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2 ChemLM

Abstract29

Computational techniques for predicting molecular properties are emerg-30

ing as pivotal components for streamlining drug development, optimizing31

time, and financial investments. Here, we introduce ChemLM, a trans-32

former language model-based approach for this task. ChemLM further33

leverages self-supervised domain adaptation on chemical molecules to34

enhance its predictive performance across new domains of interest.35

Within the framework of ChemLM, chemical compounds are concep-36

tualized as sentences composed of distinct chemical ‘words’, which are37

employed for training a specialized chemical language model. On the38

standard benchmark datasets, ChemLM has either matched or surpassed39

the performance of current state-of-the-art methods. Furthermore, we40

evaluated the effectiveness of ChemLM in identifying highly potent41

pathoblockers targeting Pseudomonas aeruginosa (PA), a pathogen that42

has shown an increased prevalence of multidrug-resistant strains and has43

been identified as a critical priority for the development of new medica-44

tions. ChemLM demonstrated significantly higher accuracy in identifying45

highly potent pathoblockers against PA when compared to state-of-the-46

art approaches. An intrinsic evaluation demonstrated the consistency of47

the chemical language model’s representation concerning chemical prop-48

erties. Our results from benchmarking, experimental data, and intrinsic49

analysis of the ChemLM space confirm the wide applicability of ChemLM50

for enhancing molecular property prediction within the chemical domain.51

Keywords: computational chemistry, deep learning, molecular property52

prediction, language processing of chemicals, chemical domain adaptation53

1 Introduction54

Approximately 12 years [1], and 1.8$ billion are typically required before55

a drug reaches the market [2], and there is an overall failure rate of 96%56

for candidate compounds [3]. The discovery and development of novel anti-57

infectives, especially against bacterial pathogens are challenging and prone58

to setbacks [4]. Despite unmet medical needs, and the steadily increasing59

threat of antimicrobial resistance (AMR), the lack of new antibiotics with60

novel, resistance-breaking modes of action has resulted in an ’innovation gap’,61

potentially leading to a ‘post-antibiotic era’ [5]. In this scenario, the available62

treatment options for bacterial infections become ineffective, primarily due to63

the spread of multi- and pan-resistant strains. This is already evident with64

pathogens like Pseudomonas aeruginosa, frequently found with multiple drug65

resistances in clinical settings [6]. Consequently, the World Health Organiza-66

tion (WHO) has identified the need for new antibiotics targeting this bacterium67

as a critical priority.68

To prevent unnecessary failures and help refill the development pipeline,69

improvements in the drug discovery and development process through the70
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implementation of cutting-edge methodologies and technologies are therefore71

paramount. In silico approaches, such as machine learning, and in particular,72

recent advancements in deep learning and deep language modeling, have shown73

the potential to accurately capture the structural properties of molecules and74

more accurately identify drug candidates [7, 8], facilitating drug development.75

However, currently, the value of these techniques has mainly been assessed on76

large benchmark datasets, including thousands of compounds, and it is unclear77

whether they can effectively detect drug candidate compounds from smaller78

experimental datasets generated within a drug discovery process.79

In machine learning-based chemistry, the predictive models can be trained80

on chemical descriptors such as fingerprints representing the chemical char-81

acteristics of compounds [9, 10]. Their drawbacks, like sparsity, can be82

circumvented by representing chemical compounds either as natural graphs83

or as string representations that encode all the necessary chemical infor-84

mation. Such graphs are used as input to Graph Neural Networks (GNNs)85

[11–17]. Treating molecules as graphs maintains molecular topology, among86

other advantages. However, certain aspects in sequence representations, like87

chirality, cannot be conveyed using these approaches.88

In a broad definition, languages consist of sequences generated from a finite89

set of elements [18]. From this perspective, many phenomena in the world can90

be regarded as languages. The analogy with language motivates the use of the91

distributional hypothesis in linguistics, which states: “a word is characterized92

by the company it keeps” [19]. Aligning with this theory, recent computational93

approaches have been developed. These approaches suggest that words sharing94

similar contextual usage demonstrate vector proximity in a high-dimensional95

space when trained on a large corpus [20, 21]. This is a useful property that96

makes language processing methodologies arise as potential solutions in various97

domains with extensive unlabeled data, e.g., in protein sequences [22–25], in98

DNA sequences [26] or even chemicals [27]. The prevailing sequence represen-99

tation of compounds is SMILES, which stands for Simplified Molecular-Input100

Line-Entry System [28], a depth-first preorder spanning tree traversal of the101

molecular graph. Similar to proteins, SMILES meets the language definition,102

and their molecule representations can be processed with language models [29],103

such as Word2Vec [20, 30, 31], and Recurrent Neural Networks (RNNs) [29, 32].104

Transformers models are a recent development [33] taking advantage of large105

amounts of sequence representations of chemical structures [34, 35]. Trans-106

formers employ transfer learning, where, briefly, a model is trained on a related107

or more general problem with abundant training data, to then be adapted108

or used for a target task with limited data available, resulting in improved109

performance, and accelerated convergence. Although transfer learning was ini-110

tially developed for supervised machine learning tasks, its application has been111

expanded to self-supervised tasks [36–38], enabling model pre-training on large112

datasets with millions of records.113
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Here, we describe ChemLM, a language modeling-based approach for effi-114

cient transfer learning for chemical compounds. ChemLM utilizes the SMILES115

representation of molecules as sentences of the input language, and a three-116

stage training process for predicting a specific molecular property of chemical117

