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Matched Spectral-Null Codes for 
Partial-Response Channels 

Razmik Karabed and Paul H. Siegel, Member, ZEEE 

Abstract -A new family of codes is described that improve the 
reliability of digital communication over noisy, partial-response 
channels. The codes are intended for use on channels where the 
input alphabet size is limited. These channels arise in the 
context of digital data recording and certain data transmission 
applications. The codes-called matched-spectral-null codes 
-satisfy the property that the frequencies at which the code 
power spectral density vanishes correspond precisely to the 
frequencies at which the channel transfer function is zero. It is 
shown that matched-spectral-nul1 sequences provide a distance 
gain on the order of 3 dB and higher for a broad class of 
partial-response channels, including many of those of primary 
interest in practical applications. The embodiment of the 
matched-spectral-null coded partial-response system incorpo- 
rates a sliding-block code and a Viterbi detector based upon a 
reduced-complexity trellis structure, both derived from canoni- 
cal diagrams that characterize spectral-null sequences. The 
detectors are shown to achieve the same asymptotic average 
performance as maximum-likelihood sequence-detectors, and 
the sliding-block codes exclude quasicatastrophic trellis se- 
quences in order to reduce the required path memory length and 
improve “worst-case” detector performance. Several examples 
are described in detail. 

Index Terms -Spectral-null codes, partial-response channels. 

I. INTRODUCTION 

ARTIAL RESPONSE signaling has been widely used P in data transmission since its introduction in the 
1960’s by Lender [46] and Kretzmer [44]. Partial-response 
models fit a wide range of linear channels with intersym- 
bo1 interference, as described by Kabal and Pasupathy 
[261. Fomey [13] utilized the Viterbi algorithm to accom- 
plish maximum-likelihood sequence detection of binary 
data transmitted over certain partial-response channels in 
the presence of additive white Gaussian noise (AWGN). 
The channels he considered had transfer polynomials of 
the form h(D)=( l -  D N ) ,  which comprise the class of 
“interleaved dicode” channels, but his results effectively 
provided a method for maximum-likelihood detection ap- 
plicable to any digital partial-response channel corrupted 
by AWGN. The dicode channel, with transfer polynomial 
h(D)  = (1 - D), and the class-4 (PR4) channel, with trans- 
fer polynomial h ( D )  = (1 - D 2 ) ,  were shown by Kobayashi 
and Tang [42] to be attractive models for magnetic record- 
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ing channels. Kobayashi [43] also gave an algorithm for 
maximum-likelihood detection for these channels that is 
essentially equivalent to the trellis-based Viterbi algo- 
rithm proposed by Forney. Simulation studies and experi- 
mental evaluation of binary partial-response signaling with 
maximum-likelihood detection in the context of magnetic 
recording were carried out by Wood and Peterson [68]. 
See also Dolivo [9]. 

Thapar and Pate1 [651 proposed a more general class of 
models for magnetic recording, defined by transfer poly- 
nomials of the form h ( D )  = ( l -  DX1+ D ) N ,  where N is 
a nonnegative integer. In subsequent literature related to 
recording, the channel corresponding to N = 2 has fig- 
ured prominently, and has often been called extended 
class-4 partial-response (EPR41, a practice we will follow. 

Trellis-coding techniques for binary partial-response 
channels with transfer polynomials h ( D )  = (1 f D N )  have 
been recently proposed by Wolf and Ungerboeck [66], 
Calderbank, Heegard, and Lee [5], Immink 1241, and 
Karabed and Siegel [30], [34]. In all of these, the construc- 
tions are based upon binary codes, typically convolutional, 
that have attractive Hamming distance properties for a 
given rate and decoder complexity. In [66], the code is 
concatentated with a precoder that essentially inverts 
(modulo 2) the channel transfer function. The minimum 
squared-Euclidean distance at the channel output is then 
lower bounded by the smallest, even integer greater than 
or equal to the minimum Hamming distance of the code. 
In [5], an inversion technique is used to design a new code 
that will produce, at the channel output, sequences that 
correspond to the original code sequences (modulo 2). 
This approach leads to a lower bound on minimum Eu- 
clidean distance that is similar to the one based on the 
channel precoder technique. The lower bounds suggest 
the use of codes that achieve the largest minimum Ham- 
ming distance for a given rate and complexity. The codes 
are usually extracted from tables of convolutional codes, 
such as those found, for example, in Lin and Costello [47, 
p. 3311. In most cases examined in [66] and [5], the lower 
bound proves to be tight. 

In applications involving partial-response class-4 
(twice-interleaved dicode) with maximum-likelihood de- 
tection, certain constraints on runlengths of zero samples 
at the channel output and in the interleaved substrings 
are desirable for purposes of timing and gain control, as 
well as to reduce path-memory requirements in the Viterbi 
detector. See, for example, Marcus and Siegel [511, [521. 
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To ensure zero-runlength constraints on the trellis-coded 
partial-response output sequences, a coset of the underly- 
ing convolutional code is used in both [661 and [51. Since 
the binary partial-response channels addressed by these 
methods have uncoded minimum Euclidean distance fi; 
the gain in minimum distance provided by the trellis code 
in this context is, in a sense, 3 dB less than the gain in the 
minimum Hamming distance that the code provides on a 
memoryless channel, as noted in [66]. 

In [241, [30], [341 the convolutional code is used in 
conjunction with an inner code that produces channel 
output sequences whose minimum squared-Euclidean dis- 
tance is bounded below by a multiple of the minimum 
Hamming distance of the original code. Significant in- 
creases in the minimum Euclidean distance at the chan- 
nel output can be achieved using this approach, but at the 
expense of significant losses in overall code rate. Zero- 
runlength constraints are provided directly by the inner 
codes. As with all of the techniques discussed so far, the 
trellis structure of the maximum-likelihood detector re- 
flects the combined memory of the code and the partial- 
response channel. 

The purpose of this paper is to describe a new class of 
trellis codes for partial-response channels. These codes 
exploit, rather than nullify, the channel memory in order 
to enhance minimum distance properties, while reducing 
the complexity of the Viterbi detectors, relative to the 
previously developed codes reported in [66] and [5]. 

The key idea underlying the new technique is the use of 
codes with a spectral null of order K in the code power 
spectrum, where K > 1 ,  at the frequencies where the 
channel transfer function has a spectral null of order L, 
where L 2 1. We refer to this new class of trellis codes as 
matched-spectral-null ( M S N )  codes. The general theory of 
MSN codes was first reported in [291, [301, [311, [331, [361. 
The theoretical basis and construction techniques for 
MSN codes were shown to involve ideas and results from 
several different areas, including: characterization of se- 
quences with (possibly higher order) spectral nulls at zero 
frequency or any rational submultiple of the symbol fre- 
quency, as developed by Yoshida [69], Pierobon [59], 
Marcus and Siegel [53], Monti and Pierobon [55]; distance 
properties of these sequences, as studied by Immink and 
Beenker 1251; symbolic dynamics and its application to 
sliding-block code construction, as pioneered by Adler, 
Coppersmith, and Hassner [l], Marcus [501, and Karabed 
and Marcus [28]; and, finally, classical number-theoretic 
results related to the equal-power-sums problem [ 19, 
p. 3281, [22, Chapter 181, cyclotomic polynomials [54, p. 
721 and the Gaussian sum formula [45, p. 561. 

The paper is organized in such a way that it breaks 
naturally into three parts. Part 1 attempts to give a 
high-level view, consisting of this introduction (Section I) 
and a detailed description and analysis of several MSN- 
coded partial-response systems (Section 11). Part 2 ad- 
dresses the characterization of spectral null sequences 
(Section 111) and their distance properties (Section IV). 
Part 3 examines the coding gain provided by MSN-codes 
on partial-response channels (Section VI, as well as issues 

related to the construction of efficient MSN codes and 
their demodulation using reduced-complexity detector 
trellis structures (Section VI). 

A more detailed description of the remainder of the 
paper is as follows. 

In Section 11, several examples of matched-spectral-nul1 
codes are discussed. In Sections II-A, II-B, and II-C we 
describe the examples that provided the motivation for 
this investigation and that nicely illustrate key aspects of 
the MSN coding technique. Section II-A examines the 
biphase code for the dicode channel, first (to our knowl- 
edge) mentioned in [5], and independently investigated by 
Immink [24], Zehavi [70], and Karabed and Siegel [34]. 
Section II-B describes the even-mark modulation code for 
the class-1 (duobinary, PRO channel, discussed by 
Karabed and Siegel [32], [35]. These examples demon- 
strate the increased minimum Euclidean distance pro- 
duced by MSN codes, as well as the existence of 
reduced-complexity Viterbi detectors that achieve the 
same asymptotic performance as a maximum-likelihood 
detector in the presence of AWGN. Section II-C presents 
further beneficial applications of these codes to other 
partial-response channels, in particular the interleaved- 
biphase (IB) code on the PR4 and EPR4 channels 1241, 
[34], and the EMM code on the class-2 (PR2) channel. 
These applications, initially unexpected, turn out to be 
quite natural in the context of MSN coding. 

In Section II-D, we present new MSN codes, with rates 
R = 2/3, R = 3/4, and R = 4/5, for the binary dicode 
channel. We compare the codes, on the basis of simulated 
performance and detector complexity, to their counter- 
parts among the codes developed by Wolf and Unger- 
boeck [66], illustrating some of the potential practical 
advantages of the MSN coding method. 

The examples in this section reflect the original motiva- 
tion for this investigation, namely the need for high-rate 
codes for binary partial-response channels relevant to 
digital data recording. The general theory of MSN codes, 
however, applies to multilevel partial-response channels, 
as well, and several authors have investigated and de- 
signed interesting quaternary MSN codes; see, for exam- 
ple, Haeb [18] and Eleftheriou and Cideciyan [10]-[12]. 

Section I11 addresses the characterization of sequences 
with higher order spectral null constraints. In Section 
III-A, we give several equivalent necessary and sufficient 
conditions for ensembles of sequences, representable as 
functions of a finite-state Markov-chain, to have a spec- 
tral null of order K at zero frequency or any rational 
submultiple of the symbol frequency, meaning that their 
power spectral density and its derivatives through order 
2K - 1 vanish at the specified frequency. The necessary 
and sufficient conditions for a spectral null of order K 
extend in a natural way the previous results reported in 
[53], [SI ,  [591, and [69]. Specifically, the conditions are 
expressed in terms of vanishing order-K power-sums (mo- 
ments), bounded order-K running-digital-sums, and or- 
der-K coboundary conditions at the spectral null fre- 
quency. In Section III-B, the coboundary conditions are 
used to define canonical diagrams for order-K spectral 
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null sequences, generalizing results in [531 and [SI. These 
diagrams later play an important role in the design of 
MSN codes and their reduced-complexity Viterbi detec- 
tors (Section VI). 

Section IV investigates distance properties of spectral 
null codes. In Section IV-A, we derive lower bounds on 
the minimum Euclidean distance of integer sequences 
with a spectral null of order K at zero frequency or a 
rational submultiple of the symbol frequency. These 
bounds generalize earlier results of Immink and Beenker 
[25] for binary block codes with Kth-order zero-disparity. 
We give two proofs of the lower bound in the case of 
integer sequences with null of order K at zero frequency. 
One is based upon Newton’s identities, extending the 
proof for binary block codes in [251. The other, making 
use of Descartes’ rule of signs, keeps track of sign changes 
in the sequences, and provides additional insight into the 
structure of sequences with spectral null of order K at 
zero ft-equency and the known solutions of the number- 
theoretic equal-power-sums problem. 

The extension of the distance bounds to other spectral 
null frequencies required new techniques, and the proof 
presented in Section IV-B uses certain tools and results 
from number theory, including the Legendre symbols 
(see, for example, Niven and Zuckerman [57, p. 691) and 
the Gaussian sum formula (see, for example Lang [45, 
p. 561) that have also surfaced in other signal processing 
applications, as described by McClellan and Rader [54, 
p. 2041 and Schroeder [60, p. 1721. 

In Section V, the distance properties of spectral null 
sequences, as developed in Section IV are used to prove 
the main results about the asymptotic coding gain attain- 
able with matched-spectral-nul1 codes on partial-response 
channels. In Section V-A, we address the case of certain 
multilevel code symbol alphabets. Applying the number- 
theoretic results related to the equal-power-sums prob- 
lem, we derive a lower bound on the asymptotic coding 
gain for channels with a spectral null of order L at zero 
frequency or at a rational submultiple of the symbol 
frequency, when 1 I L I 10, and the symbol alphabet is 
large. In Section V-B, for a more restricted set of spectral 
null frequencies and channel null orders, we obtain a 
lower bound on the asymptotic coding gain of MSN codes 
for channels with binary input alphabet. 

In Section VI, we discuss the structure of practical 
encoders, decoders, and demodulators (Viterbi detectors) 
for MSN trellis codes. The canonical diagrams for spec- 
tral null constraints, as described in Section 111, provide 
the framework for addressing two key problems related to 
practical realization of the MSN coding gains. Section 
VI-A briefly reviews some basic results in symbolic dy- 
namics required in the following sections. In Section 
VI-B, we define reduced-complexity Viterbi detectors that 
can be used to demodulate the MSN codes. The trellis 
structures underlying the demodulators are based upon 
the canonical diagrams describing the spectral null con- 
straints, rather than upon an actual encoder finite-state- 
machine or other presentations of the actual code con- 

straints. Using results from Marcus [-SO], we investigate 
the problem of quasicatastrophic error-propagation (in 
the sense of Forney and Calderbank [14]) and prove that 
it can be prevented by requiring that the code avoid 
certain sequences, called quasicatastrophic sequences, that 
are characterized in terms of the trellis structure underly- 
ing the detector. This additional constraint on the code 
eliminates the potential loss in effective asymptotic cod- 
ing gain that can arise, in the presence of a finite path 
memory in the detector, when the code contains these 
sequences. In Section VI-C, we apply the sliding-block 
code design methods of Adler, Coppersmith, and Hassner 
[l], Marcus [50], and the more recent work of Karabed 
and Marcus [28] to prove the existence of efficient 
sliding-block codes with specified spectral null constraints 
at rates arbitrarily close to 1, and to indicate algorithms 
for their construction. We also show that, in the design of 
a MSN code for use with a given detector trellis, the 
quasicatastrophic sequences can be avoided without in- 
curring any additional rate penalty. Finally, in Section 
VI-D, we show that the reduced-complexity demodulators 
achieve effectively maximum-likelihood performance (in 
the presence of AWGN). 

In the conclusions, we summarize the main results and 
indicate some of the future research directions suggested 
by this work. 

11. MOTIVATING EXAMPLES AND FURTHER APPLICATIONS 
This section describes in detail several examples of 

matched-spectral-nul1 (MSN) codes applicable to digital 
and optical recording channels. We begin with two spe- 
cific codes that nicely illustrate (and, historically, moti- 
vated) the MSN coding technique. These examples are 
followed by higher rate MSN codes for the dicode chan- 
nel that will be compared to previously proposed trellis 
codes with the same rates and asymptotic coding gains. 

Remarks on Terminology: Throughout this paper, we 
will use the term binary to refer to the alphabet {O,l}, 
and the term bipolar to refer to the alphabet ( f l}. The 
bipolar version of a binary sequence will mean the se- 
quence obtained by substituting the symbol -1 for the 
symbol 0. 

The expression free Euclidean (respectively, Hamming) 
distance, denoted dfree (respectively, d:ee), used in refer- 
ence to the set of sequences generated by a specified 
directed, labeled graph, will mean the minimum Eu- 
clidean (respectively, Hamming) distance among pairs of 
sequences corresponding to paths in the graph that differ 
in only a finite number of edges. Various concepts of free 
or minimum distance that are important in evaluating the 
performance of MSN codes will be addressed in more 
detail in Section VI. 

A. Biphase Code for Dicode Channel 

As mentioned in the introduction, the binary 1 - D 
channel (dicode) and binary 1 - D 2  channel (class-4) are 
useful partial-response models for the magnetic recording 
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TABLE I 
ENCODER FOR BINARY 

BIPHASE CODE 

821 

0 01 
1 =) 10 

Fig. 2. Worst case error event for biphase-coded dicode channel. 

01/01 X@ 0 
01/-11 

Fig. 1. Trellis for biphase-coded dicode channel. 

channel. Since the class-4 channel is simply “interleaved 
dicode,” previous techniques have concentrated on codes 
for the 1 - D channel. For example, the precoding method 
of [661 and the inversion technique of [51 yield codes of 
comparable complexity for a given code rate R and 
asymptotic coding gain (ACG). The ACG for channels 
with binary (or bipolar) input restriction is given by 

where d,, is the minimum Euclidean distance between 
channel output sequences corresponding to channel input 
sequences differing in a finite number of positions. 

Remark: For channels with multilevel inputs, the defi- 
nition of asymptotic coding gain should incorporate a 
measure of average input power, as is done in [18] and in 
[10]-[121. Also see Section V-C. 

To achieve R = 1 / 2  with ACG =1.8 dB, both prior 
approaches generate a code requiring 8 states in the 
trellis of the Viterbi detector incorporating the structure 
of the code and the characteristics of the dicode channel. 
In [5] (see also [24], [701), however, it is pointed out that 
the simple block code known as the “biphase code” also 
satisfies these parameters, although it is not produced by 
direct application of the techniques of [661, [51. Moreover, 
the corresponding Viterbi detector has only two states. 
The binary biphase code is defined by the encoding rule 
in Table I. 

The trellis that represents the output sequences of the 
biphase-coded 1- D channel is shown in Fig. 1. The 
labels of the edges are x , x 2 / y 1 y 2  where x l x z  is the 
biphase codeword corresponding to the channel input, 
and y ,  y 2  is the associated 1 - D channel output. It is not 
difficult to see that the free Euclidean distance of the 
coded channel satisfies d&, = 6, as illustrated by the pair 
of paths shown in Fig. 2. Since the uncoded 1-  D chan- 
nel has free Euclidean distance satisfying d;,, = 2, it is 
clear that the asymptotic coding gain is 1.8 dB. 

A heuristic explanation of why the methods of [66] or 
[5] generate a more complex trellis code for this rate and 
ACG is that, in both constructions, the coded-channel 
output sequences, reduced modulo 2, define a binary 
convolutional code that is chosen to achieve the largest 
possible free Hamming distance, for the specified rate 
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Fig. 3. FSTD for bipolar biphase sequences. 

and constraint length. The precoded convolutional code 
corresponding to the sequences described by Fig. 1 is the 
block code with codewords 01 and 11. This code has free 
Hamming distance d:,, = 1, which is clearly not optimal 
for rate 1/2 binary block codes. 

A basic motivation for the research reported in this 
paper was to understand what underlying properties made 
the biphase code so efficient, and to determine if the 
code could be usefully extended. We now examine several 
key features that will be characteristic of the more gen- 
eral family of MSN trellis codes. 

Spectral Null Properties: The (bipolar) biphase code 
and the dicode channel share a common spectral 
property. The power spectrum of the bipolar biphase 
code and the transfer function of the dicode channel 
both have zero magnitude at zero frequency. To see 
this, observe that the bipolar code sequences, with 
random phase, are generated by the finite-state 
transition diagram (FSTD) in Fig. 3. Using the 
methods of Gallopoulos, Heegard, and Siege1 [16], 
for example, one can determine that the code power 
spectrum is given by 

@ BIPHASE( f = sin2 ( TfT ) Y 

where it is assumed that the encoder is driven by 
equally probable binary inputs. The power spectral 
density (with T = 1) is plotted in Fig. 4. 

Note also that the frequency response H(f) of 
the 1 - D channel [26] is given by 

H (  f )  = 12T sin ( T ~ T ) ,  

where L denotes the square root of - 1. The magni- 
tude of H(f) (with T = 1) is plotted in Fig. 5. 

It is readily verified that the code and channel 
share a spectral null at zero frequency. 
Distance Properties: As mentioned above, the 
biphase-code triples the minimum squared-Euclid- 
ean distance at the output of the dicode channel, 
assuming a binary input restriction. This corre- 
sponds to a 4.8-dB gain in distance, or an asymptotic 
coding gain of 1.8 dB. Note also that the minimum 
Hamming distance of the binary code is two, a 3-dB 
gain in Hamming distance relative to the set of all 
binary sequences. 

