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Abstract. The dark matter annihilation channels sometimes involve sharp resonances. In
such cases the usual momentum averaged approximations for computing the DM abundance
may not be accurate. We develop an easily accessible momentum dependent framework for
computing the DM abundance accurately and efficiently near such features. We apply the
method to the case of a singlet scalar dark matter s interacting with SM through higgs portal
λhss

2h2 and compare the results with different momentum averaged methods. The accuracy
of the latter depend strongly on the strength of the elastic interactions and corrections are
large if WIMP has negligible interactions beyond the main annihilation channel. In the singlet
scalar model however, the standard model scatterings induce an efficient kinetic equilibrium
that validates the momentum averaged computation to 20 per cent accuracy. We update the
current extent of the allowed region in the light singlet scalar dark matter to mS ∈ [56, 62.5]
GeV.
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1 Introduction

The nature of the dark matter (DM) in the universe remains an unsolved mystery. The most
popular candidate for DM is some weakly interacting massive particle. Recently there has
been a lot of interest in a class of models where the dark sector interacts with the standard
model (SM) through a higgs portal [1, 2]. Generic to these models is that the DM abundance
can be adjusted correctly, avoiding all experimental constraints, just below the higgs pole.
However, because the SM higgs is a very sharp resonance, computing the DM abundance
near its pole, i.e. when 2mDM

<∼ mH , is more involved than is perhaps usually appreciated.
Of course the higgs resonance may not be the only one relevant for the DM production.
Other resonances associated with the Z-boson or new exotic gauge bosons or new scalars are
frequently encountered in the model landscape. In all these cases computing DM abundance
requires extra care and the results obtained here can be applied.

What makes narrow resonances challenging for momentum averaged methods is that the
implicit assumption they make, of elastic scatterings being fast enough to keep the system
in kinetic equilibrium, may not hold. Annihilation processes can then lead to a significant
distortion of the phase space distributions, reducing the number of momentum configura-
tions consistent with the resonance. When this happens, momentum averaged methods, that
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assume kinetic equilibrium, can lead to an overestimate of the annihilation rate and an un-
derestimation of the DM density.

We start by setting up the generic Boltzmann equations for the dark matter annihilation
problem in section 2. We then review the derivation of the momentum averaged Zel′dovich-
Okun-Pikelner-Lee-Weinberg [3, 4] (ZOPLW) equation and several approximation schemes
to solve it. We then apply these methods to the singlet scalar DM coupled to the Standard
Model via higgs portal (the SSM model). We compute the singlet DM abundance and discuss
the range of validity of different approximations. We stress that the semi-analytical solution
developed in ref. [2], is always within O(1%) agreement with the full numerical solution of
ZOPLW equations.

In section 3 we develop a momentum dependent scheme to solve the DM abundance
accurately and efficiently. The novel part of the method is the implementation of a generalised
relaxation approximation for the back-reaction terms in the elastic collision integrals. Back-
reaction terms are multidimensional integrals whose direct evaluation is not practical. In our
method all collision terms are reduced to generic one-dimensional integrals over the relevant
CM-frame cross sections, which can be evaluated and fitted before the numerical integration
of the partial differential equations. Our final equations take form of a set of coupled ZOPLW
equations for the discretised momentum modes and for an arbitrary number of interacting
species. These equations are one of the main results of this paper. They should be useful also
in other applications with non-equilibrium dynamics, such as scenarios with non-thermal DM
or particle wall interactions during electroweak phase transition.

In section 4.1 we carefully analyse the DM abundance of a thermal DM near the reso-
nance in the SSM model. We show that without elastic interactions the momentum dependent
code can give up to an order of magnitude larger DM abundance than does the best momentum
averaged method. When elastic interactions are included however, the momentum dependent
calculation gets very close to the momentum averaged one; the residual difference in the DM
abundance is typically 20-30 per cent. The self scatterings play no essential role in reaching
the kinetic equilibrium in the SSM; it is mainly established by the elastic scatterings with SM
particles. We update the current extent of the allowed region of the light DM in the SSM to
be mS ∈ [56, 62.5] GeV. We also show that a DM throughout this range can be discovered in
a direct detection experiment whose sensitivity only slightly exceeds the neutrino floor.

In section 4.2, we consider the feebly interacting dark matter (FIMP) limit. We again
consider the SSM model and compare the momentum averaged and the momentum dependent
methods. We find that while FIMPs are never in thermal equilibrium, they are produced at
all times near kinetic equilibrium and the momentum averaged method is again accurate at
20 per cent level. Finally, in section 5, we give our conclusions and outlook.

2 The Boltzmann equation

The Boltzmann equation for the scalar distribution function f(p1, t) in the flat Friedmann-
Robertson-Walker spacetime is

(∂t − p1H∂p1)f(p1, t) = ĈE(p1, t) + ĈI(p1, t), (2.1)

where ĈE(p1, t) and ĈI(p1, t) are the elastic and inelastic collision integrals respectively. Elas-
tic collisions are responsible for maintaining the kinetic equilibrium and inelastic collisions
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Figure 1. Inelastic and elastic 2−2 collision processes. Standard Model contributions are collectively
referred as SM and the relevant contributions to our analysis are: τ, c, t, b, Z,W, h in the inelastic
channel and µ, τ, s, c, b in the elastic channel. Section 3 follows the indexing conventions of these
diagrams.

the chemical equilibrium. Inelastic collision integral is generically given by

ĈI(p1, t) =
1

2E1

∑
n

∫
d3p2

(2π)32E2

∏
{in}

d3pin
(2π)32Ein

 (2π)4δ4(p1 + p2 −
∑
{in}

pin)×

×
(
| M(n)

{in}→12 |
2
∏
{in}

[fin(pin , t)] [1 + f(p1, t)][1 + f(p2, t)]

−| M(n)
12→{in} |

2 f(p1, t)f(p2, t)
∏
{in}

[1 + sinfin(pin , t)]
)
, (2.2)

and the elastic one, assuming it is dominated by 2− 2-scattering processes, by

ĈE(p1, t) =
1

2E1

∑
m

∫ [ 4∏
i=2

d3pi
(2π)32Emi

]
(2π)4δ4(p1 + p3 − p2 − p4)×

×
(
| M(m)

24→13 |
2 f(p2, t)fm4(p4, t)[1 + f(p1, t)][1 + sm3fm3(p3, t)]

− | M(m)
13→24 |

2 f(p1, t)fm3(p3, t)[1 + f(p2, t)][1 + sm4fm4(p4, t)]
)
, (2.3)

where Ei = (p2
i +m2

i )
1/2, the indices n and m run through all relevant interaction channels,

fi(p, t) are the momentum- and time-dependent distribution functions of the particle species
in question, and sn = 1 (-1) for bosons (fermions). The matrix elements |Mij→kl|2 are process
dependent functions that only depend on the Mandelstam variables s, t and u. The inelastic
and elastic channels are shown schematically in figure 1. Including additional decay-channels
or processes with more than two particles in the final state would be straightforward.

