Age Determination at Death from Osteon Counting by Means of Interactive Computer Graphics

Gale D. Slutzky
University of Tennessee, Knoxville

Recommended Citation

Slutzky, Gale D., "Age Determination at Death from Osteon Counting by Means of Interactive Computer Graphics. " Master's Thesis, University of Tennessee, 1981.
https://trace.tennessee.edu/utk_gradthes/4139

To the Graduate Council:
I am submitting herewith a thesis written by Gale D. Slutzky entitled "Age Determination at Death from Osteon Counting by Means of Interactive Computer Graphics." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology.

William M. Bass, Major Professor
We have read this thesis and recommend its acceptance:
Fred H. Smith, Richard L. Jantz
Accepted for the Council:
Dixie L. Thompson
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a thesis written by Gale 0. Slutzky entitled "Age Determination at Death from Osteon Counting by Means of Interactive Computer Graphics." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Master Arts, with a major in Anthropology.

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Vice ChancetTor
Graduate Studies and Research

AGE DETERMINATION AT DEATH FROM OSTEON COUNTING BY MEANS OF INTERACTIVE COMPUTER GRAPHICS

A Thesis
Presented for the
Master of Arts
Degree
The University of Tennessee, Knoxville

Gale David Slutzky

DEDICATION

I dedicate this thesis to my father who passed away before its completion. In many ways I could never live up to his expectations, but in the last few years before his death I began to understand and appreciate the man who was Louis Slutzky.

ACKNOWLEDGMENTS

A special thanks is given to my thesis committee members: Dr. William M. Bass, my committee chairman; Dr. Richard L. Jantz; and Dr. Fred H. Smith. These individuals encouraged my interest in this project and generously aided my research in every way. Their office doors were always open for guidance and assistance.

Sincere appreciation is extended to Dr. Douglas H. Ubelaker and his staff at the Smithsonian Institution in Washington, D. C. who taught me the basics of osteon counting and allowed me the use of their equipment during my visits.

I would like to thank Dr. Ellis R. Kerley of the University of Maryland who made his specimen slides available for me.

The author is indebted to Dr. David M. Lipscomb of the Department of Speech and Hearing who made his microscope available for my use and gave assistance in photographic techniques.

My most sincere appreciation goes to Dr. Ernest L. Hall and his staff in the Image Pattern and Analysis Laboratory. He made the laboratory's computer facilities accessible to me and gave excellent consultation concerning the area of computer graphics.

I would like to thank Dr. Douglas W. Owsley for proofreading the original draft of the text. The author also wishes to thank his fellow students, Mr. Steve Symes and Mr. Dwight Schmidt, for their assistance in the thin section laboratory and many helpful suggestions.

Lastly, I would like to thank my wife Toni for her patience and understanding during my preparation of this thesis. She assisted by proofreading the text during all phases of preparation. However,
without her love and support this project would never have been completed. I would also like to thank my parents who insisted that their children succeed to their fullest in whatever they attempt.

ABSTRACT

The purpose of this study is to show the feasibility of doing osteon counting on the computer. A sample of 11 specimens were prepared by thin section techniques in order to be photographed through a Reichert transmitted-light interface contrast Zetopan research microscope. After the photographs were mosaiced into a single representative picture of the field of vision, the picture was digitized and processed for age by the computer.

Digitizing the specimens is accomplished by the use of interactive computer graphics. Using a tablet with a cursor or pen, the picture is digitized and stored in a file of x and y coordinates on a magnetic disk by the computer. This file of stored data is used in other computer programs to measure dmax, centroid plots, area information on the individual features and calculate age at death for the specimen. Kerley and Ubelaker's (1978) regression formulas were utilized.

The major findings of the research concerned percent of circumferential lamellar bone and individual fields of vision. The regression formula for percent of circumferential lamellar bone as determined by the Kerley technique (1965) was not reliable with measured data of the computer. A new regression formula was calculated based on the measured data of the sample with eight out of eleven cases having the age range score bracketing the known age of the specimen. All three cases which were aged incorrectly were within plus or minus 10 years of the actual age.

Another finding revealed that one field of vision is not superior to another. Some anthropologists had implied that the posterior field
of vision, because of muscle attachment to the linea aspera, would yield faulty scores. My results show that the worst field is the medial view and not the posterior. Wher comparing individual field statistics to the four field total the results demonstrate that one field may be selected. The resulting age range calculated by the computer is as satisfactory as those age ranges produced from the four field total.

Since no special training is required to operate the computer and cost of the equipment is economical, a large group of researchers wanting to do osteon counting could utilize my procedure.
CHAPTER PAGE
I. INTRODUCTION 1
II. LITERATURE REVIEW. 4
III. METHODS AND PROCEDURES 12
Computer Methodology 17
IV. RESULTS. 28
Individual Field Data. 33
Statistical Results. 36
V. DISCUSSION 49
VI. CONCLUSIONS 54
REFERENCES CITED. 57
APPENDICES 60
APPENDIX A 61
APPENDIX B 76
APPENDIX C 80
APPENDIX D 83
APPENDIX E 86
VITA. 93

LIST OF TABLES

TABLE PAGE

1. Composition of the Sample. 13
2. Raw Data of Actual Age and Computed Age. 29
3. Raw Data of Features Versus Actual Age 32
4. Individual Field Data Showing Range and Mean Values as
Opposed to Real Age 34
5. t test Data for Four Fields Total. 37
6. t test Data for Field A (anterior) 38
7. t test Data for Field B (posterior). 39
8. t test Data for Field C (medial) 40
9. t test Data for Field D (lateral). 41
10. t test Data for Four Field Osteones. 43
11. t test Data for Four Field Non-Haversian Canals 44
12. t test Data for Four Field Fragments 45
13. t test Data for Four Field Percent Lamellar Bone 46
14. Regression Formula Data 50
15. t test for New Percent Lamellar Bone 52

LIST OF FIGURES

FIGURE PAGE

1. The Features of Osteon Counting 5
2. A Cross-Section of Bone with the Four Fields of Vision 8
3. Specimen Preparation 14
4. Mosaic of a Typical Field (Reduced 50\%). 16
5. The Control Menu of TENTAB.FOR 18
6. A Typical Digitized Field (Reduced 25\%). 20
7. The Centroid Plots of Figure 6 22
8. Typical Output of a RESULT.DAT File 24
9. A Hardcopy of a Typical HOLMES. DAT File 27

CHAPTER I

INTRODUCTION

Physical anthropologists, forensic anthropoligists and archeologists have been concerned with age determination at death for skeletal material. Skeletal remains under 25 years of age can be readily determined by morphological changes such as tooth eruptions and epiphyseal closures of the long bones. However, by age 30 these closures are completed and it becomes difficult to age older specimens. Methods of aging these older specimens have consisted of examining the vertebral column for osteoarthritic conditions (Stewart, 1979) and cranial suture closures (Krogman, 1962). These methods are often inaccurate or not appropriate in aging skeletons greater than 50 years of age. Another procedure determines age from pubic symphyseal remodeling (McKern and Stewart, 1957). For those specimens under 50 years of age this procedure can give a reliable age, but like the morphological approaches older individuals cannot be aged accurately.

In attempting to overcome the problem of aging older specimens, anthropologists have turned their attention to a histological method. This method requires the destruction of a long bone for a cross-section analysis. The microscopic features of the cortical bone matrix were utilized by Kerley (1963) in development of his osteon counting technique.

One method for determining human age at death is from the microscopic analysis of a cross-section of bone. Microscopic features are counted visually and regression formulas applied to obtain the age at death of the specimen. The purpose of this thesis is to present a
technique of interactive computer graphics for obtaining an age estimate at death from the cross-section of human bone. The benefits of microscopic analysis or osteon counting by interactive computer graphics are numerous.

An interactive computer graphics approach does not require any additional training other than the basic understanding of the osteon counting procedure. Intra-observer error should be reduced by the interactive computer graphics approach as the operator decides on the features being digitized. The computer, however, applies the results to the appropriate regression formula to calculate an age estimate at death. One of the benefits of the interactive computer graphics approach would be the ability to analyze a large skeletal collection in a relatively short period of time for demographic information. Another benefit is the acquisition of measurements such as area data, centroid plots and maximum distances across a feature which are easily obtainable through the computer during the recording procedure. These measurements could be utilized in osteon counting techniques or in age and growth studies. Probably, the most important benefit concerns the cost of the computer graphics system. Since the cost of the interactive computer graphics system is more economical than the equipment necessary for a scanning histogram technique, it would be readily available to any institution doing osteon counting.

An interactive computer graphics approach consists of developing algorithms for the utilization of the tablet (a device to input information to a computer), development of slides and photographic techniques and verification that this approach was a practical and accurate means of doing osteon counting. These procedures are the foundation for
obtaining an age estimate at death from a histological method such as the Kerley technique.

My technique has a semi-automated system functioning, where picture mosaics are entered or digitized by tracing with a tablet cursor or pen, and the file of x and y coordinates recorded in a file stored on magnetic disk. This file, OSTOUT.DAT, is applied by the operator of the computer to the specific programs listed in the Appendices. A step-by-step procedure utilizing the interactive computer graphics approach will be discussed in Chapter 3. When a specimen is aged by the interactive computer graphics approach, the output consisted of: 1) a file of area data which are used to calculate percent of circumferential lamellar bone as well as containing area information on each feature entered; 2) a file of data which allows the field to be redrawn on the Cathode Ray Tube (CRT) screen with the centroids plotted for distance measurements; 3) and finally, data files of the actual age calculated by the regression formulas.

The computer method is slower than the visual counting technique, however, it does permit information to be gathered which previous has been overlooked such as dmax (the maximum distance across a feature), centroid plots (the calculated center of an object) and area values. Dmax, centroid plots and area values are difficult to measure from a standard microscope without expensive measuring attachments so all visual counting procedures ignore them. The results obtained for dmax, centroid plots and area values will be analyzed in a later paper after a significantly larger sample is obtained.

CHAPTER II

LITERATURE REVIEW

Kerley $(1963,1965)$ devised a method for age determination based on microscopic analysis of a bone sample using regression formulas to obtain the age of individual specimens. The data for these formulas were derived from microscopic examination of cross-sections of human long bones of 88 males and 29 females (Kerley, 1965: 151). In order to categorize these microscopic age changes and establish a system of age determination based on them, 126 ground cross-sections of the femur, tibia and fibula were examined microscopically (Kerley, 1965: 149). A bone sample was removed from the mid-shaft of a long bone for a specimen whose age, sex and medical record was known. This section was then thinned, ground, mounted on a slide and aged by microscopic examination. Osteones, Non-Haversian canals and fragments of osteones were counted for four fields of vision. Also, the percent of circumferential lamellar bone was estimated. Kerley (1965) defined these features in the following manner:
(1) Osteones - An Osteon or Haversian system (Fig. 1-a) is recognized in cross-section as a vascular canal surrounded by concentric lamellae, which contain rather evenly spaced osteocytes in their lacunae. Around the entire periphery of the osteon there is a reversal line that marks the area where osteoclastic resorption stopped and was followed by new bone formation.
(2) Fragments - As osteoclasts burrow channels through Haversian bone, fragments of old osteones (Fig. l-b) may surround the edge of the

Figure 1. The features of osteon counting.
channel and remain after resorption ceases and replacement begins. These fragments increase in number with age as more and more old osteones are partly destroyed. In old age, virtually every complete osteon is surrounded by the fragments of several older ones.
(3) Circumferential lamellar bone - Circumferential lamellar bone (Fig. 1-c) is composed of evenly spaced bands, or lamellae, that run parallel to each other around the outer part of the cortex. It appears as birefringent sheets in polarized light and can be distinguished by its long, parallel fibers. Circumferential lamellar bone is a prominent feature of childhood.
(4) Non-Haversian canals - All primary vascular channels, including those that have filled in partly with concentric lamellae to form primary osteones or pseudo-Haversian Systems, are vascular canals that are formed by the inclusion of small, peripheral blood vessels into bone by the rapid expansion of the cortex in the diameter of bone matrix (Fig. 1-d). Since these canals are formed at the same time as the surrounding lamellar bone, they represent unremodeled bone. Internal remodeling of the bone is represented by osteones which fill spaces left by osteoclastic reabsorption. Viewed with polarized light, the primary osteon can be distinguished from the secondary osteon by the lamellar bone surrounding it. The primary osteon has no sharp reversal or cement line around it, and the surrounding bone is vague and poorly defined. In the secondary osteon, the lamellae surrounding it run straight to the reversal line and stop abruptly (where they were destroyed by osteoclasts during the resorptive phase).

These values or counts are applied (four field total except percent of lamellae bone) to the appropriate regression formula to estimate age.

In the case of percent of lamellar bone an average is used for the estimated amounts of the four fields. Figure 2 shows a cross-section of the femur with Kerley's four fields. These fields were also used to examine the specimens of this research project. Kerley (1963, 1965) also set up a profile chart system which worked well when there were scores for more than one bone. Ubelaker (1978) and Stewart (1979) have an explanation of this scheme as well as the profile charts.

Anthropologists such as Ahlqvist and Damsten (1969), Ortner (1970, 1975,1976) and Ubelaker (1977,1978) have reworked and modified Kerley's original histological investigation. Ahlqvist and Damsten propose the use of an ocular square-ruled network because a round field such as Kerley used presents problems. A square-ruled network eliminates the need to move the microscope in order to see the features on the edge of the field, since only features in the 100 square network are counted. One difficulty concerns distinguishing osteones from fragments. There is always uncertainty in deciding in a cluster of osteones which is a whole osteon or a fragment in spite of Kerley's definition of an osteon. Kerley's definition of a recognizable osteon was one that contained 80% or more of its area and had the canal intact. Application of this criterion is difficult to determine in older aged individuals. Fragments include osteones that have discernible encroachment by subsequent generations of osteones and are exemplified by arcs of concentric lamellae between newer osteones (Kerley, 1965: 162). Secondly, the possibility exists for a rough estimation of the percent of circumferential lamellar bone in a circular field. To alleviate these problems, Ahlqvist and Damsten's technique require an ocular square-ruled network superimposed on the sections. The network contains 100 squares, and the

Figure 2. A cross-section of bone with the four fields of vision.
number of squares more than half filled with osteones and osteon fragments are counted. The percentage of bone covered by these structures is obtained directly from the determinations. Kerley never explained in his 1965 article how to estimate the percent of circumferential lamellar bone. In this way the determination of the type of those structures located along the borders of the visual field is easier in the Ahlquist and Damsten method than with Kerley's original technqiue, since in the latter, one is often forced to move the specimen (Ahlqvist and Damsten, 1969: 207-8). Finally, there is difficulty in deciding the kind of structure in proximity of the limits of a circular visual field with dark edges without moving the specimen, the number of such structures being large in a visual field of this magnitude (Ahlqvist and Damsten, 1969:210). Another change made by Ahlquist and Damsten is to reposition the fields (Fig. 2) to avoid the immediate region of the linea aspera, an area thought to contain more non-age related variability. Kerley used the linea aspera, where muscle attachment occurs, in his selection of fields. Most investigators feel that this field should not be used since more remodeling is apparent from this muscle attachment area. Bouvier and Ubelaker (1977) compare the two methods of osteon counting. In their analysis precision and accuracy are tested. They note that Kerley's femoral method is based on an evenly distributed age sample and one of relatively large size, while a smaller sample and uneven distribution is found in Ahlqvist and Damsten's sample. This seems to have significantly affected the accuracy of age estimates obtained using Ahlqvist and Damsten's method. A present, Kerley's method is preferable for accuracy of age estimates (Bouvier and Ubelaker, 1977: 393-4). It should be noted that the samples used in the comparison
are of Kerley's original work and that none of Ahlqvist and Damsten's are used, possibly biasing the sample in Kerley's favor.

