
1

Scaffold Generator - A Java library 1

implementing molecular scaffold 2

functionalities in the Chemistry 3

Development Kit (CDK) 4

 5

Jonas Schaub; Institute for Inorganic and Analytical Chemistry; Friedrich-Schiller University, 6

Lessing Strasse 8, 07743, Jena, Germany; jonas.schaub@uni-jena.de; ORCID: 0000-0003-7

1554-6666 8

 9

Julian Zander; Institute for Bioinformatics and Chemoinformatics, Westphalian University of 10

Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany; 11

zanderjulian@gmx.de; ORCID: 0000-0001-8197-076X 12

 13

Achim Zielesny; Institute for Bioinformatics and Chemoinformatics, Westphalian University of 14

Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany; 15

achim.zielesny@w‑hs.de; ORCID: 0000-0003-0722-4229 16

 17

Christoph Steinbeck*; Institute for Inorganic and Analytical Chemistry; Friedrich-Schiller 18

University, Lessing Strasse 8, 07743, Jena, Germany; christoph.steinbeck@uni-jena.de; 19

ORCID: 0000-0001-6966-0814 20

 21

*Corresponding author email: christoph.steinbeck@uni-jena.de 22

mailto:jonas.schaub@uni-jena.de
https://orcid.org/0000-0003-1554-6666
https://orcid.org/0000-0003-1554-6666
mailto:zanderjulian@gmx.de
https://orcid.org/0000-0001-8197-076X
mailto:achim.zielesny@w-hs.de
https://orcid.org/0000-0003-0722-4229
mailto:christoph.steinbeck@uni-jena.de
https://orcid.org/0000-0001-6966-0814
mailto:christoph.steinbeck@uni-jena.de

2

Abstract 23

The concept of molecular scaffolds as defining core structures of organic molecules is utilised 24

in many areas of chemistry and cheminformatics, e.g. drug design, chemical classification, or 25

the analysis of high-throughput screening data. Here, we present Scaffold Generator, a 26

comprehensive open library for the generation, handling, and display of molecular scaffolds, 27

scaffold trees and networks. The new library is based on the Chemistry Development Kit 28

(CDK) and highly customisable through multiple settings, e.g. five different structural 29

framework definitions are available. For display of scaffold hierarchies, the open GraphStream 30

Java library is utilised. Performance snapshots with natural products (NP) from the COCONUT 31

(COlleCtion of Open Natural prodUcTs) database and drug molecules from DrugBank are 32

reported. The generation of a scaffold network from more than 450,000 NP can be achieved 33

within a single day. 34

 35

Keywords: cheminformatics, Chemistry Development Kit, CDK, natural products, scaffold, 36

scaffold tree, scaffold network, fragmentation, chemical space, clustering 37

 38

Introduction 39

Scaffold concept and applications 40

Molecular scaffolds, defined as the core structures of molecules and also referred to as 41

chemotypes or frameworks in some studies, are a concept used in many areas of chemistry. 42

In drug design, the scaffold of a molecule is considered the main structure that determines its 43

shape and places the functional moieties into the right positions to interact with the target. For 44

this reason, developing new drug molecules with different cores but similar biological activities 45

has been termed “scaffold hopping” [1, 2]. Combinatorial chemistry makes use of the concept 46

3

in designing compound libraries by substituting a set of scaffolds with combinations of different 47

side chains. And structures in chemical patents are often defined analogously as Markush 48

structures [3]. The intuitive chemical scaffold concept can also be utilised for classification 49

purposes, especially in natural product (NP) research [4-7]. In cheminformatics, scaffold-50

based approaches can be applied for the analysis of high-throughput screening (HTS) data 51

[6-10], mapping and visualising chemical spaces [5, 11], or even train-test splits of molecular 52

data sets for machine learning projects [12]. 53

Another application of scaffold-based methods is identifying privileged substructures in active 54

molecules or NP that can be used as lead structures in the development of new drugs [5, 13-55

19]. Within NP chemical space, macrocyclic structures or cyclic peptides are of specific 56

interest for these medicinal chemistry purposes [20-23]. 57

 58

Scaffold approaches in cheminformatics 59

The first general definition of a molecular scaffold was the Murcko framework developed by 60

Bemis and Murcko in 1996 [11]. According to this concept, a scaffold consists of all the rings 61

in a molecule and the non-cyclic chains connecting them, called linkers. Excluded from the 62

scaffold are all terminal side chains. In addition to the Murcko framework definition 63

representing molecular properties like atomic elements and bond multiplicities, Bemis and 64

Murcko introduced a more abstract representation that reduced each atom in the framework 65

to a simple graph node and each bond to a simple graph vertex, called graph framework or 66

archetype. The authors used their framework definitions to assess the structural diversity of a 67

set of drug molecules. 68

In addition to ignoring all non-cyclic molecules, the Murcko framework has one major 69

drawback: small changes in the ring structure or the addition of a cyclic substituent, e.g. a 70

benzene ring in drug design or a sugar moiety in NP research, can lead to very similar 71

molecules not being grouped together due to non-equivalent scaffolds. Therefore, multiple 72

4

approaches have been developed for organising molecular scaffolds in a graph-based 73

structure to relate similar scaffolds to each other and to create a systematic scaffold hierarchy 74

[4, 5, 7, 9, 10, 13, 24-27]. 75

Early work to this end was done by Xu and Johnson, who developed multiple concepts of 76

dissecting Murcko frameworks into constituting ring systems or abstracting them into reduced 77

representations. They used these concepts to assign molecular equivalence numbers to 78

molecular structures and thus classify them within chemical libraries [25]. 79

Wilkens et al. in their hierarchical scaffold clustering (HierS) approach [10] use a scaffold 80

definition similar to Murcko frameworks but additionally include all atoms that are directly 81

attached to rings and linkers via multiple bonds. Non-cyclic molecules are taken into 82

consideration as well and are assigned scaffolds based on their multiple bonds. To build a 83

scaffold hierarchy, the original scaffold extracted from each molecule is dissected into its 84

smaller parent scaffolds first. This is done by generating all smaller scaffolds that can result 85

from the stepwise removal of ring systems, i.e. isolated single rings or fused multiple rings that 86

share bonds or atoms, from the original scaffold. After the removal of one ring, linker atoms 87

that have become side chains are also removed. The process is finished when only the 88

individual ring systems are left. Via a substructure search, the scaffold hierarchy is constructed 89

in the second step by linking parent and child scaffold if the smaller parent scaffold is a 90

substructure of the bigger child scaffold. In the end, a tree-like hierarchy results with the 91

individual ring systems as roots at the top, and their combinations in more complex scaffolds 92

on the following levels. A scaffold that is not a single ring system has multiple parents in the 93

hierarchy. 94

While HierS overcomes most limitations of the Murcko framework approach and is a good first 95

attempt for scaffold classification, it also has some disadvantages: ring systems are not split 96

into their constituting single rings, which can be especially problematic when studying complex 97

ring systems of NP where the approach may be too coarse-grained. In addition, child scaffolds 98

are linked to multiple parents in the hierarchy, which is a multi-class assignment that is often 99

undesirable for classification tasks. 100

5

The latter drawback of HierS is addressed in the structural classification of natural products 101

(SCONP) approach by Koch et al. [5] that uses the same structural scaffold definition (apart 102

from again ignoring linear molecules) but differs in its hierarchy construction routine. One 103

major difference is that scaffolds are not dissected here. Only the directly extracted, original 104

scaffolds of the studied molecule set are used to construct their relations in a tree-like fashion. 105

A more complex scaffold is linked to only a single parent scaffold that is selected from all 106

possible parent scaffolds representing substructures of the child following a set of chemical 107

rules. These take characteristics of the parent scaffolds into account like hetero atom count, 108

size, and frequency in the studied dataset. This last aspect makes the approach dataset-109

dependent, which can lead to problems in classification tasks. 110

A combination of scaffold dissection and single-parent assignments through chemical 111

prioritisation rules is the scaffold tree approach by Schuffenhauer et al. [7]. As a first step, 112

scaffolds are extracted from the given molecules according to the Murcko framework definition 113

but additionally including all atoms connected via a double-bond to ring or linker atoms in the 114

scaffolds. These elements are included as well to preserve correct hybridisation and structural 115

alignment of the scaffold atoms. Via an iterative removal of rings, smaller parent scaffolds are 116

created from the original child scaffolds. Ring perception for the removal is based on a smallest 117

set of smallest rings (SSSR) approach. This way, ring systems sharing atoms or bonds 118

between multiple rings are not considered as one entity but dissected into their constituting 119

rings as well. One important aspect about the scaffold tree approach is the application of 13 120

chemical prioritisation rules at every ring removal step. Following these rules, only one 121

terminal ring is specifically selected for removal and only one possible parent scaffold created 122

at every scaffold dissection step. The term “terminal” indicates that the removal does not result 123

in a disconnected scaffold structure. The specific prioritisation rules take only molecular 124

characteristics of the rings, like size, hetero atom count, and aromaticity, into account and aim 125

at removing the less characteristic, peripheral rings first to extract the characteristic, central 126

parent scaffold. The scaffold dissection process continues until only one ring remains. When 127

studying a collection of molecules, their original scaffolds and sets of created parent scaffolds 128

6

are arranged in a hierarchy tree, the scaffold tree. Single-ring scaffolds form the roots and 129

more complex scaffolds are placed at the higher levels. Due to the linear scaffold dissection 130

process using the prioritisation rules, every child scaffold in the hierarchy is exclusively 131

assigned to only one parent scaffold. Therefore, the scaffold tree represents a hierarchical, 132

deterministic, and unique classification of chemical scaffolds. Unlike SCONP, it is dataset-133

independent because it does not consider the frequency of a scaffold in the studied collection. 134

In conclusion, the scaffold tree is a useful tool for scaffold-based classification and 135

visualisation of large compound sets and can be successfully employed to identify active 136

scaffolds in HTS data and promising candidates for drug development [6-8, 28-30]. 137

By definition of prioritisation rules, Schuffenhauer et al. intended to create a chemically intuitive 138

classification system which opposes a classification focussing on pharmacophoric elements 139

[7]. Also, its capability to identify biologically active substructural motives is limited because its 140

exploration of possible parent scaffolds is limited due to the prioritisation rules. For this reason, 141

Varin et al. introduced the concept of scaffold networks [9], where scaffolds are extracted and 142

dissected analogously but without the application of prioritisation rules. In this way, every 143

possible parent scaffold is generated for a given original scaffold and the resulting hierarchy, 144

the scaffold Network, contains multi-parent relationships between its nodes. Varin et al. 145

generated considerably more active scaffolds in primary screening data using scaffold 146

networks compared to the scaffold tree approach. The reason for this is the exhaustive 147

enumeration of parent scaffolds which leads to the scaffold network containing significantly 148

more scaffolds than a scaffold tree. Additionally, a scaffold is not linked to all parent scaffolds 149

that are substructures of it in the scaffold tree, only to the one determined as its characteristic 150

core. As a consequence, this scaffold may be regarded to be less active. 151

The scaffold network approach explores the scaffold space more exhaustively and supports 152

the identification of areas that a specific compound set does not cover. In addition, more virtual 153

scaffolds can be identified, i.e. scaffolds that are only generated as a result of scaffold 154

dissection and do not appear directly as original scaffolds in the given molecular structures. 155

7

When studying a compound set linked to bioactivity data, these structures are usually of high 156

interest when appearing frequently in active molecules [29, 30]. 157

On the other hand, scaffold networks can become large and complex with a comparably small 158

number of molecules, which makes it difficult to visualise them. When linked to bioactivity data, 159

Varin et al. suggest to only include islands of relevant, active scaffolds in the display. 160

As a conclusion, scaffold trees are generally more suitable for a complete visualisation and 161

overview of the defining motives and structural classes in a limited compound set. Whereas 162

scaffold networks can be seen as more helpful for analysing compound sets linked with 163

bioactivity data to reasonably limit the display and identify active substructural motives [9]. 164

