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Abstract

REINVENT4 is a modern open–source generative AI framework for the design of
small molecules. The software utilizes recurrent neural networks and transformer
architectures to drive molecule generation. These generators are seamlessly
embedded within the general machine learning optimization algorithms transfer
learning, reinforcement learning and curriculum learning. REINVENT4 enables
and facilitates de novo design, R-group replacement, library design, linker design,
scaffold hopping and molecule optimization.
This contribution gives an overview of the software and describes its design.
Algorithms and their applications are discussed in detail. REINVENT4 is a com-
mand line tool which reads a user configuration in either TOML or JSON format.
The aim of this release is to provide reference implementations for some of the
most common algorithms in AI based molecule generation. An additional goal
with the release is to create a framework for education and future innovation in
AI based molecular design. The software is available from https://github.com/
MolecularAI/REINVENT4 and released under the permissive Apache 2.0 license.

Keywords: Generative AI, Reinforcement Learning, Transfer Learning, Multi
Parameter Optimization, Recurrent Neural Networks, Transformers
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1 Introduction

Molecular Design is the creation of novel molecules with desired properties for a given

problem in chemistry, material science or nanotechnology. Ideally, this would be done

in a systematic fashion rather than through trial–and–error. In drug discovery this is

often approached with rational drug design [1] which makes significant use of comput-

ers and algorithms to generate novel molecules. Specifically, so–called de novo methods

create molecules from scratch i.e. without or little prior molecular information [2]. In

this context we will discuss de novo molecular design using generative AI models [3]

and focus in particular on the implementation of the REINVENT software. The appli-

cation of AI in drug discovery has been debated and challenged. It is therefore of

high value to the scientific community that there exist reference implementations in

the public domain of the most common algorithms for generative molecular design to

facilitate a nuanced debate. It is also hoped that the released software can contribute

to the education and innovation in the field of AI-based molecular design.

Generative AI models capture the underlying probability distribution of known

molecules and their local relationships to each other (distribution learning). This

distribution is in principal unknown and thus the modelled distribution only an

approximation. However, we can define a “chemical space” in this way from which can

be extrapolate into novel chemical space. Statistical methods are then used to sam-

ple from the distribution i.e. generate novel molecules. The field is still relatively new

and experimental validations in the public domain are slowly starting to emerge [4–7]

but various useful perspectives and reviews of the methodology have already appeared

in the literature [3, 8–11]. Here, we will focus on small molecule design but other

modalities are being investigated as well [12, 13].

Numerous AI model architectures have been developed for generative molecular

design e.g. variational autoencoders (VAE) [14, 15], generative adversarial net-

works(GAN) [16], recurrent neural networks (RNN) [6, 17–20], transformers [21, 22],
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flow models [23, 24] and diffusion models [25] (either directly generating in 3D [26, 27]

or from 1D SMILES strings [28]), reaction based models [29]. The molecular repre-

sentation used for these algorithms can be different and can be typically categorized

with their dimensionality [13, 30]. All these methods have their relative merits and

there is no one solution that uniformly outperforms the others. Various bench-

marks have been designed to validate technical aspects of molecular generation and

optimization [31, 32].

Molecular design can be framed as an inverse design problem. In forward design we

would modify existing compounds until they satisfy our criteria while inverse design

first states the properties the molecule must possess and thus informs an algorithm on

how to create the molecules. Drug molecules in particular must follow a stringent prop-

erty profile before being approved as safe and efficacious medicines including affinity to

the target(s), selectivity against off–targets, the right physico–chemical properties, the

right ADME (absorption, distribution, metabolism, excretion) characteristics, good

PK/PD (pharmacokinetics/pharmacodynamics), favourable toxicology, chemical sta-

bility. Also very importantly synthesizability [33], the potential to scale-up a synthetic

route and the requirements of green chemistry [34]. This highlights the complexities

in designing a successful drug and the requirements for algorithms to solve this. The

inverse design problem is the attempt to map a (manageable) number of properties

back to a vast chemical space. Various attempts have been made at predicting the

success of a compound in the clinical stages by trying to find the “right” combination

of molecular properties [35, 36].

Molecular design should be seen as part of the DMTA (design, make, tests, analyse)

cycle. Generative models can contribute to the design part while robotic systems can

contribute to make, test and analyse in an attempt to create a fully automated closed–

loop experimentation system [37, 38]. The ambition is to speed–up molecular design

in a systematic and efficient manner. Levels of automation have been defined and
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it is clear that decision making and synthesizability are key factors in achieving full

automation [39].

In this contribution the progress of REINVENT as a framework for molec-

ular generative AI Is Described. REINVENT is in production and continuously

maintained. REINVENT tackles the inverse design problem through reinforcement

learning [19, 20, 40–42] using RNNs and transformers as deep learning architectures

based on SMILES strings as molecular representation. Here we describe the new ver-

sion 4 emphasizing novel features like combined reinforcement/curriculum learning

(RL/CL) staged learning, new transformer models for molecule optimization, full inte-

gration of all generators within all algorithmic frameworks: transfer learning (TL), RL,

CL, reworked scoring subsystem utilizing a plugin mechanism for easy extension and

the TOML configuration file format in addition to JSON (incompatible with previous

releases). REINVENT4 is a well–designed and complete molecular design software

solution. The code base has been largely rewritten and all software and models are

available in a single repository. The descriptions of the original REINVENT version

1 and version 2.0 have been published elsewhere [19, 20]. The code of version 3 has

been released as open–source software but without accompanying manuscript.

