AN INVESTIGATION INTO THE PERFORMANCE OF MANAGEMENT
 CONTRACTS AND THE TRADITIONAL METHODS
 OF BUILDING PROCUREMENT
 Thesis submitted for the
 Degree of Doctor of Philosophy

by

```
Shamil George Naoum BSc. (BEng)., MSc (CM)
```

CHAPTER 1 INTRODUCTION TO THE RESEARCH PROBLEM
AND BACKGROUND 1
1.1 Nature of the problem 1
1.2 Background 3
1.3 Apparent disadvantages of the traditional approach 16
1.4 Apparent advantages of the traditional approach 18
1.5 Outline aim of the research 20
CHAPTER 2 REVIEW TO MANAGEMENT CONTRACTING 23
2.1 Literature review 24
2.1.1 The US perspective 24
2.1.2 The UK perspective 30
2.1.3 Case studies into management contracts 40
2.1.4 Apparent advantages of MC 43
2.1.5 Apparent disadvantages of MC 45
2.2 The market development and client perception of $M C$ in $U K$ 48
2.2.1 The use of $M C$ in $U K$ 50
2.2.2 The market share of $M C$ in UK 53
2.2.3 Management contracting projects 54
2.1.4 The clients' perception of MC 57
2.2.5 The future of management contracting 64
CHAPTER 3 RESEARCH DESIGN AND METHODOLOGY 66
3.1 Aims and ob.jectives 66
3.2 Previous research models 67
3.3 The chosen research model 73
3.4 Details of the research model 73
The client characteristics 74
The designer characteristics 75
The project characteristics 76
The contract procedure 77
Procurement method 77
Team relationship 78
Pro.ject performance 78
The environment 79
3.5 The research hypothesis 80
3.6 Definitions and measurements of variables 81
3.7 The research methodology 87
3.8 The main study sample 91
3.9 Characteristics of the case study sample 94
3.10 Method of analysis to test the hypothesis 100
3.10.1 Spearman's Rho Coefficient 101
3.10.2 Chi-Square and Fisher's tests 101
3.10.3 Pearson's correlation coefficient 102
3.10.4 Graphs 102
3.10.5 Scoring matrix for project performance 103
3.11 Limitations of the research 104
CHAPTER 4 RESULTS AND ANALYSIS 106
The client 106
The designer 115
The project 117
Contract procedure 120
Procurement method and project performance 122
Summary 151
CHAPTER 5 CONCLUSION AND IMPLICATIONS 153
5.1 Test for main hypothesis one 154
5.2 Test for main hypothesis two 157
5.3 Comparison with other research 163
5.4 Implications 164
5.4.1 Implications for clients 164
5.4.2 Implications for the industry 167
5.4.3 Implications for other researchers 168
REFERENCES 171

APPENDICES

Appendix 1	Role of the management contractor
Appendix 2	Organizational differences between various MCS
Appendix 3	Form of management contract
Appendix 4	Copy of autor's publication to the ASCE (1987)
Appendix 5	Previous research models
Appendix 6	Pilot study questionnaires
Appendix 7	Case study questionnaire
Appendix 8	The research data
Appendix 9	Siegel's and Greene's statistical charts
Appendix 10	Results of the Chi-square tests
Appendix 11	The Correlation coefficient matrix
Appendix 12	Scoring matrix for profect performance

1.1 Traditional management structure of a project 4
1.2 A guide for procurement path 13
1.3 Choosing a procurement path 13
2.1 Alternative $C M$ concepts in USA 25
2.2 Management structure of 'pure' MC in UK 31
2.3 Cumulative number of contractors entering MC market 51
2.4 Percentage of MC by value of projects 55
2.5 Percentage of MC by building type 56
2.6 Percentage of MC by Construction type 56
2.7 Percentage of MC by sectors 56
3.1 The Chosen research model 73
3.2 The research methodology sequence 88
4.1 Construction cost plotted against pre-construction time 124
4.2 Construction cost plotted against construction time 126
4.3 Construction cost plotted against total project time 130
4.4 Construction cost plotted against area / week 134
4.5 Gross floor area against cost / sqm 137
4.6 Construct cost plotted against percentage time overrun 140
4.7 Construct cost plotted against percentage cost overrun 140
4.8 Significant correlations annoted on the research model 151
2.1 Advantages of MC (CCMI survey) 45
2.2 Disadvantages of MC (CCMI survey) 47
2.3 Details of surveys conducted to investigate the market development and clients' perception of MC 49
2.4 History of management contractors studied 50
2.5 Procurement method adopted for their turnover by the management contractors identified 52
2.6 Output of management contracting (in 1983 prices) 53
2.7 Responses to questions on MC V traditional method 58
2.8 Attitudes towards $M C$ in the future 61
2.9 Future trend for MC (CCMI survey) 64
3.1 The research sample, showing procurement method and client characteristics 94
3.2 The research sample, showing procurement method and designer characteristics 95
3.3 The research sample, showing procurement method and profect characteristics 96
3.4 The research sample, showing procurement method and contract procedure 99
4.1 Ranking of criteria for project performance 109
4.2 Ranking of a survey of client criteria 111
4.3 Correlation between performance measures and client 113
4.4 Client type and construction time under a MC 114
4.5 Correlation between pro.ject performance and designer 116
4.6 Correlation coefficient between project performance project characteristics 118
4.7 Project performance and contract procedure 121
4.8 Procurement method and mean pre - construction time 123
4.9 Procurement method and pre-construction performance 123
4.10 Significant correlation between pre-construction time and other key variables 126
4. 11 Procurement method and mean construction time 127
4.12 Procurement method and construction time performance 127
4.13 Construction type and construction time under MC 128
4.14 Procurement method and mean total time 131
4.15 Procurement method and total time performance 131
4.16 Speed and unit cost performance matrix 133
4.17 Procurement method and mean unit cost 137
4.18 Procurement method and mean time and cost overrun 141
4.19 Procurement method and performance of time overrun 141
4.20 Procurement method and performance of cost overrun 142
4.21 Procurement method and client satisfaction on time 146
4.22 Procurement method and client satisfaction of cost 147
4.23 Procurement method and client satisfaction on quality 149
4.24 Correlation coefficient between performance measures 150
5.1 Procurement method and performance measures in scores 156
5.2 Significant correlation coefficient between performance measures and other characteristics 161
5.3 Total performance scores under both systems 165

I would like to express my thanks and appreciation to my supervisor Mr D.A. Langford, for his ideas and suggestions, for his time and advice throughout the duration of the research.

I also wish to thank the firms who co-operated, advised and gave the informations which are necessary to compile this study.

BUILDING CONTRACTORS

```
Mr R.G. Walton 01-686-8700
Balfour Beatty Construction,
Southern Construction,
Randolph House.
46/48 Wellesely Road,
Groydon, Surrey CR9 3QD
Mr C.B. Darwin 0246-410111
Mr R.C. Smith, 0246-410111
Henry Boot Northern Ltd,
Dronfield,
Sheffield, S18 6XN
Mr P.E. Hastings 01-422-3488 Ext. 490
Mr R.E. Gibson
01-422-3488 Ext. 468
Bovis Construction Ltd,
Northolt Rd,
Harrow, Middlesex, HA2 OEE
Mr A.R. Gandy
04862-77332
Mr R.J. Thompson, 0628-762387
Costain Management Design Ltd,
Costain House,
Nicholson's Walk,
Maidenhead, Berks, SL6 1LN
Mr R.C. Chandler 01-837-5442
Trollope and Colls Ltd,
Duncan Street,
Islington, London N1 8BN
Mr P.W. Ingham, 01-222-4077
R.M. Douglas Construction Ltd,
35 Great Peter Street,
London, SW1
Mr A.R. Pickton 061-794-4755 Ext. 168
Fairclough Contractors,
Pendlebury Road,
Swinton,
Manchester M27 1AX
Mr R.A. Simkin 01-942-8921
Mr J.J. Taylor 01-942-8921
Higgs and Hill Bullding Ltd,
Crown House, Kingston Road,
New Madlen, Surrey, KT 3ST
```

Mr J.E. Bowyer 092333433
Norwest Holst MC Ltd,
Astral House, Imperial Way.
Watford, WD 24 YX

Mr B.M. Thornton, 01-441-9900
Walter Lawrence PM Ltd,
Northside House,
Mount Pleasant,
Cockfosters,
Hertfordshire EN4 9EB

Mr P.R. Lambtn
Mr M.S. Roques
Mr D.G. Spencer
Mr M.N. Stubbings
Head office 0582-425551
Laing MC Ltd,
80-88 Collington Street, Luton, Beds. LU1 1SY

Mr G.D. Collins 01-946-0035
John Lelliott Management Fee,
St. George's House,
3/5 Pepys Road,
London SW20 8NJ

Mr P.E. Finney
01-828-4672
Mr D.G. Potter
Lovell Taskmaster ltd,
Project Design and CM,
New Buckingham Court,
3 Buckingham Gate,
London SW1E 6JH

Mr P.C. Moody
0533-554223
Sir Robert McAlpine Ltd,
215 Charles Street,
Leicester, LE1 9GB

Mr T.T. Barton
01-568-9111 Ext. 479
Mr R.D. Pertwee
01-930-6323
John Mowlem Contractor,
Wastgate House,
Ealing Road,
Brentford, Middlesex TW8

Mr R.P. Downing
01-200-7070
Mr B.G. Gregory
01-200-7070

Kyle Stewart Management Ltd,
Merut House,
The Hyde, Edgware Road,
Colindale. London

Mr C.J. Chorlton 01-940-9520
Mr D.H. Standen,
01-940-9520
Cubitts Tarmac MC,
Cubitt House,
37/39 Kew Foot Road,
Richmond, Surrey, TW9 2SS
Mr J.A. Try 0895-51222
W.S. Try Ltd,

High Street, Cowley,
Uxbridge, Middlesex.
Mr S.R.Dean,
Tysons Contractors Plc,
PO Box 93.
Dryden Street,
Liverpool L69 5AA

Mr R.T. Fry,	$01-846-3453$
Mr M.R. Hooper	$01-486-2751$
Wimpey Construction UK Ltd	
$27 / 28$ Hammersmith Grove,	
London W6 7EN	

Mr D.G. Fryer 01-575-7255
Mr G.M. Knight 01-578-2366
Mr T.J. Phillips 01-575-4621
Taylor Woodrow Construction Ltd,
309 Ruislip Road East,
Greenford,
Middlesex, UB6 9BQ

Mr D.H. Woolf 01-602-8282
Mr J.E. Collier 01-602-8282
Woolf Project Management Ltd,
10/12 Maclise Road,
London W14

NAME OF CLIENT ORGANIZATIONS

Mr A.J. Hadland 01-248-1238 Ext. 3089
Barclays Bank PlC ${ }_{\perp}$
Property Services Dept.,
Britannia House,
16/17 Old Baily,
London EC4M 7DN
Mr G.M. Bryan 01-248-1117
Beaver House Ltd,
64 Queen Street,
London EC4R 1AD

```
Mr J.H. Gant
0602448522
The Boots Company,
Nottingham NG2 3AA
Mr A.J. Chapman 01-745-7945
British Airport Authority 
Terminal 4 Project Team,
Hounslow, Middlesex Tw2 3JE
Mr K.A. Gray 01-930-5474
Clerical Medical Assurance,
15 St. Jamess' Square,
London SW1Y ALQ
Mr J.M. Wilson 0322-27266
Dartford Burough Council,
High Street, Dartford, Kent.
Mr E.R. Standing
01-499-0444
English Property Co-operation,
17 Grosvener Street, London.
Mr W.F. Sparker
John Lewis Plc,
19 Bolsver Street,
London.
Mr R.J Morrison 0475-24500
IBM United Kingdom Ltd,
PO Box 30
Greenock, Scotland PA16 OAH
Mr J.G. Choals, 01-486-5059
Marks and Spencer Plc,
Michael House,
Baker Street, London W1A 1DV
Mr M.P. Morris
Milton Keynes Development Cop.&
6 7 1 ~ S i l b u r y ~ B o u l e v a r d ~
Secklow Gate Wst,
Milton Keynes.
Mr H.S. Robinson 01-728-1851
National Westminster Bank,
41 Lothbury Road,
London EC2
Mr K.A. Holmes
01-686-8710 Ext. 4406
Public Services Agency,
Wellesley Road,
Croydon, CR9 3LY
```

Mr J.H. Gant
The Boots Company,
Nottingham NG2 3AA

Mr A.J. Chapman 01-745-7945
British Airport Authority,
Terminal 4 Pro.ject Team,
Hounslow, Middlesex Tw2 3JE

Mr K.A. Gray
01-930-5474
Clerical Medical Assurance,
15 St. Jamess' Square,
London SW1Y ALQ

Mr J.M. Wilson
0322-27266
Dartford Burough Council.
High Street, Dartford, Kent.
Mr E.R. Standing
01-499-0444
English Property Co-operation,
17 Grosvener Street, London.
Mr W.F. Sparker
John Lewis Plc,
19 Bolsver Street,
London.

Mr R.J Morrison 0475-24500
IBM United Kingdom Ltd.
PO Box 30
Greenock, Scotland PA16 OAH

Mr J.G. Choals,
01-486-5059
Marks and Spencer Plc,
Michael House,
Baker Street, London W1A 1DV
Mr M.P. Morris
Milton Keynes Development Cop.,
671 Silbury Boulevard
Secklow Gate Wst,
Milton Keynes.
Mr H.S. Robinson 01-728-1851
National Westminster Bank,
41 Lothbury Road,
London EC2

Mr K.A. Holmes
01-686-8710 Ext. 4406
Public Services Agency,
Wellesley Road,
Croydon, CR9 3LY

Mr I.A. Blackburn 01-240-1200 Ext. 386
Royal Opera House ${ }_{\text {R }}$
Development office,
Covent Garden, London.
Mr M.W. Rennle
Scottish Development Agency.
120 Bothwell Street,
Glasgow G2 7JP
Mr F.T. Clifton 01-876-3434
Watney Mann And Truman
The Brewery,
Mortlake, London SW14

NAME OF PROFESSIONAL ORGANIZATIONS

Mr A.G.Reid, 01-430-1611
Andrew Reid and Partners,
Chapsitor House,
37-38 Chaneay Lane,
London WC2A 1EL
Mr R.T. Johnes 01-734-8494
Arup Associates,
2 Dean Street,
London W1V6 6QB

Mr M.E. Dunk 061-834-8441
Building Design Partnership,
Elisabeth House,
St. Peter Square,
Manchester.
Mr N.C. Reakes 01-584-3751
Fairhursts Architect,
35 Thurloe Street,
London SW7 2LQ
Mr E.W. Holmes 01-828-7733
R.T. James and Partnern,

6 Lower Grosvenor Place,
London SW1W OEW

Mr J.D. Bernard
01-351-3882
Powell Maya and Partners,
21 Upper Cheyne Row,
London SW3 5JW

Mr W.F. Anderson 01-629-8171
Knight Frank and Rutley Partners,
20 Kanovest Square,
London SW1 OAH

Mr A.S. Golland, 01-388-6586
Trikett Associates,
84 Marchmount Street,
London WC1
Mr C.J. Lovering 01-636-6621
The Whinney Mackay Lewis Partnership,
55/65 Whitfield Street,
London W1 P5RJ

This research pursues the development of management contracting in the UK construction industry, and aims to compare it with the traditional method with a view to providing some indication of how both systems may be matched to particular circumstances. A theoretical model was used to assist in comparing project performance in a case study sample of 39 management contracts and 30 traditional form of contracts, and have identified several variables which could influence the performance of a project.

The first main hypothesis proposed is:-

- Management contracting can satisfy clients who need their projects quickly and for projects that are large and/or highly complex'.

This led to a second hypothesis,

- Project performance is a function of the characteristics of the client, the project, the designers, the contract procedure employed and the procurement method adopted for their projects'.

The use of management contracting is growing throughout the UK, but the percentage of traditional contracting is still greater than other forms of building procurement method.

Analysis of the 69 case studies suggest that management contracting performs better in some respect than traditional contracting, in particular, when time is the essence of the contract and when the project is highly complex. However, in the construction of large simple buildings, there was no strong evidence which shows that management contracting can perform better than the traditional form of contracts.

Moreover, analysis of the results also suggest that procurement method is not the only variable affecting project performance. The client's requirement, the designer, the characteristics of the project and the contract procedure employed, all had their relative effect on certain performance measures as defined by time, cost and quality.

1.1 NATURE OF THE PROBLEM

It is an axiom of construction management that a project may be regarded as successful if the building is delivered at the right time, at the appropriate price and quality standard, and achieving a high level of client satisfaction. Increasingly the achievement of these criteria has been associated with problem of procurement method for the construction. In short the selection of the appropriate method can shape the success of the project.

Broadly speaking, the problem facing the building process can be established under the following factors for the purpose of initial investigation and review. The factors are by no means exhaustive nor ranked or selected in any particular manner other than they could be regarded as the 'popular' choice at the initial stages of any similar research. These are:-

1. Lack of effective communication and co-ordination between the building team.
2. Lack of intepration of the design team.
3. Uncertainty within the work of an organization.
4. The changing environment.
5. Advanced technology.
6. Experience of the building team with the building process.
7. Increasing profect complexity.

Kaving set out the general problem it is clear that any account of the manner in which the building process operates should be set in the context of management responsibility and functional demarcation in the client organization or the organization which design or construct the project. In the first place there is the question of intercommunication and then there is the problem of the actual construction of the project.

Another generally accepted view is that the last few years have been an especially difficult period for the construction industry (Hillebrant 1977 and 1985) - Construction output has fallen steadily, partly as a result of the recession but also of the uncertainties generated by some projects exceeding their time and cost budgets. This situation is perhaps more prevalent in the UK than some other Continental European Countries and the USA where the problems are often greater in magnitude but more limited in their type and range particularly within the confines of each contract (Slough Estate 1976 and Nahapiet 1985). UK contracts seem to be fraught with a continuum of problems and difficulties from the onset, across a very wide spectrum, through to the completion stage. For example, among the findings of the Slough Estates' report (1976) was that, total time from inception to completion in the $U K$ was at least 70% longer than in Canada, Australia, Belgium, USA, France and Germany. Moreover, preliminary design phases were more complex; prices in the UK were comparable to those in Europe but more than those in North America.

Abstract

The intention of the thesis is to utilize this plethora of variables as a basis for study to compare the conventional procurement method with management contracting with the hope that a number of significant and useful factors can be extracted and to be used as a guide for clients who want to know about the system of management contracting and wish to improve efficiency and effectiveness for their future projects.

1.2 BACKGROUND

Observations of the industry, at the time commencing this research, suggested that some sort of analytical approach, such as is now presented in this thesis, was needed in an attempt to solve problems facing the client from the building process.

It is likely that when the design and production are combined to each other then good relationships and greater co-ordination and co-operation between the parties involved can be developed (Philip 1950, Emmerson 1964 and Banwell report 1964). The selection of the right contractor for a particular job is an essential factor in controlling what was planned.

Each member of the building team have a criteria for success which may differ from one another. Sidwell (1984a) notes that the client may regard completion of his project on time and within budget as a success. However, client satisfaction may differ in respect of the owner, the occupier or tenant, or the general public. In many cases, client satisfaction depend upon the degree
of conformity between expectations, interpretation of the brief, and the realization of the project. For the professionals a criteria for success can be a successful interpretation of the clients needs and a smooth going project. The contractor may also regard conflict free project as a success to secure future work with the client and to satisfy the shareholders.

The N.E.D.O. report (1983) indicated that many clients drifted into the traditional method of contracting towards building without being aware of the alternatives available to manage a contract. Various client guides have suggested ways in which construction projects should be tackled, other than by the traditional method. These include management contracting, project management, design and construction management etc.

The traditional approach is one where the client appoints the architect and the other professionals to design the building and prepare the tender documentation. A main contractor will then be appointed, under a certain form of contract, to actually construct the building. Figure 1.1 show the arrangement of the traditional team in relation to the client and to each other.

The traditional approach has come under increasing pressure, apace with the increasing complexity of building pro.jects. Whilst technology and complexity has forged ahead in the construction process, the approaches to its management have lagged behind.

OF A PROJECT TRADITIONAL MANAGEMENT STRUCTURE
gourge - HTcocs and hrll butiliring luntred (1979)

The Emmerson report (1964) has identified a common criticism of the building process where there is a lack of liaison between Architect and the other professionals and contractors, and between them and clients. It comments that, "In no other important industry is the responsibility for design so far removed from the responsibility for production."

The report pointed out that although a common course of initial study for designers and producers of buildings had been recommended in the Philips report (1950), no practical steps had been taken by 1962.

Emmerson concluded that there was still a general failure to adopt enlightened method of tendering in spite of the recommendations of earlier reports. His recommendations in this respect led directly to the establishment of the Banwell (1962) committee to consider these issues in more detail.

Emmerson recognized that the Royal Institute of British Architect (R.I.B.A.) was aware of the need for improved efficiency in architectural practices. The R.I.B.A. subsequently made a significant contribution to the co-operation by publishing the Plan of Work (1965) and the first edition of their handbook (1974).

The Banwell report (1964) and it's review "Action on the Banwell Report" (1967) have been considered to have had significant impact upon the building industry and it's professions.

The Banwell (1967) review found some progress on pre-planning of projects but professions had done little to "de-restrict" their practices. The review was encouraged by the increase in selective tendering and urged further consideration of serial negotiated tendering.

The Emmerson and Banwell Reports have emphasized the need to reform the organizational approach to building projects. Building project management was seen to be a passive procedural activity (National Joint Consultative Committee of Architects, Quantity Surveyors and Builders 1963) but the movement towards a more dynamic integrated approach was being suggested by Higgins and Jessop (1965) in a pilot study sponsored by the N.J.C.C..

Higgins and Jessop (1965) clearly identified that the problem of communication in the building industry were created to a large extent by the attitudes and perceptions about the values of contributors to the building industry. The most important drawback to the traditional approach, as noted by Higgins and Jessop, is the lack of effective communications and co ordination. In other words the nature of the relationships between the communicators which creates the difficulties for communications structures. Five problems were outlined, namely:-

1. Communication with prospective clients
2. Communication between clients and advisers.
3. Communication within the design team.
4. Communication related to the contract.
5. Communication within the construction team.

Higgins and Jessop then went further and noted that ' if building is thought of without the people involved it can be seen as a chain of interdependent operations called the (Technical System) ie. briefing, design, estimating, billing, supplying, etc. To undetake these operations a wide variety of resources eg. material and skill, remain under the control of people and, organizations which is called the resource controllers ie. the (Social System).

The central problem brought forward by Tavistock (1965) arises from the fact that the basic relationship which exists among 'resource controllers' has the character of interdependent autonomy. There is a lack of match between the technical interdependence of the resources and the organizational independence of those who control them. Any attempt to re-order the division of responsibilities among resource controllers that might arise from a purely technical study would run up against deep-seated difficulties of conflicting values and vested professional, technical and commercial interests.

This view is pointed out by Trist (1988) who studied the effects of mechanization in British Coal mining. The study of the effects of technological changes led Trist to develop the concept of the working group as being neither a technicsl system nor social system, but as an interdependent socio-technical system. The social and technical requirements are mutually interactive and they must also have economic validity, which is a third interdependent aspect. The aim should be joint optimization.

This socio-technical system approach was also applied to supervisory roles by Rice (1958) in studies of an Indian textile firm. He found that it was not enough to allocate to the supervisory a lsit of responsibilities and perhaps insist upon a particular style of handling men.

In a subsequent research by the Tavistock Institute (1966), a thesis was writen exploring the forgoing problem of communication by providing a model of the structure and functions of the building industry. Two important characteristics were identified that are incorporated in any model of the building process, these are, ' Interdependence and Uncertainty '. The construction industry as a socio-technical system and it's performance was seen as being dependent on the communication between and the interdependence of the participants. The building team was described as a sub-system within the overall system of environment.

Based on competitive tendering procedure, it was reported that within the building process there are five closely sub-systems, these are:-
a) a system of operations
b) a system of resource concrollers
c) a system of formal controls
d) a system of informal controls
e) a system of social and personal relation

The traditional competitive tendering was criticised by professionals as being unable, in a situation of certainty about all factors affecting time and cost, to provide the basis for a
valid and protective contract. There were two main types of
attacks on the problem of the unsatisfactory nature of the
organization, functioning and communications in the building
industry : Firstly, exhortations to return to the formal system
in its pure form ie. directive functions, this of which was
deplored. Second, a call for some new form system which
incorporates the more adaptive characteristics of the informal
system.

Thus, the socio- technical analysis and the three dimensions described by the Tavistock institute (1965 and 1966) of complexity, uncertainty and interdependency had a great impact for the introduction of the new management methods in an attempt to acheive a wide coordination of control of the building process such as package deals in the late 1960's and management contracting by early 1970's.

For instant, large and complex pro.jects, principally, require longer time to build than small and simple ones, which make uncertainties concerning the future unavoidable. The wider they are the more persistent is the need for a local managerial ability to manage uncertainties, so that the objectives of the project could be attained.

Before continuing further, the attributes of integration should also be considered. Principally, the changing technologies, procedures, materials and complexity of the building process are such that the sequencial approach of independent professionals to

```
the formation of design and construction solution is unable to
provide an efficient solution to the client's requirements. As
mentioned earlier, the problem of communication within the
building industry were documented over 20 years ago by the
Tavistock institute and integration was seen as a necessary
solution to the interdependence and uncertainty involved. Sidwell
(1979) sees that high integration is one of the fundamental
characteristics of management contracting.
```

The notion of integration of the building team has been reported in Sidwell's field study of organizational forms (1979). Over 80 interviews and ten detailed case studies were undertaken throughout $U K$ and abroad to identify the range of organizational forms in use in the industry and analysing their principal characteristics. The report groups the diverse range of patterns under three headings, namely, the fragmented pattern, fully integrated system and partially integrated system. Sidwell (1982) considers that the degree of integration of the design team is an important criterion for consideration. The level of integration increasing from traditional through management contracting and project management. They offer a more integrated approach to handing unccrtainty. Under management contracting, the contractor is aware of his organizational and contractual obligations in the pre-tender stage and is therefore more adequately able to obtain insights into decision-making and to anticipate information requirements in the post contract stage. With project management, the main emphasis is on co-ordination in order to reduce uncertainty through integration.

This would stress the earlier view in this chapter that organizational relationships are of prime importance for the successfully run project. Furthermore, for organizational relationships to work effectively, interpersonal relationships must likewise operate in an effective manner. Organizational relationships are important also in handling the uncertainties which exist within the building process.

The problem of increasing project complexity and it's measurement have been highlighted by Sidwell (1982) and Bennett and Fine (1980). Sidwell confirmed that objective measurement of complexity is not easy; some indication may be gained by consideration of design time, building time, cost, number of variations, etc. He argued that a highly complex project may require a building team which can provide a wide range of services and expertise. A relatively uncomplicated proiect, regardless of monetary value, should, in theory, require a simpler organizational form. Sidwell went further and noted three aspects of complexity that are worthy of consideration, namely, in the brief, in the design solution and in the technology of the building.

A further factor for consideration of the problems facing the building process is the organizational environment, which can vary between stable and dynamic. Mintzberg (1979) sees the dynamic environment as being the cause of uncertainty within the work of an organization. It is important for the organization to respond quickly to an environment which is becoming dynamic.

Mintzberg (1979) suggested, in terms of the construction process, that project management would be more suited to these environment conditions of uncertainty.

Lawrence (1981) views the construction firms as being located in an environmental perspective of high uncertainty. Furthermore, Mintzberg (1979) notes that, in the building process, there is a prime example of hostile environment facing the construction firm, "who must bid on all contracts". Sidwell (1982) confirmed that the building process must work within the environment and is subject to any influence it may have. The work by Ashridge (1979), viewing the construction industry from a UK perspective at least, supports these ideas.

Changing emphasis of management studies in the construction process began to take place and this has been illustrated in the Bishop's report (1968). That report identified that up to that date most of the Building Research Station's work had been concerned with the management of building sites and building firms but recognized that future work would be concerned more with the management of total building process.

As a response, in the 1970's, three principle references attempted to analyse how frequent various organizational forms had been used. Wood (1975) showed that the majority of the public contracts in the $U . K$. are still let by traditional methods. The Wilson report (1975) showed the same for private contracts. competition is used for the majority of contracts both in private and public sectors. Negotiated and Package Deals are not used to any significant degree in the private sector, and to a limited extent on public housing and schools.

With these reports and the economical changes in mind (eg. inflation) the professionals and the industry responded by experiencing the four general methods as an alternative to the traditional approach. These are namely:-

1. Management contracting
2. Project management.
3. Design and construct
4. Increase use of negotiated contracts.

As the growth of various procurement methods began to increase a number of authoritative body of information has published guides to clients for selecting procurement method for their projects. Figure 1.2 illustrate a guide for procurement paths presented by the DOE (1982) which are based on client priorities. Figure 1.3, was presented by the BDP (1985), also, as an aid to selecting a procurement path. However, it was warned that the questions were Intended as a primer for discussion with the client principal adviser before making procurement decision.

Together with these kind of reports, case studies have been undertaken to investigate the management of the building process and in particular the performance of time, cost and quality when using alternative approaches. Some research work are reported

PROCUREMENT PATHS THE BASIS FOR CHOICE	DESIGN AND BUILD PATHS	TRADITIONAL PATHS	MANAGEMENT PATHS
	Direct Design and Build Competitive Design and Build 	Sequential Accelerated Traditional 	Management Contracting Management
Speed of total process	Highest1 	Baseline $:$Higher 	
Building Complexity	Suitable for lower complexity work especially For normal complexity 	 For normal to high complexity	For high complexity work especially
Building Quality (performa e and/orimage)	Suitable for normal and less demanding levels of building q ality	Suitable for normal and mor	ding levels of building quality 1
Cost of change after start on site			
Degree of Price Certainty before commitment to build	High with conditional proposal 	High Lower	
Degree of Competition for construction work	Low1 High 	High \quad Lower	High on all but management content

When all questions have been considerod sum Ha number of ringed dots in each column. The procurement pathis with most rings shomblat worllas of further investigati in.

below and specific case studies into management contracting are reviewed in chapter 2.

Harris (1974) confirmed that package deals are, overall, less time consuming from the inception to the contracted completion date of the project, than a competitively tendered method but certain package contracts will produce approximately 10\% higher construction prices than comparable competitive tendered projects. Results of the limited survey also indicate that to the industrialist requiring a definite date of completion, a package deal project would have a higher probability of meeting that date than a competitive tendered one, although industrialists with their own design departments appear to have a better time performance than either of the other two systems. Meade (1983) has also showed saving time achieved by a package deal method.

More recently, a PhD study at Brunel University by Rowlinson (1987), has analysed the performance data of industrial projects built by the design and construct method. He compared the time in terms of square metre per week and the unit cost of 17 design and construct contracts against 19 traditional projects and 10 management contracts. All 46 projects were industrial projects to eliminate variables concerning with the technology of the building. Project performance was hypothesised to be a function of organizational form. Rowlinson found that design and construct projects have a tendency to overrun the planned pre-construction times by 40% on average; this compared with an overrun of 20% for all projects. Traditionally organized profects overrun by 7% on
average compared with a mere 2% overrun by design build projects on planned construction times. Both procurement methods are likely to overrun on budgeted costs but by 4% only. It was suggested that the client pays less by taking the design and build approach.

Dr Sidwell of Aston University (1982) investigated the relationship between contractual arrangement and project success. The essential element which brought about success was the level of managerial control. Of the contractual methods studied those with a high level of managerial control e.g management contracting and other non-traditional (e.g design and construct, project management , etc.) performed better on time, gave a higher level of client satisfaction and overran the budget by less.

Ireland (1983), in a study of commercial projects in Australia, supports Sidwell's findings by identifying managerial actions which achieve the objectives of reducing construction time and building cost and increasing architectural quality. He also indicated the scale of effect each action has on performance. He points out in the Unibeam article (1982) that a client may have many objectives, quoting Townsend (1979) and Ferry and Brandon (1982), and so assumes that the lump sum tender on full documentation; package deal and full cost reimbursement are best able to reflect these objectives.

Bromilow (1977) has also investigated the performance of building projects in Australia and has found that projects overran on cost and on time by 5% and 47\% respectively. Among the reasons attributed for bad performances was underestimation of construction time at the outset of the project. It was also found that the time taken for the design and construct phases depend on the abilities of people involved and the techniques and resources devoted to the project.

1.3 APPARENT DISADVANTAGES OF THE TRADITIONAL APPROACH

If there is one main reason for the growth of alternative procurement method in this country it surely be the inadequancies of the traditional design and tender system, and the existing procedures are the cause of the increases in cost and delays in completion which are often blamed on the building industry.

These views are expressed by Clamp (1984) and Marler (1983), president of the British Property Federation, who summed up that ' developers can no longer afford to pay the high prices which result from time honoured methods of planning and building which are less efficient than they could be.' The BPF system (1984) has sprung from these concerns by publishing it's five work stages into , concept, brief preparation, design development, tender documents and construction.

Among other problems of the competitive tendering method are the conflicting opinions of the various parties to the contract. The

DOE (1982) views the traditional method as it requires preater co ordination and control because of different firms and contractual relationship. Most of the contractors interviewed throughout this research support this view and those of Affoo's findings (1982) who claimed that one of the deficiencies of the traditional system is the way the building team is related to each other. Too often the relationship between the building team become brittle during the construction process, the only outcome of which is to the detriment of the client.

The competitive tender situation has the disadvantage that it encourages the contractor to submit the lowest possible price, thus reducing his profit margin to a minimum. If the contractor awarded the contract on the criteria of price alone and later the contractor discovers that his price is low, he has alternatives to prevent suffering the loss. Foxhall (1972) stated three alternatives, namely:-

1. To try to economise on the small percentage of the work which he intends to carry out himself.
2. To reduce the cost and, therefore, the quality of management.
3. To look for claims.

Any of the above alternatives could create difficulty for the client.

To conclude, the apparent criticism of the traditional system appear to be the excess time taken, disputes between the parties involved and the fact that the client has to deal with a number
of separate parties. Equally important is the system's inability to meet changing conditions. CIRIA (1983) reported that management contracting grew in $1970^{\prime} s$ partly as a response to inflation and Carter (1972) consider that the introduction of the management concepts was due to changes which occurred in the last ten to twenty years in:-

1. Building techniques - diversity, complexity, standardization.
2. Building organization - growing prominence of the subcontractor, notably the manufacture, supply and six subcontractors, which means dispersal (multipication of the responsibility pattern).
3. Briefing - the growth in size of the project, demand for tighter time and cost targets and for a more unified and purposeful management of the total process.

1.4 APPARENT ADVANTAGES OF THE TRADITIONAL APPROACH

The traditional approach on the other hand can produce a useful set of contract documents which will ensure that the client requirements are fully understood by the tendering contractor, thus forming a common basis for tender evaluation, and illuminating the possibility of any misinterpretation of client criteria. Under this argument the DOE (1982) highlighted the traditional advantages as it provides competitive pricing, ensure high degree of certainty on the basis of cost and specify the performance before a commitment to build.

This situation is not clearly defined by other methods. For example with a package deal the tendering contractors interpret the client's requirements from outline proposals or performance specifications, with the possibility of mis-interpretation and subsequent disputes. With management contracting the contractor usually foin the building team before the design is completed.

With the compiling of the list of tenderers for the project the client's professional advisers will be ensuring that only those contractors with the necessary experience in the type of work, reputation, resources, financial stability and technical 'knowhow' will form the basis for the final selection. On the other hand, in a number of management contracts the client is taking a gamble on the experience of the contractor with system that he chooses for the contract.

Young (1971) reported that the London Club Members of the nineteenth century (1834) considered that a competitive tender produced lowest building price, and to a great extent this belief has not changed through the years. As Luder (1970) says "experience appears to indicate that if a client requires the lowest building cost, competitive tendering is the way to get it."

The DOE (1982) appreciated the opportunity to combine the best consultancy and contracting skills for the project when adopting the traditional approach. Cannel (1968) stated that "with a closely knit team of architects, engineers and quantity
surveyors, a strict control over the building price is possible, and what equally important is that cost planning techniques are employed, with the result that the client is obtaining the optimum value for his money.

To conclude, the initial indications are that the use of professional designers, properly chosen and well integrated, and the use of a well chosen contractor by competitive tender has the potential to provide the client with a better building than if he goes to an alternative methods.

1.5 OUTLINE AIM OF THE PROJECT

All of the available evidence in section 1.2 suggested that performance is related to procurement methods and that alternative methods can deliver projects in a shorter time. But clients have other criteria for project success. What are these criteria and does an alternative procurement methods provide the client with the building he wants, when he wants it and at the right price?

This research pursues the development of management contracting and aim to compare it with the traditional method with a view to providing some indication of how both system may be matched to particular circumstances. The author has used a theoretical model for comparing project performance, in a sample of management contracting and traditional form of contracts and have identified several variables which could influence the performance of a
project.

The central hypothesis of the research is that:-

Abstract

"Management contracting can achieve a higher level of success for clients who need a profect quickly and for projects that are large and highly complex"

This led to a second hypothesis:
''Project performance is a function of the characteristics of the client, the project, the designers, the contract procedure employed and the procurement method adopted for the pro.iect.''

This research is composed of five chapters. The first chapter has been a general introduction to the research and outlines the main aim and hypothesis to be tested.

Abstract

Chapter Two is concerned with giving an introductory background to the USA experience with construction management. The various types of management contracting in $U K$ are outlined, together with the literature review of the 'pure' management contracting system. The development of and the market of management contracting in the $U . K$. is also examined.

Chapter Three examines the research design and methodology and the limitations. It presents the variables, which could influence the performance of a project. The relationship between these

```
variables are then postulated in a similar manner to the one
presented by Sidwell (1982). The model's components are then
reviewed topether with the research hypotheses and the method for
testing the hypothesis.
Chapter Four, analyse and explain the results. Data from 39 management contracts are compared with data of 30 case studies from traditional contracts to examine the hypothesis in the research model and in particular investigate differences in client and project characteristics, procedure and project performance.
```

Chapter Five, consists of the conclusion and implication in relation to client, those in the industry and those considering possible directions for further research.

PREFACE

It was apparent in chapter 1 that one of the features of the construction industry of the 1970 s and the early 1980 s has been the emergence of a diversity of building procurement methods. Among the most popular has been "management contracting" (MC), ens this has assumed a prominent place in the battery of procurc.. nt methods offered by contractors. The term "Management Contracting" is similar to the concept of "Construction Management" that was first originated in the USA where it is also known as Professional Construction Management (PCM). The early practice of PCM in the USA has been wirrored in the UK construction industry and some pioneers of the $C M$ approach have independently or in conjunction with contractors, established therselves in the UK. However, the CM concept should be distinguished from $M C$ in that the sub-contract packages are agreed directly between the client and construction contractors, with a construction manager acting as the client's agent. More details regarding the concepts of $C M$ and $M C$ are given throughout the chapter.

The author (1984) has defined management contracting as the "process whereby a contractor is employed to undertake the coordination of specialized sub-contractors to complete a project. The management contractor relies upon a percentage fee
or a lump sum to be remunerated for the services offered. The management contractor becomes associated with the client team of professional advisors and in common with other professionals has liability for the provision of a professional service."

This chapter consist of two sections. The first section reports on the US and UK perspectives to construction management and management contracting respectively, together with outlining the type of management contracts. It also presents previous case studies into management contracts and. finally, the apparent advantages and disadvantages of MC are reviewed.

The second section deals with the development of and the market for management contracting in the $U K$ which are seen as a consequence of the growing evidence cited in the first section. It also reports the client perception of management contracting when asked to compare it with the traditional approach.

SECTION 2.1- LITERATURE REVIEW

21.1 THE US PERSPECTIVE

Professional construction management has evolved in the USA as an alternative approach to managing the total construction programme. According to Heery (1976). PCM was rather informal method until the late 1960 's but as costs of construction increased during the early 70's and delayed projects become more frequent, the need for $P C M$ became more evident.

Barrie and Pawlson (1976) has defined Professional Construction Management as one where a contractor performs a management function under a professional services contract with client. It treats the project planning, design and construction plan as integrated tasks. Figure 2.1 shows typical organization forms of the PCM practice in the USA. As the construction professional of the construction team, the construction manager works with the designers and the client, from the brief through the completion of construction, providing leadership of the construction team and on all building with regard to time and cost. The construction manager can either be a firm or an individual and in most cases he is paid a fixed fee based on the value of the work.

A NUMBER OF INDEPENDENT CONTRACTORS

FIGURE - 2.1 ALTERNATIVE CONSTRUCTION MANAGEMENT CONCEPTS IN USA

Heery (1976) defines the process of construction management as that group of management activities over and above normal architectual and engineering services related to a construction
prot amme, rarr od out darly tian pre desern and ronstrurtion phases and providing control of time and cost in the construction of a mew farility

The rolc is often undertaken by Construction and ArchiteclEngincering firms offer this service. In the USA The Public Building Services (PBS) of the General Services Administration (GSA) commissioned a survey (1970) of the various contractual arrangements and their performance. This revealed that the traditional sequential method was resulting in a total design and construction time of 59 months comnared to 24 months for similar proiects in the private sector. The report recommended that the GSA abandon its outmoded traditional procedures and use phased construction in conjunction with construction management in a new approach to its nationwide buildins programme. However, it is said that the GSA modiried their view in the mid 1970's to restrict construction management firms to acting in a consultant capacity only and preclude them from undertaking any of the direct works at the same time (Sidwell 1984b).

At the end of the decade the GSA, again, modified their view to restrict the usc of the system because of the difficulties in ensuring the construction manager has enough incentive to perform, problems over liability and the need for a firm priced tender before start on site. Construction Management in the USA and concluded that the greater growth in construction management took place in the 'design' sector of the industry.

Nevertheless, the Engineering News Record (1982) has reported that the situation in the United States is the top 400 construction management firms undertaking an estimated 42.5 Billion Dollars worth of construction management contracts. The majority of these 400 contractors reported such contracts comprising about 25% of their new awards.

