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Computer Vision for Kinetic Analysis of Lab- and 

Process-scale Mixing Phenomena 
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Abstract. A software platform for the computer vision-enabled analysis of mixing phenomena of 

relevance to process scale-up is described. By bringing new and known time-resolved mixing 

metrics under one platform, hitherto unavailable comparisons of pixel-derived mixing metrics are 

exemplified across non-chemical and chemical processes. The analytical methods described are 

applicable using any camera and across an appreciable range of reactor scales, from development 

through to process scale-up. A case study in nucleophilic aromatic substitution run on a 5L-scale 

in a stirred tank reactor shows how camera and offline concentration analyses can be correlated. 

In some cases, it can be shown that camera data holds the power to predict reaction progress. 

1. INTRODUCTION 

Impact of Mixing. Mixing is crucial to many process scale-up projects.1–4 It affects a diverse 

range of chemically-intensive processes such as phase-transfer catalysis,5–8 additive 

manufacturing,9–11 fuel combustion,12 flow chemistry,13 powder formulation,14,15 biotechnology,16 

and (most pertinent to this paper) myriad reaction scale-ups in tank reactors.16–20 Mixing represents 

one of the most effective, non-chemical means of process improvement. From an economic 

perspective, mixing issues have been cited as leading to losses of $1-10billion (US).21,22 In relation, 
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mixing deficiencies have also been reported at the root cause of fatal accidents.23 Despite clear 

demand from the chemical engineering community to maintain high-quality education and 

awareness in this space,24,25 it can be argued that mixing phenomena are oftentimes neglected in 

chemistry education.24,26 The same innocent negligence of mixing requirements could be said for 

small scale chemical method development projects in addition to more obvious scale-up concerns.  

Mixing analysis. The cross-sector and cross-scale importance of mixing has driven the 

development of a wealth of analytical methods through which to quantify it.27,28 These methods 

include tomography,20,29 near-infrared imaging,30 fluorescence,31 and acoustics,32 among 

others.27,28 From the range of analytical methods explored in mixing analysis, visible-range 

imaging and computer vision approaches are attractive on account of being non-contact, spatially 

resolved (by area), flexible in resolution (to enable study of macro-,meso-, and microscale mixing 

phenomena), of low cost, and requiring minimal departure from how the reactions would routinely 

be set-up. Fundamentally, computer vision is the quantification of visually informative phenomena 

using camera technology and computer algorithms.33 Few time-resolved analytical technologies 

are applicable on both small and large scales. Camera-enabled analytics have the potential to 

enable more time-, cost-, and safety-effective monitoring of high-value chemical processes 

compared to more commonplace in situ analytical methods. Video analysis, in particular, holds 

potential for analyzing wide-ranging chemical phenomena in the lab, on plant, in batch, and in 

flow. 

In the chemical engineering space, much has been accomplished using greyscale imaging in 

powder mixing.14,15,34–40 These efforts have attended applications to quantify powder 

concentrations, homogeneity, surface texture, and overall mixing time. On the breadth of 

applications, domains spanning pharmaceutical formulation, food mixing, and construction have 
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benefited from these innovations in mixing analysis. Beyond greyscale, full color analysis has 

enabled investigation of particle mixing in rotary drums41 and soft-elastic reactors.25 Further still, 

hyperspectral imaging has helped quantify pharmaceutical powder blends.42 

The problem. At Fujifilm, where the industrial portion of  this collaborative works resided, most 

process development for full-scale manufacture (10 to 20 tonnes) takes place in glass reactors that 

are small scale replicas of plant reaction vessels. These mimic kits range from approximately 2.5 

to 10 liters in size and are oftentimes equipped with various process analytical technology (PAT) 

probes. During our collaborative academia-industry discussions, the emerging video analysis 

platform described herein offered the potential to provide non-contact mixing analysis to ensure 

that any PAT probes used in the vessels (for more specific molecular analyses) had not 

significantly disrupted the intended mixing profile of the reaction. For the aforementioned safety 

and economic reasons, achieving realistic mixing in the process-scale laboratory, before final 

scale-up to a plant campaign, is of paramount importance. Additionally, with some experiments 

lasting longer than a normal working day, the camera technology described herein offered an 

opportunity to explore a means of tracking any temporary loss of mixing, when other PAT data 

may be unreliable or not applicable on such a timescale. 

