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Abstract

Advances in data analysis techniques may play a decisive role in the discovery reach of

particle collider experiments. However, the importing of expertise and methods from

other data-centric disciplines such as machine learning and statistics faces significant

hurdles, mainly due to the established use of different language and constructs. A

large part of this document, also conceived as an introduction to the description of

an analysis searching for non-resonant Higgs pair production in data collected by the

CMS detector at the Large Hadron Collider (LHC), is therefore devoted to a broad

redefinition of the relevant concepts for problems in experimental particle physics.

The aim is to better connect these issues with those in other fields of research, so

the solutions found can be repurposed.

The formal exploration of the properties of the statistical models at particle col-

liders is useful to highlight the main challenges posed by statistical inference in this

context: the multi-dimensional nature of the models, which can be studied only in a

generative manner via forward simulation of observations, and the effect of nuisance

parameters. The first issue can be tackled with likelihood-free inference methods

coupled with the use of low-dimensional summary statistics, which may be con-

structed either with machine learning techniques or through physically motivated

variables (e.g. event reconstruction). The second, i.e. the misspecification of the gen-

erative model which is addressed by the inclusion of nuisance parameters, reduces the

effectiveness of summary statistics constructed with machine-learning techniques.

A subset of the data analysis techniques formally discussed in the introductory part

of the document are also exploited to study the non-resonant production process

pp → HH → bb̄bb̄ at the LHC in the context of the Standard Model (SM) and

its extensions in effective fields theories (EFT), based on anomalous couplings of the

Higgs field. Data collected in 2016 by the CMS detector and corresponding to a total

of 35.9 fb−1 of proton-proton collisions are used to set an 95% confidence upper limit

at 847 fb on the production cross section σ
(
pp → HH → bb̄bb̄

)
in the SM. Upper

limits are also obtained for the cross sections corresponding to a representative set
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of points of the parameter space of EFT. The combination of those results with the

ones obtained from the study of other decay channels of HH pairs is also discussed.

In addition, the exercise of reformulating the goals of high energy physics ana-

lysis as a statistical inference problem is combined with modern machine learning

technologies to develop a new technique, referred to as inference-aware neural op-

timisation. The technique produces summary statistics which directly minimise the

expected uncertainty on the parameters of interest, optimally accounting for the ef-

fect of nuisance parameters. The application of this technique to a synthetic problem

demonstrates that the obtained summary statistics are considerable more effective

than those obtained with standard supervised learning methods, when the effect

of the nuisance parameters is significant. Assuming its scalability to LHC data

scenarios, this technique has ground-breaking potential for analyses dominated by

systematic uncertainties.
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Introduction

Every new beginning

comes from some other beginning’s end.

Seneca the Younger

Humans strive for understanding the world by seeking explanations to the varied

natural phenomena happening around them, and accumulating the resulting know-

ledge in models that can be used to predict and shape the future reality. The scientific

method provides a formal framework for carrying out these investigations and check-

ing the validity of the current description of our environment. Recorded experiences

of assumed known origin, also known as data, have a central role in updating these

explicative theories, because they can provide quantitative or qualitative support to

some candidate explanations over others.

Direct sensory perception and personal information processing have a limited in-

vestigative reach and are easily affected by subjective conditions. Well understood

and calibrated measurement instruments can be used instead for data acquisition,

in controlled settings referred to as scientific experiments, so that quantifiability and

precision are enhanced. The same applies to theoretical modelling and experimental

data analysis, where robust mathematical and computational procedures empower

researchers to construct more accurate descriptions of the world we live in. These

establish a strong coupling between technology and science, by which technical and

conceptual innovations allow the development of better tools, which in turn lead to

more scientific knowledge.

The universe is filled with an abundance of interesting phenomena occurring at

very different time and space scales, so curious observers might face a difficult choice

when deciding what to focus their scientific attention on. Nevertheless, there seems to

be a complexity hierarchy whereby larger physical systems are composed by simpler

parts, and the properties of the former can be explained by means of those of the

latter. Hence, a worthy path of exploration can start with the study of the most

fundamental components of nature and their dynamics. At our current level of
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understanding, we can reason this would be a quest motivated solely by curiosity,

pushed by our desire of making sense of the structure of reality, and not a pragmatic

proxy for the development of technological applications. That will be our motivation

to delve into experimental particle physics, a discipline dealing with the practical

study of the most elementary constituents of matter and their interactions.

The elementary quality of the chosen subject of study does not imply that the jour-

ney towards valuable scientific knowledge in this area will be a simple one. On the

contrary, as the following chapters will make evident, this undertaking poses grand

technical and non-technical challenges which in many cases require novel solutions.

Furthermore, the problems at hand are often closely related with those present in

other research or technological fields, so their findings and innovations can be repur-

posed. Oftentimes this can even be a bidirectional relation, where the obstacles are

challenging or original enough that solutions have to go beyond the state of the art in

the relevant applied domain. In general, the pursuance of fundamental explanations

does require solutions to a multitude of practical problems.

Advances and expertise from other disciplines can accelerate significantly the rate

of progress in a fundamental research domain such as experimental particle physics.

This is specially relevant in areas such as data analysis, where the infrastructure

changes required in evolving environments are low. Yet, some barriers exist against

the proliferation of interdisciplinarity, such as field specific language (also known as

jargon) and seemingly unclear problem descriptions for collaborators with different

backgrounds. This document, in addition to presenting the main research results

of the projects I have been involved in the recent past, will attempt to reduce this

communication gap by trying to clearly state the main data analysis challenges we

face in experimental particle physics in a way they can be linked to other data-centric

disciplines such as statistics and machine learning.

The general methodology considered in this work consists on breaking the main

research goals in a series of applied problems, express them in a domain-generic

way, and understand what is their role in view of the final aim. When possible, the

presented concepts and methods will be illustrated with simple use cases when these

can help understanding their working principles. The mentioned perspective shift

combined with the use of practical but minimal examples has been really useful to

identify possible shortcomings on the way data analysis is carried out at the LHC,

as well as to develop new techniques capable of addressing them. Nevertheless, we

believe that the projects mentioned and presented here are nothing but the first step

of what is possible; and the evolution of data analysis techniques and tools could be

2
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a promising route for the advancement of our understanding of the basic building

blocks of the universe.

This thesis is organised as follows. Chapter 1 provides an overview of our current

comprehension of the properties and interactions of the fundamental constituents of

nature, followed by a summary of the limitations of our understanding together with

the main proposed testable alternative explanations. The links between the mathem-

atical description of our universe and the computation of experimental observables

will be highlighted when describing the theoretical foundations.

The focus shifts in Chapter 2 towards how these theories can be experimentally val-

idated through scientific experiments. In particular, the discussion revolves around

how the design and characteristics of general purpose experiments at high-energy

colliders are relevant for the attainment of valuable data that yields new insights on

the fundamental properties of the cosmos. The Compact Muon Experiment (CMS)

detector at the Large Hadron Collider (LHC) serves as the default example of such

an instrument, because it is the scientific experiment that provided the academic

context during my graduate (and late undergraduate) years and the main driver of

some of the projects included in this report. Experimental modelling and simula-

tion will be emphasised in this chapter, due to their importance when extracting

knowledge from the acquired data.

Indeed, the problem of obtaining useful information from data is so involved in

modern scientific experiments that a standalone chapter will be centered on stat-

istical inference concepts and techniques. Inference is the ultimate goal of particle

physics experiments, providing a key connection between theory and experiment. In

Chapter 3 we review the problem at hand in particle colliders form a formal statist-

ical perspective as well list the main approaches for making quantitative statements

based on data and their shortcomings. Two domain-specific aspects of data analysis

in high energy physics will be remarked: the generative-only characteristic of accur-

ate experimental models and the challenges of dealing with known unknowns we are

not interested in, commonly referred as nuisance parameters.

Advancements in computational power coupled with extensive research effort at

the intersection between computer science and statistics during the past few decades

have contributed to the development of techniques that deal with the automatic

improvement of certain objective tasks given some data. An introduction to this

family of methods, generally referred to as machine learning techniques, and a review

of their usefulness for tackling some common data analysis problem in experimental

particle physics, are included in Chapter 4. Some non-trivial connections between

3
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the use of those techniques and the details of the underlying statistical issues will be

stressed.

The first four chapters, as outlined above, offer a multi-disciplinary survey of the

theoretical and experimental foundations of our understanding of nature and the

relevant techniques that allow the extract valuable information from the data. In

contrast, Chapter 5 presents a complete example of an analysis at the LHC that

applies those techniques to a real-world scenario. Specifically, the use case will be

the search for evidence of anomalous non-resonant Higgs boson pair production using

CMS data at the LHC, which can be a smoking gun pointing to alternative explan-

ations to the current theoretical comprehension of the fundamental interactions and

constituents of the universe.

The aforementioned example will be useful to epitomise the main statistical and

methodological challenges on the way LHC analyses are carried out. In Chaper

6, we try to shed some light on these issues, and demonstrate how a novel machine

learning technique we have developed can deal with one of the most relevant concerns:

learning summary statistics using inference-aware losses that account for the effect of

nuisance parameters. The limitations of the proposed method as well as alternative

solutions to increase the discovery potential of the LHC will be explored.

This document will conclude with Chapter 7, where the main contributions and

outcomes of this work will be summarised together with some ideas for future exten-

sions and improvements.
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1 Theory of Fundamental

Interactions

Nothing in life is to be feared.

It is only to be understood.

Marie Skłodowska Curie

Scientific theories are frameworks describing natural phenomena that are capable

of making experimentally testable predictions. Oftentimes, they are specified us-

ing mathematical language and built on previous observational knowledge and basic

properties of the system under study. At the most fundamental scales known to

date, the Standard Model (SM) of particle physics is a scientific theory that provides

a very accurate description of most of the observed properties and dynamics of the

universe around us. It is constructed upon an innovative theoretical framework, gen-

erally referred as quantum field theory (QFT), and principles regarding fundamental

symmetries of the laws of nature. In this chapter, a non-exhaustive introduction to

this theory and its descriptive reach will be provided together with a summary of the

known limitations and possible extensions or alternatives. Given the experimental

character of the research discussed in the following chapters, the aim of this chapter

is not solely the discussion of the basic structure and properties of the theory, but

also the methodology followed to compute predictions for observables that can be

contrasted with empirical data.

1.1 The Standard Model

The Standard Model (SM) of particle physics is a mathematically self-consistent

gauge field theory that classifies all known types of elementary particles and describes

their electromagnetic, weak and strong interactions. Within this fundamental theory,

all known matter and energy phenomena can be explained in terms of the kinematics

and interactions of elementary particles, which can in turn be understood as local

excitations of different fields that permeate our universe.
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1.1 The Standard Model

From a historical perspective, this theory is the product of a succession of import-

ant theoretical developments and experimental discoveries over the last century [1],

culminating with the discovery of the Higgs boson in 2012 [2, 3]. If a more principled

viewpoint is taken, the SM can be thought of as the most general but mathematically

consistent theory that respects a set of symmetries, namely a global Poincaré group

symmetry (translational, rotational and relativistic boost invariance) and a local

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y (1.1)

gauge group symmetry. The GSM symmetry group is essential to describe three

of the four fundamental interactions observed in nature: strong interaction, weak

interaction and electromagnetic interaction. In fact, the SU(3)C is associated the

strong force and the conservation of its charge, called colour, while the SU(2)L ⊗
U(1)Y symmetry instead is related with electroweak interactions (i.e. unification of

weak and electromagnetic) and the conservation of isospin and weak hypercharge.

The SM is typically specified using the Lagrangian formalism and depends on a total

of 19 parameters (not accounting for neutrino masses and mixing angles), which are

not predicted by the theory from first principles, and thus can only be determined

through experimental measurements.

In the context of the SM, excitations of the fundamental fields give rise to two

types of elementary particles: fermions (characterised by having half-integer spin)

and bosons (characterised by having integer spin). Fermions are the fundamental

constituents of matter, and they are further subdivided into leptons and quarks

depending on their interactions. A schematic overview of the fundamental particles

of the SM and their properties is provided in Figure 1.1. Three particle generations

are known for both quarks and leptons, each containing a pair of particles with

different masses. For quarks, the heavier is referred to as up-type and the lighter as

down-type. Instead, for leptons we distinguish the heavier charged particles (electron,

muon and tau) from their corresponding light and uncharged neutrinos.

Regular matter is largely made of the first generation of quarks and electrons, given

that higher generations rapidly decay quickly to lower generations characterised by

smaller masses. All fermions interact via the weak force but only quarks carry colour

charge and are subjected to the strong force. For each fermion in the SM, there is

a another particle with identical properties but opposite quantum numbers, globally

referred to as antimatter, and denoted for each particle with the anti prefix and a

bar over the symbol (e.g. up antiquark ū) or by explicitly denoting the charge sign

7



1 Theory of Fundamental Interactions

(e.g. positron e+). Neutrinos are the only fermions that do not carry electrical charge

and might be their own antiparticle.

The mediators of the strong, weak and electromagnetic fundamental interactions

are referred to as gauge bosons, and are characterised by having spin 1. To model

the strong interaction colour charge exchanges, a total of eight independent strong

massless force mediators, or gluons, are needed. Gluons carry colour charge them-

selves and thus participate in colour interactions with other gluons, which leads to a

phenomenon known as colour confinement, which will be discussed in Section 1.1.2 in

more detail. The massless and neutral photon is the mediator of the electromagnetic

force, while instead the massive Z, W+ and W− bosons mediate weak interactions.

The last piece in the SM is the Higgs boson, the only fundamental known particle

with spin 0. The Higgs boson is the quantum excitation of the Higgs field, which

also couples with other fundamental particles such as the gauge bosons of the weak

force, effectively generating their mass through their interaction. The Higgs boson

and Higgs field play an essential role in the electroweak symmetry breaking (EWSB)

mechanism, which will be discussed in more detail in Section 1.1.4.

The rest of this section will be devoted a more mathematically exhaustive review

of the different components of the Standard Model, starting by reviewing the basic

formalism of quantum field theories and incrementally building on it do describe

the characteristics of both the strong and electroweak interactions that give rise to

the diverse interactions dynamics of relevance in particle physics experiments. The

mentioned review is heavily inspired by standard bibliographical references on the

topic [4, 5], and which are recommended directly for a more detailed survey on the

subject.

1.1.1 Essentials of Quantum Field Theory

As hinted in the previous section, in quantum field theory (QFT), observed particles

are understood as excitations of fields that extend through the whole universe.

Quantum field theory unifies the physical foundations of quantum mechanics and

special relativity, and can be used to accurately describe phenomena in systems

where relativistic and quantum effects are relevant, such as interactions between

highly relativistic particles. In QFT, all the known physical processes in the uni-

verse are explained in terms of the state and dynamics of a set of fundamental tensor

fields. A tensor field can be defined as a continuous and differentiable set of values,

such a scalar or a vector, that exist for any given location and time. For simplicity,
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1.1 The Standard Model

the fields in QFT are usually defined in a relativistic coordinate system x = (t,x) in

order treat space x and time t jointly.

To exemplify the fundamentals of the QFT framework, let us consider the simplest

case, e.g. a single field that does not interact with any other field, which will be

denoted as φ(x). The dynamics of a field (or several fields) in QFT are specified

by using the Lagrangian formalism, similarly to what can be done for systems in

classical mechanics. However, instead of considering the Lagrangian L which depends

the generalised coordinate vector q(t) and its time derivatives q̇(t), in QFT the

Lagrangian density L is commonly used, which depends only on the field φ(x) and

its first derivative ∂µφ(x). In an analogous manner to what is done in classical

mechanics to define the action functional Sclassical, we can define the action of the

quantum field SQFT as a function of the Lagrangian density L as follows:

Sclassical =

∫
L(q(t), q̇(t))dt ⇒ SQFT =

∫
L(φ, ∂µφ) d4x (1.2)

noting that the previous definition would also be valid when the Lagrangian depends

on multiple fields and their derivatives instead of a single free field. Identically to

what is done in classical systems, we can attempt to solve for the field that minimises

the action, i.e. δS = 0. With the help of some functional calculus [6], it is possible

to obtain the relativistic field theory version of the Euler-Langrange equation:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (1.3)

where ∂µ = ∂/∂xµ and the repetition of the coordinate index µ ∈ {0, 1, 2, 3} means

summation over the product. The previous relation would still apply to each field

in the case a Lagrangian including several fields was considered; therefore, given a

Lagrangian, we can use Equation 1.3 to obtain their equations of motion. As an

example, let us consider the following Lagrangian LDirac, which is a function of a

bispinor field ψ, a 4-dimensional complex vector field that can represent a field whose

excitations behave like fermions of mass m:

LDirac = ψ̄(iγµ∂µ −m)ψ (1.4)

where γµ are the gamma matrices and ψ̄ = ψ†γ0 is the spinor adjoint. As the chosen

naming for the previous Lagrangian LDirac gave away, the Euler-Lagrange relation

9



1 Theory of Fundamental Interactions

obtained by minimising the action δS = 0 can be used to obtain field equations of

motion that correspond to the Dirac equation [4] for the spinor field and its adjoint:

iγµ∂µψ −mψ = 0 and iγµψ̄∂µ +mψ̄ = 0 (1.5)

as well as the well-known Klein-Gordon equation component-wise (∂µ∂µ+m
2)ψ = 0,

where ∂µ = ∂/∂xµ. Both Dirac and Klein-Gordon equations were proposed in the

context of a relativistic formulation of quantum mechanics.

To shed some light on how a field like ψ can represent actual fermions in the

universe, such as electrons or positrons, the field can be quantised by considering

a plane wave expansion and defining annihilation operators asp and bsp, as well as

creation as†p and bs†p operators. The field and its adjoint, which can be thought of

directly as operators instead of fields in this context, may then be expressed as:

ψ(x) =

∫
d3p

(2π)3
1√
2Ep

∑

s

(
aspu

s(p)e−ipx + bs†p u
s(p)eipx

)
(1.6)

ψ̄(x) =

∫
d3p

(2π)3
1√
2Ep

∑

s

(
bspv̄

s(p)e−ipx + as†p ū
s(p)eipx

)
(1.7)

where us(p) and vs(p) and its adjoints are the free particle solutions of the Dirac

equation, s is their spin and Ep their energy. The operators in the previous quant-

isations can be used to define arbitrary many-particle states. The vacuum state |0〉
can be defined as the state for which asp|0〉 = bsp|0〉 = 0. A single free fermion state

of momenta p and spin s can be obtained by applying the creation operators on

the vacuum state |p, s〉 =
√

2Epa
s†
p |0〉 - or alternatively an anti-fermion if the bs†p is

used instead. Multi-particle free states in momenta representation can analogously

be defined by the successive application of creation operators over momenta space.

In particle colliders, we are instead interested in interacting theories rather than

free theories, given the we aim to compute total and differential cross sections. Inter-

acting theories can also be characterised by their Hamiltonian density H = Hfree +

Hint, which can be expressed as a function the Lagrangian density H = πaψ̇a − L,

where ψ̇a is the time derivative of the field and πa is the conjugate momentum. The

Hamiltonian density can divided in Hfree, that is the part corresponding to the free

theory, and Hint that are the additional terms due to interactions. In interacting

theories, time-dependence becomes more important and depends only on the Hint

component. Additionally, the ground state |Ω〉 can be different in interacting theories

from the free theory vacuum state |0〉.

10



1.1 The Standard Model

Let us denote by |i〉 = |ψ(t→ −∞)〉 and |f〉 = |ψ(t→ +∞)〉 some arbitrary initial

and final multi-particle states, temporarily far before and after the actual interaction

being studied happened (i.e. around t = 0), respectively. The observables of interest,

which are discussed in Section 1.3, are a function of the transition amplitude 〈i|S|f〉
over all possible initial and final states, where S is an operator describing the trans-

ition. The transition probability, which is expressed as the modulus square of the

amplitude |〈i|S|f〉|2, is therefore also a function of S, fully describing the time-

evolution from the initial the final state. The S operator may be expressed as a

perturbative series using the Dyson expansion:

S = T

[
exp

(
−i
∫ ∞

−∞
d4xHint(x)

)]

=

∞∑

n=0

(−i)n
n!

∫ ∞

−∞
d4x1...

∫ ∞

−∞
d4xnT [Hint(x1)...Hint(xn)]

(1.8)

where T is an operator ensuring that the Hamiltonian density factors Hint(xi) are

ordered in time. Each time-ordered term in the series can be written as a sum

of normal (i.e. not time ordered) products of permutations using Wicks theorem

[7], which can become rather tedious for high orders. The formalism of Feynman

diagrams can be used to simplify the computation of observables at a given order in

the perturbative expansion.

Based on the previous perturbative series expansion, the transition amplitude

〈i|S|f〉 can be easily linked with scattering observables when denoted as:

〈i|S|f〉 = 〈i|1|f〉+ iM(2π)4δ4
(∑

pi −
∑

pf

)
(1.9)

where the first term corresponds to no interaction occurring, and the second includes

the matrix element M including all orders in the perturbative orders, and multiplied

by a factor making explicit the conservation of momentum between the initial and

final state particles. The matrix element M, which can be computed perturbatively

as a function of the momenta of the particles given final state considered, can be

used to define the differential cross section:

dσ

dΦ
∼ |M|2 where dΦ = (2π)4δ4

(∑
pi −

∑
pf

)∏

f

1

2Ef

d3pf
(2π)3

(1.10)

where the proportionality factor is a function of the initial state particles momenta

and dΦ is the full phase space differential element for which can be generally ex-
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1 Theory of Fundamental Interactions

pressed as a product of the final state particle momenta differential elements. Total

scattering rates can be obtained by summing over possible initial and final states and

integrating over final states. Both differential and total cross sections can be trun-

cated at a given perturbative order. The lowest expansion order is referred as leading

order (LO), yet considering additional expansion can greatly increase the prediction

accuracy so one (NLO) or two (NNLO) orders are often considered, higher orders

often being too computationally challenging. A truncation at an additional order

n, relative to the lowest interaction order, will provide corrections proportional to

α = g2/(4π), where g is the coupling constant characteristic of the interaction.

1.1.2 Quantum Chromodynamics

In a hadron collider such as the LHC, strong interactions between quark and gluons

are dominant, and they can be modelled using quantum chromodynamics (QCD).

The theory of QCD can be linked to a SU(3) symmetry group and is described by

the following gauge invariant Lagrangian density:

LQCD = ψ̄(γµDµ −mf )ψ − 1

4
GaµνG

µν
a , ψ =



ψr

ψg

ψb


 (1.11)

where ψ is a spinor quark field for a given flavour f ∈ {u, d, s, c, b, t} and quark

mass mf , and each vector component represents a colour degree of freedom. As-

suming that the Gell-Mann matrices λa are used to define a basis for the gluon field

Aµ = 1/2λa
∑
Aaµ, the covariant derivative can be defined as Dµ = ∂µ − igsAµ,

where gs is the strong interaction coupling. In turn, the gluon field strength tensor

Gaµν is also related with the gluon field components:

Gaµν = ∂µA
a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν (1.12)

where fabc are the structure constants of the SU(3) gauge group. The last term

accounts for the self-interaction of the gluon, which are the massless and electrically

neutral mediators of the strong force. There are two properties of QCD that play

an important role from a phenomenological standpoint: confinement and asymptotic

freedom.

The property of confinement has been postulated to explain why isolated quarks

and gluons are not found in nature. Quarks have only been found as part of hadrons,

that are colour-neutral composite particles. Even though confinement has not been

12



1.1 The Standard Model

understood from first principles, because the observables of bound states in QCD

at low-energies cannot be computed in a perturbative manner, there exist extensive

evidence both from lattice QCD calculations and experiments. In a bound state

between quarks, the effective potential includes a term that increases proportional to

their distance, so when the quarks are separated by an external energetic interaction,

the additional potential energy generates an additional quark-antiquark pair, leading

to the formation of bound states. Similar phenomena occur for isolated gluons, which

generally are referred as hadronization, and can be understood as a consequence

of colour confinement. In particle colliders, successive hadronization and radiation

processes led to parton showers (see Section 1.3.4).

Quark are then only found in bound states, referred to as hadrons, which can

either be mesons or baryons. Mesons are formed by quark-antiquark pairs qq̄, while

baryons are composed of three quarks qqq. Charged and neutral pions π+ (ud̄) and

π0 ((uū − dd̄)/
√
2), kaons K+ (us̄) and K0 (ds̄) and the J/Ψ (cc̄) are among the

most common mesons produced at particle colliders. Baryons instead include the

well-known proton (uud) and neutron (udd) that together with electrons are the

constituents of most of the known matter in the universe. Many more short-lived

baryons exist [8], in addition to the recently discovered exotic bound states referred

as tetraquarks [9] and pentaquarks [10]. A detailed description of the compositeness

of proton is an essential element for computing LHC observables, as reviewed in

Section 1.3.2.

Asymptotic freedom is instead linked with the strength reduction of the strong

coupling constant when higher energy scales are considered. Let us consider a renor-

malisation energy scale µ2R, which has to be often defined in order to compute physical

observables which otherwise would be divergent due higher order perturbative cor-

rections which cannot be easily calculated. This effect can be also understood as a

coupling that varies with the energy scale, which is referred to as a “running” coup-

ling constant. The strong force coupling αs = g2s/(4π) can thus be approximated as

a function of the renormalisation energy scale µ2R as follows:

αs(µ
2
R) =

αs(µ
2
0)

1 + αs(µ20)
33−2nf

12π ln
(
µ2
R

µ2
0

) (1.13)

where αs(µ
2
0) is the measured coupling at a given energy and nf is total number of

quark flavours which are assumed to be massless in this approximation. The strong

interaction thus becomes weaker at higher energies (or short distances) allowing
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the perturbative computation of observables related with high-energy interactions,

as discussed in Section 1.3. The approximation from Equation 1.13 also provides

a lower bound for the energy scale at which QCD can be treated perturbatively,

i.e. the denominator becomes zero for an energy scale around 200 MeV, leading to a

diverging coupling constant.

1.1.3 Electroweak Interactions

The remaining two fundamental interactions between elementary particles are the

electromagnetic and the weak force. The description of the electromagnetic interac-

tion in terms of quantum fields and gauge symmetries, leading to the development

of quantum electrodynamics (QED) in the late 1940s, prompted a quest for an ana-

logous theory for the weak force. The weak force, known to be responsible for

the beta decay at the time, could effectively be modelled using Fermi theory using

four-fermion interactions [11] but was not renormalisable and lacked the predictive

capabilities and elegance of QED. A large theoretical effort lead to an alternative

description based on a SU(2) ⊗ U(1) symmetry, which unified electromagnetic and

weak interactions [12, 13], and where the weak interaction was mediated by means of

charged W± and neutral Z massive vector bosons. Nevertheless, the theory did not

provide an explanation for the mass of the weak mediators, until the so-called Brout-

Englert-Higgs [14, 15, 16] mechanism for spontaneous symmetry breaking (SSB) was

conceived. Higgs also noted explicitly that the mechanism would effectively create

an additional scalar field, associated with a new scalar boson, whose existence could

experimentally testable. The SSB mechanism was then combined with SU(2)⊗U(1)

unified theory [17] to give rise to what is now known as electroweak theory, which

was then proved to be renormalisable [18].

