l
k 1

-

1

Mx N ~

n / exp{-YV2 (-ge+ot ,.) }dy (3.9
k=l — / N " 2 C ' K

k^i W 2 ,(-^£k+ a C/k )

Introducing a change of variable,

Z = y/W^e+a
2

(k
(3.10

we have

*/v^+< kM C - 2
/9

P{c/H.,G- =x} = n 7 -±- e
Z /2

k=l
k^i

dz (3.11
k=l -co /2tt

Now, since

E{G./H. } = e (3.3li

and

Var{G./H.} -° E + a^
k

(3.6

we have that
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oo N
P{c/H-} = / P{c/H.,G.=x} - exp{-(x-£)

2
/2(-^£+a

2
. ) }dx

N
,

C ' i

so that using Eq. 3.11, we obtain

x/V-T£+a
c k

P{c/H.} / H /
1 e"

z /2 dz
-oo k=l -°° V

k^i

N
^ /-. / o 2

'
N

2

2,(f£+ a C; .)

>xpj-(x-e) /2(-=-e+a . ) }dx 3.12

Assume now for convenience that M is odd, and express the M-afy

FSK signals as

S-(t) = A Cos (oj + (i- (M+D/2) Aco) t < t < T (3.13)

i = 1,2, .. . ,M

so that

T -jcot °° -jolt

/ S
i
(t)e dt = / S

i
(t)p(t)e

= F{Sj(t)p(t)} i = 1,2,. ..,M (3.14)

where
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p(t)

1 < t < T

otherwise

P(u) = Te
"^T/ 2 Sin coT/2

"

coT/2
^* 1D

and S! (t) is just S, (t) with -« <_ t ». Thus

00

F{s!(t)p(t)} = -1 / S'U-A)P(A)dA
i 2tt ' l

(3.16

where with

CO
i

(M+l) v .

(l - *—-) Aco 3.17

we have

Sj(oo) = ttA[6 (co-(co c
+oo

i
) ) + 6(co+(co +co

i
_))] (3.1

for i = 1 , 2 , . . . ,M

Thus

F{S|(t)p(t)} = -£- j ttA[6 (co-v-(oj +co- ) )+6 (oo-v+(co +oo.))]
2tt

j c i c l

-jcoT/2

Te
Sin vT/2 ,

vT/2
dV

AT
2

~
-j (uj-oj -co

. ) T/2 Sin (co-co -co . ) T/2J c 1 c 1

(oj-oo -co
.

) T/2
c l

+ e

-j (co+co -Ko.)T/2 Sin(co+co +co.)T/2
c l c i'

[co+oo +co.)T/2
(3.19)

For convenience, let
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LCoj) = e
-jcoT/2 Sin coT/2

coT/2
(3.20

So that Eq. 3.79 becomes

F{S|(t)p(t)} = F{S
i
(t)} = S

i
(aj) =

AT
, [L (co-co ~co ,• ) + L(co+to +co- ) ]
2 c l c l

3.21

i = 1 , 2 , . . . , M

Let us examine now the correlation coefficient c .
.

, namelv
13

P.. = / S.(t)S.(t)dt = / ACos(co +co- )tACos (co + oo . ) t dt
"LJ J c J

2
A T

Sin (oj . -co . ) T Sin(2co +co . +co . ) T
1

] + E___i___2_
(co . -co . ) T (2co +co . +co . ) T

l j C l 3

(3.22

If we assume that co T >> tt, then the second term in Eq. 3.22

vanishes and we have

ID
/ S . (t)S . (t)dt

A T Sin(i-j ) AcoT

2 (i-j)AcoT
(3.23

In order to have orthogonal signals we need at least AcoT = tt

or equivalently Auo = tt/T. Normally, we will have

Aco = kn/T (3.24
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where k is a large integer, so that p. •
- for i ^ j. Thus,

from Eq. 3.23 and Eq. 3.24,

2

T . £ = A T/2 i =
j

S. (t) S . (t)dt =
1 j

j

i * j

• • = / S. (t) S . (t)dt =

2
From Eq. 3.5 it appears however that the term a

c , 1

independent of i. Nevertheless Eq. 3.12 becomes

pic/i^} / n / ^ze
"z /2 dz

-oo k=l -a? /2tt

k^i

2tt(^£+q
2

.

2 c , l

Let

X~£
n = ———

-

,N
o + 2

2 c , l

Then

So that Eq. 3.26 becomes

(3.25)

2
N

2
exp{-(x-e) /2(^+a (3.26

2 c , l

(3.27

/N
?

x = e + n\/^£+a (3.28)
V 2 c, i



oo m
v 2 c,i v 2 c,k

2

P{c/H
i
} J n / -i- e"

z /2
dz

-co k=l -co /2tt

2

x — e"
n /2

dn (3.29

Finally,

M

I
i=l

1
M

P{c} = ± I P{c/H
i

} (3.30

or equivalently

Pic) =M / n erfcj 4= e"
?

i=l -oo k=l I /N
"

/v'2tt

2
We must focus on the a . factor. Observe from Eq. 3.7 that

c , k

E{ [G
j
-E{G

D
/H

i
l] [G

k
-E{G

k
/H

i
)]/H

i
}

N T T

-£ £ 6 .. + // K (t-T)S. (t)S, (r)dt dr (3.7
^ ] 00 c J K

and the second term becomes
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T T X oo

// K (t-T)S.(t)S. (T)dtdT = // K (t-T)Sl(t)S/(T)dt dT
J "*xc 3

CO

= ~ / S
c
(a))S! (-co)S^(co) doo (3.32

It has been shown in Appendix B that S '. (-co) and S/ (co) are

essentially frequency disjoint, therefore Eq. 3.32 is zero

for j ^ k. For j = k, we have (using Eq. 3.21)

W(^ —oo

2 0°At T ( 2—~— • j— j S (to)
I

Li (oj—co
—

lo, ) + L(co+(jo_+co
1 .) I

'

dco (3.33)
c K

-co

If we define

T r i i2
L = -5- J S (co) |L(co-co -co^) + L(oo+oo +co

k )
I

dco (3.34)

k = 1,2,. ..,M

2
then, with £ = A T/2 (Eq. 3.25)

2
a , = el. k=l,2,...,M (3.35)
C , K K

Thus from Eq. 3.31
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N
M °° M /E+rTW-re+el. \ , 2V

P{c} - 1
I / n erfc, f

:̂ J_2^i \l_ ^vT/2
(

i=l -oo k=l I /N |/2tt

so that

i=l -oo k=l I /j>T~

Mi W-f

Pe = 1-gJ, f ^ eric. (
—" 2 1

)-±-e-'l/2 dn (3.37

2
i+£l

k

Observe that

Vtf
' /N / SNR

fe+eli V"!6*61
!

n +
\l/2+I

!_

SNR

£

"V*:+eI.
1

# +eI
k

v*hel.
i

#-* v^ v
.+2I£ SNR

f2l! SNR
l

I .