As the result of Ubelaker's re-analysis of Kerley's earlier work, the regression formulas now used are those in Kerley and Ubelaker (1978) or Ubelaker (1978). To resolve the problem of field size which occurred when Ubelaker attempted to use Kerley's formulas in his monograph (1974), Kerley and Ubelaker re-examined with a calibrated field size the sections used in the original Kerley study. After checking different microscopes thought to have been used by Kerley, the stage micrometer field size of 1.62 mm was established instead of the 1.25 mm field size as originally reported by Kerley. All counts were then compared with the original findings confirming that the field size was about 1.62 mm (Kerley and Ubelaker, 1978: 545).

An approach applying osteon counting to disease was attempted by Ortner in his doctoral dissertation (1970). He used osteon counting to examine interrelationships between effects of aging and disease on micromorphology of human bone. Ortner demonstrated that alcoholism and arteriosclerosis effect bone development. Beyond these problems there are undoubtedly a number of disease processes which can simulate the effects of either alcoholism or arteriosclerosis (Ortner, 1970: 61). However, Ortner does not recommend utilizing them in any specific identification situation, but presents them to demonstrate the potential for saying something about the general health of the specimen.

Singh and Gunberg (1970) have also devised an alternative to the Kerley method of osteon counting. Their sample consisted of 59 cadavers with a 1 cm by lcm square section removed from the mandible. The count consisted of the total number of osteones in two fields (not an average),
the average number of lamellae per osteon in both fields and average Haversian canal diameter. These values were then applied to their regression formula to achieve an age estimate.

Most recently, Laughlin and his associate Thompson at the University of Connecticut have been using a core sampling technique to do osteon counting. Thompson (1979) states in a paper that the purpose of his study is to: 1) propose a histological method of estimating age at death in skeletons primarily beyond 50 years of age utilizing a small core of cortical bone; 2) to provide an objective method for quantifying cortical bone microstructures used in age estimation; 3) and to examine the feasibility of obtaining estimates of age at death from bones of the upper and lower extremities (Thompson; 1979: 2). In addition, Thompson's procedure also includes cortical thickness, bone density and bone mineral content, data which would be difficult for most individuals to acquire without expensive equipment and training. The use of the core technique would not destroy the bone specimen, since the drilled hold could be plugged to give strength to the bone, unlike the cross-section method where approximately 1 inch of bone is removed leaving the bone in pieces. The regression formulas do not exist for the general usage of the core technique. I feel that the core technique has potential, but the Kerley method of osteon aging was used. In my technique, specimen preparation consists of the cross-section style similar to Kerley's method.

CHAPTER III

METHODS AND PROCEDURES

Material in this study consists of four slides loaned to me by Ellis R. Kerley and seven Forensic Anthropology cases from the Anthropology Department at The University of Tennessee, Knoxville. The sample contains five females and six males with ages ranging from 17 to 83 years. Two of The University of Tennessee, Knoxville specimens are of estimated age based on other morphological criteria (Table 1). All of The University of Tennessee, Knoxville cases were prepared by me in the thin section laboratory of the Department of Anthropology.

Approximately a 2.54 cm section was removed from the midshaft of the left femur for each specimen. This section was cleaned and prepared for cutting on an Isomet slow speed saw manufactured by Buehler Ltd. Most samples were halved as the equipment could not cut a whole crosssection. All information pertaining to saw calibration was recorded so that each half specimen would be cut closely to its counterpart. After cutting, a metric micrometer was used to measure specimen thickness. A thickness of 70 to 105 microns is preferred. The Isomet saw was capable of consistently removing a 90 micron section. The hand grinding is done using 400 and 600 grid Buehler prepared grinding surfaces which are then used on the Minimet polisher. A final polish, using six micron diamond paste to remove scratches, was done before cleaning in an ultrasonic cleaner for 20 minutes. The last step was to permanently mount the specimen on a 1 by 3 inch slide using Paramount as a mounting medium. Figure 3 graphically illustrates the preparation and mounting of a specimen.

Table 1. Composition of the Sample.

Case Number	Sex	Age	Race
940302			
947366	F	41	$?$
1062496	M	79	American White
107440	M	83	?
$72-3$	M	69	American White
$73-1$	M	$(18-21)^{*}$	American White
$74-2$	American Black		
$74-5$	F	28	American White
$75-3$	M	43	American Black
$79-13$	M	$(17-20)^{*}$	American Black
$80-6$		68	American White
			American White

*Age determined by morphological criteria as actual age unknown.

Step 4. hand grinding

Step 6. mounting specimen on slide

Figure 3. Specimen preparation.

A Reichert transmitted-light interfact contrast Zetopan research microscope was used to obtain the photographic record. This particular microscope does not have true polarized light, but its artificial polarized light works well enough for a visual observation; therefore, I feel there was no problem in the photographic process. The user of this type of microscope must be careful to get the settings correct since there are two separate optical units involved. Each has to be set on $10 x$ so with the eyepiece of $10 x$, a 100 power field is examined. Attached to this microscope is a fully automatic Nikon photographic system. (Because of an interchangeable backing), this system allowed 35 mm photography as well as Polaroid films. A more expensive type of film, 667 Polaroid coaterless, is used since a fixative does not have to be applied to the pictures after development. (Color pictures were taken with the notion that the edges of the features would be more apparent than in black and white photographs. However, color photographs did not enhance the details of the picture sufficiently to justify the expense of the film; therefore, all pictures are in black and white.) This type of film records onethird of the field at a time so nine pictures are required to photograph one field. Approximately two hours are necessary to photograph one sample.

After focusing the specimen so the periosteum is just visible in the image, the location of the field is sketched on a record sheet and the scale values of the stage platform recorded. The first picture, then represents the origin picture (center of the mosaic) for the nine total pictures. By moving the stage platform up and down and from side to side, each separate picture is recorded and taken. There is some overlap on the pictures which is used in mosaicing the individual pictures into a representative field (Fig. 4). Preparing the mosaic accurately again

Figure 4. Mosaic of a typical field (reduced 50\%).
requires approximately 45 minutes per field. The mosaic of the specimen is ready to be entered into the computer.

Computer Methodology

Using a PDP 11/40 minicomputer the picture mosaic is digitized and entered into the computer for further calculations. Appendix A, is the the listing of the program, TENTAB.FOR, by which the tablet allows the data to be digitized. These data bases are then applied to several other programs, OCANM, INTERP, UNITE and HOLMES, whose listings are Appendices B, C, D, and E, respectively.

Before actually digitizing a sample, one has to log onto the computer, allocate a disk drive and mount a magnetic disk in order to record the output from the computer. The picture mosaic is then taped to the tablet along with a miniature version of the menu (subroutines of commands for digitizing data, Fig. 5). RUN TENTAB will cause the computer to execute TENTAB.FOR, the program to digitize the data by means of an interactive graphics tablet. Since the CRT screen is used, a visual image as well as directives of the program appears on the screen for the users viewing. The directives are used to guide the user through the program.

First, the computer requires a name, OSTIN.DAT, for input information which is typed in at the terminal. Next. the menu is located from six points entered left to right and eight left side points top to bottom. To verify that the menu is entered correctly, the computer draws the menu on the CRT screen. If incorrect, the menu can be re-entered before proceeding. The program is ready for the options to be selected. Selecting the origin box permits the location of x and y coordinates to be recorded as well as drawn on the CRT screen. This option must be used with the

Figure 5. The control menu of TENTAB.FOR.

Xmax box which establishes the horizontal axis. A single point or multiple data points can be used to gather data. Because of the rate of transmission of data to the computer by the tablet, a single point mode is used. Another pair of options to use are the inking and symbol boxes. When chosen the CRT screen will draw the lines between data points and record a number there which refers to a type of osteon counting feature. Figure 6 represents a hardcopy of a typically entered field showing some of the options used. A final pair of options permits an accurate count (Icount) and type (Itype) of a feature. These are changed and incremented by the user when proceeding from one feature to another.

To determine that the exact field was entered into the computer, the stage micrometer was photographed. By means of mathematical equations which will be discussed later, the 1.48 mm field size of this particular microscope represented a circle with a 7.45 inch diameter. To be certain of entering only this size diameter circular field, a template was made from clear acetate film which, when centered over the origin picture, recreates the field as viewed under the microscope. Each feature is recorded in the following system: 1) osteones; 2)Non-Haversian canals; 3) fragments; 4) osteones on the edge of the field; 5) reabsorption spaces or holes; 6) boundary of the field; 7) and unknown features. Type features one to five and seven must be digitized before number six boundary feature. When all features are entered, the file is stored on a magnetic disk by the menu selection save/clean box. The computer asks for an output file name (OSTOUT.DAT) which is typed in from the terminal. Finally, the exit/close box disengages the TENTAB.FOR program from the tablet.

Figure 6. A typical digitized field (reduced 25\%).

RUN OCANM is the next program in calculating an age estimate at death. This program redraws the points stored in the x and y coordinates of OSTOUT.DAT and calculates area and dmax while plotting the centroids (Fig. 7). Again the computer asks for an input file (OSTOUT.DAT) and two output file names (SIZE.DAT and DIAM. DAT) for recording area and maximum distance across an osteon counting feature. The SIZE.DAT information is used to calculate area information. The formula for this was based on arc setments.

$$
\begin{aligned}
\text { Area }= & \frac{1}{2}\left[\left(x_{1} Y_{2}+x_{2} Y_{3}+\ldots+x_{N-1} Y_{N}+x_{N} Y_{1}\right)\right. \\
& \left.-\left(x_{2} y_{1}+x_{3} Y_{2}+\ldots+x_{N} Y_{N-1}+x_{1} Y_{N}\right)\right]
\end{aligned}
$$

This formula came from Chasen (1978: 190). DIAM.DAT is a file of maximum distances across an osteon counting feature. Because of a lack of sufficient sample size, neither DIAM.DAT nor the centroid plots were used in distance measurements.

The third step in calculating an estimate of age at death is to RUN INTERP. This program shows the number of osteon counting features and calculates the percent of circumferential lamellar bone. As a requirement of most computer programs again an output file (OSTOUT.DAT) is typed in at the terminal. This program also requires a separate input file (SIZE.DAT) to perform the percent of circumferential lamellar bone calculation. The results are stored in a file (RESULT.DAT) which in turn is entered when the computer prompts the user for it. While the calculations are being done, the terminal displays on the CRT screen the count and type of the individual features. Finally, the percent of circumferential lamellar bone is displayed on the CRT screen. The values of osteones, Non-Haversian canals, fragments, reabsorption spaces, other features and percent of circumferential lamellar bone are stored in

Figure 7. The centroid plots of Figure 6.

RESULT.DAT (Fig. 8). To obtain a printed copy of the results, type PRINT RESULT.DAT at the terminal.

After all four fields have been stored into the computer, the next program is used. The user types RUN UNITE. This program utilizes the four RESULT.DAT files which are numbered in sequence together so all four fields are represented by one total count and the percent of lamellar bone is an average for the four fields. First, all individual RESULT.DAT files are entered into the computer by typing them in at the terminal. The output from this coalition is stored into the output file (UNITE.DAT).

RUNE HOLMES executes the last and most important of the computer programs since the correcting factors are added here and the actual age is calculated. This program corrects for differences in unit size and differences in microscope field sizes. These values along with either individual RESULT.DAT files or UNITE.DAT file are applied correcting factors and then the computer calculates the age for the appropriate regression formula(s). The first step in this program is to enter either the RESULT.DAT OR UNITE.DAT file. The newly created output from this program is stored in HOLMES.DAT. Step two consists of correcting for scaling factors and converts all units to millimeters.

Part one of this problem is magnification for the radius of the microscope and that of the photograph. If $r=$ microscope radius as measured from the stage micrometer and $R=$ radius photograph measured across the picture in inches, one can change the photograph radius from inches to millimeters by multiplying by $25.4 \mathrm{~mm} / \mathrm{in}$.

$$
\begin{aligned}
& r=.74 \mathrm{~mm} \text {, this is one-half of } 1.48 \mathrm{~mm} \text { field size } \\
& R=3.725 \text { in }=3.725 \times 25.4=94.62 \mathrm{~mm} \text { photo to millimeters }
\end{aligned}
$$

-

Then the magnification ratio is:

$$
M=\frac{R}{r}=\frac{94.62}{.74}=127.86
$$

A distance is magnified by the ratio M. Since $R=M_{r}$, therefore, an area is changed by the square of M. Thus, the two areas are equal.

$$
\begin{array}{ll}
A_{\text {microscope }}=\pi r^{2} & =\pi\left(\frac{R}{M}\right)^{2}=\frac{R_{2}^{2}}{M^{2}}=\frac{\text { Area on }}{M^{2}} \\
A_{\text {microscope }}=\pi(.74)^{2} & =\pi\left(\frac{94.62}{127.86}\right)^{2} \\
A_{\text {microscope }}=3.1415927(0.5476) & =(3.1415927)(.5476417) \\
A_{\text {microscope }}=1.72 \mathrm{~mm} & =1.72 \mathrm{~mm}
\end{array}
$$

The second part of this problem is discretization. The tablet contains 1024 points/ 10 inches and the points are .248 mm apart. The tablet numbers are in inches \times 100. So a radius s measured in tablet units must first be converted to millimeters to be equal to R.

$$
\begin{aligned}
& 3.725 \times 100 \text { is the radium in tablet numbers }=372.5 \\
& \mathrm{R}=\frac{372.5}{100} \times 25.4=94.62 \mathrm{~mm}
\end{aligned}
$$

therefore, Area of Microscope $=\pi \frac{R_{2}^{2}}{M^{2}}=3.1415927\left(\frac{8952.94}{16348.18}\right)=1.72 \mathrm{~mm}$ Because the areas calculated are the same, one can write a program computing area based on this information. HOLMES calculates area by two methods so the user types in 0,1 or 2 at the terminal when prompted. The number two calculates area by both means. (Zero is derived on a method using number of points and one is derived from the photograph directly.) For the exact computer listing, see appendix on HOLMES.

Step three corrects the observer's microscope field size (measured by stage micrometer) to Kerley's revised data as established by Ubelaker's re-evaluation of the Kerley method (Kerley and Ubelaker, 1978). The value for stage field size correction is calculated by dividing
observer's area into Kerley's area and multiplying this value by the counts for osteones, fragments and Non-Haversian canals. According to Ubelaker and Kerley the percent of circumferential lamellar bone is not effected.

Step four is used only if one is using a RESULT.DAT file. Step four takes the individual field and multiplied osteones, fragments and Non-Haversian canals by four so the values can be used in the regression formula(s).

In step five the user selects bone type (femur, tibia or fibula) and the appropriate regression formula(s) associated with them. Once again the computer prompts the user by asking for bone type. The individual types 0 for femur, 1 for tibia or 2 for fibula at the terminal. After completing this, the computer displays on the CRT: YOUR REGRESSION FORMULA(S) ARE: 1 OSTEONES, 2 NON-HAVERSIAN CANALS, 3 FRAGMENTS and 4 PERCENT OF CIRCUMFERENTIAL LAMELLAR BONE. The user types in one of the numbers or any combination to calculate the age. The program gives an age in plus or minus standard deviation of years. Figure 9 depicts a typical HOLMES.DAT output file. To get a printing of the age values the user types PRINT HOLMES.DAT.

The next chapter will discuss the results obtained from analyses of the data generated from the HOLMES.DAT computations.

Figure 9. A hardcopy of a typical HOLMES.DAT file.