compounds. This includes pre-training of a self-supervised language model on118

large datasets, self-supervised training on further domain-specific data, and119

subsequent model optimization in a supervised setting. With this, we aimed120

for an approach that can be applied for real-world datasets of experimental121

compounds that comprise of limited training samples/compounds. We assessed122

whether language models’ training using domain adaptation, which allows us to123

adapt the pre-trained model on further data from the target domain, enhances124

the model’s predictive ability. We performed extensive performance compar-125

isons to the state-of-the-art models. We furthermore investigated whether the126

model successfully captures the underlying chemical information, and repro-127

duces the chemical space. Moreover, we predicted the potency of candidate128

pathoblocker compounds against Pseudomonas aeruginosa from an experi-129

mental dataset encompassing just 219 compounds, demonstrating the value of130

ChemLM for this application in the drug discovery process.131

2 Results132

The ChemLM method133

ChemLM is a transformer-based method that processes molecules’ SMILES134

as sentences representing the chemical structures. ChemLM has three train-135

ing stages (Fig. 1a), consisting of (i) a self-supervised pre-training stage, (ii) a136

secondary domain-specific pre-training, and then, (iii) a fine-tuning stage for137

the supervised classification in molecular property prediction tasks. Initially,138

a language model is trained using transformers on a large corpus of chemical139

compounds, to learn the chemical language by unveiling the general relation-140

ships among the tokens, a step called pre-training. Then, the model is further141

trained in a self-supervised manner on domain-specific compounds. Optionally,142

the training instances are extended with a data augmentation algorithm to143

cover multiple views on the chemicals. In the last step the model is fine-tuned144

by supervised training on the domain-specific compounds for a given task. In145

all these stages, a workflow processes SMILES compound representations into146

a sequence of chemical ‘words’ that are then used as input for the ChemLM147

transformer models (Fig. 1b).148

(i) Language-model pre-training: Pre-training is a part of transfer learn-149

ing, where the model is trained on millions of samples before it gets fine-tuned150

on the specific task at hand. Masked language modeling (MLM) masks ran-151

dom tokens of the input sequence, and trains the model by predicting the152

masked token based on the surrounding ones. The model was initially trained153

on the large corpus of the ZINC database (10 million compounds) using MLM154

as introduced in BERT [36]. At this stage, we used unlabeled data consisting155

https://doi.org/10.26434/chemrxiv-2023-cpkfk ORCID: https://orcid.org/0009-0003-1548-3025 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-cpkfk
https://orcid.org/0009-0003-1548-3025
https://creativecommons.org/licenses/by-nc-nd/4.0/


Springer Nature 2021 LATEX template

ChemLM 5

of tokenized SMILES to learn the representations of the compounds. This156

created the ChemLM base model encoding the syntax, and semantics of the157

language of chemical compounds.158

159

(ii) Domain adaptation for the language modeling: before fine-tuning160

the ChemLM model in the chemical task, we introduce one more level of train-161

ing on domain data. In this stage, the pre-trained model is further trained on162

domain-specific, unlabeled data, which improves the ultimate performance, as163

shown in [39, 40]. The goal is to fine-tune the language model to better capture164

the data structure specific to the final task. One main issue here is that there165

may only be little domain-specific data available to train the model, leading166

us to perform data augmentation on the task-specific compound dataset,167

which can be done using SMILES enumeration [41]. This technique performs168

atom reordering in the SMILES strings, resulting in multiple representations169

of a molecule, and is a fast, and computationally cheap way to augment the170

existing dataset by several factors. Data augmentation was used for the whole171

dataset. Since the model is trained in an unsupervised way using MLM, there172

is no leak of information to the model in the evaluation phase.173

174

(iii) Supervised fine-tuning of the transformer language model net-175

work: In the final phase, the trained model undergoes supervised fine-tuning.176

To prevent overfitting, we deploy early stopping in addition to techniques177

in model development, e.g., L2 regularization. Instead of freezing the trans-178

former’s layers, and fine-tuning only the classification head, we choose to179

unfreeze all of them, and further fine-tune them to optimize performance. The180

attention maps, spread across various layers of a transformer model trained on181

chemical compounds, can be utilized to demonstrate how different chemical182

tokens interact in creating the final language model-based embedding of these183

compounds (Supplementary Fig. A1).184

Architecture optimization185

While hyperparameters play a significant role in influencing the effectiveness186

of deep learning models, their exploration within this domain has not been187

thoroughly investigated so far. Here, we assess the impact of key hyperparam-188

eters of the transformers architecture, and of our approach. We conducted a189

search using the Optuna framework, and we analyzed the importance of param-190

eters including the augmentation number, the number of hidden layers, and191

attention heads, as well as the type of embeddings for the transformer model.192

The hyperparameters, and the range of their values for the optimizations can193

be found in Supplementary data (Supplementary Table A1). Furthermore,194

we evaluated each hyperparameter’s impact on the final outcome through195

Optuna’s f-ANOVA test (Fig. 2).196
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a

b

Fig. 1 The ChemLM approach. a) Training stages of the ChemLM model. All the
trained models are represented by circular shapes, BBPE models are in purple, and
RoBERTa is in yellow. Procedures like training, augmentation, and prediction are indi-
cated with rectangles. The dashed line indicates the flow of information within a training
stage, whereas the solid line describes the transfer of knowledge from one training stage to
another. b) An example that indicates how a SMILES string is processed, and treated by
the ChemLM transformer model. Firstly, it gets tokenized, and special tokens are added to
the sequence. Then, these are fed into the model, and at the end, the sum of weights from
the hidden layers is used to make predictions.
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As a key part of the ChemLM method, we investigated the optimal197

