
The continuous functionals; computations,

recursions and degreeso

By DAG NORr1ANN

Introduction

In this paper we will consider two types of problems both

concerning the recursion theory of the continuous or countable

functionalsa

One type of problems deals with the relationship between

countable recursion and Kleene-computability. When Y~eene

[10] and Y~eisru [11] first discovered the continuous functionals

and Kleene showed that all computable functionals (using S 1 - S 9

from Kleene [9]) are recursive, L.e .. have recursive associates,

a natural question was if all recursive functionals are computable ..

Tait (unpublished) showed that this is not so, the fan-functional

is recursive but not computableo For a while it was a widespread

conjecture that every recursive functional is computable from the

fan-functional, but this was disproved in Gandy-Hyland [5] where

they produced a counterexample r of type 3. Now the conjecture

that there is no vmy of generating the recursive functionals by

S 1 - S 9 from a finite set of such functionals was more plausible ..

In Normann [14] this was verified for the recursive functionals

of all types~ Theorem 12 of this paper verifies the conjecture

within a fixed type > 3o All these results indicate that count­

able recursion is much stronger than S 1 - S 9-computabili ty ..

Theorems 1 and 2 of this paper will indicate how much stronger

countable recursion is.. In Theorem 1 we show that for each k

- 2 -

there is a recursive functional Rk

cp E Ct (k) is uniformly computable in

of type k+1 such that any

k R and any associate for cp.

In Theorem 2 we shovf how partial countable recursion can be re-

duced to Kleene-con~utations relative to certain recursive func-

tionalso We use this to define countable recursion by monotone

schemes, showing that partial countable recursion in a sense is

inductive and that it can be presented as a computation theory.

This throws light on a problem in Fe~erman [3]~

Another type of problems deals with the degree-structiure of

the continuous functionals, both countable degrees and Kleene-

degreeso On countable degrees we only bring further certain ob-

servations on minimal countable degrees, most of the results

deal with the Kleene-degrees. It appears that the Kleene-degrees

gives a significant saturation of the Turing-Degrees~ We show

that there are no minimal singletons, pairs, triples etc. in

this degree-structure, in fact no set of non-zero degrees bounded

in type will have 0 ,.,., as an infimum.

We also define the higher type analogues of the r.e~ degrees

and show that this degree-structure is dense and with no minimal

pairs, triples etce

We have started the investigation of these degree-structures

with the feeling that they are radically different from the

corresponding classical oneso There is not yet mathematical

evidence to support any conjecture, but as all results so far

indicate that the new structures are more saturated than the old

ones, the following are reasonable problems.

a) Is the elementary theory of the degrees of continuous func­

tionals decidable?

- 3 -

b) Is the elementary theory of the continuous r.r. degrees

decidable?

This paper is divided in two partso In part A we will give a

short introduction to the continuous functionals and then investi­

gate problems of the first typeo Part B will mainly be concerned

with degrees. An exception is Theorem 12 and its corollaries

which conceptually belongs to part A but whose proof is based

on techniques developed to deal with degreeso

The paper is based on the introduction to the recursion theory

of the continuous functionals, Normann [15], which again is based

on Kleene [10]o Our definition of an associate is the same as

Kleene•s .. But our continuous functionals are only defined on

continuous objects of lower type, not as in Kleene [10] also on

discontinuous objects ..

We will assume that the reader is familiar with the defini­

tions of an associate and of a continuous functional of pure

finite type.. We will also assume familiarity with S 1- S 9 com­

putations (Kleene [9])~ In section 1 we will give a few concepts

and results without proofs, the material is taken from Kleene [10]

or Normann [15]0

Most results quoted in the te:I..-t can be found in Normann [15].

We loJill normally not give reference to [15] but to the original

papers ..

While preparing this paper I enjoyed the hospitality of the

School of Mathematics at the University of Leeds with financial

support from the University of Oslo, the Norwegian council for

science and the Humanities (NAVF) and the British Science Research

Council (SRC)o

- 4 -

I had several illuminating discussions with Stan Wainer on

the subjects of the paper, and during a short visit to Cambridge

I had some inspiring discussions with Martin Hylando

PART A: Computatio~s and recursions~

1. Preliminaries

In this section we will go through some basic notation and

conventions, and give some results on which the rest of the paper

is based.

We will let cr,T,TI,o denote finite sequences of natural

numbers and we will identify them with their sequence numberso

f,g,h,a,~ and y will denote functions (from JN" to JN),

F and G will denote functionals of type 2 and ~,~,s,~,~ and ~

will denote continuous functionals of arbitrary typeso

n,m,s,t,r,x,y and i will denote natural numberso

We let f(n) = (f(O),o.o,f(n-1)). lh(cr) denotes the length

of the sequenceo If n < lh(cr) we let cr(n) be element no. n+1

in the sequence. cr(n) denotes (cr(O),~~~,cr(n-1)) whenever this

has meaning.,

Definition
~

a) Con(k,cr, o) will mean that there is a functional ~ E Ct(k)

(the continuous functionals of type k) with associates a and

~ and numbers s and t such that a(s) = cr,~(t) = 6

b) Con(k,cr) will mean Con(k,cr,cr)

- 5 -

c) If Con(k,cr) we let

B~ = [~~ E Ct (k) ; 3a E As (W) 3t (cr = ii (t)) }

where As(w) denotes the set of associates of w.

We write for

Lemma 1

Con is primitive recursiveo Moreover, if Con(k,cr,o) holds

we can uniformly find w, a and ~ as above.. They vlill be uni-

formly primitive recursivea

Lemma 2

Uniformly in k there is a primitive recursive sequence

[~~}iE~ which is dense in the standard topology Tk on Ct(k)o

Moreover the relation is primitive recursive.

Definition

Let k~ 1. If {'l'n }nEE is a sequence from Ct(k) we call

ill E Ct(k) a modulus for ('1' } if n· nEii

~?- 3

['1' } will be a convergent se~uence in Ct(k) if and only n nEll ':1.

if it has a modulus in Ct(k)o

We have not found a reference for the next result, it belongs

to the folkloreo There is a proof in the unpublished Normann [12]o

The proof is by induction on k and it makes use of standard

tricks involving modulus-functionalso

- 6 -
Lemma 4

Uniformly computable in each '1' E Ct(k) there is a sequence

{ni} iE::N and a § E Ct (k) such that

'1' = lim ~k with modulus ~ •
• ,-v-., n.
l-+ '-'-' J.

Remarks

a) The existence of [ni} iE:N is known from Kleene [10] but the

construction of the modulus ~ computable in '1' is not

published anywhere.

b) In part B, section 8 we will make use of a slightly improved

version of this lemma, still without proof.

Definition

a) If k> 1 and ~ E Ct(k) we let the trace of be

defined by

(We let lli be the dense subset of JN with the standard enumera­

tion),

Many of our results will be based on the following lemma from

Normann [16]"

a) k> 2 ..
~

If Ac JN JN is then there exists a recursive

relation S such that

f E A => Vtlr E ct(k)::lnl s(r(n), iitlr(n))

f%. A => ::11\r E Ct (k) ((tlr uniformly computable in f)

such that Vn S(f(n), iitlr (n)) ..

