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a b s t r a c t

Real-time air quality forecasting (RT-AQF), a new discipline of the atmospheric sciences, represents one
of the most far-reaching development and practical applications of science and engineering, poses
unprecedented scientific, technical, and computational challenges, and generates significant opportu-
nities for science dissemination and community participations. This two-part review provides
a comprehensive assessment of the history, current status, major research and outreach challenges, and
future directions of RT-AQF, with a focus on the application and improvement of three-dimensional (3-D)
deterministic RT-AQF models. In Part I, major milestones in the history of RT-AQF are reviewed. The
fundamentals of RT-AQF are introduced. Various RT-AQF techniques with varying degrees of sophisti-
cation and skills are described comparatively. Among all techniques, 3-D RT-AQF models with online-
coupled meteorologyechemistry and their transitions from mesoscale to unified model systems across
scales represent a significant advancement and would greatly enhance understanding of the underlying
complex interplay of meteorology, emission, and chemistry from global to urban scales in the real
atmosphere. Current major 3-D global and regional RT-AQF models in the world are reviewed in terms of
model systems, component models, application scales, model inputs, forecast products, horizontal grid
resolutions, and model treatments of chemistry and aerosol processes. An important trend of such
models is their coupling with an urban model or a computational fluid dynamic model for urban/local
scale applications at 1 km or less and with an exposure model to provide real-time public health
assessment and exposure predictions. Evaluation protocols are described along with examinations of
current forecasting skills and areas with large biases of major RT-AQF models.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Importance and type of applications of air quality forecasting

Air quality refers to the chemical state of the atmosphere at
a given time and place. Like weather, air quality affects everyone.
Air pollutants include gaseous and particulate species that
may lead to non-carcinogenic and/or carcinogenic adverse health
effects. Numerous studies (e.g., Greenbaum et al., 2001; WHO,
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2004; Georgopoulos et al., 2009; Phalen and Phalen, 2011; http://
www.epa.gov/apti/course422/ap7a.html) show that acute (short-
term) exposure to high levels of these species may pose serious
temporary health concerns such as eye irritation, difficulty
breathing, pulmonary and cardio-vascular health effects and
premature death. Chronic (long-term) exposure may lead to health
concerns such as cancer, premature death, and damage to the
body’s immune, neurological, reproductive, and respiratory
systems. People with pre-existing heart and lung diseases and
diabetics, the elderly, and children (so-called sensitive groups) are
at an even greater risk for air pollution-related health effects. In
addition, these pollutants and their derivatives can cause many
adverse effects on the environment including visibility impairment,
acid deposition, global climate change, water quality deterioration,
and plant and eco-environmental system damages (e.g., ESA, 2004;
Seinfeld and Pandis, 2006; Krupa et al., 2006).

To protect human health and the environment, the World
Health Organization (WHO) has issued guidelines and several
countries and states have issued regulations (e.g., WHO, 2010). The
U.S. Environmental Protection Agency (EPA) has set National
Ambient Air Quality Standards (NAAQSs) for six air pollutants to
protect human health (U.S. EPA, 1996; Seinfeld and Pandis, 2006).
These pollutants are sulfur dioxide (SO2), nitrogen dioxide (NO2),
carbonmonoxide (CO), ozone (O3), lead (Pb), and particulatematter
with aerodynamic diameters less than or equal to 2.5 mm (PM2.5)
and 10 mm (PM10). In Europe, the European Union (EU) issues
directives, which subsequently become air quality standards or
goals in 27 member states (EU, 2008). The pollutants regulated by
the EU include the six pollutants regulated in the U.S. and benzene
(C6H6), a volatile organic compound (VOC) with known carcino-
genic health effects. Despite significant progress in understanding
emissions and fates of these pollutants as well as in reducing their
ambient levels in urban areas in the past half century, air pollution
is estimated to kill 3 million people a year worldwide (http://www.
world-science.net/othernews/070814_ disease.htm). In particular,
PM pollution has been directly linked to excess deaths in many
countries in the world (e.g., Schwartz, 1991; Dockery et al., 1993;
Kunzli et al., 2000; Matanoski and Tao, 2002; Millman et al., 2008;
Jayachandran, 2009; Zhang et al., 2010).

To protect citizens from unhealthy air, many countries have real-
time air quality forecasting (RT-AQF) programs in place to forecast
the concentrations of pollutants of special health concerns such as
O3, NO2, PM2.5, and PM10 (e.g., Manins, 1999; U.S. EPA, 1999;
Pudykiewicz and Koziol, 2001). Such information has been used to
issue early air quality alerts that allow government and people to
take precautionary measures such as temporarily shutting off
major emission sources and car pooling or taking public trans-
portation to reduce air pollution and avoid or limit their exposures
to unhealthy levels of air pollution (Wayland et al., 2002). It has
been used to schedule and plan numerous field campaigns to
effectively track pollutant plume transport and sample pollutant
concentrations and maximize the usage of expensive instrumented
platforms such as airplanes and other limited measurement
resources (e.g., Lee et al., 1997; Flatøy et al., 2000). Accurate RT-AQF
can therefore offer tremendous societal and economic benefits by
enabling advanced planning for individuals, organizations, and
communities in order to reduce pollutant emissions and their
adverse health impacts.

Driven by crucial regulations, societal and economic needs,
scientific advancements, and increasing availability of high
performance computing capacity, RT-AQF has evolved from
weather forecasting and developed into a new discipline that
integrates science and technology from several disciplines
including meteorology, atmospheric chemistry/air quality, mathe-
matics, physics, environmental statistics, and computer sciences/

engineering. In light of a significant progress in the past two
decades and the unprecedented challenges of RT-AQF, this work
intends to offer a comprehensive review of its history, current
status, fundamentals, technical approaches, evaluation protocols,
and improvement techniques. The objectives of this review are to
summarize past achievements of RT-AQF, identify major areas of
future improvement and resource investments, recommend
research priorities, and provide future prospects to guide the
further development of this new, exciting yet very challenging
discipline for the decades to come. In the remaining Section 1, the
history and current status are reviewed and the fundamentals of
RT-AQF are introduced. Various RT-AQF techniques are described
comparatively along with their strengths and limitations in Section
2. Major 3-D global and regional RT-AQF models are reviewed in
Section 3. Evaluation protocols and current RT-AQF skills are
described in Section 4.

1.2. History and current status

A sequence of severe, localized pollution episodes were re-
ported during the 1930s-1960s. These include the Meuse Valley,
Belgium, coal and coke burning smog event with 63 excess deaths
and 6000 illnesses in December 1930 (Haldane, 1931); the Donora,
Pennsylvania, U.S., zinc smelter smog event with 20 excess deaths
and 7000 illnesses in October 1948 (Battan, 1966); and the London,
U.K., coal and chemical combustion smog events with excess deaths
of 4000 in December 1952, 1000 in January 1956, 300e800 in 1957,
and 340e700 in 1962 (Brimblecombe, 1987). These air pollution
episodes and disasters led to the passage of a number of early air
pollution regulations and laws such as the Air Pollution Control Act
of 1955, the Clean Air Act (CAA) of 1963, and the CAA Amendments
of 1970 and 1977 in the U.S. as well as the CAA of 1956 and 1968 in
Great Britain.

Table 1 summarizes the major milestones in the history of
RT-AQF. In October 1954, heavy smog occurred in Los Angeles,
which triggered the shutdown of schools and industry for the first
time in the U.S. The Los Angeles County Air Pollution Control
District (LACAPCD), the first regional air pollution control agency in
the U.S., adopted a three-stage smog alert system for O3 and three
other pollutants in June 1955 to prevent the possibility of an air
pollution catastrophe. In the 1960s, the U.S. Weather Bureau
(USWB) (i.e., the predecessor of the National Weather Service
(NWS)) provided the first forecasts of air stagnation or pollution
potential by using numerical weather prediction (NWP) models to
forecast conditions conducive to poor air quality (e.g., Niemeyer,
1960). These forecasts were conducted strictly from a meteorolog-
ical perspective without considering the emissions and chemistry
of air pollutants. In 1965, the U.S. Environmental Science Services
Administration (ESSA) (the predecessor of the National Oceanic and
Atmospheric Administration (NOAA)) was created. The weather
officials from 25 nations met in London for the First International
Clean Air Congress in 1966. In 1970, ESSA became NOAA and the
USWB became NWS. The major findings of relationships between
meteorological factors and air pollution potential led to the creation
of the National Air Pollution Potential Forecast Program (Gross,
1970). On December 2, 1970, the U.S. EPA was created by Presi-
dent Nixon. In 1979, the NWS developed a global data assimilation
system and its nested grid model became operational.

Starting in the 1970s, various RT-AQF techniques and tools were
developed to forecast air pollution in urban areas. These techniques
were largely based on empirical approaches and statistical models
trained or fitted to historical air quality and meteorological data
(e.g., McCollister and Wilson, 1975; Wolff and Lioy, 1978; Aron,
1980). Their level of sophistication increased considerably to
overcome some of these limitations and address non-linearity of
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the photochemical system during the 1990s (e.g., Ryan, 1995; Ryan
et al., 2000). The development of 3-D numerical air quality models
(AQMs) on urban, regional, and global scales since the 1970s and
their applications for short- and long-term RT-AQF since the mid
1990s led to a significant frog leap. With significant advances in
computational technologies and computer architectures, RT-AQF
systems have shifted from postprocessing of forecast meteorology
and statistical methods to the use of sophisticated 3-D AQMs that
account for meteorology, emissions, chemistry, and removal
processes.

3-D AQMs have evolved over four generations since the 1970s,
with roughly one generation per decade, reflecting the advance-
ments in scientific understanding and numerical and computa-
tional technologies. Review of some AQMs can be found in the
literature (e.g., Seigneur, 1994, 2001; Peters et al., 1995; Russell and
Dennis, 2000; Zhang, 2008). CTMs or AQMs have traditionally been
used to retrospectively simulate historical poor air quality scenarios
in support of regulation and planning, due primarily to computa-
tional constraints and a lack of real-time chemical measurements.
Given their relative maturity in sciences and the advancement in
computational technology, some of the 2nd, 3rd, and 4th genera-
tions AQMs have been deployed for RT-AQF since the mid to late
1990s. These efforts were first begun in Germany in 1994 (e.g.,
Rufeger et al., 1997), Japan in 1996 (e.g., Ohara et al., 1997), Australia
in 1997 (e.g., Manins et al., 2002), and Canada in 1998 (e.g.,

Pudykiewicz and Koziol, 2001) and then expanded in the U.S.
(McHenry et al., 2004; Otte et al., 2005), other countries in Europe
(e.g., Brandt et al., 2001; Jakobs et al., 2002), China (Han et al., 2002;
Wang et al., 2009), and other regions in Japan (Uno et al., 2003). In
addition to applications to short-term forecasts of air pollution for
the public, 3-D AQMs have also been applied for chemical fore-
casting during field campaigns. Lee et al. (1997) and Flatøy et al.
(2000) represent the first RT-AQF to support the planning of field
experiments for the troposphere and stratosphere, respectively.
Following the two studies, a number of RT-AQFs have been applied
before and during field campaigns (e.g., Kang et al., 2005; McKeen
et al., 2005, 2007, 2009).

Another frog leap in the history of RT-AQF is the development of
real-time data repositories such as the Aerometric Information
Retrieval Now (AIRNow) network (www.airnow.gov). In 1997, the
U.S. EPA developed AIRNow to provide an effective platform for
communicating real-time air quality conditions and forecasts to the
public via the internet and other medias. Differing from the tradi-
tional data submission, quality-control, and calibration that usually
take 3e6 months after their collection, AIRNow receives real-time
O3 and PM pollution data from more than 115 U.S. and Canadian
agencies as well RT-AQFs from about 400 U.S. cities and represents
a centralized, nationwide, governmental repository for real-time
data. AIRNow has been expanded to include real-time data from
other countries such as China. Similar programs exist in the EU

Table 1
Selected milestones of real-time air quality forecasting (RT-AQF).

Time Milestone

October, 1954 Heavy smog shutdown schools and industry in LA for the first time in the U.S.
June, 1955 A three-stage smog alert system was established in LA.
1960s USWB provided the first forecasts of air stagnation or pollution potential.
1966 The First International Clean Air Congress.
1970 AFR 161-22, Environmental Pollution Control, required air-pollution potential forecasts and warnings; the national

air pollution potential forecast program was established in the U.S.
1970se1980s Development and application of RT-AQF based on empirical approaches and statistical models.
Early 1970s to1980s Development and application of the first-generation AQMs on urban/regional scales.
Late 1970s The development and application of the first-generation AQMs on a global scale.
1980seearly 1990s The development and application of the second-generation AQMs on all scales.
1990s Application of 3-D air quality models for short-term forecasting of O3 in several countries.
1994e1995 The first application of an operational AQF model by the University of Cambridge, U.K. to support the planning

of two field experiments for stratosphere.
Mid 1990se2000s The development and application of the third-generation AQMs on all scales
1997 The U.S. EPA revised the AQI and established the AIRNow program to provide real-time air quality measured and

forecasted data to the public; the first application of an operational AQF model by the Norwegian Institute for Air
Research to support a field campaign in troposphere.

1999 The Meteorological Service of Canada (MSC) initiated an AQF program for eastern Canada; the U.S. EPA developed
guideline for developing O3 forecasting program.

Early 2000s The U.S. Weather Research Program recommended the development and application of operational mesoscale air quality
forecasts; the high-resolution advanced Weather Research and Forecasting model (WRF) was developed to serve as the
backbone of the U.S. public weather forecasts and research. WRF v1.0 was released for beta test in 2001. The first official
released version was v2.0 in 2004. A decision to incorporate chemistry into WRF was made at a workshop on Modeling
Chemistry in Cloud and Mesoscale Models held at NCAR on March 6e8 2000.