The different testable properties of electroweak phenomena were verified by ex-

periments including the existence of weakly-interacting neutral and charged currents

[19] and the discovery of the massive W± [20, 21] and Z [22, 23] bosons. Experi-

mental evidence also showed that weak interactions were parity violating [24], thus

in the electroweak theory the fermion fields are separated in their left-handed ψL

and right-handed ψR chiral components as follows:

ψL = PLψ =
1

2
(1− γ5)ψ ψR = PRψ =

1

2
(1 + γ5)ψ (1.14)

where PL and PR are the chiral projection operators and γ5 = iγ0γ1γ2γ3 is the

product of the gamma or Dirac matrices. For massless particles, chirality is equal to
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1.1 The Standard Model

the helicity H = (p · s)/|p| which is the sign of the scalar product of momenta and

spin. For massive particles, chirality is still defined but is not identical to helicity

which cannot be invariantly defined.

Within the electroweak theory, fermion fields are broken in into their left-handed

components, which can be expressed as doublets that would transform under SU(2),

and can be denoted as:

Lq =

{(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

}
Ll =

{(
νe

e

)

L

,

(
νµ

µ

)

L

,

(
µτ

τ

)

L

}
(1.15)

and their right handed components, that instead can be expressed as singlets only

transforming under U(1):

Ru = {uR, cR, tR} Rd = {dR, sR, bR} Rl = {eR, µR, τR} (1.16)

where the right-handed neutrino components are omitted in the electroweak theory

(and the SM), given they are electrically neutral and would not interact weakly when

right-handed.

The electroweak interactions then can be made explicit by introducing additional

boson fields W = {W 1,W 2,W 3} and B which will interact with the fermions. Sim-

ilarly in structure to QED (and also QCD as described in Section 1.1.2), the elec-

troweak Lagrangian before spontaneous symmetry breaking is composed by interac-

tion terms for the previous doublet and singlet fields, characterised by a covariant

derivative, and kinematic terms for both boson fields:

LEW =

ψ∈{Lq ,Ll}∑
ψ̄(iγµD

µ
L)ψ +

ψ∈{Lq ,Ll}∑
ψ̄(iγµD

µ
R)ψ

− 1

4
WµνW

µν − 1

4
BµνB

µν

(1.17)

where the covariant derivatives for left-handed Dµ
L and right-handed Dµ

R fermion

fields are respectively defined as:

Dµ
L = ∂µ − 1

2
gBY Bµ −

1

2
gWσWµ

Dµ
R = ∂µ − 1

2
gBY Bµ

(1.18)
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1 Theory of Fundamental Interactions

where σ = {σ1, σ2, σ3} are the Pauli matrices and gB and gW are the coupling

constants. The Wµν and Bµν field strength tensors from kinematic terms can in turn

be obtained as:
W i
µν = ∂µW

i
ν − ∂µW

i
µ − gW ǫ

ijkW i
µW

k
ν

Bµν = ∂µBν − ∂µBµ
(1.19)

where ǫijk is the Levi-Civita symbol for each permutation, which is the structure

constant for SU(2).

1.1.4 Symmetry Breaking and the Higgs Boson

The problem with the electroweak theory as described by the Lagrangian from Equa-

tion 1.17, which is based on Yang-Mills gauge theory formulation, is that it is not

possible to directly add mass term for the fermions nor the weak bosons to the Lag-

rangian density without breaking the SU(2) invariance. At the time the mentioned

theory was developed, there was extensive evidence not only for lepton masses but

also for the weak bosons being massive; the mass required to explain why the weak

interaction was short-ranged. The issue of lacking a theoretical mechanism that

could explain the mass of fermions and weak boson was solved by the spontaneous

symmetry breaking mechanism [14, 15, 16], which is based on postulating the ex-

istence of an additional complex scalar field φ, which is a SU(2) doublet with the

following structure:

φ =

(
φ+

φ0

)
=

(
φ3 + iφ4

φ1 + iφ2

)
(1.20)

where we made the component notation explicit because it will be relevant later.

This scalar field is expected to interact with the electroweak fields W and B by

means of the following Lagrangian:

Lscalar = (DH
µ φ)

†(Dµφ)− V (φ) (1.21)

where the covariant derivate in this case is defined as:

Dµ
H = ∂µ − 1

2
igBY Bµ −

1

2
igWσWµ. (1.22)
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1.1 The Standard Model

The minimal form for a scalar field potential V (φ), constructed ad-hoc to provide a

degenerate vacuum states and a local maximum - a required condition for spontan-

eous symmetry breaking, may be expressed as:

V (φ) = −µ2φ†φ+
1

2
λ(φ†φ)2 (1.23)

where both the quadratic µ2 and the quartic λ self-interaction parameters are defined

positive with this sign convention. The resulting shape for the potential is often

referred as mexican hat, and is depicted in Figure 1.2. The presence of a potential

minimum different from the origin gives rises to a non-zero vacuum expectation value

for the scalar field:

〈φ〉0 =
µ2

λ
= v2 (1.24)

whose values depend on the V (φ) potential parameters µ2 and λ, and it is denoted

as v2 for convenience. The non-zero vacuum expectation value is thus said to spon-

taneously break the the SU(2)⊗U(1) symmetry, the consequences made more clear

when the field is expanded around the minimum:

φ =
1√
2
exp(i

σ ·G
v

)

(
0

v +H

)
(1.25)

as a product of a scalar field H and a complex exponential of the scalar product of

a three-component field G = {G1, G2, G3} with the Pauli matrices σ = {σ1, σ2, σ3}.
The complex exponential phase can be then removed by a SU(2) group rotation, a

transformation that is often referred as unitary gauge. The resulting scalar field can

simply be expressed as:

φ =
1√
2

(
0

v +H

)
(1.26)

where three of the four degrees of freedom in Equation 1.20, which correspond the

field G which would otherwise give rise to the so-called Goldstone bosons, have been

removed after the gauge transformation.

Substituting the rotated scalar field from Equation 1.26 in the Lagrangian de-

scribed by Equation 1.21 leads to mass-like terms for linear combinations of the W
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and B fields. In order to obtain the physical bosons observed in nature, the mass

terms have to be made independent by the following transformations:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
(1.27)

where the fields W+ and W− are associated with the charged weak bosons, the field

Z with the neutral weak boson, the electromagnetic field A with the photon, and gW

is the Weinberg angle which is related with the electroweak couplings according the

relation tan θW = gB/gW . Omitting for now the terms related with the H field, the

Lagrangian in Equation 1.21 leads to the following mass terms for the electroweak

force mediators after the unitary gauge and the transformation described in Equation

1.27 have been applied:

LEW bosons =
1

2

(
g2W v

2

4

)

︸ ︷︷ ︸
m2

W+

W+
µ W

+µ +
1

2

(
g2W v

2

4

)

︸ ︷︷ ︸
m2

W−

W−
µ W

−µ+

1

2

(
g2W v

2

4 cos θW

)

︸ ︷︷ ︸
m2

Z

ZµZ
µ +

1

2
( 0 )︸︷︷︸
m2

γ

AµA
µ

(1.28)

resulting in mass terms for the massive weak bosons which depend to the weak

coupling, the Weinberg angle and the vacuum expectation value of the Higgs field.

The last term for the electromagnetic field has only been included to make explicit

that no mass term is associated with the electromagnetic force carrier γ. The terms

related with the scalar H field (and Higgs boson) are discussed later independently.

In addition to providing a mechanism that leads to mass terms for the weak force

bosons, additional interactions of the various fermion fields with the scalar field φ

can explain their masses. These gauge invariant terms are generally referred to as

Yukawa interactions, and correspond to the following Lagrangian terms:

LYukawa =− λl(L̄lφRl + R̄lφ
†Ll)

− λd(L̄qφRd + R̄dφ
†Lq)

− λu(L̄qiσ2φ
†Ru + R̄uiσ2φLq)

(1.29)

where λl , λd and λu are the Yukawa coupling parameters. A charge-conjugate

transformation φ → iσ2φ
† is used to give mass to up-type quarks. For the quark

sector, the λu and λd couplings can be expressed by a single non diagonal matrix
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in the flavour basis, referred to as Cabibbo-Kobayashi-Maskawa (CKM matrix) [25,

26], which can in turn be parametrised by three angles and a complex phase. The

fact that the matrix is not diagonal leads to flavour mixing, due to the mass eigen-

states being different from flavour eigenstates. Another relevant property of fermion

masses is that after spontaneous symmetry breaking, the fermion mass is effectively

proportional to its coupling with the Higgs scalar field, which is useful to intuitively

understand the dominant interactions and decays of the Higgs boson.

Re(φ)
Im(φ)

V (φ)

A

B

Figure 1.2: Graphical depiction1 of the mexican hat potential for the scalar field φ. A local
maximum is present at the origin, but lower energy degenerate minima exist
arount it.

In addition of giving masses to both weak bosons and fermions, the remaining

degree of freedom after electroweak symmetry breaking gives rise to a scalar field

H. The terms of the Lagrangian concerning only H may be obtained substituting

Equation 1.26 in Equation 1.21, leading to the following expression:

LH =
1

2
∂µH∂

µH − µ2H2 − λvH3 − λ

4
H4 (1.30)

where the second (quadratic term) can be interpreted as a scalar boson with a mass√
2µ2, which is commonly referred as the Higgs boson. A particle with a mass of

125.09(24) GeV [27] and consistent with the expected properties for the Higgs boson

was discovered in 2012 by the CMS and ATLAS collaborations [3, 2]. The cubic

λv and quartic λ terms will give rise to self-interaction interaction vertices. The

so-called cubic or trilinear Higgs coupling is discussed in a Higgs pair search using

data from the CMS experiment in Chapter 5. The direct determination of the Higgs

19



1 Theory of Fundamental Interactions

self-coupling is an relevant missing piece, and an important proof of consistency of

the spontaneous symmetry breaking mechanism.

1.2 Beyond the Standard Model

The experimental success of the Standard Model and its main subcomponents QED,

QCD, and EW unification and symmetry breaking is clearly incontestable, ranging

from the confirmation of theoretical prognostication of the existence and some the

properties of new particles (e.g. Z, W± and Higgs bosons or top quark) to the agree-

ment of precise predictions with meticulous experimental observations. The fine

structure constant α at zero energy scale is an example of the latter, with its exper-

imentally determined value consistent among independent physical measurements

when the Standard Model based theoretical correction are accounted, down to 12

significant digits [28, 29]. In addition to describing natural phenomena with unpre-

cedented accuracy, the SM is a self-consistent theory that provides non-divergent

predictions at the highest energy scales probed to date.

1.2.1 Known Limitations

In spite of the successes mentioned above, several shortcomings of the Standard

Model are known and hence the theory is not considered as a complete theory of

natural phenomena at the most fundamental scales. Those concerns include unex-

plained empirically observed phenomena such as gravitational interactions, neutrino

masses or dark matter particle candidates, theoretical considerations regarding the

stability of vacuum or aesthetic principles such as naturalness. Hence, it is presumed

that the Standard Model is an effective theory, able to successfully describe funda-

mental processes within a range of energies as an approximation of a more complete

unified theory. For completeness, the main empirical and theoretical concerns are

summarised:

• Omission of gravitational interactions: the current formulation of the

SM completely disregards the effect of gravity in fundamental interactions,

because no consistent quantum descriptions for gravity matching the experi-

mental predictions of the well-established theory of general relativity [30] have

been developed to date. While several theoretical efforts are ongoing, such as

loop quantum gravity [31] or string theory [32], the coupling for gravitational

interactions at the current experimental high-energy reach is expected to be
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more than 30 times weaker than for weak interaction, and hence can be safely

ignored when computing theoretical predictions.

• Lack of a viable Dark Matter candidate: through a variety of astrophys-

ical observations, including the observed galaxy rotation curves [33], gravita-

tional lensing [34] and the Cosmic Microwave Background (CMB) [35], there is

clear evidence indicating the presence of more gravitational interacting matter

in the universe than what is expected by contrasting with the electromag-

netic spectra. It has been thus estimated that about 85% of massive existing

matter in the universe does not notably interact with ordinary matter and ra-

diation, and therefore is referred as Dark Matter. While its particular nature is

still unknown, scientific consensus seems to favour long-lived cold non-baryonic

matter as an explanation, predominantly weakly-interacting massive particles

(WIMPs). The three neutrino types are the only WIMP within the Stand-

ard Model, but considering the known upper limits on their masses, they can

only account for a very small fraction of the total mass of dark matter in the

universe.

• Unexplained matter-antimatter asymmetry: as discussed in Section 1.1,

each matter particle in the Standard Model has an identical anti-matter pos-

sessing opposite quantum numbers. Because pair creation and annihilation

processes are symmetric, but our universe is manifestly dominated by what we

refer as matter, some asymmetric interaction processes ought to exist. Within

the SM, some electroweak processes are known to violate CP-symmetry and

potentially explain a small part of the observed matter-antimatter asymmetry.

New unknown CP-symmetry processes, potentially through interactions not

included in the SM, are needed to resolve the mentioned disparity.

• Origin of neutrino masses: the Standard Model was developed assuming

that neutrinos were massless, yet is currently well established that neutrinos

oscillate between different flavour eigenstates [36, 37], implying that flavour

states mix and hence that neutrino masses are very small but different from

zero. The SM Lagrangian can be extended to account for the masses of neut-

rinos in a similar fashion to what is done for leptons and quarks, but their

Yukawa coupling has to be much smaller than of any of the other particles,

and it requires the existence of very weakly interacting right-handed neutri-

nos. An alternative mechanism for including neutrino masses exists, and it is

based on assuming that these particles are Majorana fermions and hence they
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1 Theory of Fundamental Interactions

are their own anti-particle. This hypothesis is currently being experimentally

tested. It also worth noting that in order to explain the smallness of neut-

rino masses in a principled way, the Seesaw mechanism [38] has been proposed,

which implicitly assumes that the SM is only a low-energy scale effective theory

of a more complete unified theory.

• Mismatch between vacuum energy and Dark Energy: in addition of

providing evidence for dark matter, astrophysical observations such as studies

of the properties of the Cosmic Microwave Background [35] or the redshift of

type Ia supernovae [39], consistently point to the hypothesis of an accelerating

expansion of the current universe. The simplest way to account for this in

cosmological models is to include a cosmological constant, which should be

understood as an intrinsic energy density of the vacuum, exerting a negative

pressure and therefore driving the observed expansion of the universe. In fact,

in order to reconcile the theoretical models with experimental observations,

about 68% of the total energy in the present universe would correspond to

this type of unknown energy density, generally referred to as Dark Energy.

In most quantum field theories, such as the Standard Model, some non-zero

zero-point energy originating from quantum fluctuations is expected. However,

modern attempts to predict energy densities from QFT are at variance with the

observed energy vacuum energy density, some of them differing by 120 orders

of magnitude [40].

• Naturalness, hierarchy and fine-tuning concerns: as discussed at the

beginning of Section 1.1, the SM can be thought of the most general the-

ory based on a set symmetries, and its 19 parameters (or 26 accounting for

neutrino masses and mixing angles) are not obtained from first principles but

measured experimentally. Having such a large number of free parameters and

observing large differences among their relative magnitude has been viewed as

a theoretical concern from an aesthetic perspective. A related issue is why the

electroweak energy scale (epitomised by the Higgs mass) is much smaller than

the assumed cut-off scale of the SM, where gravitational interactions become

relevant at MPlanck ≈ 1019GeV, which is generally referred as the hierarchy

problem. In the absence of New Physics or additional interaction mechanisms,

the only way to obtain the observed Higgs mass from the bare Higgs mass (at

zero energies) is through a very precise cancellation of divergences, which is

regarded as an unnatural or fine-tuned property of the SM theory.
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1.2 Beyond the Standard Model

Other possible issues, in some cases related with those discussed, have also been

raised. One of them is the apparent vacuum meta-stability [41] and other the so-

called strong CP problem [42]. Many of these questions can be clarified once the

higher precision measurements of the SM become available, which are mainly ob-

tained in particle collider experiments.

1.2.2 Possible Extensions

The known limitations stated in the previous section have motivated the development

of alternative theories for describing fundamental interactions. Given the quantitat-

ive success of the Standard Model, most of the known proposed theoretical models

are either extensions of the SM or its associated predictions can be effectively reduced

to those of the SM at the energy range current being explored in particle physics

experiments. The set of alternatives that have been proposed is too substantial to

be exhaustively listed here, especially given that many of the alternatives include

additional free parameters that greatly modify the expected theoretical observables.

Precision Measurements of the SM

Due the existing large space of alternatives to the SM from a theoretical standpoint,

the exploration of all possibilities through dedicated searches becomes unattainable.

An alternative way to possibly obtain quantitative information pointing to exten-

sion of the SM is to measure its most relevant observables with high precision. If

significant discrepancies are found between the experimental measurement and the

theoretical prediction of those observables, it could be evidence pointing to New

Physics outside the SM.

Effective Field Theories

In addition to carrying out precision measurements and model-specific searches, there

exists a practical way to consider possible extensions due to New Physics phenomena

occurring at a higher energy scale Λ than the one being probed, which will be denoted

by E. The model-independent approach often referred to as effective field theory

(EFT) [43, 44] allows to compute observables by extending the SM Lagrangian terms

from Section 1.1 with additional operators:

LEFT = LSM +
∑

i

ci
Λdi−4

Oi (1.31)
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where Oi are referred to as effective operators, describing the characteristics of the

new interactions that are considered in the extended theory and ci are the the EFT

or Wilson coefficients that parametrise the strength of those new interactions. The

integer di defines the dimension of the operator dim(Oi) = [E]di , and while in prin-

ciple an infinite set of operators with any dimension di > 4 can be considered, their

effects is expected to be suppressed by (E/Λ)di−4 thus high-dimensional operators

may be neglected when studying the dominant effects of an EFT extension of the

SM.

If all the EFT coefficients ci are zero or the new energy scale Λ is infinite, the

EFT theory reduces to the SM Lagrangian. Instead, if Λ ≈ E, the effective approx-

imation in Equation 1.31 does not hold, and the interactions have to be realistically

modelled using a complete theoretical description of the New Physics scenario under

study. While in general effective field theories are not renormalisable, observables and

higher-order corrections can be computed, because of the well-defined cutoff energy

scale Λ. The best-known example of an EFT that has been used in practice is Fermi

theory, which is a useful simplification to compute EW observables at low-energies

E ≈ 10 MeV rather than an extension of the SM, given that the detailed structure

of electroweak interactions due to W± boson mediating β decays was unknown at

the time.

At the LHC and other collider experiments, the main use case of EFT is to de-

scribe generic extensions of the SM that could arise due to New Physics at energy

scales that are not directly accessible. From an experimental standpoint, the goal

is thus to constraint the values of the EFT operator coefficients using experimental

data. Because the for di = 5 the only possible operator is relevant for neutrino phe-

nomenology [45], the set of Lagrangian operators of interest at collider experiments

often corresponds to di = 6 dimension operators. The large set of possible dimen-

sion six operators can be greatly reduced by requiring that the main experimentally

verified properties of the SM are respected, such as the gauge and Poincaré symmet-

ries, or baryon number conservation. In Chapter 5, a subset of dimension six EFT

operators are used to study non-resonant extensions of Higgs pair production in a

model-independent manner.

1.3 Phenomenology of Proton Collisions

Once the properties and limitations of the theoretical model that best describes the

current understanding of the fundamental structure and dynamics of nature have
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been described, we can delve into how to model proton-proton collisions from a

quantitative perspective, so theoretical predictions can be contrasted with experi-

mental results at the LHC. The focus of this section then is to make sense of the

various outcomes of high-energy proton-proton collisions and how we can predict

their relative rates of occurring given some initial state conditions of the interaction.

1.3.1 Main Observables

A related consideration that is useful as an introduction to the aforementioned topic

is the question of what outcomes can originate as a result of proton-proton collisions.

An answer somehow circular but compatible with our current interpretation of the

universe is that everything that could be produced would be produced, meaning

that any outcome that can happen in a way that is consistent with the underlying

properties of nature is possible. Even though probably the true description of the

properties of nature is not known, as discussed in Section 1.1, the Standard Model

provides an effective model and restricts considerably the space of possible outcomes,

in a way that can be compared with experimental observations. It is worth noting

that alternative descriptions of nature, such as those motivated by the known limita-

tions of the SM and reviewed in Section 1.2, may provide alternative mechanisms for

the production of outcomes that are not allowed by the SM, and hence often drive

the experimental searches for evidence of New Physics.

For those physical processes that could happen as a product of a proton-proton

collision, under the assumption of validity of a particular theoretical model, their

total expected rate of occurrence is one the most relevant quantities to predict and

compare with observations. To ease its experimental interpretation, the rate of

occurrence of any given subnuclear process is commonly expressed as a cross section

σ, which has dimensions of area and is typically expressed in submultiples of barn

(1 barn = 10−28m2). The advantage of cross sections over rates is that their value is

independent from the density of the incident particle fluxes. The rate, or probability

per unit of time, of a process occurring can be computed simply by multiplying its

cross section by the instantaneous luminosity Linst, which corresponds to the number

of particles per unit of area per unit of time crossing in opposite directions in the

collision volume.

Another related concept, which is especially important for simulating interactions,

is the differential cross section dσ. While the initial state conditions are fixed, the

rate of occurrence of a physical process can be expressed as a function of some final-

state variables, such as the angle and energy of outgoing particles. While these
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1 Theory of Fundamental Interactions

variables can be integrated over to compute total cross sections σ, the integrand is

proportional to the probability density of each outcome happening as a function of

final-state variables, hence its evaluation is crucial for a correct modelling of their

multi-dimensional distributions via random sampling. In fact, we will be dealing

with differential cross sections instead of total process cross section in this section

for generality.

1.3.2 Parton Distribution Functions

A complication that has not been addressed yet is that protons are composite

particles, which within a static interpretation can be thought of as the combina-

tion of two up-type quarks and one down-type quark bound together via the strong

force. The dynamics of proton-proton scattering are then dictated by quantum chro-

modynamics (see sec. 1.1.2), which cannot be addressed using perturbation theory

for low energies, limiting the first principles computation of relevant observables

for the most common interactions. That said, predictions regarding the interaction

outcomes from the hard scattering of proton constituents (referred to as partons)

can be perturbatively approximated under the assumption of asymptotic freedom at

high energies. This allows the modelling of very high energy collisions at particle

colliders, which are the focus of most LHC analyses, even if the details about the

parton structure cannot be calculated.

When modelling hard (i.e. high energy) scattering processes, a non-perturbative

input is required, mainly the probability of finding a particular proton constituent

with a certain momentum fraction inside each of the colliding protons, referred to

as the parton distribution function (PDF). The model of the proton as three quarks

coupled by strong force is too simplistic for modelling proton-proton scattering real-

istically, especially at high energies. The continuous exchange of gluons between the

three constituent quarks effectively generates a sea of virtual quark-antiquark pairs

from which other partons can scatter off. Consequently, in the interaction of two

protons, not only the constituent quarks, referred as to valence quarks, can take part

in the hard scattering process but also gluons and sea quarks.

At the time of writing, PDFs are not computable from first principles so they have

to be parametrised and extrapolated from various experimental sources including

fixed-target proton deep inelastic scattering (DIS) and previous collider studies. It is

worth noting that the distribution functions depend strongly on the energy scale of

the process, yet the evolution for parton densities can be modelled theoretically [47,

48, 49]. Given their relevance for computing observables in high-energy colliders,
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(a) Low Energy Scale µ2 = 10GeV2
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Figure 1.3: Distribution functions for the different partons at low and high energies. The
contribution from gluons shown is 1/10 of the actual contribution. Image adap-
ted from the NNPDF collaboration [46].
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several research collaborations such as NNPDF [46] provide accurate estimations

that can be readily used for simulation and prediction. In Figure 1.3 are shown the

parton distribution functions at two different energy scales estimated by one of those

collaborations, at lower energy scales the valence quarks (up and down) dominate

while when we extrapolate at higher energies, gluon scattering become the most

likely outcome for the interaction.

1.3.3 Factorisation and Generation of Hard Processes

Let us consider the computation of the differential cross section for a hard scattering

process pp → X, which will be denoted as dσ(pp → X), for two protons colliding

head on at centre of mass energy s. Here X denotes a possible outcome for the

interaction, not necessarily a single particle and the proton remnants (e.g. a Higgs

boson X = H + other), but a set of particles (e.g. a bottom quark-antiquark pair

X = bb̄ + other). According to the QCD factorisation theorem [50], the differential

cross section for dσ(pp→ X) can be expressed as a sum of functions of the partonic

cross section dσ̂ij→X :

dσ(pp→ X) =
∑

i,j

∫
fi(x1, µ

2
F )fj(x2, µ

2
F )dσ̂ij→X(sx1x2, µ

2
R, µ

2
F )dx1dx2 (1.32)

where i and j indicate the partons involved (e.g. a certain type of quark or a

gluon), fi(x1, µ
2
F ) and fj(x2, µ

2
F ) are their parton distribution functions for given

momentum fractions x1 and x2 respectively, µF is the factorisation scale and µR is

the renormalisation scale. The differential partonic cross section dσ̂ij→X for a centre

of mass energy of the interacting partons ŝ = sx1x2, can be calculated perturbatively

at different expansion orders from the Lagrangian density as hinted in Section 1.1.

The total cross section σ(pp → X) can then be attained by integrating out all final

state quantities, commonly referred as phase space variables, in the differential total

cross section element dσ(pp → X). It is worth pointing out that for simple cases

(small number of particles in the final state) is often possible to integrate out the

final state phase space variables directly in the partonic differential cross section

dσ(ij → X), and thus directly compute the total cross section by a similar parton

distribution function integration as the one used in Equation 1.32.

As more more complex final states or higher perturbative orders are considered,

the final state phase space integration over many particles can rapidly become in-
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tractable. This motivates the use of Monte Carlo integration techniques, especially

those based on importance sampling such as vegas [51], which provide convergence

rates that scale well with the integral dimensionality by randomly sampling the

multi-dimensional space. In fact, the initial state integration over parton types and

momenta fractions can also be carried out jointly with these methods, greatly sim-

plifying the computation procedure. The resulting weighted random samples can be

used to estimate not only the total cross section, but also any other observable or dis-

tribution that is a function of the differential cross section dσ(pp→ X). A common

observable that is often used in experimental high energy physics is the efficiency

ǫ, or fraction of observations from a specific process pp → X that are expected to

satisfy a given condition that is a function of the final state details.

In collider experiments typically we cannot measure directly the properties of final

states produced in the hard scattering, either because of the characteristics of the

detector, the decay/hadronisation of particles producing other secondary particles,

or due to additional physical effects occurring in a bunch crossing not accounted in

Equation 1.32, such as additional collision products due to multiple interactions or

processes comprising the proton remnants. Thus it is very useful in the construction

of the complete model to consider the problem of generation of realistic collision

products.

Taking into consideration that some of the computational techniques for includ-

ing subsequent physical processes and the detailed simulation of the detectors are

considerably resource intensive, as will be detailed in Section 1.3.4 and Section 2.3.2

respectively, the use of weighted samples is not a very efficient approach. Hence,

for the generation of simulated products of high-energy collisions, also referred to

as event generation, an acceptance-rejection sampling step is carried out to obtain

an unweighted sample, where the relative frequency of each simulated outcome is

expected to match its theoretical prediction. After such procedure, the calculation

of all observables is also simplified, because the weight of all samples can be taken as

a constant, e.g. a unitary weight w = 1, so the computation of quantities of interest

such as efficiencies becomes trivial.

