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FOREWORD

An investigation of the "Aero-Thermoprex" wet conducted

as a joint project by Lieutenants P. A. Hawkins* l>. V. Jowell,

0. A. Te.apieton,' end J. R. Wish. Since toe investigation covers

many chases, the report nas been divided into two sections. The

fir»t report, by Hawkins and Lowell, covers the design, construc-

tion and preliminary tests of the "Aero-Thermoprex", ana includes

the theoretical analysis for design, and a modified analysis for the

apparatus constructed. The second report, by Teapieton and Wish,

covers the actual performance of the apparatus and a comparison with
9

the theory to determine the possibilities of the "Aero-Theriaoprex''

es a pumping device.
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A Cross-sectional area •

c specific heat at constant pressure

D hydraulic diameter

f friction coefficient in flow yassa&e

h^ enthalpy of injected iiquid, per unit mass

hy enthalpy of the evaporated^ liquid at the temperature T,

per unit mass

k ratio of specific heat*, Cp/cy

M iiaca number

p static pressure

Pq isentroiic stagnation pressure

T absolute temperature

T absolute stagnation temperature

V velocity of stream

Vr^ velocity with which liquid enters main stream

w mass rate of flow of strea-n

W molecular .weight

x distance along duct

7 Vi'/V, where V, * is forward comooaent of velocity of V
T

^* -J

() m refers to mean conditionsw m

()-j_ refers to section 1, inlet to nozzle

()g refere to section 2, outlet frota diffuser

()^ refers to section i, iniet to water injection section

()^ refers to section f, outlet from wter Injection section





i sumiRC

The purpose of this tnesis was to design, build, and

conduct preliminary tests of the Aero-Thermocrex, a device for

raising the stagnation pressure of a stream of sir by iojectinp

and evaporating irater into the air. The investigation seemed

to divide itself logically into three sections; first, the major

design considerations, including the practical aspects of laboratory

facilities and equipment readily available, which ied to the detail

design and actual construction of the apparatus; second, a theoretic-

al analysis of the built machine to determine its approximate oper-

ating characteristics for various assumed conditions of friction and

evaporation, the results of which usuld furnish a basis for inter-

preting the actual performance j and third, a preliminary test to

insure that the design specifications had been met, and that all

parts of the apparatus performed their assigned functions in a sat-

isfactory manner. The presentation has been organized to shov the

deveiopaent, results, and conclusions of the three phases of the in-

vestigation.

The apparatus has been described in some detail, with particu-

lar attention given to thoso features rtiich required design study.

While the actual design chosen is but one of aany possible arrange-

ments, botn in detail and general cnaracteri sties, it is felt to

satisfy the requirements of en experimental study of the basic process,

The test runs show that the soecifications of design were met. Inlet





Mach number ana stagnation temperature were very close to those chosen

for the primary design point, and all parte of the apparatus performed in

a satisfactory manner.

'A theoretical analysis yielded results th6t indicated that

eorne stagnation pressure gain over the Jry characteristics night be
m

realiied if the evaporation of the Bate? injected were at least 50ft

complete. Results for 50£, 75/4., and 100$ have been obtained for com-

parison with experimental dati. it has also been demonstrated that

any positive "pumping action" in the size apparatus built is extremely

unlikely. Some reference has been made to the effects of sise on

the probable experimental results, but the more complete exposition

of this effect has been left for the subsequent wortc of Tempieton and

Wleh. The material presented here hat; been intended to be primarily

the ground work for an experimental program which may indicate changes

in theoretical procedure as well as possible recommendations for

future investigation.





H INTTOIWCTION

The pumping of a gas is accomplished by raiting the stagnation

pressure of the gas, ordinarily by employing rotating machinery (Com-

pressors/. A novel method, involving no moving parts, has been proposed

as an alternative to conventional pumping methods. Raising the stagna-

tion pressure of the gas stream would be accomplished by preliminary

heating at low velocity followed by cooling of the gas stream at high

velocity. The Reynolds Analogy applied to gas flow with cooling and

friction shows that coolin^ by means of a heat exchanger alone could

never produce a net stagnation pressure rise. It has been sliovcn, how-

ever, that cooling by evaporation of a. liquid into the gas stream gives

considerable promise as a pumping scheme, provided that the ratio of latent

heat of the liquid to the product of the specific heat at constant pressure

and the absolute stagnation temperature is greater then two.

A preliminary Investigation of the scheme, utilizing liquid water,

£
was made by Shapiro and Wadleigh using a simple one-dimensional analysis,

in which the effects of area change, wall friction, drag of liquid water,

evaporation, ana changes in molecular weight and specific heat due to

evaporation were included. Calculations vrere made for constant cross-

sectional area, constant pressure, constant Mach number, and constant

temperature evaporation in the apparatus shown in the sketch below.





s

These calculations snowed that only the co£iet:int temperature

process gave promise of & stagnation ores sure ratio, -5-— , mien greater
4

01
than unity. From the limited calculations made, the scheme was con-

sidered to be of marginal promise for certain conditions at the entrance

to th6 evaporation section.

The usefulness cf such a pump is readily apparent. One possible

application would be for driving iar^e supersonic wind tunnels which

ere now impractical because of the enormous power and mac linery re-

quirements for conventional rot: ting compressors.

The purpose of this investigation was, to design, build, ana cou-

duct preliminary tests of the Aero-'Thermoprex. Although some of

the infinite number of possible evaporation processes might yield bet-

ter theoretical results, the laborious computations involved In identi-

fying these processes was not feit to be justified, and the constant

temperature process was selected as the basis of design. The examina-

tion of the process achieved in the designed apparatus and a comparison

of the results titn the theoretical predictions is the subject of a

7
companion thesis.