Aims. Our present contribution centers on the development of a software, Kineticolor, that 

enables users to quantify average color changes of a reaction bulk – for any size of non-opaque 

vessel – as a function of time, using any camera. The same software allows the user to select 

different regions of interest, providing kinetic information as a function of space as well as time. 

Kineticolor provides a rare and chemistry-agnostic example of a non-contact analytical tool that 

can provide quantifiable insights on reaction bulk, complementing the large suite of more specific 

analytical tools (mainly in situ probes) used to analyze small and intermediate scale reaction 
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systems (Scheme 1). The tool has been developed for end users in small scale chemical 

development and intermediate scale process chemistry, and collaboratively designed with 

industrial chemists working in these domains. 

 

 

Scheme 1. Kineticolor overview and its complementarity to known reaction monitoring tools. 

While more common techniques capture molecular specifics, Kineticolor captures bulk-level 

visible information. 

 

Following earlier applications of this technology in small scale electrochemical reaction 

development43 and palladium catalyst degradation kinetics,44 the present study focused on 

extending the application of Kineticolor to mixing analysis. In other words, where previous studies 
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focused primarily on overall reaction bulk and color averaging, the present study more deeply 

explored spatially-resolved image analysis methods. The intention here was to provide a color-

based language through which to quantify mixing in a way that gives translatable decision-making 

power to chemists and chemical engineers alike. It is important to note that this investigation was 

focused on providing intuitive visualization of mixing progress over time, not on the simulation of 

detailed, mathematically rigorous mixing models.  

From the aforementioned imaging innovations in mixing analysis,2,14,15,24–28,30,35–39,41,42,45–47,47–53 

most of these are disparately reported, differently encoded, and not comparable within a single 

platform. Herein, we employ a series of mixing case studies to compare analysis derived from the 

core Kineticolor platform, tracking an averaged color region over time, as well as newly-integrated 

and spatially-resolved mixing metrics. 

 

2. METHODOLOGY 

2.1 Model Development 

To build on existing Kineticolor developments and incorporate mixing analysis functionality, 

we first reviewed and encoded a series of six mixing metrics into the Kineticolor platform. To 

enable comparison of these metrics, each was calculated based on the same region of interest and 

same selection of video frames for all reaction videos later analyzed. These metrics are described 

below. 

Contact. Inspired by the teams of Rodrigue and Lui on the analysis of mixing in rotary drums, 

we developed a new encoding for the so-called Contact analysis.34,41 Each frame is converted into 

a binary image; each pixel is made either white or black, depending on whether they are brighter 

or darker than a user-selected greyscale threshold. The perimeter between white and black pixels 
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is then calculated, i.e. the amount of contact between the white and black regions is summed (see 

Scheme 2). 

The Contact value has local minima both before and after mixing, as both unmixed and mixed 

solutions often possess some uniformity in color. In other words, more uniform mixtures have 

fewer measurable regions of black and white pixels. However, during the mixing transition, there 

will be both mixed and unmixed regions, which will produce a higher Contact value. Artefacts 

within the image can also affect the starting and ending magnitudes of the Contact metric (see 

below). Since the user can set the greyscale threshold specifically, this metric can be used to detect 

small but distinct spatial effects, within the selected region of interest in the video selected for 

analysis. 

 

 

Scheme 2. Conceptual representation of Contact Analysis of mixing. 

