
EXTERNAL USE

NIR EREZ

22.MAR.2016

LOGICAL ABSTRACTION AND
RESOURCE MANAGEMENT
USING
THE MANAGEMENT COMPLEX

1 EXTERNAL USE

Agenda

• Why Management Complex?

• DPAA2 Logical Objects

− Example: Data Path Network Interface (DPNI)

• DPAA2 Resource Management

• DPAA2 Network-on-Chip

• DPAA2 Boot Sequence

2 EXTERNAL USE

WHY
MANAGEMENT
COMPLEX?

3 EXTERNAL USE

QorIQ Layerscape

Breakthrough,
software-defined
approach to advance
the world’s new
virtualized networks

New, high-performance architecture built with ease-of-use in mind
Groundbreaking, flexible architecture that abstracts hardware complexity and
enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications
Balanced integration of CPU performance with network I/O and C-programmable
datapath acceleration that is right-sized (power/performance/cost) to deliver
advanced SoC technology for the SDN era

Extending the industry’s broadest portfolio of 64-bit multicore SoCs
Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling
interconnect and peripherals to provide a complete system-on-chip solution

4 EXTERNAL USE

LS2085A SoC – 1st DPAA2 System

Datapath Acceleration

• SEC – crypto acceleration

• DCE – Data Compression Engine

• PME – Pattern Matching Engine

• QDMA – Queue-enabled DMA Engine

• L2 Switching -- via Datapath Acceleration Hardware

• Management Complex – Configuration and Control Abstraction

General Purpose Processing

• 8x ARM® A57 CPUs, 64b, 2.0GHz

• 1MB L2 cache

• HW L1 & L2 Prefetch Engines

• Neon SIMD in all CPUs

• 1MB L3 platform cache w/ECC

• 4MB Coherent Cache

• 2x64b DDR4 up to 2.4GT/s

Express Packet IO

• Supports1x8, 4x4, 4x2, 4x1 PCIe Gen3
controllers

• SR-IOV support, Root Complex

• 2 x SATA 3.0, 2 x USB 3.0 with PHY

Accelerated Packet Processing

• 20Gbps SEC - crypto acceleration

• 10Gbps Pattern Match/RegEx

• 20Gbps Data Compression Engine

• Advanced I/O Processor

• 20Mpps advanced forwarding

Network I/O

• Wire Rate IO Processor:

• 8x1/10GbE + 8x1G

• XAUI/XFI/KR and SGMII

• MACSec on up to 4x 1/10GbE

• Layer 2 Switch Assist

48KB

L1-I
32KB

L1-D

48KB

L1-I

2MB Banked L2

ARM A57

32KB

L1-D

48KB

L1-I

ARM A57

32KB

L1-D

48KB

L1-I

1MB Banked L2

ARM A57

32KB

L1-D

48KB

L1-I

ARM A57

32KB

L1-D

48KB

L1-I

Coherency Fabric

SMMU SMMUSMMU

64-bit
DDR2/3
Memory

Controller

64-bit
DDR4

Memory
Controller

1MB
Platform
Cache

Secure Boot

Trust Zone

Flash Controller

Power Management

SDXC/eMMC

2x DUART

4x I2C

SPI, GPIO, JTAG

2x USB3.0 + PHY

64-bit
DDR2/3
Memory

Controller

64-bit
DDR4

Memory
Controller

8-Lane 10GHz
SERDES

P
C

Ie

P
C

Ie

P
C

Ie

P
C

Ie

SRIOV
RC

S
A

T
A

 3
.0

S
A

T
A

 3
.0

48KB

L1-I
32KB

L1-D

48KB

L1-I

2MB Banked L2

ARM A57

32KB

L1-D

48KB

L1-I

ARM A57

32KB

L1-D

48KB

L1-I

1MB Banked L2

ARM A57

32KB

L1-D

48KB

L1-I

ARM A57

32KB

L1-D

48KB

L1-I

Queue/ Buffer Manager

SECDCE

8-Lane 10GHz
SERDES

PME

Advanced IO
Processor

(AIOP)