An even more extensive scaffold network approach was published recently by Manelfi et al., 165

named “Molecular Anatomy” [26]. While the aforementioned approaches mostly rely on one 166

single scaffold definition, respectively, nine different scaffold types of different abstraction 167

levels were introduced here. All of them can be dissected analogously into parent scaffolds 168

and linked in a network representation. This way, common substructure patterns can be 169

identified on a higher abstraction level than with scaffold networks and more relevant similar 170

compounds determined. This may be helpful for analysing HTS data or preparing structure 171

activity relationship (SAR) studies of scaffolds and their side chains. However, this type of 172

scaffold network including also more abstract scaffold representations has an even stronger 173

tendency to grow very quickly with an increasing number of included structures and hence to 174

quickly become unfathomable without sensibly limiting the display. 175

An analogous scaffold tree-like approach to hierarchical clustering based on Xu and Johnson’s 176

more abstract scaffold representations was published by Medina-Franco et al. [24]. Here, 177

scaffolds are not dissected into parent scaffolds but clustered in a tree structure based on 178

scaffold representations with a lower chemical resolution at each higher level. 179

An inherently different approach to scaffold generation and clustering are methods based on 180

analog series. Here, no a priori scaffold definition like the Murcko framework is applied. 181

Instead, all structures in a given set are grouped into analog series based on methods like 182

matched molecular pairs with additionally deriving precursor structures using the RECAP 183

8

(Retrosynthetic Combinatorial Analysis Procedure) [31] rules. This way, the scaffolds 184

extracted as representatives of an analog series take synthetic accessibility into account, an 185

important aspect in medicinal chemistry but mostly ignored in the approaches above. The 186

analog series and their representative scaffolds can be visualised by R-group tables, mapped 187

into coordinate-based chemical space [32], annotated with activity information to support SAR 188

studies, or used to extract favourable lead structures for drug design campaigns [17, 18, 33-189

38]. 190

 191

Open implementations 192

Most of the original software tools implementing the scaffold-based approaches described in 193

the previous section have not been published openly (Murcko frameworks, SCONP, scaffold 194

tree) or are not findable anymore (HierS). As a result, a number of open re-implementations 195

and more advanced, versatile software for scaffold analyses has been developed and 196

published [28, 29, 39-44]. 197

The first open software application that implemented a scaffold tree was Scaffold Hunter [28, 198

29, 39]. Starting as a tool mainly for generating and visualising scaffold trees, it has evolved 199

into a multi-functional cheminformatics platform for visual data analysis. By default, the 200

prioritisation rules are applied as published by Schuffenhauer et al. [7], but they can be 201

customised by the user or even turned off completely. Varin et al. used the latter option to 202

generate their scaffold networks using Scaffold Hunter [9]. The rich-client application is 203

implemented in Java and employs the Chemistry Development Kit (CDK) [45-47] for 204

cheminformatics tasks. 205

The open command-line tool Scaffold Network Generator [41] was designed to generate both, 206

scaffold trees and scaffold networks. It lacks the extensive visualisation functionality of 207

Scaffold Hunter but can therefore be integrated into automated analysis workflows that do not 208

require human interaction. Scaffold Network Generator was implemented in Java as well and 209

9

employs the CDK and Open Babel [48] cheminformatics toolkits. Unfortunately, it cannot be 210

found at the internet address given in the original publication anymore. 211

The cheminformatics toolkit RDKit [49] recently integrated an extensive scaffold network 212

functionality into its range of capabilities [40]. The module named “rdScaffoldNetwork” 213

primarily offers the generation of scaffold networks based on a HierS-like scaffold dissection 214

(no splitting of fused rings). Custom fragmentation rules can be added in the form of reaction 215

SMARTS [50]. In addition, more abstract atom- and bond-generic scaffold representations can 216

be generated. The new functionality has been employed in a study evaluating different 217

approaches to automate chemical series classifications in medicinal chemistry [51]. 218

These three open software tools for scaffold-based analyses are only a limited number of 219

examples for many more such tools developed in the past years [42-44]. 220

 221

Motivation 222

Structural scaffold analyses are relevant in diverse areas of cheminformatics, e.g. clustering, 223

visualisation of chemical spaces, and SAR analyses [4-10, 26, 30]. Hence, numerous open 224

software tools for such purposes have been developed [28, 29, 39-44]. The popular 225

cheminformatics toolkit RDKit even integrated scaffold functionalities into its core modules. 226

For the Chemistry Development Kit, only the generation of Murcko frameworks is currently 227

available [52]. Outside core CDK, there is no open scaffold software library exclusively based 228

on CDK to use in workflows and software based on the toolkit. Scaffold Hunter implemented 229

its scaffold functionalities as part of a software application, and they cannot be easily extracted 230

from it. Scaffold Network Generator is based on CDK but on Open Babel as well and not 231

findable anymore. 232

Here, we present Scaffold Generator, an open, stand-alone Java library for scaffold 233

functionalities based on CDK, to fill this void. It offers the generation of scaffold trees and 234

10

scaffold networks with comprehensive additional scaffold-related functionalities. An integration 235

into the main CDK modules is intended. 236

 237

Implementation 238

The Scaffold Generator library was implemented in Java version 17 and is based on the 239

Chemistry Development Kit (CDK) version 2.8. The openly available source code can be found 240

on GitHub: https://github.com/Julian-Z98/ScaffoldGenerator. With Scaffold Generator, 241

different scaffold representations can be extracted from given molecules, dissected into parent 242

scaffolds in multiple ways, and organised in scaffold trees and networks. These can be 243

visualised using the GraphStream library version 2.0 [53, 54]. 244

 245

Available Functionalities 246

Scaffold types 247

Molecules are passed to Scaffold Generator as instances implementing the central CDK 248

molecular structure representation, the IAtomContainer interface [55]. From these, molecular 249

scaffolds can be extracted according to different scaffold definitions available. These include 250

the Murcko framework and the scaffold definition used in most of the established approaches, 251

like HierS or the scaffold tree. It is based on Murcko frameworks but additionally includes all 252

atoms connected to ring or linker atoms via double-bonds [7, 10]. In Scaffold Generator, this 253

has been extended to all atoms connected via non-single bonds to cyclic or linker atoms. 254

Higher bond orders than 2 are considered rare in such configurations but they influence the 255

hybridisation and structural configuration of the scaffold as strongly as exocyclic or exolinker 256

double-bonds. Another crucial aspect to consider here is the synthetic accessibility of the 257

represented scaffolds that is significantly influenced by the presence or absence of exocyclic 258

https://github.com/Julian-Z98/ScaffoldGenerator

11

or exolinker multi-bonds. Additionally, two more abstract scaffold representations taken from 259

Molecular Anatomy are available in Scaffold Generator: basic framework and basic wireframe 260

[26]. Similar abstracted scaffold definitions have been described in earlier works as well, like 261

the graph framework by Bemis and Murcko (analogous to basic wireframe) or the aryl cyclic 262

system by Xu and Johnson (analogous to basic framework), but the naming was chosen here 263

in analogy to Molecular Anatomy. A fifth scaffold type was analogously termed elemental 264

wireframe. Here, all bonds are abstracted to single bonds, but hetero atoms are preserved 265

(Figure 1). For the creation of scaffolds of all types, the CDK MurckoFragmenter class [52] is 266

used internally and the extracted Murcko framework is post-processed according to the 267

chosen scaffold type if necessary. If a given molecular structure has no rings, no scaffold can 268

be extracted and an empty IAtomContainer instance is returned. 269

 270

 271

Figure 1: Different scaffold types available in Scaffold Generator. A) Unaltered structure 272

of the antibiotic agent flucloxacillin (PubChem CID 21319). B) Murcko framework of 273

flucloxacillin. C) Scaffold of flucloxacillin. D) Elemental wireframe of flucloxacillin. E) Basic 274

framework of flucloxacillin. F) Basic wireframe of flucloxacillin. 275

 276

12

Another functionality of Scaffold Generator is to return the building blocks of scaffolds, i.e. 277

rings and linkers, separately. The terminal side chains excluded from the scaffold structure 278

can also be extracted (Figure 2). 279

 280

 281

Figure 2: Dissection of scaffolds into building blocks. A) Flucloxacillin with its Murcko 282

framework marked in blue. B) Rings of flucloxacillin marked in blue. It is important to note that 283

the fused ring system on the right would be split into its two constituting rings in the structure 284

set returned by the described routine of Scaffold Generator. C) Linkers of flucloxacillin marked 285

in blue. D) Terminal side chains of flucloxacillin marked in blue. 286

 287

Ring detection 288

Scaffold Generator dissects fused ring systems, i.e. rings that share bonds or atoms, into their 289

constituting separate rings. This is the case not only when returning scaffold building blocks 290

but also for the generation of parent scaffolds (see below). Internally, the CDK Cycles.relevant 291

cycle finder algorithm is employed for ring detection. This algorithm detects the logical union 292

13

of all smallest sets of smallest rings (SSSR, also minimum cycle basis, MCB) in the given 293

molecule [56, 57]. This way, fused ring systems are not detected as one entity, but their 294

constituting cycles are detected separately. The Cycles.relevant cycle finder was chosen for 295

Scaffold Generator to be in accordance with the original scaffold tree implementation [7]. But 296

in rare cases, this cycle detection algorithm identifies too many rings in a given molecule, 297

defined as more rings than there are atoms in the structure. One example is the natural product 298

(NP) CNP0103752, taken from the COCONUT [58] database (Figure 3). Since the overarching 299

ring connecting all 11 glycosidic rings in the structure can be detected on many different paths, 300

Cycles.relevant detects 2059 rings here. In cases like this, i.e. more rings are detected than 301

there are atoms in the molecule, Scaffold Generator uses the algorithm Cycles.mcb instead, 302

which identifies one single set of SSSR/MCB instead of the logical union of all possible ones 303

[56, 57]. In CNP0103752, it detects a more useful number for this application of 12 cycles. 304

 305

14

 306

Figure 3: Rings of CNP0103752 taken from COCONUT. The CDK Cycles.relevant algorithm 307

identifies 2059 rings here while Cycles.mcb detects 12. 308

 309

Ring removal 310

In the parent scaffold generation routines (see below), only rings adhering to a set of criteria 311

are considered for removal at the individual dissection steps. The first requirement is that a 312

ring needs to be terminal, i.e. its removal must not result in a disconnected scaffold structure. 313

This is checked internally by removing all atoms and bonds constituting the respective ring 314

from the scaffold, discarding potential side chains that were connected to it, e.g. when the 315

15

scaffold structural definition is used, and assessing whether the structure does not consist of 316

multiple disconnected parts afterwards. If it does, the ring in question is not deemed terminal 317

and hence not removable. This routine of checking for terminal rings has two major 318

consequences: Internal rings that could be removed without resulting in a disconnected 319

structure by turning some of their atoms and bonds into linker structures are still not considered 320

terminal (Figure 4a). Secondly, the removal of rings from a scaffold cannot result in an 321

artificially created spiro-ring system in Scaffold Generator (Figure 4b). Such cases are 322

described in the original scaffold tree publication [7] and the fifth prioritisation rule there is 323

intended to prevent them if other rings can be removed first. But they are possible in general 324

and would appear in a set of all possible parent scaffolds. Because the conversion of ring 325

atoms to linker atoms and the artificial creation of spiro-ring systems are chemically non-326

intuitive when generating parent scaffolds, these possibilities have been excluded in Scaffold 327

Generator. 328

 329

 330

Figure 4: Impossible parent scaffolds in Scaffold Generator. A) Dodecahydro-s-indacene 331

(PubChem CID 13214318) representing an example scaffold cannot be dissected in a way 332

that turns former ring atoms into linker atoms in the created parent scaffold. B) 333

Tricyclo[7.2.1.01,6]dodecane (PubChem CID 12758808) representing an example scaffold 334

cannot be dissected in a way that creates a parent scaffold with a spiro-ring system which was 335

not there in the molecule before. 336

16

 337

Another requirement to consider a ring for removal is that it must contain at least one atom 338

that is not part of another ring as well. This criterion is adopted from the original scaffold tree 339

publication [7]. Here, the authors explain it with the example of adamantane. Using a ring 340

detection algorithm that identifies the logical union of all SSSR in a structure, four rings are 341

identified here and no atom is part of only one of them (compare Schuffenhauer et al. [7] 342