Where e/N = SNR and I! = — = ith channel JSR
o 1 £

Then

n+^
SNR

3. 3:

, M °° M / ' \ 0.5+1! SNR \ , 2 /0

P
e

= l-i
l II erfc, 1 i ie- r

'
/2

d,1( 3.39
1=1 "~ w \J1+21

*
sm J

^1+21! SNR
1

Consider now the following colored noise power spectral

density

,
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M
S (go) = 2ttK I [6(co+co +oj.) + 6(co-co -co.)] (3.40)
c i=l c x c x

Thus, the colored noise consists of equally weighted "tones"

at the signal frequencies. Therefore, Eq. 3.34 becomes

T f v i \
2.

^v
=

o^ J ^1T^ / [5(co+co -Ho.) + 6(co-co -co.)] |L(co-co -co, )+L(oo+co +co,J dco
K A" -, CI CI C-K C •K

M
2 2

= TK £ [|L(-2oo -coj^-^) +L(co
k
-co

i
)

|

+ |L(co. -o^) + L(2uj +(jo.+oj. )
|

] (3.41
i=l

Since co is typically large, we can justify the statement that

the terms involving 2co are negligible small, so that,

M
2 2

I
k

= TK[ I ^(c^-^)
|

+ iLftOj-c^)
|

]

i=l

M M /Sin(co.-co, )T/2\ 2
i k

2TK T Leo. -co, = 2TK 7 [—, , m/0
. '-, ' l k ' .<-. V oj.-oj, T/2
1=1 i=l \ i k

M /Sin(i-k)AcoT/2 \ 2

2TK
J=1 y(i-k)LJT/2

j

With AcoT/2 = ititt where m is large, we have

(3.42

I = 2TK for i = k (3.43

We can impose a constraint that
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CO CO M
P
ni

= i / S (a>)doj = K / £ [6 (arHco +w.) + 6 (00-00 -co-) ]d^
-* -co C

-co i=l

= 2KM (3.44)

Then

and

Furthermore

and since

K = P ./2M (3.45

P . TP .

I. = 2T -£L = —£1 (3.46
k 2IV: M

I, TP .

k _n_7

"k £ Me
t> = JS = _J11 (3.43)

TP = jammer energy and
nj J 3J

£ = signal energy,

this implies that TP /£ = JSR. We have therefore that

Eq. 3.39 becomes

P
e

M-l

M-l
2
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Observe that for JSR = 0, Eq. 3.47 is identical to the well-

known formula for the performance of the receiver of Fig. 3.1

under MFSK modulation.
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IV. NON-COHERENT BINARY FREQUENCY SHIFT KEYED
SIGNAL DETECTION IN THE PRESENCE OF COLORED NOISE

A. THE QUADRATURE RECEIVER, EQUIVALENT FORMS AND RECEIVER
PERFORMANCE IN THE PRESENCE OF WHITE GAUSSIAN NOISE

In this section, a short presentation of the basic princi-

ples of statistical communication theory that lead to the design

of the well-known quadrature receiver is undertaken. Basic

results that are useful in the sequel are presented only, since

the details have been worked out in numerous textbooks (see

[Ref. 7] for example).

Consider a binary digital communication system model in

which one of two signals, S (t) or S, (t) , with energy E and

E, , respectively, is received in the time interval (0,T) . At

the receiver, white Gaussian noise with zero mean and spectral

density N /2 is added to the signal. The actual received

signal r(t) takes on one of the two forms, namely

r(t) = /E. S
i
(t) + n(t) < t T, 1 = 0,1 (4.1

The likelihood ratio test which operates on r(t) in order to

choose which one of the two hypotheses is believed to be

the true one, namely

H
i

: r(t) = vE~ S
±
(t) + n(t), < t < T

,

(4.2

i = 0,1
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IS

T 2

exp{- ± / [r(t) -^ S
1
(t)] }dt

A(r(t)) = 2_2_ _ >
y (4.3

exp{- £- / [r(t) -SE~ S (t)] }dt
N A

; o o
o

where y is a threshold whose value depends on the decision

criteria used. This test can be applied to any communication

problem involving transmission of known signals S (t) and S-, (t

One such example is the well-known BFSK modulation scheme.

One problem of interest, which is a slight modification of

BFSK modulation problems, involves signals

/E- S.(t) = A Sin(co. t+<p. ) i = 0,1 (4.4ii l Y i
< t < T

where the phases <p. t i = 0,1 are statistically independent

random variables, uniformly distributed over the interval

(0,2tt) , and the amplitudes A are known and equal. It turns

out that the test specified by Eq. 4.3 can be modified to

account for the random phases $ . by using conditional proba-

bility densities.

The details of the procedure have been worked out in Reference

8. It can be shown that when the signals are given by Eq. 4.4,

the test of Eq. 4.3 becomes

I (2Aq,/N )

A(r(t))
i°(2AqV) <

'< <4 - 5)

o ^o o
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where

2

^k / r(t)Sin w,tdt

"12 _ T 2

/ r(t)Cos ov.tdt
K

k = 0,1 (4.6

and I ( * ) is the modified Bessel function, defined by

I (x)
x
2n

L
n 2n . . .

2

n=0 2 (n!

)

= £ /

2tt
xCos(9+a)

2tt
da (4.7)

For minimum error probability decision criterion, the decision

rule of Eq. 4.5 assuming equal prior probability of trans-

mitting S (t) or S, (t) , is to choose H, if
1 1

I (2Aq,/N ) > I (2Aq /N
o ^1 o — o ^o c

(4.8)

or equivalently , to choose H, if

qi > q^1 — Mo

Otherwise H is chosen. (Observe that I (x) is a monotonically
o o

increasing function.)

The receiver structure that implements the test of Eq.

4.8 is shown in Fig. 4.1. Another (equivalent) form of the

receiver of Fig. 4.1 is shown in Fig. 4.2, involving a combina-

tion of matched filters and the envelope detectors. The
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receiver of Fig. 4.2 is completely equivalent to the receiver

of Fig. 4.1.

The evaluation of the performance of the receiver has been

worked out in Reference 9 and is given by

, -E/2N
P
e = J

6 ° (4 ' 9:

2
where E = A T/2 is the average signal energy. If we now

define the signal to noise ratio, (SNR) as

SNR = E/NQ

we obtain the simple result

P = i exp{- SNR/2} (4.10)

B. RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE

The receiver presented in Section A is optimum in minimum

probability of error sense when operating in a white Gaussian

noise interference environment. In this section we analyze the

vulnerability (probability of error) of the quadrature receiver

in the presence of an additional additive noise that is modeled

as colored and Gaussian, having autocorrelation function

K (t) . (We denote n (t) as this additional colored noise)

.