2.1 Momentum integrated equation

A standard approximation in relic density calculations is that particles are in kinetic equilib-
rium at all times and and that they follow the Maxwell-Boltzmann statistics:

fi(pi, t)→ gi(T )e−Epi/T , (2.4)

with gi,eq(T ) = 1. With these assumptions we can integrate the Boltzmann equation (2.1)
over the initial three momentum p1. The elastic collision term ĈE now vanishes and the

– 3 –



momentum-dependent equation reduces to the Zel′dovich-Okun-Pikelner-Lee-Weinberg equa-
tion [3, 4] for the number density:

∂tn+ 3Hn = 〈vMølσI〉(n2
eq − n2) , (2.5)

where the averaged cross section is the Maxwell-Boltzmann average over the annihilation
cross section multiplied by the Møller velocity: vMøl ≡ ((p1p2)2 − m2

1m
2
2)1/2/E1E2. It is a

simple matter to reduce this quantity to a one dimensional integral over the cross section [5]:

〈vMølσI〉 =
1

8m4
STK2(mS/T )2

∫ ∞
4m2

S

ds
√
s(s− 4m2

S)K1

(√s
T

)
σI(s) , (2.6)

where Ki(x) are the modified Bessel functions of the second kind and σI =
∑

n σI,n, with n
labelling separate inelastic processes. Now, it is usual to assume that the universe is expanding
adiabatically: ṡ/s = −3H, where s is the entropy density. In this case Eq. (2.5) can be written
as

∂xY = Z(x)(Y 2
eq − Y 2) , (2.7)

where we defined x ≡ m/T and Y ≡ n/s, so that

Yeq(x) =
45

4π4

x2

heff(x)
K2(x) , (2.8)

and finally

Z(x) ≡
√

π

45
g

1/2
∗

mMPl

x2
〈vMølσI〉 . (2.9)

Here MPl is the Planck mass and the function

g
1/2
∗ (T ) ≡ heff√

geff

(
1 +

T

3heff

dheff

dT

)
(2.10)

depends on the number of effective energy and entropy degrees of freedom defined by: ρ(T ) ≡
π2

30 geffT
4 and s(T ) ≡ 2π2

45 heffT
3. In the limit of no entropy production and sufficiently high

temperatures g∗ ≈ geff . However, as was stressed already by [5], for high-accuracy calculations
one should keep the full g∗, as the functions do differ in particular near the QCD phase
transition. Early work on the number of degrees of freedom functions include [6] and a
careful recent analysis of the effect of QCD transition can be found in [7, 8]. We show the
functions we are using here in figure 2.

2.2 Analytical approximations

It is a simple matter to integrate equation (2.7) numerically. A generic behaviour for Y is
that first it follows closely the equilibrium distribution and then abruptly freezes out, typically
when the WIMP is non-relativistic: xf ≈ 20 − 30. In such case, the ZOPLW equation can
be solved analytically to a very high accuracy [2, 4, 5, 9, 10]. In [2] it was shown that the
solution

Ytoday =
Yf

1 + YfAf
, where Af =

∫ ∞
xf

dxZ(x) , (2.11)

and Yf = (1 + δf)Yeq(xf), and the freeze-out temperature is solved from

xf = log

δf(2 + δf)

1 + δf

ZŶ 2
eq

Ŷeq − dŶeq
dx


xf

, with Ŷeq ≡ exYeq , (2.12)
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Figure 2. The effective degrees of freedom functions: geff (dash-dotted), heff (dashed) and g∗ (solid).
The feature around T ≈ 175 MeV is due to latent heat release in the QCD phase transition, which
is here modelled by TQCD = 175 MeV and a linear interpolation between the hadronic phase and the
quark phase results over a width ∆TQCD = 70 MeV.

is accurate typically to better than one percent for δf ≈ 1. Given Ytoday, one can easily find
the final abundance:

ΩDMh
2 ' 2.7× 108

( mi

GeV

)
Ytoday . (2.13)

If Z(x) is only weakly dependent on x one can further approximate Af ≈ xfZf . Moreover, one
typically finds that YfAf � 1, so that Ytoday ≈ 1/xfZf . Even this approximation is typically
accurate to a few per cent. Moreover, when applying these formulae one finds that for typical
DM masses m ≈ 10− 1000 GeV the cross section giving the correct relic abundance is almost
a constant: 〈vMølσI〉 ≈ 2.2× 10−26 cm3/s [9].

To solve the differential equation beyond the analytic approximation, one often uses sim-
plifying approximations for the thermally averaged cross section. Indeed, if vMølσI approaches
a constant in the non-relativistic limit, one may use the threshold approximation:

〈vMølσI〉 ≈ vCM
MølσI|s=4m2

S
≡ (vMølσI)th. (2.14)

where vCM
Møl = 2

√
1− 4m2/s. Threshold approximation often works rather well, but it obvi-

ously fails when vCM
MølσI vanishes at threshold and we shall see that it also fails near sharp

resonances. An example of the former is the annihilation of Majorana fermions while a singlet
scalar DM near higgs pole is an example of the latter. In contrast, the approximation (2.11-
2.12) is always good one for the ZOPLW equation, independent of how one computes 〈vMølσI〉,
as long as particles remain in kinetic equilibrium and are non-relativistic at freeze-out.