According to Langford (1984) review of construction management in USA, the matter of the size of the fee may affect the market for construction management. The consulting and architectural firms made a brief but unsustained effort to obtaln a large share of the construction management market in the USA. Larger consulting firms and small architectural practices provided the major impetus for this unsuccessful drive. There may well be solid financial reasons for the limited impact of large consultancies.

Evidently fees are in the range 2-5\% of project construction costs whilst profit on construction work typically ranges from 48\% on costs.

In the USA the Architect-Engineer's view of PCM was addressed by Tatum, Gans and Harper (1979) who identified several differences in A / E performance as construction managers when compared with

Ihe lraditional system. Durimp the desipn process the A / E must be rerept ive to constract jon advase from the construction manager an apency outside it's own organization. A positive atifude towird support of construcion artivities togroher with the issuance of clear and specific design documentation were seen as essential for effective A / E performance.

Barrie (1979) found that $C M$ projects were penerally well organized in the view of the trade contractors. Many of the less favourable comments were the result of design changes or modifications made after contract awarded. A number of individual contractors concluded that while items were generally handed about the same as a general contractor, all indicated that bidding was conducted better than with a peneral contractor.

Using the construction management as an alternative to the traditional approach, a survey done by Barrie (1981) to show the contractors and the client's opinion on marketing the $C M$ services. In the questions, respondents were asked to rank their manarement techniques, and to provide comments or qualifications of their responses, or both. Results of the survey show that the average $C M$ client feels that the quality of the $C M$ firm's experience is far more important than the amount of experience or the proposed costs. The most important asset to be marked by the CM firm is the technical and operational expertise of the proposed project manager. The client wants to know if the firm has done similar work. Further they actively seek information from the firm's former clients in order to more accurately
evaluate the firm's proposal and the ability of the proposed project manager.

The rise in popularity of the construction management concept in the USA has encouraged a number of writers to address their work towards the educational needs of the professional construction manager and methods of satisfying them. Jordan and Carr (1976) have concluded the following:-

1. The professional construction manager must possess skills in a number of fields that lie outside the traditional technical areas of civil engineering, and more generally identified with the field of industrial management or business administration.
2. There exist a substantial number of university-level degree programs that undertake to educate graduates for positions in construction management. These programs combine education in the technical areas related to construction with introductory coverage of the major nonengineering areas applicable to construction management. The favourable attitude exhibited by the ndustry loward such programs suggests that they fulfil a perceived need.
3. As an alternative to recruiting graduates of construction engineering and management programmes, professional construction manager firms may satisfy their staffing needs by employing specialists or quasi-specialists in each of the nontechnical areas involved in construction management task.

According to Barrie (1980), the construction management firm should focus its marketing efrorts on the skills of the proposed project manager, The project manager should personally visit with the client's engineering staff before the proposal is made, and should have major impact unon the oreparation of the proposal.

The construction management proposal should emphasize the firm's discussion of alternative solutions, a list of special charges and a full disclosure of anticipated sub-contracting was recommended by Rad \& Miller (1978).

2.1.2 THE UK PERSPECTIVE

As noted above, the early practice of PCM in US has been mirrored in the market development of $M C$ in $U K$, however there appear to be differences in their practice. While the design sector had greater growth in construction manarement process in the USA, (formerlly) main contractors were the first to offer manascment contractinge to the client in UK. The first building erected using the system was a large and complex ciparette
factory for John Player \& Sons in Nottingham, designed by Arup Associates and built by Bovis Limited (Carter 1973).

Sidwell (1983) distinguished the characteristics of management contracting where by the contractor crosses the professional demarcation line and joins the design team as an equal contributor. his considerable expertise and work being solely in the client's interest. Further function of the system is to divide the project into work packages which are then let in phases. Figure 2.2 show the arrangement of the management contracting team in relation to the client and to each other as perceived by a top management contractor participated in this research. Appendix 1 describes the activities involved in a management contract.

According to Higgs and Hill (1979). management contracting is essentially a team approach to the construction process. It links the management expertise of the contractor with that of the professional design team. to achieve the common objective of providing the client with the finished product in the shortest possible time, within the limitation of the budget and the desired quality. Central to the argument, the management contractor is by definition providing a professional management service.

Roger Downing (1982), one of the personnel who was involved in the first management contract in the UK, the Player's Horizon project. believes in the good communication of a short chain of

[^0]command. He enlarged. "the use of high powered sales team by some management contractors does the industry a disservice, inasmuch as a client is often provided with a sea of new faces when the job actually starts".

Downing also comments. "A management contract could be run without a formal contract - it is a philosophy, an attitude, a contract of trust. It eliminates the traditional contracting situation of playing safe with comprehensive tender documents. Decisions are deferred until just before the work is required".

George Neate (1982) stated on behalf of Laing Management Contracting that:-
"A management contractor is employed on a professional fee basis. He is therefore in a position to provide the client and design team with the resources and expertise available within his organization, to provide information in an unbiased and positive manner and to establish an effective working liaison with the design team. It should also be remembered that the inclusion of the management contractor at this early stage would give the project team an extra dimension; he being the only member of the team having practical construction experience."

Neate went further and said that the management contractor should In confunction with the design team provide the following services:-

1. Design management, resources and planning.
2. Design evaluation and building methods.
3. Development strategy and phasing.
4. Material selection and availability.
5. Cost planning and budgeting.
6. Procurement and construction programming.
7. Research and development.
8. Project administration procedures and computer application

Report 100 by the Construction Industry Research and Information Association (1983) views management contracting as an arrangement where the client creates a contractual and organizational system which is different from that in the conventional approach. The appointed management contractor works closely with the cllent's project management team. This removes some contractual barriers found in the conventional approach and tends to increase the client's involvement in the project. In this way management contracting is more closely related to a professional service than a normal conventional contract.

However, care must be taken to distinguish 'pure' management contracting from other form of contracts. The CIRIA report (1983) has segmented management contracting in UK as follows:-

1. Pure management contracting, where the contractor has no responsibility for the design, and is not permitted to use directly employed resources to execute the work. Contractors are employed directly by the MC after approval by the client.
2. Construction Management, where the construction manager is employed in a professional capacity as the client agent. with the contractors directly responsible to the client. As the contracts are made between the client and the construction contractors the conventional allocation of risks, in legal sense, remain unchanged. It can be argued here, that a construction management can be distinguished from management contracting in that the later is a service to design professionals whilst the former would expect to draw upon skills more familiar to a construction organization.
3. Design and management contract, where the contractor also takes responsibility for the design. Scope designers are still employed directly by the client. Compared to a management contract a design and management contractor can give the client extra potential for integration of design and construction and better control of the design process, together with similar administration and co-ordination.
4. Management fee contracts is another diversified concept that became clear during the course of this study. The management contractor carries out exactly similar functions and activities as a management contractor except that the contractor is appointed and paid a fee to manage and build the project.

The organizational differences between these methods is well recognized by the diagrams shown in Appendix 2 . It can be seen, that the central difference is the role of the client. Whilst in
construction management the client has an active role, in management contracting and management fee contracts, this may be more muted allowing the client to take more detached view. However , construction management , management contracting and design and management contracts rely upon the trade contractors for the actual conslruction work. Whilst in management fee contracts the management contractor is involved in executing some construction packages.

The management fee contract was criticized by Hayes (1986) who pointed out:-

```
"In all its forms management contracting was intended as a no-
risk situation for the management contractor, the intent being
that he should be working with the client's team to manage the
design and construction phases of the project development. To do
this more effectively, and impartially, the management contractor
was only responsible for the management, not for executing the
construction. and was not permitted to execute any of the
construction himself."
```

Under the same argument, David woolf (1979) stated in an interview with the Construction News Magazine that:-

[^1]> According to Norwest Holst (1984), the diverpence of interest inherent in traditional forms of contracts is eliminated in manapement contracting and the contractor is paid a ree rather than earning a profit, from the outset becoming an integral part of the client's project team.
There have been various views regarding the increased
introduction of management contracting by large contractors in
the uk building industry. This may take a form of forces imposed
on the contractors, the architects, the clients and other members
of the building team.

On the contractors side, there have been soveral acts which affected their use of the traditional approach. For instance, Bayley (1973) comments that "the Redundency Payment Act made a number of firms cautious of their policy to keep labour permanently employed, whilst. the Employment Protection Act provides grounds for resisting unfair dismissal". At the present time, because of the way the industry secures its work, continuity of employment is becoming difficult to puarantet. Contrartors are looking for minimizing the fixed costs as much as possible. Laing (1968), for instance, states that his firm provides only 25% of their employces with steady employment, the other 75\% are, to varying deprees, casual.

The increasing complexity of the construction industry has made the project to be divided into portions of work which are then

This has encouraged many main contractors, who normally undertake work on a traditional form, to turn to sub-contractors working on a large management contract.

Many who worked in the industry have questioned how accurate can a contractor quote a price for a large complex project given the information and time provided for the preparation of the price. Fine and Leon (1971), in particular, have made attacks on the bill of quantities, dismissing it as an unrealistic and pretentious cost model. Fine (1971) has developed various computer programs and mathematical models which he claims substantiate his hypothesis that "the bigger the job, the bigger the disaster". Fine stated that unless contracts are secured on the basis of full documentation, the competition process is meaningless because contractors will bid to obtain the contract and rely on claims to make a recovery

Bovis (1983) argued that the prime cost plus fixed fee form of cost reimbursement contract is the evolutionary link between traditional forms of contracting and management contracting. The latter involves an even further isolation of the management fee. Bovis regard management contracting as a logical extension of the fee system.

Other forces are imposed on the architect where the complexity of the bullding process is putting him in a difficult situation (Carter 1972). He may not realize the consequences of his design
which may not be flexible, not for time and cost only but also on availability of labour and material, productivity, scheduling etc.

On the other hand, clients are increasingly concerned for economy and speed. Clients often look for firms who can deliver the building on time and within a budget.

Dunaway (1973) sees the development of management contracting as a result of the growth of management science. which utilizes new techniques and skills of programming, control and progressing of resources and capital costs of projects.

The size of the work packages on small projects, say below $\$ 1-2 \mathrm{M}$ may well also be a force affecting the management contracting market. Management contractors and sub-contractors would obviously have to consider their expenditure in time and resources in terms of opportunity cost. They would, therefore, be more interested in the larger, more expensive projects.

Tle above discussion of management contracting market forces is a matter of value judgement and many factors require consideration, for instance, the client's criteria with regard to time and cost, the complexity of the project, the nature of the site, labour and material availability and the like.

Finally, many of those involved in the provision of management contracting services fear that the concept may be restricted to
the private sector because of public accountability (Mckinney 1983). It was noted that the public sector have experienced cost reimbursement contracts for many years. This particular form of contract would certainly seem to be far more in conflict with the concept of public accountability than 'pure' management contract, simply because the contractor carries out the work himself with little provision for realistic and comprehensive competition. However. Mckinney went further and said that 'pure' management contracts have been awarded in the public sector and these should provide some type of precedent for their continued use by central and local government eg. General Post Office (GPO), Public Service Agency (PSA), London Transport, Department of Health and Social Services (DHSS) etc.

Official reports such as Banwell (1967) and Wood (1975) noted that traditionally, the public sector has taken a narrow view and awarded contracts by means of open competition on the basis of drawings and bill of quantities. These reports points out that:"...although in the selection of the contractor competitions on price is very useful, it is not necessarily an essential means to the end of achieving value for money...we suspect that value for money is largely sought in the wrong place, it often seems to be looked for primarily at the letting of the construction contract"

2.1.3 CASE STUDIES INTO MANAGEMENT CONTRACTS

The development of management contracting has interested advocates and researchers to examine it's performance as an alternative system to the traditional method.

One of construction management's major practitioners, Bovis (1976), have hypothesised the construction of a national office block with a basic building cost of $\underset{\sim}{\mathcal{A}} 100,000$ and investigated the cost implications of the time saved by using their management fee system as opposed to the traditional system. Bovis suggested a cost saving of 23.5 percent due to an earlier available start to construction, thus reduced escalation costs and facilitating an earlier return of investment. Affoo (1982) compared the final accounts for similar projects built under a management and traditional contracts. A cost saving for using a management contract was reported as 13.5 \% over the traditional contract.

The National Economic Development Office report "Faster Building for Industry" (1983) discussed the effect of method of organization on the distribution of site time and total time on 55 projects. Criteria for fast projects were listed and design and build and management methods were picked out as providing projects up to 50\% faster than normal at a competitive prices and with no resulting loss in quality.

Some 10 case studies using management contracting were examined by Sidwell (1983). The analysis showed that management contracts
have much shorter pre-construction time than other projects. The results also confirmed that the overall design and construction times are very much shorter for management contracts.

Another body of information regarding management contracting came from C.I.R.I.A. (1983) who visited 52 firms and organizations, 39 in the UK and 13 in the USA. The report concluded that the various forms of management contracting can offer viable and flexible contractual relationships for projects where time is important, especially where there is a likelihood of insufficient design information being available at the stage when a main construction contract would normally be let. C.I.R.I.A. also concluded that $M C$ are suitable where there is a need to coordinate a considerable number of construction contractors and suppliers. It was claimed that management contracting offers potential for improved management of design and construction, particularly where a client has insufficient resources or expertise to concentrate on these crucial aspects of management a project.

Mo e recently, the D,H.S.S. (1986) reported on a four and a half year study of the design, construction and commissioning of three hospital projects, one traditional and two management contracts. The D.H.S.S. concluded that the use of a management contract will be an advantage to a health building project; projects where. for any reason or combination of reasons, the management of design, construction and engineering commissioning stages would be significantly more difficult than usual. The procurement method
was claimed to usually produce a completed building earlier than the conventional procedure. In some circumstances it was seen to produce a building at lower cost. Further it will seldom have a significant influence on the quality and performance of the completed building. It will reduce the risk of substantial overrun of time and cost but has little influence on the risk of unexpected shortcomings in the quality and performance of the completed building. The administrative procedures used with a management contract need be no less robust than those which have evolved for conventional contracting and therefore management contracting is not incompatible with the requirements of public accountability.

It must be noted here that the various pieces of research using the case studies approach discussed above are attempts to illustrate performance of management contracting, but they are all based either on small sample measures (Bovis, Affoo, Sidwell and the DHSS study) or the number of 'pure' management contracts included within the study are of a very limited numbers (3 out of 55 in the NEDO report and 13 in the CIRIA report). Hence, the comparison set out in this research illustrate more detailed variables and objectives and based on a larger sample. facts and explanation of which are given in chapter 4.

Abstract

The Construction Methods and equipment Magazine (1972) reported that the major benefit of a management contract is its contribution to the removal of the division which exists between design and construction by approaching project planning and design and construction phases as integrated tasks within a construction system. Tasks are assigned to a construction team consisting of the client, the designers and the management contractor. The team works together from project inception to project completion, with the common objective of best serving the client's interest.

Another major advantages put forward by the management contractors participating in this research is that the early involvement of the contractor in the project provides a tremendous advantage, both in the form of using the contractor's particular expertise in problem solving, and the fact that any early relationship between design and construction can save a considerable amount of time in the building process. Furthermore, Hayes (1986) noted that by reducing the construction programme the client gains possession of his building earlier, and so can start to reap earlier financial benefits.

Interaction between construction costs. quality and completion schedule are carefully examined by the team, so that a project of maximum value to the client is realized in the most economic time frame (Neate 1982). Under a management contract all work
packages and specialist services, which in total constitute over 30\% of the project value, are tendered for in total competition. In this sense, the construction market is carerully investigated to ensure that only capable and competitive contractors and supplicrs are invited to tender. Tenderers are fully acquainted with their project commitment and tenders received are enforceable under the contract.

Morris (1973) identificd the [ollowing as the cssential basis of construction management expertise:-

1. An appreciation of the design process, of design costing and of process costing.
2. Major expertise in production control, primarily programming. and organization but also in quality control and materials management.
3. Skill in tender evaluation and nerotiation.

This covers a wide spread of skills and it is supgested that only the experienced management contractor traly possesses them.

More recrnt:ly the Central of Construction Market Information (CCMI 1985) has carried out. a survey which looked to the management contracting market and analysed the advantages and disadvantages of the approach. Table 2.1 summarizes the main advantages perceived by top 16 management contractors operating in UK.

TABLE 2.1 - ADVANTAGES OF MC (CCMI SURVEY)

ADVANTAGES	NO. OF RESPONDENTS
OUT OF 15	

It can be seen from the above survey that management contractors related the benefits more specifically to team involvement. According to the CCMI. the management contractors tending to regard financial benefit to client and contractors as being related. Overall of course all the above advantages are interrelated.

2.1.5 APPARENT DISADVANTAGES OF MANAGEMENT CONTRACTING

Although the Emmerson. Banwell and other reports of the 1960 's em hasized the need for a link between the design and construction phases of the building process. this does not necessarily mean that management contracting as an alternative method to the traditional approach is the bost and only answer to the problem.

There are two major areas where the management contractor may have deficiencies, the $C I O B$ (1983) recorded them as :

1. It may take some time to turn the emphasis of management away from the tradilional profit motive to one serving the client.
2. There may be problems with the human relations aspect of consultancy; rough edges may requiring honing.

Throughout this research study, there has been no standard form of manarement contract, but in 1988 , the J.C.T. published a manapement conlract and a copy is attached as Appendix 3. According. to Hayes (1986) the conditions of contracts were first written by the contractors lhemselves, but subsequently by the clients or their quantity surveyors. These MC were based upon the Lraditional JCT or GC/works $1 \& 2$ standard form of contracts.

The conditions of these previous contracts were criticized by Hayes (1986) as they allocate little risk, in a lepal sense, for construction to the management contracting firms.

Tim Cornick (1987) identified the issue of risk for discussion to Lhe Construction Mana!ement Forum and said, all those who take on a construction project carry risk from client lo component supplier. Who carries what risk depends on where the boundarics of responsibility and liability are sel.

Table 2.2 summarizes the disadvantages stated by the top manapement contractors that were surveyed by the CCMI (1985).

TABLE 2.2 - DISADVANTAGES OF MC (CCMI SURVEY)

(A) NO REAL DISADVANTAGES

7
(B) CLIENT UNCERTAINTY TO FINAL COST 6
(C) VERY COMPETITIVE MARKET 4

LOW PROFIT/FEES
(D) ADMINISTRATIVE LOAD/PAPERHORK/
MANAGEMENT
(E) CONFUSION OVER TERMINOLOGY 1
(F) PRINCIPLES NOT FULLY UNDERSTOOD 1

The CCMI has noted that the top management contractors tended to equate competition, and low pricing with lesser qualified contractors entering the market.

Finally, a published article by Penny Guest (1986), has criticized a management contract in that it creates problems of site safety. Guest asserted that, "management contracting is causing problems. The safety officers cannot control the number of contractors and sub-contractors on their sites - yet they are in an ideal position to du so". "The large contractors are well aware of the problems, but the middle tier just coming into management contracting are not used to co-ordinating other contractors. Safety matters just tend to happen, rather than get organized". "Fast - track systems, where speed is essential, and sites are congested, present particular difficulties".

However, it must be stressed that the above evidence is too crude to allow conclusions to be drawn on the relative performance of safety under a management contract, but further research could examine the safety issue in a more detailed study.

OF MANAGEMENT CONTRACTING

The technical and environmental changes of the late 1960 's have changed the traditional attitudes towards marketing, eg. changes in construction operation sequences and procedures, in materials and tools that need to be used etc. Thus contractors began concentrating on their external environment by establishing new customer satisfaction, a situation which again leads to the management contracting concept.

During the late 1960 s there was much discussion on the development and provision by contractors of 'Package deals', and the first references to management contracting began to appear from 1972 and with increasing frequency in the late 1970s. However, until the CIRIA report 100 (1983) on management contracting, the subject had not aroused the construction industry as a whole to widespread awareness of the significance of management contracting. It is only now that management contracting output in the $U K$ is beginning to be recognized as an mportant aspect of the construction market.

An estimate of the size of the market for management contracts and a description of output by type of work were part of the objectives investigated in this research. The following sections summarizes the development of, and the market for, management contracting in the $U K$.

In order to distinguish the information gathered by the author from those published by other sources of information, Table 2.3 summarizes details of the surveys that are refered to in the following sections.

| TABLE $2.3-\operatorname{DETAILS}$ OF SURVEYS CONDUCTED TO INVESTIGATE THE | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | MARKET DEVELOPMENT AND CLIENT PERCEPTION OF MC. | | |
| SOURCE OF | CONDUCTED | THE AREA | YEAR REPORT |
| INFORMATION | BY | INVESTIGATED | PUBLISHED |

9 MC INTERVIEWED THROUGHOUT 1983	NAOUM	1.RANKING CRITERIA	1984 BY NAOUM \& LANGFORD (SEE REFERENCES)
9 MC INTERVIEWED	NAOUM	1.NO. OF MC. IN UK.	
THROUGHOUT 1984 \&		2. BREAKDOWN FOR	LANGFORD (SEE
1985 UPDATING THE		MC. TURNOVER.	REFERENCES)
ABOVE FIGURE TO 18.			

10 MC. CLIENTS	NAOUM
INTERVIEWED IN	
$1985 \& 1986$	CLIENT PERCEPTIONS 1987 BY N. \& L.

170 COMPLETED MC. NAOUM 1.MARKET SHARE 1987 BY N. \& L. PROJECTS GATHERED
FROM THE ABOVE
2. PROJECTS BUILT

18 MC. \& 10 CLIENTS.
UNDER MC.
35 MC. WITH CCMI \quad 1.NO. OF MC. 1985 BY CCMI

D FFERENT MC. 2. MARKET SHARE
EXPERIENCES.

NOTE : 1. MORE ABOUT HOW THE AUTHOR CONDUCTED THESE SURVEYS ARE GIVEN IN CHAPTER THREE (RESEARCH DESIGN \& METHODOLOGY)
2. SOME OF THE MANAGEMENT CONTRACTS INCLUDED IN THE MAIN STUDY (IE. THE CASE STUDIES) ARE SELECTED FROM THE 170 LIST OF MC PROJECTS REFERED TO IN TABLE 2.3.

2.2.1 THE USE OF MANAGEMENT CONTRACTING IN THE UK

This research has identified eighteen principal management contractors operating in UK. The MC interviewed were asked when their organizations were first involved with management contracting, the results of which are shown in Table 2.4.

TABLE 2.4 - HISTORY OF THE MANAGEMENT CONTRACTORS STUDIED

From the results shown it can be seen that the management fee system (MFS) has been used as early as 1928 by Bovis. It was not until the late 1960 's that 'pure' management contracting gained recognition within the industry. Now it is seen as part of an essential business portfolio by most large contracting firms in the UK and much competition among them to stay in the management contracting market.

Figure 2.3 plots the growth in the number of firms offered management contracting as a service. It shows no entry to the MC
market in 1972, 73, 75 and 76. However, the number of management contractors increased by 50% between 1979 - 1983 with an estimated $£ 580$ million in 1983 . This rapid increase by early 1980's was. perhaps, because at that time it was recognized by a number of influential organizations that clients could benefit from management contracting and that it had certain advantages to offer. By early 1980 many reports, articles were published, seminars and conferences held like the ones organized by the Midland study Centre (1982 and 1984), and by the High Point Research and Studies (1985). These events encouraged the industry to talk and think about what management contracting meant and its utility to the industry.

FIGURE 2.3 - CUMULATIVE NUMBER OF CONTRACTORS ENTERING MC MARKET

* (THE CCMI UPDATED ESTIMATE)

The number of contractors involved only provides part of the picture. More critically, Lhis research investigated how committed were these organizations to the provision of management contracting services. Table 2.5 show the extent of management c ontracting work in relation to the contractors total turnover.

TABLE 2.5 - PROCUREMENT METHOD ADOPTED FOR THEIR TURNOVER BY THE MANAGEMENT CONTRACTORS STUDIED

BUILDING PROCUREMENT METHOD	PERCENTAGE OF TOTAL TURNOVER OBTAIN BY THIS METHOD, BY CONTRACTOR								
	A	B	C	D	E	F	G	H	I
TRADITIONAL	40	30	-	-	75	80	70	95	80
MC.	30	20	50	25	25	15	25	5	15
OTHERS	30	50	50	75	-	5	5	-	5
TOTAL	100	100	100	100	100	100	100	100	100
NUMBER OF PRO.JECTS									
	J	K	L	M	N	0	P	Q	R
TRADITIONAL	-	70	60	30	80	80	70	50	80
MC.	100	25	20	60	15	10	25	25	20
OTHERS	-	5	20	10	5	10	15	25	-
TOTAL	100	100	100	100	100	100	100	100	100
NUMBER OF PROJECTS									
CONSTRUCTED	61	51	22	33	26	15	27	30	11

Al hough one firm stated that 100% of their turnover was obtained by a management contract, a high proportion of this work was in the form of management fee contracts. which for the purpose of this research is classified as a hybrid corm of management contracting.

The percentage of traditional contracting was still greater than other forms of contract, on average 50% of the management contractor's construction output, with 25% for management contracting and 25% other types of procurement methods eg., project management and package deal. The results also reveal that, on average, 95% of their MC work were commissioned by competition and only 5\% by direct negotiation.

2.2.2 THE MARKET SHARE OF MANAGEMENT CONTRACTING IN UK

The market share of management contracting can be illustrated by a survey carried out by the author which indicated that the system is becoming increasingly common and popular in the UK construction industry. Table 2.6 show the total output of management contracting for the contractors interviewed, obtained from their management contracting lists of projects.

TABLE 2.6 - OUTPUT OF MANAGEMENT CONTRACTING (1983 PRICES)

YEAR	TOTAL OUTPUT	NUMBER OF PROJECTS
-1982	£338 MILLION	83
1983	£580 MILLION	110
1984	£740 MILLION	154

Comparing this figure of $£ 740$ million output for 1984 with these resulting from the CCMI survey at approximately the same period which showed an output of $£ 890$ million, it would seem that the two figures are about the same. The difference between the two surveys could be attributed to the fact that some contractors

```
find it difficult to separate output to the various packages
they offer, and this is particularly true of management fee
contracts.
```

Based on the DOE (1984) Register of Contractor Firms and the 3rd quarter output analysis by size of firm. the targeted sample of the 105 top contractors accounted for approximately 19% of all $U K$ contracting output and around 37% of all work done by builders and civil engineering contractors. The management contract output of $£ 890$ million represents some 4% of total contracting output at say $£ 21,000$ Billion. According to the CCMI it was expected a growth by 9% in 1985 while the general growth of the market was still at about 1%.

From the above figures one could conclude that the market share for management contracting is sizeable and has a healthy growth, hence the temptation of more companies to jump on the band wagon.

2.2 .3 - MANAGEMENT CONTRACTING PROJECTS

The author (1987) has published the distribution of management. contracting work based on 170 completed buildings. The results revealed that management contracting was applied to all types of projects and clients. The building types were offices, health. factories, schools, public premises and general buildings, and Figures 2.4, 2.5, 2.6 and 2.7 shows percentage of $M C$ projects according to their category.

It can be seen from Figure 2.4 that management contracting had been used for projects costing more than £1M (in 1984 prices) and in particular projects ranging between $£ 1 M$ to $£ 5 M$. It can be argued, however, that many small contracts can be very complex and difficult, especially on restricted sites, or where high technological inputs are required.

In 1981 work exceeded $£ 2$ million in the contract value accounted for 16% of the total value of all new work or $£ 1.468$ million at 1977 prices (Mckinney 1983). It is not suggested that management contracting should be considered for use in all contracts in excess of $£ 2$ million. Indeed many authorities on the subject would consider contracts of less than $£ 6$ to £10 million unsuitable. The information is, therefore, only a general indication of the market in terms of the larger contracts. ie. those in excess of $£ 2$ million.

Figure 2.5 below divides the value of projects by building type and shows that about 50% of those surveyed $M C$ were commercial buildings and offices and 27\% were industrial buildings. The industrial sector could be further subdivided into 60% factories and 40% warehouses and others. The rest of the work was accounted for banks, houses and other public premises.

FIGURE - 2.5 PERCENTAGE OF MANAGEMENT CONTRACTING BY BUILDING TYPE

Figure 2.6 shows that 63% of the $M C$ were used for new types of construction and 37% for other than new, ie. refurbishnent, remedial work, modernization, etc. Figure 2.7 indicates that 68\% of the projects have been commissioned by private-sector clients, 27% by the public sector and 5% by a mixed co-operation.

FIGURE - 2.6 PERCENTAGE OF MC BY CONSTRUCTION TYPE

68\%

FIGURE 2.7 - PERCENTAGE OF MC BY SECTOR

2.2.4 THE CLIENTS' PERCEPTION OF MANAGEMENT CONTRACTING

The literature available to date has considered the A/E's role. the trade contractor's position in respect of $P C M$ in the $U S$ and the management contractors perception in regard to management contracting in the UK, but little research has been conducted on the clients' or owners' perspectives. Hence, in an interview conducted with construction clients, an attempt was made to assess their satisfaction with management contracting when compared with the traditional method of project procurement. Appendix 4 reports on the views of Ten clients with management contracting, presented for the ASCE by Naoum and Langford (1987). The report discusses the system from different aspects of it's use and the following are summary of the main findings:-

1. The results of the clients studied showed that management contracting work accounted between $3 \%-8 \%$ of the firm's total expenditure on construction work. The prominent criteria of the 10 participating organizations for choosing the management contracting method were the following: Minimizing the overall time of the building process; obtaining reliable time estimates for the project: and suiting large and complex projects.

Earlier, in 1984, Naoum and Langford reported on a pilot study conducted with nine management contractors to review the system of management contracting. The following are the ranking criteria for clients when considering a building project: (1) Increasing the reliability of cost and time estimates; (2) minimizing the
duration of the pre-construction and construction periods;
increasing management contractors' involvement during the design stage; (4) more flexibllity during construction ; (5) reduced maintenance costs; (6) suitability; (7) providing a high degree or personal control over specialized work; (8) lower costs in use; (9) cheapest cost; and (10) aesthetic appeal.
2. Having established the criteria by which clients choose a management contract, it is necessary to compare their views when practising a management contract and the traditional method of contracting, having in mind his needs in terms of function, cost, speed and aesthetics. Table 2.7 are summary of clients' responses.

TABLE 2.7-RESPONSES TO QUESTIONS ON MC VERSUS TRADITIONAI, METHOD

QUESTION	RESPONSE OUT OF 10		
	YES	SAME	NO
1. IS MC MORE RISKY TO CLIENTS?	6	2	2
2. IS MC MORE PROFITABLE TO THE CONTRACTORS?	10	-	-
3. DOES MC INVOLVE FEWER CLAIMS?	3	4	3
4. IS MC MORE FLEXIBLE?	10	-	3
5. DOES MC ALLOW AN EARLIER START ON SITE?	10	-	-
C IS MC QUICKER?	10	-	-
7. IS MC MORE RELIABLE IN PREDICTING			
THE CONSTRUCTION TIME?	9	1	-
8. IS MC CHEAPER?	2	4	4
9. IS MC MORE RELIABLE IN ESTIMATING			
CONSTRUCTION COST?	6	3	1
10. DOES MC PROVIDE MORE CONTROL FOR			
SUB-CONTRACTORS?	9	1	-
11. DOES MC EXERCISE MORE CONTROL OVER			
CONSTRUCTION OPERATIONS?	9	1	-
12. DOES MC PROVIDE A BETTER BUILDING DESIGN?	1	1	8

As can be seen, there is a conflict of opinion concerning the risk to be absorbed by clients when dealing with a management contractor. Three clients saw the principal risk arising from the absence of a tendered lump sum price from the main contractor prior to construction. Another client claimed that clients are subject to a greater risk in respect of costs because of the staggering and phasing of orders for specific work over a long period. While in the traditional method it was the main contractor who was taking that risk by putting a lump sum bid out at the outset, the contractors' perception of risk was also different for management and traditional contracting. With MC the contractor is likely to settle for a smaller guaranteed profit and abandon a higher potential profit through the management of implicit risks.

It must be stressed, however, that the risk issue is very difficult to define and consequently the associate risk can not be easily measured .

All clients studied agreed that management contracting is flexible in that it enables variations on the original design and specifications throughout the course of construction; they added that cost can be controlled by changes in the design but without affecting project performance.
Frequently the time factor was seen as one of the major
advantages of management contracting; none of the clients sampled
commented unfavourably about the MC's time performance. All
clients agreed that a $M C$ reduces the precontract period by overlapping the design and construction process; this enabled the project to be completed in a shorter period than for a traditional method. However, some clients added that their experience with past management contracts counted very much in considering the company's other needs.

Conflicting attitudes about the cost factor were observed. When interviewing a large public client, a mismatch between the expectations of a public body and the procedures of management contracting with uncertain rinal costs, could be observed. It was reported that, because of the way the public sector is organized, it is naturally biased towards caution in committing themselves to spending taxpayers' money, and ensuring that their accounting officer (ie Chief Executive) has good answers to critical questions which might be put to him by the Public Accounts Committees. However, a second public organization did not feel constrained in using management contracting due to public accountability because they had to change their building procedures.

A private banker stated that there is a tendency for greater involvement of the professional consultants: "The architect and quantity surveyor get involved more than they should in some work which is the management contractor's job." This overlapping responsibility was reflected in higher fees being paid. Another four private clients had a fairly positive attitude toward the cost performance of management contracting. One distinguishing
characteristic amongst this group is that low costs were not considered as essential for client satisfaction.

None of the clients interviewed felt that management contracting produced a better building design than the traditional method, but most clients stated that they did not choose a management contractor for that reason in the first place. This evidence refutes the CIRIA conclusion that clients who use management contracting frequently want the management contractor to be responsible for managing the design.
3. After comparing the experience of clients for management and traditional contracts, it is necessary now to review their attitudes towards using the system in the future. Table 2.8 shows the clients' responses to the question of whether they will use MC again.

TABLE 2.8 - ATTITUDES TOWARDS MANAGEMENT CONTRACTING IN THE FUTURE

STATEMENT	NUMBER	IDENTIFIER
NOT DECIDED	1	A
NOT ON MAJORITY OF OUR PROJECTS	1	B
DEFINITELY FOR ALL OUR PROJECTS	3	C, F, H
DEFINITELY FOR OUR LARGE COMPLEX PROJECTS	1	D
FE 'ER BUT DEFINITELY THE MANG. FEE SYSTEM	1	E
DEPENDS ON OUR CRITERIA	1	G
DO NOT KNOW	2	I , J

The difference between clients' criteria and their organizational structures has influenced their views and attitudes towards management contracting. These views have, in one way, prevented the long-term use of management contracting by some clients but
led other clients toward continuous use of the system. For example, client A is a sophisticated firm and is very much concerned about public accountability and financial control. Client A wanted to find the best way to improve its performance in meeting different requirements on major projects. Despite the fact that they have constructed nine projects on $M C$, the organization had not made up its collective mind yet regarding satisfaction with the system because of the following reasons: (1) The uncertainty of the ultimate cost; (2) the liability of the $M C$ is not well defined; (3) it is an expensive method when spending tax payers' money; (4) the complex organizational structure of the client may influence contractor performance. Client A agrees that $M C$ saves time and saving time is saving money, but to quantity that saving is impossible in the public sector.

Client B is a private firm and also has a sophisticated organization with copious internal resources to manage its construction projects. Client. B stated that in its experience MC projects are shorter in duration, but the failures to capitalise on any advantages that $M C$ can offer sometimes lies within the client's organization. If its own procedures are not matched to project requirements, the client could lose the advantages of MC. The client could delay progress if his approvals are not matched to the speed of management contractor's work. Moreover, the type of work client B commissions is not seen as appropriate for the long-term use of management contracting (see comments in Chapter 1, section 4.6.3).

On the other hand, clients $C-G$, having smaller organizational structure with simple procedures, had a more positive attitude towards MC. However, these clients have their own limits for the application of $M C$ current experience is shaping how they will use the system in the future. The client's attitude towards MC could be shaped by how the building team performed on the last job. From this, clients may oscillate between traditional and management procurement methods.

The management contractors and clients participated in this research have criticized many contracting organizations for entering $M C$ without the right personnel. Client C noted that, 'although from the client's point of view, the intention is to integrate them with the professional team of architect, structural engineers and quantity surveyors at an early stage in the proceedings to gain the advantage of their know-how within the building industry, many have not yet understood or chosen to understand this change in status and merely regard themselves as administrative middle-men in between the sub-contractors and the client in his professional team and thus does not inject any creative ideas which is one of the objects of the exercise and is indeed the reason why certainly in our case, after a careful selection process, we bring them into the proceeding at the earliest possible stage.'

Two useful reports commented about the future and marketing of management contracting in $0 K$. The CCMI report (1985) concluded the following:-

1. MC is growing but it is still seen by many respondents to be at an evolutionary stage, as does the whole of project management. It was stated that the leading management contractors have a much more optimistic view of the future than have those in the other groups ie. those with less experience with management contracting. According to their survey, this may well be because they have to a great extent 'cornered' the market. Table 2.9 indicate the resulting summary of the trend to management contracting in the foreseeable future.

TABLE 2.9 - FUTURE TREND FOR MC (CCMI SURVEY)
RESULTS SUMMARY RESPONDENTS PREDICTING

NO. RESPONSES "INCREASE" "DECREASE" "NO CHANGE"

GROUP 1 (TOP MC)	15	15	-	-
GROUP 2 (FAIRLY EXP.)	15	5	7	3
GROUP 3	6	1	3	2

2. Management contracting is likely to grow in the public sector where some authorities are changing their standing orders to enable them to carry out management contracts. It was suggested that the PSA will be an important source of advice and experience which other authorities will look to.
3. It was also stated that some contractors are looking to design, construct and manage as well as the provision of integrated sub- contractor packages as the next stage of market development in the $u K$ construction industry.

Finally, a report on marketing by Brailsford (1985), who is the director of Higgs and Hill Management Contracts, believes that " if management contractors intend to become an integral part of the professional services, it is incumbent on them to contribute in a major way to formulating solutions. This can only be progressively achieved by a process of education both clients and designers. in addition to their own organizations. well produced reports, seminars and an awareness of the clients' requirements, all give individual help to this process."

Brailsford went further and said "from whichever angle we look at our marketable image, the main criterion must be creativity, based on a foundation of practical ability. We must produce well designed and economical buildings more quickly, at the same time adopting a more professional approach. Indeed, we must create A BETTER WAY TO BUILD."

3.1 AIMS AND OBJECTIVES

The main aim of the research is to compare two procurement forms, namely management contracting and the traditional approach and to assess their performance. The following are the major objectives of the study as outlined at the commencement of the research work:-

1. To establish the background, apparent advantages and disadvantages to the client, in adoping management and traditional contracting.
2. To find out the extent of manapement contracting, the typology of projects and the classification of clients using management contracting.
3. To evaluate the client criteria of satisfaction when using a management contract.
4. To evaluate the difference in criteria for project performance, for management and traditional clients.
\therefore An objective comparison of the time and cost of projects completed with a management contract and comparable buildings constructed using the traditional approach. Both time and cost has a number of aspects associated with it, details of which are given in Chapter 4 (the results).
5. A sub.jective comparison of client satisfaction with regards to time. cost and quality in adopting both systems.

Before setting out the research frame work and methodology due, consideration must be given to previous research in this and related fields. The first area of interest of concern to the researcher is the development and refinement of building process models. a model forming a framework for the definition and ordering of data on a subject which it visualizes and which allows separate occurrences to be compared. Thus a model is a key element in determining the scope of any research, it points to those variables which must be considered or controlled in data collection and analysis. Echenique (1970) classified the model as can be made for description. prediction. exploration or planning, and can be either physical (eg. architectural models) or conceptual (ie. matematical model like linear programming).

Since the 1960's various models have been developed to invesigate the effectiveness of the bujlding team or the operation of the building process. Some researchers developed their model to show the structure of the industry (eg. the Tavistock model). but others were interested in showing the processes and participants involved in project development and have a temporal aspect ie. they show sequences of events and not instants in time. However, although the Tavistock report produced the former type of model. showing all the participants and their inter-relationships at an organizational level. it did open the building industry's eyes up to a systems approach. According to Cleland and King (1968), the system approach illustrates the interreaction and interdependence
between the identifjed variables, suggesting that , an action of one variable can cause reaction on the part of others.

Abstract

Among the most relevant models for this research that followed the Tavistock report are those of Murris (1972), Walker (1982), Ireland (1983), Sidwell (1982), Nahaphiet (1985), Wearne (1984), Rowlinson (1988) and Newcombe (1988).

Morris (1972) took a system view of the construction industry and studied the interfaces between the design and production. He used the Tavistck reports and the work of Miller and Rice on organizational boundary definition (1967) and Lawrence and Lorsch's studies of differentiation and integration (1967) as a mainspring of his research model.

Model 1 in Appendix 5 show Morris's work where the building process is broken down into three main sub-processes which may occur sequentially or concurrently ie outline design, detailed design and construction. The concurrence of the sub-process is an indicator of the degree of integration of the building process. This integration may be modified by the managerial actions which determine the make up of the building team and the parameters by which they are gulded. This managerial action may in turn be modified by the environment, which constitutes all the factors which influence the client, the building team and the building process. This provides one of the first pieces of work which approaches the problem in terms of the process as a whole and attemptss to provide a rationale for actions.

Walker（1980）also adonted a systems viewpoint and defined a model which is client oriented and is common to all projects．He used the technique of linear responsibility analysis to Investigate decision making and appropriate organization structures for construction project management．The model is in terms of three stages of profect conception，project inception and project realization．In recognising the non－sequential nature of the construction process，the decision points within the system adds task discontinuity to Miller＇s work（1959）on technology，territory and time．

Ireland，in his PhD thesis（1983）adopted Kast and Rosenweig＇s model（1973）of the organization and indicated that he had reversed their proposjtion of management and structure being dependent systems and conducted his research on the basis that ＇technology used．structure chosen，the phsychosocial aspects and the way the project is managed will all have an affect on the acheivement of goals and values subsystem＇．Ireland maps these ：．．．．がく
sub－systems to form a strategic control of the building process but omits discussion of who should exercise this control．It also ap sears that the concept of socio－techmical analysis is not fully supported from his research．This is so due to the cross－ sectional approach to the research method evidence for impact of the socia］system and the adaptive controls would be very difficult to find．A major limitation of the work is that it was not extended to cover non－traditional methods of contracting．

The field of examining project management, project performance and the building process, though continuous and often on a large scale, and the more recent work by Ninos and Wearne (1984). Nahaplet (1985), Rowlinson (1987) and Newcombe (1988) are of interest.