augmentation number for domain adaptation training, i.e. the number of alter-198

native molecule representations in SMILES. To examine this, we introduced199

a wide range of randomized SMILES representations during training, between200

0, and 100. The augmentation number substantially affected the model (Fig.201

2a), and high values (80 or 100 augmentations) were consistently selected202

in the optimization process. Data augmentation increased model training203

time, which rose linearly to the number of molecule augmentations provided204

(Supplementary Table A2).205

Inspired by the authors of BERT [36], we also explored the optimal embed-206

dings by combining weights from different layers in various ways, such as207

summation, and averaging in the last layer or across multiple layers. Notably,208

we examined whether using the weights of the first token of the sequence or a209

combination of all tokens yielded better results. The choice of focusing on the210

first token was grounded in the understanding that it encapsulates a descrip-211

tion of the entire sentence, and receives the most attention from all the heads212

[36, 42]. The type of embeddings, substantially influenced performance (Fig.213

2a). Contrasting this, the number of attention heads and the number of lay-214

ers had the least impact on performance. The selected hyperparameter values215

during optimization are reported for each task (Supplementary Table A3).216

ChemLM identifies potent pathoblockers for P.217

aeruginosa.218

In drug discovery, oftentimes, a very limited number of compounds are avail-219

able, substantially fewer than those included on commonly used benchmark220

datasets for chemical property prediction tasks. To assess the value of ChemLM221

for a real-world drug discovery problem, we employed it to identify potent222

pathoblockers compounds acting against P. aeruginosa (Fig. 3a), which is one223

of the priority pathogens identified by the World Health Organisation, often224

characterized by multidrug resistance [6]. The class of compounds that we225

focused on disrupts the quorum-sensing (QS) machinery of P. aeruginosa [43–226

49], using a compound library of 219 structures with varying potency. The227

drug target is the QS receptor, and transcription factor PqsR [50].228

Small molecular compounds acting on PqsR via an inverse agonistic229

mode-of-action reduce the production of several virulence factors such as230

the toxin pyocyanin. The initial hit already impaired pyocyanin production231

with a potency in the double-digit micromolar range, and was character-232

ized by a trifluoromethyl-pyridine fragment.[46] A lead generation campaign233

via structure-guided fragment growing was initiated, which yielded five QS234

inhibitor classes with substantially increased potency [43–45] (Fig. 2a), and235

retaining this fragment motif. We use the IC50 to measure drug potency, which236

is the inhibitor concentration needed to inhibit a biological process in vitro237

by 50%. Highly potent compounds have an IC50 of less than 500 nM. For the238
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Fig. 2 Importance of hyperparameters in model’s performance during hyperparameter opti-
mization using the validation data of each dataset. The examined hyperparameters are: the
embeddings type, the number of attention heads, and hidden layers, and the augmentation
number.

five classes, the number of compounds, and their potencies vary considerably;239

from 2 to 107, and including between 0 and 71 highly potent compounds.240

To rigorously evaluate the performance of ChemLM, we devised a chal-241

lenging scenario. Given the substantial variation in the number of compounds242

per class in the compound library, we pursued an alternative approach to243

partition the data into more similarly-sized folds. We employed ward link-244

age hierarchical clustering on the ChemLM embeddings, and partitioned the245

library into five sets of chemically similar compounds, resulting in a more even246

distribution (Supplementary Data Table A4). Specifically, we organized the247

compound library by grouping compounds into these folds based on ChemLM ’s248

embeddings similarity. This approach ensures that compounds with chem-249

ical similarity, even if they belong to different structural classes, are kept250

together within the same fold as opposed to using the initial structural classes.251

This strategy helps prevent information leakage during model training, and252

introduces a demanding challenge for the ChemLM model. Subsequently, we253

conducted the third stage of model training using the SMILES representations254

of compounds from four of the folds. The compounds from the remaining fold255

were then classified as highly potent or not. This process was repeated for each256

set of folds (Fig. 3b) and the same hyperparameters were used for all models257

(Supplementary Table A3).258
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a

b

Fig. 3 Description of experimental data: (a) Chemical structures, and number of com-
pounds per class. (b) Performance comparison of ChemLM with graph neural networks and
MolBERT in 5-fold validation for experimental compounds on Pseudomonas aeruginosa.
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We compared ChemLM to several state-of-the-art models on these data,259

including Graph Convolution Neural Networks (GCNN) [51], Graph Atten-260

tion Transformers (GAT) [16] and Message Passing Neural Networks (MPNN)261

[14] using their implementations in DeepChem (version 2.6.0) with the default262

architecture (Fig. 3b). In addition, we compare our approach with MolBERT, a263

recent transformer-based approach [52]. ChemLM achieved the highest median264

of macro-averaged F1-scores (0.899), which is almost 30% more than that of265

the second-best model (MPNN; Fig. 3, Supplementary Data Tables A5). The266

same applies for all the evaluation metrics we examined. Moreover, its perfor-267

mance on identifying highly potent pathoblockers is quite high, as the F1-score268

for that class in each of the five folds consistently ranges from above 0.825269

to a maximum of 0.92 in all folds (Supplementary Table A6). Most notably,270

ChemLM demonstrates consistency when compared to other models, which271

either fail or perform poorly on this task in certain folds. These results highlight272

the value of the optimized ChemLM for identifying highly potent compounds273

for an application with a very limited number of compounds available for a274

task-specific training scenario.275

Optimizing ChemLM substantially improves performance276

We assessed the performance of ChemLM by training models in different ways277

for binary classification tasks in molecular property prediction, and then again278

compared their performance to MolBERT, GCNN, GAT, and MPNN across279

the three benchmark datasets (Supplementary Table A7). The datasets were280

split in a stratified way using DeepChem’s splitter [53]. We chose that way281

of splitting as it ensures that each class is represented in the training/valida-282

tion/test sets, and reflects the actual class distribution in each set. All datasets283

were split proportionally into 70% training, 10% validation, and 20% test sets.284