CHAPTER IV

RESULTS

Table 2 displays the raw data of the actual age and the computed age for each specimen examined. In all cases there is a four field total and a score for each individual field designated as A (anterior field), B (posterior field), C (medial field) and D (lateral field). In samples (73-1) and (75-3) there are two sets of values represented since they were aged morphologically. Six cases (940302, 107440, 73-1, 74-5, 75-3 and 79-13) of the 11 total have a range where all four fields bracketed the actual age. This represents a poor 55 percent. Individual fields A and B did worse than the four field total as they have 45 percent and 36 percent age ranges bracketing the known age. Field C is the least productive field and has only 18 percent of the ranges bracketing the known age. Finally, field D has a 45 percent score of ranges bracketing the known age. Only five cases have a range mean age value whose age is within plus or minus five years of the known age with case (940302) only .5 older than the actual age given. Three more cases are within plus or minus 10 years of the known age. At plus or minus 15 years of the known age only one cases is added. Only one case is within the plus or minus 20 years of the actual age category. There are two cases (947366 and 1062496) which are more than 20 years away from the known age. The individual four fields are similar to the four field total for range mean age value versus the known age.

Field A has three cases (73-1, 74-2 and 79-13) whose range mean age values are within plus or minus five years of the known age. Three

Table 2. Raw Data of Actual Age and Computed Age.

Case Number	Sex	Actual Age	Total Age Four Fields		$\underset{\text { Age Field }}{ }$		$\begin{aligned} & \text { Age Field } \\ & \text { B } \end{aligned}$		Age Field C		Age FieldD	
			Range	\bar{x}								
940302	F	41	40-43	41.5	32	32	30-40	35	52-50	56	32-46	39
947366	F	79	53-56	54.5	61-72	66.5	18-46	32	51-75	63	55-75	65
1062496	M	83	52-53	52.5	50-51	50.5	27-46	36.5	53-60	56.5	68-70	69
107440	M	69	49-80	64.5	49-70	59.5	39-93	66	53-64	58.5	57-109	83
72-3	M	34	42-1.5	43.5	50-52	51	45-84	64.5	27-32	29.5	34-39	36.5
73-1	F	(18-21)*	20-25	22.5	21-23	22	30-41	35.5	23-55	39	12	12
74-2	M	28	14-19	16.5	19-32	25.5	27-46	36.5	4-15	9.5	15-21	18
74-5	F	43	25-46	35.5	19-46	32.5	23-46	34.5	31-46	38.5	19-46	32.5
75-3	F	(17-20)*	19-26	22.5	27-46	36.5	6-17	11.5	12-32	22	23-32	27.5
79.-13	M	38	32-39	35.5	34-46	40	25-32	28.5	30-32	31	32-46	39
80-6	M	65	46	46	50-55	52.5	19-46	32.5	46-48	47	46-54	50

cases are within plus or minus 10 years of the known age. Plus or minus 15 years of the known age increases the results of the two cases. Three cases are within plus or minus 20 years of the known age. However, one case (1062496) is more than 20 years away from the actual age.

Field B has one case (107440) whose range mean age value is within plus or minus five years of the known age. Six cases are within plus or minus 10 years of the known age. Plus or minus 15 years of the known age adds two cases to the result scores. One case is within plus or minus 20 years of the known age, while three cases are more than 20 years away from the actual age.

Field C has three cases ($72-3,74-5$ and $75-3$) whose range mean age values are within plus or minus five years of the real age. Within plus or minus 10 years of the known age the count shows one case. Two cases are within plus or minus 15 years of the actual age. There are four cases within the 20 years of the known age category, and two cases are more than 20 years away from the actual age.

Field D has three cases (940302, 72-3 and 79-13) whose range mean age values are within plus or minus five years of the known age. Within plus or minus 10 years of the known age are four more cases. Six cases are within plus or minus 15 years of the actual age and no cases are within plus or minus 20 years of the known age. Finally, there are no cases more than 20 years away from the known age. This suggests that there may exist the possibility of using only one field for osteon counting, but further research will need to be done to see if this trend continues in a larger sample.

Some of the output data from the disk contains information on the individual osteon counting features. Their computed range and range mean
age values along with the known age are presented in Table 3. The results in the column labeled four field have been discussed previously. Osteones represent the first feature evaluated.

Osteones only have four cases with the range mean age values containing the actual age for a 36 percent accuracy score. The seven specimens missed showed five cases lower than the actual age and two cases higher than the known age. This suggests that either osteones were recorded as some other feature or an error (such as poor photograph quality) existed in recording features.

Non-Haversian canals did better with six cases containing the range mean age values for a 55 percent accuracy level. The five cases missed showed two lower than and three higher than the known age. However, three of the cases missed because the regression formula for Non-Haversian canal will result in an age of 46 to 71 years when a zero value is entered. If 71 is the lowest-maximum value of the age range and the sample is older than 71 years of age the program underages the specimen.

Again, fragments have only a 36 percent accuracy with only four cases bracketing the known age. Out of the seven cases missed, six are lower and only one case is higher than the actual age. This also suggests that fragments were not properly identified. They are either entered as something else or not located in the original photographs. As stated earlier, perhaps those disregarded features on the edge of the fields should have been added to fragments.

The percent of circumferential lamellar bone has the highest number of range mean age values bracketing the known age. There are seven cases bracketing the actual age for a 64 percent level of accuracy. All four specimens which are aged incorrectly are lower than the known

Table 3. Raw Data of Features Versus Actual Age.

Case		Actual	Total for Four Fields		Osteones		Non-Haversian		Fragments		\% Lamellar	
Number	Sex	Age				X						
940302	F	41	40-43	41.5	34-52	43	39-63	46	29-43	36	18-43	30.5
947366	F	79	53-56	54.5	48-66	57	46-71	58.5	56-70	63	28-53	40.5
1062496	M	83	52-53	52.5	43-61	52	46-71	58.5	53-67	60	26-52	39
107440	M	69	49-80	64.5	80-99	89.5	46-71	58.5	65-79	72	24-49	36.5
72-3	M	34	42-45	43.5	42-60	51	29-54	41.5	34-48	41	20-45	32.5
73-1	F	(18-21)*	20-25	22.5	18-36	27	11-35	23	25-39	32	0-20	10
74-2	M	28	14-19	16.5	12-30	21	14-39	26.5	5-19	12	3-28	15.5
74-5	F	43	25-46	45.5	7-25	16	46-71	58.5	11-25	18	20-45	32.5
75-3	F	(17-20)*	19-26	22.5	5-23	14	26-51	38.5	6-19	12.5	2-27	14.5
79-13	M	38	32-39	35.5	14-32	23	39-63	51	21-35	28	13-38	25.5
80-6	M	65	34-59	46.5	36-55	45.5	46-71	58.5	32-46	39	34-59	46.5

*Age determined by other morphological criteria.
age. The problem with this category of osteon counting feature will be discussed in detail in the next chapter.

Individual Field Data

First, the location of the field is examined to see if one is better than another for determining age. The results do not support any trend; however, the lateral field shows more promise than the other fields. I feel that the lateral field is the best for osteon counting since all the cases containing the actual age are within plus or minus 15 years of the known age. Of the fields whose range mean age values bracketed the known age the results show that the posterior field has four cases, medial two cases, and lateral and anterior have five cases each.

Table 4 lists the ranges and range mean age values for the individual fields and the actual age. There were a total of forty-four individual ranges for each osteon counting feature. Osteones had 18 out of 44 ranges containing actual age for a 41 percent accuracy, and those cases which are within plus or minus three years of the known age only improve accuracy to 23 out of 44 or 52 percent accuracy. The accuracy of ranges bracketing the real age for Non-Haversian canals was 45 percent. Adding plus or minus three years of the known age to the scores improved accuracy to 26 out of 44 or 60 percent. Fragments are the worst feature for accuracy as only 10 out of 44 scores or 23 percent contain the known age. Those ranges within plus or minus three years of the known age increase accuracy to 16 out of 44 or 36 percent. Again this suggests fragments are missing in the initial scoring. Kerley (1965) had suggested that at least fragments of the fibula would by itself generally predict age

Table 4. Individual Field Data Showing Range and Mean Values as Opposed to Real Age.

Case Number	Actual Age	Field \#	Osteones		Non-Haversian		Fragments		\% Lamellar	
			Range	\bar{x}	Range	$\bar{\chi}$	Range	$\bar{\chi}$	Range	\bar{x}
940302	41	A	19-38	28.5	32-57	44.5	18-32	25	21-46	33.5
		B	36-55	45.5	46-71	58.5	60-74	67	27-52	39.5
		C	40-58	49	32-57	44.5	18-32	25	5-30	17.5
		D	43-61	52	46-71	58.5	18-32	25	22-47	34.5
947366	79	A	75-93	84	46-71	58.5	64-78	71	26-51	38.5
		B	0-18	9	46-71	58.5	13-27	20	0-25	12.5
		C	75-93	84	46-71	58.5	60-74	67	30-55	42.5
		D	71-89	80	46-71	58.5	72-86	79	36-61	48.5
1062496	83	A	55-74	64.5	46-71	58.5	70-84	77	43-68	55.5
		B	44-63	53.5	46-71	58.5	50-64	57	25-51	38
		C	35-53	44	46-71	58.5	60-74	67	48-73	60.5
		D	38-56	47	46-71	58.5	23-37	30	2-27	14.5
107.440	69	A	109-128	118.5	46-71	58.5	71-85	78	32-57	44.5
		B	63-81	72	46-71	58.5	70-84	77	24-49	36.5
		C	63-81	72	46-71	58.5	64-78	71	28-53	40.5
		D	93-111	102	46-71	58.5	50-64	57	14-39	26.5
72-3	34	A	48-66	57	32-57	44.5	50-64	57	27-52	39.5
		B	21-39	30	32-57	44.5	34-48	41	24-49	36.5
		C	26-44	35	32-57	44.5	13-37	25	8-33	20.5
		D	84-102	93	21-45	33	40-54	47	23-48	35.5
73-1	(18-21)*	A	41-60	50.5	32-57	44.5	29-43	36	5-30	17.5
		B	6-25	15.5	12-37	24.5	55-69	62	0-23	11.5
		C	22-40	31	0-22	11	23-37	30	0-21	10.5
		0	7-26	16.5	12-37	24.5	0-12	6	0-18	9
74-2	28	A	26-44	35	46-71	58.5	13-27	20	29-54	41.5
		B	7-26	16.5	21-45	33	1-15	8	0-18	9
		C	14-32	23	32-57	44.5	5-19	12	19-44	31.5
		D	4-23	13.5	0-20	10	1-15	8	0-18	9

Table 4. (Continued)

Case Number	Actual Age	Field \#	Ostones		Non-Haversian		Fragments		\% Lamellar	
			Range	\bar{x}	Range	$\bar{\chi}$	Range	$\bar{\chi}$	Range	\bar{x}
74-5	43	A	7-26	16.5	46-71	58.5	9-23	16	14-39	26.5
		B	12-31	21.5	46-71	58.5	29-43	36	32-57	44.5
		C	6-25	15.5	46-71	58.5	5-19	12	22-50	36
		D	3-21	12	46-71	58.5	5-19	12	13-38	25.5
75-3	(17-20)*	A	9-28	18.5	46-71	58.5	13-27	20	12-37	24.5
		B	14-32	23	32-57	44.5	9-23	16	13-38	25.5
		C	0-17	8.5	6-30	18	5-19	12	0-22	11
		D	1-19	10	32-57	44.5	0-12	6	0-20	10
79-13	38	A	18-37	27.5	46-71	58.5	34-48	41	9-34	21.5
		B	11-30	20.5	32-57	44.5	18-32	25	16-41	28.5
		C	6-25	15.5	32-57	44.5	13-27	20	2-27	14.5
		D	21-39	30	46-71	58.5	18-32	25	28-53	40.5
80-6	65	A	38-56	47	46-71	58.5	5-19	12	38-63	50.5
		B	32-50	41	46-71	58.5	34-48	41	27-53	40
		C	36-55	45.5	46-71	58.5	50-64	57	37-62	49.5
		D	41-60	50.5	46-71	58.5	40-54	47	34-59	46.5

*Aged by other morphological criteria as actual age unknown.
with good reliability. Finally, the accuracy for those ranges containing the actual age for the percent of circumferential lamellar bone is 43 percent. Those ranges within plus or minus 3 years of the known age increase percent of circumferential lamellar bone accuracy slightly with 23 out of 44 or 52 percent level of accuracy.

Statistical Results

Since the sample size is very small, there might be objections to performing a statistical analysis of the data. However, the paired t test can be utilized with a small sample. For purposes of the t test, the median age of the morphologically aged specimens is used to maintain independent sampling. The formulas used are from Baily (1968: 46).

$$
\begin{aligned}
& \bar{x}=\frac{1}{n} \Sigma x \\
& s^{2}=\frac{1}{n}\left\{\Sigma x^{2}-\frac{1}{n}(\Sigma x)^{2}\right\} \\
& \frac{s}{\sqrt{n}} \\
& t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
\end{aligned}
$$

The Null Hypothesis is the assumption that the actual age and the range mean age values will be the same, therefore $\mu=0$. Then the t test is concerned with whether the mean \bar{x} is significantly different from zero. For significance at the 5 percent level of confidence with 10 degrees of freedom ($n-1$) requies a t test value of 2.228 or more. The sign is ignored for the t test values. The confidence level used is $\mathrm{P}<0.05$ for the tests. Tables 5-9 contain the information obtained from the above calculations for the four field total score and the individual fields A - D. Analysis of the t tests shows that the four field total $(t=|-1.56|)$ and the independent fields $A(t=|-0.88|), B(T=|-1.30|)$,

Table 5. t test Data for Four Fields Total.

Case Number	Actual Age	Average Age 4 Field Total	x	x^{2}
940302	41	41.5	+ . 5	. 25
947366	79	54.5	-24.5	600.25
1062496	83	52.5	-30.5	930.25
107440	69	64.5	- 4.5	20.25
72-3	34	43.5	+ 9.5	90.25
73-1	19.5	22.5	$+3$	9
74-2	28	16.5	-11.5	132.25
74-5	43	45.5	$+2.5$	6.25
75-3	18.5	22.5	+ 4	16
79-13	38	35.5	- 2.5	6.25
80-6	65	46.5	-18.5	342.25
$\mathrm{n}=11$	518	445.5	-72.5	2153.26
$\bar{x}=-6.59$				
$s^{2}=167.54$				
$\frac{s}{\sqrt{n}}=3.90$				
$\mathrm{t}=\|-1.56\|$	Degrees of freedom $=10 \mathrm{P}=<0.05$			

Table 6. t test Data for Field A (anterior).

Case Number	Actual Age	Average Age Range Field A	x	x^{2}
940302	41	32	- 9	81
947366	79	66.5	-12.5	156.25
1062496	83	50.5	-32.5	1056.25
107440	69	59.5	- 9.5	90.25
72-3	34	51	+17	280
73-1	19.5	22	$+2.5$	6.25
74-2	28	25.5	- 2.5	6.25
74-5	43	32.5	-10.5	110.25
75-3	18.5	36.5	+18	324
79-13	38	40	+ 2	4
80-6	65	52.5	- 7.5	56.25
$n=11$	518	468.5	-44.5	2179.75
$\bar{x}=-4.05$				
$s^{2}=199.97$				
S				
$\sqrt{n}=4.26$				
$t=\|-0.88\|$	Degrees of freedom $=10 \mathrm{P}=<0.05$			

Table 7. t test Data for Field B (posterior).

