
The continuous functionals; computations, 

recursions and degreeso 

By DAG NORr1ANN 

Introduction 

In this paper we will consider two types of problems both 

concerning the recursion theory of the continuous or countable 

functionalsa 

One type of problems deals with the relationship between 

countable recursion and Kleene-computability. When Y~eene 

[10] and Y~eisru [11] first discovered the continuous functionals 

and Kleene showed that all computable functionals (using S 1 - S 9 

from Kleene [9]) are recursive, L.e .. have recursive associates, 

a natural question was if all recursive functionals are computable .. 

Tait (unpublished) showed that this is not so, the fan-functional 

is recursive but not computableo For a while it was a widespread 

conjecture that every recursive functional is computable from the 

fan-functional, but this was disproved in Gandy-Hyland [5] where 

they produced a counterexample r of type 3. Now the conjecture 

that there is no vmy of generating the recursive functionals by 

S 1 - S 9 from a finite set of such functionals was more plausible .. 

In Normann [14] this was verified for the recursive functionals 

of all types~ Theorem 12 of this paper verifies the conjecture 

within a fixed type > 3o All these results indicate that count­

able recursion is much stronger than S 1 - S 9-computabili ty .. 

Theorems 1 and 2 of this paper will indicate how much stronger 

countable recursion is.. In Theorem 1 we show that for each k 
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there is a recursive functional Rk 

cp E Ct (k) is uniformly computable in 

of type k+1 such that any 

k R and any associate for cp. 

In Theorem 2 we shovf how partial countable recursion can be re-

duced to Kleene-con~utations relative to certain recursive func-

tionalso We use this to define countable recursion by monotone 

schemes, showing that partial countable recursion in a sense is 

inductive and that it can be presented as a computation theory. 

This throws light on a problem in Fe~erman [3]~ 

Another type of problems deals with the degree-structiure of 

the continuous functionals, both countable degrees and Kleene-

degreeso On countable degrees we only bring further certain ob-

servations on minimal countable degrees, most of the results 

deal with the Kleene-degrees. It appears that the Kleene-degrees 

gives a significant saturation of the Turing-Degrees~ We show 

that there are no minimal singletons, pairs, triples etc. in 

this degree-structure, in fact no set of non-zero degrees bounded 

in type will have 0 ,.,., as an infimum. 

We also define the higher type analogues of the r.e~ degrees 

and show that this degree-structure is dense and with no minimal 

pairs, triples etce 

We have started the investigation of these degree-structures 

with the feeling that they are radically different from the 

corresponding classical oneso There is not yet mathematical 

evidence to support any conjecture, but as all results so far 

indicate that the new structures are more saturated than the old 

ones, the following are reasonable problems. 

a) Is the elementary theory of the degrees of continuous func­

tionals decidable? 
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b) Is the elementary theory of the continuous r.r. degrees 

decidable? 

This paper is divided in two partso In part A we will give a 

short introduction to the continuous functionals and then investi­

gate problems of the first typeo Part B will mainly be concerned 

with degrees. An exception is Theorem 12 and its corollaries 

which conceptually belongs to part A but whose proof is based 

on techniques developed to deal with degreeso 

The paper is based on the introduction to the recursion theory 

of the continuous functionals, Normann [15], which again is based 

on Kleene [10]o Our definition of an associate is the same as 

Kleene•s .. But our continuous functionals are only defined on 

continuous objects of lower type, not as in Kleene [10] also on 

discontinuous objects .. 

We will assume that the reader is familiar with the defini­

tions of an associate and of a continuous functional of pure 

finite type.. We will also assume familiarity with S 1- S 9 com­

putations (Kleene [9])~ In section 1 we will give a few concepts 

and results without proofs, the material is taken from Kleene [10] 

or Normann [15]0 

Most results quoted in the te:I..-t can be found in Normann [15]. 

We loJill normally not give reference to [15] but to the original 

papers .. 

While preparing this paper I enjoyed the hospitality of the 

School of Mathematics at the University of Leeds with financial 

support from the University of Oslo, the Norwegian council for 

science and the Humanities (NAVF) and the British Science Research 

Council (SRC)o 
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I had several illuminating discussions with Stan Wainer on 

the subjects of the paper, and during a short visit to Cambridge 

I had some inspiring discussions with Martin Hylando 

PART A: Computatio~s and recursions~ 

1. Preliminaries 

In this section we will go through some basic notation and 

conventions, and give some results on which the rest of the paper 

is based. 

We will let cr,T,TI,o denote finite sequences of natural 

numbers and we will identify them with their sequence numberso 

f,g,h,a,~ and y will denote functions (from JN" to JN), 

F and G will denote functionals of type 2 and ~,~,s,~,~ and ~ 

will denote continuous functionals of arbitrary typeso 

n,m,s,t,r,x,y and i will denote natural numberso 

We let f(n) = (f(O),o.o,f(n-1)). lh(cr) denotes the length 

of the sequenceo If n < lh(cr) we let cr(n) be element no. n+1 

in the sequence. cr(n) denotes (cr(O),~~~,cr(n-1)) whenever this 

has meaning., 

Definition 
~ 

a) Con(k,cr, o) will mean that there is a functional ~ E Ct(k) 

(the continuous functionals of type k) with associates a and 

~ and numbers s and t such that a(s) = cr,~(t) = 6 

b) Con(k,cr) will mean Con(k,cr,cr) 
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c) If Con(k,cr) we let 

B~ = [ ~~ E Ct (k) ; 3a E As ( W ) 3t ( cr = ii ( t) ) } 

where As(w) denotes the set of associates of w. 

We write for 

Lemma 1 

Con is primitive recursiveo Moreover, if Con(k,cr,o) holds 

we can uniformly find w, a and ~ as above.. They vlill be uni-

formly primitive recursivea 

Lemma 2 

Uniformly in k there is a primitive recursive sequence 

[~~}iE~ which is dense in the standard topology Tk on Ct(k)o 

Moreover the relation is primitive recursive. 

Definition 

Let k~ 1. If {'l'n }nEE is a sequence from Ct(k) we call 

ill E Ct(k) a modulus for ('1' } if n· nEii 

~?- 3 

[ '1' } will be a convergent se~uence in Ct(k) if and only n nEll ':1. 

if it has a modulus in Ct(k)o 

We have not found a reference for the next result, it belongs 

to the folkloreo There is a proof in the unpublished Normann [12]o 

The proof is by induction on k and it makes use of standard 

tricks involving modulus-functionalso 
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Lemma 4 

Uniformly computable in each '1' E Ct(k) there is a sequence 

{ni} iE::N and a § E Ct (k) such that 

'1' = lim ~k with modulus ~ • 
• ,-v-., n. 
l-+ '-'-' J. 

Remarks 

a) The existence of [ni} iE:N is known from Kleene [10] but the 

construction of the modulus ~ computable in '1' is not 

published anywhere. 

b) In part B, section 8 we will make use of a slightly improved 

version of this lemma, still without proof. 

