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Abstract 23 

The concept of molecular scaffolds as defining core structures of organic molecules is utilised 24 

in many areas of chemistry and cheminformatics, e.g. drug design, chemical classification, or 25 

the analysis of high-throughput screening data. Here, we present Scaffold Generator, a 26 

comprehensive open library for the generation, handling, and display of molecular scaffolds, 27 

scaffold trees and networks. The new library is based on the Chemistry Development Kit 28 

(CDK) and highly customisable through multiple settings, e.g. five different structural 29 

framework definitions are available. For display of scaffold hierarchies, the open GraphStream 30 

Java library is utilised. Performance snapshots with natural products (NP) from the COCONUT 31 

(COlleCtion of Open Natural prodUcTs) database and drug molecules from DrugBank are 32 

reported. The generation of a scaffold network from more than 450,000 NP can be achieved 33 

within a single day. 34 

 35 

Keywords: cheminformatics, Chemistry Development Kit, CDK, natural products, scaffold, 36 

scaffold tree, scaffold network, fragmentation, chemical space, clustering 37 

 38 

Introduction 39 

Scaffold concept and applications 40 

Molecular scaffolds, defined as the core structures of molecules and also referred to as 41 

chemotypes or frameworks in some studies, are a concept used in many areas of chemistry. 42 

In drug design, the scaffold of a molecule is considered the main structure that determines its 43 

shape and places the functional moieties into the right positions to interact with the target. For 44 

this reason, developing new drug molecules with different cores but similar biological activities 45 

has been termed “scaffold hopping” [1, 2]. Combinatorial chemistry makes use of the concept 46 
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in designing compound libraries by substituting a set of scaffolds with combinations of different 47 

side chains. And structures in chemical patents are often defined analogously as Markush 48 

structures [3]. The intuitive chemical scaffold concept can also be utilised for classification 49 

purposes, especially in natural product (NP) research [4-7]. In cheminformatics, scaffold-50 

based approaches can be applied for the analysis of high-throughput screening (HTS) data 51 

[6-10], mapping and visualising chemical spaces [5, 11], or even train-test splits of molecular 52 

data sets for machine learning projects [12].  53 

Another application of scaffold-based methods is identifying privileged substructures in active 54 

molecules or NP that can be used as lead structures in the development of new drugs [5, 13-55 

19]. Within NP chemical space, macrocyclic structures or cyclic peptides are of specific 56 

interest for these medicinal chemistry purposes [20-23]. 57 

 58 

Scaffold approaches in cheminformatics 59 

The first general definition of a molecular scaffold was the Murcko framework developed by 60 

Bemis and Murcko in 1996 [11]. According to this concept, a scaffold consists of all the rings 61 

in a molecule and the non-cyclic chains connecting them, called linkers. Excluded from the 62 

scaffold are all terminal side chains. In addition to the Murcko framework definition 63 

representing molecular properties like atomic elements and bond multiplicities, Bemis and 64 

Murcko introduced a more abstract representation that reduced each atom in the framework 65 

to a simple graph node and each bond to a simple graph vertex, called graph framework or 66 

archetype. The authors used their framework definitions to assess the structural diversity of a 67 

set of drug molecules.  68 

In addition to ignoring all non-cyclic molecules, the Murcko framework has one major 69 

drawback: small changes in the ring structure or the addition of a cyclic substituent, e.g. a 70 

benzene ring in drug design or a sugar moiety in NP research, can lead to very similar 71 

molecules not being grouped together due to non-equivalent scaffolds. Therefore, multiple 72 
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approaches have been developed for organising molecular scaffolds in a graph-based 73 

structure to relate similar scaffolds to each other and to create a systematic scaffold hierarchy 74 

[4, 5, 7, 9, 10, 13, 24-27]. 75 

Early work to this end was done by Xu and Johnson, who developed multiple concepts of 76 

dissecting Murcko frameworks into constituting ring systems or abstracting them into reduced 77 

representations. They used these concepts to assign molecular equivalence numbers to 78 

molecular structures and thus classify them within chemical libraries [25].  79 

Wilkens et al. in their hierarchical scaffold clustering (HierS) approach [10] use a scaffold 80 

definition similar to Murcko frameworks but additionally include all atoms that are directly 81 

attached to rings and linkers via multiple bonds. Non-cyclic molecules are taken into 82 

consideration as well and are assigned scaffolds based on their multiple bonds. To build a 83 

scaffold hierarchy, the original scaffold extracted from each molecule is dissected into its 84 

smaller parent scaffolds first. This is done by generating all smaller scaffolds that can result 85 

from the stepwise removal of ring systems, i.e. isolated single rings or fused multiple rings that 86 

share bonds or atoms, from the original scaffold. After the removal of one ring, linker atoms 87 

that have become side chains are also removed. The process is finished when only the 88 

individual ring systems are left. Via a substructure search, the scaffold hierarchy is constructed 89 

in the second step by linking parent and child scaffold if the smaller parent scaffold is a 90 

substructure of the bigger child scaffold. In the end, a tree-like hierarchy results with the 91 

individual ring systems as roots at the top, and their combinations in more complex scaffolds 92 

on the following levels. A scaffold that is not a single ring system has multiple parents in the 93 

hierarchy. 94 

While HierS overcomes most limitations of the Murcko framework approach and is a good first 95 

attempt for scaffold classification, it also has some disadvantages: ring systems are not split 96 

into their constituting single rings, which can be especially problematic when studying complex 97 

ring systems of NP where the approach may be too coarse-grained. In addition, child scaffolds 98 

are linked to multiple parents in the hierarchy, which is a multi-class assignment that is often 99 

undesirable for classification tasks. 100 
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The latter drawback of HierS is addressed in the structural classification of natural products 101 

(SCONP) approach by Koch et al. [5] that uses the same structural scaffold definition (apart 102 

from again ignoring linear molecules) but differs in its hierarchy construction routine. One 103 

major difference is that scaffolds are not dissected here. Only the directly extracted, original 104 

scaffolds of the studied molecule set are used to construct their relations in a tree-like fashion. 105 

A more complex scaffold is linked to only a single parent scaffold that is selected from all 106 

possible parent scaffolds representing substructures of the child following a set of chemical 107 

rules. These take characteristics of the parent scaffolds into account like hetero atom count, 108 

size, and frequency in the studied dataset. This last aspect makes the approach dataset-109 

dependent, which can lead to problems in classification tasks.  110 

A combination of scaffold dissection and single-parent assignments through chemical 111 

prioritisation rules is the scaffold tree approach by Schuffenhauer et al. [7]. As a first step, 112 

scaffolds are extracted from the given molecules according to the Murcko framework definition 113 

but additionally including all atoms connected via a double-bond to ring or linker atoms in the 114 

scaffolds. These elements are included as well to preserve correct hybridisation and structural 115 

alignment of the scaffold atoms. Via an iterative removal of rings, smaller parent scaffolds are 116 

created from the original child scaffolds. Ring perception for the removal is based on a smallest 117 

set of smallest rings (SSSR) approach. This way, ring systems sharing atoms or bonds 118 

between multiple rings are not considered as one entity but dissected into their constituting 119 

rings as well. One important aspect about the scaffold tree approach is the application of 13 120 

chemical prioritisation rules at every ring removal step. Following these rules, only one 121 

terminal ring is specifically selected for removal and only one possible parent scaffold created 122 

at every scaffold dissection step. The term “terminal” indicates that the removal does not result 123 

in a disconnected scaffold structure. The specific prioritisation rules take only molecular 124 

characteristics of the rings, like size, hetero atom count, and aromaticity, into account and aim 125 

at removing the less characteristic, peripheral rings first to extract the characteristic, central 126 

parent scaffold. The scaffold dissection process continues until only one ring remains. When 127 

studying a collection of molecules, their original scaffolds and sets of created parent scaffolds 128 
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are arranged in a hierarchy tree, the scaffold tree. Single-ring scaffolds form the roots and 129 

more complex scaffolds are placed at the higher levels. Due to the linear scaffold dissection 130 

process using the prioritisation rules, every child scaffold in the hierarchy is exclusively 131 

assigned to only one parent scaffold. Therefore, the scaffold tree represents a hierarchical, 132 

deterministic, and unique classification of chemical scaffolds. Unlike SCONP, it is dataset-133 

independent because it does not consider the frequency of a scaffold in the studied collection. 134 

