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Climate	change	is	expected	to	impact	weed	communities	in	Maine,	and	the	efficacy	of	tools	and	

tactics	farmers	use	to	manage	them.	Through	seedbank	sampling	and	surveys	of	Maine	organic	farms,	

we	identified	currently	rare	weeds	that	are	known	to	be	especially	abundant	or	problematic	in	warmer	

areas	of	the	USA	and	might	therefore	represent	an	emerging	agronomic	risk.	Many	ecological	weed	

management	strategies	that	focus	on	depleting	the	weed	seedbank	are	expected	to	remain	effective	in	

a	changing	climate,	and	become	increasingly	important	as	efficacy	of	cultivation	and	some	herbicide	

applications	diminish	or	become	more	variable.	Through	field	experiments,	we	evaluated	the	efficacy	of	

one	seedbank	management	strategy,	soil	solarization	(clear	plastic)	for	stale	seedbed	creation.	We	

found	that	two	weeks	of	solarization	followed	by	flaming	created	an	effective	stale	seedbed,	reducing	

subsequent	weed	density	by	78%	as	compared	to	a	control	prepared	with	flaming	only.	In	response	to	

farmer	questions,	we	measured	solarization’s	impacts	on	soil	microbiota,	and	compared	its	weed	

control	efficacy	to	that	of	tarping	(black	plastic).	Soil	biological	activity	was	somewhat	reduced	by	

solarization,	though	results	are	likely	temporary.	Solarization	was	more	effective	than	tarping	in	one	

site-year,	but	tarping	outperformed	solarization	in	the	other.	Overall,	solarization	is	a	promising	weed	

management	strategy	for	high-value	crops,	and	one	that	is	likely	to	remain	effective	in	Maine’s	changing	

climate.	Maine	is	home	to	a	growing	population	of	beginning	farmers,	who	face	steep	learning	curves	



	
	

related	to	weed	management.	As	a	first	step	toward	improving	beginning	farmer	education,	we	

constructed	a	digital	tool	called	WEEDucator	designed	to	engage	users	in	interactive	learning	related	to	

ecological	weed	management.	Through	a	structured	educational	intervention	we	found	that	

WEEDucator	improved	knowledge	of	weed	ecology	and	management	among	agriculture	students,	and	

was	ranked	as	a	preferred	learning	method.	Overall,	the	findings	of	this	dissertation	can	aid	in	the	

development	of	outreach	materials	on	climate-resilient	ecological	weed	management	practices	suitable	

for	farmers	in	Maine.	
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CHAPTER	1	

REVIEW:	HOW	WILL	CLIMATE	CHANGE	IMPACT	THE	‘MANY	LITTLE	HAMMERS’		

OF	ECOLOGICAL	WEED	MANAGEMENT?	

1.1.	Introduction	

Ecological	weed	management	(EWM)	is	the	application	of	ecological	principles	to	weed	

management	decisions.	The	goal	of	EWM	is	to	simultaneously	manipulate	the	relationships	

between	crops,	weeds,	and	other	agroecosystem	components	to	advantage	the	growth	of	the	

crop	and	limit	the	growth	of	weeds,	while	minimizing	negative	environmental	impacts.	The	

multiple	benefits	of	EWM	can	include	reduced	need	for	pesticide	application	(Westerman	et	al.,	

2005),	improved	soil	quality	(Gallandt	et	al.,	1999),	and	preservation	of	biodiversity	(Benton	et	

al.,	2003).	Successful	EWM	typically	employs	the	use	of	multiple	management	tactics	

incorporated	into	diverse	farm	rotations,	or	“many	little	hammers”	(Liebman	&	Gallandt,	1997),	

to	stress	weeds	at	multiple	sensitive	points	in	their	lifecycles.	Unfortunately,	adoption	of	EWM	

by	farmers	has	lagged	behind	our	understanding	of	its	benefits,	due	at	least	in	part	to	the	barrier	

of	increased	systems	complexity	associated	with	EWM	(Bastiaans	et	al.,	2008;	Liebman	et	al.,	

2016).		

	 Our	climate	is	rapidly	changing	in	response	to	anthropogenic	activities	(IPCC,	2014),	and	

we	can	no	longer	claim	the	‘bliss	of	ignorance’	on	this	subject	(Ziska	&	Dukes,	2011).	Climate	

change	will	likely	affect	multiple	interconnected	aspects	of	farming	systems	(IPCC,	2014),	with	

substantial	implications	for	weed	management	(Figure	1.1).	It	is	human	nature	to	discount	the	

risks	of	large	scale	problems	like	climate	change	that	seem	distant	or	abstract	(Jones	et	al.,	

2017),	but	according	to	the	best	available	science,	we	cannot	rationally	afford	to	delay	action	on	

this	issue:	farmers	in	hard-hit	areas	of	the	world	are	already	adapting	to	climate	change	impacts.	

For	example,	in	response	to	increasing	drought,	Bangladeshi	farmers	reported	harvesting	
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rainwater,	managing	weeds,	and	implementing	new	cropping	strategies	(Hossain	et	al.,	2016).	

The	most	recent	assessment	report	from	the	International	Panel	on	Climate	Change	(2014)	

warns	that	mitigation	is	needed	immediately,	as	“insufficient	responses	are	already	eroding	the	

basis	for	sustainable	development”	in	some	areas	of	the	world.	Integration	of	on-farm	

adaptation	and	mitigation	strategies	(Sivakumar	&	Stefanski,	2006)	into	practical	and	locally	

applicable	farming	practice	(Johansen,	Haque,	Bell,	Thierfelder,	&	Esdaile,	2012)	is	a	pressing	

need.		
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Figure	1.1.	Factors	Interacting	with	Weed	Management	in	a	Changing	Climate.	This	conceptual	

diagram	shows	important	factors	that	may	interact	to	influence	ecological	weed	management	in	

a	changing	climate.		
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	 The	principles	of	sustainable	agriculture	have	been	suggested	by	the	IPCC	(2014)	and	

others	(Ngouajio,	2005;	Wall	and	Smit,	2005;	Wolfe	et	al.,	2018)	as	a	helpful	existing	framework	

for	climate	change	response.	EWM	fits	within	this	framework	(Liebman	&	Gallandt,	1997),	and	

may	be	considered	analogous	to	a	pre-adaptation:	practitioners	of	EWM	already	employ	diverse	

rotations	that	may	help	spread	risk,	while	minimizing	greenhouse	gas	emissions	and	building	soil	

quality	by	increasing	soil	organic	matter,	all	of	which	are	likely	to	aid	in	the	adaptation	to	or	

mitigation	of	climate	change	(Lengnick,	2015).	Recognizing	that	increased	diversity	of	rotations	

and	integration	of	non-chemical	control	tactics	are	already	being	advocated	and	adopted	to	

combat	herbicide-resistant	weeds	(Davis	&	Frisvold,	2017;	Liebman	et	al.,	2016)	the	barrier	of	

increased	management	complexity	that	has	heretofore	hindered	adoption	of	EWM	(Bastiaans	et	

al.,	2008)	may	be	less	prohibitive	than	in	the	past.			

1.1.1.	Climate	Change	Effects	on	Weeds	

The	ramifications	of	climate	change	for	weeds	growth,	phenology,	and	distribution	were	

first	considered	by	Patterson	(1995)	more	than	a	decade	before	Al	Gore’s	film	An	Inconvenient	

Truth	was	released.	Recent	reviews,	and	an	excellent	book	(Ziska	&	Dukes,	2011),	have	

summarized	the	literature	on	potential	impacts	of	rising	[CO2]	and	climate	change	on	weed	

biology	(Kathiresan	&	Gualbert,	2016;	Ramesh,	Matloob,	Aslam,	Florentine,	&	Chauhan,	2017;	

Roger	et	al.,	2015;	Ziska	&	McConnell,	2016),	demography	(Bradley	et	al.,	2010;	Clements	et	al.,	

2014;	Peters	et	al.,	2014),	and	chemical	control	(Ziska,	2016).	

In	isolation	from	other	changes,	[CO2]	enrichment	benefits	both	crops	and	weeds,	

favoring	species	with	C3	photosynthetic	pathways	over	C4	species	(Ziska	&	Dukes,	2011).	

However,	C4	plants	are	favored	by	increasing	temperature	and	water	stress,	both	likely	climate	

change	impacts	in	many	regions	(IPCC,	2014).	From	a	physiological	standpoint,	increased	[CO2]	

typically	results	in	increasing	(i)	weed	biomass,	(ii)	C:N	ratio	of	leaf	tissue,	and	(iii)	root:shoot	
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ratio	(Ziska	&	Dukes,	2011).	Increased	temperatures	can	facilitate	the	spread	of	invasive	weeds	

(Clements	et	al.,	2014),	and	high	phenotypic	plasticity	likely	pre-adapts	many	weed	species	to	

succeed	under	increasingly	variable	temperature	and	moisture	conditions.	Moreover,	weeds	

evolve	rapidly	(Neve	et	al.,	2009),	which	could	contribute	to	greater	range	expansion	under	

climate	change	than	predicted	with	current	models	(Clements	&	Ditommaso,	2011).			

How	[CO2]	impacts	combine	with	temperature,	moisture,	and	other	climatic	factors	to	

affect	future	competitive	outcomes	between	crops	and	weeds	existing	in	real-world	

communities	remains	largely	an	open	question	(Figure	1.1;	Ziska	&	McConnell,	2016),	though	

the	impact	of	many	factors	have	been	examined	individually.	Competition	studies	on	the	

impacts	of	[CO2]	on	crops	vs.	weeds	show	mixed	results,	with	weeds	favored	in	8	of	15	studies	

reviewed	by	Korres	et	al.	(2016).	Less	research	has	been	done	on	the	effects	of	tropospheric	

ozone	(O3)	on	weeds,	but	this	too	can	impact	weed-crop	competition	(Li,	Meng,	Guo,	&	Jiang,	

2015;	Shrestha	&	Grantz,	2005).	Some	studies	suggest	that	under	drought	conditions,	weeds	can	

gain	a	competitive	advantage	against	crops	(Finger,	Gilgen,	Prechsl,	&	Buchmann,	2013;	Valerio,	

Lovelli,	Perniola,	Di	Tommaso,	&	Ziska,	2013),	while	conversely,	dry	conditions	benefitted	

soybean	(Glycine	max	(L.)	Merr.)	in	competition	with	Ambrosia	artemisiifolia	L.	(common	

ragweed)	(Coble	et	al.,	1981).			

1.1.2.	Climate	Change	and	Weed	Management	

Research	and	reviews	of	the	practical	ramifications	of	climate	change	for	specific	weed	

control	practices	has	predominantly	focused	on	herbicide	application	and	efficacy.	Overall,	

weeds	are	expected	to	become	more	difficult	to	reliably	control	with	herbicides	under	

increasing	[CO2]	and	climate	change	(reviewed	in	Ziska,	2016).	For	example,	glyphosate	

tolerance	can	increase	in	response	to	[CO2]	(Manea	et	al.,	2011),	some	grasses	can	survive	

pinoxaden	under	elevated	temperatures	(Matzrafi,	Seiwert,	Reemtsma,	Rubin,	&	Peleg,	2016),	
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and	isoproturon	persistence	(effectiveness)	can	decrease	due	to	soil	warming	(Bailey,	2004).		

EWM	can	include	strategic	herbicide	use,	but	typically	relies	on	a	suite	of	tactics,	or	‘many	little	

hammers’	in	addition	to	or	in	lieu	of	chemical	control	(Liebman	&	Gallandt,	1997).	Practical	

implications	of	climate	change	for	the	many	non-chemical	tactics	integral	to	EWM	have	received	

scant	treatment	in	past	reviews	(Ziska	&	Dukes,	2011).		

1.1.3.	Purpose	of	Review	and	Methods	

Ziska	(2016)	identified	as	a	critical	area	for	future	research:	“Identification	or	synthesis	

of	non-chemical	weed	management	strategies	that	could	strengthen	weed	management	with	

projected	changes	in	climate	and	[CO2].”	In	this	chapter,	we	begin	to	address	this	knowledge	gap	

via	an	applications-focused	synthesis	of	the	literature	on	EWM	and	climate	change.	In	the	

sections	below,	we	(i)	summarize	likely	impacts	of	climate	change	to	agriculture	in	the	21st	

century;	(ii)	consider	the	implications	of	these	changes	for	commonly	employed	non-chemical	

EWM	practices;	(iii)	identify	opportunities	for	the	use	of	EWM	in	climate	change	adaptation	and	

mitigation;	(iv)	examine	barriers	to	farmer	adoption	of	climate	change	responses	including	

EWM;	and	(v)	suggest	directions	for	future	research.	

We	began	this	review	by	systematically	querying	the	databases	Web	of	Science	and	

Agricola	with	targeted	combinations	of	search	terms	(Table	1.1).	Two	searches	were	conducted	

on	3	Aug	2017,	the	second	of	which	utilized	a	broader	set	of	terms	than	the	first.	Combined,	

these	searches	yielded	41	unique	abstracts.	Considering	this	insufficient	coverage,	a	third	search	

using	a	yet	broader	set	of	terms	was	conducted	on	16	Aug	2017	(Table	1.1),	through	which	an	

additional	137	abstracts	were	identified.	Many	identified	papers	are	cited	herein,	though	some	

were	omitted	due	to	lack	of	direct	relevance	or	redundancy	with	other	papers.	We	have	also	

consulted	and	cited	several	additional	sources.	Although	we	have	attempted	a	comprehensive	
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review,	it	is	almost	certain	that,	given	the	interdisciplinary	nature	of	the	topic,	we	have	missed	

relevant	studies.		

	

Table	1.1.		Summary	of	Systematic	Literature	Review.	This	review	was	conducted	using	the	

databases	Web	of	Science	and	Agricola.				

	Date	 Abstracts	
(No.)	

Search	terms	(Boolean	phrase)		

	
3	Aug	2017	

	
41	 "ecological	weed	management"	 AND	 "climate	change"	

	 	 "ecological	weed	management"	 AND	 "global	warming"	
	 	 "ecological	weed	control"	 AND	 "climate	change"	
	 	 "ecological	weed	control"	 AND	 "global	warming"	
	 	 "cultural	weed	management"	 AND	 "climate	change"	
	 	 "cultural	weed	management"	 AND	 "global	warming"	
	 	 "cultural	weed	control"	 AND	 "climate	change"	
	 	 "cultural	weed	control"	 AND	 "global	warming"	
	 	 "integrated	weed	management"	 AND	 "climate	change"	
	 	 "integrated	weed	management"	 AND	 "global	warming"	
	 	 "organic	weed	management"	 AND	 "climate	change"	
	 	 "organic	weed	management"	 AND	 "global	warming"	
	 	 "organic	weed	control"	 AND	 "climate	change"	
	 	 "organic	weed	control"	 AND	 "global	warming"	
	 	 "ecological	weed	management"	 AND	 climate	
	 	 "ecological	weed	management"	 AND	 weather	
	 	 ecology			AND			"weed	management"	 AND	 climate	
	 	 ecology			AND			"weed	management"	 AND	 weather	
	 	 	 	 	

16	Aug	2017	 137	 "weed	management"	 AND	 "climate	change"	
	 	 "weed	management"	 AND	 "global	warming"	
	 	 "weed	control"	 AND	 "climate	change"	
	 	 "weed	control"	 AND	 "global	warming"	
	 	 	 	 	

TOTAL	 178	 	 	 	
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1.2.	Climate	Change	Impacts	to	Agricultural	Systems	

Climate	change	is	already	impacting	agriculture,	and	according	to	the	most	recent	

Intergovernmental	Panel	on	Climate	Change	assessment	report,	negative	impacts	of	climate	

change	on	crop	yields	have	been	more	common	than	positive	impacts	(IPCC,	2014).	This	coming	

century,	along	with	further	increases	in	[CO2]	and	mean	global	temperature,	weather	patterns	

are	expected	to	become	more	variable	overall,	with	likely	increased	incidence	of	extreme	high	

temperatures	and	heat	waves	across	most	regions,	and	increased	incidence	of	heavy	

precipitation	in	many	parts	of	the	world	(Figure	1.2).	

Changes	in	temperature	and	atmospheric	conditions,	and	their	ramifications	for	plant	

growth,	may	be	more	nuanced	than	is	widely	appreciated.	Minimum	winter	temperatures,	

which	often	limit	plant	species	ranges	and	form	the	basis	for	hardiness	zone	designations,	are	

expected	to	increase	in	the	USA	at	a	faster	rate	than	mean	winter	temperatures	this	century	

(Parker	&	Abatzoglou,	2016).	This	has	obvious	implications	for	poleward	expansion	of	cold-

limited	species	like	Pueraria	montana	(Lour.)	Merr.	var.	lobata	(Willd.)	Maesen	&	S.M.	Almeida	

ex	Sanjappa	&	Predeep	(kudzu)	(Ziska	&	Dukes,	2011).		Similarly,	night	time	temperatures	in	the	

Northeast	USA	have	increased	at	a	faster	rate	than	daytime	temperatures	in	recent	years,	a	

trend	which	is	expected	to	continue	and	may	increase	night	respiration,	reducing	carbohydrate	

accumulation	and	crop	yields	(Wolfe	et	al.,	2018).	The	greenhouse	gas	tropospheric	ozone	(O3)	is	

likely	to	increase	in	parts	of	Asia	throughout	this	century,	with	negative	effects	on	plant	growth	

varying	by	species	and	cultivar	(Singh	et	al.,	2010).		
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					Observed	(late	20th	C)		
					Expected	(21st	C)		
Filled	circles	=	medium	to	high	confidence	
Open	circles	=	low	to	medium	confidence	due	to	lack	of	data	or	inconsistency	across	region	
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Figure	1.2.	Observed	and	Expected	Changes	in	Climate	Extremes.	Location	of	points	above	or	

below	1950s	baseline	indicates	trends	toward	higher	(+)	or	lower	(-)	incidence	of	periods	with	

high	maximum	temperatures,	high	(less	cold)	minimum	temperatures,	heat	waves,	heavy	

precipitation	events,	and	unusual	dryness.	Trends	are	summarized	for	six	major	world	regions	

based	on	IPCC	SREX	(Handmer	et	al.,	2012).			
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An	assessment	of	recent	drought	risk	found	overall	risk	to	be	most	severe	in	parts	of	

Africa,	Europe,	and	Asia	(Carrão	et	al.,	2016),	and	noted	that	most	areas	of	the	globe	currently	

lack	sufficient	infrastructure	(e.g.,	irrigation)	to	cope	with	drought.	Li	et	al.	(2009)	used	historical	

data	to	project	future	drought	risk	and	potential	impacts	on	yields.	They	anticipate	that	drought-

affected	area	and	drought	severity	will	increase	this	century,	with	resulting	significant	yield	

losses	to	major	food	crops.	Flood	risk	is	likely	to	increase	in	some	regions	of	the	world	while	

decreasing	in	others	(Kundzewicz	et	al.,	2014).	Hirabayashi	et	al.	(2013)	projected	potential	

increased	flood	risk	from	rivers	in	much	of	Central	and	South	America,	Africa,	and	Asia,	and	

decreased	risk	in	the	Middle	East,	much	of	Europe,	and	portions	of	North	America.			

Future	climate	change	impacts	to	agriculture	are	likely	to	include	location-specific	

changes	in	the	number	and	timing	of	‘field	working	days,’	or	days	when	soils	are	warm	and	dry	

enough	to	conduct	field	operations.	Increased	precipitation	can	decrease	field	working	days	by	

leaving	soils	too	waterlogged	to	conduct	field	operations.	Few	models	have	been	constructed	to	

predict	changes	in	field	working	days	under	climate	change,	and	all	on	fairly	limited	spatial	

scales	(e.g.,	Harris	and	Hossell,	2001).	Tomasek	et	al.	(2015,	2017)	proposed	methods	to	

optimize	such	models,	and	projected	that	for	Illinois,	USA	growing	season	length	by	end	of	

century	could	increase	by	several	weeks,	but	with	potential	decreases	in	field	working	days	

during	spring	planting	times.	

1.3.	Implications	for	Ecological	Weed	Management		

Fundamental	principles	of	EWM	include	reducing	seedling	recruitment,	improving	crop	

competitiveness,	and	reducing	seedbank	size	(Bastiaans	et	al.,	2008).	Diversifying	in-season	

management	to	include	physical	weed	control	–	either	in	addition	to	or	in	lieu	of	herbicide	use	–	

is	also	a	typical	component	of	EWM	schemes	(Liebman	et	al.,	2016).	In	a	changing	climate,	the	

“many	little	hammers”	(Liebman	&	Gallandt,	1997)	used	by	growers	in	implementing	EWM	will	
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very	likely	be	subject	to	changes	in	efficacy.	Potential	implications	of	rising	[CO2]	and	climate	

change	for	the	utility	of	important	EWM	practices,	encompassing	both	efficacy	and	likely	co-

benefits	provided	by	practices,	are	discussed	below	and	summarized	in	Table	1.2.	

1.3.1.	Reducing	Seedling	Recruitment	

Practices	that	limit	weed	emergence	may	become	increasingly	useful,	especially	

mulching	strategies,	which	in	addition	to	smothering	weeds	can	contribute	multiple	benefits	

likely	to	increase	on-farm	climate	change	resilience	(Lengnick,	2015).				

In	many	vegetable	and	fruit	crops,	use	of	natural	and	plastic	mulches	are	expected	to	

remain	effective	methods	of	weed	suppression,	while	further	allowing	conservation	of	soil	

moisture	in	dry	conditions,	and	reducing	erosion	and	damage	to	soil	structure	from	heavy	rain	

(Kader,	Senge,	Mojid,	&	Ito,	2017).	Mulches	are	therefore	considered	likely	to	become	

increasingly	beneficial	under	either	increasingly	wet	or	dry	conditions	(Table	1.2).	Mulches	may	

change	the	seasonal	distribution	of	a	farmer’s	workload,	as	they	require	labor	input	at	

application,	but	can	thereafter	diminish	hand	weeding	labor	(Brown	and	Gallandt,	2018A).	

Mulching	is	therefore	a	promising	strategy	for	reducing	risk	of	worker	heat	stress,	which	is	

expected	to	increase	with	climate	change	(IPCC,	2014),	though	the	warming	effect	of	black	

plastic	could	lead	some	crops	to	overheat	with	rising	temperatures,	a	factor	which	could	be	

overcome	by	switching	to	white	plastic.	Both	plastic	and	natural	mulches	may	improve	yields,	

but	in	developing	nations	plastic	may	be	less	available	and	more	expensive	than	natural	

materials	(Kader	et	al.,	2017).	By	contributing	to	increased	soil	organic	matter,	natural	mulches	

could	result	in	less	nutrient	leaching	over	time	(Connor	et	al.,	2011),	mitigating	an	additional	

challenge	posed	by	increased	rainfall.		
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Table	1.2.	Expected	Climate	Change	Effects	on	EWM	Efficacy.	Summary	of	expected	changes	in	
utility	of	ecological	weed	management	practices	under	climate	change	conditions:	+	indicates	
positive	change,	-	indicates	negative	change,	±	indicates	mixed	positive	and	negative	change,	
and	blank	space	indicates	insufficient	data.	
	
	
Principles	&	practices	
	

	
é[CO2]	

	 	
éTemp	

	
éH2O	

	
êH2O	

	 	 	 	 	
Reducing	seedling	recruitment	 	 	 	 	
	 Plastic	mulch	 	 ±	 +	 +	
	 Natural	mulch		 	 +	 +	 +	
	 Cover	crop	mulch	 	 +	 +	 +	
	 Tarping	 	 +	 	 	
	 	 	 	 	 	
Manipulating	competition	 	 	 	 	
	 Competitive	crops	&	cultivars	 	 	 	 ±	
	 Increase	plant	density	 	 	 	 ±	
	 Alter	spatial	arrangement	 	 	 	 ±	
	 Intercropping	&	living	mulch	 	 	 +	 ±	
	 Cover	crops	 	 	 +	 -	
	 Irrigation	placement	 	 	 -	 +	
	 Fertility	placement	 	 	 -	 +	
	 Transplant	 +	 ±	 +	 +	
	 	 	 	 	 	
Seedbank	reduction	 	 	 	 	
	 Stale	seedbed	 	 +	 ±	 +	
	 Soil	solarization	 	 +	 ±	 ±	
	 Harvest	weed	seed	control	 ±	 	 -	 +	
	 Short	duration	cover	crops	 ±	 	 +	 	
	 Summer	fallow	 	 	 	 +	
	 Seed	predation	 	 	 	 	
	 	 	 	 	 	
Diverse	physical	weed	control	 	 	 	 	
	 Tillage	 -	 	 -	 	
	 Cultivation	 -	 -	 -	 +	
	 Flaming	 -	 	 ±	 -	
	 Flooding	 	 	 	 	
	 Mowing	 -	 	 -	 	
	 Grazing	&	herbivory	 -	 ±	 	 	
	 Biocontrol	 	 	 	 	
	 Hand	weeding	

	
	 -	 	 	
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Advances	in	planter	technology	are	allowing	some	crops,	including	wheat,	to	be	sown	

into	heavy	residue	(Kumar	et	al.,	2013)	following	cover	crop	termination,	while	roller-crimping	

has	emerged	as	a	cover	crop	termination	method	that	allows	for	creation	of	a	weed	suppressive	

cover	crop	mulch	without	the	use	of	herbicides	(as	reviewed	in	Diacono	et	al.,	2016).	Combined	

with	high-residue	cultivators,	these	practices	can	facilitate	no-till	or	conservation	agriculture	

(CA),	which	can	result	in	high	water	infiltration	rates	and	increased	conservation	of	soil	moisture	

(Syswerda	and	Robertson,	2014;	Thierfelder	et	al.,	2017),	making	this	a	potentially	useful	

adaptation	to	drier	climate	conditions	(Feiza,	Feiziene,	Auskalnis,	&	Kadziene,	2010).	CA	can	also	

reduce	erosion	(Mafongoya	et	al.,	2016),	and	may	therefore	be	adaptive	in	areas	that	

experience	increased	incidence	of	heavy	precipitation	(Figure	1.2).	Indeed,	fields	in	which	

pumpkins	were	being	grown	under	CA	lost	nine	times	less	soil	than	conventional	plots	during	a	

simulated	storm	event,	without	sacrificing	yields	(O’Rourke	&	Petersen,	2016).	However,	most	

CA	is	still	heavily	dependent	on	herbicides,	and	weed	management	can	be	a	challenge	for	

farmers	who	either	choose	to	farm	organically	or	lack	access	to	chemical	control	options.	

Mafongoya	et	al.	(2016)	found	in	a	review	and	meta-analysis	of	CA	in	Africa	that	adoption	led	to	

more	hand-hoeing	labor.	For	smallholder	farmers,	improved	tools	for	two-wheel	tractors	or	

animal-drawn	rippers	and	seeders	may	facilitate	adoption	of	CA	(Johansen	et	al.,	2012).		

	 Because	light	cues	are	needed	to	break	dormancy	in	many	species	(Baskin	&	Baskin,	

1998),	practices	that	limit	the	exposure	of	weed	seeds	to	light	can	reduce	seedling	recruitment	

(Riemens,	Van	Der	Weide,	Bleeker,	&	Lotz,	2007).	Tarping,	the	practice	of	covering	soil	with	

black	plastic	tarps	for	several	weeks	prior	to	planting,	has	become	popular	among	growers	of	

high-value	crops	in	the	Northeast	USA	and	Canada	(Fortier,	2014)	and	can	result	in	creation	of	

an	effective	stale	seedbed	(see	Chapter	3).	Though	the	mechanisms	through	which	tarping	

reduces	seedling	recruitment	have	yet	to	be	fully	elucidated,	elevated	soil	temperatures	can	
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contribute	to	weed	seed	mortality	under	black	plastic	(Standifer	et	al.,	1984);	thus,	we	expect	

the	practice	could	become	more	effective	in	a	warming	world	(Table	1.2).		

	1.3.2.	Manipulating	Competition	

Choosing	fast-growing	species	and	cultivars,	manipulating	plant	spatial	arrangement,	

and	increasing	plant	density	are	all	strategies	that	have	long	been	used	to	benefit	crops	at	the	

expense	of	weeds	(Kumar	et	al.,	2013;	Liebman	&	Gallandt,	1997).	By	allowing	more	rapid	

canopy	closure,	these	strategies	could	potentially	reduce	evapotranspiration	(Connor	et	al.,	

2011)	and	therefore	be	helpful	under	conditions	in	which	moisture	is	limiting.	However,	at	

increased	plant	densities,	intra-specific	competition	for	limited	water	resources	could	negatively	

impact	crop	yields;	results	will	likely	be	context-specific	(Table	1.2).		

Cover-crops	provide	multiple	agronomic	benefits	(Brennan,	2017;	Syswerda	&	

Robertson,	2014),	and	can	contribute	to	weed	control,	particularly	when	termination	is	timed	to	

pre-empt	seed	rain	(Mirsky,	Gallandt,	Mortensen,	Curran,	&	Shumway,	2010).	In	the	future,	

cover	crops	may	become	less	desirable	in	increasingly	dry	areas	in	which	crops	rely	on	stored	

soil	moisture	as	depletion	of	water	resources	may	limit	growth	of	subsequent	crops	(Hunt	et	al.,	

2011).	In	areas	where	increased	heavy	precipitation	is	expected,	however,	cover	crops	may	

reduce	erosion	risk.					

We	would	intuitively	expect	intercropping	and	use	of	living	mulch	to	become	less	

desirable	under	reduced	moisture	conditions,	due	to	competition	for	water	resources.	There	

are,	however,	success	stories:	drought-tolerant	living	mulches	decreased	weeds	without	

impacting	yields	in	a	Japanese	asparagus	(Asparagus	officinalis	L.)	crop	(Araki	et	al.,	2012),	and	

some	Bangladeshi	farmers	have	responded	to	recent	droughts	by	intercropping	mango	

(Mangifera	indica	L.)	and	Indian	jujube	(Zizyphus	mauritiana	Lamarck)	with	rice	(Oryza	spp.)	

(Hossain	et	al.,	2016),	diversifying	their	farm	income	by	incorporating	drought-tolerant	trees	
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into	their	rice	cropping	system.	As	with	mulching	and	cover	crops,	intercropping	may	help	

protect	against	erosion	in	heavy	rains.							

Where	decreased	precipitation	and	soil	moisture	levels	are	expected,	strategies	like	drip	

irrigation	and	banded	fertilizer	application	may	be	increasingly	effective	at	providing	crops	with	

a	competitive	advantage	against	weeds.	Conversely,	competition	for	water	resources	may	

decrease,	and	fertility	may	be	more	likely	lost	due	to	leaching,	in	areas	that	experience	

increased	precipitation	and	soil	moisture	levels	(Table	1.2).	More	efficient	use	of	water	

resources	is	likely	to	benefit	farmers	in	many	regions	of	the	world	under	climate	change	(Figure	

1.2),	and	innovations	in	irrigation	technology	may	therefore	be	of	great	use.	Gerçek	et	al.	(2017)	

describe	a	novel	‘water	pillow’	irrigation	system	in	which	long	water-filled	black	plastic	tubes	

with	1mm	drip	holes	are	placed	alongside	crop	rows,	providing	both	mulch	and	gravity-driven	

drop	irrigation.	In	comparison	to	a	drip	irrigated	control,	their	water	pillow	treatment	showed	

higher	water	use	efficiency	and	less	weed	pressure,	while	maintaining	tomato	(Solanum	

lycopersicum	L.)	yield	(Gerçek	et	al.,	2017).			