 

Grey Level Co-occurrence Matrices. From the teams of Haralick54 and Rodrigue,34 a grey 

level co-occurrence matrix (GLCM) has been used to assess texture properties of powders in 

mixing drums. For each selected region of interest, within each video frame, a matrix is produced, 

according to the grey level of each pixel within a set of pixel pairs. The grey level is simply the 

greyscale value of each pixel, split into groups, or levels, defined by user-determined thresholds.49 
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The number of grey levels used determines the size of the GLCM produced; for N grey levels, an 

NxN matrix is made (Scheme 3, right). So, when the pixels in a pair belong to levels i and j, 

respectively, the matrix element ij is increased by one. The relative pixel grid position of the pixel 

pairs is defined before analysis. For example, in this report, all pixels in the greyscale image frames 

are paired with the pixel in the position that is one to the right, and one down in the frame (Scheme 

3, left). The GLCMs are used to calculate three derived mixing metrics, described below. 

 

 

Scheme 3. Conceptual representation of a Grey Level Co-occurrence Matrix. Left: a simplified 

representation of pixels in a selected region of interest. Right: the resulting GLCM based on the 

defined pixel pairings in the original video frame. 

 

The Contrast metric is calculated from the GLCM using equation 1: 
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Where i and j are the GLCM matrix row and column indices (not the element values). pij is the 

normalized element value at position (i,j) of the GLCM, as expressed in equation (2), where each 

element value in the GLCM is divided by the grand sum of all elements in the GLCM. This 

normalization ensures that all GLCM elements sum to unity; equation (3). The Contrast metric 

represents the magnitude of grey level contrast for the ensemble of pixel pairs. Contrast is highest 

when mixing is most visibly heterogeneous and the GLCM off-diagonal values are highly 

populated (Scheme 4, top). As mixing progresses towards visible homogeneity, fewer pixel pairs 

with large differences in grey level will exist (e.g. there will be fewer pixels in bin 4 paired with 

pixels in bin 1. At the same time, as mixing evolves, more and more pixel pairs from the same 

grey level bin will emerge (Scheme 4, bottom). The calculated Contrast will thus decrease, 

tending toward a minimum value of zero. 
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Scheme 4. Conceptual representation of the Contrast metric derived from a Grey Level Co-

occurrence Matrix. Top: visibly heterogenous mixtures will produce more off-diagonal pixel pairs 

that have higher differences in grey level. Bottom: different diagonalized GLCM conditions that 

satisfy a more homogeneous state relative to the case shown at the top. 

 

A second mixing metric derived from the GLCM is Homogeneity (H), quantifying how close 

the GLCM is to a diagonal matrix, calculated using equation (4): 

 

𝐻 = ∑ ∑
𝑝𝑖𝑗

1+|𝑖−𝑗|
𝑁−1
𝑗=0

𝑁−1
𝑖=0                                                                                 (4) 

 

Homogeneity captures the similarity of color across an image. The more the distribution of pixels 

is similar in color, the higher the H value. The Contrast metric has been considered to be broadly 
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more useful than Homogeneity, since Contrast is more easily compared to the Contact metric than 

Homogeneity. We consider H in this study for completeness. 

Angular second moment (ASM),54 also known as Energy,34,55 is the third metric we considered, 

as derived from the GLCM. It is defined in equation (5): 

 

𝐴𝑆𝑀 = ∑ ∑ (𝑝
𝑖𝑗
2𝑁−1

𝑗=0 )𝑁−1
𝑖=0                                                                                (5) 

 

ASM describes the amount of ‘block color’ in an image. Completely random noise would 

produce the lowest ASM value, while a single block color would produce the highest. Similarly, 

gradient color, will produce a relatively low ASM value, while a checkerboard or regular polka-

dot pattern would produce a relatively high ASM value (see intuition-building examples below).  

