

Non-Technical Summary

New Bespoke Installation Permit

BioConstruct NewEnergy Limited

Lower Drayton Farm AD, Lower Drayton Farm, Lower Drayton Lane, Penkridge, Stafford, South Staffordshire, ST19 5RE

Prepared by:

Emily Pitts, BSc (Hons), MIEMA, CEnv

ETL437/2020

Earthcare Technical Ltd Manor Farm Chalton Waterlooville Hants PO8 0BG

Tel: 02392 290 488

emily@earthcaretechnical.co.uk

17 July 2020

QUALITY CONTROL

Document Title:	Non-Technical Summary, New Bespoke Installation Permit, Lower Drayton Farm AD, BioConstruct NewEnergy Limited
Revision:	V1.0
Date:	17 th July 2020
Document Reference:	ETL437/SPC0107/Lower Drayton Farm AD/NTS/V1.0
Prepared For:	BioConstruct NewEnergy Limited
Project Reference:	ETL437/2020
Copyright:	Earthcare Technical Ltd. © 2020

Quality control sign off				
Document Author	Emily Pitts	ENSPitts		
Quality Reviewer	Anna Becvar	Annalgun		

This report has been prepared by Earthcare Technical Ltd on behalf of the Client, taking into account the agreed scope of works. Unless otherwise agreed, this document and all other Intellectual Property Rights remain the property of Earthcare Technical Ltd.

In preparing this report, Earthcare Technical Ltd has exercised all reasonable skill and care, taking into account the objectives and the agreed scope of works and any contract between Earthcare Technical Ltd and the Client. Earthcare Technical Ltd does not accept any liability in negligence for any matters arising outside of the agreed scope of works. When issued in electronic format, Earthcare Technical Ltd does not accept any responsibility for any unauthorised changes made by others. This document may not be copied in whole or in part without the prior written consent of Earthcare Technical Limited.

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	OVERVIEW	2
3.	KEY SENSITIVITIES	4
4.	MANAGEMENT	5
5.	CONTROL OF EMISSIONS TO LAND AND WATER	5
6.	CONTROL OF EMISSIONS TO AIR	7
7.	CONTROL OF AMENITY IMPACTS	8
FIGU	JRES	10
APP	ENDIX A – SCHEDULE 1 LISTED ACTIVITY AND DIRECTLY ASSOCIATED ACTIVITIES	17
APP	ENDIX B – PROCESS FLOW DIAGRAM	20
APP	ENDIX C – DRAINAGE DESIGN REPORT	22
APP	ENDIX D – CONTAINMENT BUND DESIGN REPORT	80
APP	ENDIX E – DRAINAGE PROCESS FLOW1	27
APP	ENDIX F – EFFLUENT INFILTRATION ASSESSMENT1	29
APP	ENDIX G - SITE SPECIFIC BIOAEROSOL RISK ASSESSMENT1	46

1. Introduction

- 1.1. This Non-Technical Summary has been prepared by Earthcare Technical Ltd (ETL) on behalf of Lower Drayton Biogas Projectco Limited to support a permit application for a new bespoke installation permit for an anaerobic digestion plant including the use of resultant biogas at Lower Drayton Farm, Lower Drayton Lane, Penkridge, Stafford, South Staffordshire, ST19 5RE, herein termed 'the Site'. BioConstruct GmbH designed the plant and are building and commissioning it.
- 1.2. The application has been prepared by ETL in conjunction with and on behalf of the Operator BioConstruct NewEnergy Limited (BCNE).
- 1.3. Basic pre-application advice has been sought from the Environment Agency with respect to this new permit application (Reference EA/EPR/EP3507BH) to ensure that all of the relevant supporting documents have been provided.
- 1.4. A full Environmental Risk Assessment has been carried out and is provided in Appendix A of the Environmental Management System (EMS) Manual **(BCNE EMS Man 001)** which accompanies this application. This Non-Technical Summary highlights the key control measures that will be employed to minimise any impacts from the operational site and signposts the reader to the key supporting documents.

2. Overview

- 2.1. The site is located in a rural area approximately 700m to the northern fringes of the town of Penkridge and directly south of Lower Drayton Farm. The site is approximately 3.8 hectares (9.5 acres) in area and is on land previously used for storage by Lower Drayton Farm and other businesses who rent premises in the farm yard. Part of the site has until recently been used as a motor cross track. Full details of the previous land uses and site condition can be found in the Site Condition Report which supports the permit application.
- 2.2. The planning permission for the Lower Drayton Farm AD plant was obtained from South Staffordshire Council on the 21st December 2016 (Reference 16/00717/FUL).
- 2.3. The activity is classified as an 'Installation' and therefore the requirements of the Industrial Emissions Directive apply, since the anaerobic digestion plant has a treatment capacity of more than 100 tonnes per day. The permit will be 'bespoke' by virtue of the requirement for an associated discharge to ground for treated water from the on-site digestate treatment process (Ekogea technology). In all other respects the site complies with location criteria set out within Standard Rules 2012 No 9 On-farm anaerobic digestion facility using farm wastes only, including use of the resultant biogas Part A installation– treatment capacity over 100 tonnes of waste per day (SR2012 No.9).
- 2.4. The Environmental Risk Assessment (Appendix A of the EMS Manual (BCNE EMS Man 001)) is therefore based upon the generic risk assessment for SR2012 No.9. The additional hazards and risks associated with the discharge of polished water to ground have been considered within the Environmental Risk Assessment.

- 2.5. The proposed Schedule 1 Listed Activity is S5.4 Part A(1)(b)(i)) Recovery or a mix of recovery and disposal of non-hazardous waste with a capacity exceeding 75 tonnes per day (or 100 tonnes per day if the only waste treatment activity is anaerobic digestion involving biological treatment. The proposed Directly Associated Activities are detailed in Appendix A.
- 2.6. The process is depicted in a Process Flow Diagram included as Appendix B of this document. A full process description is provided in Section 5 of the EMS Manual (BCNE EMS Man 001) which accompanies this permit application.
- 2.7. The proposed feedstocks are energy crops namely maize and grass silage, poultry manure, cattle manure and rape straw.
- 2.8. The proposal is to use an Ekogea system which comprise:
 - A micronisation system which treats feedstocks to enhance digestibility and reduce hydraulic retention time;
 - Polymer dosing and thickening of the digestate to reduce storage capacity requirements and reduce the cost and impacts of digestate transportation; and
 - Single stage anaerobic waste water treatment plant or polishing plant (H2E) to treat the grey water from the digestate thickening process.
- 2.9. The polished water will be used in the micronisation process. It is proposed to discharge the excess polished water (up to 23m³ a day) into an infiltration pond to the south of the site. Consent for this discharge to ground is sought as part of the permit application.
- 2.10. The AD plant will process up to 40,610 tonnes per year of agricultural feedstocks.
- 2.11. Biogas will be upgraded to biomethane and exported to the gas network. There will be one combined heat and power engine (CHP) which will provide all of the heat and the majority of the power for the AD plant.
- 2.12. The proposed site infrastructure comprises:
 - Access road
 - Weighbridge
 - 4 x silage clamps (total 12,000 tonnes capacity)
 - Solid feed hopper (155m³ capacity)
 - Ekogea feedstock micronisation system
 - Buffer tank (610m³)
 - 2 x digesters (3,325m³ and 4,619m³ capacity)
 - Digestate storage tank (3,325m³)
 - Screw press separator (in place as contingency)
 - Digestate off-take point
 - Ekogea digestate thickening system comprising:
 - Polymer dosing unit
 - 2 x concentrators
 - Grey water storage tank (50m³)
 - Ekogea grey water polishing plant
 - Polished water storage tank (50m³)

- Biogas treatment comprising:
 - Chiller
 - Ammonia scrubber
 - Carbon filter
 - Compressors
- Gas upgrade unit (Pentair)
- Propane gas storage
- Odourant storage
- Grid entry unit (Thyson Technology)
- 500kWe combined heat and power engine (2G Avus 500 plus);
- Dual fuel emergency flare
- Emergency diesel generator
- Transformer
- Substation
- LV board
- Power to heat unit
- Heat exchanger unit
- Surface water infiltration pond
- Underground leachate tank
- Dirty water lagoon (1,140m³)
- Technical area between the 3 main tanks
- Site office and welfare facilities; and
- Staff car parking.
- 2.13. The proposed site layout is shown on Figure 5 (Proposed Site Layout).

3. Key Sensitivities

- 3.1. There are a number of sensitive receptors within close proximity to the site by virtue of the fact that the land and buildings at Lower Drayton Farm have been used for diversification and there are a number of businesses located there. Within 200m of the site there is a bed and breakfast, play barn, picnic area and outdoor animal area.
- 3.2. Lower Drayton Farm itself is occupied by the farmer who has an interest in the AD plant. Therefore this property is not deemed to be a sensitive receptor in terms of amenity impacts but has been considered in relation to the potential for emissions to air to impact upon human health.
- 3.3. The site is situated upon a Secondary A superficial aquifer and a Secondary B bedrock aquifer. Groundwater vulnerability is classified as medium to high. However, the site is not within a Groundwater Source Protection Zone or within a Drinking Water Protected Area or Safeguard Zone.
- 3.4. A small tributary of the River Penk runs in a northerly direction approximately 55 metres from the eastern site boundary.
- 3.5. Full details of Environmental Sensitivities can be found in Section 4 of the EMS Manual **(BCNE EMS Man 001)**.

4. Management

- 4.1. The site will be operated by BCNE. There will be a Plant Manager who is responsible for the day to day operation of the AD plant and who will also act as the Technically Competent Manager. The Plant Manager is supported by the Plant Supervisor and Plant Operators. Roles and responsibilities are detailed in Section 10 of the EMS Manual (BCNE EMS Man 001).
- 4.2. There is a contract in place with Preston Contractors to supply all of the feedstocks and offtake of all digestate produced to be applied to land for agricultural benefit.
- 4.3. The EMS Manual (BCNE EMS Man 001) forms part of the permit application and has been developed by ETL in conjunction with BCNE. The management system documents to which the EMS Manual refers including policies and procedures are being developed by BCNE with the exception of the Odour Management Plan and the Accident Management Plan which have been developed by ETL. A Noise Management Plan has been developed by Inacoustic noise consultants.

5. Control of Emissions to Land and Water

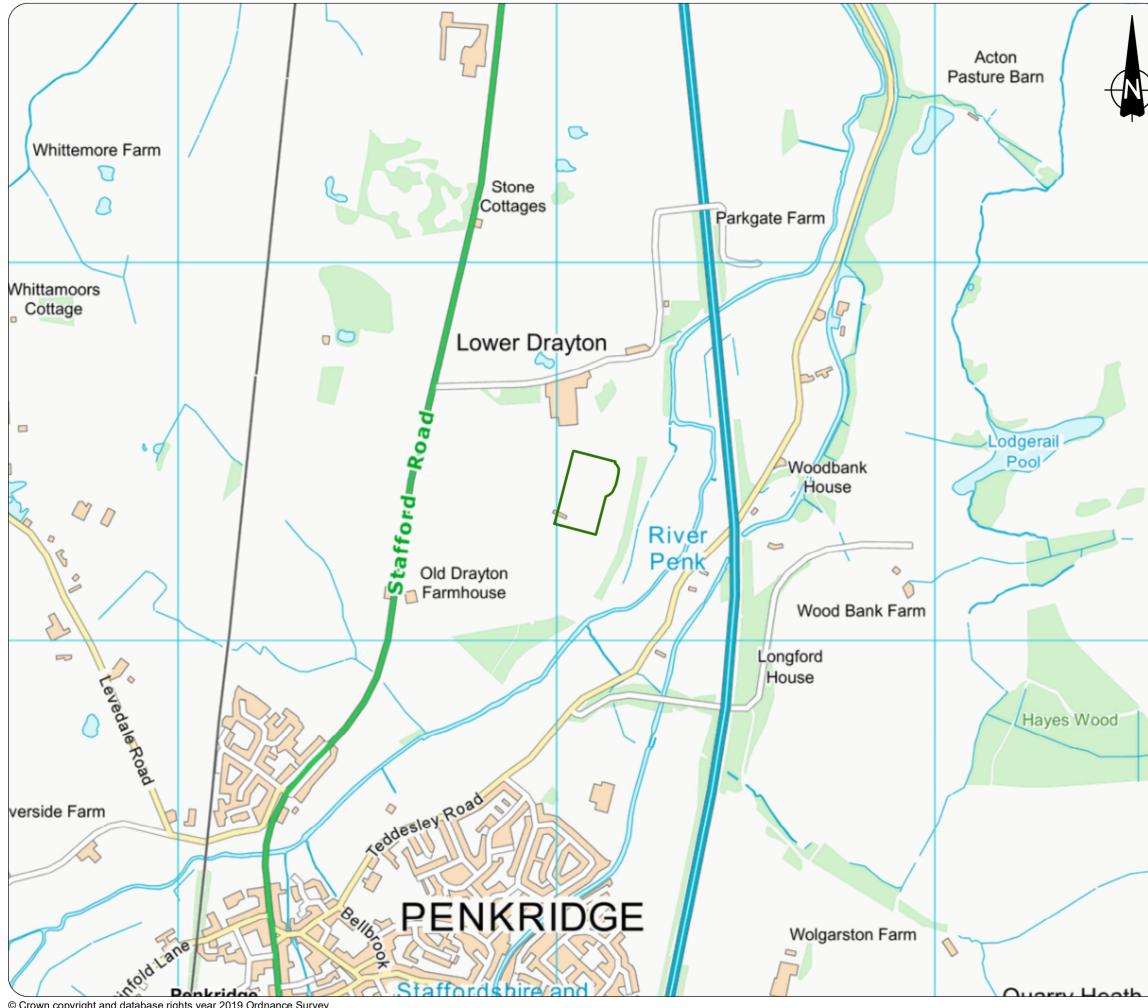
- 5.1. The buffer tank, two digesters and the digestate storage tank are all monolithic poured reinforced concrete tanks made by Wolf Systems. All hazardous substances including oil, diesel and chemicals will be stored appropriately and within the secondary containment system. Further detail can be found in Section 6.1 of the EMS Manual (BCNE EMS Man 001).
- 5.2. The dirty water lagoon (capacity of 1,140m³) will be used as buffer storage of dirty water. It is a lined with 2mm HDPE. The level of the lagoon will be checked on a daily basis and a freeboard of 750mm maintained at all times. Dirty water will be used within the process or if in excess of requirements will be tankered off-site for application to land. The condition of the lagoon will be checked as part of the daily inspection and a full inspection will be carried out when it is empty and any repairs made as required.
- 5.3. Plandescil Consulting Engineers were contracted to design the site drainage and secondary containment in accordance with the relevant guidance; SSAFO and CIRIA C736. The reports that support their design namely the Drainage Design Report and the Containment Bund Design Report are Appendix C and D of this report respectively. The key aspects of the design are summarised below.
- 5.4. The silage clamps have been designed in accordance with the SSAFO regulations. They have concrete panel walls and asphalt surfacing designed for longevity. There are eight silage effluent sumps which drain to a 22,000l Kingspan Silage/Leachate Effluent Tank. Any effluent is pumped to the dirty water lagoon for storage prior to being used within the AD process.
- 5.5. The containment capacity is designed in accordance with CIRIA C736, with the calculations demonstrating 110% of the largest tank volume to be a greater volume than 25% of the combined volume. The proposed footprint of the containment area allowed for the walls to be constructed to a minimum height of 1.6m, which included 250mm freeboard capacity as per CIRIA C736 requirements.

- 5.6. All pipes, ducts and cables are fixed on cable trays and stanchions positioned above the concrete containment, so as to not penetrate the containment floor or walls.
- 5.7. The Drainage Process Flow Diagram is Appendix E. The Proposed Drainage Layout is Figure 6.
- 5.8. The digestate off-take, silage clamps, the area around the solids feeder, and the apron between them, are all designated as dirty and any run-off from these areas flows to the below ground 22,000l underground leachate tank. From there dirty water is pumped into the dirty water lagoon for storage prior to use within the AD process.
- 5.9. The rest of the site is designated as clean, and provided it has been tested to be clean, drains to the infiltration pond via a full retention fuel separator. If the containment sump water is tested as 'clean', (via visual and olfactory checks), then the liquid will be pumped over the containment wall into the surface water system to the west of the site, out-falling to the 365m³ infiltration pond located to the south of the site. If tested as 'dirty', the water will either be pumped to the pre-storage (buffer) tank within the containment bund to be used within the process or to the dirty water lagoon located to the east of the site. All options involve manually operated pumped pipework.
- 5.10. Plandescil have proposed a maintenance regime for the drainage and containment infrastructure which is detailed in Section 6.0 of the Drainage Design Report (Appendix C). This will be adopted by BCNE and form part of the site environmental management system.
- 5.11. Condensate is collected in a condensate pit and then pumped to the digestate storage tank.
- 5.12. Up to 23m³/day of polished water from the Ekogea H2E polishing plant, that is surplus to the AD plant requirements, will be released to the infiltration pond via separate pipework and an inline quality monitoring unit to the infiltration pond.
- 5.13. In order to assess the potential impacts of the discharge to ground of the polished water TerraConsult Limited were commissioned to produce an Effluent Infiltration Assessment (Appendix F). The assessment included a desktop study and concluded that the infiltrate will enter a shallow, thin groundwater body which is in hydraulic continuity with the River Penk.
- 5.14. The biochemical oxygen demand of the polished water is expected to be low whilst other determinants which could act as potential pollutants if released to a waterbody would either be treated by the process or accumulate within the digestate and then usefully applied to land as nutrients for crops. The infiltration assessment concluded that a load of 50mg/l ammoniacal nitrogen discharged directly to surface water or a discharge of 636mg/l to soakaway would cause no discernible change in water chemistry i.e. an insignificant discharge load. Therefore as a very conservative approach a discharge consent limit of 50mg/l ammoniacal nitrogen has been proposed.
- 5.15. The polished grey water will be tested using a continuous, online dissolved ammonia monitor as it is discharged from the H2E plant. The detection range of the monitor is proposed to be 0 20mg/l to allow the monitor to act as a process optimisation tool so that corrective actions can be taken if there is an increasing trend in ammoniacal nitrogen well before any consented limit is reached. The technology provider, Ekogea have confirmed that these levels can be achieved by the polishing plant.

6. Control of Emissions to Air

- 6.1. The emission points to air 1-12 inclusive are shown on Figure 3 Emission Point Plan.
- 6.2. The control of emissions from the CHP stack (emission point 7) is primarily through planned preventative maintenance and inspection of the engine which is carried out by a specialist third party contractor (2G Energy AG).
- 6.3. The emissions from the flare (emission point 9) and the pressure release valves (PRVs) (emission points 1-4) will be controlled through process monitoring and management of biogas production. Alteration of AD plant feeding regime varies biogas production and load to the CHP and upgrade plant will be varied. Matching production to use requirement correctly ensures that the production of excess biogas and hence emissions of raw biogas through the PRVs and use of the flare is minimised. The PRVs will operate at 3.5mbar (relief) and -1.0mbar (vacuum). The flare will automatically operate if the pressure in the gas storage domes reaches 3.0mbar. Therefore emissions of raw biogas will be minimised. Control of gas pressures is described in detail in the BAT Assessment which supports this application (BAT 8, BAT 15 and Indicative BAT requirements for biogas treatment (AD TGN)).
- 6.4. The flare is a BAT compliant, high temperature, ground enclosed flare.
- 6.5. The Air Quality Assessment (ETL437/AQA/V1.0/Lower Drayton) which accompanies this application provides a full assessment of potential impacts of emissions to air from the proposed operation upon nearby human and ecological receptors.

7. Control of Amenity Impacts


- 7.1. As previously noted, the Environmental Risk Assessment (Appendix A of the EMS Manual **(BCNE EMS Man 001)**) is based upon the generic risk assessment for SR2012 No.9. There are no perceived additional amenity impacts associated with the Ekogea plant and proposed discharge to ground of polished water. However the potential for odour, noise and bioaerosol impacts from the Ekogea plant have been considered as part of these individual assessments.
- 7.2. The primary control of odour is at source as silage clamps will be covered and only exposed for removal of feedstocks. Manure will be transported to site via trailer as and when required on a just in time basis. Manure will be stored within the permitted area within the silage clamp and loaded to the feed hopper directly. Manures will be covered with silage within the feed hopper to reduce odour potential from this source.
- 7.3. In order to minimise emissions from the Ekogea plant and associated storage tanks, namely hydrogen sulphide, the following vents will be fitted with filters comprising iron pellets and active carbon:
 - 1 No. on the Combined vent for polishing plant, grey water and clean water storage tanks
 - 2 No. on the Concentrators
 - 1 No. on the Micronisation plant
- 7.4. In addition, the whole Ekogea system is operated under negative pressure.
- 7.5. An Odour Management Plan has been developed by ETL as part of the permit application for use as part of the management system once the site is operational.
- 7.6. A Site Specific Bioaerosol Risk Assessment has been undertaken by Redmore Environmental (Appendix G). Their report concludes: "The results of the assessment indicated residual risk from all sources was determined as low or very low. As such, potential impacts as a result of bioaerosol emissions from the proposed facility are not considered to represent a constraint to the proposals."
- 7.7. Pre-application advice from the Environment Agency confirmed the requirements for a Noise Impact Assessment to form part of the permit variation application. A noise assessment for the proposed site was carried out by Inacoustic noise consultants at the planning stage.¹ The assessment indicated that sound emissions associated with the proposed development are likely to have a low impact at the nearest receptors. Inacoustic noise consultants have updated this report to reflect the updated site layout and proposed activities. The resulting Technical Noise Assessment forms part the permit application.
- 7.8. Whilst not restricted under the planning consent, the proposed operating hours are 06:00 to 18:00, Monday to Sunday inclusive. Appropriate noise mitigation measures will be employed were required in accordance with specialist advice.

¹ Noise Assessment for Planning Application, Inacoustic, 13th April 2016

7.9. In accordance with the Environmental Risk Assessment (Appendix A of the EMS Manual **(BCNE EMS Man 001)**), there are no other significant amenity hazards.

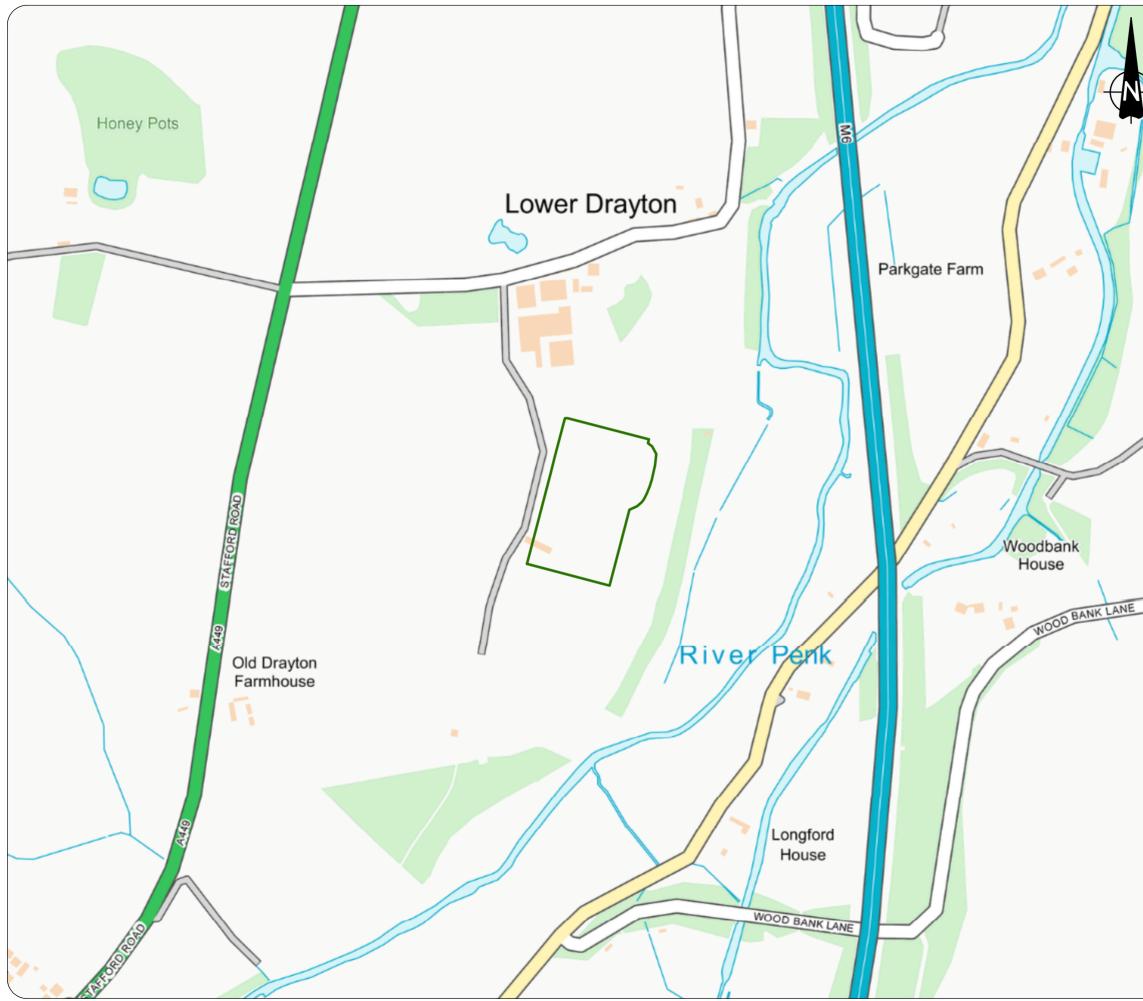
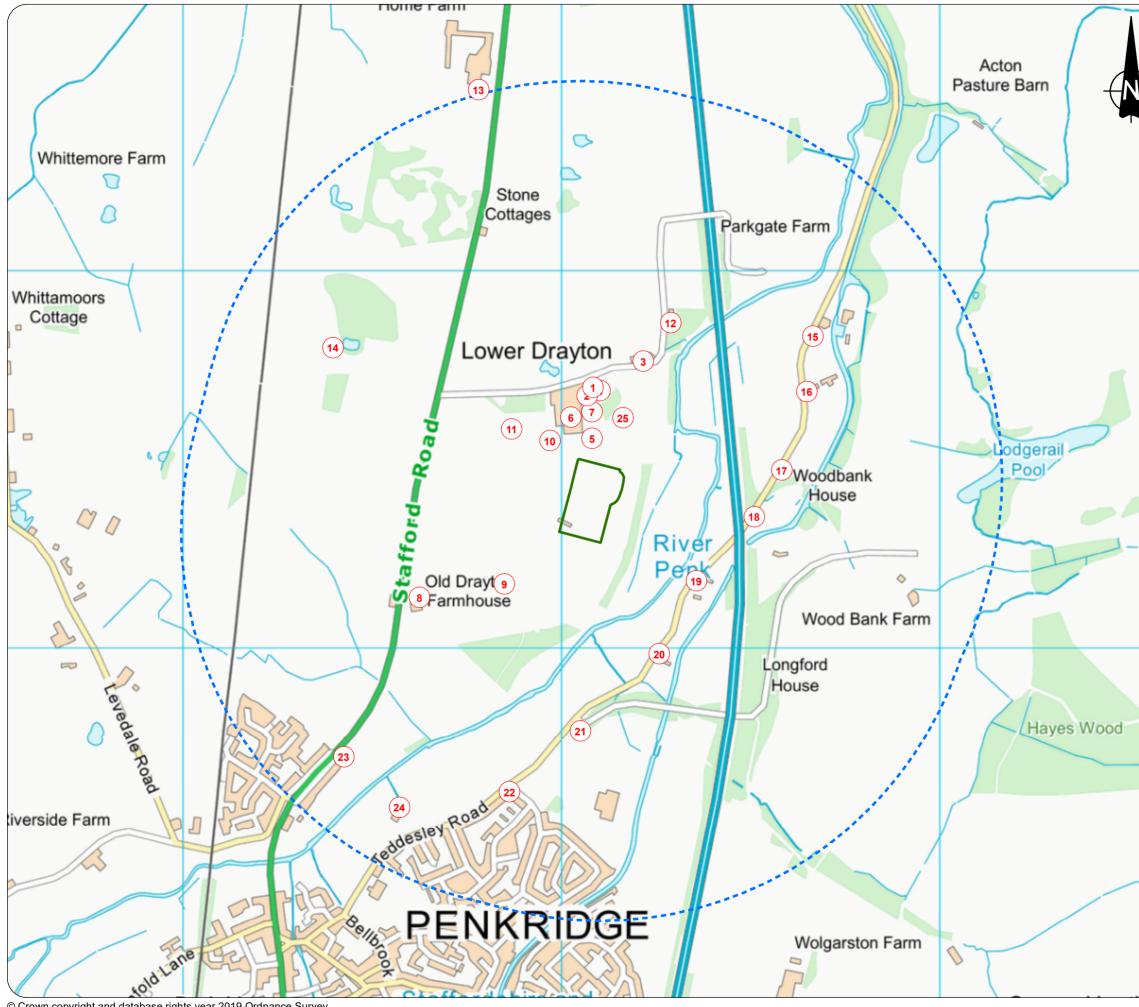

Figures

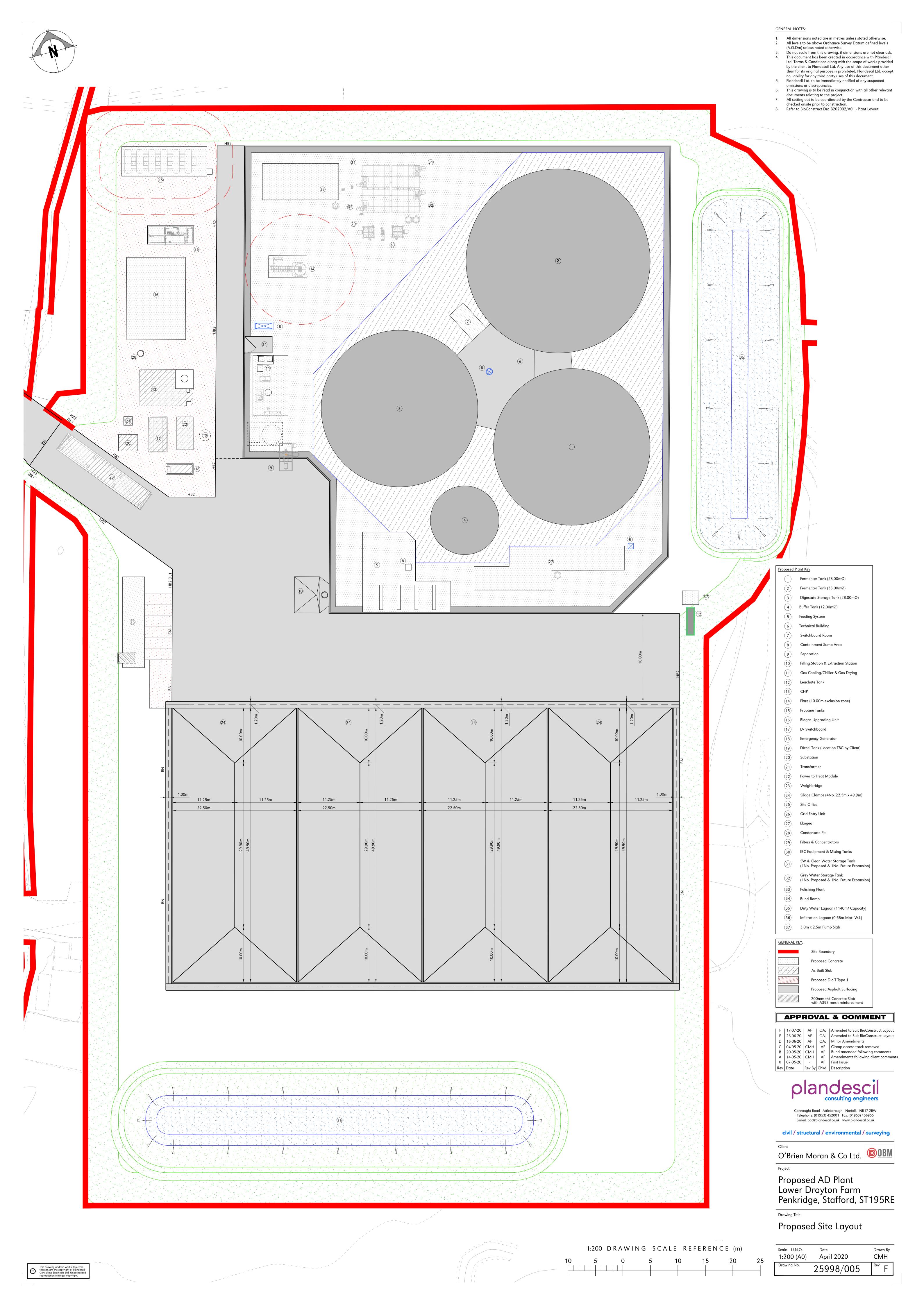
Figure 1: Site Location Plan – ETL437/SPC0107 /EPR01 Figure 2: Permit Boundary Plan - ETL437/SPC0107 /EPR02 Figure 3: Emission Point Plan – ETL437/SPC0107/EPR03 Figure 4: Human Receptor Plan – ETL437/SPC0107/EPR04 Figure 5: Proposed Site Layout – Plandescil, 25998 - 005 Rev F Figure 6: Proposed Drainage Layout – Plandescil 25998 - 007 Rev F

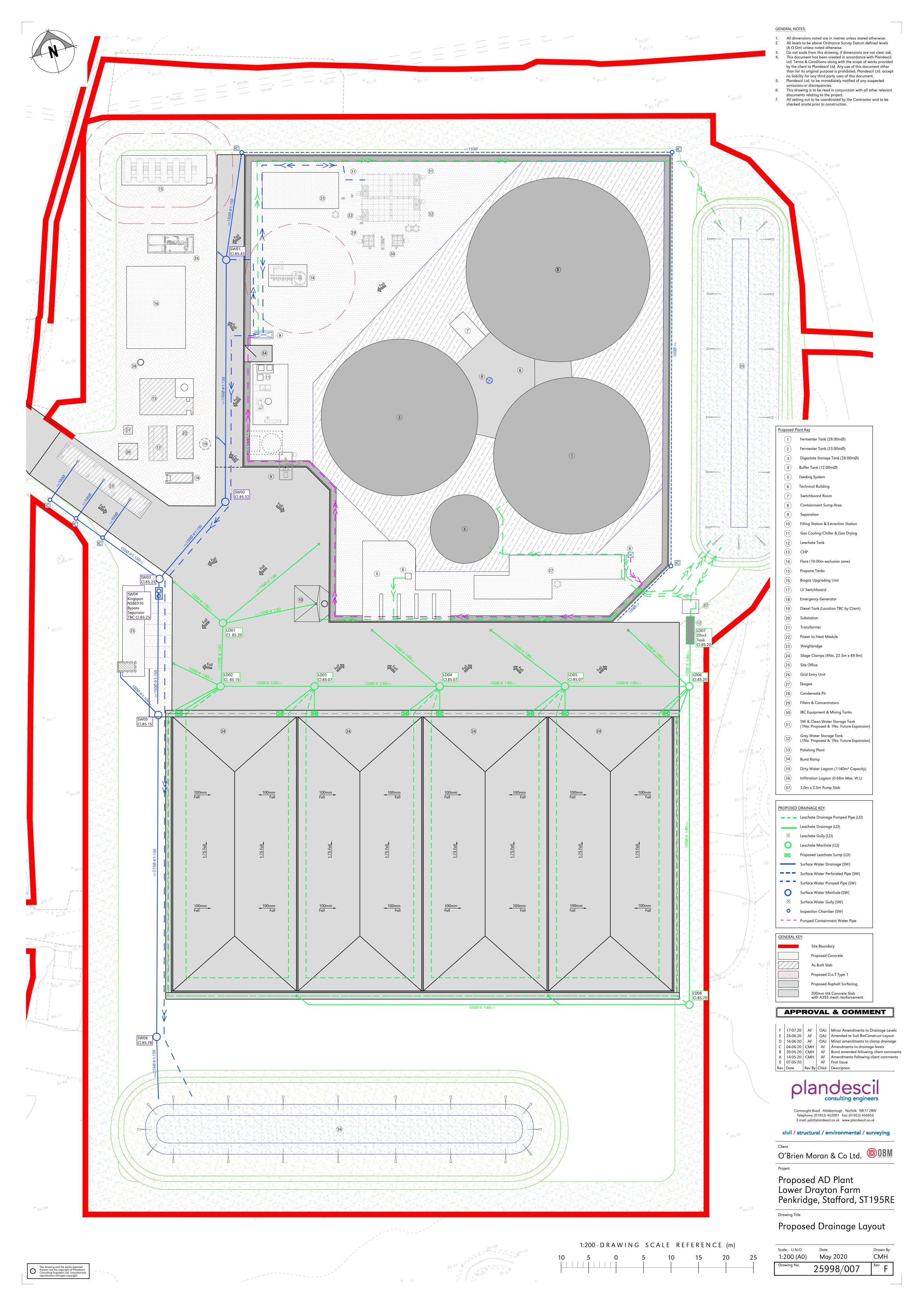
© Crown copyright and database rights year 2019 Ordnance Survey

REVIS	SIONS					
REV	DATE	DESCRIPTION		DWN	СНК	APP
-	16/07 2020	First Issue		JJ	MF	MF
LEGE	ND					
_		Permitted I	houndary			
		enniteur	Joundary			
0	1	100 200	300 400	50	0	600 m
0	1	100 200 Scal	300 400 e at A3: 1:10,000	500	0 (600 m □
0 Client	1			50(0 (600 m □
Client			e at A3: 1:10,000	50(0 (600 m
Client		Scal	e at A3: 1:10,000	500	0 (600 m ⊐
Client		Scal	e at A3: 1:10,000	500	0 (300 m ⊐
Client Lowe Project Lowe	r Drayto	Scal on Biogas Proje on Farm AD	e at A3: 1:10,000	50(D (500 m ⊐
Client Lowe Project Lowe	r Drayto	Scal	e at A3: 1:10,000	500	0 (600 m ⊐
Client Lowe Project Lowe New	r Drayto	Scal on Biogas Proje on Farm AD	e at A3: 1:10,000	500	0 (600 m □
Client Lowe Project Lowe New I	r Drayto	Scal on Biogas Proje on Farm AD e Installation Ap	e at A3: 1:10,000	500	0 (600 m ⊐
Client Lowe Project Lowe New I	r Drayto r Drayto Bespoki	Scal on Biogas Proje on Farm AD e Installation Ap	e at A3: 1:10,000	500	0 6	500 m
Client Lowe Project Lowe New I	r Drayto r Drayto Bespoki	Scal on Biogas Proje on Farm AD e Installation Ap	e at A3: 1:10,000	50(D (500 m
Client Lowe Project Lowe New I	r Drayto r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited		Mano	Tr Farm
Client Lowe Project Lowe New I	r Drayto r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited		Mano. C Wateri	r Farm halton ooville
Client Lowe Project Lowe New I	r Drayto r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited		Mano C Wateri Hants PO	r Farm halton ooville 8 0BG
Client Lowe Project Lowe New I	r Drayto r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited oplication	Te	Mano C Waterl Hants PO I: 02392 2	r Farm halton 8 0BG 90488
Client Lowe Project Lowe New I	r Drayto r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited oplication contraction	Te	Mano C Wateri Hants PO I: 02392 2 technical.	r Farm haiton ooville 8 0BG 90488 cco.uk
Client Lowe Project Lowe New I	r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited oplication contraction	Te	Mano C Wateri Hants PO I: 02392 2 technical. technical.	r Farm halton ooville 8 0BG 90488 cc.uk
Client Lowe New I Title Site L	r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited oplication concernation concernation concernation	Te gearthcare earthcare	Mano C Wateri Hants PO I: 02392 2 technical. technical.	r Farm halton ooville 8 0BG 90488 cc.uk
Client Lowe New 1 Title Site L Drawn JJ Date	r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited oplication ctoo Limited oplication control contro control control control control control contr	Te pearthcare earthcare Revision Sheet Si	Mano C Wateri Hants PO I: 02392 2 technical.	r Farm halton ooville 8 0BG 90488 cc.uk
Client Lowe New I Title Site L Drawn JJ Date July 2	r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited oplication enquiries@ www Approved MF	Te gearthcare earthcare Revision Sheet Si A3	Mano C Wateri Hants PO I: 02392 2 technical. technical. technical.	r Farm haiton ooville 8 0BG 90488 cco.uk
Client Lowe New I Title Site L Drawn JJ Date July 2	r Drayto Bespoke	Scal on Biogas Proje on Farm AD e Installation Ap Plan	e at A3: 1:10,000 ctco Limited oplication ctoo Limited oplication control contro control control control control control contr	Te pearthcare earthcare Revision Sheet Si	Mano C Wateri Hants PO I: 02392 2 technical. technical. technical.	r Farm halton ooville 8 0BG 90488 cc.uk


 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights year 2019 Ordnance Survey

RE	ISIONS/					
REV	DATE	DESCRIPTION	I	DWN	СНК	APP
-	16/07 2020	First Issue		JJ	MF	MF
LEG	END	1		1	1	
		Permitted	boundary			
	0	100	200			300 m
	0		200 le at A3: 1:5,000			300 m
Client		Sca	le at A3: 1:5,000			300 m
			le at A3: 1:5,000			300 m ■
		Sca	le at A3: 1:5,000			300 m
Lov	ver Drayte	Sca on Biogas Proj	le at A3: 1:5,000			300 m ■
Lov Projec Lov	ver Drayte	Sca	ectco Limited			300 m ■
Lov Projec Lov	ver Drayte	Sca on Biogas Projo on Farm AD	ectco Limited			300 m
Lov Projec Lov	ver Drayte	Sca on Biogas Projo on Farm AD	ectco Limited			300 m
Lov Projec Lov Nev Title	ver Drayte t ver Drayte v Bespok	Sca on Biogas Projo on Farm AD	ectco Limited			300 m
Lov Projec Lov Nev Title	ver Drayte t ver Drayte v Bespok	Sca on Biogas Projo on Farm AD e Installation A	ectco Limited			300 m
Lov Projec Lov Nev Title	ver Drayte t ver Drayte v Bespok	Sca on Biogas Projo on Farm AD e Installation A	ectco Limited			300 m
Project Lov Nev Title Per	ver Drayte t ver Drayte v Bespok mit Boun	Sca on Biogas Proje on Farm AD e Installation A dary Plan	ectco Limited		Mano	• •
Project Lov Nev Title Per	ver Drayte t ver Drayte v Bespok mit Boun	Sca on Biogas Proje on Farm AD e Installation A dary Plan	ectco Limited		Mana	■ Ir Farm Chalton looville
Project Lov Nev Title Per	ver Drayte t ver Drayte v Bespok mit Boun	Sca on Biogas Proje on Farm AD e Installation A dary Plan	ectco Limited	Te	Mano	r Farm halton looville 88 0BG
Project Lov Nev Title Per	ver Drayte t ver Drayte v Bespok mit Boun	Sca on Biogas Proje on Farm AD e Installation A dary Plan	le at A3: 1:5,000 ectco Limited .pplication COCICE enquiries(earthcare	Mano Q Water Hants PC II: 02392 2	r Farm 2halton looville 88 0BG 290488 co.uk
Project Lov Nev Title Per	ver Drayte t ver Drayte v Bespok mit Boun	Sca on Biogas Proje on Farm AD e Installation A dary Plan	le at A3: 1:5,000 ectco Limited .pplication COCICE enquiries(Mano Q Water Hants PC II: 02392 2	r Farm 2halton looville 88 0BG 290488 co.uk
Lov Projec Lov Nev Title Per	ver Drayte ver Drayte v Bespoke mit Boun	Sca on Biogas Proju- on Farm AD e Installation A dary Plan	ectco Limited pplication contraction enquiries(www Approved	earthcare	Mano C Water Hants PC I: 02392 2 Itechnical	r Farm 2halton looville 88 0BG 290488 co.uk
Lov Projec Lov Nev Title Per	ver Drayte ver Drayte v Bespoke mit Boun	Sca on Biogas Proje on Farm AD e Installation A dary Plan	le at A3: 1:5,000 ectco Limited .pplication COCICE enquiries(www	earthcare earthcare	Mano C Water Hants PC I: 02392 2 Itechnical	r Farm 2halton looville 88 0BG 290488 co.uk
Lov Projec Lov Nev Title Per	ver Drayte ver Drayte ver Drayte mit Boun ECH	Sca on Biogas Proju- on Farm AD e Installation A dary Plan	le at A3: 1:5,000 ectco Limited pplication COCICE enquiries(www Approved MF Scale	Dearthcare	Mano C Water Hants PC Hants PC Hants PC	r Farm 2halton looville 88 0BG 290488 co.uk
Lov Projec Lov Nev Title Per Drawr JJ Date July	ver Drayte ver Drayte v Bespoke mit Boun	Sca on Biogas Proju- on Farm AD e Installation A dary Plan	ectco Limited pplication enquiries(www Approved MF	Dearthcare	Mano C Water Hants PC I: 02392 2 Itechnical Itechnical	r Farm 2halton looville 88 0BG 290488 co.uk


Based on drawing '25998 - 005E, 006E, 007E, 008B - Proposed Site Layout (Email Issue 26.06.20) - Rev A' supplied by Plandescil Ltd.

