

ZED-F9K-01A

High precision automotive DR GNSS receiver Automotive grade

Data sheet

Abstract

This data sheet describes the ZED-F9K high precision module with 3D sensors and a multi-band GNSS receiver. The module provides laneaccurate positioning under the most challenging conditions, decimeterlevel accuracy for automotive mass markets, and it is ideal for ADAS, V2X and head-up display. It provides a low-risk multi-band RTK turnkey solution with built-in inertial sensors and lag-free displays with up to 50 Hz real-time position update rate.

www.u-blox.com

UBX-21045820 - R02 C1-Public

Document information

Title	ZED-F9K-01A	
Subtitle	High precision automotive DR GI	NSS receiver
Document type	Data sheet	
Document number	UBX-21045820	
Revision and date	R02	20-Jul-2023
Disclosure restriction	C1-Public	

Product status	Corresponding content status	
Functional Sample	Draft	For functional testing. Revised and supplementary data will be published later.
In development / prototype	Objective specification	Target values. Revised and supplementary data will be published later.
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.
Mass production / End of life	Production information	Document contains the final product specification.

This document applies to the following products:

Product name	Type number	Firmware version	PCN reference	Product status
ZED-F9K	ZED-F9K-01A-00	LAP 1.30	-	Initial production

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, or modification of this document or any part thereof is only permitted with the express written permission of u-blox. Disclosure to third parties is permitted for clearly public documents only.

The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com.

Copyright © 2023, u-blox AG.

Contents

1 Functional description	
1.1 Overview	
1.2 Performance	
1.3 Supported GNSS constellations	
1.4 Supported GNSS augmentation systems	
1.4.1 Quasi-Zenith Satellite System (QZSS)	
1.4.2 Satellite-based augmentation system (SBAS)	
1.4.3 Differential GNSS (DGNSS)	
1.5 Broadcast navigation data and satellite signal measurements	
1.6 Supported protocols	
1.7 Firmware features	
1.8 Automotive dead reckoning	8
2 System description	10
2.1 Block diagram	.10
3 Pin definition	11
3.1 Pin assignment	
с. С	
4 Electrical specification	
4.1 Absolute maximum ratings	
4.2 Operating conditions	
4.3 Indicative power requirements	15
5 Communications interfaces	.16
5.1 UART	.16
5.2 SPI	. 16
5.3 I2C	. 18
5.4 USB	. 19
5.5 WT (wheel tick) and DIR (forward/reverse indication)	. 19
6 Mechanical specification	20
7 Reliability tests and approvals	21
7.1 Approvals	21
8 Labeling and ordering information	
8.1 Product labeling	
8.2 Explanation of product codes	
8.3 Ordering codes	
Related documents	
Revision history	24

1 Functional description

1.1 Overview

The ZED-F9K-01A module features the u-blox F9 GNSS platform, which provides continuous decimeter-level positioning accuracy for the most challenging automotive use cases. With LAP 1.30 it supports both L1/L2/E5B and L1/L5 bands for maximum flexibility, satellite availability, and security.

The sophisticated built-in algorithms cleverly fuse the IMU data, GNSS measurements, wheel ticks, and vehicle dynamics model to identify driving lanes where GNSS alone would fail. The module natively supports the u-box PointPerfect GNSS augmentation service. It delivers multiple GNSS and IMU outputs in parallel to support all possible architectures, including a 50 Hz sensor-fused solution with very low latency. It also enables advanced real-time applications like augmented reality, while the optimized multi-band and multi constellation capability maximizes the number of visible satellites even in urban conditions.

The device is a self-contained solution, which provides the best possible system performance to address issues such as latency constraints, RF front-end design issues, or RTK algorithm integration. This eliminates the technical risk and effort of selecting and integrating RF components and third-party libraries, like positioning engines, which helps customers optimize time to market. The u-blox approach also dramatically reduces supply chain complexity during production.

The u-blox position engine incorporates a dependable protection level output and advanced security features including anti-spoofing and anti-jamming. Operation up to 105 °C makes it possible to integrate the product anywhere in the car without design constraints.

u-blox manufacturing partners use ISO/TS 16949 certified sites and adhere to the latest standards in the automotive industry. Qualification tests are performed as stipulated in the AEC-Q104 standard: "Failure mechanism based stress test qualification for multichip modules (MCM) in automotive applications

Parameter	Specification	
Receiver type	Multi-band high precision DR GNSS receiver	
Accuracy of time pulse signal	RMS	30 ns
	99%	60 ns
Frequency of time pulse signal		0.25 Hz to 10 MHz
		(configurable)
Operational limits ¹	Dynamics	≤ 4 g
	Altitude	80,000 m
	Velocity	500 m/s
Position error during GNSS loss ²	3D Gyro + 3D accelerometer + speed pulse	1%
Max navigation update rate (RTK) ^{3 4}	Priority navigation mode	50 Hz
. ,	Non-priority navigation mode	5 Hz