Scheme 2). Hence, the removal of one ring is not possible because its atoms and bonds that 343

are part of other rings as well are generally preserved in the Scaffold Generator ring removal 344

routines. Structures like adamantane are therefore not dissected at all. 345

A similar case of structures that cannot be dissected are specific fused aromatic systems, i.e. 346

aromatic rings that share the same atom with at least two other rings. When removing an 347

aromatic ring sharing a bond with another ring, Scaffold Generator turns the shared bond into 348

a double-bond to preserve the correct hybridisation of the formerly shared atoms in the 349

remaining ring. In arrangements where the aromatic ring to remove shares an atom with at 350

least two other rings, this double-bond insertion is not possible without violating valence rules. 351

Such structures are not dissected as a consequence. This behaviour follows the ring removal 352

algorithm described in the original scaffold tree publication (compare Schuffenhauer et al. [7] 353

Scheme 3). But Scaffold Generator makes one addition here: In the original scaffold tree, this 354

double-bond insertion is only done if an aromatic ring is fused to a non-aromatic ring and the 355

aromatic ring is removed. In Scaffold Generator, it is also done if the remaining ring is aromatic 356

as well. This addition has been made to preserve hybridisations and aromaticity in the 357

remaining ring and to ensure that aromatic ring systems, if they can be dissected, are 358

decomposed into parent scaffolds that can always be represented as valid contributing 359

structures (as opposed to resonance hybrids). As a consequence, Scaffold Generator does 360

not dissect most fused aromatic ring systems, e.g. pyrene. In these systems, most rings 361

cannot be removed without altering hybridisations and bond orders in the remaining ones. And 362

since a partial dissection does not appear reasonable because it would not produce 363

meaningful parent scaffolds, these structures are not dissected at all. A possible future 364

17

extension to Scaffold Generator could be a routine that extracts meaningful parent scaffolds 365

from fused aromatic systems, e.g. a benzene ring as root scaffold from pyrene and similar 366

structures. 367

Another specially treated system are rings of size three containing one hetero atom that share 368

the bond opposite to the hetero atom with another ring (Figure 5). When rings like this are 369

removed, the shared bond is turned into a double bond to produce the precursor structure the 370

hetero atom was most likely added to. This special case is described in the first ring removal 371

prioritisation rule by Schuffenhauer et al. [7] but is part of the general ring removal routine of 372

Scaffold Generator. This deviation from the original implementation does not influence the 373

parent scaffold generation according to the scaffold tree prioritisation rules but is important to 374

note for the enumerative generation of all possible parent scaffolds (see below). 375

 376

 377

Figure 5: Removal of 3-membered hetero cycles. If the oxirane ring marked in blue is 378

removed from himeyoshin (COCONUT CNP0151718) during parent scaffold generation, the 379

bond shared with the cyclohexanone ring is turned into a double bond. 380

 381

Scaffold trees and networks 382

Using Scaffold Generator, extracted molecular scaffolds can be dissected in different ways. 383

The first one, as described above, is to decompose it into the constituting building blocks, i.e. 384

rings and linkers. Another option is the enumerative removal that generates all possible parent 385

scaffolds. At every iteration step, each ring adhering to the criteria listed above is removed 386

separately to produce the resulting parent scaffold. This is repeated until only single-ring 387

18

scaffolds remain, or no ring is removable anymore. These final scaffolds are called the root 388

scaffolds. All generated parent scaffolds are substructures of the original scaffold. An example 389

for the enumerative removal is shown in Figure 6. This routine can be applied to a given 390

molecule and it returns a list with all possible parent scaffolds plus the original scaffold of the 391

molecule. Parent scaffolds generated multiple times in the enumerative removal are returned 392

only once. This scaffold dissection routine is the basis for generating scaffold networks. The 393

dissection result of a single molecule can already be represented as a scaffold network by 394

returning it as the corresponding data structure instead of a list. 395

 396

 397

Figure 6: Enumerative parent scaffold generation of flucloxacillin. Conceptual depiction 398

of the enumerative parent scaffold generation routine applied to the scaffold of flucloxacillin 399

(on the left). All possible parent scaffolds that can be created through the removal of a terminal 400

ring are created. Marked in blue are all structures that are returned by the routine, indicating 401

that structures occurring multiple times are still returned only once. 402

 403

19

Scaffold Generator implements the 13 chemical prioritisation rules that are applied in the 404

original scaffold tree publication to specifically select only one parent scaffold at every scaffold 405

dissection step [7]. In principle, these rules are applied to select only one ring removal path 406

from all possible ones that are pursued in the enumerative removal (compare Figure 6). Only 407

a few minor changes have been done to the original rules and underlying routines as reported 408

above. Additionally, the final tie-breaking rule has been adapted to use unique SMILES 409

representations [59, 60] as produced by the CDK, instead of canonical ones. From a given 410

molecular structure, Scaffold Generator can generate a list of all parent scaffolds resulting 411

from the Schuffenhauer dissection routine, plus the original scaffold (Figure 7). It produces the 412

structures that can be used to build a scaffold tree in the second step. As with scaffold 413

networks, a scaffold tree can already be constructed from a single molecule as well. 414

 415

 416

Figure 7: Schuffenhauer parent scaffold generation of flucloxacillin. Conceptual 417

depiction of the parent scaffold generation routine employing the Schuffenhauer prioritisation 418

rules applied to the scaffold of flucloxacillin (on the left). The rules are used to select only one 419

parent scaffold out of all possible ones at every dissection step. 420

 421

The main functionality of Scaffold Generator is the construction of scaffold trees and networks 422

from given molecule collections (Figure 8). In the first step, the first molecule in the given 423

collection is dissected into its parent scaffolds and the result is used to build the starting point 424

of the desired structure. One by one, the remaining molecules are decomposed as well and 425

their original scaffolds and parent scaffolds added to the tree or network if they are not already 426

part of it. Scaffold Generator implements data structures that manage the graph nodes 427

representing scaffolds and their parent-child connections as edges in scaffold trees and 428

20

networks. Both graphs are subdivided into levels with the root scaffolds on level 0 and their 429

child scaffolds on the consecutive levels. The leaves are formed by the original scaffolds of 430

the given molecules. But it is important to note that lower levels down to the roots can contain 431

original scaffolds as well, e.g. when single-ring molecules are part of the given molecular set. 432

The merging routines that are employed in the construction of a tree or network to add more 433

scaffolds to it are also accessible after the final structures have been returned. 434

 435

21

 436

Figure 8: Scaffold network and tree depicted with the Scaffold Generator GraphStream 437

visualisation. The scaffold network (a) and scaffold tree (b) of diazepam (PubChem CID 438

3016) (1), bromazepam (PubChem CID 2441) (2), and zolazepam (PubChem CID 35775) (3) 439

22

are displayed side-by-side for direct comparison (original scaffolds marked in blue). All three 440

compounds are diazepinenones, a class of anxiolytics. The scaffold tree correctly identifies 441

the diazepinenone ring as root scaffold of all three structures. But the scaffold network 442

additionally reveals that diazepam (1) shares two-ring parent scaffolds with both the other 443

structures, respectively. It also shows that the benzene ring is shared by all three compounds 444

as well. 445

 446

The scaffold tree and network structures differ in some aspects: In scaffold trees, each node 447

has only one parent node. This results from the Schuffenhauer scaffold dissection where a 448

scaffold produces only one parent scaffold in each step. In scaffold networks, on the other 449

hand, a node can have multiple parents since a scaffold usually produces multiple parent 450

scaffolds in each step during the enumerative removal. 451

Another distinct aspect of scaffold trees is that only those molecules with their original 452

scaffolds and parent scaffolds can be combined in one tree that share the same root scaffold. 453

This is the scaffold (usually a single-ring scaffold) which results as parent scaffold in the final 454

step of the Schuffenhauer dissection. It is unambiguously determined by the prioritisation 455

rules. Scaffold Generator compiles the generated scaffolds of multiple molecules in one 456

scaffold tree instance if they have the same root scaffold. If molecules with different root 457

scaffolds are given in the molecule set, multiple scaffold tree instances will be created and 458

returned in a list, termed scaffold forest in the nomenclature of Scaffold Generator. In the 459

construction of scaffold networks, only one parent scaffold, i.e. at least one ring, needs to be 460

shared between two molecules to be able to combine them in one network. But the scaffold 461

network data structure of Scaffold Generator is also able to handle multiple disconnected 462

graphs of scaffolds in one instance, unlike the scaffold tree structure. 463

The tree and network data structures can generate an adjacency matrix representation of 464

themselves that can be used for export or visualisation. Scaffold Generator offers an initial 465

visualisation functionality for scaffold trees and networks based on the GraphStream library. 466

The two structures can be visualised as graphs in a Java Swing application window. A layout 467

23

algorithm attempts to place the nodes and edges as readable as possible but modifications to 468

the layout can be done by dragging nodes. The display can also be zoomed and moved using 469

key commands. Some figures in this publication have been created using the Scaffold 470

Generator GraphStream display (Figures 8 and 9). While this visualisation was helpful during 471

the development process for visual inspection and debugging, it is not considered powerful 472

enough for real-world use cases and will most likely not be part of a CDK integration of Scaffold 473

Generator. A scaffold hierarchy visualisation tool that might sprout from Scaffold Generator as 474

a separate project would have to be very interactive, i.e. zoomable, draggable, and 475

collapsable. Especially scaffold networks tend to grow very fast with the number of included 476

molecules. Therefore, their display needs to be limited in a comprehensive way, e.g. by only 477

visualising islands of active scaffolds as proposed by Varin et al. [9]. Scaffold trees can 478

become big as well, but they have the advantage that one can look at only one tree out of the 479

forest at a time since they are disconnected. 480

When a tree or network is constructed, a crucial step is querying whether a scaffold is already 481

part of it. This matching is done using SMILES representations of the scaffolds. The default 482

setting is to use unique SMILES with aromaticity encoding but without stereochemical 483

information. This can be adjusted, e.g. to include stereochemistry. Scaffold Generator 484

generally retains given stereochemical information during scaffold creation and dissection by 485

transferring the CDK IStereoElement [61] objects to the newly created structures. But this only 486

works if all defining elements of a stereo group, i.e. atoms and/or bonds, are still present in 487

the generated substructures. Since in the majority of cases side chains define stereochemistry 488

and stereochemical information is often not given or incomplete in molecular data sets, the 489

consideration of given stereochemical information in tree or network construction is turned off 490

per default as stated above. But it can be enabled for use cases where it is relevant (Figure 491

9). Other molecular characteristics that can generally be taken into account or not (depending 492

on the specific use case) for the determination of equivalence between two structures in 493

cheminformatic analyses are tautomeric forms or protonation states, for example. 494

24

Standardising these structures if needed has to be done in a data curation protocol that is 495

applied to the input structures before they are passed to Scaffold Generator. 496

 497

 498

Figure 9: Scaffold tree with activated stereochemistry consideration. The Scaffold tree 499

of (+)-thalidomide (PubChem CID 75792, on the left) and (-)-thalidomide (PubChem CID 500

92142, on the right) with activated stereochemistry consideration is shown in the Scaffold 501

Generator GraphStream display. If the consideration of stereochemistry in tree building was 502

turned off, both compounds would be sharing the same two-ring scaffold as well. 503

 504

The instances representing scaffold nodes in the trees and networks contain structural 505

information about their scaffold and have references to their parents in the hierarchies. 506