	 In	applicable	crops,	transplanting	may	become	increasingly	beneficial	under	a	range	of	

future	conditions	(Table	1.2).	Transplanting	provides	crops	with	a	‘head	start’	against	weeds,	

which	may	be	increasingly	important	if	weed	seedling	growth	rates	increase	in	response	to	

temperature	and	rising	[CO2]	(Peters	&	Gerowitt,	2014;	Ziska	&	Dukes,	2011).	By	providing	a	

controlled	environment	for	root	system	development,	transplanting	may	also	reduce	mortality	

at	early	growth	stages	that	could	occur	due	to	moisture	extremes	in	a	field	setting	(Table	1.2).	

Use	of	larger	containers	for	starting	seedlings	could	be	a	simple	adaptation	to	increasing	

weather	variability,	providing	farmers	with	greater	flexibility	in	transplant	dates.	

Many	authors	have	suggested	that	breeding	programs	aimed	at	developing	climate	

change-adapted	varieties	should	select	for	cultivars	that	exhibit	rapid	growth	rates	or	enhanced	
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weed	supressiveness	(Ngouajio,	2005;	Kumar	et	al.,	2013;	Korres	et	al.,	2016;	Liebman	et	al.,	

2016;	Robertson	et	al.,	2016).	Specific	climate-adaptive	traits	to	prioritize	in	new	cultivar	

development	may	include	greater	root:shoot	ratio,	changes	in	leaf	area	and	arrangement,	and	

allelopathic	attributes	(Korres	et	al.,	2016),	as	well	as	growth	response	to		[CO2].	Ziska	and	

Blumenthal	(2007)	found	that	older	(1920s)	varieties	of	oat	(Avena	sativa	L.)	had	a	stronger	

response	to	[CO2]	than	varieties	from	the	1990s,	suggesting	that,	unfortunately,	past	breeding	

efforts	have	not	necessarily	selected	plants	that	are	well	adapted	to	rising	[CO2].	Crop	varieties	

with	a	higher	degree	of	plasticity	than	has	been	favored	in	the	past,	including	landraces	or	

heritage	varieties,	may	be	worth	re-considering;	though	maximum	yields	in	a	good	year	may	be	

reduced,	choosing	varieties	with	a	moderate	likelihood	of	success	under	a	wide	variety	of	

conditions	could	be	increasingly	sensible	in	a	more	variable	climate	(IPCC,	2014).			

1.3.3.	Seedbank	Reduction	

Seedbank	depletion	can	lead	to	a	sustained	reduction	in	weed	pressure	(Gallandt,	2006),	

which	is	expected	to	be	increasingly	desired	as	herbicides	(Ziska,	2016)	and	physical	weed	

control	measures	(Table	1.2)	exhibit	lower	or	more	variable	efficacy	with	climate	change.	

Successful	seedbank	management	requires	strategies	that	both	maximize	seedbank	‘debits’	and	

minimize	‘credits’	(Forcella,	Eradat-Oskoui,	&	Wagner,	1993),	effectively	targeting	weed	

germination	and	seed	rain.	Methods	of	weed	seedbank	management	include	stale	seedbed	

preparation,	soil	solarization,	harvest	weed	seed	control,	strategic	use	of	fallow	and	cover	crops,	

and	seed	predation.	

Encouraging	germination	is	the	most	effective	way	to	debit	the	weed	seedbank	

(Gallandt,	2006).		This	is	the	principle	behind	creating	a	stale	seedbed:	encouraging	weed	seeds	

to	germination,	then	subsequently	killing	seedlings	prior	to	crop	planting	or	emergence,	often	

with	shallow	cultivation	(Johnson	&	Mullinix,	2000)	or	flaming	(Rasmussen,	2003).	A	major	
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trade-off	to	stale	seedbed	creation	is	that	it	takes	time	for	weeds	to	germinate,	and	farmers	in	

regions	with	short	growing	seasons	may	be	unwilling	to	‘waste’	growing	degree	days	on	this	

practice.	The	longer	growing	seasons	expected	with	continued	global	temperature	rise	could	

therefore	lead	to	wider	applicability	of	this	practice	(Table	1.2).	Efficacy	may	be	increased	by	

irrigating	after	tillage	to	encourage	a	larger	‘flush’	of	weeds	(Benvenuti	&	Macchia,	2006;	Kumar	

et	al.,	2013).	This	suggests	that	stale	seedbeds	could	become	increasingly	effective	under	a	

climate	future	with	increasing	moisture,	provided	wet	soils	do	not	limit	field	access.	Though	it	

seems	paradoxical,	efficacy	could	also	increase	with	aridity	in	some	circumstances:	greenhouse	

experiments	designed	to	measure	the	effect	of	variable	precipitation	on	emergence	of	

Chenopodium	album	L.	(common	lambsquarters)	and	Setaria	faberi	Herrm.	(giant	foxtail)	found	

that	emergence	of	both	species	increased	with	longer	intervals	between	precipitation	events	at	

low	precipitation,	but	responses	varied	under	typical	precipitation	amounts	(Robinson	&	Gross,	

2010).	

Solarization	is	an	intensive	form	of	stale	seedbed	preparation	that	utilizes	clear	plastic	to	

trap	solar	energy,	heating	soils	to	temperatures	hot	enough	to	kill	weed	seeds	or	seedlings	

(Horowitz	et	al.,	1983;	Standifer	et	al.,	1984).	We	recently	demonstrated	that	solarization	can	

result	in	reduced	weed	density	and	mortality	of	weed	seeds	in	the	Northeast	USA	(Chapters	3-

4),	suggesting	that	its	applicability	in	temperate	regions	may	be	greater	than	previously	assumed	

(Walters	&	Pinkerton,	2012).	Efficacy	of	this	practice	generally	increases	with	both	ambient	air	

temperature	and	soil	moisture	(Yitzhak	Mahrer	&	Shilo,	2012),	though	it	is	also	strongly	affected	

by	light	intensity,	which	is	impacted	by	cloudiness.			

Harvest	weed	seed	control	(HWSC)	uses	specialized	machinery	pulled	behind	a	combine	

to	pulverize	harvested	weed	seeds	before	releasing	the	debris	back	into	the	field	(Walsh	et	al.,	

2013).	Weed	seed	retention	at	harvest	is	essential	for	success	of	HWSC.	Rising	[CO2]	is	expected	
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to	alter	flowering	dates	of	many	crop	and	weed	species,	which	may	impact	future	efficacy	of	

HWSC	depending	on	weed-crop	combination	(Table	1.2).	For	example,	elevated	[CO2]	delayed	

flowering	of	Lolium	perenne	L.	ssp.	multiflorum	(Lam.)	Husnot	(Italian	ryegrass)	(Cleland,	

Chiariello,	Loarie,	Mooney,	&	Field,	2006)	but	did	not	alter	flowering	of	wheat	(Triticum	

aestivum	L.)	(Sæbø	&	Mortensen,	1996),	suggesting	that	HWSC	could	become	more	effective	for	

this	weed-crop	combination	due	to	increased	seed	retention	at	harvest.	In	contrast,	elevated	

[CO2]	accelerated	flowering	of	Amaranthus	retroflexus	L.	(redroot	pigweed)	(Garbutt,	Williams,	

&	Bazzaz,	1990)	and	did	not	alter	flowering	in	maize	(Zea	mays	L.)	(Leakey,	2006),	suggesting	a	

potential	for	reduced	HWSC	efficacy	in	this	weed-crop	combination.	For	a	thorough	review	of	

[CO2]	effects	on	flowering	time,	see	Springer	and	Ward	(2007).	Of	course,	[CO2]	does	not	act	in	

isolation;	temperature	also	affects	crop	and	weed	phenology	(Ziska	&	Dukes,	2011),	while	the	

impacts	of	altered	precipitation	regimes	(Figure	1.2)	on	field	working	days	during	the	harvest	

period	may	increase	or	restrict	the	timely	use	of	HWSC	(Table	1.2).		

Fallow	periods	(Gallandt,	2014;	Rodenburg,	2011)	and	short	duration	cover	crops	

(Mirsky	et	al.,	2010)	both	rely	upon	timely	disturbance,	usually	by	shallow	tillage	to	encourage	

seedbank	depletion	through	germination	and	subsequent	pre-emption	of	seed	rain.	As	with	

HWSC,	effects	of	rising	[CO2]	(Springer	&	Ward,	2007)	and	temperature	(Ziska	&	Dukes,	2011)	on	

flowering	time	in	some	weed	species	may	impact	the	necessary	timing	or	frequency	of	

disturbance.	Summer	fallow	periods	also	have	utility	for	conserving	soil	moisture	in	water-

limited	areas	(Hunt	&	Kirkegaard,	2011;	Manalil	&	Flower,	2014),	suggesting	an	important	co-

benefit	of	this	practice	for	water-limited	systems.	Short	duration	cover	crops,	however,	may	

become	increasingly	advantageous	in	areas	with	more	frequent	or	heavier	precipitation	events,	

as	they	offer	the	co-benefits	of	soil	protection	and	erosion	control	(Table	1.2).		
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	 Seed	predation	by	invertebrates	including	carabid	beetles	could	increase	locally	in	a	

warming	climate,	since	invertebrate	activity-density	and	seed	consumption	rates	often	increase	

with	rising	temperature	(Saska	et	al.,	2010;	Noroozi	et	al.,	2016).	However,	these	relationships	

will	be	impacted	by	changing	demography	of	seed	predators	and	the	flora	and	fauna	with	which	

they	interact,	including	changing	migration	patterns	of	birds	(Charmantier	&	Gienapp,	2014)	

which	can	be	important	seed	predators	in	some	systems	(Birthisel,	Gallandt,	Jabbour,	&	

Drummond,	2015).	Mohles	and	Westoby	(2003)	undertook	a	literature	review	to	test	the	

hypothesis	that	seed	predation	is	greater	in	the	tropics	than	in	cooler	regions.	Contrary	to	

expectations,	they	found	no	relationship	between	seed	predation	and	latitude,	suggesting	that	

large-scale	trends	in	seed	predation	might	be	relatively	unaffected	by	climate	change,	and	more	

information	is	needed	before	making	strong	predictions	on	this	topic	(Table	1.2).		

Climate	change	likely	has	further	implication	for	the	longevity	and	dynamics	of	not	only	

weed	seeds	(Long	et	al.,	2015),	but	other	propagules	including	perennial	roots	and	rhizomes.	As	

one	example,	declining	winter	snowpack	may	allow	soils	to	freeze	to	greater	depths	(Tatariw	et	

al.,	2017;	Patel	et	al.,	2018),	potentially	increasing	propagule	mortality.	Farmers	in	Japan	have	

employed	this	mechanism	to	kill	overwintering	Solanum	tuberosum	L.	(potato)	weeds,	

mechanically	removing	snow	from	their	fields	to	increase	frost	depth	(Yanai	et	al.,	2014).		

Strategic	fallowing	to	bring	perennating	organs	closer	to	the	soil	surface,	thereby	increasing	

mortality	through	freezing	in	winter	(Schimming	and	Messersmith,	1988)	or	desiccation	in	

summer	(Foster,	1989;	Liebman	et	al.,	2001)	may	become	increasingly	effective	with,	

respectively,	decreasing	snowpack	and	increasing	aridity.						

1.3.4.	Diverse	Physical	Weed	Control	

Physical	weed	control	practices,	especially	tillage	and	cultivation,	are	integral	to	many	

EWM	systems.	Climate	change	has	substantial	implications	for	efficacy	of	physical	weed	control	
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since	as	these	practices	are	generally	more	sensitive	to	environmental	conditions	than	are	

herbicide-based	controls	(Liebman	et	al.,	2001).		

		 Changes	in	precipitation	frequency	and	amount	will	likely	alter	the	number	and	seasonal	

distribution	of	field	working	days,	affecting	a	farmer’s	ability	to	implement	timely	physical	weed	

control.	Whether	field	working	days	will	increase	or	decrease	at	key	times	of	year	is	expected	to	

vary	by	locale	(Tomasek	et.al.,	2017).	Attempts	to	predict	field	working	day	probabilities	under	

simulated	climate	change	conditions	are	surprisingly	few	(Cooper	et	al.,	1997;	Harris	and	

Hossell,	2001;	Trnka	et	al.,	2011;	Tomasek	et	al.,	2017),	but	may	offer	a	window	into	future	risk	

that	could	help	farmers	prioritize	strategic	equipment	and	infrastructure	investments.		

Tillage	efficacy	for	control	of	perennial	weeds	may	decrease	in	future	as	rising	[CO2]	is	

known	to	increase	root:shoot	ratio	of	several	perennial	species	(Ziska	&	Dukes,	2011),	which	

could	facilitate	regrowth	from	root	fragments.	Though	tillage	will	likely	continue	to	be	an	

effective	means	of	killing	annual	weeds,	changes	in	phenology	may	alter	the	times	of	year	at	

which	tillage	is	most	helpful.	For	example,	Zahra	et	al.	(2009)	reported	that	all	the	significant	

winter	annual	weeds	in	Canada	are	facultative;	movement	away	from	fall	weed	management	

might	therefore	encourage	current	summer	annuals	to	become	winter	annuals	with	climate	

change.	Conversely,	Tozzi	et	al.	(2014)	found	that	winter	warming	periods	limited	the	success	of	

Erigeron	canadensis	L.	(Canada	fleabane)	as	a	winter	annual	by	reducing	the	survival	of	rosettes	

and	seedlings,	but	also	promoted	earlier	flowering,	implying	that	earlier	spring	tillage	or	other	

suitable	control	measures	might	be	needed	in	future	to	pre-empt	seed	rain	for	this	species.			

Efficacy	of	shallow	soil	disturbance	(cultivation)	often	improves	with	dry	soil	conditions	

(Cirujeda	and	Taberner,	2004;	Evans	et	al.,	2012),	implying	that	cultivation	may	be	increasingly	

useful	in	areas	of	the	world	expected	to	experience	increased	dryness,	but	less	reliable	in	areas	

experiencing	increasing	soil	moisture	(Figure	1.2).	Duration	of	the	‘critical	weed	free’	period	
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during	which	weeds	must	be	controlled	to	avoid	reductions	in	crop	yield	is	also	moisture	

sensitive.	For	example,	Coble	et	al.	(1981)	reported	that	the	critical	weed	free	period	for	A.	

artemisiifolia	was	two	weeks	in	dry	years	compared	to	four	weeks	in	wet	years.	Peters	and	

Gerowitt	(2014)	measured	increased	height	in	three	annual	weed	species	grown	under	

increased	temperature	and	low	humidity,	suggesting	that,	given	cultivation	is	most	effective	on	

small	seedlings	(Cirujeda	&	Taberner,	2004),	rising	temperatures	could	contribute	to	declining	

efficacy	in	some	circumstances.	The	utility	of	cultivation	for	control	of	perennial	weeds	is	

already	low,	and	may	decline	with	the	positive	effects	of	rising	[CO2]	on	root:shoot	allocation	

(Ziska	&	Dukes,	2011).	We	are	aware	of	no	studies	comparing	impacts	of	rising	[CO2]	to	growth	

allocation	in	annual	weeds	compared	to	crops,	though	studies	on	this	topic	would	be	useful	in	

predicting	ramifications	of	[CO2]	increase	for	selectivity,	a	crucial	consideration	for	in-row	

cultivation	(Kurstjens	&	Perdok,	2000).			

In	regions	where	field	working	days	may	become	fewer	or	less	predictable,	strategies	

that	increase	cultivation	efficacy	and	reduce	variability	may	help	farmers	make	best	use	of	

‘breaks	in	the	weather’	when	conditions	are	suitable	for	cultivation.	Brown	and	Gallandt	(2018)	

found	that	strategically	“stacking”	multiple	cultivation	tools	for	a	single	pass	resulted	in	

relatively	high	cultivation	efficacy	(75%),	with	evidence	of	synergistic	effects	based	on	the	

combined	modes	of	action	between	implements.	For	some	tool	combinations,	this	synergy	was	

maintained	across	a	range	of	weed	sizes	and	soil	moisture	conditions	(Brown	&	Gallandt,	2018),	

making	this	a	promising	practice	for	a	climate	future	characterized	by	increased	seedling	growth	

rates	and	precipitation	variability.	Use	of	wider	cultivation	machinery	could	allow	more	ground	

to	be	covered	per	cultivation	pass,	representing	another	strategy	for	optimizing	use	of	

potentially	limited	field	working	days.	Similarly,	camera	guidance	systems	that	use	hydraulic	

side-shifting	to	maintain	precise	distance	between	cultivation	implements	and	crop	rows	
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(Melander,	Lattanzi,	&	Pannacci,	2015)	may	improve	working	rates,	and	are	being	adopted	for	

use	in	vegetable,	row,	and	cereal	crops.	Finally,	progress	in	robotic	technology	is	paving	the	way	

for	further	mechanization	of	cultivation	operations	(Fennimore	et	al.,	2016;	Merfield,	2016;	

Bawden	et	al.,	2017);	lightweight	autonomous	robotic	weeders	could	access	fields	too	muddy	

for	tractor	operations,	expanding	the	conditions	suitable	for	cultivation	and	other	physical	weed	

control	techniques.				

Flaming	can	be	conducted	with	tractor-drawn	equipment,	or	at	small	scales	with	a	hand-

held	torch	and	backpack-mounted	propane	cylinder.	It	remains	effective	when	soils	are	moist	

(Ascard,	Hatcher,	Melander,	&	Upadhyaya,	2007),	but	tractor	accessibility	could	become	limited	

under	wet	conditions.	In	increasingly	arid	regions,	applicability	of	flaming	could	be	limited	due	

to	danger	of	wildfires	(Ziska	and	Dukes,	2011;	Table	1.2).						

	 Flooding	is	an	effective	and	commonly	used	weed	control	strategy	for	transplanted	rice	

(Kumar	et	al.,	2013),	and	was	listed	by	Rodenburg	(2011)	as	a	practice	that	may	contribute	to	

climate	change	adaptation	in	African	rice	systems.	However,	its	continued	applicability	and	

potential	for	expansion	in	a	changing	climate	will	be	contingent	upon	future	water	availability.		

Irrigation	and	water-holding	infrastructure	may	be	forward-looking	investments	for	some	

farmers	(Kumar	et	al.,	2013),	but	will	only	be	beneficial	if	sufficient	irrigation	water	is	locally	

available,	and	given	that	projections	of	future	precipitation	and	water	availability	are	

characterized	by	uncertainty	(Kundzewicz	et	al.,	2014;	Li	et	al.,	2009),	we	defer	to	Rodenburg’s	

(2011)	view	that	there	is	no	“one-size	fits	all”	solutions	for	rice	growers	in	a	changing	climate.			

	 Where	water	is	not	limiting,	increasing	[CO2]	could	increase	plant	growth,	thereby	

necessitating	more	frequent	mowing	or	grazing	to	control	grassland	weeds	(Ziska	and	Dukes,	

2011).	Rotational	grazing	can	be	beneficial	for	weed	control	(Tozer	et	al.,	2008),	and	has	been	

cited	as	a	climate	change	best	management	practice	in	Vermont,	USA	(Helling,	Conner,	Heiss,	&	
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Berlin,	2015),	but	it	may	not	be	ideally	suited	to	all	regions:	grazing	with	sheep	in	a	Montana	

dryland	cropping	system	did	not	reduce	global	warming	potential	in	comparison	to	herbicide	

application	(Barsotti,	Sainju,	Lenssen,	Montagne,	&	Hatfield,	2013).	Rising	temperatures	and	

changes	to	the	C:N	content	of	weed	biomass	(e.g.,	Blumenthal	et	al.,	2016)	could	impact	grazing,	

herbivory	by	insects,	and	biological	control	of	weeds.	Some	biological	control	agents	may	be	

capable	of	increasing	efficacy	(Kriticos,	Watt,	Withers,	Leriche,	&	Watson,	2009)	by	increasing	

feeding	rates	or	number	of	generations	possible	per	year	(Seastedt,	2014).	However,	different	

responses	to	warming	between	agent	and	host	may	alter	phenological	synchrony,	potentially	

decreasing	efficacy	(Seastedt,	2014).	Overall,	it	seems	premature	to	set	general	expectations	for	

how	this	might	impact	EWM.		

Hand	weeding	remains	common	practice	in	organic	(Baker	and	Mohler,	2015)	and	

specialty	crop	systems	(Fennimore	&	Doohan,	2008),	as	well	as	among	many	smallholder	

farmers	worldwide	(Gianessi,	2013;	Johansen	et	al.,	2012).	The	IPCC	(2014)	indicates	increased	

risk	of	mortality	and	morbidity	for	those	working	outdoors	during	periods	of	extreme	heat.	Since	

incidence	of	extremely	warm	days	and	heat	waves	are	expected	to	increase	globally	(Figure	1.2),	

it	follows	that	this	may	reduce	working	rates	for	hand	weeding	(Table	1.2)	and	other	manual	

tasks,	making	timely	and	effective	implementation	of	more	mechanized	control	tactics,	as	well	

as	cultural	practices	and	a	focus	on	reducing	seedbanks	and	seedling	recruitment,	increasingly	

important.	Difficulties	with	weed	control	were	reported	among	several	forms	of	climate-related	

occupational	stress	in	Southwest	Nigeria	(Oyekale,	2015),	where	increased	heat	waves	due	to	

climate	change	may	already	be	impacting	farming	(Figure	1.2).	Farmers	in	Bangladesh,	however,	

reported	strategic	hand	hoeing	as	a	climate	change	adaptation	they	used	to	minimize	drought	

impacts	(Hossain	et	al.,	2016);	farmers	simultaneously	hoed	and	closed	surface	cracks	in	their	

soil	to	minimize	water	loss.	Innovation	in	and	adoption	of	hand	tools	that	increase	working	rates	
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with	little	cost	to	efficacy	(E.	Gallandt,	unpublished	data)	could	benefit	small-scale	growers	

under	diverse	climatic	conditions.			

1.4.	Adoption	of	Value-Added	EWM	Practices	

“If	you	are	doing	something	for	just	one	reason…	Stop.”		

The	successful	vegetable	farmer	quoted	above	expressed	the	view	that	every	farm	

management	decision	should	result	in	multiple	benefits	(T.	Roberts,	personal	communication).	

IPCC	guidance	is	in	concordance,	recommending	climate	adaptation	strategies	that	have	co-

benefits,	including	adoption	of	more	environmentally	sustainable	agricultural	practices	(IPCC,	

2014).	Many	EWM	tactics	including	mulching,	transplanting,	and	situationally	appropriate	

practices	to	target	the	weed	seedbank	could	gain	greater	utility	with	climate	change	(Table	1.2),	

either	by	increasing	efficacy	of	weed	management	or	conferring	co-benefits	likely	to	enhance	

system	resilience.		

Given	that	farmers	may	underestimate	the	challenge	of	climate	change	(Jones	et	al.,	

2017),	outreach	outcomes	(i.e.,	adoption	of	climate	resilient	EWM	practices)	might	be	improved	

by	focusing	on	co-benefits.	Highlighting	this	point,	Li	et	al.	(2017)	found	that	the	climate	change	

adaptation	behavior	of	Hungarian	farmers	was	largely	driven	by	financial	and	managerial	

considerations,	though	experience	with	extreme	weather	and	social	factors	were	also	

important.	In	developed	nations,	the	need	for	increased	systems	complexity	has	been	a	barrier	

to	farmer	adoption	of	EWM	(Bastiaans	et	al.,	2008).	However,	complexity	of	conventionally	

managed	systems	is	expected	to	increase	regardless:	the	proliferation	of	herbicide-resistant	

weeds	and	paucity	of	new	herbicide	modes	of	action	(Davis	and	Frisvold,	2017;	but	see	Yan	et	

al.,	2018)	will	likely	necessitate	application	of	more	diverse	tactics	(Ziska	&	McConnell,	2016).	

Identification	of	diversified	management	strategies	that	allow	farmers	to	simultaneously	

address	the	co-occurring	challenges	of	herbicide	resistance	and	climate	change,	coupled	with	
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tailored	outreach	that	considers	farmer	decision	making	contexts	(Chatrchyan	et	al.,	2017;	

Liebman	et	al.,	2016),	could	be	of	great	benefit	in	our	present	climate.				

1.4.1.	Directions	for	Future	Research	

The	best	available	science	suggests	that	climate	change	is	already	impacting	agriculture	

and	will	do	so	increasingly	throughout	this	century	(Figure	1.2;	IPCC,	2014).	Many	questions	

remain	regarding	the	impacts	of	climate	change	and	rising	[CO2]	on	weeds	and	the	control	

strategies	employed	in	EWM.	Below,	we	briefly	outline	three	directions	for	future	research	that	

we	consider	to	be	of	high	priority,	on	topics	that	have	been	little	addressed	in	weed	science	

research	to	date.				

1. Understanding	farmer	decision-making.	Few	studies	have	examined	farmer	perceptions	

and	decision-making	around	EWM	(Jabbour,	Gallandt,	Zwickle,	Wilson,	&	Doohan,	2014;	

Jabbour,	Zwickle,	et	al.,	2014;	Zwickle,	Wilson,	Bessette,	Herms,	&	Doohan,	2016;	

Zwickle,	Wilson,	&	Doohan,	2014),	and	though	there	is	a	growing	literature	on	farmers	

perceptions	of	climate	change	(e.g.,	Roco	et	al.,	2015;	Arshad	et	al.,	2016;	Niles	and	

Mueller,	2016;	Chatrchyan	et	al.,	2017;	Li	et	al.,	2017),	substantial	knowledge	gaps	

remain.	We	are	aware	of	only	one	study	in	which	weed	management	and	climate	

change	perceptions	have	been	jointly	considered	(Hossain	et	al.,	2016).	More	

collaboration	with	social	scientists	in	bridging	this	gap	could	provided	guidance	for	

designing	targeted	outreach	approaches	(Jones	et	al.,	2017)	that	can	help	overcome	

barriers	to	adoption	of	climate	resilient	EWM	practices	(Liebman	et	al.,	2016).	

2. Creating	engaging	decision-aid	tools.		The	interface	of	EWM	and	climate	change	is	a	

complex,	dynamic	system	(Figure	1.1).	Simulation	models	have	been	extensively	used	to	

predict	weed	demographic	shifts	under	climate	change	(e.g.,	Kriticos	et	al.,	2009),	and	

can	facilitate	the	design	of	cost-effective	invasive	species	management	plans	(Richter,	
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Dullinger,	Essl,	Leitner,	&	Vogl,	2013),	but	we	have	seen	few	examples	of	success	in	

translating	such	models	into	user-friendly	tools	accessible	to	stakeholders.	Summers	et	

al.,	(2015)	developed	a	decision-aid	called	the	Landscape	Futures	Analysis	Tool	that	

includes	a	weed	management	model	and	an	ability	to	project	climate	changes,	and	the	

Climate	Smart	Farming	project	has	developed	several	excellent	tools,	though	none	as	

yet	related	to	weed	management	(CSF	Extension	Team,	2018).	Tools	that	engage	users	

in	learning	through	virtual	trial	and	error	may	be	useful	for	outreach	on	topics	like	EWM	

that	at	the	outset	can	appear	complex	or	abstract	(Chapter	5).		

3. Practical	research.	Expert	opinion	holds	that,	given	the	magnitude	of	the	challenge,	

humanity’s	collective	response	to	climate	change	has	thus	far	been	too	slow	(IPCC,	

2014).	Given	this,	there	seems	pressing	need	to	pursue	applied	solutions	that	offer	both	

mitigation	and	adaptation	benefits	(IPCC,	2014).	Research	to	reduce	variability	in	

efficacy	and	improve	the	fossil	fuel	efficiency	of	physical	weed	control,	including	

through	innovative	tool	design	(Brown	and	Gallandt,	2018)	and	robotic	weeders	

(Bawden	et	al.,	2017),	is	a	promising	area	of	inquiry.	Given	that	72%	of	the	world’s	farms	

are	less	than	1	ha	in	size	(Lowder	et	al.,	2016)	we	also	think	it	important	to	consider	

what	innovations	in	small-scale	tools	(Johansen	et	al.,	2012)	could	enhance	the	basis	for	

EWM	among	smallholder	farmers.	Finally,	we	believe	there	is	a	pressing	need	for	

cropping	systems	research	aimed	at	developing	‘value-added’	approaches	that	(i)	are	

profitable	and	help	diversify	farm	income,	(ii)	consider	local	farmer	opinions	and	

constraints,	and	3)	utilize	ecological	pest	management	and	minimize	external	inputs	

(Khan	et	al.,	2016;	Khan	et	al.,	2014).	Interdisciplinary	teams	(Jordan	et	al.,	2016;	

Liebman	et	al.,	2016)	may	facilitate	the	development	of	EWM	approaches	that	can	be	

fully	integrated	into	profitable	and	climate-resilient	cropping	systems	.			
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CHAPTER	2	

SCOUTING	FOR	‘RARE’	WEEDS	ON	MAINE	ORGANIC	FARMS	

2.1.	Introduction	

	 Agricultural	weeds	are	a	significant	production	challenge	on	organic	farms	in	the	

Northeast	USA	(Walz,	2004).	To	better	understand	how	climatic	and	edaphic	factors	impact	

weed	communities	in	our	region,	we	previously	undertook	a	study	of	weed	seedbanks	across	

Maine,	New	Hampshire,	and	Vermont.	We	found	that	temperature-related	variables	including	

latitude,	longitude,	and	mean	maximum	and	minimum	temperatures	were	generally	stronger	

and	more	consistent	correlates	with	weed	seedbank	composition	than	were	edaphic	factors	

(Smith	et	al.,	2018).	Further,	an	indicator	species	analysis	suggested	that	particular	plant	

hardiness	zones	were	associated	with	a	number	of	regionally	problematic	weed	species	(Smith	

et	al.,	2018),	suggesting	that	climate	may	be	an	important	factor	impacting	species	abundances	

in	our	region.		

Maine’s	climate	is	already	changing,	and	recent	trends	are	expected	to	continue	in	

coming	decades.	Average	annual	temperatures	and	total	precipitation	increased	by	1.7	°C	and	

15	cm,	respectively,	between	1895	and	2015	(Fernandez	et	al.,	2015).	The	average	length	of	the	

warm	season	in	Maine	increased	from	32	to	34	weeks	over	this	time	frame,	and	another	two	

weeks	are	expected	by	mid-century	(Fernandez	et	al.,	2015).	Throughout	this	coming	century,	

plant	hardiness	zones	are	expected	to	move	northward	(Parker	&	Abatzoglou,	2016),	average	

snow	pack	depths	to	decrease	substantially	(Fernandez	et	al.,	2015),	and	despite	continued	

precipitation	increases,	drought	risk	may	intensify	due	to	greater	evapo-transpiration	(Wolfe	et	

al.,	2018).		