- 7 ...

b) k 2:.1 o If B c JN JN is II~ there exists a recursive relation R

such that

fEB <=> V* E Ct(k)3n-IR(f(n), h~ (n))

Remarks

a) The uniformity in the second implication of a) means that there

is an algoritll...lu for computing ~! from f such that

Vn E(f(n), hW f (n)). If f f_ A the algorithm will give a total

·~f, if f E A it will give a partial *r"

b) In all results mentioned in this section we may replace S 1 - S 9

by 1-1-recursion, i .. eo replace S 9 by a scheme for 1-1-recursiono

By a result in Bergstra [1] 1-1-recursion is strictly weaker

than Kleene-computability over the continuous functionalsG

2. Co~~uting an functional from its associates ..

For each k let pk be the operator that maps an associate a

for cp E Ct (k) onto cp. pk: As(k) Ct(k) is continuous on its

domain, but not defined everywhereo For k = 1 pk is the iden­

tity and p2 is l:nown to be computable.. In general pk will not

be computable ..

In this section v.re will construct a recursive Rk in Ct(k+1)

such that pk is partially computable in Rk.. Theorem 1 will in

fact be a corollary of theorem 2 which is proved by the same method.

We give a separate proof partly because theorem 1 will have inter­

est independent of theorem 2, partly because we introduce the method

in a simpler proof in order to concentrate on the special tricks

in the proof of theorem 2o

- 8 -

Theorem 1

Let k~ 3.. There is a recursive functional Rk E Ct(k+1) such

that pk is partially computable in Rk ..

Proof

As(k) is a By Lemma 5,a there is a recursive

tree T such that

a¢ As(k) => 'v'1\f E Ct(k)3n-l T(O:(n), 1i1\l (n))

a. EAs(k) => 31\1 E Ct(k)Vn T(a(n), iiw(n))

where $ may be taken uniformly

computable in a."

W .. l .. o.g. we may assume that if -~ Con(k,il(t)) then I T(ii(t),h1]I(t))

for all 1\f E Ct (k).

For cp E Ct (k-1) let

(t + 1 if 'v' i < n (cpJ:-2 E Bk-2 => cp(cp~-2) = t)
cp i l 'f . l

a ('I") = .. ·
n lo otherwise

where 'I"< n ..

a~ is uniformly primitive recursive in hcp and will approxi­

mate the principal associate of cp ..

We write a c 'I" if lh ('I") .::_ lh (a) and

If CJC']" we will have

Define as follows: Let m < n be maximal such that

T(a(m), iiw(m)). Then let

1t
'

I
= ~

lo
C

- 9 -

if there is a 'I" < m
and a ('I") == t + 1

otherwise

such that crcp c ,.
m-

Since Con(k,a(m)) there is at most one t satisfying the

condition.

Let 1 . Rk = ~m ..
n-+co n

Claim 1

Rk is well-defined and recursive.

Proof

Let a, cp and w be given and let ~ be an associate for cpa

k We will give an algoritlLm for R (a,cp,¢) from a, ~ and ¢:

Look for the least n such that i or ii below hold:

i lT(O:(n), h¢(n))o

ii T(i(n}~ u~(~)) and for some t we have

i3' (t) < n and a (~ (t)) > 0 ..

If (a,h¢) is not a branch in T then i is satisfied for some

If (a,h¢) is a branch in T then a E As(k) and there is a

n.

t

such that a(~(t))>o. Choose n>[j'(t) .. Then n will satisfy ii ..

If i holds for n then and we have found

the valueo

k If ii holds for n we claim that for m > n we have Rm (a, cp, ¢) =

a([j'(t)) -1.. It is sufficient to show this when T(a(m), li¢(m)).

Let 'I" = ~(t). Clearly for all m > n we have cr:~ 'S(t).. But

then the instruction is clear. R~(a ,cp, ¢) = a('I") - 1.

- 10 -

So we must find an n as above and then Rk(a.,cp,ljr) =R~(a.,cp,ljr).

It is easy to construct a recursive associate for Rk from this

proof,.

Claim 2

There is an index e such that whenever ~ E Ct(k) and a is

an associate for 2 then

for all cp E Ct (k-1).

Proof

Use the following algorithm: Let

\;In T(O:(n), iiljr (n)) •
a.

We show that Rk(a,cp,$0.) = ~(cp)o

,,, be such that
"'a

Let ~ be an associate for cpo Choose t such that

a(jj(t))>Oo Let n > "S (t) 0 As above we will have

R~(a,cp,ljra.) = a('S"(t)) -1 = ~(cp)o

This ends the proof of theorem 1o

(Jcp c i3(t)
n~

2o Reduction of countable recursion to Kleene-computations.

Kleene [1C] showed how S 1 - S 9-computations can be reduced

so

to countable recursion, ioeo if cp is S 1 - S 9-computable in $

then cp is countable recursive in Wo As we mentioned in the

introduction the converse is not true, see Gandy-Hyland [5] for

a proof 0 Hyland (in Gandy-Hyland [5]) found a type 2 functional F !

such that more functions are recursive in F than computable in R

Together with the results on nonobtainable functionals mentioned

in the introduction these results show that there is a large gap

- '1'1 -

between S 1 - S 9 computability and recursiveness, a gap that cannot

be filled by relativizing to a finite list of functionals.

In this section we will show that, given the results mentioned

above, the situation is as good as possibleo There is a reduction

of countable recursion to S 1 - S 9-computations uniformly relati­

vized to some functionals with recursive associates.

Fefarman [3] and Hyland [8] discussed notions of partial

countable recursion and asked if the system is inductive" As any

two reasonable notions of partial countable recursion will be equi­

valent we will use the following:

Definition

Let e be an index, ~ 1 ,~"o'~n continuous functionals.

We write [e](~ 1 ,.o.,$n) ~ ~ if

va1 , ,a.n (a,.,1,"." ,an are associates for ~..,, "" .. , *n resp"

where {e}(a.1 ,"~.,a.n) is a Turing-computation relativized to

This defines a pre-computation theory on the continuous func­

tionals in the sense of Fenstad [4]" Moreover ~ is recursive

in ~ if and only if there is an index e such that

Remark

Kleene' s reduction of S 1 - S 9-computations to recursions is

not a reduction in the sense of axiomatic recursion theory~enstad

[4]) as an undefined computation may be mapped on a defined

-12 -

recursiona As an exruuple regard Gandy's f-functional (see Gandy-

Hyland [5])

r(F) = F (A.nr (F 1)). o n+

By the recursion theorem there is an index e for r

{e}(F) = F (A.n{e}(F 1)) o n+

which will define an everywhere undefined functional. But if we

use Kleene's reduction on e we get an everywhere defined re-

cursive functional namely r itselfo However using a theorem of

Hyland [8] on the complexity of partial recursive sets we can get

around this obstacle. We will discuss this in further detail

after the proof of theorem 2.

Any index e defines a partially recursive functional even

if it was never designed to do soo In reducing recursions to

computations we will restrict ourselves to certain well-behaved

indices without restricting the set of partial operations.

Definition
-+

e is called k-operational

if for all (cr1 , ,crn)(T1 , ••• ,-rn), whenever Vi<n Con(ki,cri,Ti)

and (e}(cr1 ,.a.,crn) is defined and (e}(T1'ooo,Tn) is defined

then

(We thirur of [e}(cr1 , ••• ,crn) as a Turing-computation relativized

to the finite partial functions cr1,ooo,an).

Lemma 6

There is a primitive recursive f~mction p such that p(e,k)

r
I

- 13 -

~ ~

is k-operational for all e,k and

Proof
.....