Training parameters for grpah neural networks such as the epochs, and the285

learning rate were optimized using a grid search and deployed the DeepChem286

framework for that.287

First, a ChemLM vanilla model was trained without using a domain adap-288

tation phase or hyperparameter optimization. In its architecture, 12 layers, and289

attention heads were included, and pooling as the type of embeddings (Sup-290

plementary Table A3). A second model, ChemLM domain-adapted, was then291

trained on domain-specific data, with augmented SMILES representations,292

and no hyperparameter optimization took place, using the same architecture293

as ChemLM vanilla. Finally, for the ChemLM domain-adapted & optimized294

model, all the hyperparameters were optimized, and in addition, we unfroze295

the model’s layers for fine-tuning in the task-specific training.296

The optimized ChemLM was among the top performers in benchmark eval-297

uation (Fig. 4). It performed substantially better than the graph-based models,298

with an improvement of up to 0.2 in F1-score on the ClinTox dataset relative299

to the second-best performing model (Supplementary Table A10). This makes300
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Fig. 4 Performance of ChemLM and state-of-the-art models with the macro averaged F1-
score on the test data sets of the benchmark data. ChemLM and its variations are compared
with state-of-the-art models. The graph neural networks (blue) are GAT (Graph Attention
Transformers)[16], MPNN (Message Passing Neural Networks)[14], and GCNN (Graph Con-
volutional Neural Networks)[51]. MolBERT [54] (in yellow) is a transformer-based approach
using the BERT model. ChemLM models are noted in red. ChemLM demostrates equal or
better performance to the state-of-the-art models.

it a highly valuable innovation for computational chemistry. Compared to Mol-301

BERT, which also utilizes transformers, we observe a very similar performance302

on two of the datasets (BBBP and BACE); however, ChemLM substantially303

outperformed it on ClinTox by almost 25%. This performance gap on the304

ClinTox is caused by the poor results of these models on the positive class305

(Supplementary Table A11). We observed that even though they successfully306

perform this task on BACE and BBBP datasets, they do not do so on Clin-307

Tox dataset. Similarly to what we observed for the pathoblocker dataset, these308

models failed to identify the few positive samples on the dataset (Supple-309

mentary Table A11) as we also showed for the experimental pathoblockers310

(Supplementary Table A6).311

Interestingly, we also observed a substantial improvement between the312

vanilla, and the domain-adapted models, which is a result of adding the domain313

adaptation stage and the data augmentation. That ranges from 15% for BACE314

dataset up to 30% for ClinTox. Most notably, the overall increase in perfor-315

mance from the vanilla version to the domain-adapted and optimized one,316

is up to 0.43 F1-score on the ClinTox dataset. That demonstrates the value317

of these steps to models’ enhanced performance. Differences in performance318

between the different models were the least pronounced for the BACE dataset.319

The complete evaluation of the models for these datasets can be found in the320

Supplementary material (Supplementary Tables A8-A10).321
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ChemLM embeddings reflect molecular properties of322

chemical compounds323

To assess whether the compound embeddings generated by ChemLM are324

reflective of the underlying molecular properties relevant for drug efficassy, we325

assessed the continuity of their representations in the embeddings using the326

Lipschitz constant (k), and compared it with a randomly created space, by327

randomly shuffling assigned molecular properties.328

We applied this analysis to six relevant physicochemical properties: molec-329

ular weight, quantitative estimate of drug-likeness (QED), hydrogen-bond330

donors, and acceptors, polar surface area, and the number of aromatic rings.331

We used the chemical properties of compounds and their embeddings generated332

by ChemLM to calculate the k of 200 randomly selected chemical compounds333

for 100 rounds. Using the distributions of ChemLM ’s and random’s space (Sup-334

plementary Fig. A2), we calculated the median Lipschitz constant. The results335

of our analysis demonstrated that, for all properties, our space’s median k336

exhibited significantly lower values compared to the random space (one-sided337

t-test, Table 1). This consistent behaviour suggests that ChemLM effectively338

maps molecules in an informative, and meaningful manner.339

Table 1 Median Lipschitz constant values and its p-value for each molecular
property.

Molecular Property ChemLM Random Space Ratio p -value

Molecular Weight 4.952 5.486 0.903 4.2e-34

QED 0.01 0.011 0.909 1.09e-59

Hydrogen donors 0.05 0.056 0.893 1.02e-40

Hydrogen acceptors 0.065 0.068 0.956 1.28e-07

Polar surface area 1.27 1.367 0.929 5.67e-13

Num. aromatic rings 0.034 0.035 0.971 2.66e-09

Low median values are observed for Lipschitz constant in most of the properties, and a
relatively stable ratio of ChemLM, and the random space. P-values are calculated using
one-tailed t-test.