Beyond texture analysis-inspired metrics, additional metrics were defined based on the averaged 

analysis of portioned sections of each video frame (Scheme 5, right). We herein more deeply 

explore the E (or Delta E) metric, derived from the CIE-L*a*b* color space. In its simplest form,  

E  is the Euclidean (‘straight line’) distance between one color and a reference color across the 

CIE-L*a*b* space. Each color defining E is represented by its 3D coordinates in the CIE-L*a*b* 

space, as per Scheme 5 (left). In practice, E serves as a color-agnostic measure of contrast over 

time, as measured relative to the color recorded at time-zero. In earlier work, we applied E-time 

profiles to effectively capture productive and degradative processes in palladium-catalyzed 

reactions.44 The same metric has found limited applications in powder mixing analysis using a 

progressive single image analysis approach.50,51 Here, we enable full video-based E analysis, 

both as a grand average of all color progress across the entire bulk of a vessel, and as a spatially 

resolved cell-based analysis to capture meso-mixing phenomena in an intuitive manner. By the 
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same cell-based method, the variance in average color between cells can be calculated, with lower 

variance values likely to indicate more homogeneous mixing. 

 

Scheme 5. Left: Conceptual depiction of the CIE-L*a*b* color space, wherein the Euclidean 

distance between two colors (open circles) is defined as E (red dashed line). Right: exemplar 

cell-based portioning of a reactor captured in a video frame, leading to a matrix of averaged pixel 

regions to be analyzed over time. Each cell is analyzed as an average by row, by column, and 

individually. The same cell-based approach is applied to calculate variance of any one color space 

component across the cells.  

 

Before investigating this collective approach to mixing analysis through the Kineticolor 

platform, we analyzed a simplified, intuition-building video simulation of a polka-dot pattern 

blurring over time (Scheme 6). Analyzing the averaged pixels from the entire selected region of 

interest, the grand (or averaged) E over time evidenced a maximum E of ~4, representing a 

very subtle contrast change over time, barely registerable by eye. The exact color change can be 

shown to be progressively darker and redder over time (see computational SI for details). Looking 

more closely at the segmentation of the frame (dashed lines in Scheme 6, top), 3 rows have 3 
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polka-dots and 2 rows have 2 polka-dots at the beginning of the video. Likewise for columns. The 

result: E analysis showed rows 0, 2, and 4 to be distinct from rows 1 and 3. The result was the 

same for the numbered columns; columns 0, 2, and 4 produced the same absolute values, as did 

columns 1 and 3. As the polka-dots blurred, the Contrast metric (amount of local variation in the 

image) decreased till it reached 0, at which time the dots had completely blurred into the red 

background. We might imagine the time for Contrast to plateau as representing the dissolution 

time of the white powder into the red liquid, for example. Energy (or the angular second moment, 

ASM) reached a minimum when the video blurring showed its most pronounced gradient between 

the original white dots and the red background. The ASM hit its maximum possible value when 

the video reached complete blurring, i.e. a block red image. The starting value for ASM, measuring 

overall block color, was high (though not at the maximum of 1) because the start of the video had 

more areas of similar block color and no gradient between white spots and red background. 

Homogeneity somewhat tracked ASM, being designed to measure whole image similarity. The 

Contact metric tracked a swelling in the traceable perimeter of the blurring dots to a maximum 

before decaying to 0 once all pixels eventually fell below the defined greyscale threshold used to 

define the black and white recoloration of each pixel in each frame. For Variance, all values 

decayed to 0, doing so with varying sensitivity, according to the color channel tracked. This last 

measurement served to show that such variance analyses, while commonly limited to greyscale, 

can be applied over all available color channels. 
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Scheme 6. Top: A five-second video of a polka-dot pattern undergoing non-linear camera blur. 

Dashed lines on the video frames represent row, column, and cell segmentation used during 

spatially-resolved E analysis. Bottom: Mixing analysis of the video using the E, Contrast, ASM 

(or Energy), Homogeneity, Contact, and Variance. 
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Modified versions of the simplified polka-dot ‘mixing’ simulation were able to demonstrate 

that neither glare (points of uneven or saturated lighting reflections on glass reactors) nor metallic 

baffles present in the reactor adversely affected the ability of each of the above-mentioned metrics 

to track overall mixing time. This point held even though the said obstructions impacted some 

measured local changes over time (exemplified by E analysis in Scheme 7, and with all other 

metrics in the SI). 