1.2 Performance

¹ Assuming airborne 4 g platform, not supported by ADR

² 68% error incurred without GNSS as a percentage of distance of traveled 1000 m, applicable to four-wheel road vehicle

³ Rates with SBAS and QZSS enabled for > 98% fix report rate under typical conditions

⁴ Update rate depends on the GNSS configuration

Parameter	Specification		
Velocity accuracy ⁵		0.05 m/s	
Dynamic attitude accuracy ⁵	Heading	0.2 deg	
	Pitch	0.3 deg	
	Roll	0.5 deg	
Navigation latency	Priority navigation mode	15 ms	
Raw sensor (IMU) data output rate		100 Hz	

GNSS		GPS+GLO+GAL+BDS	GPS+GAL	GPS+BDS	BDS
Acquisition ⁶	Cold start	22 s	32 s	29 s	31 s
·	Hot start	2 s	2 s	2 s	2 s
	Aided starts ⁷	2 s	2 s	2 s	3 s
Re-convergence time ^{8 9}	RTK	≤ 10 s	≤ 10 s	≤ 10 s	≤ 30 s
Sensitivity ^{10 11}	Tracking and nav.	-159 dBm	-159 dBm	-159 dBm	-158 dBm
	Reacquisition	-158 dBm	-157 dBm	-158 dBm	-157 dBm
	Cold start	-147 dBm	-147 dBm	-147 dBm	-144 dBm
	Hot start	-159 dBm	-158 dBm	-158 dBm	-157 dBm
Position accuracy RTK ^{8 12}	Along track	0.20 m	0.25 m	0.25 m	N/A
	Cross track	0.20 m	0.25 m	0.25 m	N/A
	2D CEP	0.30 m	0.40 m	0.40 m	N/A
	Vertical	0.30 m	0.40 m	0.40 m	N/A

 Table 1: ZED-F9K-01A performance in different GNSS modes

1.3 Supported GNSS constellations

The ZED-F9K-01A GNSS modules are concurrent GNSS receivers that can receive and track multiple GNSS constellations. Owing to the multi-band RF front-end architecture, all four major GNSS constellations (GPS, GLONASS, Galileo and BeiDou) plus SBAS and QZSS satellites can be received concurrently. All satellites in view can be processed to provide an RTK navigation solution when used with correction data. If power consumption is a key factor, the receiver can be configured for a subset of GNSS constellations.

All satellites in view can be processed to provide an RTK navigation solution when used with correction data; the highest positioning accuracy will be achieved when the receiver is tracking signals on both bands from multiple satellites, and is provided with corresponding correction data.

The QZSS system shares the same frequency bands with GPS and can only be processed in conjunction with GPS.

To benefit from multi-band signal reception, dedicated hardware preparation must be made during the design-in phase. See the Integration manual [1] for u-blox design recommendations.

⁵ 68% at 30 m/s for dynamic operation

⁶ All satellites at -130 dBm

⁷ Dependent on the speed and latency of the aiding data connection, commanded starts

^{8 68%} depending on atmospheric conditions, baseline length, GNSS antenna, multipath conditions, satellite visibility and geometry

⁹ Time to ambiguity fix after 20 s outage

¹⁰ Demonstrated with a good external LNA

¹¹ Configured min C/N0 of 6 dB/Hz, limited by FW with min C/N0 of 20 dB/Hz for best performance

¹² Measured using 1 km baseline and patch antennas with good ground planes. Does not account for possible antenna phase center offset errors.

GPS/QZSS	GLONASS	Galileo	BeiDou	NavIC
L1C/A (1575.420 MHz)	L1OF (1602 MHz + k*562.5 kHz, k = –7,,6)	E1-B/C (1575.420 MHz)	B1I (1561.098 MHz)	-
· · · ·	L2OF (1246 MHz + k*437.5 kHz, k = –7,,6)	E5b (1207.140 MHz)	B2I (1207.140 MHz)	-
L5 (1176.450 MHz)	-	E5a (1176.450 MHz)	B2a (1176.450 MHz)	

The ZED-F9K-01A supports the GNSS and their signals as shown in Table 2.

Table 2: Supported GNSS signals on ZED-F9K-01A

The ZED-F9K-01A can use the u-blox AssistNow™ Online service which provides GNSS assistance information.

ZED-F9K-01A supports the following augmentation systems:

SBAS	QZSS	IMES	Differential GNSS		
EGNOS, GAGAN, WAAS and MSAS supported	Supported	Not supported	RTCM 3.3, SPARTN 2.0.1		
Table 3: Supported augmentation systems of ZED-F9K-01A					

The augmentation systems SBAS and QZSS can be enabled only if GPS operation is also

Ĵ

enabled.