1.3.4 Hadronization and Parton Showers

In order to link the hard scattering process outcome with the actual observable

quantities that can be detected in an experiment, it is necessary to account for the

radiation of soft gluons or quarks form the initial or final state partons in the collision,

as well as the formation of hadrons from any free parton due to colour confinement
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(see Section 1.1.2). Additional processes that affect the collision outcome include

secondary interactions between the protons, as well as the decays of all generated

unstable particles. An example of the typical complexity of the physical processes

occurring as a result of a single high-energy proton-proton scattering is provided in

Figure 1.4. These and additional minor effects (e.g. colour reconnection) are accoun-

ted by parton showering (PS) programs, that take as the input the generated particle

outcome of the hard scattering and return a set of the resulting stable particles that

would propagate through the detector.
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Figure 1.4: Diagram of a proton-proton collision and the underlying physical processes oc-
curring therein, adapted from [52]. The dark green ellipses following the three
parallel arrows represent the incoming hadrons. The main interaction between
partons is shown in red colour, producing a tree-like structure of decays, in turn
producing partons that rapidly transition to hadrons (light green ellipses) and
decay (dark green circles) as well as soft photon radiation (yellow lines). The
blue lines represent the interaction between partons and the path of the the
initial hadron remnants followed by light blue ellipses. For completeness, an
additional hard interaction within the same hadron-hadron process is shown in
purple, which often has to be accounted to obtain realistic simulations.
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2 Experiments at Particle

Colliders

Measure what is measurable

and make measurable what is not so.

Galileo Galilei (attributed)

In Chapter 1, we reviewed the most successful testable theory to date describing

the properties and dynamics of our universe at the most fundamental scales. Clear

limitations of the Standard Model as it is currently formulated are known, such

as the complete omission of gravity forces or the absence of viable dark matter

candidates, motivating the quest for alternative unified descriptions of the physical

world. A direct path to verify the predictions of the Standard Model up to high

accuracy and test alternative theoretical models is to collide high energy particles in

a controlled setting and quantitatively study the properties of the particles produced

as an outcome of the scattering. That is the aim of the Large Hadron Collider (LHC)

and the experiments set up around its collision points. In this chapter, the main

design characteristics of a general purpose high-energy physics experiment, namely

the Compact Muon Solenoid (CMS) detector at the LHC, will be explored. Given

the data-centric nature of the next chapters, particular significance will be given to

the acquisition, processing and simulation of individual experimental observations,

commonly referred to as events.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest and most powerful particle acceler-

ator on operation at the time of writing. Its main purpose is to accelerate bunches

of protons and other heavier nuclei in opposite directions to ultra-relativistic velocit-

ies, so they can be collimated and made interact at high energies in several specified

collision points inside specially designed detectors. The LHC machine complex is loc-

ated at the European Organisation for Nuclear Research (CERN) laboratories at the
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super-conducting dipole electromagnets, each 15 m long and kept at a temperature

of 1.9 K using superfluid helium, capable of providing very strong magnetic fields

(up to 8.3 T for a 11.8 kA current). For collimation of the proton bunches, 392

additional quadrupole magnets are placed around the ring. Higher-order multipoles

are also interleaved to provide finer corrections of the beam direction and field geo-

metry. Additional energy is provided to the protons in each revolution using 8 radio

frequency (RF) cavities per beam line, until the protons reach the desired energy (6.5

TeV during the Run II of the LHC, which took place between 2015-2018). Given

that each cavity can provide about 60 keV per revolution, it takes about 20 minutes

of ramp time to reach collision energies.

During the whole acceleration process, specialised dipole magnets are used to keep

the beams separated at the four interactions points (IPs) and hence avoid collisions

during that time. With the purpose of maximising the interaction rates, the beams

are made more compact (commonly referred as squeezed) at the interaction region

right before switching to collision mode. Once the characteristics of the proton

beams are suitable, the quadrupoles focus the beam trajectories and collisions begin.

A stable configuration is then adopted by the LHC machine, providing about 7 keV

of energy per turn to the beam to account for synchrotron radiation losses using

the RF cavities. In the absence of problems, the proton beams are kept circling the

LHC ring and colliding at the IPs for several hours until the bunch properties are

degraded beyond correction, a period that typically is referred as a LHC fill. The

fill is terminated when some problem occurs or when all the proton bunches inside

the ring are dumped (made collide) against graphite absorbers tangent to the beam

pipes.

2.1.2 Operation Parameters

One of the most relevant parameters for a particle collider is the instantaneous lumin-

osity Linst(t), which already appeared in Section 1.3 and corresponds to the number

of particles per unit of area per unit of time crossing each other in the interaction

volume. Given a certain physical process characterised by a cross section σ, the

number of collisions nc expected to occur by unit of time, also known as the rate of

such collisions, can be expressed as:

dnc
dt

= L(t) · σ (2.1)
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thus the luminosity L is proportional to the number of expected interactions of

any given process. For studing rare scattering processes, corresponding to very small

cross sections σ, the luminosity is a crucial factor, because it determines the expected

total amount such collisions produced per time unit. The instantaneous luminosity

at the interaction region at a given time can be estimated from the characteristics

of the proton beams as:

Linst =
n2pnbfrγr

4πǫnβ∗
F (2.2)

where np is the number of particles per bunch, nb is the number of bunches per

beam, fr is the beam revolution frequency, γr is a relativistic suppression factor, ǫn

is the normalised beam emittance, β∗ is the transverse size of the beam, and F is

an additional luminosity reduction factor. The main contribution to the reduction

factor F comes from a small tilt of the beams at the crossing point, characterised

by the crossing angle φc, which avoids parasitic interactions between bunches but

reduces the luminosity by approximately:

F =

(
1 +

(
φcσz
2σ∗

)2
)−1/2

(2.3)

where σz is the root mean square (RMS) bunch length and σ∗ is the RMS of the

beam in the transverse direction at the interaction volume. The peak instantaneous

luminosities per day for the different years of proton-proton data acquisition periods

(also known as runs) at the LHC are summarised in Figure 2.3, those numbers can be

compared with the peak design luminosity of the LHC of Ldesign = 1034 cm−2s−1 =

10 Hz/nb.

From Equation 2.2 it can be inferred that that value of instantaneous luminosity

varies between LHC fills depending on the beam parameters. In fact, it also varies

within a single fill with time, mainly because the number of average protons per bunch

np decreases due to the collisions at all the interaction points. For convenience, a

quantity referred as integrated luminosity Lint that is computed by integrating over

the instantaneous luminosity for a given time period ∆T = t1 − t0 within a fill, is

used:

Lint =

∫ t1

t0

L(t)dt (2.4)

which is proportional to the number of collisions for a given process during that

period and thus can be used to quantify the amount of data acquired. When studying

data from different time periods jointly, integrated luminosity is additive, even if the
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Figure 2.4: Multiple interactions in a single bunch crossing as recorded by the CMS detector
during a special high-pile up luminosity at the end of 2016 [55]. The reconstruc-
ted primary interaction vertices are shown using orange circles while the yellow
lines represent the trajectories of charged particles.

mental physical processes of special interest at the LHC, such as the production of a

Higgs boson. The probability of two or more hard interactions happening in the same

bunch crossing is really low, and can be safely neglected for any practical purposes.

Nevertheless, the outcome of each hard interaction of interest will be overlapping in

the detector volume with the product of all other soft interaction that occurred on

the same bunch crossing, greatly complicating the task of event reconstruction as will

be discussed in Section 2.3. This also motivates the use of pileup mitigation tech-

niques, heavily based on accurate detectors that can extrapolate and differentiate the

primary interaction vertices of the collisions from the charged particle trajectories.

In addition to multiple hadron interactions per bunch crossing, the goal of record-

ing the outcome of a very high number of proton interactions leads to a different

experimental complication. As illustrated in Equation 2.1, a simple way to increase

the luminosity is to increase the number of total proton bunches per beam nb. This

fact is exploited in the nominal proton fill scheme of the LHC by having a total of

2808 proton bunches in each beam, corresponding to a separation between most of

the bunches of only approximately 7.5 m. Hence the time separation between consec-

utive bunch crossing is about 25 ns, which is of the same order as the response time

of many of the detector elements used at the LHC. The readout from a a particular

bunch crossing can therefore be affected by the detector occupation caused by the

previous or subsequent crossings, in what is referred to as out-of-time pileup, that

becomes an important consideration for detector design in high-luminosity environ-

ments.
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2.1.4 Experiments

Around the collision volume at each of the interaction points, large detectors are

positioned in order to reveal and quantitatively study the outcomes of the highly-

energetic particle scattering, which can in turn be used to obtain information about

the properties of fundamental interactions. Four large particle experiments are in-

stalled at the LHC interaction points:

• ATLAS (A Toroidal LHC ApparatuS) [56]: the largest experiment at the

LHC, designed as a general-purpose detector to study the various products

of high-energy interactions, especially those of high-luminosity proton-proton

collisions. While one of the most important scientific goals of the ATLAS

experiment was to discover Higgs boson and provide a detailed study of its

properties, it was also built with the aim of extensive testing of Beyond the

Standard Model (BSM) theories.

• CMS (Compact Muon Solenoid) [57]: the other general-purpose experiment

at the LHC, sharing most of the research goals with ATLAS, but opting for

an alternative design and a different choice of detector technologies making it

considerably more compact. It is the detector that collected the data use in

the analysis in Chapter 5 and hence is described extensively in Section 2.2.

• LHCb (Large Hadron Collider beauty) [58]: operating at a lower range of

luminosity than ATLAS or CMS by deliberately separating the beams, this

experiment focusses on very accurate precision measurements of the properties

and rate decays of b-quark and c-quark hadrons as well as the search for in-

direct evidence of new physics leading to CP violation in heavy flavour physics

phenomena.

• ALICE (A Large Ion Collider Experiment) [59]: a heavy-ion collisions de-

tector, designed to study the dynamics quark-gluon plasma, a high energy

density state of strongly interacting matter, as it expands and cools down.

Such studies can lead to a better understanding of colour confinement and

other relevant QCD problems, as well as shedding some light on the processes

that occurred a few microseconds after the Big Bang.

Additionally, three smaller experiments are built around the mentioned detectors

with specific research purposes: TOTEM [60], LHCf [61] and MoEDAL [62]. Both

TOTEM and LHCf have been designed to investigate features of forward physics
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interactions, where scattering products remain the original proton trajectories, and

hence they are set up tangent to the LHC beam line at the sides of CMS and ATLAS

interactions points respectively. MoeDAL is instead built at the same experimental

space than LHCb and its main aim is to search for evidence of production of magnetic

monopoles and other highly ionising stable massive particles.

2.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) is a general purpose detector placed about

100 meters underground around one of the collision points of the Large Hadron

Collider (LHC) ring. It has been designed to carry out experimental research on

a wide range of high-energy physics phenomena, including searching for the Higgs

boson and studying its properties, testing alternative explanations of nature such as

extra dimensions or supersymmetry, and looking for evidence of direct production of

particle dark matter candidates.

In spite of having such ambitious research goals, the principle of operation of CMS

is rather simple, as it can be reduced to the detection of the outgoing particles pro-

duced as a result of high-energy interactions between protons and the identification

and measurement of their most relevant properties, such as momenta and energies.

These is done by putting together the information acquired by a large number of

simple detecting elements, placed in layers around the collision region. The prop-

erties and kinematics of several of those final state detected particles can often be

combined to compute observables of more complex objects, such as the invariant

mass of an intermediate particle. After collecting data from a large number of colli-

sions, a subset of relevance of the data can be compared with the expected theoretical

predictions, and statistical inference in the form of interval estimates on parameters

of interest or hypothesis testing of alternative explanations can be performed.

The CMS detector is built inside and around a large cylindrical coil of supercon-

ductive wire, forming a 6 m diameter solenoid magnet that can provide an homo-

genous magnetic field of 3.8 T. Particle detection and identification are achieved

using several layers of sub-detectors with specialised functions, almost covering the

full solid angle around the interaction region, as depicted in Figure 2.5. Inside the

solenoid volume, a particle tracker made of silicon pixel and strip detectors, a lead

tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator had-

ronic calorimeter (HCAL) are placed, each of them composed of a barrel and two

endcap sections. A large muon detection system, composed of cathode strip cham-
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plane), and θ is the polar angle with respect to the LHC plane using a sign convention

consistent with the previous definition of the z and y axes.

As mentioned before, particle momentum is the main observable of the detected

particles. The energy is simply a function of the momentum and the mass of the

particle, as shown by the relation E2 = p2 +m2, expressed in natural units (c = 1).

Because the x and y momentum components are insensitive to the initial state boost

in the z direction due to the stochastic differences in parton momenta in the initial

state, and are measured more accurately as a result of the design of the detector,

it is common to refer separately to the total transverse momentum quantity pT =√
p2x + p2y = |p| sin θ and its transverse plane angle φ. While the z component of

the momentum could be specified directly either by using pz or by the angle θ, the

differences of any of those observables between two particles detected on an event

depend on the initial parton state boost β on the z direction, which varies between

different collisions and it is hard to estimate precisely in the laboratory frame of

reference.

Since the dependence on the initial state z boost would complicate the statistical

analysis and the definition of derived observables, an alternative observable is used.

The rapidity y is defined as:

y =
1

2
ln

(
E + pz
E − pz

)
(2.5)

and its value under a z-axis boost β is easily obtained by adding an additive factor

y′ = y − tanh−1β. Hence differences in rapidity between two particles in a collision

∆y = |yb−ya| are invariant to Lorentz boost in the z direction. Because the rapidity

depends on the total energy/momentum of the particle, which might not be possible

to measure with high precision in hadron collider detectors, it is more suitable to

approximate it. The approximation is referred to as the pseudo-rapidity η, and can

be defined as:

η =
1

2
ln

(
p+ pz
E − pz

)
= ln

(
tan

θ

2

)
(2.6)

that only depends on the polar angle θ with respect to the LHC plane. The pseudo-

rapidity η is equal to the rapidity y for massless particles, and is a very effective

approximation in the highly-relativistic limit, when E ≫ m. It is useful observing

that for particles produced in the transverse plane (i.e. θ = π/2), their pseudo-

rapidity is η = 0. Instead, in the limit of fully forward particles, when θ → 0 or

θ → π, their pseudo-rapidity becomes η → +∞ and η → −∞, respectively.
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Oftentimes, angular distances between two particles are very useful observables in

an collision to cluster observed particles or isolate interesting collisions. The distances

between two particles, indentified with a and b subindexes, in the transverse ∆φ and

forward direction ∆η can be computed as:

∆φ = min(|φb − φa|, 2π − |φb − φa|) and ∆η = |ηb − ηa| (2.7)

while the total angular distance ∆R between the two particles is instead defined as:

∆R =
√
(∆η)2 + (∆φ)2 (2.8)

which is invariant to boosts in the z direction in the highly-relativistic limit, and

is particularly practical to cluster the products of the hadronization of quarks and

gluons as detailed in Section 2.3.

2.2.2 Magnet

The purpose of the CMS magnet is to curve the trajectories of charged particles

coming out the interaction region, so their transverse momenta pT can be accurately

estimated, and the sign of their charge determined. In order to understand how such

momentum measurement can be carried out, let us assume a solenoidal magnetic field

that is fully homogenous and pointing in the z direction ~B = Bẑ. Due to Lorentz

force, a particle with a transverse momentum pT and a forward momentum pz would

describe an helicoidal trajectory, where the curvature radius in the transverse plane

rT and the transverse momentum are related:

rT =
pT
qB

=⇒ pT [GeV/c] = 0.3 · q[e] ·B[T] · rT [m] (2.9)

where q is the particle charge, and the second equation corresponds to a simplification

using units denoted inside the brackets adjacent to each quantity (e are electron

charge units). This simple proportionality relation indicates that the higher the

momentum of a particle, the larger its radius of curvature. Furthermore, the direction

of the curvature is determined by the sign of the particle charge. For more realistic

scenarios, like the magnetic field not being completely homogenous or the particle

momentum decreasing along its trajectory due to interaction with the detecting

elements, Equation 2.9 is only an approximation and the trajectory path can be

obtained by solving the relevant differential equation.
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In the case of CMS, the magnetic field is generated by a large superconducting

solenoid, contained inside a hollow cylinder about 13 m long and with an outer radius

of 3 m. Very high currents, up to 19 kA, circulate along NbTi wires kept at 4.5 K

using a liquid helium cooling system, providing an almost homogenous field at the

centre of the solenoid up to 3.8 T in the z direction. In addition to the solenoid,

the magnetic flux lines are closed by a 10000 ton return yoke, composed by a series

of magnetised iron blocks interleaved with the muon detectors in the outer part of

CMS, providing a magnetic field about 2T in the opposite direction. The remaining

elements of the CMS magnetic spectrometer, referring to the detector systems used

to estimate the curved particle trajectories are reviewed in Sections 2.2.3 and 2.2.6.

2.2.3 Tracking System

The inner tracking system is the detector that is the closest to the interaction point,

and its functions include the estimation of the charged particles trajectories, used

to provide a measurement of their momenta as described in Section 2.2.2, as well as

allowing the positional determination of interaction or decay vertices by extrapolat-

ing the trajectories inside the interaction region. The detection of charged particle

trajectories, or tracks for short, is carried out by several silicon detector layers placed

non-uniformly around the collision volume, as shown in Figure 2.6. The placement

of layers is symmetric in φ, the outermost layers contained within a supporting cyl-

indrical structure of 2.5 m of diameter and 5.8 m of length.
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Figure 2.6: Cross sectional view of the CMS detector inner tracker detector in the r − z
plane, detailing the position of detecting layers as well as the main detector sub-
components. The tracker is approximately symmetric around r = 0, so only the
top half is shown. Figure has been adapted from [65].

43



2 Experiments at Particle Colliders

The detector is composed of two main parts: a silicon pixel detector system situ-

ated very close to the interaction point and a much larger strip detector arrangement

placed outside the former. The disposition on the detecting layers allows to detect

tracks within a pseudo-rapidity range defined by |η| < 2.5. Both systems have to

deal with the efficient tracking of hundred of charged particles, at a rate of 40 MHz,

produced from each bunch crossing. A successful apparatus in such a environment

requires a short response time, as well as to be composed of many small detecting

elements. The latter property is commonly referred as high granularity, and allows

to keep the number of detected track points (i.e. hits) per detector unit at acceptable

levels.

Being so close to the collision region, the set-up has also to sustain very high

particle fluxes during long periods of time, up to 1MHz/mm2 at the first pixel layer.

Therefore, resistance to radiation damage of the detecting elements and the accom-

panying electronics, dubbed as radiation-hardness, is an essential specification. Addi-

tionally, the amount of material present in the particle trajectories has to be kept to

a minimum, to avoid stochastic secondary interactions that would degrade the preci-

sion and efficiency of track determination. The use of silicon semiconductor detector

technologies [66] in the CMS tracking system is thus motivated by a combination of

all previously mentioned reasons. In total, the CMS tracking system is composed

of 1440 pixel detector modules and 15148 strip detector modules, accounting for an

active area over 200m2.

The pixel detector, the innermost detecting system of the CMS experiment, is

comprised by a total of 66 million silicon cells placed in 1440 modules around the

collision region. Each pixel cell has an area of 100×150µm2 and a thickness of 285µm,

providing two-dimensional local track hit coordinates with a resolution around in

the cell surface plane about 20 µm, that can in turn be used to compute the global

three-dimensional hit location with high accuracy after accounting for the precise

location of the detecting module. As depicted in Figure 2.6, the pixel detector

is composed by three barrel layers (i.e. placed around the collision region in an

cylindrical arrangement), located at radii of 4.4 cm, 7.3 cm and 10.2 cm respectively,

and two forward disks at each side at distance of 34.5 cm and 46.6 cm from the

nominal interaction point.

The rest of the tracking system, placed outside the pixel detector, is constituted

of several silicon strip detector modules organised in four different sub-detectors,

referred as TIB, TID, TOB and TEC in Figure 2.6. The inner part of the strip

tracker, adjacent to the pixel detector, is composed of four barrel layers of strip
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modules constituting the tracker inner barrel (TIB) section, and three module layers

arranged in disks at at each side forming the tracker inner disk (TID). Further away

from the interaction region, the outer strip tracker, comprising of six barrel layers

in the tracker outer barrel (TOB) and nine disks at each side forming the tracker

endcaps (TEC). The strip specifications varies depending on the sub-detector, with

thicknesses ranging from 320µm to 500µm, and pitches (i.e. distances between strips)

from 80 µm to 184 µm.

The strips are placed longitudinally parallel to the beam line in the barrel modules

and radially in the perpendicular plane in the endcap disks, with silicon strip lengths

ranging from 10 cm to 20 cm, and in an overlapping tiled setting (see Figure 2.6)

Each strip layer provides a single local coordinate for a particle track hit, aligned

with φ both the barrel and the endcap disk. A second coordinate can be easily

obtained taking into account the placement on the module, thus obtaining the r

coordinate in the barrel and z in the endcap disks. In order to provide information

on the unknown coordinate in each case, some layers of the tracker (in blue colour

in Figure 2.6) are composed of two modules instead on one, with a small tilt of 0.1

rad that allows to obtain a precise 3D coordinate for a track hit by combining the

two local coordinates and their module positions.

2.2.4 Electromagnetic Calorimeter

The function of the CMS Electronic Calorimeter (ECAL) is to measure the total en-

ergy of the electrons, positrons and photons that reach that part of the detector, by

means of their electromagnetic showers. In order attain such task, scintillating lead

tungstate PbWO4 transparent crystals are placed inside the solenoid magnet, right

outside the tracking system, covering the solid angle around the interaction point as

depicted in Figure 2.7. When a high energy electron or a positron enters the dense

crystal material, it rapidly decelerates and emits photons through bremsstrahlung

radiation. High energy photons from electron/positron deceleration or directly com-

ing from the collision region produce positron-electron pairs through matter inter-

action, that in turn radiate more photon through bremsstrahlung processes. These

chain of processes, referred as electromagnetic shower keeps occurring until the en-

ergy of the photons goes below the pair production threshold or the energy loss of

the electrons/positrons happens through alternative mechanisms. The resulting low

energy photons from the electromagnetic shower produce visible range light in the

scintillating but transparent crystal, which is detected, amplified and collected by

photodetectors placed at the end of each lead tungstate crystal.
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The ECAL is composed of two main parts, the barrel calorimeter (EB) section cov-

ering pseudo-rapidities up to |η| < 1.479, and two symmetrically positioned endcap

calorimeters (EE) further extending the coverage to |η| < 3.0. The trapezoid-shaped

crystals are placed radially around the collision region, a total of 61200 blocks in the

EB and another 7324 blocks for each EE part. The sides facing the IP in the barrel

section have dimensions of 22×22 mm2 and a length of 23 cm, while the front-facing

sides of those in the endcaps are slightly larger at 28.6× 28.6 mm2 with a length of

22 cm. The advantages of using lead tungstate crystal include its very short radi-

ation length X0 = 0.89cm - which characterises the longitudinal energy loss profile

E(E) = E0e
x/X0 - as well as its small Moliere radius of 2.19 cm - defining the radius

containing average transversal radius containing 90% of the shower energy - leading

to narrow showers which contribute to improved position and energy resolution. The

lengths of the crystal blocks in the EB and EE amount to 25.8X0 and 24.7X0, which

ensures that all the energy is effectively deposited inside the detectors.

Another advantage of lead tungstate crystals is that PbWO4 is also a scintillating

material, thus the resulting shower energy is absorbed and partially emitted back as

visible light, with a yield spectrum maximum in the blue-violet range around 430

nm. The reemission process is also very fast, since about 80% of the scintillating light

is emitted within 25 ns of absorption, which is the time until the next LHC bunch

crossing occurs. The scintillator light propagates effectively through the crystal due

to its high transparency, and reaches the photodetectors attached to the end of the

crystal trapezoids. Avalanche photodiodes (APD) are used for light detection and

amplification at the barrel crystals while vacuum phototriodes (VPT) are used for the

endcaps, given their different radiation hardness and sensitivity to magnetic fields.

In addition to the EE and EB, a sampling detector referred as pre-shower elec-

tromagnetic calorimeter, based on two layers of lead absorber followed by two layers

of silicon strip detectors, is placed right before the lead tungstate crystals in the

endcap to provide higher granularity in the forward region. The main purpose of the

pre-shower extension is to distinguish high-energy photons coming directly from the

collision region and high energy neutral pions that have decayed into two closely-

spaced photons.

2.2.5 Hadronic Calorimeter

The purpose of the hadron calorimeter (HCAL) is to measure the energy and position

of all long-lived neutral or charged mesons and baryons produced as a result of the

collision, typically including pions, kaons, protons and neutrons. The main detecting
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elements of this sub-detector are an assortment of sampling calorimeters, interleaving

brass plates as absorber material and plastic scintillator tiles as active medium; the

former causing the deposition of energy in the form of secondary particles by means

of interactions with the material nuclei and the latter converting a part of that energy

to visible light. The light from each tile is captured by a thin optical fibre and carried

to a photodetector, producing an electric signal that can be used to measure the total

amount of deposited energy once it has been carefully calibrated.

Figure 2.8: Cross sectional view of the CMS hadronic calorimeter (HCAL) detector in the
r−z plane, depicting the positioning of the various detector segments relative to
the beam line and the solenoid magnet. The HCAL is symmetric around r = 0,
so only the top half is shown. The figure adapted from [68].

The different segments of the CMS HCAL are shown in Figure 2.8. The barrel

section of the hadronic calorimeter (HB) as well as two endcap sections (HE) at

each side are placed after the ECAL but still inside the solenoid volume, providing

pseudo-rapidity coverages of |η| < 1.3 and 1.3 < |η| < 3.0, respectively. Both the HB

and HE sections are composed of a stack of brass plates with plastic scintillator tiles

in between, providing a total of 5.6λI at η = 0 and 11.8λI at η = 3, where λI is the

hadronic interaction length. Given the limited space inside the solenoid and the fact

that about 11λI are required to absorb about 99% of the total energy of the hadrons

at the expected energy ranges, the hadronic calorimeter system is complemented by

an outer detector (HO) outside of the solenoid. The HO is composed of five rings

of scintillator tiles, effectively using the solenoid material as absorbing material.

Because the absorbing material path length is shorter around η = 0, the central

ring is shielded by large iron plates and an additional layer of scintillating material,

yielding a total absorber length over 11.8λI and therefore improving its measuring

capabilities.
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Over 70000 thin plastic scintillator tiles are placed between and after absorber

plates. The size of those plates depends on their geometrical placement and are

aligned according to their angular coordinates between layers, so each longitudinal

projection corresponds to an approximate area ∆η×∆φ = 0.087× 0.087 within the

HB coverage region and ∆η×∆φ = 0.17×0.17 outside it. When secondary particles

go through the scintillating tiles, part of the energy is absorbed and promptly released

as violet-blue visible light, over 65% of the total amount of emitted light within 25 ns.

The light is collected and guided through thin optical wavelength-shifting fibres that

change the light to the green spectrum region, then through standard optical fibres

until reaching readout boxes that contain hybrid photodiodes (HPD). The optical

signal for each alignment of tiles are added optically to a single readout for most of

the radial projections, with the exception of those in the intersections between the

barrel and endcaps, that are kept in two or three separate channels in order to ease

calibration procedures.