* A pump for raising the stagnation pressure of a gas by cooling
through evaporation of a liquid will be called an Aero-'Thermoprex.
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III DLLiGN CONSIDERATIONS

Preliminary Analysis
,

Ac previously pointed out it was deciued to design the

experimental apparatus on the basis of constant temoer&ture evap-

oration. With this end in mind, further calculations were made

to supplement and to substantiate the work of Shapiro and Wadlei^h.

Calculations were made for initial stagnation temperature of 1500°H,

and for initial Maeh numbers of 2.0, £.5, and 5.0. For these cal-

culations the same assumptions were made as were made by the above authors.

These were: 1) the frictional drag of the wail is zero, 2) the forward

momentum of the injected water is zero, and C) evaporation is instant-

aneous and complete.

Theoretically, if these assumptions are valid, the total stag-

nation pressure rise serosa the water' injection section corresponding

to a final Mach number of zero wquLg be available. However, the obvious

difficulty of cooling a supersonic stream continuously through sonic

speed and into the subsonic region would make it unwise to expect the

optimum results. It seems reasonable to split the passage into two

separate and distinct parts for purposes of analysis? a converging wat-

er injection section (suoersonic) and a diverging subsonic diffuuer,

separated by a normal snock. Ihen the evaporation will be assumed to

terminate at the snock, to wMOh a reasonable intensity could be as-

signed, consistent with stable operation of the diffuser. The shock was

assumed to occur at a Metih number of 1.1.

Although evaporation will probably continue after the shock, its
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effects will be negligible as saown by curves of stagnation pree-

1
sure rise obtainable with initial Mach numbers less than one. The

total stagnation pressure ratio will then be the product of two

ratios; that across the water injection section computed for a final

Mach number of 1»1> and the ratio across the normal shock and the

subsonic diffuser. Since the second ratio will be determined by

the design of the divergent section, it was considered to be essentially

constant as regards variation of conditions at inlet to the evapora-

tion section. The merit of any combination of inlet Mach number and

stagnation temperature will then be measured only by the stagnation

pressure ratio available across- the evaporation section.

The method of computation is described in Appendix A, while

Appendix B contains a sample calculation for an initial Mach number of

2,5 and an initial stagnation temperature of 1500°R. The results of

such calculations are shown plotted in Figure 1. While it was real-

ised that more extensive and detailed computations were desirable,

they were not undertaken in view of the labor involved in obtaining

solutions without the aid of an automatic computer.
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Practical Considerations

After examination of the data for constant temperature evap-

oration shown in Figure i, the final design point nee selected at

an initial stagnation teaperature of 1500°P and an initial ar.ach

number of 2.5. This rcas a compromise* selection, dictated by the

equipment ana materials readily available. For continuous operation

an initial stagnation temperature of lbOO°R tve..-. considered an upper

Halt. Examinction of Figure 1 shows that an initial tfach number of

2.5 produces nearly optimum results for tne teaperature chosen. Also,

with the pumping cap;. city available for starting strictly limited,

the use of an initial Slach numbtr auch greater than 2.5 would increase

the starting stagnation pressure ratio to such an extent that the

small mass rate of florc permissible would seriously limit the possibil-

ity of obtaining measurable results, due to the scale factor effects

on friction and evaporation. The effect of scale factor will be dis-

cussed more extensively below. Sufficient heating capacity was avail-

able to permit tests at higher temperatures after completing investi-

gations at 1500°R. Figure II compares the theoretical performance

at the design point with other types of diffusers as indicated.

The design point having been decided upon there remained to

be solved three basic problems. These were 1) selection of a method

of varying the aree of the cross section of the evaporation section

in order to be able to pass the flow through the throat in 6tartini ,

and yet be able to adjust for constant temperature evaporation while

injecting water, 2) selection of the method of injecting water, and

5) selection of a length for the evaporation section whicn would per-

mit reasonably complete evaporation, yet not be so long as to create
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prohibitive frictional effects. Othar problems were present, such

as the design of the nozzle and of the subsonic diffuser, but since

these parts of the apparatus were not directly under investigation

no special consideration was £iven to them.

In solving the problem of varying cross-sectional area, a pas-

sage of rectangular section was chosen, having two plane, parallel

walls end two curved walls. Variation of throat area is accomplished

by movement of the curved walls. Passa& es of circular cross section

were also investigated, but the only feasible methoa of varying throat

area was to install a round core which could be withdrawn in the down-

streea direction in order to increase tne throat area sufficiently to

permit starting. For this method the ratio of wall ares, to cross-sec-

tional area becomes prohibitively large. For the type of passage chosen

this ratio is a minimum, and the passage is fairly simole to construct.

Its main disadvantage is that the junction of sliding and fixed wails

presents problems in sealing.

The solution offered to problems 2 and 5 above was a somewhat

arbitrary one due to the almost complete lack of experimental or theor-

etical information on evaporation rates in a supersonic stream. It can

be seen that the tao problems are re;.iiy tied together quite closely.

First, it wars established that, because of the limited overall siae,

a length of injection section of roughly 50 inches would produce chok-

ing effects associated with friction, and the apparatus could never be

started. There were two methods of water injection available) axial

injection, and peripheral stepwise injection, which more closely cor-

responds to the mechanics of the calculations used in analysing the flow.





Both methods v.ere eventually provided for end presented essentially

the tame problem of determining the actual distance from the po^nt

of injection to the point ox completion of evaporation, This dis-

tance is a function of trie time rate of evaporation, anu the acceler-

ation imparted to the water droplets by the moving stream. The evap-

oration rate depends, in some complex wa,> , on the droplet size, the

relative velocity of the stream to the droplet, the vapor pressure

in the stream and the temperature differential from droplet to stream.

The acceleration of a drop depends mainl;, on the drag coefficient of the

drop, which is a function of the Reynolds number associated with the drop.

The process; is not a readily predictable one, hov;ever, because of its

extreme complexity, and the probable abeence of equilibrium conditions.