Early 2000s-present The development and application of the 4th-generation air quality models on all scales.
2001 MSC launched the national air quality forecast in May 2001; the first reported ensemble O3 forecasting; the first application

of chemical data assimilation for AQFs since their first applications to CTMs in mid. 1990s
2002 Under the provision of the Energy Policy Act of 2002 of USA, Congress mandated NOAA to develop nationwide RT-AQF

capability for O3. NOAA’s pilot study of predicting O3 for the New England region in 2002 using three numerical AQF model
systems; the first version of WRF/Chem was released. WRF/Chem represents the first community online-coupled
meteorologyechemistry model.

2003 The first RT-AQF workshop in the U.S. organized by USWRP held during April 29-May 3 in Houston, Texas; NOAA and EPA
formally collaborate to develop a national RT-AQF model.

2004 The second New England Forecasting Program to forecast O3 and PM2.5 in the northeastern U.S. during which six numerical
AQF models were deployed for RT-AQF; the U.S. EPA/NOAA’s NAQFC was deployed in the summer of 2004. CFD was coupled
with the 3-D AQF models for AQF over industrial plants and urban areas at horizontal grid resolutions of 1e10 m.

2005 European FUMAPEX UAQIFS with improved urban meteorology, air quality and population exposure models, were developed
and launched for operational urban AQF in 6 EU cities.

2006-present Ensemble forecast based on sole sequential aggregation; the development of the ensemble forecast of Analyses (EFA) approach
to combine ensembles and data assimilation.

2007 The first large scale inverse modeling with 4D-Var data assimilation to combine emission rate and chemical state optimization
in a complex 3-D AQF model (i.e., the University of Cologne mesoscale EURAD model).
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within the Global Monitoring for Environment and Security (GMES)
Programme and the European Commission Seventh Framework
Programme. Such efforts are also coordinated by several European
Cooperation in Science and Technology (COST) Actions and EU
networks. The air quality agency of the Paris region in France,
AIRPARIF, makes real-time data available on its website. A near-
real-time observation database, Base de données en temps réel
(BASTER) gathers all hourly measurements made by the local air
quality networks every 3 h in France, Germany, Italy, Finland,
Austria, and the U.K (Rouïl et al., 2009). The U.S. EPA established the
Pollutant Standard Index (PSI) (also known as the Air Pollution
Index (API)) in 1978, which was replaced by the Air Quality Index
(AQI) to include a simple color scheme in 1997 to link air quality
concentrations and associated health effects to a simple color-
coded index that can be easily and consistently reported to the
public (U.S. EPA, 2000, 2009). Similar AQI/API exist in more than 37
countries in the world (e.g., Australia, Canada, Mexico, Denmark,
France, U.K., Germany, China, India, Japan, Brazil, Chile).

In the mid-late 1990s, many countries recognized an increasing
need to implement a centralized, national air quality forecasting
system. The Minister for the Environment in Australia funded the
Air Pollution in Major Cities Program and developed their RT-AQF
model in 1998. The Meteorological Service of Canada (MSC) initi-
ated an RT-AQF program for eastern Canada in 1999, which was
extended to cover all of subarctic Canada in 2001 (Pudykiewicz
et al., 2003). In 1999, the U.S. EPA developed a guideline for O3
forecasting (U.S. EPA, 1999), which was extended to add PM2.5 in
2003 (U.S. EPA, 2003). Under the provision of the Energy Policy Act
of 2002 of the U.S., the U.S. Congress mandated NOAA to develop
a nationwide RT-AQF capability for O3. Since then, NOAA and EPA
collaboratively developed a national RT-AQF model and provided
O3 forecast guidance to state and local forecasters (Stockwell et al.,
2002; Wayland et al., 2002; Dabberdt et al., 2004). They conducted
the first pilot study of predicting O3 for the New England region in
2002 using three numerical RT-AQF models (Kang et al., 2005). The
first workshop on RT-AQF in the U.S. was organized by the USWRP
and held in 2003 in Houston, Texas, during which 50 scientists
recommended research areas and priorities for RT-AQF that help
guide the further development of the nationwide RT-AQF research
program (Dabberdt et al., 2006). In 2004, NOAA sponsored the
second New England Forecasting Program to forecast both O3 and
PM2.5 in the northeastern U.S. during which 5 RT-AQF models were
used for ensemble modeling (McKeen et al., 2005, 2007). The real-
time National Air Quality Forecast Capability (NRT-AQFC) that
consists of Eta-CMAQ, jointly-developed by U.S. NOAA and EPA, was
deployed for RT-AQF in the summer of 2004; it represents the first
operational forecast implementation of CMAQ (Otte et al., 2005).
Region-wide efforts by universities and research organizations are
prevalent in the U.S. and many countries in the world (e.g., Chen
et al., 2008; Hogrefe et al., 2007; Cai et al., 2008).

Learning from initial RT-AQF applications, more sophisticated
techniques such as 4-dimensional variational method (4D-Var),
Kalman-filtering, and ensemble methods have been used in
conjunction with 3-D RT-AQF models to improve RT-AQF results.
Elbern and Schmidt (2001) conducted one of the first applications
of chemical data assimilation (CDA) for RT-AQF using 4D-Var to
assimilate O3 and NO2 observations during August 1997 over
central Europe and showed a significant improvement in O3 fore-
casts. The first reported ensemble O3 forecasting was conducted
with a three-member CHIMERE ensemble using three global NWPs
over Europe (Vautard et al., 2001a). As one of the early real-time
ensemble RT-AQFs, McKeen et al. (2005, 2007) applied several
RT-AQF models to forecast O3 and PM2.5, respectively, during the
2004 NEAQS/ICARTT study and found that multimodel ensemble
forecasting outperformed individual forecasting. The same set of

RT-AQF models was applied to forecast O3 and PM2.5 during the
TexAQS II/GoMACCS, with the ensemble forecasting performing
better than most individual members (McKeen et al., 2009), which
represents the first PM2.5 ensemble, bias-corrected, and Kalman
filter-corrected forecasting. Doraiswamy et al. (2009) conducted
ensemble forecast of O3 and PM2.5 over the state of New York using
CMAQ with WRF and MM5 and found that the ensemble forecasts
often, but not always, perform better than individual member
forecasts and the weighting or bias correction approaches may
improve performance. Mallet (2010) coupled an ensemble fore-
casting of O3 with CDA to overcome the limitations of pure
ensemble forecasting and showed a 28% reduction in the root mean
square error (RMSE). Hybrid approaches using both statistical and
3-D models have also been applied to improve the accuracy of the
RT-AQF (e.g., Eben et al., 2005; Guillas et al., 2008; Kang et al., 2008;
Rouïl et al., 2009). There are increasing numbers of RT-AQF appli-
cations of CTMs coupled with Computational Fluid Dynamical
(CFD) models over industrial plants and urban areas at horizontal
grid resolutions of 1e10 m (e.g., San José et al., 2006, 2009). These
applications predict chemical concentrations in the urban canopy
taking into account the complex building structure.

1.3. Fundamentals of real-time air quality forecasting

1.3.1. Major characteristics of RT-AQF
Fig. 1 shows a diagram of an RT-AQF model system from global

to urban scales based on typical configurations available from
current RT-AQF models. At each scale, a meteorological model and
an air quality model are needed; they may be coupled online or
offline. While an offline meteorological model (e.g., MM5, Grell
et al., 1995 or WRF, Michalakes et al., 2001) provides meteoro-
logical forecasts separately from a regional RT-AQF model (e.g.,
CMAQ, Byun and Schere (2006)), an online-coupled meteorology
and chemistry model (e.g., WRF/Chem, Grell et al., 2005) gener-
ates both meteorological and chemical forecasts within the same
time step. At a global scale, the GCM and the global CTM (GCTM)
(e.g., ECHAM5, Roeckner et al., 2006; MOCAGE, Rouïl et al., 2009),
are initiated with climatological or reanalysis or observational
data. The GCM produces the meteorological fields needed by the
GCTM. An emission model is required to project real-time emis-
sions based on energy/fuel consumption data at all scales. An
emission processor converts projected emissions into model-
ready gridded emission files. Forecasted meteorological informa-
tion is needed for meteorology-dependent emissions (e.g.,
biogenic emissions, sea-salt and erodible dust emissions, VOC
evaporation). The regional scale RT-AQF systems (e.g., CHIMERE,
Rouïl et al., 2009; EURAD, Elbern et al., 2010) use meteorological
initial and boundary conditions (ICONs and BCONs) from a GCM
and chemical BCONs from a GCTM. Chemical ICONs from either
a GCTM or observations are needed to initiate the first day’s
forecasting, those for subsequent days will then use previous day’s
forecast. The forecasting product will be post-processed and
evaluated using real-time (or near real-time) observations. Prod-
ucts such as species concentrations and AQIs will be submitted to
the medias, web sites, and subscribers. Some RT-AQF systems
employ bias correction techniques to correct large, systematic
biases for next-day’s forecast based on previous day’s forecast and
observations (e.g., McKeen et al., 2005, 2007; Kang et al., 2008).
The initial RT-AQFs for current day issued on a previous day may
be updated in the morning based on updated meteorological
forecasting to improve the accuracy of the forecasting products.
Some RT-AQF systems include an extended subsystem for urban
scale air quality and/or human exposure and environmental
health forecasting (e.g., Tilmes et al., 2002; Baklanov et al., 2007;
San José et al., 2009). The urban RT-AQF requires urban
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meteorological forecasts, background concentrations forecasted
from the regional RT-AQF model, and traffic emissions that are
calculated using detailed traffic information. The output includes
the spatial and temporal distributions of forecasted concentra-
tions. The neighborhood scale human exposure or environmental
health forecasting requires urban meteorological forecasts, fore-
casted concentrations and deposition from a regional RT-AQF
model, demographic and geographic data (e.g., total number of
population and age distribution, location and time-activity of
people), and health data (e.g., mortality, morbidity, hospital
admissions) (Baklanov et al., 2007 and references therein). The
output includes the spatial and temporal distributions of fore-
casted total dose and relative risks of adverse health outcome. The

entire data retrieval, model simulation, and product processing is
automated on a day-to-day basis to ensure completion of forecasts
in time.

While RT-AQF is built upon weather forecasting and traditional
air quality modeling, it differs from them in many aspects. RT-AQF
shares the same requirements for time and optimization of model
treatments as NWP but requires simulations of additional physico-
chemical processes affecting fates of air pollutants; it is thus more
difficult than weather forecast (Stockwell et al., 2002). While the
weather forecasting is typically available for 3e10 days, RT-AQF is
typically available for 1e3 days at present (e.g., STEM-2K3,
Carmichael et al., 2003; WRF/Chem, McKeen et al., 2005, 2007;
MOCAGE, Rouïl et al., 2009; CHIMERE, Rouïl et al., 2009), due to

Fig. 1. An automated RT-AQF system from global to urban scales. The three model systems at global, regional, and urban scales are shown as offline-coupled meteor-
ologyechemistry models. They can be online-coupled systems.

Y. Zhang et al. / Atmospheric Environment 60 (2012) 632e655636
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a much greater computational demand in terms of CPU time and
disk storage required.

Compared with traditional air quality modeling for research-
grade and regulatory applications, RT-AQF has its unique tech-
nical challenges and time requirements, and involves a number of
real-time operational issues that did not exist before. Backcasting is
driven by regulatory guidance and compliance aiming at repro-
ducing historic pollution episodes with a high accuracy, RT-AQF is
driven by societal pressures tominimize the human, environmental
and economic impacts of air pollution aiming at producing warn-
ings of high pollutant concentrations that will likely pose imme-
diate health threats to the population. This difference leads to
differences in many aspects of backcasting and RT-AQF. For
example, backcasting often uses the best available model treat-
ments to reproduce the species concentrations from a historic
pollution episode; RT-AQF typically uses simplified, optimized
options for dynamics, chemistry, and physics treatments that are
fast enough yet reasonably accurate to meet time requirements for
operational forecasting.RT-AQF often applies special techniques
(e.g., bias correction, Kang et al., 2008), to achieve accuracy and
computational efficiency in a very short turnaround time, which
are often not needed for backcasting. While backcasting generally
has no specific time window requirements, RT-AQF requires a fast
short-term prediction on a day-by-day basis. This time pressure
dictates the implementation of a fully automated system to
download and preprocess real-time (or near real-time) datasets for
RT-AQF model set up and simulations and the use of a fast set of
model options for an efficient deployment of RT-AQF. For product
evaluation, while RT-AQF products can be evaluated using evalua-
tion protocols for traditional AQMs, it is more meaningful to use
categorical evaluation with threshold statistics (e.g., probability of
detection, false alarm ratio) (e.g., McHenry et al., 2004; McKeen
et al., 2005, 2007, 2009; Kang et al., 2008), because the primary
value of RT-AQFs is their guidance for issuing health advisories and
alerts of an air pollution episode and the categorical indices
determine the likelihood of such an episode. The end users for
RT-AQF products include researchers, forecasters, regulators, deci-
sion makers in health, environmental, meteorological, and military
agencies, polluters (e.g., industrialists, manufacturers, residential
woodburners, car users), the public, the media (e.g., newspapers
and other printed medias, television, radio, phone, pager, and
internet), and the commercial sector (e.g., health insurance
industry) (Dabberdt et al., 2006), which involve much larger
communities than those of backcasting. RT-AQF requires a specific
information technology infrastructure that is not always needed
for backcasting (e.g., web-based interfaces, the construction of
application-specific and/or client-oriented datasets, and a readily
access to forecast products).