Climate	change	is	generally	expected	to	increase	the	spread	of	invasive	weeds	

(Clements	et	al.,	2014;	Hatfield	et	al.,	2014),	but	increasing	[CO2]	and	climate	change	will	likely	
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also	alter	competitive	relationships	between	currently	endemic	species	(Ziska	&	Dukes,	2011).	

Most	studies	in	the	weed	science	literature,	including	those	related	to	effects	of	climate	change	

on	weeds,	tend	to	focus	on	abundant	species	that	pose	the	greatest	present	threat	to	farm	

management.	Few	studies	have	focused	specifically	on	rare	weeds,	and	these	have	typically	

emphasized	species	of	conservation	concern	in	Europe	(e.g.,	Albrecht	&	Mattheis,	1998;	

Epperlein,	Prestele,	Albrecht,	&	Kollmann,	2014;	Kleijn	&	Voort,	1997;	Pinke	&	Gunton,	2014;	

Rotchés-Ribalta,	Blanco-Moreno,	Armengot,	José-María,	&	Sans,	2015).	We	considered	that	

some	weed	species	currently	rare	in	Maine	might	be	at	the	northern	end	of	their	range,	and	

thus	potentially	pre-adapted	to	future	climatic	conditions.	We	hypothesized	that	these	species	

could	pose	an	emerging	risk	to	farm	management.	To	identify	species	of	likely	future	agronomic	

risk,	we	undertook	a	study	of	relatively	uncommon	weedy	flora	in	Maine	(referred	to	hereafter	

as	‘rare’)	through	further	analysis	of	our	prior	seedbank	work	(Smith	et	al.,	2018)	and	new	

surveys	conducted	at	32	farms	across	Maine.		

2.2.	Materials	and	Methods	

2.2.1.	Seedbank	Analysis	

Rare	weeds	present	in	our	prior	seedbank	sampling	work	were	identified	using	the	

methods	detailed	in	Smith	et	al.	(2018)	and	summarized	here.	Weed	seedbank	samples	were	

collected	during	the	spring	of	2013	from	30	Maine	organic	farms.	Farm	locations	were	chosen	to	

provide	a	broad	geographic	coverage	of	the	state,	representing	six	USDA	plant	hardiness	zones	

(6a	to	3b;	Figure	2.1).	Most	farms	grew	primarily	vegetables,	though	some	also	kept	livestock	

and	several	in	Aroostook	County	grew	primarily	potatoes	or	small	grains.	Two	replicate	samples	

for	seedbank	analysis,	each	consisting	of	five	bulked	soil	cores,	were	collected	from	a	single	field	

at	each	farm.	To	measure	the	weed	community,	germinable	seedbank	assays	were	conducted	in	

a	greenhouse	(Jabbour,	Gallandt,	et	al.,	2014).	Samples	were	spread	evenly	atop	medium	grade	
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vermiculite	in	greenhouse	flats	and	kept	moistened	to	promote	germination.	Flats	were	

monitored,	and	emerged	seedlings	identified	and	removed	regularly	until	emergence	slowed,	at	

which	point	samples	were	dried,	mixed,	and	re-watered	to	promote	another	‘flush’	of	

emergence.	This	process	was	repeated	over	the	course	of	6	months	to	thoroughly	exhaust	the	

germinable	seedbank.	Replicate	samples	from	each	farm	were	averaged.	

	 	

Figure	2.1.	Map	of	Sample	and	Survey	Site	Locations.	Locations	of	farms	in	Maine	participating	in	

2013	weed	seedbank	and	2015	surveys,	overlaid	on	a	map	showing	plant	hardiness	zones	(ARS,	

2017).				
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Two	criteria	were	used	to	identify	rare	weed	species	in	these	data.	First,	species	were	

categorized	as	rare	if	they	were	found	in	the	seedbank	of	only	one	farm.	Second,	they	were	

considered	rare	if	present	at	low	densities	relative	to	other	species.	We	compared	the	sum	of	

seeds	m-2	across	the	30	farms	to	an	arbitrary	threshold	of	100	seeds	(per	30	m2)	and	categorized	

species	present	below	this	density	as	rare.	A	limitation	to	this	method	was	that	some	perennials,	

especially	those	that	reproduce	through	vegetative	propagules,	were	likely	underrepresented	in	

the	seedbank	relative	to	their	on-farm	density	and	might	therefore	have	been	erroneously	

categorized	as	rare.		

2.2.2.	Field	Surveys		

Field	surveys	were	conducted	on	Maine	organic	farms	during	the	period	9	July	2015	

through	29	August	2015.	Farms	were	prioritized	for	inclusion	based	on	geographic	coverage	of	

the	state	and	participation	in	our	prior	study	of	weed	seedbank	communities	(Smith	et	al.,	

2018).	We	sampled	32	total	farms,	29	of	which	had	previously	participated	in	our	seedbank	

sampling	work	and	six	of	which	were	located	on	islands	off	the	Maine	coast	that	could	be	

reached	only	by	ferry	(Figure	2.1).					

Upon	arrival	at	each	farm,	we	asked	the	farmer	or	a	field	crew	leader	(a)	whether	they	

had	noticed	any	new	weeds	on	the	farm,	and	(b)	to	direct	us	to	three	fields	with	the	most	

growth	of	mature	weeds.	Multiple	1	m	by	10	m	transects	were	surveyed	in	each	of	the	fields:	

one	transect	across	the	center	of	the	field	perpendicular	to	the	direction	of	tillage,	and	one	or	

more	additional	transects	running	parallel	to	field	edges	such	that	there	was	a	1	m	buffer	

between	the	field	edge	and	the	transect,	and	50	m	distance	left	between	the	end	of	each	

transect	and	the	beginning	of	the	next.	In	the	event	that	a	farm	had	fewer	than	three	fields	in	

production	(five	farms),	one	or	two	fields	were	sampled.	Transect	size	and	distances	between	

transects	were	measured	by	visual	estimation.	Number	of	edge	transects	per	field	varied	based	
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on	field	size,	and	was	capped	at	a	maximum	of	ten	per	field	in	most	cases.	In	total,	512	transects	

were	sampled.	This	sample	design	was	adapted	from	Rotchés-Ribalta	et	al.	(2015);	inclusion	of	

edge	transects	was	considered	important	because	these	areas	can	be	refugia	for	rare	species.	

Presence	of	rare	plant	species	in	a	transect	was	determined	by	expert	opinion	of	the	

surveyors;	two	surveyors	participated	in	this	project,	both	of	whom	were	graduate	students	

with	research	foci	in	weed	science.	If	the	identity	of	a	plant	was	unknown,	the	surveyor	either	

collected	a	specimen	or,	if	only	one	plant	of	that	type	was	present,	took	a	picture	for	later	

identification.	Visual	estimates	of	percent	ground	cover	(ranked:	1	=	0-19%;	2	=	20-39%;	3	=	40-

59%;	4	=	60-79%;	5	=	80-100%)	and	vegetation	height	(ranked:	1	=	<	5	cm;	2	=	5-9	cm;	3	=	10-19	

cm;	4	=	20-49	cm;	5	=	>	50	cm)	were	also	recorded	in	each	transect.	A	separate	record	of	rare	

species	noticed	outside	the	transect	sampling	scheme	or	pointed	out	by	the	farmer	was	kept	for	

each	farm.	

2.2.3.	Identifying	Unknown	Specimens	

Unknown	plant	specimens	were	identified	to	the	highest	taxonomic	level	possible	using	

dichotomous	keys	(Gleason	&	Cronquist,	1991;	Haines,	2011)	cross-referenced	with	other	

identification	resources	(GoBotany,	2018;	Hitchcock,	1971;	Knobel,	1977;	Uva,	Neal,	&	

DiTomaso,	1997)	and	the	University	of	Maine	Herbarium	collection	and	staff	expertise.	

Specimens	were	identified	in	their	fresh	condition	whenever	possible,	but	because	a	large	

number	of	unknowns	were	collected,	a	plant	press	was	used	to	dry	some	specimens	for	later	

identification.	We	were	unable	to	identify	some	specimens	that	were	in	poor	condition	or	at	an	

immature	life	stage	when	sampled.	Immature	stages	prevented	us	from	identifying	many	

members	of	the	Asteraceae,	likely	including	those	in	the	Erigeron,	Solidago,	and	

Symphyotrichum	genera,	which	can	be	difficult	to	distinguish	in	immature	forms.		
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2.2.4.	Identifying	Species	of	Concern		

We	categorized	rare	species	found	via	seedbank	sampling	and	surveys	as	weedy	if	they	

were	listed	in	the	Weed	Science	Society	of	America’s	Composite	List	of	Weeds	database	(WSSA,	

2018);	other	species	were	categorized	as	non-weedy.	The	USDA	PLANTS	database	was	used	to	

determine	if	species	were	native	or	non-native	to	Maine,	and	endangered	or	of	conservation	

concern	(NRCS,	2018b).		

We	identified	species	of	likely	agronomic	risk	by	cross-referencing	our	species	lists	with	

data	from	a	recent	survey	of	weed	scientists	(Van	Wychen,	2016)	that	asked	respondents	to	list	

the	five	most	abundant	and	five	most	troublesome	weeds	for	major	crops	in	their	state.	To	

determine	whether	any	of	our	presently	rare	weed	species	are	especially	abundant	or	

problematic	in	areas	with	warmer	climate,	we	compared	our	species	lists	to	a	subset	of	these	

survey	results	(Nsubset	=	121)	corresponding	to	annual	crops	grown	in	states	with	median	plant	

hardiness	zones	warmer	than	that	of	Maine	(ARS,	2017).		

2.2.5.	Statistical	Analysis	and	Data	Visualization	

To	assess	whether	richness	of	rare	weed	species	in	our	2015	transect	sampling	might	be	

related	to	environmental	variables,	we	constructed	a	hurdle	model	using	the	{pscl}	package	

(Jackman,	2017)	in	R	(R	Core	Team,	2016).	Species	richness	per	transect	was	the	dependent	

variable.	Latitude	and	longitude	were	fit	as	explanatory	variables;	in	Maine,	these	gradients	

represent	proxies	for	northerly	and	coastal	climate	effects,	respectively,	and	were	important	

predictors	of	weed	community	composition	in	our	past	work	(Smith	et	al.	2018).	Average	

vegetation	height,	percent	ground	cover,	and	surveyor	were	included	as	additional	explanatory	

variables	to	account	for	variability	in	farm	management	and	sampling.	A	hurdle	model	with	a	

Poisson	distribution	was	selected	based	on	a	relatively	low	AIC	value	in	comparison	to	other	

candidate	models	(Crawley,	2013).	Hurdle	models	handle	count	data	with	many	zeros	and	
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overdispersion	by	simultaneously	fitting	separate	models	to	zero	and	non-zero	counts	(Zeileis,	

Kleiber,	&	Jackman,	2008),	and	are	recommended	for	data	with	many	‘true	zero’	values	(Martin	

et	al.,	2005).			

We	used	principle	coordinates	analysis	(PCoA)	to	visualize	the	relationships	between	

communities	of	rare	weeds	and	environmental	variables.	These	analyses	utilized	

presence/absence	of	weeds	found	in	our	transect	sampling	(81	species).	We	excluded	transects	

in	which	no	rare	weeds	were	reported	(Nincluded	=	273).	PCoA	was	chosen	and	Jaccard	selected	as	

the	distance	measure	because	Gotelli	and	Ellison	(2004)	suggest	these	methods	as	well	suited	to	

analysis	of	presence/absence	data.	The	ordination	was	performed	in	R	(R	Core	Team,	2016)	

using	the	{vegan}	package	(Oksanen	et	al.,	2016).	Environmental	data	was	overlaid	on	the	first	

two	PCoA	axes	using	the	surf()	function	in	package	{labdsv}	(Roberts,	2016),	which	fits	a	

generalized	additive	model	to	a	surface	and	calculates	D2,	a	goodness	of	fit	metric	based	on	

deviance	explained	by	the	model.		

To	determine	how	environmental	variables	might	be	related	to	the	distribution	of	

individual	species	of	likely	agronomic	risk,	we	constructed	logistic	regression	models	in	R	(R	Core	

Team,	2016).	Analyses	were	restricted	to	species	of	likely	risk	(identified	in	section	2.2.4)	for	

which	more	than	twenty	presence	values	were	recorded	across	at	least	five	different	farms.	For	

each	species,	presence/absence	was	fit	as	the	response,	and	latitude,	longitude,	vegetation	

height,	ground	cover,	and	surveyor	were	explanatory	variables.	Presumably	due	to	many	zero	

values	in	these	data,	assumptions	of	low	leverage	were	generally	not	met.	Maps	showing	

transect	occupancy	were	created	using	ArcMap	(ESRI,	2011).				
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2.3.	Results		

2.3.1.	Species	Diversity		

A	total	of	87	plant	species	were	identified	from	our	2013	seedbank	samples	collected	at	

30	farms	across	Maine.	Of	these,	26	were	categorized	as	rare	weeds	according	to	one	or	both	of	

our	metrics	(see	Table	A.1	in	Appendix	A	for	species	list).	Through	subsequent	surveys	

conducted	in	2015	to	scout	for	rare	weeds	on	32	farms,	we	found	11	of	these	species	previously	

identified	as	rare,	and	an	additional	84	plant	species	unique	to	our	surveys.	Of	these	unique	

species,	81	were	within	the	transect	sampling	scheme,	and	three	were	noted	outside	of	

transects	only;	73	species	were	weedy	(see	Appendix	A	Table	A.2	for	species	list).		

Richness	of	rare	species	identified	via	transect	surveys	varied	by	farm,	ranging	from	one	

to	16	species	per	farm	with	a	mean	and	standard	deviation	of	7.0	±	4.6.	In	the	count	portion	of	

our	hurdle	model,	there	were	significant	relationships	between	richness	of	rare	species	and	

longitude,	vegetation	height,	and	surveyor	(Table	2.1).	Specifically,	species	richness	was	

positively	associated	with	both	longitude	and	vegetation	height	(Figure	2.2),	and	one	surveyor	

reported	significantly	more	rare	species	than	did	the	other.	

	

Table	2.1.	Hurdle	Model	Analysis	of	Deviance	Table.	Analysis	of	deviance	for	count	model	

portion	of	species	richness	hurdle	model.	Asterisks	(*)	denote	significance	at	α	=	0.05.	

	 DF	 Chi-squared	 P	

Latitude	 1	 2.97	 0.08		

Longitude	 1	 6.86	 	<0.01*	

Vegetation	height	 1	 7.90	 	<0.01*	

Ground	cover	 1	 2.24	 0.13	

Surveyor	 1	 48.39	 	<0.01*	
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Figure	2.2.	Effects	of	Longitude	and	Vegetation	Height	on	Species	Richness.	Relationships	

between	richness	of	rare	weed	species	and	longitude	in	zero	(A)	and	count	(B)	components	of	

hurdle	model,	and	between	richness	and	vegetation	height	for	zero	(C)	and	count	(D)	

components.	A	‘jitter’	graphical	setting	was	used	to	diffuse	points	in	(B)	and	(D)	for	ease	of	

viewing.		
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2.3.2.	Community-Level	Analyses	

Principle	coordinates	analysis	was	used	to	visualize	community-level	patterns	of	the	

transect	survey	data	and	overlay	these	with	environmental	variables	(Figure	2.3).	The	first	

principle	coordinate	(PCO	1)	explained	10%	of	variance,	and	the	second	(PCO	2)	explained	7%.	

Of	the	four	environmental	variables	examined,	latitude	was	the	most	strongly	related	to	the	

ordination	(D2	=	0.30;	Figure	2.3A),	followed	by	average	vegetation	height	(D2	=	0.25;	Figure	

2.3C),	ground	cover	(D2	=	0.17;	Figure	2.3D),	and	longitude	(D2	=	0.16;	Figure	2.3B).			

2.3.3.	Species	of	Concern	

2.3.3.1.	Species	of	Likely	Agronomic	Risk	

Among	the	rare	species	identified	using	our	seedbank	methods	and	surveys,	20	were	

identified	by	our	analysis	of	Van	Wychen's	(2016)	data	as	either	very	abundant	or	particularly	

troublesome	in	warmer	regions	of	the	USA	(Table	2.2).	Four	of	these	species	were	considered	

abundant	enough	to	fit	with	logistic	regression	models.	Presence/absence	of	Elymus	repens	and	

Persicaria	pensylvanica	were	not	significantly	related	to	latitude	or	longitude	(Figure	2.4A,D;	

Table	2.3),	but	Panicum	capillare	and	Persicaria	maculosa	were	both	positively	associated	with	

more	southerly	latitudes	(Figure	2.4B,C;	Table	2.3).	There	was	a	significant	effect	of	surveyor	in	

three	out	of	four	models	(Table	2.3).		

One	species	of	likely	agronomic	risk,	Erigeron	canadensis,	was	reported	in	our	seedbank	

samples	but	not	our	transect	surveys.	Maps	showing	site	occupancy	of	the	other	19	species	of	

likely	agronomic	risk	can	be	found	in	Appendix	A	(Figure	A.1).	Seven	of	these	were	each	

reported	on	one	farm	only:	Avena	fatua,	Cerastium	glomeratum,	Lactuca	serriola,	Panicum	

dichotomiflorum,	Senecio	vulgaris,	Setaria	viridis,	and	Solanum	physalifolium;	others	were	

reported	present	at	multiple	farms.	
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One	species	found	outside	the	transect	sampling	scheme,	Pastinaca	sativa	L.	(wild	

parsnip),	was	pointed	out	by	two	different	farmers	as	a	new	weed	of	concern	on	their	farms.	

	

	

Figure	2.3.	PCoA	Ordination	of	Rare	Weed	Communities.	Principle	coordinates	analysis	(PCoA)	

overlaid	with	environmental	gradients:	latitude	(A),	longitude	(B),	vegetation	height	(ranked:	1	=	

<	5	cm;	2	=	5-9	cm;	3	=	10-19	cm;	4	=	20-49	cm;	5	=	>	50	cm)	(C),	and	ground	cover	(ranked:	1	=	

0-19%;	2	=	20-39%;	3	=	40-59%;	4	=	60-79%;	5	=	80-100%)	(D).		
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	Table	2.2.	Rare	Weed	Species	of	Likely	Agronomic	Risk.	Species	currently	rare	in	Maine	that	are	

of	likely	agronomic	risk	since	they	are	among	the	most	common	(†)	or	troublesome	(‡)	weeds	in	

annual	crop	production	in	warmer	regions	of	the	USA.			

Species	of	potential	agronomic	risk	

Anthemis	cotula	L.	(mayweed	chamomile)	†‡	

Avena	fatua	L.	(wild	oat)	†‡	

Cerastium	glomeratum	Thuill.	(sticky	chickweed)	†	

Cirsium	arvense	(L.)	Scop.	(Canada	thistle)	†‡	

Convolvulus	arvensis	L.	(field	bindweed)	†‡	

Cyperus	esculentus	L.	(yellow	nutsedge)	†‡	

Elymus	repens	(L.)	Gould	(quackgrass)	†‡	

Erigeron	canadensis	L.	(horseweed)	†‡	

Galium	aparine	L.	(catchweed	bedstraw)	†‡	

Lactuca	serriola	L.	(prickly	lettuce)	†‡	

Lolium	perenne	L.	ssp.	multiflorum	(Lam.)	Husnot	(Italian	ryegrass)	†‡	

Panicum	capillare	L.	(witchgrass)	†	

Panicum	dichotomiflorum	Michx.	(fall	panicum)	†‡	

Persicaria	maculosa	Gray	(ladysthumb)	‡	

Persicaria	pensylvanica	(L.)	M.	Gomez	(Pennsylvania	smartweed)	†‡	

Rumex	crispus	L.	(curly	dock)	‡	

Senecio	vulgaris	L.	(common	groundsel)	‡	

Setaria	viridis	(L.)	P.	Beauv.	(green	foxtail)	†‡	

Solanum	physalifolium	Rusby	(hairy	nightshade)		

Solanum	ptychanthum	Dunal	(eastern	black	nightshade)	†‡	
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A.	Elymus	repens		 B.	Panicum	capillare		

C.	Persicaria	maculosa		 D.	Persicaria	pensylvanica		

*	

*	

Figure	2.4.	Site	Occupancy	Maps	for	Four	Species	of	Concern.	Percentage	of	transects	on	32	

farms	in	Maine	occupied	by	four	relatively	abundant	rare	weed	species	(A-D).	Significant	

latitudinal	effects	based	on	logistic	regression	models	are	indicated	with	asterisks	(*)	and	arrows	

indicating	direction	of	effect.	
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Table	2.3.	Rare	Weed	Logistic	Regression	Model	Results.	Results	of	four	logistic	regression	

models	fit	with	weed	species	presence/absence	as	response	variables.	P-values	significant	at	α	=	

0.05	are	denoted	with	asterisks	(*).	

Model	 Factor	 Estimate	 					SE	 				Z	 P	

Elymus	repens	 Intercept	 10.46	 17.30	 0.61	 					0.55	

	 Latitude	 0.07	 0.07	 1.00	 					0.31	

	 Longitude	 0.27	 0.23	 1.18	 					0.23	

	 Vegetation	height	 -0.04	 0.17	 -0.23	 					0.82			

	 Ground	cover	 0.27	 0.13	 2.10	 0.04*	

	 Surveyor	 2.60	 0.51	 5.05	 <0.01*	

Panicum	capillare	 Intercept	 22.33	 22.74	 0.98	 					0.33	

	 Latitude	 -0.38	 0.18	 -2.13	 0.03*	

	 Longitude	 0.14	 0.25	 0.56	 					0.57	

	 Vegetation	height	 <0.01	 0.18	 0.01	 					0.99	

	 Ground	cover	 -0.22	 0.16	 -1.33	 					0.18	

	 Surveyor	 3.35	 1.03	 3.26	 <0.01*	

Persicaria	maculosa	 Intercept	 17.13	 23.77	 0.72	 					0.47	

	 Latitude	 -0.63	 0.22	 -2.86	 <0.01*	

	 Longitude	 -0.11	 0.24	 -0.47	 					0.64	

	 Vegetation	height	 0.15	 0.18	 0.86	 					0.39	

	 Ground	cover	 0.17	 0.14	 1.23	 					0.22	

	 Surveyor	 0.55	 0.38	 1.44	 					0.15	

Persicaria	pensylvanica	 Intercept	 -21.61	 22.23	 -0.97	 					0.33	

	 Latitude	 0.02	 0.10	 0.19	 					0.82	

	 Longitude	 -0.25	 0.28	 -0.89	 					0.38	

	 Vegetation	height	 -0.08	 0.21	 -0.38	 					0.71	

	 Ground	cover	 0.07	 0.18	 0.43	 					0.67	

	 Surveyor	 1.08	 0.52	 2.08	 0.04*	
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2.3.3.2.	Species	of	Potential	Conservation	Concern		 1	

	 One	native	species	found	in	our	seedbank	samples	was	listed	in	the	USDA	PLANTS	 2	

database	as	possibly	extirpated	in	Maine:	Lobelia	siphilitica	L.	(blue	cardinal	flower)	(NRCS,	 3	

2018b).	Two	species	found	in	our	survey	sampling	were	of	potential	conservation	concern	 4	

according	to	the	USDA	(NRCS,	2018b):	Gamochaeta	purpurea	(L.)	Cabrera	(purple	cudweed),	 5	

which	was	listed	as	possibly	extirpated,	and	Calamagrostis	coarctata	Eaton	(Nuttall's	reed	 6	

grass),	which	was	listed	as	a	species	of	special	concern	in	Maine.	 7	

2.4.	Discussion	 8	

	 In	our	2015	surveys,	we	found	that	richness	of	rare	weed	species	was	significantly	 9	

associated	with	longitude,	being	higher	in	more	coastal	regions	of	Maine	than	inland	(Figure	 10	

2.2B).	Longitude	was	also	a	significant	factor	predicting	species	richness	and	total	weed	density	 11	

in	our	prior	study	of	weed	seedbanks	(Smith	et	al.,	2018).	We	found	that	species	richness	was	 12	

also	positively	related	to	vegetation	height	(Figure	2.2D).	A	likely	explanation	for	this	latter	 13	

finding	is	that	both	high	richness	and	relatively	tall	vegetation	may	be	found	at	weedier	sites.	 14	

Supporting	this	idea,	Kolářová	et	al.	(2013)	found	that	richness	of	rare	and	endangered	weeds	 15	

increased	with	weed	cover	across	290	sites	in	the	Czech	Republic.		 16	

	 Of	the	four	environmental	variables	assessed	for	their	relationship	to	weed	community	 17	

composition,	latitude	was	the	most	strongly	related	(Figure	2.3A).	This	is	congruent	with	Smith	 18	

et	al.'s	(2018)	finding	that,	among	a	wide	array	of	correlates	they	evaluated,	latitude	was	the	 19	

most	strongly	related	to	seedbank	communities	in	Maine.	Given	the	climatic	heterogeneity	 20	

present	along	the	latitudinal	gradient	in	Maine	(Figure	2.1),	it	is	possible	that	climate	is	a	factor	 21	

driving	patterns	in	community	composition.	However,	other	factors	may	also	have	impacted	 22	

results,	including	geographic	isolation	of	island	farms	in	the	south	and	differences	in	farm	 23	

management	across	the	latitudinal	gradient.			 24	
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Our	study	did	not	account	directly	for	farm	management,	which	is	known	to	be	an	 25	

important	factor	shaping	community	composition	(Ryan,	Smith,	Mirsky,	Mortensen,	&	Seidel,	 26	

2010)	and	indeed	was	found	by	Fried	et	al.	(2008)	to	be	more	important	than	climate	and	 27	

geography	in	predicting	weed	communities	in	France.	Our	study	sought	to	minimize	the	effects	 28	

of	farm	management	variability	on	our	results	by	limiting	our	study	to	organic	farms,	and	by	 29	

utilizing	the	covariates	vegetation	height	and	ground	cover	in	our	analyses	as	proxies	for	some	 30	

aspects	of	farm	management.	However,	differences	in	farm	management	may	nonetheless	have	 31	

been	a	factor,	particularly	as	several	of	our	more	northern	sites	(located	in	Aroostook	county)	 32	

grew	primarily	grains,	whereas	most	surveyed	farms	grew	primarily	mixed	vegetables.		 33	

Another	source	of	variability	in	these	data	is	the	effect	of	human	surveyor,	which	was	a	 34	

significant	factor	in	several	analyses	(Table	2.1;	Table	2.3).	The	two	surveyors	participating	in	 35	

this	project	trained	together	and	communicated	frequently	throughout	data	collection,	but	 36	

given	the	inherently	subjective	nature	of	determining	what	constitutes	a	‘rare’	plant	it	is	 37	

perhaps	unsurprising	that	differences	in	surveyor	judgment	are	reflected	in	the	data.	Most	 38	

farms	were	sampled	by	a	single	surveyor;	however,	each	surveyor	was	responsible	for	farms	 39	

distributed	across	Maine’s	latitudinal	and	longitudinal	gradients,	so	we	do	not	expect	that	 40	

surveyor	effects	strongly	biased	our	results	with	regards	to	latitude	and	longitude.		 41	

2.4.1.	Species	of	Likely	Agronomic	Risk	 42	

As	expected,	several	species	currently	present	but	categorized	as	relatively	rare	in	 43	

Maine	are	among	the	most	abundant	and	troublesome	weeds	in	warmer	regions	of	the	USA	 44	

(Table	2.2).	Two	of	these,	Panicum	capillare	and	Persicaria	maculosa,	were	found	to	be	 45	

abundant	at	more	southerly	sites	but	lacking	at	sites	in	northern	Maine	(Figure	2.4B,C;	Table	 46	

2.3).		 47	
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P.	capillare	is	a	C4	annual	grass	that	commonly	infests	field	crops.	It	is	part	of	a	complex	 48	

of	five	closely	related	species	native	to	North	America,	and	has	been	reported	in	Eastern	Canada	 49	

since	the	1870s	(Clements,	DiTommaso,	Darbyshire,	Cavers,	&	Sartonov,	2004).	P.	capillare	is	 50	

considered	a	poor	competitor	relative	to	many	weeds,	but	it	is	tolerant	to	high	temperatures,	 51	

drought,	and	salt,	and	does	best	in	more	southerly	parts	of	its	range	(Clements	et	al.,	2004).	 52	

Given	that	summer	drought	risk	is	likely	to	increase	in	our	region	with	climate	change	(Wolfe	et	 53	

al.,	2018),	these	trails	could	allow	P.	capillare	to	become	more	successful	in	future.	Its	ability	to	 54	

tolerate	salt	could	also	have	contributed	to	its	prevalence	on	some	coastal	and	island	farms	in	 55	

this	study	(Figure	2.4B).		 56	

Persicaria	maculosa	(Figure	2.4C)	is	an	introduced	species,	present	throughout	much	of	 57	

the	US	and	Canada.	The	morphologically	similar	species	Persicaria	pensylvanica	(Figure	2.4D)	 58	

and	Persicaria	lapathifolia	are	native	to	North	America.	Our	finding	that	P.	maculosa	was	 59	

associated	with	more	southerly	latitudes	does	not	match	Smith	et	al.’s	(2018)	finding	that	this	 60	

species	was	most	associated	with	plant	hardiness	zone	4.	P.	maculosa	(Vleeshouwers,	1998),	 61	

and	other	members	of	the	Persicaria	genus	(Araki	&	Washitani,	2000)	are	known	to	exhibit	 62	

multi-level	dormancy	and	form	persistent	seedbanks,	from	which	‘quasi-simultaneous’	field	 63	

germination	has	been	reported	under	suitable	conditions	(Staniforth	&	Cavers,	1979).	It	is	 64	

possible	that	our	detection	of	P.	maculosa	in	more	southerly	sites	was	a	year	effect;	conditions	 65	

may	have	been	especially	suitable	for	germination	of	this	species	in	coastal	regions	in	2015,	 66	

despite	larger	persistent	seedbanks	in	mid-Maine	(Smith	et	al.,	2018).			 67	

Some	perennial	species	producing	relatively	few	seeds	were	likely	under-represented	in	 68	

seedbank	samples	and	therefore	characterized	here	as	‘rare’	(Table	2.2)	despite	being	in	fact	 69	

quite	common	in	Maine.	Elymus	repens	(Figure	2.4A)	is	a	clear	example;	this	species	has	been	 70	

present	in	New	England	since	the	1600s	(Werner	&	Rioux,	1977),	and	was	recently	cited	by	 71	
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Maine	farmers	as	one	of	the	five	most	problematic	weeds	on	their	farms	(Jabbour,	Zwickle,	et	 72	

al.,	2014).	E.	repens	reproduces	primarily	vegetatively,	producing	as	many	as	150	rhizomes	or	 73	

rhizome	branches	per	plant,	whereas	it	does	not	flower	every	year,	and	typically	produces	only	 74	