A computation was attempted on the basis of stepwise oeripneral

injection, in order to determine time rates of evaporation ana absolute

length of duct required for reasonably complete evaporation* T:iis compu-

te

tation was based on the Colburn analogy , and shoved that the length of

duct required was so sensitive to droplet size that no prediction could

be made due to the lacx of any exact data on atomieation in a supersonio

stream. The only experimental data available shows that in a subsonic

stream of Mach number 0.49 and initial stagnation temperature 1140R,

approximately 50$ of evaporation is complete in 20 inches and increases

at a very slow rate as length i3 increased.

Although the validity of extrapolating these results by means of

the Colburn analogy is very mucn open to doubt, it was felt to be worth-

while In obtaining at least order of magnitude results, *hich was not

possible by direct application of theeiy. £uch an extrapolation indicated

that at least 50$ evaporation might be expected in the neighborhood of





9 Lichee, for a liquid stream injected through nn 0.008" hole into

an air etreara o£ Mach number fc.b. The computations ere snown in

Appendix 0. This Length, being Less than the maximum permissible

in view of choking due to ^friction, was accepted as & reasonable

co:n r
To:aise figure. A much greater Length could be accomodated with

a geometrically si.nilrr apparatus of larger gross dimensions, hence

more complete evaporation obtained.

Having selected the length, there remained the problem of

deciding //here to inject the water, ana how much at each point in

the case of stepwise injection. Curve 1 of Figure X shows the theor-

etical curve of area corresponding to 1005? evaporation with no friction,

represents an evaporation rate Linear with distance. Since tuc.'i an

area change would cause prohibitive oblique shocks, and because of the

mec.wnical difficulty of getting the tame amount of water into the

smallest area as into the maximum area, a codified area carve ?ius drawn,

which is Curve 6 in Figure X, the actual area curve for the apparatus

as built. Changing the area curve merely aseaas th-rt the axial distance

scale has been waroec slightly and evaporation is no longer linear with

distance. This change it shown in Figure HI. The problem then was

to inject the .sater in such a manner that th€ evaporation would proceed

along the modified line. The solution was highly arbitrary, since so

little was known about either the rate or degree of evaporation* With

the information at hand, it could be equally possible for the axially

injected water, where all the liquid is introduced at one location, to

follow the desired evaporation curve as for the finite stepwise injection

plan which was finally chosen, and indicated in Figure III. la the actual

apparatus, the steps could be made no smaller duo to the lower limit on
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the si te of practical injection holes, which were made 0.003". It

can be seen, however, from these curves, that in the limit, as the

number of steps of injection increase, the evaporation curve must

coincide with the desired one if evaporation is complete within each

step; whereas with axial injection at one spot, a definite evaporation

curve must be accepted, which mav differ widely from the desired one.

Because of the available control en the progress of evaporation by the

stepwise injection, it was fell, to oe the mo6t desirable provided it

could be carried out. Since no conclusion could be reached as to the

most advantageous location for axial injection, it was decided to make the

point of axial injection a variable.
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Application of Theory to the Resultant Design

After final selection of the design point and settling of the

major design features had been accomplished, an attempt was made to

predict the performance characteristics of the Aero-Thermoprex ae

designed, As pointed out previously, an investigation of evaporation

rates incic>ted that the assumption of instantaneous evaporation was

probabiy far from the actual condition to be expected in the limited

length available in the desired apparatus . Therefore, a re-examina-

tion of the assumption s made in solving trie basic workin equa-

tions seemed to be in order, and some quantitative study iaade of the

effect of any changes in the assumptions on the theoretical results.

The assumption that 4f dx/D is counterbalanced by 2y dw/w appears

to be extremely optimistic for the scale of the apparatus as designed.

In the compute Lions made in the preliminary analysis the vslue of the

primary variable, dw/w, selected for each step was about 0.01. Si^ce

about fifteen steps were required to brinfe the stream to Mach number 1.1,

dx is, assumin^ linear evaporation, one-fifteenth of the total uuct length,

or roubhly 0.5 inches. For the rectangular passa.e of dimensions t and h,

4f dx/D is equal to 2f dx LLlJiL, for tne passage as designed the depth
th

was constant at 1", while the width varied from £.56" to about 1", corres-

ponding to a variation of 4f dx/D fro a 1.39f to E.OOf.

a

As shown by Keenan and Neumann the friction factor for a super-

sonic stream entering a straight oipe varies considerably for a short

distance before a stable boundary layer in formed. Representative values

for f are 0.005 at the start of the straight f.ection and 0.002 at an L/D

of 6, which is the equivalent L/D of tne evaporation section as designed.

This gives values of 4 f dx/D ragging from .00695 at entrance to .004 at





exit. Since these are somewhat idealized fi^uret, an< the apparent

friction fee tor ««s in all probability aucn higher due to the water

injection apparatus, leakage, and l ouch thinner boundary layer than

would be encountered in straight pipes, a content value of .009 was

tafcen for Vie term 4f dx/D. With this figure, y, or the ratio of the

forward velocity of the liquid to the velocity ox the main stream, mutt

be 0,45 in order to counterbalance friction. With an initial ilsch number

of 2.5, find an initial stagnation temperature of 1600°P, this means a

liquid velocity of 1425 feet/st-conc, which leeds to impossibly small water

injection holes, end enormous water pressures* In tne apparatus as de-

signed, velocities greater than 200 feet/second cannot be obtained, so

that 2y dw/w is less than 10$ of 4f dx/D. P. sample calculation was .nade

using the value .009 for 4f dx/D and zero for y, still maintaining constant

temperature evaporation, (see Appendix B) . This produced a more realis-

tic performance curve for complete evaporation for bhe actual size of test

section. Fro."! the above it can be seen that, assuming complete evapora-

tion in a lengtn dx, the term 4f dx/D can be made es small ae desired

merely by in crowing the equivalent diameterj a so—called scale effect*

L'ince it lias been shown probable th ^ only frcctional evaporation

can be. attained in the size apparatus designed, e. further refinement can

be made on the basic equations to show the effect of this deviation from

the ;reii uinary assumption. The net effect on tne working equation of

partial evaporation is to raakt. the dw associated with stagnation temper-

ature different from the dw' associated with conservation of momentum.