REINVENT has been shown to outperform many other methods of molecular opti-

mization in terms of sample efficiency [43] but is also successful in proposing realistic

3D molecules as shown in a recent docking benchmark for generative models surpassing

many graph–based methods [44]. It has also been demonstrated that the algorithm can

produce chemistry outside of the training set with certain CL protocols [45]. Table 1

compares functionalities in REINVENT4 with the previous version 2.0 and DrugEx

version 3 [18]. DrugEx is another open–source generative AI software similar in spirit

to REINVENT and also in production state. We do not compare here to research

based software released for in a specific publication for reproducing the claims in the

publication.
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Table 1: Comparison of major functionalities in REINVENT and DrugEx.

Functionality REINVENT4 REINVENT 2.0 [20] DrugExV3 [18]

De novo design ✓ ✓ ✓
Scaffold design ✓ ✓
Linker design ✓
Molecule optimization ✓
Reinforcement Learning ✓ ✓ ✓
Curricululm Learning ✓
Transfer Learning ✓ ✓ ✓
Input format(s) TOML/JSON JSON command line

2 Theory

Here the theory underlying REINVENT4 is described. The specifics of the software is

also highlighted. A comprehensive collection of various capabilities that are otherwise

distributed in previous publications are provided [19, 20, 46–48].

2.1 Generating Molecules

All REINVENT4 models consist of sequence–based neural network models that are

parameterized to capture the probability of generating tokens t in an auto-regressive

manner. The models are called agents. A sequence describes a SMILES string which

represents a molecule. The tokens are characters or character combinations in SMILES

strings, see S10. Tokens are drawn from a fixed vocabulary t ∈ V , created at train-

ing time (and fixed at inference time implying that input SMILES must follow the

model’s vocabulary). A special termination token indicates completion of the sequence.

REINVENT4 supports unconditional and conditional agents which describe probabil-

ity distributions over sequences from V . The joint probability P(T ) for unconditional

agents of generating a particular sequence T of length ℓ with tokens t1, t2, . . . , tℓ is

given by

P(T ) =

ℓ∏
i=1

P (ti|ti−1, ti−2, . . . , t1) . (1)
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Conditional agents model a joint probability P(T |S) of generating a particular

sequence T of length ℓ given an input sequence S given by

P(T |S) =
ℓ∏

i=1

P (ti|ti−1, ti−2, . . . , t1, S) . (2)

From Equations 1 and 2 we define the negative log-likelihood as

NLL(T ) = − logP(T ) = −
ℓ∑

i=1

logP (ti|ti−1, ti−2, . . . , t1) (3)

NLL(T |S) = − logP(T |S) = −
ℓ∑

i=1

logP (ti|ti−1, ti−2, . . . , t1, S) (4)

for P(T ) and P(T |S), respectively.

As in previous versions, a number of prior agents are made available (details in

3.5). These are foundation models, trained in an unsupervised fashion with teacher–

forcing [49] using SMILES strings from large public data sets of molecules. The

teacher–forcing strategy feeds the model with the actual output from the data set

(ground truth) as input during training instead of the network’s generated output.

Once trained, REINVENT4 agents acquire an understanding of the syntax of the

SMILES strings, enabling them to generate valid molecules. In practice this amounts

to updating the weights of the models to decrease the negative log-likelihood of either

Equation 3 or 4 (depending on the model type) over all molecules in the training data

set.

Because the models are trained on all input molecules in the same way, priors rep-

resent unbiased molecule generators (however, still biased due to the limited chemical

space of the training set), resulting in a theoretically uniform distribution over the

training molecules. These models possess the capability to sample molecules that goes

beyond just re-sampling the training data. For example, a prior trained on 1 million
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molecules can easily sample 100s of millions of unique, valid molecules [50]. Training

priors on multiple equivalent SMILES representations of the same molecule has been

shown to result in more expressive priors [51].

REINVENT4 supports two decoding strategies, namely multinomial sampling used

for e.g. by [22, 52] and beam search [53]. Multinomial sampling allows fast, non–

deterministic generation of compounds. At each step, a token is randomly selected

based on the probability distribution over the vocabulary. The current implementation

supports a positive temperature–like parameter K (default K = 1) used to scale the

probability distribution. When decreasing the temperature, i.e. K < 1, the distribu-

tion becomes sharper: the chance of high probability tokens being selected increases,

conversely the chance of low probability tokens being selected decreases. This results

in less randomness and so more determinism. More randomness is introduced when

the temperature is increased (K > 1) which causes the distribution to become flatter

and lower probability tokens to be selected more preferentially. Multinomial sampling

might suffer from mode collapse i.e. sampling might tend to produce a small number

of compounds. The computational complexity for multinomial sampling is O(ℓ · |V |),

where ℓ is the length of tokens and |V | is the size of the vocabulary.

In contrast, beam search is a deterministic approach that always generates unique

compounds. However, it is computationally more expensive than multinomial sampling

as it scales as O(B · ℓ · |V |), where B is the beam size. Note that for both tech-

niques the complexity of the underlying generative model impacts the performance.

This complexity arises because SMILES strings are generated iteratively by feeding

the transformer with n − 1 tokens to obtain the nth token. In fact, for multinomial

sampling, the model needs to compute the probabilities of each possible token, while

for beam search, we also need to store the B most probable SMILES subsequences.