For simplicity we let lh(k) = 1 so k = (k) for some ko

The general :proof just requires more notation ..

Let A = {(s,r); {e}s(r) is defined}.

A has a recursive enumeration A = { (si, r i); i E JN"} • We give

the following algorithm for (p(e,k)}(a):

First find and minimal s such that

Let (s, a (s)) = ~. , r.) • For each i < i , if
1 0 1 0 - o

{e} (r.) I= x s. l
l

find ri such that 'lCon(k,ri,O:(ri)). Then let {p(e,k)}(o.) =X ..

Claim 1

AW[p(e,k)](w) ~ AW[e]($) ..

This is trivial from the first instruction for {p(e,k)}(a).

Claim 2

A~[eJ(w) ~ ~$[p(e,k)J(w).

Proof

Let w E Ct (k), a. be an associate for $ and assume that

(e] ($) = Xo

Find s, i 0 as above .. If i < i
- 0

cannot be extended to an associate for

and {els. (ri) I= x then
l

Then there is an r.
l

such that !Con(k,r. ,a(r.)) and we may find it.. This shows that
l l

{p(e,k)}(o.) = x.

f.
l

- '14 -

Claim 3

p(e,k) is k-operational

Proof

Assume that {p(e,k)}(~) = x, [p(e,k)}(n) = y and that x J y9

Let s-'1, s 2 be minimal such that

Let

W .. l.o.g we may assume that In order to compute

[p (e,k)) (n) we should then find ri such that l Con(k, r(s'1), n(ri)) ..

So in particular /Con(k,~,n), which was what we wanted to prove ..

The lemma follows from claims '1-3 ..

Theorem 2

-+

Uniformly in k there is a recursive functional ~ ... E Ct (k+2)
k

and an index e-+ for !J.-recursion such that for all e ,x E JN
k

and all (cp'1 , , cp~) E Ct (k'1) X .. o .. X Ct (kn) ..

ii [e] (cp'1, ,cpn) [e ...)(e,cp'1, ,cpn,2 ...) -x <=>
k k

Proof
...

We prove this when k consists of one element

The general proof only requires more notation.

Claim '1

S = {(e,h); for some cp h = h cp and . [e] (cp) ~)

This is well-known, see Hyland [8] for details ..

,...,
-x ct

k_:::2 ..

is

- 15 -

By lemma 5oa. there is a recursive family [Te}eEE of trees

such that

(e,h) ¢. S ==> 'VI\1 E Ct(k+1)3t-jTe(Ii(t), liq,(t))

(e,h) E S => 31\1 E Ct (k+1) (uniformly computable in e ,h)

('VtTe(li(t), Iiljl(t))

Define cri and cr c T as in the proof of theorem 1.

Define ~t(e,~,l\1) as follows:

Let n < t be maximal such that T (Ii (n) ,Ii,1, (n)).
e ~ 'I'

If there is a T such that Con(k, r), cr~ c r n- and

is defined, let ~t(e,~,~) = {p(e,k)}(r). Otherwise let

~t(e,~,~) = 0 (p is as in lemma 6)

Since p(e,k) is k-operational there will not be any ambi­

guity here, since cr~ S r 1 A cr~ ~ r 2 => Con(k,r1 ,r2).

Let W = lim ~t(e,~,~).
t-+CO

Claim 2

~ is well-defined and recursive.

Proof

Let e,~,l\1 be given and let a be an associate for ~·

Look for an n such that i or ii below holds:

i l Te(n,h~,hl\1).

ii Te(n,h~,hl\1) and {p(e,k)}n(a(n)) is defined.

As in the proof of theorem 1 there will be an n like this and

~(e,~,l\1) ~ ~n(e,~,l\1) for such n.

- 16 -

Now let e0 be an index for the following algorithm in ~=

Given e,cp find 1jl ECt(k+1) such that Vn Te(Ecp(n),Filjr(n)) ..

If [e](~) is undefined then 1jr will be partial and if [e](cp)

is defined then w is total and ~(e,cp,ljr) = [e](cp)Q So Acp[e](cp)

is partially computable in ~ uniformly in e.

Letting ~(k) = g as constructed above we have proved the

theorem.

Corolla:r:;y_ 1

If we add the following scheme S 11 to S 1 - S 9 we will get

a computation theory equivalent to countable recu.rsion (See

Fenstad [4] for precise concepts)a

s 11

Proof

(e}(cp1, ••• ,cpn) ~ ~k(e1,cp1,ooo,cpn,Acp[e2}(cp,cp1, ••• ,cpn))

(e = (11,e1 ,e2 ,k))

where k = (k1 ,. o o ,kn) and each cpi E Ct(ki).

By theorem 2 we can reduce countable recursion to S 1 - S 9,

S 11- computations.

Clairo

There is a primitive recursive function v such that

where e is an index for a S 1 - S 9, S 11 -computation.

Proof

Any S 1 - S 9, S 11 -computation [e} (cp1 , ,cpn) can be reduced

- 17 -

to a S 1 - S 9 -computation in the recursive sequence

Let give Kleene's reduction of these computations to recur-

sions. We then have

Now [(hr" P ... ,hr") ; [e} (cp1 ,. o. ,cpn) t} is IT~ and by Hyland [8]
'~""1 '~"'n

there is an index v1 (e,k) such that

where ko is the constant zero functional of type k.

Choose i such that cpi E Ct (k).. Below we show how a recursion

in ko

vo' v1

Let

can be reduced to a recursion in cp E Ct (k) ..

and this reduction it is easy to find

cpECt(k) and

O(a.)(cr)

:® 13 E [0, 1 } • For each

(1
=

if a. (cr) > 0

if a. (cr) == 0 •

v.

a. let

We then have

Combining

~EAs(kO) <=> ::Ja.EAs(cp)(V'n Con(k,i3(n))AI3 dominates O(a.)) ..

For each a. let Ka. = [t3 E (0, 1 }JiJ ; Vn Con(k, ~ (n)) 1\ 13 dominates O(a.)}.

Ka is compact, so we have

<=> V a. E As (cp) V 13 E Ka. 3 s (e} s (13) = x

<=> Va EAs(cp)::Js V'S EKa(e}s(jj(s)) = x

which can be expressed as a recursion in cp.

This ends the proof of corollary 1 ..

- 18 -

Corolla£Y_ 2

Let ~' $ be continuous functionalso Then the following are

equivalent

l ~ is recursive in $

ii ~ is computable in ~ and some recursive ~

iii ~ is ~-recursive in ~ and some recursive ~o

We let 1-sc(~) denote [f; f is computable in ~}

and c-1-sc(~) denote [f; f is recursive in ~} "

The next corollary was proved in Normann [15] as the first
...

application of k-operational indices"

Corollary 3

a) Let ~ E Ct(k). There is a ~ E Ct(k+2) recursive in ~

such that

1-sc(~) = c-1-sc(~)o

b) Let ~ E Ct(k). Then c-1-sc(~) is generated by its

r.e" (h)-degrees for some hE c- 1- sc(~)

Proof

a) is immediate from theorem 2 and b) follows from a) and a correSpon­

ding result for 1-sc($) from Normann-Wainer [17]o

Remark

Hyland [8] showed that a set A c JNJN is II~ if and only

if A is countably semirecursive in kOo Normann [16] showed

that A is II~ if and only if A is semicomputable in k+2o.
1 Moreover semicomputability of a 1jr E Ct(k+1) will be E,k_1 •

This shows that theorem 2 is the best possible.