Management Complex

8x1/10 + 8x1

WRIOP

Layer 2 Switch Assist

PEB Memory

QDMA
32-bit DDR4

Memory Controller

5 EXTERNAL USE

MC Makes it Easy

Presents hardware as logical objects

Virtualizes and isolates objects

Hides complex sequences

Sets up a Network-on-Chip

Manages resources

Supports recovery scenarios

6 EXTERNAL USE

Legacy Ethernet Controller

… translates between network stack’s
standard features and HW implementation.

… owns all hardware resources needed to
operate the Ethernet device.

All functions are in a single HW block.

Configuration is mostly independent of
other blocks.

Classifier

MAC

Ethernet Driver

Network Stack

Tx Rings Rx Rings

7 EXTERNAL USE

Ethernet Controller with Virtualization Support

Internal Switch

MAC

Ethernet Driver

Network Stack

Tx, Rx BD RingsTx, Rx BD RingsTx, Rx BD Rings

Ethernet Driver

Network Stack

Ethernet Driver

Network Stack

VMM

Shared

Resources

8 EXTERNAL USE

DPAA 1.x Ethernet Controller

• The Ethernet driver does not own all
hardware resources needed to operate
the device.

• QBMan resources may serve also other
drivers or instances

• Ethernet Controller functions are
achieved by multiple HW blocks, and
configuration has several dependencies.

Classifier

MAC

Ethernet Driver

Network Stack

Tx Queues Rx Queues

SW PortalSW Portal

QBMan Driver FMan Driver

9 EXTERNAL USE

DPAA 1.x Ethernet and Crypto Functions (SMP System)

Classifier

MAC

Tx Queues Rx Queues

Classifier

MAC

Ethernet Driver

Network Stack

Tx Queues Rx Queues

Shared Resources

QBMan Driver FMan DriverFMan Driver

SEC Driver

Crypto Stack

Tx, Rx Queues

SW PortalSW Portal

SEC Engine

QBMan Driver

Shared Resources

10 EXTERNAL USE

DPAA 1.x Ethernet Controllers (Partitioned System)

Classifier

MAC

Ethernet Driver

Tx Queues Rx Queues

Classifier

MAC

Ethernet Driver

Network Stack

Tx Queues Rx Queues

Shared Resources

Shared Resources

Network Stack

SW PortalSW PortalSW PortalSW Portal

QBMan Driver FMan Driver QBMan Driver FMan Driver

11 EXTERNAL USE

Lack of Virtualization
− Centralized resource piles

− Sharing needed but complex

− Requires Hypervisor or IPC

Goal: Easy-to-Use Logical Objects

Complex Sequences
− Driver dependencies

− Resource cleanup

− Performance tuning

12 EXTERNAL USE

Management Complex (MC) Concept

• The Management Complex provides NXP-owned abstraction and control firmware.

• MC exports software-defined and standard-oriented interfaces to GPP and AIOP

software, and thus hides configuration complexity from customers.

• MC is a trusted entity and only executes NXP-supplied trusted firmware.
It is isolated from the rest of the SoC so it cannot be compromised by malicious or buggy

software running on the GPPs.

Boot

time

Data Path
Layout
(DPL)

Management
Complex

GPP

AIOP
object
create

destroy

object
manage

object
use

object
use

object
discover

APIAPI API API

API

13 EXTERNAL USE

Management Complex Roles

• DPAA Boot and Global Initialization

− Global initialization of DPAA hardware blocks (QBMan, WRIOP, AIOP, SEC, etc.)