For instance, takinb dw as one-half of dw' would imply that only one-half

of tne water injected per step finelly evaporated. A question arose as to

whether to comoute a theoretical result for twice the water injection





required if evaporation were complete, tftis maintaining ft constant

temperature down to Mach number i.i, or for the same total water in-

jection with 50& evaporation. The second method woulu, if computed for

constant teraoerature, exactly duplicate the first, bat wouic terminate

at some Slach number short of 1.1. If computed for the systematic var-

iation of some otner parameter, suqfc as area, a final tfach nunber of 1.1

could be reeched, but the complexity of such a computation ruled it oat.

Therefore, the first method was used, bearing in mind that the retaits

would not differ seriousir from t'rose of the second method, if it could

be carried out. This can be verified in part by considering the second

aethoa carried out et constant teiaperotu.e until ail the water has been

injected, then diffusing to alach number 1.1 by area c'nan^e only. At shown

by Shapiro and ffadleigh, the bulJc of the stagnation . ressure rite occurs

at the higher Mach numbers. Therefore, the result *iil no I differ too

radically from those obtained in the acual calculation by the first

method. For this calculation c~ and k were b&sed on the constituents
P »

of air and water vapor only. This made possible a solution by apply-

lag a correction factor to the steps of the computation for complete

evaporation (see Appendix B)

.

It was also felt that come analysis should be made of the flow

passage es such, that Is without water injection. Such an analysis would

be of great use in separating the effects of evaporation fro:, the effects

of peculiarities or inadequacies of design. If, for instance, tne dry

run actually corresponds to the results predicted by the one-dimensionax

analysis, the wet runs could also bo expected to conform. Wtithout such

a prediction of dry characteristics, any deviation of wet run r*suits f~om

theoretical results might be attributed to the wronr; cause. Furthermore,
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such dry characteristics would offer a useful basis of comparison

for the merit of the overall wet performance of the apparatus, Such

a calculation was made using the same basic one-dimen clonal approach.

k was taicen to be the constant, and equal to 1.40, wniie 4f dx/D was

given its previous value of .003. dA/A was taken to be a constant

value which would give a final area of about 1»5 square inches, consid-

ered to be obtainable operating the evaporation section as a simple

variable area diffuser. The method of varying A is arbitrary, since

approximately the same &nd state will be reached as would be reached

if area curve of the designed apparatus were used. The computation is

included in Appendix B.

Curves of pressure vs. length for the vrrioas oroceeses computed

are plotted in Figure VIII. Finally, the pressure curves lotted

against length must be shifted in order to bring into coincidence tne

actual and calculated areas at any given point. In figure II is shown

the shift of the curve of pressure for 100% evaporation without friction.
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IV DESCRIPTION OF EQUIPMENT

The ole.iients of the Aero-Thernoprex are shown in t.ie schematic
t

sketch, Figure IV and in the photograph, Figure IV-A. The legend of

Figure IV lists the basic elements of the apparatus. The air ejector

supplies whatever pumping action is required to maintain the aesired

bacic pressure/ in the exhautt receiver. Air enters the furnace end

leaves with products of combustion at 1500°R. In the nozzle tne gas

stream is accelerated to !Jacn number 2.5, and into the supersonic stream

water is injected by either of two methods: 1) axiaily in the direction

of flow, and 2) peripherally with a moderate uovoistream component.

Description of the Lie-gents

A. Air Hasting Apparatus

A propane furnace is used to heat the c.irj the products of

combustion pass out ard go through the test section.

B. .Nozzle-Water Injection-Diffuser Lection

The nozzle and diffuser sere made by shepint flat stainless

steel blocks, 1 inch thiCK, una fixing then to stainless

steel side platea to form a rectangular flow passage cross-

section. (Leo Figure V.) The nozzle was designed to give

the largest throat area possible in accordance aith the air

ejector capacity available in the Gas Turbine Laboratory at

SI. I. T. This value proved to be 0.91 in^, which corresponds

to a mass flow of 620 lbs/hour at 15003 stagnation tssfiperature.

The nozzle exit ares was designed for a Bach number of 2.5,

c with provisions made to vary the ..iach number from about 2.4

to £.8 by Bhioming the nozzle biocxs. The design of the

water injection and diffuser sections was complicated, as
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pointed out, by the fact that it is necess ry to provide a larger

diffuser throat arua for starting than for operation. This require-

ment of variable area waa met by securing rigidly only tne nozzle

blocks, attaching them to the diffuser blocks with spring steel bars,

and providing draw-rods rith hanc; wheels to move the diffuser blocks in

and out. (See figure V.) The shape of the diffuser blocks was designed

such that in the fully closed position, the area would conform to the

modified theoretical curve shown in Figure X, curve 6.

C. Water Injection Apparatus

Water is pumped from a reign tank and injected into the stream by two

methods.

1. An axial injection tube of stainless steel, 0.05" inside diameter,

was installed in the inxet receiver as shown in Figure VI. The pos-

ition of the tube is adjustable, allowing v.ater injection t various

points along the flow passage.

£. Peripheral injection holes with cover blocks were installed in

the sides of the two flat stainless steel plates as shown in Fig-

ure VII. because of the difficulty of drilling holes of the de-

signed diaaeter, (0.008 n
) it was necessary first to drill larger

size holes and line them with hypodermic tubing, which was in turn

lined with smaller tubing of the required inside diaaeter. To prev-

ent the water from boiling under the injection cover blocxs, it is

circulated through the blocks and returned to the weigh tank via the

recirculation manifold. A supply manifold allows any desired combin-

ation of blocks to be used for water injection. Two ^£00 aesh ?ire

screens were installed in the supply line to safeguard the small

injection holes. <\unp pressure is regulated by a by-pass valve.