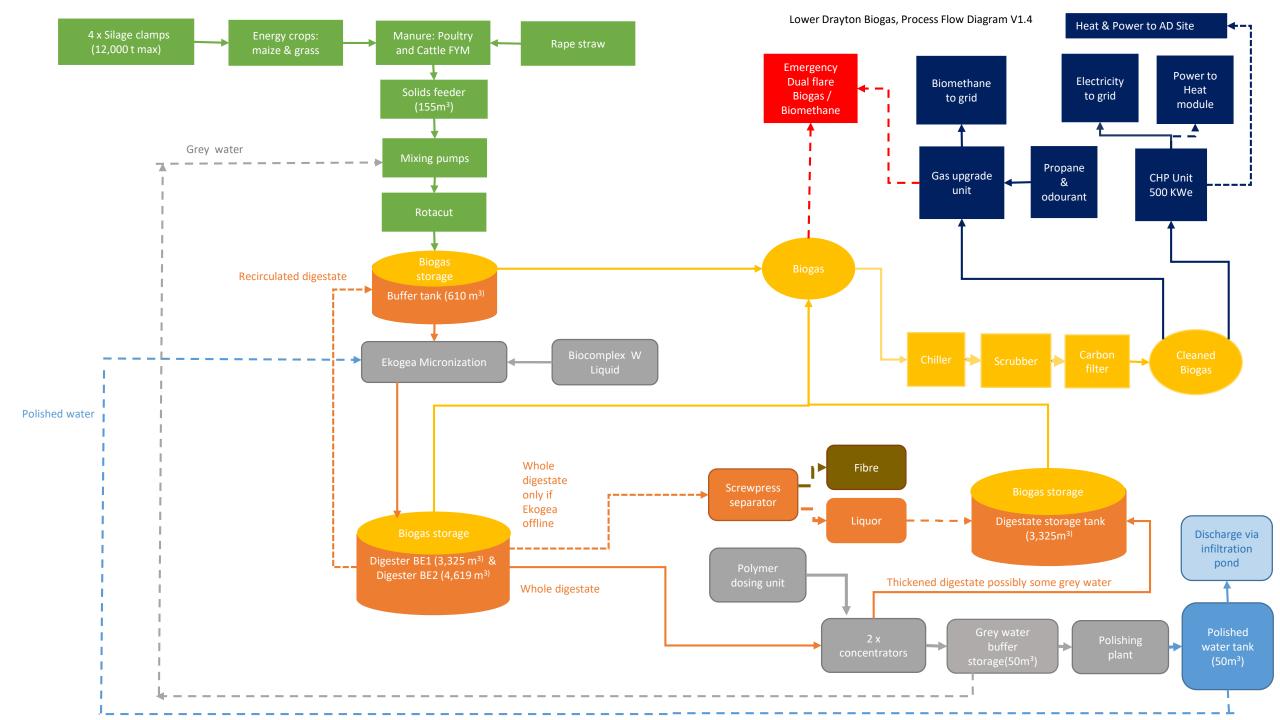

REVI	SIONS					
REV	DATE	DESCRIPTION		DWN	СНК	APP
-	16/07 2020	First Issue		JJ	MF	MF
	2020					
LEGE	IND					
	_	Permitted b	oundary			
G	`		-	ef valv	e on	
(1)		pressure relie			
(2)	Emergency fermenter 2	pressure relie	ef valv	e on	
3)	Emergency digestate st	pressure relie orage tank	ef valv	e on	
4)	Emergency buffer tank	pressure relie	ef valv	e on	
(5)	CO₂ vent at	t gas upgradin	ıg unit		
6)	Emergency gas upgrad	pressure relie	ef valv	e on	
7)	Exhaust sta	ick CHP			
8))	Exhaust sta	ick emergency	/ gene	erator	
Ĩ)	Emergency	gas flare			
1)	Filter on ver	nt from polishi	ng pla	int	
1)	Filter on ver	nt from concei	ntrator	s	
(12		Filter on ver	nt from micror	isatio	n plan	t
(13	9	Polished wa discharge to	ater and surface o infiltration po	ce wat ond		
	0 m	Cool	- 1:1000 @ 42		50 m	
lient		Scal	e 1:1000 @ A3			
	er Drayto	on Biogas Proje	ctco Limited			
roject						
		on Farm AD e Installation Ap	plication			
Fitle						
Emis	sion Po	int Plan				
-	0	11			Mano	r Farm
E	CI	rthc	are			Chalton looville 8.0BG
TE	CH	NICAL			1: 02392 2	
			enquiries@		technical. etechnical	
Drawn JJ		Checked MF	Approved MF	Revision		
Date July 2	2020		Scale 1:1,000	Sheet Si A3	ze	
	Number		,	File Refe	erence	
ETL4	137/SPC	107/EPR03			00437	

© Crown copyright and database rights year 2019 Ordnance Survey

T L T C	SIONS					
REV	DATE	DESCRIPTION		DWN	СНК	APP
-	17/07 2020	First Issue		JJ	MF	MF
LEGE	ND					
] F	Permitted b	oundary			
623) F	Permitted b	ooundary 1k	m bu	ffer	
R		Receptor lo				
U		veceptor it	Joalion			
0	1	100 200	<u>300 400</u>	500) 6	600 m ⊐
	1		300 400 e at A3: 1:10,000	500) (
Client			e at A3: 1:10,000	500) (
Client		Scale	e at A3: 1:10,000	500) (
Client Lower		Scale	e at A3: 1:10,000	500) (
Client Lower Project	. Drayto	Scale	e at A3: 1:10,000	500) (
Client Lower Project	. Drayto	Scale	e at A3: 1:10,000	500) (
Client Lower Project Bespo	. Drayto	Scale	e at A3: 1:10,000	500) 6	
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000	500) (
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000	500) (
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000	500) (
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000 ctco Limited mit Application n Buffer)		Manoi	
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000 ctco Limited mit Application n Buffer)		Manou C Wateri	r Farm halton ooville
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000 ctco Limited mit Application n Buffer)		Manoi C Wateri Hants PO	T Farm halton poville 8 0BG
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000 ctco Limited mit Application n Buffer)	Tel	Manou C Wateri Hants PO :: 02392 2	Farm halton ooville 8 0BG 90488
Client Lower Project Bespo	Drayto	Scale	e at A3: 1:10,000 ctco Limited mit Application n Buffer) COCICE enquiries@	Tel	Manou C Wateri Hants PO :: 02392 2	TFarm halton ooville 8 0BG 90488 co.uk
Client Lower Project Bespo	oke Env	Scale	e at A3: 1:10,000 ctco Limited mit Application n Buffer) COCICE enquiries@	Tel	Manoi C Wateri Hants PO : 02392 2 technical.d	TFarm halton ooville 8 0BG 90488 co.uk
Client Lower Project Bespo Title Recep	oke Env	Scale on Biogas Proje vironmental Peri cation Plan (1km	e at A3: 1:10,000 ctco Limited mit Application n Buffer) cocice enquiries@ www.	Tel earthcarel earthcare	Manoi C Wateri Hants PO : 02392 2 technical.d	TFarm halton ooville 8 0BG 90488 co.uk
Client Lower Project Bespon Title Recep Te Drawn JJ Date	oke Env	Scale on Biogas Proje rironmental Period cation Plan (1km NICAL	e at A3: 1:10,000 ctco Limited mit Application n Buffer) conce enquiries@ www. Approved MF Scale	Tel earthcarel earthcare	Manor C Wateri Hants PO I: 02392 2 technical.	TFarm halton ooville 8 0BG 90488 co.uk
Client Lower Bespo Title Recep Te Drawn JJ Date July 2	oke Env otor Loc	Scale on Biogas Proje rironmental Period cation Plan (1km NICAL	e at A3: 1:10,000 ctco Limited mit Application n Buffer) conce enquiries@ www. Approved MF	Tel earthcarel earthcarel Revision Sheet Si	Manoi C Wateri Hants PO : 02392 2 technical.d technical.d	TFarm halton ooville 8 0BG 90488 co.uk
Client Lower Bespo Title Recep Te Drawn JJ Date July 20 Drawing	oke Env otor Loc CH	Scale on Biogas Proje rironmental Period cation Plan (1km NICAL	e at A3: 1:10,000 ctco Limited mit Application n Buffer) conce enquiries@ www. Approved MF Scale	Tel earthcarel earthcarel Revision Sheet Si A3 File Refe	Manoi C Wateri Hants PO : 02392 2 technical.d technical.d	TFFarm halton poville 8 0BG 990488 zouk

Appendix A – Schedule 1 Listed Activity and Directly Associated Activities

Version 1.0 Issue 1.0


July 2020

Name of DAA	Description of DAA (all serve S5.4 Part A(1)(b)(i))
Storage of waste pending recovery	Storage of feedstocks prior to treatment in the anaerobic digestion process
Raw material storage	Storage of raw materials e.g. sulphuric acid, coagulants and flocculants for digestate concentration process
Physical treatment for the purpose of recycling	Biogas cleaning Separation of digestate (non-routine)
Steam and electrical power supply	Combustion of biogas in a combined heat and power engine with a thermal input power of 1.34mW. Use of heat and electricity in AD process. Export of excess electricity to National Grid.
Emergency flare operation	Use of emergency flare during periods of extended breakdown or maintenance
Gas upgrading	Upgrading of biogas to biomethane (including removal of moisture and other substances such as ammonia, carbon dioxide, hydrogen sulphide and volatile organic compounds) for injection into National Grid.
Gas storage	Storage of biogas above the two fermenters, digestate storage and buffer tanks.
Digestate thickening	Treatment of whole digestate with polymer and concentration in Ekogea concentrator units to produce thickened digestate and grey water
Grey water treatment	Treatment of grey water in Ekogea 'H2E' polishing plant, a single stage anaerobic waste water treatment plant. to produce polished water
Feedstock micronisation	Pre-treatment of feedstocks in the Ekogea micronisaiton plant which uses polished water from grey water treatment and a BioComplex
Digestate separation	Separation of digestate in a screw press separator (non-routine)
Digestate storage	Storage of thickened digestate and / or whole digestate in storage tank and fibre in concrete storage bay (non-routine)

Schedule 1 Listed Activities and Directly Associated Activities

Surface collection storage	water and	Collection of water from sealed drainage areas, treatment in oil separator and storage in infiltration pond
Discharge polished wa	of iter	Discharge of excess polished water (and clean surface water) to ground via the infiltration pond and in accordance with specified quality limits
Dirty collection storage	water and	Dirty water collection from dirty areas of site, storage in dirty water lagoon and reuse in the process

Appendix B – Process Flow Diagram

Appendix C – Drainage Design Report

Design Strategy and Details of Proposed Site Drainage Scheme

Job No. 25998

Proposed Anaerobic Digestion Plant Lower Drayton Farm, Penkridge Stafford, ST19 5RE

Client: O'Brien Moran & Co Ltd

Prepared By: Alex Fitzgerald

July 2020

Revision B

civil / structural / environmental / surveying

CONTE	NTS	3
1.0	BACKGROUND INFORMATION	4
2.0	ANAERBOBIC DIGESTION SITE LAYOUT, PROCESS & CONCEPT	4-5
3.0	DESIGN & METHODOLOGY OF DRAINAGE SYSTEM	5-7
4.0	SILAGE CLAMP OVERVIEW	7-8
5.0	REVIEW PERIODS DURING CONSTRUCTION	9
6.0		9-10
7.0	APPENDIX DETAILS AND DRAWINGS EXPLAINED	10-11

DRAWINGS, CALCULATIONS AND SPECIFICATIONS APPENDIX (Listed in 6.0 APPENDIX DETAILS AND DRAWINGS)

1.0 BACKGROUND INFORMATION

- 1.1 Plandescil Ltd have been commissioned to provide the construction specification and details for the civil engineering elements associated with the Anaerobic Digestion Plant at Lower Drayton Farm in Penkridge, Stafford. This appointment was received from the Civil Engineering Contractor, O'Brien Moran & Co Ltd, as well as the Process Provider, BioConstruct.
- **1.2** This report provides design rationale for the drainage philosophy at Lower Drayton Farm, along with requirements for operation and maintenance. The corresponding drainage design drawings, schedules and construction details accompany this report in the Appendix.

2.0 ANAEROBIC DIGESTION LAYOUT, PROCESS & CONCEPT

- **2.1** O'Brien Moran & Co Ltd instructed Plandescil Ltd to undertake the civil engineering design of the secondary containment bund, silage clamps, hardstanding areas and site drainage for the proposed Anaerobic Digestion Facility located at Lower Drayton Farm, Stafford.
- 2.2 Anaerobic Digestion is the breaking down of organic material, causing the release of heat and the natural gases, carbon dioxide and methane. The aim of the Plant is to use the gas provided by the process, by cleaning the gas and injecting it into the national gas grid and/or using the heat to power combined heat and power unit where it is converted to electricity and fed into the national electricity grid.
- **2.3** This process creates both liquid and solid digestate by-product. The liquid is a stable nutrient rich liquid which can be used as fertiliser or as a soil conditioner. The solid dry digestate can be used in a similar way to manure and spread on fields.
- 2.4 The first stage of the process is the storage of freshly harvested input product (silage), which could be maize, sugar beet, and grass etc. The input product is transported to site typically during the harvest season, where it is unloaded into the 4No. designated silage clamps. The product is then arranged and compacted by farm machinery within the clamp to allow for the most economical use of the space.
- 2.5 Once the product has been delivered and compacted within the concrete wall silage clamps, they are then covered over to protect the ensiled material from moulding and heating, minimising energy wastage. The clamps have a three layer covering system which is anchored to the top of the concrete walls, prohibiting the intrusion of rainwater into the silage and ensuring odour is kept in and the silage remains in an ideal condition to release its energy when it is introduced into the process.
- 2.6 The covering system consists of a thin underlay film which lies tightly against the silage, the film prevents air from penetrating the silage. A secondary silage film is laid over the top to give extra protection to the silage. The films are then smoothed down and secured in place along the edge of the clamp with gravel bags.

- **2.7** The final layer is the silage clamp protection netting. This exposed layer protects the film and silage from any damage. The netting is weighted down using gravel bags to create a secure seal on the clamp.
- **2.8** Regular loads of stored silage are tipped into a nearby feedhopper. The silage is then moved via a screw auger and pumped pipework into the primary fermentation tank where the gas is released within the process; carried out in specifically calculated and monitored doses.
- **2.9** The silage continues to be broken down within the tanks where heat, biogas, solid and liquid digestate are produced from the process.

3.0 DESIGN & METHODOLOGY OF DRAINAGE SYSTEM

- **3.1** The drainage has been designed in accordance with best practice guidelines, using the experience Plandescil has gained from working within the Anaerobic Digestion Industry for more than 10 years.
- **3.2** The aim of the drainage scheme proposed for the Anaerobic Digestion Plant is to remove all clean and dirty water from the sites hardstanding areas as quick as possible; achieved through segregated drainage systems. A dirty water (leachate) system has been designed for the process material storage areas on the site, where vehicle movements are prevalent and surface water contamination is possible. Meanwhile, a separate clean system has been proposed for areas of the site where surface water is to be free from potential contamination.
- **3.3** The leachate water system is comprised of a combination of gullies, sumps and manholes to collect the potentially dirty water run-off from the silage clamps and the dry digestate storage area. These areas are presumed to be dirty water and discharge to the 22,000l below ground leachate tank. The leachate system has been designed without the requirement for valves and remains open all year round. This design consideration mitigates the potential for contamination of surface water through potential errors during the plants operation.
- **3.4** The internal silage clamps floor surfacing levels have been designed to ensure water run-off navigates towards the 1.20m wide surface formed drainage V-formed channel at the north and does not pond on the surface or collect near the wall units. 8No. 1.35mØ sumps are to be installed within the north V-formed channel to collect the leachate water run-off.
- 3.5 A 1.0m wide perimeter asphalt-formed dish channel is proposed to the rear of the L-shaped wall panels, capturing any potential leachate water from silage overspill during operation. Moreover, below ground filter drains have been designed around the entire wall system (internally and externally) to provide a rigorous leak detection system. The perforated filter drains are installed above a sealed 1mm HDPE liner which provides greater environmental protection. The silage clamp construction arrangement is discussed further within 'Section 4.0 Silage Clamp Overview' and detailed on Plandescil Ltd Drawing No. 25998/103 Rev A in the Appendix.

- **3.6** Installing a combined drainage system between the clamps and adjacent surface apron is justified by the vehicle movements in this area potentially tracking leachate water across the asphalt surface; additional leachate gullies capture dirty water run-off in the area north of the clamps. The system has been designed for the leachate water flow to constantly remain open to eradicate the requirement for valves.
- **3.7** The leachate tank has 2No. pumped outlet connections; one to the fermenter tank for usage within the anaerobic digestion process and another to the lined dirty water lagoon at the north-east of the site, for additional liquid storage if required.
- **3.8** To maximise robustness and longevity of the leachate system, all surface water manholes are to be fully coated internally with bitumen paint, preventing deterioration of the pre-cast concrete rings. Furthermore, UPVC foul water pipe has been specified for all gravity leachate pipework on the site to mitigate the potential for any future leakages at joint locations.
- **3.9** Where leachate contamination is not expected, the asphalt roads and hardstanding areas are to be drained in traditional methods via gully's and manholes. The clean water captured by this system outfalls to the infiltration pond at the south, first passing through a full retention fuel interceptor.
- **3.10** Half-battered kerbs are to be installed around the perimeter of all hardstanding areas to ensure water does not by-pass these proposed systems and the surface levels are designed to ensure the water flows towards the appropriate system.
- **3.11** Percolation tests were undertaken across the site by an external Engineering Consultancy (JNP Group) in accordance with BRE365, enabling a final Vp (percolation value) to be determined for the site. The Vp is calculated by recording the depth of water at recommended time intervals to identify the time taken for the water in the trial hole to drain from 75% full to 25% full. A recorded drained depth over a period divided by the time taken to do so provides the average time in seconds (Vp) required for the water to drop 1mm. This test information was used to design an infiltration pond. The percolation values obtained from the onsite testing and used in the Micro Drainage calculations are provided within the Appendix to this document. The design is based on a 1-in-100-year event plus 40% for climate change.
- **3.12** A surface water perforated filter drain pipe is installed around the north and east external containment bund perimeters, linked by a series of inspection chambers and discharging to the clean water system for final discharge into the infiltration pond.
- **3.13** The site was assessed to deduce the most suitable and practical location for the proposed soakaway. The assessment conducted by the engineers and designers concluded that the most suitable location for the infiltration pond would be to the south of the site, as shown on Plandescil Ltd Drawing No. 25998/005 Rev E in the Appendix.

- **3.14** The surface water system has been designed with sufficient capacity to allow for the clean containment bund liquid to be pumped into the soakaway at a rate of 2l/sec, instead of fully discharging as per a normal event. This containment bund water first pumps to a manhole chamber at the north-west of the site and flows towards the infiltration pond at the south via gravity, passing through the full retention fuel interceptor before discharging.
- **3.15** The containment structure drainage and construction details of the bund are explained in a separate report prepared by Plandescil. The report confirms that any liquid within the containment bund cannot be discharged until it has been tested and is certified as clean to be released. This information is also summarised below for the reader's convenience.
- **3.16** As part of the operational management of the facility, any containment bund liquid captured within the drainage sumps will be routinely checked and tested prior to being discharged to one of the proposed locations shown on the proposed drainage layout 'Plandescil Ltd Drawing No. 25998/007 Revision E'. If the containment sump water is tested as 'clean', the liquid will be pumped over the containment wall into the surface water system to the west of the site, out-falling to the 365m³ infiltration pond located to the south of the site. An additional volume of clean water will discharge to the south infiltration pond from the Ekogea system within the containment bund at a maximum rate of 23m³. The polished water will first be pumped to the primary containment bund sump before it is tested and discharged.
- **3.17** Should the containment bund sump liquid be tested as 'dirty', the water will be pumped to the 1,140m³ lined dirty water lagoon located to the east of the site. If required, the dirty water lagoon liquid would be pumped back to the pre-storage (buffer) or fermenter tank within the containment bund, for use within the process. The 2No. smaller sump pits to the south of the containment bund are to be presumed dirty and therefore pumped to the dirty water lagoon. A pumped connection from the south-east sump to the primary sump have also been proposed to allow the option for this area to outfall to the clean system. All options involve manually operated pumped pipework.

4.0 SILAGE CLAMP OVERVIEW

- 4.1 The silage clamps at Lower Drayton Farm have been designed in accordance with the latest SSAFO regulations. There are four silage clamps, each measuring 22.5m width and 50.0m length. The clamp walls are constructed with interlocking precast concrete L-shaped panels to the sides and rear (east, west and south), whilst T-shaped panels are installed internally. The panels are manufactured by Bosch Beton (supplied by ARK Agriculture, formerly BOCK UK) and have been specifically designed for agriculture material storage such as silage.
- **4.2** The connections between the interlocking wall panels are sealed with approved leachate resistant sealant as specified by the wall supplier ARK Agriculture. The precast panels have been engineered to meet/exceed the silage clamp material loading requirements, in accordance with British Standards and SSAFO regulations.

The SSAFO compliance is further aided by a perimeter drain and monitoring chamber to ensure all dirty water run-off is captured in the leachate water drainage system. The silage clamp details are presented in the appendix.

- **4.3** The soil strata beneath the entire silage clamp floor area has received dynamic compaction stabilisation to a depth of 300mm by a specialist contractor (Independent Stabilisation Company Ltd); ensuring a minimum CBR value of 30% is achieved. The rigorous foundation arrangement proposed for the silage clamps wall panels are shown on Plandescil Ltd Drawing No. 25998/103 Rev A in the Appendix.
- 4.4 The clamp floor consists of asphalt surfacing with designed falls to the centre, preventing leachate water accumulating on the wall panels. The surface levels fall from the back (south) to the front (north), capturing all run-off into 8No. sump pits, situated within a 1200mm wide and 100mm deep V-formed asphalt surface channel. All collected leachate water outfalls to the below ground 22,000l Kingspan Silage/Leachate Effluent Tank through gravity pipes. From this location the leachate water is either pumped back into the process water tank, as discussed in 'Section 3.0 Design & Methodology of Drainage System'.
- **4.5** Once the pre-cast walls and asphalt floor have been installed, the connection point between the two elements is then sealed with hot poured bitumen. The bottom 0.3m of the clamp walls are then painted with bitumen emulsion to create a water tight seal on this connection point.
- **4.6** Asphalt was the chosen surface for the silage clamps; this was based upon historic testing and detailed discussion with the Environment Agency. This complies with both CIRIA and SSAFO regulations. We have used the chosen specification of asphalt due to the higher binder content and hardstone (granite or similar) material instead of the traditional limestone fillers which react with leachate. If you were to use a traditional jointed concrete mix this would be susceptible to leakage via the joints, also the concrete will be warn away quicker with the potential leachates/acids on the concrete. Experience tells us this will only last for approximately 2 years before the aggregate is exposed within the concrete. Whereas the asphalt will require minimal maintenance for 10 years plus. Asphalt is a continuous lay and is therefore joint free, meaning the potential for leakages through the base/floor is highly unlikely. Furthermore, the designs adhere to the approved DEFRA clamp floor specifications.
- **4.7** Plandescil has been involved with the design of over 30 large silage clamps located across the United Kingdom and have engaged with the Environment Agency on numerous occasions to ensure the most rigorous design solutions are achieved. All silage clamps have resultantly been constructed with a similar design arrangement; installing pre-cast concrete wall panels, surfaced with asphalt (not concrete) and draining into sump pits within V-formed asphalt channels.

5.0 REVIEW PERIODS DURING CONSTRUCTION

- **5.1** The construction of the drainage will be reviewed at numerous stages throughout the construction phase. The Design Engineers, Plandescil, are responsible for visually inspecting the following elements of construction:
 - CCTV survey post installation of the drainage prior to occupation.
 - 1 year post completion of the site including a CCTV and defects survey.
 - Every year post completion should the client request this as a CCTV and defect survey.

6.0 AD PLANT MAINTENANCE REGIME- GENERAL OVERVIEW

- **6.1** Lower Drayton Farm's Anaerobic Digestion Plant proposed maintenance regime consists of daily visual leak inspections within the bund and weekly inspections of the containment bund structure. The daily inspection will be carried out by the Client's site operative who will look for visual signs of leakage coming from the storage tanks or mechanical equipment located within the containment bund. If any tanks are found to be leaking, repair works will be undertaken by trained personnel immediately to prevent any contamination of surface water within the containment bund.
- **6.2** The weekly inspections will require the site operative to visually inspect the containment bund walls and floor for any signs of cracking within the concrete. If any cracks are found, remedial works will immediately be undertaken using Sikaflex resin injection 'Sikadur 52' to fill and seal the cracks. This process will be carried out by a trained operative or specialist.
- **6.3** Any liquid which falls within the containment bund will be drained and collected into a sump within the bund. A switch operated pump will be located within the sump which will drain any liquid into the process. Prior to the pump being engaged by the site operative a visual and odour inspection will be carried out to check for any contamination to the liquid.
- 6.4 If the captured sump water is determined to be clean, a pumped connection to the surface water system to the west at a rate of 2l/s and finally out-falling to the infiltration pond at the south. The drainage system has made an allowance for a pumped connection to the dirty water storage lagoon, so that if needed or determined to be dirty, the liquid could be pumped to the lagoon and then pumped back into the system as required.
- **6.5** The drainage system on site will be checked yearly. The site operators will check for sediment build up in manholes and pipes.
- **6.6** The drains will be jetted where required. Manholes will be sludge gulped and checked for any signs of wear and tear, the joints will be resealed and the internal chambers painted with bitumen paint if required.
- **6.7** The silage clamps will be inspected when empty, the surface should be pressure washed clean and inspected for damage and repaired if required.

The walls should be sheeted with plastic as per the manufacturer's guidance to aid in the life expectancy of the walls. The walls should also be pressure washed clean before refilling. If the bitumen paint to the lower portion of the walls has been worn away this should be reapplied for sheeting, approximately every 3 years.

6.8 Refer to the 'Surface Water Maintenance Schedule' in the Appendix for the maintenance details proposed for the clean water system.

7.0 APPENDIX DETAILS AND DRAWINGS EXPLAINED

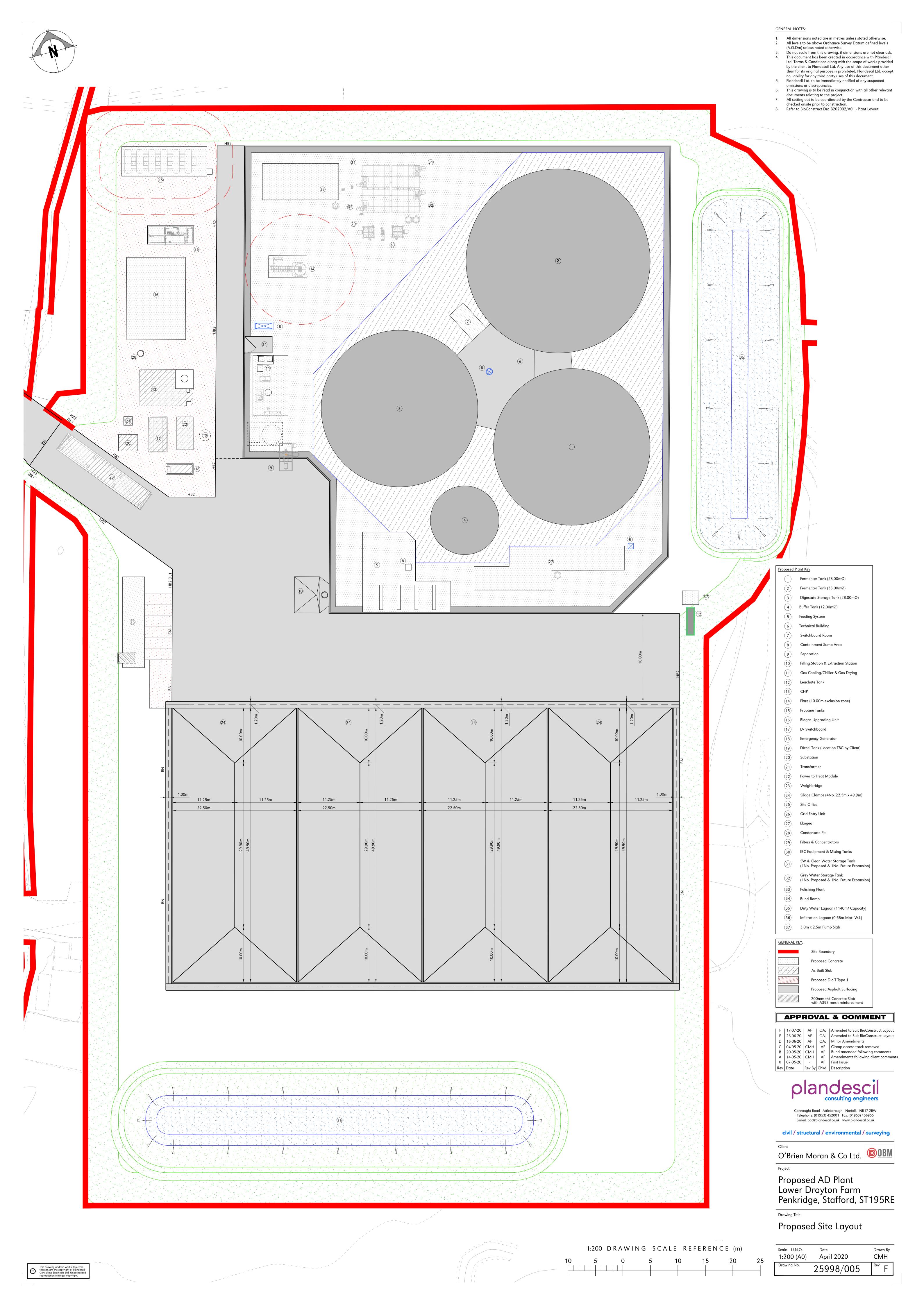
Plandescil Ltd Details 7.1

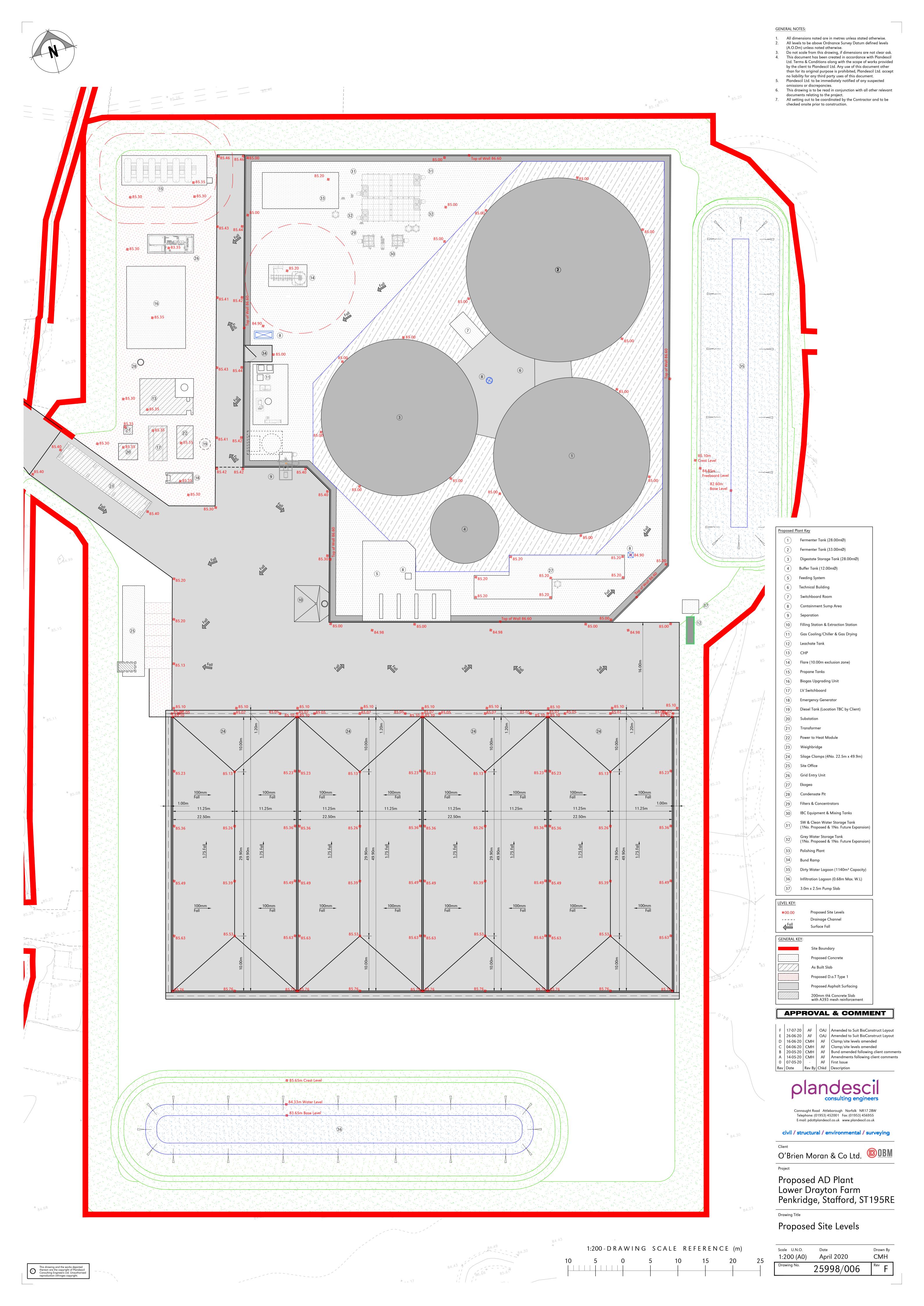
<u>Drawing No.</u>	<u>Title</u>	<u>Comments</u>
25998/005 Rev F	Proposed Site Layout	General site overview with plant items in key
25998/006 Rev F	Proposed Site Levels	General site levels overview for all surfacing
25998/007 Rev F	Proposed Drainage Layout	General site drainage overview with key
25998/054 Rev 0	Leachate Tank Details	Leachate tank reinforced concrete details
25998/101 Rev 0	Typical Hardstanding & Kerb Details	General construction details for hardstanding areas, including kerb specification
25998/102 Rev 0	Typical Drainage Details	General construction details for the surface and leachate water drainage systems
25998/103 Rev A	Silage Clamp Sections & Details	General construction details for the silage clamp walls, floors and perimeter drainage channels
<u>Document Title</u>		
25998 - Surface Wo	iter Maintenance Schedule - R	ev 0
25998 - Infiltration	Pond Size Micro Drainage Co	Iculations – Rev A
JNP Group Percola	tion Test Results	
<u>ltem</u>		<u>Comments</u>
NP - H77020 R001	Soakaway Report	Percolation Test Results for the site

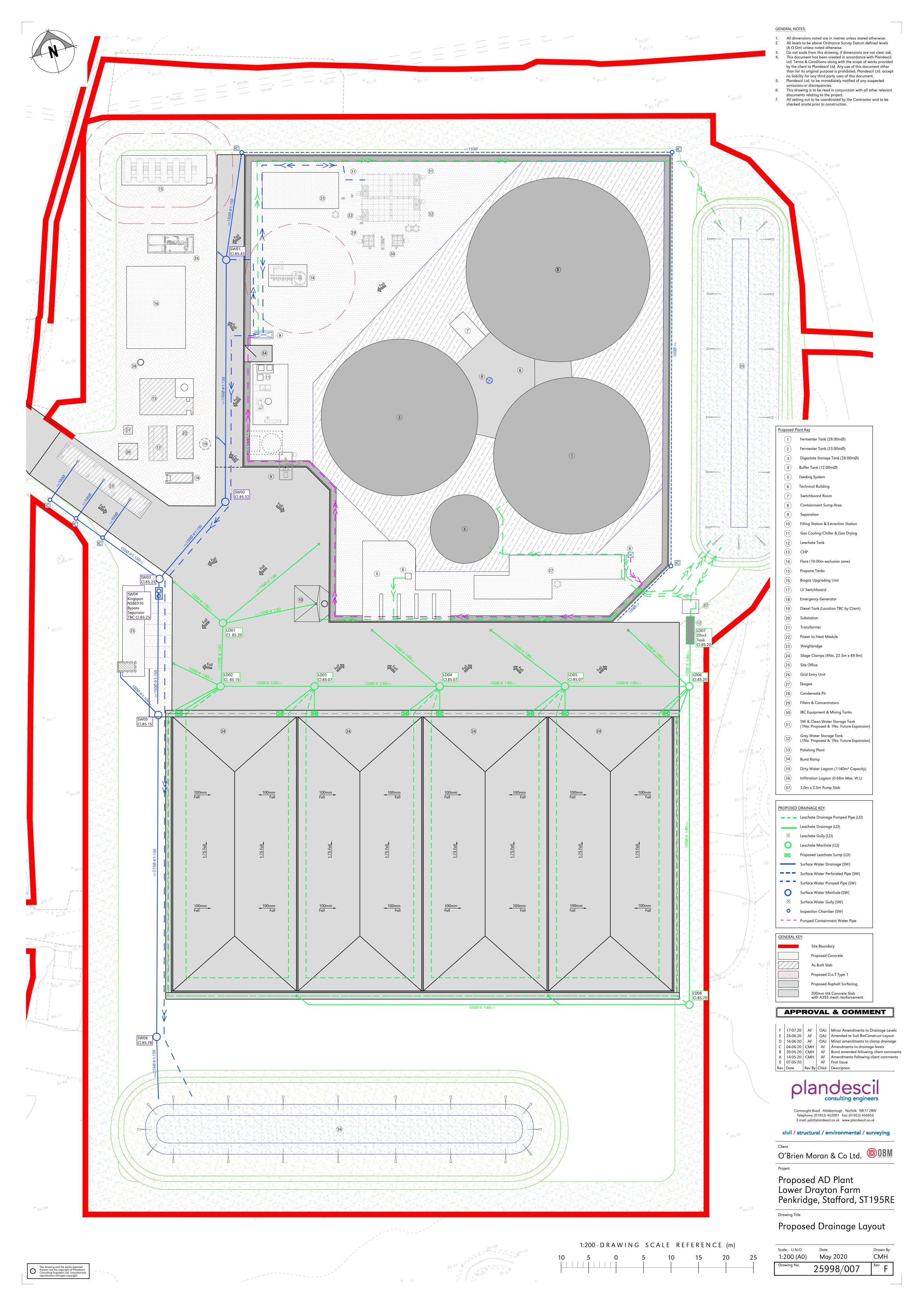
7.3 Kingspan Leachate / Silage Effluent Tank Details

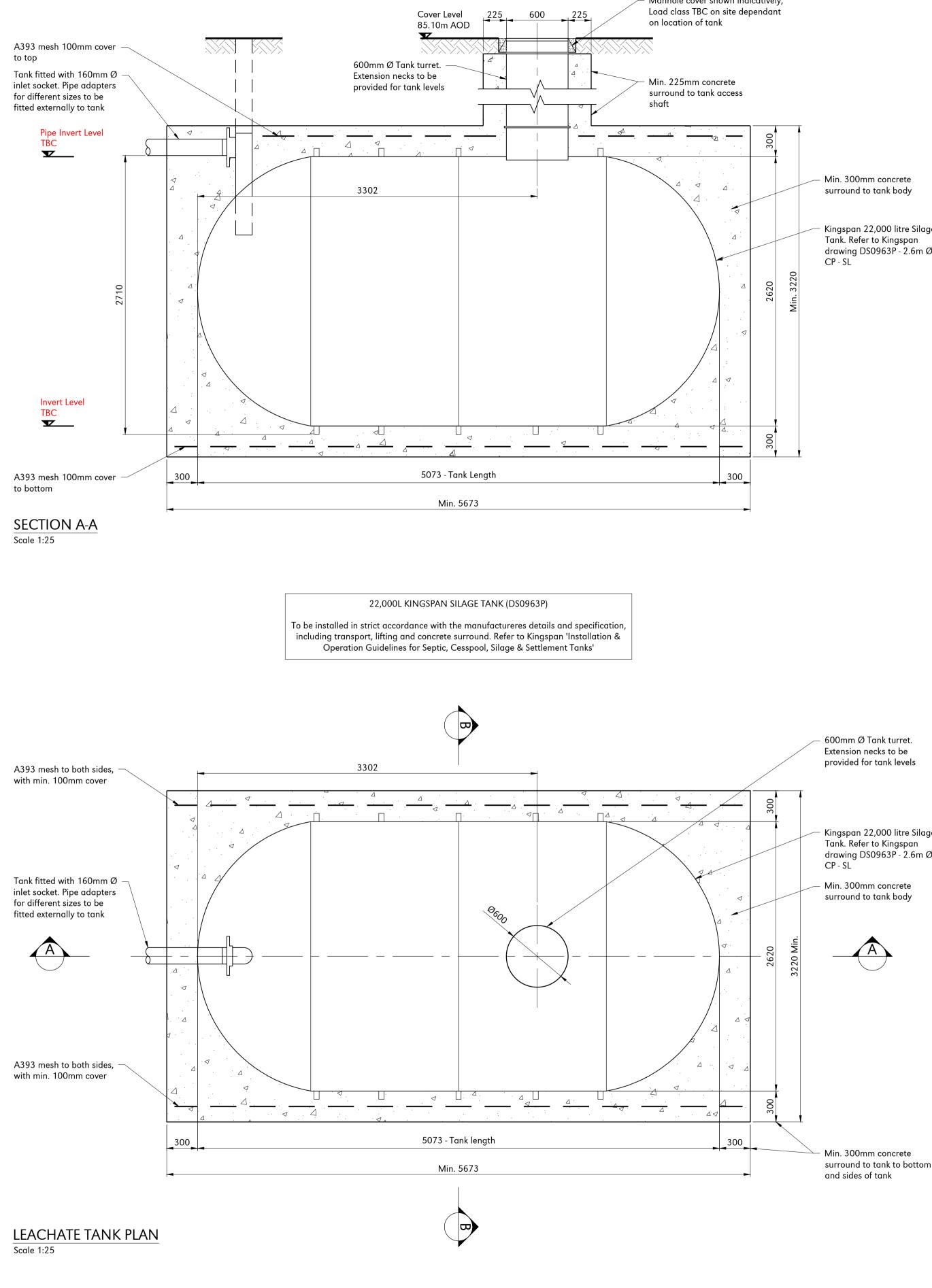
ltem	<u>Comments</u>
Kingspan 22,000l Single Neck / Silage Tank	Manufacturer product specification

7.2

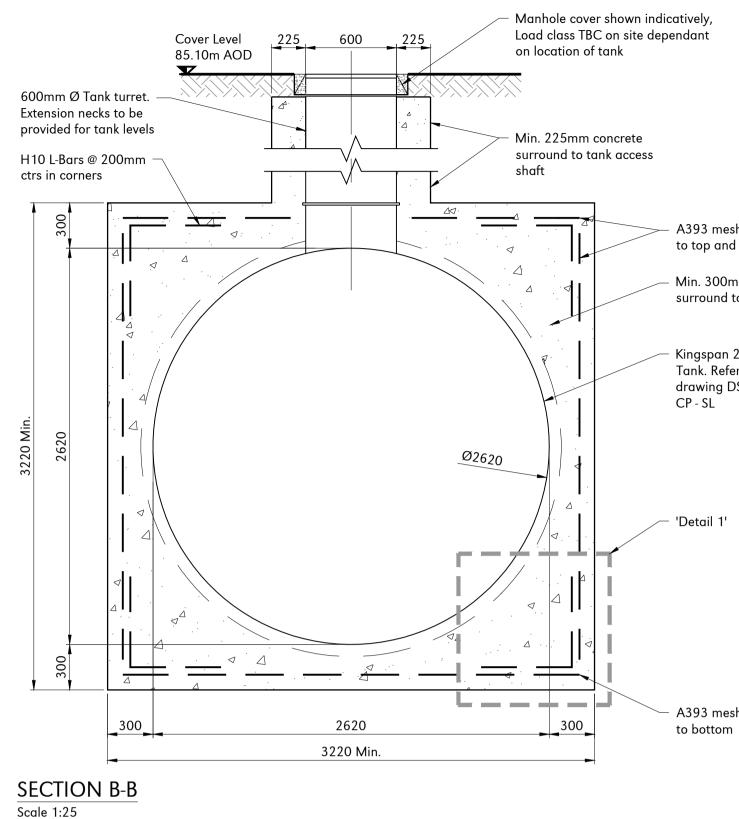


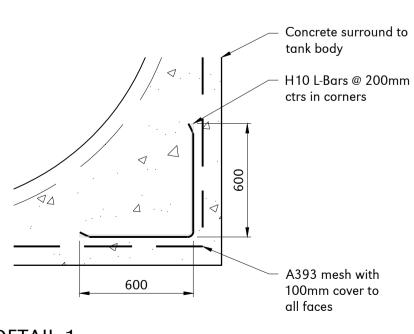

7.4 ARK Agriculture Pre-cast L and T Silage Clamp Wall Panel Specification and Details


	ltem	<u>Comments</u>
	LA300G - 3m high pre-cast L-wall panels	Manufacturer product specification
	TWA300 - 3m high pre-cast T-wall panels	Manufacturer product specification
7.5	Tufflex HD Asphalt Specification and Details	
	ltem	<u>Comments</u>
	Tufflex HD Asphalt Data Sheet	Asphalt supplier technical specification



APPENDIX




This drawing and the works depicted thereon are the copyright of Plandescil Consulting Engineers Ltd. Unauthorised reproduction infringes copyright. \odot

Manhole cover shown indicatively,

Kingspan 22,000 litre Silage drawing DS0963P - 2.6m Ø

Kingspan 22,000 litre Silage drawing DS0963P - 2.6m Ø

DETAIL 1 Scale 1:20

NOTES:

- 1. All dimensions noted are in millimetres unless stated otherwise. 2. All levels to be above Ordnance Survey Datum defined levels (A.O.Dm) unless noted otherwise.
- Do not scale from this drawing, if dimensions are not clear ask.
- This document has been created in accordance with Plandescil Ltd. 4. Terms & Conditions along with the scope of works provided by the client to Plandescil Ltd. Any use of this document other than for its original purpose is prohibited, Plandescil Ltd. accept no liability for any third party uses of this document. 5. Plandescil Ltd. to be immediately notified of any suspected
- omissions or discrepancies. 6. This drawing is to be read in conjunction with all other relevant
- documents relating to the project. 7. All setting out to be coordinated by the Contractor and to be
- checked onsite prior to construction. 8. To be read in conjunction with the following Plandescil Drawings,
- schedules and documents: 25998/006 - Proposed Site Levels
 - 25998/007 Proposed Drainage Layout

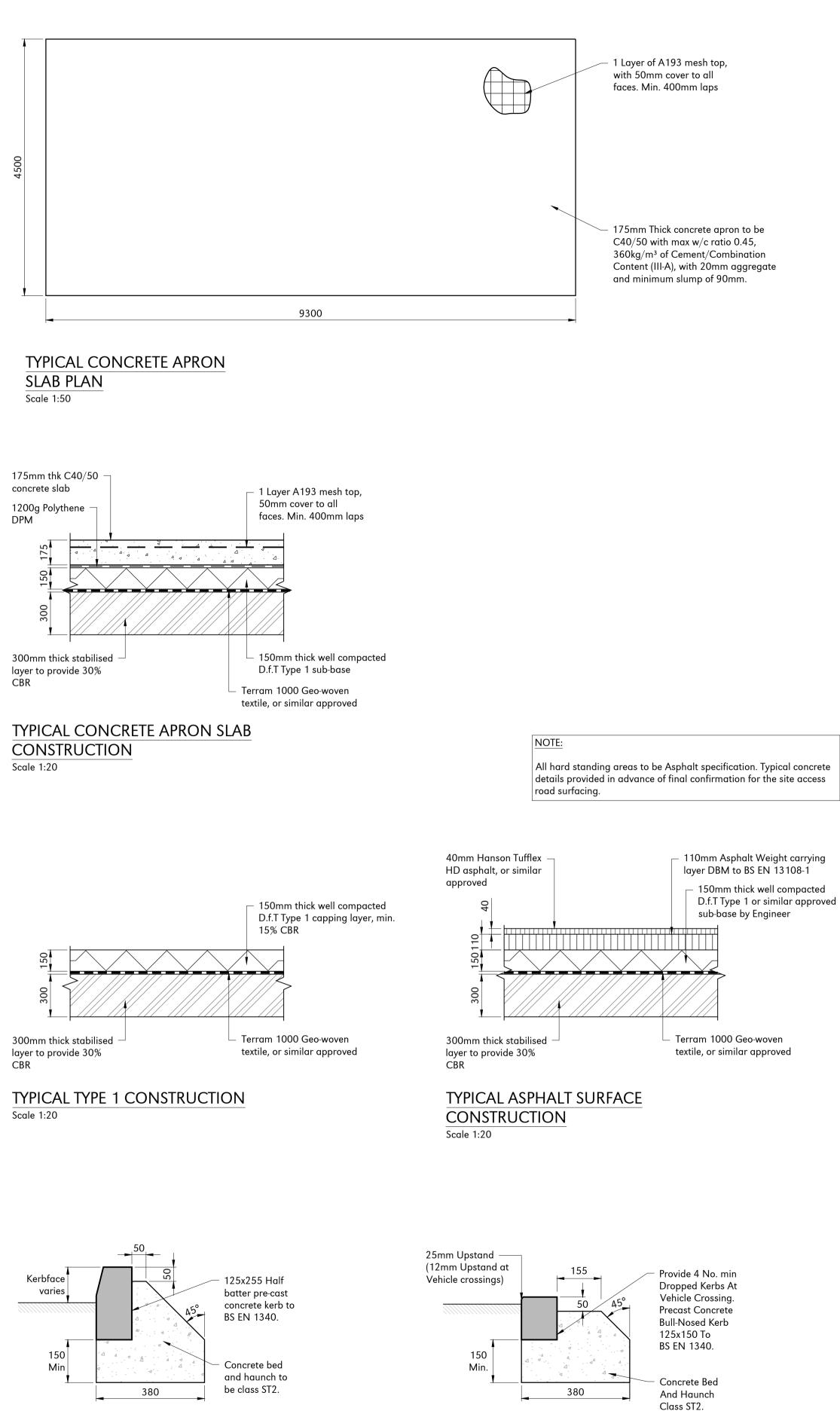
25998/054/01 BS - Leachate Tank Bar Bending Schedule

SILAGE TANK NOTES:

- 9. Silage Tank detailed Kingspan Silage Tank 22,000 litre tank. Refer to Kingspan drawing, DS0963P - 2.6m Ø CP - SL. Single Neck Cesspool / Silage Tank.
- 10. Transportation, lifting and installation of Silage Tank to be in strict accordance with Manufacturer details and specification. Refer to Kingspan 'Installation & Operation Guidelines for Septic, Cesspool, Silage & Settlement Tanks'.
- 11. Invert levels of tank TBC, refer to Proposed Drainage Layout.
- 12. Cover Level to be in accordance with Proposed Site Levels. 13. Tank to be surrounded with a minimum of 300mm concrete as
- noted in Kingspan Installation Guidelines. 14. Concrete minimum Strength Class to be C32/40 with max w/c
- ratio 0.55, 300kg/m³ cement/combination content (IIB-V), with 20mm max. aggregate.
- 15. Insitu Concrete to be in accordance with BS EN 206-1 (BS 8500-1). 16. Reinforcement to be Grade H 500N/mm² High Yield, Deformed Type 2 Bar detailed in accordance with BS 4449 and BS 8666.

