

http:16KTape,$14.95
http:16KTape,$14.95

http:Indee.ci

http:lrgnni1.at

http:100,000.00

http:1,000.00

http:OVERI.AY

http:OCUBLED'.JS

http:HCONFIG.COM
http:HFORMAT.COM
http:CONFIG.COM

http:HFORMAT.COM

http:4301-.18

http:n~nuu:.ou

Fo 'all“models

Most novice, and many not-so-novice programmers
don’t understand much about string functions.
Functions seemed relatively unimportant when they
started learning BASIC — something to “get to later.”
Well, “later” is now. String functions are easy to
understand.

Many programmers tend to confuse functions and
statements. A statement is an instruction to the
computer, telling it to do something. It contains (or is) a
verb such as PRINT or GOTO. Most functions calculate
or convert. They’re like self-contained subroutines;

LOG(x), for example, computes the natural logarithm of

X.

The major BASIC functions perform arithmetic or
string operations. String functions analyze and
manipulate strings. They’re indispensable in input
checking and output formatting routines.

A Few Words About Functions

A function has two parts — a title and an argument.
The title describes, in BASIC, what the function does,
e.g., LENgth, VALue. The argument is the input to the
function. The function takes this input and returns a
result. The parentheses following the title contain the
argument. They are pronounced of — the function
LEN(A$), for example, is pronounced ‘“length of A
string.”

You can do almost anything with a function that you
can with a variable. You can print it. You can add or
subtract it (if it’s numeric). You can even put it in the
argument of another function — this is called “nesting”
— e.g.,, LEN(MID$(A$,3)). (When you nest functions be
sure that you’ve put in a right parenthesis for every left
one.) About the only thing you can’t do with a function
that you can with a variable is assign a value to it with

68 80-U.S. Journal

Sasically BASIC

‘ ;mg functxons and what they c can do

James A. Conrad, Seattle, WA

an assignment statement.

The String Functions

Here’s a summary of string functions, what they do,
and a program line that prints an example. The symbols
used in the arguments are:

$: String being analyzed.

sub$: Substring.

len: Length of substring to be returned (0 - 255).

pos: Position in string.

x: Any numeric expression or number the computer
can handle.

chr: Character (in quotes) or ASCII, control or
graphics code.

asc: ASCII, control or graphics code (0 - 255).

Any of these (except chr) can be a constant, variable.
or .formula.

We’'ll use line 10 to make a 9-character string, A$, to
play with:

10 A$ = “123456789”
LEFT$($.len)
Returns the left len characters of string $.

20 PRINT “THE FIRST4 CHARACTERS OF A§ ARE:
7, LEFT$(A$,4)

It prints 1234.
RIGHT$(8,len)
Returns the right len characters of string §.

30 PRINT “THE LAST 3 CHARACTERS OF A$ ARE:
7, RIGHT$(A$,3)

This prints 789.

Summer is really over in Texas.
This morning, it was 55 degrees. A
couple of times each week, we're
seeing a hot air balloon drifting
across the morning sky. Seems to be
the same one each time. I think I
need a job like his! I can’t help
wondering where he finds a chase
crew to pick him up when he lands.
Oh, well . ..

Since you're reading this in
December, I thought I'd “tie up” the
year by telling you a little bit about
our internal structure, and the folks
who have worked all year to bring
you TRS-80 products. For those of
you who have asked, here’s a
thumbnail sketch.

The Fort Worth staff people
responsible for the TRS-80 product
line are broken into three main
groups: computer merchandising,
hardware engineering, and software
development (the latter two being
part of our research and develop-
ment department). Of course, in the
support area, we have computer
customer services, technical sup-
port, and national parts. Many
others are involved, so I’ve named
those you're likely to hear a little
more of.

We’ve told you that we buy a lot of
software from outside sources. Even
so, we have a large software team of

70 80-U.S. Journal

analysts, programmers, testers and
writers. There are project managers,
who supervise development teams
specializing in specific types of

software. They also work with
outside software vendors on the
forty to fifty percent of our software
which comes from third parties.
There are two major divisions in the
group, for systems and applications
software. All software goes through
extensive testing, and manuals
written outside are edited by our
internal staff.

Our hardware engineering staff
includes groups who specialize in
specific areas of hardware. They
have their own group of writers for
hardware manuals.

Computer merchandising
includes our computer buyers (a
more common industry title is prod-
uct managers), software product
planners, newsletter staff, the group
who writes our computer center
training material, and our new third-
party software vendor support
function. Product planning,
direction, promotion and advertis-
ing are the primary department
functions. Merchandising also
includes a sizable software Q/A

group.
Customer services is the group
you’re most likely to come in contact

':Ed Juge Dlrector, Computer Merchandlsmg
1500 One Tandy Center Fort Worth TX 76102

with. We’ve recently put about 150
customer service representatives in
selected computer centers, to serve -
you faster and better on a local
basis. There is still a very large
group here in Fort Worth to answer
your (and our field folks’) questions
and problems. They also keep our
stores updated on patches and fixes
to all software items. They answer a
tremendous number of phone calls,
and do an outstanding job! No, they
won’t always have an instant
answer for a just-reported problem,
nor can they help you with “custom”
programming or- hardware
questions: “How do I hook a brand
xyz printer to my TRS-80?” We just
can’t know all of the combinations,
and this is a type of information we
aren’t staffed to supply.

In Fort Worth, there are five
computer factories, including one
exclusively for software. We also
have one warehouse here devoted
exclusively to computer products.
Our computer operation is supported
by many other departments,
including national quality
assurance, advertising, data
processing, personnel, and others.