Test Section Outer '.'? 11 Coolin aratus

It was found lo te necessary to cool the outer surfaces of

the test section to secure protection for the operator of

the diffuser area hcndwheela against the high Local temperature.

Water is oioed fro.n the city »ain and is :'looued down the outer

i&LIe of the test section. It is caught in a pan at the bottora

of the- test section, and discharged into the exhaust coolin^, t

(Lee schematic sketch Figure IV.)

£. Exhaust Cooling Apparatus

It is necesaarv to cool tie exhaust gases further efter the\ Leave

the test section in or;:.er to reduce the teaperjture to allowable

Limits Tor passing through tne air ejector. Water :ro-, the city

main is injected into the exhaust gases and separated in tne cool-

in^ tank, as shovvn in the schematic sketch, Figure IV. The prob-

lem of draining this cooiin,- water from the tank, in wliicn t.iere is

a high vacuum, was simplified somewhat by takin £ adve-ntage of a

£5 foot drop to the sump tank. A water-jet eductor was installed

in the drain Line.

F. Measuring Apparatus

i. Pressure taps are spaced as shown in Figure XIII. Traps were

installed in the >ressure Leads to orevent water from accu iuli

in the mercury manosieter columns.

I. ChromeL-Alumel, silver shieided thermocoupLes were installed

in the Inlet nd I&haust Receivers to measure the temperature i t

these points.

3. The amount of water injected is measured from weigh tank

in t ;&«





V RESULTS AM DISCUSSION

The selection of the design point for the Aero-Thermoprex

was a compromise between the Limitations imposed by the facilities

available, and the optimum operating ;oint as indicated by the pre-

liminary analysis. The design point selected W8£ et initi« . .
:< en

number Z.b and initial stagnation temperature 1500 R for constant

temperature evaporation. Provision was lade for the variation o~' inlet

lach number within fairly narrow limits, while inlet temperature could

be varied ret •it';' widely. The mechanical system as built it believed to

be adequate for the purpose of investigating the fundamental problem

of raising the stagn tion iressure of t> high temperature air stream

by evtporating water into the air stream. The theoretical stagnation

pressure ratio available across tne evaporation section for friction-

less flow and 100.. evaporation at the design joint is 1.G6.

Further investigs tion of the designed Aero-Theraoprex by one-

dimension' 1 theory showed that:

1. The assumption that y (which is V, pi) is equal to zero

is not in serious error.

£. The assumption that f if equal to zero is not valid. Using

sn empirical friction factor for the apparatus n t construct-

ed, the available stagnation pressure across the evaporation

section Is reduced from 1.66 to 1.18 i'or complete evapora-

tion .

Z, The assumption thr-t evaooration is coaplete is probably

not valid, .'or 7b;'. evaporation the stagnation pressure

ratio available ?-cross the evaooration section is recucea





from 1.18 to 0.85, while for 50% evaporation this figure is

reduced to 0.49, which is less than the corresponding ratio for

sero water injection, or a dry run.

4. The theoretical computation' for a dry run shows that a stagnation

pressure ratio of 0.64 is obtained across the evaporation section.

This is much greater than the ratio obtained in any actual super-

sonic diffu&er at Mach number £.5, which Leads to. the conclusion

that, for conver ing supersonic passages, a one-dimensional treat-

ment Tilth, the use of a reasonable friction factor \,iii give results

§ that are optimistic for any assumed rate of evaporation

.

5.The accurate determination of the rate of evaporation in the designed

apparatus is impossible. As a result of comparison with other exper-

imental work it may be expected to be between 50/: and 7£> complete.

Preliminary tests of the Aero-iueraoprex were not performed with

the goal in mind of producing an increase of stagnation pressure, but

rather of determining the degree to which the individual components met

the requirements which grew out of the design study. Data from prelim-

inary tests is Shown in Figures ill ana XI11, Appendix L.

The fiow passage behaved about as was expected, producing an aver-

age Mach number at the maximum area section of 2.49 as determined by

calculation, a samole of which is included in Appendix b. The aver-

tfach number was determined only for a stagnation temperature of

o
1500 R. The diffuser throat was capable of aujustment between the

limits shown in Figure X, J -on disassembly after teverai hours of

operation at temperatures above 1500R, the stainless stsei surfaces

snowed only slight discoloration. iae sections of the wail at the

maximum area section which were made of cutlery spring steel were





blackened somewhat, ana wert beginning to show minute localized

pitting, which was not felt to be serious enough to introduce any

new factors into the analysis. The cutiery steel retained its

elasticity throughout the test. The Les^a^e past t.ie variable a~ea

diffuser blocks was apparently not significant.

"tater injection apparatus was serveu .with the requirea water

flow up to 60 paig. The axial injection tube could be adjusted so

as to discnar^e water ranging from three inches unstress of the nozzle

throat to three inches do^nstrea::! of the nozzle tnroat, and at rates

varying from zero to 175 pounds per hour. Stepwise water injection

from zero to 175 pounds per hour was possible. The furnace which

neatcd the air flowing to tne inlet receiver wats capable of raising

the stagnation temperature to the upper level indicated in the design

point studies. The highest inlet- temperature obtained was 1850".

Thermocouples provided for tne measurement of inlet and outlet stag-

nation temperatures had previously been calibrated by the EJ. S. Naval

En j.neerin£ Experiment Station but were checked against one another

to insure that all were in agreement. One thermocouple failed as a

result of oxidation under the silver shield after about four hours at

elevated temperature.

The pressure tape installed along the wall provided tne only

available measure of the stream properties in the high soeed regions.

By observing the readings of the mercury manometers it was possible

to follow the axial movement of shocks, and of the diffuser throat

as the boundary conditions imposed on tne stream changed.





