1998 CEDAR Workshop Boulder, Colorado June 7-12, 1998

Tutorial Lecture

by Guy Brasseur Atmospheric Chemistry Division, NCAR

Long-Term Variability and Global Change in the Middle and Lower Atmosphere

ATMOSPHERIC CHANGES

- 1. Natural Variability
 - Solar forcing
 - Volcanic forcing
 - Internal fluctuations (noise)
- 2. Anthropogenic Effects
 - Fossil fuel burning
 - Biomass burning
 - Land-use change (deforestation, use of fertilizers)
 - Industrial production of chemicals (CFC's)

EXAMPLES OF GLOBAL ENVIRONMENTAL CHANGES

- Degradation of air quality. Global pollution resulting from industrial combustion and biomass burning
- Increase of tropospheric oxidant and aerosol levels (human health and crop productivity)
- Climatic and environmental impacts of land use changes (tropical deforestation, wetland destruction, etc.)
- Perturbations in global biogeochemical cycles (carbon, nitrogen, phosphorus, sulfur)
- Acidic precipitation
- Climatic impact of greenhouse gases and of anthropogenic sulfate
- Stratospheric ozone depletion

Atmospheric Chemistry and Global Change

:

IMPORTANT FACTORS IN RECENT

ATMOSPHERIC EVOLUTION

- Over the last 100 years, the world's industrial production has increased by a factor of 100.
- Since 1850, the energy consumption has increased by a factor of 80.
- Over the last 200 years, the global population has increased by a factor of 8.
- Absolute population growth has been as large between 1950 and 1990 as during the entire previous historical period.
- Eighty percent of the world's primary energy is supplied by fossil fuel (largest contribution is oil; before 1975, it was coal).

Nighttime Lights and Fires of Northern Africa

Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) From cloud-free portions of 200+ DMSP-OLS orbits acquired October 94 - March 95 Processed by NOAA-NESDIS National Geophysical Data Center

For additional information contact Dr. Chris Elvidge FAX 303-497-6513 or cde@ngdc.noaa.gov

Changes in Land Use and Land Cover

Table 2: Estimated changes in the areas of the major land-cover types between preagricultural times and the present ($\times 10^6$ km²)

Land-Cover Type	Preagricultural Area	Present Area	% Change	
Total forest	46.8	39.3	-16.0	
Tropical forest	12.8	12.3	-3.9	
Other forest	34.0	27.0	-20.6	· ·
Woodland	9.7	7.9	-18.6	·
Shrubland	16.2	14.8	8.6	
Grassland	34.0	27.4	-19.4	
Tundra	7.4	7.4	0.0	
Desert	15.9	15.6	-1.9	
Cultivation	0.0	17.6	+1760.0	
•				

×

From J.T. Matthews (personal communication).

Physical Climate System : WCRP

Biogeochemical Systems

Figure 1.3 THE EARTH ENGINES: Earth system processes are driven by both internal and external (solar) energy.

e Vener

24

х

×

×

1950

	Agglomeration and Country	y, 1950	Agglomeration and Country, 2015 (Projected)
		••••••	
New York, United States	State of the second	Tokyo, Japan	
ondon, United Kingdom		Bombay, India	
okyo, Japan	同時間が不安定的	Lagos, Nigena	
aris, France	KINSKER	Shanghai, China	
oscow, Russian Federation	同些 公 成于	Jakarta, Indonesia	
anghai, China		São Paulo, Brazil	
sen, Germany		Karachi, Pakistan	
enos Aires, Argentina		Beijing, China	
nicago, United States		Dhaka, Bangladesh	
alcutta, India		Mexico City, Mexico	and the second
saka, Japan		New York, United States	
s Anceles United States		Calcutta, India	
ijing, China	11. 12	Delhi, India	
an, Italy		Tianjin, China	
rlin, Germany		Metro Manila, Philippines	
exico City, Mexico		Cairo, Egypt	
ladelphia, United States		Los Angeles, United States	
Petersburg, Russian Federation		Seoul, Republic of Korea	
mbay, India	10000	Buenos Aires, Argentina	
de Janeiro, Brazil		Istanbul, Turkey	
troit, United States		Rio de Janeiro, Brazil	Via de la constante de la const
ples, Italy		Lahore, Pakistan	
nchester, United Kingdom		Hyderabad, India	
o Paulo, Brazil	NEST.	Osaka, Japan	
iro, Egypt	1 Canal	Bangkok, Thailand	
njin, China		Lima, Peru	
ningham, United Kingdom	5 1 1991	Teheran, Iran (Islamic Republic of)	
nkfurt, Germany		Kinshasa, Zaire	
ston, United States		Paris, France	
mburg Germany		Madras, India	

Population

ENGINE OF ALS

from: The state of ile-14 2 pulation 1116 UNPEA

Figure 1

Some components of global change: (a) increase in human population; (b) increase in atmospheric CO₂ concentration; (c) anthropogenic alteration of the nitrogen cycle; (d) modelled and observed change in global mean temperature; (e) change in global land cover; and (f) increase in extinction of birds and mammals. From: Vitousek (1994); Houghton et al. (1995); Klein Goldewijk and Battjes (1995); and Reid and Miller (1989).