 

 

Scheme 7. Top: First frame for simulated polka-dot pattern blurring with no obstacle, with 80% 

opaque white rectangle to represent glass glare, and with 4 opaque grey rectangles to represent a 

baffle cage. Bottom: exemplar E by column data for the 5x5 cell portioned analysis of the yellow 

region of interest in each case.  
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3. RESULTS & DISCUSSION 

3.1 Qualitative Visualization of Mixing Phenomena in Plant Mimic Vessels 

We began lab experimentation by looking at non-reacting mixtures of solids stirred in liquids. 

Using super-saturated aqueous solutions of sodium hydrogen carbonate, we monitored the solid 

settling times after stirring was ceased. This series of experiments included comparisons between 

overhead stirrer speeds, impeller shapes, and presence or absence of baffles. 

As exemplified by the E metric, these proof-of-concept studies were able to show that: (i) 

settling time was longer when using an anchor-shaped impeller versus a paddle, (ii) the presence 

of a probe in the reactor reduced settling time across all stirring rates and impeller shapes, (iii) the 

presence of beaver tail baffles (in the subset of conditions explored) reduced settling time  (Table 

1). Exemplar analyses, both spatially-averaged and spatially-resolved, are shown in Scheme 8. In 

this case, average E changes across the whole reactor suffice to capture the impact of including 

a probe-shaped object in the reactor. Presence of a probe reduces settling time (Scheme 8, left). In 

complement, the segmentation of E into measures by row reveal the differences in rate of solid 

settling across the vertical height of the reactor. At the point of turning stirring off, rate of change 

of E is highest at the top of the reactor, becoming progressively slower when observing the 

middle and bottom of the reactor (Scheme 8, right). 

For all solid settling experiments, the full suite of above-exemplified mixing metrics were 

calculated. In selected illustrative cases, we also exemplified the use of higher contrasting 

backgrounds (e.g. red and blue card in place of white) to enable more sensitive measurements of 

contrast change as the white solid moved from stirred in suspension to settled on the reactor base. 

See SI for full details. 
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Scheme 8. Left: Exemplar comparison of solid NaHCO3 (sat.) settling time using the grand (or 

average) E metric. Right: The same example for the probe-free reaction where the E metric has 

been resolved by row. The default spatial resolution is a 5x5 a.u. matrix, where each of the resulting 

25 cells is made equal in size within the selected region of interest. The E metric for each cell is 

available, along with row averages (shown) and column averages (see SI). 
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Table 1. Comparative analysis of solid settling time approximated from imaging-derived E 

mixing metrics. 

Entry 
Stirring rate 

(RPM) 

Impeller 

shape 
Baffles? 

Estimated 

settling time 

with no probe 

(s) 

Estimated 

settling 

time with 

probe (s) 

1 60 Paddle No 75 50 

2 100 Paddle No 300 80 

3 210 Paddle No 400 200 

4 60 Anchor No 200 55 

5 100 Anchor No 350 175 

6 210 Anchor No 400 225 

7 100 Paddle Yes 50 N.D. 

8 210 Paddle Yes 80 N.D. 

9 60 Anchor Yes N.D. N.D. 

10 100 Anchor Yes N.D. N.D. 

11 210 Anchor Yes 100 N.D. 

