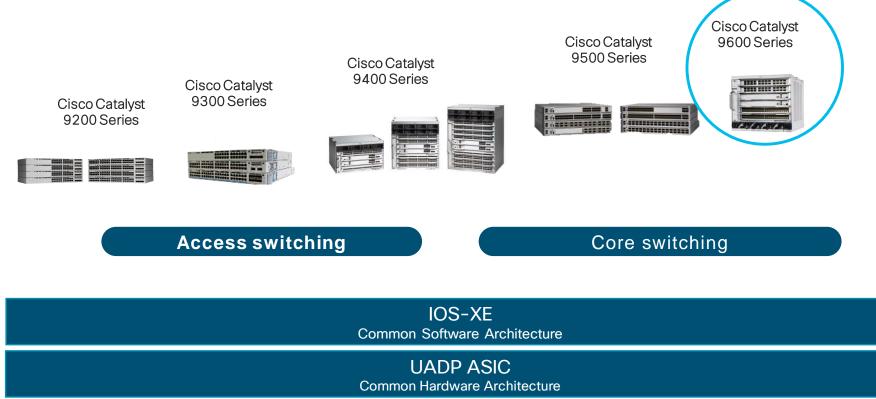


You make **possible**

Catalyst 9600 Architecture

Kenny Lei Technical Marketing Engineer BRKARC-3010



Agenda

- Overview
- Architecture
- Forwarding
- Features (ACL, QoS, Security, High Availability)
- Catalyst 9600 Design
- Closing

Cisco Catalyst 9000 Family

*C9300, C9400, C9500 and C9600 run the same binary IOS-XE image BRKARC-3010 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 4

Overview

You make networking **possible**

Cisco Catalyst 9600 Series Switches

Modular platform for Campus Core and Distribution

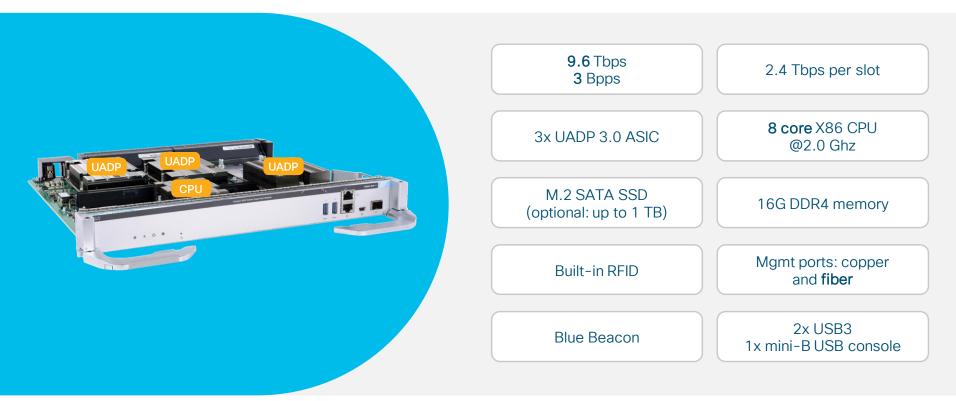
Ciscolive


Cisco Catalyst 9600 Series Chassis

#CLUS

Ciscolive,

Cisco Catalyst 9600 Series C9606R chassis port density


Port speed	Density with supervisor 1	Maximum chassis density
100G	48	128
40G	96	128
25G	192	192
10G	192	192
1G*	192	192

Line Rate non-blocking

*Roadmap

Cisco Catalyst 9600 Series Supervisor 1

Cisco Catalyst 9600 Series Line cards

C9600-LC-24C - 100G/40G (fiber)

• 24 ports

#CLUS

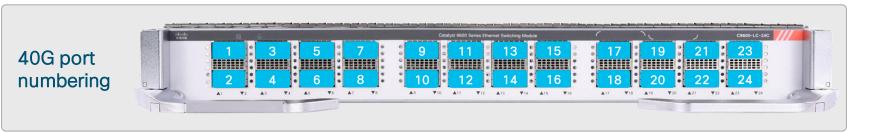
- QSFP28/QSFP+
- Supports 100G and 40G

C9600-LC-48YL - 25G/10G/1G* (fiber)

- 48 ports
- SFP28/SFP+/SFP
- Supports 25G, 10G, and 1G

*Roadmap The Y in the product ID (PID) indicates the hardware capability

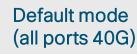
Cisco Catalyst 9600 Series 100G/40G Line card - C9600-LC-24C

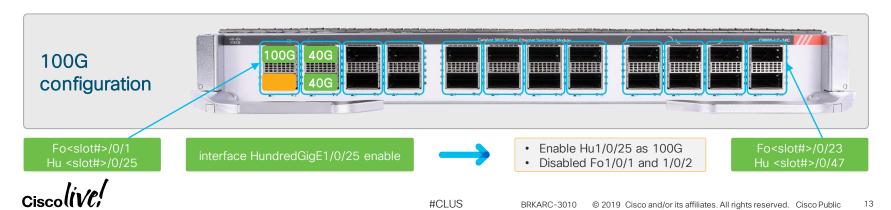

- All 24 ports are capable of 100G (QSFP28)/40G (QSFP+)
- Hardware-ready with QSA (for 1G/10G)
- With Supervisor Engine 1
 - 100G: Every 2 ports in a port-group. The odd number of ports can be 100G and the next even number port is disabled. (Maximum of 12x 100G, line rate with 187 byte or higher)

#CLUS

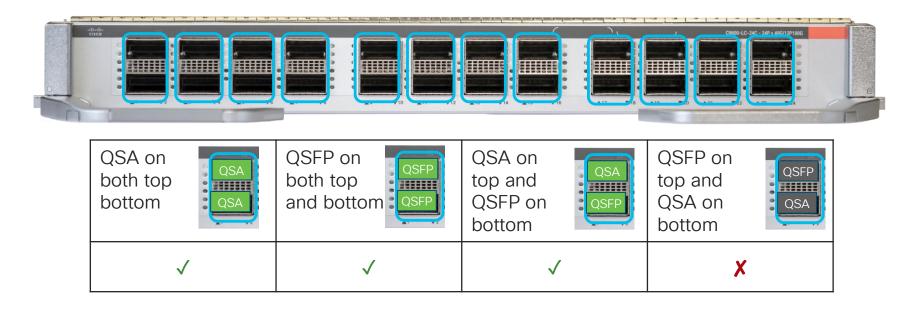
• 40G - 24x 40G (line rate with 148 byte or higher)

C9600-LC-24C - Port Numbering with Supervisor Engine 1

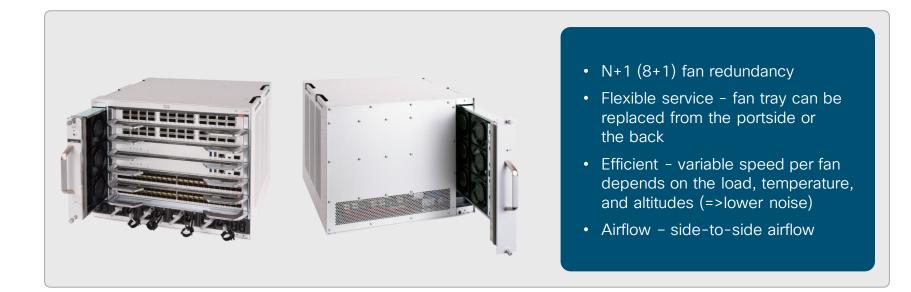

- 40G numbering from 1 to 24
- 100G number from 25 to 48



C9600-LC-24C with supervisor engine 1


- This line card appears in 40G mode by default
- Future supervisors can support 100G speed on all ports at the same time

Cisco Catalyst 9600 Series QSA adapter CVR-QSFP-SFP10G support


Ciscol

Cisco Catalyst 9600 Series 25G/10G/1G Line card - C9600-LC-48YL

- All 48 ports support 25G/10G/1G
- Hardware capable of 10/100M
- Line rate with 25G/10G/1G (at 187 bytes for 25G; any packet size with 10G/1G)
- Any port, any supported speed
- Port reference is always "TwentyFive<slot#>/0/<port#>" and port speed is auto-detected based on the inserted transceiver

Cisco Catalyst 9600 Series Fan tray

Fan tray hot-swappable needs to be done within 120 seconds

BRKARC-3010 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 16

Cisco Catalyst 9600 Series Power supplies

- Chassis has 4 slots for power supply
- Individual on/off switch for each power supply
- Supports a mix of AC (@220V) and DC power supplies

- Supports both 110V and 220V input
- 2 KW output with 220V (1050W with 110V)
- Platinum rate power supply
- Redundant mode: Combined and N+1

- Supports input range of -40V to -72V
- 2 KW output

- Platinum rate power supply
- Redundant mode: Combined and N+1

Cisco Catalyst 9600 Series Power supply redundancy

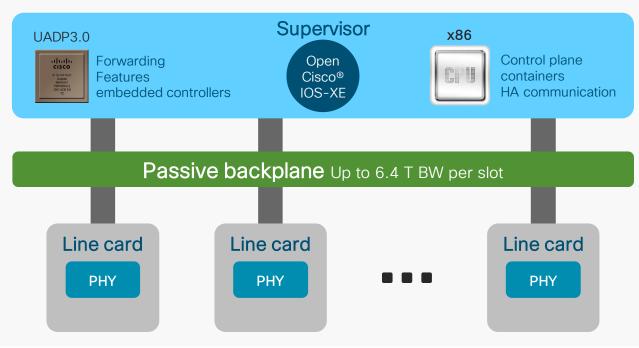
	Normal operation	Power supply failure	AC and DC power supplies				
		[23 [23.	P2 + P3-				
Requirement	• AC: No mixing of 110V input and 2	• Mix DC and AC:	AC input needs to be 220V				
Operation	• Equal load sharing and all active	 Equal load sharing among the remaining power supplies 	• Equal load sharing				
Power budgeting	 Combined mode: Use all available power supplies for system budgeting N+1 mode: Use N power supplies for system budgeting 	 Combined mode: Line card can shut down if there isn't enough power N+1 mode: Always enough power with single power supply outage 	 Combined mode: Line card can shut down if there isn't enough power N+1 mode: Always enough power with single power supply outage 				