REINVENT4 includes Mol2Mol, a conditional prior agent, as described in [54]

which allows for a systematic exploration of the chemical space. The prior was trained
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on over 200 billion pairs from Pubchem [55] for which their Tanimoto similarity, cal-

culated with ECFP4 count fingerprints, was ≥ 0.50. Furthermore, the prior training

was regularized with the ranking loss, allowing to directly link negative log-likelihood

to similarity.

2.2 Transfer Learning

Transfer Learning (TL) are methods that re–use existing knowledge to facilitate the

learning of another, related task. In machine learning this is typically applied to retrain

a large model with a small amount of data to efficiently obtain a new improved model

and can accordingly be used when only little data is available for the new task. TL

can thus be seen as fine–tuning an existing model. TL has been applied successfully

in drug discovery [56] specifically it has been shown that a focused generative model

can produce a similar fraction of active molecules as experience replay [7] (see 3.1.3

for an explanation of experience replay).

In REINVENT4, transfer learning is conceptualized as retraining of a prior model

using the same teacher–forcing strategy as in the pre–training of the prior model (see

2.1). A small, task–focused data set is chosen, for example a data set containing active

molecules for a particular drug target. TL then creates a new agent that is specifically

biased toward generating analogues to these active molecules. In this way the agent

will be able to generate relevant molecules more quickly.

2.3 Reinforcement Learning

Reinforcement Learning (RL) describes various optimization methods in machine

learning where an agent acts in an environment to learn a strategy (policy or goal). The

agent is rewarded when the action is beneficial to the goal or receives negative feed-

back when the action isn’t beneficial. For example, in generative molecular design the
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Chemical space

Prior

TL region

High-scoring region

Fig. 1: Illustration of idealized behavior of priors, transfer learning agents and rein-
forcement/staged learning agents. In all cases, the models describe the probability of
sampling a given token sequence corresponding to a specific molecule (green squares),
represented by a colored fill. The prior model is trained to increase probability over
all drug–like molecules. A transfer learning agent built from this prior increases the
likelihood on a specific region (blue, middle). In staged learning (red, right), start-
ing from the transfer learning agent, likelihood of sampling high-scoring sequences is
iteratively increased, resulting in concentration on high-scoring regions (red polygon).

goal is to drive a prior model such that the generated molecules satisfies a predefined

property profile. RL is a frequently used optimization method in drug discovery [56].

In REINVENT, RL is used to iteratively bias the molecules generated by an agent

(normally a prior or transfer learning agent) via a policy gradient scheme (Figure 1).

In a drug discovery project, the aim is typically not to create a new model but rather

to generate molecules which score highly according to the provided scoring function.

This is achieved by providing a scalar score, S ∈ [0, 1], for each token sequence T

(representing a molecule) generated in each epoch. This is used to define a so–called

augmented likelihood for each sequence as

logPaug(T ) = logPprior(T ) + σS(T ) (5)

First proposed in [19], this expression combines the reward signal with the like-

lihood of the sequence under the fixed, generalist prior model, which serves as a

regularization term to control the generation of plausible sequences from a chemistry

viewpoint. The balance between the reward and regularization is controlled with the
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scalar parameter σ ≥ 0. σ is a user–adjustable parameter and it can have a major

impact on performance [43].

In the “Difference between Augmented and Posterior” (DAP) strategy [46], the

augmented likelihood is used to define a loss for each sequence in the batch, computed

as

L(T ) = (logPaug(T )− logPagent(T ))
2

(6)

were logPagent(T ) is the likelihood of sequence (T ) under the current agent. This

loss is averaged over all molecules generated in a batch and then the current agent is

updated to reduce this loss via a stochastic gradient descent method (Section 3.1.4), i.e.

bring the likelihood of the sequences closer to logPaug(T ). The only term in 6 that is

a function network parameter is Pagent. The presence of the prior in these expressions

constrains how far the RL agent can stray from the prior, similar to proximal policy

gradient methods, except that the prior is static during the RL process.

This definition of the augmented likelihood and loss function has a few non–obvious

implications. Firstly, the form of Eq. 5 and non–negativity of the score means that

the likelihood for sequences is only increased (or unchanged) relative to the prior in

each epoch. A molecule that obtains a zero score will have a augmented likelihood

identical to that obtained under the prior model, and so low–scoring molecules have

little impact on the state of the agent, i.e. there is limited learning from negative

examples early in the run.

However, the behavior can be markedly different in the case of dynamic variation

in how the reward is computed during the run. To illustrate this, we consider a simple

experiment where we start with the REINVENT4 prior: we run 500 epochs of RL

with standard settings (σ = 128) and a scoring function that encourages generation of

extremely large molecules (1500 Da) relative to the drug–like molecules in the prior.

At the 500 epoch mark, we move to a second stage where the scoring transform is
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reversed, encouraging the generation of molecules with ≤ 500 Da molecular weight.

The agent is rapidly able to solve both tasks (Fig. 2 a and b).
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Fig. 2: Simple experiment demonstrating adaptable learning behavior starting with
the default REINVENT4 agent. 500 epochs of RL are run with a scoring function
that rewards molecular weight ≥ 1500 Da, before it is switched in a second stage that
rewards molecular weight ≤ 1500 Da, showing the score (a), molecular weight (b),
agent and prior likelihoods (c) and loss function (d) averaged over all molecules at the
end of each epoch. The loss lower bound (Eq. 7) is also shown in (d). A dashed line
indicates the change of scoring function. The run used default settings: batch size of
128 and σ = 128.