25	to	40	seeds	per	flowering	stem	(Werner	&	Rioux,	1977).	We	made	the	decision	to	include	E.	 75	

repens	and	similar	perennials	in	the	present	study	to	make	up	for	the	likelihood	that	they	were	 76	

underreported	in	past	studies	in	Maine	relying	on	weed	seedbank	data	(Jabbour,	Gallandt,	et	al.,	 77	

2014;	Smith	et	al.,	2018).	 78	

The	monocarpic	biennial	weed	Pastinaca	sativa	L.	(wild	parsnip)	was	pointed	out	by	 79	

farmers	at	two	of	the	32	farms	we	surveyed	as	a	new	weed	about	which	they	were	concerned.	 80	

This	introduced	species	escaped	cultivation	and	was	reported	growing	wild	by	1900	in	Canada	 81	

(Cain,	Darbyshire,	Francis,	Nurse,	&	Simard,	2010).	It	is	now	present	in	most	US	states	and	 82	

Canadian	provinces,	with	a	northern	limit	of	49°	latitude	(Cain	et	al.,	2010).	P.	sativa	is	 83	

phytotoxic	to	humans	and	livestock,	and	increasingly	so	in	the	presence	of	its	coevolved	 84	

herbivore	the	parsnip	webworm	Depressaria	pastinacella	(Zangerl	&	Berenbaum,	2005).	While	 85	

no	broader	trends	can	be	inferred	from	the	observations	of	two	farmers,	this	species	may	 86	

warrant	consideration	based	on	its	phytotoxic	properties	(Cain	et	al.,	2010).	 87	

2.5.	Conclusions	 88	

	 Through	analysis	of	seedbank	data	and	transect	surveys,	we	identified	weeds	that	are	 89	

currently	rare	in	Maine	or	have	been	under-represented	in	some	prior	studies.	We	determined	 90	

that	several	of	these	species	are	very	abundant	or	troublesome	in	warmer	regions	of	the	USA,	 91	

and	might	therefore	become	increasingly	problematic	as	Maine’s	environment	continues	to	 92	

warm	with	climate	change.			 93	

	 94	

	 95	
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CHAPTER	3	 96	

SOLARIZATION	AND	TARPING	FOR	IMPROVED	STALE	SEEDBED	PREPARATION	 97	

ON	MAINE	ORGANIC	VEGETABLE	FARMS	 98	

3.1.	Introduction	 99	

Vegetable	growers	commonly	use	stale	seedbed	periods	prior	to	sowing	high-value	crops.	 100	

Creating	a	false	or	stale	seedbed,	i.e.,	allowing	weeds	to	emerge	and	then	killing	them,	often	 101	

with	flaming	(Rasmussen,	2003)	or	shallow	cultivation	(Johnson	&	Mullinix,	2000),	can	decrease	 102	

subsequent	weed	pressure	by	depleting	the	germinable	weed	seedbank	(Gallandt,	2006).	The	 103	

use	of	clear	(Bond	&	Grundy,	2001)	and	black	plastic	mulches	(Fortier,	2014)	to	enhance	stale	 104	

seedbed	establishment	is	of	interest	to	organic	vegetable	farmers	in	our	region,	the	Northeast	 105	

USA,	many	of	whom	are	small	to	mid-sized	growers	with	abundant	weed	seedbanks	(Jabbour,	 106	

Gallandt,	et	al.,	2014),	who	rely	extensively	on	hand	weeding	(Baker	&	Mohler,	2015).		 107	

Soil	solarization	using	clear	plastic	mulch	was	developed	in	the	1970s	as	a	method	to	 108	

control	soil	borne	pathogens	(Katan,	Greenberger,	Alon,	&	Grinstein,	1976).	Solarization	traps	 109	

solar	radiation,	which	under	suitable	conditions	elevates	soil	temperatures	enough	to	cause	pest	 110	

mortality.	Its	utility	as	a	weed	control	technique	in	arid	and	some	Mediterranean	regions	is	well	 111	

documented	(Bajwa,	Mahajan,	&	Chauhan,	2015;	Cohen	&	Rubin,	2007;	Rubin,	2012);	however,	 112	

solarization	has	received	less	research	attention	in	cooler	regions.	Solarization	reduced	Poa	 113	

annua	L.	seed	viability	in	Oregon,	USA	(Peachey,	Pinkerton,	Ivors,	Miller,	&	Moore,	2001),	and	 114	

reduced	weed	density	but	did	not	improve	strawberry	yield	in	Virginia,	USA	(Samtani,	Derr,	 115	

Conway,	&	Flanagan,	2017).	Covering	soil	with	perforated	polyethylene	tarps	in	England,	UK	 116	

increased	weed	emergence	(Bond	&	Bursch,	1989).	Studies	testing	solarization	for	control	of	 117	

fungal	pathogens	in	the	Northwest	USA	and	Canada	have	shown	mixed	results	(Berlanger,	1999;	 118	

Lazarovits,	Hawke,	Tomlin,	Olthof,	&	Squre,	1991),	leading	to	the	conclusion	in	a	review	by	 119	
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Walters	and	Pinkerton	(Walters	&	Pinkerton,	2012)	that	solarization	is	not	consistently	effective	 120	

in	cool	northern	regions.	Therefore,	we	expected	that	solarization	alone	during	the	springtime	in	 121	

Maine	would	not	cause	weed	mortality,	but	would	instead	deplete	the	weed	seedbank	by	 122	

increasing	weed	emergence,	allowing	weeds	to	be	killed	with	subsequent	flaming.			 123	

Tarping,	also	known	as	occultation	(Fortier,	2014),	is	the	practice	of	using	black	plastic	 124	

silage	tarps	applied	to	the	soil	for	several	weeks	prior	to	planting	as	a	method	for	stale	seedbed	 125	

preparation.	Tarping	can	decrease	subsequent	weed	seed	germination	(Standifer	et	al.,	1984),	 126	

but	it	is	not	always	effective	(Hunter,	Callaway,	Rayburn,	&	Coffman,	2016;	Mudalagiriyappa,	 127	

Nanjappa,	&	Ramachandrappa,	1999).	The	few	studies	that	have	compared	solarization	and	 128	

tarping	for	weed	control	suggest	that	solarization	is	usually	more	effective	than	tarping	(Abu- 129	

Irmaileh	&	Thahabi,	1997;	Mudalagiriyappa	et	al.,	1999;	Singh,	2006),	likely	due	to	higher	soil	 130	

temperatures	achieved	under	solarization	(Horowitz	et	al.,	1983).	However,	in	one	study	 131	

conducted	during	the	fall	in	Israel,	tarping	outperformed	solarization	(Rubin	&	Benjamin,	1983),	 132	

perhaps	because	soil	temperature	during	this	relatively	cool	season	was	insufficient	for	weed	 133	

control	via	solarization.	In	the	Northeast	USA,	a	single-year	study	found	that	tarping	 134	

outperformed	solarization	as	a	method	of	cover	crop	termination	(Lounsbury,	Warren,	Wolfe,	&	 135	

Smith,	2018),	but	we	are	aware	of	no	prior	studies	comparing	solarization	and	tarping	for	stale	 136	

seedbed	establishment	in	our	region.	 137	

The	primary	objective	of	this	study	was	to	test	whether	solarization	combined	with	 138	

flaming	could	improve	the	efficacy	of	stale	seedbed	establishment	in	the	Northeast	USA.	A	 139	

secondary	objective	was	to	compare	the	weed	control	efficacy	of	solarization	to	tarping.	Field	 140	

experiments	were	conducted	in	2015-2017	to	test	the	following	hypotheses:		 141	

1. Springtime	soil	solarization	will	increase	weed	emergence;	 142	

2. Firming	soil	with	a	roller	will	further	increase	weed	emergence;		 143	
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3. The	seedbank	depletion	resulting	from	solarization	and	rolling	will	reduce	weed	 144	

emergence	in	a	subsequent	stale	seedbed	created	by	flaming;	and	 145	

4. During	mid-summer,	solarization	will	be	more	effective	than	tarping	for	stale	 146	

seedbed	establishment.			 147	

3.2.		Materials	and	Methods	 148	

3.2.1.		Solarization	for	an	Improved	Stale	Seedbed	 149	

3.2.1.1.		Site	Description		 150	

To	test	Hypotheses	1	to	3,	replicated	field	experiments	were	conducted	over	four	site- 151	

years	near	Orono,	Maine,	USA	(Table	3.1).	Additional	data	were	collected	during	two	on-farm	 152	

demonstrations	in	Winthrop	and	Harborside,	Maine,	USA	in	May	to	June	of	2015.	The	monthly	 153	

30-year	climate	averages	for	the	period	were	14.7	°C	mean	temperature	and	9.4	cm	 154	

precipitation	(NOAA,	2018).		 155	

3.2.1.2.		Experimental	Design			 156	

Field	experiments	included	four	treatments,	arranged	in	a	randomized	complete	block	 157	

design	with	three	replications	per	site-year.	Treatments	included:		 158	

• Tilled	(control)	 159	

• Tilled	+	rolled	(control)	 160	

• Tilled	+	solarized	 161	

• Tilled	+	rolled	+	solarized	 162	

Prior	to	establishment	of	each	experiment,	soils	were	rototilled	to	15	cm	soil	depth,	except	for	 163	

the	Smith	2016	experiment	in	which	the	field	was	moldboard	ploughed	followed	by	cultivation	 164	

with	a	Perfecta	field	cultivator	(Unverferth	Manufacturing	Co.,	Inc.,	Kalida,	Ohio,	USA).	In	all	 165	

experiments	a	45.4	kg	lawn	roller	was	used	to	simulate	cultipacking.	This	tool	was	appropriate	 166	

to	the	scale	of	these	experiments,	but	likely	firmed	soil	more	consistently	than	would	a	 167	
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standard	ring	cultipacker.	Prior	to	mulching,	all	plots	were	irrigated	to	approximate	field	 168	

capacity	to	increase	heat	conduction	(Katan,	1981).	Solarized	treatments	were	covered	with	 169	

previously	used	6-mil	clear	polyethylene	film	(hereafter	referred	to	as	plastic),	salvaged	from	 170	

two	greenhouses	on	the	University	of	Maine	campus.	Previously	used	greenhouse	plastic	was	 171	

chosen	to	represent	likely	grower	management	practices	for	our	region.	Plastic	from	the	same	 172	

source	was	used	within	blocks.			 173	

Plots	were	3	m	by	3	m	with	0.6	m	between	plots.	To	secure	plastic	while	keeping	plots	 174	

accessible	for	measurement	during	treatment,	plastic	edges	were	clipped	to	3.3	cm	diameter	by	 175	

3.2	m	long	pieces	of	galvanized	metal	pipe	laid	in	10	cm	deep	trenches	around	plot	perimeters.	 176	

Plastic	was	removed	after	approximately	two	weeks	of	solarization	(Table	3.1),	after	which	stale	 177	

seedbeds	were	prepared	with	no	further	soil	disturbance	by	flaming	all	plots	using	a	hand-held	 178	

single	burner	propane	torch,	moving	the	end	of	the	nozzle	over	the	field	at	a	height	of	10	cm	 179	

and	a	speed	of	0.25	m	s-1.	The	effect	of	flaming	was	measured	during	the	Rogers	2015	site-year	 180	

by	employing	a	split-plot	design	with	presence/absence	of	flaming	as	subplot	treatments.	Two	 181	

on-farm	trials	conducted	in	the	spring	of	2015	each	consisted	of	a	single	replicate	of	the	tilled	 182	

and	tilled	+	solarized	treatments,	following	standard	protocols.		 183	

	 184	

	 185	

	 186	
	 187	
	 188	
	 189	
	 190	
	 191	
	 192	
	 193	
	 194	
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Table	3.1.	Information	About	Solarization	Field	Sites.	Experiments	were	conducted	at	the	 195	

University	of	Maine	Rogers	Farm	and	the	UMaine	Greens	Project	field	(UMG)	in	2015,	and	at	 196	

Rogers	Farm	and	the	University	of	Maine	Smith	Farm	in	2016.	Soil	series	data	are	from	NRCS	 197	

(NRCS,	2018a);	†	OM	=	organic	matter;	‡	year	of	soil	test	shown	in	parentheses.	Weather	data	 198	

are	from	NOAA	(NOAA,	2018).	Dates	show	periods	during	which	solarization	treatments	were	 199	

applied	in	the	field,	and	periods	of	observation	of	weed	emergence	following	plastic	removal.		 200	

	 201	
	 202	

3.2.1.3.		Field	Data	Collection			 203	

Soil	temperatures	were	logged	hourly	for	the	duration	of	solarization	treatment	using	 204	

iButton	temperature	loggers	(Maxim	Integrated,	San	Jose,	California,	USA).	One	logger	per	plot	 205	

was	placed	in	a	sealed	5	cm	by	5	cm	4-mil	plastic	bag	and	buried	at	5	cm	soil	depth.	Volumetric	 206	

Site-

year	

Location	 Soils	 Mean	air	

temp	(°C)	

Total	precip.	

(cm)	

Dates	

Rogers	

2015	

44°55'N	

68°41'W		

Pushaw-Boothbay	

complex;	4.6%	OM†	

and	6.4	pH	(2011)‡	

16.0	 15.9	 Solarization:	27	May–12	June	

Observation:	12	June–30	June	

UMG	

2015	

44°54'N	

68°39'W	

	Peru-Tunbridge	

association;	6.6%	OM	

and	6.1	pH	(2012)	

15.0	 14.4	 Solarization:	15	May–3	June	

Observation:	3	June–22	June	

Rogers	

2016	

44°55'N	

68°41'W	

Pushaw-Boothbay	

complex;	3.7%	OM	

and	6.2	pH	(2014)	

16.4	 7.7	 Solarization:	13	May–31	May	

Observation:	31	May–14	June		

Smith	

2016	

44°54'N	

68°41'W	

Nicholville	very	fine	

sandy	loam;	5.0%	OM	

and	5.9	pH	(2014)	

16.9	 6.3	 Solarization:	18	May–1	June	

Observation:	1	June–15	June	
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soil	moisture	content	was	measured	and	averaged	across	three	locations	within	each	plot	using	 207	

a	Delta-T	soil	moisture	meter	(HH2	version	4.0,	Delta-T	Devices	Ltd,	Cambridge,	England)	at	the	 208	

start	of	each	experiment	and	concurrent	with	each	weed	census	(described	below).		 209	

Weeds	were	counted	once	every	2	to	7	days	during	solarization	treatment,	and	 210	

approximately	every	7	days	for	2	weeks	following	solarization.	Plastic	was	temporarily	removed	 211	

during	census	counts.	During	each	census,	weed	seedlings	were	counted	and	pulled	from	 212	

permanent	0.25	m	by	0.5	m	quadrats	during	the	solarization	period,	and	from	a	new	set	of	 213	

permanent	quadrats	during	the	period	following	solarization.	The	four	weed	taxa	most	 214	

abundant	in	each	quadrat	were	identified	and	counted;	remaining	weeds	were	counted	as	other	 215	

broadleaved	or	other	grass-like.	Weeds	were	identified	to	species	level	with	the	following	 216	

exceptions:	Lolium	spp.	and	Gnaphalium	spp.	were	identified	to	genus,	and	members	of	the	 217	

Brassicaceae	other	than	Capsella	bursa-pastoris	L.	Medik.	(likely	Brassica	and	Rorippa	spp.)	were	 218	

grouped	as	other	brassicas.	If	few	weeds	were	present,	additional	quadrats	were	added	 219	

consecutively	to	the	right	of	permanent	quadrats	and	counts	summed	until	≥	25	total	weeds	 220	

were	counted	or	four	quadrats	sampled,	whichever	occurred	first.	Counts	were	adjusted	for	 221	

effective	quadrat	size,	and	summed	to	account	for	differences	in	number	of	censuses	conducted	 222	

at	different	site-years.	Data	representing	weed	emergence	are	thus	reported	as	cumulative	 223	

weed	density	m-2	in	each	plot	during	solarization	and	after	solarization,	respectively.	 224	

	3.2.1.4.		Statistical	Analyses			 225	

All	analyses	were	performed	in	R	(R	Core	Team,	2016).	Mixed	effects	models	were	 226	

constructed	using	the	{nlme}	package	(Pinheiro,	Bates,	DebRoy,	Sarkar,	&	R	Core	Team,	2016),	 227	

means	separations	performed	using	the	{multcomp}	package	(Hothorn,	Bretz,	&	Westfall,	2008),	 228	

linear	discriminant	analyses	performed	using	the	{MASS}	package	(Venables	&	Ripley,	2002),	and	 229	

other	multivariate	analyses	performed	using	the	{vegan}	package	(Oksanen	et	al.,	2016).	 230	
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Response	variables	were	square	root	transformed	prior	to	analysis	to	improve	normality	and	 231	

homogeneity	of	variances;	statistical	assumptions	were	met	unless	otherwise	indicated	below.	 232	

The	chosen	significance	level	was	α	=	0.05.	 233	

To	determine	whether	solarized	and	rolled	treatment	effects	were	significant	across	site- 234	

years,	we	fit	linear	mixed	effects	(LME)	models	to	the	weed	density	data	from	all	four	site-years	 235	

of	experiments	(Table	3.1)	plus	two	on-farm	trials.	These	models	were	chosen	in	part	because	 236	

they	are	appropriate	for	unbalanced	designs	(Crawley,	2013).	Separate	models	were	fit	for	the	 237	

period	during	solarization,	and	the	observation	period	after	solarization,	with	cumulative	weed	 238	

density	m-2	as	the	response,	treatment	as	a	fixed	effect,	and	site-year	as	a	random	effect.	Means	 239	

were	separated	by	Fisher’s	Protected	LSD.	The	effects	of	flaming	on	solarization	efficacy	were	 240	

tested	using	analysis	of	variance	(ANOVA)	and	pre-planned	contrasts.			 241	

	To	test	for	treatment	effects	on	weed	community	composition,	permutational	multiple	 242	

analysis	of	variance	(PERMANOVA)	models	were	fit	for	the	period	during	solarization	and	the	 243	

period	after	solarization,	respectively,	using	Euclidean	distances	and	999	permutations	 244	

(Anderson	&	Walsh,	2013).	PERMDISP	tests	were	performed	using	Euclidean	distances	and	999	 245	

permutations	to	test	for	homogenous	dispersion	among	groups	(Anderson	&	Walsh,	2013).	 246	

These	methods	were	selected	because	the	data	were	not	multivariate	normal.	Species	observed	 247	

in	fewer	than	10%	of	plots	were	dropped	prior	to	analyses.	The	effects	of	treatment	on	the	 248	

weed	community	were	further	explored	through	linear	discriminant	analyses	(LDA)	(Gotelli	&	 249	

Ellison,	2004).	Separate	analyses	were	conducted	for	the	period	during	solarization	and	the	 250	

period	following	solarization,	with	linear	discriminant	functions	first	constructed	to	discriminate	 251	

weed	communities	by	treatment.	Classification	using	jackknifed	discrimination	matrices	 252	

suggested	these	functions	discriminated	poorly,	correctly	classifying	data	in	36%	and	29%	of	 253	

instances,	respectively,	for	the	periods	during	and	after	solarization,	compared	with	25%	correct	 254	



		
	

	
	

51	

expected	based	on	randomness.	Because	most	misclassifications	resulted	from	a	poor	ability	of	 255	

the	functions	to	discriminate	based	on	rolling,	a	second	set	of	functions	was	created	to	 256	

discriminate	between	data	pooled	as	solarized	and	non-solarized.	These	performed	better,	 257	

correctly	classifying	in	92%	and	64%	of	instances,	respectively,	for	the	periods	during	and	after	 258	

solarization,	with	50%	correct	expected	based	on	randomness.			 259	

3.2.2.		Comparing	Solarization	to	Tarping		 260	

3.2.2.1.		Site	Description	 261	

To	compare	solarization	to	tarping,	experiments	(hereafter	TARP)	were	conducted	at	the	 262	

University	of	Maine	Rogers	Farm	(44°55'N,	68°41'W)	in	July	to	September	of	2016	and	2017.	 263	

Soils	were	Pushaw-Boothbay	complex	(NRCS,	2018a)	in	both	fields.	The	2016	field	had	pH	of	6.2	 264	

and	3.7%	organic	matter	(2014	soil	test);	the	2017	field	had	pH	of	5.8	and	3.0%	organic	matter	 265	

(2017	soil	test).	The	monthly	30-year	climate	averages	for	the	period	were	8.7	cm	precipitation	 266	

and	18.2	°C	mean	temperature	(NOAA,	2018).	During	the	eight	week	experimental	periods,	the	 267	

mean	air	temperature	and	total	precipitation	were,	respectively,	21.8	°C	and	8.0	cm	in	2016;	 268	

19.0	°C	and	11.4	cm	in	2017	(NOAA,	2018).					 269	

3.2.2.2.		Experimental	Design	 270	

Experiments	consisted	of	seven	treatments	arranged	in	a	randomized	complete	block	 271	

design	with	three	replications.	Six	mulched	treatments	consisted	of	factorial	combinations	of	 272	

mulch	(solarization,	tarping)	and	treatment	duration	(2,	4,	and	6	weeks);	the	seventh	treatment	 273	

was	a	nonmulched	control.	Plots	were	1	m	by	1	m	with	0.6	m	between	plots,	which	was	 274	

considered	the	minimum	size	needed	to	avoid	strong	edge	effects	(Yitzhak	Mahrer	&	Shilo,	 275	

2012).	The	field	was	rototilled	to	15	cm	depth	prior	to	experiment	start	dates,	and	irrigated	prior	 276	

to	mulching.	Solarization	plots	were	covered	with	salvaged	6-mil	clear	polyethylene	greenhouse	 277	

plastic;	tarping	plots	with	3-mil	black	plastic	silage	tarp	(Belson	Heavy	Duty	Plastic	Tarp	&	Silo	 278	
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Cap,	#0000000068591,	Mill’s	Fleet	Farm,	Appleton,	Wisconsin,	USA).	Plastic	edges	were	secured	 279	

by	burial.	In	2016,	mulch	treatments	were	applied	and	the	experiment	begun	on	14	July,	and	 280	

mulch	was	removed	from	2,	4	and	6	week	treatments	on	28	July,	9	August,	and	23	August,	 281	

respectively.	In	2017,	the	experiment	was	begun	on	27	July,	and	mulches	removed	from	2,	4,	 282	

and	6	week	treatments	on	9	August,	22	August,	and	7	September,	respectively.	Plots	were	not	 283	

flamed	following	plastic	removal.			 284	

3.2.2.3.		Field	Data	Collection			 285	

Following	the	methods	detailed	in	section	2.1.3.,	soil	temperature	was	logged	hourly	at	5	 286	

cm	soil	depth	during	treatment,	and	volumetric	soil	moisture	measured	prior	to	mulching	and	 287	

concurrent	with	weed	censuses.	Weeds	were	counted	on	days	mulch	treatment	was	 288	

terminated,	and	approximately	14	days	after	termination	of	each	respective	treatment.	In	2016,	 289	

census	dates	were	9	August,	23	August,	and	9	September;	in	2017,	censuses	dates	were	22	 290	

August,	7	September,	and	20	September.	Censuses	were	performed	in	single	0.25	m	by	0.5	m	 291	

permanent	quadrats	located	in	the	center	of	each	plot.	Control	plots	were	censused	 292	

concurrently	with	each	mulch	treatment	census;	to	accommodate	this	design,	weeds	were	not	 293	

pulled	during	census	counts.	In	2016,	weeds	were	identified	as	either	broadleaved	or	grass-like.	 294	

In	2017,	weeds	were	counted	by	taxa	following	the	methods	in	section	2.1.3.	 295	

3.2.2.4.		Statistical	Analyses			 296	

Data	were	analyzed	with	analysis	of	covariance	(ANCOVA)	models	and	Welch’s	t-tests	in	R	 297	

(R	Core	Team,	2016).	Response	variables	were	square	root	or	log10	+1	transformed	as	necessary	 298	

to	meet	assumptions.	Means	were	separated	by	Fisher’s	protected	LSD	using	the	{multcomp}	 299	

package	(Hothorn	et	al.,	2008).	The	nonmulched	control	treatment	was	excluded	from	analysis	 300	

due	to	pseudoreplication	in	the	experimental	design	and	because	this	treatment	was	not	 301	

essential	to	our	objective	of	comparing	solarization	and	tarping	efficacy.	Initial	models	 302	
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suggested	significant	year	effects,	so	years	were	analyzed	separately.	In	both	years,	weed	 303	

density	was	zero	in	tarped	plots	of	any	duration	at	plastic	termination.	To	test	whether	weed	 304	

density	in	solarized	plots	significantly	exceeded	these	zero	values,	one-sided	Welch’s	t-tests	 305	

were	performed	for	data	pooled	across	treatment	durations.	Data	from	weed	censuses	 306	

performed	14	days	after	plastic	termination	were	analyzed	using	ANCOVA	with	weed	density	as	 307	

the	response,	and	explanatory	variables	mulch	treatment,	duration	(numeric),	and	treatment	by	 308	

duration	interaction.		 309	

3.3.		Results	 310	

3.3.1.	Solarization	for	an	Improved	Stale	Seedbed			 311	

In	our	spring	experiments,	soil	temperatures	were	elevated	under	solarization,	with	 312	

maximum	temperatures	ranging	from	32	to	47	°C	at	a	depth	of	5	cm	in	solarized	plots,	as	 313	

compared	with	29	to	38	°C	in	controls.	Soil	moisture	was	greater	in	rolled	treatments	(Table	 314	

3.2).			 315	

During	treatment,	there	was	83%	and	81%	less	weed	density	in	tilled	+	solarized	and	tilled	 316	

+	rolled	+	solarized	treatments,	respectively,	as	compared	with	corresponding	controls	(Figure	 317	

3.1A).	During	14	days	of	observation	following	plastic	termination,	weed	density	was	78%	and	 318	

75%	less	in	tilled	+	solarized	and	tilled	+	rolled	+	solarized	treatments,	respectively,	as	compared	 319	

with	controls	(Figure	3.1B).	These	treatment	effects	were	reasonably	consistent	across	site- 320	

years	both	during	(R2
marginal	=	0.43,	R2

conditional	=	0.73,	X2	=	81,	P	<	0.01)	and	after	solarization	 321	

(R2
marginal	=	0.28,	R2

conditional	=	0.39,	X2	=	23,	P	<	0.01).	 322	

	 323	

	 324	

	 325	
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Table	3.2.		Temperature	and	Soil	Moisture	in	Spring	Solarization	Experiments.	Mean	±	SD	 326	

maximum	and	mean	soil	temperatures,	exposure	time	to	temperatures	greater	than	35	°C,	and	 327	

volumetric	soil	moisture	measured	during	spring	solarization	experiments.	Temperatures	were	 328	

measured	at	5	cm	soil	depth;	soil	moisture	was	measured	prior	to	solarization	(start)	and	 329	

following	plastic	removal	(end).	Summary	statistics	calculated	across	four	experimental	site- 330	

years	and	two	on-farm	trials.			 331	

Treatment	 Soil	temp		(°C)	 	 Exposure	time	(h)	 	 Soil	moisture	(%vol)	

	 Max	 Avg.	 	 36-40	°C	 41-45	°C	 >45	°C	 	 Start	 End	

Tilled	control	 32	±	2	 17	±	1	 	 <	1	 0	 0	 	 21	±	8	 13	±	3	

Tilled	+	rolled	control	 32	±	2	 17	±	1	 	 0	 0	 0	 	 29	±	7	 20	±	4	

Tilled	+	solarized	 42	±	4	 24	±	2	 	 21	±	12		 12	±	11		 <	1	 	 21	±	7	 13	±	4	

Tilled	+	rolled	+	

solarized	

42	±	3	 23	±	3	 	 20	±	11	 12	±	12	 <	1	 	 27	±	7	 20	±	4	

						 332	

333	
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	 334	

	 335	

Figure	3.1.		Weed	Density	During	and	After	Solarization.	Mean	cumulative	weed	density	(A)	 336	

during	solarization	and	(B)	after	solarization	across	experimental	site-years.	Means	were	 337	

separated	by	Fisher’s	Protected	LSD.	 338	

	 339	

There	was	no	significant	difference	in	weed	density	between	flamed	and	nonflamed	 340	

subplots	in	either	solarization	treatment	(tilled	+	solarized:	t	=	-0.49,	P	=	0.63;	tilled	+	rolled	+	 341	

solarized:	t	=	-1.09,	P	=	0.29).	Flaming	significantly	reduced	weed	density	in	the	tilled	control	 342	

treatment	(t	=	-2.85,	P	=	0.01),	and	caused	a	32%	reduction	in	weed	density	in	the	tilled	+	rolled	 343	

treatment,	though	this	difference	was	not	statistically	significant	(t	=	-1.05,	P	=	0.31).			 344	

PERMANOVA	models	suggested	non-significant	effects	of	treatment	on	weed	community	 345	

composition	during	(R2	=	0.09,	F3,48df	=	1.66,	P	=	0.09),	and	after	solarization	(R2	=	0.09,	F3,48df	=	 346	