Cisco

Power priority

- All components in the system are assigned with a power priority level
- Supervisors and the fan tray have the same highest priority level
- Line cards with lower slot numbers have the higher power priority level by default
- User-configurable power priority for line card slots is on the roadmap

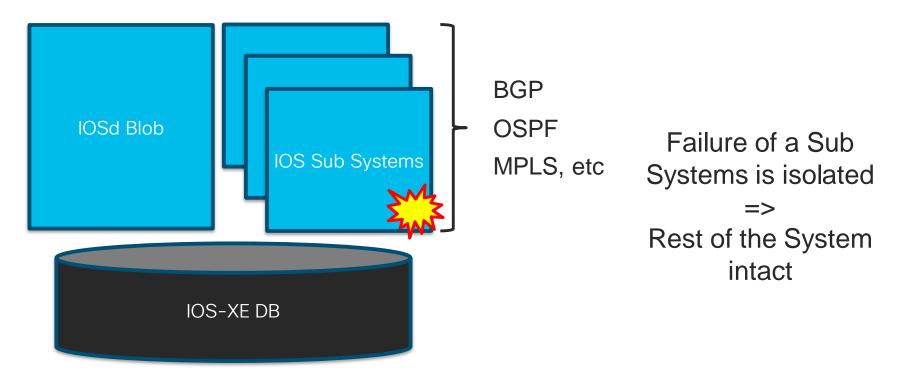
Architecture



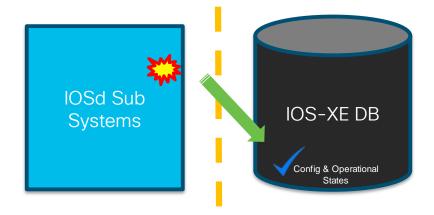
You make networking **possible**

Architecture

Centralized architecture


- Centralized architecture => Uninterrupted supervisor switchover
- Centralized architecture (Forwarding, queuing, and security are done on the supervisor) => Unlock new capability with a supervisor upgrade
- Transparent line cards => Compatible with new sup
- Passive backplane => High MTBF
- X86 CPU + storage => App hosting

Open IOS-XE


Same Look & Feel, Enhanced & Modern Architecture

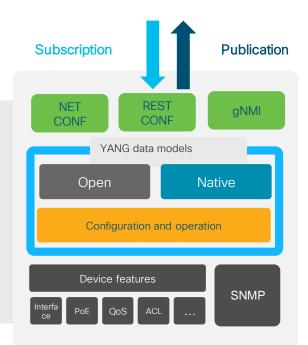
Open IOS XE – IOS Sub Systems

IOS Sub Systems Enhances IOS Resiliency

Open IOS XE - DB

Higher Application UP Time

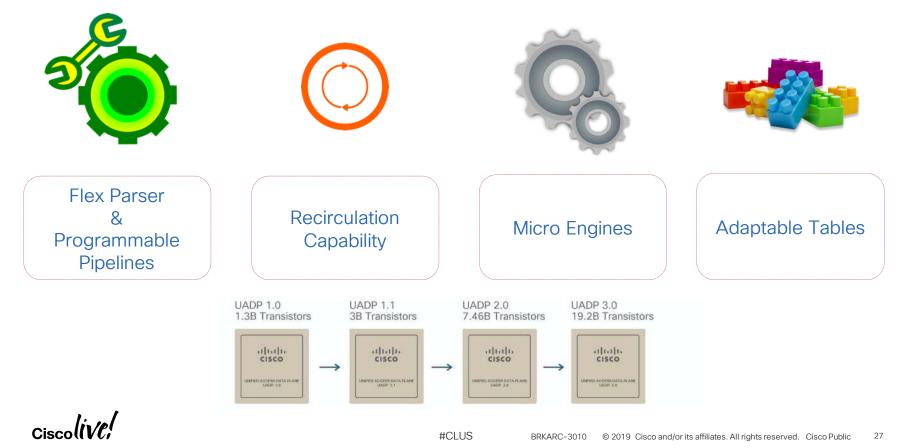
Quicker Recovery


Decoupling Code & Data protects the Operational & Configurational States

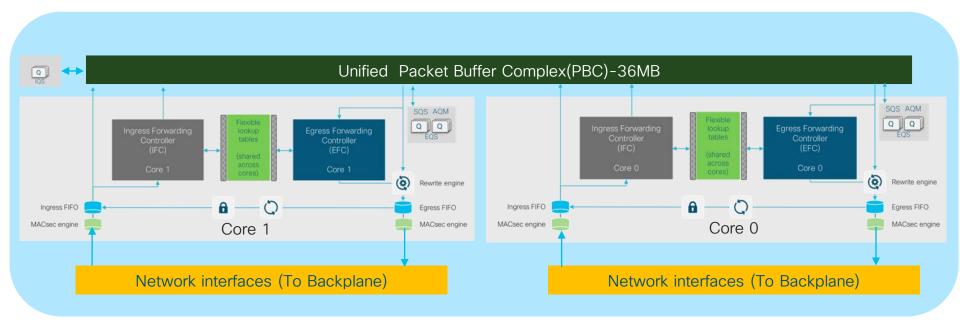
Better Convergence

Model-driven telemetry

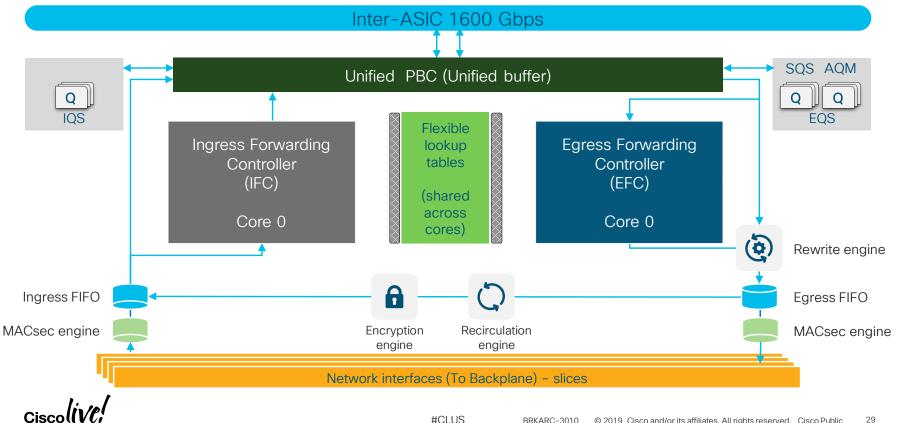
- Support for any YANG subtree
- Structured data
- XML encoding
- Periodic or on change
- Reduced CPU load

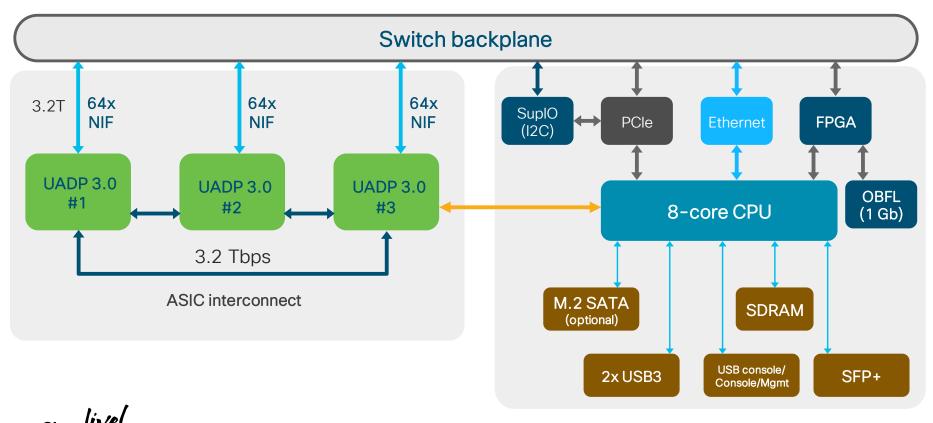


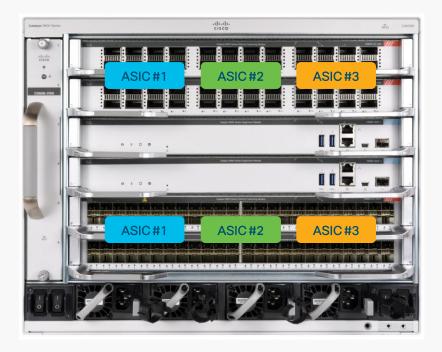
Export enriched, consistent, and concise data with context from devices for a better user and operator experience



Ciscolive!