- '19 -

The proofs of theorems 1 and 2 both show ways of making partial

continuous operators computable in a total continuous functionala

We have formulated this method in theorem 3.. We do not give the

proof as it will be clear from the proofs of theorems '1 and 2.

Theorem 3

Let <2 : Ct (k1) x .. o o x Ct (kn) ... 1if be a partial operator.. .Assume

that there are a, y of type '1 and a total sequence (~.}.C"11IT
l ll;;._ll.~

such that

i) .A = is '1 (i .. e. ((hcp , ,hcp) ; ~ (cp'l ' • o • 'cpn) dom <2 rr1_/a)
'1 n

is defined} is '1 Ilk (a.) 0

ii) (~i }iEE is computable from a

iii) If then ~ (cp'l ' .. • • 'cpn)

iv) For all (cp1 , ••• ,cpn), if ~ 1 , ,~n are associates for

cp1 ,.o .. ,cpn resp. and if for some t,x

then x is a modulus for the sequence

v) If (cp1 , o. o ,cpn) E .A and ~'1, , ~n are associates for

cp1 ,.e.,cpn resp. then there are t,x as in iv ..

If i)-v) hold there is a total '±' : Ct(k1) x x CtOs) x Ct(k+2)

such that

i '±' is recursive in (a,y) ..

ii ~ is partially computable in '±'.

·- 20 -

PART B: Degrees_qf_continuous functionalso

4 .. Some minimal countable degrees ..

In Part A we showed that in a certain sense we can reduce

countable recursion to Kleene-computabilityo In order to do so

we had to relativize to recursive objects of arbitrary high type.;

That this is a serious defect will be seen from the difference in

the degree-structures of the continuous functionals induced by

the Kleene-computations and the recursions.. The rest of part B

will be completely devoted to Kleene-degrees, in this section we

will show how to construct minimal countable degrees ..

Martin Hyland [7] observed that by adding suitable splitting-

notions for countable recursions Spectors construction of a mini-

mal Turing-degree can be extended to construct an a of minimal

countable degree. Hyland's observation works well also for the

construction of a minimal 0
~ 2-degree, so any fairsized recursive

tree on {0,1} will contain a branch of minimal countable

degree. Here we will show that Spector's original proof automa-

tically gives a function of minimal countable degree ..

Definition

We say that a is Spector-minimal if for each index e there

is a recursive tree T on {0,1} with a as a branch such that

i) aET => a has two incomparab 1 e extensions in T fuY)_d ii or

iii below holds

ii) T never e-~spli ts, i .. e .. a, T E T => [e]a and [e} '!" are

consis-tent

- 21 -

iii) T always e-splits, i.e. if T1 and T2 both extends a

in T
'1"

(e} 1

Lemma 7

then T1 and r 2 are incomparable if and only if
'1"

and (e} 2 are incomparablea

If a is Spector-minimal then a has minimal countable degree.

Proof

Let k > 2 and let cp E Ct(k) be countably recursive in ao

Let e0 be an index for computing an associate for cp from a

and let e be the derived index for computing hcp from ao

Choose T such that i) and ii) or iii) above will hold for ea

If iii) holds then a is recursive in hcp so a and cp are

countably equivalent.

So assume that ii) holds, and let 13 E As (k.:..1) be an associate

for some S E Ct(k-1). We will show how to compute cp(s) from

Find aET B.nd t such that (e0 }a('S"(t)) > 0. We know that

for some s,t[e0 }a(s\a'(t)) > 0 so such a and t exist.

For k-1 cp.
~

E k-1
B-WCt) we will then have

But this shows that cp is constant (e0 }a('S"(t)) -1 on B~(~)

so in particular cp(s) = (e0 }a('S"(t)) -1o This ends the proof

of lemma 7

The type of a degree is the minimal type of a functional in

13 :

the degreeo Dvornickov [2] showed that there are countable degrees

of arbitrary high typeo

Problem

Are there minimal countable degrees of type > 1 ?

- 22 -

As any such degree will have a certain r.e.flavour we conjecture

that the answer is no.

We end this section by showing

Lemma 8

If a has minimal countable degree and F

able in a then either is F computable or a

Proof

We regard tvm cases

is Kleene-comput­

is computable in F.

i a is recursive in hF. Then a is computable in F

ii hF is recursive. Then the countable 1-section of F is

generated from its r.e. elements. If a were recursive in F

we would have that a is recursive in an r.eeset recursive in

a, which is impossible. So a is not recursive in F. By the

minimality of a we must have F to be recursive, i.e.

computable.

5. Continuously r.e.sets and degrees.

The classical r.e.- or semi recursive sets over JN have at

least three important descriptions, as the :E~ -sets, the domains

of the partially recursive functions and as the ranges of the total

recursive functions. Over other domains these descriptions do not

coincide. The semicomputable sets are normally described as the

domains of partially computable operators. Often, and in particu­

lar over the continuous functionals, there is no kind of enumera­

tion of the semicomputable sets involved. Moreover two complemen­

tary sets may well both be semicomputable without being computable.

- 23 -

We will call a set recursively enumerable if it is the effective

union of a countable family of computable sets~ It does not mean

that we actually have a recursive enumeration of the set, which in

any case would have been too restrictive to be of interest.

Definition

a) A c Ct(k) is recursively enumerable (r.eo) if there is

a computable set B 5:: JNx Ct (k) such that

cp E A <=> 3n((n,cp) E B)

b) A 5:: Ct(k) is continuously r.e. if A is r.e. and Ct(k)'A

is open in the standard topology on Ct(k).

Remarks

If k = 0 or 1 we could demand B to be primitive recursive

and we would define the same class of r.e.sets. For k > 2 there

will be nonempty computable sets with no nonempty primitive recur-

si ve subset. An example: Let f be recursive but not primitive

recursive. Let A = {F; F(f) = 0}. A will not contain any non-

empty primitive recursive subset.

In b) we could equivalently demand that the characteristic

function of A is in Ct(k+1)o
I

The continuitt-condition in b) is essential, {f; 3nf(n) .J 0}

is r.e. but not continuously r.e.

With this definition of r.e. it is easy to show that Ac: Ct(k) -
is computable if and only if both A and Ct(k)'A are r.e.

In this section we will characterize the elements of the con-

tinuous r.e.degrees. In later sections we will discuss the degree­

structure. We will identify a continuous r.e.set with its charnc~

- 24 -

teristic function.

Lemma 9

Let [~n}nER be a computable sequence from Ct(k) with a

limit ~ and assume that the modulus ~· is computable from ~·

Let ~ E Ct (t) be computable in ~· Then there is a computable

sequence ['1' J in Ct(t) with ,,, as a limit and with a
"'n nEE "'

modulus computable in ~·

Proof

In Normann-Wainer [17] a primitive recursive operator

h(n,e,~1 , ••• ,~) is defined such that if [e}(~1 , ••• ,~) = x

then x = li~ h(n,e,~1 , ••• ,~k) and we can uniformly in e,~1 , ••• ,~k
n :::o

compute a modulus for [h(n,e,~1 , ••• '~k) }nE:N.