Despite learning to make large molecules that are highly unlikely under the prior

(logPprior(T ) < −75, Fig. 2 c) for 500 epochs, the agent is rapidly able to adapt

to the change in scoring function and generate small molecules again by epoch 550.

This transition period is accompanied by the agent likelihood regressing back to be

similar to the prior likelihood, before separating again. This plasticity is a capacity
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that makes these systems adaptive in various settings, for example active- [57] or

curriculum learning [58] settings.

Since Eq. 5 have values in (−∞, σ], logPaug is not guaranteed to be an obtainable

log-likelihood for the discrete distribution of sequences that can be generated by these

models (i.e. ≤ 0), particularly for high scoring sequences and large values of σ. This

is not a problem in practice, and while various other loss functions have been con-

sidered [46] (and remain available, see 3.1.1), DAP typically provides the most rapid

learning and serves as a robust general purpose method. The combination of Eqs. 5

and 6 means that the loss for any sequence is lower-bounded by

L(T ) ≥ max(0, logPprior(T ) + σS(T ))2 (7)

This, combined with the observation that the loss is computed with respect to a

new batch of ideas for each epoch, can lead to counter-intuitive behaviour where the

loss function can increase during RL as the score increases (Fig. 2 d). However, this

is the expected behaviour as the loss is reduced on the previous batch of molecules,

which are not re–evaluated but the agent in the next epoch. Generally, the loss lower

bound is highest for high scoring batches that are also likely under the prior, as in the

case of the molecules with drug-like molecular weight generated in the second part of

the experiment.

3 Methods

3.1 Reinforcement Learning

Reinforcement Learning (RL) is the main molecule optimization method in REIN-

VENT. RL has been re–framed in the new version into staged learning (see 3.2.4)

which allows multiple successive and consecutive RL runs with varying parameters.
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Each stage will write out a CSV file which contains all information about nega-

tive log likelihoods, total and individual component scores and the sampled SMILES

strings. The CSV file is created in real time i.e. every RL epoch is immediately writ-

ten to disk (the operating system may impose buffering such that the file is written

in chunks). This implies that the data in the CSV is unfiltered meaning that invalid

SMILES and low scoring compounds will be logged also. It is the user’s responsibility

to post–process this file in a meaningful way.

3.1.1 RL Learning Strategy

Previously, four different RL learning strategies in REINVENT where described [46]. It

was found that DAP displayed the best learning rate while the others showed very little

or no improvement. In version 4 we still offer all four functions but we recommend the

DAP for practical use. The other three are still available but are deprecated meaning

that they might be removed in future releases.

3.1.2 Diversity Filter

The diversity filter is, as its name suggests, a mechanism to promote molecular diver-

sity during an RL run. This is primarily based on scaffold diversity using a memory

with a user adjustable size. The memory is organized into “buckets” which hold a given

scaffold. When the bucket is full every further occurrence of that scaffold enforces a

zero score for the whole molecule. Scaffolds can be computed as Murcko type scaf-

folds, “topologically” which means the scaffold is determined disregarding elements

and bond types (unlabelled graph) and scaffold similarity which stores the most simi-

lar scaffolds found so far. In the current implementation all scaffold filters also contain

a global SMILES string memory of size 1. This means that every further occurrence of

the same canonical SMILES string is scored with zero. This happens both locally i.e.

within a batch and globally i.e. over the whole run. This implies that SMILES are not

de–duplicated in advance conforming with previous versions. Otherwise the behaviour
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would be altered, see Eq. 6 where duplicates have zero score but their negative log

likelihoods are still present.

There is one special “filter” which only penalizes the occurrence of the same

molecule and is not part of any of the scaffold filters above. This penalty is recom-

mended for the Mol2Mol generator. The user can adjust the penalizing factor to be

between 0 and 1.

3.1.3 Inception

Inception, also known as experience replay, can have a profound impact on the learn-

ing rate and sampling of desired molecules [7, 59] (see also Supplemental material for

a demonstration). In REINVENT it is a mechanism to memorize the highest scoring

molecules and use those scores to contribute to the loss in addition to the loss com-

puted from the scores of the currently sampled batch. This means that the total loss

is calculated from two parts: batch loss and inception loss. The number of molecules

contributing to the inception loss can be adjusted by the user as well as the number

of randomly sampled molecules from the memory to be used in computing the incep-

tion loss. Currently, this memory is only available for the original Reinvent molecular

generator (see below).

The inception memory can be seeded with SMILES strings provided by the user

to guide the RL into a desired part of the chemical space. It should be noted, that

if these molecules do not score highly with the currently chosen scoring function, the

molecules will be removed from the memory possibly very early on in the run. As

the RL run progresses and generates better scoring molecules in each successive step

this is generally to be expected. This also means that, depending on the size of the

inception memory and the number of sampled SMILES strings from the memory, the

total loss and thus eventually the generation of new molecules starts to be dominated

by the highest scoring compounds in the memory. The replay memory will either not

at all or only marginally be updated in longer RL runs.
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3.1.4 Other Parameters

The user can adjust the batch size which is the number of SMILES strings sampled

in each step. While this parameter can be changed to influence the learning rate in an

RL run it should be noted that the batch size will also influence the convergence of

the stochastic gradient algorithm (Adam) [60, 61].

Randomizing SMILES can be switched on benefiting LibInvent and LinkInvent

runs where the priors were trained with randomized SMILES to improve generalizabil-

ity of the sampled chemical space and prevent overfitting [51]. Randomizing SMILES

is a form of data augmentation which can help to build robust models with smaller

data sets [62].