Fig. 2. Example for bound of Theorem 5. 
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1 /2 1 
Frequency 

Fig. 4. Power spectral density of bipolar biphase code. 

0 1 /2 1 
Frequency 

Fig. 5. Frequency response (magnitude) of dicode channel. 

Runlength-Limitation: The output sequences of the 
biphase-coded dicode channel never have a run- 
length of more than one zero-sample. The limitation 
of consecutive zero-samples is critical for decision- 
directed timing and gain control, as mentioned in 
the introduction. 
Efficient Code Implementation: From Fig. 3, we can 
see that, starting from any state, the bipolar biphase 
code sequences never have an imbalance of symbols 
1 and -1 exceeding two; in other words, the run- 
ning-digital-sum [53] always has magnitude less than 
or equal to two. This property accounts for the 
spectral null at zero frequency. It has been shown 
that any finite-state bipolar code with maximum 
running-digital-sum bounded in magnitude by two 
must produce a subset of the sequences generated 
by Fig. 3, and for this reason, the diagram is consid- 
ered “canonical” for this running-digital-sum con- 
straint [53]. Therefore, the maximum rate of any 
such code is bounded above by the Shannon capac- 
ity of the canonical diagram, and this capacity is 
easily proved to be C =  1/2. It follows that the 
bipolar biphase code, which has rate 1/2, achieves 
the maximum possible rate for this RDS constraint. 
Eterbi Detector Based on Canonical Diagram: From 
Property 4), it can be seen that the Viterbi detector 

I -2 
4d 
C 
9 - 
L - 4  
n 

2 m 
2 -6 

0 5 10 15 20 

SNR (20 logl0l/@o) 

Performance of biphase-coded dicode channel. Fig. 6. 

trellis in Fig. 1 may be thought of as the trellis 
derived directly from the binary version of Fig. 3. In 
other words, the Viterbi detector of the bipolar 
biphase code may be regarded as a maximum-likeli- 
hood detector for sequences with running-digital- 
sum magnitude bounded by two, transmitted over a 
dicode channel. Fig. 6 shows the asymptotically tight 
lower bound on the performance of the biphase- 
coded dicode channel with this Viterbi detector. 
The bound is based upon the well-known expression 
in [13], where, in this case, the error-coefficient for 
the coded channel is 1. 

B. Euen-Mark-Modulation for Duobinaiy Channel 

The second MSN-code example is the even-mark-mod- 
dation (EMM) code for optical recording [32], [35]. We 
begin the discussion of this code with a brief review of 
optical recording channel characteristics, noting similari- 
ties and differences relative to magnetic recording chan- 
nels. 

The optical recording channel transfer function resem- 
bles that of a lowpass filter. In analogy to the partial- 
response models for magnetic recording described in [651, 
one can define a family of models for optical recording 
with transfer polynomials, h ( D )  = (1 + D ) N ,  for N 2 1. 
The partial-response channel with h ( D )  = 1 + D (vari- 
ously called duobinary, class-1 or PR1) and the channel 
with h ( D )  = (1 + D)* (PR2) represent the optical record- 
ing equivalents of the PR4 and EPR4 channels used in 
magnetic recording. 

Optical recording channels also have certain unique 
features that have led to the definition of a new class of 
constrained codes that satisfy asymmetrical runlength- 
limitations, as described by Davie, et al. [8]. Asymmetrical 
runlength-limited (ARLL) constraints take advantage of 
the fact that, while the minimum size of a written mark is 
determined by the laser beam diameter produced by the 
focusing optics, the minimum space between written marks 
is governed by the accuracy of positioning of the laser 
spot, which can be finer than the minimum mark size. 
The ARLL constraints therefore specify separate mini- 
mum and maximum runlength limitations for 1’s (written 
areas) and 0’s (unwritten areas). The constraints are de- 
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823 

e 1 

Fig. 7. FSTD for even-mark-modulation sequences. 

noted (d’, k‘)-(e’ ,  m’), where (d’ ,  k ’ )  represent the mini- 
mum and maximum allowable runlengths of l’s, and 
(e’, m’) are the analogous parameters for 0’s. 

Remark: In most magnetic recording applications, bi- 
nary sequences with a conventional ( d ,  k )  constraint are 
passed through a precoder of the form 1/(1 @D>, result- 
ing in binary sequences with parameters (d’, k’)  - 
( e ’ , m ’ ) = ( d + l , k + l ) - ( d + l , k  +l). 

Even-mark-modulation is a coded-modulation tech- 
nique that was developed for a duobinary channel where 
the channel inputs are required to satisfy a (d’, k’)- 
(e’, m’) = (2,001 - ( 1 , ~ )  constraint. The code sequences 
used in the EMM method also satisfy the additional 
requirement that written marks must be euen in length. 
The finite-state transition diagram representing these 
constraints is shown in Fig. 7. 

The rate 2/3 code satisfying the EMM constraints 
(described in [32], [35] and referred to, using a slight 
abuse of terminology, as the EMM code) provides a 
bridge from the biphase code to the more general trellis- 
coded modulation technique based upon matched-spec- 
tral-null codes, particularly with regard to certain code 
properties related to the use of reduced-complexity Viterbi 
detectors. As we did previously with the biphase code, we 
now highlight the main properties of this code. 

1) Spectral Null Properties: The power spectrum of the 
maxentropic, bipolar EMM sequences and the 
transfer function of the duobinary partial-response 
channel have the common feature of a spectral null 
at frequency f = 1/2T. The power spectral density 
of the bipolar EMM sequences, computed using the 
technique described in [16], is: 

where A = (1 + 6 ) / 2 .  The power spectral density 
(with T = 1) is plotted in Fig. 8. (The power spec- 
trum also contains discrete lines at integer multiples 
of 1/ T, not shown here). The frequency response of 
the PR1 channel [26] satisfies: 

HPR1(f) = 2Tcos.rrfT. 
The magnitude of this frequency response (with 
T = 1) is plotted in Fig. 9. It is easy to see that both 
the code spectral density and the channel frequency 
response vanish at f = 1/2T. 

2) Coding Gain: The trellis diagram that describes the 
output of the duobinary channel, with EMM-con- 
strained binary inputs, is easily obtained from Fig. 7 
and is shown in Fig. 10. It is not difficult to check 
that the free Euclidean distance satisfies: 

d t r e , ( ~ ~ ~ / p ~ i ) =  4. 

111 rll 
- A  I I _  

lossless of finite order can be viewed as “deterministic 
with bounded delay.” 

C .  . ” C. ._ . .  

Frequency 

Fig. 8. Power spectral density of EMM sequences. 

1 /2 1 
Frequency 

Fig. 9. Frequency response (magnitude) of PR1 channel. 

c 2  

Fig. 10. Trellis for EMM-coded PR1 channel. 

A worst-case error event is shown in Fig. 11. 
For the 1 + D channel, with binary inputs that are 

either unrestricted or that satisfy the (d’, k’) - 
(e’, m’) = ( 2 , ~ )  - ( 1 , ~ )  constraint, the free distance 
satisfies: 

d;re,(PR1) = 2. 
The EMM constraint therefore doubles the free 
squared-Euclidean distance of the uncoded channel, 
representing a distance gain of 3 dB, or, normalizing 
for the rate 2/3, an asymptotic coding gain of 
1.2 dB. 

3) Runlength-Limitations: For the purposes of data- 
driven timing and gain control, it is desirable to limit 
the maximum runlength of identical output samples. 
This requirement translates into a restriction on the 

Fig. 2. Example for bound of Theorem 5. 
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0 
Fig. 11. Worst case error event for EMM-coded PR1 channel. 

channel inputs, limiting the number of consecutive 
symbols 0 and 1, as well as the length of runs of the 
form 1010 . . . The spectral null constraint naturally 
forces a limitation on the latter. The other run- 
length constraints are incorporated into the rate 
2/3 EMM code, as described in Property 4). 
Efficient Code Implementation: Unlike the finite- 
state diagram of the biphase code, the diagram 
underlying the EMM constraint does not corre- 
spond to a finite-state encoder. However, code de- 
sign methods based upon symbolic dynamics 
(state-splitting) [ 11, [281 provide techniques for con- 
structing efficient sliding-block codes for the EMM 
constraint at any rational rate less than its Shannon 
capacity C .  The capacity of the EMM constraint is 
given by 

C=log,h,  
where A is the largest real eigenvalue of the adja- 
cency matrix A of the graph in Fig. 7, 

A = [ :  h]. 
It is easy to check that A = (1 + 6 ) / 2 ,  implying that 

C = 0.6923 ‘ * .  , 
suggesting a practical code rate R = 2/3. 

As previously mentioned, in addition to the EMM 
constraint, we want to impose additional limitations 
on the maximum run of 0’s and 1’s at the channel 
input in order to facilitate decision-directed timing 
and gain control. The runlength limits on 1’s and 0’s 
were chosen to be k ‘ =  12, m’= 8, as can be seen 
from the modified EMM FSTD in Fig. 12. With a 
carefully chosen sequence of state-splittings and 
state-mergings, the rate 2/3 encoder shown in Table 
I1 was designed. The underlying finite-state-machine 
has eight states. The sliding block decoder requires 
a decoding window of twelve bits, implying that a 
single code-bit error can propagate to at most eight 
bits (one byte) of data, another attractive property 
from the practical standpoint. 
Kterbi Detector Based on Canonical Diagram: The 
diagram for the bipolar EMM constraint, corre- 
sponding to the binary constraint in Fig. 7, is a 
canonical diagram for bipolar sequences with a 
spectral null at 1/2T, and with running-digital-sums 
at f = 1/2T that assume only values bounded in 
magnitude by three. The trellis diagram in Fig. 10 
therefore provides the basis for maximum-likelihood 
detection of the (binary) spectral null sequences 
when used on a 1 + D channel. 

Fig. 12. FSTD for EMM with run-length-limitations. 

TABLE I1 
ENCODER FOR EVEN-MARK-MODULATION CODE 

Data b,b ,  
State s,s2s7 00 01 10 11 

000 
001 
010 
011 
100 
101 
110 
111 

011/000 
001/100 
000/000 
001/100 
l00/000 
11 1/000 
000/000 
~ / O O o  

011/001 
001/101 
000/011 
001/101 
100/001 
111/001 
000/00l 
000/001 

110/000 
110/010 
111/100 
111/100 
101/100 
100/010 
111/100 
111/100 

110/001 
011/110 
111/101 
111/101 
101/101 
111/111 
111/101 
00O/OlO 

The same trellis can be used to demodulate the 
rate 2/3 EMM code when it is applied to the 1 + D 
channel. The trellis structure represents a consider- 
able simplification compared to the structure re- 
quired for a maximum-likelihood detector based on 
the 8-state finite-state-machine encoder. Moreover, 
as we will now explain, the asymptotic performance 
of the reduced-complexity demodulator approaches 
that of the maximum-likelihood detector, despite 
the fact that the trellis generates sequences not 
contained in the image of the rate 2/3 code. 

At moderate-to-high signal-to-noise ratios, the av- 
erage performance of the maximum-likelihood de- 
tector is largely determined by the minimum 
Euclidean distance between output sequences corre- 
sponding to any pair of valid code sequences. For 
the rate 2/3 EMM code it is easily shown that 
d 2  = 4 is the minimum. In addition, since the code 
has finite memory (see Section VI), the maximum 
length of any error event achieving this distance is 
bounded by a fixed finite number. 

When considering the reduced-complexity trellis 
in Fig. 10 as the basis for demodulation of the EMM 
code, we must make note of a characteristic not 
present in the biphase-coded dicode example: The 
trellis contains semi-infinite paths beginning at the 
same state that correspond to sequences with Eu- 
cidean distance strictly less that the free distance of 
the trellis (recall the remark at the beginning of 
Section 11). For example, the paths determined by 
the state sequences 

C A B C B C . * .  

C B C B C B . . .  
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produce outputs 

1 1 2 2 2.v.  

2 2 2 2 2 .e .  

having squared-Euclidean distance d 2  = 2. 
The Viterbi detector path memory length re- 

quired to distinguish these sequences is unbounded, 
so any truncation of the trellis history would force a 
decision between survivor sequences at one-half of 
the free distance, potentially degrading the “worst- 
case” performance of the system. The reason for 
this phenomenon-called quasicatastrophic error- 
propagation t141-i~ that the infinite sequence of 
constrained symbols 1 is generated by two distinct 
paths in the EMM diagram pictured in Fig. 7. 

In the rate 2/3 EMM code, the maximum run- 
length of 1’s is 12, a limit imposed also for the 
purpose of improved timing recovery. It follows (see 
Section VI-B) that there is an integer r ,  which we 
refer to as the generalized truncation depth, such 
that the squared-Euclidean distance between any 
channel output sequence of length T produced by a 
code sequence, and any other trellis sequence of the 
same length and generated from the same trellis 
state, must be at least as large as the free squared- 
Euclidean distance dice = 4. This property of the 
EMM code, resulting from the elimination of the 
sequence that causes the quasicatastrophic error- 
propagation, ensures that the detector based upon 
the reduced-complexity trellis with a path memory 
of length at least r will achieve the same asymptotic 
performance, as the signal-to-noise-ratio increases, 
as a maximum-likelihood detector for the coded 
channel. The results of a computer simulation of the 
EMM-coded PR1 channel are shown in Fig. 13. 

C. Additional Applications of B@huse and EMM Codes 

The preceding examples-the biphase code and the 
even-mark-modulation code-illustrate the main proper- 
ties of MSN trellis codes for partial-response channels. 
We summarize the key features in the form of the follow- 
ing set of general observations that will be formalized and 
made precise in the subsequent sections of this paper. 

Observation I: Codes with spectral nulls can provide 
significant increases in the minimum Euclidean distance 
at the output of partial-response channels when the spec- 
tral null frequencies of the code and channel coincide. 

Observation 2: Efficient spectral null codes with finite- 
state encoders and sliding block decoders can be con- 
structed from canonical diagrams describing the underly- 
ing spectral null constraint. 

Observation 3: Reduced-complexity trellis structures, 
derived from the same canonical diagrams, provide the 
basis for Viterbi detectors which achieve the same asymp- 
totic performance as a maximum-likelihood detector, in 
the presence of additive, white, Gaussian noise. 

Fig. 13. Simulated performance of EMM-coded PR1 channel. 

Fig. 14. FSTD for Interleaved Biphase sequences. 

With these observations in mind, we now illustrate how 
the biphase code and the EMM code find new applica- 
tions in the context of MSN coding. 

The interleaved-biphase (IB) code is defined by 
x1xz --$ x1x2 i1 i2 ,  

where xl, x 2  are bits and the bar signifies binary comple- 
mentation. The sequences of the binary IB code are 
generated by the diagram shown in Fig. 14. 

The application of IB to the 1 - D 2  (PR4) channel is 
suggested by the interleaving approach to code design for 
1 - DN channels, as described in [66] and [51. Since the 
1 - D 2  channel is simply “interleaved dicode,” two copies 
of the trellis of Fig. 1 can be utilized to describe the even 
subsequence and the odd subsequence of outputs, respec- 
tively. From this it is clear that the distance gain is 
identical to that of the biphase code on the dicode chan- 
nel, namely 4.8 dB. 

A successful application to the EPR4 channel, with 

q ~ )  = 1 + D - 02  - 0 3  = (1  - ~ ) ( 1 +  D ) ~  
is not so obviously anticipated. Fig. 15 shows the trellis 
diagram representing the sequences at the output of the 
IB-coded EPR4 channel. (Note that a component of the 
fourth power of the FSTD is used). From this four-state 
detector, we find a minimum distance pair of paths giving 

dtree( IB/EPR4) = 12, 

as illustrated in Fig. 16. Since the uncoded, binary EPR4 
channel has free distance 

d;re,(EPR4) = 4, 

we see that the interleaved biphase code again achieves 
4.8 dB increase in free distance. 

lossless of finite order can be viewed as “deterministic 
with bounded delay.” Fig. 2. Example for bound of Theorem 5. 

C .  . ” C. ._ 
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1 0 0 1  
0 0 1  1 
1 1 0 0  
0 1 1 0  

1 0 0 1  
0 0 1  1 
1 1 0 0  
0 1 1 0  

1 0 0 1  
0 0 1 1  
1 1 0 0  
0 1 1 0  

1 0 0 1  
0 0 1  1 
1 1 0 0  
0 1 1 0  

/ 2 0-2 0 
/ 1-1 0 2 
/ 2 1-1-2 
/ l o 1 0  1 
/ 0-1 1 0 I 
/-1 1 2 0 1 

1 

/ 1-1-2 0 
/ 0-2 0 2 
/ 1 0-1-2 

/ 0 1-1 0 
/-1 0 1 2 
/ 0 2 0-2 

/-1 0-1 0 
/-2-1 1 2 
/-1 1 0-2 
/-2 0 2 0 

Fig. 15. Trellis for IB-coded EPR4 channel. 

Fig. 16. Worst case error event for IB-coded EPR4 channel. 

It is not difficult to verify that the bipolar IB code has 
first-order spectral nulls at f = 0 and f = 1/2T. Refer- 
ring to [53], we see that the bipolar version of Fig. 14 is a 
subdiagram of the canonical graph Go,'/2 that generates 
bipolar sequences with spectral nulls at f =  0 and f =  
1/2T. The power density spectrum of the bipolar IB code 
is given by 

ais( f )  = 2T sin' (27rfT), 
and is shown (with T = 1) in Fig. 17. 

The PR4 and EPR4 channels also have spectral nulls in 
their transfer functions at f = 0 and f = 1/2T. Specifi- 
cally, the PR4 frequency-response is 

HPR4( f )  =r2Tsin(2r fT) ,  
and the EPR4 frequency-response is 

HEPR4( f )  = 14T cos (.rrfT) sin ( 2 r f T ) .  
The magnitudes of these transfer functions (with T = 1) 

are shown in Fig. 18. The correspondence of code spec- 
tral null frequencies and the channel null frequencies is 
clear. The error-coefficient for both the uncoded and 
IB-coded EPR4 channels is 2. The asymptotically tight 
lower bound on the performance of the IB-coded EPR4 
channel is shown in Fig. 19. 

Finally, with regard to runlength-limitations, it is easily 
checked that at the output of the coded PR4 channel, the 
maximum runlength of zero-samples is two, and, at the 
output of the coded EPR4 channel, the maximum run- 
length of zero-samples is one. 

We now discuss the application of the EMM code to 
the class-2 (PR2) partial-response channel with system 

Fig. 17. 

3 

a, 

:2 c 

2 
.- - 

a 
1 

0 

Frequency 

Power spectral density of bipolar IB sequences. 

1 /2 1 
Frequency 

Fig. 18. Frequency response (magnitude) of PR4 and EPR4 channels. 

0 5 10 15 20 
SNR (20 logl01/u) 

Fig. 19. Performance of IB-coded EPR4 channel. 

polynomial h(D)  = (1 + D)2.  Fig. 20 shows the trellis dia- 
gram for the sequences at the output of the EMM-coded 
PR2 channel. The minimum distance error events satisfy 

dir,,(EMM/PR2) = 10. 

An example of such an event is shown in Fig. 21. For the 
uncoded or ARLL-restricted PR2 channel, the free dis- 
tance is 

LI:~,,(PR~) = 4. 
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Fig. 20. Trellis for EMM-coded PR2 channel. 

Fig. 21. Worst case error event for EMM-coded PR2 channel. 

Therefore, the EMM constraint provides a gain in free 
distance of 4 dB. 

The (1 + DI2 channel has frequency response 

H (  f )  =4Tcos2(afT) ,  

the magnitude of which (with T = 1) is plotted in Fig. 22. 
Referring to Figure 8, we see that the EMM power 
spectrum and the PR2 channel have a coincident null at 
f = 1/2T. Computer-simulated performance of the 
EMM-coded PR2 channel is compared to asymptotically- 
tight performance estimates for the ARLL-coded PR2 
channel in Fig. 23. (For the EMM-coded channel, the loss 
relative to the 4 dB gain suggested by the minimum 
distance improvement is a result of the large ratio of its 
error coefficient to that of the ARLL-coded channel). 

