

Site Condition & Baseline Report Plumley

The Oil and Pipelines Agency

rpsgroup.com

Quality Management							
Version	Revision	Authored by	Reviewed by	Approved by	Date		
1	0	Tom Hatch	Adrian Green	-	2 March 2022		
1	1	Adrian Green	Wayne Davies	Wayne Davies	17 March 2022		
2	2	Adrian Green		Wayne Davies	23 May 2022		

Approval for issue

Wayne Davies

BSc, MSc

23 May 2022

File Name

220523 R JER9424 AG PLY SCRIED V2R2

The report has been prepared for the exclusive use and benefit of our client and solely for the purpose for which it is provided. Unless otherwise agreed in writing by RPS Group Plc, any of its subsidiaries, or a related entity (collectively 'RPS') no part of this report should be reproduced, distributed or communicated to any third party. RPS does not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report. The report does not account for any changes relating to the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report.

The report has been prepared using the information provided to RPS by its client, or others on behalf of its client. To the fullest extent permitted by law, RPS shall not be liable for any loss or damage suffered by the client arising from fraud, misrepresentation, withholding of information material relevant to the report or required by RPS, or other default relating to such information, whether on the client's part or that of the other information sources, unless such fraud, misrepresentation, withholding or such other default is evident to RPS without further enquiry. It is expressly stated that no independent verification of any documents or information supplied by the client or others on behalf of the client has been made. The report shall be used for general information only.

Prepared by:		Prepared for:			
RPS		Oil & Pipeline Agency			
Dr Adrian Green		Elaine Gibson			
Principal Hydrogeologist		Process Safety Engineer			
260 Park Avenue Almondsbury Bristol BS32 4SY		St Georges House Royal Clarence Yard Weevil Lane Gosport PO12 1AP			
т·	+44 1454 853 000	т	+44 20 7420 1670		
Εģ	greenad@rpsgroup.com	Е	Elaine.Gibson@oilandpipelines.com		

Contents

1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Key Objectives	2
	1.3	Current Operations on the Plumley PSD Site	2
2	SITE	SETTING	3
4	2 1	Site Location	उ २
	2.1	Site Description	ט א
	2.2	Overview	3
		Site Drainage	۰۵ ل
		Historical Operations	۲۲ 6
		Current Operations on the Plumley PSD	0 6
		Summary of Activities / Operations	
	2.3	Environmental Setting	8
		Topography & Hydrology	8
		Geology	9
		Hvdrogeology	12
		Environmental Sensitivity	13
		Summary of Environmental Receptors	13
	2.4	Soil and Groundwater Land Quality	14
		Data Sources	14
		Envirocheck Land Report (Landmark, 2014)	14
		Soil and Groundwater Quality Dataset for the Plumley PSD	15
3	CON		17
5	3 1	Hydrogeological Model	17
	3.1	Pollutant (Source-Pathway-Recentor) Linkages	17
	0.2	Background	10
		Contamination Sources	10
		Environmental Recentors	18
		Pathways	18
		Pollutant (SPR) Linkage Table	20
		· · · · · · · · · · · · · · · · · · ·	
4	APPI		24
	4.1	Application Phase	24
	4.2	Site Condition Report Summary	24
5	IED E	BASELINE REPORTING	26
	5.1	Stage 1: Identify which Hazardous Substances are Used, Produced or Released at the	
		Installation	26
	5.2	Stage 2: Identify Relevant Hazardous Substances Used, Produced or Released at The	
		Installation	26
	5.3	Stage 3: Assessment of the Site-Specific Pollution Potential in Relation to Soils and	
		Groundwater	29
6	BAS	ELINE SOIL SAMPLING	31
7			20
1	7 1	Operational Phase	ວ∠ ຊາ
	7.1 7.2	Site Condition Report Summary	ວ∠ ຊາ
	1.2		52
8	SUR	RENDER SITE CONDITION REPORT	33
REFE	RENG	>ES	34

Figures

Figure 1.	Storage caverns and general site plan for the PSD site	3
Figure 2.	Ground investigation undertaken on the Plumley PSD in 2014 (Ref. 6)	15

Tables

Table 1.1 Main stages of preparing a baseline report	1
Table 2.1 Summary of Residual Hydrocarbons Stored on the Plumley PSD site	6
Table 2.2 Summary of activities undertaken on the Plumley PSD	8
Table 2.3 Regional geological sequence on the Plumley PSD	9
Table 2.4 Ground investigation on the Plumley PSD (Process Area) (Ref. 6)	10
Table 2.5 Ground investigation on the Plumley PSD (Outside of Process Area) (Ref. 6)	11
Table 2.6 Summary of groundwater occurrence on the Plumley PSD site (Ref. 6)	13
Table 2.7 Summary of Environmental Receptors	14
Table 3.1 Summary of receptors and pathways.	19
Table 3.2 Pollutant linkage table for the Plumley PSD	22
Table 5.1 Summary of Potential Pollution Risk of Hazardous Substances	27

Appendices

Appendix A Photographs of Plumley PSD

Appendix B BGS Borehole Logs

Appendix C Geological Logs for Plumley PSD (2014)

Appendix D Envirocheck Report, 2014

Appendix E Baseline Soil and Groundwater Quality Dataset for Plumley PSD

Appendix F Safety Data Sheets

1 INTRODUCTION

1.1 Background

- 1.1.1 RPS has been commissioned by the Oil & Pipelines Agency (OPA) to prepare a Site Condition and Baseline Report required in support of a retrospective application for an Environmental Permit, covering current and future operations on their Plumley (Plumley) Petroleum Storage Depot (PSD) site. As such, this report has been prepared in accordance with regulatory guidance for <u>H5</u> <u>Guidance for Applicants (Ref. 1)</u> and the European Commission Guidance (<u>Ref. 2</u>) concerning baseline reporting under Article 22(2) of <u>Directive 2010/75/EU</u> on industrial emissions (hereinafter referred to as the Industrial Emissions Directive or IED).
- 1.1.2 Paragraphs 2 to 4 of Article 22 of the IED, contain the provisions for the definitive cessation of activities involving the use, production or release of Relevant Hazardous Substances (RHS) in order to prevent and tackle potential soil and groundwater contamination from such substances. A key tool in this respect is the establishment of a 'baseline report' where an activity involves the use, production, or release of RHS and having regard to the possibility of soil and groundwater contamination. The report will form the basis for a comparison with the state of contamination upon definitive cessation of activities. Where information produced pursuant to other national or union law reflects the state at the time the report is drawn up, that information may be included in, or attached to, the baseline report
- 1.1.3 At a pre-application advice meeting on 21 October 2021, the Competent Authority (Environment Agency or EA) stated the SCR must include the Stage 1 to 3 assessments required as part of baseline reporting under the IED. Those three stages are described in <u>Ref. 2</u> and summarised in *Table 1.1*.

Stage	Activity	Objective
1.	Identify which hazardous substances are used, produced or released at the installation and produce a list of these hazardous substances.	Determine whether or not hazardous substances are used, produced or released in view of deciding on the need to prepare and submit a baseline report.
2.	Identify which of the hazardous substances from Stage 1 are relevant hazardous substances . Discard those hazardous substances that are incapable of contaminating soil or groundwater . Justify and record the decisions taken to exclude certain hazardous substances.	To restrict further consideration to only the relevant hazardous substances in view of deciding on the need to prepare and submit a baseline report.
3.	 For each relevant hazardous substance brought forward from Stage 2, identify the actual possibility for soil or groundwater contamination at the site of the installation, including the probability of releases and their consequences, and taking particular account of: the quantities of each hazardous substance or groups of similar hazardous substances concerned; how and where hazardous substances are stored, used and to be transported around the installation; where they pose a risk to be released; In case of existing installations also the measures that have been adopted to ensure that it is impossible in practice that contamination of soil or groundwater takes place. 	To identify which of the relevant hazardous substances represent a potential pollution risk at the site based on the likelihood of releases of such substances occurring. For these substances, information must be included in the baseline report.

Table 1.1 Main stages of preparing a baseline report

1.1.4 RPS has prepared this report based on information and data available at the time of preparation of the report.

1.2 Key Objectives

- 1.2.1 The key objectives of this report are to:
 - Establish the environmental setting of the Plumley PSD and determine its environmental sensitivity;
 - Identify activities that are currently undertaken at the Plumley PSD, including the identification
 of Relevant Hazardous Substances and preventative measures implemented to protect land
 and groundwater;
 - Establish the extent of historical contamination in the soil and groundwater in areas where current and/or future processes may include similar potentially contaminating substances;
 - To identify the Site Conditions at the site at the point of permit issue for the facility (baseline condition) such that they may be used as a point of reference to determine whether the site has been contaminated during the site's permitted operation in line with IED and Environmental Permitting Regulations requirements; and
 - To provide conclusions on whether land quality has been impacted from historical activities.
- 1.2.2 With respect to the IED eight stage process described in Communication 2014/C 136/03 (EC, 2014), a summary of each stage is outlined below along with where it is addressed within this report:
 - Stage 1 Identify hazardous substances used, produced or released at the installation. This is addressed within Section 3 of this report.
 - Stage 2 Identify relevant hazardous substances used, produced or released at the installation from the list of hazardous substances identified in Stage 1. This is addressed within Section 4 of this report.
 - Stage 3 Undertake an assessment of site-specific pollution possibility for relevant hazardous substances. This is addressed within Section 5 of this report.

1.3 Current Operations on the Plumley PSD Site

- 1.3.1 The only operations currently undertaken on the Plumley PSD is the storage of crude oil and other petroleum hydrocarbons. The petroleum hydrocarbons are stored in 35 No. subsurface caverns (T1 to T35) that were solution mined in the underlying bedrock in the 1950's.
- 1.3.2 The crude oil and petroleum hydrocarbons stored in each cavern is a Light Non-Aqueous Phase Liquid (LNAPL) that floats upon brine that fills the remainder of each cavern. Product storage is a largely static, steady-state process with no active transfer pumping of the stored hydrocarbons or brine having been undertaken since the 1980s.
- 1.3.3 Further detail regarding hydrocarbon storage is given in *Section 2.2*.

2 SITE SETTING

2.1 Site Location

- 2.1.1 The Plumley PSD site address is Plumley Oil Storage Facility, Back Lane, Knutsford, Cheshire, WA16 9SJ. The site is located c. 2 miles east of Northwich and 10 miles southwest of Manchester, with a site centre at National Grid Reference SJ 72585 73923.
- 2.1.2 The Plumley PSD is situated in a low-lying rural area used as an active livestock farm.

2.2 Site Description

Overview

2.2.1 The Plumley PSD comprises 35 No. solution-mined caverns (T1 to T35) that were excavated in the 1950s. The cavern well heads are located across 80 ha of grazing land, at the positions shown on *Figure 1*.

Figure 1. Storage caverns and general site plan for the PSD site

2.2.2 The caverns range in size from 86,000 m³ to 107,000 m³ giving a the Plumley PSD a total storage capacity of c. 3.2 million m³ (Ref. 5). The top of each cavern is typically situated a depth of

140 metres below ground level (mbgl) and 215 mbgl, with a height of c. 50m and diameter of c. 76m (Ref. 5).

- 2.2.3 The caverns on the Plumley PSD share a similar surface wellhead configuration that is shown in *Photograph 1* and comprises:
 - An outer fence line defining the cavern wellhead area.
 - A concrete-lined containment chamber accessed from the ground surface. The chamber has a volume of c. 10 m³ with a base typically located 3-4 mbgl. The chamber contains the fuel and brine pipework that would facilitate the injection or removal of hydrocarbons to or form the cavern. Under steady state storage, that pipework still contains hydrocarbons or brine. The pipework that historically provided a direct connection to the national oil distribution pipeline and subsurface brine line also enter the wellhead. As shown in Photograph 1 these lines have been mechanically disconnected since approximately 2012.
 - The concrete-lined wellhead chambers are covered by a sliding roof. A flat green sliding roof has been installed at those storage chambers that have been subject to recent scanning and testing. Where recent scanning / testing of the cavern has not been undertaken the original corrugated peaked roofs shown in *Photograph 1* are still in use.

Photograph 1. Storage Cavern T11 on the Plumley PSD

Site Drainage

2.2.4 As shown in *Photograph 1*, the wellhead chambers commonly contain water. As there are no permanent drainage lines associated with the wellheads ((Ref. 5), standing water in the chamber is periodically removed using a tractor mounted vacuum pump and discharged to the interceptor on the Plumley PSD and shown in *Plate 2*.

Photograph 2. Oil interceptor on the Plumley PSD site

- 2.2.5 Details of the Plumley PSD interceptor are provided in Ref. 5. The interceptor is located in the northwest corner of the Plumley PSD (See Figure 1) and comprises four concrete lined trenches in two banks which are approximately 4.35 m x 38 m x 2.7m. This gives a total capacity of c. 1,785 m³. Each trench can be operated independently. A bulk oil collection tank and a skimmer tank are located between each of the two banks for storing any fuel retained from the interceptor should it be present. Each interceptor channel has a slotted skimmer pipe for removing oil floating on water (if present) to a central chamber.
- 2.2.6 The interceptor discharges directly to the Peover Eye via a subsurface pipeline, although there is a control valve on the interceptor outfall which can be closed off to prevent run-off leaving the site in the event of a pollution incident (Ref. 5). In addition, there are oil in water and brine detector probes in each of the four chambers The oil in water detector can trigger an alarm in the site office and closes a control valve on the outfall.
- 2.2.7 Currently it is considered that all site drainage including fixed piping and land drains/ditches runs through the interceptor before leaving site. The interceptor therefore receives drainage from:
 - Surface runoff to land drainage ditches.
 - OPA over-pumping from wellhead areas on the Plumley PSD.
 - Over pumping of wellhead containment areas on the CoGH PSD site, via subsurface gravity drains.
 - Third-party discharge associated with the manifold areas and groundwater control activities.
 - Road drainage.
 - A subsurface stream historically present on the site.

Historical Operations

2.2.8 The Plumley site has been used as fuel storage depot since the 1950's. Historically the caverns were connected to the national oil distribution pipelines and mains brine line that served the site. There has been no active fuel storage / transfer utilising the subsurface distribution pipeline system on the site since 1980s. The brine line to each wellhead has been mechanically disconnected and the oil lines isolated by two valves.

Current Operations on the Plumley PSD

OPA Operations

2.2.9 21 of the caverns on the Plumley PSD site contain a small volume of residual hydrocarbons. The hydrocarbon type and estimated volume is summarised in *Table 2.1*. It is estimated that c. 210,000 m³ of product may remain on the Plumley PSD, although that figure will be refined with the completion of the ongoing process of underground cavern scanning / testing. The residual hydrocarbons within the caverns are dominated by crude oil, with minor quantities of petrol and other middle distillates. The remaining storage caverns are filled entirely with brine.

Cavern Reference	Estimated Volume of Hydrocarbons (m³)	Hydrocarbon Type
T1	Negligible but not proven.	Light Distillate (Petrol)
T11	21,536	Crude Oil
T12	11,184	Crude Oil
T13	11,701	Crude Oil
T15	3,431	Crude Oil / Middle Distillate
T16	10,030	Crude Oil
T17	7,418	Crude Oil
T18	9,481	Crude Oil
T20	10,168	Crude Oil
T22	8,517	Crude Oil
T23	11,809	Crude Oil
T24	20,927	Crude Oil / Middle Distillate
T25	7,404	Crude Oil
T27	1,131	Crude Oil
T28	9,105	Crude Oil
T29	9,161	Crude Oil
T30	14,530	Middle distillate
T31	6,251	Crude Oil / Middle Distillate – 12m of Stratified Fluids
T32	10,730	Crude Oil / Middle Distillate
T33	1,171	Light Distillate
T34	14,338	Crude Oil / Middle Distillate
T35	9,538	Crude Oil
Total	209,561	

Table 2.1 Summary of Residual Hydrocarbons Stored on the Plumley PSD site

- 2.2.10 The hydrocarbons stored in each cavern behave as a LNAPL and therefore float upon the brine that fills the remaining volume of each cavern. The current hydrocarbon storage is a largely steady-state, static, process with no active pumping (e.g. for increased storage or transfer) of hydrocarbons or brine having been undertaken since the 1980s.
- 2.2.11 As salt within the halite beds moves naturally over time, the pressure within the cavern and associated pipework must be monitored and periodically relieved to mitigate long-term pipe integrity issues. This process can involve the removal of a small volume of oil and the addition of brine to replacement of top up the brine string, within the wellhead chamber.
- 2.2.12 The following support activities are undertaken on the Plumley to minimise the potential for accidental emissions:
 - Routine monitoring of wellhead and containment area condition and integrity
 - Periodic removal of standing water in concrete wellhead chamber using a vacuum pump system powered by a tractor mounted Power Take Off (PTO).
 - Routine pressure monitoring within the caverns.

Third Party Operations

- 2.2.13 The following 2 No. operators manage the active fuel distribution pipelines on the Plumley PSD site:
 - Manchester Jetline Ltd:
 - Operate aviation fuel/jet line, from Stanlow refinery to Manchester Airport via c. 40 miles of 10" subsurface pipeline.
 - Exolum (formerly CLH):
 - Also operate an aviation fuel line between the Stanlow Refinery to Backford PSD
- 2.2.14 These operators generate water via their surface water drainage system and groundwater control measures. Those waste waters are discharged directly to the Plumley interceptor.

Summary of Activities / Operations

2.2.15 A summary of the operations being to be considered as part of this Site Condition and Baseline Report is given in *Table 2.2*.

Phase	Operation Associated Activity (Substances Involved)	Potential Cause and Consequence of Emission	Likelihood of Accidental Emission	Justification / Notes
Operational (Current)	Static, steady-state, storage of hydrocarbons / product 21 storage caverns	Long-term loss of liquids stored with the cavern	Negligible	Naturally sealing behaviour of halite beds. Low permeability of halite/ mudstones No evidence of adverse impacts from storage caverns in this area
	principally containing crude oil with minor leaded petrol and other middle distillate storage. All storage caverns contain brine, with 14 filled only with brine.	g crude g petrol tillate contain nly with Loss from liquids from pipeline connecting cavern to wellhead due to corrosion / fracturing. Loss to surrounding geological strata		Low permeability of Glacial Till / Diamicton overlying bedrock. No evidence of adverse impacts from storage caverns in this area
		Failure of wellhead valves due to excess pressure or corrosion. Loss to wellhead containment chamber.	Low	Pressure monitored. No active pumping.
	Static, steady-state, storage of hydrocarbons / product Cavern / pipeline pressure regulation in oil and brine	Failure of wellhead valves / connections. Loss to wellhead containment chamber.	Low - Moderate	Small volume of brine removal
	pipelines that remain full. Replacement of valves on the wellheads (Crude oil, unleaded petrol, middle distillates &/or Brine)	Failure of wellhead valves / connections. Spray loss to ground outside of wellhead containment chamber.	Low - Moderate	Occurred at T175 in 2009
	Static, steady-state, storage of hydrocarbons / product Over-pumping of standing water in wellhead containment chambers using a tractor mounted vacuum pump. (Diesel)	Accidental release of fuel (diesel) to ground from tractor.	Low	Routine operation, using maintained equipment.

Table 2.2 Summary of activities undertaken on the Plumley PSD

2.3 Environmental Setting

Topography & Hydrology

- 2.3.1 The Plumley PSD is situated in a low-lying area with an elevation of approximately 35 m above Ordnance Datum (m AOD). Ground level generally declines gently to the north, towards Peover Eye. The Peover Eye flows from east to west, approximately 300m north of the Plumley PSD site where it has an elevation of approximately 30m AOD. Land drains across the Plumley PSD generally drain northward and discharge to Peover Eye.
- 2.3.2 The Peover Eye Water Body forms part of the Environment Agency's (EA's) Lower Weaver operational catchment. The Peover Eye does not meet Good Ecological Status (GES) as required under the Water Framework Directive (WFD). The cause of this failure is largely attributed to agricultural and rural land management issues although some industrial and water company impacts are also suspected. There is no suggestion that deep hydrocarbon storage in this area is contributing to the failure of local river water bodies to meet GES in this area.

Geology

Regional Geological Setting

- 2.3.3 The regional geological setting has been determined from the <u>BGS Geology of Britain Viewer</u> and BGS 1:50,000 Map Series:
 - Sheet 110: Macclesfield (solid and drift).
 - Sheet 98: Stockport (solid and drift)
- 2.3.4 The regional geological setting is summarised *Table 2.3*.
- 2.3.5 The entire area is underlain by the red mudstones and siltstones of the Sidmouth Mudstone Formation (SMF), that forms part of the Triassic Mercia Mudstone Group (MMG). The hydrocarbon storage caverns on the Plumley were excavated from the halite beds within the SMF (most notably the Northwich Halite Member).
- 2.3.6 Bedrock is capped by a veneer of unconsolidated diamicton deposits. Diamicton refers to a poorly sorted sediment, that include a significant proportion of fine-grained components (i.e. silt and clays). In some localised areas coarse, granular, glaciofluvial sands and gravels (sheet deposits) are also present above the bedrock.

Age	Geological Unit	Description of Lithology	Thickness (m)	Hydrogeological Designation
Quaternary Superficial	Diamicton	Poorly sorted sediment with wide clast size range that is unconsolidated, presumed of a glaciogenic origin in this region	Variable	Secondary Undifferentiated
Deposits	Glaciofluvial Sheet Deposits Unconsolidated, generally coarse- grained sand and gravel deposits of glaciofluvial origin		Variable	Secondary A
Triassic Bedrock	sic ock Sidmouth Mudstone Formation (including Northwich Halite member) of the Mercia Mudstone Group Sidmouth Mudstone Siltstone, red-brown with common grey-green reduction patches and spots. Contains units of halite (up to 400m) thick at several stratigraphical levels		Up to 1600m in the Cheshire Basin	Secondary B or Unproductive Strata (Northwich Halite Member)

Table 2.3 Regional geological sequence on the Plumley PSD

Grey shading denotes those geological units present in the local area that are not identified on the Plumley PSD site

Local Geology.

- 2.3.7 Details regarding the site-specific or local geological sequence has been obtained from the following sources:
 - BGS geological logs appended to previous reports produced for the OPA and provided *Appendix B*
 - Geological logs for shallow boreholes installed on the Plumley PSD site in 2014 (Ref. 6) and provided in *Appendix C*.
 - The local geological description provided in the CDOIF Phase 1 Screening Assessment (Ref. 5).

2.3.8 These data sources confirm the expected geology summarised in *Table 2.3*.

Superficial Deposits

- 2.3.9 Local geological records do not provide a description of the superficial geology on the Plumley PSD site itself. The CDOIF Phase 1 Screening Assessment Report (Ref. 5) presents a review of BGS borehole records (ref: SJ77SW 265, 268 & 266) situated c. 350m east of the depot. That interpretation concludes the presence of 15.84m to 18.59m of Glacial Till above the bedrock. The till is described as "*a sandy clay with gravel inclusions and many permeable sand and gravel lenses*". The Glacial Till becomes "becomes less fissured with depth, with groundwater encountered at varying depths suggesting the perched water within discontinuous sand and gravel lenses at depths of between 6.5m bgl and 17m bgl".
- 2.3.10 Exploratory boreholes drilled on the Plumley PSD in 2014 also confirm the presence of surface till. The results of that intrusive investigation are summarised in *Table 2.4* and *Table 2.5*.

Table 2.4 Ground investigation on the Plumley PSD (Process Area) (Ref. 6)

Characteristic Description	No. of Exploratory Holes Stratum Encountered In	Depth of Top Strata (m bgl)	Elevation of Top Strata (m AOD)	Depth of Base Strata (m bgl)	Elevation of Base Strata (m AOD)	Thickness (m)	Comments
rea							
Cohesive	5	0	36.4 -	Not Proven	Not Proven	Not Proven	Soft to stiff slightly gravelly and
	(BH-2(S) to BH- 4(S) inclusive, TP-10 and TP-11)		33.4	(1.0 - 10.0)	(35.4 - 23.4)	(at least 1.0 -8.7)	signity sandy to very sandy sity CLAY and clayey SILT with occasional thin lenses (<10mm) of fine and medium sand.
							Thickness not proven.
Granular							
Sand	3 (BH-2(S), BH-3 and BH-4(S))	5.7 - 6.5	27.8 - 27.4	6.5 - 7.2	27.1 - 26.7	0.2 - 1.0	Medium dense and dense slightly slity slightly gravelly to gravelly SAND. Sand is coarse. Encountered as a sand layer between 0.2 – 1.0 m in thickness in BH-2, BH3 and BH-4).
	(BH-3)	7.50	26.8	7.60	26.7	0.1	Secondary deeper sand layer encountered in BH-3 only.
Gravel	1 (BH-4(S))	7.30	26.1	8.30	25.1	1.0	Dense slightly silty clayey sandy GRAVEL. Gravel is angular to sub rounded fine to coarse of quartz and flint. Gravel layer recorded in
	Description rea ¹ Cohesive Granular Sand Gravel	Description Exploratory Holes Stratum Encountered In rea ¹ 5 Cohesive 5 (BH-2(S) to BH- 4(S) inclusive, TP-10 and TP-11) Granular 3 Sand 3 (BH-2(S), BH-3 and BH-4(S)) (BH-3) Gravel 1 (BH-4(S))	Description Exploratory Holes Stratum Encountered In Dop Strata (m bgl) rea ¹ 5 0 Cohesive 5 0 (BH-2(S) to BH- 4(S) inclusive, TP-10 and TP-11) 5 Granular 3 5.7 - 6.5 Sand 3 5.7 - 6.5 (BH-2(S), BH-3 and BH-4(S)) 7.50 Gravel 1 7.30 (BH-4(S)) 7.30	DescriptionExploratory Holes Stratum Encountered InDepartor Top Strata (m bgl)Dotation of Top Strata (m AOD)rea1Cohesive5036.4 - 33.4Cohesive5036.4 - 33.4GranularSand35.7 - 6.527.8 - 27.4Granular(BH-2(S), BH-3 and BH-4(S))5.7 - 6.527.8 - 27.4Gravel17.3026.1 (BH-4(S))	DescriptionExploratory Holes Stratum Encountered InDopmon Top Strata (m bgl)Encounter of Top Strata (m AOD)Base Strata (m bgl)rea1Cohesive5036.4 - 33.4Not Proven (1.0 - 10.0)(BH-2(S) to BH- 4(S) inclusive, TP-10 and TP-11)036.4 - 33.4Not Proven (1.0 - 10.0)Granular Sand35.7 - 6.527.8 - 27.46.5 - 7.2(BH-2(S), BH-3 and BH-4(S))5.7 - 6.527.8 - 27.46.5 - 7.2(BH-3)7.5026.87.60Gravel17.3026.18.30(BH-4(S))(BH-4(S))7.5026.18.30	DescriptionExploratory Holes Stratum Encountered InTop Strata (m bgl)Tor Top Strata (m AOD)Base Strata (m AOD)Base Strata (m AOD)rea1Cohesive5036.4 - 33.4Not Proven (1.0 - 10.0)Not Proven (35.4 - 23.4)GranularSand35.7 - 6.527.8 - 27.46.5 - 7.227.1 - 26.7(BH-2(S), BH- (BH-2(S), BH-3) and BH-4(S))7.5026.87.6026.7Gravel17.3026.18.3025.1	DescriptionExploratory Holes Stratum Encountered InTop Strata (m bgl)of Gaussian Strata (m AOD)Base Strata (m AOD)Base Strata (m AOD)Base Strata (m AOD)Moment (m)rea1Cohesive5036.4 -

Stratum	Characteristic Description	No. of Exploratory Holes Stratum Encountered In	Depth of Top Strata (m bgl)	Elevation of Top Strata (m AOD)	Depth of Base Strata (m bgl)	Elevation of Base Strata (m AOD)	Thickness (m)	Comments			
Outside Pr	ocess Area										
TOPSOIL	Cohesive	2 (TP-4 & TP-6)	0	34.6 - 30.5	0.40 - 0.70	34.2 - 29.8	0.4 - 0.7	Firm slightly gravelly very sandy clayey SILT.			
		(11-4 0 11-0)						Maximum thickness of 0.7 m recorded in TP-3.			
	Granular	5 (BH-1, TP-3, TP- 7– TP-9 inclusive)	0	36.7 - 30.2	0.20 - 0.70	36.1 - 30.0	0.2 - 0.7	Silty to very silty clayey to very clayey SAND with occasional to frequent rootlets. Sand is fine to coarse.			
MADE GROUND	Granular	1 (TP-5)	0	33.1	0.2	32.9	0.2	Slightly sandy GRAVEL. Gravel is angular and sub- angular fine to coarse of sandstone, flint and clinker.			
01.4.0141	Ochecker	<u>^</u>	00.07	00.4	Network	NetDerror	Net Deserve	Recorded in TP-5 only.			
TILL	Conesive	0	0.2 - 0.7	29.8	Not proven Not Proven (34.7 - 26.7	(34.7 - 26.7)	ot Proven Not Proven 34.7 - 26.7)	very soft to firm very sandy clayey SILT and slightly sandy			
		(BH-1, TP-3 to TP-9 inclusive)			(2.0 - 3.5	.0 - 3.5	(**** _***,	(,		(at least 1.3	slightly gravelly silty CLAY.
		in childeney					- 0.07	Thickness not proven.			
	Granular	2	1.0 - 3.50	33.6 -	1.2	33.4 - at	0.2	Medium dense slightly silty to			
		(BH-1 & TP-4)		26.7	(at least 4.0)	least 26.2	(at least 0.5 in BH-1)	silty clayey SAND. Sand is coarse.			
		_						Sand layer recorded in TP-4 and BH-1 only. Not proven in BH-1.			

Table 2.5 Ground investigation on the Plumley PSD (Outside of Process Area) (Ref. 6)

2.3.11 Based on the results of this ground investigation the following was concluded:

"The ground conditions encountered during the ground investigation works generally reflect the BGS and third-party ground information. Ground conditions encountered comprised topsoil (with the exception of the proposed process area which had been subject to topsoil strip) overlying superficial glacial deposits of Glacial Till (cohesive deposits interbedded with granular layers between 0.1 - 1.0 m in thickness). Made ground was encountered localised to one location at TP-5 (0.2 m in thickness)" (Ref. 6)"

Bedrock Geology

- 2.3.12 Triassic bedrock of the SMF, including the Northwich Halite member, was not encountered during the intrusive investigation undertaken on the Plumley PSD.
- 2.3.13 BGS logs confirm a deep sequence of the Mercia Mudstone Group, comprising mudstones and marls, with halite units and occasional sandy horizons, beneath the superficial Glacial Till deposits. Table 4.12 in the CDOIF Phase 1 Screening Assessment Report (Ref. 5) identifies the following sequence beneath the near surface Glacial Till:
 - Red and grey marl to a depth of 132 m to 145 m Interpreted to be the upper layers of the Northwich Halite that have had salt leached out (the dry rockhead).
 - Salt or salt with marl to a depth of 305 m to 329 m Interpreted to be the Northwich Halite that the caverns have been excavated in.
 - Marl and salt to borehole base at depths of 311 m to 365 m

Hydrogeology

General Designations

- 2.3.14 The bedrock of the SMF is classified a Secondary Undifferentiated aquifer unit. The Northwich Halite member, that forms part of the SMF, is classified unproductive strata. These classifications are consistent with the low permeability expected for the mudstones and halite units within the Mercia Mudstone Group. Groundwater is not therefore considered significant with respect to the bedrock underlying the site.
- 2.3.15 The Diamicton / Glacial Till overlying the bedrock is classified a secondary undifferentiated aquifer unit. This reflects its largely cohesive nature and low permeability and storage capacity. Groundwater is not considered likely to be significant in these deposits. The localised presence of groundwater may occur in thin granular (sand or gravel) layers present in the Glacial Till. However, these water bearing units are not typically laterally extensive so do not generally represent a significant groundwater resource.
- 2.3.16 As shown on the borehole logs in *Appendix C* and summarised in *Table 2.4* and *Table 2.5*, two of the boreholes installed on the Plumley PSD in 2014 (Ref. 6) did intercept groundwater bearing granular horizons in the Glacial Till at a depth of below mbGL. These deposits are considered to represent sand and gravel lenses within the Glacial Till that do not appear to constitute a laterally extensive groundwater bearing aquifer unit. Shallower sand horizons were also identified at two locations, although they did not yield significant water strikes.
- 2.3.17 Consistent with the local geology and hydrogeology, no Source Protection Zones (SPZs) are defined in the vicinity of Plumley PSD. Nor is the Plumley PSD in a Drinking Water Safeguarded Zone (Groundwater or Surface Water) or Nitrate Vulnerable Zone.
- 2.3.18 The Plumley PSD is situated within the Weaver and Dane Quaternary Sand and Gravel Aquifers Water Body, defined for the WFD. Although this WFD groundwater body covers the entire area, it relates to the coarse grained, localised Glaciofluvial Sheet Deposits as opposed to the Glacial Till / Diamicton. That waterbody is classified as having an overall WFD status of Poor in 2019. This classification relates to its chemical status. The reason for not achieving good status (RNAG) largely relates to poor nutrient management in relation to agriculture and rural land management practices.

Groundwater Abstraction

2.3.19 The envirocheck land report obtained for the CDOIF Phase 1 Screening Assessment Report (Ref. 5) is provided in *Appendix D* and states that:

"The only abstraction located in the immediate vicinity of the PSD is registered to Mr. R Williamson of the Grange Plumley for spray irrigation purposes, which appears to abstract from the section of the Peover Eye that lies immediately to the north of Plumley PSD. This is a commercial abstraction and is not classified as a receptor under the CDOIF guidance."

- 2.3.20 Cheshire East Council was also consulted with regards to abstraction and the following private water supply abstractions were also identified within a 10 km radius of the Plumley PSD:
 - Dairy House Farm, Chester Road, Over Tabley. Cheshire, WA16 0PN, grid reference 372392, 379538 (6.1km north) Spring supply, in use for commercial purposes
 - Kermincham Hall, Forty Acre Lane, Swettenham, Cheshire, CW4 8DX, grid reference 379530, 367922 (9.97km south-east), spring supply of an unstated purpose.
 - Brook Farm, Forty Acre Lane, Kermincham, Cheshire, CW12 2LJ, grid reference 379737,367573 (10.3km south-east), well supply used for commercial purposes.
- 2.3.21 Although it cannot be discounted that there may be other private abstractions in the area, the general absence of private abstractions is consistent with the expected hydrogeology and aquifer characteristics in the vicinity of the Plumley PSD site.

Groundwater Occurrence

2.3.22 Groundwater was encountered in boreholes drilled on the Plumley Site in 2014, as summarised in *Table 2.6*.

Exploratory Location	Encountered Depth (m bgl)	Strata	Observed Water
BH-1	0.9 (29.3 m AOD)	Glacial Till	No – damp
BH-2(S)	5.0 (28.7 m AOD)	Glacial Till	Yes – evident within core liner
BH-4(S)	6.0 (27.4 m AOD).	Glacial Till	Yes – evident within core liner

Table 2.6 Summary of groundwater occurrence on the Plumley PSD site (Ref. 6)

- 2.3.23 The shallow perched water encountered in borehole BH-1 was considered likely to be associated with the presence of more granular topsoil and granular Glacial Till local to this borehole location. However, the groundwater strikes within BH-2(S) and BH4-(S) at depths of 5.0 to 6.0 mbgl did correlate with the recorded presence of the sand and granular layers in both exploratory locations within the Glacial Till (Ref. 6).
- 2.3.24 Although water bearing, the granular layers within the deeper glacial till are unlikely to form laterally extensive groundwater units. Furthermore, the presence of overlying cohesive till suggest the recharge potential to these thin granular layers will be limited and spatially variable.
- 2.3.25 Given the nature of the geology expected on the Plumley PSD, shallow or deep groundwater is unlikely to be constitute a significant environmental consideration or receptor.

Environmental Sensitivity

- 2.3.26 A full tabulated list of designated sites is provided within 10km of the Plumley PSD is provided in Ref. 5. There are no statutory designated environmentally sensitive sites within 1 km of the Plumley PSD and only 2 sites located with 2 km of the PSD, namely:
 - Plumley Lime Beds Site of Special Scientific Importance (SSSI) situated c. 1.6km northwest of Plumley PSD.
 - Tabley Mere SSSI situated c. 2.1 km north of Plumley PSD
- 2.3.27 Oher designated sites are located more than 4.5 km from the Plumley PSD. It can therefore be concluded the Plumley PSD is not situated in an environmentally sensitive location with respect to water dependent protected sites.

Summary of Environmental Receptors

2.3.28 A summary of environmental receptors relevant to the Plumley PSD and their sensitivity is summarised in *Table 2.7*.

Table 2.7 Sumn	nary of Environm	ental Receptors
----------------	------------------	-----------------

Receptor	Description	Designation / Status	Sensitivity	Notes
Shallow Soils	Soil including unconsolidated Glacial Till / diamicton	None	Low	No designation.
Shallow Groundwater	Groundwater: Localised saturated lenses of coarse- grained material in Glacial Till / Diamicton	Secondary undifferentiated	Negligible - Low	Superficial deposits largely cohesive in nature. Laterally discontinuous, thin groundwater bearing layers, with limited recharge potential. No abstraction and not considered to form part of Weaver and Dane Quaternary Sand and Gravel Aquifers Water Body
Groundwater in Bedrock	Groundwater: Groundwater in Northwich Halite member / 'Sidmouth Mudstone Formation	Unproductive strata or Secondary B	Not Applicable	No significant groundwater in bedrock
Peover Eye	Surface Watercourse Peaover Eye WFD River Body	No designation WFD Poor Ecological Status	Low-Moderate	Situated c. 0.3km north of the Plumley PSD
Land drainage	Surface Water	No designation	Low	Land drains cross the Plumley PSD and drain northwards to Peover Eye
Protected Sites	Not applicable	Not Applicable	Not Applicable	No designated sites close to the site (all > 1km). There a few water dependent sites with 10km of the Plumley PSD.

2.4 Soil and Groundwater Land Quality

Data Sources

- 2.4.1 The following data sources have been reviewed with respect to soil and groundwater quality of the Plumley Site:
 - Plumley and Cape of Good Hope Petroleum Storage Depots CDOIF Phase 1 Screening Assessment report (Ref. 5) including the Envirocheck land report (2014). That Envirocheck report is provided in *Appendix D*.
 - Soil and groundwater quality data was collected as part of the intrusive works undertaken on the Plumley PSD in 2014 (Ref. 6). The resulting lab data from those works is provided *Appendix E*.

Envirocheck Land Report (Landmark, 2014)

2.4.2 The historical maps confirm that that this was a largely greenfield area upon which agricultural land practices had been undertaken until the development of the caverns and fuel storage sites. No historical or active landfills or waste transfer sites are recorded in the Envirocheck report within 1 km of the Plumley Site (Landmark, 2014).

Soil and Groundwater Quality Dataset for the Plumley PSD

2.4.3 Soil and groundwater quality data was collected as part of the intrusive works undertaken on the Plumley PSD in 2014. A total of thirteen exploratory holes were advanced across the Plumley that site at the locations shown in *Figure 2.*

Figure 2. Ground investigation undertaken on the Plumley PSD in 2014 (Ref. 6)

- 2.4.4 That ground investigation included the following exploratory locations:
 - Three locations drilled to a depth of 10.0 m by a Dynamic Sampling approach (BH-2(S), BH-3 and BH-4(S))
 - Nine locations drilled by Windowless Sampling approach (BH-1, TP-3 to TP-10 inclusive). These locations were drilled to a depth of 2.5 mbgl, except for BH-1 which was drilled to 4.0 mbgl.
 - Single hand pit to a depth of 1m (TP-11).
- 2.4.5 Boreholes BG-2(S) and BH-4(S) were installed as groundwater and ground gas monitoring points.
- 2.4.6 A total of 17 soil samples and 4 groundwater samples were subject to chemical analyses (Jones Environmental Laboratory) for the following suite of parameters:
 - CLEA 9 Metals (Cd, Cr, Cu, Pb, Hg, Ni, Zn, As, Se)
 - Boron
 - pH
 - Water Soluble Sulphate
 - Organic Matter
 - Extractable Petroleum Hydrocarbons (EPH) 5 split
 - Speciated Polyaromatic Hydrocarbons (PAH) 16 suite
 - Phenol

- Cyanide (Total)
- Asbestos Screen
- 2.4.7 Leachate analysis (10:1 Batch) was undertaken on four soil samples with the same parameters listed above, with the exception of asbestos
- 2.4.8 Groundwater elevations were recorded, and ground gas monitoring was completed between 21 and 28 March 2014. Groundwater samples were collected from BH-2(S) and BH-4(S) during the monitoring visits using low flow sampling methods. Prior to the collection of groundwater samples, the wells were developed and purged of eight well volumes of groundwater using high flow pumping equipment.
- 2.4.9 The laboratory certificates and summary tables for the Plumley PSD soil and groundwater dataset are provided in *Appendix E*. The key observations from a review of those datasets are as follows:
 - Soils (17 No. Shallow Samples)
 - The general absence of petroleum hydrocarbons and polycyclic aromatic hydrocarbons from shallow soils
 - Low concentration or absence of metals.
 - Groundwater (4 No. Samples from 2 No. boreholes in the process area)
 - General absence of dissolved metals, with the exception of boron.
 - Absence of petroleum hydrocarbons.
 - Occasional polycyclic aromatic hydrocarbons, typically at low concentration. Naphthalene observed most commonly and at highest concentrations of between 0.21 µg/l to 2.66 µg/l.

3 CONCEPTUAL SITE MODEL

3.1 Hydrogeological Model

- 3.1.1 Based on the description of the site setting presented in *Section 2*, a conceptual hydrogeological model has been developed for Plumley PSD site.
- 3.1.2 Except for the concrete-lined wellhead chambers and external subsurface pipelines / infrastructure, the Plumley PSD is situated in an area of largely open land, used for agricultural purposes characterised by:
 - A surface layer of Made Ground, beneath roadways and structures, of unproven lithology, that overlies generally cohesive Glacial Till; or
 - Soils directly overlying Glacial Till.
- 3.1.3 A thick sequence of Glacial Till, exceeding 10 m in depth, underlies the Plumley PSD and local area. The Glacial Till is typically cohesive in nature, albeit poorly sorted. It does not form a significant aquifer unit and is not utilised locally for water supply. Groundwater has been identified in granular layers contained in the Glacial Till, which typically occur at depth (i.e. >5 mbgl). Although these granular layers do constitute potential migration pathways within the Glacial Till, they are likely to be discontinuous in nature and unlikely to provide continuous pathways to sensitive surface receptors most notably Peover Eye.
- 3.1.4 The cohesive nature of the near surface Glacial Till can result in the localised presence of perched water within granular Made Ground. This waterbody is not considered to constitute an aquifer unit given its thin and discontinuous nature. Furthermore, the localised distribution of granular Made Ground and granular layers in near surface Glacial Till, mean those horizons are unlikely to provide a continuous, laterally extensive, pathway for the migration of water or other although they could potentially provide a short, localised pathway towards land drainage on the Plumley PSD site.
- 3.1.5 There is little potential for generating significant overland flow on the Plumley PSD, given: the general absence of hardground; largely agricultural land-uses on the site; and shallow topography. Where surface land drains are present near site infrastructure (most notably wellheads and/or roadways) a potential pathway for surface runoff direct to Peover Eye does exist.
- 3.1.6 There is evidence of water collecting in the concrete-lined wellhead containment chambers, that must be periodically removed by over-pumping and discharged to the Plumley interceptor. Anecdotal observations suggest the ground around many of the wellheads is commonly saturated. This implies that the water level in the saturated shallow soils around the wellhead chamber is typically higher than the standing water level inside. This in turn suggests that there is a natural hydraulic gradient orientated into the wellhead chamber. Given these observations, it can be concluded that there is limited potential for the migration of significant quantities of water or other substances out of the containment chambers to underlying or surrounding strata. Furthermore, in the unlikely event that any substances do migrate through the base of the concrete-lined chamber, those substances can be expected to be retained near the wellhead given: the cohesive nature of the Glacial Till; and the expected absence of laterally extensive pathways within the Glacial Till.
- 3.1.7 Chemical quality data collected from the Plumley PSD site confirms the absence of widespread contamination of shallow soils or groundwater, despite the longevity of hydrocarbon transfer and storage operations on the Plumley PSD site.
- 3.1.8 The Glacial Till overlies bedrock of the Mercia Mudstone Group, most notably the Sidmouth Mudstone Formation and Northwich Halite member. Groundwater is not considered significant within these mudstone and halite dominated geological units. Groundwater flow pathways to overlying receptors and/or the till are not considered significant. Localised sand layers with the Mercia Mudstone Group may provide local layers of enhanced permeability but do not form laterally extensive pathways that connect with surface or near surface receptors.

3.2 Pollutant (Source-Pathway-Receptor) Linkages

Background

- 3.2.1 Based on the hydrogeological model presented in *Section 3.1* a Conceptual Site Model (CSM) has been developed for the Plumley PSD to assess the environmental risk and site-specific pollution potential associated with current operations on the facility. That CSM follows the framework outlined in national regulatory guidance, most notably Land contamination risk management (LCRM) (Ref. 7), by identifying active pollutant (source-pathway-receptor, SPR) linkages. This largely qualitative assessment identifies where a plausible pathway linking a possible contamination source and environmental receptor exits. It is the activities / operations summarised in *Table 2.2* that are subject to assessment with regards to pollutant (SPR) Linkages.
- 3.2.2 Where a plausible pollutant linkage is identified any measures required to mitigate the possible environmental outcome on the named receptor is considered.

Contamination Sources

- 3.2.3 The potential source of contamination associated with the current static / steady-state storage of residual hydrocarbons on the Plumley site summarised in *Table 2.2* are as follows:
 - Crude oil, leaded petrol and middle distillates contained in 21 No. storage caverns and associated pipework connect cavern to the wellhead.
 - Brine contained in all storage caverns and associated pipework to the wellhead.
 - Diesel used as for fuel tractor mounted vacuum pumps when draining standing water from the wellhead containment chambers.
 - Lubricants and greases used during routine maintenance / monitoring.

Environmental Receptors

- 3.2.4 This assessment only considers the environmental receptors identified in *Table 2.7 and Table 3.1*.
- 3.2.5 Deep groundwater in the bedrock and local protected sites are not considered receptors of relevance to this local area.
- 3.2.6 Human health receptors are not considered as part of this assessment.

Pathways

- 3.2.7 Potential pathways considered for each receptor identified in *Table 2.7* is summarised *Table 3.1*. The principal pathways identified for this assessment are:
 - Downward migration contamination from surface emissions
 - Possible lateral migration from vertical pipelines
 - Direct pathways associated with migration via subsurface drainage.

Table 3.1	Summary	of receptors	and pathways.
-----------	---------	--------------	---------------

Receptor	Description	Sensitivity	Pathways Considered	Notes
Shallow Soils	Soil including unconsolidated Glacial Till / diamicton	Low	Infiltration of releases to ground or infiltration through concrete lined chambers. Lateral impact of releases from vertical pipelines	-
Shallow Groundwater	Localised saturated lenses of coarse- grained material in	Negligible - Low	Infiltration of releases to ground or infiltration through concrete lined chambers. Lateral impact of releases from vertical pipelines	Groundwater is typically located at depth and overlain by cohesive Glacial Till / diamicton. Thin and discontinuous nature of coarse units in the Glacial Till. Absence of groundwater abstractions or groundwater dependent protected sites.
Deep Groundwater in Bedrock	Groundwater in Northwich Halite member / 'Sidmouth Mudstone Formation	Not Applicable	Not Applicable	No significant groundwater in bedrock
Surface land drainage	Surface water channels / drains	Low	Considered a potential pathway to Peover Eye not a receptor of concern	Distance to Peover Eye greater than 300m
Peover Eye	Surface Water Peover Eye WFD River Body	Low- Moderate	Overland flow into surface land drainage Infiltration of releases to ground or infiltration through concrete lined chambers. Lateral flow to surface land drainage	300m north of northern site boundary. Only plausible pathway via surface land drainage. Direct overland flow not considered possible.
Protected Sites	Not applicable	Not Applicable	No plausible pathway	No designated sites in close proximity to the site (all > 1 km).

Contamination Migration from Wellhead Chambers (21 No.)

- 3.2.8 Many release scenarios being considered (as summarised in *Table 2.2*) involve a direct release of hydrocarbons or brine to the concrete-lined wellhead chambers. Safety expert estimates consider up to 2 m³ of stored hydrocarbons could be lost from a failure of wellhead pipework within these chambers (Ref. 5). It is therefore reasonable to assume a passive release could be retained within the wellhead chamber given their estimated volume of c. 10 m³ (Ref. 5).
- 3.2.9 The volume of hydrocarbon that could then be lost to the underlying or adjacent soils by migration through the chamber lining is expected to be small given:
 - The small volume of total product lost.
 - The rapid recovery of lost product by over-pumping as outlined in the Emergency Response Plans for the Plumley PSD.
 - The slow leakage rate associated with minor defects within the concrete lining of the wellhead containment chambers.
 - The expected inward orientated hydraulic gradient (i.e. from external soils in to chamber) expected on the PSD site.
- 3.2.10 Any minor leakage of hydrocarbons through the chamber is likely to be entrained in the underlying soils, given the largely cohesive nature of the Glacial Till / diamicton and the partitioning behaviour of the hydrocarbons involved. Although saturated coarse-grained layers are present in those

deposits, they are typically deep and are not expected to provide laterally extensive pathways that could facilitate migration to other sensitive receptors (i.e. Peover Eye).

3.2.11 Depending on the setting of each storage cavern, short pathways with surface land drainage ditches and channels could possibly exist. Specifically, wellheads T8, T14, T15, T19 and T28 are located close to surface land drainage (Ref. 5). The volume of product that could follow such a pathway would however be low and the speed of subsurface migration would be slow. This would allow emergency responses measures to be effectively implemented to protect surface drainage and ultimately water quality in Peaover Eye.

Contamination Migration in Areas Outside of the Wellhead Chambers

- 3.2.12 A pressurised release of hydrocarbons or brine from the valves / connections within the wellhead chamber, could result in a low volume hydrocarbon release as a spray over the adjacent chamber wall when the wellhead roof is open. Significant overland flow is not expected given the land surrounding each bund is relatively level and grassed. Local pooling of product on the ground close to the wellhead area would occur in the unlikely event of an accidental release, with a potential that some of that could infiltrate to ground. Emergency responses measures would be able to be effectively implemented to protect shallow soils.
- 3.2.13 Surface water receptors could be affected where wellheads are located close to surface land drainage (i.e. T8, T14, T15, T19 and T28). However, the volume of hydrocarbons or brine that could be lost is likely to be low and emergency response measures would be able to be effectively implemented to protect water quality in Peaover Eye.

Wellhead Infrastructure Pathways

3.2.14 Decommissioned and emptied pipework runs in the ground between each of the wellheads. Potentially this could provide a pathway for migration within the bounds of the site if a fuel loss to ground took place. However, it is not considered to be plausible that the pipework could provide a pathway for migration of fuel beyond the site given the small theoretical release volumes that have been calculated and sealed nature of those structures.

Contaminant Loss from Cavern Pipework (i.e. Wellhead to Cavern)

3.2.15 The pipework at each wellhead runs vertically from the base of the well head chamber into the cavern at depth.

Loss to Shallow Soils & Groundwater

- 3.2.16 It is possible that a release could occur from the pipework at shallow depth, thus impacting shallow soil (i.e. glacial till) and/or shallow groundwater contained in water-bearing, coarse grained layers in the till.
- 3.2.17 Most of the fuel lost to the ground would be retained in the ground in more permeable sand and gravel layers that also contain shallow groundwater. Due to the discontinuous nature of the lenses it is unlikely that fuel could migrate any real distance from the well heads in the sand and gravel lenses.

Loss into the Bedrock at Depth

3.2.18 Theoretical losses could occur from the pipework to the bedrock. Given the low permeability of the SMF and Northwich Halite Member, and general absence of groundwater, any product lost is likely unlikely to migrate a significant distance from the pipework.

Pollutant (SPR) Linkage Table

3.2.19 The pollutant linkage assessment for Plumley PSD is presented in *Table 3.2*.

- 3.2.20 The assessment of qualitative risk associated with each pollutant linkage includes consideration of the incorporated (i.e. routine) mitigations that are relevant to the activity being assessed. Given that the ecotoxicity of crude oil is significantly greater than that associated with the brine and accidental release volumes are approximately the same, the worst-case risk assessment associated with hydrocarbons has been presented.
- 3.2.21 For defining pollutant linkages, one of the following four qualitative assessment of risk has been assigned:
 - Negligible No plausible pathway or the volumes are so small and pathways so complex that no measurable impact is expected.
 - Low Risk A theoretical pathway has been identified but the sensitivity of the receptor is low and/or the expected impact is considered to be of limited extent or duration.
 - Moderate Risk There are reasonable grounds to expect an impact on a receptor although that
 receptor is only of local importance, or the scale of the impact is likely to be of limited extent or
 duration.
 - High Risk There are reasonable grounds to expect an impact on a receptor of high sensitivity / high value and that impact could have a large and/or long-lasting impact on those protected features or render a groundwater resource unusable.

Contamination Source				Incorporated Mitigation /	Qualitative			
Activity	Contaminants of Concern	Exposure Pathway	Receptor	Protection Measures	Assessment of Risk	Justification	Ref.	
Operational Phas	e – Current Activities	5	-		-	-	-	
Static, steady- state, storage of hydrocarbons		Long-term loss of	Shallow soils (Glacial Till)		Negligible	Deep caverns in low permeability environment; Natural sealing	1.1.1	
	Crude Oil, Leaded Petrol and Middle	hydrocarbons stored in cavern. Vertical and lateral	Shallow groundwater (in Glacial Till)	None required	Negligible	evidence of impacts on receptors in local area.	1.1.2	
	Distillates (Caverns T1, T11 -	migration of hydrocarbons.	Surface Water Body / Peover Eye		Negligible	As above. No plausible pathway.	1.1.3	
	T20, T22 – T25, T27 - T35)	Loss of hydrocarbons from	Shallow soils (Glacial Till)		Negligible - Low	No active pumping.	1.2.1	
	Brine in all caverns	connecting storage cavern to wellhead. Lateral migration of hydrocarbons.	Shallow groundwater (in Glacial Till)	None required	Negligible - Low	No active pumping.	1.2.2	
			Surface Water Body / Peover Eye		Negligible	No plausible pathway.	1.2.3	
Static, steady- state, storage of hydrocarbons	Crude Oil, Leaded Petrol and Middle Distillates (Caverns T1, T11 - T13, T15 -T18, T20, T22 – T25, T27 - T35) Brine in all caverns [Note: the risk associated with loss of bine is lower than that for hydrocarbons which are ecotoxic. Hydrocarbon releases have therefore been assessed]	Failure of wellhead valves / connections due to excess pressure or corrosion or during valve replacement. Loss of hydrocarbons to	Shallow soils (Glacial Till)	Pressure monitoring & regulation procedures; Routine condition inspection of wellhead & containment area; Underground scanning /	Negligible - Low	Small release volume predicted (c. 2 m ³); Concrete lined containment area with sufficient storage volume; limited migration potential through defects in containment area; Short residence time after lost due to emergency plans; Inward (soils to chamber) hydraulic gradient.	1.3.1	
		wellhead containment chamber. Migration through base / walls to ground.	Shallow groundwater (in Glacial Till)	testing being undertaken; Emergency hydrocarbon spill & recovery plans.	Negligible - Low	As above Limited migration potential as groundwater bearing layers situated at depth beneath cohesive glacial till. Low sensitivity receptor	1.3.2	
		As above. Lateral migration in soils to surface land drainage. Transport to surface water body.	Surface Water Body / Peover Eye	As above	Negligible - Low	Low probability of plausible lateral pathway in the glacial till to surface land drainage. Emergency response measures / protocols to protect flow to Peover Eye.	1.3.3	

Table 3.2 Pollutant linkage table for the Plumley PSD

Contamination Source				Incomposed Midigation /	Qualitative		
Activity	Contaminants of Concern	Exposure Pathway	Receptor	Protection Measures	Assessment of Risk	Justification	Ref.
Operational Phas	se – Current Activitie	s					
Static, steady- state, storage of hydrocarbons	Crude Oil, Leaded Petrol and Middle	Failure of wellhead valves / connections due to	Shallow soils (Glacial Till)		Low	Small volume of spray release.	1.4.1
	Distillates (Caverns T1, T11 - T13, T15 -T18, T20, T22 – T25, T27 - T35) Brine in all caverns [Note: the risk associated with loss of bine is lower than that for hydrocarbons which are ecotoxic. Hydrocarbon releases have therefore been assessed]	excess pressure or during replacement of valves. Spray loss of hydrocarbons outside of wellhead containment chamber direct to ground.	Shallow groundwater (in Glacial Till)	As above	Negligible - Low	As above Limited migration potential as groundwater bearing layers are typically situated at depth beneath cohesive glacial till. Low sensitivity receptor	1.4.2
		As above. Surface runoff of or shallow migration pathway to surface land drainage. Transport in surface land drainage to surface water receptor.	Surface Water Body / Peover Eye	As above Site drainage thought to run through interceptor before leaving site. The interceptor is fitted with oil on water and brine detectors. The oil in water detector triggers an alarm in the site office and closes a control valve on the outfall.	Negligible - Low	Small release volume Limited scope for surface runoff to surface land drainage. Limited potential for shallow lateral pathway. Site drainage thought to run through interceptor before leaving site. Detectors and oil in water alarm installed to prevent pollution leaving site. Emergency response measures / protocols for losses to site drainage.	1.4.3
		Mechanical failure associated with tractor.	Shallow soils (Glacial Till)	Routine maintenance of	Low	Low probability. Small volumes released. Receptor of low sensitivity	1.5.1
Periodic over-		Small release of fuel to ground.	Shallow groundwater (in Glacial Till)		Negligible - Low	Deep migration pathway	1.5.2
Periodic over- pumping of standing water into external drainage system using tractor mounted vacuum pump	Diesel As above. Lateral migr to surface la Transport to body.	As above. Lateral migration in soils to surface land drainage. Transport to surface water body.	Surface Water Body / Peover Eye	As above. Site drainage thought to run through interceptor before leaving site. The interceptor is fitted with oil on water and brine detectors. The oil in water detector triggers an alarm in the site office and closes a control valve on the outfall	Negligible	No plausible pathway Site drainage thought to run through interceptor before leaving site. Detectors and oil in water alarm installed to prevent pollution leaving site.	1.5.3

Table 3.2 Pollutant linkage table for the Plumley PSD (Continued)

4 APPLICATION SITE CONDITION REPORT

4.1 Application Phase

4.1.1 This SCR is prepared in accordance with the Environment Agency Horizontal Guidance Note H5 (Ref. 1) and provides references to the various chapters of this report, where available information on the known current condition of the operational area is provided.

4.2 Site Condition Report Summary

1.0 Site Details	
Name of the applicant	The Oil & Pipelines Agency
Activity address	Plumley Oil Storage Facility, Back Lane, Knutsford, Cheshire. WA16 9SJ
National grid reference	SJ 72585 73923
Site area (ha)	c. 80 hectares
Document reference and dates for Site Condition Report at permit application and surrender	220523 R JER9424 AG PLY SCRIED V2R2
Document references for site plans (including location and boundaries):	Drawing 1

2.0 Condition of the land at permit issue							
Environmental setting including:							
Topography							
• Geology							
Hydrogeology	Section 2.3						
Hydrology							
Environmental Consents, Licences, Authorisations, Permits and Designations							
Pollution history including:							
• Location, nature of incidents or direct discharges that may have affected soil or groundwater	Section 2.2 and Section 2.4						
 Historical land uses and associated contaminants 							
Evidence of historic contamination, for example, historical site investigation, assessment, remediation and verification reports (where available)	Section 2.4						
Baseline soil and groundwater reference data	The historical soil and groundwater quality dataset available for the Plumley site is provided in Appendix E and described in Section 2.4						
Supporting information	Further supporting information is provided in the Appendices referenced in the above sections.						

3.0 Permitted activities			
Permitted activities	Section 1.3 and Section 2.2		
Non-permitted activities undertaken	Not Applicable		
Document references for:			
 plan showing activity layout; and 	Section 2.2		
environmental risk assessment.	Section 3.2		

5 IED BASELINE REPORTING

5.1 Stage 1: Identify which Hazardous Substances are Used, Produced or Released at the Installation

- 5.1.1 The IED relates to contamination risk associated with "hazardous substances" used, produced or released on the facility. Hazardous substances are defined as substances or mixtures defined in Article 3 of Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of substances and mixtures (the "CLP Regulations"). The determination of whether a substance is a hazardous substance is largely determined using the substance CAS Number, the European Chemicals Agency (ECHA) online database and a review of Safety Data Sheets (SDS) for each substance.
- 5.1.2 The permitted operations and associated activities undertaken on the Plumley PSD are described in *Section 2.2* and summarised in *Table 2.1*. The key operations to be undertaken are the static, steady-state, storage of hydrocarbons and future hydrocarbon removal. There are no substances produced or emitted from the installation.
- 5.1.3 The substances used on the installation during current operations and associated activities therefore include:
 - Crude Oil (Mixture, principally CAS No. 8002-05-9)
 - Leaded Petroleum (Mixture, principally CAS No. 8002-05-9)
 - Middle distillates (Mixture, principally CAS No. 68410-96-8)
 - Brine (sodium chloride solution) (CAS No. 7647-14-5)
 - Lubricating oils / greases for wellhead maintenance (CAS No. 74869-22-0 and 74869-21-9).
 - Diesel as fuel for generator during product removal (Mixture, CAS No. 68334-30-5)
- 5.1.4 SDSs for crude oil, petroleum and diesel are provided in *Appendix I*.
- 5.1.5 Crude oil, petroleum, middle distillates, diesel and lubricating oils / greases are all complex mixtures of hydrocarbons that are considered Hazardous Substances used, produced or released on the facility. Following a review of the European Chemicals Agency (ECHA) online database, the brine (sodium chloride) solution is not considered hazardous under CLP in respect to soils and groundwater. The brine solution does however have the potential to have an adverse effect on flora and fauna in freshwater surface waterbodies if discharged in sufficient quantity and duration. For this reason, brine has been considered as part of the pollutant (SPR) linkage assessment in relation to surface water receptors required for this Site Condition Report and as summarised in *Table 3.2*.

5.2 Stage 2: Identify Relevant Hazardous Substances Used, Produced or Released at The Installation

- 5.2.1 Stage 1 identified the hazardous substances used on the Plumley PSD as part of site operations. Stage 2 requires a review of the listed substances to determine which considered are Relevant Hazardous Substances (RHSs). Each of the substances identified within Stage 1 are reviewed below, considering their chemical and physical properties and how they are stored and used on site, to determine the potential pollution risk of each hazardous substance.
- 5.2.2 RHSs in relation to IED are defined as "those substances or mixtures defined within Article 3 of Regulations (EC) No1272/2008, which, as a result of their hazardousness, mobility, persistence and biodegradability (as well as other characteristics), are capable of contaminating soil or groundwater and are used, produced and/or released by the installation".
- 5.2.3 An assessment of Hazardous Substances identified on the Plumley is presented in Table 5.1. Crude oil and diesel are considered RHSs.

Hazardous Substance (CAS No)	Chemical Characteristics /Risks	Physical State	Solubility in Water	Toxicity	Mobility	Persistence	Soil and Groundwater Pollution Potential	RHS
Crude Oil (8002-05-9)	 Highly flammable liquid and vapor. Harmful in contact with skin. Causes skin irritation. May cause genetic defects. May cause cancer. Suspected of damaging fertility or the unborn child. Causes damage to organs through prolonged or repeated exposure. Very toxic to aquatic life with long lasting effects. 	Liquid	Low	Acute.	Low - High Variable properties of each hydrocarbon fraction.	High	Very toxic to aquatic life with long lasting effects. Persistent and in liquid form. Release of this product should be prevented from contaminating soil and water and from entering drainage and sewer systems.	Yes
Leaded Petroleum	Extremely flammable liquid and vapor. Causes skin irritation. May cause genetic defects. May cause cancer. Suspected of damaging fertility or the unborn child. May cause drowsiness or dizziness. May cause damage to organs (blood, liver, kidney) through prolonged or repeated exposure. May be fatal if swallowed and enters airways. Toxic to aquatic life with long lasting effects.	Liquid	Low	Acute	Low - High	High	Very toxic to aquatic life with long lasting effects. Persistent and in liquid form. Release of this product should be prevented from contaminating soil and water and from entering drainage and sewer systems.	Yes
Middle Distillates	As above	Liquid	Low	Acute	Low - High	High	Very toxic to aquatic life with long lasting effects. Persistent and in liquid form. Release of this product should be prevented from contaminating soil and water and from entering drainage and sewer systems.	Yes
Diesel (68334-30-5)	Flammable liquid and vapour. Harmful if inhaled and causes skin irritation. May cause damage to organs. May be fatal if swallowed and enters airways.	Liquid	Low / Insoluble	Acute	Moderate	High	Toxic to aquatic life with long lasting effects. Avoid release to the environment. Inform appropriate managerial or supervisory personnel of all environmental releases. Prevent	Yes

Table 5.1 Summary of Potential Pollution Risk of Hazardous Substances

Hazardous Substance (CAS No)	Chemical Characteristics /Risks	Physical State	Solubility in Water	Toxicity	Mobility	Persistence	Soil and Groundwater Pollution Potential	RHS
	I oxic to aquatic life with long lasting effects.						further leakage or spillage if safe to do so. Avoid discharge into drains, water courses or onto the ground	
Lubrication Oils (74869-22-0)	A complex combination of hydrocarbons obtained from solvent extraction and dewaxing processes. It consists predominantly of saturated hydrocarbons having carbon numbers in the range C15 through C50.	Liquid	Low	Carcinog enic	Low	High	Low given the small volumes used within the bunded containment areas.	No
Lubrication Greases (74869-21-9)	A complex combination of hydrocarbons having carbon numbers predominantly in the range of C12 through C50. May contain organic salts of alkali metals, alkaline earth metals, and/or aluminium compounds.	Soft Solid	Low	Carcinog enic	Low	High	Limited potential given low mobility and small volumes used within the bunded containment areas.	No

5.3 Stage 3: Assessment of the Site-Specific Pollution Potential in Relation to Soils and Groundwater

- 5.3.1 Each of the relevant hazardous substances identified in Stage 2 are to be considered in Stage 3 in the context of the Plumley PSD itself to determine whether circumstances exist which may result in the release of the substance in sufficient quantities to represent a site-specific pollution risk, either as a result of a singular emission or as a result of accumulation from multiple emissions.
- 5.3.2 Circumstances under which emissions may occur include:
 - Controlled / planned emissions;
 - Accidents and / or incidents; and
 - Routine operations.
- 5.3.3 Those circumstances from which an emission of RHSs on the Plumley PSD may occur relate to accidents / incidents.
- 5.3.4 Lubrication oils and greases used on the Plumley PSD are not considered to have a site-specific pollution potential given: the very small amount used on the Plumley PSD; their temporary presence on the site; use within the wellhead containment chambers; and their low mobility.
- 5.3.5 The site-specific pollution potential associated with the stored hydrocarbons has been assessed for the operations and associated activities undertaken on the Plumley PSD. That assessment is presented in *Table 3.2* and included consideration of the risk to all environmental receptors, not only the soil and groundwater receptors required for the IED. Those pollutant linkages with a qualitive assessment or risk of low or greater include the following:
 - Pollutant Linkage 1.4.1
 - <u>Static, steady state storage of hydrocarbons</u>: Failure of wellhead valves / connections due to excess pressure. Spray loss of hydrocarbons outside of wellhead containment chamber direct to ground.
 - Risk to Shallow Soils (Glacial Till / Diamicton): Low
 - Pollutant Linkage 1.4.3.
 - <u>Static, steady state storage of hydrocarbons</u>: Failure of wellhead valves / connections due to excess pressure or routine maintenance thereof. Spray loss of hydrocarbons outside of wellhead containment chamber direct to ground. Surface runoff of or shallow migration pathway to surface land drainage. Transport in surface land drainage to surface water receptors.
 - Risk to Surface Water Body / Peover Eye: Low
 - Pollutant Linkage 1.5.1.
 - <u>Static, steady state storage of hydrocarbons</u>: Periodic removal of standing water in wellhead chamber using tractor mounted vacuum pump. Mechanical failure associated with tractor resulting small release of diesel fuel direct to ground.
 - Risk to Shallow Soils (Glacial Till / Diamicton): Low
- 5.3.6 It is noted that pollutant linkage 1.4.3 represents a theoretical risk to surface water (Peover Eye), as opposed to soils or groundwater, should subsurface land drains be present and provide a direct pathway thereto.