3.2 Run Modes

REINVENT4 supports various “run modes” which are briefly described here. All

run modes can either run on a GPU or a CPU. TensorBoard output is written for

transfer and reinforcement learning, respectively. Figure 3 summarizes the basic flow of

information in REINVENT4. Input configuration file examples in the TOML format

are listed in the Supplementary material.

3.2.1 Scoring

This run mode passes input SMILES strings to the scoring subsystem (see 3.4) and

returns the results in a CSV file. The CSV file contains columns for the SMILES

strings, the total score and each individual component score both in “raw” (unmodified

i.e. not transformed) and transformed form. Duplicate input SMILES strings will not

be removed thus the CSV file may contain identical rows. An example of an input file

can be found in the Listing S6.
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RL/CL

TL

Sampling

Scoring

TOML/JSON (SMILES)

Generator 
Model

Scoring 
subsystem

SMILES, scores, NLL, etc.

Reinvent
Atom-by-atom 
genera�on

Libinvent
Library design & 
scaffold decora�on

Linkinvent
Fragment linking &
scaffold hopping

Mol2Mol
Transformer based
molecule op�miza�on

QSAR

Generators Scoring

Fig. 3: Information flow in REINVENT4 for all run modes (green boxes) depicted
in the left row. Also shown are the supported generators and the scoring subsystem.
A input configuration file in TOML or JSON format controls all aspects of the soft-
ware. The configuration file may contain “seed” SMILES for the Lib/Linkinvent and
Mol2Mol2 generators. Input SMILES strings are needed for staged learning, TL and
scoring. NLL is the negative log–likelihood as defined in Eqs. 3 and 4.

3.2.2 Sampling

This run mode generates molecules given a model pruduced by either TL or RL. No

input SMILES are needed for Reinvent, a scaffold is needed for Libinvent, two warheads

for Linkinvent and an input molecule for Mol2Mol. The output is a CSV file contain-

ing the sampled SMILES, the input or fragment SMILES (where applicable) and the

negative log likelihood (which is a positive mangitude) for the sampled SMILES. Out-

put SMILES will be canonicalized and duplicates can be removed. Mol2Mol supports

either multinomial sampling (with temperature) or beam search.

3.2.3 Transfer Learning (TL)

TL optimizes a more general model to generate molecules that are closer to a defined

set of input molecules. The user provides a prior and a SMILES file e.g. a chemical

series. TL will compute the negative log likelihood from the molecules and computes
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the loss from the resulting mean negative log likelihood over all molecules. This will

drive the current prior towards a model which is increasingly closer to the provided

molecules.

As this is prone to overfitting (the model will start to generate molecules identical

to the input SMILES strings) a validation set of SMILES can be provided which

enables the user to monitor the validation loss. Training/validation set split is currently

the responsibility of the user. The output is a new model file which can be used for

RL or sampling.

The user can set the desired number of epochs, how often the current state of the

model should be written out and the batch size. Mol2Mol allows in addition to set the

similarity type (see Table 4) and its upper and lower threshold.

3.2.4 Staged Learning

This is basically curriculum learning [58] (CL) which in REINVENT4 is implemented

as a multi–stage RL. The main purpose is to allow the user to optimize a prior model

conditioned on a calculated target profile by varying the scoring function in stages.

Typically this would be used to gradually “phase–in” computationally more expensive

scoring functions e.g. before docking is enabled it may make sense to first filter the

molecules with custom alerts and scoring functions that assess the drug–likeness of

the generated molecules. Custom alerts are a set of SMARTS patterns of unwanted

chemistries.

Multiple stages can be provided at once (automatic CL). After each stage a check-

point file is written to disk which can be used for the next stage (manual CL). A

stage terminates if the supplied maximum score or the maximum number of steps is

reached. In the latter case all stages will be terminated.

Staged learning requires both a prior and an agent model. The prior is only being

used as a reference, see discussion in 2.1. The agent is the model that is being trained

in the run. At the beginning of a staged learning run prior and agent will typically be
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the same model file. When a run terminates, either because the termination criterion

has been reached or the user terminates the run explicitly (Ctrl–C) a checkpoint file

representing the current state of the agent will be written to disk. This checkpoint can

be reused as the agent later.

Just as for sampling the user needs to supply a file with a molecule or a fragment

SMILES string depending on the desired generator. This is not needed for Rein-

vent which constructs molecules from scratch. Mol2mol allows both beam search and

multinomial sampling strategies.

The user can set the batch size and whether input SMILES should be randomized

or generated sequences should be unique (this form of de–duplication is a feature

from previous versions of REINVENT and is kept for backward compatibility). The

available learning strategies (explained in 3.1.1) can be tuned with σ to control the

contribution of the total scoring function to the augmented log-likelihood, see eq. 6,

and the learning rate. Diversity filter and inception are both optional.

All scaffold diversity filters need a parameter for the size of each scaffold bucket.

Each molecular SMILES string is stored in a single memory. Both memories are subject

to a minimum score parameter that is only if the total score exceeds this value scaffolds

and molecules are stored. A minimum Dice similarity is needed for the similar scaffold

filter. A penalty multiplier is used for penalizing the total score of a SMILES string

in the penalize same SMILES string filter.

Inception may be seeded optionally with a list of SMILES strings, the size of

the memory and how many random samples should be included in each step can be

adjusted.