Additionally, they preserve SMILES codes of their origin molecules, i.e. structures from the 507

data set that possess the respective scaffold. These origins are subdivided into virtual and 508

non-virtual ones. Non-virtual origin molecules are those that have the node scaffold as their 509

original scaffold, e.g. their Murcko framework. Virtual origins on the other hand are molecules 510

that generate the respective scaffold only through enumerative or Schuffenhauer dissection, 511

i.e. it is one of their parent scaffolds. This concept has been introduced in Scaffold Generator 512

based on the definition of virtual scaffolds described in the literature [29, 30]. This term denotes 513

scaffolds that are not directly in the data set but only identified when parent scaffolds are 514

generated. If a scaffold node has only virtual origins, it is a virtual scaffold in Scaffold 515

Generator. When analysing the results of a high-throughput screening (HTS) campaign, virtual 516

scaffolds can be of particular interest if many of their child scaffolds exhibit bioactivity. A 517

25

promising next step can be a second screening with a smaller library based on this scaffold 518

because the first screen might have failed to include the true active scaffold structure. 519

An annotation of scaffold nodes in trees or networks with e.g. bioactivity data can be achieved 520

via the stored origin molecules as well. One way to do this is to deposit the (unique) SMILES 521

representation of the molecules in the studied data set linked to the respective annotation in 522

a map structure. After the hierarchy is generated, its nodes can be annotated through 523

comparing the origin molecule SMILES codes with the previously compiled annotation map. 524

This way, e.g. scaffold nodes could be coloured according to bioactivity [7] or the hierarchy 525

display limited to active scaffolds [9] in a more advanced visualisation tool as proposed above. 526

During the development of Scaffold Generator, it was decided against keeping the original 527

IAtomContainer instances with their structures and properties as origin references in favour of 528

only their SMILES representations to reduce random-access memory (RAM) consumption. 529

 530

Aromaticity handling 531

Aromaticity information and detection is relevant in multiple Scaffold Generator functionalities. 532

As stated above, when an aromatic ring is removed, bonds it shares with other rings are turned 533

into double bonds in some cases to preserve hybridisations and aromaticity. Since this is not 534

possible in all configurations, aromaticity information is also relevant in the determination of 535

possibly removable rings (see above). And many fused aromatic ring systems, e.g. pyrene, 536

are not dissected by Scaffold Generator as a result. 537

Aromaticity information is also significant in two of the 13 scaffold tree prioritisation rules for 538

parent scaffold determination, namely rule 7 "A Fully Aromatic Ring System Must Not Be 539

Dissected in a Way That the Resulting System Is Not Aromatic Any More") and rule 11 "For 540

Mixed Aromatic/Nonaromatic Ring Systems, Retain Nonaromatic Rings with Priority") [7]. The 541

seventh rule makes it necessary to generate all possible parent scaffolds producible by the 542

removal of one ring at the given dissection step and apply aromaticity determination to each 543

of them to assess whether aromaticity was lost in the remaining ring(s). Because this 544

26

consumes a lot of computation time and aromaticity should be conserved in most cases 545

through the double-bond insertion, the application of the seventh prioritisation rule can be 546

turned off individually in Scaffold Generator. 547

Aromaticity determination in CDK and hence in Scaffold Generator is carried out by 548

Aromaticity instances [62] constructed from the combination of an ElectronDonation model 549

[63] and a CycleFinder algorithm [56]. The former defines which atom types can contribute 550

how many electrons to the aromatic system and the latter determines the cycles that can form 551

them. All aromaticity models in CDK loosely follow the Hückel rule heuristic [62]. The specific 552

Aromaticity instance used in Scaffold Generator can be configured because different models 553

are suited for different applications. 554

Since multiple intermediate steps in scaffold dissection rely on aromaticity information of 555

specific substructures, an initial aromaticity detection is applied at the primary scaffold 556

generation. And again at the end of a scaffold dissection process, a final aromaticity detection 557

is applied to all generated parent scaffolds to make sure that the aromaticity information stored 558

on the scaffold objects is in agreement with the returned structures. This last step might lead 559

to cases where the same ring is not detected as aromatic in a smaller parent scaffold but in 560

the bigger child scaffold in which it is a substructure. This is due to the cycle finder algorithms 561

usually employed for aromaticity detection that are not SSSR-/MCB-based but also take cycles 562

into account that span multiple rings of the molecule. It should be interpreted in the way that 563

the ring in the parent scaffold gained aromaticity in the child scaffold through combination with 564

other rings. 565

An additional option is to turn off aromaticity detection completely in all Scaffold Generator 566

routines. This was implemented because this process takes a lot of time and makes the results 567

of scaffold dissection routines dependent on mostly toolkit-specific and heuristic aromaticity 568

models. If it is disabled, initially defined aromaticity information in the input structures is 569

preserved. 570

It must also be noted here again that all aromaticity models in CDK are based on the Hückel 571

rule, which is the most used heuristic for aromaticity determination but not the only one and 572

27

has a long list of exemptions. Furthermore, it is only a heuristic determination method for the 573

concept of aromaticity, which is itself not uniquely defined [64-67]. 574

 575

Settings and options 576

Table 1: Settings and options of Scaffold Generator. The settings listed in this table 577

together with their options and default values are available in Scaffold Generator to adjust its 578

results to specific use cases. 579

28

Setting name Options Default

Scaffold mode - Scaffold

- Murcko framework

- Basic wireframe

- Basic framework

- Elemental wireframe

Scaffold

Determine aromaticity true/false true

Aromaticity model All combinations of

CycleFinder and

ElectronDonation instances

available in CDK

ElectronDonation.cdk and

Cycles.cdkAromaticSet

Retain only

hybridisations at

aromatic bonds

true/false false

Rule seven applied

("A Fully Aromatic Ring

System Must Not Be

Dissected in a Way

That the Resulting

System Is Not Aromatic

Any More" [7])

true/false true

SMILES generator All SmilesGenerator

configurations available in

CDK

SmiFlavor.Unique and

SmiFlavor.UseAromaticSymbols

 580

The functionalities and routines of Scaffold Generator can be adopted for various applications 581

by a variety of settings available (Table 1). Five different structural scaffold definitions can be 582

chosen for initial scaffold extraction and scaffold dissection (Figure 1). The default setting of 583

the scaffold mode setting is to use the scaffold including all atoms directly connected to rings 584

or linkers via non-single bonds. 585

29

Multiple steps in scaffold dissection and the construction of Scaffold trees and networks 586

require the testing for equivalence of molecular structures. These include the enumerative 587

generation of all possible parent scaffolds to avoid duplicates and the identification of 588

equivalent scaffolds when merging trees or networks. In Scaffold Generator, this is done using 589

CDK unique SMILES codes. To allow the user the definition of structural features taken into 590

account at these steps, e.g. stereochemistry, isotopes, or aromaticity, the CDK 591

SmilesGenerator [68] instance employed can be set externally. By default, stereochemistry 592

and atomic masses are not encoded but aromaticity is. The set SmilesGenerator instance is 593

also used to create SMILES codes for origin molecules of a respective scaffold stored on 594

nodes of scaffold trees and networks. It is important to note here that molecular characteristics 595

of the input molecules and resulting (parent) scaffolds, like protonation states or tautomeric 596

forms, are taken by Scaffold Generator “as is”, or rather as they are represented in the chosen 597

SMILES encoding. The only exemption is the detection of aromatic systems which is done on 598

input structures by default. Therefore, users have to take care of preprocessing their input 599

data sets according to their specific needs, e.g. standardising tautomeric forms and 600

protonation states in all input molecules, before using Scaffold Generator. 601

Another option is to exclude or include the Schuffenhauer prioritisation rule 7. This rule makes 602

it necessary to apply aromaticity detection to different parent scaffolds created for testing 603

purposes. This procedure is time-consuming and might not lead to a definite decision in favour 604

of one specific parent scaffold in most cases. But by default, it is activated to be in accordance 605

with the originally published scaffold tree implementation [7]. 606

The aromaticity detection done in multiple steps of scaffold dissection (see above) can be 607

configured by choosing which CDK aromaticity model is to be employed for this purpose. By 608

default, aromaticity is determined using the ElectronDonation.cdk model and the 609

Cycles.cdkAromaticSet cycle finder algorithm. 610

Additionally, aromaticity detection can be turned off completely in all routines to preserve initial 611

aromaticity information of the input structures and make the results less dependent on specific 612

30

aromaticity models. If this is the case, rule 7 is automatically excluded from the Schuffenhauer 613

prioritisation rules as well. 614

The fifth option of Scaffold Generator concerns post-processing after ring removal: As 615

explained above, a double bond is inserted in some cases when an aromatic ring is removed 616

to preserve hybridisation and aromaticity in the remaining ring(s) if possible. As an option, this 617

insertion of double bonds can also be applied to non-aromatic systems wherever there are 618

two sp2 hybridised atoms adjacent to a single bond that was previously shared between two 619

rings. The bond is turned into a double bond if the two adjacent atoms would lose their sp2 620

hybridisation because of the ring removal and if it is possible without violating valence rules 621

(Figure 10). 622

 623

 624

Figure 10: Parent scaffold of 1,2,3,4,6,7-hexahydroisoquinoline depending on the set 625

value of the retain only hybridisations at aromatic bonds setting. When the 626

cyclohexadiene ring is removed from 1,2,3,4,6,7-hexahydroisoquinoline (PubChem CID 627

89002720) in parent scaffold generation, the formerly shared bond with the piperidine ring is 628

turned into a double bond if the retain only hybridisations at aromatic bonds setting is set to 629

false. In this case, double bonds are always inserted if possible to preserve atom 630

hybridisations in the remaining ring. If the setting is set to true, this is only done when an 631

31

aromatic ring is removed. In this case, no double bond is inserted in the remaining piperidine 632

ring. 633

 634

Software architecture 635

The central class of the Scaffold Generator library is ScaffoldGenerator. When instantiated, 636

all available settings are set to their default values (Table 1) and can be adjusted using 637

methods of the class. All main functionalities of Scaffold Generator described above can be 638

accessed through an instance of the ScaffoldGenerator class, i.e. generation of scaffolds, their 639

decomposition into building blocks, parent scaffold generation through enumerative or 640

Schuffenhauer dissection, and the generation of scaffolds trees and networks. The two 641

scaffold hierarchy structures are represented by a class of their own, respectively: 642

ScaffoldTree and ScaffoldNetwork. Both extend the same base class, 643

ScaffoldNodeCollectionBase, for basic functionalities and manage scaffold nodes as 644

TreeNode or NetworkNode instances that both stem from the abstract base class 645

ScaffoldNodeBase. These six classes manage scaffold structures, parent-child relationships 646

of scaffold nodes, and origin molecule references. Trees and networks can be traversed and 647

merged with instances of the same class, respectively. Scaffold trees can additionally be 648

checked for validity, i.e. whether all nodes have parents, except the root node, and there is 649

only one root node. Scaffold tree and network instances can also be exported as adjacency 650

matrices along with scaffold structures for each represented node. This is utilised by the class 651

GraphStreamUtility to display scaffold trees and networks in an interactive Java Swing 652

application window with the GraphStream library. 653

The JUnit [69] test class ScaffoldGeneratorTest implements automatic tests for the basic 654

Scaffold Generator routines, tests employing the GraphStream visualisation of scaffold trees 655

and networks for visual inspection, and code examples for the application of Scaffold 656

Generator. Another important set of test routines checks whether the Schuffenhauer 657

prioritisation rules as implemented in Scaffold Generator are in accordance with the original 658

32

implementation, based on the examples given in the scaffold tree publication [7]. Furthermore, 659

the COCONUT database is used to test the basic routines on a large set of natural product 660

(NP) structures. 661

The class PerformanceTest represents a command-line application based on Scaffold 662

Generator that can be used to assess its computational speed on a given structure data file 663