Relevant Hazardous Substance	Amount of RHS Used Annually	Maximum amount RHS stored at the Site	Operation / Activity Details of Existing Pollution Prevention Measures	Actual Pollution Risk? (Yes / No)
Crude Oil / Leaded Petroleum /	Not applicable	Approximately 209,561 m ³ of hydrocarbons stored in 21 of the 35	<u>Static, steady state storage of hydrocarbons:</u> Failure of wellhead valves / connections due to excess pressure or routine maintenance / replacement thereof.	
Middle Distillates		caverns on the Plumley PSD (T1, T11–T13, T15–	Spray loss of hydrocarbons outside of wellhead containment chamber direct to ground. Impact on shallow soils (Pollutant linkage 1.4.1)	Yes
		T18, T20, T22–T25, T27– T35). Brine is present in all caverns which have a volume of c. 100,000m ³ (See <i>Table 2.1)</i>	Spray loss of hydrocarbons outside of wellhead containment chamber direct to ground, surface runoff or migration through shallow pathways to land drainage. Impact on shallow soils. Impact on surface water / Peover Eye (Pollutant linkage 1.4.3).	Yes
			 Emergency management system: Product recovery in the event on an accidental release. 	
			 Routine maintenance / review of all equipment and wellheads. Passive release to concrete-lined wellhead containment chamber, leakage through base / walls of chamber to ground and migration to groundwater 	No
			 bearing horizons in the Glacial Till or surface land drainage or surface water courses / Peover Eye. Losses from cavern or cavern to wellhead pipelines current static, steady state storage of hydrocarbons on the site 	No
Diesel	Not applicable	Low volume of diesel fuel in tractor.	Static, steady state storage of hydrocarbons: Periodic removal of standing water in wellhead chamber using tractor mounted vacuum pump. Mechanical failure associated with tractor resulting small release of diesel fuel direct to ground. Risk to shallow soils Mitigations measures include:	Yes
			 Emergency management system: Product recovery in the event on an accidental release. Routine maintenance / review of all equipment and wellheads. 	

Table 5.2 Summary of Actual Pollution Risk (Soils & Groundwater) for Relevant Hazardous Substances.

6 BASELINE SOIL SAMPLING

- 6.1.1 Given most pollutant (SPR) linkages associated with the static, steady-state storage of hydrocarbons presented in *Table 3.2* have a site-specific risk assessed to be low or negligible, no further baseline soil and groundwater characterisation, over and above that undertaken in 2014 and presented in *Section 2.4.3* (Ref. 6), is considered necessary at this time.
- 6.1.2 Should activities change on the site in the future, the need for further baseline characterisation shall be reconsidered.

7 OPERATION SITE CONDITION REPORT

7.1 **Operational Phase**

7.1.1 This SCR has been prepared in accordance with the H5 Guidance for Applicants (EA, 2013). This section sets out the information that will be gathered during the operational phase of the facility relevant to the condition of the site.

7.2 Site Condition Report Summary

4.0 Changes to the activity					
Have there bee If yes, provide a	n any changes to the activity boundary? a plan showing the changes to the activity boundary.	If yes, provide a plan showing the changes to the activity boundary.			
Have there bee If yes, provide a	n any changes to the permitted activities? a description of the changes to the permitted activities	If yes, provide a description of the changes to the permitted activities			
Have any 'dang Report been us If yes, list them	perous substances' not identified in the Application Site Condition ed or produced as a result of the permitted activities?	If yes, list them			
Checklist of supporting information	 Plan showing any changes to the boundary (where relevant) Description of the changes to the permitted activities (where rel List of 'dangerous substances' used/produced by the permitted the Application Site Condition Report (where relevant) 	evant) activities that were not identified in			

5.0 Measures taken to protect land

Use records that you collected during the life of the permit to summarise whether pollution prevention measures worked. If you can't, you need to collect land and/or groundwater data to assess whether the land has deteriorated.

Checklist of	4.	Inspection records and summary of findings of inspections for all pollution prevention measures
supporting information	5.	Records of maintenance, repair and replacement of pollution prevention measures

6.0 Pollution incidents that may have had an impact on land, and their remediation

Summarise any pollution incidents that may have damaged the land. Describe how you investigated and remedied each one. If you can't, you need to collect land and /or groundwater reference data to assess whether the land has deteriorated while you've been there.

Checklist of	6.	Records of pollution incidents that may have impacted on land
supporting information	7.	Records of their investigation and remediation

7.0 Soil gas and water quality monitoring (where undertaken)

Provide details of any soil gas and/or water monitoring you did. Include a summary of the findings. Say whether it shows that the land deteriorated as a result of the permitted activities. If it did, outline how you investigated and remedied this.

Checklist of	8.	Description of soil gas and/or water monitoring undertaken
supporting information	9.	Monitoring results (including graphs)
8 SURRENDER SITE CONDITION REPORT

8.1.1 At permit surrender, the following sections of the SCR template (EPR H5) will be completed and submitted to the EA as part of the permit surrender application. Information that has been gathered over the lifetime of the Permit will be used to identify whether the land is in a satisfactory condition. If necessary, surrender reference data will be collected and remediation will be undertaken if required.

8.0 Decommissioning and removal of pollution risk

Describe how the site was decommissioned. Demonstrate that all sources of pollution risk have been removed. Describe whether the decommissioning had any impact on the land. Outline how you investigated and remedied this.

Checklist of	10. Site closure plan
supporting	11. List of potential sources of pollution risk
information	12. Investigation and remediation reports (where relevant)

9.0 Reference data and remediation (where relevant)

Say whether you had to collect land and/or groundwater data. Or say that you didn't need to because the information from sections 3, 4, 5 and 6 of the Surrender Site Condition Report shows that the land has not deteriorated. If you did collect land and/or groundwater reference data, summarise what this entailed, and what your data found. Say whether the data shows that the condition of the land has deteriorated, or whether the land at the site is in a "satisfactory state". If it isn't, summarise what you did to remedy this. Confirm that the land is now in a "satisfactory state" at surrender.

Checklist of	13. Land and/or groundwater data collected at application (if collected)
supporting	14. Land and/or groundwater data collected at surrender (where needed)
information	15. Assessment of satisfactory state
	16. Remediation and verification reports (where undertaken)

10.0 Statement of site condition

Using the information from sections 3 to 7, give a statement about the condition of the land at the site. This should confirm that:

17. the permitted activities have stopped

- 18. decommissioning is complete, and the pollution risk has been removed
- 19. the land is in a satisfactory condition

REFERENCES

- 1. Environment Agency (EA). 2013. H5 Guidance for Applicants, Environmental Permitting Regulations, Site Condition Report Guidance and Templates. Version 3. May, 2013.
- 2. European Commission (EC). 2015. European Commission Guidance concerning baseline reports under Article 22(2) of Directive 2010/75/EU on industrial emissions (2014/C 136/03)
- 3. European Parliament and Council. 2010. Directive 2010/75/EU on industrial emissions (integrated pollution prevention and control) of 24 November 2010
- 4. European Chemicals Agency (ECHA) online database
- 5. Plumley and Cape of Good Hope Petroleum Storage Depots, CDOIF Phase 1 Screening Assessment, (Rambol Environ, Report Ref. UK14-21811, September 2017
- 6. Factual & Interpretative Ground Investigation Report (GIR), Plumley Oil Storage Facility, Cheshire. Worley Parsons Consulting. Report Ref 305002-00009/51670-00 GIR. June 2014
- 7. Land contamination risk management (LCRM). Environment Agency, Updated 19 April 2021.

Reproduced from Ordnamoe Survey digital map data to Croam oppyright 2017. All rights reserved. Licence number 1000-0031

Appendix A

Photographs of Plumley PSD

Photographs of the Plumley PSD Site (24 January 2022)

Cavern T11. Entrance

Cavern T11. Wellhead containment chamber

Cavern T11. Standing water in wellhead containment chamber

Plumley PSD Interceptor

Plumley PSD Interceptor Chambers.

Appendix B

BGS Borehole Logs

新闻的 计正确的 ATCONFIDEN (For Survey use only) 1063 Wt. 22438/0384 10m 7/45 (51) F.&S. binch Map Registered Nor RECORD OF SHAFT OR BORE CHESHI Name and Number of Shaft or Bore 53 1.01 For Messrs. 6-inch Man Nether Peore Town or Village Registered No. County_ Six-inch quarter sheet Exact site_ Attach a tracing from a map, or a sketchmap, if possible. Sall P.B. Scher Purpose for which made Level at which shaft commenced relative to O.D. State if shaft is up, down, horizontal or c . 110 * inclined; in latter cases give angle of inclination and direction____ John Thom Made by ... Date of Sinking 1952-3 101 Information from Specimens . Additional Notes in Space Overleaf (For Survey use only) THICKNESS DEPTH GEOLOGICAL CLASSIFICATION NATURE OF STRATA led clo 31 58 61 Get mil 133 160 i tope 193 199 R 208 217 274 295 304 319 they 325 331 353grey + 361 Slarg 395 410 434 437 458 el-476 592 ho 659 Continued Overleaf 1'0.5. Map Site marked (use symbol) Date Correspond-1' N.S. Map once File No. No. on 1" Map | on 6" Map GEOLOGICAL SURVEY AND MUSEUM, received No. • SOUTH KENSINGTON, British **Geological Survey**

NATURAL ENVIRONMENT RESEARCH COUNCIL

大学 法自己的公司 THICKNESS 5377 DEPTH (For Survey us only) 193 NATURE OF STRATA (Continued). GROLOGICAL CLANDINICATION 38 IN CONFIDENCE Sall- +mare 677 683 Salo 5 19 19 2 Salt and mark 719 Lall- marine 737 Plan in O lord No. Epe 7.67 lalt and mark 776 marl 791 di la Lalband mark 1 . And the state of the state 197 marl. \$2 Georgian . 800 Lalb and marl .. 869 . . hel-Salt and mark 1007 Lall 055. Lall and mark the second 1080 2 coming Red mail banded W. grey 1082 9 9 aⁿ 1 7 1087 4 4 and grey ma 110 3 2 1090 10 very marl 1 0 1091 6 Re d m 2 1 1092 Rid 1 grey mail 5 2 1095 10 Grey banded W. red mail Marly Call-6 41.8 2 1097 11 Red mark 2 5 1100 4 Sall-1126 8 0 25 -Lill 1132 $\mathbf{z}^{(n)}$. Part States 1. 1200 4. 2.5 • 46.0034 4 ì. ALL OF STREET States and States and States and 32 the second second second ADDITIONAL NOTES 10 1101 榜 - Signa ji. 1000 250.

British **Geological Survey**

County Exact site Purpose for which Level at which sh bo inclined; in latter Made by Information from Specimens GEOLOGICAL OLASSIFICATION	Six-inch quarter sheet a made Salt (P. B. Scheme) aft commenced relative to O.D. <u>C 110</u> ccases give angle of inclination and direction Solur Thom I C I <u>Additional Notes in Space</u> NATURE OF STRATA	Date of Sinking	ttach a tracing a map, or a sl map, if possibl f shaft is up, d /952	r from ketch- e. own, horizonta
Exact site Purpose for which Level at which sh inclined; in latter Made by Information from Specimens (For Survey use only) GEOLOGICAL OLASSIFICATION	n made Salt (P. B. Scheme) aft commenced relative to O.D. <u>C 110</u> cases give angle of inclination and direction Solum Thom 1 C 1 <u>Additional Notes in Space</u> NATURE OF STRATA	Date of Sinking	ttach a tracing a map, or a sl map, if possibl f ^{shaft} is up, d /952	; from ketch- e. lown, horizonts
Purpose for which Level at which sh bo inclined; in latter Made by Information from Specimens (For Survey use only) GEOLOGICAL CLASSIFICATION	a made Salt (P. B. Scheme) aft commenced relative to O.D. <u>C 110</u> ccases give angle of inclination and direction John Hom 1 C 1 <u>Additional Notes in Space</u> NATURE OF STRATA	Date of Sinking	f ^{shaft} is up, d /952	lown, horizonta 3
Level at which sho inclined; in latter Made by	aft commenced relative to O.D. <u>C 110</u> cases give angle of inclination and direction <u>John Thom</u> <u>IC 1</u> <u>Additional Notes in Space</u> NATURE OF STRATA	Date of Sinking	f ^{shaft} is up, d /952	lown, horizonta 3
inclined; in latter Made by Information from Specimens (For Survey use only) GEOLOGICAL OLABBIFICATION	cases give angle of inclination and direction John Hom ICI <u>Additional Notes in Space</u> NATURE OF STRATA	Date of Sinking Overleaf	1952	3
Made by	Additional Notes in Space NATURE OF STRATA	Date of Sinking	1952	3
(For Survey us only) GEOLOGICAL OLASSIFICATION	Additional Notes in Space NATURE OF STRATA	Overleaf		
(For Survey us only) GEOLOGICAL OLABBIFICATION	Additional Notes in Space	Overleaf Tuick		
(For Survey use only) GEOLOGICAL OLABBIFICATION	NATURE OF STRATA	THICK		
GEOLOGICAL OLASSIFICATION	NATURE OF STRATA	Inich	NESS	Depth
	Q . 10	-		
				_و ا
	ed clay			
	and gravel			61
	and they and mark			6.1
	rey mart			133
	ed Fridy mill			160
	P. 1 La			193
	a rying	· .		199
	2. 5 1 000			208
	la and grey			217
12	d farses			274
e	here is a second s			295
E	2			304
	led + grey			319
	uver			325
	Red			331
4	led typey			355-
	Red			361
	led typey			Sley
2	grey			395
2	led topey			110
4	g-reg			434
	(Salt at 135/6)			
-1	all rock w. grey ward			487
	"			4.58
1.	lall-			476
	ha samples			650
2	salt		Continued	Overleaf
			to marked (means	mhol)

					1	к!
(For Survey use only) GEOLOGICAL	193	THICK	NESS		Depth	
CLASSIFICATION	NATURE OF STRATA (Continued)					
<u> </u>	lill- mil				67-	-
1	Jall - T mail				0/7	
* * * ***	naw .				6000	
	hall and mart				119	
	Latt-			······	137	
	Salt and mark				767	
	mail				7.76	
ł	Salband mail				791	
	mail				797	
1	Salb and marl				8-0-0	
-	Sel-	-			109	
-	Tall and marl			<u> </u>	1007	أسبمينا
	Sall				1055	
	Sall and mark				1080	
Coving	Red mail banded W. grey		? 4	2	1082	9
	lia and grey mail		4 7	·	1087	4
-	Grey mare		3, 3	<u> </u>	1090	16
	Red mail		10	>	1091	6
	Red togray mail		1 1	<u> </u>	1292	7
	Grey banded w. ver mare	. 4	10	>	1095	5
	marly Call-		2 6	;	1097	11
· 1	Red mark	· .	2 5	-	1100	4
endor.	Sall-	2	5 8	- 1	1126	0
200 2 G	Lalb				1132	
	ų				1200	
		12				
0.0.00			·····			
-		******				
1		····· / ···· /	{			
-						
				-		
19 (Ar						
-		······				
					•	
l_					<u> </u>	
	ADDITIONAL NOTES					
						- 1
						- 1
5 C						
*						
					25	
	4 ₁₀					
· · · · ·					r :5.4	

British Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

53 77 SW/ 138-143

	<u> </u>	· · · · · · · · · · · · · · · · · · ·		1 6 6 1			1929-1921 - A	12 BR		- 10 C	13	
Borehole	H 198	138	H 185	1391	H_186	140	H 187	141	H 188	142	H 189	143
Description of Strata	Thick- ness Ft	Depth FBS	Thick- ness Ft	Depth FBS	Thick- ness Ft	Depth FBS	Thick- ness Ft	Depth FBS	Thick- ness Ft	Depth FBS	Thick- ness Ft	Depth FBS
Glacial Drift	14	14	38	38	40	40	38	38	40	40	38	38
Red and Grey Marl (Middle Keuper Marl)	661	675 205-74m	531'6"	600 °6"	512	552	450	488	4 7 0 1 9"	510 9"	425	463
Rock Salt with occasional Marl Bands Zones H I J					9 K. 9							
Rock Salt with massive Marl Bands Zone G				. 27			•				•	
Rock Salt with Marl Bands Zones D, E, F		1345		1278 389 53n		1211	2	1139 3421121		11746"		1114
Marl (30 Ft Marl Band) Zone C	37	1382 421-2 3m	29	31307	32	1243 378 87m	31*6"	1170'6 " 356-27	3016"	1205 367-28m	29	1143 348-29
Bottom of Borehole	33	1415	53	1360	57	1300	53'6"	1224	45	1250	41	1184
		431-29m		414-53	n	396-24	m	373.08	m	381.000)	36099-

Gnfidential.

1

© All rights are reserved by the copyright proprietors.

[SJ77SW BJ 141 .]

NATURAL ENVIRONMENT RESEARCH COUNCIL

British **Geological Survey**

© All rights are reserved by the copyright proprietors.

[SJ77SW BJ 141 .]

Constant and a state with the 1. 和此的保护性,我们没有的 140 932) Wt.80370/0370 10,000 9/39 A.& B.W.Ltd. Gp.685 CHES County RECORD OF SHAFT OR BORE 6" Quarter Sheet 34.5∈ 55 7130 7355 1" N.S. Geol. Map_//0 Name and Number of Shaft or Bore given by Geological Survey : 1" O.S. Geol. Map_ Name and Number given by owner (if different from above) : Whether Confidential H . 171 FIDENTIAL CON Town or Village_ Stolford Date of sinking_ Exact site_ A sketch-map or tracing from a large-scale map is desirable. Purpose for which made. Level at which bore commenced relative to O.D._ "?. 4 If not down bore, state if horizontal or up_ for Messrs Jcg alkali Division Made by_ Date received 6 fam 1950 9.09 Information from. Dip of strata Specimens. THICKNESS DEPTH GEOLOGICAL CLASSIFICATION DESCRIPTION 44 44 Drift-626 Rock 704 et + Marl 724 157.8 11-849 855 1. 1 the. 88 6 a in 881 918 954 964 975 1001 6 1059 6 1083 ty sall-1091 m 6 6 13 1104 1 1185 79 D the rock 4 1285 Sall ょ Mark 6 1 eta and grey ma 1321 7 5 1433 111 1446 British

Geological Survey

Not Cored & Brony to carty		
escription of Strata	Thickness	Surface
ugwell ed Sendy Clay	3'0"	3'0"
ed Sandy Clay and Gravel	. 21 '0"	51 '0"
rey Marl and Gravel	6'0"	57'0"
ed Marl	6'0"	69'0"
rey Marl	6'0"	75'0"
ed and Grey Marl	9'0"	84 0"
ed Marl	6'0"	99'0"
rey Marl	6'0"	105'0"
ed Marl	15'0" 30'0"	120 '0"
ed and Grey Marl.with Gypsum	3'0"	153'0"
ed and Grey Marl with Gypsum	12'0"	165'0"
ed and Grey Marl	18'0"	189'0"
ed mari ed and Grey Marl	3'0"	192'0"
ed and Grey Marl with Gypsum	24 '0"	216'0"
ed and Grey Marl	3'0"	225'0"
ted and Grey Marl	12'0"	237 '0"
led Marl	. 3'0"	240'0"
ed and Grey Marl With Gypsum	21 '0"	270 '0"
Red and Grey Marl with Gypsum	6'0"	276'0"
led and Grey Marl	9'0"	285'0"
led and Grey Mari with Gypsum Red and Grey Mari	'9'0"	309.0"
ed and Grey Marl with Gypsum	9'0"	318'0"
Red Marl	3'0"	324 '0"
Red and Grey Marl with Gypsum	42'0"	366'0"
Red and Grey Marl	18'0"	384 '0"
Frey Marl	12'0"	399 101
Red and Grey Mari with Gypsum	21 '0"	420 '0"
Red and Grey Marl	117'0"	537 '0"
Frey Marl	3'0"	543 '0"
Red Marl	6'0"	549'0"
Red and Grey Marl	12'0"	561 '0"
Red Marl Red and Grey Merl	6'0"	570'0"
Frey Marl	6'0"	576'0"
led and Grey Marl	9'0"	585'0"
Frey Marl Red and Grey Marl	6'0"	594 '0"
led Marl	3'0"	597 '0"
Red and Grey Marl	3'0"	600'0"
Frey Mari		1
. This hole b	and mean tili	4
	· · · · · · · · · · · · · · · · · · ·	
H 171. to the	canlig	
	127 18 24	양감 옷을 가지?
· · · · · · · · · · · · · · · · · · ·	가지 않는 것 같은 것 같아요. 이 가지 않는 것 않는	

Name and Num	nber of Shaft or Bore given by Geological Survey : mber given by owner (if different from above) : $H \cdot 171$		1' 0.5 W	5. Geol. Map hether Confidentia
Town or Village Exact site	Arolford Date of sinking		tracing	A sketch-map or from a large-scale n is desirable.
Purpose for will Level at which	hich made bore commenced relative to O.D/' 9. 4 If r	10t down bore, state if h	orizontal	or up
Made by Information fr	om Jcg	Messrs Jeg al	received	6 Jan 1950
Specimens		Dip of stra	nta	
GEOLOGICAL CLASSIFICATION	DESCRIPTION	Тніск	NESS	Дертн
· · · · · · · · · · · · · · · · · · ·	Drill		44	44
	Mare			626
	Sult Rock			
	Sult + Mare			729
	Salt-			853
÷	Salt and mart		······································	% 2
	Mare			881
	Salt w gypsum			9,8
	Rock sall			764
	Salt + mart			975
	Salt and mark			1001
	Salt			1059
	Dirty rall			/083
	Red and thre mark		12 1	/09/
	M		1	//04
	Dirty rock falt		79 6	// 86
	Mare		4	
	Salt		,	1285
	Mast		1 6	
	Red and grey marlo			/32/
	Salt rock		111 5	1433
	Marls.			1446
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
			-	
				Manage of a subsequences of the subsequences o
			1	u I
GROLOGICAL	KENSINGTON, G.S.M. Office Site mark	by on 1" Map by		

[SJ77SW BJ 115 .]

775 Whene 2 -S 8

171 Pilot Hole 'B' - Strate

Not Coul & Bonny to canty

130

1.8

-

Description of	Strata	/	0	Thickness	Depth from Surface
Dugwell				3'0"	3'0"
Red Sandy Clay				27 '0"	30 '0"
Red Sendy Clev	and Gree	ve]		21 10"	51 '0"
Grev Marl and G	ravel	101		6'0"	57 '0"
Red Warl				6'0"	63'0"
Red and Grey Ma	r 1			6'0"	69'0"
Grey Marl				6'0"	75'0"
Red and Grey Ma	rl			9'0"	84 '0"
Red Marl				9'0"	93'0"
Red and Grey Ma	rl.			6'0"	99 '0"
Grey Marl				6'0"	105*0"
Red Marl				15'0"	120 '0"
Red and Grey Ma	rl			30'0"	150 0
Red and Grey Ma	el with	Gypsum		3'0"	153'0"
Red and Grey Ma	cl with	Gypsum		12'0"	165'0"
Red and Grey Ma	-1			18'0"	183'0"
Red Mari	-7			710	109'0"
Red and Grey Ma	rl mith	0		21.101	192 U
Red and Grey Ma	el with	Gypsum		610	210 0
Ded Mari				310"	225101
Red and Grev Ma	e]			1210#	237 10"
Red Marl				310"	240 '0"
Red and Grev Ma	el with	GVDSUD		9'0"	249'0"
Red and Grey Ma	el .			21 '0"	270 '0"
Red and Grey Ma	l with	Gypsum		6'0"	276 '0"
Red and Grey Ma	1			9'0"	285'0"
Red and Grey Ma	rl with	Gypsum		15'0"	300 '0"
Red and Grey Ma	rl			9'0"	309'0"
Red and Grey Ma	rl with	Gypsum		9'0"	318 0
Red Marl				3'0"	321 0"
Red and Grey Ma	rl			3'0"	324 '0"
Red and Grey Ma	el with	Gypsum		42'0"	366 '0"
Red and Grey Ma	cl			18'0"	384 '0"
Grey Marl	-			3'0"	387'0"
Red and Grey Ma	12	G		12'0"	399.0
Red and Grey Ma	el with	Gypsum		21'0"	420'0"
And and Grey Ma	CT.			710"	55/10
Ded and Grev Ma	•1			3101	540 0
Red Wawl				6'0"	549 0
Red and Grev Ma	6]			12'0"	561 '0"
Red Marl				310"	564 '0"
Red and Grey Ma	rl			610"	570 '0"
Grey Marl			x	6'0"	576'0"
Red and Grey Ma	1			9'0"	585 '0"
Grey Marl				3'0"	588 '0"
Red and Grey Ma	cl			6'0"	594 0*
Red Marl				3'0"	597'0"
Red and Grey Ma:	1			3'0"	600 0"
Grey Marl			0	59'0"	659'0"
1. N		This	hole bared	near plio	l
			1 11		2
		HM1.	to the ca	viliz	

RECO SJ	RD OF SHAFT OR SEF FOR MINERA 7119 7348 her of Shaft or Bore given by Geological Survey :		C 6' 1'	Quar N.S. O.S.	ter She Geol. M.	BRE at 3-4 5 ap	<u>د</u>
Name and Nur	nber given by owner (if different from above): H_{175}		da	Whe	ther Co	nfidential	Al
Town or Village Exact site	<u>Holforn</u> Date of sinking		"	A acing fr	sketch-m om a larg is desirab	ap or c-scale ma le.	p
Purpose for wh Level at which h Made by	bore commenced relative to O.D. <u>119.8</u> If not down bo for Messrs.	pre, state i 9 e 9 d Din of s	f horizon	ntal or L'	up Seris Jan 6	~ 1956	
specimens		Тн	CKNESS			Depth	
GEOLOGICAL CLASSIFICATION	DESCRIPTION						_
- 19 g.,	Drift		55				
6	Marle					654	
	Sall-					757	
	Rock and mart		7			803	
	Salt		12				1000ada 1
	1-11-					877	
	Salt and mare		5				
-	Red and blue mails w. gyptum		A			907	
di en	Sult		10				
	Red and blue marks		8	- 6		9.19	
	Salt- and marks			-		986	
	Lett and mare		11	6			-
	Murlo a. goomm and sall-				0 12 f	1029	6
	Sylt 00					//32	
	Salt and mark					145	1
	Salt.					1239	
	halt met					1259	
	Salt and mare		8				
	balt .					1311	
4 4	Salt and mare					1322	
8	Sult rock		2.			13-41	
	Red mark		2			1	
	P. d. mark		4				
	Salt w. mark		4				
	Salt rock.					1489	6
34			-				
					•••••		
1		-					
							-
	and the second						
					•	ŀ	1
GEOLOGICAL	SURVEY AND MUSEUM, G.S.M. Office Site marked Site m	arked			des 1		

NATURAL ENVIRONMENT RESEARCH COUNCIL © All rights are reserved by the copyright proprietors.

SJ'Brine & Water Works, Holford. CONFIDENTIAL 175 Pilot Hole No.2 - Strata Borny to can't N. com Depth from Description of Strata Thickness Surface Dugwell 3'6" 3'6" 24 '0" 9'0" 6'0" 3'0" Red Sandy Clay 24 '0" Red Sandy Clay and Gravel 48'0" 40.0" 57'0" 63'0" 126'0" 158'0" 278'0" Red Marl Red and Grey Marl Red Marl 3'0" Red and Grey Marl Red and Grey Marl with Gypsum Red and Grey Marl Grey Marl 60'0" 32'0" 60'0" 82'0" 66'0" 12'0" 8'0" 300 '0" 366 '0" 378'0" Grey Marl 386 '0" 17'0" 30'0" Red and Grey Marl with Gypsum Red and Grey Marl Red and Grey Marl with Gypsum Red and Grey Marl Cher Marl 403 '0" 433 '0" 77'0" 9'0" 15'0" 9'0" 6'0" 510 '0" 519'0" Grey Marl Rec and Grey Marl Grey Marl Grey Marl Red and Grey Marl 534 '0" 543 '0" 549'0" 3'0" 44 '0" 7'0" 8'0" 44 '0" 552 '0" Red and Grey Marl Grey Marl 596'0" 603 '0" Red and Grey Marl 611 '0" Red and Grey Marl 655 '0" this hole bried at site of 14.175 To cavily i sosti いた Contra la 採 British **Geological Survey**

NATURAL ENVIRONMENT RESEARCH COUNCIL

**. 1800 34 SE /14 (3232) Wt.30370/0870 10,000 9/89 A.& H.W.Ltd. Gp.685 5 County RECORD OF SHAFT OR 6" Quarter Sheet. 1" N.S. Geol. Map____/ O Name and Number of Shaft or Bore given by Geological Survey: 1" O.S. Geol. Map. Name and Number given by owner (if different from above): Whether Confidential IDENT H175 C Town or Village____ Exact site. A sketch-map or tracing from a large-scale map is desirable. Purpose for which made Level at which bore commenced relative to O.D. //9.8 If not down bore, state if horizontal or up. for Messrs. Jeg alkali Divisin Made by. Date received 309 Holford 61950 Information from. .Dip of strata. Specimens. THICKNESS DEPTH GEOLOGICAL DESCRIPTION CLASSIFICATION 56-Drift-654 Marlo Sall-757 9 Rock and mare 803 her 12 Sallmarl and 877 5 and marl \$ 907 Red and blue marks w. gypsus Sult 10 6 Red and blue marlo 8 948 halt and marks Salt 986 11 6 Salt and more gyorm and sall-Marlo 1029 Al. 1132 ub 1145 Salt and mare latt 1194 Rock salt with mare 1239 1259 Salt rock 8 fall and mare 1311 Salt 1322 Salt and marl Salt rock 13-41 30 Red mare 1371 2 Blue mail w. salt 4 4 N. marl 1489 alt rock. GEOLOGICAL SURVEY AND MUSEUM, G.S.M. Office Site marked Site marked File No. on 6" Map by on 1" Map by SOUTH KENSINGTON, LONDON, S.W.7. British

British Geological Survey

© All rights are reserved by the copyright proprietors.

[SJ77SW BJ 116 .]

CONFIDENTIAL

175 Pilot Hole No.2 - Strata

Description of Strata	Thickness	Depth from Surface
	2161	3161
Dugwell	2016"	2010"
Red Sandy Clay	24 101	48'0"
Red Sandy Clay and Gravel	4'0 "	57 '0"
Red Mari	610"	63 10"
Red and Grey Mari	310*	66 '0"
Ked Mari	60'0"	126 '0"
Red and Grey Marith Gurpens	32'0"	158 '0"
Red and Grey Mari with Gypsum	60'0"	218'0"
Red and Grey Mari with Gypsum	82 '0"	300 '0"
Dod and Grey Marl with Gynsum	66 '0"	366 '0"
Ded and Grey Mari with Gypsum	12'0"	378 '0"
Gray Mori	8'0"	386 '0"
Bod and Grev Meri with Gungum	17'0"	403 '0"
Red and Grey Mari with of pour	30 '0"	433 '0"
Red and Grey Merl with Gynsum	77'0"	510 '0"
Pod and Grey Marl	9'0"	519'0"
anor Mari	15'0"	534 '0"
Ded and Grev Merl	9'0"	543 '0"
and Mar]	6'0"	549'0"
Grev Merl	3'0"	552 *0*
Red and Grev Marl	44 '0"	596 '0"
Grev Marl	7'0"	603 '0"
Red and Grev Marl	8'0"	611 '0"
Red and Grev Marl	44 "0"	655 '0"

Hus hole bound at site of 14.175 7. covilis

Sampling					Strata	73324	7475	57	
Depth ich Gogledical Supr	Туре	Casing Depth	Date/ Water	SPT N (Cu)	Description Autor Landral Survey	Depth (Thickneen)	Level	Lege	Ind
	1		20/04		TOPSOIL++	- G.L.	35.81		Г
0.45					Liobzoiri	F (0.45)	75 74		
0.55-1.00	SÕ		DRY	11	Firm orange-brown mottled grey silty sandy CLAY with occasional gravel.	E	33.30		l
-					[Glacial Till]	E			
1.25	D					E		L	
1.50-1.95	SD	1.50	DRY	10	Below 1.50m: dark orange-brown with a	F			
E	ritish Geolo	gical Surv	ey		British Geological Survey	E	Br	ilish Geblag) ca
- 2.20						Ē		<u> </u>	
2.40-2.85	SD	1.50	DRY	11		E			
						F (4.15)			
_						E			
3.25	D	7 00	DBY		Dalau 7 75m firm to stiff your cont	£			
ish Geological Surv	з 0 у	3.00		10	Bectow J. Jan; Tirm to Stirt, Yery Sandy. British Geological Survey	British Geolog	lical Survey		
						E	ľ		
- / 15						F			
4.40-4.73	SD SD	6 20	DRY	507		F			
4.60-4.75	Ď	20		180	Very dense brown clayey fine and medium SAND	F 2:99	31.21		
					[Glacial Sand and Gravel]	Æ T	51.00		
5.20	D				Very stiff brown sandy CLAY with a little	E			
5.45-5.76	iritish Geolo	^{gic} 5.20	DRY	50/	FILE and medium grave declogical Survey	Ł	Br	lish Geolog	jica
					Taractar Lift?	Ē		i	
4.30						F			
6.45-6 00	D SD	5 20	DRY	6		E			
	~	5.20				Ē		<u> </u>	
					· · ·	E (4.35)			
tis 7 20 logical Surv	ey D				British Geological Survey	British Geolo	ical Survey	· 1	
7.50-7.95	SD	7.00	DRY	42		F			
						E		<u> </u>	
						F		<u></u> .	
8.50-8.95	SD	7.00	DRY	45		F		i - I	
	~		-			E			
						E		<u>+</u>	
7.10	aritis ND Geoli	gical Surv	ey		Very stiff dark brown poorly laminated silty	ŧ 9.10	26.71 Br	eish Genlig	lca
9.40-9.85	SD	9.00	DRY	40	[Glacial Till]	E		<u> </u>	
								·]	
						-(1.75)		<u> </u>	
Equipment: Cab Top	le Perce Drive	ssive	Boring Rig	Rig	Groundwater No. Struck Behaviour Sealed	Ground Lev	el 35	.81 m OD	
Rorebole Dia /	m)	Caeler		"	None encountered during		94	754.5	
150 (0 17.15 S to 30.52-	20 20	150 to	17.15	m	British Geological Survey	Drilled by	ical Survey	N	
						Checked by	L WC		
Remarks	1. A 2. Ha	little and str	ata/Ch	added isellin	throughout to assist drilling. g: 12.40m to 12.70m (45 mins).				
See key sheet									
and appendices or explanations								For	rm
Borehole	Recor	'n			Project	Contract	D22	00	
	11000	-			M6 Widening Junctions 16 to 20	1			
	aritish Goole	nical Sum	6.V		Department of Transport Survey	L		11011-200-000	

	Sampling					Strata				-			
Britis	Depth / Drill Run Geological Survey	Type /	Casing (RQD)	Date/ Water	SPT N (Cu)/FI	Description British Geological Survey	Depth (Thickness)	Lavel	Lege	nd			
	10.10	D		20/04		(See previous sheet - very stiff CLAY).	F		·]				
	10.40-10.85	50	10.25	DRY	43		Ę						
							Ē						
	11.00	D				Very stiff brown very sandy CLAY with some	10.85	24.96					
						coarse gravel.	ŧ						
		SD th Geologic	10.20	DRY	48	[Glecial Till] British Geological Survey	Ē	Britis		Survey			
		in occording to	in ourroy			Billion Coolegical Carry	E	Ditto		ountry			
	12.25	Ð					E						
	12.60-12.82	с	12.30	DRY	50/				— — — — — — — — — — — — — — — — — — —				
	12.60-13.00	B			70		-						
	13.25	D					L (4.23)						
Britis	13.40	¥			_	British Geological Survey	- Wish Geologic:	I Survey					
	13.45-13.82	SD	13.00	DRY	220								
	-						F						
-C. (14.30	D					Ę						
	14.65-15.05	SD	13.00	DRY	50/		Ē						
	15 10-15 50				250		E 15 10	20 71					
	13.10-13.30	D b Goologia	15.50	DRY		Red-brown, mottled grey highly weathered silty MUDSTONE recovered as silty clay with	E 13.10	Dritte		Currey			
	15.50	sil Geologic	15.50	21/04		occasional sub-angular mudstone lithorelicts.	Ē	Dilus		Survey			
	15.75-16.20	SD	15.50	14.70	51	[Mercia Mudstone WG IV]	Ę						
							E (2.05)						
	-						Ę						
	16.75	D					ŧ						
Dritie	17.15annaa					Ritich Coological Superv	F 17.15	18.66					
DITUS	n osonguar ourrey					Red-brown thinly and thickly laminated silty MUDSTONE with frequent sub-horizontal planar	L.	134.6 129					
						discontinuities and discontinuous gypsum bands. Very weak to weak.	Ē	}					
_	-	100%	(70%)		4	[Nercia Nudstone WG IIIa] At 17.53m: open sub-horizontal	È.						
\mathbf{C}						discontinuity. At 18.34m: open sub-horizontal	Ę						
	18.57				—	18.45m to 18.57m: grey-green in colour. Below 18.57m: becoming red-brown and grey-	Ē						
	0.00	h O salasia	1.0		>20	green thickly interlaminated silty mudstone and clayey siltstone. Weak to very weak.	E_	Dailia					
	DITU	in Geologic	n Sulvey			frequent sub-horizontal gypsum bands up to 8mm thick.	Ę	Dilus		Survey			
						(Mercia Mudstone WG IIIa - II)	Ē						
					19		Ē						
	Factoria da		<u> </u>	<u> </u>		Groundwater							
	Equipment: Car Top	Die Perc Drive	Rotary	Rig	Rig	No. Struck Behaviour Sealed	Coordinat	vel 35 es 11	.81 m C 3338.2	, mE mW			
Dritia	Borehole Dia (m	im)	Casing	Dia (mr	n)	Pritich Goological Survey	Pritic la Cin e l'actic						
Ditta	S to 30.52m		150 t S to	0 17.15 17.00m		Billish Geological Sulvey	Logged by	SW .					
	Remarks					1	Lancokea D	,					
	Cas key shart												
	and appendices	 1							-				
						Project	Contract	0.33	100	/m 1/0			
	Borehole	несо	rd			M6 Widening Junctions 16 to 20 Department of Transport		-	Gaalaate	Super			
	Expl	oratio	n As	socia	tes	Motorway Widening Unit Curvey	Borehole	32	4(2 of 4)			
1	\bullet												

53 77 54 277

537756 277

	Sampling					Strata					
Briti	Drill Run	TCR (SCR)	Casing (RQD)	Date/ Water	SPT N FI	Description	Depth (Thickness)	s.masi	Lege	nd	
		100x (91x)	(39%)	21/04		(See previous sheet - silty MUDSTONE)					
					19	Below 20.90m: with rare siltstone bends. Weak to moderately weak.					
	21.57	h Geologica	Survey		9	21.47m to 21.57m: with sub-vertical gypsum filled discontinuity, 8mm mide. Below 21.77m: becoming more weathered.		British		Survey	
						(Mercia Mudstone WG IIIa - II) 22.19m to 22.35m: sub-vertical gypsum filled discontinuity, 5mm wide.	F				
Briti	a) Geological Survey	94X (88X)	(40%)		12	Bun 23.39m, to 23.52m: sub-vertical gypsum	Ruitish Geologica	Survey			
\mathcal{C}						filled discontinuity, 15mm wide. Below 24.07m: with occasional grey-green					
~	24.52				NR NR NI	From 24.67m to 25.19m: grey-green in colour, and with bands of clayey siltstone up to					
	Britis	h Geologica	Survey		9 NI	25.32m to 25.48m:subryentical gypsum filled discontinuity, 6mm wide.		Britisl	a	Survey	
		(795X)	(55%)		6	26.08m to 26.16m: sub-vertical gypsum- filled discontinuity.					
Briti	th Geological Survey 27.52				9 NI	British Geological Survey Below 27.52m: gypsum bands up to 25mm wide, but generally <10mm.	Aritish Geologica	l Survey			
C	Brits	ch (963 , c)(c) (923,)	Survey (39%)		>20 3. NI. NI.	28.72m to 28.94m: sub-vertical gypsum filled discontinuity, 8mm wide. British Geological Survey		Britis		l Survey	
				-	>20 NI	29.66m to 29.80m: sub-vertical gypsum filled discontinuity, 7mm wide.					
	Equipment: Cab Top	le Percu Drive R	ssive E otary F	loring	Rig	Groundwater No. Struck Behaviour Sealed	Ground Leve Coordinates	l 35.	81 m 00 338.2	mE	
Brit	Borehole Dia (m sh 450 tel 47/456 S to 30.52m	m) (■	Casing D 150 to S to 17	ia (mm) 17.15m '.00m		British Geological Survey	Drilled by Logged by Checked by	947 Kp mn Sw Jw	54.5	mN	
	Remarks See key sheet and appendices for explanations.								Ē		
Ī	Borehole I	Recor	d			Project	Contract	D220	0	1/0	
ľ	Explo	n Geologica Fation	ASS	ociate	es	Departmentigkin daansoorsuwey Motorway Widening Unit	Borehole	324	(3 of 4)	-Curvey-	

Sampling					Strata					
Drill Run	TCR (SCR)	Casing (BOD)	Date/	SPT N	Description	Depth	Lovel	Len	and	
in Gralegical Subr	10011		21/04	7	30.17m to 30.42m; sub-vertical gypsum filled discontinuity, 25mm wide.	(Phickness)	gi oar sur ve			
30.52						30.52	5.29			
					End of Borehole.	Ē				
E	litish Geolog	cal Surve			British Geological Survey	-	В	itish Geol	ogical S	
-										
ish Geological Surve					Brilish Geological Survey	British Geold	gical Surve			
E	ritish Geolog	ical Surve			British Geological Survey		В	iitish Geol	ogical	
• tish Geological Surv •	V				Brilish Geological Survey	British Geold	gical Surve	ý		
	ritish Geolog	ical Surve			British Geological Survey		B	ritish Gedi	gical	
Equipment Cat	le Percu	ssive	Boring	Ria	Groundwater	Ground Lev	ei 35	.81 m 0		
Top Borehole Dia (m 1500 to 17019 Sto 30 52m) Drive A m) (W	Casing [150 to	Rig Xia (mm 17.15m) n	No. Struck Behaviour Seale British Geological Survey	Dritted by	s 11 94 ^{gical} Suma	338.2 54.5	m	
Remarks	-					Checked by		·		
and appendices or explanations					Project	Contract		Fo	rm 1,	
Borehole	Recor	d Ical Survey			M6 Widening Junctions 16 to 20 Department of Midnappontal Survey	Contract	D220	0	ogical (

.

• • • • •				SL NE	/31
8	ritish Geological Survey	(table)	7 NY		vey
			CC		TAL
e An S		Thickness of strata	Depth from surface	Level reduced to ordnanc	
	British Geological Survey	British Geolo	31.66 *	+ 57.65'	British Geological Survey 9 · 64
	Fine sandy gravel	5.01	36.661	+ 52.651	11.17
	Gravel	6.01	42.661	+ 46.651	13.00
	Red Marl	8.01	50.661	+ 38.651	15 (44
	ritish Geological Survey British C Hard red & grey marls	Seological Survey 144.97↑	195.631	British Geological Su - 106.32 1	vey 59.62
	Brown & grey marls	10.0'	205.631	- 116.32'	62-67
	Marly ROCK SALT	30.01	235.631	- 146.32'	71-8
	ROCK SALT	72.01	307.631	- 218.321	93.76
	Marly ROCK SALT	2.0 ^{British Geolo}	³⁰⁹ 63 1	- 220.321	British Geological Survey 94 · 37
	Red Marl	6.0'	315.631	- 226.321	96 . 20
	Grey Marl	4.01	319.63!	- 230.321	97.10
	Red Marl	7.01	326.631	- 237.321	99.50
· B	ntish Geologia Start ROCK SALT	3eolo 28 500	354.631	- 265.32 Mai Su	ivey
	Red & grey marl	1.0'	355.631	- 266.321	108.39
	ROCK SALT	49.01	404.631	- 315.32'	123.33
	Red marl	6.0'	410.631	- 321.32'	125 . 16
	Hard ^{enig} reysismarl	6. OB tish Geolo	91 41.6 2 63 1	- 327.321	British Geological Survey
	Red marl .	4.5'	421.13'	- 331.82'	128.36
	Grey marl	2.5'	423.631	- 334.32 '	129.12
	Red marl	9.0'	432.631	- 343.32 '	
В	ritish GeoleROGKey SALT	Geologia .5.5	506.13'	- 416.821	131-86
	ROCK SALT with marl	13.5'	519.631	- 430.321	158.38
	Hard grey marl & ROCKSALT	49.01	568.631	- 479.321	173.31
	ROCK SALT & marl	30.01	598.631	- 509.321	182 - 46
	British Geological Survey	British Geolo	gical Survey		British Geological Survey

	Releases from confident	CHESHIRE	34NEC 7
British Geological Survey	CONGRANT	Brine & Wa	ter W , A
······································		775	1010.
r ·	H. 150 STRATA	3-4NE/73	-
L	SJ 71347475	1	
British Geological Surv	vey British Geolog	ical Survey	Depth from
Description of a	Strata	Thickne	ss Surface
Dugwell		10'-0"	10'-0"
Red Clay		7'-0"	17'-0"
Sand and Gravel		<u>"0-'8</u>	25'-0"
Red Clay and Gr	avel	11°-0"	20 -0"
Brin Red Clay	British Geological Survey	51-01	
Red Clay and Gr		5'_0"	47
Red Mari with G	ravel	5'-0"	57'-0"
Red and Grey Ma	ypsum with Gungum).'-6"	61'-6"
Red Marl with G		5'-0"	66!-6"
Red and Grev Ma	rl with Gyosum	2'-6"	69'-0"
Red Marils with G	NOSUM British Geolog	ical Survey 5'-0!	British Garikeical Solvey
Red and Grey Ma	rl with Gypsum	7'-0"	81 -0"
Red Marl with G	ypsum	7'-6"	88!-6"
Red and Grey Ma	rl with Gypsum	7'-0"	95'-6"
Grey Marl with	Gypsum	2'-6'	98'-0"
Red Marl with G	ypsum	5'-0'	103'-0"
Red and Grey Ma	arl with Gypsum	10'-0'	113'-0"
Britis Red of Marl with G	British Geological Survey	Gritist Qeo	logical Survey 119 –0"
Red and Grey Ma	arl with Gypsum	7'-0'	126 -0"
Grey Marl with	Gypsum	6'-0'	132'-0"
Red and Grey Ma	rl with Gypsum	60	128'-0"
Grey Marl with	Gypsum	12'-0'	1500"
Red and Grey Ma	arl with Gypsum	2'-0	
Red Marl with G	ypsum	4 -0	
Red and Grey Ma	arl with Gypsum British Geolog	ical Survey	British Geblogical Survey
Core worn away	·	02 -01	$242 - 0^{\circ}$
Grey Marl and G	ypsum	5 -0	247 -0° 1 959'-6"
Red and Grey Ma	ari with Gypsum	5'-0'	252 -0 1 257'-6"
Bod Mari with	lypsum)	262'-0"
Red Mari with d	nj with Gungum	2'-6'	26, '-6"
Grev Marl with	Gunsum	1'-6'	266'-0"
Red Marl with G	British Geological Survey	British Geo	266'-6"
Grev Marl with	GVOSUM	4'-0'	270'-6"
Red and Grey Ma	arl	1'-6'	272'-0"
Red and Grey Ma	arl with Salt Pockets	2'-0'	274'-0"
Grey Marl		2'-6'	276'-6"
Red and Grey Ma	arl with Gypsum	5'-6	282'-0"
Red and Grey Ma	ritish Geolog	ical Survey	
R.H. Red and Grey Ma	arl washed away	7'-0'	
- Salt Rock with	Marl		" <u>294'-0"</u>
Salt Rock	7 /		
Red and Grey Ma	arl		
Salt Rock	¥e]		
- Salt Rock with	Mari		
Red and Grey Me	Bri With Salt Voins	I ──O <u>ata</u> Retitish G <u>a</u> e	
Grey Mari With	Oner Men]		1 3317_61
- DALT ROCK WITH	GLAN WELT		1 35). 1_ 6#
- DALL RUCK	m with Red Solt		" 356 '_ O"
VOU SUIG GLOÀ WE	ATT WIGH NOU DAIL	, -0	

-Salt	Rock	3'-	-0 <u>1</u>	359"-0"
	British Geological Survey	British Geological Survey		British Geological Survey

-2-British Geological Sur SJ 77 Ster Volumer 6 4

		Depth from
Description of Strata	Thickness	Surface
		70100
- Salt Rock with Mari		7701 0
- Salt KOCM Geological Survey British Geological Survey		British Depident Survey
Red Marl	2"	5/2 - 5"
Grey Marl	3"	372 -6"
Salt Rock	- 2'-0"	374!-6"
Salt Rock with Marl		378'-6"
Salt Rock	- 64'-0"	442'-6"
Salt Rock with Marl	-1'-3"	443"-9"
Britis Greycal Marl with Red Salt British Geological Survey	British Sological S	urvey 444 -0 -
Red and Grev Marl with Red Salt	2'-0"	226'-0"
Red Marl with Red Salt	5 -0"	251'-0"
Salt Rock	- 1'-0"	152'-0"
Red and Grev Marl). - O ^H	1.56!-0"
Grev Morl	1'-0"	1.57'-0"
Ded and Grev Marl with Salt Rock	6#	157'-6"
Crew Mari with Pod Colt	11_01	158'_6"
CICY Memil Geological Survey	1 -01	
Red and Grey Mari with Red Sait		459 -0"
Red Mari With Red Salt	55.	404 -9:
Salt Rock		470 -5"
Grey Marl	2"	470 -6"
Salt Rock	- 3"	470 -9"
Grey Marl with Red Salt	2'-6"	473 - 3"
British Geological Survey	- 2"-6"	475 '-9''
Red and Grey Marl	1'-0"	476'-9"
Red Marl with Red Salt	3'-6"	480'-3"
Salt Rock	- 4'-0"	484 - 3"
Marly Rock	- 9"	485'-0"
Grev Marl	3"	185°-3"
Marly Rock	- 6"	485'-9"
Grev Marl with Salt	1'-6"	187'-3"
Selt Bock British Geological Survey	- 5'-0"	British Geological Strivey
Red Morl with Solt Veing	6"	1.92'-9"
Rod Solt	311	1931-0"
Rod and Grey Man	11_0	101-0#
Rod And Groy Mari	2'-0"	196'-0"
Mon Mail With Nou Bail	11-01	490°-0
Mariy Rock		47/ -0:
British Geological Survey	British Geological S	
Salt Rock with Grey Mari	71.01	557 -0"
Salt ROCK		544 -0"
Grey Marl with Salt Veins	10	545 -0"
Grey Marl	1 -6"	546 6"
Red Marl	6 '-0 "	552 -6"
Red and Grey Marl	5'-0"	557 -6"
Grey Marl	2"-6"	560'-0"
Marly Rock Survey British Geological Survey		British 561 and South
Grey Marl	2'-0"	563'-6"
Red Marl with Red Salt	4 -6"	568'-0"
Red and Grey Marl	5'-0"	573'-0"
Grey Marl with Red Salt	1-6"	574'-6"
Red and Grey Marl with Red Salt	6"	575'-0"
Salt Rock with Marl	─ 5 '-0 "	580'-0"
British Geological Survey	- 78 Mish Offogical S	658'-0"
Grev Marl	- 6"	658'-6"
Red Marl with Red Salt	5'-3"	663'-9"
Red and Grev Marl with Salt	- Qii	6616"
TO ATO GTON MALT MIGH DATO		

Page 4 | Borehole SJ77SW64 | Borehole Logs

British Geological Survey

		Deptn from
Description of Strata	Thickness	Surface
	w. 11 70	6751 00
Salt Rocksh with Grey Marl British Geological Survey		Brition & Bogitz Murvey
Red and Grey Marl with Red Salt	2'-0"	
Marly Rock		700'-0"
Salt Rock	-11'-6"	/11'-6"
Grey Marl with Salt Veins	1'-6"	713'-0"
Salt Rock	- 1'-0"	714'-0"
Marly Rock		718'-0"
Bri Spelot aic Rock British Geological Survey	🛩 11 BritsQGeological	survey 729'-0"
Marly Rock	- 6'-6"	735'-6"
Red Marl with Salt Pockets	3"	735'-9"
Salt Rock		736'-9"
Red and Grev Marl with Salt	6"	737'-3"
Salt Bock	- 12'-3"	749'-6"
Marly Rock	 5 '- 0"	754'-6"
Salt Book Goological Survey	···· 94 '- 0"	848'-6"
Marly Rock	- ~ 4'-9"	853'-3"
Red Norl with Salt Pockets	91	854'-0"
Red and Grev Marl with Salt Pockets	7'-0"	861'-0"
Grew Morl with Red Salt	1'-0"	862'-0"
Bed and Grey Mari		862'-3"
30 Crow Norl with Ded Salt	1' <u>~</u> Õ"	863'-3"
Dod and Crow Mari with Red Salt	1'-0"	864'-3"
Brithelingstillweyerey Marri with Rod Solt	British Geological	Survey 870'-3"
New Red Mari With Red Sait Poolets	5'-6"	875'-9"
Red and Grey Mari with Sait Fockots	- 31-31	879'-0"
Salt Hock with Grey Mari	31_61	882'-6"
Red Mari	11'-6"	897'-0"
Salt Rock		906'-0"
Marly Rock	70'-6#	978'-6"
Salt Rock Geological Survey British Geological Survey	11 ()!	
Grey Marl with Salt Rock	1,-0"	979 -0
Red Marl with Red Salt	4 -0"	904 -0"
Marly Rock	- 20"	900 -0"
Salt Rock		907 -0"
Red and Grey Marl with Salt	4 -0"	991 -0"
Salt Rock	-2'-0"	995 -0"
Grey Marl with Salt Rock	-Bittish &eological	Survey 0071 ("
Salt Rock		997 -6"
Red and Grey Marl with Salt	1'-0"	990 -0" 1000 -0"
Red and Grey Marl	16"	1000 -0"
Grey Marl	16"	1001 -6"
Red and Grey Marl	20"	1005"-6"
Red Marl with Red Salt	2'-0"	1005"6"
Red and Grey Marl with Red Salt	3'-0"	1008"-6"
Red Mari	3'-0"	Bund Odolday a 2004
Red and Grey Marl with Salt	1'-0"	1012'-6"
Marly Rock	-4'-0"	1016"-6"
Salt Rock		1019'-6"
Red and Grey Marl	2'-6"	1022'-0"
Red Marl with Salt Veins	5'-6"	1027'-6"
Marly Rock	- 3'-0"	1030'-6"
British Geological Survey	1 British () Hogical	Survey 1041 -6"
Red and Grey Marl with Red Salt	5'-0"	1046'-6"
Marly Rock	-1'-0"	<u> 1947'-6"</u>
Red and Grev Marl with Salt	5'-6"	1053'=0"
	01 01	10601-08

http://scans.bgs.ac.uk/sobi_scans/boreholes/783777/images/12270527.html

http://scans.bgs.ac.uk/sobi_scans/boreholes/783777/images/12270528.html

07/03/2014

					ouata	13223	730	67		
Depth	Туре	Casing Depth	Date/ Water	SPT N (Cu)	Description	Depth	Level			
Ceological Sullis			29/03		Turf and Topsoil. (Topsoil)	G.L.	39.42	77777	T	
0.20-0.45	B				NADE GROUND: Dark grey sandy clay with much	0.20	39.22			
0.50-0.95	Č		DRY	7	[Made Ground]	Æ °.45	38.97			
					Firm becoming stiff grey-brown fissured sandy CLAY with a little gravel and grey silt on	E		<u> </u>		
					fissures.	E				
1.50-1.95	D SD	1.00	DRY	6		E .				
1.50-1.95 _{Brit}	sh Gelogi	al Survey		-	British Geological Survey	Ę	Briti	ish Geologi	V	
•		1				F			V	
2.40	D				Relow 2.40mt occasionally monthly laminated	(3.65)				
2.55-3.00	SD 8	2.00	DRY	6	contraction coordinately poor cy cammated.	Ē				
						£			ľ	
						Ē			ľ	
3.40 3.50*31.95vev	SD SD	3.00	DRY	7	British Geological Survey	British Geologi	al Survey		ľ	
3.30-5.95	В					Ę			ľ	
4.10	D SD	4.00	DPY	16	firm to stiff doub beaus south first state	- 4.10	35.32		Y	
4.25-4.70	8				little fine and medium gravel.	E I	1		Y	
					[Glacial Till]	Ē			Y	
5.05						E			Y	
5.15-5.60	SĎ	5.00	DRY	14		Ē			Y	
Brit	ish Géologi	al Survey			British Geological Survey	È	Briti	istræćenosi 	Y	
6.00						E			V	
6.15-6.60	SD	6.00	DRY	15		E (3.60)		·	k	
6.15-6.60	B					F				
						F				
7.10	ь					E				
7:15:7:68	SD B	7.00	DRY	15	British Geological Survey	British Geologi	cal Survey			
7.70						F				
7.90-8.35	so	7.50	DRY	11	Stiff dark brown thinly laminated slightly	F 7.70	31.72			
7.90-8.35 8.00	B				[Glacial Laminated Clav]	E		 		
						Εl				
8.75 8.85	B				At 8 95mr with longer of good and south	E (1.60)				
9.00-9.45 9.00-9.45	SD ish Beolog	8.90 cal Survey	8.50	22	At 9.00m: with thin bands of clayey silt. British Geological Survey	E	Brit	isin Geologi	1	
				}		9.30	30.12			
					stiff dark brown sandy very silty CLAY with traces of gravel.	Ē				
9.80	SD SD	9.60	9.00	27	[Glacial Till]	F		<u> </u>		
uipment: Cabl	e Percu		Posing		Groundwater	<u> </u>]		
	e reica	531VC	boring	*'9	No. Struck Behaviour Sealed	Ground Leve Coordinates	el 39. s <u>11</u> 3	.421 a 0	D	
prehole Dia (mr	n) (asing [Na (mm)		1 8.00 Rose to 7.50m in 20 minutes. 2 Brits 10 Bological Survey 22.50	British Geologia	ادب cal Survey	00.0		
	•	.JU TO	22.300			Drilled by Logged by	BH JW			
emarks	1. Ha	rdi stra	ata/Chi	selling	g: 17.00m to 17.70m (2 hours).	unecked by			_	
a kay shaat										
d appendices										
explanations								For	m	
explanations.		-1			Project	Contract				
explanations.	Recor	d			Project M6 Widening Junctions 15 to 20 Department of Japanesers	Contract	D220	1 0		
,	<u> </u>	Type Casing Date/ Depth Date/ Water 7.95-10.40 8 29/03					SJTT	scu 2	57	
-------	---	--	---------------------	------------------	-------------	--	--------------------------------------	--------------------------------	-------------	-------------
	Sampling	ampling Nepth Type Casing Date/ Depth Water .95-10.40 8 29/03 0.90 p				Strata				
Drift	Depth	Туре	Depth	Water	(Cu)	Description	(Thickness)	Level	Lege	nd
BIN	9.95-10.40	8		29/03		(See previous sheet - sandy CLAY)		ai Suitey		
	10.90 11.00-11.45 11.00-11.45	0 S0 S	11.00	10.30	34					
	Bri	ish Geologi	cal Survey			British Geological Survey	E	Brit		
	11.90 12.05-12.50 12.05-12.50	D SD B	12.00	10.00	40		(5.8 0)			
	12.90 13.10-13.45 13.10-13.60	D C B	13.00	12.00	78/ 150					
Brit	sh Geological Survey					British Geological Survey	British Geologi	al Survey		
(14.00 14.20-14.65 14.20-14.65	D C B	14,00	12.50	48					
	14.65		14.50	12.00			ŧ			V/
	14.90 15.00-15.45	0 S0	14.50	13.00	18		15.10	24.32		V/
	15.00-15.45 15.10	B V ish Geologi	cal Survey			Medium dense brown fine and medium SAND. [Glacial Sand and Gravel]	£ 15.35	24.07 Brit	ish Geologi	
						Firm to stiff dark brown very sandy CLAY with traces of gravel.	E			$\langle /$
	15.90 16.00-16.45 16.00-16.45	D C 8	15.90	14.00	13	[Glacial Till]	L (1.15)			
	16.60-17.05 16.60-17.05	50 80	16.50	13.80	25	Firm to stiff brown thinly laminated very silty CLAY. Silt on laminae.	(0.40)	22.92		
Brit	17.05-17.15 17.05-17.60 th Geological Survey	C B	17.00	15.00	78*/ 100	Stiff dark brown very sandy CLAY with some fine to coarse gravel.	16.90 British Geologi	22.52 al Survey		
	17.70 17.80-18.25 17.80-18.25	D C B	17.50	16.00	30	From 16.90m to 17.60m; with frequent cobbles and small boulders.				
C	, 18.65 18.75-19.20 18.75-19.20 18.75-19.20	D C B ish Geolog	18.50 cal Survey	16.00	36	Brittsh Geological Survey	ي م الم م م	Brit		
	19.70 19.80-20.25 19.80-20.20	D C B	19.60	17.40	39					
	Equipment: Cab	le Perc	ussive	Boring	Rig	Groundwater No. Struck Behaviour Sealed	Ground Le Coordinat	vel 39 es <u>11</u>	.421 m (x ست
Bri	Borehole Dia (m sh 150 to 26.10	im) In	Casing 150 to	Dia (mn 22.50	n) Ma	British Geological Survey	Drilled by Logged by Checked b	ys Kalst BH ey JW		1124
	Remarks									
	See key sheet and appendices for explanations								Fo	rm 1/0
	Borehole	Reco	rd			Project M6 Widening Junctions 16 to 20	Contract	D22	200	
	Expl	tish Geologi Oratio	n As	socia	tes	Department of Transport Motorway Widening,Unit Survey	Borehole	30	4(2 of 3	cal Survey

	Campling						רדדכ	sw 2 g	57	
	Sampling		Casing	Date/	SOT N	Strata				
Briti	Depth Geological Survey	Туре	Depth	Water 30/03	(Cu)	Description	Depth (Thicknass)	Lovel	Leg	end
	E I			30/03		(See previous sheet - sandy CLAY)	Ē			$\overline{\mathbf{z}}$
	E						È			\mathbf{Y}
	20.70	0 C	20.50	18 00	40		Ē			Y/
	20.85-21.30	ğ	10.50	10.00	**	Below 21.00m: becoming very stiff.	E (7.70)		<u> </u>	Y/
	E		1				E			Y/
	21.69.22.20	2	21 50	20 00	**		F			V/
	21.75-22.20	B	S.No.	20.00	07	British Geological Survey	F	Britis	si Uraningi	Y/
	E						Ē			V/
	22.60	•					E			V/
	22.75-23.20	Č	22.50	DRY	60		E		· ·	V/
	E	-					È.			V/
	E						E			V/
Briti	Geological Survey	n				British Geological Survey	o ritish Geologi	al Survey	<u> </u>	\bigvee
	23.80-24.25	Č	22.50	DRY	49		Ę		<u> </u>	
Ċ					i		E			$\langle \rangle$
	24.55	•					E			ľ/,
	24.60	SD SD	22.50	DRY	76	Red-brown thinly and thickly laminated silty	£ ^{24.60}	14.82		ľ/,
	F					discontinuous gypsum bands.	Ę			Y/.
	E British	1 Geologic	I Survey			[Mercia Mudstone WG IV] British Geological Survey	E	Briti		
	25.60	SD D	22 50	DOY	76	British ocological ourway	F	Dila		\mathbb{Y}
	25.65-26.10	Ď	22.50	26.10	~		Ę			$\langle /$
	20.10	_		-			F 26.10	13.32		F - 4
	F					End of Borehole.	E			
	E						Ē			
	E						È			
Brit	sh Geological Survey					British Geological Survey	British Geolog	al Survey		
							E I			
							ΕI			
C			l				E I			
	-						E			
							E			
	Bridish	n Geologiia	al Survey			British Geological Survey	F	Brite	sh Geologii	al Survey
							E .			
Ē							E			
ļ	- 1				- 1		Εl			
ł	Equipment: Cable	e Percu	ssive I	locing	Ria	Groundwater				
						No. Struck Behaviour Sealed	Coordinate		228.0	° n∈
B	Borehole Dia (mm) (asing D	6a (mm)		British Geological Survey	British Geologi	al Survey		-
Ĩ			130 18	22.500			Drilled by Logged by	BH JW		
T	Remarks				1		LUNECKED by			
	San kau s									
	and appendices									
H	ior explanations.					Project	<u> </u>		For	m 1/0
	Borehole R	ecord	đ			M6 Widening Junctions 16 to 20	Contract	D220	0	
Γ	Explan	n Geologica	ai Survêý			Department of stransportSurvey Motorway Widening Unit	Borehole	Briti	sh Geologir	al Survey
L	C rybiot	auon	ASS	ciate	:5			304	(3 of 3)	

Appendix C

Geological Logs for Plumley PSD (2014)