The problem can then be restated as follows. Under

hypotheses H., i = 0,1, r(t) takes on the form
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H
±

: r(t) S. (t) + w(t) + n (t)
1 c

i = 0,1

< t < T

(4.11

where

S.(t) = /E S!(t) = A Sin(co.t +<J). ) i = 0,1 (4.12)

In order to determine the effect of n (t) on the receiver
c

probability of error, we evaluate the statistics of the random

2
variables q, , k = 0,1, where, as defined by Eq. 4.6,

2

^k / r(t)Sin ook
tdt

j
/ r(t)Cos cok

tdt 4.6)

k = 0,1

Thus, conditioned on H., i = 0,1
l

/ [S-(t) +w(t) +n (t)]Sin oj, t dt
; l c k

+ / [S.(t) +w(t) +n (t)]Sin a), t dt
; i c k

A 2 2
= X. , + Y. ,

l , k l,

k

i = 0,1 k = 0,1 4.13

Observe first that the integral
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T T

/ S • (t) Sin oj.tdt = / A Sin (oj. t + <j>. ) Sin a), t dt

AT
2

'Sin(a).-a), )T/2

(a,.-a,.)T/2
COS [U^) T/2 + * ]

• i k '

Sin(co.+ook )T/2

(oo. + co
k
)T/2

Co.[( Ui+(^)T/2 + *.] i = 0,1

k = 0,1

(4.14)

If we now assume that

(01,-03 )T = 2mTT and (co,+co )T = 2£tt (4.15

we have that Sin(o>. + o>, ) T/2 = 0, for i = 0,1, k = 0,1. Thus
x K

o

T Sin(o).-03
k
)T/2

/s^tJSino^tdt = T ( )T/2
Cos[(.

i
-^)T/2^.]6

i/k
4. 16)

i = 0,1 k = 0,1

where

ik

1 if i = k

if i ? k
(4.17

By arguments similar to the above,

T Sin (oj -o.) T/2

o

/s.(t)Cos^tdt = - ^r^)T/2
Sin[(,iA)T/2^.]5.

>k

i = 0,1 k = 0,1

(4.1
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Now conditioned on <p . , i = 0,1, the X. , and Y. , are Gaussian
1 1 , JC 1 , K

random variables, so it is possible to obtain the conditional

probability density function of q, , k = 0,1. Thus

T
E{X. ,/h. tj) . } = / S. (t)Sin co, t dt i = 0,1 k = 0,1 (4.19)

1 / Js./ 1,1 - 1 K

and

Var{X.{X
i<k

/Hr *i}
= E

r t

/ (w (t)Hn (t))Sin go. tdt
L0

<r t

jj EU(t)wd) +n (t)n (x) }sin totSin uvidt di
00

c c K K

T N
2

TT
/ -£ Sin a), tdt + // K (t-i)Sin oj, t Sin oj, idt di

z K
00

c

A 2 2
= a + a ,

i = 0,1, kw c,k
= 0,1 4. 20

where, assuming that 2oj,T >> 1

o a
N T _ NT

a.. = —
J

Sin oj, tdt = —j—w 'k
k = 0,1 4. 21

and

c , k
A T T

// K (t-x)Sin oj, t Sinoj, xdt di k = 0,1
00

k
(4 . 22
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Similarly

E { Y. . /H. ,<f>. } = / S- (t) Cos co, tdt i = 0,1 k = 0,1 (4.23

and

Var re^j/Vi'
T N TT

/ -$- Cos go, tdt + // K (t-T)Cos oat Cos (A idt di

^
K 00 c k

A 2 2
= a + a ,w c,k

k = 0,1 i = 0,1 (4.24)

since it can be demonstrated that

T T T T

// K (t-i)Sin co-t Sin a dtdi
o-o

c ^ // K (t-i)Cosco, tCosuiTdtdT
00 c

k = 0,1

4.25

Finally

x
i, k

-E{x
i,k/

d
i'*i

}
][

Y
i,k-

E{Y
i,i/

H
i,*i

}
]
/H

i'*i!

E / [w(t) + r^(t)]Sin ^tdt / [w(t) + r^d) ]Cos ^ d-

T N
o

T T
-r- sin oo, i_ uds co, tut t i i j\ i, c- u ain co, t. los og,2KK

00
C KKSin w,.t Cos (jo,.tdt + K (t-i)Sin co, t Cos co. idt di

i
= '0,1 k = 0,1

(4.26
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It can be shown that these two integrals are zero so that

X. . and Y. . are conditionally uncorrelated, and therefore
1 , K 1 , K

independent since they are Gaussian random variables. Now

define

and

qk
= ^1 k = 0,1 (4.27

ol = a
2

+ o
2

. k = 0,1 (4.2
k w c ,k

so that the conditional density functions for q
' , k = 0,1 are,

4. 29

o o '

*

where u(-) is the unit step function, and

A' = E
2
{X /H ,d> } + E

2
{Y /H ,(}) }OO 0,0 7 O yO O/O7 o yo

Using Eq. 4.16 and Eq . 4.18, we have

A^
Q

= (— Cos-t)
o

) + (— Sm<j>
o

) = (-2") (4.30)

Also

P(q
.

/Hl ,V = 1 exp j-

(q

°^-
'

}
I H^ ]u(q;» (4.31)

o ^ o ' o
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where

Aj_
Q

= E
2
{X

1
/H

1
,((,

1
} + E

2
{Y

X
/H

1
,<j>

1
} = (4.32)

due to the result of Eqs. 4.16, 4.17 and 4.18 for i ^ k.

Therefore

p{ 3o
/Hl'V =

-T- exP { " qo
/2a

o
}u(q

o ) (4 - 33
2a

o

Furthermore

1

: 2
x
o \
—2—

)
u(q

i
}F(qi/HQ

,(0
o

) = ^exp --^- I
Q H^f lu(q') (4.34

2a
l (

2a
l I

X a
l

where again due to Eqs. 4.16, 4.17 and 4.18,

x
l,i

= e2{x
o,i

/h
o'*i } + e2{y

o,i
/h

i'*i }
=

° <4 - 35

so that

P(qj/H
o

,<j>o
) = -\ exp{-q'/2a

2
}u(q') (4>36)

2a,

Finally

1
(" (q

l
+>

il
} /Vql A

ll
P(q'/H

1
,

1t1
) = ^-exp X

2

1X
I M X

- ^ 1 u(q') (4.37)
2a, 2a,

J

^ a.
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2 2 AT ?

Hi = E ^ Xn/H
i*i>

+ E^{Y
11
/H

1 <J) 1
} = (^y)

Z
(4.38)

We now have the statistical information needed to compute the

probability of receiver error P . Assuming that each hypothe-

sis has equal prior probability, we have

P
e

= | P{q
x
-q >0/H

ol
+ |p{.q1 -qo <0/H

1 } (4.39)

Observe that

P(q
1
~q

o
>0/H

Q } = / P{q
1
>q

o
/HQ/ qo

=p}P (p/H
Q
)dp (4.40)

-co ^O

where

P{ qi >q
o
/H

o ,qQ
=p} = / P(q

1
/H

Q
)dq

1
(4.41

P

Since the conditional probabilities functions are not

dependent on the individual phases, that is

P(q
1
/H

i
) = P(q

1
/H

i ,«J, i
) i = 0,1 (4.42)

and

P(q
o
/H

i
) = P(q

o
/H

i
,<^

i
) i = 0,1 (4.43
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we can rewrite the conditional probability functions in

the following form

p<vW = VvVV

#K(:
q^ (

((AT/2)
2
+q^) ) /a (AT/2)

= -Sexp - ^-JO. i _2_ )u(q) (4.442~^ _ 2
" o\ 2 ^o ;

a f 2a > \ a
o o o

P(q
o
/H

1
,c|,

1
) = 2qo

P(q^/H
1

,4.
1

)

q 2 ,„ 2
-|exp{- q^/2a^}u(q

Q ) (4.45
a
o

P(q
1
/H '* ) - 2qiP(q^/Ho

,4)o
)

= -|exp{- q^/2apu(q
1

) (4.46)

°1

F(q
1
/fi

1 ,<J>1
) = 2q

1
P(q^/H

1
,0

1
)

q-, ( ((AT/2)
2
+q

2
) ) /q (AT/2)

a, ' 2a, \ a..