RT-AQF can be made for the short- or long-term, depending on
the objective of the applications (Dabberdt et al., 2006). The short-
term forecasts (1e5 days) will predict concentrations of pollutants
and can be used daily to inform the general public about the
potentially harmful conditions and to take preventive actions to
reduce exposures and emissions. The long-term forecasts (>1-yr)
will provide long-term variation trends of pollutants and their
correlationswith forecasted emissions andmeteorology that can be
used to guide the development of State Implementation Plans for
the designated non-attainment regions. Such long-term forecasts
for greenhouse gases can also be used for global climate change
mitigation. This review focuses on short-term RT-AQF.

1.3.2. Forecasting products
The RT-AQF efforts since the 1990s have focused primarily on O3

(e.g., Cope et al., 2004; McHenry et al., 2004; McKeen et al., 2005)
and have only recently been expanded to include PM2.5 and PM10

(e.g., McKeen et al., 2007, 2009; Chuang et al., 2011) Some also
forecast other pollutants such as SO2, NOx, CO, VOCs, air toxics (e.g.,
benzene and 1,3-butadiene), and dust (e.g., Cope et al., 2004;
Baklanov et al., 2007; Kaminski et al., 2008; Kallos et al., 2009;
Elbern et al., 2010). For example, in Europe, NO2 is included because
of common exceedances of the air quality standard. Because there
was no exceedances of the annual NO2 standard, NO2 has typically
not been included in the U.S., although the recent promulgation of
a 1-h average near-source NO2 standard may soon generate some
interest for NO2 forecasting in North America. The forecast products
are issued in terms of spatial maps or site-specific values of hourly
concentrations and time-averaging concentrations (e.g., maximum
8-h average concentrations based on the U.S. NAAQS), as well as
AQI. Eder et al. (2010) described approaches to use national RT-AQF
guidance to develop local AQI forecasts. The AQI used in the U.S. is
a dimensionless, six-color-coded index for reporting daily air
quality to the public in a manner as easily understood as weather
forecasts (U.S. EPA, 2009). It provides a simple, uniform system to
relate daily forecasted levels of criteria pollutants (e.g., O3, PM, NO2,
CO, and SO2) to health advisories and alerts for sensitive groups and
the general public and suggests actions to reduce exposure.
Table A1 in the supplementary material shows the AQI for O3 and
PM that was established by the U.S. EPA (U.S. EPA, 2009; www.
airnow.gov). The AQI converts a forecasted pollutant concentra-
tion to a number on a scale of 0e500. A value of 100 generally
corresponds to the NAAQS established for each pollutant under
the Clean Air Act. Values below 100 are considered satisfactory.
Values above 100 indicates that the air is unhealthy and poses
a health concern. For example, the 100e200 level may trigger
preventive actions such as limiting certain activities and enforcing
potential restrictions on industrial activities by state or local
officials.

A European AQI, the Common Air Quality Index (CAQI) was
developed to compare air quality in different European cities
(Elshout and Léger, 2007). An important feature of CAQI is that it
accounts for both urban background monitoring conditions at city
background sites and traffic (i.e., near-source) pollution at/near
traffic monitoring sites. The background index indicates the
outdoor air quality in the city experienced by the average citizen.
The obligatory background index comprises NO2, PM10, and O3,
with CO and SO2 as auxiliary components. The traffic index indi-
cates air quality in busy streets, which is generally the poorest air
quality in the city. Citizens living, working, and visiting these
streets as well as those in vehicles are all affected. The obligatory
traffic index comprises NO2 and PM10, with CO as an auxiliary
component. The two indices provide an improved assessment of
current air quality over city averages, because some monitoring
networks are designed to monitor areas of poor air quality and
others provide an average city picture. CAQI has 5 levels of pollu-
tion, using a scale of 0e25 (very low), 25e50 (low), 50e75
(medium), 75e100 (high), and >100 (very high) and the match-
ing colors are green, light green, yellow, red, and dark red,
respectively.

2. Techniques and tools of RT-AQF and their advantages/
limitations

Existing RT-AQF techniques and tools have various levels of
sophistication and forecasting skills. They can be grouped into three
categories: simple empirical approaches (also referred to as Criteria
or simple rules of thumb), parametric or non-parametric statistical
approaches, and more advanced, physically-based approaches.
Some of them have been reviewed with varying levels of details in
the literature (e.g., Wayland et al., 2002; U.S. EPA, 2003; Cope and
Hess, 2005; Schere et al., 2006; Menut and Bessagnet, 2010;
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Kukkonen et al., 2011). Table 2 summarizes major techniques for
RT-AQF.

2.1. Simple empirical approaches

The persistence method is based on the assumption that today’s
observed pollutant level is tomorrow’s forecasted value (U.S. EPA,
2003). As such, it requires yesterday’s air quality data. This
method is the quickest approach among all RT-AQF techniques. It
works well under a stationary condition during which a consis-
tently low or high pollution episode occurs but fails at the begin-
ning or the end of the episode because it cannot handle abrupt
change of weather, emissions, and air quality. Thus, it has a low
accuracy from a long-term RT-AQF perspective and is primarily
used as a reference (or baseline) by other methods (e.g., McHenry
et al., 2004; McKeen et al., 2005, 2007, 2009).

Climatology is based on the hypothesis that air quality is highly
dependent on weather, and air quality climatology is thus analo-
gous to weather climatology. This method is computationally very
fast. It uses historical frequency of pollutant events to guide and

bound RT-AQF. It requires historical (>2e5 yrs) air pollutant data.
Because of the averaging nature of the climatology, this method
cannot account for abrupt changes in air quality due to changes in
emissions (e.g., forest fires, sudden release of air toxics) and
weather patterns that did not occur historically. The accuracy is
low. It is not a stand-alone method and is mainly used to guide RT-
AQFs derived from other methods (U.S. EPA, 2003).

Empiricism (or criteria or simple rules of thumb) is based on the
assumption that thresholds (i.e., criteria) of forecasted meteoro-
logical variables can indicate future high pollutant concentrations
(Wayland et al., 2002). When parameters that influence pollution
are forecasted to reach a threshold, high pollutant concentrations
are forecasted. This method requires observed and forecasted
upper-air and surface meteorological and air quality data. It is
moderately accurate. However, it cannot forecast exact concentra-
tions and does not work for pollutants that depend weakly on
weather (e.g., CO). This method relies on a strong correlation
between forecasted pollutant (e.g., O3) and meteorological vari-
ables (e.g., temperature), which may not always hold as warm
temperatures are necessary but not sufficient for the formation of

Table 2
Major techniques and tools for RT-AQF.

Strength Limitation

Simple Empirical Approaches
Persistence Computationally fast; accurate during a static ambient conditions;

simple to use and requires little expertise; low operational cost
Cannot handle abrupt change of weather, emissions and
air quality; low accuracy; not a stand-alone method

Climatology Computationally fast; helps guide and bound forecasts derived
from other methods; Simple to use and requires little expertise;
low operational cost

Cannot handle abrupt change of air quality; low accuracy;
not a stand-alone method

Empiricism Computationally fast; an effective screening method for high
pollution events; simple to use; low operational cost

Cannot forecast exact concentrations; does not work for
pollutants that depend weakly on weather; moderate
accuracy

Parametric (Statistical) Models
Classification and Regression

Trees (CART)
Computationally fast; works well for a given site; automatically
differentiates between days with similar pollutant concentrations;
requires modest expertise; low operational cost; moderate/high
accuracy

Cannot accurately predict extreme concentrations; limited
use due to limited observations and large local-scale
variations of concentrations

Regression Methods Computationally fast; works well for a given site; commonly
used and easy to operate; produces generally good forecasts;
requires modest expertise; moderate operational cost;
moderate/high accuracy

Cannot accurately predict extreme concentrations; the
linear regression cannot handle non-linearity of the
chemical system; limited use due to limited observations
and large local-scale variations of concentrations

Artificial Neural Networks
(ANNs)

Capacity to learn from data; works well for a given site; can
handle nonlinear and chaotic chemical system at a site; requires
modest expertise; moderate operational cost; moderate/
high accuracy; computationally fast

Cannot accurately predict extreme concentrations; limited
use due to limited observations and large local-scale
variations of concentrations; poor generalization
performance; moderate/high accuracy and operational cost

Fuzzy Logic Method (FL) Capacity to represent inherent uncertainties of human knowledge;
can handle non-linearity and chaotic chemical system; requires
modest expertise; moderate/high accuracy; moderate operational
cost

Limited use due to limited observations and large local-scale
variations of concentrations; poor generalization
performance; needs a substantial amount of observational
data; the computational complexity due to large number
of inappropriate rules

Kalman Filter Method Provides response prediction and estimation, and associated
uncertainties; allowing time dependence of parameters and
components of the time series can be decomposed

Does not perform well for highly non-linear systems

Advanced, Physically-Based Approaches
Deterministic (CTM) Models Prognostic time- and spatially-resolved concentrations under

both typical and atypical scenarios and in areas that are not
monitored; scientific insights into pollutant formation processes,
accounts for the air parcel history including transport issues;
does not require a large quantity of measurement data;
moderate/high accuracy

Biases due to imperfect and missing model treatments and
inaccuracies and uncertainties in meteorological and
emissions predictions and model inputs; Computationally
expensive; a need for a high speed computer system;
high-level of expertise; moderate/high operational cost

CTMs with Bias Correction
Techniques

Combines merits of deterministic models and statistical models
(or other techniques); high accuracy

Bias correction may be effective only for systematic biases
and may hinder model improvement needs; computationally
expensive and complex; a need for a high speed computer
system; high-level of expertise; high operational cost

Ensemble and Probabilistic
Methods

Improved forecast skills compared to a single member; can
handle uncertainties in AQF; provides an estimate of likelihood
of an occurrence of an event on a scale from 0 to 1

Observational errors are not always accounted for; inherent
limitations associated with individual ensemble model
member; accuracy sensitive to weighting factors;
computationally very expensive and complex; a need for
supercomputer system; high-level of expertise; very high
operational cost
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high O3; furthermore, PM species respond differently to tempera-
ture changes. Despite these limitations, this method has been
commonly used in many RT-AQF programs as a primary method or
combined with other methods to screen initial RT-AQFs and
determine whether the situation warrants a more quantitative
RT-AQF using more sophisticated methods.

2.2. Parametric/non-parametric statistical approaches

Parametric or non-parametric statistical methods are based on
the fact that weather and air quality variables are statistically
related. It uses different functions (e.g., regression or trained neural
network systems) to forecast pollutant concentrations that depend
on external conditions. The commonly-used methods include
classification and regression trees (CART) (e.g., Burrows et al., 1995),
regression method (RM) (e.g., Cobourn and Hubbard, 1999;
Cobourn, 2007), artificial neural networks (ANNs) (e.g., Prybutok
et al., 2000; Pérez and Reyes, 2006), fuzzy logic (FL) method (e.g.,
Jorquera et al., 1998; Shad et al., 2009), and Kalman filter (KF)
method and its variants (e.g., extended Kalman filters (EKF),
square-root filters, ensemble Kalman filter (EnKF)) (e.g., van der
Wal and Jansen, 2000; Zolghadri and Cazaurang, 2006). CART
uses a decision tree and RM uses a regression equation to predict
concentrations based on values of various meteorological and air
quality parameters. ANNs and FL are artificial intelligence-based
techniques. ANNs use simplified mathematical models of brain-
like systems to enable a structure to simulate intelligent behavior
in computers. FL uses a form of algebra with a range of values in
terms of logical variables that can have continuous values between
0 and 1 (false or true, respectively) to represent varying degrees of
truthfulness and falsehood (i.e., partially true or false). The main
difference between FL and ANNs is that FL is a mathematical tool to
deal with the uncertainties in human perception and reasoning, it
can thus provide some insights into the model, whereas ANNs are
fast computation tools with learning and adaptive capabilities.
Kalman filtering is an efficient recursive computational solution for
tracking in real time a time-dependent state vector with noisy
evolution equation and with noisy measurements.

The statistical approaches usually require a large quantity of
historical measured data under a variety of atmospheric conditions
(e.g., 2e3 yrs observed O3 or PM2.5 concentrations). They are
generally more suitable for the description of complex site-specific
relations between concentrations of air pollutants and potential
predictors, and often have a higher accuracy, as compared to
deterministic models. KF provides not only the response predic-
tions but also their associated uncertainties through the calculation
of their variances and covariances. Some methods (e.g., ANNs and
FL) can handle non-linearity, whereas some cannot (e.g., KF). They
have several common drawbacks. First, they are usually confined to
the area and conditions present during the measurements and
cannot be generalized to other regions with different chemical and
meteorological conditions. Second, they cannot predict concen-
trations during periods of unusual emissions and/or meteorological
conditions that deviate significantly from the historical record
(Stockwell et al., 2002). Third, they cannot capture the contribution
of distant weather-dependent sources and circumstances favorable
for the formation of secondary pollutants because of the use of an
average relationship between local concentrations and local
atmospheric conditions. Fourth, the forecast accuracy typically
depends on the skill of commonly-used meteorological predictors,
which usually neglect (e.g., morning inversion, regional pollutant
transport) or use simplified parameterizations (e.g., turbulence,
convection, and precipitation) for some meteorological processes
that are important to the evolution of air pollutants (Ryan, 1995).
Fifth, the nature of statistical modeling does not enable better

understanding of chemical and physical processes. These statistical
models provide neither the direct linkages between precursor
emissions and resultant pollution nor the interrelationships among
multiple pollutants (i.e., the interactions among pollutants that
may potentially exacerbate one pollution problem while another
problem is being alleviated). Explicit treatments for such linkages
and interactions in RT-AQF models are essential to the enhance-
ment of understanding of the physical-chemical system, the
improvement of short- and long-term RT-AQF skill, and the
development of integrated emission control strategies for multi-
pollutants.