Let w = AS[e}(~,s). Let wn = ASh(n,e,~n,s). By adopting the

method from [17] one can show that w = lim $n and that we can
n-+CO

compute a modulus for [wn}nEE from ~· We will not go into

further details.

Our next theorem shows that one of the standard characterisa-

tions of r.e.degrees generalizes to higher types.

Theorem 4

Let k~ 1, ~ E Ct(k). The following are equivalent

a) ~ is of the same degree as a continuous r.e.set.

b) There is a computable sequence [~i}iE:N with ~ as a limit

and a modulus ~· computable in ~·

c) There is a w of the same degree as ~ such that h~ is

recursive.

- 25 -

Proof

a) =>b): Let A be continuously r.eo Let B be computable

such that SEA <=> ::Jn((n, t;) E B).

Then

putable in A.

Define A by n

A = lim A
n :::::J n

with a modulus com-

By lemma 9 any ~ computable in A will be the limit of a com­

putable sequence [~n}nE~ with a modulus ~· computable in A.

But if ~ and A are equivalent this ~· will be computable in ~,

what was what we wanted to prove.

b) => £2: Let cp = lim cp. with a modulus cp' computable in ~·
. co 1 1

Let f be recursive but not primitive recursive. Let

) cp(s) if f = g
$ (s 'g) = ~

I ~i Cs) for the least i such that f(i) -J g(i)
I if f -J g

Using cp' we can show that w is computable in w. If (S,g)

is primitive recursive then g is primitive recursive and the

following algorithm will compute w(s,g):

Find the least i such that f(i) -J g(i), and let $(s,g) =

~i(S)o

Since hW is ~ applied on certain primitive recursive objects

this shows that h~ is recursive.

c) => a): It is sufficient to show that if h$ is recursive then $

is of the same degree as an r.e.set,- it is natural to go via

statement b).

In lemma 4 the sequence [ni}iEN is actually primitive recur­

sive in h~ so there is a computable sequence [wn}nEN with *

- 26 -

as a limit and with a modulus w' computable in w. It is then

easy to see that \fr is equivalent to

which is continuously reea

Remark

We could replace b) in theorem 4 by b'): There is a primitive

recursive sequence [cp } with n nE:N cp as a limit and with a modulus

cp' computable in cp.

We will, however, not use this refinemento

Over JN" the following are equivalent

a) f is computable in an rGe.set

b) f E 6.0
2

c) f is the limit of a primitive recursive sequence

d) f is computable in o'

d) will not generalize to higher types, any functional v--rith a

recursive associate will be of r.e.degree but not all such func­

tionals are computable in o'. The rest of the statement gene-

ralizes.

Theorem 5

Let cp E Ct (k). The following are equivalent

a) cp is computable in a continuous r.e.set

c) rn is the limit of a primitive recursive sequence [cp }
'~"' n nEE

- 27 -

Proof

a) =>b) Let cp be computable in $ where h$ is recursive.

The principal associate ~ of $ is 0
6.2. There will be an asso-

ciate for recursive in ~' and this associate will also be 0 cp 6.2 ..

b) => c) Let a be a !:.~-associate for cp and let [a,i J iE:N be a

primitive recursive sequence converging to a. W.l.oDg. we may

assume Vi Con(i,ai(i)). Let

sive with an associate extending

cJ => aJ Let cp = lim cpn. Let

cp. be uniformly primitive recur­
J.

a;(i). Then cp =lim cp ••
..... i-+ co]_

A is r.e., continuous and cp is computable in A.

If A;:ct(k) is continuously r.e .. and k = 0 or 1 then A

can easily be shown to be computable in 0'. We will later show

that if k > 2 there is no maximal r. e. degree within Ct (k+1).

Now we will use theorem 5 to show that in general there is

an r.e. degree of type k+1 dominating all r.e .. degrees of type k.

Corollary

Let k>3 .. There is a continuous r .. e.set B~Ct(k) such that

all elements of Ct(k) of r .. e .. degree are computable in B.

Proof

It is sufficient to produce an element 'l.' in Ct(k+1) with

the wanted propertyo Let Rk be as in theorem 1. Rk has are­

cursive associate so by theorem 4 c) => a) Rk will be of r.e.

degree. Let '¥ = (Rk, 0').. By theorem 5 b) => a) every cp E Ct (k)

of r.e.degree has a !:.~-associate a. But then cp will be comput-

- 28 -

able in so is computable in 'f.

Remark

We could use theorem 5 c) <=> a) to give a direct construction

of a r.e.set, then using the method of theorem 3.

6. Modifying a functional by a tree.

In theorems 1 and 2 we made partial continuous operators com-

putable in a total functional by the use of trees being well­

founded when the operator is not defined. In this section we will

show that a similar construction can be applied to functionals of

r.e .. degree, then producing functionals of lower degree.

Definition

Let $ E Ct(k) (k_: 1) be of rae .. degree, {'fn}nE::N a comput­

able sequence with $ as a limit and let $' be a modulus for

{$n }nEE computable in $..

Let T be a recursive tree, t ~ 1.. We let wT, t : Ct(k-1) x Ct(t),

be the functional defined by

= "'
r~(~) if 'v'nT(Iis(n))

\ ~n(~) for the least n such that
L- l T(Iis(n)) otherwise.

Remark

We will normally drop the subscript t which will then be

clear from the context.

- 29 -

LellliD.a 10

a) ~T is computable in V·

b) If 'VsECt(t)3niT(lig(n)) then vT is computable.

c) If sECt(t) and 'VnT(lig(n) then ~ is computable

in wT and s.

The proofs are trivial.

Lemma 11

Let 111 E Ct(k), t = 1 and let T c T' be recursive trees.

Assume that each a E T has arbitrary long extensions in T' and

assume that T has a branch. Then ~ is countably recursive

in VT'.

Proof

Let a be an associate for 1!IT,. We show how to compute an

associate for 1jr from a. We will assume that k > 1. If k::;a 1

a similar proof will work.

Let S E As(k-1) be an associate for cp. Find a E T of

length x such that a(~(x) ,a)> 0. There will be such a a since T

has a branch. We claim that w(cp) = a(J;(x),a) -1. From the claim

we can compute $(cp) from a,S uniformly in . ~ and v will be

recursive in VTt•

Let n be so large that Vm> n ~n(cp) = w(cp). Choose o E T'

such that 6 extends a and lh(o) .::_ m. Then ~T, is constant

a(~(x),a) -1

where

k-1 1
on Bjj(x) xB 0

fvCcp)

= lwm(cp)

if f is a branch in T'

for some m > n otherwise \.which

also will be v (cp)).

- 30 -

So for all f extending o *T' (cp,f) = $(cp) = a('S(x),cr) -1.

This ends the proof of lemma 11.

Lemma 12

Let T be a recursive tree .. Uniformly recursive in T there

is a T' such that each cr in T has arbitrary long eJdensions

in T' while T and T' have the same branches.

Proof

Let S be a well-founded recursive tree with arbitrary long

branches. Let cr*r denote the concatenation of the finite se-

quences cr and r. Let

T' = (cr*r; crETArES} ..

Theorem 6

Let J) 2 be the structure of the type-2 degrees. Any minimal

element of J)2 is a type-1 degree ..

Proof

Let FE Ct(2) and assume that F is not equivalent to any f.

If hF is not recursive then 0 < hF < F so F is not minimal.

If hF is recursive then F is of r.e.degree. By lemmas 11 and

12 we see that

{T; FT is computable}

is complete is so for some T we

have 0 < F T < F.