Definition 

a) If k> 1 and ~ E Ct(k) we let the trace of be 

defined by 

(We let lli be the dense subset of JN with the standard enumera­

tion), 

Many of our results will be based on the following lemma from 

Normann [16]" 

a) k> 2 .. 
~ 

If Ac JN JN is then there exists a recursive 

relation S such that 

f E A => Vtlr E ct(k)::lnl s(r(n), iitlr(n)) 

f%. A => ::11\r E Ct (k) ( ( tlr uniformly computable in f) 

such that Vn S(f(n), iitlr (n)) .. 
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b) k 2:.1 o If B c JN JN is II~ there exists a recursive relation R 

such that 

fEB <=> V* E Ct(k)3n-IR(f(n), h~ (n)) 

Remarks 

a) The uniformity in the second implication of a) means that there 

is an algoritll...lu for computing ~! from f such that 

Vn E( f(n), hW f (n)). If f f_ A the algorithm will give a total 

·~f, if f E A it will give a partial *r" 

b) In all results mentioned in this section we may replace S 1 - S 9 

by 1-1-recursion, i .. eo replace S 9 by a scheme for 1-1-recursiono 

By a result in Bergstra [1] 1-1-recursion is strictly weaker 

than Kleene-computability over the continuous functionalsG 

2. Co~~uting an functional from its associates .. 

For each k let pk be the operator that maps an associate a 

for cp E Ct (k) onto cp. pk: As(k) .... Ct(k) is continuous on its 

domain, but not defined everywhereo For k = 1 pk is the iden­

tity and p2 is l:nown to be computable.. In general pk will not 

be computable .. 

In this section v.re will construct a recursive Rk in Ct(k+1) 

such that pk is partially computable in Rk.. Theorem 1 will in 

fact be a corollary of theorem 2 which is proved by the same method. 

We give a separate proof partly because theorem 1 will have inter­

est independent of theorem 2, partly because we introduce the method 

in a simpler proof in order to concentrate on the special tricks 

in the proof of theorem 2o 
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Theorem 1 

Let k~ 3.. There is a recursive functional Rk E Ct(k+1) such 

that pk is partially computable in Rk .. 

Proof 

As(k) is a By Lemma 5,a there is a recursive 

tree T such that 

a¢ As(k) => 'v'1\f E Ct(k)3n-l T(O:(n), 1i1\l (n)) 

a. EAs(k) => 31\1 E Ct(k)Vn T(a(n), iiw(n)) 

where $ may be taken uniformly 

computable in a." 

W .. l .. o.g. we may assume that if -~ Con(k,il(t)) then I T(ii(t),h1]I(t)) 

for all 1\f E Ct (k). 

For cp E Ct (k-1) let 

(t + 1 if 'v' i < n ( cpJ:-2 E Bk-2 => cp( cp~-2 ) = t) 
cp i l 'f . l 

a ('I") = .. · 
n lo otherwise 

where 'I"< n .. 

a~ is uniformly primitive recursive in hcp and will approxi­

mate the principal associate of cp .. 

We write a c 'I" if lh ('I" ) .::_ lh (a) and 

If CJC']" we will have 

Define as follows: Let m < n be maximal such that 

T(a(m), iiw(m)). Then let 
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if there is a 'I" < m 
and a ( 'I" ) == t + 1 

otherwise 

such that crcp c ,. 
m-

Since Con(k,a(m)) there is at most one t satisfying the 

condition. 

Let 1 . Rk = ~m .. 
n-+co n 

Claim 1 

Rk is well-defined and recursive. 

Proof 

Let a, cp and w be given and let ~ be an associate for cpa 

k We will give an algoritlLm for R (a,cp,¢) from a, ~ and ¢: 

Look for the least n such that i or ii below hold: 

i lT(O:(n), h¢(n))o 

ii T(i(n}~ u~(~)) and for some t we have 

i3' ( t ) < n and a ( ~ ( t ) ) > 0 .. 

If (a,h¢) is not a branch in T then i is satisfied for some 

If (a,h¢) is a branch in T then a E As(k) and there is a 

n. 

t 

such that a(~(t))>o. Choose n>[j'(t) .. Then n will satisfy ii .. 

If i holds for n then and we have found 

the valueo 

k If ii holds for n we claim that for m > n we have Rm (a, cp, ¢) = 

a([j'(t)) -1.. It is sufficient to show this when T(a(m), li¢(m)). 

Let 'I" = ~(t). Clearly for all m > n we have cr:~ 'S(t).. But 

then the instruction is clear. R~(a ,cp, ¢) = a( 'I") - 1. 
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So we must find an n as above and then Rk(a.,cp,ljr) =R~(a.,cp,ljr). 

It is easy to construct a recursive associate for Rk from this 

proof,. 

Claim 2 

There is an index e such that whenever ~ E Ct(k) and a is 

an associate for 2 then 

for all cp E Ct (k-1). 

Proof 

Use the following algorithm: Let 

\;In T(O:(n), iiljr (n)) • 
a. 

We show that Rk(a,cp,$0.) = ~(cp)o 

,,, be such that 
"'a 

Let ~ be an associate for cpo Choose t such that 

a(jj(t))>Oo Let n > "S ( t) 0 As above we will have 

R~(a,cp,ljra.) = a('S"(t)) -1 = ~(cp)o 

This ends the proof of theorem 1o 

(Jcp c i3(t) 
n~ 

2o Reduction of countable recursion to Kleene-computations. 

Kleene [ 1C] showed how S 1 - S 9-computations can be reduced 

so 

to countable recursion, ioeo if cp is S 1 - S 9-computable in $ 

then cp is countable recursive in Wo As we mentioned in the 

introduction the converse is not true, see Gandy-Hyland [5] for 

a proof 0 Hyland (in Gandy-Hyland [5]) found a type 2 functional F ! 

such that more functions are recursive in F than computable in R 

Together with the results on nonobtainable functionals mentioned 

in the introduction these results show that there is a large gap 
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between S 1 - S 9 computability and recursiveness, a gap that cannot 

be filled by relativizing to a finite list of functionals. 

In this section we will show that, given the results mentioned 

above, the situation is as good as possibleo There is a reduction 

of countable recursion to S 1 - S 9-computations uniformly relati­

vized to some functionals with recursive associates. 

Fefarman [3] and Hyland [8] discussed notions of partial 

countable recursion and asked if the system is inductive" As any 

two reasonable notions of partial countable recursion will be equi­

valent we will use the following: 

Definition 

Let e be an index, ~ 1 ,~"o'~n continuous functionals. 

We write [e](~ 1 ,.o.,$n) ~ ~ if 

va1 , ..... ,a.n (a,.,1,"." ,an are associates for ~..,, "" .. , *n resp" 

where {e}(a.1 ,"~.,a.n) is a Turing-computation relativized to 

This defines a pre-computation theory on the continuous func­

tionals in the sense of Fenstad [4]" Moreover ~ is recursive 

in ~ if and only if there is an index e such that 

Remark 

Kleene' s reduction of S 1 - S 9-computations to recursions is 

not a reduction in the sense of axiomatic recursion theory~enstad 

[4]) as an undefined computation may be mapped on a defined 
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recursiona As an exruuple regard Gandy's f-functional (see Gandy-

Hyland [5]) 

r(F) = F (A.nr (F 1 )). o n+ 

By the recursion theorem there is an index e for r 

{e}(F) = F (A.n{e}(F 1 )) o n+ 

which will define an everywhere undefined functional. But if we 

use Kleene's reduction on e we get an everywhere defined re-

cursive functional namely r itselfo However using a theorem of 

Hyland [8] on the complexity of partial recursive sets we can get 

around this obstacle. We will discuss this in further detail 

after the proof of theorem 2. 