Ninos and Wearne (1984) brought together conclusions from research on case studies and other opinions, that effective control of construction is dependent on the promoter's decision on authority vested in his project team. The guide summarises the need and problems of control and essentially describes the building process in terms of delegation of authority.

The work by Nahapiet (1985), in comparing project performance. proposed that the selection of contractual arrangements is a function of the type of client. his time and cost requirements and the characteristics of his project. Model 2 in Appendix 5 show the main relationships between the factors examined in the course of the study. This is only a partial representation of interdependency factors of project delivery, since it leaves out a number of other important influences, not least the characteristics of the people involved in the project.

In a PhD research programme by Rowlinson (1987), a model was developed to assess the data collection process which showed four main variables, the client, procurement, process variables and performance (see Model 3). The characteristics of he client, complexity and sophistication, are hypothesised to be influences
in the selection of the building team and participation in the building process. The environment within which the building process takes place is a determinant of the effectiveness with which success criteria are matched by performance and the attributes of the client body and project itself were given as examples of independent, situational variables in this context. The controllable variables of building team organization and management, the decision taken by the building team prior to and during the project, are reparded as the major influence on the building process and it's outcome.

Newcombe's Anatomy of a Construction $P_{r o j e c t ~(1988), ~ i l l u s t r a t e s ~}^{\text {e }}$ the components, context and characteristics of a typical construction project. These components and contextual factors have been conceptually defined in model 4 shown in Appendix 5. A preliminary synthesis of the components and context of a project has been attempted which has highlighted the interactions between the parts of the model. Some perceptions of the success of a project have also been explored, illustrating that different parties may view project performance in contrasting ways.

The various models of previous researchers were studied by Sidwell (1982) who criticised them however for they infers a sequential process and does not illustrate the iterative and cyclic nature of the building process. He, therefore, identified and studied the interrelationship between 19 variables and discussed them under six main headings (see Model 5 in Appendix 5) :-
A) Client characteristics
B) Project characteristics
C) Project procedure
D) Building team
E) Environment
F) Project success.

The elements client characteristics and project characteristics were seen as an independent variables. Project procedures and building team were considered as a moderator variables which are selected to achieve optimum level of the fifth dependent variable, project success. The five variables were all seen as a subject to the influence of the sixth element of the model, the environment.

Sidwell applied the model over 32 case studies to examine, on the one hand, the relationship between the variables: client, project, building team and project procedure, which together define the organization form. And on the other hand, variables of the organization form are examined with variables of project success in respect to time and cost.

However. Sidwell (1982) did not include designer characteristics nor client and contractor criteria, which are modified by the foregoing, in order to guage performance. These criteria have been assumed previously and deemed to be project characteristics. Having sajd this however, the success measures that he used were both subjective and objective which helps counter criticism on criteria.

3.3 THE CHOSEN RESEARCH MODEL

The model presented in this research also consist of a number of activities for designing and building a construction project with regards to the type and size of the project. The model points to those variables which had to be measured or controlled in data collection and analysis. Figure 3.1 show the interdependence between these variables which are postulated in a model similar to the one presented by Sidwell (1982).

Although the model show connecting arrows in the inter variables eg. between client and designer characteristics, their relationship were not examined as they are outside the scope of this research. This research model concentrate, firstly, on examinjng the relationship between two types of procurement methods, that is management contracting and the traditional approach with elements of the client characteristics, designers characteristics, project characteristics and the contract procedure adopted. Secondly, elements of project performance are examined with each component of the research model.

3.4 DETAILS OF THE RESEARCH MODEL

The components of the model are condensed below:-

1. Client typo - public / private
2. Client experience
3. Client business - developer / purpose buidt.
4. Client criteria - cost / time / quality

The characteristics of the client organization differ in respect of type of business and the experience that the client has of the constraction industry. This will generate different expectations and criteria for achicving satisfaction with respect to cost, time and quality and consequently influence the selection of the procurement method. For instance, property developers and commercial clionts are likely to place great emphasis upon speed of construction because of necessity to borrow money. Yet the quality will be equally important for the buildins cannot be sold or let if the quality is not appropriate to the market. For a factory, a successful outcome might be completion of his building on time in order to commence scheduled production needs. In contrast, the public sector rlient, because of public accountability, is likely to focus upon cost prediction and will be more concerned about the level of certainty associated with the tender sum.

Other variance between clients could be the organizational structure of the firm which will affect the nature of the decision making process cspecially publicly funded clients. Thus it is hypothesised that these variables will influence the
client's selection of the procurement method for the project and subsequently the performance of the project.

The Designer Characteristics

1. Desipners type - inhouse / outside professionals
2. Designers experience

The architect is considered to be the leader of the building team and the advisor of the client organization and it is expected that different designers characteristics will influence the selection of the building team and consequently project performance. In certain cases, sophisticated clients had their own professionals and it is assumed that an outside or an inhouse designers may influence project performance.

Closely linked with the professional characteristics box could be the concept of attitude of designers to appreciate their experience with the new procurement method. The move away from the conventional procurement procedures has meant that organlzations have changed to match this new market. Likewise experience professional practices have, for example, adopted new positions to meet new expectations from the management contracting market. The changes of the role of the architect or consultant in the new procurement method may be identified as :-

1. The design organization had to retain full responsibility for design and for specifying the quality to be achieved.
2. The designers should change their attitude towards new procurement methods in order to accept the input from the contractor.
3. The designers role in construction supervision is reduced, but still has to be responsible for quality control. the level of involvement depends on the nature of the project.

The Project Characteristics

1. Building type - industrial / commercial
2. Construction type - new / refurbishment
3. Complexity / Building rate
4. Size - cost / area
5. Projects may be distinguished by their level of constructional complexity or technology ie. building type, new or other than new construction. The more constructionally complex the project is, the wider range of services and expertise needed. These differences can impress a greater managerial pressure upon the building team and may require different procurement methods to op imize success in the building of the project.
6. The cost and area of the project can be a measure of the size of the building and to some extent it might be an indication of how complex the project is, ie. if the project is very custly and spacious, it might be complex or it can be argued that the projects is fust big. In the former circumstances it may requires a suitable procurement method to achieve higher success.
7. Competition - open / selected tender
8. Direct negotiation

This element could influence the selection of the appropriate building team and subsequently affect the success of the project. Profect procedures involve the process of documentation and contractor selection (competitive or negotiation). The procedure envisaged for a project will influence the selection of the procurement method.

Procurement Method

1. Traditional approach
2. Manapement contracting
3. Project management
4. Design and build

After the client with the architect establish his needs and priorities, and identify the characteristics of the project, they will then decide on a suitable method to procure the project. This is the process in most building procurement, except for project management and some $M C$ where the contractor is appointed at the very early stages. Therefore, the procurement method selected will be a function of the variables discussed above. The research intention is to utilize these variables and others of the project performance as a base of comparing two of the above methods, management and traditional contracting.

An additional factor which may be closely related to outcome is the team relationship which may be less visible when the project is finished but may be an important component of the overall assessment of a project by those closely assoclated with it.

Project Performance

Profect performance is an assessment or evaluation of project delivery. It is generally seen as some combination of three factors: speed and the time taken from inception to completion: cost, ie the final cost paid ner square metre of building; and quality, ie the standard of design and construction attained.

The success of a profect is a subiective assessment as well as an objective measure. Whether or not a project is regarded as successful depends on whether it achieves what is required or expected. Success is. therefore, in large part a function of the needs and expectations of the relevant parties. Thus, although in absolute terms one job may take longer to complete than another similar job, this does not necessarily imply that those involved on the former will be less satisfied than those on the latter. Thus, performance measures in this research include the following factors:-

1. Site start or pre-construction time
2. Building time
3. Total project duration
4. Speed of construction (area per week)
5. Unit cost (cost per sqm)
6. \% overrun on time
7. \% overrun on cost
8. Client satisfaction on time
9. Client satisfaction on cost
10. Client satisfaction on quality

The Environment

During the past twenty to thirty years there have been a dramatic changes in the environment we are living in. The term environment describes all external influences on the building process. It could be a meteorological factor, economical, political and technolopical and they are usually interrelated.

The changing environment could create uncertainty, not only in terms of prices. but also in terms of investment within the work of an organization which will affect the demand for building. The demand depends on the needs and priorities of the client and in certain cases the needs may not had been forcasted. In these cincumstances the client require an immediate action to meet his production programme which in turn influences the procurement method that needs to be selected to cope with the changing environment.

3.5 THE RESEARCH HYPOTHESIS

The research model stimulates two central hypotheses, which are:1. "MANAGEMENT CONTRACTING CAN SATISFY CLIENTS WHO NEED THEIR PROJECTS QUICKLY AND FOR PROJECTS THAT ARE LARGE AND/OR HIGHLY COMPLEX"

This leads to a second hypothesis:
2. "PROJECT PERFORMANCE IS A FUNCTION OF THE CHARACTERISTICS OF THE CLIENT, THE PROJECT, THE DESIGNERS, THE CONTRACT PROCEDURE EMPLOYED AND THE PROCUREMENNT METHOD ADOPTED FOR THE PROJECT".

For the purpose of comparing, specifically, management contracting with the traditional form of contracts. the major hypotheses are further expressed into more detailed subhypotheses. These are:-

1. The client
1.1 Procurement method is a function of client characteristics.

12 Project performance is a funclion of client characteristics.
2. The project
2.1 Procurement method is a function of project characteristics.
2.2 Project performance is a function to project characteristics
3. The designers
3.1 Procurement method is a function of design professional characteristics.
3.2 Project performance is a function of design professional characteristics.
4. The contract procedure
4.1 Procurement method is a function of prodect procedure.
4.2 Project performance is a function of project procedure.
5. Proiect performance and procurement method
5.1 Proiect performance is a function of the procurement method adopted.
5.2 Performance measures are interrelated with one another.

3.6 DEFINITIONS AND MEASUREMENTS OF VARIABLES

CLIENT CHARACTERISTICS

Client types (C1) were defined as the source of project funding and were categorised as either private funds (given numeral 1), or public funds (numeral 2), for statistical purposes.

Client experience (C2) was measured as the number of similar projects they have commissioned in the past. Those with no previous experience were given a low score of L (or ranked 3). Those with some previous experience (ie., clients who has been involved with one or two buildings) were given M (or ranked 2),
and those who had considerable experience (ie., been involved with more than two) were given a score of H (or ranked 1).

Client business (C3) was defined as the client's purpose for commissioning the building and were categorised as either a bespoke client (ie., building for the primary use of the company) and given numeral 1, or speculative developers (given numeral 2).

Client criterias (C4) were measured for time, cost and quality. where they were scored L (or ranked 3) for less important factors. Scored M (or ranked 2) for moderately important and scored H (or ranked 1) for highly important factors.

DESIGNERS CHARACTERISTICS

In-house / outside designers (C5) are used to describe the source of building design input as some sophisticated clients may have their own professional team of experts, depending on the scale of their activities. Projects with an In-house design input were given numeral 1, and those designed by an outside professionals ware given numeral 2.

Designers experience (C6) was measured in a same way like the client experience.

PROJECT CHARACTERISTICS

Building types (C7) were divided into commercial type (given numeral 1), or industrial type building (given numeral 2).

Construction types (C8) were categorised as either new ------------------------------
construction (numeral 1), or refurbishment (numeral 2).

Pro.ject size was defined by building cost (C9) and gross floor area in square metre (C10). Those < $£ 5 \mathrm{~m}$ and $<7000 \mathrm{sqm}$ were --------------------------------
considered normal size projects and those $>£ 5 \mathrm{~m}$ and >7000 sqm as large pro.jects. In order to make a fair comparison, the classification on less than or greater than boundary was decided after considering the frequency distribution of the data that will be included in each group .

Project complexity (C11) was defined in terms of physical complexity, services and number of sub-contractors involved in the execution of the project. The building rate (C12), which is the value of building over the construction period was used as an indication of how technically complexity the project was and it represents the average turnover per week for the project. Those projects with over $£ 50,000$ per week were considered having a high building rate. It must be stressed however, that an attempt was made to measure project complexity in more detail but it became apparent that this is a very difficult task to include with this research.

CONTRACT PROCEDURE

Contract procedures (C13) were classified into three types, competitive open tendering (indicated by numeral 1 in the data sheet), competitive selected tendering (numeral 2) and negotiated contracts (given numeral 3).

Procurement methods (C14) were of four types, two of which were

studjed, management contracting (numeral 1) and the traditional approach (numeral 2).

In the questionnalre, management contracting was defined as a method of carrying oul a construction project by appointing a contractor at the pre-construction stage and pajd on a fee basis, to manare and deliver the project. The fee comprises a percentage for profit. and fixed overheads. All construction work is carried out by subcontractors, competitively selected and appointed in consultation with the client and his professional advisors.

The tradilional approach was defined as a method of procuring a building in which independent professionals (ie. architects, engineers, quantity surveyors) are employed by the client to complete the desisn work and then the client enters into a seperate contracl with a building contractor who construct the designed building.

PROJECT PERFORMANCE

Pre-construction lime ($C 15$) was calculated as the number of weeks ---------------------------from start of detailed design to start of construction. This is due to the effects of planning approvals, permits, and public enquiry which made it difficult to identify a clear starting point for a number of projects. from start on site to practical completion of the project.

Total time (C17) was calculated as the number of weeks from start of design to completion of the project and does not always equal the addition of design lime and construction time because of design/build overlap for management contracts.

Speed of construction (C18) was defined by the gross fluor area ------------------------------divided by the construction lime in weeks.

Time and speed performances were measured by grouping the projects into three separate contract size (<£2m, 2--5, > £5m) and the mean for each group was calculated. The range of time where 60\% of the projects fall into represents average performance, value below are faster and above are slower. In certain cases the range of time was taken as 70% depending on the cluster of the projects around the mean. Each project was then studied individually and the number of slow, averape and fast projects were calculated . For example, say a project took 100 w eks to build and 60\% of the total projects, for that particular group, fall within the range of time of say 60-80 weeks. that project would then had to be considered as slow.

Unjt cost (C19) was defined by the cost of building divided by the square meter of gross floor area. All project tender and flnal account data was first indexed to the second quarter 1984 using BCIS tender price index. The method for measuring cost
performance was similar to the BCIS cost comparison. After grouping the projects, the mean cost/sqm for each group was calculated and also the range of cost where 60% of the project fall Into (In cerlain cases 70% range). Projects fall above the top 60\% range were considered hiphly expensive, within the range were average and below the bottom 60% range were cheap. For example, say a project cost $£ 900 / \mathrm{s} \ddagger \mathrm{m}$ and 60% of the lotal profects, for that parlicular group, fall within the range of costs of say $£ 380-£ 700$ sqm, that project would then had to he considered as very expensive.

Time overrun (C20) for each project was measured by the percentage increase or decrease on the estimated prosramme in weeks ($\%+/$-TIME), and percentage cost overrun (C21), measured by percentage increase or decrease on budget in pounds (\%+/-COST). This was calculated after the $+/-$ authorized value of variations by the client was laken lnto account. Projects fall within $+/-5 \%$ of the estimated time and cost were considered as average performance for < £5m building, and 8\% for > £5m. Otherwise the contract was categorised as high overrun. This percentage reflect a measure of the certainty of the time and cost to the client as quoted at the outset.

The subjective measures of client satisfaction on time (c22), cost (C23) and quality (C24) were each given a high score H (or ranked 1), where there was a high level of satisfaction. Ranked 2 where there was a moderate level of satisfaclion and ranked 3 , where there was a low level of satisfaction.

The sequence of research is outlined diagrammatically in figure 3.2. The two main subjects of the research are the client and the building team and the form of data collected - subjective and objective. The data collection took the form of interviews and questionnaire to test the research hypothesis.

The nature of this research is a comparable one and there are, broadly speaking, four methods to conduct the study. These can be condensed below, based on Vroom (1971) and previous researchers:-

1. In one, data from one sample is collected and analysed and then compared with what is already known from another sample.
2. Longitudinal study. Here, the data is collected directly from site using a semi-structured interviews to gather the necessary information. This method was used by Nahapiet (1985) in case studies from the USA and UK, and by the DHSS (1986) in comparing. two management contracts and one traditional contract.
3. To match one sample against another by collecting comparable data using interviews, questionnaires and project documentations. This is the method used by the author and it is similar to that used by the Slough Estates limited (1976), Chartered Institute of Quantity surveyors (1979), Sidwell (1982), NEDO (1983) and Rowlinson (1987).

4. An attitudinal survey and this is used widely in social scjences.

The author chosen the third method because it was felt that. within the scope of this research, the comparison would not be fair and valid in the first one due to unmatched samples. The second method can be used for small samples only and involve a great deal of confidentiality and research time . The fourth method (altitudinal survey) were not appropriate because of the subject matter and the uncertainty over validity. (Validity in terms whether the attitude scale measures what it is supposed to measure. In this respect, Oppenheim (1966) says:-
"....behaviour is often not a simple manifestation of an underlying attitude. and so there are dangers and pitfalls in this approach. At the present, there is no way of making sure that an attitude scale is valid.")

The research methodology is summarized below:-

Pilot Study

I, ike any similar comparative study, the precursor to successful research is be the pilot study. The pilot study was conducted, after a revjew of the literature had been undertaken, took the form of interviews with managers and directors of companies who were known to have commissioned projects under a 'pure' management contracts. List of names and addresses were collected
from personal contacts, Building Trade Journal and the Building Magazine. The interview questionnaire is attached as Appendix 6. A pilot study was conducted with nine Management Contractors, ten Clients and four Architects, to validate the form and content of the questlonaire before the main survey was undertaken. The suitability of the form and areas of particular interest to each particlpant highlighted and the set of criteria evolved from these interviews. The results emanated from the interviews with the management contractors and the clients were published in the CIB-W65 (1984) and subsequently in the ASCE (1987). The materials were largely edited and discussed throughout Chapter 2 , and used to support results of the main study in Chapter 4.

The Main Study

The pilot study has prepared the ground for case studies for harder and more empirical data to compare the performance of management contracts and traditionally organized projects. The principal management contractors, clients and architects interviewed at stage one were asked. at the end of each interview, whether they would be prepared to provide details of recently completed profects undertaken on a management contract. Almost all the interviewees showed interest to the subject of investigation and were willing to assist. Some respondents provided details of more than one project, and were also prepared to provide details of similar work undertaken using the JCT form of contract from their traditional contracting division.

Other project names and details were obtained from the contract news and building magazine (Building Dossier). The managing director of the companies were approached, asking for their cooperation for that particular project.

The validity of the case study questionnaire was first tested by visitins ten co-operative firms to answer the questions. Some modifications were made and Appendix 7 gives typical case study questionnaire.

After modification, a postal questionnaire was sent to the appropriate personnel who were actually involved in the project ie. project manager, contract manager etc. In certain cases. telephone discussion andor interviews had to be conducted after the postal questionnaire to clarify misunderstandings.

Designing the outline of the questionnaire started in Summer 1984. immediately after the management contractor's interviews. Detailed case study questionnaire was finalised and start of data collection took place in Autumn 1985, after the client and architect interviews. Analysis of the data started in December 1986.

3.8 THE MAIN STUDY SAMPLE

In total the number of case studies collected was 61 and further 8 project details were obtained in collaboration with a research fellow (Rowlinson 1986) who conducted a similar study into

No particular bias was intended in the choice of management and traditional projects and the sampling can be regarded as random which gives equal chance for each sample to include various characteristics and different level of performance. However, there were certain boundary in selecting the type of building, cllent and the contractor, these of which are explained below.

The use of random sampling in this kind of research is generally preferable (Armitage 1971 and Hill 1962). because chances can be equal. In certain studies, the researcher may chose one well known contractor and draw the whole sample from, but the number will be limited and conclusions may not be general.

It was intended at the commencement of the research to collect a large sample under both management and traditional system, in order to make a valid comparison. Most statistician consider N equal or over 30 as large. It was also apparent that. in recent researches, the trend to obtain a large number of detalled case tudies is increasing (32 cases in Sidwell's study. 49 in Rowlinson, 52 in the CIRIA report, 55 in the NEDO report). of course, the choice of numbers depends on the kind of ob.fectives and goals set by the researcher intend to find out and. above all, the quality of the responses .
A. The building type used as a basis of comparison

Abstract

After the market for management contracting was surveyed, commercial and industrial buiddings were considered to be the most appropriate basis for the comparison, firstly, because these range of building type were available in large numbers than others such as hospltals, houses, airports etc. Secondly, by limiting the type of buildings and concentrating on two only, variables of project characteristics will be reduced, in which case the investigation would prove to be harder and consequently more valuable.

B. The client type

The constraint imposed on the research in that most of the projects collected were applied to large client organizations which meant that the research is totally confined to large companies. However, clients vary in their familiarity with contracts, their nature (public or private), classification and purpose for building.
C. The contractor

In order to compare the traditional contracting with 'pure' management contracting, it was attempted to confine the case studies to the principle management contractors that were identified during the course of the study. They were all of large national and/or international contracting companies, undertaking projects on different type of contracts.

3.9 CHARACTERISTICS OF THE CASE STUDY SAMPLE

of the 69 case studies 39 were manapement contracts and 30 traditional contracts. Table 3.1. $3.2,3.3 \& 3.4$ give further categorization by client characteristics, designers characteristics . project characteristics and procedures respectively.

TARLE 3.1 - THE RESEARCH SAMPLE. SHOWING PROCUREMENT METHOD AN CLIENT CHARACTERISTICS

TABLE 3.1 (CONTINUE)

TABLE 3.2 - THF RESEARCH SAMPLE, SHOWING PROCUREMENT METHOD AND DESIGNERS CHARACTERISTICS

	PROCUREMENT METHOD				
DESIGNERS CHARACTERISTICS	MANAGEMENT	SUB-	TRADITION	SUB-	T
	CONTRACTS	TOTL	CONTRACTS	TOTL	0
	CASE NO.		case No.		T
					L
	2.4,5.7,9		2,4,6,7,8		
IN-HOUSE	13,14,15,	13	13,22,25.	11	24
	19,23.24.		26,28,30		
S	25,37				
I					
G	1,3,6,8.		1,3,5,9,		
	10.13.16.		10.12,14.		
$\begin{array}{ll} \\ S & \text { OUTSIDE } \\ 0 & \end{array}$	17,18.20.	15	15.16.17.	14	29
	21.22.29,		18,19.27.		
	30,31		29		
R					
MIXED	REMAINDER	11	REMA INDER	5	16
TOTALS		39		30	69

TABLE 3.2 (CONTINUE)

D	HIGH	1,6,7,8,		2,6,7,12		
E		9,11.13.	18	13,16,27	7	25
S		15,16,21,				
I		23.24.26,				
G		29,34,35,				
N		36.38				
E						
R	MODERATE	2.3,10.12	12	$\begin{aligned} & 1.8 .9,25 \\ & 26,28,29 \end{aligned}$	7	19
		17,18,19,				
E		20,22,25.				
X		30,31				
P						
E	LOW	4,5,27,	5	5, 10,14,	6	11
R		28.32		15.17 .22		
I						
E	NUMBER		35		20	55
N	AVAIIARIE					
C						
E	NOT AVAILABLE	14.33.37.	4	3.4.11.18	10	14
				19,20,21,		
				23.24 .30		
TOTAIS			39		30	69

TABLE 3.3 - THE RESEARCH SAMPLE. SHOWING PROCUREMENT METHOD AND PROJECT CHARACTERISTICS

TABLE 3.3 (CONTINUE)

	$\begin{aligned} & \text { LESS THAN } \\ & 3000 \text { SQM } \end{aligned}$	6,23,38,39	4	$\begin{aligned} & 3,5,12,14 \\ & 15,16,17 \\ & 20,27 \end{aligned}$	9	13
$\begin{aligned} & \text { GROSS } \\ & \text { FLOGR } \\ & \text { AREA } \end{aligned}$	$\begin{aligned} & 3000 \mathrm{TO} \\ & 10000 \mathrm{SQM} \end{aligned}$	$\begin{aligned} & 1,2,3,7,8 \\ & 10,12,13,15 \\ & 16,17,19,21 \\ & 27.29,30,31 \\ & 32,34,36,37 \end{aligned}$	22	$\begin{aligned} & 1,6,10,11 \\ & 18,19,21 \\ & 23,24,30 \end{aligned}$	10	32
AREA	MORE THAN 10000 SQM	$4,5,9,11,18$, $22,24,25,26$, $28,33,35$	12	$\begin{aligned} & 2,4,7,8,9 \\ & 13,22,25 \\ & 26,28,29 \end{aligned}$	11	23
	NUMBER AVAILABLE		38		30)	68
	N/A	14	1	-	-	1
TOTAI,			39		30	69
$\begin{aligned} & \text { BUILDING } \\ & \text { COST } \end{aligned}$	LESS THAN $\text { £2. } 0 \mathrm{M}$	$\begin{aligned} & 6,10,27 \\ & 34,36,33 \end{aligned}$	6	$\begin{aligned} & 11,12,13 \\ & 15-21,23 \\ & 24,27,30 \end{aligned}$	14	20
	$\begin{aligned} & \text { £2.0M TO } \\ & \text { C5.OM } \end{aligned}$	$\begin{aligned} & 7.8,13,15 \\ & 21,23,31, \\ & 32.37,28 \end{aligned}$	10	$\begin{aligned} & 3,5,6,10, \\ & 14,26 \end{aligned}$	6	10
	MORE THAN C5. OM	1-5.9, 11, 12 14, 16-20, 22 24-30.33,35	23	$\begin{aligned} & 1,2,4,7,8 \\ & 9,22,25, \\ & 28,29 \end{aligned}$	10	33
TOTALS			39		30	69

table 3.3 - the research sample, showing procurement method and PROJECT CHARACTERISTICS (CONTINUE....)

P	HIGH	1,2,3,7,	19	4,6,7,8,	8	27
R		9,10,11,		22,25,26,		
0		12,13,14,		28		
J		15.18.19.				
E		22,24,25,				
C		26.29,37				
T						
	MEDIUM	4.6.8.16	12	1.2.5.15	6	18
C		17,20,21,		21.24.29		
0		28,30,31.				
M		33,35				
P						
L	LOW	5,23,27.	6	3,10,11,	14	20
E		32.34 .36		12.13.14.		
X				16,17.18,		
I				19,20,23,		
T				27,30		
Y						
	NUMBER					
	AVAILABLE		37		28	65
	N/A	38.39	2		2	4
TOTALS			39		30	69

TARLE 3.4 - THE RESEARCH SAMPIEE. SHOWING PROCUREMENT METHOD AND CONTRACT PROCEDURES

	PROCUREMENT METHOD				
CONTRACT PROCEDURE	MANAGEMENT CONTRACTS CASE NO	$\begin{aligned} & \text { SUB- } \\ & \text { TOTL } \end{aligned}$	TRADITION CONTRACTS CASE NO.	$\begin{aligned} & \text { SUB- } \\ & \text { TOTL } \end{aligned}$	T
OPEN TENDER	$\begin{aligned} & 23.25 .27 . \\ & 28,29,37.38 \end{aligned}$	7	$\begin{aligned} & 1--5,9,10 \\ & 11,13,14, \\ & 16,20.22 \end{aligned}$	14	21
SELECTED	1--18.20.24	21	$\begin{aligned} & 6.7 .8,12 \\ & 15.21 .27 \end{aligned}$	7	28
NEgOTIATION	$\begin{aligned} & 19.22,24.26 \\ & 30--36 \end{aligned}$	11	$\begin{aligned} & 17.18,19,23 \\ & 24,25,28.29 \\ & 30 \end{aligned}$	9	20
TOTALS		39		30	69

The method for analysing data of the main study can be condensed into the following stages, these are:-

1. Data from the survey was first imputed manually on a data sheet with coded variables. Appendix 8 gives the entire data for the whole sample.
2. Data from the 69 case studies were then analysed and evaluated using statistical techniques with the help of a statistical computing package MINITAB running on an Apricot Xi microcomputer.
3. The management contracting data were then separated from the traditional ones to examine if there is difference in performance scores for various type of cljents and project.s. The differences are presented in Chapter 5 (conclusions) as an implication to clients.
4. It might be worth to note here that. during this research, it was intended to utilize principal component analysis for the analysis of data avallable as a statistical package on the SPSS X computer propram. This advanced technique in data reduction and interpretation. regrettably, had to be abandons and the technique is recommended as an initiative for future researchers.

Different statistics have been selected and used depending on the type of data to be analysed and the hypothesis that need to be tested. These are:-

3.10.1 Spearman's Rho coefficient

The Spearman's test was chosen for the rank correlation among the client criteria for profect performance because the data was orifinally of an ordinal measure and ranking was not tied for this section. The average of individual ranks of the respondents was taken for the two samples separately and the difference/similarity of the ranking between the two samples were then tested using Spearman's Rho coefficient of rank correlation.

3.10.2 Chi Square and Fisher's Exact Probability Tests

The association between the research variables were tested using the chi-square test because the variables measured comply with the conditions of non parametric statistical test shown by Siegel's chart (1956) (ie. independent variables and nominal). and with Greene's decision chart (1987) (i.e. forming categories to test their significant differences). Both charts are given in Appendix 9 and results of the Chi-square tests are given in Appendix 10 .

The use of 'Parametric Tests' like the T and F test were not applied to test the significant difference, although the mean, standard deviation and the number of case studies were calculated

Abstract

for each section in the results chapter. This is so because parametric tests can be best chosen for small sample (N is less than 30) and have a variety of strong conditions underlying their use (Siegel 1956). Amongst all conditions, the observations must be drawn from normally distributed populations and this is extremely difficult to obtain with a large sample study. However. If no other test can be applied, the researcher may assume normallty and can calculate significanl difference between the means

3.10.3 Pearson's Correlation Coefficient

In addition to the chi square test. the relationship between the ordinal data were also examined using the Pearson's correlation coefficient (Siegel 1956) and tested using computer based statistical packape. Appendix 11 gives the correlation coefficient for the entire matrix of the 69 case studies. The correlation expresses the strength of association and were used to support the chi square test.

3.10.4 Graphs

A number of graphs were produced to observe the spread of the date to be measured and each dot in the graph represents the performance of two variables for each project.

3.10.5 Performance scores matrix

As noted earlier, the conclusion chapter presents a performance score matrix to give an indication of the percentage aggrepate scores for the performance measures in the two samples. The matrix row represent. 14 varions catepories of cjients and projects and the columns represent the 10 project performance measures (see Appendix 12). Methodology of scoring is as follow:1. The 69 case studies is separated into two proups, those costing < £5m and those > £5m.
2. Calculatiog the average figure of each group for various performance measures e.g. design time, build time, unjl cost etc.
3. The 14 categories were examined for the 10 performance measures and each cell in the matrix has a score. Those with high performance i.e better than the average rigure were given a high score (3). Those within +/-5 \% from the average were given (2), and those performed poorly scored low (1).
4. Adding all scores for the column and rows to give the totals.
5. Extracling a Lable for both management and Lraditional contracts which show the maximum possible scores, actual scores, percentage actual scotes and percentage aggregate scores like the one presented in the conclusion chapter.
6. Best performance and low performance has then been interpreted.

The nature of this research is cross-sectional study and this has imposed certain limitations upon a number of variables. These are:-

1. Sub-contractors - It was the intention of this research to -------------gather information about the sub-contractors involved in the projects but this could not be dealt with appropriately by this study because data about the use of sub-contractors was not stored efficiently. However, a number of sub-contractors were interviewed throuphout this research to evaluate their views. but the analysis had to be abandoned because the sample was small and increasing the number would have extended the time span of the research.
2. Organizational structure - Information about the organizational structure were not well documented and could not be recalled easily.
3. Fees - It would have been interesting to show if there is a relationship between the contractor's fee and project performance under a management contract. This could not be dealt with in this study because most participants consider the issue of fees as highly confidential.
4. Project type - Civil engineering projects were not studied in this research because of their limited use of management
contracts. It is said on many occasions that MC is at its most useful when speed is of the essence, and where the design is not developed when construction starts (Cottam 1985). Neither of these factors generally apply to civil engineering work, which usually have been in the pipeline for many years before construction starts. Therefore, the study was confined into building projects only.
5. Environmental influences - It was reported earlier in this chapter that the effect of the environment and team relationship may be an important components of the overall assessment of a project by those associated with it. These variables were very difficull to measure in this research and require large scale nation-wide longitudinal study to be conducted.

To conclude, the main limitations of this research were the reluctance of certain companies to give confidential information and the lack of records and uncertainties concerning the dominant variables.

This chapter analyse the results of 39 management contracts and 30 traditional contracts and in particular them within the elements of the research model. The central hypothesis is broken down into sub-hypothesis as reported in chapter 3 which in turn divided into null hypothesis (of no relationship) to allow the use of the statistical tests. The main statistics used are the chi-square tert and the correlation coefficients. The statistic tables bv Murdoch and Barnes (1979) was used in showing the sipnificant level and the null hypothesis was refected for results having a significance of $P=0.05$ and below. Some relationships may show high correlation but were not considered conclusive because , when applying the chi-square test, it suggests that chance could have played a part in the relationship.

1. THE CLIENT

SUB-HYPOTHESIS 1.1 PROCUREMENT METHOD IS A FUNCTION OF CLIENT CHARACTERISTICS AND HIS REQUIREMENTS.

Null hypothesis 1.1.1 There is no difference in type of funding (ie. public or private) between management and traditional contracts.

Null hypothesis 1.1.2 Management contracting clients and traditional clients do not differ in their experience. defined bv the number of similar projects constructed in the past (see also section 3.8 in chapter 3).

Null hypothesis 1.1.3 There is no difference in the type of client bet.ween management and traditional clients ie. bespoke or speculative.

Null hypothesis 1.1.4 There is no difference in ranking the criteria for project performance . defined by time. cost and quality between management and traditional clients.

The research study did not produce enough evidence to show that the characteristics of management contracting clients differ significantly from those using the traditional approach. except for their criteria to project performance which is discussed in Table 4.1 below 1 see chi-square test no. 1. 2 \& 3 applied to the research sample in Appendix 10). It should be remembered though that there were certain constraints in randomizing the client sample in this research for reasons highlighted in Chapter 3. indicating the need for further investigation with a larger sample.

Nevertheless. the CCMI analvsis (1985) confirmed that. in recent years. the characteristics of clients using management contracting covers quite a wide range. In their survey there were 33\% public and 67\% private clients and they varied from inexperienced (50\%) ie. with no past involvement in building, moderate (30\%) le. built 1 or 2 before. and highly experienced
cllents (20\%) ie. built more than two buildings. Additionally. a list of MC projects, provided by the management contractors
interviewed throughout this research, agree with the CCMI
findings and showed the following classification of clients:-

1. 50\% of the clients seeking purpose built premises of which the following can be segmented:-
a) Department stores $=6 \%$
b) Bankers/merchant bankers $=7 \%$
c) Industrial and commercial $=16 \%$
d) Government client premises $=5 \%$
e) Other purpose-built clients $=16 \%$
2. 10% were public or private clients who commissioned premises for commercial or public use.
3. 18% were property developers.
4. 9\% were investment companies.
5. 13\% were Council. Borough and Public Health Authority.

Table 4.1 gives specific criteria and their ranking for project performance (taking the average of individual rankings of the respondents) for the two samples. The figures show that there is difference in emphasis in the ranking between management and traditional contracts. The ranking between the two samples were statistically tested using Spearman's Rho. and the correlation was found not to be significant $(r=0.29)$. This indicates that high ranking in one procurement method does not always correspond to high ranking in the other and vice versa. Therefore. null hypothesis 1.1 .4 can be rejected and conclude that the criteria for project performance differ between the two sustems.

TABLE 4.1 - RANKING OF CRITERIA FOR PROJECT PERFORMANCE

CRITERIA	MANAGEMENT CONTRACTING CLIENTS	TRADITIONAL CONTRACTING CLIENTS
A. MINIMIZING PROJECT TIME	2	5
B. RELIABILITY TO TIME AND COST	1	1
C. CHEAPEST COST OF BUILDING	5	2
D. FUNCTION OF BUILDING	8	4
E. OUALITY	7	3
F. VARIATION	3	7
G. MANAGEMENT FOR LARGE/COMPLX BUILD	4	8
H. CONFIDENCE IN THE CONTRACTOR	6	6

It can be seen from Table 4.1 that management and traditional clients both placed a great concern to the reliability of time and cost (see criteria B). The criteria of cheapest cost was given low priority by the management contracting clients. presumably because clients prefer to be given a reliable estimate and for the contractor to be bound by the estimate rather than given a low price and ending up with overrun on cost.

However. management contracting clients placed a higher priority on minimizing time. variation (le. flexibility to change their requirements during construction) and management (ie. more control for large and complex buildings) as opposed to traditional clients (see A,F\&G). This can probably be explained by the fact that those clients who uses a management contract normally respond rapidly according to the industry's market and
economy of the country e.f fast investment. occupation during construction, sectional completion etc. These factors undoubtedly call for greater speed and flexibility of the construction process. The results also correspond with the early view of Mintzberg (1979) who notes the importance for the organizational form to respond quickly to an environment which is becoming dynamic.

On the other hand. traditional clients placed a higher priority on cost and quality of building as compared with management clients (see criteria $C . D$ \& E). This means that in certain cases the traditional process is favoured because the work accounting for greater part of the cost can then be let in competition. This seems less easv with management contracting. although some views of the industry believe that competition for the work packages is possible. like George Neate (1985) and Woolf (1985). Under the argument of quality. Hillebrant (1985) stated "clients are aware that by using a management contract the architect may have less time to develop the design because he is under greater pressure from the contractor and sub-contractors. Thus the qualitv may suffer as a result."

The above results also seem to correspond closely with the manapement contractor perceptions of the factors which satisfy management contracting clients. Table 4.2 indicates a list of possible criteria and their resulting ranking reported by Naoum and Langford in a paper emanating from the initial research of this thesis (1984). It will be seen that the analyses sought to

```
distinguish industrial and commercial work to assess if the
characteristics of the client (as perceived by the management
contractor) altered the desired criteria of success.
```

TABLE 4.2 - RANKING OF A SURVEY OF CLIENTS' CRITERIA (BY MC'S)
INDUSTRIAL CLIENT CRITERIA ACCORDING TO COMMERCIAL
CLIENTS THE MANAGEMENT CONTRACTORS CLIENTS

1 A. REIIABILITY OF THE ESTIMATED TIME. 1
2 B. RELIABILITY OF THE ORIGINAL PRICE. 2
3 C. THE MINIMIZATION OF THE PRE-BUILI)
7
TIME.
4 D. MANAGEMENT CONTRACTORS INVOLVEMENT
4
DURING THE DESIGN.
5 E. RELIABILITY OF ESTIMATED PRE-BUILD
3
TIME.
6 F. FUNCTION OF BUILDING 8
7 G. FLEXIBILITY OF THE MC SYSTEM. 5
8 H. MAINTENANCE COST. 6
9 I. A HIGH DEGREE OF PERSONAL CONTROL 9
OF SPECIAISED WORK.
J. CHEAPEST COST. 8
K. AESTHETIC 10

The survey in Table 4.2 indicates that management contractors believe that both industrial and commercial clients place special emphasis upon the reliability of construction time and the original price. Clients also regard as important the preconstruction time. MC involvement during the design stage. flexibllity of the system and the maintenance cost.

```
Management contractors feel that other criterla as activities to \(K\) ) have only a moderate impact upon clients when using MC.
```

Generally speaking, it appears that the weight each client gives to various priorities varies considerably at the time of construction and thus suitability of management or traditional contracting to meet these priorities will alter accordingly. For instance, the client in case study 30 had to build his factory in a busy area. and had emphasized the need for production while construction is in progress. Therefore he appointed a management contractor. On the other hand. a client who is having a factory built on new site. may in theory, not consider this as a priority.

SUB-HYPOTHESES 1.2 PROJECT PERFORMANCE IS A FUNCTION OF CLIENT CHARACTERISTICS.

Relationship between performance measures and client characteristics are expressed in term of null hypotheses and the correlation coefficients are given in Table 4.3. Definitions and classification of client type, experience and business are as described in chapter 3 (Research design and methodology).

TABLE 4.3 - CORRELATION BETWEEN PERFORMANCE MEASURES AND CLJENT

Table 4.3 and the chi square test. no. 4 and 5 in Aprendix 10 show that experjenced clients are more satisfied than others in respect to time and cost, possibly becaust: they foxericnced clients) may have a larper organization and tend to employ higher level of in-house professional expertise which load to befter control of time and cost. Moreover, experienced clients may be in a better position to judge project success than those moderately and inexperienced ones.

Although Table 4.3 indicales that building time, unit cost and the satisfaction on quality differ between public and private cllents, these could not be analysed by the chi-square test because the category of publicly funded projects were very small in number (13) when compared with privately funded ones (56). However. a previous research by Rowlinson (1987) confirmed that public sector contracts are constructed more slowly than those for private sector clients (significant at 0.024 level) and that public sector clients are less satisfied with the quality of the building produced. Also. a research by Sidwell (1982) found that public clients were less satisfied on cost performance and their projects were more likely to overrun the budget than projects for privately funded clients.

The difference in building time performance between privately and publicly funded projects support the early analysis of 170 projects into management contracting. collected throughout the pilot study (see Table 4.4). 55% of the public premises were constructed longer than the average compared with only 19% private buildings when using a management contract. Average construction time. longer and shorter than the average are measured as described in chapter 3.

TABLE - 4.4 CLIENT TYPE AND CONSTRUCTION TIME UNDER A MC.