Remark: Some examples, such as the biphase code and 
EMM code, provide distance gains which exceed the gains 
predicted by the matched-spectral-null coding theorem 
(Theorem 9 in Section V). This behavior appears to be 
characteristic of codes with relatively low rate and tighter 
constraints on the running-digital-sum values. As the rate 
increases, however, the lower bound on gains will reduce 
to the levels predicted by the theorem. An interesting 
open problem is to understand and quantify this behavior 
more precisely. 

D. High-Rate MSN Codes for the Binary Dicode Channel 

In this section, we describe MSN codes for the dicode 
channel with rates R = 2/3, R = 3/4, and R = 4/5 [361, 
[37], and we compare their performance in AWGN and 
the complexity of their detector trellises to those of their 
counterparts among the Wolf-Ungerboeck codes. They 
all provide a 3-dB increase in free squared-Euclidean 

1 /2 1 
Frequency 

Fig. 22. Frequency response (magnitude) of PR2 channel. 

I I 1 

'\ \ I 
\ 

\, \ 

4 8 12 
SNR (20 loglo l / ~ )  

Fig. 23. Performance of EMM-coded PR2 channel. 

1 1 1 1 ' 1  1 

0 0 0 0 0 0  
Y 

HO 

Fig. 24. Subdiagrams of canonical diagram for DC-null. 

distance relative to the uncoded, binary dicode channel. 
The codes were constructed from the subdiagrams with 4, 
5, and 7 states, respectively, of the canonical diagram for 
binary sequences with a spectral null at zero frequency 
[53], shown in Fig. 24. To simplify the encoder/decoder 
functions and the detector trellis structures, the MSN 
codes are implemented as rate 4/6, 6/8, and 8/10 re- 
spectively. The encoder for the rate 4/6 code, a finite- 
state-machine with 3 states, is shown in Table 111. The 
states are denoted by the binary 2-tuple s =s1s2. The 
input words are the binary 4-tuples b = bib2b3b4. For a 
given encoder state s and input word b, the encoder 
output is a 6-bit codeword c=c1c2c3c4c5c6 with next 
state t = t,t,. The table entry in column s and row b 

i i i  in' , - -  - - -  
lossless of finite order can be viewed as "deterministic 
with bounded delay." 

Fig. 2. Example for bound of Theorem 5. 
" c. .. . .  C .  . 
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TABLE Ill 
ENCODER FOR RATE 4 / 6  DC-FREE MSN CODE 

Data s,sz 
Data b,  b, b,b, 00 10 11 

m 101011/10 001010/00 010110/10 
OOO1 101101/10 001100/00 011001/10 
0010 101110/10 010010/00 011010/10 
0011 110011/10 OlOl00/00 1o0011/10 
0100 110101/10 OllOo0/00 100101/10 
0101 110110/10 lOoo10/00 100110/10 
0110 
0111 
1Ooo 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

lllO0l;lo 
111010/10 
101011/11 
101101/11 
101 110/11 
110011/11 
110101/11 
1101 10/11 
111001/11 
111010/11 

100100;00 101001/10 
lOlOoO/00 101010/10 Fig. 26, Trellis for rate 6 / 8  MSN code on dicode channel 
001011/10 010110/11 
001101/10 011001/11 
001 110/10 01 1010/11 
01001 1/10 10001 1 /11 
001011/11 100101/11 
001101/11 100110/11 
001110/11 101001/11 
010011/11 010101/10 

; ? ; ;-A] 
o o / o o  
1 0 1 1 - 1  
0 1  1 0 1  
1 1 1 1 0  1 
1 1  1 0 0  1 0 0 1-1 0 
1 0 1 0 - 1  
0 1 1-1 1 

10/1-1 
11/10] A lo/l-gz oo/oo 01/01 

oo/-10 
1 o/o-1 
01/-11 1 

Fig. 25. Trellis for rate 4 / 6  MSN code on dicode channel. 

TABLE IV 
ENCODER FOR RATE 6 / 8  DC-FREE MSN CODE 

List A: 

78 71 72 B4 74 8 2  B1 8 8  5C AC 9C 6C 
C6 C9  CA C5 0 8  D1 0 2  E4 0 4  E2  El  E8.  

List B :  

97 9E 9D B9 9B D9 E9 79 A7 AE A D  BA 
AB DA EA 7 A  8 3  0 3  E3 73 C7  CE CD CB 
51 5E 5 D  B5 5B D5 E5 75 67 6 E  6 0  B6 
6B 0 6  E6 76 .  

represents the output and next state in the form c / t .  The 
maximum runlength of zero output symbols of the coded 
system is 2, as is easily seen from the canonical diagram. 
The reduced-complexity detector trellis for the MSN- 
coded dicode channel is based upon the second power of 
the same canonical diagram, and is shown in Fig. 25. 

The two-state encoder for the rate 6/8 code is shown 
schematically in Table IV. For each of the encoder states, 
represented by the single bit s, the corresponding column 
in the table represents the 64 codewords, broken into two 
subsets of size 24 and 40, and the next state t. The 24 
codewords in set A and the 40 codewords in set B are 
shown in the table. Each 8-bit codeword is d_escribed by a 
pair of hexadecimal symbols. The sets A and B are 
obtained by bit-wise complementation of the codewords 

o o / o o  
1 0 11.1 
0 1 1 0  1 
1 1  / 1 0  1 

1 0 0 1-1 0 
1 0 1 0 - 1  
0 1 1-1 1 
1 1  1 0 0  

: : :I: :] 
Fig. 27. Trellis for rate 8/10 MSN code on dicode channel. 

in sets A and B ,  respectively. Any two maps f l  and f2 

that assign the 64 data words to the 64 codewords in each 
column 

and 
fl: {o,l}6 + A U B ,  

f2: (0,116 -9 xu B, 
complete the definition of the encoder. If the maps assign 
to each codeword and its complement the same data 
word, the code will be invariant with respect to inversion 
of the coded dicode channel outputs. The decoder is a 
block decoder, implementable as a table look-up. The 
maximum runlength of zero output symbols of the coded 
system is 3. The reduced-complexity detector trellis for 
this system is shown in Fig. 26. 

An example of a rate 8/10 code with a four-state 
encoder and block decoder is described in [37]. The 
maximum zero-runlength at the coded channel output is 
5.  The reduced-complexity detector trellis for the MSN- 
coded dicode channel based upon the rate 8/10 code is 
shown in Fig. 27. 

Remark: A rate 4/5 MSN code can be derived from 
the canonical subdiagram with only 6 states, since the 
diagram has Shannon capacity C = 0.83. However, the 
complexity of the resulting encoder finite-state-machine 
would likely be much larger, and the detector trellis 
would lose some potentially attractive symmetry proper- 
ties, when compared to a code derived from the 7-state 
diagram. 

We now compare the MSN codes just presented to 
their counterparts among the Wolf-Ungerboeck codes. 



W E D  AND SIEGEL MATCHED SPECTRAL NULL CODES FOR PARTIAL RESPONSE CHANNELS 829 

P 1 2 3  

4 5 6 2  

1 P 3 2  

5 4 L b  

M U  B 9 

l4fil2I.3 

U N  9 B 

fi1413l2 
Fig. 28. Trellis for rate 2/3 Wolf-Ungerboeck code on dicode 

channel. 

TABLE V 
EDGE-LABELS FOR WOLF-UNGERBOECK RATE 2/3 

- to - + to - 

Q o i i  6 o i o  
1 0 0 0  9 o o i  

2 i i o  11 i i i  

4 0 1 0  12 o i  1 
5: 0 0 1  13 0 0 0  
6 1 0 0  14 1 0 1  
1 i i i  15 1 1 0  

- 2 i o i  10 1 0 0  - 
- 

- to + + to + 
- 
- - 
- - 
- 

From the tables in [66], we selected the codes with the 
same rates and asymptotic coding gains as the MSN codes 
just described. 

For the rate 2/3 code, the generator matrix is 

G ( D ) = [ A  71. 
We inverted the third symbol in each codeword, thereby 
limiting the maximum zero-runlength at the dicode chan- 
nel output to 9, as predicted by Lemma 4 of [661. The 
trellis structure underlying the encoder/decoder and 
maximum-likelihood detector is shown in Fig. 28, with 
edge labels described in Table V. 

Remark: In Tables V, VI and VII, the symbol i is used 
to denote - 1. 

For the rate 3/4 code, the generator matrix is 

G ( D ) =  1 D 0 1 .  

Inverting the fourth symbol in each codeword limits the 
maximum zero-runlength at the dicode channel output to 
12 [66]. The trellis structure underlying the encoder/ 
decoder and maximum-likelihood detector is shown in 

L : : :1 

TABLE VI 
EDGE-LABELS FOR WOLF-UNGERBOECK RATE 3/4 

- to - + to - 

(?E 8 (E; 
1 (;E (;; 
2 (;i; - 10 (E! 

- to + + to t 

TABLE VI1 
EDGE-LABELS FOR WOLF-UNGERBOECK RA& 4/5 

- t o -  + t o -  - to + + to + 

Fig. 29, with edge labels described in Table VI, the binary 
equivalent of Table I1 in [66]. 

Finally, for the rate 4/5 code, the generator matrix is 

r l + D  o o o 1 1  

l o  1 0 1 + D  D l  

Inverting the third symbol in each codeword limits the 
maximum zero-runlength at the dicode channel output to 
22 [66]. The trellis structure underlying the encoder/ 
decoder and maximum-likelihood detector is shown in 
Fig. 30, and the edge labels are defined in Table VII. 

Computer-simulated performance results (assuming ad- 
ditive, white, gaussian noise) for the rate 3/4 and rate 
4/5 MSN-coded dicode channels as well as their 
Wolf-Ungerboeck counterparts are shown in Figs. 31 and 

lossless of finite order can be viewed as “deterministic 
with bounded delay.” Fig. 2. Example for bound of Theorem 5. 

C .  . ” C. ._ 



830 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 

, ' " ' " I  ;\\ 
R=6/8 

1 2 0 3  

6 2 4 5  

2 1 3 P  

2 6 5 4  

B 91PU 

I2151314 

9 B U U  

l51214l.3 
Fig. 29. Trellis for rate 3/4 Wolf-Ungerboeck code on dicode 

channel. 

', w-U\ 
R=3/4 - 8  

4 8 12 16 
SNR (20 loglo I/@ n )  

Fig. 31. Performance of rate 3/4 MSN code on dicode channel. 

I " " " I  

4- 

- 2 - 4 -  
L 
a 

R=8/10 -6- 
- 

- 8  
4 8 12 16 

SNR (20 loglo 1 / c 2  a)  

Fig. 32. Performance of rate 4/5 MSN code on dicode channel. 

32. In all cases, the path memory was taken long enough 
to eliminate any performance degradation due to trunca- 
tion effects (see Section VI). The plots confirm that, at 
moderate-to-high signal-to-noise-ratios, the reduced-com- 
plexity detectors for the MSN codes achieve the same 
coding gain as would be expected from a maximum-likeli- 
hood detector for the MSN-coded dicode channel, and 
the performance of the MSN codes equals, or betters, 
that of the corresponding precoded convolutional codes. 

Although we will make no attempt to rigorously com- 
pare the encoder/decoder and detector trellis complexity 
of MSN codes to that of other codes proposed for 
partial-response channels, these examples indicate that, 
at least in some cases, the MSN codes may offer some 
advantages in terms of implementation. Some issues re- 
lated to the VLSI implementation of an exploratory MSN 
code for the dicode channel are addressed by Shung 
et al. in [61]-[63]. 

Remarks: The techniques described in this paper have 
also been applied to develop new matched-spectral-null 
trellis codes for data transmission. In that setting, multi- 
level codes with higher order spectral nulls at zero fre- 
quency and at f = 1/2T have been investigated. Multi- 
level matched-spectral-null codes for the dicode channel 
have been developed by Haeb [18], as well as Eleftheriou 
and Cideciyan [ 101-[12]. These codes also incorporate 
additional constraints to reduce the average power of 

Fig. 30. Trellis for rate 4/5 Wolf-Ungerboeck code on dicode their 'Odes and improve the coding gain' Some more 
channel. powerful codes, developed using other ad hoc methods, 
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are treated in [18]. As observed in [lo], [HI, however, the 
multilevel codes seem best suited to channels where 
bandwidth expansion is permitted or the number of signal 
levels is restricted. 

The theory of matched-spectral-nul1 coding also sug- 
gests the potential applicability of previously reported 
binary and multilevel spectral null codes that were devel- 
oped in a different context,’ although the issue of quasi- 
catastrophic error-propagation was not addressed in 
their design. Notable among these are the codes found by 
Immink [23], Immink and Beenker [25], Monti and 
Pierobon [ S I ,  and Calderbank and Mazo [6]. 

It should be noted that coset-coding methods have 
been extended to multilevel partial response channels by 
Forney and Calderbank [14], Calderbank and Mazo [6], 
and Kasturia et al. [391. 

111. CHARACTERIZATION OF SEQUENCES WITH AN 

ORDER- K SPECTRAL NULL 
In this section, we characterize multilevel sequences, 

representable as a finite-memory function of a finite-state 
Markov chain, that have an order-K spectral null at zero 
frequency or at a nonzero rational submultiple of the 
symbol frequency. Canonical diagrams for these se- 
quences are also derived. 

A. Equivalent Conditions for Order-K Spectral Null 

We develop several equivalent, necessary and sufficient 
conditions for an ensemble of sequences over an integer 
alphabet to have an order-K spectral null at zero fre- 
quency or, more generally, at a rational submultiple of the 
symbol frequency, meaning that the power spectrum and 
its derivatives through order 2K - 1 vanish at the speci- 
fied frequency. We denote the spectral null frequency by 
f = M/NT, where the symbol frequency is 1/ T, and 
M, N are relatively prime integers. The corresponding 
complex frequency is o = with complex conju- 
gate G. The case f = 0 corresponds to M = 0, N = 1. 

Throughout this section, we will make use of results, 
proof techniques, and terminology of [531, [ S I ,  [591. We 
begin with a few definitions. 

Let G be an irreducible finite-state-transition-diagram 
(FSTD) with associated Markov chain r. 

De*tion 1: (G,  r) is said to have an order-K spectral- 
density null at f if the power spectral-density Wf) satis- 
fies 

f )  = 0, k = 0,. ,2K - 1, 

where @ ( k ) ( f )  denotes the kth derivative of Wf). If, in 
addition, there is no discrete spectral line at f, we say 
that the system has an order-K spectral null at f. 

e, x n  be a sequence gener- 
ated by G. The order-k running-digital-sum at f = M /  NT, 

Definition 2: Let x = x,,, 

denoted RDSik)(x), is defined by the recursion 
n 

R D S ~ ) (  X) = 
i = O  
n 

RDS;~)(X)= R D S ; ~ - ~ ) ( X ~ , - , X , ) ,  k > 1. 
i = O  

Definition 3: The finite-state transition diagram G sat- 
isfies an order-K coboundaiy condition at f = M/NT if 
there is a family of functions 

4 k :  9 + c ,  k = l , * * *  , K  
from the state set 9 of G to the complex numbers C 
such that, for an edge from state (+ to 7 with label x ,  the 
following conditions hold: 

x = w M 7 )  - 41((+) 
+k( (+) = O 4 k + l (  .) - + k +  1( (+) = l ,’ * * 9 - 1. 
Several necessary and sufficient conditions for a first- 

order ( K  = 1) null at f = M / N T  were first proved by 
Yoshida [69]. Pierobon [59] rediscovered these conditions 
for f = 0. Marcus and Siege1 [53], extending the results in 
[59] to f = M/NT, rediscovered the conditions in [691, 
and introduced the concept of a coboundary condition at 
f and the related idea of a canonical diagram for spectral 
null sequences. 

Monti and Pierobon [551 then found a necessary and 
sufficient condition for a spectral null of order K at f = 0, 
and they developed several equivalent characterizations 
along the lines of those in [53] for the special case K = 2, 
motivated by an earlier investigation of so-called DC2 
codes by Immink [23]. Theorem 1 extends their results, 
characterizing sequences with order-K spectral null at 
frequency f = M/NT. The equivalent, necessary and suf- 
ficient conditions are modeled after those in [55] and, as 
indicated in [311, their derivation involves a fairly straight- 
forward application of the proof techniques employed in 
[53] and [ S I .  A similar extension is described in [lo], [ll]. 

Theorem I: Let (G,T) be as previously stated. The 
following are equivalent. 

1) (G, r) has an order-K spectral null at f = M / N T .  
2) G satisfies an order-K coboundary condition at f. 
3) There exists a family of functions 

4 k :  / + c ,  k = l , . . .  , K  
from the state set 9 of G to the complex numbers 
C such that for every sequence x = x o , -  * -, x n  gener- 
ated by a path with state sequence {so, sl,* * 0 ,  s,, 
sn + J, the order-k running-digital-sums at f satisfy 

RDS;~)(X) 

for k = 1,. * -, K. (For k = 1, the binomial coeffi- 
cients are taken to be 1). 

4) There exists a family of functions 
+ k :  9+ c, k = l ; .  * , K  -1  

111 ‘TI’ - - -  , - -  
lossless of finite order can be viewed as “deterministic 
with bounded delay.” Fig. 2. Example for bound of Theorem 5. 
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from the state set 9 of G to the complex numbers 
C such that for every sequence x = x o , .  . . , x, gener- 
ated by a cycle {so ,s I ,~~~,s , , s ,+ l=so)  in G of 
length a multiple of N ,  the order-k running-digital- 
sums at f satisfy 

for k = 1,. a ,  K. (For k = 1 the sum on the right is 
interpreted to be 0). 

Proof: We will prove that 11-2) and 2)-3)* 

1) - 2): For f = 0, this was proved in [55]. Plugging 
= e - r 2 ~ M / N T  into the power spectral den- 

sity expressions in [55] gives the general case. 
2) * 3): This follows from a straightforward calcula- 

tion. 
3) - 4): This follows immediately by substituting 

s , + ~  = so and wn+l = 1 into 3). 
4) * 2): For f = 0, the consistent definition of the 

functions c$~, e ,  4K is a straightforward ex- 
tension of the argument in [55]. For f =  
M / N T ,  one must consider two cases, as was 
done for the K = 1 case [531, corresponding 
to the possible cycle lengths in G. 

Case I :  All cycle lengths are a multiple of N .  
The proof closely follows the lines of the proof for 

Case 2: Some cycle has length not a multiple of N .  
As in [53], we define, for each state U ,  the quantities 

4) - 2). 

f =o.  

9 

d u i  
i = O  

41((+) = 04+’-1, 

4k(a) = & + I  - 1 ’ 

9 f l  

Oi4k-1(’i) 
7 K, k = 2,. . . i = l  

where {a = so, * a ,  sq+l = a) is a cycle in G of length not 
a multiple of N ,  corresponding to the sequence a , , .  . ., aq.  
The proof that the functions are well-defined and the 
verification of the order-K coboundary condition are rou- 

U 

Before stating a generalization of Theorem 1, we for- 
mally define the notion of a difference sequence. 

Definition 4: Let x = x o , * ~ ~ , x ,  and y = y , , . - - , y , ,  be 
sequences which are generated by paths in G starting at 
the same state a. Define the difference sequence e by 

tine extensions of the arguments in [531. 

e . = x . - y .  1 1 1 )  i = O , . . .  , n .  

If the paths also end in the same state 7, we call e a 
difference event. If, in addition, the end state T coincides 
with a, we call e a difference cycle. 

We refer to the polynomial 
n 

e ( D )  = eiDi 
i = O  

as the difference polynomial corresponding to e .  
Theorem 2 gives an alternative characterization of se- 

quences with higher order spectral null at f = M / N T .  
The equivalent conditions bear a very close resemblance 
to the characterization of first-order spectral null se- 
quences in [53], the chief distinction being that the gener- 
alization to higher order spectral null is most naturally 
expressed in terms of difference sequences. 

Theorem 2: Let ( G ,  r) be as previously stated. Assume 
G generates at least one cycle e of length a multiple of N 
with vanishing first-order running-digital-sum at f; that is, 
RDSY)(c) = 0. Then, the following are equivalent. 