In conclusion, the scaffold tree is a useful tool for scaffold-based classification and 135 

visualisation of large compound sets and can be successfully employed to identify active 136 

scaffolds in HTS data and promising candidates for drug development [6-8, 28-30].  137 

By definition of prioritisation rules, Schuffenhauer et al. intended to create a chemically intuitive 138 

classification system which opposes a classification focussing on pharmacophoric elements 139 

[7]. Also, its capability to identify biologically active substructural motives is limited because its 140 

exploration of possible parent scaffolds is limited due to the prioritisation rules. For this reason, 141 

Varin et al. introduced the concept of scaffold networks [9], where scaffolds are extracted and 142 

dissected analogously but without the application of prioritisation rules. In this way, every 143 

possible parent scaffold is generated for a given original scaffold and the resulting hierarchy, 144 

the scaffold Network, contains multi-parent relationships between its nodes. Varin et al. 145 

generated considerably more active scaffolds in primary screening data using scaffold 146 

networks compared to the scaffold tree approach. The reason for this is the exhaustive 147 

enumeration of parent scaffolds which leads to the scaffold network containing significantly 148 

more scaffolds than a scaffold tree. Additionally, a scaffold is not linked to all parent scaffolds 149 

that are substructures of it in the scaffold tree, only to the one determined as its characteristic 150 

core. As a consequence, this scaffold may be regarded to be less active.  151 

The scaffold network approach explores the scaffold space more exhaustively and supports 152 

the identification of areas that a specific compound set does not cover. In addition, more virtual 153 

scaffolds can be identified, i.e. scaffolds that are only generated as a result of scaffold 154 

dissection and do not appear directly as original scaffolds in the given molecular structures. 155 
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When studying a compound set linked to bioactivity data, these structures are usually of high 156 

interest when appearing frequently in active molecules [29, 30]. 157 

On the other hand, scaffold networks can become large and complex with a comparably small 158 

number of molecules, which makes it difficult to visualise them. When linked to bioactivity data, 159 

Varin et al. suggest to only include islands of relevant, active scaffolds in the display.  160 

As a conclusion, scaffold trees are generally more suitable for a complete visualisation and 161 

overview of the defining motives and structural classes in a limited compound set. Whereas 162 

scaffold networks can be seen as more helpful for analysing compound sets linked with 163 

bioactivity data to reasonably limit the display and identify active substructural motives [9].  164 

An even more extensive scaffold network approach was published recently by Manelfi et al., 165 

named “Molecular Anatomy” [26]. While the aforementioned approaches mostly rely on one 166 

single scaffold definition, respectively, nine different scaffold types of different abstraction 167 

levels were introduced here. All of them can be dissected analogously into parent scaffolds 168 

and linked in a network representation. This way, common substructure patterns can be 169 

identified on a higher abstraction level than with scaffold networks and more relevant similar 170 

compounds determined. This may be helpful for analysing HTS data or preparing structure 171 

activity relationship (SAR) studies of scaffolds and their side chains. However, this type of 172 

scaffold network including also more abstract scaffold representations has an even stronger 173 

tendency to grow very quickly with an increasing number of included structures and hence to 174 

quickly become unfathomable without sensibly limiting the display.  175 

An analogous scaffold tree-like approach to hierarchical clustering based on Xu and Johnson’s 176 

more abstract scaffold representations was published by Medina-Franco et al. [24]. Here, 177 

scaffolds are not dissected into parent scaffolds but clustered in a tree structure based on 178 

scaffold representations with a lower chemical resolution at each higher level. 179 

An inherently different approach to scaffold generation and clustering are methods based on 180 

analog series. Here, no a priori scaffold definition like the Murcko framework is applied. 181 

Instead, all structures in a given set are grouped into analog series based on methods like 182 

matched molecular pairs with additionally deriving precursor structures using the RECAP 183 
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(Retrosynthetic Combinatorial Analysis Procedure) [31] rules. This way, the scaffolds 184 

extracted as representatives of an analog series take synthetic accessibility into account, an 185 

important aspect in medicinal chemistry but mostly ignored in the approaches above. The 186 

analog series and their representative scaffolds can be visualised by R-group tables, mapped 187 

into coordinate-based chemical space [32], annotated with activity information to support SAR 188 

studies, or used to extract favourable lead structures for drug design campaigns [17, 18, 33-189 

38]. 190 

 191 

Open implementations 192 

Most of the original software tools implementing the scaffold-based approaches described in 193 

the previous section have not been published openly (Murcko frameworks, SCONP, scaffold 194 

tree) or are not findable anymore (HierS). As a result, a number of open re-implementations 195 

and more advanced, versatile software for scaffold analyses has been developed and 196 

published [28, 29, 39-44]. 197 

The first open software application that implemented a scaffold tree was Scaffold Hunter [28, 198 

29, 39]. Starting as a tool mainly for generating and visualising scaffold trees, it has evolved 199 

into a multi-functional cheminformatics platform for visual data analysis. By default, the 200 

prioritisation rules are applied as published by Schuffenhauer et al. [7], but they can be 201 

customised by the user or even turned off completely. Varin et al. used the latter option to 202 

generate their scaffold networks using Scaffold Hunter [9]. The rich-client application is 203 

implemented in Java and employs the Chemistry Development Kit (CDK) [45-47] for 204 

cheminformatics tasks.  205 

The open command-line tool Scaffold Network Generator [41] was designed to generate both, 206 

scaffold trees and scaffold networks. It lacks the extensive visualisation functionality of 207 

Scaffold Hunter but can therefore be integrated into automated analysis workflows that do not 208 

require human interaction. Scaffold Network Generator was implemented in Java as well and 209 
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employs the CDK and Open Babel [48] cheminformatics toolkits. Unfortunately, it cannot be 210 

found at the internet address given in the original publication anymore. 211 

The cheminformatics toolkit RDKit [49] recently integrated an extensive scaffold network 212 

functionality into its range of capabilities [40]. The module named “rdScaffoldNetwork” 213 

primarily offers the generation of scaffold networks based on a HierS-like scaffold dissection 214 

(no splitting of fused rings). Custom fragmentation rules can be added in the form of reaction 215 

SMARTS [50]. In addition, more abstract atom- and bond-generic scaffold representations can 216 

be generated. The new functionality has been employed in a study evaluating different 217 

approaches to automate chemical series classifications in medicinal chemistry [51]. 218 

These three open software tools for scaffold-based analyses are only a limited number of 219 

examples for many more such tools developed in the past years [42-44].  220 

 221 

Motivation 222 

Structural scaffold analyses are relevant in diverse areas of cheminformatics, e.g. clustering, 223 

visualisation of chemical spaces, and SAR analyses [4-10, 26, 30]. Hence, numerous open 224 

software tools for such purposes have been developed [28, 29, 39-44]. The popular 225 

cheminformatics toolkit RDKit even integrated scaffold functionalities into its core modules. 226 

For the Chemistry Development Kit, only the generation of Murcko frameworks is currently 227 

available [52]. Outside core CDK, there is no open scaffold software library exclusively based 228 

on CDK to use in workflows and software based on the toolkit. Scaffold Hunter implemented 229 

its scaffold functionalities as part of a software application, and they cannot be easily extracted 230 

from it. Scaffold Network Generator is based on CDK but on Open Babel as well and not 231 

findable anymore. 232 

Here, we present Scaffold Generator, an open, stand-alone Java library for scaffold 233 

functionalities based on CDK, to fill this void. It offers the generation of scaffold trees and 234 
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scaffold networks with comprehensive additional scaffold-related functionalities. An integration 235 

into the main CDK modules is intended. 236 

 237 

Implementation 238 

The Scaffold Generator library was implemented in Java version 17 and is based on the 239 