Any index e defines a partially recursive functional even 

if it was never designed to do soo In reducing recursions to 

computations we will restrict ourselves to certain well-behaved 

indices without restricting the set of partial operations. 

Definition 
-+ 

e is called k-operational 

if for all (cr1 , .... ,crn)(T1 , ••• ,-rn), whenever Vi<n Con(ki,cri,Ti) 

and (e}(cr1 ,.a.,crn) is defined and (e}(T1'ooo,Tn) is defined 

then 

(We thirur of [e}(cr1 , ••• ,crn) as a Turing-computation relativized 

to the finite partial functions cr1,ooo,an). 

Lemma 6 

There is a primitive recursive f~mction p such that p(e,k) 

r 
I 
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~ ~ 

is k-operational for all e,k and 

Proof 
..... .... 

For simplicity we let lh(k) = 1 so k = (k) for some ko 

The general :proof just requires more notation .. 

Let A = {(s,r); {e}s(r) is defined}. 

A has a recursive enumeration A = { (si, r i); i E JN"} • We give 

the following algorithm for (p(e,k)}(a): 

First find and minimal s such that 

Let ( s, a ( s)) = ~. , r. ) • For each i < i , if 
1 0 1 0 - o 

{e} ( r. ) I= x s. l 
l 

find ri such that 'lCon(k,ri,O:(ri)). Then let {p(e,k)}(o.) =X .. 

Claim 1 

AW[p(e,k)](w) ~ AW[e]($) .. 

This is trivial from the first instruction for {p(e,k)}(a). 

Claim 2 

A~[eJ(w) ~ ~$[p(e,k)J(w). 

Proof 

Let w E Ct (k), a. be an associate for $ and assume that 

( e] ( $) = Xo 

Find s, i 0 as above .. If i < i 
- 0 

cannot be extended to an associate for 

and {els. (ri) I= x then 
l 

Then there is an r. 
l 

such that !Con(k,r. ,a(r. )) and we may find it.. This shows that 
l l 

{p(e,k)}(o.) = x. 

f. 
l 
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Claim 3 

p(e,k) is k-operational 

Proof 

Assume that {p(e,k)}(~) = x, [p(e,k)}(n) = y and that x J y9 

Let s-'1, s 2 be minimal such that 

Let 

W .. l.o.g we may assume that In order to compute 

[p ( e,k)) (n) we should then find ri such that l Con(k, r(s'1), n(ri)) .. 

So in particular /Con(k,~,n), which was what we wanted to prove .. 

The lemma follows from claims '1-3 .. 

Theorem 2 

-+ 

Uniformly in k there is a recursive functional ~ ... E Ct (k+2) 
k 

and an index e-+ for !J.-recursion such that for all e ,x E JN 
k 

and all ( cp'1 , ..... , cp~) E Ct (k'1 ) X .. o .. X Ct (kn) .. 

ii [e] (cp'1, .... ,cpn) [e ... )(e,cp'1, ...... ,cpn,2 ... ) -x <=> 
k k 

Proof 
... 

We prove this when k consists of one element 

The general proof only requires more notation. 

Claim '1 

S = {(e,h); for some cp h = h cp and . [ e ] ( cp) ~ ) 

This is well-known, see Hyland [8] for details .. 

,..., 
-x ct 

k_:::2 .. 

is 
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By lemma 5oa. there is a recursive family [Te}eEE of trees 

such that 

(e,h) ¢. S ==> 'VI\1 E Ct(k+1)3t-jTe(Ii(t), liq,(t)) 

(e,h) E S => 31\1 E Ct (k+1) (uniformly computable in e ,h) 

('VtTe(li(t), Iiljl(t)) 

Define cri and cr c T as in the proof of theorem 1. 

Define ~t(e,~,l\1) as follows: 

Let n < t be maximal such that T (Ii (n) ,Ii,1, (n)). 
e ~ 'I' 

If there is a T such that Con(k, r), cr~ c r n- and 

is defined, let ~t(e,~,~) = {p(e,k)}(r). Otherwise let 

~t(e,~,~) = 0 (p is as in lemma 6) 

Since p(e,k) is k-operational there will not be any ambi­

guity here, since cr~ S r 1 A cr~ ~ r 2 => Con(k,r1 ,r2 ). 

Let W = lim ~t(e,~,~). 
t-+CO 

Claim 2 

~ is well-defined and recursive. 

Proof 

Let e,~,l\1 be given and let a be an associate for ~· 

Look for an n such that i or ii below holds: 

i l Te(n,h~,hl\1). 

ii Te(n,h~,hl\1) and {p(e,k)}n(a(n)) is defined. 

As in the proof of theorem 1 there will be an n like this and 

~(e,~,l\1) ~ ~n(e,~,l\1) for such n. 
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Now let e0 be an index for the following algorithm in ~= 

Given e,cp find 1jl ECt(k+1) such that Vn Te(Ecp(n),Filjr(n)) .. 

If [e](~) is undefined then 1jr will be partial and if [e](cp) 

is defined then w is total and ~(e,cp,ljr) = [e](cp)Q So Acp[e](cp) 

is partially computable in ~ uniformly in e. 

Letting ~(k) = g as constructed above we have proved the 

theorem. 

Corolla:r:;y_ 1 

If we add the following scheme S 11 to S 1 - S 9 we will get 

a computation theory equivalent to countable recu.rsion (See 

Fenstad [4] for precise concepts)a 

s 11 

Proof 

(e}(cp1, ••• ,cpn) ~ ~k(e1,cp1,ooo,cpn,Acp[e2}(cp,cp1, ••• ,cpn)) 

(e = (11,e1 ,e2 ,k)) 

where k = (k1 ,. o o ,kn) and each cpi E Ct(ki). 

By theorem 2 we can reduce countable recursion to S 1 - S 9, 

S 11- computations. 

Clairo 

There is a primitive recursive function v such that 

where e is an index for a S 1 - S 9, S 11 -computation. 

Proof 

Any S 1 - S 9, S 11 -computation [e} (cp1 , .... ,cpn) can be reduced 



- 17 -

to a S 1 - S 9 -computation in the recursive sequence 

Let give Kleene's reduction of these computations to recur-

sions. We then have 

Now [(hr" P ... ,hr" ) ; [e} (cp1 ,. o. ,cpn) t} is IT~ and by Hyland [8] 
'~""1 '~"'n 

there is an index v1 (e,k) such that 

where ko is the constant zero functional of type k. 

Choose i such that cpi E Ct (k).. Below we show how a recursion 

in ko 

vo' v1 

Let 

can be reduced to a recursion in cp E Ct (k) .. 

and this reduction it is easy to find 

cpECt(k) and 

O(a.)(cr) 

:® 13 E [0, 1 } • For each 

(1 
= ..... 

if a. ( cr) > 0 

if a. ( cr ) == 0 • 

v. 

a. let 

We then have 

Combining 

~EAs(kO) <=> ::Ja.EAs(cp)(V'n Con(k,i3(n))AI3 dominates O(a.)) .. 

For each a. let Ka. = [t3 E (0, 1 }JiJ ; Vn Con(k, ~ (n)) 1\ 13 dominates O(a.)}. 

Ka is compact, so we have 

<=> V a. E As ( cp) V 13 E Ka. 3 s ( e} s ( 13) = x 

<=> Va EAs(cp)::Js V'S EKa(e}s(jj(s)) = x 

which can be expressed as a recursion in cp. 