J*-'

In the size constructed any ..ositive "pumping" action by tne

Aero-Thermoprex is extremely improbable. Only if evaporation is

something more than 50% complete will ttie devi'ce perform more

efficiently '.vith water injection than without. However, 'complete

testing of the apparatus wa^ felt to be desirable, both for the pur-

pose of substantiating the theoretical results enu to provide s basis

for further investigation, £o:ne information on evapora Lion rates

is also to be gained from such teatin
<

. Cuch information has pre-

viously been non-existent. If .-,oou correlation between actual and

calculated characteristics is obtained, the Aero-Thermoprex could

become a positive "pumping" device in larger sizes since, as

been pointed out, the absolute size of the flow passage hag so great

an influence on the effect of friction and on the completeness of

evaporation. Complete testing of the apparatus is tae subject of a

co^anion tiie sis.
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ANALYSIS OF VARIOUS IVA?ORAT10fl PROCESSES

AT COHSTAUT TE :
R£RATURE

BASIC STATIONS

For analysis of one-dimensional evaporation processes at

constant temperature the following equations are used:

Equation (65) of reference 2 is written in the form

^ : ^t^MM^ 1
' 1 Cf*TCKt-0 u^

and is integrated stepwise to obtain the Mach number at each point

in the passage as a function of A w/w only.

Equation (10) of reference £ is written

dM 2
_ _ gO +^M 8

) olA _ 14-KM2
- Ck -ru) +^^- Jur _ dk_

|-|v\z. [tT q ^urj~«"
|-f*f

°°~ I'M7" W '

solved for dA/A, and then written in the finite difference form

fr + kW*)*, AW 0-M^Tn AK_ _ f i- ^ l
)^o Am2-

after which it is integrated stepwise as shown, depending, on the

assumptions made.

In order to compute streari pressures and stagnation pressures

A,





at any point, relatione (66) and (58) of reference 2 are written

Pi _ uJ-z. A,M, ,\ k,w,
A-

3

ana

foz. -f>i Q + «»*-* M* )""-*

^Numerical integrations are shown for the following cases

with assumptions as indicated.

i. Frictioniess Flow, Complete Evaporation

a. f- j-

2 2
b. V - V, neglected, (see note)

u

c. Evaporation Complete and instantaneous

2. Flow tfith Friction, Complete Evaporation

a., y-

b. 4f cbc/B = .009 constant

2 2
c. V - V neglected, (see note)

u

d. Evaporation Complete ana instantaneous

5. Flow with Friction, 76% Evaporation

a. y-

b. 4f dx/D= 0.009= constant

S 2
c. V*" - V neglected, (see note)

d. ^ w/*a 1Q second term of A- 2 becomes aw /w and

is four-thirds of Aw/w .
m





4. Flow with Friction, 50X Evaporation

Same as I exceot &w /wm is twice <^w/w

5. Flow with Friction, No ffater Injected

a. y z ow/b = aW/Wm = aic/k »* ' m ffl ' jn

b. For unit step 4f dx/D= 0.009
«

c. For unit stepaA/A^ 0.070

2 2
d. A -2 is solved for AM /M and integrated stepwise es

shown

.

2
Note: Assumption that y = aeans Vj^ 0. V /2g varies froo about

10% of hv - hr at start to 1a at end of process, if included it

would present a slightly more optimistic rise in stress and stag-

nation pressures.
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^= K ^fe 4 33<>S 4 Z44i 4. 1474 4C4S1 3SS73 3.?Z40 a7o5Z. 3 575^ 3.44lfe 3.zq«s 3.1471 24«fc3 2.8I50 2b3Z^ 2.437"? 2.Z3 7S Z.oiS7

49 3rl<4^ 2l4SZ Z.oS7<? Z.048I 1 qqsu l.<?4o3 l.«l* \.%W 1.7544 l.fe?50 I tll5 .
1.533.4 \ 4502, I.3UI8 I.Zt,7t II4.8S 1 o4,33

so c-dD b.ilU 6.S\<?7 6. lfc.lt, fo.7o44 b.UW, 6.5<?45 feS4(Z &4«77 64351 4,.3«33 6. 3323 6Z1ZZ 6. Z3Z« 6(84Z 6.134.4 60m
5/ ^^"S^x^?) -I4t«3 .\4oHZ . IllSfe .I2SZ4 »Z345 • tmt, .11 177 .iosJ5 . os^T .o13<?2 .087S« .OJlli .07S4fc . OfelOb . ob-24.( . oS4.o(

- .oof100 - -oo?oiZ - .007J50 - .007to7f - .oo74fS - .007 ill - . oo&|9) - .oo«.«s(. - 00 66 IO - . 006J4« - . OOfeObi - .OOSlSfo - . 00542? -.OOS073 - .oo4t,<1fe — .Oo+28<?

53 l^^SJ -(^2 .07310 • o73il .o73fa5 .072G8 .o7Z7o .07(85 .070SI . o<b'<?6<? .ofoxno .OfcSlO .otoZAZ. . 03$ b8 .OS7Jcf\ .04384. .o2<?S4 . 003St.fc.

54 A3)^?T)-(5\)-(&2)-^£> ***»« + .0l4-$» + .OOST7 + . 00 Z4i - .01045 - .oitof - . O 243fe - .03OZ8 - .035IS - .0 384-1 - .O4250 - 04-4S-2. - .©44fcfe - .o427l -.0374S - .026Z4. - .002<?b

5S [2-64)]-r.2 +01 AiSZ .q'*42 .1R76 I.OIOS I.OISE l.o 247 l.03Or 1.0358 I.O40Z I.0434 \.o4SS 1.0457 1.0436 1.0382 I.OZ66 1.0030

^6 (3tt k&S) -^(JS) I.OZl) I.040I I.0447 i.ofooq I.0704 ( oT?7 108X7 ioqt.8 l.iot.3 I.ID8 i.iziq I.I2H l.libZ I.I4Z6 1.1424 1.1441

57 ^l 1.0000 l °Z-<<l 1.0704. i.irtz t.»6b3 I.ZfcqS 137 10 i.4qzb 1.6371 I.SHZ Z 0\ 73 2.ZC3Z
Qnl (7(1

Z.5S53 2.<io34 3.3)74 3.78??
uKKQL

4.3S&7
£,«/ On

l« A/Ao 1 OOOO I.0I5O 1 .02.0^ 1 ofi"*, 1 .01147 -^4^7 .^lOfcjO .141^ .9oqi4 Jl4oo -»Mw . JOI^H .7t.fc.3i .134i/. ./0/47

For All Integrations Above:

T= Constant ^ 665.5" F abs. i C = T = 3.33144 ; AND 4f^= 0.009 For Each Step Has Been Assumed.