FOUNDATION NOTES:

- 17. Assumed GBP value of 150kN/m² has been used. Value provided by the Georisk Management Limited Ground Investigation Report Ref. 18133/LO.001/AMG. Confirmation of minimum GBP of 150kN/m² required prior to construction.
- 18. Any soft spots or deleterious material is to be removed & taken down to virgin ground level & replaced with compact D.f.T Type 1 or suitable hogging material.
- 19. Overdig to be made up in compacted D.f.T. Type 1 or lean mix concrete.

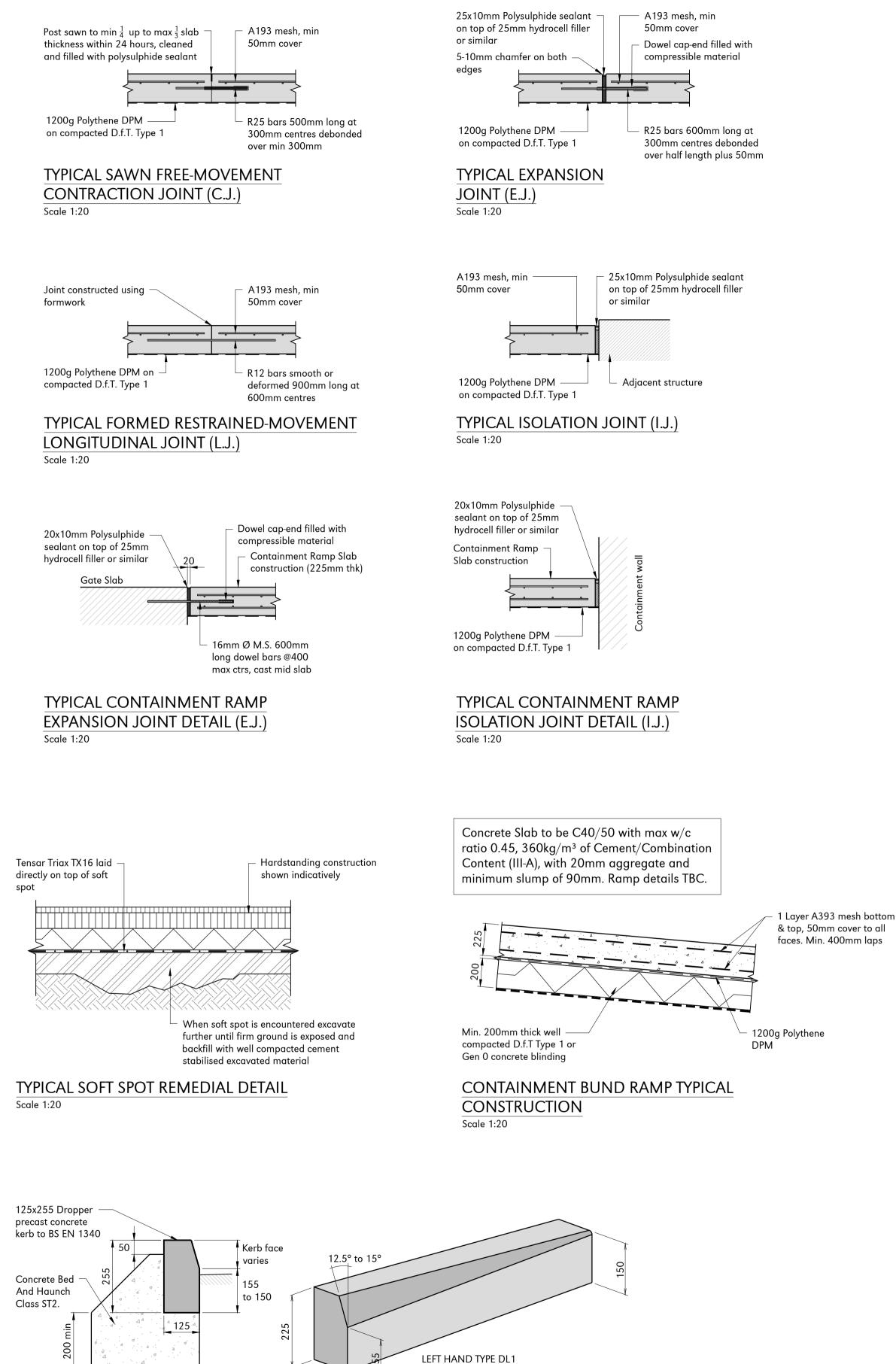


A393 mesh 100mm cover to top and sides

Min. 300mm concrete surround to tank body

Kingspan 22,000 litre Silage Tank. Refer to Kingspan drawing DS0963P - 2.6m Ø

A393 mesh 100mm cover



HALF BATTERED KERB (HB2) Scale 1:10

BULLNOSED KERB (BN) Scale 1:10

This drawing and the works depicted thereon are the copyright of Plandescil Consulting Engineers Ltd. Unauthorised

reproduction infringes copyright

(DR1 Similar but handed)

DROPPER KERB (DL1)

DR1 Similar but handed (For use with kerb types HB2 and BN) Scale 1:10

380

NOTES:

- 1. All dimensions noted are in millimetres unless stated otherwise. 2. All levels to be above Ordnance Survey Datum defined levels (A.O.Dm) unless noted otherwise.
- Do not scale from this drawing, if dimensions are not clear ask.
- This document has been created in accordance with Plandescil Ltd. 4. Terms & Conditions along with the scope of works provided by the client to Plandescil Ltd. Any use of this document other than for its original purpose is prohibited, Plandescil Ltd. accept no liability for any third party uses of this document.
- 5. Plandescil Ltd. to be immediately notified of any suspected omissions or discrepancies.
- 6. This drawing is to be read in conjunction with all other relevant documents relating to the project.
- 7. All setting out to be coordinated by the Contractor and to be checked onsite prior to construction.
- 8. To be read in conjunction with the following Plandescil Drawings, schedules and documents:
 - 25998/005 Proposed Site Layout 25998/100 - Containment Bund Slab & Joint Details
 - 25998/102 Drainage Details
- 9. Asphalt hard standings as requested by Others, not Plandescil Ltd preferred/recommended construction method and practice.

CONCRETE (ACCESS ROAD TBC):

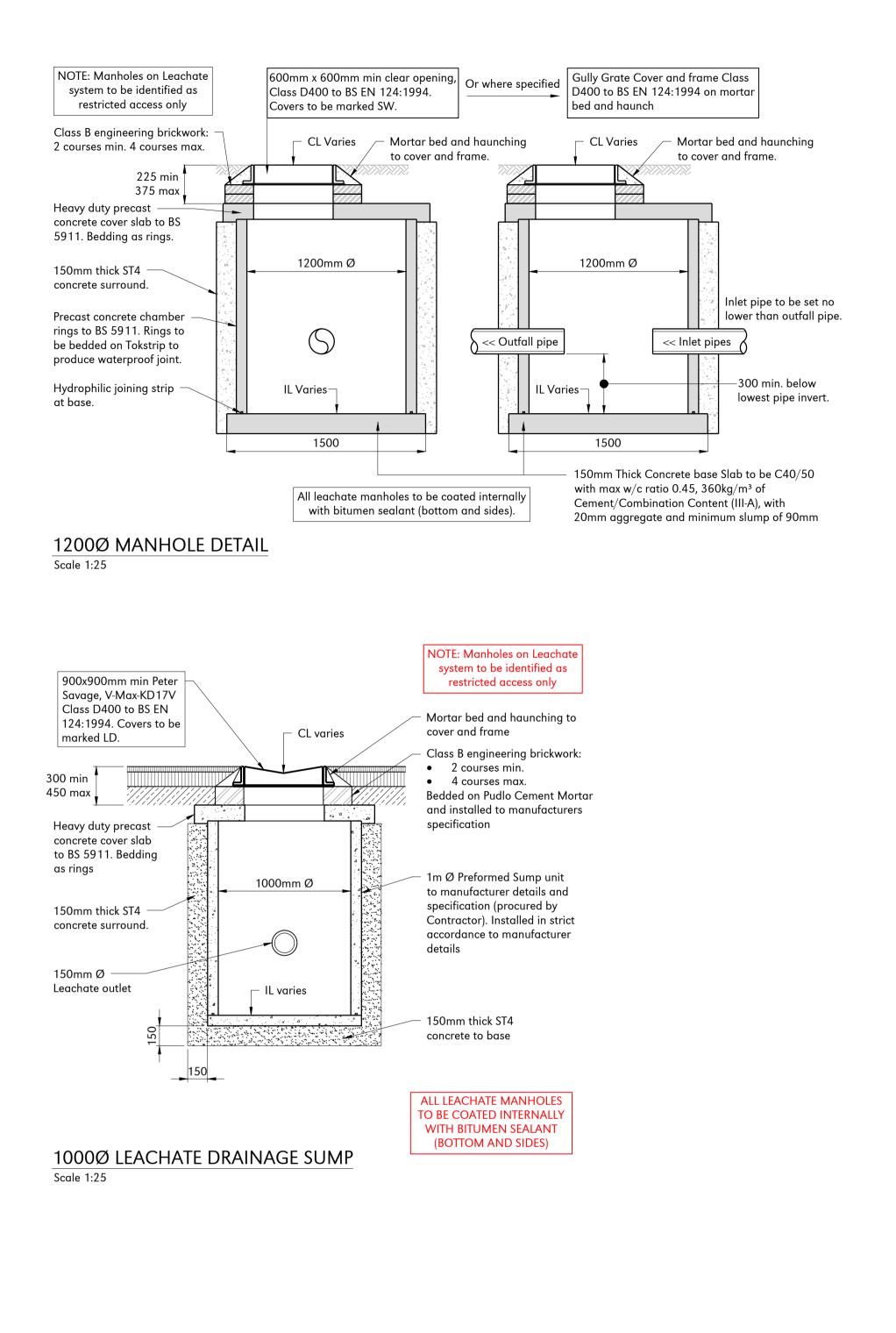
- 10. Concrete Slab to be C40/50 with max w/c ratio 0.45, 360kg/m³ of Cement/Combination Content (III-A), with 20mm aggregate (non-limestone) and minimum slump of 90mm.
- 11. Insitu Concrete to be in accordance with BS 8110 & BS 8500-1.
- 12. Reinforcement to be Grade H 500N/mm² High Yield, Deformed
- Type 2 Bar detailed in accordance with BS 4449 and BS 8666. 13. Slab nominal 175mm thick, 50mm cover to top and sides.

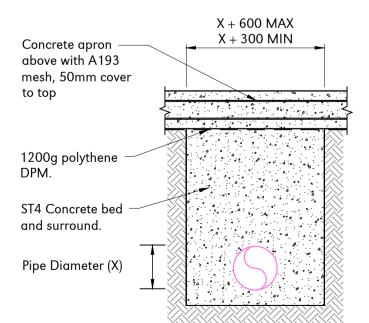
CONCRETE JOINT NOTES (ACCESS ROAD TBC):

- 14. All joint dowel/reinforcement shall be set level and perpendicular to the joint face prior to casting. Damage or bent dowels are to be re-aligned or replaced prior to casting.
- 15. All formed joints are to be cleaned of concrete overruns to ensure accidental restraint is not created
- 16. All joints are to be sufficiently cured and cleaned of all
- contaminations prior to sealing. 17. All sealants are to be installed as per manufacturers specification and must be suitable for the joint type.

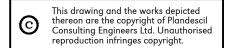
ASPHALT HARD STANDINGS:

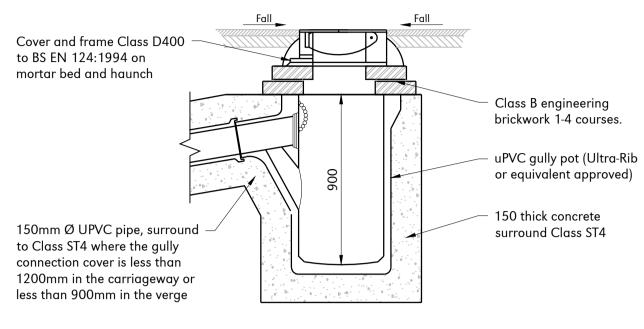
18. Asphalt surface specification, 40mm Hanson Tufflex HD asphalt, 110mm Asphalt Weight carrying DPM, 150mm D.f.T Type 1 sub-base, 300mm thick stabilised layer.

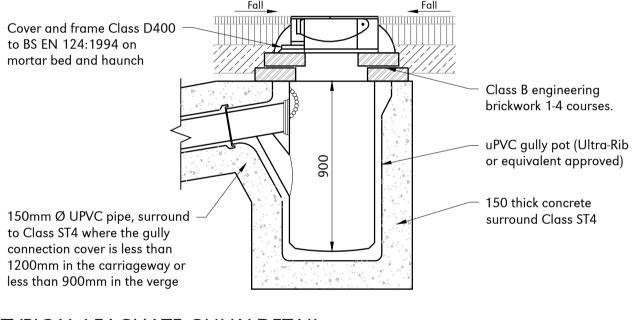

MATERIAL NOTES:

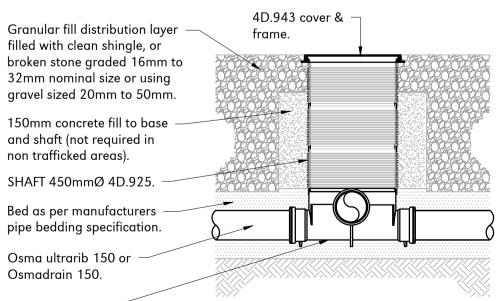

- 19. All D.f.T Type 1 must NOT contain limestone.
- 20. All Asphalt to be made with Granite or other acid resistant aggregate (No Limestone filler allowed).

FOUNDATION NOTES:


- 21. Assumed GBP value of 150kN/m² has been used. Value provided by the Independent Stabilisation Company Ltd Interim Operation & Maintenance Manual (June 2020). Confirmation of minimum GBP of 150kN/m² required prior to construction.
- 22. Any soft spots or deleterious material is to be removed & taken down to virgin ground level & replaced with compact D.f.T Type 1 or suitable hogging material.
- 23. Overdig to be made up in compacted D.f.T. Type 1 or lean mix concrete.




PIPE BEDDING DETAIL FOR DRAINS WHERE DEPTH TO SOFFIT LESS THAN 0.5M Scale 1:20



TYPICAL SURFACE WATER

GULLY DETAIL Scale 1:20

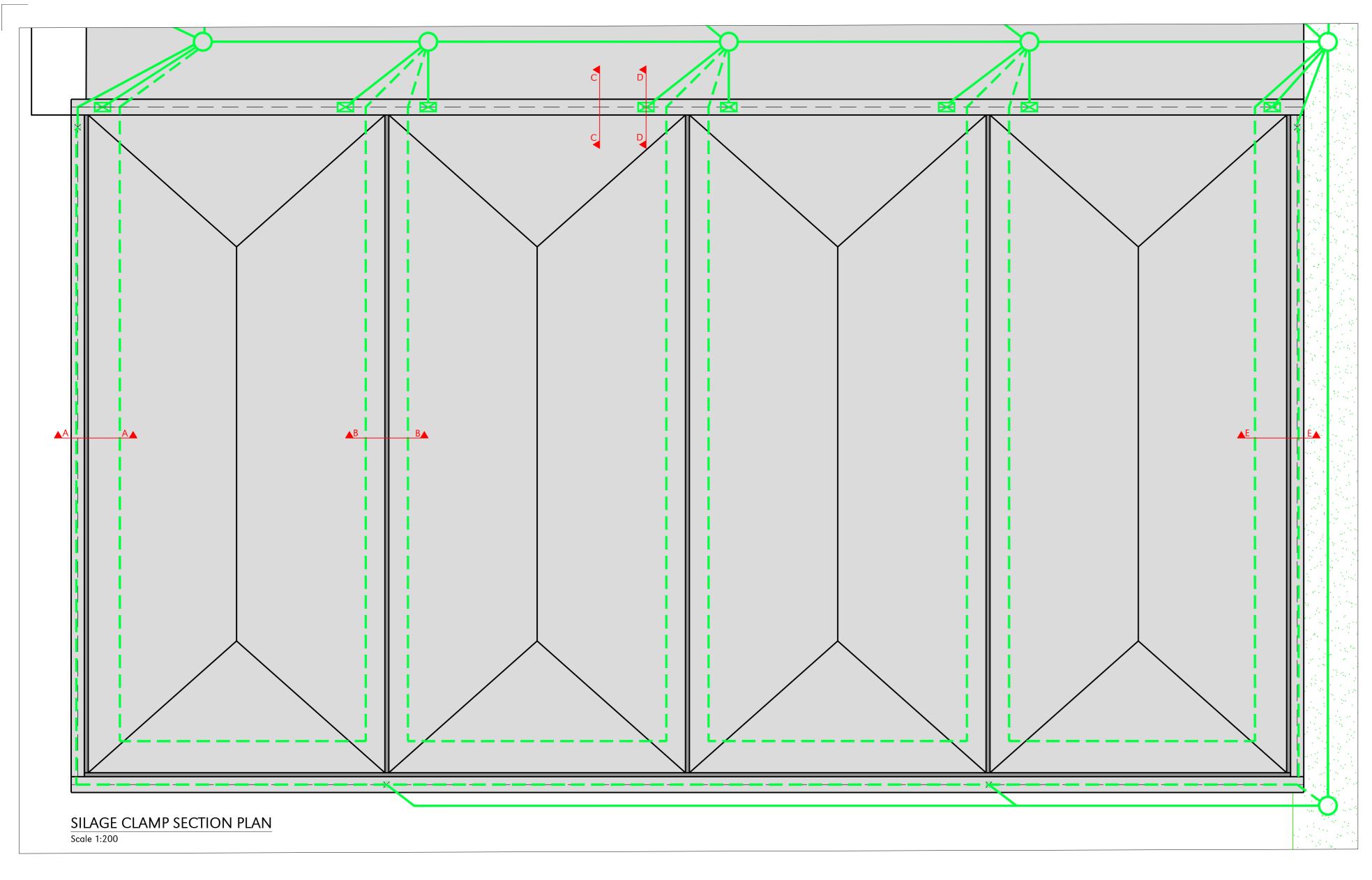
TYPICAL LEACHATE GULLY DETAIL Scale 1:20

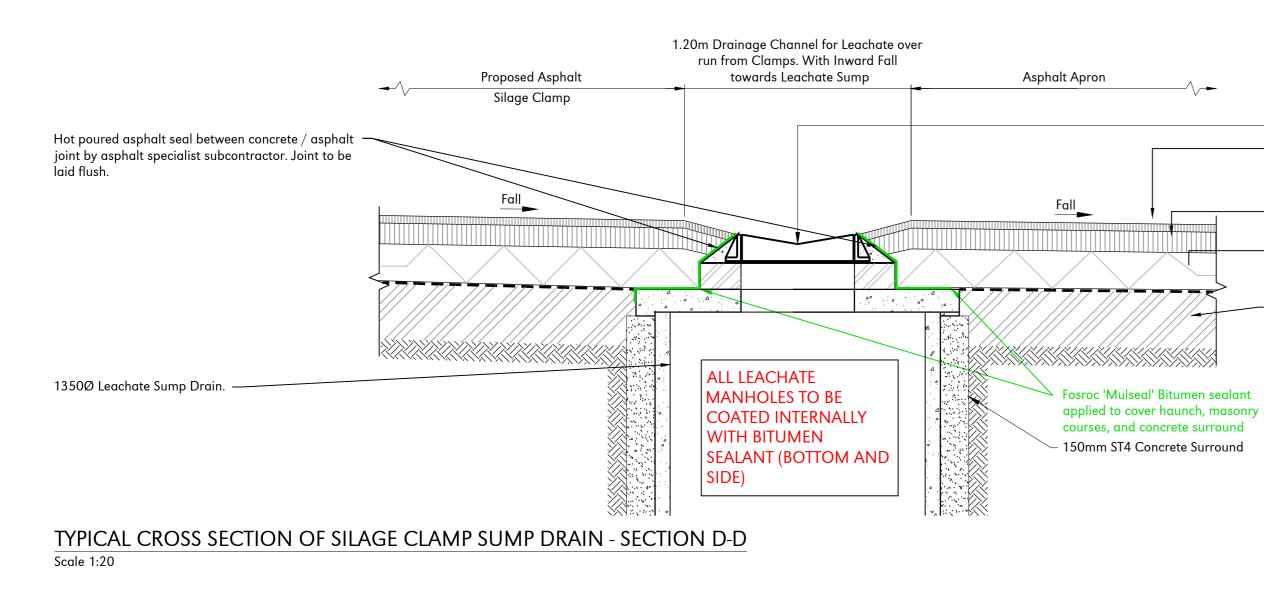
Base 6D.928. —

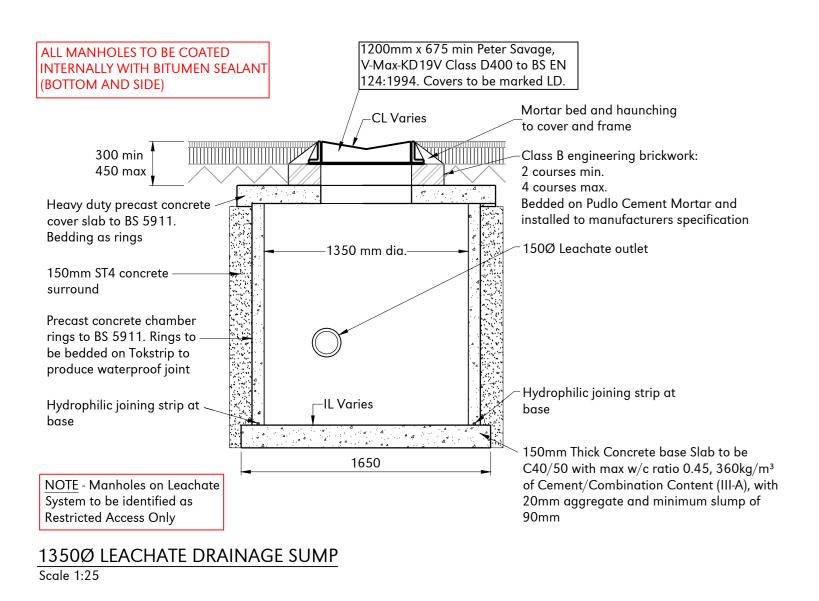
450Ø INSPECTION CHAMBER DETAIL Not to Scale

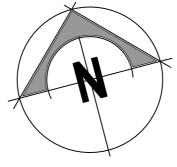
NOTES:

- All dimensions noted are in millimetres unless stated otherwise.
 All levels to be above Ordnance Survey Datum defined levels (A.O.Dm) unless noted otherwise.
- 3. Do not scale from this drawing, if dimensions are not clear ask.
- This document has been created in accordance with Plandescil Ltd. Terms & Conditions along with the scope of works provided by the client to Plandescil Ltd. Any use of this document other than for its original purpose is prohibited, Plandescil Ltd. accept no liability for any third party uses of this document.
 Plandescil Ltd. to be informed immediately of and
- alterations/deviations identified on site from the information shown on the engineering drawings.
- 6. This drawing is to be read in conjunction with all other relevant documents relating to the project.
- 7. All setting out to be coordinated by the Contractor and to be checked onsite prior to construction.
- To be read in conjunction with the following Plandescil Drawings, schedules and documents:
 - 25998/005 Proposed Site Layout
 - 25998/007 Proposed Drainage Layout 25998/100 - Containment Bund Slab & Joint Details
 - 25998/101 Hardstanding & Kerbing Details


DRAINAGE NOTES:


- 9. All drainage pipes to be laid invert to invert.
- 10. All levels are indicative only.
- 11. All proprietary materials to be fixed strictly in accordance with manufacturer's recommendations using materials approved by the manufacturer.
- 12. All levels and dimensions should be checked on site by contractors and relevant sub-contractors.
- 13. Existing public utility services and private apparatus are not necessarily shown on the drawings. The contractor shall liaise with the utility provider to determine precise location of existing services. Existing services to be marked out on site prior to any excavation works. All utility company guidelines & health and safety procedures must be strictly followed.
- Where surface water drains to ground, the existing ground should broken up prior to laying the subgrade to aid infiltration.
 All Leachate manholes to be coated internally with bitumen
- sealant (bottom and sides).


MATERIAL NOTE:


- 16. Materials must NOT contain limestone, including D.f.T Type 1 and
- concrete aggregate.17. All Asphalt to be made with Granite or other acid resistant
- aggregate (No Limestone filler allowed).
 18. All Leachate water pipes to be uPVC (Foul Pipe), <u>NOT</u> concrete or Twin Wall.
- 19. All surface water pipes to be uPVC Twin Wall, NOT concrete.

Capped leak detection monitoring wells at 25m intervals along length of clamp

50mm deep depression in Asphalt to act as Verge filter drain and direct any excess leachate towards Sump Drains at front of the clamps 150mm Thk ST4 concrete

Liners to lap under kerb haunch (see Plandescil drawing 25998/101 for < kerb detail)

or Lean mix surround

Min. 150mm thick well – compacted D.f.T Type 1 or similar approved Sub-Base

300mm thick stabilised layer to provide 30% CBR

150mm Thk ST4 concrete or Lean $\,-\,$ mix surround with 1 Layer A393 mesh bottom with 50mm cover

Scale 1:20

Peter Savage V-Max - D400 Cover - 40mm Hanson Tufflex HD asphalt, or similar approved

_____**~**

Scale 1:20

— 110mm Asphalt Weight Carrying Layer DBM to BS EN 13108-1. - Min. 150mm well compacted D.f.T. Type 1 or similar approved Sub-Base.

- 300mm thick stabilised layer to provide 30% CBR

> 150mm Thk ST4 concrete or Lean mix surround

Min. 150mm well compacted -D.f.T Type 1 or similar approved Sub-Base

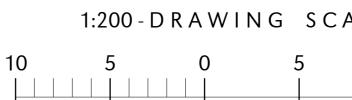
100mm Ø Wavin Twin Wall perforated pipe in shingle surround

1 Layer A393 mesh bottom with 50mm cover

Scale 1:20

Cover and frame Class D400 – to BS EN 124:1994 on mortar bed and haunch Class B engineering brickwork 1-4 courses. - uPVC gully pot (Ultra-Rib or equivalent approved) 150 thick concrete 150mm Ø UPVC pipe, surround surround Class ST4 to Class ST4 where the gully connection cover is less than 1200mm in the carriageway or less than 900mm in the verge TYPICAL LEACHATE GULLY DETAIL

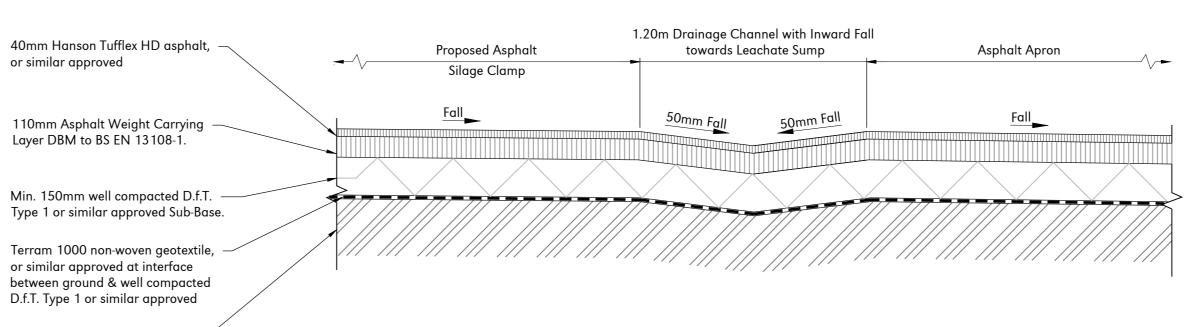
40mm Hanson Tufflex HD asphalt, or similar approved

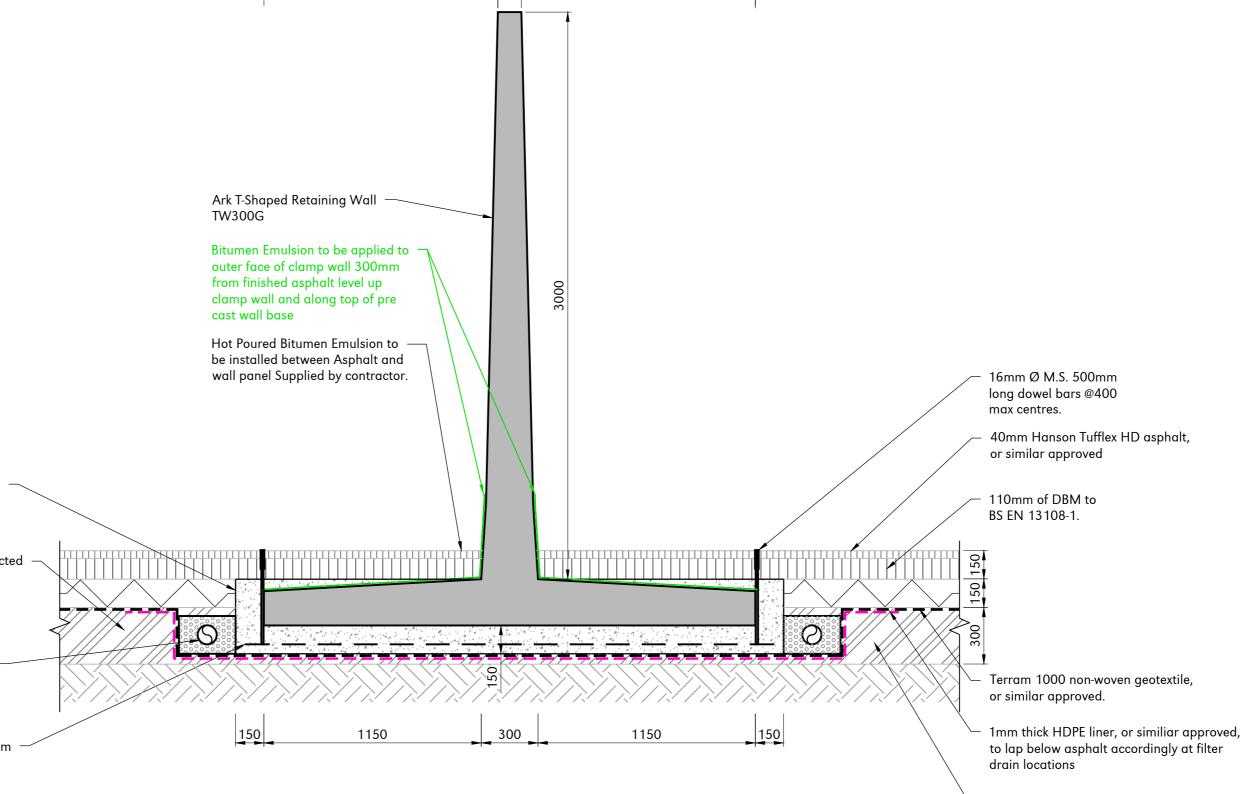

110mm Asphalt Weight Carrying Layer DBM to BS EN 13108-1.

Min. 150mm well compacted D.f.T. -Type 1 or similar approved Sub-Base.

or similar approved at interface between ground & well compacted D.f.T. Type 1 or similar approved 300mm thick stabilised layer to -

provide 30% CBR


Scale 1:20


300mm thick stabilisation layer to

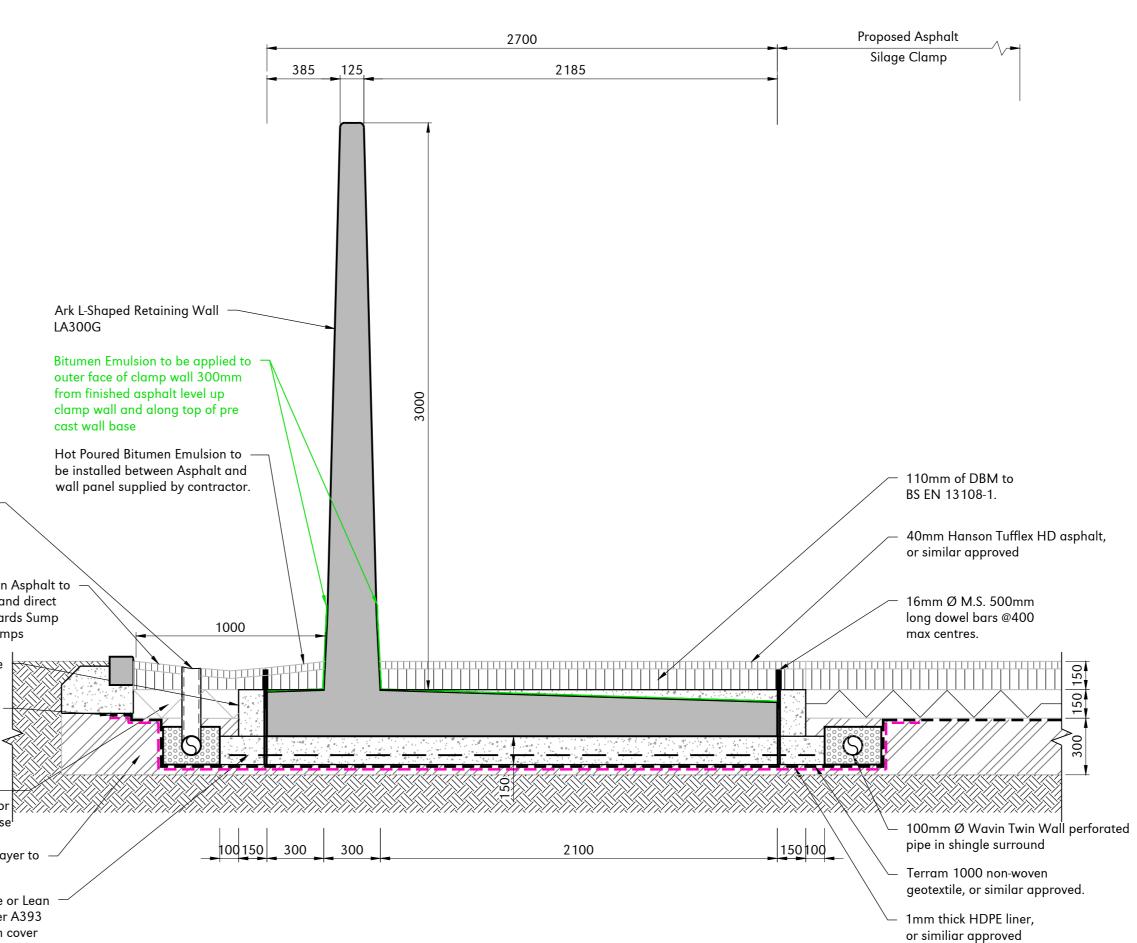
provide 30% CBR

TYPICAL CROSS SECTION OF SILAGE CLAMP GULLY DRAIN - SECTION C-C

TYPICAL T-SHAPED WALL PANEL - SECTION B-B

1240

Proposed Asphalt


Silage Clamp

-/___

TYPICAL L-SHAPED WALL PANEL - SECTION A-A (E-E HANDED)

Proposed Asphalt

Silage Clamp

2600

125

1240

GENERAL NOTES:

- 1. All dimensions noted are in millimetres unless stated otherwise. 2. All levels to be above Ordnance Survey Datum defined levels (A.O.Dm) unless noted otherwise.
- 3. Do not scale from this drawing, if dimensions are not clear ask. 4. This document has been created in accordance with Plandescil Ltd. Terms & Conditions along with the scope of works provided by the client to Plandescil Ltd. Any use of this document other than for its original purpose is prohibited, Plandescil Ltd. accept no liability for any third party uses of this document.
- 5. Plandescil Ltd. to be immediately notified of any suspected omissions or discrepancies.
- 6. This drawing is to be read in conjunction with all other relevant documents relating to the project. 7. All setting out to be coordinated by the Contractor and to be
- checked onsite prior to construction. 8. To be read in conjunction with the following Plandescil
- Drawings, schedules and documents:
- 25998/005 Proposed Site Layout 25998/007 - Proposed Drainage Layout
- 25998/100 Containment Bund Slab & Joint Details 25998/101 - Hardstanding & Kerbing Details 9. Should any deviations or changes to specifications be made to
- the approved Plandescil Ltd silage clamp details during construction, Plandescil Ltd to be notified. 10. Drawing in agreement with the contractor and Silage Clamp Wall supplier (ARK Agriculture)

SILAGE CLAMP CONSTRUCTION:

- 11. Materials must NOT contain Limestone, including D.f.T Type 1 and concrete aggregate.
- 12. All Asphalt to be made with Granite or other acid resistant aggregate (No Limestone filler permitted)
- 13. All Leachate water pipes to be uPVC (Foul Pipe), NOT Concrete or Twin Wall.
- 14. All surface water pipes to be uPVC Twin Wall, NOT Concrete. 15. All Leachate Manholes to be coated internally with bitumen sealant (Sides & Bottom).
- 16. Silage clamps & drainage design to comply with latest SSAFO and CIRIA C759 guidance.

	ALL PROPRIETARY MATERIALS TO BE FIXED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS USING MATERIALS APPROVED BY THE MANUFACTURER.
	APPROVAL & COMMENT
	A17-06-20CMHOAJAmendments to clamp makeup012-06-20-OAJFirst IssueRevDateRev ByChkdDescription
	plandescil consulting engineers
	Connaught Road Attleborough Norfolk NR17 2BW Telephone: (01953) 452001 Fax: (01953) 456955 E-mail: pdc@plandescil.co.uk www.plandescil.co.uk
	civil / structural / environmental / surveying
	^{Client} O'Brien Moran & Co Ltd.
	Project
	Proposed AD Plant Lower Drayton Farm Penkridge, Staffordshire
	Drawing Title Silage Clamp Sections & Details
25	ScaleU.N.O.DateDrawn ByAs Noted (A0)June 2020CMH
_	Drawing No. 25998/103 Rev A

ALE	REFE	RENCE	(m)	
1(0	15	20 I	2

Surface Water Maintenance Schedule

Feature	Schedule	Required Action	Frequency
		Inspect and identify any areas that are not operating correctly. If required take remedial action.	Monthly for 3 months then annually
	Denvilan	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
	Regular	Maintain vegetation to designed limits within the vicinity of below ground drainage pipes to avoid damage to system.	Monthly or as required
		Inspect rainwater down pipes, channel drains and road gullies, removing obstructions and silt as necessary. Check there is no physical damage.	Monthly
<u> </u>		Remove silt and leaf build up from manholes, gutters etc.	Annually (or as required).
ratio	Occasional	Remove sediment from pre-treatment inlet structures and inspection chambers.	Annually (or as required).
Drainage (infiltration)		Remove inspection covers and inspect, ensuring that the water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
ainaç		Removal of sediment, oil, grease and floatables from separator	Half yearly. (or as required).
ے ا		Replacement of malfunctioning parts.	As required.
	Remedial	Repair physical damage if necessary	As required
		Inspect inlets and pre-treatment systems for silt accumulation. Establish appropriate silt removal frequencies.	Half yearly.
		Undertake inspection after leaf fall in Autumn	Annually
	Monitoring	Inspect all inlets, outlets and vents to ensure that they are in good condition and operating as designed.	Annually
		Survey inside of pipe runs for sediment build up and remove if necessary.	Every 5 years or as required
		Check manholes, gutters etc. for silt and leaf build up.	Annually

Plandescil Limited		Page 1
42-44 Connaught Road	25998	
Attleborough		
Norfolk NR17 2BW		Micro
Date 23/06/2020	Designed by MJH	Drainage
File 25998 Pond Size Rev A.SRCX	Checked by MJH	Diamage
Innovyze	Source Control 2019.1	
	for 100 year Return Period (+40%) ain Time : 187 minutes.	
Storm Ma	ax Max Max Max Status	

Storm		Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Volume	
			(m)	(m)	(l/s)	(m³)	
		Summer			14.3		ΟK
		Summer			16.2		ΟK
60	min	Summer	0.566	0.566	17.7	278.9	ΟK
120	min	Summer	0.593	0.593	18.3	297.5	ΟK
180	min	Summer	0.593	0.593	18.3	297.3	ΟK
240	min	Summer	0.586	0.586	18.1	292.8	ΟK
360	min	Summer	0.565	0.565	17.6	278.0	ΟK
480	min	Summer	0.539	0.539	17.0	260.7	ΟK
600	min	Summer	0.513	0.513	16.4	243.9	ΟK
720	min	Summer	0.488	0.488	15.9	228.5	ΟK
960	min	Summer	0.444	0.444	14.9	201.5	ΟK
1440	min	Summer	0.370	0.370	13.3	159.8	ΟK
2160	min	Summer	0.287	0.287	11.5	116.8	ΟK
2880	min	Summer	0.226	0.226	10.2	88.3	ΟK
4320	min	Summer	0.143	0.143	8.5	52.5	ΟK
5760	min	Summer	0.092	0.092	7.4	32.4	ΟK
7200	min	Summer	0.062	0.062	6.8	21.5	ΟK
8640	min	Summer	0.049	0.049	6.5	16.8	ОК
10080	min	Summer	0.045	0.045	5.9	15.4	ОК
15	min	Winter	0.456	0.456	15.2	208.6	ΟK
30	min	Winter	0.549	0.549	17.3	267.4	ОК
60	min	Winter	0.619	0.619	18.9	316.0	ОК
120	min	Winter	0.654	0.654	19.7	341.0	ОК

Storm Event			Flooded Volume (m ³)	Time-Peak (mins)	
15	min	Summer	156.894	0.0	18
30	min	Summer	103.367	0.0	33
60	min	Summer	64.564	0.0	62
120	min	Summer	38.694	0.0	116
180	min	Summer	28.314	0.0	144
240	min	Summer	22.550	0.0	176
360	min	Summer	16.211	0.0	244
480	min	Summer	12.743	0.0	314
600	min	Summer	10.539	0.0	382
720	min	Summer	9.009	0.0	450
960	min	Summer	7.011	0.0	580
1440	min	Summer	4.907	0.0	838
2160	min	Summer	3.427	0.0	1212
2880	min	Summer	2.665	0.0	1584
4320	min	Summer	1.893	0.0	2292
5760	min	Summer	1.504	0.0	3000
7200	min	Summer	1.279	0.0	3680
8640	min	Summer	1.133	0.0	4400
10080	min	Summer	1.032	0.0	5088
15	min	Winter	156.894	0.0	18
30	min	Winter	103.367	0.0	32
60	min	Winter	64.564	0.0	60
120	min	Winter	38.694	0.0	116
		@1000	2010 -		
		OTROS-	-2019 In	movyze	

Plandescil Limited		Page 2
42-44 Connaught Road	25998	
Attleborough		
Norfolk NR17 2BW		Micro
Date 23/06/2020	Designed by MJH	
File 25998 Pond Size Rev A.SRCX	Checked by MJH	Diamacje
Innovyze	Source Control 2019.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
180	min Winter	0.651	0.651	19.7	339.0	ΟK
240	min Winter	0.643	0.643	19.5	333.5	ΟK
360	min Winter	0.616	0.616	18.8	313.7	ΟK
480	min Winter	0.583	0.583	18.1	290.3	ΟK
600	min Winter	0.548	0.548	17.3	267.2	ΟK
720	min Winter	0.516	0.516	16.5	246.0	ΟK
960	min Winter	0.457	0.457	15.2	209.2	ΟK
1440	min Winter	0.360	0.360	13.0	154.2	ΟK
2160	min Winter	0.253	0.253	10.7	100.8	ΟK
2880	min Winter	0.179	0.179	9.2	67.5	ΟK
4320	min Winter	0.083	0.083	7.3	29.3	ΟK
5760	min Winter	0.047	0.047	6.2	16.1	ΟK
7200	min Winter	0.041	0.041	5.4	14.0	ΟK
8640	min Winter	0.037	0.037	4.7	12.5	ΟK
10080	min Winter	0.034	0.034	4.4	11.5	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
180	min	Winter	28.314	0.0	154
240	min	Winter	22.550	0.0	186
360	min	Winter	16.211	0.0	264
480	min	Winter	12.743	0.0	338
600	min	Winter	10.539	0.0	412
720	min	Winter	9.009	0.0	484
960	min	Winter	7.011	0.0	624
1440	min	Winter	4.907	0.0	882
2160	min	Winter	3.427	0.0	1272
2880	min	Winter	2.665	0.0	1640
4320	min	Winter	1.893	0.0	2332
5760	min	Winter	1.504	0.0	2936
7200	min	Winter	1.279	0.0	3664
8640	min	Winter	1.133	0.0	4408
10080	min	Winter	1.032	0.0	5128

Plandescil Limited		Page 3
42-44 Connaught Road	25998	
Attleborough		
Norfolk NR17 2BW		Micro
Date 23/06/2020	Designed by MJH	Drainage
File 25998 Pond Size Rev A.SRCX	Checked by MJH	Diamade
Innovyze	Source Control 2019.1	

<u>Rainfall Details</u>

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						2013
Site Location	GB	393098	315400	SJ	93098	15400
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+40

<u>Time Area Diagram</u>

Total Area (ha) 0.665

Time	(mins)	Area
From:	To:	(ha)

0 4 0.665

Plandescil Limited		Page 4
42-44 Connaught Road	25998	
Attleborough		
Norfolk NR17 2BW		Micro
Date 23/06/2020	Designed by MJH	Drainage
File 25998 Pond Size Rev A.SRCX	Checked by MJH	Diamage
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 1.700

Infiltration Basin Structure

Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.12240 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.12240

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000	330.0	0.700	776.0	1.700	1105.0

Plandescil Limited		Page 5
42-44 Connaught Road	25998	
Attleborough		
Norfolk NR17 2BW		Mirro
Date 23/06/2020	Designed by MJH	
File 25998 Pond Size Rev A.SRCX	Checked by MJH	Diamade
Innovyze	Source Control 2019.1	

Additional Hydrograph #1

												Time (mins)	
1440	0.3	2880	0.3	4320	0.3	5760	0.3	7200	0.3	8640	0.3	10080	0.3

Our Ref: H77020

Your Ref:

Chkd: CDW

14 November 2019

Harkin Associates Britannia House Suite 15 Brignell Road Middlesbrough TS2 1PS

For the attention of Paul Hetherington

Dear Paul,

Re: Proposed Biogas Plant, Penkridge

Further to your recent instruction, an engineer from jnpgroup attended site on 22nd October 2019 in order to undertake repeatable soakaway tests in accordance with BRE 365 at three locations P1, S2C and S3. A fourth location, S1, was also attempted however a significant depth of Made Ground was encountered, deeming the location unsuitable to use for infiltration testing. Two other locations were attempted at S2 and S2B, however these were abandoned due to shallow instability of the ground and groundwater seepage at depths below 1.75 m below ground level (bgl).

The site is a currently a vacant area of land south of the main farmyard buildings for Low Drayton Farm which can be accessed off a single-track road that runs to the western edge of the site. The site was bounded by hedgerows at all boundaries with significant foliage located along the eastern boundary. Open fields, most likely used for grazing surround the site. General photographs of the site are included as Appendix A to this letter.

The site was generally flat, with a small southern facing slope that crested just north of the locations of the trial holes that were excavated. In the east of the site there is a dirt track used for racing, along with fencing which is associated with this. A number of small bushes are present across the site and localised areas of fly tipping also noted.

The soakaways pits were excavated utilising a JCB 3cx with a two-foot bucket. A one-foot bucket was used for excavating the small trial hole at P1. Logs are included as Appendix B. For locations S2, S2B, S2C, S3 and P1 grass overlying between 0.05 m – 0.10 m of brown sandy topsoil, which in turn was underlain by light brown, slightly orange very silty sand with occasional rounded medium to course quartzite gravel and very sandy silty clay to a maximum proven depth of 2.20 m bgl. Location S1 encountered grass overlain by brown sandy clay and black / brown gravelly sandy clay with the gravel fraction comprising brick, clinker, charred wood and other debris most likely from a previous building on-site.