(SDF). The results on COCONUT and DrugBank [70, 71] are presented in the “Results and 664

discussion” section. 665

 666

Results and discussion 667

A programming library for molecular scaffold functionalities named Scaffold Generator was 668

implemented based on the Chemistry Development Kit (CDK). The openly available source 669

code of Scaffold Generator can be found on GitHub: https://github.com/Julian-670

Z98/ScaffoldGenerator. It can be utilised to extract different types of scaffolds from input 671

molecules and dissect them further into parent scaffolds using an enumerative generation of 672

all possible ones or a dissection according to the scaffold tree prioritisation rules. Additionally, 673

the scaffolds and parent scaffolds can be arranged in scaffold trees and networks with these 674

hierarchies being visualised. 675

 676

Performance 677

Scaffold Generator can be packaged in a JAR file and used as a command-line application. It 678

requires an SD file as input parameter and creates a performance snapshot of the main 679

functionalities of Scaffold Generator with the given data set. First, all molecules are imported 680

and stored in memory. From these, all structures having more than ten rings are discarded. 681

This is done because they occur rather rarely but would influence the overall processing time 682

disproportionally. No further filtering or preprocessing, e.g. removal of counter-ions or 683

https://github.com/Julian-Z98/ScaffoldGenerator
https://github.com/Julian-Z98/ScaffoldGenerator

33

elimination of duplicates, is done for the purpose of this performance snapshot and the 684

following exemplary analyses. For an initial performance snapshot, all remaining molecules 685

are processed according to the enumerative generation of parent scaffolds and the parent 686

scaffold generation according to the scaffold tree prioritisation rules. Afterwards, the dataset 687

is subdivided into equally large portions. The total number of fractions has to be specified in 688

the second command-line parameter. In each following step, a growing number of created 689

molecule subsets is combined and all included structures used to build a scaffold network and 690

a scaffold forest, i.e. a set of scaffold trees. The number of molecules and the needed 691

processing time is logged in every step. In the final step, all scaffolds in the network and the 692

trees, respectively, and their frequencies determined based on their numbers of origin 693

molecules are exported to an output file. The scaffold structures are exported as SMILES 694

strings. 695

For this article, two performance snapshots were conducted. The first one was done on the 696

DrugBank database containing drug molecules (DrugBank “all structures” downloaded on 8th 697

November 2021). For comparison, the COCONUT NP database (downloaded on 1st 698

December 2021) was analysed as well. Additionally, for some analyses, a subset of 699

COCONUT containing 40,000 structures was compiled from the complete collection using the 700

RDKit MaxMin algorithm implementation [49, 72]. All analyses were conducted on a 701

workstation computer with an Intel(R) Xeon(R) Gold 6254 CPU (18 cores, 3.10 GHz) and 512 702

GB RAM on a single core only (no multi-core parallelization). All Scaffold Generator settings 703

were set to their default values. 704

 705

34

Table 2: Performance snapshot of the mere parent scaffold generation routines applied 706

to COCONUT and DrugBank. 707

 COCONUT DrugBank

Initial number of molecules 406,747 11,172

Number of molecules after filtering

(< 11 rings)

395,450 11,127

Schuffenhauer dissection total 1,211,063 ms

(20 min)

27,656 ms

(0.46 min)

Schuffenhauer dissection average per

molecule

3 ms 2.5 ms

Enumerative dissection total 2,037,357 ms

(34 min)

33,938 ms

(0.57 min)

Enumerative dissection average per

molecule

5 ms 3 ms

 708

The complete COCONUT database contained 406,747 NP structures (Table 2). 11,297 of 709

these possessed 11 or more rings and were filtered. The remaining 395,450 NP were 710

subjected to the parent scaffold generation according to the Schuffenhauer rules, which took 711

1,211,063 ms (20 min). On average, the dissection of one COCONUT NP into its scaffold and 712

parent scaffolds according to the Schuffenhauer prioritisation rules took 3 ms. Generating all 713

possible parent scaffolds with the enumerative routine took 2,037,357 ms (34 min) for the 714

same molecule set. This is 5 ms per molecule on average. 715

The DrugBank data set of 11,172 molecules contained 45 structures with more than 10 rings 716

that needed to be filtered. The Schuffenhauer dissection of all structures took 27,656 ms 717

(0.46 min, 2.5 ms per molecule on average) and the enumerative parent scaffold generation 718

took 33,938 ms (0.57 min, 3 ms per molecule on average). 719

35

It is interesting to note that the enumeration of all possible parent scaffolds at every step 720

required more computation time than the application of up to 13 prioritisation rules at every 721

step. This was the case for NP as well as drug molecules which have less rings in general. 722

The latter characteristic of drug molecules as opposed to NP is also considered the reason for 723

the lower time it took on average to dissect the DrugBank structures. It must also be noted 724

that these processes, the pure dissection of each molecule, scale linearly with the number of 725

molecules and can be parallelised in multiple threads for further speed up. 726

 727

 728

Figure 11: Performance snapshot of scaffold forest and scaffold network construction 729

in DrugBank range of molecule number. The graph visualises the processing time it took 730

to construct a scaffold forest or scaffold network depending on the number of input molecules 731

taken from COCONUT or DrugBank. Exponential approximations have been applied to assess 732

the scaling behaviour of the processes. The given range of the number of molecules is 733

adjusted to the size of DrugBank (11,127 molecules). 734

 735

36

 736

Figure 12: Performance snapshot of scaffold forest and scaffold network construction 737

in COCONUT subset range of molecule number. The graph visualises the processing time 738

it took to construct a scaffold forest or scaffold network depending on the number of input 739

molecules taken from COCONUT or DrugBank. Exponential approximations have been 740

applied to assess the scaling behaviour of the processes. The given range of the number of 741

molecules is adjusted to the size of the curated COCONUT subset (39,324 molecules). 742

 743

In a second step, it was measured how much time it took to construct scaffold forests and 744

networks from an increasing number of molecules taken from the COCONUT subset and 745

DrugBank, respectively. Figure 11 shows the results for the area of molecule number of 746

DrugBank (0 - 11,127 molecules) and Figure 12 for the area of the COCONUT subset (0 - 747

39,324 molecules). Exponential approximations show that the individual processes scaled 748

between O(N1.2) and O(N1.6). This comparatively good scaling below a quadratic behaviour is 749

most likely due to the stepwise construction of the scaffold hierarchies that repeats the two 750

steps of scaffold dissection and integration for each molecule instead of generating all 751

scaffolds first and constructing the hierarchy later using substructure searches to establish 752

parent-child scaffold relationships. 753

37

Both, the generation of scaffold networks and trees from NP, scaled with higher exponents 754

than the analogous processes for drug molecules, which can again be explained by the 755

generally higher number of rings in the former class of compounds. 756

The generation of scaffold networks from NP structures scaled with the highest exponent. 757

Since the number of scaffolds in a network grows faster than in a forest because more parent 758

scaffolds are constructed for each molecule, it takes more time in network construction to 759

integrate new molecules, i.e. their scaffolds. This traversal of the scaffold forest or network for 760

the integration of new scaffolds is considered to be the algorithm step that dictates the scaling 761

behaviour. In addition, this step would be more challenging to parallelise and speed up through 762

multithreading because the same data structure would be accessed by all threads. The 763

scaffold tree and network representations in Scaffold Generator are currently not implemented 764

to be thread-safe, i.e. safe to use for concurrent modification. 765

According to the exponential approximation for the COCONUT subset of 40,000 NP 766

structures, a scaffold network of up to 456,000 NP molecules could still be constructed in a 767

single day using Scaffold Generator. The measured runtime for the complete COCONUT 768

database of 395,450 compounds with less than 11 rings was 16.5 h (5 h for the construction 769

of a scaffold forest). This is below the runtime of 19.2 h expected for this data set size 770

according to the exponential function approximating the scaling behaviour of the COCONUT 771

subset network generation. The underlying effect can be that with growing size of the network, 772

less new scaffolds need to be integrated per newly added molecule. Here, one also has to 773

take into account that the subset used for the performance and scaling snapshot was compiled 774

using a diversity-preserving method [72]. This may have increased the effect even further. 775

The memory consumption of the scaffold tree and scaffold network constructed from the 776

complete COCONUT database was below the 512 GB RAM available at all times but similar 777

experiments on a machine with 256 GB failed. 778

 779

38

Most frequent scaffolds in COCONUT and DrugBank 780

Table 3: Numbers of resulting scaffolds in scaffold network and scaffold forest 781

constructed from COCONUT and DrugBank. 782

 COCONUT DrugBank

Number of molecules after filtering

(< 11 rings)

395,450 11,127

Number of scaffold network scaffolds 392,888 23,765

Number of scaffold trees 6,200 766

Number of scaffold tree scaffolds 173,526 10,716

 783

The Scaffold Generator command-line application logs the numbers of different scaffolds in 784

network and forest built from the given data set and exports the scaffolds as SMILES 785

representations with their frequencies as a final step. These scaffold numbers for COCONUT 786

and DrugBank can be found in Table 3. The COCONUT scaffold network contained 392,888 787

different (parent) scaffolds, while the DrugBank network contained 23,765. The COCONUT 788

scaffold forest consisted of only 173,526 scaffolds distributed among 6,200 individual scaffold 789

trees. For DrugBank, it was 10,716 scaffolds in 766 trees. According to these numbers, the 790

enumerative parent scaffold generation produced more than twice as many scaffolds as the 791

Schuffenhauer dissection. Using a classification by root scaffolds, the two data sets could be 792

classified into a number of different classes according to the number of resulting scaffold trees. 793

The 20 most frequent scaffolds in the COCONUT scaffold network and scaffold forest, 794

respectively, as determined in this exemplary showcase analysis, are displayed in Figures 13 795

and 14. The frequencies are given as numbers of origin molecules that produced the 796

respective scaffold in parent scaffold generation or had it as an original scaffold. The 797

frequencies for the network scaffolds correspond precisely to the number of molecules that 798

possess the respective scaffold as a substructure, whereas the frequencies for the forest 799

39

scaffolds correspond to the number of molecules that possess the scaffold as their most 800

characteristic or central parent scaffold in one step of the Schuffenhauer dissection according 801

to the prioritisation rules. Hence, 225,272 COCONUT molecules contain a benzene ring 802

(Figure 13) but only in 29,258 molecules, it is the characteristic or central parent scaffold 803

(Figure 14). Still, it is striking that the benzene ring is the most frequent root scaffold in the 804

forest because some Schuffenhauer prioritisation rules explicitly assign a low relevance to it 805

and favour its removal over that of other rings. 806

As could be expected, the first ranks in both charts are dominated by single-ring scaffolds, 807

since they represent the final stage of scaffold dissection and have the most origin molecules, 808

therefore. The first ranks are also dominated by 6-membered rings and parent scaffolds that 809

are most likely resulting from the dissection of polyketides. The frequency of oxygen-810

containing scaffolds is higher than that of nitrogen, as can be expected for NP. The empty 811

cells in both charts represent empty scaffolds, i.e. scaffolds of molecules that have no rings. 812

Hence, 21,882 molecules in COCONUT do not possess any circular structures. Of 406,747, 813

the share of linear molecules is low (5 %), but one should keep in mind that these structures 814

are usually completely neglected in ring-based analyses like most scaffold methods. 815

 816

40

 817

41

Figure 13: 20 most frequent scaffold network scaffolds of COCONUT with their numbers 818

of origin molecules. 819

 820

42

 821

43

Figure 14: 20 most frequent scaffold forest scaffolds of COCONUT with their numbers 822

of origin molecules. 823

 824

Figures 15 and 16 analogously display the most frequent scaffolds of the created DrugBank 825

scaffold network and scaffold forest. The first observation here is that the share of nitrogen 826

hetero cycles is higher in these drug molecules than in NP structures. This has been reported 827

before [73]. Also, the share of linear molecules (1,467 of 11,172, 13 %) is much higher than 828

in NP. Benzene is again the most frequent scaffold in both analyses. But while it is by far the 829

most frequent scaffold in the DrugBank network (6,578 origin molecules compared to 972 for 830

the second most frequent scaffold, pyridine), its prominence is way lower in the forest (1,819 831

origin molecules compared to 611 for pyrimidine in second place). 832

The core results of this showcase analysis comparing the most frequent NP and drug molecule 833

scaffolds (i.e. commonness of benzene, oxygen as the dominant hetero atom in NP, nitrogen 834

in drug molecules) are in general agreement with similar studies [15, 19, 74-76]. A significantly 835

higher prevalence of aromatic scaffolds in drug molecules as opposed to NP that most of these 836

studies report cannot be observed here. This stresses that the results presented here are only 837

a proof of concept for the application of Scaffold Generator. A more detailed analysis would 838

first of all need an extensive data curation pipeline to standardise input molecules or filter or 839

mark duplicates between the two data sets. Furthermore, a more extensive analysis of 840

physicochemical property distributions in the extracted scaffolds could be conducted. 841