• Configuration and Abstraction of Logical Objects

allocates the right set of resources and configures them as a logical object:

− Network interfaces (basic or high-function interfaces)

− L2 switches and Demux objects (MAC partitioning, VEB/VEPA)

− Link aggregation groups

− Accelerator interfaces (SEC, DCE, PME, QDMA)

− Inter-Partition Communication interfaces (GPP ↔ AIOP, GPP ↔ GPP)

• DPAA Objects Discovery and Control per Software Context

• DPAA Resource Management

− Allocation, tracking and recovery in fault scenarios

• Support DPAA Hardware Virtualization

14 EXTERNAL USE

DPAA2
LOGICAL
OBJECTS

15 EXTERNAL USE

Main Attributes of MC Objects

• Object can be created dynamically

−Allocates hardware resources and configures them to initial state

• Object can be destroyed dynamically

−Gracefully shuts down and releases all its hardware resources

• Object can be enabled and disabled

• Object can be reset to initial state

• Object belongs to a single software context (at a time)

• Object can be assigned to another software context

• Object may interrupt its software context

16 EXTERNAL USE

DPAA2 Logical Objects

• Network Interfaces:
− Data Path Network Interface (DPNI)

� A standard network interface (L2 and up), as expected by standard network stacks/applications.

� Offers a wide range of standard offloads:
MAC & VLAN Filtering, QoS, checksums, time-stamping, policing, IPR, IPF, IPSec, RSC, GSO, etc.

� Configurable as a tunnel/fast-path interface (non-L2 packet), suitable for GPP-AIOP interaction.

• Physical Interfaces:
− Data Path MAC (DPMAC)

� Serves for physical MAC and MDIO control

Configuration interface
Connection point

Queues (ingress distribution width + 1 for egress) per traffic class (1 to 8)

Configuration interface

Connection point

17 EXTERNAL USE

DPAA2 Logical Objects (cont.)

• Switching and Aggregation:

− Data Path Switch (DPSW) – Standard implementation of L2 Switch.

− Data Path Demux (DPDMUX) – Allows partitioning of a physical interface into multiple (isolated) logical
interfaces. May be used for setting up different Ethernet Virtual Bridging (EVB) objects, such as VEB,
VEPA, or S-Component.

− Data Path Link Aggregator (DPLAG) – aggregates multiple physical links into a single logical link. (NOT
available in LS2085 rev-1)

Configuration interface

Switch interfaces – connection points (2 or more)

Configuration interface

Uplink interface – connection point (exactly 1)

Internal interfaces – connection points (2 or more)

Configuration interface

Slave interfaces – connection points (2 or more)

Bonded interface – connection point (exactly 1)

18 EXTERNAL USE

DPAA2 Logical Objects (cont.)

• Supporting Infrastructure Objects:

− Data Path Buffer Pool (DPBP) – An abstraction of BMan buffer pool

− Data Path I/O Portal (DPIO) – Enables enqueue/dequeue via QMan portals and getting ingress
notifications

− Data Path Concentrator (DPCON) – Scheduling object for advanced scheduling of ingress packets from
multiple interfaces.

Configuration interface
Priorities for scheduling ingress queues (2-8)

QBMan channel for dequeue

Configuration interface

Configuration interface
GPP interface (QBMan software portal)

Notification channel (optional: notifications from ingress queues or DPCON)

19 EXTERNAL USE

DPAA2 Logical Objects (cont.)

• Accelerator Interfaces:

− Security Accelerator Interface (DPSECI)

− Data Compression Accelerator Interface (DPDCEI)

− DMA Accelerator Interface (DPDMAI)

Configuration interface

Queues (1-8 for ingress, 1-8 for egress)

Configuration interface

Queues (1 for ingress, 1 for egress)

Configuration interface

Queues (1-2 for ingress, 1-2 for egress)

20 EXTERNAL USE

DPAA2 Logical Objects (cont.)

• Management Objects:
− Data Path Resource Container (DPRC):

� Allows software context to assign DPAA objects and resources.

� Allows software context to create network topology by connecting network objects.

� Functions as virtual bus, so software context may query DPAA objects and associate with OS device drivers.