Common Capabilities of UADP ASIC


UADP 3.0 – Under the covers showing both cores


Cisco Catalyst 9600 Series - Sup1 UADP 3.0 – Under the covers showing one of the two cores

Supervisor engine 1 – Block diagram

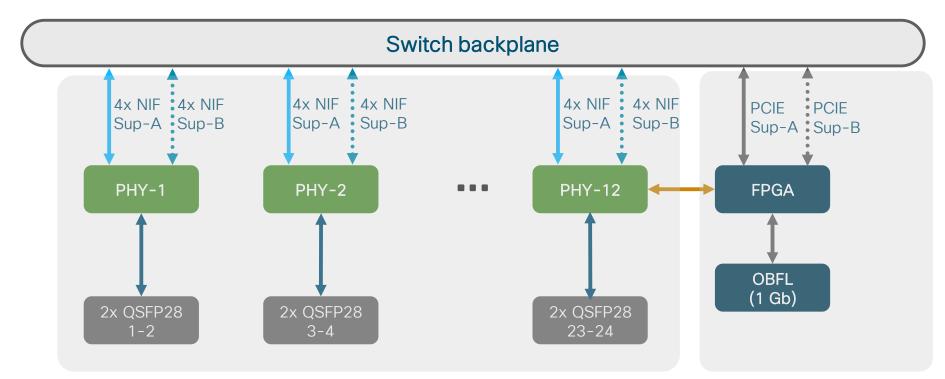
Supervisor engine 1 – ASICs to LC mapping

- ASIC #1: First third of the ports
 - 48-port module: 1-16
 - 24-port module: 1-8
- ASIC #2: Middle third of the ports
 - 48-port module: 17-32
 - 24-port module: 9-16
- ASIC #3: Last third of the ports
 - 48-port module: 33-48
 - 24-port module: 17-24

Cisco Catalyst 9600 - Supervisor 1 Port-to-ASIC mapping

show platform software fed active ifm mappings

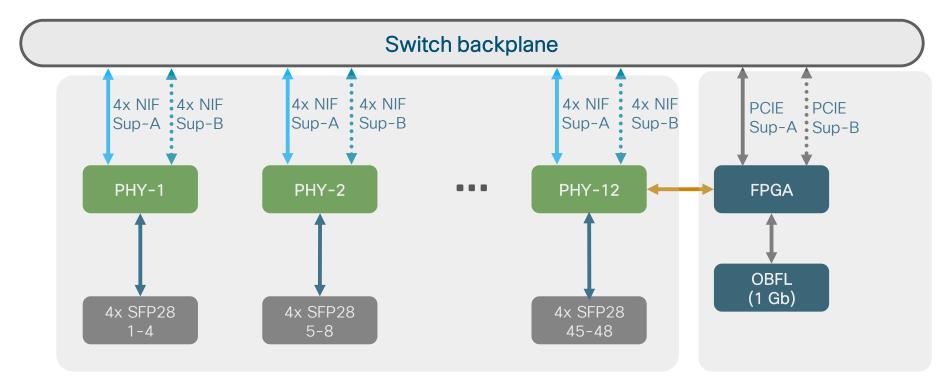
C9600-Bottom#show	platform	software	fed	active	ifm	mappings
-------------------	----------	----------	-----	--------	-----	----------


					- 1 1							
Interface	IF_ID	Inst	Asic	Core	Port	SubPort	Mac	Cntx	LPN	GPN	Туре	Active
FortyGigabitEthernet1/0/1	0x7	0	0	0	0	0	0	0	1	101	NIF	Ν
FortyGigabitEthernet1/0/2	0x8	0	0	0	8	0	2	1	2	102	NIF	Ν
FortyGigabitEthernet1/0/3	0x9	0	0	0	16	0	16	0	3	103	NIF	Ν
FortyGigabitEthernet1/0/4	0xa	0	0	0	24	0	18	1	4	104	NIF	Ν
FortyGigabitEthernet1/0/5	0xb	1	0	1	8	0	14	1	5	105	NIF	Y
FortyGigabitEthernet1/0/6	0xc	1	0	1	0	0	12	0	6	106	NIF	Y
FortyGigabitEthernet1/0/7	0xd	1	0	1	24	0	30	1	7	107	NIF	Y
FortyGigabitEthernet1/0/8	0xe	1	0	1	16	0	28	0	8	108	NIF	Y
FortyGigabitEthernet1/0/9	0xf	2	1	0	0	0	0	0	9	109	NIF	Y
<snip></snip>												
FortyGigabitEthernet1/0/1	6 0x16	3	1	1	16	0	28	0	16	116	NIF	Υ
FortyGigabitEthernet1/0/1	7 0x17	4	2	0	0	0	0	0	17	117	NIF	Υ
<snip></snip>												
FortyGigabitEthernet1/0/2	4 0x1e	5	2	1	16	0	28	0	24	124	NIF	r N
HundredGigE1/0/25	0x1f	0	0	0	0	0	0	0	25	125	NIF	Y
<snip></snip>												

C9600-Bottom#\$

BRKARC-3010 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 32

Pererenc


100G/40G line card block diagram

#CLUS

Ciscolive;

25G/10G/1G line card block diagram

#CLUS

Ciscolive,

SDM Templates

You make networking **possible**

Cisco Catalyst 9600 Series – Supervisor engine 1 Switch Database Management (SDM) template

Core template

Maximizes system resources for Layer 3 unicast and multicast routes (default)

SD-Access template

Maximizes system resources for **policy** to support **fabric** deployment User-customizable template Allows customizable ACL TCAM resources

Distribution template

Balances system resources between Layer 3 **routes** and Layer 2 **MAC** and **Netflow**

NAT template

Maximizes the **NAT** configurations on the switch

Cisco Catalyst 9600 Series SDM templates and scale numbers

Feature		Distribution template	Core template (default)	SDA template	NAT template
Routes (IPv4/IPv6)		114K/114K 212K/212K		212K/212K	212K/212K
Multicast routes (IPv	4/IPv6)	16K/16K	32K/32K	32K/32K	32K/32K
MAC address table		82K	32K	32K	32K
Flexible NetFlow		98K/ASIC	64K/ASIC	64K/ASIC	64K/ASIC
SGT label		32K	32K	32K	32K
	Ingress	1	12K	8K	12K
Security ACL	Egress	1	15K	19K	8K
X	Ingress		8K	8K	4K
QOS ACL	Egress		8K	8K	4K
*	Ingress		1K	1K	1K
NetFlow ACL	Egress		1K 1K		1K
X	Ingress	0.5K		0.5K	0.5K
SPAN	Egress	0	0.5% 0.5		0.54
PBR/NAT		ЗК		2K	15.5K
СРР		1К		1K	1K
Tunnel termination and MACsec			ЗК ЗК		2К
LISP			1K	2K	1K

Cisco

X Customizable ACL TCAM resources

Cisco Catalyst 9600 Series SDM template – Customizable TCAM section

C9600-Bottom#sho sdm prefer Showing SDM Template Info

This is the Core template.

Security Ingress IPv4 Access Control Entries* Security Ingress Non-IPv4 Access Control Entries* Security Egress IPv4 Access Control Entries* Security Egress Non-IPv4 Access Control Entries*	 : 6656 (current) - 6656 (proposed) : 5632 (current) - 5632 (proposed) : 6656 (current) - 6656 (proposed) : 8704 (current) - 8704 (proposed)
QoS Ingress IPv4 Access Control Entries* QoS Ingress Non-IPv4 Access Control Entries* QoS Egress IPv4 Access Control Entries* QoS Egress Non-IPv4 Access Control Entries*	 4608 (current) - 4608 (proposed) 3584 (current) - 3584 (proposed) 4608 (current) - 4608 (proposed) 3584 (current) - 3584 (proposed)
Netflow Input Access Control Entries*	: 1024 (current) –1024 (proposed)
Netflow Output Access Control Entries*	: 1024 (current) – 1024 (proposed)
Flow SPAN Input Access Control Entries*	: 512 (current) – 512 (proposed)
Flow SPAN Output Access Control Entries*	: 512 (current) – 512 (proposed)

Cisco Catalyst 9600 Series SDM customizable template - CLI

	Customizable range: 10% - 90%	Security-ACL allocation	Def	ault
	 Between input and output Between IPv4 and non-IPv4 		12K (input)	7K (v4) 5K (non-v4)
***		27К	15K (output)	7K (v4) 8K (non-v4)

Example 1		Example 2			Example 3			
Security-ACL allocation	Input '	t =10% /4 - 75% v4 - 75%	Security-ACL allocation	۱nput ۱	t = 50% V4 - 75% v4 - 75%	Security-ACL allocation	۱nput ۱	t = 90% √4 – 75% √4 – 75%
	3K (input)	2K (v4)		13K (input)	9.5K (v4)		24K (input)	18K (v4)
27K		1K (non-v4)	071/		3.5K (non-v4)	071/	(6K (v4)
	24K (output)	18K (v4)	27K	14K (output)	10.5K (v4)	27K	2K (autaut)	2K (v4)
		6K (non-v4)			3.5K (non-v4)		3K (output)	1K (non-v4)

Cisco Catalyst 9600 Series – Supervisor Engine 1 SDM customizable template – CLI

Command to modify ACL TCAM allocation

C9600(config)#sdm prefer template-modification?

default	Default prefered template
fspan	Filter Span
nfl	NFL ACLs
qos	QOS
security-acl	Security ACLs

C9600 (config)# sdm prefer template-modification security-acl input allowed-range

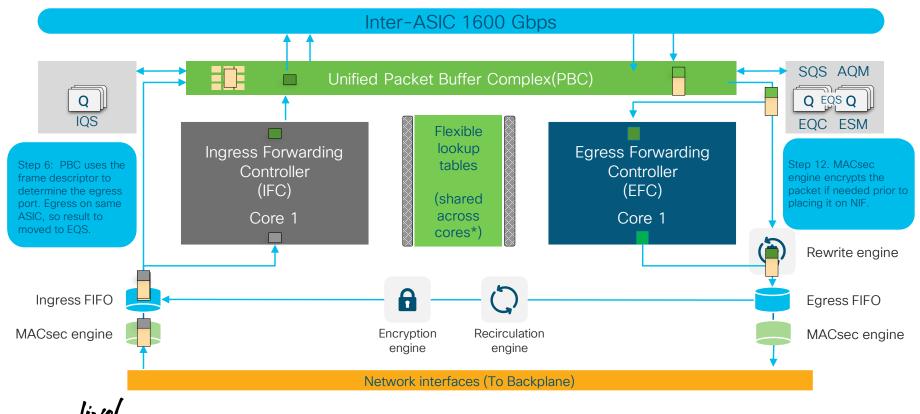
Total_size: 27648 Suggested split percentage for input: 11 18 22 25 33 37 40 48 49 52 60 63 67 75 78 82 89

C9600(config)#sdm prefer template-modification security-acl input 15 input-ipv4 15 output-ipv4 85

Allocated Security Acl Input (IPv4:1024, Non-IPv4:4096) entries, Output (IPv4:18432, Non-IPv4:4096) entries input=18.52 input_ipv4=20.00, output_ipv4=81.82

Modifications to the preferred template have been stored, but cannot take effect until the next reload. Allocations will be an approximation of user-specified percentages. Use 'show sdm prefer' to see proposed values.