Various statistical approaches have been applied to RT-AQF
since the late 1970s. These include multiple linear regression
(e.g., Wolff and Lioy, 1978; Stadlober et al., 2008; Genc et al., 2010),
CART (e.g., Burrows et al., 1995), ANNs (e.g., Pérez and Reyes, 2006;
Li and Hassan, 2010), FL systems (e.g., Shad et al., 2009; Alhanafy
et al., 2010), nonlinear regression (NLR) (e.g., Cobourn and
Hubbard, 1999), hybrid NLR (Cobourn, 2007), and KF (e.g.,
Chenevez and Jensen, 2001; Hoi et al., 2008). These techniques
showed some RT-AQF skill. The best techniques that can handle
nonlinearities and interactive relationships include CART, ANNs, FL,
and NLR, which are more accurate than linear regression (e.g.,
Comrie, 1997; Chaloulakou et al., 2003). Some studies (e.g., Dutot
et al., 2007) showed that ANNs can outperform a CTM such as
CHIMERE. To overcome their limitations, ANNs may be combined
with other methods (e.g., Diaz-Robles et al., 2008).

2.3. Advanced physically-based approaches

Deterministic models of air quality (also referred to as chemical
transport models (CTMs) or AQMs) explicitly represent all major
meteorological, physical, and chemical processes that lead to the
formation and accumulation of air pollutants by solution of the
conservation equations for the mass of various species and trans-
formation relationships among chemical species and physical
states (Wayland et al., 2002). The forecasting system requires
gridded meteorological fields, emissions, and chemical ICONs and
BCONs. Compared with statistical methods, this approach has
several strengths. First, it is capable of forecasting temporally- and
spatially-resolved concentrations under both typical and atypical
scenarios and pollutant concentrations in areas that are not
monitored. Second, it is physically-based and provides scientific
understanding of pollutant processes; thus, it can address issues
that cannot be handled by other forecasting methods such as long-
range transport of air pollutants, intricate interplay among mete-
orology, emissions, and chemistry, and changes in air quality under
different meteorological and emission scenarios. Third, it offers
a moderate to high accuracy, when all influential processes are
accurately represented in the model. Fourth, it does not require
a large quantity of measurement data. There are several drawbacks.
First, it demands sound knowledge of pollution sources and
processes governing their evolution in the atmosphere, making the
development of such models rather difficult and costly. This crucial
knowledge is often limited and/or insufficient, and in some cases,
the processes may be too complex to be easily represented in
a model. Approximations and simplifications are, thus, often made
in CTMs. Such imperfect representations of some atmospheric
processes (e.g., SOA formation) or missing treatments in current
models often lead to inaccuracies and biases in forecasted
concentrations. Second, the accuracy of RT-AQF depends on the
accuracy of meteorological predictions, emission estimates, and
other model inputs such as ICONs and BCONs. Biases in such
predictions and uncertainties in model inputs can be propagated
into RT-AQFs. Third, it is computationally expensive and requires
a high-speed computer system with a large memory and disk
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storage. Despite these constraints, the use of a coupled
meteorologyechemistry model for RT-AQF represents a significant
advancement in routine operational RT-AQFs and would greatly
enhance understanding of the underlying complex interplay of
meteorology, emission, and chemistry. Since 1990s, RT-AQF
systems based on CTMs have been developed rapidly and are
currently in operation in many countries, including Australia,
Canada, Japan, U.S., France, Denmark, Germany, Norway, U.K., Spain,
Belgium, Turkey, the Netherlands, Chile, and China. Progress in CTM
development and computing technologies has allowed daily
RT-AQFs using simplified (e.g., Vautard et al., 2001b) or more
comprehensive 3-D CTMs, such as offline-coupled (Tilmes et al.,
2002; Honoré et al., 2008; Schaap et al., 2008; Chen et al., 2008;
Baldasano et al., 2008; McKeen et al., 2009), and online-coupled
meteorologyechemistry models (e.g., Grell et al., 2005; de Freitas
et al., 2005; Baklanov et al., 2008; Flemming et al., 2009; Chuang
et al., 2011). Model evaluation demonstrates that such a modeling
approach has skills consistent with or better than current statistical
forecasting tools (McHenry et al., 2004; Manders et al., 2009).

The use of offline-coupled meteorology and AQMs does not
permit the simulation of meteorologyechemistry feedbacks such
as aerosol feedbacks to radiation and photolysis, which are
important and may affect the next hour’s air quality and meteo-
rological predictions (Grell et al., 2004, 2005; Zhang, 2008; Zhang
et al., 2010b; Baklanov, 2010). Such systems may introduce biases
in RT-AQF. For example, Otte et al. (2005) and Eder et al. (2006)
reported a poor performance of their offline coupled Eta/CMAQ
modeling system during cloudy periods due to neglecting aerosol
feedbacks to radiation and cloud formation processes. Furthermore,
atmospheric information at a time scale smaller than the output
time interval of the meteorological model (e.g., 1-h) is lost in the
offline-coupled model systems (Grell et al., 2004; Zhang, 2008).
Online-coupled models are increasingly used for applications in
which the feedbacks may be important (e.g., locations with high
frequencies of clouds and large aerosol loadings), the local scale
wind and circulation system change quickly, and the coupled
meteorologyeair quality modeling is essential for accurate model
simulations (e.g., RT-AQF or simulating the impact of future climate
change on air quality). Compared with offline AQMs, online models
can provide more realistic treatments of the atmosphere, particu-
larly in regions with a fast local circulation or a high aerosol loading
and cloud coverage, where meteorology and radiation may be
modified by the presence of chemical species through various
feedback mechanisms. Therefore, an RT-AQF system that is based
on an online-coupled meteorologyechemistry model can better
represent the real atmosphere and thus provide more accurate
RT-AQFs.

Given inherent limitations of CTMs, a number of methods have
been developed to combine their use with bias correction tech-
niques such as statistical models or data assimilation systems.
Conceptually, the approach of a CTM combined with a statistical
model is similar to the Model Output Statistics (MOS) (Glahn and
Lowry, 1972) or a downscaling method (Wilby and Wigley, 1997)
that is often used to correct biases in weather forecasting at
specific sites. In this method, the linear regression model is first
developed between a set of variables from the CTM and an
observed variable and then used to correct forecast biases for
a given site (e.g., Wilson and Valée, 2003; Honoré et al., 2008).
This approach combines the strengths of CTMs and advanced
observation-based techniques, thus it can have a greater accuracy
than either method alone. However, the bias correction may not
be effective for random errors. It may hinder the identification of
problematic areas and model improvement needs. In addition,
this method is computationally expensive and complex, and
requires a high-level of expertise. As one of the earliest efforts

exploring this method, Chenevez and Jensen (2001) applied
a statistical after-treatment (i.e., an adaptive linear regression
model with an optimal state estimator algorithm) of the 3-D
RT-AQF to adjust the next 48-h O3 forecasts at specific sites
where real-time O3 measurements are available. They showed
that this method can give higher correlation coefficients and
smaller biases/RMSEs than 3-D model raw outputs. In a post-
processing step to produce reanalysis pollution maps, Honoré
et al. (2008) trained MOS using past observations and then
applied it to correct O3 forecasts from the Prev’air RT-AQF system
and reported large improvements in specific areas and for high O3
levels. Konovalov et al. (2009) combined deterministic and
statistical approaches for PM10 forecast in Europe by making
statistical post-processing of forecasts from a CTM (i.e., CHIMERE)
using PM10 monitoring data. They found that this approach
significantly improved the deterministic PM10 forecasts with
a maximum reduction of RMSE by 50%, and the maximum
increase of the coefficient of determination (r2) of more than 85%.

Several data assimilation techniques have been developed and
used to improve/optimize ICONs, BCONs, emissions, and meteo-
rology in conjunction with a CTM for RT-AQF (e.g., Elbern and
Schmidt, 2001; Blond and Vautard, 2004; Chai et al., 2007;
Carmichael et al., 2008; Wu et al., 2008). Blond and Vautard (2004)
used a statistical interpolation method that combines O3 predic-
tions from CHIMERE with surface O3 measurements for RT-AQF of
O3 for western Europe and showed that the RMSE was reduced by
w1 ppb (w30% relative to the raw forecasts) for 1e2 days forecasts.
Denby et al. (2008) applied two data assimilation techniques for
regional PM10 forecasts using a 3-D RT-AQF model in Europe:
statistical interpolation (SI) based on residual kriging after linear
regression of the model, and EnKF. After assimilation, the root-
mean square discrepancy between analyses and the observations
from validation stations was reduced from 16.7 to 9.2 mg m�3 using
SI and to 13.5 mg m�3 using EnKF, and r2 increased from 0.21 to 0.66
using SI and to 0.41 using EnKF. Comparedwith a classical statistical
approach (e.g., MOS), the data assimilation approach allows the use
of real-time or near real-time measurements for the same day of
the PM10 forecasts.

Another approach developed to overcome limitations of a CTM
is probabilistic forecast (e.g., Wilczak et al., 2006; Delle Monache
et al., 2008). There is a growing trend to shift from purely deter-
ministic forecasts to probabilistic forecast. Given the inherent
uncertainty of predictions of a CTM, probabilistic forecasts have an
advantage because they provide an estimate of likelihood of an
occurrence of an event (Pagowski and Grell, 2006). The simplest
probabilistic forecasts are associated with a dichotomous (e.g., Yes/
No) predictand. Multi-category probabilistic forecasts can provide
several categories of the predictand by using a consistent set of
probability values. Forecasts based on ensembles represent the
third type of probabilistic forecast, in which the full distribution of
probabilities, rather than categories (‘‘maybe’’ versus ‘‘yes’’ or ‘‘no’’),
is approximated. Ensembles can handle uncertainties but require
knowledge of model errors and uncertainties in model inputs, and
different models. Also, they require a powerful computer system,
a high-level of expertise, and very high operational cost. The
regional RT-AQF with ten RT-AQF models over Europe within the
MACC project (http://gems.ecmwf.int/d/products/raq/) represents
the operational state of the art for the generation of an ensemble of
forecasts.

Because of the increasing maturity of CTMs and availability of
computer resources, many organizations in many countries can
now afford to develop RT-AQF systems that are based on 3-D CTMs.
Such physically-based RT-AQF systems represent the state of the
science and will likely become prevalent forecasting approaches
and tools and will be reviewed in the remaining sections.
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3. Overview of major 3-D RT-AQF models on regional and
global scales

3.1. Model systems, components, and application scales

A number of 3-D global and regional models have been
deployed for RT-AQF. Table 3 summarizes 9 global and 36 regional
RT-AQF models that are currently used in Australia, North America,
South America, Europe, and Asia in terms of component models
(i.e., meteorological models, air quality models, microscale models),
spatial scale, and coupling between meteorology and chemistry.
The full names of models and associated organizations are provided
in a list of acronyms and symbols in an Appendix in the supple-
mentary material. Among them, four global models (i.e., GEM-AQ,
LMDzt-INCA, ECHAM5, and ECMWF-IFS-CTMs) and four regional
models (i.e., WRF/Chem, WRF/ChemeMADRID, GEM-MACH15, and
CFORS) are online-coupled models.

For global models, meteorological fields are produced by rean-
alysis data such as National Centers for Environmental Prediction
(NCEP) or general circulation models such as GEM, ECMWF/IFS,
LMDzt, ECHAM5. In unified online-coupled models such as
GEM-AQ and ECHAM5, a chemistry module is incorporated into
a GCM. In offline or separate online-coupled models, an AQM is
driven by data from meteorological reanalysis (e.g., GOCART) or
used in conjunction with a GCM (e.g., MOCAGE, MOZART-3, TM5),
respectively. Among the 9 global RT-AQFmodels, ECMWF/IFS-CTMs
that is being developed by ECMWF offers an integrated flexible,
advanced global forecastingmodeling tool with data assimilation of
satellite observations. In ECMWF/IFS-CTMs, the IFS is coupled via
a coupler software to one of the global CTMs: MOCAGE, MOZART-3,
or TM5 for global forecast and assimilation of reactive chemical
species. The selection of multiple CTMs and their ensemble results
provides a range and an indication of the robustness of the fore-
casts. The coupled system can directly utilize the IFS 4D-Var algo-
rithm to assimilate atmospheric observations (Flemming et al.,
2009). Three out of 9 global models have been applied to regional
domains for RT-AQF. While GEM-AQ and MOCAGE were directly
downscaled to a regional domain at a finer horizontal grid resolu-
tion (Neary et al., 2007; Rouïl et al., 2009), the global-regional
RT-AQF model system (GR-RT-AQF) was used to provide ICONs
and BCONs to drive a regional unified online-coupled model, WRF/
Chem (Takigawa et al., 2007).