2.3 Example: singlet scalar DM near higgs pole

To be specific, we consider a model with a new scalar singlet field with Z2-symmetry, that
couples to the standard model particles only through the higgs portal:

L =
1

2
(∂µS)2 − 1

2
µ2

SS
2 − 1

4
λSS

4 − 1

2
λhsS

2|H|2 + LSM . (2.15)
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After electroweak symmetry breaking, the S boson mass receives a mass term m2
S = µ2

S +
1
2λhsv

2, where v = 246.2GeV. This model can provide DM over a wide range of parameters.
In particular there is an interesting allowed region below the higgs pole [2], the extent of
which we now update to mS ∈ [56, 62.5] GeV. The precise extent of this allowed region is
sensitive to how one computes the relic density. We demonstrate this by solving the ZOPLW
equation (2.5) both exactly and in the threshold approximation described in previous section.
All annihilation cross sections for s-boson can be found in ref. [2, 11]1. Near the higgs pole
the rate is dominated by quark and lepton final states, but contains also a non-negligible
contribution from virtual gauge-boson final states. An accurate cross section can be obtained
by using the factorizing into the SSh fusion part times the virtual h decay using the full
width of the higgs [11]:

vCM
MølσI =

2λ2
hsv

2
0 Γh(

√
s)√

s[(s−m2
h)2 +m2

hΓ2
h]

(2.16)

where v0 = 246 GeV and the higgs decay width Γh(
√
s) is taken from ref. [12].

First, we find, in agreement with [2], that approximation (2.11-2.12) is consistent with
the numerical integration of (2.7) at one per cent level over the whole range considered. The
relic abundance contours of a computation with full thermal cross section (2.6) are shown in
the right panel of figure 3. In this approximation the elastic collision integral vanishes and
hence the results do not depend on λS. Black curves show the contours of a constant relative
dark matter density:

frel ≡
ΩSh

2

0.1193
, (2.17)

where we used the latest CMB-determination for the the DM abundance ΩDMh
2 = 0.1193±

0.0014 [13]. In the left panel we show the result of a computation which employs the threshold
approximation (2.14) for 〈vMølσI〉. The difference is quite striking: the thermally averaged
formula gives a much wider allowed region below the pole. We have shown both the cur-
rent Xenon1t [14] exclusion contour (dark blue) as well as the exclusion sensitivity of an
hypothetical experiment reaching the sensitivity of the neutrino floor (yellow).

The difference arises because vMølσ is a sharply peaked function of s near the pole and
the threshold formula (2.14) does not account for kinetic energy of particles. Indeed, in finite
temperature the kinetic energy of particles can make up for the missing mass and push collision
energy to the pole2. Using Maxwell-Boltzmann statistics one finds that 〈s〉 ≈ 4m2 + 6mT ,
and so one expects that thermally averaged cross section gets an asymmetric effective width
below the pole of the order Γeff ∼ 3mh/4xf ≈ 4.3 GeV, where we used xf = m/Tf ≈ 22. This
simple argument indeed qualitatively explains the difference of the results shown in figure 3.

However, it is not obvious that even the calculation using thermally averaged cross
section can be trusted near the pole. The problem is that when the pole is very narrow,
only particles with a finite range of momenta are sensitive to it. When these momenta are
depleted, annihilations are less efficient until elastic interactions re-equilibrate the phase space.
Thus, while threshold approximation certainly overestimates the relic abundance, using full
momentum averaged integral might well underestimate it. To see whether this really is so,
one has to solve DM abundance using full momentum dependent Boltzmann equations.

1The vrel defined in ref. [2, 11] equals to the CM-frame Møller velocity vCM
Møl defined in Eq. (3.2).

2The effect of thermal averaging of the annihilation cross section near resonances was discussed quantita-
tively long time ago by Griest and Srednicki [15].
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Figure 3. Contours of fixed relic density as a fraction of the full dark matter density. Left : Threshold
cross section approximation. Right : Thermal averaged cross section calculation. Gray areas are ruled
out due to too large relic density. Dark blue areas are excluded by Xenon1t direct search limit [14] and
light yellow area shows the exclusion sensitivity of a hypothetical experiment reaching the neutrino
floor. The red area is excluded by the higgs boson invisible width [13].

3 Momentum dependent problem

We still assume that all SM particles involved in collisions are maintained in equilibrium at all
times. We will also continue using Maxwell-Boltzmann statistics for equilibrium distribution
functions. This is in fact a very good approximation when DM particles are non-relativistic
and it brings great simplifications to collision integrals. Let us start by the inelastic collision
integral. Given our assumptions, we can now write it as

ĈMB
I (p1, t) =

1

2E1

∫
d3p2

(2π)32E2

(
e−β(E1+E2) − f(p1, t)f(p2, t)

)
FIσI(s) , (3.1)

where σI(s) =
∑

n σI,n(s) is again the sum of inelastic cross sections to all available channels,
and the flux-factor

FI = 4E1E2vMøl = 2s

√
1− 4m2

S

s
≡ svCM

Møl . (3.2)

One can always reduce the integral in (3.1) to one over the absolute value of the three
momentum p2 and s, which allows us to write:

ĈMB
I (p1, t) = feq(p1, t)ΓI[feq; p1, t]− f(p1, t)ΓI[f ; p1, t] . (3.3)

Here we wrote, for the sake of symmetry, e−βEi = feq(pi, t) and defined the decay functional:

ΓI[f ; p1, t] ≡
1

2π2

∫ ∞
0

dp2p
2
2 f(p2, t)[vMølσI](p1, p2) , (3.4)

where
[vMølσI](p1, p2) ≡ 1

s+ − s−

∫ s+

s−

ds vMølσI(s) , (3.5)

with s± = 2m2
S + 2E1E2 ± 2p1p2 . In practice, we can perform the s-integral in CM-frame:

[vMølσI](p1, p2) =
1

16p1p2E1E2

∫ s+

s−

ds s vCM
Møl σI(s) . (3.6)
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Figure 4. [vMølσ]I of the singlet scalar model as a function of p2 with mS = 56 GeV and λhs = 0.01
for p = 5GeV, 20GeV and 40GeV (blue, red and black curves, respectively).

The relevant vCM
Møl σI(s) combinations for the SSM are given in ref. [2]. The functional form

of the quantity [vMølσI](p1, p2) is relevant for the validity of the assumption of kinetic equi-
librium: if this function is strongly peaked and elastic scatterings are weak, then the kinetic
equilibrium assumption is not likely to hold. From Fig. 4 we see that the situation is not
disastrous: the s-averaging in Eq. (3.5) smooths the effect of the sharp peak in σI(s) con-
siderably. There is, however, a huge enhancement for the momentum configurations that are
sensitive to the pole (the flat top part in each graph), and so considerable momentum biases
and changes in the final abundances may be expected to arise.