	V	Wo	rleyl	Par	SO	ns					Bore	hole No.
		Со	nsul	tin	q			BOREH	IOLE LOG	ì	E	3H-1
11a Alm	a Road,	Leeds, LS	6 2AH Tele	ephone:	+44 (0)1	13 275	1025 E-	mail: environment.info	@worleyparsons.com		She	et 1 of 1
Projec	ct Nan	ne: Lind	IS				Project	t No: 51670-00	Co-ords: E 372293	N 374177	Hoi D	e Type S+RC
Locat	ion:	Plun	nley, Che	shire					Level: 30.19mA	OD	5	
Client	•	ESS	AR Oil (L	K) I td					Dates: 13/03/2014	to: 13/03/2014	I.	SU.UU
	•								Contractor: CCGI L	td	PR	RE
(m)	Water Levels	Sample	s & In Situ To	Result	Legend	Depth (m)	Level (mAD)		Description			Install
-		B	0.00 - 0.20	literation	<u></u>	0.20	29.99	Grass over dark brow	n clayey SAND. Sand is fine t	o medium (TOPSOIL). ium to	
		в	0.40 0.50 - 0.90	0				coarse. Gravel is angl (GLACIAL TILL).	ular to sub-angular fine to me	dium of flint and quar	tz	
	1 ∠					(1.00)						
	-			N=0		1.20	28.99	0.9 m bgi becoming v	ery soft	silty CLAV Sand is o		
						1.50	28.69	Gravel is angular to survey TILL).	ub-angular fine to medium of	flint and quartz (GLA)		
						(0.70)		Soft locally firm dark r (GLACIAL TILL).	eddish brown sandy silty CLA	Y. Sand is coarse		
2 _				N=10		2.20	27.99	Firm dark raddiab bra	un alighthugroughuugauaand	vailty CLAX Condia		
								coarse. Gravel is angl and guartz (GLACIAL	ular to sub-angular fine to me TILL).	dium of sandstone, fl	int 2	
						(1.30)			,			
3 —		U70	3.00 - 3.45		 							
						3.50	26.69	Medium dense dark re	eddish brown slightly silty SA	ND Sand is coarse		
					× · · ·	(0.50)		(GLACIAL TILL).				
4				N=27	· · · · ·	4.00	26.19	Borehole completed a	t 4.00m		f	4.00
5 _												
-												
6 -												
-												
-												
7 _												
-												
	DK6.			1	I	1	1	1				I
Hand p	it from C	GL to 1.10m	bgl. at 0.90m bol									
Hole co Hole te	ollapsed rminated	at 3.00m bo	gl, casing add	ed. could not	be progr	essed fu	ther.					
INO VISU	iai or olfa	actory evide	nce of contar	nination.								
NOTE: F	PID resu Iwater:	lts are repo	rted as ppmv.					Hole and Install Det	ails:	Key:		
Dat	e	Strike Do (m)	epth Cas	ing Dept (m)	h De Obse	epth After ervation (m)	Drilling Method: Terrie Borehole Diameter:	r 2002	m bgl: Meters bel m AOD: Meters a	ow groun bove orda	d level anace
13/03	8/14	0.90)					Screen Material:		NVO: No visual o of contam	r olfactory	vevidence
								Screen Diameter: Screen Slot Size:		⊉ Water Stri	ke Level	
								Sand Particle Size:		🛓 Water Re	st Level	

Weight of the second		XW/	Wo	rlev	Par	SOI	าร					Bore	hole No.
It a Ama Rud, Loods, LS 02-H1 Telephone: +44 (0):13:275 1025. E-mail: environment.info@vorollegarsens.com Sheet 1 of 2 Project Name: Lindis Project No: 5670-00 Co-ords: E 372689 N 373922 Heile Type DSHRC Location: Plumley, Cheshire Level: 33.88mAOD Date: 14032014 to: 14032014 Scole Client: ESSAR OII (UK) Ltd Contractor: CCGL Ltd Contractor: CCGL Ltd Scole m Voet Sandard Strategies 1 Telescole Scole 1 0 8.89.77 0 Optim Level: 33.08mAOD 1 0 8.89.77 0 Optim Level: 30.077 1 0 8.89.77 0 Optim Level: 30.077 1 0 8.89.77 0 Optim Level: 30.077 1 0 3.99.78 10.00 8.77 Firm data indian oppidate gray standy alky CLAY. Sand is fine to median 2 0 2.99.780 5.90 <td>Y</td> <td></td> <td>Co</td> <td>neul</td> <td>tin</td> <td>a</td> <td></td> <td></td> <td>BOREH</td> <td>IOLE LOG</td> <td></td> <td>BH</td> <td>I-2(S)</td>	Y		Co	neul	tin	a			BOREH	IOLE LOG		BH	I-2(S)
Project Nome: Lindis Project Nome: Coordia: E 372689 N 373922 Hole Type Location: Plumley, Cheshire Level: 33.88mAOD Dates: 14032014 to::14032014 Scale 1.500 Client: ESSAR OI (UK) Ltd Scale Total Status Scale 1.500 Scale Scale 1.500 Scale Scale 1.500 Scale Scale Scale 1.500 Scale Scale Scale 1.500 Scale Scale Scale Scale Scal	11a Alm	na Road	Leeds LS		enhone.	9 +44 (0)1	13 275	1025 E-	mail: environment info	@worlevparsons.com		Shee	et 1 of 2
Location: Plumley. Cheshire Level: 3.368mA0D Date: Solution: Solution: (i) Water ESSAR OI (UK) Ltd Contractor: CCGI Ltd Cont	Proje	ct Nan	ne: Lind	is		(0)1		Project	51670-00	Co-ords: E 372689	N 373922	Hol DS	e Type S+RC
Client: ESSAR Oil (UK) Ltd Date::::::::::::::::::::::::::::::::::::	Loca	tion:	Plun	nley, Che	shire					Level: 33.68mA	DO	S	cale
Client ESSAR OI (UK) Ltd Contractor: CCGI Ltd Logget by Contractor with restart (m) Versity Samples & In Situ Testing, Logend Droit, Internation, Logend Droit, Logend Droit, Internate Logend Droit, Internation,										Dates: 14/03/2014 t	p: 14/03/2014	1:	50.00
Image: Normal State Sample A is that interaction Description Image: Normal State 1	Clien	t:	ESS	ar oil (u	IK) Ltd					Contractor: CCGI Lt	b	Logged B	y Checked By RE
Image: Note that is the probability of the second	(m)	Water Levels	Sample	s & In Situ T	esting	Legend	Depth (m)	Level (mAD)		Description			Install
1 0	-		B ES	0.00 - 0.40	Result	 	()	(Firm dark brown mot	led grey sandy silty CLAY. Sar	nd is fine to medium		0.05
1 1			B B B	0.40 0.50 - 0.70 0.70 - 0.90 0.90 - 1.20	0	+ + + + + + + + + + + + + + + + + + +	(0.90) 0.90	32.78	(GLACIAL TILL).	wn mottled arev sliahtlv arave	ly sandy clayey SILT	with	0.50
2 B 200-3.00 N=17 X X 4 100 3 U100 300-3.50 N=17 X 4 4 0 m bgl becoming soft 4 B 4.00-5.00 N=14 X 4 4 0 m bgl becoming soft 5 U100 5.00-5.50 N=14 X 4 6 0 m bgl becoming soft 6 U100 5.00-5.50 N=14 X 4 0 m bgl becoming soft 6 U100 5.00-5.50 Z 7.38 Suff reddish brown slightly sandy slight/gravely SAND. Sand is coarse. Gravel 7 B 6.50-7.00 N=32 Z 7.38 Suff reddish brown slightly gravely vey sand/suff. QLAOV. Sand is coarse. Gravel 7 B 6.50-7.00 N=21 Dark reddish brown slightly gravely vey sand/suff. QLAOV. Sand is coarse. Gravel 9 N=21 1.00 Z 7.38 Extendedish brown slightly gravely vey sand/suff. QLAOV. Sand is coarse. Gravel 8 6.50-7.00 N=21 U100 N=21 Toget reddish brown slightly gravely vey sand/suff. QLAOV. Sand is coarse. Gravel 9 Remover the top staft. Sand Sand Sand Sand Sand Sand Sand Sand			ES	1.20	0		, , ,		occasional pockets o to coarse of sandstor	grey coarse sand. Gravel is a e, flint and quartz (GLACIAL T	ngular to sub-angula ILL).	r fine	
3 0 0.00 3	2		В	2.00 - 3.00	N=17								
4 B 4.00 - 5.00 N=14 X × X 4.0 m bgl becoming soft 5 U100 5.00 - 5.50 Stiff reddish brown slightly sandy slity CLAY. Sand is medium to coarse 6 How Start St	3		U100	3.00 - 3.50			(4.10)						
5 100 5.00 - 5.50 100 28.68 Stiff reddish brown slightly sandy slity CLAY. Sand is medium to coarse 6 100 N=32 1.300 6.00 hg becoming firm 7 100 8 6.50 7.38 6.500 27.38 7 100 N=32 1.300 1.300 1.000 1.000 1.000 1.000 1.000 7 100 8 6.500 7.00 6.500 27.38 0.000 1.0000 1.0000	4 —		В	4.00 - 5.00	N=14		, , ,		4.0 m bgl becoming s	oft			
6 -	5	1 ⊻_	U100	5.00 - 5.50			5.00	28.68	Stiff reddish brown sl (GLACIAL TILL).	ghtly sandy silty CLAY. Sand i	s medium to coarse		
A B 6.50 - 7.00 A A A A B A B A B A B A <td< td=""><td>6</td><td></td><td></td><td></td><td>N=32</td><td></td><td></td><td></td><td>6.0 m bgl becoming f</td><td>irm</td><td></td><td></td><td></td></td<>	6				N=32				6.0 m bgl becoming f	irm			
B 7.50 - 8.00 N=21 (GLACIAL TILL). B 7.50 - 8.00 (GLACIAL TILL). REMARKS: (GLACIAL TILL). Hand pit from GL to 1.20m bgl. (GLACIAL TILL). Groundwater encountered at 5.00m bgl. (GLACIAL TILL). No visual or olfactory evidence of contamination. (GLACIAL TILL). Hole terminated at 8.40m bgl due to time constraints. (GLACIAL TILL).			В	6.50 - 7.00			6.30 6.50	27.38	Dark reddish brown s is angular to sub-ang TILL). Firm dark reddish bro coarse. Gravel is ang	ilty clayey slightly gravelly SAN ular medium to coarse of flint wn slightly gravelly very sandy ular to sub-angular fine to med	ID. Sand is coarse. G and quartz (GLACIAL clayey SILT. Sand is lium of flint and quar	bravel	
8 Image: Ima	-		В	7.50 - 8.00	N=21		(1.90)		(GLACIAL TILL).				
NEINIARTO: Hand pit from GL to 1.20m bgl. Groundwater encountered at 5.00m bgl. No visual or olfactory evidence of contamination. Hole terminated at 8.40m bgl due to time constraints. NOTE: PID results are reported as ppmy. Results are reported as ppmy.	8 -					⊢ .— . –		1				·	
	REMA Hand Groun No vis Hole to	KKS: bit from G dwater en ual or olfa erminated	L to 1.20m actory evide at 8.40m b	bgl. at 5.00m bgl. nce of contar bgl due to time	nination. e constra	ints.							
Groundwater:	Groun	dwater:	us are repo	neu as ppmv.					Hole and Install De	tails:	Key:		

Groundwater:				Hole and Install Details:	Key:
Date	Strike Depth	Casing Depth	Depth After	Drilling Method: Comacchio 205	m bgl: Meters below ground level
14/02/14	(III) 5.00	(11)		Borehole Diameter:	datum
14/03/14	5.00			Screen Material:	NVO: No visual or olfactory evidence of contamination
				Screen Diameter:	
				Screen Slot Size: Sand Particle Size:	↓ Water Rest Level

	W/	Wo	rleyl	Par	sor	าร						Bore	hole N	۱o.
ľ	Y	Со	nsul	tin	C			BOREH	IOLE	LOG		Bł	2(S))
11a Alm	na Road,	Leeds, LS	6 2AH Tele	ephone:	ə +44 (0)1	13 275 ⁻	1025 E-	mail: environment.info	@worleyparsc	ns.com		She	et 2 of	2
Proje	ect Nan	ne: Lind	is				Project	t No: 51670-00	Co-ords:	E 372689	N 373922	Ho	le Typ S+RC	е
Loca	tion:	Plun	nley, Che	shire				51070-00	Level:	33.68mAC	D	-	Scale	
			•						Dates: 1	14/03/2014 to	: 14/03/2014	1:	50.00)
Clien	t:	ESS	ar oil (u	K) Ltd					Contracto	r: CCGI Lto	I	Logged E	By Check	ed By E
(m)	Water	Sample	s & In Situ T	esting	Legend	Depth	Level		De	scription			Install	
-	Levels	No/Type	Depth (m)	Result		(m)	(mAD)							
-				N=29		8.40	25.28	Borebole completed a	at 8.40m					8.40
-									at 0.40m					
9 —														
-														
10 —														
-														
-														
11 -														
-														
-														
12 —														
-														
-														
13 —	-													
-														
-														
14 —														
-														
-														
- 15 —														
-														
-														
16 -														
-														
-														
17 —														
-														
NOTE:	PID resu	lts are repo	rted as ppmv.											
Groun	dwater:	Strike D	epth Cas	ing Dept	n _ De	pth After		Hole and Install Dep Drilling Method: Com	tails: acchio 205		Key: m bgl: Meters be	low grour	d level	
		(m)		(m) [`]	Obse	rvation (r	n)	Borehole Diameter:			m AOD: Meters a datum NVO: No visual o	above ord	anace v evideoc	e.
								Screen Material: Screen Diameter:			of contan ¹ / ₂ Water Str	nination	JUNICIL	~~
								Screen Slot Size: Sand Particle Size:			¥ Water Re	st Level		

WP BH LOG_31032014 PROJECT LINDIS, PLUMLEY.GPJ GINT STD AGS 3_1.GDT 28/4/14

Wê			riey	-ar	501	15		BORFI		LOG	Bor	enoie N BH-3
10.010	no Dood				9	12 075	1005 5				Sh	eet 1 of
Proje	ect Nar	ne: Lind	is	epitorie.	+44 (0)1	13 275	Project	t No:			H	ole Type
								51670-00	Co-ords:	E 372750 N 37	3822 E)S+RC
loca	ition:	Plun	nley, Che	shire					Level:	34.34mAOD	1	Scale . 50 00
Clier	nt:	ESS	AR Oil (L	JK) Ltd					Dates: 12	2/03/2014 to: 13/0)3/2014	By Checke
				,					Contractor	: CCGI Ltd	PR	RE
(m)	Water	Sample	s & In Situ T	esting	Legend	Depth	Level (mAD)		Desc	cription		Install
		ES	0.00 - 0.20	Result		0.20	24.14	Firm grey mottled o	ange slightly sand	ly CLAY. Sand is fine	e to medium	
2		В В U100 В	0.50 - 0.70 1.20 - 2.00 2.00 - 2.50 3.00 - 4.00	N=16		(6.30)		Firm dark reddish b Sand is medium to flint and quartz (GL/ 3.0 m becoming sof	rown mottled grey coarse. Gravel is a ACIAL TILL).	slightly gravelly sand	ly clayey SILT. ar fine to medium of	
5 - 5		в	4.00 - 4.50 5.50 - 6.00	N=18 N=29				5.0 m becoming firm	ı			
7				N=42	x o	6.50 (0.70) 7.20 7.50 7.60	27.84 27.14 26.84 26.74	Dense dark reddish angular to sub-roun Firm dark reddish b TILL). ∑Dark reddish brown is angular to sub-rou (continued on next	brown slightly gra ded fine to coarse rown sandy silty C slightly gravelly si unded fine to coars sheet)	velly SAND. Sand is of flint and quartz (G LAY. Sand is fine to r Ity clayey SAND. San se of flint and quartz	coarse. Gravel is iLACIAL TILL). medium (GLACIAL id is coarse. Gravel (GLACIAL TILL).	
Hand No gro No vis Hole t	HITAS: pit from C oundwate sual or off terminated : PID resu ndwater: ate	GL to 1.20m r encounter actory evide d at 9.50m t Its are repo Strike D (m)	bgl. ed. nnce of contar bgl. rted as ppmv epth Cas	nination. sing Dept (m)	h De Obse	pth After rvation (i	m)	Hole and Install D Drilling Method: Con Borehole Diameter: Screen Material:	etails: nacchio 205	Key: m bc m AC NVO	: JI: Meters below grou OD: Meters above or datum D: No visual or olfacto of contamination	Ind level danace bry evidenc
								Screen Diameter: Screen Slot Size: Sand Particle Size:		₹ 1	ot contamination Water Strike Leve Water Rest Level	¥

	1	11			
Groundwater:				Hole and Install Details:	Key:
Date	Strike Depth	Casing Depth	Depth After	Drilling Method: Comacchio 205	m bgl: Meters below ground level
	(11)	(11)	Observation (III)	Borehole Diameter:	datum
				Screen Material:	NVO: No visual or olfactory evidence of contamination
				Screen Diameter:	
				Screen Slot Size:	1 Mater Dept Level
				Sand Particle Size:	

		Wo	rleyl	Par	SOI	าร						Bore	hole No.
		Со	nsul	tin	a			BOREH	IOLE	LOG		E	3H-3
11a Alm	a Road,	Leeds, LS	6 2AH Tele	ephone:	- +44 (0)1	13 275 ⁻	1025 E-I	mail: environment.info	@worleyparsc	ons.com		She	et 2 of 2
Proje	ct Nan	ne: Lind	is				Project	: No: 51670-00	Co-ords:	E 372750	N 373822	Ho D	le Type S+RC
Locat	ion:	Plun	nley, Che	shire					Level:	34.34mAC	D	5	Scale
Clien	ŀ	FSS		K) I td					Dates:	12/03/2014 to	: 13/03/2014		50.00
	ι.								Contracto	or: CCGI Lto	1	PR	RE
(m)	Water Levels	Sample No/Type	s & In Situ T Depth (m)	esting Result	Legend	Depth (m)	Level (mAD)		De	scription			Install
9	PID resu	Its are repo	rted as ppmv	N=33		(1.90) 9.50	24.84	Firm dark reddish bro medium to coarse. G and quartz (GLACIAL 9.0 m bgl becoming s Borehole completed a	wn slightly grav ravel is angular TILL). (continu stiff at 9.50m	velly very sandy • to sub-angular <i>led from previou</i>	clayey SILT. Sand is fine to medium of fli is sheet)	ht	9.50
Groun	dwater:	Strike D (m)	epth Cas	ing Dept (m)	h De Obse	pth After ervation (r	" n)	Hole and Install Der Drilling Method: Coma Borehole Diameter: Screen Material: Screen Diameter:	tails: acchio 205		Key: m bgl: Meters beld m AOD: Meters al datum NVO: No visual or of contam	ow grour bove ord olfactor ination ke Level	l d level anace y evidence
								Sand Particle Size:			🛓 Water Res	st Level	

WP BH LOG_31032014 PROJECT LINDIS, PLUMLEY.GPJ GINT STD AGS 3_1.GDT 28/4/14

		rar	sol	15		BOREHOLELOG	Bore	noie N
CO	nsul	τιη	g	40.0	400		She	et 1 of
ad, Leeds, L ame: Lin	.S6 2AH Tel dis	ephone:	+44 (0)1	13 275	Project	nail: environment.info@worleyparsons.com No:	Но	
						51670-00 Co-ords: E 372882 N 37382	9 D	S+RC
Plu	mley, Che	shire				Level: 33.44mAOD		
			1			Dates: 10/03/2014 to: 11/03/20	14	01.00
EO	SAR OII (U	JK) Liu				Contractor: CCGI Ltd	PR	RE
er Sampl	es & In Situ T	esting	Legend	Depth	Level (mAD)	Description		Install
B B	0.00 - 0.50	Result	× ·× ·	()	(Firm locally soft dark reddish brown sandy clayey SILT with occ	asional thin	
			× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·× ·×			TILL).		
	0.50	0				0.5 m bgl becoming slightly gravelly. Gravel is fine to medium a sub-angular of flint and quartz.	ngular to	
	1.00		× · × · ×	(1.70)				: 目:
В	1.20 - 1.70	U	$\begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \times & \cdot & \times \end{vmatrix}$					
U100			. ×. × × . ×					
U100	1.70 - 2.20		× ×	1.70	31.74	Firm dark reddish brown slightly gravelly sandy clayey SILT. Sa	nd is medium	
						to coarse. Gravel is angular to sub-angular fine to medium of sa quartz (GLACIAL TILL).	ndstone and	
В	2.70 - 3.70	N=15						
				(4.00)				
U100	3.70 - 4.20			(4.00)				
_	470 570	N						
В	4.70 - 5.70	N=13				4.7 m bgl becoming soft		
В	5.70 - 6.70	N=23		5.70	27.74	Medium dense dark reddish brown slightly clavey gravelly SANF). Sand is	
			ι			coarse. Gravel is angular to sub-rounded fine to medium of flint (GLACIAL TILL).	and quartz	
			· · · · · ·	(1.00)		(,		
		N=42		6.70	26.74	Stiff dark reddish brown slightly slity slightly sandy CLAY. Sand	s coarse	
				(0.60)		(ULAVIAL I ILL).		
		N=34		7.30	26.14	Dense dark reddish brown slightly silty clavev sandy GRAVEL. S	Sand is	
			000			medium to coarse. Gravel is angular to sub-rounded fine to coa and flint (GLACIAL TILL).	rse of quartz	
			0000	(1.00)		. ,		
	Plu ESS er Sampl IS No/Type B U100 U100 B B U100 B B B B B B B	Plumley, Che Plumley, Che ESSAR Oil (U er Samples & In Situ T No/Type Depth (m) 0.00 - 0.50 0.75 0.00 0.75 1.00 1.20 - 1.70 U100 1.70 - 2.20 B 2.70 - 3.70 U100 3.70 - 4.20 B 4.70 - 5.70 B 5.70 - 6.70	Plumley, Cheshire ESSAR Oil (UK) Ltd er Samples & In Situ Testing No/Type Depth (m) Result 0.00 - 0.50 0 0.75 0 0.00 - 0.50 0 0.75 0 0.00 - 0.50 0 0.75 0 0.00 - 0.50 0 0.75 0 0.00 - 0.50 0 0.75 0 0.00 - 0.50 0 0.75 0 0.00 - 0.50 0 0.75 0 0.100 0 1.20 - 1.70 0 0 0.100 1.70 - 2.20 0 0 1.30 0.00 3.70 - 4.20 N=15 0 0 0.100 3.70 - 4.20 N=13 0 0 B 4.70 - 5.70 N=13 0 B 5.70 - 6.70 N=23 N=42 N=34 N=34 0 0	Plumley, Cheshire ESSAR Oil (UK) Ltd er Legend No/Type Depth (m) Result Legend 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.50 0 × × × × × × 0.100 1.70 - 2.20 × × × × × × 0.100 3.70 - 4.20 N=13	Plumley, Cheshire ESSAR Oil (UK) Ltd and the second of the secon	Plumley, Cheshire ESSAR Oil (UK) Ltd and for the second s	Samples & In Stu Testing Legend Depth (mAD) Level (mAD) Co-ords: E 372882 N 373825 ESSAR Oil (UK) Ltd Testing Legend Depth (m) Level (mAD) Level 33.44mAOD Testing Legend Depth (m) Level (mAD) Description Firm locally soft dark reddish trown sandy clayey SILT with occ layers (c10mm) of fine and medium sand in a soft grey clay math TLL). 0 0 X × X 1.70 31.74 Firm locally soft dark reddish trown saidy clayey SILT. Sar bo clares. Gravel is angular to sub-angular fine to medium of sa quartz (GLACAL TILL). 8 2.70 - 3.70 N=15	B Co-ords: E 372882 N 373829 Plumley, Cheshire Level: 33.44mAOD ESSAR Oil (UK) Ltd Dates: 100/32014 to: ar Samples & In Situ Testing Level: 33.44mAOD ar Samples & In Situ Testing Level: 33.44mAOD b 0001 050 Contractor: CCGI Ltd ar Samples & In Situ Testing Level Samples & In Situ Testing B 0001 050 Contractor: CCGI Ltd 0.50 0 × × × 1.70 0.50 0 × × × 1.70 0.50 0 × × × 1.70 0.10 0 × × × 1.70 0.100 1.20 - 1.70 × × × 1.70 0.100 0 × × × 1.70 0.100 0 × × × 0.100 1.20 - 1.70 × × × 0.100 0 × × × 0.100 0 × × 0.100 0 × × 0.100 0 × × 0.100 × × 1.70 1.100 0 × × 0.100 × × × 0.100 × × × 0.100

Groundwater:				Hole and Install Details:	Kev:
Date	Strike Depth	Casing Depth	Depth After	Drilling Method: Comacchio 205	m bgl: Meters below ground level
Date	(m)	(m)	Observation (m)	Borehole Diameter	m AOD: Meters above ordanace
	6.00			Core on Materials	NVO: No visual or olfactory evidence
1				Screen Material:	of contamination
				Screen Diameter:	
				Screen Slot Size:	
				Sand Particle Size:	VValer Res(Level

		Wo	rley	Par	SO	ns						Bore	hole 1	No.
ľ	Y	Co	nsul	tin	a			BOREH	IOLE	LOG		BI	- 4(S)
11a Alm	na Road	, Leeds, LS	S6 2AH Tele	ephone:) +44 (0)1	13 275	1025 E-	mail: environment.info	@worleyparsc	ons.com		She	et 2 of	f 2
Proje	ect Nar	ne: Lind	lis				Project	t No: 51670-00	Co-ords:	E 372882	N 373829	Ho D	ie Typ S+RC	e
Loca	tion:	Plur	nley, Che	shire					Level:	33.44mAC	D	1	Scale	 ו
Clien	ıt.	ESS		K) I td					Dates:	10/03/2014 to	o: 11/03/2014	Logged F	3v Check	ed By
		200							Contracto	or: CCGI Lto	1	PR	R	E
(m)	Water Levels	Sample No/Type	es & In Situ To Depth (m)	esting Result	Legend	Depth (m)	Level (mAD)		De	scription			Install	
9				N=28 N=50		(1.70)	25.14 23.44	Firm dark reddish bro Gravel is angular to s TILL). 9.0 m bgl becoming s Borehole completed a	own slightly san ub-angular fine stiff at 10.00m	dy slightly grave to medium of q	Ily CLAY. Sand is court and flint (GLA)	parse. CIAL		-10.00
11		B ES	1.00 - 1.201.00											
13														
			rted on norm											
Groun	idwater:	nts are repo	arteu as pprnv.		I		1	Hole and Install De	tails:		Key:			1
	ate	Strike D (m)	vepth Cas	ıng Dept (m)	n De Obse	epth After ervation (i	m)	Drilling Method: Coma Borehole Diameter: Screen Material: Screen Diameter: Screen Slot Size: Sand Particle Size:	acchio 205		m bgl: Meters belm AOD: Meters a datum NVO: No visual o of contart ↓ Water Stri ↓ Water Res	ow grour bove ord olfactor ination ke Level st Level	d level anace y evidend	ce

W		Wo	rley	Par	'SOI	ns		BODEL				Bore T	hole I	No.
_		Co	nsul	tin	g			DUKEF		LUG		Show	1- 0	f 1
11a Aln	na Road,	Leeds, LS	6 2AH Tel	ephone:	+44 (0)1	13 275	1025 E-	mail: environment.info	@worleypars	ons.com				<u> </u>
rioje			15					51670-00	Co-ords:	E 372831	N 374319	101 V	VLS	Ċ
Loca	tion:	Plun	nley, Che	shire					Level:	33.12mAC	D	S	cale	
									Dates:	12/03/2014 to	o: 12/03/2014	1:	50.00)
Clien	it:	ESS	ar oil (L	IK) Ltd					Contracto	or: CCGI Lto	ł	Logged B PR	y Check	⟨ed By KE
(m)	Water	Sample	s & In Situ T	esting	Logond	Depth	Level			acription				
(11)	Levels	No/Type ES	Depth (m) 0.00 - 0.20	Result		(m)	(mAD)	Grass over dark brow	n silty clavey o	coarse SAND. Sa	and is fine to medium	1	instan	
-	-		0.20	0	$\frac{I_{j}}{I_{j}} \cdot \frac{\chi \cdot I_{j}}{\chi} \cdot \frac{\chi}{\chi}$	(0.70)		(TOPSOIL).	, , , ,					
-		P	0.70			0.70	32.42		- 11 - 1- 41			2		0.50
1 -	-	В	0.70			(0.50)		TILL).	slightly sandy	SIITY CLAY. Sand	i is coarse (Glaciai			X X
-	-	U70	1.20 - 1.70			1.20	31.92	Firm dark reddish bro	wn slightly sar	ndy silty CLAY w	th frequent pockets			u XX
-						(0.80)		(<10mm) of light grey	fine to coarse	sand (GLACIAL	IILL).	2 G	336	NA INA
						2.00	31.10							
2 -				N=17		2.00	31.12	Borehole completed a	at 2.00m					-2.00
-														
-	-													
3 —	-													
-	-													
-														
4 —														
-														
-														
5 —														
-	-													
-	-													
6 —	-													
-	-													
-														
7														
-	-													
-														
8	ARKS: pwless Sa pit from C pundwate sual or olf	ampling Hol GL to 1.20m r encounter actory evide	e. bgl. ed. ence of contar	nination.	1		1	1						1
NOTE		14	ata d											
NOTE: Groun Da	PID resundwater:	Strike D (m)	rτed as ppmv epth Cas	sing Dept (m)	h De Obse	epth After ervation (m)	Hole and Install Det Drilling Method: Terrie Borehole Diameter: Screen Material: Screen Diameter: Screen Slot Size	tails: er 2002		Key: m bgl: Meters beld m AOD: Meters al datum NVO: No visual or of contam ↓ Water Stription	ow groun bove orda olfactory ination ke Level	d level anace / eviden	се
								Sand Particle Size:			¥ Water Res	st Level		

WorleyParsons BOREHOLE LOG											Borehole No. TP-4	
	Alma	Dood				y	12 075	1025 5				Sheet 1 of 1
Pro	oject	Nan	ne: Lind	is	epitione:	™44 (U)1	13 2/5	Projec	t No:			Hole Type
									51670-00	Co-ords: E 372797	N 373996	WLŚ
Lo	catio	n:	Plun	nley, Che	shire					Level: 34.58mA0	DD	
	ont [.]		FSS		K) I td					_ Dates: 12/03/2014 to	o: 12/03/2014	I . JU.UU
			200							Contractor: CCGI Lt	d	PR RE
(m	n) W	/ater evels	Sample	s & In Situ T	esting Result	Legend	Depth (m)	Level (mAD)		Description		Install
GINT STD AGS 3_1.GDT 28/4/14 5 C 28/4/14 9 C 28/4/14			B B U70 B	0.00 - 0.20 0.00 - 0.20 0.40 - 0.60 1.20 - 1.70 2.00	0 N=14		(0.40) 0.40 (0.60) 1.00 1.20 (0.80) 2.00	34.18 33.58 33.38 32.58	Grass over firm dark with frequent rootlets sub-angular fine to m Firm dark reddish bro medium to coarse. G and quartz (GLACIAL Reddish brown silty of Firm slightly gravelly is angular to sub-ang Borehole completed a	yellowish brown slightly gravel . Sand is medium to coarse. G ledium of flint and quartz (TOP jown slightly gravelly very sandy iravel is angular to sub-angular . TILL). clayey SAND. Sand is coarse (ivvery sandy silty CLAY. Sand is jular fine to medium of flint and at 2.00m	y very sandy clayey 3 ravel is angular to SOIL). clayey SILT. Sand is fine to medium of fli GLACIAL TILL). medium to coarse. (quartz (GLACIAL TI	SILT ant Gravel LL). 2.00
	REMARKS: Windowless Sampling Hole. Hand pit from GL to 1.20m bgl. Slight water seepage in base of hole. No visual or olfactory evidence of contamination. NOTE: PID results are reported as ppmv. Croundwater: Hole and Install Details: Kerr											
WP BH LOG_31032014 P	Date	vater:	Strike D (m)	epth Cas	ing Dept (m)	h De Obse	pth After rvation (m)	Hole and Install De Drilling Method: Terrie Borehole Diameter: Screen Material: Screen Diameter: Screen Slot Size: Sand Particle Size:	talis: er 2002	Key: m bgl: Meters bel m AOD: Meters a datum NVO: No visual o of contant ↓ Water Strip ↓ Water Res	ow ground level bove ordanace r olfactory evidence nination ke Level st Level

		Wo	rlev	Par	SO	ns					Boreho	ole No.
		Co	nsul	tin	C			BORE	HOLE LO	G	TF	P-5
11a Alm	a Road,	Leeds, LS	6 2AH Tele	ephone:) +44 (0)1	13 275	1025 E-	mail: environment.info	@worleyparsons.com		Sheet	1 of 1
Proje	ct Nan	ne: Lind	is				Project	t No: 51670-00	Co-ords: E 3725	77 N 374042	Hole W	Type LS
Locat	ion:	Plun	nley, Che	shire				51070-00	Level: 33.11	mAOD	Sc	ale
			•						Dates: 13/03/201	4 to: 13/03/2014	1:5	0.00
Client		ESS	AR Oil (U	K) Ltd					Contractor: CCG	I Ltd	Logged By PR	Checked By RE
(m)	Water	Sample	s & In Situ T	esting	Legend	Depth	Level (mAD)		Description		In	stall
-	201010	No/Type ES B	Depth (m) 0.00 - 0.20	Result		0.20	32.91	MADE GROUND: Gr	ass over dark brown slight	ly sandy GRAVEL. Sand ngular fine to coarse of	is r	
-		ES	0.20 - 0.40 0.40	0		(0.55)		sandstone, flint and of Firm dark reddish bro	clinker. Dwn sandy silty CLAY. Sar	d is medium to coarse. G	Gravel	لم مصحم 0.50
-						0.75	32.36	is angular to sub-ang (GLACIAL TILL).	ular fine to medium of sar	dstone, flint and quartz		
1				N=17				coarse. Gravel is and (GLACIAL TILL).	gular to sub-angular fine to	medium of flint and quar	tz	
-						(1 70)						
-						(1.70)					Ŕ	
2		U70	2.00 - 2.45			-						
-						2.45	30.66	Borehole completed	at 2.45m			2.45
-												
3 —												
-												
-												
4 -												
-												
-												
5 -												
-												
6 _												
-												
-												
7 -												
-												
-												
8												
REMA	RKS:	mpling Hol	0									
Hand p Slight v	it from G	L to 1.20m	e. bgl. se of hole.									
No visu	ial or olfa	actory evide	nce of contar	nination.								
NOTE: I	PID resul	ts are repo	rted as ppmv.									
Ground	dwater:	Strike D	epth Cas	ing Dept	h _ De	epth After		Hole and Install De Drilling Method: Terri	tails: er 2002	Key: m bgl: Meters bel	ow ground l	evel
Da		(m)		(m)	Obse	ervation (m)	Borehole Diameter:		m AOD: Meters a datum NVO: No visual o	bově ordana r olfactorv e	ace vidence
								Screen Diameter:		of contan ⊉ Water Str	nination ke Level	
								Screen Slot Size:		↓ Water Re	st Level	
								Sanu Particle Size.				

	V	Wo	rleyl	Par	SOI	าร						Borel	nole No.
		Co	nsul	tin	g			BORE	HOLE	LOG		Т	P-6
11a Alma	a Road,	Leeds, LS	6 2AH Tele	ephone:	+44 (0)1	13 275	1025 E-I	mail: environment.info	@worleypars	ons.com		Shee	et 1 of 1
Projec	ct Nan	ne: Lind	lis				Project	No: 51670-00	Co-ords:	E 372172	N 374288	Hole V	e Type VLS
Locat	ion:	Plur	nley, Che	shire					Level:	30.48mAC	D	S	cale
		500							Dates:	13/03/2014 to	: 13/03/2014	1:	50.00
Client		ESS	Sar Oil (U	K) Ltd					Contracto	or: CCGI Lto	I	Logged By PR	Checked By RE
(m)	Water	Sample	es & In Situ To	esting	Legend	Depth			De	escription			Install
		No/ I ype	Depth (m) 0.10 - 0.40 0.40	Result	<u>84.84</u>	(0.70)		Grass over firm dark with frequent rootlets sub-angular fine to n	yellowish brow s. Sand is medi nedium of flint a	n slightly gravelly um to coarse. Gr nd quartz(TOPS	y very sandy clayey S avel is angular to OIL).	SILT	0.50
- - - - - - - - -		В	0.70 - 0.90	N=7	× × × × × × × × × × × × × × × × × × ×	0.70	29.78	Soft locally firm dark medium to coarse. (and quartz (GLACIA	brown slightly g Gravel is angula _ TILL).	gravelly very sand r to sub-angular	dy clayey SILT. Sand fine to medium of fli	l is nt	
2 -		U70	2.00 - 2.45		× · × · × · × · × · × · × · × · × · × ·	(1.75) 2 45	28.03	2.0 m bgl pseudo-fib	rous peat (hydr	ogen sulphide oc	iour)		
						2.40	20.00	Borehole completed	at 2.45m				2.40
4 5 6 7 8 REMA	RKS:												
Windov Hand p No grou No visu	vless Sa it from G undwater al or olfa PID resul	mpling Hol L to 1.20m encounter actory evide	e. i bgl. red. ence of contan prted as ppmv.	nination.									
Ground Dat	lwater: e	Strike D (m)	epth Cas	ing Deptl (m)	n De Obse	epth After ervation (m)	Hole and Install De Drilling Method: Terr Borehole Diameter: Screen Material: Screen Diameter: Screen Slot Size: Sand Particle Size:	etails: er 2002		Key: m bgl: Meters bek m AOD: Meters al datum NVO: No visual or of contam ↓ Water Stri ↓ Water Res	ow ground oove orda olfactory ination ke Level st Level	l level nace evidence

WP BH LOG_31032014 PROJECT LINDIS, PLUMLEY.GPJ GINT STD AGS 3_1.GDT 28/4/14

		Wo	rlev	Par	SOI	าร					Bore	hole No.
		Со	nsul	tin	a			BOREH	IOLE LOG		Т	P-7
11a Alm	a Road,	Leeds, LS	6 2AH Tele	ephone:) +44 (0)1	13 275	1025 E-I	mail: environment.info	@worleyparsons.com		Shee	et 1 of 1
Projec	ct Nan	ne: Lindi	is				Project	No: 51670-00	Co-ords: E 372500	N 373920	Hol V	e Type VLS
Locat	ion:	Plun	nley, Che	shire					Level: 32.90mAC	DD	S	cale
Client		ESS	AR Oil (U	K) Ltd					Dates: 13/03/2014 to Contractor: CCGI Lto	b: 13/03/2014 d	Logged B	y Checked By
(m)	Water	Sample	s & In Situ T	esting	Legend	Depth	Level		Description		PR	
	Levels	No/Type ES	Depth (m) 0.00 - 0.30	Result	<u><u><u>x</u>, <u>x</u>, <u>x</u>, <u>x</u>, <u>x</u>, <u>x</u>, <u>x</u>, <u>x</u></u></u>	(m)	(mAD)	Grass over dark vello	wish brown clavey SAND with	occasional rootlets.	Sand	
		в	0.30	0	1/2 - <u>1/1/2</u> - <u>1/1</u> X X X X X X X X X X X X	(0.45) 0.45	32.45	is coarse (TOPSOIL). Firm dark reddish bro Sand is medium to co flint, quartz and sands	wn mottled grey slightly gravel larse. Gravel is angular to sub- stone (GLACIAL TILL).	ly sandy clayey SILT angular fine to medi	um of	
				N=25		(2.00)					나 단지 단지 단지 번	
2 -		U70	2.00 - 2.45		× × × × × × × × ×	2.45	30.45	Borehole completed a	it 2.45m			2.45
3 4 5 6 7 8	RKS:											
NOTE: F	Hand pit from GL to 1.20m bgl. Slight water seepage in base of hole. No visual or olfactory evidence of contamination. NOTE: PID results are reported as ppmv.											
Ground Dat	Date Strike Depth (m) Casing Depth (m) Depth After Observation (m) Hole and Install Details: Drilling Method: Terrier 2002 Borehole Diameter: Screen Material: Key: m bgl: Meters below ground le m AOD: Meters above ordana datum NVO: No visual or olfactory er of contamination Screen Diameter: Screen Slot Size: Sand Particle Size: Water Strike Level				d level inace v evidence							

		Wo	rley	Par	SO	ns						Bore	hole I	No.
		Со	nsul	tin	a			BOREF	IOLE	LOG		7	TP-8	
11a Alm	na Road,	Leeds, LS	6 2AH Tel	ephone:	+44 (0)1	13 275	1025 E-	mail: environment.info	@worleyparso	ons.com		She	et 1 o	f 1
Proje	ect Nar	ne: Lind	is				Project	t No: 51670-00	Co-ords:	E 372780	N 373650	Ho	le Typ NLS	e
Loca	tion:	Plun	nley, Che	shire			1		Level:	36.70mAC	D	<u>ع</u> 1 :	Scale 50.00	 ว
Clien	t:	ESS	AR Oil (L	JK) Ltd					Dates:	12/03/2014 to or: CCGI Lto	: 12/03/2014 I	Logged E	by Check	ked By
(m)	Water	Sample	s & In Situ T	esting	Leaend	Depth	Level		De	escription		PR	Install	E
	Levels	No/Type ES	Depth (m) 0.00 - 0.30	Result	<u><u><u>x</u>, 1, .</u></u>	(m)	(mAD)	Dark brown very silty	clayey SAND v	vith frequent root	tlets. Sand is coarse	;		
-			0.30	0	1/ <u>1/ 3</u>	(0.60)		(TOPSOIL).						0.50
- - - 1 -		В	0.70 - 1.00			0.60	36.10	Firm reddish brown n Sand is medium to co flint and quartz (GLA	nottled grey slig barse. Gravel is CIAL TILL).	ghtly sandy sligh s angular to sub-	tly gravelly silty CLA angular fine to med	Y. um of		
		U70	1.20 - 1.70			(1.40)		1.5 m bgl pockets of g	grey clayey coa	arse sand (<10 m	nm).			
2 -		В	1.70 - 2.00	N=23		2.00	34.70	Borehole completed a	at 2.00m			5 7 7 7 7		2.00
-														
3 —														
-														
4														
-														
5 —														
-														
6														
7 —														
- - - -														
REMA Windo Hand Ceram No gro No vis	ARKS: owless Sa pit from C nic pipe n oundwate ual or olfa	ampling Hol GL to 1.20m oted in the r encounter actory evide	e. bgl. eastern pit fa ed. nce of contai	ce. nination.										
NOTE: Groun Da	PID resu Idwater: ate	lts are repo Strike D (m)	rted as ppmv epth Cas	sing Dept (m)	h De Obse	epth After ervation (i	m)	Hole and Install De Drilling Method: Terrie Borehole Diameter: Screen Material: Screen Diameter: Screen Slot Size: Sand Particle Size:	tails: er 2002		Key: m bgl: Meters bel m AOD: Meters a datum NVO: No visual o of contant ↓ Water Str ↓ Water Re	ow groun bove ord r olfactor nination ike Level st Level	d level anace y eviden	се

	*//	Wo	rleyl	Par	SOI	าร					Boreho	le No.
		Со	nsul	tin	a			BOREH	IOLE LOG		TP	-9
11a Alm	a Road,	Leeds, LS	6 2AH Tele	ephone:) +44 (0)1	13 275 ⁻	1025 E-	mail: environment.info	@worleyparsons.com		Sheet	1 of 1
Proje	ct Nan	ne: Lind	is				Project	No: 51670-00	Co-ords: E 372528	N 373669	Hole WI	Type .S
Locat	tion:	Plun	nley, Che	shire				01070-00	Level: 36.19mAC	D	Sca	ale
									Dates: 13/03/2014 to	o: 13/03/2014	1 : 50	0.00
Clien	t:	ESS	AR Oil (U	K) Ltd					Contractor: CCGI Lto	ł	Logged By O PR	Checked By RE
(m)	Water	Sample	s & In Situ To	esting	Legend	Depth	Level		Description		Ins	stall
	Leveis	No/Type B ES	Depth (m) 0.00 - 0.30	Result	<u>717</u> 717	(11)	(IIIAD)	Grass over dark yello	wish brown very clayey coarse	SAND with occasion	nal	
		U70	0.30	0 N=15		0.30 (2.15) 2.45	35.89	rootlets. Sand is coar Firm dark reddish bro is medium to coarse. and quartz (GLACIAL Borehole completed a	se (TOPSOIL). wn mottled grey slightly gravell Gravel is angular to sub-angul TILL).	y sandy silty CLAY. ar fine to medium of	Sand flint	2.45
REMA Windo Hand p Slight No visi	RKS: wless Sa bit from G water see ual or olfa	mpling Hole L to 1.20m page in ba actory evide	e. bgl. se of hole. nce of contan	nination.								
NOTE: Groun	PID resu dwater:	ts are repo	rted as ppmv.					Hole and Install Det	ails:	Key:		
Da	ite	Strike Do (m)	epth Cas	ing Dept (m)	h De Obse	pth After rvation (r	m)	Drilling Method: Terrie Borehole Diameter:	er 2002	m bgl: Meters bel m AOD: Meters a	ow ground le bove ordana	evel ce
								Screen Material:		NVO: No visual of contam	olfactory ev ination	idence
								Screen Diameter: Screen Slot Size:		⊉ Water Stri	ke Level	
								Sand Particle Size:		¥ Water Re	st Level	

W		Wo	rleyl	Par	'SOI	าร					Borehole No.
		Со	nsul	tin	q			BORE	HOLE LO	DG	TP-10
11a Al	ma Road,	Leeds, LS	6 2AH Tele	ephone:	+44 (0)1	13 275	1025 E-	mail: environment.ir	fo@worleyparsons.con	n	Sheet 1 of 1
Proj	ect Nan	ne: Lind	S				Project	t No: 51670-00	Co-ords: E 37	2746 N 373877	Hole Type WLS
Loca	ation:	Plun	nley, Che	shire					Level: 34.0)2mAOD	Scale
									Dates: 12/03/2	2014 to: 12/03/2014	1 : 50.00
Clier	nt:	ESS	ar oii (u	IK) Lto					Contractor: CO	CGI Ltd	Logged By Checked By PR RE
(m)	Water Levels	Sample	s & In Situ T	esting	Legend	Depth (m)	Level (mAD)		Descriptio	n	Install
1 -		ES	0.30 1.20 - 1.40 1.40	0		(2.20) 2.20	31.82	1.1 m bgl Cobble of Borehole complete	f sub-angular quartz		2.20
WP BH LOG_31032014 PROJECT LINDIS, PLUMLEY GPJ MAP BH LOG_31004 PROJECT LINDIS, PLUMLEY GPJ MAP BH LOG_3104 PROJECT LINDIS, PLUMLEY PROJECT	ARKS: lowless Sa pratory hold roundwater sual or olfa E: PID resul ndwater: Date	Impling Holi to 1.20m r encounter actory evide Its are repo Strike D. (m)	e. rality assessn bgl. ed. nce of contar rted as ppmv.	nent. nination. sing Dept (m)	h De Obse	pth After	m)	Hole and Install I Drilling Method: Te Borehole Diameter: Screen Material: Screen Diameter: Screen Slot Size: Sand Particle Size:	Details: rrier 2002	Key: m bgl: Meters bel m AOD: Meters a datum NVO: No visual o of contant ↓ Water Str ↓ Water Re	ow ground level ibove ordanace ir olfactory evidence nination ike Level est Level

Consulting DURERULE	ELOG	TP-11						
11a Alma Road, Leeds, LS6 2AH Telephone: +44 (0)113 275 1025 E-mail: environment.info@worleypars	ons.com	Sheet 1 of 1						
Project Name: Lindis Project No: Co-ords:	E 372810 N 373796	Hole Type						
Location: Plumley Cheshire	36 35m∆OD	Scale						
Location. Francey, oneshire Level.	12/03/2014 to: 12/03/2014	1 : 50.00						
Client: ESSAR Oil (UK) Ltd	or: CCGI Ltd	Logged By Checked By						
Vista Samples & In Situ Testing Death Loud								
(m) Valer Complex a month resing Legend (m) (mAD)	escription							
0.30 0 Image: Complete transmission of the complete transmissinterval transmissinterval transmission of the complete t	ar to sub-angular fine to medium of fli	nt 6000 1.00						
4								
REMARKS: Hand Pit.								
 uriginal set-out location puried under stockpile - alternative location used. Changed to hand pit as not cleared by uti Exploratory hole for land quality assessment. Slight water seepage in base of hole. 	iny clearance contractor.							
No visual or olfactory evidence of contamination.								
NOTE: PID results are reported as ppmv.	Kov							
Date Strike Depth Casing Depth Depth After (m) (m) Observation (m) Dilling Method: Hand Pit Borehole Diameter: Screen Material:	m bgl: Meters bek m AOD: Meters al datum NVO: No visual or	ow ground level bove ordanace r olfactory evidence						
Screen Diameter:	of contam ⊉ Water Stri	nination ke Level						
Screen Slot Size: Sand Particle Size:	¥ Water Res	st Level						

Appendix D

Envirocheck Report, 2014

Envirocheck® Report:

Datasheet

Order Details:

Order Number: 53976325_1_1

Customer Reference: Project Lindis

National Grid Reference: 372770, 373850

Slice: A

Site Area (Ha):

3.5 Search Buffer (m):

1000

Site Details:

Project Delicious, Cape of Good Hope Farm Back Lane, Plumley KNUTSFORD Cheshire WA16 9SJ

Client Details:

Mrs T Forkes Worley Parsons Ltd Moorfield Court 11a Alma Road Leeds LS6 2AH

Prepared For:

ESSAR Oil (UK) Ltd

Envirocheck®

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	14
Hazardous Substances	15
Geological	16
Industrial Land Use	27
Sensitive Land Use	28
Data Currency	29
Data Suppliers	35
Useful Contacts	36

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2014. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Report Version v47.0

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1			2	17
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls					
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 5		Yes		
Pollution Incidents to Controlled Waters	pg 5			1	10
Prosecutions Relating to Authorised Processes					
Prosecutions Relating to Controlled Waters					
Registered Radioactive Substances					
River Quality	pg 7				2
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register					
Water Abstractions	pg 8				6 (*8)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 11	Yes	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 11	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 11	Yes	n/a	n/a	n/a
Source Protection Zones					
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
Detailed River Network Lines	pg 11		Yes	Yes	n/a
Detailed River Network Offline Drainage	pg 13		Yes	Yes	n/a

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites					
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)					
Local Authority Recorded Landfill Sites					
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites					
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)	pg 15		2	1	
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents	pg 15	1			
Planning Hazardous Substance Enforcements					
Geological					
BGS 1:625,000 Solid Geology	pg 16	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 16	Yes	Yes	Yes	Yes
BGS Recorded Mineral Sites					
BGS Urban Soil Chemistry					
BGS Urban Soil Chemistry Averages					
Brine Compensation Area	pg 25	Yes	n/a	n/a	n/a
Coal Mining Affected Areas			n/a	n/a	n/a
Mining Instability	pg 25	Yes	n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain	pg 25	Yes		n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 25	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards				n/a	n/a
Potential for Ground Dissolution Stability Hazards	pg 25	Yes		n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 25	Yes		n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 25	Yes		n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 25	Yes		n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Industrial Land Use					
Contemporary Trade Directory Entries					n/a
Fuel Station Entries	pg 27				1
Sensitive Land Use					
Areas of Adopted Green Belt	pg 28			1	
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 28	1			
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consents	A B Pickering	∆12N⊏	102	1	370000
I	Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	A B Fickening Sewage Disposal Works - Other Orchard Barn, Nether Peover, Knutsford, Cheshire Environment Agency, North West Region Not Given 016891777 2 20th May 1995	(W)	402	·	373850
	Issued Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment:	Not Supplied Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River				
	Receiving Water: Status: Positional Accuracy:	Trib Peaver Eye Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m				
	Discharge Consents	3				
1	Operator: Property Type: Location: Authority: Catchment Area: Reference: Parmit Varrian:	A B Pickering Sewage Disposal Works - Other Orchard Barn, Nether Peover, Knutsford, Cheshire Environment Agency, North West Region Not Supplied 016891777	A12NE (W)	402	1	372220 373850
	Effective Date: Issued Date: Revocation Date:	1 1st January 1995 Not Supplied 29th May 1995 Suppose Sinch Tracted Effluent Not Water Company				
	Discharge Discharge Environment:	Freshwater Stream/River				
	Receiving Water: Status: Positional Accuracy:	Trib Peaver Eye Brook Authorisation revokedRevoked Located by supplier to within 10m				
	Discharge Consents	3				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type:	United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 8 1st January 2010 14th October 2008 Not Supplied Sewage Displorations. Einel/Tracted Effluent, Water Company	A14SW (E)	507	1	373400 373660
	Discharge	Freshwater Stream/River				
	Environment: Receiving Water: Status:	Trib Crow Brook Modified (Water Resources Act 1991, Schedule 10 as amended by Environment Act 1995)				
	Positional Accuracy:	Located by supplier to within 10m				
	Discharge Consents					
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 7	A14SW (E)	507	1	373400 373660
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Papeling Water	13th September 1994 13th September 1994 31st December 2009 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River				
	Status: Positional Accuracy:	Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 10m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Issued Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Given 016810098 1 12th January 1980 Not Supplied 30th January 1985 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	507	1	373400 373660
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 2 31st January 1985 Not Supplied 12th October 1989 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	507	1	373400 373660
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 3 13th October 1989 Not Supplied 8th November 1989 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	507	1	373400 373660
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 4 9th November 1989 Not Supplied 31st March 1992 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	507	1	373400 373660

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	3				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 5 1st April 1992 Not Supplied 7th June 1992 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	507	1	373400 373660
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 6 8th June 1992 Not Supplied 12th September 1994 Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	507	1	373400 373660
	Discharge Consents	3				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 8 1st January 2010 14th October 2008 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Trib Crow Brook Modified (Water Resources Act 1991, Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A14SW (E)	510	1	373405 373665
	Discharge Consents	6				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Given 016810098 7 13th September 1994 13th September 1994 31st December 2009 Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Trib Crow Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m	A14SW (E)	510	1	373405 373665

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	S United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 4 9th November 1989 Not Supplied 31st March 1992 Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked	A14SW (E)	510	1	373405 373665
	Positional Accuracy:	Located by supplier to within 10m				
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 5 1st April 1992 Not Supplied 7th June 1992 Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	510	1	373405 373665
	Discharge Consents	3				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	United Utilities Water Plc Sewage Disposal Works - Water Company Nether Peover Stw, Nether Peover, Cheshire Environment Agency, North West Region Not Supplied 016810098 6 8th June 1992 Not Supplied 12th September 1994 Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Trib Crow Brook Authorisation revokedRevoked Located by supplier to within 10m	A14SW (E)	510	1	373405 373665
3	Operator	Flame Estates Developments Lip	A19SW	687	1	373350
-	Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Sewage Disposal Works - Other Merry Farm, Lower Peover, Nr Knutsford, Cheshire, Wa16 9sb Environment Agency, North West Region Peover Eye 016892316 1 8th December 2004 8th December 2004 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Peover Eye New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	(NE)			374380

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	3				
4	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Contracts Administration Sewage Disposal Works - Other Moss Farm, Plumley, Cheshire Environment Agency, North West Region Lower Mersey 016890424 1 30th January 1985 Not Supplied 1st October 1996 Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Peover Eye Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A17NE (NW)	956	1	372130 374750
4	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Serco Gulf Engineering Ltd Sewage Disposal Works - Other Moss Farm, Plumley, Cheshire Environment Agency, North West Region Lower Mersey 016890425 1 30th January 1985 Not Supplied 1st June 1997 Sewage Discharges - Final/Treated Effluent - Not Water Company Into And/Or Watercourse Eover Eye Authorisation revokedRevoked Located by supplier to within 10m	A17NE (NW)	956	1	372130 374750
	Discharge Consents	3				
4	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Serco Gulf Engineering Ltd Sewage Disposal Works - Other Moss Farm, Plumley, Cheshire Environment Agency, North West Region Lower Mersey 016890426 1 30th January 1985 Not Supplied 1st June 1997 Sewage Discharges - Final/Treated Effluent - Not Water Company Into And/Or Watercourse Eover Eye Authorisation revokedRevoked Located by supplier to within 10m	A17NE (NW)	956	1	372130 374750
	Nearest Surface Wa	ter Feature	A129E	11		372020
			(E)			373825
5	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given Cheshire Environment Agency, North West Region Unknown Bradshaw Brook Tributary; None Pollution Found 11th September 1995 95522292 Wincham Brook Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8NE (S)	431	1	372800 373300

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
6	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given Cheshire Environment Agency, North West Region Oils - Kerosene Fuel Oil Bradshaw Brook; Oil 3rd January 1996 96520013 Wincham Brook Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8NE (S)	530	1	372800 373200
	Pollution Incidents	o Controlled Waters				
7	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	Not Given Location Description Not Available Environment Agency, North West Region Oils - Unknown Not Supplied 12th December 1995 95522971 Wincham Brook Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8NW (S)	551	1	372700 373200
	Pollution Incidents	co Controlled Waters				
8	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	Not Given Location Description Not Available Environment Agency, North West Region Oils - Unknown Bradshaw Brook 11th April 1995 95520779 Weaver Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	647	1	372700 373100
8	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given Location Description Not Available Environment Agency, North West Region Oils - Unknown Bradshaw Brook 30th April 1995 95520973 Weaver Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	652	1	372700 373095
9	Pollution Incidents f Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given Cheshire Environment Agency, North West Region Oils - Gas Oil Peover Eye; Gas Oil 11th January 1996 96520048 Wincham Brook Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A18NE (N)	669	1	372900 374600
10	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Transport, Storage, Communications: Road River Peaover, Eye Back Lane, LOWER PEAOVER, Cheshire Environment Agency, North West Region Organic Chemicals : Petroleum Spirits Not Supplied 28th October 1999 33602 Weaver River Stretch (Freshwater) Accident Category 3 - Minor Incident Located by supplier to within 100m	A19SW (NE)	674	1	373300 374400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
11	Pollution Incidents Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given Location Description Not Available Environment Agency, North West Region Oils - Kerosene Fuel Oil Bradshaw Brook 7th July 1995 95521668 Weaver Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	744	1	372700 373000
12	Pollution Incidents Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Farm Drainage Location Description Not Available Environment Agency, North West Region Organic Wastes: Silage Liquor Peover Eye 22nd June 1995 95521502 Weaver Not Given Leaking Tank Category 3 - Minor Incident Located by supplier to within 100m	A9NE (SE)	755	1	373600 373500
13	Pollution Incidents Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Boats/Ships Cheshire Environment Agency, North West Region Unknown None Found 2nd August 1994 94521776 Wincham Brook Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8SE (S)	765	1	373100 373000
14	Pollution Incidents Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given Cheshire Environment Agency, North West Region Unknown None Affected; Diesel Reported 22nd November 1996 96522398 Weaver Not Given Other Incident/Unknown Category 3 - Minor Incident Located by supplier to within 100m	A9SW (SE)	802	1	373200 373000
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Wincham Bk River Quality B Qsl At Siddington To Smoker Bk 21 Flow less than 1.25 cumecs River 2000	A18SE (N)	592	1	372924 374508
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Redlion (Wade) Bk River Quality C Jodrell Bank To Near Millgate Farm 10 Flow less than 0.31 cumecs River 2000	A8SE (S)	781	1	372857 372946

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
15	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start:	J & P Naylor 2568003103 100 Peover Eye At Fields Farm, Lower Peover Environment Agency, North West Region General Agriculture: Spray Irigation - Direct Water may be abstracted from a river or stream reach, or a row of wellpoints Surface 327 4546 Fields Farm, Lower Peover 01 May 30 September	A18SE (N)	620	1	373000 374500
	Permit Staft Date: Permit End Date: Positional Accuracy:	Not Supplied Located by supplier to within 100m				
16	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction: Abstraction: Abstraction: Abstraction: Abstraction: Abstraction: Peril (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit Start Date: Permit End Date: Positional Accuracy:	Mr Ri Williamson 2568003114 101 Peover Eye At The Grange, Plumley Environment Agency, North West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a river or stream reach, or a row of wellpoints Surface Not Supplied Not Supplied Premises At The Grange, Plumley 01 January 31 December 25th September 2006 Not Supplied Located by supplier to within 100m	A18NE (N)	643	1	372800 374600
16	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction: Abstraction: Abstraction: Abstraction: Abstraction: Abstraction: Permit Start Date: Permit Start Date: Positional Accuracy:	Mr Ri Williamson 2568003114 101 Peover Eye At The Grange, Plumley Environment Agency, North West Region General Agriculture: Transfer Between Sources Water may be abstracted from a river or stream reach, or a row of wellpoints Surface Not Supplied Not Supplied Premises At The Grange, Plumley 01 January 31 December 25th September 2006 Not Supplied Located by supplier to within 100m	A18NE (N)	643	1	372800 374600
16	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	J Williamson & Sons 2568003114 100 Peover Eye At The Grange, Plumley Environment Agency, North West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a river or stream reach, or a row of wellpoints Surface 364 9092 Premises At The Grange, Plumley 01 January 31 December 21st November 1980 Not Supplied Located by supplier to within 100m	A18NE (N)	643	1	372800 374600

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
16	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details:	J Williamson & Sons 2568003114 100 Peover Eye At The Grange, Plumley Environment Agency, North West Region General Agriculture: Transfer Between Sources Water may be abstracted from a river or stream reach, or a row of wellpoints Surface 364 9092 Premises At The Grange, Plumley	A18NE (N)	643	1	372800 374600
	Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	01 January 31 December 21st November 1980 Not Supplied Located by supplier to within 10m				
17	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	J A & P A Naylor 2568003103 Not Supplied Peover Eye At, Fields Farm, Lower Peover Environment Agency, North West Region Agricultural Spray Irrigation (Summer) Not Supplied Surface 327 4546 Additional Purpose: Licence Status: Cancelled Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A19SE (NE)	877	1	373600 374400
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	C M Shaw 2568003061 100 Spring Fed Catchpit At Merry Farm, Plumley, Knu Environment Agency, North West Region General Agriculture; General Use (Medium Loss) Water may be abstracted from a single point Groundwater 14 4546 Merry Farm,Plumley, Knutsford 01 January 31 December 3rd May 1995 Not Supplied Located by supplier to within 100m	A25SW (NE)	1374	1	373800 374900
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	C M Shaw 2568003061 100 Well At Merry Farm, Plumley Environment Agency, North West Region General Agriculture; General Use (Medium Loss) Water may be abstracted from a single point Groundwater 0 0 Merry Farm,Plumley, Knutsford 01 January 31 December 3rd May 1995 Not Supplied Located by supplier to within 100m	A25NW (NE)	1673	1	373900 375200

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	Ineos Enterprises Limited 2568003087 103 Holford Ditch & Holford Moss, Tribsof The Peover Eye, Bucklow Environment Agency, North West Region Chemicals: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Premises At Rudheath & Lostockgralam 01 January 31 December 13th September 2005 Not Supplied Located by supplier to within 100m	A16NW (NW)	1786	1	371100 374800
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Ineos Chlor Enterprises Ltd 2568003087 102 Holford Ditch & Holford Moss, Tribsof The Peover Eye, Bucklow Environment Agency, North West Region Chemicals: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Premises At Rudheath & Lostockgralam 01 January 31 December 1st January 2004 Not Supplied Located by supplier to within 100m	A16NW (NW)	1786	1	371100 374800
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Ineos Chlor Ltd 2568003087 101 Holford Ditch & Holford Moss, Tribsof The Peover Eye, Bucklow Environment Agency, North West Region Chemicals: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Premises At Rudheath & Lostockgralam 01 January 31 December 9th January 2001 Not Supplied Located by supplier to within 100m	A16NW (NW)	1786	1	371100 374800
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Positional Accuracy:	I C I Chemicals & Polymers Ltd 2568003087 100 Holford Ditch & Holford Moss, Tribsof The Peover Eye, Bucklow Environment Agency, North West Region Chemicals: Process Water Water may be abstracted from a single point Surface 5001 1000120 Premises At Rudheath & Lostockgralam 01 January 31 December 30th March 1990 Not Supplied Located by supplied to within 100m	A16NW (NW)	1786	1	371100 374800

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Vale Royal Fresh Foods Limited 2568002175 101 Manhole Fed By M6 Motorway Culvert, Allostock Environment Agency, North West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a single point Surface Not Supplied Not Supplied Premises At Hulme Hall Lane, 01 January 31 December 6th August 2001 Not Supplied Located by supplier to within 100m	(S)	1842	1	373100 371900
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr L H Skelton 2568002175 100 Manhole Fed By M6 Motorway Culvert, Allostock Environment Agency, North West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a single point Surface 227 4546 Premises At Hulme Hall Lane, 01 January 31 December 3rd November 1977 Not Supplied Located by supplier to within 100m	(S)	1842	1	373100 371900
	Groundwater Vulne	rability				
	Soil Classification: Map Sheet: Scale: Drift Deposits None	Not classified Sheet 16 West Cheshire 1:100,000	A13NW (N)	0	1	372774 373849
	Bedrock Aquifer De	signations				
	Aquifer Desination:	Unproductive Strata	A13NW (N)	0	2	372774 373849
	Superficial Aquifer I	Designations				
	Aquifer Designation:	Unproductive Strata	A13NW (N)	0	2	372774 373849
	None	om Rivers of Sea without Defences				
	Flooding from River	's or Sea without Defences				
	Areas Benefiting fro	m Flood Defences				
	Flood Water Storage	e Areas				
	Flood Defences					
	Detailed River Notw	ork Lines				
18	River Type: River Name: Hydrographic Area: River Flow Type: River Surface Level: Drain Feature: Flood Risk Management Status: Water Course Name: Water Course	Tertiary River Drain D011 Primary Flow Path Surface Drain (ditch, Reen, Rhyne, Drain) Other Rivers Not Supplied Not Supplied	A13SW (SW)	35	1	372630 373774
	Keterence:					

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Detailed River Netw	ork Lines				
19	River Type:	Tertiary River	A13NE	141	1	372828
	River Name:	Drain	(N)			374050
	Hydrographic Area:	D011 Brimany Flow Bath				
	River Surface Level:	Surface				
	Drain Feature:	Drain (ditch, Reen, Rhyne, Drain)				
	Flood Risk	Other Rivers				
	Wanagement Status: Water Course	Not Supplied				
	Name:					
	Water Course Reference:	Not Supplied				
	Detailed Biver Netw	ork Linos				
			4.400.044	000		070047
20	River Type: River Name:	Secondary River	A13NW	208	1	372647
	Hydrographic Area:	D011	(14)			574175
	River Flow Type:	Primary Flow Path				
	River Surface Level:	Surface				
	Flood Risk	Other Rivers				
	Management Status:					
	Water Course	Not Supplied				
	Name:	Nat Cupplind				
	Reference:	Not Supplied				
	Detailed Biver Netw	ork Linos				
21	Detailed River Netwo	Extended Culvert (greater than 50m)	A 1 2 NIM	200	1	272624
21	River Name:	Not Supplied	(NW)	209	'	374170
	Hydrographic Area:	D011	()			01 11 0
	River Flow Type:	Primary Flow Path				
	River Surface Level: Drain Feature	Below Sufface Not a Drain				
	Flood Risk	Other Rivers				
	Management Status:					
	Water Course	Not Supplied				
	Water Course	Not Supplied				
	Reference:					
	Detailed River Netw	ork Lines				
22	River Type:	Tertiary River	A13NW	237	1	372548
	River Name:	Drain	(NW)			374165
	Hydrographic Area:	D011				
	River Flow Type: River Surface Level:	Surface				
	Drain Feature:	Drain (ditch, Reen, Rhyne, Drain)				
	Flood Risk	Other Rivers				
	Management Status:	Not Supplied				
	Name:	Not Supplied				
	Water Course	Not Supplied				
	Reference:					
	Detailed River Netw	ork Lines				
23	River Type:	Extended Culvert (greater than 50m)	A12NE	283	1	372418
	River Name: Hydrographic Area:	Not Supplied	(NVV)			374077
	River Flow Type:	Primary Flow Path				
	River Surface Level:	Below Surface				
	Drain Feature:	Not a Drain				
	Management Status:	Other Rivers				
	Water Course	Not Supplied				
	Water Course Reference:	Not Supplied				
	Detailed River Netw	ork Lines				
24	River Type	Tertiany River		31/	1	372/21
27	River Name:	Not Supplied	(NW)	517	'	374146
	Hydrographic Area:	D011				
	River Flow Type:	Primary Flow Path				
	River Surrace Level: Drain Feature:	Sunace Not a Drain				
	Flood Risk	Other Rivers				
	Management Status:					
	Water Course Name	Not Supplied				
	Water Course	Not Supplied				
	Reference:					