For regional models, many of them use the most popular
meteorological models such as MM5, WRF, and ECMWF/IFS. Many
AQMs (e.g., CHIMERE and Polyphemus/Polair3D) can be driven
by different meteorological models. The most commonly-used
regional AQMs include CMAQ, WRF/Chem, and CHIMERE. WRF/
Chem (Grell et al., 2005) and WRF/ChemeMADRID (Zhang et al.,
2010a) include the most coupled meteorological, microphysical,
chemical, and radiative processes and allow the simulation of
aerosol direct, semi-direct, and indirect effects, thus representing
the state-of-the-science online-coupled regional RT-AQF models.
Since its first release in 2002, WRF/Chem has been further devel-
oped and improved by many researchers in the community (e.g.,
Fast et al., 2006; Zhang et al., 2010a; Shrivastava et al., 2010) and
increasingly applied to many regions of the world (e.g., Tie et al.,
2009; Fast et al., 2009; Misenis and Zhang, 2010; Zhang et al.,
2010a,b, 2012; Li et al., 2011). Compared to WRF/Chem, WRF/
ChemeMADRID includes two additional gas-phase mechanisms
(i.e., the 2005 version of carbon bond gas-phase mechanism (CB05)
and the 1999 Statewide Air Pollution Research Center gas-phase
mechanism (SAPRC-99)), one aerosol module (i.e., the model of
aerosol dynamics, reaction, ionization, and dissolution (MADRID)),
one aerosol activation scheme (i.e., Fountoukis and Nenes, 2005),
and several nucleation algorithms (e.g., Sihto et al., 2006;

Merikanto et al., 2007; Yu, 2010). CB05 and SAPRC-99 are coupled
with MADRID and two existing aerosol modules (i.e., the Modal
Aerosol Dynamics Model for Europe/the Secondary Organic Aerosol
Model (MADE/SORGAM) and Model for Simulating Aerosol Inter-
actions and Chemistry (MOSAIC)) as well as the CMU aqueous-
phase chemistry in WRF/ChemeMADRID (Zhang et al., 2010a, c,
2012). WRF/ChemeMADRID has been applied retrospectively
over the continental U.S. and its sub-regions (e.g., Zhang et al.,
2010a, 2012), and Europe (Zhang et al., 2011) and also for RT-AQF
at a horizontal resolution of 12-km over the southeastern U.S.
since summer 2009 (Chuang et al., 2011). Similar to the global
ECMWF-IFS-CTMs, the French national air quality forecasting and
monitoring system, Prev’air, consists of three models: CHIMERE,
MOCAGE, and Polyphemus/Polair3D (http://www.Prev’air.org/;
Rouïl et al., 2009), which allows ensemble RT-AQFs. Since spring
2003, Prev’air has been in operational forecasting. Case studies of
RT-AQFs with WRF/ChemeMADRID in the eastern U.S. and Poly-
phemus in Europe are given in Section 7. Several RT-AQF systems
are being used by regional air quality agencies (e.g., the Associa-
tions agréées de surveillance de la qualité de l’air, AASQAs) in
France (e.g., AIRPARIF for the Paris region); those regional RT-AQF
systems typically use CHIMERE.

Among 36 regionalmodels, five are suitable for urban/local scale
applications at a spatial resolution of 1 km or less. These models
include THOR, the OPerational version of the Atmospheric
Numerical pollution model for urban and regional Areas (OPANA),
and four Urban Air Quality Information and Forecasting Systems
(UAQIFS) models (i.e., UAQIFS e Norway, UAQIFS-Finland, UAQIFS-
Italy2, and UAQIFS-Denmark). THOR includes the background
urban model (BUM), the Operational Street Pollution Model
(OSPM), and the Danish Rimpuff and Eulerian Accidental release
Model (DREAM). OPANA includes the microscale air quality
modeling system (MICROSYS) to forecast air concentrations for
urban areas with street level details at a 5e10 m spatial resolution
and up to 200e300m in height over themaximumbuilding heights
in one 1-km grid cell that is nested in a regional simulation domain
(San José et al., 2006, 2009). The UAQIFS models were developed as
part of the Integrated Systems for Forecasting Urban Meteorology,
Air Pollution, and Population Exposure e UAQIFS (FUMAPEX-
UAQIFS) project sponsored by the EU (http://fumapex.dmi.dk;
Baklanov, 2006). They include six separate UAQIFS that are further
developed and applied in six cities in Europe. While these UAQIFS
use advanced meteorological models such as HIRLAM and RAMS,
the level of sophistication in AQMs varies from the simplest
dispersion model with no or very simple chemistry, to the most
complex 3-DAQMs such as FARM and CAMx. Their common feature
lies in that they integrate the latest developments in urban mete-
orology, air quality, and population exposure modeling via an
offline coupling approach to enhance the model’s forecasting
capability in urban areas. The enhanced modeling capabilities
include one ormore areas in urban RT-AQF, urbanmanagement and
planning, public health assessment and exposure prediction, and
urban emergency preparedness. One example application of an
UAQIFS is given in Section 7.3.

3.2. Model input, output, and horizontal grid resolution

Table A2 summarizes model inputs and Table 4 summarizes
forecast products and horizontal grid resolutions that are used in
these models. For global models, anthropogenic emissions are
mostly based on well known global emission inventories (e.g., the
Global Emissions Inventory Activity (GEIA) and the Emission
Database for Global Atmospheric Research (EDGAR)), and in some
cases based on emission inventories developed in international
collaborative projects (e.g., GEMS- or Megacities: Emissions, urban,
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regional and Global Atmospheric POLlution and climate effects) or
by individual researchers (e.g., Cooke et al., 1999). Most global
models include either online or offline biogenic emissions. Some
models treat online or offline emissions for dust, sea salt, and dimethyl
sulfide (DMS). Only one model (i.e., LMDzt eINCA) treats emissions
of nitrous oxides (N2O) and methane (CH4). Chemical ICONs are
based on default settings (e.g., GOCART), 6-month spin up simu-
lations (e.g., GEM-AQ), and other global model outputs (e.g.,
ECHAM5). Zero chemical ICONs are used in FLEXPART and GR_RT-
AQF. Several global models constrained concentrations of some
species (e.g., O3, CH4, NO, NO2, HNO3, peroxynitrous acid (HNO4),
dinitrogen pentoxide (N2O5), NOy) for the upper boundary at the
top of the domain based on climatology or observations to over-
come the limitation associated with the lack of stratospheric

chemistry and stratospheric-tropospheric exchange processes.
These models provide 15e96 h RT-AQF at a horizontal grid reso-
lution with latitude and longitude of 0.9� � 0.9� to 2.5� � 3.75�,
with one exception for GEM-AQ, which can forecast up to 10 days.
One notable feature of GEM-AQ is its rotated variable resolution
grid with a uniform high resolution window at 0.1375� (w15-km)
that can be placed over any region of interest on a regional scale
(e.g., North America) (Neary et al., 2007), which makes GEM-AQ
a promising model for multiscale air quality modeling. The
RT-AQF products from global RT-AQF systems include gaseous
species (e.g., CO, SO2, NOx, O3, OH, HNO3, peroxyacytyl nitrate
(PAN), and VOCs), PM species (e.g., PM2.5, PM10, PM composition),
and aerosol optical/radiative properties (e.g., aerosol extinction
coefficient, AOD).

Table 4
Forecasting products and horizontal resolution of major RT-AQF model systems.

Organization Model System AQF Products Horizontal Grid Resolutions

Global Models
US/NASA GOCART 24e96 h AQF of conc.of PM composition, total

PM extinction, AOD due to SO2�
4 , dust, BC, OC, sea-salt, PM

2.5� � 2.5� or 1� � 1�

Canada/York Univ. GEM-AQ 5e10 days on global scale and 24e72 h on regional
scale for CO, SO2, NO2, and O3

Global: 1.5� � 1.5� or 0.9� � 0.9�; regional:
a rotated variable resolution

France/LMD LMDzt-INCA 72 h RT AQF of O3 and PM10 2.5� � 3.75�

The Météo France MOCAGE 72-h forecasts of O3, NO, NO2, CO, SO2, and PM10 2� � 2� at a global scale and 0.5� � 0.5� &
0.1� � 0.15� at a regional scale

US/NCAR, Germany/MPIC MATCH-NCAR 24-h forecasts of O3, NOx, CO, OH, HNO3, PAN, & VOCs 1� � 1�

Germany/MPIM ECHAM5 24-h forecasts of CO 2.8� � 2.8�

Norway NIAR/FLEXPART 72-h RT-AQF of CO, NOx, and SO2 1� � 1�

UK/ECMWF ECMWF-IFS-CTM 72-h RT-AQF of O3 and CO, CO2, PM2.5 and composition, AOD MOZART-3: 1.875� � 1.875� TM5 3� � 2�;
MOCAGE 2� � 2�

Japan-FRCGC GR-AQF 15-h forecasts for O3 Global: 2.8�; Japan: 15- and 5-km
Regional Models
Australian CSIRO AAQFS 24e36 h AQF of 25 species (e.g., O3, NO2, CO, SO2,

VOCs, PM1, PM2.5, PM10, visibility, and air toxics)
1e5 km

U.S./BAMS MAQSIP-RT & CMAQ CO, ethylene, NOy, O3, PM2.5, and PM2.5 composition 45-, 15-, and 5- km
U.S./WSU AIRPACT3 24e64 h forecasts of O3 and PM2.5 12-km
U.S./SUNY-Albany AQFMS 24-h forecasts of CO, NOx/NOy, SO2, VOC, HONO, HOx, O3, PM2.5 36- and 12-km
U.S./UI STEM-2K3 48-h AQF of CO, ethylene, NOy, O3, PM2.5, and PM2.5 composition 60-, 12-, and 4-km
US NOAA/EPA’s NAQFC 48-h AQF of CO, ethylene, NOy, O3, PM2.5, and PM2.5 composition 12-km
U.S. NOAA/ESRL WRF/Chem 48-h AQF of CO, ethylene, NOy, O3, PM2.5, and PM2.5 composition 12-, 27-, 36-km;
U.S./NCSU WRF/Chem-MADRID 48-h AQF of O3, PM2.5 and PM10 12-km
Canada//EC GEM-AURAMS 48-h AQF of CO, ethylene, NOy, O3, PM2.5, and PM2.5 composition 42-, and 28-km
Canada//EC GEM-CHRONOS 48-h AQF of CO, ethylene, SO2, NOy, O3, PM2.5, PM10, composition 21-km
Canada//EC GEM-MACH15 48-h forecasts of CO, SO2, NO2, O3, PM2.5, and PM10 15-km
France/AIRPARIFa 72-h forecasts of O3, NO2, PM10, PM2.5 Urban: 3-km; regional: 9-km
France INERIS CHIMERE 72-h forecasts of O3, NO, NO2, CO, SO2, PM2.5, and PM10 0.1� , 0.5� , 50-km
France/CEREA POLYPHEMUS 72-h RT-AQF of O3, NO2, PM2.5, and PM10 0.5�

Denmark DMU-ATMI THOR 72-h forecasts of O3, NO2, NOx, CO Local: 1-km; regional: 50-km
Denmark DACFOS 48-h forecast for GEMS and 36-h for DK of O3, NO, NO2,

CO, SO2, PM2.5, and PM10

0.2� for GEMS domain and 0.04� for
inner domain

FUMAPEX UAQIFS 24e72-h AQF. Products vary with the AQF models, typically
include SO2, NOx, CO, O3, benzene, PM2.5, PM10, radiative tracer
species, or a subset of them. Some forecasts human exposures
to ambient air and radioactive pollutants

Outer grid is 12e16 km, inner/single grid is
at 1e10 km, most with 2e3 levels of nesting

Germany/FRIUUK EURAD 72-h AQF of O3, NO, NO2, CO, C6H6, SO2, PM2.5, PM10 125-, 15-, and 5- km,
Norway/MET-NO EMEP-Unified 72-h AQF of O3, NO, NO2, CO, SO2, Rn-222, PM2.5, PM10 0.25�

Sweden/SMHI MATCH 72-h forecasts of O3, NO, NO2, CO, SO2, PM2.5, PM10 0.5�

Netherlands/TNO LOTOS-EUROS 72-h RT-AQF of O3, NO2, SO2, CO, PM2.5, PM10 0.25� (lon) � 0.125� (lat) or 0.5� � 0.25�

Finland/FMI SILAM v.4.5.4 54 to 72-h forecasts of O3, NO, NO2, CO, SO2, PM2.5, PM10, Rn;
120-h forecasts of pollen

0.2�

UK/AEA WRF/CMAQ 48-h forecasting of O3, CO, SO2, NO2, PM10 and PM2.5 50-, 10-km
UK/Met Office NAME-III 72-h forecasts of PM tracer 50-, 8-km
Spain/TUM OPANA v4.0 72-h forecasts of O3, NH3, NO2, CO, SO2, PM2.5, PM10 Local: 10-m, regional: 9-, 3-, 1-km
Spain/BSC-CNS CALIOPE 24e72-h forecasts of O3, NO2, CO, SO2, and PM10 12- and 4-km
Greece/UA SKIRON/TAPM 48-h forecasts of O3, NO2, SO2, SO

2�
4 , and dust 0.25 � 0.25�

Italy/CETEMPS ForeChem 72-h forecasts of O3, NO2, PM2.5, PM10, and dust 0.5� and 0.15�

Chinese IAP/CAS EMS-Beijing 72e96 h forecasts of O3, NO2, PM2.5, PM10, 81-, 27, 9, and 3-km
Japan Kyushu University CFORS 8-h AQF for SO2, CO, EC, aerosol, Al, fine mode nss-SO4,

222Radon, dust, AOD
80-km

Chile/Meteo Chile POLYPHEMUS 72-h forecast for O3 4-km

a There are several air quality systems used by regional air quality agencies (e.g., Association agréées de surveillance de la qualité de l’air (AASQAs)) and only the one for the
Paris region is given here as an example.
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Regional RT-AQF models typically use regional anthropogenic
emissions generated by GEMS-TNO/MEGAPOLI-TNO and the Euro-
pean Monitoring and Evaluation Programme Model (EMEP) over
Europe, the U.S. National Emissions Inventory and Canadian
inventories over North America, and the Transport and Chemical
Evolution over the Pacific (TRACE-P) and the Intercontinental
Chemical Transport Experiment-Phase B (INTEX-B) emissions over
Asia, as well as national and local emission inventories (e.g.,
Chinese National Environment Agency emission inventories) over
individual countries. These emissions are processed into
temporally-resolved gridded emissions with emission models such
as the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling
System and the High-Elective Resolution Modelling Emissions
System (HERMES). The RT-AQF models used by regional air quality
agencies such as AIRPARIF for the Paris region typically use
more accurate emission inventories developed based on local
information than the national RT-AQF systems such as Prev’air
for France. Despite the needs for real-time emissions for RT-AQF,
only a few RT-AQF models (e.g., MAQSIP-RT, NRT-AQFC, WRF/
ChemeMADRID, GEM-CHRONOS, CHIMERE, and Polyphemus/
POLAIR3D) use projected/forecasted anthropogenic emissions
for RT-AQF. For example, in NRT-AQFC, the anthropogenic emis-
sions are calculated with two approaches: a static projection
approach for emissions that are projected from historical data with
predetermined spatial and temporal variability (e.g., from area
sources), and an “online” approach for emissions with a strong
dependence on meteorology (e.g., from point, biogenic, and mobile
sources). For biogenic emissions, the Biogenic Emissions Inventory
System (BEIS) model is used inmostmodels. Biogenic emissions are
included as offline emissions in most models and as online emis-
sions in 7 out of 36 models. Online sea-salt and dust emissions are
included in some models. Inclusion of dust emissions improves
substantially the model skills in terms of both discrete and cate-
gorical statistics in regions where the influence of dust emissions
cannot be neglected (e.g., over southern Europe by Jiménez-
Guerrero et al., 2008). Many models do not include sources of
PM2.5 from wildfires.