1.67,	P	=	0.06).	Significant	PERMDISP	tests	for	the	periods	during	(F3,48df	=	5.84,	P	<	0.01)	and	 347	

after	solarization	(F3,48df	=	6.76,	P	<	0.01)	indicated	differences	in	dispersion	(beta	diversity)	 348	
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between	treatment	groups	(Anderson	&	Walsh,	2013).	Linear	discriminant	analyses	showed	 349	

clear	separation	between	solarized	treatments	and	control	treatments	along	the	first	linear	 350	

discriminant	function	during	the	solarization	period	(Figure	3.2A).	Rolling	appeared	to	drive	 351	

separation	between	control	treatments	but	not	solarized	treatments	during	the	period	after	 352	

solarization	(Figure	3.2B).	All	weed	species	decreased	in	abundance	under	solarization	(data	not	 353	

shown);	however,	LDA	coefficients	(Table	3.3)	suggested	that	winter	annuals	(Capsella	bursa- 354	

pastoris;	Stellaria	media	(L.)	Vill.;	Poa	annua)	and	Trifolium	repens	L.	were	disproportionately	 355	

reduced	during	the	solarization	period,	and	Poa	annua	remained	disproportionately	reduced	 356	

after	solarization.		 357	

	 358	

	 359	

Figure	3.2.	Impact	of	Solarization	on	the	Weed	Community.	Linear	discriminant	analyses	 360	

showing	separation	of	weed	communities	by	treatment	along	the	first	two	of	three	linear	 361	

discriminant	(LD)	functions	(A)	during	solarization	and	(B)	after	solarization.	Percent	variation	 362	

explained	by	each	LD	function	(trace)	shown	in	square	brackets.	 363	

364	
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	 365	

Table	3.3.		Eigenvectors	from	LDA	of	Solarized	Weed	Communities.	Coefficients	of	linear	 366	

discrimination	(eigenvectors)	showing	the	contribution	of	weed	species	to	overall	community	 367	

separation	during	and	after	two	weeks	of	spring	solarization.	More	negative	values	are	 368	

associated	with	control	plots;	more	positive	values	are	associated	with	solarized	plots.	†	=	 369	

winter	annual	species.			 370	

Weed	species	 Common	name	 Eigenvectors	

	 	 During	solarization	 After	solarization	

Elymus	repens	 Quackgrass	 0.12	 -0.03	

Amaranthus	retroflexus		 Redroot	pigweed	 -0.04	 -0.06	

Ambrosia	artemisiifolia	 Common	ragweed	 	 -0.15	

Capsella	bursa-pastoris	 Shepherd's-purse†	 -0.47	 -0.06	

Chenopodium	album	 Common	lambsquarters	 -0.16	 0.02	

Digitaria	sanguinalis	 Large	crabgrass	 0.04	 -0.07	

Echinochloa	crus-galli		 Barnyardgrass	 0.06	 -0.06	

Galinsoga	quadriradiata	 Hairy	galinsoga	 -0.06	 -0.01	

Panicum	capillare	 Witchgrass	 -0.08	 	

Poa	annua	 Annual	bluegrass†	 -0.30	 -0.31	

Portulaca	oleracea	 Common	purslane	 	 -0.13	

Stellaria	media	 Common	chickweed†	 -0.36	 	

Trifolium	repens	 White	clover	 -0.37	 	

	 371	

372	
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3.3.2.	Comparing	Solarization	to	Tarping			 373	

Solarization	resulted	in	higher	maximum	and	average	soil	temperatures	than	did	tarping	(Table	 374	

3.4).	In	both	years	of	our	TARP	study,	weed	density	was	zero	at	plastic	termination	in	tarping	 375	

treatments	(Table	3.5).	In	2016,	weed	density	at	termination	of	solarization	treatments	was	very	 376	

low	and,	across	treatment	durations,	not	significantly	different	than	zero	(Table	3.5;	t	=	2.29,	P	=	 377	

0.05).	In	2017,	weed	emergence	(density)	was	significant	during	solarization	(Table	3.5;	t	=	6.00,	 378	

P	<	0.01).	Our	ANCOVA	model	for	weed	density	following	plastic	termination	in	2016	(R2	=	0.80)	 379	

included	significant	effects	for	treatment,	duration,	and	treatment	by	duration	interaction;	 380	

specifically,	solarization	resulted	in	less	subsequent	weed	density	than	tarping	and	was	more	 381	

effective	with	increasing	treatment	duration	(Table	3.5),	while	tarping	efficacy	was	lowest	 382	

following	4	weeks	of	treatment.	The	corresponding	model	for	2017	(R2	=	0.83)	included	 383	

significant	effects	for	treatment	only,	with	greater	weed	density	following	solarization	than	 384	

tarping	(Table	3.5).	Density	of	the	most	abundant	species	in	our	2017	study	system,	Portulaca	 385	

oleracea	L.,	was	higher	in	solarized	plots	than	controls,	while	density	of	other	broadleaved	 386	

weeds	was	reduced	by	solarization	(Figure	3.3).	 387	

	 388	

389	
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	 390	

Table	3.4.	Temperature	and	Soil	Moisture	in	TARP	Experiments.	Mean	±	SD	maximum	and	 391	

average	temperatures,	exposure	time	to	temperatures	greater	than	35	°C,	and	volumetric	soil	 392	

moisture	measured	during	TARP	experiments.	Soil	moisture	was	measured	prior	to	solarization	 393	

(start)	and	following	plastic	termination	(end).	Data	averaged	across	three	replicate	plots	unless	 394	

otherwise	noted:	nd	signifies	no	data;	†data	from	2	replicates	only.	 395	

Year	 Treatment	 Duration	

(weeks)	

Soil	temp	(°C)	 	 Exposure	time	(h)	 	 Soil	moisture	(%vol)		

	 	 Max			 Avg.		 	 36-40	°C		 41-45	°C		 >45	°C	 	 Start	 End	

2016	 Control	 2	 35	±	1	 24	±	0	 	 	<	1		 0	 			0	 	 36	±	6	 12	±	1	

	 	 4	 35	±	1	 23	±	0	 	 	<	1	 0	 			0	 	 36	±	6	 10	±	2	

	 	 6	 			nd			 	nd	 	 	nd	 nd	 			nd	 	 36	±	6	 23	±	2	

	 Tarping	 2	 41	±	2	 28	±	0	 	 	28	±	11		 3	±	3	 			0		 	 35	±	5	 18	±	2	

	 	 4	 41	±	2	 28	±	0	 	 	71	±	17	 		8	±	12	 			0	 	 38	±	2	 18	±	2	

	 	 6	 41	±	3	 27	±	0	 	 	72	±	55	 11	±	10	 			0		 	 36	±	5	 17	±	1	

	 Solarization	 2	 46	±	3	 31	±	1	 	 		48	±	11	 30	±	21	 			4	±	8	 	 33	±	5	 18	±	3	

	 	 	4		 46	±	3	 31	±	1	 	 101	±	12		 64	±	41	 					8	±	11	 	 33	±	1	 16	±	3	

	 	 		6			 		50	±	1†	 		31	±	0†	 	 108	±	2†	 117	±	2†	 			49	±	8†	 	 39	±	3	 17	±	5	

2017	 Control	 2	 		33	±	4†			23	±	1†	 	 				0†	 							0†	 				0†	 	 22	±	3	 		7	±	1	

	 	 4	 		33	±	4†			22	±	1†	 	 				0†	 							0†	 				0†	 	 22	±	3	 10	±	1	

	 	 6	 		33	±	4†			21	±	1†	 	 				0†	 							0†	 				0†	 	 22	±	3	 33	±	4	

	 Tarping	 2	 		39	±	1†			25	±	0†	 	 		16	±	7†	 							0†	 				0†	 	 30	±	4	 12	±	0	

	 	 4	 		37	±	0†			25	±	0†	 	 		12	±	1†	 							0†	 				0†	 	 26	±	5	 15	±	2	

	 	 6	 39	±	1	 24	±	0	 	 		31	±	18	 				1	±	2	 		0	 	 29	±	4	 28	±	6	

	 Solarization	 2	 		46	±	0†				29	±	1†	 	 			32	±	8†		 	33	±	6†		 				5	±	1†	 	 		29	±	11	 13	±	5	

	 	 4	 43	±	3	 	27	±	1	 	 		40	±	14	 	17	±	16		 			<	1		 	 32	±	6	 14	±	1	

	 	 				6					 45	±	1	 	25	±	1	 	 		51	±	36	 		25	±	6	 		1	±	2	 	 30	±	2	 		28	±	11	

	 396	

	 397	

	 398	
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	 399	

Table	3.5.	Weed	Density	in	TARP	Experiments.	Mean	±	SEM	total	weed	density	measured	during	 400	

TARP	experiments.	 401	

Year	 Treatment	 Duration	

(weeks)	

Total	weed	density	(no	m-2)		

	 	 Termination	 Termination	+	14	

2016	 Control	 2	 595	±	114		 803	±	127	

	 	 4	 803	±	127		 635	±	46	

	 	 6	 635	±	46		 680	±	44	

	 Tarping	 2	 0		 261	±	67	

	 	 	4		 0		 640	±	130	

	 	 		6			 0		 205	±	69	

	 Solarization	 2	 5	±	5		 141	±	14	

	 	 4	 11	±	7		 16	±	5	

	 	 6	 5	±	5		 11	±	5	

2017	 Control	 2	 56	±	12	 403	±	101	

	 	 4	 403	±	101	 320	±	47	

	 	 6	 320	±	47	 453	±	107	

	 Tarping	 2	 0	 32	±	9	

	 	 4	 0	 0	

	 	 				6					 0	 27	±	16	

	 Solarization	 2	 419	±	134	 427	±	130	

	 	 4	 571	±	50	 288	±	41	

	 	 6	 224	±	61	 237	±	80	
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	 402	

Figure	3.3.		Density	of	Weed	Taxa	in	2017	TARP	Experiment.	Mean	±	SEM	density	of	Portulaca	 403	

oleracea,	other	broadleaved	weeds,	and	other	grass-like	weeds	measured	at	14	days	after	 404	

plastic	termination	in	the	2017	TARP	experiment.		Data	are	shown	pooled	across	treatment	 405	

durations.			 406	

	 407	

	3.4.	Discussion	 408	

3.4.1.	Solarization	for	an	Improved	Stale	Seedbed	 409	

Contrary	to	expectations	(Hypothesis	1),	but	nevertheless	a	desirable	weed	management	 410	

outcome,	springtime	soil	solarization	greatly	reduced	weed	density	during	two	weeks	of	 411	

treatment	(Figure	3.1A).	The	weed-suppressive	effect	of	solarization	persisted	after	plastic	was	 412	

removed	and	plots	were	flamed.	There	was	a	trend	toward	increased	weed	density	in	rolled	 413	

treatments,	as	expected	(Hypothesis	2),	but	the	magnitude	of	the	solarization	effect	was	greater	 414	

and	differences	based	on	rolling	were	not	significant	(Figure	3.1).	The	finding	that	nonflamed	 415	
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subplots	were	not	weedier	than	flamed	subplots	suggests	that	two	weeks	of	solarization	alone	 416	

can	create	an	excellent	stale	seedbed	in	our	region,	the	Northeast	USA.					 417	

The	maximum	temperatures	and	accumulated	time	under	high	temperature	conditions	 418	

measured	at	5	cm	depth	during	these	experiments	(Table	3.2)	are	less	than	published	thresholds	 419	

required	for	weed	seed	mortality	in	some	species	(Dahlquist,	Prather,	&	Stapleton,	2007;	 420	

Vizantinopoulos	&	Katranis,	1993).	However,	higher	maximum	temperatures	were	likely	reached	 421	

nearer	the	soil	surface	(Gamliel,	Austerweil,	&	Kritzman,	2000;	Ytzhaq	Mahrer,	1980);	data	from	 422	

our	own	methods	development	indicates	that	maximum	temperatures	may	have	been	≥	5	°C	 423	

greater	at	1	cm	as	compared	with	5	cm	soil	depth	(Birthisel	SK,	unpublished	data).	Further,	we	 424	

observed	dead	white-thread	stage	weeds	under	the	solarization	plastic	in	some	plots.	These	 425	

were	not	accounted	for	in	our	weed	censuses,	but	their	presence	suggests	that	germination	and	 426	

subsequent	seedling	death	was	a	mechanism	of	seedbank	reduction	in	these	experiments.			 427	

The	pattern	in	our	weed	community	data	following	solarization	(Figure	3.2B),	along	with	 428	

PERMDISP	test	results,	suggests	that	solarization	reduced	beta	diversity,	or	in-group	dispersion,	 429	

in	comparison	with	control	treatments.	This	is	consistent	with	the	hypothesis	and	findings	of	 430	

Chase	(2007)	and	suggests	that	solarization	can	act	as	a	filter	shaping	weed	community	 431	

composition	(Booth	&	Swanton,	2002).	Though	winter	annuals	and	Poa	annua	were	 432	

disproportionately	harmed	during	solarization	(Table	3.3),	the	contributions	of	other	weed	 433	

species	to	the	overall	community	were	weakly	impacted	by	solarization,	and	none	strongly	 434	

positively	associated	(Table	3.3).	This	suggests	that	solarization	can	be	effective	against	many	 435	

weeds	present	in	the	Northeast	USA,	consistent	with	Cohen	and	Rubin’s	review	of	species	 436	

susceptibility	to	solarization	(2007).	Two	susceptible	weeds	in	particular,	Galinsoga	 437	

quadriradiata	(Raf.)	Blake	and	Digitaria	sanguinalis	(L.)	Scop.	(Vizantinopoulos	&	Katranis,	1993),	 438	

are	among	the	most	problematic	for	regional	organic	farmers	(Jabbour,	Gallandt,	et	al.,	2014).		 439	
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Our	decision	to	employ	previously	used	greenhouse	plastic	in	these	experiments	may	have	 440	

impacted	results.	There	is	a	considerable	body	of	research	characterizing	the	effects	of	plastic	 441	

optical	properties	on	soil	heating	(Mahrer	&	Shilo,	2012),	and	specialized	mulches	designed	to	 442	

optimize	efficacy	have	been	tested	(D’Anna,	Lapichino,	&	D’Anna,	2012;	Stevens,	Khan,	Wilson,	 443	

Brown,	&	Collins,	1999;	Yildiz,	Benlioǧlu,	Boz,	&	Benlioǧlu,	2010).	We	lacked	the	resources	to	 444	

quantify	optical	characteristics	of	the	polyethylene	used	in	these	experiments.	However,	studies	 445	

comparing	the	use	of	new	and	previously	used	polyethylene	for	solarization	suggest	that	 446	

previously	used	polyethylene	can	work	as	well	or	better	than	new	(Avissar,	Naot,	Mahrer,	&	 447	

Katan,	1985;	Yildiz	et	al.,	2010),	so	we	do	not	necessarily	expect	that	efficacy	was	diminished.	 448	

Specialized	solarization	films	(Chase,	Sinclair,	&	Locascio,	1999)	or	modifications	such	as	the	use	 449	

of	bubble	film	for	solarization	(Oz,	Coskan,	&	Atilgan,	2017)	could	perhaps	improve	efficacy,	 450	

though	the	increased	soil	heating	from	the	use	of	specialized	films	does	not	always	translate	to	 451	

improved	weed	control	outcomes	(Chellemi,	Olson,	Mitchell,	Secker,	&	McSorley,	1997;	Yildiz	et	 452	

al.,	2010).				 453	

Solarization	is	a	promising	strategy	for	improving	the	efficacy	of	stale	seedbed	 454	

preparation	in	the	Northeast	USA	and	warrants	further	study.	We	hope	future	work	in	our	 455	

region	will	measure	the	impact	of	solarization	on	weed	seedbank	depletion	(Gallandt,	2006),	 456	

assessing	its	potential	to	cause	long-term	reductions	in	weed	pressure.	Growers	in	our	region	 457	

have	asked	whether	the	in-season	weed	control	benefits	of	solarization	offset	labor	and	 458	

opportunity	costs,	resulting	in	economic	returns.	Solarization	was	economically	advantageous	in	 459	

California	strawberries	(Stapleton,	Molinar,	Lynn-patterson,	Mcfeeters,	&	Shrestha,	2005);	 460	

however,	a	study	in	California	organic	vegetables	found	that	flame	weeding	was	more	cost- 461	

effective	(Deese,	2010).	An	economic	assessment	specific	to	small	and	mid-sized	vegetable	 462	

growers	in	the	Northeast	USA	could	aid	in	the	creation	of	local	farm	management	 463	



		
	

	
	

64	

recommendations.	Growers	have	also	asked	about	the	impacts	of	solarization	in	the	Northeast	 464	

USA	on	beneficial	soil	microbiota,	which	we	address	elsewhere	(Chapter	4).			 465	

3.4.2.	Comparing	Solarization	to	Tarping	 466	

We	had	expected	solarization	to	result	in	higher	soil	temperatures	and	better	weed	 467	

control	outcomes	than	tarping	(Hypothesis	4).	Results	of	our	2016	TARP	experiment	(Table	3.4;	 468	

Table	3.5)	support	this	hypothesis,	corroborating	a	majority	of	published	experiments	on	the	 469	

topic	(reviewed	in	Birthisel,	Gallandt,	&	Souza	Cunha,	2018).	In	our	2017	experiment,	however,	 470	

tarping	was	more	effective	than	solarization	(Table	3.5).	The	abundance	of	Portulaca	oleracea	in	 471	

our	2017	study	site	was	likely	an	important	factor	influencing	this	result;	emergence	of	this	 472	

species	was	apparently	promoted	by	solarization	(Figure	3.3).	Consistent	with	this	finding,	 473	

Dahlquist	et	al.	(2007)	report	that	P.	oleracea	readily	germinated	at	temperatures	of	42	and	46	 474	

°C.	Though	we	did	not	collect	weed	species	data	at	the	plot	level	in	2016,	when	solarization	 475	

proved	more	effective	(Table	3.5),	we	noted	that	the	four	most	abundant	species	in	the	field	 476	

were	Amaranthus	retroflexus,	Chenopodium	album,	Galinsoga	quadriradiata,	and	Echinochloa	 477	

crus-galli,	all	annuals	that	were	well	controlled	in	our	other	experiments	(Figure	3.3;	Table	3.3).	 478	

Another	factor	that	may	have	contributed	to	the	discrepancy	in	results	between	site-years	is	soil	 479	

temperature:	overall,	hotter	temperatures	and	greater	accumulations	of	time	at	high	 480	

temperatures	were	measured	in	2016	than	in	2017	(Table	3.4).			 481	

We	had	expected	the	efficacy	of	both	solarization	and	tarping	to	increase	with	treatment	 482	

duration,	but	our	data	offer	weak	and	inconsistent	support	for	this	idea.	Treatment	duration	 483	

was	not	a	significant	factor	in	2017.	In	2016,	solarization	efficacy	did	increase	with	treatment	 484	

duration	(Table	3.5).	However,	weed	density	following	tarping	was	unexpectedly	146%	greater	 485	

in	the	4	week	treatment	as	compared	with	the	2	week	treatment	(Table	3.5).	The	timing	of	 486	

rainfall	during	this	atypically	dry	summer	may	explain	this	result:	43	mm	of	rain	fell	during	the	 487	
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period	of	observation	following	plastic	removal	in	the	4	week	treatments,	whereas	only	13	mm	 488	

and	8	mm	of	rain	fell	during	the	observation	periods	following	the	2	week	and	6	week	 489	

treatments,	respectively	(NOAA,	2018).	Since	moisture	cues	are	typically	required	for	 490	

germination	(Baskin	&	Baskin,	1998)	and	weeds	at	the	seedling	stage	may	be	especially	sensitive	 491	

to	desiccation,	greater	density	might	have	been	expected	following	2	weeks	of	tarping	if	 492	

conditions	had	been	more	favorable	to	germination	and	establishment.	The	fact	that	weed	 493	

emergence	did	not	appear	to	be	stimulated	by	rainfall	in	the	4	week	solarization	treatment	 494	

(Table	3.5)	suggests	that	this	treatment	may	have	been	effective	in	depleting	the	germinable	 495	

weed	seedbank.		 496	

	 Overall,	these	results	suggest	tradeoffs	between	solarization	and	tarping	that	should	be	 497	

more	thoroughly	characterized	before	either	strategy	is	advocated	as	a	“better”	approach	for	 498	

farmers	in	the	Northeast	USA	and	areas	of	similar	climate.	Solarization	applied	as	a	stale	 499	

seedbed	technique	to	susceptible	species	under	good	conditions	may	result	in	greater	seedbank	 500	

depletion	than	tarping	(Standifer	et	al.,	1984)	thereby	offering	longer-term	benefits.	However,	 501	

the	light	blocking	effect	of	tarping	may	make	it	more	suitable	under	marginal	conditions,	or	in	 502	

situations	where	the	intended	purpose	is	simply	to	prevent	weed	emergence	for	a	period	of	 503	

time	rather	deplete	the	seedbank.	Research	comparing	these	practices	over	a	wider	range	of	 504	

soil,	weather,	and	seedbank	conditions	could	aid	in	the	development	of	guidelines	to	help	 505	

growers	select	practices	that	align	with	their	situations	and	goals.	We	advocate	as	well	that	 506	

further	studies	follow	Lounsbury	et	al.	(2018)	in	examining	the	utility	of	solarization	and	tarping	 507	

for	terminating	cover	crops	prior	to	organic	no-till	or	strip-till	plantings.	Recent	work	on	 508	

‘biosolarization’	(Stapleton	et	al.,	2016)	indicates	that	incorporation	of	crop	residues	(Mallek,	 509	

Prather,	&	Stapleton,	2007)	and	other	organic	amendments	(Achmon	et	al.,	2017;	Gamliel	et	al.,	 510	
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2000)	prior	to	treatment	can	increase	the	weed	control	efficacy	of	solarization.	Given	farmer	 511	

interest	in	organic	reduced	tillage,	this	could	be	a	fruitful	area	for	future	work.			 512	

3.5.	Conclusions		 513	

Across	replicated	experiments,	two	weeks	of	springtime	soil	solarization	followed	by	 514	

flaming	created	a	stale	seedbed	with	78%	less	subsequent	weed	density	than	a	control	stale	 515	

seedbed	prepared	with	flaming	only.	Nonflamed	subplots	established	during	one	site-year	 516	

suggested	that	solarization	alone,	without	flaming,	can	created	an	effective	stale	seedbed.	Soil	 517	

temperatures	measured	under	solarization	may	have	contributed	to	thermal	inactivation	of	 518	

some	species	of	weed	seed,	and	fatal	germination	of	others.	Multivariate	weed	community	 519	

analyses	indicate	that	solarization	may	act	as	an	ecological	filter	shaping	weed	community	 520	

composition.	We	hope	future	studies	of	solarization	will	more	thoroughly	characterize	its	 521	

impacts	on	weed	seedbanks,	and	evaluate	whether	the	practice	is	economically	advantageous	 522	

to	growers	in	our	region.	Additional	experiments	compared	the	efficacy	of	solarization	to	 523	

tarping	with	black	plastic.	Solarization	outperformed	tarping	in	one	year	of	study,	but	the	 524	

opposite	was	true	the	following	year.	Higher	temperatures	in	our	first	year	experiment,	and	high	 525	

density	of	the	relatively	heat-tolerant	weed	Portulaca	oleracea	(purslane)	in	our	second,	may	 526	

explain	these	discrepant	results.	Overall,	solarization	and	tarping	are	promising	organic	stale	 527	

seedbed	preparation	techniques,	but	more	work	is	needed	to	evaluate	their	relative	efficacy	 528	

over	a	range	of	conditions	and	applications	relevant	to	growers	in	humid	continental	climates	 529	

like	the	Northeast	USA.					 530	

	 531	

	 532	

	 533	

	 534	
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CHAPTER	4	 535	

EFFECTS	OF	FIELD	AND	GREENHOUSE	SOLARIZATION	ON	SOIL	MICROBIOTA		 536	

AND	WEED	SEEDS	ON	MAINE	FARMS	 537	

4.1.		Introduction		 538	

Soil	solarization	is	the	practice	of	controlling	pests	by	covering	irrigated	soil	with	clear	 539	

plastic	tarps,	using	solar	energy	to	heat	soils	to	lethal	temperatures	(J	Katan	et	al.,	1976).	 540	

Solarization	has	long	been	known	to	kill	weeds	(Cohen	&	Rubin,	2007;	Horowitz	et	al.,	1983)	 541	

and	soilborne	pathogens	(Katan,	1981;	McGovern	&	McSorley,	2012)	in	warm,	sunny	climates.	It	 542	

was	thought	to	be	inconsistently	effective	in	cooler	regions	(Walters	&	Pinkerton,	2012),	but	 543	

recent	work	by	our	group	demonstrated	that	two	weeks	of	spring	solarization	in	the	humid	 544	

continental	climate	of	Maine,	USA	prepared	an	excellent	stale	seedbed	(Chapter	3).	These	 545	

promising	results	prompted	questions	from	organic	farmers	in	our	region	about	mechanisms	 546	

and	best	practices	for	solarization,	as	well	as	concerns	about	impacts	on	soil	microbiota,	 547	

nutrient	cycling,	and	soil	health.	The	experiments	described	herein	sought	to	build	on	existing	 548	

knowledge	(Kapulnik	&	Gamliel,	2012)	and	address	a	lack	of	necessary	(Chellemi	et	al.,	1997)	 549	

region-specific	data	on	these	topics.		 550	

The	mechanisms	through	which	solarization	causes	weed	suppression	in	our	region	have	 551	

yet	to	be	fully	elucidated.	Solarization	may	cause	thermal	inactivation	(Dahlquist,	Prather,	&	 552	

Stapleton,	2007)	or	fatal	germination	of	some	species,	while	enforcing	dormancy	in	others	 553	

(Marenco	&	Lustosa,	2000).	The	temperature	thresholds	required	for	thermal	seed	death	may	 554	

be	altered	by	environmental	factors	including	soil	moisture	(Egley,	1990)	and	soil	organic	 555	

content	(Stapleton	et	al.,	2016).	From	a	seedbank	management	standpoint,	direct	mortality	of	 556	

seeds	or	seedlings	is	a	more	desirable	outcome	than	forcing	seed	dormancy	(Gallandt,	2006).			 557	
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		 Although	solarization	is	considered	a	‘mild’	soil	treatment	in	comparison	to	other	 558	

disinfestation	techniques	including	steaming	(Runia,	2012),	it	nonetheless	affects	the	soil	 559	

ecosystem	beyond	the	control	of	target	pests.	Solarization	often	increases	dissolved	organic	 560	

matter	(Chen,	Katan,	Gamliel,	Aviad,	&	Schnitzer,	2000;	M.	A.	Khan	et	al.,	2012)	and	plant	 561	

available	nutrients	including	inorganic	nitrogen	(Khan	et	al.,	2012;	Oz	et	al.,	2017;	Sofi,	Tewari,	 562	

Razdan,	&	Koul,	2014).	Gelsomino	&	Cacco	(2006)	report	that	solarization	in	Italy	 563	

altered	microbial	community	composition	during	treatment.	Scopa	et	al.	found	that	soil	 564	

respiration	rates	decreased	non-significantly	during	field	solarization	(Scopa	&	Dumontet,	 565	

2007),	but	significantly	under	solarization	within	a	greenhouse	(Scopa,	Candido,	Dumontet,	&	 566	

Miccolis,	2008).	It	is	well	established	that	survival	or	rapid	recolonization	of	the	rhizosphere	by	 567	

beneficial	mesophilic	microbiota	following	solarization	can	induce	soil	suppressiveness	against	 568	

pathogens	(Katan	&	Gamliel,	2012),	which	can	positively	impact	crop	growth.	We	are	aware	of	 569	

no	prior	studies	exploring	the	effect	of	solarization	in	the	Northeast	USA	on	beneficial	soil	 570	

microbiota.		 571	

		 Variations	on	solarization	that	are	of	interest	to	organic	farmers	in	our	region	 572	

include	greenhouse	solarization	and	tarping.	Conducting	solarization	within	a	greenhouse	 573	

(Gullino	&	Garibaldi,	2012)	or	covering	fields	with	multiple	plastic	layers	(Barakat	&	Al-masri,	 574	

2012)	typically	results	in	higher	soil	temperatures	than	single-layer	solarization,	and	can	improve	 575	

pest	control	efficacy		(Garibaldi	&	Tamietti,	1983;	Stevens	et	al.,	1999).	Tarping,	also	known	 576	

as	occultation,	utilizes	black	plastic	or	heavy-gauge	silage	tarps	to	block	sunlight	from	reaching	 577	

the	soil	for	several	weeks	prior	to	planting	(Fortier,	2014).	Black	plastic	results	in	lower	soil	 578	

temperatures	and	less	consistently	effective	weed	control	than	solarization	in	warmer	 579	

regions	(Horowitz	et	al.,	1983;	Standifer	et	al.,	1984).	The	impacts	of	greenhouse	solarization	 580	

and	tarping	on	soil	microbiota	have	not	been	previously	studied	in	the	Northeast	USA.					 581	
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We	conducted	paired	experiments	in	a	field	and	a	greenhouse	to	measure	solarization	 582	

impacts	on	soil	microbiota,	assessed	via	plate	counts	and	soil	biological	activity,	and	on	weed	 583	

seeds	and	soil	available	nitrogen.	In	a	separate	field	experiment,	we	compared	the	effects	 584	

of	solarization	and	tarping	on	soil	biological	activity	at	three	soil	depths.	The	hypotheses	guiding	 585	

these	experiments	were	as	follows:		 586	

1. Solarization	will	reduce	all	including	beneficial	soil	microbiota	during	treatment,	but	the	 587	

beneficial	microbes	will	return	to	control	levels	following	treatment;		 588	

2. Soil	available	nitrogen	will	increase	as	a	result	of	solarization;		 589	

3. Solarization	will	cause	mortality	of	buried	weed	seeds;		 590	

4. Greenhouse	solarization	will	achieve	higher	temperatures	and	be	more	lethal	to	 591	

microbiota	and	weed	seeds	than	field	solarization;			 592	

5. Tarping	will	be	less	lethal	to	microbiota	than	field	solarization;	and		 593	

6. The	impacts	of	field	solarization	and	tarping	on	soil	microbiota	will	decrease	with	 594	

increasing	depth	from	the	soil	surface.			 595	

4.2.		Materials	and	Methods	 596	

4.2.1.		Field	and	Greenhouse	Solarization	 597	

4.2.1.1.		Site	Description	 598	

Paired	experiments	were	conducted	during	June	to	August	of	2016	in	an	open	field	 599	

(hereafter	FIELD	experiment)	and	an	adjacent	greenhouse	(GHOUSE	experiment).	The	site	 600	

(44°54'N	68°39'W)	had	been	in	sod	for	decades	before	construction	of	a	33	m	by	8	m	double	 601	

layered	6	mil	polyethylene	high-tunnel,	in-field	greenhouse	in	2012;	the	open	field	was	added	to	 602	

production	in	2014.	Prior	to	these	experiments,	the	field	was	left	fallow	in	2015,	and	amended	 603	

with	compost	in	April	of	2016.	The	greenhouse	had	been	planted	to	organic	salad	greens	in	the	 604	

fall	of	2015	and	spring	of	2016.	Soils	were	Peru-Tunbridge	association.	The	field	had	17.9%	 605	
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organic	matter,	6.6	pH,	and	N-P-K	of	21	ppm–406	kg	ha-1–2660	kg	ha-1;	the	greenhouse	9.2%	 606	

organic	matter,	6.2	pH,	and	N-P-K	of	90	ppm–97	kg	ha-1–1644	kg	ha-1	(June	2016	soil	tests).	The	 607	

high	organic	matter	at	these	sites,	an	artifact	of	past	management,	likely	introduced	a	 608	

‘biosolarization’	effect	(Stapleton	et	al.,	2016)	into	these	experiments,	potentially	increasing	the	 609	

efficacy	of	solarization	in	comparison	to	what	would	be	expected	at	lower	organic	matter	levels.		 610	

Air	temperatures	over	the	course	of	these	experiments	averaged	19.7	°C	with	a	total	 611	

rainfall	of	20	cm	(NOAA,	2018).	The	30-year	historical	averages	for	temperature	and	rainfall	for	 612	

the	months	June	through	August	were	19	°C	and	26	cm,	respectively	(NOAA,	2018).			 613	