• Inter-Partition Communication:
− Data Path Communication Interface (DPCI) – allows communication between different software

contexts through QMan infrastructure, which is not limited to network packet format. Useful for IPC
between two GPP software entities, or between GPP and AIOP entities. The communication protocol is
user-defined.

Configuration interface
Connection point (to peer DPCI only)

Queues (1 for ingress + 1 for egress) per priority (1 or 2)

Configuration interface

21 EXTERNAL USE

DPNI (Data Path Network Interface)

• Wire-Speed Frame Parsing

‒ Parsing results may be visible in frame annotation area

• Filtering of Received Frames

‒ Exact-match filtering based on destination MAC address and/or VLAN IDs

‒ Unicast promiscuous and Multicast promiscuous modes

• QoS Support

‒ Packet classification up to eight traffic classes, based on user-defined key

‒ Policing based on classification result (tail-drop or WRED)

• Distribution to Receive Queues

‒ Statistical distribution based on hash-generated key (RSS)

‒ Explicit flow steering based on user-defined key

• Up to Eight Different Buffer Pools

• Various Scheduling Options for Received Packets

22 EXTERNAL USE

DPNI (Data Path Network Interface)

• Traffic Shaping of Transmitted Packets

‒ Up to eight transmit queues (traffic classes)

‒ Rate limit

• Various Offload Functions:

‒ L3 and L4 checksum generation and validation

‒ VLAN add/remove

‒ IP Reassembly and Fragmentation

‒ GRO and GSO

‒ IPSec transport

• Link-ased and Priority-based Flow Control (PFC)

‒ Supporting queue congestion and/or buffer pool depletion

• PTP (IEEE 1588) time-stamping

• Network Interface Statistics

• Network Interface Enable, Disable, Reset

23 EXTERNAL USE

L2 FilteringL2 FilteringL2 FilteringL2 Filtering

Filter frame
by VLAN or
Destination
MAC
address

QoS: Select QoS: Select QoS: Select QoS: Select
Traffic Class Traffic Class Traffic Class Traffic Class
(TC)(TC)(TC)(TC)

Based on
QoS table
lookup

Distribution: Distribution: Distribution: Distribution:
Select Select Select Select
Receive Receive Receive Receive
QueueQueueQueueQueue

Based on
hash key or
explicit flow
lookup

ParsingParsingParsingParsing

Parse frame
headers

PolicingPolicingPolicingPolicing

Mark the
packet’s drop
priority based
on selected
TC

VLAN VLAN VLAN VLAN
RemovalRemovalRemovalRemoval

Remove
VLAN header
(optional)

IP IP IP IP
ReassemblyReassemblyReassemblyReassembly

Reassemble
IP fragments
of this frame
(optional)

DPNI Ingress Frame Processing

Incoming frame
from DPMAC or
another object

Enqueue frame to
selected receive queue;
notify user (optional)

a b c d e

f g h i

24 EXTERNAL USE

Filter

DPNI Ingress Example

TC-0

QoS

TC-1

TC-2

TC-3

Incoming frames
from DPMAC or
another object

Select TC
by DSCP

RSS over 4 queues
(hash on 5-tuple key)

Rx Queues

DSCP: 0x04, …

DSCP: 0x10, …

DSCP: 0x0C, …

DSCP: 0x14, …

RSS over 4 queues
(hash on 5-tuple key)

If neither RSS nor FS are set,
all packets go to queue 0

Flow-Steering (FS) over 4
queues, using 3-tuple key
(IPSRC+IPDST+IPPROTO)

Filter by
MAC/VLAN

MAC:
04-af-01-00-07-0c

Flow #1 (example):
IPSRC: 253.192.0.0
IPDST: 1.192.85.1
IPPROTO: 17 (UDP) 0

1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

25 EXTERNAL USE

DPNI Egress Frame Processing

Scheduling Scheduling Scheduling Scheduling
and Shapingand Shapingand Shapingand Shaping