1) (G,T) has an order-K spectral null at f. 
2) G satisfies an order-K coboundary condition at f. 
3) For any difference sequence e generated by G, the 

order-k running-digital-sums at f, RDSy)(e), for 
k = 1, e ,  K, lie in a finite range of values, indepen- 
dent of e and its length. 

4) For every difference cycle e in G of length a multi- 
ple of N ,  the order-k running-digital-sums at f 
vanish, for k = 1,. . . , K. That is, 

RDSp(  e )  = 0, k = 1 , .  a ,  K .  

Proofi We will again prove that 1) - 2) and 2) - 
3) * 4) - 2). 

1) - 2): The same as in Theorem 1. 
2) - 3): This follows from the corresponding proof 

in Theorem 1. For a difference sequence, 
the expression in Theorem 1, Part 3) re- 
duces to the form 

which takes values in a finite range, inde- 
pendent of e and its length n + 1. 

3) * 4): This follows from the corresponding proof 
in Theorem 1. The expression for the order-k 
RDS in Theorem 1, Part 4), depends only on 
the initial state so and therefore vanishes for 
a difference sequence. 

4)-2): As in Theorem 1, we must consider two 
cases corresponding to the possible cycle 
lengths in G. In each case we will define the 
coboundary functions inductively. 

Case 1: All cycle lengths are a multiple of N .  
The inductive hypothesis at step k + 1  is that the 

coboundary functions 41, 1 = 1,. . ., k have been defined, 
and, in particular, the following three conditions apply. 

a) The formula for RDSy) in Theorem 1, Part 3), 
holds. 



,U, IIII 

KARABED AND SIEGEL MATCHED SPECTRAL NULL CODES FOR PARTIAL RESPONSE CHANNELS 

b) For any cycle (a = so,* * , s ~ + ~  = a} in G 
9 

o ~ ~ ~ ( s ; ) = O ,  l = l , * . * , k - l .  
i = O  

c) There is a degree of freedom in the definition of 
4 k .  (That is, 4 k  is determined up to an additive 
constant). 

Let a be a state in G, and let s =(a = so,* * * , s q + ]  = a} 
and t = { a = t O , - - ~ , f r + l = a }  be any two cycles at a. 
Now, Part 4) states that RDS>k+’)(e) = 0 for any differ- 
ence cycle in G. Using the relation 

n 

RDS;~+ l)( x 0  , . . , x,) = RDS;~)( x0 , . - . , xi), 
i = O  

along with the inductively assumed Conditions a) and b), 
we find after some calculation that there is a constant f fk  

such that 

5 wi4k(si) Wi4k(fr) 
= f f k .  

- i = O  - i = O  

q + l  r + l  

Applying the condition c), it is not too difficult to see that 
we can define 4k(a) so as to ensure that the constant 
satisfies f fk  = 0. We now define the function & + I  by 
setting &+](a) = 0, and pushing the definition along in 
the obvious manner, as in [53]. One can then verify that 
the definition is consistent, and therefore the three condi- 
tions above are extended to + k + l .  

It remains to establish the primary case k = l  of the 
induction. Let the state a lie on the cycle c in the 
statement of the theorem. By Part 41, RDSy)(e) = 0 for 
all difference cycles. Arguing as before, we find that there 
is a constant a1 such that 

4 

d u i  
i = O  -- - f f 1 ,  
4+1 

for every cycle at a. In particular, because of the assump- 
tion about c, we know that a1 = 0. The definition of the 
coboundary function and the completion of the pri- 
mary case follows from Theorem 1. 

Case 2: Some cycle has length not a multiple of N. 
Here, the inductive hypothesis at step k + 1 is that the 

coboundary functions +,, 1 = 1,- - * ,  k have been defined, 
and the following two conditions apply. 

a) The formula for RDSF) in Theorem 1, Part 31, 

b) For any state a in G and cycle (a = so,- . ., sg+l = a} 
holds. 

with length not a multiple of N, 
9 c 4 9 -  I( 81) 

l = 2 , . . .  9 k. 
i = O  4r(a)= @ 4 + 1 _ 1  7 

(Note that, in this case, there is no degree of freedom 
in the definition of 4k). From Part 4), we have 

833 

RDST+’)(e) = 0 for any difference cycle in G. We use the 
Conditions a) and b) to conclude that for any two cycles s 
and t at a of lengths q + 1 and r + 1 not a multiple of N, 

4 r 

for some constant p. Defining 
a 

we can easily verify that the inductive conditions extend 
to k +l. 

The primary case is essentially the same argument as in 
[53]. We also note that the additional assumption in the 
statement of the theorem, namely the existence of a cycle 
in G with vanishing first-order running-digital-sum, is 
unnecessary in this case. 0 

Remark: If the assumption about the existence of a 
cycle with vanishing first-order running-digital-sum is 
omitted, we can obtain a similar set of equivalent condi- 
tions for sequences with a higher order spectral-density 
null at f. Parts 3) and 4) remain unchanged, but in Part 
2), the first-order coboundary condition must be replaced 
by a biased coboundary condition, as developed by 
Kamabe [27], when G has period a multiple of N. Details 
are left to the reader. 

Remark: Following an observation in [55], there is an 
interesting interpretation of the equivalence 1) 2) in 
Theorems 1 and 2: The sequences generated by G have 
an order-K spectral null at f if and only if the sequences 
can be obtained by a cascade of K discrete-time filters, 
with overall transfer-polynomial (1 - applied to an 
appropriate Moore-machine based upon G. For K 2 2, an 
alternative proof of the “only if” direction of this equiva- 
lence 1) - 2) can be obtained by iteratively applying the 
corresponding result for K = 1, which follows from the 
D-transform representation of the first-order coboundary 
conditions in [53]. This observation was first pointed out 
to the authors by C. Heegard [20]. A proof based upon a 
similar approach also appears in [lo]. 

We now define the order-k power-sums (or, moments) 
at frequency f = M/NT of a sequence. These will play 
an important role in the investigation of distance proper- 
ties of spectral null codes in Section IV. 

Definition 5: Let x = x0;  * e ,  x, be a sequence gener- 
ated by G. The order-k power-sum (or moment) at f = 
M/NT, denoted MJk)(x), is defined by 

n 

~ j ~ ) ( x )  = ikwixi. 
i = O  

The following lemma shows that the order-K running- 
digital-sum at f can be expressed in terms of the order-k 
moments at f ,  for k = 0,. *,  K - 1. 

Lemma I: Let x = x o ,  * a ,  x ,  - be a sequence of com- 
plex numbers. Let w be the primitive, complex Nth root 

111 In , - -  - -  
lossless of finite order can be viewed as “deterministic 
with bounded delay.” 
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Fig. 2. Example for bound of Theorem 5. 



834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 

of unity corresponding to frequency f = M / N T ,  w = 
e - r 2 a M / N  

Then, for each k 2 1 
k - 1  

RDSF)( X) = C gjk)(  n )  MY)( X) , 
j =  0 

where 
k - j - l  

gi’”(n) = g;,:)nl. 
I = O  

Proof: The proof proceeds by induction. For k = 1, 
the relation is obvious. Assuming the relation holds for k, 
we now extend it to k +l .  The relation follows naturally 
from the recursive definition of RDS:k+’)(xo,* . ., x , )  in 
Definition 2. Substituting the inductively assumed expres- 
sion for RDS>k)( x 0 ,  - e ,  xi) and rearranging the orders of 
summation, we see that it suffices to show that, for 
0 5 1  I k - j -1 ,  

n k 
i ’ iVj j ) (xo,*.  .,xi) = C f ~ ~ ( n ) ~ J ~ ) ( x ~ , . .  . , x n ) ,  

i = O  m = j  

where f[G(n) is a polynomial in n of degree no larger 
than k + 1 - m .  This follows, after some calculation, from 
the well-known fact that there is a polynomial q, (n)  of 
degree I + 1 such that 

n 

s d n )  = c r‘, 
r = l  

a simple consequence of Euler’s summation formula (see, 
0 

Example 1: For k = 1,2,3 the identities in Lemma 1 

for example Knuth 140, p. 1121). 

are: 

R D S ~ ) (  X) = MY)( X) 

R D S ~ (  X)  = ( n  + 2) MY)( X) - ~ p (  X) 

1 
RDSP)( X) = 5 ( n2 + 5n + 6) MY’( X) 

1 1 
2 2 

- - (2n + 5) My’( x) + -MY’( x) . 

Lemma 2: The coefficient gf?)l(n) of M J k - l ) ( x )  in the 
expression for RDSF)(x) is given by 

( - l ) k - l  
g‘k’ ( n )  = ~, 

( k - l ) !  k - I  

Proof: The coefficient in question is independent of 
f as well as the sequence X, so it suffices to compute its 
value for f = 0 and any sequence y whose order-(k - 1) 
moment is nonzero. We will use as the sequence the 
coefficients of the polynomial y ( D )  = (1 - D ) k - ’ ,  and the 
result will follow from a few general observations (of 
some independent interest) about running-digital-sums 
and power-sums. Let x ( D )  be the D-transform of a 

sequence x = x 0 ;  . -, x,.  It is easy to check that the series 

is a generating function for the partial order-k running- 
digital-sums at f = 0, meaning that the coefficient of D‘, 
i = 0,. a ,  n is precisely R D S ~ ~ ) ( X , ,  * * . , xi). In particular, 
for y ( D )  = (1 - D)k-’  we see that 

RDS‘,‘“( y)  = 0, j = 1; . , k - 1, 

R D S ~ ( Y ) =  1.  

Turning to the power-sums, we define the polynomial 

~ ( j ) (  x, D) = i j x iDt ,  
n . .  

i = O  

having the property that 

M&”( x) = P(j)(  x, 1). 

P(j+ I)( x,  D) = D [ P q  x, D ) ]  I ,  

For j 2 0, it is easy to see that 

where [ P”)(x,  D)]’ is the formal derivative of P(”(x, 0)  
with respect to D. In particular, for y ( D )  = ( l -  
we find that 

M & j ) ( y ) = o ,  j = o ,  . . .  , k  -2,  

M&k-l)(y) = ( - l ) k - l ( k - l ) ! ,  

from which the desired result immediately follows. 
The following useful fact is a direct consequence of 

Lemmas 1 and 2. 
Proposition 1: Let x be a sequence. Then, the order-k 

running-digital-sums at f ,  RDST)(x), for k = 1,. * -, K are 
all zero if and only if the order-j moments at f, M y ) ( x ) ,  
for j = 0,. . a ,  K - 1, are all zero. 

Remark: A similar result, found independently, is de- 
veloped in [lo]. The proof makes use of a nice combinato- 
rial formula for the order-K running-digital-sum: 

The formula can be verified by an inductive argument 
based upon certain identities involving binomial coeffi- 
cients. 

Using Theorem 2 and Proposition 1, we obtain the 
following useful characterization of spectral null se- 
quences. 

Theorem 3: Let (G,T) be as in Theorem 2. Then, G 
generates a spectral-density null of order-K at f if and 
only if, for every difference event e, the order-k moments 
at f vanish, for k = 0,. . e ,  K - 1. 

Proof: By irreducibility of G, we can extend the 
paths corresponding to any difference event to generate a 
difference cycle of length a multiple of N .  Part 4) of 
Theorem 2 and Proposition 1 show that G generates an 
order-K spectral null at f if and only if, for every differ- 
ence event, the moments at f through order K - 1  are 
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zero; that is, 

Mjkj(e) = 0, k = 0,. , K - 1 .  0 

Theorem 4 will make use of Theorem 3 to describe a 
difference-polynomial interpretation of the second re- 
mark after the proof of Theorem 2 that will be very useful 
in the investigation of distance properties of spectral null 
sequences in Section IV. 

First, we remind the reader of the following standard 
definition. 

Definition 6: The Nth cyclotomic polynomial $ J D )  is 
the unique monic, integer polynomial with minimum de- 
gree having wN = e- 'z .rr /N as a zero, 

$ N ( w N )  = O. 
Example 2: For N = 1, * a ,  6 we have: 

$,(D) = 1- D 
$ z ( D )  = 1+ D 
$ 3 ( ~ )  = I+ D + D' 
$4( 0) = 1+ DZ 
+*(D) = 1+ D + DZ+ 0 3 +  04 

$&I) = 1- D + 0 2 .  

Since gcd(M, N )  = 1, it follows that $N(D)  is also the 
minimum degree, integer polynomial with w = e- 'Z?rM/N 
as a zero, and any polynomial with rational coefficients 
with w as a zero is divisible over the rationals by qN(D). 

Theorem 4: Let (G, r) be as in Theorem 2. 

Assume the symbol alphabet is a subset of the 
complex numbers. Then, (G,I') has an order-K 
spectral null at f = M / N T  if and only if for every 
difference event e, the difference polynomial e ( D )  
can be written as 

e ( D )  = (1-  G D ) ~ ~ ( D ) ,  
where u(D)  = Cy=ouiDi is a polynomial with com- 
plex-valued coefficients. 
Assume the alphabet is further restricted to be a 
subset of the rational numbers Q. Then, (G,T) has 
an order-K spectral null at f = M / N T  if and only if 
for every difference event e, the difference polyno- 
mial e ( D )  can be written as 

e ( D >  = [ $ N ( D ) ] K u ( D ) ?  

where u(D) = Cy=ouiDi is a polynomial with ratio- 
nal-valued coefficients. 

Proof- Let i ( k )  denote the factorial power of i, for 
0 I k I i ,  defined by 

k - 1  
i ( k ) =  n ( i - j ) ,  I s k s i ,  

j = O  

and, by convention, 

Using the Sterling number identity (see, for example, 
i(O) = 1 and i ( k )  = 0, k < 0. 

Knuth [41, p. 28211, we can express i k  as a linear combina- 
tion of the factorial powers of order k or less, 

It follows that the order-k moments of e can be written in 
the form 

k 
Mjk)( e) = ajDiecn( 0) , evaluated at D = w ,  

j = O  

where e( j ) (D) is the jth formal derivative with respect to 
D of the difference polynomial e(D) .  A straightforward 
induction shows that the order-k moments, for k =  
0,. . -, K - 1, vanish if and only if e( j ) (D)  has a zero at 
D = w for j = 0, - e ,  K - 1. Standard factorization argu- 
ments then imply that e( j ) (D)  is divisible by (1 - GD)K-j  
in the case of complex-valued symbols, or in 
the rational-valued case. An application of Theorem 3 
completes the proof. 0 

In analogy to Lemma 3 of [53], we now characterize 
algebraically the set of frequencies at which order-K spec- 
tral nulls can be achieved simultaneously. 

Proposition 2: If a finite-state code with rational sym- 
bol alphabet has an order-K spectral null at f = M / N T ,  
where gcd(M, N )  = 1, then it also has an order-K spectral 
null at frequencies f = M ' / N T  for all M' satisfying 
gcd(M', N )  = 1. 

Proof- By Theorems 1-3, we h o w  that for any dif- 
ference event e, generated by a cycle of length rN (that is, 
a multiple of N ) ,  

MJk)( e) = 
n 

ikwlei = 0 ,  for k = 0, * * , K - 1. 
i = O  

Define y!k) = ikei. Then Y ( ~ ) ( D )  = Cf=oyi(k)Di is a poly- 
nomial with rational coefficients having w as a zero. It 
follows that Y ( ~ ) ( D )  is divisible by the cyclotomic polyno- 
mial $N(D),  which has zeros at wM for positive integers 
M' less than, and relatively prime to N .  The proposition 
then follows from another application of Theorem 3. 

Having characterized sequences with an order-K spec- 
tral null, we note that if a code with spectral density Nf)  
is used on a partial-response channel with transfer func- 
tion H(f), the channel output sequence will have a 
power spectral density Wf) given by 

where we have defined 

S( f) = IH( f ) l ' .  

In particular, for frequency fo, if 

@ k ) (  fo) = 0, k = 0, * * , 2 K  - 1 

lossless of finite order can be viewed as "deterministic 
with bounded delay." Fig. 2. Example for bound of Theorem 5. 
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and 

S'k'( fo) = 0, k = 0,. * , 2 L  - 1 

then, 

'Fk)( fo) = 0, k = 0,. * * ,2 (  K + L )  - 1. 

This additivity of the orders of the code spectral nulls 
and channel spectral nulls will play a role in Section V in 
the determination of bounds on the coding gain for MSN 
codes when applied to partial-response channels. 

B. Canonical Diagrams 

Using methods introduced in [53] and extended in [SI ,  
we define canonical diagrams for higher order spectral 
null constraints with integer-valued code symbols. These 
diagrams will provide the finite-state representations of 
spectral null sequences from which sliding block codes 
can be derived, as well as reduced-complexity detector 
trellis structures, as described in Section VI. 

Definition 7: A countable-state transition diagram 
(CSTD) is a locally-finite, labeled, directed graph with a 
countable number of states and edge labels drawn from a 
finite alphabet. 

Definition 8: A countable-state transition diagram G is 
a period-p canonical diagram for a spectral null constraint 
if 

every finite-state transition diagram (FSTD) H c G 
generates a set of sequences with the prescribed 
spectral null constraint; 
for any period-p FSTD G' that produces the speci- 
fied spectral null constraint, there is a label-preserv- 
ing graph homomorphism of G' into G. 

The characterization in Section 111-A of FSTD's that 
generate spectral null constraints of order K at frequency 
f may be used as in [53] and [55] to define a canonical 
diagram G for these constraints. 

The definition of period-p canonical diagrams for or- 
der-K spectral null sequences breaks into two cases. The 
proof that the diagrams defined are indeed period-p 
canonical is a relatively straightforward extension of the 
arguments in [531 and [55] and details are, therefore, 
omitted. 

Case I :  f = M / N T  and p --= 0 (mod N ) .  
Note that this case includes f =  0. The state set 9 is 

the set of K-tuples 
K 

(+ = [(+l,**.,uK] E Z[o] . 
For each state U and element b in the alphabet there is 
an edge with label b from U to a state T = [ T ~ ,  * . a ,  T ~ ] ,  
where 

T~ = W( u1 + pb) 

T{ = W( o, + pol -, ) , i = 2 , .  * . , K - 1 

TK = W( OK + UK- l ) .  

It is straightforward to verify that G satisfies an order-K 
coboundary condition at f, using the functions 4 k ( ( + ) =  

... ... 
-3 -3 -3 -3 

Fig. 33. Canonical diagram for spectral null at 0 (4-AM). 

/pK,  k = 1; . *,  K - 1, and 4K(u) = uK/pK-'. More- 
over, if H is a period-p FSTD that generates sequences 
with an order-K spectral null at f, we can define a 
label-preserving graph homomorphism from H to G in 
terms of the coboundary functions +,,...,cjK on H.  
Specifically, the state s gets mapped to a state in G 
according to the rule: 

s -+ [ P41(S) , P24*(S) 7 .  . . , P K - 1 4 K - 1 ( S ) ,  PK-14K(S)]. 

Remark: The case corresponding to f = 0, K = 2, and 
p = 1 was examined in detail in [%I. Another treatment of 
canonical diagrams can be found in [lo]. 

Case 2: f = M / N T  and p f 0 (mod N ) .  
Note that the condition on the period implies that 

f #  0. The state set of G is the same as previously stated. 
For each state U and element b in the alphabet there is 
an edge with label b from U to a state T = [ T ~ ;  . . , T ~ I ,  
defined by 

T~ = 73((+, + ( u p  - 1)b) 

T ~ =  W ( v i  + ( w P -  l ) ~ ~ - ~ ) ,  i =  2 ; .  e ,  K .  

It is not hard to verify that G satisfies an order-K 
coboundary condition at f ,  using the functions 

uk 

( o p - 1) . = 

Moreover, if H is a period-p FSTD that generates se- 
quences with an order-K spectral null at f, we can define 
a label-preserving graph homomorphism from H to G in 
terms of the coboundary functions b1, * . ., +K on H .  
Specifically, the state s gets mapped to a state in G 
according to the rule: 

s + [ ( U P  - 1 ) 4 1 ( s ) , ( w P  - 1)242(4 ,  

' * ' , (up - 1) K 4 K (  s)] . 