1.4 Supported GNSS augmentation systems

1.4.1 Quasi-Zenith Satellite System (QZSS)

The Quasi-Zenith Satellite System (QZSS) is a regional navigation satellite system that provides positioning services for the Pacific region covering Japan and Australia. The ZED-F9K-01A is able to receive and track QZSS L1 C/A and L2C or L1 C/A and L5 signals concurrently with GPS signals, resulting in better availability especially under challenging signal conditions, e.g. in urban canyons.

QZSS can be enabled only if GPS operation is also configured.

1.4.2 Satellite-based augmentation system (SBAS)

The ZED-F9K-01A optionally supports SBAS (including WAAS in the US, EGNOS in Europe, MSAS in Japan and GAGAN in India) to deliver improved location accuracy within the regions covered. However, the additional inter-standard time calibration step used during SBAS reception results in degraded time accuracy overall.

SBAS reception is enabled by default in ZED-F9K-01A.

1.4.3 Differential GNSS (DGNSS)

When operating in RTK mode, RTCM version 3.3 messages are required and the module supports DGNSS according to RTCM 10403.3. ZED-F9K-01A can decode the following RTCM 3.3 messages:

Message type	Description	
RTCM 1001	L1-only GPS RTK observables	
RTCM 1002	Extended L1-only GPS RTK observables	
RTCM 1003	L1/L2 GPS RTK observables	
RTCM 1004	Extended L1/L2 GPS RTK observables	
RTCM 1005	Stationary RTK reference station ARP	
RTCM 1006	Stationary RTK reference station ARP with antenna height	
RTCM 1007	Antenna descriptor	

Message type	Description
RTCM 1009	L1-only GLONASS RTK observables
RTCM 1010	Extended L1-only GLONASS RTK observables
RTCM 1011	L1/L2 GLONASS RTK observables
RTCM 1012	Extended L1/L2 GLONASS RTK observables
RTCM 1033	Receiver and antenna description
RTCM 1074	GPS MSM4
RTCM 1075	GPS MSM5
RTCM 1077	GPS MSM7
RTCM 1084	GLONASS MSM4
RTCM 1085	GLONASS MSM5
RTCM 1087	GLONASS MSM7
RTCM 1094	Galileo MSM4
RTCM 1095	Galileo MSM5
RTCM 1097	Galileo MSM7
RTCM 1124	BeiDou MSM4
RTCM 1125	BeiDou MSM5
RTCM 1127	BeiDou MSM7
RTCM 1230	GLONASS code-phase biases

Table 4: Supported input RTCM 3.3 messages

Message type-subtype	Description	
SM 0-0	GPS orbit, clock, bias (OCB)	
SM 0-1	GLONASS orbit, clock, bias (OCB)	
SM 0-2	Galileo orbit, clock, bias (OCB)	
SM 1-0	GPS high-precision atmosphere correction (HPAC)	
SM 1-1	GLONASS high-precision atmosphere correction (HPAC)	
SM 1-2	Galileo high-precision atmosphere correction (HPAC)	
SM 2-0	Geographic area definition (GAD)	

Table 5: Supported input SPARTN version 2.0.1 messages

1.5 Broadcast navigation data and satellite signal measurements

The ZED-F9K-01A can output all the GNSS broadcast data upon reception from tracked satellites. This includes all the supported GNSS signals as well as the QZSS and SBAS augmentation services. The UBX-RXM-SFRBX message provides this information, see the Interface description [2] for the UBX-RXM-SFRBX message specification. The receiver can provide satellite signal information in a form compatible with the Radio Resource LCS Protocol (RRLP) [3].

1.6 Supported protocols

The ZED-F9K-01A supports the following protocols:

Protocol	Туре
UBX	Input/output, binary, u-blox proprietary
NMEA 4.11 (default), 4.10, 4.0, 2.3, and 2.1	Input/output, ASCII
SPARTN 2.0.1	Input, binary

Protocol	Туре
RTCM 3.3	Input, binary

Table 6: Supported protocols

For specification of the protocols, see the Interface description [2].

1.7 Firmware features

Feature	Description
Advanced calibration handling	Calibration information can be stored with the host
Antenna supervisor ¹³	Active antenna supervisor to detect short and open status
Assisted GNSS	AssistNow Online supported
Multiple GNSS assistance	MGA service proprietary implementation of an A-GNSS protocol
Automotive dead reckoning	Combines satellite and sensor-based navigation (IMU and odometer input)
Automatic alignment	Automatic estimation of the alignment angles (automotive dynamic model only)
Backup modes	Hardware backup mode, software backup mode
Dual output	GNSS only and Fused (GNSS+DR) output
Protection level	Computed by the receiver in real-time, quantifies the reliability of the position information
Upgradeable firmware	Firmware in flash memory can be upgraded
Wake on motion	Wakes up the host while the receiver is in SW backup mode

Feature	Description		
Anti-jamming RF interference and jamming detection and reporting			
Anti-spoofing	Spoofing detection and reporting		
Configuration lockdown	Receiver configuration can be locked by command		
Message integrity	All messages signed with SHA-256		
Secure boot	Only signed FW images executed		

Table 8: Security features

1.8 Automotive dead reckoning

u-blox's proprietary automotive dead reckoning (ADR) solution uses a 3D inertial measurement unit (IMU) included within the module, and speed pulses from the vehicle's wheel tick (WT) sensor. Alternatively, the vehicle speed data can be provided as messages via a serial interface. Sensor data and GNSS signals are processed together, achieving 100% coverage, with highly accurate and continuous positioning even in GNSS-hostile environments (for example, urban canyons) or in case of GNSS signal absence (for example, tunnels and parking garages).

