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Abstract 

Imaging mass spectrometry (IMS) is a powerful tool for spatially-resolved chemical analysis and 

thereby offers novel perspectives for applications in biology and medicine. The understanding of 

chemically complex systems, such as biological tissues, benefits from the combination of multiple 

imaging modalities contributing with complementary molecular information. Effective analysis and 

interpretation of multimodal IMS data is challenging and requires both, precise alignment and 

combination of the imaging data as well as suitable statistical analysis methods to identify cross-

modal correlations. Commonly applied IMS data analysis methods include qualitative 

comparative analysis where cross-modal interpretation is subject to human judgement; Workflows 

that incorporate image registration procedures are usually applied for co-representing data rather 

than to mine data across modalities.  

Here, we present an IMS-based, histology-driven strategy for comprehensive interrogation of 

biological tissues by spatial chemometrics. Our workflow implements a 1+1-evolutionary image 

registration method enabling direct correlation of chemical information across multiple modalities 

at single pixel resolution. Comprehensive multimodal imaging data were evaluated using a novel 

approach based on orthogonal multiblock component analysis (OnPLS). Finally, we present a 

novel image fusion method by implementing consecutively acquired pathological staining data to 

enhance histological interpretation. 

We demonstrate the method’s potential in two biomedical applications where trimodal matrix-

assisted laser desorption/ionization (MALDI) IMS delineates pathology associated co-localization 

patterns of lipids and proteins in (1) a transgenic Alzheimer’s disease (AD) mouse model, and in 

(2) a human xenograft rat model of prostate cancer. The presented image analysis paradigm 

allows to comprehensively interrogate complex biological systems with single pixel resolution at 

cellular length scales. 
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Introduction 

Over the last years, imaging mass spectrometry (IMS) has emerged as a powerful tool for 

chemical imaging to increase understanding of spatial biochemical distribution dynamics in tissue 

that are associated with histopathological processes.1,2 The investigation of complex molecular 

systems in biological tissues benefits from the combination of multiple chemical imaging 

modalities contributing with complementary molecular information, specifically multimodal IMS, 

vibrational spectroscopy, magnetic resonance imaging, as well as fluorescence microscopy.3-7 

The acquisition of imaging data in multiple modalities, however, yield datasets that may be 

misaligned. In order to concatenate misaligned datasets for effective data analysis across 

modalities, the datasets need to be registered to one another, meaning precisely aligned and 

distortions corrected.8 However, image registration of IMS data is particularly challenging due to 

feature appearance as a result of noise and low contrast. Therefore, commonly applied IMS data 

analysis methods include qualitative comparative analysis where cross-modal interpretation is 

subject to human judgement.9 Workflows that incorporate registration procedures are usually 

applied for co-representing data rather than to mine data across modalities.10,11 Moreover, 

statistical evaluation is then typically performed on averaged data from assigned regions of 

interest at the expense of spatial information.12 This highlights the need for advanced 

bioinformatics tools for both accurate alignment and combination of entire imaging datasets and 

unbiased data mining strategies for the interpretation of complex multimodal data at the single 

pixel level.13,14  
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The aim of the present study was, therefore, to develop a spatial chemometrics strategy for 

comprehensive analysis of multimodal IMS and microscopy data to interrogate molecular 

histopathology in complex biological tissues. Our workflow implements effective data processing 

and semi-automated image registration enabling direct correlation of chemical information across 

multiple modalities while minimizing human bias. We demonstrate the method’s potential in two 

applications using matrix-assisted laser desorption/ionization (MALDI) IMS to investigate 

pathology associated distribution patterns of lipids and proteins in (1) hippocampus of a 

transgenic mouse model of Alzheimer’s disease (AD), and (2) in a rat model of prostate cancer. 

Spatial chemometrics analysis revealed spatial organizations and correlations of lipids and 

peptides pertaining to disease pathology. The presented correlative imaging methodology 

provides the opportunity to investigate complex biological systems comprehensively and presents 

a valuable tool for their elucidation.  

 

Materials and Methods 

Animals and Tissue Preparation 

Transgenic AD mice carrying the Swedish mutation in APP (tgAPPSWE) were reared ad libitum at 

an animal facility at Uppsala University under a 12/12 light cycle. Fresh brain tissue samples were 

obtained from female, 18-month-old C57BL/6 mice. Animals were anesthetized with isoflurane 

and sacrificed by decapitation. The brains were dissected quickly with less than 3 min post 

mortem delay and frozen on dry ice. Animal procedures were approved by an ethical committee 

and performed in compliance with national and local animal care and use guidelines (DNr #C17⁄ 

14 at Uppsala University). 

For rat model of prostate cancer, samples from adult animals were generated as described 

before.15 Briefly, immunocompetent Copenhagen rats were anesthetized, and an incision was 
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made in the lower abdomen to expose the ventral prostate lobes. Then, 1 x 103 of highly 

metastatic Dunning MatLyLu (MLL) cancer cells (suspended in 10 μL RPMI 1640) were carefully 

injected into one of the ventral prostate lobes using a Hamilton syringe with a 30G needle. Rats 

were sacrificed 10 days after tumor cell injection, the tumor-containing prostates were removed, 

weighed, frozen in liquid nitrogen, and stored at -80°C.  