3.1 Elastic collision term in relaxation approximation

In the MB-approximation the elastic collision term between the scalar and SM particles
immediately reduces to

ĈE(p1, t) ≈
1

2E1

∑
m

∫ [ 4∏
i=2

d3pi
(2π)32Ei

]
(2π)4δ4(p1 + p3 − p2 − p4)×

× | M(m)
13→24 |

2
(
f(p2, t)fm(p4, t)− f(p1, t)fm(p3, t)

)
. (3.7)

Without further approximations, the best one can do is to reduce CE(p1, t) to a 5-dimensional
integral, whose numerical evaluation would be very time-consuming. However, the problem-
atic term (the first one in (3.7)) is a weighted integral over the target distribution function
f(p2, t), whose precise shape is not crucial for the relaxation towards equilibrium.

It is therefore reasonable to make the following generalized relaxation approximation.
First, we continue to assume that all SM particles m are in thermal equilibrium: fm → fm,eq.
As a result, setting f → gfeq with an arbitrary function g(t) makes elastic integral vanish. It
then makes sense to factor the DM distribution as

f(p, t) = g(t)feq(p, t) + δf(p, t) . (3.8)

The term in brackets in (3.7) containing the distribution functions now becomes

δf(p2, t)e
−βE4 − δf(p1, t)e

−βE3 . (3.9)
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As alluded above, the collision integral corresponding to the first term is a multi-dimensional
convolution over the perturbation, which is typically a smooth function in p even when
δf(p2, t) itself is not a smooth function. The key element of our scheme is to use the free-
dom in choosing the function gm(t): we can in particular adjust it such that integrated elastic
collision term corresponding to the division (3.9) vanishes separately for the forward and back-
ward scattering terms. With this definition the back-reaction term should become a smooth,
low amplitude variation around the actual elastic collision integral, whose integrated effect
should be small. This term we then drop from our equation. We provide more details and an
estimation of the accuracy of this approach by comparison to exact elastic collision integrals
in the appendix C. This corresponds to setting, separately for each elastic collision channel
m:

ĈE,m(p1, t) → −δf(p1, t) ΓmE (p1, t)

= ( gm(t)feq(p1, t)− f(p1, t) ) ΓmE (p1, t) , (3.10)

where gm(t) is defined to preserve the conservation of particle number in elastic collisions:∫
d3p1

(2π)3
ĈE,m(p1, t) ≡ 0 ⇒ gm(t) ≡

∫
dp1 p

2
1 f(p1, t) ΓmE (p1, t)∫

dp1 p2
1 feq(p1, t) ΓmE (p1, t)

. (3.11)

The first term in the second line of the equation (3.10) replaces the the back-reaction term
in the original elastic collision integral (3.7). It ensures that ĈE(p1, t) does not change the
particle number and drives the distribution towards the pseudo-equilibrium form (2.4). Note
that both equations (3.10) and (3.11) are essential: without the latter the former would make
no sense.

After some manipulations each elastic rate function ΓmE (p1, t) can be written in a similar
manner as Eq. (3.4):

ΓmE (p1, t) ≡ ΓmE [fmeq ; p1, t] =
1

2π2

∫ ∞
0

dp3p
2
3 f

m
eq(p3, t) [vMølσ]SmE (p1, p3) , (3.12)

where we defined, similarly to Eq. (3.5):

[vMølσ]SmE (p1, p3) =
1

8p1p3E1E3

∫ sm+

sm−

ds λ1/2(s,m2
m,m

2
S)σSm

E (s) . (3.13)

Here sm± = m2
m + m2

S + 2E1E3 ± 2p1p3 and σSm
E (s) is the usual 2-body elastic cross section

in channel m and the kinetic function λ(x, y, z) ≡ (x− y − z)2 − 4yz. Note that m, S and E
are mere labels in equation (3.13). This expression is actually valid for any initial states ab,
and both for the elastic and the inelastic interactions. In particular equation (3.6) is just a
special case of (3.13), where ab = SS in the annihilation channel.

When applied to the case of self-scatterings of the scalar particles the above reasoning
results to

ĈE,S(p1, t) ≈ g2
S(t)feq(p1, t) ΓS

E[feq; p1, t]− f(p1, t) ΓS
E[f ; p1, t] , (3.14)

where the decay function is defined in Eq. (3.12) with the cross section [vMølσ]SSE and gS is
obtained from the conservation of particle number:

⇒ g2
S(t) =

∫
dp1 p

2
1 f(p1, t) ΓS

E[f ; p1, t]∫
dp1 p2

1 feq(p1, t) ΓS
E[feq; p1, t]

. (3.15)
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3.2 Boltzmann equation in co-moving momentum

The momentum derivative term −Hp1∂p1f in the Liouville operator in equation (2.1) can be
removed by taking the co-moving momentum k1 = p1a as a new variable:

(∂t −Hp1∂p1)f(p1, t) = ∂tf̃(k1, t) , (3.16)

where f̃(k1, t) ≡ f(p1, t). The point is that f̃(k1, t) depends on t only along the characteristic
lines of constant k1. The time variable can then be traded for temperature just as we did in
the momentum integrated case, assuming the adiabatic expansion ṡ/s = −3H. The relation
between co-moving and physical momenta k1 = p1a can then be read from (a0 ≡ 1):

a =
(s0

s

)1/3
=

(
heff(T0)

heff(T )

)1/3 T0

T
. (3.17)

Combining the results, we can now write the full Boltzmann equations in the Maxwell-
Boltzmann and relaxation approximations in terms of a dimensionless variable x ≡ mS/T
in the following simple form

∂xf̂(k1, x) = f̂eq(k1, x)XI[f̂eq; k1, x]− f̂(k, x)XI[f̂ ; k, x]

+ g2
S(x)f̂eq(k1, x)XS

E[f̂eq; k1, x]− f̂(k1, x)XS
E[f̂ ; k1, x]

+
∑
m

(
gm(x)f̂eq(k1, x)− f̂(k1, x)

)
Xm

E (k1, x) , (3.18)

where f̂(k1, x) = f̃(k1, t) = f(p1, t), and

Xi ≡
1

x

[
1 +

T

3heff

dheff

dT

]
Γi

H
, (3.19)

where Γi(p1, t) are given by Eqs. (3.4) and (3.12). As expected, for any given momentum
variable p1, the degree of equilibrium is defined by the ratio of the momentum-dependent
interaction rate Γ and the Hubble expansion rate H.