Chemical ICONs are default settings that are based on clima-
tology or measurements in most models, and spin up simulations
and larger scale model outputs in some models. Chemical BCONs
are based on climatology or continental clean conditions for
most models and larger scale outputs for some models. These
models provide 24e72 h RT-AQF at horizontal grid resolutions of
1e125 km, with an exception for CFORS that provides 8-h AQF and
SILAM that provides 54e72 h forecasts of Radon, O3, NO, NO2, CO,
SO2, PM2.5, and PM10, and 120-h forecast for pollen. The models
used by regional air quality agencies such as AIRPARIF typically use
a finer spatial resolution (e.g., 3e9 km) than the national system
Prev’air (e.g., 50 km). All regional models except for three models
(i.e., MAQSIP-RT, THOR, and NAME III) forecast both gaseous and
PM species. MAQSIP-RT forecasts O3, THOR forecasts CO, NOx, and
O3, and NAME-III forecasts PM tracer. AOD is forecasted only by
CFORS. Among 36 models, three (i.e., UAQIFS e Norway, UAQIFS-
Finland, and UAQIFS-Italy2) provide forecasts of human expo-
sures to pollutants such as NO2, PM2.5, and PM10.

3.3. Chemistry and aerosol treatments

Table A3 summarizes the gas-phase chemistry, aerosol chem-
istry and dynamics, and cloud chemistry treated in these models.
The gas-phase chemistry used in global RT-AQFmodels ranges from
highly-simplified chemical mechanisms such as SO2 and DMS
oxidation by prescribed OH radical and nitrate radical (NO3) in
GOCART (Chin et al., 2003) to a detailed chemistry such as the
REactive Processes Ruling the Ozone BUdget in the Stratosphere

(REPROBUS) model mechanismwith 118 species and 350 reactions
used in MOCAGE in the ECMWF-IFS-CTMs system (Flemming et al.,
2009). Two gas-phase mechanisms that are commonly used in
regional AQMs are also used in two global models, i.e., the Regional
Atmospheric Chemistry Mechanism (RACM) in MOCAGE and the
Carbon BondMechanism-Version IV (CB-IV) in TM5 in ECMWF-IFS-
CTMs. SO4

2�, elemental carbon (EC), primary organic carbon (OC),
Naþ, Cl�, and dust are treated in GOCART, ECHAM5, MOCAGE, and
ECMWF-IFS-CTMs. Other models either include prescribed SO4

2�

concentrations only (e.g., LMDzt-INCA) or do not simulate PM (e.g.,
GR-RT-AQF). None of the nine global RT-AQF models simulate NO3

�

and secondary organic aerosol (SOA). The particle size represen-
tations are based on the modal approach with 1-mode for LMDzt-
INCA and 7-mode for ECHAM5, the sectional approach with 3e12
bins for some models (e.g., GOCART, GEM-AQ), and a combination
of sectional (for sea-salt and dust) and bulk (for remaining PM
species) approaches for ECMWF-IFS-CTMs. The detailed aerosol
microphysical processes such as nucleation, coagulation, and
condensation of sulfuric acid are treated only in GEM-AQ and
ECHAM5. Among 9 global RT-AQF models, only 4 models include
cloud chemistry.

The most popular gas-phase chemistry mechanisms used in
regional RT-AQF models include CB-IV, CB05, the carbon bond
mechanism e version Z (CBM-Z), SAPRC-99, the Regional Acid
Deposition Model Mechanism Version 2 (RADM2), RACM, and the
ADOM version 2 (ADOM-II). These mechanisms differ in several
aspects such as the number of species and reactions, the level of
complexity and lumping methods for organic species, and the
reaction rate/stoichiometry parameters. Among them, SAPRC-99
offers the most detailed chemistry with 80 species and 214 reac-
tions that can lead to high O3 formation due to high radical
concentrations and chemical reactivity. Some of these gas-phase
mechanisms were compared and evaluated in either box or 3-D
models (e.g., Gross and Stockwell, 2003; Faraji et al., 2008;
Luecken et al., 2008; Kim et al., 2009, 2011a; Zhang et al., 2012).
While these mechanisms give similar predictions for gaseous
concentrations in rural and clean conditions, the differences in
simulated O3 and NOy may be large under urban conditions due
mainly to different representations of organic chemistry and
different selection of kinetic data for inorganic chemistry. Differ-
ences in gas-phase mechanisms will lead to differences in
secondary aerosol formation. Kim et al. (2011b) reported less
than 1 mg m�3 (6%) differences in monthly-mean PM2.5 concen-
trations but with up to 26% differences in PM2.5 composition from
model simulations with the same aerosol module but different
gas-phase mechanisms (i.e., CB05 and RACM2). Zhang et al. (2012)
compared CBM-Z, CB05, and SAPRC-99 in WRF/ChemeMADRID
over the continental U.S. and found that different gas-phase
mechanisms led to different predictions of concentrations of O3
(up to 5 ppb), PM2.5 (up to 0.5 mg m�3), secondary inorganic PM2.5
species (up to 1.1 mg m�3), and organic PM (up to 1.8 mg m�3),
aerosol number concentrations (up to 41%), CCN (up to 58%), and
CDNC (up to 99.7%). These studies illustrated the potentially large
impact of gas-phase chemical mechanisms on overall model
predictions.

Twenty regional models treat aqueous-phase equilibrium and
kinetic reactions and one model (i.e., STEM-2K3) only treats equi-
librium partitioning of SO2, H2O2, and O3. For models with aqueous-
phase chemistry, the level of details varies from a highly-simplified
(e.g., one first-order oxidation of SO2) to the most comprehensive
mechanism (e.g., the Carnegie-Mellon University (CMU) aqueous-
phase mechanism with 50 aqueous-phase species, 17 aqueous-
phase ionic equilibria, 21 gas-phase/aqueous-phase reversible
reactions, and 109 aqueous kinetic reactions) that is used in one
model (i.e., WRF/ChemeMADRID). The CMU mechanism explicitly
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treats the oxidation of dissolved S(IV) by H2O2, O3, O2 catalyzed by
Fe3þ and Mn2þ, and radical species, as well as the non-reactive
uptake of HNO3, hydrochloric acid (HCl), ammonia (NH3), and
other trace gases.

Compared with global RT-AQF models, regional RT-AQF models
contain much more detailed aerosol treatments. All models except
for THOR and five UAQIFS models simulate SO4

2-, NO3
�, NH4

þ, EC, OC,
sodium and chloride. UAQIFS-Spain and UAQIFS-Denmark do not
simulate PM. Other models only simulate some PM species. Wind-
blown dust is simulated in 14 out of 36 models (e.g., ART-AQFS,
STEM-2K3, WRF/Chem, CHIMERE, SKIRON/TAPM). 21 out of 36
models simulate detailed aerosol chemistry and dynamics such as
thermodynamics for inorganic and organic aerosols, nucleation,
condensation, and coagulation. Three models (i.e., EMEP-Unified,
MATCH, and LOTOS-EUROS) only simulate thermodynamics for
inorganic aerosols, and GEM-CHRONOS simulates an additional
process, i.e., SOA formation using a fixed yield approach. Nine
models (e.g., ART-AQFS, MAQSIP-RT, THOR) do not simulate any
aerosol chemistry and dynamics.

Among the three CTMs in Prev’air, Polyphemus/Polair3D
contains drivers for simple forward run (forecast), ensemble fore-
cast, and various data assimilation methods and offers the most
detailed chemistry and aerosol treatments. For example, it includes
two aerosol models: a Modal Aerosol Model (MAM, Sartelet et al.,
2007) and a SIze REsolved Aerosol Model (SIREAM, Debry et al.,
2007). SIREAM simulates detailed aerosol chemistry and dynamic
processes using state-of-the-science algorithm. SOA formation is
simulated using either an improved version of the SORGAM model
(Kim et al., 2011b), which is based on an absorptive partitioning
theory and treats eight SOA classes (4 anthropogenic and 4
biogenic), or the AER/EPRI/Caltech (AEC) SOA model (Kim et al.,
2011a), which is based on a hydrophobic/hydrophilic molecule-
based gas-partitioning scheme. Currently, most SOA modules
used in most RT-AQF models do not take into account the hydro-
philic behavior of organic species and only a few account for SOA
formation from oxidation of gaseous precursors such as isoprene
and sesquiterpene.

4. Evaluation protocols and model performance of 3-D
RT-AQF models

4.1. Evaluation protocols

Two types of evaluations are typically conducted to evaluate
the model’s forecasting skills: discrete evaluation that uses a set of
statistical measures and categorical evaluation that uses a set of
categorical indices. Tables 5 and 6 summarize major statistical
measures and categorical indices commonly used, respectively.
Statistical measures and evaluation protocol for discrete evalua-
tion of RT-AQF are the same as those recommended by Seigneur
et al. (2000), U.S. EPA (2001), and Yu et al. (2006) for traditional
AQMs. The traditional statistical measures include correlation
coefficient (r), mean bias (MB), mean absolute gross error (MAGE),
RMSE, mean normalized bias (MNB), mean normalized gross error
(MNGE), normalized mean bias (NMB), normalized mean gross
error (NMGE), fractional bias (FB), and fractional gross error (FGE).
Some problems may arise with some of those traditional
measures. For example, overpredictions are artificially given more
weight than underpredictions when MNB/MNGE and NMB/NMGE
are used, because MNB and NMB can grow disproportionally for
overpredictions but are bounded by �1 for underpredictions
(Seigneur et al., 2000). A set of new statistical metrics was
therefore developed by Yu et al. (2006) based on the concept of
factors to overcome the limitations of the traditional measures.
These new metrics include the mean normalized factor bias

(MNFB), the mean normalized gross factor error (MNGFE), the
normalized mean bias factor (NMBF), and the normalized mean
error factor (NMEF). While MNFB and MNGFE are still subjected to
the dominance by the extremely low observational values in the
normalization, NMBF and NMEF provide the most robust statis-
tical measures, and are therefore recommended for operational
evaluation for model predictions (Yu et al., 2006). In addition,
peak accuracy measures (e.g., unpaired peak accuracy (UPA),
temporally-paired peak accuracy (TPPA), spatially-paired peak
accuracy (SPPA), and pair peak accuracy (PPA)), index of agree-
ment (IOA), and Brier score (BS) are often used in the discrete
evaluation. UPA quantifies the difference between the magnitude
of the peak observed and simulated values in the modeling
domain, regardless whether this occurs at the monitoring station
and time of the peak observed value. UPA tests the model’s ability
to reproduce the highest observed value anywhere in the region.
UPA is less useful as the two peak values may not occur at the
same location and time. TPPA, SPPA, and PPA provide more
stringent measures. TPPA tests the model’s ability to reproduce
the highest observed value at the hour of the peak observed value
at any location within the modeling domain. SPPA tests the
model’s ability to reproduce the highest observed value at the
monitoring station of the peak observed value at any hour. PPA
tests the model’s ability to reproduce the highest observed value
at the time and location of the peak observed value, which is the
most stringent measure among the four peak accuracy measures.
IOA provides a measure of how well the departure of the simu-
lated values from the observed mean matches with the departure
of observations from the observed mean. An IOA of 1 indicates
a perfect agreement. BS measures the average squared deviation
between predicted probabilities for a set of events and their
outcomes, so a lower score represents a higher accuracy. It is
a measure used frequently for probabilistic forecasts.

The traditional categorical indices include accuracy (A), critical
success index (CSI) or threat score (TS), probability of detection
(POD) (or hit rate (HRate)), bias (B), false alarm ratio (FAR), false
alarm rate (FARate), Heidke skill score (HSS), Pierce skill score
(PSS) (or true skill score (TSS) or Hansen and Kuipers discriminant
(HKD)), skill score (SS), and economic value (EV). A indicates the
percentage of forecasts that correctly predicts an exceedance or
a nonexceedance. CSI indicates the percentage of the forecasted
actual exceedances to all actual and forecasted exceedances. POD
or HRate indicates the percentage of the forecasted actual
exceedances to all actual exceedances. CSI is a more balanced
score because it takes into account both missed exceedances and
false alarms whereas POD does not take into account false alarms.
B judges if forecasts are underpredicted (<1, also referred to as
underforecasting, or “false negative”) or overpredicted (>1, also
referred to as overforecasting, or “false positive”). FAR measures
the percentage of times an exceedance was forecast when
exceedance did not occur. FARate indicates the proportion of
nonexceedances that were incorrectly forecasted (i.e., the proba-
bility of false detection), it is the counterpart to the hit rate, POD,
or HRate. HSS measures the fractional improvement of the fore-
cast (i.e., the total number of correct forecasts minus the correct
random forecasts) over the standard random chance forecasts (i.e.,
the total number of forecasts minus the correct forecasts due to
chance). Like most skill scores, it is normalized by the total range
of possible improvement over the standard, which means HSS can
safely be compared on different datasets. PSS (or TSS or HKD)
measures skills relative to an unbiased random reference forecast
by taking the differences between POD and FARate. SS measures
the relative accuracy with respect to a set of reference forecasts.
The most convenient reference is the persistence forecast. Any
valid error metrics such as RMSE and NME can be used to calculate
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SS. For a perfect model, A, CSI, POD, HSS, PSS, and SS would be 1,
FAR and FARate would be zero, and B would be unity.