This ends the proof of corollary 1 .. 
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Corolla£Y_ 2 

Let ~' $ be continuous functionalso Then the following are 

equivalent 

l ~ is recursive in $ 

ii ~ is computable in ~ and some recursive ~ 

iii ~ is ~-recursive in ~ and some recursive ~o 

We let 1-sc(~) denote [f; f is computable in ~} 

and c-1-sc(~) denote [f; f is recursive in ~} " 

The next corollary was proved in Normann [15] as the first 
... 

application of k-operational indices" 

Corollary 3 

a) Let ~ E Ct(k). There is a ~ E Ct(k+2) recursive in ~ 

such that 

1-sc(~) = c-1-sc(~)o 

b) Let ~ E Ct(k). Then c-1-sc(~) is generated by its 

r.e" (h)-degrees for some hE c- 1- sc(~) 

Proof 

a) is immediate from theorem 2 and b) follows from a) and a correSpon­

ding result for 1-sc($) from Normann-Wainer [17]o 

Remark 

Hyland [ 8] showed that a set A c JNJN is II~ if and only 

if A is countably semirecursive in kOo Normann [16] showed 

that A is II~ if and only if A is semicomputable in k+2o. 
1 Moreover semicomputability of a 1jr E Ct(k+1) will be E,k_1 • 

This shows that theorem 2 is the best possible. 
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The proofs of theorems 1 and 2 both show ways of making partial 

continuous operators computable in a total continuous functionala 

We have formulated this method in theorem 3.. We do not give the 

proof as it will be clear from the proofs of theorems '1 and 2. 

Theorem 3 

Let <2 : Ct (k1 ) x .. o o x Ct (kn) ... 1if be a partial operator.. .Assume 

that there are a, y of type '1 and a total sequence (~.}.C"11IT 
l ll;;._ll.~ 

such that 

i) .A = is '1 (i .. e. ((hcp , .... ,hcp ) ; ~ ( cp'l ' • o • 'cpn) dom <2 rr1_/a) 
'1 n 

is defined} is '1 Ilk (a.) 0 

ii) (~i }iEE is computable from a 

iii) If then ~ ( cp'l ' .. • • 'cpn) 

iv) For all (cp1 , ••• ,cpn), if ~ 1 , ..... ,~n are associates for 

cp1 ,.o .. ,cpn resp. and if for some t,x 

then x is a modulus for the sequence 

v) If (cp1 , o. o ,cpn) E .A and ~'1, ...... , ~n are associates for 

cp1 ,.e.,cpn resp. then there are t,x as in iv .. 

If i)-v) hold there is a total '±' : Ct(k1 ) x ..... x CtOs) x Ct(k+2) 

such that 

i '±' is recursive in (a,y) .. 

ii ~ is partially computable in '±'. 
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PART B: Degrees_qf_continuous functionalso 

4 .. Some minimal countable degrees .. 

In Part A we showed that in a certain sense we can reduce 

countable recursion to Kleene-computabilityo In order to do so 

we had to relativize to recursive objects of arbitrary high type.; 

That this is a serious defect will be seen from the difference in 

the degree-structures of the continuous functionals induced by 

the Kleene-computations and the recursions.. The rest of part B 

will be completely devoted to Kleene-degrees, in this section we 

will show how to construct minimal countable degrees .. 

Martin Hyland [7] observed that by adding suitable splitting-

notions for countable recursions Spectors construction of a mini-

mal Turing-degree can be extended to construct an a of minimal 

countable degree. Hyland's observation works well also for the 

construction of a minimal 0 
~ 2-degree, so any fairsized recursive 

tree on {0,1} will contain a branch of minimal countable 

degree. Here we will show that Spector's original proof automa-

tically gives a function of minimal countable degree .. 

Definition 

We say that a is Spector-minimal if for each index e there 

is a recursive tree T on {0,1} with a as a branch such that 

i) aET => a has two incomparab 1 e extensions in T fuY)_d ii or 

iii below holds 

ii) T never e-~spli ts, i .. e .. a, T E T => [e]a and [e} '!" are 

consis-tent 
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iii) T always e-splits, i.e. if T1 and T2 both extends a 

in T 
'1" 

(e} 1 

Lemma 7 

then T1 and r 2 are incomparable if and only if 
'1" 

and (e} 2 are incomparablea 

If a is Spector-minimal then a has minimal countable degree. 

Proof 

Let k > 2 and let cp E Ct(k) be countably recursive in ao 

Let e0 be an index for computing an associate for cp from a 

and let e be the derived index for computing hcp from ao 

Choose T such that i) and ii) or iii) above will hold for ea 

If iii) holds then a is recursive in hcp so a and cp are 

countably equivalent. 

So assume that ii) holds, and let 13 E As (k.:..1) be an associate 

for some S E Ct(k-1 ). We will show how to compute cp( s) from 

Find aET B.nd t such that (e0 }a('S"(t)) > 0. We know that 

for some s,t[e0 }a(s\a'(t)) > 0 so such a and t exist. 

For k-1 cp. 
~ 

E k-1 
B-WCt) we will then have 

But this shows that cp is constant (e0 }a('S"(t)) -1 on B~(~) 

so in particular cp(s) = (e0 }a('S"(t)) -1o This ends the proof 

of lemma 7 

The type of a degree is the minimal type of a functional in 

13 : 

the degreeo Dvornickov [2] showed that there are countable degrees 

of arbitrary high typeo 

Problem 

Are there minimal countable degrees of type > 1 ? 
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As any such degree will have a certain r.e.flavour we conjecture 

that the answer is no. 

We end this section by showing 

Lemma 8 

If a has minimal countable degree and F 

able in a then either is F computable or a 

Proof 

We regard tvm cases 

is Kleene-comput­

is computable in F. 

i a is recursive in hF. Then a is computable in F 

ii hF is recursive. Then the countable 1-section of F is 

generated from its r.e. elements. If a were recursive in F 

we would have that a is recursive in an r.eeset recursive in 

a, which is impossible. So a is not recursive in F. By the 

minimality of a we must have F to be recursive, i.e. 

computable. 

5. Continuously r.e.sets and degrees. 

The classical r.e.- or semi recursive sets over JN have at 

least three important descriptions, as the :E~ -sets, the domains 

of the partially recursive functions and as the ranges of the total 

recursive functions. Over other domains these descriptions do not 

coincide. The semicomputable sets are normally described as the 

domains of partially computable operators. Often, and in particu­

lar over the continuous functionals, there is no kind of enumera­

tion of the semicomputable sets involved. Moreover two complemen­

tary sets may well both be semicomputable without being computable. 
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We will call a set recursively enumerable if it is the effective 

union of a countable family of computable sets~ It does not mean 

that we actually have a recursive enumeration of the set, which in 

any case would have been too restrictive to be of interest. 

Definition 

a) A c Ct(k) is recursively enumerable (r.eo) if there is 

a computable set B 5:: JNx Ct (k) such that 

cp E A <=> 3n( (n,cp) E B) 

b) A 5:: Ct(k) is continuously r.e. if A is r.e. and Ct(k)'A 

is open in the standard topology on Ct(k). 