Thus

00 oo

P{q
1
-q
o
>0/H

o
} = / [ / P(q

1
/H )dq

1
]P (p/H

Q
)dp (4.48
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Similarly

P{q
1^o

<0/H
1

> = / Plq1
<q

o
/H

1
/qQ

= p}p (p/H )dp (4.49

where

P{q
l
<q

o
/H

l' qo
=p} =

I P(q
1
/H

1
)dq

1
4.50)

so that

oo r p

P{q
1
-q
o
<0/H

1
) = / / p(q

1
/H

1
)dq

1
P (p/H ) dp

- X>

4. 51

Using now Eq. 4.44 and Eq. 4.46 we have

P {
qi

-q
o

> o/jy r % 22
J -^exp {-q

1
/2a

1
)u(q

1
)dq

1
p a.

p
q

(p/u
o
)dP

/ exp{p /20.^-^exp
3 a

o

((AT/2)
2
+p

2
)

2a
2

p(AT/2;
u(p)dp (4.52

For convenience, let e = AT/2 and , recalling u(p) = 1, p >

Eq. 4.52 becomes



P{q
1
-q
o
>0/H

Q
} = / exp -p

2
(^2+-^2-) -^-exp{-e

2
/2a

o
ll (^|)dp (4.53)

I 2a n 2a ) a * 'aloo o

Letting

2 211 o 1+ —T = " ^ (4.54
I 2 2

T
2 " _ 2- 2

2a
T

2a
1

2a
Q

2a
o
a
1

so that

2 2

°T = a
o
a
l
/
(
Q
o
+a

l) (4 - 55)

we have

2 2.. 2 2

P{
qi

-q
o
>0/H

o
} = / exp{V/2a2

} 4 ^ e °I /JL_|\ dp
a
Q

a
T \ a

T
a
Q /

22222 222
aT -e /2a a /2a °° -(p +a )/2a pa

= -5- e e ^e I (

—

T ) dp (4.56
2 n 2 O ^

°T °T

where

a
Q

= ea
2
/a

2
(4.57

Now the integral itself yields 1, since it is the integral

of a probability density function. Therefore
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p{q
1
-q
o

>0/H
o

} = ~2 exP
o
o

9 2 2.2
£ T O

2 2
2a 2a^

o T

—jexp
a
o

I 21 1
2 am /

£
1 -

T (

„ 2 2 [

2a a 1

- ° o
1 /

(4. 58

Similarly for Eq. 4.51

p{q
n
-q <o/h,} = /

*1 ^o ' 1

P
q-L

-((^)
2^)/2a2 ,AT\

q,(-)
~2~

-°° a.

l
)/2a

l T /V"
ol 2
V a

i

u(q
1
)dq

1
P (p/H )dp

^o
4.59

Observing first, the quantity in brackets can be expressed as

2 2 2 AT
) q

±
-((AT/2) 4q

1
)/2a

1
/ q

±
(-y)

/ 4e I
Q 2— Ju(q1

)dq
1

1

" I"
/

p a.

q
i

-t^)
2^2^2

q
AT,

1
V

2
I
Q
_r_ju(q1)dq1 4. 60)

Letting

a
l

= AT/2a
1

(4. 61

and making a change of variable

x = q l
/a

l
4.62
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we have that Eq. 4.60 becomes

1 -

p/a.

,
2 2, n00 -(x +a, )2

/ x e I (a,x)u(x)dx 1 - Q(a
1
,p/a

1
) 4.63

where Q(*,*) is the well-known Marcum Q function [Ref. 10].

Therefore Eq. 4.59 becomes

p{q
1
-q
o
<0/H

1
} = / W^' -Q-

2 /o 2
"P /2a~

u(p)dp

= !_ /°Q«-f, -t e"
p2/2<,

°
a
l

a
l a

2

o

dp (4. 64

From Reference 11, the integral of Eq . 4.64 becomes

/V^-)V
p2/20

°
a

a, a,
1 1 / a

dp =
2 2

a +a,
o 1

1 - Q 0,
I
(AT/2)

2

\ 2 2

' o 1

2 2 Q \\ 2 2

o 1 * o 1

,0

2 2
+a, Lo 1

1 - exp <- (AT/2)

2(a
Q
+a

1
) 7

2 2
7

o
+a

l

= 1 -
a
o1

2
8XP

a +a,
o 1

(AT/2
2

o/ 2 2
,2 (a + a,

)

o 1

(4.65
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Thus Eq. 4.59 becomes

P ^ql"qo
<0//H

l
}

=
2
°

2
exp

2 2
a +a,
o 1

(AT/2)'

2(a^)
4.66

Now using Eq . 4.58 and Eq. 4.59 in Eq. 4.39, we have that

2 2
a
2

exp -
(AT/2)

2a'

1 -

21
_T

.2

o
2 2 2

a +a,
o 1

exp <- (AT/21
2 2

2 (a+o
1

!o 1

Recalling that e = AT/2 , using Eq. 4.55, we have

2 exp
-w 2 2.
2(aQ+ a

1
)

4. 67

From Eq. 4.67 it is clear that in order to minimize P , we
e

2 2
must maximize a +a, subject to some constraint on the colored

o 1 J

noise power. By Eq. 4.20

2 2
a + a.
o 1

2 2 2 2O+O +0+0,
w c ,o w c ,

1

2 2 2
2a + a + a ,w c , o c , 1

4.68)

where
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2 2
a +a
c,o c,l

= //
00

K (t-x)Cos CO T+COS 00 t dt dr
c o o

T T
+ // K (t-x)Cos co,t Cos (jo, t dt dx

00
c X

(4. 69)

As an example, consider the case where the power spectral

density of the jammer is

S (co) = ttP [6(co-co.) + 5(co+co.)] .

c c J J

Under this assumption it has been shown in Appendix C, that

Eq. 4.69 becomes

2 2
a +a ,

c,o c,l

P T
c

2 -
Sin (co -co . ) T/2 \ 2 , Sin (co. -co .

) T/2 \ 2

(oj -co ) T/2 / y (co^coJT/2
4. 70

where co- and P are the frequency and the power of the jamming

waveform, respectively. It has also been demonstrated in

Appendix C that Eq. 4.70 is maximum at co .
= co or co .

= co, , so^ ^ 2 o j 1

that

2 2
a + a ,

. c,o c,l

P T
c

max

^Sinlcu^-co )T/2 \2

V (oo
1
-co

o
)T/2 )

+ 1 4.71

and Eq . 4.6 8 now becomes
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2 2 ,
N
o
T P

c

°o
+ a

l
= 2 "J-

+—T
2

"/Sin (oo -to )T/2\ 2 "|

(4.72)

Thus Eq. 4.67 becomes

P_ = o-

1
2 exP

2 2-AT/4

P T
2

N T + -£=—
O 2

[

Sin(co,-co )T/2 \ 2

(co,-co )T/2
i o

2
A T/4N

2-exp

1 +
P T
c

2N

2 _

1 +

O u

Sin (co, -co )T/2\ 2
1 o

(co -co )T/2

2 exp{-
- SNR

JSR- SNR 1 +

[

Sin(co
1
-co
o
)T/2

(co -co )T/2
1 o

2i 4. 73)

2 2
where SNR = (A T/2)/N and JSR = P T/ (A T/2) , represent signal

to noise ratio and jamming to signal ratio respectively.