Example 3: In Figs. 33-36, we illustrate several canoni- 
cal diagrams for first-order spectral null constraints, based 
upon the alphabet { f 1, &3}. For all but the last of these 
examples, the corresponding graphs for bipolar signaling 
may be found in [53], [55]. Specifically, the diagrams 
correspond to: spectral null at f =  0, spectral null at 
f = 1 / 2 T ,  simultaneous nulls at f = 0 and f = 1 / 2 T ,  and 
spectral null at f = 1 /4T .  Figures depicting canonical 
diagrams for bipolar, ternary, and quaternary sequences 
with higher order spectral null at f = 0 or f = 1 / 2 T  can 
be found in [lo], [ S I .  

. 
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1- 
-1 --+ 
3 . . . . . . . . . 

-3 -.-.* 

.... 

Fig. 34. Canonical diagram for spectral null at 1/2T ( 4 - M ) .  

. . .  
‘ 3 .  . 

odd -1 
* .  

-1 1 
x+y even 

integer lattice 

Fig. 35. Canonical diagram for spectral nulls at 0 and 1/2T (4-AM). 

. . . . . .  

iv I complex plane 
S - i ( f2+S),  i(fG+S) 
S E integer lattice 

Fig. 36. Canonical diagram for spectral null at 1/4T (4-AM). 

IV. DISTANCE PROPERTIES OF SPECTRAL NULL CODES 
In this section we develop bounds on the minimum 

Euclidean distance of multilevel (integer-valued) codes 
with higher order spectral nulls at frequency f = M / N T .  

A. Distance Properties of Sequences with Spectral Null at 
Zero Frequency 

Immink and Beenker [25] derived a lower bound on the 
Hamming distance of certain bipolar block codes having a 
higher-order spectral null at f = 0. Specifically, they con- 
sidered codes in which the order-k moment of each 

n i  ‘n’ , - -  - -  
lossless of finite order can be viewed as “deterministic 
with bounded delay.” 

codeword x = xo, * e ,  x ,  vanishes for k = 0, 
is, 

e ,  K. That 

n 

Mik)(  x) = ikx,  = 4, k = 0,. . -, K .  
1 = 0  

They call such a code a “Kth-order zero disparity 
code,” and they demonstrated that the code has an order- 
(K + 1) spectral null at zero frequency. 

We now state the theorem of Immink and Beenker. 

Theorem 5 [25J Let C be a code over the bipolar 
alphabet ( f 1) such that for every x in C, 

n 

Mik)(  x) = ikx,  = 0, k = 0; * . Y K .  
i = O  

Then, for any distinct codewords x,y in C, 

d H ( x , y )  2 2 ( K + 1 ) ,  

where d*(x,  y) denotes the Hamming distance between 
the two sequences. 

The elegant proof in [25] of this lower bound makes use 
of Newton’s identities [48, p. 2441, which relate power- 
sums to elementary symmetric polynomials. The following 
corollary is an immediate consequence of Theorem 5.  

Corollary 1: Let G be a FSTD, with edge labels in the 
bipolar alphabet (k l ) ,  that generates a spectral null of 
order K at f = O .  Let x = x 0 ; ~ * , x ,  and y = y , , . - . , y , ,  
be distinct sequences generated by paths starting at a 
state U and ending in a state T. Then, the Euclidean 
distance between x and y satisfies 

d2(  x, y )  2 8K. 

(For the corresponding binary code, the bound is 2K). 

e = eo; e ,  en, defined by e, = x,  - y , ,  satisfies 
Proofi Theorem 3 shows that the difference sequence 

n 

M h k ) ( e ) =  ike l=O,  k = O , * * - , K - l .  
r = O  

By Theorem 5, the Euclidean distance between x and 
0 

In Theorem 6, we develop an extension of the preced- 
ing distance bound to integer-valued sequences generated 
by a FSTD. Two proofs are provided. The first proof is 
based upon the proof of Theorem 5 due to Immink and 
Beenker. The second proof makes use of Descartes’ rule 
of signs [21, p. 961 to lower bound the number of sign 
changes in a sequence produced by a finite-state code 
with higher-order spectral null at f = 0. 

We first review some background results and terminol- 
ow. 

Definition 9: For any set of (complex) numbers, A =  
(a , ,  

y satisfies d 2 ( x ,  y) 2 8K. 

e ,  aL), the degree-k power-sum is defined by 
L 

T k (  A )  = U : .  
1 = 1  

(Compare to Definition 5). 

- 
Fig. 2. Example for bound of Theorem 5. 

C .  . ” C. ._ 
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Definition IO: The degree-k elementary symmetric poly- 
nomial uk( A )  is defined by: 

and, for k f 0, 
U,( A )  = 1 

u , ( ~ )  = ( - 1)“  a l l  . . * a lk .  
I ,  < < l k  

Remark: The elementary symmetric polynomials ap- 
pear as coefficients of the polynomial 

L L 

k = O  k = O  
u ( x ) =  u k ( A ) x k =  n ( I - a , x ) .  

Newton’s identities comprise the following relations 
between the power-sums and the elementary symmetric 
polynomials: 

T k + U I T k - l +  * ”  +U, - lT1+kVkkO,  k = l , . . .  , L  
T k  + U I T k - l  + * * ‘ + U L T k - L  = 0, k > L .  

We now state and prove the generalization of Theorem 5 
and Corollary 1 .  

Theorem 6: Let G be a FSTD with integer alphabet 
d and assume that G generates sequences with a spec- 
tral null of order K at f = O .  Let x and y be as in 
Corollary 1 .  Then, the Euclidean distance between x and 
y satisfies 

d 2 ( x , y )  2 2 K .  
Proof: Given distinct sequences x = x,, . . . , x n  and 

y = y o , -  e ,  y ,  generated by paths starting at state U and 
ending at state T ,  consider the difference event e = 

e,,. .,e,, with e, = x, - y l .  Then, e, is an integer for all 
i = O ; - . , n  andbyTheorem3, 

n 

MAk) = i kc?, = 0, k = 0, * * . , K - 1 .  
I = O  

Let I = ( i 1 ;  . e ,  i L }  be the set of indices for which e, > 0, 
and let J = ( j l , .  . , j L }  be the set for which e, < 0, where 
each index i is represented with multiplicity \ell in the 
appropriate set. 

Then, the moment equations imply the following 
equal-power-sum equations: 

x i k =  j k ,  k = O , . . . , K - l .  
~ € 1  ~ € 1  

Note that the moment equation for k = 0 implies that the 
sets Z and J have equal cardinality. 

Rewriting this as 

T k (  I) = T k ( J ) ,  k = 0,. ’ .  , K -1 

we can apply Newton’s identities to conclude that 

uk( 1)  = U),( J ) ,  k = 0,- * ,  K - 1. 

If L I K - 1, then we could conclude 
L L 

I = 1  I = 1  
n ( l - i l x ) =  n ( l - j l x ) .  

But this would imply I = J ,  a contradiction because I and 
J as defined are disjoint sets. Therefore, L > K - 1 ,  so 

This in turn implies 

le,(+ le,( 2 2 K .  
e , > ,  e , < O  

Since e‘ 2 le,\, we arrive at the desired bound 

n - 1  
d 2 ( X , y ) =  C e ‘ 2 2 K .  

i = O  
0 

Remark: We thank Professor K. Abdel-Ghaffar [171 for 
suggesting the extension of the Immink-Beenker proof to 
this more general case. See [lo] for another treatment of 
this result. 

Remark: As is well-known, Newton’s identities apply to 
finite fields as well, and they play an important concep- 
tual role in the decoding of BCH codes. This link between 
spectral null codes and algebraic error-control coding can 
be made more precise by observing that Theorem 6 
provides a lower bound on the Lee-metric [3, p. 2041 
error-correcting capabilities of multilevel spectral null 
codes [38]. A modified form of Newton’s identities pro- 
vides the basis for an efficient “algebraic” decoding pro- 
cedure for Lee-error-correcting spectral null codes, as will 
be described elsewhere. 

Remark: The proof of this result establishes an inter- 
esting connection to the number-theoretic equal-power- 
sum problem, often associated with Prouhet and Tarry. 
Immink and Beenker, who first observed this connection, 
refer to the brief discussion of this problem in Hardy and 
Wright [19, pp. 328, 338-3391. More details can be found 
in Hua [22, Chapter 181. In Section V, we will see how 
solutions of the equal-power-sum problem relate to the 
determination of lower bounds on asymptotic coding gains 
of MSN codes corresponding to null frequency f = 0 (and 
f = 1 /2T) .  We will also develop a generalization of the 
equal-power-sum problem and then use the correspond- 
ing solutions to extend the lower bounds to codes with 
spectral null at an arbitrary rational submultiple of the 
symbol frequency. 

For the second proof of Theorem 6, we will keep track 
of changes in the sign of the symbols in the code differ- 
ence events. For completeness we make the following 
definitions. 

Definition 11: Let e = e,,. . . , e, be a finite, integer-val- 
ued sequence. We say that e has a sign change at position 
U if e, f 0, and sign(e,) = -sign(e,), where t = max(i < 
ule, + 0). 

Lemma 3 relates the order K of the spectral null to the 
number of sign changes in the difference sequence e .  
Lemma 4 then relates the number of sign changes in e to 
the Euclidean weight of the corresponding sequence at 
the output of a ( 1  - D )  channel. 

Lemma 3: Let e ( D )  = Cy=oeiD1, where e, are integer- 
valued coefficients, and assume e, # 0. If e ( D )  is divisible 
by ( 1 -  D ) K ,  then the sequence of coefficients e =  
e,, . . e ,  e, has at least K sign changes. 
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Proof: As was pointed out to us by one of the refer- 
ees, this lemma is a special case of Descartes' rule of signs. 
Let e ( D )  be a real polynomial with K positive real roots, 
not necessarily distinct. Then the number of sign changes 
in the sequence e of coefficients of e (D) ,  denoted X(e) ,  
satisfies 

X ( e )  2 K. 
(See, for example, Householder [21, p. 961). An indepen- 
dently discovered proof for the special case of Lemma 3 

0 

Lemma 4: Let g ( D )  = C;=,giDi be an integer poly- 
nomial, with g , # O .  Assume the sequence of coeffi- 
cients g = g o , *  * e ,  g ,  has L sign changes. Let e ( D )  = 
( 1  - D)g(D) .  Then, the Euclidean weight of the sequence 
e = e,, * . . , e,  + satisfies 

IIeI12= e ? r 2 ( ~ + 1 ) .  

can be found in the appendix to [361). 

m + l  

i = O  

Proof: We assume, as always, that the polynomial 

One can write the squared Euclidean norm of the 
coefficients not explicitly indexed are zero. 

output sequence as 
f l+l  

IIeI12 = ( g i  - g i p 1 I 2 .  

It is easy to check that if the sequence of coefficients of 
g ( D )  has no sign changes, then 

IM2 2 2, 
since the contribution of the term corresponding to the 
first nonzero coefficient in g ( D )  is at least 1, as is the 
contribution corresponding to the zero coefficient follow- 
ing the last nonzero coefficient. 

Suppose that g ( D )  has L changes in sign, L 2 1, which 
occur at coefficients 

Let W ( j )  equal the partial weight in which the index of 
summation runs from i = 0 to i = j, 

i = O  

g i , ,  g i , , .  ' ' , giL* 

i 
~ ( i ) =  C ( g i - g i - - 1 I 2 *  

i = O  

It follows that: 
W(0)  2 1 

W( i , )  - W( i , -  1) 2 2 ,  
W ( n ) - W ( i , ) > l .  

1 = 1 ,  1 , L ,  and 

The first and third inequalities arise from the contribu- 
tions corresponding to the first nonzero coefficient and 
the first zero coefficient after the last nonzero coefficient. 
To prove the second inequality, one must consider two 
cases. First, assume that g i r -  1, the coefficient preceding 
g i , ,  is nonzero. Then, the sign of g i l P l  must be the same 
as the sign of g i , - l ,  and opposite to the sign of g i , ,  
because i r  is the first position after i , - l  at which there is 

- 

a sign change. Therefore, in this case, 

( gi, - gir-  2 4. 

I ! /  - - 
lossless of finite order can be viewed 
with bounded delay." 

" C. ._ C .  . 

- -  
as "deterministic 

In the other case, assume g i r P l  = 0. Let g j  be the last 
nonzero coefficient before g i r ,  with i l P l  I j < i ,  - 1.  Then, 
it is easy to see 

W( i , )  - W( i ,  - 1) 2 1 
and 

W( i ,  - 1) - W( j )  2 1 .  

Since 

W ( j )  ~ w ( i [ - ~ ) ,  
the second inequality holds. 

Combining the inequalities yields 

IIeI12 = W ( n  + 1 )  2 2( L + 1 ) .  

This completes the proof of Lemma 4. 0 

Second Proof of Theorem 6: Let ( G ,  r) have an order- 
K spectral null at f = 0. Let e be a difference event, with 
corresponding difference polynomial e(D) .  Theorem 4 
implies that e ( D )  can be factored over the integers as 

e ( D )  = ( 1 -  D ) " u ( D ) .  

By Lemma 3, the polynomial f ( D )  = ( 1  - D)"-'u(D) has 
at least K - 1 sign changes. Since e ( D )  = (1 - D ) f ( D ) ,  an 
application of Lemma 4 proves the desired distance bound 
on the Euclidean weight of the difference event, lle1I2 2 
2K. 0 

Remark: This result is easily extended to the channel 
with h(D)  = ( 1  + D)". 
B. Generalization to Spectral Nulls at f = M / N T  

In this section, we generalize the lower bound in Theo- 
rem 6 to the case of a spectral null of order K at 
f = M / N T ,  where gcd(M, N )  = 1 .  The proof will make 
use of the number-theoretic quantities known as Legen- 
dre symbols, as well as the Gaussian sum formula, to 
reduce the difference-event moment equations for the 
order-K spectral null at f = M / N T  to the difference- 
event moment equations for an order-K spectral null at 
f = 0. These, in turn, lead to lower bounds on Euclidean 
distance by applying the results of the previous section. 

We recall the definition of the Euler totient (9-func- 
tion). 

Definition 12: For a positive integer N ,  we denote by 
q ( N )  the Euler 9-function, which is defined as the num- 
ber of positive integers less than and relatively prime 
to N. 

Theorem 3 and Proposition 2 imply that, for each 
difference event e the order-K spectral null at f = M /  NT 
provides, for k = 0;. ., K - 1, a set of q ( N )  order-k 
moment equations at frequency f .  The equations take the 
form 

n 

C iko;'ei = 0, ( E i , N ) ,  
i = O  

where, as before, oN = and m runs over the set 

- 
Fig. 2. Example for bound of Theorem 5. 
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@ ( N )  of cp(N) integers 1 s m < N satisfying 

gcd(m,N) = 1. 

We wish to find a linear combination, with weighting 
vector U = {u,lm E @ ( N ) } ,  of the moments in equations 
(Ek,N), 

n 
om ikwciei ,  

( m , N ) = l  i = O  

Remark: The sign of ( j / p )  indicates whether or not j 
is a square-residue (mod p). Some of the basic properties 
of the Legendre symbols are given in the following lemma. 

Lemma 6 [57, p. 691 Let p be an odd prime, and let a 
and b be integers relatively prime to p. Then, 

a) ( a  /p )  = d P - ' ) / 2  (mod p )  
b) ( a  /pXb/p) = (ab/p) [Multiplicativityl 
c) a = b (mod p )  implies ( a  / p )  = (b /p)  
d) (a2 /p)=1,  ( l / p ) = l ,  (-l/p)=(-l)(p-1)'2 

yielding a single moment equation, denoted by (F$, of 
the form 

We will show that a reduction vector {um} that reduces 
( E ; , N )  to ( F L )  can be derived from the Legendre symbols 

hinges on a key identity for odd prime integers, the 
n (or Jacobi symbols) associated with N .  The derivation 

ikciei = 0, (F:) 
i = O  Gaussian sum formula. 

for each k = 0,. . * ,  K - 1 where the vector c = { C O , . .  . , c n }  
satisfies the property ci E (0, f c), for some nonzero con- 
stant c. If we can find, for each index i ,  a vector v such 
that ci # 0 in ( F i ) ,  then the bound will follow from the 
proof of Theorem 6. 

Definition 13: Let U and c be as previously stated. We 
will call such a vector v a reduction vector and the 
corresponding sequence c the mask associated to U. The 
quantity c will be called the height of the mask. (We are 
grateful to D. Forney for suggesting the mask terminol- 
ogy and viewpoint). 

Remark: Since the ensembles of spectral null se- 
quences under consideration enjoy a stationarity property 
with regard to the indexing in the moment conditions, it 
actually suffices to find a single reduction vector and 
mask. Then, for any index i ,  there will be at least one 
shift of the mask that is nonzero at position i .  

As necessary background, we review some results from 
number theory that are cited in the course of the proof. 
(See for example [191, [571.) 

In the following lemma, the basic facts needed to 
calculate the Euler totient cp(N) are summarized. 

Lemma 5 [57, p. 371 The Euler 9-function satisfies the 
following properties: 

a) ( ~ ( 2 )  = 1, 
b) cp(p) = p - 1, for p an odd prime, 
c) cp(N, N 2 )  = cp(N,)9(N2) for (NI, N 2 )  = 1, 
d) cp(p') = p' - PI-', for p prime. 

Definition 14: Let p be an odd prime. The Legendre 
symbol for a positive integer j, denoted ( j / p )  is defined 
by: 

0, 
1, 
- 1, otherwise. 

if j = 0 (modp) 
if j = x 2  (modp) for some xfO (modp) (3 = ( 

Theorem 7 [45, p. 561 Let p be an odd prime integer. 
Then 

P - 1  1/2 

m = l  c ( ; ) m y  = [ (3.1 
def - - Y p .  

With these number-theoretic tools established, we can 
now prove the main result of this section. 

Theorem 8: Let G be a FSTD, with symbols in an 
integer alphabet d, and assume G generates sequences 
with a spectral null of order K at f = M / N T .  Let e be a 
difference event associated to sequences x and y. Then, 
the squared-Euclidean weight of the difference event, or 
the squared-Euclidean distance between x and y satisfies 

Proof: We first prove the theorem in the special case 
where N = p ,  an odd prime. This will illustrate many of 
the central ideas required in the general case, showing in 
particular the role that will be played by the Legendre 
symbols and the Gaussian sum formula. 

Since ~ ( p )  = p - 1, the set of order-k moment equa- 
tions for fixed k is given by 

n 

Let thevector v = ~ v 1 ; ~ ~ , u p - , ~  be defined by 

v i =  it). 
The linear combination of equations 
v is: 

prescribed by 

v1 ( C i k o a e i )  For integers N = p1 . p ,  that are a product of distinct 
odd primes, we have an extended Legendre symbol (or 
Jacobi symbol) defined by + u2  ( C i k o F e i )  

(i) = (&) . . . (i). 
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where 
P - 1  m 

ci = (--)"Ti. 
m = l  

U 

The Gaussian sum formula makes it possible to evalu- 

Proposition 3: The coefficients (ci} satisfy 
ate the coefficients {ci} explicitly, as we now show. 

& Y,, i f  0 (modp) 
0 ,  i=O(modp) .  

c i =  ( 
Proof of Proposition 3: Suppose i f 0 (mod p) .  By the 

multiplicativity of the Legendre symbols, 

m = l  

m = l  

Since (milm = 1,. * , p  - 1) is a complete set of residues 
modulo p for i f 0 (mod p ) ,  we can rewrite the expres- 
sion for ci as 

Applying the Gaussian sum formula, this expression 
reduces to 

- 1  

c i=( ; )  y p = ( ; ) y p .  

For i = 0 (mod p ) ,  we get 

m = l  

P - 1  

m = l  
= c (;) 

since wp" = 1. It follows that 

ci = 0, 

since there are exactly ( p  - 1)/2 distinct square residues 
0 

This completes the proof of Theorem 8 for N = p .  We 
now generalize to the case of N = p ,  * p ,  where the pi  
are distinct odd primes. From this case, the general case 
N = 2 ' 0 ~ 9  * * - p$ will make use of the well-known Chi- 
nese remainder theorem, which we state for convenience. 