NUMERICAL INTEGRATION
Diffusion Of Air With Friction

Initial M=2.5

k = l40
Step

I 2 3 4 5 6 7 8 9 10 II 12
i M? 6 ISO 5 ?fe3 5.4S6 5.146 4-aifc 4.4S© 37o5 33SA 2833 2325 1.^00 1.495 1 20 1

2 F*,* *Va- -. I8TSO - .»aiS -. n% - .nt>3 -1738 -
. 34 1 9 -.33SZ -.3333 - .3339 - • 3599 -. Zi 47 -.|3tK

J_ F..x4f3P - 2lo9 -. l93fc -.mo - .Ifc>34 - • isoi -
. i7 fet> -Z3Sk -to tZ - .n iz -iSofc, -•o<bS3 - o3fe9

4 <B+© AM e -.3984 -.3115 - .3S1Z -.3397 -.1241 - .fc>l©5
'

-.57o8 -.S345 -.5io| - .S105 -.2o40 - .1737
5 a>+^® M* 605I 5.fc>74 s/b\n 491* 4<oS4 4.iff<? 3.fe20 3o«7 257 55 2 070 l.bSI l.4o^
6 Fa^X AA/

ft„ -,I«S3 - 1*14 -.ml -.1143 -.nz.2 -.33S0 -.3335 ~ 33S\ -34<ot -•3S2l -.2345 -
. 1 £47

7 Fpm x^f-5- - 20l9 -l«S3 -.17oZ -
. ^5V,$ -

. i45<i -.2.549 -2.V73 -.iSfeZ -.lto9 -.14-25 -.0704- -.o39Z
8 <D +© AM2 -.snz - .3fefe7 -.MSI -33(t -.3181 -.5929 -.sso* -.5 213 - .5075 -.5244 -3o49 -.1939
9 a>+® M? 5.2<o3 5.49fe> 5.(4? 4.*l<o 4.4S* 3.^05 3.3S4 2 &33 Z.3Z.S /. 800 (.495- /. Z.01

10 ®+ir® K b.OSt. s.t7<i 5.3>22 4.SS2- 4.^57 4-. 2o2 3.fe-3o 3.oq4- 2.57^ 2ofe3 J. £4* 1.34S
II l-M«? - S.OSfe -4.fe7<l -4-322 -i.9?l -3.C57 -3.Zo2 - 2.fa3o -Z.o<i4 -t.57<? -I.o<o3 - .1-4? -0.34?
12 kM«l S.47« 7.«?Sl 7. 4 so? (=4748 fe.si<?8 s.sm S.0820 433 1(0 3<o(OG Z.IZIl. 2.3072 I.137Z
13 ^ f<© x(**/a.J .os<n • os<?s .OC03 . Ofc(3 . OtZ4 -izSfe . "3S3 . 1448 • ifeol .i9oi .I24C . 01 4-9

14 ifeO^Oxt©*©') 2.J41 2750 2fe97 2 <o2i 2S5 2 24t.S 2.3fo9 2 314 2.3Z3 2.479 2953 4 173

15 (H) * 4-f -%*- .ozsg ozso .oz.43 .02.3^ .o229 .0444 .<?42& .o4ft .04/8 .044c .OZfcC .ofSS

\<b ^5) +© *r/fm .o84-s .o$45T ,0?4k • o«4-<? .08S3 . I73o •177? . IS44 Zo/9 .2.347 .15/2 .1(37

n lg£k2:i ^(i£>-2] w^ l.offi I.oSS 1 oSS l.oSI l.o89 1.(59 nis 1 . 2oS 1224 l.2tfc 1. (4>3 l.izo

18 t/+>«,„ I . ooo i.o?* 1 .i«4 \.Z%% 1.402, l.SZS 1 8)7 2.. 171 2. felt 3.7 OZ 4.054 4.7| ^ S.22I

Unit Steps Double Step s Unit Step-*- -^Half Step-*-<

FOR UNIT STEP

^^- =. 0.035 •, 4f -4f-
= 0.009 (Assumed). £0^ =

7>oo

1 +
K-L M,

1 + ^a m^

k

k-l

= 5.Z6I (^1=0.650





APPENDIX C





CALCULATION FOR TH] CAL EV. RATION RATES

The be sic equation used v,ag t^en from Sherwood . It *aa

oerived by Chiiton and Colburn by analogy of mass transfer to heat

transfer, similar to the Reynolds nnaLo
co

r of friction an; heat tram

fer.

i. K G = h
(

c^" p
)

From EAcAda<8S f for a sphere

2. ilRs. - .33 f
ps^ \° 6

Combining equations 1 and 2

a
<- •

K^WW = K Ww (^£/( 33[^.;

At 200F

<h - 0.2592 K = 0.0180

WH = 28.97
C' ftD

, 1.250
K

K*« 18.02 y^ = 0.0452

Equation 5 then reduces to

k6 r,ww =o,, 7^ J^
Or

But

° fo
, r, ^ 0<> „ I (odur

a OH7 ft >. fi*ER = O 3G86r° O.