Order Number: 53976325_1_1 Date: 06-Mar-2014 rpr_ec_datasheet v47.0

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Detailed River Netwo	ork Lines				
25	River Type: River Name: Hydrographic Area: River Flow Type: River Surface Level: Drain Feature: Flood Risk Management Status: Water Course Name: Water Course Reference:	Extended Culvert (greater than 50m) Not Supplied D011 Primary Flow Path Below Surface Not a Drain Other Rivers Not Supplied Not Supplied	A17SE (NW)	344	1	372423 374196
	Detailed River Netwo	ork Lines				
26	River Type: River Name: Hydrographic Area: River Flow Type: River Surface Level: Drain Feature: Flood Risk Management Status: Water Course Name: Water Course Reference:	Tertiary River Drain D011 Primary Flow Path Surface Drain (ditch, Reen, Rhyne, Drain) Other Rivers Not Supplied Not Supplied	A17SE (NW)	392	1	372436 374274
	Detailed River Netwo	ork Offline Drainage				
27	River Type: Hydrographic Area:	Tertiary River D011	A13NE (NE)	201	1	372938 374060
	Detailed River Netwo	ork Offline Drainage				
28	River Type: Hydrographic Area:	Tertiary River D011	A13NE (NE)	202	1	372924 374069
	Detailed River Netwo	ork Offline Drainage				
29	River Type: Hydrographic Area:	Tertiary River D011	A13NE (NE)	207	1	372939 374066
	Detailed River Netwo	ork Offline Drainage				
30	River Type: Hydrographic Area:	Tertiary River D011	A8NE (SE)	279	1	372939 373459
	Detailed River Netwo	ork Offline Drainage				
31	River Type: Hydrographic Area:	Tertiary River D011	A14SW (E)	329	1	373255 373832
	Detailed River Network Offline Drainage					
32	River Type: Hydrographic Area:	Tertiary River D011	A14NW (E)	422	1	373343 373907

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Authority Lar	ocal Authority Landfill Coverage				
	Name:	Vale Royal Borough Council - Has supplied landfill data		0	11	372774 373849
	Local Authority Lar	ndfill Coverage				
	Name:	Cheshire County Council - Has supplied landfill data		0	10	372774 373849
	Local Authority Lar	ocal Authority Landfill Coverage				
	Name:	Macclesfield Borough Council - Has not been able to supply Landfill data		384	12	372430 374259

Hazardous Substances

Map ID		Details	Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Control of Major Ac	cident Hazards Sites (COMAH)				
33	Name: Location: Reference: Type: Status: Positional Accuracy:	Oil And Pipelines Agency Plumley Junction Psd, Back Lane, Plumley, Knutsford, Cheshire Not Supplied Upper Tier Active Manually positioned within the geographical locality	A13NW (NW)	118	3	372606 374060
1	Control of Major Ac	cident Hazards Sites (COMAH)				
34	Name: Location: Reference: Type: Status: Positional Accuracy:	Oil And Pipelines Agency Back Lane, Knutsford, Cheshire, WA16 9SJ Not Supplied Lower Tier Active Manually positioned within the geographical locality	A13NW (NW)	246	3	372467 374090
	Control of Major Ac	cident Hazards Sites (COMAH)				
35	Name: Location: Reference: Type: Status: Positional Accuracy:	Oil And Pipelines Agency Cheshire, Back Lane, Nether Peover, Knutsford, Cheshire, Wa16 9sj Not Supplied Upper Tier Active Manually positioned to the address or location	A12NE (W)	299	3	372329 373922
	Planning Hazardous	s Substance Consents				
36	Name: Location: Authority: Application Ref: Hazardous Substance: Maximum Quantity: Application date: Decision: Positional Accuracy:	Ministry Of Defence Plumley Psd, Back Lane, Plumley, Wa16 9sj Cheshire West and Chester Council, Planning Department 06-2366-HAZ Combination of Dangerous Substances 3000000 15th December 2006 Deemed Consent GrantedGranted Manually positioned within the geographical locality	A13NW (NW)	0	4	372684 373961

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology				
	Description:	Triassic mudstones (including Keuper Marl, Dolomitic Conglomerate and Rhaetic)	A13NW (N)	0	2	372774 373849
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13NW (N)	0	5	372774 373849
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg	A13NW (N)	32	5	372774 374000
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13NE (E)	74	5	373000 373849
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg	A13NE (NE)	177	5	373000 374000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A13SE (SE)	198	5	373032 373628
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel	<150 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil	Chemistry British Geological Survey, National Geocociones Information Service		214	F	272000
	Source: Soil Sample Type: Arsenic Concentration:	Rural Soil <15 mg/kg	(S)	314	σ	372698 373415
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Nickel Concentration:	< 150 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg	A12SE (SW)	336	5	372386 373599
	Chromium Concentration: Lead Concentration: Nickel Concentration:	60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8NE (SE)	351	5	373003 373406
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A8NW (S)	370	5	372682 373403
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A8NW (SW)	437	5	372482 373439
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg <15 mg/kg	A18SW (NW)	471	5	372505 374405
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A8NW (S)	488	5	372573 373329

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source:	I Chemistry British Geological Survey, National Geoscience Information Service	A12NE	511	5	372131
	Soil Sample Type: Arsenic Concentration:	Rural Soil 15 - 25 mg/kg	(W)			374000
	Cadmium	<1.8 mg/kg				
	Chromium	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	I Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NW (E)	516	5	373401 374042
	Concentration: Cadmium	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	I Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SE (S)	579	5	372956 373156
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	I Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A17SE (NW)	580	5	372380 374464
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	I Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SE (S)	586	5	373000 373157
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	I Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8NW (S)	600	5	372618 373178
	Concentration: Cadmium	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg <1.8 mg/kg	A12NW (W)	622	5	372000 373849
	Chromium Concentration: Lead Concentration: Nickel Concentration:	60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A18NE (N)	635	5	373000 374529
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A12NW (W)	637	5	372000 374000
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A18SE (N)	643	5	373042 374504
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A8SW (S)	666	5	372660 373092
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A12NW (W)	666	5	372000 374100

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR			
	BGS Estimated Soil Chemistry								
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SE (S)	669	5	372860 373058			
	Cadmium Concentration:	<1.8 mg/kg							
	Concentration:	60 - 90 mg/kg							
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg							
	BGS Estimated Soil	I Chemistry							
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg	A18NE (N)	687	5	373058 374547			
	Cadmium Concentration:	<1.8 mg/kg							
	Chromium Concentration:	60 - 90 mg/kg							
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg							
	BGS Estimated Soil	I Chemistry							
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg	A18NE (N)	687	5	373000 374576			
	Concentration: Cadmium	<1.8 mg/kg							
	Chromium	60 - 90 mg/kg							
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg							
	BGS Estimated Soil	I Chemistry							
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SW (S)	707	5	372726 373033			
	Cadmium Concentration:	<1.8 mg/kg							
	Chromium Concentration:	60 - 90 mg/kg							
	Lead Concentration: Nickel	<150 mg/kg 15 - 30 mg/kg							
	Concentration:								
	BGS Estimated Soil	I Chemistry							
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SW (S)	715	5	372690 373032			
	Cadmium Concentration:	<1.8 mg/kg							
	Chromium Concentration:	60 - 90 mg/kg							
	Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg							
	BGS Estimated Soil	I Chemistry							
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SE (S)	716	5	373000 373024			
	Concentration: Cadmium	<1.8 mg/kg							
	Concentration: Chromium	60 - 90 mg/kg							
	Lead Concentration:	<150 mg/kg 15 - 30 mg/kg							
	Concentration:								

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SW (S)	727	5	372774 373000
	Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SW (S)	727	5	372697 373018
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Nickel Concentration:	< 150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A9SW (SE)	728	5	373234 373102
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration: Nickel	60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	735	5	373644 374000
	Cadmium Concentration:	<1.8 mg/kg				
	Concentration: Lead Concentration:	<150 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (E)	735	5	373644 373997
	Cadmium Concentration:	<1.8 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SE (S)	740	5	373000 373000
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	ьи - 90 mg/kg <150 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg	A8SW (S)	743	5	372707 373000
	Chromium Concentration: Lead Concentration: Nickel Concentration:	60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg <1.8 mg/kg	A18NW (N)	745	5	372774 374712
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SW (S)	748	5	372681 373000
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A8SE (S)	750	5	372910 372978
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SW (S)	754	5	372737 372983
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A8SW (S)	760	5	372717 372981

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A18NW (N)	773	5	372482 374715
	Chromium Concentration: Lead Concentration: Nickel Concentration:	60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg <15 mg/kg	A9SW (SE)	774	5	373129 373000
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A8SE (S)	782	5	373036 372964
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A14NE (E)	796	5	373705 374000
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A18NE (N)	808	5	373000 374710
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A9SW (SE)	819	5	373239 373000

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A17SW (NW)	837	5	371886 374260
	Concentration: Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <150 mg/kg				
	Concentration:	15 - 30 hig/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg	A9SW (SE)	846	5	373294 373000
	Concentration: Lead Concentration: Nickel Concentration:	<150 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A9SW (SE)	861	5	373323 373000
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A17NE (NW)	902	5	372179 374718
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <150 mg/kg <15 mg/kg	A19SE (NE)	910	5	373634 374413
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	Chemistry British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg 60 - 90 mg/kg <150 mg/kg 15 - 30 mg/kg	A7SW (SW)	936	5	372000 373163

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A3NE (S)	936	5	373000 372801
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<150 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil 15 - 25 mg/kg	A19SE (NE)	986	5	373683 374471
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	BGS Urban Soil Che No data available	emistry Averages				
	Brine Compensation	n Area				
	Description:	In an area which may be affected by subsidence due to salt extraction. It is recommended that the Cheshire Brine Subsidence Compensation Board is contacted for further information. Contact details are included in the Useful Contacts section.	A13NW (N)	0	6	372774 373849
	Source:	Cheshire Brine Subsidence Compensation Board				
	Coal Mining Affecte	d Areas				
	In an area that might	not be affected by coal mining				
	Mining Instability					
	Mining Evidence: Source: Boundary Quality:	Inconclusive Evaporites Mining Ove Arup & Partners As Supplied	A13NW (N)	0	-	372774 373849
	Non Coal Mining Ar	eas of Great Britain				
	Risk: Source:	Unlikely British Geological Survey, National Geoscience Information Service	A13NW (N)	0	2	372774 373849
	Potential for Collaps	sible Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (N)	0	2	372774 373849
	Potential for Compr	essible Ground Stability Hazards		_	-	
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (N)	0	2	372774 373849
	Potential for Ground	d Dissolution Stability Hazards	A 4 0 N 11 A /	0	0	070774
	Hazard Potential: Source:	High British Geological Survey, National Geoscience Information Service	(N)	0	2	372774 373849
	Potential for Landsl Hazard Potential:	ide Ground Stability Hazards Very Low	A13NW	0	2	372774
	Source:	British Geological Survey, National Geoscience Information Service	(N)			373849
	Potential for Runnir Hazard Potential: Source:	ng Sand Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13NW (N)	0	2	372774 373849
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards	()			0.0010
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (N)	0	2	372774 373849
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (SE)	197	2	373032 373629
	Radon Potential - R	adon Protection Measures				
	Protection Measure: Source:	No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A13NW (N)	0	2	372774 373849

A Landmark Information Group Service

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Radon Potential -	Radon Affected Areas				
	Affected Area:	The property is in a lower probability radon area, as less than 1% of homes are above the action level British Geological Survey. National Geoscience Information Service	A13NW (N)	0	2	372774 373849
	000100.	British Geological Guivey, National Geoscience Information Dervice	1	1		

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Fuel Station Entries					
37	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Wayside Garage B5081, Lower Peover, KNUTSFORD, Cheshire, WA16 Unbranded Petrol Station Closed Automatically positioned to the address	A14SE (E)	820	-	373741 373751

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Areas of Adopted	Green Belt				
38	Authority: Plan Name: Status: Plan Date:	Macclesfield Borough Council (now part of Cheshire East Council) Macclesfield Borough Local Plan Adopted 8th January 2004	A17SE (NW)	381	7	372429 374255
	Nitrate Vulnerable	e Zones				
39	Name: Description: Source:	Not Supplied NVZ Area Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	A13NW (N)	0	8	372774 373849

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Macclesfield Borough Council (now part of Cheshire East Council) - Health and Public Safety	July 2008	Not Applicable
Congleton Borough Council (now part of Cheshire East Council) - Environmental Health Department	May 2009	Not Applicable
Vale Royal Borough Council (now part of Cheshire West and Chester Council) - Community Services Directorate	November 2008	Not Applicable
Cheshire East Council - Environmental Health Department	November 2012	Annually
Cheshire West and Chester Council - Environmental Health Department	November 2013	Annually
Discharge Consents		
Environment Agency - North West Region	February 2014	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - North West Region	March 2013	As notified
Integrated Pollution Controls		
Environment Agency - North West Region	October 2008	Not Applicable
Integrated Pollution Prevention And Control		
Environment Agency - North West Region	February 2014	Quarterly
Local Authority Integrated Pollution Prevention And Control		
Macclesfield Borough Council (now part of Cheshire East Council) - Environmental Health Department	February 2009	Not Applicable
Congleton Borough Council (now part of Cheshire East Council) - Environmental Health Department	January 2009	Not Applicable
Cheshire East Council - Environmental Health Department	January 2013	Annually
Vale Royal Borough Council (now part of Cheshire West and Chester Council) - Environmental Health Department	June 2009	Not Applicable
Cheshire West and Chester Council - Environmental Health Department	October 2013	Annually
Local Authority Pollution Prevention and Controls		
Macclesfield Borough Council (now part of Cheshire East Council) - Environmental Health Department	February 2009	Not Applicable
Congleton Borough Council (now part of Cheshire East Council) - Environmental Health Department	January 2009	Not Applicable
Cheshire East Council - Environmental Health Department	January 2013	Annually
Vale Royal Borough Council (now part of Cheshire West and Chester Council) - Environmental Health Department	June 2009	Not Applicable
Cheshire West and Chester Council - Environmental Health Department	October 2013	Annually
Local Authority Pollution Prevention and Control Enforcements Macclesfield Borough Council (now part of Cheshire East Council) - Environmental	February 2009	Not Applicable
Congleton Borough Council (now part of Cheshire East Council) - Environmental Health	January 2009	Not Applicable
Cheshire East Council - Environmental Health Department	January 2013	Annually
Vale Royal Borough Council (now part of Cheshire West and Chester Council) - Environmental Health Department	June 2009	Not Applicable
Cheshire West and Chester Council - Environmental Health Department	October 2013	Annually
Nearest Surface Water Feature		
Ordnance Survey	July 2012	Quarterly
Pollution Incidents to Controlled Waters		
Environment Agency - North West Region	January 2000	Not Applicable
Prosecutions Relating to Authorised Processes		
Environment Agency - North West Region	March 2013	As notified
Prosecutions Relating to Controlled Waters		
Environment Agency - North West Region	March 2013	As notified
Registered Radioactive Substances		
Environment Agency - North West Region	February 2014	Quarterly
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable

Agency & Hydrological	Version	Update Cycle
River Quality Biology Sampling Points Environment Agency - Head Office	July 2012	Annually
River Quality Chemistry Sampling Points Environment Agency - Head Office	July 2012	Annually
Substantiated Pollution Incident Register Environment Agency - North West Region - South Area	February 2014	Quarterly
Water Abstractions Environment Agency - North West Region	December 2014	Quarterly
Water Industry Act Referrals Environment Agency - North West Region	February 2014	Quarterly
Groundwater Vulnerability Environment Agency - Head Office	January 2011	Not Applicable
Drift Deposits Environment Agency - Head Office	January 1999	Not Applicable
Bedrock Aquifer Designations British Geological Survey - National Geoscience Information Service	October 2012	Annually
Superficial Aquifer Designations British Geological Survey - National Geoscience Information Service	October 2012	Annually
Source Protection Zones Environment Agency - Head Office	December 2014	Quarterly
Extreme Flooding from Rivers or Sea without Defences Environment Agency - Head Office	December 2013	Quarterly
Flooding from Rivers or Sea without Defences Environment Agency - Head Office	December 2013	Quarterly
Areas Benefiting from Flood Defences Environment Agency - Head Office	December 2013	Quarterly
Flood Water Storage Areas Environment Agency - Head Office	December 2013	Quarterly
Flood Defences Environment Agency - Head Office	December 2013	Quarterly
Detailed River Network Lines Environment Agency - Head Office	March 2012	Annually
Detailed River Network Offline Drainage Environment Agency - Head Office	March 2012	Annually

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	June 1996	Not Applicable
Historical Landfill Sites		
Environment Agency - North West Region - South Area	October 2013	Quarterly
Environment Agency - South East Region - Kent & South London Area	October 2013	Quarterly
Environment Agency - South East Region - North East Thames Area	October 2013	Quarterly
Environment Agency - South East Region - Solent & South Downs Area	October 2013	Quarterly
Environment Agency - South East Region - West Thames Area	October 2013	Quarterly
Integrated Pollution Control Registered Waste Sites		
Environment Agency - North West Region	October 2008	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - North West Region - South Area	February 2014	Quarterly
Environment Agency - South East Region - Kent & South London Area	February 2014	Quarterly
Environment Agency - South East Region - North East Thames Area	February 2014	Quarterly
Environment Agency - South East Region - Solent & South Downs Area	February 2014	Quarterly
Environment Agency - South East Region - West Thames Area	February 2014	Quarterly
Licensed Waste Management Facilities (Locations)		
Environment Agency - North West Region - South Area	February 2014	Quarterly
Local Authority Landfill Coverage		
Cheshire County Council (now part of Cheshire East Council) - Environmental Planning Department	May 2000	Not Applicable
Congleton Borough Council (now part of Cheshire East Council) - Environmental Health Department	May 2000	Not Applicable
Macclesfield Borough Council (now part of Cheshire East Council) - Environmental Health Department	May 2000	Not Applicable
Vale Royal Borough Council (now part of Cheshire West and Chester Council) - Environmental Health Department	May 2000	Not Applicable
Local Authority Recorded Landfill Sites		
Congleton Borough Council (now part of Cheshire East Council) - Environmental Health Department	August 2003	Not Applicable
Cheshire County Council (now part of Cheshire East Council) - Environmental Planning Department	February 2005	Not Applicable
Macclesfield Borough Council (now part of Cheshire East Council) - Environmental Health Department	May 2000	Not Applicable
Vale Royal Borough Council (now part of Cheshire West and Chester Council) - Environmental Health Department	May 2000	Not Applicable
Registered Landfill Sites		
Environment Agency - North West Region - South Area	March 2003	Not Applicable
Registered Waste Transfer Sites		
Environment Agency - North West Region - South Area	March 2003	Not Applicable
Registered Waste Treatment or Disposal Sites		
Environment Agency - North West Region - South Area	March 2003	Not Applicable

Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	August 2013	Bi-Annually
Explosive Sites		
Health and Safety Executive	November 2013	Bi-Annually
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	November 2000	Not Applicable
Planning Hazardous Substance Enforcements		
Vale Royal Borough Council (now part of Cheshire West and Chester Council)	August 2009	Not Applicable
Macclesfield Borough Council (now part of Cheshire East Council) - Planning Department	December 2008	Not Applicable
Cheshire County Council (now part of Cheshire East Council) - Planning Department	July 2008	Annual Rolling Update
Congleton Borough Council (now part of Cheshire East Council)	July 2009	Not Applicable
Cheshire East Council - Planning Department	October 2013	Annually
Cheshire West and Chester Council - Planning Department	October 2013	Annually
Planning Hazardous Substance Consents		
Vale Royal Borough Council (now part of Cheshire West and Chester Council)	August 2009	Not Applicable
Macclesfield Borough Council (now part of Cheshire East Council) - Planning Department	December 2008	Not Applicable
Cheshire County Council (now part of Cheshire East Council) - Planning Department	July 2008	Annual Rolling Update
Congleton Borough Council (now part of Cheshire East Council)	July 2009	Not Applicable
Cheshire East Council - Planning Department	October 2013	Annually
Cheshire West and Chester Council - Planning Department	October 2013	Annually

Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	August 1996	Not Applicable
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	January 2010	Variable
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	October 2013	Bi-Annually
Brine Compensation Area		
Cheshire Brine Subsidence Compensation Board	August 2011	Not Applicable
Coal Mining Affected Areas		
The Coal Authority - Mining Report Service	December 2013	As notified
Mining Instability		
Ove Arup & Partners	October 2000	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	February 2011	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Running Sand Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	October 2013	As notified
Radon Potential - Radon Affected Areas		
British Geological Survey - National Geoscience Information Service	July 2011	As notified
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	July 2011	As notified
Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	February 2014	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	August 2013	Quarterly

Sensitive Land Use	Version	Update Cycle
Areas of Adopted Green Belt		
Congleton Borough Council (now part of Cheshire East Council)	February 2014	As notified
Macclesfield Borough Council (now part of Cheshire East Council)	February 2014	As notified
Vale Royal Borough Council (now part of Cheshire West and Chester Council)	February 2014	As notified
Areas of Unadopted Green Belt		
Congleton Borough Council (now part of Cheshire East Council)	February 2014	As notified
Macclesfield Borough Council (now part of Cheshire East Council)	February 2014	As notified
Vale Royal Borough Council (now part of Cheshire West and Chester Council)	February 2014	As notified
Areas of Outstanding Natural Beauty		
Natural England	January 2014	Bi-Annually
Environmentally Sensitive Areas		
Natural England	July 2013	Annually
Forest Parks		
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves		
Natural England	July 2013	Bi-Annually
Marine Nature Reserves		
Natural England	July 2013	Bi-Annually
National Nature Reserves		
Natural England	January 2014	Bi-Annually
National Parks		
Natural England	January 2014	Bi-Annually
Nitrate Sensitive Areas		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	February 2012	Not Applicable
Nitrate Vulnerable Zones		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	February 2013	Annually
Ramsar Sites		
Natural England	July 2013	Bi-Annually
Sites of Special Scientific Interest		
Natural England	July 2013	Bi-Annually
Special Areas of Conservation		
Natural England	July 2013	Bi-Annually
Special Protection Areas		
Natural England	July 2013	Bi-Annually

A selection of organisations who provide data within this report

Data Supplier	Data Supplier Logo
Ordnance Survey	Licensed Partner
Environment Agency	Environment Agency
Scottish Environment Protection Agency	Scottish Environment Protection Agency
The Coal Authority	THE COAL AUTHORITY
British Geological Survey	British Geological Survey
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Countryside Council for Wales	CYNGOR CEFN GWLAD CYMRU COUNTRYSIDE COUNCIL FOR WALES
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Peter Brett Associates	peterbrett

Envirocheck[®]

Useful Contacts

Contact	Name and Address	Contact Details		
1	Environment Agency - National Customer Contact Centre (NCCC)	Telephone: 08708 506 506 Email: enquiries@environment-agency.gov.uk		
	PO Box 544, Templeborough, Rotherham, S60 1BY			
2	British Geological Survey - Enquiry Service	Telephone: 0115 936 3143 Fax: 0115 936 3276		
	British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk		
3	Health and Safety Executive	Website: www.hse.gov.uk		
	5S.2 Redgrave Court, Merton Road, Bootle, L20 7HS			
4	Cheshire West and Chester Council - Planning Department	Telephone: 0300 1238 123 Email: enquiries@cheshirewestandchester.gov.uk Website: www.cheshirewestandchester.gov.uk		
	County Hall, Cheshire, CH1 1SF			
5	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmark.co.uk Website: www.landmarkinfo.co.uk		
6	Cheshire Brine Subsidence Compensation Board	Telephone: 0845 002 0562		
	Sir Henry Doulton House, Forge Lane, Etruria, Stoke on Trent, Staffordshire, ST1 5BD	Fax: 0845 111 8888 Email: info@cheshirebrine.com Website: www.cheshirebrine.com		
7	Macclesfield Borough Council (now part of Cheshire East Council)	Telephone: 01625 500500 Fax: 01625 504779 Website: www.macclesfield.gov.uk		
	Town Hall, Macclesfield, Cheshire, SK10 1DP			
8	Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	Telephone: 0113 2613333 Fax: 0113 230 0879		
	Government Buildings, Otley Road, Lawnswood, Leeds, West Yorkshire, LS16 5QT			
9	Natural England	Telephone: 0845 600 3078 Fax: 01733 455103		
	Northminster House, Northminster Road, Peterborough, Cambridgeshire, PE1 1UA	Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk		
10	Cheshire County Council (now part of Cheshire East Council) - Environmental Planning Department	Telephone: 01244 602424 Website: www.cheshire.gov.uk		
	Backford Hall, Backford, Chester, Cheshire, CH1 6EA			
11	Vale Royal Borough Council (now part of Cheshire West and Chester Council) - Environmental Health Department	Telephone: 01606 862862 Fax: 01606 867885 Website: www.valeroyal.gov.uk		
	Wyvern House, The Drumber, Winsford, Cheshire, CW7 1AH			
12	Macclesfield Borough Council (now part of Cheshire East Council) - Environmental Health Department	Telephone: 01625 500500 Fax: 01625 504779 Website: www.macclesfield.gov.uk		
	Town Hall, Macclesfield, Cheshire, SK10 1DU			
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org		
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk		

Useful Contacts

Contact

Name and Address

Contact Details

Please note that the Environment Agency / SEPA have a charging policy in place for enquiries.

Historical Mapping Legends

Ordnance Survey County Series 1:10,560	Ordnance Survey Plan 1:10,000	1:10,000 Raster Mapping		
Gravel Sand Other Pit Pit Pit Pits	مرتب Chalk Pit, Clay Pit ومرتب Gravel Pit در Chalk Pit, Clay Pit در Gravel Pit در Chalk Pit	Gravel Pit Gravel Pit or slag heap		
Orchard Shingle	Sand Pit Disused Pit	Rock (scattered)		
Reeds Marsh	Kefuse or Lake, Loch	ີູ້້ໍ້ຈີ Boulders Boulders (scattered)		
A 2 5	Dunes 200 Boulders	Shingle Mud Mud		
Mixed Wood Deciduous Brushwood	ネ Coniferous ネ ネ Trees	Sand Sand (
		Top of cliff		
Fir Furze Rough Pasture	ே Coppice பில_ Scrub புர Coppice ரிரி Bracken பிலு Heath பிர , Rough ரி Grassland	General detail — — — — Underground detail — — — Overhead detail — — — — Narrow gauge railway Multi-track		
Arrow denotes Arrow denotes Trigonometrical flow of water Station	<u> معنا</u> د Marsh ،،،∖V/،، Reeds <u>معنا</u> د Saltings	railway Civil, parish er		
🕂 Site of Antiquities 🔹 🛧 Bench Mark	Direction of Flow of Water Building	County boundary County boundary Community Condary District Unitory		
Pump, Guide Post, Well, Spring, Signal Post Boundary Post • 285 Surface Level	Glasshouse Sand	Metropolitan, Constituency London Borough boundary boundary		
Sketched Instrumental Contour Contour	Pylon — — — — Electricity Transmission Pole Line	Area of wooded vegetation Area of vegetation Area of v		
Main Roads Un-Fenced Un-Fenced Un-Fenced Un-Fenced	Cutting Embankment Standard Gauge	Coniferous Coni		
Sunken Road	Road '' ' Road Level Foot Under Over Crossing Bridge	수 Orchard 《 Coppice 수 수 Orchard 《 Coppice 수 수		
Railway over	Siding, Tarriway or Mineral Line Narrow Gauge	ளம் Rough லம் Grassland லயம் Heath		
Railway over Road Level Crossing	Geographical County	∩ Scrub 		
Road over River or Canal Stream	— — — — — Administrative County, County Borough or County of City Municipal Borough, Urban or Rural District,	Water feature Elow arrows		
Road over Stream	Burgh or District Council Borough, Burgh or County Constituency Shown only when not coincident with other boundaries	MHW(S) Mean high Mean low water (springs) water (springs)		
————— County Boundary (Geographical)	Civil Parish Shown alternately when coincidence of boundaries occurs	Telephone line (where shown)		
- · - · - · County & Civil Parish Boundary	BP, BS Boundary Post or Stone Pol Sta Police Station	(with poles) ← Bench mark Triangulation BM 123.45 m (where shown) △ station		
Co. Boro. Bdy.	Ch Church PO Post Office CH Club House PC Public Convenience F E Sta Fire Engine Station PH Public House	Point feature Pylon, flare stack • (e.g. Guide Post ⊠ or lighting toward		
Co. Burgh Bdy.	FB Foot Bridge SB Signal Box Fn Fountain Spr Spring	or Mile Stone)		
RD. Bdy. Rural District Boundary	GP Guide Post TCB Telephone Call Box MP Mile Post TCP Telephone Call Post MS Mile Stone W Well	General Building		
		Building		

Envirocheck®

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Cheshire	1:10,560	1882	2
Cheshire	1:10,560	1882	3
Cheshire	1:10,560	1899	4
Cheshire	1:10,560	1910 - 1911	5
Cheshire	1:10,560	1911	6
Cheshire	1:10,560	1911	7
Cheshire	1:10,560	1938	8
Ordnance Survey Plan	1:10,000	1954	9
Ordnance Survey Plan	1:10,000	1964	10
Ordnance Survey Plan	1:10,000	1975 - 1976	11
10K Raster Mapping	1:10,000	2006	12
VectorMap Local	1:10,000	2013	13

Historical Map - Slice A

Order Details

Order Number: Customer Ref: National Grid Reference: 372770, 373850 Slice: Site Area (Ha): Search Buffer (m):

53976325_1_1 Project Lindis А 3.5 1000

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

Envirocheck®

Cheshire Published 1882 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Ordnance Survey Plan

Published 1954

Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

10k Raster Mapping

Published 2006

Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number:	53976325_1_1
Customer Ref:	Project Lindis
National Grid Reference:	372770, 373850
Slice:	A
Site Area (Ha):	3.5
Search Buffer (m):	1000

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

VectorMap Local

Published 2013

Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and river estuary areas).

Map Name(s) and Date(s)

- 1- -SJ77NW I 2013 Variable - - -SJ77SW 2013
- Variable

Historical Map - Slice A

Order Details

Order Number: Customer Ref: National Grid Reference: 372770, 373850 Slice: А Site Area (Ha): Search Buffer (m):

53976325_1_1 Project Lindis 3.5 1000

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Cheshire	1:2,500	1877	2
Cheshire	1:2,500	1898	3
Cheshire	1:2,500	1910	4
Ordnance Survey Plan	1:2,500	1968 - 1969	5
Supply of Unpublished Survey Information	1:2,500	1974	6
Additional SIMs	1:2,500	1990 - 1991	7
Large-Scale National Grid Data	1:2,500	1993	8

Historical Map - Segment A13

Order Details

Order Number:	53976325_1_1
Customer Ref:	Project Lindis
National Grid Reference:	372770, 373850
Slice:	Α
Site Area (Ha):	3.5
Search Buffer (m):	100

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck[®]

Cheshire Published 1877

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	53976325_1_1
Customer Ref:	Project Lindis
National Grid Reference:	372770, 373850
Slice:	Α
Site Area (Ha):	3.5
Search Buffer (m):	100

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

> Tel: Fax: Web

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Cheshire Published 1898

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	53976325_1_1
Customer Ref:	Project Lindis
National Grid Reference:	372770, 373850
Slice:	A
Site Area (Ha):	3.5
Search Buffer (m):	100

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Cheshire Published 1910 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	53976325_1_1
Customer Ref:	Project Lindis
National Grid Reference:	372770, 373850
Slice:	A
Site Area (Ha):	3.5
Search Buffer (m):	100

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Ordnance Survey Plan Published 1968 - 1969 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	53976325_1_1
Customer Ref:	Project Lindis
National Grid Reference:	372770, 373850
Slice:	A
Site Area (Ha):	3.5
Search Buffer (m):	100

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck[®]

Supply of Unpublished Survey Information

Published 1974

Source map scale - 1:2,500

SUSI maps (Supply of Unpublished Survey Information) were produced between 1972 and 1977, mainly for internal use at Ordnance Survey. These were more of a `work-in-progress' plan as they showed updates of individual areas on a map. These maps were unpublished, and they do not represent a single moment in time. They were produced at both 1:2,500 and 1:1,250 scales.

Additional SIMs

Published 1990 - 1991

Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

—	_	_			—
Ι	SJ	7274	I.	SJ7374	Т
Ι	199 1:2	90 ,500	Ι	1990 1:2,500	I
1			1		I
_	_	_			_
1	SJ.	7273	1	SJ7373	_ I
 	SJ 199 1:2	7273 90 ,500	1	SJ7373 1991 1:2,500	- - -

Historical Map - Segment A13

Order Details

Order Number:	53976325_1_1
Customer Ref:	Project Lindis
National Grid Reference:	372770, 373850
Slice:	A
Site Area (Ha):	3.5
Search Buffer (m):	100

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

A Landmark Information Group Service v47.0 06-Mar-2014

Large-Scale National Grid Data

Published 1993

Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

—	_	_		_	_	_
L	SJ7	274	I	SJ7	374	I
I	199 1:2	93 500	I	199 1:2,5	3 500	I
I			1			I
-	-	-		—	_	—
I	SJ7	273	1	SJ7	373	I
I	199 1:2	93 500	- 1	199 1:2,5	3 500	I
I			Т			I
_	_	_		_	_	_

Historical Map - Segment A13

Order Details

53976325_1_1
Project Lindis
372770, 373850
A
3.5
100

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

A Landmark Information Group Service v47.0 06-Mar-2014

Envirocheck[®]

General	
🖒 Specified Site 👘 🏠 Specified Buffer(s)	X Be
Several of Type at Location	
Agency and Hydrological	Was
O Contaminated Land Register Entry or Notice (Location)	T BG
Contaminated Land Register Entry or Notice	ВС
🔷 Discharge Consent	🔴 EA
L Enforcement or Prohibition Notice	EA
A Integrated Pollution Control	A Int
Integrated Pollution Prevention Control	Lic 🔯
Local Authority Integrated Pollution Preventio and Control	n 🔴 Lia
A Local Authority Pollution Prevention and Cont	trol 📕 Lo
Control Enforcement	🛄 Lo
Pollution Incident to Controlled Waters	🚫 Re
V Prosecution Relating to Authorised Processe	es 🕨 Re
Prosecution Relating to Controlled Waters	Re Re
A Registered Radioactive Substance	📃 Re
🥆 River Network or Water Feature	🔶 Re
🕂 River Quality Sampling Point	🛄 Re
合 Substantiated Pollution Incident Register	🔶 Re
🔶 Water Abstraction	📃 Re
🔶 Water Industry Act Referral	Haz
Geological	🛃 CC
BGS Recorded Mineral Site	🛃 Ex

Industrial Land Use

- ★ Contemporary Trade Directory Entry
- 🖈 Fuel Station Entry

earing Reference Point 🛛 🛽 8 Map ID

ste

	BGS Recorded Landfill Site (Location)
	💋 BGS Recorded Landfill Site
	EA Historic Landfill (Buffered Point)
	EA Historic Landfill (Polygon)
	Integrated Pollution Control Registered
	Clandfill Boundary)
	Licensed Waste Management Facility (Location)
bl	Local Authority Recorded Landfill Site (Location
	IIII Local Authority Recorded Landfill Site
	🚫 Registered Landfill Site
	Registered Landfill Site (Location)
	Registered Landfill Site (Point Buffered to 100m)
	Registered Landfill Site (Point Buffered to 250m)
	👚 Registered Waste Transfer Site (Location)
	Ⅲ Registered Waste Transfer Site
	Registered Waste Treatment or Disposal Site (Location)
	Registered Waste Treatment or Disposal Site
	Hazardous Substances
	🛃 COMAH Site
	💑 Explosive Site
	🛃 NIHHS Site
	🗱 Planning Hazardous Substance Consent
	Renning Hazardous Substance Enforcement

Site Sensitivity Map - Slice A

Order Details

53976325_1_1 Project Lindis 372770, 373850 А 3.5 1000

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

General	
Specified Site Specified Buffer(s)	X Be
Several of Type at Location	
Agency and Hydrological	Was
O Contaminated Land Register Entry or Notice (Location)	🕇 BG
Contaminated Land Register Entry or Notice	💋 BG
🔶 Discharge Consent	🔵 EA
Leforcement or Prohibition Notice	EA
A Integrated Pollution Control	A Inte
Integrated Pollution Prevention Control	🔀 Lic
Local Authority Integrated Pollution Prevention and Control	🔴 Lic
🛆 Local Authority Pollution Prevention and Contro) 📕 Loo
Control Enforcement	III Loo
Pollution Incident to Controlled Waters	🚫 Re
V Prosecution Relating to Authorised Processes	🕨 Re
🔶 Prosecution Relating to Controlled Waters	Re Re
A Registered Radioactive Substance	Re Re
River Network or Water Feature	🔶 Rej
🐈 River Quality Sampling Point	🔢 Re
合 Substantiated Pollution Incident Register	Rej الما
🔷 Water Abstraction	📃 Rej
🔶 Water Industry Act Referral	Haz
Geological	🛃 co
BGS Recorded Mineral Site	🛃 Exp

Industrial Land Use

- ★ Contemporary Trade Directory Entry
- 📩 Fuel Station Entry

earing Reference Point 🛛 🛽 🛛 🛛 🛛 🛛 🖉

ste

	BGS Recorded Landfill Site (Location)
	🔀 BGS Recorded Landfill Site
	🛑 EA Historic Landfill (Buffered Point)
	EA Historic Landfill (Polygon)
	Integrated Pollution Control Registered Waste Site
	Licensed Waste Management Facility (Landfill Boundary)
1	Eicensed Waste Management Facility (Location)
ol	Local Authority Recorded Landfill Site (Location)
	Local Authority Recorded Landfill Site
	🚫 Registered Landfill Site
\$	Registered Landfill Site (Location)
	Registered Landfill Site (Point Buffered to 100m)
	Registered Landfill Site (Point Buffered to 250m)
	👚 Registered Waste Transfer Site (Location)
	IIII Registered Waste Transfer Site
	Registered Waste Treatment or Disposal Site (Location)
	Registered Waste Treatment or Disposal Site
	Hazardous Substances
	Marka COMAH Site
	🛃 Explosive Site
	🛃 NIHHS Site
	🗱 Planning Hazardous Substance Consent
	Planning Hazardous Substance Enforcement

Site Sensitivity Map - Segment A13

Order Details

Order Number: Customer Ref: Project Lindis National Grid Reference: 372770, 373850 Slice: Site Area (Ha):

53976325_1_1 A 3.5

Site Details

Project Delicious, Cape of Good Hope Farm, Back Lane, Plumley, KNUTSFORD, Cheshire, WA16 9SJ

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Issued by: The Coal Authority, Property Search Services, 200 Lichfield Lane, Berry Hill, Mansfield, Nottinghamshire, NG18 4RG Website: www.groundstability.com Phone: 0845 762 6848 DX 716176 MANSFIELD 5

LANDMARK INFORMATION GROUP LIMITED SOWTON INDUSTRIAL ESTATE ABBEY COURT **UNIT 5/7 EAGLE WAY** EXETER DEVON **EX2 7HY**

Our reference: Your reference: Date of your enquiry: Date we received your enquiry: Date of issue: 51000485806002 53976325 2 06 March 2014 06 March 2014 06 March 2014

This report is for the property described in the address below and the attached plan.

Non-Residential Coal Authority Mining Report

SITE AT PROJECT DELICIOUS, CAPE OF GOOD HOPE FARM, BACK LANE, PLUMLEY, KNUTSFORD, CHESHIRE,

This report is based on and limited to the records held by, the Coal Authority, and the Cheshire Brine Subsidence Compensation Board's records, at the time we answer the search.

Coal mining	No
Brine Compensation District	See comments below

Information from the Coal Authority

Underground coal mining

Past

According to the records in our possession, the property is not within the zone of likely physical influence on the surface from past underground workings.

Present

The property is not in the likely zone of influence of any present underground coal workings.

Future

The property is not in an area for which the Coal Authority is determining whether to grant a licence to remove coal using underground methods.

The property is not in an area for which a licence has been granted to remove or otherwise work coal using underground methods.

The property is not in an area that is likely to be affected at the surface from any planned future workings.

No notice of the risk of the land being affected by subsidence has been given under section 46 of the Coal Mining Subsidence Act 1991.

Mine entries

There are no known coal mine entries within, or within 20 metres of, the boundary of the property.

Coal mining geology

The Authority is not aware of any evidence of damage arising due to geological faults or other lines of weakness that have been affected by coal mining.

Opencast coal mining

Past

The property is not within the boundary of an opencast site from which coal has been removed by opencast methods.

Present

The property does not lie within 200 metres of the boundary of an opencast site from which coal is being removed by opencast methods.

Future

The property is not within 800 metres of the boundary of an opencast site for which the Coal Authority is determining whether to grant a licence to remove coal by opencast methods. The property is not within 800 metres of the boundary of an opencast site for which a licence to remove coal by opencast methods has been granted.

Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres, since 31st October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property. The Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

There is no record of a mine gas emission requiring action by the Coal Authority within the boundary of the property.

Hazards related to coal mining

The property has not been subject to remedial works, by or on behalf of the Authority, under its Emergency Surface Hazard Call Out procedures.

Withdrawal of support

The property is not in an area for which a notice of entitlement to withdraw support has been published.

The property is not in an area for which a notice has been given under section 41 of the Coal Industry Act 1994, revoking the entitlement to withdraw support.

Working facilities orders

The property is not in an area for which an Order has been made under the provisions of the Mines (Working Facilities and Support) Acts 1923 and 1966 or any statutory modification or amendment thereof.

Payments to owners of former copyhold land

The property is not in an area for which a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Information from the Cheshire Brine Subsidence Compensation Board

The property is situated within the Cheshire Brine Subsidence Compensation District but is not within any consultation area prescribed by the Board under Section 38(1) of the Cheshire Brine Pumping (Compensation for Subsidence) Act 1952.

A Notice of Damage has not been filed in respect of the property and there has been no commutation of claims in connection therewith.

If claims in respect of the property have not been commuted, then should the property suffer damage at some future date through subsidence due to brine pumping, the compensation provisions of the Cheshire Brine Pumping (Compensation for Subsidence) Acts 1952 and 1964 would be expected to apply to the property. Should you wish to file a Prescribed Notice of Damage, please contact the Cheshire Brine Subsidence Compensation Board (tel: 0845 002 0562 or email info@cheshirebrine.com).

Additional Remarks

This report is prepared in accordance with the Law Society's Guidance Notes 2006, the User Guide 2006 and the Coal Authority and Cheshire Brine Board's Terms and Conditions 2006. The Coal Authority owns the copyright in this report. The information we have used to write this report is protected by our database right. All rights are reserved and unauthorised use is prohibited. If we provide a report for you, this does not mean that copyright and any other rights will pass to you. However, you can use the report for your own purposes.

Location map

Approximate position of property

Enquiry boundary

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2014. All rights reserved. Ordnance Survey Licence number: 100020315

Key

Approximate position of enquiry boundary shown

Sampling					Strata	73326	7475	57		
Depth ich Gogledical Supr	Туре	Casing Depth	Date/ Water	SPT N (Cu)	Description Autor Landral Survey	Depth	Level	Lege	Ind	
	1		20/04		TOPSOIL++	- G.L.	35.81		Г	
0.45					Liobzoiri	F (0.45)	75 74			
0.55-1.00	SÕ		DRY	11	Firm orange-brown mottled grey silty sandy CLAY with occasional gravel.	E	33.30			
-					[Glacial Till]	E				
1.25	D					Ē		<u> </u>		
1.50-1.95	SD	1.50	DRY	10	Below 1.50m: dark orange-brown with a	ŧ				
E	ritish Geolo	gical Surv	ey		British Geological Survey	E	Br	ilish Geolog	i ca	
- 2.20						Ē		<u> </u>		
2.40-2.85	SD	1.50	DRY	11		E		<u> </u>		
						F (4.15)				
_						E		·		
3.25	D	7 00	DBY	14	Dalau 7 75m firm to stiff your cont	ŧ				
ish Geological Surv	з 0 у	3.00		10	Bectow J. Jan; Tirm to Stirt, Yery Sandy. British Geological Survey	British Geolog	lical Survey			
						E	ľ	<u> </u>		
- / 15						F				
4.40-4.73	SD SD	6 20	DRY	507		F				
4.60-4.75	Ď	20		180	Very dense brown clayey fine and medium SAND	F 2:99	31.21			
					[Glacial Sand and Gravel]	Æ	51.00			
5.20	D				Very stiff brown sandy CLAY with a little	E				
5.45-5.76	iritish Geolo	^{gic} 5.20	DRY	50/	FILE and medium grave declogical Survey	F	Br	tish:Geolog	ic a	
					Taractar Lift?	E		i		
4.30						F				
6.45-6 90	D SD	5 20	DRY	40		Ę		<u> </u>		
	~	5.20				F		<u> </u>		
					· · · ·	E (4.35)				
tis 7 20 logical Surv	ey D				British Geological Survey	British Geolog	ical Survey	[]		
7.50-7.95	SD	7.00	DRY	42		F				
						E				
8.25						F		<u></u>]		
8.50-8.95	SD	7.00	DRY	45		F		i i i		
	~			-,		F				
						E.		<u>+</u>		
7.10	aritis ND Geoli	gical Surv	ey		Very stiff dark brown poorly laminated silty	ŧ 9.10	26.71 Br	aish Gealag	ica	
9.40-9.85	SD	9.00	DRY	40	[Glacial Till]	F		<u> </u>		
						Ē				
						-(1.75)		<u> </u>		
Equipment: Cab Top	le Perce Drive	ssive	Boring Rig	Rig	Groundwater No. Struck Behaviour Sealed	Ground Lev	el 35	.81 m OD		
Rorehole Dia /	m)	Caeler		, I	None encountered during		94	754.5		
150 (0 17.15 S to 30.52-	20 20	150 to	17.15	m į	British Geological Survey	Drilled by	ical Survey	Ń		
						Checked by	L WC			
Remarks	1. A 2. Ha	little and str	ata/Ch	added isellin	throughout to assist drilling. g: 12.40m to 12.70m (45 mins).					
See key sheet										
nd appendices or explanations								For	m	
Boreholo	Reco	-d			Project	Contract	D22	00		
Borehole Record					M6 Widening Junctions 16 to 20	02200				
	Tritish Goole	nical Surv	Ó./		Department of Transport Survey			1101120000		

	Sampling					Strata				-
Britis	Depth / Drill Run b. Geological Survey	Type /	Casing (RQD)	Date/ Water	SPT N (Cu)/FI	Description British Geological Survey	Depth (Thickness)	Lavel	Lege	nd
	10.10	Ð		20/04		(See previous sheet - very stiff CLAY).	F		·]	
	10,40-10,85	50	10.25	DRY	43		Ę			
		-	10.22				Ē			
	11.00	D				Very stiff brown very sandy CLAY with some	10.85	24.96		
						coarse gravel.	ŧ			
	L. 11.40-11.85	SD th Geologic	10.20	DRY	48	[Glecial Till] British Geological Survey	Ē	Britis		Survey
		in occording to	in ourroy			Billion Coolegical Carry	E	Ditto		ountry
	12.25	Ð					E			
	12.60-12.82	с	12.30	DRY	50/				— — — — — — — — — — — — — — — — — — —	
	12.60-13.00	B			70		-			
	13.25	D					L (4.23)			
Britis	_ 13.40	¥				British Geological Survey	- Wish Geologic:	I Survey		
	13.45-15.82	SD	13.00	DRY	220					
							F			
-C. (14.30	D		1			Ę			
	14.65-15.05	SD	13.00	DRY	50/		Ē			
	15 10-15 50				250		E 15 10	20 71		
	0.10-15.50	D ah Goologia	15.50	DRY		Red-brown, mottled grey highly weathered silty MUDSTONE recovered as silty clay with	E 13.10	ZU. / I		Currey
	15.50	sil Geologic	15.50	21/04	-	occasional sub-angular mudstone lithorelicts.	Ē	DIIUS		Survey
	15.75-16.20	SD	15.50	14.70	51	[Mercia Mudstone WG IV]	Ę			
							E (2.05)			
							Ę			
	16.75	D					ŧ			
Dritie	17.15					Ritich Coological Superv	F 17 15	18.66		
DITUS	n osong var oarrey				ĺ	Red-brown thinly and thickly laminated silty MUDSTONE with frequent sub-horizontal planar	L.	134.6 52.9		
						discontinuities and discontinuous gypsum bands. Very weak to weak.	Ē			
_	- -	100%	(70%)		4	[Nercia Nudstone WG IIIa] At 17.53m: open sub-horizontal	È.			
\mathbf{C}						discontinuity. At 18.34m: open sub-horizontal	Ę			
	18.57				<u> </u>	18.45m to 18.57m: grey-green in colour. Below 18.57m: becoming red-brown and grey-	Ē			
	0.00	h O salasia	1.0		>20	green thickly interlaminated silty mudstone and clayey siltstone. Weak to very weak.	E_	Deilie		
	DITU	in Geologic	n Sulvey			frequent sub-horizontal gypsum bands up to 8mm thick.	Ę	Dilus		Survey
						(Mercia Mudstone WG IIIa - II)	Ē			
					19		Ē			
	- -		<u> </u>	<u> </u>	<u> </u>	Groundwater				
	Equipment: Car Top	Die Perc Drive	Rotary	Rig	Rig	No. Struck Behaviour Sealed	Coordinat	vel 35 es 11	.81 m 0 3338.2 754.5	, mE mW
Dritia	Borehole Dia (m	im)	Casing	Dia (mr	n)	Pritich Goological Survey	Pritic la Cin e l'actic	al Cuntant		
Diffus	S to 30.52m		150 t S to	0 17.15 17.00m		Billish Geological Sulvey	Logged by	SW .		
	Remarks					1	Lancokea D	/		
	Cas key shart									
	and appendices	 1							-	
						Project	Contract	1 033	100	/m 1/0
	Borehole	несо	rd			M6 Widening Junctions 16 to 20 Department of Transport			Ganlagio	Super
	Expl	oratio	n As	socia	tes	Motorway Widening Unit Curvey	Borehole	a 32	4(2 of 4)
1	\mathbf{U}						1			

53 77 54 277

537756 277

	Sampling	J				Strata				
Briti	Drill Run	TCR (SCR)	Casing (RQD)	Date/ Water	SPT N FI	Description	Depth (Thickness)	s.masi	Lege	nd
		100x (91x)	(39%)	21/04		(See previous sheet - silty MUDSTONE)				
					19	Below 20.90m: with rare siltstone bends. Weak to moderately weak.				
	21.57	h Geologica	Survey		9	21.47m to 21.57m: with sub-vertical gypsum filled discontinuity, 8mm mide. Below 21.77m: becoming more weathered.		British		Survey
						(Mercia Mudstone WG IIIa - II) 22.19m to 22.35m: sub-vertical gypsum filled discontinuity, 5mm wide.	.			
Briti	a) Geological Survey	94X (88X)	(40%)		12	Bun 23.39m, to 23.52m: sub-vertical gypsum	Ruitish Geologica	Survey		
\mathcal{C}						filled discontinuity, 15mm wide. Below 24.07m: with occasional grey-green				
~	24.52				NR NR NI	From 24.67m to 25.19m: grey-green in colour, and with bands of clayey siltstone up to				
	Britis	h Geologica	Survey		9 NI	25.32m to 25.48m:subryentical gypsum filled discontinuity, 6mm wide.		Britisl	a	Survey
		(795X)	(55%)		6	26.08m to 26.16m: sub-vertical gypsum- filled discontinuity.				
Briti	th Geological Survey 27.52				9 NI	British Geological Survey Below 27.52m: gypsum bands up to 25mm wide, but generally <10mm.	Aritish Geologica	l Survey		
C	Brits	ch (963 , c)(c) (923,)	Survey (39%)		>20 3. NI. NI.	28.72m to 28.94m: sub-vertical gypsum filled discontinuity, 8mm wide. British Geological Survey		Britis		l Survey
				-	>20 NI	29.66m to 29.80m: sub-vertical gypsum filled discontinuity, 7mm wide.				
	Equipment: Cab Top	le Percu Drive R	ssive E otary F	loring	Rig	Groundwater No. Struck Behaviour Sealed	Ground Leve Coordinates	l 35.	81 m 00 338.2	mE
Brit	Borehole Dia (m sh 450 tel 47/456 S to 30.52m	m) (■	Casing D 150 to S to 17	ia (mm) 17.15m '.00m		British Geological Survey	Drilled by Logged by Checked by	947 Kp mn Sw Jw	54.5	mN
	Remarks See key sheet and appendices for explanations.								Ē	
Ī	Borehole I	Recor	d			Project	Contract	D220	0	1/0
ľ	Exploration Associates					Departmentigkin daansoorsuwey Motorway Widening Unit	Borehole	324	(3 of 4)	-Curvey-

Samping	3				Strata				
Drill Run	TCR (SCR)	Casing (BOD)	Date/	SPT N	Description	Depth	Lovel	Len	and
	10011		21/04	7	30.17m to 30.42m; sub-vertical gypsum filled discontinuity, 25mm wide.	(Phickness)	gi oar sur ve		
30.52						30.52	5.29		
					End of Borehole.	Ē			
E	litish Geolog	cal Surve			British Geological Survey	-	В	itish Geol	ogical S
-									
ish Geological Surve					Brilish Geological Survey	British Geold	gical Surve		
E	ritish Geolog	ical Surve			British Geological Survey		В	iitish Geol	ogical
• tish Geological Surv •	V				Brilish Geological Survey	British Geold	gical Surve	ý	
	ritish Geolog	ical Surve			British Geological Survey		B	ritish Gedi	gical
Equipment Cat	le Percu	ssive	Boring	Ria	Groundwater	Ground Lev	ei 35	.81 m 01	
Top Borehole Dia (m 1500 to 17019 Sto 30 52m) Drive A m) (W	Casing [150 to	Rig Xia (mm 17.15) n	No. Struck Behaviour Seale British Geological Survey	Dritted by	s 11 94 ^{gical} Suma	338.2 54.5	m
Remarks	-					Checked by		·	
and appendices or explanations					Project	Contract		Fo	rm 1,
Borehole	Recor	d Ical Survey			M6 Widening Junctions 16 to 20 Department of Midnappontal Survey	Contract	D220	0	ogical (

.

• • • • •				SL NE	/31
8	ritish Geological Survey	(table)	7 NY		vey
			CC		TAL
e An S		Thickness of strata	Depth from surface	Level reduced to ordnanc	6 t)
	British Geological Survey	British Geolo 22.51	31.66 *	+ 57.65'	British Geological Survey 9 · 64
	Fine sandy gravel	5.01	36.661	+ 52.651	11.17
	Gravel	6.01	42.661	+ 46.651	13.00
	Red Marl	8.01	50.661	+ 38.651	15 (44
	ritish Geological Survey British C Hard red & grey marls	Seological Survey 144.97↑	195.631	British Geological Su - 106.32 1	vey 59.62
	Brown & grey marls	10.0'	205.631	- 116.32'	62-67
	Marly ROCK SALT	30.01	235.631	- 146.32'	71-8
	ROCK SALT	72.01	307.631	- 218.321	93.76
	Marly ROCK SALT	2.0 ^{British Geolo}	³⁰⁹ 63 1	- 220.321	British Geological Survey 94 · 37
	Red Marl	6.0'	315.631	- 226.321	96 . 20
	Grey Marl	4.01	319.63!	- 230.321	97.10
	Red Marl	7.01	326.631	- 237.321	99.50
· B	ntish Geologia Start ROCK SALT	3eolo 28 500	354.631	- 265.32 Mai Su	ivey
	Red & grey marl	1.0'	355.631	- 266.321	108.39
	ROCK SALT	49.01	404.631	- 315.32'	123.33
	Red marl	6.01	410.631	- 321.32'	125 . 16
	Hard ^{enig} reysismarl	6. OB tish Geolo	91 41.6 2 63 1	- 327.321	British Geological Survey
	Red marl .	4.5'	421.13'	- 331.82'	128.36
	Grey marl	2.5'	423.631	- 334.32 '	129.12
	Red marl	9.0'	432.631	- 343.32 '	
В	ritish GeoleROGKey SALT	Geologia .5.5	506.13'	- 416.821	131-86
	ROCK SALT with marl	13.5'	519.631	- 430.321	158.38
	Hard grey marl & ROCKSALT	49.01	568.631	- 479.321	173.31
	ROCK SALT & marl	30.01	598.631	- 509.321	182 - 46
	British Geological Survey	British Geolo	gical Survey		British Geological Survey