C9600(config)#


Forwarding

You make networking **possible**

Cisco Catalyst 9600 Series Unicast forwarding within ASIC (ingress and egress)

Cisco Catalyst 9600 Series Unicast forwarding within ASIC (ingress and egress)

Step 1: Packet arrives at ingress port, PHY converts the signal and serializes the bits, and then it sends to network interface ports.

Step 2: Network interface passes packet to ingress MACsec engine.

Step 3: MACsec engine decrypts the packet if needed and passes unencrypted packet to ingress FIFO.

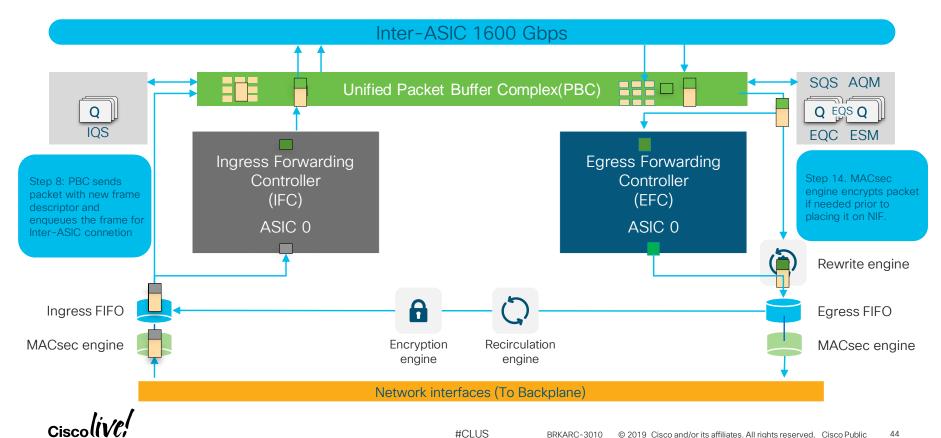
Step 4: IFC snoops packet between FIFO and PBC.

Step 5: IFC returns lookup result (frame descriptor) to PBC.

Step 6: PBC uses the frame descriptor to determine the egress port. Egress on same ASIC, so result to moved to EQS.

Step 7. EQS - replication, scheduling, and queue management.

Step 8: PBC sends packet with new frame descriptor and enqueues the frame.


Step 9. EFC snoops packet between PBC and rewrite engine.

Step 10. EFC performs egress lookup functions to learn SRC MAC, egress SPAN, etc. and sends results to rewrite engine.

Step 11. Rewrite engine rewrites packets and sends through the egress FIFO.

Step 12. MACsec engine encrypts packet prior to placing it on NIF.

Cisco Catalyst 9600 Series Unicast forwarding across ASIC (ingress and egress)

Cisco Catalyst 9600 Series Unicast forwarding across ASIC (ingress and egress)

Step 1: Packet arrives at ingress port, PHY converts the signal and serializes the bits, and then it sends to network interface ports

Step 2: Network interface passes packet to ingress MACsec engine.

Step 3: MACsec engine decrypts the packet if needed and passes unencrypted packet to ingress FIFO.

Step 4: IFC snoops packet between FIFO and PBC.

Step 5: IFC returns lookup result (frame descriptor) to PBC.

Step 6: PBC uses the frame descriptor to determine the egress port. Egress port across ASIC enqueues result to IQS.

Step 7: IQS provides queuing and scheduling functions for packet to be enqueued to Inter-ASIC connection.

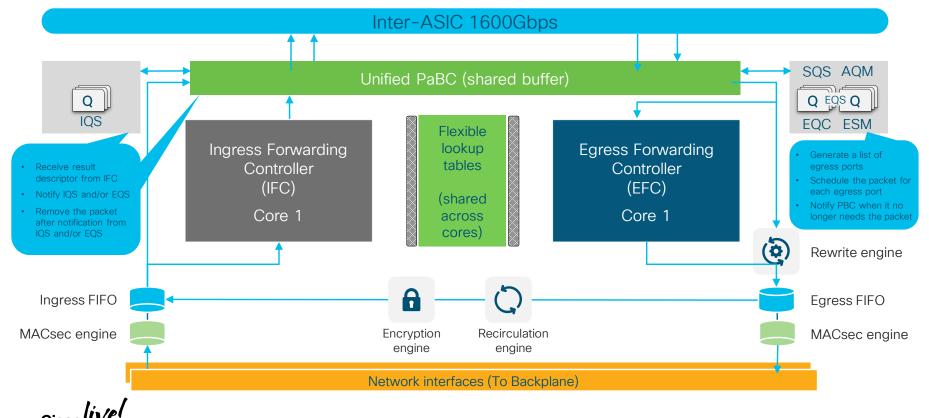
Step 8: PBC sends packet with new frame descriptor and enqueues the frame to Inter-ASIC connection.

Step 9. Packet arrives from inter-ASIC connection, PBC parses header and sends to EQS.

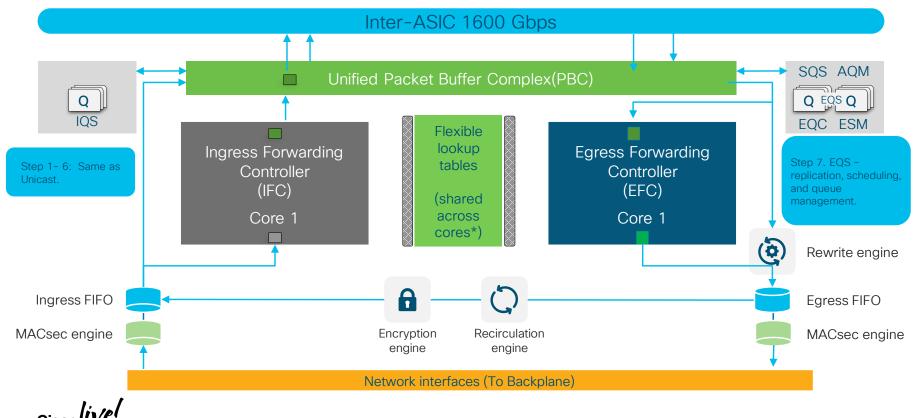
Step 10. EQS performs replication, scheduling, and queue management and sends header to PBC.

Step 11. EFC snoops packet between PBC and rewrite engine.

Step 12. EFC performs egress lookup functions to learn SRC MAC, egress SPAN, etc. and sends results to rewrite engine.


#CLUS

Step 13. Rewrite engine rewrites packets and sends through the egress FIFO.


Step 14. MACsec engine encrypts packet prior to placing it on NIF.

Ciscolive!

Cisco Catalyst 9600 Series Multicast forwarding

Cisco Catalyst 9600 Series Multicast forwarding within ASIC (ingress and egress)

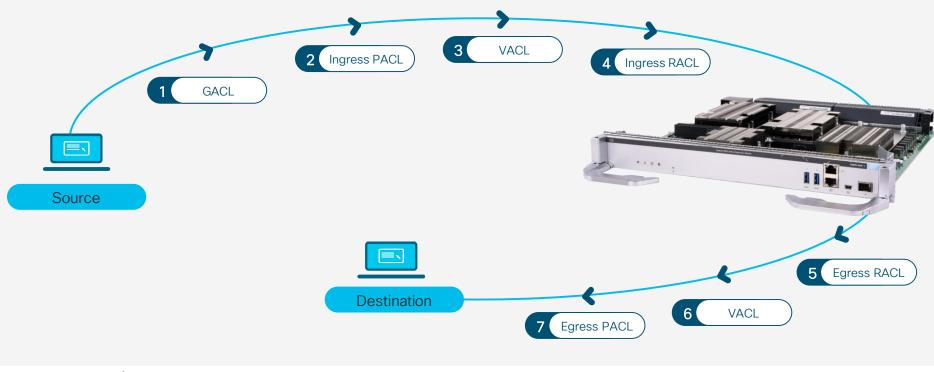
Access Control Lists

You make networking **possible**

Cisco Catalyst 9600 Series access control lists Four forms of security ACLs

The Cisco Catalyst 9600 Series supports four forms of security ACL: RACL, VACL, PACL, Group ACL

Router ACL (RACL)	VLAN ACL (VACL)	Port ACL (PACL)	Group ACL (GACL)
Used to permit or deny the movement of traffic between Layer 3 subnets	Used to permit or deny the movement of traffic between Layer 3 subnets and VLANs or within a VLAN	Used to permit or deny the movement of traffic between Layer 3 subnets and VLANs or within a VLAN	Used to permit or deny the movement of traffic based on the groups that are assigned
 Direction: In, Out Attach Point: Layer 3 interface SVI, Layer 3 EtherChannel interface 	 Direction: Inherently both In and Out Attach Point: VLAN 	 Direction: In, Out Attach Point: Layer 2 switch port interface Layer 2 EtherChannel interface 	 Direction: In Attach Point: Layer 3 interface SVI Layer 3 EtherChannel Interface
Standard/extended ACLs	Standard/extended ACLs	Standard/extended/ MAC ACLs	Standard/extended
lis cal			