Remarks 

If k = 0 or 1 we could demand B to be primitive recursive 

and we would define the same class of r.e.sets. For k > 2 there 

will be nonempty computable sets with no nonempty primitive recur-

si ve subset. An example: Let f be recursive but not primitive 

recursive. Let A = {F; F(f) = 0}. A will not contain any non-

empty primitive recursive subset. 

In b) we could equivalently demand that the characteristic 

function of A is in Ct(k+1)o 
I 

The continuitt-condition in b) is essential, {f; 3nf(n) .J 0} 

is r.e. but not continuously r.e. 

With this definition of r.e. it is easy to show that Ac: Ct(k) -
is computable if and only if both A and Ct(k)'A are r.e. 

In this section we will characterize the elements of the con-

tinuous r.e.degrees. In later sections we will discuss the degree­

structure. We will identify a continuous r.e.set with its charnc~ 
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teristic function. 

Lemma 9 

Let [~n}nER be a computable sequence from Ct(k) with a 

limit ~ and assume that the modulus ~· is computable from ~· 

Let ~ E Ct ( t) be computable in ~· Then there is a computable 

sequence [ '1' J in Ct(t) with ,,, as a limit and with a 
"'n nEE "' 

modulus computable in ~· 

Proof 

In Normann-Wainer [17] a primitive recursive operator 

h(n,e,~1 , ••• ,~) is defined such that if [e}(~1 , ••• ,~) = x 

then x = li~ h(n,e,~1 , ••• ,~k) and we can uniformly in e,~1 , ••• ,~k 
n .... :::o 

compute a modulus for [h(n,e,~1 , ••• '~k) }nE:N. 

Let w = AS[e}(~,s). Let wn = ASh(n,e,~n,s). By adopting the 

method from [17] one can show that w = lim $n and that we can 
n-+CO 

compute a modulus for [wn}nEE from ~· We will not go into 

further details. 

Our next theorem shows that one of the standard characterisa-

tions of r.e.degrees generalizes to higher types. 

Theorem 4 

Let k~ 1, ~ E Ct(k). The following are equivalent 

a) ~ is of the same degree as a continuous r.e.set. 

b) There is a computable sequence [~i}iE:N with ~ as a limit 

and a modulus ~· computable in ~· 

c) There is a w of the same degree as ~ such that h~ is 

recursive. 
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Proof 

a) =>b): Let A be continuously r.eo Let B be computable 

such that SEA <=> ::Jn((n, t;) E B). 

Then 

putable in A. 

Define A by n 

A = lim A 
n .... :::::J n 

with a modulus com-

By lemma 9 any ~ computable in A will be the limit of a com­

putable sequence [~n}nE~ with a modulus ~· computable in A. 

But if ~ and A are equivalent this ~· will be computable in ~, 

what was what we wanted to prove. 

b) => £2: Let cp = lim cp. with a modulus cp' computable in ~· 
. co 1 1 .... 

Let f be recursive but not primitive recursive. Let 

) cp(s) if f = g 
$ ( s 'g) = ~ 

I ~i Cs) for the least i such that f(i) -J g(i) 
I if f -J g 

Using cp' we can show that w is computable in w. If (S,g) 

is primitive recursive then g is primitive recursive and the 

following algorithm will compute w(s,g): 

Find the least i such that f(i) -J g(i), and let $(s,g) = 

~i(S)o 

Since hW is ~ applied on certain primitive recursive objects 

this shows that h~ is recursive. 

c) => a): It is sufficient to show that if h$ is recursive then $ 

is of the same degree as an r.e.set,- it is natural to go via 

statement b). 

In lemma 4 the sequence [ni}iEN is actually primitive recur­

sive in h~ so there is a computable sequence [wn}nEN with * 



- 26 -

as a limit and with a modulus w' computable in w. It is then 

easy to see that \fr is equivalent to 

which is continuously reea 

Remark 

We could replace b) in theorem 4 by b'): There is a primitive 

recursive sequence [cp } with n nE:N cp as a limit and with a modulus 

cp' computable in cp. 

We will, however, not use this refinemento 

Over JN" the following are equivalent 

a) f is computable in an rGe.set 

b) f E 6.0 
2 

c) f is the limit of a primitive recursive sequence 

d) f is computable in o' 

d) will not generalize to higher types, any functional v--rith a 

recursive associate will be of r.e.degree but not all such func­

tionals are computable in o'. The rest of the statement gene-

ralizes. 

Theorem 5 

Let cp E Ct (k). The following are equivalent 

a) cp is computable in a continuous r.e.set 

c) rn is the limit of a primitive recursive sequence [cp } 
'~"' n nEE 
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Proof 

a) =>b) Let cp be computable in $ where h$ is recursive. 

The principal associate ~ of $ is 0 
6.2. There will be an asso-

ciate for recursive in ~' and this associate will also be 0 cp 6.2 .. 

b) => c) Let a be a !:.~-associate for cp and let [a,i J iE:N be a 

primitive recursive sequence converging to a. W.l.oDg. we may 

assume Vi Con(i,ai(i)). Let 

sive with an associate extending 

cJ => aJ Let cp = lim cpn. Let 

cp. be uniformly primitive recur­
J. 

a;(i). Then cp =lim cp •• 
..... i-+ co ]_ 

A is r.e., continuous and cp is computable in A. 

If A;:ct(k) is continuously r.e .. and k = 0 or 1 then A 

can easily be shown to be computable in 0'. We will later show 

that if k > 2 there is no maximal r. e. degree within Ct (k+1). 

Now we will use theorem 5 to show that in general there is 

an r.e. degree of type k+1 dominating all r.e .. degrees of type k. 

Corollary 

Let k>3 .. There is a continuous r .. e.set B~Ct(k) such that 

all elements of Ct(k) of r .. e .. degree are computable in B. 

Proof 

It is sufficient to produce an element 'l.' in Ct(k+1) with 

the wanted propertyo Let Rk be as in theorem 1. Rk has are­

cursive associate so by theorem 4 c) => a) Rk will be of r.e. 

degree. Let '¥ = (Rk, 0').. By theorem 5 b) => a) every cp E Ct (k) 

of r.e.degree has a !:.~-associate a. But then cp will be comput-
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able in so is computable in 'f. 

Remark 

We could use theorem 5 c) <=> a) to give a direct construction 

of a r.e.set, then using the method of theorem 3. 

6. Modifying a functional by a tree. 

In theorems 1 and 2 we made partial continuous operators com-

putable in a total functional by the use of trees being well­

founded when the operator is not defined. In this section we will 

show that a similar construction can be applied to functionals of 

r.e .. degree, then producing functionals of lower degree. 

Definition 

Let $ E Ct(k) (k_: 1) be of rae .. degree, {'fn}nE::N a comput­

able sequence with $ as a limit and let $' be a modulus for 

{$n }nEE computable in $ .. 

Let T be a recursive tree, t ~ 1.. We let wT, t : Ct(k-1) x Ct(t), 

be the functional defined by 

= "' 
r~(~) if 'v'nT(Iis(n)) 

\ ~n(~) for the least n such that 
L- l T(Iis(n)) otherwise. 

Remark 

We will normally drop the subscript t which will then be 

clear from the context. 
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LellliD.a 10 

a) ~T is computable in V· 

b) If 'VsECt(t)3niT(lig(n)) then vT is computable. 

c) If sECt(t) and 'VnT(lig(n) then ~ is computable 

in wT and s. 

The proofs are trivial. 