J± O
s

<"»

Therefore





< ~l

Integrating this expression, the time if ev -ion is

obtained

D ^ n M
4. .f* HO ">'

hrs ,Ob87 P
*'

fc
.|0^ seconds

G ofc C c fc

If the average velocity during ev; poration is V./2, that

is, evaporation is complete at moment drop is accelerated to stream

speed

6-
o fc>

And

tf.^.S"
j

-T^, -iS-OOR
; poi .i4.7psw

P^ = 0.00346
j
\4--5H0

L = 3030 a iC* a,,
M

Lengths of duct required for drop sizes of 13 , 10"
, and 10"

feet are snown below.

Lo
5| ;i»~

<" r 12.1 incnes

*-%,• '0" s
=• zoz Inches

Lp
s

= l0
-7 r 0.431 inches

From tliis it can be seen that the drjp si se nust be fcnoira with

great accumcy, which with present information is i i )oesible. !fow-

ever, if it is assumed th'it with lateral injection into t.ie strea i,

tne drop size, D.. , is inversely proportional to the velocity of t

strofi'..:, nn<i proportional tc the diameter of th< injection hole,





A comparison may be made to the measures results of Curry, in a

much lower speed stream. This assumption seeua to Le&icaily follow

the theory of the formation of drops by a s hearing phenomena as postu-

lated by aieny investigators of atoraiz&tion of liquids in a subsonic

stream

.

1 The proportionality equation then becomes

in a typical Curry run

M,-o.«9 / VV795"

• (-HV-t^n-fc-j**
L

L,

o.fe

_L_
e

/ 79g- \°' fe

/ OQ8 \'/ 0585" \ _ c.485
Lc \ 5I70 / ' oj I tf^sW

For an average run, Oocrxy obtained 'cO% evaporation in about

20 inches, after which evaporation proceeded very slowly with increas-

ing length. The above comparison would indicate tlv:t at least this

amount of evaporation could be expected in about 9.5 inches,

SYMBOLS USED

1. Kg. diffusion rate, lb aol/hr ft atmos.

2. Y\ heat transfer coefficient for similar situ* tion,

BTU/hr ft £ F

J.Cp specific heat of air at constant pressure, l:TU/lb F

4. Pft
partial pressure of eir in main stream





5. Wfl molecular weight of air

G. Ww aoLeculrr weight of wster

7. Pq density of air, ibs/ft

5

8. f^. den city of water, Ibe/ft

9. dlffusivity constant for air

10. K thermal conductivity of air, ETU/hr ft*" F/ft.

11 ./*_(. viacoeity of eir, lbs/hr ft •

1£. Ps diameter of water Crop, ft.

15. Q, initial velue of D , ft.

14. 0,„- dlawaeter of water injection hole, ft.

15. V,q air velocity, ft/tec.

16. Gr afe££ flow, lbs/ft sec.
t

17. n ^iech number





-/

T
;





DETERMINATION OF U.Cn SUMBEH I CTIOM Or I AREA

In order to judge whether or not the ilach number attained at

the maximum a rea cor? - dad to the design value, ^reti-sure taos

were fixed to the first row of water injection tubes, providing a prei

sure traverse of the section of aaximua ores.

Results of e typical test are shown in Figure XII. The aver.

b number was estimated first by determining the integrated

sure across the maximum ares section, from which o /o~ and l:.ai, the cor-
' 4 m' '

responding Mach number coula be determined. In , similar method the 54iich

number corresponaiog; to -eaca pressure measured wj e determined, and the

curve of Mach numbers was plotted. As shown the integrated mean of the

'•lach numbers a^ree:: very closely with that determined from the average

pressure.

In maxin, the calculations described above, the stagnation ores-

sure was assumed constant flon._ each streamline, throughout the expansion

to the Maximum area section. Such an assumption is very accurate except

for the portions of tne stream very close to the rails, which ere sub-

jected to high shearing forces. 'It was also assumed that the velocity vectors

are all parallel to the axis of the stre; a in integrating the curve of

Siach numbers

.

Since pressures could not be read more accurately than to the

nearest millimeter of mercury', there exists b possible error of about t»ro

*

percent in p/pji, with a corresponding error in Mach number of about 0.01-i.

As a result, there were some differences in the Sach numbers estimated

for various rune. For the tests with inlet stagnation temperature oi'

ISOOu, the average Macb number for all tests was 2.49«





Figure £j|__

Hot of Typical Pressure Traverse and Determination

of Mach Number at Section of Maximum Area

2.58"

r*—1/2"—H-1-3/8"

Location

5/8"'—*4-— 1/2"

of Taps

^
s:^

F res sure (cm. Kg .

)

^Z^

p = 75.70 cm.

Te = 1513°R

T « 670°R

k(mean) = 1.375

Integrated Average p 4.4°2 cm.hg.

-B- s
'Vfyo =0.5394 from which

it is found Siav s 2.487

Integrated Average l& - 2.489

/WAV 1 3 7949

^/





^IG. Xui -Test Data For DRY Rows

75 75 <5'

f H' ft'

75 1.5" 75 75 15

l3 fU fIs it, fr

A 6
D 1 F"F Throat Area 1.484 l.<b5S

To. °r I509 ISI3

To* °R U90 UOO

f
3

. Cm Hg S.I G.I

14 5/2 5.3

-rt 4.4 4.5

-A 3.7 37

*5 8.2 a.4

f>; 1 2.5 10S

-K '3.

1

'3 7

K 13.7 n.z

fa I8.6 ZoZ

*i 2I.9 2l.o

-PC 22 6> 21 -S

-Pi 23.4 2l-fc

Ptt 23.5 2iB

f>U 23.7 219

*« 23.3 21.9

. ^ 24.0 —

rt 24.

1

—

f'e 243 —

-f>oi 14..J 75.7

f>ot 24 fa 22 .5

A- M in. Area To Ron.

B - K.m. Area To Start.

MAY 1 3 my
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