3.3 Discretisation

For numerical solution we need to discretise the momentum variables. This if formally quite
simple. In discretised system integrals become simple matrix products. Let us now define a
new dimensionless dependent variable as follows:

yi(x) ≡ 1

2π2s0
∆kik

2
i f̂(ki, x) =

1

2π2s
∆pip

2
i f(pi, x) . (3.20)

This is the actual differential number density in a given (co-moving) momentum bin divided
by the (present) entropy density. The sum of the binned variables provide at any time an
approximation for the integrated quantity Y :∑

i

yi =
a3n

s0
=
n

s
= Y . (3.21)
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In terms of yi the discretised Boltzmann equations become:

∂xyi =− yi (ZIy)i + yeq,i (ZIyeq)i

− yi (ZSS
E y)i + g2

Syeq,i (ZSS
E yeq)i −

∑
m

(yi − gmyeq,i)Z
m
E,i , (3.22)

where ZI-term contains a sum over all available final states of equilibrium particles. The
matrix products (Zy)i ≡

∑
j Zijyj replace one momentum integral each and gf and gS factors

can be written simply as

gm =
yTZmE
yT

eqZ
m
E

, and g2
S =

yTZSS
E y

yT
eqZ

SS
E yeq

. (3.23)

Finally, the explicit forms of the discretised Z-functions are

ZabA,ij ≡
√

π

45
g

1/2
∗

mSMPl

x2
[vMølσ]abA (pi, pj) , (3.24)

where A = I,E and [vMølσ]abA (pi, pj) was defined in Eq. (3.13). ZmE can be computed directly
using equation (B.3), or during the integration of (3.22) from ZmE,i = (ZSm

E yeq)i. One should
appreciate the similarity between equations (3.22-3.24) with their integrated counterparts
(2.7-2.9). Indeed, (3.22) is but a set of coupled set of ZOPLW equations for the differential
particle number elements with a elastic interactions providing a decay term towards the kinetic
equilibrium.

The two dimensional matrices Zab need to be computed for each relevant interaction
channel at each time step during the integration of (3.22). Note however, that to compute
them, we only need to know the one-dimensional integrals appearing in (3.13) for each cross
section (as a function of the upper limit, starting from s = (ma + mb)

2). These functions
can be computed and fitted prior the integration, which speeds up the numerical integration
tremendously.

3.4 Generalisation to arbitrary number of species

It is straightforward to generalise our formalism to an arbitrary number of interacting species.
If we denote these species by the set {A}, the equations take a very simple form:

∂xy
a
i = −yai

(
Zabyb

)
i
+Gabcd y

a
eq,i

(
Zabybeq

)
i
, (3.25)

where a, b, c, d ∈ A are flavour indices for particles involved in the scattering process ab→ cd,
and a sum over all allowed channels b, c, d is assumed for each a. Here x ≡ m/T where m is
some arbitrary reference mass. The "generalised Saha-factor" is given by3

Gabcd ≡
(yc)TZabyd

(yceq)TZabydeq

. (3.26)

Note that here we have used explicit indices only to indicate a nontrivial dependence on
distribution functions. Of course for example Zabij depends on the species c, d through the
cross section.

3If we sum equation (3.25) over momenta and use the kinetic equilibrium approximation (2.4), which allows
to write yeZabyf = 〈Zab〉eqY eY f , the equation (3.25) takes the form: ∂xY

a = 〈Zab〉eq(Y aY b − Ḡab
cdY

cY d),
where Ḡab

cd = (Y a
eqY

b
eq)/(Y c

eqY
d
eq) is the usual Saha factor in averaged momentum equations.
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Equation (3.22) can be obtained from (3.25) with the following assignments: let M be
the subset of particles in A, which are in equilibrium with the SM heat bath and m ∈ M
(because ym = ymeq we do not need an equation for m). Now the inelastic scattering term in
Eq. (3.22) is recovered by setting (a, b, c, d)→ (s, s,m,m), and noting thatm is in equilibrium,
whereby:

⇒ GSS
mm = 1 . (3.27)

We get the elastic self-scattering term by setting (a, b, c, d)→ (s, s, s, s):

⇒ GSS
SS =

(yS)TZSSyS

(yS
eq)TZSSyS

eq

= g2
S , (3.28)

and the elastic scattering with equilibrium particles by setting (a, b, c, d)→ (s,m, s,m):

⇒ GSm
Sm →

(yS)TZSmymeq

(yS
eq)TZSmymeq

=
(yS)TZmE
(yS

eq)TZmE
= gm , (3.29)

The generalised equation (3.25) is necessary when one has a more complicated Dark Sector
consisting of at least two new particles, relatively closely spaced in mass. It could also be
easily adapted to study novel out-of-equilibrium particle processes during nucleosynthesis, or
for an accurate solution of particle distributions interacting with the expanding electroweak
phase transition wall. In this paper we shall restrict ourselves to the simple example of a
singlet scalar dark matter model.

4 Numerical results

We now present numerical comparisons of the dark matter abundance calculations. In the
SSM the singlet can can be either a thermal WIMP, the case we have been studied so far,
or it can be a feebly interacting massive particle (FIMP). We shall consider these two cases
separately, starting from the thermal DM scenario near the resonance.

4.1 Thermal DM

In order to elaborate the effect of elastic scatterings on the abundance we present the mo-
mentum dependent calculation in various different approximations. First, we include only
the inelastic scattering terms in the equations (3.22). The relevant cross section needed to
compute ZI,ij from (3.24) using (3.6) is given in equation (2.15). We show the result of the
calculation in the left panel of figure 5. Not surprisingly, we find significantly higher abun-
dances than we did earlier under the kinetic equilibrium assumption (right panel of figure 3);
the difference comes from the expected depletion of the states amenable for resonant scatter-
ing. Note that not only the equal abundance contours, but also the direct search exclusion
limits change significantly in going from one approximation to another in Figs. 3 and 5.

In the right panel of figure 5 we show results with complete set of elastic interactions
including the self-interactions ss ↔ ss and the scatterings with the standard model parti-
cles (labelled by m) sm ↔ sm. The relevant scattering rates needed to compute ZSS

E and
ZmE from (3.24) using (3.13) are given in the appendix (A.1-A.2). We used the following
fermion masses: ms = 95 MeV, mc = 1.27 GeV, mb = 4.18 GeV and mµ = 105.7 MeV and
mτ = 1.777 GeV, while other fermions were taken to be massless. For the s-self coupling we
used λs = 0.01. We can infer from figure 5 that the current extent of the DM mass in the
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Figure 5. Contours of fixed relic density as a fraction of the full dark matter density obtained from the
momentum-dependent solution. Left : Calculation with only the inelastic processes ss↔ {SM}{SM}.
Right : Calculation with the inelastic processes and the self-scattering process ss↔ ss. The meaning
of the various coloured contours and lines are as in figure 3.