Frozen tissue sections (12 μm) were cut in a cryostat microtome (Leica CM 1520, Leica 

Biosystems, Nussloch, Germany) at -18°C, and collected on indium tin oxide (ITO) conductive 

glass slides (Bruker Daltonics, Bremen, Germany) and stored at -80°C. Prior to analysis, tissue 

sections were thawed under vacuum for 1 hour. 

H&E staining and brightfield microscopy 

The hematoxylin and eosin (H&E) staining of consecutive sections to those analyzed with IMS 

was executed as followed. The tissue was placed in Mayer´s hematoxylin (Bio-Optica) for 2 min 

and washed twice with water. Bluing was done in in ammonia water solution for 1 minute. 

Thereafter, the tissue was washed twice with water, counterstained in 0.2% eosin G for 3 min, 

and again washed in water. The tissue was then dehydrated in 70% EtOH, 99.5% EtOH, and 

finally xylene. Image acquisition was done using a wide-field microscope (Zeiss Axio Observer 

Z1). 

MALDI imaging MS  

For MALDI imaging of lipids, 1,5 di-amino-naphthalene (1,5-DAN) matrix was applied to the tissue 

sections using a TM sprayer (HTX Technologies, Carrboro, NC, USA) combined with a HPLC 

pump (Dionex P-580, Sunnyvale, CA, USA). Before spraying, the solvent pump was purged with 

70% acetonitrile (ACN) at 500μL/min for 10 min followed by, manual rinse of matrix loading loop 

using a syringe. A matrix solution containing 20 mg/mL 1,5-DAN in 70% ACN was sprayed onto 

the tissue sections with the following instrumental parameters: nitrogen flow (12 psi), spray 
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temperature (80°C), nozzle height (40 mm), five passes with offsets and rotations, and spray 

velocity (1250 mm/min), and isocratic flow of 50 μL/min using 70% ACN as pushing solvent. 

MALDI-IMS was performed on a MALDI TOF/TOF UltrafleXtreme mass spectrometer equipped 

with SmartBeam II Nd:YAG/355 nm laser. For dual polarity lipid analysis acquisitions were 

performed in reflective ion mode over a mass range of 200–2500 Da. Here, IMS data was first 

acquired with 20 laser shots per pixel with a source accelerating voltage of -20 kV (reflector 

negative mode, RN). This was followed by 50 laser shots per pixel point with source accelerating 

voltage of 25 kV (reflector positive mode, RP). The mass resolution at m/z 800 was of M/ΔM 

20000. External calibration was carried out using peptide calibration standard I (Bruker Daltonics).  

For protein imaging, we employed a previously validated protocol for robust peptide and protein 

imaging.16 In detail, tissue sections were subjected to sequential washes of 99.9% EtOH (Cat # 

V002075; Sigma Aldrich) (60 s), 70% EtOH (30 s), Carnoy’s fluid (6:3:1 EtOH/CHCl3/acetic acid) 

(90 s), 99.9% EtOH (15 s), H2O with 0.2% trifluoroacetic acid (TFA) (Cat #T6508; Sigma Aldrich) 

(60 s), and 99.9% EtOH (15 s). For analysis of transgenic mouse model of AD, tissue was 

exposed to concentrated formic acid vapor in order to enhance Aβ peptide signal, which, however, 

compromises detection of other intact protein signals.5,17 2,5-Dihydroxy-acetophenone (2,5-DHA) 

was used as matrix compound (Cat.#: D107603, Sigma Aldrich) and applied using a TM Sprayer 

(HTX Technologies, Chapel Hill, NC, USA). A matrix solution of 15 mg/mL 2,5-DHA in 70% 

ACN/2%CH3COOH/2%TFA was sprayed onto the tissue sections using the following instrumental 

parameters: nitrogen flow (10 psi), spray temperature (75°C), nozzle height (40 mm), eight passes 

with offsets and rotations, and spray velocity (1000 mm/min), and isocratic flow of 100 μL/min 

using 70% ACN as pushing solvent. Protein MS data of the same region as dual-polarity lipids 

were acquired over a mass range of 2–20 kDa, running in linear positive mode. The apparent 

mass resolution was m/Δm=1000 (FWHM) at m/z 4515, which was well in line with the reference 

values for this mass range provided by the manufacturer. A number of 100 laser shots/raster spot 

were acquired at 1 kHz laser repetition rate. The laser beam focus was set to “minimum” for AD 
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mouse model, resulting in a lateral resolution of 15 µm, and to “small” for rat model of prostate 

cancer, resulting in a lateral resolution of 30 μm. External calibration was performed from calibrant 

solution spots (Protein Calibration Mix 1, Bruker Daltonics) that were placed next to the tissue 

slides. 