Soakaways were undertaken at locations S2C and S3, as shown on the attached site location plan. The depths of the soakaways excavated ranged from 1.55 m - 1.70 m. All excavations were terminated due to difficulty excavating the Chalk.

www.jnpgroup.co.uk

The Innovation Centre Venture Court Queens Meadow Business Park Hartlepool TS25 5TG

telephone

01429 239539

email

hartlepool@jnpgroup.co.uk

- Civil Engineering
- Consulting
- Flood Risk
- Geo-Environmental
- Green Energy
- Rail
- Structural Engineering
- Transport Planning

Offices at:

Brighouse Chesham Hartlepool Leamington Spa Sheffield

Reg. Office Bourbon Court Nightingales Corner Little Chalfont Buckinghamshire HP7 90S

Reg. No. 10234789 England

JNP Group is the trading name of JNP Group Consulting Engineers Ltd. Each soakaway location was charged with water on two consecutive occasions. The reduction in water level was recorded until the soakaways where empty and this data was used to calculate infiltration rates as detailed in the table below.

	Table	1 –	Infiltration	Rates
--	-------	-----	--------------	-------

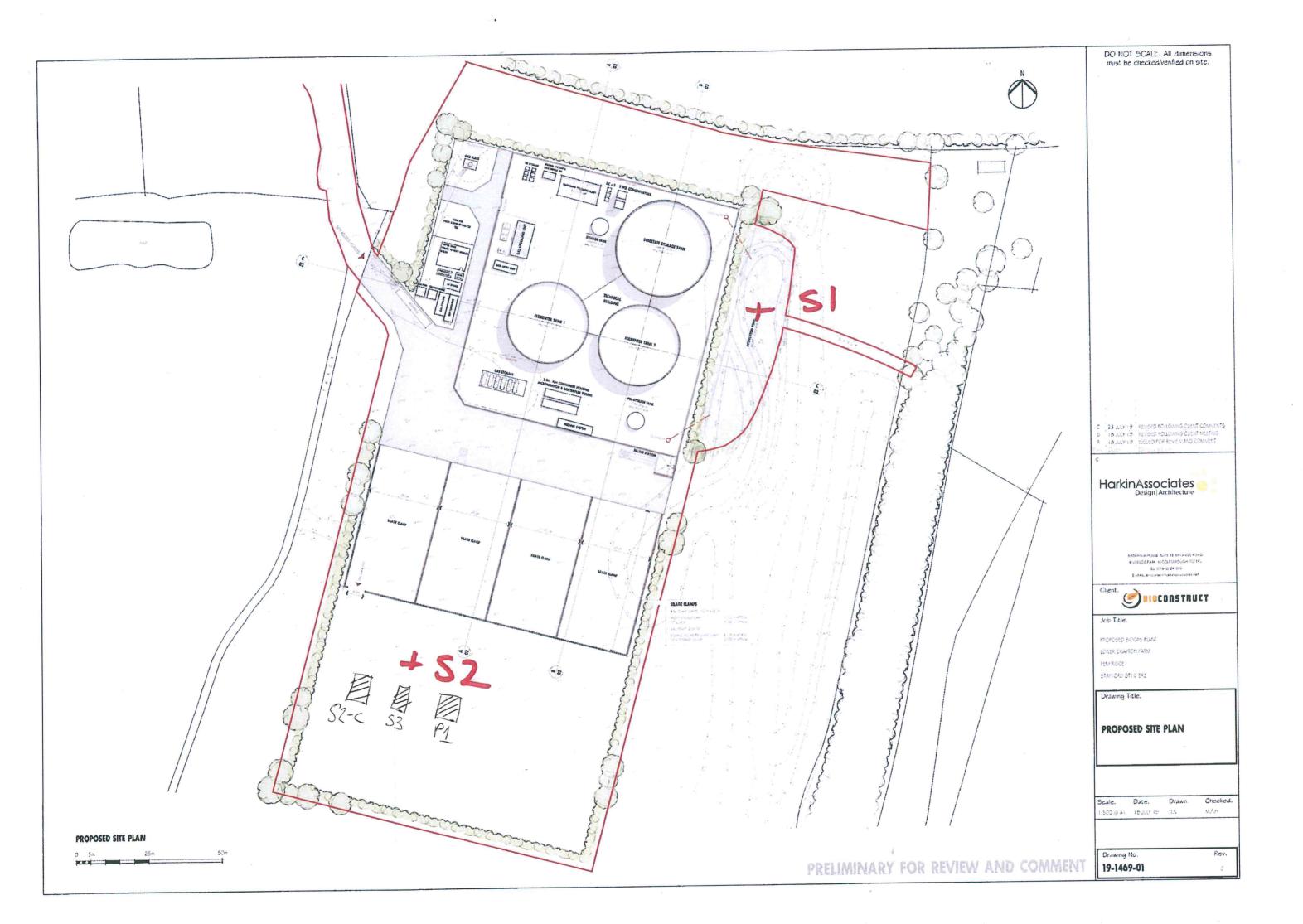
Soakaway Location	Test 1	Test 2
S2C	3.6x10-5 m/sec	3.8x10-5 m/sec
SA3	4.3x10-5 m/sec	3.4x10-5 m/sec

It is recommended that the lowest recorded infiltration rate for each test location should be utilised for design purposes. The full soakaway results are included as Appendix C.

Location P1 was used to undertake a percolation test. The proposed hole was excavated to 1.00 m bgl with a twofoot bucket, before using a one-foot bucket to excavate a 0.30 m deep excavation at the proposed invert level of the drainage design. This hole was then filled in accordance with 'TDS0005P Drainage Fields also known as Sub-Surface Irrigation Systems' from Kinsgpan Environmental. The excavation was filled a total of six times. This was limited due to the finite amount of water that was ordered to site. Table 2 below summarises the findings.

Test	Time for full drainage (seconds)	Time for reduction from 25% - 75% effective depth (seconds)	Vp (percolation value)
P1 test 1	600	300	2.000
P1 test 2	590	325	2.167
P1 test 3	585	310	2.067
P1 test 4	660	400	2.667
P1 test 5	575	330	2.334
P1 test 6	550	335	2.334

We trust that the above and attached are sufficient for your current needs, however, should you require anything further please do not hesitate in contacting the undersigned.


Yours sincerely

Sternd Terrol

Edward Tainsh BSc Assistant Geo-environmental Engineer

Drawings

Appendix A Site Photographs

Photograph 1 - location S2, evidence of seepage at base of excavation

Photograph 2 - location S1, arisings with evidence of Made Ground

Photograph 3 – location S2C, arisings

Photograph 4 – location S2B, sidewall collapse

Appendix B Soakaway Test Pit Logs

						Tri	al Pit Log				
Project				Projec			Sheet 1 of Co-ords: 393060.00 - 315300.00 Date	1			
Name:	Propose	ed Biogas p	lant at Penkridge	H7702			Level: 24/10/201	9			
Location:	Penkrid	ge					Dimensions 2 Scale (m): 1:25				
Client:	Horkin /	Associates					Depth o Logged				
			2:4 T a a 4:	Ι			1.30 ET				
Water Strike	Depth	Type	Situ Testing Results	Depth (m)	Level (m)	Legend	d Stratum Description				
50				0.50			Grass overlying brown sandy gravelly TOPSOIL TOPSOIL Brown slightly silty SAND with occasional quartzite gravel GLACIOFLUVIAL DEPOSITS	1			
				1.30			Ēnd of pit at 1.30 m	2			
								L			
								3			
								4			
								5			
Remarks: Stability:	: 0.30	m wide fror	m 1.00 - 1.30 m			1	AG	S			

∭ jr	Consulting Engineers					Tri	al Pit Log	Trialpit N S1	
Projec		d Biogas r	plant at Penkridge	Projec			Co-ords: 393133.00 - 315423.00	heet 1 of Date	
Name:				H7702	20		Level: 2 Dimensions 2	4/10/201 Scale	19
Locatio	on: Penkride	ge					(m):	1:25	
Client:	Harkin A	ssociates					Depth ö	Logged ET	
ater rike		1 1	Situ Testing	Depth	Level	Legend	Stratum Description		
Water Strike	Sample	es and In S	Situ Testing Results	2.00	Level (m)	Legend	End of pit at 2.00 m	ivel	1 2 3 4
									5 -
Remar Stabilit						<u> </u>		AG	

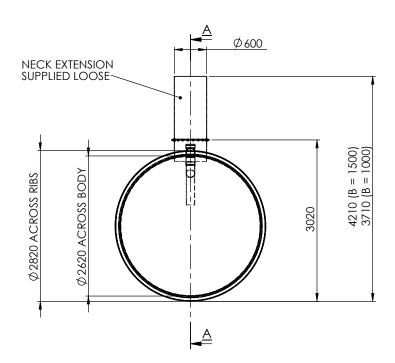
jan j	Consulting Engineers					Tri	al Pit Log	Trialpit N S2	
Project		ed Biogas p	lant at Penkridge	Projec			Co-ords: 393044.00 - 315313.00	Sheet 1 c Date	
Name:				H7702	20		Level: Dimensions 2	24/10/20 Scale	
Locatio							(m): v Depth o	1:25	
Client:		ssociates			1		2.20	Logged ET	1
Water Strike		1 1	Situ Testing	Depth (m)	Level (m)	Legenc	Stratum Description		
<u>v</u> 4	Depth	Туре	Results	0.50			Grass overlying brown sandy gravelly TOPSOI TOPSOIL Brown silty SAND with occasional quartzite gra GLACIOFLUVIAL DEPOSITS		1
				1.60			Brown slightly gravelly silty SAND. Gravel is fir medium sized rounded quartzite. GLACIOFLUVIAL DEPOSITS	ie to	2
				2.20			End of pit at 2.20 m		4
Remar Stabilit								AG	5 -

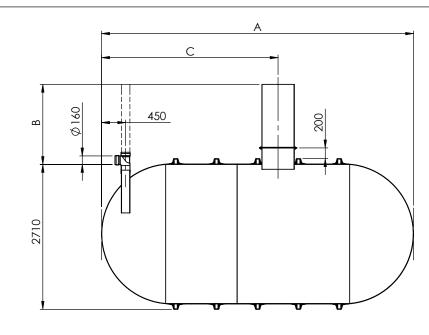
jr.	Consulting Engineers					Tri	al Pit Log	3			
Project		ed Biogas p	lant at Penkridge	Projec			Co-ords: 393039.00 - 315308.00 Date				
Name:				H7702	20		Level: 24/10/20 Dimensions 2 Scale				
Locatio							(m): Depth O Logged				
Client:		ssociates		1	1	1	1.90 ET	u			
Water Strike	Sample Depth	es and In S	Bitu Testing Results	Depth (m)	Level (m)	Legend	nd Stratum Description				
> 0)				0.50			Grass overlying brown sandy gravelly TOPSOIL. TOPSOIL Brown slightly gravelly silty SAND. Gravel is fine to medium sized rounded quartzite. GLACIOFLUVIAL DEPOSITS	1			
				1.90			End of pit at 1.90 m				
								2 -			
								3 -			
								4 -			
Remar Stabilit		wall collaps	se at 1.80 m				AG	5 - S			

jaha Jin						Tri	al Pit Log	
Project	Propose	d Biogas n	lant at Penkridge	Projec	t No.		Sheet 1 of Co-ords: 393039.00 - 315300.00 Date	
Name:	Propose	u biogas p	nant at Penkindge	H7702	20		Level: 24/10/2019 Dimensions 2 Scale	9
Locatio	on: Penkrido	ge					(m): 1:25	
Client:	Harkin A	ssociates					Depth C Logged	
Water Strike		1 1	Situ Testing	Depth	Level	Legend		
Wa Stri	Depth	Туре	Results	(m)	(m)		Grass overlying brown sandy gravelly TOPSOIL.	
				0.40			TOPSOIL Brown silty SAND with occasional quartzite gravel. GLACIOFLUVIAL DEPOSITS	-
								1
				1.75			End of pit at 1.60 m	2 -
								3 -
								4 -
								-
Remar Stabilit							AGS	5 - S

jan j	Consulting Engineers					Tri	al Pit Log	Trialpit I	
Project	Propose	d Biogas pla	ant at Penkridge	Projec			Co-ords: 393050.00 - 315300.00	Sheet 1 Date	
Name:				H7702	20		Level: Dimensions 2	24/10/20 Scale	
Locatio	n: Penkrido	ge					(m):	1:25	
Client:	Harkin A	ssociates			-		Depth o	Logge ET	d
Water Strike		es and In Si		Depth	Level	Legend	stratum Description		
Wat Strii	Depth	Type	Results	(m) 0.35 0.80 1.60	(m)		Grass overlying brown sandy gravelly TOPSO TOPSOIL Brown silty SAND with occasional quartzite gr GLACIOFLUVIAL DEPOSITS Brown silty SAND. GLACIOFLUVIAL DEPOSITS		2
Remarl								AC	5 - FS

Appendix C Soakaway Test Results




npgroup		∎ john newton & pa	rtners	SOIL INF	ILTRATIO	N TEST
larlborough Hou	ise	Inngr	oup	Project:		
eamington Spa				Penkridge Bio	ogas	
Varwickshire		Consulting	Engineers			
V32 4XP						
el 01926 88995	5			Project No:		
ax 01926 45174	5				H77020	
eoenvironmenta	ll@jnpgroup.co.uk					
Test Location		Test No:	1		Date: 2	2 Oct 2019
Water level di	uring test	Trial pit dimen	sions			
Time	Depth	depth (m)	1.70			
mins	m bgl	length (m)	2.00			
0	1.100	width (m)	0.60			
6	1.150					
20	1.200		V_{n75} 25			
30 40	1.250 1.300	f =	V_{p75-25}			
40 50	1.300	a _{s5}	$_{50} \times t_{p75-25}$	5		
60	1.400					
70	1.480	f = soil infiltrat	tion rate			
80	1.520	V _{p75 - 25} = volu	me of water from 75	5% to 25% effe	ective depth	
90	1.550	a_{s50} = inte	rnal surface area at	50% effective	depth	
100	1.600	t_{p75-25} = time	for the water level t	o fall from 75%	% to 25% effe	ctive depth
120	1.650					
130	1.700		ffective depth (mins)		30	
			ffective depth (mins)		90	
		(from graph)				
		Calculated So	oil Infiltration Rate	=	3.6E-05 m	/sec
			er vs Elapsed sed Time, minutes			
1.10	0 20 Q	40 6	60 80	100	120	140 <mark>100</mark> %
	0					
bq too		-0				7 5 %
E 1.30						
/ate						50%
Depth to Water, m bg 1.20 .						
5 1.50						
				o		2 5 %
ے ا				\		
ă		1	1	1	~	1
1.70						

npgroup		john newton & partners	SOIL	NFILTRATI	ON TEST
arlborough Ho	use	Inpgroup	Project:		
eamington Spa			Penkridge	e Biogas	
Varwickshire		Consulting Engineers			
V32 4XP					
el 01926 88995	55		Project	No:	
ax 01926 4517	45			H7702	0
eoenvironmenta	al@jnpgroup.co.u	k			
Test Locatior	n: S2-C	Test No: 2		Date:	22 Oct 2019
Water level d	uring test	Trial pit dimensions			
Time	Depth	depth (m) 1.65			
mins	m bgl	length (m) 2.00			
0	1.100	width (m) 0.60			
10	1.150				
20	1.200	V_{n75} 2	5		
30	1.330	$f = \frac{V_{p75-2}}{a_{s50} \times t_{p75}}$	5		
40 50	1.380 1.400	$a_{s50} \times t_{p72}$	5 – 25		
60	1.400				
70	1.450	f = soil infiltration rate			
80	1.520	V_{p75-25} = volume of water	from 75% to 25%	effective depth	
90	1.550	a_{s50} = internal surface		ctive depth	
	1.580	a_{s50} = internal surface t_{p75-25} = time for the wate	area at 50% effec	-	
90 100 110	1.580 1.600	t_{p75-25} = time for the wate	area at 50% effeo r level to fall from	-	
90 100	1.580	t_{p75-25} = time for the wate time at 75% effective depth	area at 50% effec r level to fall from n (mins)	75% to 25% ef	
90 100 110	1.580 1.600	t_{p75-25} = time for the wate time at 75% effective depth time at 25% effective depth	area at 50% effec r level to fall from n (mins)	75% to 25% ef	
90 100 110	1.580 1.600	t_{p75-25} = time for the wate time at 75% effective depth	area at 50% effec r level to fall from n (mins)	75% to 25% ef	
90 100 110	1.580 1.600	t_{p75-25} = time for the wate time at 75% effective depth time at 25% effective depth	area at 50% effec r level to fall from า (mins) า (mins)	75% to 25% ef	fective depth
90 100 110	1.580 1.600	t_{p75-25} = time for the wate time at 75% effective depth time at 25% effective depth (from graph)	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time	75% to 25% eff 25 80	fective depth
90 100 110	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time	75% to 25% eff 25 80	fective depth
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 120
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 120 1 0 0 %
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 120 1 0 0 %
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 120
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 120 1 0 0 %
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 120 100% 75%
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 100% 75% 50%
90 100 110 120 1.10 1.10 1 .30 1 .30	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 120 100%
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 100% 75% 50%
90 100 110 120	1.580 1.600 1.650	t p75-25 = time for the wate time at 75% effective depth time at 25% effective depth (from graph) Calculated Soil Infiltration Depth to Water vs Ela Elapsed Time, r	area at 50% effec r level to fall from n (mins) n (mins) n Rate = psed Time ninutes	75% to 25% eff 25 80 3.8E-05	fective depth m/sec 100% 75% 50%

npgroup		john newton & partners	SOIL	NFILTRATIO	ON TEST
arlborough Hou	se	Inpgroup	Project:		
eamington Spa			Penkridge	Biogas	
Varwickshire		Consulting Engineers			
V32 4XP					
el 01926 889955	;		Project	No:	
ax 01926 45174	5			H77020	0
eoenvironmenta	l@jnpgroup.co.uk	ζ			
Test Location:	S3	Test No: 1		Date:	22 Oct 2019
Water level du	ring test	Trial pit dimensions			
Time	Depth	depth (m) 1.60			
mins	m bgl	length (m) 2.00			
0	1.000	width (m) 0.60			
10	1.200				
20	1.300	V_{n75-25}	;		
30 40	1.350 1.380	$f = \frac{V_{p75-25}}{a_{s50} \times t_{p75}}$, 		
40 50	1.300	$a_{s50} \times t_{p75}$	-25		
60	1.450				
70	1.480	f = soil infiltration rate			
80	1.500	V_{p75-25} = volume of water fr	rom 75% to 25%	effective depth	
90	1.520	a_{s50} = internal surface a	rea at 50% effec	tive depth	
100	1.550	t_{p75-25} = time for the water	level to fall from	75% to 25% eff	fective depth
110	1.580				
120	1.600	time at 75% effective depth	. ,	9	
		time at 25% effective depth	(mins)	60	
		(from graph)			
		Calculated Soil Infiltration	Rate =	4.3E-05	m/sec
		Depth to Water vs Elap Elapsed Time, m	osed Time		
) 20	40 60	80	100	120 100%
1.00 (-				
(1.00 ¢	-				
	-				
1.00	-				75%
1.00	-				7 5 %
1.00	-				
1.00	-				
1.00	-				
to Mater, m bgl	-				5 0 %
1.00	-		0		7 5 % 5 0 % 2 5 %
1.00	-		•	0	5 0 %

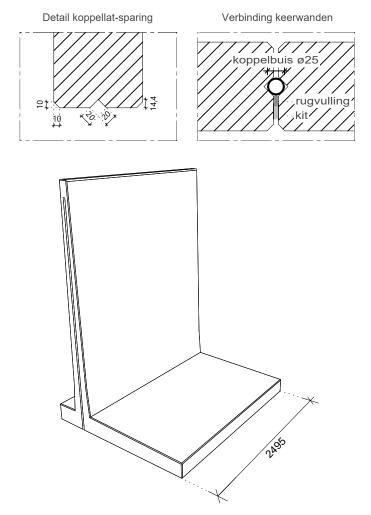
npgroup		john newton & pa	artners	SOII	INFILTR/		ССТ
Inpgroup	use	innor	OUP	Project			
eamington Spa		JIPSI	oup	-	e Biogas		
Varwickshire		Consulting	Engineers	Ŭ	5		
V32 4XP							
el 01926 88995	5			Project	No:		
ax 01926 45174						7020	
	al@jnpgroup.co.ul	k					
Test Location		Test No	: 2		Da	ate: 22 Oct	t 2019
Water level d	urina test	Trial pit dimer	nsions				
Time	Depth	depth (m)	1.55	٦			
mins	m bgl	length (m)	2.00				
0	1.000	width (m)	0.60				
10	1.080						
20	1.120		V_{n75} 25				
30	1.150	f = -	V_{p75-25} 50 × t_{p75-25}	_			
40 50	1.200 1.260	a _s	$_{50} \times t_{p75-2}$	25			
60	1.200						
70	1.360	f = soil infiltra	ition rate				
80	1.400	$V_{p75-25} = volu$	ume of water from	75% to 25%	% effective d	epth	
90	1.410						
30	1.410	a _{s50} = inte	ernal surface area	at 50% effe	ctive depth		
100	1.430		ernal surface area e for the water leve		-	% effective	depth
100 110	1.430 1.450	$t_{p75-25} = time$	e for the water leve	el to fall fror	-	% effective	depth
100 110 120	1.430 1.450 1.480	$t_{p75-25} = time$ time at 75% e	e for the water leve effective depth (min	el to fall fror ns)	-	29	depth
100 110 120 130	1.430 1.450 1.480 1.510	t_{p75-25} = time time at 75% e time at 25% e	e for the water leve ffective depth (min ffective depth (min	el to fall fror ns)	-		depth
100 110 120 130 140	1.430 1.450 1.480 1.510 1.520	$t_{p75-25} = time$ time at 75% e	e for the water leve ffective depth (min ffective depth (min	el to fall fror ns)	-	29	depth
100 110 120 130	1.430 1.450 1.480 1.510	t_{p75-25} = time time at 75% et time at 25% et (from graph)	e for the water leve ffective depth (min ffective depth (min	el to fall fror ns) ns)	n 75% to 256	29	
100 110 120 130 140	1.430 1.450 1.480 1.510 1.520	t _{p75-25} = time time at 75% e time at 25% e (from graph) Calculated S Depth to Wa	e for the water leve effective depth (min effective depth (min	el to fall fron ns) ns) te =	n 75% to 256	29 90	
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% e time at 25% e (from graph) Calculated S Depth to Wa	e for the water leve effective depth (min effective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te =	n 75% to 256	29 90	;
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% e time at 25% e (from graph) Calculated S Depth to War Elar	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	;
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% e time at 25% e (from graph) Calculated S Depth to War Elar	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	;
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% e time at 25% e (from graph) Calculated S Depth to War Elar	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t p75-25 = time time at 75% et time at 25% et (from graph) Calculated S Depth to War Elag 40 60	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% et time at 25% et (from graph) Calculated S Depth to War Elar 40 60	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	1 0 0 %
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% et time at 25% et (from graph) Calculated S Depth to War Elar 40 60	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	1 0 0 % 7 5 %
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% et time at 25% et (from graph) Calculated S Depth to War Elar 40 60	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% et time at 25% et (from graph) Calculated S Depth to War Elar 40 60	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	1 0 0 % 7 5 %
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% et time at 25% et (from graph) Calculated S Depth to War Elar 40 60	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	1 0 0 % 7 5 % 5 0 %
100 110 120 130 140 150	1.430 1.450 1.480 1.510 1.520 1.550	t _{p75-25} = time time at 75% et time at 25% et (from graph) Calculated S Depth to War Elar 40 60	e for the water leve effective depth (min offective depth (min oil Infiltration Ra ter vs Elapse osed Time, minu	el to fall fron ns) ns) te = ed Time tes	n 75% to 25 3.4E	29 90 E-05 m/sec	1 0 0 % 7 5 % 5 0 %

SECTION A-A

Nominal Volume (Litres)	Nominal Volume (Gallons)	Weight (Kg)	Overall Length A	Inlet invert B = 1.5 Metres	Inlet Invert B = 1.0 Metres	Dimension to neck C
18,000	3,960	646	4,317	1,500	1,000	2,547
22,000	4,889	828	5,073	1,500	1,000	3,302
26,000	5,720	981	5,837	1,500	1,000	3,302


NOTES:-

- 1. CESSPOOLS AND SILAGE TANKS MUST NOT DISCHARGE IN TO THE ENVIRONMENT AND MUST BE EMPTIED WHEN FULL.
- THE TANK IS FITTED WITH A 160MM INLET SOCKET. PIPE ADAPTORS CAN BE PROVIDED FOR ANALTERNATIVE SIZE OF 110mm. THESE ARE FITTED EXTERNALLY TO THE TANK.
- 3. THIS DRAWING IS PROVIDED TO SUPPLY DIMENSIONAL INFORMATION ONLY.
- 4. THE UNIT MUST BE INSTALLED WITH A CONCRETE SURROUND. PLEASE SEE THE DETAILED INSTALLATION PROCEDURE SUPPLIED WITH EACH UNIT.
- THE UNIT IS SUPPLIED WITH LOOSE, BOLT ON TANK SHAFTS TO SUIT EITHER 1 OR 1.5 METRE INVERT (SPECIFY WITH ORDER). THEY MUST BE FITTED ON SITE AS PART OF THE INSTALLATION AND CAN BE TRIMMED TO SUIT THE EXACT SIZE OF INVERT.
- 6. THE UNIT IS PROVIDED WITH 1, 2 OR 3 SHAFTS, DEPENDING ON IT'S VOLUME. TO AID DE-SLUDGING IT IS RECOMMENDED THAT 2 SHAFTS ARE SELECTED FOR TANKS WITH CAPACITES OF 34m3 AND ABOVE. 3 SHAFTS SHOULD BE FITTED TO UNITS OF ABOVE 54m3 (SPECIFY WITH ORDER). ADDITIONAL SHAFTS CAN BE FITTED. UNITS SHOULD NOT BE INSTALLED DEEPER THAN NECESSARY, NOR DEEPER THAN THE INVERT SPECIFIED FOR THE UNIT SUPPLIED.
- 7. PEDESTRIAN DUTY COVER AND FRAMES TO FIT DIAMETER 600mm NECKS, ARE AVAILABLE FOR PURCHASE.
- 8. THE WEIGHTS GIVEN ARE FOR HANDLING PURPOSES ONLY AND EXCLUDE THE BOLT ON SHAFTS.
- THE INLET PIPE SHOULD BE EXTENDED TO GROUND LEVEL. DIAMETER 450mm ACCESS COVERS ARE FOR PURCHASE TO ALLOW FOR RODDING ACCESS.


- SINGLE NECK TANKS SERVING SINGLE PROPERTIES SHOULD BE VENTED, USING THE SOIL STACK. LARGER TANKS SERVING MULTIPLE PROPERTIES SHOULD HAVE A VENT FITTED TO THE NECK TO ENABLE LOCALISED HIGH LEVEL VENTING.
- 11. WE RECOMMEND THE PURCHASE AND USE OF A HIGH LEVEL ALARM WITH THESE TANKS.

Please Check with Environmental Treatment Systems Limited For The Latest Issue Of This Drawing				Treatment Systems Limited For TI	ne Latest Issue Of This Drawing	Material : Various	Tolerance (unless stated) :	Drawing DC0042B CO24 CB SI	D 1 . (0
Issue	Date	Drawn by	Approved by	Description		Finish :	Thickness : n/a	Drawing : DS0963P - Ø2.6 CP - SL	Page 1 of 3
001	04.11.08 27.02.09	M.H.		N	INITIAL ISSUE		Surface Area : m ²	- SINGLE NECK CESSPOOL / SILAGE TANK	
002	27.02.09	M.H.		22m³ AND 59m³ TANKS ADDED		Modelled By : Name		SINGLE NECK CLISTI OOL / SILAGE TANK	
All	All Dimensions In mm Scale: Do Not Scale		cale: Do Not Scale		right to alter the This drawing is copyrig	pan Environmental reserve the details of this drawing without prior notice. Int and may not be reproduced or used without	Kingspan		
R:\Engineering\Drawing Data\02 - Sales Drawings\DS\DS - 09\DS0963P - Ø2.6 CP - SL			Ø2.6 CP - SL	The written	permission of Kingspan Environmental	Lnvironmental			

TYPE LA300G - 15 TON ASLAST

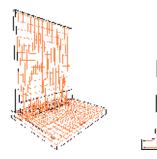
3D-model

Specificaties

- · Betonkwaliteit: C 60/75 (Hogesterktebeton)
- Millieuklasse: XC4; XF3; XD3
- · Gewicht: 6330 kg
- · Wapeningstaal: B500A
- Standaardlengte: 2495 mm
- · Betondekking: 30 mm
- Alle zichtzijdes zichtbetonklasse; A

BOSCH

Postadres Postbus 173 3770 AD Barneveld


Bezoekadres Wesselseweg 132 3774 RL Kootwijkerbroek T: 0342 - 44 10 50 F: 0342 - 44 10 60 E: info@boschbeton.nl Eigendom uitdrukkelijk voorbehouden. Vermenigvuldiging of mededeling aan derden in welke vorm dan ook is zonder schriftelijke toestemming van de eigenaar niet geoorloofd.

TYPE LA300G - 15 TON ASLAST

Kwaliteiten

- KOMO-certificering volgens agrarische betonproducten
- **CE-certificering** zeer dichte en gladde betonstructuur
- Volledig gecertificeerd geproduceerd met hogesterktebeton (C60/75)
- Kiwa gecontroleerde drukbankproeven voor beste productgarantie
- Veilig en vast aanrijden tot 20 ton aslast zonder randafstand
- Ontwerplevensduur 50 jaar
- Levering uit voorraad
- 15 jaar productgarantie

Wapening

Wapening conform de nieuwste Eurocode.

Belastingschema Vrijstaand

- · Maximale voertuigbelasting zonder grondwal:
 - 15 ton aslast, geen randafstand
- De LA-keerwand dient achter de hak ingeklemd te
- worden door verharding
- Afwijkende belastingen/toepassingen op aanvraag

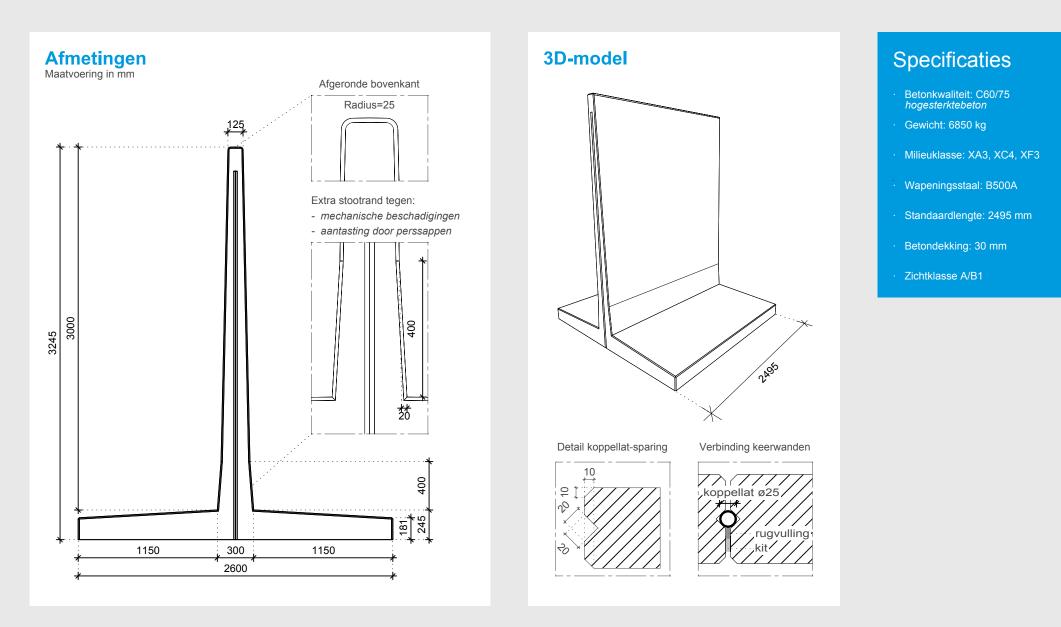
Maximale voertuigbelasting met grondwal: 20 ton aslast, geen randafstand Grondwal conform tekening aanbrengen De grondwal mag niet mechanisch verdicht worden · Min. 1000 mm 15 TON aslast 20 TON aslast GÉÉN randafstand GÉÉN randafstand 4240 maximale ruwvoerverdichting, óók in de hoeken van de sleufsilo 1500 2740 320

Belastingschema Grondwal

Volgens voorschriften

NEN-EN 1990 Eurocode 0 NEN-EN 1991 Eurocode 1 NEN-EN 1992 Eurocode 2 NEN-EN 1997 Eurocode 7

NEN-EN 206-1 NEN 8005 NEN 9997-2 Incl. nationale bijlagen

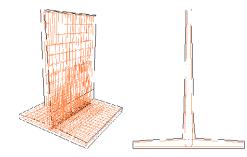


Postadres Postbus 173 3770 AD Barneveld

Bezoekadres Wesselseweg 132 3774 RL Kootwijkerbroek **T:** 0342 - 44 10 50 **F**: 0342 - 44 10 60 E: info@boschbeton.nl Eigendom uitdrukkelijk voorbehouden. Vermenigvuldiging of mededeling aan derden in welke vorm dan ook is zonder schriftelijke toestemming van de eigenaar niet geoorloofd.

TYPE TWA300 - 20 TON ASLAST

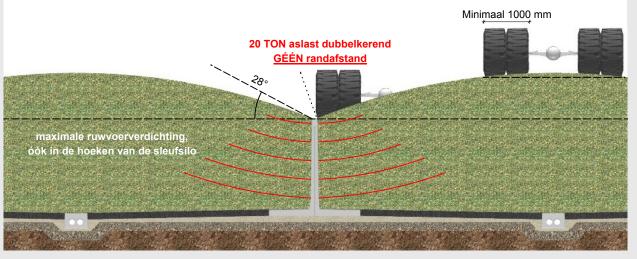
BOSCH[®] BETON


Postadres Postbus 173 3770 AD Barneveld Bezoekadres Wesselseweg 132 3774 RL Kootwijkerbroek T: 0342 - 44 10 50 F: 0342 - 44 10 60 E: info@boschbeton.nl Eigendom uitdrukkelijk voorbehouden. Vermenigvuldiging of mededeling aan derden in welke vorm dan ook is zonder schriftelijke toestemming van de eigenaar niet geoorloofd.

TYPE TWA300 - 20 TON ASLAST

Kwaliteiten

- KOMO-certificering volgens agrarische betonproducten
- · CE-certificering zeer dichte en gladde betonstructuur
- Volledig gecertificeerd geproduceerd met hogesterktebeton (C60/75)
- Kiwa gecontroleerde drukbankproeven voor beste productgarantie
- · Veilig en vast aanrijden tot 20 ton aslast zonder randafstand
- · Ontwerplevensduur 50 jaar
- · Levering uit voorraad
- 20 jaar productgarantie


Wapening

Wapening conform de nieuwste Eurocode.

Belastingschema

- · Maximale voertuigbelasting: 20 ton aslast, geen randafstand
- · De wanden zijn vrijdragend en dubbelkerend
- · De voet van de TWA/wand moet worden ingesloten door verharding
- · Afwijkende belastingen/ toepassingen op aanvraag

Volgens voorschriften

NEN-EN 1990 Eurocode 0 NEN-EN 1991 Eurocode 1 NEN-EN 1992 Eurocode 2 NEN-EN 1997 Eurocode 7 NEN-EN 206-1 NEN 8005 NEN 9997-2 Incl. nationale bijlagen

Beton

Postadres Postbus 173 3770 AD Barneveld

Bezoekadres Wesselseweg 132 3774 RL Kootwijkerbroek T: 0342 - 44 10 50 F: 0342 - 44 10 60 E: info@boschbeton.nl Eigendom uitdrukkelijk voorbehouden. Vermenigvuldiging of mededeling aan derden in welke vorm dan ook is zonder schriftelijke toestemming van de eigenaar niet geoorloofd.

Tufflex[®] HD / HD+

Technical data sheet

Tufflex[®] HD / HD+ is a unique asphalt surfacing solution designed for very heavy, slow moving traffic. It contains a Polymer Modified Binder (PMB) with an exceptionally high softening point.

A PMB is at the heart of a unique solution that offers good protection against damage caused by heavy, slow moving traffic. The product also contains fuel resisting properties.

Benefits

The main advantages of Tufflex® HD are:

- Cost-effective over the whole life
- Very high deformation resistance
- Low air void which prevents water ingress
- Fuel resisting properties
- Good workability
- Has a resistance to elevated temperatures from chemical attacks from leachates
- Good load spreading ability from very heavy, slow moving traffic at higher temperatures to prevent wheel track deformation
- Increased stiffness

The main advantages of Tufflex® HD+ are:

- Increased stiffness over Tufflex HD
- Enhanced fuel resisting properties

Please note: 7 days' notice required to stock specialist binder.

Tufflex® HD / HD+ technical data

Material property	Typical result	Spec limits	Report reference
Maximum density (Mg/m³)	2.499	-	MXD81-16
Bulk density – reference (Mg/m³)	2.399	-	— BD150-16
Air void content – reference (%)	4.0	≤5	BD150-10
Stiffness (MPa)	8,883	-	SM41-16
ITFT* (cycles to failure @ 100µstrain)	TBC	-	FT5-16
Duriez	0.92	≥0.80	DT7-16
Bulk density (Proc. D) – WT slabs (Mg/m³)	2.384	-	
Air void content – WT slabs (%)	4.6	-	BD163-10
Mean proportional rut depth (30,000 cycles) – % (large device WT)	4.7	-	WT51-16
Refusal density (Mg/m³)	2.449	-	DD15 16
Voids at refusal (%)	2.0	≥0.5	— RD15-16

*Please contact the asphalt technical team at **asphaltsales@hanson.com** for ITFT data.

Use this product for

- ✓ Carriageways
- ✓ Farm floors/composting areas
- ✓ Industrial areas
- ✓ Lorry parks and bus stations

civil engineering and building

- Å
- Industrial, Commercial, Agricultural and Domestic building design
- Foundation Design and ground improvements
- Highway Engineering including PDS/Civil 3D
- Retaining walls
- Sheet Piling

environmental engineering

- Contaminated Land investigations (intrusive & non-intrusive)
- Land remediation verification
- Environmental impact assessments (EIA)
- Flood Risk Assessments
- Water supply, treatment, storage and distribution

structural engineering

- Structural calculations for Commercial, Agricultural and Domestic building design
- Structural design using steel, stainless & carbon steel, concrete, timber, alloys and masonry

surveying land and buildings

- Geomatic / topographical site surveys
- Building, Road, and Earthworks Setting out
- Engineering Setting out
- Establish precise site survey control
- o 3D digital terrain modelling

- Infrastructure planning and design
- Design of sustainable drainage system (SUDS)
- o Soakaway design
- Architectural design of industrial buildings
- Planning and building regulation applications

- 3D conceptual models
- Renewable Energy Civil Engineering design and project management
- Anaerobic Digestion and Waste to Energy Project design and detail
- Foul and surface water & effluent/leachate drainage design
- Drainage network modelling
- o 1D & 2D flood modelling
- Hydraulic river modelling
- Flood Alleviation
- Breach & overtopping analysis
- Reservoir flood inundation modelling
 Consent to discharge
- Consent to discharge applications
- Landscaping design
- Tree surveys
- Environmental Permits

Structural monitoring

remedial work

modelling

Structural enhancement/

• Historic building advice

O 3D Revit & Level 2 BIM

structural design &

- Maritime and Hydraulic structures
- Structural surveys and structural suitability surveys
- Structural failure studies
- Subsidence claims
- Temporary works design
- o 3D Finite Element Analysis
- Volumetric analysis
- Site area computations
- Flood risk surveys using GPS active network
- Measured building floor plans and elevation surveys
- Land transfer plans to Land Registry requirements
- Drainage network surveys
- Assistance/Expert witness in land boundary disputes
- Deterioration monitoring
- Preparation of asset plans
- As built record surveys

Plandescil Ltd Connaught Road Attleborough Norfolk NR17 2BW

t: 01953 452001e: pdc@plandescil.co.ukplandescil.co.uk

civil / structural / environmental / surveying

Appendix D – Containment Bund Design Report

Containment Bund Design Report

Job No. 25998

Proposed Anaerobic Digestion Plant Lower Drayton Farm, Penkridge Stafford, ST19 5RE

Client: O'Brien Moran & Co Ltd

Prepared By: Alex Fitzgerald

July 2020

Revision B

civil / structural / environmental / surveying

CONTENTS

	CONTENTS	3
1.0	BACKGROUND INFORMATION	4
2.0	ANAERBOBIC DIGESTION SITE LAYOUT, PROCESS & CONCEPT	4-5
3.0	DESIGN & METHODOLOGY OF CONTAINMENT BUND	5-7
4.0	REVIEW PERIODS DURING CONSTRUCTION	7
5.0		7-8
6.0	APPENDIX DETAILS AND DRAWINGS EXPLAINED	8-9

DRAWINGS, CALCULATIONS AND SPECIFICATIONS APPENDIX (Listed in 6.0 APPENDIX DETAILS AND DRAWINGS)

1.0 BACKGROUND INFORMATION

- 1.1 Plandescil Ltd have been commissioned to provide the construction specification and details for the civil engineering elements associated with the Anaerobic Digestion Plant at Lower Drayton Farm in Penkridge, Stafford. This appointment was received from the Civil Engineering Contractor, O'Brien Moran & Co Ltd, as well as the Process Provider, BioConstruct. The package of works consisted of a containment bund and drainage design philosophy.
- **1.2** The intention of this report is to clarify any outstanding details for the Environment Agency.

2.0 ANAEROBIC DIGESTION LAYOUT, PROCESS & CONCEPT

- **2.1** O'Brien Moran & Co Ltd instructed Plandescil Ltd to undertake the civil engineering design of the secondary containment bund, hardstanding areas and site drainage for the proposed Anaerobic Digestion Facility located at Lower Drayton Farm, Stafford.
- 2.2 The bund has been designed and constructed in accordance with the latest Environment Agency (EA) guidance document, CIRIA C736 *Containment Systems for the Prevention of Pollution.* Following approval of the design by the Process Provider, O'Brien Moran & Co Ltd have been instructed to construct the containment bund in accordance with Plandescil designs. Plandescil have also been tasked with reviewing the construction of the containment bund throughout the build.
- 2.3 Upon finalisation of the site's mechanical and electrical process equipment, the size and capacity of the containment bund was established. A number of liquid-retaining structures were to be located within the secondary containment bund and had been accounted for within the capacity calculations, including:
 - 1No. 33.00m diameter and 6m high fermenter tank
 - 2No. 28.00m diameter and 6m high fermenter tank
 - 1No. 12.00m diameter and 6m high input tank
- 2.4 The containment capacity is designed in accordance with CIRIA C736, with the calculations demonstrating 110% of the largest tank volume to be a greater volume than 25% of the combined volume (displayed on the attached calculation spreadsheet). The proposed footprint of the containment area allowed for the walls to be constructed to a minimum height of 1.6m, which included 250mm freeboard capacity as per page 85 of CIRIA C736. The containment bund occupies a footprint area of 6,050m².
- 2.5 Minor reductions in level had been allowed for in the bund floor slab to enable rainfall to flow towards the designated sump collection pits. The regional specific rainfall data had been obtained and accounted for within the containment capacity checks.

- 2.6 To comply with the CIRIA C736 secondary containment requirements for the tank installations, it was agreed that all storage tanks would be constructed with their concrete bases constructed on top of the secondary containment bund floor slab. This allows for a more accurate visual integrity inspection of the storage tanks during the operation phase of the Anaerobic Digestion Facility and provides an additional level of protection to the ground below.
- 2.7 The containment bund floor slab has been designed with surface falls to allow for the drainage of liquid towards 3No. sump pits of varying size. The primary sump is to be constructed at 3.00m length, 1.00m width and 1.60m depth. Pre-formed 1.20mØ MDPE chambers with reinforced concrete surrounds are to be used for the remaining sump pits. Shallow formed channels within the containment bund concrete floor will be cast by the contractor to direct the surface water flow towards sump locations.
- **2.8** As part of the operational management of the facility, any containment bund liquid captured within the drainage sumps will be routinely checked and tested prior to being discharged to one of the proposed locations shown on the proposed drainage layout 'Plandescil Ltd Drawing No. 25998/007 Revision E'. If the containment sump water is tested as 'clean', the liquid will be pumped over the containment wall into the surface water system to the west of the site, out-falling to the 365m³ infiltration pond located to the south of the site. An additional volume of clean water will discharge to the south infiltration pond from the Ekogea system within the containment bund at a maximum rate of 23m³. The polished water will first be pumped to the primary containment bund sump before it is tested and discharged.
- **2.9** Should the containment bund sump liquid be tested as 'dirty', the water will be pumped to the 1,140m³ lined dirty water lagoon located to the east of the site. If required, the dirty water lagoon liquid would be pumped back to the pre-storage (buffer) or fermenter tank within the containment bund, for use within the process. The 2No. smaller sump pits to the south of the containment bund are to be presumed dirty and therefore pumped to the dirty water lagoon. A pumped connection from the south-east sump to the primary sump have also been proposed to allow the option for this area to outfall to the clean system. All options involve manually operated pumped pipework.

3.0 DESIGN & METHODOLOGY OF CONTAINMENT BUND

- **3.1** Following the design approval of the containment bund wall height, footprint area and internal arrangement, Plandescil completed the base slab detailing and wall reinforcement designs. It was agreed that the bund floor would be constructed from a jointed fibre reinforced concrete mix.
- **3.2** The fibre reinforced concrete mix was designed by fibre concrete specialists, Sika. This was the preferred supplier from the local concrete batching plant used by the contractor.

The fibre mix design specification document provided by Sika's designers can be found in the Appendix, outlining the proposed static loading and design details. Sika proposed a single fibre mix specification for the concrete located under the fermenter tanks and surrounding areas, comprised of 175mm construction thickness. A layer of A393 steel mesh had been specified in the bottom of the slab to provide additional structural capacity in heavily loaded areas such as beneath fermenter tanks. A provision of 50mm cover is specified this reinforcement.

- **3.3** The containment walls are designed to water retaining concrete specification in accordance with CIRIA C736.
- **3.4** The walls are designed with a concrete toe which joins to the fibre reinforced concrete containment bund floor, creating a fully water retaining structure. The joint formed between the wall and the toe (noted as the kicker joint) during construction is waterproofed through the installation of 'Premcrete HydroStop BR' and is positioned centrally to the wall and runs along the entire perimeter of the containment bund. The joints between each six metre construction section of wall are waterproofed through the installation of 'Premcrete HydroBar PVC Rearstop' at the base of the toe and 'Premcrete HydroBar PVC Centrestop' through the centre of the wall.
- **3.5** The interaction point between the retaining wall toe and the fibre reinforced concrete containment bund floor is formed into an expansion joint. The expansion joint consists of a connecting reinforcement bar between the two slabs that allows for differential movement. Between the two slabs 'Premcrete Exafoam' is installed and 20mm thick layer of 'Premcrete Intumescent Sealant' applied to the top. At the base of the joint, 'Premcrete 240mm HydroBar PVC Rearstop' is also installed. The waterproofing details described are shown on all drawings detailing the wall section as noted in the Appendix. These include Plandescil Ltd Drawing No. 25998/080 Revision A and 25998/100 Revision B.
- **3.6** In addition to all of this, the contractor has also laid a Bentomat liner product below the jointed concrete layer to allow for an additional containment system below the entire containment bund system. This is installed in between 2No. 1200g DPM layers and sealed to the external side of the containment bund wall, 100mm above the kicker, forming a fully sealed structure. Details as presented in the Appendix.
- **3.7** The walls have been designed in accordance with CIRIA C736 and are designed to withstand the hydraulic load from a catastrophic failure and the typical operational static loads shown on the following calculation sheets in the Appendix.
- 3.8 Any post cut saw joints within the fibre reinforced concrete slab or containment wall toe will be filled with an intumescent sealant no more than twenty four hours after cutting to assure water proofing capability. The saw cut joints are to be minimum 1/4 depth and maximum 1/3 depth of the total slab thickness. Details can be found on the drawings in the Appendix.

3.9 All pipes, ducts and cables are fixed on cable trays and stanchions positioned above the concrete containment, so as to not penetrate the containment floor or walls. This has been designed in accordance with CIRIA C736 to ensure any potential leakages are visible to onsite, operational staff whilst carrying out daily inspections of the containment bund structure.