Lemma 7 (Chinese Remainder Theorem) [57, p.  331 Let 
N,,  . . . , NL be distinct positive integers that are pairwise 
relatively prime. Let N' be the product of these integers, 

modulo p ,  if p is an odd prime [57, p. 731. 

N =  N I . . .  NL. 

Let r , , .  . e ,  rL be nonnegative integers. Then, there is a 

~ 

841 

unique nonnegative integer x I N' that satisfies the fol- 
lowing set of congruences: 

x = ri (mod Ni)  , i = 1 , .  * , L .  
If all ri # 0, then x belongs to @(NI. 0 

Using the Chinese remainder theorem, we now develop 
a generalization of the Gaussian sum formula which is 
applicable to N = p 1  . . p,. 

Proposition 4 [Generalized Gaussian Sum Formula1 Let 

Then 
Y N  = k Y p ,  * * * Ypn' 

Pro08 Let p = wpl - - U,,,. Then, p N  = 1, and in fact 
N is the order of p. Therefore, wN =pm' ,  for some 
m' E @ ( N ) .  Then, 

- - +  (&) ...  ( i 

j E @ ( N )  

since (m'j (mod N ) I ~ E @ ( N ) }  runs over all of the ele- 
ments of ~ a j ~ ) .  ' "  

From the last remark in Lemma 7, it follows that 

4 

Repeating this argument n - 1 times leads to the de- 
sired result. 

We now exploit the generalized Gaussian sum formula 
to define a reduction vector based on the Jacobi symbols. 
The following proposition generalizes Proposition 3, and 
provides the reduction vector and mask needed to com- 
plete the proof for this case. It shows that we may use the 
vector 

- 1 1 -  - , - -  
lossless of finite order can be viewed as "deterministic 
with bounded delay." Fig. 2. Example for bound of Theorem 5. 

" C. ._ . .  C .  . 
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as a reduction vector for N, with corresponding mask 

C ( N )  = { 
and height yN where 

Proposition 5: 

(0, if ( i ,  N )  f 1, 

Proof: The result follows from a more general state- 
ment, proved in the Appendix. The stronger statement 
plays a role in deriving a distance bound for sequences 
satisfying higher order moment conditions, but failing to 
satisfy lower order conditions. This “nonstationary” ver- 
sion of Theorem 8 will be addressed elsewhere. This 
completes the proof of Theorem 8 for the case N =  
pl , -  . *,p,, a product of distinct odd primes. 

The generalization to arbitrary N = 2‘0~2 . . . pk now 
follows from the observation that the cyclotomic polyno- 
mial I,!IN(D) for the primitive Nth roots of unity is given 
by 

if 1, = 0 
2’0- IP{l  - I . .. - I ), otherwise. - - J lP ,  ...px - D 

This relation can be checked by noting that 

40( N )  = 2‘o-lp2-1 . . . Pf; - ‘$4 P1 . . . P , )  . 
From [53], it follows that a sequence with nulls at fre- 
quencies corresponding to the primitive Nth roots of 
unity is in fact obtained by interleaving 2’0-’p$-’ . . . pi-’  
sequences, each with spectral null at frequencies corre- 
sponding to the primitive 2p1 * . * p,th roots of unity. 
Since interleaving preserves minimum distance of differ- 
ence events, the bounds extend to the general case, com- 
pleting the proof of Theorem 8. 0 

Remark: Proposition 5 can be interpreted in signal 
processing terms: the Legendre/Jacobi symbol sequence 
for N = p , . . . p , ,  

is invariant (up to a constant factor) under the discrete 
Fourier transform of length N. See for example, Schroeder 
[601. 

Example 4: Let N = 15. Then N = p1p2, where p1 = 3 
and p2 = 5.  A reduction vector v(I5) of length (~(15) = 8 is 
given by: 

with corresponding period-15 mask defined by 

= o c c o c o o - c c o o - C O - c  - c  
and height c = yls = i m .  

V. MATCHED SPECTRAL NULL CODE THEOREM 
FOR PR CHANNELS 

In this section we apply the results of Section IV to 
deduce lower bounds on the asymptotic coding gain of 
matched-spectral-null codes for partial-response chan- 
nels. In order to obtain these bounds, we first quantify the 
free Euclidean distance of partial-response channels with 
binary (bipolar) or multilevel inputs. 

Definition 15: The binary (respectively, integer) free 
distance of the channel h(D) is given by 

d:ree( h( D))  = minIle( D)h(  D)l12, 
e ( D )  

where e(D) = Cl,,e,D’ is an input difference sequence 
over the ternary (respectively, integer) alphabet, repre- 
senting the difference between two binary (respectively, 
integer) signal sequences which differ in only a finite 
number of places, and the squared-Euclidean weight of a 
polynomial refers to the sum of the squared coefficients. 

We now define the partial-response channels that form 
the building blocks for the class of channels that we 
consider in the context of matched-spectral-null codes. 

Definition 16: A channel with system polynomial h(D) 
is called order-L N-cyclotomic if 

where N is a positive integer and I /J~(D) is the Nth 
cyclotomic polynomial (see Definition 6). In other words, 
the channel has spectral nulls of order L at the frequen- 
cies, which we denote FN, corresponding to the primitive 
Nth roots of unity. 

Example 5: For N = 1, the system polynomial of the 
order-L cyclotomic channel is (1 - D)L,  and for N = 2 it 
is (1 + OIL. 

A. Free Dhtance for PR Channels: Integer- Valued Inputs 

Computing the free distance of general PR channels 
with integer-valued inputs is an unsolved problem. In the 
case of channels with order-L spectral null at zero fre- 
quency, the problem is closely related to the number-the- 
oretic “equal-power-sums’’ problem (often associated with 
Prouhet and Tarry [19]) as discussed in Section IV. 

We now exploit this connection to deduce exact values 
for the free distance of the cyclotomic channel with 
order-L null at zero frequency-that is, with system poly- 
nomial 

h( D) = [@,( D)]“  = (1 - D)L 

-for the cases where 
1 I L 210,  =1 1 1  -1 1 - 1  -1 -1 



I I, 

KARABED AND SIEGEL MATCHED SPECTRAL NULL CODES FOR PARTIAL RESPONSE CHANNELS 

under the assumption of integer alphabet, d= Z. We 
then show how these results can be extended to general 
order-L N-cyclotomic channels. 

Remark: Vanucci and Foschini [ 151 have computed 
the free distance for channels with system polynomials 
h(D)  = (1 - 0x1 + D), and h(D)  = (1 + D ) L  for a range 
of orders L, over several equispaced multilevel integer 
alphabets, up to size 32. It is interesting to compare their 
results in the range 1 I L I 10 with the exact number- 
theoretic solutions discussed next. 

For L 2 1, let Z(L) denote the least integer s such that 
there exist disjoint sets of integers x l ;  .., x ,  and 
y,,. . *, y,, satisfying the properties: 

x,k+ * e *  + x , k = y f +  e * *  + y , k ,  k = 0 ; . .  7L-17 

but 

x ; +  * * *  + x , L f : y ; +  * * .  +y:. 

These conditions are summarized with the following nota- 
tion, a slight modification of the notation used in [22]: 

[xl,***,~,I, = [ Y l ?  . , Y , l , .  
Theorems 5 and 6 in Section IV imply that I( L) 2 L. The 
lower bound has been shown to be tight for 1 I L I 10 by 
using more or less ad hoc methods to construct explicit 
examples of sequences satisfying the conditions [ 191, [22]. 
These solutions are shown in Table VIII. 

For each value of L represented in the list previously 
given, we can define a corresponding ternary sequence 
e” with Euclidean weight 2 L, by setting 

1, if j = x i ,  i = l , . . .  ?Z(L),  
-1, i f j = y , ,  i = l , . . .  ,Z(L) ,  e ! , ,  = 4 0, otherwise. 

The equal-power-sum conditions imply that the se- 
quence satisfies the set of moment equations 

M,$k)(el,L) = 0, k = 0,. * ., L - 1 

and, therefore, by Theorem 4 in Section III-A, the corre- 
sponding D-transform e l * L ( D )  satisfies 

e l * L ( D )  = (1- D ) , u ( D ) ,  

for some polynomial u ( D )  with integer coefficients. 
These observation and examples constitute a proof of 

the following proposition. 
Proposition 6: Under the assumption of integer alpha- 

bet, the free Euclidean distance of the channel with 
system polynomial h ( D )  = (1 - OIL, where L 2 1, satisfies 

d&( ( l -D) , )>2L< 

Moreover, for 1 I L I 10, the lower bound is achieved. 
Remark: It follows from Lemma 3 (Descartes’ rule of 

signs) that the ternary sequence el,,, 1 I L < 1 0  must 
contain at least L sign changes. One can easily check that 
there are, in fact, exactly L sign changes in each of them. 

In Proposition 7, we extend the distance bounds in 
Proposition 6 to order-L N-cyclotomic channels $JDIL,  

~~ -- - , - -  
lossless of finite order can be viewed as “deterministic 
with bounded delay.” 
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TABLE VI11 
SOLUTIONS TO THE EQUAL-POWER-SUMS PROBLEM FOR 1 I L I 10 

[OI, = [ll, 
[O, 312 = [I, 212 

[1,2,613 =[0,4,513 
[OA 7,1114 [1,2,9,1014 

[1,2,10,14,181, = [0,4,8,16,17], 
[O, 4,9,17,22,26], = [l,  2,12,14,24,251, 

[O, 18,27,58,64,89,101], = [ l ,  13,38,44,75,84,102], 
[0,4,9,23,27,41,46,50], = [ l ,  2,11,20,30,39,48,49], 

[0,24,30,83,86,133,157,181,197]9 = [ l ,  17,41,65,112,115,168,174,19819 
[0,3083,3301,11893,23314,24186, [12,2865,3519,11869,23738,23762, 

35607,44199,44417,47500],0 = 35631,43981,44635,47488]10 

for N > 1. Exact free distance for 1 I L I 10 will be 
derived by making a simple modification to the sequences 
el,, obtained from Table VIII. 

Proposition 7: Under the assumption of integer-valued 
inputs, the free Euclidean distance of the channel with 
system polynomial h(D)  = $N(D)L,  where L 2 1, satisfies 

dLe( $ N (  0 )  ‘) 2 2 ~ .  

Moreover, for 1 I L I 10, the lower bound is achieved. 

Proof: The lower bound follows from Theorem 8 of 
Section IV-B. To prove the last statement, fix the param- 
eter N ,  and again let w be a primitive Nth root of unity. 
To prove the tightness of the bound for a specified value 
of L, it suffices to exhibit two disjoint sets of nonnegative 
integers xl,* * ,  x ,  and y,,. . -, y , ,  which satisfy the gen- 
eralized equal-power-sum conditions for N given by 

K K 
O ~ ~ X :  = w Y ~ y ~ ,  k = 0;. . , L - 1. 

i = l  i = l  

The corresponding ternary sequence eN, , ,  defined by 

1, i f j = x i ,  i = l ; . . , L ,  

0, otherwise, 
-1, i f j = y , ,  i = l , - . .  7 L,  

will then satisfy the moment conditions at f = 1/NT, 
namely 

M)k)(eN, , )  = 0, k = 0;. . ,L -1 .  

Referring again to Theorem 4 of Section III-A, we will 
then be able to conclude that the corresponding D-trans- 
form of the sequence can be expressed as 

eNSL(D) = u ( D ) $ ~ ( D ) , ,  

for some integer polynomial u(D).  Therefore, the se- 
quence represents a valid output of the channel with 
system polynomial h ( D )  = $,,,(D),, with. integer input 
alphabet. Since, by its definition, the sequence has 
squared-Euclidean weight 2 L, it will achieve the lower 
bound. 

For 11 L ~ 1 0 ,  we can derive such a sequence by 
“stretching” the sets of integers x i  and yi in Table VIII, 
multiplying them by a factor N .  The corresponding se- 
quences e N , ,  are defined in terms of the sequences e lyL ,  

Fig. 2. Example for bound of Theorem 5. 
C .  . ” C. ._ 
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used to prove Proposition 6: 

e:):, if j = O  (mod N ) ,  
0, otherwise. 

It is easy to verify that this sequence e N , L  satisfies the 
required moment conditions at f = l/NT, and also has 

0 Euclidean weight 2L. This completes the proof. 

B. Free Distance for PR Channels: Binary Inputs 

For the case of channels with a binary input restriction, 
it appears to be even more difficult to derive general 
results about free distance. However, we will now prove 
such a result for the subset of first-order N-cyclotomic 
channels 

h ( D )  = $ N ( D ) ?  

where N is restricted to have at most 2 distinct odd prime 
factors, that is N=2"Jp;lp;2. The proof is based upon 
well-known properties of cyclotomic polynomials [54, 
p. 721. 

Proposition 8: Let N = 2eQpE1p;2. The free distance of 
the binary cyclotomic channel with h ( D )  = GN(D) satis- 
fies: 

diree(+N(D)) = 2 .  
Proof: By Theorem 8 of Section IV-B, we know 

dfree 2 2. For N = 1, we have I(rl(D) = 1 - D, so the result 
dzree(#l(D)) = 2 is trivial. For N = p,  a prime, note that 

(1 - D ) + J D )  = 1 - DP, 

so the difference polynomial e(D> = 1 - D produces out- 
put 1 - D p ,  which has weight two. Therefore, 

dfree( $p( 0)) = 2. 

%e( 0) = +J DPe-l) 7 

For N = pe, e 2 2, we have from Section IV that 

and, from the previous case, 

(1 - DPe-') $P( DPe-') = 1 - D p e ,  

which implies 

diree( $pe( 0)) = 2 .  

= $J - D), 
If N = 2p, for p an odd prime, then 

so 
(1+ D)*,( D) = 1+ DP 

The difference polynomial e ( D )  = 1 + D therefore yields 
an output of weight two, so 

dtree(*zp(D)) = 2. 

When N = 2Qp;1, the interleaving relation 
2ea-1 el-1 

*2eop71( 0) = $2J 

implies 

dfree( +2'0pjl( D)) = 2- 

*PIPZ(D) = *P,(DP2)/*Pc$,(D) 

+ 2 P I P Z ( D )  = +P1P,< - D). 

[ ( I -  D " 2 ) + P c $ , ( D ) ] + P l p p )  = 1- DPtP2 

Finally, for N = p l p 2  or N =  2p1p2, with p1 and p 2  
distinct, odd primes, we make use of the relation 

and 

Then 

and 
[ ( 1 + 0"') - D)] $tPIPZ( D) = 1 + DPlP2 a 

These relations imply that with difference polynomials 

e ( D ) = ( 1 - D P 2 ) $ P p l ( D ) ,  

an output sequence with weight 2 is obtained for +Plpz(D), 
and with e( - D), the minimum weight is obtained on 
*ZPl,Z(D). so, 

'tree( +PIP,< D)) = 2 
and 

'?re,( + 2 p 1 p 2 ( ~ ) )  = 2. 

$Plpile2( 0 )  = +P,p2( D P ; ' - l D P q  

@2."pflp'22i 0) = *ZPIPZ( D PI ) .  

The interleaving relations for N = 2e0p;lpp and N = 

p;lp;Z are 

and 
2e0-1  e 1 - l p s 2 - l  

The desired results for the final cases follow immedi- 

To summarize, then: 
ately. 

diree( $ 2 e o p 7 i p 5 2 (  0)) = 2, for e , ,  e , ,  e2 2 0. 

The following lemma gives the free Euclidean distance 
for certain channels, not included in the cases just ana- 
lyzed, that are of interest in applications. 

Lemma 8: For each of the following channels 

a) h(D)  = (1 + DI2 

c) h ( D )  = (1 - 0x1 + D ) 2  

[class-2], 
b) h( D) = (1 - D12, 

[extended class-41, 

the binary free distance is 

dtree( h( D)) = 4. 
Proof: The bounds in Section IV imply that 

diree(h(D)) 2 4 .  
It is straightforward to verify that the following difference 
polynomials, obtained from binary input polynomials, 
achieve the lower bound for the three channels, respec- 
tively: 

a) e(D> = 1 - D, 
b) e ( D ) =  l +  D, 
c) e ( D ) =  1. 
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C. Bounds on Asymptotic Coding Gain of MSN Codes 

Let G be a finite-state transition diagram that gener- 
ates sequences of integers having an order-K spectral null 
at frequencies FN, corresponding to the primitive, com- 
plex Nth roots of unity. If these sequences are applied to 
the order-L N-cyclotomic channel, the sequences at the 
channel output will have an order-(K + L )  spectral null at 
frequencies FN, as discussed at the end of Section III-A. 
We can therefore state the following lower bound on 
asymptotic coding gain achieved by matched spectral null 
codes. 

Theorem 9: Consider a partial-response channel with 
input alphabet dZM = (k 1; . 0 ,  f 2M - l} and system 
polynomial 

where N I , .  . . , N, are distinct nonnegative integers. 
Let C be a rate R, finite-state code over the alphabet 

d 2 M  with an order-K, spectral null at frequencies E, 
for 1 I i I n. If the free Euclidean distance of the channel 
satisfies 

where L = max(L,}, 1 I i I n, then the asymptotic coding 
gain of the code C satisfies the lower bound 

R E:M maxi( Li - Ki) 
L log 2M E, 9 

ACG > l O l O g 1 , ~ -  

where E i M  = (2M - 1X2M + 1)/3 and E, represent the 
average input-symbol power of the uncoded channel and 
coded channel, respectively. 

Proofi The proof follows immediately from the re- 
o 

The following two useful corollaries are now easy to 

Corollary 2: For the order-L N-cyclotomic channel with 

sults developed earlier in this section. 

verify. 

integer alphabet d2M, with M large enough, 

for N 2 1, provided 1 I L I 10. 
Corollary 3: For the first-order N-cyclotomic channel, 

where N has at most two distinct prime factors, as well as 
for the channels in Lemma 8, with bipolar alphabet d,, 

ACG 2 1Ologl0 R( K + 1). 

Remark: Simulation results by Immink [24] can be in- 
terpreted as an empirical verification that binary zero-dis- 
parity codes of codeword length 4, 6, and 8, applied to a 
1 - D channel, achieve the asymptotic coding gain pre- 
dicted by Theorem 9. 

Remark: The special case of Corollary 2 corresponding 
to N = 1,2 is also discussed in [lo]. 

~ 

-17 - - , - -  
lossless of finite order can be viewed as “deterministic 
with bounded delay.” 
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VI. MSN CODE DESIGN AND DEMODULATION 
In this section, we describe techniques for designing the 

encoder/decoder mappings for MSN codes, and 
reduced-complexity Viterbi detectors that provide near- 
maximum-likelihood performance. The two problems 
-code construction and code demodulation-are inter- 
twined, the common thread being the canonical diagram 
representation of spectral null sequences (Section III-B) 
and, at a more fundamental level, the concepts and meth- 
ods from symbolic dynamics introduced recently into the 
context of sliding-block code design for discrete noiseless 
channels ill, [281, [501. 

Following a review of relevant results from symbolic 
dynamics, we turn to the description and analysis of the 
trellis-based demodulation of spectral null sequences, the 
design of MSN codes, and finally, the performance evalu- 
ation of the MSN-coded partial-response system. 

A. Symbolic Dynamics Background 

This subsection collects some of the basic definitions 
and results from symbolic dynamics that relate to the 
representation of constrained sequences by finite-state 
diagrams and to the construction of efficient sliding block 
codes. Additional details can be found in [ll, [41, [281, [491, 
[501. 

The key properties of spectral null constraints and their 
canonical diagram representations that will be invoked in 
the subsequent discussion of reduced-complexity trellis 
structures (Section VI-B) are summarized at the end of 
Section VI-A-1. 

Similarly, the main coding theorem that will be needed 
in the construction of efficient sliding-block spectral null 
codes (Section VI-C) is highlighted at the end of Section 

1) Background on Sofic Systems: A sofic system S is the 
set of all bi-infinite sequences generated by walks on a 
finite directed graph whose edges are labeled by symbols 
in a finite alphabet d ( S ) .  

A block of a sofic system S is a subsequence that 
appears in some sequence of S. A k-block is a block of 
length k. 