Data processing 

Data processing was performed in MATLAB R2019a with Bioinformatics Toolbox 4.12 and Image 

Processing Toolbox 10.4 (MathWorks, Inc.) installed. MALDI imaging data were exported from 

SCiLS Lab (version 2019c, Bruker Daltonics, Bremen, Germany) in .imzML format and imported 

into MATLAB using the imzMLConverter by Race et al.18 MS data were processed by baseline 

correction and normalization to total ion current (TIC). Variables in MS spectra were reduced 

using a peak picking routine extracting peak data at full mass resolution. For the extraction of data 

for region of interest (ROI) analysis, an ROI was selected using the imageSegmenter() function 

(Image Processing Toolbox) to then subset the dataset to the ROI’s boundaries while retaining 

pixel coordinates. 

Image data registration 

The workflow for the alignment of IMS modalities involved an affine transformation matrix which 

was estimated through semi-automated image registration based on PCA scores images as 

reference images for each modality. The reference images were centered and coarse aligned 

prior to the automated registration procedure. The automated image registration method utilized 

an intensity-based optimization approach particularly suited for multimodal applications. The 

optimization algorithm employed a 1+1-evolutionary optimizer with various settings paired with 

Mattes Mutual Information metric configuration. Thereby, the geometric transformation is 

estimated by minimizing the mean square error (MSE) between a fixed reference image (I, with 

m rows and n columns) and moving image (K) that is to be transformed (eq 1).  
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(eq 1) 

Optimizer parameters involving the search radius (including growth factor, initial and minimal size) 

were determined via full factorial design (3 x 3) at fixed maximum iterations (n = 300). Optimizer 

settings and metric configurations including factorial design limits are provided in the 

supplementary information Table S1. The number of maximum iterations was increased (to 

n = 5000) for the final rendition of the transformation matrix. In order to register the IMS data, the 

appropriate transformation matrix was applied directly onto the IMS data cubes using the imwarp 

function with bicubic interpolation. Manual image registration via fiducial point selection for 

comparative study was done using the control point selection tool (cpselect() function) of 

MATLAB’s Image Processing Toolbox. Five control points were selected with even spread over 

the tissue surface at recognizable hallmarks in either image and at variable locations between 

replicates (n=5).  

Multivariate modeling and visualization 

Registered data were cropped to common area, reshaped and concatenated into a multimodal 

dataset prior to chemometrics analysis. Pixels with a total ion current of zero (black pixels) from, 

for example, off-sample acquisition or pixels from outside irregularly shaped acquisition areas, 

were omitted from data analysis. Black pixel (bp) and data pixel (dp) matrices were extracted by 

logical indexing using indices to sums of the multimodal dataset (𝑥:,6) that satisfy the equalities in 

equation 2. 
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Multivariate analyses of IMS data were performed in SIMCA 15/16 (Sartorius Stedim Biotech, 

Umeå, Sweden) and included principal components analysis (PCA), two-way orthogonal partial 

least squares (O2PLS), and multiblock orthogonal projections to latent structures (OnPLS). 

OnPLS components describe variation in globally joint, locally joint, and unique parts for each 

data block as follows: 

 𝑋: = 	𝑋GHI@JH 	+		𝑋HILJH 	+	𝑋	M5:NMO 	+ 		𝐸 

 (eq 3) 

Thereby, global variation implies structure that is shared between all blocks, local variation 

between at least two blocks, and unique variation occurs in only one data block.19,20 Data were 

mean centered for data mining and scaled to unit variance for predictive modeling. The number 

of evaluated components was based on the predictive performance as determined by SIMCA’s 

seven-block cross-validation. Component scores matrices were transferred to MATLAB, where 

they were reunited with black pixels and reshaped into image dimensions prior to scores image 

visualization. Respective loadings for the interpretation of the scores images were generated in 

SIMCA software.  

High resolution predictions of scores and single ion images were performed using an Orthogonal 

Projections to Latent Structures (OPLS) model based on a decomposition matrix of the 

microscopy image (X-block) and a low resolution image from the IMS domain (Y).21 Thereby, 

variables of the microscopy image (RGB, - red, green, blue) were extended with variables from 

color space transformations and PCA scores of all color bands, a strategy previously used for 

IMS data fusion.10 Color space transformation included RGB to YIQ, and RGB to YCbCr using 

the rgb2ntsc() and rgb2ycbcr() functions, respectively. The decomposition matrix was down-

sampled by affine transformation to the IMS resolution. Predictions of the microscopy resolution 

were performed using the decomposition matrix at its original resolution. In order to display 

globally joint 
variation 

locally joint 
variation 

unique 
variation 

residual 
noise 
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distribution heterogeneity not contained in the microscopy modality, the prediction image was 

weighted through multiplication with the squared corresponding IMS image matrix.  

 

Results & Discussion 

Multimodal IMS is an emerging, powerful approach in molecular medicine to interrogate complex 

biochemical patterns associated with anatomical features and histopathology. The presented 

methodology aligns and combines multimodal IMS data enabling cross-modal multivariate 

analysis at the measured image resolution. The data processing routine includes the pretreatment 

of data, alignment of the imaging modalities, combination of the datasets, and advanced spatial 

chemometrics analysis. We demonstrate the workflow on two different sets of MALDI IMS data to 

investigate distributions and correlations as well as co-localizations of lipids and proteins related 

to disease pathology in (1) hippocampus of a transgenic mouse model of Alzheimer’s disease, 

and (2) prostate in a rat model of prostate cancer. Moreover, we present an image fusion strategy 

based on OPLS prediction to visualize IMS ion distributions at microscopy image resolution. 