Observe that with JSR = 0, Eq.4.73 becomes identical to

Eq. 4.10. This result is appealing because for the case of

no jamming, the receiver performance should be identical to that

of a receiver operating in white Gaussian noise interference

only.
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C. RECEIVER PERFORMANCE IN THE PRESENCE OF WHITE GAUSSIAN
NOISE UNDER SINGLE CHANNEL OPERATION

In Section B, we have analyzed the performance of the

quadrature receiver in the presence of white and colored

Gaussian noise. Results were specifically obtained when the

colored noise interference was a single frequency jammer. Sup-

pose now that the quadrature receiver experiences a single

frequency interference which corresponds to one of the signal

frequencies, say oo . Since the receiver makes binary decisions

based on whether q, > q or vice versa, the presence of the

interference at frequency u> will cause q to be greater than

q, most of the time creating decision errors nearly 50% of the

time.

In order to prevent this type of situation from arising,

the receiver can turn off the affected channel, or equivalently

,

make decisions based only on the output of the other channel,

that is, based only on the size of q, . In this section the

performance of the quadrature receiver is analyzed assuming

white Gaussian noise only interference, and that decisions based

on only one channel output are made.

Assuming that the receiver bases decisions only on the

size of q, , the decision rule now becomes

H
l

q-L < 7 (4.74)

H
o

Recall from Eq . 4.6 that,
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q£ = / r(t)Sin u^tdt + / r (t)Cos o^tdt
J

(4.6)

k = 0,1

A „2 2

kXT

The probability of error is

p ~ = p ^i >Y/H }P{H } + P{q, <Y/H,}P{H
1 } (4.76

and assuming that P{H } = P{H, } = 1/2 then Eq . 4.76 becomes

P
e

=
I P{q

l
> Y/H

o
} +

\ P{q
l

< Y/H
l

} (4 ' 77

The information bearing signals are

/E
i

S.(t) = A sin(oo. t $ . ) i = 0,1 (4.4

< t < T

and in Section B we found that

2 2
q, -q,/2a,

P(q
x
/H ) = -\ e

X L
u(q

x
) (4.46)

a
l

and

2 2 2
q -(e +q )/2o q. £

P(q
1
/H

1
) = -J e

X X
I (-j-) U(q

1
) (4.47

°1 °1
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where z = AT/2 and

J, =
N T
o

w 4.21

Thus, from Eqs . 4.19, 4.46, and 4.47, we obtain

i r q
i -A/2<\

2 j — e u(q ) dq,

Y a
1

a

2 2 2
Y q -(£ +qj/2a

2 j T J
o 1-2-

u(q
l
)dq

lVa
l

4.7

Observe however that a threshold of y must now be defined.

Clearly, a threshold that minimizes P should be chosen. This

can be done by solving dP /dy = 0.
e

Thus

dP

d-Y

2.-2
-y /2a

1
e u

2 2 2
-(e +Y )/2af

Y) + -J
e I

o
(^|)u(,

G
l

2 2
°1

2 2
"Y /2cl

e u(y)

2.. 2
•e /2a

-1 + e
1

i (4:o 2
°1

(4.79)

so that solution of dP /d
(

= yields an implicit solution for

Y, namely,
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2 2

/-§\ = e
X

(4.80)
"o

Suppose now that y is the solution of Eq. 4.80 for a given

2
value of £ and a, . Then

2 /0 2

1 r°°
q
i "ql

/2a
l

P
e

= $ / 4 e
1
u(q

1
)dq

1
no °1

Y 2 2 2
o q, -(e 4q

1
)/2a

1 /q
+

2 / -£e X
I -J- Vu(

qi
) c3q (4.81

-°° On \ a, /
1

,w
l

Letting y = q,/a, , Eq. 4.81 becomes

P = T e
e 2

-VV2c
2

r - ^ {{f)2+y
2

'

i v i i r r ii r ^ a
i i

+
I

i- /ye i <y£»<*
L Yo

/a
l

x
J

, , -Y2/2a
2

= 2
+

2
e ° 2

Q(£/a
l'

no
/a

l
) (4 ' 82

Observe that

eJL _ (AT/2)
2

_ A
2
T _

. 2 " 2N T/4 ~ 2N~ ~ SNR (4 ' 83
2a, o o

so that defining
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TTH = Y A - (4.84

we have

YQ _ YTH
£

_

°1 °1
rm„/2SNR (4.85)

so that the threshold setting equation (Eq. 4.80) becomes

I (YTH
(2SNR)) = e

SNR
(4.86

and Eq. 4.82 simplifies to

P
e

= ^-+|exp{- \ -

)^H
(2SNR)} - jQ (/2SNR, Yth (/2SNR) ) (4.87

The receiver performance indicated by Eq. 4.87 is compared to

that of an incoherent BFSK receiver that utilizes both channels

for its decisions. (See. Eq. 4.10.) The result of this

comparison is presented in Chapter V.

D. RECEIVER PERFORMANCE IN THE PRESENCE OF COLORED NOISE
UNDER SINGLE CHANNEL OPERATION

In this section, we analyze the performance of the quadra-

ture receiver under the assumption of single channel operation,

as described in the previous section. Here however, it is

additionally assumed that a jamming signal is present, whose

energy is concentrated around the frequency oj . (Observe that
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the channel whose output is q has a passband around ^ . Thus

a jammer concentrating its energy around u> would significantly

affect the output q . Consequently, turning off or ignoring

q would make sense under these circumstances. Hence, the
^o

single channel operation being considered here.)

Our decision rule continues to be

H
l

qr < y ( 4 - 7 4

H

and

P
e

=
IP { q l

> Y/Ho } + ¥ { q l
< Y/H

l
} (4 ' 77

Observe that due to the presence of a jammer

where

2 2 2
a, = a + a 1 (4.28)
1 w c, 1

2
TT

a , = // K (t-T)Sin aj-, t Sin cu, idt di (4.20)
c,i 00 c X

As shown in Appendix C,

2
FT 2

/Sin(co .-0^)172 \ 2

°c,l
=

4 \ (w.-uj
1
)T/2 J

(C.12
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when the jammer is concentrated at frequency to . . With