WT or speed sensor rate variations and the 3D IMU sensors are calibrated automatically and continuously by the module, accommodating automatically to, for example, vehicle tire wear.

For more details, see the integration manual [1].

The ZED-F9K-01A combines GNSS and dead reckoning measurements and computes a position solution at rates of up to 5 Hz with non-priority navigation mode. In priority navigation mode the navigation rate can be increased using IMU-only data to deliver accurate, low-latency position

¹³ External components required

measurements at rates up to 50 Hz. These solutions are reported in standard NMEA, UBX-NAV-PVT and similar messages.

△ The ZED-F9K-01A will work optimally in priority navigation mode when the IMU and WT sensors are calibrated, and the alignment angles are correct.

Dead reckoning allows navigation to commence as soon as power is applied to the module (that is, before a GNSS fix has been established) under the following conditions:

- The vehicle has not been moved while the module has been switched off.
- At least a dead reckoning fix was available when the vehicle was last used.
- A backup supply has been available for the module since the vehicle was last used.
- The save-on-shutdown feature can be used when no backup supply is available. All information necessary will be saved to the flash and read from the flash upon restart.
- The advanced calibration handling feature can be used when no backup supply is available or the save-on-shutdown feature cannot be used. This feature allows the host to poll and later send the sensor initialization and calibration parameters.

2 System description

2.1 Block diagram

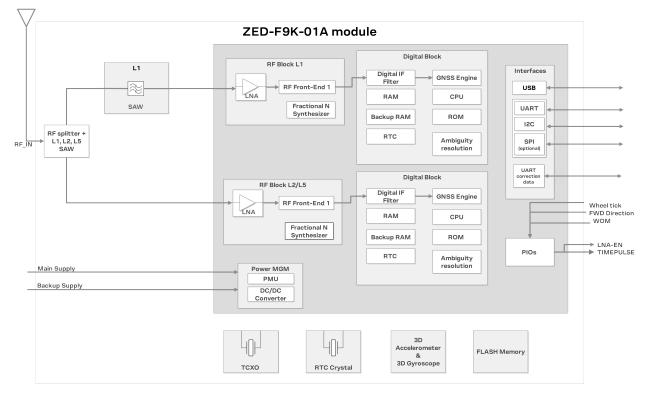
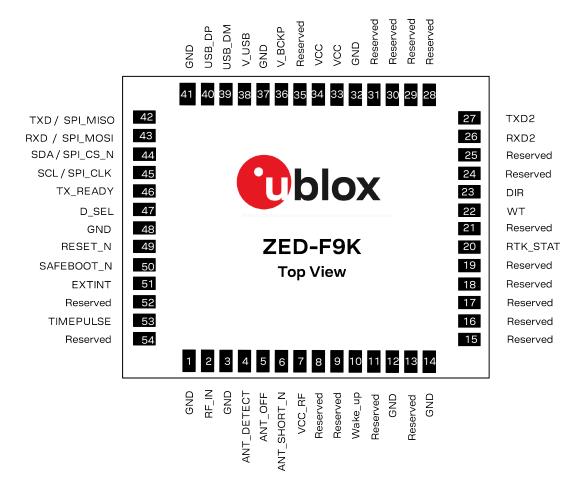


Figure 1: ZED-F9K-01A block diagram



3 Pin definition

3.1 Pin assignment

The pin assignment of the ZED-F9K-01A module is shown in Figure 2. The defined configuration of the PIOs is listed in Table 9.

The ZED-F9K-01A is an LGA package with the I/O on the outside edge and central ground pads.

Figure 2: ZED-F9K-01A pin assignment

Pin no.	Name	I/O	Description
1	GND	-	Ground
2	RF_IN	I	RF input
3	GND	_	Ground
4	ANT_DETECT	I	Active antenna detect
5	ANT_OFF	0	External LNA disable
6	ANT_SHORT_N	I	Active antenna short detect
7	VCC_RF	0	Voltage for external LNA
8	Reserved	-	Reserved
9	Reserved	_	Reserved