3.1 Intensity based automated alignment of multimodal IMS data 

A simple and commonly applied approach to multimodal IMS data is the combination of data from 

positive and negative ion mode that was acquired on the same tissue without interruption. In that 

case, the pixels’ coordinate systems of the two datasets correspond exactly and the data can be 

united into one multimodal dataset without the need for alignment of corresponding pixels by 

image registration. The combination of data from both ion modes can be done straightforwardly 

and the added information through multimodal enrichment can benefit tissue delineation by 

multivariate analysis.22  
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While the combination of IMS data acquired from the same pixel array can be done directly, 

discontinuously acquired multimodal IMS data are commonly spatially misaligned. Repeated 

measurement of the same tissue may be done with interruptions, for example, for the application 

of a different matrix and other treatments. In such cases, the resulting imaging data will likely be 

misaligned and distorted as a result from, for example, tissue shrinkage during washing 

procedures. Multimodal data can be obtained from a single tissue section, however, in cases 

where not all modalities can be acquired on a single section, consecutive sections are required. 

In such scenarios the imaging data need to be precisely registered to each other (aligned and 

features matched) in order to achieve alignment of the corresponding pixels in each dataset.14 An 

accurate pixel correspondence between datasets is critical for downstream spatial chemometrics 

analysis of the combined imaging data.  

Our first aim was, therefore, to establish an image registration workflow for precise alignment of 

imaging data acquired in different modalities. Image registration can be done using manual 

selection of fiducial points. However, the manual selection of control points with high confidence 

is challenging, particularly on IMS data due to feature appearance. As a consequence, it is difficult 

to achieve a registration accuracy appropriate for the investigation of small features such as, for 

example, amyloid beta (Aβ) plaques (50-100 µm) in Alzheimer’s disease pathology. An 

automated method for the registration of IMS data based on a gradient descent algorithm has 

been presented.23 This method has been demonstrated to work well for image data with tissue 

edges present. However, the alignment of small anatomical features without the presence of 

tissue edges was not successful for our data (no convergence). This highlights the need for an 

alternative image registration approach. We, therefore, developed a workflow for the registration 

of multimodal data involving an intensity based optimization algorithm. Our registration procedure 

starts with the generation of reference images for each IMS modality which are used to estimate 

the required geometric transformation (Figure 1a). To use single ion images as reference images 
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would be obvious. However, noise, contrast and variable clarity of features in single ion images 

pose a great challenge for image registration algorithms to achieve an adequate convergence 

result. Therefore, we used image PCA to capture the variance in the IMS datasets while 

separating noise. Resulting PCA scores images that are of high contrast and rich in features, lend 

themselves as suitable reference images for image registration. 

We applied an intensity based, semi-automated image registration method to estimate the 

transformation required to align the corresponding pixels between two reference images and IMS 

modalities, respectively (Figure 1b). The method solves image registration problems through 

iterative optimization of a predefined dissimilarity metric using a 1+1-evolutionary optimizer. 

Thereby, the supplied optimizer parameters determine the success of the convergence. For a 

greater automation, we implemented a full factorial design to determine the optimal optimizer 

parameters. The computed transformation matrix is then applied to geometrically transform the 

IMS dataset (Figure 1c). Thereby, imaging data with different spatial resolution can be combined 

through interpolation of the lower resolution dataset. Finally, the datasets can be concatenated 

and analyzed as one multimodal dataset (Figure 1d). 



13 
 

 

Figure 1. Overall workflow for the multimodal exploration of biological tissues by MALDI 
IMS and spatial chemometrics. (a) MALDI MS imaging of tissue sections in various modalities 
provides localizations of different biochemicals including lipids and peptides. (b) In order to 
combine imaging MS datasets acquired in different modalities, their corresponding pixels need to 
be precisely aligned. The presented procedure estimates the required geometric transformation 
using an intensity based semi-automated image registration approach particularly suited for 
multimodal applications. Feature-rich PCA scores images were used as reference images for 
image registration. (c) Geometric transformation allows the concatenation of IMS datasets, (d) 
Advanced spatial chemometrics analysis of the combined imaging data involves multivariate 
image analysis at the single pixel resolution including multiblock orthogonal component analysis 
to extract covariations between modalities. High resolution prediction by image fusion can be 
performed to enhance histological interpretation. 
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After establishing an automated image registration procedure, we aligned IMS data acquired from 

both, the same and consecutive tissue sections (Figure 2a). We went on to compare our semi-

automated alignment approach to the commonly used manual method for image registration by 

fiducial point selection (Figure 2b). The accuracy of image registration results is frequently 

assessed using basic methods such as overlap scores, structural similarity score, and image 

difference.24 However, it has been shown that those methods do not provide valid evidence for 

accurate registrations and should thus be avoided.24 Therefore, in order to compare the 

registration accuracy of differentially registered data, we employed O2PLS modeling. O2PLS is a 

multivariate regression method that allows unsupervised modeling of the joint and unique 

variations in two blocks of data. The O2PLS method is bidirectional allowing the prediction of each 

of the data blocks from one another. Thereby, systematic variability in two data blocks is 

partitioned into a joint predictive variation and into variation that is unique to each block of data 