CLIENT TYPE	CONSTRUCTION TIME \% OF PROJECTS		
	LONGER	AVERAGE	SHORTER
PRIVATE SECTOR	19	55	26
PUBLIC SECTOR	55	32	13

The Wood Report (1975) also stated thal the traditional approach did not always obtained value for money when time and cost are considered together but time $1 s$ often insufficiently weighted in decisions of many public-sector clients.

On the other hand. the private sector is often more concerned with construction time, particularly for industrial buildings. and may place more emphasis on certainty of cost than on lowest cost (Hillebrandt 1984). Thus he imposes more pressure on the contractor and on the professionals to ensure getting the building buill within his estimated period.

2. THE DESIGNER CHARACTERISTICS

SUB-HYPOTHESIS 2.1 PROCUREMENT METHOD IS A FUNCTION OF PROFESSIONAL CHARACTERISTICS OF THE DESIGN ORGANIZATION.

Null hypothesis 2.1.1 The organization that design a management contract project and those design a traditional projects do not differ in their experience. as defined previously.

Null hypothesis 2.1.2 The degree of in-house expertise inpul. as measured in section 3.8 . do not differ between management contracts and traditionallv organized contracts.

Chi-square test no. 7 \& 8 in Appendix 10 and the correlation coefficient supports null hypothesis 2.1 .1 and 2.1.2 concluding
that there is no difference in the characteristics of the professionals and both procurement methods. Similarly to the client characteristics. this suggests a more comprehensive survey with a larger sample needs to be conducted to tackling this area separately.

SUB-HYPOTHESIS 2.2 PROJECT PERFORMANCE IS A FUNCTION OF PROFESSIONAL CHARACTERISTICS OF THE DESIGN ORGANIZATION.

Performance measures and the design characteristics studied are expressed in terms of null hypothesis and Table 4.5 gives the correlation coefficients.

TABLE 4.5 - CORRELATION BETWEEN PROJECT PERFORMANCE AND DESIGNERS

The survev results showed that higher degree of designers experience resulted in corresponding higher performance in a number of performance measures. Pre-construction time, the higher certainty and higher degree of cllent sailsfaction on time and quality were all found to be significant in relation to the designer experience (see also chi-square test no. 9.10.11.12 and 13 respectively). The survey results also shows that higher degree of in-house expertise input resulted in higher performance with respect to speed (chi-square test 14). The significant relationship between designers and project performance could possibly be explained by the following:-
a) A resourceful and knowledgable professional team will ensure that client's requirement brief is thorough. properly implemented and monitured.
b) Highly experienced professionals can keep the client constantly informed of the well-being and progress of his project: such that any deviation or problem can be dealt with quickly and effectively to achieve higher level of client satisfaction and a smooth going project.

3. THE PROJECT CHARACTERISTICS

SUB-HYPOTHESIS 3.1 PROCUREMENT METHOD IS A FUNCTION OF PROJECT CHARACTERISTICS

Variables of project characteristics and both procurement methods were examined in terms of null hypothesis (of no difference) and results of the chi-square suggest that there is an association between size (in terms of cost only) and complexity for management and tradjtional projects. Management contracts are used on higher cost (chi-square 15). and projects with higher complexity and building rate dichotomised at $\$ 50,000$ per week (chi-square $16 \& 17$). The analysis did not produce enough evidence to support the view that the gross floor area differs significantly between procurement methods.

SUB-HYPOTHESIS 3.2 PROJECT PERFORMANCE IS A FUNCTION OF PROJECT CHARACTERISTICS.

The correlation coefficients between performance measures and project characteristics are given in Table 4.6.

TABLE 4.6 - CORRELATION COEFFICIENT BETWEEN PROJECT PERFORMANCE AND PROJECT CHARACTERISTICS

PERFORMANCE MEASURES							
PROJECT CHARACTERISTICS							
	PRECONST	BUILD	TOTAI,	SPEED	UNIT	TIME	CoST
	TIME	TIME	TIME	A / W	$\cos T$	OVER	OVER
	d	c	c		c		
BUILDING TYPE	-. 252	-. 434	-. 408	-. 178	-. 360	. 186	. 082
NEW BUILD V OTHER	-. 026	-. 133	$-.146$	-. 137	$-.030$. 353	. 249
		c			c		
COMPLEXITY	. 104	. 305	. 114	-. 184	. 448	. 077	. 123
		b	c	a	c		
building rate	. 184	. 505	. 381	. 728	. 380	. 129	. 081
	b	b	a	a			
GROSS FLOOR AREA	. 612	. 679	. 744	. 848	. 069	. 103	. 161
	c	a	b	a	d		
BUILDING COST	. 431	. 825	. 699	. 631	. 287	. 03	. 229

PROJECT CHARACTERISTICS

CLIENT SATISF. CLIENT SATISF. CLIENT SATISF ON TIME ON COST OUALITY

Table 4.6 shows that significant correlation exists between building type, project size in terms of G.F.A and cost. and preconstruction time. build time. total time and speed of construction. Commercial buildings and Projects that have larger area and higher cost. took longer time to build and produced higher rate of work on site, measured in SOM of gross floor area / WEEK.

Surprisingly, build time and unit cost were the only significant figures found in relation with project complexity (see chi-square 18 and 19) indicating that increasing complexity does not necessarily result in low project performance and in particular to overruns and the level of client satisfaction. Similar results were found with relationship between building rate and performance measures.

The results that overruns and client salisfaction were not correlated with other project characteristics may suggest that the project can be successful and the cllent can be satisfied irrespective to project characteristics provided the proper procurement method was selected to the project.

4. CONTRACT PROCEDURE

SUB-HYPOTHESIS 4.1 PROCUREMENT METHOD IS A FUNCTION OF CONTRACT PROCEDURE .

Null hypothesis 4.1.1 The process for selecting a management contractor do not differ from selecting a traditional main contractor.

The two main variables of contracl procedure were selecting the contractor either by competition or by nepotiated tendering process. Results of chi-square no. 10 did not show difference in procedure between procurement methods. but when competitive tendering were further separated into open and selected procedure. a manapement contractor tend to be appointed more by a selected tender competition and the traditional main contractor was more selected by open tendering. This states the obvious since the number of contractors offering a MC service are limited in number and hence. an open tender is most unlikely under a MC.

SUB-HYPOTHESIS 4.2 PROJECT PERFORMANCE IS A FUNCTION OF CONTRACT. PROCEDURE.

Table 4. 7 give results of correlation between performance measures and procedure adopted.

TABLE 4.7-PROJECT PERFORMANCE AND CONTRACT PROCEDURE

Table 4.7 show that a number of correlations exist between contract procedure and project performance, but when the chisquare test was applied. pre-construction time and client satisfaction on cost were the only variables found to be significant. Nevertheless. there are two other interesting results. though not statisticaly proven. observed from the case studies. these are:-

1. Good cost performance was achieved when projects followed a path of selective competition and using the firm price tender with full bill of quantities e.g., traditional case study no. $24,26,28$ and 29.
2. It was also observed in traditional case study no 2 (hiphly successful on cost and on time) that the plan of work and construction contract were based on the American Institute of
```
Architect's (AIA) standard procedures. The AIA form is that the
contractor is in possession of all the consultants' information
and shop drawings at the tender stage. In this case firm price
tender obtalned from selected tenderers was the procedure adopted
and the tender based on bill measured in accordance with the
international principles of measurement.
```

5. PROCUREMENT METHOD AND PROJECT PERFORMANCE
SUB-HYPOTHESIS 5.1 PROJECT PERFORMANCE IS A FUNCTION OF
PROCUREMENT METHOD ADOPTED.
Within sub-hypothesis 5.1 relating performance measures and both
procurement methods. there are 10 null hypothesis linking the
variables together. all of which are examined in full details.
6. PRE-CONSTRUCTION TIME

Null hypothesis 5.1.1 There is no difference in preconstruction time between management and traditional contracts.

The mean pre-construction time for both systems is illustrated In Table 4.8 and shows that management contracts had less preconstruction periods than traditional ones. To test the significance difference. the pre-construction time for the 69 csse studies was examined and Table 4.9 show that 79% of the management contracts had short pre-construction time compared
with 38% for traditional contracts. Long, average and short times were measured as described in section 3.6 in Chapter 3. About 50% of the traditional case studies projects needed one year of detailed design and for 70% of management contracts the projects had pre-construction period of less than six months. The Chi Square test and correlation coefficient show that the difference in pre-construction time performance was statistically significant (see Chi Square Test No. 21 in Appendix 10). We therefore, can reject null hypothesis 5.1 .1 and conclude that management projects are remarkably quicker during the preconstruction stage than traditional projects.

TABLE 4.8 - PROCUREMENT AND MEAN PRE-CONSTRUCTION TIME (WEEKS)

$\begin{aligned} & \text { CONTRACT } \\ & \text { VALUE } \end{aligned}$	MANAGEMENT CONTRACTS			TRADITIONAL CONTRACTS		
	X	SD.	N	X	SD.	N
LESS THAN £2.0M	11	4.3	5	18	8.0	7
£2.0-£5.0M	14	6.9	9	55	29.6	5
OVER 25.0 M	25	18.8	19	66	31.3	8

TABLE 4.9 - PROCUREMENT METHOD AND PERCENTAGE OF PROJECTS SHORTER, LONGER OR WITHIN AVERAGE PRE-CONSTRUCTION TIME, MEASURED AS DESCRIBED IN CHAPTER 3 SECTION 3.6

PRE-CONSTRUCTION TIME	MANAGEMENT CONTRACTS (\% OF NUMBER OF	TRADITIONAL CONTRACTS PROJECTS)
LONG	9	33
AVERAGE	12	29
SHORT	79	38
TOTALS	100	100
SIGNIFICANT E 0.0	LEVEL (CHI SQUARE TEST (CORRELATION COEF	$\begin{aligned} & \text { NO. } 21 \text { - APPENDIX 10) } \\ & \text { FICIENT }=-.405 \text {) } \end{aligned}$

The praph in Fipure 4.1 show another interesting reature in that within the management contracting sample, seven projects are of a considerably higher cost than any of the comparable traditional projects, yet these profects had still pre-construction time shorter than half of traditional projects contained within the range of $\$ 10$ million (case study $4,10,11,20,24,28$ and 35). This could be because of the greater complexities of the design and procedures involved in the traditional contracts, to get the building designed according to a particular qualjty standard.

The nature of the project had a substantial bearing on the systems used for each client. In the traditional contracts. it is more likely for the desisf charartoristics to be more important than for manapement contracting projects (as noted by the ranking criteria in Tade 4.1). In this case the larger the traditional project is, the more important for the client lo have a wider choice of desismers, whether architects or engineers, and sometimes need to resort to design competition. On the other hand, a management contracting project has, presumably, a sreater complexity in the construction process and the contractor's contribution to the design is mreater to obtaining flexibility and early starl on site than obtaining a sophisticated design.

This finding regarding early start of construction with management contracting stresses the views of the clients that were discussed in Chapter 2 and indeed with the findings of previous surveys. The pre-construction time has been investigated on a number of occasions, notably in the Sidwell paper (1983) and

the Faster Building For Industry (1984). Sidwell studied the nature of the building process and found that a management contract saved nine months when compared with a similar traditional contract because of separation of the management element and phased design.

In the Faster Building For Industry report. the overall process time was examined. one in ten of the case studies projects work started on site within 5 months of the decision to build and for the separate stapes the faster 10% of times were less than 2 months.

To ascertain whether pre-construction time can affect or could had been influenced by other variables, the relationship between both procurement methods and other key variables were investigated and the significant ones are filtered in Table 4.10 Key variables are such as building type, client's experience and project success. The investigation showed that pre-construction time is highly correlated with similar variables to both systems, except for the unit cost. This could be because management contracting clients may find the risk of having an expensive building is a sufficient trade-off to complete the project earlier. On the other hand traditional clients are more concerned to obtain a cheap building and have less opportunity to reduce the pre-construction time.

TABLE 4. 10 - SJGNIFICANT CORRELATION BETWEEN PRE-CONSTRUCTION TIME AND OTHER KEY VARIABLES

PROCUREMENT METHOD	PRECONST TYPE	BUILD TIMF	TOTAL TIME	$\begin{aligned} & \text { BUILD } \\ & \text { COST } \end{aligned}$	$\begin{aligned} & \text { PROCE } \\ & \text {-DURE } \end{aligned}$	$\begin{aligned} & \operatorname{COST} / \\ & \text { SQM } \end{aligned}$
MANAGEMENT	b	a	a	a	b	c
CONTRACTING	$-.421$. 786	. 853	. 640	. 443	-. 371
TRADITIONAL	b	a	a	a	d	
CONTRACTING	$-.473$. 676	. 943	. 804	. 395	. 133

THE STATISTIC TABLE BY MURDOCH AND BARNES (1979) SHOWED:-
a - SIGNIFICANT AT $P<.001$
b - SIGNIFICANT AT $\mathrm{P}<.01$
c - SIGNIFICANT AT P
d - SIGNIFICANT AT $P<.05$
2. CONSTRUCTION TIME

Sull hypothesis 5.1 .2 There is no difference in construction time between management and traditional contracts.

Construction lime was calculated as the number of weeks from starting on site to practical completion of the project. Unsurprisingly, Figure 4.2 show that construction time for both management and traditional contracts are scattered because construction lime depends on other paramelers, such as. building type. size. complexity etc. However. Table 4.11 cateqorically show a detalled breakdown for the mean construction time of three contract vajues.

The association is tested in Table 4.12 and the results was found Just significant at a conventional level $\mathrm{P}=0.05$ (See Chi-square no. 22 in Appendix 10). Therefore it can be concluded that this

research produced a slight evidence that the construction duration is shorter under a mangement contract than it is under the traditional ones.

TABLE 4.1.1 - PROCUREMENT METHOD AND MEAN CONSTRUCTION TIME (WEEKS)

CONTRACT value	MANAGEMENT CONTRACTS			TRADITIONAL CONTRACTS		
	X	SD.	N	X	SD.	N
LESS THAN E2.OM	41	12.5	6	44	11	14
£2.OM - £5.OM	52	14.8	10	63	29.6	5
£5.0M - £20.0M	88	20.0	13	101	37.3	9
NOTE: FIVE PROJECTS WERE EXTREMELY LARGE SO THEY HAD TO BE ISOLATED FROM THE ANALYSIS						

TABLE 4.12 - PROCUREMENT METHOD AND PERCENTAGE OF PROJECTS SHORTER. LONGER. OR WITHIN AVERAGE CONSTUCTION TIME. MEASURED AS DESCRIBED IN CHAPTER 3 SECTION 3.6.2 (A)

PERFORMANCE	MANAGEMENT CONTRACTS 1% OF NCMBER	TRADITIONAL CONTRACTS OF PROJECTS
SHORT TIME	37	14
dVERAGE	44	54
LONG TIME	16	32
TOTAL.S	100	100
JUST SIGNIF	5 LEVEL (CHJ SQUARE	2 IN APPENDIX 10)

To a certain extent, the above results support the views of the clients and sub-contractors who participated in this research. They claimed that a management contract does not always result in shorter construction time. it depends on the type of construction and the level of control the client wishes to exercise in a given pro.ject.

The reason for shorter construction time could be attributed to the following:-

1. Under a management contract the building may get the benefit of achieving a higher level of standarization due to the involvement of the contractors at the design stage and can be more effective for larger project.
2. Difference in construction time can be due to the nature of the project i.e the cases are not all strictly comparable, some of them being manufacturing and warehousing facilities while others are office and commercial developments (See also Table 4. correlating project characteristics and build time).

Under the variable construction lime, an interesting results was also found sipnificant when analysing the 170 management contracts collected throuphout the pilot study. Table 4.13 show that under a management contract. a greater proportion of projects representing refurbishment projects were built shorter compared to new type of construction for similar cost distribution.

TABLE 4.13 CONSTRUCTION TYPE AND CONSTRUCTION TIME UNDER A MC.

TYPE	CONSTRLCTION TIME		
	\% OF PROJECTS		
	LONGER	AVERAGE	SHORTER
NEW CONSTRUCTION	27	56	16
OTHER THAN NEW	12	35	53

The good performance of management contracting for refurbish jobs was also supported by the management contractors interviewed in that the system can be used for projects that camot be readily handed within the orbit of the measured work concept.

A refurbish job, as described by the management contractors. consist of a number of work packages need to be re-build or added to an existing building and normally these packages are not properly described. Consequently the work to be carried out by the sub-contractors will not be properly described either. If one examines the characteristics of a management contract which tackles the job by sub-contracting all the work and allow flexibility to design during construction, each element of the refurbish work can be efficiently designed to the client's need concurrent with construction. This benefit can be more utilized when the refurbish job is large and complex because it consist of a higher number of packages that need to be co-ordinated and properly controlled.

In an intervjew with the client of case study no. 6. the in erviewee stated that, "with the amount of changes our organization made for the last 20 m refurbish iob it would have been a disaster if we had used the traditional form of contract instead of management contracting'.

In contrast. the client of case study no. 2 (a national and international bankerl. undertake mainly refurbishment work of existing premises costing between £o. 1 million and £1.2 million.

The organization did not find management contracting as the best method for the mafority of their work mainly because their views that management contracting is definitely not suitable for small refurbjshment jobs. In their case. the premises must be occupied while construction is in progress. Therefore, with little packapes the job would be too 'messy' ie. a preat deal of interaction between the sub-contractors

3. OVERALL PROJECT TIME

Null hypothesis 5.1.3
There is no difference in total time between management and traditional projects.

Total lime is the number of weeks from start of design 10 completion of the project (see Figure 4.3). The mean total time are shown in Table 4.14 and Table 4.15 gives the percentage of projects $1 n$ the three performance levels. The results are similar to pre-construction time, in that traditional projects took longer total time than the management contracting ones. This may suppest that the difference between the overall project time of both systems is marked on the desisf time more than the build time. When the Chi-Square test was applied the difference in total time performance was found highly significant and the Null hypothesis can be rejected concluding that management contracts led to shorter overall project time than traditional ones (see Chi Square no. 24 in Appendix 10).

TABLE 4.14 - PROCUREMENT METHOD AND MEAN TOTAL PROJECT TIME (WEEKS)

CONTRACT VALUE	MANAGEMENT CONTRACTS			TRADITIONAI. CONTRACTS		
	X	SD.	N	X	SU .	N
LFSS THAN E2.OM	73	38.2	6	75	23.5	14
$22.0 \quad$ L5.OM	80	9.6	7	157	59.6	5
OVER LS. OM	107	23.4	13	163	54.0	9

TABIE 4.15- PROCUREMENT METHOD AND PERCENTAGE OF PROJECTS SHORTER. LONGER OR WITHTN AVIERAGE TOTAL TIME, MEASURED AS DESCRIBED IN CHAPTER 3 SECTION 3.6

The banses, apart from the size of the project and complexities of the procedures to be adonted, for long pre-construction time can be attributed to the following:-

1. There are factors outside the influence of the team like statutory anprovals, grants, and to some extent finance and land purchase.
2. The rlient's expectations determine of how long preconstruction will take and consequently the time he allows and prepared to accept. If the actual period corresponds with that planned, then that at least pives him certainty. On the other
hand there are cases where uncertainty plays a mafor role for long pre-construction time. for example as to whether planning permission or government assistance will be obtained, whether finance will be available and at what price. The greater these uncertainties the more likelihood that the client may postpone commencing other activities which lead to longer pre-construction time.
3. There will be long pre-construction time because of inadequate performance by some members of the building team including the client. for example. delay in finalizing the brief. in acquiring the site or unacceptable sketch designs. The study by CIRIA (1983) found that there were many instances of unduly long tender adjudication periods or schemes being shelved after tendering or re-tendering. These have caused a delay in starting on site

However the above explanations are typical and does not mean that when a client is in a hurry for a project he cannot obtain his building quickly. He can do this, as the case in a manapement contract. by undertaking many of the activities simultaneously. A mandgement contract utilises the technique of fast tracking. This technique allow the design and construction to run concurrently to facilitate an earlier start to construction. The technique of fast tracking may however have a detrimental effect on the finished producl in terms of inadequate design and pre-planning. Null hypothesis 4.1.10 will discuss this point in further details.

The results in null hypothesis 5.1 .2 into construction time take into account only the cost of the profect and did not consider size in terms of gross floor area. Appendix 10 contain details of ${ }^{\prime}$ the size of each project in square metres and the speed of construction in square metre/week. A matrlx of speed / unit cost was constructed as shown in Table 4.16.

4. SPEED Of CONSTRUCTION

Null hypothesis 5.1.4 There is no difference in rate of work on site between management and traditional projects, defined by gross floor area constructed in SQM/WEEK.

TABLE 4. 16 PROJECT PERFORMANCE - COST AND SPEED

		SPEED (AREA/WEEK)		
		HIGH	MEDIUM	LOW
	LOW	MC13.14,22,26,27	MC24,31,32,35	MC10
		MC28.33.34.36	TR 9.10.12.17	TR 1.11.20
		TR 2.4,8.13,22.	TR 18,19.21,23	TR 29
		TR 30	TR 25.26,28	
cost				
PER	MEDIUM	MC4.5.9	MC1.7.8.11.15.	MC21
SQUARE			MC19,39 - T24	T15
METER				
	HIGH	MC37	MC2, 3,12,15.17	MC6, 20,29,
			MC17.18.23,25.	MC38.
			MC30	TR 3,5,14,
			TR 6.7	TR 16.27

COST SPEFD

-..--
A - FOR LESS THAN £2M
LOW = LESS THAN $£ 500$ PER SQM
LOW $=$ LESS THAN 50 SQM/WEEK
$M E D=£ 500-650$ PER SQM
MED = $50-100$ SQM/WEEK
HIGH $=$ MORE THAN £650 PER SQM
HIGH = MORE THAN 110 SQM/WEEK
B - FOR £2M - £5M
$\begin{array}{ll}\text { LOW }=\text { LFSS THAN £650 PER SQM } & \text { LOW }=\text { LESS THAN } 60 \text { SQM/WEEK } \\ \text { MED }=\text { E650 }-850 \text { PER SQM } & \text { MED }=60-130 \text { SQM/WEEK } \\ \text { HIGH }=\text { MORE THAN E850 PER SQM } & \text { HIGH }=\text { MORE THAN } 130 \text { SQM/WEEK }\end{array}$
C - FOR OVER £5M
LOW = LESS THAN £750 PER SQM
LOW = LESS THAN 100 SQM/WEEK
$M E D=£ 750-1000$ PER SQM
MED $=100-190$ SQM/WEEK
HIGH = MORE THAN $£ 1000$ PER SQM HIGH= MORE THAN 190 SQM/WEEK

Results from Table 4.16 show higher proportion of management contracts buildings (84%) were constructed faster or with medium speed during construction compared with those of traditional contracts (6G\%) (see the graph in Figure 4.4). The difference in speed performance was statistically tested and the result was significant at 0.05 level only (see Chi Square Test No. 25).

Those projects which were faster than the average were then analysed to identify any common factors leading to this sltuation. The following could be observed :-

A. Faster construction was achieved when the client made a substantiad investment appointing a project manager / controller acting on his behalf on site (MC9,23, 24,39, T13.21 and26).
B. Fast construction techniques developed from the manapement contractor's input were valuable in saving time. For example, MC26 cost $£ 10.0$ million and took 50 weeks to build used a steel frame superstructure technique. A sizeable overlaps between design and construction were achieved and all 765 tons of steel were erected in only eight weeks.

Other factors may also contribute to speedy projects. namejy:

1. the knowledge and experience of the client together with his ability to make decisions quickly (Nahapiet 1985):
2. under the traditional arrangement the architect is given enough time to prepare a detailed brief which lead to faster project, by contrast, under management contracting the architect establish flexible arrangements permitting quick responses to changes;
3. the good working relationships between the main parties to the contract:
4. the simplification and standarisation of construction features.

Nul] hypothesis 5.1 .5 There is no difference in unit cost between manapement and traditional projects. defined by building cost over sqm of gross floor area.

The spread of cost performance across the cases is relatively wide, and a large proportion of the varience can be explained by major differences in the nature of the buiddings and the level of quality standard that has been specified by the client at the outset of the project.

Table 4.17 gives the mean unit cost of the 69 case studies for management and traditional contracts, segmented into three size projects. The analysis reveal that the mean cost of traditional contracts is lower than of management contracts. but this difference seem to be marginally marked on small size projects rather than medium and large ones. When analysing the data further. it was apparent that 70% of the small tradjtional contract cases were industrial buildings which . presumably, would have less quality finishing than commercial ones. The association was statistically tested and it was found that the difference in unit cost between management and traditional contracts was significant at 0.05 when dischotomised at (L\&M) VS High unit cost (see Chi-Square Test No. 26 in Appendix 10).

TABLE - 4.17 PROCUREMENT METHOD AND AVERAGE UNIT COST

CONTRACT value	MANAGEMENT CONTRACTS			TRADITIONAL. CONTRACTS		
	X	SD	N	X	SD	N
LESS THAN E2M	498	381	6	380	196	15
£2M - £5.	616	356	10	520	220	5
OVER E5M	784	379	14	650	286	9

The scattered diagram in Figure 4.5 show the potentially interesting feature. that in the management contracting sample. large buildings have relatively cheaper cost/sqm than smaller buildings. This could be because management contracting can achieve economies of scale and benefits from the repetition inherent in large buildings. However. this observation is too crude to allow conclusion to be drawn. but the possibility of economies of scale in construction could be examined in any subsequent study.

Of the reasons offered by the clients as to why management contracting could be more expensive than a competitive traditional tendering contract. the most plausible ones were:-

1. There is a tendency for greater involvement of the professional consultants. "The architect and the Q.S. get. involved more than they should in some work which is the manapement contractor's job". This overlapping responsibility can reflect in higher fees being paid and can be very noticable on smaller projects.

2. Most of the staff members have long been involved with the tradjtional system and their roles are frequently transposed when management contracting is adopted.
3. In an intervjew with a banker client (case study no.2) the organization conducted an internal cost analysis which found. that under a manapement contract the client pays more than the traditional system partly because of a large competitive tendering situation at the outset of the project and partly because of higher costs of preliminaries and paper work. Once again this extra cost can be more influential on small jobs and proportionally less on larger projects.

In addition to the above explanation . it must be stressed however. that this could be very much attributed to the fact that the management case studies had larger costs compared to the area constructed , were more complex and had higher building rate than traditional contracts (see analysis of sub hypothesis 3.1 and management contracting case studies $3,6.12,20.21 .29 .30 .37$ and 38 in Appendix 7).

Another study by the DHSS has been conducted to compare the performance of management and traditional contracts based on three projects. The study team has concluded that:

[^2]and risk which can be achieved if the management contractor performs well".

Although the two management contracts of the DHSS produced higher final cost, the study team did not conclude that this is attributable to the use of management contracts.

The DHSS study has enabled the factors to be isolated which are likely to increase or decrease costs and enable specific answers to be worked out when applying a ruture project. The cost outcome on any particular project depend upon the particular Incidences of these factors and upon the particular client's view of the risk/cost trade-off. The factors isolated include:-

1. A likelihood that there will be more man-hours applied to site management using a management contract than a conventional. In practice there is no intrinsic reason why this should occur with respect to work that is normally subcontracted by conventional main contractors.
2. The studied projects gave no evidence of significant duflication of management as a direct result of the use of a management contract. Significantly more management time expended by both management contractor and sub-contractors than was usual, but was mainly attributable to the efforts made to recover construction programme delay. It is the study team's view that the additional management effort which may be expended because of the use of a management contract is unlikely to be harmful to the client's interest.

6. TIME OVERRUN

Null hypothesis 5.1.6 There is no difference in the level of percentage time overrun between management and traditional contracts. defined by the ratio between the actual building time and that estimated at the outset of the project.

7. COST OVERRUN

Null hypothesis 5.1.7 There is no difference in the level of percentage cost overrun between management and traditional contracts. defined by the ratio between the actual final cost and that budgeted at the outset of the proiect.

Tie distribution of the data for percentape time and cost overrun can he seen from the graph in Figures 4.6 and 4.7 which indicates more likelihood for traditional contracts to overrun on time and on cost than management contracts (see also Tables 4.19 and 4.201. Table 4.18 show that projects procured based on tradilional contract registered an average time overrun of a mere 8\% compared to an average of 5% using management contracting.

However, the association for time overrun was tested and it was found that the difference was sirnificant at a conventional level $P=0.05$ (see Chi-Square Test No.27). Categories for Higher overruns and within time or cost are as described in chanter 3 section 3.6.

Similarly, management contracts outperformed the traditional method in respect of cost overrun and the difference was highly significant (Chi Square Test. No. 28). The former averaged a cost. overrun of only 3% compared to 7% recorded by traditional method. Therefore, $i t$ could be concluded that manamement contracts are more reliable on time and on cost than traditional contracts.

TABLE 4.18 - TIME ANI) COST OVERRUNS

| MANAGEMFNT | TRADITIONAL |
| :---: | :---: | :---: |
| CONTRACTS | CONTRACTS |

TABLE 4.19 - PROCUREMENT METHOD AND TIME OVERRUN

TABLE - 4.20 PROCUREMENT METHOD AND COST OVERRUN

COST	\%	\%
OVERRU.	MANAGEMENT	TRADITIONAI.
	CONTRACTS	CONTRACTS
HIGH	10	47
WITHIN	77	43
UNDERRUN	13	10
SIGNIFIC	I -SQUARE T	0.28 IN APPEA

The above results seem to reinforce the view that phasing the construction work into packages is a valid approach and provide flexible and useful indication of successful project performance.

However, it can be argued on the other hand whether the estimated t.ime and cosl were the right ones at the outset of the project. Under this argument, Sidwell (1984) contends that "clients are often puz\%led by the various terms used within the industry, there are cost plans. tenders, final accounts and fees. Essentiallv the client is interested in the early prediction of the total amount he will have to pay and the variance between this figure and the final sum.... . For example one reason for the success of package deals is that they are more positive about the final cost to the client.... . There is no guarantee that it (the predicted cost) was the right one."

Nevertheless. there are a number of reasons for the overruns on time and on cost, namely:-

1. The client may alter his mind and introduce variations. These. if not substantial. will undoubtably affect performance. One problem is that it is very difficult for the client to find out in advance what the effect. of a variation will be. Some experienced clients make substantial allowances in their budgets for cost overruns. Others apply a system where changes can be manipulated without exceeding the budget.
2. There is little incentive under the traditional system for the contractor to deal with the causes of time and cost overruns or to compensate for their effects by. for example, better liaison with the architect's office on provision of drawings and catching up on lost time. At the present time, from the moment a contract is sipned the contractor keeps careful record of the evidence on which he is to base his clajm for increased cost.

A study on construction times for industrial building by the BRE (1984) comprises a very valuable piece of research. An important. conclusion is that:-
"Jt is not the form of contract which primarily determines whether targets are met but the attitude of the parties to which the form of contract may contribute. The standard form of contract offers penalties for delays bul not incentives for speed. Industry and customers should look for ways of sharing the benefits [rom improved performance".
3. The better performance of management contracting over the traditional method could be attributed to the following features in the management contracting itself. such as:-
a. A manapement contract provide a higher integration of the various disciplines in the construction industry. By breaking down the 'us and them' syndrome (Turner 1986). the professionals and the management contractors are able to pool together their once fragmented expertise for the overall benefit of the project. Thus for once the participants in the construction industry can work topether as a team rather than being excessively concern with their own individual roles. vice a versa other participants (EDC 1978).
lindoubtedjy mreater integration will give rise to better communication among the team members which leads to greater co-ordination and managerial control of the construction process.
b. under a management contract there is one professional body that is responsible for managing the building process and he is fully and solely work for the client's interest. His commercial awareness of this will compel him to ensure that every management effort is directed lowards achieving the performance criteria as laid out in the contract. especially with regards to time and cost overrun.
3. Finally. there may be something that is within the field of the contractor to organize better or anticipate, such factors were mentioned by Hillebrandt (1984) like bad industrial relations and
plain bad management. It may be bad luck, for example. the weather, or a strike in some other industry and the like.

SUBJECTIVE ASSESSMENT TO PROJECT PERFORMANCE

At the end of each case study questionnaire the respondents were asked to express the level of client satisfaction concerning time. cost and quality on a three point scale. The respondents assessed the time performance on three matters regarding preconstruction time. speed and time overrun. Cost performance cover the unit cost. cost control and overruns. The quality scale includes the function of building, quality of the construction operations and the finishes.

8. CLIENT SATISFACTION ON TIME

Null hypothesis 5.1.8 There is no difference in the level of satisfaction with time between management and traditional client.s

Table 4.21 gives the client satisfaction to overall time in three levels for management and traditional contracts samples. The chi square test. hased on the number of clients that are highly satisfied against moderately and dissatisfied clients, show that management clients are greater in the highly satisfaction cell at a sipnificant level $P=.025$. Further analysis of the data suppests that the differences amounted to commercial buildings more than industrial ones. This is so. perhaps. because industrial
buildings fin the sample were relatively smaller and less complex. In this case the project is a straightforward one and the traditional method can control project time within a stipulated overall time and fast enough for the client to be satisfied.

TABLE 4.21 - PROCUREMENT METHOD AND CLIENT SATISFACTION ON TIME

LEVEI, OF SATISFACTION	\%	\%
	MANAGEMENT	TRADITIONAL
	CIIIf.NTS	CLIENSS
HIGH	79	52
MODERATE	13	28
L.OW	8	20
TOTAI.	100	100
SIGNIFICANT @	II-SQUARE	N APPENDIX

9. CLIENT SATISFACTION ON COST

Null hypothesis 5.1 .9 There is no difference in the level of satisfaction with cost between management and traditional clients.

Table 4.22 indicated no difference in the level of satisfaction with repards to cost between management and traditional clients. Given the facts from null hypothesis 5.1.5 and 5.1.7. that the probability for a management contract to exceed the budget is less than the traditional method but can cost the client more. this can emphasis the suggestion at the beginning of this chapter which account for a great concern placed by the management cllents on the importance of cost reliabllity rather than cheapest cost to project success

TABLE 4.22 -- PROCUREMENT METHOD AND CLIENT SATISFACTION TO COST

LEVELL OF	a	\%
SATISFACTION	MANAGEMENT	TRADITIONAL
	CIIENTS	CliIENTS
HIGH	55	53
MODERATE	26	28
LOW	19	18
TOTAL	100	100
NOT SIGNIFICANT (CHI-SQUARE TEST NO. 30 APPENDIX 10)		

10. CLIENT SATISFACTION TO QUALITY

Null hypothesis 5.1.10 There is no difference in the level of satisfaction with quality between management and traditional clients.

The qualitv of building is very difficult to compare. firstly because it is difficult to define precisely what is meant by quality and secondly because their is no successfu] objective measure which can compare both sustems. Therefore in this research guality was measured subjectively as the funclion of b ilding and quality of the finishes. From Table 4.23 their seems to be no difference in the level of satisfaction with quality between the management and traditional contracting clients.

However. those clients who were interviewed feel that there are some snags in the management system which affect the quality of building. None of the clients felt that management contracting produce a belter building design but it can be similar to the
tradilional method. The clients added that they did not choose a manapement contract for that reason in the first place and that is why no difference appeared in quality salisfaction in Table 4.33. This evjdence refutes the CIRIA (1983) conclusjon that cllents who use manarement contracting frequently want the management contractor to be responsible for managing the design. The clients have noted the following as criticisms for design and qualdty of manamement contracting:

1. A property developer client said that management contracting does not provide a better design because of conflict between the management contractor and the architect. Such conflict may come from the commercial orientation of management contractors being countered by the professional attitudes held by other client advisors.
2. There is the problem of who has to decide quality standards (unlike the traditional method where the architect is responslble).
3. A banking cjient commented that with management contracting 'there can be an element of jealousy by the professional consultants by the fact that the management contractor is taking their roles and authority as a team leader. The issue of dominance within the project team is often the most vexatious and is the subject of ongoing research (see implication for other researchers in chapter 5).

TARLE 4.23 - PROCUREMENT METHOD AND CLIENT SATISFACTION TO QUALITY

LEVEI, OF	\%	\%
SATISFACTION	MANAGEMENT	TRADITIONAL
	CLIENTS	CLIENTS
HIGH	65	72
MODERATE	24	20
Low	11	8
TOTAI.	100	100

SUB-HYPOTHESIS 4.2 VARIABLES OF PERFORMANCE MEASURES ARE
INTERRELATED WITH ONE ANOTHER.

The correlation coefficient between the 10 performance measures are shown in Table 4.24 . they are not expressed in detail but all take the null form.

Results of linking the performance measures together show the following:-

1. The time factors are significantly related with one another. projects that take a long lime to build tend to have longer preconstruction time. longer total time and produce higher rate of work on site (SQM/WEEK) (also see relation between variables $1.2 .3 \& 4 \mathrm{in} \mathrm{Table} \mathrm{4.24)}$.
2. The correlation also show that overrun on time is associated with overrun on cost, but this association was found significant only with the traditionally organized profects
3. Finally , Table 4.24 indlcates that the level of client satisfaction increases as the certainty of the project with respect on time and cost increases. All other variables are not significantly related.

TABLE 4.24 - CORRELATION COEFFICIENT BETWEEN PERFORMANCE MEASURES

PRECONST BUILD	TOTAL	SPEED	UNIT	TIME	COST	TIME	COST	
TIME	TIME	TIME	A $/ W$	COST	OVER	OVER	SATS	SATS
1	2	3	4	5	6	7	8	9

BUJJI . 507

TIME

	a	a
TOTAL	.879	.853
TIME		

	C	C	C
SPEFD	326	365	399

A , W
UNIT . 043 . 178 . 066 . 214
cosT
TIME . 264 . 150 . 219 . 016 . 211
OVER
$\operatorname{cosT} .183 .106 \quad .160 \quad .018 \quad .092 \quad .340$
OVER
TTME . 161 . 112 . 183 . 104 . 004 . $659 \quad .410$

SATISF
$\operatorname{cost} \quad .202 \quad .180 \quad .246 \quad .068 \quad .253^{d} \quad .179 \quad .677^{a} \quad .410^{b}$
satisf

QCALTY . 058 . 012 . 069 . 009 . 003 . 170 . 134 . 117 . 28
SATISF
$\begin{array}{ll}a-S I G N I F I C A N T & \text { AT } P<.001 \\ c-S I G N I F I C A N T ~ A T ~ & \text { b }<.025\end{array} \quad$ d SIGNIFICANT AT $P<.01$

Figure 4.8 gives the most significant relationships annoted on the research model, which shows that project performance is influenced by a number of variables. Contract procedure and procurement method can be an important variables in affecting profect performance but not by themselves are the only determinate.

The independent variables of project and desioner characteristics also seem to have a greate welphting in determining project performance. particularly on the time factor. For instance. objective measures of time (C15, C16, C17, C18) are dependent on building type and the size of the project. Commercial bujlding. and project with high building cost and G.F.A. take a long time to design and build. whilst industrial projects were relatively less complex which were controlled within a stipulated overall time. and fast enough to satisfy the client.

However, procurement method as an intervening variable can be a factor assisting in optimizing project performance. For instance, total liming of the building process, for commercial building, were reduced by appointing a manasement contractor. The reduction in time was not so much accounted during construction rather it was due an early start on site by overlapping the design and construction.
CLIENT C2 \& C22 = . $308 \quad \mathrm{C} 2 * \mathrm{C} 23=.360$

CHARACTERISULCS \square

Moreover, it was also stated that the project can be successful and the client can be satisfied even if the pro.ject is highly complex, provided the appropriate procurement method was selected to the project and according to the client requirements. In this research management and traditional contracts were good examples. The management contracting system was employed on higher cost building projects with higher complexity and building rate and yet a significant number of those projects were found to be completed on time, within the estimated budget and the client was satisfied. Similarly, when the traditional contracts were selected for projects with low or moderate level of complexity and according to the client prioraties, these projects were successful and the client was also satisfied. In general, the results presented in this research do support the central hypothesis.

INTRODUCTION

The opening chapter of this thesis discussed problems facing the construction industry, il looked at the weaknesses and strength of the traditional approach and management contracting. The ain of the research has been to identify variables that lead to selecting a management or traditional contract and which would influence project performance.

The anthor looked at various modejs of previous researchers and postulated the relationship between the identified variables in a model similar to the one presented by Sidwell (1982). The variables were discussed under six main leadinys:-

1. Cljent characteristics and requirements.
2. Desipner characteristics.
3. Project characteristics.
4. Contract procedure.
j. Procurement method.

6 Project performance.

Two central hypothesis were drawn:

1. " Management contracting can satisfy clients who need their projects quickly and for projects that are large and/or highly complex."

This led to a second hypothesis,
2. "Project performance is a function of the characteristics of the client, the project, the designers, the contract procedure employed and the procurement method adopt.ed for the project.

The research model was applied over 69 case studies to examine the evidence of the main hypothesis and two sets of measures have been used: objective. absolute measures; and subjective measures of client salisfaclion.

The following are the main conclusions drawn from this research:

5.1 TEST FOR MAIN HYPOTHESIS ONE

Results of sub-hypothesis 5.1 in Chapter 4 and the clients' perception toward management contracting strongly support the first proposition of hypothesis one, ie. a manapement contract can satisfy clients that need their proiects quickly.

79\% of the management contracting projects had a short preconstruction time (PCT) as defined by the number of weeks from detail design to start on sile. The corresponding figure for traditional contracting was 38%. Short. average and jong times were measured depending on cost of building as described in Chapter 3.

Moreover, Table 5.1 show an extract [rom Apdendix 12 for the scoring matrix of project performance. This matrix was constructed from data of 69 manaqement and traditional contracts as a guide to clients who wishes to know how both systems were performed for different catepories of clients and projects. The soorimy method is as described in Chapter 3 , section 3.10.5. In summary, the method is based on piving a scoring level for each category of elient or project against each of the ten performance measures. Those performed hiph were scored 3 , Those showed a figure which lie between $+/-5 \%$ from the mean were scored 2 and low performance were given a score of 1 (see section 3.10 .5 in Chapter 3 for more details).

Table 5.1 reinforce the better performance of management contracting on the time factor, indicating that manarement contracting projects had highest apprepate scores ror timing the overall building process and the client satisfaction with it. (32\%). The corresponding figure for traditional contracts is 22%.