Pin no.	Name	I/O	Description
10	Wake_Up	0	Wake on motion
11	Reserved	-	Reserved
12	GND	-	Ground
13	Reserved	-	Reserved
14	GND	-	Ground
15	Reserved	-	Reserved
16	Reserved	-	Reserved
17	Reserved	-	Reserved
18	Reserved	-	Reserved
19	Reserved	-	Reserved
20	RTK_STAT	0	RTK status 0 – fixed, blinking – receiving and using corrections, 1 – no corrections
21	Reserved	_	Reserved
22	WT	I	Wheel ticks
23	DIR	I	Direction
24	Reserved	-	Reserved
25	Reserved	-	Reserved
26	RXD2	I	Correction UART input
27	TXD2	0	Correction UART output
28	Reserved	-	Reserved
29	Reserved	-	Reserved
30	Reserved	-	Reserved
31	Reserved	_	Reserved
32	GND	-	Ground
33	VCC	I	Voltage supply
34	VCC	I	Voltage supply
35	Reserved	-	Reserved
36	V_BCKP	I	Backup supply voltage
37	GND	-	Ground
38	V_USB	I	USB power input
39	USB_DM	I/O	USB data
40	USB_DP	I/O	USB data
41	GND	-	Ground
42	TXD/SPI_SDO	0	Serial port if D_SEL =1(or open). SPI SDO if D_SEL = 0
43	RXD/SPI_SDI	I	Serial port if D_SEL =1(or open). SPI SDI if D_SEL = 0
44	SDA/SPI_CS_N	I/O	I2C data if D_SEL =1 (or open). SPI chip select if D_SEL = 0
45	SCL/SPI_CLK	I/O	I2C Clock if D_SEL =1(or open). SPI clock if D_SEL = 0
46	TX_READY	0	TX_Buffer full and ready for TX of data
47	D_SEL	I	Interface select
48	GND	-	Ground
49	RESET_N	I	RESET_N
50	SAFEBOOT_N	I	SAFEBOOT_N (for future service, updates and reconfiguration, leave OPEN)
F 1	EXT_INT	1	External interrupt pin
51			

Pin no.	Name	I/O	Description
53	TIMEPULSE	0	Time pulse
54	Reserved	-	Reserved

Table 9: ZED-F9K-01A pin assignment

4 Electrical specification

▲ CAUTION Operating the device above one or more of the limiting values may cause permanent damage to the device. The values provided in this chapter are stress ratings. Extended exposure to the values outside the limits may effect the device reliability.

Where application information is given, it is advisory only and does not form part of the specification.

4.1 Absolute maximum ratings

Parameter	Symbol	Condition	Min	Max	Units
Power supply voltage	VCC		-0.5	3.6	V
Voltage ramp on VCC ¹⁴			20	8000	µs/V
Backup battery voltage	V_BCKP		-0.5	3.6	V
Voltage ramp on V_BCKP ¹⁴			20		µs/V
Input pin voltage	Vin	VCC ≤ 3.1 V	-0.5	VCC + 0.5	V
		VCC > 3.1 V	-0.5	3.6	V
VCC_RF output current	ICC_RF			300	mA
Supply voltage USB	V_USB		-0.5	3.6	V
USB signals	USB_DM, USB_DP		-0.5	V_USB + 0.9	5 V
Input power at RF_IN	Prfin	source impedance = 50 Ω, continuous wave		10	dBm
Storage temperature	Tstq		-40	+105	°C

Table 10: Absolute maximum ratings

 \triangle

T

CAUTION Risk of equipment damage. This product is not protected against overvoltage or reversed voltages. Use appropriate protection diodes to avoid voltage spikes exceeding the specified boundaries damaging the equipment.

4.2 Operating conditions

The values for the following operating conditions have been specified at 25°C ambient temperature. Extreme operating temperatures can significantly impact the specified values. If an application operates near the min or max temperature limits, ensure the specified values are not exceeded.

Parameter	Symbol	Min	Typical	Max	Units	Condition
Power supply voltage	VCC	2.7	3.0	3.6	V	
Backup battery voltage	V_BCKP	1.65		3.6	V	
Backup battery current ¹⁵	I_BCKP		45		μΑ	V_BCKP = 3 V, VCC = 0 V
SW backup current	I_SWBCKP		1.5		mA	
Input pin voltage range	Vin	0		VCC	V	
Digital IO pin low level input voltage	Vil			0.4	V	
Digital IO pin high level input voltage	Vih	0.8 * VCC			V	

¹⁴ Exceeding the ramp speed may permanently damage the device

¹⁵ To measure the I_BCKP the receiver should first be switched on, i.e. VCC and V_BCKP is available. Then set VCC to 0 V while the V_BCKP remains available. Afterward measure the current consumption at the V_BCKP.