For each stage a scoring profile can be defined which can also be read in from a

separate file for easier reuse. The supported formats are TOML and JSON. The stage

is terminated either when a maximum score threshold is exceeded or the maximum

number of steps is reached. In the former case the run proceeds to the next stage (if
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present). In the latter case the whole run is terminated. The rationale is that the user

then inspects if the run should proceed or not because not reaching the score threshold

may be a sign that there is a problem with that stage. The user can also enforce a

minimum number of steps before the termination criterion is checked.

The results are written into a CSV file similar to the scoring run mode but one file

is created for each stage. The user can define a prefix for the CSV file name that is then

appended with a number for the current stage. The CSV file contains columns for the

negative log likelihoods for prior, agent and the augmented likelihood (eq. 6). Further

columns are for the generated SMILES string, the total and individual component

scores (both raw and transformed) and a final column records the current step number

(epoch).

3.3 Molecule Generators

REINVENT4 supports several molecule generators which will be briefly describe here,

see Figure 4. A generator is a fundamental algorithm which creates new molecules

considering certain constraints. The project name of the generator as described in

previous publications will be given in parentheses.

1. De novo design [19, 20]. This unconstrained and unrestrained generator builds

molecules in sequence atom–by–atom using an RNN. This is the classical de novo

algorithm described in the very first publication of REINVENT [19]. (Reinvent)

2. R–group replacement and library design [46]. A scaffold is supplied to the RNN

based generator serving as a template and constraint in building the new molecule.

The generator will decorate this scaffold with suitable R–groups. Up to four attach-

ment points are supported. Naturally this generator can also be used to create AI

guided libraries. (Libinvent)

3. Fragment linking and scaffold hopping [47]. Two “warheads” are supplied to the

RNN based generator as constraints. The generator will create a suitable linker
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Fragment linking & scaffold hopping

REINVENT 4

Generators

Unconstrained

(no input structures)

Reinvent

Library design & scaffold decoration

Molecule optimization

LibinventLinkinvent

Mol2Mol

Fig. 4: The four types of molecular generators in REINVENT4 illustrating how they
work. Reinvent creates new molecules de novo i.e. from scratch, Libinvent decorates a
scaffold, Linkinvent identifies a linker between two fragments and Mol2Mol optimizes
molecules within a user defined similarity.

joining the two warheads. Generally, the linker can be any type of scaffold (subject

to the training set of the prior). (Linkinvent)

4. Molecular optimization [22, 52]. A molecule is supplied to the generator as restraint.

The generator will find a second molecule within a defined similarity. Depending on

the similarity radius the molecule will be relatively similar to the supplied molecule

but, importantly, the scaffold can change within the limits of the given similarity.

(Mol2Mol)

3.4 Scoring Subsystem

Reinforcement learning is an optimization algorithm in machine learning which

rewards a desired behaviour. In this context it means that a molecule is optimized with

respect to a user defined aggregation of scoring functions which is fed into eq. 6. REIN-

VENT4 supports an extensive array of scoring functions as summarized in table 2.

Most scoring functions have multiple, so–called “endpoints”. This can be used for

instance to provide several SMARTS patterns e.g. to GroupCount or to compute both
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inertial moment ratios in the PMI function. Multi–task models are another natural fit

for this mechanism allowing the choice of a desired subset.

Scores for each SMILES string will be cached on a per–component basis to avoid

the re–computation of scores. It is worth noting that custom alerts and reaction filter

act as a global filter and are not components. What this means is that, effectively, the

total score will be multiplied with the outcome of the filter, either 1 for passed or 0

for not passed. For efficiency reasons this also implies that SMILES that do not pass

those filters will not be subjected to score evaluation and consequently all component

scores will be zero. Furthermore, there is currently one penalty component: matching

substructure which globally applies the penalty factor to the final total score.

Many of the scoring functions cover various physicochemical properties from the

RDKit toolkit including Lipinski’s rule–of–five [63] and QED [64]. Special fragment

versions of these are available for Linkinvent so to be able to separately score the

linker in addition to length scores. Docking is handled with the generic interface Dock-

Stream [65] that supports AutoDock Vina [66, 67], rDock [68], Hybrid [69], Glide [70]

and GOLD [71]. Quantitative Structure-Activity Relationship (QSAR) models are

handled with Qptuna (to be published). ChemProp [72, 73] provides an alternative

using directed message-passing neural networks (D-MPNN) for model building. Gen-

eral workflows can still be created with ICOLOS [74] but it will be superseded with the

newer workflow manager Maize (to be published). There are also generic interfaces for

a REST service calling external processes which allows programming entirely arbitrary

scoring components. Shape similarity can be computed with ROCS [75]. Estimation

of synthesizability can be carried out with the SA score [76]. Matched molecular pairs

can be used via mmpdb [77].

Each scoring function result can be arbitrarily modified with a transformation

function to compress scores to between 0 and 1. A list of transforms is given in table 3.

A fixed weight for each endpoint determines the importance of this component.
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All components of a scoring function are finally aggregated into a single total score

(a priori scalar objective [78, 79]). At the moment aggregation is done either via a

weighted arithmetic mean or a weighted geometric mean.

The scoring subsystem implements a simple plug–in mechanism (as Python names-

pace packages) which allows easy addition of scoring components. Basically, new code

only needs to be dropped into an existing plugin directory following a code template,

see SI for details. None of the original REINVENT4 code would need to be changed.