Remarks

This proof is not constructive, it gives no effective way of

choosing an index for T from F.. It is an open problem if this

- 31 -

theorem has a more constructive proof, even inside the set of func­

tionals of r.e.degrees. It can be shown that there is no T that

will do the job uniformly.

If we let k~ 3 and let ,Dk be the structure of the degrees

of type < k it is also an open problem if this structure contains

a minimal degree.

If k ~ 3 and 1Jr E Ct (k) is nonobtainable, i .. e .. not computable

from any q> E Ct (k-1) we can use lemma 5 to show that

is computable} is complete and then 1Jr will

not be minimal.

We will now give another application of lemmas 11 and 12.

Theorem 7

Let G E Ct(2) be of r .. e .. degree. Then there is an FE Ct(2)

of the same countable degree as G such that F is computable

in G and for all H: :NJN JN (also discontinuous)

1 - sc(H) = 1- sc(F ,H)

Proof

Let T be a recursive tree such that

i) T has at least one branch

ii) 0' is recursive in any branch of T

iii) If G' is of roeodegree then G' is countably equivalent

to Gf.

Let F = GT.. Let H : :NJN JN.. If 0 ' < H then F < H so

1- sc(F,H) ,:: 1- sc(H). If O' lH then we can replace F by a

fixed partial computable function in any computation in F,H.

- 32 -

It follows that

1- sc(F,H) c 1- sc(F).

Remark

The first result along these lines was proved in Bergstra (1].

The proof of theorem 6 was not effective. If we work within

the full degree-structure of the continuous functionals we can

give much more effective arguments. The proof of the next theorem

is actually a construction, we can pick the indices involved by

recursive functionso

Theorem 8

The degree-structure of the continuously r.eosets is dense.

Proof

Let ~ and w be in Ct(k) and of r.e .. degree, ~ strictly

computable in ~.. Assume that k > 2.

Claim 1

There is a recursive functional 2 E Ct(k+2) such that

~ f:. ~,~ and ~ is not computable in any s E Ct(k+1) ..

Proof

We say that ~~ E Ct (k) is nonobtainable if ~ is not comput­

able in any ~ E Ct (k-1).

In Normann [14] nonobtainable recursive functionals of any

type > 3 are constructed (See also section 8 in this paper).

Let t.1 E Ct(k+1) and t.2 E Ct(k+2) be recursive and nonobtain­

able.. Let hE hb. and let T be the recursive tree with h as
1

its only branch.

- 33 -

Let ~ = (A2)T. As A2 ::_ ?i?,t:~ 1 (lemma 10,c)) and t:~2 is non­

obtainable we must have that ~ is nonobtainable ..

Let ~~ be the partial computatle subfunctional of ~ de­

fined on [('1', l:l); l:l/= t:~ 1 L By induction on the length of computa­

tions we can show that in any computation (e}(~,~) where the
_.

types of s are ~ k, we can replace ~ by 2 1 • As a part of the

induction we show that we only have to apply ~ on k-obtainable

elements of Ct (k+"1) in such computations. So if ~.::, ~, cp we

will have that ~ < 2 1 cp which will mean that ~ _< cp contradicting - '
the assumption. This proves claim 1.

From Claim 1 we may w.L.o.g. assume that for some k we have

that cp' ~ and ~ are all in Ct (k), ~f(cp,~ and § is non-

obtainable modulo Cf>o Let T be the recursive tree with hq) as

the only branch. Let 1f = ~To Then 1f E Ct(k+1) ..

Claim 2

a) '±' 1- cp

From Claim 2 it follows that cp < (cp, 1f) < ~ and the theorem is

proved.

Proof of Claim 2

a) By lemma 10, c) we have that ~..::, 1f, 2 o If '±'..::, cp we would have

that ~,::. cp, § contradicting the assumption.,

b) Let '±'' be the partial computable subfunctional of '±' defined

on ((s, ~ 1) ; 2 1 I= §}. As in the proof of claim "1 we can show

that if ~ _::: '±', cp then ~ _:: 1f 1 , cp so ~ < tp which contradicts the

assumption ..

- 34 -

7. Avoiding semiassociates of tyPe 2.

In the previous section we made use of the main result of

Normann [14], there are nonobtainable recursive functionals of

any type ~ 3. The method which can be described as the method of

avoiding semiassociates has later been used to solve a number of

other problems. In this section we will describe the method and

use it to construct some interesting type three functionals. In

the next section the method will be extended to constructions of

higher type functionals.

Definition

Let (fn)nEJN be recursive such that [fn : n E ::N} is a dense

subset of JN:N without repetition in the enumeration.

For each FE Ct(2) define oF as .follows: ~l(cr) is defined
n n

if cr < n. Then

Lemma 13

i.f there are m1 < n, m2 < n such that

fm E B0 and fm E B0 and
1 2

'v'm < n (fm E B0 => F(fm) = k)

otherwise

£o!JnEE is uniformly primitive recursive in F

is the principal associate for F.

and

The proof is trivial.

Definition

1 . e,F
~m n

n-+co

Let T be a recursive tree with at least one infinite branch.

Let
6.T(F) = I-JllV'm>n:3crET(6F(cr)>o).

- m

- 35 -

Theorem 9

a) ~T has a recursive associate uniformly in an index for To

b) If g is a brru1ch in T then ~T is computable from g.

c) If ~T is computable from g then T has a branch recursive

in g.

Proof

a) Let a be an associate for F. We show how to compute ~T(F)

from a: FL'1d . a E T such that a (a) > 0 (there is one since

T has a branch). Find n such that there are m1 < n and

b)

m1 I= m2 , fm1 E Ba and fm2 E Ba. Then ~ < n such that

m > n => oF (a) > 0
m so ~T(F),.:: n. It is then easy to compute

Let g be a branch in T. Let [g.}. EJif = [f } . EJif be a
~ ~ ni ~

subsequence of [fn}nEJif picked out as follows: First take

all fn until we have found two in Bg(1)" Then take just

those in Bg('1) until we have found two in Bg(2) etc.

Then g = lim g.
• 00 ~

and we can easily compute a modulus for
~_.

[gi} iEJif from g. By a method from Grilliot [6] (See also

Bergstra ['1], Wainer [19], Normann-Wainer ['17] or Normann [13])

the following is computable in g:

1jr(F) = 1-ffiVi>n(F(g.) = F(g))., - ~

Let F be fixed and let i = 1jr(F).,

Let t
0

be such that if n <n.
~

and then

fn ~Bg(t) Let j.::, i be such that for two different m.::, j
0

do we have gm E Bg(to). It is then easy to see that for m>n.
- J

- 36 -

there will be a t such that o!(g(t))>O, so

It is then easy to compute ~T(F)a

~T(F) < n .•
- J

c) Assume that T has no branch computable in g. Let

a(cr)
\1

=-...:;'

'o L

if

if crET

Then a is a semiassociate for 2o securing all g' recur-

sive in g. If ~T is computable ;i_n g there is an index e

such that

Regard [e}(2o,g). The value of this computation will be de­

cided by a finite bit a(t) of ao Let

Since

F(f) n

(n if there is no s such that

= ~ (l'n(s)<tAo.(l'n(s)) = 1)

I 0 if there is such s
'-

(Here we use that [fn}nEN is without repetition)

F(f) n is defined for all n we may define

all m although F cannot be extended to a total continuous

functional.,

Claim: For any mlcr oF (cr) > 0 ::::> a ¢ T" m

Proof
~-

The only way to get ~l(cr) > 0 is to find an s with O'(s) < t
m

and a(cr(s)) > O, so cr(s) ¢ T ruJ.d a~ T.. This proves the claim ..