To qualitatively assess our results, we visualized the embeddings of340

molecules in a two-dimensional space using UMAP. This approach allowed us341

to determine whether compounds are encoded in meaningful embeddings in342

the ChemLM model, aligning chemicals with similar physicochemical prop-343

erties in close proximity, while maintaining the global structure of the data344

distribution. We applied this technique for several of the previously assessed345

molecular properties in our evaluation (Fig. 5). For all properties, we observed346

a gradual change of these properties in this space, indicating that molecules347

with similar properties tend to possess similar embedding values.348
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Fig. 5 UMAP plots of molecular properties. They demonstrate the distribution of
molecular properties. Each dot represents a molecule in the BBBP dataset.
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3 Discussion349

In this study, we describe ChemLM, a language modeling-based approach for350

efficient transfer learning in the field of molecular property prediction for chem-351

ical compounds. ChemLM includes several methodological innovations for the352

chemical language modeling. The first novelty is the introduction of another353

training stage, in which the model is further trained on domain-specific com-354

pound representations in a self-supervised manner. That opposes to current355

methods that use only pre-training and fine-tuning on the prediction task356

[34, 35]. This domain adaptation training stage allows the model to learn the357

semantics of the chemical associations from task-specific data, and further358

improves the predictive power of the model for that task. Substantial improve-359

ment was noticed particularly on relevant tasks with little domain-specific data360

available. The second methodological novelty of the method lies in extending361

the domain-specific training data by data augmentation. Data augmentation362

is a technique for creating more representations of a sequence. It has been363

used to increase the number of instances in the pre-training or the fine-tuning364

stage, especially for chemical tasks with a few hundred samples. It is the first365

time that this technique has been used in the domain adaptation stage.366

As a real-world test case, we evaluate our model on identifying compounds367

for Pseudomonas aeruginosa, a hospital-acquired pathogen that oftentimes368

exhibits multiple drug resistances. We observe substantial performance gains369

for the task of identifying potent pathoblocker compounds effective against370

Pseudomonas aeruginosa from a chemical compound library acting on the371

transcription factor PqsR. We partitioned a dataset of experimental com-372

pounds into training, and testing sets to assess the model’s ability to identify373

structurally more distant candidate molecules. In this evaluation, the ChemLM374

model demonstrated a significant improvement, with a relative 30% enhance-375

ment over the second-ranking model on this task. The F1-score for the positive376

class (highly potent pathoblockers) was higher than 0.82 in all folds as well.377

This showcases the model’s remarkable ability to generalize effectively and378

its consistency on the task compared to other assessed techniques. Thus, the379

performance gains provided by ChemLM can substantially facilitate the identi-380

fication of relevant drug compounds for pharmacological applications. Further381

applications of the ChemLM framework extend from predicting active com-382

pounds to predicting activity levels, suggesting potential potent compound383

structures using generative models. We anticipate that it will find broader384

applications in experimental data analysis in the future.385

We comprehensively assessed ChemLM on suitable benchmark datasets for386

molecular property prediction; the BACE (inhibition of the BACE-1 enzyme),387

BBBP (blood-brain barrier penetration) and the ClinTox dataset (clinical tox-388

icity) deriving from MoleculeNet. On all of these, ChemLM demonstrated389

a substantial performance gain up to 20% relative to the graph neural net-390

works. The results indicate that an optimized transformer-based approach391
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can outperform leading Graph Neural Network architectures. In addition, it392

performed similarly to MolBERT, another language processing approach; how-393

ever, ChemLM substantially surpassed its performance on the ClinTox dataset,394

by 20% in F1-score. This further underscores the capability of ChemLM395

for excellent performance in discerning the positive class within imbalanced396

datasets when compared with state-of-the-art methods.397

Moreover, we noticed substantial improvement in ChemLM ’s performance398

due to our methodological improvements across all benchmark datasets, e.g.,399

the addition of domain adaptation stage. Furthermore, via an extensive400

hyperparameter optimization, we demonstrated that certain parameters sub-401

stantially impact the final performance. Among these parameters, embeddings402

proved to be the most influential, as indicated by our optimization results.403

Additionally, in the domain adaptation stage, we utilized multiple molecule404

representations. It’s worth noting that a high number of these representations405

was selected leading to improved performance and proving its importance in406

this stage. Our optimization efforts provided valuable insights into the impor-407

tance of hyperparameters in the model’s architecture, ultimately enhancing its408

potential. That provides other researchers in the field with a useful guideline409

for hyperparameter tuning in future approaches.410

Finally, as an intrinsic evaluation of the chemical language model, we411

explored the distribution of the compound embeddings, i.e. their internal rep-412

resentations in the model that were generated by the ChemLM served as input,413

together with four molecular properties. Those properties are the number of414

hydrogen-bond (i) acceptors, and (ii) donors, (iii) the molecular weight, and415

(iv) quantitative estimate of drug likeness (QED) visualized in UMAP plots416

(Figure 4). UMAP[55] was preferred to tSNE for the visualization of property417

distribution as it is better in preserving the global structure of the data pro-418

viding a more accurate representation of the space. There are distinct clusters419

with low/high values, and a gradual change in the molecules’ properties. To420

quantify the relationship between the embeddings generated by ChemLM and421

the chemical properties, we calculated the Lipschitz constant. The results of422

our analysis demonstrated that, for all properties, the median Lipschitz con-423

stant (k) lower median values compared to the random space. The p-values of424

the t-test showed that this is statistically important. The intrinsic evaluation425