co . = go , Eq. C.12 becomes
D o *

P T
c

c,l

2 - . -i
Sin(co -co

1
)T/2

~~~
[ (oo

o
-oj

1
)T/2 J

(4. 88)

so that the probability of error is

1 2

2
exp j- j <

ffl

I
2 2

a +a ..

w c,l

2
Q
(V 2

C

2 '

Y
Th\ 1

£

2
\* w c,l * w c,.

:4.89:

Observe that

A T/2N
o

2 2

w c,l
P T

2 2 TT^
A
2
T/2
NA T/2 o

Sin(co -co
1
)T/2

(co -co . ) T/2
o 1

2SNR

1 + JSR-SNR
rSin(m -oj.) T/2 1 2

o 1

(co -w
x
)T/2

4.90)

Defining

SSQ =
Sin (oj -co, ) T/2

o 1

(co
o
-co

1
)T/2

(4.91

we have

71



1 1 I 1 .2 / 2SNR
yn2 | 2 'IH\ l^SR-SNR-SSQ

1
( j

2SNR /

2
y y^l^SR-SNR-SSQ ,YTH V

2SNR
(4>92

l^SR-SNR-SSQ ' 'TH \l4^SR-SNR'SSQ

Observe that with JSR = 0, Eq. 4.92 becomes identical to Eq.

4.87, as must be the case.

Furthermore if the frequency separation (oo ~oj-, ) is such

that (go -oj,)T/2 >> 1 or (oj -oj,)T/2 = mir , where m is an integer

then, SSQ becomes very small or zero so that the effect

of the presence of the jamming is negligible. The numerical

results obtained from Eq. 4.92 are very similar to those

obtained from Eq. 4.87 as demonstrated in greater detail in

Chapter V.

Recall that the threshold is obtained from the solution of

Eq . 4.86, namely

I (Y_H (2SNR) ) = e
SNR

(4.86
O in

However if our goal is to set a threshold that minimizes P ,3 e

for the case being considered here, we can solve for an opti-

mum threshold setting by minimizing Eq. 4.92 with respect to

n mu . If this procedure is carried out, we obtain the threshold
TH

setting equation

, I
^SNR \\ = SNR

ol 'TH I 1+JSR-SNR'SSQ// ^] 1+JSR-SNR-SSQ '
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While this result is intuitively appealing, a practical

problem arises in that in most cases, the receiver does not

know the operating JSR value, hence a threshold could not be

set.

Fortunately, computer evaluations carried out using both

Eq. 4.86 and Eq . 4.93 to set the threshold have demonstrated

that the P resulting with thresholds set by Eqs. 4.86 and

4.93 are almost (and for all practical purposes) identical.
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V. GRAPHICAL RESULTS

A. GRAPHICAL RESULTS FOR COLORED NOISE INTERFERENCE IN
COHERENT M-ARY FREQUENCY SHIFT KEYED MODULATED SYSTEMS

In Chapter III, the performance of the MFSK receiver in

the presence of white and colored noise was derived. This

mathematical result is used now to evaluate and graphically

display receiver performance under the presence of white

noise only and under the presence of -white and colored noise

interference

.

Results are presented sequentially for values of M = 2, 4,

8, and 16 on the performance of the M-ary FSK receiver for

white noise as the only source of interference as well as for

various conditions of colored noise powers "in addition to the

normally present WGN interference. The performance results

for the M-ary FSK receiver presented in this section in terms

of the probability of error are shown as the SNR changes , for

specified values of JSR. Some representative results are

summarized in Tables 5.1, 5.2, 5.3 and 5.4. Figures 5.1 through

5.4 include the performance of the M-ary FSK receiver when the

transmitted signal is interfered by white noise only, namely,

JSR = 0. This makes it possible to evaluate the effect of the

jamming on the receiver in comparison to the case in which

WGN is the only source of interference. These results have

been obtained by evaluating Eq. 3.47.
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TABLE 5.1

PERFORMANCE OF 2-FSK RECEIVER

The Receiver

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0

JSR =

JSR = db

JSR = 5 db

JSR = 10 db

JSR = 15 db

0.3759

0.3815

0.3914

0.4115

0.4384

0.286-9

0.3120

0.3454

0.3914

0.4327

0.1586

0.2397

0.3120

0.3815

0.4305

0.0376

0.1917

0.2959

0.3778

0.4298

0.0008

0.1702

0.2899

0. 3765

0.4295

75



TABLE 5.2

PERFORMANCE OF 4-FSK RECEIVER

The Receiver

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0

JSR =

JSR = db

JSR = 5 db

JSR = 10 db

JSR = 15 db

0.6223

0.6262

0.6326

0.6478

0.6734

0.5132

0.5313

0. 5598

0. 6082

0.6598

0.3222

0.3995

0.4861

0.5825

0.6538

0.0915

0.2804

0.4395

0.5712

0.6517

0.0022

0.2153

0.4194

0. 5671

0. 6510
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TABLE 5 .

3

PERFORMANCE OF 8-FSK RECEIVER

THE RECEIVER
P

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0

JSR =

JSR = db

JSR = 5 db

JSR = 10 db

JSR = 15 db

0.7778

0.7792

0.7820

0.7894

0.8056

0.6794

0.6885

0.7047

0.7384

0.7834

0.4755

0.5261

0.5958

0.6914

0.7709

0.1617

0. 3246

0.4992

0.6648

0.7658

0.0048

0. 1885

0.4471

0.6540

0.7641
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TABLE 5.4

PERFORMANCE OF 16-FSK RECEIVER

THE RECEIVER

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0

JSR =

JSR = db

JSR = 5 db

JSR = 10 db

JSR = 15 db

0.8715

0.8720

0.8731

0.8763

0.8839

0.7949

0.7987

0.8062

0.8243

0.8553

0.6083

0.6 3 54

0.6796

0.7556

0.8329

0.2455

0.3621

0.5174

0.7000

0.8217

0.0093

0.1374

0.4019

0.6733

0.8175
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FigurG 5.1. Performance of M-ary FSK for M = 2



MFSK (M=4)

LEGEND

DB

J5R=10 DB
'» JSR=15 BE"

-10.0 0.0
—

T

10.0 20.0

SNRDB
30.0 40.0

Figure 5.2. Performance of M-ary FSK for M = 4
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MFSK (M=8)
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Figure 5.3. Performance of H-ary FSK for m = 8



MFSK (M=16)
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Figure 5.4. Performance of M-ary FSK for M = 16



B. GRAPHICAL RESULTS FOR NON-COHERENT BINARY FREQUENCY
SHIFT KEYED SIGNAL DETECTION IN THE PRESENCE OF
COLORED NOISE

In Chapter IV, the performance of the quadrature receiver

operating in the presence of white and colored noise was

derived. The mathematical results are now used to evaluate

and graphically display receiver performance under various

conditions of signal and noise powers.

First, results are presented for the case in which white

noise is the only source of interference. This yields the

well-known probability of error curves for the standard quadra-

ture receiver for non-coherent BFSK . These are presented in

Fig. 5.5, along with a corresponding plot of the probability of

error of the quadrtature receiver in which only one channel

output is used to make binary decisions.

Additionally, the performance of the quadrature receiver

operating in the presence of white and colored noise is evalu-

ated under dual channel and single channel operation. Under

single channel operation, it is assumed that the colored noise

jamming concentrates its energy around one of the FSK operating

frequencies, and that the receiver is able to make a determinis-

tic as to which "channel is being jammed" so that the outputs

of this channel are ignored in the process of making decisions.

Evaluations are carried out using receiver thresholds that are

dependent as well as independent of jamming power levels.

(Both cases are considered separately.) The performance of

the quadrature receiver in the presence of noise and the jamming