Chemistry Development Kit (CDK) version 2.8. The openly available source code can be found 240 

on GitHub: https://github.com/Julian-Z98/ScaffoldGenerator. With Scaffold Generator, 241 

different scaffold representations can be extracted from given molecules, dissected into parent 242 

scaffolds in multiple ways, and organised in scaffold trees and networks. These can be 243 

visualised using the GraphStream library version 2.0 [53, 54].  244 

 245 

Available Functionalities 246 

Scaffold types 247 

Molecules are passed to Scaffold Generator as instances implementing the central CDK 248 

molecular structure representation, the IAtomContainer interface [55]. From these, molecular 249 

scaffolds can be extracted according to different scaffold definitions available. These include 250 

the Murcko framework and the scaffold definition used in most of the established approaches, 251 

like HierS or the scaffold tree. It is based on Murcko frameworks but additionally includes all 252 

atoms connected to ring or linker atoms via double-bonds [7, 10]. In Scaffold Generator, this 253 

has been extended to all atoms connected via non-single bonds to cyclic or linker atoms. 254 

Higher bond orders than 2 are considered rare in such configurations but they influence the 255 

hybridisation and structural configuration of the scaffold as strongly as exocyclic or exolinker 256 

double-bonds. Another crucial aspect to consider here is the synthetic accessibility of the 257 

represented scaffolds that is significantly influenced by the presence or absence of exocyclic 258 

https://github.com/Julian-Z98/ScaffoldGenerator
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or exolinker multi-bonds. Additionally, two more abstract scaffold representations taken from 259 

Molecular Anatomy are available in Scaffold Generator: basic framework and basic wireframe 260 

[26]. Similar abstracted scaffold definitions have been described in earlier works as well, like 261 

the graph framework by Bemis and Murcko (analogous to basic wireframe) or the aryl cyclic 262 

system by Xu and Johnson (analogous to basic framework), but the naming was chosen here 263 

in analogy to Molecular Anatomy. A fifth scaffold type was analogously termed elemental 264 

wireframe. Here, all bonds are abstracted to single bonds, but hetero atoms are preserved 265 

(Figure 1). For the creation of scaffolds of all types, the CDK MurckoFragmenter class [52] is 266 

used internally and the extracted Murcko framework is post-processed according to the 267 

chosen scaffold type if necessary. If a given molecular structure has no rings, no scaffold can 268 

be extracted and an empty IAtomContainer instance is returned. 269 

 270 

 271 

Figure 1: Different scaffold types available in Scaffold Generator. A) Unaltered structure 272 

of the antibiotic agent flucloxacillin (PubChem CID 21319). B) Murcko framework of 273 

flucloxacillin. C) Scaffold of flucloxacillin. D) Elemental wireframe of flucloxacillin. E) Basic 274 

framework of flucloxacillin. F) Basic wireframe of flucloxacillin. 275 

 276 
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Another functionality of Scaffold Generator is to return the building blocks of scaffolds, i.e. 277 

rings and linkers, separately. The terminal side chains excluded from the scaffold structure 278 

can also be extracted (Figure 2). 279 

 280 

 281 

Figure 2: Dissection of scaffolds into building blocks. A) Flucloxacillin with its Murcko 282 

framework marked in blue. B) Rings of flucloxacillin marked in blue. It is important to note that 283 

the fused ring system on the right would be split into its two constituting rings in the structure 284 

set returned by the described routine of Scaffold Generator. C) Linkers of flucloxacillin marked 285 

in blue. D) Terminal side chains of flucloxacillin marked in blue. 286 

 287 

Ring detection 288 

Scaffold Generator dissects fused ring systems, i.e. rings that share bonds or atoms, into their 289 

constituting separate rings. This is the case not only when returning scaffold building blocks 290 

but also for the generation of parent scaffolds (see below). Internally, the CDK Cycles.relevant 291 

cycle finder algorithm is employed for ring detection. This algorithm detects the logical union 292 
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of all smallest sets of smallest rings (SSSR, also minimum cycle basis, MCB) in the given 293 

molecule [56, 57]. This way, fused ring systems are not detected as one entity, but their 294 

constituting cycles are detected separately. The Cycles.relevant cycle finder was chosen for 295 

Scaffold Generator to be in accordance with the original scaffold tree implementation [7]. But 296 

in rare cases, this cycle detection algorithm identifies too many rings in a given molecule, 297 

defined as more rings than there are atoms in the structure. One example is the natural product 298 

(NP) CNP0103752, taken from the COCONUT [58] database (Figure 3). Since the overarching 299 

ring connecting all 11 glycosidic rings in the structure can be detected on many different paths, 300 

Cycles.relevant detects 2059 rings here. In cases like this, i.e. more rings are detected than 301 

there are atoms in the molecule, Scaffold Generator uses the algorithm Cycles.mcb instead, 302 

which identifies one single set of SSSR/MCB instead of the logical union of all possible ones 303 

[56, 57]. In CNP0103752, it detects a more useful number for this application of 12 cycles.  304 

 305 
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 306 

Figure 3: Rings of CNP0103752 taken from COCONUT. The CDK Cycles.relevant algorithm 307 

identifies 2059 rings here while Cycles.mcb detects 12.  308 

 309 

Ring removal 310 

In the parent scaffold generation routines (see below), only rings adhering to a set of criteria 311 

are considered for removal at the individual dissection steps. The first requirement is that a 312 

ring needs to be terminal, i.e. its removal must not result in a disconnected scaffold structure. 313 

This is checked internally by removing all atoms and bonds constituting the respective ring 314 

from the scaffold, discarding potential side chains that were connected to it, e.g. when the 315 
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scaffold structural definition is used, and assessing whether the structure does not consist of 316 

multiple disconnected parts afterwards. If it does, the ring in question is not deemed terminal 317 

and hence not removable. This routine of checking for terminal rings has two major 318 

consequences: Internal rings that could be removed without resulting in a disconnected 319 

structure by turning some of their atoms and bonds into linker structures are still not considered 320 

terminal (Figure 4a). Secondly, the removal of rings from a scaffold cannot result in an 321 

artificially created spiro-ring system in Scaffold Generator (Figure 4b). Such cases are 322 

described in the original scaffold tree publication [7] and the fifth prioritisation rule there is 323 

intended to prevent them if other rings can be removed first. But they are possible in general 324 

and would appear in a set of all possible parent scaffolds. Because the conversion of ring 325 

atoms to linker atoms and the artificial creation of spiro-ring systems are chemically non-326 

intuitive when generating parent scaffolds, these possibilities have been excluded in Scaffold 327 

Generator. 328 

 329 

 330 

Figure 4: Impossible parent scaffolds in Scaffold Generator. A) Dodecahydro-s-indacene 331 

(PubChem CID 13214318) representing an example scaffold cannot be dissected in a way 332 

that turns former ring atoms into linker atoms in the created parent scaffold. B) 333 

Tricyclo[7.2.1.01,6]dodecane (PubChem CID 12758808) representing an example scaffold 334 

cannot be dissected in a way that creates a parent scaffold with a spiro-ring system which was 335 

not there in the molecule before. 336 
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 337 

Another requirement to consider a ring for removal is that it must contain at least one atom 338 

that is not part of another ring as well. This criterion is adopted from the original scaffold tree 339 

publication [7]. Here, the authors explain it with the example of adamantane. Using a ring 340 

detection algorithm that identifies the logical union of all SSSR in a structure, four rings are 341 

identified here and no atom is part of only one of them (compare Schuffenhauer et al. [7] 342 

Scheme 2). Hence, the removal of one ring is not possible because its atoms and bonds that 343 

are part of other rings as well are generally preserved in the Scaffold Generator ring removal 344 

routines. Structures like adamantane are therefore not dissected at all.  345 

A similar case of structures that cannot be dissected are specific fused aromatic systems, i.e. 346 

aromatic rings that share the same atom with at least two other rings. When removing an 347 

aromatic ring sharing a bond with another ring, Scaffold Generator turns the shared bond into 348 

a double-bond to preserve the correct hybridisation of the formerly shared atoms in the 349 

remaining ring. In arrangements where the aromatic ring to remove shares an atom with at 350 

least two other rings, this double-bond insertion is not possible without violating valence rules. 351 

Such structures are not dissected as a consequence. This behaviour follows the ring removal 352 

algorithm described in the original scaffold tree publication (compare Schuffenhauer et al. [7] 353 