Brine & #ater # 4. 27 Holford: Holford: List STRATA Strata Strata Description of Strata Digreth from Bod Clay Red Mari with Gypsum	Released from confiden had con	CHESHIRE 34NEC 7		
H_130 STRATA [ST 7/347475] June/73 Description of Strata District Dugwell Rod Clay and Gravel Red Marl with Grysum Red Clay Gry Marl With Grysum Red Clay Warl With Grysum Red Clay Gry Marl With Grysum Red Clay Warl With Grysum Red Clay Gry Marl With Grysum Red Clay Gry Marl With Grysum Red Clay Warl With Grysum Red Clay Gry Marl With Grysum R	British Geological Survey	Brine & Water Word, 4		
H_120 STRATA June/73 IST 7/34/74757 Depth from Description of Strata Thickness Surface Dugwell 0'-0" 10'-0" Bd Clay 8'-0" 25'-0" Bd Clay 8'-0" 25'-0" Rod Clay and Gravel 1'-0" 20'-0" Rod Clay and Gravel 6'-0" 25'-0" Rod Clay and Gravel 6'-0" 25'-0" Rod Clay and Gravel 6'-0" 25'-0" Rod and Grey Marl with Gypsum 5'-0" 26'-0" Rod and Grey Marl with Gypsum 5'-0" 26'-0" Rod and Grey Marl with Gypsum 7'-0" 36'-0" Rod and Grey Marl with Gypsum 6'-0" 13'-0" Rod and Grey Marl with Gypsum 6'-0" 13'-0" Rod and Grey Marl with Gypsum 6'-0" 13'-0				
$ \begin{bmatrix} ST 7/3 + 7 + 75 \end{bmatrix} \text{Long}//3 \\ \hline \end{bmatrix} \\ \hline \\$	H. 130 STRATA			
Description of StrataDepth from SurfaceDugwell10'-0"10'-0"10'-0"Red ClayG'-0"10'-0"7'-0"Red Clay and Gravel6'-0"11'-0"36'-0"Red Clay and Gravel6'-0"11'-0"36'-0"Red Clay and Gravel6'-0"5'-0"52'-0"Red Marl with Gypsum5'-0"57'-0"57'-0"Red Marl with Gypsum5'-0"57'-0"57'-0"Red and Gray Marl with Gypsum5'-0"66'-6"Red and Gray Marl with Gypsum5'-0"88'-6"Red and Gray Marl with Gypsum7'-0"88'-6"Red and Gray Marl with Gypsum7'-0"88'-6"Red and Gray Marl with Gypsum7'-0"13'-0"Red and Gray Marl with Gypsum5'-0"13'-0"Red and Gray Marl with Gypsum6'-0"13'-0"Red and Gray Marl with Gypsum6'-0"13'-0"Red and Gray Marl with Gypsum6'-0"136'-0"Red and Gray Marl with Gypsum5'-0"22'-0"Red and Gray Marl with Gypsum6'-0"136'-0"Red and Gray Marl with Gypsum6'-0"136'-0"Red and Gray Marl with Gypsum6'-0"136'-0"Red and Gray Marl with Gypsum6'-0"22'-0"Red and Gray Marl with Gypsum5'-0"22'-0"Red and Gray Mar	SJ 713474757	NE/15		
Bescription of StrateThickness SurfaceDugwell10'-0"10'-0"Bed ClayGravel7'-0"Red Clay and Gravel1'-0"25'-0"Red Clay and Gravel5'-0"5'-0"Red Clay and Gravel5'-0"5'-0"Red Clay and Gravel5'-0"5'-0"Red Alay and Gravel5'-0"5'-0"Red Alay and Gravel5'-0"5'-0"Red Marl with Gypsum5'-0"5'-0"Red and Gray Marl with Gypsum5'-0"66'-6"Red and Gray Marl with Gypsum7'-0"88'-6"Red and Gray Marl with Gypsum7'-0"88'-6"Red and Gray Marl with Gypsum7'-0"88'-6"Red and Gray Marl with Gypsum7'-0"95'-6"Red and Gray Marl with Gypsum7'-0"13'-0"Red and Gray Marl with Gypsum5'-0"13'-0"Red and Gray Marl with Gypsum6'-0"13'-0"Red and Gray Marl with Gypsum7'-0"160'-0"Red and Gray Marl with Gypsum7'-0"160'-0"Red and Gray Marl with Gypsum7'-0"160'-0" <t< td=""><td>Deliver development of work</td><td>Denth from</td></t<>	Deliver development of work	Denth from		
Dugwell Red Clay 10'-0" 10'-0" Red Clay and Gravel 8''''''''''''''''''''''''''''''''''''	Description of Strata	Thickness Surface		
Bod Clay 7'-0" 17'-0" Sand and Gravel 8'-0" 25'-0" Red Clay and Gravel 1'-0" 36'-0" Red Clay and Gravel 5'-0" 41'-0" Dath Red Clay and Gravel 5'-0" 41'-0" Dath Red Marl with Gravel 5'-0" 5'-0" Red Marl with Gravel 5'-0" 5'-0" Red Marl with Gypsum 5'-0" 66'-6" Red Marl with Gypsum 5'-0" 66'-6" Red Marl with Gypsum 5'-0" 88'-6" Red Marl with Gypsum 7'-0" 81'-0" Red Marl with Gypsum 7'-0" 13'-0" Red Marl with Gypsum 7'-0" 12'-0" Red Marl with Gypsum 6'-0" 138'-0" Red And Grey Marl with Gypsum 6'-0"	Dugwell	10'-0" 10'-0"		
Sand and Gravel 8'-0" 25'-0" Red Clay and Gravel 11'-0" 36'-0" 25'-0" Red Clay and Gravel 5'-0" 11'-0" 36'-0" Red Marl with Gypsun 5'-0" 5'-0" 1'-0" Red Marl with Gypsun 5'-0" 5'-0" 5'-0" Red Marl with Gypsun 5'-0" 5'-0" 5'-0" Red Marl with Gypsun 5'-0" 6''-0" 6''-0" Red Marl with Gypsun 5'-0" 6''-0" 6''-0" Red Marl with Gypsun 7'-0" 88' 6'' 88' 6'' Red Marl with Gypsun 7'-0" 88' 6'' 88' 6'' Red Marl with Gypsun 7'-0" 88' 6'' 88' 6'' Red Marl with Gypsun 7'-0" 95'-6'' 6''-0" Red Marl with Gypsun 7'-0" 113'-0" 6'-0" 11''-0" Red And Grey Marl with Gypsun 6'-0" 12''-0" 6''' 0''' Red And Grey Marl with Gypsun 6'-0" 12''-0" 6'''' 0'''' 0'''' Red And Grey Marl with Gypsun 12'-0" 150'-0" 122''''''' 0'''''''''''''''''''''''	Red Clay	7'-0" 17'-0"		
Red Clay and Gravel 11'-0" 26'-0" Red Clay and Gravel 5'-0" are how 1/' -0" bit Red Marl with Gypsum 5'-0" 52'-0" Red Marl with Gypsum 5'-0" 65'-0" Red Marl with Gypsum 5'-0" 65'-0" Red Marl with Gypsum 7'-0" 88'-6" Red Marl with Gypsum 7'-0" 88'-6" Red and Grey Marl with Gypsum 7'-0" 88'-6" Red and Grey Marl with Gypsum 7'-0" 88'-6" Red and Grey Marl with Gypsum 5'-0" 10'-0" Red And Grey Marl with Gypsum 5'-0" 10'-0" Red and Grey Marl with Gypsum 6'-0" 132'-0" Red and Grey Marl with Gypsum 6'-0" 156'	Sand and Gravel	8'-0" 25'-0"		
The Red ClayThe Adaptation $5^{1}-0^{0}$ 5^{1	Red Clay and Gravel	11'-0" 36'-0"		
Red Clay and Gravel 6'-0" 27'-0" Red Marl with Gravel 5'-0" 52'-0" Red Marl with Gypsum 5'-0" 52'-0" Red Marl with Gypsum 5'-0" 66'-6" Red Marl with Gypsum 5'-0" 66'-6" Red Marl with Gypsum 2'-6" 66'-6" Red Marl with Gypsum 5'-0" 66'-6" Red Marl with Gypsum 7'-0" 81'-0" Red Marl with Gypsum 7'-0" 81'-0" Red Marl with Gypsum 7'-0" 81'-0" Red Marl with Gypsum 7'-0" 95'-6" Grey Marl with Gypsum 5'-0" 105'-0" Red and Grey Marl with Gypsum 6'-0" 113'-0" Red and Grey Marl with Gypsum 6'-0" 126'-0" Red and Grey Marl with Gypsum 6'-0" 126'-0" Red and Grey Marl with Gypsum 6'-0" 132'-0" Red Marl with Gypsum 2'-0" 156'-0" Red and Grey Marl with Gypsum 2'-0" 156'-0" Red and Grey Marl with Gypsum 2'-0" 156'-0" Red and Grey Marl with Gypsum 2'-0" 156'-0"	British Geological Survey	5rities Gallogical Survey 41 -0" 25		
Red Marl with Gypsum 5'-0" 52'-0" Red and Grey Marl with Gypsum 1'-6" 61'-6" Red and Grey Marl with Gypsum 2'-6" 66'-6" Red and Grey Marl with Gypsum 2'-6" 66'-6" Red and Grey Marl with Gypsum 2'-6" 66'-6" Red and Grey Marl with Gypsum 7'-0" 81'-0" Red and Grey Marl with Gypsum 7'-0" 95'-6" Red and Grey Marl with Gypsum 2'-6" 82'-0" Red and Grey Marl with Gypsum 2'-6" 82'-0" Red and Grey Marl with Gypsum 5'-0" 10'-0" Red and Grey Marl with Gypsum 6'-0" 122'-0" Red and Grey Marl with Gypsum 6'-0" 122'-0" Red and Grey Marl with Gypsum 10'-0" 13'-0" Red and Grey Marl with Gypsum 2'-0" 122'-0" Red and Grey Marl with Gypsum 2'-0" 122'-0" Red and Grey Marl with Gypsum 2'-0" 152'-0" Red and Grey Marl with Gypsum 2'-0" 122'-0" Red and Grey Marl with Gypsum 2'-0" 122'-0" Red and Grey Marl with Gypsum 2'-0" 122'-0"	Red Clay and Gravel	6'-0" 47'-0" *		
Red Marl with Gypsum 5'-0" 5''-0" Red and Grey Marl with Gypsum 5'-0" 66''-6" Red Marl with Gypsum 2'-6" 69''-0" Red Marl with Gypsum 2'-6" 69''-0" Red Marl with Gypsum 7'-0" 81'-0" Red Marl with Gypsum 7'-0" 81'-0" Red Marl with Gypsum 7'-0" 82'-6" Red Marl with Gypsum 7'-0" 82'-6" Red Marl with Gypsum 7'-0" 82'-0" Red Marl with Gypsum 5'-0" 13''-0" Red Marl with Gypsum 5'-0" 13''-0" Red Marl with Gypsum 6'-0" 132'-0" Red Marl with Gypsum 6'-0" 132'-0" Red and Grey Marl with Gypsum 6'-0" 126'-0" Red and Grey Marl with Gypsum 6'-0" 126'-0" Red and Grey Marl with Gypsum 2'-0" 160'-0" Red and Grey Marl with Gypsum 2'-0" 160'-0" Red and Grey Marl with Gypsum 5'-0" 22'-0" Red and Grey Marl with Gypsum 5'-0" 22'-0" Red and Grey Marl with Gypsum 5'-0" 22'-0"	Red Marl with Gravel	5'-0" 52'-0"		
Red and Grey Marl with Gypsum $1 - 6^{\circ}$ $61 - 5^{\circ}$ Red Marl with Gypsum $2^{\circ} - 6^{\circ}$ $66^{\circ} - 6^{\circ}$ Red Marl with Gypsum $2^{\circ} - 6^{\circ}$ $66^{\circ} - 6^{\circ}$ Red and Grey Marl with Gypsum $7^{\circ} - 0^{\circ}$ $81^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $7^{\circ} - 0^{\circ}$ $81^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $7^{\circ} - 0^{\circ}$ $95^{\circ} - 6^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 6^{\circ}$ $98^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $5^{\circ} - 0^{\circ}$ $103^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $10^{\circ} - 0^{\circ}$ $128^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $6^{\circ} - 0^{\circ}$ $128^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $6^{\circ} - 0^{\circ}$ $128^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 0^{\circ}$ $158^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 0^{\circ}$ $158^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 0^{\circ}$ $158^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 0^{\circ}$ $222^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum $5^{\circ} - 0^{\circ}$ $257^{\circ} - 6^{\circ}$ Red Marl with Gypsum $2^{\circ} - 6^{\circ}$ $27^{\circ} - 6^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 0^{\circ}$ $252^{\circ} - 6^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 6^{\circ}$ $27^{\circ} - 6^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 6^{\circ}$ $27^{\circ} - 6^{\circ}$ Red and Grey Marl with Gypsum $2^{\circ} - 6^{\circ}$ $266^{\circ} - 0^{\circ}$ Red and Grey Marl with Gypsum <t< td=""><td>Red Marl with Gypsum</td><td>5'-0" 57'-0"</td></t<>	Red Marl with Gypsum	5'-0" 57'-0"		
RedMarlwith Gypsum $5^{-0"}$ $66^{-5"}$ Redand Grey Marlwith Gypsum $5^{-0"}$ $66^{-5"}$ Redand Grey Marlwith Gypsum $7^{-0"}$ $81^{-0"}$ Redand Grey Marlwith Gypsum $7^{-6"}$ $88^{-6"}$ Redand Grey Marlwith Gypsum $7^{-6"}$ $88^{-6"}$ Redand Grey Marlwith Gypsum $7^{-0"}$ $95^{-6"}$ Redand Grey Marlwith Gypsum $10^{-0"}$ $13^{-0"}$ Redand Grey Marlwith Gypsum $10^{-0"}$ $13^{-0"}$ Redand Grey Marlwith Gypsum $7^{-0"}$ $126^{-0"}$ Redand Grey Marlwith Gypsum $6^{-0"}$ $126^{-0"}$ Redand Grey Marlwith Gypsum $6^{-0"}$ $126^{-0"}$ Redand Grey Marlwith Gypsum $2^{-0"}$ $156^{-0"}$ Redand Grey Marlwith Gypsum $2^{-0"}$ $156^{-0"}$ Redand Grey Marlwith Gypsum $4^{-0"}$ $156^{-0"}$ Redand Grey Marlwith Gypsum $4^{-0"}$ $262^{-0"}$ Redand Grey Marlwith Gypsum $5^{-0"}$ $262^{-0"}$ RedMarlwith Gypsum $5^{-0"}$ $262^{-0"}$ Redand Grey Marl $4^{-0"}$ $266^{-0"}$ RedMarlwith Gypsum $5^{-0"}$ $266^{-0"}$ RedMarlwith Gypsum $5^{-0"}$ $266^{-0"}$ RedMarl $4^{-0"}$ $266^{-0"}$ $6^{-0"}$	Red and Grey Marl with Gypsum	4 -6 61 -6		
Redand Grey Marl with Gypsum $2^{-}-6^{\circ}$ $69^{\circ}-0^{\circ}$ RedMarl with Gypsum $7^{\prime}-0^{\circ}$ $81^{\prime}-0^{\circ}$ RedMarl with Gypsum $7^{\prime}-0^{\circ}$ $82^{\prime}-6^{\circ}$ RedMarl with Gypsum $5^{\prime}-0^{\circ}$ $103^{\prime}-0^{\circ}$ RedMarl with Gypsum $5^{\prime}-0^{\circ}$ $103^{\prime}-0^{\circ}$ Redand Grey Marl with Gypsum $6^{\prime}-0^{\circ}$ $113^{\prime}-0^{\circ}$ Redand Grey Marl with Gypsum $6^{\prime}-0^{\circ}$ $122^{\prime}-0^{\circ}$ Redand Grey Marl with Gypsum $6^{\prime}-0^{\circ}$ $122^{\prime}-0^{\circ}$ Redand Grey Marl with Gypsum $2^{\prime}-0^{\circ}$ $150^{\prime}-0^{\circ}$ GreyMarl with Gypsum $2^{\prime}-0^{\circ}$ $150^{\prime}-0^{\circ}$ Redand Grey Marl with Gypsum $2^{\prime}-0^{\circ}$ $150^{\prime}-0^{\circ}$ RedMarl with Gypsum $5^{\prime}-0^{\circ}$ $222^{\prime}-6^{\circ}$ RedMarl with Gypsum $5^{\prime}-0^{\circ}$ $222^{\prime}-6^{\circ}$ RedMarl with Gypsum $5^{\prime}-0^{\circ}$ $226^{\circ}-0^{\circ}$ RedMarl with Gypsum $5^{\prime}-0^{\circ$	Red Marl with Gypsum	5'-0" 66'-6"		
Red Marl with Gypsum 5'-0" search designed heave 5'-0" search designed heave Red and Grey Marl with Gypsum 7'-0" 81'-0" search designed heave search designed h	Red and Grey Marl with Gypsum	2'-6" 69'-0"		
Redand Grey Marl with Gypsum7'-0"81'-0"Red Marl with Gypsum7'-0"95'-6"Red Marl with Gypsum2'-6"98'-0"Red Marl with Gypsum2'-6"98'-0"Red Marl with Gypsum10'-0"113'-0"Red Marl with Gypsum10'-0"113'-0"Red Marl with Gypsum10'-0"126'-0"Red and Grey Marl with Gypsum6'-0"126'-0"Grey Marl with Gypsum6'-0"126'-0"Grey Marl with Gypsum12'-0"150'-0"Red and Grey Marl with Gypsum2'-0"152'-0"Red and Grey Marl with Gypsum5'-0"252'-6"Red and Grey Marl with Gypsum1'-6"266'-0"Red and Grey Marl with Gypsum1'-6"266'-0"Red and Grey Marl with Gypsum1'-0"270'-6"Red and Grey Marl with Gypsum1'-6"266'-0"Red and Grey	Red Manlish With Scypsum	5 -0" British Garkeicans Ovey		
Red Marl with Gypsum $7'-0"$ $38'-6"$ Red and Grey Marl with Gypsum $2'-6"$ $98'-0"$ Red Marl with Gypsum $2'-6"$ $98'-0"$ Red Marl with Gypsum $10'-0"$ $113'-0"$ Red Marl with Gypsum $10'-0"$ $113'-0"$ Red Marl with Gypsum $6'-0"$ $113'-0"$ Red and Grey Marl with Gypsum $6'-0"$ $138'-0"$ Grey Marl with Gypsum $6'-0"$ $138'-0"$ Red and Grey Marl with Gypsum $6'-0"$ $138'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $152'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $222'-6"$ Red and Grey Marl with Gypsum $5'-0"$ $227'-6"$ Red and Grey Marl with Gypsum $5'-0"$ $222'-6"$ Red and Grey Marl with Gypsum $4'-6"$ $26'-0"$ Red and Grey Marl with Gypsum $4'-6"$ $26'-0"$ Red and Grey Marl with Gypsum $4'-6"$ $26'-0"$ Red and Grey Marl with Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl $1'-6"$ $222'-0"$ <	Red and Grey Marl with Gypsum	7'-0" 81'-0"		
Red and Grey Marl with Gypsum $7'-0"$ $95'-6"$ Grey Marl with Gypsum $2'-6"$ $98'-0"$ Red Marl with Gypsum $5'-0"$ $103'-0"$ Red and Grey Marl with Gypsum $10'-0"$ $113'-0"$ Red and Grey Marl with Gypsum $0'-0"$ $126'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $152'-0"$ Red and Grey Marl with Gypsum $5'-0"$ $222'-0"$ Grey Marl with Gypsum $5'-0"$ $222'-0"$ Red and Grey Marl with Gypsum $5'-0"$ $222'-0"$ Red Marl with Gypsum $5'-0"$ $222'-0"$ Red Marl with Gypsum $5'-0"$ $222'-0"$ Red and Grey Marl With Gypsum $2'-6"$ $264'-6"$ Red and Grey Marl $1'-6"$ $272'-0"$ Red and Grey Marl $1'-6"$ $222'-0"$ Red and Grey Marl $2'-6"$ $264'-6"$ Grey Marl with Gypsum $5'-0"$ $224'-0"$ Red and Grey Marl $2'-6"$ $264'-6"$ Red and Grey Marl $2'-6"$ $220'-0"$ Red and Grey Marl $2'-6"$ $220'-0"$ Red and Grey Marl $2'-6"$ $224'$	Red Marl with Gypsum	7'-6" 88'-6"		
Grey Marl with Gypsum 2'-6" 98'-0" Red Marl with Gypsum 5'-0" 103'-0" Red and Grey Marl with Gypsum 10'-0" 113'-0" Red and Grey Marl with Gypsum 6'-0" 122'-0" Red and Grey Marl with Gypsum 6'-0" 132'-0" Red and Grey Marl with Gypsum 6'-0" 132'-0" Red and Grey Marl with Gypsum 2'-0" 152'-0" Red and Grey Marl with Gypsum 2'-0" 22.2'-0" Red and Grey Marl with Gypsum 5'-0" 252'-6" Grey Marl with Gypsum 5'-0" 252'-6" Red and Grey Marl with Gypsum 5'-0" 252'-6" Red Marl with Gypsum 5'-0" 257'-6" Red Marl with Gypsum 2'-6" 266'-0" Red and Grey Marl <td< td=""><td>Red and Grey Marl with Gypsum</td><td>7'-0" 95'-6"</td></td<>	Red and Grey Marl with Gypsum	7'-0" 95'-6"		
Red Marl with Gypsum $5'-0"$ $103'-0"$ Red and Grey Marl with Gypsum $10'-0"$ $113'-0"$ Red and Grey Marl with Gypsum $6'-0"$ $126'-0"$ Grey Marl with Gypsum $6'-0"$ $132'-0"$ Red and Grey Marl with Gypsum $6'-0"$ $132'-0"$ Red and Grey Marl with Gypsum $6'-0"$ $150'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $150'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $150'-0"$ Red and Grey Marl with Gypsum $12'-0"$ $160'-0"$ Red and Grey Marl with Gypsum $1'-0"$ $160'-0"$ Red and Grey Marl with Gypsum $10'-0"$ $160'-0"$ Red and Grey Marl with Gypsum $5'-0"$ $242'-0"$ Grey Marl with Gypsum $5'-0"$ $252'-6"$ Red and Grey Marl with Gypsum $5'-0"$ $270'-6"$ Red and Grey Marl with Salt Pockets $2'-0"$ $21'-0"$ Red and Grey Marl $5'-0"$ $292'-0"$ Red and Grey Marl $5'-0"$ $292'-0"$ Red and Grey Marl $5'-0"$ $292'-0"$ Salt Rock $-2'-0"$ $292'-0"$ Salt Rock with Marl $-1'-0"$ $292'-0"$ Salt Rock with Grey Marl $-3'-6"$ $331'-0"$	Grey Marl with Gypsum	2'-6" 98'-0"		
Red and Grey Marl with GypsumIntroduced tarmIntroduced tarmRed and Grey Marl with GypsumIntroduced tarmIntroduced tarmRed and Grey Marl with GypsumG'-O"III'-O"Red and Grey Marl with GypsumIII'-O"III'-O"Red and Grey Marl with GypsumII'-O"III'-O"Red and Grey Marl with GypsumII'-O"II'-O"Grey Marl with GypsumII'-O"II'-O"Red and Grey Marl with Salt PocketsI'-O"II'-O"Grey MarlII' Grey MarlII'-O"Red and Grey MarlII'-O"II'-O"Red and Grey MarlII'-O"II'-O"Red and Grey MarlII'-O"II'-O"Red and Grey MarlII'-O"II'-O"Red and Grey MarlII'-O''II'-O"Red and Grey MarlII'-O''II'-O''Red and Grey MarlII'-O''II'-O''Red and Grey MarlII'-O''II'-O''Salt Rock-I'-O''II'-O''Salt Rock with Marl-	Red Marl with Gypsum	5'-0" 103'-0"		
Beneficient With GypsumBeneficient GypsumGine Consequence to any Town Consequence to any Town Consequence to any Town Consequence to any Grey Marl with GypsumGine Consequence to any Town Consequence to any Consequence to any Co	Red and Grey Marl with Gypsum	10'-0" 113'-0"		
Red and Grey Marl with Gypsum 7'-0" 126'-0" Grey Marl with Gypsum 6'-0" 132'-0" Red and Grey Marl with Gypsum 12'-0" 150'-0" Red and Grey Marl with Gypsum 2'-0" 150'-0" Grey Marl with Gypsum 5'-6" 247'-6" Red and Grey Marl with Gypsum 5'-0" 252'-6" Grey Marl with Gypsum 5'-0" 252'-6" Red and Grey Marl with Gypsum 5'-0" 25'-6" Red and Grey Marl with Gypsum 2'-6" 26'-0" Red and Grey Marl with Gypsum 2'-6" 26'-0" Red and Grey Marl 1'-6" 266'-0" Red and Grey Marl with Gypsum 2'-6" 27'-0" Red and Grey Marl 1'-6" 22'-0" Red and Grey Marl 1'-6" 22'-0" Red and Grey Marl 1'-6" 22'-0" Red and Grey Marl with Gypsum	Britis Red gickarl with Gypsum British Geological Survey	GritismQological Survey 119"-0"		
Grey Marl with Gypsum 6'-0" 132'-0" Red and Grey Marl with Gypsum 6'-0" 138'-0" Grey Marl with Gypsum 12'-0" 150'-0" Red and Grey Marl with Gypsum 2'-0" 152'-0" Grey Marl and Gypsum 5'-6" 22'-0" Grey Marl with Gypsum 5'-0" 252'-6" Grey Marl with Gypsum 5'-0" 252'-6" Grey Marl with Gypsum 5'-0" 252'-6" Red and Grey Marl with Gypsum 2'-6" 264'-6" med Grey Marl with Gypsum 2'-6" 264'-6" Grey Marl with Gypsum 2'-6" 266'-0" Red and Grey Marl 1'-6" 272'-0" Red and Grey Marl 1'-6" 272'-0" Red and Grey Marl 1'-6" 266'-0" Grey Marl with Gypsum 5'-0" 266'-0" Red and Grey Marl 5'-0" 274'-0" Red and Grey Marl 2'-6" 2'-0"	Red and Grev Marl with Gypsum	7'-0" 126'-0"		
Red and Grey Marl with Gypsum6'-O"138'-O"Grey Marl with Gypsum12'-O"150'-O"Red and Grey Marl with Gypsum2'-O"152'-O"Red Marl with Gypsum2'-O"152'-O"Red and Grey Marl with Gypsum2'-O"152'-O"Red and Grey Marl with Gypsum5'-O"252'-O"Grey Marl and Gypsum5'-O"252'-O"Red and Grey Marl with Gypsum2'-O"266'-O"Red Marl with Gypsum2'-O"266'-O"Red Marl with Gypsum1'-O"270'-6"Red Marl with Gypsum2'-O"272'-O"Red Marl with Gypsum6"266'-O"Grey Marl with Gypsum1'-O"270'-6"Red and Grey Marl1'-O"270'-6"Red and Grey Marl5'-O"272'-0"Red and Grey Marl5'-O"226'-0"Red and Grey Marl1'-O"270'-6"Red and Grey Marl5'-O"220'-0"Red and Grey Marl1'-O"220'-0"Salt Rock-22'-0"291'-0"Salt Rock with Marl-2'-0"221'-0"Salt Rock with Marl-0''-0''222'-0"Salt Rock with Grey Marl1'-6"322'-0"Red and Grey Marl with Salt Veins1'-6"322'-0"Salt Rock with Grey Marl-3'-6"331'-0"Salt Rock with Grey Marl-3'-6!''''''''''''''''''	Grev Marl with Gypsum	6'-0" 132'-0"		
Grey Marl with Gypsum $12'-0"$ $150'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $150'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $150'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $150'-0"$ Grey Marl and Gypsum $2'-0"$ $150'-0"$ Red and Grey Marl with Gypsum $5'-0"$ $242'-0"$ Grey Marl with Gypsum $5'-0"$ $252'-6"$ Red and Grey Marl with Gypsum $2'-6"$ $262'-0"$ Red and Grey Marl with Gypsum $2'-6"$ $264'-6"$ Grey Marl with Gypsum $4'-6"$ $266'-6"$ Grey Marl with Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl $5'-6"$ $222'-0"$ Red and Grey Marl $5'-6"$ $262'-0"$ Red and Grey Marl $5'-6"$ $282'-0"$ Red and Grey Marl with Salt Veins	Red and Grev Marl with Gypsum	6'-0" 138'-0"		
Red and Grey Marl with Gypsum $2'-0"$ $152'-0"$ Red and Grey Marl with Gypsum $4'-0"$ $156'-0"$ Red and Grey Marl with Gypsum $4'-0"$ $156'-0"$ Core worn away $5'-6"$ $24.7'-6"$ Grey Marl and Gypsum $5'-0"$ $252'-6"$ Grey Marl with Gypsum $5'-0"$ $252'-6"$ Red and Grey Marl with Gypsum $5'-0"$ $252'-6"$ Red Marl with Gypsum $5'-0"$ $252'-6"$ Red Marl with Gypsum $5'-0"$ $252'-6"$ Red Marl with Gypsum $2'-6"$ $264'-6"$ Marl with Gypsum $2'-6"$ $266'-0"$ Grey Marl with Gypsum $2'-6"$ $266'-0"$ Red and Grey Marl $6'''$ $274'-0"''$ Red and Grey Marl $6'''$ $274'-0"'''$ Red and Grey Marl with Salt Pockets $2'-0"''$ $274'-0"'''''''''''''''''''''''''''''''''''$	Grev Marl with Gypsum	12'-0" 150'-0"		
Red Marl with Gypsum $4'-0"$ $156'-0"$ Red and Grey Marl with Gypsum $2'-0"$ $242'-0"$ Grey Marl and Gypsum $5'-0"$ $242'-0"$ Red and Grey Marl with Gypsum $5'-0"$ $242'-0"$ Red and Grey Marl with Gypsum $5'-0"$ $252'-6"$ Red and Grey Marl with Gypsum $2'-6"$ $247'-6"$ Red and Grey Marl with Gypsum $4'-0"$ $252'-6"$ Red and Grey Marl with Gypsum $4'-6"$ $262'-0"$ Red and Grey Marl with Gypsum $4'-6"$ $266'-6"$ Grey Marl with Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl with Salt Pockets $2'-0"$ $274'-0"$ Grey MarlWith Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl $4'-0"$ $270'-6"$ Red and Grey Marl with Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl $4'-0"$ $274'-0"$ Red and Grey Marl with Gypsum $2'-6"$ $276'-5"$ Red and Grey Marl $2'-6"$ $276'-5"$ Red and Grey Marl $2'-0"$ $214'-0"$ Salt Rock with Marl $-2'-0"$ $292'-0"$ Salt Rock $-7'-6"$ $326'-0"$ Red and Grey Marl with Salt Veins $-7'-6"$ $328'-6"$ Grey Marl with Salt Veins $-7'-6"$ $328'-6"$ Grey Marl with Salt Veins $-7'-6"$ $328'-6"$ Grey Marl with Salt Veins $-2'-0"$ $334'-6"$ Grey Marl with Salt Veins $-2'-6"$ $354'-6"$ Grey Marl with Salt Veins $-2'-6"$ $354'-6"$ Grey Marl with Grey Marl	Red and Grev Marl with Gypsum	2'-0" 152'-0"		
Red and Grey Marl with Gypsum Core worn away Grey Marl and Gypsum $4'-0"$ $82'-0"$ $160'-0"$ $82'-0"$ Red and Grey Marl and Gypsum $5'-6"$ $24,7'-6"$ $24,7'-6"$ $25'-6"Red and Grey Marl with Gypsum5'-0"252'-6"25'-6"262'-0"Red Marl with Gypsum4'-6"262'-0"262'-0"262'-0"Red Marl with Gypsum4'-6"262'-0"262'-0"Red Marl with Gypsum4'-6"262'-0"262'-0"Red Marl with Gypsum2'-6"264'-6"262'-0"Red and Grey Marl with Gypsum4'-0"272'-0"272'-0"Red and Grey Marl1'-6"272'-0"272'-0"Red and Grey Marl1'-6"272'-0"272'-0"Red and Grey Marl1'-6"272'-0"272'-0"Red and Grey Marl2'-6"2'-0"262'-0"Red and Grey Marl2'-0"292'-0"2'-0"Salt Rock2'-0"292'-0"294'-0"Salt Rock-2'-0"294'-0"294'-0"Red and Grey Marl21-6"318'-6"-7'-6!!326'-0"Salt Rock-7'-6!!326'-0"222'-0!''Red and Grey Marl21-6!''328'-6!''''-22'-0!'''''''''''''''''''''''''''''''''$	Red Marl with Gypsum	4 '- 0" 156 '- 0"		
Core worn away $82'-0"$ $242'-0"$ Grey Marl and Gypsum $5'-6"$ $24,7'-6"$ Red and Grey Marl with Gypsum $5'-0"$ $252'-6"$ Groy Marl with Gypsum $5'-0"$ $252'-6"$ Red Marl with Gypsum $4'-6"$ $262'-0"$ Red Marl with Gypsum $4'-6"$ $262'-0"$ Red Marl with Gypsum $2'-6"$ $264'-6"$ Grey Marl with Gypsum $2'-6"$ $266'-0"$ Grey Marl with Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl $1'-6"$ $272'-0"$ Red and Grey Marl with Gypsum $5'-6"$ $282'-0"$ Red and Grey Marl $5'-6"$ $282'-0"$ Red and Grey Marl $5'-6"$ $282'-0"$ Red and Grey Marl $0''''$ $31'-0"$ Salt Rock $-2'-0"$ $294'-0"$ Salt Rock $-7'-6"$ $326'-0"$ Red and Grey Marl $-7'-6"$ $326'-0"$ Salt Rock with Marl $-7'-6"$ $328'-6"$ Grey Marl with Salt Veins $1'-6"$ $328'-6"$ Grey Marl with Salt Veins $1'-6"$ $328'-6"$ Grey Marl with Salt Veins $-2'-6"$ $331'-0"$ Red and Grey Marl with Salt Veins $-2'-6"$ $331'-6"$ Grey Marl with Salt Veins $-2'-6"$ $331'-6"$ Grey Marl with Salt Veins $-2'-6"$ $331'-6"$ Salt Rock $-2'-0"$ $354'-6"$ Grey Marl	Red and Grev Marl with Gypsun British Geological Survey	4'-0" British 160'-0"		
Grey Marl and Gypsum 5'-6" 24.7'-6" Red and Grey Marl with Gypsum 5'-0" 252'-6" Grey Marl with Gypsum 5'-0" 252'-6" Red Marl with Gypsum 2'-6" 264'-6" Red Marl with Gypsum 2'-6" 264'-6" Bed end Grey Marl with Gypsum 2'-6" 266'-0" Grey Marl with Gypsum 2'-6" 266'-0" Grey Marl with Gypsum 1'-6" 272'-0" Red and Grey Marl 1'-6" 272'-0" Red and Grey Marl 2'-0" 274'-0" Red and Grey Marl 2'-6" 276'-5" Red and Grey Marl with Salt Pockets 2'-0" 274'-0" Grey Marl 2'-6" 276'-5" Red and Grey Marl with Gypsum 5'-6" 282'-0" Red and Grey Marl 2'-0" 285'-0" R.H. Red and Grey Marl washed away 5'-6" 292'-0" Salt Rock -2'-0" 292'-0" Red and Grey Marl -2'-0" 292'-0" Salt Rock with Marl -1'-0" 328'-6" Grey Marl with Salt Veins 1'-6" 326'-0" Salt	Core worn away	82'-0" 242'-0"		
Red and Grey Marl with Gypsum 5'-0" 252'-6" Grey Marl with Gypsum 5'-0" 252'-6" Red Marl with Gypsum 2'-6" 262'-0" Red and Grey Marl with Gypsum 2'-6" 262'-0" Bed Marl with Gypsum 2'-6" 262'-0" Red and Grey Marl with Gypsum 2'-6" 266'-6" Grey Marl with Gypsum 2'-0" 266'-6" Red and Grey Marl 1'-6" 272'-0" Red and Grey Marl 2'-6" 276'-6" Salt Rock 2'-0" 285'-0" Salt Rock -7'-6!! 326'-0" Salt Rock with Marl -0" 6" 318'-6" Salt Rock with Grey Marl -6" 328'-6" 328'-6" Grey Marl with Salt Veins 1'-6" 328'-6" 72'-0"	Grev Marl and Gypsum	5'-6" 247'-6"		
Red Marl with Gypsum $5'-0"$ $257'-6"$ Red Marl with Gypsum $1'-6"$ $262'-0"$ Red Marl with Gypsum $2'-6"$ $264'-6"$ Red Marl with Gypsum $2'-6"$ $266'-6"$ Red and Grey Marl $1'-6"$ $266'-6"$ Red and Grey Marl $1'-6"$ $266'-6"$ Red and Grey Marl $1'-6"$ $270'-6"$ Red and Grey Marl with Gypsum $2'-6"$ $276'-6"$ Red and Grey Marl with Gypsum $2'-6"$ $276'-6"$ Red and Grey Marl with Gypsum $5'-6"$ $282'-0"$ Red and Grey Marl washed away $0'' 276'-6"$ Salt Rock $2'-0"$ $292'-0"$ Salt Rock $-2'-0"$ $292'-0"$ Salt Rock $-2'-0"$ $292'-0"$ Salt Rock with Marl $-2'-0"$ $292'-0"$ Salt Rock with Marl $-2'-0"$ $292'-0"$ Salt Rock with Grey Marl $-2'-0"$ $292'-0"$ Salt Rock with Grey Marl $-2'-0"$ $292'-0"$ Salt Rock with Grey Marl $-2'-0"$ $292'-0"$ <td>Red and Grev Merl with Gypsum</td> <td>5'-0" 252'-6"</td>	Red and Grev Merl with Gypsum	5'-0" 252'-6"		
Red Marl with Gypsum $4'-6"$ $262'-0"$ Red and Grey Marl with Gypsum $2'-6"$ $264'-6"$ Grey Marl with Gypsum $2'-6"$ $264'-6"$ Grey Marl with Gypsum $1'-6"$ $266'-0"$ Grey Marl with Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl $1'-6"$ $272'-0"$ Red and Grey Marl $1'-6"$ $272'-0"$ Red and Grey Marl $2'-0"$ $274'-0"$ Grey Marl $2'-0"$ $274'-0"$ Red and Grey Marl with Gypsum $2'-6"$ $282'-0"$ Red and Grey Marl $5'-6"$ $282'-0"$ Red and Grey Marl $5'-6"$ $282'-0"$ Red and Grey Marl $5'-6"$ $282'-0"$ Salt Rock $-2'-0"$ $294'-0"$ Grey Marl with Marl $-2'-0"$ $294'-0"$ Salt Rock $-2'-0"$ $294'-0"$ Grey Marl with Salt Veins $-7'-6"$ $326'-0"$ Grey Marl with Salt Veins $-7'-6"$ $326'-0"$ Grey Marl with Grey Marl $-3'-6!$ $334'-6!'$ Salt Rock $-3'-6!'$ $334'-6!''$ Grey Marl with Grey Marl $-20'-0"$ $354'-6!''$ Salt Rock $-20'-0!''$ $354'-6!'''''''''''''''''''''''''''''''''''$	Grev Marl with Gypsum	5'-0" 257'-6"		
Red and Grey Marl with Gypsum 2'-6" 264'-6" Grey Marl with Gypsum 6" 266'-0" Red Marl with Gypsum 6" 266'-6" Grey Marl with Gypsum 1'-6" 272'-0" Red and Grey Marl 1'-6" 272'-0" Red and Grey Marl 1'-6" 272'-0" Red and Grey Marl 2'-0" 274'-0" Grey Marl 2'-6" 276'-5" Red and Grey Marl 2'-6" 276'-6" Red and Grey Marl 5'-6" 282'-0" Red and Grey Marl 5'-6" 282'-0" Red and Grey Marl 5'-6" 282'-0" Salt Rock -2'-0" 294'-0" Salt Rock -7'-6" 326'-0" Red and Grey Marl -0" 292'-0" Salt Rock -7'-6" 326'-0" Grey Marl with Salt Veins -7'-6" 326'-0" Grey Marl with Grey Marl -1'-0" 328'-6" Grey Marl with Salt Veins 1'-6" 328'-6" Grey Marl with Grey Marl -20'-0" 334'-6" - Salt Rock -20'-0" 354'-6"	Red Marl with Gypsum	4'-6" 262'-0"		
Image: Grey Marl with GypsumImage: Grey Marl with GypsumImage: Grey Marl with GypsumImage: Grey Marl with GypsumRed and Grey MarlI '-0"270'-6"Red and Grey MarlI '-6"272'-0"Grey MarlI '-6"272'-0"Grey MarlI '-6"272'-0"Red and Grey Marl with Salt Pockets2'-0"274'-0"Grey MarlSilt Pockets2'-0"282'-0"Red and Grey Marl with Gypsum5'-6"282'-0"285'-0"Red and Grey Marl washed awayEnter Geological Survey7'-0"292''-0"Salt Rock with Marl2'-0"294'-0"285'-0"Salt Rock7'-6"326'-0"-24'-0"Grey Marl with Salt Veins7'-6"326'-0"-1'-0"Grey Marl with Salt Veins7'-6"328'-6"-7'-6"Grey Marl with Salt Veins1'-6"334'-6"20'-0"Grey Marl with Grey Marl3'-6"334'-6"20'-0"Grey Marl with Grey Marl2'-0"354'-6"20'-0"Grey Marl with Grey Marl3'-6"334'-6"20'-0"Grey Marl with Grey Marl3'-6"334'-6"20'-0"Salt Rock20'-0"354'-6"20'-0"Grey Marl with Red Salt1'-6"356'-0"	Red and Grev Marl with Gypsum	2'-6" 264'-6"		
Red Marl with Gypsum $3''''''''''''''''''''''''''''''''''''$	Britis Greva Marl with Gypsum	1'-6" 266'-0"		
Grey Marl with Gypsum $4'-0"$ $270'-6"$ Red and Grey Marl $1'-6"$ $272'-0"$ Red and Grey Marl $2'-0"$ $274'-0"$ Grey Marl $2'-6"$ $276'-6"$ Red and Grey Marl $2'-6"$ $276'-6"$ Red and Grey Marl $2'-6"$ $276'-6"$ Red and Grey Marl $2'-6"$ $276'-6"$ R.H. Red and Grey Marl $3'-0"$ $285'-0"$ Salt Rock $7'-0"$ $292'-0"$ Salt Rock $-2'-0"$ $294'-0"$ Salt Rock $-24'-0"$ $318'-6"$ Salt Rock $-7'-6"$ $326'-0"$ Salt Rock $-7'-6"$ $328'-6"$ Grey Marl with Salt Veins $1'-6"$ $328'-6"$ Grey Marl with Salt Veins $1'-6"$ $328'-6"$ Grey Marl with Grey Marl $-3'-6"$ $334'-6"$ Salt Rock $-20'-0"$ $354'-6"$ Grey Marl with Grey Marl $-20'-0"$ $354'-6"$ Salt Rock $-20'-0"$ $354'-6"$ Salt Rock $-20'-0"$ $354'-6"$	Red Marl with Gypsum	6" 266'-6"		
Red and Grey Marl 1'-6" 272'-0" Red and Grey Marl 2'-0" 274'-0" Grey Marl 2'-6" 276'-6" Red and Grey Marl 5'-6" 282'-0" Red and Grey Marl 5'-6" 282'-0" Red and Grey Marl 5'-6" 282'-0" Red and Grey Marl 8mish Geological Survey 3'-0" 292'-0" Salt Rock -2'-0" 294'-0" 294'-0" Salt Rock -24'-0" 318'-6" -24'-0" Salt Rock -7'-6" 326'-0" -1'-0" 327'-0" Red and Grey Marl Salt Nock -1'-0" 328'-6" -1'-0" 328'-6" Salt Rock -7'-6" 328'-6" -1'-0" 328'-6" -1'-0" 328'-6" Grey Marl with Salt Veins 1'-6" 334'-6" -3'-6" 334'-6" -20'-0" 354'-6" Salt Rock -20'-0" 354'-6" -20'-0" 354'-6" -20'-0" 354'-6" Salt Rock -20'-0" 354'-6" -20'-0" 354'-6" -20'-0" 354'-6"	Grev Marl with Gypsum	4'-0" 270'-6"		
Red and Grey Marl with Salt Pockets 2'-0" 274'-0" Grey Marl Red and Grey Marl with Gypsum 2'-6" 276'-6" Red and Grey Marl Si-6" 282'-0" Red and Grey Marl Britsh Geological Survey 3'-0" 285'-0" R.H. Red and Grey Marl washed away Salt Rock with Marl -2'-0" 292'-0" Salt Rock -24'-0" 318'-0" 6" Salt Rock -7'-6" 326'-0" Salt Rock -7'-6" 326'-0" Salt Rock -7'-6" 326'-0" Salt Rock -7'-6" 326'-0" Grey Marl with Salt Veins 1'-6" 328'-6" Grey Marl with Salt Veins 1'-6" 334'-6" Salt Rock -3'-6!! 334'-6!! Salt Rock -20'-0" 354'-6" Salt Rock -20'-0!! 354'-6!! Salt Rock -20'-0!! 354'-6!!	Red and Grev Marl	1'-6" 272'-0"		
Grey Marl Red and Grey Marl Red and Grey Marl $2'-6"$ $276'-6"$ Red and Grey Marl Salt Rock Red and Grey Marl $5'-6"$ $282'-0"$ Salt Rock Red and Grey Marl Salt Rock $7'-0"$ $292'-0"$ Salt Rock Red and Grey Marl $-2'-0"$ $294'-0"$ Salt Rock Red and Grey Marl $-2'-0"$ $294'-0"$ Salt Rock Grey Marl Grey Marl with Salt Veins Grey Marl with Grey Marl $-7'-6"$ $326'-0"$ Salt Rock Barl Rock Grey Marl with Salt Veins Grey Marl with Grey Marl $-7'-6"$ $328'-6"$ Salt Rock with Grey Marl $-3'-6"$ $334'-6"$ Salt Rock Grey Marl with Red Salt $-20'-0"$ $354'-6"$	Red and Grev Marl with Salt Pockets	2'-0" 274'-0"		
Red and Grey Marl with Gypsum 5'-6" 282'-0" Red and Grey Marl 3'-0" 285'-0" R.H. Red and Grey Marl washed away 7'-0" 292'-0" Salt Rock with Marl -2'-0" 294'-0" Salt Rock -24'-0" 318'-0" Red and Grey Marl 6" 318'-0" Salt Rock -24'-0" 318'-0" Salt Rock -7'-6" 326'-0" Salt Rock -7'-6" 326'-0" Salt Rock -7'-6" 326'-0" Salt Rock -7'-6" 326'-0" Grey Marl with Salt Veins 1'-6" 328'-6" Salt Rock with Grey Marl -3'-6" 334'-6" Salt Rock -3'-6" 334'-6" Salt Rock -20'-0" 354'-6" Salt Rock -20'-0" 354'-6" Salt Rock 1'-6" 356'-0"	Grev Marl	2'-6" 276'-6"		
Red and Grey MarlBritsh Geological Survey $3'-0"$ $285'-0"$ R.H. Red and Grey Marl washed awaySalt Rock with Marl $-2'-0"$ $294'-0"$ Salt Rock $-2'-0"$ $294'-0"$ Red and Grey Marl $-2'-0"$ $318'-0"$ Salt Rock $-7'-6"$ $326'-0"$ Salt Rock $-7'-6"$ $326'-0"$ Salt Rock $-7'-6"$ $326'-0"$ Salt Rock with Marl $-7'-6"$ $326'-0"$ Red and Grey Marl with Salt Veins $1'-6"$ $328'-6"$ Salt Rock with Grey Marl $-3'-6"$ $334'-6"$ Salt Rock $-20'-0"$ $354'-6"$ Salt Rock $-20'-0"$ $354'-6"$ Salt Rock $-20'-0"$ $354'-6"$ Salt Rock $1'-6"$ $356'-0"$	Red and Grey Marl with Gypsum	5'-6" 282'-0"		
R. H. Red and Grey Marl washed away $7'-0"$ $292'-0"$ Salt Rock with Marl $-2'-0"$ $294'-0"$ Salt Rock $-2'-0"$ $294'-0"$ Red and Grey Marl $-2'-0"$ $318'-6"$ Salt Rock $-7'-6"$ $326'-0"$ Salt Rock with Marl $-7'-6"$ $326'-0"$ Red and Grey Marl with Salt Veins $1'-6"$ $328'-6"$ Salt Rock with Grey Marl $-3'-6"$ $331'-0"$ Salt Rock with Grey Marl $-3'-6"$ $334'-6"$ Salt Rock Red and Grey Marl with Red Salt $1'-6"$ $354'-6"$	Red and Grey Marl	3'-0" 285'-0"		
Salt Rock with Marl -2'-0" 294'-0" Salt Rock -24'-0" 318'-0" Red and Grey Marl 6" 318'-6" Salt Rock -7'-6" 326'-0" Salt Rock with Marl -7'-6" 326'-0" Red and Grey Marl with Salt Veins 1'-6" 328'-6" Grey Marl with Salt Veins 1'-6" 331'-0" Salt Rock with Grey Marl -3'-6" 334'-6" Salt Rock -20'-0" 354'-6" Med and Grey Marl with Red Salt 1'-6" 356'-0"	R.H. Red and Grey Marl washed away	7'-0" 292 -0"		
Salt Rock -24'-0" 318'-0" Red and Grey Marl 6" 318'-6" Salt Rock -7'-6" 326'-0" Salt Rock with Marl -1'-0" 327'-0" Red and Grey Marl with Salt Veins 1'-6" 328'-6" Grey Marl with Salt Veins 1'-6" 331'-0" Salt Rock with Grey Marl -3'-6" 331'-0" Salt Rock -20'-0" 354'-6" Red and Grey Marl with Red Salt 1'-6" 356'-0"	- Salt Rock with Marl	- 2'-0" 294'-0"		
Red and Grey Marl 6" 318'-6" Salt Rock -7'-6" 326'-0" Salt Rock with Marl -1'-0" 327'-0" Red and Grey Marl with Salt Veins 1'-6" 328'-6" Grey Marl with Salt Veins 1'-6" 331'-0" Salt Rock with Grey Marl -3'-6" 334'-6" Salt Rock -20'-0" 354'-6" Red and Grey Marl with Red Salt 1'-6" 356'-0"	Salt Rock	-24'-0" 318'-0"		
Salt Rock 7'-6" 326'-0" Salt Rock with Marl 1'-0" 327'-0" Red and Grey Marl with Salt Veins 1'-6" 328'-6" Grey Marl with Salt Veins 3'-6" 331'-0" - Salt Rock with Grey Marl 3'-6" 334'-6" - Salt Rock 20'-0" 354'-6" Red and Grey Marl with Red Salt 1'-6" 356'-0"	Red and Grey Marl	6" 318'-6"		
	Salt Rock	7'-6" 326'-0"		
Red and Grey Marl with Salt Veins1'-6"328'-6"Grey Marl with Salt Veins-3'-6"331'-0"- Salt Rock-3'-6"334'-6"Red and Grey Marl with Red Salt1'-6"356'-0"	- Salt Rock with Marl	-1'-0" 327'-0"		
Grey Marl with Salt Veins - Salt Rock with Grey Marl - Salt Rock Red and Grey Marl with Red Salt - Salt Rock - Salt - G'' - Salt Rock - Salt - G'' - Salt Rock - Salt - G'' - G'	Red and Grey Marl with Salt Veins	1'-6" 328'-6"		
- Salt Rock with Grey Marl - Salt Rock Red and Grey Marl with Red Salt - Salt Rock - 20'-0" - 334'-6" - 354'-6" - 354'-6" - 354'-6"	Grey Marl with Salt Veins	# 2"-6" 331 '-0"		
Salt Rock Red and Grey Marl with Red Salt 1'-6" 354'-6" 356'-0"	- Salt Rock with Grey Marl	3!-6!! 334'-6!!		
Red and Grey Marl with Red Salt 1'-6" 356'-0"	- Salt Rock	- 20'-0" 354'-6"		
	Red and Grey Marl with Red Salt	1'-6" 356'-0"		
-Salt	Rock	-3'-	-0ü	359"-0"
-------	---------------------------	---------------------------	-----	--------------------------------
	British Geological Survey	British Geological Survey		- British Geological Survey

-2-British Geological Sur SJ 77 Ster Volumer 6 4

		Depth from
Description of Strata	Thickness	Surface
		761 00
- Salt Rock with Mari		7701 0
- Salt KOCM Geological Survey British Geological Survey		British Defolgican Suivey
Red Marl	2"	2/2 -2"
Grey Marl	3"	372'-6"
Salt Rock	- 2'-0"	374!-6"
Salt Rock with Marl		378'-6"
Salt Rock	- 64'-0"	442'-6"
Salt Rock with Marl	-1'-3"	443"-9"
Britis Greycal Marl with Red Salt British Geological Survey	British Sological S	urvey 444 -0 *
Red and Grev Marl with Red Salt	2'-0"	446'-0"
Red Marl with Red Salt	50"	151'-0"
Salt Rock	- 1'-0"	152'-0"
Red and Grev Marl). - O ^H	1,56!-0"
Grev Morl	1'-0"	1.57'-0"
Ded and Gnew Manl with Salt Rock	6#	157'-6"
Crew Marl with Dod Solt	11_01	1581_61
GICY MELL GRAND BULL British Geological Survey	11 01	
Red and Grey Mari with Red Sait		459 -0"
Red Mari with Red Salt	5:-2"	404 -9"
Salt Rock		470 -2"
Grey Marl	. 3"	470'-6"
Salt Rock	- 3"	470 -9"
Grey Marl with Red Salt	2"-6"	473'-3"
British Geological Survey	- 2"-6"	475 '-9"
Red and Grey Marl	1'-0"	476'-9"
Red Marl with Red Salt	3!-6"	480'-3"
Salt Rock	- 4'-0"	484 - 3"
Marly Rock	- 9"	485'-0"
Grev Marl	3"	185°-3"
Marly Rock	6"	485'-9"
Grev Marl with Selt	1'-6"	187'-3"
Selt Bock	- 5'-0"	British Geological Stirvey
Red Morl with Solt Veing	6"	1.92'-9"
Rod Solt	311	1931-0"
Rod and Grey Monl	11.01	101-0#
Rod And Groy Mari	2'-0"	196'-0"
Mon Mari With Rod Bart	11-01	490,
Mariy Rock	- 1 -0" zo! 0"	47/ -0:
British Geological Survey	British Geological S	
Salt Rock with Grey Mari	71 01	557 -0"
Salt KOCK		544°-0"
Grey Mari with Salt Veins	10	545 -0
Grey Marl	16"	546 -6"
Red Marl	6 '-0 "	552 -6"
Red and Grey Marl	5'-0"	557 -6"
Grey Marl	2"-6"	560 '-0 "
Marly Rock Survey British Geological Survey		British 5610 al Sove
Grey Marl	2'-0"	563 '-6 "
Red Marl with Red Salt	4 -6"	568 '-0 "
Red and Grey Marl	5'-0"	573'-0"
Grey Marl with Red Salt	1'-6"	574'-6"
Red and Grey Marl with Red Salt	6"	575'-0"
Salt Rock with Marl	- 5'-0"	580'-0"
British Geological Survey	- 78 Mish Offogical S	urvey 658'-0"
Grev Marl	- 6"	658'-6"
Red Marl with Red Salt	5'-3"	663'-9"
Red and Grev Merl with Salt	- Qii	6616"
The and arey mart wron bare		

Page 4 | Borehole SJ77SW64 | Borehole Logs

British Geological Survey

		Deptn from
Description of Strata	Thickness	Surface
	w. 11 70	6751 00
Salt Rocksh with Grey Marl British Geological Survey		Brition & Bogitz Murvey
Red and Grey Marl with Red Salt	2'-0"	
Marly Rock		700'-0"
Salt Rock	-11'-6"	/11'-6"
Grey Marl with Salt Veins	1'-6"	713'-0"
Salt Rock	- 1'-0"	714'-0"
Marly Rock		718'-0"
Bri Spelot aic Rock British Geological Survey	🛩 11 BritsQGeological	survey 729'-0"
Marly Rock	- 6'-6"	735'-6"
Red Marl with Salt Pockets	3"	735'-9"
Salt Rock		736'-9"
Red and Grev Marl with Salt	6"	737'-3"
Salt Bock	- 12'-3"	749'-6"
Marly Rock	 5 '- 0"	754'-6"
Salt Book Goological Survey	···· 94 '- 0"	848'-6"
Marly Rock	- ~ 4'-9"	853'-3"
Red Norl with Salt Pockets	91	854'-0"
Red and Grev Marl with Salt Pockets	7'-0"	861'-0"
Grew Morl with Red Salt	1'-0"	862'-0"
Bed and Grey Mari		862'-3"
30 Crow Norl with Ded Salt	1'	863'-3"
Dod and Crow Mari with Red Salt	1'-0"	864'-3"
Brithelingstillweyerey Marri with Rod Solt	British Geological	Survey 870'-3"
New Red Mari With Red Sait Poolets	5'-6"	875'-9"
Red and Grey Mari with Sait Fockots	- 31-31	879'-0"
Salt Hock with Grey Mari	31_61	882'-6"
Red Mari	11'-6"	897'-0"
Salt Rock		906'-0"
Marly Rock	70'-6#	978'-6"
Salt Rock Geological Survey British Geological Survey	11 ()!	
Grey Marl with Salt Rock	1,-0"	979 -0
Red Marl with Red Salt	4 -0"	904 -0"
Marly Rock	- 20"	900 -0"
Salt Rock		907 -0"
Red and Grey Marl with Salt	4 -0"	991 -0"
Salt Rock	-2'-0"	995 -0"
Grey Marl with Salt Rock	-Bittish &eological	Survey 0071 ("
Salt Rock		997 -6"
Red and Grey Marl with Salt	1 -0"	990°-0"
Red and Grey Marl	16"	1000 -0"
Grey Marl	16"	1001 -6"
Red and Grey Marl	2'-0"	1005"-6"
Red Marl with Red Salt	2'-0"	1005"6"
Red and Grey Marl with Red Salt	3'-0"	1008"-6"
Red Mari	3'-0"	Bund Odolday a 2004
Red and Grey Marl with Salt	1'-0"	1012'-6"
Marly Rock	-4'-0"	1016"-6"
Salt Rock		1019'-6"
Red and Grey Marl	2'-6"	1022'-0"
Red Marl with Salt Veins	5'-6"	1027'-6"
Marly Rock	- 3'-0"	1030'-6"
British Geological Survey	1 British () Hogical	Survey 1041 -6"
Red and Grey Marl with Red Salt	5'-0"	1046'-6"
Marly Rock	-1'-0"	<u> 1947'-6"</u>
Red and Grev Marl with Salt	5'-6"	1053'=0"
	01 01	10601-08

http://scans.bgs.ac.uk/sobi_scans/boreholes/783777/images/12270527.html

http://scans.bgs.ac.uk/sobi_scans/boreholes/783777/images/12270528.html

07/03/2014

oumphing					Suala	73223	731	67	
Depth	Туре	Casing Depth	Date/ Water	SPT N (Cu)	Description	Depth	Level		enc
r ceoregicar earreg			29/03		Turf and Topsoil. (Topsoil)	G.L.	39.42	7.5.777	F
0.20-0.45	B B				NADE GROUND: Dark grey sandy clay with much	0.20	39.22		1
0.50-0.95	C B		DRY	7	[Made Ground]	Æ °.45	38.97		
					Firm becoming stiff grey-brown fissured sandy CLAY with a little gravel and grey silt on	E			1
					tissures.	Ε		<u> </u>	\downarrow
1.40 1.50-1.95	D SD	1.00	DRY	6		F		_	V
1.50-1.95 Bri	ish Gelogi	cal Survey		-	British Geological Survey	Ę	Briti	ish Geologi	V
•		1				F			V
2.40	D				Relow 2.40mt occasionally morely laminated	E (3.65)		_	
2.55-3.00 2.55-3.00	SD 8	2.00	DRY	6	contraction coordinately poor cy commercial	Ē			
						Ē			
						Ē			ľ
. 3.40 h 3.50+3.95vev	SD SD	3.00	DRY	7	British Geological Survey	British Geologi	al Survey		ľ
3.30-5.95	6					E			ľ
4.10 4.25-4.70	D SD	4.00	DRY	16	firm to stiff dark brown earth (14V with a	£ 4.10	35.32		r
4.25-4.70	8				little fine and medium gravel.	-			ľ
					[Glacial Till]	F			Y
5.05	8					E			ł
5.15-5.60 5.15-5.60	SĎ B	5.00	DRY	14	Delich Casteriael Overes	Ę	Deite		Y
ы	ish Geologi	cal Survey			British Geological Survey	F	впи		Y
6.00	р					È			Y
6.15-6.60	SD	6.00	DRY	15		L (3.00)			
6.15-6.60	8					E			11
						E			
7.10	P					È			
7:15:7:80	B	7.00	DRY	15	British Geological Survey	British Geolog	cal Survey		
7.70	D					F 7 70	21 73		
7.90-8.35	so	7.50	DRY	11	Stiff dark brown thinly laminated slightly sandy very silty CLAY.	E ''''	51.72		
8.00	ů				[Glacial Laminated Clay]	F		<u> </u>	
						E.,			
8.75 8.85 9.00-9.75				_	At 8.85m: with lenses of sand and gravel.	E (1.00)		<u> </u>	
9.00-9.45	su ish (Beolog	o.90 cal Survey	8.50	22	At 9.00m: with thin bands of clayey silt. British Geological Survey	FI	Brit	ismGe olo gi	aj
				ł	Stiff dark brown sandy very silty CLAY with	9.30	30.12		
0.80					traces of gravel.	F		· · · ·	
9.95-10.40	รอั	9.60	9.00	27	[Glacial Till]	E I			
uipment: Cab	le Percu	ssive	Boring	Rig	Groundwater	Ground Leve	1 20	421 = 0	0
					1 8 00 Pose to 7 50m in 20 minutes	Coordinates	111 931	228.0 68.5	-
orehole Dia (mr 150: to: 26.:10	n) (Casing [150 to	Xa (mm) 22.50m		2 British Geological Survey 22.50	British Geologi	cal Survey		
						Logged by Checked by	JW		
lemarks	1. Ha	rd stra	∍ta/Chi	selling	g: 17.00m to 17.70m (2 hours).				
e key sheet d appendices									
Porebolo I	2000-		A		Project	Contract		For	m
	ish Geologi				M6 Widening Junctions 15 to 20 Department officing paparate Survey		, DZZO	U ish Geologi	cal
		the state of the s			A REPORT OF A REPORT			and the second se	Arrest State

,						STATE STATE							
	Sampling		C	Data 7	OPT N	Strata	Country						
Drift	Depth	Туре	Depth	Water	(Cu)	Description	(Thickness)	Level	Lege	nd			
BIN	9.95-10.40	8		29/03		(See previous sheet - sandy CLAY)		ai Suitey					
	10.90 11.00-11.45 11.00-11.45	0 S0 S	11.00	10.30	34								
	Bri	ish Geologi	cal Survey			British Geological Survey	E	Brit					
	11.90 12.05-12.50 12.05-12.50	D SD B	12.00	10.00	40		(5.8 0)						
	12.90 13.10-13.45 13.10-13.60	D C B	13.00	12.00	78/ 150								
Brit	sh Geological Survey					British Geological Survey	British Geologi	al Survey					
(14.00 14.20-14.65 14.20-14.65	D C B	14,00	12.50	48								
	14.65		14.50	12.00			ŧ			V/			
	14.90 15.00-15.45	0 S0	14.50	13.00	18		15.10	24.32		V/			
	15.00-15.45 15.10	B V ish Geologi	cal Survey			Medium dense brown fine and medium SAND. [Glacial Sand and Gravel]	£ 15.35	24.07 Brit	ish Geologi				
						Firm to stiff dark brown very sandy CLAY with traces of gravel.	E			$\langle /$			
	15.90 16.00-16.45 16.00-16.45	D C 8	15.90	14.00	13	[Glacial Till]	L (1.15)						
	16.60-17.05 16.60-17.05	50 80	16.50	13.80	25	Firm to stiff brown thinly laminated very silty CLAY. Silt on laminae.	(0.40)	22.92					
Brit	17.05-17.15 17.05-17.60 th Geological Survey	C B	17.00	15.00	78*/ 100	Stiff dark brown very sandy CLAY with some fine to coarse gravel.	16.90 British Geologi	22.52 al Survey					
	17.70 17.80-18.25 17.80-18.25	D C B	17.50	16.00	30	From 16.90m to 17.60m; with frequent cobbles and small boulders.							
C	, 18.65 18.75-19.20 18.75-19.20 18.75-19.20	D C B ish Geolog	18.50 cal Survey	16.00	36	Brittsh Geological Survey	ي ب الم ب ب	Brit					
	19.70 19.80-20.25 19.80-20.20	D C B	19.60	17.40	39								
	Equipment: Cable Percussive Boring Rig				Rig	Groundwater No. Struck Behaviour Sealed	Ground Le Coordinat	vel 39 es <u>11</u>	.421 m (x ست			
Bri	Borehole Dia (m sh 150 to 26.10	im) In	Casing 150 to	Dia (mn 22.50	n) Ma	British Geological Survey	93168.5 mM Drilled by States Logged by JW Checked by						
	Remarks												
	See key sheet and appendices for explanations								Fo	rm 1/0			
	Borehole	Reco	rd			Project M6 Widening Junctions 16 to 20	Contract	D22	200				
	Expl	tish Geologi Oratio	n As	socia	tes	Department of Transport Motorway Widening,Unit Survey	Borehole British Geological Survey						

	Campling					ST ST 257								
	Sampling		Casing	Date/	SOT N	Strata								
Briti	Britis Gebiogrammer (Cu)			Water 30/03	(Cu)	Description	Depth (Thicknass)	Lovel	Leg	end				
	E I			30/03		(See previous sheet - sandy CLAY)	Ē			$\overline{\mathbf{z}}$				
	E						È			\mathbf{Y}				
	20.70	0 C	20.50	18 00	40		Ē			Y/				
	20.85-21.30	ğ	10.50	10.00	**	Below 21.00m: becoming very stiff.	E (7.70)		<u> </u>	Y/				
	E		1				E			Y/				
	21.69.22.20	2	21 50	20 00	**		F			V/				
	21.75-22.20	B	S.No.	20.00	07	British Geological Survey	F	Britis	si Uraningi	Y/				
	E						Ē			V/				
	22.60	•					E			V/				
	22.75-23.20	Č	22.50	DRY	60		E		· ·	V/				
	E	-					È.			V/				
	E						E			V/				
Briti	Geological Survey	D				British Geological Survey	o ritish Geologi	al Survey	<u> </u>	\bigvee				
	23.80-24.25	Č	22.50	DRY	49		Ę		<u> </u>					
Ċ					i		E			$\left[\right]$				
	24.55	•					E			ľ/,				
	24.60	SD SD	22.50	DRY	76	Red-brown thinly and thickly laminated silty	£ ^{24.60}	14.82		ľ/,				
	F					discontinuous gypsum bands.	Ę			Y/.				
	E British	1 Geologic	I Survey			[Mercia Mudstone WG IV] British Geological Survey	Ē	Briti						
	25.60	SD D	22 50	DOY	76	British ocological ourway	F	Dila		\mathbb{Z}				
	25.65-26.10	Ď	22.50	26.10	~		Ę			$\langle /$				
	20.10	_		-			F 26.10	13.32		F - 4				
	F					End of Borehole.	E							
	E						Ē							
	E						È							
Brit	sh Geological Survey					British Geological Survey	British Geolog	al Survey						
							E I							
							ΕI							
C			l				E I							
	-						E							
							E							
	Bridish	n Geologiia	al Survey			British Geological Survey	F	Brite	sh Geologii	al Survey				
							E .							
Ē							E							
ļ	- 1				- 1		Εl							
ł	Equipment: Cable	e Percu	ssive I	locing	Ria	Groundwater								
						No. Struck Behaviour Sealed	Coordinate		228.0	° n∈				
B	Borehole Dia (mm) (asing D	6a (mm)		British Geological Survey	British Geologi	al Survey		-				
Ĩ			130 18	22.500			Drilled by Logged by	BH JW						
T	Remarks				1		LUNECKED by							
	San kau s													
	and appendices													
H	ior explanations.					Project	<u> </u>		For	m 1/0				
	Borehole R	ecord	đ			M6 Widening Junctions 16 to 20	Contract	D220	0					
Γ	Explan	n Geologica	ai Survêý			Department of stransportSurvey Motorway Widening Unit	Borehole	Briti	sh Geologir	al Survey				
L	C rybiot	auon	ASS	ciate	:5			304	(3 of 3)					

Appendix E

Baseline Soil and Groundwater Quality Dataset for Plumley PSD

ma/ka																		GSAC	Comn	nercial/Industr	ial Scenari	0	GSAC
J E Sample No.	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-17	18-19	20-21	22-24	25-26	27-28	29-30	31-33	34-35	36-38	1% SOM	conn	iereidi, maasei		°	1% SOM
Sample ID	BH-4 (S)	BH-4 (S)	TP-11	TP-10	TP-10	TP-3	TP-8	TP-4	TP-7	TP-9	BH-1	TP-6	TP-5	TP-5	BH-3	BH-2(S)	BH-2(S)						
Depth	0.5	0.75-1.0	0.0-0.3	1 2-1 4	0.0-0.3	0.0-0.2	0.0-0.3	0.0-0.2	0.0-0.3	0.0-0.3	0.2-0.4	0 1-0 4	02-04	0.0-0.2	0.0-0.2	0.9-1.2	0-0.4						
Sample Date	11/03/2014	11/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	13/03/2014	13/03/2014	13/03/2014	13/03/2014	13/03/2014	13/03/2014	13/03/2014	14/03/2014	14/03/2014			Process Ar	еа		
																			average n	nin ma	ax N	/ax > GSAC	
Organic Matter	0.5	0.9	0.3	<0.2	0.9	1.6	2.2	1.9	1.4	2.4	2.2	2.4	2.1	31.4	0.9	<0.2	1		0.75	0.3	1		
Arsenic [#]	7.7	7.4	6.4	7.2	8.1	8.4	9.7	8.8	5	8	7.3	6.7	6.9	31.4	7.9	6.3	6.9	640	7.24	6.3	8.1	FALSE	640
Cadmium [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	230	-	0	0		230
Chromium [#]	35.8	35.4	37.1	21.9	45.4	41.5	36.5	21	65	60.3	53.9	44	41.5	90.2	43.6	21.6	36.7	30000	34.69	21.6	45.4	FALSE	30000
Copper [#]	17	21	13	14	11	17	14	13	11	15	17	19	12	248	19	15	11	71700	15.13	11	21	FALSE	71700
Lead [#]	9	8	7	6	10	21	35	30	17	27	13	16	20	139	11	5	11	1360	8.38	5	11	FALSE	1360
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	3600	-	0	0		3600
Nickel [#]	29.2	36	29.2	24	29.2	24.8	13.5	12.7	14.6	15	24.5	24.7	12	119.6	44.1	22.8	28.5	1800	30.38	22.8	44.1	FALSE	1800
Selenium [#]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	13000	-	0	0		13000
Water Soluble Boron#	0.5	3.9	0.9	0.5	0.6	1.1	0.7	0.9	1.1	1.1	1.1	0.6	0.8	1.8	1.2	0.4	1.3	190000	1.16	0.4	3.9	FALSE	190000
Zinc#	45	62	36	41	43	53	54	49	31	53	49	46	38	200	51	40	45	662000	45.38	36	62	FALSE	662000
····· #	0.04			0.04	0.04			0.04	0.04	0.04	0.04	0.04		0.04	0.04	0.04	0.04	000.4		0	0		000.4
Naphthalene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	203.4		0	0		203.4
Acenaphthana#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05			0	0		
Acenaphtnene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			0	0		
Fluorene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			0	0		
Anthrono #	<0.03	<0.03	-0.04	<0.03	<0.03	<0.03	-0.04	-0.03	<0.03	<0.03	<0.03	-0.04	<0.03	<0.03	<0.03	<0.03	<0.03			0	0		
Anthracene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			0	0		
Fluoranthene	<0.03	<0.03	<0.03	<0.03	<0.03	-0.02	0.15	0.06	<0.03	0.04	<0.03	0.07	<0.03	0.04	<0.03	<0.03	<0.03			0	0		
Pyrene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.14	0.06	<0.03	<0.03	<0.03	0.06	<0.03	0.04	<0.03	<0.03	<0.03			0	0		
Benzo(a)anthracene	<0.06	<0.00	<0.06	<0.06	<0.00	<0.00	0.06	<0.06	<0.00	<0.06	<0.00	0.07	<0.06	<0.00	<0.00	<0.00	<0.06			0	0		
Chrysene "	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.1	0.06	<0.02	0.04	<0.02	0.06	<0.02	<0.02	<0.02	<0.02	<0.02			0	0		
Benzo(bk)fluorantnene	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.11	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	45.4		0	0		45.4
Benzo(a)pyrene	-0.04	<0.04	-0.04	-0.04	<0.04	-0.04	0.00	0.04	<0.04	<0.04	<0.04	<0.04	-0.04	-0.04	<0.04	<0.04	<0.04	15.4		0	0		15.4
Diharaa (ab) anthrono a f	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	0.09	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			0	0		
Dibenzo(an)anthracene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	0.1	-0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			0	0		
Benzo(gni)perviene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			0	0		
	<0.0	<0.0	<0.0	<0.0	<0.0	<0.0	0.0	<0.0	<0.0	<0.0	<0.0	<0.0	<0.0	<0.0	<0.0	<0.0	<0.0			0	0		
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
Benzo(k)iluorantnene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02						
PAH Surrogate % Recovery	91	90	83	89	82	80	81	107	107	106	108	107	108	102	106	106	102						
EPH >C8-C10"	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	2125		U	0		2125
EPH >C10-C12*	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10260		0	0		10260
EPH >C12-C16*	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	60791		0	0		60791
EPH >C16-C21"	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	28200		0	0		28200
EPH >C21-C35*	<10	<10	<10	<10	<10	<10	32	30	<10	20	85	55	<10	219	<10	<10	<10	28400		0	0		28400
EPH >C8-C35 *	<30	<30	<30	<30	<30	<30	32	30	<30	<30	85	55	<30	219	<30	<30	<30	-		0	0		
Phenol #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	3200		0	0		3200
Natural Moisture Content %	17.1	22.8	15.7	11.3	21.9	18.3	24.1	21.3	21.8	27.2	19.2	17.4	17.9	38.1	22	10.9	21						
g/l Sulphate as SO4 (2:1 Ext) #	0.0602	0.171	0.0092	0.0271	0.0743	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	0.0061	0.0324	0.1274	0.0244	0.0367	0.0455		0.06	0.0092	0.171		
Total Cyanide #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	27400		0	0		27400
рН *	9	8.08	7.73	8.95	8	8.52	6.94	6.72	7.91	6.65	8.21	7.78	7.92	7.24	7.67	8.69	7.5			7.5	9		

Commercial/Industrial Scenario

	Wid	er Site	
average	min	max	Max > GSAC
2.025	1.4	2.4	
10.24	5.00	31.40	FALSE
-	0.10	0.20	FALSE
50.43	21.00	90.20	FALSE
40.67	11.00	248.00	FALSE
35.33	13.00	139.00	FALSE
-	0.00	0.00	
29.04	12.00	119.60	FALSE
-	0.00	0.00	
1.02	0.60	1.80	FALSE
63.67	31.00	200.00	FALSE
	0.00	0.00	
	0.00	0.00	
	0.00	0.00	
	0.00	0.00	
0.05	0.00	0.00	
0.05	0.04	0.06	
0.07	0.00	0.00	
0.07	0.04	0.13	
0.08	0.04	0.14	
0.03	0.07	0.08	
0.07	0.04	0.10	
0.06	0.06	0.06	
0.07	0.05	0.09	
0.08	0.05	0.10	
0.05	0.05	0.05	
0.80	0.80	0.80	
	0.00	0.00	FALSE
73.50	20.00	219.00	FALSE
	30.00	219.00	
	0.00	0.00	
0.06	0.01 0.00	0.13 0.00	
	6.65	8.52	