Lemma 11 

Let 111 E Ct(k), t = 1 and let T c T' be recursive trees. 

Assume that each a E T has arbitrary long extensions in T' and 

assume that T has a branch. Then ~ is countably recursive 

in VT'. 

Proof 

Let a be an associate for 1!IT,. We show how to compute an 

associate for 1jr from a. We will assume that k > 1. If k::;a 1 

a similar proof will work. 

Let S E As(k-1) be an associate for cp. Find a E T of 

length x such that a(~(x) ,a)> 0. There will be such a a since T 

has a branch. We claim that w(cp) = a(J;(x),a) -1. From the claim 

we can compute $(cp) from a,S uniformly in . ~ and v will be 

recursive in VTt• 

Let n be so large that Vm> n ~n(cp) = w(cp). Choose o E T' 

such that 6 extends a and lh( o) .::_ m. Then ~T, is constant 

a(~(x),a) -1 

where 

k-1 1 
on Bjj(x) xB 0 

fvCcp) 

= lwm(cp) 

if f is a branch in T' 

for some m > n otherwise \.which 

also will be v (cp )). 



- 30 -

So for all f extending o *T' (cp,f) = $(cp) = a('S(x),cr) -1. 

This ends the proof of lemma 11. 

Lemma 12 

Let T be a recursive tree .. Uniformly recursive in T there 

is a T' such that each cr in T has arbitrary long eJdensions 

in T' while T and T' have the same branches. 

Proof 

Let S be a well-founded recursive tree with arbitrary long 

branches. Let cr*r denote the concatenation of the finite se-

quences cr and r. Let 

T' = (cr*r; crETArES} .. 

Theorem 6 

Let J) 2 be the structure of the type-2 degrees. Any minimal 

element of J)2 is a type-1 degree .. 

Proof 

Let FE Ct(2) and assume that F is not equivalent to any f. 

If hF is not recursive then 0 < hF < F so F is not minimal. 

If hF is recursive then F is of r.e.degree. By lemmas 11 and 

12 we see that 

{T; FT is computable} 

is complete is so for some T we 

have 0 < F T < F. 

Remarks 

This proof is not constructive, it gives no effective way of 

choosing an index for T from F.. It is an open problem if this 
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theorem has a more constructive proof, even inside the set of func­

tionals of r.e.degrees. It can be shown that there is no T that 

will do the job uniformly. 

If we let k~ 3 and let ,Dk be the structure of the degrees 

of type < k it is also an open problem if this structure contains 

a minimal degree. 

If k ~ 3 and 1Jr E Ct (k) is nonobtainable, i .. e .. not computable 

from any q> E Ct (k-1) we can use lemma 5 to show that 

is computable} is complete and then 1Jr will 

not be minimal. 

We will now give another application of lemmas 11 and 12. 

Theorem 7 

Let G E Ct(2) be of r .. e .. degree. Then there is an FE Ct(2) 

of the same countable degree as G such that F is computable 

in G and for all H: :NJN ..... JN (also discontinuous) 

1 - sc(H) = 1- sc(F ,H) 

Proof 

Let T be a recursive tree such that 

i) T has at least one branch 

ii) 0' is recursive in any branch of T 

iii) If G' is of roeodegree then G' is countably equivalent 

to Gf. 

Let F = GT.. Let H : :NJN .... JN.. If 0 ' < H then F < H so 

1- sc(F,H) ,:: 1- sc(H). If O' lH then we can replace F by a 

fixed partial computable function in any computation in F,H. 
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It follows that 

1- sc(F,H) c 1- sc(F). 

Remark 

The first result along these lines was proved in Bergstra ( 1]. 

The proof of theorem 6 was not effective. If we work within 

the full degree-structure of the continuous functionals we can 

give much more effective arguments. The proof of the next theorem 

is actually a construction, we can pick the indices involved by 

recursive functionso 

Theorem 8 

The degree-structure of the continuously r.eosets is dense. 

Proof 

Let ~ and w be in Ct(k) and of r.e .. degree, ~ strictly 

computable in ~.. Assume that k > 2. 

Claim 1 

There is a recursive functional 2 E Ct(k+2) such that 

~ f:. ~,~ and ~ is not computable in any s E Ct(k+1) .. 

Proof 

We say that ~~ E Ct (k) is nonobtainable if ~ is not comput­

able in any ~ E Ct (k-1). 

In Normann [14] nonobtainable recursive functionals of any 

type > 3 are constructed (See also section 8 in this paper). 

Let t.1 E Ct(k+1) and t.2 E Ct(k+2) be recursive and nonobtain­

able.. Let hE hb. and let T be the recursive tree with h as 
1 

its only branch. 
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Let ~ = (A2 )T. As A2 ::_ ?i?,t:~ 1 (lemma 10,c)) and t:~2 is non­

obtainable we must have that ~ is nonobtainable .. 

Let ~~ be the partial computatle subfunctional of ~ de­

fined on [ ('1', l:l); l:l/= t:~ 1 L By induction on the length of computa­

tions we can show that in any computation (e}(~,~) where the 
_. 

types of s are ~ k, we can replace ~ by 2 1 • As a part of the 

induction we show that we only have to apply ~ on k-obtainable 

elements of Ct (k+"1) in such computations. So if ~.::, ~, cp we 

will have that ~ < 2 1 cp which will mean that ~ _< cp contradicting - ' 
the assumption. This proves claim 1. 

From Claim 1 we may w.L.o.g. assume that for some k we have 

that cp' ~ and ~ are all in Ct (k), ~f(cp,~ and § is non-

obtainable modulo Cf>o Let T be the recursive tree with hq) as 

the only branch. Let 1f = ~To Then 1f E Ct(k+1 ) .. 

Claim 2 

a) '±' 1- cp 

From Claim 2 it follows that cp < ( cp, 1f) < ~ and the theorem is 

proved. 

Proof of Claim 2 

a) By lemma 10, c) we have that ~..::, 1f, 2 o If '±'..::, cp we would have 

that ~,::. cp, § contradicting the assumption., 

b) Let '±'' be the partial computable subfunctional of '±' defined 

on ( ( s, ~ 1 ) ; 2 1 I= §}. As in the proof of claim "1 we can show 

that if ~ _::: '±', cp then ~ _:: 1f 1 , cp so ~ < tp which contradicts the 

assumption .. 
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7. Avoiding semiassociates of tyPe 2. 

In the previous section we made use of the main result of 

Normann [14], there are nonobtainable recursive functionals of 

any type ~ 3. The method which can be described as the method of 

avoiding semiassociates has later been used to solve a number of 

other problems. In this section we will describe the method and 

use it to construct some interesting type three functionals. In 

the next section the method will be extended to constructions of 

higher type functionals. 

Definition 

Let (fn)nEJN be recursive such that [fn : n E ::N} is a dense 

subset of JN:N without repetition in the enumeration. 

For each FE Ct(2) define oF as .follows: ~l(cr) is defined 
n n 

if cr < n. Then 

Lemma 13 

i.f there are m1 < n, m2 < n such that 

fm E B0 and fm E B0 and 
1 2 

'v'm < n (fm E B0 => F(fm) = k) 

otherwise 

£o!JnEE is uniformly primitive recursive in F 

is the principal associate for F. 

and 

The proof is trivial. 

Definition 

1 . e,F 
~m n 

n-+co 

Let T be a recursive tree with at least one infinite branch. 