Scheme 3). But Scaffold Generator makes one addition here: In the original scaffold tree, this 354 

double-bond insertion is only done if an aromatic ring is fused to a non-aromatic ring and the 355 

aromatic ring is removed. In Scaffold Generator, it is also done if the remaining ring is aromatic 356 

as well. This addition has been made to preserve hybridisations and aromaticity in the 357 

remaining ring and to ensure that aromatic ring systems, if they can be dissected, are 358 

decomposed into parent scaffolds that can always be represented as valid contributing 359 

structures (as opposed to resonance hybrids). As a consequence, Scaffold Generator does 360 

not dissect most fused aromatic ring systems, e.g. pyrene. In these systems, most rings 361 

cannot be removed without altering hybridisations and bond orders in the remaining ones. And 362 

since a partial dissection does not appear reasonable because it would not produce 363 

meaningful parent scaffolds, these structures are not dissected at all. A possible future 364 
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extension to Scaffold Generator could be a routine that extracts meaningful parent scaffolds 365 

from fused aromatic systems, e.g. a benzene ring as root scaffold from pyrene and similar 366 

structures.  367 

Another specially treated system are rings of size three containing one hetero atom that share 368 

the bond opposite to the hetero atom with another ring (Figure 5). When rings like this are 369 

removed, the shared bond is turned into a double bond to produce the precursor structure the 370 

hetero atom was most likely added to. This special case is described in the first ring removal 371 

prioritisation rule by Schuffenhauer et al. [7] but is part of the general ring removal routine of 372 

Scaffold Generator. This deviation from the original implementation does not influence the 373 

parent scaffold generation according to the scaffold tree prioritisation rules but is important to 374 

note for the enumerative generation of all possible parent scaffolds (see below).  375 

 376 

 377 

Figure 5: Removal of 3-membered hetero cycles. If the oxirane ring marked in blue is 378 

removed from himeyoshin (COCONUT CNP0151718) during parent scaffold generation, the 379 

bond shared with the cyclohexanone ring is turned into a double bond.  380 

 381 

Scaffold trees and networks 382 

Using Scaffold Generator, extracted molecular scaffolds can be dissected in different ways. 383 

The first one, as described above, is to decompose it into the constituting building blocks, i.e. 384 

rings and linkers. Another option is the enumerative removal that generates all possible parent 385 

scaffolds. At every iteration step, each ring adhering to the criteria listed above is removed 386 

separately to produce the resulting parent scaffold. This is repeated until only single-ring 387 
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scaffolds remain, or no ring is removable anymore. These final scaffolds are called the root 388 

scaffolds. All generated parent scaffolds are substructures of the original scaffold. An example 389 

for the enumerative removal is shown in Figure 6. This routine can be applied to a given 390 

molecule and it returns a list with all possible parent scaffolds plus the original scaffold of the 391 

molecule. Parent scaffolds generated multiple times in the enumerative removal are returned 392 

only once. This scaffold dissection routine is the basis for generating scaffold networks. The 393 

dissection result of a single molecule can already be represented as a scaffold network by 394 

returning it as the corresponding data structure instead of a list.  395 

 396 

 397 

Figure 6: Enumerative parent scaffold generation of flucloxacillin. Conceptual depiction 398 

of the enumerative parent scaffold generation routine applied to the scaffold of flucloxacillin 399 

(on the left). All possible parent scaffolds that can be created through the removal of a terminal 400 

ring are created. Marked in blue are all structures that are returned by the routine, indicating 401 

that structures occurring multiple times are still returned only once.  402 

 403 
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Scaffold Generator implements the 13 chemical prioritisation rules that are applied in the 404 

original scaffold tree publication to specifically select only one parent scaffold at every scaffold 405 

dissection step [7]. In principle, these rules are applied to select only one ring removal path 406 

from all possible ones that are pursued in the enumerative removal (compare Figure 6). Only 407 

a few minor changes have been done to the original rules and underlying routines as reported 408 

above. Additionally, the final tie-breaking rule has been adapted to use unique SMILES 409 

representations [59, 60] as produced by the CDK, instead of canonical ones. From a given 410 

molecular structure, Scaffold Generator can generate a list of all parent scaffolds resulting 411 

from the Schuffenhauer dissection routine, plus the original scaffold (Figure 7). It produces the 412 

structures that can be used to build a scaffold tree in the second step. As with scaffold 413 

networks, a scaffold tree can already be constructed from a single molecule as well. 414 

 415 

 416 

Figure 7: Schuffenhauer parent scaffold generation of flucloxacillin. Conceptual 417 

depiction of the parent scaffold generation routine employing the Schuffenhauer prioritisation 418 

rules applied to the scaffold of flucloxacillin (on the left). The rules are used to select only one 419 

parent scaffold out of all possible ones at every dissection step.  420 

 421 

The main functionality of Scaffold Generator is the construction of scaffold trees and networks 422 

from given molecule collections (Figure 8). In the first step, the first molecule in the given 423 

collection is dissected into its parent scaffolds and the result is used to build the starting point 424 

of the desired structure. One by one, the remaining molecules are decomposed as well and 425 

their original scaffolds and parent scaffolds added to the tree or network if they are not already 426 

part of it. Scaffold Generator implements data structures that manage the graph nodes 427 

representing scaffolds and their parent-child connections as edges in scaffold trees and 428 
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networks. Both graphs are subdivided into levels with the root scaffolds on level 0 and their 429 

child scaffolds on the consecutive levels. The leaves are formed by the original scaffolds of 430 

the given molecules. But it is important to note that lower levels down to the roots can contain 431 

original scaffolds as well, e.g. when single-ring molecules are part of the given molecular set. 432 

The merging routines that are employed in the construction of a tree or network to add more 433 

scaffolds to it are also accessible after the final structures have been returned. 434 

 435 
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 436 

Figure 8: Scaffold network and tree depicted with the Scaffold Generator GraphStream 437 

visualisation. The scaffold network (a) and scaffold tree (b) of diazepam (PubChem CID 438 

3016) (1), bromazepam (PubChem CID 2441) (2), and zolazepam (PubChem CID 35775) (3) 439 
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are displayed side-by-side for direct comparison (original scaffolds marked in blue). All three 440 

compounds are diazepinenones, a class of anxiolytics. The scaffold tree correctly identifies 441 

the diazepinenone ring as root scaffold of all three structures. But the scaffold network 442 

additionally reveals that diazepam (1) shares two-ring parent scaffolds with both the other 443 

structures, respectively. It also shows that the benzene ring is shared by all three compounds 444 

as well.  445 

 446 

The scaffold tree and network structures differ in some aspects: In scaffold trees, each node 447 

has only one parent node. This results from the Schuffenhauer scaffold dissection where a 448 

scaffold produces only one parent scaffold in each step. In scaffold networks, on the other 449 

hand, a node can have multiple parents since a scaffold usually produces multiple parent 450 

scaffolds in each step during the enumerative removal.  451 

Another distinct aspect of scaffold trees is that only those molecules with their original 452 

scaffolds and parent scaffolds can be combined in one tree that share the same root scaffold. 453 

This is the scaffold (usually a single-ring scaffold) which results as parent scaffold in the final 454 

step of the Schuffenhauer dissection. It is unambiguously determined by the prioritisation 455 

rules. Scaffold Generator compiles the generated scaffolds of multiple molecules in one 456 

scaffold tree instance if they have the same root scaffold. If molecules with different root 457 

scaffolds are given in the molecule set, multiple scaffold tree instances will be created and 458 

returned in a list, termed scaffold forest in the nomenclature of Scaffold Generator. In the 459 

construction of scaffold networks, only one parent scaffold, i.e. at least one ring, needs to be 460 

shared between two molecules to be able to combine them in one network. But the scaffold 461 

network data structure of Scaffold Generator is also able to handle multiple disconnected 462 

graphs of scaffolds in one instance, unlike the scaffold tree structure.  463 

The tree and network data structures can generate an adjacency matrix representation of 464 

themselves that can be used for export or visualisation. Scaffold Generator offers an initial 465 

visualisation functionality for scaffold trees and networks based on the GraphStream library. 466 

The two structures can be visualised as graphs in a Java Swing application window. A layout 467 
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algorithm attempts to place the nodes and edges as readable as possible but modifications to 468 

the layout can be done by dragging nodes. The display can also be zoomed and moved using 469 

key commands. Some figures in this publication have been created using the Scaffold 470 

Generator GraphStream display (Figures 8 and 9). While this visualisation was helpful during 471 

the development process for visual inspection and debugging, it is not considered powerful 472 

enough for real-world use cases and will most likely not be part of a CDK integration of Scaffold 473 