Case Number	Actual Age	Average Age Range Field B	x	x^{2}
940302	41	35	- 6	36
947366	79	32	-47	2209
1062496	83	36.5	-46.5	2162.25
107440	69	66	- 3	9
72-3	34	64.5	+30.5	930.25
73-1	19.5	35.5	+16	256
74-2	28	36.5	$+8.5$	72.25
74-5	43	34.5	-8.5	72.25
75-3	18.5	11.5	- 7	49
79-13	38	28.5	- 9.5	90.25
80-6	65	32.5	-32.5	1056.25
$n=11$	518	413	-105	6942.5
$\bar{x}=-9.55$				
$s^{2}=594.02$				
S				
$\sqrt{n}=7.34$				
$t=\|-1.30\|$		Degrees of freedom $=10 \cdot \mathrm{P}=<0.05$		

Table 8. t test Data for Field C (medial).

Case Number	Actual Age	Average Age Range Field C	x	x^{2}
940302	41	56	+15	225
947366	79	63	-16	256
1062496	83	56.5	-26.5	702.25
107440	69	58.5	-10.5	110.25
72-3	34	29.5	- 4.5	20.25
73-1	19.5	39	+19.5	380.25
74-2	28	9.5	-18.5	342.25
74-5	43	38.5	- 4.5	20.25
75-3	18.5	22	+ 3.5	12.25
79-13	38	31	- 7	49
80-6	65	47	-18	324
$n=11$	518	450.5	-67.5	2441.75
$\bar{x}=-6.14$				
$s^{2}=202.75$				
$\underline{s}=4.29$				
\sqrt{n}				
$\mathrm{t}=\|-1.43\|$		Degrees of freedom $=10 \mathrm{P}=<0.05$		

Table 9. t test Data for Field D (lateral).

Case Number	Actual Age	Average Age Range Field D	x	x^{2}
940302	41	39	- 2	4
947366	79	65	-14	196
1062496	83	69	-14	196
107440	69	83	+14	196
72-3	34	36.5	+ 2.5	- 6.25
73-1	19.5	12	- 7.5	56.25
74-2	28	18	-10	100
74-5	43	32.5	-10.5	110.25
75-3	18.5	27.5	+ 9	81
79-13	38	39	$+1$	1
80-6	65	50	-15	225
$\mathrm{n}=11$	518	471.5	-46.5	1171.75
$\bar{x}=-4.23$				
$s^{2}=97.52$				
\underline{s}				
$\sqrt{n}=2.97$				
$t=\|-1.42\|$	Degrees of freedom $=10 \mathrm{P}=<0.05$			

$C(t=|-1.43|)$ and $D(t=|-1.42|)$ are not significant. This suggests that no field is superior to the others for osteon counting. This does not reject the argument that the posterior field should not be used because of the muscle attachment area of the linea aspera. However, I would recommend the posterior field as the least likely field to use as I saw most of the extreme cases of bone remodeling occurring here.

The t test is used to examine the relationship between age and the osteon counting features for the four field total. Tables $10-13$ contain the data used in analysis of these features.

Analysis of the t test shows that osteones ($t=|-1.37|$) and NonHaversian canals ($t=|0.02|$) are not significant. Fragments ($t=|-2.36|$) are slightly significant and will be discussed in the next chapter. Finally, the percent of circumferential lamellar bone ($t=|-4.13|$) is highly significant for a confidence level of $\mathrm{P}<0.05$. The implication of this t test score suggests that percent of circumferential lamellar bone is not a viable criterion of osteon aging. I feel that the problem originates with the fact that Kerley and Ubelaker's (1978) revised regression formula is derived from a visual estimate and the computer actually measures the percent of circumferential lamellar bone. For example, the visual percent of circumferential lamellar bone might be estimated as 3 to 5 percent, but the computer will register a higher percentage such as 8 to 10 percent. When applied to the regression formula the result for the computer will underage the subject. The higher the percent of circumferential lamellar bone calculated the younger the individual age estimate will be. Chapter 5 will discuss the problem of circumferential lamellar bone. Other general statements, however, can be made from the results.

Table 10. \mathfrak{t} test Data for Four Field Osteones.

Case Number	Actual Age	Average Age Range	X	x^{2}
940302	41	43	+ 2	4
947366	79	57	-22	484
1062496	83	52	-31	961
107440	69	89.5	+20.5	420.25
72-3	34	51	+17	289
73-1	19.5	27	$+7.5$	56.25
74-2	28	21	- 7	49
74-5	43	16	-27	729
75-3	18.5	14	- 4.5	20.25
79-13	38	23	-15	225
80-6	65	45.5	-19.5	380.25
$n=11$	518	439	-79	3614
$\bar{x}=-7.18$				
$s^{2}=304.66$				
$\underline{s}=5.26$				
$\sqrt{n}=5.26$				
$t=\|-1.37\|$		Degrees of freedom $=10 \mathrm{P}=<0.05$		

Table 11. t test Data for Four Field Non-Haversian Canals.

Case Number	Actual Age	Average Age Range	x	x^{2}
940302	41	46	$+5$	25
947366	79	68.5	-20.5	420.25
1062496	83	58.5	-24.5	600.25
107440	69	58.5	-10.5	110.25
72-3	34	41.5	$+7.5$	56.25
73-1	19.5	23	$+3.5$	12.25
74-2	28	26.5	- 1.5	2.25
74-5	43	58.5	+15.5	240.25
75-3	18.5	38.5	+20	400
79-13	38	51	+13	169
80-6	65	58.5	- 6.5	42.25
$\mathrm{n}=11$	518	529	$+1$	2078
$\bar{x}=.09$				
$s^{2}=207.7$				
S				
$\sqrt{n}=4.34$				
$t=\|0.02\|$	Degrees of freedoms = $10 \mathrm{P}=<0.05$			

Table 12. t test Data for Four Field Fragments.

Case Number	Actual Age	Average Age Range	x	x^{2}
940302	41	36	- 5	25
947366	79	63	-16	256
1062496	83	60	-23	529
107440	69	72	+ 3	9
72-3	34	41	+ 7	49
73-1	19.5	32	+12. 5	156.25
74-2	28	12	-16	256
74-5	43	18	-25	625
75-3	18.5	12.5	- 6	36
79-13	38	28	-10	100
80-6	65	29	-36	1296
$\mathrm{n}=11$	518	403.5	-114.5	3337.25
$\bar{x}=-10.41$				
$s^{2}=214.54$				
\underline{s}				
$\sqrt{n}=4.41$				
$t=\|-2.36\|$	Degrees of freedom $=10 \mathrm{P}=<0.05$			

Table 13. t test Data for Four Field Percent Lamellar Bone.

Case Number	Actual Age	Average Age Range	x	x^{2}
940302	41	30.5	-10.5	110.25
947366	79	40.5	-38.5	1482.25
1062496	83	39	-44	1936
107440	69	36.5	-32.5	1056.25
72-3	34	32.5	- 1.5	- 2.25
73-1	19.5	10	- 9.5	90.25
74-2	28	15.5	-12.5	156.25
74-5	43	32.5	-10.5	110.25
75-3	18.5	14.5	- 4	16
79-13	38	25.5	-12.5	156.25
80-6	65	46.5	-18.5	342.25
$n=11$	518	323.5	-194.5	5458.25
$\bar{x}=-17.68$				
$s^{2}=201.91$				
\underline{s}				
$\sqrt{n}=4.28$				
$t=\|-4.13\|$	Degrees of freedom $=10 \mathrm{P}=<0.05$			

The primary purpose of this thesis is to show the feasibility of doing osteon counting by computer. Unfortunately, a sample size of 11 cases, with several aged only by morphological criteria, does not permit as much insight as one might obtain from a sample of one hundred specimens. It is difficult to determine what is the cause when the computer age did not coincide with the actual age. Some of the error might be attributed to faulty logic in the programs or in the way data are digitized. Another possible source of error might be due to the lack of a complete medical history for the samples. Since Ortner (1970) has shown previously that alcoholism and arteriosclerosis affects osteon counting as well as other bone related diseases such as bone cancer, the lack of a medical history may play a large part in age differences. However, probably the key factor in age differences is in the way by which features are identified. In his study, Kerley (1965) moves the microscope to identify features on the edge of the field. This suggests that the field actually is enlarged. Therefore, in this study, features on the edge are counted independently with half being assigned to osteones. The other half is not used and perhaps in several cases when the fragment count appears low the disregarded amount should be used for fragment counts. Yet, another possibility of error is with the correcting factor described in Kerley and Ubelaker's (1978) article. After much debate, they finally decided on which microscope Kerley used in his initial investigation and then re-examined Kerley's material. The results seemed satisfactory so the field size was established at 1.62 mm . This could still be in error and the result would show a difference between age calculated and the known age. One source of error related to the regression formula(s) is with the percent of circumferential lamellar bone.

Since the computer actually calculates the percent of circumferential lamellar bone instead of being a visual estimate, I feel there would be an error of some nature especially with the age of younger individuals. The error with the percent of circumferential lamellar bone does not involve the cases of younger individuals. Most of the trouble is with the age group over 60 years of age as the values tended to underage these specimens. To eliminate some of the problems with the percent of circumferential lamellar bone, I decided to develop a new regression formula for percent of lamellar bone. The next chapter will discuss the results of this formula.

CHAPTER V

DISCUSSION

Using percent of circumferential lamellar bone as an age determinant is shown to be questionable by the t test score (|-4.13|) of Table 13, when calculated by Kerley and Ubelaker's (1978) regression formula with my data. At the confidence level of $P=<0.05$, this t test value is highly significant. Since the hypothesis was that computer age would be the same as the known age for the specimen, one has to speculate there is a problem in utilizing Kerley and Ubelaker's regression formula for femur percent of circumferential lamellar bone with the values calculated by the computer. Kerley and Ubelaker derived their formula on a series of visual estimates, while my percent of circumferential lamellar bone was measured mathematically by the computer. To verify that Kerley and Ubelaker's method for determining percent of circumferential lamellar bone does not work accurately with an actual percent of circumferential lamellar bone as measured by the computer, I developed a regression formula based on the sample data of this study.

Table 14 contains the data used in establishing my regression formula.

$$
Y=-1.40(x)+92.38 \text { plus or minus } 13.82
$$

The slope of the line is -1.40 and the intercept of the line is 92.38 . Standard error of estimation (plus or minus 13.82) is calculated from the mean square of the residuals. To check the reliability of the regression formula an F test for significance was done. The result ($F=19.07$) when looked up in a table of values for F tests was significant

Table 14. Regression Formula Data.

$\begin{aligned} & x(\%) \\ & \text { Lamellar } \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { Age } \end{aligned}$	x^{2}	y^{2}	$x y$	$\frac{\text { Deviation }}{x}$	$\frac{\text { from mean }}{y}$	$x^{2}{ }^{\text {Squares }} y^{2}$		Products (xy)	
30.9	41	954.81	1681	1266.9	3.182	6.091	10.125	37.1	19.382	
22.7	79	515.29	6241	1793.3	11.382	-31.909	129.55	1018.184	-363.188	
23.7	83	561.69	6889	1967.1	10.382	-35.909	107.785	1289.456	-372.807	
25.8	69	665.64	4761	1780.2	8.282	-21.909	68.592	480.004	-181.450	
29.2	34	852.64	1156	992.8	4.882	13.091	23.834	171.374	63.91	
62.3	19.5	3881.29	380.25	1214.9	-28.218	27.591	796.256	761.263	-778.563	
48.3	28	2332.89	784	1352.4	-14.218	19.091	202.152	364.466	-271.436	
28.9	43	835.21	1849	1242.7	5.182	4.091	26.853	16.736	21.20	
48.9	18.5	2391.21	342.25	904.7	-14.818	28.591	219.573	817.445	-423.661	
36.2	38	1310.44	1444	1375.6	- 2.118	9.091	4.486	82.646	- 19.255	
18	65	324	4225	1170	16.082	-17.909	258.631	320.732	-288.013	
374.9	518	14625.11	29752.5	15060.6	0.0	0.0	1847.837	5359.406	-2593.881	
$n=11$ $\Sigma x=37$		$S x=1847.837$				DF		SS	MS F	
$\begin{aligned} & \frac{\Sigma x}{x}=37 \end{aligned}$		$\begin{aligned} & S y=5359.406 \\ & S x y=-2593.881 \end{aligned}$				Regression 1		3641.132	3641.132	19.07
$\underline{\Sigma y}=51$		$\Sigma x y=15,060.6$								
y $\overline{2} 47$.		Corr. $=-.82$				Residual	9	1718.274		
$\Sigma x_{2}=1$		Slope $=-1.40$Intcp. $=94.88$							190.919	
$\Sigma y^{2}=2$						Total	10	5359.406		
S.D. of		$[y=-140(x)+92.38 \pm 13.82]$								
S.D. of		S.E. of	timation	$= \pm 13.8$		Degrees of freedom 1 \& 9 P			$\begin{aligned} & =<0.05(5 \\ & =<0.01(1 \end{aligned}$	$\begin{aligned} & \text { 12) } \\ & .56) \end{aligned}$

for one degree by nine degrees of freedom. To be significant, the F value has to be greater than 5.12 for the 5 percent confidence level and 10.56 for the 1 percent confidence level. If a t test on the scores from the new regression formula also is significant, then one would assume that percent of circumferential lamellar bone is not a viable criterion of age determination. However, if the t test score is not significant then one would assume the problem is with the method of acquiring the percentage used in the test. I feel one cannot use a computed value with a regression formula established from visual observations. Examining the results would give more support to the supposition that calculated age for the percent of circumferential lamellar bone is more accurate than those age estimates produced by visual means.

Table 15 presents the data used to compile the new test on percent of circumferential lamellar bone. The resulting value ($t=|-0.52|$) is not significant. Because my test is not significant, I feel the problem is with the Kerley and Ubelaker formula. One cannot use measured data on a regression formula derived from estimated values.

The four field total is reduced from six cases having the age range bracketing the known age to only four cases bracketing the known age with the loss of cases (107440 and 73-1) dropping accuracy to a poor 36 percent. On the other hand, the percent of circumferential lamellar bone containing an age range bracketing the known age is improved from a 64 percent accuracy level to 73 percent accuracy level (8 out of 11 cases). The three cases $(947366,1062496$ and $72-3)$ missed were all within plus or minus 10 years of the actual age. Individual scores for the percent of circumferential lamellar bone are also improved. Percent of circumferential lamellar bone for individual scores increased from

Table 15. t test for New Percent Lamellar Bone.

Case Number	Actual Age	Average Age Range	x	x^{2}
940302	41	49.5	$+8.5$	72.25
947366	79	60.5	-18.5	342.25
1062496	83	59	-24	576
107440	69	56	-13	169
72-3	34	51.5	+17.5	306.25
73-1	19.5	9.5	-10	100
74-2	28	25	- 3	9
74-5	43	52	+ 9	81
75-3	18.5	24	$+5.5$	30.25
80-6	65	67	+ 2	4
$\mathrm{n}=11$	518	496	-22	1706.0
$\bar{x}=-2.0$,			
$s^{2}=166.20$				
$\frac{s}{\sqrt{n}}=3.88$				
$t=\|-0.52\|$	Degrees of freedom $=10 \mathrm{P}=<0.05$			

43 percent accuracy for those ranges containing the actual age to 22 out of 44 or 50 percent accuracy. Those scores which are within plus or minus three years of the known age enlarge the accuracy to 60 percent.

Since the sample size is small, a larger study needs to be done to verify that computer calculated percent of circumferential lamellar bone is more accurate and reliable in giving a true age estimate at death than those age esimates from visual observations.

The other osteon counting feature which is slightly significant are fragments $(t=|-2.36|)$. As explained previously, I feel the error is in not locating enough fragments in the digitized pictures. If the disregarded counts from those osteones on the edge of the field are given to fragments as well as the number which is given to osteones, the problem would be eliminated. Since the fault is mine for the lack of fragments, I did not develop a new regression formula for fragments. Other counting variables will be discussed in the conclusion which might aid in osteon counting techniques along with other areas of further research.