4.0 REVIEW PERIODS DURING CONSTRUCTION

- **4.1** The construction of the containment bund will be reviewed at numerous stages throughout the construction phase. The Design Engineers, Plandescil, are responsible for visually inspecting the following elements of construction:
 - Concrete surfacing finish
 - Installation of waterproofing components
 - Installation of joint waterproofing materials
 - Defect remedial procedure and final finish

5.0 AD PLANT MAINTENANCE REGIME

- **5.1** Lower Drayton Farm's proposed maintenance regime consists of daily visual leak inspections within the bund and weekly inspections of the containment bund structure. The daily inspection will be carried out by the Client's site operative who will look for visual signs of leakage coming from the storage tanks or mechanical equipment located within the containment bund. If any tanks are found to be leaking, repair works will be undertaken by trained personnel immediately to halt the contamination of liquid within the containment bund.
- **5.2** The weekly inspections will require the site operative to visually inspect the containment bund walls and floor for any signs of cracking within the concrete. If any cracks are found remedial works will immediately be undertaken, using Sikaflex resin injection 'Sikadur 52' to fill and sea the cracks. This process will be carried out by a trained operative or specialist.
- **5.3** Any liquid which falls within the containment bund will be drained and collected into a sump within the bund. A switch operated pump will be located within the sump which will drain any liquid into the process. Prior to the pump being engaged by the site operative a visual and odour inspection will be carried out to check for any contamination to the liquid. The drainage system has made an allowance for a pumped connection to the lagoon, so that if needed liquid could be pumped to the lagoon and then pumped back into the system as required.
- **5.4** The drainage system on site will be checked yearly. The site operators will check for sediment build up in manholes and pipes. The drains will be jetted where required. Manholes will be sludge gulped and checked for any signs of wear and tear, the joints will be resealed and the internals painted with bitumen paint if required.

6.0 APPENDIX DETAILS AND DRAWINGS EXPLAINED

6.1 Plandescil Ltd Details

<u>Drawing No.</u>	<u>Title</u>	<u>Comments</u>
25998/005 Rev F	Proposed Site Layout	General site overview with plant items in key
25998/007 Rev F	Proposed Drainage Layout	General site drainage overview with key
25998/008 Rev C	Concrete Jointing Layout	Construction drawing showing areas of concrete and how they would be jointed
25998/080 Rev A	1.60m Containment Bund Wall RC Details (6m Bay)	Containment bund wall reinforced concreted and waterproofing design
25998/100 Rev C	Typical Containment Bund Slab & Joint Details	Containment bund floor reinforced concrete and waterproofing design
<u>Comments</u>		
25998 – Containmer Rev B	nt Capacity Calculations	Calculation for bund capacity with finalised site layout
	(Generic Loading Case) wall analysis & design	Containment bund wall structural design calculations - Generic design loading scenario
	(Hydraulic Loading Case) wall analysis & design	Containment bund wall structural design calculations – Catastrophic failure design loading scenario

6.2 Premcrete Water Bar Details for the Containment Bund

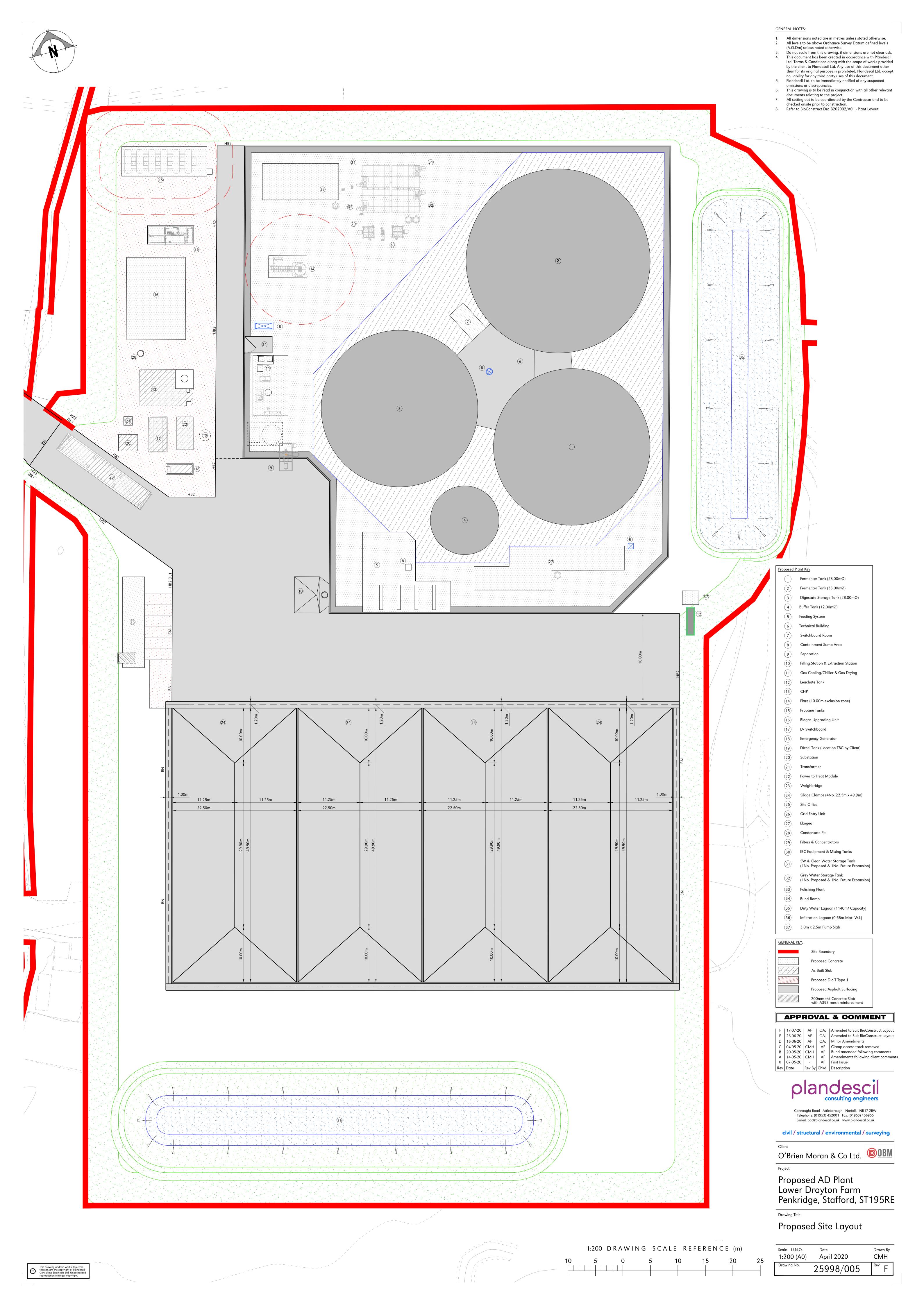
ltem	Comments
Hydrobar PVC Specification	Water Bar Details used in containment
Hydrostop WSM Specification	
Hydrostop BR Safety Data Sheet	

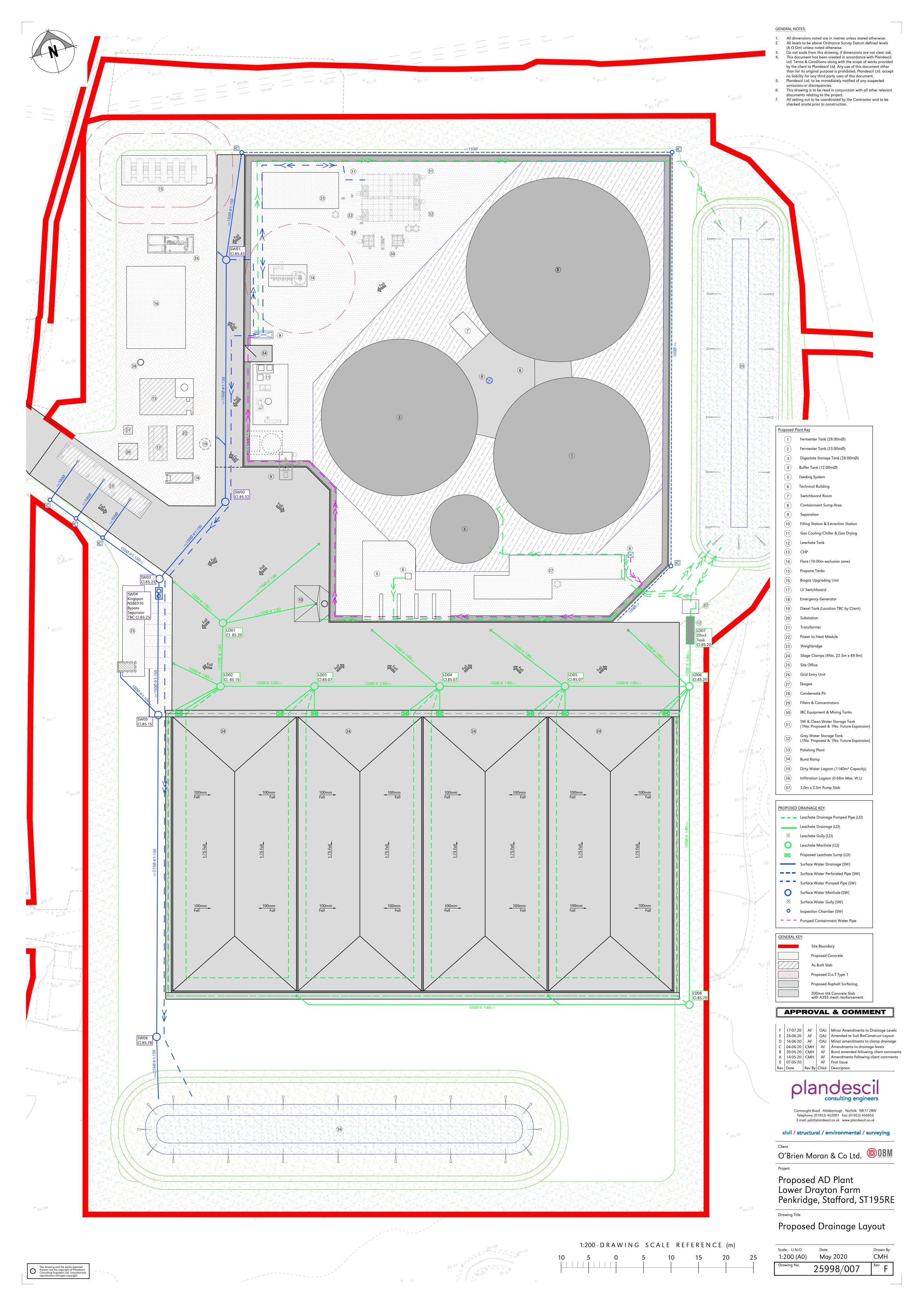
6.3 Sika Fibre Reinforced Concrete Design Specification for the Containment Bund Floor

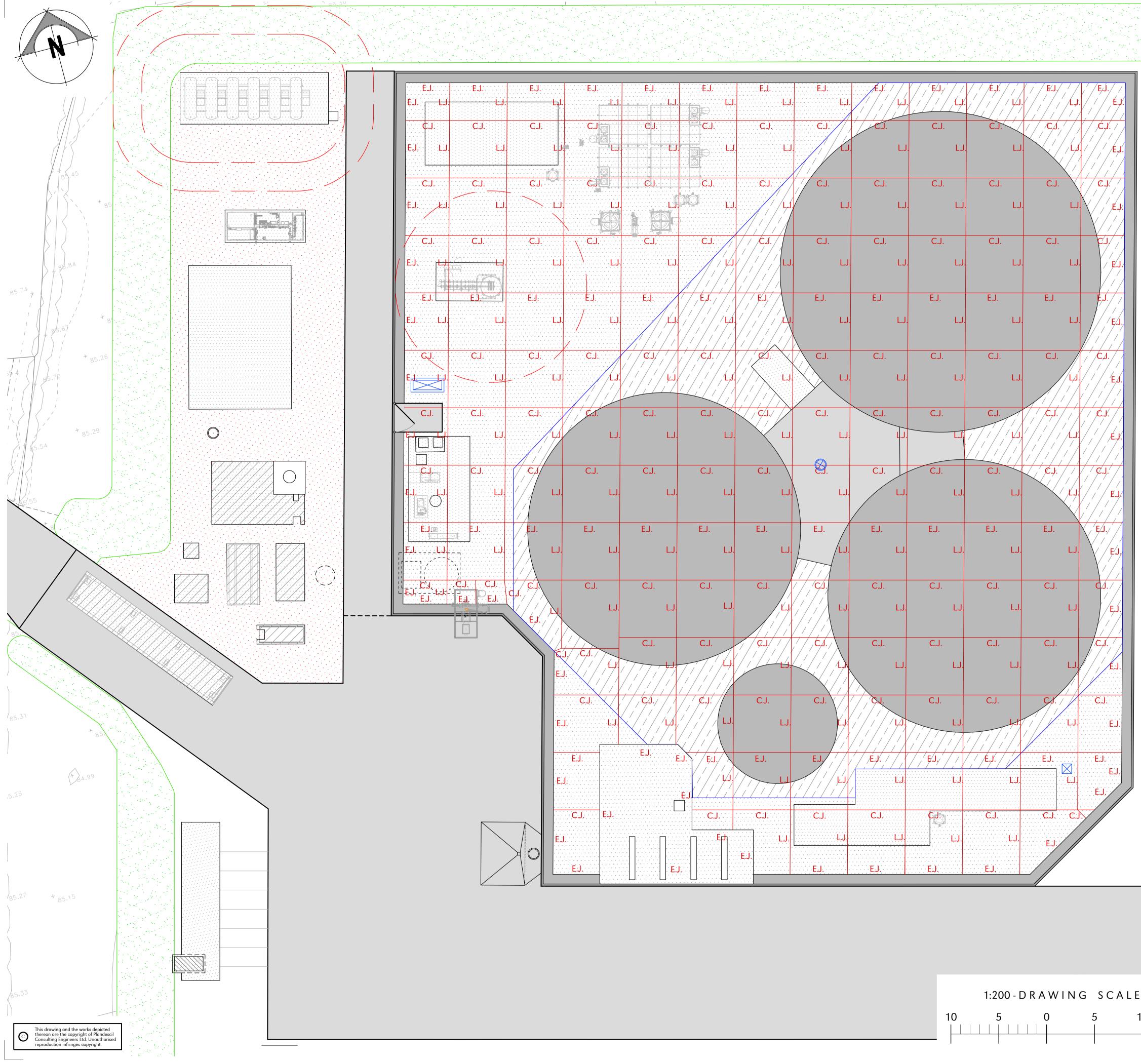
<u>ltem</u>

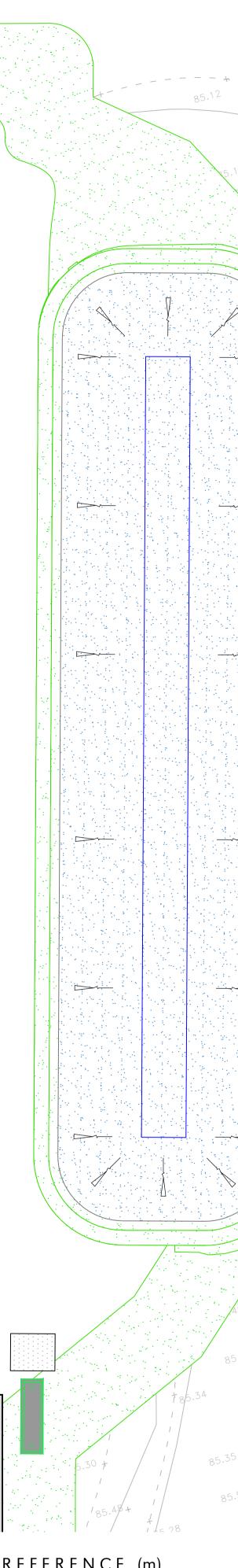
SIKAFIBER® Product Proposal

<u>Comments</u> Fibre reinforced concrete mix design specification for slabs on ground -Designed/approved by Sika

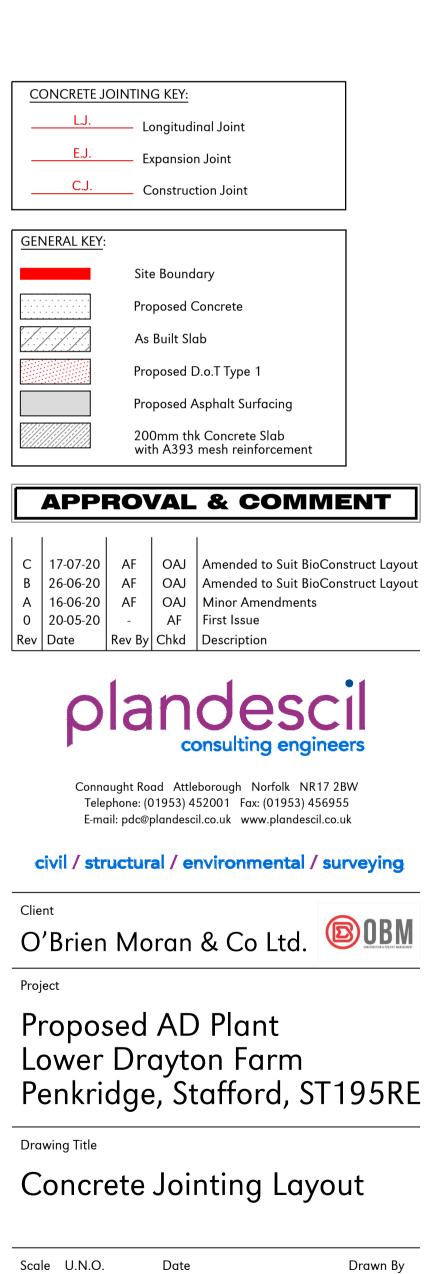

6.4 Bentonite Liner Specification for the Containment Bund


<u>ltem</u> BENTOMAT AS5000-1 Self


<u>Comments</u> Bentonite liner sealed between 2No. 1200g DPM liners



APPENDIX



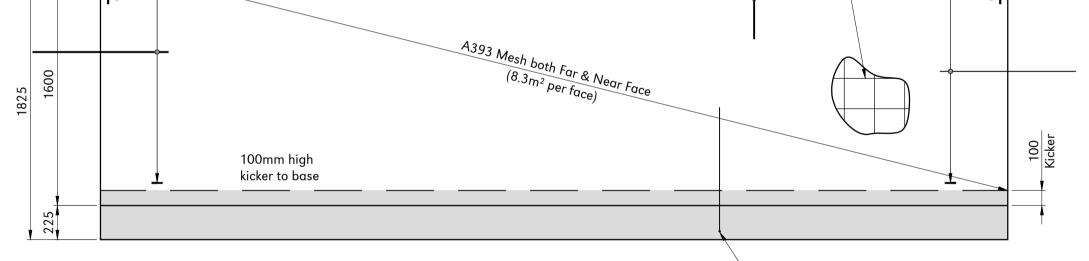
1:200 - DRAWING SCALE REFERENCE (m)

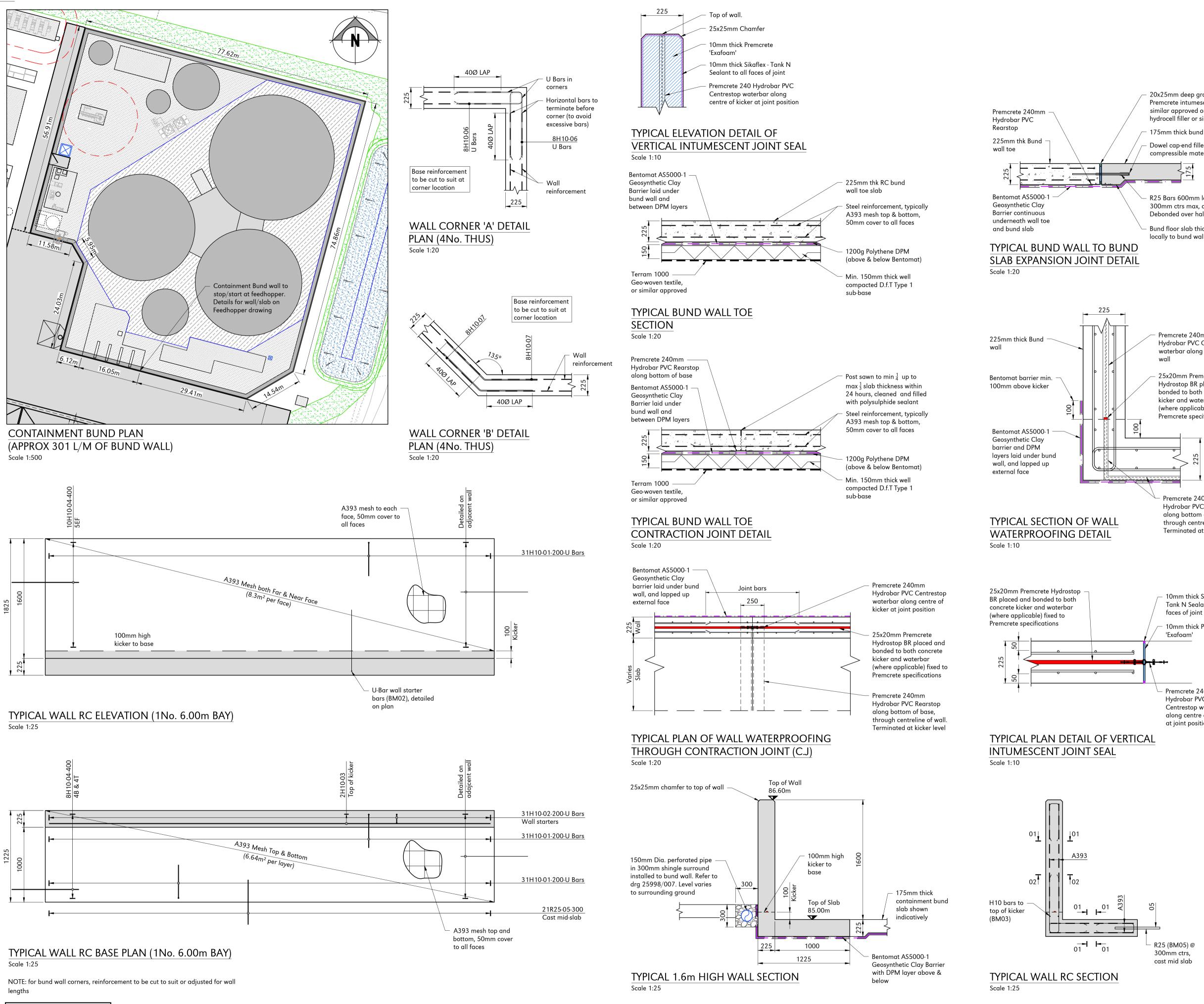
1:200 (A1) 25 20 15 Drawing No.

GENERAL NOTES:

- 1. All dimensions noted are in metres unless stated otherwise. 2. All levels to be above Ordnance Survey Datum defined levels (A.O.Dm) unless noted otherwise.
- Do not scale from this drawing, if dimensions are not clear ask. 3. This document has been created in accordance with Plandescil 4 Ltd. Terms & Conditions along with the scope of works provided by the client to Plandescil Ltd. Any use of this document other than for its original purpose is prohibited, Plandescil Ltd. accept no liability for any third party uses of this document. Plandescil Ltd. to be immediately notified of any suspected 5.
- omissions or discrepancies. This drawing is to be read in conjunction with all other relevant 6.
- documents relating to the project. All setting out to be coordinated by the Contractor and to be checked onsite prior to construction.




May 2020


25998/008

CMH

Rev C

This drawing and the works depicted thereon are the copyright of Plandescil Consulting Engineers Ltd. Unauthorised reproduction infringes copyright.

20x25mm deep grove sealed with Premcrete intumescent sealant or similar approved on top of 20mm hydrocell filler or similar

175mm thick bund floor slab

R25 Bars 600mm long (BM05) @ 300mm ctrs max, cast mid slab. Debonded over half length +50mm

Premcrete 240mm Hydrobar PVC Centrestop waterbar along centre of

25x20mm Premcrete Hydrostop BR placed and bonded to both concrete kicker and waterbar (where applicable) fixed to Premcrete specifications

Premcrete 240mm Hydrobar PVC Rearstop along bottom of base, through centreline of wall. Terminated at kicker level

10mm thick Sikaflex Tank N Sealant to all

10mm thick Premcrete

- Premcrete 240 Hydrobar PVC Centrestop waterbar along centre of kicker

All dimensions noted are in millimetres unless stated otherwise. 2. All levels to be above Ordnance Survey Datum defined levels (A.O.Dm) unless noted otherwise.

- Do not scale from this drawing, if dimensions are not clear ask. This document has been created in accordance with Plandescil Ltd. Terms & Conditions along with the scope of works provided by the client to Plandescil Ltd. Any use of this document other than for its original purpose is prohibited, Plandescil Ltd. accept no liability for any third party uses of this document.
- Plandescil Ltd. to be immediately notified of any suspected 5. omissions or discrepancies.
- 6. This drawing is to be read in conjunction with all other relevant documents relating to the project.
- 7. All setting out to be coordinated by the Contractor and to be
- checked onsite prior to construction. 8. To be read in conjunction with the following Plandescil Drawinas, schedules and documents:
 - 25998/005 Proposed Site Layout
- 25998/080/01 BS Bar Bending Schedule 9. Contractor led design, Plandescil Ltd conforming to Contractor preferred practices.

REINFORCED CONCRETE:

- 10. Insitu Concrete to be RC40/50 with max w/c ratio 0.45, 360kg/m³ cement/combination content (III-A), with 20mm max. aggregate, chloride content class 0.4cl and minimum slump of class S3 (90mm Slump).
- 11. Insitu Concrete to be in accordance with BS 8110 & BS 8500-1. 12. Reinforcement to be Grade H 500N/mm² High Yield, Deformed Type 2 Bar detailed in accordance with BS 4449 and BS 8666.
- 13. Walls nominal 225mm thick, 50mm cover to bottom, sides and top
- 14. Wall toe nominal 225mm thick, 50mm cover to bottom, sides and top. Wall to have 25x25mm chamfered edges to top.
- 15. Floor Classification to meet FM3 standard for Flatness and Level \pm 5mm. Construction tolerance to be in accordance with the NSCS for Building Structures.
- 16. Slab to have brushed finish to exposed surface and fair face shutter finish to sides.
- 17. Walls to have fair faced shuttered finish to sides and top.

CONCRETE JOINT NOTES:

- 16. All joint dowel/reinforcement shall be set level and perpendicular to the joint face prior to casting. Damage or bent dowels are to be re-aligned or replaced prior to casting.
- 17. All formed joints are to be cleaned of concrete overruns to ensure accidental restraint is not created
- 18. All joints are to be sufficiently cured and cleaned of all contaminations prior to sealing.
- 19. All sealants are to be installed as per manufacturers specification and must be suitable for the joint type.

FOUNDATION NOTES:

- 20. Assumed GBP value of 225kN/m² has been used. Value provided by the Independent Stabilisation Company Ltd Interim Operation & Maintenance Manual (June 2020). Confirmation of minimum GBP of 225kN/m² required prior to construction.
- 21. Any soft spots or deleterious material is to be removed & taken down to virgin ground level & replaced with compact D.f.T Type 1 or suitable hogging material.
- 22. Overdig to be made up in compacted D.f.T. Type 1 or lean mix concrete.
- ALL PROPRIETARY MATERIALS TO BE FIXED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS USING MATERIALS APPROVED BY THE MANUFACTURER.

APPROVAL & COMMENT A 16-06-20 IGC AF Bund slab & Bentomat detail updated AF First Issue 0 26-05-20 -Rev By Chkd Description Rev Date

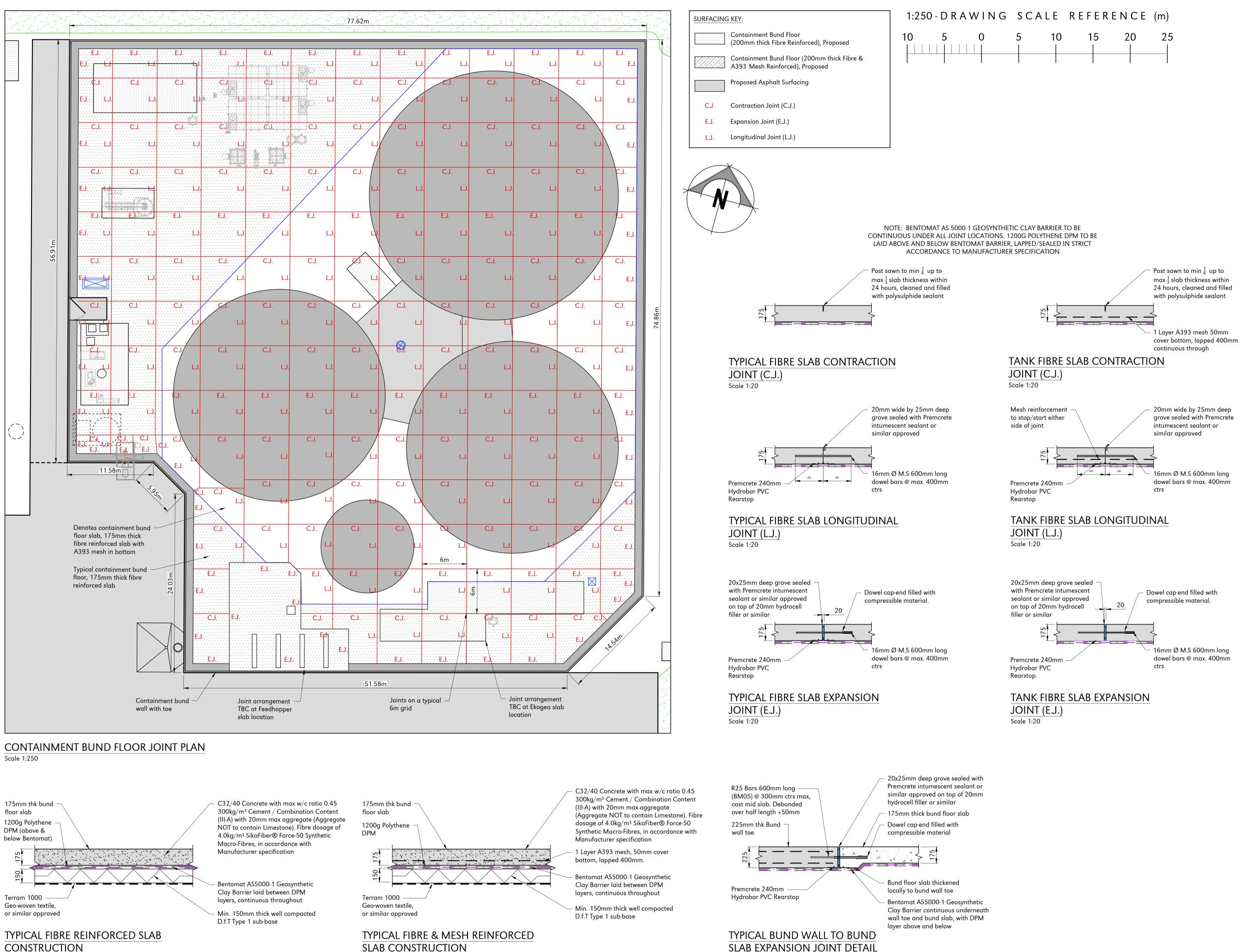
consulting enginee

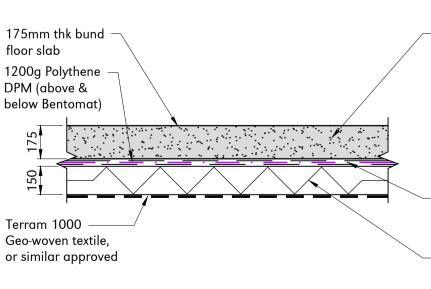
Connaught Road Attleborough Norfolk NR17 2BW Telephone: (01953) 452001 Fax: (01953) 456955 E-mail: pdc@plandescil.co.uk www.plandescil.co.uk

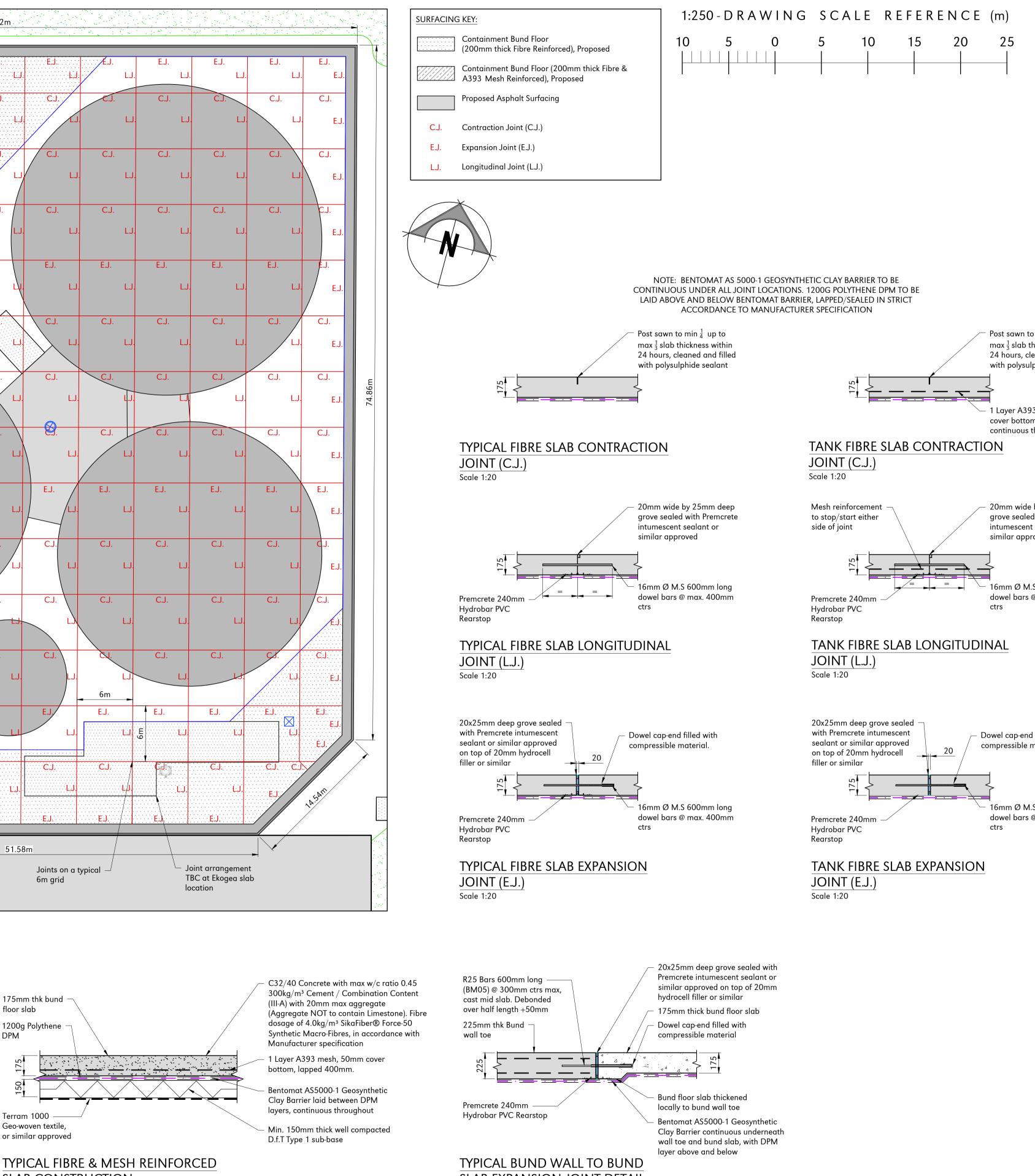
civil / structural / environmental / surveying

Client

O'Brien Moran & Co Ltd.

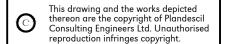

Project


Proposed AD Plant Lower Drayton Farm, Penkridge, Staffordshire


Drawing Title

1.6m Containment Bund Wall RC Details (6m Bay)

Scale U.N.O.	Date	Drawn By
As noted (A1)	May 2020	IGC
Drawing No.	25998/080	Rev A



SLAB CONSTRUCTION Scale 1:20

NOTE: Slab construction under Tanks as denoted on site plan, Plandescil Drg 25998/005

Scale 1:20

All dimensions noted are in millimetres unless stated otherwise. 2. All levels to be above Ordnance Survey Datum defined levels (A.O.Dm) unless noted otherwise.

- Do not scale from this drawing, if dimensions are not clear ask. This document has been created in accordance with Plandescil Ltd. Terms & Conditions along with the scope of works provided by the client to Plandescil Ltd. Any use of this document other than for its original purpose is prohibited, Plandescil Ltd. accept no liability for any third party uses of this document.
- 5. Plandescil Ltd. to be immediately notified of any suspected omissions or discrepancies.
- 6. This drawing is to be read in conjunction with all other relevant documents relating to the project.
- 7. All setting out to be coordinated by the Contractor and to be
- checked onsite prior to construction. 8. To be read in conjunction with the following Plandescil Drawinas, schedules and documents:
 - 25998/008 Concrete Jointing Layout
- 25998/080 Containment Bund Wall RC Details 9. Contractor led design, Plandescil Ltd conforming to Contractor preferred practices.

REINFORCED CONCRETE:

- 10. Containment Slab Concrete to be RC32/40 with max w/c ratio 0.45, 300kg/m³ cement/combination content (III-A), with 20mm max. aggregate (non-limestone), chloride content class 0.4cl and minimum slump of class S3 (90mm Slump). Fibre dosage of 4.0kg/m³ SikaFiber® Force-50 Synthetic Macro-Fibres, in accordance with Manufacturer specification and design calculations; SikaFiber® Product Proposals for fibre reinforced slabs on ground, Ref - JF10b (04/06/2020).
- 11. For Containment Slab under tanks, the above mix design is to be used in addition to A393 mesh reinforcement in the bottom with 50mm cover to all faces.
- 12. Insitu Concrete to be in accordance with BS 8110 & BS 8500-1.
- 13. Reinforcement to be Grade H 500N/mm² High Yield, Deformed Type 2 Bar detailed in accordance with BS 4449 and BS 8666.
- 14. Slab nominal 175mm thick, 50mm cover to bottom and sides.

CONCRETE JOINT NOTES:

- 15. All joint dowel/reinforcement shall be set level and perpendicular to the joint face prior to casting. Damage or bent dowels are to be re-aligned or replaced prior to casting.
- 16. All formed joints are to be cleaned of concrete overruns to ensure accidental restraint is not created
- 17. All joints are to be sufficiently cured and cleaned of all contaminations prior to sealing.
- 18. All sealants are to be installed as per manufacturers specification and must be suitable for the joint type.
- 19. Joints subject to confirmation by Fibres used in mix design supplies. Fibre Supplier/Designer to check and approve joints.

FOUNDATION NOTES:

- 20. Assumed GBP value of 225kN/m² has been used. Value provided by the Independent Stabilisation Company Ltd Interim Operation & Maintenance Manual (June 2020). Confirmation of minimum GBP of 225kN/m² required prior to construction.
- 21. Any soft spots or deleterious material is to be removed & taken down to virgin ground level & replaced with compact D.f.T Type 1 or suitable hogging material.
- 22. Overdig to be made up in compacted D.f.T. Type 1 or lean mix concrete.

ALL PROPRIETARY MATERIALS TO BE FIXED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS USING MATERIALS APPROVED BY THE MANUFACTURER

			RO\	/AL	& COMMENT
1		17.07.00			
	С	17-07-20	AF	OAJ	Ekogea Plant Arrangement Amended
	В	17-07-20 25-06-20	AF	OAJ	Ekogea Plant Arrangement Amended
	A	16-06-20	IGC	AF	Slab reduced to 175thk, fibre spec updated. Bentomat with DPM below
	0	26-05-20	-	AF	First Issue
	Rev	Date	Rev By	Chkd	Description

Connaught Road Attleborough Norfolk NR17 2BW Telephone: (01953) 452001 Fax: (01953) 456955 E-mail: pdc@plandescil.co.uk www.plandescil.co.uk

civil / structural / environmental / surveying

Client

O'Brien Moran & Co Ltd.

BOBM

Project

Proposed AD Plant Lower Drayton Farm, Penkridge, Staffordshire

Drawing Title

Typical Containment Bund Slab & Joint Details

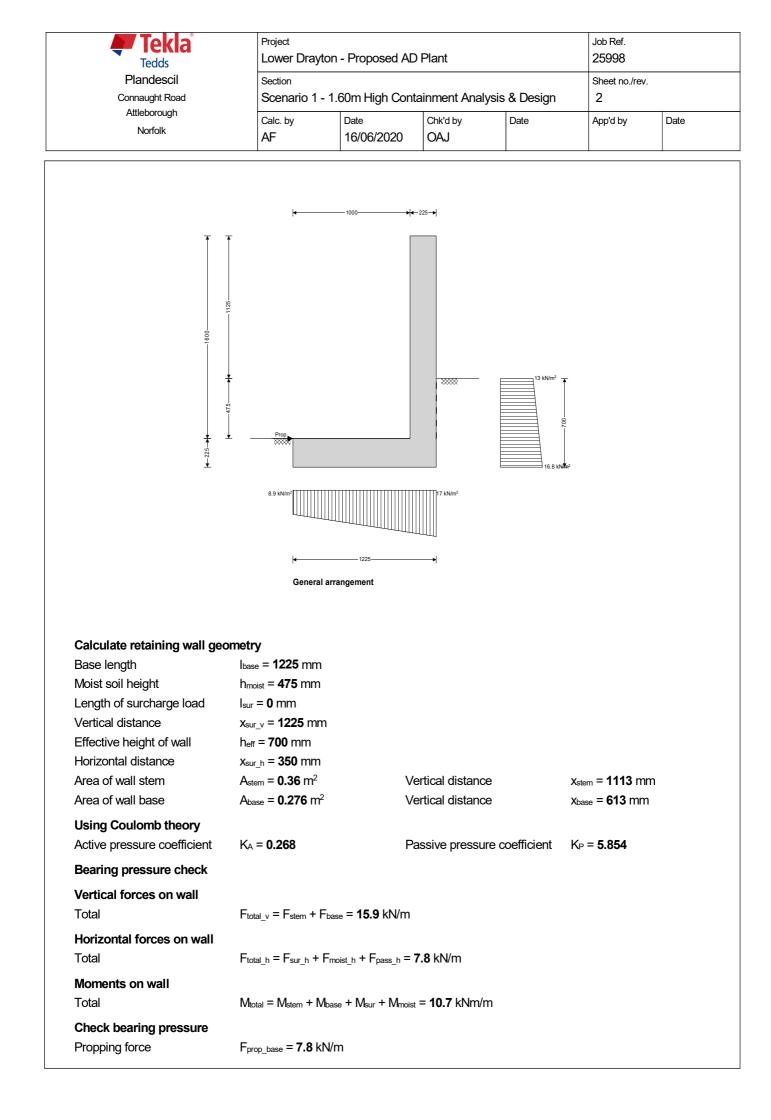
Scale U.N.O. As noted (A1)	Date May 2020	Drawn By
Drawing No.	25998/100	Rev C

intumescent sealant or similar approved

16mm Ø M.S 600mm long dowel bars @ max. 400mm

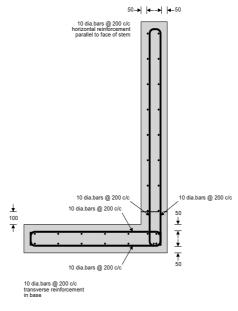
- Dowel cap-end filled with compressible material.