Generator. A scaffold hierarchy visualisation tool that might sprout from Scaffold Generator as 474 

a separate project would have to be very interactive, i.e. zoomable, draggable, and 475 

collapsable. Especially scaffold networks tend to grow very fast with the number of included 476 

molecules. Therefore, their display needs to be limited in a comprehensive way, e.g. by only 477 

visualising islands of active scaffolds as proposed by Varin et al. [9]. Scaffold trees can 478 

become big as well, but they have the advantage that one can look at only one tree out of the 479 

forest at a time since they are disconnected.  480 

When a tree or network is constructed, a crucial step is querying whether a scaffold is already 481 

part of it. This matching is done using SMILES representations of the scaffolds. The default 482 

setting is to use unique SMILES with aromaticity encoding but without stereochemical 483 

information. This can be adjusted, e.g. to include stereochemistry. Scaffold Generator 484 

generally retains given stereochemical information during scaffold creation and dissection by 485 

transferring the CDK IStereoElement [61] objects to the newly created structures. But this only 486 

works if all defining elements of a stereo group, i.e. atoms and/or bonds, are still present in 487 

the generated substructures. Since in the majority of cases side chains define stereochemistry 488 

and stereochemical information is often not given or incomplete in molecular data sets, the 489 

consideration of given stereochemical information in tree or network construction is turned off 490 

per default as stated above. But it can be enabled for use cases where it is relevant (Figure 491 

9). Other molecular characteristics that can generally be taken into account or not (depending 492 

on the specific use case) for the determination of equivalence between two structures in 493 

cheminformatic analyses are tautomeric forms or protonation states, for example. 494 
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Standardising these structures if needed has to be done in a data curation protocol that is 495 

applied to the input structures before they are passed to Scaffold Generator. 496 

 497 

 498 

Figure 9: Scaffold tree with activated stereochemistry consideration. The Scaffold tree 499 

of (+)-thalidomide (PubChem CID 75792, on the left) and (-)-thalidomide (PubChem CID 500 

92142, on the right) with activated stereochemistry consideration is shown in the Scaffold 501 

Generator GraphStream display. If the consideration of stereochemistry in tree building was 502 

turned off, both compounds would be sharing the same two-ring scaffold as well.  503 

 504 

The instances representing scaffold nodes in the trees and networks contain structural 505 

information about their scaffold and have references to their parents in the hierarchies. 506 

Additionally, they preserve SMILES codes of their origin molecules, i.e. structures from the 507 

data set that possess the respective scaffold. These origins are subdivided into virtual and 508 

non-virtual ones. Non-virtual origin molecules are those that have the node scaffold as their 509 

original scaffold, e.g. their Murcko framework. Virtual origins on the other hand are molecules 510 

that generate the respective scaffold only through enumerative or Schuffenhauer dissection, 511 

i.e. it is one of their parent scaffolds. This concept has been introduced in Scaffold Generator 512 

based on the definition of virtual scaffolds described in the literature [29, 30]. This term denotes 513 

scaffolds that are not directly in the data set but only identified when parent scaffolds are 514 

generated. If a scaffold node has only virtual origins, it is a virtual scaffold in Scaffold 515 

Generator. When analysing the results of a high-throughput screening (HTS) campaign, virtual 516 

scaffolds can be of particular interest if many of their child scaffolds exhibit bioactivity. A 517 
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promising next step can be a second screening with a smaller library based on this scaffold 518 

because the first screen might have failed to include the true active scaffold structure. 519 

An annotation of scaffold nodes in trees or networks with e.g. bioactivity data can be achieved 520 

via the stored origin molecules as well. One way to do this is to deposit the (unique) SMILES 521 

representation of the molecules in the studied data set linked to the respective annotation in 522 

a map structure. After the hierarchy is generated, its nodes can be annotated through 523 

comparing the origin molecule SMILES codes with the previously compiled annotation map. 524 

This way, e.g. scaffold nodes could be coloured according to bioactivity [7] or the hierarchy 525 

display limited to active scaffolds [9] in a more advanced visualisation tool as proposed above. 526 

During the development of Scaffold Generator, it was decided against keeping the original 527 

IAtomContainer instances with their structures and properties as origin references in favour of 528 

only their SMILES representations to reduce random-access memory (RAM) consumption.  529 

 530 

Aromaticity handling 531 

Aromaticity information and detection is relevant in multiple Scaffold Generator functionalities. 532 

As stated above, when an aromatic ring is removed, bonds it shares with other rings are turned 533 

into double bonds in some cases to preserve hybridisations and aromaticity. Since this is not 534 

possible in all configurations, aromaticity information is also relevant in the determination of 535 

possibly removable rings (see above). And many fused aromatic ring systems, e.g. pyrene, 536 

are not dissected by Scaffold Generator as a result.  537 

Aromaticity information is also significant in two of the 13 scaffold tree prioritisation rules for 538 

parent scaffold determination, namely rule 7 "A Fully Aromatic Ring System Must Not Be 539 

Dissected in a Way That the Resulting System Is Not Aromatic Any More") and rule 11 "For 540 

Mixed Aromatic/Nonaromatic Ring Systems, Retain Nonaromatic Rings with Priority") [7]. The 541 

seventh rule makes it necessary to generate all possible parent scaffolds producible by the 542 

removal of one ring at the given dissection step and apply aromaticity determination to each 543 

of them to assess whether aromaticity was lost in the remaining ring(s). Because this 544 
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consumes a lot of computation time and aromaticity should be conserved in most cases 545 

through the double-bond insertion, the application of the seventh prioritisation rule can be 546 

turned off individually in Scaffold Generator.  547 

Aromaticity determination in CDK and hence in Scaffold Generator is carried out by 548 

Aromaticity instances [62] constructed from the combination of an ElectronDonation model 549 

[63] and a CycleFinder algorithm [56]. The former defines which atom types can contribute 550 

how many electrons to the aromatic system and the latter determines the cycles that can form 551 

them. All aromaticity models in CDK loosely follow the Hückel rule heuristic [62]. The specific 552 

Aromaticity instance used in Scaffold Generator can be configured because different models 553 

are suited for different applications.  554 

Since multiple intermediate steps in scaffold dissection rely on aromaticity information of 555 

specific substructures, an initial aromaticity detection is applied at the primary scaffold 556 

generation. And again at the end of a scaffold dissection process, a final aromaticity detection 557 

is applied to all generated parent scaffolds to make sure that the aromaticity information stored 558 

on the scaffold objects is in agreement with the returned structures. This last step might lead 559 

to cases where the same ring is not detected as aromatic in a smaller parent scaffold but in 560 

the bigger child scaffold in which it is a substructure. This is due to the cycle finder algorithms 561 

usually employed for aromaticity detection that are not SSSR-/MCB-based but also take cycles 562 

into account that span multiple rings of the molecule. It should be interpreted in the way that 563 

the ring in the parent scaffold gained aromaticity in the child scaffold through combination with 564 

other rings.  565 

An additional option is to turn off aromaticity detection completely in all Scaffold Generator 566 

routines. This was implemented because this process takes a lot of time and makes the results 567 

of scaffold dissection routines dependent on mostly toolkit-specific and heuristic aromaticity 568 

models. If it is disabled, initially defined aromaticity information in the input structures is 569 

preserved. 570 

It must also be noted here again that all aromaticity models in CDK are based on the Hückel 571 

rule, which is the most used heuristic for aromaticity determination but not the only one and 572 
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has a long list of exemptions. Furthermore, it is only a heuristic determination method for the 573 

concept of aromaticity, which is itself not uniquely defined [64-67]. 574 

 575 

Settings and options 576 

Table 1: Settings and options of Scaffold Generator. The settings listed in this table 577 

together with their options and default values are available in Scaffold Generator to adjust its 578 

results to specific use cases. 579 
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Setting name Options Default 