SSM is mS ∈ [56, 62.5] GeV. Moreover wee see that DM would be discoverable over this whole
range in a direct DM search experiment whose sensitivity only slightly exceeds the neutrino
floor.

Obviously our final results with full elastic interactions are almost identical with the
kinetic equilibrium case shown in right panel of figure 3. This result calls for some discussion.
First, it shows that using ZOPLW equations with the thermally averaged cross section 2.6,
gives the DM abundance accurately even below the sharp resonance in higgs portal models.
This level of accuracy is easily sufficient for any exploratory research in the dark matter
problem. However, one may ask if this is a generic feature, or just a particular property
of the SSM? Indeed, what interactions were mostly responsible for achieving the kinetic
equilibrium?

To study these questions we performed the analysis for several restricted sets of elastic
interactions and the results are shown in the left panel of the figure 6. All lines displayed
here show the frel = 1 contour in the approximation used. The light blue dashed line is the
kinetic equilibrium result and the yellow dashed line corresponds to using ZOPLW equation
in the threshold approximation. All other contours correspond to momentum dependent
calculations: the purple solid line corresponds to full elastic interactions and the the gray
dotted line shows the result with no elastic interactions. Almost overlapping with the latter,
the red dotted line present the case with the elastic self-interactions only, again with λs = 0.01.
Clearly, elastic interactions with the SM-states alone are sufficient for establishing the kinetic
equilibrium.

The main SM contributions to the elastic scattering come from bottom and charm quarks
and tau leptons and to lesser extent from strange quarks and muons. Contributions from all
other fermions are negligible. Indeed, a typical freeze-out temperature, calculable from (2.12)
is Tf ≈ mh/(2xf ) ≈ 3 GeV. This is well above the QCD phase transition and yet low enough
such that only the b-quark population is slightly suppressed at the freeze-out. Somewhat
surprisingly, including only tau leptons already almost saturates the equilibrium limit. We
show the result of this calculation by the green dashed line in figure 6.
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Figure 6. Left : Contours of frel = 1 in various different assumptions for elastic interactions (see
text). Right : frel as a function of λS for mS = 58 GeV and λhs = 10−2.7, with only the self-coupling
induced elastic interactions.

Including the charm and bottom quark contributions can change the result only slightly.
If we fix the mass and coupling as mS = 58 GeV and λhs = 10−2.7, we find frel = 1.3 with
tau-channel only and frel = 0.85 with full elastic interactions. Finally, kinetic equilibrium
calculation gives frel = 0.7. There thus remains a 20 per cent difference in results even with
the full elastic scattering strength. Given a positive identification of the dark matter particle
and high accuracy measurement of its properties, the momentum dependent calculation could
still be necessary to establish consistency with the DM abundance.

One might wonder if the remaining difference could in principle be used to obtain infor-
mation from the self coupling λS? This appears not the case however; we find that varying
λS in the range [0, 2π] changes frel by less than one per cent in the case with the full elastic
SM-interactions. This is understandable because λS can induce equilibrium with the SM heat
bath only indirectly, together with the inelastic rate. It is the inefficiency of the latter that
produces the bottleneck for this equilibration mechanism.

For comparison we show in the right panel of figure 6 the effect of λS excluding all elastic
SM-scatterings. In this case λS has a strong effect. A coupling of order λS

>∼ 0.07 is sufficient
to establish a reasonably complete kinetic equilibrium. This case may be representative of
more complicated models, where DM is not necessarily directly coupled with SM.

4.1.1 Comparison to earlier work

SSM was recently analysed using both moment expansion and momentum dependent Boltz-
mann equations in [16], with results that are qualitatively similar to ours. In particular ref. [16]
found that elastic scatterings with quarks may enforce the kinetic equilibrium. However, they
also concluded that the correct DM abundance in SSM can differ by an order of magnitude
from the one found by traditional treatment, depending on the characteristics of the QCD
phase transition. We do not find any such dependence here. Instead, all our conclusions are,
as explained, robust against any assumptions about QCD. Most of the discrepancy appears
to stem from an error in ref. [16] equation (42), which underestimates the matrix element
squared for elastic scalar-fermion scatterings by a factor of 8.
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Indeed, the scenario B of [16] should correspond to our case including only strange quark
and lepton elastic scatterings, but their results (shown by crosses in figure 6) differ from ours
by a factor up to 2 in coupling. Artificially reducing our elastic rates by a factor 8 in this case
gives the thin red line with red circles. The remaining difference is qualitatively consistent
with the different approximations to the elastic collision integrals, which in [16] were computed
in (semi-) relativistic expansions, in a zero momentum transfer approximation. While our
relaxation time scheme tends to slightly overestimate the elastic integrals, the method of
ref. [16] tends to underestimate them. See appendix C for a detailed comparison of these
approximations against exact collision integrals.

Our analysis also contains features not included in ref. [16], such as the role of the self-
scatterings as well as the computation of the direct detection constraints. Our formalism is
also more transparent and valid for arbitrary number of interacting species. Ref. [16] also
only considered the thermal WIMP case, whereas we also study the possibility of a feebly
interacting dark matter in the SSM.

4.2 The FIMP scenario

The SSM model allows also for another type of dark matter, a feebly interacting massive
particle (FIMP). We saw above that going to smaller couplings in the WIMP region eventually
leads to the DM overproduction. However, when the coupling is small enough, the DM may
never be thermalised, which avoids this outcome. In the FIMP mechanism (for a review
see [17]), the coupling λhs is adjusted such that DM is only partly brought into equilibrium,
giving just the desired DM abundance.

In the left panel of figure 7 we show the contours of constant frel in the FIMP region
given by our full momentum dependent code4. The shape of these contours differ significantly
from those in the WIMP region. In the WIMP case the abundance is determined in a
narrow temperature range near freeze-out, whereby frel inherits the characteristic shape of
the inverted annihilation rate. In the FIMP case the DM production occurs at much higher
temperatures and all FIMPs with 2mS < mh are produced resonantly at some point. On the
other hand, FIMPs with 2mS > mh are never sensitive to the pole. As a result, the effect of
the pole does not show up as an inverted peak, but as a step-like structure at 2mS ≈ mh.
Our results agree qualitatively with ref. [19].

Finally, in the right panel of figure 7 we show a comparison of the the FIMP abundance
computed using the momentum averaged code (gray line) and the full momentum dependent
code (dashed blue line) for representative parameters. For a given λhs, the results agree to
within 20 per cent. This agreement is expected, since FIMPs are produced gradually from
the SM heat bath, subject to continuous elastic scatterings with the SM particles.