Let 
6.T(F) = I-JllV'm>n:3crET(6F(cr)>o). 

- m 
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Theorem 9 

a) ~T has a recursive associate uniformly in an index for To 

b) If g is a brru1ch in T then ~T is computable from g. 

c) If ~T is computable from g then T has a branch recursive 

in g. 

Proof 

a) Let a be an associate for F. We show how to compute ~T(F) 

from a: FL'1d . a E T such that a (a) > 0 (there is one since 

T has a branch). Find n such that there are m1 < n and 

b) 

m1 I= m2 , fm1 E Ba and fm2 E Ba. Then ~ < n such that 

m > n => oF (a) > 0 
m so ~T(F),.:: n. It is then easy to compute 

Let g be a branch in T. Let [g.}. EJif = [f } . EJif be a 
~ ~ ni ~ 

subsequence of [fn}nEJif picked out as follows: First take 

all fn until we have found two in Bg( 1)" Then take just 

those in Bg( '1) until we have found two in Bg(2) etc. 

Then g = lim g. 
• 00 ~ 

and we can easily compute a modulus for 
~_. 

[gi} iEJif from g. By a method from Grilliot [6] (See also 

Bergstra ['1], Wainer [19], Normann-Wainer ['17] or Normann [13]) 

the following is computable in g: 

1jr(F) = 1-ffiVi>n(F(g.) = F(g))., - ~ 

Let F be fixed and let i = 1jr(F)., 

Let t 
0 

be such that if n <n. 
~ 

and then 

fn ~Bg(t ) Let j.::, i be such that for two different m.::, j 
0 

do we have gm E Bg(to). It is then easy to see that for m>n. 
- J 



- 36 -

there will be a t such that o!(g(t))>O, so 

It is then easy to compute ~T(F)a 

~T(F) < n .• 
- J 

c) Assume that T has no branch computable in g. Let 

a(cr) 
\1 

=-...:;' 

'o L 

if 

if crET 

Then a is a semiassociate for 2o securing all g' recur-

sive in g. If ~T is computable ;i_n g there is an index e 

such that 

Regard [e}(2o,g). The value of this computation will be de­

cided by a finite bit a(t) of ao Let 

Since 

F(f ) n 

( n if there is no s such that 

= ~ (l'n(s)<tAo.(l'n(s)) = 1) 

I 0 if there is such s 
'-

(Here we use that [fn}nEN is without repetition) 

F(f ) n is defined for all n we may define 

all m although F cannot be extended to a total continuous 

functional., 

Claim: For any mlcr oF ( cr) > 0 ::::> a ¢ T" m 

Proof 
~-

The only way to get ~l(cr) > 0 is to find an s with O'(s) < t 
m 

and a(cr(s)) > O, so cr(s) ¢ T ruJ.d a~ T.. This proves the claim .. 

Now choose m> ~T( 2o).. Let 

ate extending a(t) such that 

F' be continuous with an associ-

¥n <mF(f ) = F' (f ) .. 
- n n 
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Then t.T(F' )~m> t.T( 2o) while (e}(F' ,g) = {e}(2o,g), contradicting 

the assumption. 

This ends the proof of the theorem. 

Corollary 1 

Let A1 , •• o,A be non-recursive r.e. subsets of lli. n 
Then 

there is a recursive t:. E Ct(3) such that 0 < t:. <A. for all i < n. 
l 

Proof 

Let B. be · re cu.rsi ve such that 
l 

xEA. => 3y(x,y) EB ... 
l l 

We 

call f a modulus for A. 
l 

There is a recursive tree 

if 

T. 
l 

such that 

if and only if f is a modulus for A .• 
l 

Then t:.T will have the wanted propertyo 

f 

Let 

is a branch in T. 
l 

.Q_orqllary 2 

There is an a E t:. 0 
2 of minimal countable degree which is not 

minimal among the Kleene type-3 degrees. 

Proof 

Let A1 and A2 be disjoint r.e.sets which cannot be recur­

sively separated. There is a recursive tree T on {0,1} such 

that 

f is a branch in T if and only if f is the characteristic 

function of a set separating A1 and A2 • 

By the remark after lemma 7 T will contain an a of minimal 

countable degree. But o<t. <a. 
T ' 

so a. does not have minimal 

Kleene-degreeo 
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Remark 

By lemma 8 we see that type-3 is the best we can do here. 

Before moving up in types we will as a curiosity regard a recur-

sive type-3 functional which is 'everywhere' non-computableo 

Kreisel [11] defined certain generalizations of the continuous 

functionals.. For our purpose the following will do. 

Definition 

Let A c NJN be closed under recursion. We let (A(k))kEN 

be the type-structure defined from A by everywhere in the defi­

nition of (Ct(k))kEJN replacing JN:N with A. 

Theorem 10 

There is a functional 1f E Ct(3) with a recursive associate o 

such that 

i) For all A c :NJN closed under recursion we have that a is 

the associate of some '±'A E A(3) 

ii) There is no A c JNJN closed under recursion such that 1f A 

is computable over A(2). 

Proof 

Let (e} s be the maximal sequence r of length < s such 

that vx_:s(r(x) = [e}s(x)). 

Let T (cr) <==> cr e extends [e} lh( cr) 

Let 1f(e,F) = ClT (F) • For each e we see that Te has a recur-
e 

sive branch so 1f is defined in all (A(k) >kEJir and with the same 

associate .. 

Assume that for some A we have 1f computable over A(2) 

with index e0 • Then regard the computation of A.e{e0 }(e,2o). 
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There will be a recursive f with index e not used in this com-

putationo For this particular e we can use the method of the 

previous proof to construct an F such that 

while 2 
~T ( 0) ~ ~T (F) .. 

e e 

Bo Avoiding h~her t~e semiassociateso 

The methods from section 7 can also be used to construct func-

tionals of type higher than 3o An irritating obstacle is the 

fact that for k > '1 there are a such that B~ is a singleton 

~hich will then be one of the constants)o The set of such a's 

is however primitive recursive and we just disregard them syste-

maticallyo 

From now on and up to Theorem '1 '1 fix k > 2. 

Lemma 1L~ 

There is a primitive recursive family [ S } EJN without rep e­n n 

tition in Ct(k-'1) such that 

i) 

ii) 

The relation s E Bk-1 is primitive recursive .. n a 

If is non-empty then there is an n such that 

The proof is easy but tedious, see Normann [12] of [15]o 

If contains more than one element we define 

~=' E Bk-1 
':>n a 0 

to be 

the part of a h 
cp 

we can compute from 

the beginning of an associate for cp .. 

a, assuming that a is 

If Bk-1 contains just 
a 

one element we could define ha as well, but ha would then be 

infinite and constanto 

If T is a recursive tree with a branch on the form h; 
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where s E Ct (k-1) and s is not constant, we let 

t:.T(w) = \lll Vm >n::Ja(h0 ETA o!(a) > o A B~-1 

contains more than one element) 

where oW is de~ined from 
ill 

oF was defined from 
ill 

If cpECt(k) is not constant and 

then liT is computable in cpQ 

Proof 

h cp is a branch in T 

Let {a{JtEE be the canonical approximation to the principal 

associate for cp. (See the proof of theorem 1). Notice that 

h will be an initial segment of hcp. acp 
t Let { sn. }iEE be a subsequence of [sn }nEE de~ined by: 

J. 
Bk Take all sn until we find two in some 0 Then take all 
a~ 

Bk Bk 
Jo 

in until we have found two in some for . >. 
aq> aq> J1 Jo· 

Jo J1 
etc. 