Scaffold mode - Scaffold 

- Murcko framework 

- Basic wireframe 

- Basic framework 

- Elemental wireframe 

Scaffold 

Determine aromaticity true/false true 

Aromaticity model All combinations of 

CycleFinder and 

ElectronDonation instances 

available in CDK 

ElectronDonation.cdk and 

Cycles.cdkAromaticSet 

Retain only 

hybridisations at 

aromatic bonds 

true/false false 

Rule seven applied 

("A Fully Aromatic Ring 

System Must Not Be 

Dissected in a Way 

That the Resulting 

System Is Not Aromatic 

Any More" [7]) 

true/false true 

SMILES generator All SmilesGenerator 

configurations available in 

CDK 

SmiFlavor.Unique and 

SmiFlavor.UseAromaticSymbols 

 580 

The functionalities and routines of Scaffold Generator can be adopted for various applications 581 

by a variety of settings available (Table 1). Five different structural scaffold definitions can be 582 

chosen for initial scaffold extraction and scaffold dissection (Figure 1). The default setting of 583 

the scaffold mode setting is to use the scaffold including all atoms directly connected to rings 584 

or linkers via non-single bonds. 585 
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Multiple steps in scaffold dissection and the construction of Scaffold trees and networks 586 

require the testing for equivalence of molecular structures. These include the enumerative 587 

generation of all possible parent scaffolds to avoid duplicates and the identification of 588 

equivalent scaffolds when merging trees or networks. In Scaffold Generator, this is done using 589 

CDK unique SMILES codes. To allow the user the definition of structural features taken into 590 

account at these steps, e.g. stereochemistry, isotopes, or aromaticity, the CDK 591 

SmilesGenerator [68] instance employed can be set externally. By default, stereochemistry 592 

and atomic masses are not encoded but aromaticity is. The set SmilesGenerator instance is 593 

also used to create SMILES codes for origin molecules of a respective scaffold stored on 594 

nodes of scaffold trees and networks. It is important to note here that molecular characteristics 595 

of the input molecules and resulting (parent) scaffolds, like protonation states or tautomeric 596 

forms, are taken by Scaffold Generator “as is”, or rather as they are represented in the chosen 597 

SMILES encoding. The only exemption is the detection of aromatic systems which is done on 598 

input structures by default. Therefore, users have to take care of preprocessing their input 599 

data sets according to their specific needs, e.g. standardising tautomeric forms and 600 

protonation states in all input molecules, before using Scaffold Generator. 601 

Another option is to exclude or include the Schuffenhauer prioritisation rule 7. This rule makes 602 

it necessary to apply aromaticity detection to different parent scaffolds created for testing 603 

purposes. This procedure is time-consuming and might not lead to a definite decision in favour 604 

of one specific parent scaffold in most cases. But by default, it is activated to be in accordance 605 

with the originally published scaffold tree implementation [7].  606 

The aromaticity detection done in multiple steps of scaffold dissection (see above) can be 607 

configured by choosing which CDK aromaticity model is to be employed for this purpose. By 608 

default, aromaticity is determined using the ElectronDonation.cdk model and the 609 

Cycles.cdkAromaticSet cycle finder algorithm. 610 

Additionally, aromaticity detection can be turned off completely in all routines to preserve initial 611 

aromaticity information of the input structures and make the results less dependent on specific 612 
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aromaticity models. If this is the case, rule 7 is automatically excluded from the Schuffenhauer 613 

prioritisation rules as well.  614 

The fifth option of Scaffold Generator concerns post-processing after ring removal: As 615 

explained above, a double bond is inserted in some cases when an aromatic ring is removed 616 

to preserve hybridisation and aromaticity in the remaining ring(s) if possible. As an option, this 617 

insertion of double bonds can also be applied to non-aromatic systems wherever there are 618 

two sp2 hybridised atoms adjacent to a single bond that was previously shared between two 619 

rings. The bond is turned into a double bond if the two adjacent atoms would lose their sp2 620 

hybridisation because of the ring removal and if it is possible without violating valence rules 621 

(Figure 10). 622 

 623 

 624 

Figure 10: Parent scaffold of 1,2,3,4,6,7-hexahydroisoquinoline depending on the set 625 

value of the retain only hybridisations at aromatic bonds setting. When the 626 

cyclohexadiene ring is removed from 1,2,3,4,6,7-hexahydroisoquinoline (PubChem CID 627 

89002720) in parent scaffold generation, the formerly shared bond with the piperidine ring is 628 

turned into a double bond if the retain only hybridisations at aromatic bonds setting is set to 629 

false. In this case, double bonds are always inserted if possible to preserve atom 630 

hybridisations in the remaining ring. If the setting is set to true, this is only done when an 631 
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aromatic ring is removed. In this case, no double bond is inserted in the remaining piperidine 632 

ring.  633 

 634 

Software architecture 635 

The central class of the Scaffold Generator library is ScaffoldGenerator. When instantiated, 636 

all available settings are set to their default values (Table 1) and can be adjusted using 637 

methods of the class. All main functionalities of Scaffold Generator described above can be 638 

accessed through an instance of the ScaffoldGenerator class, i.e. generation of scaffolds, their 639 

decomposition into building blocks, parent scaffold generation through enumerative or 640 

Schuffenhauer dissection, and the generation of scaffolds trees and networks. The two 641 

scaffold hierarchy structures are represented by a class of their own, respectively: 642 

ScaffoldTree and ScaffoldNetwork. Both extend the same base class, 643 

ScaffoldNodeCollectionBase, for basic functionalities and manage scaffold nodes as 644 

TreeNode or NetworkNode instances that both stem from the abstract base class 645 

ScaffoldNodeBase. These six classes manage scaffold structures, parent-child relationships 646 

of scaffold nodes, and origin molecule references. Trees and networks can be traversed and 647 

merged with instances of the same class, respectively. Scaffold trees can additionally be 648 

checked for validity, i.e. whether all nodes have parents, except the root node, and there is 649 

only one root node. Scaffold tree and network instances can also be exported as adjacency 650 

matrices along with scaffold structures for each represented node. This is utilised by the class 651 

GraphStreamUtility to display scaffold trees and networks in an interactive Java Swing 652 

application window with the GraphStream library.  653 

The JUnit [69] test class ScaffoldGeneratorTest implements automatic tests for the basic 654 

Scaffold Generator routines, tests employing the GraphStream visualisation of scaffold trees 655 

and networks for visual inspection, and code examples for the application of Scaffold 656 

Generator. Another important set of test routines checks whether the Schuffenhauer 657 

prioritisation rules as implemented in Scaffold Generator are in accordance with the original 658 
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implementation, based on the examples given in the scaffold tree publication [7]. Furthermore, 659 

the COCONUT database is used to test the basic routines on a large set of natural product 660 

(NP) structures. 661 

The class PerformanceTest represents a command-line application based on Scaffold 662 

Generator that can be used to assess its computational speed on a given structure data file 663 

(SDF). The results on COCONUT and DrugBank [70, 71] are presented in the “Results and 664 

discussion” section. 665 

 666 

Results and discussion 667 

A programming library for molecular scaffold functionalities named Scaffold Generator was 668 

implemented based on the Chemistry Development Kit (CDK). The openly available source 669 

code of Scaffold Generator can be found on GitHub: https://github.com/Julian-670 

Z98/ScaffoldGenerator. It can be utilised to extract different types of scaffolds from input 671 

molecules and dissect them further into parent scaffolds using an enumerative generation of 672 

all possible ones or a dissection according to the scaffold tree prioritisation rules. Additionally, 673 

the scaffolds and parent scaffolds can be arranged in scaffold trees and networks with these 674 

hierarchies being visualised. 675 

 676 

Performance 677 

Scaffold Generator can be packaged in a JAR file and used as a command-line application. It 678 

requires an SD file as input parameter and creates a performance snapshot of the main 679 

functionalities of Scaffold Generator with the given data set. First, all molecules are imported 680 

and stored in memory. From these, all structures having more than ten rings are discarded. 681 