7

GLOBAL

OUTLINE

1. Surface Emissions of Trace Gases

* Anthropogenic CO₂

* Other greenhouse gases

* Ozone precursors (CO, NO_x)

***** Sulfur dioxide

2. Changes in Tropospheric Composition Ozone

* Sulfates

3. Changes in stratospheric and mesospheric composition
* Ozone (solar variability, CFC's, volcanic eruptions)

4. Changes in stratospheric and mesospheric temperature

1. Changes in Trace Gases

CO₂

\mathbf{CH}_4

 N_2O

H₂O

Halocarbons

\$

. ·

Oltmans NOAA/CMDL

.gure 2

Mixing Ratios and Growth Rates of

	CO ₂	CH ₄ ppmv	N ₂ O ppbv	CFC-11 pptv
	<u>FF</u>	<u>_</u>		
Pre-industrial	280	0.70	280	0
Year 1990	354	1.72	310	280
Rate of Increase (%) (1989-1990)	0.5	0.8	0.25	4

Several Greenhouse Gases

2. Changes in Tropospheric Oxidants

Ozone (O₃)

Hydroxyl Radical (OH)

Figure 11: Trends in ozone concentration measured at ground level in Europe during the 20th century (from Marenco et al., 1992).

Tropospheric Ozone Photochemistry

A. Production

$$NO + O_3 \rightarrow NO_2 + O_2$$
$$NO_2 + h\nu \rightarrow NO + O$$
$$O + O_2 + M \rightarrow O_3 + M$$

Null cycle

$\begin{array}{l} \text{NO} + \text{HO}_2 \rightarrow \text{NO}_2 + \text{OH} \\ \text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O} \\ \text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \end{array}$

Formation of ozone

In most cases, the ozone production is controlled by the NO_x abundance.

Ozone Production from CO oxidation

 $+ O_{2}$ $OH + CO \longrightarrow HO_{2} + CO_{2}$ $HO_{2} + NO \longrightarrow OH + NO_{2}$ $NO_{2} + h\nu \longrightarrow NO + O$ $O + O_{2} + M \longrightarrow O_{3} + M$

Net : $CO + 2 O_2 + h\nu ---> CO_2 + O_3$

Ozone Production from CH₄ oxidation

+ O_2 $CH_4 + OH \longrightarrow CH_3O_2 + H_2O$ + O_2 $CH_3O_2 + NO \longrightarrow HO_2 + NO_2 + H_2CO$ $HO_2 + NO \longrightarrow OH + NO_2$ 2 ($NO_2 + hv \longrightarrow NO + O$) 2 ($O + O_2 + M \longrightarrow O_3 + M$)

Net : $CH_4 + 4 O_2 + hv ---> H_2CO + H_2O + 2 O_3$

• • •

. ..

.

.

.

.

Estimated Sources and Sinks of CO (Tg/yr)

	Range	Likely
Sources		
Technological	300-900	500
Biomass Burning	400-700	600
Biogenics	60-160	100
Oceans	20-190	?
Methane Oxidation	400-1000	600
NMHC Oxidation	300-1300	600
Sinks		
OH Reaction	1400-2600	2100
Soil Uptake	250-640	250
To Stratosphere	~100	100

WMO (1985)

F
Perturbations of Tropospheric Ozone

(Release of ozone precursors)

1. Industrial combustion (mostly in the Northern Hemisphere)

2. Biomass burning (mostly in the tropics)

3. Emissions by aircraft engines (mostly at high altitude)

4. Ozone depletion in the stratosphere

•

.

....

.

The Hydroxyl Radical

Production of HO_x

$H_2O + O(1D) \longrightarrow 2OH$

With the electronically excited O(1D) atom produced by photolysis of ozone:

 $O_3 + Hv (\lambda < 310 \text{ nm}) \rightarrow O(1D) + O_2$

The Hydroxyl Radical

Conversion of OH to HO₂

 $OH + CO \xrightarrow{O_2} H_2O + CO_2$

 $OH + O_3 \longrightarrow HO_2 + O_2$

 $OH + CH_4 \longrightarrow HO_2 + \dots$

Conversion of HO₂ to OH

 $HO_2 + NO \longrightarrow OH + NO_2$

 $HO_2 + O_3 \longrightarrow OH + 2O_2$

Abundances of OH and HO₂ affected by concentration of CO and NO_X (e.g., pollution)

J. LELIEVELD ET AL. (Tellos, 1998)

.