By a combinatorial argument we can show that cp = lim s with . con. 
J_-t J. 

a mouulus computable in cp. (It requires a modified version of 

the proof of lemma LJ-). 

From now on we can follow the proof of theorem 9ob). 

Definition 

The quasiassociates are defined as follows: 

QA(1) is just the recursive functions. 

a. E QA( t+1) if a. is recursive, a. secures all ~ E QA( t) 

and for some computable W E Ct (k+1) we have 

that Vn ¢ E Bk+'l 
a:(n) 
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Lemma 16 

a) All computable functionals have quasiassociates., 

b) If {e)(l\!.1'"".,1vn)t and a.1 , ... ",a.n are quasiassociates for 

~ 1 ,.""'1\!n resp. then there is a t such that whenever 

{e}(l\!1,"""'1\1~)~ ~ ~1'" • .,,1\1~ have associates starting with 

a1(t),ooo,an(t) then {e)(¢1,., •• ,1\1~) = {e)(¢1'""·'*n)" 

Proof 

Kleene's reduction of computations to countable recursions 

will work for quasiassociates as well. The proof will be by a 

simultaneous induction on the length of computations., 

Remark 

Lemma 16 is a special case of continuity-properties of compu-

tations described by Scarpellini [18] and Hyland [7]., 

Lemma 17 

Let T be a recursive tree., Assume that [s E Ct(k) ; hr- is 
":> 

a branch in T) is a nonempty set with no computable elements" 

Then ~T is not computable., 

Proof 

Let if is a singleton or 

a.(cr) 
otherwise., 

a. will be a quasiassociate for ko and any computation 

{e}(kO) is determined from a finite bit a(t) of a.., But as 

in theorem 9c) and in Normann [1LJ-] we can show that ~T is not 

constant on any 
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We have now proved 

Theorem 11 

Let k > 2o Let T be a recursive tree such that 

[s E Ct(k); hs i.s a branch in T} is nonempty but with no comput­

able elementso Let ~T be defined as above. Then AT is recur­

sive, not computable but uniformly computable in all ~ such 

that h~ is a branch in To 

Remark 

We did not show that ~T is recursive but this is as trvial 

as in the case k = 2. 

Corollary 1 

There is a recursive but noncomputable b. E Ct(4) such that b. 

is uniformly computable in all nonrecursive functions f. 

Proof 

[f; f is recursive} is so by lemma 5.a) there is a 

recursive tree T such that 

f recursive=> VF:JnlT((l'(n),:fiF(n))) 

f not recursive=> :JF<f (uniformly) VnT((l'(n),liF(n))) 

From T we may construct a tree T' such that if F is 

computable then hF is not a branch in T' while if f is not 

recursive we can uniformly in f compute an F such that hF 

is a branch in T' .. Then ~T, E Ct ( 4) will have the property. 

Corollary 2 

There are no minimal Kleen~-degrees of continuous functionals. 
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Proof 

Let $ E Ct(k) for some k.. If there is a non-recursive f 

computable in ~ then 0 < 6. < $ where 6. is as in corollary '1. 

Otherwise ~ is of r.e.degree and we can use theorem 8D 

There is a higher type version of corollary '1. 

Corollary 3 

Let k.::_ 1. There is a recursive but non-computable functional 

b. E Ct(k+3) such that A is uniformly computable in all non-com-

put able cp E Ct (k) .. 

The proof is as the proof of corollary 1 and we leave it to 

the reader. 

Here we have used the 6.T-method to produce functionals lying 

low in the degree-structure. The first application of the method 

in Normam1 [14] produced exampl8s of non-obtainable functionals, 

i.e. functionals that are hard to compute. Our last theorem will 

be an improvement of the result from Normann [14]. 

Theorem '12 

Let k.::_ 3. Let § E Ct (k) and let a be an associate for ~. 

There is a 'f E Ct(k) with an associate recursive in a such 

that 'f is not computable in P and any function f. 

·Proof 

The relation 

is of complexity 

{e}(~,e,f,f,k-1 0)~ 

1 
rrk-2 Ca.)· 
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By lemma 5. b) let [T } be a family of trees uniformly 
e 'f eE:N, fE:NJN 

recursive in a,e,f such that 

For each e,f let 

otherwise. 

or B~-2 contains just 
one elements 

where h0 is as defined just before lemma 15, with k replaced 

by k-1. Then 

!3e f EAs(k-1o) <=> [e}(~,e,f,f,k-1o)t, 
' 

in which case the value of the computation [e}(~,e,f,f,k-1 0) may 

be decided from finite bits of a,~e f and fo On the other hand, 
' using the universal associate for computations from Kleene [10] 

we may decide when a(s),e,r(s) and ~ f(s) is enough to e, 

decide a possible value of [e}(~,e,f,f,k-1 o)o 

Let T E T ' f <=> 'I" E T f e, e, or [e}(~,e,f,f,k-1 0) can be de-

cided from e,a(T(O)), f(T(O)) and 

If £e}(~,e,f,f,k-1 o)f then Te,f will have a branch hg 

for some ~ E Ct(k-2). W.l.o.g we may assume that S is not a 

constant. 

If [ } ( k-1 ) 1 e ~,e,f,f, 0 it choose s such that a(s), r(s) 

and [3e f(s) 
' 

is sufficient to decide the value of this computa-

tion. If hg ( 0) _::: s then hg is a branch in 

Define B~,f from T~,f in analogy with !3e,fo 

If [e}(~,e,f,f,k-1 o)t then by construction there will be an s 

such that the value is decided from a(s),e,r(s) and ~~ f(s). 
' 
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Let '1' ( e , f , cp) = !:IT 1 ( cp) • 
e,f 

Clearly '1' has an associate recursive in a. Assume that for 

some e0 and g 

Ve,f 'f(e,f,cp) = [e0 }(<2,e,f,g,cp). 

bit of I 

~e g• 
o' 

The contradiction is obtained in the usual way. 

Corollary 1 

Let k > 3 !11 E Ct(k) - ' and let a be an associate for Then 

there is a '1' E Ct(k) with an associate recursive in a such that 

'1' is not computable in ~ and any c:p E Ct (k-1). 

Proof 

If k = 3 this is what we proved in theorem 12, so let k> 3., 

Let Rk-1 be as in theorem 1. By theorem 12 there is a '1' E Ct(k) 

with an associate recursive in a such that '1' is not computable 

from (<2,Rk-1) and a..ny fo But if cp E Ct(k-1) there is an f 

such that cp is computable in Rk-1 ,f.. This shows that '1' is 

not computable in ~, c:p for any cp E Ct (k-1) .. 

Coro~lary 2 

Let k~ 3. There is no maximal element among the r .. e. degrees 

of type _:: k. 

Proof 

Recall theorem 5. Let <2 ECt(k) be of r.e.degree. Then 2 

has a 

a !:10 
2 

!:10 
2 associate. By theorem 12 there is a '1' E Ct(k) 

associate such that is not computable in 

with 

By 

theorem 5 '1' is computable in a continuous r.e. subset A of 

Ct(k-1). Then <2,A is of r.e.degree and 2 < <2,Ao 
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