Parameter	Symbol	Min	Typical	Max	Units	Condition
Digital IO pin low level output voltage	Vol			0.4	V	lol = 2 mA ¹⁶
Digital IO pin high level output voltage	Voh	VCC-0.4			V	loh = 2 mA ¹⁶
DC current through any digital I/O pin (except supplies)	lpin			5	mA	
Pull-up resistance for SCL, SDA	R _{pu}	7	15	30	kΩ	
Pull-up resistance for D_SEL, RXD, TXD, SAFEBOOT_N, EXTINT	R _{pu}	30	75	130	kΩ	
Pull-up resistance for RESET_N	R _{pu}	7	10	13	kΩ	
VCC_RF voltage	VCC_RF		VCC - 0.1		V	
VCC_RF output current	ICC_RF			50	mA	
Receiver chain noise figure ¹⁷	NFtot		9.5		dB	
External gain (at RF_IN)	Ext_gain	17		50	dB	
Operating temperature	Topr	-40	+25	+105	°C	

Table 11: Operating conditions

Ţ

Operation beyond the specified operating conditions can affect the device reliability.

4.3 Indicative power requirements

Table 12 provides examples of typical current requirements when using a cold start command. The given values are total system supply current for a possible application including RF and baseband sections.

The actual power requirements vary depending on the FW version used, external circuitry, number of satellites tracked, signal strength, type and time of start, duration, and conditions of test.

Symbol	Parameter	Conditions	GPS+GLO +GAL+BDS	GPS	Unit
I _{PEAK}	Peak current	Acquisition	130	120	mA
I _{VCC} ¹⁸	VCC current	Acquisition	90	75	mA
I _{VCC} ¹⁸	VCC current	Tracking	85	68	mA

Table 12: Currents to calculate the indicative power requirements

All values in Table 12 are measured at 25 °C ambient temperature.

¹⁶ TIMEPULSE has 4 mA current drive/sink capability

¹⁷ Only valid for GPS

¹⁸ Simulated GNSS signal

5 Communications interfaces

The ZED-F9K-01A has several communications interfaces¹⁹, including UART, SPI, I2C and USB.

All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to VCC supply voltage.

5.1 UART

The UART interfaces support configurable baud rates. See the Integration manual [1].

Hardware flow control is not supported.

UART1 is the primary host communications interface while UART2 is dedicated for RTCM 3.3 corrections and NMEA. No UBX protocol is supported on UART 2.

The UART1 is enabled if D_SEL pin of the module is left open or "high".

Symbol	Parameter	Min	Max	Unit
R _u	Baud rate	9600	921600	bit/s
Δ_{Tx}	Tx baud rate accuracy	-1%	+1%	-
Δ_{Rx}	Rx baud rate tolerance	-2.5%	+2.5%	-

Table 13: ZED-F9K-01A UART specifications

5.2 SPI

The SPI interface is disabled by default. The SPI interface shares pins with UART and I2C and can be selected by setting D_SEL = 0. The SPI interface can be operated in peripheral mode only. The maximum transfer rate using SPI is 125 kB/s and the maximum SPI clock frequency is 5.5 MHz.

The SPI timing parameters for peripheral operation are defined in Figure 3. Default SPI configuration is CPOL = 0 and CPHA = 0.

¹⁹ The signal names and related terms have been replaced with new terminology in this document.

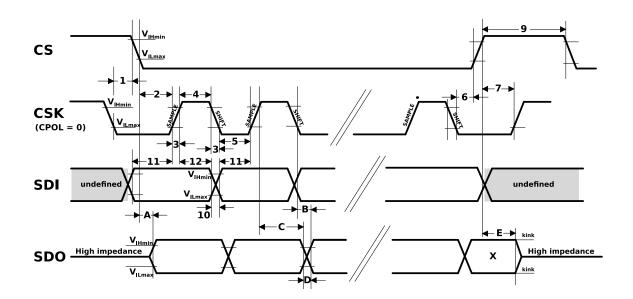


Figure 3: ZED-F9K-01A SPI specification mode 1: CPHA=0 SCK = 5.33 MHz

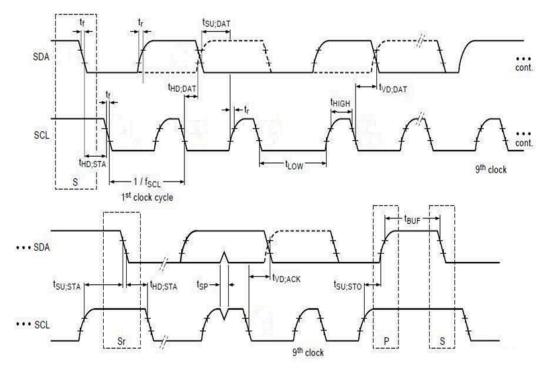
Symbol	Parameter	Min	Max	Unit	
1	CS deassertion hold time	23	-	ns	
2	Chip select time (CS to SCK)	20	-	ns	
3	SCK rise/fall time	-	7	ns	
4	SCK high time	24	-	ns	
5	SCK low time	24	-	ns	
6	Chip deselect time (SCK falling to CS)	30	-	ns	
7	Chip deselect time (CS to SCK)	30	-	ns	
9	CS high time	32	-	ns	
10	SDI transition time	-	7	ns	
11	SDI setup time	16	-	ns	
12	SDI hold time	24	-	ns	