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QUADRATURE RECEIVER JSR=0
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Figure 5.5. Performance of the quadrature receiver for JSR =
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waveform described in this section in terms of the probability

of error is calculated as the SNR changes for specified values

of JSR. Some important results are summarized in Table 5.5

for JSR = and in Tables 5.6-5.10 as JSR takes on values

of 0.0 db, 5.0 db, 10.0 db, 15.0 and 20.0 db, respectively.

In Figure 5.5 the performance of the standard quadrature receiver

and the single channel operation of the quadrature receiver is

plotted when the transmitted signal is interfered by white

noise only. The theoretical performance of the standard

quadrature receiver is calculated from Equation 4.10, and the

performance of the quadrature receiver under single channel

operation is calculated from Equation 4.87.

In Figures 5.6-5.10, the performance of the standard

quadrature receiver and the quadrature receiver under single

channel operation with the threshold dependent as well as

independent of the jamming power level is plotted when the

transmitted signal is interfered by white noise and by the

jamming waveform having Power Spectral Desnity given by Equation

C.7. Each of the figures corresponds to a specific value of

JSR as shown in the headings. The performance of the standard

quadrature receiver is calculated from Equation 4.73. The

theoretical results for the single channel operation of the

quadrature receiver with a threshold that is independent of the

jamming power (Eq. 4.86) is calculated from Equation 4.82, and

Equation 4.92 is used to compute performance of the same re-

ceiver when the threshold is dependent on the jamming power
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TABLE 5 .

5

PERFORMANCE OF THE QUADRATURE RECEIVER JSR =

THE RECEIVER

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0 15.0

Standard
Operation

Single
Channel
Operation

0.4756

0.4820

0.4 26 8
-~

0.4460

0. 3032

0.3531

0.1028

0.1806

0.0033

0.0268

0. 0000000b

0.00009

TABLE 5 .

6

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = DB

THE RECEIVER

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0 15.

Standard
Operation

Single
Channel
Operation

0.4767

0.4820

0.4361

0.4460

0. 3582

0.3531

0.2709

0. 180b

0. 2172

0.0268

0. 1952

0. 00009
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TABLE 5 .

7

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 5 DB

THE RECEIVER

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0 15.0

Standard
Operation

Single
Channel
Operation

0.4788

0.4820

0.4499

0.4460

0.4119

0.3531

0.3841

0.1806

0. 3713

0.0268

0. 3667

0.00009

TABLE 5 .

8

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 10 DB

THE RECEIVER

P
e

SNR (DB)

-10.0 -5.0 0.0 5. 10.0 15.

Standard
Operation

Single
Channel
Operation

0.4836

0.4820

0.4702

0.4460

0.4600

0. 3531

0.4551

0.1806

0.4533

0.0268

0.4527

0.00009
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TABLE 5.9

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 15 DB

THE RECEIVER

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0 15.0

Standard
Operation

Single
Channel
Operation

0.4904

0.4820

0.4869

0.4460

0.4853

0.3531

0.4847

0.1806

0.4845

0.0268

0.4844

0.00009

TABLE 5.10

PERFORMANCE OF THE QUADRATURE RECEIVER JSR = 20 DB

THE RECEIVER

P
e

SNR (DB)

-10.0 -5.0 0.0 5.0 10.0 15.

Standard
Operation

Single
Channel
Operation

0.4958

0.4820

0.4953

0. 4460

0.4951

0. 3531

0.4950

0. 1806

0.4950

0.0268

0.4950

0.00009
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QUADRATURE RECEIVER JSR=5 DB
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QUADRATURE RECEIVER JSR=10 DB
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QUADRATURE RECEIVER JSR=20 DB
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Figure 5.10. Performance of die quadrature receiver for JSR = 20 do
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level. As pointed out in Section D of Chapter IV, the proba-

bility of error calculated from Equation 4.92 with the thres-

hold set by Equations 4.86 and 4.9 3 show almost identical

results

.

Tables 5.5 through 5.10 demonstrate that the performance

of the quadrature receiver under single channel operation is

unaffected by changing values of JSR. This is due to the fact

that for co , to, and T values used in the simulation, the value

of SSQ term in Eq. 4.92 is identical to zero. Thus in order

to demonstrate the effect of the jammer on the receiver under

single channel operation, the value of the jamming frequency

co. has been allowed to vary from co all the way up to co, .

Thus, in place of the SSQ term as defined in Eq. 4.92, we use

the modified term

Sin (co .-co,) T/2
SSQ = —

;

-

—

. _ /0 co < co. < co,
( co. -to,) T/2 o — j — 1

The results of these modifications are presented in Fig. 5.11

and Fig. 5.12 where the probability of error of the receiver

given by Eq. 4.93 is evaluated for JSR = 5 db and JSR = 10 db

,

respectively, where the jamming frequency (co.) is allowed to

take on values co .
= co (which corresponds to the results given

by Eqs. 4.91 and 4.92 without modification) , and values of

co. = 3 (co, + co ) /4 and co • = to, . Some of the important results
j 1 o ' j 1 ^

obtained are summarized in Tables 5.11 and 5.12 for JSR = 5 db

and JSR = 10 db respectively.
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Figure 5. 11 Performance of the quadrature receiver single cnannel
operation for different jamming frequencies ana
JSR = 5 db
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B F S K (JSR=10 DB)
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Figure 5.12 Performance of the quadrature receiver single channel
operation for different jamming frequencies ana
JSR = 10 db
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TABLE 5.11

PERFORMANCE OF THE QUADRATURE RECEIVER SINGLE CHANNEL OPERATION
FOR DIFFERENT JAMMING FREQUENCIES AND JSR = 5 DB

THE RECEIVER

SNR DB

-10.0 0.0 10.0 20.0 30.0

CO . = CO

D °
0.4820 0.3530 0.0268

-9
1x10.

-9
1x10

"j =^W 0.4821 0.3589 0.0676 0.0049 0.0023

CO . = CO. 0.4853 0.4476 0.4297 0.4272 0.4269

TABLE 5.12

PERFORMANCE OF THE QUADRATURE RECEIVER SINCLE CHANNEL OPERATION
FOR DIFFERENT JAMMING FREQUENCIES AMD JSR = 10 DB

THE RECEIVER

SNR DB

-10.0 0.0 10.0 20.0 30.0

CO . = CO

] o
0.4820 0.3531 0.0268

-9
1 xlO

-9
1 x 10

W
j

=^W 0.4823 0.3699 0.1491 0.0849 0.0773

W
j

= u
l

0.4894 0.4781 0.4755 0.4752 0.4751
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VI. CONCLUSIONS

The analysis carried out in this thesis presents the

application of concepts derived in statistical communication

theory, specifically in the theory of signal detection under

the assumption of colored noise interference. The performance

of digital receivers in terms of probability of error is

determined when the receivers operate in the presence of white

and colored Gaussian noise. Three techniques are examined

separately, one for MPSK modulation, another for coherent