Of course SSM is but an example of a portal dark matter. More elaborate portal models
and models with larger dark sectors and different types of the dark matter have been discussed
in literature [20–24], in many of which the DM would be expected not to be in thermal
equilibrium. In some cases the shape of the non-thermal DM distribution may have an effect
on observable quantities [20, 22, 25–27]. In such cases the momentum averaged methods
are of course completely inadequate. Our momentum dependent method would be easily
implemented in all these studies to obtain most accurate results.

4Note that in the FIMP case the MB approximation assumed by our method is not as robust as for
WIMPs. In the resonant region the statistics corrections are expected to be only a few per cent, but above
the resonance, where the FIMP production is dominated by the W and Z initial states, our neglect of the
Bose-statistics factors can underestimate the abundance by a factor of two [18].
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Figure 7. Left panel: constant frel contours in the FIMP case calculated from the full momentum
dependent code. Right panel: shown is the dependence of the FIMP abundance as a function of λhs

for the case ms = 58 GeV and λs = 0.01. The gray line corresponds to the momentum averaged code
calculation and the blue dashed line to the full momentum dependent calculation.

5 Conclusions

We have presented a careful analysis of dark matter abundances using different approaches
from analytic approximations to novel numerical momentum dependent methods. In par-
ticular we focused on the DM problem near sharp resonances, which appear for example in
popular higgs portal models. We used the singlet scalar model (SSM) as a prototype and
found that the momentum averaged approach based on the kinetic equilibrium approximation
works very well even near sharp resonances. We updated the extent of the currently allowed
region in the light singlet scalar dark matter to mS ∈ [56, 62.5] GeV. We also showed that the
light DM in the SSM would be discoverable in a direct detection experiment whose sensitivity
reach only slightly exceeds the neutrino floor.

In the SSM the residual error of using momentum averaged method is only 20-30 per
cent. The result is robust and, unlike stated in ref. [16], not sensitive on details of the QCD
phase transition. We point out that even this deviation could be large enough to necessitate
the use of momentum dependent methods for consistent results if DM particle was eventually
observed and its mass and interaction strength were measured with very high accuracy.

In the SSM the kinetic equilibrium is mainly established by the elastic scatterings with
the SM particles. The self-scatterings play no relevant role and the DM abundance cannot be
used to constrain the SSM self-coupling λS. However, there are other DM frameworks which
may have suppressed elastic scatterings with the SM. In such cases self interactions would
have a crucial role in restoring the kinetic equilibrium.

As a by-product of our analysis, we developed a very simple and generic numerical scheme
for solving momentum dependent Boltzmann equations. The novel element of our scheme is
the use of a generalised relaxation approximation to write the back-reaction collision integrals
in terms of equilibrium quantities multiplied by simple Saha-like factors. All collision terms
are reduced to universal one-dimensional integrals over the relevant CM-frame cross sections.
The final equation (3.25) is one of the main results of this paper. This formulation of the
Boltzmann equations should be useful also in other out-of-equilibrium systems, such as the
plasma interacting with the expanding electroweak phase transition walls.
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Returning to the DM problem, we also studied the FIMP region in the SSM. Also
here we found that the FIMP production takes place in a very near kinetic equilibrium and
momentum averaged method is accurate to within 20 per cent. We finally point out that
in more elaborate DM models with larger dark sectors the DM might not be in thermal
equlibrium. Our momentum dependent method would be easily implemented in these studies
as well.
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A Appendix: CM-frame cross sections

Elastic cross section for scalar-fermion collision is:

σE,f(s) =
Nf λ

2
hsm

2
f

4π λ(s,m2
f ,m

2
S)

(
(4m2

f −m2
h)λ(m2

S,m
2
f , s)

m2
h

(
sm2

h + λ(m2
S,m

2
f , s)

) + log

(
1 +

λ(m2
S,m

2
f , s)

sm2
h

))
, (A.1)

where f denotes any SM-fermion. The cross section for the scalar self-scattering is:

σE,s(s) =
1

32π s

[
|a|2 +

2λ4
hs v

4

m2
h(s+m2

h − 4m2
S)

+

+
4λ2

hs v
2

(s− 4m2
S)

(
Re(a) +

λ2
hs v

2

(4m2
S − s− 2m2

h)

)
log

∣∣∣∣ m2
h

s+m2
h − 4m2

S

∣∣∣∣
]
, (A.2)

with

a ≡ 6λS +
λ2

hs v
2

s−m2
h + i

√
sΓh

, (A.3)

where Γh is the total higgs width, including the invisible contribution due to h → SS for
mS < mh/2 region and λS is the 4-point self-coupling constant. For the higgs field vacuum
expectation value we used v = 246 GeV.

B Appendix: Trick to reduce scalar-fermion elastic channel

In the elastic scatterings of species a off some species n in thermal equilibrium we encounter
elastic rate function (3.12). The species in equilibrium follows the Maxwell-Boltzmann dis-
tribution:

fneq = e−βE
n
, (B.1)

This allows us to perform the integration over the momentum, without needing to specify the
functional form of the elastic cross section, using the following result:

ΓanE (p1, T ) ≡ 1

2π2

∫ ∞
0

dp3p
2
3 f

n
eq(p3, T ) [vMølσ]anE (p1, p3) ,

=
1

16π2p1E1

∫ ∞
mn

dE3e
−βE3

∫ s+

s−

ds λ1/2(s,m2
n,m

2
a)σ

an
E (s) , (B.2)

– 17 –



where s± = m2
n+m2

a+2E1E3±2p1p3. Then using identity e−βE3 = −T ∂
∂E3

e−βE3 , integrating
by parts and using the Leibniz integral rule and ds±

dE3
= 2(E1 ± E3p1/p3), we find

ΓanE (p1, T ) =
T

8π2p1E1

∫ ∞
mn

dE3e
−βE3

[
ds

dE3
λ1/2(s,m2

n,m
2
a)σ

an
E (s)

]s+
s−

=
T

8π2

∫ ∞
0

dp3 e
−βE3

[
p3

p1E3
F−an(p1, p3) +

1

E1
F+
an(p1, p3)

]
, (B.3)

where F±an(p1, p3) = Fan(s+) ± Fan(s−) and Fan(s) ≡ λ1/2(s,m2
n,m

2
a)σ

an
E (s). Note that

the first term stays finite, as s+ → s− when p1 → 0. The result (B.3) expresses elastic
scattering rate as a simple one-dimensional integral that can be computed and fitted before
the integration of the Boltzmann equations.