The above traditional categorical metrics provide “clear cut”
measures of the model’s ability to predict an “exceedance” by using
a fixed threshold concentration and time- and space-paired

observationeforecast sets. A main limitation is that they cannot
provide information regarding the spatial variations of pollutant
concentrations within a region of interest. To overcome this limi-
tation, Kang et al. (2007) developed three new categorical metrics
for RT-AQF evaluation: the weighted success index (WSI), area hit

Table 5
Discrete statistical measures used in the model evaluation (compiled from Willmott, 1981; Zhang et al., 2006a; Yu et al., 2006; Dutot et al., 2007).

Metrics Mathematical Expressiona Range

Correlation Coefficient r ¼
(XN

i¼ 1

ðMi �MÞðOi � OÞ
),(XN

i¼ 1

ðMi �MÞ2
XN
i¼1

ðOi � OÞ2
)1

2

�1 to 1

Mean Bias (MB) MB ¼ 1
N

XN
i¼1

ðMi � OiÞ ¼ M � O �N to þN

Mean Absolute
Gross Error (MAGE)

MAGE ¼ 1
N

XN
i¼1

jMi � Oij 0 to þN

Root Mean
Square Error (RMSE)

RMSE ¼
"
1
N

XN
i¼1

ðMi � OiÞ2
#1

2

0 to þN

Mean Normalized
Bias (MNB)

MNB ¼ 1
N

XN
i¼ 1

½ðMi � OiÞ=Oi� ¼
1
N

XN
i¼1

ðMi=Oi � 1Þ �1 to þN

Mean Normalized
Gross Error (MNGE)

MNGE ¼ 1
N

XN
i¼ 1

½ðjMi � OijÞ=Oi� 0 to þN

Normalized
Mean Bias (NMB)

NMB ¼
XN
i¼ 1

ðMi � OiÞ
,XN

i¼ 1

Oi ¼ M

O
� 1 �1 to þN

Normalized
Mean Error (NME)

NME ¼
XN
i¼1

jMi � Oij
,XN

i¼1

Oi ¼ MAGE=O 0 to þN

Fractional Bias (FB) FB ¼ 1
N

XN
i¼1

Mi � Oi

ðMi þ OiÞ=2
�2 to þ2

Fractional Gross
Error (FGE)

FGE ¼ 1
N

XN
i¼1

jMi � Oij
ðMi þ OiÞ=2

0 to 2

Mean Normalized
Factor Bias (MNFB)

MNFB ¼ 1
N

XN
i¼ 1

Fi; where Fi ¼ Mi=Oi � 1:0 for Mi � Oi;

Fi ¼ 1:0� Oi=Mi forMi < Oi

�N to þN

Mean Normalized
Gross Factor
Error (MNGFE)

MNGFE ¼ 1
N

XN
i¼1

jFij; where Fi ¼ Mi=Oi � 1:0 for Mi � Oi;

Fi ¼ 1:0� Oi=Mi forMi < Oi

0 to þN

Normalized Mean
Bias Factor (NMBF)

NMBF ¼
XN
i¼1

Mi

,XN
i¼1

Oi � 1 ¼ M=O� 1; for M � O

NMBF ¼ 1�
XN
i¼ 1

Oi

,XN
i¼1

Mi ¼ ð1� O=MÞ; for M < O

�N to þN

Normalized Mean Error
Factor (NMEF)

NMEF ¼
XN
i¼1

jMi � Oij
,XN

i¼1

Oi ¼ MAGE
O

; for M � O;

NMEF ¼
XN
i¼1

jMi � Oij
,XN

i¼1

Mi ¼ MAGE
M

; for M < O

0 to þN

Unpaired peak
accuracy (UPA)

UPA ¼
Mmax;x;t � O

max;bx;bt
O
max;bx;bt �1 to þN

Temporally-paired peak
accuracy (PPA)

TPPA ¼
M

max;x;bt � O
max;bx;bt

O
max;bx;bt �1 to þN

Spatially-paired peak
accuracy (SPPA)

SPPA ¼
M

max;bx;t � O
max;bx;bt

O
max;bx;bt �1 to þN

Paired peak accuracy (PPA) PPA ¼
M

max;bx;bt � O
max;bx;bt

O
max;bx;bt �1 to þN

Index of Agreement (IOA) IOA ¼ 1�
PN

i¼ 1ðMi � OiÞ2PN
i¼1ðjMi � Oj þ jOi � OjÞ2

0 to 1

Brier Score (BS) BS ¼ 1
K

XK
t¼1

ðpt � otÞ2 0 to þ1

N is the number of samples (by time and/or location).M
max;bx;bt and O

max;bx;bt are time- and space-paired peak simulated and observed values, with the circumflex indicating that
the peak value occurs at the time t and location x of the peak observed value. pt and ot are the probability that an event occurs according to an ensemble and the event actually
occurred or not at instance t (0 if it doesn’t happen and 1 if it happens), respectively. K is the number of forecasting instances.

a M ¼ ð1=NÞPN
i¼1 Mi;O ¼ ð1=NÞPN

i¼1 Oi , Mi and Oi are values of model predictions and observations at time or location i, respectively.
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Table 6
Categorical statistical measures used in the model evaluation (compiled based on Ryan, 1995; McHenry et al., 2004; Kang et al., 2005, 2007; Pagowski and Grell, 2006).

Metrics Mathematical Expressiona Range

Accuracy A ¼ bþ c
aþ bþ cþ d

0e1

CSI ¼ b
aþ bþ d

0e1

Critical Success Index or Threat Score (TS) WSI ¼ bþPn
1 IP

aþ bþ d
0e1

The Weighted Success Index (WSI)b
IP ¼ Mi � f � Oi

Mi � f � T
; for Mi > T > Oi and Mi < f � T

IP ¼ Oi � f �Mi

Oi � f � T
; for Oi > T > Mi and Oi < f �Mi

IP ¼ 0; for other conditions

Probability Of Detection Or Hit Rate POD ¼ H ¼ b
bþ d

0e1

Area Hit Ratec aH ¼ Ab
Abþ Ad

0e1

Bias or Bias Ratio B ¼ aþ b
bþ d

0 to þN

False Alarm Ratio FAR ¼ a
aþ b

0e1

Area False Alarm Ratiod aFAR ¼ Aa
Aaþ Ab

0e1

False Alarm rate FARate ¼ F ¼ a
aþ c

0e1

Heidke skill score HSS ¼ 2ðbc� adÞ
ðbþ dÞðcþ dÞ þ ðaþ bÞðaþ cÞ �N to 1

Pierce skill score (or true skill score (TSS),
or Hansen and Kuipers discriminant)

PSS ¼ POD� FARate ¼ b
bþ d

� a
aþ c

¼ bc� ad
ðaþ cÞ � ðbþ dÞ �1 to 1

Skill scoree,f SS ¼ Em � Eref
Eperf � Eref

0e1

Em ¼ RMSE ¼
"
1
N

XN
i¼ 1

ðMi � OiÞ2
#1

2

or NME ¼
"XN
i¼1

jMi � Oij
#,XN

i¼1

Oi ¼ MAGE=O

Eref ¼ RMSE ¼
"
1
N

XN
i¼1

ðMi � KiÞ2
#1

2

or NME ¼
"XN
i¼1

jMi �Mjj
#,XN

j¼1

Ki ¼ MAGEref=K

Eperf ¼ 0

Economic value (EV) EV ¼ minðr; cf Þ � Fð1� cf Þr þ H cf ð1� rÞ � cf
minðr; cf Þ � cf r

0e1

r ¼ C
L
¼ aþ b

d

H ¼ b
bþ d

F ¼ a
aþ c

cf is the climatological frequency of an event.

a Where a, b, c, d, are the number of simulated and observed data pairs at one site at a specific time in the four regions (see Table below) that represent forecast exceedances
that did not occur, forecast exceedances that did occur, forecast nonexceedances that did occur, and forecast nonexceedances that did not occur, respectively.Contingency
table for threshold forecasts.

Observed
Yes No

Forecast Yes b a
No d c

b Mi and Oi are values of model prediction and observation at a location i, respectively. T is the threshold value used. f is an empirical factor that reflects the zone in which the
most points are located on the predictioneobservation scatterplots, its typical value can be 1e2.

c Ab is the number of exceedances that are both observed and forecast but the forecast is any exceedance that occurs in the designated area centered at themonitor location.
Ad is the number of observed exceedances that are not forecast within the designated area centered at the monitor location.

d Aa is the number of forecast area exceedances that were not observed and Ab is the number of forecast exceedances that were observed.
e Mi, Oi, and Ki are values of model prediction, observation, and temporal or spatial persistence value at time or location i, respectively. Temporal persistence value is the

previous day's forecast value. Spatial persistence value is the observation at the nearest location to the location i. O ¼ ð1=NÞPN
i¼ 1 Oi; K ¼ ð1=NÞPN

i¼1 Ki , N is the number of
samples (by time and/or location), RMSE e Root mean square error, NME e Normalized mean error, MAGE e Mean Absolute Gross Error.

f Em, Eref, and Eperf are the errors associated with model, reference, and perfect forecast, respectively. Em and Eref can be any valid error metrics, e.g., RMSE and NME. The
temporal or spatial persistence forecast is often used as a reference forecast, a perfect forecast has a zero error, i.e., Eperf ¼ 0.
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(aH), and area false-alarm ratio (aFAR). WSI is less stringent than
CSI, but a more representative measure. It provides partial credit to
observationeforecast pairs that fall just outside limits established
by CSI but within a designated factor that is used to judge themodel
performance (e.g., data pairs fall into a factor of 1e2 of the
observations).

An important, practical aspect of RT-AQFs is how forecasts can
be used to mitigate the impact of air quality on economy and
people. In the calculation of EV, one needs to know the climato-
logical frequency (cf) of an event, in addition to the values of a, b, c,
and d (see definitions in Table 6). Hits and false alarms incur a cost
of taking a preventive action (C), while misses are associated with
losses due to the lack of prevention (L). Correct rejections (c) incur
no expense. EV is defined as the reduction in mean expense, rela-
tive to the reduction (both defined with respect to cf) that would
occur if all the forecasts were correct (Pagowski and Grell, 2006). As
for weather forecasting, EV provides a useful measure for the
economic benefits of the existing RT-AQFs and the benefits of
improving these systems to individuals, businesses, and society.

No recommended values of performance statistics were provided
for acceptable forecasting skills by any individual countries. The
recommended values for retrospective AQ modeling can provide
some guidance for RT-AQF skill evaluation. For example, Zhang et al.
(2006a) recommended the use of MNBs and NMBs � 15%, MNGEs
and NMEs � 30% as indications of a satisfactory performance for O3

and PM2.5. Boylan and Russell (2006) recommended the use of mean
fractional bias (MFB) and mean fractional error (MFE) for PM, with
good performance indicted by MFBs � �30% and MFEs � 50% for
PM2.5 and MFBs � �60% and MFEs � 75% for major PM components
that have concentrations� 2.25 mg m�3. The U.S. EPA recommended
that a so-calledweight of evidence approach inwhich a set of diverse
analyses are used to judge model performance. Since no single
statistical metrics can fully reflect RT-AQF skill, discrete and cate-
gorical statistics summarized in Tables 5 and 6 are recommended to
provide a comprehensive evaluation of an RT-AQF system.

4.2. Observational datasets for model evaluation

Datasets for forecasting evaluation and improvement include
real-time or near real-time surface measurement datasets, such
as the U.S. EPA’s AIRNOW, datasets obtained by aircraft, ship,
ozonesondes, and lidars during special field campaigns and
satellite data. Satellite observations can complement datasets
from surface networks by providing derived chemical measure-
ments. Recent work has shown the potential of using near real-
time satellite and surface data to improve RT-AQF (e.g., Al-Saadi
et al., 2005; Kondragunta et al., 2008; Wang et al., 2011). Over
Europe, the Global and Regional Earth-System Monitoring
Using Satellite and In situ Data (GEMS) and MACC projects are
aimed at a near real-time data assimilation and forecast capability
for aerosols, greenhouse gases, and reactive gases. The dataset can
be used to monitor the composition, infer estimates of surface
fluxes, and produce global, short-range, and medium-range
forecasts.

