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ABSTRACT: Association reactions among small molecules known to exist in the interstellar medium are 

interesting for theories on the origins of life. A screening of thousands of reactions, using machine learning 

estimates of energy barriers, identified the reaction of CH2 with HCNO and HNCO as particularly interesting. We 

report reaction mechanisms, including energies of transition states and products, computed with density functional 

theory and coupled cluster theory. The lowest energy pathway on the triplet ground state surface of CH2 + HNCO 

has a barrier of 11 kcal/mol and produces CH2(CO)NH. Singlet CH2 is 9 kcal/mol above the ground state. It can 

react with HCNO or HNCO without barrier giving four products: CH2NCHO, N-methyleneformamide, the 

thermodynamically favoured product; NHCHCHO; NHCHOCH; and (CH2OC)NH, oxiran-2-ylazanide. If triplet 

to singlet crossing occurs, an upper bound of roughly 10 kcal/mol is implied for the barrier to formation of these 

four products. 

 

Keywords: Interstellar medium • Reaction mechanism • Prebiotic chemistry • Methylene • Formamide • Imine 
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1. Introduction 

The discovery of molecules in space and the study of their reactivity is of interest for their implications on the 

possible origins of life. The increasing number of organic molecules discovered through astronomical observations 

[1] suggests that prebiotic molecules may have formed in space and reached early Earth and other planets [2]. The 

spectroscopic signatures of more than 250 molecular species have been detected in the interstellar medium (ISM) 

and in circumstellar envelopes (CSE) [1,3]. It is difficult to establish the evidence for a molecular species in the 

ISM. It is therefore plausible that many more molecules present in the ISM are yet to be discovered. Recent 

observation of spectral lines assigned to the amino acid tryptophan in the interstellar gas of star-forming regions 

[4] points to the possibility of relatively complex and biologically important molecules. 

Most molecules that have been observed in space have ten or fewer atoms. The mechanism for the formation 

of bigger molecules is not well known. Association reactions may take place in the gas phase or at the surface of 

carbonaceous grains [5]. These grains could be covered with ice and may catalyze some reactions. Given the low 

temperatures in the ISM (typically between 10 and 150 K) [6], it is likely that only reactions with a very low (or 

zero) energy barrier occur with a significant rate. Computations can guide the discovery of molecules and reactions 

in space. With quantum chemical methods, one can get transition states and compute energy barriers with an 

accuracy on the order of 1 kcal/mol [7]. Bimolecular reactions between the molecular species identified in the ISM 

are natural targets for this kind of study. But there are thousands of possibilities and accurate calculations for all of 

them is currently impossible. 

The strategy adopted in the present work starts by considering all reactions with reactant molecules A and B 

chosen among those of Table 1. This makes 2,628 combinations. The molecules in Table 1 have all been observed 

in the ISM or CSE and contain no atom other than H, C, N and O. We consider association reactions A + B → P in 

which the product P is in a molecular database of 10,306 molecules taken from the reference [8]. This gives a set 
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of 136,081 chemical reactions. Then we use criteria to eliminate the vast majority of reactions: (1) the estimated 

energy barrier must be zero or very small; (2) the product molecule P should contain at least one atom each of H, 

C, N and O; (3) the proportion of the four elements (H:C:N:O) and functional groups in P should resemble those 

commonly found in molecules that form the basis of life. Finally, a very small subset of the reactions that are best 

according to these criteria are studied by methods of quantum chemistry. 

Panda, Chiranjibi, Awasthi, and Anoop [9] studied the reaction mechanisms of HCN + H2CO and HNC + H2CO 

by density functional theory (DFT) methods and coupled cluster (CC) method and found barriers of reactions of 32 

to 66 kcal/mol giving oxiran-2-ylazanide and (Z)-imine acetaldehyde as the main products. Several experimental 

and theoretical studies of reactions of radicals with HCNO have been conducted [10a−10i]. Theoretical studies of 

the reaction between NH and HCNO have been performed by a combination of DFT and quadratic configuration 

interaction (QCI) methods giving a reaction barrier of 2.9 kcal/mol for the kinetically favoured products, HCN and 

HON [10a]. Another study reported DFT, CC and QCI calculations predicting a zero barrier to the most feasible 

products, HCN and HNO [10b]. An experimental kinetics study of OH + HCNO reaction was conducted by Feng, 

Meyer, and Hershberger [10e] producing two major kinds of products CO + H2NO and HNO + HCO. A 

computational study of the same reaction by DFT and CC methods gave CO + NHOH as mainly favoured products 

with a zero barrier [10d]. The product channels of CH3 + HCNO have been theoretically studied by DFT and CC 

methods: the favoured route produced Z and E-HC(CH3)NO with a reaction barrier of only 4 kcal/mol [10f]. There 

have been several experimental and theoretical studies of reactions of radicals and HNCO [10j−10n], including 

C3H3 + HNCO [10j], OH + HNCO [10k], and CH2CH + HNCO [10m]. A theoretical study on the hydrogen transfer 

path of CH2 + HNCO reaction has also been reported [10n].  
  

Table 1. Molecule list of the ISM and CSE present in our molecule databasea 

Molecule 

Formula  

SMILES References Molecule 

Formula  

SMILES References 

CO [C-]#[O+] 11, 12 CH3NCO O=C=NC 47 

H2 [HH] 13 HOCH2CN OCC#N 48 

N2 N#N 14 H3CNH2 CN 49 

H2C [CH2] 15 CH2CHCN N#CC=C 23, 39 

HCN C#N 11, 16, 17 HCCCHNH C#CC=N 50 

CO2 C(=O)=O 18 CH3CHO O=CC 11, 51 

H2O O 19 H2CHCOH OC=C 52 

N2O N#[N+][O-] 20 c-C2H4O O1CC1 51 

H2CO C=O 21 CH3C2H CC#C 16 

C2H2 C#C 22 NH2CH2CN NCC#N 53 

HNCO N=C=O 23 (NH2)2CO C(=O)(N)N 54 

HCNO [O-][N+]#C 24 CH2CHCHO O=CC=C 45 

HCCN N#C[CH+] 25 HCOOCH3 O=COC 23, 37 

CNCN [C-]#[N+]C#N 26 CH3COOH CC(O)=O 55 

HOCN OC#N 27 CH3CHNH CC=N 56 

NH3 N 11, 28 HC3H2CN C#CCC#N 57 

CH4 C 29 H3CC2CN CC#CC#N 58 

H2CNH C=N 30 CH2CCHCN C=C=CC#N 45, 58 

H2C2O C=C=O 23 C2H3NH2 C=CN 59 

HNCNH C(=N)=N 31 CH3NHCHO CNC=O 33 

NH2CN N#CN 32, 33 CH3CONH2 O=C(N)C 33, 42, 45  

HCC-NC C#C[N+]#[C-] 34 CH3OCH3 COC 60 

HC(O)CN C(=O)C#N 35 CH3CH2OH OCC 61 

HCOOH C(=O)O 36, 37 CH3CH2CN CCC#N 11, 23, 39 

HC3N C#CC#N 11, 16, 38 CH3CHCH2 C=CC 62 

CH3OH CO 23 CH3C4H CC#CC#C 63 

CH3CN CC#N 23, 39 CH3CHCH2O CC1CO1 64 
C2H4 C=C 40 CH3CH2CHO CCC=O 45 

HC2CHO C#CC=O 41 (CH3)2CO CC(=O)C 65 

CH3NC [C-]#[N+]C 39 NH2CH2CH2OH NCCO 66 

HC4N [H]C#C[C]C#N 11 CH3COOCH3 O=C(OC)C 67 

HCONH2 O=CN 42 C6H6 c1ccccc1 43 
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l-H2C4 C#CC#C 11, 43 (CH3)2CHCN CC(C)C#N 68 

E-HNCHCN [H]/N=C(C#N)\[H] 44 C3H7CN CCCC#N 69 

CH2CNH C=C=N 45 C2H5NH2 CCN 59 

c-H2C3O C1=C(=O)=C1 46 C2H5OCH3 COCC 70 
aThe list of 72 molecules believed to be present in the ISM or CSE [1,11−70] that are also in our database [71]. The SMILES representations 

[72] and references are shown for each molecule.

Redondo et al. recently published high-level theoretical spectroscopic constants for hydroxy-azirine [73] and 

imine acetaldehyde [74]. These molecules were proposed as potential interstellar prebiotic molecules, but searches 

for their spectroscopic signature in the ISM have failed so far. Fourré et al. [75] suggested using the minimum 

energy principle (MEP) for screening potential ISM molecules. Interestingly, the screening of reactions with 

estimated energy barriers (present work) produced some of the same molecules proposed in reference [75].  

The dataset of molecules and reactions and the screening procedure are described in detail in section 2. The 

main result of the screening is the identification of CH2 + HCNO/HNCO as a particularly promising system for 

study by accurate electronic structure calculation. The quantum chemical methods used to study them are described 

in section 3. Section 4 presents the main results of the study: a set of reaction mechanisms including transition 

states with energy barriers calculated with an accurate CCSD(T) method [76].  

2. Chemical Reactions Dataset and Screening Procedure 

One of the possible mechanisms for reactions in the ISM is gas-phase radiative association [5]: A + B ⇌ AB* 

→ AB + hν. The temperature in the ISM varies roughly between 10 and 100 K and may exceed 100 K in “protostellar 

cores”. Therefore, reactions with low or zero energy barriers are much more likely to occur than those with high 

barriers. The formation of a relatively stable and long-lived reaction complex AB* is also favourable [5]. Another 

important mechanism for ISM chemistry is the reaction of A and B at the surface of dust grains. The nature of these 

grains, and the mechanisms of reactions on them, are not well known and are difficult to model theoretically. For 

simplicity we assume that reactions with the smallest gas-phase energy barriers are also among those most likely 

to occur at the surface of grains. 

 

Scheme 1. The five reactions of CH2 with HCNO and HNCO and their products. 
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Fig. 1. Singlet and triplet potential energy diagrams showing the energies of reactant complexes (RCs), intermediates of reaction (IMs), 

transition states (TSs) and products (Ps). The relative energies calculated by CCSD(T) and DFT are shown, with DFT in parentheses. 
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A Kernel Ridge Regression (KRR) model described elsewhere [71] was used to estimate gas-phase reactions 

energy barriers. The procedure takes Simplified Molecular Input Line Entry Systems (SMILES) representations of 

molecules [72], converts them to 3D structures with Open Babel [77], and uses nuclear coordinates of reactants and 

products to calculate 300 features of a reaction. The features, which depend on interatomic distances and simple 

atomic properties like electronegativity and hardness [71], are fed to a KRR procedure with a Laplacian kernel. The 

KRR model was trained and tested on the dataset of Grambow et al. [8] which has 11,730 elementary reactions 

[71] and energy barriers computed at the ωB97XD level of theory [78], with molecular species made of the elements 

H, C, N and O and no more than seven non-hydrogen atoms [71]. There is a total of 10,306 molecules in this dataset 

[8,71] of which 72, those in Table 1, were observed in the ISM or CSE [1,11−70]. We limit the present study to 

association reactions A + B → P where A and B are from Table 1 because those are plausible ISM reactions and, for 

convenience, to cases where P is among the 10,306 molecules of the dataset [8,71]. The KRR model is 

computationally efficient and requires only twenty minutes for generating barrier estimates for 136,081 reactions 

with molecules A, B, and P that meet the above criteria. Although the KRR model was trained on elementary 

reactions it is used here to predict the barrier of the rate limiting step of reactions that may be elementary or complex. 

Despite this limitation, the KRR estimates provide a useful ranking of reactions in increasing order of estimated 

barriers. In particular, 2,214 reactions were predicted to have zero barriers or small barriers less than 6 kcal/mol (a 

root-mean square error of KRR [71]). 

We apply a second round of screening to the 2,214 reactions with small energy barriers to bias for products (Ps) 

that look promising building blocks for larger molecules and prebiotic chemistry. For this we use two criteria: (i) 

there should be at least one atom of each element (H, C, N, O); (ii) the degree of unsaturation of the product divided 

by the number of non-H atoms nu/nx should fall within a range of [0.05, 0.50] so that it is similar to what is found 

in amino acids [79], mono and disaccharides [80], alpha-hydroxy acids [81], and many drug-like molecules [82]. 
Only a few reactions passed both rounds of screening.  

Finally, five reactions stand out because they all involve the reaction of methylene (CH2) with fulminic acid 

(HCNO) or its isomer isocyanic acid (HNCO). These five reactions are shown in Scheme 1. The products of 

reactions exhibit an interesting variety of functional groups for such a small set.  

3. Computational Details 

All calculations were done with the Gaussian16 software [83] using GaussView [84] and Avogadro [85] as 

interfaces. The geometries of reactants, products, and intermediates of reactions were optimized by DFT with the 

ωB97XD method for exchange-correlation and dispersion corrections [78] and a def2-TZVP basis set [86]. The 

search for transition states (TSs) was also done at the ωB97XD/def2-TZVP level of theory [78,86]. All stationary 

points of the potential energy surface were characterized by normal mode analysis, those with one imaginary 

frequency being TS. The intrinsic reaction coordinate (IRC) [87] originating from every TS was followed to find 

the corresponding reactant and product. The energy profiles in Fig. 1 show sequences of minima (reactant, 

intermediate, or product) and the TS connecting each pair of minima. Single point (fixed geometry) calculations 

were performed with CCSD(T) (coupled cluster theory with single and double excitations and perturbative 

treatment of triple excitations) with a Aug-cc-pVQZ basis set [76,88] at the optimized minima and TS structures to 

get more accurate energy barriers and energies of reactions. Unless stated otherwise, the energies reported here are 

differences between 0 K energies at the CCSD(T)/Aug-cc-pVQZ [76,88] level with zero-point energy corrections 

and optimized geometries by ωB97XD/def2-TZVP, a method denoted CCSD(T)/Aug-cc-pVQZ//ωB97XD/def2-

         
Fig. 1. (Continued). 
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TZVP. Each of the five reactions of Scheme 1 was examined on the triplet and singlet potential energy surface. The 

ground states of HCNO and HNCO are both singlet. The ground state of CH2 is triplet, with the lowest excited 

singlet state being 9.00 kcal/mol higher [89]. The CH2 singlet excited state energy is calculated as +9.1 kcal/mol, 

very close to the experiment. In the molecular species symbols of the next section RC stands for reactant complex, 

IM for reaction intermediate, TS for transition state, P for product, the superscripts 1 and 3 represent singlet and 

triplet species, and subscripts are arbitrarily assigned to the structures (depicted in Fig. 2) in the order in which it 

appears in Fig. 1. In a few cases, following the IRC from different transition states produced slightly different 

reaction complex geometries with nearly identical energies. Only one version of each reaction complex is shown 

in Fig. 2. 

4. Results and Discussion 

The products of reactions in Scheme 1 are N-methyleneformamide, imine acetaldehyde, ((λ3-methylene)-λ3-

oxidaneyl)methanimine, and two conformers of oxiran-2-ylazanide. None of them has been observed in the ISM 

or CSE [90,75]. Total energies including zero-point corrections (Es) are shown in Table 2 for all minima and 

transition states along with relative energies where the zero of energy is assigned to singlet CH2 plus singlet HCNO 

or HNCO. The optimized geometries of reactants, reactant complexes, intermediates, transition states, and products 

are shown in Fig. 2 and the cartesian coordinates can be found in the Supplementary Information (SI). The basis 

set used here is not expected to give accurate results in weakly bound complexes. In particular, the geometries of 
1RC2, 

1RC3, and 3RC3 could not be fully optimized. Results on reactant complexes (RCs) should be considered only 

in a qualitative sense. Other relative energies also have numerical errors of ∼2 kcal/mol, for instance, 3IM1 is found 

1.6 kcal/mol higher than 3TS2 even though IRC following connects them. For instance, the energy of 3IM1, without 

zero-point energy, is 0.22 kcal/mol lower than the 3TS2. However, the zero-point correction pushes 3IM1 1.6 

kcal/mol higher than 3TS2. 

Reactions k (k = 1, 2, …, 5) on the singlet and triplet energy surfaces are represented by 1RXNk and 3RXNk. 

Their energy profiles are shown in Fig. 1. In reaction 1RXN1, singlet CH2 and HCNO form a stable reactant 

complex, then CH2 picks up the oxygen atom of HCNO in a barrierless process (see 1TS1 in Fig. 2 and 1RXN1 in 

Fig. 1). This leads to formation of 1IM1, a complex of hydrogen cyanide (HCN) and formaldehyde (H2CO) both of 

which were identified in the ISM or CSE [11,16,17,21]. The complex of HCN and H2CO can go on to react in many 

ways, see 1IM1 and the transitions states 1TS2, 
1TS3, and 1TS6 in 1RXN1, 

1RXN2, and 1RXN3, respectively. These 

transition states are well below the 1(CH2 + HCNO) separation limit but well above HCN + H2CO (by 65 kcal/mol, 

91 kcal/mol and 95 kcal/mol). The transition state 1TS1 is above triplet CH2 plus HCNO by only 6.3 kcal/mol (9.0 

− 2.7 = 6.3). 

One conclusion we draw from energy profiles 1RXN1, 
1RXN2, and 1RXN3 is that singlet CH2, it is present in 

the ISM, can react without barrier with HCNO. The thermodynamically favoured product of this reaction would be 
CH2NCHO (N-methyleneformamide, 1P1), at −147.3 kcal/mol relative to reactants. Computational studies of N-

methyleneformamide have reported vibrational spectra [91] and relative energies of conformers [92]. The 

conformer of N-methyleneformamide that we obtained is the gauche-conformation, which is reported as the most 

stable conformation [92]. The conformer 1P2 has a slightly higher energy, −145.9 kcal/mol. Some of the 

intermediates of reactions are also very close in energy: the HCN-H2CO complex 1IM1 (−141.3), and two 

conformers of imine acetaldehyde NHC(H)CHO, 1IM2 (−141.5) and 1IM3 (−145.1). However, it is much more likely 

that interstellar CH2 is in its triplet ground state. Then, the formation of CH2NCHO would require approximately 6 

to 9 kcal/mol excess energy and triplet-to-singlet surface crossing. Crossing might occur at some configurations of 

the CH2 + HCNO reactant complex at an energetic cost of 9 kcal/mol (at large CH2-HCNO separation) or maybe 

less, at some hypothetical favourable configuration, but we were unable to locate such a configuration. 

Recently Panda et al. [9] investigated in detail many reactions on the singlet energy surface of C2H3NO by a 

DFT method. They found many HCN + H2CO reaction pathways, but none of them with a barrier smaller than 43 

kcal/mol. For the reaction of H2CO with HNC (another molecule observed in the ISM [90,93]) the lowest reaction 

energy barrier found was 15 kcal/mol [9], leading to the formation of 1P5 (shown in Fig. 2). 

On the singlet surface, reactions 4 and 5 are barrierless and lead to the formation of two conformers of oxiran-

2-ylazanide (1P4 and 1P5). On the triplet surface, reactions 4 and 5 have rate limiting barriers of 11.1 and 17.6 

kcal/mol, respectively. The thermodynamically favoured triplet state product is 3P1 (see 3RXN1 in Fig. 1) with an 

energy of -82 kcal/mol (-73 kcal/mol relative to the ground state). It is 65 kcal/mol higher than singlet N-

methyleneformamide. The kinetically favoured triplet product is 3IM9 (see Fig. 1, panel 3RXN4). The barrier to 

forming 3IM9, is 11.1 kcal/mol, making this reaction practically impossible in the gas phase in the ISM, but maybe 

possible in hot corinos regions or at the surface of dust grains. Molecules 3P4 and 3P5 are 27 and 23 kcal/mol higher 

than the reactants and are not likely products of these two triplet reactions. 
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Fig. 2. Optimized geometries of singlet and triplet reactants, RCs (with not fully optimized 1RC2, 1RC3, and 3RC3, see main text for details), TSs, IMs, 

and products of reactions (1), (2), (3), (4), and (5) at ωB97XD/def2-TZVP level of theory. Cartesian coordinates of all studied species shown here are 

listed in SI.  
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Fig. 2. (Continued).   
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ωB97XD/def2-TZVP [78,79] level of theory are acquired from 

 
Fig. 2. (Continued).  
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Table 2. Energies (Es, a.u.), and relative energies (RE, kcal/mol) for the reactants, reactant complexes (RCs), 

transition states (TSs), intermediates (IMs), and products (Ps) for the reactions of CH2 with HCNO and HNCO, on 

singlet and triplet potential energy surfacesb 

Singlet E (a.u.) RE (kcal/mol) Singlet E (a.u.) RE (kcal/mol) 

1CH2 + HCNO -207.4127626 (-207.677513) 0.00 (0.00) 1TS8 -207.4570025 (-207.727097) -27.76 (-31.11) 

1CH2 + HNCO -207.5233873 (-207.789059) 0.00 (0.00) 1TS9 -207.5805994 (-207.852908) -35.90 (-40.07) 

1RC1 -207.4255828 (-207.691713) -8.04 (-8.91) 1IM1 -207.6378576 (-207.898754) -141.25 (-138.83) 

1RC2
c -207.5276957 (-207.794436) -2.70 (-3.37) 1IM2 -207.6383110 (-207.904179) -141.53 (-142.24) 

1RC3
c -207.5251279 (-207.794367) -1.09 (-3.33) 1IM3 -207.6440502 (-207.909825) -145.14 (-145.78) 

1TS1 -207.4149357 (-207.681737) -1.36 (-2.65) 1IM4 -207.5445046 (-207.808732) -82.67 (-82.34) 

1TS2 -207.5347565 (-207.801660) -76.55 (-77.90) 1IM5 -207.5479113 (-207.812760) -84.81 (-84.87) 

1TS3 -207.4930707 (-207.762031) -50.39 (-53.04) 1P1 -207.6474740 (-207.915835) -147.28 (-149.55) 

1TS4 -207.5981231 (-207.866564) -116.32 (-118.63) 1P2 -207.6451982 (-207.910901) -145.86 (-146.45) 

1TS5 -207.6361853 (-207.902231) -140.20 (-141.01) 1P3 -207.5538158 (-207.818978) -88.51 (-88.77) 

1TS6 -207.4871563 (-207.746413) -46.68 (-43.24) 1P4 -207.6127669 (-207.882985) -56.09 (-58.94) 

1TS7 -207.5414508 (-207.806329) -80.75 (-80.83) 1P5 -207.6136523 (-207.883834) -56.64 (-59.47) 

Triplet E (a.u.) RE (kcal/mol) Triplet E (a.u.) RE (kcal/mol) 

3CH2 + HCNO -207.4272761 (-207.696637) -9.11 (-12.00) 3TS18 -207.4728192 (-207.745356) 31.73 (27.42) 

3CH2 + HNCO -207.5379008 (-207.808183) -9.11 (-12.00) 3TS19 -207.4735590 (-207.747913) 31.27 (25.82) 

3RC1 -207.4290474 (-207.697743) -10.22 (-12.69) 3TS20 -207.4862105 (-207.758658) 23.33 (19.08) 

3RC2 -207.5392324 (-207.809856) -9.94 (-13.05) 3IM1 -207.4572629 (-207.728688) -27.92 (-32.11) 

3RC3
c -207.5384130 (-207.808547) -9.43 (-12.23) 3IM2 -207.5210788 (-207.789096) -67.97 (-70.02) 

3TS1 -207.3873336 (-207.661128) 15.96 (10.28) 3IM3 -207.5366754 (-207.805904) -77.76 (-80.57) 

3TS2 -207.4597489 (-207.729711) -29.48 (-32.75) 3IM4 -207.5162937 (-207.785628) -64.97 (-67.84) 

3TS3 -207.4824223 (-207.755575) -43.71 (-48.98) 3IM5 -207.5236526 (-207.791974) -69.58 (-71.83) 

3TS4 -207.5129872 (-207.785379) -62.89 (-67.69) 3IM6 -207.5402356 (-207.818013) -79.99 (-88.17) 

3TS5 -207.4866958 (-207.758795) -46.39 (-51.01) 3IM7 -207.5158644 (-207.786206) -64.70 (-68.21) 

3TS6 -207.4997159 (-207.769253) -54.56 (-57.57) 3IM8 -207.5149810 (-207.785729) -64.14 (-67.91) 

3TS7 -207.5164750 (-207.787758) -65.08 (-69.18) 3IM9 -207.5575397 (-207.831826) -21.43 (-26.84) 

3TS8 -207.5233604 (-207.797667) -69.40 (-75.40) 3IM10 -207.4748374 (-207.747182) 30.47 (26.28) 

3TS9 -207.4905591 (-207.760856) -48.82 (-52.30) 3IM11 -207.5191279 (-207.792362) 2.67 (-2.07) 

3TS10 -207.5073032 (-207.777536) -59.33 (-62.77) 3IM12 -207.5623994 (-207.837195) -24.48 (-30.21) 

3TS11 -207.5126371 (-207.783471) -62.67 (-66.49) 3IM13 -207.4762519 (-207.748969) 29.58 (25.16) 

 
 

Fig. 2. (Continued).  

3P3 

3P4 3P5 
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3TS12 -207.5202805 (-207.793478) 1.95 (-2.77) 3IM14 -207.5147488 (-207.788697) 5.42 (0.23) 

3TS13 -207.4661591 (-207.738704) 35.91 (31.60) 3P1 -207.5433281 (-207.820537) -81.93 (-89.75) 

3TS14 -207.4730302 (-207.746845) 31.60 (26.49) 3P2 -207.5395170 (-207.817229) -79.54 (-87.67) 

3TS15 -207.4924691 (-207.764729) 19.40 (15.27) 3P3 -207.5149922 (-207.785738) -64.15 (-67.91) 

3TS16 -207.4701042 (-207.746624) 33.44 (26.63) 3P4 -207.5004641 (-207.774811) 14.38 (8.94) 

3TS17 -207.5098942 (-207.784682) 8.47 (2.75) 3P5 -207.4948651 (-207.768897) 17.90 (12.65) 

bEnergies (Es, a.u.) and relative energies (kcal/mol) were calculated at the CCSD(T), and ωB97XD (in parentheses), levels of theory. 

5. Conclusion 

The CH2 + HCNO and CH2 + HNCO reactions were identified as possible sources of as yet undetected 

interstellar prebiotic molecules by means of a screening procedure that combines energy barriers estimated by 

machine learning and empirical rules about chemical composition. These reactions were studied on the singlet and 

triplet energy surfaces by density functional theory at the ωB97XD/def2-TZVP level for geometry optimization 

and normal mode frequencies and CCSD(T)/Aug-cc-pVQZ//ωB97XD/def2-TZVP for computing energy 

differences such as barriers to reaction. Singlet CH2 reacts with HCNO without a barrier to produce N-

methyleneformamide (1P1) and imine acetaldehyde (1P2), with the former being thermodynamically favoured by 

only ∼1 kcal/mol. However, singlet CH2 is 9.00 kcal/mol higher than ground state triplet CH2 [89]. Therefore, 

reactions on the singlet energy surface would require triplet-to-singlet crossing and collision energies of ∼9 

kcal/mol, or less than 9 kcal/mol if smaller triplet-singlet energy gaps are present for some reactant complex 

geometries. Triplet CH2 can react with HNCO with a barrier of 11.1 kcal/mol to produce 3IM9, CH2C(=O)NH. 

These results do not give strong evidence for the formation of prebiotic molecules from reactions of triplet CH2 

with HCNO or HNCO in the ISM. However, the barriers to reaction relative to ground state reactants are found to 

be small for several reactions: ∼9 kcal/mol for reactions 1 to 5 if triplet-to-singlet surface crossing occurs at large 

intermolecular distances, possibly less if crossing occurs at shorter distances; and on the triplet surface, ∼11 

kcal/mol for reaction 4, and ∼18 kcal/mol for reaction 5. These results suggest three areas for future research: a 

more precise characterization of the triplet and singlet energy surfaces of weakly bound CH2-HCNO complexes, 

with a search for possible triplet-singlet crossing; the modeling of possible reactions of CH2 with ice covered dust 

grains without and with coadsorbed HCNO; and a search for the spectroscopic signature of N-methyleneformamide 

in interstellar space. 
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