The entropy (or capacity) of the sofic system S is 
defined by 

VI-A-2. 

where N(k) is the number of k-blocks of S. 
Given two sofic systems SI and S,, let T be a map from 

s, to s, 
TTT: SI -+ s,. 

The map T is called a k-block factor map if there exists a 
map 

T * :  (k-blocks of SI} d( S,), 

- 
Fig. 2. Example for bound of Theorem 5. 
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such that for some integer i ,  

( T ( x ) ) ; = i 7 * ( x ; + i , , * '  ' , X l + ; o + k - l ) ,  

for every x E SI. The map T is called a factor map if it is 
a k-block factor map for some k. 

For a nonnegative, integer square matrix A ,  let G ( A )  
denote the graph defined by the adjacency matrix A .  
Also, for such a matrix A ,  let { A }  denote a sofic system 
defined by labeling the edges of G ( A )  distinctly. Then, 
for a sofic system S defined on a labeled graph G(A) ,  the 
natural map 

i7: ( A }  +s 
generated by reading off the labels is a one-block factor 
map. 

A matrix A is irreducible if for every i,j there is a 
positive integer n(i ,  j ) ,  such that 

[ ~ " ( ; . j ) ] ; ~  > 0; 

that is, there is a path from i to j of length n(i, j ) .  The 
irreducible matrix is aperiodic if the integer n = n(i ,  j )  
can be chosen to be independent of the states i and j ,  or, 
in other words, the entries of A" are positive. A sofic 
system is called irreducible (respectively, aperiodic) if it 
can be represented by a labeled graph G ( A ) ,  where A is 
irreducible (respectively, periodic). A sofic system is said 
to have period p if it is generated by a labeled graph 
G(A), where the map i7 is one-to-one almost everywhere 
and the greatest common divisor of the cycles in G is 
equal to p.  

A sofic system S is called a subshift offinite type (SFT) 
if in some labeled graph representation {A}  the natural 
map T is one-to-one. There is also an intrinsic definition 
of a SFT that will be important in Section VI-B. Specifi- 
cally, the system S is a SFT if there is a positive integer k 
and a collection C of k-blocks such that 

s = { ~ E ~ ( s ) ~ I x ~ + ~ , . . . , x ~ + ~ E c , ~ ~ ~  all i E Z } .  

The irreducible sofic system S is called almost-finite 
type (AFT) if, in some labeled graph representation, for 
every edge e the natural map i7 is one-to-one when 
restricted to the set of bi-infinite paths that are at edge e 
at time 0. In other words, the map T is, in a sense, locally 
one-to-one. An equivalent definition is that the map i7 is 
one-to-one on an open set. 

A factor map T is right (respectively, left) closing if for 
every distinct pair x and y in S,, with x i  = yi for all i I m 
(respectively, i 2 m),  for some integer m ,  we have ~ ( x )  # 
i 7 ( y ) s 2 .  A one-block factor map T is called right (respec- 
tively, left resolving if 

i7( a l a 2 )  = i7( a l a $ )  (respectively, i7( a l a 2 )  = i7( u i a 2 ) )  

implies 

a,  = a; 

A map is called biresoluing if it is both right and left 
resolving. 

(respectively, a,  = a ; ) .  

When i7 is a l-block map, a block w = w,,; * . ,wk  in S, 
is called a resolving block if there exists an index 0 I i I k, 
and a symbol a ~ d ( S ] )  such that whenever we have 
i7(uo . . . u k )  = w, then ui = a. 

There is a useful characterization of AFT systems in 
terms of these concepts. Namely, the sofic system S is 
AFT if it is the image of an irreducible SFT under a map 
i7 which is right closing, left closing, and one-to-one 
almost everywhere (has a resolving block). 

Although there are many labeled graphs representing 
the same irreducible sofic system S, there is one repre- 
sentation that is in some sense canonical. This repre- 
sentation is called the minimal Shannon couer or the 
irreducible Shannon couer. It is the unique irreducible 
component of maximum entropy in the future cover, 
which is obtained in the following manner. 

For every block U E S, let 

F(  U )  = (blocks w E S(uw E SI. 
Consider the labeled graph with state set 

9= { F ( u ) l u  E S} 

F ( u )  + F ( u j ) ,  
and edges 

with label j ,  where uj is a block in S. It can be shown that 
this state set 9 is finite. The matrix of this graph, 
denoted Ak, together with the natural factor map 

Ti: { A ; }  + s 
is the future cover of S. Since S is irreducible, the graph 
G(Ak)  has a unique irreducible component of maximal 
entropy. The matrix of this component is denoted A:,  
the associated SFT is denoted Z;, and the restriction of 
the map i7; to Z: is denoted i7:. We refer to the SFT 
Xi, along with the map i7; as the minimal Shannon 
cover of S. 

Remark: There is an analogous construction based upon 
a past couer, leading to a SFT denoted by C y ,  with factor 
map i7;. 

The following proposition summarizes some of the 
properties of the minimal Shannon cover. 

Proposition 9 [501 [4J Let S be an irreducible sofic 
system with minimal Shannon cover T:: C; + S. Then, 

1) i7s+ is onto. 
2) Cap(S) = Cap(C,') = log(1argest eigenvalue of Ak). 
3) i7: is right resolving. 
4) T: has a resolving block. 
5 )  i7: is one-to-one if and only if S is a subshift of 

finite type (SFT). 
6) 7 ~ :  is left closing if and only if S is almost-finite 

type (AFT). 
7) 2; has the minimal number of states among all 

right resolving presentations of S, and any right 
closing factor map from a SFT C, to S must factor 
through rr:. 

As noted in [28], the minimal Shannon cover is uniquely 
identifiable as the presentation of S based upon an 
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irreducible graph, in which, a) for each state, the outgoing 
edges are labeled distinctly, and b) the sets U(s) of 
semi-infinite sequences generated by paths beginning at 
state s are distinct. 

Let H be an irreducible subdiagram of a canonical 
diagram G for a specified spectral null constraint. Let S 
be the sofic system generated by H ,  and assume the 
natural map rH: H -t S is one-to-one almost everywhere. 

The following remarks establish a connection between 
the canonical graph representation of S and its minimal 
Shannon cover. 

Remarks: 

1) The sofic system S of spectral null constrained se- 
quences is AFT. (Sketch of proofi This follows from 
the fact that the map T is left resolving, right 
resolving, and one-to-one almost everywhere.) 

2) The cover defined by ( H , r H )  is the same as the 
minimal Shannon cover (Xsf , rsf ) and its past cover 
counterpart (2; , r; ). Viewed as labeled graphs, 
these covers are isomorphic. (Sketch of proof: Since 
rH is right resolving, the construction in Proposition 
4 of [4] defines a l-block factor map 8: H - t  C l  
(with symbols corresponding to edges) from H to 
the minimal Shannon cover, such that rrH = r: 0 8. 
Now, rH is biresolving and one-to-one almost every- 
where, so it is one-to-one on an open set. From 
Corollary 10 of [4], there is an invertible factor map 
(conjugacy) 4: H -t Zf satisfying rH = r: 0 4. It 
follows that the maps 8 and 4 are the same, and 
they define a labeled graph isomorphism between H 
and X l  . A similar argument establishes the isomor- 
phism involving X i .  We also note that the isomor- 
phisms are a special case of a result due to Nasu 
PI.) 

3) ( H , r H )  has the minimal number of states of any 
cover (2,~) of S, where rr is required to be a 
l-block map, but need not be right or left resolving. 
(Sketch ofproof: Let ( C M , r M )  be the state-minimal 
cover of S. Applying Theorem 9 of [41, with ( H ,  rH) 
corresponding to ( C A ,  r )  and ( X M ,  rM) correspond- 
ing to ( Z E , r E ) ,  we get a l-block factor map 8 :  
ZM -t H ,  such that rM = rH 0 8. An application of 
Corollary 10, as in the previous remark, establishes a 
labeled graph isomorphism between ( H ,  rH) and 
(EM, r,U)*) 

We denote the state-minimal cover of the spectral null 
system S by (Cs,.rr,). The fact that the cover determined 
by the subdiagram H of the canonical spectral null dia- 
gram is state-minimal is very attractive in the context of 
its use as the basis for the reduced-complexity Viterbi 
detector defined in Section VI-B. 

2) Sliding-Block Code Background: The relationship of 
these concepts to code construction is now addressed, 
along the lines of the discussion in [28]. 

Let S+ denote the set of all semi-infinite subsequences 
of sequences that belong to S. That is, S+ contains the 

sequences 
xox1x2 * * 

for which there is a sequence 

in S. 
A finite-state code from the set of all sequences 2, 

over a finite n-ary alphabet to S at rate p: q is a mapping 

E :  (X,)’-tS+ 

. . * x-2x-1xoxIx2 * * * 

described by a finite-state-machine with inputs drawn 
from the set of p-blocks in C,, and outputs drawn from 
the q-blocks in S. 

The code is called invertible if the mapping E is 
one-to-one. An invertible finite-state code has a decoder 

D:  {.I( S ) ’ + }  -t (2,)’ 

D( E(  x ) )  = X .  

given by 

A finite-state invertible code at rate p: q is called non- 
catastrophic if whenever y E ~ ( S ) ’ +  and z is in the 
image of the encoder E and the two sequences (or an 
appropriate shift of each of them) differ in only a finite 
number of positions, then their images under the decoder 
mapping, D(y) and D(t) also differ in only a finite 
number of places (after a corresponding shift). 

The code is said to have a sliding-block decoder if for 
some integer L > 0, there is a function from the set of 
q(2 L + 1)-blocks over the alphabet d ( S )  to the p-blocks 
in 2,, 

f: ( ( d ( S ) ) q ) 2 L + 1  - t ( a 1 ; - *  

where {a l , .  . 1 ,  a,} is the alphabet of C,, such that if y 
belongs to the image of E ,  and y = E h ) ,  then 

It is easy to check that a sliding-block decoder is 
noncatastrophic. 

Remark: Techniques for constructing noncatastrophic 
codes and, more specifically, sliding-block codes, were 
described in [l], [28]. The existence theorem upon which 
these methods are based, and the fundamental result of 
most importance in the consideration of the design of 
efficient spectral null codes is as follows: 

meorem 10 [ll [28) Let S be a sofic system, and 
suppose p / q  I Cap(S)/log(n). Then: 

a) There is a finite-state invertible noncatastrophic code 

b) If S is almost-finite type (AFT), then the code has a 
from n-ary data to S at constant rate p : q;  

sliding-block decoder. 

B. Reduced- Complexity Kterbi Detectors 

In this section, we will derive from the canonical dia- 
grams (described in Section III-B) the trellis-structures 
that will underlie the reduced-complexity demodulators 
for MSN-coded partial-response channels. 

- 1 ‘ -  - I - -  
lossless of finite order can be viewed as “deterministic 
with bounded delay.” Fig. 2. Example for bound of Theorem 5. - C .  . ” C. ._ . .  
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Consider a partial-response channel with spectral nulls 
(of any finite order) in its frequency response at frequen- 
cies F= {fl; a ,  f,}. Let G be a canonical diagram for 
sequences, based on a finite, integer alphabet, which have 
spectral nulls (of any order) at 9, and let H be an 
irreducible finite subdiagram of G. Let S be the sofic 
system generated by H ,  and assume that the map 7r: 

H + S is one-to-one almost everywhere. The remarks at 
the end of Section VI-A-1 imply that ( H , 7 r H )  is isomor- 
phic to the state-minimal cover (CS,7rs) of S. Let S’ be 
the system generated by S at the output of the channel. It 
is easy to check that S’ is AFT, that the minimal Shannon 

.cover ( C s j , r s r )  is derived from (Cs,7rs) in the obvious 
manner by incorporating the channel memory, and that it 
is also a state-minimal presentation of S’. We then have 
the following commutative diagram: 

HCIH’ H I  

S Z S ‘  
7 

where H and H’ denote the subshifts underlying the 
minimal covers, 7r and 7r’ are the natural projections, and 
the maps p H  and ps are the surjective maps induced by 
the channel h(D).  

Let C be the image of a sliding-block code from binary 
data to the constrained system of sequences S generated 
by H ,  and let C’ be the output sequences of the coded 
partial-response channel. 

We will now develop some ideas related to the use of 
the trellis structure corresponding to H’ to demodulate 
the sequences in C’.  

1) Distance Measures: First, we define two notions of 
distance that are important in our later discussion of 
Viterbi detector performance. These definitions of dis- 
tance are closely linked to the familiar ideas of free 
distance and column distance function in the theory of 
convolutional codes [47, p. 3091. Let S be a sofic system 
with multilevel symbol alphabet, and with minimal Shan- 
non cover E,. 

Definition 17: The minimum merged distance of S ,  de- 
noted d < >(S), is defined as 

where T is the set of pairs (x, y )  of distinct sequences 
x, y E S having preimages 7ri1(x) and .rr,’(y) in Cs that 
contain representative paths that differ in only a finite 
number of edges. 

Another important notion of distance is the minimum 
unrestricted distance, denoted d < (S) as defined as fol- 
lows. 

Definition 18: The minimum unrestricted distance of S ,  
denoted d <(SI, is given by 

d , ( S ) =  min d ( x , y ) ,  
( x ,  Y )  E sz 

X + Y  

where S2 is the set of all pairs of sequences x and y in S. 

Remark: For the code sequences of a rate 1 : n linear 
convolutional code S, Cs corresponds to the state- 
diagram underlying a minimal noncatastrophic encoder of 
S and the minimum merged distance d < >(SI corre- 
sponds to the free distance of S with respect to the 
corresponding trellis. 

The condition on x and y in the definition of d < ,(SI 
implies that the sequences differ in only a finite number 
of positions. Moreover, the specified representative paths 
in Zs must agree up to a certain point, at which they 
diverge; then, after a finite number of steps, they remerge 
and agree from that point onward. In other words, the 
representative paths constitute a finite-length error-event. 
Therefore, d < >(SI is the minimum-error event in Cs. 

On the other hand, d , ( S )  additionally takes into ac- 
count the distance between a pair of sequences with 
representative paths in Cs that agree up to a certain 
point, diverge, and then never remerge. This notion is 
analogous to the distance measure 

dm( S )  = lim di( S ) ,  

where d i ( S )  is the column distance of order i for the 
linear convolutional code S [47, p. 3091. 

Lemma 9: The two distance measures satisfy the rela- 
tion 

1” 

d < ( S )  I d <  >(S) .  

Proof: This is clear because of the inclusion T c S2.  
0 

The following familiar example shows that d <(SI can 
be strictly less than d < >(SI. 

Example 6: Let S be the output sequences of the 
binary 1 - D channel. The trellis diagram corresponding 
to Cs is the familiar 2-state structure in Fig. 37. The 
minimum merged distance is the same as the free dis- 
tance, as defined in Section 11, and 

dfree(S) = d <  =Jz, 
as illustrated by the all 0’s sequence and the sequence 

* .  . O  1-1 0 . .  differing by the “diamond” shown in 
Fig. 37. The minimum unrestricted distance is d <(SI = 1, 
however, as can be seen by comparing the all 0’s sequence 
and the sequence . . e 0  1 O . . . ,  represented by paths 
that diverge but do not remerge, as shown in Fig. 38. 

As shown in [13] for uncoded partial-response systems 
like that of the preceding example, the average probabil- 
ity of error-event for a Viterbi detector is largely deter- 
mined by signal-to-noise ratios, and the d < ,(S) at mod- 
erate-to-high standard underlying trellis is derived from 
the 2,. However, from the practical standpoint of detec- 
tor implementation, the path memory required to ap- 
proach the predicted average performance is dependent 
on the truncation depth, representing the minimum length 
T with the property that any pair of sequences of length T 
generated by paths diverging from the same state in the 
trellis must have distance at least as large as d ,  >(SI. 
Unfortunately, if d ,(S) < d < ,(SI, as in the previous 
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Fig. 37. Dicode sequences with distance d < , . 

Fig. 38. Dicode sequences with distance d < ,  

example, the truncation depth is unbounded. As a result, 
the system is susceptible to quasicatastrophic error-propa- 
gation, where the decoder error-probability may be de- 
graded as a result of path-memory truncation effects [47]. 
The next subsection identifies the sequences in S that are 
responsible for this phenomenon, and shows how the 
associated performance degradation may be avoided by 
means of coding. 

2) Quasicatastrophic Sequences: In this subsection we 
look at a subset of sequences in S which we call quasi- 
catastrophic sequences that are intimately connected to 
quasicatastrophic error-propagation and unbounded trun- 
cation depth. 

Definition 19: Let S be an almost-finite type (AFT) 
sofic system, with minimal Shannon cover Zs, and corre- 
sponding factor map rs: Cs + S .  The set 9 of quasi- 
catastrophic sequences in S is defined by: 

9 = (4  E SI l r& ) l>  1). 

In words, 9 consists of the bi-infinite sequences with 
multiple distinct preimages in Zs, a condition implying 
that, for each quasicatastrophic sequence q, there is more 
than one path in Zs that “generates” q. 

Remark: From Proposition 9, it follows that the set of 
quasicatastrophic sequences has measure zero when S is 
endowed with its Shannon measure (the measure of maxi- 
mal entropy). 

Remark: A similar concept was also introduced in [5]  
using the terminology “flawed sequences.” In [141, the 
notion of a quasicatastrophic trellis was defined. We can 
rephrase that definition in the following manner: The 
trellis corresponding to Zs is quasicatastrophic if and 
only if the set of quasicatastrophic sequences 9 in S is 
nonempty. 

Example 7: Let S be the output sequences of the 
binary 1 - D channel. In this case, 

9 = {q  E Slq, = O for all i } ,  

that is, 9 contains simply the all 0’s sequence. If a 
sequence contains a 1 or -1, the corresponding edge in 
the path in Zs is uniquely determined, or “resolved.” 
Since the map rs is both left- and right resolving, the 
preimage of S is then uniquely determined. 

The example suggests a useful, alternative characteriza- 
tion of 9, given in Lemma 10. First, we recall from 
Section V-A-1 the definition of a resolving block in S. 

Definition 20: A resolving block is a block s = s1 . . - s, 
in S for which there is an index i E [ l ,  . . . , n ]  such that if 
u = u1 . . . U, and U = u1  . . . U, are words in Zs with r s ( u )  
= s = r S ( u ) ,  then ui = ui.  (In particular, since rs is right 
resolving in the case of our canonical diagrams, the i 
above can be chosen to be n.)  

Lemma 10: Let S be AFT. Then 9 is the set of 
sequences in S that do not contain a resolving block. 
Moreover, the set 9 is a closed subset of S. 

Proofi We first show that if  SE^, then s does not 
contain a resolving block. For, suppose s E S contains a 
resolving block s = s l  . . .  st.  If r s ( u ) = s ,  then U, is 
uniquely determined. Since rs is right resolving and left 
closing, it follows that U is uniquely determined, so s 4 9. 

Conversely, if s does not contain a resolving block, 
then, because rs is both right resolving and left closing, it 
is easy to see that s must have at least two preimages. 

The fact that 9 is closed follows from the fact that the 
sofic system is AFT [501. This completes the proof. 0 

We will now justify our nomenclature by showing how 
the quasicatastrophic sequences relate to the phe- 
nomenon of quasicatastrophic error propagation, as de- 
scribed in [14]. 

To make the notion of quasicatastrophic error-propa- 
gation more precise, we now define a generalized trunca- 
tion depth applicable to this situation. 

Definition 21: Let C be a closed shift-invariant subset 
of S - 9 (i.e., a subshift of S - 9). Let x = (xo ,  x l ,  * ) 
in C and s = (so, sl, } in S be sequences generated by 
paths that diverge from some state (+ in Zs. Let x @ ) =  
{ x 0 ;  * * ,  x,} and s(”) =(so; e ,  s,). The generalized trunca- 
tion depth of C with respect to S ,  denoted T(C,S) ,  is the 
minimum length 7 such that 

d(  x ( ~ ) ,  2 d < , ( S )  , 

for all such pairs of sequences x and s. The following 
proposition shows that, roughly speaking, one will not 
experience quasicatastrophic error-propagation if the de- 
tector input sequences are restricted to a subset C c S 
that is disjoint from the set of quasicatastrophic se- 
quences 9 in S. 