 842

44

 843

45

Figure 15: 20 most frequent scaffold network scaffolds of DrugBank with their numbers 844

of origin molecules. 845

 846

46

 847

47

Figure 16: 20 most frequent scaffold forest scaffolds of DrugBank with their numbers 848

of origin molecules. 849

 850

This analysis of the most frequent scaffolds in COCONUT and DrugBank is only supposed to 851

serve as a basic example for what kind of studies Scaffold Generator may be used. These 852

results may also have been achieved through the mere dissection of scaffolds into parent 853

scaffolds and a subsequent matching and counting of the resulting structures. With its ability 854

to generate and represent scaffold networks and forests, Scaffold Generator may be applied 855

to a wider variety of analyses like hierarchical classification and clustering, chemical space 856

mapping, or HTS data interpretation. But for these, a more powerful visualisation than the 857

existing GraphStream-based one would be very helpful. 858

 859

Future Work 860

Scaffold Generator meets the need for an open, versatile, CDK-based library for scaffold 861

functionalities that can be employed in software and workflows built upon this cheminformatics 862

toolkit. To make it more accessible to potential users, an integration into the CDK core modules 863

would be desirable since the toolkit would benefit from having more scaffold functionalities 864

available. A corresponding request to the library maintainers has been made. 865

Another aspect that would make Scaffold Generator more applicable is a more powerful 866

visualisation functionality than the currently available one based on the GraphStream library. 867

It should display the hierarchies in suitable layouts, i.e. a tree layout for scaffold trees and a 868

similar layout for scaffold networks that arranges the network in its defined levels. The display 869

should be draggable, zoomable, and collapsable. The latter aspect is especially important for 870

scaffold networks that tend to grow very fast with the number of included molecules. For 871

example, all scaffolds below a chosen node should be easily collapsable or only active islands 872

of scaffolds should be displayed when bioactivity data is linked to the given molecules [9]. 873

Especially the analysis of HTS data or the derivation of SAR insights would benefit from a 874

48

versatile scaffold hierarchy visualisation. To further support these analyses, methods to 875

display scaffolds and their parent scaffolds hierarchically in a standardised, directly visually 876

accessible way, like the work of Alex M. Clark [77], should be explored in future developments. 877

Scaffold Generator can serve as core for a variety of scaffold-based functionalities. 878

Classification, clustering, and scaffold-based fingerprints are possible applications that can be 879

used in a second step for picking diverse training and test sets for machine learning models 880

for example [12]. The concept of scaffolds and parent scaffolds as characteristic molecular 881

fragments of molecules can help in the development of QSAR/QSPR models or computer-882

assisted structure elucidation. Applied to NP, scaffolds can serve as starting points for the 883

creation of pseudo-NP that are regarded as promising candidates for new drug molecules [78, 884

79]. Additionally, the study of macrocyclic structures in NP with existing scaffold 885

methodologies and the development of new, specialised approaches for these structures are 886

promising ways of identifying new drug candidates [20-23]. 887

Possible functional extensions of Scaffold Generator include the incorporation of more 888

abstract scaffold representations, based on the work by Xu and Johnson [25], and the 889

possibility to build scaffold networks or trees encompassing multiple scaffold definitions of 890

varying chemical resolution, like in Molecular Anatomy [26] or the tree-like classification of 891

Medina-Franco et al [24]. A major addition to the functionality of Scaffold Generator would be 892

the inclusion of analog series based scaffold methodologies. Since these have demonstrated 893

significant relevance in the past years, this addition must be considered. 894

 895

Conclusion 896

An open, CDK-based, stand-alone Java library named Scaffold Generator has been 897

developed to meet the need for scaffold functionalities in CDK-based workflows and software. 898

It offers the extraction of different scaffolds, the dissection of scaffolds into building blocks, 899

and the generation of parent scaffolds in two different ways. An enumerative parent scaffold 900

49

generation routine produces all parent scaffolds that can be created through the removal of 901

terminal rings and forms the basis for scaffold networks. Alternatively, only characteristic or 902

central parent scaffolds can be extracted according to the Schuffenhauer prioritisation rules 903

that are used to build scaffold trees. Scaffold trees and networks can be internally represented 904

as data structures and visualised in a basic display based on the GraphStream library. The 905

generation of a scaffold network from more than 450,000 natural product structures can be 906

achieved in a single day. A request for the integration of Scaffold Generator into the CDK core 907

modules has been made and the process started. Scaffold Generator may serve as a starting 908

point for diverse scaffold-based software tools, e.g. for clustering or fingerprint functionalities. 909

 910

List of abbreviations 911

CDK: Chemistry Development Kit 912

CID: Compound IDentifier 913

CNP: COCONUT Natural Product 914

COCONUt: COlleCtion of Open Natural prodUcTs 915

CPU: Central Processing Unit 916

HTS: High-Throughput Screening 917

JAR: Java ARchive 918

MCB: Minimum Cycle Basis 919

NP: Natural Product(s) 920

QSAR/QSPR: Quantitative Structure Activity/Property Relationship 921

R: Registered trademark 922

RAM: Random-Access Memory 923

RECAP: REtrosynthetic Combinatorial Analysis Procedure 924

SAR: Structure Activity Relationship 925

SD(F): Structure Data (File) 926

50

SMARTS: SMILES Arbitrary Target Specification 927

SMILES: Simplified Molecular Line Entry System 928

SSSR: Smallest Set of Smallest Rings 929

 930

Availability and requirements 931

● Project name: Scaffold Generator 932

● Project home page: https://github.com/Julian-Z98/ScaffoldGenerator 933

● Current version: v1.0.3 934

● DOI of archived current version: https://doi.org/10.5281/zenodo.7245473 935

● Operating system(s): Platform independent 936

● Programming language: Java 937

● Other requirements: Java v17 or higher, Maven v4 or higher, CDK v2.8 (fetched by 938

Maven), GraphStream v2.0 (fetched by Maven), JUnit v4.13.2 (fetched by Maven) 939

● Licence: GNU Lesser General Public Licence (LGPL) v2.1 940

● Any restrictions to use by non-academics: None 941

 942

Declarations 943

Availability of data and materials 944

Data and software are freely available under the LGPL v2.1 licence. The source code of 945

Scaffold Generator is available on GitHub at https://github.com/Julian-Z98/ScaffoldGenerator. 946

 947

https://github.com/Julian-Z98/ScaffoldGenerator
https://doi.org/10.5281/zenodo.7245473
https://github.com/Julian-Z98/ScaffoldGenerator

51

Competing interests 948

AZ is co-founder of GNWI - Gesellschaft für naturwissenschaftliche Informatik mbH, 949

Dortmund, Germany. 950

 951

Funding 952

This work was supported by the Carl-Zeiss-Foundation. 953

 954

Authors' contributions 955

JS designed and supervised the study. JS and JZ designed, tested, applied, and validated the 956

features of Scaffold Generator and wrote the paper. JZ developed the Java code. CS and AZ 957

conceived the study and acquired the funding. All authors read and approved the final 958

manuscript. 959

Acknowledgements 960

The authors would like to thank the communities that created the open software libraries 961

utilised in the development of Scaffold Generator, especially the CDK community for support 962

during this process. Further thanks go to the authors of the scaffold tree publication, 963

Schuffenhauer et al., for describing their prioritisation rules in a detailed way that allowed 964

straightforward reimplementation. 965

 966

References 967

[1] G. Schneider, W. Neidhart, T. Giller, and G. Schmid, ‘“Scaffold-Hopping” by Topological 968

52

Pharmacophore Search: A Contribution to Virtual Screening’, Angew. Chem. Int. Ed., vol. 969

38, no. 19, pp. 2894–2896, Oct. 1999, doi: 10.1002/(SICI)1521-970

3773(19991004)38:19<2894::AID-ANIE2894>3.0.CO;2-F. [cito:citesAsAuthority] 971

[2] H.-J. Böhm, A. Flohr, and M. Stahl, ‘Scaffold hopping’, Drug Discov. Today Technol., vol. 972

1, no. 3, pp. 217–224, Dec. 2004, doi: 10.1016/j.ddtec.2004.10.009. 973

[cito:citesAsAuthority] 974

[3] E. A. Markush, ‘Pyrazolone dye and process of making the same’, USA101506316, Aug. 975

26, 1924 Accessed: Jan. 07, 2022. [Online]. Available: 976

https://pdfpiw.uspto.gov/.piw?PageNum=USA101506316&docid=01506316&IDKey=83977

E682D73B35&HomeUrl=http%3A%2F%2Fpatft.uspto.gov%2Fnetacgi%2Fnph-978

Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526p%3D1%2526u%3D%2Fn979

etahtml%2FPTO%2Fsrchnum.html%2526r%3D1%2526f%3DG%2526l%3D50%2526d980

%3DPALL%2526s1%3D1506316.PN.%2526OS%3D%2526RS%3D 981

[cito:citesAsAuthority] 982

[4] A. Schuffenhauer and T. Varin, ‘Rule-Based Classification of Chemical Structures by 983

Scaffold’, Mol. Inform., vol. 30, no. 8, pp. 646–664, Aug. 2011, doi: 984

10.1002/minf.201100078. [cito:citesAsAuthority] 985

[5] M. A. Koch et al., ‘Charting biologically relevant chemical space: A structural 986

classification of natural products (SCONP)’, Proc. Natl. Acad. Sci., vol. 102, no. 48, pp. 987

17272–17277, Nov. 2005, doi: 10.1073/pnas.0503647102. [cito:citesAsAuthority] 988

[cito:discusses] 989

[6] A. Schuffenhauer, N. Brown, P. Ertl, J. L. Jenkins, P. Selzer, and J. Hamon, ‘Clustering 990

and Rule-Based Classifications of Chemical Structures Evaluated in the Biological 991

Activity Space’, J. Chem. Inf. Model., vol. 47, no. 2, pp. 325–336, Mar. 2007, doi: 992

10.1021/ci6004004. [cito:citesAsAuthority] 993

[7] A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Koch, and H. Waldmann, ‘The 994

Scaffold Tree − Visualization of the Scaffold Universe by Hierarchical Scaffold 995

Classification’, J. Chem. Inf. Model., vol. 47, no. 1, pp. 47–58, Jan. 2007, doi: 996

53

10.1021/ci600338x. [cito:citesAsAuthority] [cito:usesMethodIn] [cito:discusses] 997

[8] T. Varin et al., ‘Compound Set Enrichment: A Novel Approach to Analysis of Primary 998

HTS Data’, J. Chem. Inf. Model., vol. 50, no. 12, pp. 2067–2078, Dec. 2010, doi: 999

10.1021/ci100203e. [cito:citesAsAuthority] 1000

[9] T. Varin, A. Schuffenhauer, P. Ertl, and S. Renner, ‘Mining for Bioactive Scaffolds with 1001

Scaffold Networks: Improved Compound Set Enrichment from Primary Screening Data’, 1002

J. Chem. Inf. Model., vol. 51, no. 7, pp. 1528–1538, Jul. 2011, doi: 10.1021/ci2000924. 1003

[cito:citesAsAuthority] [cito:usesMethodIn] [cito:discusses] 1004

[10] S. J. Wilkens, J. Janes, and A. I. Su, ‘HierS: Hierarchical Scaffold Clustering Using 1005

Topological Chemical Graphs’, J. Med. Chem., vol. 48, no. 9, pp. 3182–3193, May 2005, 1006

doi: 10.1021/jm049032d. [cito:citesAsAuthority] [cito:discusses] 1007

[11] G. W. Bemis and M. A. Murcko, ‘The Properties of Known Drugs. 1. Molecular 1008