Set transmit
priority and
rate limitation

VLAN VLAN VLAN VLAN
InsertionInsertionInsertionInsertion

Add VLAN
header
(optional)

IP IP IP IP
FragmentationFragmentationFragmentationFragmentation

Split the IP
frame to
fragments
(optional)

Frame is sent to
DPMAC or
another object

Dequeue frame from
transmit queue (one
queue per traffic class)

a b c d e

26 EXTERNAL USE

Objects Configuration – Easy to Use Commands

WRIOP IFP

WRIOP PPID

WRIOP Recycle Port

CTLU Policer Profile

CTLU Parser Profile

CTLU QoS Mapping

CTLU Tables

CTLU TCAM

CTLU Key Profiles

CTLU FALU

MAC

QMan DCP

QDID

QPR

FQIDs

Congestion Groups

WQ Channels

27 EXTERNAL USE

Objects Configuration – Easy to Use API

struct dpni_cfg {

uint8_t mac_addr[6];

struct {

uint64_t options;

enum net_prot start_hdr;

uint8_t max_senders;

uint8_t max_tcs;

uint8_t max_dist_per_tc[DPNI_MAX_TC];

uint8_t max_unicast_filters;

uint8_t max_multicast_filters;

uint8_t max_vlan_filters;

uint8_t max_qos_entries;

uint8_t max_qos_key_size;

uint8_t max_dist_key_size;

struct dpni_ipr_cfg ipr_cfg;

} adv;

};

int dpni_create(struct fsl_mc_io *mc_io,

const struct dpni_cfg *cfg,

uint16_t *token);

28 EXTERNAL USE

Example: Ethernet Driver Sequence

/* (1) DPIO creation */

dpio_cfg.channel_mode = DPIO_LOCAL_CHANNEL;

dpio_cfg.num_priorities = 4;

dpio_create(drv->mc_io, &dpio_cfg, &token);

dpio_enable(drv->mc_io, token);

/* (2) DPBP creation */

dpbp_create(drv->mc_io, &dpbp_cfg, &token);

dpbp_enable(drv->mc_io, token);

dpbp_get_attributes(drv->mc_io, token &dpbp_attr);

/* use dpbp_attr.bpid to fill buffers pool*/

/* (3) DPNI creation */

dpni_cfg.mac_addr = { ... };

dpni_cfg.adv.max_tcs = 4;

dpni_cfg.adv.max_unicast_filters = 32;

(+ other standard features / offload features)

dpni_create(drv->mc_io, &dpni_cfg, &token);

/* set buffer pools */

pools_cfg.num_dpbp = 1;

pools_cfg.pools[0].dpbp_id = dpbp_attr.id;

pools_cfg.pools[0].buffer_size = 512;

dpni_set_pools(drv->mc_io, token, &pools_cfg);

dpni_enable(drv->dpni);

/* runtime control operations */

dpni_add_vlan_id(drv->mc_io, token, 0x0200);

29 EXTERNAL USE

DPAA2 Ease of Use (DPNI as example)

DPAA
Controllers

Abstraction
Layer

Command Dispatcher

DPNI Object

QBManWRIOP

MC Portal

GPP/AIOP
Visible software

MC
FSL closed firmware

DPNI API

Ethernet Driver

Command descriptors

Object API
(Configuration & Control)

Thin implementation

Complex implementation

I/O API

AIOP

Data I/O API
Enqueue / Dequeue

SEC

Resource
Manager

Integration specific driver
(Linux Kernel / Linux US / RTOS)