These results provide ample confirmation for the earlice case studies discussed in Chapter 2 that buildings let by a management contract are constructed more quirkly than bujldings fet by the traditional approach.

TABLE 5.1 - MANAGEMENT CONTRACTING AND PERFORMANCE MEASURES IN SCORES

PERFORMANCE MEASURES	MAXIMUM POSSIBL SCORES	ACTUAL SCORES	PERCENTAGE ACTUAT. SCORES	PERCENTAGE agGregate SCORES
1. PCT + BT + TT	126	116	92	16
2. $\operatorname{SPEED}(\mathrm{A} / \mathrm{W})$	42	37	88	15
3. UNIT $\operatorname{cost}(\mathrm{C} / \mathrm{SQM})$	42	26	62	11
4. $\%$ + TIME \& COST	84	70	83	14
5. SATISF. ON TIME	42	39	93	16
6. SATISF. ON COST	42	39	93	16
7. SATISF. ON QULLTY	42	31	74	12
TOTALS		358	585	100

TABLE 5.1 (CONTINUE) - TRADITIONAL CONTRACTING AND PERFORMANCE MEASIIRES IN SCORES

1. PCT - RT + TT	126	69	55	9
2. SPEED (A / W)	42	35	83	15
3. LNIT CosT(C/SQM)	42	4.1	97	17
4. \% + TIME \& COST	84	58	70	12
5. SATISF. ON TIME	42	31	7.4	13
6. SATISF. ON COST	42	40	95	17
7. SATISF. ON QULTY	42	41	97	17
TOTAL.S		315	571	100

COMPUTATION OF CHI-SQUARE TEST FOR OVERAIJ, PERFORMANCE MEASURES

The second proposition of main hypothesis one can be examined by linking sub-hypothesis 4.1 and 4.2 in Chapter 4 (the results). Analysis of sub-hynothesis 4.1 showed that management contracting tend to be employed on hipher cost buildings, projects with higher complexjty and building rate, and yet sub-hypothesis 4.2 indicated that the client satisfaction was not significantly associated with increasing project complexity. This means that the profect can be successful and the client can be satisfied even if the project is highly complex. provjded the appropriate procurement method was selected to the project and according to the client reguirements (in this research a management contracl). Therefore the second proposition of hypothesis 1 can be valid in that manasement contracting can be successful for highly complex projects but its superiority relevance to large simple project is still open to question. Although Appendix 12 show that large projects scored high under a management contract, a number of Lraditional contracts were also observed as produced good performance. In particular, case sludies no. TR3 (costed £41.0M) and no. TR27 (costed $£ 14.2 \mathrm{M}$) both were constructed under the traditionally organized team. These projects were assessed as Jarpe but simple and al though produced a slight overruns. other performance measures were successful and the clients were satisfied.

5.2 TEST FOR MAIN HYPOTHESIS TWO

Main hypothesis two is tested under the rollowing two factors:-

1. the factors that affect the selection of a management and traditional contract;
2. the factors that affect project performance.

5.2.1 FACTORS THAT AFFECT SELECTION OF A MANAGEMENT AND TRADITIONAL CONTRACTING

Two factors in particular were identiried as affecting the choice and application of manapement and traditional contracting. These are:-
A. Null hypothesis 4.1 .4 in Chapter 4 examined the client criteria Cor project performance measured in terms of time, cosl and quality. It was found that the selection of both systems are associated by the different requirement of clients to project performance. The management contracting clients are concerned to minimize time, facilitate variations (ie. flexibility to change their requirements during construction) and provide extra management (ie. more control for large and complex proiects). In contrast. traditional clients are more concerned to achieve the cheapest cost and maximize quality. Tighter budget induce a more conservative procedure and one which is sufficiently flexible to control their budget and maintain high standard of quality of the building.

The complexity of the client's organizational structure was seen to influence the selection of the procurement method and subsequently project performance. As noted in Chapter 3 . data
could not be collected in the main study but interviews throuphout this research correspond closely with thjs proposition. It was stated in Chapter 2 that the dirference between clients' criteria and their organizational structures has influenced their views and atiftudes towards manapement contracting. If the organdzations own procedures are not matched to project requirements, the cjient may lose the advaitages of MC. The client could delay progress if his approvals ale not matched to the speed of the mandgement contractor's work.
B. The major factors in the different project characteristics of the two samples, is the greater depree of complexjty and hiphey final buildins costs associated with management contracting projects. Results of analysing the sample indicates that management contracting is used on large buildings as defined by building cost greater that $£ 5$ million. and for complex projects requiring a building rate greater than $£ 50,000$ of work a week. These factors create the need for specialized sub-contractors. specialized materials, tools etc. as cited by the introduction of new techologey within the building industry.

5.2. FACTORS AFFECTING PROJECT PERFORMANCE

The main conclusion to be drawn from this research with regards to project performance is that management contracting perform better in sume respects than traditional contracling, but there are other factors affecting project performance which are highly slgnificant.

Within the scope of this research Table 5.2 shows the significant relationshin between performance measures and other characteristics of the building process, which is derived from the correlation coefficient matrix in Appendix 1.1. From Table 5.2 the following conclusions can be drawn:

1. The duratijon of pre-construction and construction is dependent on building type and the size of the project. Commercial buildings and projects with high building cost and gross floor area lake longer lime to design and build than industrial and small size projects. However, the timing of the building process can be reduced by appointing a management contractor. The reduction in time is not so much accounted during construction rather it is due an early start on site by overlapping the design and construction.
2. The sproad of cosi performance across the cases was relatively wide. Although the mean unit cost of traditional contracts were lower than management contracting, a large proportion of the varience had been explained by major differences in the nature of the bujldinfs and the level of quality standard that could be specified by the client at the outset of the project.
3. The major factors which affect time and cost overruns are the procurement method adopled and the designers experience, measured by the number of similar type of work constructed in the past. Hiphly experienced designers and a MC can provide buildings with higher certainty to time and cost than traditional contracts.

TARLE 5.2 - SIGNIFICANT CORREIATION COEFFICIENT RETWEEN PERFORMANCE MEASURES AND OTHER CHARACTERISTICS.

Projects procured based on traditional contracts registered an average time overrun of 8% compared to an average of 4% using. management contracting.

The average cost overrun for management contracts was 3% compared to 7% recorded by the traditional method.

It was reported in Chapter 4 that the higher integration and management control inherent within the system of management contracting had contributed to greater certainty. But it was also stated that since management contracting has a high markel orientation it could be argued whether the estimated time and cost were the right ones at the outsel of the project.
4. There was no clear evidence to indicate that the level of client satisfaction on quality is associated with the other variables studied. excepl with the designer experience (see Table 5.1). Nevertheless, under a MC the clients criticized the system for not producing a higher standard of quality in the building for reasons attributed to the conflict between the management contractor and the architect, and to the problem of who has to decide quality standards (see also the higher scoring of quality under the traditional contract in Table 5.1).

To summarize the conclusion, procurement method is not the only variable affecting project performance. The designers, the characteristics of the pro.ject and the contract procedures employed, all had their relative effect on certain performance measures and in certalil cases more significant than the procurement method adopted.

5.3 OTHER RESEARCH

Sidwell (1982) concluded that managerial control (classed as project procedure) was a key element in achieving project success. beins significantly related to all measures of success. Ireland (1983) found similar results for managerial action.

This research agrees with the above conclusions in that higher management control, as a factor considered to be inherent within the system of management contracting, can provide higher level of management, thus reduces the risk of overruns and deliver projects in a shorter time.

The conclusion of this research findings could also be hinged on the contingency theory, but il would be surprising if it did not :-

That is : there is no one method of the two that supersedes the other in all performance measures of time , cost and quality; each method has it's strength and weaknesses contingent on the the client's organization and requirements and the characteristics of his project.

Finally, althouph this research showed that there had been overruns on time and cost for some projects, the magnitude seem to have been reduced since the publication of the reports of Wilson (1974) and Wood (1975). This was also observed in a research by Rowlinson (1987) into packape deal within the field of Industrial buildings.

This research study has direct and important implications in relation to clients, those in the industry and those considering possible directions for further research.

5.4.1 IMPLICATION FOR CLIENTS

A) It is important that clients develop their precise
requirements and priorities as early as possible and for the
professionals to achieve a clear understanding of the client's
project goals. Performance criteria specified by clients have a
vital implications for the selection of procurement method. Most
of the participating interviewees highlighted its greatest
significance to project delivery (see also null hypothesis 4.1 .4
as a guide).
B) A scoring matrix of performance was constructed as shown in Appendix 12 in an attempt to give the client some indication of how both systems scored for various types of clients and proiects. Scoring method is as described in Chapter 3 (section 3.10.5). Table 5.3 gives extracts from Appendix 12.

CLIENT \& PRO.JECT TYPE	MAXIMUM SCORES	ACTUAL SCORES	PERCENT ACTUAL	PERCENT AGGREGATE
NORMAL SIZE PROJECTS IE. <ESM \& <7000 SQM	60	49	81	12
LARGE SIZE PROJECTS IE. $>$ C5M \& >7000 SQM	60	53	88	13
NORMAL COMPLEXITY \& < £50,000 RUTLD RATE	60	47	78	11
HIGH COMPLEXITY \& > $£ 50,000$ BUILD RATE	60	47	78	11
SPECULATIVE BUIIDINGS < £5M	30	17	57	8
SPECULATIVE BUILDINGS > £5M	30	22	73	10
BESPOKE CLIENTS < £5M \& > £5M	60	51	85	12
INDUSTRIAL PRO.JECTS < £5M \& > £5M	60	53	88	13
COMMERCIAL PROJECTS < £5M \& > £5M	60	46	77	11
TOTALS			697	100
TABLE 5.3 (CONTIN	- UNDER	TRADIT	AL APPROA	
NORMAL SIZE PROJECTS	60	46	77	12
LARGE SIZE PROJECTS	60	38	63	10
NORMAL COMPLEXITY	60	44	73	11
high Complexity	60	34	57	9
SPECULATIVE < £5M	30	24	80	14
SPECULATIVE $>$ E5M	30	21	70	11
BESPOKE CLIENTS	60	41	65	10
INDUSTRIAL PROJECTS	60	42	70	11
COMMERCIAL PROJECTS	60	42	70	11
TOTALS			632	100

MANAGEMENT CONTRACTING

1. Best performance can be achieved under a management contract for a bespoke clients building an industrial projects with a cost greater than $£ 5 \mathrm{~m}$ and an area more than 7000 sqm .
2. High performance can also be achieved for speculative developer building commercial projects which are complex and costing more than $£ 5 \mathrm{~m}$. A management contract should similar performance for Normal size profects with normal complexity .
3. Poorer performance was noted by speculative developers on building projects less than $£ 5 m$.

TRADITIONAL CONTRACTING

1. The traditional approach can provide best performance for speculative developers on building projects of normal size with a low level of complexity.
2. Clients who are building industrial or commercial projects costing less than $£ 5 m$ of normally complexity also showed good performance within the traditional contracting sample.
3. Poor performance under the traditional contracting was evident for bespoke clients who were building large projects with a high level of complexity.
B) Another important task that the clienl should examine before selecting a procurement method is his experience and ability in manaping his pro.ject. It seems that the selection of a managenent contractor can be ideal for inexperfenced clients which do not have the appropriate level of in-house expertise to manage a project. Having studied the characteristics of a management contract, the client can have the advice of a person experienced in the industry acting as his agent.
C) The one feature which stand out in the successful management contract is the considerable commitment by clients in their projects. This does not mean involvement in the minute of projects, but the ability to structure their organjzation in order to make decisjons quickly when unforeseen problems arise.

5.4.2 IMPLICATION FOR THE INDUSTRY

A) From the evidence available, we must conclude that (unsurprisingly), neither of the systems; management nor traditional contracting is the solution to all of the problems facing the construction industry. To achieve project success the parties need to match the various organjzational forms to the type of clients, his criteria and priorities in respect to time, cost and quality. Similarly the characteristics of the project and, to a certain extent, the characteristics of the professionals need to be mat.ched.
B) Even though attitudes of the clients discussed in chapter two are influenced by the experiences of individual clients it seems that there is room for improvement in the management contracting system. One such shift would be for the industry and in particular the management contractors to adopt a professional-as opposed to commercial-role. Yet this change may be shaped by clients who can do much to fashion events by matching their own procedures to the requirements of the procurement method they have chosen. Project success is orten elusive but the appropriate mix of client control and procurement method can make it less so.
C) Whatever form of procurement method is selected. there need to be an increase in employing an independent advice services in UK to providing pro.ject planning. and progress function services. These services can rive the client a tremendous control over planning and programming of a given job and, moreover, total control to the contractor. With these services, inexperienced clients will obtain similar inputs to these who are experienced with in-house lechnical and manaperial facilities.

5.4.3 IMPLICATIONS FOR OTHER RESEARCHERS

A) Now the JCT has published a model document for a manapement contract, the author suggest that there is likely to be particular value in further exploration of the following : -

1) looking to the area of defining the responsibillty of the parties involved in the contract in legal sense eg. what changes
or effect is the changing role of the architect have on the contract.
ii) looking to the problem of quality control. Who is responsible for the quality supervision and control. If it is the architecl then where does the management contractor stand and vice versa.
iii) looking to the area of tendering document i.e., what informations are needed for the sub-contract jobs and where does the sub-contractor stand in the contractual document and tenders.

Appendix 3 enclose the standard form of management contract that was published by the JCT in Dec. 1987. This can be used as a guide in investipating the above areas.
B) The model used in this research was found very use $[$ ul to point those variables which had to be measured and controlled in data collection and analysis. The research, however, is imediately applicable to the field of industrial and commercial buildings and, particularly, new construction. Thus, the author suggests that the mode] can also be used to compare other forms of procurement methods or procedures on other types of buildings.

The methodolory used in this research was a cross-sectional one and has provided a sound basis for comparing the performance of management contracts and the traditional methods of building. procurement. However, other useful information on the difference between procurement methods could be collected using a
lonpitudinal study. For example, to choose one contracting organization, constructing two identical type of building, one for each procurement, and following their projects through to completion. By this approach, the study of the environment and the relationships can be fully understood. The quality of the relationship between team members is increasingly recognised as a particularly critical factor of building team performance and is, as far as it is known, relatively little rescarched.

To be effective, such a methodology will require extensive collaboration between all those involved in commissioning and procuring the buildings. However, it is only through analysis to ongoing projects, from their very earliest stages through to completion, that it will be possible to develop a better understanding of the influences on the building process and, in particular, project performance.

Affoo, S.J. 1982 'An insight into Management Contracting' The Edinburgh, M.SC. thesis (unpublished).

Armitage, P. 1971 'Statistical Methods in Medical Research' Oxford, Blackwell Scientific Publications.

Ashridge Management College and Research Unit, 1979 'Flexibility and Efficiency in Construction Management' Building Industry Group for Department of Education Report.

Banwell, Sir Harold 1964 'The placing and management of building contracts' The Banwell Report Ministry of Public Building and Works, H.M.S.O., London.

Banwell, Sir Harold 1967 'Action on the Banwell Report' HMSO, London.

Barrie, D.S., and Paulson, B.C. 1976 'Professional Construction Management' J.Construction Division, ASCE, 102(3), P 425-436.

Barrie, D.S. 1979 'The Trade Contractor's View of Construction Management' J. Construction Division, ASCE, 105(4). December 1979, PP 425-436.

Barrie, D.S. 1980 'Guidelines for Successful Construction Management' J. Construction Division, ASCE, 106(3), September 1980, PP 237-245.

Barrie, D.S. 1981 'The Construction Mananagement Market' J. Construction Division, ASCE, September 1981.

Bayley, G.B. 1973 'Building: Teamwork or Conflict' Godwin P 10
Bennet, Professor J., and Fine, B. 1980 'Measurement of Complexity in Construction Prodects' Department of Construction Management, University of Reading.

BDP, 1985 'Thinking about Building - A Successful business customer's guide to using the construction industry' Building EDC, NEDO, London.

Bishop, D. 1968 'The Background to Management Studies' B.R.E. Building Station, Paper 60/68.

Bovis, 1983 'The Bovis Management Contract - What it is' (Unpublished Paper).

Bovis, 1976 'The Fee System of Building Publicity' 1 st January 1976, Harrow.

Bromilow, F.J. 1977 'Procedures for Reckoning and Valuing Performance of Building Contracts' 2nd Edition, CSIRO Division of Building Research, Australia.

Bromilow, F.J. 1974 'Measurement and Scheduling of Construction Time and Cost Performance in the Building Industry' The Chartered Builder, Vol. 10, June-July 1974.

Cannel, J.B. 1968 'Tendering Procedures and Contractual Arrangements' The Building Economist, February 1968.

Carter, J. 1972 'Management Contracting' Architect Journal, 13 December 1972.

Carter, J. 1973 'Management Contracting: the Horizon Profect' Architects Journal, 14 February 1973, PP 395-400

CCMI, 1985 'Survey to Management Contracting' Centre of Construction Market Information, February 1985 London.

Clamp, H. 1984 'Practice' Architect Journal 22 February 1984

Cleland, D.I. and King, W.P. 1968 'System Analysis and Pro.ject Management' McGraw Hill, NewYork.

CIRIA (Construction Industry Research and Information Association) 1983 'Management Contracting' Report 100, London.

Construction Management (1972) 'Putting Professionalism into Contracting' Construction Methods and Equipment, USA.

Cornick, T. 1987 'Time to Sort Out Management Contracting' Building 13 February 1987.

Cottam G.D.G. 1985 'Management Contracting and Package Deals' Institute of Civil Engineers, London, P 55.
D.H.S.S. 1986 'Management Contracting for Health Building - A Comparative Study' Study for Dep. of Health and Social Security By Martin Barnes and Partners, 1986, London.
D.O.E. 1982 'A Guide to Methods of Obtaining a New Industrial Building in the UK.' DOE, September 1982. London.
D.O.E. 1984 'Register of Construction Firms' 3rd quarter output analysis by size of firm, September 1984, London.

Downing, R. 1982 'New Face Looks for Management Business' Contract Journal.

Dunway, J. 1973 'Management Contracts - A PSA View Construction' DOE, 13 December 1973 PP 29-30, London.

Echenique, M, 1970 'Models, a discussion' Art May 1970.
EDC, 1978 'Construction for Industrial Recovery' HMSO 1978 PP 7.
Emerson, 1974 'Survey of Problems before the Construction Industries' H.M.S.O., London.

Engineering News Record, 1982 'Leading Construction Management Firms in Close Race' ENR April 1982.

Ferry, D.J. and Brandon, P. 1980 'Cost Planning of Buildings' Granada, London.

Fine, B. 1971 'Estimating Techniques and Tendering Strategy' Fine and Curtis Ltd. Management Consultants (Unpublished Paper) London.

Fisher, R.A. and Yates, F. 1974 'Statistical Tables for Biological, Arcitectural and Medical Research' 6th Edition. Oliver \& Boyed Ltd., Edinburgh.

Fisher, R.A. and Yates, F. 1974 'Statistical Tables for BiologicaL and medical Research' 6th Edition, Oliver and Boyd Ltd, Edinburgh.

Foxhall, W.B. 1972 'Professional Construction Management and Project Administration' AIA and Architectural Record.

General Services Administration, 1970 'Construction Contracting Systems' Public Building Service, Washington D.C.. March 1970.

Greene, J. and D'Oliveira, M. 1985 'Learning to Use Statistical Tests in Psychology' Open Guides to Phychology, Open University Press 1985.

Guest, P. 1986 'Better Safe ...' Building 17 October 1986.

Harris, R. 1974 'Package Deals' Department of Construction and Environmental Health, The University of Aston in Birmingham, M.SC. thesis (unpublished).

Hayes, R. 1986 'Who Carries the Risk. Management Contracting Yesterday, Today and Tomorrow' Building Technology and Management, CIOB, June 1986, PP 42-45.

Heery, G.T., Davis, E.M. 1976 'Construction Programme Management' Building Technology and Management, London, PP 22-26.

Higgin, G. and Jessop, N. 1965 'Communication in the Building Industry' Tavistock Institute, London.

Higgs and Hill 1979 'Introducing the Higgs and Hill Management Fee Service' (unpublished).

High-Point Research \& Studies, 1985 'Management Contracting What Makes it Worthwhile ?' Conference at the Marriott Hotel 17th April 1985.

Hill, A.B. 1962 'Statistical Methods in Clinical and Preventive Medicine' Edinburgh, Livingstone.

Hillibrant, Professor P. 1977 'Economic theory and the construction industry' Macmillan Press Ltd.

Hillebrant, Professor P. 1985 ' Analysis of the British Construction Industry' Macmillan Pres Ltd.

Ireland, V. 1982 'Managerial Actions and Cost, Time and Quality Performance of Commercial Building Projects' Unibeam, Vol XI, PP 71-80.

Ireland, V. 1983 'The Role of Managerial Actions in the Cost. Time and Quality Performance of High-Rise Commercial Building Projects' University of Sydney in Australia, Ph.D. thesis (unpublished).

Jordan, M.H., and Carr, R.I. 1976 'Education for the Professional Construction Manager' J. Construction Division, ASCE, September 1976, PP 511-519

Laing, M. 1968 'Ethics and Conduct of Contractors' Building Technology and Management August 1968.

Langford, D.A. 1984 'A Review into Construction Services in the USA' Brunel University (unpublished).

Lawrence P.R. 1981 ' Organization and Environmental Perspective in Vande Ven and Ferry' CH. 7.

Leon, G. 1971 'The Economics and Management of System Construction' Longman 1971.

Luder, 0. 1969 'The Private Architect and the Deal' Building, February 1969.

Luder, 0. 1970 'First Catch Your Contractor' Building, 26 June 1970, P57

Marler, M. 1983 'The BPF System' Building 16 December 1983.

McKinney, J. 1983 'Management contracting' CIOB, Occasional Paper No. 30, January 1983.

Meade, K. 1983 'A Square Deal Package' BSc hesis, Department of Civil Engineering and Construction, he University of Aston in Birmingham.

Mobbs, G.N., 1976 'Industrial Investment - A Case Study in Factory Building' Slough Estate Ltd, Slough.

Morris, P.W.G. 1973 'An Organizational Analysis of Pro.ject Management in the Building Industry' June 1973, P 601.

Morris, P.W.G. 1972 'A Study of Selected Building Projects in the Context of Theories of Organization' PhD. thesis, Department of Building, UMIST (Unpublished).

Middland Study Centre for the Building Team, 1982 'Management Contracting' Course Documentation, Conference at the Centre in Birmingham, 1st December 1982.

Middland Study Centre for the Building Team, 1984 'Taking the Wraps Off Management Contracting, Conference at the Albany Hotel in Birmingham, 27th June 1984.

Mintzberg, H. 1979 'The Structure of Organizations' New York, Prentice-Hall, USA.

Murdock, J. and Barnes, J. 1974 'Statistical Tables' Second edition, Macmillar 1974.

Naoum, S.G., and Langford, D.A., 1984 'Management Contracting: a review of the system' Volume 3 Proceedings of the CIB W-65 Symposium on Organization and Management, Waterloo, Canada, October 1984.

Naoum, S.G., and Langford, D.A., 1987 'Management Contracting The Client's View' J. Construction Division, ASCE, 113(3), PP 369-384.

Nahapiet, H. \& J., 1982 ' Project Characteristics, Contractual Arrangements and Organization of construction : Case Studies From the USA and UK.' Oxford Centre for Management Studies.

Nahapiet, J. \& H., 1985 'The management of construction pro.jects - Case studies from the U.S.A \& U.K.' C.I.O.B., Ascot, England.

Neate, G. 1982 'Introduction to Management Contracting' Middland Study Centre Conference, Titled-Management Contracting, December 1982.

NEDO, 1983 'Faster Building for Industry, Building Economic Development Committee' NEDO, London.

Newcombe, R. 1988 'Anatomy of a Construction Project' Unpublished work, Department of Architecture and Building Engineering, Bath University.

Norwest Holst 1986 'Introduction to Management Contracting Offered by Norwest Holst' (Unpublished Document).

Oppenheim, 1966 ' Design and Analysis of Questionnaire'
Philip, J. 1950 'Report of the Working Party on the Building Industry' HMSO, London.

Rad, P.F., Miller, M.C. 1978 'Trends in Use of Construction Management' J. Construction Division, ASCE, 104(4), PP 515-523.

Royal institute of British Architects 1974 (1st. edition) 'Handbook of Architectural Practice and Management' RIBA, London.

Rice, A.K. 1958 ' Productivity and Social Organization' Tavistock Institute, London.

RIBA 1980 (4th edition) 'Handbook of Architectural Practice and Management' The Institute, London.

Rowlinson, S. 1987 'An Analysis of the Performance of Design Build Contracting in Comparison with the Traditional Approach' Department of Mechanical Engineering (CSU), Brunel University in Uxbridge, PhD. thesis (unpublished).

Sidwell, A.C. 1979 'A Field Study of Organizational Forms' Department of Construction and Environmental Health, The University of Aston in Birmingham.

Sidwell, A.C. 1982 'A Critical Study of Project Team Organizational Forms within the Building Process' PhD. Thesis, Department of Construction and Environmental Health, The University of Aston in Birmingham.

Sidwell, A.C. 1983 'An Evaluation into Management Contracting' Volume 1 Construction Management and Economics, PP 47-55.

Sidwell,A.C. 1984(a) 'The Measurement of Success of Various Forms for Construction Projects' Volume 1 Proceedings of the CIB W65 Symposium on Organization and Management Research Laboratory, Waterloo, Canada.

Sidwell, A.C. 1984(b) 'Concept and Background to Management Contracting' Conference in the Midland Study Centre, Titled-Taking the Wrapes Off Management Contracting' Birmingham, June 1984.

AFPENDIX ONE
ROLE OF THE MANAGEMENT CONTRACTOR
SOURCE : WOOLF FROJECT MANAGEMENT

Having developed Management Contracting in the United Kingdom over the last fourteen years, our Managing Diractor is committed to this form of contracting and will personally ensure the success of every project undertaken by us. Management Contracting as applied to major construction projects, was introduced in 1968 with the Horizon Project at Nottingham for the John Player Company. Our Managing Director, David foolf, was Resident Project Direčor on this scheme and has been to the fore in the development of Management Contracting ever since.

This form of contractiug has become increasingly recognised throughout the industry as a logical and commercially attractive alternative to traditional tendering. It has been particularly designed to meet the most stringent requirements of puilic authority accountability. The Manayement Agreement ensures that the contractor forms part of the client's team from the outset, responsible Eor co-ordinating on his behalf the construction planning, management and execution of the project. It means what it says: Management by Contract, cn a fixed fee negotiated in advance. It creates an identity of interest between the members oi the design and building team and, because of the involvement in the project from the start, design, tendering and construction periods overlap, with a consideraiie saving in time and cost.

Building is the only major industry in this country in which design and execution are normally dirsed. A Management Contract bridges the gap; above all, it means that throughout the whole project the main contractor is on the client's side.

Because of early involvement it means that the real cost of the project is exposed at an early stage and appropriate action can be taken where it is most needec. The Managinc Contractor is able to ensure that the project benefits from the aost economical methods of clesigin, construction, site procedures and materials handiing. Claims can be minimised by anticipation and by taking action before they become unavoidable.

The works are broken down into Sub-Contract Elements. Benefits from competition can be maximised since all Sub-Contractors are selected by competitive tender. The Managing Contractor, because he is working on a fee basis, can act in the client's best interests and without the adverse influence of profit motivation. In our experience the Management Contract is the cheapest and quickest way of getting large, complex projects

 having beea sorted out at the time of the event in the majority of cases will emerge rapidly and the preparation of the draft final account, dhich and probable actual cost. During the later stages planandmaintain up to date records of committed co-ordination of all activity on the site. witn the contractor's role is, therefore, one of control and cork onsite is undertaken by bona fhe Managing While the Managing concractor's relactons all ohisionl While the Managing Concractor's relationship with management of the project. networxs; the establishment of the avallaning and quality standards; the preparation of pre-concract alternatives from the points of view of cost, time,
ease of construction and achievement of the hizaest the desiga teami the assessment of design design from the point of view of construct
management; the feeding of real cost informaticn to project, but will usually include the assessment of proressional ream. The exact nature and extent of the supplies extensive pre-building services to the management and execution. The Managing contractor the client and his professional advisers for the
entireproject, inciuding construction olanaing, A Managing Contractor therefore is responsible to client as is normal in traditional tendering The professional team of Architect, Quantity
Surveyor, Structural Mechanical and Electrical
Engineers is selected and appoinced directly by the TEB ROLE OP TEQ MANAGING CONTRACTOR was adopted. constructed and applies equally to projects which
would be largely sub-let whatever form of contract INTRODOCTION cont'd
 agreed that che time was commercially rights,
that certainelements were sought earlier togain
other specific advantages.

 FIRMING OP TEB COST PLAN
 contractual terms. commenced, all parties are torally aware of what is

 Gu!̣beuew ayz pue paupreuter aie weaz truotissajozd

 client's agents. He is responsible for completion
 best prict

 anaging contractor is competent and the

 $\overline{\text { saiqunikitayd }}$

sวunosor truṭ pazibe, sjozorajuos-qns (p)

required.

could reasonably expect in a traditional situation． cisk is minimised by more information than they

 There are no nominater which effectively means that Individual price on every sub－trade． cenderer would not necessarily give the lowest traditional contract where the lowest main contract K䒑夫A
 SむSOJ ．S\＆OIDY\＆INNOD－BDS rraditional means． arises on large contracts which are deale with by the provision of these services is con a conticontractors which inevitably as part of the cost plan．The main critaria for
 The common services costs are established between
the Managing contractor and the client＇s sub－contractors multi－service gang unloading and attendance
in order to avoid interface problems berween
 scaffolding which is required for more than
one trade contractors

are not peculia

For instance：－ | TEREK z47 |
| :--- |
| TeId ueप7 | reliminaries，the only direct costs

All alternative design solutions will be evaluated
in respect of building costs and future mechanisation． plant，materials and onficular emphasis on operational simplicity and design solutions．Account is taken of economical

 $\frac{\text { LNAWdOTAAGG NSISGQ }}{\text { 5NI }}$
－フコセエコบ

 sub－contracted activities on site． documenting the sub－contract cender and controlling
 rsponsible for all activities carried out on sice．

> to turnover, will decrease
contractor＇s fixed fee，considered as a percentage

importance of ensuring apubcontract control markets and thus they fully understand ther
importance of ensuring proper subconcor

Assistance will be given to the design team in
supplying informationfor approvals．parciaular
arcencion will be paid to developing acceprable
site trafic density routing and access．Car
parking for operatives，hoarding，sight lines and
all statutory authoricy approvals for temporary
hurting，water，electricity and telephones and
drainage services will be sought direct，or in
conjunction with the design teamas appropriate． Assistance will be given to the design ceam in drawing and schedule monitoring systen．in
addicion，tha responsioility of drading
distribution will be determinedatan earlystage．
 Advice will be given on design details and working
drawing production，particularly in respecr of ajse
 as necesary，at the des 0 inspect standards，wirness performance requirements of components．we shali， We shallassist in the preparicting the
specifications for the work，including We shall of
 of building materials in respect onde．We components．we shall maintain a continuous revict
of building materials in respect of cost We shall assist in the selection of materialsand

Together with che services designers，we shall
assist in development of design of al
installations and commissioning procedures co
ensure chatefeeciveco－ordintion intime of ehe
various services can be achieved and that economic
and practical design options are employed． special building work，
or accommodation requirements
construction plant and equipment． We shall denote bilal building work，structural loadings，fixings

DESIGN and assist in determining all

亿01740J 70 5！5E日 budget costs thus ensuring the establishment of an agreed design aspects in relationship to construction and
 design，programming the cost planning of＝at Upon apooincment，the Managing Contractor orovides
expertise to assist the designers in advancing tise Pre－Contract Planning

selected specialist firms．

 than more craditional forms of contract，each building work is obtained at more compectract，each
 Introduction
 2प7

 From this chart che numbers and rypes of drawings
 In general，ther asisted by the Managing contractoris
Quantity surveyors are to：－ In general，the duties of the professional Quantity －コunoدov TEUT』 əपन $20 \mp$ pue Junojoe vo as being responsible for certificates for payments and budgeting control systems，cash flow，as well regard to costs．ge is intimately involved in cost of paramount importance as it is that of a watch
dog on behalf of the client on all matters with

 Consant up da＝ias of che informazion submiE＝ad so
the consultants will provide the basis for the
Einal account． Assessnent of Eneir value will ba mada anc
recommendations Ejrwarded to the consultants． be established within the cerms of the contract． chese will be scrutinised by che Managing
contractor and che validity of any such claims will Should any clains be submitted by sub－contractors at defined intervals． intormation wita be issued at regular intervals to assessed on the master programme．The resulcant
informacion will be issued at regular intervals ro A further turnover graph will be prepared based on
the total achieved turnover of the project， period stated in the contract contractor will be agreed and made within the be used as a guide to the sub－contractor＇s progress
on site．all interim payments to the sub－ in accordance wi＝h the agreed programme．This dill in conjunction with the sub－concractor and prapared and after adjustment for materials on sita，etc． Interim certificate applications will be collated within the agreed budget control and allow the design team to audic and cost analysis to maintain effective financial

p，zuos TO甘LNOJ ISOD
major design actiongionstruction，conseruction
purdehasingi
and commissioning of each major element of

 design together with the various activities， examine all resraints associated with the Upon appointment，the Managing Contractor，in Master Programme

－pazuəmatduy aq pinos＇səifyed tip of əiqeadasoe IT

 requirements of a particular project． selective control．He will， design team，set up planning techniques to meet the
 The comme planning and the implemenation of
 Saynaajoyd 9NINNFId

（1）agree and certify the final account

 （k）obtain and pass to client probable monchlyE （i） E Ξ ミ ミ（5）（3） （a） （p） （0）

 The choice ó prospective sub－contractors should be successful completion of any project． The selection of sub－contractors for key elements
will be one of the most important factors in the S甘OJJ甘甘JNOJ－GDS

 imposed by the master programme．Sub the design team，respecting restraints Network programmes will ben poth sub－contractors and ut pexedaid oq T．TTM sowmexboId yIOMJon －voțjeuṭuexz pattejop
 ExIOMJZN－qnS

 or conventional CPM form，will identify the key
dates co be achievedforeachmajor package of work dates co be achieved for eachmajor package of work
and provide a basis for the preparation of a more decailed analysis，culminating in sub－networks and the development of a comprehensive programme of all
activities．All programmes will then be presented activities．All programmes will then be presented
in a bar chart form． （b）

Initial Tine and Proaress Schedules

 design team workload． packages and associated tender will be prepared indicating a a $\frac{1}{r}$Iniclally an Out to Tender schedule

 and to be
contractor
 allocation, service plant and
amenities co be provided by che

 provided by the Managing Contractor. appendix to general conditions
setting out attendances to be contract terms and conditions acceptance of, or agreement to
variarion from, the standard subwork: tender documentation for each package of

\qquad pasicapr KTtewioj aq ITIM siajapuaj

 contractual documentation and by gaining the
sub－contractors co－operation by assisting him
to become more effective． the application of realion and by gaining the
 manufacturing programmes
Control of Sub－contractors

PUE SEUTMEIP GUTYIOM OSTTEUTJ（TX） pue soutmexp butxコom ticuta

 finalise method statements and
detailed programmes

 progress chase off－site works sコu®atnsuos oria
 swəコsK์s
 － 22
 （ 7 ）

PROCEDURE POR TEB SELECTION AND APPOINTMENT
$O P$ SOB－CONTRACTORS CONE＇d

（f）	（i）	establish proper and effective lines of communications
	（1i）	set up production controls to malntain acceptable construction strategy and progress
	（iii）	implement and maintain procedures to control quality of all construction work and installarions
	（iv）	provide a proper working environment to maximise output and promote good industrial relations
QUALITY CONTROL		
（a）	On－site the Management Contractor initially controls quality by ensuring that only sub－ contractors with a proven history of jobs completed to the required standards and quality are invited to tender for this work．	
	The following functions in respect of qualicy control will normally be carried out：－	
	（i）	ensure that the drawings and specificacions are correc： incerpreted and that construction follows the drawings and specifications
	（ii）	set standards，where possible，using sample areas of work as a yardstick or by entering into contracts of sample＊．
	（i1i）	check all work prior to the next acrivity being carried out
	（iv）	ensure that work sequencing allows high quality standards to be maincained
	（v）	check sections of work at completion
	（vi）	ensure correct measures are taken to protect work completed to high standards
	（vii）	where necessary，persuade sub－ contractors to install additional quality controls without increasing the job cost．

（e）Forecasts of bottlenecks（with action
โロココロכ 2503 （P）
ssal 6oxa uoṫコロココsuoj（q）
（a）Design Progress
the current situation．Typical contents include：－ dates，which may be monthly or quarterly，to state then prepare a detailed report at agreed cut－orf accordance with the time and cost plan．We will

REPORTING PROCEDURES

 ur mous of sin patqeue sey pue mopbuty pefiun
 poob butnupzuos ul peztnszisey Xydosotivd sius industrial relarions and we rake the initiative in
 SROİYaTy TVI甘ISOANI that they conform to the specifications．

コケ5ーヨコロ
$\bar{\sigma}$

QUALITY CONTROL cont＇d

$\stackrel{N}{\sim}$

AFPENDIX TWO
OFGANIZATIONAL DIFFERENCES
BETWEEN UARIOUS MCS
SOURCE : CIRIA REPORT 100

The mangement contract.

COITRACTOAL

OEGAIISATIOHAL

Contractors
The construction mangement contract.

COITRACTOAL

ORGAIISATIONAL

The design and magement contract

AFPENDIX THREE
FORM DF MANAGEMENT CONTRACT

SDURCE : JCT (1987)

CONTENTS

	Psoe		Pago	
	ARTICLES OF AGREEMENT		Contract Documents - other documents Works Contracta (1.9 to 1.12)	
	Recitals			
		1.9	Custody and copies ol Conlract Documents	16
	First 7			
	Second 7	1.10	Further drawings and detals	16
	Thurd 8			
	Fourth Fith$~$ 8	1.11	Limits to use of documents	16
		$1 \cdot 12$	Copies of Works Contracts	16
	Articles ${ }^{\text {a }}$			
1	The Management Conlractor's general obligations \qquad		Certificates - lasue-effect of Final Certificate - oftect of other certificates (1.13 and 1.15)	
		$1 \cdot 13$	Issue of certilicates	.. 16
2	Payment by the Employer . .- 8			
		1.14	Elfect of Final Centificate	16
3 A	Architect 8			
	Contract Administrator 9	1.15	Ellect ol certilicates other than the Final Centicate	17
4	Quantity Surveyor .. . 9			
5	Protessicnal Team 10			
6	Project Drawings, Project Specilication, Contract Cost Plan, Appendix Part 2 and Third and Filth Schedules \qquad			
7				
	Drawngs, specifications and bills of quantilies lor Works Contractors or oltervise $\qquad$$\qquad$ 10		Completlon	
			Employer's notice requiring Management Contractor to procesd - possession of	
8	Serlement of dispules - Arbitration-.......... 10		the site (2.1 to 2.3)	
		2.1	Employer's nolice requiring Management Conitractor to proceed	18
	CONDITIONS	$2 \cdot 2$	Management Contractor not to proceed deemed determination of Management Contractor's employment \qquad 18	
	Section 1: Intentions of the Parties			
	Interpretation definitiona etc. (1-1 to 1-3)	2.3.1		18
1.1	Method of relerence to clauses 12	2.32	Delerment of Possession	18
1.2	Aricles etc. to be read as a whole 12	23.3	Possession by Management Contractor	-.. 18
1.3		2.3 .4	Use or occupation by Employer 18	
	Obilgatlons of Management Contractor (1.4 to 1-8)	235	Insurers - addrional premium ...--............. . 18	
			Practical Completion of the Project and Defects Uablity Pertod (2.4 to 2.7)	
1.4	Co-operation with Professional Team ...__..... 15			
1.5	Specific obligations of Managoment Contractor \qquad 15	2.4	Cerificale of Practical Completion 19	
1.6	Obligations in Third Schodulo . 16	2.5	Schedule of delects - securing the making pood of defects \qquad 19	
1.7	Management Contractor's liability to Emptoyer \qquad \qquad 16	26	Certificate of Completion of Making Good Delects ... \qquad \qquad 19	
1.8	Compliance with Instructions 16	2.7	Frost .-.	19

 nemo. and

 cormerce une constructen of on Provect

 Propet on ecocrdence man Ariciel.
 Agremert it usicd in ma Apoment

Now is hereby agreed as follows

anticte 1

 are in woordence wen metion 4 .
armactin icf Pr The rom the Avernect in me Conctione athel meen
\qquad
of lor whose rogrowed office in muned all

\qquad
\qquad

Whereas

 Wht Aricte 81.
\qquad
\qquad ${ }^{7}$

Anticte 36 [a] fol

Corver

0 \qquad

Article 4 ibl

01

anctes
\qquad -
\qquad

Arnt

procet 1 orunges	4	
Soectranion.		
Pren Apoerior	62	
Pon 2 and tind		
Onfins		

 Mencornawl Contictior and completed of its Proder wand Tam

 Prowed Drewnge. Me Prowat Specicmion and the Cortrich Cod Plent.