The last element in the HCAL system is the forward hadronic calorimeter (HF),

situated 11.15 m at each side of the interaction point, adjacent to the beam pipe, and

providing detection capabilities for particles with pseudo-rapidities in the range 3.0 <

|η| < 5.2. The HF greatly increases the pseudo-rapidity energy measurement for

charged and neutral particles, allowing a near hermetic (full solid angle) coverage, and

hence allowing the estimation of missing energy in the event such that corresponding

to neutrinos leaving CMS undetected, as will be discussed in Section 2.3. Because

the radiation fluxes are extremely high in the forward region and there are no depth

constraints, a different detector design is used, based on 165 cm of steel absorber

plates and quartz fibres aligned of the z-axis, each with an effective detecting area

of ∆η ×∆φ = 0.17× 0.17.

The fibres running along the HF detect and guide the Cherenkov light of the

charged secondary particles produced in the showers to photomultipliers tubes (PMT)

placed behind a 40 cm thick steel and polyethylene shield. In this pseudo-rapidity

range, the HF serves also as an electromagnetic calorimeter. The HF detector has

been designed in a specific way to disentangle the energy contributions from electro-

magnetic and hadronic showers, which is useful for many physics data analyses use

cases. Only half of the fibres start close to the face of the absorber plates closest to

the IP, the rest starting at a depth of 22 cm. By comparing the readouts from the

long and short fibres the type of shower can be inferred, given that electromagnetic

showers are much shorter than hadronic showers.
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signal amplification can be achieved due to secondary ionisation by the choice of a

gas mixture combined with high electric field gradients.

An overview of the various detectors of the muons system and their geometrical

placement around the solenoid magnet cylinder is depicted in Figure 2.9. Due to

a combination of criteria regarding uniformity and strength of the magnetic field,

expected radiation fluxes and signal readout times, three different types of gaseous

detectors are used: drift tubes (DT), cathode strip chambers (CSC) and resistive

place chambers (RPC). In the barrel section where the particle flux is not expected

to be very high, four layers of drift tubes (DT) are arranged cylindrically around the

solenoid magnet, covering a pseudo-rapidity range |η| < 1.2. On the endcap section

instead, due to higher radiation fluxes and magnetic field non-uniformity, multi-wire

cathode strip chambers (CSC) are used, with a detecting pseudo-rapidity coverage

of 0.9 < |η| < 2.4. Both DT and CSC detectors can achieve very high position

resolution, but their signal readout time and time resolution is not as good, thus a

series of fast resistive plate chambers (RPC) are positioned both in the barrel and

the endcap sections, up to pseudo-rapidities |η| < 1.6.

2.2.7 Trigger and Data Acquisition

As discussed in Section 1.3, the occurrence of relevant processes that may provide

information about the physical properties of fundamental interactions in proton-

proton collisions is purely stochastic given some initial conditions, plus their relative

frequency is very rare compared with known phenomena. In order increase the

expected chances of recording interesting phenomena, the LHC collides 40 million

high-density proton bunches every second inside the CMS detector. Furthermore, as

discussed in Section 2.1.3, tens of proton-proton interactions typically happen within

each bunch crossing. The CMS sub-systems are hence detecting a good fraction of

100s of particles produced as a result of the interactions at each bunch crossing, in

addition of being subjected to instrumental noise or external radiation sources such

as cosmic rays.

The combined readout of all sub-detectors each 25 ns amounts to a large data

size, due to the total number of sub-system channels, even if efficient techniques

for representation and compression of information are used. Given that technical

limitations on the amount of data that can be recorded exist, a practical choice for

data acquisition is to keep only the detailed detector information of collisions that

could be maximally useful to study the properties of fundamental interactions in

subsequent data analyses. The decision system that makes the choice of whether to
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record or filter out the detailed detector readouts for a given collision, is commonly

referred as trigger, and is based on a fast and possibly asynchronous analysis of

those readouts. In particular, such decision criteria is typically focussed on the most

relevant properties of one or a subset of detected particles, such as their type, charge

or the magnitude and direction of their momenta.

A flexible and sparse representation of all CMS detector readouts for a given

collision that keeps sufficient information for detailed analyses is of the order of a

few megabytes (i.e. O(1) MB). Because of the technical capabilities of the storage

system, the total data acquisition rate is limited to less that 10 Gb/s, hence the

trigger system has to reduce the rate of collision readouts from 40 MHz to about 1

kHz. As a compromise between processing speed and requirement adaptability, the

trigger system of CMS is divided in two stages: the level 1 trigger (L1), which is a

custom-hardware based solution that reduces the detector readout rate to 100 kHz,

and the high-level trigger (HLT), a second step reducing it to the required 1 kHz and

that is instead carried out by a commodity computer farm.

2.3 Event Simulation and Reconstruction

The raw account of the readout of all detectors after a single bunch crossing, as well

as any derived representation of it, is commonly referred to as an event, and is the

most fundamental type of observation in high-energy data analyses. All approaches

to extract useful conclusions from CMS data are based on this information unit

or simplifications thereof. This is because for practical purposes, statistical inde-

pendence between events can be assumed, barring possible caveats (e.g. out-of-time

pile-up or detector malfunctioning). Therefore, data analyses are reduced to the task

of comparison between the observations and the predicted frequencies of events with

different characteristics.

The dimensionality of an event evidently depends on its data representation, sim-

pler representations being lower-dimensional and easing the comparison with theor-

etical predictions, at the cost of possibly losing some useful information. A principled

way to obtain lower dimensional representations of an event given its raw detector

readouts is to attempt to reconstruct all the primary particles that were produced

in the main proton-proton interaction of the collision and estimate their main prop-

erties, through a process generally referred as event reconstruction. Nevertheless,

for carrying out successfully the aforesaid task it is convenient to be able to have a

detailed model of the detector readout output expected for a given set of particles
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produced in a collision. Realistic modelling of high-energy physics collisions in high-

dimensional representations can be achieved through simulation.

In this section, a generative view of the main physical mechanisms that are hap-

pening both in the proton-proton collisions and when particles propagate through

the CMS detector is first discussed. Such overview doubles as an introduction of the

next section, where a description of how realistic simulations of the detector readouts

(i.e. events) can be obtained using computational tools is provided. Afterwards, the

inverse process is tackled, which is considerably harder and often ill-defined, namely

how can we estimate the set of primary particles that were produced in the collision

given the detector readout, through event reconstruction techniques.

2.3.1 A Generative View

When two high-density proton bunches travelling in opposite directions pass through

each other inside the collision region of CMS, several proton-proton interactions can

occur as discussed in Section 2.1.3. While most of the interactions will correspond to

a small energy transfer between the interacting partons, given that the total interac-

tion cross section is heavily dominated by soft scattering processes, a small fraction

of collisions would include physically interesting process such as the production of

heavy particles (e.g. a Higgs boson). The absolute and differential rates for such

hard processes can be predicted as outlined in Section 1.3.3. Therefore, for a spe-

cific process in a proton-proton interaction, realistic high-dimensional modelling of

the intermediate particles can be obtained by repeated sampling of the parton dis-

tribution functions and phase space differential cross sections. Subsequent decay,

hadronization and radiation processes as well as more subtle effects and higher or-

der corrections, can be then accounted for using the methods mentioned in Section

1.3.4, generally referred to as Monte Carlo event generation techniques. The end

result of the mentioned procedures is a large dataset of simulated particle outcomes

for a specific process, each example including a set of stable or sufficiently long-lived

particles and their kinematics properties that would propagate through the detector.

In addition to the set of particles in the hard proton-proton interaction, the effect

of pileup interactions can be accounted for by adding the particle outcome of a

random number of randomly sampled soft interactions matching their approximately

expected distribution in the collisions given the instantaneous luminosity conditions.

This final set of long-lived particles produced in the interaction region represents

a possible particle outcome for a collision assuming a given hard process occurred.

While they cannot be directly observed, but only indirectly inferred through the
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reach the ECAL, producing subsequent electromagnetic showers. It is worth not-

ing that within CMS reconstruction and analysis, it is common to simply use the

term electron to refer both to electrons and positrons, their charge inferred from the

curvature sign of their trajectories. Charged hadrons, the term here largely referring

to charged pions, kaons and protons, behave similarly to electrons in the tracking

detector1 but instead generate much larger hadronic showers in the hadronic calori-

meter.

Long-lived neutral hadrons, including neutrons and the neutral kaon K0
L, follow

instead straight lines in the inner detector volume because they are not affected by the

magnetic field neither leave any traces when passing through the tracking detectors.

It is not until neutral hadrons reach the calorimeter detectors, chiefly the HCAL, that

nuclear interactions produce large hadronic showers producing measurable signals

that can be correlated with the energy deposited. Photons are massless and neutral

particles, and at the ranges of energies of interest characteristic of the outcome of

particle collisions at the LHC are not expected to deposit enough energy in the thin

inner tracking layers to produce significant signal, thus they also follow a straight

line trajectory to the calorimetry sub-systems. In contrast, when photons reach the

electromagnetic calorimeter, electron-positron pair-production processes are bound

to occur, producing in turn electromagnetic showers which can be readout as a ECAL

detector signal.

The previous classification of particles based on their detectable energy remnants

in the different detectors, patently disregards a common outcome of high energy col-

lisions: neutrinos. Neutrinos only interact via weak and gravitational forces, hence

the probability of interaction with the detecting elements of CMS is negligible. They

thus escape the experimental area undiscovered. The production of high-energy neut-

rinos, or other weakly-interacting unknown hypothetical particles (e.g. dark matter

candidates), can nevertheless be inferred by the total transverse energy imbalance.

While the initial longitudinal momentum in the laboratory frame is unknown due to

the proton compositeness, the initial total transverse momentum is very close to zero

given that the collisions occur head-on. Because detecting structures of CMS have a

near complete angular coverage around the interaction points, with the exception of

very low transverse momentum particles that are lost near the beam pipe, the total

transverse collision momentum of all detectable particles can be obtained simply by

summing the estimation of their transverse momenta estimation. Ergo, the quant-

1Tracks from electrons and positrons are different due to bremsstrahlung, the radiated photons
often recovered in the ECAL.
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ity Emiss
T = || −∑ ~pT || is referred to as total missing transverse energy or by the

acronym MET, and can be used to infer the production of non-detected particles

particles such as neutrinos.

In summary, the physical characteristics of each category of particle previously

stated cause different signatures in the various detector sub-systems, that often can

be used to distinguish between each type. It is also worth pointing out the main

attributes each individual detector element readout, which are principally the an-

gular position in η and φ, the distance to the interaction point which is given by

the detecting element placement or the z coordinate, and the amount of deposited

energy. The latter is especially relevant for calorimeter detecting units. The pre-

cision of the angular location coordinates greatly varies between different detector

types depending in their granularity, tracking detectors providing more accurate po-

sition measurements given that they extract information directly from the particle

trajectories.

2.3.2 Detector Simulation

While the simplified map between the particle outcome of a given collision and the

corresponding detector readouts presented in the previous section is extremely useful

for obtaining a general understanding the operation of the CMS detector, it is not

detailed enough to realistically model the detector readouts given a set of particles

generated in a collision. Most of the relevant dynamics for modelling, such as in-

teractions between protons, the produced particles and the detector material or the

detector response, are of stochastic nature, hence they have to be specified either by

sampling approximated probability distributions or by a complex probabilistic pro-

gram that goes through a mechanistic simulation of the underlying physical processes

actually occurring.

A detailed simulation is found to be the most accurate approach, given the many

subtleties affecting the detector readout for a given set of generated particles, includ-

ing various possible particle decays and material interactions that can occur when the

particle is travelling through the detector, the non-uniformity of the magnetic field

and its effect on the particle trajectories, and the intricacy of the detector geometry

and the electrical response of its components. All these effects can be accounted for,

to a high degree of validity, in a simulator program considering the non-deterministic

propagation of the particles produce through the detector volume. The propagation

of each particle through magnetic and electric fields can often be treated independ-

ently though a stochastic chain of time steps, that can an any point branch out to
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produce new particles through decays and other secondary particle generating phys-

ical processes, so local energy deposits in the different detector structures can be

recorded. After propagating all particles, the combination of all energy deposits in

the detecting volumes can be used to produce realistic detector responses.

Such type of detector simulation is referred to as full simulation, or fullsim for

short, and it is carried out for CMS generated events using a custom implementation

of the geometry, properties and response of the different detectors as well as the

magnetic field details, heavily reusing components from the GEANT4 toolkit [71]

for the simulation of the passage of particles through matter. Additional modules

are used to incorporate relevant modelling details such as the distribution of the

interaction vertices in the interaction region, referred to as vertex smearing, and the

addition of particles coming from additional soft interactions in the same collision

or from adjacent bunch crossings, denoted as pileup mixing, which can affect the

readouts and subsequent interpretation due to the overlapping of detector deposits

and detector sensitivity dead-times.

As can be conjectured by its level of detail, such simulation processes are very

time consuming, taking several minutes of CPU time given currently available com-

puting technologies, for producing a realistic detector readout for each initial set

of particles produced at a primary hard interaction. Given that oftentimes billions

of generated events (i.e. simulated observations) of common processes are needed

in order to obtain a realistic modelling of known types of interactions, alternative

simulation techniques are sometimes used. By trading off some accuracy with simu-

lation speed, the modelling of the physical processes and detector responses can be

simplified, reducing running times considerably, up to two orders of magnitude [72].

Alternatively, as initially stated at the beginning of this section, detailed simulated

observations can be used to directly parametrise low-dimensional summaries of the

detector readout, such as the reconstructed main quantities that will be presented

in the next section, by using approximate conditional probability density functions.

While this approach, implemented in software packages such as DELPHES [73], is

limited by the flexibility and accuracy of the modelling of the conditional probabilit-

ies, it is very useful as a very fast substitute of the full simulation chain for simplified

studies that aim to obtain an approximate estimate the expected sensitivity reach

or measurement accuracy of a given analysis. Peripherally related with the focus of

this work, the use of unsupervised machine learning techniques structurally similar

to those describe in Section 4.2.2 is being investigated to provide a fast simulation

alternative without relying in a simplistic parameterisations [74, 75].
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2.3.3 Event Reconstruction

In the previous sections, the generative mechanisms by which particles produce sig-

nals in the different detectors, as well as the techniques used to procedurally simulate

them with high fidelity, were summarised. In contrast with simulated events, the set

of underlying particles that were produced in the interaction region, and subsequently

detected, are not known a priori in real collisions. A very helpful task to understand

the nature of the fundamental interaction that likely happened in a collision is to

infer the type and properties of the particles that were probably produced on a given

collision given the detector output. Such procedure is generally referred to as event

reconstruction. The underlying problem for achieving such goal is the assignment of

detector readouts to the produced particle. This is not a simple problem, because the

total number or the relative multiplicities of the different particle categories in a given

event is unknown and variable, however expected to be large given the high-energy

and luminosity conditions of proton-proton collisions.

Reconstruction at CMS: Particle-Flow Algorithm

A hierarchical strategy is followed to perform event reconstruction at the CMS ex-

periment. First, the combined properties of small groups of low-level readouts for

each sub-detector in each collision are used to construct higher-level summaries that

distill the information regarding the origin, direction or energy of the particles. In

a second step, such high level constructs are linked by an algorithm based on the

expected properties of each particle type, to obtain a list of physics objects and

their relevant attributes, which would probably correspond to those that actually

were generated in the collision. Such approach, that is referred to as particle-flow

(PF) event reconstruction [70] within CMS, has proven very effective to obtain a

lower dimensional transformation of the detector readout that greatly simplifies the

interpretation and categorisation of events based on their particle content.

As mentioned before, the first reconstruction stage encompasses the combination

of detector traces in each sub-detector system to create higher level constructs. In

the tracking detector, this amounts to the association of location estimates for the

signals detected in all layers of the pixel and strip detector, referred to as hits, to

trajectories of charged particles, simply called tracks. This inverse measurement

problem is approached in CMS by using a combinatorial extension of the Kalman

Filter algorithm [76, 77, 65]. In broad terms, the algorithm starts by selection sets of

two-hit and three-hit associations from the inner layers, referred to as seeds, which
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are then extrapolated outwards and used to gather hits in the the other layers by

consecutive prediction and update steps, keeping all combinations that are deemed

compatible. An additional step is then carried out, that filters out all candidate

tracks under some pre-defined quality threshold and removes possible duplicates.

Once the set of hits that define each track are found, their parameters are fitted

again using a more detailed prediction step in the Kalman filter, thus obtaining

more accurate estimates for their origin, momentum and direction.

The reconstructed charged particle trajectories can be used to identify the spatial

locations where proton-proton interactions occurred in each bunch crossing, dubbed

primary vertices, by extrapolating them back to the collision region and looking

for overlapping subsets. In practice, a custom algorithm for vertex adaptive fitting

[78] is used in combination with deterministic annealing, to identify and compute

the vertices location and their uncertainty more accurately. Most primary vertices

correspond to soft scattering processes (pileup), and can be used to characterise the

position and size of the interaction region. In collisions where a hard interaction

occurs, the main primary vertex may effectively be identified with the one whose

linked tracks transverse momenta squared sum
∑
p2T is the largest. The distinction

of a main primary vertex is useful to mitigate the effect of pile-up interactions in

reconstruction by removing the contributions from particles linked to pileup vertices.

Regarding the calorimeter detector readouts, the initial step comprises the cluster-

ing of low-level deposits in each sub-detector, so as to identify the energy remnants

left by each individual particle. The clustering procedure starts by finding the calor-

imeter cells where the amount of deposited energy are local maximal, referred to as

seed deposits. The deposits from contiguous energy cells are grouped together until

their energy is smaller than twice the expected noise level, forming larger groups

referred to as topological clusters. Because such clusters might be the result of the

overlapping of the energy deposited by two or more particles, the final clusters are

identified by fitting a Gaussian-mixture model via the expectation-maximisation al-

gorithm, using the number of initial seeds present in the cluster as the number of

Gaussian components in the mixture. The fitted cluster amplitudes are thus ex-

pected to be heavily correlated with the energy deposited by an individual particle,

however extensive calibration based on a detailed simulation of the detector and

the assumed particle type is needed for accurate energy estimates. The resulting

calibrated clusters in each sub-detector (ECAL, HCAL and HF) is instrumental for

improve the energy measurement of charged hadrons, identifying and measuring the
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energy of neutral hadrons and photons, and to facilitate the identification and re-

construction of electrons.

Once the basic elements for event reconstruction have been constructed, charged

particle tracks and calorimeter clusters are linked together to form blocks. This step

is an attempt to group the different traces that particle can leave in the various sub-

detectors, by linking pairs of elements based on their distance in the (η, φ) plane and

other properties depending of the specific sub-systems considered. When considering

links between the inner tracker and calorimeter clusters, the curvature of the tracks

and other details regarding the detector geometry are taken into account. Calori-

meter cluster-to-cluster links between the HCAL and ECAL, and between the ECAL

and the pre-shower clusters are also sought. Additionally, ECAL clusters possibly

created by bremsstrahlung photons can also be linked to electron-like tracks if they

are consistent with an extrapolation of the track tangent. Finally, links between two

tracks due subsequent photon conversion via pair production are also considered if

the sum of track momenta matches the mentioned electron-like track tangent.

The outcome of the aforementioned procedure is a set of blocks of elements for a

given collision readout, formed by associating elements that have been directly linked

or share a common link with other elements. The following reconstruction step is

referred to as object identification, and it is based in the association of blocks to a

list of particle candidates, also known as physics objects. This is done sequentially,

starting out by the objects that more easily identified (e.g. muons) and progressively

masking out the blocks that are considered for each object until all particles can-

didates have been reconstructed. The reconstruction process is rather conservative,

given that most CMS data analysis share the same reconstructed physics objects,

therefore it is common to specify additional selection criteria on the resulting set

of objects based on their properties within each analysis to reduce the rate of fake

or wrong reconstruction. The rest of this section is devoted to discuss in more de-

tail the identification, calibration and common selection requirements on the main

reconstructed objects that are used within physical analyses.

Muon Reconstruction

Muons can be thought of as the easiest object to identify given the observed detector

readouts, because they are the only particle expected to reach the outer tracking sys-

tems (i.e. muon detecting system). Furthermore, the detecting volume far away from

the interaction region is much larger and hence the density of particle trajectories

is considerably lower. The sparse particle hits in each of the muon detector systems
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are linked to form tracks that can be combined using a Kalman filter, similarly to

what is done for the inner tracker as described earlier this section. To increase the

measurement accuracy and reduce the fake rate, for analyses directly studying final

states including muons, oftentimes a matching between the track segments in the

muon detectors and a those in the inner tracker is required. The details and per-

formance of the reconstruction procedure depend on the momenta of the muon, and

are described in more detail the following reference [65].

The main challenges of muon reconstruction include the dismissal of muons pro-

duced by cosmic rays hitting the atmosphere and going through the CMS detector,

simply dubbed as cosmic muons, as well as the rejection of signals from very energetic

hadrons produced in the collision that are able to transverse the dense calorimeter

and magnet section and still produce a response in the muon detectors, that are re-

ferred to as punch-through hadrons. In addition, muons are a common product of the

decay of hadrons and it is thus important to differentiate between muons produced in

the primary interaction, or prompt muons, and those produced in a secondary decay

of another particle. The amount of energy deposited around the muon trajectory,

called muon isolation, as well as the distance to the primary vertex are important

variables for such distinction.

Electron and Photon Reconstruction

Electron reconstruction is more challenging because it uses the readouts from the

inner tracker and the ECAL, both detectors being sensitive to additional charged

particles coming out from the interaction volume, and the latter also to high-energy

photons. Furthermore, electrons lose energy in their curved trajectories through the

tracker, thereby complicating an accurate track reconstruction. The latter can be

accounted for during the track reconstruction by using a Gaussian-Sum filter exten-

sion fo the Kalman filter [79] algorithm, which can be used to model the previously

mentioned non-linearities. The procedural details of the identification and prop-

erty measurement for electrons depend on their transverse momenta. Lower energy

electrons are more accurately indentified using the inner tracker hits, while the elec-

tromagnetic calorimeter is more useful at higher energy ranges. These and other

details regarding electron reconstruction are discussed in the following reference [80].

The electron momentum direction is measured using the track information, while

the energy is estimated by combining both information from the tracking and calor-

imeter detectors. In order to obtain precise energy and momentum estimates, under

5% in the full pseudo-rapidity range, a calibration step is required to correct for non-
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clustered energy deposits and pile-up contributions. Similarly to what is done for

muons, additional quality criteria can be applied to distinguish between the electrons

produced in the primary interaction and those coming from hadronic decays or con-

verted photons, including conditions on several track-based and calorimeter-based

observables as well as isolation requirements, the latter ensuring that no significant

energy from hadrons was deposited around the electron trajectory.

High-energy photons are identified and reconstructed using only the calorimeter

[81], when the energy distribution in the ECAL calorimeter cells is consistent with

that expected from a photon shower. Energy isolation requirements are also essential

to distinguish photons coming from hadrons or secondary radiative decays, which

will be discussed together with hadrons, from those originated as a direct product

of the primary interaction. Additional quality and fine-tuned calibration is often

used, for example in the H → γγ analysis, to reduce the fake rate and obtain higher

momentum resolution.

Jet Reconstruction and B-Tagging

Once muons, electrons and isolated photons in the event have been identified, the

remaining particle-flow blocks (i.e. linked tracks and/or calorimeters deposits) are

interpreted either as neutral or charged PF candidates [70]. These physics object

candidates account for charged and neutral hadrons coming from the hadronisation

of partons produced in the collision or their subsequent decays, as well as non-isolated

photons radiated during those processes. When the aim is studying high-energy fun-

damental interactions that produce partons or other parton-decaying intermediate

particles (e.g. H → bb̄), such reconstructed objects are not directly practical because

their individual momenta cannot be linked with original parton momentum. This is

because the processes of fragmentation, hadronisation, decays and associated radi-

ation are stochastic, producing tree-like structures with multiple leafs as discussed

in Section 1.3.4, difficulting most attempts to uniquely identify each parton with its

decay chain. In addition, contributions from additional soft pileup interactions may

further complicate the mentioned assignment, while this factor is lessen by charged

hadron subtraction techniques (CHS) [82] based on removing candidates not associ-

ated with a primary vertex.

A possible way to construct simpler observables that can be linked with the ori-

ginal partons is to create composite objects based the remaining candidates through

clustering. These objects, referred to as jets, are an attempt to represent the chain of

hadrons and radiated energy produced, so the original parton energy and momentum

62



2.3 Event Simulation and Reconstruction

can be recovered from the summed of the components. They can be geometrically

viewed as cones coming from the interaction region, covering an angular area ∆R

of a given size in an outwards direction, that contains a collimated set of hadrons

and radiated photons flying away a direction similar to the original parton. Sev-

eral jet clustering algorithms exist, each characterised by a given a size or resolution

parameter R and a recombination scheme, defining how candidates are combined to

create the composite clustered object.

Due to the properties of hadronisation and QCD radiation processes, a common

requirement for such clustering algorithms is that they do not change significantly

when a particle is split in two collinear ones (i.e. they are collinear safe) or ad-

ditional soft radiation is produced by one of the clustered particles (i.e. they are

infrared safe), which greatly simplifies direct comparison with generation level ob-

servables. In particular, in the analysis described in Chapter 5, the default jet CMS

reconstruction is extensively used, which is based on the anti-kT algorithm [83]. This

is a sequential algorithm, also referred to as hierarchical agglomerative clustering in

statistical language. The algorithm starts by assigning each candidate to each own

cluster and successively merging them according to the following distances between

two jets indexes as i and j respectively:

dij = min(p2aT i, p
2a
Tj)

∆R2
ij

R2
and diB = p2aT i (2.10)

where ∆R2
ij is the η−φ plane distance as defined in Section 2.2.1, p2aT i and p2aTj are the

transverse momenta of each jet, R is the size parameter, and a = −1 for the anti-kT

algorithm. The algorithm starts by computing all distances dij and diB for all initial

candidates, which are placed in a list. If the minimum corresponds to a given distance

between two candidates dij then both candidates are removed from the candidate

list and group together by summing their four momenta forming a composite object,

which is in turn added to the list. Alternatively, if the minimum distance is diB, the i

candidate is assigned as a jet and removed from the list. Such procedure is recursively

applied until the list is empty, because all single and composite candidates have been

grouped with other candidates or defined as a jets of a given size R. The choice of

the parameter R has to provide a balance between covering all the radiation from

the initial parton and being increasingly affected by noise produced by soft particles.

During the data taking period considered in Chapter 5, a cone size R = 0.4 was

used for the default jet collection, used in the analysis. Larger jet (e.g. R = 0.8)

cones are used in analyses that include final states with highly boosted intermediate
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Some properties of the decay of B and D hadrons can be used to distinguish heavy

flavour jets from those produced by light quarks and gluon hadronisation processes.

The lifetimes of heavy flavour hadrons are often long, e.g. 1.638 ± 0.004 ps and

1.519±0.005 ps for B+ and B0 [8], respectively. When long-lived hadrons are highly

boosted, they can move several millimetres away from the primary vertex where

they were produced before decaying. Thus, heavy flavour jets are associated with

the presence of displaced charged tracks and secondary vertices (SV) within the jet,

as depicted by Figure 2.11. In addition, both B or D hadron decays are characterised

by a large decay multiplicity (average 5 charged daughters) and a high probability

(36%) of producing a lepton in their decays chain. Flavour tagging techniques, often

referred to as b-tagging or c-tagging when the purpose is to identify a jets originating

from a particular type of parton, combine quantitative information related with the

various properties previously mentioned to distinguish the flavour of the parton that

generated a given jet.
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Figure 2.12: Misidentification probability (in log scale) for jets originating from c (dashed
line) and light quarks or gluons (solid line) versus b-tagging efficiency, for differ-
ent b-tagging algorithms available in CMS during 2016. The misidentification
probability and efficiencies are obtained from the subset of reconstructed jets
with a pT > 20 GeV from a large tt̄ simulated sample. The figure has been
adapted from [85].