CTLU

Link
Manager

30 EXTERNAL USE

DPAA2
RESOURCE
MANAGEMENT

31 EXTERNAL USE

Problem: DPAA Hardware is Hard to Use

Device Y Driver

HW Block #4

Device Y Driver

Partition A Partition B

Non-Virtualized
Shareable

Controller

Driver

HW Block #2

Non-Virtualized
Non-Shareable

Controller

Driver

HW Block #1

Non-Virtualized
Non-Shareable
Performance Balance

Controller

Driver

HW Block #3

Controller

Driver

Controller

Driver

Resource
Requests

Device X Driver

HW

SW

Virtualized, Partitioned Resources

32 EXTERNAL USE

MC Presents: Logical Objects Abstraction

MC Object Y

Device Y Driver

Partition A Partition B

Non-Virtualized
Shareable

Controller
Driver

Non-Virtualized
Non-Shareable

Controller
Driver

Non-Virtualized
Non-Shareable
Performance Balance

Controller
Driver

Controller
Driver

MC Object X

HW

SW

Virtualized, Partitioned Resources

Device X Driver Device Y Driver

PortalPortal Portal

MC FW

Resource
Manager

33 EXTERNAL USE

Free resources
assigned to
this container

Objects assigned to this container

Child
containers
(none)

Free resources
assigned to
this container

Objects assigned to this container

Child
containers

MC Presents: Data Path Resource Containers (DPRC)

PortalPortal

Object Y
#1

Object X
#1

Object Y
#2

#1

Partition A
Root Software

Partition B
User / Guest Software Context

DPRC Driver DPRC Driver

Containers follow
software contexts
hierarchy

DPRC allows:
• Creating child containers
• Querying objects & resources
• Moving objects & resources
• Managing policies

Parent-child relation

SW

MC FW

34 EXTERNAL USE

SW

Free resources
assigned to
this container

Objects assigned to this container

Child
containers
(none)

Objects assigned to this container

Child
containers

Resource Management: Creating MC Objects

Portal

Object Y
#1

Object Y
#2

#1

Partition A
Root Software

Partition B
User / Guest Software Context

a) Resources are allocated from current container
b) Lacking resources are allocated from parent container by MC, if

policy and quota allows; parent software can control the
allocation policy and quota per resource type

MC Object Z

Portal

Object Z Driver

Object Z
#1

(a)

(b)

User creates a new
object ‘Z’ by sending
command to MC

Controller
Driver

Controller
Driver

Controller
Driver

1) Authenticate request
2) Instantiate new object in container
3) Allocate required resources
4) Configure and initialize the object

through controller drivers

MC FW

Parent-child relation

35 EXTERNAL USE

SW

Free resources
assigned to
this container

Objects assigned to this container

Child
containers
(none)

Free resources
assigned to
this container

Objects assigned to this container

Child
containers

Resource Management: Assign Objects & Resources

PortalPortal

Object Y
#1

Object X
#1

Object Y
#2

#1

Partition A
Root Software

Partition B
User / Guest Software Context

DPRC Driver DPRC Driver

Parent-child relation

Parent assigns objects and/or
resources to child:
a) Assign Object Y#1 to child #1
b) Assign resources to child #1

(a)

(b)

Child receives notifications on
container updates

MC FW

36 EXTERNAL USE

SW

Free resources
assigned to
this container

Objects assigned to this container

Child
containers
(none)

Free resources
assigned to
this container

Objects assigned to this container

Child
containers

Resource Management: Resource Cleanup

PortalPortal

Object Y
#1

Object X
#1

Object Y
#2

#1

Partition A
Root Software

Partition B
User / Guest Software Context

DPRC Driver

Parent-child relation

MC FW1) Objects created by child are destroyed; HW state is updated
2) Assigned objects & resources are returned to the parent
3) Child container is destroyed