indicated a chemically menaingful encodingof the space.426

In summary, we introduce an efficient modeling approach for accurately427

predicting the molecular properties of chemical compounds. We achieved this428

by leveraging transfer learning, and domain adaptation phases, with key429

insights drawn from the model’s evaluation. The outcomes highlight the sub-430

stantial improvements achievable through self-supervised training on domain431

data, and data augmentation, leading to enhanced accuracy in molecular prop-432

erty prediction. Hyperparameter optimization also played a pivotal role in433

enhancing performance by identifying critical parameters in the model’s archi-434

tecture. Together, these findings have the potential to significantly benefit435
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the deployment of transformer models in the chemical domain. Notably, our436

suggested architecture has demonstrated superior performance compared to437

state-of-the-art models in various chemical tasks. At the same time, ChemLM438

generates a chemically meaningful encoding space. However, the main achieve-439

ment of this model lies in its successful application to real-world data and440

predictive challenges. Specifically, it excels in identifying potent pathoblockers441

against P. aeruginosa from a very limited amount of training data. This sug-442

gests that the approach holds substantial promise to facilitate drug discovery443

in the future.444

4 Methods445

Data Description446

We used two types of datasets to train, and evaluate the model’s perfor-447

mance. The first one is the ZINC (v15) database, a public collection of millions448

of chemical compounds[56]. We retrieved the SMILES representations of the449

molecules, and used them in the pre-training stage of the ChemLM model.450

The second ones were three benchmark datasets from MoleculeNet [57] for pre-451

diction tasks of the physicochemical properties of molecules (Supplementary452

Table A7). BACE’s target class indicates binding results for a set of inhibitors453

to β-secretase 1. The Blood Brain Barrier Penetration dataset (BBBP) is a454

collection of compounds from a study about compounds’ brain barrier per-455

meability in which labels indicate penetration or non-penetration. ClinTox456

includes compounds that can be used for the tasks of FDA approval status,457

and clinical trial toxicity. We evaluate the models on the second task.458

Tokenization using Byte Pair Encoding (BPE)459

One of the most critical steps is the tokenisation of SMILES. We consider each460

representation string equivalent to a sentence consisting of many tokens. In461

our approach, we use a computational way for tokenisation, Byte-level Byte462

Pair Encoding (BBPE) [58] as it is suggested for the RoBERTa model.463

BPE [59] was first used as a data compression method. Its function relies464

on assigning new symbols to the most common pair of characters. Hence, it can465

find those sets and let us consider them as tokens. It is ideal for establishing a466

hybrid of word-/character- tokenisation, thus there is a combination of single467

atoms with pairs of highly frequent atoms. Another advantage is the user-468

defined vocabulary size, which is equivalent to the total number of tokens at469

the end of the procedure. Hence, the larger it is, the more pairs will be included,470

leading to different tokenization. The vocabulary size we have chosen is 10000,471

following the suggestion of the authors [58].472

To learn the underlying sequence of bytes, it is necessary to train a BBPE473

tokenizer in a large corpus of SMILES like the ZINC database. This tokenizer474

can be used in different applications or datasets.475
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Transformers476

The model is based on transformers that have an encoder-decoder architecture477

[33]. At the core of multi-head attention lies the concept of self-attention,478

which focuses on generating improved representations of the sequence elements479

(tokens) by considering their interactions with neighbouring elements. This480

self-attention mechanism is utilized within multi-head attention to enable the481

model to attend to multiple views of the sequence interactions simultaneously,482

resulting in more expressive, and informative representations. Thus, each layer483

of the encoder includes a multi-headed attention sublayer, and a position-wise484

fully connected feed-forward network followed by normalization layers. In a485

broad definition of attention, each token of the sequence is associated with486

two real-valued vector representations: (i) a key vector (k) from the input487

embedding space, and (ii) a value vector (v) from the output embedding space.488

These vectors can be either randomly initialized or pre-trained. The query489

vector (q) represents the sequence element for which one wants to obtain a490

new representation, and must belong to the same space as the key vectors. To491

calculate a new representation for the entire sequence, the key, (k), query (q),492

and value (v) vectors are calculated using dot multiplication of the embedding493

with the corresponding learned weight matrices. Matrix multiplications are494

deployed to leverage efficiency, and parallelization. Embeddings, query, key and495

value vectors are packed to matrices, X, K, Q, and V. Attention is calculated496

as described in equation 1, in which dk stands for the dimension of vector k.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Instead of using a single attention mechanism, researchers introduced a mul-497

tihead one. Its benefit to the model lies in the information that captures from498

different representation subspaces at different positions.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W 0, (2)

where each headi is equal to

headi = Attention(QWi
Q,KWi

K , V Wi
V ) (3)

and Wi is the weight matrix.

Attention(Q,K, V ) = softmax(
QKt

√
dk

)V (4)

Instead of performing a single attention mechanism, researchers introduced499

a multihead one. Its benefit to the model lies in the information that is captured500

https://doi.org/10.26434/chemrxiv-2023-cpkfk ORCID: https://orcid.org/0009-0003-1548-3025 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-cpkfk
https://orcid.org/0009-0003-1548-3025
https://creativecommons.org/licenses/by-nc-nd/4.0/


Springer Nature 2021 LATEX template

18 ChemLM

of recurrent or convolutional elements.501

PE(pos,2i) = sin(
pos

10000
2i

dmodel

) (7)

PE(pos,2i+1) = cos(
pos

10000
2i

dmodel

) (8)