Table 14: SPI peripheral input timing parameters 1 - 12

Parameter	Min	Max	Unit ns	
SDO data valid time (CS)	12	40		
SDO data valid time (SCK), weak driver mode	15	40	ns	
SDO data hold time	100	140	ns	
SDO rise/fall time, weak driver mode	0	5	ns	
SDO data disable lag time	15	35	ns	
	SDO data valid time (CS) SDO data valid time (SCK), weak driver mode SDO data hold time SDO rise/fall time, weak driver mode	SDO data valid time (CS)12SDO data valid time (SCK), weak driver mode15SDO data hold time100SDO rise/fall time, weak driver mode0	SDO data valid time (CS)1240SDO data valid time (SCK), weak driver mode1540SDO data hold time100140SDO rise/fall time, weak driver mode05	

Table 15: SPI peripheral timing parameters A - E, 2 pF load capacitance

Symbol	Parameter	Min	Max	Unit
А	SDO data valid time (CS)	16	55	ns
В	SDO data valid time (SCK), weak driver mode	20	55	ns
С	SDO data hold time	100	150	ns
D	SDO rise/fall time, weak driver mode	3	20	ns



Symbol	Parameter	Min	Max	Unit	
E	SDO data disable lag time	15	35	ns	
Table 16:	SPI peripheral timing parameters A - E, 20 pF load cap	pacitance			
Symbol	Parameter	Min	Max	Unit	
A	SDO data valid time (CS)	26	85	ns	
В	SDO data valid time (SCK), weak driver mode	30	85	ns	
С	SDO data hold time	110	160	ns	
D	SDO rise/fall time, weak driver mode	13	45	ns	
D	SDO HSeyrall time, weak unver mode				

Table 17: SPI peripheral timing parameters A - E, 60 pF load capacitance

5.3 I2C

An I2C interface is available for communication with an external host CPU in I2C Fast-mode. Backwards compatibility with Standard-mode I2C bus operation is not supported. The interface can be operated only in peripheral mode with a maximum bit rate of 400 kbit/s. The interface can make use of clock stretching by holding the SCL line LOW to pause a transaction. In this case, the bit transfer rate is reduced. The maximum clock stretching time is 20 ms.

Figure 4: ZED-F9K-01A I2C	peripheral specification
Inguic Hitch I on OTATEO	peripricial specification

		I2C Fast-mo	st-mode		
Symbol	Parameter	Min	Max	Unit	
f _{SCL}	SCL clock frequency	0	400	kHz	
t _{HD;STA}	Hold time (repeated) START condition	0.6	-	μs	
t _{LOW}	Low period of the SCL clock	1.3	-	μs	
t _{HIGH}	High period of the SCL clock	0.6	-	μs	
t _{SU;STA}	Setup time for a repeated START condition	0.6	-	μs	

		I2C Fast-mod	I2C Fast-mode		
Symbol	Parameter	Min	Max	Unit	
t _{HD;DAT}	Data hold time	0 20	_ 21	μs	
t _{SU;DAT}	Data setup time	100 ²²		ns	
t _r	Rise time of both SDA and SCL signals	-	300 (for C = 400pF)	ns	
t _f	Fall time of both SDA and SCL signals	-	300 (for C = 400pF)	ns	
t _{SU;STO}	Setup time for STOP condition	0.6	-	μs	
t _{BUF}	Bus-free time between a STOP and START condition	1.3	-	μs	
t _{VD;DAT}	Data valid time	_	0.9 ²¹	μs	
t _{VD;ACK}	Data valid acknowledge time	-	0.9 ²¹	μs	
V _{nL}	Noise margin at the low level	0.1 VCC	-	V	
V _{nH}	Noise margin at the high level	0.2 VCC	-	V	

Table 18: ZED-F9K-01A I2C peripheral timings and specifications

The I2C interface is only available with the UART default mode. If the SPI interface is selected by using D_SEL = 0, the I2C interface is not available.

5.4 USB

The USB 2.0 FS (full speed, 12 Mbit/s) interface can be used for host communication. Due to the hardware implementation, it may not be possible to certify the USB interface. The V_USB pin supplies the USB interface.

5.5 WT (wheel tick) and DIR (forward/reverse indication)

ZED-F9K-01A pin 22 (WT) is available as a wheel-tick input. The pin 23 (DIR) is available as a direction input (forward/reverse indication).

By default the wheel tick count is derived from the rising edges of the WT input.

For optimal performance the wheel tick resolution should be less than 5 cm. With the maximum supported wheel tick resolution is 40 cm.

The DIR input shall indicate whether the vehicle is moving forwards or backwards.

Alternatively, the vehicle WT (or speed) and DIR inputs can be provided via one of the communication interfaces with UBX-ESF-MEAS messages.

For more details, see the integration manual [1].

²⁰ External device must provide a hold time of at least one transition time (max 300 ns) for the SDA signal (with respect to the min Vih of the SCL signal) to bridge the undefined region of the falling edge of SCL.