Proposition 10: Let C be a closed shift-invariant subset 
of S - 9 (i.e., a subshift of S - 9). Let x E C. Then, 

a) d ( x ,  s) 2 d < ,(SI, with x # s; 
b) if C is a shift of finite type (SFT), the generalized 

for any s E S, 

truncation depth 7(C,  S) is bounded. 

Proof of Part a): Since x E S - 9, we have 

ITS’( x)I = 1. 

Let i? = r i  ‘ ( x )  and s  ̂E r; ‘(s). It suffices to consider the 
case where d ( x ,  s) is finite; that is, the sequences differ in 
only a finite number of positions. We will prove, in this 

lossless of finite order can be viewed as “deterministic 
with bounded delay.” 

Fig. 2. Example for bound of Theorem 5. 
C .  . ” C. ._ 
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case, that the set of indexes where f and s  ̂ differ, ( i l i ,  # 
$}, is finite, implying that x and s are represented by 
paths in 8, that are left and right asymptotic, differing in 
only a finite number of places. It then will follow that 
d ( x ,  s) r d < >(SI 

We first show that for any x E C, and any integer n, 
there must be a resolving block in (xfl, x,,~, - * ). If there 
were not, then the sequence of points in S ,  

P =  PQ,P1,' ' ' , P k ,  ' ' 

represented by the sequences pk = u k ( x ) ,  where U is the 
left-shift operator, would have the property that for any 
k 2 0, the point pk would contain no resolving block in 
components ( P ~ ) ~ ,  i 2 n - k .  Since C is closed in S ,  there 
is a subsequence p k J ,  j r 0 ,  where limjkj+m, which 
converges to a limit point p* E C. (It helps to think of a 
zipper in visualizing this convergence.) 

Now pkJ contains no resolving block in components 

( P k , ) i ,  i 2 n - k j ,  

so it follows that p*  contains no resolving block at all. 
Therefore, p* E 9. But, by assumption, C c S - 9, which 
gives a contradiction. 

A similar argument shows that for any n E Z ,  there is 
resolving block in ( . x , - ~ ,  xfl). So, assume the index set 
I on which x and s differ satisfies 

I =  {i lx,  # yi} c[ - N ,  N I ,  

for some sufficiently large N .  Since T, is left closing and 
right resolving, it follows that i and s^ must agree asymp- 
totically in the positive and negative directions beyond the 
first resolving blocks appearing in the components to the 
right and left of the index set I .  In particular, there is an 
integer M 2  0 such that ii = s^i, for (ilr N +  M.  This 

0 

Proof of Part b): We will prove Part b) by referring to 
the intrinsic definition of a SFT given in Section VI-A. 
Suppose, then, that b) does not hold. From the proof of 
Part a), this would mean that for any integer n > 0, we 
can find in C a block of length greater than n containing 
no resolving block of S .  For n sufficiently large with 
respect to the parameter L in the intrinsic definition of 
the SFT C, for example n > I d ( S ) I L ,  we can extract from 
the n-block a subsequence that we can use to define a 
periodic sequence z in C that contains no resolving block 
of S, implying that z E 9. This conclusion contradicts the 
fact that C is disjoint from 9, proving Part b), and 
completing the proof of the proposition. 

completes the proof of part a). 

Corollary 4: For subshift C as in Proposition 10, 

d < ( C )  > d <  > ( S ) *  

Proofi This follows directly from Part a). U 

Corollary 5: For a SIT C as in Proposition 10, the 
maximum length of minimum distance difference events 
involving any sequence x E C is bounded. 

Proof: This follows directly from Part b). 0 

Remark: If S is a SIT, with minimal Shannon cover 
E,, it is easy to deduce from Corollary 4 that 

In the next section, we show that it is possible to 
construct a sliding-block code with image in S that avoids 
the quasicatastrophic sequences 9, without incurring ad- 
ditional rate loss. 

C. Sliding-Block Spectral Null Codes 

Techniques for constructing sliding-block codes for dis- 
crete noiseless channels have been developed in [l], [28], 
[49], [50]. Such a code has an encoder representable as a 
synchronous finite-state machine and uses a state-inde- 
pendent decoding rule in the form of a sliding-block 
decoder. The sliding-block decoder ensures that error 
propagation is limited when the code is used in applica- 
tions involving a noisy channel. This section addresses 
issues related to the construction of sliding-block spectral 
null codes. 

The following lemma shows that one can construct a 
rate p / q  sliding-block spectral-null code from uncoded 
n-ary sequences to the binary spectral-null constraints 
corresponding to subdiagrams of the canonical diagram 
G, for any allowable rate, p / q  < 1. 

Lemma 11: Let p / q  < log n. Then there exists a rate 
p / q  sliding-block code from n-ary data to binary spectral 
null constraints. Moreover, the encoder can be defined in 
such a way that its image is a shift of finite type. 

Proofi This follows from the work of Petersen [%I 
U 

Remark: This result can be extended in a straightfor- 
ward manner to the canonical diagrams corresponding to 
spectral null constraints for sequences with finite alpha- 
bets contained in the integers. The valid code rates satisfy 
p / q  < log n/log m ,  where m is the size of the code 
symbol alphabet. 

Example 8: Let H: denote the FSTD in Fig. 24 that is 
restricted to N consecutive states 0,. *,  N - 1.  The Shan- 
non capacity of the constraint, denoted Cap(H:), is given 
by the closed form expression: 

and Ashley [2], along with Theorem 10. 

7r 
Cap ( ~ i )  = log, 2cos - f o r N r 3 ,  

N + 1 '  

as shown by Chien [7]. It is clear from this formula that 
the capacities of these systems satisfy 

Cap ( H i )  - - $ I  

as N + m. In particular, to design binary codes with 
spectral null at f = 0, with rates 1/2, 2/3, 3/4, and 4/5, 
one could use the FSTD's H:, H:, H:, and H:. 

It is clear from Proposition 10 that it is desirable to 
eliminate quasicatastrophic sequences at the output of 
the partial-response channel. We now prove, through a 
series of results, that it is indeed possible to construct 

. 
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sliding-block spectral null codes that avoids quasicata- 
strophic sequences at the channel output, without sacrific- 
ing any code rate. 

Let H ,  S, C and H’, S’, C’ be as in Section VI-B. We 
first relate the quasicatastrophic sequences in S to those 
in S’. Specifically, we show that if the code sequences C 
avoid the quasicatastrophic sequences 9 c S, then the 
coded-channel output sequences, which we denote by C‘, 
will avoid the quasicatastrophic sequences 9‘ c S’. 

Proposition 11: The mapping ps:  S .+ S’ is one-to-one 
(injective). 

Proof: Let s, t be sequences in S, with ps(S)  = ps(t ) .  
The difference sequence U = s - t satisfies 

d e d h )  

C U,-khk=O, 
k = O  

for each index n. Given a block of length deg(h) in U, 
. . .  

IUn-deg(h), - 1 1  7 

the symbols U, and Un-deg(h)-l are determined uniquely 
by the equation. Since the alphabet is finite, there are 
only a finite number of such blocks, so some block must 
reappear in U. Assume, without loss of generality, that 
[u l ;  . ., u ~ ~ ~ ( ~ ) ]  reappears. Then U must be periodic, and 
it is described by the cycle 

where 
u1 ’ ’ . Udeg(h) ‘ ’ ’ U N ,  

u N + 1 U N + 2  ’ ’ * UN+deg(h)  

is the first reappearance of the sequence u1 . * udegCh) 
in U. 

Now, since U is periodic, it has a Fourier series, which 
may be treated mathematically as a discrete spectrum 
U ( f ) .  The transform of the defining equation is 

W f ) H ( f )  = 0,  
where H(f) is the frequency response of the channel 
h(D). Therefore, if U # 0, U ( f )  must consist of nonzero 
spectral lines at some nonempty subset of the frequencies 
F where H(f) takes the value zero. But, by assumption, 
S consists of sequences whose Fourier spectral compo- 
nent is zero at all of the frequencies in F, so U = s - t 
would have to have this property as well. Therefore, 

U ( f ) = O  

injective as claimed. 0 
and it follows that U = 0. This implies that s = t ,  so ps is 

Corollary 6: Let 9 c S and 4‘ c S’ be the subsets of 
quasicatastrophic sequences in S and S’. Then 

In other words, 

ps( s - 9) c SI -  9’ 
Proof: Let q’ E 9‘, with unique preimage pS1(q’) = 

q. Since q’ E 9’, there are two distinct paths pi, p i  E H’ 
with ~ ’ ( p ; )  = ~ ‘ ( p ; )  = q’. Since pH is surjective, there 

~ _.____ 

I II , - -  - -  
lossless of finite order can be viewed as “deterministic 
with bounded delay.” 
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are at least 2 distinct paths p l ,  p 2  E H with p s ( p I )  = p i ,  
p s ( p 2 )  = p i .  By commutativity of the diagram, and injec- 
tivity of ps,  we can conclude that r ( p l ) =  ~ ( p , ) =  q, 

Remark: The corollary shows that if the spectral null 
code is designed to avoid the quasicatastrophic sequences 
9 c S, then the channel output sequences will avoid 
9‘ C S’, as desired. This simplifies the task of constructing 
the code, since these constraints can be expressed in 
terms of the code sequences generated by H ,  rather than 
in terms of the channel output sequences described by H’. 

It remains to prove that it is possible to design a code 
C c S - 9 with rate arbitrarily close to Cap(S). That is, 
the elimination of quasicatastrophic sequences does not 
require any reduction in code rate. 

Proposition 12: Let S be an AFT sofic system, with 
quasicatastrophic subshift Q. There exists a sequence 
C,,C2, * . . of subshifts of finite type such that: 

implying q E 4. 0 

C , C S - 9  

supCap(Ci) =Cap(S) .  
and 

1 

Proof: The proof is essentially contained in Proposi- 
tion 3 in [50]. The only remark that needs to be made is 
that the subshifts of finite type defined in [50] consist of 
sequences that contain resolving blocks of S (quasiperiod- 
ically, in fact). Therefore, those subshifts must be con- 
tained in S - 9, by Lemma 10. 0 

Remark: It is often necessary to incorporate other code 
constraints in order to ensure compatibility of the channel 
output sequences with algorithms for timing and gain 
control [9]. For gain control, more specifically, output 
sequences with long runs of 0’s are to be avoided. More 
generally, for timing control, output sequences should 
minimize the length of runs of any identical sample val- 
ues. In some cases of interest, the spectral null constraint 
inherently provides very effective runlength constraints. 
For example, for the 1 - D channel with first-order spec- 
tral null at zero frequency, the finite-state-transition dia- 
grams H i  in Fig. 24 limit the maximum runlength to 
N-2. 

For the 1 +  D channel with binary inputs {O,l}, the 
canonical subdiagrams limit only the maximum runlength 
of output l’s, since they incorporate an inherent limita- 
tion on the length of runs of the form 1 0 1 0 - - -  . 
Therefore the input runlengths of 0’s and 1’s must be 
further restricted to ensure constraints on the output 
runlengths of 0’s and 2’s. For example, as mentioned in 
Section 11-B, the EMM code was designed to restrict the 
length of the maximum run of 0’s (resp. 1’s) at the 
channel input to 8 (resp. 12). See Fig. 12. 

The capacity of this modified EMM constraint is ap- 
proximately 0.6880, as compared to the original EMM 
capacity log2((l + &)/2) = 0.6942. Thus, a sliding-block 
code with rate 2/3 still could be constructed. 

- 
Fig. 2. Example for bound of Theorem 5. 
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Runlength limitations such as these will typically re- 
duce the Shannon capacity of the constrained system, but 
in many applications the parameters can be chosen to 
minimize the impact on the resulting code rate and code 
complexity. 

D. Pei+ormance Evaluation of MSN-Coded Channels 

The results of the previous section indicate that, when 
d < >(Cl)  = d < >(Sf), a Viterbi detector using the trellis 
derived from the minimal cover H’ will provide asymptoti- 
cally the same error-event probability as a maximum-like- 
lihood detector for C‘, which would use the typically more 
complex trellis incorporating the structure of the code C 
and the channel memory. 

The standard bound for the probability of an error 
event, assuming independent noise samples with Gaussian 
distribution having mean zero and variance u2, is there- 
fore 

Pr(event) 2 N,,Q ~ ( d(::” 1 
where d(C’,S‘) is the minimum distance between any 
sequence in C’ and any distinct sequence in S’ ,Q  is the 
complementary error function, 

and Ns, is the “error coefficient” that expresses the 
average number of sequences in S’ at this distance from a 
sequence in C‘.  

We know from Section V that 

d(C’ ,S ’ )  2 d < ,(SI) 2 2( K + L ) ,  

so the asymptotic performance, in the limit of increasing 
signal-to-noise ratio, is the same as a maximum-likelihood 
detector. The error coefficient for the reduced complexity 
detector may be larger than for the maximum-likelihood 
detector, but in all of the examples that we have exam- 
ined in which the rate of the code C was near the 
capacity Cap(S), the effect of the difference in error 
coefficients was insignificant even at low-to-moderate sig- 
nal-to-noise ratios, as illustrated by the examples of 
MSN-coded channels in Section 11. 

We summarize these observations in the form of the 
following theorem. 

Theorem 11: Let H ,  H ’ ,  S, S’, C ,  and C’ be as previ- 
ously stated. If the Viterbi algorithm based on the trellis 
derived from H’ is used to detect C’ in additive, indepen- 
dent Gaussian noise with probability density M(0, u2),  
the average probability of an error event is tightly bounded 
bY 

as u2 -, 0. 
Therefore, for moderate-to-high signal-to-noise ratios, 

the asymptotic performance achieved by the code C, in 

conjunction with the reduced complexity trellis based on 
H’, is comparable to the gain promised by the matched- 
spectral-null code theorem, Theorem 9. 

Typically, the complexity of the trellis derived from H’ 
is considerably simpler than the trellis based upon the 
code C, as measured, for example, by number of states, 
number of edges per trellis stage, or the number of 
arithmetic/logical operations required per detected data 
bit. In addition, if H ,  and therefore H’, are periodic with 
period P,  the code C and detector trellis can be based 
upon an irreducible component of the Pth power of H ,  
denoted H P ,  which is defined as the FSTD with the same 
states as H ,  and with edges and edge labels correspond- 
ing to paths of length P in H .  The trellis will then be 
appropriate for detecting a code with rate p : q,  where the 
period P divides q. 

When the number of states in the trellis is reduced, the 
path memory hardware is proportionally reduced. If, 
moreover, the code C has finite memory and avoids the 
quasicatastrophic sequences 9 c S, the results of Section 
VI-B imply that the path memory can be further simpli- 
fied because of the bounded generalized truncation depth. 

Remark: A similar approach to “near maximum-likeli- 
hood” detection of a spectral null code was reported by 
Wood [67] in the context of a memoryless channel (that is, 
without intersymbol interference). He developed a re- 
duced-complexity detector for the binary Miller-squared 
code, which is a rate 1/2 code with first-order spectral 
null at zero frequency. The code has free Hamming 
distance given by 

representing an increase in minimum distance of 3 dB 
compared to the uncoded binary channel. The code se- 
quences are generated by the subdiagram H ;  of the 
canonical diagram for a simple spectral null at zero fre- 
quency, and the detector represents an approximation to 
the Viterbi algorithm based on the trellis derived from 
H:. The code does contain quasicatastrophic sequences, 
however. 

VII. CONCLUSION 
This paper has presented a new trellis-coded modula- 

tion technique applicable to a broad class of partial- 
response channels. The codes are primarily intended for 
applications in which the channel input alphabet is fixed. 
The codes, which we call matched-spectral-null (MSN) 
codes, have zeros in their power spectral density function 
(and its derivatives) at precisely the same frequencies as 
the transfer function of the partial-response channel. Sys- 
tems of integer-valued sequences having higher-order 
spectral nulls at rational submultiples of the symbol fre- 
quency were characterized. Euclidean distance properties 
of these spectral null constraints were then derived, and a 
lower bound on the coding gain of MSN codes was 
proved. Canonical diagrams which characterize higher 
order spectral null constraints were used to define de- 
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modulators with reduced-complexity trellises. These were 
shown to provide performance close to maximum-likeli- 
hood detection for efficient sliding-block codes derived 
from the diagrams. It was shown that elimination of 
quasicatastrophic sequences from the code could simplify 
the detector implementation and avoid quasicatastrophic 
error-propagation. 

The theory of MSN codes is appealing from an intuitive 
standpoint. It is consistent with the well-known adage 
that "the code spectrum should match the channel trans- 
fer characteristics." In the context of waveform channels 
with average input-power constraints, this design criterion 
was made precise by the classical derivations of channel 
capacity, and the features of a capacity-achieving signal 
spectrum could be visualized using the "water-filling" 
interpretation. For input-restricted partial-response chan- 
nels, the MSN theory identifies a specific, frequency- 
domain characterisitc-the location and order of spectral 
nulls-and indicates the benefits that can accrue when 
code and channel match in this respect. An interesting 
problem for future investigation is the elaboration of this 
analogy, from both theoretical and practical standpoints. 
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APPENDIX A 

In this appendix, we prove a generalization of Proposi- 
tion 5 that was used to evaluate the mask associated to 
the reduction vector generated by the sequence of Jacobi 
symbols in Section IV-B. 

Proposition AI: Let N = p1 . . . p, .  If { p i ] , .  . - , p i >  is a 
subset of factors of N, define 

Then, 

Proof: We assume, without loss of generality, that 
p i ,  * * * p i , = p l  " . p L .  First, assume (i,N)=(p,+,...p,). 
Then we can write i in the form 

i = s( PL + 1 * * P n )  7 

where 

(s ,  p , )  = 1, 

( i ,  p , )  = 1 ,  

for I = 1 ;  . . , L .  

for Z = 1; . . , L, 
Since 

the exponent ij, where j E @ ( N ) ,  is determined, modulo 
N, by the residues 

r r= j (modp , ) ,  Z=l;.. , L. 
The number of elements j E @(NI with these residues is 
exactly cp( p L  + p n )  and we can identify these elements 
with a specific residue class in @ ( p l  pL) .  Using the 
representation of i, we can therefore rewrite the sum as 

But, the exponent sj ranges over all residue classes in 
@ ( p ,  . . . p L )  as j ranges over these residues, since (s, 
p 1  . . * p L )  = 1. Therefore, we can evaluate c f l . . . p L  as 

= f CP( P L + ~  . . . P n ) Y p ,  " . p L ,  

as desired. 
We now examine the case where ( i , p l  * * p L )  f 1. Sup- 

pose that N can be decomposed into prime factors, as 
follows: 

N =  (PI  . . PU)(PU+l .  * * P L )  

. ( P L + l  . ' *Pv)( PV+l . * . P a ) ,  

and that, by the assumption, i can be written as 

i =  ( p l . .  . PU)(PL+l ' . . P v ) S ,  
where 

( s , p , ) = l ,  for I=U+l,...,L,(V+l),...,n. 
We can rewrite the last factor in the expression for 
c P I " ' P L  as 

1 

si N/(i ,W. 
The value of this quantity is determined by the residues of 
j modulo the prime factors of N / ( i ,  NI, 

I = U + 1 , .  a ,  L ,  V + 1 ,  . . . n. rl = j (mod p , ) ,  

if ( i , p i , - - . p i L ) + l ,  

i "I , - -  - -  
lossless of finite order can be viewed as "deterministic 
with bounded delay." 

" C. . d C .  . 
Fig. 2. Example for bound of Theorem 5. 
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Among the elements j E @(NI ,  each such set of residues 
is realized by 

4 P1 . . * P U P L  + 1 * . P v 1 
elements. For convenience, we define 

4 = ( P 1 .  * . P U ) ( P L + I  * .  Pv) 

r = ( Pu+ 1 . . - P L )  ( Pv+ 1 . * . P J .  

and 

The coefficient cpl “ ‘ p L  can be evaluated as follows 

= 0, 
since 

as can be seen by combining the Chinese remainder 
theorem with the fact that 

This completes the proof of the proposition. 0 
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