Although in many ways we'’re
highly self-sufficient, make no
mistake that we recognize and
appreciate all of the non-Radio
Shack vendors who support our

Packing strings efficiently

Model I/11I, PMC-80, LNW80

Last month the simplest form of string packing for
BASIC programs was illustrated. To recount, the string
variables, A$ and B$, were packed with graphic values
read from data statements and concatenated using the
form, A$ = A$ + CHR$(A), where A is the latest value
read from the data statements given.

While this method works, it is probably one of the most
archaic ways of packing a string. If much string
packing takes place, noticeable time will be lost due to
the constant redefining of the string A$ for each
successive concatenation of values. As you will
remember, the garbage collection routine is the culprit.

There are much easier ways to pack strings. They
avoid the garbage collection routine of your computer
because the computer has nothing to sort. Many people
don’t realize that if a string function is defined within a
BASIC program, it will not be sorted when the computer
goes into its string function garbage collection routine.
Let’s say our BASIC program defines A$ to be the word
STRING. It can be defined either in a data statement
such as DATA STRING, which is later read and
interpreted to a string variable (READ AS$), or in the
form A$ = “STRING.”

In the above example as long as A§ is not redefined to
another value, the VARPTR for A$ will help us find the
word STRING, which appears in your BASIC program.
You don’t have to CLEAR string space when defining
strings of this type either. Since the operating BASIC
program is a permanent fixturein RAM, thereis no need
to reserve extra space for these string functions, which
are currently a part of the program. They already havea
place in memory which will not be redefined. BASIC
program statements are not redefined while running
them.

Well, almost not redefined! The all-powerful POKE
function, used with the just as powerful VARPTR
function, can redefine strings in your BASIC program
without affecting operation (when used carefully). Since
repetition is one of the best ways to prove a point,
consider last month’s program called Animate. That
exampleillustrated the packing of graphic charactersin

a string to display men jumping on the video screen.
Instead of doing what we did last month, another way to
define the strings, A$ and B$, is given in Listing 1.

I haverewritten Animate so that it performs the same
as last month, but does so in a slightly more efficient
manner. Notice that the CLEAR 93 command given last
month is omitted. Replacing it are dummy string values
of thirty-one characters each for A$ and B$. The graphic
character values and control codes arestill given in data
statements, but the CHR$ function is no longer used.
Instead of defining the strings as we did last month, the
strings are already defined. Each string is defined as a
word of thirty-one bytes. These words are dummy words.

Using this method of string packing, we must reserve
space for the final graphic character. Since each graphic
character of the jumping man will have thirty-one
characters asitdidlast month, wehave toreserve thirty-
one spaces. Instead of spacing over thirty-one times
between the quote marks, the easiest way to do this is to
count with numbers. We could count 12345678901234 . ..
or, as I like to do, leave a space in place of each of the
zeroes (123456789 1234 . . .). The spaces are easier to see
and help in the counting.

Now comes the VARPTR function. The VARPTR
function helps to locate the position of variables. With
string variables such as A$, VARPTR(A$) will point to
an address which tells the length of the string. That
address is followed by two bytes which give the address
of the string in memory, whether it be in your BASIC
program or reserved string space saved by the CLEAR
function. Addresses are saved in the form: Least
Significant Byte (LSB) first, then Most Significant Byte
(MSB). We use the value (VARPTR(A$)+1 +
(VARPTR(A$)+2)*256) to calculate the address of our
string variable.

Now that we know where the string is, we can use the
POKE function to substitute values from our data
statements into the reserved area. This is done in lines
80 through 110 and 290 to the end of the program. Just
run the program once and the string areas will be
redefined.

December, 1982 73

http:13.55/16.95
http:11.90/14.30
http:15.90/18.30
http:15.90/19.90
http:12.70/15.90
http:12.70/15.90
http:23.90/23.90
http:19.90/23.90
http:15.90119.90
http:11.90114.30

http:for$29.95

http:PAY~b~i.95

http:BARCL.AY

Dor’
t Mis
Oﬁginalsgr};isd()utsta d
age G ndin

arneﬂ g

de
Casse’t\e e
sraet

- ©X9%‘Z
R\ N\oc\ \| N\oc\ A\
d \lN\od A\! D‘\s\&e\te :
ofe pleas® 244 §2 50 per €
s\ add a% sa\e® ok
add ‘&\(\.(\0 pe’ {y o~ \
)\ /‘ \"

e d'\scoun
etad®

10%
ot P
¢ Outs\(\e Ud :
order ot
e O
wality C
On‘t -
nu
es

	Front cover
	Contents
	ARTICLES
	LDOS
	Radio Shack hard disk system
	Grab TRSDOS by the horns
	EASYLINK
	Hard disk for the Model Ill
	Christmas card
	MVLTIDOS
	USRful patch
	Driver education
	Pocket adventure
	DOSPLUS 3.4 and 3.4D
	Color Computer sorting
	Basically BASIC
	BASIC bits
	Files and foibles
	Data Ace
	Exploring VisiCalc
	Screen dump utility
	Let's have a party

	REVIEWS
	Speak
	Crayon
	Beta-80
	6809 Assembly Language Programming
	Outhouse
	Black Sanctum
	Electric Webster
	Dunzhin

	Departments
	Editorial
	Letters
	Directions
	Notes, etc.
	Tandy topics
	@ News
	New Products
	Captain 80
	Bulletin Board

	Advertiser Index
	Back cover