²¹ The maximum $t_{HD;DAT}$ must be less than the maximum $t_{VD;DAT}$ or $t_{VD;ACK}$ with a maximum of 0.9 µs by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.

²² When the I2C peripheral is stretching the clock, the t_{SU;DAT} of the first bit of the next byte is 62.5 ns.

6 Mechanical specification

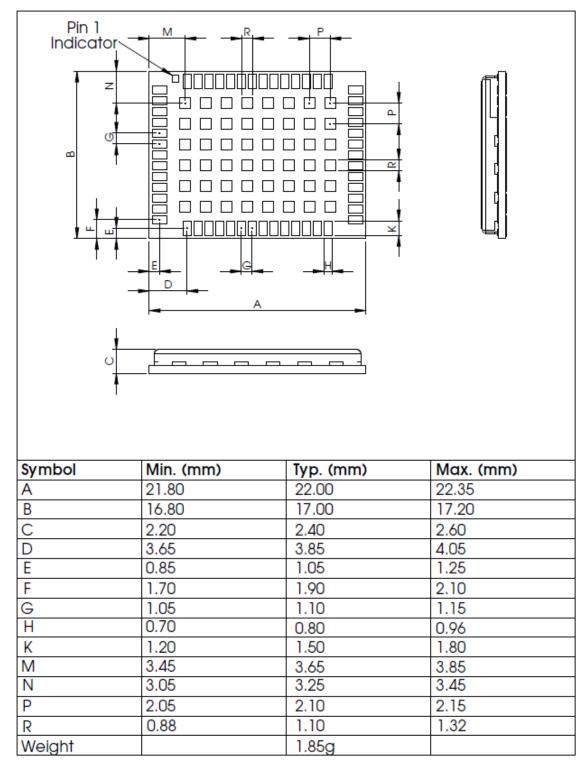


Figure 5: ZED-F9K-01A mechanical drawing

7 Reliability tests and approvals

ZED-F9K-01A modules are based on AEC-Q100 qualified GNSS chips.

Tests for product family qualifications comply with AEC-Q104 "Failure Mechanism Based Stress Test Qualification For Multichip Modules (MCM) In Automotive Applications", and appropriate standards.

7.1 Approvals

ZED-F9K-01A complies with the essential requirements and other relevant provisions of the Radio Equipment Directive (RED) 2014/53/EU.

ZED-F9K-01A complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

The Declaration of Conformity (DoC) is available on the u-blox website.

8 Labeling and ordering information

This section provides information about product labeling and ordering. For information about moisture sensitivity level (MSL), product handling and soldering see the Integration manual [1].

8.1 Product labeling

The labeling of the ZED-F9K-01A modules provides product information and revision information. For more information contact u-blox sales.

8.2 Explanation of product codes

Three product code formats are used in the ZED-F9K-01A labels. The **Product name** used in documentation such as this data sheet identifies all u-blox products, independent of packaging and quality grade. The **Ordering code** includes options and quality, while the **Type number** includes the hardware and firmware versions.

Format	Structure	Product code	
Product name	PPP-TGV	ZED-F9K	
Ordering code	PPP-TGV-NNQ	ZED-F9K-01A	
Type number	PPP-TGV-NNQ-XX	ZED-F9K-01A-00	

Table 19 below details these three formats.

Table 19: Product code formats

The parts of the product code are explained in Table 20.

Code	Meaning	Example	
PPP	Product family	ZED	
TG	Platform	F9 = u-blox F9	
V	Variant	K = High precision + ADR	
NNQ	Option / Quality grade	NN: Option [0099]	
		Q: Grade, A = Automotive, B = Professional	
XX	Product detail	Describes hardware and firmware versions	

Table 20: Part identification code

8.3 Ordering codes

Ordering code	Product	Remark
ZED-F9K-01A	u-blox ZED-F9K, automotive grade	

Table 21: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website at: https://www.u-blox.com/en/product-resources.

Related documents

- [1] ZED-F9K Integration manual, UBX-20046189
- [2] LAP 1.30 Interface description, UBX-22005157
- [3] Radio Resource LCS Protocol (RRLP), (3GPP TS 44.031 version 11.0.0 Release 11)
- For regular updates to u-blox documentation and to receive product change notifications please register on our homepage https://www.u-blox.com.

Revision history

Date	Name	Status / comments
26-Apr-2023	ssid	Engineering sample ZED-F9K-01A with LAP 1.30
		Updated I2C and SPI timing specifications in section Communications interfaces
		Updated VCC_RF output current in table Absolute maximum ratings
		Added timepulse details in table Operating conditions
		Updated backup current in table Operating conditions
20-Jul-2023	ssid	Initial production of ZED-F9K-01A
	26-Apr-2023	26-Apr-2023 ssid

Contact

u-blox AG

Zürcherstrasse 68 8800 Thalwil Switzerland

For further support and contact information, visit us at www.u-blox.com/support.