J E Sample No	1	22-24	31-33	36-38	GSC
Sample ID	BH-4 (S)	BH-1	BH-3	BH-2(S)	000
Depth	1 0-1 2	0.2-0.4	0.0-0.2	0-04	
Sample Date	11/02/2014	12/02/2014	12/02/2014	14/02/2014	
Date of Bossint	10/02/2014	10/02/2014	10/02/2014	19/02/2014	
	10/03/2014	10/03/2014	10/03/2014	10/03/2014	
Disselyed Argenie #	<0.0025	<0.0025	<0.0025	<0.0025	
Dissolved Arsenic	0.0025	<0.0023	<0.0023	<0.0023	0 5
Dissolved Boron	0.020	-0.0005	<0.012	<0.012	0.5
Dissolved Cadmium	<0.0005	<0.0005	<0.0005	<0.0005	
Dissolved Chromium "	<0.0015	< 0.0015	<0.0015	<0.0015	
Dissolved Copper "	<0.007	<0.007	<0.007	<0.007	
Dissolved Lead "	<0.005	<0.005	<0.005	<0.005	
Dissolved Mercury *	<0.001	<0.001	<0.001	<0.001	
Dissolved Nickel *	<0.002	<0.002	<0.002	<0.002	
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	
Dissolved Zinc [#]	<0.003	<0.003	<0.003	<0.003	
mg/l	0.00400	0.00405	0.0001.1	0.00007	0.0040
	0.00426	0.00135	0.00014	0.00007	0.0012
Acenaphthylene	<0.000013	< 0.000013	< 0.000013	<0.000013	
Acenaphthene	<0.000013	<0.000013	0.00002	<0.000013	
Fluorene	<0.000014	<0.000014	0.00002	<0.000014	
Phenanthrene	<0.000011	<0.000011	0.00002	0.00003	
Anthracene	<0.000013	<0.000013	<0.000013	<0.000013	
Fluoranthene	<0.000012	<0.000012	<0.000012	<0.000012	0.0001
Pyrene	<0.000013	<0.000013	<0.000013	<0.000013	
Benzo(a)anthracene	<0.000015	<0.000015	<0.000015	<0.000015	
Chrysene	<0.000011	<0.000011	<0.000011	<0.000011	
Benzo(bk)fluoranthene	<0.000018	<0.000018	<0.000018	<0.000018	
Benzo(a)pyrene	<0.000016	<0.000016	<0.000016	<0.000016	
Indeno(123cd)pyrene	<0.000011	<0.000011	<0.000011	<0.000011	
Dibenzo(ah)anthracene	<0.00001	<0.00001	<0.00001	<0.00001	
Benzo(ghi)perylene	<0.000011	<0.000011	<0.000011	<0.000011	
PAH 16 Total	0.00426	0.00135	0.0002	<0.000195	
Benzo(b)fluoranthene	<0.00001	<0.00001	<0.00001	<0.00001	
Benzo(k)fluoranthene	<0.00001	<0.00001	<0.00001	<0.00001	
PAH Surrogate % Recovery					
ug/l					
EPH >C8-C10	<10	<10	<10	<10	
EPH >C10-C12	<10	<10	<10	<10	
EPH >C12-C16	<10	<10	<10	<10	
EPH >C16-C21	<10	<10	<10	<10	
EPH >C21-C35	<10	<10	<10	<10	
EPH >C8-C35	<10	<10	<10	<10	
mg/l					
Phenol	<0.01	<0.01	<0.01	<0.01	
mg/l					
Sulphate [#]	47.9	<0.05	0.38	27.13	250
mg/l					
_	<0.01	<0.01	<0.01	<0.01	
Total Cyanide [#]					
Total Cyanide [#] mg/l					
Total Cyanide [#] mg/l Dissolved Organic Carbon	3	7	5	2	

Sample ID	Depth	Asbestos Containing Material	Asbestos Results
BH-4 (S)	0.5	None	NAD
TP-11	0.0-0.3	None	NAD
TP-10	0.0-0.3	None	NAD
TP-3	0.0-0.2	None	NAD
TP-8	0.0-0.3	None	NAD
TP-4	0.0-0.2	None	NAD
TP-7	0.0-0.3	None	NAD
TP-9	0.0-0.3	None	NAD
BH-1	0.2-0.4	None	NAD
TP-6	0.1-0.4	None	NAD
TP-5	0.2-0.4	None	NAD
TP-5	0.0-0.2	None	NAD
BH-3	0.0-0.2	None	NAD
BH-2(S)	00.4	None	NAD

Non sensitive GW	GSAC				
J E Sample No.		1-6	7-12	1-6	7-12
Sample ID		BH-2(S)	BH-4(S)	BH-2(S)	BH-4(S)
Sample Date		20/03/2014	20/03/2014	28/03/2014	28/03/2014
ug/l					_
Dissolved Arsenic [#]	10	<2.5	12.1	<2.5	<2.5
Dissolved Boron	500	757	118	544	93
Dissolved Cadmium [#]		<0.5	<0.5	<0.5	<0.5
Total Dissolved Chromium #		<1.5	<1.5	<1.5	<1.5
Dissolved Copper [#]		<7	<7	<7	<7
Dissolved Lead [#]		<5	<5	<5	<5
Dissolved Mercury [#]		<1	<1	<1	<1
Dissolved Nickel [#]		<2	<2	3	5
Dissolved Selenium [#]		<3	<3	<3	<3
Dissolved Zinc [#]	40	<3	3	<3	<3
Total Hardness Dissolved (as CaCO3)				403	597
ug/l					
Naphthalene [#]	1.2	0.39	0.21	1.53	2.66
Acenaphthylene [#]		0.05	<0.013	0.06	0.11
Acenaphthene [#]		0.03	<0.013	0.02	0.04
Fluorene [#]		0.02	0.03	<0.014	0.03
Phenanthrene [#]		0.04	0.16	0.02	0.03
Anthracene [#]	0.1	<0.013	<0.013	<0.013	<0.013
Fluoranthene [#]	0.1	0.02	0.12	<0.012	<0.012
Pyrene [#]		0.02	0.09	<0.013	<0.013
Benzo(a)anthracene [#]		<0.015	0.02	<0.015	<0.015
Chrysene [#]		<0.011	0.04	<0.011	<0.011
Benzo(bk)fluoranthene [#]		<0.018	0.03	<0.018	<0.018
Benzo(a)pyrene [#]		<0.016	<0.016	<0.016	<0.016
Indeno(123cd)pyrene [#]		<0.011	<0.011	<0.011	<0.011
Dibenzo(ah)anthracene [#]		<0.01	<0.01	<0.01	<0.01
Benzo(ghi)perylene [#]		<0.011	<0.011	<0.011	<0.011
PAH 16 Total [#]		0.57	0.7	1.63	2.87
Benzo(b)fluoranthene		<0.01	0.02	<0.01	<0.01
Benzo(k)fluoranthene		<0.01	<0.01	<0.01	<0.01
PAH Surrogate % Recovery		84	83	90	88
ug/l					
EPH (C8-C40) [#]		<10	<10	<10	<10
mg/l					
Phenol [#]		<0.01	<0.01	<0.01	<0.01
mg/l					
Sulphate [#]	250	55.7	21.4	87.5	50.75
mg/l					
Total Cyanide [#]		<0.01	<0.01	<0.01	<0.01
pH [#]		7.53	7.51	7.01	7.5
					-

Sample D BH-4 (S) BH-1 BH-3 BH-2(S) mg/1 Depth 1.0-1-2 0.2-0.4 0.0-0.2 0.0-0.4 Sample Date of Receipt 1/03/2014 1/03/	J E Sample No.	1	22-24	31-33	36-38	GSS
Depth 1.0-1.2 0.2-0.4 0.0-0.2 0.0.4 Sample Date 11/03/2014 13/03/2014 10/03/201 10/03/201 10/03/20	Sample ID	BH-4 (S)	BH-1	BH-3	BH-2(S)	mg/l
Sample Date 11/03/2014 13/03/	Depth	1.0-1.2	0.2-0.4	0.0-0.2	00.4	Ċ.
Date of Receip: 18/03/2014 18/03/2014 18/03/2014 18/03/2014 18/03/2014 mg/l Dissolved Arsenic * -0.0025 <0.0025	Sample Date	11/03/2014	13/03/2014	13/03/2014	14/03/2014	
mg/l Unisolved Arsenic* CO.0025 CO.0005 CO.0007 CO.001 CO.0001	Date of Receipt	18/03/2014	18/03/2014	18/03/2014	18/03/2014	
Dissolved Arsenic -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0025 -0.0012 -0.012 -0.012 -0.0125 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0015 -0.0021 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.0013 -0.00013 -0.00013 -0.00013 -0.00013 -0.00013 -0.00011 -0.00011 -0.00011 -0.00011 -0.00011 -0.00011 -0.00011	mg/l					
Dissolved Boron " 0.020 <0.012 <0.012 <0.012 <0.015 Dissolved Cadmium " <0.0005	Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025	LoD
Dissolved Cadmiun # <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <th< td=""><td>Dissolved Boron[#]</td><td>0.020</td><td><0.012</td><td><0.012</td><td><0.012</td><td>0.5</td></th<>	Dissolved Boron [#]	0.020	<0.012	<0.012	<0.012	0.5
Dissolved Chromium * <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0017 <0.0017 <0.0017 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.0071 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.000013 <0.00013 <0.000013	Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	LoD
Dissolved Copper <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.00013 <0.000013 <0.000011	Dissolved Chromium #	<0.0015	<0.0015	<0.0015	<0.0015	LoD
Dissolved Lead # <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013	Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007	LoD
Dissolved Mercury# <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00001 <0.0001 <0.0001 <td>Dissolved Lead #</td> <td><0.005</td> <td><0.005</td> <td><0.005</td> <td><0.005</td> <td>LoD</td>	Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	LoD
Dissolved Nickel [#] <0.002 <0.002 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00013 <0.00013 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.000011 <0.000011 <0.000011 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00001	Dissolved Mercury [#]	<0.001	<0.001	<0.001	<0.001	LoD
Dissolved Selenium # <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.000011 <0.00011 <0.00	Dissolved Nickel [#]	<0.002	<0.002	<0.002	<0.002	LoD
Dissolved Zinc # <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.0001 Naphthalene 0.00013 0.00013 0.00013 0.00013 0.000013 0.000013 0.000013 0.000013 0.000013 0.000014 LDD Acenaphthylene <0.000011	Dissolved Selenium [#]	<0.003	<0.003	< 0.003	<0.003	LoD
mg/l 0.00426 0.00135 0.00014 0.00007 Naphthalene <0.00013	Dissolved Zinc [#]	<0.003	<0.003	< 0.003	<0.003	LoD
mg/l 0.00426 0.00135 0.00014 0.00007 Naphthalene 0.000013 0.000013 0.000013 0.000013 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000013 0.000013 0.000013 0.000013 0.000014 0.000014 0.000013 0.000011 0.000001 0.000011 0.00001						
Naphthalene 0.00426 0.00135 0.00014 0.00007 Acenaphthylene <0.000013	mg/l					
Acenaphthylene <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 <0.00013 Acenaphthene <0.00014	Naphthalene	0.00426	0.00135	0.00014	0.00007	0.0012
Acenaphthene <0.000013 <0.000014 0.00002 <0.000014 LoD Fluorene <0.000014	Acenaphthylene	< 0.000013	<0.000013	<0.000013	<0.000013	LoD
Fluorene <0.000014 <0.000011 0.00002 <0.000014 LoD Phenanthrene <0.000011	Acenaphthene	<0.000013	<0.000013	0.00002	<0.000013	LoD
Phenanthrene <0.000011 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000016 <0.000016 <0.00016 <0.00016 <0.00011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00001 <th< td=""><td>Fluorene</td><td><0.000014</td><td><0.000014</td><td>0.00002</td><td><0.000014</td><td>LoD</td></th<>	Fluorene	<0.000014	<0.000014	0.00002	<0.000014	LoD
Anthracene <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.000	Phenanthrene	<0.000011	<0.000011	0.00002	0.00003	N/A
Fluoranthene <0.000012 <0.000012 <0.000012 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000013 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00001 <0.00001 <	Anthracene	<0.000013	<0.000013	<0.000013	<0.000013	LoD
Pyrene < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000013 < 0.000015 < 0.000015 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.000011 < 0.00011 </td <td>Fluoranthene</td> <td><0.000012</td> <td><0.000012</td> <td><0.000012</td> <td><0.000012</td> <td>0.0001</td>	Fluoranthene	<0.000012	<0.000012	<0.000012	<0.000012	0.0001
Benzo(a)anthracene <0.00015 <0.00015 <0.00015 <0.00015 <0.00015 <0.00015 <0.00015 <0.00015 <0.00015 <0.00015 <0.00015 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00101 <td>Pyrene</td> <td>< 0.000013</td> <td><0.000013</td> <td><0.000013</td> <td><0.000013</td> <td>LoD</td>	Pyrene	< 0.000013	<0.000013	<0.000013	<0.000013	LoD
Chrysene <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000018 <0.000018 <0.000018 <0.000018 <0.000016 <0.000016 <0.000016 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.001 <0.001 <0.001	Benzo(a)anthracene	<0.000015	<0.000015	<0.000015	<0.000015	LoD
Benzo(bk)fluoranthene <0.000018 <0.000018 <0.000018 <0.000018 <0.000018 <0.000016 <0.000016 <0.000016 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.0001 <0.001 <0.001 <0.0	Chrysene	<0.000011	<0.000011	<0.000011	<0.000011	LoD
Benzo(a)pyrene <0.000016 <0.000016 <0.000016 <0.000016 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00101 <0.0011 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Benzo(bk)fluoranthene	<0.000018	<0.000018	<0.000018	<0.000018	LoD
Indeno(123cd)pyrene <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.0011 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Benzo(a)pyrene	<0.000016	<0.000016	<0.000016	<0.000016	LoD
Dibenzo(ah)anthracene <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00000000 <0.000000000 <0.0000000000 <0.00000000000000000000000000000000000	Indeno(123cd)pyrene	<0.000011	<0.000011	<0.000011	<0.000011	LoD
Benzo(ghi)perylene <0.000011 <0.000011 <0.000011 <0.000011 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Dibenzo(ah)anthracene	<0.00001	<0.00001	<0.00001	<0.00001	LoD
PAH 16 Total 0.00426 0.00135 0.0002 <0.000195 Benzo(b)fluoranthene <0.00001	Benzo(ghi)perylene	<0.000011	<0.000011	<0.000011	<0.000011	LoD
Benzo(b)fluoranthene <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.011 <0.01 <0.01 <0.01 LoD LoD <th< td=""><td>PAH 16 Total</td><td>0.00426</td><td>0.00135</td><td>0.0002</td><td><0.000195</td><td></td></th<>	PAH 16 Total	0.00426	0.00135	0.0002	<0.000195	
Benzo(k)fluoranthene <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Benzo(b)fluoranthene	<0.00001	<0.00001	<0.00001	<0.00001	LoD
PAH Surrogate % Recovery ug/l ug/l EPH >C8-C10 <10	Benzo(k)fluoranthene	<0.00001	<0.00001	<0.00001	<0.00001	LoD
ug/l Image: second	PAH Surrogate % Recovery					
ug/l <10 <10 <10 <10 <10 LoD EPH >C10-C12 <10						
EPH >C8-C10 <10	ug/l					
EPH >C10-C12 <10	EPH >C8-C10	<10	<10	<10	<10	LoD
EPH >C12-C16 <10	EPH >C10-C12	<10	<10	<10	<10	LoD
EPH >C10-C21 <10	EPH >012-016	<10	<10	<10	<10	LOD
EPH >C21-C35 <10	EPH >C16-C21	<10	<10	<10	<10	LOD
EPH > C8-C35 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	EPH >C21-C35	<10	<10	<10	<10	LOD
Img/l <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th< td=""><td>EPH >C8-C35</td><td><10</td><td><10</td><td><10</td><td><10</td><td>LOD</td></th<>	EPH >C8-C35	<10	<10	<10	<10	LOD
rnerior <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 250 </td <td>mg/i</td> <td>-0.04</td> <td>-0.04</td> <td>-0.04</td> <td>-0.04</td> <td></td>	mg/i	-0.04	-0.04	-0.04	-0.04	
Sulphate # 47.9 <0.05 0.38 27.13 250 mg/l - <	mienoi	<0.01	<0.01	<0.01	<0.01	
Supriate 47.9 20.05 0.38 27.13 250 mg/l <0.01	mg/i	47.0	<0.0E	0.20	27 4 2	250
Total Cyanide # <0.01 <0.01 <0.01 <0.01 LoD mg/l - - - - - - - - LoD Dissolved Organic Carbon 3 7 5 2 -		47.9	<0.05	0.38	21.13	250
I otal Cyanide <0.01 <0.01 <0.01 <0.01 <0.01 LOD mg/l Dissolved Organic Carbon 3 7 5 2 pH 8.99 8.19 7.66 7.94	mg/i	-0.04	-0.04	-0.04	-0.04	
Dissolved Organic Carbon 3 7 5 2 pH 8.99 8.19 7.66 7.94		<0.01	<0.01	<0.01	<0.01	LOD
pH 8.99 8.19 7.66 7.94	Ing/I Dissolved Organia Carbor	2	7	F	0	
рп 8.99 8.19 7.66 7.94		ۍ ۵.00	1	5	2	
· · · · · · · · · · · · · · · · · · ·	Ч	8.99	0.19	00.1	7.94	

Groundwater	GSS				
J E Sample No.		1-6	7-12	1-6	7-12
Sample ID		BH-2(S)	BH-4(S)	BH-2(S)	BH-4(S)
Sample Date		20/03/2014	20/03/2014	28/03/2014	28/03/2014
ug/l			ug/l		
Dissolved Arsenic [#]	10	<2.5	12.1	<2.5	<2.5
Dissolved Boron	500	757	118	544	93
Dissolved Cadmium [#]		<0.5	<0.5	<0.5	<0.5
Total Dissolved Chromium #		<1.5	<1.5	<1.5	<1.5
Dissolved Copper [#]		<7	<7	<7	<7
Dissolved Lead [#]		<5	<5	<5	<5
Dissolved Mercury [#]		<1	<1	<1	<1
Dissolved Nickel [#]		<2	<2	3	5
Dissolved Selenium [#]		<3	<3	<3	<3
Dissolved Zinc [#]		<3	3	<3	<3
Total Hardness Dissolved (as CaCO3)				403	597
ug/l					
Naphthalene [#]	1.2	0.39	0.21	1.53	2.66
Acenaphthylene #		0.05	<0.013	0.06	0.11
Acenaphthene #		0.03	<0.013	0.02	0.04
Fluorene [#]		0.02	0.03	<0.014	0.03
Phenanthrene [#]		0.04	0.16	0.02	0.03
Anthracene [#]		<0.013	<0.013	<0.013	<0.013
Fluoranthene [#]	0.1	0.02	0.12	<0.012	<0.012
Pyrene [#]		0.02	0.09	<0.013	<0.013
Benzo(a)anthracene [#]		<0.015	0.02	<0.015	<0.015
Chrysene [#]		<0.011	0.04	<0.011	<0.011
Benzo(bk)fluoranthene #		<0.018	0.03	<0.018	<0.018
Benzo(a)pyrene [#]		<0.016	<0.016	<0.016	<0.016
Indeno(123cd)pyrene [#]		<0.011	<0.011	<0.011	<0.011
Dibenzo(ah)anthracene #		<0.01	<0.01	<0.01	<0.01
Benzo(ghi)perylene [#]		<0.011	<0.011	<0.011	<0.011
PAH 16 Total [#]		0.57	0.7	1.63	2.87
Benzo(b)fluoranthene		<0.01	0.02	<0.01	<0.01
Benzo(k)fluoranthene		<0.01	<0.01	<0.01	<0.01
PAH Surrogate % Recovery		84	83	90	88
ug/l					
EPH (C8-C40) *		<10	<10	<10	<10
mg/l			0.57		
Phenol *		<0.01	<0.01	<0.01	<0.01
mg/l	050			67 5	F0
Sulphate*	250	55.7	21.4	87.5	50.75
mg/l				0.0 <i>i</i>	0.01
Total Cyanide"		<0.01	<0.01	<0.01	<0.01
#		7 = 0		7.04	
pH"		7.53	7.51	7.01	7.5
Total Organic Carbon *		112	<2	71	6

Certificate of Analysis Certificate Number 14-03256

15-Apr-14

Client Professional Soils Laboratory Ltd 5/7 Hexthorpe Road Hexthorpe DN4 0AR

- Our Reference 14-03256
- Client Reference PSL14/1640
- Contract Title Plumley, Cheshire
- Description 17 Soil samples.
- Date Received 07-Apr-14
- Date Started 07-Apr-14
- Date Completed 15-Apr-14

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Pua.

Rob Brown Business Manager

Summary of Chemical Analysis Soil Samples

Our Ref 14-03256 Client Ref PSL14/1640 Contract Title Plumley, Cheshire

			Lab No	631405	631406	631407	631408	631409	631410	631411	631412	631413	631414	631415
		Sa	ample ID	BH-2(S)	BH-2(S)	BH-2(S)	BH-2(S)	BH-3	BH-3	BH-3	BH-4(S)	BH-4(S)	BH-1	TP-3
			Depth	0.90-1.20	2.00-3.00	4.00-5.00	6.50-7.00	0.50-0.70	1.20-2.00	3.00-4.00	0.00-0.50	1.00-2.00	0.50-0.90	0.20-0.50
		(Other ID							100				
		Sam	ple Type	В	В	В	В	В	В	U	В	В	В	В
		Sampl	ing Date	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14
		Sampli	ing Time	n/s										
Test	Method	LOD	Units											
Metals														
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	< 10	< 10	11	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Inorganics														
рН	DETSC 2008#			8.6	8.8	8.8	9.0	8.6	8.8	9.0	8.1	8.7	8.5	7.9
Chloride Aqueous Extract	DETSC 2055	1	mg/l	7.8	6.8	260	14	8.0	11	5.1	13	2000	24	35
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	< 1.0	< 1.0	7.5	< 1.0	< 1.0	1.5	2.1	6.3	1.1	< 1.0	90
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	52	27	45	48	19	41	39	13	240	20	63

Summary of Chemical Analysis Soil Samples

Our Ref 14-03256 Client Ref PSL14/1640 Contract Title Plumley, Cheshire

			Lab No	631416	631417	631418	631419	631420	631421
		Sa	ample ID	TP-4	TP-5	TP-6	TP-7	TP-8	TP-9
			Depth	0.40-0.60	0.20-0.60	0.70-0.90	0.90-1.20	0.30-0.50	0.30-0.60
			Other ID						
		Sam	ple Type	В	В	В	В	В	В
		Sampl	ing Date	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14	01/04/14
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	< 10	< 10	< 10	< 10	< 10	< 10
Inorganics									
рН	DETSC 2008#			7.0	8.5	8.6	8.6	6.7	7.3
Chloride Aqueous Extract	DETSC 2055	1	mg/l	4.5	8.0	29	7.9	8.4	5.5
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	2.1	4.3	< 1.0	< 1.0	< 1.0	6.6
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	13	53	27	25	20	18

Information in Support of the Analytical Results

Our Ref 14-03256 *Client Ref* PSL14/1640 *Contract* Plumley, Cheshire

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
631405	BH-2(S) 0.90-1.20 SOIL	01/04/14	PT 1L (1kg)		
631406	BH-2(S) 2.00-3.00 SOIL	01/04/14	PT 1L (1kg)		
631407	BH-2(S) 4.00-5.00 SOIL	01/04/14	PT 1L (1kg)		
631408	BH-2(S) 6.50-7.00 SOIL	01/04/14	PT 1L (1kg)		
631409	BH-3 0.50-0.70 SOIL	01/04/14	PT 1L (1kg)		
631410	BH-3 1.20-2.00 SOIL	01/04/14	PT 1L (1kg)		
631411	BH-3 3.00-4.00 SOIL	01/04/14	PT 1L (1kg)		
631412	BH-4(S) 0.00-0.50 SOIL	01/04/14	PT 1L (1kg)		
631413	BH-4(S) 1.00-2.00 SOIL	01/04/14	PT 1L (1kg)		
631414	BH-1 0.50-0.90 SOIL	01/04/14	PT 1L (1kg)		
631415	TP-3 0.20-0.50 SOIL	01/04/14	PT 1L (1kg)		-
631416	TP-4 0.40-0.60 SOIL	01/04/14	PT 1L (1kg)		-
631417	TP-5 0.20-0.60 SOIL	01/04/14	PT 1L (1kg)		
631418	TP-6 0.70-0.90 SOIL	01/04/14	PT 1L (1kg)		
631419	TP-7 0.90-1.20 SOIL	01/04/14	PT 1L (1kg)		
631420	TP-8 0.30-0.50 SOIL	01/04/14	PT 1L (1kg)		
631421	TP-9 0.30-0.60 SOIL	01/04/14	PT 1L (1kg)		
Key: P-Plasti	c T-Tub				
DETS cannot	t be held responsible for the i	ntegrity of san	ples received whereby the laboratory did not undertake the samplir	ng. In this instance sar	nples received may

be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Worley Parsons 11a Alma Road

Headingley

Leeds LS6 2AH

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Paul Ryman
1st April, 2014
Poject Lindis
Test Report 14/3960 Batch 1
Plumley Cheshire
18th March, 2014
Final report
1

Eighteen samples were received for analysis on 18th March, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Kim Mills Project Co-ordinator

Rjuiellward

Bob Millward BSc FRSC Principal Chemist

Client Name: Reference: Location: Contact: JE Job No.: Worley Parsons Poject Lindis Plumley Cheshire Paul Ryman 14/3960

Report : Solid

		•	•		•		•			•			
J E Sample No.	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-17	18-19	20-21			
Sample ID	BH-4 (S)	BH-4 (S)	TP-11	TP-10	TP-10	TP-3	TP-8	TP-4	TP-7	TP-9			
Depth	0.5	0.75-1.0	0.0-0.3	1.2-1.4	0.0-0.3	0.0-0.2	0.0-0.3	0.0-0.2	0.0-0.3	0.0-0.3	Diama		
COC No / misc											abbrevi	e attached n ations and a	cronyms
Contoinous	V I	N/ I	N/ I	V I	N/ 1	N/ 1	N/ I	N/ I	V 1	N/ 1			
Containers	٧J	٧J	٧J	٧J	VJ	VJ	٧J	٧J	٧J	٧J			
Sample Date	11/03/2014	11/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	13/03/2014	13/03/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	LOD/LOK	OTINS	No.
Arsenic [#]	7.7	7.4	6.4	7.2	8.1	8.4	9.7	8.8	5.0	8.0	<0.5	mg/kg	TM30/PM15
Cadmium [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.1	<0.1	0.2	<0.1	mg/kg	TM30/PM15
Chromium [#]	35.8	35.4	37.1	21.9	45.4	41.5	36.5	21.0	65.0	60.3	<0.5	mg/kg	TM30/PM15
Copper [#]	17	21	13	14	11	17	14	13	11	15	<1	mg/kg	TM30/PM15
Lead [#]	9	8	7	6	10	21	35	30	17	27	<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	29.2	36.0	29.2	24.0	29.2	24.8	13.5	12.7	14.6	15.0	<0.7	mg/kg	TM30/PM15
Selenium #	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM30/PM15
Water Soluble Boron #	0.5	3.9	0.9	0.5	0.6	1.1	0.7	0.9	1.1	1.1	<0.1	mg/kg	TM74/PM32
Zinc [#]	45	62	36	41	43	53	54	49	31	53	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	0.05	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	0.04	0.15	0.06	<0.03	0.04	<0.03	mg/kg	TM4/PM8
Pyrene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.14	0.06	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.08	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.10	0.06	<0.02	0.04	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	0.11	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	0.09	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.10	0.05	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	0.05	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 16 Total	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	0.8	<0.6	<0.6	<0.6	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	91	90	83	89	82	80	81	107	107	106	<0	%	TM4/PM8
EPH >C8-C10#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	mg/kg	TM5/PM8
EPH >C10-C12#	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8
EPH >C12-C16 [#]	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8
EPH >C16-C21 #	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8
EPH >C21-C35#	<10	<10	<10	<10	<10	<10	32	30	<10	20	<10	mg/kg	TM5/PM8
EPH >C8-C35#	<30	<30	<30	<30	<30	<30	32	30	<30	<30	<30	mg/kg	TM5/PM8
Phenol #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	TM26/PM21
Natural Moisture Content	17.1	22.8	15.7	11.3	21.9	18.3	24.1	21.3	21.8	27.2	<0.1	%	PM4/PM0
Sulphate as SO4 (2:1 Ext) #	0.0602	0.1710	0.0092	0.0271	0.0743	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	g/l	TM38/PM20

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Poject Lindis Plumley Cheshire Paul Ryman 14/3960

Worley Parsons

Report : Solid

	1 1/0000												
J E Sample No.	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-17	18-19	20-21			
Sample ID	BH-4 (S)	BH-4 (S)	TP-11	TP-10	TP-10	TP-3	TP-8	TP-4	TP-7	TP-9			
Depth	0.5	0.75-1.0	0.0-0.3	1.2-1.4	0.0-0.3	0.0-0.2	0.0-0.3	0.0-0.2	0.0-0.3	0.0-0.3	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and ad	cronyms
Containers	٧J	νJ	٧J	٧J	νJ	٧J	٧J	٧J	٧J	٧J			
Sample Date	11/03/2014	11/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	12/03/2014	13/03/2014	13/03/2014			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1		Linite	Method
Date of Receipt	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	LOD/LOR	Units	No.
Total Cyanide #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM89/PM45
	0.5					10		4.0				01	THO ((D) 10 (
Organic Matter	0.5	0.9	0.3	<0.2	0.9	1.6	2.2	1.9	1.4	2.4	<0.2	%	TM21/PM24
рН [#]	9.00	8.08	7.73	8.95	8.00	8.52	6.94	6.72	7.91	6.65	<0.01	pH units	TM73/PM11

Client Name: Reference: Location: Contact: JE Job No.: Worley Parsons Poject Lindis Plumley Cheshire Paul Ryman 14/3960

Report : Solid

J E Sample No.	22-24	25-26	27-28	29-30	31-33	34-35	36-38			ĺ		
Sample ID	BH-1	TP-6	TP-5	TP-5	BH-3(S)	BH-3(S)	BH-3(S)					
Denth	0 2-0 4	0 1-0 4	0.2-0.4	0.0-0.2	0.0-0.2	0.9-1.2	0-04					
	0.2-0.4	0.1-0.4	0.2-0.4	0.0-0.2	0.0-0.2	0.3-1.2	00.4			Please se abbrevi	e attached n ations and a	otes for all cronyms
COC No / misc												, .
Containers	VJT	٧J	٧J	٧J	VJT	٧J	VJT			1		
Sample Date	13/03/2014	13/03/2014	13/03/2014	13/03/2014	13/03/2014	14/03/2014	14/03/2014			1		
Sample Type	Soil			1								
Batch Number	1	1	1	1	1	1	1					Method
Date of Receipt	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014			LOD/LOR	Units	No.
Arsenic [#]	73	67	69	31.4	79	63	69			<0.5	ma/ka	TM30/PM15
Cadmium [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ma/ka	TM30/PM15
Chromium [#]	53.9	44.0	41.5	90.2	43.6	21.6	36.7			<0.5	mg/kg	TM30/PM15
Copper [#]	17	19	12	248	19	15	11			<1	mg/kg	TM30/PM15
Lead [#]	13	16	20	139	11	5	11			<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Nickel [#]	24.5	24.7	12.0	119.6	44.1	22.8	28.5			<0.7	mg/kg	TM30/PM15
Selenium [#]	<1	<1	<1	<1	<1	<1	<1			<1	mg/kg	TM30/PM15
Water Soluble Boron #	1.1	0.6	0.8	1.8	1.2	0.4	1.3			<0.1	mg/kg	TM74/PM32
Zinc [#]	49	46	38	200	51	40	45			<5	mg/kg	TM30/PM15
PAH MS												
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	0.07	<0.03	0.04	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	0.06	<0.03	0.04	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	<0.06	0.07	<0.06	<0.06	<0.06	<0.06	<0.06			<0.06	mg/kg	TM4/PM8
Chrysene "	<0.02	0.06	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	
Benzo(bk)fluoranthene	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07			<0.07	mg/kg	
Benzo(a)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	
Dibonzo(ab)anthracono #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	
Benzo(ghi)pervlene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	ma/ka	TM4/PM8
PAH 16 Total	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6			<0.6	ma/ka	TM4/PM8
Benzo(b)fluoranthene	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05			<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	108	107	108	102	106	106	102			<0	%	TM4/PM8
EPH >C8-C10#	<5	<5	<5	<5	<5	<5	<5			<5	mg/kg	TM5/PM8
EPH >C10-C12#	<10	<10	<10	<10	<10	<10	<10			<10	mg/kg	TM5/PM8
EPH >C12-C16#	<10	<10	<10	<10	<10	<10	<10			<10	mg/kg	TM5/PM8
EPH >C16-C21 #	<10	<10	<10	<10	<10	<10	<10			<10	mg/kg	TM5/PM8
EPH >C21-C35 #	85	55	<10	219	<10	<10	<10			<10	mg/kg	TM5/PM8
EPH >C8-C35#	85	55	<30	219	<30	<30	<30			<30	mg/kg	TM5/PM8
Phenol [#]	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01			<0.01	mg/kg	TM26/PM21
Natural Moisture Content	19.2	17.4	17.9	38.1	22.0	10.9	21.0			<0.1	%	PM4/PM0
	0.0015	0.0001	0.0004	0.4074	0.0011	0.0007	0.0155			0.0015	. //	TMOR/DMOR
Suiphate as SO4 (2:1 Ext) "	<0.0015	0.0061	0.0324	0.1274	0.0244	0.0367	0.0455	1		<0.0015	g/i	1 IVI38/PIM20

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Worley Parsons Poject Lindis Plumley Cheshire Paul Ryman 14/3960

Report : Solid

J E Sample No.	22-24	25-26	27-28	29-30	31-33	34-35	36-38		ľ		
Sample ID	BH-1	TP-6	TP-5	TP-5	BH-3(S)	BH-3(S)	BH-3(S)				
Depth	0.2-0.4	0.1-0.4	0.2-0.4	0.0-0.2	0.0-0.2	0.9-1.2	00.4		Diagon on		otoo for all
COC No / misc									abbrevi	ations and ac	cronyms
Containers	VJT	٧J	٧J	٧J	VJT	٧J	VJT				
Sample Date	13/03/2014	13/03/2014	13/03/2014	13/03/2014	13/03/2014	14/03/2014	14/03/2014				
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1				
Batch Number	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014		-0.5		TM80/DM45
Total Cyanide	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	mg/kg	11003/11043
Organic Matter	2.2	2.4	2.1	31.4	0.9	<0.2	1.0		<0.2	%	TM21/PM24
рН [#]	8.21	7.78	7.92	7.24	7.67	8.69	7.50		<0.01	pH units	TM73/PM11

Client Name: Reference: Location: Contact: JE Job No.: Worley Parsons Poject Lindis Plumley Cheshire Paul Ryman 14/3960

Report : CEN 10:1 1 Batch

02 000 11011								_		
J E Sample No.	1	22-24	31-33	36-38				ĺ		
Sample ID	BH-4 (S)	BH-1	BH-3(S)	BH-3(S)						
Depth	1.0-1.2	0.2-0.4	0.0-0.2	00.4				Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	т	VIT	VIT	VIT				1		
Sample Date	11/02/2014	13/03/2014	12/02/2014	14/02/2014				1		
Oample Date	11/03/2014	13/03/2014	13/03/2014	14/03/2014				1		
Sample Type	Soil	Soil	Soil	Soil				ļ		
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	18/03/2014	18/03/2014	18/03/2014	18/03/2014						NO.
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025				<0.0025	mg/l	TM30/PM17
Dissolved Boron [#]	0.020	<0.012	<0.012	<0.012				<0.012	mg/l	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005				<0.0005	mg/l	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015				<0.0015	mg/l	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007				<0.007	mg/l	TM30/PM17
Dissolved Lead [#]	<0.005	<0.005	<0.005	<0.005				<0.005	mg/l	TM30/PM17
Dissolved Mercury#	<0.001	<0.001	<0.001	<0.001				<0.001	mg/l	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002	<0.002	<0.002				<0.002	mg/l	TM30/PM17
Dissolved Selenium [#]	< 0.003	< 0.003	< 0.003	<0.003				< 0.003	mg/l	TM30/PM17
Dissolved Zinc [#]	< 0.003	< 0.003	< 0.003	< 0.003				< 0.003	mg/l	TM30/PM17
									_	
PAH MS										
Naphthalene	0.004260	0.001350	0.000140	0.000070				< 0.000014	ma/l	TM4/PM30
Acenaphthylene	< 0.000013	< 0.000013	< 0.000013	< 0.000013				< 0.000013	ma/l	TM4/PM30
Acenaphthene	<0.000013	<0.000013	0.000020	<0.000013				<0.000013	mg/l	TM4/PM30
Fluorene	<0.000014	<0.000014	0.000020	<0.000014				<0.000014	ma/l	TM4/PM30
Phenanthrene	<0.000011	<0.000011	0.000020	0.000030				<0.000011	mg/l	TM4/PM30
	<0.000013	<0.000011	<0.000020	<0.000000				<0.000013	mg/l	TM4/PM30
Eluoranthono	<0.000013	<0.000013	<0.000013	<0.000013				<0.000013	mg/l	TM4/PM20
Puropo	<0.000012	<0.000012	<0.000012	<0.000012				<0.000012	mg/l	TM4/FW30
Ponzo(a)anthracana	<0.000015	<0.000015	<0.000015	<0.000015				<0.000015	mg/l	TM4/PM20
Christian	<0.000013	<0.000013	<0.000013	<0.000013				-0.000013	mg/l	
	<0.000011	<0.000011	<0.000011	<0.000011				<0.000011	mg/i	TIVI4/PIVI30
Benzo(bk)fluorantnene	<0.000018	<0.000018	<0.000018	<0.000018				<0.000018	mg/i	TM4/PM30
Benzo(a)pyrene	<0.000016	<0.000016	<0.000016	<0.000016				<0.000016	mg/i	TM4/PM30
Indeno(123cd)pyrene	<0.000011	<0.000011	<0.000011	<0.000011				<0.000011	mg/l	TM4/PM30
Dibenzo(ah)anthracene	<0.00001	<0.00001	<0.00001	<0.00001				<0.00001	mg/l	TM4/PM30
Benzo(ghi)perylene	<0.000011	<0.000011	<0.000011	<0.000011				<0.000011	mg/l	TM4/PM30
PAH 16 Total	0.004260	0.001350	0.000200	<0.000195				<0.000195	mg/l	TM4/PM30
Benzo(b)fluoranthene	<0.00001	<0.00001	<0.00001	<0.00001				<0.00001	mg/l	TM4/PM30
Benzo(k)fluoranthene	<0.00001	<0.00001	<0.00001	<0.00001				<0.00001	mg/l	TM4/PM30
PAH Surrogate % Recovery	93	96	86	99				<0	%	TM4/PM30
EPH >C8-C10	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C10-C12	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C12-C16	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C16-C21	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C21-C35	<10	<10	<10	<10				<10	ug/l	TM5/PM30
EPH >C8-C35	<10	<10	<10	<10				<10	ug/l	TM5/PM30
Phenol	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Sulphate #	47.90	<0.05	0.38	27.13				<0.05	mg/l	TM38/PM0
Total Cyanide #	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM89/PM0

Client Name: Reference:	Worley Pa Poject Lin	arsons dis				Report :	CEN 10:1	1 Batch					
Location: Contact:	Plumley C Paul Rym	heshire an				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub			
JE Job No.:	14/3960												
J E Sample No.	1	22-24	31-33	36-38									
Sample ID	BH-4 (S)	BH-1	BH-3(S)	BH-3(S)									
Depth	1.0-1.2	0.2-0.4	0.0-0.2	00.4						Please se	e attached n	otes for all	
COC No / misc										abbrevi	abbreviations and acronyms		
Containers	т	VJT	VJT	VJT									
Sample Date	11/03/2014	13/03/2014	13/03/2014	14/03/2014									
Sample Type	Soil	Soil	Soil	Soil									
Batch Number	1	1	1	1								Mathead	
Date of Receipt	18/03/2014	18/03/2014	18/03/2014	18/03/2014						LOD/LOR	Units	No.	
Mass of raw test portion	0.1032	0.1116	0.1146	0.1135							kg	NONE/PM17	
Leachant Volume	0.887	0.878	0.875	0.876							I	NONE/PM17	
Dissolved Organic Carbon	3	7	5	2						<2	mg/l	TM60/PM0	
рН	8.99	8.19	7.66	7.94						<0.01	pH units	TM73/PM0	

Client Name:	Worley Parsons
Reference:	Poject Lindis
Location:	Plumley Cheshire
Contact:	Paul Ryman

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

If asbestos fibres are reported at trace levels there will not be enough fibres to quantify and will be less than 0.001%.

Signed on behalf of Jones Environmental Laboratory:

CONC

Gemma Newsome Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Description	Asbestos Containing Material	Asbestos Results	Asbestos Level	Comments
14/3960	1	BH-4 (S)	0.5	3	20/03/14	soil/clay	None	NAD	NAD	
14/3960	1	TP-11	0.0-0.3	7	20/03/14	soil/clay	None	NAD	NAD	
14/3960	1	TP-10	0.0-0.3	11	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	TP-3	0.0-0.2	13	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	TP-8	0.0-0.3	15	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	TP-4	0.0-0.2	17	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	TP-7	0.0-0.3	19	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	TP-9	0.0-0.3	21	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	BH-1	0.2-0.4	23	20/03/14	soil/clay	None	NAD	NAD	
14/3960	1	TP-6	0.1-0.4	26	20/03/14	soil/clay	None	NAD	NAD	
14/3960	1	TP-5	0.2-0.4	28	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	TP-5	0.0-0.2	30	20/03/14	Soil/Stone	None	NAD	NAD	
14/3960	1	BH-3(S)	0.0-0.2	32	19/03/14	Soil/Clay	None	NAD	NAD	
14/3960	1	BH-3(S)	00.4	37	19/03/14	Soil/Clay	None	NAD	NAD	

Client Name:	Worley Parsons
Reference:	Poject Lindis
Location:	Plumley Cheshire
Contact:	Paul Ryman

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Notification of Deviating Samples

Matrix : CEN 10:1 1 Batch

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/3960

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
CO	Suspected carry over
OC	Outside Calibration Range
NFD	No Fibres Detected
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS

JE Job No: 14/3960

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
TM4	16 PAH by GC-MS, modified USEPA 8270	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.			AR	Yes
TM4	16 PAH by GC-MS, modified USEPA 8270	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific			AR	Yes
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM8	In-house method based on USEPA 3510. ISO 17025 accredited extraction method for organic extraction from solid samples using an end over end agitator.	Yes		AR	Yes
TM21	TOC and TC by Combustion	PM24	Eltra preparation			AD	Yes
TM26	Phenols by HPLC	PM0	No preparation is required.			AR	Yes
TM26	Phenols by HPLC	PM21	Methanol : NaOH extraction	Yes		AR	Yes

JE Job No: 14/3960

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM15	In-house method based on USEPA 3010A. Acid digestion of dried and crushed solid samples using Aqua Regia reflux.	Yes		AD	Yes
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM17	CEN PR12457-2 10:1 1 batch leach	Yes		AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM0	No preparation is required.	Yes		AR	Yes
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM20	in-house method based on USEPA 1311 (TCLP). Solid samples are extracted with two parts de-ionised water to one part solid material for analysis of the extract for various parameters.	Yes		AD	Yes
TM60	TOC/DOC by NDIR	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres			AR	
TM65	Asbestos Bulk Identification	PM42	Screening of soils for fibres	Yes		AR	
ТМ73	pH in by Metrohm	PM0	No preparation is required.			AR	Yes
ТМ73	pH in by Metrohm	PM11	1:2.5 soil/water extraction	Yes		AR	No
TM74	Water Soluble Boron by ICP-OES	PM32	Preparation of soils for WSB	Yes		AD	Yes

Method Code Appendix

JE Job No: 14/3960

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM0	No preparation is required.	Yes		AR	Yes
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM45	Cyanide & Thiocyanate prep for soils	Yes		AR	Yes
NONE	No Method Code	PM17	CEN PR12457-2 10:1 1 batch leach				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Worley Parsons 11a Alma Road

Headingley

Leeds LS6 2AH

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Paul Ryman
Date :	28th March, 2014
Your reference :	Lindis
Our reference :	Test Report 14/4064 Batch 1
Location :	Plumley, Cheshire
Date samples received :	21st March, 2014
Status :	Final report
Issue :	1

Two samples were received for analysis on 21st March, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

5.60

Simon Gomery BSc Project Manager

Rjuielward

Bob Millward BSc FRSC Principal Chemist

Client Name: Reference: Location: Contact: JE Job No.:

Lindis Plumley, Cheshire Paul Ryman 14/4064

Worley Parsons

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3

							h		
J E Sample No.	1-6	7-12							
Sample ID	BH-2(S)	BH-4(S)							
Depth									
							Please se abbrevi	e attached n ations and a	otes for all cronyms
COC No / misc									
Containers	V HN N P G	V HN N P G							
Sample Date	20/03/2014	20/03/2014							
Sample Type	Ground Water	Ground Water							
Batch Number	1	1							
Data of Receive		04/00/0044					LOD/LOR	Units	Method No.
Date of Receipt	21/03/2014	21/03/2014			 				
Dissolved Arsenic*	<2.5	12.1					<2.5	ug/l	TM30/PM14
Dissolved Boron	757	118					<12	ug/l	TM30/PM14
Dissolved Cadmium *	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Total Dissolved Chromium*	<1.5	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Copper"	<7	<7					<7	ug/l	TM30/PM14
Dissolved Lead"	<5	<5					<5	ug/l	TM30/PM14
Dissolved Mercury"	<1	<1					<1	ug/l	TM30/PM14
Dissolved Nickel *	<2	<2					<2	ug/l	TM30/PM14
Dissolved Selenium"	<3	<3					<3	ug/l	TM30/PM14
Dissolved Zinc"	<3	3					<3	ug/I	TM30/PM14
PAH MS							0.011		
Naphthalene "	0.390	0.210					<0.014	ug/l	TM4/PM30
Acenaphthylene "	0.050	<0.013					<0.013	ug/l	TM4/PM30
Acenaphthene"	0.030	<0.013					<0.013	ug/i	TM4/PM30
Fluorene "	0.020	0.030					<0.014	ug/i	TM4/PM30
Phenanthrene "	0.040	0.160					<0.011	ug/l	TM4/PM30
Anthracene "	<0.013	<0.013					<0.013	ug/l	TM4/PM30
Fluoranthene"	0.020	0.120					<0.012	ug/l	TM4/PM30
Pyrene "	0.020	0.090					<0.013	ug/i	TM4/PM30
Benzo(a)anthracene "	<0.015	0.020					<0.015	ug/i	TM4/PM30
Cnrysene	<0.011	0.040					<0.011	ug/i	TM4/PM30
Benzo(bk)fluoranthene	<0.018	0.030					<0.018	ug/i	TM4/PM30
Benzo(a)pyrene	-0.011	<0.010					-0.011	ug/i	TM4/FW30
Dihanza (ab) anthragana #	<0.01	<0.01					<0.01	ug/l	TM4/FW30
Dibenzo(an)anthracene	<0.01	<0.01					<0.01	ug/i	TM4/PW30
Benzo(gni)perviene	<0.011	<0.011					<0.011	ug/i	TM4/PW30
PAR 10 Tulai Benzo(b)fluoranthene	<0.01	0.02					<0.133	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.01	<0.02					<0.01	ug/l	TM4/PM30
PAH Surrogate % Recovery	84	83					<0.01	0/	TM4/PM30
	04	00						70	1111-1/1 11100
EPH (C8-C40)#	<10	<10					<10	ug/l	TM5/PM30
	110	110					110	ug,	
Phenol [#]	<0.01	<0.01					<0.01	ma/l	TM26/PM0
	40101	40101					10.01		
Sulphate [#]	55.70	21.40					< 0.05	ma/l	TM38/PM0
Total Cvanide [#]	<0.01	<0.01					<0.01	ma/l	TM89/PM0
								.5.	
pH [#]	7.53	7.51					<0.01	pH units	TM73/PM0
' Total Organic Carbon [#]	112	<2					<2	mg/l	TM60/PM0
U								Ű	

Client Name:	Worley Parsons
Reference:	Lindis
Location:	Plumley, Cheshire
Contact:	Paul Ryman

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
No deviating sample report results for job 14/4064						

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/4064

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.
ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
CO	Suspected carry over
OC	Outside Calibration Range
NFD	No Fibres Detected
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS

Worley Parsons 11a Alma Road

Headingley

Leeds LS6 2AH

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. UK

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Paul Ryman
Date :	7th April, 2014
Your reference :	Project Lindis
Our reference :	Test Report 14/4376 Batch 1
Location :	Plumley, Cheshire
Date samples received :	29th March, 2014
Status :	Final report
Issue :	1

Two samples were received for analysis on 29th March, 2014. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Kim Mills Project Co-ordinator

Rjuiellward

Bob Millward BSc FRSC Principal Chemist

Jones Environmental Laboratory

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Worley Parsons Project Lindis Plumley, Cheshire Paul Ryman 14/4376

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3

J E Sample No.	1-6	7-12									
Sample ID	BH-2(S)	BH-4(S)									
Donth		. ,									
Depin									Please se abbrevi	e attached n ations and a	otes for all cronyms
COC No / misc											
Containers	V HN N P G	V HN N P G									
Sample Date	28/03/2014	28/03/2014									
Sample Type	Ground Water	Ground Water									
Batch Number	1	1									Markard
Date of Receipt	20/02/2014	20/02/2014							LOD/LOR	Units	No.
Disaste di Necelpi	29/03/2014	29/03/2014							.0.5		TM20/DM44
Dissolved Arsenic	<2.5	<2.5							<2.5	ug/i	TM20/PM14
Dissolved Codmium [#]	<0.5	<0.5							<0.5	ug/l	TM30/PM14
Total Dissolved Chromium#	<1.5	<1.5							<1.5	ug/l	TM30/PM14
Dissolved Coppor [#]	<7.5	<7.5							<7	ug/l	TM30/PM14
Dissolved Copper	<5	<5							<5	ug/i	TM30/PM14
Dissolved Leau	<1	<1							<1	ug/l	TM30/PM14
Dissolved Nickel [#]	3	5							~2	ug/l	TM30/PM14
Dissolved Nickei	-3	-3							-3	ug/l	TM30/PM14
Dissolved Zinc#	-3	-3							-3	ug/l	TM30/PM14
Total Hardness Dissolved (as CaCO3)	403	597							<1	ma/l	TM30/PM14
()	100								••		
PAH MS											
Naphthalene #	1.530	2.660							<0.014	ua/l	TM4/PM30
Acenaphthylene #	0.060	0.110							<0.013	ug/l	TM4/PM30
Acenaphthene #	0.020	0.040							<0.013	ug/l	TM4/PM30
Fluorene [#]	<0.014	0.030							<0.014	ug/l	TM4/PM30
Phenanthrene [#]	0.020	0.030							<0.011	ug/l	TM4/PM30
Anthracene #	<0.013	<0.013							<0.013	ug/l	TM4/PM30
Fluoranthene#	<0.012	<0.012							<0.012	ug/l	TM4/PM30
Pyrene [#]	<0.013	<0.013							<0.013	ug/l	TM4/PM30
Benzo(a)anthracene #	<0.015	<0.015							<0.015	ug/l	TM4/PM30
Chrysene #	<0.011	<0.011							<0.011	ug/l	TM4/PM30
Benzo(bk)fluoranthene #	<0.018	<0.018							<0.018	ug/l	TM4/PM30
Benzo(a)pyrene [#]	<0.016	<0.016							<0.016	ug/l	TM4/PM30
Indeno(123cd)pyrene#	<0.011	<0.011							<0.011	ug/l	TM4/PM30
Dibenzo(ah)anthracene #	<0.01	<0.01							<0.01	ug/l	TM4/PM30
Benzo(ghi)perylene #	<0.011	<0.011							<0.011	ug/l	TM4/PM30
PAH 16 Total [#]	1.630	2.870							<0.195	ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.01	<0.01							<0.01	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.01	<0.01							<0.01	ug/l	TM4/PM30
PAH Surrogate % Recovery	90	88							<0	%	TM4/PM30
EPH (C8-C40) #	<10	<10							<10	ug/l	TM5/PM30
Phenol *	<0.01	<0.01							<0.01	mg/l	TM26/PM0
		_									
Sulphate #	87.50	50.75							<0.05	mg/l	TM38/PM0
Total Cyanide [#]	<0.01	<0.01							<0.01	mg/l	TM89/PM0
#											Th (=== /= · · ·
рН" Т. но но ни	7.01	7.50							<0.01	pH units	TM/3/PM0
Total Organic Carbon "	/1	6							<2	mg/I	1M60/PM0
		1	1	1	1	1	1				1

Jones Environmental Laboratory

Client Name:	Worley Parsons
Reference:	Project Lindis
Location:	Plumley, Cheshire
Contact:	Paul Ryman

ason	Reas	Analysis	J E Sample No.	Depth	Sample ID	Batch	J E Job No.
		No deviating sample report results for job 14/4376					

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 14/4376

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory . It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
CO	Suspected carry over
OC	Outside Calibration Range
NFD	No Fibres Detected
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS

Jones Environmental Laboratory

JE Job No: 14/4376

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM4	16 PAH by GC-MS, modified USEPA 8270	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific				
TM4	16 PAH by GC-MS, modified USEPA 8270	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes			
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes			
TM26	Phenols by HPLC	PM0	No preparation is required.	Yes			
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM14	In-house method based on USEPA 3005A. Acid digestion of water samples and analsyis by ICP-OES as per method TM030W.ISO 17025 accredited extraction method. All accreditation is matrix specific				
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM14	In-house method based on USEPA 3005A. Acid digestion of water samples and analsyis by ICP-OES as per method TM030W.ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes			
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM0	No preparation is required.	Yes			
TM60	TOC/DOC by NDIR	PM0	No preparation is required.	Yes			
TM73	pH in by Metrohm	PM0	No preparation is required.	Yes			
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM0	No preparation is required.	Yes			

Jones Environmental Laboratory

JE Job No: 14/4064

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Reported on dry weight basis
TM4	16 PAH by GC-MS, modified USEPA 8270	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific				
TM4	16 PAH by GC-MS, modified USEPA 8270	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes			
TM5	In-House method based on USEPA 8015B. Determination of Extractable Petroleum Hydrocarbons (EPH) in the carbon chain length range of C8-40 by GC-FID. Accredited to ISO 17025 on soil and water samples and MCERTS (carbon banding only) on soils. All accreditation is matrix specific.	PM30	In-house method based on USEPA 3510. Liquid samples are mixed with solvent and agitated with an automatic magnetic stirrer with a stir bar for 15 minutes to extract organic molecules. ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes			
TM26	Phenols by HPLC	PM0	No preparation is required.	Yes			
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM14	In-house method based on USEPA 3005A. Acid digestion of water samples and analsyis by ICP-OES as per method TM030W.ISO 17025 accredited extraction method. All accreditation is matrix specific				
TM30	Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) using Thermo iCAP 6000 series instrument. Accredited to ISO 17025 for soils and waters and MCERTS accredited for Soils. All accreditation is matrix specific.	PM14	In-house method based on USEPA 3005A. Acid digestion of water samples and analsyis by ICP-OES as per method TM030W.ISO 17025 accredited extraction method. All accreditation is matrix specific	Yes			
TM38	Ionic analysis using the Thermo Aquakem Photometric Automatic Analyser. Accredited to ISO17025 and MCERTS for most analytes. All accreditation is matrix specific.	PM0	No preparation is required.	Yes			
TM60	TOC/DOC by NDIR	PM0	No preparation is required.	Yes			
TM73	pH in by Metrohm	PM0	No preparation is required.	Yes			
TM89	In-house method based on USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. ISO17025 accredited method for soils and waters and MCERTS on soils. Accreditation is matrix specific.	PM0	No preparation is required.	Yes			

Appendix F

Safety Data Sheets

APPENDIX B Material Safety Data Sheets

Motor Gasoline (Non Additized) Safety Data Sheet	2
Crude Oil Safety Data Sheet	46
Gas Oils (Petroleum) Heavy Atmospheric Safety Data Sheet	57

SAFETY DATA SHEET

SECTION 1

IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

As of the revision date above, this SDS meets the regulations in the United Kingdom & Ireland.

1.1. PRODUCT IDENTIFIER

Product Name: MOTOR GASOLINE (NON-ADDITIZED)

Product Description: Petroleum Hydrocarbons Product Code: 708629-60

Registration Name:

Gasoline

Identification Number: (CAS #)86290-81-5

Registration Number:

Supplier:

01-2119471335-39-0000; 01-2119471335-39

Trade Names	Trade Names
EUROBOB	REGULAR PETROL ULS95 (UA)
SUPER PLUS UNLEADED ULS (UA)	ULS MOGAS 95 RON
ULS MOGAS 97 RON	ULS UNLEADED (UA)
UNLEADED MOGAS 91 RON	UNLEADED MOGAS 93 RON
UNLEADED MOGAS 95 RON	

1.2. RELEVANT IDENTIFIED USES OF THE SUBSTANCE OR MIXTURE AND USES ADVISED AGAINST Intended Use: Fuel

Identified Uses: Manufacture of substance Distribution of substance Use as an intermediate Formulation and (re)packing of substances and mixtures Use as a fuel - Industrial Use as a fuel - Professional Use as a fuel - Consumer

See Section 16 for list of REACH Use Descriptors for Identified Uses shown above.

Uses advised against: This product is not recommended for any industrial, professional or consumer use other than the Identified Uses above.

1.3. DETAILS OF THE SUPPLIER OF THE SAFETY DATA SHEET

Esso Petroleum Company Ltd. Ermyn Way Ermyn House KT22 8UX LEATHERHEAD, SURREY Great Britain

Supplier General Contact: MSDS Internet Address: E-Mail: (UK) (+44) (0) 1372 222 000 www.msds.exxonmobil.com sds.uk@exxonmobil.com

1.4. EMERGENCY TELEPHONE NUMBER

24 Hour Emergency Telephone: National Poison Control Centre:

(UK) (+44) (0) 1372 222 000 (UK) 111 / (IE) 01 809 2166

SECTION 2 HAZARDS IDENTIFICATION

2.1. CLASSIFICATION OF SUBSTANCE OR MIXTURE

Classification according to Regulation (EC) No 1272/2008

Flammable liquid: Category 1.

Skin irritation: Category 2. Germ Cell Mutagen: Category 1B. Carcinogen: Category 1B. Reproductive toxicant (developmental): Category 2. Specific target organ toxicant (central nervous system): Category 3. Aspiration toxicant: Category 1.

Chronic aquatic toxicant: Category 2.

H224: Extremely flammable liquid and vapour.

H304: May be fatal if swallowed and enters airways. H315: Causes skin irritation. H336: May cause drowsiness or dizziness. H340: May cause genetic defects. H350: May cause cancer. H361: Suspected of damaging the unborn child.

H411: Toxic to aquatic life with long lasting effects.

2.2. LABEL ELEMENTS

Label elements according to Regulation (EC) No 1272/2008

Pictograms:

Signal Word: Danger

Hazard Statements:

H224: Extremely flammable liquid and vapour.

H304: May be fatal if swallowed and enters airways. H315: Causes skin irritation. H336: May cause drowsiness or dizziness. H340: May cause genetic defects. H350: May cause cancer. H361: Suspected of damaging the unborn child.

H411: Toxic to aquatic life with long lasting effects.

Precautionary Statements:

P201: Obtain special instructions before use. P202: Do not handle until all safety precautions have been read and understood. P210: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P233: Keep container tightly closed. P240: Ground and bond container and receiving equipment. P241: Use explosion-proof electrical, ventilating and lighting equipment. P242: Use non-sparking tools. P243: Take action to prevent static discharges. P261: Avoid breathing mist / vapours. P264: Wash skin thoroughly after handling. P271: Use only outdoors or in a well-ventilated area. P273: Avoid release to the environment. P280: Wear protective gloves/protective clothing/eye protection/face protection.

P301 + P310: IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. P303 + P361 + P353: IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. P304 + P340: IF INHALED: Remove person to fresh air and keep comfortable for breathing. P308 + P313: IF exposed or concerned: Get medical advice/attention. P312: Call a POISON CENTER or doctor/physician if you feel unwell. P331: Do NOT induce vomiting. P332 + P313: If skin irritation occurs: Get medical advice/attention. P362 + P364: Take off contaminated clothing and wash it before reuse. P370 + P378: In case of fire: Use water fog, foam, dry chemical or carbon dioxide (CO2) to extinguish. P391: Collect spillage.

P403 + P235: Store in a well-ventilated place. Keep cool. P405: Store locked up.

P501: Dispose of contents and container in accordance with local regulations.

Contains: Gasoline

2.3. OTHER HAZARDS

Physical / Chemical Hazards:

Material can accumulate static charges which may cause an ignition. Material can release vapours that readily form flammable mixtures. Vapour accumulation could flash and/or explode if ignited.

Health Hazards:

High-pressure injection under skin may cause serious damage. May be irritating to the eyes, nose, throat, and lungs. Exposure to benzene is associated with cancer (acute myeloid leukaemia and myelodysplastic syndrome), damage to the blood-producing system, and serious blood disorders (see Section 11).

Environmental Hazards:

No additional hazards. Material does not meet the criteria for PBT or vPvB in accordance with REACH Annex XIII.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS 3.1. SUBSTANCES

This material is defined as a substance.

Reportable hazardous substance(s) complying with the classification criteria and/or with an exposure limit (OEL)

Name	CAS#	EC#	Registration#	Concentration	GHS/CLP classification
Gasoline	86290-81-5	289-220-8	01-2119471335-39	100 %	[Aquatic Acute 2 H401], Aquatic Chronic 2 H411, Asp. Tox. 1 H304, Carc. 1B H350, Flam. Liq. 1 H224, Muta. 1B H340, Repr. 2 H361d, STOT SE 3 H336, Skin Irrit. 2 H315

Note - any classification in brackets is a GHS building block that was not adopted by the EU in the CLP regulation (No 1272/2008) and therefore is not applicable in the EU or in non-EU countries which have implemented the CLP regulation and is shown for informational purposes only.

Reportable hazardous constituent(s) contained in UVCB- and/or multi-constituent substance(s) complying with the classification criteria and/or with an exposure limit (OEL)

Name	CAS#	EC#	Concentration	GHS/CLP Classification
Benzene	71-43-2	200-753-7	0.1 - 1.0%	[Acute Tox. 5 H303], Asp. Tox. 1 H304, Carc. 1A H350, Flam. Liq. 2 H225, Muta. 1B H340, [Aquatic Acute 2 H401], Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT RE 1 H372, Note E
Toluene	108-88-3	203-625-9	> 5.0 %	[Aquatic Acute 2 H401], Aquatic Chronic 3 H412, Asp. Tox. 1 H304, Flam. Liq. 2 H225, Repr. 2 H361d, STOT SE 3 H336, Skin Irrit. 2 H315, STOT SE 2 H373

Note - any classification in brackets is a GHS building block that was not adopted by the EU in the CLP regulation (No 1272/2008) and therefore is not applicable in the EU or in non-EU countries which have implemented the CLP regulation and is shown for informational purposes only.

* All concentrations are percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.

Note: See SDS Section 16 for full text of hazard statements. **3.2. MIXTURES** Not Applicable. This product is regulated as a substance.

SECTION 4

FIRST AID MEASURES

4.1. DESCRIPTION OF FIRST AID MEASURES

INHALATION

Immediately remove from further exposure. Get immediate medical assistance. For those providing assistance, avoid exposure to yourself or others. Use adequate respiratory protection. Give supplemental oxygen, if available. If breathing has stopped, assist ventilation with a mechanical device.

SKIN CONTACT

Wash contact areas with soap and water. Remove contaminated clothing. Launder contaminated clothing before reuse. If product is injected into or under the skin, or into any part of the body, regardless of the appearance of the wound or its size, the individual should be evaluated immediately by a physician as a surgical emergency. Even though initial symptoms from high pressure injection may be minimal or absent, early surgical treatment within the first few hours may significantly reduce the ultimate extent of injury.

EYE CONTACT

Flush thoroughly with water. If irritation occurs, get medical assistance.

INGESTION

Seek immediate medical attention. Do not induce vomiting.

4.2. MOST IMPORTANT SYMPTOMS AND EFFECTS, BOTH ACUTE AND DELAYED

Headache, dizziness, drowsiness, nausea and other CNS effects. Itching, pain, redness, swelling of skin. Local necrosis as evidenced by delayed onset of pain and tissue damage a few hours after injection.

4.3. INDICATION OF ANY IMMEDIATE MEDICAL ATTENTION AND SPECIAL TREATMENT NEEDED

If ingested, material may be aspirated into the lungs and cause chemical pneumonitis. Treat appropriately. This material, or a component, may be associated with cardiac sensitization following very high exposures

(well above occupational exposure limits) or with concurrent exposure to high stress levels or heart-stimulating substances like epinephrine. Administration of such substances should be avoided.

SECTION 5

FIRE FIGHTING MEASURES

5.1. EXTINGUISHING MEDIA

Suitable Extinguishing Media: Use water fog, foam, dry chemical or carbon dioxide (CO2) to extinguish flames.

Unsuitable Extinguishing Media: Straight streams of water

5.2. SPECIAL HAZARDS ARISING FROM THE SUBSTANCE OR MIXTURE

Hazardous Combustion Products: Aldehydes, Incomplete combustion products, Oxides of carbon, Smoke, Fume, Sulphur oxides

5.3. ADVICE FOR FIRE FIGHTERS

Fire Fighting Instructions: Evacuate area. If a leak or spill has not ignited, use water spray to disperse the vapours and to protect personnel attempting to stop a leak. Prevent run-off from fire control or dilution from entering streams, sewers or drinking water supply. Fire-fighters should use standard protective equipment and in enclosed spaces, self-contained breathing apparatus (SCBA). Use water spray to cool fire exposed surfaces and to protect personnel.

Unusual Fire Hazards: Extremely Flammable. Vapour is flammable and heavier than air. Vapour may travel across the ground and reach remote ignition sources, causing a flashback fire danger. Hazardous material. Firefighters should consider protective equipment indicated in Section 8.

FLAMMABILITY PROPERTIES

 Flash Point [Method]: <-35°C (-31°F) [IP 170/70]</td>

 Upper/Lower Flammable Limits (Approximate volume % in air):
 UEL: 7.6

 LEL: 1.4 [test

 method unavailable]

 Autoignition Temperature:
 >250°C (482°F) [test method unavailable]

SECTION 6 ACCIDENTAL RELEASE MEASURES

6.1. PERSONAL PRECAUTIONS, PROTECTIVE EQUIPMENT AND EMERGENCY PROCEDURES

NOTIFICATION PROCEDURES

In the event of a spill or accidental release, notify relevant authorities in accordance with all applicable regulations.

PROTECTIVE MEASURES

Avoid contact with spilled material. Warn or evacuate occupants in surrounding and downwind areas if required, due to toxicity or flammability of the material. See Section 5 for fire fighting information. See the Hazard Identification Section for Significant Hazards. See Section 4 for First Aid Advice. See Section 8 for advice on the minimum requirements for personal protective equipment. Additional protective measures may be necessary, depending on the specific circumstances and/or the expert judgment of the emergency responders.

For emergency responders: Respiratory protection: half-face or full-face respirator with filter(s) for organic vapor and, when applicable, H2S, or Self Contained Breathing Apparatus (SCBA) can be used depending on the size of spill and potential level of exposure. If the exposure cannot be completely characterized or an oxygen deficient atmosphere is possible or anticipated, SCBA is recommended. Work gloves that are resistant to aromatic hydrocarbons are recommended. Note: gloves made of polyvinyl acetate (PVA) are not water-resistant and are not suitable for emergency use. Chemical goggles are recommended if splashes or contact with eyes is possible. Small spills: normal antistatic work clothes are usually adequate. Large spills: full body suit of chemical resistant, antistatic material is recommended.

6.2. ENVIRONMENTAL PRECAUTIONS

Large Spills: Dyke far ahead of liquid spill for later recovery and disposal. Prevent entry into waterways, sewers, basements or confined areas.