4.2.1.2.		Experimental	Design	 614	

The	FIELD	and	GHOUSE	experiments	were	each	arranged	as	a	randomized	complete	 615	

block	design	with	four	replicates	of	three	treatments:	solarized	for	2	weeks,	solarized	for	4	 616	

weeks,	and	unsolarized	control.	Plots	were	1.5	m	by	3.0	m	with	0.3	m	rows.	Soils	were	rototilled	 617	

to	15	cm	depth	1	to	2	days	prior	to	the	experiment	start	date,	22	June	2016.	To	begin	the	 618	

experiment,	all	plots	were	irrigated	to	approximate	field	capacity,	and	solarization	treatments	 619	

covered	with	previously	used	6	mil	polyethylene	greenhouse	plastic,	the	edges	of	which	were	 620	

secured	by	burial.	Previously	used	plastic	was	chosen	in	order	to	reflect	likely	grower	practices	in	 621	

our	region	(Chapter	3).	Plastic	was	removed	from	2-week	treatments	on	6	July,	and	from	4-week	 622	

treatments	on	20	July.		 623	

4.2.1.3.		Field	Data	Collection	 624	

Soil	temperatures	were	logged	hourly	during	treatment	using	iButton	temperature	 625	

loggers	(Maxim	Integrated,	San	Jose,	CA).	One	logger	per	plot	was	placed	in	a	sealed	5	cm	by	5	 626	

cm	4	mil	plastic	bag	and	buried	at	10	cm	soil	depth.	Soil	moisture	was	measured	and	averaged	 627	

across	three	locations	per	plot	using	a	Delta-T	soil	moisture	meter	(HH2	version	4.0,	Delta-T	 628	

Devices	Ltd,	Cambridge,	England)	on	every	date	that	samples	were	collected.		 629	
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Bulk	soil	samples,	later	sub-divided	for	measurement	of	microbial	colony	forming	units	 630	

(CFU),	soil	biological	activity,	and	available	nitrogen,	were	collected	prior	to	irrigation	and	plastic	 631	

application	on	22	June	2016,	directly	after	plastic	termination	(removal),	and	five	or	six	days	 632	

following	termination	(2-week	treatments:	11	July;	4-week	treatments:	25	July).	Additional	 633	

samples	were	collected	for	soil	biological	activity	measurement	at	14	days	after	termination	of	 634	

4-week	treatments	(2	August)	and	28	days	after	termination	of	4-week	treatments	in	the	 635	

GHOUSE	experiment	only	(16	August).	Baseline	samples	collected	at	the	start	of	experiments	 636	

consisted	of	10	soil	cores	per	block.	Subsequent	samples,	each	consisting	of	5	soil	cores,	were	 637	

taken	at	the	plot	level.	Soil	cores	were	collected	to	10	cm	depth	using	a	sterilized	7.6	cm	 638	

diameter	bulb	planter	(Yard	Butler	IBPL-6	Bulb	and	Garden	Planter,	Lewis	Tools,	Poway,	CA),	 639	

placed	in	plastic	bags,	mixed	well,	and	refrigerated	prior	to	processing.				 640	

	To	test	for	treatment	effects	on	weed	seed	viability,	seed	bags	were	constructed	by	 641	

sewing	a	total	of	30	weed	seeds	into	polypropylene	tea	bags	(dimensions	6.5	cm	by	8	cm;	mesh	 642	

gauge	≤	200	μm),	consisting	of	10	seeds	each	of	the	following	endemic	species:	Sinapis	arvensis	 643	

L.,	Digitaria	sanguinalis	(L.)	Scop.,	and	Chenopodium	album	L.	Seeds	were	purchased	in	2016	 644	

from	Azlin	Seed	Service	(Leland,	MS,	USA,	38756).	One	seed	bag	was	buried	at	1	cm	depth	near	 645	

the	center	of	each	control	and	4-week	treatment	plot	prior	to	plastic	installation.	Seed	bags	 646	

were	exhumed	at	termination	of	4-week	treatments	and	refrigerated	prior	to	processing.		 647	

4.2.1.4.		Laboratory	Analyses	 648	

The	impact	of	solarization	on	soil	microbial	communities	was	measured	by	dilution	 649	

plating	and	enumeration	of	colony	forming	units	(CFU)	following	the	methods	of	Meng	et	al.	 650	

(2012).	Four	selective	media	were	used:	1/10	strength	tryptic	soy	agar	+	100	mg	L-1	 651	

cyclohexamide	(TSA+1/10)	to	isolate	general	bacteria;	Rose	Bengal	Chloramphenicol	(RBC)	to	 652	

isolate	general	fungi;	Gould’s	S1	(Tarnawski,	Hamelin,	Locatelli,	Aragno,	&	Fromin,	2003)	to	 653	
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isolate	fluorescent	pseudomonads,	and	full	strength	tryptic	soy	agar	amended	with	100	mg	L-1	 654	

cyclohexamide	(TSA+)	with	samples	heated	to	80	°C	for	30	min	to	isolate	Bacillus	spp.	 655	

Suspensions	of	10	g	well-mixed	soil	in	90	mL	sterilized	phosphate-buffered	saline	solution	were	 656	

shaken	for	20	min	at	300	rpm	and	serially	diluted.	Two	replicate	plates	of	each	media	were	 657	

inoculated	with	100	μL	of	diluted	sample	and	incubated	at	room	temperature	prior	to	 658	

enumeration:	2	days	for	general	bacteria,	fluorescent	pseudomonads,	and	Bacillus	spp.;	3	days	 659	

for	general	fungi.	Plate	counts	were	standardized	using	the	following	equation:	 660	

CFU	g-1	soil	=	N	*	D	/	V	 661	

where	N	is	number	of	colonies	plate-1,	D	is	the	dilution	factor	(101	to	105),	and	V	is	the	volume	of	 662	

culture	plated	(100	μL).	Standardized	counts	from	replicate	plates	were	averaged.			 663	

Soil	biological	activity,	an	indicator	of	microbial	biomass,	was	measured	through	CO2	 664	

evolution	assays	following	the	methods	of	Franzlubbers	(2016).	Soil	samples	were	dried	for	3	 665	

days	at	55	°C,	passed	through	a	4	mm	sieve,	and	100	g	or	50	g	soil	placed	in	a	beaker	and	re- 666	

wetted	to	approximated	50%	water-filled	pore	space.	Re-wetted	samples	were	incubated	at	25	 667	

○C	for	3	days	in	0.95	L	jars	alongside	two	open	25	mL	vials:	one	containing	10	mL	1M	NaOH	 668	

(889573,	Carolina	Biological	Supply	Company,	Burlington,	NC)	to	trap	evolved	CO2,	the	other	 669	

containing	10	mL	H2O	for	humidity.	A	blank	was	included	with	each	set	of	samples.		Following	 670	

incubation,	vials	of	NaOH	were	mixed	with	≤	5.25	mL	1M	BaCl2	(LC116052,	LabChem,	Zelienople,	 671	

PA)	to	form	a	precipitate,	and	2	to	3	drops	phenolphthalein	color	indicator	added.	NaOH	 672	

solutions	were	titrated	against	1M	HCl	(867843,	Carolina	Biological	Supply,	Burlington,	NC)	until	 673	

color	changed	from	pink	to	clear.	Soil	biological	activity	was	calculated	as:	 674	

CO2	–	C	mg	kg-1	soil	=	(mL[blank]	–	mL[sample])	*	N	*	M/S	 675	

where	N	is	the	normality	of	acid	(1	mol	L-1),	M	is	the	mass	conversion	from	cmolc	to	g	C	(6000),	 676	

and	S	is	the	soil	weight.	 677	
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In	preparation	for	available	soil	nitrogen	(NO3
-	and	NH4

+)	testing,	samples	were	dried	at	 678	

room	temperature,	passed	through	a	2	mm	sieve,	and	3.0	g	shaken	with	30	mL	2.0M	KCl	(P217- 679	

10,	Fisher	Scientific,	Fair	Lawn,	NJ)	at	320	rpm	for	1	h,	centrifuged	at	2700	x	g	for	20	min,	and	 680	

the	supernatent	passed	through	2	μm	filter	paper	(Ahlstrom	642,	Ahlstrom	Corporation,	 681	

Helsinki,	Finland).	Samples	were	frozen	prior	to	transferral	to	the	University	of	Maine	Analytical	 682	

Lab	and	Maine	Soil	Testing	Service	for	measurement	of	NO3
-	and	NH4

+.	 683	

Weed	seed	viability	was	measured	using	tetrazolium	assays.	Within	48	h	of	exhumation,	 684	

seeds	were	removed	from	mesh	bags,	placed	on	moistened	filter	paper	(P8,	Fisher	Scientific,	 685	

Pittsburgh,	PA,	USA,	15275)	in	100	mm	x	15	mm	Petri	dishes	and	left	to	imbibe	at	room	 686	

temperature	overnight.	Germinated	and	decayed	seeds	were	removed	and	counted	as	viable	 687	

and	non-viable,	respectively.	Remaining	seeds	were	placed	on	dry	filter	paper,	bisected	 688	

longitudinally,	and	stained	with	1	to	2	drops	triphenyl	tetrazolium	chloride	solution	(1%	by	 689	

weight:	T8877-10G,	Sigma	Life	Science,	St.	Louis,	MO,	USA,	63013).	Seeds	were	incubated	for	24	 690	

h,	after	which	seeds	stained	pink	were	counted	as	viable,	and	seeds	remaining	unstained	were	 691	

counted	as	non-viable.	Percent	seed	viability	was	calculated	as:	 692	

%	viability	=	(Vr	/	Tr)	*	100	 693	

Where	Vr	is	the	number	of	viable	seeds	recovered	and	Tr	is	the	total	number	of	seeds	recovered	 694	

after	burial.	 695	

4.2.1.5.		Statistical	Analyses	 696	

Data	were	analyzed	with	analysis	of	variance	(ANOVA),	analysis	of	covariance	(ANCOVA),	 697	

and	multivariate	analysis	of	variance	(MANOVA)	(Crawley,	2013;	Gotelli	&	Ellison,	2004)	in	R	(R	 698	

Core	Team,	2016).	Response	variables	were	log10	+	1	or	square	root	transformed	as	appropriate	 699	

to	improve	normality	and	homogeneity	of	variances.	The	chosen	significance	level	was	α	=	0.05.	 700	

Multivariate	analyses	were	performed	using	functions	from	‘Biostats	R’	(McGarigal,	2000),	and	 701	
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packages	{energy}	(Rizzo	&	Szekely,	2017)	and	{vegan}	(Oksanen	et	al.,	2016).	The	{multcomp}	 702	

package	(Hothorn	et	al.,	2008)	was	used	for	multiple	comparisons,	and	{pgirmess}	(Giraudoux,	 703	

2013)	for	permutation	tests.	The	{gdata}	package	(Warnes	et	al.,	2017)	was	used	for	some	 704	

aspects	of	data	cleaning.	Separate	models	were	fit	for	FIELD	and	GHOUSE	experiments	in	all	 705	

cases.	Statistical	assumptions	were	met	unless	otherwise	noted.			 706	

To	test	for	solarization	impacts	on	soil	microbial	communities,	MANOVA	models	were	fit	 707	

with	average	CFU	g-1	soil	of	the	four	microbial	taxa	(general	bacteria,	general	fungi,	Bacilli,	 708	

fluorescent	pseudomonads)	as	response	variables,	and	explanatory	variables:	treatment,	 709	

duration	(numeric),	and	treatment	by	duration	interaction.	Separate	models	were	fit	for	 710	

measurements	at	termination	and	5	days	post	termination.	Missing	data	(8%	of	observations)	 711	

were	replaced	with	median	values.	Neither	model	adhered	to	the	assumption	of	multivariate	 712	

normality;	Pillai’s	trace	was	therefore	chosen	as	the	test	statistic	because	it	is	considered	robust	 713	

to	modest	violations	of	MANOVA	assumptions	(Gotelli	&	Ellison,	2004).		 714	

To	test	whether	solarization	affected	soil	biological	activity,	ANCOVA	models	were	fit	for	 715	

termination	and	termination	+	5	day	measurements,	respectively,	with	soil	biological	activity	 716	

(CO2	–	C	mg	kg-1	soil)	as	the	response,	and	explanatory	variables:	treatment,	duration,	and	their	 717	

interaction.	ANOVA	models	were	fit	for	termination	+	14	and	termination	+	28	day	data.			 718	

To	test	for	solarization	effects	on	available	nitrogen,	MANOVA	models	were	fit	using	available	 719	

nitrogen	(NO3
-,	NH4

+)	as	responses,	with	explanatory	variables:	treatment,	duration,	and	their	 720	

interaction.	Separate	models	were	fit	for	termination	and	termination	+	5	day	measurements.	 721	

Missing	data	(1%	of	observations)	were	replaced	with	median	values.	Pillai’s	trace	was	used	as	 722	

the	test	statistic	due	to	modest	violations	of	MANOVA	assumptions	(Gotelli	&	Ellison,	2004).				 723	

	 To	test	whether	four	weeks	of	solarization	resulted	in	direct	mortality	of	buried	weed	 724	

seeds,	ANOVA	models	were	fit	with	percent	seed	viability	as	the	response,	and	explanatory	 725	
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factors:	treatment,	seed	species,	and	their	interaction.	This	GHOUSE	model	violated	the	 726	

assumption	of	normality,	so	a	permutation	test	(permutations	=	1000)	was	used	to	obtain	 727	

simulated	P-values	(Crawley,	2013;	Giraudoux,	2013).		 728	

4.2.2.		Comparing	Solarization	to	Tarping	 729	

To	compare	the	effects	of	solarization	and	tarping	on	soil	biological	activity,	 730	

measurements	were	taken	during	a	2016	experiment	(hereafter	TARP),	which	is	described	in	full	 731	

in	Chapter	3.	This	TARP	experiment	was	conducted	at	the	University	of	Maine	Rogers	Farm	 732	

(44°55'N,	68°41'W)	on	Pushaw-Boothbay	complex	soils	(NRCS,	2018a)	with	6.2	pH	and	3.7%	 733	

organic	matter	(2014	soil	test).	Soil	samples	for	biological	activity	analysis	were	collected	prior	 734	

to	application	of	clear	and	black	plastic	mulches	(14	July	2016),	on	the	day	plastic	was	removed	 735	

after	four	weeks	of	treatment	(9	August),	and	14	days	after	plastic	termination	(25	Aug).	Prior	to	 736	

sample	collection,	soil	was	gently	firmed	by	stepping	on	a	23	cm	by	23	cm	board	placed	on	the	 737	

soil	surface.	Samples	were	collected	from	three	depth	strata	(0-2	cm,	2-5	cm,	and	5-10	cm)	using	 738	

a	series	of	7.5	cm	diameter	cylinders	inserted	into	the	soil.	To	obtain	sufficient	soil	volume	for	 739	

analysis,	three	samples	from	each	depth	strata	were	collected	per	plot	and	bulked.	Samples	 740	

were	refrigerated	prior	to	processing.	Laboratory	measurement	of	soil	biological	activity	 741	

followed	the	methods	described	in	section	2.1.4.	above	(Franzluebbers,	2016).			 742	

To	test	for	treatment	and	soil	depth	effects,	ANCOVA	models	were	fit	for	termination	 743	

and	termination	+	14	day	data,	respectively,	with	soil	biological	activity	as	the	response	and	 744	

explanatory	variables:	treatment	(control,	solarization,	tarping),	sample	depth	(numeric:	2,	5,	 745	

10),	and	their	interaction.	Means	were	separated	by	Fisher’s	protected	LSD.			 746	

	 747	

	 748	

	 749	



		
	

	
	

76	

4.3.		Results	 750	

4.3.1.		Field	and	Greenhouse	Solarization	 751	

Maximum	temperatures	were	greater	in	solarized	treatments	than	non-treated	 752	

controls,	and	greater	in	the	GHOUSE	experiment	as	compared	with	the	FIELD	experiment	(Table	 753	

4.1).	Accumulated	time	at	temperatures	greater	than	35	°C	was	zero	in	controls	for	both	 754	

experiments,	increased	under	FIELD	solarization,	and	more	than	doubled	under	GHOUSE	 755	

solarization	as	compared	with	FIELD	solarization	(Table	4.1).	Baseline	mean	±	SD	soil	moisture	 756	

values	(%vol)	were	22	±	5	in	the	FIELD	experiment	and	20	±	8	in	GHOUSE.	Conditions	were	quite	 757	

dry	in	the	GHOUSE	soils	by	the	end	of	treatment	(Table	4.1).							 758	

Baseline	counts	of	mean	±	SD	CFU	g-1	soil	for	the	FIELD	experiment	were	general	 759	

bacteria	6.8	±	0.2,	general	fungi	5.8	±	0.2,	bacilli	5.9	±	0.1,	and	fluorescent	pseudomonads	5.6	±	 760	

0.1	(data	reported	on	a	log10	+	1	transformed	scale).	Solarization	treatment	did	not	greatly	 761	

impact	FIELD	microbial	populations	at	either	the	time	of	plastic	termination	or	5	days	post	 762	

termination	(Table	4.2).	Duration	of	treatment	was	a	significant	term	in	the	5-day-post- 763	

termination	model	(Table	4.2).	Baseline	GHOUSE	populations	(CFU	g-1	soil)	were	general	bacteria	 764	

7.3	±	0.4,	general	fungi	5.7	±	0.1,	bacilli	6.5	±	0.1,	and	florescent	pseudomonads	5.0	±	0.1	(data	 765	

reported	on	a	log10	+	1	transformed	scale).	Treatment	was	a	significant	factor	affecting	the	 766	

microbial	community	at	termination	and	5	days	post	termination	(Table	4.3).	Specifically,	 767	

fluorescent	pseudomonad	populations	were	reduced	in	solarized	plots	as	compared	with	non- 768	

treated	controls;	other	taxa	were	weakly	or	inconsistently	impacted	(Table	4.3).	Duration	of	 769	

treatment	was	a	significant	term	in	both	models,	though	an	overarching	pattern	was	not	 770	

apparent	(Table	4.3).	 771	

772	



		
	

	
	

77	

	 773	

Table	4.1.		Temperature	and	Soil	Moisture	in	FIELD	and	GHOUSE	Experiments.	Mean	±	SD	 774	

maximum	and	average	temperatures,	exposure	time	to	temperatures	above	35	°C,	and	 775	

volumetric	soil	moisture	in	FIELD	and	GHOUSE	experiments.	Temperatures	were	measured	at	10	 776	

cm	soil	depth	and	means	calculated	across	four	replicates	unless	otherwise	noted:	†	data	from	3	 777	

replicates;	‡	data	from	one	replicate.	Soil	moisture	was	measured	in	three	locations	per	plot	at	 778	

plastic	termination.	 779	

Experiment	 Treatment	 Duration	

(weeks)	

Soil	temp	(°C)	 	 Exposure	time	(h)	 	 Soil	

moist.	

(%vol)		
	 	 Max	 Avg	 	 36-40	°C		 41-45	°C		 >45	°C		 	

FIELD	 Control	 2	 	31	±	1†	 		22	±	1†			 				0†		 							0†	 				0†	 	 	11	±	1		

	 	 4	 	32	±	2†	 		23	±	1†			 					0†		 							0†		 				0†		 	 	11	±	3	

	 Solarization	 2	 	39	±	3	 		28	±	1		 	 		28	±	22		 				4	±	4		 				0		 	 	14	±	8	

	 	 4	 	38	±	5	 		27	±	3		 	 		39	±	31		 	10	±	20		 				0		 	 	12	±	3	

GHOUSE	 Control	 2	 				33‡	 					27‡	 	 				0‡	 							0‡	 				0‡	 	 			1	±	1	

	 	 4	 				35‡		 					27‡		 	 					0‡		 							0‡		 				0‡		 	 			1	±	1	

	 Solarization	 2	 		44	±	1	 		34	±	0		 	 	74	±	9	 		48	±	5	 				0		 	 			3	±	1	

	 	 4	 		46	±	3	 		34	±	1		 	 	123	±	20	 		87	±	16	 19	±	28		 			2	±	1	

	 780	
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Table	4.2.	Colony	Counts	and	MANOVA	Results	from	FIELD	Experiment.	Mean	±	SD	microbial	colony	counts	from	FIELD	experiment	and	 781	

corresponding	MANOVA	results.	Models	were	constructed	to	test	the	effects	of	solarization	treatment	and	duration	on	soil	microbiota	for	the	 782	

day	treatments	were	terminated,	and	5	days	after	termination.	†	nd	=	no	data.	P-values	significant	at	an	α	=	0.05	level	are	denoted	with	an	 783	

asterisk	(*).	 784	

Colony	counts		

(CFU	g-1	soil)	

Termination	 	 Termination	+	5	days	

Control	 	 Solarization	 	 Control	 	 Solarization	

	 2	week	 4	week	 	 2	week	 4	week	 	 2	week	 4	week	 	 2	week	 4	week	

General	bacteria	 7.3	±	0.5		 7.7	±	0.5	 	 7.6	±	0.6	 7.6	±	0.4	 	 7.2	±	0.2	 7.4	±	0.4		 	 7.5	±	0.7	 7.5	±	0.2	

General	fungi	 5.1	±	0.4	 4.8	±	0.9	 	 5.1	±	0.5	 5.3	±	0.8	 	 5.7	±	0.1	 5.1	±	0.3	 	 6.0	±	0.2	 5.7	±	0.3	

Bacilli	 6.4	±	0.4	 6.7	±	0.2	 	 6.5	±	0.4	 6.6	±	0.4	 	 nd†	 6.1	±	0.3	 	 nd	 6.5	±	0.4	

F.	pseudomonads	 5.4	±	0.3	 4.4	±	0.2	 	 4.8	±	0.6	 4.7	±	0.8	 	 5.5	±	0.3	 4.8	±	0.5	 	 5.5	±	0.5		 5.0	±	1.1	

MANOVA	 DF	 Pillai’s	 	 F	 P	 	 DF	 Pillai’s	 	 F	 P	

Treatment	 		1	 0.05	 	 0.11	 0.98	 	 		1	 0.61	 	 3.53	 				0.05	

Duration	 		1	 0.36	 	 1.24	 0.36	 	 		1	 0.75	 	 6.66	 		<0.01*	

T	x	D	 		1	 0.29	 	 0.93	 0.49	 	 		1	 0.33	 	 1.11	 				0.41	

Residuals	 12	 	 	 	 	 	 12	 	 	 	 	

	 785	
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Table	4.3.	Colony	Counts	and	MANOVA	Results	from	GHOUSE	Experiment.	Mean	±	SD	microbial	colony	counts	from	GHOUSE	experiment	and	 786	

corresponding	MANOVA	results.	Models	were	constructed	to	test	the	effects	of	solarization	treatment	and	duration	on	soil	microbiota	for	the	 787	

day	treatments	were	terminated,	and	5	days	after	termination.	†	nd	=	no	data.	P-values	significant	at	α	=	0.05	are	denoted	with	an	asterisk	(*).	 788	

Colony	counts		

(CFU	g-1	soil)	

Termination	 	 Termination	+	5	days	

Control	 	 Solarization	 	 Control	 	 Solarization	

	 2	week	 4	week	 	 2	week	 4	week	 	 2	week	 4	week	 	 2	week	 4	week	

General	bacteria	 7.8	±	0.4	 7.1	±	0.2	 	 7.2	±	0.4	 7.2	±	0.7	 	 7.5	±	0.3	 8.0	±	0.6	 	 7.4	±	0.3	 7.8	±	0.7		

General	fungi	 5.6	±	0.3	 5.9	±	0.5	 	 4.3	±	0.4	 5.7	±	0.6	 	 5.5	±	0.4	 5.6	±	0.2	 	 5.2	±	0.6	 5.7	±	0.6	

Bacilli	 7.0	±	0.2	 6.6	±	0.6	 	 6.9	±	0.1	 6.5	±	0.4	 	 nd†	 6.5	±	0.3	 	 nd	 6.5	±	0.2	

F.	pseudomonads	 4.9	±	0.6	 0.9	±	1.8	 	 4.1	±	0.8	 0.0	±	0.0	 	 5.0	±	0.3	 4.4	±	0.8	 	 1.0	±	2.0	 1.3	±	1.6		

MANOVA	 DF	 Pillai’s	 	 F	 P	 	 DF	 Pillai’s	 	 F	 P	

Treatment	 		1	 0.69	 	 		4.96	 					0.02*	 	 		1	 0.87	 	 15.09	 		<0.01*	

Duration	 		1	 0.94	 	 35.87	 			<0.01*	 	 		1	 0.63	 	 		3.84	 				0.04*	

T	x	D	 		1	 0.56	 	 		2.84	 					0.09	 	 		1	 0.14	 	 		0.37	 				0.83	

Residuals	 12		 	 	 	 	 	 12		 	 	 	 	
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Baseline	soil	biological	activity	(CO2	–	C)	mean	±	SEM	values	in	FIELD	and	GHOUSE	 789	

experiments	were	185	±	3	mg	kg-1	soil	and	153	±	10	mg	kg-1	soil,	respectively.	In	the	FIELD	 790	

experiment,	solarization	did	not	significantly	reduce	biological	activity	during	treatment	(Figure	 791	

4.1A;	F	=	4.90,	P	=	0.05).	Subsequently,	there	was	a	significant	reduction	at	5	days	(Figure	4.1B;	F	 792	

=	7.13,	P	=	0.02)	but	not	14	days	after	plastic	removal	(Figure	4.1C;	F	=	2.24,	P	=	0.18).	In	the	 793	

GHOUSE	experiment,	solarization	reduced	soil	biological	activity	during	treatment	(Figure	4.1D;	 794	

F	=	20.86,	P	<	0.01),	and	differences	persisted	through	28	days	of	subsequent	measurement	 795	

(Figure	4.1E-G).	Duration	of	solarization	and	treatment	by	duration	interaction	were	not	 796	

significant	terms	(P	≥	0.05).	R2	values	underpinning	FIELD	models	were:	termination	=	0.36,	5	 797	

days	post	termination	=	0.49,	and	14	days	post	termination	=	0.27;	R2	values	for	GHOUSE	models	 798	

were	termination	=	0.68,	5	days	post	termination	=	0.71,	14	days	post	termination	=	0.82,	and	 799	

28	days	post	termination	=	0.87.	 800	

In	the	FIELD	experiment,	baseline	soil	available	nitrate	and	ammonium	mean	±	SEM	 801	

values	were	2.2	±	1.0	NO3
--N	mg	L-1	soil	and	1.3	±	0.1	NH4

+-N	mg	L-1	soil,	respectively.	Available	 802	

nitrogen	was	elevated	in	solarized	treatments	as	compared	with	controls	at	termination	and	5	 803	

days	thereafter	(Figure	4.2).	Duration	of	treatment	and	treatment	by	duration	interaction	were	 804	

not	significant	terms	(P	≥	0.05).			 805	

	 806	
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	 807	

Figure	4.1.		Soil	Biological	Activity	in	FIELD	and	GHOUSE	Experiments.	Biological	activity	 808	

measured	in	the	FIELD	experiment	at	(A)	plastic	termination,	(B)	termination	+	5	days,	and	(C)	 809	

termination	+	14	days,	and	in	the	GHOUSE	experiment	at	(D)	termination,	(E)	termination	+	5	 810	

days,	(F)	14	days	post	termination,	and	(G)	28	days	post	termination.	Data	are	shown	pooled	 811	

across	treatment	durations.	Asterisks	(*)	indicate	significant	difference	at	α	=	0.05,	and	ns	 812	

indicates	no	significant	difference.	 813	

	 814	

815	
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	 816	

Figure	4.2.	Available	Nitrogen	in	FIELD	and	GHOUSE	Experiments.	Mean	±	SEM	available	 817	

nitrogen	in	the	FIELD	experiment	(A)	at	plastic	termination	and	(B)	five	days	after	termination,	 818	

and	in	the	GHOUSE	experiment	(C)	at	termination	and	(D)	five	days	after	termination.	Data	are	 819	

shown	pooled	across	treatment	durations.	Asterisks	(*)	denote	statistically	significant	treatment	 820	

effects	at	α	=	0.05.						 821	

	 822	

Weed	seed	viability	was	reduced	under	solarization	in	both	FIELD	and	GHOUSE	 823	

experiments	(Figure	4.3).	There	was	a	significant	species	effect	in	the	FIELD	model,	but	no	 824	

significant	treatment	by	species	interaction	(Figure	4.3A;	Table	4.4).	All	weed	species	were	 825	

greatly	reduced	following	GHOUSE	solarization	(Figure	4.3B)	with	no	significant	species	or	 826	

interaction	effects	(Table	4.4).	R2	values	for	these	models	were	0.47	in	FIELD	and	0.87	in	 827	

GHOUSE.		 828	
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	 829	

Figure	4.3.		Weed	Seed	Viability	in	FIELD	and	GHOUSE	Experiments.	Mean	±	SEM	seed	viability	of	 830	

three	weed	species	after	four	weeks	of	burial	in	non-treated	control	and	solarization	treatments	 831	

in	(A)	FIELD	and	(B)	GHOUSE	experiments.	Asterisks	(*)	denote	statistically	significant	treatment	 832	

effects	at	α	=	0.05.						 833	

	 834	

	 835	

	 836	

	 837	

	 838	

	 839	

	 840	

	 841	

	 842	

	 843	
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Table	4.4.	FIELD	and	GHOUSE	Weed	Seed	Viability	ANOVA	Tables.	Models	were	constructed	to	 844	

test	the	effects	of	solarization	treatment	and	seed	species	on	weed	seed	viability	after	four	 845	

weeks	of	solarization.	P-values	significant	at	the	α	=	0.05	level	are	shown	with	an	asterisk	(*).	 846	

Due	to	non-normality	of	residuals	in	the	GHOUSE	model,	simulated	p-values	calculated	via	 847	

permutation	test	are	presented.	 848	

	 		 FIELD	 		 GHOUSE	

		 		 DF		 F		 P	 		 DF		 F		 P	

Treatment				 	1	 5.85	 				0.03*	 	 	1	 122.73	 		<0.01*	

Seed	Sp.				 	2	 4.81	 				0.02*	 	 	2	 			1.60	 				0.24	

T	X	Sp.				 	2	 0.20	 				0.82	 	 	2	 			3.57	 				0.07	

Residuals				 18	 		 	 18	 	 	

	 849	

	 850	

4.3.2.		Comparing	Solarization	to	Tarping	 851	

	 In	the	TARP	experiment,	soil	biological	activity	was	evaluated	at	three	soil	depths	during	 852	

and	after	four	weeks	of	field	solarization	and	tarping	treatment.	Soil	depth	and	treatment	by	 853	

depth	interactions	were	not	significant	(P	≥	0.05).	Treatment	did	not	impact	soil	biological	 854	

activity	at	plastic	termination	(Figure	4.4A),	but	14	days	thereafter,	soil	biological	activity	was	 855	

reduced	in	the	solarized	treatment	as	compared	with	the	non-treated	control	(Figure	4.4B).	R2	 856	

values	were	0.21	and	0.61	for	termination	and	14-day-post-termination	models,	respectively.				 857	