Frameworks’, J. Med. Chem., vol. 39, no. 15, pp. 2887–2893, Jan. 1996, doi: 1009

10.1021/jm9602928. [cito:citesAsAuthority] [cito:usesMethodIn] [cito:discusses] 1010

[12] J. Simm et al., ‘Splitting chemical structure data sets for federated privacy-preserving 1011

machine learning’, J. Cheminformatics, vol. 13, no. 1, p. 96, Dec. 2021, doi: 1012

10.1186/s13321-021-00576-2. [cito:citesAsAuthority] 1013

[13] S. L. Schreiber, ‘Target-Oriented and Diversity-Oriented Organic Synthesis in Drug 1014

Discovery’, Science, vol. 287, no. 5460, pp. 1964–1969, Mar. 2000, doi: 1015

10.1126/science.287.5460.1964. [cito:citesAsAuthority] 1016

[14] D. S. Tan, ‘Diversity-oriented synthesis: exploring the intersections between chemistry 1017

and biology’, Nat Chem Biol, vol. 1, no. 2, pp. 74–84, Jul. 2005, doi: 1018

10.1038/nchembio0705-74. [cito:citesAsAuthority] 1019

[15] Y. Chen, C. Rosenkranz, S. Hirte, and J. Kirchmair, ‘Ring systems in natural products: 1020

structural diversity, physicochemical properties, and coverage by synthetic compounds’, 1021

Nat. Prod. Rep., vol. 39, no. 8, pp. 1544–1556, 2022, doi: 10.1039/D2NP00001F. 1022

[cito:citesAsAuthority] [cito:agreesWith] 1023

[16] S. Stone, D. J. Newman, S. L. Colletti, and D. S. Tan, ‘Cheminformatic analysis of natural 1024

54

product-based drugs and chemical probes’, Nat. Prod. Rep., vol. 39, no. 1, pp. 20–32, 1025

2022, doi: 10.1039/D1NP00039J. [cito:citesAsAuthority] 1026

[17] D. Dimova, D. Stumpfe, Y. Hu, and J. Bajorath, ‘Analog series-based scaffolds: 1027

computational design and exploration of a new type of molecular scaffolds for medicinal 1028

chemistry’, Future Science OA, vol. 2, no. 4, p. FSO149, Dec. 2016, doi: 10.4155/fsoa-1029

2016-0058. [cito:citesAsAuthority] 1030

[18] D. Stumpfe, D. Dimova, and J. Bajorath, ‘Computational Method for the Systematic 1031

Identification of Analog Series and Key Compounds Representing Series and Their 1032

Biological Activity Profiles’, J. Med. Chem., vol. 59, no. 16, pp. 7667–7676, Aug. 2016, 1033

doi: 10.1021/acs.jmedchem.6b00906. [cito:citesAsAuthority] 1034

[19] P. Ertl and T. Schuhmann, ‘Cheminformatics Analysis of Natural Product Scaffolds: 1035

Comparison of Scaffolds Produced by Animals, Plants, Fungi and Bacteria’, Mol. Inf., vol. 1036

39, no. 11, p. 2000017, Nov. 2020, doi: 10.1002/minf.202000017. 1037

[cito:citesAsAuthority] [cito:agreesWith] 1038

[20] E. Marsault and M. L. Peterson, ‘Macrocycles Are Great Cycles: Applications, 1039

Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery’, J. Med. 1040

Chem., vol. 54, no. 7, pp. 1961–2004, Apr. 2011, doi: 10.1021/jm1012374. 1041

[cito:citesAsAuthority] 1042

[21] P. Ermert, ‘Design, Properties and Recent Application of Macrocycles in Medicinal 1043

Chemistry’, Chimia, vol. 71, no. 10, p. 678, Oct. 2017, doi: 10.2533/chimia.2017.678. 1044

[cito:citesAsAuthority] 1045

[22] P. G. Dougherty, Z. Qian, and D. Pei, ‘Macrocycles as protein–protein interaction 1046

inhibitors’, Biochemical Journal, vol. 474, no. 7, pp. 1109–1125, Apr. 2017, doi: 1047

10.1042/BCJ20160619. [cito:citesAsAuthority] 1048

[23] C. Kramer, M. Podewitz, P. Ertl, and K. Liedl, ‘Unique Macrocycles in the Taiwan 1049

Traditional Chinese Medicine Database’, Planta Med, vol. 81, no. 06, pp. 459–466, Apr. 1050

2015, doi: 10.1055/s-0035-1545881. [cito:citesAsAuthority] 1051

[24] J. L. Medina-Franco, J. Petit, and G. M. Maggiora, ‘Hierarchical Strategy for Identifying 1052

55

Active Chemotype Classes in Compound Databases’, Chemical Biology & Drug Design, 1053

vol. 67, no. 6, pp. 395–408, Jun. 2006, doi: 10.1111/j.1747-0285.2006.00397.x. 1054

[cito:citesAsAuthority] 1055

[25] Y.-J. Xu and M. Johnson, ‘Using Molecular Equivalence Numbers To Visually Explore 1056

Structural Features that Distinguish Chemical Libraries’, J. Chem. Inf. Comput. Sci., vol. 1057

42, no. 4, pp. 912–926, Jul. 2002, doi: 10.1021/ci025535l. [cito:citesAsAuthority] 1058

[cito:discusses] 1059

[26] C. Manelfi et al., ‘“Molecular Anatomy”: a new multi-dimensional hierarchical scaffold 1060

analysis tool’, J. Cheminformatics, vol. 13, no. 1, p. 54, Dec. 2021, doi: 10.1186/s13321-1061

021-00526-y. [cito:citesAsAuthority] [cito:usesMethodIn] [cito:discusses] 1062

[27] Y. Hu and J. Bajorath, ‘Combining Horizontal and Vertical Substructure Relationships in 1063

Scaffold Hierarchies for Activity Prediction’, J. Chem. Inf. Model., vol. 51, no. 2, pp. 248–1064

257, Feb. 2011, doi: 10.1021/ci100448a. [cito:citesAsAuthority] 1065

[28] K. Klein, O. Koch, N. Kriege, P. Mutzel, and T. Schäfer, ‘Visual Analysis of Biological 1066

Activity Data with Scaffold Hunter’, Mol. Inform., vol. 32, no. 11–12, pp. 964–975, Dec. 1067

2013, doi: 10.1002/minf.201300087. [cito:citesAsAuthority] 1068

[29] S. Wetzel et al., ‘Interactive exploration of chemical space with Scaffold Hunter’, Nat. 1069

Chem. Biol., vol. 5, no. 8, pp. 581–583, Aug. 2009, doi: 10.1038/nchembio.187. 1070

[cito:citesAsAuthority] 1071

[30] P. Ertl, A. Schuffenhauer, and S. Renner, ‘The Scaffold Tree: An Efficient Navigation in 1072

the Scaffold Universe’, in Chemoinformatics and Computational Chemical Biology, vol. 1073

672, J. Bajorath, Ed. Totowa, NJ: Humana Press, 2010, pp. 245–260. doi: 10.1007/978-1074

1-60761-839-3_10. [cito:citesAsAuthority] 1075

[31] X. Q. Lewell, D. B. Judd, S. P. Watson, and M. M. Hann, ‘RECAP-Retrosynthetic 1076

Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged 1077

Molecular Fragments with Useful Applications in Combinatorial Chemistry’, J. Chem. Inf. 1078

Comput. Sci., vol. 38, no. 3, pp. 511–522, May 1998, doi: 10.1021/ci970429i. 1079

[cito:citesAsAuthority] 1080

56

[32] J. J. Naveja and J. L. Medina-Franco, ‘Finding Constellations in Chemical Space Through 1081

Core Analysis’, Front. Chem., vol. 7, p. 510, Jul. 2019, doi: 10.3389/fchem.2019.00510. 1082

[cito:citesAsAuthority] 1083

[33] J. Bajorath, ‘Improving the utility of molecular scaffolds for medicinal and computational 1084

chemistry’, Future Medicinal Chemistry, vol. 10, no. 14, pp. 1645–1648, Jul. 2018, doi: 1085

10.4155/fmc-2018-0106. [cito:citesAsAuthority] 1086

[34] J. J. Naveja and M. Vogt, ‘Automatic Identification of Analogue Series from Large 1087

Compound Data Sets: Methods and Applications’, Molecules, vol. 26, no. 17, p. 5291, 1088

Aug. 2021, doi: 10.3390/molecules26175291. [cito:citesAsAuthority] 1089

[35] J. J. Naveja, M. Vogt, D. Stumpfe, J. L. Medina-Franco, and J. Bajorath, ‘Systematic 1090

Extraction of Analogue Series from Large Compound Collections Using a New 1091

Computational Compound–Core Relationship Method’, ACS Omega, vol. 4, no. 1, pp. 1092

1027–1032, Jan. 2019, doi: 10.1021/acsomega.8b03390. [cito:citesAsAuthority] 1093

[36] M. Wawer and J. Bajorath, ‘Local Structural Changes, Global Data Views: Graphical 1094

Substructure−Activity Relationship Trailing’, J. Med. Chem., vol. 54, no. 8, pp. 2944–1095

2951, Apr. 2011, doi: 10.1021/jm200026b. [cito:citesAsAuthority] 1096

[37] A. de la Vega de León and J. Bajorath, ‘Matched molecular pairs derived by retrosynthetic 1097

fragmentation’, Med. Chem. Commun., vol. 5, no. 1, pp. 64–67, 2014, doi: 1098

10.1039/C3MD00259D. [cito:citesAsAuthority] 1099

[38] J. J. Naveja, B. A. Pilón-Jiménez, J. Bajorath, and J. L. Medina-Franco, ‘A general 1100

approach for retrosynthetic molecular core analysis’, J Cheminform, vol. 11, no. 1, p. 61, 1101

Dec. 2019, doi: 10.1186/s13321-019-0380-5. [cito:citesAsAuthority] 1102

[39] T. Schäfer, N. Kriege, L. Humbeck, K. Klein, O. Koch, and P. Mutzel, ‘Scaffold Hunter: a 1103

comprehensive visual analytics framework for drug discovery’, J. Cheminformatics, vol. 1104

9, no. 1, p. 28, Dec. 2017, doi: 10.1186/s13321-017-0213-3. [cito:citesAsAuthority] 1105

[40] F. Kruger, N. Stiefl, and G. A. Landrum, ‘rdScaffoldNetwork: The Scaffold Network 1106

Implementation in RDKit’, J. Chem. Inf. Model., vol. 60, no. 7, pp. 3331–3335, Jul. 2020, 1107

doi: 10.1021/acs.jcim.0c00296. [cito:citesAsAuthority] 1108

57

[41] M. K. Matlock, J. M. Zaretzki, and S. J. Swamidass, ‘Scaffold network generator: a tool 1109

for mining molecular structures’, Bioinformatics, vol. 29, no. 20, pp. 2655–2656, Oct. 1110

2013, doi: 10.1093/bioinformatics/btt448. [cito:citesAsAuthority] 1111

[42] Jianxing and EX2L, Scaffold Network Generator. Peking University HSC. Accessed: Jan. 1112

12, 2022. [Online]. Available: 1113

https://github.com/huluxiaohuowa/scaffold_network_generator [cito:citesAsAuthority] 1114

[43] O. B. Scott and A. W. Edith Chan, ‘ScaffoldGraph: an open-source library for the 1115

generation and analysis of molecular scaffold networks and scaffold trees’, 1116

Bioinformatics, vol. 36, no. 12, pp. 3930–3931, Jun. 2020, doi: 1117

10.1093/bioinformatics/btaa219. [cito:citesAsAuthority] 1118

[44] D. K. Agrafiotis and J. J. M. Wiener, ‘Scaffold Explorer: An Interactive Tool for Organizing 1119

and Mining Structure−Activity Data Spanning Multiple Chemotypes’, J. Med. Chem., vol. 1120

53, no. 13, pp. 5002–5011, Jul. 2010, doi: 10.1021/jm1004495. [cito:citesAsAuthority] 1121