Ormerg. serciciciom x^{2} on of ourstion low Worts Contriciors of onverese

wetce 7

artel 1

-

In the prosence of [a]

Pootues	1411	
	\cdots	

THE CONDITIONS hereinbefore referred to
SECTION 1: Intentions of the Parties

untood romercel 1.1 socterten		 rection of ine Conotram	
Anciot me to de rect 18 a mion	1.2	 Scrocour	
Orename	1.2	 	
		Worde en minces	Mements
		All Aring maursice	wescrevee 82
		Apponatc	and min Perl 2 mornad. by me Errotorm and ind Maneogmand Conti ictior.
-		Aobarmor:	
		Anticet or Ancive of Aroomery	Ne Anctar of Agreemert to with the Conditions we armeried of any one of the Anicien.
		Arcruect	We person nampa in Antele 30 or ary wecerser oun person to bo we Actmect.
		Comieste al Comptation of Maning Cood Dewects:	ceectume 26.
		Comoveron 0 we.	the Deve tar Completion or ery other dewt lined under ciruse
		Conariom:	
		Comurustion Ponoc:	the perod timivg with the day when ine Mencopernext oey nemed in the cersicale of Precteas Comotetion.
		Construction Pevtod Mernagenern foe:	ne triod in Ma Appondit on in Condrucion Perod n eccordence mencherve 4102.
		Contuel Aommurmor:	The person nextad in Ancte 30 or emp wecersior duly persion to be ime Comicica Aominvisuma.
		Contret Complor	The Propect Oromegs and ithe Pronet Spocitication and

Contrat coup pian toter	when tole coot not newot ine Monegement fies
Comract Documant	of Agrestany ins Condiont ins Aocenory in Co
Dese ler Comovior	neromes so ciante 13
Osice of Ponterson	Mra dere hred and ulied on the ADomion now reterence so crave 2 J I.
Datectillemay Panod	clave 25
Emotow	me arsion nemed is me Emotore on me ant norement
Excroded Arese:	ructeer han or hom mivy mucten wasto trom wa combly Masarown procorits of ory endoant mucter mit sonce sowes.
Final Comitaser:	me cornticene to whach chave 112 revery
matuction:	aremectite Comisel Admarimot
Inxewn Conticase:	
Jown Nemere Pobcr.	- poticy of murmine mech actudes ine Mone Comisciot and tha Emporw at ing onerod
Managemane Cortictor	ime person nemed it tre memogonery Contucio Ancies of Apreerimet.
Manegman Contictor't Meneger on mar:	clave 3
Menegomert foer.	and ind Consivction Pwod Monogentulf
persor:	
Prscricel Complatert	nee ceren 24
Pro-Comivictor Prot	me period stering on ine deve ot ercection of ors Posiericon.
Pro-Comanuctron Pwod Maniogonvet foer	Wh mours with is per of we mongomen ife al Scheove mactied to. the Aoperions
Preminey mavictiors	en mancion retered so in cleume 3 it 3
Prome Coor	uns cond of tha fropach mecertionad a mecoroenc: reoend setreation
Proterwanal Teert	
Promet:	Mo bulding morks brathy deacriond an me forn

Aowa Crange	 ena me menegement Coniscio.
	50 ctene 213
Ampa Sposacemore	me soecacemon bor me Prowed woon uncen man Contrect
arruy smpor:	me person nemed in ancicto ar my weconso adr wod tre cherutir semporo.
Mreador aroume	Ancto $:$
nomore frext	Comisal conomom
Amwore	mestrem 4 \%.
strases:	Hn Scheoture to the Congion. Hnt in ine Find and Second ine Fith Schedule el compleied end antigited bp or on behelf of the Emplorw and ind Menegeriout Cornrtictor.
Sso Memener:	seocture 83.
Socosod Prate	Ma. notump. axplotion, Herm, lemport, nood, burting od
Semary Anowemex	200 creen 51.
vat roremate	moscrume sa
morucormex	The conwect betueen the Mernegennert Cortrector ford Works Cortracion an relerred 10 an chante 52.1 .1 and oefined on the Worte Contited Conctront, chove 13 etc the worte Cortict Conamions:
wore Comma Conamore	ma Conomons Morks Convicult meth wo mocroorsted nou tre worts Comiad oy Ande $12 n$ morke Conticul. section 1

 oor nomod a sech cendeme

 atore me Comptoton Dera

 ane.

 unsenoneor marivi

crearea
solocte - mecurn derects

Certicase or compretion a Mating Goos
Oriecis

Fion

 Hoon plicele batore Practicel Comotition
[a] Portial poscreation by Employer
mplover 1 matr - 3 Conticecrore combore
anctical
complation
ativart pen
prociser pen
nsurance -
recevery per

Laremener -
demorer -

 ceame hal mive acenci 10

 clevse 25 that have baen meor pood he shat issue a crimicsip io men etrel

 nowore we remerex amy

 meas so me prome con

19

	811	 wow ctave 29.	
		Erimation of trre (2.12 10 2.14)	
monar	21	. 1	
		2	Complation Dese the Arctwechtre Corarsect Actrwnstitator meve in writing tri a Completion

 ins Emporew it roscormetio. in regend io me Provecion

 work.

Ertenson of
berrod or oproon
of worki Connects

SECTION 3: Control of the Project

comental
uncreat Contrid
Netrin 10 -min

 Convection roming io ime Prome
menvertione (3 3 to 301
 minerion:

 -rier

Amather 14 yricom. vormony n mes

 umb a wors Contris

3 wnow Mus Empory demen
ouncon
 Prommeny hetruction under clouri 363

0

 me Contict AOMmitator

 arnen

Me ungo sum rearonably reoured by wect Worti Conixitio in iespons

 the worke Consinet
or

end
2 enter
 purown of int Contrat

0

 Oeve bor th me purporet of mis Consict

 inemerion

 Contract Conamorn.

40 mon pocen

 ne cavere 1 IS 3

 381
 Comiction to secure the apenng wo hor modection of ary wot covered uo or wecure me

 Enoope

Hongor on ons (213 ond 214)

24

II comand

and

2 The Emotore when

 recovery by ine Emploper ruieriad io an chume 12123 and

2 kroos mecourt of ery handered and recertinad derneger diet but not valuted or recovered under claviest 210 and 211 bercives the Completion Oeve has basm arceaded by reston of me breach a noncomphence by . Works
 to

 the mound of havedesed and esceriened demeget rierred io in clevse 32122
 ten the worte Cortice with ine Worke Contracl
 In

 Comptence of ine Maneognewir Contrictor with the nerme of clevie 1.21.3. The

 espomiote lor host or cernege no me trme

 Conwactor and the Empory her ped of decherped me mount prooetry ove to

secsert fer the Proteselonel Teem to the Proted
 10 Me morkencos or other places where moth in beng preper ed lor ins Piowet bue wow
 Contricter on weth work

Crowt of works

 pentor urnce of then duy.

Averonemet
 ather, surgen the Comtacl.

 Contra Conamoret

25

 owerded agemat nomy

J We Emplover that remburve the Monegoment Convactor ine mounti ncuma

Worta by Emploper or persone emploped er angoped hy Emplepret 723 10 329
mombetin in 1.2
Cortraca Dcoment

 Corurcetor to ceave the emprog on and comotetion of me Prowed n accordence

3.2

Cominct Oocimert

 wimetol. arange lor the ereculon of weth work

Arroonomy
Ematore

Emen of and
ancumen

 on ti ceniorat.
 conomion in methen \& wel found, and
 precine locmion of ine corer
mervactiont on
3.77 The Axtaegre Conver A

Fablow

 yencer lor wion Cortrica.
 menbert of rrooe umom.

 nowity

 Cormacort in cering an men Arowal.

 clever il 1 to 412
 ne Meregornert Fow.

 atorence to cluee 42 i.

Prmene of
manes oue n coniceree

 Contriction in miving of the mevory loy onet devection.
 marte deen rounconvan

-mantror cominction

 ine em of ins lofoung:

 Vaicery

roomerner min

 crave 4102 . and

 scoorderce an mo Conomions
nese ine aun of ine befoning

 compret been waved,

44 commed

 at cocinvire remig io in eccount of wome Corticiors

y mineminex of Constivation Prod Mereporrewt foe
 scoordercet ith checep $\& 102$ and 4103

2 M. prot to ine wave of twe Proll Cornteme. Me Arme Con encesor or Con

 om ou in crame 4.104

 4.104

NCNEF CPMF: $\frac{100 \pm 10-71}{100}$
nemer

 Men Tocet
 to ctane 4102 eral 102

Mo and of tre Drect usoury Prod.

 \rightarrow and deve 492 reters

 Contractor or by ine Menegement Contictor io me Emoloptr.
servery Aopuramerta is 1018

Conemice Sisuray Aconmiant

Owngence -

Simery

Aocurrientes and
documern riterred
10 ond 110
Onorveres-

 The Siennery Acomemorti?

 van cemes J

 - cormactor.

 mone
ung

\cdots
 cooverior

 -
\cdots

\oplus
cas contion
veromer
simacr
somaction-arer
cow of merentil

 0 Enolerw.

 to oe uned in carrong as ine prover

 5141.

 provel

Aopteruton of
norumen

 mat-ramen
 nem neve me memere ovin oution

1 mopeny mide wamerno do to
1 umer ind tow.

- obrabecemos.

J derowtrition anion madow

3 men of omege ceved by of entivg from

4 ant cormionare

30

 me Emotover ive on my occeron ins Emotorer moy lbut not uressonsty o

 in comoung ory帾

 woptercos,
 woceed

 mining sucurve.

 Nan mody

 manction under clevee 34.

 mote contrectar.
 Nemen Abery.

0

 soent ery mict womi Convecio

 now ion Proer comomes shem

 may de rocuma io con min

Premeres	+00000 ${ }^{36}$

37
 and matritan down Nemes Follcy

 Crocivi wo mina to me Emotore.

 12 lm 12 wion in

 man tre delant whe have occurval

∞
rury oo damape
top oroberty -
Prowect of in
Sue manemin

 Heutron

 acome do bo me unin

 Emocre

 wercing ravy ot amege:

 ${ }^{4}$
 mollcaing

 -1.

 become Mo property of ite Enpoyer.

SECTION 7: Determination

Ownimby Consouctor

 morcont of

 Contucior Deconing macivery

 mel no mores.

 mivine riended ir.
 Propect

 monomert Corriction

4
\qquad
\qquad
∞

 mo lowithg cherow:
74 U

 Meregenvert Cortricior mad me Enptorw:

 7622
 Conrraction that be ped by the Employer:

1 Me Prome Cont and

 7.6.2 2. and

1 bree malerots o
 J ONe commotion

 0.1100179

 of vencmover.

 warmi 7 dare tron rocept meroct: of

 pemod of ithe longen neriod in the Appondin by cesion of

 mod, in arme or in ar by

 crace of

 Consurct

 Meregentil Corwneror
-

4

betrerse
 Pond
arommanan
cong
Amod

Soeched Porith 7. bepmonct me Contracior

Angine mod dien r.
of Emotore ind Mromemer convisction

Emotorwis cotion 7.10

Oremination

 zerviory ompentione.
 enception of civere 1.22

 d cleve I It mel moply.

SECTION B: Works Contractors

Werke Contrentore mitiment

Dravero
Onemese
thand
unduon-
虽
 to dervire one roted drour. and

 Contricts

 Mernoernent Consinctor.
 010

 nopentic

 Agremere morks Conticity) or

 Cowna Coramory sopions
SECTION 9: Settlement of disputes Arbltration

1 on atcele Jor micie 4, α
? on me ourtion

 donecion by
contreior

 cortactor

 Dem grion. NDaration Act 1979. Mum emen Dery

 (x)

Prober law or to Comeract

AFPENDIX FOUR㤟
MANAGEMENT CONTRACTING - THE CLIENTS' VIEW
SOURCE : COPY OF AUTHOR'S PUBLICATION

TO THE ACSE (1987)
Management Contracting-The Client's View

By Shamil G. Naoum and David Langford ${ }^{2}$

Assimact: One of the features of the construction industry of the late 1970s ment methods. Among the most popular has been "management contracting" (MC), and this has assumed a prominent place in the battery of procurement methods offered by contractors. The writers (1984) have defined management
contracting as the "process whereby a contractor is employed to undertake the co-ordination of specialist sub-contractors to complete a project. The management contractor relies upon a percentage fee or a lump sum to be remunerated for the services offered. The management contractor becomes associated with
the client team of professional advisors and in common with other profeasionals has liability for the provision of a professional service." This paper presents

who are asked to compare management contracting with the traditional method of project procurement.

Management Contracting Practice

erature to date has considered the A/E's role and the trade contractor's position in regard to PCM in the U.S., but little research has been conducted on the clients' or owners' perspectives. Moreover, research has focused on PCM rather than management contracting. Hence, this paper seeks to assess client satisfaction with the service provided by manage-

Mannoement Contractina and Management Contractors

As has been noted, since the 1960s progress has been made in developing contractual procedures that provide a variety of organizational of the desi introduction of the contractors' skills at various stages of the design process. Several reasons for this development may be identified. Construc-
tion techniques are becoming more complex; confidence in the professionalism of contractors has been increasing; and the need for a reduction

TABLE 1.-History of Management Contractors

Year (1)	Number entered markel (2)	Cumulative (3)	Company Identification (code) (4)
1928 (MFS)			J
1968	1	1	J
1970	1	2	K
1971	2	4	A, D
1974	1	5	F
1977	1	6	B
1978	1	7	G
1979	3	10	E, M, Q
1980	5	15	C. I, L, M, P
1981	2	17	O, R
1982	1	18	H

Turnover by the Management Contractors Identifled

showed that, on average, 95% were selected through competition and only 5\% directly.
Form of Contract
In the private sector, the building team used the management contractor's own form of contract on 80% of the projects. The public sector, e.g., Public Services Agency (PSA), Brish Airport Authority (BAA), recently some large private owners have developed their own manage ment contract modified to sur the parts are based upon the Joint Contract Tribunal (JCT) or Government Contract (GC)/works 1 (minor work), 2 (major work) standard form of contract. A fundamental element of the contract is the fee structure; two types may be identified: (1) Cost reimbursement for preliminaries and subcontracting work plus a management fee; and (2) yom 8 u!penuoaqns soj juaurasmquea sndd saureumupard soj uns dunj e plus a management fee. The management fee represents the overhead lump sum fee for the services provided at the design stage.
Table 3 shows the range of fees that have been established during the
 range; these would include the general condition of the contract, competion, the extent of services, become larger.
Market Share of Management Contracting in U.K.
The market share of management contracting can be illustrated by a survey carried out by the writers by the end of 1983 . The total output of MC work is given in Table 4.
TABLE 3.-Approximato Foes

TABLE 3.-Approximato Foes	
Project value ($\mathcal{L})$	Percentage lee
(1)	(2)
Less than 2 million	$4-6$
$2-5$ million	$3.5-4.5$
$5-10$ million	$2.5-4$
$10-20$ million	$2.0-3.0$
over 20 million	$1.5-2.5$

Building procurement method (1)	Percentage of Total Turnover Oblained							
	$\begin{gathered} A \\ (2) \end{gathered}$	$\begin{gathered} B \\ (3) \end{gathered}$	C (4)	$\begin{gathered} D \\ (5) \end{gathered}$	E (6)	F (7)	G (8)	$\begin{gathered} H \\ (9) \end{gathered}$
Traditional	40	30			75	80	70	95
MC	30	20	50	25	25	15	25	5
Others	30	50	50	75		5	5	
Total	100	100	100	100	100	100	100	100
Number of projects constructed	31	20	6	40	12	40	28	6

of project time and cost has become more pressing. native methods for building procurement. Moreover, contractors have become more market-centered and have sought to stimulate demand by satisfying exisnng and new customers.

The research has identified 18 principal management contractors operating in the U.K. Data were collected during interviews with 14 management contractors and during telephone discussions with another four contractors.

The management contractors were asked when their organizations first became involved with management contracting. The results are shown in Table 1.

From the results shown in Table 1 it can be seen that the management fee system (MFS) was used as early as 1928 by firm J. It was not until the late 1960 s that "pure" management contracting gained recognition within the industry. Now it is seen as part of an essential business portfolio by most large contracting firms in the U.K. Fig. 2 plots the growth in the number of firms offered management contracting as a service. It shows no entry to the MC market in 1972, 1973, 1975 and 1976. However, the number of management contractors increased rapidly during 1979 and 1980, perhaps because at that time it was recognized by a number of influential organizations that clients could benefit from management contracting and that it had certain advantages to offer. By early 1980 many reports and articles were published, and seminars and conferences were organized to encourage the industry to talk and think about what management contracting meant and its utility to the industry. The number of contractors involved only provides part of the picture. How committed were these organizations to the provision of management contracting services?

The management contractors providing research data were questioned concerning the extent of management contracting in relation to their total turnover, the results of which are shown in Table 2.
"Although firm J stated that 100% of its turnover was obtained through a management contract, much of this work was in the form of a management fee contract, which may be identified as a hybrid form of then agement contracting. The management contractors were then ques

Contracting by Sectors

FIG. 6.-Porcentage of Management
and, presumably, complex buildings. Fig. 4 divides the value of projects

 \%

 i.e., refurbishment, remedial work, modernization, etc.

Fig. 6 indicates that 68% of the projects have been commissioned by private-sector clients and 27% by the public sector.

Cuents and Mamagement Contractno

ntroduction
 popularity, clients are still uncertain about the precise role of the management contractor. Therefore, in different ways, one of the aims of the study was to examine the client organizations to try to answer the following questions: (1) Who are the clients that used MC? (2) how do client organizations view MC? (3) why have clients used MC? (4) what
 criteria of satisfaction? (6) why is MC favored above traditional contracting? and (7) what are the problems associated with MC?

Again, structured interviews were used to supplement data collected
 headings to correspond to the questions posed above. The questionnaire was sent to 10 client organizations prior to the interview. Interviews were
 answers of each section heading, and were documented using a mini

Table 4.-Output of Management Contracting (In 1983 Pricos)		
Yoar	Total output	Number of projects
(1)	(2)	(3)
1982	$E 338$ million	83
1983	$E 580$ million	110
1984	$E 740$ million	154

By the end of 1984, a survey (Centre of Construction Market Information 1985) established a figure of $£ 890$ million of management contracting output for 1984 (U.K. only). But it was stated that some contractors find it difficult-if not impossible-to separate output to the various packages they offer. This is particularly true of management fee contracts.

Management Contracting Projects
Some of the management contractors interviewed were able to provide details of projects completed using "pure" management contracting. An analysis of 170 building projects showed that MC was applied to all types of projects and clients. The building types were offices, health facilities, factories, schools, public premises and general buildings.

Fig. 3 shows the percentage of MC by value of projects and indicates that the majority of management contracting is applied to fairly large

§

L

TABLE 5.-Attitudes toward MC In Future		
Statement (1)	Number (2)	Identifier (3)
Not decided	1	A
Not on majority of our projects	1	B
Definitely for all our projects	3	C, F, H
Definitely for our large complex projects	1	D
Fewer but definitely the MFS	1	E
Depends on our criteria	1	G

 Креәлe of Bu!n complex organizational structures and procedures.
Client A is an extremely large public organization and forms part of

 or consultants. It also supervises the construction.
All construction work is done by private contractors. Client A wanted to find the best way to improve its performance in meeting different requirements on major projects. Despite the fact that client A has constructed nine projects on an MC, the organization hasn't made up its collective mind yet regarding satisfaction with the system because of the following reasons: (1) The uncertainty of the ultimate cost; (2) the lia-

 ganizational structure of the client may have influenced contractor performance.
Client B is a large national and international banker. The type of work the organization undertakes is mainly refurbishment of existing premises costing between $£ 100,000$ and $£ 1.2$ million. The organization em-

 anjea poos aram siseq teyt uo pajpduos spalosd fey punoj uoụeztuegio
 an equal quality. Client B did not find management contracting the best method for the majority of its work mainly because of its views that
 ment jobs. In the case of Client B, the premises must be occupied while

 mitted that it would use a management contract in cases where timely tal. The organization might suffer a 10% increase on to save time.
Client C is a large national and international property developer and has a simple organizational structure with seven professionals. It constructs flats and offices costing between $£ 600,000$ and $£ 6$ million. Client
C used $M C$ as an alternative to in-house construction management. Min-

Clients for Management Contracting
According to lists provided by the management contractors, the analysis of the projects showed that the number of clients using a management contract amounted to 175 organizations and a further 38 organi-
55% of the clients used management contracting only once, 30% used the system twice and 15% were considered very specialized users of management contracting.

For purposes of analysis the clients for managements contracting were

1. Fifty percent of the clients sought purpose-built premises, and can be segmented into the following markets: (1) Department stores, 6%; (2) bankers/merchant bankers, 7%; (3) industrial and commercial facilities, 16%; (4) government clients buidding premises for their own use, 5%; and (5) other purpose-built clients, 16%.
2. Ten percent were public or private clients who commission premises for commercial or public use.

Thirteen percent were council, borough or public health authoriEighteen percent were property developers.
Nine percent were investment companies. ties.

Client's View

Introduction.-Details provided by the clients interviewed indicate that all organizations participating were very experienced and undertaking different types of work under different types of contractual arrangements. The percentage of management contracting work ranged between 3% and 8% of their total construction portfolio. Only one client had commissioned 50% of his work to $M C$ and 50% to the traditional method. All clients stated that they started using MC as an alternative to the traditional method with a view to evaluating performance.

The 10 participating organizations were asked to identify and signify their reasons for choosing the management contracting method. Prominent criteria were the following: Minimizing the overall time of the building process; obtaining reliable time estimates for the project; and suiting large and complex projects. Surprisingly, clients did not see the minimizing of the overall building cost as an important criterion. Naoum and Langford (1984) reported the following rank for clients' criteria when considering a building project: (1) lncreasing the reliability of cost and time estimates; (2) minimizing the duration of the preconstruction and construction periods; (3) increasing management contractors' involvement during the design stage; (4) more flexibility during construction, (5) reduced maintenance costs; (6) suitability; (7) providing a high degree of personal control over specialized work; (8) lower costs in use; (9) cheapest cost; and (10) aesthetic appeal.
 clients choose a management contract, it is necessary to review their attitudes toward using the system in the future. Table 5 shows the clients responses to the question of whether they will use MC again.
irrelevant to client G, but it would not use the systern on jobs below
$£ 100,000$.
Management Contracting versus Traditional Contracting.-So far the above discussions have focused basically upon management contracting. the standpoint of the client, having in mind his needs in terms of function, economy, speed and aesthetics.

Eight clients were interviewed and two postal responses received. All were asked questions that sought to compare MC with the traditional method (Table 6).

As can be seen, there is a conflict of opinion concerning the risk to be absorbed by clients when dealing with a management contractor. Clients

 the contractors' perception of risk was also different for management

 illustrate the situation:

Management contractors' profit = contractors' traditional profit - potential risk profit

TABLE 8.-Rasponzes to Questlons on Managomont Contracting vorsus Tradt-
thonal Mothod

imizing the construction time is Client C's first priority for project suc-
 management contracting but was looking for improvement in areas that involve contract documentation.

Client D is a public authority that constructs buildings for public use. The organization employs a large number of in-house professionals but had to change its structure to simplify its procedures when using management contracting. Client D has built only two large complex projects within the last 10 years. One was built using management contracting омł әSOLL ' projects cost $£ 400$ million. Management contracting was used to achieve the time scale and because flexibility in the design was necessary. Accountability was another factor that was fairly important. Client D was very satisfied in terms of time and fairly satisfied in terms of cost and quality. The organization has now commissioned a third major project using the construction management concept. All other small projects were constructed using the traditional form of contract.

Client E is a private manufacturer and retailer and constructs buildings all over England and overseas. Client E has been involved with "pure" management contracting since 1980, after having used the fee system since 1928. This change of direction came as a result of meeting with management contractors to introduce the system and to make use of local subcontractors. Their current management contracts were for a warehouse, three new stores, and an extension to an existing building. The organization has never considered the cheapest cost as its primary criterion. Time was always the most important factor because a competitive advantage was gained from a short construction period. Client e was satisfied with MC but its future developments will focus on the management fee system.

Client F is a property developer with worldwide interests and has commissioned 20 projects on a management contract basis within two years. Dissatisfaction with conventional lump sum contracting was the main reason client F was attracted to management contracting. Like client C, compressing construction time was the main criterion for adopting the management contracting system. Again, the interest on capital borrowings was client F's greatest concern. Quality was equally important because the building could not be sold if quality were lacking. Client F believes that clients should achieve greater control of time and cost. To client F, management contracting is the best way of exercising project control; that view is strengthened when the project is complex or if the client wants to start on-site work quickly.

Client G is an industrialist and retailer. The organization employs a large number of in-house professionals but, like client D, had to change its structure to obtain full advantage of MC. After meeting with management contractors and getting recommendations from other clients, client G adopted MC. The reliability of the estimated cost and time was the main reason for choosing an MC. Client G was satisfied with MC

The building industry has now experienced management contracting implications of an MC. If the management contractors' profit is equated to their management fee, then higher fees may be recommended for higher risks. This is perhaps why some clients were more alert to the nisks that may be assumed by MC. However, care should be taken to risks by the MC may limit the number of organizations prepared to tender. All clients studied agreed that management contracting is flexible in of construction: they added that cost can be controlled by changes in the design but without affecting project performance. Client H stated that "with the amount of changes our organization made for the last management contract, it could have been a disaster if we had used the traditional form of contract."

However, not all clients reacted positively regarding the assertion that fewer claims arose with an MC. Client D, while generally satisfied with $M C$, was unconvinced that MCs were less claims-conscious than tradi-

Clients A, B, F, H and I did not experience any differences in claims between the JCT traditional form of contract and MC. This was unexpected because, at stage one of the study, the management contractors stressed that the system involved fewer claims and could run an MC without a form of contract. It is seen more as a philosophy, an attitude, a contract of trust.
Frequently the time factor was seen as one of the major advantages of management contracting; none of the clients sampled commented un favorably about the MC's time performance. All clients agreed that an
MC reduces the precontract period by overlapping the design and construction processes; this enabled the project to be completed in a shorter period than for a traditional method. However, some clients added that
 considering the company's other needs.
Conflicting attitudes about the cost factor were observed. Client A is a large public organization with a commitment to public accountability. Here a mismatch between the expectations of a public body and the procedures of $M C$, with uncertain final costs, could be observed. It also seemed to cost the organization a lot more in "resource costs," i.e., inhouse monitoring and control and consultants' fees. Because of the way
client A is organized it is naturally biased toward caution in committing itself to spending taxpayers' money and ensuring that its accounting offices (i.e., the chief executive) have good answers to critical questions that might be put to them by the public accounts committees. On the other hand, although client D was a public organization, it did not feel sector has experienced cost reimbursement contracts for many years. This
 fict with the concept of public accountability than a "pure" management contract would, simply because the contractor carries out the work him-

The clients interviewed scored the performances of MC and traditional contracting. Issues such as technical complexity, aesthetic/prestige value, агам sџวа!олd јо к! discussed. Scoring was on a $1-5$ scale with " 1 " indicating the minimum management contracting and traditional contracting were scored. The results showed that both systems" rates were " 4 " for projects with high technical complexity. However, the traditional system's rates were higher
 preconstruction time is long enough to optimize design. The rating for "economy" was expected to be higher for the traditional method but, since most of the clients studied had a strong emphasis upon early completion, the lower score could be expected. The private sector clients
were particularly emphatic about the importance of time were particularly emphatic about the importance of time.

Performances for time, size and complexity due to the nature of the project were scored higher for management contracting. This might also. convince other clients that management contracting can be a valid alternative to the traditional method when these factors are of the essence. tures has influenced their views and attitudes toward management contracting. These views have, in one way, prevented the long-term use of

 cial control. Client A agrees that management contracting saves time and

 On the other hase of management contracting.
On the other hand, clients C-G, having smaller organizational struc-
tures with simple procedures, had a more positive attitude towards management contracting. However, these clients have their own limits for the application of management contracting; current experience is shaping how they will use the system in the future. The client's attitude towards management contracting could be shaped by how the building
 traditional and management procurement methods.

Management contractors and clients have criticized many contracting
organizations for entering management contracting without the right personnel. Client C noted that, "although from the client's point of view.

Conelusions

Management contracting evolved as an alternative to traditional con-
 where clients want their building quickly. However, it seeks to supplement rather than supplant traditional contracting.

Since management contracting was created around 1969, there is now much competition among large construction firms to stay in the management contracting market. The pilot study with management contrac-
tors provided a picture of the development of management contracting and its market share. The following conclusions are summarized from the analysis:

1. The use of management contracting is growing throughout the building industry. The number of contractors offering a management contract service has increased by 50% between 1979 and 1983. The numwith a market share of $£ 580$ million. There is also a tendency in the U.K. for a design and consultants firm to offer management contracting services. agement contracts. The percentage of traditional contracting is still greater than other forms of contracting: on average 50% of the management
contractor's construction output, with 25% for management contracting
 and package deal.
2. An analysis of 170 management contracts indicated that 63% of the projects were new buildings, 27% refurbishment work and 10% a mix
of both.
3. Results of the market distribution showed that 68% of the projects have been commissioned by private sector clients, 27% for those in the vate organization. When analyzed by type of construction, 60% of the private projects were new buildings and 35% refurbishment projects. In the public sector, 67% were new buildings, 15% refurbishments and 18% a mix of both.
4. When the
5. When the projects were divided by value, 32% of the surveyed
management contracting projects were offices, 28% commercial complexes, 27% industrial work, and 13% residential, public premises, etc. 6. The number of clients using management contracting was esti-
 for other forms of public and private clients.

Ten clients' experiences were reviewed. The results of the clients studied in wis paper showed the mimsement work. Management contracting was used mainly for office block jobs.
tects, structural engineers and quantity surveyorky know within the tects, structural building industry, many have chatus and merely regard themselves as client understand ministrative mide-men in between the sub-contractors and creative ideas which in his professional team and thus does not inject and is indeed the reason in his professionale of the principle objects of the exercise and iscess, we bring them why certainly in our case, after a careful sele stage."
why certaind into the proceeding at the earliest possible stage. Even though attitudes are influenced improvement in the management clients it seems that there is room for inf would be for management concontracting system itself. One al-as opposed to commercial-role. Yet tractors to adopt a proped by clients who can do much to fashirements of this change may by matching their own they have chosen. Project success is method the procurement method they have chosen. Pi and procurement method sive but the approp.

Appendix.-References

 ment."' I. Constr. Div., ASCE, (1979). 'The trade contractorBarrie, D. S. (4) Barrie, D. S. Div., ASCE, 105(4), 381-387. "Construction programme management." Heery, G. T., annlogy and Management. London, U.K., 22-26. "Management contracting.". (1982). CIRIA 100 Report. London, U.K. "Management contracting." (1982). (1984). "Management contract Naoum, S. G., and Langonerence, Waterloo, Canada, 1001 Rad P. F., Miller, M. C. (1978). Trends I. Constr. Dio., AE critical study of project team, organity of Aston, at England, the building process. in pa
phy.
"Survey to management contracting. (20) "Professional constructior Tatum, C. B., Gans, G. M., and Harper, Giewpoint." I. Constr. Div., ASCE,
management; the
141-153.道

AFPENDIX FIVE

PREVIOUS RESEARCH MODELS

The research model of the building process.
SOURCE - MORRIS, P.W. 1972 - PHD THESIS (SEE REF.)

Phase III
$\underbrace{\text { STA }}_{\text {STEAN IV }}$
SOURCE $=$ ROWLINSON, S. $1987=$ PHD THESIS (SEE REF.) MODEL - 3

SOURCE - NEWCOMBE, R. 1988 - UNPUBLISHED WORK (SEE REF.) MODEL - 4
MODEL - 5
SOURCE - SIDWELL, A. 1982 - PHD THESIS (SEE REF.)

APPENDIX SIX
PILQT STUDY QUESTIONNAIRE

THE INTERVIEW QUESTIONS

1) YOUR ORGANIZATION

A)Approximate turnover for your organization?
B)Percentage(by value)of your work done for the following forms of contracts:

TRADITIONAL:
MANAGEMENT CONTRACTING:
OTHERS:
C) Percentage(by value)of management contracts work done for the following type of clients:

Private:
Public :
D)Approximate breakdown of your management contract work into building types liste below:
a) WORK DOWN FOR PRIVATE SECTOR

Building type
NEW HOUSING :
INDUSTRIAL:
OFFICES:
SHOPS:
OTHERS:
b) WORK DONE FOR PRIVATE SECTOR:

NEW HOUSING:
PUBLIC CORPORATION :
SCHOOLS:
HEALTH:
OFFICES;FACTORIES;SHOPS:
CIVIL ENGINEERING WORK:
OTHERS:
E)Percentage of project procedure adopted when appointing the management contracto NEGOTIATED:
COMPETITIVE:
COST REINBURESEMENT:
OTHERS:
2)MANAGEMENR CONTRACTING WITHIN YOUR ORGANIZATION:
A)How long has your organization been involved as an architect in management contracts and why?
B)List of the projects with client name that your organization been appointed for management contracts:
C) What is the procedure for the selection and appointment of the management contractor?
D) What form of contract used in management contracting?
E)On what basis is the management fee charged and how are payment made?
F)Details of your staffing personal:

Allocate a mark out of 10 to each of the factors listed below according to the magnitude of importance each factor wuold be to different clients

CLIENT CRITERIA
A-SFEED
a-The minimization of preconstraction time.
b-Reliability of estimated preconstraction time.
c-Your lack of involvement during the desion and const. stage (i.e. the minimization of client time spent in consultation with the architect.)

d-reliability of the estimated cost and time.					
e-Others					
B-CosT					
a-Cheapest cost					
b-Reliability of orlginal price					
o-Mantinance cost					
d-Cost in use					
e-Finance arrangements offerd.					
f-Others					
C-QUALITY					
a-Aesthatic					
b-Suttability					
c-Flexibility enabiling the client to change his mind concerning the bullding layout etc. during the const. phase.					
d-lianagement consultancy service					
offerd during the desgn stage (l.e.advice concerning production problems,layout problems,etc., andrelating them to the new building desion.					
e-A high degree of personal control over specialised work pecullar to project requirement.					
f-Others.					

4)MANAGEMENT CONTRACTING UTILITY:

A)During what stages in the design/constraction process does the management contractor get involve?
B) How involve is the management contractor with regards to advice to the client and/or to you?
C) What is the procedure for the selection and appointment of sub-contractors?
D) What form of contract is used with sub-contracters?
E)How are sub-contractors supervised and controlled?

5)ADVANTAGES AND DISADVANTAGES

A)Are ther deficincies apparent to you,as an architect,on the traditional process?If yes, what are they?
B) The areas in which management contracting can or does it's greatest contribution:
C) What are the benefits to the client associated with management contracting?
D)What are the limits for the application of management contracting?
E) Why the management contractor does not directly undertake any of the work?
F) Which of the following problems do you think need to be overcome?

1) No universally accepted definition of management contracting.
2) Acceptance of the management contractor as part of the project teem.
3) No standard form of management contract and sub-contract.
4) Defining duties and responsib-liyies of members of the project team.
5) Defining and agreeing work packages.
6) Associated problems of communication.
7) High liquidated and ascertained damages;
8) Agreeing the E.P.C. at an early stage.
9)Lack of exposure to management contracting.
lo) Program control.
9) Attitude of personnel.
10) Abortive effort and cost of preparing submissions.
13)Later work packages suffer as a consequence of overexpenditure on early work packages.
14)Others.

AF'PENDIX SEVEN

CASE STUDY QUESTIONNAIRE
: Assurance is given that the answers to the questionnaire will be used for statistical purposes only. The anonymity of the respondents will be respected, and names of organizations or individuals will not be published, if they so request.

SECTION I. GENERAL PARTICULARS OF ORGANIZATION
I.I. Name of organization
I.2. Address
1.3. $\frac{\text { Name of respondent and position }}{\text { within organization. }}$

SECTION 2. ORGANIZATION PARTICULARS
2.I. Approximate annual turnover.
2.2. Please state an approximate breakdown of your organization's turnover into the following contractual arrangements. (BY VALUE)

	Traditional contracting
Management Contracting	
Design \& Construct	
Project. Management	
Others (please state)	

2.3. What type of projects does your organization specialised in?
(please circle response)
Industrial projects / Commercial / Housing / Hospitals / Airport /
Others (please state)
3.I. Name of project
3.2. Client name
3.3. Project type

Factory building / Warehouse / Shope / Office / House / School / Hospital / Airport / Others (please state) \qquad
3.4. Gross floor area
3.5. Please give brief discription of project. (e.g. location, construction method, purpose of building etc.)
3.6. How was the project financed by
Public Funding
Private funding $\square \square$
-3.7. How experianced was the client with that type of construction
Very experianced
Moderatly experianced
Not experianced at all

3.8. What was the client category

Speculative developer

Developer of projects for the primary use of the company

Others (please state)
3.9. Did the client employ any professional personnel solely concerned with planning, design etc. of the building work ? YES / NO
if YES, were they Architect

Engineers	
Quantity Surveyors	

Please state numbers

Others (please state)
3.10. How specialised were the building designers with that type of project ?

Very specialised
Moderatly specialised
Not specialised at all

3.1I. What basis was the contract let by ?

Traditional method / Management Contracting Method
3.I2 Date the main contractor was appointed ?
3.13. How was the main contractor appointed ? (please circle response)

Open Tender / Selected Tender / Direct Negotiation / Two Stage Tender /
Others (please state)
3.14. What form of contract was used ? (please circle response)

JCT / Client's Own / Contractors Own / Others (please state)
3.I5. please give duration or dates (AS STATED) of the following stages.
please complete as fully as possible, although partially completed
may still be of use.

PROGRAMMED

Brief development in weeks.

Date the design started.
Date the design completed. (in case of MC. the date of last package been designed)

Tender period for main contractor.
Date the construction start on site.
Date the construction completed.
3.16. Please give the overall contractual price tender accepted for the building ? Pounds
3.I7. please give the actual price on completion of building ? Pounds
3.I8. Please give an approximate percentage of services cost out of the overall price of the building ?
\qquad Percent

3.I9. If there was overrun on time please state reasons?

3.20. If there was overrun on cost please state reasons ?
3.2I. How complex was the project ? (if complex please state factors that made complex) Hich

Medium
low (simple)
\square
4.I. The following are a number of criteria which commonly applied by clients of the building industry in assessing the performance of their projects.

At the outset of this project, please tick the column which best describes the client's initial level of importance at the commencement of the building process.
a) Reliability of the estimated design time.
-) Reliability of the estimated const. time.
c) Minimizing the overall time of building.
d) Reliability of the estimated const. cost.
e) To obtain a building at the cheapest cost.
f) To obtain a building with low maintinance cost.
g) To obtain a building with low running cost.
h) To obtain knowledge of exactly how much to) pay each period during construction.
i) To obtain a building with high aesthetic quality.
f) To obtain a building with idealy fit's it's purpose.
k) Management consultancy, services from the contractor during the design stage.

1) To have flexibility enabling the client to change his mind during construction.
m) To have confidence in the design.

- n) To have confidence in the main contractor.
io) Input of contractor's expertise in refining solution and buildability.
p) To have an early start on site.
q) Minimizing the construction time.

4.2. How well were the following criteria acheived after the project been completed. (please tick the column which best describe the level of success).

Very	Fairly Partly Not	Not at		
successful			\quad	really all
:---	:---			

a) The actual design time when compared with the estimated it was considered as
b) The actual construction time when compared with the estimated it was considered as
c) The overall time of the project was performed
d) The actual construction cost when compared with estimated it was considered as
e) When the building was completed the cost of the building as to be the cheapest was
f) When the building was occupied the acheivement of having a low maintenance cost
g) When the building was occupied the acheivement of having a low running cost was
h) The actual payment at-each stage during the construction compared with the expected mas
i) The aesthetic of the building was performed
f) The idea of having a building which fits it's purpose was acheived
k) The management consultancy services offered by the contractor at the design stage were

1) Although there were a number of variations during construction the flexibility to cope with the changes was
m) The client's confidence in the design was
n) The client's confidence in the contractor was
o) The idea of getting an input of contractor's expertise in refining solution and buildability was aveived
p) An early start on site was acheived
q) The construction time was performed

4.3. Are there any other criteria that the client considered at the commencement of the project, if so, what are they, what level of importance would you give them and what was the level of success when the project been completed.

CRITERIA CONSIDERED
Level of importance Level of success
b) \qquad
4.4. From the criteria on 4.I \& 4.3, Please rank the TEN most important criteria in the table in order of importance to the client concerned.
1.e. if the cheapest cost was most important, place (e) under I in the table.