Heavy flavour tagging, particularly b-tagging can very useful for analyses consid-

ering jets in final states, such as the search for Higgs pair production with CMS

data described in Chapter 5. The misidentification versus efficiency curve of the

main b-tagging algorithms that were available in 2016 for high-energy jets is shown
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in Figure 2.12. They differ in the subset of information associated to the jet that

is considered and the specifics of the multivariate techniques used to construct the

final discriminator. The simplest b-tagging algorithm, referred to as jet probability

(JP) is only based a calibrated estimation of the displaced track probabilities. The

b-tagging discriminators pertaining to the combined secondary vertex (CSV) fam-

ily combine displaced track information with reconstructed secondary vertex. The

improvement between different CSV-based b-tagging algorithms is due to the use of

more advanced statistical learning techniques and additional discriminating variables

[85]. The CMVAv2 algorithm, which is used in the analysis included in Chapter 5,

combines the output from JP and CSVv2 algorithms with two taggers that summarise

the information from non-isolated electrons and muons inside the jet.

In Section 4.3.2, the role of recent advances in machine learning techniques for

particle identification and regression are discussed in more detail, focussing on the

development and integration on a new deep learning based multi-category jet tagger

referred as DeepJet. The DeepJet tagger outperforms both CMVAv2 and DeepCSV

(which also leverages deep learning technologies), while providing additional dis-

crimination capabilities (e.g. gluon-quark separation). It is worth mentioning that

jet tagging techniques can also be applied for identifying substructure in larger radius

jets, which are very relevant for analyses where highly boosted intermediate objects

are expected, but are not discussed in this work.

Missing Transverse Energy

As hinted in Section 2.3.1, neutrinos can be produced at high-energy proton-proton

collisions, and they leave the detector undetected. Nevertheless, the presence of

neutrinos (or other hypothetically weakly-interacting particles) can be inferred by

the total momentum imbalance in the transverse plane of the event. Within the

Particle-Flow reconstruction framework, this accounts to computing the vectorial

sum of the transverse momenta of all PF reconstructed objects:

~pmiss
T =

∑
~pmiss
T i (2.11)

where ~pmiss
T is the total missing transverse momentum, whose Euclidean norm modulo

is the missing transverse energy Emiss
T , and ~pmiss

T i is the transverse momentum each

PF candidate.

It is worth remarking that some hadron decay processes can produce neutrinos,

therefore a non-zero transverse missing energy Emiss
T does not necessarily mean that
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weakly-interacting particles were produced in the hard interaction or by its direct

products. Furthermore, any mis-detections or mis-measurements of the momenta of

some of the produced particles can lead to transverse energy imbalances.
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3 Statistical Modelling and

Inference at the LHC

Life is complicated,

but not uninteresting.

Jerzy Neyman

In this chapter we will consider the problem of extracting quantitative information

about the validity or properties of the different theoretical models (see Chapter 1),

which can be made given the experimental data acquired in a controlled setting

(see Chapter 2). We will begin by formally defining the properties and structure of

the statistical models used to link the parameters of interest with the experimental

data, followed by a description of the inference problems in experimental high-energy

physics and how they can be tackled with statistical techniques. Some relevant

particularities of the inference problems typically of interest of the LHC experiments

will be discussed, mainly the generative-only nature of the simulation models and

the high dimensionality of the data. As we will see, these issues are intimately

related, the former requiring the use of likelihood-free inference techniques such as

constructing non-parametric sample likelihoods, which in turn demand for lower

dimensional summary statistics.

3.1 Statistical Modelling

An essential element for carrying out statistical inference is the availability of an

adequate statistical model. In this section, the main characteristics of the statist-

ical models used in particle collider analyses will be formally developed from first

principles. This methodology allows a mathematical approach to their structure and

factorisation. This will prove useful to establish a formal link between the techniques

discussed in the next chapters and the simulation-based generative models that are

often used to describe the data. Additionally, the role and importance of event selec-

tion, event reconstruction and dimensionality reduction - i.e. the compression of the
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relevant information from high-dimensional data into a lower-dimensional represent-

ation, such as the output of a multivariate classifier - will be described in the larger

statistical framework of an LHC analysis. Lastly, the main approaches commonly

followed to construct synthetic1 likelihoods that efficiently connect summaries of the

detector observation with the parameters of interest will be illustrated.

3.1.1 Overview

Let us suppose that we record a collection of raw detector readouts D = {x0, ...,xn}
for a total of n bunch crossings at a particle collider experiment, such as CMS at

the LHC (see Section 2.2). Note that vector notation is used for each individual

readout, also referred to as event, because for mathematical simplification we will

be assuming that each detector observation can be embedded - in the mathematical

sense - as a member of a fixed size d-dimensional space, i.e. x ∈ X ⊆ R
d, even

though variable-size sets or tree-like structures might be a more compact and useful

representation in practice, as will be discussed later. As a starting point, let us

assume for simplicity that the detector readout for every bunch crossing is recorded,

i.e. no trigger filtering system as the one described in Section 2.2.7 is in place, hence

after each bunch crossing i a given raw detector readout xi will be obtained. From

here onwards, each event/observation/readout will be assumed to be independent

and identically distributed (i.i.d.), a reasonable approximation if the experimental

conditions are stable during the acquisition period as discussed at the beginning of

Section 2.3; consequently the event ordering or index i are not relevant.

Experiment Outcome

Within the above framework, we could begin by posing the question of how we expect

the readout output, which can be effectively treated as a random variable x, to be

distributed and how such distribution is related with the (theoretical) parameters we

are interested in measuring or the model extensions we are interested in testing using

the experiment. We would like then to model the probability density distribution

function generating a given observation xi conditional on the parameters of interest,

that is:

xi ∼ p(x|θ) (3.1)

1In this work, synthetic likelihood will be used to refer to likelihoods that are not based on the
probability distribution function of the generative model, but on non-parametric approximations
using low-dimensional summaries of the data.
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where θ ∈ Θ ⊆ R
p denotes all the parameters we are interested in and affects the

detector outcome of collisions. As will be extensively discussed in this chapter, an

analytical or even tractable approximation of p(x|θ) is not attainable, given that we

are considering x to be a representation of the raw readout of all sub-detectors, thus

its dimensionality d can be of the order O(108). It is worth mentioning that even

d is very high, each observation is usually extremely sparse given that most of the

detectors would not sense any signal. The total number of observations n is also very

large at modern colliders, e.g. a collision occurs each 25 ns at the LHC. Furthermore,

the known interactions that produce the set of particles of the event as well as the

subsequent physical processes that generate the readouts in the detectors are overly

complex, and realistic modelling can only be obtained through simulation, as jointly

reviewed in Section 1.3 and Section 2.3.

Mixture Structure

While a detailed closed-form description of p(x|θ) cannot be obtained, we can safely

make a very useful remark about its basic structure, which is fundamental for simply-

fing the statistical treatment of particle collider observations and simulations, and

was already hinted at in Section 1.3.1 when discussing the possible outcomes of fun-

damental proton-proton interactions. The underlying process generating x can be

treated as a mixture model, which can be expressed as the probabilistic composition

of samples from multiple probabilistic distributions corresponding to different types

of interaction processes occurring in the collision. If we knew the probabilistic distri-

bution function of each mixture component pj(x|θ) then p(x|θ) could be expressed

as:

p(x|θ) =
K−1∑

j=0

φj pj(x|θ) (3.2)

where K is the number of mixture components and φj is the mixture weight/fraction,

i.e. probability for a sample to be originated from each mixture component j. The

specifics of the mixture expansion as well as the total number of mixture components

are not uniquely defined, but are based on the independence of groups of physical

processes, as will be discussed later. Practically, each pj(x|θ) will be intractable due

to the exact same reason that p(x|θ) is intractable, thus a more sensible description

of the mixture model is its generative definition, described by the following two-step

sampling procedure:

zi ∼ Categorical(φ) −→ xi ∼ pzi(x|θ) (3.3)
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describing the sampling of random integer zi ∈ {0, . . . ,K − 1} from a random cat-

egorical2 distribution and the subsequent sampling of the corresponding mixture

component indexed by zi, where φ = {φ0, . . . , φK−1} is the vector of probabilities

for each of the mixture components. For here onwards, mixture models might in

some cases be portrayed by using the analytical depiction as in Equation 3.2, always

noting that the generative approach might be more convenient for the actual estim-

ation of expectation values when the mixture component distributions pj(x|θ) are

not tractable.

Mixture Components

The mixture model structure can be directly linked to the physical processes happen-

ing in fundamental proton-proton collisions and within the detectors used to study

them, as described in previous chapters. As an additional simplification for now, let

us neglect the effect of multiple particle interactions, described in Section 2.1.3. For

each proton bunch crossing, hard interactions (i.e. ones associated with a large char-

acteristic energy scale Q2, whose cut-off does not have be specified for this particular

argument) between partons might or might not occur, given the stochastic nature

of the scattering processes. We could nevertheless associate a probability for a hard

interaction happening φhard, as well to it not happening φnot-hard = 1−φhard. Given

the proton colliding conditions at the LHC, the latter case is much more likely, i.e.

φnot-hard ≫ φhard, yet the relative probabilities depend on the energy scale cut-off

considered.

We can further break each previously mentioned category in sub-components cor-

responding to different types of processes. The hard interaction category can itself

be expressed as a mixture of groups of physical interactions that can produce a hard

scattering3, so the probability φhard can be expresses as the following sum:

φhard = φ0 + · · ·+ φK−2 =
∑

k∈H

φk (3.4)

2Here categorical distribution refers to the special case of the multinomial distribution were the
number of trials is one.

3The term group/type of interactions here generally refers to a set of processes that could be
generatively modelled independently, not to quantum mechanical amplitudes or intensities of a
process. For example, each group can correspond to a group of processes with a given final state
pp → X which could be modelled by sampling its differential cross section from Equation 1.32
followed by parton showering and detector simulation. The group category is a latent/hidden
variable for each event, i.e. it is not observed.
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where H represents a given set of independent contributions k, each characterised by

a distribution pj(x|θ), which depends on the group j of processes that produce hard

scatterings. Such a set is not uniquely defined nor its the number of elements, given

that any two components a and b in H can be substituted by c, where φc = φa + φb

and

pc(x|θ) =
φa

φa + φb
pa(x|θ) +

φb
φa + φb

pb(x|θ) (3.5)

which can be applied recursively to alter the number of components in the set.

Independently on the basis chosen for the mixture expansion, in general it is not

possible to infer the latent category zi (see Equation 3.2 given an observation xi,

because xi may be in the support of several mixture components pj(x|θ). Only

probabilistic statements about the generative group j can be made based on the

observations.

A convenient definition for the set H is one that is aligned with the way theoretical

calculations are carried out, given that the relative probability for a given process

φpp→X will be proportional to its total cross section σ(pp → X), while its readout

distribution will depend on its differential cross section dσ(pp→ X) and its support

(i.e. subset of the function domain not mapped to zero). In fact, given that the

total and differential cross sections are proportional to the matrix element squared

(see Section 1.1.1) of a given process dσ(pp → X) ∝ |M|2, it is often possible to

further divide each process into the cross product of Feynman diagram expansions

(including interference terms). This can be a very useful notion for some analysis

use cases, and is related with the approach that will be used in Chapter 5.

Signal and Background

Oftentimes, we are interested in studying a subset S ⊂ H of all the hard interaction

processes, which will be referred to as signal set in what follows. This can be a single

type of physical process σ(pp→ X), e.g. the inclusive production of a pair of Higgs

bosons σ(pp → HH + other), or several, which it can be effectively viewed as one

mixture component using Equation 3.5. We can accordingly define the background

subset B = H − S, as the result of all other generating processes in H that we

are not interested in, a definition which could also be extended to include collisions

where non-hard processes occurred if needed. Such distinction between generating

processes of interest S and background B is at the root of every analysis at the LHC

and it is motivated by the fact that small changes of the parameters of the SM or its
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theoretical extensions/alternatives affect only a subset of the produced processes at

leading order, those that are governed by the interactions linked to the parameter.

As a matter of a fact, customarily statistical inference at the LHC is not carried

out directly on the parameters of the SM or the extension being studied, but on

the relative frequency of the set of processes of interest φS or the properties of

its distribution pS(x|θ). As previously mentioned, the former is proportional to

the cross section of the signal processes σS (see Section 1.3) while the latter can

include properties such as the mass of an intermediate particle resonance4 (e.g. the

Higgs mass mH) or the general behaviour of the differential distribution (i.e. using

unfolding methods to remove the experimental effects, which are not discussed in

this work). Those parametric proxies can then be used by comparing them with the

theoretical predictions of the SM or the alternative considered, in order to exclude it

or constrain its fundamental parameters (i.e. those that appear in the Lagrangian).

Event Selection

Given the mixture model structure expected for p(x|θ) and the fact we are only

interested in a small amount of the readout generating processes for each collision,

because in general φS ≪ φB ≪ φnot-hard, the effect of trigger or any other event

selection should be considered. The role of event selection is to reduce the fraction

of events that do not contain useful information for the inference task of interest.

Trigger selection can be thought of as a technical requirement, reducing the total rate

of detector readouts recorded to match the available hardware for data acquisition,

as discussed in Section 2.2.7. The purpose of analysis selection, as will be discussed

in Chapter 5, is instead to reduce the expected contribution of background processes

that are not well-modelled by simulation, as well as to the increase the expected

fraction of signal events in synthetic counting likelihoods, such as those which will

be detailed in Section 3.1.3.

In general mathematical terms, any deterministic event selection can be thought

of as an indicator function 1C : X −→ {0, 1}, of a given subset of the set of possible

detector readouts C ⊆ X . The indicator function 1C(x) can be defined as:

1C(x) =




1 if x ∈ C

0 if x /∈ C
(3.6)

4In particle physics, a resonance is a peak around a certain energy in the differential cross section
associated with the production of subatomic particles.
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where the specific definition of such function depends on the definition of the

subset C, e.g. a simple cut on a one-dimensional function f : X −→ T ⊆ R of

the readout f(x) > tcut. Any indicator function can also be viewed as a boolean

predicate function, so the event selection can also be expressed as a combination of

selection functions, i.e. if the set C = A ∩ B is the intersection between two subsets,

the indicator function of C can be simply expressed as the product 1C = 1A ·1B. This

framework is flexible enough to represent all deterministic event selections, and it

could also be extended by an independent non-deterministic term without affecting

the rest of the considerations presented in this chapter. A non-deterministic factor

could be useful to model for example trigger prescales, which are trigger decisions

based on randomly selecting a fraction of all the selected events to be recorded,

ensuring that the total rate is manageable.

In practice, a given selection 1C(x), likely based on a composition of simple criteria,

would have been imposed on the recorded detector readouts before any statistical

analysis is carried out. The structure of the statistical model g(x|θ) resulting after

applying an arbitrary selection 1C(x) on a mixture model as the one described in

Equation 3.1 can be obtained by multiplying the probability density by 1C(x). After

including the relevant normalisation term, the resulting probability distribution can

be expressed as:

g(x|θ) =
1C(x)

∑K−1
j=0 φj pj(x|θ)

∫ (
1C(x)

∑K−1
j=0 φj pj(x|θ)

)
dx

=

K−1∑

j=0

(
φjǫj∑K−1
j=0 φjǫj

)
gj(x|θ) (3.7)

where gj(x|θ) = 1C(x)pj(x|θ)/ǫj is the probability density function of each mix-

ture component after the selection, ǫj =
∫

1C(x)pj(x|θ) is the efficiency on the

selection on each mixture, and the integral sign in the denominator in the last

expression has been simplified by noting that
∫
gj(x|θ)dx = 1. From Equation

3.7 it becomes clear that the statistical model after any event selection is also a

mixture model, whose mixture components are gj(x|θ) and mixture fractions are

χj = φjǫj/
∑K−1

j=0 φjǫj . This fact will be very relevant to build statistical models of

the observed data after an event event selection is in place.

So far, no explicit assumptions on the probability distribution functions of each

mixture component j or the details of the event selection function 1C(x) have been

considered, in order to keep the previously developed modelling framework as general

as possible. In the next sections, it will become increasingly clear how pj(x|θ), and in
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turn gj(x|θ) and the efficiency ǫj , can be modelled by generating simulated detector

readouts produced by a given process j.

3.1.2 Simulation as Generative Modelling

The physical principles underlying the simulation of detector readouts, or events,

for a given hard proton-proton interaction process were reviewed in Section 1.3 and

Section 2.3. Instead of focussing on the procedural details of event generation, the

focus of this section is the study of the simulation chain as a generative statistical

model, together with its basic structure and properties, that will be useful later

to understand many analysis techniques that are commonly used in experimental

particle physics.

For simplicity, we will be considering the statistical model describing the distribu-

tion of observations of detector readouts before any event selection, what was referred

to as p(x|θ) in the previous section. Always taking into account that the distribution

after any arbitrary deterministic event selection 1C(x) is also a mixture model (see

Equation 3.7) and samples under the corresponding probability distribution func-

tions gj(x|θ) and mixture fractions χj can easily obtained from the non-selected

simulated events, as it is actually done in practice.

Observable and Latent Variables

The first step to build a generative statistical model is to define what are the observed

variables and what are the hidden quantities, referred to as latent variables, that

explain the structure of the data. For particle collider experiments, we may consider

the full detector readout x ∈ X ⊆ R
d as the only observable variable, given that

any other observable can be expressed as a function of the raw readout, as will be

discussed in Section 3.1.3. The probability density function of the data p(x|θ) from

a generative standpoint can be written as an integration of the joint distribution

p(x, z|θ) over all latent variables z of an event:

p(x|θ) =
∫
p(x, z|θ)dz (3.8)

where θ is a vector with all model parameters, which normally are global (same

for all the observations) and include the theory parameters of interest as well as

any other parameter that affect the detector readouts. While the true generative

model of the data p(x, z|θ) is unknown, knowledge about the underlying physical
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processes described in in Section 1.3 and Section 2.3 can be used to build a generative

approximation of p(x, z|θ) which can describe the observed data realistically and be

used to carry out inference on the parameters of interest.

In fact, one of the most relevant latent variables at particle colliders has been

already introduced with the generative definition of a mixture model in Equation

3.3, the mixture assignment integer zi ∈ {0, . . . ,K − 1}. This latent variable repres-

ents which type of fundamental interaction occurred in the event, and is useful to

exemplify the main property of latent variables: that they are not observed but can

only (at most) be inferred. Let us consider the problem of finding out the type of

interaction j that caused a single detector readout observation xi. As long as xi is

in the support space of more than one of the mixture components pj(x|θ), which is

almost always the case, only probabilistic statements about the type of interaction

originating xi can be made, even if the pj(x|θ) are known. In practice, pj(x|θ)
are not known analytically so probabilistic classification techniques can be used to

estimate the conditional probabilities based on simulated samples, as discussed in

Chapter 4.

Structure of Generative Model

Other than the basic mixture model structure, our understanding of the underly-

ing physical process occurring in proton-proton collisions can be used to recognise

additional structure in the generative model by means of factorising the joint dis-

tribution p(x, z|θ) in conditional factors matching the various simulation steps and

their dependencies:

p(x, z|θ) = p(x|zd)p(zd|zs)p(zs|zp)

K−1∑

j=0

p(zi = j|θ)p(zp|θ, zi = j) (3.9)

where each factor can be defined as follows:

• p(zi = j|θ) = φj(θ) is the probability of a given type of process j occurring,

which is usually a function of theory parameters θ.

• p(zp|θ, zi = j) is the conditional probability density of a given set of parton-

level four-momenta particles (characterised by the latent representation zp ∈
Zp) of being the outcome of a group of fundamental proton interaction pro-

cesses pp −→ X indexed by the latent variable zi ∈ Zi, which might also be a

function of theory parameters θ.
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• p(zs|zp) is the conditional density of a given parton-shower outcome. zs ∈ Zd

as a function of the parton-level outcome.

• p(zd|zs) is the conditional density of a set of detector interactions and readout

noise zd ∈ Zd as a function of the parton-shower output.

• p(x|zd) is the conditional density of a given detector readout x ∈ X as a

function of the detector material interactions and detector readout noise.

The dimensionality of the latent space greatly increases with each simulation step,

from a single integer for Zi, to O(10) parton four-momenta variables within Zp, to

O(100) after the parton-shower Zs, and finally to O(108) in the detector interac-

tion latent space Zd and also the observable readout space X . In the factorisation

presented in Equation 3.9, the dependence on the parameters has only has been made

explicit for p(zi|θ) and p(zp|θ, zi), that is because the theoretical parameters of in-

terest θ often only affect the rate of the different fundamental processes and their

differential distributions, which correspond to the mentioned conditional probability

distributions. In the actual simulation chain, all conditional factors typically depend

on additional parameters which might be uncertain, and whose effect and modelling

will be discussed in Section 3.1.4.

As previously mentioned, computer programs can be used to realistically simulate

detector observations. For simulated observations, not only the final readout is

observed, but all latent variables can be obtained from the intermediate steps of the

generative chain. These variables, in particular zp and zs, are commonly referred

as generator level observables, and are extremely useful to construct techniques that

approximate the latent variables from the detector readouts. In fact, the whole

simulation chain can be viewed as a probabilistic program [86, 87], thus each of the

factors in Equation 3.9 can be further broken down as a sequence of random samples,

which can be used to speed up latent variable inference based on the execution traces,

i.e. recorded sequences of random numbers generated for each observation.

Some joint factorisations are particularly useful for data analysis and simulation,

such as the one making explicit the dependence between the differential partonic

cross sections and the parton configuration in the collision, because it allows to factor

out the density of the latent variables zPDF associated with the parton components

(i.e. flavour and momenta of each interacting parton and factorisation scale µ2F , as

depicted in Section 1.3.3). Each mixture component j in Equation 3.9, which repres-

ents a group of fundamental interactions between protons pp −→ X, can be expressed

as the product of the probability of a given parton configuration p(zPDF|θPDF) and
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a mixture over all parton configurations that can that produce pp −→ X, referred

as L in the following expression:

p(zi|θ) p(zp|θ, zi) = p(zPDF|θPDF)

g∈L∑
p(zf = g|θ, zPDF)p(zp|θ, zf = g) (3.10)

where p(zf = g|θ, zPDF) is the relative probability of given partonic process g given a

parton configuration zPDF and p(zp|θ, zf = g) is the probability distribution function

of the parton-level particles produced as a result of the interaction for a given partonic

process g, which is proportional to the partonic differential cross section dσ(ij → X).

This factorisation is basically a probabilistic model version of Equation 1.32, dealing

with the QCD factorisation of the parton distribution functions and the hard process

differential cross section.

Another relevant phenomenon that can be made explicit in the joint distribution

p(x, z|θ) is the effect of multiple hadron interactions in the collision, or pileup, as

discussed in Section 2.1.3. Given that each proton-proton interaction is independent

from the others, the effect of pileup interactions can be considered by augmenting

the factor representing the conditional probability density of the detector interaction

and noise as a function of the hard interaction parton shower output p(zd|zs) as

follows:

p(zd|zs) = p(zd|zs, zpileup)p(zpileup|θpileup) (3.11)

where zpileup is a latent variable representing the details about the pileup interactions

that happened in a given collision (i.e. number of interactions and their corresponding

particle outcome), and θpileup are the bunch crossing and luminosity parameters that

affect the pileup distribution.

Further structure in the generative model can be often found, depending on the

process being generated, the modelling assumptions, and the latent space represent-

ation chosen. As an example, it is often useful to factorise out the latent subspace

that depends directly on the subset of parameters of interest from those that do not.

The conditional observations in that latent subspace can sometimes be analytically

expressed, or their dimensionality may be low enough to use non-parametric density

estimation techniques effectively, which can greatly simplify the modelling of changes

in the parameters of interest.
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Simulated Observations

The mentioned mixing structure of the probability distribution function p(x|θ) greatly

simplifies the simulation of realistic observations, because large datasets Sj = {x0, ...,xm}
of simulated observations for each type of interaction j can be simulated before any

event selection. The expected value of any measurable function of the detector

readout f(x) for events coming from a given process j can be expressed as:

E
x∼pj(x|θ)

[f(x)] =

∫
f(x)pj(x|θ)dx ≈ 1

m

xs∈Sj∑
f(xs) (3.12)

where the last terms approximates the integral as the sum over all stochastic simu-

lations for a given process. The previous Monte Carlo approximation can be used to

estimate the selection efficiency ǫj , as defined in Equation 3.7, after any deterministic

event selection 1C(x):

ǫj = E
x∼pj(x|θ)

[1C(x)] =

∫
1C(x)pj(x|θ)dx ≈ 1

m

xs∈Sj∑
1C(x) (3.13)

which simply corresponds to the number of simulated observations that pass the

selection divided by the total number of simulated observations m. Lastly, the ex-

pected value of any measurable function f(x) after a given event selection 1C(x) for

events generated by a given process j can be approximated by:

E
x∼gj(x|θ)

[f(x)] =
1

ǫj

∫
f(x)1C(x)pj(x|θ)dx ≈ 1

ǫjm

xs∈Sj∑
f(xs)1C(x) (3.14)

which corresponds to the mean of f(x) for all the events that passed the selection,

noting that if all the events passed the selection (i.e. 1C(x) = 1), then Equation 3.12

would be recovered.

While we have been dealing independently with the estimation of arbitrary expec-

ted values for a given mixture component j, the computation of expected values of

any measurable function f(x) under the total mixture distribution can be easily be

expressed as function of expectations of mixture components:

E
x∼g(x|θ)

[f(x)] =

∫
f(x)

K−1∑

j=0

χjgj(x|θ)dx ≈
K−1∑

j=0

χj E
x∼gj(x|θ)

[f(x)] (3.15)
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where χj = φjǫj/
∑K−1

j=0 φjǫj is the mixture fraction after selection (see Equation

3.7). While the problem of estimation of expected values might seem unrelated to

the inference problem at hand, in Chapter 3.1.3 it will become evident that the

construction of non-parametric likelihoods of summary statistics can be reduced to

the estimation of expected values.

Oftentimes, the simulated observations are generated using a somewhat different

probability distribution than that of experimental data, maybe because some of the

generating parameters are not known precisely beforehand (e.g. the properties of

pileup interactions). Alternatively, we might want to use a single set of simulated

observations to realistically model observables corresponding to a different value of

the parameters θ or even to compute observables under a different process j. Let us

suppose that the samples were generated under pQ(x|θQ) while we want to model

samples under pR(x|θR). In that case, if both distributions have the same support,

we can express the expectation value under the desired distribution as:

E
x∼pR(x|θQ)

[f(x)] =

∫
f(x) pR(x|θR)

pQ(x|θQ)pQ(x|θQ)dx
∫ pR(x|θR)
pQ(x|θQ)pQ(x|θQ)dx

≈
∑xs∈Sj w(xs)f(xs)∑xs∈Sj w(xs)

(3.16)

which is analogous to what was done in Equation 3.12, but accounting for a weight

w(xs) = pR(xs|θR)/pQ(xs|θQ) for each simulated observation. This technique can

be also used together with an arbitrary event selection 1C(x) simply by considering

as event weight the product wC(xs) = 1C(x)w(xs), which amounts to summing over

the selected events. In particle physics experiments, the probability distribution

functions pQ(x|θR) and pQ(x|θR) are most likely intractable, thus estimation of

wC(xs) has either to be carried out by non-parametric density estimation in a lower

dimensional-space of the detector readouts (discussed in Section 3.1.3) or by directly

estimating the density ratio via probabilistic classification as will be discussed in

Chapter 4.