In formulas 7 and 8, pos stands for the position in the sequence, dmodel for502

the dimension of the output embedding space and i, for the embedding index.503

As stated earlier, this architecture comes with many advantages, overcoming504

many of the sequence models’ limitations. At first, self-attention mechanism505

enables to modeling interactions between distant tokens in the sequence, and,506

thus, captures long-term dependencies among them. In addition to that, they507

are highly scalable as they can handle variable-length input sequences thanks508

to the self-attention mechanism, which operates independently on each posi-509

tion. Moreover, the transformer’s architecture is parallelizable and makes more510

efficient computations, restricting the training, and inference time. In addition,511

this architecture enables transfer learning. Learning general representations by512

pre-training a model on a corpus of unlabeled data, and then fine-tuning it on513

a specific task leads to improved performance.514

The RoBERTa model was selected from a pool of autoencoder models.515

Based on BERT model, it utilizes learnable position embeddings, as opposed516

to sinusuidal position encodings as seen in formulas 7 and 8. The mean num-517

ber of tokens per SMILES sequence is about 45. RoBERTa is an appropriate518

model for that sequence length. In addition, there are many training tasks for519

language models, such as next-sentence prediction. RoBERTa masks tokens520

of the sequence, and gets trained on predicting which is the masked token521

based on the context, and that technique is called masked language modeling522

(MLM). This is appropriate in our application and can leverage the model to523

learn the syntax, and grammar of SMILES. Hence, RoBERTa’s characteristics524

matched our needs.525

ChemLM implementation526

ChemLM utilized MLM for training in the first two training stages, pre-527

training and domain adaptation. The domain adaptation training stage used528

multiple SMILES representations for each molecule. These representations529

were generated using SMILES enumeration, a data augmentation technique for530

SMILES strings [41]. We experimented with different numbers of augmenta-531

tions (Supplementary Table A2) per molecule to find the best-performing one532

during the hyperparameter optimization approach. All training stages took533

place on an NVIDIA t4 GPU.534

To implement ChemLM, HuggingFace[60] (version 0.0.8) was used to535

configure and train the RoBERTa model for the first training stages. A com-536

bination of Huggingface, and PyTorch[61] (version 1.6) was used for the537

supervised fine-tuning. In addition, scikit[62] (0.24.1) was deployed for hier-538

archical clustering, and evaluation metrics, and RDKit[63] (v2020.09.1.0) to539

produce the molecular properties for the intrinsic evaluation.540
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Intrinsic Evaluation541

Quantitative evaluation: Aiming for a model that efficiently maps the com-542

pounds, it was essential to perform an intrinsic evaluation of our model, and543

quantitavely evaluate the distribution of physicochemical properties in the544

computational space. The examined molecular properties are molecular weight,545

hydrogen-bond donors, hydrogen-bond acceptors, lipophilicity, polar surface546

area, and rotatable bonds. For that purpose, we calculated the properties547

for the compounds of BBBP dataset using RDKit, and examined Lipschitz548

continuity for them as (equation 6),549

df (f(e1), f(e2)) ≤ k ∗ de(e1, e2) (9)

where f is the property value, df the absolute difference of these values for550

the embeddings e1, e2, k is the Lipschitz constant, and de the Euclidean dis-551

tance of the embeddings. The rationale behind utilizing the Lipschitz constant552

lies in our intention to understand how the values of properties change with553

variations in the embeddings of molecules. When we have a bounded Lips-554

chitz constant, denoted as k, it signifies that the properties change predictably,555

and consistently for different input compounds. In both cases, Lipschitz, and556

UMAP, we used embeddings that come from the weights of the last layer. We557

compare ChemLM with the random Lipschitz constant that is generated by558

shuffling the property values for 200 randomly chosen chemical compounds of559

BBBP dataset. To assess whether these results are statistically important, we560

also perform a one-tailed t-test on the distributions of ChemLM ’s, and ran-561

dom space’s Lipschitz constant. The distributions were produced by randomly562

selecting chemical compounds for 100 rounds. Then, the one-tailed t-test is563

used to calculate the p-value to assess whether our null hypothesis, that the k564

of our space is lower than the random one’s, is true. Scipy (v. 1.8.0) is used to565

perform the t-test, and calculate the p-value using as an alternative argument,566

the ’greatest’.567

Qualitative evaluation: in addition to the quantitative evaluation of the568

trained space, we projected the 768-dimensional vectors of molecule embed-569

dings to 2D space using the UMAP algorithm. In this way, we can visually570

inspect the distribution of the aforementioned properties.571
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Appendix A588

Table A1 Values range that was utilized for the hyperparameter optimization.

Parameter Values range

Augmentation size 0,5,10,15,20,25, 40, 60, 80, 100

Number of hidden layers 4, 8, 12

Number of attention heads 8, 12, 16

Embeddings

Pooling

Last layer - mean of tokens

Last layer -first token

Sum of hidden layers - mean of tokens

Sum of hidden layers - first token

Mean of hidden layers - mean of tokens

Mean of hidden layers - first token

Table A2 Training time with regard to the augmentation size.

Augmentation size Training time(s)

0 668

20 11083

40 26256

60 34731

80 44800

100 55594

Our findings suggest that the training time is linear to the augmentation size. The required
time is quite low, and is not discouraging from using more representations.
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Table A3 Selected hyperparameters for our models.