	Job	No.	25998			Bund Capacity Re	ef:	В
plande	SCI							Status:
Connaught Road, Attleborough, Norfolk, NR	engineers _{Da}	te prepared: te revised:	01/05/2020 15/05/2020					Construction
T: (01953) 452001 e: pdc@plandescil.co.uk www.p	olandescil.co.uk Pre	pared by: e Ref:	AF 25998					Checked by: OAJ
Bund Capacity Calculations								Section 4, CIRIA C736
								Comments, sources of information
/olume of inventory	1	2	3	4	5		Total	
	Largest Tank					Smallest Tank		Arrange tanks from largest to smallest, left to right
Above Ground ank rated capacity / fill level (m) (h)	6	6	6	6				based on tank dimensions provided by client
ank brimful / level (m) (H= h+1) ank diameter (m) (d)	6 33	6 28	6 28	6 12				brimful and rated capacity, see CIRIA C736 page 43
primful capacity (cu.m)	5,129.19	3,692.64	3,692.64	678.24	0.00	0.00	13,192.71	
ank Area 25% brimful capacity (cu.m)	855.30	615.75	615.75	113.10	0.00	0.00	2,199.90 3,298.18	m2
10% brimful capacity largest tank (cu.m)							5,642.11	
otal Tank Area							5,642.11 2,199.90	
ated capacity (cu.m)	5,129.19	3,692.64	3,692.64	678.24	0.00	0.00		
otal rated capacity (cu.m)							13,192.71	
25% rated capacity (cu.m) 110% rated capacity largest tank (cu.m)							3,298.18 5,642.11	
torage Capacity For Calculation							-	Used in calc
ainfall								
24h duration (mm)	53.07							based on data page 45 CIRIA 736. Must be refined by system designer
4h duration (m)	0.053							
d duration (mm)								
d duration (m)								
Od duration (mm) Od duration (m)	107.390 0.107							Site specific, check with MH
annual rainfall (mm) annual rainfall (m)	676.00 0.68							Site specific, check with MH
ength of bund (m) vidth of bund (m)	85.00 77.00							Need to check jetting and stand-off distances between tanks and
or equivalent area	6,050.00							1.5m is maximum desirable height to be able to see into bund e
neight of bund (m)	1.60							Page 85 CIRIA C736 250mm freeboard for secondary containment in the absence of
reeboard (m)	0.25							detailed analysis. Page 85 CIRIA C736
capacity of bund (cu.m) base volume of remaining diameter tanks	8,167.50							with no deduction for tank base volume assume 2 largest diameter tanks are intact and hence taking up
cu.m) /olume of Depressed Basin		830.84	830.84	152.60	0.00	0.00		the most volume at the base of the bund
vailable bund capacity	6,353.21							
olume rainfall arising over 24h (cu.m) olume rainfall arising over 8d (cu.m)	347.34 0.00							these volumes will need refining as set out on page 44 C736 Volume of rainfall captured in 24h + 8d
olume rainfall arising over 10d (cu.m)	702.28							
olume rainfall arising over one year (cu.m)	4,424.42							
onservative assessment, remaining capacity								largest tank fails, has rained for 24h before and for 8d
cu.m)	363.76							afterwards. No firewater.
irewater								client advises no risk of fire
oam allowance (m) oam volume (cu.m)	0.00							100mm freeboard for firefighting foam. Page 85 CIRIA C736
irewater estimate (cu.m)	0.00							not included in assessment
Pooldual Pund Values -								
Residual Bund Volume conservative assessment, remaining capacity	6,005.86							largest tank fails, has rained for 24h before and for 8d
cu.m)	363.76							afterwards.
All Area Ex Tank	$e(m^2)_{-}$				2 9 5 0			
					3,850			Area for hatch comparison (Total containment volume inside wo
Wall Heigh	its (m)=				1.6			minus all tank areas)


Tekla Tedds	Project Lower Drayton	- Proposed AD	Plant		Job Ref. 25998	
Plandescil Connaught Road	Section Scenario 1 - 1.6	60m High Conta	inment Analysis	& Design	Sheet no./rev. 1	
Attleborough Norfolk	Calc. by AF	Date 16/06/2020	Chk'd by OAJ	Date	App'd by	Date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

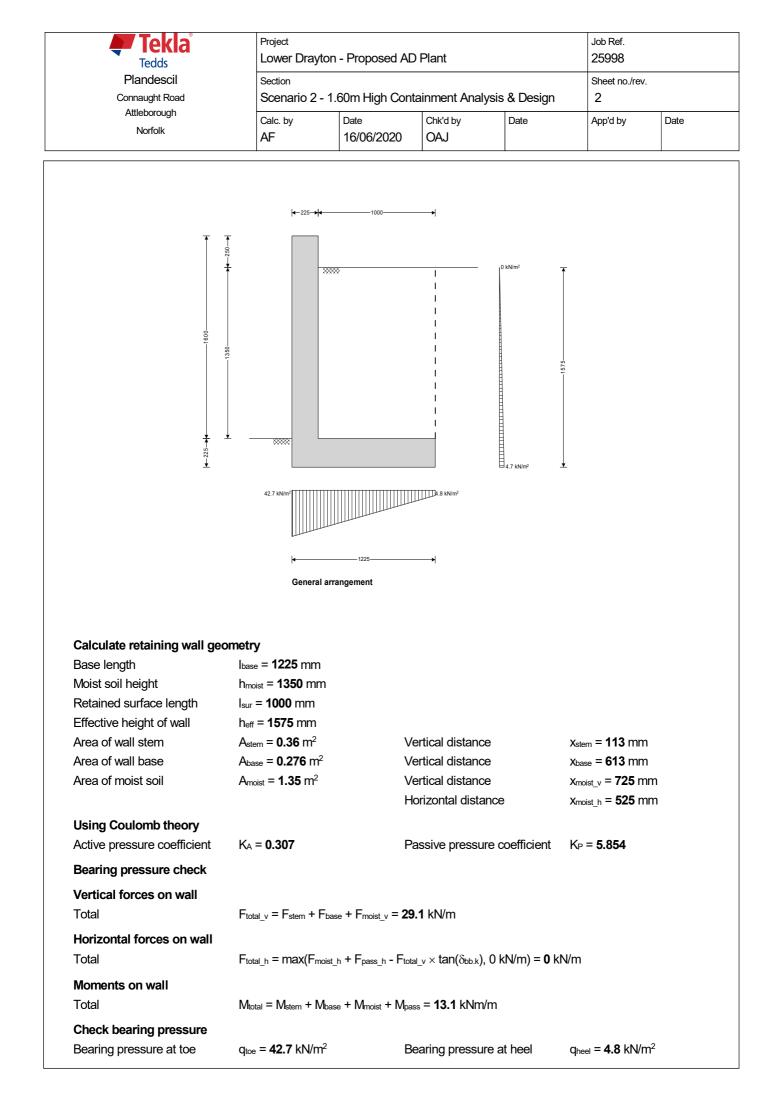

Tedds calculation version 2.9.06

Retaining wall details			
Stem type	Cantilever		
Stem height	h _{stem} = 1600 mm		
Stem thickness	t _{stem} = 225 mm		
Angle to rear face of stem	α = 90 deg		
Stem density	γ _{stem} = 25 kN/m ³		
Toe length	I _{toe} = 1000 mm		
Base thickness	t _{base} = 225 mm		
Base density	γ _{base} = 25 kN/m ³		
Height of retained soil	h _{ret} = 475 mm	Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm		
Retained soil properties			
Moist density	γmr = 21 kN/m ³		
Saturated density	γ _{sr} = 23 kN/m ³		
Characteristic effective shear	resistance angle	φ'r.k = 33 deg	
Characteristic wall friction and	le	δ _{r.k} = 15 deg	
Base soil properties			
Soil density	γь = 18 kN/m ³		
Characteristic effective shear	resistance angle	φ' _{b.k} = 33 deg	
Characteristic wall friction and	le	δ _{b.k} = 15 deg	
Characteristic base friction an	gle	δ _{bb.k} = 33 deg	
Presumed bearing capacity	P _{bearing} = 225 kN/m ²		
Loading details			
Variable surcharge load	Surcharge _Q = 50 kN/m ²		

	Project Lower Drayton -	Proposed AE) Plant		Job Ref. 25998			
Plandescil Connaught Road	Section Scenario 1 - 1.60	0m High Con	tainment Analys	ainment Analysis & Design 3				
Attleborough Norfolk	· · ·	Date 16/06/2020	Chk'd by OAJ	Date	App'd by	Date		
Bearing pressure at toe	q _{toe} = 8.9 kN/m ²	В	earing pressure	e at heel	q _{heel} = 17 kN/m	2		
Factor of safety	FoS _{bp} = 13.216	lowable bear	ina proceuro a	waaada max	imum applied b	ooring proce		
	PA33 - All	Owable bear	ing pressure e	exceeds max	inium applied b	earing press		
RETAINING WALL DESIGN								
In accordance with EN1992-	-	ng Corrigend	um dated Janu	uary 2008 an	d the UK Nation	al Annex		
incorporating National Amer	ndment No.1				Tedds cal	culation version 2		
Concrete details - Table 3.1 -	Strength and deform	nation chara	cteristics for a	concrete				
Concrete strength class	C40/50							
Char.comp.cylinder strength	f _{ck} = 40 N/mm ²	Ν	lean axial tensil	e strength	f _{ctm} = 3.5 N/mn	1 ²		
Secant modulus of elasticity	E _{cm} = 35220 N/mm ²	Ν	laximum aggreg	gate size	h _{agg} = 20 mm			
Design comp.concrete strengt	h	fc	a = 22.7 N/mm ²		Partial factor	γc = 1.50		
Reinforcement details								
Characteristic yield strength	f _{yk} = 500 N/mm ²	N	lodulus of elasti	icity	Es = 200000 N/mm ²			
Design yield strength	f _{yd} = 435 N/mm ²	P	artial factor		γs = 1.15			
Cover to reinforcement								
Front face of stem	c _{sf} = 50 mm		Rear face of stem		c _{sr} = 50 mm			
Top face of base	c _{bt} = 50 mm	В	Bottom face of base		c _{bb} = 50 mm			
Check stem design at base of								
Depth of section	h = 225 mm							
Rectangular section in flexu								
Design bending moment	M = 2.3 kNm/m	ĸ	= 0.002	- No compre	K' = 0.207 ssion reinforcei	mont is roqui		
Tens.reinforcement required	A _{sr.req} = 33 mm²/m		K × K	- No compre	5510111611110106	nent is requi		
Tens.reinforcement provided	10 dia.bars @ 200 c	/c Te	ens.reinforceme	ent provided	A _{sr.prov} = 393 m	m²/m		
Min.area of reinforcement	A _{sr.min} = 310 mm ² /m	Ν	lax.area of reinf	orcement	A _{sr.max} = 9000 r	nm²/m		
	PASS - Area of	reinforceme	nt provided is	greater than		-		
					Library item: Rectar	ngular single sumr		
Deflection control - Section Limiting span to depth ratio	7 .4 16	۵	ctual span to de	onth ratio	9.4			
	10		•	•	ess than deflect	ion control li		
Crack control - Section 7.3								
Limiting crack width	w _{max} = 0.2 mm	Ν	laximum crack \	width	w _k = 0.021 mm	1		
-		PAS	S - Maximum	crack width i	s less than limi			
Rectangular section in shear	r - Section 6.2							
Design shear force	V = 10.1 kN/m	D	esign shear res	istance	V _{Rd.c} = 106.4 k	N/m		
		PA	ASS - Design s	hear resistar	nce exceeds des	sign shear fo		
Horizontal reinforcement par	rallel to face of stem	- Section 9.6	5					
	A _{sx.req} = 225 mm ² /m	N	lax.spacing of r	einforcement	s _{sx_max} = 400 m	Im		
Min.area of reinforcement Trans.reinforcement provided					A _{sx.prov} = 393 m			

	Project Lower Drayton -	Project Lower Drayton - Proposed AD Plant							
Plandescil	Section	Section Sheet no./rev.							
Connaught Road	Scenario 1 - 1.6	Scenario 1 - 1.60m High Containment Analysis & Design 4							
Attleborough Norfolk	,	Date 16/06/2020	Chk'd by OAJ	Date	App'd by	Date			
Check base design at toe									
Depth of section	h = 225 mm								
Rectangular section in flexu	re - Section 6.1								
Design bending moment	M = 4.7 kNm/m	К	= 0.004		K' = 0.207				
			K' > K	- No compres	ssion reinforce	ment is requ			
Tens.reinforcement required	A _{bb.req} = 67 mm ² /m								
Tens.reinforcement provided	10 dia.bars @ 200 c	c/c Te	ens.reinforcem	ent provided	A _{bb.prov} = 393 r	nm²/m			
Min.area of reinforcement	A _{bb.min} = 310 mm ² /m	N	lax.area of reint	forcement	A _{bb.max} = 9000	mm²/m			
	PASS - Area of	reinforceme	nt provided is	greater than	area of reinfor Library item: Recta	•			
Crack control - Section 7.3									
Limiting crack width	w _{max} = 0.2 mm	N	aximum crack	width	w _k = 0.06 mm				
		PAS	S - Maximum	crack width i	s less than lim	iting crack w			
Rectangular section in shear	- Section 6.2								
Design shear force	V = 9.3 kN/m	D	esign shear res	sistance	V _{Rd.c} = 106.4 k	xN/m			
-		PA	ASS - Design s	hear resistar	nce exceeds de	sign shear fo			
Secondary transverse reinfo	rcement to base - Se	ection 9.3							
	A _{bx.reg} = 79 mm ² /m	N	lax.spacing of r	einforcement	s _{bx_max} = 450 r	nm			
Min.area of reinforcement	Junity 10 Hill / Hill								
	•	c/c Ti	rans.reinforcem	nent provided	A _{bx.prov} = 393 r	nm²/m			

Reinforcement details


Tekla [®] Tedds	Project Lower Drayton - Proposed AD Plant Section Scenario 2 - 1.60m High Containment Analysis & Design				Job Ref. 25998	
Plandescil Connaught Road					Sheet no./rev. 1	
Attleborough Norfolk	Calc. by AF	Date 16/06/2020	Chk'd by OAJ	Date	App'd by	Date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.06

Retaining wall details			
Stem type	Cantilever		
Stem height	h _{stem} = 1600 mm		
Stem thickness	t _{stem} = 225 mm		
Angle to rear face of stem	α = 90 deg		
Stem density	γ _{stem} = 25 kN/m ³		
Heel length	I _{heel} = 1000 mm		
Base thickness	t _{base} = 225 mm		
Base density	γ _{base} = 25 kN/m ³		
Height of retained soil	h _{ret} = 1350 mm	Angle of soil surface	β = 0 deg
Depth of cover	d _{cover} = 0 mm		
Retained soil properties			
Moist density	γmr = 9.8 kN/m ³		
Saturated density	γ _{sr} = 9.8 kN/m ³		
Characteristic effective shear	resistance angle	φ'r.k = 30 deg	
Characteristic wall friction and	gle	$\delta_{r.k}$ = 11 deg	
Base soil properties			
Soil density	γь = 18 kN/m ³		
Characteristic effective shear	resistance angle	φ' _{b.k} = 33 deg	
Characteristic wall friction and	gle	$\delta_{b.k}$ = 15 deg	
Characteristic base friction ar	ngle	$\delta_{bb,k} = 33 \text{ deg}$	
Presumed bearing capacity	P _{bearing} = 225 kN/m ²		

Tekla Tedds		ton - Proposed AI	D Plant		Job Ref. 25998	
Plandescil Connaught Road	Section Scenario 2	- 1.60m High Con	tainment Analy	/sis & Design	Sheet no./rev.	
Attleborough Norfolk	Calc. by AF	Date 16/06/2020	Chk'd by OAJ	Date	App'd by	Date
Factor of safety	FoS _{bp} = 5.265				in an inde	
Design approach 1	PA33	- Allowable bear	ning pressure	exceeds max	inium applied b	earing press
Partial factors on actions - T	able A.3 - Comb	ination 1				
Partial factor set	A1					
Permanent unfavourable action	n	γα	G = 1.35		Permanent fav	ourable actio
	γ _{Gf} = 1.00					
Variable unfavourable action	γ Q = 1.50	V	ariable favoura	able action	$\gamma_{\rm Qf} = 0.00$	
Partial factors for soil param	neters – Table A.4	4 - Combination	1			
Soil parameter set	M1					
Angle of shearing resistance	$\gamma_{\Phi'} = 1.00$	E	ffective cohesi	on	γ _{c'} = 1.00	
Weight density	$\gamma_{\gamma} = 1.00$				Liberer iters D	
Retained soil properties					Library item P	artial factors sum
Design moist density	γmr' = 9.8 kN/m ³	D	esign saturate	d density	γsr' = 9.8 kN/m ³	3
Des.eff.shear resist.angle	∳' _{r.d} = 30 deg	D	Design wall frict	ion angle	$\delta_{r.d} = 11 \deg$	
-	, C		U	U	Ū	
Base soil properties	' - 19 kNl/m ³)oo off aboar ra	aiat angla	4 - 22 dog	
Design soil density	γь' = 18 kN/m ³		es.eff.shear re	•	$\phi'_{b,d} = 33 \deg$	
Design wall friction angle Design effective cohesion	δ _{b.d} = 15 deg c' _{b.d} = 0 kN/m ²	L	esign base fric	tion angle	$\delta_{bb.d}$ = 33 deg	
-						
Using Coulomb theory Active pressure coefficient	Ka = 0.307	Р	assive pressur	re coefficient	K⊳ = 5.854	
Sliding check						
Vertical forces on wall						
Total	$F_{total_v} = F_{stem} + I$	F _{base} + F _{moist_v} = 2	9.1 kN/m			
Horizontal forces on wall						
Total	F _{total_h} = F _{moist_h} =	= 4.9 kN/m				
Check stability against slidir	ng					
Resistance to sliding	F _{rest} = 21.5 kN/n	n F	actor of safety PASS - Resis		FoS₅⊨ = 4.345 ling is greater th	an sliding fo
Overturning check						
Vertical forces on wall Total		F _{base} + F _{moist_v} = 2	1 kN/m			
	r ioiai_v − i stem + i	i pase • I moist_V - 23				
Horizontal forces on wall Total	Ftotal_h = Fmoist_h -	+ F _{exc_h} = 2.4 kN/n	n			
Overturning moments on wa		- 0.0121 /				
Total	$M_{total_OT} = M_{moist_}$	_{_ot} = 2.6 kinm/m				
Restoring moments on wall Total	M _{total_R} = M _{stem R}	+ M _{base_R} + M _{moist}	_R + M _{exc_R} = 18	5 kNm/m		
Check stability against over			-			
Shour stability against uver	uning					

Tekla Tedds Project Lower Drayton - Proposed				25998	
Section	-		Sheet no./re	Sheet no./rev.	
Scenario 2 -	- 1.60m High Con	tainment Analy	/sis & Design	4	
Calc. by AF	Date 16/06/2020	Chk'd by OAJ	Date	App'd by	Date
	PASS - Maxim	um restoring	moment is g	reater than over	rturning mor
Table A.3 - Combi	ination 2				
A2					
on	γα	∋ = 1.00		Permanent fav	vourable actio
γ _{Gf} = 1.00					
γ Q = 1.30	V	ariable favoura	able action	$\gamma_{Qf} = 0.00$	
neters – Table A.4	4 - Combination	2			
M2					
γ _{φ'} = 1.25	E	ffective cohesi	on	γ _{c'} = 1.25	
γ _γ = 1.00					
				Library item	Partial factors sur
Retained soil propertiesDesign moist density $\gamma mr' = 9.8 \text{ kN/m}^3$		esign saturate	d density	γsr ' = 9.8 kN/m ³	
∲' r.d = 24.8 deg	D	Design wall friction angle		δ _{r.d} = 8.8 deg	
γь' = 18 kN/m³	D	Des.eff.shear resist.angle		φ'b.d = 27.5 deg	
δ _{b.d} = 12.1 deg	D	esign base fric	tion angle	δ _{bb.d} = 27.5 de	g
$c'_{b.d} = 0 \text{ kN/m}^2$		-	-		-
K _A = 0.378	P	assive pressur	re coefficient	K _P = 3.941	
Ftotal v = Fstom + F	- 	1 kN/m			
E	- 1 5 kN/m				
	- 4.3 KIWIII				
•	n F	-		FoS _{sl} = 3.713 ling is greater t	han sliding fi
				<u> </u>	
$F_{total_v} = F_{stem} + F$	F _{base} + F _{moist_v} = 2	9.1 kN/m			
F _{total_h} = F _{moist_h} -	⊦ F _{exc_h} = 2.8 kN/n	n			
all					
$M_{total_OT} = M_{moist_OT}$	_{ot} = 2.4 kNm/m				
M _{total_R} = M _{stem_R}	+ M _{base_R} + M _{moist}	_R + M _{exc_R} = 1 {	5 kNm/m		
		_			
-					
	Scenario 2 · Calc. by AF Table A.3 - Combination A2 On $\gamma Gr = 1.00$ $\gamma q = 1.30$ meters - Table A.4 M2 $\gamma \psi = 1.25$ $\gamma \gamma = 1.00$ $\gamma mr' = 9.8 \text{ kN/m^3}$ $\phi'r.d = 24.8 \text{ deg}$ $\gamma b' = 18 \text{ kN/m^3}$ $\phi b.d = 12.1 \text{ deg}$ $c'b.d = 0 \text{ kN/m^2}$ $K_A = 0.378$ Ftotal_v = Fstem + F Ftotal_n = Fmoist_n = ing Frest = 16.9 kN/n Ftotal_v = Fstem + F Ftotal_n = Fmoist_n = ing Frest = 16.9 kN/n Ftotal_n = Fmoist_n = ing Mtotal_OT = Mmoist_ Mtotal_R = Mstem_R	Scenario 2 - 1.60m High ConCalc. by AFDate 16/06/2020PASS - MaximTable A.3 - Combination 2 A2A2On γc $\gamma cr = 1.00$ $\gamma cr = 1.30$ γ Yor = 1.00 $\gamma w = 1.25$ E $\gamma \gamma = 1.00$ $\gamma mr' = 9.8$ kN/m³D $\varphi'r.d = 24.8$ deg $\gamma b' = 18$ kN/m³D $\varphi'r.d = 24.8$ deg $\gamma b' = 18$ kN/m³D $\varphi'r.d = 24.8$ deg $\gamma b' = 18$ kN/m²C b.d = 12.1 deg C'b.d = 0 kN/m²Ka = 0.378PFtotal_v = Fstem + Fbase + Fmoist_v = 25Ftotal_v = Fstem + Fbase + Fmoist_v = 25Ftotal_h = Fmoist_h = 4.5 kN/mfing Frest = 16.9 kN/mFFtotal_v = Fstem + Fbase + Fmoist_v = 25Ftotal_n = Fmoist_h + Fexc_h = 2.8 kN/nfull Miotal_OT = Mmoist_OT = 2.4 kNm/mMiotal_OT = Mmoist_OT = 2.4 kNm/m	Scenario 2 - 1.60m High Containment Analy Date 16/06/2020Child by OAJPASS - Maximum restoringPASS - Maximum restoringTable A.3 - Combination 2 A2 on $\gamma_{C} = 1.00$ $\gamma_{C} = 1.00$ $\gamma_{C} = 1.00$ $\gamma_{Q} = 1.30$ Variable A.4 - Combination 2 M2 $\gamma_{W} = 1.25$ Effective cohesi $\gamma_{T} = 1.00$ $\gamma_{m'} = 9.8 \text{ kN/m^3}$ Design saturate $\phi'_{r.d} = 24.8 \text{ deg}$ $\gamma_{m'} = 18 \text{ kN/m^3}$ Design saturate $\phi_{r.d} = 12.1 \text{ deg}$ $\phi_{b.d} = 12.1 \text{ deg}$ Design base frid $C'_{b.d} = 0 \text{ kN/m^2}$ Ka = 0.378Passive pressutFictal_v = F_{stem} + F_{base} + F_{molst_v} = 29.1 \text{ kN/m}Fictal_v = F_stem + F_base + F_molst_v = 29.1 kN/mFictal_u = F_molst_h = 4.5 kN/mIng Frest = 16.9 kN/mFictal_h = F_molst_h + F_exc_h = 2.8 kN/mAll Motal_n = F_molst_h + Fexc_h = 2.8 kN/mMotal_R = Mstem_R + Mbase_R + Mmolst_R + Mexc_R = 18 trunning	Scenario 2 - 1.60m High Containment Analysis & Design	Scenario 2 - 1.60m High Containment Analysis & Design4Cale: byDateChild byDateAppliePASS - Maximum restoring moment is greater than overTable A.3 - Combination 2A2Page = 1.00Permanent far $\gamma_{CP} = 1.00$ Permanent far $\gamma_{CP} = 1.30$ Variable favourable action $\gamma_{CP} = 0.00$ Intersection of the product of the p

Tekla Tedds	Project Lower Drayton	- Proposed AD	Plant		Job Ref. 25998	
Plandescil Connaught Road	Section Scenario 2 - 1.60m High Containment Analysis & Design				Sheet no./rev. 5	
Attleborough Norfolk	Calc. by AF	Date 16/06/2020	Chk'd by OAJ	Date	App'd by	Date

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.06

Concrete details - Table 3.1 - Concrete strength class	- Strength and deformation C40/50	characteristics for concrete	
Char.comp.cylinder strength	$f_{ck} = 40 \text{ N/mm}^2$	Mean axial tensile strength	f _{ctm} = 3.5 N/mm ²
Secant modulus of elasticity	$E_{cm} = 35220 \text{ N/mm}^2$	Maximum aggregate size	$h_{agg} = 20 \text{ mm}$
Design comp.concrete strengt		f _{cd} = 22.7 N/mm ²	Partial factor $\gamma_{\rm C} = 1.50$
Reinforcement details			
Characteristic yield strength	f _{yk} = 500 N/mm ²	Modulus of elasticity	Es = 200000 N/mm ²
Design yield strength	$f_{yd} = 435 \text{ N/mm}^2$	Partial factor	γs = 1.15
			10 110
Cover to reinforcement Front face of stem	c _{sf} = 50 mm	Rear face of stem	c _{sr} = 50 mm
Top face of base	$c_{sf} = 50 \text{ mm}$	Bottom face of base	$c_{sr} = 50 \text{ mm}$ $c_{bb} = 50 \text{ mm}$
		Dolloff face of base	
Check stem design at base of			
Depth of section	h = 225 mm		
Rectangular section in flexu			
Design bending moment	M = 1.6 kNm/m	K = 0.001	K' = 0.207
- · · · · · ·	A OO 2/	K' > K - No compre	ssion reinforcement is required
Tens.reinforcement required	$A_{sr.req} = 23 \text{ mm}^2/\text{m}$	Tono reinforcement provided	∧ – 202 mm ² /m
Tens.reinforcement provided Min.area of reinforcement	10 dia.bars @ 200 c/c A _{sr.min} = 310 mm²/m	Tens.reinforcement provided Max.area of reinforcement	A _{sr.prov} = 393 mm ² /m A _{sr.max} = 9000 mm ² /m
			area of reinforcement required
	r ASS - Area or renno	rcement provided is greater than	Library item: Rectangular single summary
Deflection control - Section		rcement provided is greater than	-
Deflection control - Section Limiting span to depth ratio		Actual span to depth ratio	-
	7.4	Actual span to depth ratio	Library item: Rectangular single summary
	7.4	Actual span to depth ratio	Library item: Rectangular single summary
Limiting span to depth ratio	7.4	Actual span to depth ratio	Library item: Rectangular single summary
Limiting span to depth ratio Crack control - Section 7.3	7.4 16	Actual span to depth ratio PASS - Span to depth ratio is le Maximum crack width	Library item: Rectangular single summary 9.4 ess than deflection control limit
Limiting span to depth ratio Crack control - Section 7.3	7.4 16 w _{max} = 0.2 mm	Actual span to depth ratio PASS - Span to depth ratio is le Maximum crack width	Library item: Rectangular single summary 9.4 ess than deflection control limit w _k = 0.027 mm
Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width	7.4 16 w _{max} = 0.2 mm	Actual span to depth ratio PASS - Span to depth ratio is le Maximum crack width	Library item: Rectangular single summary 9.4 ess than deflection control limit w _k = 0.027 mm
Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in shear	7.4 16 w _{max} = 0.2 mm r - Section 6.2	Actual span to depth ratio PASS - Span to depth ratio is le Maximum crack width PASS - Maximum crack width i Design shear resistance	Library item: Rectangular single summary 9.4 ess than deflection control limit w _k = 0.027 mm is less than limiting crack width
Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in shear	7.4 16 w _{max} = 0.2 mm r - Section 6.2 V = 3.6 kN/m	Actual span to depth ratio PASS - Span to depth ratio is le Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistance	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd.c} = 106.4 \text{ kN/m}$
Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in shear Design shear force	7.4 16 w _{max} = 0.2 mm r - Section 6.2 V = 3.6 kN/m	Actual span to depth ratio PASS - Span to depth ratio is le Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistance	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd,c} = 106.4 \text{ kN/m}$ nce exceeds design shear force
Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in sheat Design shear force Horizontal reinforcement par	7.4 16 w _{max} = 0.2 mm r - Section 6.2 ∨ = 3.6 kN/m rallel to face of stem - Sect	Actual span to depth ratio PASS - Span to depth ratio is lo Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistan ion 9.6	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd,c} = 106.4 \text{ kN/m}$ nce exceeds design shear force $s_{sx_max} = 400 \text{ mm}$
 Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in shear Design shear force Horizontal reinforcement par Min.area of reinforcement 	7.4 16 w _{max} = 0.2 mm r - Section 6.2 V = 3.6 kN/m rallel to face of stem - Sect A _{sx,req} = 225 mm ² /m 10 dia.bars @ 200 c/c	Actual span to depth ratio PASS - Span to depth ratio is le Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistan ion 9.6 Max.spacing of reinforcement	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd.c} = 106.4 \text{ kN/m}$ nce exceeds design shear force $s_{sx_max} = 400 \text{ mm}$ $A_{sx,prov} = 393 \text{ mm}^2/\text{m}$
 Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in shear Design shear force Horizontal reinforcement par Min.area of reinforcement 	7.4 16 w _{max} = 0.2 mm r - Section 6.2 V = 3.6 kN/m rallel to face of stem - Sect A _{sx,req} = 225 mm ² /m 10 dia.bars @ 200 c/c	Actual span to depth ratio PASS - Span to depth ratio is lo Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistan ion 9.6 Max.spacing of reinforcement Trans.reinforcement provided	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd.c} = 106.4 \text{ kN/m}$ nce exceeds design shear force $s_{sx_max} = 400 \text{ mm}$ $A_{sx,prov} = 393 \text{ mm}^2/\text{m}$
Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in shear Design shear force Horizontal reinforcement par Min.area of reinforcement Trans.reinforcement provided	7.4 16 w _{max} = 0.2 mm r - Section 6.2 V = 3.6 kN/m rallel to face of stem - Sect A _{sx,req} = 225 mm ² /m 10 dia.bars @ 200 c/c	Actual span to depth ratio PASS - Span to depth ratio is lo Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistan ion 9.6 Max.spacing of reinforcement Trans.reinforcement provided	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd.c} = 106.4 \text{ kN/m}$ nce exceeds design shear force $s_{sx_max} = 400 \text{ mm}$ $A_{sx,prov} = 393 \text{ mm}^2/\text{m}$
 Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in sheat Design shear force Horizontal reinforcement part Min.area of reinforcement Trans.reinforcement provided Check base design at heel 	7.4 16 w _{max} = 0.2 mm r - Section 6.2 V = 3.6 kN/m rallel to face of stem - Sect A _{sx,req} = 225 mm ² /m 10 dia.bars @ 200 c/c <i>PASS - Area of reinfo</i> h = 225 mm	Actual span to depth ratio PASS - Span to depth ratio is lo Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistan ion 9.6 Max.spacing of reinforcement Trans.reinforcement provided	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd.c} = 106.4 \text{ kN/m}$ nce exceeds design shear force $s_{sx_max} = 400 \text{ mm}$ $A_{sx,prov} = 393 \text{ mm}^2/\text{m}$
Limiting span to depth ratio Crack control - Section 7.3 Limiting crack width Rectangular section in shear Design shear force Horizontal reinforcement par Min.area of reinforcement Trans.reinforcement provided Check base design at heel Depth of section	7.4 16 w _{max} = 0.2 mm r - Section 6.2 V = 3.6 kN/m rallel to face of stem - Sect A _{sx,req} = 225 mm ² /m 10 dia.bars @ 200 c/c <i>PASS - Area of reinfo</i> h = 225 mm	Actual span to depth ratio PASS - Span to depth ratio is lo Maximum crack width PASS - Maximum crack width i Design shear resistance PASS - Design shear resistan ion 9.6 Max.spacing of reinforcement Trans.reinforcement provided	Library item: Rectangular single summary 9.4 ess than deflection control limit $w_k = 0.027 \text{ mm}$ is less than limiting crack width $V_{Rd.c} = 106.4 \text{ kN/m}$ nce exceeds design shear force $s_{sx_max} = 400 \text{ mm}$ $A_{sx,prov} = 393 \text{ mm}^2/\text{m}$

Tedds	Project Lower Drayto	n - Proposed AD	Plant			Job Ref. 25998	
Plandescil Connaught Road	Section Scenario 2 - 1	.60m High Cont	ainment Analys	sis & Design		Sheet no./rev. 6	
Attleborough Norfolk	Calc. by AF	Date 16/06/2020	Chk'd by	Date		App'd by	Date
	AF	16/06/2020	OAJ				
			K' > K	- No compre	ssior	n reinforcen	nent is rea
Tens.reinforcement required	$A_{bt.req} = 38 \text{ mm}^2/\text{m}$						0.
Tens.reinforcement provided Min.area of reinforcement	10 dia.bars @ 200 A _{bt.min} = 310 mm ² /		ens.reinforceme ax.area of reinf	-		_{prov} = 393 mr _{max} = 9000 m	
Min.area of remotement		of reinforceme					
	r A33 - Area	or remiorceme	n provided is	greater that		ary item: Rectan	
Crack control - Section 7.3							
Limiting crack width	w _{max} = 0.2 mm	М	aximum crack v	width	Wk =	= 0.042 mm	
		PAS	S - Maximum	crack width	is les	s than limiti	ing crack
Rectangular section in shear		_					.,
Design shear force	V = 4.4 kN/m		esign shear res . SS - Design s			.c = 106.4 kN	
Papandan, transversa valut	comont to beer		55 - Design S	ncai 19313(d)	nce e	ALCEUS UES	iyii siledi
Secondary transverse reinfor Min.area of reinforcement	Abx.reg = 79 mm ² /m		ax.spacing of r	einforcement	Shu	may = 450 mr	m
Trans.reinforcement provided	•		ans.reinforcem				
	• •						
10	dia.bars @ 200 c/c	10 dia.bars @ 200 c/c 10 dia.bars @ 200 c/c /					
10	10 dia bars @ 2 transverse reinfi in base	10 dia.bars @ 200 c/c	דיד <mark>+</mark> וייד				
10	10 dia bars @ 2 transverse reinfi in base	10 dia.bars @ 200 c/c 10 dia.bars @ 200 c/c 10 dia.bars @ 200 c/c 00 c/c orcement					

Hydrobar PVC

High Performance Waterstop Range

DESCRIPTION

HYDROBAR PVC is a range of high performance waterstops extruded from PVC material designed to prevent the passage of water at both construction and expansion joints in watertight structures. The Hydrobar PVC waterstop range includes a range of sizes, pre-formed junction pieces and sections depending upon the exact situation.

USES

Hydrobar PVC waterstops are designed for use as method of sealing both construction and expansion joints in cast in-situ concrete structures. The waterstops are intended for use on both water retaining and water excluding structures including: reservoirs, water tanks, dams, swimming pools, basements, tunnels, underground carparks etc.

ADVANTAGES

- Available in range of profiles and sizes.
- Joints are easily welded on site.
- Full range of preformed junction pieces for ease of use.
- Complete fabrication service available for complicated networks.

TYPICAL PROPERTIES

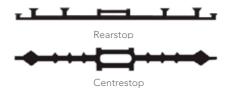
Property	Value
Elongation at Break	>300%
Tensile Strength	14.9MPa
Shore A Hardness	80 -90
Relative Density	1.44
B. S. Softness	28 @ 20°C

HYDROBAR RANGE

Hydrobar Centrestop has been specifically developed, with the unique rib and end bulb profiles to provide a totally effective water barrier when cast centrally within concrete wall and floor joints.

Hydrobar Centrestop has been independently tested in accordance with BS2782 to withstand ingress of water, up to 32M head in construction and expansion joints in water retaining and excluding structures. Hydrobar Centrestop is available in two different web profiles. The standard Hydrobar Centrestop has a web profile of 5mm, the Heavy Duty Centrestop has a web profile of 10mm and is designed for use where more rigidity is required during the concrete pour.

Hydrobar Rearstop is a high performance, heavy duty profile waterstop specifically developed to seal joints in concrete structures at the outside surface thus protecting the reinforcing steel against corrosion attack, in addition to providing a totally watertight seal.


Hydrobar Rearstop has been independently tested to provide a totally effective water barrier up to 32M head in construction, expansion and kicker joints in concrete water retaining and excluding structures.

PROCEDURE

Installation of Centrestop: The waterstop must be positioned centrally in the thickness of the section being poured and spanning the construction/expansion joint. The waterstop should be held in position using the metal eyelets, tied to the reinforcement. Ensure the concrete around the waterstop section is well compacted to prevent passage of water around the waterbar through any voids or porous areas.

Installation of Rearstop: Where the waterstop is used to waterproof joints on a vertical section of concrete, the waterstop should be nailed to the shutter through the outer nailing flanges. The nails should be left protruding so that they are cast into the concrete to prevent damage to the waterbar when striking the shutter. Where the waterstop is used to waterproof joints on a ground bearing slab then the waterstop should be laid on the substrate centrally over the joint and tied to prevent displacement during the placement of the concrete.

Jointing of Hydrobar: Jointing of the waterstop is easily carried out on site using a Hydrobar Jointing Jig and Hydrobar Hot Knife. The ends to be jointed should be clamped into the Jointing Jig and pressed against either side of the Hot Knife until an even bead of molten PVC forms along the entire width of the waterstop. The Hot knife should then be removed and the two sections be pushed together allowing the PVC to cool producing a completely fused watertight connection.

PACKAGING

Туре	Width	Roll Length
Centrestop	190 mm 240 mm	25 M 25 M
Rearstop	190 mm 240 mm	25 M 25 M

STORAGE

Store Hydrobar PVC in orginal packaging in cool dry conditions.

HEALTH AND SAFETY

Please refer to seperate Marerial Safety Datasheet.

The information provided in this data sheet is intended for general guidance only and is given in good faith based on Premcrete's current knowledge and experience. No warranty in respect of fitness for a purpose, or any other liability whatsoever can be inferred from the information contained within this datasheet. Users should determine the suitability of the materials for their particular application and should always refer to the most recent issue of the product data sheet for the product concerned. All materials are supplied in accordance with Premcrete Sales Terms & Conditions (available upon request) PREMCRETE

Hydrostop WSM

Gun Grade Hydrophilic Sealant

DESCRIPTION

HYDROSTOP WSM is a hydrophilic, gun-grade sealant The hydrophilic properties of Hydrostop WSM display good consistency in swell rate during repeated wet/dry cycling. Expansion of the product on contact with water creates a positive pressure against the faces of the concrete joint, thus preventing the passage of water.

USES

HYDROSTOP WSM can be used as an adhesive for bonding Hydrostop water bars or as a problem solving hydrophilic sealant in difficult access areas including:

- Sealing around joints in precast manhole covers, cable ducts and pipes etc.
- Sealing around precast segments
- Sealing between rough surfaces, e.g. slurry walls and concrete slabs
- Sealing around H-beams and other penetrations through concrete structures
- Sealing around conventianal rubber and plastic waterstops to provide a 'belt and braces' seal prior to concrete pour

TYPICAL PROPERTIES

Property	Value
Form	Thiscotropic Sealant
Colour	Black/Grey
Tack-free Time	Approximately 1 hour
Hardness Shore 'A'	30
Cure Rate	3 mm in 24 hours
Swell Ratio	200%

ADVANTAGES

- Excellent seal on rough concrete: Gives improved water tightness. Plug in irregularities rough concrete to produce a water-tight seal.
- Excellent adhesion: Quick and easy to apply to a variety of damp and uneven joint surfaces remaining firmly in place during concrete pour.
- Water swellable: Expands by 200% producing a watertight compression seal.
- Durable: Excellent wet/dry cycling retaining elastomeric character and swelling performance due to high tolerance of the cementitious environment.

PROCEDURE

Surface Preparation: Remove all obvious loose debris and soil, moss and organic growth from the substrate. Hydrostop WSM can be applied to damp concrete but always ensure the surface is free from running water and brush away any standing or seeping water. Divert running channels away from area before application.

Application: Cut the end of the foil sachet and place the sachet inot the sealant applicator gun and apply like a conventional sealant. Extrude a bead of not less than 10mm diameter onto the substrate, ensuring that there is no break in the bead.

PACKAGING

Pack Size: 600 ml sachet Coverage: A 600 ml sachet will extrude a 6 metre bead 10 mm diameter.

STORAGE

Shelf life is 9 months. Store in original unopened packaging in a cool, dry conditions.

LIMITATIONS

Hydrostop WSM should not be used for expansion jointing or for joints subject to significant repetitive movements. Hydrostop WSM should be positioned to ensure that there is a minimum of 70mm concrete cover to accommodate pressure developed during the swelling process. Hydrostop WSM will establish a firm bond to the concrete. However, as with any hydrophilic waterstop, care should be taken during concreting to avoid pouring directly onto the seal.

N.B: Hydrostop WSM should not be used as a sealant in general building applications.

HEALTH AND SAFETY

Please refer to separate Material Safety datasheets.

The information provided in this data sheet is intended for general guidance only and is given in good faith based on Premcrete's current knowledge and experience. No warranty in respect of fitness for a purpose, or any other liability whatsoever can be inferred from the information contained within this datasheet. Users should determine the suitability of the materials for their particular application and should always refer to the most recent issue of the product data sheet for the product concerned. All materials are supplied in accordance with Premcrete Sales Terms & Conditions (available upon request)

HYDROSTOP BR SAFETY DATA SHEET According to 1907/2006/EC, article 31

IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

1.1 Product Identifier Hydrostop BR

> **Relevant uses of the substance or mixture and uses advised against** Hydroswelling Bentonite joint sealant for waterproofing of construction and cold joints in concrete.

1.1 Details of the supplier of the data sheet

Premcrete Seymour House Mayflower Close Chandlers Ford Eastleigh Hampshire SO53 4AR

Sales@premcrete.com www.premcrete.com

1.2 Emergency telephone number +44 (0) 800 6191619 6:30am-5:00pm Mon-Fri

2. HAZARDS IDENTIFICATION

2.1 None to our knowledge.

. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Mixtures

Chemical Composition: Blend of Butylrubber and Sodium Bentonite

4. FIRST AID MEASURES

- 4.1 General advice: In case of doubt or with persisting symptoms obtain medical attention. Never pass anything through the mouth of an unconscious person.
 4.2 Skin contact: Remove soiled clothing.
- **4.3 Eye contact:** Rinse immediately with eye wash or clean water for at least 15 min. Seek medical attention
- **4.4 Ingestion:** Immediately rinse mouth out. Do not induce vomiting. Seek immediate medical advice.

PAGE: 1 REVISION: 1 REVISION DATE: 23-06-2016

5. FIRE-FIGHTING MEASURES
 5.1 Suitable extinguishing media: Carbon dioxide, dry powder, halon, foam or water 5.2 Unsuitable extinguishing media: None 5.3 Exposure hazards: None 5.4 Special protective equipment: Fire fighters should wear full protective clothing and self-contained breathing apparatus
6. ACCIDENTAL RELEASE MEASURES
6.1 Personal precautions: None.
•
6.2 Environmental precautions: Prevent material from entering sewage system, water courses or water treatment installations.
7. HANDLING AND STORAGE
7.1 Storage: Keep cartons dry and closed.
8. EXPOSURE CONTROL/PERSONAL PROTECTION
8.1 Skin protection: Cotton or cotton/synthetic or coveralls are suitable.
9. Physical and chemical properties
9.1 Information on basic and chemical properties
Appearance: Green Solid
Melting point:: 80°C
Flash Point: Not applicable
Flammability: Non-flammable
Auto flammability: Not applicable
Relative density: 1,48
Solubility in water: Non Soluble
Solubility in water. Non Soluble
10. STABILITY AND REACTIVITY
10.1 Stability: Stable under normal ambient conditions
10.2 Conditions to avoid: Avoid water
10.3 Materials to avoid: Water
10.4 Haz. decomp. Products: None in ambient conditions
•
11 TOXICOLOGICAL INFORMATION
11.1 Routes of exposure: Eye contact.
12 ECOLOGICAL INFORMATION 12.1 Ecological Information: None

PAGE: 2 REVISION: 1 REVISION DATE: 23-06-2016

13 DISPOSAL CONSIDERATIONS

13.1 Disposal Considerations:

Do not allow into drains or water courses or where ground water or surface waters may be affected. Ensure any containers containing waste material are correctly labelled. Wastes, including emptied containers, are controlled wastes and should be disposed of in accordance with local, state or EC regulations at an authorised site.

14 TRANSPORT INFORMATION

14.1 Transport Information: The product has no classification

15 REGULATORY INFORMATION

15.1 Regulatory Information: None

16 OTHER INFORMATION

Training advice: Do not use unless trained to do so.

Recommended uses: The product is only supplied for use in accordance with uses listed in sec 1.

The information supplied in the Safety Data Sheet is designed only as guidance for the safe use, storage and handling of the product. The information is correct to the best of our knowledge and belief at the date of publication however no guarantee is made to its accuracy. This information relates only to the specific materials designated and may not be valid for such material used in combination with any other materials or in any other process.

PAGE: 3 REVISION: 1 REVISION DATE: 23-06-2016

BUILDING TRUST

SIKAFIBER® Product Proposal

FOR FIBER REINFORCED CONCRETE SLABS ON GROUND

PROJECT INFORMATION			
Project reference	JF10b		
Project name	Lower Drayton Farm bund slabs		
Customer	plandescil		
Date	04/06/2020		
Calculation title	Beneath Tanks Slab	S	
Calculation by			
Approved by			
Remarks			
Country	United Kingdom		
PRODUCT INFORMATION			
Product	SikaFiber [®] For	ce-50	
Dosage	4.0 kg/m ³		
DESIGN SUMMARY Design method	Concrete Society Te 4th Edition	echnical Report 34 - Con	crete Industrial Ground Floors,
Regulations		ode 2: Design of structu	res - Part 1-1: General rules and
Concrete class	C32/40		
Slab thickness	h = 175 mm		
Joint spacing	x = 6000 mm; y = 60)00 mm	
Modulus of subgrade reaction	k = 0.225 N/mm ³		
LOADING SUMMARY			
CHECKING TYPE	LOAD	CASE	VALUE
Bending			
Bending (MHE)	MHE	1	0.1184
Punching			
Uniformly distributed loads	bene	ath Tank slabs	0.8850

NOTES

Joints are placed in the slab to minimize the risk of cracking

- In fiber reinforced floors use square panels or limit the length-to-width (aspect ratio) to 1:1.5
- Limit the longest dimension between to sawn joints <6 m
- Avoid re-entrant corners
- Avoid slabs with acute angles at corners
 - Avoid restrained shrinkage of the slab, isolate the slab around fixed points
- Avoid point loads in corners

Shrinkage and curling shall be evaluated on a project basis. There are several factors including, but not limited to.

- Internal concrete stresses occur greatly depending on the aggregate size, type and quality; the water content, cement paste content, admixture usage, concrete temperature and generally the mix design.
- Placement conditions due to the sub-grade moisture and preparation, sub-grade restraint and protection from environmental and ambient conditions (temperature variations, wind and humidity)
- Location and timeliness of jointing and proper joint activation.
- Proper curing is vital to all concrete construction. The standard rules of good concreting practice, concerning production and placing, shall be followed.

INDEX

1	DESIGN DATA	4
2	RESULTS	5
	2.1 Summary of results	5
	2.2 Fibre reinforcement proposal	5
	2.3 Capacity of fibre reinforced section	5
	2.4 Bending checking	7
	2.5 Punching checking	8
	2.6 Line load checking	8
	2.7 Uniform distributed load (UDL) checking	8
	2.8 Other verifications	8
3	ALSO AVAILABLE FROM SIKA	9
4	LEGAL DISCLAIMER	10
5	ABOUT SIKAFIBER® CALCULATION SOFTWARE	10

1.- DESIGN DATA

Regulations

Concrete Society Technical Report No. 34 (TR 34): Concrete industrial ground floors. A guide to design and construction.

EN 1992-1-1. Eurocode 2: Design of structures - Part 1-1: General rules and rules for buildings

artial safety factors for matchais		
Material	γm	
Concrete / Fibre reinforced concrete	1.50	
Steel	1.15	
Partial safety factors for loads		
Loads	γ _F	
Racking loads	1.20	
Permanent loads	1.35	
Variable loads	1.50	
Dynamic loads	1.60	
Uniformly distributed loads	1.00	
Linearly distributed loads	1.00	
Soil parameters		
k: modulus of subgrade reaction		k : 0.225 N
Concrete data		
Concrete class: C32/40		
f _{ck} : Characteristic cylinder compressiv	e strength of concrete	f _{ck} : <u>32.00</u> N
E_{cm} : secant modulus of elasticity of co	ncrete	E _{cm} : _33345.76_ N
f _{ctm} : Mean axial tensile strength		f _{ctm} : N
v: Poisson's ratio		v : 0.20
ilab panel data		
Panel dimensions: 6000 x 6000 mm		
Load transfer at the edge: 15.0%		
Load transfer at the corner: 15.0%		
Reinforncement information		
Reinforcement for bending: Consider	ed	
		r ∶ 0.245
r: reinforcement ratio		r ∶ <u>0.245</u>
r : reinforcement ratio ct: reinforcement bottom cover		$c_t : 50$
	nsidered	
ct: reinforcement bottom cover	nsidered	

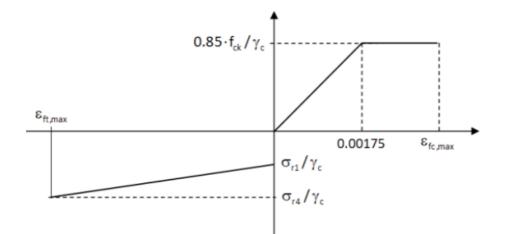
2.- RESULTS

2.1.- Summary of results

Load case	Туре	Usage ratio
MHE 1	Single point load	0.1184
beneath Tank slabs	Uniformly distributed load	0.8850
	 MHE 1 beneath Tank slabs	MHE 1 Single point load beneath Tank slabs Uniformly distributed load

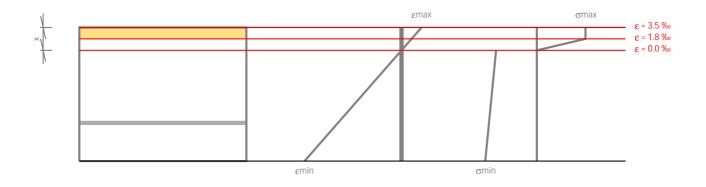
Fibre-reinforced concrete data	
Fibre type: Synthetic Macro-fibres	
Sika product: SikaFiber [®] Force-50	
Fibre dosage: 4.0kg/m ³	
f_{ck} : Characteristic cylinder compressive strength of concrete	f _{ck} : 32.00 MPa
f_{R1} : Residual flexural strength at CMOD 0.5	f _{R1} : 1.52 MPa
f _{R2} : Residual flexural strength at CMOD 1.5	f _{R2} : 1.71 MPa
f_{R3} : Residual flexural strength at CMOD 2.5	f _{R3} : 1.99 MPa
f_{R4} : Residual flexural strength at CMOD 3.5	f _{R4} : 2.11 MPa
h: Thickness of the slab	h : <u>175</u> mm
Joint spacing (X-direction): 6000mm	
Joint spacing (Y-direction): 6000mm	

2.3.- Capacity of fibre reinforced section


The ultimate moment capacity is dependent on the strain at the extremity of the section. On the compression face, the strain is limited to 0.0035, as is the case for conventional reinforced concrete sections. On the tension face, the strain is limited to 0.025.

The moment - crack width (M-w) response of the section is derived in terms of the residual strengths fR1 and fR4 obtained from the EN 14651 beam test. fR1 and fR4 represent the flexural tensile stresses at a Crack Mouth Opening Displacement (CMOD) of 0.5mm and 3.5mm respectively in the 150mm deep test beam. Although in sections deeper than 150mm, the strain at a CMOD of 3.5mm will be lower than in the test beam, the maximum tensile strain is set at the value resulting from a CMOD of 3.5mm, subject to a limiting maximum strain of 0.025.

For a slab with a low (cracked) flexural tensile capacity, the compressive strain in the concrete may remain in the elastic range, below 0.00175, in which case the concrete stress block is triangular. As the flexural tensile capacity increases, the compressive strain in the concrete increases and the compressive stress block becomes bi-linear.