Parent identifies the crash and decides
to destroy the child container

37 EXTERNAL USE

CREATE YOUR
NETWORK-ON-CHIP

As easy asAs easy as

38 EXTERNAL USE

Eth Driver 1 Eth Driver 2

I/O Services

OS Network stack

Switch
Mgmt

User Space Eth Driver

I/O Services

User Space Application

Hardware
Boundary

User Space

Kernel

DPAA2
Objects

Connections

Data
Notification

I/O

Example System #1

39 EXTERNAL USE

Example System #2

Eth Driver 1 Eth Driver 2

I/O Services

OS Network stack

VEPA
Driver

Eth Driver

I/O Services

Network stack

Eth Driver

I/O Services

Network stack

Hardware
Boundary

VM 1 VM 2

Kernel

Bus Driver

Bus
Driver

Bus
DriverMC Portals

IsolatedIsolatedIsolatedIsolated
ContainersContainersContainersContainers

QMan SW Portals

40 EXTERNAL USE

Eth Driver 1

I/O Services

OS Network stack

L2SW
Driver

Eth Driver

I/O Services

US Application

Hardware
Boundary

User Space

Kernel

I/O

Example System #3 AIOPUS

Service Layer

AIOP Application

Eth Driver

41 EXTERNAL USE

Connecting Network Objects

1) dprc_connect(dprc, <dpsw-0/0>, <dpmac-0>, NULL)

2) dprc_connect(dprc, <dpni-1>, <dpsw-0/5>, <rate_cfg>)

3) dprc_connect(dprc, <dpni-2>, <dpsw-0/4>, <rate_cfg>)

Connections can be declared in the DPL file: Network Topology View

1

2 3

connections {

connection@1{

endpoint1 = "dpsw@0/if@0";

endpoint2 = "dpmac@0";

};

connection@2{

endpoint1 = "dpsw@0/if@5";

endpoint2 = "dpni@1";

max_rate = 1000;

};

connection@3{

endpoint1 = "dpsw@0/if@4";

endpoint2 = "dpni@2";

max_rate = 1000;

};

};

…or created dynamically via DPRC API:

42 EXTERNAL USE

Make it Happen…

Eth Driver 1 Eth Driver 2

DPIO Services

OS Network stack

L2SW
Driver

Eth Driver

DPIO Services

Network stack

Eth Driver

DPIO Services

Network stack

Hardware
Boundary

US App VM

KernelKernelKernelKernel

Bus Driver

Bus
Driver

Bus
Driver

43 EXTERNAL USE

Declare
Initial
Objects…
(DPL)

Hardware
Boundary

containers {

dprc@1 {

parent = "none";

icid = <10>;
options = "DPRC_CFG_OPT_SPAWN_ALLOWED" , "DPRC_CFG_OPT_ALLOC_ALLOWED";

objects {

obj@1{ obj_name = "dpni@1"; };
obj@1{ obj_name = "dpni@2"; };

obj@2{ obj_name = "dpbp@1"; };

obj@3{ obj_name = "dpio@1"; };
obj@3{ obj_name = "dpio@2"; };
obj@4{ obj_name = "dpsw@1"; };

obj@9{ obj_name = "dpmac@4"; };
obj@10{ obj_name = "dpmac@7"; };
obj@10{ obj_name = "dpmac@11"; };

};
};
dprc@2 {

parent = "dprc@1";

icid = <20>;
options = "DPRC_CFG_OPT_SPAWN_ALLOWED" , "DPRC_CFG_OPT_ALLOC_ALLOWED";
objects {

obj@1{ obj_name = "dpni@3"; };
obj@2{ obj_name = "dpbp@3"; };
obj@3{ obj_name = "dpio@3"; };

};
};

};

connections {

connection@1{

endpoint1 = "dpni@1";

endpoint2 = "dpmac@4";

};

connection@2{

endpoint1 = "dpni@2";

endpoint2 = "dpmac@7";

};

connection@3{

endpoint1 = "dpsw@1/if@1";

endpoint2 = "dpmac@11";

};

connection@4{

endpoint1 = "dpsw@1/if@3";

endpoint2 = "dpni@3";

};

};

objects {

dpio@1 {

channel_mode = "DPIO_LOCAL_CHANNEL";

num_priorities = <8>;

};

dpio@2 {

channel_mode = "DPIO_LOCAL_CHANNEL";

num_priorities = <4>;