This is done because they occur rather rarely but would influence the overall processing time 682 

disproportionally. No further filtering or preprocessing, e.g. removal of counter-ions or 683 

https://github.com/Julian-Z98/ScaffoldGenerator
https://github.com/Julian-Z98/ScaffoldGenerator
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elimination of duplicates, is done for the purpose of this performance snapshot and the 684 

following exemplary analyses. For an initial performance snapshot, all remaining molecules 685 

are processed according to the enumerative generation of parent scaffolds and the parent 686 

scaffold generation according to the scaffold tree prioritisation rules. Afterwards, the dataset 687 

is subdivided into equally large portions. The total number of fractions has to be specified in 688 

the second command-line parameter. In each following step, a growing number of created 689 

molecule subsets is combined and all included structures used to build a scaffold network and 690 

a scaffold forest, i.e. a set of scaffold trees. The number of molecules and the needed 691 

processing time is logged in every step. In the final step, all scaffolds in the network and the 692 

trees, respectively, and their frequencies determined based on their numbers of origin 693 

molecules are exported to an output file. The scaffold structures are exported as SMILES 694 

strings. 695 

For this article, two performance snapshots were conducted. The first one was done on the 696 

DrugBank database containing drug molecules (DrugBank “all structures” downloaded on 8th 697 

November 2021). For comparison, the COCONUT NP database (downloaded on 1st 698 

December 2021) was analysed as well. Additionally, for some analyses, a subset of 699 

COCONUT containing 40,000 structures was compiled from the complete collection using the 700 

RDKit MaxMin algorithm implementation [49, 72]. All analyses were conducted on a 701 

workstation computer with an Intel(R) Xeon(R) Gold 6254 CPU (18 cores, 3.10 GHz) and 512 702 

GB RAM on a single core only (no multi-core parallelization). All Scaffold Generator settings 703 

were set to their default values. 704 

 705 
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Table 2: Performance snapshot of the mere parent scaffold generation routines applied 706 

to COCONUT and DrugBank.  707 

 COCONUT DrugBank 

Initial number of molecules 406,747 11,172 

Number of molecules after filtering 

(< 11 rings) 

395,450 11,127 

Schuffenhauer dissection total 1,211,063 ms 

(20 min) 

27,656 ms 

(0.46 min) 

Schuffenhauer dissection average per 

molecule 

3 ms 2.5 ms 

Enumerative dissection total 2,037,357 ms 

(34 min) 

33,938 ms 

(0.57 min) 

Enumerative dissection average per 

molecule 

5 ms 3 ms 

 708 

The complete COCONUT database contained 406,747 NP structures (Table 2). 11,297 of 709 

these possessed 11 or more rings and were filtered. The remaining 395,450 NP were 710 

subjected to the parent scaffold generation according to the Schuffenhauer rules, which took 711 

1,211,063 ms (20 min). On average, the dissection of one COCONUT NP into its scaffold and 712 

parent scaffolds according to the Schuffenhauer prioritisation rules took 3 ms. Generating all 713 

possible parent scaffolds with the enumerative routine took 2,037,357 ms (34 min) for the 714 

same molecule set. This is 5 ms per molecule on average.  715 

The DrugBank data set of 11,172 molecules contained 45 structures with more than 10 rings 716 

that needed to be filtered. The Schuffenhauer dissection of all structures took 27,656 ms 717 

(0.46 min, 2.5 ms per molecule on average) and the enumerative parent scaffold generation 718 

took 33,938 ms (0.57 min, 3 ms per molecule on average). 719 
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It is interesting to note that the enumeration of all possible parent scaffolds at every step 720 

required more computation time than the application of up to 13 prioritisation rules at every 721 

step. This was the case for NP as well as drug molecules which have less rings in general. 722 

The latter characteristic of drug molecules as opposed to NP is also considered the reason for 723 

the lower time it took on average to dissect the DrugBank structures. It must also be noted 724 

that these processes, the pure dissection of each molecule, scale linearly with the number of 725 

molecules and can be parallelised in multiple threads for further speed up.  726 

 727 

 728 

Figure 11: Performance snapshot of scaffold forest and scaffold network construction 729 

in DrugBank range of molecule number. The graph visualises the processing time it took 730 

to construct a scaffold forest or scaffold network depending on the number of input molecules 731 

taken from COCONUT or DrugBank. Exponential approximations have been applied to assess 732 

the scaling behaviour of the processes. The given range of the number of molecules is 733 

adjusted to the size of DrugBank (11,127 molecules).  734 

 735 
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 736 

Figure 12: Performance snapshot of scaffold forest and scaffold network construction 737 

in COCONUT subset range of molecule number. The graph visualises the processing time 738 

it took to construct a scaffold forest or scaffold network depending on the number of input 739 

molecules taken from COCONUT or DrugBank. Exponential approximations have been 740 

applied to assess the scaling behaviour of the processes. The given range of the number of 741 

molecules is adjusted to the size of the curated COCONUT subset (39,324 molecules). 742 

 743 

In a second step, it was measured how much time it took to construct scaffold forests and 744 

networks from an increasing number of molecules taken from the COCONUT subset and 745 

DrugBank, respectively. Figure 11 shows the results for the area of molecule number of 746 

DrugBank (0 - 11,127 molecules) and Figure 12 for the area of the COCONUT subset (0 - 747 

39,324 molecules). Exponential approximations show that the individual processes scaled 748 

between O(N1.2) and O(N1.6). This comparatively good scaling below a quadratic behaviour is 749 

most likely due to the stepwise construction of the scaffold hierarchies that repeats the two 750 

steps of scaffold dissection and integration for each molecule instead of generating all 751 

scaffolds first and constructing the hierarchy later using substructure searches to establish 752 

parent-child scaffold relationships.  753 
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Both, the generation of scaffold networks and trees from NP, scaled with higher exponents 754 

than the analogous processes for drug molecules, which can again be explained by the 755 

generally higher number of rings in the former class of compounds. 756 

The generation of scaffold networks from NP structures scaled with the highest exponent. 757 

Since the number of scaffolds in a network grows faster than in a forest because more parent 758 

scaffolds are constructed for each molecule, it takes more time in network construction to 759 

integrate new molecules, i.e. their scaffolds. This traversal of the scaffold forest or network for 760 

the integration of new scaffolds is considered to be the algorithm step that dictates the scaling 761 

behaviour. In addition, this step would be more challenging to parallelise and speed up through 762 

multithreading because the same data structure would be accessed by all threads. The 763 

scaffold tree and network representations in Scaffold Generator are currently not implemented 764 

to be thread-safe, i.e. safe to use for concurrent modification.  765 

According to the exponential approximation for the COCONUT subset of 40,000 NP 766 

structures, a scaffold network of up to 456,000 NP molecules could still be constructed in a 767 

single day using Scaffold Generator. The measured runtime for the complete COCONUT 768 

database of 395,450 compounds with less than 11 rings was 16.5 h (5 h for the construction 769 

of a scaffold forest). This is below the runtime of 19.2 h expected for this data set size 770 

according to the exponential function approximating the scaling behaviour of the COCONUT 771 

subset network generation. The underlying effect can be that with growing size of the network, 772 

less new scaffolds need to be integrated per newly added molecule. Here, one also has to 773 

take into account that the subset used for the performance and scaling snapshot was compiled 774 

using a diversity-preserving method [72]. This may have increased the effect even further.  775 

The memory consumption of the scaffold tree and scaffold network constructed from the 776 

complete COCONUT database was below the 512 GB RAM available at all times but similar 777 

experiments on a machine with 256 GB failed. 778 

 779 
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Most frequent scaffolds in COCONUT and DrugBank 780 

Table 3: Numbers of resulting scaffolds in scaffold network and scaffold forest 781 

constructed from COCONUT and DrugBank.  782 

 COCONUT DrugBank 

Number of molecules after filtering 

(< 11 rings) 

395,450 11,127 

Number of scaffold network scaffolds 392,888 23,765 

Number of scaffold trees 6,200 766 

Number of scaffold tree scaffolds 173,526 10,716 

 783 

The Scaffold Generator command-line application logs the numbers of different scaffolds in 784 

network and forest built from the given data set and exports the scaffolds as SMILES 785 

representations with their frequencies as a final step. These scaffold numbers for COCONUT 786 

and DrugBank can be found in Table 3. The COCONUT scaffold network contained 392,888 787 

different (parent) scaffolds, while the DrugBank network contained 23,765. The COCONUT 788 

scaffold forest consisted of only 173,526 scaffolds distributed among 6,200 individual scaffold 789 

trees. For DrugBank, it was 10,716 scaffolds in 766 trees. According to these numbers, the 790 

enumerative parent scaffold generation produced more than twice as many scaffolds as the 791 

Schuffenhauer dissection. Using a classification by root scaffolds, the two data sets could be 792 

classified into a number of different classes according to the number of resulting scaffold trees. 793 