6.3. METHODS AND MATERIAL FOR CONTAINMENT AND CLEANING UP

Land Spill: Eliminate all ignition sources (no smoking, flares, sparks or flames in immediate area). Stop leak if you can do so without risk. All equipment used when handling the product must be grounded. Do not touch or walk through spilled material. Prevent entry into waterways, sewer, basements or confined areas. A vapour-suppressing foam may be used to reduce vapour. Use clean non-sparking tools to collect absorbed material. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. Large Spills: Water spray may reduce vapour, but may not prevent ignition in enclosed spaces.
Water Spill: Eliminate all ignition sources (no smoking, flares, sparks or flames in immediate area). Stop leak if you can do so without risk. Do not confine in area of spill. Advise occupants and shipping in downwind areas of fire and explosion hazard and warn them to stay clear. Allow liquid to evaporate from the surface. Seek the advice of a specialist before using dispersants.

Water spill and land spill recommendations are based on the most likely spill scenario for this material; however, geographic conditions, wind, temperature, (and in the case of a water spill) wave and current direction and speed may greatly influence the appropriate action to be taken. For this reason, local experts should be consulted. Note: Local regulations may prescribe or limit action to be taken.

6.4. REFERENCES TO OTHER SECTIONS

See Sections 8 and 13.

SECTION 7

HANDLING AND STORAGE

7.1. PRECAUTIONS FOR SAFE HANDLING

Avoid all personal contact. Prevent exposure to ignition sources, for example use non-sparking tools and explosion-proof equipment. Potentially toxic/irritating fumes/vapour may be evolved from heated or agitated material. Do not siphon by mouth. Use only with adequate ventilation. Do not use as a cleaning solvent or other non-motor fuel uses. For use as a motor fuel only. It is dangerous and/or unlawful to put petrol into unapproved containers. Do not fill container while it is in or on a vehicle. Static electricity may ignite vapour and cause fire. Place container on ground when filling and keep nozzle in contact with container. Do not use electronic devices (including but not limited to cellular phones, computers, calculators, pagers or other electronic devices etc) in or around any fuelling operation or storage area unless the devices are certified intrinsically safe by an approved national testing agency and to the safety standards required by national and/or local laws and regulations. Prevent small spills and leakage to avoid slip hazard. Material can accumulate static charges which may cause an electrical spark (ignition source). Use proper bonding and/or ground procedures. However, bonding and grounds may not eliminate the hazard from static accumulation. Consult local applicable standards for guidance. Additional references include American Petroleum Institute 2003

(Protection Against Ignitions Arising out of Static, Lightning and Stray Currents) or National Fire Protection Agency 77 (Recommended Practice on Static Electricity) or CENELEC CLC/TR 50404 (Electrostatics - Code of practice for the avoidance of hazards due to static electricity).

Static Accumulator: This material is a static accumulator. A liquid is typically considered a nonconductive, static accumulator if its conductivity is below 100 pS/m (100x10E-12 Siemens per meter) and is considered a semiconductive, static accumulator if its conductivity is below 10,000 pS/m. Whether a liquid is nonconductive or semiconductive, the precautions are the same. A number of factors, for example liquid temperature, presence of contaminants, anti-static additives and filtration can greatly influence the conductivity of a liquid.

7.2. CONDITIONS FOR SAFE STORAGE, INCLUDING ANY INCOMPATIBILITIES

Ample fire water supply should be available. A fixed sprinkler/deluge system is recommended. The type of container used to store the material may affect static accumulation and dissipation. Keep container closed. Handle containers with care. Open slowly in order to control possible pressure release. Store in a cool, wellventilated area. Outside or detached storage preferred. Keep away from incompatible materials. Storage containers should be earthed and bonded. Fixed storage containers, transfer containers and associated equipment should be earthed and bonded to prevent accumulation of static charge.

7.3. SPECIFIC END USES

Section 1 informs about identified end-uses. No industrial or sector specific guidance available.

SECTION 8

EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1. CONTROL PARAMETERS

EXPOSURE LIMIT VALUES

Exposure limits/standards (Note: Exposure limits are not additive)

Substance Name	Form	Limit/Sta	ndard		Note	Source
Benzene		TWA	3.25 mg/m3	1 ppm	Skin	UK EH40
Benzene		STEL	1 ppm			ExxonMobil
Benzene		TWA	0.5 ppm			ExxonMobil
Gasoline		STEL	200 ppm			ExxonMobil
Gasoline		TWA	100 ppm			ExxonMobil
Toluene		STEL	384 mg/m3	100 ppm	Skin	UK EH40
Toluene		TWA	191 mg/m3	50 ppm	Skin	UK EH40
Toluene		TWA	20 ppm			ACGIH

UK EH40 Workplace Exposure Limits. Exposure limits for use with Control of Substances Hazardous to Health Regulations 2002 (as amended)

Note: Information about recommended monitoring procedures can be obtained from the relevant agency(ies)/institute(s):

UK

Health and Safety Executive (HSE)

DERIVED NO EFFECT LEVEL (DNEL)/DERIVED MINIMAL EFFECT LEVEL (DMEL)

Worker

Substance Name	Dermal	Inhalation
Gasoline	NA	840 mg/m3 DNEL, Chronic Exposure, Local Effects

Consumer

Substance Name	Dermal	Inhalation	Oral
Gasoline	NA	180 mg/m3 DNEL, Chronic Exposure, Local Effects	NA

Note: The Derived No Effect Level (DNEL) is an estimated safe level of exposure that is derived from toxicity data in accord with specific guidance within the European REACH regulation. The DNEL may differ from an Occupational Exposure Limit (OEL) for the same chemical. OELs may be recommended by an individual company, a governmental regulatory body or an expert organization, such as the Scientific Committee for Occupational Exposure Limits (SCOEL) or the American Conference of Governmental Industrial Hygienists (ACGIH). OELs are considered to be safe exposure levels for a typical worker in an occupational setting for an 8-hour work shift, 40 hour work week, as a time weighted average (TWA) or a 15 minute short-term exposure limit (STEL). While also considered to be protective of health, OELs are derived by a process different from that of REACH.

PREDICTED NO EFFECT CONCENTRATION (PNEC)

Substance Name	Aqua (fresh water)	Aqua (marine water)	Aqua (intermittent release)	Sewage treatment plant	Sediment	Soil	Oral (secondary poisoning)
Gasoline	NA	NA	NA	NA	NA	NA	NA

For hydrocarbon UVCBs, no single PNEC value is identified for the overall substance or used in risk assessment calculations. Therefore, no PNEC values are disclosed in the above table. For further information, please contact ExxonMobil.

8.2. EXPOSURE CONTROLS

ENGINEERING CONTROLS

The level of protection and types of controls necessary will vary depending upon potential exposure conditions.

Control measures to consider:

Use explosion-proof ventilation equipment to stay below exposure limits.

PERSONAL PROTECTION

Personal protective equipment selections vary based on potential exposure conditions such as applications, handling practices, concentration and ventilation. Information on the selection of protective equipment for use with this material, as provided below, is based upon intended, normal usage.

Respiratory Protection: If engineering controls do not maintain airborne contaminant concentrations at a level which is adequate to protect worker health, an approved respirator may be appropriate. Respirator selection, use, and maintenance must be in accordance with regulatory requirements, if applicable. Types of respirators to be considered for this material include:

Half-face filter respirator Type AX filter material, European Committee for Standardization (CEN) standards EN 136, 140 and 405 provide respirator masks and EN 149 and 143 provide filter recommendations.

For high airborne concentrations, use an approved supplied-air respirator, operated in positive pressure mode. Supplied air respirators with an escape bottle may be appropriate when oxygen levels are inadequate, gas/vapour warning properties are poor, or if air purifying filter capacity/rating may be exceeded.

Hand Protection: Any specific glove information provided is based on published literature and glove manufacturer data. Glove suitability and breakthrough time will differ depending on the specific use conditions. Contact the glove manufacturer for specific advice on glove selection and breakthrough times for your use conditions. Inspect and replace worn or damaged gloves. The types of gloves to be considered for this material include:

Chemical resistant gloves are recommended. Nitrile, minimum 0.38 mm thickness or comparable protective barrier material with a high performance level for continuous contact use conditions, permeation breakthrough minimum 480 minutes in accordance with CEN standards EN 420 and EN 374.

Eye Protection: If contact is likely, safety glasses with side shields are recommended.

Skin and Body Protection: Any specific clothing information provided is based on published literature or manufacturer data. The types of clothing to be considered for this material include: Chemical/oil resistant clothing is recommended.

Specific Hygiene Measures: Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants. Discard contaminated clothing and footwear that cannot be cleaned. Practice good housekeeping.

For Summary of Risk Management Measures across all identified uses, see Annex.

ENVIRONMENTAL CONTROLS

Comply with applicable environmental regulations limiting discharge to air, water and soil. Protect the environment by applying appropriate control measures to prevent or limit emissions.

SECTION 9

PHYSICAL AND CHEMICAL PROPERTIES

Note: Physical and chemical properties are provided for safety, health and environmental considerations only and may not fully represent product specifications. Contact the Supplier for additional information.

9.1. INFORMATION ON BASIC PHYSICAL AND CHEMICAL PROPERTIES

Physical State: Liquid Colour: Pale Yellow **Odour:** Characteristic Odour Threshold: No data available pH: Not technically feasible Melting Point: No data available Freezing Point: No data available Initial Boiling Point / and Boiling Range: 28°C (82°F) - 210°C (410°F) [EN ISO 3405] Flash Point [Method]: <-35°C (-31°F) [IP 170/70] Evaporation Rate (n-butyl acetate = 1): No data available Flammability (Solid, Gas): Not technically feasible Upper/Lower Flammable Limits (Approximate volume % in air): UEL: 7.6 LEL: 1.4 [test method unavailable] [N/D at 20 °C] | 4 kPa (30 mm Hg) at 37.8 °C - 240 kPa (1800 mm Hg) at 37.8 °C [test Vapour Pressure: method unavailable] Vapour Density (Air = 1): > 1 at 101 kPa [test method unavailable] **Relative Density (at 15 °C):** < 1 [test method unavailable] Solubility(ies): water Negligible Partition coefficient (n-Octanol/Water Partition Coefficient): > 3.5 [test method unavailable] Autoignition Temperature: >250°C (482°F) [test method unavailable] Decomposition Temperature: No data available **Viscosity:** <1 cSt (1 mm2/sec) at 40°C [test method unavailable] Explosive Properties: None **Oxidizing Properties: None**

9.2. OTHER INFORMATION

Density (at 15 °C): 620 kg/m3 (5.17 lbs/gal, 0.62 kg/dm3) - 880 kg/m3 (7.34 lbs/gal, 0.88 kg/dm3) [test method unavailable]

SECTION 10

STABILITY AND REACTIVITY

10.1. REACTIVITY: See sub-sections below.

10.2. CHEMICAL STABILITY: Material is stable under normal conditions.

10.3. POSSIBILITY OF HAZARDOUS REACTIONS: Hazardous polymerization will not occur.

10.4. CONDITIONS TO AVOID: Heat, sparks, flame, and build up of static electricity.

10.5. INCOMPATIBLE MATERIALS: Alkalies, Halogens, Strong Acids, Strong oxidisers

10.6. HAZARDOUS DECOMPOSITION PRODUCTS: Material does not decompose at ambient temperatures.

SECTION 11	TOXICOLOGICAL INFORMATION
11.1. INFORMATION ON TOXICOLOGIC	AL EFFECTS
Hazard Class	Conclusion / Remarks
Inhalation	
Acute Toxicity: (Rat) LC50 > 5000 mg/m3 (Vapour) Test scores or other study results do not meet criteria for classification.	Minimally Toxic. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 403
Irritation: No end point data for material.	Elevated temperatures or mechanical action may form vapours, mist, or fumes which may be irritating to the eyes, nose, throat, or lungs.
Ingestion	
Acute Toxicity (Rat): LD50 > 5000 mg/kg Test scores or other study results do not meet criteria for classification.	Minimally Toxic. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 401
Skin	
Acute Toxicity (Rabbit): LD50 > 2000 mg/kg Test scores or other study results do not meet criteria for classification.	Minimally Toxic. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 402
Skin Corrosion/Irritation (Rabbit): Data available. Test scores or other study results meet criteria for classification.	Irritating to the skin. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 404
Eye	
Serious Eye Damage/Irritation (Rabbit): Data available. Test scores or other study results do not meet criteria for classification.	May cause mild, short-lasting discomfort to eyes. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 405
Sensitisation	
Respiratory Sensitization: No end point data for material.	Not expected to be a respiratory sensitizer.
Skin Sensitization: Data available. Test	Not expected to be a skin sensitizer. Based on test data for
scores or other study results do not meet criteria for classification.	structurally similar materials. Test(s) equivalent or similar to OECD Guideline 406
Aspiration: Data available.	May be fatal if swallowed and enters airways. Based on physicochemical properties of the material.
Germ Cell Mutagenicity: Data available.	Caused genetic effects in laboratory animals, but the relevance to humans is uncertain. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 471 475 476
Carcinogenicity: Data available.	Caused cancer in laboratory animals. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 451
Reproductive Toxicity: Data available.	Caused damage to the fetus in laboratory animals, but the relevance to humans is uncertain. Based on test data for structurally similar materials. Test(s) equivalent or similar to OECD Guideline 416 421
Lactation: No end point data for material.	Not expected to cause harm to breast-fed children.
Specific Target Organ Toxicity (STOT)	
Single Exposure: No end point data for material.	May cause drowsiness or dizziness.

Repeated Exposure: Data available. Test	Not expected to cause organ damage from prolonged or repeated
scores or other study results do not meet	exposure. Based on test data for structurally similar materials.
criteria for classification.	Test(s) equivalent or similar to OECD Guideline 410 412 453

OTHER INFORMATION

For the product itself:

Laboratory animal studies have shown that prolonged and repeated inhalation exposure to light hydrocarbon vapours in the same boiling range as this product can produce adverse kidney effects in male rats. However, these effects were not observed in similar studies with female rats, male and female mice, or in limited studies with other animal species. Additionally, in a number of human studies, there was no clinical evidence of such effects at normal occupational levels. In 1991, The U.S. EPA determined that the male rat kidney is not useful for assessing human risk. Vapour concentrations above recommended exposure levels are irritating to the eyes and the respiratory tract, may cause headaches and dizziness, are anaesthetic and may have other central nervous system effects. Small amounts of liquid aspirated into the lungs during ingestion or from vomiting may cause chemical pneumonitis or pulmonary edema. Exposure to this material, or one of its components, in situations where there is the potential for high levels, such as in confined spaces or with abuse, may result in abnormal heart rhythm (arrhythmia). High-level exposure to hydrocarbons (above occupational exposure limits) may initiate arrhythmia in a worker that is undergoing stress or is taking a heart-stimulating substance such as epinephrine, a nasal decongestant, or an asthma or cardiovascular drug. Gasoline unleaded: Carcinogenic in animal tests. Chronic inhalation studies resulted in liver tumours in female mice and kidney tumours in male rats. Neither result considered significant for human health risk assessment by the United States EPA and others. Did not cause mutations in-vitro or in-vivo. Negative in inhalation developmental studies and reproductive tox studies. Inhalation of high concentrations in animals resulted in reversible central nervous system depression, but no persistent toxic effect on the nervous system. Non-sensitizing in test animals. Caused nerve damage in humans from abusive use (sniffing).

Contains:

BENZENE: Caused cancer (acute myeloid leukemia and myelodysplastic syndrome), damage to the blood-producing system, and serious blood disorders in human studies. Caused genetic effects and effects on the immune system in laboratory animal and some human studies. Caused toxicity to the fetus and cancer in laboratory animal studies. TOLUENE: Concentrated, prolonged or deliberate inhalation may cause brain and nervous system damage. Prolonged and repeated exposure of pregnant animals (> 1500 ppm) have been reported to cause adverse fetal developmental effects.

SECTION 12

ECOLOGICAL INFORMATION

The information given is based on data available for the material, the components of the material, and similar materials.

12.1. TOXICITY

Material -- Expected to be toxic to aquatic organisms. May cause long-term adverse effects in the aquatic environment.

12.2. PERSISTENCE AND DEGRADABILITY

Biodegradation:

Material -- Expected to be inherently biodegradable

Atmospheric Oxidation:

Majority of components -- Expected to degrade rapidly in air

12.3. BIOACCUMULATIVE POTENTIAL

Majority of components -- Has the potential to bioaccumulate, however metabolism or physical properties may reduce the bioconcentration or limit bioavailability.

12.4. MOBILITY IN SOIL

Majority of components -- Highly volatile, will partition rapidly to air. Not expected to partition to sediment and wastewater solids.

Low molecular wt. component -- Moderate potential to migrate through soil.

High molecular wt. component -- Low potential to migrate through soil.

12.5. PERSISTENCE, BIOACCUMULATION AND TOXICITY FOR SUBSTANCE(S)

This product is not, or does not contain, a substance that is a PBT or a vPvB.

12.6. OTHER ADVERSE EFFECTS

No adverse effects are expected.

ECOLOGICAL DATA

Ecotoxicity

Test	Duration	Organism Type	Test Results
Aquatic - Acute Toxicity	48 hour(s)	Daphnia magna	EL50 1 - 100 mg/l: data for similar materials
Aquatic - Acute Toxicity	96 hour(s)	Fish	LL50 1 - 100 mg/l: data for similar materials
Aquatic - Acute Toxicity	72 hour(s)	Pseudokirchneriella subcapitata	EL50 1 - >1000 mg/l: data for similar materials
Aquatic - Chronic Toxicity	21 day(s)	Daphnia magna	NOELR 1 - 10 mg/l: data for similar materials
Aquatic - Chronic Toxicity	72 hour(s)	Pseudokirchneriella subcapitata	NOELR 1 - 100 mg/l: data for similar materials

Persistence, Degradability and Bioaccumulation Potential

Media	Test Type	Duration	Test Results: Basis
Water	Ready Biodegradability	28 day(s)	Percent Degraded < 60 : similar material

SECTION 13

DISPOSAL CONSIDERATIONS

Disposal recommendations based on material as supplied. Disposal must be in accordance with current applicable laws and regulations, and material characteristics at time of disposal.

13.1. WASTE TREATMENT METHODS

Product is suitable for burning in an enclosed controlled burner for fuel value or disposal by supervised incineration at very high temperatures to prevent formation of undesirable combustion products.

REGULATORY DISPOSAL INFORMATION

European Waste Code: 13 07 02*

NOTE: These codes are assigned based upon the most common uses for this material and may not reflect contaminants resulting from actual use. Waste producers need to assess the actual process used when generating the waste and its contaminants in order to assign the proper waste disposal code(s).

This material is considered as hazardous waste pursuant to Directive 91/689/EEC on hazardous waste, and subject to the provisions of that Directive unless Article 1(5) of that Directive applies.

Empty Container Warning Empty Container Warning (where applicable): Empty containers may contain residue and can be dangerous. Do not attempt to refill or clean containers without proper instructions. Empty drums should

be completely drained and safely stored until appropriately reconditioned or disposed. Empty containers should be taken for recycling, recovery, or disposal through suitably qualified or licensed contractor and in accordance with governmental regulations. DO NOT PRESSURISE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND, OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH.

SECTION 14

TRANSPORT INFORMATION

LAND (ADR/RID) 14.1. UN Number: 1203 14.2. UN Proper Shipping Name (Technical Name): MOTOR SPIRIT or GASOLINE or PETROL 14.3. Transport Hazard Class(es): 3 14.4. Packing Group: || 14.5. Environmental Hazards: Yes 14.6. Special Precautions for users: Classification Code: F1 Label(s) / Mark(s): 3. EHS Hazard ID Number: 33 Hazchem EAC: 3YE **INLAND WATERWAYS (ADNR/ADN)** 14.1. UN (or ID) Number: 1203 14.2. UN Proper Shipping Name (Technical Name): MOTOR SPIRIT or GASOLINE or PETROL 14.3. Transport Hazard Class(es): 3 14.4. Packing Group: || 14.5. Environmental Hazards: Yes 14.6. Special Precautions for users: Hazard ID Number: 33 Label(s) / Mark(s): 3 (N2, CMR, F), EHS

SEA (IMDG)

14.1. UN Number: 1203
14.2. UN Proper Shipping Name (Technical Name): MOTOR SPIRIT or GASOLINE or PETROL
14.3. Transport Hazard Class(es): 3
14.4. Packing Group: II
14.5. Environmental Hazards: Marine Pollutant
14.6. Special Precautions for users:
Label(s): 3
EMS Number: F-E, S-E
Transport Document Name: UN1203, MOTOR SPIRIT or GASOLINE or PETROL, 3, PG II, (-35°C c.c.), MARINE POLLUTANT

SEA (MARPOL 73/78 Convention - Annex II):

14.7. Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code Not classified according to Annex II

AIR (IATA)

14.1. UN Number: 1203
14.2. UN Proper Shipping Name (Technical Name): MOTOR SPIRIT or GASOLINE or PETROL
14.3. Transport Hazard Class(es): 3
14.4. Packing Group: II
14.5. Environmental Hazards: Yes
14.6. Special Precautions for users:
Label(s) / Mark(s): 3
Transport Document Name: UN1203, MOTOR SPIRIT or GASOLINE or PETROL, 3, PG II

SECTION 15

REGULATORY STATUS AND APPLICABLE LAWS AND REGULATIONS

Listed or exempt from listing/notification on the following chemical inventories (May contain substance(s) subject to notification to the EPA Active TSCA inventory prior to import to USA): AICS, DSL, KECI, PICCS, TSCA

15.1. SAFETY, HEALTH AND ENVIRONMENTAL REGULATIONS/LEGISLATION SPECIFIC FOR THE SUBSTANCE OR MIXTURE

Applicable EU Directives and Regulations:

1907/2006 [... on the Registration, Evaluation, Authorisation and Restriction of Chemicals ... and amendments thereto]

Annex XVII restrictions on the manufacture, placing on the market and use of certain dangerous substances, preparations and articles identified in Regulation 1907/2006/EC [...on the Registration, Evaluation, Authorisation and Restrictions of Chemicals ... and amendments thereto]

92/85/EEC [...pregnant workers...recently given birth or...breastfeeding directive] 2004/42/CE [on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC.]

94/33/EC [...on the protection of young people at work]

96/82/EC as extended by 2003/105/EC [... on the control of major-accident hazards involving dangerous substances]. Product contains a substance that falls within the criteria defined in Annex I.

Refer to Directive for details of requirements taking into account the volume of product stored on site. 111/2005/EC [...laying down rules for drug precursors ...]

2004/37/EC [... on the protection of workers from the risks related to carcinogens or mutagens...] 98/24/EC [... on the protection of workers from the risk related to chemical agents at work ...]. Refer to Directive for details of requirements.

1272/2008 [on classification, labelling and packaging of substances and mixtures.. and amendments thereto]

15.2. CHEMICAL SAFETY ASSESSMENT

REACH Information: A Chemical Safety Assessment has been carried out for one or more substances present in the material.

SECTION 16 OTHER INFORMATION

IDENTIFIED USES:

Manufacture of substance (PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b, SU10, SU3, SU8, SU9) Distribution of substance (PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b, SU3, SU8, SU9) Use as an intermediate (PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b, SU3, SU8, SU9) Formulation and (re)packing of substances and mixtures (PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b, SU10, SU3)

Use as a fuel - Industrial (PROC1, PROC16, PROC2, PROC3, PROC8a, PROC8b, SU3) Use as a fuel - Professional (PROC1, PROC16, PROC2, PROC3, PROC8a, PROC8b, SU22) Use as a fuel - Consumer (PC13, SU21)

REFERENCES: Sources of information used in preparing this SDS included one or more of the following: results from in house or supplier toxicology studies, CONCAWE Product Dossiers, publications from other trade

associations, such as the EU Hydrocarbon Solvents REACH Consortium, U.S. HPV Program Robust Summaries, the EU IUCLID Data Base, U.S. NTP publications, and other sources, as appropriate. List of abbreviations and acronyms that could be (but not necessarily are) used in this safety data sheet: Acronym Full text N/A Not applicable N/D Not determined NE Not established VOC Volatile Organic Compound AICS Australian Inventory of Chemical Substances AIHA WEEL American Industrial Hygiene Association Workplace Environmental Exposure Limits ASTM ASTM International, originally known as the American Society for Testing and Materials (ASTM) Domestic Substance List (Canada) DSL **EINECS** European Inventory of Existing Commercial Substances **ELINCS** European List of Notified Chemical Substances ENCS Existing and new Chemical Substances (Japanese inventory) **IECSC** Inventory of Existing Chemical Substances in China **KECI** Korean Existing Chemicals Inventory NDSL Non-Domestic Substances List (Canada) NZIoC New Zealand Inventory of Chemicals PICCS Philippine Inventory of Chemicals and Chemical Substances Threshold Limit Value (American Conference of Governmental Industrial Hygienists) TLV TSCA Toxic Substances Control Act (U.S. inventory) UVCB Substances of Unknown or Variable composition, Complex reaction products or Biological materials LC Lethal Concentration Lethal Dose LD LL Lethal Loading EC Effective Concentration FI Effective Loading NOEC No Observable Effect Concentration NOELR No Observable Effect Loading Rate KEY TO THE H-CODES CONTAINED IN SECTION 3 OF THIS DOCUMENT (for information only):

Flam. Liq. 1 H224: Extremely flammable liquid and vapor; Flammable Liquid, Cat 1 Flam. Liq. 2 H225: Highly flammable liquid and vapor; Flammable Liquid, Cat 2 [Acute Tox. 5 H303]: May be harmful if swallowed; Acute Tox Oral, Cat 5 Asp. Tox. 1 H304: May be fatal if swallowed and enters airways; Aspiration, Cat 1 Skin Irrit. 2 H315: Causes skin irritation; Skin Corr/Irritation, Cat 2 Eye Irrit. 2 H319: Causes serious eye irritation; Serious Eye Damage/Irr, Cat 2 STOT SE 3 H336: May cause drowsiness or dizziness; Target Organ Single, Narcotic Muta. 1B H340: May cause genetic defects; Germ Cell Mutagenicity, Cat 1B Carc. 1A H350: May cause cancer; Carcinogenicity, Cat 1A

Carc. 1B H350: May cause cancer; Carcinogenicity, Cat 1B Repr. 2 H361d: Suspected of damaging the unborn child; Repro Tox, Cat 2 (Develop) STOT RE 1 H372: Causes damage to organs through prolonged or repeated exposure; Target Organ, Repeated, Cat 1 STOT RE 2 H373: May cause damage to organs through prolonged or repeated exposure; Target Organ, Repeated, Cat 2 [Aquatic Acute 2 H401]: Toxic to aquatic life; Acute Env Tox, Cat 2 Aquatic Chronic 2 H411: Toxic to aquatic life with long lasting effects; Chronic Env Tox, Cat 2

Aquatic Chronic 3 H412: Harmful to aquatic life with long lasting effects; Chronic Env Tox, Cat 3

THIS SAFETY DATA SHEET CONTAINS THE FOLLOWING REVISIONS:

Manufacture of other substances: Annex Information information was deleted. Manufacture of other substances: Section 1: Use Table information was deleted. Rubber production and processing: Annex Information information was deleted. Rubber production and processing: Section 1: Use Table information was deleted. Section 06: Accidental Release - Spill Management - Land information was modified. Use in Cleaning Agents - Industrial: Annex Information information was deleted. Use in Cleaning Agents - Industrial: Section 1: Use Table information was deleted. Use in Coatings - Industrial: Annex Information information was deleted. Use in Coatings - Industrial: Annex Information information was deleted. Use in Coatings - Industrial: Section 1: Use Table information was deleted.

The information and recommendations contained herein are, to the best of ExxonMobil's knowledge and belief, accurate and reliable as of the date issued. You can contact ExxonMobil to insure that this document is the most current available from ExxonMobil. The information and recommendations are offered for the user's consideration and examination. It is the user's responsibility to satisfy itself that the product is suitable for the intended use. If buyer repackages this product, it is the user's responsibility to insure proper health, safety and other necessary information is included with and/or on the container. Appropriate warnings and safe-handling procedures should be provided to handlers and users. Alteration of this document is strictly prohibited. Except to the extent required by law, republication or retransmission of this document, in whole or in part, is not permitted. The term, "ExxonMobil" is used for convenience, and may include any one or more of ExxonMobil Chemical Company, Exxon Mobil Corporation, or any affiliates in which they directly or indirectly hold any interest.

Internal Use Only MHC: 1A, 0B, 0, 0, 4, 1

PPEC: CF

DGN: 7108743XGB (1018151)

ANNE	X
Section 1 Exposure Scenario Title	
Title:	
Manufacture of substance	
Use Descriptor	
Sector(s) of Use	SU10, SU3, SU8, SU9
Process Categories	PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b
Environmental Release Categories	ERC1

Specific Environmental Release Category	ESVOC 1.1.v1

Processes, tasks, activities covered

Manufacture of the substance or use as an intermediate, process chemical or extracting agent. Includes recycling/ recovery, material transfers, storage, maintenance and loading (ncluding marine vessel/barge, road/rail car and bulk container).

Section 2 Operational conditions and risk management measures

Section 2.1 Control of worker exposure

Product Characteristic

Liquid

Duration, frequency and amount

Covers daily exposures up to 8 hours (unless stated differently)[G2] Covers percentage substance in the product up to 100 %[G13]

Other given operational conditions affecting workers exposure

Assumes a good basic standard of occupational hygiene is implemented [G1] Operation is carried out at elevated temperature (>20 C above ambient temperature)[OC7]

Contributing Scenarios/

Specific Risk Management Measures and Operating Conditions

(only required controls to demonstrate safe use listed)

ExonMobil

General measures (Aspiration Hazard)

The H304 risk phrase (May be fatal if swallowed and enters airways) relates to potential for aspiration, a nonquantifiable hazard determined by physico-chemical properties (i.e. viscosity) that can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived. Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For substances classified as H304, the following measures need to be implemented to control the aspiration hazard.

Do not ingest. If swallowed then seek immediate medical attention. Do NOT induce vomiting. **General** measures (Flammable Liquid)

Risks from the physicochemical hazards of substances, such as flammability or explosiveness can be controlled by implementing risk management measures at the workplace. It is recommended to follow the recast ATEX Directive 2014/34/EU. Based on the implementation of a selection of handling and storage risk management measures for the identified uses, the risk can be regarded as controlled to an acceptable level.

Use in contained systems. Avoid ignition sources – No Smoking. Handle in well ventilated area to prevent formation of explosive atmosphere. Use equipment and protective systems approved for flammable substances. Restrict line velocity during pumping to avoid generation of electrostatic discharge. Ground/bond container and receiving equipment. Use non-sparking tools. Comply with relevant EU/national regulations. Review SDS for additional advice. **General measures (skin irritants)**

Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. wash off any skin contamination immediately. provide basic employee training to prevent / minimise exposures and to report any skin problems that may develop. **General measures (carcinogens)**

Consider technical advances and process upgrades (including automation) for the elimination of releases. minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance Where there is potential for exposure: restrict access to authorised persons; provide specific activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of wastes safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance. **General exposures (closed systems) Continuous process PROC1** Handle substance within a closed system.

General exposures (closed systems) with sample collection PROC2

Wear suitable gloves tested to EN374.

Sample via a closed loop or other system to avoid exposure.

Handle substance within a closed system.

General exposures (closed systems) Batch process PROC3

Ensure operation is undertaken outdoors.

Handle substance within a closed system.

Laboratory activities PROC15

Handle within a fume cupboard or implement suitable equivalent methods to minimise exposure.

Bulk transfers PROC8b

Ensure material transfers are under containment or extract ventilation.

Equipment cleaning and maintenance PROC8a

Drain down and flush system prior to equipment break-in or maintenance.

Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee

training. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately.

Storage PROC2

Ensure operation is undertaken outdoors. Store substance within a closed system.

Section 2.2 Control of environmental exposure

Product characteristics

Predominantly hydrophobic. Substance is complex UVCB.

Duration fragmanay and amount
Duration, frequency and amount
Annual site tonnage (tonnes/year): 600000 tons/yr Continuous release.
Emission Days (days/year): 300 days/yr
Fraction of EU tonnage used in region: 0.1
Fraction of Regional tonnage used Locally: 0.027
Maximum daily site tonnage (kg/d): 2000000 kg / day
Regional use (onlines/year). 22000000 (onls/y)
Environmental factors not influenced by risk management
Local freshwater dilution factor [EF1] 10
Other given operational conditions affecting environmental exposure
Release fraction to air from process (initial release prior to RMM): 0.05
Release fraction to soil from process (initial release prior to RMM): 0.0001
Release fraction to wastewater from process (initial release prior to RIVIM): 0.003
Technical conditions and measures at process level (source) to prevent release
Common practices vary across sites thus conservative process release estimates used.
Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil
If discharging to domestic sewage treatment plant, additional onsite wastewater treatment required If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of =: 94.7 %
Risk from environmental exposure is driven by freshwater sediment.
Treat air emissions to provide a typical removal (or abatement?) efficiency of: 90 %
Treat onsite wastewater (prior to receiving water discharge) to provide the required removal (or abatement) efficiency
Organisation measures to prevent/limit release from site
Do not apply industrial sludge to natural soils
Prevent discharge of undissolved substance to or recover from wastewater. Sludge should be incinerated, contained or reclaimed.
Conditions and measures related to municipal sewage treatment plant
Assumed domestic sewage treatment plant effluent flow is:[STP5] 10000 m3/day Estimated substance removal from wastewater via domestic sewage treatment is: 95.8 % Not applicable as there is no release to wastewater. The maximum allowable site tonnage (MSafe) based on domestic sewage plant effluent release is: 2000000 kg / day Total efficiency of removal from wastewater after onsite and offsite (domestic treatment plant) RMMs is: 99.8 %
Conditions and measures related to external treatment of waste for disposal
During manufacturing no waste of the substance is generated [ETW4]
Conditions and measures related to external recovery of waste
During manufacturing no waste of the substance is generated [ERW2]

ExonMobil

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 21 of 40

Section 3 Exposure Estimation

3.1. Health

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated [G21]

3.2. Environment

The Hydrocarbon Block Method has been used to calculate environmental exposrue with the Petrorisk model.[EE2]

Section 4 Guidance to check compliance with the Exposure Scenario

4.1. Health

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. [G32]

Available hazard data do not support the need for a DNEL to be established for other health effects.[G36]

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management Measures/Operational Conditions outlined in Section 2 are implemented. [G22]

Risk Management Measures are based on qualitative risk characterisation. [G37]

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.[G23]

4.2. Environment

Further details on scaling and control technologies are provided in factsheet

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures.

If scaling reveals a condition of unsafe use (i.e. RCRs >1), additional RMMs or a site-specific chemical safety assessment is required.

Required removal efficiency for air can be achieved using on-site technologies, either alone or in combination. Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either alone or in combination.

Scaled local assessments for EU refineries have been performed using site-specific data and are attached in PETRORISK file - 'Site-Specific Production' worksheet. [DSU6]

Section 1 Exposure Scenario Title

Title:	
Distribution of substance	
Use Descriptor	
Sector(s) of Use	SU3, SU8, SU9
Process Categories	PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b
Environmental Release Categories	ERC4, ERC6A, ERC6B, ERC6C, ERC6D, ERC7
Specific Environmental Release Category	ESVOC 1.1b.v1
Processes, tasks, activities covered	
Loading (including marine vessel/barge, rail/road car a packs) of substance, including its sampling, storage, u	and IBC loading) and repacking (including drums and small unloading, distribution and associated laboratory activities.
Section 2 Operational conditions and risk management measures	

Section 2.1 Control of worker exposure

Product Characteristic

Liquid

Duration, frequency and amount

Ex∕onMobil

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 22 of 40

Covers daily exposures up to 8 hours (unless stated differently)[G2] Covers percentage substance in the product up to 100 %[G13]

Other given operational conditions affecting workers exposure

Assumes a good basic standard of occupational hygiene is implemented [G1] Assumes use at not more than 20°C above ambient temperature[G15]

Contributing Scenarios/

Specific Risk Management Measures and Operating Conditions (only required controls to demonstrate safe use listed)

General measures (Aspiration Hazard)

The H304 risk phrase (May be fatal if swallowed and enters airways) relates to potential for aspiration, a nonquantifiable hazard determined by physico-chemical properties (i.e. viscosity) that can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived. Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For substances classified as H304, the following measures need to be implemented to control the aspiration hazard.

Do not ingest. If swallowed then seek immediate medical attention. Do NOT induce vomiting. General measures (Flammable Liquid)

Risks from the physicochemical hazards of substances, such as flammability or explosiveness can be controlled by implementing risk management measures at the workplace. It is recommended to follow the recast ATEX Directive 2014/34/EU. Based on the implementation of a selection of handling and storage risk management measures for the identified uses, the risk can be regarded as controlled to an acceptable level.

Use in contained systems. Avoid ignition sources - No Smoking. Handle in well ventilated area to prevent formation of explosive atmosphere. Use equipment and protective systems approved for flammable substances. Restrict line velocity during pumping to avoid generation of electrostatic discharge. Ground/bond container and receiving equipment. Use non-sparking tools. Comply with relevant EU/national regulations. Review SDS for additional advice.

General measures (skin irritants)

Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. wash off any skin contamination immediately. provide basic employee training to prevent / minimise exposures and to report any skin problems that may develop. General measures (carcinogens)

Consider technical advances and process upgrades (including automation) for the elimination of releases. minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance Where there is potential for exposure: restrict access to authorised persons; provide specific

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 23 of 40

activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of wastes safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance. General exposures (closed systems) PROC1 Handle substance within a closed system. General exposures (closed systems) with sample collection PROC2 Handle substance within a closed system. Sample via a closed loop or other system to avoid exposure. Wear suitable gloves tested to EN374. General exposures (closed systems) Outdoor. PROC3 Handle substance within a closed system. Process sampling PROC3 Sample via a closed loop or other system to avoid exposure. Laboratory activities PROC15 Handle within a fume cupboard or implement suitable equivalent methods to minimise exposure. Bulk closed loading and unloading PROC8b Ensure material transfers are under containment or extract ventilation. Equipment cleaning and maintenance PROC8a Drain down and flush system prior to equipment break-in or maintenance. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately. Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee training. Storage PROC2 Ensure operation is undertaken outdoors. Store substance within a closed system. Bulk closed loading PROC8b Ensure material transfers are under containment or extract ventilation. Section 2.2 Control of environmental exposure **Product characteristics** Predominantly hydrophobic. Substance is complex UVCB. Duration, frequency and amount Annual site tonnage (tonnes/year): 51000 tons/yr Continuous release. Emission Days (days/year): 300 days/yr Fraction of EU tonnage used in region: 0.1 Fraction of Regional tonnage used Locally: 0.002 Maximum daily site tonnage (kg/d): 170000 kg / day Regional use tonnage (tonnes/year): 25000000 tons/yr Environmental factors not influenced by risk management Local freshwater dilution factor [EF1] 10 Local marine water dilution factor: [EF2] 100

Other given operational conditions affecting environmental exposure

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 24 of 40

Release fraction to air from process (initial release prior to RMM): 0.001 Release fraction to soil from process (initial release prior to RMM): 0.00001 Release fraction to wastewater from process (initial release prior to RMM): 0.00001

Technical conditions and measures at process level (source) to prevent release

Common practices vary across sites thus conservative process release estimates used.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required.

If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of =: >= 0 %

Risk from environmental exposure is driven by freshwater.

Treat air emissions to provide a typical removal (or abatement?) efficiency of: 90 %

Treat onsite wastewater (prior to receiving water discharge) to provide the required removal (or abatement) efficiency of =: >= 83.3 %

Organisation measures to prevent/limit release from site

Do not apply industrial sludge to natural soils.

Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

Assumed domestic sewage treatment plant effluent flow is:[STP5] 2000 m3/day

Estimated substance removal from wastewater via domestic sewage treatment is: 95.8 % Not

applicable as there is no release to wastewater.

The maximum allowable site tonnage (MSafe) based on domestic sewage plant effluent release is: 670000 kg / day Total efficiency of removal from wastewater after onsite and offsite (domestic treatment plant) RMMs is: 95.8 %

Conditions and measures related to external treatment of waste for disposal

External treatment and disposal of waste should comply with applicable local and/or national regulations [ETW3]

Conditions and measures related to external recovery of waste

External recovery an recycling of waste should comply with applicable local and/or national regulations [ERW1]

Section 3 Exposure Estimation

3.1. Health

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated [G21]

3.2. Environment

The Hydrocarbon Block Method has been used to calculate environmental exposrue with the Petrorisk model.[EE2]

Section 4 Guidance to check compliance with the Exposure Scenario

4.1. Health

Available hazard data do not enable the derivation of a DNEL for carcinogenic effects[G33]

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. [G32]

Available hazard data do not support the need for a DNEL to be established for other health effects.[G36]

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management Measures/Operational Conditions outlined in Section 2 are implemented. [G22]

Risk Management Measures are based on qualitative risk characterisation. [G37]

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.[G23]

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 25 of 40

4.2. Environment

Further details on scaling and control technologies are provided in factsheet

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures.

Required removal efficiency for air can be achieved using on-site technologies, either alone or in combination. Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either alone or in combination.

Section 1 Exposure Scenario Title

Title:

Use as an intermediate

Use Descriptor

Sector(s) of Use	SU3, SU8, SU9
Process Categories	PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b
Environmental Release Categories	ERC6A
Specific Environmental Release Category	ESVOC 6.1a.v1

Processes, tasks, activities covered

Use as an intermediate (not related to Strictly Controlled Conditions). Includes incidental exposures during recycling/ recovery, material transfers, storage, sampling, associated laboratory activities, maintenance and loading (ncluding marine vessel/barge, road/rail car and bulk container).

Section 2 Operational conditions and risk management measures

Section 2.1 Control of worker exposure

Product Characteristic

Liquid

Duration, frequency and amount

Covers daily exposures up to 8 hours (unless stated differently)[G2] Covers percentage substance in the product up to 100 %[G13]

Other given operational conditions affecting workers exposure

Assumes a good basic standard of occupational hygiene is implemented [G1] Operation is carried out at elevated temperature (>20 C above ambient temperature)[OC7]

Contributing Scenarios/

Specific Risk Management Measures and Operating Conditions (only required controls to demonstrate safe use listed)

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 26 of 40

General measures (Aspiration Hazard)

The H304 risk phrase (May be fatal if swallowed and enters airways) relates to potential for aspiration, a nonquantifiable hazard determined by physico-chemical properties (i.e. viscosity) that can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived. Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For substances classified as H304, the following measures need to be implemented to control the aspiration hazard.

Do not ingest. If swallowed then seek immediate medical attention. Do NOT induce vomiting. **General** measures (Flammable Liquid)

Risks from the physicochemical hazards of substances, such as flammability or explosiveness can be controlled by implementing risk management measures at the workplace. It is recommended to follow the recast ATEX Directive 2014/34/EU. Based on the implementation of a selection of handling and storage risk management measures for the identified uses, the risk can be regarded as controlled to an acceptable level.

Use in contained systems. Avoid ignition sources – No Smoking. Handle in well ventilated area to prevent formation of explosive atmosphere. Use equipment and protective systems approved for flammable substances. Restrict line velocity during pumping to avoid generation of electrostatic discharge. Ground/bond container and receiving equipment. Use non-sparking tools. Comply with relevant EU/national regulations. Review SDS for additional advice. **General measures (skin irritants)**

Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. wash off any skin contamination immediately. provide basic employee training to prevent / minimise exposures and to report any skin problems that may develop. **General measures (carcinogens)**

Consider technical advances and process upgrades (including automation) for the elimination of releases. minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible,

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 27 of 40

prior to maintenance Where there is potential for exposure: restrict access to authorised persons; provide specific activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of wastes safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance. **General exposures (closed systems) Continuous process PROC1** Handle substance within a closed system.

General exposures (closed systems) with sample collection PROC2

Wear suitable gloves tested to EN374.

Handle substance within a closed system.

Sample via a closed loop or other system to avoid exposure.

General exposures (closed systems) Batch process PROC3

Ensure operation is undertaken outdoors.

Laboratory activities PROC15

Handle within a fume cupboard or implement suitable equivalent methods to minimise exposure.

Bulk transfers PROC8b

Ensure material transfers are under containment or extract ventilation.

Equipment cleaning and maintenance PROC8a

Drain down and flush system prior to equipment break-in or maintenance.

Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee

training. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately.

Storage PROC2

Ensure operation is undertaken outdoors.

Store substance within a closed system.

Section 2.2 Control of environmental exposure

Product characteristics

Predominantly hydrophobic. Substance is complex UVCB.

Duration, frequency and amount

Annual site tonnage (tonnes/year): 15000 tons/yr Continuous

release.

Emission Days (days/year): 300 days/yr

Fraction of EU tonnage used in region: 0.1

Fraction of Regional tonnage used Locally: 0.0013 Maximum daily site tonnage (kg/d): 50000 kg / day

Regional use tonnage (tonnes/year): 11000000 tons/yr

Environmental factors not influenced by risk management

Local freshwater dilution factor [EF1] 10

Local marine water dilution factor: [EF2] 100

Other given operational conditions affecting environmental exposure

Release fraction to air from process (initial release prior to RMM): 0.025

Release fraction to soil from process (initial release prior to RMM): 0.001

Release fraction to wastewater from process (initial release prior to RMM): 0.003

Technical conditions and measures at process level (source) to prevent release

Common practices vary across sites thus conservative process release estimates used.

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 28 of 40

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

If discharging to domestic sewage treatment plant, additional onsite wastewater treatment required If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of =: 57.4%

Risk from environmental exposure is driven by freshwater sediment.

Treat air emissions to provide a typical removal (or abatement?) efficiency of: 80 % Treat onsite wastewater (prior to receiving water discharge) to provide the required removal (or abatement) efficiency of =: 98.2 %

Organisation measures to prevent/limit release from site

Do not apply industrial sludge to natural soils.

Prevent discharge of undissolved substance to or recover from wastewater. Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

Assumed domestic sewage treatment plant effluent flow is:[STP5] 2000 m3/day

Estimated substance removal from wastewater via domestic sewage treatment is: 95.8 % Not applicable as there is no release to wastewater.

The maximum allowable site tonnage (MSafe) based on domestic sewage plant effluent release is: 50000 kg / day Total efficiency of removal from wastewater after onsite and offsite (domestic treatment plant) RMMs is: 98.2 %

Conditions and measures related to external treatment of waste for disposal

This substance is consumed during use and no waste of the substance is generated [ETW5]

Conditions and measures related to external recovery of waste

This substance is consumed during use and no waste of the substance is generated [ERW3]

Section 3 Exposure Estimation

3.1. Health

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated [G21]

3.2. Environment

The Hydrocarbon Block Method has been used to calculate environmental exposrue with the Petrorisk model.[EE2]

Section 4 Guidance to check compliance with the Exposure Scenario

4.1. Health

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. [G32]

Available hazard data do not support the need for a DNEL to be established for other health effects.[G36]

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management Measures/Operational Conditions outlined in Section 2 are implemented. [G22]

Risk Management Measures are based on qualitative risk characterisation. [G37]

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.[G23]

4.2. Environment

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 29 of 40

Further details on scaling and control technologies are provided in factsheet Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures. Required removal efficiency for air can be achieved using on-site technologies, either alone or in combination. Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either alone or in combination.

Section 1 Exposure Scenario Title

Title:

Formulation and (re)packing of substances and mixtures

Use Descriptor

Sector(s) of Use	SU10, SU3
Process Categories	PROC1, PROC15, PROC2, PROC3, PROC8a, PROC8b
Environmental Release Categories	ERC2
Specific Environmental Release Category	ESVOC 2.2.v1

Processes, tasks, activities covered

Formulation, packing and re-packing of the substance and its mixtures in batch or continuous operations, including storage, materials transfers, mixing, tabletting, compression, pelletisation, extrusion, large and small scale packing, sampling, maintenanance and associated laboratory activities.

Section 2 Operational conditions and risk management measures

Section 2.1 Control of worker exposure

Product Characteristic

Liquid

Duration, frequency and amount

Covers daily exposures up to 8 hours (unless stated differently)[G2] Covers percentage substance in the product up to 100 %[G13]

Other given operational conditions affecting workers exposure

Assumes a good basic standard of occupational hygiene is implemented [G1] Assumes use at not more than 20°C above ambient temperature[G15]

Contributing Scenarios/

Specific Risk Management Measures and Operating Conditions

(only required controls to demonstrate safe use listed)

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 30 of 40

General measures (Aspiration Hazard)

The H304 risk phrase (May be fatal if swallowed and enters airways) relates to potential for aspiration, a nonquantifiable hazard determined by physico-chemical properties (i.e. viscosity) that can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived. Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For substances classified as H304, the following measures need to be implemented to control the aspiration hazard.

Do not ingest. If swallowed then seek immediate medical attention. Do NOT induce vomiting. **General** measures (Flammable Liquid)

Risks from the physicochemical hazards of substances, such as flammability or explosiveness can be controlled by implementing risk management measures at the workplace. It is recommended to follow the recast ATEX Directive 2014/34/EU. Based on the implementation of a selection of handling and storage risk management measures for the identified uses, the risk can be regarded as controlled to an acceptable level.

Use in contained systems. Avoid ignition sources – No Smoking. Handle in well ventilated area to prevent formation of explosive atmosphere. Use equipment and protective systems approved for flammable substances. Restrict line velocity during pumping to avoid generation of electrostatic discharge. Ground/bond container and receiving equipment. Use non-sparking tools. Comply with relevant EU/national regulations. Review SDS for additional advice. General measures (skin irritants)

Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. wash off any skin contamination immediately. provide basic employee training to prevent / minimise exposures and to report any skin problems that may develop. **General measures (carcinogens)**

Consider technical advances and process upgrades (including automation) for the elimination of releases. minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible,

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 31 of 40

prior to maintenance Where there is potential for exposure: restrict access to authorised persons; provide specific activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of wastes safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance. General exposures (closed systems) PROC1 Handle substance within a closed system. General exposures (closed systems) with sample collection PROC2 Handle substance within a closed system. Sample via a closed loop or other system to avoid exposure. Wear suitable gloves tested to EN374. General exposures (closed systems) Outdoor. PROC3 Handle substance within a closed system. Process sampling PROC3 Sample via a closed loop or other system to avoid exposure. Laboratory activities PROC15 Handle within a fume cupboard or implement suitable equivalent methods to minimise exposure. Bulk transfers PROC8b Ensure material transfers are under containment or extract ventilation. Drum/batch transfers PROC8b Ensure material transfers are under containment or extract ventilation. Equipment cleaning and maintenance PROC8a Drain down and flush system prior to equipment break-in or maintenance. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately. Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee training. Storage PROC2 Store substance within a closed system. Wear suitable gloves tested to EN374. Section 2.2 Control of environmental exposure Product characteristics Predominantly hydrophobic. Substance is complex UVCB. Duration, frequency and amount Annual site tonnage (tonnes/year): 30000 tons/yr Continuous release. Emission Days (days/year): 300 days/yr Fraction of EU tonnage used in region: 0.1 Fraction of Regional tonnage used Locally: 0.0022 Maximum daily site tonnage (kg/d): 100000 kg / day Regional use tonnage (tonnes/year): 14000000 tons/yr Environmental factors not influenced by risk management Local freshwater dilution factor [EF1] 10 Local marine water dilution factor: [EF2] 100 Other given operational conditions affecting environmental exposure

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 32 of 40

Release fraction to air from process (after typical onsite RMMs consistent with EU Solvent Emissions Directive requirements): [OOC11] 0.025

Release fraction to soil from process (initial release prior to RMM): 0.0001

Release fraction to wastewater from process (initial release prior to RMM): 0.002

Technical conditions and measures at process level (source) to prevent release

Common practices vary across sites thus conservative process release estimates used.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

If discharging to domestic sewage treatment plant, additional onsite wastewater treatment required If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of =: 68 %

Risk from environmental exposure is driven by freshwater sediment.

Treat air emissions to provide a typical removal (or abatement?) efficiency of: 0 %

Treat onsite wastewater (prior to receiving water discharge) to provide the required removal (or abatement) efficiency of =: 98.7 %

Organisation measures to prevent/limit release from site

Do not apply industrial sludge to natural soils.

Prevent discharge of undissolved substance to or recover from wastewater.

Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

Assumed domestic sewage treatment plant effluent flow is:[STP5] 2000 m3/day

Estimated substance removal from wastewater via domestic sewage treatment is: 95.8 % Not applicable as there is no release to wastewater.

The maximum allowable site tonnage (MSafe) based on domestic sewage plant effluent release is: 100000 kg / day Total efficiency of removal from wastewater after onsite and offsite (domestic treatment plant) RMMs is: 98.7 %

Conditions and measures related to external treatment of waste for disposal

External treatment and disposal of waste should comply with applicable local and/or national regulations [ETW3]

Conditions and measures related to external recovery of waste

External recovery an recycling of waste should comply with applicable local and/or national regulations [ERW1]

Section 3 Exposure Estimation

3.1. Health

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated [G21]

3.2. Environment

The Hydrocarbon Block Method has been used to calculate environmental exposrue with the Petrorisk model.[EE2]

Section 4 Guidance to check compliance with the Exposure Scenario

4.1. Health

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 33 of 40

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. [G32] Available hazard data do not support the need for a DNEL to be established for other health effects.[G36] Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management Measures/Operational Conditions outlined in Section 2 are implemented. [G22]

Risk Management Measures are based on qualitative risk characterisation. [G37]

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.[G23]

4.2. Environment

Further details on scaling and control technologies are provided in factsheet

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures.

Required removal efficiency for air can be achieved using on-site technologies, either alone or in combination. Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either alone or in combination.

Section 1 Exposure Scenario Title

т	itl	e:	
		•	

Use as a fuel - Industrial

Use Descriptor

Sector(s) of Use	SU3
Process Categories	PROC1, PROC16, PROC2, PROC3, PROC8a, PROC8b
Environmental Release Categories	ERC7
Specific Environmental Release Category	ESVOC 7.12a.v1

Processes, tasks, activities covered

Covers the use as a fuel (or fuel additive), and includes activities associated with its transfer, use, equipment maintenance and handling of waste.

Section 2 Operational conditions and risk management measures

Section 2.1 Control of worker exposure

Product Characteristic

Liquid

Duration, frequency and amount

Covers daily exposures up to 8 hours (unless stated differently)[G2] Covers percentage substance in the product up to 100 %[G13]

Other given operational conditions affecting workers exposure

Assumes a good basic standard of occupational hygiene is implemented [G1]

Assumes use at not more than 20°C above ambient temperature[G15]

Contributing Scenarios/

Specific Risk Management Measures and Operating Conditions

(only required controls to demonstrate safe use listed)

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 34 of 40

General measures (Aspiration Hazard)

The H304 risk phrase (May be fatal if swallowed and enters airways) relates to potential for aspiration, a nonquantifiable hazard determined by physico-chemical properties (i.e. viscosity) that can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived. Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For substances classified as H304, the following measures need to be implemented to control the aspiration hazard.

Do not ingest. If swallowed then seek immediate medical attention. Do NOT induce vomiting. **General** measures (Flammable Liquid)

Risks from the physicochemical hazards of substances, such as flammability or explosiveness can be controlled by implementing risk management measures at the workplace. It is recommended to follow the recast ATEX Directive 2014/34/EU. Based on the implementation of a selection of handling and storage risk management measures for the identified uses, the risk can be regarded as controlled to an acceptable level.

Use in contained systems. Avoid ignition sources – No Smoking. Handle in well ventilated area to prevent formation of explosive atmosphere. Use equipment and protective systems approved for flammable substances. Restrict line velocity during pumping to avoid generation of electrostatic discharge. Ground/bond container and receiving equipment. Use non-sparking tools. Comply with relevant EU/national regulations. Review SDS for additional advice. **General measures (skin irritants)**

Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. wash off any skin contamination immediately. provide basic employee training to prevent / minimise exposures and to report any skin problems that may develop. **General measures (carcinogens)**

Consider technical advances and process upgrades (including automation) for the elimination of releases. minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance Where there is potential for exposure: restrict access to authorised persons; provide specific

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 35 of 40

activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of wastes safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance. Bulk closed unloading PROC8b Ensure material transfers are under containment or extract ventilation. Drum/batch transfers PROC8b Ensure material transfers are under containment or extract ventilation. refuelling PROC8b Ensure material transfers are under containment or extract ventilation. refuelling aircraft PROC8b Ensure material transfers are under containment or extract ventilation. General exposures (closed systems) PROC1 Handle substance within a closed system. General exposures (closed systems) PROC2 Handle substance within a closed system. Wear suitable gloves tested to EN374. General exposures (closed systems) Outdoor. PROC3 Handle substance within a closed system. Use as a fuel (closed systems) PROC16 Handle substance within a closed system. Equipment cleaning and maintenance PROC8a Drain down system prior to equipment break-in or maintenance. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately. Wear chemically resistant gloves (tested to EN374) in combination with 'basic' employee training, provide a good standard of general ventilation Natural ventilation is from doors, windows etc. Controlled ventilation means air is supplied or removed by a powered fan. Storage PROC2 Store substance within a closed system. provide a good standard of general ventilation Natural ventilation is from doors, windows etc. Controlled ventilation means air is supplied or removed by a powered fan. Section 2.2 Control of environmental exposure **Product characteristics** Predominantly hydrophobic. Substance is complex UVCB. Duration, frequency and amount Annual site tonnage (tonnes/year): 1500000 tons/yr Continuous release. Emission Davs (davs/vear): 300 davs/vr Fraction of EU tonnage used in region: 0.1 Fraction of Regional tonnage used Locally: 0.89 Maximum daily site tonnage (kg/d): 5000000 kg / day Regional use tonnage (tonnes/year): 1700000 tons/yr Environmental factors not influenced by risk management Local freshwater dilution factor [EF1] 10 Local marine water dilution factor: [EF2] 100

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 36 of 40

Other given operational conditions affecting environmental exposure

Release fraction to air from process (initial release prior to RMM): 0.05 Release fraction to soil from process (initial release prior to RMM): 0 Release fraction to wastewater from process (initial release prior to RMM): 0.00001

Technical conditions and measures at process level (source) to prevent release

Common practices vary across sites thus conservative process release estimates used.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required. If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of =: >= 0 %

Risk from environmental exposure is driven by humans via indirect exposure (primarily inhalation).

Treat air emissions to provide a typical removal (or abatement?) efficiency of: 95 %

Treat onsite wastewater (prior to receiving water discharge) to provide the required removal (or abatement) efficiency of =: >= 94.6 %

Organisation measures to prevent/limit release from site

Do not apply industrial sludge to natural soils.

Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

Assumed domestic sewage treatment plant effluent flow is:[STP5] 2000 m3/day

Estimated substance removal from wastewater via domestic sewage treatment is: 95.8 % Not applicable as there is no release to wastewater.

The maximum allowable site tonnage (MSafe) based on domestic sewage plant effluent release is: 5000000 kg / day Total efficiency of removal from wastewater after onsite and offsite (domestic treatment plant) RMMs is: 95.8 %

Conditions and measures related to external treatment of waste for disposal

Combustion emissions considered in regional exposure assessment [ETW2] Combustion emissions limited by required exhaust emission controls [ETW1] External treatment and disposal of waste should comply with applicable local and/or national regulations [ETW3]

Conditions and measures related to external recovery of waste

This substance is consumed during use and no waste of the substance is generated [ERW3]

Section 3 Exposure Estimation

3.1. Health

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated [G21]

3.2. Environment

The Hydrocarbon Block Method has been used to calculate environmental exposrue with the Petrorisk model.[EE2]

Section 4 Guidance to check compliance with the Exposure Scenario

4.1. Health

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 37 of 40

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. [G32] Available hazard data do not support the need for a DNEL to be established for other health effects.[G36] Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management Measures/Operational Conditions outlined in Section 2 are implemented. [G22]

Risk Management Measures are based on qualitative risk characterisation. [G37]

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.[G23]

4.2. Environment

Further details on scaling and control technologies are provided in factsheet

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures.

Required removal efficiency for air can be achieved using on-site technologies, either alone or in combination. Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either alone or in combination.

Section 1 Exposure Scenario Title

Tit	lo:
111	ie.

Use as a fuel - Professional

Use Descripto	Descripto	riptor
---------------	-----------	--------

Sector(s) of Use	SU22
Process Categories	PROC1, PROC16, PROC2, PROC3, PROC8a, PROC8b
Environmental Release Categories	ERC9A, ERC9B
Specific Environmental Release Category	ESVOC 9.12b.v1

Processes, tasks, activities covered

Covers the use as a fuel (or fuel additive), and includes activities associated with its transfer, use, equipment maintenance and handling of waste.

Section 2 Operational conditions and risk management measures

Section 2.1 Control of worker exposure

Product Characteristic

Liquid

Duration, frequency and amount

Covers daily exposures up to 8 hours (unless stated differently)[G2] Covers percentage substance in the product up to 100 %[G13]

Other given operational conditions affecting workers exposure

Assumes a good basic standard of occupational hygiene is implemented [G1]

Assumes use at not more than 20°C above ambient temperature[G15]

Contributing Scenarios/

Specific Risk Management Measures and Operating Conditions

(only required controls to demonstrate safe use listed)

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 38 of 40

General measures (Aspiration Hazard)

The H304 risk phrase (May be fatal if swallowed and enters airways) relates to potential for aspiration, a nonquantifiable hazard determined by physico-chemical properties (i.e. viscosity) that can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived. Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For substances classified as H304, the following measures need to be implemented to control the aspiration hazard.

Do not ingest. If swallowed then seek immediate medical attention. Do NOT induce vomiting. **General** measures (Flammable Liquid)

Risks from the physicochemical hazards of substances, such as flammability or explosiveness can be controlled by implementing risk management measures at the workplace. It is recommended to follow the recast ATEX Directive 2014/34/EU. Based on the implementation of a selection of handling and storage risk management measures for the identified uses, the risk can be regarded as controlled to an acceptable level.

Use in contained systems. Avoid ignition sources – No Smoking. Handle in well ventilated area to prevent formation of explosive atmosphere. Use equipment and protective systems approved for flammable substances. Restrict line velocity during pumping to avoid generation of electrostatic discharge. Ground/bond container and receiving equipment. Use non-sparking tools. Comply with relevant EU/national regulations. Review SDS for additional advice. **General measures (skin irritants)**

Avoid direct skin contact with product. Identify potential areas for indirect skin contact. Wear gloves (tested to EN374) if hand contact with substance likely. Clean up contamination/spills as soon as they occur. wash off any skin contamination immediately. provide basic employee training to prevent / minimise exposures and to report any skin problems that may develop. **General measures (carcinogens)**

Consider technical advances and process upgrades (including automation) for the elimination of releases. minimise exposure using measures such as closed systems, dedicated facilities and suitable general/local exhaust ventilation. Drain down systems and clear transfer lines prior to breaking containment. Clean/flush equipment, where possible, prior to maintenance Where there is potential for exposure: restrict access to authorised persons; provide specific

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 39 of 40

activity training to operators to minimise exposures; wear suitable gloves and coveralls to prevent skin contamination; wear respiratory protection when its use is identified for certain contributing scenario; clear up spills immediately and dispose of wastes safely. Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularly inspect, test and maintain all control measures. Consider the need for risk based health surveillance. General exposures (closed systems) PROC1 Handle substance within a closed system. General exposures (closed systems) PROC2 Wear suitable gloves tested to EN374. Handle substance within a closed system. General exposures (closed systems) Outdoor. PROC3 Handle substance within a closed system. Bulk closed unloading PROC8b Ensure material transfers are under containment or extract ventilation. Drum/batch transfers PROC8b Ensure material transfers are under containment or extract ventilation. refuelling PROC8b Ensure material transfers are under containment or extract ventilation. Use as a fuel (closed systems) PROC16 Handle substance within a closed system. Equipment maintenance PROC8a Drain down system prior to equipment break-in or maintenance. Wear chemically resistant gloves (tested to EN374) in combination with intensive management supervision controls. Retain drain downs in sealed storage pending disposal or for subsequent recycle. Clear spills immediately, provide a good standard of general ventilation Natural ventilation is from doors, windows etc. Controlled ventilation means air is supplied or removed by a powered fan. Ensure operatives are trained to minimise exposures. Storage PROC2 Store substance within a closed system, provide a good standard of general ventilation Natural ventilation is from doors, windows etc. Controlled ventilation means air is supplied or removed by a powered fan. Section 2.2 Control of environmental exposure Product characteristics Predominantly hydrophobic. Substance is complex UVCB. Duration, frequency and amount Annual site tonnage (tonnes/year): 590 tons/yr Continuous release. Emission Days (days/year): 365 Fraction of EU tonnage used in region: 0.1 Fraction of Regional tonnage used Locally: 0.0005 Maximum daily site tonnage (kg/d): 1600 Regional use tonnage (tonnes/year): 1200000 tons/yr Environmental factors not influenced by risk management Local freshwater dilution factor [EF1] 10 Local marine water dilution factor: [EF2] 100 Other given operational conditions affecting environmental exposure

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 40 of 40

Release fraction to air from wide dispersive use (regional only): 0.01 Release fraction to soil from wide dispersive use (regional only): 0.00001 Release fraction to wastewater from wide dispersive use: 0.00001

Technical conditions and measures at process level (source) to prevent release

Common practices vary across sites thus conservative process release estimates used.

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required. If discharging to domestic sewage treatment plant, provide the required onsite wastewater removal efficiency of =: >= 0 %

Risk from environmental exposure is driven by freshwater.

Treat air emissions to provide a typical removal (or abatement?) efficiency of: Not Applicable

Treat onsite wastewater (prior to receiving water discharge) to provide the required removal (or abatement) efficiency of =: >= 81.8 %

Organisation measures to prevent/limit release from site

Do not apply industrial sludge to natural soils.

Sludge should be incinerated, contained or reclaimed.

Conditions and measures related to municipal sewage treatment plant

Assumed domestic sewage treatment plant effluent flow is:[STP5] 2000 m3/day

Estimated substance removal from wastewater via domestic sewage treatment is: 95.8 % Not

applicable as there is no release to wastewater.

The maximum allowable site tonnage (MSafe) based on domestic sewage plant effluent release is: 7000 kg / day Total efficiency of removal from wastewater after onsite and offsite (domestic treatment plant) RMMs is: 95.8 %

Conditions and measures related to external treatment of waste for disposal

Combustion emissions considered in regional exposure assessment [ETW2]

Combustion emissions limited by required exhaust emission controls [ETW1]

External treatment and disposal of waste should comply with applicable local and/or national regulations [ETW3]

Conditions and measures related to external recovery of waste

This substance is consumed during use and no waste of the substance is generated [ERW3]

Section 3 Exposure Estimation

3.1. Health

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated [G21]

3.2. Environment

The Hydrocarbon Block Method has been used to calculate environmental exposrue with the Petrorisk model.[EE2]

Section 4 Guidance to check compliance with the Exposure Scenario

4.1. Health

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 41 of 40

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. [G32] Available hazard data do not support the need for a DNEL to be established for other health effects.[G36] Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management Measures/Operational Conditions outlined in Section 2 are implemented. [G22]

Risk Management Measures are based on qualitative risk characterisation. [G37]

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.[G23]

4.2. Environment

Further details on scaling and control technologies are provided in factsheet

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures.

Required removal efficiency for air can be achieved using on-site technologies, either alone or in combination. Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either alone or in combination.