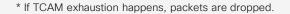

#CLUS

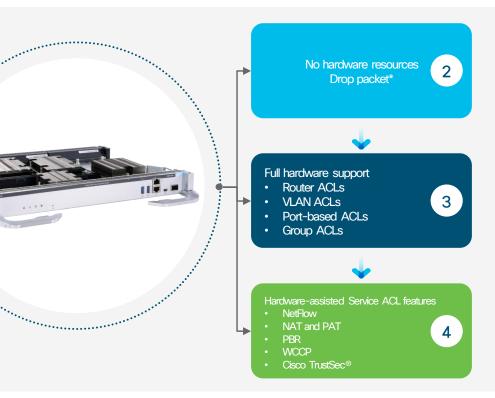
49

BRKARC-3010 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ciscol(VC)

Cisco Catalyst 9600 Series access control lists Order of processing




Cisco Catalyst 9600 Series - access control lists Hardware support

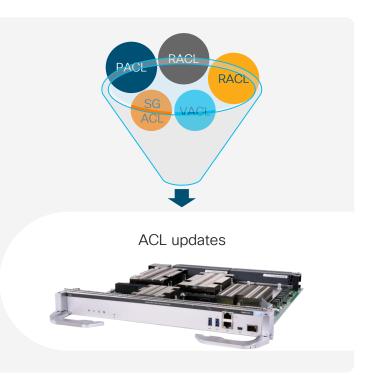
#CLUS

Create an ACL or classification policy, using the CLI or Network Management system (NMS)

ip access-list extended Internet permit ip any host 10.2.2.4 permit ip any host 10.5.2.33 permit ip any host 10.11.0.0 permit ip any host 10.4.0.0

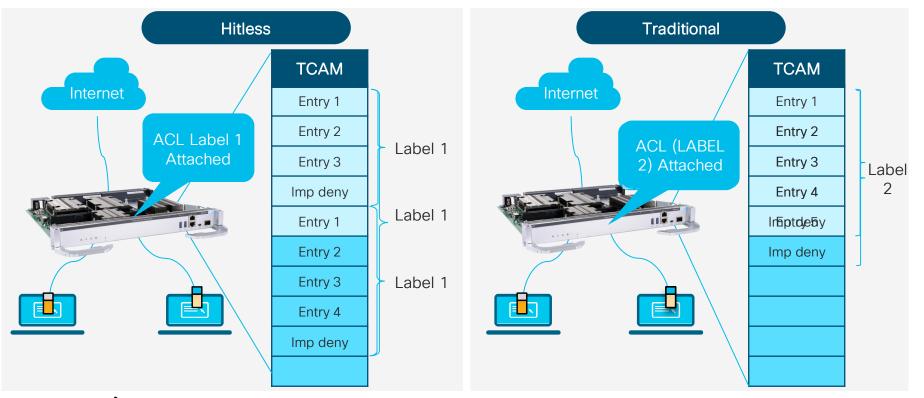
Resource Utilization

C9600-Top#\$rm hardware fed active fwd-asic resource tcam utilization CAM Utilization for ASIC [0]


Table	Max Values	Used Values
Unicast MAC addresses	32768/768	24/21
L3 Multicast entries	32768/768	0/5
L2 Multicast entries	2304	6
Directly or indirectly connected routes	212992/1536	10/12
Input Ipv4 QoS Access Control Entries	5632	5
Input Non Ipv4 QoS Access Control Entries	2560	15
Output Ipv4 QoS Access Control Entries	6144	5
Output Non Ipv4 QoS Access Control Entries	2048	15
Input Ipv4 Security Access Control Entries	7168	12
Input Non Ipv4 Security Access Control Entries	5120	76
Output Ipv4 Security Access Control Entries	7168	10
Output Non Ipv4 Security Access Control Entries	8192	27
Ingress Netflow ACEs	1024	8
Policy Based Routing ACEs	3072	20
Egress Netflow ACEs	1024	9
<snip></snip>		

Cisco

Cisco Catalyst 9600 Series – hitless TCAM update


• Allows updates to an ACL without interrupting traffic

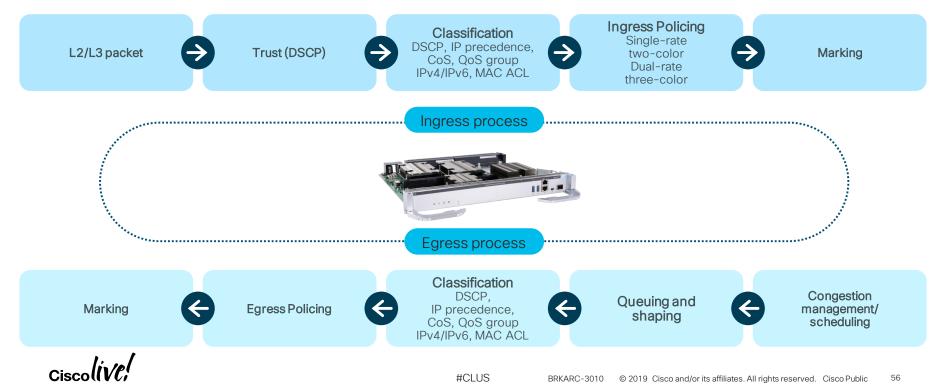
- Multiple features updated at once
 - IPv4, IPv6, MAC
 - PACL, RACL, VACL, and SG ACL
- Hitless update is enabled by default; can't be disabled
- Hitless update feature requires free ACL TCAM space for reprogramming but doesn't consume any additional TCAM resources
- If not enough space in TCAM, falls back to old ACL method (deny all while updating)

Cisco Catalyst 9600 Series – hitless TCAM update

#CLUS

Ciscolive!

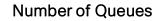
Quality of service

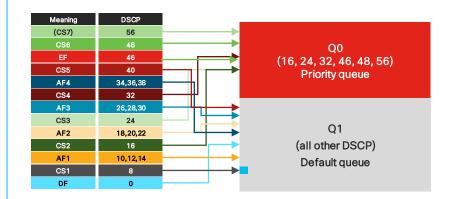


You make networking possible

Cisco Catalyst 9600 Sup1 - Quality of service

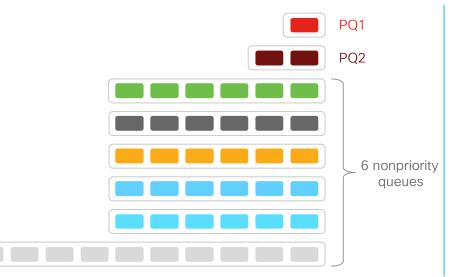
- QoS is enabled by default
- All ports are trusted at Layer 2 and Layer 3 by default

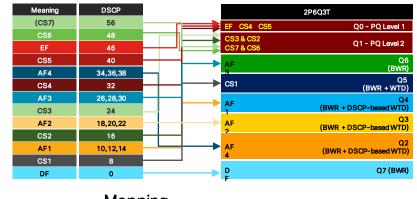

Cisco Catalyst 9600 Sup1 QoS forwarding (ingress and egress)



Cisco Catalyst 9600 Series Sup1 Hardware queues mapping - default

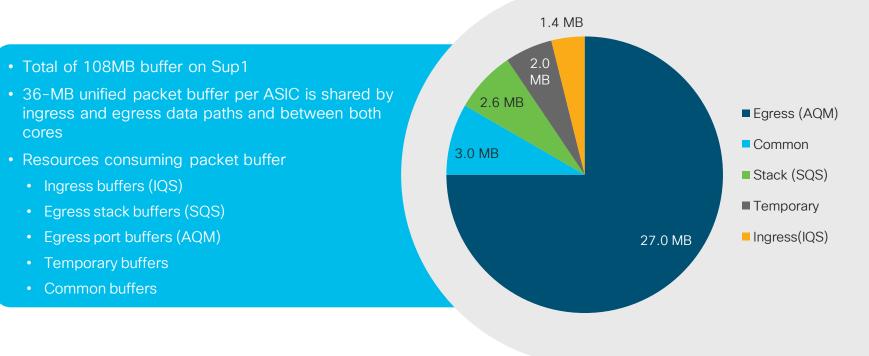
Default (2Q3T)


Mapping


Cisco Catalyst 9600 Series Sup1 Hardware queues mapping – Configurable with 2P6Q3T

Configured Example (8Q3T/2P6Q3T)

#CLUS


Number of Queues

Mapping

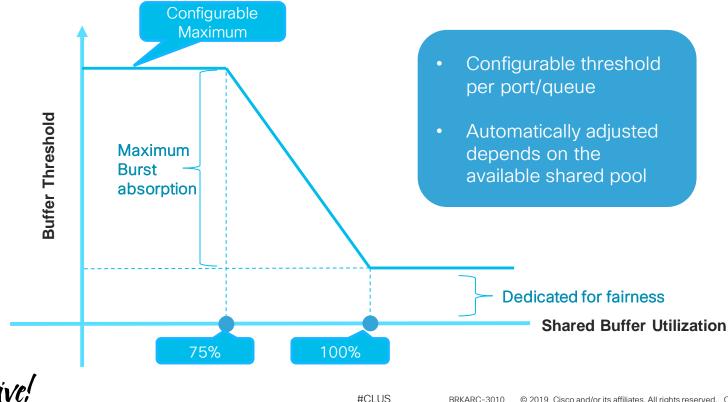
Ciscolive,

Cisco Catalyst 9600 Sup1 – buffer complex

#CLUS

Software support for unified buffer sharing is on the roadmap

Ciscolive;