As previously mentioned, an advantage of using simulated observations is that the

latent variables Hj = {z0, ..., zm} for a given simulated set of observations Sj =

{x0, ...,xm−1} are known. This allows to rewrite the weight w(xs, zs) for a given

event as the ratio of joint distributions:

w(xs, zs) =
pR(xs, zs|θR)
pQ(xs, zs|θQ)

=
pR(x|zd)pR(zd|zs)pR(zs|zp)pR(zp|θR)
pQ(x|zd)pQ(zd|zs)pQ(zs|zp)pQ(zp|θQ)

(3.17)
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where the last term is an expansion of each joint distribution as a product of the con-

ditional distributions discussed in Equation 3.9. If the difference between pR(x|θR)
and pQ(x|θQ) is contained in one of the factors of the joint distribution, which is

often the case, most of the factors in Equation 3.17 cancel out and we are left with

a much simpler problem of density ratio estimation in the latent space. This is often

what is done to model the effect of a different pileup distribution or alternative par-

ton distribution functions, further factoring the joint distribution to include explicit

dependencies with respect to zpileup or zPDF, as done in Equation 3.11 and Equation

3.10 respectively. The case when the difference between distributions is contained in

a subset of the parton-level latent variables is one of special relevance, because the

event weight for a given event w(zs) can be expressed as the ratio:

w(zs) =
pR(zp|θR)
pQ(zp|θQ)

(3.18)

which is referred to as generator-level re-weighting, a procedure that in some cases

can even be done analytically. The concept of re-weighting will be useful to model

different parameter points in Chapter 5 with a single set of simulated observations

as well as to understand how the effect of varying parameters can be modelled via

differentiable transformations in Chapter 6.

3.1.3 Dimensionality Reduction

In the previous overview of the basic statistical modelling principles of experimental

high-energy physics, the structure and properties of the probability distribution of the

full detector readout x ∈ X have been considered. The consideration of the detector

readout as single observable variable x in the generative model greatly simplifies

the modelling narrative, plus also allows to include the effect of any arbitrary event

selection as a deterministic function 1C(x). Nevertheless, the high-dimensionality of

the readout space x ∈ X (i.e. O(108)) complicates its direct use when comparing

simulated and recorded observations, which is crucial when carrying out any type of

statistical inference.

The high-dimensionality of the raw detector readout space x ∈ X also makes it

very difficult to specify an effective event selection 1C(x) that is able to reduce the

contributions from non-interesting or not well-modelled background processes. This

motivates the use of a dimensionality reduction function f(x) : X −→ Y, from the

raw detector readout space X ⊆ R
d to a lower dimensional space Y ⊆ R

b. Here f(x)
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represents any deterministic function of the detector readout, but in practice it can

be implemented by a series of consecutive transformations.

Let us denote as y ∈ Y the resulting variable after the transformation f(x) is

applied to the observed detector readout. If the function f is differentiable and

bijective (i.e. there is a one-to-one correspondence between x and y), the probability

density distribution function of y could be obtained as:

p(y|θ) = p(x|θ)
∣∣∣∣det

dx

dy

∣∣∣∣ (3.19)

where the last term is the Jacobian determinant of the inverse of f . The trans-

formations commonly used in particle colliders are non-bijective and sometimes non-

differentiable, plus Equation 3.19 is in any case of little use when p(x|θ) is intractable.

However, the expectation value of y as well any other deterministic transformation

of the detector readout x after any arbitrary event selection 1C(x) can be obtained

using simulated samples for a given interaction process as shown in Equation 3.14,

independently of whether the transformation is invertible or differentiable. In the

rest of this section, the main procedures followed to reduce the dimensionality of the

observable space and its objectives from a statistical perspective will be discussed.

Event Reconstruction

The methods of event reconstruction, as described in Section 2.3.3, provide a very effi-

cient way to transform the high-dimensional detector readout to a lower-dimensional

space that can more easily be interpreted from a physical standpoint. In fact, recon-

struction can be viewed as a complex procedural technique of inference on a subset

of the latent variables given the detector readout x of an event. These methods

attempt to walk back the generative chain described in Equation 3.9 to recover the

subset of the parton-level zp (and zs or zd in some cases) that strongly depends on

the detector readouts, providing a compressed summary of the information in the

event about the parameters of interest θ. The dimensionality of the output of the

reconstruction procedure yreco depends on the subset of variables considered for each

physical object, which typically amounts to a total of O(100) dimensions, which is a

significant reduction from dim(X ) ≈ O(108).

Due to the detector noise and characteristics, the reconstruction function f reco(x) :

X −→ Yreco cannot fully recover zp ∈ Zp. This is the case for neutrinos that leave

the detector undetected, when the measured four-momentum of a given particle dif-

fers from the real value, or when the reconstructed particle does not even exist in zp.
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Simulated events can then be used to make calibrated probabilistic statements of the

resulting reconstructed physical objects and their relation with the actual unobserved

particles going through the detector. Particle identification (e.g. jet b-tagging) and

fine-tuned momentum regressions on the reconstructed objects can also be thought

of as inference of latent variables, which amounts to using the additional detector

information around an object to measure more precisely its properties. These prop-

erties include the type of particle that produced the detector readouts clustered for

particle identification, or a more precise determination of the momentum for particle

regression.

One aspect of the generative model that complicates both reconstruction and stat-

istical inference which has not been discussed yet is that efficient representations of

the latent space of simulated events are not easily represented as a fixed-size real

vector z ∈ Z ⊆ R
b. Let us consider as an example the parton-level latent inform-

ation zp, which amounts to a short list of produced particles. The total number

of particles and the number of particles of each type are variable, thus zp is better

represented by a set (or several sets, one for each particle type):

zset
p = {zip | i ∈ {1, ..., np}} (3.20)

where np is the total number of particles produced at parton-level and zi
p are the

latent variables associated to each particle (i.e. type, four-momenta, charge, colour

and spin). A similar set structure can be attributed to latent variables describing

long-lived particles after the parton-shower zs, while additional variables might be

associated to each particle (e.g. production vertex) and total number and type di-

versity would be considerably larger. Because the number of particles and their

type greatly varies between different interaction processes, the mapping this struc-

ture to observable variable space is very useful. In fact, the result of general event

reconstruction process at CMS can be expressed also as a set of physical objects:

yset
reco = {yi

reco | i ∈ {1, ..., nreco}} (3.21)

where nreco is the total number of particles, yi
reco are the reconstructed variables

for each physical object (i.e. reconstructed type, reconstructed four-momenta, recon-

structed charge and any other reconstructed attributes). The calibration between

the reconstructed physical objects yset
reco and the actual particles produced in the

collision zset
p/s hence amounts to matching set elements (typically based on a ∆R
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distance criterion, see Section 2.2.1) and the comparison of their reconstructed and

generated attributes.

The fact that both reconstructed and latent spaces have a variable-size set struc-

ture greatly complicates the application of inference and learning techniques directly

based on yset
reco, because they often can only deal with a fixed-size vector of real

numbers R
b. Similarly to what is done for event selection, often the elements in the

set of reconstructed objects in an event are reduced by imposing a given condition

based on their attributes (e.g. type, isolation or momenta). There exist naive ways

to embed a set such as yset
reco as a fixed-size vector R

b, such as taking the relevant

attributes of the first nsel objects according to a specific ordering convention after

a given object selection and possibly padding with zeros or alternative numerical

values the elements that do not exist for a given event. Some of the newer machine

learning techniques that will be presented in Chapter 4 can deal with variable-size

input, such as sequences, sets or graphs inputs, by embedding them in vector repres-

entations internally, providing new ways to deal with the mentioned representational

issue.

Summary Statistics

The attributes of the subset of reconstructed objects selected in an event for a given

analysis, often as a fixed-size vector representation ysel ∈ Zsel ⊆ R
b, are often still

too high-dimensional to be considered directly for statistical inference. The effect-

iveness of the likelihood-free techniques that will be presented later in this chapter

strongly depend on the dimensionality of the observable space considered. Hence,

it is desirable to further combine the reconstructed outputs in a lower dimensional

summary statistic, which can be either a function of each single observation or a set

of multiple observations, so simpler statistical models that relate the parameters of

interest with the observations can be constructed.

Until now, we have been dealing with the problem of how a single event is distrib-

uted p(x|θ), however in practice a collection D = {x0, ...,xn} of events is considered

for inference. Let us first consider again the set D, before any trigger or event se-

lection, similarly to what was done at the beginning of Section 3.1.1. Because of

the independence between events, the probability density of a given set D can be

expressed as the product of individual probability densities for each event xi:

p(D|θ) =
xi∈D∏

p(xi|θ) (3.22)
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where p(xi|θ) can only be modelled realistically by forward simulation, and has the

mixture model structure and latent factorisation discussed before. After an arbitrary

event selection 1C(x), only a subset of events DC = {x0, ...,xnC
} ⊆ D remain. These

events are also independent, so their probability density can be expressed as:

g(DC |θ) =
xi∈DC∏

g(xi|θ) (3.23)

where the dependence between the distribution function after the event selection

g(xi|θ) and that before p(xi|θ) was already described in Equation 3.7. If we are only

focussed on the probability distribution of the events in DC , we would be neglecting

an important quantity that can also provide information about the parameters of

interest: the total number of events that pass the event selection nC . Because this

quantity depends on the set of recorded readouts D, where each individual readout

xi is assumed to be an independent and identically distributed variable, the total

number of selected events nC after a deterministic selection 1C(x) can be modelled

using a binomial distribution:

p(nC |n,θ) = Binomial(n, ǫ) ≈ Poisson(nǫ) (3.24)

where n is the total number of events, and the dependence on the parameters is

contained in the total efficiency ǫ, i.e. probability x ∼ p(x|θ) of passing the selection

criteria, that can be defined as ǫ =
∫

1C(x)p(x|θ). The Poisson approximation is

justified because the number of trials n is sufficiently large (i.e. 40 million bunch

crossings per second) and the total selection efficiencies ǫ ≤ 0.000025 already at

trigger level, as discussed in Section 2.2.7. This type of stochastic process is also

referred to in the literature as multi-dimensional homogenous Poisson point process

[88]. The expected value of nC coincides with the Poisson mean nǫ. It could be

more intuitively linked with the parameters of interest θ by making explicit the

contributions from the different mixture processes:

E
D∼p(D|θ)

[nC ] = n
K−1∑

j=0

φj E
x∼pj(x|θ)

[1C(x)] = n
K−1∑

j=0

φjǫj (3.25)

where the efficiency for each process ǫj =
∫

1C(x)pj(x|θ) can be estimated using

simulated observations as shown in Equation 3.13. In principle, all possible processes

j that could occur have to be considered, i.e. cases when no hard collision occurred

as well as the inclusive contribution of each possible hard process, as described in

86



3.1 Statistical Modelling

Equation 3.4. However, if the product of the expected probability of a given process

occurring φj and the event selection efficiency ǫj is low enough relative to the total

efficiency ǫ =
∑K−1

j=0 φjǫj , the effect of those mixture components can be safely

neglected.

The situation discussed above is often the case for events where no hard colli-

sion occurred after some basic event selection, that is ǫnot-hard ≈ 0 so it can thus be

neglected. For the subset of bunch crossings where hard interactions occur, the prob-

ability of a given type of interaction before any event selection might be expressed as

the product of its cross section σj by the total integrated luminosity during the data

taking period Lint divided by the total number of bunch crossings, thus the expected

value for number of observations nC after an event selection that reduces to a neg-

ligible fraction the contribution of non-hard processes 1C(x) can also be expressed

as:

E
D∼p(D|θ)

[nC ] = n
K−1∑

j=0

Lintσj
n

ǫj = Lint

K−1∑

j=0

σj ǫj (3.26)

where nj = Lint σj ǫj is the expected number of events coming from a given process

j, that can be estimated with theoretical input regarding σj , simulated observations

to estimate ǫj and an experimental measurement of the luminosity L.

The number of observations nC that pass a given event selection 1C(x), which

normally includes trigger and some additional analysis dependent selection, is the

quantity that serves as the basis of the simplest statistical model used in particle

physics to link theoretical parameters and observations. This type of summary stat-

istic is very effective when the parameter of interest is the cross section of a single

process σS and the rest of background processes are well modelled by theoretical

predictions and simulated observations. In that case, if all parameters but σS are

known, a cut-and-count sample-based likelihood can be built based on Equation 3.24,

corresponding to the following probability density function:

p(nC |σS) = Poisson

(
σsǫs +

j∈B∑
σjǫj

)
(3.27)

which can be used to carry out statistical inference about σS given an observed

number of events that pass the event selection nobs
C , using classical techniques.

The previous concept can be applied to several disjoint subsets of X simultaneously

T = {C0, ..., Cb}, each characterised by a different indicator function 1Ct(x) defining

an arbitrary event selection, as long as their intersection is null. The probability
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function for the variable nT = {nC0 , ..., nCb}, given that each nCi is independent, can

be obtained as:

p(nT |θ) =
Ci∈T∏

Poisson

(
j∈H∑

nCij (θ)

)
(3.28)

where nCij (θ) is the expected number of observed events coming from process j after

the selection Ci. As long as a parametrisation of nCij (θ) exists, which can be often

estimated as nCij (θ) = L σj ǫCij (θ), Equation 3.28 can be used to construct a likelihood

to carry out inference on the parameters θ based on the observed value of the sample

summary statistic nobs
T .

Sufficient Statistics

The selection count vector nobs
T (D), which has not been specified yet, could be also

written as a sum over a function nT (x) : X ⊆ R
d −→ Y ⊆ {0, 1}b ⊂ R

b applied for

each event in D = {x0, ...,xn} as follows:

nobs
T (D) =

xi∈D∑
nT (x) (3.29)

where nobs
T (D) could be described as a summary statistic of the whole collection of

observations while nT (xi) summarises a single event xi.

There are infinite ways to choose a lower-dimensional summary statistic of the

detector readout s(x) : X ⊆ R
d −→ Y ⊆ R

b. Functions of the type nT (x) are only

a reduced subset, yet still infinite, of the possible space of functions. Regardless

of the likelihood-free inference methods considered (see Section 3.2), the need of a

low-dimensional summary statistic can be thought as an effective consequence of

the curse of dimensionality, because the number of simulated observations required

to realistically model the probability density function or compute useful distance

measures rapidly increases with the number of dimensions.

In general, the selection of a summary statistic s(x) is far from trivial, and naive

choices can lead to large losses of useful information about the parameters of interest

θ. From classical statistics, we can define a sufficient summary statistic as the

function of the set of observations that can be used for carrying out inference about

the model parameters θ of a given statistical model in place of the original dataset

without losing information [89]. Such a sufficient statistic contains all the information

in the observed sample useful to compute any estimate on the model parameters, and

no complementary statistic can add any additional information about θ contained in
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the set of observations. Sufficient statistics can be formally characterised using the

Fisher-Neyman factorisation criterion, which states that a summary statistic s(x)

is sufficient for the parameter vector θ if and only if the probability distribution

function of x can be factorised as follows:

p(x|θ) = q(x)r(s(x)|θ) (3.30)

where q(x) is a non-negative function that does not depend on the parameters and

r(x) is also a non-negative function for which the dependence on the parameters

θ is a function of the summary statistic s(x). The identity function s(x) = x is

a sufficient summary statistic according to the theorem in Equation 3.30, however

we are only interested in summaries that reduce the original data dimensionality

without losing of useful information about the parameters θ.

The definition of sufficiency can also be applied to a set of observations D =

{x0, ...,xn}. In fact if we assume they are independent and identically distributed,

and s(x) is sufficient for each observation xi, we may rewrite Equation 3.22 as:

p(D|θ) =
xi∈D∏

q(x)

xi∈D∏
r(s(xi)|θ) = q(D)r(s(D)|θ)

where the set of sufficient summary statistics for each observation is a sufficient sum-

mary statistic for the whole dataset s(D) = { s(xi) | ∀xi ∈ D} and the dependence

on the summary statistic is contained as the product of independent factors for each

observation.

Because p(x|θ) is not available in closed form in particle collider experiments,

the general task of finding a sufficient summary statistic that reduces the dimen-

sionality cannot be tackled directly by analytic means. However, for finite mixture

models where the only model parameters are a function of the mixture coefficients

φj , probabilistic classification can be used to obtain (approximate) sufficient sum-

mary statistics. We will return to this topic in Chapter 4. When the parameters of

interest or additional unknown parameters affect the mixture components pj(x|θ),
the construction of sufficient summary statistics cannot be addressed directly, thus

a fraction information about the parameters θ is very likely to be lost in the dimen-

sionality reduction step. An automated way to obtain powerful summary statistics

in those cases using machine learning techniques will be presented in Chapter 6.
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Synthetic Likelihood

The advantage of using lower-dimensional summary statistics s(D) : XD ⊆ R
d×n −→

YD ⊆ R
b×n of the detector readout collected by the experiment is that often the gen-

erative model of p(x|θ) can be used to build non-parametric likelihoods of s(D) that

link the observations with the model parameters, so classical inference algorithms

can be used. This likelihoods are referred here as synthetic because they are not

based on the actual generative model of x but on approximations constructed using

simulated observations.

For summary statistics of the type nobs
T (D) : XD ⊆ R

d×n −→ YD ⊆ {0, 1}b the

likelihood can be expressed as a product of independent Poisson count likelihoods as

shown in Equation 3.28. Such likelihood can be evaluated for the observed data D

and specific parameters θR, even in the case that θ modifies the distribution of the

mixture components pj(x|θ), by forward approximating nCij (θR) (or alternatively

ǫCij (θR)) using simulated observations for each process j generated for θR. This pro-

cess would rapidly become computationally very demanding if it had to be repeated

for each likelihood evaluation during the whole inference process. Re-weighting pro-

cedures such as those described in Equation 3.18 can often be applied to re-use

already simulated events using θR to model events corresponding to different values

of the parameters θQ.

A more economical approach, commonly used in LHC analyses that use binned

Poisson likelihoods based on the formalism introduced in Equation 3.28, is to para-

metrise the effect of varying parameters by interpolating between the values of the

ǫCij (θk) (or directly nCij (θk)) for different values of k. Such parametrisation allows the

analytical approximation of the likelihood originated by Equation 3.28, and simpli-

fies the computation of gradients with respect to the parameters. This is particularly

relevant to model the effect of nuisance parameters, which are uncertain but not of

direct interest, and have to be accounted for in the inference procedure; this issue

will be discussed in Section 3.1.4. Different interpolation conventions exist [90], but

they are normally based on the marginal one-dimensional interpolation between the

effect of a single parameter θi ∈ θ at three equally spaced values (the nominal para-

meter values and the up/down variations). In that case the total effect on ǫCij (θk) is

accounted by adding absolute shifts or multiplying marginal effects.

Even assuming that the marginal description when a single parameter of interest

varies is accurate, which is not ensured by the interpolation, and the effect of each

parameter is factorised in pj(x|θ), the integral definition of ǫCij (θk) from Equation

3.13 does not ensure that the correlated effect of the variation of multiple θi ∈ θ is
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accurately modelled. This issue can be easily exemplified, considering the product

of relative variations in the two parameter case θR = (θR0 , θ
R
1 ). Let us consider the

expected value for the efficiency after a given selection 1Ci(x):

ǫCij (θR) =

∫
1C(x)pj(x|θR)dx

=

∫
1C(x)pj(x|θQ)

pj(x|(θR0 , θQ1 ))
pj(x|θQ)

pj(x|(θQ0 , θR1 ))
pj(x|θQ)

dx

(3.31)

where θR is the parameter point we want to simulate by interpolating around a

nominal point θQ. The last expression in Equation 3.31 is only correct when the effect

of each parameter is independent, i.e. the underlying probability density function can

be factorised as the product of independent factors. However, it becomes evident

that the previous expression does not simplify:

ǫCij (θR) 6= ǫCij (θQ)
ǫCij (θR)

ǫCij (θQ)

ǫCij (θR)

ǫCij (θQ)
(3.32)

because the integral of the product of functions is not product of integrals, unless

the volume of the selected region C is infinitesimally small - an irrelevant case as it

would correspond to null efficiencies. This effect also applies if additive variations

are considered and can be more notable when more parameters are considered.

The previously mentioned modelling issue, even though to the best of our know-

ledge has not been made explicit in the literature before, affects a multitude of ana-

lyses at the LHC, i.e. those that use template interpolation, as implemented in the

standard statistical libraries used in particle physics experiments [91, 92]. A possible

solution would include doing a multi-dimensional interpolation, but it would naively

require evaluating at least all 3-point combinatorial variations of the parameters,

amounting to a minimum of 3p evaluations of ǫCij (θ), where p is the number of para-

meters. If the effect of the parameters can be factored out in the joint distribution

and the same simulated event set can be modified to describe each marginal vari-

ation, as reviewed around Equation 3.17, the non-marginal terms can be estimated

from the product of per-event marginal terms by considering the finite sum approx-

imation of the last expression in Equation 3.31, which would only require (2p + 1)

parameter variation evaluations. Alternatively, the basis of the approach presented

in Chapter 6, where the variation of the parameters and its derivatives are computed

in place over the simulated observations by specifying the full computational graph,
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could also be used in analyses where the discussed assumption fails to realistically

describe the data.

3.1.4 Known Unknowns

So far we have assumed that the simulated observations can model the data and

the only parameters θ that affect the generative model are those we are interested in

carrying out inference on. However, simulated observations effectively depend on the

modelling of the physical processes occurring in the proton-proton collisions and the

detector, of which we only have an approximate description. Those mis-modelling

effects have to be accounted in the inference procedure to obtain unbiased estimates,

and are accounted by additional nuisance parameters in the statistical model when

their effect is known and can be approximated. For cases where simulation does

not provide the desired level of accuracy, the contribution from some of the mixture

components can often be estimated from data directly, using what are referred to as

data-driven estimation techniques.

Nuisance Parameters

The general definition of nuisance parameters in a statistical model refers to all the

uncertain parameters of the statistical model that are not of intermediate interest

but have to be accounted for in the inference procedure. These parameters can in-

clude uncertain theoretical parameters (e.g. top quark mass or expected background

rate), account for limitation on the experimentally measured parameterisations of

certain phenomena (e.g. parton density functions uncertainties) or represent the ac-

curacy limits of calibration between data and simulation. Nuisance parameters can

also represent additional degrees of freedom of the model that cover for possible

wrong assumptions or quantify imprecisions due to the limited number of simulated

observations.

Because the actual generative process for the experimental data is not known

perfectly, the simulation-based model is extended with additional parameters that

portray the possible variability on the distribution of the detector readouts. The

formalism developed in the previous part of Section 3.1 still applies, noting that the

parameter vector θ = {θι,θν} now includes both parameters of interest θι and nuis-

ance parameters θν . While the effect of (usually theoretical) parameters of interest

typically only affects the parton-level latent factor p(zp|θ), some nuisance paramet-
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ers account for possible mis-modelling in subsequent steps of the simulation thus can

affect the other factors in Equation 3.9.

The effect of variation of nuisance parameters for any observable or summary

statistic considered in a given analysis can be estimated by simulating again the

affected observation with the chosen parameters - often prohibitively expensive - or

by re-weighting already simulated observations as described in Equation 3.17 - which

is much faster and reduces the statistical fluctuations between variations associated

with the random sampling of the full latent space. Unprincipled modelling shortcuts,

such as considering the additive or multiplicative effect of marginal efficiencies to

account for combined effects, are also frequently used for count vector observables

nCij (θ), as discussed in Section 3.1.3 together with possible solutions to some of the

associated issues.

The re-weighting approach from Equation 3.16 is extremely effective to model the

effect of parameters in the conditional factor that deal with low-dimensional latent

variables, such as p(zp|θ), because the rest of the factors in the joint distribution

simplify and we are left with a low-dimensionality density estimation problem (even

analytically tractable in some cases). For conditional factors that deal with higher

dimensional latent or observable spaces, such as p(zd|zs,θ) or p(x|zd,θ), the ratio

can be very hard to estimate unless additional simplifications are possible. For

those nuisance parameters, it is easier to consider the effect on the lower-dimensional

summary statistic instead of the detector readout x, because the ratio:

w(s(x)) =
pR(s(x)|θR)
pQ(s(x)|θQ)

(3.33)

can be simpler to estimate through density estimation or approximately factorise if

the summary statistic is chosen carefully. This fact motivates an alternative way to

model the effect of some of the nuisance parameters, especially those related with

the differences in the reconstructed objects observables between simulation and data

after calibration. Let us consider the case where summary statistics s(x) : X ⊆
R
d −→ Ysum ⊆ R

b are effectively a function of the reconstructed objects and its

properties yreco ∈ Yreco, which can be schematically represented by the following

function composition chain:

X g−→ Yreco
h−→ Ysum (3.34)
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where yreco = g(x) and ysum = h(yreco). This compositional approach can be

extended to include also event selection at trigger or analysis level, or other inter-

mediate summaries of x complementary to reconstruction, as part of the definition

of the summary statistic s(x). In all cases where s(x) is a deterministic function,

all differences between simulated observations and data in any expected observables

originate from the differences between the simulation-based generative definition of

p(x|θ) and the true unknown generative process ptrue(x). While the task of evaluat-

ing and parametrising these differences directly by studying the raw detector output

is quite convoluted, the differences can be corrected and their uncertainty assessed

for the lower-dimensional intermediate states of the composition chain depicted in

Equation 3.34.

For example, if the momenta of a certain subset of the reconstructed objects yreco

statistically differ between experimental data and the simulated observations, based

on a subset of the data that is assumed to be well-modelled, the momenta of simulated

observations can be corrected to better model the data. The statistical accuracy of

such procedure due to the different factors leads to a set of nuisance parameters

that describe the limit of the mentioned calibration as a function of the value of

yreco. The effect of these type of nuisance parameters often be modelled in the

simulation by using a function of the simulated intermediate outputs, e.g. in the

case of reconstructed objects:

E
x∼p(x|θ)

[s(x)] = E
yreco∼p(yreco|θo)

[h(r(yreco,θρ))] (3.35)

so p(x|θ) can be approximated by computing observables after applying the re-

parametrisation r(yreco,θρ) to the simulated observations, where θρ is the vector of

parameters representing the different uncertainty factors.

In general, the effects of all relevant nuisance parameters can be modelled by a com-

bination of simulated observations re-weighting by w(xi, zi|θw) and transformations

of intermediate simulated observations ynew = r(ysim, zi|θρ). The former is based on

importance sampling [93] to estimate the properties of a different distribution than

the one sampled originally from, while the latter assumes that the mis-modelling can

be accounted by a parametrisation of the simulated intermediate observables. If the

functions w(xi, zi|θw) and r(ysim, zi|θρ) are differentiable or can be approximated

by differentiable functions, the gradient (and higher order derivatives) with respect

to the parameters θ of any expectation value can be very efficiently approximated.

This can be very useful for statistical inference (e.g. likelihood maximisation), while
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it has not been used so far in LHC analysis to our knowledge. This is one of the core

concepts of the technique to construct summary statistics presented in Chapter 6.