C Appendix: On the accuracy of the generalized relaxation time approx-
imation

At the core of our method is the generalized relaxation time approximation for the elastic
collision integrals, introduced in section 3.1. The accuracy of this scheme is not controlled
by any small parameter, but similarly to the usual relaxation time approximation it should
work well whenever a significant deviation from equilibrium is present, because the backward
scattering terms are smoothed convolutions over the perturbation. One does not expect a high
relative accuracy when deviation is small and/or smooth, but such deviations are irrelevant
for the abundance calculation, because inelastic rates are then already accurately captured
by a distribution with an equilibrium form.

We can verify these statements by a direct comparison to exactly computed elastic inte-
grals. Instead of implementing simulation with full elastic integrals, we first do the calculation
using our approximation scheme, saving the distribution function at each time-step. After
this we evaluate the (kept) forward and the (dropped) backward elastic scattering terms nu-
merically for the saved solutions. This allows us to evaluate the relative accuracy of our
approach. We keep only the elastic tau channel elastic rate for this comparison.

For a given distribution function f(p, x) at the instant x, we first compute the gτ (x)-
factor as defined in equation (3.11), and then the deviation δf = f−gτfeq. We then construct
the forward and backward scattering terms exactly for this deviation. The former is of course
given by equation (3.10), while the latter one can be formally written as a convolution:

ĈBW
E (δf ; p1, x) =

∫
dp3G(p1, p3, x)δf(p3, x), (C.1)

where the equilibrium function G is defined as

G(p1, p2, x) =
p2

3

64π5E1

∫
dΩ3

∫
d3p2

2E2

d3p4

2E4
δ4(p1 + p3 − p2 − p4)|M(τ)|2fτ (p4, t). (C.2)

where the matrix element for any Sf → Sf scattering is (for τ we have Nτ = 1)

|M(f)|2 = 4Nfλ
2
hsm

2
f (4m2

f − t)/(t−m2
h)2. (C.3)

We use the method introduced in ref. [28] to reduceG into a simple integral over the magnitude
of the 3-momentum p4 and an additional angle (there are two angles if the matrix element
depends also on the Mandelstam variable s).
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Figure 8. Shown are (main frames) the elastic collision integrals (p2/2π2)Cel(p) as a function of the
physical momentum for the distribution functions drawn from the sample calculation as indicated in
figure 9. Each frame provides a snapshot at x = ms/T with x given in the title. Blue lines correspond
to the elastic integrals actually used in the calculation, the dotted lines to the dropped back-scattering
term and thick orange lines are the correct elastic integrals. Red dashed lines correspond to approx-
imation (C.5). In the insets we show the actual distribution y (solid blue line), as well as the scaled
equilibrium distributions gyeq (red dashed line) and gτyeq (black dash-dotted line).

Having achieved this construction, we checked that the forward and the backward terms
are properly normalised by comparing their magnitudes at full equilibrium, and that their
integrals each vanish separately for the perturbation δf as they should:∫

dp1p
2
1δf(p1, x)ΓE(p1, x) =

∫
dp1p

2
1C

BW
E (δf ; p1, x) = 0. (C.4)

This gives an additional check to all our formulae associated with the decay rates. As stated
already, the only approximation in our approach, beyond using the Maxwell-Boltzmann equi-
librium distributions, corresponds to our dropping the backward scattering term defined pre-
cisely in (C.1); for the scheme to work this term should be smaller than the forward term we
used. We plot these terms in figure 8 for a particular realization with the tau-channel only
and with parameters ms = 59 GeV and λhs = 0.0013.

As is clear from figure 8, for small x ≈ 0.25, where the out-of-equilibrium feature is
sharp, our approximation is excellent, as expected. For x ≈ 19.5 close to the freeze-out
point, the errors are still reasonable, at most 30-40 percent. Even for a very large x ≈ 38.9
and beyond, the approximation remains typically good to a factor of 2, although beyond the
freeze-out this difference is irrelevant for the final result. Note that both the magnitude of
the elastic integrals and that of the equilibrium distributions shown in the inset, vary over
several orders of magnitude during the calculation (g and gτ are defined in equations (2.4)
and (3.11) respectively).

In general our method slightly over-estimates the elastic channel. To quantify the effect
of this deviation we re-ran our code for our test case with elastic rates multiplied by 0.6. This
increased the final abundance changed by 3 percent, which we believe is a conservative upper
bound on the error. In figure 9 we visualise the yields Y = n/s corresponding to scenarios
detailed in figure 6, including the full computation with the re-scaled rates. Red markers in
the figure 9 show the points where we extracted the profiles in Figures 8.
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Figure 9. Singlet scalar yields calculated using various elastic channels in the computation. Reading
the legend from up to down: the first five labels correspond to the scenarios visualised in figure 6,
Y supp

full corresponds to the full computation where the elastic rates have been re-scaled downwards (see
the text) and Yeq visualises the equilibrium yield. Red markers denote the locations of the example
points shown in figure 9.

Finally, we also compared our elastic integrals to the semirelativistic zero-momentum
exchange approximation used in ref [16]. We reproduce their formula for the scattering rate
here:

Cel ≈
γ(T )

2

[
ET∂2

p +

(
p+ 2T

E

p
+ T

p

E

)
∂p + 3

]
f(p, x), (C.5)

where E =
√
p2 +m2

z. In this simple case

γ(T ) =
ms

4

∫ ∞
mf

e−ω/T
(

1−
(m2

s −m2
f )2

s2

)
(−tin)|M(tin)|2, (C.6)

where the matrix element |M(t)|2 is given in Eq. (C.3) (this differs by a factor 8 from Eq. (42)
in ref. [16]), tin = (s− (ms +mf )2)(s− (ms−mf )2)/s and finally s ≈ m2

s +m2
f + 2msω. This

rate is shown by red dashed lines in figure 8. While our method slightly overestimates the
elastic rate, the approximation (C.5), typically underestimates it (the case displayed in the left
panel is actually beyond the range of the validity of (C.5)). The curves corresponding to (C.5)
also contain noise (even after some small-scale data-smoothing and/or using large step sizes)
that comes from computing derivatives of a discrete distribution function. Regardless, based
on our test runs, using (C.5) is less accurate than our scheme.

We conclude that our method is a very good approximation for computing abundances
to high precision. However, it should be applied with care to problems where a high-resolution
final state momentum distribution is of prime importance. In such cases its accuracy should
at least be tested by use of a exact momentum integrals.
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