Buffer - Dedicated

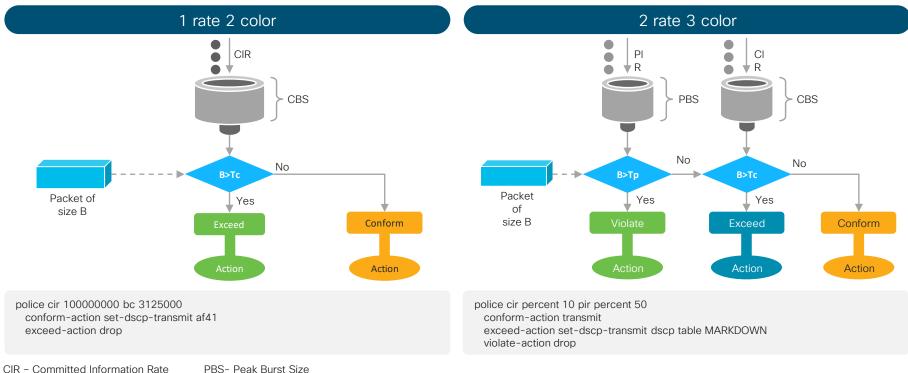
Dedicated buffer per queue

- Dedicated buffers are statically allocated for each configured queue
- Reminding buffer are allocated to the shared pool
- System use dedicated buffer first. Once a queue exhausted the dedicated buffer, then it use the shared buffer

Buffer – Shared DTS – Dynamic Threshold and Scaling

62 BRKARC-3010 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Default buffer allocation per port speed


Platform	Port speed	100 Mbps,	1, 2.5, 5 Gbps	10 (Gbps	25 (Gbps	40 (Gbps	100	Gbps
	Queue	Hard max	Soft max	Hard max	Soft max	Hard max	Soft max	Hard max	Soft max	Hard max	Soft max
Cisco [®] Catalyst [®] 9300 Series	Q0	100	400	600	2400	-	-	2400	9600	-	-
Cisco Catalyst 9400 Series	Q0	176	700	176	700	-	_	176	700	-	-
Cisco Catalyst 9500 Series	Q0	200	800	1200	4800	-	-	4800	19,200	-	-
Cisco Catalyst 9500 High End	Q0	-	-	240	960	480	1920	720	2880	1920	7680
Cisco Catalyst 9600 - Sup1	Q0	-	-	240	960	480	1920	720	2880	1920	7680
		Soft min	Soft max	Soft min	Soft max	Soft min	Soft max	Soft min	Soft max	Soft min	Soft max
Cisco Catalyst 9300 Series	Q1	150	600	300	1200	-	-	3600	14,400	-	-
Cisco Catalyst 9400 Series	Q1	225	3600	264	1056	-	-	337	10,800	_	-
Cisco Catalyst 9500 Series	Q1	800	3600	1800	7200	-	-	7200	28,800		-
Cisco Catalyst 9500 High End	Q1	_	-	360	1440	720	2880	1080	4320	2880	11,520
Cisco Catalyst 9600 - Sup1	Q1	-	-	360	1440	720	2880	1080	4320	2880	11,520

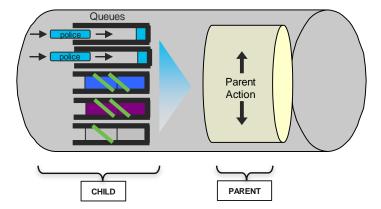
Notes:

All allocation in units (each unit is 256-byte storage) Hard = Dedicated; Soft=Shared **Q0**: Soft max = 4x hard max **Q1**: Soft max = 4x soft min **Hard max (hard buffer allocation)**: Do not participate in DTS/priority queue only

Port speed	Buffer (KB)	Number of buffers
100G	1200	4800
40G	450	1800
25G	300	1200
10G	150	600
1GE	70	280

Cisco Catalyst 9600 Series - Traffic policing

PIR – Peak Information Rate


PBS- Peak Burst Size CBS - Committed Burst Size

Cisco Catalyst 9600 Series – Hierarchical QoS (HQoS)

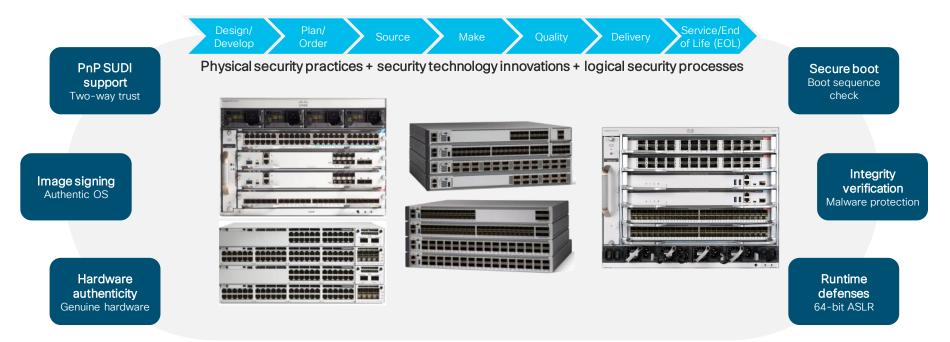
#CLUS

HQoS (two-level hierarchy) allows you to perform the following functions:

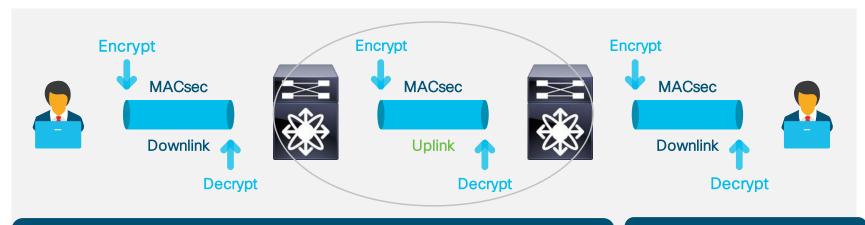
- Classification
- Policing
- Shaping

Child Action	Parent Action
Classification +	Shaping
Policing	Marking
Classification +	Policing
Marking	Shaping

65


Security

You make networking **possible**

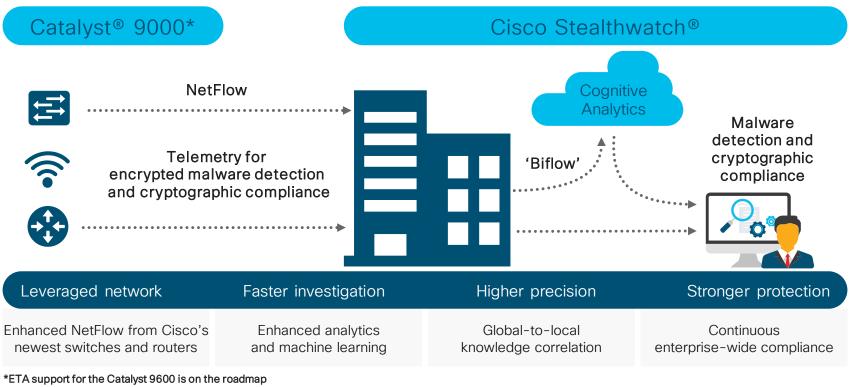


Cisco Catalyst 9000 Platform Trustworthy Solutions

Cisco[®] trustworthy systems use industry best practices to help ensure full development lifecycle integrity and end-to-end security

MACsec Hop-by-hop encryption via 802.1AE

#CLUS


- Packets are encrypted on egress; decrypted on ingress
- Offers line-rate encryption on all ports and speeds (1G, 10G, 25G, 40G, and 100G)
- Transparent to all upper-layer protocols
- Supports switch-to-switch and switch-to-host MACsec
- 256-bit MACsec-capable between switch to switch
- Manual or 802.1X modes supported

Ciscolive,

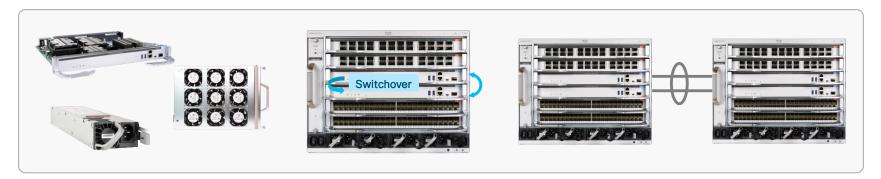
Switch and Switch:

- 128 bit: MKA, SAP
- 256 bit: MKA
- Passthrough / ClearTag Switch and Host:
- 128 bit: MKA
- 256 bit: MKA

ETA – Finding Malicious Activity in Encrypted Traffic

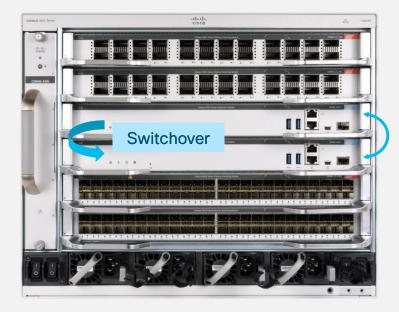
#CLUS

ciscolive!