	 858	
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	 859	

Figure	4.4.		Soil	Biological	Activity	in	2016	TARP	Experiment.	Soil	biological	measured	(A)	at	 860	

plastic	termination,	and	(B)	14	days	after	plastic	termination	in	non-treated	control,	tarping,	and	 861	

solarization	treatments.	Data	are	shown	pooled	over	treatment	depths.	Connecting	letters	 862	

reflect	means	separated	by	Fisher’s	protected	LSD	at	α	=	0.05;	ns	indicates	no	significant	 863	

difference.		 864	

	 865	

4.4.		Discussion		 866	

4.4.1.		Field	and	Greenhouse	Solarization	 867	

Soil	solarization	is	an	established	method	of	pest	control	(Cohen	&	Rubin,	2007;	 868	

McGovern	&	McSorley,	2012)	that	can	create	an	effective	stale	seedbed	in	the	Northeast	USA	 869	

(Chapter	3);	however,	its	effects	on	soil	health	in	our	humid	continental	climate	have	not	been	 870	

previously	reported.	Microbial	communities	are	important	to	agroecosystem	function	(Wall,	 871	
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2013),	and	many	organic	farmers	prioritize	the	maintenance	of	soil	health	(Baker	&	Mohler,	 872	

2015);	thus	questions	of	solarization's	non-target	impacts	are	of	relevance	to	growers.		 873	

Based	on	the	assumption	that	most	soil	microbiota	at	our	study	site	would	be	adapted	 874	

to	ambient	temperatures,	we	hypothesized	that	overall,	beneficial	microbe	populations	would	 875	

be	reduced	during	treatment,	but	would	quickly	re-colonize	from	lower	soil	layers	thereafter	 876	

(Hypothesis	1)	(Katan	&	Gamliel,	2012).	The	data	indicated	that	solarization	in	our	FIELD	 877	

experiment	had	transient	effects	on	soil	biological	activity	(Figure	4.1A-C),	and	population	of	the	 878	

four	taxa	we	measured	were	not	significantly	impacted	(Table	4.2).	This	suggests	that	many	 879	

species	present	in	our	soils,	including	generally	beneficial	rhizosphere	bacteria	of	the	Bacillus	 880	

and	Pseudomonas	genera	(Kloepper,	Ryu,	&	Zhang,	2004;	Mazurier,	Corberand,	Lemanceau,	&	 881	

Raaijmakers,	2009;	Santoyo,	Orozco-Mosqueda,	&	Govindappa,	2012),	were	resilient	to	field	 882	

solarization.	In	the	case	of	bacilli,	this	is	unsurprising	given	their	known	ability	to	form	spores	 883	

(Baril	et	al.,	2012)	that	allow	survival	at	temperatures	exceeding	80	°C.	Though	our	findings	offer	 884	

weak	support	for	Hypothesis	1,	they	are	nonetheless	consistent	with	past	studies.	Scopa	&	 885	

Dumontet	found	that	soil	biological	activity	was	reduced,	but	not	significantly,	during	field	 886	

solarization	in	southern	Italy	(2007),	while	numerous	studies	have	concluded	based	on	plate	 887	

counts	that	field	solarization	did	not	permanently	harm	beneficial	microbiota	(Jaacov	Katan	&	 888	

Gamliel,	2012).		 889	

Available	nitrogen	(NO3
-	and	NH4

+)	was	elevated	during	and	after	solarization	(Figure	 890	

4.2),	consistent	with	our	expectation	(Hypothesis	2)	and	the	results	of	past	studies	(Khan	et	al.,	 891	

2012;	Oz	et	al.,	2017;	Sofi	et	al.,	2014).	Mechanisms	of	available	nitrogen	increase	may	include	 892	

increased	mineralization	(Rubin,	2012)	or	breakdown	of	microbial	cells.	Katan	and	Gamliel	 893	

(2012)	note	that	the	growth	of	crop	plants	is	often	stimulated	following	solarization,	due	at	least	 894	

partially	to	increased	soil	nutrient	availability.	Thus,	solarization	in	the	Northeast	USA	could	 895	
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provide	additional	benefits	beyond	weed	control,	and	might	be	well	suited	as	a	stale	seedbed	 896	

treatment	prior	to	sowing	heavy-feeding	crops.			 897	

	 Weed	seed	viability	overall	was	greatly	reduced	by	solarization	(Figure	4.3),	supporting	 898	

Hypothesis	3.	Under	the	conditions	in	our	FIELD	experiment	(Table	4.1),	Digitaria	sanguinalis	 899	

appeared	to	suffer	less	mortality	than	other	species	(Figure	4.3A),	though	this	was	not	reflected	 900	

statistically.	The	time	and	temperature	requirements	for	weed	seed	thermal	death	are	known	to	 901	

vary	by	species	(Dahlquist,	Prather,	&	Stapleton,	2007)	due	to	traits	such	as	seed	coat	hardness	 902	

(Baskin	&	Baskin,	1998;	Egley,	1990).	Weed	seed	mortality	may	have	been	elevated	in	this	study	 903	

due	to	high	soil	organic	matter.	The	17.9%	organic	matter	measured	in	our	FIELD	experiment,	 904	

though	still	within	the	range	found	on	operating	organic	farms	in	our	region	(Brown	BJ,	 905	

unpublished	data),	is	quite	high.	Incorporation	of	organic	amendments	prior	to	solarization,	 906	

termed	biosolarization,	is	known	to	decrease	the	time	needed	for	thermal	inactivation	of	weed	 907	

seeds	(Achmon	et	al.,	2017)	and	can	lead	to	enhanced	control	of	soilborne	pathogens	as	well	 908	

(Díaz-Hernández,	Gallo-Llobet,	Domínguez-Correa,	&	Rodríguez,	2017;	Ozyilmaz,	Benlioglu,	 909	

Yildiz,	&	Benlioglu,	2016;	Stapleton	et	al.,	2016).	Though	the	practice	is	promising,	more	work	 910	

evaluating	the	impact	of	biosolarization	on	beneficial	soil	microbiota	is	advised;	Kanaan	et	al.	 911	

found	that	soil	biological	activity	was	reduced	during	and	for	four	weeks	following	solarization	 912	

integrated	with	compost	application	(2016).				 913	

We	expected	greenhouse	solarization	to	result	in	higher	soil	temperatures	and	greater	 914	

mortality	of	microbes	and	weed	seeds	than	field	solarization	(Hypothesis	4).	Consistent	with	this	 915	

hypothesis,	soil	biological	activity	(Figure	4.1D-G),	microbial	populations	(Table	4.3),	and	weed	 916	

seed	mortality	(Figure	4.3B)	were	reduced	by	greater	magnitudes	or	with	more	consistency	by	 917	

solarization	in	our	GHOUSE	as	compared	with	our	FIELD	experiment.	Congruent	with	these	 918	

results,	greenhouse	solarization	reduced	biological	activity	during	treatment	in	a	study	by	Scopa	 919	
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et	al.	(2008).	The	reduction	in	fluorescent	pseudomonads	we	measured	during	greenhouse	 920	

solarization	(Table	4.3)	is	consistent	with	previously	reported	temperature	sensitivity	of	this	 921	

taxon	(Seong,	Hofte,	Bolens,	&	Verstraete,	1991)	(Table	4.1).	However,	fluorescent	 922	

pseudomonads	have	been	shown	to	quickly	re-colonize	after	treatment:	Gamliel	&	Katan	(1991)	 923	

reported	that	fluorescent	pseudomonads	were	reduced	during	solarization,	but	two	days	after	 924	

sowing	tomatoes	in	vitro,	rhizosphere	populations	were	higher	in	solarized	soils	than	controls.	It	 925	

is	possible	that	dry	soil	conditions	(Table	4.1)	or	an	absence	of	vegetation	(Laffley	A,	 926	

unpublished	data)	in	our	GHOUSE	experiment	slowed	expected	recolonization.	Viability	of	 927	

buried	weed	seeds	was	reduced	by	98%	in	our	GHOUSE	experiment,	with	all	three	species	well	 928	

controlled	(Figure	4.3B),	demonstrating	that	greenhouse	solarization	in	the	Northeast	USA	can	 929	

result	in	substantial	weed	seedbank	depletion	at	shallow	depth.			 930	

4.4.2.		Comparing	Solarization	to	Tarping	 931	

Results	of	our	TARP	experiment	offered	little	support	for	the	hypothesis	that	tarping	is	 932	

less	lethal	to	microbiota	than	field	solarization	(Hypothesis	5).	Despite	higher	soil	temperatures	 933	

under	solarization	as	compared	with	tarping	(Chapter	3),	soil	biological	activity	was	not	affected	 934	

by	treatment	at	the	time	of	plastic	removal	(Figure	4.4A),	and	a	trend	toward	less	biological	 935	

activity	following	solarization	as	compared	with	tarping	was	not	significant	(Figure	4.4B).	 936	

Overall,	this	provided	little	support	for	Hypothesis	5,	suggesting	rather	that	solarization	may	not	 937	

pose	an	increased	risk	to	soil	microbes	as	compared	with	tarping	in	our	system.	The	hypothesis	 938	

that	impacts	of	treatment	on	soil	biological	activity	would	decrease	with	increasing	soil	depth	 939	

(Hypothesis	6)	was	also	unsupported.	Differences	by	depth	might	have	been	detected	if	we	had	 940	

included	soil	strata	deeper	than	10	cm	(Mahrer	&	Shilo,	2012).				 941	

We	were	surprised	that	soil	biological	activity	showed	a	delayed	negative	response	to	 942	

solarization,	evident	in	the	significant	difference	between	solarized	and	non-treated	control	 943	
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plots	measured	14	days	after	plastic	termination	(Figure	4B).	Following	the	logic	of	Hypothesis	1,	 944	

we	had	expected	the	opposite	temporal	trend:	that	biological	activity	would	be	reduced	during	 945	

treatment,	but	would	return	to	control	levels	rapidly	thereafter.	Though	we	do	not	have	a	 946	

mechanistic	explanation	for	this	result,	potential	contributing	factors	include	changes	in	 947	

microbial	community	composition	(Gelsomino	&	Cacco,	2006;	Ozyilmaz	et	al.,	2016)	or	the	soil	 948	

chemical	environment	(Chen	et	al.,	2000;	Khan	et	al.,	2012;	Oz	et	al.,	2017;	Sofi	et	al.,	2014)	 949	

during	and	after	solarization.		 950	

4.4.3.		Potential	for	Plant	Pathogen	Control		 951	

	 Solarization	can	contribute	to	effective	soilborne	pathogen	control	in	warmer	climates	 952	

(McGovern	&	McSorley,	2012),	but	we	are	aware	of	no	studies	examining	its	efficacy	in	our	 953	

region.	We	compared	temperature	maxima	and	accumulated	thermal	time	measured	in	our	 954	

FIELD	and	GHOUSE	experiments	(Table	4.1)	to	published	thermotolerance	thresholds	of	 955	

common	soilborne	pathogens	that	impact	vegetable	and	horticultural	crops	in	Maine	(Table	 956	

4.5).	Solarization	would	theoretically	reduce	populations	of	nearly	half	of	these	pathogens	under	 957	

conditions	measured	in	our	FIELD	experiment,	and	over	two-thirds	of	species	under	GHOUSE	 958	

conditions.	Only	Botrytis	cinera,	the	fungus	causing	noble	rot	or	gray	mold	in	horticultural	crops	 959	

including	grape,	was	expected	to	be	stimulated	by	solarization	(Le	Bihan,	Soulas,	Camporota,	 960	

Salerno,	&	Perrin,	1997).	This	brief	review	is	limited	to	the	theoretical	effects	of	temperature	on	 961	

regionally	important	vegetable	and	horticultural	pathogens,	and	does	not	account	for	other	 962	

environmental	aspects	influencing	pathogen	survival.	Nonetheless,	this	provides	indication	that	 963	

field	and,	especially,	greenhouse	solarization	have	the	potential	to	contribute	to	plant	pathogen	 964	

reduction	in	the	Northeast	USA.	 965	
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Table	4.5.		Expected	Pathogen	Responses	to	Solarization.	Expected	responses	of	some	plant	pathogens	common	in	the	Northeast	USA	to	 966	

temperature	conditions	obtained	in	our	FIELD	and	GHOUSE	experiments.	Responses	are	categorized	as	reduced	in	number	due	to	treatment	(+),	 967	

not	affected	by	treatment	(0)	or	stimulated	by	treatment	(-).	All	cited	studies	measured	pathogen	response	at	temperatures	equal	to	or	less	than	 968	

those	achieved	at	10	cm	soil	depth	in	our	FIELD	and	GHOUSE	experiments.	†	Field	study;	‡	in	vitro	study	 969	

Pathogen	species	 Common	name		 	Expected	response	 Source	

FIELD	 GHOUSE	

Alternaria	cucumerina	 Alternaria	leaf	blight		 +	 +	 (Vakalounakis	&	Malathrakis,	1988)‡	

Alternaria	Solani		 Early	blight		 0	 +	 (Abu-Gharbieh,	Saleh,	&	Abu-Blan,	1988)†	

Botrytis	cinera	 Noble	rot		 -	 -	 (Le	Bihan	et	al.,	1997)†	

Fusarium	solani	f.	sp.	cucurbitae			 Fusarium	rot		 0	 +	 (Abu-Gharbieh,	Saleh,	&	Abu-Blan,	1988)†	

Pectobacterium	atrosepticum	 Blackleg	 +	 +	 (Tsror	et	al.,	2009)‡	

Pectobacterium	carotovorum		 Soft	rot		 0	 0	 (Smadja	et	al.,	2004)‡	

Phytophthora	erythroseptica		 Pink	rot	 0	 +	 (Pinkerton,	Ivors,	Reeser,	Bristow,	&	Windom,	2002)†	

Phytophthora	infestans		 Late	blight	 +	 +	 (Drenth,	Janssen,	&	Govers,	1995)‡	

Plasmodiophora	brassicae	 Club	foot	 0	 0	 (Chellemi,	1994)†	

Rhizoctonia		 Belly	rot	 0	 +	 (Pinkerton	et	al.,	2002)†	

Sclerotinia	sclerotiorum	 White	mold	 +	 +	 (Cartia	&	Asero,	1994)†	

Verticillium	dahliae	 Verticillium	wilt	#1	 0	 +	 (Pullman,	DeVay,	Garber,	&	Weinhold,	1981)†	

Verticillium	albo-atrum	 Verticillium	wilt	#2	 +	 +	 (Smith,	1965)‡	
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4.5.	Conclusions	 970	

Populations	of	culturable	beneficial	soil	microbiota	were	not	affected	by	field	solarization,	but	 971	

soil	biological	activity	was	transiently	reduced.	Solarization	resulted	in	seed	mortality	in	both	 972	

field	and	greenhouse,	but	the	high	(98%)	weed	seed	mortality	measured	in	our	greenhouse	 973	

experiment	came	with	a	potential	ecological	tradeoff:	populations	of	florescent	pseudomonads	 974	

and	soil	biological	activity	were	reduced	and	remained	suppressed	following	greenhouse	 975	

solarization	for	the	duration	of	our	measurements.	Available	nitrogen	increased	during	and	after	 976	

solarization	in	both	the	field	experiment	and	the	greenhouse	experiment.	Temperatures	in	 977	

these	experiments	were	theoretically	sufficient	for	the	reduction	of	some	regionally	problematic	 978	

soilborne	pathogens.	In	a	separate	field	experiment,	solarization	reduced	soil	biological	activity	 979	

following	plastic	removal,	while	the	similar	practice	of	tarping	with	black	plastic	did	not,	though	 980	

differences	between	these	mulching	practices	were	not	significant.	Future	research	is	needed	to	 981	

determine	whether	results	from	these	experiments	can	be	generalized	over	a	broader	range	of	 982	

soil	and	environmental	conditions,	to	determine	whether	solarization	in	our	region	results	in	 983	

improved	crop	yields	and	is	economically	viable,	and	to	explore	the	potential	of	solarization	to	 984	

contribute	to	plant	pathogen	control	in	the	Northeast	USA.	 985	

	 986	

	 987	

	 988	

989	
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CHAPTER	5	 990	

WEEDUCATOR:	A	NOVEL	APPROACH	TO	ORGANIC	WEED	MANAGEMENT	EDUCATION	 991	

5.1.	Introduction	 992	

Maine	is	home	to	a	growing	number	of	young	and	beginning	farmers;	the	number	of	 993	

farmers	in	Maine	under	the	age	of	34	increased	by	46%	in	the	decade	leading	up	to	USDA	NASS’	 994	

most	recent	Agriculture	Census	(2012).	Many	of	these	beginning	farmers	choose	to	grow	 995	

organically.	Organic	farming	practices	are	typically	more	environmentally	sustainable	than	 996	

conventional	practices	(Reganold	&	Wachter,	2016;	Tuomisto,	Hodge,	Riordan,	&	Macdonald,	 997	

2012);	however,	economic	sustainability	remains	a	challenge	for	Maine	organic	farmers	(Percy,	 998	

2015)	including	beginning	farmers	(Gillespie	&	Johnson,	2010).			 999	

Farmers	who	grow	organically	typically	rely	on	a	diverse	array	of	non-chemical	tactics	 1000	

used	in	combination	to	manage	weeds,	including	different	tools,	mulches,	and	crop	rotations	 1001	

(Baker	&	Mohler,	2015;	Chapter	1).	Beginning	farmers	face	a	steep	learning	curve	in	mastering	 1002	

the	many	techniques	that	contribute	to	successful	organic	weed	control,	and	interviews	with	 1003	

established	farmers	suggest	that	much	of	the	knowledge	they	eventually	acquire	comes	through	 1004	

time-consuming	trial	and	error	(Jabbour,	Zwickle,	et	al.,	2014).			 1005	

In	a	review	of	contemporary	beginning	farmer	training	initiatives,	Niewolny	and	Lillard	 1006	

(2010)	cite	participatory	learning	methods	and	forums	to	reach	the	“digitally	aware”	beginning	 1007	

farmer	audience	as	recommended	areas	for	research	and	program	development.	The	purpose	 1008	

of	this	project	was	to	explore	the	potential	for	an	interactive	digital	tool	to	help	beginning	 1009	

farmers	lessen	the	learning	curve	they	face	related	to	weed	management.	To	this	end,	we	 1010	

developed	a	prototype	digital	learning	tool,	WEEDucator,	with	input	from	focus	groups	of	 1011	

farmers	and	agriculture	students.	Subsequently,	we	administered	an	educational	intervention	to	 1012	
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a	group	of	students	recruited	from	University	of	Maine	sustainable	agriculture	courses	that	was	 1013	

designed	to	test	the	following	hypotheses:				 1014	

1. Interacting	with	the	WEEDucator	tool	will	increase	users’	factual	knowledge	of	weed	 1015	

ecology	and	management;	and		 1016	

2. Users	will	like	the	look	and	feel	of	this	tool,	find	it	fun	to	use,	and	prefer	it	to	other	 1017	

methods	through	which	they	might	learn	this	content.		 1018	

5.2.	Materials	and	Methods	 1019	

5.2.1.	Tool	Development	 1020	

We	began	the	tool	development	process	by	studying	existing	weed	management	 1021	

decision	aids	(e.g.,	Lindsay	et	al.,	2017;	Pannell	et	al.,	2004).	While	these	had	value	in	providing	 1022	

users	the	ability	to	interactively	explore	effects	of	different	weed	management	approaches,	we	 1023	

generally	did	not	find	their	user	interfaces	engaging,	and	we	wondered	if	an	attempt	to	further	 1024	

‘gamify’	this	kind	of	educational	resource	by	employing	new	media	technology	and	design	 1025	

principles	could	result	in	a	product	that	was	more	fun	to	use.	Gamification	has	been	used	 1026	

extensively	in	other	disciplines	to	promote	participant	engagement	(reviewed	in	Dicheva,	 1027	

Dichev,	Agre,	&	Angelova,	2015).	The	only	prior	attempt	to	gamify	weed	management	education	 1028	

of	which	we	are	aware	is	a	soybean	management	game	developed	in	the	early	1990s	(Wiles,	 1029	

Wilkerson,	&	Coble,	1991).			 1030	

	 We	developed	a	concept	for	an	organic	weed	management	simulator	game,	and	 1031	

convened	a	focus	group	of	organic	vegetable	farmers	to	give	input	on	our	ideas.	Farmers	were	 1032	

recruited	through	the	MOFGA	listserv	and	given	an	honorarium	for	their	participation.	 1033	

Participating	farmers	(N=11)	ranged	in	experience	from	5	to	15	years.	Based	on	feedback	from	 1034	

this	group,	we	revised	our	game	design	to	be	modular,	including	a	scaled-back	version	of	the	 1035	

management	simulator,	as	well	as	other	information	farmers	indicated	they	wish	they	had	 1036	
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known	when	they	began	farming.	Our	revised	designs	were	further	honed	through	a	second	 1037	

focus	group	conducted	with	sustainable	agriculture	students	from	a	nearby	community	college.	 1038	

We	constructed	a	prototype	game-like	digital	tool,	WEEDucator,	consisting	of	three	 1039	

learning	modules	(Figure	5.1).	This	tool	was	built	using	the	Unity	game	engine	(Unity	 1040	

Technologies,	2018),	in	collaboration	with	new	media	artists.	The	Management	Sim	module	of	 1041	

this	tool	(Figure	5.1)	is	underpinned	by	a	simple	simulation	model,	the	structure	of	which	is	 1042	

outlined	in	Appendix	B;	for	a	review	of	past	approaches	to	modeling	weed	populations,	see	 1043	

Holst	et	al.	(2007).	Other	modules	were	developed	based	on	a	variety	of	published	sources,	 1044	

which	are	referenced	within	the	tool	itself.	Though	this	WEEDucator	prototype	is	not	a	‘finished	 1045	

product,’	it	was	considered	sufficiently	functional	to	allow	play-testing	and	measurement	of	 1046	

learning	outcomes.	It	is	freely	available	for	download	and	use	(Birthisel,	Rimkunas,	&	Sullivan,	 1047	

2017;	https://skbirthisel.weebly.com/outreach.html).	 1048	

5.2.2.	Tool	Evaluation	 1049	

WEEDucator’s	effectiveness	as	a	teaching	tool	was	measured	and	feedback	about	user	 1050	

experience	gained	via	an	educational	intervention	with	paired	pre-	and	post-assessments.	 1051	

Participants	were	recruited	through	announcements	made	during	fall	semester	2017	in	two	 1052	

University	of	Maine	sustainable	agriculture	courses.	This	test	population	may	not	be	 1053	

representative	of	a	broader	beginning	farmer	audience	(Niewolny	&	Lillard,	2010),	but	was	 1054	

assumed	to	have	some	level	of	specialized	knowledge	in	agriculture.	Participation	was	 1055	

incentivized	by	offering	snacks	or	extra	credit	points	according	to	the	preference	of	the	course	 1056	

instructor.	The	University	of	Maine	Institutional	Review	Board	approved	the	study	protocol	and	 1057	

all	participants	provided	informed	consent	to	participate.	 1058	

	 1059	
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	 1060	

Figure	5.1:	Modules	Included	in	the	WEEDucator	Prototype.		 1061	

	 1062	

Educational	interventions	and	assessments	were	administered	in-person.	Participants	 1063	

were	read	a	script	informing	them	of	the	study’s	purpose	and	terms,	including	that	participation	 1064	

was	voluntary	and	assessment	responses	would	be	kept	anonymous.	Pre-assessments	were	 1065	

then	administered,	after	which	participants	were	instructed	to	open	the	WEEDucator	program	 1066	

on	provided	computers	and	explore	the	tool	at	their	own	pace	for	up	to	45	minutes.	They	were	 1067	
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advised	that	this	might	not	be	sufficient	time	to	fully	explore	the	tool’s	functionality,	and	it	was	 1068	

acceptable	to	move	between	modules	of	the	tool	according	to	their	own	interests.	After	45	 1069	

minutes,	or	when	participants	indicated	they	were	‘done’	(whichever	occurred	first),	 1070	

participants	were	asked	to	close	WEEDucator	and	complete	a	post-assessment	matched	to	their	 1071	

pre-assessment	by	randomly-assigned	numbers.			 1072	

Pre-assessments	consisted	of	nine	factual	questions	(see	Appendix	C	for	assessment	 1073	

text),	each	worth	a	minimum	of	zero	and	a	maximum	of	two	points	for	a	total	of	18	possible	 1074	

points.	After	each	question,	students	were	prompted	to	select	a	level	of	confidence	in	their	 1075	

given	answer.	Pre-assessments	also	asked	participants	for	some	background	information	 1076	

including	their	major	and	year	in	school.	Post-assessments	consisted	of	the	same	nine	questions	 1077	

and	confidence	level	prompts,	followed	by	a	section	designed	to	solicit	user	feedback,	including	 1078	

a	question	asking	participants	to	rank	WEEDucator	in	comparison	to	other	educational	methods	 1079	

(Appendix	C).	Assessments	were	graded	according	to	a	pre-determined	rubric,	with	partial	credit	 1080	

given	for	partially-correct	answers.	To	test	whether	participants’	knowledge	and	confidence	in	 1081	

their	answers	changed	following	the	educational	intervention,	mean	pre-	and	post-	assessment	 1082	

scores	for	knowledge	and	confidence,	respectively,	were	compared	using	Welch’s	t-tests.	To	test	 1083	

for	significant	differences	in	participants’	ranking	of	educational	methods,	we	used	ANOVA	with	 1084	

Fisher’s	protected	LSD	for	means	separation.	Analyses	were	performed	in	R	(R	Core	Team,	 1085	

2016).		Assumptions	were	validated	for	all	statistical	methods.						 1086	

5.3.	Results	and	Discussion	 1087	

5.3.1.	Learning	Outcomes	 1088	

Nineteen	students	participated	in	formalized	pre-	and	post-assessments	designed	to	 1089	

evaluate	the	WEEDucator	prototype’s	effectiveness	as	a	teaching	tool.	Just	over	half	of	 1090	

participating	students	were	majoring	in	plant	science-related	fields	(Sustainable	Agriculture,	 1091	
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Environmental	Horticulture,	or	Forestry);	other	participants	were	from	a	variety	of	majors.	Eight	 1092	

participants	were	first	year	students,	three	were	graduate	or	non-traditional	students,	and	the	 1093	

rest	were	upper-class	undergraduates.	 1094	

Mean	knowledge	scores	were	58%	higher	in	the	post-assessment	as	compared	with	the	 1095	

pre-assessment	(t	=	-4.57,	P	<	0.01;	Figure	5.2A).	Participant	confidence	scores	were	107%	 1096	

higher	in	the	post-assessment	as	compared	with	the	pre-assessment	(t	=	-6.95,	P	<	0.01;	Figure	 1097	

5.2B).	For	all	individual	questions,	mean	difference	scores	between	assessments	(post	minus	 1098	

pre)	were	positive,	indicating	that	WEEDucator	improved	mean	knowledge	scores	for	every	 1099	

survey	question.	These	results	provide	support	for	Hypothesis	1,	which	states	that	interacting	 1100	

with	WEEDucator	will	increase	users’	factual	knowledge	of	weed	ecology	and	management.	The	 1101	

fact	that	confidence	scores	increased	by	a	greater	magnitude	than	knowledge	scores	is	 1102	

interesting,	and	worthy	of	note	based	on	the	possibility	that	exposure	to	this	tool	might	have	 1103	

empowered	users	to	feel	over-confident	in	relation	to	their	actual	level	of	knowledge.		 1104	

Limitations	to	this	study	include	the	small	sample	size	(N=19),	and	the	fact	that	same- 1105	

day	pre-	and	post-assessments	do	not	indicate	how	well	participants	retain	information	over	 1106	

time.	While	these	are	clear	limitations,	our	study	is	not	unique	in	featuring	a	sample	of	this	size	 1107	

(e.g.,	George	&	Cole,	2018)	nor	in	using	same-day	pre-	and	post-assessments	to	gauge	learning	 1108	

outcomes	(Fishel,	2008).	Another	point	worthy	of	note	is	that	the	use	of	identical	questions	in	 1109	

the	pre-	and	post-assessments	(Appendix	C)	may	have	contributed	to	the	positive	learning	 1110	

outcomes	measured	(Figure	5.2A),	as	exposure	to	the	pre-assessment	may	have	operated	 1111	

similarly	to	a	‘think-pair-share’	exercise	in	priming	students	to	be	interested	in	finding	answers	 1112	

to	these	questions	(Cooper	&	Robinson,	2000).	Despite	these	limitations,	these	results	are	 1113	

promising,	suggesting	that	WEEDucator	was	effective	in	conveying	knowledge	related	to	its	 1114	

learning	objectives.		 1115	
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	 	 1116	

Figure	5.2.	Pre-	and	Post-Assessment	Knowledge	and	Confidence	Scores.	Scores	for	factual	 1117	

knowledge	of	weed	ecology	and	management	(A)	and	participant	confidence	in	their	answers	 1118	

(B).	The	maximum	number	of	points	in	either	category	was	18.		 1119	

	 1120	

	 	5.3.2.	User	Feedback	 1121	

	 Assessment	participants	ranked	‘games	like	WEEDucator’	as	their	most	preferred	way	to	 1122	

learn	this	material,	followed	by	activities	in	lab	and	lecture,	watching	YouTube	videos,	classroom	 1123	

lectures,	and	reading	a	textbook	(R2	=	0.37,	F	=	11.49,	P	<	0.01;	Figure	5.3).	There	was	no	 1124	

significant	difference	in	participant	preference	between	WEEDucator	and	activities	in	lab	and	 1125	

lecture,	but	WEEDucator	was	significantly	preferred	to	the	other	methods	of	learning	included	 1126	

in	this	comparison	(Figure	5.3).	 1127	
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	 1128	

	 1129	

Figure	5.3.	Participant	Ranking	of	Learning	Methods.	Participant	rankings	of	educational	 1130	

methods	they	might	use	to	learn	the	content	provided	in	WEEDucator.	Connecting	letters	reflect	 1131	

means	separated	by	Fisher’s	protected	LSD	at	α	=	0.05.	 1132	

	 1133	

A	majority	of	participants	indicated	that	WEEDucator	was	both	helpful	and	fun	to	use	 1134	

(Table	5.1).	The	Toolshed,	which	featured	videos	and	infographics	about	organic	weed	 1135	

management	tactics	(Figure	5.1),	was	the	most	liked	module,	with	nine	respondents	indicating	 1136	

that	they	liked	this	module	the	most	and	three	indicating	that	they	liked	it	least.	Several	 1137	

respondents	who	liked	the	Toolshed	most	indicated	that	they	found	it	informative,	with	 1138	

comments	including	“Solid	info	given,	expanded	my	knowledge!”	Those	who	liked	this	module	 1139	
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least	commented	that	they	wished	it	had	been	more	interactive.	Five	participants	indicated	that	 1140	

they	liked	the	virtual	guidebook	Lifecycles	(Figure	5.1)	the	most	and	three	that	they	liked	this	 1141	

module	least,	citing	a	variety	of	reasons	for	their	preferences.	Six	participants	indicated	that	 1142	

they	liked	Management	Sim	(Figure	5.1)	the	most	and	nine	participants	indicated	that	they	liked	 1143	

this	module	least.	Several	of	those	who	liked	this	module	the	most	cited	its	interactive	nature,	 1144	

while	those	who	liked	it	least	commented	that	they	found	it	confusing	or	wished	for	more	 1145	

instruction;	in	the	words	of	one	respondent,	“If	there	were	clearer	directions,	I	think	it	would	be	 1146	

more	enjoyable.”	 1147	

	 1148	

Table	5.1.	Some	Participant	Feedback	About	WEEDucator.	Number	of	participants	responding	 1149	

true/false	or	omitting	response	to	survey	questions	asking	if	they	found	WEEDucator	helpful	and	 1150	

fun	to	use.	 1151	

Survey	text	 Responses	(No.)	