MFSK modulation and the last one for (incoherent) BFSK

modulation.

The mathematical model of the jamming waveform proposed,

consists of colored Gaussian noise of different spectral shapes

and power content.

For MPSK modulation, a mathematical result on the performance

of the (coherent) receiver in the presence of WGN and colored

noise jamming was derived. The complexity of the result along

with the many possible trade-offs involving spectral shapes,

power levels and frequencies of operation made it impossible

to address in this thesis the issue of optimum jamming strate-

gies for MPSK.

For MFSK modulation results on the effect of the coherent

receiver, were derived. A simple assumption was made on the

spectrum of- the jamming. By assuming that each signal frequency

98



was interfered with a tone subject to a total jamming power

constraint, the receiver P was evaluated for different values

of SNR, JSR, and M. The results demonstrate that this

form of jamming can be quite effective or that significant

increases on P_ can be achieved even at low JSR values.
e

For the case of BFSK modulation, the quadrature receiver

was analyzed under two conditions of operation, standard

operation and single channel operation, in the presence of

colored noise jamming with different power levels. The single

channel operation was introduced as a method for mitigating the

effect of a single tone jammer at one of the carrier frequen-

cies. When no jamming is present, single channel operation

performs slightly worse than standard receiver (both channels)

operation. However, in the presence of jamming, single channel

operation is superior to standard operation because the receiver

is capable of eliminating much of the jammer energy and its

effect by -ignoring the output of the jammed channel during

single channel operation. As pointed out in Chapter IV, the

effect of the jamming waveform on the receiver under single

channel operation depends strongly on the jamming frequency

chosen. For the single channel operation, it was assumed that

the jamming is present at one of the two signal frequencies, and

that the receiver turns off the channel affected. Thus, deci-

sions are made based only on the output of the unaffected

channel. However, if under this condition of operation the

jamming changes its frequency ui- in such a way as to "move
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closer" to the frequency of the unaffected channel, it has

been demonstrated that the receiver probability of error in-

creases as co- approaches the frequency of the unaffected

channel.
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APPENDIX A

DETAILED INVESTIGATION OF THE VARIANCES OF Vc AND Vq
CONDITIONED ON HYPOTHESES Ea

Let

\p
z
(t) . £ t < T I = 1,2

^ =
^

(A.l

otherwise

and

i|^(oo) = F{i^(t) } £ = 1,2 (A.

2

Thus

TO 0°

a
£

= // K (t-T)^(t)^(T)dtdT
' —oo-OC

00 00

/ / -^S (w)e
ju(t~ T)

du^(t)i^(T)dt dT
—oo —oo C

oo

^ / S
c

(T)^(-w)^(ai)dw (A. 3

where K (t) *->- s „(co)
c ^

Now
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l£(u>)

(o)-^)T/2

+ /2T ^ ^n/TJT^ SAn(" +JT)T/2

(co +^)T/2
(A.

4

and

\p
2

(co) = e
-jcoT/4n T

l^i (co) :a.5

T T
Because of the relationship between i|j, (co) and tj;- (oj) , it is

clear that

T T
tK (-co) iJj, (co)

T T
i^2 (~w) i^2 (^ (A. 6

so that

c,l
2 A 2

a „ = a
c , 2 c

:a.7

Thus indeed, a = c. Observe also by similiar arguments, that

'1,2

00

= -jz / S (oo)ijj (-co)'j; (co)doj = _1_

2tt

c , . ,T, jooT/4n T.
S (co)ip, (-co)e

J
i|j, (co)dco

C 1 -L

_L_

271
S (co) I »ii, (co) I Cos -7— dco
c 1 4n

(A. 8
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where

coT v - n _ „ . ,ajT
_

2
_ rsin(^-nT) "I 2 r Sin £f + mr) "1

L (-— -nir) J L (— n-nr) -»

Sin(— -rnr) Sin(— + n7r)

+ ^
• m"^ 1

(A - 9

(— - nir) (— + n?r)

2
So it is clear that in general, a, ~ will not be zero
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APPENDIX B

DETAILED INVESTIGATION OF THE BEHAVIOR OF THE PRODUCTS OF

S^ (-00) AND S^(co)

We have defined

AT
F(S!(t)p(t)} = -^[L(co-oo -co.) + L(u)+0) +u.)] (B.l)

J Z C J C J

Then

F{S'(t)p(t)} x F{S^(T)p(T) } = S^ (-co)S^(co)

AT AT
-rr-[L (-co-co ~U)- ) + L (-co+co+co .)] -^r- [L ( co-co -co, ) + L(co+co +cov !

2. C J C z CK CK

AT
(-T-) [L(to-co -co.)L(co-co -co, ) + L(-co+co +co.)L(oo-co -co, )

2 C D CK CJ CK

+ L (
- co -co -co.)L (co+co +co . ) + L (-co+co +00 • ) L (co+co + co, ) ]

C j C J C] CK
(B.2

Observe that for reasonably large values of co , the first and

the last term in this expression vanish, and we are left with

the products
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j-(ai-u>.)T/2 Sin(co-co -uj.)T/2 Sin(co-co -ax )T/2
e

(co-co -co") T/2
C 3

(co-co -10^/2

- j (oo^-co . ) T/2 Sin (oj+uj
c
+co . ) T/2 Sin (to+co +10^) T/2

(<o+<o +(0^/2(co+to +<o.)T/2
c D

B.3

Now focusing on the first term of Eq. B.3, which has significant

components for go in the neighborhood of uj , we see that if

j-k >> 1 then there is essentially no overlap between sine

functions. Therefore the product S '. (-co) S, (co) is zero for
3 K

j ft k.

For k = j ± 1 , we have

Sin (co-u) -co'.: ) T/2 Sin (co-co -<ov ) T/2
C J C K

= j Cos (oj
k
-co,)T/2 - ^os(2co-2co

c
-co.-cok

)T/2 B.4

and when co is in the neighborhood of to , the product becomes

approximately

j((Jo
k
-co.)T/2 r

Cos (co
k
-co • ) T/2 - Cos (cu • +0^) T/2

to .T/2- ^
k
T/2

"

j(k-j)AtoT/2
= e

Cos (k- j ) AtoT/2 - Cos (k- j ) AcoT/2 -|

L (k -^, T/2 (j
.5WL,T/2

:b.5
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The orthogonality condition on the signals required that

AcoT = tt or AcoT/2 = tt/2, so that Eq. B.5 becomes (approximately)

±JV2 r

(T/2)

COs(±tt/2) - Cos(2j ±

, . M+l. 2 + .. M+l
±1)71/2 1

=
L
) J"

_ ±j r^os J 11 Cos tt/2 ±Sin jtt Sin tt/2

(T/2) [
,

. M+l. 2 + .. M+l.
B.6

Eq. B.6 is zero for all values of the integer j, so we have

that for AcoT = tt, the product S ! (-co) S^ (co) is equal to zero for

j t k.
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APPENDIX C

DETAILED INVESTIGATION OF THE VARIANCES
2 2

a AND a , DUE TO COLORED NOISE
c ,o c , 1

Let us define

P . (t) = Cos w.t i = 0,1 < t < T (C.lci l — —

Then Eq. 4.69 becomes

2 2
a" + a" , = // K (t-T)P (t)P „(T)dt di
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The third term in Eq. C.4 can be assumed for all practical

purposes to be zero. In essence, we require that co .
>> 2tt/t,

i = 0,1 for the approximation to be correct.

Consider now the case where

S (oj) = K[6(co-co-) + 6(co+co-)] (C.5
c 3D
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A ssuming that co., will always be in the vicinity of u> and
]
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Thus
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In order to maximize the quantity in brackets as a function of

co., we need to take derivatives of the expression and set it

equal to zero. The result of this operation leads to a

maximum at values of co .
= co or co . = co, . Therefore, the
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maximum value becomes
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