High Availability

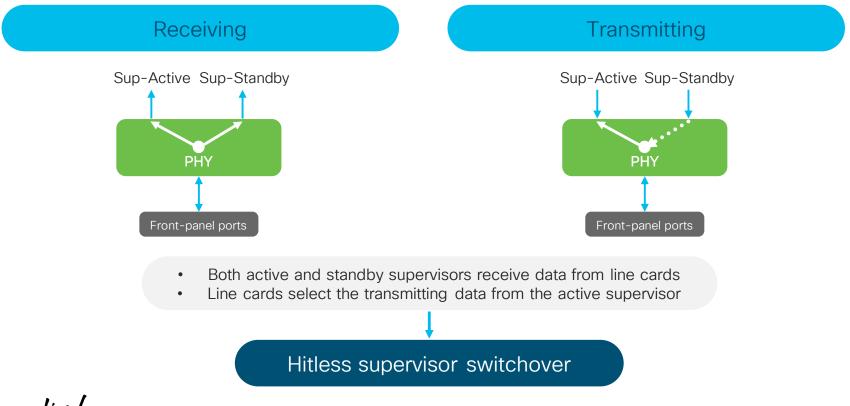
You make networking possible

High availability Protect business continuity


Physical redundancy	Stateful Switchover (SSO)	Non-Stop Forwarding (NSF)	In-Service Software Upgrade (ISSU)	StackWise®-Virtual*
 Redundant hardware Redundant power supplies Redundant fan in the fan tray Redundant supervisors 	 Sub-second failover Between supervisors within chassis (<5ms) Between chassis with StackWise-Virtual * 	 Resilient L3 topologies NSF support for OSPF, EIGRP, ISIS, BGP 	Minimize upgrade downtime • SMU • ISSU • GIR *	 Infrastructure resilience Multi-chassis EtherChannel (MEC) provides hardware- based failover

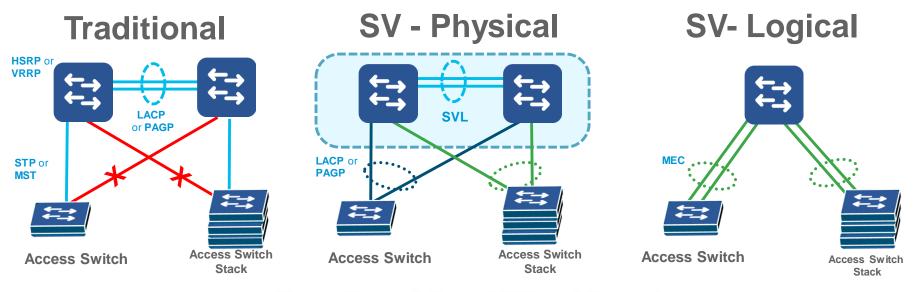
* Roadmap

BRKARC-3010 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 71


SSO - Stateful Switchover

SSO is the default and only redundancy mode with two supervisors in the system

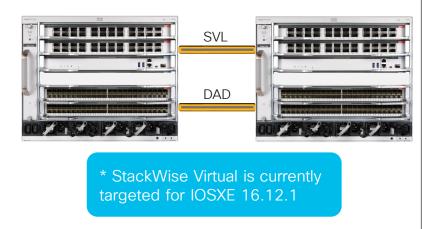
- 1. The active supervisor is responsible for all control plane processing
- 2. The active supervisor is responsible for hardware programming on both the active and standby supervisors


Supervisors and line cards: Data path

#CLUS

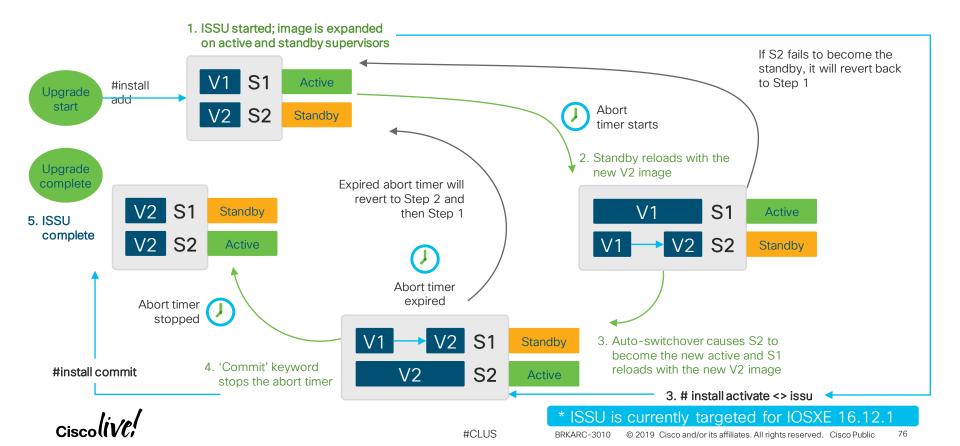
Ciscolive,

StackWise Virtual


Benefits of StackWise Virtual

Simplify Operations by Eliminating STP, FHRP and Multiple Touch-Points

Double Bandwidth & Reduce Latency with Active-Active Multi-chassis EtherChannel (MEC)


Minimizes Convergence with Sub-second Stateful and Graceful Recovery (SSO/NSF)

StackWise Virtual - C9600 *

- SVL: StackWise Virtual Link
 - same speed ports (10G or higher)
 - Up to 8 ports
- DAD: Dual Active Detection:
 - Fast Hello
 - Directly connected
 - Up to 4 links
 - Enhanced PAgP
 - EtherChannel with PAgP
 - Up to 4 port-channels
- In SVL mode, 2nd Supervisor is not supported in the chassis and will be powered off if inserted.
- A Distribution layer technology allowing stacking of 2 switches
- · Supports flexible distances with support of all supported cables and optics

Cisco Catalyst 9000 Series ISSU workflow

ISSU Upgrade steps

Three-step process:

- Install add file <tftp/ftp/flash/disk:*.bin>
- Install activate ISSU
- Install commit

Granular control on the upgrade process with the ability to roll back

One-step process:

 Install add file <tftp/ftp/flash/disk:*.bin>activate ISSU commit

Single command to perform a complete ISSU

Install Command-Line Interface (CLI) commands

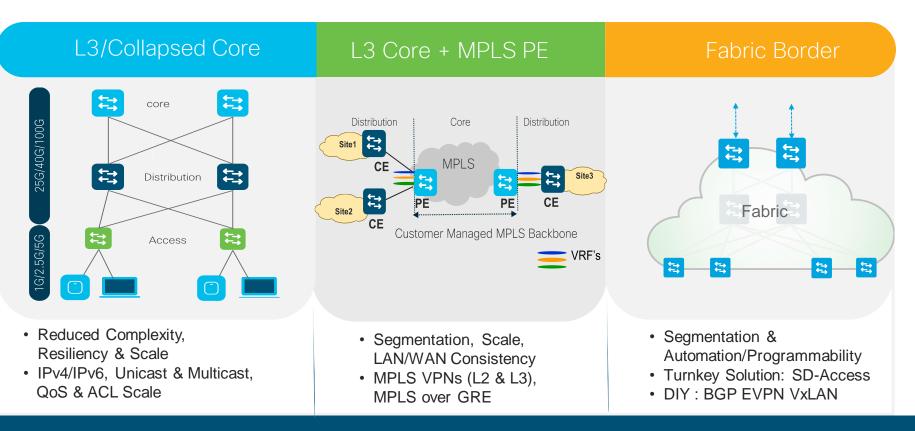
#CLUS

Step-by-step workflow:

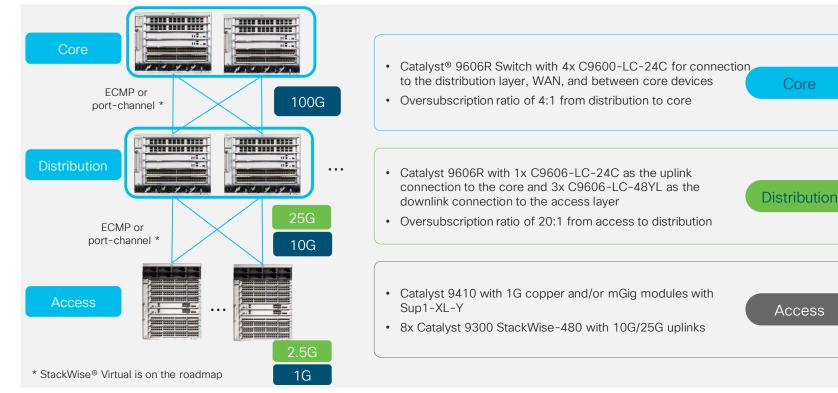
- # install add <tftp://cisco.com/image.bin>
- # install activate issu

Workflow steps details:

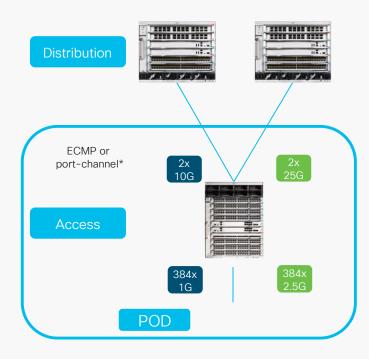
- The "Install Add" command will perform the image download from the cisco.com posted location
- The **"Install activate"** command will upgrade the chassis with a new software version
- The **"Install commit"** command makes the changes permanent and deletes the older version of software from the chassis
- **"install abort issu"**: The customer can issue the abort command to revert the software back to the original state


Catalyst 9600 Design Consideration

You make networking **possible**



Catalyst 9600 for Multidomain Campus Core


One Platform. Any Place. Any Speed (1G to 100G)

Example of a Traditional Three-Tiers Campus Design

Access Layer - POD

* StackWise® Virtual is on the roadmap

Cisco[®] Catalyst[®] 9400

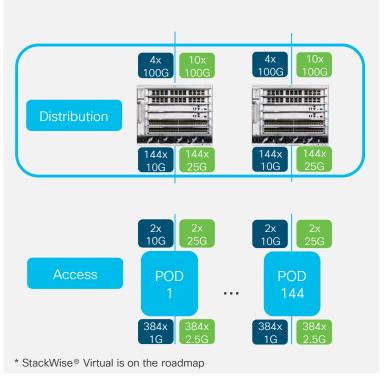
- A Catalyst 9410 switch provides a total of 384 ports of 1G
- Catalyst 9410 can also provide 192x1G + 192x mGig ports (up to 10G)

Catalyst 9300 StackWise®-480

- Stack of 8 can provide a total of 384 ports of 1G or 2.5G (mGig)
- Stack of 8 can also provide 384 ports of 1G and mGig combination

Aggregated downlink BW:

- 384G with 384x 1G
- 960G with 384x 2.5G


Uplinks BW needed for 20:1 oversubscription from access to distribution

• 2x 10G for 384x 1G

#CLUS

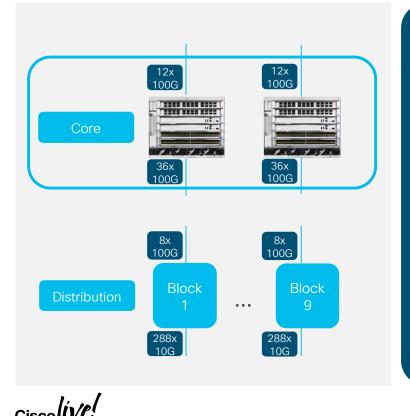
• 2x 25G for 384x 2.5G

Distribution Layer - Block

Ciscolive!