CHAPTER VI

CONCLUSIONS

The first general statement I would like to make concerns the method of recognizing features on the edge of the fields. According to the Kerley technique, one has to move the microscope in order to view those features on the edge of the fields. During this study, features on the edge of the field are counted separately with half of the scores going to osteones. After re-examining my data, I have decided that those disregarded values from the edge of the fields should also be given to fragments, since the t test for fragments of osteones is slightly significant. This is an indication that my digitized fragments were insufficient to be utilized properly with the Kerley technique. I feel the error is my fault and no new regression formula was developed for fragments.

Next, I do not agree that the muscle attachment area of the linea aspera should be avoided as one of the four fields selected. The results of the t test for the four fields are not significant, and the medial field has the worst accuracy (of the fields) for predicting age. A further study could be done utilizing Hotelling's paired t analysis to examine the relationships between the pairs of fields.

Still another area of investigation concerns the use of dmax and individual area information. By doing an analysis on them, dmax and the area information could be examined to see if they might be used in improving the technique of osteon counting as viable features such as those used by Kerley in his technique. If dmax and area information
prove to be good features for osteon counting, then a more accurate and sophisticated procedure would be developed for doing osteon counting. This new method would require algorithms to count regular shape particles in a digitized image or images. Then these data would be applied to counting the features in the cross-sections, so an age estimate at death could be obtained. An example of such a technique is that used by Casey (1977) in this thesis on "Automated Particle Counting with Applications to Neurology." After the slides of nerve cells are counted by the computer, in Casey's study, they are compared to manually counted nerve cells with a 90 percent accuracy rate for the three nerves used (Casey, 1977). After the pictures are digitized for each region, the system runs completely automatically, taking in data from magnetic tape and storing the results on magnetic disks. This algorithm demonstrates promise as a useful tool in any application where multiple particles such as osteon counting or nerve cell counting, are counted; therefore, this method should have a direct application in the field of anthropology. A fully automated scanning histogram technique for obtaining an age estimate at death from a cross-section of human bone would require no additional training since the computer decides on the features being scanned and applies the results to the appropriate regression formula. The only drawback to this procedure is monetary requirements. Up to 100,000 dollars worth of equipment would be required. However with the interactive computer graphics technique, roughly 10,000 dollars would be necessary. This makes the interactive computer graphics technique available to a larger population of users.

I would also like to do a study utilizing the core technique. I feel that one field could be used to perform osteon counting. A core
removed from the bone would not destroy the specimen such as the Kerley technique required. If all four fields are cored, then plugging the holes with wooden dowels or plastic wood would keep the bone from deteriorating and breaking. The cores would be easily mounted on one slide for photographing. When equipment funding became available a direct feed attachment from the microscope to the computer would eliminate the need of the photographic step. The use of the core technique would allow a large skeletal collection to be analyzed for a demographic study without destroying the sample.

After a larger sample has been analyzed by my procedure for calculating percent of circumferential lamellar bone, the results may suggest the use of this technique as being more reliable and accurate than the technique of visual observations.

REFERENCES CITED

REFERENCES CITED

Ahlquist, J. and 0. Damsten
1969 A Modification of Kerley's Method for the Microscopic Determination of Age in Human Bone. Journal of Forensic Sciences 14:205-212.

Baily, N. T.
1968 Statistical Methods in Biology. London: The English Universities Press Ltd.

Bouvier, M. and D. H. Ubelaker
1977 A Comparison of Two Methods for the Microscopic Determination of Age at Death. American Journal of Physical Anthropology 46:391-395.

Casey, M. E.
1977 Automated Particle Counting with Applications to Neurology. Unpublished manuscript on File in Department of Electrical Engineering, The University of Tennessee, Knoxville.

Chasen, S. H.
1978 Geometric Principles and Procedures for Computer Graphic Applications. New Jersey: Prentice-Hall, Inc.

Kerley, E. R.
1963 The Microscopic Determination of Age in Human Bone. University of Michigan Doctoral Dissertation, University Microfilms Ann Arbor. No. 62-3247. Abstracted in: American Journal of Physical Anthropology 21:404.

1965 The Microscopic Determination of Age in Human Bone. American Journal of Physical Anthropology 23:149-164.

Kerley, E. R. and D. H. Ubelaker
1978 Revisions in the Microscopic Method of Estimating Age at Death in Human Cortical Bone. American Journal of Physical Anthropology 49:545-546.

Krogman, W. M.
1962 The Human Skeleton in Forensic Medicine. Springfield: Charles C. Thomas.

McKern, T. W. and T. D. Stewart
1957 Skeletal Age Changes in Young American Males Analyzed from the Standpoint of Identification, Report EP45. Natick: Headquarters of the Quartermaster Research and Development Conmand.

Ortner, D.
1970 The Effects of Aging and Disease on the Micromorphology of Human Compact Bone. Doctoral Dissertation, Department of Anthropology, The University of Kansas, Lawrence.

Ortner, D.
1975 Age Effects on Osteon Remodeling. Calcified Tissue Research 18:27-36.

1976 Microscopic and Molecular Biology of Human Compact Bone: An Anthropological Perspective. Yearbook of Physical Anthropology 20:35-44.

Singh, I. J. and D. L. Gunberg
1970 Estimation of Age at Death in Human Males from Quantitative Histology of Bone Fragments. American Journal of Physical Anthropołogy 33:373-381.

Stewart, T. D.
1979 Essentials of Forensic Anthropology. Springfield: Charles C. Thomas.

Thompson, D. D.
1979 The Core Technique in the Determination of Age at Death in Skeletons. Paper presented to the 31st Annual Meeting of the Academy of Forensic Sciences, Atlanta, Georgia, February.

Ubelaker, D. H.
1974 Reconstruction of Demographic Profile from Ossuary Skeletal Samples: A Case Study from the Tidewater Potomac. Smithsonian Contributions to Anthropology No. 18, Washington.

1977 Problems in the Microscopic Determination of Age at Death. American Academy of Forensic Science, Book of Abstracts (Annual Meeting, San Diego, California), No. 128, February.

1978 Human Skeletal Remains: Excavation, Analysis, Interpretation. Aldine Manuals on Archaeology. Chicago: Aldine Publishing Company.

APPENDICES

APPENDIX A

```
,TENTAB,LST=TENTAB,FTN
    C ASK FOF OUTF:IT -ILEMAME FDF GAELEV IATA
    C
    G
301:
0018 9
0017
0 0 2 0
002:
0022
    C
    C
    C
    C
    C
    C
    C
    IOFT=1
0024
```

```
        BIMENSION LEL1(1),LEL2(1),FARFAY(50),MENUX(6),MENUY(8)
    INTEGEF*2 LBL(10),FNAME(12)
    COMMON /FNAME/FNAME
        COMMON/SWTCH/ICOUNT,IDEL,IRES,ISAVE,IEXIT
    1 ,ISTART,IORG,IXAXIS,ISING,MLT,INK,ISYB
    2 ,I1;I2,I3,I4,I5,I6,I7,I8,I7,I10,NUW,NUW2
    COMMON/GEN/IXS,IYS,IXO,IYO,IXZ1,IXZ2,IXSF,IYSF,IXM,IYM
    1 IXXI,IYI,IXE,IYB,IXD,IYII,IXR,IYR,IXV,IYU,IXE,IYE
    2 ,IXC,IYC,IX1,IY1,IX2,IY2,IX3,IY3,IX4,IY4,IX5,IY5
    3 ,IX6,IY6,IX7,IY7,IX8,IY8,IX9,IY9,IX10,IY10
        COMMON/TYFE/ITYFE
        COMMON/LABEL/LEL
        COMMON/LATE/EGRRAY
        COMMON/FECORD/IREC
        [IATA LBL/'1','2','3','4','5','6':'7','日','7','0'%
        IIATA LEL1/89/
        [AATA LEL2/83/
        DATA NO/'N'/
        IATA LNO/'N'/
        NLUH IS THE OUTFUT FILE FOR NESSAGES, USDALLYY TTY
        NUW=5
        *UW2 IS THE OUTFUT FILE FOF IGTA, E.G. FORGL, IAT
        NUW2=1
        TGE%
```



```
        ACCEFT 1?,FNAME
        FORMAT(12A2)
        FNAME(12)=0
```



```
        INITIALIZE SHITCHES
    IIIEL:=0
```

```
    C
    C INITIALIZE TERMINAL ANII TABLET
    C
    C
0037
0 0 3 8
    C
    C
    C
    C
    C
    1
0040
0 0 4 1
0042
0043
0044
0043
0 0 4 5
0047
0 0 4 3
1)04F
05:
005:
3053
4059
0.055
005%
0057
0058
```

0025
0026
0027
0028
0027
9030 0031 00.32 0033 0034 2035 0035 -

```
        IFES=0
        ISYE:0
        ISS\E=0
        IEXIT:=0
        ISTART=0
        IERG=0
        IXAXIS=0
        ITYPE=0
        ISING=0
        ICOLINT=0
        INK=0
        MLT=0
    C
    C
        CALL LIMENU(MENUX,MENUY)
        CALL EFiASE.
        CALL IMENU(MENJX,MENUY)
        CALL SVSTAT(RARRAY)
        CALL MOVAES(0:780)
        CALL ANMOIE
        WITE(NUW,42)
        f0RMat(/,
            1 , IS THE HENU OKY TMPE N FOR ANOTHER TRY'Y
            AOEEPT 4S.IOK
            FR的打(1G1)
```



```
            OHL RESTAT:RPMF%.
    CALL ERASE
C
O
O MOW SELECT THE SF,GOMS
C
C
            CALL INITT(950)
            CalL TABINT(1,0,0)
            LOCATE MENU
0039
4 2
44
DADL SUSTAT(RAREFY)
        CAL MOVARO(0.78G)
        GALL nuvabu(0.786)
        CALL ERASE
        Catz ardimaE
        WRITEONUW,40%
    FORTAT(//,
$0
```



```
\complement
C
C SELECT THE STAET BFTION fO BEGIN
```



```
0075 CALL SUSTAT(F'ARFAY)
0 0 9 6 ~ E A L L ~ A N M O L I E ~
0097 WFITE(NUW:5S)
0078 56 FOFMAT(////,
        1 ' FICK THE X GOX TO SELECT X MAXIMUM OPTION ')
        CALL RESTAT(RAFRAY)
        CALL EELL
        CALL ONEFNT(IXZ1,IXZ2)
        CALL BELL
    C
0 1 0 3
0 1 0 4
0105
0 1 0 6
0107 52 FORMAT!/,
        1 ' NOW SELECT THE MAXImuM X AXIS FOINT AFTER THE EELL ')
        CALL RESTAT(RARRAY)
        CALL BELL
        CALL ONEPNT(IXZ1,IXZ2)
        CALL BELL
        CALL MENU(MENUX,MENUY,IXZ1,IXZ2,ISW)
    C
```



```
0 1 1 3
    GO TO 900
0114 903 CONTINUE
```



```
    C
0115
0116
    c
    C
0 1 1 7
0118
0 1 1 7
0:20
    50
        CALL SVSTAT(FAFRFAY)
        CALL :MOVABS(0,780)
    Cáll Eãase
    CALL ANMGIIE
    WFITE:NUW,50)
    SN F0RMM!(!!,
        1. if A BHAGOL IS TD BE IRANN AT EACH DATA POJNT ')
0122 wRITE(NUL,00)
0122 50 FERMA!?%,
        & 'HEN FICR THE SYMBOL FUNCTIUN GFTEE THE BELL SOUNIS';
0123 CALL RESTAT(FAFFAY)
0124 CALL EELL
0125 CALL ONEPNT(EXB,IYB)
0126 COLL EELL
0 1 2 7
012Q
```



```
0129 GG TO 904
0130 902 CONTINUE
```



```
0131 CALL SUSTAT(FAFFiAY)
0132 CALL MOVABS(0,780)
    C
    C
```

```
C INKING OPTION
    C
C
0 1 3 3
0134
0135
70
0137
0138
0139
0140
0141
0142
0143 901 CONTINUE
10143 901 CONTINUE
```



```
c
C SELECT SINGLE FOINT MOUE
C
C
```

ᄃ

CALL MOVABS (0,780)
CALL ERASE
CALL SUSTAT(RARRAY)
C
C
C MULTIPLE FOINT ENTFY OPTION
C
C

BO FORMTH
WRITE(NUW,80)
FORMAT:/,
CALL RESTAT(RARRAY)
CALL BELL
CALL DNEFNT(IXM,IYM)
CALL BELL
CALL MENU (MENUX, MENUY,IXM,IYM,ISW)
60 T0 902
900 CONTINUE
call efiste
EALL SUSTAT(AAE点AY)

C
C SELECT SINGLE FOINT MOUE

C

CALL ANMOIE
WRITE (NUW,110)
WRITE (NUW,120)
FORMAT(//,

CALL ERASE
CALL ANMODE WFITE (NUW,70) FORMATS
1 ' IF INKING IS DESIRED ,PICK THE INKING OPTION ') CALL RESTAT(RARRAY)
CALL BELL
CALL ONEFNT(IXI,IYI)
CALL BELL
CALL MENU(MENUX,MENUY,IXI,IYI,ISW)
 GO TO 903

1 ' IF MULTIFLE FOINT IS IIESIRED, FICK MULTIFLE ')

110 FOFMATS' SELECT SINGLE FOINT IF IESIFED ')

1 ' NOTE-ONLY ONE INFUT MOIE CAN EE USEII, IF YOU HAVE ',/, 2 ' SELECTED EOTH, SINGLE WILL EE USED. ')

0165
0156
0167
0168
0167
0170
0172
0173
0174
0175
'0.176
0177
'0178

1.-

0179
0180
.0181
0182
0183
0184
0185
0186
0187
0188

0189
0190
0191
0192
0193

0154
019.5

0196
0197
0198

0179
0200
0201
0202

CALL RESTAT(RAFFAY)
CALL BELL
CALL DNEFNT(IXSF',IYSF)
CALL BELL
CALL MENU(MENUX,MENUY,IXSF,IYSF, ISW)
IF (IS ING $, ~ E Q, 1, A N I, M L T, E Q, 1) M L T=0$

GETO 901
704 CONTINUE

CALL EFASE
CALL SUSTAT(FAFRAY)
CAIL ANMODE
WFITE(NUW,121)
121 FORMAT///:
1 . SELECT THE INITIAL ICOUNT, THIS MAY BE CHANGED',/,

CALL EELL
CALL RESTAT(RARFAY)
CALL ONEFNT(IXC,IYC)
CALL MENU(MENUX,MENUY,IXC,IYC,ISW)
CALL BELL
CALL SUSTAT(RARRAY)
call erase
CALL ANMOTIE
WEITE(NUW,122)
FOFIMAT (///,
! ' SELECT THE INITIAL TYFE, THIS BAY ALSO BE ZHANGEI',/, 2

CALL EESTAT (FAFFAAY)
GGLL BELL
CALL ONEFNTIIXT,IYT)
GHLL SELL
CALL MENU(MENUX, MENUY,IXT,IYT, TSU)
C

C Shatentay
C
C

- Shll Eraje

BKLL SUSTAT (EARFAY)
CALL ANMOLE
WETECNUW, 130 O
130 GGEMAT?