[45] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen, ‘The 1122

Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and 1123

Bioinformatics’, J. Chem. Inf. Comput. Sci., vol. 43, no. 2, pp. 493–500, Mar. 2003, doi: 1124

10.1021/ci025584y. [cito:citesAsAuthority] [cito:usesMethodIn] 1125

[46] C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, and E. Willighagen, ‘Recent 1126

Developments of the Chemistry Development Kit (CDK) - An Open-Source Java Library 1127

for Chemo- and Bioinformatics’, Curr. Pharm. Des., vol. 12, no. 17, pp. 2111–2120, Jun. 1128

2006, doi: 10.2174/138161206777585274. [cito:citesAsAuthority] 1129

[cito:usesMethodIn] 1130

[47] E. L. Willighagen et al., ‘The Chemistry Development Kit (CDK) v2.0: atom typing, 1131

depiction, molecular formulas, and substructure searching’, J. Cheminformatics, vol. 9, 1132

no. 1, p. 33, Dec. 2017, doi: 10.1186/s13321-017-0220-4. [cito:citesAsAuthority] 1133

[cito:usesMethodIn] 1134

[48] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. 1135

Hutchison, ‘Open Babel: An open chemical toolbox’, J. Cheminformatics, vol. 3, no. 1, p. 1136

58

33, Dec. 2011, doi: 10.1186/1758-2946-3-33. [cito:citesAsAuthority] 1137

[49] ‘RDKit: Open-Source Cheminformatics Software’. http://www.rdkit.org (accessed Jan. 1138

14, 2022). [cito:citesAsAuthority] 1139

[50] ‘Daylight Theory: SMARTS - A Language for Describing Molecular Patterns’. 1140

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (accessed Feb. 21, 1141

2022). [cito:citesAsAuthority] 1142

[51] F. Kruger, N. Fechner, and N. Stiefl, ‘Automated Identification of Chemical Series: 1143

Classifying like a Medicinal Chemist’, J. Chem. Inf. Model., vol. 60, no. 6, pp. 2888–2902, 1144

Jun. 2020, doi: 10.1021/acs.jcim.0c00204. [cito:citesAsAuthority] 1145

[52] R. Guha, MurckoFragmenter. Accessed: Jan. 14, 2022. [Chemistry Development Kit 1146

(CDK)]. Available: 1147

https://github.com/cdk/cdk/blob/master/tool/fragment/src/main/java/org/openscience/cd1148

k/fragment/MurckoFragmenter.java [cito:citesAsAuthority] [cito:usesMethodIn] 1149

[53] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné, ‘GraphStream: A Tool for bridging the gap 1150

between Complex Systems and Dynamic Graphs’, Dresden, Germany, Oct. 2007. 1151

[Online]. Available: https://hal.archives-ouvertes.fr/hal-00264043 (accessed Feb. 21, 1152

2022). [cito:citesAsAuthority] [cito:usesMethodIn] 1153

[54] ‘GraphStream - A Dynamic Graph Library’, GraphStream - A Dynamic Graph Library. 1154

http://graphstream-project.org/ (accessed Jan. 24, 2022). [cito:citesAsAuthority] 1155

[cito:usesMethodIn] 1156

[55] C. Steinbeck, IAtomContainer Interface. Accessed: Jan. 24, 2022. [Chemistry 1157

Development Kit (CDK)]. Available: 1158

https://github.com/cdk/cdk/blob/master/base/interfaces/src/main/java/org/openscience/c1159

dk/interfaces/IAtomContainer.java [cito:citesAsAuthority] [cito:usesMethodIn] 1160

[56] J. May, Cycles. Accessed: Jan. 24, 2022. [Chemistry Development Kit (CDK)]. Available: 1161

https://github.com/cdk/cdk/blob/master/base/core/src/main/java/org/openscience/cdk/gr1162

aph/Cycles.java [cito:citesAsAuthority] [cito:usesMethodIn] 1163

[57] J. W. May and C. Steinbeck, ‘Efficient ring perception for the Chemistry Development 1164

59

Kit’, J. Cheminformatics, vol. 6, no. 1, p. 3, Dec. 2014, doi: 10.1186/1758-2946-6-3. 1165

[cito:citesAsAuthority] [cito:usesMethodIn] 1166

[58] M. Sorokina, P. Merseburger, K. Rajan, M. A. Yirik, and C. Steinbeck, ‘COCONUT online: 1167

Collection of Open Natural Products database’, J. Cheminformatics, vol. 13, no. 1, p. 2, 1168

Dec. 2021, doi: 10.1186/s13321-020-00478-9. [cito:citesAsAuthority] 1169

[cito:usesDataFrom] 1170

[59] D. Weininger, ‘SMILES, a chemical language and information system. 1. Introduction to 1171

methodology and encoding rules’, J. Chem. Inf. Model., vol. 28, no. 1, pp. 31–36, Feb. 1172

1988, doi: 10.1021/ci00057a005. [cito:citesAsAuthority] [cito:usesMethodIn] 1173

[60] D. Weininger, A. Weininger, and J. L. Weininger, ‘SMILES. 2. Algorithm for generation of 1174

unique SMILES notation’, J. Chem. Inf. Comput. Sci., vol. 29, no. 2, pp. 97–101, May 1175

1989, doi: 10.1021/ci00062a008. [cito:citesAsAuthority] [cito:usesMethodIn] 1176

[61] E. Willighagen and J. W. Mayfield, IStereoElement. Accessed: Jan. 24, 2022. [Chemistry 1177

Development Kit (CDK)]. Available: 1178

https://github.com/cdk/cdk/blob/master/base/interfaces/src/main/java/org/openscience/c1179

dk/interfaces/IStereoElement.java [cito:citesAsAuthority] [cito:usesMethodIn] 1180

[62] J. May, Aromaticity. Accessed: Jan. 24, 2022. [Chemistry Development Kit (CDK)]. 1181

Available: 1182

https://github.com/cdk/cdk/blob/master/base/standard/src/main/java/org/openscience/c1183

dk/aromaticity/Aromaticity.java [cito:citesAsAuthority] [cito:usesMethodIn] 1184

[63] J. May, ElectronDonation. Accessed: Jan. 24, 2022. [Chemistry Development Kit (CDK)]. 1185

Available: 1186

https://github.com/cdk/cdk/blob/master/base/standard/src/main/java/org/openscience/c1187

dk/aromaticity/ElectronDonation.java [cito:citesAsAuthority] [cito:usesMethodIn] 1188

[64] M. Solà, ‘Connecting and combining rules of aromaticity. Towards a unified theory of 1189

aromaticity’, WIREs Comput Mol Sci, vol. 9, no. 4, Jul. 2019, doi: 10.1002/wcms.1404. 1190

[cito:citesAsAuthority] 1191

[65] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. von R. Schleyer, ‘Nucleus-1192

60

Independent Chemical Shifts (NICS) as an Aromaticity Criterion’, Chem. Rev., vol. 105, 1193

no. 10, pp. 3842–3888, Oct. 2005, doi: 10.1021/cr030088+. [cito:citesAsAuthority] 1194

[66] K. Krämer, ‘The search for the grand unification of aromaticity’, Chemistry World, Jul. 26, 1195

2021. Accessed: Oct. 25, 2022. [Online]. Available: 1196

https://www.chemistryworld.com/features/the-search-for-the-grand-unification-of-1197

aromaticity/4013915.article [cito:citesAsAuthority] 1198

[67] A. Stanger, ‘What is… aromaticity: a critique of the concept of aromaticity—can it really 1199

be defined?’, Chem. Commun., no. 15, p. 1939, 2009, doi: 10.1039/b816811c. 1200

[cito:citesAsAuthority] 1201

[68] O. Horlacher, S. Kuhn, and J. May, SmilesGenerator. Accessed: Jan. 24, 2022. 1202

[Chemistry Development Kit (CDK)]. Available: 1203

https://github.com/cdk/cdk/blob/master/storage/smiles/src/main/java/org/openscience/c1204

dk/smiles/SmilesGenerator.java [cito:citesAsAuthority] [cito:usesMethodIn] 1205

[69] JUnit. Accessed: Jan. 25, 2022. [Online]. Available: https://junit.org/junit4/ 1206

[cito:usesMethodIn] 1207

[70] D. S. Wishart, ‘DrugBank: a comprehensive resource for in silico drug discovery and 1208

exploration’, Nucleic Acids Res., vol. 34, no. 90001, pp. D668–D672, Jan. 2006, doi: 1209

10.1093/nar/gkj067. [cito:citesAsAuthority] [cito: usesDataFrom] 1210

[71] D. S. Wishart et al., ‘DrugBank 5.0: a major update to the DrugBank database for 2018’, 1211

Nucleic Acids Res., vol. 46, no. D1, pp. D1074–D1082, Jan. 2018, doi: 1212

10.1093/nar/gkx1037. [cito:citesAsAuthority] [cito: usesDataFrom] 1213

[72] M. Ashton et al., ‘Identification of Diverse Database Subsets using Property-Based and 1214

Fragment-Based Molecular Descriptions’, Quant. Struct.-Act. Relatsh., vol. 21, no. 6, pp. 1215

598–604, Dec. 2002, doi: 10.1002/qsar.200290002. [cito:citesAsAuthority] 1216

[73] P. Ertl and T. Schuhmann, ‘A Systematic Cheminformatics Analysis of Functional Groups 1217

Occurring in Natural Products’, J. Nat. Prod., vol. 82, no. 5, pp. 1258–1263, May 2019, 1218

doi: 10.1021/acs.jnatprod.8b01022. [cito:citesAsAuthority] [cito:agreesWith] 1219

[74] K. Grabowski, K.-H. Baringhaus, and G. Schneider, ‘Scaffold diversity of natural products: 1220

https://www.chemistryworld.com/features/the-search-for-the-grand-unification-of-aromaticity/4013915.article
https://www.chemistryworld.com/features/the-search-for-the-grand-unification-of-aromaticity/4013915.article

61

inspiration for combinatorial library design’, Nat. Prod. Rep., vol. 25, no. 5, p. 892, 2008, 1221

doi: 10.1039/b715668p. [cito:citesAsAuthority] [cito:agreesWith] 1222

[75] Y. Chen, M. Garcia de Lomana, N.-O. Friedrich, and J. Kirchmair, ‘Characterization of the 1223

Chemical Space of Known and Readily Obtainable Natural Products’, J. Chem. Inf. 1224

Model., vol. 58, no. 8, pp. 1518–1532, Aug. 2018, doi: 10.1021/acs.jcim.8b00302. 1225

[cito:citesAsAuthority] [cito:agreesWith] 1226

[76] P. Ertl, S. Jelfs, J. Mühlbacher, A. Schuffenhauer, and P. Selzer, ‘Quest for the Rings. In 1227

Silico Exploration of Ring Universe To Identify Novel Bioactive Heteroaromatic 1228

Scaffolds’, J. Med. Chem., vol. 49, no. 15, pp. 4568–4573, Jul. 2006, doi: 1229

10.1021/jm060217p. [cito:citesAsAuthority] [cito:agreesWith] 1230

[77] A. M. Clark, ‘2D Depiction of Fragment Hierarchies’, J. Chem. Inf. Model., vol. 50, no. 1, 1231

pp. 37–46, Jan. 2010, doi: 10.1021/ci900350h. [cito:citesAsAuthority] 1232

[78] M. Grigalunas et al., ‘Natural product fragment combination to performance-diverse 1233

pseudo-natural products’, Nat. Commun., vol. 12, no. 1, p. 1883, Dec. 2021, doi: 1234

10.1038/s41467-021-22174-4. [cito:citesAsAuthority] 1235

[79] M. Grigalunas, A. Burhop, A. Christoforow, and H. Waldmann, ‘Pseudo-natural products 1236

and natural product-inspired methods in chemical biology and drug discovery’, Curr. 1237

Opin. Chem. Biol., vol. 56, pp. 111–118, Jun. 2020, doi: 10.1016/j.cbpa.2019.10.005. 1238

[cito:citesAsAuthority] 1239