Now choose m> ~T(2o).. Let

ate extending a(t) such that

F' be continuous with an associ-

¥n <mF(f) = F' (f) ..
- n n

- 37 -

Then t.T(F')~m> t.T(2o) while (e}(F' ,g) = {e}(2o,g), contradicting

the assumption.

This ends the proof of the theorem.

Corollary 1

Let A1 , •• o,A be non-recursive r.e. subsets of lli. n
Then

there is a recursive t:. E Ct(3) such that 0 < t:. <A. for all i < n.
l

Proof

Let B. be · re cu.rsi ve such that
l

xEA. => 3y(x,y) EB ...
l l

We

call f a modulus for A.
l

There is a recursive tree

if

T.
l

such that

if and only if f is a modulus for A .•
l

Then t:.T will have the wanted propertyo

f

Let

is a branch in T.
l

.Q_orqllary 2

There is an a E t:. 0
2 of minimal countable degree which is not

minimal among the Kleene type-3 degrees.

Proof

Let A1 and A2 be disjoint r.e.sets which cannot be recur­

sively separated. There is a recursive tree T on {0,1} such

that

f is a branch in T if and only if f is the characteristic

function of a set separating A1 and A2 •

By the remark after lemma 7 T will contain an a of minimal

countable degree. But o<t. <a.
T '

so a. does not have minimal

Kleene-degreeo

- 38 -

Remark

By lemma 8 we see that type-3 is the best we can do here.

Before moving up in types we will as a curiosity regard a recur-

sive type-3 functional which is 'everywhere' non-computableo

Kreisel [11] defined certain generalizations of the continuous

functionals.. For our purpose the following will do.

Definition

Let A c NJN be closed under recursion. We let (A(k))kEN

be the type-structure defined from A by everywhere in the defi­

nition of (Ct(k))kEJN replacing JN:N with A.

Theorem 10

There is a functional 1f E Ct(3) with a recursive associate o

such that

i) For all A c :NJN closed under recursion we have that a is

the associate of some '±'A E A(3)

ii) There is no A c JNJN closed under recursion such that 1f A

is computable over A(2).

Proof

Let (e} s be the maximal sequence r of length < s such

that vx_:s(r(x) = [e}s(x)).

Let T (cr) <==> cr e extends [e} lh(cr)

Let 1f(e,F) = ClT (F) • For each e we see that Te has a recur-
e

sive branch so 1f is defined in all (A(k) >kEJir and with the same

associate ..

Assume that for some A we have 1f computable over A(2)

with index e0 • Then regard the computation of A.e{e0 }(e,2o).

- 39 -

There will be a recursive f with index e not used in this com-

putationo For this particular e we can use the method of the

previous proof to construct an F such that

while 2
~T (0) ~ ~T (F) ..

e e

Bo Avoiding h~her t~e semiassociateso

The methods from section 7 can also be used to construct func-

tionals of type higher than 3o An irritating obstacle is the

fact that for k > '1 there are a such that B~ is a singleton

~hich will then be one of the constants)o The set of such a's

is however primitive recursive and we just disregard them syste-

maticallyo

From now on and up to Theorem '1 '1 fix k > 2.

Lemma 1L~

There is a primitive recursive family [S } EJN without rep e­n n

tition in Ct(k-'1) such that

i)

ii)

The relation s E Bk-1 is primitive recursive .. n a

If is non-empty then there is an n such that

The proof is easy but tedious, see Normann [12] of [15]o

If contains more than one element we define

~=' E Bk-1
':>n a 0

to be

the part of a h
cp

we can compute from

the beginning of an associate for cp ..

a, assuming that a is

If Bk-1 contains just
a

one element we could define ha as well, but ha would then be

infinite and constanto

If T is a recursive tree with a branch on the form h;

.... 40 -

where s E Ct (k-1) and s is not constant, we let

t:.T(w) = \lll Vm >n::Ja(h0 ETA o!(a) > o A B~-1

contains more than one element)

where oW is de~ined from
ill

oF was defined from
ill

If cpECt(k) is not constant and

then liT is computable in cpQ

Proof

h cp is a branch in T

Let {a{JtEE be the canonical approximation to the principal

associate for cp. (See the proof of theorem 1). Notice that

h will be an initial segment of hcp. acp
t Let { sn. }iEE be a subsequence of [sn }nEE de~ined by:

J.
Bk Take all sn until we find two in some 0 Then take all
a~

Bk Bk
Jo

in until we have found two in some for . >.
aq> aq> J1 Jo·

Jo J1
etc.

By a combinatorial argument we can show that cp = lim s with . con.
J_-t J.

a mouulus computable in cp. (It requires a modified version of

the proof of lemma LJ-).

From now on we can follow the proof of theorem 9ob).

Definition

The quasiassociates are defined as follows:

QA(1) is just the recursive functions.

a. E QA(t+1) if a. is recursive, a. secures all ~ E QA(t)

and for some computable W E Ct (k+1) we have

that Vn ¢ E Bk+'l
a:(n)

- l.J-1 -

Lemma 16

a) All computable functionals have quasiassociates.,

b) If {e)(l\!.1'"".,1vn)t and a.1 , ... ",a.n are quasiassociates for

~ 1 ,.""'1\!n resp. then there is a t such that whenever

{e}(l\!1,"""'1\1~)~ ~ ~1'" • .,,1\1~ have associates starting with

a1(t),ooo,an(t) then {e)(¢1,., •• ,1\1~) = {e)(¢1'""·'*n)"

Proof

Kleene's reduction of computations to countable recursions

will work for quasiassociates as well. The proof will be by a

simultaneous induction on the length of computations.,

Remark

Lemma 16 is a special case of continuity-properties of compu-

tations described by Scarpellini [18] and Hyland [7].,

Lemma 17

Let T be a recursive tree., Assume that [s E Ct(k) ; hr- is
":>

a branch in T) is a nonempty set with no computable elements"

Then ~T is not computable.,

Proof

Let if is a singleton or

a.(cr)
otherwise.,

a. will be a quasiassociate for ko and any computation

{e}(kO) is determined from a finite bit a(t) of a.., But as

in theorem 9c) and in Normann [1LJ-] we can show that ~T is not

constant on any

- 42 -

We have now proved

Theorem 11

Let k > 2o Let T be a recursive tree such that

[s E Ct(k); hs i.s a branch in T} is nonempty but with no comput­

able elementso Let ~T be defined as above. Then AT is recur­

sive, not computable but uniformly computable in all ~ such

that h~ is a branch in To

Remark

We did not show that ~T is recursive but this is as trvial

as in the case k = 2.

Corollary 1

There is a recursive but noncomputable b. E Ct(4) such that b.

is uniformly computable in all nonrecursive functions f.

Proof

[f; f is recursive} is so by lemma 5.a) there is a

recursive tree T such that

f recursive=> VF:JnlT((l'(n),:fiF(n)))

f not recursive=> :JF<f (uniformly) VnT((l'(n),liF(n)))

From T we may construct a tree T' such that if F is

computable then hF is not a branch in T' while if f is not

recursive we can uniformly in f compute an F such that hF

is a branch in T' .. Then ~T, E Ct (4) will have the property.