(Figure 2c).25-27 O2PLS has been used in numerous studies including technical applications to 

model pre-processing effects on spectroscopic data28, in batch process development29 but also 

in systems biology to model variation between sets of “omics” data.30-33 

Here, we used O2PLS in a first application to assess the pixel-to-pixel correspondence between 

the two registered IMS datasets taking advantage of their multivariate nature (Figure 2c). A more 

accurate registration is expected to lead to a better pixel-to-pixel correspondence indicated by 

stronger correlation between the spectra from each data block and, thus, to an O2PLS model 

predicting a higher fraction of variation of the Y variables (Q2Y). The predicted fraction of variation 

of the lipid data is increased with automatically registered peptide data suggesting a higher 

registration accuracy as compared to manual registration. Inaccurately registered and combined 

pixels, are expected to increase the O2PLS orthogonal (unrelated) variability in either of the data 

blocks (X and Y, that is, peptide and lipid data). We found that the orthogonal variability in 

manually registered data is higher as compared to automatically registered data corroborating a 
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better registration accuracy of the latter. The automated registration minimized the unrelated 

variation in either of the datasets resulting in about 9% of orthogonal variability in the negative 

lipid data and no (0%) orthogonal variation in the peptide data (Figure 2d). 

Commonly, multimodal data are obtained from consecutive tissue sections (Figure 2a).3,4 

Therefore, we compared protein data from the same and the consecutive section to the 

corresponding lipid data using O2PLS modeling. The lipid and protein data collected on the same 

section resulted in a higher Q2Y value and a decreased orthogonal variability in either modality 

(Figure 2d). This indicates a better pixel-to-pixel correspondence between data blocks of the 

same section and a worse correspondence to the consecutive section as a result of intrinsic 

differences between the tissue sections. While concludes that acquisition of multimodal data from 

the same tissue is preferable, this might not always be possible due to different sample 

preparation and acquisition parameters that are incompatible. Taken together, the O2PLS 

modeling strategy allows to compare registration accuracies of both, alignment methods as well 

as consecutively acquired data from the same or adjacent sections. The here employed O2PLS 

approach enables relative comparison of registration and acquisition methods. However, it has to 

be assessed independently whether the different datasets are compatible with respect to tissue 

distortion and data quality. 
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Figure 2. Strategy for the comparison of image registration accuracies using O2PLS 
modeling. a) Multimodal data can be obtained from a single tissue section or consecutive 
sections. (b) Commonly, image registration is done via manual fiducial point selection. In here, an 
intensity-based registration approach is used. (c) Comparison of pixel correspondence and, 
thereby, registration accuracy, using O2PLS modeling. O2PLS subdivides the systematic 
variability in the two datasets X and Y into X/Y correlated predictive variation and variation that is 
orthogonal in each data block. Scores matrices are depicted vertically and their corresponding 
loading matrices are drawn horizontally. (d) Using the O2PLS pixel correspondence strategy, 
manual vs automated registration methods are compared, as well as, data acquired on the same 
vs consecutive tissue section. Error bars show minimum and maximum values of replicates (n=5). 
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3.2 Classical correlation analysis of trimodal IMS data yields global correlations at the 

expense of spatial information 

Precise alignment of various imaging MS data allows their combination into a multimodal dataset 

that incorporates comprehensive biochemical information provided by the different imaging 

modalities. Commonly, statistical analysis of IMS datasets is done using methods that lead to the 

loss of spatial information as a result of averaging multiple ROI spectral data. This, however, may 

be confounded by inter- and intra- feature heterogeneity. Therefore, retaining the spatial 

information at single pixel resolution is essential for the investigation of systems with 

heterogeneous pathological features.  

For the present study, we investigated tissue pathology in the hippocampal brain area in a 

transgenic mouse model of Alzheimer’s disease (tgAPPSwe) using correlative multimodal imaging 