The inference results of a given analysis depend strongly on the assumptions impli-

cit in the statistical model. The determination, assessment and practical definition

of the effect of nuisance parameters that are relevant for a given analysis is one the

most challenging yet important aspects in experimental particle physics at the LHC.

When nuisance parameters are quantitatively taken into account in the statistical

model, they lead to an increase of the uncertainty on the parameters of interest and

larger interval estimates (or exclusion limits) on the parameters of interest. The

choice of summary statistics may also affect significantly subsequent inference, and

while nuisance parameters are usually qualitatively considered when building simple

summary statistics by physics-inspired combinations of reconstructed variables, they

are not regarded at all when the automatic multi-variate techniques described in

Chapter 4 are applied to construct complex non-linear observables. This issue is

addressed by the method proposed in Chapter 6.

Data-Driven Estimation

For some fundamental processes, the generative modelling provided by simulated

observations might not be accurate enough for the purposes of a given LHC ana-

lysis. In a subset of those cases, the simulated observations can be calibrated to

better describe the observations in well-modelled data regions, as mentioned in the

previous section. However, if the description of the summary statistics considered in

the analysis provided by the simulated observations from process j is substandard,

e.g. the number of simulated observations that could be realistically simulated is not

sufficient, then the contribution from the mentioned mixture component might have

to be estimated from experimental observations directly.

The actual procedure used for modelling the contribution for a given mixture

component j from data depend on the specifics of the process as well the details of

the analysis, but often includes some re-weighting factor obtained from simulated

observations or additional experimental observations with an orthogonal selection

criterion. Such data-driven estimation techniques are often used for the background

processes, but are hard to combine with the non-linear summary statistics recon-

structed by machine learning techniques such as those described in Chapter 4. In

the CMS analysis presented in Chapter 5, we describe and utilise a fully data-driven

background estimation technique fine-tuned for the modelling of the QCD-based
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multiple jet background for the search of Higgs pair production decaying to four

b-quarks.

3.2 Statistical Inference

In the previous section, the main characteristics of the generative statistical model

p(D|θ) relating the parameters θ with the set of observations D = {x0, ...,xn} have

been reviewed. In addition, we discussed the role of lower dimensional summary

statistics as functional transformations of each detector readout s(xi) or even the

whole dataset s(D), as well as how the effect of additional uncertain parameters can

be included in the simulation-based generative model of the data. In this section,

we deal with the actual problem of inference of the subset of parameters of interest

θι once a summary statistic has already been chosen and the final statistical model

p(s(D)|θ) has been fully specified.

3.2.1 Likelihood-Free Inference

One of the main properties of the statistical models at particle colliders we focussed

on in the last section was their generative-only nature, whereby their probability

density p(x|θ) cannot be expressed analytically, but only by means of forward simu-

lated observation. This fact greatly complicates the application of standard inference

techniques which require the explicit definition of a likelihood

L(θ|D) =

xi∈D∏
p(xi|θ) (3.36)

in order to make quantitative statements about the parameters of interest, because it

expresses the extent to which a set of values for the model parameters are consistent

with the observed data. Problems where the likelihood cannot be expressed directly

are common in many scientific disciplines, because a link between observations and

the underlying parameters can often only be provided by a probabilistic computer

program. This is frequently the case when the system under study is complex,

e.g. can only be described by a hierarchy or a sequence of stochastic processes.

The evaluation of the likelihood for complex generative models rapidly becomes

impractical, especially when the dimensionality of the observations or the parameter

space is very high. Various statistical techniques for dealing with these cases exist,

generally referred to as likelihood-free or simulation-based inference techniques. A

well established group of techniques for inference when the likelihood function is
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unknown is referred to as Approximate Bayesian Computation (ABC) [94, 95]. The

fundamental concept behind ABC is the generation of a simulated sample S0 =

{x0, ...,xm−1} using a given vector of parameters θ0, which is then compared using

a distance criterion to the actual observed dataset D. If the data and the simulation

are close enough, then θ0 is retained as sample from the posterior. The process is

repeated until the posterior is estimated with the desired accuracy. The quality of

the posterior approximation produced by ABC techniques, as well as the number of

sampling steps required to reach a given accuracy, strongly depend on the distance

definition. When the dimensionality of the output is high, a summary statistic

vector s(D) has to be used in practice to increase the computational efficiency of the

previous procedure, which would be otherwise intractable.

The approach commonly used when carrying out inference at particle physics ex-

periments at the LHC is somehow related with the mentioned family of techniques.

The observations are also reduced to a lower-dimensional summary statistic space,

but then a non-parametric likelihood is constructed so that standard inference tech-

niques can be applied. The likelihood is often based on the product of Poisson count

terms, as depicted in Equation 3.27 and Equation 3.28, where the dependence on the

expectations on the parameters is based on the simulation and the mixture structure.

Alternative approaches include the use of a simple one-dimensional parametrisation

for a continuous background and a bump-like signal, which is common when the

reconstructed mass of an intermediate object is used as summary statistic and its

distribution is well-controlled, e.g. a Higgs bosons decaying to two photons. An ad-

ditional alternative approach, which has not been used in LHC analyses to date,

could be to use non-parametric density estimation techniques to obtain an unbinned

likelihood directly from simulated data. This approach has been recently referred as

Approximate Frequentist Computation (AFC) [96], and can be also combined with

the technique presented in Chapter 6.

3.2.2 Hypothesis Testing

Statistical inference within experimental particle physics is often framed as a hypo-

thesis testing problem. The goal of statistical testing is to make a quantitative state-

ment about how well observed data agrees with an underlying model or prediction,

which is often referred to as a hypothesis. The statistical model under consideration

is often referred to as null hypothesis H0. Classical statistical testing techniques often

require the definition of an alternative hypothesis H1, whose agreement with the data

is compared with that of the null. A hypothesis is said to be simple, when all the
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distribution (or generative model) parameters are fully specified, i.e. p(x|Hs) = f(x)

does not depend on any non-fixed parameter. A composite hypothesis instead de-

pends on one or more parameters θ, i.e. the distribution under the hypothesis can

be expressed as p(x|Hc) = f(x,θ).

In order to carry out hypothesis testing based on a set of observations D =

{x0, ...,xn}, a test statistic t(D) that is a function of the observations is construc-

ted. The choice of test statistic is especially challenging when x is high-dimensional

and p(xi|θ) is not known. The concepts of test statistic and summary statistic,

the latter discussed in Section 3.1.3, are very related. A test statistic is in fact a

sample summary statistic5 s(D), that is used within an statistical test to accept or

reject hypothesis, so all the concerns regarding sufficiency from Section 3.1.3 also

apply. Regarding the dimensionality of t(D) : XD ⊆ R
d×n −→ T , while it can be a

multi-dimensional vector (e.g. could even use t(D) = (x0, ...,xn)), a one dimensional

variable is usually considered in order to simplify the process of making calibrated

statistical statements.

Let us refer to the test statistic for the set of observations as tobs from here onwards.

The result of the statistical test is whether the hypothesis H0 can be rejected in

favour of H1 if the null is unlikely enough. In practice, in order to make a principled

decision, a critical region TC ⊆ T in the space of the test statistic has to be defined

before looking at the set of observations. Once the critical region has been chosen,

a test can be then characterised by its significance level α and power 1 − β. The

significance, which is also referred to as the Type I error rate, is directly related with

the probability of rejecting H0 when it is actually true. For a given test based on

the summary statistic t(D) and its critical region TC , the significance level can be

defined as:

α = P (t ∈ TC |H0) =

∫

TC

g(t|H0)dt
1D⇒
∫ ∞

tcut

g(t|H0)dt (3.37)

where g(t|H0) is the distribution of the test statistic under the null hypothesis H0,

and the latter simplification applies for one-dimensional summary statistics where

the critical region is defined based on a given threshold tcut. The power of a test

1− β is instead defined by the probability of not rejecting the null hypothesis when

the alternative is actually true, which often referred as type II error rate β. The type

5Here a statistic is a function of observations, and sample summary statistic refers to statistics the
summarise a set of observations s(D) : XD ⊆ R

d×n
−→ YD ⊆ R

b×n.
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II error rate β can be defined as the probability of not being in the critical region

under the alternative hypothesis:

β = P (t 6∈ TC |H1) = 1−
∫

TC

g(t|H1)dt
1D⇒ 1−

∫ tcut

−∞
g(t|H1)dt (3.38)

where g(t|H0) is the distribution of the test statistic under the alternative hypothesis

H1, and the last terms corresponds to the one dimensional case based on a threshold.

Both the significance level and the power of a hypothesis test depend on the definition

of its test statistic and the critical region. The significance level of a test α is often

fixed at a given value in order to reject the null in favour of an alternative. It is then

beneficial to design the test so its power is as high as possible, which is equivalent

to having a Type II error rate as low as possible.

From the definition of Type I and Type II error rates in Equation 3.37 and Equation

3.38, it is evident that either the probability distribution function of the test statistic

under both the null and alternative hypothesis or a way to estimate the integrals from

simulated observations are required. The main advantage of one-dimensional test

statistics, similarly to the low-dimensional summary statistics discussed in Section

3.1.3, is that they allow for an efficient estimation of the probability distribution

function using non-parametric techniques. When both the null H0 and alternative

hypothesis H1 are simple, the Neyman-Pearson lemma [97] states that the likelihood

ratio, which is a one-dimensional test statistic defined as:

Λ(D;H0, H1) =
p(D|H0)

p(D|H1)
=
∏

x∈D

p(x|H0)

p(x|H1)
(3.39)

is the most powerful test statistic at any threshold tcut, which is associated with a

significance α = P (Λ(D;H0, H1) ≤ tcut). The last expansion requires independence

between the different observations. While the likelihood ratio can be proven to be

the most powerful test statistic, it cannot be evaluated exactly if the likelihood is

not known, which often the case for LHC inference problems as discussed in Section

3.2.1. The alternative hypothesis is usually composite in particle colliders because the

signal mixture fraction µ (or its cross section equivalently) is one of the parameters

of interest. The likelihood ratio test can nevertheless be expressed in this case as a

function the parameter µ, which will be the most powerful test for a given µ if it is

the only unknown parameter.

It is worth noting that while the likelihood ratio defined in Equation 3.39 defines

the most powerful test, the likelihood ratio based on a summary statistic s(D) can
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also be defined, but it is not the most powerful test for inference based on D un-

less s(D) is a sufficient summary statistic with respect to the parameters θ which

fully define the null p(x|H0) = p(x|θ0) and alternate p(x|H1) = p(x|θ1) hypotheses.

This fact motivates the use of machine learning techniques to approximate the like-

lihood ratio directly based on simulated observations as discussed in Section 4.3.1.

The likelihood-ratio can then be calibrated by means of non-parametric probability

density estimation techniques or count-based likelihoods.

Another relevant issue when defining test statistics is that hypotheses are rarely

simple (or with a composite alternate in the way previously described). Let us

suppose the µ is the parameter of interest, e.g. the mixture coefficient for the signal.

The statistical model often depends on additional nuisance parameters θ, as discussed

in Section 3.1.4. The likelihood ratio from Equation 3.39 is not guaranteed to be the

most powerful test statistic when the hypotheses are composite. In this case, often

summary statistics based on the profile likelihood ratio are used, that can be defined

for LHC searches as:

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
(3.40)

where
ˆ̂
θ at the numerator refers to the value of the nuisance parameter that maxim-

ises the likelihood for a given µ, and µ̂ and θ̂ at the denominator are the standard

maximum likelihood estimators. The property that motivates the use of the profile

likelihood ratio, other than its convergence to the likelihood ratio when the hypo-

theses are simple, is that the distribution for large numbers of observations can be

effectively approximated, as demonstrated by Wilks and Wald [98, 99].

For a discussion of the different test statistics based on the profiled likelihood ratio

as well as their asymptotic approximations, the following reference is recommended

[100]. In particular, the use of the Asimov dataset, where the observed sample

summary statistic of the type outlined Equation 3.29 is assumed to be equal to the

expectation, is instrumental for the technique described in Chapter 6. The statistical

framework of hypothesis testing is used to decide whether to reject or not reject the

null hypothesis in favour of the alternate. Alternatively it can also be useful to

estimate the probability of obtaining the observed data (or test statistic) under the

null hypothesis, which is simply referred to as the p-value or alternatively as Z-value

when standard deviation units are used. When the null hypothesis is not rejected H0,

the statistical test can be recast to obtain exclusion upper limits at a given confidence

level (usually 95% is used), as is done in the non-resonant Higgs production search

included in Chapter 5.
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For obtaining exclusion upper limits, it is useful to define a modified test statistic

q̃(µ):

q̃(µ) =





−2 ln L(µ,
ˆ̂
θ(µ))

L(0,θ̂(µ))
if µ̂ < 0

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂(µ))
if 0 ≤ µ̂ ≤ µ

0 if µ̂ > µ

which does not regard negative background fluctuations or cases where µ̂ > µ as evid-

ence against µ. When using q̃(µ) or similar profile-likelihood-based one-dimensional

test statistics, the observed exclusion upper upper limit can be defined as the largest

value of µ for which the probability of obtaining a test statistic value is equal or

larger than a given confidence level (e.g. α = 0.05 for 95% confidence intervals),

which can be expressed as the following integral:

P (q̃(µ) ≥ α|µ) =
∫ ∞

q̃obs(µ)
g(q̃(µ)|µ)dq (3.41)

where q̃obs(µ) is the observed test statistic and g(q̃(µ)|µ) is the distribution under

the alternate when the signal fraction is µ. This integral can be approximated using

Monte Carlo simulations or by the asymptotic approximations described in [100].

A different upper limit definition is often used to avoid excluding an alternative

hypothesis with a fixed probably α even when the analysis has no sensitivity, referred

to as CLs procedure [101, 102], in which the exclusion limit is defined as the value

of µ for which P (q̃(µ) ≥ α|µ)/P (q̃(µ) ≥ α|0) ≥ α), which solves the mentioned issue

at the cost of over-coverage.

Most data analyses at the LHC, and particularly searches such as the one discussed

in Chapter 5, are carried out in blinded manner to reduce the experimenter’s bias,

i.e. the subset of observations or results relevant for statistical inference are not

considered (or concealed) until all the analysis procedures have defined. In order

to optimise the various analysis components (e.g. selection or summary statistic),

it is useful to compute a figure of merit that is representative of the prospective

sensitivity of the analysis. The expected significance, is the expectation value for

the probability value from Equation 3.37 under the alternative hypothesis. Instead,

the median instead of the expectation is often considered to preserve monotonicity

with Z-values, and several approximations exist for simple cut-and-count likelihoods.

Both the expected and median significance depend on the signal fraction µ assumed,

so they are particularly useful to optimise analyses where the order of magnitude

expected for µ is known, e.g. cross section measurements of SM processes.
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Alternatively, the expected median upper limit can be defined as the exclusion

upper limit using the median test statistic q̃med(µ) under the null hypothesis instead

of the observed statistic. In addition to the median expected limit, it is common

practice in LHC searches to also compute the so-called 1-sigma and 2-sigma bands,

that correspond to the 50.0± 34.1 and 50.0± 47.7 percentiles instead of the median.

The upper limit bands provide a quantitive estimation of the possible limit variation

if no signal is present in the data. Both the expected significance and the expected

upper limit can be estimated asymptotically for summary statistics like the one

described in Equation 3.29. The effect of nuisance parameters can be also included

in both in the asymptotic approximations or the Monte Carlo based estimation. The

asymptotic approximation are found to be good empirically, within 10% to 30% (for

situations where the number of events is small) of the Monte Carlo based estimation,

and thus are frequently used for obtaining limits and significances in New Physics

searches.

3.2.3 Parameter Estimation

Another inference problem that can be defined based on the observed data, is para-

meter estimation, whose goal can generally be defined as the determination of the

possible or optimal values that the parameters of a statistical model in relation to

a set of observations. Two types of parameter estimation problems are often con-

sidered: point estimation and interval estimation. If the aim is to obtain the best

estimate (i.e. a single value) of a vector of parameter based on a set of observations,

it is referred to as a point estimation problem. When we are instead interested on

using a set of observations to make statistical statements about a range or region

for the values that the statistical model parameters, we are dealing with an interval

estimation problem.

Parameter estimation can be addressed either from a classical (i.e. also known as

frequentist) standpoint where the true values of the parameter are assumed to be

fixed but unknown, and intervals represent the region of parameters for which the

set of observed data could be obtained upon repeated sampling; or from a Bayesian

perspective, where probabilistic statements representing the degree of belief on the

values for the parameters are updated based on the set of observations. A classical

inference approach is predominantly adopted in this document, where the definition

of probability is based on the relative frequency of the outcome when repeated trials

are carried out. Classical interval estimation, often referred to as confidence interval

estimation is strongly related with hypothesis testing, as reviewed in Section 3.2.2.
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The 100(1− α)% confidence interval (CI) for a one-dimensional parameter θ can be

defined as the interval [θ̂−, θ̂+]:, such that:

P (θ̂− ≤ θ ≤ θ̂+) = 1− α (3.42)

where θ̂− and θ̂+ are referred as the lower and upper limits. The definition of

confidence interval in the context of classical parameter estimation is the range of

values for a given parameter which, upon repeated trials, would contain the true

value 100(1 − α)% of the times. The concept of confidence interval can also be

extended to confidence region when a multi-dimensional parameter vector or several

disjoint intervals are considered. While the definition of confidence interval based on

its coverage properties is rather simple, its construction based on a set of observations

D = {x0, ...,xn} can be quite challenging. It is worth noting that both upper and

lower limit are estimators, quantities calculated by applying a given produce to the

set of observations, and thus θ̂−(D) and θ̂+(D) explicitly depend on the set of data.

The Neyman construction [103] provides a principled procedure to define 100(1−
α)% confidence intervals which guarantee the property defined in Equation 3.42,

by inverting an ensemble of hypothesis tests (as defined in Section 3.2.2), by using

simulated datasets for the different values that parameter θ can take. Confidence

intervals can be one-sided, e.g. such as the exclusion upper limits defined in Equation

3.41, or two-sided as the definition provided in Equation 3.42. In particle collider

analyses, there is often a dichotomy between one-sided intervals for null results and

two-sided intervals for non-null results, which can be solved by extending the Neyman

construction with a likelihood-ratio ordering criterion [104].

Confidence interval procedures based on the Neyman construction work very well

for simple statistical models with one or two parameters, however rapidly become

computationally intractable for larger number of parameters. Even though the num-

ber of parameters of interest at LHC analyses is usually small, nuisance parameters

play an important role in inference as reviewed in Section 3.1.4, and cannot be ac-

counted for in a straightforward manner in the previous procedure. Thus when the

total number of parameters is high, confidence intervals are usually computed based

on alternative approximations, often based of some of the properties of the profiled

likelihood ratio discussed in Section 3.2.2.

Before discussing the fundamentals of the confidence interval approximations, it

is useful to formally define the maximum likelihood estimator of a parameter θML

based on a set of observations D = {x0, ...,xn} as:
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θML = arg max
θ∈Θ

L(D;θ) (3.43)

where L(D;θ) is the likelihood function given the set of observations D which is

a function of the model parameters θ. The maximum likelihood estimator of model

parameters was already used to define the profile likelihood ratio test statistic in

Equation 3.40, an it is a very common point estimator because it is asymptotically

consistent and efficient. In addition, the maximum likelihood estimator coincides

with the maximum a posteriori (MAP) point estimator in Bayesian inference when

the parameter priors are uniform, because the evidence is proportional to the likeli-

hood.

The shape of the likelihood function around the maximum likelihood estimator

θML can be used to approximate confidence intervals. Using asymptotic theory

developed by Wilks [98], the 100(1−α)% confidence region for the parameter vector

θ can be determined using the following relation:

− lnL(D;θ) ≤ − lnL(D;θML) + ∆ lnL (3.44)

where lnL(D;θML) is the natural logarithm of the likelihood for the maximum

likelihood estimator and ∆ lnL depends on the number of parameter dimensions

and the desired coverage 1 − α. For example, the values of θ inside the 68.27%

(i.e. 1-sigma) confidence region and for one dimensional parameter are those for

which the previous relation is verified using ∆ lnL = 0.5. If θ is one-dimensional

and the function L(D;θ) is convex, the confidence interval limits θ̂−(D) and θ̂+(D)

can be obtained by finding the most extreme values of θ that verify Equation 3.44

at each side of the maximum likelihood estimator θML.

As discussed in Section 3.1.4, we are often interested on confidence intervals for a

subset of interest of the statistical model θι, while regarding the others as nuisance

parameters θν . The previous procedure can be extended for computing approximate

confidence interval for the parameters of interest, by considering the profiled likeli-

hood [105] L̂(D;θι) instead of the full likelihood in Equation 3.44, which is defined

as:

L̂(D;θι) = arg max
θν∈Θν

L(D;θι,θν) (3.45)

so the nuisance parameters θν are profiled by considering their values that would

maximise the likelihood conditional for each value of the parameters of interest θι.
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Noting that a constant denominator in the likelihood would cancel out at each side

of Equation 3.44, and similarly when using the profiled likelihood from Equation

3.45. Both procedures can be theoretically linked with the profile-likelihood ratio

test statistic defined in Equation 3.40. Algorithms for likelihood maximisation and

computation of intervals based on the profiled likelihood are implemented in the

minos routine as part of the minuit software library [106], which can also account

for bounded parameters. Confidence intervals based on the profiled likelihood will be

used for benchmarking different ways for constructing summary statistics in Chapter

6.

Another important subtlety when dealing with nuisance parameters (which also

applies to a lesser degree to the combination of measurements), is that oftentimes

they are constrained by theory or external measurement. This can be included in

the previous likelihood-based techniques by considering the likelihood as a product of

the likelihood derived from the statistical model for the set of observations LD(D;θ)

with the available constraints LiC(θ), as follows:

L(D;θ) = LD(D;θ)
c∏

i=0

LiC(θ) (3.46)

where simplified likelihoods (e.g. a normal approximation) are often used in the

constrain terms LiC(θ) but they could in principle also depend on an independent

set of observations. The constrain terms could be also understood as prior probability

distributions in a Bayesian setting, obtained from previous evidence.

In order to obtain approximate confidence intervals from the shape of the likeli-

hood or profile likelihood function around the maximum likelihood, several likelihood

evaluations (together with a constrained optimisation problem if L̂(D;θι) is used) are

often required to estimate accurately a confidence interval. A cruder but often use-

ful approximation can be obtained from the curvature of the negative log-likelihood

function at θML. In more than one dimension, the local curvature can be expressed

by the Hessian matrix H. The expectation of hessian of the − lnL(D;θ) is also

referred as the Fisher information matrix I(θ) [107] and it is defined as:

I(θ)ij = H(θ)ij = E
D∼p(D|θ)

[
∂2

∂θi∂θj
(− lnL(D;θ))

]
(3.47)
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which can be evaluated at any given θ, e.g. by using numerical differentiation. The

Cramér-Rao lower bound [108, 109] provides a link between the inverse of the Fisher

information matrix and the covariance of an unbiased estimator θ̂:

covθ(θ̂) ≥ I(θ)−1 (3.48)

which becomes an equality in the large-sample limit for an efficient parameter es-

timator such as the maximum likelihood estimator θML. The diagonal elements of

the inverse of the information matrix σ2i =
(
I(θ)−1

)
ii

may be used to construct a

68.3% confidence interval for θi parameter where the effect of the rest of paramet-

ers has been profiled as [θML − σi,θML + σi]. This approximation is equivalent to

profiling assuming that the − lnL(D;θ) can be described by a multi-dimensional

parabola centered at θML, and thus leads to symmetric intervals. In Bayesian lit-

erature, an analogous approach is used to extend MAP estimation in order obtain

a multi-dimensional normal approximation for the posterior, which is often referred

to as Laplace approximation [110]. An important advantage of this approximation,

that will be used in Chapter 6 to construct an inference-aware machine learning loss

function, is that can be interpreted both in the context of classical and Bayesian

inference.
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Physics

Computers are useless.

They can only give you answers.

Pablo Picasso

Machine learning is an interdisciplinary field that deals with the general problem of

how computers can automatically improve at certain tasks given data. The usefulness

and range of applicability of such techniques has surged in the last decades due to the

increase on accessible computational power and the amount of useful data available.

In this section, a general overview of machine learning methods as well as the main

tasks that can be addressed with them will be provided. Subsequently, the technical

basis of two specific types of machine learning methods used in the next chapters

will be explored: boosted decision trees and neural networks. Last but not least,

we will go through a brief review of the common past use cases of these techniques

at high energy physics experiments, especially focussing on those cases where they

can be used to address some of the statistical inference and modelling issues from

Chapter 3.

4.1 Problem Description

Machine learning is the field that deals with algorithms, as described by computer

programs, that are able to learn from data. A more formal definition of learning, yet

general and useful in the context of this work, can be found in the literature [111]:

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P , if its performance at task in T , as measured

by P , improves with experience E”. The previous sentence clearly denotes the three

key elements for learning in the context of computer algorithms: the task (or class

of task) that to be accomplished T , a quantitative and robust way to measure the
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performance on those tasks P and a set of data that the algorithm can experience

in order to improve E.

The first step in order to tackle a problem with machine learning techniques is

the formal definition of the task T , together with a quantifiable metric that scores

the accuracy on such task P . In this section, the most common machine learning

tasks that are of relevance for their possible use in particle collider experiments and

similar scientific contexts are introduced. Simultaneously with the description of the

tasks, performance measures and data, the main general machine learning concepts

are reviewed.

4.1.1 Probabilistic Classification and Regression

One of the conceptually simple, yet versatile, tasks that can be addressed with ma-

chine learning algorithms is classification. A classifier or a classification rule is a

function f(x) : X −→ Y that predicts a label y ∈ {0, ..., k − 1}, denoting corres-

pondence to one category in a set of of k categories, for each input x ∈ X . The

task of classification, in the context of machine learning algorithms, is to produce

classification functions f(x) that perform well on an unobserved set of data.

Classification is often framed as belonging to a larger category of tasks referred to

as supervised learning, where the goal is predicting the value of an output variable

y (here a multi-dimensional vector for generality) based on the observed values of

the input variables x, based on a learning set of n input vectors with known output

values S = {(x0,y0), ..., (xn,yn)}. The output values y are known in the learning

set, because they were previously determined by an external method, typically a

teacher or supervisor looking at past observations, thus explaining the name of these

family of techniques.

From a statistical standpoint, the input observations and target values from the

learning set can be viewed as random variables sampled from a joint probability

distribution p(x,y), which is typically unknown. The family of supervised learning

tasks also includes regression, which amounts to construct a f(x) that can to predict

a numerical target output y, and structured output tasks where the output vector y

is a vector or a complex data structure where its elements are tightly interrelated.

As will be reviewed in Section 4.3, most analysis problems amenable by machine

learning in high-energy physics experiments are framed as classification and regres-

sion tasks, while the use of structured output tasks is instead not quite extended.

The reconstruction of the set and properties of physical objects in an event directly

from the detector readout could be framed as a structured output task, if it was to
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be approached directly using machine learning algorithms instead of the procedures

described in Section 2.3.3.

The goal of supervised learning is not to perform well on the learning set S used

for improving at the specified task, but rather to perform well on additional un-

seen observations sampled from the joint distribution p(x,y). Supervised learning

algorithms exploit the conditional relations between the input and the output vari-

ables, in order to classify new observations better than a random classification rule

that does not depend on the value of x. When using machine learning techniques

in data analysis at the LHC, as will be reviewed in Section 4.3, simulated observa-

tions are used instead of expert-labelled past observations. Simulated observations

correspond to random samples of the joint distribution over the latent variables for

the generative model p(x, z|θ), as described in Section 3.1.