N.D. = not determined 

 

2.3 pH Titrations as a Model System for Kinetic Imaging of Mixing Phenomena 

Phenolphthalein titrations – assessing the impact of baffles 

At the core of this academia-industry collaboration was a specific interest in using colorimetric 

means of analyzing mixing kinetics in overhead stirred reactors. Moving from earlier solid-liquid 

experiments to the liquid-liquid regime, we used the Kineticolor platform to analyze legacy 

footage from educational mixing analysis video recording, available within Fujifilm.  
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Titration of acidified phenolphthalein with aqueous sodium hydroxide, accompanied by a purple 

to clear color change, was employed to assess the impact of baffles in a reactor. Under otherwise 

identical chemical and physical conditions, the more rapid color change in the baffle-containing 

reactor was captured and quantified using the Kineticolor platform. Quantifying the improved 

mixing efficiency in the baffled versus non-baffled reactor was captured across several mixing 

metrics from the full suite calculated. For co-plotted comparison of baffled and unbaffled reactors, 

Scheme 9 shows that: 

(i) Angular Second Moment (ASM), capturing high levels of pixel order in high values (and vice 

versa) showed the baffled reactor plateaued at a lower value after mixing than at the start of the 

reaction.  

(ii) Contact, capturing higher values for longer perimeters outlining pixels at above and below 

greyscale threshold positions (and vice versa), settled to a new high level versus the low starting 

level when baffles are present. 

(iii) Average (or grand) E, capturing higher levels of color-independent contrast versus time-zero 

at higher values (and vice versa), showed the baffled reactor settling at a slightly lower E value 

in less time compared to the non-baffled reactor. 

In all three cases, the most important point of similarity is being able to extract macro-scale 

mixing times (plateaus) for each reactor type. The absolute differences in each metric’s y-axis 

values are, in part, contributed to by the inclusion of the baffles in the selected region of interest 

for analysis. The baffles become more visibly distinct from the reaction medium as the reaction 

progresses from purple to colorless. 
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Scheme 9. Exemplar phenolphthalein colorimetric pH titration visualizing the impact of beaver-

tailed baffles on mixing efficiency in an overhead stirred reactor. Top left: angular second moment 

(ASM, or Energy). Top right: global average E. Bottom: Contact. For all mixing metrics, the 
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value plateaus more rapidly in the baffled versus non-baffled reactor. Dotted lines against both 

curve shapes and time points are provided solely as a guide to the eye. 

 

While both ASM and Contact metrics shown above captured part of the spatial component of 

mixing, we show in Scheme 10 that the arguably more intuitive E metric can be extended to 

provide full spatial resolution at the level of individual pixels. Indeed, this enabled the creation of 

E ‘heatmaps’, intuitively displaying the distribution of contrast change across the reactor, and 

not merely overall average contrast change from within the selected region of interest. 
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Scheme 10. Exemplar phenolphthalein colorimetric pH titration visualizing the impact of beaver-

tailed baffles on mixing efficiency in an overhead stirred reactor. Stills at 4 seconds from 

videographic reports of E versus time show lower overall progress of Eaverage when no baffles 

are present. Fully spatially-resolved maps of E per pixel in the region of interest show a higher 

proportion of ‘red hot’ and ‘white hot’ pixilation in the baffled reactor versus non-baffled reactor. 

 

Bromothymol blue titrations –the impact of baffles, stirrers, probes, impellers and vessel geometry 

Moving beyond the legacy titration footage from Fujifilm archives, we generated new pH 

titration data for mixing analysis using bromothymol blue. Inspired by the work of Fitschen et al. 
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in the analysis of macro- and micro-mixing phenomena using high-contrast color changes,2 we 

recorded a series of bromothymol blue titrations (tracking blue through green to yellow color 

changes) across a series of reaction vessels. Scheme 11 (left) emphasizes the fact that such mixing 

concerns are not particular to overhead stirred (larger scale) tank reactors. Development-scale 

round bottom and Schlenk flasks are also affected. Averaged E changes over time sufficed to 

demonstrate the point. 

Extending the bromothymol blue experiments to the 5 L continuous stirred tank reactor (CSTR) 

scale enabled further demonstration of the expected impact of ‘probes’ present in the reactor. 