The 20 most frequent scaffolds in the COCONUT scaffold network and scaffold forest, 794 

respectively, as determined in this exemplary showcase analysis, are displayed in Figures 13 795 

and 14. The frequencies are given as numbers of origin molecules that produced the 796 

respective scaffold in parent scaffold generation or had it as an original scaffold. The 797 

frequencies for the network scaffolds correspond precisely to the number of molecules that 798 

possess the respective scaffold as a substructure, whereas the frequencies for the forest 799 
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scaffolds correspond to the number of molecules that possess the scaffold as their most 800 

characteristic or central parent scaffold in one step of the Schuffenhauer dissection according 801 

to the prioritisation rules. Hence, 225,272 COCONUT molecules contain a benzene ring 802 

(Figure 13) but only in 29,258 molecules, it is the characteristic or central parent scaffold 803 

(Figure 14). Still, it is striking that the benzene ring is the most frequent root scaffold in the 804 

forest because some Schuffenhauer prioritisation rules explicitly assign a low relevance to it 805 

and favour its removal over that of other rings.  806 

As could be expected, the first ranks in both charts are dominated by single-ring scaffolds, 807 

since they represent the final stage of scaffold dissection and have the most origin molecules, 808 

therefore. The first ranks are also dominated by 6-membered rings and parent scaffolds that 809 

are most likely resulting from the dissection of polyketides. The frequency of oxygen-810 

containing scaffolds is higher than that of nitrogen, as can be expected for NP. The empty 811 

cells in both charts represent empty scaffolds, i.e. scaffolds of molecules that have no rings. 812 

Hence, 21,882 molecules in COCONUT do not possess any circular structures. Of 406,747, 813 

the share of linear molecules is low (5 %), but one should keep in mind that these structures 814 

are usually completely neglected in ring-based analyses like most scaffold methods.  815 

 816 
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 817 
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Figure 13: 20 most frequent scaffold network scaffolds of COCONUT with their numbers 818 

of origin molecules.  819 

 820 
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 821 
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Figure 14: 20 most frequent scaffold forest scaffolds of COCONUT with their numbers 822 

of origin molecules. 823 

 824 

Figures 15 and 16 analogously display the most frequent scaffolds of the created DrugBank 825 

scaffold network and scaffold forest. The first observation here is that the share of nitrogen 826 

hetero cycles is higher in these drug molecules than in NP structures. This has been reported 827 

before [73]. Also, the share of linear molecules (1,467 of 11,172, 13 %) is much higher than 828 

in NP. Benzene is again the most frequent scaffold in both analyses. But while it is by far the 829 

most frequent scaffold in the DrugBank network (6,578 origin molecules compared to 972 for 830 

the second most frequent scaffold, pyridine), its prominence is way lower in the forest (1,819 831 

origin molecules compared to 611 for pyrimidine in second place).  832 

The core results of this showcase analysis comparing the most frequent NP and drug molecule 833 

scaffolds (i.e. commonness of benzene, oxygen as the dominant hetero atom in NP, nitrogen 834 

in drug molecules) are in general agreement with similar studies [15, 19, 74-76]. A significantly 835 

higher prevalence of aromatic scaffolds in drug molecules as opposed to NP that most of these 836 

studies report cannot be observed here. This stresses that the results presented here are only 837 

a proof of concept for the application of Scaffold Generator. A more detailed analysis would 838 

first of all need an extensive data curation pipeline to standardise input molecules or filter or 839 

mark duplicates between the two data sets. Furthermore, a more extensive analysis of 840 

physicochemical property distributions in the extracted scaffolds could be conducted. 841 

 842 
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Figure 15: 20 most frequent scaffold network scaffolds of DrugBank with their numbers 844 

of origin molecules. 845 

 846 
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Figure 16: 20 most frequent scaffold forest scaffolds of DrugBank with their numbers 848 

of origin molecules. 849 

 850 

This analysis of the most frequent scaffolds in COCONUT and DrugBank is only supposed to 851 

serve as a basic example for what kind of studies Scaffold Generator may be used. These 852 

results may also have been achieved through the mere dissection of scaffolds into parent 853 

scaffolds and a subsequent matching and counting of the resulting structures. With its ability 854 

to generate and represent scaffold networks and forests, Scaffold Generator may be applied 855 

to a wider variety of analyses like hierarchical classification and clustering, chemical space 856 

mapping, or HTS data interpretation. But for these, a more powerful visualisation than the 857 

existing GraphStream-based one would be very helpful. 858 

 859 

Future Work 860 

Scaffold Generator meets the need for an open, versatile, CDK-based library for scaffold 861 

functionalities that can be employed in software and workflows built upon this cheminformatics 862 

toolkit. To make it more accessible to potential users, an integration into the CDK core modules 863 

would be desirable since the toolkit would benefit from having more scaffold functionalities 864 

available. A corresponding request to the library maintainers has been made. 865 

Another aspect that would make Scaffold Generator more applicable is a more powerful 866 

visualisation functionality than the currently available one based on the GraphStream library. 867 

It should display the hierarchies in suitable layouts, i.e. a tree layout for scaffold trees and a 868 

similar layout for scaffold networks that arranges the network in its defined levels. The display 869 

should be draggable, zoomable, and collapsable. The latter aspect is especially important for 870 

scaffold networks that tend to grow very fast with the number of included molecules. For 871 

example, all scaffolds below a chosen node should be easily collapsable or only active islands 872 

of scaffolds should be displayed when bioactivity data is linked to the given molecules [9]. 873 

Especially the analysis of HTS data or the derivation of SAR insights would benefit from a 874 
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versatile scaffold hierarchy visualisation. To further support these analyses, methods to 875 

display scaffolds and their parent scaffolds hierarchically in a standardised, directly visually 876 

accessible way, like the work of Alex M. Clark [77], should be explored in future developments. 877 

Scaffold Generator can serve as core for a variety of scaffold-based functionalities. 878 

Classification, clustering, and scaffold-based fingerprints are possible applications that can be 879 

used in a second step for picking diverse training and test sets for machine learning models 880 

for example [12]. The concept of scaffolds and parent scaffolds as characteristic molecular 881 

fragments of molecules can help in the development of QSAR/QSPR models or computer-882 

assisted structure elucidation. Applied to NP, scaffolds can serve as starting points for the 883 

creation of pseudo-NP that are regarded as promising candidates for new drug molecules [78, 884 

79]. Additionally, the study of macrocyclic structures in NP with existing scaffold 885 

methodologies and the development of new, specialised approaches for these structures are 886 

promising ways of identifying new drug candidates [20-23].  887 

Possible functional extensions of Scaffold Generator include the incorporation of more 888 

abstract scaffold representations, based on the work by Xu and Johnson [25], and the 889 

possibility to build scaffold networks or trees encompassing multiple scaffold definitions of 890 

varying chemical resolution, like in Molecular Anatomy [26] or the tree-like classification of 891 

Medina-Franco et al [24]. A major addition to the functionality of Scaffold Generator would be 892 

the inclusion of analog series based scaffold methodologies. Since these have demonstrated 893 

significant relevance in the past years, this addition must be considered. 894 

 895 

Conclusion 896 

An open, CDK-based, stand-alone Java library named Scaffold Generator has been 897 

developed to meet the need for scaffold functionalities in CDK-based workflows and software. 898 

It offers the extraction of different scaffolds, the dissection of scaffolds into building blocks, 899 

and the generation of parent scaffolds in two different ways. An enumerative parent scaffold 900 
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generation routine produces all parent scaffolds that can be created through the removal of 901 

terminal rings and forms the basis for scaffold networks. Alternatively, only characteristic or 902 

central parent scaffolds can be extracted according to the Schuffenhauer prioritisation rules 903 

that are used to build scaffold trees. Scaffold trees and networks can be internally represented 904 

as data structures and visualised in a basic display based on the GraphStream library. The 905 

generation of a scaffold network from more than 450,000 natural product structures can be 906 

achieved in a single day. A request for the integration of Scaffold Generator into the CDK core 907 

modules has been made and the process started. Scaffold Generator may serve as a starting 908 

point for diverse scaffold-based software tools, e.g. for clustering or fingerprint functionalities.  909 

 910 
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