Model Augmentation number Embeddings type Number of hidden layers Number of attention heads

vanilla - Pooling 12 12

domain-adapted 80/100 Pooling 12 12

BBBP 80 Last layer -first token 8 12

BACE 100 Sum of hidden layers - mean of tokens 8 12

ClinTox 80 Last layer -first token 12 16

PA 100 Sum of hidden layers - mean of tokens 4 12

In the vanilla model, default hyperparameters from HuggingFace were utilized. The domain-
adapted model shares the same values with vanilla, except for the augmentation number, in
which the optimal value for each dataset was used. We identified the best hyperparameters
for benchmark datasets (BACE, BBBP, ClinTox) through optimization on the validation
dataset. Regarding the model for Pseudomonas aeruginosa (PA), the lack of validation
dataset did not allow us to follow a similar procedure. We selected the best hyperparameters
according to the values derived from the successful configurations identified on benchmark
datasets, except that we used fewer layers, because of the small training set size. In addition,
we also investigated another setting for the embeddings type (embeddings of the first token
of the last layer), a larger number of hidden layers (12 instead of 4) and a lower augmentation
number (80). Results are shown for the model with the best performance, selecting the best
of these models.

Table A4 Participation of each structural class in the 5-branch setting, and its
percentage of highly potent compounds.

Hierarchical folds A B C D E

Highly potent

compounds
Number of
compounds

1 36 29 0 0 13 88% 78

2 40 15 1 1 6 67% 63

3 20 4 2 1 22 40% 49

4 0 0 11 0 8 21% 19

5 10 0 0 0 0 50% 10

Table A5 Performance comparison of property prediction models over the
test set of a 5-fold cross-validation setting over the experimental dataset.

Model F1 AUC Precision Recall Accuracy

MolBERT 0.495 0.5 0.553 0.6 0.714

MPNN 0.604 0.592 0.661 0.591 0.789

GAT 0.563 0.583 0.635 0.583 0.714

GCNN 0.571 0.567 0.575 0.568 0.651

ChemLM 0.899 0.900 0.900 0.900 0.900
The median metric value of each model is demonstrated.
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Table A6 Predictive performance of ChemLM and state-of-the-art models on
the positive class (highly potent pathoblockers).

Hierarchical Folds ChemLM MPNN GAT GCNN MolBERT

1 0.917 0.938 0.915 0.906 0.869

2 0.825 0.796 0.820 0.771 0.775

3 0.895 0.723 0.618 0.627 0.695

4 0.888 0.333 0.000 0.750 0.000

5 0.888 0.750 0.727 0.000 0.600

The F1-score is reported as evaluation metric in this this table.

Table A7 Description of the evaluation datasets.

Datasets Number of compounds Percentage of positive class

BACE 1513 45.7%

BBBP 2039 76.5%

ClinTox 1478 7.6%

Table A8 Comparison of ChemLM on BBBP dataset with its simpler versions,
and state-of-the-art models in more evaluation metrics.

Model F1 AUC Precision Recall Accuracy

MolBERT 0.891 0.888 0.895 0.888 0.928

MPNN 0.783 0.788 0.778 0.788 0.841

GAT 0.747 0.711 0.847 0.711 0.85

GCNN 0.695 0.664 0.820 0.664 0.828

ChemLM vanilla 0.689 0.674 0.72 0.674 0.799

ChemLM domain-adapted 0.823 0.811 0.837 0.81 0.87

ChemLM domain-adapted & optimized 0.879 0.885 0.874 0.884 0.912

Table A9 Comparison of ChemLM on BACE dataset with its simpler versions,
and state-of-the-art models in more evaluation metrics.

Model F1 AUC Precision Recall Accuracy

MolBERT 0.814 0.814 0.813 0.814 0.816

MPNN 0.729 0.733 0.731 0.733 0.729

GAT 0.666 0.704 0.769 0.704 0.680

GCNN 0.69 0.692 0.731 0.692 0.71

ChemLM vanilla 0.508 0.554 0.603 0.553 0.584

ChemLM domain-adapted 0.661 0.662 0.674 0.662 0.673

ChemLM domain-adapted & optimized 0.804 0.803 0.804 0.803 0.805
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Table A10 Comparison of ChemLM on ClinTox dataset with its simpler
versions, and state-of-the-art models in more evaluation metrics.

Model F1 AUC Precision Recall Accuracy

MolBERT 0.667 0.671 0.662 0.671 0.915

MPNN 0.638 0.593 0.870 0.593 0.938

GAT 0.592 0.566 0.719 0.566 0.928

GCNN 0.655 0.614 0.784 0.614 0.935

ChemLM vanilla 0.480 0.500 0.462 0.500 0.925

ChemLM domain-adapted 0.823 0.750 0.980 0.750 0.962

ChemLM domain-adapted & optimized 0.916 0.864 0.989 0.864 0.979

Table A11 Comparison of ChemLM on benchmark datasets with
state-of-the-art models in prediction of the positive class using F1-score as
evaluation metric.

Model ClinTox BACE BBBP

MolBERT 0.378 0.796 0.955

MPNN 0.308 0.721 0.895

GAT 0.222 0.734 0.909

GCNN 0.345 0.611 0.897

ChemLM domain-adapted & optimized 0.842 0.785 0.942
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Fig. A1 Heatmap of the attention distribution in the tokens of a SMILES sequence. It
depicts the sum of attention a token receives from all attention heads in each layer of the
model.
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Fig. A2 Distribution plots of Lipschitz constant for ChemLM, and random
space.
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Röhrig, T., Schmelz, S., Blankenfeldt, W., Arce-Rodriguez, A., Borrero-de770

Acuña, J.M., Jahn, D., Rademacher, J., Ringshausen, F.C., Cramer, N.,771
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