3.5 Priors

REINVENT4 provides a range of off-the-shelf ready–made priors. These are pre–

trained on ChEMBL [80] (except of the Mol2Mol prior which is trained on PubChem)

and specific to each generator. Table 4 summarizes all currently available priors. List-

ing S10 lists all recognized tokens of the priors. All priors support the same atoms

(elements). The main differences between the priors are ring sizes and that Mol2Mol

supports and generates chiral centers at C and (quaternary) N and double bond

isomers.

3.6 Software

The software is available from https://github.com/MolecularAI/REINVENT4 and

released under the permissive Apache 2.0 license. REINVENT4 is being developed

with Python 3. The currently required minimum version is 3.10. We use the machine

learning framework Pytorch in version 1.x but initial tests have shown that the newer

version 2.0 works as well. For chemoinformatic manipulations we use RDKit in ver-

sion 2022.9. In fact, any recent version of RDKit should be sufficient. For visualisation

REINVENT supports TensorBoard [81] which logs generated molecules and various

statistics from RL and sampling runs as easy to interpret graphs. REINVENT4 is

not principally backward compatible with previous versions because the layout of the

input configuration has changed. It is still possible to use JSON as input file format
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Table 2: Summary of REINVENT4 scoring functions.

Component name1 description

Qed QED drug-likeness score (RDKit)
SlogP Crippen SLogP (RDKit)
MolecularWeight molecular weight (RDKit)
TPSA topological polar surface area (RDKit)
GraphLength topological distance (RDKit)
NumAtomStereoCenters number of stereo centers (RDKit)
HBondAcceptors number of hydrogen bond acceptors (RDKit)
HBondDonors number of hydrogen bond donors (RDKit)
NumRotBond number of rotatable bonds (RDKit)
Csp3 fraction of sp3 carbons (RDKit)
numsp number of sp hybridized atoms (RDKit)
numsp2 number of sp2 hybridized atoms (RDKit)
numsp3 number of sp3 hybridized atoms (RDKit)
NumHeavyAtoms number of heavy atoms (RDKit)
NumHeteroAtoms number of hetero atoms (RDKit)
NumRings number of total rings (RDKit)
NumAromaticRings number of aromatic rings (RDKit)
NumAliphaticRings number of aliphatic rings (RDKit)
GroupCount † count how many times the SMARTS pattern is found (RDKit)
PMI † principal moment of inertia to assess dimensionality (RDKit)
TanimotoDistance Tanimoto distance using the Morgan fingerprint (RDKit)
MatchingSubstructure penalty applied to final score when SMARTS pattern is found (RDKit)
ReactionFilter † reaction filter for Libinvent, applied to total score (RDKit)
CustomAlerts SMARTS substructure filter applied to the total score (RDKit)
DockStream docking interface [65] (see text for supported docking software)
Icolos generic interface to Icolos workflow manager [74]
Maize † generic interface to Maize workflow manager2 (replaces Icolos)
Qptuna † QSAR models with Qptuna3

ChemProp † ChemProp D–MPNN models [72, 73]
MMP † matched molecular pairs [77]
ROCSSimilarity ROCS [75]
SAScore † synthesizability score [76]
ExternalProcess † generic component to run an external process for scoring
REST generic REST interface

1The name of the scoring component in the TOML/JSON configuration file.
2https://github.com/MolecularAI/maize
3To be published
†New in REINVENT4

but version 4 now also supports TOML (https://toml.io/) which tends to be more

user friendly. The configuration file controls almost all aspects of REINVENT4 (see

SI for example inputs).

Just like in previous versions REINVENT4 is a command line tool (see 3.7). A few

command line options are available (see --help for details), most notably are the ones
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Table 3: Summary of REINVENT4 transforms.

Transform description

sigmoid S–shaped logistic function
reverse sigmoid reverse sigmoid function
double sigmoid two–sided sigmoid function
right step Heaviside step function, can be shifted along x
left step left–sided step function
step two–sided step function
value mapping maps a categorical value (string) to a user–supplied number

Table 4: Summary of REINVENT4 priors. Mol2Mol comes with six
different priors with pairs trained on different types of similarity.

Generator Dataset Notes

Reinvent ChEMBL 25 published in Ref. [19, 20]
Libinvent ChEMBL 27 published in Ref. [46]
Linkinvent ChEMBL 27 published in Ref. [47]
Mol2Mol ChEMBL 28 published in Ref. [22]

Similarity1

Medium similarity2

High similarity3

Scaffold4

Generic scaffold5

Matched molecular pairs6

Mol2Mol Pubchem7 published in Ref. [54]
Similarity8

1Tanimoto similarity ≥ 0.5.
20.5 ≤ Tanimoto similarity < 0.7.
3Tanimoto similarity ≥ 0.7.
4Molecules sharing the same Murcko scaffold (RDKit).
5Molecules sharing the same unlabelled Murcko scaffold.
6Matched molecular pairs have been extracted with mmpdb [77].
7Pubchem was collected in December 2021.
8Tanimoto similarity ≥ 0.5 on ECFP4 fingerprints with counts.

for writing logging information to a file (stderr by default) and the choice of format

for the input configuration file (TOML by default or JSON). The logging information

shows timestamped information about software versions used, parameter settings and

setup as well as some basic statistics of the run including memory usage. The output

will depend on the particular run mode chosen, see 3.2. The random seed can be set for

PyTorch and Numpy (efficient vector and matrix handling) to aid in reproducibility.
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3.7 Installation

Detailed installation instructions are provided in the repository in the file README.md.

In short, the user needs to create a basic conda environment. This environment is

then populated with REINVENT4 and dependent packages using pip. Versioning of

dependencies is controlled through a lock file to guarantee a functioning environment

out–of–the–box. The installation will create an entry point into the main script of

REINVENT and generate a simple wrapper that can be called on the command line

as reinvent.