1. ' FREPARE TO ENTER DATA POINTS FFOM THE TABLET ')

WRITE (NUW, 140)
CALL RESTAT(FAFFAY)
CALL EFASE
140 FURIMATS 'TO STOF IIATA ENTEY FICK EXIT ' ')
C LIFAW THE MENU

```
0203 CALL IMENU(MENUX:MENUY)
0204
    C IFAW THE Y AXIS
0205 CALL LIRWABS(IXO,700)
0206
0207
    C
    c DFIAW THE X AXIS
    C
        CalL MOVABS(IXO,TYO)
        CALL LRWFEL(IXZ1-IXO,0)
        CALL MOUABS(900,IXZ2-20)
        CALL ANSTR(1,LEL2)
    C
    C PICK IIATA ENTRY METHOD
    C
        IDFT=0
        CALL BELL
        IF(MLT,EQ.0) CALL SINGLE(MENUX,MENUY,ISW)
        IF(MLT,EI,.1) CALL MULTI(MENUX,MENUY,ISW)
    C
    C GIVE S BEEF'S TO INDICATE ENII OF FROGRAM
    C
    C
0 2 1 8
0219
0220
022
022
            CALL BELL
            CALL BELL
            CalL beLL
            c&LL EELL
            CALL BELL
    L
    C
        EALL TIMFUT(j)
        CALL FINITT(0,780)
        STOF
        ENII
```



```
        SUEFOUTINE MENU(MX,MY,IX,IY,ISW)
        IIIMENSION FNAME(12)
            IIMENSION (1X(6),MY(8)
        COMMDN /FNAME/FNGME
            COMMON/SWTCH/ICOUNT,ILIEL,IRES,ISAVE,IEXIT
            1 ,ISTART,IOFG,IXAXIS,ISING,MLT;INK,ISYB
            2 , I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,NUW,NUW2
0006
            COMMON/GEN/IXS,IYS,IXO,IYO,IXZ1,IXZ2,IXSF,IYSF',IXM,IYM
            1 ,IXI,IYI,IXR,IYE,IXII,IYI,IXF,IYR,IXV,IYU,IXE,IYE
            2 ,IXC,IYC,IX1,IY1,IX2,IY2,IX3,IY3,IX4,IY4,IX5,IYS
```

3,IX6, IY

0007
0008 0009

C
C
C

- THIS ROUTINE SETS THE

C THIS ROUTINE SETS THE DFTION SWITCHES TO 1
C
C ZEFO THE REFEATEI BWITCHES ISW=0 IEXIT $=0$
ISAVE=0
IRES $=0$
IDEL=0
ISTAFT=0
$10 R G=0$
IXAXIS $=0$
if the menu selecteg foint is in a region
EXIT IS TESTED FIRST
C FIFST SEE IF FOINT COULI BE IN MENU IF (IX.LT.MX(1).OF,IX,GT.MX(6))RETURN IF (IY,LT.MY(8).OF, IY,GT.MY(1))EETUFN
C TEST FOF COMMANI OR TYFES IF(IX.LT.MX(4)) GO TO 100
INK $=0$
ISYE=0
C TYFES JF TATA SFECIFIEL
0026
E
Ir (IX.GT.MX(ड) : GD TO 200
NUMEEE IS LESS THAN 6
IF (IY,LT.MY(3) : GO TO 300
IF:JY.LT.iGY(2): GO TD 400
TYFE 1
Ii -1
1TYES=.
$\therefore \mathrm{BH}=\mathrm{i} 3$
RETHR
$12=1$
$\therefore \mathrm{T} / \mathrm{FE}=2$
15 $4=14$
MPE 2
EETUEN
IF(If. GT.MY(4); 60 TO 500

C IYPE B
[1YEES
$15=1$
I5 $\mathrm{H}=\mathrm{i} 7$
FETURN
TYFE 4
I $4=1$
ITYFE= 4
$I 5 \dot{W}=16$

```
0051
    FETUKN
0052 500 IJ=1
0053
0054
0055
0064
0055
0066
0057
0068
0069
0 0 7 0
0071
0072
00?3
0074
0075
0076 700
0077
0078
007%
0080
008!
0 0 8 2
0083
0-
3055
    00%
065
085
0090
0072
004
    0075
0077
0077
    3101
0102
0103
0104
0105 130
0106
```

```
    C TYFE 3
```

 C TYFE 3
 C DECODE TYFES 6 TO 10
 C DECODE TYFES 6 TO 10
 0056 200 IFIIY,GT,MY(2), GO TO 1000
0056 200 IFIIY,GT,MY(2), GO TO 1000
0056 200
0056 200
0056 200
0056 200
0056 200
0056 200
C TYPE 10
C TYPE 10
4
4
C SECUNIF EOLJMN SELECTEI
C SECUNIF EOLJMN SELECTEI
C EXET SELECTEIF
C EXET SELECTEIF

```
    ITYFE=3
```

 ITYFE=3
 ISW=15
 ISW=15
 RETURN
 RETURN
 ITYFE=10
 ITYFE=10
 I 10=1
 I 10=1
 ISW=22
 ISW=22
 RETURN
 RETURN
 900 I%=1
900 I%=1
I TYFEE=9
I TYFEE=9
ISW=21
ISW=21
RETUKN
RETUKN
800 I8=1
800 I8=1
ITYPE=8
ITYPE=8
ISW=20
ISW=20
RETURN
RETURN
700 IT=1
700 IT=1
ITYFE=7
ITYFE=7
ISW=17
ISW=17
FETUFN
FETUFN
IG=1
IG=1
IYPE=6
IYPE=6
ISW=18
ISW=18
FETURM
FETURM
C EOMMANIS SELECTEII
C EOMMANIS SELECTEII
100 EONTIRUE

```
    100 EONTIRUE
```



```
            gT TE &
```

 gT TE &
 COUN": EOUNT:1
 COUN": EOUNT:1
 C50:2
    ```
            C50:2
```



```
            IF(ICOUNT,BT. i)ISYE=0
```

 IF(ICOUNT,BT. i)ISYE=0
 RETURN
 RETURN
 IF(IX,IP.MX!2; ; EO TO 1.0
 IF(IX,IP.MX!2; ; EO TO 1.0
 IF(IY.GT.MY(3) ; GO TO 120
 IF(IY.GT.MY(3) ; GO TO 120
 IF:IY,GT.MY:4) , GO YO 130
 IF:IY,GT.MY:4) , GO YO 130
 EXIT=1
 EXIT=1
 ISW:1:
 ISW:1:
 CLOSE(UNIT=NUM2)
 CLOSE(UNIT=NUM2)
 FETUFN
 FETUFN
 1 3 0
 1 3 0
 IFES=1
 IFES=1
 CALL SUSTAT(FAFFAY)
    ```
            CALL SUSTAT(FAFFAY)
```

0107
0108
0109
0110
0111
0113
0114
0115
0116

0117
0118

$$
0117
$$

0120
0121
0.122

0123

0124
0126
0128
0130
0131
0132
0133
0134
0135
0136
0138
0139
0140
0141
0142
0143
0144
0.46

0148
0147
0150
0131
0152
0653
0154
0.155

0156
0157
0001

0002

$$
\text { UF'EN\{UNIT = NUW } \left.2, \text { NAME }=F N A M E, T Y F \cdot E={ }^{\prime} O L I^{\prime} '^{\prime}\right\}
$$

$$
I S W=10
$$

CALL FESTAT (FAFFAY)
RETUFN
120 IF(IY.GT.MYi2)) GO TO 140 I $\operatorname{SAVE}=1$
CALL SUSTAT (FARIRAY)
CALL CLEAN
CALL FESTAT (FAFR'AY)
C CLEAN UF ANY IIELETED FOINTS
ISN=9
FETURN
140 IIEL $=1$
WFITE(NUW2,141)I[
141 FOFMAT (1X,I6)
ISW=8
RETUFN
C FIFST COLUMN
110 IF (IY,GT.MY(4)) GO TO 150
IF(IY,GT.MY(6)) GO TO 160
IF(IY,GT, MY(7)) GO TO 170
ISYB=1
$I S W=7$
FETUFN
$170 \quad$ INK = 1
ISW=6
RETUFN
160 IFiIY.GT.MY(5) : GO TO 180
$M L T=1$
$I S W=5$
RETUFN
180 ISING=1
ISW=4
FETUEN
150 EF (IY, 5T.MY(2)) 00 TO 170
IF (IY:GT.MY(3): GOTG195
5xnyIS=1
5以 5
GETUEM
$175 \quad 1056=1$
$15 \omega=2$
FETUFN
$190 \quad$ ISTAST $=1$
ISW=1
RETUFIU
ENI

\lessdot MULTIFOINT LATA ENTFY
IIMENSION MENUX (6), MENUY ($\overline{8}$)
IIIMENSION $M X(500)$, $M Y(500)$, IH (500)
COMMON/SWTCH/ICOUNT, IIIEL, IRES, ISAVE, IEXIT
1 , ISTAFT, IOFG, IXAXIS,ISING,MLT,INK,ISYB
2,I1:I2,I3,I4,I5,I6,I7,I8,I9,I10,NUW,NUW2
COMMON/GEN/IXS,IYS,IXO, IYO,IXZ1,IXZ2,IXSP,IYGF',IXM,IYM
1 ,IXI,IYI,IXB,IYB,IXD,IY I, IXF,IYR,IXU,IYU,IXE,IYE
2 ,IXE,IYC,IX1,IY1,IX2,IY2,IX3,IY3,IX4,IY,IX5,IY5
3 , IXó, IY6, IX7,IY7,IX3,IY8,IX9,IY9,IX10,IY10
COMMON/TYFE/ITYFE
5 BALL EELL
CALL MULFNT(500,NGT,IH,MX,MY)
CALL EELL
EALL SELL
CALL BELL
IO $500 \quad I=1$, NGT
$I X=M X!I)$
$I Y=M Y(I)$
CALL : KENU(MENUX,MENUY,IX,IY,ISW)
IF(IH(I).EG.29)CALL MOUAES(IX,IY)
IF(IH(I).ER.26.AND.INK.ER.1)CALL IFWAES(IX,IY)
IF(IH(I), EQ.26.ANI,INK,NE,1)CALL MOUABS(IX,IY)
IF ((IH(I), EQ.29.OF,IH(I),EQ,26),AND,ISYB,ER.1)
1 CALL SYMBOL
IX $\mathrm{I}=\mathrm{IX}-\mathrm{IXO}$
$I Y=I Y-I Y O$
WFITE (NUW2,10)ICOUNT, ITYPE,IX,IY
10 FOFMAT (1X,4I6)
500 CONTINUE
I 2I =9979
WFITE(NUH2,10)IZ!
30 TO 3
CONTINUE
SETKFH
EN:

SUBRDITIME GINGLE(MENUX, HENUY, TSW)

DSAENGTON AARRH!50:

LOMmDN/YFE/ITPE
ICNT=0

IKIUNT $=0$
Call EELL
BALL ONEFNT:IX,IY
IKOLNT $=$ CCOUN ${ }^{-}$
CALL EELL
ITT = ITXPE
CALL MENU(MENUX,MENUY,IX,IY,ISW)
IF (IKOUNT , NE, ICOUNT , ANI, ITT , EQ, ITYFE)INEW=1
IF (ITT, NE, ITYFE, ANII, INK, EQ.O)INEW=1

0020
0022

IF:IEXIT,EQ.IISO TO :000
IF (ICNT, NE, O, ANE $+I N K, E R, 1, A N I, ~ I S W, E Q, ~ C, A N[, I N E W, N E, I)$
1 LALL IIEWABS!IX,IY)

1 CALL MOVABS (IX,IY)

1 . AND. INEW + NE \& 1)CALL MOVABS (IX,IY)

1 CALL MOUABS (IX,IY)
IF(ICNT, ER.O) CALL ! $\{O U A B S(I X, I Y)$
IF (ISYE.ER, 1, ANII.ISW, EQ, O) CALL SYMEOL
IF (ISW, EQ, O, ANII, INEW, EQ, 1) INEW=0
C SUETFACT THE COOFIINATE OFIGIN FROM THE DATA $I X=I X-I X O$
$I Y=I Y-I Y G$
CALL SUSTAT(FAFIFAY)
CALL ANMOIE
IF (ISW, EQ.0)WRITE (NUW2,10) ICOUNT, ITYFE, IX, IY
CALL FESTAT (FAFFAY)
$I F(I S W, E Q, 0) I C N T=I C N T+1$
FOFMAT(1X,4I6)
GO TO. 5
CONTINUE
II I $=9997$
CALL SUSTAT(FAFFAY)
CALL AHMOLIE WRITE (NUW2,10)II
CALL RESTATSSAFFAY)
FETUFN
ENI:

SUEFOUTINE SYMEDL
INTEGENR2 : EL (AO)
DUMMON/TYFE/TTYFE
COMMON, $A G E E L$: GL

BALL EUSTATSAARFAO
CAL MOVEL (….... 1 ;
BAL ESDEEA

SA!L [IfUAEL -200)
CALL IRTHFEL (1, i)
EALL PNGTK! (I, LEL (ITYFE ;)
CALL RESTAT (天AFFGY)
FETUFIN
Enil

SUEFUUTINE LMEVU(MX, MY)
C SUBFOUTINE TO LDCATE COMMANI MENU POINTS AND IISFIAY
C BENU ON SCFEEN

COMMON/SWTCH/ICOUNT,I[IEL,IFES,ISAVE,IEXIT
1 ' NOW LOCATE THE 3 LEFT SIDE MENU POINTS; TOF TO BOTTOM ',/,
2 ' ASTER THE bEL SOUNDS ')
CALL SESTAT(FIAFSAY)
CALL EELL
10 40 I $=\mathrm{i}, 8$
CALL ONEFNT(II,MY(I))
CALL EELL
RETUFN
ENL

GUERO! TiNF MMENUSM, MY:

- THE MENLIE NOG DETERMTNE

0003
C NOTE THE USE JF RELATIVE vEETORS
CALL DRWNEL (MX(6;-MX(1),0)
CALL if UVGES $(10,600)$
CALL DRUREL($0, \mathrm{MY}(8)$-MY (1)
CALL KOVAES(10,500-(MY(1)-HY(2))
CALL OFWREL (MX(6)-i保(1),0)
CALL MOVAES(10,600-(MY(1)-MY:3), ;
CALL IFWREL (MX(3)-MX(1), 0)
CALL MOFEL (MX(4)-MX(3),0)
CALL IRWWEL (MX(6)-MX(4),0)
CALL MOVABS(10,600-(MY(1)-MY(4)))

0014

0017
00181

	E	
	C	
	C	REAI ANI CLEAN UF JELETE』 FOINTS
	C	
	C	
0022		$N F \cdot T=0$
0023	1	$I P T=I P T+1$
0024		FEAII (NUW2, 10, END=99)ICT(IFT), ITY(IFT), IXX (IFT), IYY(IFT)
0025	10	FOFMAT (1X,4I6)
0026		$N F T=N F T+1$
0027		IF (ICT (IPT).EQ.9999) G0 T0 99
0027		IF (ICT(IFT).EQ, 7777) GO TO 50
0031		GO TO 60
0032	50	$N F T=N F T-2$
0033		$I F T=I F T-2$
0034	60	CONTINUE
0035		IF(IFT,GT.2000)GO TO 99
0037		GO TO 1
0038	99	CONTINUE
0039		$0030 \mathrm{I}=1$, NF'T
0040		IF (ICT(I), EQ, O) GO TO 35
0042		WRITE (NUW3,10,ENI=30)ICT(I), ITY(I), IXX (I), IYY(I)
0043	35	CONTINUE
0044	30	CONTINUE
0045		CLOSE (UNIT = NUW2)
0046		CLOSE (UNIT = NUW3)
0047		CALL RESTAT (FAFRAY)
0048		FETUNN
0049		ENI

APPENDIX B

OCANM．OBS：OCANM．LIS＝OCANM．FTN
C THIS PROGFAM IISFLAYS DATA OBTAINED PREUIOUSLY BY THE C TENTAE TABLET RUUTINE AND CALCULATES SOME MEASUREMENTS C WHICH HAUE NOT REEN USEI PREUIOUSLY FOR OSTEON COUNTING．
© WFITTEN BY GALE IAAUIII SLUTZKY 1979 AS PAFT OF
じ FULLFILLMENT OF MASTEF THESIS.
C