I	2	3	4	5	6	7	8	9	IO

4.5. CLIENT SATISFACTION

HOW SATISFIED WAS THE CLIENT ON COST	$\mathrm{H} / \mathrm{M} / \mathrm{L}$
HOW SATISFIED WAS THE CLIENT ON TIME	$\mathrm{H} / \mathrm{M} / \mathrm{L}$
HOW SATISFIED WAS THE CLIENT ON BUILDINS AESTHETIC	$\mathrm{H} / \mathrm{M} / \mathrm{L}$
HOE FUNCTIONAL WAS THE BUILDING ON COMPLETION	$\mathrm{H} / \mathrm{M} / \mathrm{L}$

ANY FURTHER COMMENTS

APPENDIX EIGHT
THE RESEARCH DATA

DESIGNER CHARACTERISTICS

$C 5=$ DESIGN SOURCE	-1
$C 6=$ DESIGNER EXPERIENCE -1	$=$ HIGHLYE DESIGN INPUT; $2=$ OUTSIDE

PROJECT CHARACTERISTICS

```
C7 = BUILDING TYPE - - = COMMERCIAL, 2 = INDUSTRIAL
CB = CONSTRUCTION TYFE - - = NEW CONSTRUCTION; 2 = REFURBISH
C9 = BUILDING COST - - = LOW, 2 = AVERAGE; 3 = HIGH
C10= GROSS FLOOR AREA - - = LOW, 2 = AVERAGE; }3=HIG
C11= PROJECT COMPLEXITY - 1 = HIGHLY COMPLEX, 2 = MODERATELY
    3 = LOW COMPLEXITY
C12= BUILDING RATE - - = HIGH, 2 = MODERATE; 3 = LOW
```

CONTRACT PROCEDURE

C13= CONTRACT PROCEDURE $-1=$ SELECTED TENDER; $2=$ OPEN TENDER
3 = DIRECT NEGOTIATION
PROCUREMENT METHOD

C14= PROCUREMENT METHOD $-1=$ MANAGEMENT CONTRACT
$2=$ TRADITIONAL CONTRACT
PROJECT PERFDRMANCE

ROW		C1	C2	C3	$C 4 A$		$C 4 C$	C4D
		CLIENT	CLIENT	CLIENT	TIME	CERTAINTY	CHEAP	QUALITY
		$T Y P$	EXP	BUSINESS	CRITERIA		COST	
1		2	2	1	1	1	3	3
2		1	1	1	1	1	2	3
3		1	1	2	1	2	3	2
4		2	2	2	3	1	2	3
5		2	1	1	1	2	2	1
6		2	1	1	1	1	2	3
7		1	1	1	1	1	3	3
8		1	2	1	1	1	3	2
9		1	2	1	2	1	3	3
10		1	2	2	1	2	2	1
11		1	2	2	1	1	3	3
12		1	2	2	2	1	3	1
13		1	3	2	2	1	3	3
14		1	2	2	1	2	3	1
15		1	1	1	2	1	2	3
16		1	2	2	1	2	3	3
17		1	3	2	2	1	1	3
18		1	2	2	1	1	3	3
19		1	2	2	1	1	3	2
20		2	2	2	1	1	2	2
21		1	1	2	1	1	3	2
22		1	1	2	2	1	3	3
23		2	2	1	1	1	2	3
24		1	1	1	1	1	3	3
25		2	1	2	2	1	1	3
26		2	2	1	1	1	3	3
27		1	2	1	1	1	3	3
28		1	1	2	1	1	3	3
29		1	3	1	1	1	3	2
30		1	1	2	1	1	3	2
31		1	2	2	1	1	3	3
32		1	3	1	2	1	3	1
33		1	2	2	2	1	3	3
34		1	1	1	1	1	2	2
35		1	1	1	2	1	3	3
36		1	*	1	1	1	2	3
37		1	*	1	\%	*	*	*
38		*	*	1	1	1	3	2
39		*	*	1	1	1	3	3
T 40	1	1	3	1	2	1	1	2
R 41	2	1	1	2	3	1	2	1
A 42	3	1	'2	1	2	2	1	1 \%
D 43	4	1	1	1	2	1	2	1
I 44	5	2	2	2	3	1	1	2
T								
I								
0								
N								
A								
1 CON	TRA							

ROW	C1	C2	C3	$C \triangle A$	C4B	C4C	$C 4 D$
	CLIENT	CLIENT	CLIENT	TIME	CERTAINTY	CAEAP	QUALITY
	$T Y P$	$E X P$	BUSINESS	CRITERIA		$\cos T$	
45	1	1	2	i	1	2	3
46	1	1	2	2	1	1	3
47	1	2	1	2	1	i	2
48	2	1	2	1	2	1	3
49	1	2	2	2	1	2	1
50	2	*	*	1	1	2	2
51	1	1	1	2	1	i	2
52	1	1	1	3	1	1	2
53	2	3	1	1	2	2	1
54	1	1	1	2	1	1	2
55	1	1	1	2	1	i	2
56	1	2	*	2	1	1	2
57	1	*	1	2	1	1	2
58	*	3	1	3	1	2	1
59	*	*	*	2	1	1	3
60	*	*	1	2	1	1	2
61	2	*	2	2	1	1	2
62	*	*	1	*	+	*	*
63	*	*	1	2	1	1	2
64	1	2	2	2	1	2	3
65	1	3	2	3	1	2	1
66	1	2	1	2	1	1	2
67	1	2	2	2	1	1	2
. 68	1	2	1	2	1	1	2
69	*	*	1	2	1	1	2

ROW	$\begin{gathered} C 4 E \\ V A R I A T I O N \end{gathered}$	$\begin{gathered} C 4 F \\ M A N A G E \end{gathered}$	$\begin{gathered} C 5 \\ D E S I G N \end{gathered}$	$\begin{gathered} C 6 \\ D E S I G N E R \end{gathered}$	$\begin{gathered} C 7 \\ 3 U I L D I N G \end{gathered}$	$\begin{gathered} C B \\ \text { CONSTRUCT } \end{gathered}$
45	8	3	1	1	1	2
46	3	2	1	1	1	1
47	3	3	1	2	1	$?$
48	2	3	2	2	2	2
49	3	3	2	3	2	*
50	3	3	*	*	2	*
51	3	3	2	1	2	2
52	2	3	1	1	2	$?$
53	3	3	2	3	2	2
54	3	3	2	3	2	2
55	3	3	2	1	2	I
56	3	3	2	3	2	2
57	3	3	2	*	2	i
58	2	3	2	$\stackrel{ }{*}$	2	:
59	2	3	*	*	2	$\stackrel{1}{2}$
60	3	3	*	*	*	\%
61	3	3	1	3	2	$\stackrel{2}{2}$
62	*	*	*	*	2	\pm
63	3	3	*	*	2	
64	2	3	1	2	1	Z
65	2	3	1	2	1	-
66	3	3	2	1	1	\because
67	3	3	1	2	1	-
68	3	3	2	2	1	$\stackrel{\square}{7}$
69	3	3	1	*	2	

ROW	C9	C10	C11	C12		C13	$C=$
	BUILDING	GROSS	COMPLEXITY	VALUE PER	WEEK	PROCEDURE	PROCU
	COST	AERA					METH
1	6.40	9259	1	68500		1	:
2	6.50	7000	1	84400		i	2
3	7.90	4400	1	i 79545		1	1
4	30.50	35000	2	231000		1	7
5	7.40	10185	3	97000		1	:
6	1.80	1500	2	32200		1	I
7	4.10	6350	1	73200		1	E
8	2.10	3305	2	40400		1	\checkmark
9	31.90	36800	1	179000		1	$:$
10	1.60	5600	i	12300		i	-
11	11.00	11000	1	211500		\pm	-
12	6.50	5250	i	90300		I	1
13	4.00	10000	1	55600		1	1
14	21.50	35000	1	233700		1	$?$
15	3.80	4500	1	105500		1	7
10	8.50	3900	2	100000		1	i
17	6.80	7680	2	65400		1	2
18	15.00	11111	1	134000		1	1
19	8.00	9345	1	94200		3	1
20	5.10	3.900	2	43600		1	1
21	4.00	4800	2	48800		I	1
22	31.00	45737	1	199000		3	$?$
23	2.30	2560	3	57500		2	1
24	8.50	17150	1	80950		1	7
25	50.00	29000	1	179000		2	1
26	31.00	46300	1	221500		3	1
27	1.90	8333	3	47500		2	1
28	11.80	24148	2	128260		2	1
29	5.60	5500	1	82333		2	1
30	7.50	6000	2	83333		3	1
31	3.50	6000	2	67300		3	1
32	3.00	5600	3	42800		3	1
33	9.50	30000	2	115850		3	1
34	1.50	7685	3	26800		3	1
35	10.50	16720	2	91000		3	1

ROW		$\begin{gathered} C 9 \\ B U I L D I V G \\ C O S T \end{gathered}$	$\begin{gathered} C 10 \\ G R O S S \\ A E R A \end{gathered}$	$\begin{gathered} C: I \\ \text { COMPLEXITY } \end{gathered}$	$$	$\begin{gathered} C 13 \\ \text { PROCEDURE } \end{gathered}$	$\begin{gathered} C I 4 \\ \text { PROCUREME } \\ M E T H C D \end{gathered}$
30		1.80	5680	3	34615	3	1
37		3.00	6600	i	85700	2	2
38		2.50	1440	*	56818	2	1
39		1.00	1765	*	38461	2	1
40	1	5.50	9808	3	47400	2	2
41	2	8.40	15794	2	123600	2	2
42	3	2.30	2691	3	27400	2	2
43	4	40.00	102005	z	196100	2	2
44	5	2.00	2584	2	27000	2	2
45	.	2.95	3000	\because	73700	1	2
46	-	14.20	12000	2	142000	1	2
47	.	6.00	11160	ε	115400	1	2
48	.	7.20	14163	2	64285	2	2
49	.	3.30	6140	3	28448	2	2
50		1.90	6140	2	40423	2	2
51		0.50	2370	3	19230	1	2
52		1.80	12000	3	30000	2	2
53		2.20	1768	3	39285	2	2
54		0.70	2087	2	14235	1	2
55		0.60	759	3	24000	2	2
56		0.90	1505	3	28125	3	ε
57		0.90	4391	3	17307	3	2
58		1.70	4087	3	30357	3	2
59		1.00	2676	3	17857	2	2
60		1.00	3136	2	26315	1	2
61		5.90	14000	2	80821	1	2
62		1.20	4273	3	23076	3	2
63		1.40	3000	2	31818	3	2
64		10.20	16385	1	89500	3	2
65		4.80	11071	1	39500	*	3
66		0.90	1162	3	11500	1	2
67		9.50	18245	1	91400	3	2
68		8.80	17783	2	44000	3	2
69		0.70	5420	3	23333	3	2

	C15	C76	C17	C18	C79	C2O	C21	C22	C23	C24
Raw	$\begin{aligned} & \text { DESIGV } \\ & \text { TTEE } \end{aligned}$	$\begin{aligned} & \text { BUILDING } \\ & \text { TTME } \end{aligned}$	$\begin{gathered} \text { TOTAL } \\ \operatorname{TTNE} \end{gathered}$	AREA/WEK	COST/SAM	$\begin{aligned} & \text { OVERRUN } \\ & \text { OV TTRE } \end{aligned}$	OVERRUN ON COST	TEE SATS	CST SATS	QLT SATS
1	17	92	109	101	690	1	1	2	1	1
2	17	77	94	91	923		1	1	2	2
3	33	44	77	100	1806	3	3	3	3	2
4	20	132	152	16.5	879	1	1	1	1	1
5	20	76	96	134	728	1	1	1	1	1
6	10	52	62	29	1200	1	1	1	3	3
7	12	56	68	114	652	1	1	1	1	1
8	15	52	67	64	655	1	1	1	2	1
9	*	178	\checkmark	222	864	3	1	1	1	2
10	52	130	182	43	283	3		3	1	I
11	24	52	76	211	1000		1	1	2	3
12	*	55	*	73	1238	1	1	1	2	1
13	*	72	*	138	403	2	1	1	1	1
14	*	*	*	380	614	*	*	+	3	2
15	20	36	56	125	810	1	1	1	2	1
16	20	32	102	114	883	1	1	1	2	1
17	24	104	128	74	885	1	1	2	2	2
18	30	112	142	100	1350	2	2	1	3	2
19	20	68	88	137	856	1	3	1	2	1
20	30	117	147	33	1307					3
21	25	82	107	58	8.33	1	2	1	1	3
22	26	156	182	203	679	1	3		ε	1
23	20	40	60	64	893	1	1	1	1	I
24	15	105	120	163	500	1	1	1	1	1
25	100	280	340	103	1724	1	3	1	3	1
26	20	140	160	330	670		3	1	2	1
27	20	40	60	208	228	3	1	1	1	1
28	*	92	*	252	509		1	1	2	2
29	*	68	*	80	1018			1		1
30	16	74	90	100	1250	3	1	2	3	1
31	10	52	62	115	583	1	1	1	1	2
32	15	70	85	80	535	1	1	2	1	I
33	i	82	89	366	310	1	1	1	1	1
34	9	56	65	137	195	1	1	1	1	1
35	10	112	132	150	610	1	1	1	1	1
36	9	52	61	109	317	1	1	1	1	1

	CSS	C16	Cl7	C78	C79	C2O	C21	C22	C23	C24
p	DESIGV	BUILDING	TOTAL	AREA/WEK	COST/SAM	OVERRIUN	OVERRUN	TVE SATS	CST SATS	QLis SATS
	TTE	TTME	TIME			CN TIME	ON COST			
37	3	35	38	188	1063	1	1	1	I	i
38	4	44	48	32	1736	1	1	1	1	1
139	9	26	35	68	566	*	*	3	3	1
40	124	116	140	84	560	3	3	3	3	1
41	250	68	124	232	531	1	1	1	1	1
42	3168	84	252	32	827	1	1	1	2	1
43	4316	204	520	500	393	3	2	2	2	1
44	5104	74	178	35	740	1	3	1	2	1
45	. 52	40	32	75	989	1	1	1	1	1
46	. 52	200	152	120	1180	1	2	1	1	I
47	. 40	52	22	215	537	1	1	1	2	2
48	. 92	112	204	126	475	3	3	2	1	1
4	. 26	116	132	65	433	3	1	3	1	2
60	6	47	53	42	309	1	1	1	2	1
1	8	26	34	91	210	1	1	1	1	2
2	18	60	78	200	150	1	1	1	1	1
63	39	56	95	32	1244	1	3	3	3	2
4	25	49	74	43	335	3	3	1	2	2
5	24	25	49	30	790	1	1	1	1	3
6	61	32	93	47	205	3	2	3	1	1
7	58	52	110	35	205	3	2	2	1	1
8	16	56°	72	73	416	3	3	2	2	3
9	73	56	129	48	373	1	3	1	2	2
6	29	38	67	83	318	1	1	1	1	1
7	40	73	113	192	421	3	3	2	3	2
2	22	52	74	83	280	1	1	1	1	1
3	24	44	68	68	466	3	1	2	1	1
1	78	114	192	143	624	1	2	1	2	1
5	50	122	172	90	430	1	2	1	2	3
6	*	78	*	15	774	3	3	3	3	1
?	70	104	174	176	521	2	3	2	3	1
P	100	182	282	98	460	3	2	3	2	2
9	24	30	54	180	129	2	1	1	1	1

AFPENDIX NINE
SIEGEL'S AND GREENE'S

STATISTICAL CHARTS

EL OF LSURELENT	- NONPARAMETRIC STATISTICA!			TEST*		NONPARAMETRIC MEASURE of CORRELATION (Chap. 9)
	One-sample case (Chap. 4)	Two-sample case •		k-sample case		
		Related samples (Chap. 5)	Independent sampias (Chop. 6)	Related samples (Chap. 7)	Independent samples (Chap. 8)	
mminal	$\begin{aligned} & \text { Binomial test, } \\ & \text { pp. } 36-42 \\ & x^{2} \text { one-sample test, ، } \\ & : \text { Pp. } 42-47 \end{aligned}$	McNemar test for the significance of changes, pp. 6367	Fisher exact probability test, pp. Sxir 104 x^{2} test for two indopendent samples, pp. 104-111.	Cochran Q test, pp. 161-166	$x:$ test forkindependent samples, pp. 175-179	Contingency coefficient: C, pp. 196-202
\|rdinal	Kolmogorov-Smirnov one-sample test, - Pp. 47-52 One-sample runs test, pp. 52-58	Sign test, pp. 68-75 Wilcoxon matchedpairs signed-ranks test, \dagger pp. 75-83		Friedman two-way analysis of variance, pp. 166-172	Extension of the median test, pp. 179-184 Kiuskal-Wallis one-way analysis of variance, pp. 184-193	Spearman rank correlation coefficient: r_{s}, pp. 202-213 Kendall rank correlation ccefficient: τ, pp. 213-223 Kendall partial rank correlation coefficient: $\tau_{ \pm y, z}$ pp. 223-229 Kendall coefficient of concordance: W, pp. 229-238
Herral	i \vdots \vdots	Walst. test, pp. 83-87 Randomization test for matched pcirs, pp. 88-92			- .	-

 Ign lest, but olso of the difforences batween pairs. See the discussion on pp. 75-76. both the Frledman two-way anolysil of varionce and the Cochren Q lest ore applicable.

AFPENDIX TEN

CHI-SQUARE TEST RESULTS

CHI-SQUARE NO. 1 - PROCUREMENT METHOD V CLIENT TYPE

	MANAGEMENT CONTRACTS (1)	TRADITIONAL CON'IRAC'S (2)	TOTALS
PUBLIC SECTOR (2)	8		
PRIVATE SECTOM (1)	31	5	1.3
TOTALS		25	56

$x^{2}=.17$
D.F. $=1$
$\mathrm{P}<$ NOT SIGN. $\quad \mathrm{R}=-.154$

CHI-SQUARE NO. 2 - PROCUREMENT MET!HOD V CLIENT EXPERIEACE

	MANAGEMENT CONTRACTS (1)	TRADITIONAL CONTRACTS (2)	TOTALS
HIGHLY EXPERIENCE (1)	14	9	23
NORMAL EXPERIENCE (2) \& (3)	21	13	34
TOTALS	35	22	57

$x^{2}=.12$
D.F. $=1$
$P<$ NOT SIGM. $\quad R=.041$

CHI-SQUARE NO. 3 - PROCURENENT METHOD V CLIEN'T BUISINESS

	MANAGEMENT CONTRACTS (1)	TRADITIONAL CONTRACTS (2)	TOTALS
BESPOKE CLIENTS (1)	19	16	35
SPECULATIVE (2)	20	14	44
TOTALS	39	30	69

$x^{2}=.15$
D.F. $=1$
$P<$ NOT SIGN. $\quad R=$

CHI-SQUARE NO. 4 - CLIENT EXPERIENCE V CLIENT SATISFACTION ON TIME

	HIGHLY EXPERIENCED (1)	 LOW $(2) \&(3)$	TOTALS
HIGHLY SATISFIED			
OTHERS (1)	19	15	34
TOTALS	4	14	18

$x^{2}=4.5$
D.F. $=1$
$P<.05$
$R=\cdot 308$

CHI-SQUARE NO. 5 - CLIENT EXPERIENCE V CLIENT SATISFACTION ON COST

	HIGHLY EXPERIENCED	MEDIUM.\&LOW (2) \& (3)	TOTALS
HIGHLY SATISFIED (1)	20	12	32
OTHERS (2) \& (3)	5	15	20
TOTALS	25	27	52

$x^{2}=8.2$
D.F. $=1$
$P<.01$
$R=.360$

CHI-SQUARE NO. 6 - CLIENT TYPE V CONSTRUCTION PERFORMANCE UNDER MC

	LONG (1)	AVERAGE (2)	SHORT (3)	TOTAL
PRIVATE CLIENT (1)	20	58	27	105
PUBLIC CLIENT (2)	21	12	5	38
TOTALS	41	70	32	143

$X^{2}=17.92 \quad$ D.F. $=2 \quad P<.01$

CHI-SQUARE NO. 7 - PROCUREMENT METHOD V DESIGNER EXPERIENCE

	MANAGEMENT CONTRACTS (1)	TRADITIONAL CONTRACTS (2)	TOTALS
HIGHLY EXPERIENCED (1)	18	7	25
OTHERS (2) \& (3)	17	13	30
TOTALS	35	20	55

$x^{2}=1.2$
D.F. $=1$
$\mathrm{P}<$ NOT SIGNF. $\mathrm{R}=.201$

Chi-SQUARE NO. 8 - PROCUREMENT METHOD V SOURCE OF DESIGN

	MANAGEMENT CONTRACTS (1)	TRADITIONAL CONTRACTS (2)	TOTALS
IN-HOUSE DESIGN INPUT (1)	13	11	24
OUT-SIDE DESIGN INPUT (2)	15	14	29
TOTALS	28	25	53.

$x^{2}=.92$
D.F. $=1$
$\mathrm{P}<$ NOT SIGNF. $\mathrm{R}=.141$

CHI-SQUARE NO. 9 - DESIGN EXOERIENCE V PRE-CONSTRUCTION TIME

	SHORT (3) PREBLD TIME	LONG \& AVG. PREBLD TIME (1) \& (2)	TOTALS
HIGHLY EXPERIENCE DESIGNERS (1)	20	5	25
OTHERS (2) \& (3)	16	14	30
TOTALS	36	19.	55

$x^{2}=4.48$
D.F. $=1$
P < . 05
$R=.306$

ĊHI-SQUARE NO. 10 - DESIGNER EXPERIENCE V TIME OVERRUN

	WITHIN EST. TIME $(1) ~ \& ~(2) ~$	HIGH OVERRUN (3)	TOTALS
HIGHLY EXPERIENCED DESIGNERS (1)	18	8	26
OTHERS (2) \& (3)	10	16	26
TOTALS	28	24	52

$x^{2}=4.8$
D.F. $=1$
$\mathrm{P}<.05 \quad$. $\mathrm{R}=.345$

CHI-SQUARE NO. 11- DESIGNER EXPERIENCE V COST OVERRUN

	WITHIN EST. BUDGET (1) $\left.\boldsymbol{2}_{2}\right)^{8}$	$\begin{aligned} & \text { HIGH } \\ & \text { OVERRUN (3) } \end{aligned}$	TOTALS
HIGHLY EXPERIENCED DESIGNERS (1)	15	10	25
OTHERS (2) \& (3)	9	18	27
TOTALS	24	28	52
$2=3.85$	$=1$	$P<.05$	

CHI-SQUARE NO. 12- DESIGNER EXPERIENCE V CLIENT SATISFACTION ON TIME

	HIGHLY (1) SATISFIED	OTHERS (2) \& (3)	TOTALS
HIGHLY EXPERIENCED (1)	20	3	23
OTHERS (2) \& (3)	14	12	26
TOTALS	34	15	49

$x^{2}=5.64$
D.F. $=1$
$P<.02$
$R=.331$

CHI-SQUARE NO. 13- DESIGNERS EXPERIENCE AND CLIENT SATISFACTION ON QUALITY

	HIGHLY SATISFIED (1)	OTHERS (2) \& (3)	TOTALS
HIGHLY EXPERIENCED (1)	20	3	23
OTHERS (2) \& (3)	13	10	23
TOTALS	33	13	46

$x^{2}=5.1$
D.F. $=1$
P < . 025
$R=.357$

CHI-SQUARE NO. 14- SOURCE OF DESIGN AND SPEED DURING CONSTRUCTION

	IN-HOUSE DESIGNERS (1)	OTHERS (2)	TOTALS
HIGH SPEED (3)	15	4	19
OTHERS (1) \& (2)	9	15	24
TOTALS	24	19	43

$x^{2}=5.1$
D.F. $=1$
Pく.01
$R=.571$

CHI-SQUARE NO. 15- PROCUREMENT METHOD V BUILDING COST

	MORE THAN $£ 5$ MILLION (3)	£2M - £5M (2)	LESS THAN $£ 2$ MILLION (1)		
MANAGEMENT CONTRACTS (1)	23	10	6		TOTALS
:---:					
TRADITIONAL CONTRACTS (2)					
10					

$x^{2}=8.02$
D.F. = 2
$P<.02$
$R=-.244$

CHI-SQUARE NO. 16 - PROCUREMENT METHOD AND PROJECT COMPLEXITY

	HIGHLY (1)	MEDIUM (2)	LOW (3)
MANAGEMENT CONTRACTS (1)	19	12	6
TRADITIONAL CONTRACTS (2)	8	6	37
TOTALS	27	18	20

$x^{2}=8.7$
D.F. $=2$
$P<.02$
$R=. .441$

CHI-SQUARE NO. 17 - PROCUREMENT METHOD AND BUILDING RATE £ PER WEEK

	$\begin{aligned} & \text { MORE THAN } \\ & \text { EIOO,OOO / } \\ & \text { WEEK_(1) } \end{aligned}$	BETWEEN (2) 50,000 AND $100,000 / W K$	$\begin{aligned} & \text { LESS THAN } \\ & \text { £50,000 / } \\ & \text { WEEK (3) } \end{aligned}$
MANAGEMENT CONTRACTS	13	16	10
TRADITIONAL CONTRACTS (2)	4	5	21
TOTALS	17	21	31

$x^{2}=13.7$
D.F. $=2$
$P<.001$
$R=-.388$

CHI-SQUARE NO. 18- PROJECT COMPLEXITY V BUILDING TIME

	HIGHLY COMPLEX (1)	(2) \& (3) NORMAL COMPLEXITY	TOTALS
LONG BUILDING TIME (1)	16	9	25
AVERAGE AND SHORT TIME (2)\&(3)	11	26	37
TOTALS	27	35	62

$x^{2}=6.8$
D.F. $=1$
$P<6.8$
$R=.305$

```
CHI-SQUARE NO. 19 - PROJECT COMPLEXITY V UNIT COST (COST / SQM)
```

	HIGHLY COMPLEX	NORMAL COMPLEXITY	TOTALS
HIGH UNIT COST COST / SQM	15	6	21
AVERAGE AND LOW UNIT COST	5	30	35
TOTALS	20	36	56

$x^{2}=6.17$
D.F. $=1$
P < . 025
$R=. .438$

CHI-SQUARE NO. 20 - PROCUREMENT METHOD V CONTRACT PROCEDURE

	MANAGEMENT CONTRACTS	TRADITIONAL CONTRACTS	TOTALS
COMPETITION	28	21	49
NEGOTIATION	11	9	20
TOTALS	39	30	69.

$x^{2}=.04$
D.F. $=1$
$\mathrm{P}<$ NOT SIGNIF. $\quad \mathrm{R}=$

CHI-SQUARE NO. 21 - PROCUREMENT METHOD V PRE-CONSTRUCTION TIME

	MANAGEMENT CONTRACTS	TRADITIONAL CONTRACTS	TOTALS
LONG	3	9	12
AVERAGE	4	8	12
SHORT	24	12	36
$X^{2}=8.28$	D.F. $=2$	$P<.02$	$R=.405$

CHI-SQUARE NO. 22 - PROCUREMENT METHOD V CONSTRUCTION TIME
\(\left.$$
\begin{array}{|l|c|c|c|}\hline & \begin{array}{c}\text { SHORT TIME } \\
\text { (3) }\end{array} & \begin{array}{c}\text { AVERAGE } \\
\text { (2) }\end{array} & \begin{array}{c}\text { LONG TIME } \\
\text { (1) }\end{array}
$$

\hline \begin{array}{l}MANAGEMENT

CONTRACTS\end{array} (1) \& 11 \& 14 \& 5\end{array}\right\}\)| TOTAL |
| :---: |
| TRADITIONAL
 CONTRACTS (2) |
| TOTALS |
| 14 |

$x^{2}=6.53$
D.F. $=2$
$P<.05$
$R=-.293$

CHI-SQUARE NO. 23- CONSTRUCTION TIME V CONSTRUCTION TYPE UNDER MC TAKEN FROM 170 LIST OF MC PROJECTS

	SHORT TIME (3)	AVERAGE (2)	LONG TIME (1)
NEW CONSTRUCTION			
(1)			

$x^{2}=9.39$
D.F. $=2$
P<. 01
$\mathrm{R}=$

CHI-SQUARE NO. 24 - PROCUREMENT METHOD V tOTAL TIME

SHORT TIME (3) AVERAGE (2) LONG TIME (1)
MANAGEMENT CONTRACTS (1)
TRADITIONAL CONTRACTS (2)
TOTALS

	HIGH SPEED (3)	AVERAGE SPEED (2)	$\begin{aligned} & \text { LOW } \\ & \text { SPEED } \end{aligned}$
MANAGEMENT CONTRACTS	12	21	5
TRADITIONAL CONTRACTS	5	14	11
TOTALS	17	35	16
$2=6.1$. $=2$	$\mathrm{P}<.05$	$\mathrm{R}=-$.

CHI-SQUARE NO. 26- PROCUREMENT METHOD V UNIT COST. (COST/SQM)

	LOW \& AVG. $(1) \cdot \&(2)$	HIGH (3)	TOTAL
MANAGEMENT CONTRACTS (1)	22	17	39
TRADITIONAL CONTRACTS (2)	23	7	30
TOTALS .	45	24	69.

$x^{2}=4.12$
D.F. $=2$
$P<.05$
$R=-.409$

CHI-SQUARE NO. 27 - PROCUREMENT METHOD V TIME OVERRUN

	HIGH OVERUN (3)	WITHIN EST. TIME (1)\& (2)	TOTALS
MANAGEMENT CONTRACTS (1)	5	28	33
TRADITIONAL CONTRACTS (2)	11	18	29
TOTALS	16	46	62

CHI-SQUARE NO. 28 - PROCUREMENT METHOD V COST OVERRUN

	HIGH (3) OVERRUN	WITHIN EST. TIME (1)\& (2)	TOTALS
MANAGEMENT CONTRACTS (1)	4		33
TRADITIONAL CONTRACTS (2)	14	15	29
TOTALS	18	48	66

$x^{2}=11.1$
D.F. $=1$
$P<.001$
$R=.308$

CHI-SQUARE NO. 29 - PROCUREMENT METHOD V CLIENT SATISFACTION ON TIME

	 SIGHLY (1) SATISFIED	NORMAL (3) SATISFACTIO	TOTALS
MANAGEMENT CONTRACTS	30	8	38
TRADITIONAL CONTRACTS	15	14	29
TOTALS	45	22	67.

$x^{2}=5.1$
D.F. $=1$
$P<.025$
$R=.323$

CHI-SQUARE NO. 30 - PROCUREMENT METHOD V CLIENT SATISFACTION ON COST

.	HIGHLY (1) SATISFIED	NORMAL (2) \& (3) SATISFACTION	TOTALS
MANAGEMENT CONTRACTS	21		
TRADITIONAL CONTRACTS	15	17	38
TOTALS	36	15	30

ĊHI-SQUARE NO. 31 - PROCUREMENT METHOD V CLIENT SATISFACTION ON QUALITY

	HIGHLY (1) SATISFIED	 SARMAL (3) SATISFACTIO	TOTALS
MANAGEMENT CONTRACTS (1)	24	13	37
TRADITIONAL CONTRACTS (2)	20	9	29
TOTALS	44	22	66

$x^{2}=.21$
D.F. $=1$
$\mathrm{P}<$ NOT SIGNF. $\quad \mathrm{R}=.135$

CHI-SQUARE NO.

$x^{2}=$
D.F. $=$
P<
$R=$

CHI-SQUARE NO.

AFPPENDIX ELEVEN

CORFELATION CDEFFICIENT MATRIX

	$\begin{aligned} & \text { C1 } \\ & \text { CLINT } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { C2 } \\ & \text { CLINT } \\ & \text { EXP. } \end{aligned}$	C3 CLINT BUSNS	C4A TIME CRIT.	C4B CERTN CRIT.	C4C CHEAP COST.		C4E VAR. CRIT	$\mathrm{C} 4 \mathrm{~F}$ MGT . CRIT.
C14 PROCUREMENT	$-.154$. 041	.187	. 594	-.043	-. 784	-. 381	.350	.610
C15 PRE-BLD TIME	. 023	-.073	-.065	. 279	.165	-. 334	$-.291$.182	.266
C16 BUILD TIME	. 243	-. 002	. 064	.146	. 016	. 016	. 064	.031	-. 232
C17 TOTAL TIME	. 146	-. 027	-. 199	.245	. 115	-. 192	-. 166	.129	. 053
C18 AREA/WEEK	-. 067	-. 161	$-.232$. 075	-. 027	.281	. 092	. 175	-. 358
C19 COST/SQM	. 275	-. 077	-. 165	-.317	. 161	. 283	.125	. 065	$-.323$
C2O +/- TIME	-. 184	. 098	.021	.142	.108	-. 243	-. 240	. 328	.107
$\mathrm{C21}+/-\mathrm{COST}$.206	. 126	. 207	.189	.107	-. 277	$-.106$. 187	. 099
C22 TIME SATS.	-. 128	. 308	-. 226	.034	. 276	-. 172	$-.384$.303	.214
C23 COST SATS.	-. 089	.360	. 246	.027	. 132	-. 086	-. 079	. 069	. 065
C24 QLTY SATS.	-. 245	.168	.009	.100	.082	$-.086$	-. 109	. 083	. 018

	C5 DESIN SORCE	$\begin{gathered} \text { CG } \\ \text { DESIN } \\ \text { EXP. } \end{gathered}$	C7 BUILD TYPE	C8 CONST TYPE	$\begin{aligned} & \text { C9 } \\ & \text { BUILD } \\ & \text { COST } \end{aligned}$	C10 GROSS AREA	C11 COMPLEXTY	C12 VALU/ WEEK	C13 PROCEDURE	C14 PROC- URMNT
PROCUREMENT	. 141	. 201	.237	. 187	-. 244	-. 078	. 441	. 388	$-.682$.000
PREBLD TIME	-. 005	. 306	-. 252	-. 026	.431	. 612	. 104	.184	-. 369	. 405
BUILD TIME -	-. 095	. 118	$-.434$	$-.133$. 825	. 679	. 305	. 505	-. 116	$-.293$
TOTAL TIME -	-. 028	.241	-. 408	-. 146	.699	.744	.114	. 381	-. 258	-. 297
AREA/WEEK -	-. 571	. 021	$-.178$	$-.137$.631	. 848	-. 184	.728	.059	-. 244
COST/SQM	.159	-. 109	$-.360$	-. 030	. 287	$-.069$.438	. 380	.246	$-.409$
+/- TIME	.288	.345	.186	.353	-.003	.103	. 142	-. 129	-. 116	. 311
+/- $\cos T$. 243	. 348	-. 082	. 249	.229	. 161	-. 077	. 081	-. 298	.308
TIME SATS.	. 455	. 331	. 074	.260	-. 123	-. 054	. 123	-. 194	-. 294	.323
COST SATS.	.197	. 273	-. 244	. 041	.133	.078	$-.179$. 145	-. 335	. 119
QLTY SATS.	.198	. 357	. 158	. 223	-. 004	-. 026	.060	. 046	-. 037	. 135

	$\begin{aligned} & \text { C1 } \\ & \text { PRE- } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { C2 } \\ & \text { BUILD } \\ & \text { TIME } \end{aligned}$	C3 TOTAL TIME	C4A AREA/ WEEK	C4B cost/ SQM	$\begin{aligned} & \text { C4C } \\ & +/- \\ & \text { TIME } \end{aligned}$	$\begin{gathered} \text { C4D } \\ +/- \\ \text { COST } \end{gathered}$	C4E TIME SATS	C4F COST SATS
C16 BUILD TIME	. 507								
C17 TOTAL TIME	. 879	. 853							
C18 AREA/WEEK	. 326	. 365	. 399						
C19 COST/SQM	$-.043$. 178	. 066	-. 214					
C2O +/- TIME	. 264	. 150	. 219	.016	-. 211				
c21 +/- cost	. 283	. 306	.360	-. 018	. 092	. 349			
C22 TIME SATIS.	. 161	. 112	. 183	-. 204 -		. 659	. 356		
C23 COST SATIS.	. 202	. 180	. 246	-. 068	. 253	. 179	. 677	. 410	
C24 QULTY SATIS.	-. 058	. 012	-. 069	-. 009	-. 003	. 270	. 234	. 217	.285

AF'PENDIX TWELEVE

SCORING MATRIX FOR FROJECT FERFORMANCE
MEASUREMENTS
AVERAGE PERFORMANCE FOR PROJECTS
COSTING LESS THAN 55 MILION COSTING LESS THAN 55 MILLION DESIGN TIME $=34$ WEEKS
BUILDING TIME $=52$ WEEKS SX33M $96=$ 3WIL TVIOL $\operatorname{SPEED}(A / W)=81$ AREA／WEEK $\operatorname{COST} / \mathrm{SQM}=562 \mathrm{E} / \mathrm{SQM}$ $x+/-\operatorname{TIME}=5 \%$
$x+/-\cos T=5 \%$ AVERAGE PERFORMANCE FOR PROJECTS COSTING MORE THAN 55 MILLION DESIGN TIME＝ 55 WEEKS BUILDING TIME＝ 88 WEEKS TOTAL TIME $=140$ WEEKS xa3m／wos set＝（m／V）o33ds $\operatorname{COST} / \mathrm{SQM}=775 \mathrm{I} / \mathrm{SQM}$ \qquad SCORE 1 －LOW PERFORMANCE SCORE 2 －aVERAGE PERFORMANCE SCORE 3 ＝HIGH PERFORMANCE

CLIENT AND PROJECT CHARACTERISTICS	Project performance																					
	management contracts											traditional contracts										
					$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & \text { 5 } \\ & \text { z} \end{aligned}$	$\begin{aligned} & \text { 쏠 } \\ & \text { + } \\ & + \\ & + \\ & x \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \\ & 0 \\ & 1 \\ & + \\ & \text { ren } \end{aligned}$				STyOODS TVIOL			$\begin{aligned} & \text { 톨 } \\ & \text { 1 } \\ & \text { 点 } \\ & \mathbf{O} \end{aligned}$	$\begin{aligned} & \text { S } \\ & \vdots \\ & \text { 呙 } \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \text { 够 } \\ & \text { E } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 崖 } \\ & \text { 1 } \\ & \text { + } \\ & \times \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0 \\ & 1 \\ & + \\ & \text { re } \end{aligned}$	$\begin{aligned} & \text { 밮 } \\ & \text { H } \\ & \text { م } \\ & \vec{\mu} \\ & \underset{\sim}{\mu} \end{aligned}$	$\begin{aligned} & \text { G } \\ & 0 \\ & 0 \\ & \text { n } \\ & \overrightarrow{3} \\ & \underset{3}{2} \end{aligned}$		4 $\stackrel{4}{4}$ 0 0 0 N
$\begin{aligned} & \text { SPECULATIVE < } \mathrm{E} 5 \mathrm{M} \\ & M=\triangle M C, 3 T R C \end{aligned}$	2	1	2	1	2	1	2	2	$\cdot 2$	2	17	1	2	1	3	3	2	2	3	3	3	23：
SPECULATIVE＞ESM $n=14 \mathrm{MC}, 6 T R C$	3	2	3	3	1	2	3	2	2	1	22	2	2	2	3	3	2	2	3	2	3	24
$\begin{aligned} & \text { BESPOKE }<\text { ESM } \\ & m=12 M C, 11 T R C \end{aligned}$	3	2	3	3	1	2	2	3	3	3	25	1	2	2	2	3	2	2	2	3	2	21
$\begin{aligned} & \text { BESPOKE }>\text { E5M } \\ & \mathrm{N}=7 \mathrm{MC}, 4 \mathrm{TRC} \end{aligned}$	3	2	3	3	3	2	2	3	3	2	26	2	1	1	3	2	2	3	2	2	2	20
$\begin{aligned} & \text { BLD RATE }<50,000 \\ & N=1 O M C, 21 \text { TRC } \end{aligned}$	3	2	2	2	1	3	3	3	3	2	24	2	2	1	1.	3	2	2	2	2	3	21
$\begin{aligned} & \text { BLD RATE }>50,000 \\ & M=29 M C, 9 T R C \end{aligned}$	3	2	3	3	1	3	2	2	3	2	24	1	2	1	3	2	1	1	1	3	2	17
IHDUSTRIAL $<$ ESM $\mathrm{N}=\mathrm{BMC}, 13$ TRC	3	2	3	3	2	3	2	2	3	3	26	2	2	2	1	3	3	1	2	3	3	22
INDUSTRIAL $>$ ESM $M=B M C$ ，5TRC	3	2	3	3	3	3	4	2	3	3	27	1	2	1	2	3	1	2	2	2	3	20
$\begin{aligned} & \text { COMAERCIAL }<\text { E5M } \\ & M=B M C, \text { STRC } \end{aligned}$	3	1	3	2	1	3	2	3	2	2	22	2	2	2	3	3	2	3	3	2	3	25
$\begin{aligned} & \text { COMMEACIAL }>\text { ISM } \\ & N=1 B M C, \text { BTRC } \end{aligned}$	3	2	3	2	1	3	2	3	3	2	24	1	1	1	3	2	2	1	1	2	3	17
AREA＜ 7000 SQM $\mathrm{N}=15 \mathrm{MC}, 1 \mathrm{BTRC}$	3	3	3	2	1	2	3	3	2	2	24	2	2	2	2	3	2	2	3	3	3	24
AREA >7000 SQM $\mathrm{N}=24 \mathrm{MC}, 12 \mathrm{TRC}$	3	2	3	3	3	3	$\stackrel{2}{1}$	3	3	2	28	1	1	1	3	2	2	2	2	2	3	20
NORKAL COMPLEXITY $N=2 O M C, 2 O T R C$	3	2	3	2	2	3	9	3	2	2	26	1	2	1	2	3	2	1	2	2	3	19
HICHLY COMPLEX $N=19 M C, \quad$ OTRC	3	2	3	3	2	2	2	3	2	1	23	1	1	1	3	3	2	1	1	2	2	17
totals	44	29	43	37	26	36	34	39	39	31	358	22	26	21	35	41	31	27	31	40	41	315

appendix 18 －SCORING matrix of project performance

A004ar - Quntriont of teme	31
Proom low of the Contrect	31
APPENOX: PART 1	52
APPEMDIX: PART 2	34
SUPPLEMENTAL PAOVISIONS (the YAY Agonmanil	
hrum perments - edoricon of Vait	56
Wrilen es ressimert by Manegerrert Corrisctor	56
Emplowe to calculete mount of laz owe - 	56
Writon fine statemert - Vat lisotivy of Minepernent Cortractor - recovery Hom Emptorer	36
Unmogment Contrection to theve necerot et un moze	37
Yave of mpody - hquideted dameger 10 De owregeded	57
by Menegernert Contesctor	37
Ducherge of Enctoper from hebiny to pey that ing Menagernera Corarector	58
merde by Artiration or cound	30
Whatrion proveran emctuded	30
	84

un moces 37
lo De owerowded 37
by Minegernert Continction 37
in to ing Menegernert Corarector 50Wbitation prometen enctuded80
 0
SCHEOULES
aneripiton of tha Protent58
Honeponoth Controcter = exe Artane 2
manee 4.1
MI Centeral 0
int Worta Corwecti 81
MX On-we stifl errolowed by wo Mmancenere Pomaryry A!