Section 1 Exposure Scenario Title			
Title:			
Use as a fuel - Consumer			
Use Descriptor			
Sector(s) of Use	SU21		
Product Categories	PC13		
Environmental Release Categories	ERC9A, ERC9B		
Specific Environmental Release Category	ESVOC 9.12c.v1		
Processes, tasks, activities covered			
Covers consumer uses in liquid fuels.	Covers consumer uses in liquid fuels.		
Section 2 Operational conditions and risk management measures			
Section 2.1 Control of consumer exposure			
Product Characteristic			
Liquid	Liquid		
Duration, frequency and amount			
Not applicable			
Other given operational conditions affecting consumer exposure			
Not applicable			
Contributing Scenarios/ Specific Risk Management Measures and Operating Conditions (only required controls to demonstrate safe use listed)			

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 42 of 40

General measures (Aspiration Hazard)

The H304 risk phrase (May be fatal if swallowed and enters airways) relates to potential for aspiration, a nonquantifiable hazard determined by physico-chemical properties (i.e. viscosity) that can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived. Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For substances classified as H304, the following measures need to be implemented to control the aspiration hazard. Do not ingest. If swallowed then seek immediate medical attention. Do NOT induce vomiting. Just a sip of lamp oil - or even sucking the wick of lamps may lead to life threatening lung damage. Keep lamps filled with this liquid out of the reach of children.

General measures (Flammable Liquid)

Risks from the physicochemical hazards of substances can be controlled by implementing risk management measures. For flammable substances a selection of the following measures need to be implemented to control unintended ignition of flammable substances. These measures are expected to be suitable to prevent minor accidents which might occur during consumer use. Based on the implementation of a selection of handling and storage risk management measures for the identified uses, it is anticipated that there is no immediate concern as the risk should be controlled to an acceptable level. Use only with adequate ventilation. Avoid ignition sources – No Smoking. Review SDS for additional advice.

Liquid: Automotive Refuelling PC13 Covers concentrations up to 1 % Covers use up to 1 times per day Covers use up to 52 days/yr Covers skin contact area up to 210 cm2 For each use event, covers use amounts up to 37500 grams Covers outdoor use. Covers use in room size of 100 m³ Covers exposure up to 0.05 hour(s) Covers use at ambient temperatures. Liquid, vapour pressure > 10 kPa at STP. Liquid Scooter Refuelling PC13

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 43 of 40

Covers concentrations up to 1 % Covers use up to 1 times per day Covers use up to 52 days/yr Covers skin contact area up to 210 cm2 For each use event, covers use amounts up to 3750 grams Covers outdoor use. Covers use in room size of 100 m³ Covers exposure up to 0.03 hour(s) Covers use at ambient temperatures. Liquid, vapour pressure > 10 kPa at STP. Liquid, Garden Equipment - Use PC13 Covers concentrations up to 1 % Covers use up to 1 times per day Covers use up to 26 days/yr For each use event, covers use amounts up to 750 grams Covers outdoor use. Covers use in room size of 100 m³ Covers exposure up to 2 hour(s) Covers skin contact area up to 420 cm2 Covers use at ambient temperatures. Liquid, vapour pressure > 10 kPa at STP. Liquid: Garden Equipment - Refueling PC13 Covers concentrations up to 1 % Covers use up to 1 times per day Covers use up to 26 days/vr Covers skin contact area up to 420 cm2 For each use event, covers use amounts up to 750 grams Covers use in a one car garage (34 m3) under typical ventilation. 1.5 Air changes per hour Covers use in room size of 34 m³ Covers exposure up to 0.03 hour(s) Covers use at ambient temperatures. Liquid, vapour pressure > 10 kPa at STP. Section 2.2 Control of environmental exposure

Product characteristics

Predominantly hydrophobic. Substance is complex UVCB.

Duration, frequency and amount

Annual site tonnage (tonnes/year): 4600 tons/yr Continuous release. Emission Days (days/year): 365 days/yr Fraction of EU tonnage used in region: 0.1 Fraction of Regional tonnage used Locally: 0.0005 Maximum daily site tonnage (kg/d): 12000 kg / day Regional use tonnage (tonnes/year): 9100000 tons/yr

Environmental factors not influenced by risk management

Local freshwater dilution factor [EF1] 10 Local marine water dilution factor: [EF2] 100

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 44 of 40

Other given operational conditions affecting environmental exposure

Release fraction to air from wide dispersive use (regional only): 0.01 Release fraction to soil from wide dispersive use (regional only): 0.00001 Release fraction to wastewater from wide dispersive use: 0.00001

ExonMobil

Product Name: MOTOR GASOLINE (NON-ADDITIZED)

Revision Date: 19 Mar 2018 Page 45 of 40

Conditions and measures related to municipal sewage treatment plant

Assumed domestic sewage treatment plant effluent flow is:[STP5] 2000 m3/day

Estimated substance removal from wastewater via domestic sewage treatment is: 95.8 % Not applicable as there is no release to wastewater.

The maximum allowable site tonnage (MSafe) based on domestic sewage plant effluent release is: 54000 kg / day

Conditions and measures related to external treatment of waste for disposal

Combustion emissions considered in regional exposure assessment [ETW2]

Combustion emissions limited by required exhaust emission controls [ETW1]

External treatment and disposal of waste should comply with applicable local and/or national regulations [ETW3]

Conditions and measures related to external recovery of waste

This substance is consumed during use and no waste of the substance is generated [ERW3]

Section 3 Exposure Estimation

3.1. Health

The ECETOC TRA tool has been used to estimate consumer exposures unless otherwise indicated.[G30]

3.2. Environment

The Hydrocarbon Block Method has been used to calculate environmental exposrue with the Petrorisk model.[EE2]

Section 4 Guidance to check compliance with the Exposure Scenario

4.1. Health

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management Measures/Operational Conditions outlined in Section 2 are implemented. [G22]

Where other Risk Management Measures/Operational Conditions are adopted, then users should ensure that risks are managed to at least equivalent levels.[G23]

4.2. Environment

Further details on scaling and control technologies are provided in factsheet Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures.

Product Name: MOTOR GASOLINE (NON-ADDITIZED) Revision Date: 19 Mar 2018 Page 40 of 40

Safety Data Sheet

According to EC 1907/2006

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Substance/mixture name: Crude Oil Safety Data Sheet Number: 817750 MARPOL Annex I Category Crude Oils REACH Registration Number: Exempt from REACH registration (Regulation EC 1907/2006)

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Refinery Feed
Uses Advised Against	Other uses are not recommended unless an assessment demonstrates potential exposures will be controlled.
1.3. Details of the supplier of the safety data she	et
Manufacturer/Supplier SDS Information	JET Tankstellen Deutschland GmbH Caffamacherreihe 1 20355 Hamburg Tel.: 040/ 63801- 0 Fax.: 040/ 63801- 565 URL: www.Phillips66.com Email: ESDS@P66.com
1.4. Emergency telephone number	BBGes Berlin: 030-19240 (24 Hours)

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

CLP Classification (EC No 1272/2008)

- H224 -- Flammable liquids -- Category 1
- H304 -- Aspiration Hazard -- Category 1
- H319 -- Eye damage/irritation -- Category 2
- H336 -- Specific target organ toxicity (single exposure) -- Category 3
- H350 -- Carcinogenicity -- Category 1B
- H373 -- Specific target organ toxicity (repeated exposure) -- Category 2
- H411 -- Hazardous to the aquatic environment, chronic toxicity -- Category 2

2.2. Label elements

DANGER

Extremely flammable liquid and vapor May be fatal if swallowed and enters airways Causes serious eye irritation May cause drowsiness or dizziness May cause cancer May cause damage to organs through prolonged or repeated exposure Repeated exposure may cause skin dryness or cracking Toxic to aquatic life with long lasting effects

P201 - Obtain special instructions before use

- P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking
- P273 Avoid release to the environment
- P280 Wear protective gloves/protective clothing/eye protection/face protection
- P301 + P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician
- P331 Do NOT induce vomiting

2.3. Other hazards

May contain or release poisonous hydrogen sulfide gas.

Does not meet the criteria for persistent, bioaccumulative and toxic (PBT) or very persistent, very bioaccumulative (vPvB) substances.

SECTION 3: Composition/information on ingredients

3.1. Substances

Chemical Name	CASRN	EINECS	REACH Registration No.	Concentration ¹	CLP Classification ²
			Registration No.		
Crude Oil (Petroleum)	8002-05-9	232-298-5	Not applicable	100	H350
Naphthalene	91-20-3	202-049-5	Not applicable	0-0.9	H351,H302,H410
Benzene	71-43-2	200-753-7	01-2119447106-44	<1	H225,H350,H340,H372,H304,H3 19,H315
Hydrogen sulfide	7783-06-4	231-977-3	Not applicable	<1	H220,H330,H400

¹ All concentrations are percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.

² Regulation EC 1272/2008.

Total Sulfur: 0.1 - 4.5wt%

Crude oil, natural gas and natural gas condensate can contain minor amounts of sulfur, nitrogen and oxygen containing organic compounds as well as trace amounts of heavy metals like mercury, arsenic, nickel, and vanadium. Composition can vary depending on the source of crude.

SECTION 4: First aid measures

4.1. Description of first aid measures

Eye Contact: For direct contact, remove contact lenses if present and easy to do. Immediately hold eyelids apart and flush the affected eye(s) with clean water for at least 20 minutes. Seek immediate medical attention.

Skin Contact: Remove contaminated shoes and clothing and cleanse affected area(s) thoroughly by washing with mild soap and water or a waterless hand cleaner. If irritation or redness develops and persists, seek medical attention.

Inhalation: If respiratory symptoms or other symptoms of exposure develop, move victim away from source of exposure and into fresh air in a position comfortable for breathing. If symptoms persist, seek immediate medical attention. If victim is not breathing, clear airway and immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Ingestion: Aspiration hazard: Do not induce vomiting or give anything by mouth because this material can enter the lungs and cause severe lung damage. If victim is drowsy or unconscious and vomiting, place on the left side with the head down. If possible, do not leave victim unattended and observe closely for adequacy of breathing. Seek medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Effects of overexposure may include irritation of the digestive tract irritation of the respiratory tract nausea vomiting diarrhea and signs of nervous system depression (e.g., headache, drowsiness, dizziness, loss of coordination, disorientation and fatigue) Dry skin and possible irritation with repeated or prolonged exposure.

4.3. Indication of any immediate medical attention and special treatment needed

Notes to Physician: At high concentrations hydrogen sulfide may produce pulmonary edema, respiratory depression, and/or respiratory paralysis. The first priority in treatment should be the establishment of adequate ventilation and the administration of 100% oxygen. Animal studies suggest that nitrites are a useful antidote, however, documentation of the efficacy of nitrites in humans is lacking. If the diagnosis of hydrogen sulfide poisoning is confirmed and if the patient does not respond rapidly to supportive care, the use of nitrites may be an effective antidote if delivered within the first few minutes of exposure. Amyl nitrite inhalers (found in the cyanide antidote kit) can be used for 30 seconds every minute until an I.V line is established. For adults the dose is 10 mL of a 3% NaNO2 solution (0.5 gm NaNO2 in 15 mL water) I.V. over 2-4 minutes. The dosage should be adjusted in children or in the presence of anemia, and methemoglobin levels, arterial blood gases, and electrolytes should be monitored closely.

Epinephrine and other sympathomimetic drugs may initiate cardiac arrhythmias in persons exposed to high concentrations of hydrocarbon solvents (e.g., in enclosed spaces or with deliberate abuse). The use of other drugs with less arrhythmogenic potential should be considered. If sympathomimetic drugs are administered, observe for the development of cardiac arrhythmias.

Other Comments: Before attempting rescue, first responders should be alert to the possible presence of hydrogen sulfide, a poisonous gas with the smell of rotten eggs, and should consider the need for respiratory protection (see Section 8). Remove casualty to fresh air as quickly as possible. Immediately begin artificial respiration if breathing has ceased. Consider whether oxygen administration is needed. Obtain medical advice for further treatment.

SECTION 5: Firefighting measures

5.1. Extinguishing media

Dry chemical, carbon dioxide, or foam is recommended. Water spray is recommended to cool or protect exposed materials or structures. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces. Simultaneous use of foam and water on the same surface is to be avoided as water destroys the foam. Water may be ineffective for extinguishment, unless used under favorable conditions by experienced fire fighters.

5.2. Special hazards arising from the substance or mixture

Unusual Fire & Explosion Hazards: Extremely flammable. This material can be ignited by heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment, and electronic devices such as cell phones, computers, calculators, and pagers which have not been certified as intrinsically safe). Vapors may travel considerable distances to a source of ignition where they can ignite, flash back, or explode. May create vapor/air explosion hazard indoors, in confined spaces, outdoors, or in sewers. This product will float and can be reignited on surface water. Vapors are heavier than air and can accumulate in low areas. If container is not properly cooled, it can rupture in the heat of a fire. Hazardous combustion/decomposition products, including hydrogen sulfide, may be released by this material when exposed to heat or fire. Use caution and wear protective clothing, including respiratory protection.

Hazardous Combustion Products: Combustion may yield smoke, carbon monoxide, and other products of incomplete combustion. Hydrogen sulfide and oxides of nitrogen and sulfur may also be formed.

5.3. Special protective actions for fire-fighters

For fires beyond the initial stage, emergency responders in the immediate hazard area should wear protective clothing. When the potential chemical hazard is unknown, in enclosed or confined spaces, a self contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8).

Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from immediate hazard area if it can be done safely. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Cool equipment exposed to fire with water, if it can be done safely. Avoid spreading burning liquid with water used for cooling purposes.

See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Page 4/10 Status: FINAL

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Extremely flammable. May contain or release poisonous hydrogen sulfide gas. If the presence of dangerous amounts of H2S around the spilled product is suspected, additional or special actions may be warranted, including access restrictions and use of protective equipment. Spillages of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of ignition and hot metal surfaces away from spill/release if safe to do so. The use of explosion-proof electrical equipment is recommended. Stay upwind and away from spill/release. Avoid direct contact with material. For large spillages, notify persons down wind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures.

6.2. Environmental precautions

Stop and contain spill/release if it can be done safely. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems, and natural waterways. Use foam on spills to minimize vapors Use water sparingly to minimize environmental contamination and reduce disposal requirements. If spill occurs on water notify appropriate authorities and advise shipping of any hazard.

6.3. Methods and material for containment and cleaning up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios for this material; however local conditions and regulations may influence or limit the choice of appropriate actions to be taken.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Keep away from ignition sources such as heat/sparks/open flame – No smoking. Take precautionary measures against static discharge. Nonsparking tools should be used. May contain or release dangerous levels of hydrogen sulfide. Do not breathe vapors or mists. Wear protective gloves/clothing and eye/face protection. Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Extremely Flammable. May vaporize easily at ambient temperatures. The vapor is heavier than air and may create an explosive mixture of vapor and air. Beware of accumulation in confined spaces and low lying areas. Open container slowly to relieve any pressure. Electrostatic charge may accumulate and create a hazardous condition when handling or processing this material. To avoid fire or explosion, dissipate static electricity during transfer by grounding and bonding containers and equipment before transferring material. The use of explosion-proof electrical equipment is recommended and may be required (see appropriate fire codes). Refer to NFPA-70 and/or API RP 2003 for specific bonding/grounding requirements. Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. Do not wear contaminated clothing or shoes. Keep contaminated clothing away from sources of ignition such as sparks or open flames.

Mercury and other heavy metals may be present in trace quantities in crude oil, raw natural gas, and condensates. Production and processing of these materials can lead to "drop-out" of elemental mercury in enclosed vessels and pipe work, typically at the low point of any process equipment because of its density. Mercury may also occur in other process system deposits such as sludges, sands, scales, waxes, and filter media. Personnel engaged in work with equipment where mercury deposits might occur (confined space entry, sampling, opening drain valves, draining process lines, etc), may be exposed to a mercury hazard (see sections 3 and 8). The use of explosion-proof electrical equipment is recommended and may be required (see appropriate fire codes for specific bonding/grounding requirements). Do not enter confined spaces such as tanks or pits without following proper entry procedures.

7.2. Conditions for safe storage, including any incompatibilities

Keep container(s) tightly closed and properly labeled. This material may contain or release poisonous hydrogen sulfide gas. In a tank, barge, or other closed container, the vapor space above this material may accumulate hazardous concentrations of hydrogen sulfide. Check atmosphere for oxygen content, H2S, and flammability prior to entry. Use and store this material in cool, dry, well-ventilated areas away from heat, direct sunlight, hot metal surfaces, and all sources of ignition. Store only in approved containers. Post area "No Smoking or Open Flame." Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

"Empty" containers retain residue and may be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, or other sources of ignition. They may explode and cause injury or death. "Empty" drums should be completely drained, properly bunged, and promptly shipped to the supplier or a drum reconditioner. All containers should be disposed of in an environmentally safe manner and in accordance with governmental regulations. Before working on or in tanks which contain or have contained this material, refer to appropriate guidance pertaining to cleaning, repairing, welding, or other contemplated operations. Outdoor or detached storage is preferred. Indoor storage should meet Country or Committee standards and appropriate fire codes.

7.3. Specific end use(s)

Refer to supplemental exposure scenarios if attached.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational Exposure Limits			
Chemical Name	ACGIH	TRGS	Other
Crude Oil (Petroleum)			0.5 ppm TWA8hr (as benzene) 0.25 ppm TWA12hr (as benzene) 2.5 ppm STEL (as benzene) (Phillips 66 Guidelines)
Naphthalene	TWA: 10 ppm Skin	TWA: 0.1 ppm TWA: 0.5 mg/m ³ Skin	
Benzene	STEL: 2.5 ppm TWA: 0.5 ppm Skin		
Hydrogen sulfide	STEL: 5 ppm TWA: 1 ppm	TWA: 5 ppm TWA: 7.1 mg/m ³	TWA: 5 ppm 8hr TWA: 2.5 ppm 12hr STEL: 15 ppm (Phillips 66 Guidelines)

STEL = Short Term Exposure Limit (15 minutes); TWA = Time Weighted Average (8 hours); --- = No Occupational Exposure Limit

Biological Limit Values						
Chemical Name ACGIH EU 98/24/EC TRGS 90						
Naphthalene	1-Naphthol with hydrolysis plus 2-Naphthol with hydrolysis in : , end of shift (nonquantitative, nonspecific)					

Benzene	S-Phenylmercapturic acid in urine: 25 µg/g creatinine, end of shift (background)	
	t,t-Muconic acid in urine: 500 μg/g creatinine, end of shift (background)	

Relevant DNEL and PNEC: Not applicable

8.2. Exposure controls

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Eye/Face Protection: The use of eye protection (such as splash goggles) that meets or exceeds EN 166 is recommended when there is potential liquid contact to the eye. Depending on conditions of use, a face shield may be necessary.

Skin/Hand Protection: The use of gloves impervious to the specific material handled is advised to prevent skin contact. Users should check with manufacturers to confirm the breakthrough performance of their products. Suggested protective materials: Nitrile

Respiratory Protection: Where there is potential for airborne exposure to hydrogen sulfide (H2S) above exposure limits, an approved, self-contained breathing apparatus (SCBA) or equivalent operated in a pressure demand or other positive pressure mode should be used. Under conditions where hydrogen sulfide (H2S) is NOT detected, an approved air purifying respirator equipped with Type A, organic gases and vapour filters (as specified by the manufacturer) may be used.

A respiratory protection program that follows recommendations for the selection, use, care and maintenance of respiratory protective devices in EN 529:2005 should be followed whenever workplace conditions warrant a respirator's use. Air purifying respirators provide limited protection and cannot be used in atmospheres that exceed the maximum use concentration (as directed by regulation or the manufacturer's instructions), in oxygen deficient (less than 19.5 percent oxygen) situations, or under conditions that are immediately dangerous to life and health.

Workplace monitoring plans should consider the possibility that heavy metals such as mercury may concentrate in processing vessels and equipment presenting the possibility of exposure during various sampling and maintenance operations. Implement appropriate respiratory protection and the use of other protective equipment as dictated by monitoring results (See Sections 2 and 7).

Other Protective Equipment: Eye wash and quick-drench shower facilities should be available in the work area. Thoroughly clean shoes and wash contaminated clothing before reuse.

Environmental Exposure Controls: Refer to Sections 6, 7, 12 and 13.

Suggestions provided in this section for exposure control and specific types of protective equipment are based on readily available information. Users should consult with the specific manufacturer to confirm the performance of their protective equipment. Specific situations may require consultation with industrial hygiene, safety, or engineering professionals.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Annoaranaa	Amber to Block
Appearance:	Amber to black
Physical Form:	Liquid
Odour:	Petroleum Rotten egg /
	sulfurous
Odour Threshold:	N/D
pH:	Not applicable
Melting/Freezing Point:	N/D
Initial Boiling Point/Range:	-89 to 538 °C
Flash Point:	< -7 °C

Evaporation Rate (nBuAc=1):	N/D
Flammability (solid, gas):	N/A
Upper Explosive Limits (vol % in air):	6.0
Lower Explosive Limits (vol % in air):	1.1
Vapour Pressure:	N/D
Relative Vapour Density (air=1):	N/D
Relative Density (water=1):	0.7 - 1.1
Solubility (ies):	N/D
Partition Coefficient (n-octanol/water)	N/D
(Kow):	
Auto-ignition Temperature:	310 °C
Decomposition Temperature:	N/D
Viscosity:	N/D
Explosive Properties:	N/D
Oxidising Properties:	N/D

9.2. Other information

Pour Point:

SECTION 10: Stability and reactivity

SECTION 11: Toxicological	
10.6. Hazardous decomposition products	Not anticipated under normal conditions of use.
10.5. Incompatible materials	Avoid contact with strong oxidizing agents and strong reducing agents.
10.4. Conditions to avoid	Avoid high temperatures and all sources of ignition. Prevent vapor accumulation.
10.3. Possibility of hazardous reactions	Hazardous reactions not anticipated.
10.2. Chemical stability	Stable under normal ambient and anticipated conditions of use.
10.1. Reactivity	Not chemically reactive.

N/D

information

11.1. Information on toxicological effects

Substance / Mixture

Acute Toxicity Hazard		Additional Information	LC50/LD50 Data	
Inhalation	Expected to have a low degree of toxicity by inhalation	May contain or release poisonous hydrogen sulfide gas - see Other Comments.	>5 mg/L (vapor) (rat)	
Dermal	Unlikely to be harmful		>2 g/kg (rabbit)	
Oral	Unlikely to be harmful		>5 g/kg (rat)	

Aspiration Hazard: May be fatal if swallowed and enters airways.

Skin Corrosion/Irritation: Causes mild skin irritation. Repeated exposure may cause skin dryness or cracking.

Serious Eye Damage/Irritation: Causes serious eye irritation.

Skin Sensitization: Not expected to be a skin sensitizer.

Respiratory Sensitization: No information available.

Specific Target Organ Toxicity (Single Exposure): May cause drowsiness and dizziness.

Specific Target Organ Toxicity (Repeated Exposure): May cause damage to organs through prolonged or repeated exposure. Laboratory animal studies of crude oil by the dermal and inhalation exposure routes have demonstrated toxicity to the liver, blood, spleen and thymus.

Carcinogenicity: May cause cancer. Chronic application of crude oil to mouse skin resulted in an increased incidence of skin tumors. IARC concluded in its Crude Oil Monograph that there is limited evidence of carcinogenicity in animals, and that crude oil is not classifiable as to its carcinogenicity in humans (Group 3). It has not been listed as a carcinogen by NTP or OSHA.

Germ Cell Mutagenicity: Inadequate information available.

Reproductive Toxicity: Inadequate information available. Dermal exposure to crude oil during pregnancy resulted in limited evidence of developmental toxicity in laboratory animals. Decreased fetal weight and increased resorptions were noted at maternally toxic doses. No significant effects on pup growth or other developmental landmarks were observed postnatally.

Other Comments: This material may contain or liberate hydrogen sulfide, a poisonous gas with the smell of rotten eggs. The smell disappears rapidly because of olfactory fatigue so odor may not be a reliable indicator of exposure. Effects of overexposure include irritation of the eyes, nose, throat and respiratory tract, blurred vision, photophobia (sensitivity to light), and pulmonary edema (fluid accumulation in the lungs). Severe exposures can result in nausea, vomiting, muscle weakness or cramps, headache, disorientation and other signs of nervous system depression, irregular heartbeats, convulsions, respiratory failure, and death.

This material may contain varying concentrations of polycyclic aromatic hydrocarbons (PAHs) which have been known to produce a phototoxic reaction when contaminated skin is exposed to sunlight. The effect is similar in appearance to an exaggerated sunburn, and is temporary in duration if exposure is discontinued. Continued exposure to sunlight can result in more serious skin problems including pigmentation (discoloration), skin eruptions (pimples), and possible skin cancers. **Information on Toxicological Effects of Components**

oxicological Effects of Comp

Naphthalene

Carcinogenicity: Naphthalene has been evaluated in two year inhalation studies in both rats and mice. The US National Toxicology Program (NTP) concluded that there is clear evidence of carcinogenicity in male and female rats based on increased incidences of respiratory epithelial adenomas and olfactory epithelial neuroblastomas of the nose. NTP found some evidence of carcinogenicity in female mice (alveolar adenomas) and no evidence of carcinogenicity in male mice. Naphthalene has been identified as a carcinogen by IARC and NTP.

Benzene

Carcinogenicity: Benzene is an animal carcinogen and is known to produce acute myelogenous leukemia (a form of cancer) in humans. Benzene has been identified as a human carcinogen by IARC, the US National Toxicology Program and the US-Occupational Safety and Health Administration.

Target Organ(s): Prolonged or repeated exposures to benzene vapors can cause damage to the blood and blood forming organs, including disorders like leukopenia, thrombocytopenia, and aplastic anemia.

Reproductive Toxicity: Some studies in occupationally exposed women have suggested benzene exposure increased risk of miscarriage and stillbirth and decreased birth weight and gestational age. The size of the effects detected in these studies was small, and ascertainment of exposure and outcome in some cases relied on self-reports, which may limit the reliability of these results.

Germ Cell Mutagenicity: Benzene exposure has resulted in chromosomal aberrations in human lymphocytes and animal bone marrow cells. Exposure has also been associated with chromosomal aberrations in sperm cells in human and animal studies.

SECTION 12: Ecological information

12.1. Toxicity

Experimental studies of acute aquatic toxicity show values for crude oil in the range of 2 to over 100 mg/L. These values are consistent with the predicted aquatic toxicity of these substances based on their hydrocarbon compositions. Crude oil should be regarded as harmful to aquatic organisms, with the potential to cause long term adverse effects in the aquatic environment.

12.2. Persistence and degradability

Most crude oils are not regarded as readily biodegradable. Most of the non-volatile constituents are inherently biodegradable; some of the highest molecular weight components are persistent in water.

Persistence per IOPC Fund definition: Persistent

12.3. Bioaccumulative potential

Log Kow values measured for the hydrocarbon components of this material range from less than 2 to greater than 6, and therefore would be regarded as having the potential to bioaccumulate.

12.4. Mobility in soil

Crude oil spreads as a film on the surface of water, facilitating loss of its lighter components by volatilization. In air, the volatile hydrocarbons undergo photodegradation by reaction with hydroxyl radicals with half-lives varying from 0.5 days for n-dodecane to 6.5 days for benzene. The lower molecular weight aromatic hydrocarbons and some polar compounds have low but significant water solubility. Some higher molecular weight compounds are removed by emulsification and these also slowly biodegrade; others adsorb to sediment and sink. A further removal process from water involving the heavier fraction is agglomeration to form tars, some of which sink.

12.5. Results of PBT and vPvB assessment

Not a PBT or vPvB substance.

12.6. Other adverse effects

None anticipated.

German Water Hazard Information: hazard class 1 - low hazard to waters

SECTION 13: Disposal considerations

13.1. Waste treatment methods

European Waste Code: 13 08 99* (oil) wastes not otherwise specified or 05 01 05* Oil spills

This material, if discarded as produced, would be considered as hazardous waste pursuant to Directive 2008/98/EC on hazardous waste, and subject to the provisions of that Directive unless Article 1(5) of that Directive applies. This code has been assigned based upon the most common uses for this material and may not reflect contaminants resulting from actual use. Waste generators/producers are responsible for assessing the actual process used when generating the waste and it's contaminants in order to assign the proper waste disposal code.

Empty Containers: Container contents should be completely used and containers emptied prior to discard. Empty drums should be properly sealed and promptly returned to a drum reconditioner. All containers should be disposed of in an environmentally safe manner and in accordance with applicable regulations.

SECTION 14: Transport information

14.1. UN number	UN1267
14.2. UN proper shipping name	PETROLEUM CRUDE OIL
14.3. Transport hazard class(es)	3
14.4. Packing group	I, II, or III
14.5. Environmental hazards	Marine pollutant - Environmentally Hazardous

14.6. Special precautions for user

If transported in bulk by marine vessel in international waters, product is being carried under the scope of MARPOL Annex I.

14.7. Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code

Not applicable

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

EC 1272/2008 - Classification, labelling and packaging of substances and mixtures EN166:2002 Eye Protection EN 529:2005 Respiratory Protective devices BS EN 374-1:2003 Protective gloves against chemicals and micro-organisms Occupational Exposure Limits, Technical Rules for Dangerous Substances Federal Water Act on the Classification of Substances Hazardous to Waters Directive 2008/98/EC (Waste Framework Directive) Directive 2000/76/EC on incineration of waste Directive 1999/31/EC on landfill of waste

Export Rating: NLR (No License Required)

15.2. Chemical safety assessment

A chemical safety assessment has not been carried out for the substance/mixture.

SECTION 16: Other information

GAS OILS (PETROLEUM), HEAVY

05-Aug-2015

30-Aug-2012

Periodic review and update

Precautionary Statement(s) (Section 2)

FINAL

817750 English 10/10

Issue Date: Status: Previous Issue Date: Revised Sections or Basis for Revision: Safety Data Sheet Number:

Language: List of Relevant Hazard Statements:

H220: Extremely flammable gas

- H224: Extremely flammable liquid and vapour
- H225: Highly flammable liquid and vapour
- H302: Harmful if swallowed
- H304: May be fatal if swallowed and enters airways
- H315: Causes skin irritation

H319: Causes serious eye irritation

H330: Fatal if inhaled

H336: May cause drowsiness or dizziness

H340: May cause genetic defects

H350: May cause cancer

H351: Suspected of causing cancer

H372: Causes damage to organs through prolonged or repeated exposure

- H373: May cause damage to organs through prolonged or repeated exposure
- H400: Very toxic to aquatic life

H410: Very toxic to aquatic life with long lasting effects

H411: Toxic to aquatic life with long lasting effects

EUH066 - Repeated exposure may cause skin dryness or cracking

Regulatory Basis of Classification

J	
CLP Classification (EC No 1272/2008)	Regulatory Basis
H224 Flammable liquids Category 1	Based on component information.
H304 Aspiration Hazard Category 1	Based on component information.
H319 Eye damage/irritation Category 2	Based on component information.
H336 Specific target organ toxicity (single exposure) Category 3	Based on component information.
H350 Carcinogenicity Category 1B	Based on component information.
H373 Specific target organ toxicity (repeated exposure) Category 2	Based on component information.
H411 Hazardous to the aquatic environment, chronic toxicity Category 2	Based on component information.
Guida to Abbroviations:	

ACGIH = American Conference of Governmental Industrial Hygienists; ADR = Agreement on Dangerous Goods by Road; BMGV = Biological Monitoring Guidance Value; CASRN = Chemical Abstracts Service Registry Number; CEILING = Ceiling Limit; EINECS - European Inventory of Existing Commercial Chemical Substances; EPA = [US] Environmental Protection Agency; Germany-TRGS = Technical Rules for Dangerous Substances; IARC = International Agency for Research on Cancer; ICAO/IATA = International Civil Aviation Organization / International Air Transport Association; INSHT = National Institute for Health and Safety at Work; IMDG = International Maritime Dangerous Goods; Irland-HSA = Ireland's National Health and Safety Authority; LEL = Lower Explosive Limit; MARPOL = Marine Pollution; N/A = Not Applicable; N/D = Not Determined; NTP = [US] National Toxicology Program; PBT = Persistent, Bioaccumulative and Toxic; RID = Regulations Concerning the International Transport of Dangerous Goods by Rail; STEL = Short Term Exposure Limit; TLV = Threshold Limit Value; TRGS 903 = Technical rules for hazardous substances; TWA = Time Weighted Average; UEL = Upper Explosive Limit; UK-EH40 = United Kingdom EH40/2005 OEL; vPvB = very Persistent, very Bioaccumulative

Disclaimer of Expressed and implied Warranties:

The information presented in this Safety Data Sheet is based on data believed to be accurate as of the date this Safety Data Sheet was prepared.

Version EU

GAS OILS (PETROLEUM), HEAVY

HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THE INFORMATION PROVIDED ABOVE, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. No responsibility is assumed for any damage or injury resulting from abnormal use or from any failure to adhere to recommended practices. The information provided above, and the product, are furnished on the condition that the person receiving them shall make their own determination as to the suitability of the product for their particular purpose and on the condition that they assume the risk of their use. In addition, no authorization is given nor implied to practice any patented invention without a license.

MATERIAL SAFETY DATA SHEET

according to Regulation (EC) No. 1907/2006

SDS #: A01111

GAS OILS (PETROLEUM), HEAVY ATMOSPHERIC

Date of the previous version: not applicable Revision Date: 2011-09-28

Version 1

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

<u>1.1.</u> <u>Product identifier</u> Product name REACH Registration Name	GAS OILS (PETROLEUM), HEAVY ATMOSPHERIC
	Gas oils (petroleum), heavy atmospheric.
REACH registration No:	DE : 01-2119487927-16-0004
	BE : 01-2119487927-16-0003
	FR : 01-2119487927-16-0000
Pure substance/mixture	Substance
1.2. Relevant identified	uses of the substance or mixture and uses advised against
Identified uses	Manufacture of substance, Use as an intermediate, Distribution of substance, Formulation & (re)packing of substances and mixtures, Coating, Road and construction applications, Fuel used in combustion facilities, Diesel engines, etc for the production of heat, electricity
<u>1.3. Details of the supp</u> l	 lier of the safety data sheet

Supplier TOTAL RAFFINAGE MARKETING

24, cours Michelet.

Page 12/81

GAS OILS (PETROLEUM), HEAVY

92800 PUTEAUX.

FRANCE

Tel: +33 (0)1 41 35 40 00

Fax: +33 (0)1 41 35 82 88

For further information, please contact

Contact PointHSE E-mail Address rm.mkefrfds@total.com

1.4. Emergency telephone number

+33 1 49 00 00 49 (24h/24, 7d/7)

In France : - PARIS : Hôpital Fernand Widal 200, rue du Faubourg Saint-Denis 75475 Paris Cédex 10 , Tel : 01.40.05.48.48. MARSEILLE : Hopital Salvator, 249 bd Ste Marguerite 13274 Marseille cedex 5, Tel : 04.91.75.25.25. - LYON : Hopital Hédouard

Herriot, 5 place d'Arsonvil, 69437 Lyon cedex 3, Tel : 04.72.11.69.11. - NANCY : Hopital central, 29 Av du Mal De Lattre de Tassigny, 54000 Nancy, Tel : 03.83.32.36.36 ou le SAMU : Tel (15)

2. HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

REGULATION (EC) No 1272/2008

For the full text of the H-Statements mentioned in this Section, see Section 2.2.

Acute inhalation toxicity - vapor - Category 4

Carcinogenicity - Category 1B

Reproductive toxicity - Category 2

Specific target organ systemic toxicity (repeated exposure) - Category 2

GAS OILS (PETROLEUM), HEAVY

Acute aquatic toxicity - Category 1

Chronic aquatic toxicity - Category 1

DIRECTIVE 67/548/EEC or 1999/45/EC

For the full text of the R-phrases mentioned in this Section, see Section 16

Classification

Carc. cat. 2;R45 - Repr. cat. 3;R63 - Xn;R20 - Xn;R48/21 - R66 - N;R50-53

2.2. Label elements

Labelled according to:

REGULATION (EC) No 1272/2008

EC-No

272-184-2

Signal Word DANGER

Hazard Statements H350 - May cause cancer

H332 - Harmful if inhaled

H361d - Suspected of damaging the unborn child

H373 - May cause damage to organs through prolonged or repeated exposure in contact with skin

H410 - Very toxic to aquatic life with long lasting effects

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

Precautionary Statements

P201 - Obtain special instructions before use

GAS OILS (PETROLEUM), HEAVY

P260 - Do not breathe dust or mist

- P281 Use personal protective equipment as required
- P301 + P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician
- P331 Do NOT induce vomiting
- P501 Dispose of contents/ container to an approved incineration plant.
- P273 Avoid release to the environment

Supplemental Hazard Statements

EUH066 - Repeated exposure may cause skin dryness or cracking

2.3. Other hazards

Physical-Chemical Properties	s In the presence of hot spots, there is a special risk of fire or explosion under				
	certain conditions involving accidental release of vapor or leaks of product under pressure				
Properties Affecting Health					
	Contact with hot product will cause thermal burns.				
	Vapors or mists are irritating for mucous membranes, notably in the eyes.				
	Hydrogen sulphide can accumulate in the head space of storage tanks				
	containing this product and can reach potentially hazardous concentrations.				
Toxic to aquatic organisms, may cause long-term adverse effects in the					
	aquatic environment.				
3. COMPOSITION/INFORMATION ON INGREDIENTS					

3.1. Substance

Chemical nature

A complex and variable combination of paraffinic, cyclic and aromatic hydrocarbons having a carbon number range predominantly of C7 to C35 and boiling in the range of approximately 121°C to 510°C. They may contain sulphurated derivatives and organic acids. This product contains polycyclic aromatic hydrocarbons (PAH), some of which are considered carcinogens.

Chemical Name	EC-No	REACH	CAS-No	Weight %	Classification (Dir.	Classification (Reg.
		registration No:			67/548)	1272/2008)

GAS OILS (PETROLEUM), HEAVY

		-		-		
Gas oils (petroleum), heavy	272-184-2	01-2119487927-16	68783-08-4	100	Xn;R20-48/21	Carc. 1B (H350)
atmospheric					Carc. cat. 2;R45	Repr. 2 (H361d)
					Repr. Cat. 3;R63	Acute Tox. 4 (H332)
					N;R50-53 R66	STOT RE 2 (H373)
						Aquatic Acute 1 (H400)
Aquatic chronic 1 (H410)						

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

Additional information

Hydrogen sulphide can accumulate in the head space of storage tanks containing this product and can reach potentially hazardous concentrations Note H

For the full text of the R-phrases mentioned in this Section, see Section 16 For the full text of the H-Statements mentioned in this Section, see Section 16.

4. FIRST AID MEASURES	
4.1. Description	n of first-aid measures
General advice	IN CASE OF SERIOUS OR PERSISTENT CONDITIONS, CALL A DOCTOR OR
	EMERGENCY MEDICAL CARE.
	If there is any suspicion of inhalation of H2S. Rescuers must wear breathing
	apparatus, belt and safety rope, and follow rescue procedures.
Eye contact	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
	If irritation, blurred vision or swelling occurs and persists. Obtain medical
	advice from a specialist.
	In case of contact with the hot product, COOL THE EYE IMMEDIATELY AND
	COPIOUSLY WITH COLD WATER for 10 minutes, keeping the eye open if

possible. Take the person to a specialised medical centre.

SDS #: A01111 Skin contact

GAS OILS (PETROLEUM), HEAVY

Immediately remove all stained or splashed clothing that is not adhering to the skin. Remove as much as possible by wiping. If necessary, use a fatty substance of animal or vegetable origin. Never use gasoline, kerosene or other solvents for washing of contaminated skin. Wash affected area with soap and water. Seek medical attention if skin irritation, swelling or redness develops and persists.

When using high-pressure equipment, injection of product can occur. If highpressure injuries occur, immediately seek professional medical attention. For minor thermal burns. Hold the burned area under cold running water for at least five minutes, or until the pain subsides. Do not puncture blisters. DO NOT attempt to remove portions of clothing glued to burnt skin but cut round them.

Seek medical attention in all cases of serious burns. In this case, the casualty should be sent immediately to hospital.

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

Inhalation	In case of exposure to intense concentrations of vapours, fumes or spray, transport the person away from the contaminated zone, keep warm and allow to rest. Immediately begin artificial respiration if breathing has ceased. Call a physician immediately. If there is any suspicion of inhalation of H2S. Rescuers must wear breathing apparatus, belt and safety rope, and follow rescue procedures. If not breathing, give artificial respiration. Provision of oxygen may help. Remove casualty to fresh air as quickly as possible.		
Protection of First-aiders	Do NOT induce vomiting. Give nothing to drink. Never give anything by mouth to an unconscious person. Consult a physician.		
4.2. Most important syn	CAUTION! First aid personnel must be aware of personal risk during rescue!. Use personal protective equipment. See Section 8 for more detail. Inptoms and effects, both acute and delayed		

SDS #: A01111	GAS OILS (PETROLEUM), HEAVY
Eye contact	Vapor may cause irritation. Risk of burns (if the product is hot).
Skin contact	Prolonged or repeated contact may dry skin and cause irritation. Risk of burns (if the product is hot).
Inhalation	Inhalation of vapors in high concentration may cause irritation of respiratory system. Causes headache, drowsiness or other effects to the
Ingestion	central nervous system. Risk of hydrogen sulphide intoxication (H2S). few
1.2 Indication of im	or no symptoms expected. If any, nausea and diarrhoea might occur.
$\frac{4.5.}{100}$	
Notes to physician	Treat symptomatically
5. FIRE-FIGHTING MEASURES	
5.1. Extinguishing	<u>media</u>
Suitable Extinguishing Media Extinguishing media - large fires: Foam (specifically trained person only). Water fog (trained personnel only).	
	Extinguishing media - small fires: Carbon dioxide (CO). Dry powder. Sand or earth.
	Other inert gases (subject to regulations).
Unsuitable Extinguishing Media	Do not use direct water jets on the burning product. they could cause splattering and spread the fire. Simultaneous use of foam and water on the same surface is to be avoided as water destroys the foam.

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

5.2. Special hazards arising from the substance or mixture

Special Hazard Incomplete combustion is likely to give rise to a complex mixture of airborne solid and liquid particulates, gases, including carbon monoxide, unidentified organic and inorganic compounds.

If sulphur compounds are present in appreciable amounts, combustion products may include also H2S and SOx (sulfur oxides) or sulfuric acid.

5.3. Advice for fire-fighters

SDS #: A01111

GAS OILS (PETROLEUM), HEAVY

Special protective equipment for In case of a large fire or in confined or poorly ventilated spaces, wear full fire resistant **fire-fighters** protective clothing and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Other information Do not allow run-off from fire fighting to enter drains or water courses.

6. ACCIDENTAL RELEASE MEASURES

6.1. Personal precaution	ns, protective equipment and emergency procedures
General Information	Except in case of small spillages, The feasibility of any actions should always be assessed and advised, if possible, by a trained, competent person in charge of managing the emergency. If required, notify relevant authorities according to all applicable regulations.
	When the presence of dangerous amounts of H2S around the spilled product is suspected or proved, additional or special actions may be warranted to
	determine controls appropriate to local circumstances. Evacuate non-essential personnel. Avoid direct contact with released material.
	Stop or contain leak at the source, if safe to do so.
	Avoid contact with skin, eyes and inhalation of vapors. ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Ensure adequate ventilation, especially in confined areas. For personal protection see section 8.
Advice for non-emergency	Do not touch or walk through spilled material. Evacuate personnel to safe areas.
personnel	Ensure adequate ventilation. For personal protection see section 8.
•	ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

Advice for emergency responders Ensure the application of strict rules of hygiene by the personnel exposed to the risk of contact with the product. Use personal protective equipment.

In case of:

Small spillages: normal antistatic working clothes are usually adequate. For personal protection see section 8.

Large spillages: full body suit of chemically resistant and antistatic material. Work gloves

SDS #: A01111 G	AS OILS (PETROLEUM), HEAVY (preferably gauntlets) providing adequate chemical resistance. Remarks:. Gloves made of PVA are not water-resistant, and are not suitable for emergency use. If contact with hot product is possible or anticipated, gloves should be heat-resistant and thermally insulated.
	Work helmet. Antistatic non-skid safety shoes or boots. if necessary heat- resistant.
	Goggles and/or face shield, if splashes or contact with eyes is possible or anticipated. Respiratory protection: A half or full-face respirator with filter(s) for organic vapours (and when applicable: for H2S). If the situation cannot be completely assessed, or if an oxygen deficiency is possible, only SCBA's should be used.
6.2. Environmental precautions	
General Information	The product should not be allowed to enter drains, water courses or the soil. Solidified product may clog drains and sewers. If necessary, Consult an expert. Local authorities should be advised if significant spillages cannot be contained.
6.3. Methods and materials for	containment and cleaning up
Methods for Containment	control the spreading of the spillage. Contain and collect spillage with non- combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see Section 13). Ensure adequate ventilation, especially in confined

ATMOSPHERIC

fire risk.

Revision Date: 2011-09-28

Version 1

Methods for

cleaning up Let hot product cool down naturally. Collect free product with suitable means, Use mechanical means such as pumps, skimmers and absorbent materials. Pick up and transfer to properly labeled containers. Cleaning with high pressure washers. or. Wash off with warm water. Wear respiratory protection.

In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations. Transfer recovered product and

areas. Large spillages may be cautiously covered with foam, if available, to limit

SDS #: A01111

GAS OILS (PETROLEUM), HEAVY

other materials to suitable tanks or containers and store/dispose according to relevant regulations.

In case of spillage in the water:

Product less dense than water. In case of small spillages in closed waters . contain product with floating barriers or other equipment. Collect spilled product by absorbing with specific floating absorbents, control the spreading of the spillage.

If possible, large spillages in open waters should be contained with floating barriers or other mechanical means. collect the product by skimming or other suitable mechanical means. The use of dispersants should be advised by an expert, and, if required, approved by local authorities. Collect recovered product and other materials in suitable tanks or containers for recovery or safe disposal.

If possible, collect the product and contaminated materials with mechanical means, and store/dispose of according to relevant regulations. In special situations (to be assessed on case-by case basis, according to expert judgement and local conditions), excavations of trenches on the bottom to collect the product, or burying the product with sand may be a feasible option.

6.4. Reference to other sections

Personal Protective EquipmentSee Section 8 for more detail

Waste treatment See section 13

Other informationRecommended measures are based on the most likely spillage scenarios for this
material. However, local conditions (wind, air temperature, wave/current
direction and speed) may significantly influence the choice of appropriate
actions. For this reason, local experts should be consulted when necessary.
Local regulations may also prescribe or limit actions to be taken. Cut off the
electric power supply if this operation causes no sparks in the area containing
vapors from the product.

Concentration of H2S in tank headspaces may reach hazardous values, especially in case of prolonged storage. This situation is especially relevant for those operations which involve direct exposure to the vapours in the tank. Spillages of limited amounts of products, especially in the open air when

SDS #: A01111

GAS OILS (PETROLEUM), HEAVY

vapours will be usually quickly dispersed, are dynamic situations, which presumably do not entail exposure to dangerous concentrations. As H2S has a density greater than ambient air, a possible exception may regard the build-up of dangerous concentrations in specific spots, like trenches, depressions or confined spaces. In all these circumstances, however, the correct actions should be assessed on a case-by-case basis.

7. HANDLING AND STORAGE

7.1. Precautions for safe handling

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

Advice on safe handling	Handle in accordance with good industrial hygiene and safety practice.		
	Hydrogen sulphide can accumulate in the head space of storage tanks containing this product and can reach potentially hazardous concentrations. Wear personal protective equipment. Refer to Section 8.		
	Take precautionary measures against static electricity. The inspection, cleaning and maintenance of storage containers require the application of strict procedures and must be entrusted to qualified personnel (internal or external). Avoid splash filling of bulk volumes when handling hot liquid product. Keep the temperature of the product as low as possible to minimise the release of fumes. Never check the tank level by using a naked flame.		
	Do not smoke. Avoid breathing vapors or mists. Ensure adequate ventilation. Vapors may form explosive mixtures with air.		
	Avoid contact with skin, eyes and clothing. Wear suitable protective clothing. Do not use compressed air for filling, discharging, or handling operations.		
Technical measures	Prevent the formation of vapors, mists and aerosols. Ensure adequate ventilation.		
	Do not use compressed air for filling, discharging, or handling operations.		

SDS # : A01111 G	AS OILS (PETROLEUM), HEAVY
	Design installations to avoid spills and splashes of hot product. Take all necessary precautions to prevent water from entering the containers, tanks, transfer lines etc Keep away from food, drink and animal feedingstuffs.
Prevention of fire and explos	ion NEVER heat a reservoir or tank if the heating elements are not adequately immersed (minimum 15 cm).
	Take precautionary measures against static discharges. Ground/bond containers, tanks and transfer/receiving equipment. Never weld any container or empty pipe that has not been degassed.
C	o not heat the pumps or pipes using an open flame.
Hygiene measures	Ensure the application of strict rules of hygiene by the personnel exposed to the risk of contact with the product. Avoid contact with skin, eyes and clothing. Use personal protective equipment as required.
	Remove as much as possible by wiping. If small amount of product only comes into contact with the skin, remove with vegetable oil. White oil, lukewarm paraffin or a suitable soap recommended for this purpose may also be used.
	Do not use abrasives, solvents or fuels.
De	o not put product contaminated rags into workwear pockets. Do not eat, drink or smoke when using this product. Change contaminated clothes at the end of working shift. Wash hands before breaks and immediately after handling the product. Gloves must be periodically inspected and changed in case of wear, perforations or contaminations. Avoid breathing vapors, mist or
	gas.

7.2. Conditions for safe storage, including any incompatibilities

ATMOSPHERIC

Revision Date: 2011-09-28

Technical measures/Storage conditions Materials to Avoid

Packaging material

Version EU

Version 1

SDS #: A01111 Further information

7.3. Specific end uses

Storage area layout, tank design, equipment and operating procedures must comply with the relevant European, national or local legislation.

Before entering storage tanks and commencing any operation in a confined area, check the atmosphere for oxygen content, hydrogen sulphide (H2S) and flammability. If sulphur compounds are suspected to be present in the product, check the atmosphere for H2S content. Use adequate personal protective equipment as needed.

Take precautionary measures against static discharges. Ensure all equipment is electrically grounded before beginning transfer operations. Storage installations should be designed with adequate bunds so as to prevent ground or water pollution in case of leaks or spills. Do not remove the hazard labels of the containers

GAS OILS (PETROLEUM), HEAVY

(even if they are empty). Store the packed products (drums, samples, cans ...) in properly ventilated rooms, away from damp, heat and any potential source of ignition. Lines used for the product and pump devices are to be insulated and equipped with a heating device.

Keep containers tightly closed and properly labelled. Keep preferably in the original container. Otherwise reproduce all indication of the regulation label on the new container.

Store separately from oxidising agents.

Do not weld, solder, drill, cut or incinerate empty containers, unless they have been properly cleaned. Empty containers may contain combustible product residues. Store in accordance with the particular national regulations.

Strong oxidizing agents. Strong acids. Halogens.

Use only containers, seals, pipes, etc... made in a material suitable for use with aromatic hydrocarbons. heat resistant. Recommended materials for containers, or container linings use mild steel, stainless steel. Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Compatibility should be checked with the manufacturer.

Ensure that all relevant regulations regarding handling and storage facilities of flammable products are followed.

Page Status: FINAL

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1. Control parameters

Exposure limits Hydrogen sulphide (EU): OEL = 7 mg/m³, 5ppm (8 h), 14 mg/m³, 10ppm (short-time)

Other constituents required for disclosure

Legend

See section 16

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

Chemical Name	Short term, systemic effects	Short effects	term,	local	Long term, systemic effects	Long effects	term,	local
Gas oils (petroleum),	4700 mg/m ³ /15min				0.12 mg/m ³ /8h	0.065	mg	/kg/8h
heavy atmospheric	(aerosol - inhalation)				(aerosol inhalation)	(derma	I)	
68783-08-4								
Chemical Name	Short term,	Short	term,	local	Long term,	Long	term,	local
	systemic effects	effects	;		systemic effects	effects	;	
Gas oils (petroleum),					0.015 mg/kg/24h			
heavy atmospheric					(oral)			
68783-08-4								

8.2. Exposure controls

Occupational Exposure Controls

Engineering Measures	Ensure adequate ventilation. Do not enter empty storage tanks until measurements of available oxygen have been carried out. When working in confined spaces (tanks, containers, etc.), ensure that there is a supply of air
Personal Protective Equipment	suitable for breathing and wear the recommended equipment.
General Information	Protective engineering solutions should be implemented and in use before personal protective equipment is considered. Use personal protective equipment in good condition.
Respiratory protection	For rescue and maintenance work in storage tanks use self-contained breathing apparatus. The use of breathing apparatus must comply strictly with the manufacturer's instructions and the regulations governing their choices and uses.
	Maintain adequate ventilation. Do not breathe vapors, mist or gas. In an emergency or for exceptional short-lasting jobs in an atmosphere polluted by the product, it is necessary to wear protective respiratory equipment. Approved respiratory protection equipment shall be used in spaces where hydrogen sulphide may accumulate: full face mask with cartridge/filter type

"B" (grey for inorganic vapours including H2S) or self-contained breathing apparatus (SCBA). (EN 529).

Eye Protection	Work helmet with neck cloth. Tightly fitting safety goggles. or. Face-shield.				
Skin and body protection	Wear single use overwall. Hydocarbon resistant clothing. Protective shoes c				
	boots. Rubber or plastic boots. Coverall (with trousers legs over boots).				
Hand Protection	Hydrocarbon-proof gloves. Nitrile rubber. Neoprene gloves.				
	Wear suitable gloves tested to EN374.				
	Gloves anti-heat for the liquefied product (EN 407, level 1).				
	ATMOSPHERIC				

Revision Date: 2011-09-28

Version 1

Environmental exposure controls

General Information The product should not be allowed to enter drains, water courses or the soil

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic phy	Information on basic physical and chemical properties			
Appearance	viscous			
Color	yellow To brown			
Physical State @20°C	Viscous			
Odor	Hydrocarbon-like			

817750 - Crude Oil Issue Date: 05-Aug-2015 Page Status: FINAL

Version 1

Property	<u>Values</u>	<u>Remarks</u> Not applicable	<u>Method</u>
p⊓ Boiling point/boiling range	180 - 380 °C		EN 15199
Doning point boining range	356 - 716 °F		EN 15199
Flash point	> 66 - °C		ISO 2719
	> 151 - 340 °F	No information available	ISO 2719.
Evaporation rate			
Flammability Limits			
in Air upper Lower	5 %		
Vapor Pressure	0.5 %		EN 42046
Vapor Pressure	< 1 kPa @ 150 °C		EN 13016-
Vapor density	_	@ 15 °C	1
Density	> 5	Not applicable	
Water solubility	900 - kg/m ³	No information available	ISO 12185
Solubility in other solvents		No information available	
logPow			
Autoignition temperature	> 250 °C		DIN 51794
Viscosity kinomatic	> 482 °F	@ 100 °C	DIN 51794
Viscosity, dynamic	6 - 12 mm2/s		ISO 3104
E			

Explosive properties Not considered explosive based on chemical structure and oxygen balance considerations

Oxidizing Properties This product is not considered oxidising based on chemical structure considerations **Possibility of hazardous reactions** None under normal processing

ATMOSPHERIC

Revision Date: 2011-09-28

<u>9.2.</u>	Other information	
Flow point Pour point	< 45 °C	ISO 3016
10. STABILITY	AND REACTIVITY	
<u>10.1.</u>	<u>Reactivity</u>	
General Infor	mation No information available.	
<u>10.2.</u>	Chemical stability	
Stability	Stable under recommended storage condition	S.
<u>10.3.</u>	Possibility of hazardous reactions	

Page Status: FINAL

Hazardous Reactions None under normal processing.

10.4. Conditions to Avoid

Conditions to Avoid Take precautionary measures against static discharges. Keep away from open flames, hot surfaces and sources of ignition.

10.5. Incompatible Materials

Materials to Avoid Strong oxidizing agents. Strong acids. Halogens.

10.6. Hazardous Decomposition Products

Hazardous Decomposition ProductsNone under normal use.

11. TOXICOLOGICAL INFORMATION

11.1. Information on toxicological effects

Acute toxicity Local effects Product Information

General InformationThe acute toxicity has been adequately characterised in a large number of GLP-
compliant guideline investigations following oral, dermal or inhalation exposure.
Findings from an acute inhalation study support classification.

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

(females) (aerosol - rat)

Skin contact	Samples of the substance h no evidence of skin corrosic classification. Prolonged or Risk of burns (if the produc	ave been tested in skin irri on. This substance does no repeated contact may dry ct is hot).	tation studies. There was ot meet the EU criteria for skin and cause irritation.		
Eye contact					
Inhalation	None of the samples tested	l showed more than minim	al redness and		
	swelling, which resolved qu	ickly. This substance does	not meet the EU		
	criteria for classification. Vapor may cause irritation. Risk of burns (if the product is hot).				
	Inhalation of vapors in high concentration may cause irritation of respiratory				
	system. Causes headache, drowsiness or other effects to the central nervous				
	system. Risk of hydrogen sulphide intoxication (H2S).				
Ingestion	few or no symptoms expected. If any, nausea and diarrhoea might occur.				
Acute toxicity Component Int	<u>formation</u>				
Chemical Name	LD50 Oral	LD50 Dermal	LC50 Inhalation		
Gas oils (petroleum), heavy atmospheric	LD50 > 5000 mg/kg bw (rat OECD	LD50 > 2000 mg/kg bw (rabbit	CL50 (4h) 4.1 mg/l (males) 4.3 mg/l		

OECD 434)

401)

Page Status: FINAL

<u>Sensitization</u> Sensitization	There are no reports available to indicate that the substance has the potential to cause skin and respiratory sensitisation.			
Specific effects	Positive results obtained from mouse skin painting studies and from an			
Carcinogenicity	initiation/promotion as	say indicate that these comp	ponents are carcinogenic.	
Chemical Na	me	Europe	ean Union	
Gas oils (petroleum), heav 68783-08-4	vy atmospheric I	Carc.	1B (H350)	
Mutagenicity	The mutagenic potentia	I of the substance has been	extensively studied in a range	
	of in-vivo and in-vitro assays. The majority of the studies showed no evidence of mutagenic activity.			
Germ Cell Mutagenicity	The weight of evidence from in vivo and in vitro mutagenic studies indicates that this substance does not meet the criteria for classification under regulation.			
Reproductive toxicity	These components do not specifically target the reproductive system on male and female rats.			
Developmental Toxicity	The available data indicate that these components adversely affect fœtal development.			
Chemical Name European Union			∍an Union	
	ATMOS	PHERIC		
	Revision Dat	e: 2011-09-28	Version 1	

Gas oils (petroleum), heavy atmospheric 68783-08-4		Repr. 2 (H361d)	
Repeated Dose Toxicity 817750 - Crude Oil Farger@roan^Effects (STOT)		Page Status: FINAL	
Specific target organ systemic toxicity (single exposure)	Acute exposure studies	show no evidence of systemic toxicity.	
Specific target organ systemic toxicity (repeated exposure)	Repeated exposure may cause skin dryness or cracking. There is evidence to indicate tha these components have a potential to cause systemic alterations following repeated dermal exposure.		
Other information			
Other information	Not relevant.		
12. ECOLOGICAL INFORMATION			

12.1. Toxicity

Very toxic to aquatic organisms. May cause long-term adverse effects in the aquatic environment.

Acute aquatic toxicity Product Information

Acute aquatic toxicity Component Information

Chemical Name	Toxicity to algae	Toxicity to daphnia and other aquatic invertebrates	Toxicity to fish	Toxicity to microorganisms
Gas oils (petroleum), heavy	EL50 (72h) 0.75 mg/l	EL50 (48h) 2 mg/l (Daphnia	LL50 (96h) 79 mg/l	
atmospheric	(Pseudokirchnerella	magna - OECD 202)	(Oncorhynchus mykiss OECD	
68783-08-4	subcapitata - QSAR Petrotox)		203)	

Chronic aquatic toxicity Product Information

Chronic aquatic toxicity Component Information

Chemical Name	Toxicity to algae	Toxicity to daphnia and other aquatic invertebrates	Toxicity to fish	Toxicity to microorganisms
Gas oils (petroleum), heavy		NOEL (21d) 0.27 mg/l	NOEL (14/28d) 0.1 mg/l	
atmospheric		(Daphnia magna - QSAR	(Oncorhynchus mykiss -	
68783-08-4		Petrotox)	QSAR Petrotox)	

Effects on terrestrial organisms

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

t

No information available.

Page Status: FINAL

12.2. Persistence and degradability

General Information

Substance is a UVCB. Standard tests for this endpoint are not appropriate.

12.3. Bioaccumulative potential

Product Information Substance is a UVCB. Standard tests for this endpoint are not appropriate.

logPow No information available

Component Information No information available.

12.4. Mobility in soil

Mobility				
Method	Compartment	Result	(%)	Remarks
Percent distribution in media (Calculation according to Mackay, Level III)	Soil		67.81	
Percent distribution in media (Calculation according to Mackay, Level III)	Sediment		27.63	
Percent distribution in media (Calculation according to Mackay, Level III)	Air		4.55	
Percent distribution in media (Calculation according to Mackay, Level III)	Water		0.01	

Soil

Given its physical and chemical characteristics, the product generally shows low soil

mobility.

Air Loss by evaporation is limited.

Water The product floats or settles, depending on its density.

12.5. Results of PBT and vPvB assessment

PBT and vPvB assessment Anthracene is not present in this substance at greater than 0.1% (CONCAWE 2010). No other representative hydrocarbon structure were found to meet the PBT/vPvB criteria. This substance is not considered to be persistent, bioaccumulating nor toxic (PBT).

12.6. Other adverse effects

ATMOSPHERIC

Page Status: FINAL

_____ **Revision Date:** 2011-09-28

____ Version 1

General

Information No information available.

13. DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods	
Waste from Residues /	Dispose of in accordance with the European Directives on waste and hazardous
Unused Products	waste. Dispose of contents/container to an approved incineration plant.
Contaminated packaging	Empty containers should be taken to an approved waste handling site for recycling or disposal.
EWC Waste Disposal No.	According to the European Waste Catalogue, Waste Codes are not product specific, but application specific. Waste codes should be assigned by the user based on the application for which the product was used.
14 TRANSPORT INFORMATION	

14. TRANSPORT INFORMATION

ADR/RID

UN/ID No	UN1202
Proper shipping name	DIESEL FUEL
Proper shipping name	GAS OIL
Hazard class	3
Packing Group	111
ADR/RID-Labels	3
Environmental hazard	Yes
Classification Code	F1
Special Provisions	640L
Tunnel Restriction Code	(D/E)
ADR Hazard Id (Kemmler	30
Number)	
Description	UN1202, DIESEL FUEL, 3, PG III, (D/E)
Excepted Quantity	E1
Limited quantity	5L
IMDG/IMO	

Page Status: FINAL

UN/ID No	UN1202
Proper shipping name	DIESEL FUEL
Hazard class	3
Packing Group	III
Marine Pollutant	Ρ

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

EmS No.	F-E, S-E
Description	UN1202, DIESEL FUEL, 3, PG III, (55°C c.c.)
Excepted Quantity	E1
Limited quantity	5L
ICAO/IATA	
UN/ID No	UN1202
Proper shipping name	DIESEL FUEL
Hazard class	3
Packing Group	III
ERG Code	3L
Special Provisions	A3
Description	UN1202, DIESEL FUEL, 3, PG III
Excepted Quantity	E1
Limited quantity	10L
ADN	
UN/ID No	UN1202
Proper shipping name	DIESEL FUEL
Proper shipping name	GAS OIL
Hazard class	3
Hazard Labels	3
Packing Group	III

Environmental hazard	Yes
Classification Code	F1
Special Provisions	274, 560
Description	UN1202, DIESEL FUEL, 3, PG III
Excepted Quantity	E1
Limited quantity	EL
Ventilation	VE01

15. REGULATORY INFORMATION

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

European Union

REACH

This substance has been registered according to Regulation (EU) No. 1907/2006 (REACH).

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

International Inventories	
EINECS/ELINCS TSCA	Complies Complies
DSL	Complies
ENCS IECSC KECL	- - Complies
PICCS AICS	- Complies
NZIOC Legend EINECS/ELINCS - European Inventory of Exi TSCA - United States Toxic Substances Contro DSL/NDSL - Canadian Domestic Substances L	- sting Commercial Chemical Substances/EU List of Notified Chemical Substances of Act Section 8(b) Inventory ist/Non-Domestic Substances List

 $\ensuremath{\textbf{ENCS}}$ - Japan Existing and New Chemical Substances

 $\label{eq:lecsc} \textbf{IECSC} \ \textbf{-} \ \textbf{China Inventory of Existing Chemical Substances}$

 $\ensuremath{\textbf{KECL}}\xspace$ - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

AICS - Australian Inventory of Chemical Substances NZIOC - New Zealand Inventory of Chemicals

Further information

15.2. Chemical Safety Assessment

16. OTHER INFORMATION

Full text of R-phrases referred to under sections 2 and 3

R45 - May cause cancer

- R63 Possible risk of harm to the unborn child
- R20 Harmful by inhalation
- R66 Repeated exposure may cause skin dryness or cracking
- R48/21 Harmful: danger of serious damage to health by prolonged exposure in contact with skin
- R50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment

Full text of H-Statements referred to under section 2 and 3

- H350 May cause cancer in contact with skin
- H361d Suspected of damaging the unborn child
- H332 Harmful if inhaled
- H373 May cause damage to organs through prolonged or repeated exposure in contact with skin H400 Very toxic to aquatic life
- H410 Very toxic to aquatic life with long lasting effects

ATMOSPHERIC

Revision Date: 2011-09-28

Version 1

					Abbreviations,
acronym	IS				
Legend Section	on 8				
+	Sensitizer		*	Skin designation	
**	Hazard Designation		C:	Carcinogen	
M:	Mutagen		R:	Toxic to reproduction	
Revision Revision	Date: Note	2011-09-28 (M)SDS sections upo	lated: 1, 2, 3, 15.		
Further information		Note H: The classif hazard or hazards	ication and label indicated by the	shown for this substance hazard statement or haza	applies to the ird statements in

_ _ _ _ _ _ _ _ _ _

combination with the hazard classification shown. The requirements of Article 4 of Regulation (EC) No

1272/2008 on suppliers of this substance apply to all other hazard classes, differentiations and categories. The final label shall follow the requirements of section 1.2 of Annex I to Regulation (EC) No 1272/2008

This safety data sheet complies with the requirements of Regulation (EC) No. 1907/2006

This safety data sheet serves to complete but not to replace the technical product sheets. The information contained herein is given in good faith and is accurate to the best of knowledge at the date indicated above. It is understood by the user that any use of the product for purposes other than those for which it was designed entails potential risk. The information given herein in no way dispenses the user from knowing and applying all provisions regulating his activity. The user bears sole liability for the precautions required when using the product. The regulatory texts indicated herein are intended to aid the user to fulfil his obligations. This list is not to be considered complete and exhaustive. It is the user's responsibility to ensure that he is subject to no other obligations than those mentioned.

End of the safety data sheet