Corollary 2

There are no minimal Kleen~-degrees of continuous functionals.

- 43 -

Proof

Let $ E Ct(k) for some k.. If there is a non-recursive f

computable in ~ then 0 < 6. < $ where 6. is as in corollary '1.

Otherwise ~ is of r.e.degree and we can use theorem 8D

There is a higher type version of corollary '1.

Corollary 3

Let k.::_ 1. There is a recursive but non-computable functional

b. E Ct(k+3) such that A is uniformly computable in all non-com-

put able cp E Ct (k) ..

The proof is as the proof of corollary 1 and we leave it to

the reader.

Here we have used the 6.T-method to produce functionals lying

low in the degree-structure. The first application of the method

in Normam1 [14] produced exampl8s of non-obtainable functionals,

i.e. functionals that are hard to compute. Our last theorem will

be an improvement of the result from Normann [14].

Theorem '12

Let k.::_ 3. Let § E Ct (k) and let a be an associate for ~.

There is a 'f E Ct(k) with an associate recursive in a such

that 'f is not computable in P and any function f.

·Proof

The relation

is of complexity

{e}(~,e,f,f,k-1 0)~

1
rrk-2 Ca.)·

- 44-

By lemma 5. b) let [T } be a family of trees uniformly
e 'f eE:N, fE:NJN

recursive in a,e,f such that

For each e,f let

otherwise.

or B~-2 contains just
one elements

where h0 is as defined just before lemma 15, with k replaced

by k-1. Then

!3e f EAs(k-1o) <=> [e}(~,e,f,f,k-1o)t,
'

in which case the value of the computation [e}(~,e,f,f,k-1 0) may

be decided from finite bits of a,~e f and fo On the other hand,
' using the universal associate for computations from Kleene [10]

we may decide when a(s),e,r(s) and ~ f(s) is enough to e,

decide a possible value of [e}(~,e,f,f,k-1 o)o

Let T E T ' f <=> 'I" E T f e, e, or [e}(~,e,f,f,k-1 0) can be de-

cided from e,a(T(O)), f(T(O)) and

If £e}(~,e,f,f,k-1 o)f then Te,f will have a branch hg

for some ~ E Ct(k-2). W.l.o.g we may assume that S is not a

constant.

If [} (k-1) 1 e ~,e,f,f, 0 it choose s such that a(s), r(s)

and [3e f(s)
'

is sufficient to decide the value of this computa-

tion. If hg (0) _::: s then hg is a branch in

Define B~,f from T~,f in analogy with !3e,fo

If [e}(~,e,f,f,k-1 o)t then by construction there will be an s

such that the value is decided from a(s),e,r(s) and ~~ f(s).
'

- 45 -

Let '1' (e , f , cp) = !:IT 1 (cp) •
e,f

Clearly '1' has an associate recursive in a. Assume that for

some e0 and g

Ve,f 'f(e,f,cp) = [e0 }(<2,e,f,g,cp).

bit of I

~e g•
o'

The contradiction is obtained in the usual way.

Corollary 1

Let k > 3 !11 E Ct(k) - ' and let a be an associate for Then

there is a '1' E Ct(k) with an associate recursive in a such that

'1' is not computable in ~ and any c:p E Ct (k-1).

Proof

If k = 3 this is what we proved in theorem 12, so let k> 3.,

Let Rk-1 be as in theorem 1. By theorem 12 there is a '1' E Ct(k)

with an associate recursive in a such that '1' is not computable

from (<2,Rk-1) and a..ny fo But if cp E Ct(k-1) there is an f

such that cp is computable in Rk-1 ,f.. This shows that '1' is

not computable in ~, c:p for any cp E Ct (k-1) ..

Coro~lary 2

Let k~ 3. There is no maximal element among the r .. e. degrees

of type _:: k.

Proof

Recall theorem 5. Let <2 ECt(k) be of r.e.degree. Then 2

has a

a !:10
2

!:10
2 associate. By theorem 12 there is a '1' E Ct(k)

associate such that is not computable in

with

By

theorem 5 '1' is computable in a continuous r.e. subset A of

Ct(k-1). Then <2,A is of r.e.degree and 2 < <2,Ao

Bibliography

1. Bergstra, JoA~; Computability and continuity in finite types,
Thesis, University of Utrecht, 1976.

2. Dvornickov, S.,G'!; On c-degrees of everywhere defined func­
tionals (In Russian) Logica i Algebra 18 (1979) pp .. 32-46.

3. Federman, s.; Inductive schemata and recursively continuous
functionals, in R .. O. Gandy and J.MoE. Hyland (editors)
Logic Colloquium '76, North Holland (1977) pp .. 373·-392.

L~. Fenstad, J.E~; General Recursion Theory, Springer Verlag 1980.

5. Gandy, R.O~ and Hyland, J.M.E.; Computable and recursively
countable functions of higher type, in R.O. Gandy and
J.M.E. Hyland (editors) Logic Colloquium '76, North Holland
(1977) pp., LJ-07-L!-38,.

6.. Grilliot, T; On effectively discontinuous type-2 objects,
Journal of Symbolic Logic 36 (1971) pp .. 245-248.

7. Hyland, J.MeE.; Recursion on the countable functionals,
Thesis, University of Oxford, 1975.

8. Hyland, J.M.~; The intrinsic recursion theory on the count­
able or continuous functionals, in J .. Eo Fenstad, R.O. Gandy
and G .. E .. Sacks (editors) Generalized Recursion Theory II,
North Holland (1978) pp. 135-145.

9 .. Kleene, S.Ca; Recursive functionals and Quantifiers of finite

types I, T.A.M.S. 91 (1959) pp. 1-52; and II (1963) PP• 106-
142.

10. Kleene, S.C.; Countable functionals, in A. Heyting (editor)
Constructivity in Mathematics, North Holland (1959) pp. 81-100o

11. Kreisel, G~; Interpretation of analysis by means of func­
tionals of finite type, in A. Heyting (editor).
Constructivity in Mathematics, North Holland (1959) pp. 101-128.

- 47 -

12. Normann, D.; General type-structures of continuous and count­
able functionals, in preparation.

13. Normann, D.; A classification of higher type functionals,
in F~V. Jensen, BoH~ Mayoh and KoK. M0ller (editors),
Proceedings from 5th Scandinavian Logic Symposium,
Aalborg University Press 1979 pp. 301-3080

14. Normann, D.; Non-obtainable continuous functionals, to appear
in the proceedings from the Hannover conference in 1979
(Oslo Preprint 1979 No 9)o

15. No~ann, D.; Recursion on the continuous functionals,
Springer Lecture Notes, Springer Verlag 1980.

16. Normann, D.; Countable functionals and the projective
hierarchy, to appear in Journal of Symbolic Logic.

17. Normann, Do and Wainer, S.S.; The 1-section of a countable
functional, to appear in Journal of Symbolic Logic 1980.

18. ScaFpellini, B; A model for bar-recursion in higher types,
Comp. Math. 23 (1971) pp. 123-153.

19. Wainer, s.s.; The 1-section of a non-normal type-2 object,
in J.E. Fenstad, R.O. Gandy and G~E. Sacks (editors)
Generalized Recursion Theory II, North Holland (1978) pp. 407~

417.