};

dpni@1{

mac_addr = <4 5 6 7 8 9>;

max_senders = <1>;

max_tcs = <4>;

max_dist_per_tc = <2 2 4 4>;

max_unicast_filters = <8>;

max_multicast_filters = <16>;

max_vlan_filters = <8>;

max_qos_entries = <32>;

max_qos_key_size = <24>;

max_dist_key_size = <24>;

};

dpni@2{

mac_addr = <4 5 6 7 1 2>;

max_senders = <1>;

max_tcs = <4>;

max_dist_per_tc = <2 2 4 4>;

max_unicast_filters = <8>;

max_multicast_filters = <16>;

max_vlan_filters = <8>;

max_qos_entries = <32>;

max_qos_key_size = <24>;

max_dist_key_size = <24>;

};

dpsw@1{

max_vlans = <16>;

max_fdbs = <8>;

num_fdb_entries = <64>;

num_ifs = <6>;

max_fdb_mc_groups = <16>;

};

…

44 EXTERNAL USE

Discover Objects…

Eth Driver 1 Eth Driver 2

OS Network stack

L2SW
Driver

Hardware
Boundary

Kernel

Bus Driver

Scan DPRC #1 Driver association
Eth Driver

DPIO Services

Network stack
US App

Bus
Driver

Scan DPRC #2

Driver association

DPIO Services

45 EXTERNAL USE

Extend Your System…

Eth Driver 1 Eth Driver 2

DPIO Services

OS Network stack

L2SW
Driver

Eth Driver

DPIO Services

Network stack

Hardware
Boundary

US App

Kernel

Bus Driver

Bus
Driver

Eth Driver

DPIO Services

Network stack
VM

Bus
DriverCreate container #3

dpio_create()
dpbp_create()
dpni_create()

dprc_assign(…)

dprc_connect(…)

46 EXTERNAL USE

Keep it clean…

Eth Driver 1 Eth Driver 2

DPIO Services

OS Network stack

L2SW
Driver

Eth Driver

DPIO Services

Network stack

Eth Driver

DPIO Services

Network stack

Hardware
Boundary

Us App VM

Kernel

Bus Driver

Bus
Driver

Bus
Driver

Destroy (or reset) container #3

47 EXTERNAL USE

DPAA2
BOOT
SEQUENCE

48 EXTERNAL USE

DPAA2 Boot Sequence

• U-Boot allocates memory for MC,
verifies and loads MC image to
memory

• U-Boot loads DPC and DPL to
memory

• U-Boot kicks MC core #0 and
waits for status

• U-Boot loads root software
image and transfers control

• Reads DPC

• Initializes MC platform (memory, caches, MPIC,
DMA, timers, etc.)

• Initializes services (command interface, resource
manager, etc.)

• Initializes all DPAA controllers

• Initializes drivers for logical objects

• Parses the DPL and creates all listed containers
and objects

• Reports initialization status to boot program

• Responds to GPP queries and commands

GPP MC AIOP

• Root software performs its own boot
sequence

• Root software scans its container
and activates relevant drivers

49 EXTERNAL USE

AIOP Boot

• GPP software creates the AIOP
container and assigns required
objects into it

• GPP software places AIOP image in
system DDR

• GPP software sends an “AIOP load”
command to MC, specifying AIOP
tile id and image location

• GPP software sends an “AIOP run”
command to MC, specifying AIOP
tile id and selected cores

• Allocates required memory as specified by AIOP
image parameters

• Initializes AIOP registers and accelerators
(OSM, WS, CTLU, MFLU, STE, TMAN, FDMA,
CDMA, …)

• Loads AIOP image to destined memory

• Initializes MC-AIOP shared structure

• Enables the selected set of AIOP cores
• Runs Service Layer’s boot

• Service Layer Scans the AIOP
container through MC

• Marks boot completion status

GPP MC AIOP

50 EXTERNAL USE

MC Makes it Easy

Presents hardware as logical objects

Virtualizes and isolates objects

Hides complex sequences

Sets up a Network-on-Chip

Manages resources

Supports recovery scenarios