Probes act like pseudo-baffles. 
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Scheme 11. Left: Exemplar bromothymol blue colorimetric pH titration using Eaverage to visualize 

the impact of vessel shape (50 mL round bottom flask versus Schlenk tube) and magnetic stirrer 

size on mixing efficiency. Use of larger oval stirrers gives lower mixing times than micro-stirrers. 

Round bottom flasks enable faster mixing times than Schlenk tubes. Right: using red channel 

variance as a measure of the range of color over a segmented squared grid in the CSTR reactor 

area. The presence of a probe in the CSTR approximately halved the overall mixing time. 

 

To demonstrate the deeper value of spatially-resolved mixing metrics over averaged color 

metrics, we carried out a bromothymol blue titration in a 3 L beaker with no stirring. The 4-hour 

experiment also served to exemplify the ability to manage dataset size by using Kineticolor’s frame 

skip setting to analyze, in this case, just 50 of over 500,000 (0.01%) of all video frames collected 

(Scheme 12).  
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Scheme 12. Non-stirred bromothymol blue colorimetric pH titration, using Contact, Homogeneity, 

and Variance (RGB red channel) metrics to capture the point of maximum heterogeneity (arrow). 

This point in the reaction visibly showed the most spread of blue, green, and yellow coloration 

between the blue and yellow extrema. Averaged E (bottom right graph) does not capture this 

spatially-specific phenomenon. 
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Colorimetric Kinetic Analysis of Competing, Mixing-sensitive Reactions 

Complementary to the relative simplicity of linear reactions exemplified by the pH titrations, we 

investigated the computer vision-enabled analysis of competing parallel reactions using the 

Villermaux method.56,57 When an aqueous solution of potassium iodide, potassium iodate and 

sodium acetate is mixed with aqueous hydrochloric acid, two reactions take place in varying 

proportions, depending on the mixing efficiency (Scheme 13, top). With efficient mixing, parallel 

reaction kinetics are dominated by the relative rate constants, and thus the formation of colorless 

sodium chloride and acetic acid dominate as major products (reaction A). However, when mixing 

is poor, local concentration of acid is such that, once all local sodium acetate is quenched, some 

acid remains to participate in the comparatively slower iodine formation (reaction B). 

Scheme 13 (bottom) shows how such specific colorimetric signals of mixing quality can be 

analyzed using a single component (or dimension) of a color space, without the need for more 

complex spatial calculations. Because poor mixing was marked by the characteristic yellow/orange 

of iodine, the b* component of the CIE-L*a*b* color space (where positive b* values signify more 

yellow, and negative b* values signify more blue coloration) was sensitive enough to provide a 

comparative analysis of two different stirring rates. At 50 RPM, the b* channel hit a higher peak 

and decayed more slowly than for the same process run with a 200 RPM stirring rate. These data 

semi-quantified (to an intrusively useful standard) the greater persistence of iodine in the more 

slowly stirred reactor. 
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Scheme 13. Using the b* channel from CIE-L*a*b* color space to track average change in yellow 

coloration in the CSTR versus time. Higher values on the y-axis denote more yellowing of the 

reaction mixture. It is shown that a larger component of side reaction B competes with reaction A 

at lower stirring rates. 

 

2.4 Application of Mixing Data in Highly Mixing Sensitive Chemistries 

We applied this collective computer vision-enabled mixing analysis to a more practically 

relevant organic reaction scale-up. Namely, we looked at the impact of extreme changes in impeller 

stirring rate for a nucleophilic aromatic substitution (SNAr) reaction. The chosen reaction relies on 

effective suspension of the potassium carbonate base in the bulk solution. As shown in Scheme 
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14, offline 1H NMR measurements of relative product conversion drastically improved with higher 

stirring rate. Higher stirring rate led to visibly obvious suspension of the solid base throughout the 

bulk DMF liquid. At the lower stirring rate, the base was concentrated on the bottom of the reactor 

and not visibly suspended to any extent. 