Part 38 Simory cown nevired by me Manegemert Contrectior
 Menegernet Corterector

Pert 48 Meveriels and good promoed or In Manforment Contiector

Pert dC Pient. commernen stores end servicet orovord by mes Mensormen Corniecme

Third The eorvices provided of to te provided by the Monoporment Contrieter porment to Artiche 1 (peree I te 83)

Sencer gener mely to ow moched duming : Pro-Constincion Period ove merecner at necereary (peras 1 10 is)

Serncest gernar aty to De wroled omet the Pro-Congrnction Perod bud aso oung Mat Period where remere (oeren if to sal

Fourth Uet of Profoct Drowing
Finth SHe frewitod and cortioes to te provider by the Monnopmont Corirecter: seoonel Noethen ond clevee is-4

Articles of Agreement

\qquad

(hertenefier cened ing Menagervert Cortractor) of ins omer per

Whereas

 who theve prepered or ere prepervo Dremige and Soecticimion tor ine Prowat neree celded the Froped Orworpe and the Pronect Specticenori:

 charicte 81

 nerem. and
 Menegemert Contrection prior to the nswe under cleuse 2 ' of unempen notiticition of The Arcinective Corwici hormoneltstor of the dete when whe brectreste 10 commence the comsinuction of the Prowect.
the Emodorer mends subpect to the Conditions to give to the Menagernath Contector, and the
 reforred to an cheuse 21 of the Conorion reauring the Merngownen Contector to cortinue uen co-oper mion and to procered to ter oud and mecure me cerryng ouf and comptetion of the Prowet on eccordence wath Atich 1:

Tve stant of the Emotored lor the purooses of the Steturory Iar Deduction Sctorne under the

Now is hereby agreed as follows

Arnets 1
For the comederition mentioned in Anticis 2 ine Monegernevt Coreractor wal
1 Whect to the Condarnt co-00ensle with ind Protestrond fearn durng the deston steget
 out and comptetion of ine Propect and in so domp onal netude meservices set out in the
 Protesesent Feem and the Menegemert Contector pror to the nstue under cteuse 2 it of
 be perecticsos to corrmence me conelruction of ind Proned: and
 the Convict Documents. set out. menege. orgernse, superves and eacure me cerrmag

 Menegernet Cortrector alequred to ervex inwo hereunder.

Mrinto 8
 suret to the Condmions ine Ematoper mill pey to the Menegernert Contector we armourve ut in eceordernce min eectron 4 .

rete in CH

In wow the Argheet in ine Condrion orm meen

On in the everv of mis death or ceasing to the the Archifect bre the ourdose of thes Cowect
 dily stier such ofeth of cessation. nommsit 'or the purpose berng a person erawnd use of the name Accmect ond nor own eperson to whon me wheorment Coneme
 on Arotran anoomed in eccoroence won Sections (c) Provided swave men no wosequontly apoomed lo be the Arctulect under the Comiact stian be ernitiod to des'eo
 mo Aretmect for the trre temeg

Articie 38 [0] Pl The lerm true Comiect Adrmerstistor' in the Condrions onall mem
of \qquad

 to whom the Wenegenerv Conerecror no terer men 7 dars ather fuch nommetion inpe onve

Articie 4 (D)
unning surverer
The lem 'ung Cuartity Sumpror' in the Conditomg ghat meen
at \qquad

 laser men 21 deys afer wich opath or cestevion, nommete for men purpose, not dang op

 mroughon ine Cendmone.


```
artiate
```



``` Aricie laje and mo Ouently Surveror nemed on Articti 4 and
```

and euch otuer persont an may be nothed in wring to ind Manegement Cortrector by me archrective Contrict Acrmwetr Eicor.

Arveter 1

Prowet Diemeng

 dive of true Contect undest prevourty prepered.
Soecticstion.
Connect Cow Man. Aopenotr Pant 2 and trued and mm screotures

 oner the deve of twe Cortrect by the Ouently Surveror in coneoormon with the remender of the Proleazion Teen and with ing Marnogerned Condrector.

M Conerect Cow Men and to ine toter mereod.
The erties ineerted in The Apponchy Pert 2.

 Manegernart Cordrwitor and compleied ty ina Profenmonal Poem

Artcte 7

 to oncherge in obegevions.
sociricaram and ons of ouprtione lor Worts Comartacest or anvernere

Sempermert of
msounter
Aromition

Artacte 1

atcestafiom

s-gned by or on opensw al me Emarove|di| \qquad .
nowe presence of

S-oned by or on benak of me Menegoment Corviscior $\{d i\}$

- ming prosernee of

Soned. sested and opweved by [d2]Th Common sed of [d]): In the presence of $\{0 z\}$ west mereurvo atheed in the presence of $[0]$:

Surnad. seeved end dethered by fazyThe Comron seal of fall.

in the presence of [d7]wis hereunto athied a the protence of [af:

THE CONDITIONS hereinbefore referred to

SECTION 1: Intentions of the Parties

Wocodramee 11 ocrever		
	2umin menten ef ume Conomame	
uncm one moter 100040	to node me ornome - anm on ormm me Sormanden.	
10400000	- surcon favenom trime	 Sotratio io motm memence re mose
	under mimee	moment
	memanemmerace	nee atmen 62
	Memerace	 men Commer
	nemenor	
-	minctor of Ambry nowemand	
	Amermect	 persom to be me fedmeda
	Combente Comprime 	
	Comarmender	
	Commanax	
	Comemerammeat	
	Commuctan firba 	
	Commed Commar	 erroved monem

Provet Orampe:	The orewiger lor ime Prowed beled in Me Fourth Setretwe her cro upon much ine Consed Con Pian has been besad and minch heve been shoned by or on bethen of tre Emotorex end ind Menegernery Comisction.
Propet Eramation meme	noectrous 213
Anoma Soecticmiors	Con pren hes besen besed and which hea been romed by or on bunell of the Emptoper and ine Menegerners Cortriction
Ouermy Shoveror:	In person nemed in Autrict 4 or ony successor duy apporned under Aricto 4 or orterwise egreed en me perion to be the Ouertiy Sermeror.
Meoter - Moundre	The Mecriat or ary one of he Mockas sen and batore Ancto 1 .
Amporat Evat.	ovr one of the evorws set oud th ciouse 210 of the Worky Contect Conotioms.
Panemore	see clave 4 ?
Sornatiose:	the Sctredues to the Condiorre, thet in the Firet and Second made thersto and inviented by or on beh of the Employer and the wonegernam Contrectorl. We Fourth Scheotud: and ins Fith sctrocule as cornotered and innimined by or on bethall dime Emplover and me Manegemwerl Corarector.
Sen Memorem:	metouse 82.
Sowersod Poute:	Are. Mintring. exphation, storm, lempert, hood. burtiong of from, not and atrit corrumorion but ercturing Exceoted Priste.
	200 crues 51.
VAT Agreement	noecteuse st.
mond	in respect of ary Works Cortract the workd ond pernculery of minch are rourrod io in Section I, and with ere tuir gham and descrioed in mo thumbered Documants netiod in the second Pectiat of Section 1. of the resevery Works Conrsarl.
Morea Cornuct	tw cormict bemen the Mmsegernery Corarmcior and a defred in the Workl Comiad Conowione. crever it as: The comptried Sections 1, 2 and 3 of Works Contrecyl motuoing ine Mmenter nd Documents mared in Saction 3 end the Work Conwer Conowions.
moral Conneri Conamase	 Section 3.

 en mssucion or Orecion of ing wenmoment Cionteck tawed unoer ins Wortis Comiser
 quentity of the Wortis th ghow in me Wort: Contec inctuong

1 The somion. ormision of ubstitution of ant oot:

2 The meretwon of the hand a er andsed of ary of the moterigl of goods to be used on mat Worts.

3 In removal fom the exe of ary work. maetide or goode erecured ar orough merton by the Works Coruiccior hor mid purposes of ine Worls other then work. marersets or googh minch are not in eceordsice amm mormil Convect
2. The mpoetion by me Emotayer or by Me Mensoment Conticior of an oohgotiom of respritiom on reperc to me marters wet out on persorape 21 to 2100 me codstion to of emaremion of omeson of eny suct obigetrons of isernctions 00 mooned or mpoosed a the Works Contset in regred to

1 scersit to the two or use of ery soective pert of ine sees.

2 Invixiom of worting spece.
3 hrmitione of workng hourt.

- ins enecution or comotetion of memertan upectic orod

Whars elouse 4.5 of me Wortrs Cernrect Conontion apptien tive lemp verwion has ins eame mpenmg o
 or ouarwity and meen doeng or aueny.

Worke ConArector
sos clavet 11 end 82

Othpetione of Monequment Contrecter (1 4 wiol 1)
 owsond loern Proleserional Tesm at mered in Armicto 1 .
 Unangeribery oricion

1 prepers an neceseery progerminet tor the erecuion of ite Pronet.
 and completed on or betore the Cormition One:
 ctarae of ere carned out an eccordence mm mo Prowet Sonctician and unt
 Herem spectred. and thed where end to the eriend thed socoroved of the ountry of menerw
 Adrumetretor such quatry ond stenderds are to the ressonebid sumetaction of if Aretmectite Contici Aorvinesman:
 Schedute or securs such one lacimes and services at may be egrend writ or mey ingructed Oy. the Arctivect The Conited Admmetretor.

 wan exertecmon, and
 the Corvisel with eqgard bo perment sove mere mere has dan any cecide

 hove eflect as concturve empence es to at orme computetoms. ind
 under ctifutet 212 to 214 neve oem orm. and
 resonct of sconcetions oy Worti Contscrions is reteried to a cterse of 5 and

 on ophen of Works Corwsctors erring oul of ery of me meriers ieterita I clecrets 448 ith 4467 of Me Worke Comisct Condinore mermer suct ctent for bresech of connect. dur of case, stentiory dury or ormermens
 Find Cernicese hat been isturd ins Find Certicete that have effect is conctu

1 such procesdings heve oew conctuded. whereupon me fine Cortinc we one suonect to ina lermst of mr swerd of pogement in or semtomant of proceedings. or
 procesongs, wher fupon the fane Certic:te shal be wotect to try forms ay on pertisel eetherrext.
whelrever nithe eorber.

 which Mose procesoriogs indive
 dewgn for wimch mey Worts Comscror is resoondion to ine Emorore unow

 eccordence man tri Contect.

Imarei Inamed

monera

Mrnagement
Comecre
morocesd

 Henegement Cortractor wetw whether of not ite to contmue co-00ertion with the

 Fint Schedin and eqn and dove Tre Appornder Pent 2.

Nnsoperyent
Comectior not to
procered - dearinod
oeverimition of
Monogement Comection 1 monormand

 thet be dearned to heve been deremmed and ithe Employer, withen one momth (or wech other period te mey be riand in the Aopencuil catculeted from ind lateat dale when writen notice by me Emotoper under ctarse 2 i wo proceed minget heve been gwan. that pay to Me Menagemam Conerbctor ere-Cometruction Puncd Meregement Fer wis any orount pad under on

 metret by ect or ormemin. of we Menegemert Contector, his cerverts or egents, in

ronsciseon of

Dremere of
Powereron

Ansetton oy
Vonngemere
Concecter

In 0
xcuomion
MEmorem
murws -
monorel
premen
 one porsession of the sete to the Menegement Corwrector on the Dene of Poseesson

 ostore the Compretion Oele.

2 Where ctevee 212 it gieced in the Aooendis to sopty the Emptoyer mey deler the oring of possasmon unow ctiume 231 for a opiod not erceeding 8 wemk or such meseer period steted in ine Aopendive celcutated from the Osve of Possersion.
 possertion of the the and the Propect wo to and nefludeng the dete of nseut of the cernticare of Precvical Compietion and. subpect we ctursed 234 and 2 8. The Emotoyer
 deve.
 occuoy the ewe or the Propect of erry patt or oerts mereol whether hor the purposes of

 Contrector thef give twi consert to wet use of occupetion me Menegement Contector

 to vuch cordermenon the cormert of we Manegernerd Contractor ghen not be unereeoneory mulueld.

 Cortection one ing adowione oremmen recuered end enell pround the Emplover. I so recuersiect ant mecemp merstor.

proneli Commetion	34	 oby numad in wan certicices
scruedula of delecis. meurmo me mehing 0000 dorects	23	 oreducion in iesped of any wach detects. grwingapi or omet lamer not mode good sham be mede to in Purne Cont.
Certictate of Compration ol Maing Good Oplecti	1.6	 cernicate (tite "Cerincate of Compretion of Maning Cood Derects I
F10a	27	the making good od any demege by troy whech may moper aher Pracics Comptetion unves the Aretwect the Concaci Aommatiator shed cerity whe such osmage it tue to miry arich roon pace betore Prectice: Compution

ief Portied poesection by Employer

consert

Pracical
Compurion -
inereet perl
Dolecte ere -
roveremet pert
murance relovert pext
Lioundered
demeger -
lonevert pert

 and oring the dske when the Employer look cossetsion In cisises 2063652 and 69 reteried to es 'ine ietevent part and the ieteram dase respectreyl
 shan be deemed to have occurred end ine Delecis lubuny Peroon in iespret of me

 clacse 25 shall how beren mace good te stall nsure a cmiticsip to than elinct

 ootrowion of Emptoper to mane under ctave 652 ghan hom me reteven ase uncuide the celevert ourt
 2910211 m resoeci of ary oerod ourng winch me Propel mey iemem oncomple occurrmg ather the ratovert date more then be oad or showed uch rum at nowime serree retto to the turn whach would be pewd or enowed apert trom tre promenors of elaurse
 ionevert part beers wo the Cominet Com Pion Iotat

mat to tecure mect comprimon netruecty imert onmernor 1 nineme	29	 hormen conticare unoer cisuse 29 se moy be nacessery
arowed and xMinnd nnegu	218	 Comompion of me fropect, and the Emotover mer deduci the seme hom ary mones due or to seme trom tre Marnegernom Consector se debl.
Inveic 29 nHerelneramen	8.11	Emoloyer thell pey or reopy to the Merigement Contricitor try errounti recovered. domed or wour ctione 2 .
		Erteration of trose (2.18 10 2.14)
[nimpon of mead conduran Owe	819	 Arcthecture Corvect Adrunwtrator the completion of the Propect in tinaty to be or hee oeen detered bepond the Cornotetion Oeve by eny of the Proted Entension meme an comion of ins Arombecturs Cormiect Adrwmerrewor, upon recerpt of euch sovice from the Menegemment Contrector. Wit not lais and reasonsole to hat lator dale an mow Compretion O we the thet so notity ing Manegermwin Corkiscter.
		 uch eerter Comperion Owe re lair send resesonable heving regerd to the ormetion of miv

(nemen morn

 the Employer it responetbel. in regerd to ine Propect or

 detede of lowal from the Profetesond teen lor which he eowaticeny aopded in

 to the deep on which in wep moceseery for hem to receve the serig.
 Emploper owno ine pospestion of ine the under cheved 211:

 mone.

Prowaed mat no Propect Entonsion Hern shat De consperad to the ertemp then ats caused or contributed to by ery dedeut, whemer by sct of omston of the Monagement Corescror mit

Eriension of pernod or perrode lor completion a Worti Contects

 cleuses of the wortul Contrect Condiom to notity wh Worke Cortisctor of hat decreon

SECTION 3: Control of the Project

Ua-xqument
pergomen of
Hanspement
Cuntreior -
coraent of
arennect Connect
AOMmestron
actens 10
Managention
Comiscror:
oocumertition
9.1 Ith Mansgment Corracion ing" erre: uom the Propect and worting on the sie ima

 mernand

31 Io mertant nacessery for the orooer e.tevion of ing Propect or me ascertemment of my

 Conseacto retuing to in Prowect
noetruetione (1) 1 to 3.6)

 docoerty to cischerge ins odingetions Ah such ingructions shat de istued in wring

 Menegenom Corninctor or br the Mensogement Corerector to me Archectethe Contiect
 errect

3 IT under cisurse 37 of the Horks Contsect Condmions a Worts Contsector requin es the
 urning ine prometorn of thes Comescl arnch emponers the resue of any matruction remed

 ontree to the Works Contractor a cecop of the emewer to thet reguent
 Worti Conser Vonsiorte -
prownen moms a Worlis Contrecte

Momponatient

 num an Worke Contacte.
 m regere to me postoonement of ervy worm to be enecuted under ine proweme of livi Conwect.

Mcreverton-
mevion al
mouence
0 Mrang
Chase 16 onty mopliet where se atered in the Apoenchn.
2 Whare ine Employer desmes
orrer
 Prewnonery marucion unoer clever 3 o 3 .
σ
 unoer clever 212 so met enther m Comotetion Dase current of the dave of the Preminerey metucion unoer cteuse 3 63 m not estenoted or ie not embended by whe 212
 maniction unoer elouse 163

 serparice of liming of. any mork to be erecutiod unope the pownoms of mis Conse Arcturectind Conisci Admmertiotor ghat on such memuction set out the peact nom
 or which the Prommmery instruction has beme nesued

- It me Managemem Contiactor, or mrough hom eny Worts Corniscror, menes a reeso

 me Comect Mormonatianor.

5 As soon as rensonsbly precticable atter recerot of the Prebonenery msinucton to
 Continctor stan inform the Actinfect the Contract Adrmmstration a wing

1 In respect of eseh Works Contector affected oy me proposed insmuction

mane

The kump sum ressonebty recrumed by such Worts Comiscro in iesponse Management Contiacior s moury mace under clerse 341 of the Comisct Condionsl to be sdded to twi Worke Consect Sum or isman mo x a ite cormoutsion of ithe Ascombented Fma Works Contect Sum is a ie
 Work Contrect

σ

The if in not ressonabty precicable to slate such a turne sum and the the the Emphoyen of comphence by huch Works Comiscior well meretore neve ascerianed in accordence with thl ine retevert Wortis Cordiect Conamoms and

2 armor
ne eermer Comotetion Dese wimch can become the Competion Owe how purposert of itws Comisad
σ

The entert to wiwch on extemsion of lime that woind onermite be haed

 Oeve for ane purposer of hws Cortiect.

- Won recent of the miometion owen to the Aretwinct the Cordect Adrunmeno
 to eccept ing Comptreion Deve titered by ing Monegemem Corwector perquen x
 invinuction
 reoured anctuding the ehenge or changet wo ony Wores Contect period or lor comptaion of ine Works Conwect Works slaved of Worke Conme repornes to in Menegernert Contrection under ctave 3462 ot me Conrect Condmom
and
hurng ine Completion Oote

	\cdots	
Menoremen. 00000 and morkmentio - wonderes	8.0	 n creme 133.
		mey be reaumed in ary epecticstion or bilis of oumbines in eny Worts Comisct, or, where Archroctime Connrect admantimer where and io me ertere mat mis a reaned in ine Proper Speciticetion or es reterred to n etiome is 3 .
Provroon of rouchert	12	 361.
macection-10xil	210	Corniscror to secure the apenmg up tor mepection of eny mort covered up or secure me Propal of of ary emecuned work, and euch openng up or tesmog logether wath eny meting the the work merenste of goode ere not in eccordmice miti tide Conmect.
Amporw from mos 204 - moth ate. not in aceordence minctane 10	211	
manervonson onectime.	212	 une Corwett or wo trom occurng betore Piectical Companton of ine Proiect io be mede pood ematore.
		Momaper on min (215 ond 214)
Maregen - manuctams by wemenconereat Aormination	213	 and who e nemed in the Alownoth end who thed not be chenged withoul the pror eoprovel of now owen omon to the Meregernent Contrector.
Amorst of Mereorithom Proma	214	

 U-mice yrat not de iemourd eicrot lor use woon the Pionell umesi the Aichatecitre Cor

 ony mapron Cortheste unow whet the eround property dut to ine wonegemend Conwecto been pand or drachseged by memotorw. mach materiets ond good ghat becoms
 responetios lor loes or dernege to the earne
 goode - On.

 Convector end ine Employer hes ped or drachenged the smourd prooerty ant to Manegemend Contiscior under Mo murm Contrese such mevenets and goods sted bet pe propurty of the Emotoper; and mereather the Manmernext Corwector man rot. eucere use uoon the Propect. remove of casce or permit the semp to tee moved or revoved forp
 my beef mereot of demege marato and hor the com or wor ige, henorng and menence o

Aceess for the Profocslonat Teen to the Profect
 to the warkehoos or other plecel mivere work it bend prepered tor Me Provet but enow
 necestery to protect ory propmetery nogl of ind Munegernem Contrector or my Contrector in such mork

Chork of worke

 pertiorernice of men duy.

Aoshanment plis mad 8 209
 WContrect other, ategn ine Contrect.

 bying prexeoting

 proceeongy (whether by ertwition or by Mration) to ertorce any of the remme of mis Co mece for ind berieta of the Employer nersunder the etegree enell of estopoed hom ots

 Employer's obilgetreme
 sody in respect of eny bresch of or non-comphence whe Monts Consrat by it

 Cormeat Condmionst. Aommetretio and ins Errolorer lake an raceseary tops

1 to 00ernte the temm of the Works Conwect hor deatig anth mech breach or nom compkence. metuding endorcemem mrougn abition or migetion if neceseary. to doten erf omourt oue to the Monepornend Contrector netudeng therem eny erroum hor went the Manegemen Comarctor in mode to the Emplover under
 and

2 to secure the earsisctory cormpletion of me Prowet metuong the engegement hor

in eceordence win ins leome of the Works Cortiect mith the Worte Condrector who here fated to comply with one Works Constect or it th oreach or
in necerpery beceuee the omotopment of the Morke Cortrectior under ina Works Contrect mee been delermened becenee of bresch or nomcomplemot: and

3 to meed erve clawi prooprty meoe unger the Worte Conticd Conditom, by Worte
 corrov win the morks Conrect. a rerowet of the convequencest 10 them of wich oresech or non-complence.

2 The Employer shet
. 1 Dey to the Menegernert Comiector an eccordence wen Section 4 and the Second Sctwoute ell mounte property ncurred by the Memepoenerv Cortiaction in hatitng
 recovery by the Emploper relarind to an chare 12121 and
 deducted or recovered under cleuses 210 end 211 becsuren the Cornoletion Dele has been ereeeded by reseson of me breech or non-complence the Works
 ach derneget hom tre Manegernert Cormictor.

3 be entited to recover from the Manegenter Contector all errounte peld of crednad to ing Monegernern Contractor under ctaves 3 21.2.1 and whers redevern Ine moum of aquadiod and ascertaned dernegen redered to in cteuse 321.22 but orly to ine erfert that such arrourte have oeen recovered of ine Menegernert Convector form ine Works Consiscior who is on breech or wha hat feled to comply nin the Morme Corwect.

 of Ine Mornt Corfictior who ere in bresch or who Met fend to comply wint the morks
 hee peid or re wade to pery wo meh Works Contrectort hogether whin any couth the ha hee nevered due to the oreach or non-compearnee. To the ement thel the Monepernert Cortrectar is not rembursed of such deduction ine enell eeth wo recover ercy thortel in

[^3]

 eccuped of ueded by hin hor the cerring out of thes Contrect (netuang ine Prowect)

 wrow her Twi Cormect
 membert of trade chome.

4 It Meregernert Convector thell at dirnet dung the cominuence of in Contract owoper. hor the indomemon of wis wortpecons. In every lectory. mongroo or olece cocupied of ueed by Mm for the corryng out of mes Cordrect (luchudreg ind Propect) a coor of chane 38 where retes of wegent hourt or condroms of work heve been
 coremert commont recognsed by emplopers and wokers in me ound a copy of the

- The Maregument Cormector thell be respormbily hor the obeervence of cheve 320 by

 the megee pedd to and the wrim worked by the workpeople in the emptoy in end about the eargity out of tive Contrect and buch weget boone and irme theets onel be proouced whenew froured for the inegection of ery othcer mathoriend by the Employer.

 pend and hours and condwions obeerved by me Menegernert Cornriction and Work Contrecters in cermery oud the Provect

Poymert (4 i m 4-12)

 The Monegerriert Fie
 conicente Impe mants due in nwoll Cinicens

 normes due or to become tue to ind Menegement Contrection wend ery smoum under en invertm Cortireeve whether or not Paptertion an inctuded on thei inworm Corvi

 Comrector in wriwn of the mesions fior the oupuction
 mantt due in mrourtit to be reved to dea in Irworn Corincemen.
mom Corwicate
 Conamiction
frod approprote metaimert of the Pre-Conmuction Purod wenegomert Fee veved o cell

 Cominuction Mod reter thet be, es ratared to e dede nat more men 7 derit betore me dewe of ine marruce twe eun of the following
.1 the ernourns tue and perabid under the reapective Works Contrict anomete

 ine date of permert of esch metern Certiceve plece ins Amertion hand there
 und Emploper on wum an proviced an elpust 1 il il ond conty to en Arct
 been to placed. ithemenegement Conerector thell emerty mom rech Comiector in reapect of whom the Emptoret notong Amertion tha Emonore

 Consisctor on to ery Worke Contricior:

 the Menegernert Contrector or the Amtertion hetd for ervy Worts Condracto (es) Phe stexerrert intued under clame 4 ह 27 .

Ind Contricane - $\quad 4.0$ nceromprent 4 Prome Com

 al documentis releng to the acourti of Worke Cortinctorn.

 of erp dem of coet gell lorwerd by the Moregernent Cortrectre per of on

 eccoroence min craver 4102 and 4101.

 een cat in crave 4.104.

 4.104

ACPM	$- \text { Coner }=\frac{100 \pm(0-1)}{100}$
Hemere	
ACPMP	
CPL	
0	 Hen Toter:
1	Ho deute 4102 and 4101
2	

 enemiene in ecoordence min Pet 2 of ing Second Schedede

The and of tha Dolecte Unority Porrod:

 the emernert reteried to th cleve 412.

2 The find Corricate thel ator

 wich cleume $4-2$ rolert
 the Menegernert Consractor on reapect of ary lraewn Certificeled which have not been
 Menegernem Corwwetor from me Emploper or to the Emotore from Ma Menegernent Cortrector an the cese mey be. Subpect to ory deductions whortsed oy whese

 Contrection of by menegernert Cortrector to ins Emptorev.
lonpleres mit antory wamentid
Weprese - be
rinvery wamernerte and pornerte nelerred pincturnet 10nd 140
porenee minuctions

Envoncy -
protince whit
simery
mourtinerts
mped-non-
enceance ther
hmacy
Mantriarte -
painon of
Unegentert
conrector

 The Sxamery Pequarimerten

 - in ctane I 4.
 secure ine mpoly of memernilg or the enecution of wort betore recemeng menuctrone
 meternets or mo erecution of such fruted work tet ere mesomber neceseery to eecure Irwionere corpplence with ine Siathory Pecurernent

Durnorse -
MAI Agremert

 and in fre vat agreernert ceved The Conwiesponert?

Anra Con-

 Urequrnart Fee nave of VAT

 under or or wite of the Finence Act 1972 or Ery ormenomend thereot on the mody of goode
 Agreormert.

1 nemen ing.

- Obmotencencea

I devertarevion num or mider.
 seivet in devign pien coecticetion meternet or workmentido of amy omer work emecured midich is fow or dereged in cornequence trerect where mech

J bee or drimge efued by or athig tron
 (winemer ber be dectered or noth chil wer. reopmon revotution. inmerrection, milary or uturped power, contrestion, cormmendeenmg. metioneriestion er rectidition of lose or depiruction of or dernege to mp property by or under the order of ery ooverment de here of oe tecto or putace, muricted er locel untorty.

and IV The Cortrect in cerried out in Norturn Ir lelend
4 drlit cormontione
 person of permores ectiog on betell of of in corrnaction wath en undimh
 ongeged in merrortart and tratudes mongenisetion midah an om raverent tirne a proscented organdsetion watin the moenting of the Northem treand (Emergericy Proveiorsl) Act 1913: Ferrorteri meene
 tor the purpoee of punting ine publice of try eection of the public in foer.

ganat of Joint
 Namen Natere -
speched Partio -

 Narres Podicy:

σ

 sgemet ery wah Works Connsest

In resoced of bees or dernege by the Spectied Peris to the Propect and SAe Maneriels and. werere

 Works Contrect Condtions) or. Where ing Propect doet not comprese enervions of of efiersions wo exiding etructuret. Ine dexe of deferminetion of ing employmert of me Menegemem

 ctever 84 it or cteuset 7 1 to 7 i3. whichever in ime eterter.
 Solvt Nemes Polver

 promen receran travetor.
. The ovend renewal deva, et wopend oy the Menegermert Conerwcior. of int

- Wry loet ar denege epective wort eneculed or eny pert thered or om She Menorvets in

 renoect of work execuled of a morks Contrection. under or by drtue of tris Contrict.

 procesd abth escuitng the cerrong oul and compition of the Proiect.

 tregrence in reepect of the lons or cemege retered to in ctoure of 44 to the Employm.
 ourbig tivcturve.

 courention:

 nemer.

 invivetion under ctreve 34.

 mone Cormecto

Cleusets 52 and 653 soply onty more the Proct condonges maverome of

 to the Emodore.

 second sontide the so pergeren in il.

 40 coc

 equrame

 Wareat orde the crimiten nermpen Elapedor.

 acoung

4-
|wimy
unegerter
tomincter -
worillimer
man-mountiy ulnemoner

 - lhar meat miny

 One

 Consiaction ghed sund and ghad ceuse ory Worki Consector 10 send to the Arensections
 onsurences requed by clouse 610 i i have been taken oud and are beng memaned. but any tro the Emplover mer (bud not unvesonably or ver Brourdi) reoume to hove

 Worke Contrection to tiske ou and memsm, meurence as pronded in cticust 101 ithe Employ may himsell msure sogenge ery habity of expense which he mey neu areme out of such del out end a wum or sume equrviers to the arnount pand or persote by han in rescect of premums merotor moy be deducted by hm from ary momet aut of to become due to ine Manegormant Cortrector under the Comest or tuch smount mey be

[^4] apolieatiok

5 oring from wer inde of the Eremoted Puste

 preminem recelpte theritor.

 popect of with the dotal thel hove recurred

 umat of iny property. by the efleci of on Excepied Find

Imet of

6. In the event of the Proiect or trm pent thered or bry untred merends or goode inwended lor.

 perabit to ine Menegemert Contrector unoter of by wrup of whe Consect

 ownege end the procedd to eecure the cerryty an and corrowntion of the Proiect, and
 in in epirion. io fer end reemonabit.

- 4 He remevel end orepoent of debrts or derneged work the emecution of prosective worte
 - Pramed Cherge and es Morka Contisct Vertationt heued under demen 34 endion an
 e.

 eneorne the property of the Emploper

SECTION 7: Determination

nabr egemort

 compuman of tre Pronect or

 -macterat er

 wicior priveg inacount

 Trat mix mion

 Menegenment Contrecter of ery Works Contractor shel heve removed mior Mew lemporery
 The serne. The folloming shat on the rempecive rigits end dune of the Emprover ond the Nonequmen Cortrector:

 of in Prepect and ube anmporty bumonga plya. look. capornert. pood and

 Propect

- 1 emeept where the extumination securs by rewon of the Monegemert Contector hevirg it winding up order mede or fother then tor ine purpoee of ervengernevon of reconemuctionl masaition for wotrriery winomp up pasesd. me Mmegernert
 Adrimempetior on tratel of ine Employer wothin it deyt of the deve of determination. exegin to the Employer withoul permert the benetil of ery moreorment for the suoply

 thrine exaionment therect by the Empioyer.
.2 mbiect to the emception to the operation of cteuse 7.42.1. the Emotoyer may pey ery suoplime work Contector tor my meterten or goode detrered or morke
 devernimationil in to the the price mertot hee not dreecty ben pend by the Menegernent Conspector. pepmerte mede under cleuse 1422 mey be deducted frow erf and due or to becorre tie to the Menegement Contrectior or thet be recoverabit by ine Ermptoye from the Menegerment Contector is a deot.

 Min. Whin e reesonable time sher ory wach reguroment hel been meod ond Manegernent Confrector hes nol corrptied therswith, then tha Employer mar fbud merout being reeponetide for ery toee or demegel remore and sell emp wach procerty of the
 Maneopment Cortrectior.
.4 The Manegernari Contractor that How or per to the Employer in the merver herinafter sopeetre the moum of enp arect low andior dernege ceused to the Emplopw by the
 not be tround by erf provtion of thi Cortract to mand any hrther permert to the Menegement Contrictior, bu upon such comoterion and the verticetion weme reewonetie trie of the eccounts therstor the Achacecthe Cortract Adrrurigt mor shall cervir the emount of ewoenses property heured by the Employet end pre eround of erp

 comptivan in eccorderice winl inve Contract. the diterence shed be recoveridie by the

 posecess, id my of me meners rederred to nictevees 751 to 754 occue men mo Manegemert Contrector mey thersupon by notrce by reoretered pod er recoroed devery to inv Emptoptw

 - veramourly.
-1 Une Employer does nor pey the mourt property oue to the Menegment Conrector on ary

 by regretered poet or recorded detvory of s notice from ine Mensogemern Contrecter
 wimn 1 deye trom receppr mewor. or
 Contrect: 0

 penod of we mengm nemed on the Appendz by reation of

1 metrucition hesued under ctsuset 34 or 3 3. undess caused by resson of some
 ery person emploped or engaged uxon or in connection int ine Propud or ont pert
 ongeged or authomed by hrm or by any tocel sumority of stantory underianer

. 2 The Menegemant Comrector not hown recemed a oue trie necessery
 oenent or wade fron the Actweclithe Contrect Aommetretor tor mach me
 which niving regerd to the Completion Dowe was newter urvessonebly orstert from
 server of

3 delay in the enecution of work not hormmp pan of thes Constect by me Emororew hirmeff or by persome omployed of othemene erngeged by He Emplover is ieterrod 10 in clearges 323 end 324 or the lature 10 erecute such mork op opey in the
 prowie for the Propect of the leture so to supply. or
 wort. metenth or goods in eccondance wim clane 310 (nelluing mating good

 Consrict:
 Propect or ory pert traned trough or one my lend butarone. way o peseape
 Emptope. In eccordance whin ind Coninct Docurnewt ehe recent by me

 Menegentint Contrictor.
 in respect of N de compery tor a rotumary erengement for somportion of derte or
 aeonemion made unoer the imeovemey Act ited in respoct of mit compory to the coun
 purpoees of en emingemeion of eeconsticicion) hes a remotution for volurtery monding up

 Imbivency ted 190a, eppormed or poesestion in titen. by or on bentit of the hodiers of try debentions seared by thoming cherge. of ery property compmed in or euprect to the Moathry charger

 whin weh prectutiom se une provert infury, deen or dwrige of the cleseet in resoect of wheh betore the dive of deverminetion the weallible to inderrnty the Employe under

 7 -22.
 Cornrector ofve be ped ty the Emploper:
.i Ine Arime Cont, and
 coode nat oneivered to or eofecert to the Profect but lor wimet the Menegertent Conrector is begety bound to pry and on weh pepmend by the Employer ery ruch materime of goods 90 peid hor ghat becorne the property of tie Employer. and
. 3 Menegernert Foe catcianed alonowt: The Pre-Construction Pertod Menegemert Fee pare procontion of ine Conseruction Portod Mancgernert foe stated in
 belno the rwite thet the Convinction Pertod Manegernent F we beere to me Contred
 7 -2 2:

- The reesoriote con of removel under cteinet 781 ; and
 determination

-1 toree melmerty er
. 2 lowe of dernege to the Proinct cocemioned by ery one or more of the Spectrod Parber of
. 3 OVA comination
Nen the Engloper or the Marcegernent Contrector mey fremenpon by notice by regleleved poed

cotiod Porline wance wh Monegennent nuction	70	 statutary obligetiona.
mind dines ingope and nugernert prector	7.8	onception of clame 762 s .
norwis cotion	7.10	 Connsel
meminuman ow cleuse 710 natis and ounel lnown and mepermera HIMET	7.11	 and the Meriegomert Contector:
		 be framed to the extert of mum property dut to such Worki Corriection and others me ghel not heve been peld to the Menegement Corweetor by the frovorw;
		 detormination, eseegn to the Emptore whoul pepmert the berath of erip egreoment tor the moply of meterith or poode endtor toe the execution of ery wort tor the purpoes of es sigument inereof by ine Emplopen.
$\begin{aligned} & \text { Inminetion } \\ & \text { wise } \\ & \text { wiction } \end{aligned}$	7.12	of a wrifen notice to proceed under cleve 2 it man me Emptoyer tred pey to Mo Manegernart and clecet 2 I en eporoprete proportion of the Pre-Comeruction Ponod Menegernert F es wete
	7.13	of the wrimen notre to proceed unde deute I I then upon euch opremmetron tre promeore of cturse 10 thel mopy.

SECTION 8: Works Contractors

mome at moth mone Conirsciers Corwrectors widen ew dereited on ind Conried Cont Plan or in instuctione

Semetwen of mond
Comerevert -
conters

Nomereme
cononers in metro
Controver

 Egreement in wring berneen the Menegement Corntector and the Arehecinte Corwi ect
 Where ing Emplopte or Are Arvectine Contrect Adrmmelsetor on hit behm and ine Moregermert Convector omereves egree. Ine Menepernent Cortsector ond ont employ Inf pertord an Worts Cortractors who wall
 (Warte Consecyt and Worke Contrectr) issued by the Joint Contrecte Irbund
 Cortreat is under evet. and

2 : 20 required (me recorded in Worts Contrecvil erter into en Emporernwarts Coniraction Agrearmart Morks Contscivl) with une Emporem and emecule inm Apremert under sed where the Works Confract is under seel.

 Conomione in remped of rontictiont mratetions or enctutiont in a procosed contrect
 Contrecter shel not be reqinted to interuct a Works Contrector to erter thito a condrect of ent win uch Nomineted Supolier urdees and unti one Archinective Conersel

 Eroployer one be fround to the earne entient.
amen nocicter
row Marequing contrever unces Hons Centres
 Worta Cortrect

- Where erp Worke Cortrecter recuepto ine Monegernart Cortrector, No thell fortmint

 Mont Cormenty.

 Condirise
 men Connentry

 ens Ond emore
 Comrents

 Mensempert Contracior.

SECTION 9: Settlement of disputes Arbitration

Motrase -8										

acomert Morke Contreith of

On Worts Contrector and mi Nommeted Supoler to whom section of the Morks Cormere Conomans acohel
and Ife retaved dimoute hes ereactr been ratorred tor determinetion to an Arbitrimer. the finpoger ond the Meneopmert Contrector mereoy egree thet
 to deverime the related oleplite. and
 eane wer wit ine procecture of the High Coun st to poming one or mere delendent or

on article 3 or ancie af or
 1
 t on the ourstiont

whitier or not ing ititue of en ngtruction it empowed oy the Conomione or whether or not a cerikicas has been mprocerty methatd. of whative o cerpticete if nat in eccordme wim ine Condicons: or

3 on any depute or aflerence under cleuset 212 to 214 and 8 is and 614.0
 of consers by the Contscior. Under claved 3 3 3. under cisure 364 n reged 10 m
 Contrector
thall not be ooento und ither Pectica Completion or amped Precticy Completion of tha Provect or ierrmation of elieged lemmivion of the Manegermere Coniactor : urndorment

 Cortrector

 of of inctuad in ery corticese and to ocen up. revew end remer ery corticme. ooman.

 been gren.

14 The parties nerety ogree and consert purvert to sections $1(3)(a)$ and $2(1 \times 0)$ of the Aromition Act 1979. What entur pory
 erowration under ints Arbitrmion Agremernert end

2 mer mooty to the High Coun to deremine gry ountion of tow meng in the courne of ine relerence:
 quetions of law.

 Corwisct wherever the serme. or ery pert of ic, the be conoveled \mid el

[^5]When all guestions have been eomsiderad sum Ilue of further invesiligation.

$$
\begin{aligned}
& \text { GROSS FLOOR AREA PLOTTED } \\
& \text { AGAINST UNIT COST } \\
& \text { O_ MANAGEMENT CONTRACTS }^{\text {_- TRADITIONAL CONTRACTS }}
\end{aligned}
$$

CONSTRUCTION COST PLOTTED

AGAINST PERCENTAGE OVERRUN ON TIME

- MANAGEMENT CONTRACTS
- TRADITIONAL CONTRACTS
\odot

0

$+$

$$
\bigcirc
$$

\bigcirc

level of MEASUREMENT	- NONPARAMETRIC STATISTICAL			TEST*		NONPARAMETRIC MEASURE OF CORRELATION (Chap. 9)
	One-sample case (Chap. 4)	Two-sample case		k-sample case		
		Related samples (Chap. 5)	Independent sampla' (Chap. 6)	Related samples (Chap. 7)	Independent samples (Chap. 8)	
Nominal	Binomial test, pp. 36-42 x^{2} one-sample test, , pp. 42-47	MeNemar test for the significance of changes, pp. 63$\delta 7$	Fisher exact proba. bility test, pp. Siz104 χ^{2} test for two indopendent samples, ", ${ }^{\prime \prime}$ pp. 104-111	$\left\{\begin{array}{c} \text { Cochran Q test, } \\ \text { pp. 161-166 } \\ : \end{array}\right.$	$x=$ tert forkindependent samples, pp. 175-179	Contingency coefficient: C, pp. $196-202$
Ordinal	Kolmogorov-Smimor one-sample test, pp. 47-52 One-sample runs test, . pp. 52-58	Sign test, pp. 68-75 Wilecxon matchedpairs signed-ranks test, \dagger pp. 75-83		Friedman two-way analysis of variance, pp. 166-172	Extension of the median test, pp. 179-184 Kruskal-Wallis one-way cnalysis of variance, pp. 184-193	Spearman renk correlation coefficient: rs, pp. 202-213 $^{\text {s. }}$ Kendall rank correlation ccefficient: τ, pp. 213-223 Kendall partial rank correlation coefficient: $\tau_{=0.1}$, pp. 223-229 Kendall coefficient of concordance: W, pp. 229-238
inferral	!	Welst, lest, pp. 83-87. Randomization test for matched peirs, pp. 88-92	Randomization tost? two indepandand samples, P p. P 156			
- Eoch column lists, ammidalivaly dommard, the lestis applicable to the given laval of moawre-" ment. For axample, in the cere of kr coleted iamplet, when ordinal maciuromant hat baen adtieved Doth the firedman nro-way analyste of variance and the Cachion Q loul ore applicable.						

[^0]: FIGURE 2.2
 CONTRACTING
 MANAGEMENT
 source - higas and hill building Limited (1979)

[^1]: " If the management contractor has a profit motivation on certain elements of the work. it could be argued that he might not always put the client's interest first. All of the work must, therefore. be 'let' on a competitive basis to specialized contractors."

[^2]: "there is no type of expenditure which exists in the management contracting arrangement which does not exist conventionally. Those types of expenditure which are likely to be larger in management contracting are outweighed by the reduction in cost

[^3]: Adrinnentenor:

[^4]: Mand on mo Aconom

[^5]:

