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Abstract 

Molecular dynamics simulations to compute protein to small molecule binding free energies are 

becoming a valuable tool in the early stages of drug discovery. However, their cost and complexity 

are often prohibitive for high-throughput studies. Herein, we present an automated workflow for 

the thermodynamic integration scheme with the “on-the-fly” optimization of computational 

resource allocation for each λ-window of both relative and absolute binding free energy 

simulations. This iterative workflow utilizes automatic equilibration detection and convergence 

testing via the Jensen-Shannon distance to determine optimal simulation stopping points in an 

entirely data-driven manner. We benchmark our workflow on the well-characterized systems 

cyclin-dependent kinase 2 and T4 Lysozyme L99A/M102Q mutant, as well as the more flexible 

SARS-CoV-2 papain-like protease. We demonstrate that this proposed protocol can achieve over 

an 85% reduction in computational expense while maintaining similar levels of accuracy when 

compared to other benchmarking protocols. We examine the performance of this protocol on both 

small and large molecular transformations.  The cost accuracy tradeoff of repeated runs is also 

investigated.  

Introduction 

Alchemical binding free energy (BFE) simulations are a class of free energy molecular dynamics 

(MD) simulations that utilize an “alchemical” i.e., nonphysical thermodynamic pathway to 

compute free energy differences between environmental conditions or pairs of molecules. In the 

context of biomolecular systems, MD BFE simulations are often used to compute the binding free 

energy of a small molecule ligand to a protein,1,2 which is an important parameter in the initial 

stages of the drug discovery pipeline. The alchemical approach is useful because it is both rigorous, 

as the free energy of the system is a state function, and significantly more efficient than brute force 
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unbiased simulations,3 though the method suffers from errors related to imperfect forcefields, 

rough free energy surfaces, and other technical challenges. There are two broad classes of BFE 

simulations: absolute binding free energy (ABFE) simulations, and relative binding free energy 

(RBFE) simulations. ABFE simulations seek to calculate the difference in free energy between the 

protein-ligand complex and the free protein and ligand in solution, referred to as the standard 

binding free energy ΔGbind. This quantity can be measured experimentally, e.g., by surface 

plasmon resonance4 or isothermal titration calorimetry.5 ΔGbind is related to the dissociation 

constant Kd by the following relation: 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝑅𝑇 ln 𝐾𝑑, (1) 

where R is the gas constant and T is the temperature of the system. RBFE calculations, on the other 

hand, seek to calculate the difference in ΔGbind of two ligands, referred to as ΔΔGbind. In drug 

design applications ABFE simulations are used for initial screenings and hit identification of 

compounds for synthesis,6 while RBFE simulations are well-suited for hit-to-lead and lead 

optimization.3,7–10 

 Despite their greater computational expense and complexity, MD-based BFE simulations 

have several advantages over other, simplified computational methods. For example, while 

molecular docking, a commonly used computational screening technique, can quickly yield 

reasonable ligand binding poses, typical scoring functions are often not very useful in 

discriminating false positives from true hits,6,11–13 which is a serious issue when thousands of 

potential hits have been proposed with limited resources for experimental validation. End-point 

MD methods, such as MM/PBSA and MM/GBSA, may sometimes afford limited  accuracy 

improvement when compared to docking, albeit at a greater cost; yet, their accuracy is extremely 

system specific and is  less reliable than alchemical BFE simulations.14,15   

Alchemical BFE simulations are designed to transform one molecular system into another 

via performing stratified MD simulations along a pre-defined reaction pathway. Typically the 

pathway is defined as a liner interpolation between Hamiltonians of two systems A and B: 

𝑉(𝜆) = 𝜆𝑉𝐴 + (1 − 𝜆)𝑉𝐵, (2) 
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𝑉(𝜆) = 𝜆𝑉𝐴 + (1 − 𝜆)𝑉𝐵where V(λ) is the coupled potential function, 𝜆 ∈ [0,1] defines the 

reaction coordinate and VA/B is the potential of endpoint A/B, respectively. Usually, each MD 

simulation about the reaction pathway is independent of the others. Some simulation schemes, 

however, do not employ independent simulations. These include Hamiltonian exchange variants 

involving the exchange of neighboring strata,9,16 as well as schemes such as that employed by He 

et al.,17 where initial structures for simulation were obtained from snapshots of simulations from 

neighboring strata. The binding free energy of a transformation is obtained by use of an estimator, 

most often the Bennet acceptance ratio18 (BAR), multistate BAR19 (MBAR) or thermodynamic 

integration20 (TI) methods, which combine data from the various strata.21,22 In TI, the estimator 

employed in this work, the free energy difference between endpoints A and B are derived by 

integrating the derivative of the coupled potential function with respect to λ. In practice, this is 

performed numerically: 

Δ𝐺𝐴→𝐵 = ∫ 〈
𝑑𝑉

𝑑𝜆
〉𝜆 𝑑𝜆 ≅ ∑ 𝑤𝑖 〈

𝑑𝑉

𝑑𝜆
〉𝑖

𝑁
𝑖

1

0
, (3) 

where 〈
𝑑𝑉

𝑑𝜆
〉𝑖 is the average of the derivative of the coupled potential function over the MD 

simulation at λ = i, wi is the statistical weight of the strata determined by the selected integration 

scheme, and N is the number of strata employed.  

With current force fields, software and sampling scheme implementations, RBFE 

simulations can routinely achieve mean absolute errors (MAE) of approximately 1 kcal/mol when 

compared to experimental results.9,23,24  ABFE simulations are more challenging, and while several 

groups have reported MAE similar to that of RBFE,13,25,26 a recent meta-analysis by Fu et al.27 

found that alchemical ABFE simulations have an average MAE of 1.88 kcal/mol. With the advent 

of GPU computing, alchemical BFE simulations are completable on a timescale that is relevant 

for drug discovery applications;7,17,28–30 however, computing the BFEs of large numbers of ligands 

remains prohibitively costly and time consuming.31 Moreover, the technique suffers from various 

technical difficulties, including the tedious nature of system setup and preparation; inaccuracies in 

predicting difficult transformations such as ring breaking/forming, ring extensions, and change in 

net charge;3,32–35 and the difficulty in achieving sufficient sampling across all intermediate states. 

Combined, these problems often prove unsurmountable, leading to the selection of cheaper and 

simpler methods with inferior accuracy. 
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Recently, we have developed a hit-to-lead optimization framework combining RBFE 

simulations and active learning (AL) machine learning (ML) to iteratively explore large chemical 

spaces consisting of thousands of congeneric molecules for high performing molecules when 

compared to an experimentally validated reference compound.7 In this scheme, batches of 

molecules are iteratively selected by an ML model trained on previous iterations of RBFE 

calculations, with the goal of selecting molecules with the most negative ΔΔGbind value. Other 

groups have also demonstrated the active learning framework efficacy in RBFE simulations,36,37 

as well as in docking,38–40 forcefield development41 and course-graining.42 Recent work by 

Thompson et al. demonstrated that, using a dataset of 104 RBFE simulations performed using a 

radial perturbation map with a single reference compound, AL was able to select the majority of 

the molecules with the most negative ΔΔGbind within five cycles of sixty or more molecules per 

cycle.43 This method would still entail no fewer than 300 RBFE simulations, which currently 

requires significant resources to achieve. On the other hand, ABFE simulations have been 

proposed as an accurate and cost-effective method for the final stages of high-throughput virtual 

drug screening for initial hit discovery.6 Beginning with large datasets of molecules, often in the 

millions to billions, this approach utilizes high-throughput docking to narrow down the set of 

candidates to a number feasible for ABFE simulations, typically in the hundreds or thousands, 

with top performing candidates submitted for experimental validation.6,12 The utility of combining 

docking with alchemical BFE simulations has been recognized for several decades due to their 

complementary nature: the inaccuracy of docking can be corrected with ABFE rescoring, while 

docking both significantly reduces the number of ABFE simulations required and provides 

reasonable starting poses.44 Still, this may involve thousands of tedious and expensive calculations, 

which can be infeasible to perform. Thus, both RBFE and ABFE simulations would benefit from 

methods designed to lessen the cost of such high-throughput computations. 

It is typical to uniformly allocate computational resources by simulating each strata, 

typically denoted a λ-window, for the same amount of simulation time;7,9,16,17,23 however, there is 

no theoretical basis for this practice. For instance, it is unlikely that simulation times necessary for 

convergence would be equivalent between different systems, such as the protein-ligand complex 

and the solvated ligand, even if we restrict our analysis to states with identical λ-values. One would 

expect this likelihood to decline further when considering different ligands or even different 

protein systems. Furthermore, it is not uncommon for specific λ-windows of a given alchemical 
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transformation to experience larger autocorrelation times than other λ-windows, resulting in 

slower convergence, fewer uncorrelated samples, and greater statistical uncertainty. In contrast, 

other λ-windows converge very quickly, with additional sampling affording marginal at best 

accuracy benefits. In short, using a uniform allocation of resources may result in wasting resources 

simulating already converged λ-windows, while starving more difficult λ-windows of resources. 

This issue is magnified when considering a high-throughput computational drug discovery 

campaign due to the large number of necessary simulations. 

 Herein, we present a simple, highly automated, and data driven scheme for on-the-fly 

optimization of computational resource allocation for each λ-window of high-throughput RBFE 

and ABFE simulations using TI. The goal of this scheme is to provide the minimal resources 

necessary to achieve a convergence threshold for each λ-window with as little user input as 

possible. We begin by describing the theory behind alchemical BFE simulations and the simulation 

parameters employed for each system studied in this work. Next, we illustrate the workflow and 

concepts behind our on-the-fly optimization algorithm. We then demonstrate our RBFE 

implementation on the cyclin-dependent kinase 2 (CDK2) benchmark system using the same input 

files as Song et al.23 and compare our accuracy with respect to experimental results against theirs. 

In order to examine the performance of our protocol on more difficult and flexible systems, we 

apply several implementations of our protocol to several ligand mutations of the SARS-CoV-2 

papain-like protease (PLpro) that we have performed in previous work.7 As PLpro is less 

characterized as CDK2, we compare our results against long simulations as opposed to 

experimental results. We test our ABFE implementations on the T4 Lysozyme L99A/M102Q 

mutant in complex with N-phenylglycinonitrile (PDB ID: 2RBN45) and compare our calculated 

binding affinity against the experimental value. We also compare the results of several of our 

protocol implementations on the PLpro ligand N-[(1R)-1-naphthalen-1-ylethyl]benzamide against 

long simulations. We demonstrate that our protocol maintains accuracy while yielding increases 

in computational efficiency when compared to previously published sampling schemes. Finally, 

we conclude by making prescriptions for future high-throughput alchemical BFE drug discovery 

campaigns. 
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Methods 

Theory. The thermodynamic cycle for an RBFE MD simulation is depicted below in Figure 1A. 

The difference in ΔGbind between two ligands is computed by performing an alchemical mutation 

of the ligands from one to the other in both the bound and unbound states. As one can see in Figure 

1, the difference in ΔGbind of two compounds A and B, denoted ∆∆Gbind
𝐴→𝐵, is equivalent to the 

difference in free energies of the compounds bound to the protein and in solution: 

∆∆Gbind
𝐴→𝐵 = ∆Gbind

𝐴 − ∆Gbind
𝐵 = ∆GA→B

𝑝𝑟𝑜𝑡 − ∆GA→B
𝑤𝑎𝑡               (4) 

Thus, RBFE calculations consist of two alchemical transformations: from one ligand to the other 

while in complex with the protein, and from one ligand to the other while in solution. While in 

principle any mutation could be accomplished, only minor mutations are commonly performed 

due to the requirements that ligands have the same common substructure and that binding modes 

be preserved across ligands.7–9,23 Therefore, RBFE campaigns are typically restricted to sets of 

congeneric ligands that share a common substructure but differ in the identity of appendage 

functional groups. 

The thermodynamic cycle for an ABFE MD simulation is depicted below in Figure 1B. 

The free energy difference between the protein-ligand complex and the free protein and ligand in 

solution (1 → 2: ∆Gbind
° ) is calculated by completing an alchemical pathway between these two 

endpoint states. A key component of these simulations is the virtual bond, first introduced by 

Boresch et al.,46 which is a set of harmonic restraints between three protein backbone heavy atoms 

and three ligand heavy atoms (see Fig. S1).The application of the virtual bond is discussed below. 

ABFE simulations typically consist of three alchemical transformations: 1) within the protein-

ligand complex, the addition of a virtual bond between three protein residue backbone atoms and 

three ligand heavy atoms (2 → 4: ∆G+𝑉𝐵
prot

); 2) within the protein-ligand complex with the virtual 

bond, the removal of electrostatic and van der Waals interactions either stepwise or 

simultaneously, often termed “annihilation”, of the ligand (4 → 5: ∆G𝑖𝑛𝑡
prot

); and 3) the annihilation 

of the free ligand in solution (1 → 3: ∆Gint
𝑠𝑜𝑙𝑣). As Boresch et al. demonstrated, once the ligand with 

the virtual bond has been annihilated, the free energy of the virtual bond can be calculated 

analytically as the ligand is otherwise non-interacting with the environment46 (5 → 6: ∆G−𝑉𝐵
𝑝𝑟𝑜𝑡

); 
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thus, after its removal, there is no free energy cost to remove the ligand from the binding pocket 

(6 → 3). Thus, we can calculate ΔGbind by the following equation: 

∆Gbind
° = ∆Gint

solv − ∆G+VB
prot

− ∆G−VB
prot°

− ∆G+VB
prot

− ∆Gint
prot

, (5)  

 

Figure 1. Alchemical Thermodynamic Cycles for RBFE (left) and ABFE (right). The arrows determine the 

direction of the transformation, and therefore the sign of the term in the sum in Equations 4 and 5. 

Software. All MD simulations were performed using the GPU-accelerated pmemd.cuda module 

of AMBER20.47–50  All 
𝑑𝑉

𝑑𝜆
 gradient timeseries data (see Eq 3) were extracted with the alchemlyb51 

python package. Decorrelation was performed using the pymbar52 python package, whereby 

decorrelated samples were obtained by subsampling with the statistical inefficiency rounded up to 

the nearest integer value. All hydrogen bonding interactions between the protein and ligand were 

analyzed with CPPTRAJ.53 All input coordinates, topology and parameters for conventional MD 

simulations were obtained using Ambertools18.54 

RBFE CDK2 system setup and TI simulations. Simulation starting structures and input files 

were extracted from the GitHub repository https://github.com/linfranksong/Input_TI.23 For both 

the protein-ligand complex and solvated ligand mutations, two separate λ-schedules were used. 

The first employed the following twelve λ-windows: 0.00922, 0.04794, 0.11505, 0.20634, 

0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, and 0.99078. The second 

employed the following nine λ-windows: 0.01592, 0.08198, 0.19331, 0.33787, 0.5, 0.66213, 

0.80669, 0.91802 and 0.98408. For each λ-window, the following protocol was employed: 1) 2000 

steps of minimization with the gradient descent method; 2) 50 ps of heating from 0.1 K to 300 K 

A B 
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in the NVT ensemble; 3) 300 ps of density equilibration in NPT; and 4) production simulations in 

NVT with gradient averages obtained via the bootstrap method. Harmonic RMSD restraints were 

imposed on heavy atoms of the protein and the ligand during minimization and heating and were 

gradually removed during density equilibration; no restraints were used during production 

simulations. Special care was given to the λ=0.98408 window of the nine-point λ-schedule to avoid 

numerical instability. For this window, the structure obtained after the first 1000 steps of 

minimization with gradient descent of the λ=0.91802 window was used as the input for the second 

1000 steps of minimization, and then the protocol proceeded as normal. For the 12-window λ-

schedule production simulations, a 1 fs timestep was used without SHAKE and a Berendsen 

thermostat was employed. This was done to mimic the production protocol of Song et al. more 

closely. For the 9-point λ-schedule, a 2 fs timestep was used with SHAKE and a Langevin 

thermostat was employed. Free energies of both the protein-ligand complex and solvated ligand 

alchemical steps were obtained using the gaussian quadrature rule. For each mutation, a total of 

10 independent simulations were performed per protocol.  

RBFE PLpro system setup and TI simulations. Four ligands were selected from our previous 

work on the PLpro system and are displayed below in Figure 2. Ligands 1-3 were selected such 

that their ΔΔGbind calculated in previous work were negative (Ligand 1), approximately 0 (Ligand 

2), and positive (Ligand 3). Ligand 4 was selected as an edge case due to the difficulty of the 

mutation (see Discussion). Input coordinates, topologies, and parameters were obtained from our 

previous work (see Gusev et al.7  for details). All λ-windows were minimized and equilibrated 

using the protocol described in the previous section, with restraints applied to two water molecules 

in the binding pocket during minimization and heating, and gradually removed during density 

equilibration.  
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Figure 2. PLpro ligands used for ABFE and RBFE simulations. ABFE simulations were performed on the 

Reference Ligand, while RBFE simulations were performed by mutating the Reference Ligand to Ligands 

1, 2, 3 or 4. 

Lysozyme protein preparation and simulation. The crystal structure of the T4 lysozyme 

L99A/M102Q in complex with N-phenylglycinonitrile was extracted from Protein Data Bank 

(PDB ID: 2RBN45). Ligand atom parameters were obtained using GAFF2 (version 2.11)55 and 

ligand atomic charges were derived using the RESP56 method with Gaussian 0957 or 16.58 The 

protein was solvated in an orthorombic TIP3P water box using tleap with 15 Å distance between 

the protein and the edge of the box. The simulation protocol included the following steps: 1) 2000 

steps of minimization with gradient descent method; 2) 100 ps of heating from 1 K to 298 K in 

NVT ensemble; 3) 300 ps of density equilibration in NPT ensemble; 4) 7 ns of production 

simulation in NVT. All the MD simulations were performed using a 2 fs time step. Harmonic 

RMSD restraints were imposed on heavy atoms of the protein and the ligand during minimization 

and heating and were gradually removed during density equilibration; no restraints were used 

during production simulations. 

Selection of virtual bond atoms. The first 2 ns of the MD production simulation were discarded, 

and the average structure was obtained from the last 5 ns of the simulation. A trajectory frame with 
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minimum RMSD of ligand heavy atoms with respect to average structure was selected as a 

representative structure and used as the initial protein-ligand complex structure for TI simulations.  

Selection of atoms for the virtual bond approach46 was performed using a modified version 

of the algorithm described in Chen et al.,13 and was proceeded as follows: All hydrogen bonding 

interactions present in 50% or more of the frames were selected and ranked based on the ligand 

atom distance from the ligand centroid. The atom closest to the centroid was then selected. If the 

ligand atom was a hydrogen, then the heavy atom bonded to this hydrogen was used instead. All 

neighboring heavy atoms and their corresponding neighboring heavy atoms were then selected. 

Protein and ligand atoms were scored based on their angles within the reference frame. Given 

protein backbone atoms A, B, and C, and ligand atoms a, b, and c, the following angles were 

calculated: ABC, aAB, baA, and abc (see Fig. S1). Atom combinations in which both angles were 

between 45° and 135° were considered valid. The possible ligand atom combinations fell into three 

categories. Within the first category, atom a was a heavy atom involved in hydrogen bonding, atom 

b a neighboring heavy atom of atom a, and atom c a neighboring heavy atom of atom b. Within 

the second category, atom a was the heavy atom involved in hydrogen bonding, atom b was a 

neighboring heavy atom of a neighboring atom of atom a, and atom c was a second neighboring 

heavy atom of the same neighboring heavy atom of atom a. In the third category, atoms a and c of 

category two are swapped with each other. For each of these categories, two combinations of 

protein heavy atoms of residue involved in hydrogen bonding were attempted: N-Cα-C and C- Cα-

N. All valid configurations were then scored based on their mean absolute deviation from 90°, and 

the combination with the lowest score was selected for the virtual bond. If no valid atom 

combination was found, the next closest ligand atom to the centroid involved in hydrogen bonding 

was selected and analyzed for valid combinations. This process was repeated until a valid 

combination was found. If no atom combination was found to be valid, all ligand heavy atoms 

were ranked based on their distance to the centroid of the ligand. The atom closest to the centroid 

was selected and compared against every combination of neighboring Cα atoms in the manner 

described above. If a valid combination was found, then the distance between ligand atom a and 

protein atom A was calculated. If the distance was found to be less than 1 nm, the combination 

was accepted as valid. If not, the next closest atom to the centroid was selected, and this process 

was repeated until a valid combination was found. 
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ABFE lysozyme TI simulations. For TI simulations of solvated ligand, the ligand was solvated 

in a TIP3P water box using tleap54 with a 15 Å distance between the ligand and the edge of the 

box. For TI simulations of the protein-ligand complex, the orientation of ligand with respect to the 

protein were restrained using the virtual bond approach.46 Force constants of 4 kcal/(mol*Å2), 20 

kcal/(mol*rad2) and 40 kcal/(mol*rad2) were used for distance, angle and dihedral angle restraints, 

respectively. The second-order smoothstep softcore potential (SSC(2)), as implemented in 

AMBER20, was utilized for both the protein-ligand complex and solvated ligand steps. For each λ-

window, the system was minimized and then equilibrated using the same protocol as was 

performed for conventional MD. For the solvated ligand and protein-ligand complex systems, a λ-

schedule of 9 equally distributed windows was used (0.1, 0.2, 0.3, …, 0.9). Gradient means and 

variances were calculated using the bootstrap method.59  For the addition of the virtual bond 

restraints, 7 unequally distributed λ-windows were used, with window density concentrated near 

the minimum λ-windows. Free energies for the ligand, the protein, and the restraint addition were 

obtained via the trapezoid rule. The free energy of adding virtual bond restraints for the non-

interacting ligand was calculated using the Boresch formula.46 A total of 39 independent 

simulations were performed for all protocols. 

ABFE PLpro system setup and TI simulations. ABFE simulations were performed on N-[(1R)-

1-naphthalen-1-ylethyl]benzamide, henceforth referred to as the “Reference Ligand.” Input 

coordinates, topologies, and parameters were obtained from our previous work (see Gusev et al. 

for details). Force constants of 10 kcal/(mol*Å2), 10 kcal/(mol*rad2) and 20 kcal/(mol*rad2) were 

used for distance, angle and dihedral angle restraints, respectively.  All λ-windows were minimized 

and equilibrated using the protocol described above, with the addition of harmonic restraints 

applied to two water molecules in the binding pocket during minimization and heating, and 

gradually removed during equilibration. No restraints were applied during production.  

Approach, Results and Discussion 

On-the-fly optimization. Our algorithm for on-the-fly optimization of computational resources 

used by TI MD simulations proceeded for each λ-window in the following manner (Fig. 3): 

Starting from the equilibrated structure, an initial short production simulation was performed and 

𝑑𝑉

𝑑𝜆
 gradient timeseries (see Eq. 3) were extracted. Convergence testing to determine whether the 

production simulation should be extended was performed as follows. The gradient timeseries was 

https://doi.org/10.26434/chemrxiv-2023-rtpsz ORCID: https://orcid.org/0009-0007-6643-7271 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-rtpsz
https://orcid.org/0009-0007-6643-7271
https://creativecommons.org/licenses/by-nc/4.0/


12 

 

equilibrated with automatic equilibration detection60 (AED), as implemented in the pymbar python 

package. This method determines the optimal equilibration time to be that which maximizes an 

uncorrelated sample size that can be obtained from an equilibrated gradient timeseries. After 

equilibration the gradient timeseries was decorrelated (see Methods); then split in half 

chronologically and each half binned into seven equally spaced bins. The Jensen-Shannon (JS) 

distance61, a measure of distance between two probability distributions, between these two 

histograms was calculated. Given two probability distributions P and Q, the JS distance is defined 

as follows: 

𝐽𝑆(𝑃||𝑄) = √
1

2
(𝐷(𝑃||𝑀) + 𝐷(𝑄||𝑀)),  (6) 

where D(P||M) is the Kullback-Liebler divergence and 𝑀 =
1

2
(𝑃 + 𝑄). If the JS distance was 

greater than or equal to 0.1 or the total number of decorrelated samples was less than 50, another 

short additional production simulation was performed starting from the last frame of the production 

trajectory. This was repeated until convergence, or until either of the following two scenarios were 

met: a total simulation time of 6.5 ns had been achieved and more than 50 decorrelated samples 

were acquired in total, or a total simulation time of 10.5 ns had been achieved (Fig. 3). 

  

Figure 3. Flowchart of the on-the-fly resource optimization for high-throughput binding free energy TI MD 

simulations. 
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In this work, we tested six different implementations of this algorithm: Protocols A-E, and C12.  

Table 1 Parameters of the various on-the-fly optimization protocols employed. 

Protocol Initial 

Simulation 

Length (ns) 

Additional 

Simulation 

Length (ns) 

Number of λ-

Windows 

A 2.5 0.5 9 

B 1.5 0.5 9 

C 1.0 0.25 9  

D 0.5 0.25 9 

E 3.5 0.5 9 

F 1.0 0.25 12 

 

Protocols A-E differ solely in the amount of simulation time used in the initial and additional 

simulation steps. Protocol A uses a 2.5 ns initial simulation with 0.5 ns additional simulations, 

Protocol B uses a 1.5 ns initial simulation with 0.5 ns additional simulations, Protocol C uses a 1.0 

ns initial simulation with 0.25 ns additional simulations, Protocol D uses a 0.5 ns initial simulation 

with 0.25 ns additional simulations, and Protocol E uses a 3.5 ns initial simulation with 0.5 ns 

additional simulations. Protocol C12 was only employed for RBFE calculations for CDK2 and 

utilized the 12-window λ-schedule with a 1.0 ns initial simulation and 0.25 ns additional 

simulations. 

RBFE calculations for CDK2. Experimental ΔΔGbind values for each mutation were obtained 

from Song et al.23 Overall mean absolute error (MAE) and root mean squared error (RMSE) 

between experimental and computed ΔΔGbind, when considering all 10 replicates per mutation, 

was 1.03 kcal/mol and 1.24 kcal/mol for Protocol A, 1.02 kcal/mol and 1.29 kcal/mol for Protocol 

B, 0.99 and 1.25 kcal/mol for Protocol C, and 0.96 and 1.24 kcal/mol for Protocol C12 (see Table 

1 for protocol details). The overall R2 of Protocols A, B, C, and C12 was 0.26, .23, .28, and .30, 

respectively. A permutation test was performed, whereby 10,000 MAEs and RMSEs were 

computed by randomly permuting the experimental ΔΔGbind values. For all protocols and both 

MAE and RMSE, the calculated values were less than 99% of these generated values, which 

indicates that there is a significant association between our predicted ΔΔGs and their experimental 
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values. This is important as the null model (ΔΔGbind = 0 for each mutation) performs extremely 

well on this system, as others have noted,17,23 with MAE and RMSE of 0.95 and 1.23 kcal/mol, 

respectively. Figure 4 displays simulated distributions of MAEs, RMSEs, and R2s of Protocol A 

with respect to the number of replicates, referred to hereafter as batch size, included in the 

calculation. These distributions were generated by taking 10,000 random combinations of the 

given sample size of replicates, averaging the ΔΔGbind, and then calculating the MAE, RMSE, and 

R2, respectively. Tabulated summary statistics for these distributions are shown in Table S1.  

 

Figure 4. RMSE, MAE, and R2 of RBFE calculations for CDK2 employing a 9-point Gaussian quadrature 

λ-schedule using Protocol A with respect to experimental values. Batch size refers to the number of 

replicates averaged together per mutation. 
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ΔΔGbind obtained from Protocol C12 and Protocols A, B, and C displayed good agreement, 

with R2 values of 0.926, 0.945, and 0.938, respectively, when considering all 10 replicates per 

mutation, as seen below in Figure 5.  

  

 

Figure 5. A) Distributions of protein-ligand complex simulation step additional simulation times for all 

mutations by protocol. B) Distributions of solvated ligand simulation step additional simulation times for 

A 

B 

C 
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all mutations by protocol. C) Scatterplot of ΔΔGbind values from Protocol C12 versus Protocols A, B, and 

C. 

The number of additional simulations performed varied by protocol, mutation, λ-window, and 

alchemical step, as seen in Figure 5. As expected, the protein-ligand complex step required more 

average additional simulation time to achieve convergence than the solvated ligand step regardless 

of protocol employed. Protocol A generally required the least additional simulation time to achieve 

convergence in both alchemical steps (see Table 1 for protocol details). Overall, the additional 

simulation time was evenly distributed between λ-windows of the solvated ligand step, with more 

variation in the protein-ligand complex step; however, this pattern broke down when comparing 

specific mutations, as seen in Figure 6. Correlation was observed between the average additional 

simulation times of the λ-windows of the various protocols, which indicates that our protocol is 

correctly identifying λ-windows that require additional simulation to achieve convergence. 
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Figure 6. A) Distributions of average protein-ligand complex step additional simulation time performed 

per RBFE simulation of the LIY-L31 and L17-L21 mutations and of all 25 mutations. B) Distributions of 

average solvated ligand step additional simulation time performed per RBFE simulation of the LIY-L31 

and L17-L21 mutations and of all 25 mutations. Protocols A, B, and C are shown in blue, orange, and green, 

respectively. Error bars represent one standard error of the mean. 

 Truncated trajectories of all replicates were examined, with 10,000 MAEs and RMSEs 

generated via the resampling scheme described above. Mean MAE and RMSE and their respective 

standard errors are displayed below in Figure 7. In all protocols, significant accuracy improvement 

is observed during the first nanosecond of simulation time, with only minor accuracy improvement 

observed afterwards. After the initial simulation period, Protocols A and C12 do not display any 

A 

B 
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gain in accuracy, whereas Protocols B and C do (see Table 1 for protocol details). These results 

suggest that a shorter maximum simulation time may be employed without a loss of accuracy.  

 

Figure 7. CDK2 MAEs and RMSEs calculated from truncated gradients. The blue line represents the 

respective loss function (MAE or RMSE), the dashed line represents one standard error of the loss function, 

the red line represents the length of the initial simulation period, and the green line represents the value of 

the respective loss function achieved by Song et al. 

 Computational cost savings for both the protein-ligand complex and solvated ligand steps 

were calculated by taking 10,000 independent samples of a particular batch size of each mutation 

and summing up the total number of production nanoseconds of a batch of a given mutation for a 

given alchemical step. For Protocols A, B, and C, the complement of this number divided by 120 

was taken, representing the total number of nanoseconds simulated by Song et al. for a given 

mutation multiplied by two to account for their use of 1 fs time step. For Protocol C12, the 

complement of the sum simulation time divided by 60 was used. Mean and standard errors of 

savings were calculated from these distributions. Summary statistics of these savings are shown in 

Table S1.  
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Overall, the accuracy of the optimized RBFE calculations were comparable to the 

benchmark results, regardless of protocol employed. The most directly comparable result—a 

single simulation per mutation using Protocol C12—had an MAE of 1.05±0.08, with comparable 

results achieved with Protocols A, B, and C (See Table S1). These values are on average slightly 

greater than the MAE and RMSE of 0.95 and 1.14 kcal/mol, respectively, reported by Song et al., 

but the difference in MAE is statistically insignificant for Protocols A, C, and C12 at the 95% 

confidence level. However, these results were achieved with over a 64% reduction in production 

computational cost. In the case of Protocol C, the average savings were over 85%. All protocols 

and all batch sizes achieved R2 values greater than the 0.15 reported by Song et al. (see Table S1). 

Repeated runs, on average, appear to have little benefit, as the average MAE and RMSE decrease 

only moderately, and the average R2 increases only slightly, when increasing the batch size from 

1 to 10 replicates for all protocols. However, one can see in Figure 4 that the spread of the MAE, 

RMSE, and R2 distributions significantly decrease with increasing batch size, meaning the 

likelihood of calculating a set of particularly poor (or outstanding) RBFEs decreases with repeated 

runs. This tradeoff should be considered when planning a high-throughput RBFE campaign: if one 

can accept a higher variance of calculations, then significantly more mutations can be explored at 

a similar cost. 

RBFE calculations for PLpro. For each mutation, three 10-15 ns production simulations were 

performed at each λ-window (see Methods). The gradients were extracted and analyzed with three 

different equilibration methods: AED (see On-the-fly optimization), a 2 ns equilibration period, 

and a 5 ns equilibration period. The equilibrated gradients were then decorrelated and averages 

were extracted. 10 short-run simulations were performed with Protocols A, B, C, and D for each 

mutation (see Table 1 for protocol details). 

As with the CDK2 mutations, the amount of simulation time applied to each λ-window 

varied by λ-window, simulation protocol, alchemical step, and mutation, as seen below in Figure 

8. We note that λ-windows of protein-ligand complex step with elevated simulation times in the 

Protocol A also tended to have elevated simulation times in Protocols B-D, and the same pattern 

holds with respect to Protocols B and C. This demonstrates that different λ-windows converge at 

different rates and that this pattern is consistent. This pattern is not clear in the solvated ligand step 

as these λ-windows converged much faster than the protein-ligand complex step. 
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Figure 8. A) Average simulation time applied to each λ-window of protein-ligand complex step by protocol 

and mutation. B) Average simulation time applied to the solvated ligand step by protocol and mutation. C) 

Overall average applied simulation time per replicate by mutation, alchemical step, and protocol. Blue bars 

A 

B 

C 
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represent Protocol A, orange bars Protocol B, green bars Protocol C, and red bars Protocol D. Error bars 

denote one standard error. 

 

Figure 9. A) Average Ligand 1 protein-ligand complex ΔG calculated from truncated gradients. B) Average 

Ligand 1 solvated ligand ΔG calculated from truncated gradients. C) Average Ligand 1 ΔΔGbind calculated 

from truncated trajectories. The blue line represents the mean ΔG or ΔΔGbind and the blue dashed line 

represents one standard error of the mean. The green line represents the mean long-run ΔG or ΔΔGbind 

calculated using AED, the green dashed line represents one standard error of the mean, and the red line 

denotes the length of the initial simulation. Convergence with the long-run simulations was typically 

achieved quickly, with a similar pattern observed for Ligands 2 and 3 (see Fig. S3 and S4). 

A 

B 

C 
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Figure 10. A) Average Ligand 4 protein-ligand complex ΔGs calculated from truncated gradients. B) 

Average Ligand 4 solvated ligand ΔGs calculated from truncated gradients. C) Average Ligand 4 ΔΔGbind 

calculated from truncated trajectories. The blue line represents the mean ΔG or ΔΔGbind and the blue dashed 

line represents one standard error of the mean. The green line represents the mean long-run ΔG or ΔΔGbind 

calculated using AED, the green dashed line represents one standard error of the mean, and the red line 

denotes the length of the initial simulation. Significant deviation in the protein-ligand complex step for this 

difficult mutation is observed for all short-run protocols and the long-run protocols. 

Average protein-ligand complex ΔG, solvated ligand ΔG, and overall ΔΔGbind of the short-

run simulations and long-run simulations with all three equilibration methods are tabulated in 

Table 2.  ΔΔGbind and alchemical step ΔG values obtained by each short-run protocol were within 

1.1 kcal/mol to those obtained by the long-run protocols. Ligand 4 ΔΔGbind values deviated more 

from their long-run counterparts than those obtained for Ligands 1-3, with absolute error of 0.6-

1.1 kcal/mol compared to 0.1-0.2 kcal/mol, respectively. For Ligand 4, the protein-ligand complex 

step was the major contributor to the absolute error (0.6-1.0 kcal/mol), while the contribution of 

solvated ligand step was considerably smaller (0.1-0.3 kcal/mol). This deviation did not alleviate 

with more simulation time in Protocols A-D (Fig. 10), indicating that the relevant timescales are 

outside the length of these short simulations (see Table 1 for protocol details). The larger error 

A 

B 

C 
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obtained for Ligand 4 can be explained by the difficulty of the mutation, which involves the 

mutation of the amine group into the methylaminosulfonyl group, as well as a benzene ring methyl 

group into a chlorine and a naphthalene ring hydrogen into a chlorine. This involves the mutation 

of seven heavy atoms as well as the overall addition of two rotatable bonds (Fig. 11). The 

methylaminosulfonyl group, which is flexible and solvent exposed, covers a larger area of the 

phase space and is thus more difficult to converge and requires more simulation time, as seen in 

Figure 12. Due to the presence of two rotatable bonds (C-S and S-N), the conformation of 

methylaminosulfonyl group can vary significantly during RBFE simulations (see Fig. 11 D-E and 

S5-S6). These conformations differ by interactions with the closest protein residues (D164, E167, 

Y268 and Q269; see Fig. 11 B-C). This results in considerable fluctuations in 
𝑑𝑉

𝑑𝜆
 gradient 

timeseries and therefore in a slow convergency of  〈
𝑑𝑉

𝑑𝜆
〉 at some λ-windows (see Fig S7). 

 

Figure 11. Fluctuations of the methylaminosulfonyl group of Ligand 4 in the protein-ligand complex step 

of RBFE simulations for PLpro. A) Structure of Ligand 4. Rotatable bonds of the methylaminosulfonyl 

group are indicated by grey arrows. Carbons atoms forming the corresponding dihedral angles are 
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numbered. B-С) The structures of PLpro in complex with Ligand 4 for the ligand conformation with C1-

C2-S-N dihedral angle of approximately 90° (B) and -90° (C) extracted from long-run MD simulations at 

λ = 0.5. The protein backbone is shown as the grey cartoon, the ligand and sidechains of residues within 5 

Å of the methylaminosulfonyl group are shown as sticks. D) The fluctuation of dihedral angles C1-C2-S-

N (left) and C2-S-N-C3 (right) during long-run MD simulations at λ = 0.5. The three independent replicates 

of long-run MD simulations are shown by green, orange and blue. E) Distribution of dihedral angles C1-

C2-S-N (left) and C2-S-N-C3 (right) at long-run MD simulations at λ = 0.5. 

 

Figure 12. A) Protein-ligand complex ΔGs from truncated gradients of long-run simulations calculated 

with AED. B) Solvated ligand ΔGs from truncated gradients of long-run simulations calculated with AED. 

C) ΔΔGbind values from truncated gradients of long-run simulations calculated with AED. Dotted lines 

A 

B 

C 
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represent individual replicates while the black solid and dashed lines represent means and standard errors, 

respectively. Ligand 4 does not converge until approximately 4 ns of simulation time, whereas Ligand 1 

converges much more quickly. 

To evaluate this discrepancy, we tested Protocol E on Ligand 4 (see Table 1 for protocol details), 

which yielded mean values of -6.61 ± 0.12, -5.01 ± 0.04, and -1.60 ± 0.12 kcal/mol for the protein-

ligand complex step, the solvated ligand step, and the overall calculation, respectively. Protocol E 

therefore provided the smallest absolute error in ΔΔGbind with respect to long runs (0.46-0.49 

kcal/mol) compared to other protocols. This suggests that for difficult mutations, longer initial 

simulation times are necessary.  

For the protein-ligand complex step of Ligand 4, Protocols A and D obtained the smallest 

deviation (~0.6 kcal/mol) regardless of equilibration protocol (see Table 1 for protocol details). 

For Ligands 1-3, all protocols performed similarly. As one can see from Figure 9, convergence 

with the long-run simulations was achieved quickly, which supports the use of short protocols for 

these smaller RBFE mutations. Overall, Protocols B utilized approximately 75% and 65% of the 

computational resources utilized by Protocol A for the protein-ligand complex step and solvated 

ligand step, respectively, whereas Protocols C and D both utilized approximately 50% and 45%, 

respectively. This was achieved with no accuracy penalty for Ligands 1-3 and a moderate accuracy 

penalty for Ligand 4 (~0.47, ~0.43, and ~0.07 kcal/mol, respectively). 

Table 2. Average RBFEs and their components of short-run and long-run simulations for PLpro 

by alchemical step, ligand (L), equilibration method (eq.), and protocol. 

Alchemical 

step 
L 

Long run (kcal/mol) Short run (kcal/mol)  

AED eq. 2 ns eq. 5 ns eq. Protocol A Protocol B Protocol C Protocol D 

Protein-

Ligand 

Complex 

1 3.87 ± 0.15  3.80 ± 0.11 3.80 ± 0.16 3.84 ± 0.08  3.78 ± 0.10 3.75 ± 0.04 3.88 ± 0.10  

2 -1.96 ± 0.03 -1.98 ± 0.03 -1.99 ± 0.04 -1.93 ± 0.02 -1.90 ± 0.03 -1.98 ± 0.05 -1.79 ± 0.03 

3 4.75 ± 0.11 4.82 ± 0.09 4.82 ± 0.14 4.80 ± 0.04 4.83 ± 0.04 4.75 ± 0.04 4.90 ± 0.07  

4 -7.02 ± 0.13 -7.03 ± 0.22 -6.97 ± 0.28 -6.40 ± 0.18 -6.04 ± 0.13 -6.23 ± 0.12 -6.44 ± 0.17 

Solvated 

Ligand 

1 4.91 ± 0.01  4.84 ± 0.02 4.88 ± 0.04 4.77 ± 0.03 4.89 ± 0.02 4.82 ± 0.04  4.87 ± 0.03 

2 -2.06 ± 0.01 -2.07 ± 0.01 -2.06 ± 0.05 -2.09 ± 0.02 -2.10 ± 0.00 -2.12 ± 0.02 -1.98 ± 0.03 

3 3.50 ± 0.02 3.50 ± 0.02 3.53 ± 0.01 3.52 ± 0.02 3.54 ± 0.00 3.51 ± 0.02 3.53 ± 0.03 

4 -4.96 ± 0.07 -4.94 ± 0.06 -4.90 ± 0.10 -4.99 ± 0.06 -5.11 ± 0.01 -5.26 ± 0.06 -5.10 ± 0.05 

Total 

RBFE 

(ΔΔGbind) 

1  -1.04 ± 0.14 -1.04 ± 0.09 -1.09 ± 0.13 -0.93 ± 0.08 -1.10 ± 0.11 -1.07 ± 0.05 -1.00 ± 0.11 

2  0.10 ± 0.02 0.09 ± 0.03 0.09 ± 0.05 0.16 ± 0.03 0.20 ± 0.04 0.14 ± 0.05 0.19 ± 0.06 

3  1.24 ± 0.13 1.32 ± 0.07 1.29 ± 0.13 1.28 ± 0.04 1.28 ± 0.05 1.24 ± 0.04 1.36 ± 0.07 

4 -2.06 ± 0.08 -2.09 ± 0.17 -2.06 ± 0.25 -1.41 ± 0.19 -0.94 ± 0.13 -0.97 ± 0.15 -1.34 ± 0.20 
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ABFE calculations for lysozyme. Four different simulation protocols were utilized: Protocol A, 

B, and C (see Table 1 for protocol details), as well as Protocol O, which was performed as a control 

group to evaluate the performance of our other protocol implementations. Protocol O consisted of 

4.5 ns of production simulation time per λ-window. The gradient timeseries were then extracted, 

equilibrated with a 0.5 ns equilibration period, and decorrelated. For each protocol, the average 

ΔGbind was computed as an average of the 39 independent calculations. The experimental ΔGbind 

value of -5.525 kcal/mol was used to evaluate the protocol performance. The average ΔGbind 

computed with Protocol A, B, C, and O were -5.31 ± 0.12 kcal/mol, -5.59 ± 0.14 kcal/mol, -5.46 

± 0.19 kcal/mol, and -5.36 ± 0.14 kcal/mol, respectively. MAEs and RMSEs of all four protocols 

are shown in Table 3. Note that values of batch sizes greater than one were calculated by 

resampling 1,000,000 samples of a given batch size with replacement and then averaging each 

sample. 

Table 3. MAE, RMSE and Computational Savings of ABFE Simulations for lysozyme.  

Simulation 

Protocol  

Batch 

Size 

MAE 

(kcal/mol) 

RMSE 

(kcal/mol) 

O 1 0.637 0.892 

A 1 0.617 0.772 

B 1 0.699 0.871 

C 1 0.945 1.176 

O 2 0.491 0.640 

A 2 0.454 0.566 

B 2 0.498 0.618 

C 2 0.669 0.833 

O 3 0.413 0.532 

A 3 0.382 0.476 

B 3 0.405 0.505 

C 3 0.546 0.681 

O 5 0.335 0.425 

A 5 0.315 0.392 

B 5 0.314 0.393 

C 5 0.423 0.529 

O 10 0.255 0.321 

A 10 0.225 0.313 

B 10 0.225 0.283 

C 10 0.301 0.376 
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In general, the MAE and RMSE of the control group (Protocol O) was comparable to that of 

Protocol A and B across all batch sizes, whereas Protocol C was significantly less accurate. 

Interestingly, Protocol A outperformed Protocol O with all batch sizes in both MAE and RMSE. 

Protocol B managed the same feat with batch sizes of 3, 5 and 10 in MAE and all batch sizes in 

RMSE. Significant computational savings were achieved on all alchemical steps using either 

Protocols A, B, or C, with Protocol C achieving approximately 60% average savings or greater 

across all alchemical steps (see Fig. S8), albeit with a significant accuracy penalty. Protocol A was 

able to improve accuracy across the board when measured by RMSE while achieving average 

savings of approximately 30-45% depending on the alchemical step. Of the protocols tested, 

Protocol B offered the best compromise between cost and accuracy with a batch size of 1, with 

approximately a 50% reduction in computational cost with comparable accuracy to Protocol O. 

All protocols and batch sizes obtained average error within 1 kcal/mol, which is comparable to the 

corresponding error reported in other studies.13,25,26 
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Figure 13. Lysozyme MAE, RMSE and overall ΔGbind calculated from truncated gradients. The dashed line 

represents one standard error of the mean value, the red line represents the length of the initial simulation 

period, and the green line represents the experimental value of ΔGbind. 

 As seen in Figure 13, the most significant accuracy gains were observed during the first 

nanosecond of production simulation time for Protocols A and B, whereas Protocol C displayed 

more muted gains. Protocol C displayed elevated inaccuracy at 1 ns of production simulation time 

when compared to Protocol A and B at the same time period, despite the fact that all protocols are 

equivalent at this point (see Table 1 for protocol details). This may indicate that Protocol C suffered 

from an uncommonly inaccurate batch of simulations, which may help explain its relative 

underperformance. All protocol average ΔGbind converge within 1-2 ns to within a standard error 

of the experimental value, which indicates that shorter maximum simulation times may be 

employed while maintaining accuracy.  

 As opposed to the RBFE results, repeated runs had a significant impact on MAE and 

RMSE. Within Protocol O, MAE decreased from 0.637 kcal/mol to 0.230 kcal/mol when moving 

from a batch size of 1 to 10. Protocols A, B, and C showed similar trends, with MAE decreasing 

from 0.617 kcal/mol to 0.225 kcal/mol, from 0.699 kcal/mol to 0.225 kcal/mol, and from 0.945 to 

0.301, respectively. The difference in MAE between Protocols A and B decreased from 0.082 

kcal/mol to 0.000 kcal/mol as batch size increased from 1 to 10. Similar results were achieved 

when comparing RMSE values, with Protocol B displaying a three-fold RMSE decrease and the 

difference between Protocols A and B RMSE decreasing from 0.101 kcal/mol to 0.030 kcal/mol, 

with Protocol B becoming superior, as batch size increased from 1 to 10 replicates. These results 

suggest that in high-throughput virtual screening campaigns utilizing ensembles of ABFE 

simulations, Protocol A or B will outperform other protocols with uniform resource allocation. 

Furthermore, while Protocol A can achieve higher accuracy in one-off simulations, albeit with 

significantly higher cost, this advantage evaporates as batch size increases. At a batch size of 10 

replicates, significant savings are realized with Protocol B with no relative accuracy penalty.  

ABFE PLpro. Three 100 ns simulations were performed at each λ-window. The gradients of the 

short-run simulations were evaluated against those of the long-run simulations in an analogous 

manner as described for the RBFE simulations. Similarly to the RBFE PLpro study, the amount of 

simulation time applied to each λ-window varied by λ-window, simulation protocol, and 

https://doi.org/10.26434/chemrxiv-2023-rtpsz ORCID: https://orcid.org/0009-0007-6643-7271 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-rtpsz
https://orcid.org/0009-0007-6643-7271
https://creativecommons.org/licenses/by-nc/4.0/


29 

 

alchemical step (see Fig. S9). We note once again that λ-windows in the protein-ligand complex 

and restraint addition alchemical steps with elevated simulation times in Protocol A tended to have 

elevated simulation times in Protocols B and C, with the analogous pattern holding for Protocols 

B and C (see Table 1 for protocol details).  

For all protocols, the protein-ligand complex and solvated ligand step short-run 

simulations, as well as the overall ΔGbind short-run simulations, converged quickly towards their 

respective long-run averages and were within error after 1-2 ns of simulation time, as seen below 

in Figure 14. The restraint addition step short-run simulations, however, remained well outside of 

error. Analysis of this alchemical step showed that regardless of equilibration protocol employed, 

over 40 ns of production simulation time per λ-window is required to achieve the average values 

of approximately 2 kcal/mol (Fig. 15), which is significantly more resources than can be dedicated 

for this purpose.  
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Figure 14. A) PLpro ABFE protein-ligand complex step ΔGs calculated from truncated gradients by 

protocol.  B) PLpro ABFE solvated ligand step ΔGs calculated from truncated gradients by protocol. C) 

PLpro ABFE restraint addition step ΔGs calculated from truncated gradients by protocol. A) PLpro ABFE 

overall ΔGbind values calculated from truncated gradients by protocol. The blue solid line represents the 

mean short-run value, the blue dashed line represents one standard error of the mean short-run value, the 

green solid line represents the long-run mean value calculated with AED, the green dashed line represents 

one standard error of the long-run mean value, and the red line represents the length of the initial simulation 

period. 
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Figure 15. A) PLpro ABFE long-run restrain addition step ΔG calculated from truncated gradients with a 

5 ns equilibration period. B) PLpro ABFE long-run restrain addition step ΔG calculated from truncated 

gradients with a 2 ns equilibration period. C) PLpro ABFE long-run restrain addition step ΔG calculated 

from truncated gradients with AED. The left column displays ΔG with a range of 2.5 kcal/mol, while the 

right column displays ΔG zoomed in. The dotted lines each represent an individual replicate while the black 

solid and dashed lines represent the average value and standard error, respectively. We note that the overall 

uncertainty was minimized with the AED equilibration protocol. 
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Average protein-ligand complex ΔG, solvated ligand ΔG, restraint addition ΔG and overall 

ΔGbind of the short-run simulations and long-run simulations with all three equilibration methods 

were computed and are tabulated in Table 4. 

Table 4 ΔGs of Short-Run and Long-Run PLpro ABFE Simulations by Alchemical Step. 

 

Overall 

ΔG 

(kcal/mol) 

 

Protein-

Ligand 

Complex 

(kcal/mol) 

 

 

Solvated 

Ligand 

(kcal/mol) 

 

Restraint 

Addition 

(kcal/mol) 

Protein-

Ligand 

Complex 

Simulation 

Time (ns) 

Solvated 

Ligand 

Simulation 

Time (ns) 

Restraint 

Addition 

Simulation 

Time (ns) 

Long-run AED 

Equilibration -8.21 ± 0.47 31.02 ± 0.50 17.32 ± 0.15 2.02 ± 0.05 900  900  700  

Long-run 2ns 

Equilibration -7.65 ± 0.85 30.50 ± 0.91 17.33 ± 0.15 1.97 ± 0.07 900  900  700  

Long-run 5ns 

Equilibration -7.85 ± 0.67 30.71 ± 0.71 17.32 ± 0.16 1.97 ± 0.06 900  900  700  

Protocol A -8.50 ± 0.21 31.42 ± 0.18 17.10 ± 0.12 1.68 ± 0.01 27.8 ± 0.4 22.9 ± 0.1 26.5 ± 0.4 

Protocol B -8.64 ± 0.31 31.61 ± 0.28 17.15 ± 0.13 1.69 ± 0.01 20.1 ± 0.6  15.7 ± 0.2 19.2 ± 0.5 

Protocol C -8.59 ± 0.31 31.56 ± 0.27 17.14 ± 0.14 1.67 ± 0.01 16.7 ± 0.4 11.3 ± 0.2 14.1 ± 0.5 

 

For both the protein-ligand complex and solvated ligand steps, there was not a significant 

difference between ΔGs obtained from the any of the short-run protocols and any of the long-run 

equilibration methods. While the restraint addition step did show significant deviation, the overall 

magnitude is small, and the errors are cancelled on average in the other alchemical steps. However, 

computational cost did vary across short-run protocols, with Protocol C converging in 

approximately 50-60% of the simulation time allocated to Protocol A depending on the alchemical 

step, with Protocol B falling between the two but closer to C.  

Conclusion 

We have presented a data driven procedure for the optimization of computational resources usage 

for both ABFE and RBFE calculations with thermodynamic integration. Our RBFE scheme affords 

up to 85% computational resource reduction when compared to the CDK2 benchmark system 

results published by Song et al, while maintaining average MAE of approximately 1 kcal/mol. Our 

protocols have successfully approximated long-run simulations of small RBFE mutations 

performed on the PLpro system, with the larger ligand 4 mutation deviating more significantly but 

still within 1 kcal/mol on average. Our ABFE schemes yield fast one-off calculations with similar 

accuracy when compared to a base case of uniform and constant resource allocation on the T4 
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Lysozyme L99A/M102Q mutant in complex with N-phenylglycinonitrile, and several 

implementations become more accurate while maintaining computational efficiency as batch size 

increases. ABFE PLpro simulations displayed strong agreement between long-run 100 ns 

simulations and short-run simulations, with no significant deviation observed in the protein-ligand 

complex step, solvated ligand step, or overall computed ΔGbind. 

For future high-throughput RBFE campaigns, we recommend dividing mutations into two 

groups: “easy” mutations, consisting of those with few changes in heavy atoms or rotatable bonds, 

and “difficult” mutations, consisting of those with many changes in heavy atoms and rotatable 

bonds. For the easy mutations, we recommend performing one-off simulations using very short 

protocols (Protocols C or D) as these have been shown to be just as accurate on both the CDK2 

and PLpro systems while achieving significant computational savings. For more difficult 

mutations, longer protocols are appropriate (Protocols A or E), as these require more sampling 

time to account for the larger amount of phase space available to the ligand. For future high-

throughput ABFE campaigns, we recommend using 3-5 replicates with Protocol B. If this is too 

expensive, Protocols C or D, or even shorter protocols can be employed; however, prior testing 

should be employed to ensure they are maintaining the requisite accuracy. In general, savings can 

be achieved by limiting the production simulation time of the solvated ligand and restraint addition 

steps, whereas resources should be concentrated on the protein-ligand complex step. This could be 

achieved by employing a mixed protocol utilizing Protocols A or B for the protein-ligand complex 

and Protocols C or D for the solvated ligand and restraint addition. 

Supporting Information 

• Schematic representation of virtual bond approach for protein-ligand restraints.  

• Average MAE, RMSE, and computational savings by alchemical step of RBFE simulations 

for the CDK2 benchmark system. 

• Representative RMSD plots for a long-run PLpro simulation. 

• Plots of average ΔΔGbind and its components for PLpro ligand 2 and 3 calculated from 

truncated trajectories. 

• Plots of dV/dλ convergency and dihedral angles distribution for PLpro ligand 4. 

• Average total simulation time of ABFE simulations for Lysozyme and PLpro systems. 
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