MS. Alignment and combination yielded a trimodal IMS dataset, retaining single pixel resolution 

without ROI averaging. As an initial approach for interrogating the combined multimodal data, we 

performed correlation analysis. Here, positive and negative correlations between lipids and 

peptides can be observed (Figure 3a-b). In order to obtain correlations specific to features of 

interest, ROI can be selected and analyzed. We selected an amyloid plaque for ROI correlation 

analysis yielding correlations of analytes pertaining to Alzheimer’s disease pathology (Figure 3c-

d). The results and interpretation are biased by the selection of the ROI area. Here, correlation 

analysis of large ROI such as whole tissue areas, result in convolution of individual correlation 

values due to non-exclusive localization of chemical species to different anatomical features. In 

turn, selection of smaller ROI focused on individual histological features yield statistical and 

biological significant chemical co-localizations (Figure 3c-d). This highlights the requirement for 

chemometrics tools that permit comprehensive interrogation of multimodal imaging data of entire 

heterogenic tissue areas, while maintaining single pixel resolution to reveal feature specific 

chemical co-localization patterns. 
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Figure 3. Classical correlation analysis of trimodal IMS data from mouse hippocampus with 
Alzheimer’s disease pathology. a) Correlation plot of trimodal data displays global correlations 
within and between imaging modes. b) Ion images of correlating ions and overlays with correlation 
coefficients (Pearson). Area size 2.6 x 1.8 mm c) Correlation plot of the plaque ROI data displays 
ROI specific correlations. d) Ion images of the ROI and overlays with correlation coefficients. Area 
size 390 x 255 µm. Observed ions are consistent with following assignments: m/z 496 
[PC(16:0/OH)+H]+,34 m/z 826 [PC(36:1)+K]+,34,35 m/z 878 [OH-ST d18:1/h22:0 -H]-,36 m/z 885 
[PI(18:0/20:4)-H]-,35,36 m/z 1179 [GM3-H]-, and m/z 4332 Aβ (1-40). 
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3.3 O2PLS modeling reveals the heterogeneity of pathological features and corresponding 

chemical signatures 

Spatial chemometrics involves multivariate analysis of chemical data with spatial information to 

provide maximum relevant chemical insight. In multivariate analysis of IMS data, each pixel of the 

imaging dataset is treated as individual observations while retaining its spatial information 

(coordinates) during data analysis to be able to later reconstruct scores results into component 

scores images. Image PCA has previously been used to extract biochemical characteristics of 

tissues and cell cultures from IMS data.37-40  

While PCA allows the extraction of features based on maximum variance, certain covariances 

particularly in between entire blocks of data require more advanced methods. Therefore, special 

attention should be paid to the unidirectional prediction methods O2PLS, and multiblock 

orthogonal component analysis based on the OnPLS algorithm.19 As described above, O2PLS 

models the joint and unique variation between two blocks of data. Therefore, we applied O2PLS 

modeling to understand the relationship between lipids and peptides specifically and, further, the 

heterogeneity between and within pathological features captured by the cross-modal molecular 

imaging approach (Figure 4a). 

In the present study, O2PLS modeling revealed amyloid plaque heterogeneity in the hippocampus 

of a mouse model of Alzheimer’s disease (Figure 4b). Compositional variation of two plaques in 

particular, but also of certain core structures of other plaques, are consistent with reduced 

amounts of a number of amyloid peptides, most prominently Aβ1-38 (m/z 4135) and Aβ (m/z 

4332) as well as increased levels of Aβ1-40 (m/z 4332). Inspection of single ion images of the 

high loading variables confirm these observations. There, the two plaques appear Aβ1-38 

deficient while exhibiting increased levels of Aβ1-40 (m/z 4332) as compared to the majority of 

plaques (Figure 4c). These variations had not been recognized on PCA scores images of the 

same datasets (Supplementary Figure 1). While the profiles of amyloid peptides vary between 
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different plaques features (Figure 4b-c), lipid variations correlated to peptide data (u1 scores, 

Figure 4d) appear consistent among plaques, indicating that lipid profiles are independent of 

plaque peptide composition within the plaque structure. Furthermore, a relatively large fraction 

(51%) of unique variation in the lipid dataset indicates lipid profiles without covariance to the 

peptide data. In fact, orthogonal components describe lipid localizations in the periphery of plaque 

structures (uo6, uo7, uo10) and also in the dentate gyrus (uo10). Interestingly, the two large plaques 

deficient in Aβ1-38 do not exhibit these peripheral lipid localizations (uo10 scores, Figure 4d and 

Supplementary Figure 2). These observations demonstrate the potential of O2PLS and highlight 

the importance of retaining spatial information over the whole tissue area at the single pixel 

resolution for the investigation of systems with heterogeneous features. Indeed, O2PLS has 

previously been used for applications in systems biology to model transcript, protein and 

metabolite data,30 lipidomics31 and for NMR metabolomics and DIGE proteomics data from 

xenograft prostate cancer mouse models.32 
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Figure 4. Spatial chemometrics analysis of multimodal MALDI IMS data obtained from 
mouse hippocampus with Alzheimer’s disease pathology. a) Transgenic mouse model of 
Alzheimer’s disease (tgSwe). b) O2PLS analysis of combined peptide and lipid data reveals 
plaque heterogeneity (t2 scores image) and corresponding chemical profiles (p2 loadings), R2 = 
0.857. c) Single ion images of high loading variables (O2PLS) confirm that two plaques in 
particular contain reduced levels of specific Aβ peptides, most prominently Aβ1-38 (m/z 4135), 
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whereas the most abundant peptide, Aβ1-42 (m/z 4332), is observed at similar levels. d) Scores 
images of the lipid data that correlated to peptide data show consistent lipid profiles between 
plaques (u1). Lipids localizing to plaque periphery and dentate gyrus are described in an 
orthogonal component (uo10). There, the two large Aβ1-38 deficient plaques do not exhibit 
peripheral lipid localizations. e) Schematic representation of potential relationships between all 
matrices modeled by OnPLS. Number of OnPLS components from a region of interest analysis 
(single plaque) based on trimodal data. (f) Globally joint component scores image and loadings 
describing covariance among all three modalities. (g) Locally joint component of positive ion mode 
lipid data and peptide data displays a distinct feature in the core of the plaque. (h) Locally joint 
component of positive and negative ion mode lipid data appears to account for peripheral 
localizations. Normalized to total ion current, scale bars entire hippocampus = 300 µm, scale bars 
plaque ROI = 60 µm. 