Stress and strain diagram for bi-linear stress block for strain softening	$ \sigma_{r1} \geq \sigma_{r4} $
Stress and strain diagram for bi-linear stress block for strain hardening	$ \sigma_{r1} < \sigma_{r4} $

e _{ft,max} : Maximum tensile strain in fibre reinforced concrete	e _{ft,max} : 25.00 ‰
e _{rc.max} : Maximum compressive strain concrete	e _{fc,max} : 3.50 ‰
s_{r1} : Mean axial tensile strength derived from beam test EN 14651 at CMOD 0.5 $$	s _{r1} : 0.68 MPa
$\sigma_{r1} = 0.45 \cdot f_{r1}$	
f _{r1} : Residual flexural strength at CMOD 0.5	f _{r1} : 1.52 MPa
$s_{r\!$	s _{r4} : 0.78 MPa
$\sigma_{r4}=0.37\cdot f_{r4}$	
f _{r4} : Residual flexural strength at CMOD 3.5	f _{r4} : 2.11 MPa
fck: Characteristic cylinder compressive strength of concrete	f _{ck} : 32.00 MPa
g _c : Partial safety factor for concrete	g _c ∶ 1.50
The stresses in the steel reinforcement are derived from the stress-strain curves in the section 3.2 of EN 1992-1-1:	
$M_{\mbox{\tiny p}}$: Ultimate positive resistance moment per unit width of slab	M_p : <u>41.11</u> kN·m/m

Balance for section failure

e _{max} : Maximum strain	emax	:	3.48	‰
e _{min} : Minimum strain	emin	:	-16.90	‰
s _{max} : Maximum stress	Smax	:	18.13	MPa

BUILDING TRUST

a Minimum stross			MPa
s _{min} : Minimum stress x: Distance from extreme compression fiber to neutral axis	S _{min} X	: <u>-1.92</u> : <u>30</u>	mm
M_n : Negative resistance moment per unit width of slab	Mn		 kN⋅m/m
The negative moment of the slab is taken to be that of the plain unreinforced			-
concrete.			
$M_n = f_{ctd,fl} \left(h^2 / 6 \right)$			
h: Slab thickness	h	: 175	mm
$f_{ctd,fl}$: Design concrete flexural tensile strength	$f_{\text{ctd,fl}}$:2.87	MPa
$f_{\rm ctd,fl} = f_{\rm ctm} \times \left(1.6 - h / 1000\right) / \gamma_c \geq f_{\rm ctm} / \gamma_c$			
f _{ctm} : Mean axial tensile strength	f_{ctm}	: 3.02	MPa
g_c : Partial safety factor for material	gc	: 1.50	-
2.4 Bending checking			
Single point load			
Corner location			
$P_d / P_u \leq 1.0$	$P_{d} / P_{u} $:	0.1184	\checkmark
P _d : required ultimate load	P _d :	4.760	kN
$P_{d} = \sum \gamma_{Fi} \cdot P_{i} \cdot \left(1 - \alpha / 100\right)$			
g _F : Partial safety factor for load	g _F :	1.60	
P: Point load	P : _	3.500	kN
a: Load transfer at the corner	a : _	15.0	%
P _u : Total failure load	P _u : _	40.206	_ kN
Failure load obtained by linear interpolation between values of a/l between 0 and 0.2			
$P_{u,0}$: total failure load with $a/I = 0$	P _{u,0} :	29.325	kN
$P_{u,0} = 2M_n$			
$P_{u,0,2}$: total failure load with $a/l = 0.2$	P _{u,0.2} :	62.736	kN
$P_{u,0,2} = 4M_n / \left[1 - \left(a / l\right)\right]$	_		-
a / I: radius of contact area-radius of relative stiffness ratio	a/l :	0.07	
a: equivalent radius of contact area of the load	a :	33	mm
$a = \sqrt{A / \pi}$			
A _p : baseplate area	A_p :	3500	mm²
I: radius of relative stiffness	I:	512	mm
$l = [(E_{cm}h^3)/(12(1-v^2)k)]^{0.25}$			
Ecm: secant modulus of elasticity of concrete	E_{cm} :	33345.76	MPa
v: Poisson's ratio	V :	0.20	-
h: Slab thickness	h : _	175	mm
k: modulus of subgrade reaction	k : _	0.225	N/mm ³
M_n : negative resistance moment per unit width of slab	M _n : _	14.66	_kN·m/m

2.5.- Punching checking

There are no load case to perform the check

2.6.- Line load checking

There are no load case to perform the check

2.7.- Uniform distributed load (UDL) checking

$q_d / q_u \leq 1.0$	q_d / q_u :	0.8850	\checkmark
q_d : required ultimate uniformly distributed load	q _d :	150.0	kN/m²
$q_d = \gamma_F \cdot q$			
g _F : Partial safety factor for load	g _F :	1.00	_
Partial safety factor for load (TR-34 4th Edition, clause 7.12). The elastic analysis is based on the work of Hentenyi. This analysis has traditionally used a global safety factor of 1.5. As a factor of 1.5 is already applied to the material properties, an additional factor should not be applied to the load.			
q: Uniformly distributed load	q : _	150.0	kN/m²
q _u : load capacity of the slab per unit area	q _u :	169.5	kN/m ²
$q_{u} = MIN(q_{u1}, q_{u2})$			
$q_u = 5.95\lambda^2 M_n$			
$q_u = 6.20\lambda^2 (M_p + M_n)$			
I: Characteristic of the system	1:_	0.013941	1/cm
$\lambda = \left(\frac{3k}{E_{cm}h^3}\right)^{0.25}$			
k: Modulus of subgrade reaction	k :	0.225	N/mm ³
E _{cm} : Modulus of elasticity of the concrete	E _{cm} :	33345.76	MPa
h: Slab thickness	h : _	175	mm
M_n : negative resistance moment per unit width of slab	M _n : _	14.66	_ kN·m/m
$M_n = f_{ctd,fl} \left(h^2 / 6 \right)$			
f _{ctd,fl} : Design concrete flexural tensile strength	$f_{\text{ctd,fl}}$:	2.87	MPa
$M_{\ensuremath{\tiny p}}$: ultimate positive resistance moment per unit width of slab	M _p :	41.11	kN⋅m/m
The maximum negative moment is induced between a pair of patch loads each of breadth π/λ spaced a distance π/λ apart. This spacing is commonly known as the critical aide width. The maximum positive bending moment in the slab is			

of breadth π/λ spaced a distance π/λ apart. This spacing is commonly known the critical aisle width. The maximum positive bending moment in the slab is caused by a load of breadth $\pi/2\lambda$

2.8.- Other verifications

The panel length to width ratio should not exceed 1:1.5.		
$\frac{L_{\max}}{L_{\min}} \le 1.5$	L _{max} / L _{min} : 1.00	¥
Limiting the longest dimension between sawn joints to typically 6000 mm.		
$L_{\max} \leq 600 mm$	L _{max} : 6000 mm	¥ -
$L_{\max} = MAX(X,Y)$		

BUILDING TRUST

 $L_{\min} = MIN(X, Y)$ X: X joint spacing Y: Y joint spacing

3.- ALSO AVAILABLE FROM SIKA

Concrete Admixtures	Optimising the fresh and/or hardened properties of concrete using plasticizers, water reducers, accelerators, retarders, air-entrainment, shrinkage reducers, antifreeze, corrosion inhibitors	Sika Viscoflow [®] , Viscocrete [®] , SikaControl [®] , FerroGard [®] , SikaRapid [®]
Pumping	For use with unfavourable aggregates and protecting equipment from excessive wear. Maintains internal cohesion.	SikaPump® Sika® Stabilizer
Curing	Liquid agents or sheets protecting the slab from premature drying.	Antisol [®] , Sika [®] Ultracure
Mould Release	Extend longevity of formwork by preventing concrete from sticking to the mould.	Sika® Separol®
Joints	Preventing dirt from filling the joint, accommodating movement and protecting the edges allowing smooth joint crossing.	Sikaflex®
Surface hardeners	Improve slab life span by impregnating the surface or by forming a monolithic layer.	Sika [®] CureHard, Sikafloor [®]
Surface coatings	Increase resistance against mechanical and chemical attack.	Sikafloor [®] , SikaScreed [®]

4.- LEGAL DISCLAIMER

THIS SOFTWARE APPLICATION AND THE RESULTS DERIVED FROM ITS UTILIZATION ARE INTENDED ONLY FOR USE BY PROFESSIONAL USERS WITH EXPERT KNOWLEDGE IN THE AREA OF THE INTENDED APPLICATION. USERS MUST INDEPENDENTLY VERIFY THE RESULTS BEFORE ANY USE AND TAKE INTO ACCOUNT THE SITE AND APPLICATION CONDITIONS, PRODUCT DATA SHEET AND PRODUCT LITERATURE, TECHNICAL STATE OF THE ART AS WELL AS LOCAL APPLICABLE STANDARDS AND REGULATIONS.

With respect to the software application and results derived from its use, SIKA MAKES NO WARRANTIES OF ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. THE SOFTWARE APPLICATION IS PROVIDED ON AN "AS-IS" BASIS AND SIKA EXPRESSLY DISCLAIMS ANY WARRANTIES WITH RESPECT TO THE SOFTWARE APPLICATION AND RESULTS DERIVED FROM ITS USE.

Sika shall not be liable for any consequential, punitive, incidental, exemplary, or special damages (including but not limited to loss of business opportunity or loss of profit) arising out of the evaluation or use of the software application and results derived from its use.

The information, and, in particular, the recommendations relating to the application and end-use of Sika products, are given in good faith based on Sika's current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika's recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect of merchantability or of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, can be inferred either from this information, or from any written recommendations, or from any other advice offered. The user of the product must test the product's suitability for the intended application and purpose. Sika reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request.

Except as indicated otherwise, all information, text, graphic images, features, functions, and layout contained in this software are the exclusive property of Sika and may not be copied or distributed, in whole or in part, without the Company's express written consent.

By transmitting information to Sika, you grant to the Company the unrestricted irrevocable license to use, reproduce, display, modify, distribute and perform such information. Personal identity information is used by Sika only to process a request for information by you or for marketing our products and services.

© Copyright Sika Services AG 2016

5.- ABOUT SIKAFIBER® CALCULATION SOFTWARE

Engineered by:

Cype Software - Eusebio Sempere, 5 - 03003 Alicante (Spain) www.cype.com

TECHNICAL DATA

BENTOMAT AS5000-1 Self GEOSYNTHETIC CLAY BARRIER (GBR-C)

BENTOMAT AS5000-1 Self is a reinforced GBR-C consisting of a layer of sodium bentonite between a woven and a nonwoven geotextile, which are needlepunched together to provide internal reinforcement. The internal reinforcement minimizes clay shifting, thus allowing the GBR-C to maintain consistent low permeability and maximum performance under a wide variety of field conditions.

TECHNICAL DATA				
MATERIAL PROPERTY	TEST METHOD	TYPICAL VALUE	TEST FREQUENCY	
GBR-C				
Index Flux ⁽¹⁾	EN 16416	3,0x10 ⁻⁰⁹ (m ³ /m ²)/s	Production week (2)	
Hydraulic Conductivity	EN 16416	1,5x10 ⁻¹¹ m/s	Production week (2)	
Total Mass/Unit Area (3)	EN 14196	5,33 kg/m²	5000 m ²	
Bentonite Mass/Unit Area (3)	EN 14196	5,00 kg/m ²	5000 m ²	
Tensile Strength MD/CMD (4)	EN ISO 10319	12,0/12,0 kN/m	5000 m ²	
Elongation at Break MD/CMD	EN ISO 10319	15%	5000 m ²	
Puncture Resistance (CBR) (5)	EN ISO 12236	2,0 kN	5000 m ²	
Peel Strength (6)	ASTM D 6496	650 N/m	5000 m ²	
Thickness	EN ISO 9863-1	7,5 mm	5000 m ²	
Roll Length	-	40,0 m	Continuous	
Roll Width	-	5,0 m	Continuous	
BENTONITE				
Free Swell	ASTM D 5890	25 ml/2 g	5000 m ²	
Fluid Loss	ASTM D 5891	max 18 ml	5000 m ²	
Montmorillonite content (7)	XRD	80%	Certified by supplier	
GEOTEXTILES (PP)				
Non-Woven Mass/Unit Area	EN ISO 9864	200 g/m ²	Certified by supplier	
Woven Mass/Unit Area	EN ISO 9864	130 g/m ²	Certified by supplier	

Bentonite powder is impregnated into overlap area 50cm from both sides.

Notes:

¹Index Flux with tolerance $+0.5 \times 10^{-09} \text{ (m}^3/\text{m}^2)/\text{s}$

² Production week = average 75 000 m² of one type of Bentomat

³ Bentonite mass/unit area reported at 12% moisture content

⁴ Tensile Strength with tolerance –1,0 kN/m

⁵ Puncture Resistance (CBR) with tolerance -0,2 kN

⁶ Peel Strength testing is performed in machine direction

 7 Montmorillonite content with tolerance $\pm 10\%$

www.cetco.com

UPDATED: AUGUST 2018

IMPORTANT: The information contained herein supersedes all previous printed versions, and is believed to be accurate and reliable. For the most up-to-date information, please contact CETCO sales team. CETCO accepts no responsibility for the results obtained through application of this product. CETCO reserves the right to update information without notice.

civil engineering and building

- Å
- Industrial, Commercial, Agricultural and Domestic building design
- Foundation Design and ground improvements
- Highway Engineering including PDS/Civil 3D
- Retaining walls
- Sheet Piling

environmental engineering

- Contaminated Land investigations (intrusive & non-intrusive)
- Land remediation verification
- Environmental impact assessments (EIA)
- Flood Risk Assessments
- Water supply, treatment, storage and distribution

structural engineering

- Structural calculations for Commercial, Agricultural and Domestic building design
- Structural design using steel, stainless & carbon steel, concrete, timber, alloys and masonry

surveying land and buildings

- K
- Geomatic / topographical site surveys
- Building, Road, and Earthworks Setting out
- Engineering Setting out
- Establish precise site survey control
- o 3D digital terrain modelling

- Infrastructure planning and design
- Design of sustainable drainage system (SUDS)
- Soakaway design
- Architectural design of industrial buildings
- Planning and building regulation applications

- 3D conceptual models
- Renewable Energy Civil Engineering design and project management
- Anaerobic Digestion and Waste to Energy Project design and detail
- Foul and surface water & effluent/leachate drainage design
- o Drainage network modelling
- o 1D & 2D flood modelling
- Hydraulic river modelling
- Flood Alleviation
- Breach & overtopping analysis
- Reservoir flood inundation modelling
- Consent to discharge applications
- Landscaping design
- Tree surveys
- Environmental Permits

Structural monitoring

remedial work

modelling

Structural enhancement/

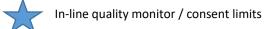
Historic building advice

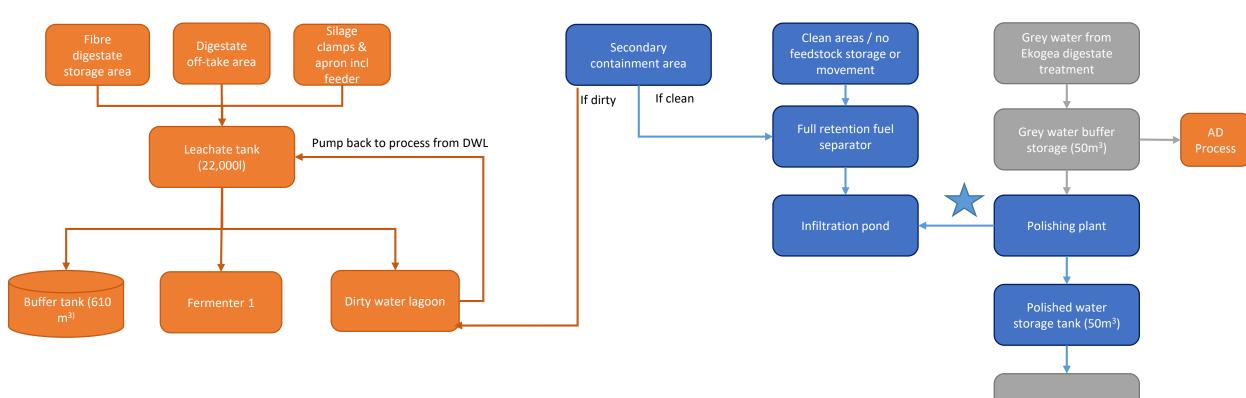
O 3D Revit & Level 2 BIM

structural design &

- Maritime and Hydraulic structures
- Structural surveys and structural suitability surveys
- Structural failure studies
- Subsidence claims
- Temporary works design
- o 3D Finite Element Analysis
- Volumetric analysis
- Site area computations
- Flood risk surveys using GPS active network
- Measured building floor plans and elevation surveys
- Land transfer plans to Land Registry requirements
- o Drainage network surveys
- Assistance/Expert witness in land boundary disputes
- Deterioration monitoring
- Preparation of asset plans
- As built record surveys

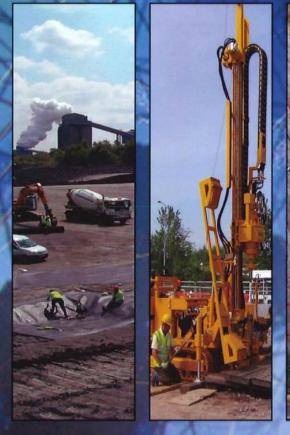
Plandescil Ltd Connaught Road Attleborough Norfolk NR17 2BW


t: 01953 452001e: pdc@plandescil.co.ukplandescil.co.uk



civil / structural / environmental / surveying

Appendix E – Drainage Process Flow


Lower Drayton Biogas, Drainage Process Flow Diagram V1.1

Appendix F – Effluent Infiltration Assessment

TerraConsult

DRAINAGE STONE

LIERY SHALL

June 2020 Report No 10573-R01

ANAEROBIC DIGESTION PLANT

EFFLUENT INFILTRATION ASSESSMENT

Prepared for

BioConstruct NewEnergy Limited

TerraConsult

ANAEROBIC DIGESTION PLANT

EFFLUENT INFILTRATION ASSESSMENT

June 2020

Carried Out For:

BioConstruct NewEnergy Limited

Prepared By:

TerraConsult

TerraConsult Limited 9 The Courtyard Phoenix Square Wyncolls Road Colchester CO4 9PE

Tel: 01206 585600 E-mail: <u>mailbox@terraconsult.co.uk</u>

DOCUMENT INFORMATION AND CONTROL SHEET

Document Status and Approval Schedule

Title
ANAEROBIC DIGESTION PLANT
EFFLUENT INFILTRATION ASSESSMENT

Issue History

Issue	Status	Date		Signature	Date
1			Prepared By:	a . 117 .	20/06/20
			Craig Fannin	Craig A'Fannin	29/06/20
			Checked By:		20/00/2020
			Phil Roberts	Phil Roberts	29/06/2020
			Authorised By:	a . 117 .	20/06/20
			Craig Fannin	Craig A Fannin	30/06/20

DISCLAIMER

This consultancy contract was completed by TerraConsult (South) Ltd on the basis of a defined programme and scope of works and terms and conditions agreed with the client. This report was compiled with all reasonable skill, and care, bearing in mind the project objectives, the agreed scope of works, the prevailing site conditions, the budget, the degree of manpower and resources allocated to the project as agreed.

TerraConsult (South) Ltd cannot accept responsibility to any parties whatsoever, following the issue of this report, for any matters arising which may be considered outwith the agreed scope of works.

This report is issued solely to the client and TerraConsult cannot accept any responsibility to any third parties to whom this report may be circulated, in part or in full, and any such parties rely on the contents at their own risk.

ANAEROBIC DIGESTION PLANT

EFFLUENT INFILTRATION ASSESSMENT

CONTENTS

Ρ	a	a	e
-	-	-	-

1.	INTR	ODUCTION	1
	1.1	Background	1
2.	SITE	SETTING	1
	2.1	Setting	1
	2.2	Geology	2
	2.3	Hydrogeology and Hydrology	4
3.	RISK	ASSESSMENT	4
	3.1	Introduction	4
	3.2	Effluent Source	5
	3.3	Conceptual Model	7
	3.4	Risk Assessment Methodology and Receptors	8
	3.5	River Dilution	9
	3.6	Infiltration Assessment	10
4.	INFIL	TRATION SYSTEM DESIGN	11
5.	SUM	MARY AND CONCLUSION	11

TABLES

Table 1	Top of Mercia Mudstone and Base of Glacial Deposits with Groundwater 3
Table 2	Infiltration Test Results within Proposed Footprint of Infiltration Lagoon 4
Table 3	Water Quality Standards for Groundwater and the River Penk at Lower
	Drayton 6
Table 4	Calculated Release Concentration if Discharged to River Penk 10
Table 5	Ammoniacal-N Dispersion within Pathway to River Penk Sensitivity Analysis
	10

FIGURES

Figure 1	Site Location	2
Figure 2	Superficial Geology	3
Figure 3	Conceptual Model	7
Figure 4	Infiltration Pond Location in Relation to Surface Water Features	8

1. INTRODUCTION

1.1 Background

This report has been prepared by TerraConsult Ltd (TCL) on behalf of BioConstruct NewEnergy Ltd as an infiltration assessment for the treated effluent generated from a proposed Anaerobic Digestion (AD) Plant at Lower Drayton Lane, Penkridge, Stafford, ST19 5RE.

This report has been prepared based on publicly available information and the following documentation

- Plandescil (June 2020) Design Strategy and Details of Proposed Site Drainage Scheme. Job No. 25998
- Georisk Management (June 2018) Ground Investigation. Lower Drayton Farm AD Plant, Lower Drayton Lane, Penkridge, ST19 5RE. Ref. 18133/LO.001/AMG
- British Geological Survey (November 2019) GeoReports. Report ID BGS_304963/6385
- Groundsure (June 2020) Report Lower Drayton Farm, Penkridge. Ref. GS-6788097

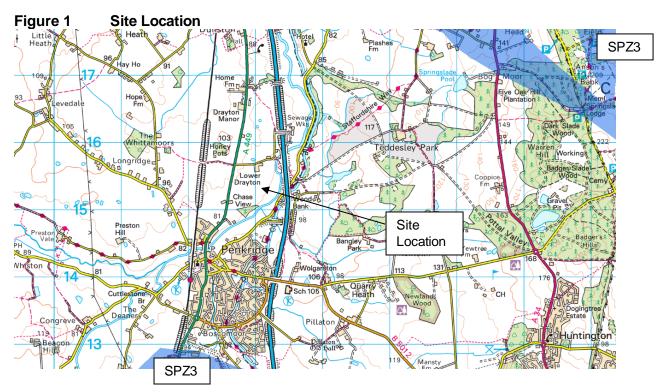
The process combines "traditional" anaerobic digestion with an EKOGEA concentrator unit designed to increase the efficiency of the AD process, along with liquid effluent polishing plant. The majority of process water is returned through the process, however, there is an estimated 23m³/day of excess water which will be produced and requires management.

As part of this application, this excess polished water effluent will be discharged via an infiltration system which has also been designed to receive clean surface water run-off from the site area.

The infiltration system has been designed to receive a 1 in 100 year storm event plus 40%, as well as the $23m^3$ /day EKOGEA system effluent. The infiltration lagoon has a capacity of $365m^3$, and a basal footprint of $315m^2$ and length (east to west) of 65.7m and width (north to south) of 4.8m.

This assessment presents a risk assessment following the methodology set out in the Environment Agency's Annex J5 Spreadsheet model¹.

2. SITE SETTING

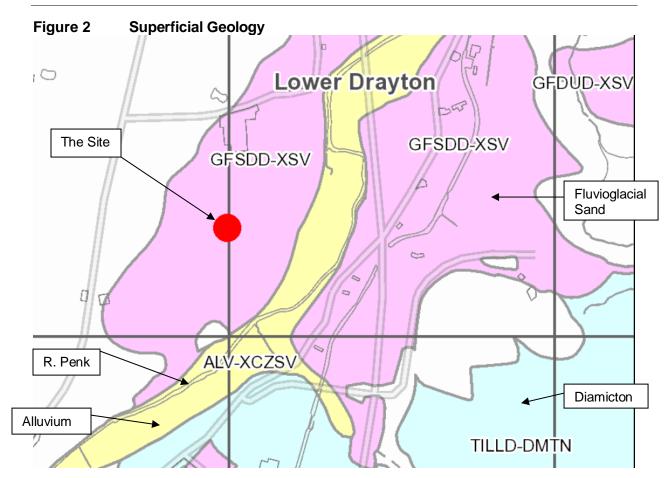

2.1 Setting

The site is located within an agricultural area at the east of Lower Drayton and some 536m to north of Penkridge and 4.3km south of Stafford. The site is located midway between the M6 motorway some 380m to the east of the site and the A449 Stafford Road the same distance to the west.

¹ Additional Guidance for: Groundwater risk assessment for treated effluent discharges to infiltration systems. Annex J5: Infiltration Worksheet User Manual v 2.0 accessed at https://www.gov.uk/government/publications/h1-annex-j5-infiltration-worksheet

The River Penk flows from south to north, towards Stafford between the site and the M6 motorway. The river is some 67m from the edge of the proposed development in its southeast corner at its closest point. A sewage treatment works is identified on OS Mapping some 975m to the northeast of the site. Although the sewage works is located on the same side of the river as Lower Drayton Farm, the works are separated from the site by the M6 motorway.

The topography slopes from 103mAOD to the northeast of the site to the river Penk at <80mAOD. The proposed infiltration lagoon area is located between the 85mAOD and 80mAOD contour lines. There is a National River Flow Archive (NRFA) Gauging Station located at the north of Penkridge (Station 28053²), which reports a river elevation of 76.3mAOD.


2.2 Geology

The site is located within an area of

- ~6m of Glaciofluvial Sand Deposits; overlying
- 85m of Mercia Mudstone

There is no Diamicton Till within the site area and the glacial sands extend some 200m to the west of the site, where Mercia Mudstone outcrops at the surface. The glacial sand extends eastwards across the River Penk valley. The glacial sand is overlain by alluvium at the base of the river valley, but does not extend into the site area (Figure 2).

² NRFA Gauging Station Penk at Penkridge. <u>https://nrfa.ceh.ac.uk/data/station/info/28053</u>

Site investigation (GeoRisk Management, 2018) describes the fluvioglacial sand as a medium dense tight orangish brown fine sand within the main plant area. However there are fluvioglacial clay units interbedded within the sand. This 2018 site investigation was terminated before the Mercia Mudstone was encountered in the majority of locations. Mercia Mudstone was however encountered at 80.82mAOD in WS01, but not at the adjacent WS02 at the lower termination depth of 80.48mAOD (Table 1).

Table 1 Top of Mercia Mudstone and Base of Glacial Deposits with Groundwater
--

Location	Top of	Groundwater
	Mercia Mudstone	
	mAOD	mAOD
WS01	80.82	82.22
WS02	<80.48	81.08
WS03	<82.10	83.30
WS04	<82.13	<82.13
WS05	<81.19	82.09
WS06	<80.09	81.69
WS07	<81.09	82.69
WS08	<82.35	<82.35
WS09	<82.20	<82.20
WS10	<82.47	<82.47
WS11	<82.36	<82.36
WS12	<82.86	<82.26
WS13	<82.33	<82.33
WS14	<79.87	82.17
	(Clay from 83.57)	

A brown slightly silty sand was encountered within six shallow trial pits excavated during October 2019 in the location of the proposed lagoons as part of the Plandescil Drainage Report investigations. Each trial pit was excavated to 1.5 – 2mbgl and did not encounter groundwater.

Infiltration tests carried out on these trial pits returned soil infiltration rates of 3.4×10^{-5} m/s to 4.3×10^{-5} m/s (Table 2). Taking the reciprocal of this rate allows a conversion from m/s to s/mm, which equates to =a rate of 23.3s/mm to 29.4s/mm.

Table 2 Infiltration Test Results within Proposed Footprint of Infiltration Lagoon

Location & Test	Rate		
Location & rest	m/s	s/mm	
S2-C Test No 1	3.6x10 ⁻⁵	27.8	
S2-C Test No.2	3.8x10 ⁻⁵	26.3	
S3 Test No 1	4.3x10 ⁻⁵	23.3	
S2 Test No 2	3.4x10 ⁻⁵	29.4	

2.3 Hydrogeology and Hydrology

Groundwater was identified between 81.08mAOD and 83.3mAOD, with a large proportion of investigation holes not encountering groundwater when terminated between 82.13mAOD and 82.47mAOD.

A groundwater piezometric surface is therefore expected to be from <82.2mAOD at the site, which falls towards the River at <76.3mAOD. Taking a minimum distance to the river of 67m from the edge of the site area and a groundwater elevation change from 82.2mAOD to 76.3mAOD, there is a hydraulic gradient through the fluvioglacial sands to the River Penk of some 0.088. This would then flow though a saturated layer some 2m in thickness, although, this is also expected to increase towards the river, where greater erosion rates by the river would have resulted in a thickening of the sands within the valley floor.

The River Penk Gauging Station at Penkridge reports median flow rates of 1.435m³/s some 1,145m upstream of the site. Mean flow rates are 2.296m³/s, with low flow (Q95) rates of 0.55m³/s.

3. RISK ASSESSMENT

3.1 Introduction

The Environment Agency provide guidance for undertaking discharge to groundwater assessments³. This guidance sets out a number of criteria for such discharges, with basic locational constraints including overarching requirements for sanitary system discharges are that the discharge must not be:

• within 10m of the nearest watercourse;

³ <u>https://www.gov.uk/guidance/infiltration-systems-groundwater-risk-assessments</u>

- within 50m of a well, spring, borehole or other source of water intended for human consumption;
- steeply sloping or waterlogged;
- less than 1.2m depth to water table below the invert of the drainage pipes; or
- where percolation rates fall outside an upper and lower range of values.

The site meets these criteria as the land is gently sloping and underlain by unsaturated sand deposits. The infiltration lagoon is located at least 80m from the River Penk. It is expected that the groundwater will provide baseflow to the river, there is also a spring and ditch system marked on OS mapping where the falling topography intersects with at the edge of the floodplain which connects to the river. This is likely to be an ephemeral feature located above alluvial clays deposited by the river.

The lagoons are not within a public water supply source protection zone, and there are no other groundwater or surface water abstractions within 500m of the site (Groundsure Report. Ref GS-6788097).

Both domestic and trade effluents can be discharged to infiltration systems, however, the level of information required is dependent on whether a trade effluent to be discharged is

- up to 25m³ per day extended or comprehensive information
- over 25m³ per day comprehensive

The applicant proposes that up to $23m^3/day$ of excess "polished" effluent from the AD process is to be discharged to an infiltration system located at the southern edge of the plant area. This volume is therefore below the lower $25m^3/day$ threshold.

A risk assessment is also required to demonstrate that pollution will not occur from the discharge of non-hazardous substances, whilst discernible hazardous substances are prohibited from the discharge.

The H1 Annex J5 worksheet is intended to be used to assess how sanitary effluents from a septic tank or package treatment plant infiltrate to ground with consideration of pathway attenuation properties and dilution within receiving waters. This methodology can be used for any other substance. Given the close proximity to the River Pent, consideration is also given to this receptor⁴.

3.2 Effluent Source

The effluent is the residual product after treatment of an anaerobic digestate. The AD plant will primarily be used for the generation of methane from poultry manure, farmyard manure with straw, rapeseed straw, maize silage and grass silage. The AD process is intended to produce biogas with a solid nutrient rich compost like output. However, in this case, the products are biogas, a thickened liquid digestate, a grey water that is returned to the process and a polished water that is either returned to the process or discharged as proposed.

⁴ Environment Agency (2011) Horizontal Guidance Note H1 – Environmental Risk Assessment for Permits. Annex (d) Surface Water Discharges (basic) with

Environment Agency (2014) H1 Annex D2. Assessment of sanitary and other pollutants within Surface Water Discharges; and the 2016 update accessed at <u>https://www.gov.uk/guidance/surface-water-pollution-risk-assessment-for-your-environmental-permit</u>

The AD process will remove pathogens within the manure, whilst with the feedstock intended, hazardous substances are not expected to be present within the feedstock to the AD plant. Similarly metals and salts are also expected to be low within an organic based feedstock. The two primary potential "pollutants" that could be present within the liquid phase are dissolved organic matter and ammonium, the soluble nitrogen form under anaerobic conditions.

AD plants convert biodegradable organic matter to biogas. Organic matter exerts a Biodegradable Oxygen Demand (BOD) which if high enough can result in the loss of dissolved oxygen within surface waters leading to eutrophication. However, as the AD process is specifically intended to convert this BOD content to biogas, the process is optimised to ensure that the maximum amount of BOD is reduced. The EKOGEA system has been specifically designed to enhance the performance of such a system.

Nitrogen is the largest non-carbon, oxygen and hydrogen component of organic matter and is reduced to ammonium during processing. As ammonium is highly soluble and a significant component will be fractionated into the digestate liquor, with the remainder either volatilised as nitrogen gas or concentrated within the residual solid organic matter.

The residual effluent following digestion is to be passed through the EKOGEA's polishing plant for treatment. Normal practice with AD plant residual waters is for storage and then used as a seasonal irrigant to land, which supplies both water and nutrients. However, the optimisation process and polishing plant treats the effluent to a standard whereby the nutrient value is low and therefore a direct discharge to ground is preferred. This also overcomes the need for storage of this polished water until there is a seasonal need.

Hydrogen sulphide is also produced within an AD plant, however, this sulphide will precipitate any other hazardous and non-hazardous metals within the digestate, therefore metals such as zinc, copper and cadmium are not expected to be present. Sulphide is however expected to be primarily volatilised within the process and captured. However, by the use of an open lagoon for infiltration, sulphide will also be rapidly oxidised to sulphate under aerobic conditions. Sulphide is therefore not expected to be a significant effluent constituent.

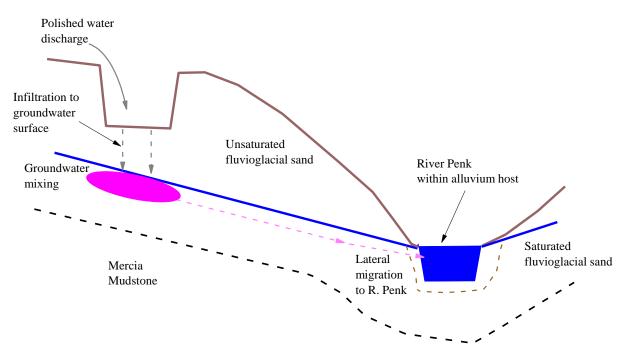
The environmental significance of the effluent is determined by a combination of Drinking Water Quality Standards (DWS) within groundwaters and Environmental Quality Standards (EQS) within surface waters.

There is not a DWS for BOD and dissolved organic matter, however, there is an EQS, designed to prevent eutrophication. Ammoniacal-N can however be toxic if in the ammonia form (the high pH form) and there are both EQS and DWS. The value of the EQS is determined by the type of water as set out in the Annex D2 guidance and are presented within Table 3

Table 3 Water Quality Standards for Groundwater and the River Penk at Lower Drayton

	BOD	Ammoniacal-N	
	mg/l	mg/l	
DWS	None	0.39	
EQS*	5	0.6	

*assumes Type 3,5,7 water (<80mAOD and alkalinity >50mg/l) for River Penk


3.3 Conceptual Model

Conceptual Models are intended to present the system being evaluated within the

Source \rightarrow Pathway \rightarrow Receptor

framework and then to assess the processes that could occur along a pathway to a receptor to determine whether a release from a source could cause pollution, or the extent of managed controls required to mitigate the potential for pollution.

An illustration of the conceptualisation is presented as Figure 3.

Figure 3 Conceptual Model

The conceptual model can be summarised as

- 1) Infiltration through a soakaway at an infiltration rate of 23 to 29s/mm
- 2) Attenuation and aerobic processes within the unsaturated ground
- 3) Mixing with groundwater within the fluvioglacial sands
- 4) Lateral migration over at least a 67m pathway towards the River Penk
- 5) Mixing within the River Penk

The Mercia Mudstone is not water bearing and therefore infiltration to depth is not considered likely. Consequently any infiltrating waters are expected to enter a small ~2m saturated zone, before migrating laterally.

The infiltration lagoon will also be used for surface water run-off management and this facility is intended to prevent downstream flooding due to run-off from sealed surfaces. Consequently as the purpose of flood preventing lagoons and infiltration ponds has the purpose of retarding storm water flow to greenfield run-off rates, then this infiltration pond is expected to be empty for larger periods of time. Dilution / mixing of the effluent with the residual process water is therefore not guaranteed and would only occur on an occasional basis. Consequently an initial dilution stage has not been considered as part of the "steady-state" release of effluent.

3.4 **Risk Assessment Methodology and Receptors**

This assessment is intended to identify "safe" discharge concentrations for the primary effluent. Given the site setting and close proximity to the river, it is considered that the River Penk is the primary receptor for the site, albeit that there is also a requirement not to cause harm to the groundwater.

However, as the potential groundwater body is limited in size, *i.e.* a saturated layer of 1.4 to 1.7m (between 82.2mAOD and 80.8 to 80.5mAOD), there is limited, if any resource value to this unit, which is both thin and limited in recharge area to the west of the infiltration area. The fluvioglacial sand is therefore considered as a pathway of some 90m at the shortest distance to both the River Penk to the south of the infiltration pond and the spring/stream to the east of the infiltration pond (Figure 4).

Infiltration Pond Location in Relation to Surface Water Features Figure 4

The infiltration pond is an elongated structure parallel with the groundwater flux, some 66m long and 5m wide at the base. The surface area of the infiltration pond is somewhat larger to accommodate the 385m³ holding capacity and to enable shallow side slopes to be constructed.

This type of assessment can be approached using two methodologies. The first is to assume no pathway attenuation or mixing and for the effluent to be discharged directly to surface water. Under this scenario the surface water risk assessment methodology (the standard "H1" model), the objective is to undertake a dilution/mixing assessment and then to determine the potential for harm, and to back-calculate a safe discharge concentration.

The second methodology is to undertake a sequential multi-stage assessment to determine the effects of mixing and dispersion within groundwater. This methodology "terminates" at a groundwater receptor, and does not take into consideration a second-stage dilution effect as would occur at the site, when the groundwater mixes with the river flow.

The potential to bypass the river is considered low, as the valley hydraulic gradient would follow the river and therefore all discharge flow would enter the river, albeit this may be some distance downstream of the site.

3.5 River Dilution

The surface water dilutionary model⁴ is a simplistic model which calculates a dilution factor from the discharged rate and the river flow rate. Worst-case scenarios are under low flow river conditions (the Q95 rate) and are expected to occur during summer when extended dry periods would occur. Consequently rainfall dilution is not expected to occur under these circumstances.

The dilution factor for the effluent to enter the groundwater can be calculated as

$$Dilution = \frac{EFR}{RFR + EFR}$$
 Equation 1

where

EFR = Effluent Flow Rate (23m³/day) RFR = River Flow Rate

A Process Concentration (PC) can then be calculated by multiplying the dilution factor by the effluent concentration. This can be reversed to establish a "Release Concentration", whereby the discharge is not considered as significant. For the purposes of Risk Assessment, an insignificant discharge equates to a Process Contribution of 4% of the EQS in the receiving surface water.

For the River Penk, the PC target is therefore:

- 4% of 0.6mg/l ammoniacal-N EQS, which equates to 0.024mg/l
- 4% of the 5mg/I BOD EQS, which equates to 0.2mg/I

The initial Dilution "H1 Model" demonstrates that a release of 50mg/l ammoniacal-N and 413mg/l BOD is equivalent to a Process Contribution at 4% of their respective EQS (Table 4). This increases to 129mg/l and 1,078mg/l under median flow conditions.

Notably EQS is based on an annual average water quality objective, therefore a direct release at 129mg/I ammoniacal-N and ~1,000mg/I BOD is not expected to cause harm to receiving waters.

This latter for BOD is however extremely unlikely event, as such a BOD is feedstock for the AD plant and therefore it is not considered a realistic scenario that such a BOD could be

released under the normal operating conditions of the plant as this BOD would returned to the process.

		Ammoniacal-N		BOD			
		Q95	Q50	Q95	Q50		
EFR	m³/d	23	23	23	23		
	m³/s	0.000266	0.000266	0.000266	0.000266		
RFR	m³/s	0.55	1.435	0.55	1.435		
Dilution	Factor	2,067	5,392	2,067	5,392		
Target PC	mg/l	0.024	0.024	0.2	0.2		
Release Concentration Equivalent to Target PC							
RC	mg/l	50	129	413	1,078		

Table 4 Calculated Release Concentration if Discharged to River Penk

3.6 Infiltration Assessment

The "J5" Infiltration Worksheet is a multi-stage model, which takes each parameter in turn. This model has been performed using three scenarios

- 1) to achieve a concentration within groundwater at the point of baseflow to the river, assuming a 0.39mg/l target in groundwater
- 2) as above, but with a 0.6mg/l discharge target in groundwater
- 3) repeated to consider multi-stage dilution and therefore setting a 50mg/l target at the point of entry to the River Penk (as established in Section 3.5).

The model sheets are appended. The model calculates that for ammoniacal-N, the concentration reduces for each stage of the process as shown in Table 5

Scenario	1 (to DWS)	2 (to EQS)	3 (Surface water dilution)
	mg/l	mg/l	mg/l
Discharge Limit	50	50	636
Base UZ	49	49	626
Mixing	45	45	577
Edge R. Penk	3.93	3.93	50
Target	0.39	0.6	50
Discharge Limit	4.96	7.64	636

Table 5 Ammoniacal-N Dispersion within Pathway to River Penk Sensitivity Analysis

The model demonstrates that the primary attenuation component is the retarded travel through the saturated pathway. This is in part a reflection on the minimal quantity of groundwater at the site, where there is limited potential for dilution, hence the model returns calculated discharge concentration limits of ~5mg/l and ~8mg/l for the scenarios which assume a useable quantity of water, in a situation where there is the potential for this water to be used.

This minimal quantity of groundwater precludes its real use as a sustainable water body, and therefore it is not considered a valid scenario to assess the infiltrate against groundwater assessment limits. There is a similar reasoning for not considering the point of baseflow entry to surface water, *i.e.* it is not a receptor for non-hazardous substances.

Therefore given the low flow and limited recharge zone, it is considered that the assessment target should be after mixing with surface water, whereby the previously established target should be 50mg/l, which equates to a 636mg/l discharge concentration.

4. INFILTRATION SYSTEM DESIGN

The infiltration system has been designed as an open pond, resting within the natural fluvioglacial sands. This type of approach is more akin to a vertical flow reed bed system, whereby there is direct mixing of air and the infiltrate during infiltration which significantly increases degradation rates for ammoniacal-N compared to that for an aquifer and unsaturated pathway beneath a landfill type setting.

The infiltration system also differs from the "infilled" and covered systems used for domestic type sewage effluents, whereby the infiltrate is released into a gravel drainage layer, which is capped with topsoil as set out in British Standard BS6297:2007 (+A1:2008)⁵.

Such a design is inappropriate for this situation, whereby a key function of the lagoon is to receive surface water run-off during storm periods. A gravel in-fill could reduce the storage capacity by some 40 - 60%, which in turn would require a proportional increase in infiltration pond capacity.

The primary reasoning for this design is to physically separate a sanitary effluent from direct human contact. However, in this case, such controls are not required as the effluent would have been previously treated via the EKOGEA system, and therefore all pathogens would have been released.

The infiltration system otherwise complies with the infiltration characteristics of this system, with the natural geology allowing infiltration towards the lower end of the 15 – 100 seconds per millimetre range required for such systems, at the 15 – 29S/mm range. At the hydraulic conductivity of the sands, the $23m^3/day$ infiltrate could infiltrate into the ground over a 24hr period from an area of 6 – $8m^2$. The infiltration area design footprint is somewhat larger at $315m^2$

The daily effluent volume of 23m³ is discharged as a single pulse would equate to a water depth of 7.3cm above the base of the 315m² basal footprint of the infiltration system. Therefore there will not a substantial depth of water within the system. Such a shallow water depth will prevent any other direct contact with the water, particularly as the infiltrate will be released throughout each day. There is therefore not expected to be any free-standing water within the infiltration pond, except during rainfall events, at which point the infiltrate will become further diluted.

5. SUMMARY AND CONCLUSION

The proposed anaerobic digester at Lower Drayton is an "enhanced performance system" which benefits from an EKOGEA propriety unit. This system is intended to both increase the efficiency of the process and consume the majority of the process water. However, a small residual volume in the order of $23m^3/day$ is expected to be produced.

⁵ British Standards 2007, Code of practice for the design and installation of drainage fields for use in wastewater treatment. BS 6297:2007 + A1:2008

This residual effluent will be treated and pass through a final polishing unit before discharge to ground via a combined surface water run-off and effluent infiltration system. This combined unit is therefore significantly larger than that required for the process effluent.

As an AD plant effluent, BOD is expected to be low, whilst other pollutants would be either treated by the process or accumulate within the solid residue. Ammoniacal-N is however soluble and has the potential to be present within the effluent.

The infiltrate will enter a shallow, thin groundwater body which is in hydraulic continuity with the River Penk a short distance downgradient of the site. It is this river which is considered to be the receptor at risk due to the small size of the groundwater body.

The effluent could be discharged directly to surface water at a concentration of 50mg/l without causing a discernible change in water chemistry, *i.e.* an insignificant discharge load. However, this discharge concentration increases to 636mg/l if discharged to soakaway. Discharging to soakaway has a number of pragmatic advantages, including the availability of on-site infrastructure and the ability to avoid placing pipework across adjacent lands and into the river.

Discharge to ground also allows a two-stage dilution and attenuation process to take place which would further reduce the potential to cause harm.

A higher BOD (of up to 1,000mg/l) could be released without causing harm. However, such an action should be avoided, not least because such a BOD forms the feedstock to the AD plant and therefore would be recirculated through the process.

Appendix G - Site Specific Bioaerosol Risk Assessment

Bioaerosol Risk Assessment Lower Drayton Anaerobic Digestion Plant, Penkridge

Client: Lower Drayton Biogas ProjectCo Ltd Reference: 3652r1 Date: 1st July 2020

www.red-env.co.uk

Date: 1st July 2020 Ref: 3652

Report Issue

Report Title: Bioaerosol Risk Assessment - Lower Drayton Anaerobic Digestion Plant, Penkridge

Report Reference: 3652

Field	Report Version							
	1	2	3	4				
Prepared by	Amelia Leatherbarrow- Hurst	Amelia Leatherbarrow- Hurst	Amelia Leatherbarrow- Hurst					
Position	Air Quality Consultant	Air Quality Consultant	Air Quality Consultant					
Reviewed by	Ger Parry	Ger Parry	Ger Parry					
Position	Associate Director	Associate Director	Associate Director					
Date of Issue	26 th June 2020	30 th June 2020	1 st July 2020					
Comments	Draft for comment	Updated draft	-					

Taylor Road, Urmston, Manchester, M41 7JQ

info@red-env.co.uk | 0161 706 0075 | www.red-env.co.uk

This report has been prepared by Redmore Environmental Ltd in accordance with the agreed terms and conditions of appointment. Redmore Environmental Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Table of Contents

1.0	INTRODUCTION	1
1.1	Background	1
1.2	Site Location and Context	1
2.0	PROCESS DESCRIPTION	2
2.1	Introduction	2
2.2	Management	2
2.3	Site Operating Hours	2
2.4	Feedstock Delivery and Storage	2
2.5	Transfer of Feedstocks	4
2.6	Anaerobic Digestion Plant Operation	4
2.7	Digestate	5
3.0	BIOAEROSOL BACKGROUND	7
3.1	Biogerosol Definition	7
3.2	Health Risks from Bioaerosols	7
3.3	Bioaerosol Emissions from Waste Management Operations	8
3.4	Legislative Control	9
3.5	Environment Agency (EA) Policy	9
3.6	Benchmark Levels	10
3.7	Technical Guidance	10
4.0	PROBLEM DEFINITION	11
4.1	Introduction	11
4.2	Conceptual Model	11
4.3	Sources	11
	Exposed Crop Feedstocks During Delivery and Storage	12
	Exposed Manures During Delivery and Storage	13
	Transfer of Feedstocks	13
	Feed Hopper	14
	Upgrade Plant Vent	14
	Ekogea System	14
	Solid Digestate	14
	Digestate Tanker	15
	Dirty Water Lagoon	15
4.4	Receptors	16
4.5	Prevailing Meteorological Conditions	17

4.6	Other Sources of Bioaerosols	18
5.0	RISK ASSESSMENT METHODOLOGY	19
5.1	Overview	19
5.2	Receptor	19
5.3	Probability of Exposure	19
5.4	Harm	20
5.5	Magnitude of Risk	20
5.6	Further Requirements	21
6.0	RISK ASSESSMENT	22
7.0	CONCLUSION	28
8.0	ABBREVIATIONS	29

1.0 INTRODUCTION

1.1 <u>Background</u>

- 1.1.1 Redmore Environmental Ltd was commissioned by Lower Drayton ProjectCo Ltd to produce a Bioaerosol Risk Assessment in support of the proposed Lower Drayton Anaerobic Digestion (AD) plant, Penkridge, Staffordshire.
- 1.1.2 During the operation of the facility there is the potential for bioaerosol emissions and associated impacts at sensitive receptor locations in the vicinity of the site. A Risk Assessment has therefore been undertaken to identify potential emission sources and evaluate effects in the local area.
- 1.1.3 The purpose of this Bioaerosol Risk Assessment is to:
 - Establish the likely sources of bioaerosols arising from proposed operations at the site;
 - Assess the potential for significant risk of impact at sensitive locations due to emissions from the identified sources; and,
 - Identify any additional mitigation required to control potential effects.