•

3. Changes in Sulfate Loading

SO₂

SO₄

NORTHERN HEMISPHERE SO2 FOSSIL FUEL COMBUSTION AND NATURAL SOURCES

4. Changes in Stratospheric Ozone

Caused by:

.

* Chlorofluorocarbons

* Solar variability

* Volcanic eruptions

. .

-

·

: .

. .

> . . .

.

.

LAP, Univ. of Thessaloniki, Greece (1995)

SOURCE: EPA

Satellite data give information on changes in the ozone concentration which has seriously decreased in the polar course between the regions. This picture is based on data measured by the TOMS-sensor on the American weather satellite NINIBUSET for all concession which the Dobson-units. The mainly stratospheric ozone protects the Earth from dangerous UV radiation of the sum. (From: TOMS V6.0 processed by DLR Deutsches Fernerkundungsdatenzentrum)

х

х

Lower Stratospheric ClO in the 1991-92 Polar Vortices

OZONE AND LARGE VOLCANIC ERUPTIONS

- 1. Stratospheric sulfate particles resulting from large volcanic eruptions
 - Convert NO_x into HNO₃
 - * Convert HCl and CLONO₂ into reactive chlorine
 - Produce local warming

Consequence

Under high chlorine load, significant ozone depletion is expected, and local temperature is enhanced – surface cooling is expected.

TREPTE ET AL.: MOUNT PINATUBO AEROSOL DISPERSAL

Heterogeneous Reactions on Sulfuric Acid Aerosols

(γ 1) N₂O₅(g) + H₂O(aerosol) \rightarrow 2 HNO₃ (γ 2) ClONO₂(g) + H₂O(aerosol) \rightarrow HNO₃ + HOCl Reaction rate (s⁻¹)

with

$$\mathbf{v} = \left[\frac{8kT}{\Pi m}\right]^{1/2}$$

OZONE AND SOLAR VARIABILITY

Ozone Production

 $O_2 + h_{U} \rightarrow O + O (\lambda \simeq 200 \text{ nm})$

$$O + O_2 + M \rightarrow O_3 + M$$

Ozone Destruction

 $O_3 + h_{U} \rightarrow O + O_2 (\lambda \simeq 300 \text{ nm})$

 $O + O_3 \rightarrow 2 O_2$

Or

 $O + OH \rightarrow O_2 + H$

 $O + HO_2 \rightarrow O_2 + OH$

Below 80 km

Dominant effect is on O_3 production by O_2 photolysis. Positive response of ozone to increased solar UV flux.

Above 80 km

Dominant effect is on O_3 <u>destruction</u> associated with HO_x production by H_2O photolysis at Lyman- α . <u>Negative</u> response of ozone to increased solar UV flux.

x

Effect of solar flux variation on the middle atmosphere

×

Figure 4-6 (a) Comparison of the ozone response calculated at the equator by the 2D model in March (solid) and by the 1D model (dotted) with the observed results (Δ) analyzed by Hood et al. (1993) from the Nimbus 7 SBUV observations. (b) The same as (a) except the comparison of the temperature response and the observed results are from NMC temperature data.

5. Changes in Middle Atmosphere Temperature

Enhanced levels of CO₂ and other greenhouse gases lead to increased infra-red emissions to space and hence to stratospheric and mesospheric cooling. lower stratospheric temperature

100-50 mb Temperature (Angell, 1988, updated)

* radiosonde (balloon) measurements

satellite temperature anomalies:

(0.5 mb)

(1.5 mb)

(5 mb)

(15 mb)

(50 mb)

temperature trend

Antarctic temp. trends

• • • • • • • • •

Antarctic November temps. at 100 mb (~15 km)

:

NH polar stratosphere cooling

CONCLUSIONS

- 1. Human activities (fossil fuel consumption, biomass burning, land-use changes) have produced very substantial changes in the chemical composition of the troposphere, stratosphere, and mesosphere on the global scale.
- 2. These anthropogenic changes need to be compared with natural variations such as those produced by the 11-year solar cycle.
- 3. Several observed trends in trace gas concentrations are not yet well explained.
- 4. The mesosphere is probably most affected by global change forcing.
- 5. The analysis of atmospheric changes requires a global approach: Vertical propagation of atmospheric responses to natural and anthropogenic forcing (e.g., solar effects and human activities) is not well understood.