 

3.4 Intrinsic heterogeneity of histological features captured in small regions of interest  

Following initial O2PLS modeling of the amyloid plaque pathology in the entire hippocampal tissue 

area we continued with a region of interest analysis of a single plaque feature. While the O2PLS 

model included lipid and peptide data as two blocks, further efforts were directed towards 

exploiting the trimodality of this dataset. Therefore, we employed multiblock component analysis, 

based on the OnPLS algorithm, to further explore the relationships between all three modalities 

in an unsupervised manner (Figure 4e).19 While O2PLS models the joint and unique variation 

between two blocks of data, OnPLS allows the analysis of multiple data blocks. In the two-block 

case the two algorithms generate very similar results. OnPLS partitions the total variation into 

globally joint, locally joint, and unique parts. Global variation is shared between all data blocks of 

a multiblock dataset, local variation is shared between at least two blocks, and unique variation 

occurs in only one data block. OnPLS is a descriptive modeling technique with a purpose to reveal 

the relationships between multiple blocks of data and an aim to enhance interpretability of the 

results.19,20,41 

From the single plaque ROI data, OnPLS generated one predictive component of the global 

variation and multiple non-global components (Figure 4e). Again, we applied this in the context of 

spatial chemometrics to visualize scores results as images. The globally joint component images 
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displayed an overall structure of the plaque as outlined by PI(36:4) (m/z 857), LPC (m/z 496), and 

Aβ1:38 (m/z 4135) (Figure 4f). The first locally joint component between positive lipid data and 

peptide data revealed a pronounced localization in the plaque’s core including Aβ1:40 (m/z 4332) 

(Figure 4g). These spatially focused localizations are confirmed on single ion images and occur 

within a number of other plaques but had previously not received the attention as they potentially 

could be regarded as noise during visual inspection of the single ion images (Supplementary 

Figure 3). Further, locally joint variation between lipid modalities visualized lipid profiles localizing 

to the periphery of the plaque including PI(38:4) (m/z 885) and PE(38:6) (m/z 752) (Figure 4h). In 

conclusion, features of the scale as these core structures (30-40 µm) require the modalities to be 

precisely aligned for the extraction of feature specific cross-modal covariance to be successful. 

This emphasizes the importance a method for accurate image alignment and further illustrates 

the notable benefit of analyzing imaging data at single pixel resolution. Moreover, this 

demonstrates the discovery of biochemical co-localizations through multimodal enrichment that 

might have been mistaken for noise or go unnoticed if only one modality had been considered. 

3.5 Spatial chemometrics exploration of rat prostate cancer 

MALDI IMS has found important application in cancer research to investigate the high chemical 

complexity and heterogeneity of cancer tissue.42,43 Therefore, to further demonstrate the potential 

of our workflow for correlative imaging, we investigated molecular histopathology in a human 

xenograft rat model of prostate cancer (Figure 5a). Multimodal imaging including MALDI IMS and 

H&E microscopy data were acquired from three consecutive tissue sections. While the tumor 

appearance was most conserved between sections, benign tissue in the tumor-bearing prostate 

showed distortions and intrinsic differences that were only partially matched (Figure 5b). 

Therefore, we focused our study on the tumor micro- and macro-environments with limitation to 

proximal surroundings. Spatial chemometrics analysis was then used to visualize the tumor 

heterogeneity in respect to covariance of the underlying chemical signatures. Image PCA of the 
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combined IMS data generated a component that appear to describe differences between cancer 

and benign tissue (t2), components that account for cancer heterogeneity (t6, t8), and also 

components that describe the surrounding tissue (t3, t5, t7) (Figure 5c). OnPLS modeling of the 

dataset generated components for joint variation and each case of locally joint variation, as well 

as unique variation (Figure 5d). The primary component (tj1), describing covariance between all 

three modalities, appears to account for molecular signatures (pj1) that distinguish cancerous and 

normal prostate tissue (Figure 5e). Here, specific loadings characteristic of the tumor were, for 

example, PI(38:4) (m/z 885), phosphatidyl choline PC(30:0) (m/z 706), and apolipoprotein C1 

(m/z 6640). This observation demonstrates the potential of OnPLS, being an unsupervised 

method, as a valuable alternative to supervised modeling that require either manual or automated 

ROI annotation. 