	 True	 False	 No	answer	

Overall,	I	found	WEEDucator	helpful	 18	 0	 1	

Overall,	WEEDucator	was	fun	to	use		 17	 0	 2	

	 1152	

In	response	to	the	prompt	‘Anything	else	you’d	like	us	to	know?’	eight	respondents	 1153	

identified	bugs	in	the	program.	Other	frequent	responses	(mentioned	by	>5	respondents)	 1154	

included	positive	comments	about	the	tool	being	useful	or	informative,	positive	comments	 1155	

about	the	tool	being	interesting,	and	miscellaneous	suggestions	for	improvements	to	the	 1156	

interface.	 1157	

	 Overall,	this	feedback	(Figure	5.3;	Table	5.1)	provides	support	for	our	hypothesis	that	 1158	

users	will	like	WEEDucator,	find	it	fun	to	use	and	prefer	it	to	other	methods	of	learning	this	 1159	
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content	(Hypothesis	2).	Participants	were	verbally	prompted	to	provide	critical	feedback	and	 1160	

identify	bugs	in	the	program	that	should	be	fixed,	so	the	number	of	comments	on	these	points	is	 1161	

unsurprising,	but	nonetheless	reinforces	that	the	current	iteration	of	WEEDucator	is	a	prototype	 1162	

that	would	need	revision	before	it	could	be	considered	a	finished	product.			 1163	

5.4.	Conclusions	 1164	

WEEDucator	is	a	functional	proof-of-concept	for	how	simple	games	may	contribute	to	 1165	

effective	teaching	of	weed	ecology	principles	and	practices.	In	an	educational	intervention	 1166	

(N=19),	exposure	to	the	tool	resulted	in	improved	student	ability	to	correctly	answer	factual	 1167	

questions	about	weed	ecology	and	management,	and	a	majority	(>90%)	of	participating	 1168	

students	indicated	that	they	found	the	tool	helpful	and	fun	to	use.	Students	ranked	‘tools	like	 1169	

WEEDucator’	highly	among	methods	through	which	they	might	learn	this	kind	of	information.	It	 1170	

remains	an	open	question	whether	similar	results	would	be	obtained	with	a	broader	population	 1171	

of	beginning	farmers,	but	these	findings	do	suggest	that	interactive	digital	tools	like	WEEDucator	 1172	

can	effectively	engage	agriculture	students	in	learning	about	ecological	weed	management.		 1173	

	 1174	
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APPENDIX	A:	LISTS	OF	RARE	WEED	SPECIES	AND	MAPS	OF	SITE	OCCUPANCY	 1959	

The	following	pages	in	this	appendix	contain	lists	of	relatively	rare	weedy	(WSSA,	2018)	 1960	

species	identified	our	spring	2013	seedbank	sampling	of	30	farms	in	Maine	(Table	A.1)	and	our	 1961	

subsequent	2015	survey	sampling	(Table	A.2).	Maps	showing	transect	occupancy	of	species	of	 1962	

agronomic	concern	(risk)	found	during	our	2015	surveys	are	also	included	(Figure	A.1).	Species	 1963	

found	in	seedbank	samples	were	considered	rare	when	they	were	found	in	the	seedbank	on	 1964	

only	one	farm,	or	when	the	sum	of	emerged	seedlings	across	all	30	farms	was	less	than	100	 1965	

seeds	per	30	m2.	Species	found	during	survey	sampling	were	considered	rare	based	on	expert	 1966	

opinion	of	the	surveyors,	or	if	they	had	previously	been	identified	as	such	during	seedbank	 1967	

sampling.		 1968	

	 1969	
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Table	A.1.	Weed	Species	Classified	as	Rare	in	Seedbank	Samples.	†	Species	also	reported	in	survey	sampling	(Table	A2).			 1970	

<100	seeds	 Only	one	farm	 Only	one	farm	&	<100	seeds	

Tanacetum	vulgare	L.	(common	tansy)	 Scirpus	cyperinus	(L.)	Kunth	(woolgrass	bulrush)	 Agrostemma	githago	L.	(corn	cockle)	

Elymus	repens	(L.)	Gould	(quackgrass)	†	 Tussilago	farfara	L.	(coltsfoot)	 Avena	sativa	L.	(common	oat)	†	

Erigeron	annuus	(L.)	Pers.	(fleabane)	 Physalis	philadelphica	Lam.	(tomatillo)	 Chaenorhinum	minus	(L.)	Lange	(dwarf	snapdragon)	

Lobelia	siphilitica	L.	(blue	cardinal	flower)	 	 Euphorbia	maculata	L.	(spotted	spurge)	†	

Lythrum	salicaria	L.	(purple	loosestrife)	 	 Erigeron	canadensis	L.	(horseweed)	

Matricaria	discoidea	DC.	(pineapple	weed)	†	 	 Deschampsia	flexuosa	(L.)	Trin.	(crinkled	hair	grass)	

Fallopia	convolvulus	(L.)	(wild	buckwheat)	†	 	 Houstonia	caerulea	L.	(bluets)	

Rumex	crispus	L.	(curly	dock)	†	 	 Panicum	capillare	L.	(witchgrass)	†	

Urtica	dioica	L.	(stinging	nettle)	 	 Panicum	dichotomiflorum	Michx.	(fall	panicum)	†	

Verbascum	thapsus	L.	(common	mullein)	 	 Potentilla	simplex	Michx.	(oldfield	cinquefoil)	

Medicago	sativa	L.	(alfalfa)	†	 	 Trifolium	incarnatum	L.	(crimson	clover)	†	

	 	 Trifolium	pratense	L.	(red	clover)	†	

		 1971	

	 1972	

	 1973	
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Table	A.2.	Rare	Weeds	Identified	in	Surveys.	†	Species	also	reported	in	seedbank	sampling	 1974	

(Table	A1);	‡	Species	found	outside	of	transects.			 1975	

Species	 Bayer	Code	

Acalypha	rhomboidea	Raf.	(rhombic	copperleaf)	 ACCRH	

Achillea	millefolium	L.	(yarrow)	 ACHMI	

Agrostis	gigantea	Roth	(redtop)	 AGSGI	

Agrostis	perennans	(Walter)	Tuck.	(autumn	bentgrass)	 AGSPE	

Anthemis	cotula	L.	(mayweed	chamomile)	 ANTCO	

Anthoxanthum	odoratum	L.	(sweet	vernalgrass)	 AOXOD		

Arctium	minus	(Hill)	Bernh.	(burdock)	 ARFMI		

Artemisia	vulgaris	L.	(mugwort)	‡	 ARTVU		

Asclepias	syriaca	L.	(common	milkweed)	 ASCSY		

Avena	fatua	L.	(wild	oat)	 AVEFA	

Avena	sativa	L.	(common	oat)	†	 AVESA	

Barbarea	vulgaris	W.	T.	Aiton	(yellow	rocket)	 BARVU		

Calystegia	sepium	(L.)	R.	Br.	(great	bindweed)	 CAGSE		

Cerastium	glomeratum	Thuill.	(sticky	chickweed)	 CERGL		

Cirsium	arvense	(L.)	Scop.	(Canada	thistle)	 CIRAR	

Cirsium	vulgare	(Savi)	Ten.	(bull	thistle)	 CIRVU	

Convolvulus	arvensis	L.	(field	bindweed)	 CONAR	

Cyperus	esculentus	L.	(yellow	nutsedge)	 CYPES	

Daucus	carota	L.	(wild	carrot)	 DAUCA	

Elytrigia	repens	(L.)	Desv.	ex	Nevski	(quackgrass)	†	 AGRRE	

Equisetum	arvense	L.	(field	horsetail)	 EQUAR		

Eragrostis	minor	Host	(little	love	grass)	 ERAPO	

Eragrostis	pilosa	(L.)	P.	Beauv.	(India	lovegrass)	 ERAPI		

Erechtites	hieraciifolius	(L.)	Raf.	ex	DC.	(pilewort)	 EREHI		

Euphorbia	maculata	L.	(spotted	spurge)	†	 EPHMA	

Fagopyrum	esculentum	Moench	(buckwheat)	 FAGES	

Fallopia	convolvulus	L.	(wild	buckwheat)	†	 POLCO	
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Table	A.2.	Continued.		 1976	

Species	 Bayer	Code	

Fragaria	virginiana	Duchesne	(wild	strawberry)	 FRAVI	

Galium	aparine	L.	(catchweed	bedstraw)	 GALAP	

Gamochaeta	purpurea	(L.)	Cabrera	(purple	cudweed)	 GNAPU	

Holcus	lanatus	L.	(common	velvetgrass)	 HOLLA	

Hypericum	punctatum	Lam.	(spotted	St.	John’s	wort)	 HYPPU		

Hypochaeris	radicata	L.	(common	catsear)	 HRYRA		

Juncus	bufonius	L.	(toad	rush)	 IUNBU		

Lactuca	serriola	L.	(prickly	lettuce)	 LACSE	

Lepidium	campestre	(L.)	W.	T.	Aiton	(field	pepperweed)	 LEPCA	

Lolium	perenne	L.	ssp.	multiflorum	(Lam.)	Husnot	(Italian	ryegrass)	 LOLMU	

Matricaria	discoidea	DC.	(pineapple	weed)	†	 MATMT	

Medicago	lupulina	L.	(black	medic)	 MEDLU	

Medicago	sativa	L.	(alfalfa)	†	 MEDSA	

Melilotus	officinalis	(L.)	Lam.	(sweetclover)	 MEUOF		

Nuttallanthus	canadensis	(L.)	D.	A.	Sutton	(Canada	toadflax)	 LINCA		

Oenothera	laciniata	Hill	(cutleaf	evening	primrose)	 OEOLA	

Panicum	capillare	L.	(witchgrass)	†	 PANCA	

Panicum	dichotomiflorum	Michx.	(fall	panicum)	†	 PANDI	

Pastinaca	sativa	L.	(wild	parsnip)	‡	 PAVSA	

Persicaria	maculosa	Gray	(ladysthumb)	 POLPE	

Persicaria	pensylvanica	(L.)	M.	(Pennsylvania	smartweed)	 POLPY	

Phalaris	arundinacea	L.	(reed	canarygrass)	 TYPAR	

Phleum	pratense	L.	(timothy)	 PHLPR		

Physalis	heterophylla	Nees	(clammy	groundcherry)	 PHYHE		

Physalis	longifolia	Nutt.	(longleaf	groundcherry)	 PHYSU	

Poa	pratensis	L.	(kentucky	bluegrass)	 POAPR	

Ranunculus	acris	L.	(meadow	buttercup)	 RANAC	

Reynoutria	japonica	Houtt.	(Japanese	knotweed)	 POLCU	

Rhinanthus	crista-galli	L.	(yellow	rattle)	‡	 RHIMI		
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Table	A.2.	Continued.		 1977	

Species	 Bayer	Code	

Rorippa	sylvestris	(L.)	Besser	(creeping	yellowcress)	 RORSY	

Rumex	crispus	L.	(curly	dock)	†	 RUMCR		

Sagina	procumbens	L.	(birdseye	pearlwort)	 SAIPR		

Scorzoneroides	autumnalis	(L.)	Moench	(fall	dandelion)	 LEBAU	

Secale	cereale	L.	(rye)	 SECCE		

Senecio	vulgaris	L.	(common	groundsel)	 SENVU	

Setaria	viridis	(L.)	P.	Beauv.	(green	foxtail)	 SETVI	

Silene	latifolia	Poir.	(white	campion)	 MELAL	

Silene	vulgaris	(Moench)	Garcke	(bladder	campion)	 SILVU	

Sisymbrium	officinale	(L.)	Scop.	(hedge	mustard)	 SSYOF		

Solanum	physalifolium	Rusby	(hairy	nightshade)	 SOLPS	

Solanum	ptychanthum	Dunal	(eastern	black	nightshade)	 	SOLPT	

Sonchus	arvensis	L.	(perennial	sowthistle)	 SONAR	

Sonchus	oleraceus	L.	(annual	sowthistle)	 SONOL	

Stellaria	graminea	L.	(little	starwort)	 STEGR		

Thlaspi	arvense	L.	(field	pennycress)	 THLAR	

Tragopogon	dubius	Scop.	(western	salsify)	 TRODM		

Trifolium	arvense	L.	(rabbitfoot	clover)	 TRFAR		

Trifolium	aureum	Pollich	(hop	clover)	 TRFAU	

Trifolium	fragiferum	L.	(strawberry	clover)	 TRFFR	

Trifolium	incarnatum	L.	(crimson	clover)	†	 TRFIN	

Trifolium	pratense	L.	(red	clover)	†	 TRFPR		

Trifolium	repens	L.	(white	Clover)	 TRFRE	

Tripleurospermum	inodorum	(L.)	Sch.	Bip.	(scentless	chamomile)	 MATIN	

Triticum	aestivum	L.	(common	wheat)	 TRZAX		

Veronica	serpyllifolia	L.	(thymeleaf	speedwell)	 VERSE	

Vicia	villosa	Roth	(hairy	vetch)	 VICVI		

Viola	arvensis	Murray	(European	field	pansy)	 VIOAR	

	 1978	
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	 1979	

Figure	A.1.	Site	Occupancy	Maps	for	Species	of	Likely	Agronomic	Risk.	Percent	of	transects	 1980	

occupied	at	32	farms	in	Maine	for	19	rare	weed	species	determined	to	be	of	high	potential	 1981	

agronomic	risk.	Each	panel	corresponds	to	one	species,	identified	by	Bayer	code	(see	Table	A.2	 1982	

for	key).	Figure	continues	onto	subsequent	pages.	 1983	
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	 1984	

Figure	A.1.	Continued.	 1985	
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	 1986	

Figure	A.1.	Continued.	 1987	
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	 1988	

Figure	A.1.	Continued.	 1989	
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	 1990	

Figure	A.1.	Continued.	 1991	

1992	
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APPENDIX	B:	OUTLINE	OF	SIMULATION	MODEL	UNDERPINNING	 1993	

THE	WEEDUCATOR	MODULE	‘MANAGEMENT	SIM’		 1994	

	 The	following	R	code	and	data	input	file	(Table	B.1)	were	sent	to	a	collaborator	who	 1995	

used	the	underlying	logic	and	parameter	values	to	create	WEEDucator’s	Management	Sim	 1996	

module	using	C#.	This	is	a	discrete	time	model	operating	on	a	weekly	time	step	that	simulates	 1997	

emergence,	growth,	and	reproduction	of	an	aggregate	population	of	summer	annual	weeds	 1998	

throughout	one	growing	season,	given	a	user-defined	management	regime.	The	WEEDucator	 1999	

interface	allows	users	to	change	parameter	values	iteratively	via	radio	buttons	and	sliders.	The	 2000	

coding	for	these	interactive	elements	is	not	outlined	below;	rather,	default	parameter	values	are	 2001	

included,	with	alternate	choices	specified	in	the	comments	(following	“#”	symbols).		 2002	

This	model,	and	its	interactive	implementation	in	WEEDucator	(which	can	be	found	 2003	

under	Birthisel,	Rimkunas,	&	Sullivan,	2017),	are	intended	for	educational	purposes	and	operate	 2004	

at	a	heuristic	level.	Model	assumptions	may	not	hold	true	across	real-world	settings.	 2005	

Abbreviations	are	defined	and	citations	used	in	choosing	parameter	values	are	included	at	the	 2006	

end	of	this	appendix	(Table	B.2).	 2007	

B.1.	Simulation	Model	R	Code	 2008	

###	Model	to	underpin	WEEDucator	management	sim	(summer	annual	weeds)	 2009	
###	Sonja	Birthisel,	Spring	2017	 2010	
	 2011	
#User-entered	parameter	values	 2012	
SBstart=2250	#can	range	from	100	to	5000	seeds	per	square	foot	to	4	inches	depth	 2013	
mulchtype="rye"	#alternative:	mulchtype	="black"	 2014	
mulchheight_user=3	#can	range	from	0	to	6	inches	for	users	 2015	
tool="scuffle"	#alternatives:	"wheel",	"tine",	"sweeps"	 2016	
			 2017	
#Loop	for	selecting	mulch	specifications	 2018	
if(mulchtype=="rye"){	 2019	
		mulchheight=mulchheight_user	 2020	
}	else	if	(mulchtype=="black"){	 2021	
		mulchheight=6	 2022	
}	 2023	
	 2024	
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if(tool=="scuffle"){	 2025	
		culteffbig=0.5;	culteffsm=0.9		 2026	
}	else	if(tool=="wheel"){	 2027	
		culteffbig=0.3;	culteffsm=0.8		 2028	
}	else	if(tool=="tine"){	 2029	
		culteffbig=0.1;	culteffsm=0.4		 2030	
}	else	if(tool=="sweeps"){	 2031	
		culteffbig=0.2;	culteffsm=0.5		 2032	
}	 2033	
	 2034	
#User-defined	management	regime			 2035	
numSteps=30	 2036	
till=cult=mulch=rep(0,numSteps+1)		 2037	
#The	three	lines	below	were	for	my	own	testing	purposes;	these	are	user-selected	 2038	
#till[c(5,10,15,20,25)]=1	#set	tillage	regime		 2039	
#cult[c(13,14)]=1	#set	cult	timing	 2040	
#mulch[c(6:10)]=1	#set	mulch	regime		 2041	
	 2042	
#Initialize	vectors	and	starting	vals	 2043	
p1=p2=p3=p4=p5=rep(0,numSteps+1);	t=rep(0,numSteps+1)	 2044	
p3[1]=SBstart*0.2;	p4[1]=SBstart*0.8	 2045	
	 2046	
inputs=read.csv("mat&em.csv")	 2047	
mat=inputs$mat;	em=inputs$em;	sr=inputs$sr		 2048	
matReset=inputs$matReset[1:23];	sp=0.56	 2049	
	 2050	
#Main	loop	 2051	
for	(i	in	1:numSteps){	 2052	
		if	(till[i]==1){	 2053	
				p1[i+1]=p2[i+1]=0	 2054	
				p3[i+1]=0.2*(p3[i]+p4[i])	 2055	
				p4[i+1]=0.8*(p3[i]+p4[i])	 2056	
				p5[i+1]=p5[i]	 2057	
				if	(i>10){	 2058	
						mat=c(mat[1:i],matReset)	#uses	R's	built-in	concatenate	function,	c()	 2059	
				}		 2060	
		}	else	if	(cult[i]==1){	 2061	
				p1[i]=p1[i]+mat[i]*p2[i]	 2062	
				p1[i]=p1[i]-culteffbig*p1[i]	 2063	
				p1[i+1]=min(p1[i],10)	 2064	
				if	(p1[i]<10){	 2065	
						p2[i]=p2[i]-mat[i]*p2[i]	 2066	
						p2[i]=p2[i]+em[i]*p3[i]	 2067	
						p2[i+1]=p2[i]-culteffsm*p2[i]			 2068	
						p3[i+1]=p3[i]-em[i]*p3[i]	 2069	
						}	else	{		 2070	
						p2[i]=p2[i]-mat[i]*p2[i]	 2071	
						p2[i+1]=p2[i]-culteffsm*p2[i]		 2072	
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						p3[i+1]=p3[i]	 2073	
						}	 2074	
				p4[i+1]=p4[i]	 2075	
				p5[i+1]=p5[i]+sr[i]*(1-sp)*p1[i+1]	 2076	
		}	else	if	(mulch[i]==1){	 2077	
				p1[i]=p1[i]+mat[i]*p2[i]	 2078	
				p1[i+1]=min(p1[i],10)	 2079	
				if	(p1[i]<10){	 2080	
						p2[i]=p2[i]-mat[i]*p2[i]	 2081	
						p2[i+1]=p2[i]+em[i]*p3[i]*exp(-0.021*mulchheight/25.4)		 2082	
						p3[i+1]=p3[i]-em[i]*p3[i]*exp(-0.021*mulchheight/25.4)		 2083	
				}	else{	 2084	
						p2[i+1]=p2[i]-mat[i]*p2[i]	 2085	
						p3[i+1]=p3[i]	 2086	
				}	 2087	
				p4[i+1]=p4[i]	 2088	
				p5[i+1]=p5[i]+sr[i]*(1-sp)*p1[i]	 2089	
		}	else	{	 2090	
				p1[i]=p1[i]+mat[i]*p2[i]	 2091	
				p1[i+1]=min(p1[i],10)	 2092	
				if	(p1[i]<10){	 2093	
						p2[i]=p2[i]-mat[i]*p2[i]	 2094	
						p2[i+1]=p2[i]+em[i]*p3[i]	 2095	
						p3[i+1]=p3[i]-em[i]*p3[i]			 2096	
				}	else{	 2097	
						p2[i+1]=p2[i]-mat[i]*p2[i]	 2098	
						p3[i+1]=p3[i]	 2099	
				}	 2100	
				p4[i+1]=p4[i]	 2101	
				p5[i+1]=p5[i]+sr[i]*(1-sp)*p1[i]	 2102	
		}	 2103	
		t[i+1]=t[i]+1	 2104	
}	 2105	
	 2106	
#Plot	results,	specifying	axes	 2107	
par(mfrow=c(2,3))	 2108	
plot(t,p1,type='o',main='mature	weeds')	 2109	
plot(t,p2,type='o',main='immature	weeds')	 2110	
plot(t,p3,type='o',main='top	2	cm	of	seedbank')	 2111	
plot(t,p4,type='o',main='lower	8	cm	of	seedbank')	 2112	
plot(t,p5,type='o',main='new	seeds	(assumed	dormant)')		 2113	
plot(t,t,type='o',main='nothing	here	to	see')	 2114	
	 2115	

2116	
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Table	B.1.	Parameter	Vectors	for	Simulation	Model.	This	table	includes	contents	of	the	file	 2117	

entitled	“mat&em.csv”	referenced	in	the	R	code	above.	Abbreviations	are	defined	in	Table	B.2.		 2118	

week	 mat	 em	 sr	 matReset	
15-Apr	 0	 0.001	 0	 0	
22-Apr	 0	 0.001	 0	 0	
30-Apr	 0	 0.01	 0	 0.05	
7-May	 0	 0.025	 0	 0.1	
14-May	 0	 0.025	 0	 0.2	
21-May	 0	 0.05	 0	 0.3	
28-May	 0	 0.05	 0	 0.4	
4-Jun	 0	 0.1	 0	 0.5	
11-Jun	 0	 0.1	 0	 0.6	
18-Jun	 0	 0.1	 0	 0.7	
25-Jun	 0.05	 0.1	 18	 0.7	
2-Jul	 0.1	 0.05	 118	 0.7	
9-Jul	 0.2	 0.05	 218	 0.7	
16-Jul	 0.3	 0.01	 318	 0.7	
23-Jul	 0.4	 0.01	 418	 0.6	
30-Jul	 0.5	 0.01	 518	 0.5	
6-Aug	 0.6	 0.001	 618	 0.4	
13-Aug	 0.7	 0.001	 718	 0.3	
20-Aug	 0.7	 0.001	 818	 0.2	
27-Aug	 0.7	 0.001	 918	 0.1	
3-Sep	 0.7	 0.001	 818	 0.05	
10-Sep	 0.7	 0.001	 718	 0	
17-Sep	 0.6	 0.001	 618	 0	
24-Sep	 0.5	 0.001	 518	

	1-Oct	 0.4	 0	 418	
	8-Oct	 0.3	 0	 318	
	15-Oct	 0.2	 0	 218	
	22-Oct	 0.1	 0	 118	
	29-Oct	 0.05	 0	 18	
	5-Nov	 0	 0	 0	
	12-Nov	 0	 0	 0	
		 2119	

	 2120	
		 2121	

	 2122	
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Table	B.2.	Simulation	Model	Abbreviations	and	Citations.	Abbreviations	used,	corresponding	simulation	model	parameters	or	definitions,	and	(as	 2123	

applicable)	citations	used	in	determining	parameter	estimates	included	in	simulation	model	code	and	Table	B.1	above.	 2124	

Abbreviation	 Parameter	/	definition	 Citation	
SBstart	 Seedbank	at	start	of	simulation		 (Jabbour,	Gallandt,	et	al.,	2014)	
mulchtype	 Type	of	mulch		 	
mulchheight	 Thickness	of	rye	mulch		 (Teasdale	&	Mohler,	2000)	
tool	 Tool	used	for	hand	weeding	or	cultivation	 	
culteffbig	 Cultivation	efficacy	for	large	weeds	 (Gallandt,	Brainard,	&	Brown,	2018)	
culteffsm	 Cultivation	efficacy	for	small	weeds	 (Gallandt,	Brainard,	&	Brown,	2018)	
numSteps	 Number	of	steps	(weeks)	in	simulation	 	
till	 Week(s)	of	season	in	which	tillage	occurred	 	
cult	 Week(s)	of	season	in	which	cultivation	or	hand	weeding	occurred	 	
mulch	 Week(s)	of	season	in	which	mulch	was	in	place	 	
p1	 Density	of	mature	weeds		 	
p2	 Density	of	immature	weeds	 	
p3	 Density	of	seeds	in	top	2	cm	of	seedbank	 	
p4	 Density	of	seeds	in	lower	8	cm	of	seedbank	 	
p5	 New	seed	rain	 	
em	 Vector	of	weekly	rates	at	which	weeds	emerge	 (Cordeau	et	al.,	2017)	
mat	 Vector	of	weekly	rates	at	which	weeds	mature		 (Liebman	et	al.,	2001)	
sr	 Vector	of	weekly	seed	rain	values	 (Davis	&	Raghu,	2010)	
matReset	 Vector	used	to	re-set	maturation	counter	after	tillage	 	
sp	 Weekly	seed	predation	rate	 (Birthisel,	Gallandt,	Jabbour,	&	Drummond,	2015)	
		 	 2125	
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APPENDIX	C:	PRE-	AND	POST-	ASSESSMENTS	USED	TO	EVALUATE	WEEDUCATOR’S							
EFFICACY	AS	A	TEACHING	TOOL	AND	GAIN	STUDENT	FEEDBACK	

	
	
	
	

Participant #________ 
 

WEEDucator Pre-Assessment  
*** Please answer honestly – your responses will be kept anonymous and will not affect your course grade. 

 
Background Information 

 
What year are you in school?  What is your major?___________________ 

❏ First year 
❏ Second year 
❏ Third year 
❏ Fourth year 
❏ Graduate student 
❏ Other_______________ 

 
How would you rate your knowledge of weed ecology and management? (1 = 
LOWEST) 

 

1       2       3       4       5       6       7       8       9       10 
 

Knowledge Pre-Assessment 
 

1. At what time of year do most winter annuals drop their seed? 
________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer:  

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 
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2. Biennial weeds flower and set seed:  
❏ The year after they germinate 
❏ For many years after they germinate 
❏ The first year they germinate 
❏ Just before they germinate 

  
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
3. How might knowledge of weed lifecycles help a farmer? 

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
4. For optimal weed management, when should cover crops be terminated?  

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
5. What is a stale seedbed and why might a farmer use this technique?  

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 
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6. Weeds can most easily be killed by cultivation at what growth stage:  
❏ In the seed stage 
❏ In the white thread stage 
❏ Just before flowering 
❏ While seeds are maturing on the mother plant  

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
7. What is a weed seedbank? 

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
8. Do seedbanks impact farm management?  If so, how? 

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
9. Which of these practices is likely to be most helpful in depleting the weed 

seedbank: 
❏ Cultivation 
❏ Mulching 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 
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Participant #________ 
 

WEEDucator Post-Assessment 
*** Please answer honestly – your responses will be kept anonymous and will not affect your course grade. 

 
Knowledge Post-Assessment 

 
10. At what time of year do most winter annuals drop their seed? 

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer:  

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
11. Biennial weeds flower and set seed:  

❏ The year after they germinate 
❏ For many years after they germinate 
❏ The first year they germinate 
❏ Just before they germinate 

 
 Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
12. How might knowledge of weed lifecycles help a farmer? 

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 
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13. For optimal weed management, when should cover crops be terminated?  
________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
14. What is a stale seedbed and why might a farmer use this technique?  

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
15. Weeds can most easily be killed by cultivation at what growth stage:  

❏ In the seed stage 
❏ In the white thread stage 
❏ Just before flowering 
❏ While seeds are maturing on the mother plant  

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
16. What is a weed seedbank? 

________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 
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17. Do seedbanks impact farm management?  If so, how? 
________________________________________________________________
________________________________________________________________
________________________________________________________________
__________________ 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
18. Which of these practices is likely to be most helpful in depleting the weed 

seedbank: 
❏ Cultivation 
❏ Mulching 

 
Please check the box that most closely relates to your confidence with your answer: 

❏ I am 100% confident in my answer 
❏ I have some doubt 
❏ I completely guessed 

 
Feedback & Suggestions 
 
Overall, I found WEEDucator helpful     

Comments__________________________  
❏ True     ___________________________________ 
❏ False    ___________________________________ 

 
Overall, WEEDucator was fun to use     

Comments__________________________  
❏ True    ___________________________________ 
❏ False    ___________________________________ 

 
I would prefer to learn the content in WEEDucator (rank in order of preference, 1 = 
HIGHEST) 

— By reading a textbook 
— In a classroom lecture 
— Through activities in lab or lecture 
— By interacting with a tool like WEEDucator 
— By watching YouTube videos 
— Other_____________________________  

 
What part(s) of WEEDucator did you like most?    
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Comments__________________________ 
❏ Lifecycles   ___________________________________ 
❏ Toolshed   ___________________________________ 
❏ Management sim   

 
What part(s) of WEEDucator did you like least?      

 
Comments__________________________ 

❏ Lifecycles   ___________________________________  
❏ Toolshed   ___________________________________ 
❏ Management sim   
 

What platform(s) would you prefer to use for accessing educations tools like 
WEEDucator? 

❏ Smartphone app 
❏ Downloadable computer app 
❏ Web-based app 
❏ Other___________________ 

 
Anything else you’d like us to know? 
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________ 
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