4.3. Current model forecasting skills

Most evaluations of forecasted O3 and its precursors focus on
summer, and very few include winter (e.g., Manins et al., 2002; Cai
et al., 2008; Doraiswamy et al., 2009). Forecasting PM is more
difficult than forecasting O3 because PM consists of multiple
chemical components over a broad size spectrum. PM modeling is
starting to reach sufficient maturity for transition from research to
operational use. Several PM models have recently been transferred
into operational models to forecast PM (Carmichael et al., 2003;

McHenry et al., 2004; McKeen et al., 2005, 2007; Yu et al., 2008;
Chuang et al., 2011), very few studies provide detailed evaluations
of forecasted PM and its composition and precursors (e.g., McKeen
et al., 2007, 2009; Yu et al., 2008; Chen et al., 2008; Manders et al.,
2009). Similar to O3 forecasts, most evaluations are conducted for
summer episodes, and very few for winter episodes (e.g., Mathur
et al., 2008; Konovalov et al., 2009) or a full year (e.g., Manders
et al., 2009). Limited evaluation was performed for coarse parti-
cles such as mineral dust (e.g., Jiménez-Guerrero et al., 2008; Niu
et al., 2008; Menut et al., 2009) that may be of major concerns
for PM10 attainment in some regions such as Asia, southern Europe,
and the western U.S. Jiménez-Guerrero et al. (2008) showed that
the inclusion of a dust emission module substantially increases the
accuracy of both discrete and categorical statistics in the Iberian
Peninsula in Europewhere the influence of the Saharan dust cannot
be neglected.

Table A4 summarizes the evaluation of a number of RT-AQF
systems in terms of domain and period and discrete and categor-
ical performance statistics. While maximum 1-h O3 average
statistics are generally satisfactory, those for maximum 8-h average
and hourly O3 sometime exceed NMB of 15% and NME of 30% for
some models (e.g., Eta/CMAQ, WRF-NMM/CMAQ) over the eastern
or northeastern U.S. in the O3 season during 2004e2006, indicating
a relatively poor performance. The overpredictions in the low O3
range (<50 ppb) were reported in several studies (e.g., Yu et al.,
2007; Chen et al., 2008). Several factors may contribute to such
overpredictions. These include a poor representation of the
nocturnal PBL mixing height (Gilliam et al., 2006; Zhang et al.,
2006b; Eder et al., 2006); an excessive downward transport of
high level O3 aloft and too much photolysis under high cloud
conditions (Eder et al., 2006); a high O3 production rate with the
SAPRC-99 chemical mechanism (Arnold and Dennis, 2006); the
model limitation in resolving titration of O3 by NO in urban plumes
(Yu et al., 2007); and the BCONs from global models (Chen et al.,
2008). Chuang et al. (2011) applied WRF/ChemeMADRID for
RT-AQF and found that O3 overprediction in most regions in the
southeastern U.S. is likely caused by inaccurate emissions of
precursors such as biogenic VOCs, positive biases in 2-m temper-
ature and negative biases in wind speed at 10-m. O3 under-
predictions in some regions could be due in part to the
uncertainties in lateral BCONs.

For categorical evaluation, different threshold values were used
for the same variables. For example, the threshold values used for
maximum 1-h average O3, maximum 8-h average O3, and hourly O3
are 60e125 ppb, 65e85 ppb, and 80 ppb, respectively. Some of
these values are lower than the former U.S. NAAQS of 120 ppb for
maximum 1-h average O3 and the current U.S. NAAQS of 75 ppb for
maximum 8-h O3, respectively, for the reasons stated previously
(e.g., Hogrefe et al., 2007; Yu et al., 2007; Chuang et al., 2011),
although higher thresholds were used in some earlier applications
(e.g., Kang et al., 2005). For maximum 1-h average O3, A, CSI, POD, B,
and FAR range from 15 to 99.8%, 5.2 to 21.6%, 6.9 to 89%, 0.1 to
5.3 ppb, and 0.3 to 94.1%, respectively. Prev’air gives the lowest A of
15e41%, because it underestimates O3 daily maxima at high O3
concentrations (Honoré et al., 2008). All RT-AQFs give low values of
CSI and POD but higher values of FAR because they fail to forecast
exceedance (i.e., a low value of b) but overpredict lowO3 (i.e., a high
value of a). A, CSI, POD, B, and FAR for maximum 8-h average O3

range from 76.2 to 99.8%, 0 to 53.2%, 0 to 84.8%, 0.3 to 17.0 ppb, and
13 to 99.1%, respectively. Compared with maximum 1-h O3, the
values of CSI and POD are higher and those of FAR are lower for
corresponding maximum 8-h O3. The categorical evaluation for
hourly O3 was conducted by only one model (i.e., WRF/
ChemeMADRID), with A, CSI, POD, B, and FAR of 99.2%, 2.5%,
18.8%, 6.8 ppb, and 97.2%, respectively. Very few evaluations were
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conducted for precursors of O3 and other gaseous species (e.g., Cai
et al., 2008) and vertical profile of forecasted concentrations (e.g.,
Yu et al., 2007). Yu et al. (2007) reported that Eta/CMAQ reproduced
O3 vertical distributions on most of the days at low altitudes, but
overpredictions occurred at altitudes > 6 km because of a combi-
nation of effects related to the specifications of meteorological
lateral BCONs as well as themodel’s coarse vertical resolution in the
upper free troposphere.

Surface PM forecasts are evaluated in terms of 24-h average
PM2.5, hourly PM2.5, and 24-h average PM10. These evaluations,
however, have been very limited to date and a consistent evaluation
protocol has not yet been well established (Seigneur, 2001; Zhang
et al., 2006a). The forecasting skill for PM2.5 is overall poorer than
that for O3. For 24-h average PM2.5, MBs, RMSEs, NMBs, and NMEs
range from �3.2 to 6.2 mg m�3, 1.7 to 15.9 mg m�3, �21 to 32%, and
37 to 81%, respectively. The NMB of �21% using Eta/CMAQ over the
eastern U.S. during July 14eAugust 18, 2004 was reported by Yu
et al. (2008), who attributed underpredictions to underestimated
total carbonaceous PM at both urban and rural sites and a signifi-
cant underestimation of unspecified anthropogenic PM mass
(mainly consisting of primary emitted trace elements) at rural sites.
On the other hand, Hogrefe et al. (2007) showed that Eta/CMAQ
overpredicted PM2.5 in the New York City due to overpredictions in
organic aerosols and crustal material. Factors contributing to such
overpredictions include underpredictions of nocturnal vertical
mixing, inaccurate temporal allocation of primary OM emissions,
and underestimate of deposition processes. Chen et al. (2008) re-
ported the NMB of 17e32% over the Pacific Northwest during
AugusteNovember 2004. The overpredictions in PM2.5 were
attributed to uncertainties in wildfire emission estimates and the
modeling error in fire plume transport due to errors in MM5-
predicted wind direction and wind speed. McKeen et al. (2007)
evaluated RT-AQF of 6 models including WRF/Chem at two grid
resolutions (12- and 36-km), CHRONOS, AURAMS, STEM-2K3, and
Eta/CMAQ. They found that most models did not reproduce the
observed diurnal variation at urban and suburban sites, particularly
during the nighttime to early morning and the ensemble mean
based on 6 models with equal weighting gave the best possible
forecast in terms of statistics. Chuang et al. (2011) showed slight
underpredictions of PM2.5 in the O3 season over the southeastern
U.S. by WRF/ChemeMADRID, which were attributed to uncer-
tainties in emissions such as those of biogenic VOCs and NH3,
overpredictions of precipitation, and uncertainties in the BCONs.
Only two studies evaluated hourly PM2.5, givingMBs, RMSEs, NMBs,
and NMEs of �3.3 to�0.6 mg m�3, 8.3e11.3 mg m�3, �21.1 to�5.2%,
and 49.8e51.4%, respectively. For 24-h average PM10, MBs and
RMSEs range from �29 to 13.8 mg m�3 and 8.3 to 47.2 mg m�3,
respectively. Berge et al. (2002) reported forecasted PM10 perfor-
mance over Oslo with an MB of �20.9 mg m�3 and an NMB
of �36.5% at Kirkeveien due to an inaccurate emissions of PM10
from the surface (i.e., the re-suspension of dust deposited at the
roadside) on dry days and an MB of 13.8 mg m�3 and an NMB of 24%
at Furuset due to errors in simulated grid-averaged wind fields.

Very few evaluations were conducted for PM components.
McKeen et al. (2007) found that all the six RT-AQF models signifi-
cantly underpredicted OM at the surface and overestimated SO4

2�

above 2 km. The overpredictions in SO4
2� were attributed to over-

estimate of SO2 by WRF/Chem and CHRONOS and the inclusion of
aqueous-phase oxidation of SO2 by AURAMS, CMAQ/ETA, and
STEM-2K3. Yu et al. (2007) reported that Eta/CMAQ overpredicted
SO4

2� due to too much in-cloud SO2 oxidation as a result of over-
estimated H2O2 concentrations in the model, underpredicted NH4

þ

at the rural sites and aloft due to the exclusion of some sources of
NH3 in the real-time emission inventory, underpredicted NO3

� due
to overpredictions of SO4

2�, and underpredicted OC due to missing

sources of primary OC in the emission inventory and missing SOA
formation from the gas-phase oxidation of isoprene and sesqui-
terpenes and aqueous-phase oxidation of glyoxal and methyl-
glyoxal. Chen et al. (2008) reported that AIRPACT-3 reproduced OC
well but significantly overpredicted EC and significantly under-
predicted SO4

2�, NO3
�, and NH4

þ, due to underestimation of emis-
sions of primary PM species (e.g., sulfate) and precursors of
secondary PM (e.g., SO2, NH3, and NOx), insufficient spatial reso-
lution, and model’s inability to capture the hourly PM variations.

For categorical evaluation of PM, some studies used threshold
values of 15e31.5 mgm�3 for 24-h average PM2.5 and 30e50 mgm�3

for 24-h average PM10 that are lower than the NAAQSs of 24-h
average PM2.5 of 35 mg m�3 and 24-h average PM10 of 150 mg m�3

for the same reason as mentioned previously. For 24-h average
PM2.5, A, CSI, POD, B, and FAR range from 60.8 to 99.7%, 0 to 53.7%,
0 to 90.9%, 0.7 to 1.9 mg m�3, and 25 to 100%, respectively. Those for
24-h average PM10 range from 16.7 to 100%, 9.1 to 100%, 15.0 to
100%, 0.5 to 0.9 mg m�3, and 0 to 4.8%, respectively. Categorical
evaluation of hourly PM2.5, was conducted only with WRF/
ChemeMADRID, with A, CSI, POD, B, and FAR of 72.1%, 20.5%,
29.2%, 0.7 mg m�3, and 59.1%, respectively.

5. Summary of Current States of RT-AQF

Emerging as a new discipline of applied sciences that integrates
several physical sciences, mathematical/statistical tools, and
computer technology in the 1970s, RT-AQF represents a unique
applied science affecting human’s daily activities and poses
unprecedented challenges intersecting many aspects of sciences
and technologies. Driven by deteriorated air quality worldwide,
increased societal/human demands, and rapid scientific and tech-
nological advancements, significant progress has been made in the
past four decades in RT-AQF. A number of RT-AQF tools and models
with varying degrees of sophistication and forecasting skills
ranging from the simplest rule of thumb to the most advanced 3-D
online-coupled meteorologyechemistry models have been devel-
oped. Among them, the deterministic physically-based RT-AQF
models that are based on 3-D global and regional CTMs represent
the state of the science, enabling scientific understanding of
mechanisms for pollutant formation and development of emission
control strategies. Although other approaches, in particular, para-
metric (statistical) models, will continue to be used, the 3-D RT-AQF
models will likely become prevalent approaches and tools on all the
scales. There is a growing trend to combine these 3-D models
with statistical models to provide more accurate RT-AQF. Among
all RT-AQF models, the coupled meteorologyechemistry model
represents a significant advancement and will greatly enhance the
understanding of the underlying complex interplay of meteorology,
emissions, and chemistry in the real atmosphere. Important
extensions of the RT-AQF models include their coupling with an
urban model (e.g., traffic and/or local pollutant dispersion) or a CFD
model for urban/local scale applications at a spatial resolution of
1 km or less and with an exposure model to provide real-time
public health assessment and exposure predictions, and urban
emergency preparedness.

3-D RT-AQF models have been used for 24e72 h RT-AQF
worldwide since the mid 1990s. Despite their unique characteris-
tics and technical requirements, 3-D RT-AQF models are based on
NWP models and CTM development and application efforts in the
past decades and, therefore, are subject to limitations of these
models. Although no universal forecasting guidance and evaluation
protocols were developed covering all countries, some guidance
and protocols were recommended by governmental agencies and
the scientific community. Discrete and categorical evaluations are
two most commonly-used evaluations. Real-time or near real-time
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surface air quality measurement and satellite datasets are
increasingly available for such evaluations. The evaluation efforts
have been primarily focused on O3, NO2, and PM (both PM10 and
PM2.5) at surface level. The forecasting skill is typically better for O3
than for PM2.5. While their performance statistics averaged over
a time period (e.g., monthly or daily) and the whole domain is
generally good or satisfactory, current RT-AQF models have diffi-
culties forecasting variations at finer time scales (hourly and diur-
nally) and individual monitoring stations. In addition, larger biases
exist for forecasted NOx, HONO, HNO3, and OH and PM composition
including SO4

2�, NO3
�, and OM, indicating possible error compen-

sations that lead to current levels of forecast accuracy. These fore-
cast inaccuracies have been attributed to a number of factors that
are highly uncertain or lack of accurate treatments in the RT-AQF
models including mesoscale meteorological processes (e.g., sea-
breeze circulations) and variables (e.g., temperature, PBL height),
chemical BCONs of O3 and PM2.5, emissions (e.g., SO2, NOx, NH3,
BVOCs, primary PM), physical and chemical processes (e.g., urban
processes, in-cloud oxidation of SO2, SOA formation), and model
configuration (e.g., coarse grid resolution). Recent advances have
beenmade in some of those aspects. Part II of this reviewwill assess
and discuss these advances along with advanced computational
techniques that can potentially improve RT-AQF. Recommendations
for research priorities and future prospects will also be provided.
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