In conclusion, the visualization of scores from multivariate analyses, have the potential to reveal 

spatially defined chemical signatures that can provide valuable new insight in the heterogeneity 

of cancer and the interaction between the invasive tumor front and the surrounding tissue. 

Furthermore, spatial chemometrics of multimodal data can extract chemical profiles that may lead 

to the discovery of candidate biomarkers and create links between lipids and proteins that 

otherwise could be missed. 
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Figure 5. Spatial chemometrics exploration of trimodal IMS data of rat prostate cancer. (a) 
Highly metastatic (Dunning MLL) human prostate cancer xenograft rat model, (b) bright field 
microscopy image of H&E stained and (consecutive) native rat prostate tissue heavily affected by 
the tumor, scale bar = 800 µm, (c) PCA scores images generated from the trimodal MALDI IMS 
data (negative and positive ion mode lipids, and peptides, log transformed), (d) number of OnPLS 
components of joint and unique variation, (e) top three OnPLS joint t-scores images and loadings, 
whereby tj1 appears to account for cancer specific joint variation between all three modalities 
(R2(negative lipids) 0.22, R2(positive lipids) 0.11, R2(peptides) 0.10. 
 

3.6 Multimodal image fusion predicts correlated chemical information at high resolution  

Information extracted by advanced data analyses can lead interpretation for improved 

understanding of the disease pathology. Pathological evaluation of tissue sections is commonly 

done using histological staining and brightfield microscopy at sub-micron resolution. However, 

information from MALDI IMS is usually generated at a much inferior resolution, typically 10-

100 µm. As a result, integrative interpretation across the resolution domains can be challenging 

and, therefore, an approximation of the IMS information at the microscopy resolution may benefit 

data interpretation. To achieve this, we used OPLS to first model the relationships between 
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variables of the microscopy image data (X-block) and the IMS image (Y-block) at the IMS 

resolution, to then predict a high resolution image using that model (Figure 6a), a strategy similar 

to that for image fusion previously presented.10 Thereby, a multivariate decomposition matrix of 

the microscopy image is generated in an effort to provide the feature diversity in distinct variables. 

The decomposition matrix consisted of color channels including color space transformations and 

their PCA scores. Heterogeneous distribution that is not contained in the microscopy modality 

was finally approximated by post-prediction weighting. The approach for high resolution 

approximation was demonstrated on an OnPLS scores image and on single ion images of the 

prostate cancer dataset (Figure 6b-c). While the examples in this case were purposely selected 

for their correlations between microscopy and IMS images, not all cross-modality relationships 

can be described accurately by a predictive model. Therefore, model evaluation by, for example, 

cross-validation to assess prediction reliability is important. Since, variation that is not represented 

within the microscopy modality can theoretically not be accurately predicted, we weighted the high 

resolution prediction with the original IMS image to approximate the analyte’s distribution that is 

not described by the microscopy modality.  

Moreover, variables with a strong contribution to OnPLS results might be of particular interest to 

predict at a high resolution. However, only variables within a certain correlation threshold between 

the modalities are suitable for predictive modeling. Therefore, variables should be selected with 

both, a high loading value in a particular component and strong correlation between IMS and 

microscopy modalities. An OnPLS model of IMS data and H&E data in two blocks provides the 

covariations between the modalities. These values plotted against the loadings of a component 

of interest will guide the selection of loadings suitable for prediction at the extremes of the scatter 

plot (Supplementary Figure 4). 
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Image fusion by OPLS prediction and distribution weighting projects the IMS image information 

onto a higher resolution microscopy image and presents yet another chemometrics strategy in 

the toolbox of spatial chemometrics.  

 
Figure 6. Multimodal IMS image fusion strategy by OPLS predictive modeling. (a) A low 
resolution IMS image and a corresponding high resolution microscopy image are used to predict 
the IMS image information at the microscopy resolution, (b) OnPLS tj1 scores image of prostate 
cancer IMS data (30 µm spatial resolution), its low resolution and high resolution predictions, and 
corresponding H&E stained microscopy image (1.25 µm spatial resolution), (c) high resolution 
predictions for high OnPLS loading ions for each modality; correlated pj1 loading value indicated. 
Signals correspond to PI(38:4) (m/z 885), PC(30:0) (m/z 706), and apolipoprotein C1 (m/z 6640). 
 

Conclusions  

In conclusion, we demonstrated that multimodal molecular imaging in conjunction with advanced 

multivariate statistical modeling reveals remarkable insight into disease pathology. The 

combination of multiple IMS modalities was enabled through precise image data alignment 

accomplished by an intensity-based semi-automated image registration procedure. Cross-

modality chemometrics modeling of the combined data, using multiblock orthogonal component 

analysis, allowed the visualization of covariance structures and unique variations at the single 

pixel resolution that otherwise could not be achieved. Hence, the presented strategy lays the 
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groundwork for correlative molecular imaging to further understand the interplay of the underlying 

biochemistry with a multimodality aspect. Spatial chemometrics creates avenues to new 

biological understanding through integration of molecular information from multiple imaging 

modalities, and contributes to unlocking the full potential of multimodal imaging studies. 
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