3.8 Documentation

The new TOML format is described in several markdown documents located in

configs/toml. Details are there given on the various option for each run mode and

generator settings. The Supplement provides annotated listings which can also be

found in the directory.

4 Case Study

We provide a simple example to demonstrate some of the key functionalities in REIN-

VENT4. To this end we describe a hypothetical virtual screening exercise to find novel

Phosphoinositide-dependent kinase-1 (PDK1) inhibitors. A more detailed study has

been published previously [58] which itself is based on the original structure–based

design work of Angiolini et al. [82]. In contrast to our previous experiment, we con-

sider a simple structure–based design setting where we seek to identify putative PDK1

binders. We define a simple target profile consisting of a docking component and the

QED score [64] to approximate drug–like properties. The generated compounds where

docked without constraints to PDB crystal structure 2XCH using DockStream [65]

with Ligprep and Glide [70]. Here, we arbitrarily consider any molecule generated with

a docking score ≤ −8 kcal/mol and QED ≥ 0.7 as a favourable compound.
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Starting from the standard Reinvent prior, we run 50 epochs of staged learning

with a batch size of 128 and the two scoring components. Input configurations are

provided in the SI (Listings S8 and S9) and the required grid and files for docking are

available in the electronic SI.

Despite the rather short RL run, we are able to generate 119 hits from 6400

(128 × 50) total generated molecules for a hit rate of 1.9% (Fig. 5 a). However, the

productivity of RL agents increases with epoch (see for example Ref [57]), being 2.8%

in the last 20 epochs. These hits are spread across 103 generic Bemis–Murcko scaf-

folds [83], indicating high diversity (Fig. 5 b and c). Remarkably, the top scoring hit is

a pyrroloquinazoline that is extremely similar to the native pyrazoloquinazoline core.

This generated molecule is predicted to adopt an identical binding pose, including the

hinge interaction ALA 162 and an amide that interacts with LYS 111, seen in the

native structure (Fig. 5 d).

In order to demonstrate the potential advantages of TL, we obtained a list of 315

congeneric pyridinon–bearing compounds shown to be active against PDK1 as per

PubChem Assay AID1798002. We selected this set because it is the largest (in terms of

number of compounds tested in a single assay) reported in PubChem against PDK1.

A more careful study could consider multiple assays or more intentionally curated

relevant chemistry.

After running 10 epochs of TL we repeated the structure–based design exercise

starting with this agent. Although the compounds in the series are not closely related

to the native pyrazoloquinazoline inhibitor the TL agent is nearly twice as productive

as the baseline RL agent over 50 epochs, finding 222 hits with a 3.5% hit rate (Fig. 5 a).

The diversity is high (Fig. 5 b and c) with 176 unique generic scaffolds identified. The

pose corresponding to the best docking score contains an imidazole core that makes

the same interaction with LYS 111 as the native ligand, and also positions a basic

nitrogen close to ASN 210 and GLU 208 which makes it a plausible design hypothesis.
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Fig. 5: Demonstration of a simple structure–based drug design in REINVENT4 using
a crystal structure for PDK1 (PDB ID 2XCH). The cumulative number of hits iden-
tified over 50 epochs are shown (a) for reinforcement learning starting from the prior
(RL, black) or from a transfer learning agent (TL-RL, red). The diversity of the hits
generated is compared using principal component analysis (PCA) based on 2D RDKit
descriptors (b) and by counting the number of distinct hit and not–hit generic scaffolds
(c). For the PCA plot, we show hits as colored circles and include the convex hulls
of all generated compounds as polygons (b). (d) The predicted binding pose in the
PDK1 binding site (based on PDB 2XCH) for the best scoring idea from each method
are shown with a stick representation, contrasted with the native ligand in cyan. The
docking scores for the poses are as follows: −10.1 kcal/mol (RL) and −10.1 kcal/-
mol (TL-RL). The protein is represented as a cartoon with key binding site residues
(ALA 162/green, LYS 111/blue, GLU166/red, GLU209/red, ASN 210/blue) shown
in a stick representation, with a transparent binding site surface overlaid. 2D inserts
show the structure of the ligands. Hits are defined as molecules with a docking score
≤ −8 kcal/mol and QED ≥ 0.7.

However, we observe the hinge interaction with ALA 162 is not complete in this case

due to a missing donor (Fig. 5 d). This could be addressed through the addition of

constraints in the docking grid as was done in [58].
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5 Conclusion

The technical details and basic usage of the new version 4 of the AI molecular

design software REINVENT have been described. The tool is both a continuation

of previous releases and a major update in functionality including staged learning,

transformer models, consistent framework of optimization algorithms and a reworked

scoring subsystem fit for future challenges. We hope that the AI in chemistry commu-

nity will greatly benefit from the release of a reference implementation of a molecular

generation software including releasing the software as open–source and making all

documentation available to guide the user. We hope that the release will contribute to

increased transparency around AI–driven molecular design and the released software

be used as a reference implementation for educational purposes as well as spur fur-

ther innovation in generative AI for molecular design. The software is available from

https://github.com/MolecularAI/REINVENT4.

Supplementary information. Additional File 1: Additional validation results,

input file examples, supported tokens. Additional File 2: Docking grid used in the

case study Additional File 3: DockStream configuration file used in the case study

Additional File 4: SMILES used for transfer learning in the case study
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