1.2 <u>Site Location and Context</u>

- 1.2.1 The proposed AD plant is located on land at Lower Drayton Farm, Penkridge, at National Grid Reference (NGR): 393034, 315398. Reference should be made to Figure 1 for a map of the site and surrounding area.
- 1.2.2 It is proposed to construct and operate an AD plant that will be fuelled by energy crops, straw and animal manures. The majority of the biogas produced by the AD process will be upgraded for injection into the national distribution grid. A proportion of the biogas will be combusted within a Combined Heat and Power (CHP) unit to generate electricity and heat. A flare is also included at the plant for emergency venting of biogas during abnormal operation.
- 1.2.3 The operation of the plant may result in bioaerosol emissions from a number of activities. These have the potential to cause impacts at sensitive locations within the vicinity of the site and have therefore been assessed within this report.

2.0 PROCESS DESCRIPTION

2.1 Introduction

- 2.1.1 A brief summary of the proposed AD process is provided in the following Sections.
- 2.1.2 Reference should be made to Figure 2 for a site layout plan.

2.2 <u>Management</u>

- 2.2.1 The overall management responsibility for the plant will lie with the project company. The day to day facility management will be undertaken by an appointed Manager who will deal specifically with the operation of the plant.
- 2.2.2 Daily checks and maintenance will be undertaken by the Manager. A range of spare parts will be kept on site. If additional items are required these will be available within a 24-hour period. In addition, there is certain amount of redundancy factored into the plant operation which allows for some items to be out of action temporarily but for the remainder of the facility to continue operating normally.

2.3 <u>Site Operating Hours</u>

- 2.3.1 The proposed key operating hours for the plant are 06:00 to 18:00, Monday to Sunday inclusive. However, it should be noted that the Planning Decision Notice for the facility (reference: 16/00717/FUL) does not restrict working hours and should any issues occur on site, there may be the requirement for operations to be undertaken over extended periods.
- 2.3.2 The actual AD process will be fully automated and will operate continuously 24-hours a day.

2.4 <u>Feedstock Delivery and Storage</u>

2.4.1 The plant will operate using a range of solid biomass feedstocks. A summary of the types and tonnages of materials that will be processed at the facility is provided in Table 1.

Table 1 Feedstock Types and Quantities

Feedstock Type	Quantity (t/day)
Farmyard Manure (FYM)	43
Poultry Manure	28
Maize Silage	18
Grass Silage	12
Rape Straw	9.6

- 2.4.2 Crop feedstocks including maize silage, grass silage and rape straw, will be transferred to the facility using a tractor and trailer or Heavy Goods Vehicles (HGVs) during typical harvest periods and deposited within four clamps located on the southern section of the site. These will have a total working capacity of 12,000t.
- 2.4.3 The clamps will be compacted and covered using protective plastic sheeting. This will form an airtight layer to minimise emissions and preserve the feedstock throughout the year. It should be noted that any decomposition of the material would affect its effectiveness as a feedstock. As such, the protective sheeting will be specified to prevent water and air reaching the material and hence avoid any unwanted breakdown with associated emissions.
- 2.4.4 During operational periods, the cover on the clamps will be slightly open at one end to allow access to the feedstock for transportation to the AD plant. The sheeting will be replaced at the end of each working day in order to protect the feedstock and minimise the potential for emissions.
- 2.4.5 FYM and poultry manure will be delivered to the site, on an as required basis, using a tractor and trailer or HGVs and deposited within the clamp area for temporary storage prior to transfer to the AD plant. All manures processed at the site will remain uncovered throughout the short-term storage period.
- 2.4.6 Any surface runoff generated by feedstock storage operations will be transferred to an underground leachate tank and then to a dirty water lagoon on the eastern section of the site for storage prior to incorporation into the AD process.

2.5 <u>Transfer of Feedstocks</u>

- 2.5.1 Crop feedstocks and manures will be transferred from the storage clamps to an open top BIG-MIX 150/4000/450 solid feed hopper using a bucket loader or similar. This will macerate and blend the material prior to processing within the AD plant. The operator will be provided with full training in the use of the loader and especially in how to maintain a tight clamp face which reduces material losses and associated emissions.
- 2.5.2 Any leachate generated by maceration and blending of materials within the feed hopper will be transferred to an underground leachate tank located adjacent to the plant and then to the dirty water lagoon for use within the process.

2.6 Anaerobic Digestion Plant Operation

- 2.6.1 The feedstocks will be digested within two sealed AD tanks. These include all necessary non-return valves and pumps to ensure there are no losses from any part of the process. The facility will be fully automated to maintain maximum efficiency at all times.
- 2.6.2 The biogas produced by the process (a mixture of methane (CH₄) and carbon dioxide (CO₂)) will be collected in domes above the digesters prior to upgrade for injection into the gas grid. This involves stripping out impurities, mainly CO₂, specific volatile organic compounds (VOCs) and hydrogen sulphide (H₂S), before treatment with an odorant and transfer off-site. Exhaust gases generated by the upgrading process will be discharged to atmosphere via dedicated vent.
- 2.6.3 A proportion of the biogas will be transferred to the CHP unit where it will be combusted for the generation of electricity and heat. Exhaust gases from the CHP unit will be dispersed to atmosphere via a dedicated stack.
- 2.6.4 The site will also feature an automatic back-up flare that burns gas in a controlled manner if the CHP unit or upgrade system stops temporarily, or if plant maintenance is required. Should the flare fail for any reason the digester tanks are fitted with emergency release valves to avoid over pressure. These are a necessary safety feature. A record of their use will be kept and the reason for utilisation fully documented.

2.6.5 Frequent or extended use of the pressure release valves would indicate the plant is not being managed correctly and would have financial consequences for the operator due to loss of biogas and potential impacts to the digester conditions. It is therefore in their best interest to ensure they are utilised as infrequently as possible.

2.7 <u>Digestate</u>

- 2.7.1 The process will create digestate which can be used as a high-quality fertiliser. Many types of AD feedstocks, including crops, are rich in plant nutrients. These remain within the material throughout the process, making digestate a valuable biofertiliser. By making the best possible use of digestate as a biofertiliser, nutrients are returned to the land through natural cycles to replace the input of inorganic fertiliser. Recycling in this way closes a loop to create more sustainable agricultural production systems.
- 2.7.2 Under normal operating scenarios, the digestate produced by the AD process will be treated by an Ekogea system. This will be completely enclosed and operated under negative pressure. Any emissions generated by the system during operation will be treated by dedicated carbon filters prior to discharge to atmosphere.
- 2.7.3 One part of the Ekogea system will deconstruct fibrous material within a micronisation unit to improve digestion and a further part will concentrate the output to provide a thickened digestate which will be transferred to a dedicated digestate storage tank. The tank will be fitted with a gas tight dome for storage prior to removal from the facility. The Ekogea system will also generate grey water which will either be reused within the process or transferred to the digestate storage tank. All grey water will be stored within a covered tank fitted with a carbon filter on the vent. Polished water will also be produced and will either be used within the micronisation unit or discharged via the clean water infiltration pond.
- 2.7.4 Removal of digestate from the tank will be undertaken using vacuum tankers. Air displaced from the tankers during filling will be passed through a carbon filter prior to discharge to atmosphere. This system is likely to provide beneficial reductions in bioaerosol concentrations between inlet and outlet air due to the impaction of microorganisms onto the carbon during operation.

Date: 1st July 2020 Ref: 3652

2.7.5 During periods when the Ekogea system is not operational, due to plant failure or required maintenance, digestate will be divided into solid and liquid fractions using a screw separator. Solid digestate will be temporarily stockpiled below the separator and removed from site daily. The liquid fraction will be transferred to the digestate storage tank for holding prior to removal from the facility using vacuum tankers.

3.0 BIOAEROSOL BACKGROUND

3.1 <u>Bioaerosol Definition</u>

- 3.1.1 Bioaerosol is a general term for microorganisms suspended in the air. These microorganisms include fungi and bacteria, as well as their components such as mycotoxins, endotoxins and glucans. Bioaerosols are generally less than 100µm in size and are not filtered out by hairs and specialised cells that line the nose. Due to their airborne nature and small size, many bioaerosols can penetrate the human respiratory system, resulting in inflammatory and allergic responses.
- 3.1.2 Although bioaerosols are ubiquitous, operations involving organic materials provide environments that are conducive to their growth. Bioaerosols are therefore likely to be associated with AD feedstocks and products, and in particular, handling activities, which release the microorganisms into the air.

3.2 <u>Health Risks from Bioaerosols</u>

- 3.2.1 Exposure to bioaerosols has been associated with human health effects, symptoms can include inflammation of the respiratory system, coughs and fever. Inhalation of bioaerosols may also cause or exacerbate respiratory diseases¹. They have been known to cause gastrointestinal illness, eye irritation and dermatitis.
- 3.2.2 Possible links have also been made between exposure to bioaerosols and organic dust toxic syndrome. This is an acute disease that causes symptoms resembling those of influenza, such as shivering, an increase in body temperature, dry cough and muscle and joint pains. Of particular relevance to waste management facilities are infections caused by Aspergillus fumigatus. Invasive aspergillosis is a particularly severe infection, which may be fatal and is primarily a concern with at risk and immuno-suppressed patients.
- 3.2.3 Although some data is available, one of the major knowledge gaps for bioaerosols is their associated dose-response relationships. It is not currently possible to state with any certainty that a given concentration will result in a particular health impact. This is due to

¹ Guidance on the evaluation of bioaerosol risk assessments for composting facilities, Environment Agency, undated.

the number of bioaerosols that are naturally present within the environment as well as the complexities associated with human responses to different microorganisms.

3.3 <u>Bioaerosol Emissions from Waste Management Operations</u>

- 3.3.1 Most scientific research on bioaerosol emissions from waste management operations focusses on open windrow and In-Vessel Composting (IVC) systems. Although it is recognised that there are fundamental differences between composting and AD processes, there are similarities between the types of feedstocks, handling activities and infrastructure utilised. As such, a review of relevant research has been undertaken in order to inform the assessment. The findings are detailed in the following Section.
- 3.3.2 The EA document 'Health Effects of Composting A Study of Three Compost Sites and Review of Past Data'² summarises the findings of emissions measurement work undertaken at three composting facilities, including two open air turned windrow sites and one IVC plant. The results from the work indicated a well-defined decline in concentrations of bioaerosols with increased distance from source. In most cases, measured concentrations were at or below background levels within 250m of the sources assessed.
- 3.3.3 The ADAS report 'Bioaerosol Monitoring and Dispersal from Composting Sites'³ provides a summary of the findings from measurement work undertaken at three composting sites. Sampling for bioaerosols was undertaken downwind of a wide range of composting activities including shredding, turning, loading, unloading and screening. The results indicated that 91% of all micro-organisms sampled across all three sites were below 1,000cfu/m³ at a downwind distance of 125m.
- 3.3.4 The Scotland and Northern Ireland Forum for Environmental Research (SNIFFER) report 'Measurement and Modelling of Emissions from Three Composting Sites'⁴ provides a summary of the findings from monitoring work undertaken at three composting sites, which included two IVC facilities and one open windrow system. The findings indicated that there is the potential for seasonal variation in ambient concentrations of the mould of Aspergillus fumigatus, with concentrations being the highest in the autumn. In most

² Health Effects of Composting - A Study of Three Compost Sites and Review of Past Data, EA, 2001.

³ Bioaerosol Monitoring and Dispersal from Composting Sites, ADAS, 2005.

⁴ Measurement and Modelling of Emissions from Three Composting Sites, SNIFFER, 2007.

cases, levels of all bioaerosols assessed were at or below background equivalent concentrations within 250m of the sources assessed.

- 3.3.5 The Department for Environment Food and Rural Affairs (DEFRA) research report 'Bioaerosols and odour emissions from composting facilities'⁵ focusses on the comparability of different sampling methodologies and the influence of spatial and temporal variation on ambient bioaerosol concentrations. Measurements were undertaken at four different composting facilities in England, which represent a range of system types. The results of the study corroborate existing research and suggest that concentrations of bioaerosols generally return to background levels within 250m of the source.
- 3.3.6 The findings of the review have been considered as appropriate throughout the assessment.

3.4 Legislative Control

3.4.1 Atmospheric emissions from industry are controlled in the UK through the Environmental Permitting (England and Wales) Regulations (2016) and subsequent amendments. The operation of the proposed AD plant is included within the Regulations and as such the facility is required to obtain an Environmental Permit issued by the EA.

3.5 Environment Agency (EA) Policy

- 3.5.1 The EA Regulatory Position Statement (RPS) 'Bioaerosol monitoring at regulated facilities use of M9: RPS 209⁻⁶ outlines the conditions that apply to facilities in relation to bioaerosol emissions.
- 3.5.2 The RPS states that if a regulated facility is located within 250m of a sensitive receptor (a place where people live of work for more than 6-hours at a time), the operator must:

⁵ Bioaerosols and odour emissions from composting facilities, DEFRA, 2013.

⁶ Bioaerosol monitoring at regulated facilities - use of M9: RPS 209, EA, 2018.

- Monitor bioaerosols in accordance with EA guidance 'M9: environmental monitoring of bioaerosols at regulated facilities'⁷; and,
- Undertake a site specific Bioaerosol Risk Assessment.
- 3.5.3 The conditions outlined within the RPS have been considered as appropriate throughout the assessment.

3.6 Benchmark Levels

- 3.6.1 In the absence of dose-response data, the EA have adopted a precautionary risk-based approach in determining guidance levels for bioaerosols. The EA position statement 'Composting and potential health effects from bioaerosols: our interim guidance for permit applicants'⁸ specifies the following criteria for acceptable concentrations of Aspergillus fumigatus and total bacteria at sensitive receptor locations.
 - Aspergillus fumigatus 500cfu/m³; and,
 - Total bacteria 1,000cfu/m³.
- 3.6.2 The relevant benchmark levels have been considered as appropriate throughout the assessment.

3.7 <u>Technical Guidance</u>

- 3.7.1 The EA guidance 'How to comply with your environmental permit. Additional technical guidance for: Anaerobic Digestion'⁹ sets out indicative Best Available Technique (BAT) or appropriate measures for the AD of organic materials. The document provides practical guidance on how and why bioaerosol emissions occur, as well as measures that can be employed to prevent or minimise release.
- 3.7.2 The requirements of the guidance have been considered throughout the assessment.

⁷ M9: environmental monitoring of bioaerosols at regulated facilities, EA, 2017.

⁸ Composting and potential health effects from bioaerosols: our interim guidance for permit applicants, EA, 2010.

⁹ How to comply with your environmental permit. Additional technical guidance for: Anaerobic Digestion, EA, 2013.

4.0 **PROBLEM DEFINITION**

4.1 Introduction

4.1.1 The first stage of any risk assessment is to clearly set out the problem, including what will be addressed and what will not. This determines the scope, level of detail and focus. In particular, the temporal and spatial scales, contaminants to be assessed, persons at risk and the endpoint are identified. These factors are considered in the following Sections.

4.2 <u>Conceptual Model</u>

4.2.1 Potential hazards from bioaerosols are summarised in the conceptual model in Table 2.

Criteria	Comment
Source	Feedstocks and products on the site as outlined in Section 4.3
Hazard	Potential adverse health impacts as outlined in Section 3.2
Transport Mechanism	Airborne
Medium of Exposure	Inhalation, ingestion, absorption, injection
Receptor	Human receptors at the proposed development site as outlined in Section 4.4

Table 2Conceptual Model

4.3 <u>Sources</u>

- 4.3.1 The operation of the AD plant may result in bioaerosol emissions from a number of activities. The following sources were identified based on a review of the proposed operations:
 - Exposed crop feedstocks during delivery and storage;
 - Exposed manures during delivery and temporary storage;
 - Exposed feedstocks during transfer to the AD hopper;
 - Exposed material within the AD hopper;
 - CO₂ vent on the gas upgrade unit;
 - Air expelled from the Ekogea system carbon filters during operation;

- Solid digestate below the separator during periods when the Ekogea system is not operational;
- Air expelled from the carbon filter during digestate tanker filling; and,
- Surface runoff within the dirty water lagoon.
- 4.3.2 As stated previously, the actual AD process itself is sealed and therefore does not form a source of bioaerosols under normal operation. In addition, the digestate storage tank will feature a gas tight dome which will prevent any emissions to atmosphere.
- 4.3.3 The digesters and digestate storage tank will feature release valves to avoid over pressure. Any gases released from the valves are likely to contain bioaerosols as a result of the digestion processes. However, releases from these sources are expected to be extremely infrequent and short-term as they would only occur in an emergency situation. As such, the risk of impact from these emissions is not considered to be significant and they have not been evaluated further in the context of this assessment.
- 4.3.4 The CHP unit and flare stack will only emit products of combustion which do not contain any bioaerosols. As such, they have not been considered further in this report.
- 4.3.5 The potential for bioaerosol emissions from each remaining source is considered further in the following Sections.

Exposed Crop Feedstocks During Delivery and Storage

- 4.3.6 Crop feedstocks will be transferred to the facility using a tractor and trailer or HGVs during typical harvest periods. The feedstocks will be deposited within storage clamps located on the southern section of the site. Disturbance of the material during delivery may cause bioaerosol release. However, the seasonal nature of deliveries and short amount of time required to deposit loads is likely to minimise potential exposure durations.
- 4.3.7 Following delivery, the crop feedstocks will be compacted and covered with protective sheeting. This will help to minimise bioaerosol release during storage.
- 4.3.8 During operational periods, the cover on the clamps will be slightly open at one end to allow access to the feedstock for transportation to the AD plant. The sheeting will be replaced at the end of each working day in order to protect the feedstock and minimise

the potential for emissions. The area of uncovered material during transfer to the AD plant will be kept to a minimum at all times in order to limit the potential for surface wind stripping of microorganisms.

4.3.9 The clamps will be inspected on a daily basis to ensure the sheeting is intact and providing effective coverage of the feedstock material.

Exposed Manures During Delivery and Storage

- 4.3.10 FYM and poultry manure deliveries will occur throughout the year. The materials will be transferred to the site using a tractor and trailer or HGVs on a as required basis and then deposited within the clamp area for temporary storage. There is the potential for bioaerosol emissions to occur if the feedstocks are agitated during delivery. However, partial containment of the materials within the vehicles is likely to limit the release potential.
- 4.3.11 All manures processed at the site will remain uncovered throughout the short-term storage period. However, once placed within the clamp area, the materials will remain static until they are transferred to the AD feed hopper. The surface area of each pile will be kept to a minimum in order to limit the potential for surface wind stripping of microorganisms.

Transfer of Feedstocks

- 4.3.12 Crop feedstocks and manures will be transferred from the respective storage areas using a bucket loader or similar and then deposited within the AD hopper.
- 4.3.13 There is the potential for bioaerosol release during removal of feedstocks from the storage areas and loading into the hopper. As such, all reasonable measures will be undertaken to minimise disturbance of the material during this operation. In addition, the shortest transfer routes will be utilised in order to limit potential exposure durations.
- 4.3.14 Full training will be provided to the bucket loader operative to avoid material spillage during transfer. Any spilled material will be cleared within the working day.

Feed Hopper

- 4.3.15 Bioaerosol emissions may occur during loading and operation of the feed hopper.However, these activities will be limited to approximately 4-hours per day in order to reduce exposure durations.
- 4.3.16 The drop height of material will be minimised as far as practicable during loading in order to reduce release potential. Training in the use of relevant equipment will be provided to all staff.
- 4.3.17 Any spilled material will be cleared by a site operative within the working day.

Upgrade Plant Vent

4.3.18 The upgrade system is likely to provide beneficial reductions in bioaerosol concentrations between inlet and vented air due to the impaction of microorganisms onto the carbon media during operation. However, there may be the potential for the release of residual components which pass straight through the filter. As such, impacts associated with emissions from this source have been considered further as part of the assessment.

Ekogea System

4.3.19 As stated previously, the Ekogea system will be completely enclosed and operated under negative pressure. Any emissions generated by the system during operation will be treated by dedicated carbon filters prior to discharge to atmosphere. The carbon filters serving the system are likely to provide beneficial reductions in bioaerosol concentrations between inlet and vented air due to the impaction of microorganisms onto the media. However, there may be the potential for the release of residual components which pass straight through the filters. As such, impacts associated with emissions from the system have been considered further as part of the assessment.

Solid Digestate

4.3.20 During periods when the Ekogea system is not operational, digestate will be divided into solid and liquid fractions using a screw separator. Solid digestate will be temporarily stockpiled below the separator. Although the AD process will reduce the quantities of

some bioaerosols, particularly pathogens¹⁰, there is the potential for emissions from this part of the process.

4.3.21 If produced, solid digestate will be removed from site daily to avoid storage of significant amounts. This will help to reduce the exposed surface area of material and limit the potential for surface wind stripping of microorganisms. It is possible that some level of solid digestate will be stored on site. However, the material will remain static during storage with minimal mechanical agitation. This will help to reduce the potential for bioaerosol release.

Digestate Tanker

- 4.3.22 Digestate will be pumped from the storage vessel into a tanker for transfer off-site. The pumping arrangement is a closed system and therefore digestate will not be exposed to atmosphere during transfer.
- 4.3.23 Air displaced from the tanker during filling will be passed through a carbon filter prior to discharge to atmosphere. This system is likely to provide beneficial reductions in bioaerosol concentrations between inlet and outlet air due to the impaction of microorganisms onto the carbon during operation. However, there may be the potential for the release of residual components which pass straight through the media.

Dirty Water Lagoon

4.3.24 Any surface runoff generated by feedstock storage operations will be transferred to a dirty water lagoon on the eastern section of the site for storage prior to incorporation into the AD process. The liquid nature of materials within the lagoon will limit the potential for bioaerosol release. However, residual emissions from the source may occur. As such, potential releases have been considered further as part of the assessment.

¹⁰ Anaerobic digestion, storage, oligolysis, lime, heat and aerobic treatment of livestock manures, FEC Services Ltd, 2003.

4.4 <u>Receptors</u>

4.4.1 EA guidance 'M9: environmental monitoring of bioaerosols at regulated facilities'¹¹ defines a sensitive receptor as follows:

"Nearest sensitive receptor means the nearest place to the permitted activities where people are likely to be for prolonged periods. This term would therefore apply to dwellings (including any associated gardens) and to many types of workplaces. We would not normally regard a place where people are likely to be present for less than 6 hours at one time as being a sensitive receptor. The term does not apply to those controlling the permitted facility, their staff when they are at work or to visitors to the facility, as their health is covered by Health and Safety at Work legislation, but would apply to dwellings occupied by the family of those controlling the facility."

4.4.2 A desk-top study was undertaken in order to identify any sensitive receptor locations in the vicinity of the site that required specific consideration during the assessment. In accordance the requirements of the EA RPS¹², this focussed on locations within 250m of the facility boundary where people may be present for more than 6-hours at one time. The identified receptors are summarised in Table 3.

Receptor		NGR (m)		Distance from Closest	Direction from Closest Source	
		x	Y	Source (m)		
R1	Lower Drayton Play Barn	393073.4	315667.4	185	North	
R2	Residential - Lower Drayton Farm	393059.2	315675.7	195	North	
R3	Residential - Lower Drayton Farm	393082.0	315696.6	210	North	

Table 3Sensitive Receptors

¹¹ M9: environmental monitoring of bioaerosols at regulated facilities, EA, 2017.

¹² Bioaerosol monitoring at regulated facilities - use of M9: RPS 209, EA, 2018.

4.4.3 As shown in Table 3, the sensitive locations are located between approximately 185m and 210m from the identified sources at their closest points. Reference should be made to Figure 3 for a visual representation of the identified receptors.

4.5 <u>Prevailing Meteorological Conditions</u>

- 4.5.1 The potential for bioaerosol emissions to impact at sensitive locations depends significantly on the meteorology, particularly wind direction, during release. In order to consider prevailing conditions at the site review of historical weather data was undertaken. Shawbury observation station is located at NGR: 354931, 322117, which is approximately 38.7km north-west of the facility. It is anticipated that conditions would be reasonably similar over a distance of this magnitude. The data was therefore considered suitable for an assessment of this nature.
- 4.5.2 Meteorological data was obtained from Shawbury observation station over the period 1st January 2014 to 31st December 2018 (inclusive). The frequency of wind from the eight sectors which best describe the directions which may cause impacts in the vicinity of the site is shown in Table 4. Reference should be made to Figure 4 for a wind rose of the meteorological data.

Wind Direction (°)	Frequency of Wind (%)
337.5 - 22.5	8.63
22.5 - 67.5	4.14
67.5 - 112.5	10.26
112.5 - 157.5	8.79
157.5 - 202.5	16.97
202.5 - 247.5	19.10
247.5 - 292.5	20.34
292.5 - 337.5	10.08
Sub-Total	98.32
Calms	0.73

Table 4 Wind Frequency Data

Wind Direction (°)	Frequency of Wind (%)
Missing/Incomplete	0.95

- 4.5.3 All meteorological data used in the assessment was provided by Atmospheric Dispersion Modelling Ltd, which is an established distributor of meteorological data within the UK.
- 4.5.4 As shown in Table 4, the prevailing wind direction at the AD plant is from the west, with significant frequencies from the south and south-west. Winds from the north and east are relatively infrequent, which is indicative of conditions throughout the UK.

4.6 Other Sources of Biogerosols

4.6.1 The immediate area surrounding the facility is rural, comprising agricultural land. Arable fields may form sources of bioaerosols if fertilised with animal manures or slurries, as well as during crop harvest periods. However, likely impacts associated with these releases are not considered to be significant and would be expected for any rural location within the UK.

5.0 RISK ASSESSMENT METHODOLOGY

5.1 <u>Overview</u>

- 5.1.1 The Bioaerosol Risk Assessment has been undertaken in accordance with the general principles of EA document 'Guidance on the evaluation of bioaerosol risk assessments for composting facilities'¹³. This included consideration of the following:
 - Receptor what is at risk? What do I wish to protect?
 - Source what is the agent or process with potential to cause harm?
 - Harm what are the harmful consequences if things go wrong?
 - Pathway how might the receptor come into contact with the source?
 - Probability of exposure how likely is this contact?
 - Consequence how severe will the consequences be if this occurs?
 - Magnitude of risk what is the overall magnitude of the risk? and,
 - Justification for magnitude on what did I base my judgement?
- 5.1.2 Based on the Bioaerosol Risk Assessment outcomes potential mitigation and control options were identified.
- 5.1.3 Further explanation for the key assessment areas is provided below.

5.2 <u>Receptor</u>

5.2.1 The first step was to consider how the activity could harm the environment. This involved identifying 'receptors' that may be affected and included people, property, and the natural and physical environment.

5.3 <u>Probability of Exposure</u>

- 5.3.1 The probability of exposure was defined based on the likelihood of exposure of the specific receptor to the identified sources. This depended on several factors, such as:
 - Distance between source and receptor;

¹³ Guidance on the evaluation of bioaerosol risk assessments for composting facilities, EA, undated.

- Dispersion potential of emission;
- Duration of emission; and,
- Frequency of emission.
- 5.3.2 Probability was categorised in accordance with the following criteria:
 - High exposure is probable, direct exposure likely with no/few barriers between source and receptor;
 - Medium exposure is fairly probable, barriers less controllable;
 - Low exposure unlikely, barriers exist to mitigate; or,
 - Very low exposure very unlikely, effective and multiple barriers.

5.4 <u>Harm</u>

- 5.4.1 The severity of harm from a risk depends on:
 - How much a person or part of the environment is exposed; and,
 - How sensitive a person or part of the environment is.
- 5.4.2 Some parts of the environment can be very sensitive. For example, serious health effects can occur if humans are exposed to certain chemicals for only short periods of time.
- 5.4.3 Harm can be described as follows:
 - High severe consequences, evidence that exposure may result in serious damage;
 - Medium significant consequences, evidence that exposure may result in damage that is not severe and is reversible;
 - Low minor consequences, damage not apparent, reversible adverse changes possible; and,
 - Very low negligible consequences, no evidence for adverse changes.

5.5 <u>Magnitude of Risk</u>

- 5.5.1 The level of risk is a combination of:
 - How likely a problem is to occur; and,

- How serious the harm might be.
- 5.5.2 Risk is highest where both the likelihood of a problem is high and the potential harm is severe. Risk is lowest where a problem is unlikely to occur and the harm that might result is not serious.
- 5.5.3 Risk was defined based on the interaction between the probability of exposure and potential harm, as outlined in Table 5.

Probability of Exposure	Potential Harm							
LXPOSOIC	Very Low	Low	Medium	High				
High	Low	Medium	High	High				
Medium	Low	Medium	Medium	High				
Low	Low	Low	Medium	Medium				
Very Low	Very Low	Low	Low	Medium				

Table 5 Magnitude of Risk

5.6 <u>Further Requirements</u>

- 5.6.1 Based on the outcomes of the risk assessment the EA document provides guidance on further requirements for different risks. These can be summarised as follows:
 - High risks additional assessment and active management;
 - Medium risks likely to require further assessment and may require either active management or monitoring; and,
 - Low and very low risk will only require periodic review.
- 5.6.2 Mitigation to reduce risk can also be applied to avoid the requirement for further assessment and/or monitoring.

6.0 <u>RISK ASSESSMENT</u>

6.1.1 The Bioaerosol Risk Assessment is shown in Table 6.

Table 6 Risk Assessment

Source	Probability of exposure	Harm	Magnitude of Risk	Control Measures	Residual Risk	Justification for Residual Risk
Exposed crop feedstocks during delivery and storage within the clamps	Low due to the separation distance between the receptors and source, and containment of feedstocks during storage	Medium	Medium	All reasonable measures will be undertaken to reduce the drop height of materials during unloading of the delivery vehicles Feedstocks will be stored under sheeting following delivery The area of uncovered material will be kept to a minimum during storage and will only be exposed when transfer to the AD plant is required. This will help to limit the potential for surface wind stripping of microorganisms The clamps will be inspected on a daily basis to ensure the sheeting is intact and providing effective containment of emissions Training in the use of relevant equipment will be provided to all staff Any spilled material will be cleared by a site operative on the same working day	Low	The seasonal nature and short duration of delivery activities, as well as full implementation of the stated control measures is considered to result in a low risk of impact occurring

Source	Probability of exposure	Harm	Magnitude of Risk	Control Measures	Residual Risk	Justification for Residual Risk
Exposed manures during delivery and storage within the clamps	Very Low due to the separation distance between the receptors and source, the limited quantity of manures present and the static nature of material during storage	Medium	Low	The delivery vehicles will provide partial containment of manures during transfer to the site All reasonable measures will be undertaken to reduce the drop height of manures during the unloading of delivery vehicles Training in the use of relevant equipment will be provided to all staff The surface areas of manure piles will be kept to a minimum in order to limit the potential for surface wind stripping of microorganisms Manures will remain static during storage and will only be agitated when transfer to the feed hopper is undertaken	Very Low	Full implementation of the stated control measures is considered to result in a very low risk of impact occurring

Source	Probability of exposure	Harm	Magnitude of Risk	Control Measures	Residual Risk	Justification for Residual Risk
Exposed feedstocks during transfer to the AD hopper	Low due to the separation distance between the receptors and source, and the limited duration of transfer operations	Medium	Medium	The feed hopper will only be loaded for approximately 4-hours per day All reasonable measures will be undertaken to minimise disturbance of the feedstocks during removal from the clamp area and transfer to the hopper The shortest transfer routes will be utilised in order to limit potential exposure durations Full training will be provided to the bucket loader operative to avoid material spillage during transfer Any spilled material will be cleared by a site operative within the working day	Low	The distance between source and receptors, as well as and full implementation of the stated control measures, is considered to result in a low risk of impact occurring
Exposed material within the AD hopper	Low due to the separation distance between the receptors and source, and the limited duration of operations	Medium	Medium	The feed hopper will only be loaded for approximately 4-hours per day Where practicable the drop height of material will be minimised in order to reduce release potential Full training will be provided to the bucket loader operative to avoid material spillage during transfer Any spilled material will be cleared by a site operative within the working day	Low	The distance between source and receptors, as well as and full implementation of the stated control measures, is considered to result in a low risk of impact occurring

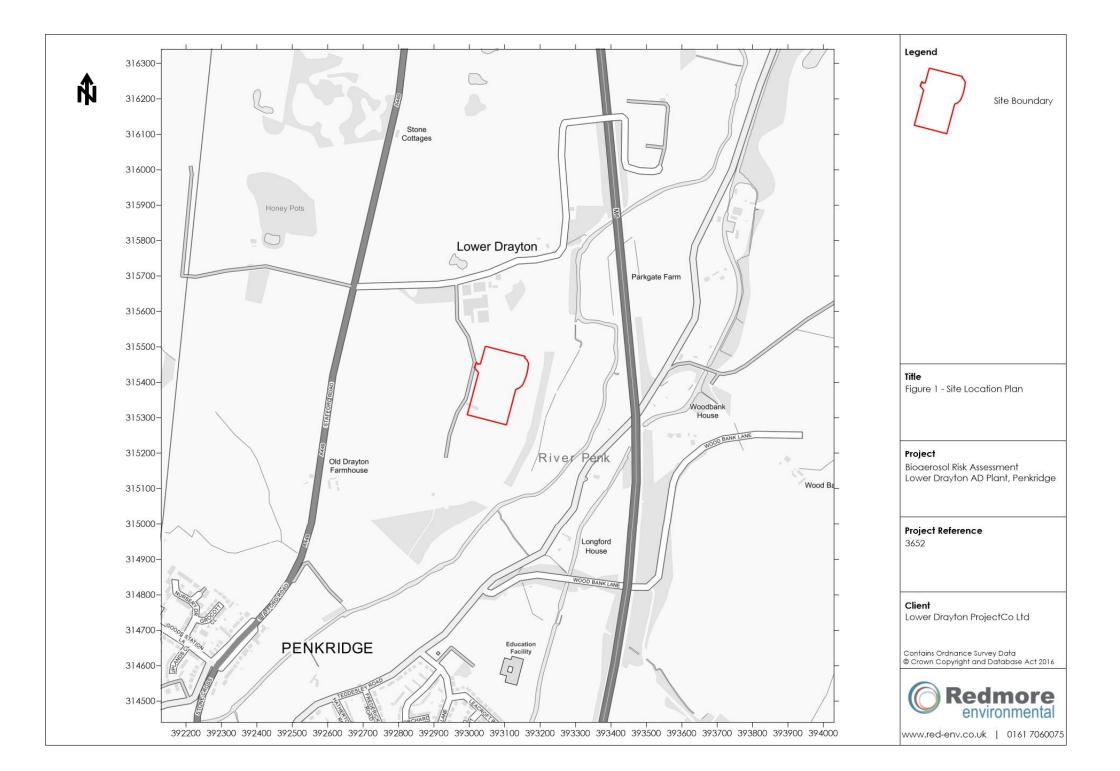
Source	Probability of exposure	Harm	Magnitude of Risk	Control Measures	Residual Risk	Justification for Residual Risk
Air discharged from the gas upgrading plant CO ₂ vent	Very low due the distance between source and receptors and the limited release potential	Medium	Low	The carbon filter serving the gas upgrading system is likely to provide beneficial reductions in bioaerosol concentrations between inlet and vented air due to the impaction of microorganisms onto the media during operation. It is anticipated that the residual release potential will be limited	Very Low	Full application of the proposed control measures is considered to result in a very low risk of impact occurring
Air discharged from the Ekogea system carbon filters	Very low due the distance between source and receptors and the limited release potential	Medium	Low	The Ekogea system will be completely enclosed and operated under negative pressure It is anticipated that the carbon filters serving the system will provide beneficial reductions in bioaerosol concentrations between inlet and vented air due to the impaction of microorganisms onto the media	Very Low	Full application of the proposed control measures is considered to result in a very low risk of impact occurring

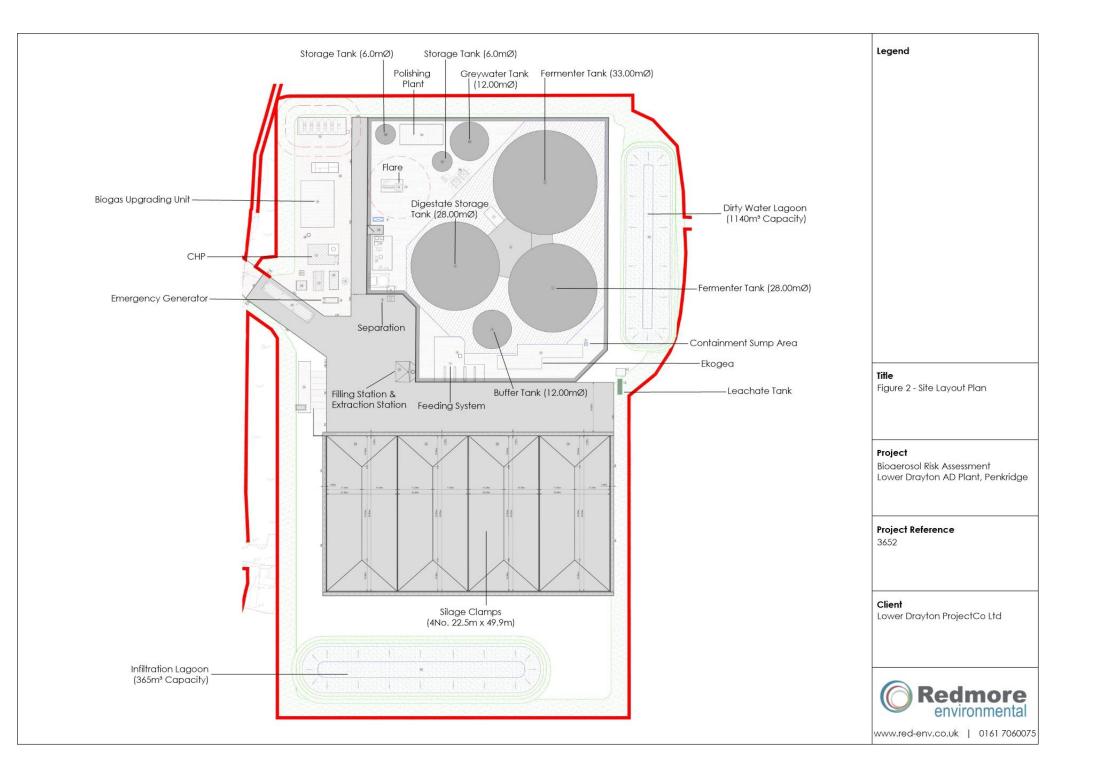
Source	Probability of exposure	Harm	Magnitude of Risk	Control Measures	Residual Risk	Justification for Residual Risk
Solid digestate within the storage area	Very low due the distance between source and the receptors, the limited duration of separation operations and minimal disturbance of material during storage	Medium	Low	If produced, solid digestate will be removed from site daily to avoid storage of significant amounts. This will help to reduce the exposed surface area of material and limit the potential for surface wind stripping of microorganisms The material will remain static during storage with minimal mechanical agitation All reasonable measures will be undertaken to minimise disturbance of the material during loading	Very Low	Full application of the proposed control measures is considered to result in a very low risk of impact occurring
Air expelled from the digestate tanker during filling	Very low due the distance between source and receptors, the short duration of tanker filling operations and the low release potential due to carbon filtration of air	Medium	Low	Air displaced by the vacuum tanker will be treated by a carbon filter prior to release to atmosphere. The system is likely to provide beneficial reductions in bioaerosol concentrations between inlet and outlet air due to the impaction of microorganisms on to the media The infrequent nature and short duration of tanker filling events is likely to limit the potential for impacts	Very Low	The short duration of filling operations and the potential abatement provided by the carbon filter is considered to result in a very low risk of impact occurring

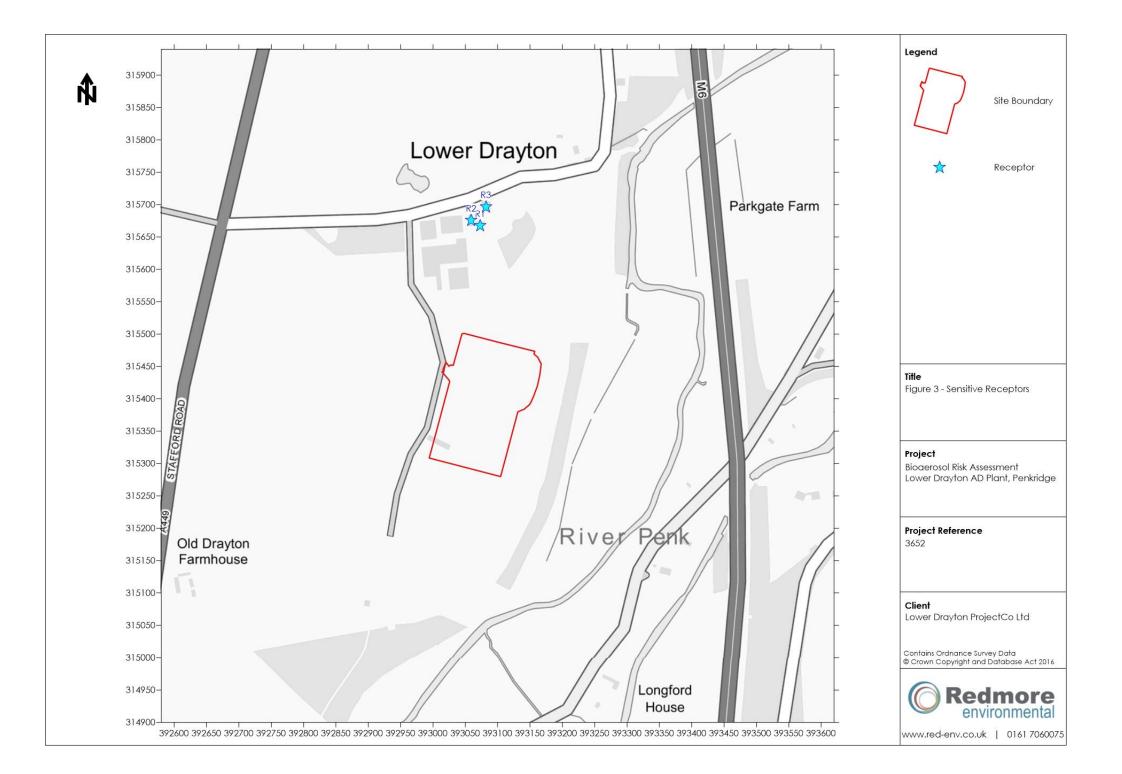
Source	Probability of exposure	Harm	Magnitude of Risk	Control Measures	Residual Risk	Justification for Residual Risk
Exposed material within the dirty water lagoon	Low due to the separation distance between the receptors and source, and the low release potential	Medium	Medium	Material within the lagoon is likely to have a low release potential due to associated moisture content The filling and extraction regime will be managed to ensure limited agitation of material and associated emissions	Low	The low release potential of residual material within the lagoon a is considered to result in a low risk of impact occurring

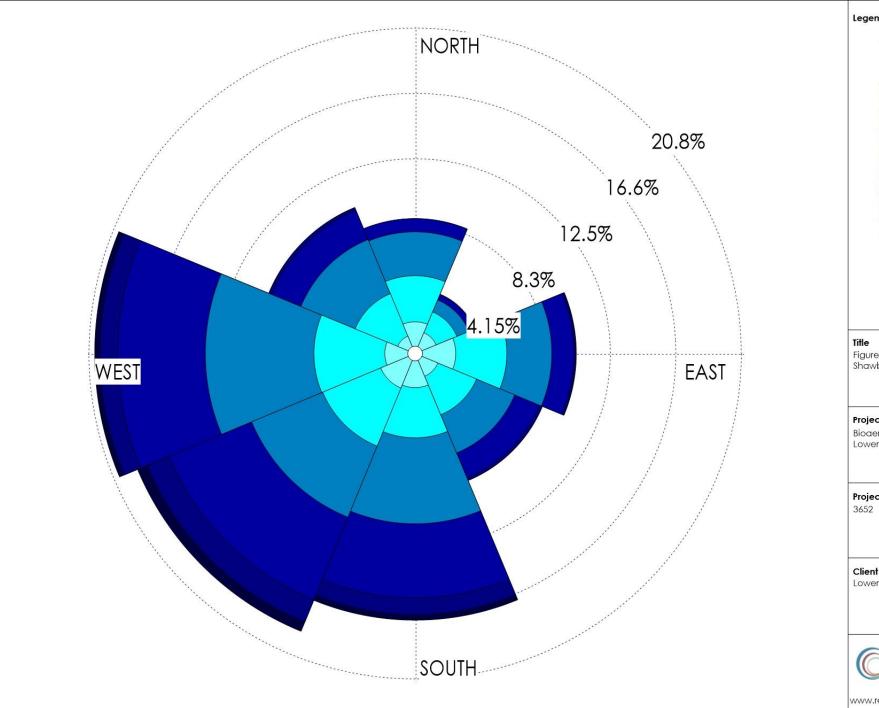
7.0 <u>CONCLUSION</u>

- 7.1.1 Redmore Environmental Ltd was commissioned Lower Drayton ProjectCo Ltd to produce a Bioaerosol Risk Assessment in support of the proposed Lower Drayton AD plant, Penkridge, Staffordshire.
- 7.1.2 During the operation of the facility there is the potential for bioaerosol emissions and associated impacts at sensitive receptor locations in the vicinity of the site. A Risk Assessment was therefore undertaken to identify potential emission sources and evaluate effects in the local area.
- 7.1.3 The following potential bioaerosol emission sources were identified:
 - Exposed crop feedstocks during delivery and storage;
 - Exposed manures during delivery and temporary storage;
 - Exposed feedstocks during transfer to the AD hopper;
 - Exposed material within the AD hopper;
 - CO₂ vent on the gas upgrade unit;
 - Air expelled from the Ekogea system carbon filters during operation;
 - Solid digestate below the separator during periods when the Ekogea system is not operational;
 - Air expelled from the carbon filter during digestate tanker filling; and,
 - Surface runoff within the dirty water lagoon.
- 7.1.4 The risk of significant bioaerosol impact at sensitive locations in the vicinity of the site was assessed using a source pathway receptor approach. This considered the nature of the potential emission, any barriers to dispersion and the severity of harm.
- 7.1.5 The results of the assessment indicated residual risk from all sources was determined as low or very low. As such, potential impacts as a result of bioaerosol emissions from the proposed facility are not considered to represent a constraint to the proposals.


8.0 <u>ABBREVIATIONS</u>


AD	Anaerobic Digestion
BAT	Best Available Technique
CH4	Methane
CHP	Combined Heat and Power
CO ₂	Carbon dioxide
DEFRA	Department for Environment, Food and Rural Affairs
EA	Environment Agency
FYM	Farmyard Manure
H ₂ S	Hydrogen Sulphide
HGV	Heavy Goods Vehicle
IVC	In-Vessel Composting
NGR	National Grid Reference
RPS	Regulatory Position Statement
SNIFFER	Scotland and Northern Ireland Forum for Environmental Research
VOC	Volatile Organic Compounds


Date: 1st July 2020 Ref: 3652



<u>Figures</u>