The bottom of Scheme 14 captures efforts to track mixing-related effects using Kineticolor. For 

all comparisons (here and in the SI), the data for the efficient mixing regime was noisier on account 

of the periodic swirling of white solid across the darkening DMF solution. Nonetheless, average 

E measurements evidenced the appreciably faster rate of color (strictly contrast) change in the 

200 RPM case over the 50 RPM case (Scheme 14, bottom left). Turning to the spatially resolved 

mixing metrics, the variance of E across a 5x5 square grid of pixel cells mapped over the whole 

reactor showed that the contrast change was increasingly varied over the reactor’s visible cross-

sectional area with time. In the more efficiently stirred reactor, the variance in color across the 

reactor increased more quickly than for the more poorly stirred reactor. This observation is 

consistent with the bulk E change, and with the more effective suspension of white solid 

throughout a darkening liquid. 
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Scheme 14. Top left: SNAr case study (approx. 0.8 mol or 112 g scale relative to 4-nitro-

fluorobenzene). Top right: relative product:phenol reactant ratio, showing the positive influence 

of more effective stirring and suspension of K2CO3. Bottom left: global or average E for each 

stirring regime, with higher RPM leading to more rapid rate of visible color contrast changes. 

Bottom right: E measured across a 5x5 square grid of pixel cells. As the liquid darkens over time, 

the variance metric captures the increasing contrast between the liquid and suspended white solid. 

Dotted lines depict 5-point moving averages added as a guide to the eye. 
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We concluded the study by investigating the predictive power to determine relative 

product/reactant ratios using the colorimetric data extracted with Kineticolor. As per our earlier 

study investigating palladium-catalyzed borylation processes,44 we applied Shannon’s Mutual 

Information (M.I.)58 method as a non-parametric (not linearly-dependent) guide to searching for 

single component regression models of color versus concentration data. Applying the analysis to 

the first, regularly-sampled hour of the SNAr reactions, M.I. analysis revealed the a* component 

(covering positive red through to negative green values, from the CIE-L*a*b* color space) to 

contain the highest level shared information with offline NMR concentration measurements (see 

SI for details. For both the 50 and 200 RPM reactors, Scheme 15 shows the correlation of a* versus 

1H NMR measurement of reaction progress. The leave-one-out cross-validated prediction of 1H 

NMR data from color data (a*) performed better for the more poorly stirred reactor in which 

swirling solid was less disruptive to video analysis. Having said this, in the more rapidly stirred 

reactor, when video analysis was restricted to the top of the reaction bulk (mostly free from 

swirling solid), a more powerful prediction of reaction progress was revealed through the E (as 

opposed to the a*) metric (Scheme 15, bottom). 
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Scheme 15. Top: Correlation (left) and leave-one-out cross-validated prediction (right) for SNAr 

reaction stirred at 50 RPM. Middle: Related data for the 200 RPM case. Bottom: Improved 

predictive power using average E when analysis is restricted to the primarily liquid-containing 

top of the reaction mass, avoiding the solid). 

 

3. CONCLUSION 

We have compared and applied a range of computer vision-enabled mixing metrics for process-

relevant mixing phenomena. Through the development of the Kineticolor platform, both averaged 

and spatially-resolved insights on the evolution of mixing in reactors across scales of operation 

(from Schlenk and round bottom flasks to plant mimic vessels) have been exemplified. Visually 

useful signals of non-chemical and chemical processes were both (at least) semi-quantifiable using 

this computer vision approach. Moreover, simple single-step homogeneous reactions (i.e. pH 

titrations), as well as more complex parallel and heterogeneous reactions could be tracked using 

averaged and spatially-resolved mixing and bulk color metrics. This imaging strategy has also 

been shown to hold great potential in building quantitative models mapping non-contact color data 

to more established offline measures of analyte concentration. Overall, we predict that the 

computer vision analysis exemplified by the Kineticolor platform will be applicable to multiple 

other process-relevant reaction monitoring problems wherein the quantification of reaction bulk 

will serve as a valuable complement to more established and invasive reaction monitoring 

methods.  
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