REAL X，Y，TIMAX
FEEAL XSUM，YSUM，AREA，SUE，UFFEF，LOWER，TOTAL
INTEGER INEW,IOLII,ICOLNT, JTYFE,N,R
IMTEGER KXCOF(100), LYCOR(100)
REAL SIZE(250),IIIAM(250)
LOGICAL*1 FNAME(15)
IIIMENSIDN FAFRRAY(60)
C
C GFEN ALL PILES.
ii） $5 \quad i=1,15$
FNAME（I）$=0$
S GONTINE TYPE 10 10 format（＂ainfut file？＇） ACCEF T 1.5 ，FNAME
15 FORMAT（15AI）

70 $20: \because 1=4$

20 OUTNAE
TrFE 25

ACOEF： 159 Finame
 2FORM＝＇FORMATET ，ISFRGE＝＇SAVE＇；
f！ 50 ：$=1,15$
FNGME：T：＝0
30 CONTINUE
TYFE 3：
35 －DRMAT（＇iGUTFUT FILE2？＇）
ACCEFT IS．FNAME
 3FORM＝＇FDFMATTET＇，IISFOSE＝＇SAVE＇）

```
    C INITIALIZE VAFIABLES.
    C
C FOINTS OF THE CENTFOID.
C
    54 CHECK=1
    5S X=XSUM/AN
        Y=YSUM/AN
        CALL MOVEA(X;Y)
        CALI. IIFANA(X,Y)
        GALL MOUABS(KXCOF(N), _YEOF(Ni)
        AFEA=0.0
        SUS=0.0
    C
    C THE FROBRAM NOW COMFUUES THE TEEN IF THE STEOV
    E ANE STOFES THE VALUE IN AN ARXA:OOR LGTEF: ISE.
    0553
    0084
    00.35
    0066
    0 0 6 7
    0048
    0069
    0070
    0071
    0072
    0073
    0074
0075
```

C the data stofeg in xsum, rsum is useit to calculate
C INITIALIzE VARIABLES.
C
CALL INITT(240)
$R=0$
INE $\mathrm{H}_{\mathrm{H}}=-1$
СНЕСК $=0$
$N=0$
IOLD $=1000$
$X S U M=0.0$
$Y S U M=0.0$
45 CALL SUSTAT (FAFRAY)
FEAL (2,50, END=54) ICOUNT, JTYFE, KXCOR(N+1), LYCOR(N+1)
50 FORMAT(1X,4I6)
CALL RESTAT(FAFFFAY)
INEW=ICOUNT
$\mathrm{N}=\mathrm{N}+1$
IF(INEW .EQ. IOLD)CALL DRWABS(KXCOR(N),LYCOR(N))
IF(INEW .NE, IOLD)CALL MOUABS(KXCOR(N),LYCOR(N))
IF(INEW .GT. IOLII)GOTO 55
$A N=N$
XSUM $=$ XSUM + KXCOR (N)
YSUM=YSUM CLYCOR (N)
IOLD=INEW
601045

C FOINTS OF THE CENTFOID.
c
54 CHECK=1
$55 X=X S U M / A N$
$Y=Y$ SUM/AN
CALL MOVEA (X, Y)
CALL. IFANA (X, Y)
CALL MOUABS!KXCOF(M), YEOF(N)
$5 U 5=0.0$
r
C THE FROGRAM NOW COMFUSES THE AREA OF HE IBTEON ANE GTOFES THE VALUE IN AN ARAM FOR LHTEF: ISE,

$X C 2=K X C D R(1)$
YC1=LYCUR(1)
YC2=LYCDR (N-1)
AREA $=\times$ CI 3 YC1
OUZ $=\times C 2 * Y C 2$
$[1060 \mathrm{I}=2, \mathrm{~N}-1$
$X C 1=K \times C U R(I-1)$
$\times C 2=K \times C O R(I)$
YCI=LYCOE(I)
YC2=LYCOR (I-1)
AREG $=A$ EEA $+X C 1 * Y C 1$
SUB=SUBTXC2*YC2
i
0
8

```
c SIZE IS A value which aill ge useil to ealculate the c FERCENT OF LAMELLAE BONE BY TAKING THESE STOREU C areas ani sletracting them from the total area of the SAMPLE.
THE NEXT CALCLLATION IS A ROUGH ESTIMATE FOR THE UIIMETER. IT IS CALLEI IImAX.
IIMAX \(=-999.0\)
\(\mathrm{N} 1=\mathrm{N}-2\)
\(10070 \mathrm{I}=1, \mathrm{NL}\) \(I 1=I+1\) IO \(75 \mathrm{~J}=\mathrm{I} 1, \mathrm{~N}-1\) XCI \(=\mathrm{XXCDR}(\mathrm{I})\) XC2=KXCOF(J)
YCI=LYCOR(!)
YE2=LYCOF(J)
\([1=\) SQRT \(((X C 1-X C 2) * * 2+i Y C 1-Y C 2) * * 2)\)
IF (II .GT. IMAX:CIMAX=[)
75 CONTINUE
70 gONTINUE
IMAX \(=2\) MAX \(/ 100.0\)
STURE THE JALUES JF DMAX in AN AREAY TO EE SGED LATER, FERUARE IA A GROMTH ETUEY.
```



```
At this gtage une gsteon counting eenture has geen UIEF'-AYEE WITH ITS AREG STORED IH AN ARRAY CALLET
sIzE, TEE FILE IIAM cONtaims the gilametefig, amil THE EENTROIE HAE EEEN FLOTTEI. NOW THE PRDGRAM gTARTS GUER GN fHE AEXT SERIES jF jata foints.
    60 cuntinue
    UFFER=AREA/2.0
    LOWER=SUE/2.0
    TOTAL=(UFFERT-LOWEF)/100000.0
    TOTAL=ABS(TOTAL)
    R=R+1
    WRITE(3.65)TOTAL
    OS FORMAT(FS.3)
    SIZE(R)=TOTAL
    gTAET'j.DUEE ON fHE INEXT GERIES JF JATA FOINTS.
    KSU仿=KXCOE(H)
    YSUM=LYCOR(N)
    KXCOR(i)=KXCOR(N)
    LYCOR(I)=LYCOR(N)
    N=1
    IOLII=IN:UU
```

c
C
$\stackrel{C}{C}$
c
C
0086
0087
0038
0089
0090
0091
0092
0093
0094
0095
0097
3079
207%
16

1102

```
0109
01::
GIL2 CLOGE(UNIT=3:OISFOS5='SAVE')
0113 CLOSE(LMTT=A.MISFOSE='SAVE')
0114 CAL! TSENE
0115 CALI INNOLE
0:15 END
    YF(5%M, EO, D)GOTD 45
010
    ELUSE!'JNTT=2.IISFDSE='SAVE')
```


APPENDIX C

```
INTEFF,DEJ,INTEFF,LIS=INTEFF,FTN
```

 C THIS FROGRAM SHOWS THE NUMBER DF OSTEON COUNTING
 C features and calculates the fercent of lamellae
 C BONE. TWO FREVIOUSLY CREATED FILES AFE USED. ONE
 C IS the tentas file (OStout. liat) ang the seconi is
 C (SIZE. GAT) DR THE AREA MEASUREMENTS.
 C
 ᄃ
 ¿ OFEN ALL FILES.
 c
 0005
D00e
0007
0008
0007
C
C THIS IS THE DUTPUT FILE FROM iHE TENTAB TABLET
© FROGFAM WHICH AILL gE CALLEII OGTOUT. IAT,
2010 GCCET TSAFNAKE
CO1: 15 FORMA: 15月:

2015
. 01.4
3015
cois
0017
©
¿ THIS IS fHE gATA STDFEEI IN SIZE.IAT OR THE
C AREA MEGSUREMENTS.
ACCEFT :S,FRAME
JFEN :UNIT:Z, NAME=FNAME, TYFE='DLI', ACCESS='SEQUENTIAL',
2REALONLY, FORM='FORMATTED': IITSFOSE='SAME')
$10030 \mathrm{I}=\mathrm{i}, 1 \overline{5}$
FNAME (I) $=0$
002230 CONTINUE
0023
TYFE 35

$$
0042 \quad 45 \text { Farmat }(1 x, 2 I 6,12 x)
$$

$$
0043 \quad \text { ISTART=TCUENT }(2+1)
$$

$$
0044 \quad N=N+1
$$

$$
0045 \text { IF(ISTART GT ICHANGOGOTD SO }
$$

$$
0047 \quad \text { IDHANG=ISTAKT }
$$

$$
0048 \text { 50T1 } 10
$$

$$
0,1 y \quad 100 \text { DHECK}=1
$$

$$
0050 \quad \therefore 8+i
$$

$$
\text { 20G1 } \quad \theta \quad \text { ant }
$$

$$
2054
$$

$$
3056 \quad \text { Sitara }
$$

out:

$$
6052
$$

```
    3` FORMAT('कUUTFUT FILE FOR rESULTS?')
```

 3` FORMAT('कUUTFUT FILE FOR rESULTS?')
 L
 L
 C THIS FILE NILL BE CALLEI reSllt.jat,
 C THIS FILE NILL BE CALLEI reSllt.jat,
 ACCEFT !5,FNAME
 ACCEFT !5,FNAME
 OPEN(UNIT=A, NAME=FNAME, TYPE='NEW', ACCESS='SEQUENTIAL',
 OPEN(UNIT=A, NAME=FNAME, TYPE='NEW', ACCESS='SEQUENTIAL',
 3FDRM='FORMATTEU', UISFOSE='SAVE')
 3FDRM='FORMATTEU', UISFOSE='SAVE')
 C
 C
 C INitiALIzE all variables.
 C INitiALIzE all variables.
 C
C
N:0
N:0
i=0
i=0
ICHA!\G=1000
ICHA!\G=1000
ISTART=0
ISTART=0
A=0
A=0
E=0
E=0
C=0
C=0
[1=0
[1=0
E=0
E=0
F=0
F=0
B=0
B=0
T=0.0
T=0.0
SUM=0.0
SUM=0.0
C

```
    C
```



```
        %Hob 8HANG+1
```

 %Hob 8HANG+1
 !
 !
 FFOEEDK ER, 0.GOTO $0
    ```
        FFOEEDK ER, 0.GOTO $0
```



```
C FEATUEES Si THEIR TYFES,
```

C FEATUEES Si THEIR TYFES,
C MFE A SEFEFS IO OSTEDNES.
C MFE A SEFEFS IO OSTEDNES.
C TMFE E EEFERG TE NON-HAVEFGIAN CAMALS.
C TMFE E EEFERG TE NON-HAVEFGIAN CAMALS.
C Type C refers to fragments of osteones.
C Type C refers to fragments of osteones.
C}.\quadType D refers to osteones on the edge of the fields
C}.\quadType D refers to osteones on the edge of the fields
C TYFE E SEFERS TO REABSOFFTIDN HOLES.
C TYFE E SEFERS TO REABSOFFTIDN HOLES.
C TYEE F REFERS TO THE FOUNDAR': OF THE FILTURE GAMFLE.
C TYEE F REFERS TO THE FOUNDAR': OF THE FILTURE GAMFLE.
{: TYFE [j REFEFS TO \&NY INNNOWN FEATUFE,
{: TYFE [j REFEFS TO \&NY INNNOWN FEATUFE,
\&

```
    &
```

```
C GFECIAL NOTE!: TYFES A,B,C,I,E,ANL G MUST BE iISTEN
c EEFORE F IS ENTEREII IN THE TENTAE ROUTINE,!!!
C
            00 105 T=1,R
        IF(JKINIII) ,EQ, 1/A=A+1
        IF(JKININ(I) , EQ, 2) B=E+1
        IF(JKING(I) , EQ, 3)C=C+1
        IF(JKIND(I) .ER, 4) I=[1+1
        IF(JKIND(I) , EQ * S)E=E+1
        IF(JKINII(I) , EQ, b)F=F+1
        IF(JKINII(I) ,EQ, 7)G=G+1
    105 CONTINUE
        WRITE(4:110)A
    1:0 FORMAT(IL)
        WRITE(4,110)E
        WFITE(4,110)C
        WRITE(4,110)D
        WEITE(4,110)E
        WRITE (4,110)F
        WRITE (4,110)G
    C
    C NOW TO calcllate the fericent dF Lamellae zone,
    C
        115 FEAD(3,120, EMI=125)TOTAL(T+1,0)
        120 FORMAT(FZ.3)
        T=T+1.0
        g0TO 115
    125 CONTINUE
        FERCNT=TUTAL{T)
        IT=T
        IIC130 I=1,(IT-1)
            SUM=SUM+TDTALII!
    130 CgNTINUE
        FEECNT:(FEFCNT--SU涪),TOTAL!T)
        EFCP:=PERCHT\100
        METEE:4:135,FERCMT
        TPE \35,PERCH.
```



```
    G GLGSE ALL FYLES.
    5
```



```
        CluSE(unIT:=3, [ISFOSE-'SGVE')
        CLOSEGUNIT=4, MYFFOEE='SAVE')
        STGF
        ENTi
```


APPENDIX D

```
,UNITE,LIS=UNITE,FTN
    C
    C THIS PFOGFAM TAKES FOUF FESULT.IIAT FILES NUMBEREII IN
    C sequence together so all four fields are represented
    C BY JNE TOTAL COUNT ANB THE FERCENT JF LAMElLAR BONE IS AN
    C AVERAGE FOF THE FOUR FIELDS.
    C
    C OFEN ALL FILES.
    C
        10 5 !=1,15
            FNAME(:)=0
        j continue
        TYF'E :0
    10 FORMAT('$INFUT FILE FESULTL.IAT FOR MOTAL SCORE')
    C
    C THIS IS FRELII A FOR THE SAMFLE BEING FESTET,
    C
3010
001:
0012
0 0 1 3
0 0 4
0015
80%
0017
```

REAL FPAFTA,FPAATE,FFARTC, R'F'AFTII,LAML
INTEGEF N,OST,NHU,FFA,COF
INTEGEF FAFTA(5),PARTH(5),PARTC(5),FARTII(5)
LOGICAL* FNAME(15)
C OFEN ALL FILES.
0005
0006
0007
0008
0009
C.

ᄃ
C

```
    15 TOR的T(:EA1:
```

```
    15 TOR的T(:EA1:
```



```
            10 20 1-1.55
            FNGME I::%
    20 EODTMESE
            %E 25
```



```
    E
    C iHIS IG FIELD R FOR THE SAMF'LE GEING ESIET,
    C
            ACCEPT SS,FNAME
```



```
            2HEAIONLY,FORM='FORMATTET',RISFOSE='QANE
            10 30 !=1:15
            FNAME{I)=0
            30 EONTINUE
            TYPE 35
            35 FDRMAT('SINFUT FILE RESULTS.[IAT FOR TOTAL SCORE';
            C
```

C THIS IS FIELD C FOR THE SAMFLE BEING TESTEI,.
C
C THIS FILE :ILL BE CALLEII INITE.TAT.
C
0 0 3 9
0 0 4 0
C
C INITIALIZE ALL VARIAFLES.
C
0 0 4 1
0042
0043
0 0 4 4
0045
\therefore946
204%
0043
0049
0056
0 0 5 1
0052
0053
0054
00.55
0056
0.57
0058
0059
0 0 6 0
0051
0062