Cisco® Catalyst® 9606R Switch Downlinks:

- 3x C9600-LC-48YL per Catalyst 9606R
- A total of 144 x 10G/25G ports per chassis
- Aggregate downlink BW per Catalyst 9606 Switch
 - 1. With 10G uplinks: 144x 10G = 1.44T
 - 2. With 25G uplinks: 144x 25G = 3.6T


Uplinks

- 1x C9606-LC-24C per Catalyst 9606R
- To maintain 4:1 oversubscription between distribution and core layers
 - 1. With 10G uplinks: BW = 1.44T/4 = 360G => 4x 100G ports
 - 2. With 25G uplinks: BW = 3.6T/4 = 900G => 10x 100G ports

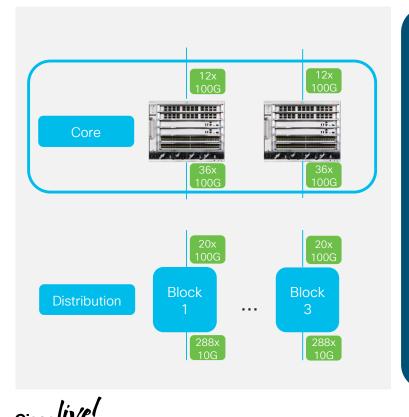
(The remaining 100G/40G ports can be used for ECMP or StackWise Virtual when it is available.)

Each distribution block can aggregate 144 access PODs. That's 144 x 384 = **55,296** of 1G, or 2.5G ports

Core Layer with 1G in the Access Layer

Cisco® Catalyst® 9606R Switch

- 4x C9606-LC-24C
 - 75% of ports (36x 100G) to distribution
 - 25% of ports (12x 100G) for connections between the two cores and the WAN
- Two of the core devices will provide 72x 100G for the distribution layer
- 1G aggregation


#CLUS

• With 8x 100G per distribution block, two Catalyst 9606R Switches with the above configuration can aggregate 72/8, or 9 distribution blocks

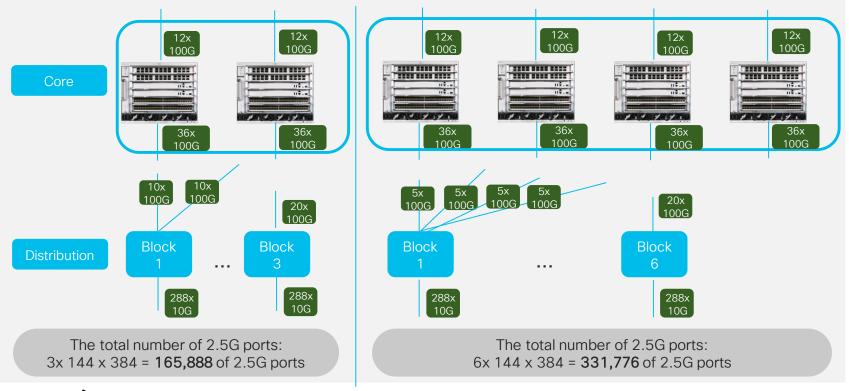
The total number of 1G ports: 9x 144 x 384 = **497,664** of 1G ports

84

Core Layer with 2.5G in the Access Layer

Cisco® Catalyst® 9606R Switch

- 4x C9606-LC-24C
 - 75% of ports (36x 100G) to distribution
 - 25% of ports (12x 100G) for connections between the two cores and the WAN
- Two of the core devices will provide 72x 100G for the distribution layer
- 2.5G aggregation


#CLUS

• With 20x 100G per distribution block, two of Catalyst 9606R Switches with the above configuration can aggregate 72/20, or 3 distribution blocks

The total number of 2.5G ports: 3x 144 x 384 = **165,888** of 2.5G ports

85


Core Layer with 2.5G in the Access Layer With 4x Catalyst 9606 in the core

#CLUS

Ciscolive,

Summary

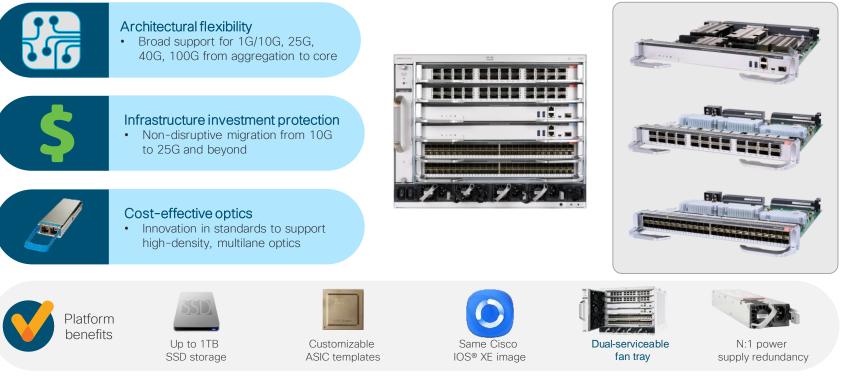
* StackWise® Virtual is on the roadmap

Two Cisco Catalyst 9606R Switches in the core can provide:

- 1. 497K of 1G ports, or
- 2. 165K of 2.5G ports

Oversubscription = 4:1			
Uplinks (40/100G module):	4x 100G	10x 100G	
Downlinks (10/25G modules):	144x 10G	144x 25G	

Oversubscription: 20:1			
Uplinks (Supervisor or uplink module):	2x 10G	2x 25G	
Downlinks (1G/mGIG module):	384x 1G	384x 2.5G	



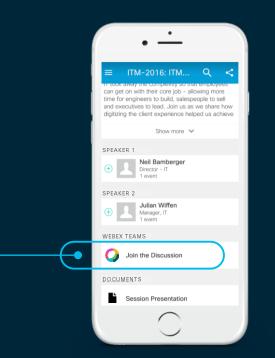
You make networking **possible**

Cisco Catalyst 9600 Series Summary Offering a comprehensive, high-density portfolio on campus with 100G, 40G, 25G, 10G

Ciscolive,

You make possible

Cisco Webex Teams


Questions?

Use Cisco Webex Teams to chat with the speaker after the session

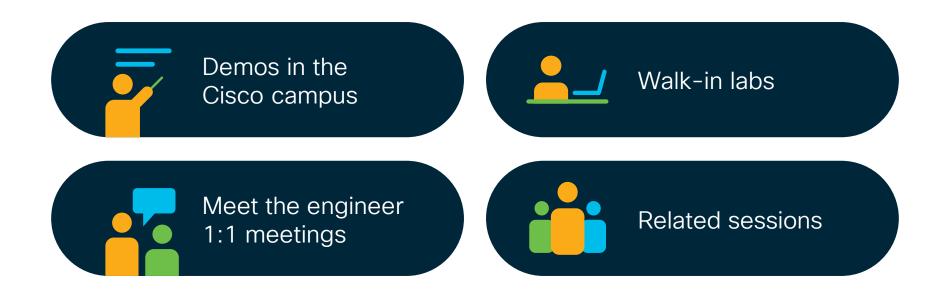
How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Webex Teams will be moderated by the speaker until June 16, 2019.

cs.co/ciscolivebot# BRKARC-3010

Complete your online session evaluation



- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live water bottle.
- All surveys can be taken in the Cisco Live Mobile App or by logging in to the Session Catalog on <u>ciscolive.cisco.com/us</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.cisco.com</u>.

Continue your education

NDA Roadmap Sessions at Cisco Live Customer Connection Member Exclusive

Join Cisco's online user group to ...

Connect online with 29,000 peer and Cisco experts in private community forums

Learn from experts and stay informed about product roadmaps

- Roadmap sessions at Cisco Live
- Monthly NDA briefings

Give feedback to Cisco product teams

- Product enhancement ideas
- Early adopter trials
- User experience insights

Join online: www.cisco.com/go/ccp

Ciscolive,

NETWORKING ROADMAPS	SESSION ID	DAY / TIME
Roadmap: SD-WAN and Routing	CCP-1200	Mon 8:30 - 10:00
Roadmap: Machine Learning and Artificial Intelligence	CCP-1201	Tues 3:30 - 5:00
Roadmap: Wireless and Mobility	CCP-1202	Thurs 10:30 - 12:00

Join at the Customer Connection Booth

(in the Cisco Showcase)

Member Perks at Cisco Live

- Attend NDA Roadmap Sessions
- Customer Connection Jacket
- Member Lounge

Thank you

You make possible