```
        ACCEFT 15,FNAME
        UFEN!UNIT=3,NAME=FNAME,TYFE='OLI',ACCESS='SERUENTIAL',
        3REAIONLY,FOFM='FORMATTEI', EISFOSE='SAUE')
        00 40 I=1,15
        FNAME {I)=0
    4 0 ~ C O N T I N U E ~
        TYPE 4S
    45 FOF:MAT('#INFUT FILE FESULTA.[EAT FOR TOTAL SCORE')
    C
    C this IS fiELI I FOR the SAMFLE BEING tEStE!.
    C
        ACCEF'T 15,FNAME
        DFENNUNIT=4 =NAME=FNAME,TYFE='OL[I',ACCESS='SEQUENTIAL',
        4READONLY,FORM='FOFMATTEG',[IISFOSE='SAVE')
            [10 50 I=1,15
        FNAME (I)=0
    50 CONTINUE
        TYFE S5
    55 FORMAT!'कTHE OUTPUT FILE OF TOTAL COUNTS WILL BE?')
        ACCEFT 15,FNAME
        BFEN\JNIT=B,'MAME=FNAME,TYFE='NEW',ACCESS='SERUENTTAL';
        SFDRM='FORMATTEL',IISPOOSE='SAVE')
    N=0
    0.3T=0
    N4=?
    FEA=0
    -TG:0
        COML=C.0
```



```
    S0 ORNWAT:+C46:%
        &ET- 3ETFFRTG!i
```



```
        EOG=EDG+FAETA(4)
    65 BOHT[HLE
```



```
    70 EORM年(///i////28X,F8.3)
    72 CONTENuE
        LAML IMMLHFEGGRTA
        N=0
    75 SEALI(2,50,ENI=80)(FAFTE(N+!),浯=0,3)
        DST=DST+F'AFTE!1)
        NHV=NHUHFAFTB(2)
        FRA=FFRO+FARTB(3)
```

```
0063 EIG=EIG+FARTB(4)
0064 30 CONTINUE
0065 \EAJ(2,70,EN[I= 22)FFAFTE
0085 82 CONTINUE
0067 LAML = LAML +FFAFTB
0058
0067
0070
0071
0072
0073
0074
0075
0 0 7 6
0077
0075
0079
0080
0081
0082
0083
0084
0085
0085
0087
0088
0089
0090
0 . 9 7 1
0042
0093
0094
0055
.076
    E
    O25E ALL FIGS:
    C
\thereforeご名
0.77
```



```
心:01 [LOGE\UHT-G.OIGFgSE. 'SAVE';
OLOE STO:
0103 =NH
```


APPENDIX E

,HOLMES.LIS=HOLMES.FTN

AECEFT 15,FNAME
 2FORM='FORMATTEI', IIISFOSE='GAVE')
C THE FIRST STEF IS TI CORRECT FOR SCALING FACTORS AND GET
liditialize all vafiahles.
PI $=3.141592654$
FSIZE=0.0
PSIZEA $=0.0$
$x=0.0$
THE FIFST STEF IS TD CORFECT FOR SCALING FACTORS AND GET
C ALL UNIT TERMS INTO MILIMETERS.
TYFE 30
 ACCEFT 35,FSIZE,FSIZEA
35 FORMAT (2FB.3)
CORFA $=1.0 / 100.0$
CORF $=25.4 / 1.0$
WRITE (3,36) CORFA
36 FORMAT (1X,F5.2)
WRITE(3,36)CORFE
CORFC=FSIZE/(FSSIZEA*25.4)
WRITE (3,37)CORFC
37 FOFMM ($1 \times, F 12.10$)
F: MCROFFSIZE/2.0
NFOINT=FMICRO/ (CORFA*CORFB*COEFC)
WFITE (3:38)MFDINT
38 FOFMAT (1X,F11.5)

WR:TE (3: 37) SQUARI
3GUAF2=*PGINT事2

TIPE + 4

THIS WILL EE D:FGFMULA A NFOTNTG, = FOFMULA A FICTURE IDFECT. $2=$ calculate mith of the afeas.

ACCEFT 4S, NUMEEF
4E FORMATIIL:
IF (NUMEEF , ED, B)GOTO 50
AREAR FFI*SQUAF1*SQUAR2
WFITE(3,47)AREAG
47 Fümat (1X,F11.7)
IF (NUMEER .EQ. O)GOTO 55
50 FSIZEA FFSIZEA*(FSIZE/FSIZEA)
FAIIE=FSIZEA/2.0

0061

AREAE=FT*FRADB**2
WRITE(3,52)AREAB

55 CONTINUE
THE SECOND STEF COFFECTS THE JRSERUEFS MICFTSCOPE FIELI SIZE (MEASUFEI BY STAGE MICFOMETEF) ANE COFFECTS TO KEFLEY'S SEUISEII DATA AS ESTAELISHEII BU UBELAKEF'S FE-EUALUATION OF KERLEY'S STU[IY.

KIIAM $=1.62$
KRAD $=1.52 / 2.0$
KAFEA=FI*KたA[1**2
WFITE (3, 47)KAFEA
DAFEA=AFEAA
IF (NUMEER .EQ, 1)OAREA=AREAE
Stage fielil corfecting value is calculateli gy Iiviting
ORSERVEF'S AREA INTO KERLEY'S AREA ANII MULTIFLYING IT
with osteones, fragments, and non-Halversian canals.
lamellae gone anil other features are not effectein.

CUMSF STANIS FOF CORFECTING VALUE MICROSCOFE STAGE FIELI.
CUMSF=KAREA/DAREA
WFITE(3,47)CUMSF
OBTAIN NECESSAFY INFORMATIDN FFOM FESULT, OAT.
TYPE 56

ACCET 37, GQ
5? FREMATI:

(10) $2=1,3$

FKINGIT)=FLDAT (JKINT (I:
58 contrnue
WRITE(3,72)FKINTI(1)
WRITE (3,72) PRIRE(2)
WRITE(3,72)FKINIG3)
$0031 I=1,3$
FCOUNT:I)=FKINII(I)*CUMSF
61 continue
WRITE(3,72)FCOUNT(1)
WFITE (3,72)FCOUNT(2)
WRITE (3,72)FCOUNT (3)

0095
0096
0097
0098
0079
0100
0101
0102
0103
0104
0105
0106
C
C FKIINIMI)CONTAINS COFRECT VALUES DF OSTEONS ANI FFAGMENTS
© JKIND(5) CONTAINS NUMEER OF FEABSORFTION HOLES
C JKINI(6) CONTAINS EOUNIIAFY GFEA
C JKINB (7) CONTAINS NUMEEF OF OTHER FEATURES
C F'ERCNT CONTAINS THE UNEFFECTED LAMELLAE BONE
GOTO 79
60 KEAII (2,65, ENII=999) (JKINII $(K), K=1,7), F E F C N T$
65 FOFMAT (7(I6, 1), 28X,F8.3)
TYFE $65,(J K I N I(K), K ゙=1,7)$,FEFRCNT
D10 $7 \mathrm{G}=1.4$
FKINII(I)=FLOAT(JKINI(I))
70 CONTINUE
WFITE(3,72)FKINI(1)
72 FOFMAT (1X,F6.2)
WKITE (3,72)FKINII (2)
WRITE 3,72 FKKINU(3)
WFITE (3,72) FKINI(4)

THE THIRD STEF IS TO MULTIPLY THE VALUES BY 4 SINCE
KERLEY'S FEGRESSION FOFMULAES AFE BASED ON 4 FIELD
AREAS OF UISION ANI WE AFE UNLY USING ONE.
$[1075 \quad 1=1,4$
FCOUNT $(I)=F K I N D(I) * 4.0$
75 CONTINUE
WRITE (3,72)FCOUNT(1)
WFITE (3,72)FCOUNT (2)
WFITE(3.72)FCOUNT(3)
WFITE(3, 72)FCD!NT (4)
$0077, i=: 94$
FCOUNT (I) FFCOUNT (I) WCUMSF
77 CONTINUE
WEIE(3.72)FCOUAT (1)

W5[TE:3,72,GEDUNT: 3)

FCOUNT:I, FCOUNT(1)+EEGEN
能ITE(5:? (2)FCOUNT(1)
79 FFEFCT-FEFCHT/10.0
URITE(3:72)FPEFCT

E
C
C
C
NOW IN THE LAST STEF JNE SELECTS THE BONE TYFE ANL
GETFESSIOA formulas TO BE USEI.

TYF'E 80
80 FOFMAT (' WHICH KINI DF EONE IS BEING USEII IN THE SAMFLE?') ACCEPT 8S,VALUE
Э5 FORMAT(II)

C
C NOW TO SOMFUTE THE AGE FFOM THE REGFESSION FORMULA(S)
C FOR THE UALUE SELECTEL ONE MUST THEN CHOICE THE AFFFROFRIATE
C FEGFESSION formulas INIIVIIUAL SCOFE OR IN COMEINATIONS.
C SELECT SCORE VALUE(S)I, 2.3.4.
C
IFGUALUE GT. D)EUTG Y
TYFE 90
70. FOKHAT(1X, YOUN GEGEESSION formulas ARE: OSTEONES,
12 NUN-HAVEFSIAN:3 FFAGMENTS: ANI: 4 LAMELLAF')
GOTO 115
95 IF (VALUE .GT, 1)EOTO 105
TYFE 100
100 FOFMAT (1 X, 'YOUF: FEGFESSIUN formulas ARE: 1 DSTEONES,
12 NON-HAVEFSIAN, 3 FRAGMENTS, ANI: 4 LAMELLAF')
GOTO 150
105 TYFE 110
110 FORMAT ($1 X$, 'YOUF: FEGRESSION formulas ARE:1 DSTEONES,
12 NON-HAVEFSIAN, 3 FFAGMENTS, ANI 4 LAMELLAR')
GOTD 175
1IS CONTINUE
TYPE 117
117 FGKMAT('\$SELECT BCOFE VALUE(S) 1,2,3,4')
In $120 \quad \mathrm{I}=1,4$
JCOFE (I)=0
120 CONTINUE
ACCEPT 2 $25,(S C O E E: I ; I=1,4$)
WFITE (3, 125) (ECOFE:I), I $=1,4$)
125 FOFMAT(1X,4II)
IO $147 \quad[=1.4$
XFSCCOFE?I) +NE , I YOTO 130
$x \rightarrow F$ STURT $: ~ A$

AGE1-y+9.13

150 LUATEMUE

$x=F$ COUNT (2)

AOE1- $\gamma+12.12$
AGE2=r-12,12
WEITE (S: 1 SE) AGEI
WFITE (3, 135)AGE?
140 CONTINUE
IF!SCOFE (I) , NE , 3) BiTT 45
$X=$ FCOUNT (3)
$Y=5.241+0.509 * x+0.017 \% x^{2} * 2-0.00015 * x * * 3$
AGE1 $=Y+6.98$

0178
0179
0130
0181
0182
0183
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0202
0203
0204
0205
0206
0207
0208
0209
0211
0212
0213
0214
$09!5$
0216
0 ? 17
0218
0220
0221
02 c ?
0223
0224
0225
0226
0227
0228
0230
0231
0232

```
        AGE2=Y-6.78
        WRITE(J,135)AGE1
        WRITE(3:135)AGE?
    145 CONTINUE
        X=FFEFCT
        IF\SCORE(I) .NE, 4;GOTO 147
        Y=75.017-1.790*X+0.0114*X**2
        AGE1=Y+12.52
        AGE2=Y-12.52
        WRITE (3,135)AGE1
        WRITE(3,135)AGE2
    147 CONTINUE
        GOTO 200
    150 LONTINIJE
        TYFE 117
        I10 155 I=1,4
        SCORE(I)=0
    155 CONTINUE
        ACCEFT 125, (SCOFE(I),I=1,4)
        WRITE (3,125)(SCORE (I),I=1,4)
        DO 172 I=1,4
        IF(SCORE(I) ,NE , 1)GOTO 160
        X=FCOUNT(1)
        Y=13.4218+0.660%X
        AGE1=Y+10.53
        AGE2=Y-10.53
        WFITE(3,135)AGE1
        #FITE(3,135)AGE2
    1&O CUNTINUE
        IF(SCOFE(I) ,NE , 2)GOTO 165
        X=FCOUNT:2)
        Y=67.872-7.070*X+0.440****2-0.0062*X**3
        AGEi=Y+10.19
        AGE2=Y-10.19
        WFITE(3:135)AEE1
        WN..!E{3:1こ5)AOE?
    &G5 GONTINUE
        IF{SCOFE(I) , HE = 3)SDTO -70
        X=F:0!20%(3)
        O=-26,07%+2.501kX-0.014*x**2
        A5E1=Y+9.42
        45E2-7-3.42
        WFITE(3,135)AGE1
        WRITE(3,!35)AGE2
    170 CENTINUE
        X=FF'EFOT
        IF(SEORE(I) ,NE, 4jGUTG 172
        Y=30.754-2.281kX+0.01%*X**2
        AGE1=Y+14.2E
        AGE2=Y-14.28
        WFITE (3,135) AGE1
        WFITE(3,135)AGE?
    172 CONTINUE
```

0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0247
0248
0249
0250
0251
0252
0253
0254
0256
0257
0258
0259
0260
0261
0262
0263
0265
0266
0267
0263
0269
0270
0271
0272
0273
925
027 s
0277
0272
0279
0230
0281
0282

0283
0284
0285
0236

6070200
1.75 CONTINUE.

TYF'E 117
(10 $180 \quad \mathrm{I}=1,4$
SCORE (I) $=0$
180 CONTINUE
ACCEFT 125, $\operatorname{SCORE}(I), I=1,4)$
WRITE (3,125)(SCOFE (I), I=1,4)
[i0 $197 \mathrm{I}=1,4$
IF(SCORE(I) .NE, 1)GOTO 185
$X=F C O U N T(1)$
$Y=-23.59+0.74511 * X$
$A G E 1=Y+8.33$
AGE2 $=Y-3.33$
WFITE (3,135) AGE1
WRITE(3,135)AGE2
185 CONTINUE
IF(SCORE(I) .NE, 2)GOTO 190
$X=F \operatorname{COUNT}(2)$
$Y=62.33-9.776 * X+0.5502 * X * * 2-1) .00704 * X * * 3$
AGE $1=Y+14.62$
AGE2 $=Y-14.62$
WRITE $(3,135)$ AGE 1
WRITE (3,135)AGE2
190 CONTINUE
IF (SCOFE(I) ,NE, 3)GOTO 195
$X=F$ COUNT (3)
$Y=-9.89+1.054 * x$
AGE $1=Y+3.66$
ALEE $2=Y-3.66$
WRITE(3.135)AGEI
WRITE(3,135)AGE2
195 CONTINUE
$X=$ FFERCT

AGED:+10.14
ADE:-1-10.? 7
WhITE (3:135)95E.

197 SON MME
6050. 200

200 CONTINE
C
C CLOSE ALL FILES.
\because
CLOSE (UNIT=2, IISPOEE='SAVE':
CLOSE (JHIT=3,DISFOSE='SAUE':
999 STBF
ENI

Gale David Slutzky was born in Omaha, Nebraska on March 13, 1952. He attended elementary schools in Cheyenne, Wyoming, and was graduated from Cheyenne Central High in May 1970. The following September he entered Colorado State University but transferred to the University of Wyoming. He took several years off from his studies and returned to the University of Wyoming in August 1973, and in May 1976 he received a Bachelor of Arts degree in Anthropology. In the fall of 1976 he started graduate school at The University of Tennessee, Knoxville and began study toward a Master's degree. This degree was awarded in March 1981.

Gale is a member of the American Association of Physical Anthropologists, Tennessee Anthropological Association and the American Academy of Forensic Sciences. He has worked for the Image Pattern and Analysis Laboratory in the Department of Electrical Engineering at The University of Tennessee, Knoxville while obtaining his Master's degree.

He is married to the former Toni McDonald of Cheyenne, Wyoming, and they have one daughter, Ilana Rae.