In fact, the problem of inferring a subset of latent variables z of the statistical

model for the raw detector readouts of a collider experiment x, or from any determ-

inistic function of it s(x), can be cast as a supervised learning problem. The learning

set S would consist of simulated observations xi (or a summary of it s(xi)), and a

matching subset of interest of the latent variables yi ∈ Y ⊆ Z. The supervised learn-

ing task can then be viewed as the estimation of the conditional expectation value

Ep(y|x=xi)[y] for each given input observation xi, thus characterising the probability

distribution p(y|x).

While several performance measures P are possible for a given task T , for super-

vised learning is common to use performance measures that estimate the expected

prediction error, or risk R, of a given predictor function f(x), which can normally

be expressed as:

R(f) = E
(x,y)∼p(x,y)

[L(y, f(x))] (4.1)

where L is a loss function that quantifies the discrepancy between the true output

and the prediction. The quantity defined in Equation 4.1 is often also referred to as

risk, test error, or also as generalisation error.

The optimal model for a given task T thus depends on the definition of its loss

function L, if the objective is minimising the expected prediction error. In practice,

the expected prediction error cannot be estimated analytically because p(x,y) is

not known, or not tractable in the case of a generative simulation model. The
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generalisation error has thus to be estimated from a subset of labelled samples S′ =

{(x0,y0), ..., (xn′ ,yn′)} as follows:

R(f) ≈ RS’ =
1

n′

∑

(xi,yi)∈S
′

L(yi, f(xi)) (4.2)

which is also commonly referred to as empirical risk approximation RS’(f) based on

the set S′. The supervised learning problem can then be stated as one of finding the

function f̂ from a class of functions F , which depends on the particularities of the

algorithm, that minimises the empirical risk over the learning set S:

f̂ = arg min
f∈F

RS(f) (4.3)

which is referred to as empirical risk minimisation (ERM) [112], and it is at core

of most of the existing learning techniques, such as those described in Section 4.2.

However, the ultimate goal of a learning algorithm is to find a function f∗ that

minimises the risk or expected prediction error R(f):

f∗ = arg min
f∈F

R(f) (4.4)

where R(f) is the quantity defined in Equation 4.1, corresponding to the general-

isation error, or average expected performance on unseen observations sampled from

p(x,y). The previous equation can be used to define the optimal prediction function

fB(x), also referred as Bayes model, which represents the minimal error that any

supervised learning algorithm can achieve due to the intrinsic statistical fluctuations

and properties in the data. The Bayes model can be expressed as:

fB(x) = arg min
y∈Y

E
y∼p(y|x)

[L(y, f(x))] (4.5)

where the last term indicates the optimal choice of target y for each value of

x. The previous expression can be obtained by explicitly considering the con-

ditional expectation in the risk term described in Equation 4.4, that is R(h) =

Ex∼p(x|y)

[
Ey∼p(y|x)[L(y, f(x))]

]
, that can be obtained using Bayes theorem. The

Bayes model fB(x), and its corresponding risk R(fB), also referred as residual error,

can only be estimated if p(x,y) is known and the expectation can be computed ana-

lytically. Even though the Bayes optimal model cannot be obtained for real world
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problems, it can be useful nevertheless when benchmarking techniques in synthetic

datasets or for theoretical studies.

Because most learning algorithms optimise f , or its parameters, using the learning

set S, the empirical risk RS(f) is not a good estimator of the expected generalisa-

tion error R(f). In general, RS(f) underestimates RS(f) because the statistical

fluctuations of the finite number of observations in S can be learnt to increase the

performance on S, while they are not useful for prediction on a new set of observa-

tions. If the family of functions F considered in the learning algorithm is flexible

enough, which is often the case, it is possible to achieve RS(f) = 0 for the learning

set S while the generalisation error R(f) is well away from zero. This effect can

actually lead to a degradation of the generalisation error while the empirical risk in

the learning set is decreasing during the learning procedure, which is often referred

to as over-fitting.

To compare different prediction functions or to realistically evaluate the generalised

performance of a given prediction model f , it is useful to be able to compute unbiased

estimates of R(f). The simplest way to obtain such estimate is to divide the learning

set S into two disjoint random subsets Strain and Stest. The train subset Strain will

be used by the learning algorithm to optimise the prediction function f by means

of empirical risk minimisation, as described in Equation 4.3. The hold-out or test

subset Stest can then be used to obtain an unbiased estimation of the performance

of f on unseen observations.

For many learning algorithms, the learning process, or training, is iterative: the

function f is optimised incrementally based on the training data. In those cases,

an estimation of the generalisation error as the training evolves may be useful to

stop the training procedure and avoid the degradation of generalisation due over-

fitting, in what is referred as early stopping. In those cases, as well as to compare

and ensemble the results of various predictor functions and model configurations, is

useful to hold out a fraction of Strain which is commonly referred as validation set

Svalid. Alternative approaches to estimate the generalisation error exist, including

cross-validation and its variations [113], which are usually preferred when the amount

of training data is reduced.

Another important concept for most machine learning techniques is that of hyper-

parameters. The majority of machine learning algorithms depend on a set of para-

meters that regulate the flexibility of the family of functions F to consider for empir-

ical risk minimisation as well as the details of the optimisation procedure followed to

solve the task presented in Equation 4.3. The expected performance of a given model
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depends on these parameters, however their optimal value depends on the particular-

ities of the data (e.g. number of input dimensions or number of size of the data size).

This motivates the notion of hyper-parameter optimisation, where the performance

of the various choices of hyper-parameters is evaluated on the validation set or by

means of cross-validation techniques, in order to select the best configuration.

The loss function L of a supervised learning algorithm, which quantifies the dis-

crepancies between the prediction and the true output target, depends on the task

T and formally defines it. A principled loss function for classification is the zero-one

loss, which is defined as zero when the prediction f(x) matches the target y and one

otherwise. The zero-one risk can then be expressed as:

R0−1(f) = E
(x,y)∼p(x,y)

[1(y 6= f(x))] (4.6)

where 1(y 6= f(x)) is an indicator function, which was defined in Equation 3.6.

The zero-one loss is non-differentiable when y = f(x) and its gradients are zero

elsewhere; in addition, it is not convex, a property which makes the minimisation

task in Equation 4.3 hard to tackle by optimisation algorithms. In fact, it can be

proven that finding the function f in F that minimises directly the R0−1 empirical

risk with a training sample is a NP-hard problem [114]. The Bayes optimal classifier

for the 0-1 loss can nevertheless be easily obtained from Equation 4.7 as a function

of the conditional expectation:

fB(x) = arg min
y∈Y

E
y∼p(y|x)

[1(y 6= f(x))] = arg max
y∈Y

p(y|x) (4.7)

thus the optimal classifier amounts to the prediction of the most likely output cat-

egory y for a given input x. The previous problem is normally referred to as hard

classification, where the objective is to assign a category for each input observation.

Because most problem in high-energy physics that can be cast as supervised learn-

ing are ultimate inference problems as will be reviewed in Section 4.3, it is generally

more useful to consider the problem of soft classification, which instead amounts to

estimate the class probability for each input x.

Soft classification is especially useful when the classes are not separable, which

is often the case for applications in collider experiments. Luckily, soft classification

is also a consequence of most convex relaxations of the zero-one loss of Equation
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4.6. For a two-class classification problem, e.g signal versus background, a useful

approximation of the zero-one loss is the binary cross entropy, defined as:

LBCE(y, f(x)) = −y log(f(x))− (1− y) log(1− f(x)) (4.8)

where now the one-dimensional output prediction f(x), when bounded between 0 and

1 (e.g. using a sigmoid/logistic function), will effectively approximate the conditional

probability p(y = 1|x). In fact, the Bayes optimal model for a binary cross-entropy

classifier is:

fB(x) = E
(x,y)∼p(x,y)

[LBCE(y, f(x))] = p(y = 1|x)

=
p(x|y = 1)p(y = 1)∑

∀yi∈{0,1}
p(x|y = yi)p(y = yi)

=

(
1 +

p(x|y = 0)p(y = 0)

p(x|y = 1)p(y = 1)

)−1 (4.9)

where the second line in the equation is a direct consequence of Bayes theorem and

from the last term it can be clearly seen that the prediction output is monotonic

with the density ratio between the probability density functions for each category.

Similar results can be obtained for the Bayes optimal classifier when using other

soft relaxations of the zero-one function. Machine learning binary classifiers will

effectively approximate this quantity directly from empirical samples, where the prior

probabilities of each class represent the relative presence of observations from each

category.

Binary cross entropy is a subclass of the more general cross entropy loss function,

that can be used for k-categories classification, commonly referred to as multi-class

classification. In these cases, a k-dimensional vector target y is often constructed,

where each component yi is one if the observation belongs to the class i or zero

otherwise, and the output of the prediction function ŷ = f(x) is also a vector of k

components. Within this framework, the cross entropy loss can then be defined as:

LCE(y, f(x)) = −
∑

i

yi log ŷi (4.10)

which can be used to recover Equation 4.8 when k = 2, considering the one-

dimensional target and prediction as the i=1 elements and that y0 = 1 − y and

ŷ0 = 1− f(x). If the prediction output is to generally represent exclusive class prob-

abilities, as is the goal of soft classification, the prediction sum is expected to be one.

A simple way to ensure the aforementioned property is to apply a function that en-

sures that the prediction outputs are in the range [0, 1] and normalised so
∑

i ŷi = 1.

113



4 Machine Learning in High-Energy Physics

The softmax function is a common choice to achieving the mentioned transformation

within the field of machine learning. It is a generalisation of the logistic function to

k dimensions, and is defined as:

ŷi =
efi(x)/τ

∑k
j=0 e

fj(x)/τ
(4.11)

where fi and fj refer to the i and j elements of the vector function f(x) and τ is the

temperature, a parameter that regulates the softness of the operator which is often

omitted (i.e. τ = 1). In the limit of τ → 0+, the probability of the largest component

will tend to 1 while others to 0. The softmax output can be used to represent the

probability distribution of a categorical distribution in a differentiable way, where

the outcome represent the probabilities of each of the k possible outcomes. We will

make use of this function in Chapter 6. When the softmax function and the cross

entropy loss are used together for multiclass classification, the optimal Bayes model

is:
fB,i(x) = E

(x,y)∼p(x,y)
[LCE(y, f(x))] = p(y = yi|x)

=
p(x|y = yi)p(y = yi)∑

∀yi∈{0,...,k−1} p(x|y = yi)p(y = yi)

(4.12)

which can also be expressed as a function of a sum of density ratios of the categories.

4.2 Machine Learning Techniques

While the focus of the previous section was defining the main problems and properties

that can be addressed with machine learning techniques, details about the actual

computational and statistical procedures used for learning were not provided. In

this chapter, the basis of the two classes of algorithms that are used elsewhere in this

work will be described in detail: boosted decision trees and artificial neural networks.

These families of learning methods are also those that are most commonly used in

machine learning within experimental particle physics, mostly to solve supervised

learning problems, as will be described in Section 4.3. The overview included here is

by no means comprehensive about the mentioned approaches or alternative popular

statistical learning techniques such as random forests or support vector machines,

for which the following references provided a more extensive review [113, 115, 116].
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4.2.1 Boosted Decision Trees

The term boosted decision trees (BDT) refers to a large family of algorithms that are

based on additively constructing ensembles of decision trees for supervised learning

tasks [117, 118, 119] as those described in Section 4.1.1. A subset of these techniques,

which is often referred as gradient boosting, are particularly useful for classification

and regression problems. The basis for these methods is that a strong model can

be obtained by combining the outcome of a set of weak models, e.g. shallow binary

decision trees, if they are built to minimise the residual error at each stage. Gradient

boosting algorithms can be applied to any supervised task as long as it can be

specified by a differentiable loss function, and they can be understood as gradient

descent (which will be discussed in Section 4.2.2) in function space [120].

While it can be applied to other weak learners, gradient boosting is often used to

learn ensembles of decision trees. A decision tree is hierarchical branched structure

that associates an outcome for each input x ∈ X by means of partitioning the input

space in different disjoint subsets R = (X0, ...,XL), each associated with a constant

prediction wr for each leaf. A generic type of decision trees, which is referred to

as classification and regression trees (CART) [121] can be expressed as a function

of the input t(x) as a sum over the indicator function 1
r
X (x) of each subspace (see

Equation 3.6) as follows:

t(x) =

Xr∈R∑
wr1Xr(x) (4.13)

where wr is the outcome for each subspace, noting the summands will be zero for all

subsets X r except for one because their are disjoint. The indicator function 1Xr(x)

of a given subspace is specified by a series of binary decisions on a single feature.

If the leaf predictions wr are categorical, the resulting model t(x) is referred as a

classification tree. If wr are numerical, t(x) is a regression tree. In the context of

gradient boosting, regression trees are often more useful, even for classification tasks,

i.e. regression trees can be used in conjunction with soft classification loss functions

(e.g. cross entropy). For the rest of this section, we will then focus on gradient

boosting with regression trees. A schematic representation of a regression tree is

provided in Figure 4.1, which corresponds to the first tree in the ensemble used for

signal versus background classification in the analysis described in Chapter 5.

Given its structural limitations, a single CART tree of small maximum depth

d performs rather poorly a given supervised learning task for complex non-linear

problems. If d is very large, the problem of learning an optimal tree based on data is

computationally very demanding, and the resulting model would not generalise well
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to unseen data. This motivates the use of tree ensembles, where the final prediction

is composed by the combined predictions of several small trees. For an ensemble of

K CART trees, the final model prediction T (x) can be expressed as:

T (x) =
K∑

j=1

tj(x) (4.14)

where each tj(x) is a CART model, as described in Equation 4.13. Other regres-

sion tree ensembles based on alternative methods such as bagging [122] can also be

expressed by a similar combination of predictions. The learning problem can be

expressed as empirical risk minimisation in the space of possible tree ensembles over

the learning set of labelled observations S = {(x0,y0), ..., (xn,yn)}, as discussed in

Equation 4.3. The total empirical risk functional R(T ) for an ensemble of K trees

can usually be written as:

R(T ) =
∑

(xi,yi)∈S

L(yi, T (xi)) +

K∑

j=1

Ω(tj) (4.15)

where L(yi, T (xi)) is the preferred loss function for the task (e.g. binary cross entropy

as defined in Equation 4.8) and Ω(tj) is a regularisation term that depends on the

properties of each tree and controls the complexity of the model in order to avoid

overfitting.

Because learning the structure and leaf weights wr of all trees in the ensemble at

the same time is intractable, boosting is based on sequentially learning trees. At each

step, a tree tj is built to improve over the previously ensemble of trees T(j−1)(x),

the prediction for each observation in the learning set a given step j of the training

procedure can then be expressed as:

Tj(xi) = T(j−1)(xi) + tj(xi) (4.16)

which can be used to redefine the equivalent risk from Equation 4.15 at each training

step, where the tree tj(x) is being created as:

R(Tj) =
∑

(xi,yi)∈S

L(yi, T(j−1)(xi) + tj(xi)) +
K∑

j=1

Ω(tj) (4.17)
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where the loss L(yi, T(j−1)(xi) can be expanded as a Taylor series assuming that

at the step j the ensemble T(j−1)(x) is constant. Omitting constant terms, which

do not play any role in risk minimisation, the risk at a given training step can be

expressed as:

R(Tj) ∼
∑

(xi,yi)∈S

(
∂L(yi, T(j−1)(xi))

∂T(j−1)(xi)︸ ︷︷ ︸
gi

tj(xi)

+
1

2

∂2L(yi, T(j−1)(xi))

∂T 2
(j−1)(xi)︸ ︷︷ ︸
hi

t2j (xi)

)
+Ω(tj)

(4.18)

where gi and hi are so-called gradient statistics, computed using the first and second

partial derivatives of the loss function with respect to the ensemble prediction at the

previous step T(j−1)(xi). At each step the learning problem can then be reduced to

choosing a tree structure and weights, characterised by the function tj , that minimises

R(Tj). This technique can therefore be applied to any supervised learning tasks as

long the associated loss function is differentiable.

A common regularisation term, that is used by the xgboost library [123] used

for training the classifier in Chapter 5, is a combination of the number of leaves L

and the squared sum of the leaf weights wr for all the leaves:

Ω(tj) = γL+
1

2
λ

Xr∈R∑
w2
r (4.19)

where γ and λ are constants that regulate the relative importance of each regular-

isation component. Using the previous regularisation term, it is possible to redefine

the risk of a given tree structure and set of leaf weight at given training step as:

R(Tj) ∼
Xr∈R∑


wr

xi∈S∑
gi1Xr(xi)︸ ︷︷ ︸
Gr

+
1

2
w2
r

xi∈S∑
(hi + λ)1Xr(xi)︸ ︷︷ ︸

Hr+λ


+ γL (4.20)

where Gr and Hr represent the sum of gi and hi over all the samples in the learning

set that correspond to the leaf indexed by r. The previous expression can in turn

be used to obtain the optimal leaf weight w⋆r and simplify the risk at a given step as

follows:

w⋆r = − Gr
Hr + λ

⇒ R(Tj) = −1

2

Xr∈R∑ G2
r

Hj + λ
+ γT (4.21)
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where Xr are the subsets of the input space corresponding to each leaf of the last

tree j. The last expression for R(Tj) can be used to compare tree structures to be

added to the ensemble in a principled manner.

In practice, the number of possible tree structures is infinite so the problem of

finding the optimal tree at each step is still intractable. A greedy heuristic is instead

used, which proceeds one level of the tree at time. For each input feature, the optimal

splitting at a given level can be found by maximising the splitting gain, which can

be done very efficiently by sorting the observations in that feature and finding the

threshold that maximises the gain G, that is defined as:

G =
1

2

(
GL

HL + λ
+

GR
HR + λ

− (GL +GR)
2

HL +HR + λ

)
+ γ (4.22)

where GL and HL are the sum of gradient statistics left of the threshold and GR and

HR are those right of the threshold. If the gain is negative for the whole, no splitting

is preferred in the considered features. Once the optimal splitting is determined for

all the features, the featurs that provides the minimal risk as defined in Equation

4.21 is chosen. The algorithm then proceeds to the next tree level until the maximum

tree depth is reached or any additional splitting degrades the performance.

Boosted tree ensembles are prone to overfitting to the learning set, so addi-

tional heuristics are often used to improve generalisation. A common approach

after each step that produces a tree tj by the procedure outlined before, is to

define ensemble for the next step by weighting the constribution from the last three

Tj(xi) = T(j−1)(xi) + η tj(xi), where η is referred as learning rate or shrinkage. The

use of η < 1 produces a less efficient learning procedure, so additional trees are

required in the ensemble, however the resulting model is less prone to overfitting.

Other policies against overfitting include subsampling the set of observations or the

feature vector dimensions. Early stopping, as defined in Section 4.1.1, can also be

trivially applied to boosted tree ensembles simply by leaving out the last n trees in

the summation so the risk over validation set is maximised.

4.2.2 Artificial Neural Networks

An alternative way to carry out empirical risk minimisation is based on consider func-

tion f(x;φ), which depends on a vector of parameters φ, and attempt to find the val-

ues of φ that minimise the riskRS(f) over the learning set S = {(x0,y0), ..., (xn,yn)}.
If f(x;φ) is differentiable with respect to the parameter vector φ, the minimisation

from Equation 4.4, can be attempted with gradient-based methods. The simplest
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gradient-based optimisation technique is referred to as gradient descent (GD), and

can be applied to the previous problem by initialising the parameter vector at random

φ0 and then iteratively updating the model parameters φ at each step t according

to:

φt+1 = η(t)∇φRS(φ
t) = η(t)∇φ

1

n

∑

(xi,yi)∈S

(
L(yi, f(xi;φ

t)) + Ω(φt)
)

(4.23)

where ∇φ is the gradient operator with respect the model parameters, η(t) is the

learning rate or step size and Ω(φ) is a generic generalisation term added to the loss to

constrain model complexity. Many other gradient-based optimisation methods exist

[124], e.g. using second-order derivative information. The previous flavour of gradient

descent is often referred as batch gradient descent, because the whole learning set

S is used to compute the parameter updates at each step. Batch gradient descent

can be very computationally demanding when the number of observations in S is

large and the computation of the gradient of the loss for each labelled observation

is costly. In addition, batch gradient descent is a deterministic optimisation method

and likely to get stuck at a local minima if the optimisation surface is non-convex.

A variation of the previous technique, that is referred to as stochastic gradient

descent (SGD) [125], overcomes the mentioned issues by using a random subset

B = {(x0,y0), ..., (xm,ym)} of m observations from the training set S at each step.

If m is small the updates can be computed much faster, the trade-off being more

noisy estimates of E(xi,yi)∈S
∇φ

[
L(yi, f(xi;φ

t)
]
. The parameter update rule from

Equation 4.23 in SGD can be instead be expressed as:

φt+1 = η(t)∇φRS(φ
t) = η(t)∇φ

1

m

∑

(xi,yi)∈B

(
L(yi, f(xi;φ

t)) + Ω(φt)
)

(4.24)

where B is a random subset of size m of the learning set S. In the original formu-

lation m = 1, yet nowadays a larger value for m is often used in what is referred

to as mini-batch SGD to obtain balance the estimate noise and take advantage of

vectorised computations. Several variations of SGD exist, which in some cases can

provide convergence advantages over the previous update rule by using adaptive

learning rates or momentum in the update dynamics [126]. Stochastic gradient des-

cent methods are a key element for training complex differentiate machine models

f(x;φ) as artificial neural networks, which will be discussed in the rest of this sec-

tion. SGD in combination with a non-decomposable loss function is also used in

Chapter 6 to learn inference-aware summary statistics.
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A particularly promising family of parametric functions f(x;φ) is referred to as

artificial neural networks. Artificial neural networks are differentiable functions based

on the composition of simple (and possibly non-linear) operations. The simplest type

of artificial neural network is depicted in Figure 4.2, which is referred as feed-forward

neural network, that maps a input x to an output y by means of a series of forward

transformations, referred as neural network layers. In the simplest configuration, the

values at a given layer k other than the input layer can be computed as non-linear

transformation of the result of a linear combination of the output of the previous

layer after the addition of a bias term. The previous transformation can be expressed

very compactly in matrix form as:

ak = g((W k)Tak−1 + bk) (4.25)

where ak is the outcome in vector notation after the layer transformation, ak−1 is

the vector of values from the previous transformation (or a0 = x if it is the first layer

after the input), W k a matrix with all the linear combination coefficients and bk is

the bias vector that is added after linear combination. The activation function g(z)

is applied element-wise, and it is often based on a simple non-linear function. The

sigmoid function σ(z) = 1/(1 + ez) used to be a common choice for the activation

function, but nowadays the rectified linear unit (ReLU) function g(z) = max(0, z)

and its variants are most frequently used instead.

The full feed-forward model f(x;φ) is based on the composition of transformation

of the type described in Equation 4.25. When a single transformation is applied,

i.e. y = g((W )Tx + b), the model can be referred to as perceptron. If the model

is instead based on the composition of several transformations, it can also be called

multi-layer perceptron (MLP), and each of the intermediate transformations (which

can be composed by an arbitrary number of computational units) is referred as hidden

layers. The model in Figure 4.2 is a MLP. The advantage of using models based on

feed-forward neural networks with hidden layers is that they can be used to model

any arbitrary function due to the universal approximation theorem [127]. In fact,

while it is still the focus of theoretical research, the use of a large number of hidden

layers is found to increase the expressivity and facilitate the training of powerful

neural network models. The experimental success of these family techniques has led

to the concept of deep learning, where multiple transformations layers are used for

learning data representations in many learning tasks.
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Figure 4.2: Graphical representation of a feed-forward neural network with two hidden lay-
ers, which is a function mapping and input x to an output y by means simple
non-linear transformations. The output value of a node each layer (other than
the input layer) is the result of applying an activation function g to a linear
combination of the previous layer outputs plus possibly a bias term.

A good choice for depth and overall structure for a neural network model depends

on the problem at hand as well as the characteristics and size of the learning set

available, thus it frequently has to be defined by trial-and-error, based on the per-

formance on a validation set as discussed in Equation 4.1.1. The output size and

choice of activation function in the last transformation often depends on the task at

hand. For binary classification classification tasks, it is practical to use the sigmoid

function σ(z) = 1/(1+ez) as the activation function of the last layer, in combination

with a loss function for soft classification (e.g. binary cross entropy from Equation

4.8). For multi-class classification problems, such as the one discussed in Section

4.3.2, the size of the output vector usually matches the number of the categories

given that the softmax function (see Equation 4.11) is often used in the last layer to

approximate conditional class probabilities in combination with a cross entropy loss

(see Equation 4.10). For learning tasks different from classification, different output

structures and constraints might be used, e.g. the output vector size in the use case

in Chapter 6 corresponds to the number of dimensions of the resulting summary

statistic, that is based on a transformation of the input using a multi-layer neural

network.
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The SDG update rule from Equation 4.24 requires the computation of the gradi-

ents of the loss function with respect to the model parameters. For complex models,

e.g. those put together by stacking layers as those described in Equation 4.25, the

computation of derivatives by numerical finite differences or symbolic differentiation

may become rather challenging. The former requires the evaluation of the loss func-

tion after variations for at least twice the number of parameters and are affected

by round-off and truncation errors, and a naive use of the later could instead lead

to very large expressions for the exact derivative that cannot be easily simplified.

Given that a numerical function as implemented in a computer program is a se-

quence of simple operations (e.g. addition, subtraction, exponentiation, etc.), it is

possible to efficiently obtain gradients and other derivatives by applying the chain

rule repeatedly based on the structure of the program, the derivatives of the simple

operations and a record of the intermediate values.

The previous family of techniques, which will not be discussed in depth in this

work, are referred as automatic differentiation (AD) [128]. The most efficient way

of computing the gradients of a one-dimensional function that depends on many

parameters, as the gradient of the empirical risk for a batch of observations from

Equation 4.24 is by means of reverse-mode automatic differentiation, which is also

referred to as the backpropagation in the context of neural network training. The

computational cost of computing the full gradient of the loss to numerical precision

using backpropagation is of the same order than a single forward evaluation of the

loss, which provides a great advantage relative to finite differences. In addition, when

implemented in a computation framework, it can be generally applied to any numer-

ical function as long as can be expressed as a computational graph, e.g. an arbitrary

program containing control flow statements, without requiring complex expression

simplification as would be the case for symbolic differentiation. In fact, modern

computational that include automatic differenciation such as TensorFlow [129] or

PyTorch [130] may also be used to compute higher-order gradients (e.g. Hessian

matrix elements), which are useful in Chapter 6 to build a differentiable approxim-

ation the covariance matrix based on a summary statistic.

As mentioned before, reverse mode automatic differentiation can be used to com-

puted the gradients of an arbitrary function as long as it can be represented as a

computational graph containing differentiable simple operations. Thus the neural

network model f(x;φ) is not restricted to the composition of layers of the type

described in Equation 4.25, which are often referred as fully connected or dense lay-

ers. Alternative function components are useful for dealing with data cannot be
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represented by a fixed-length vector [115], e.g. convolutional layers are often useful

for working with 2D images while recurrent layers extend the application of neural

networks to sequences that vary in length between observations. Both convolutional

and recurrent layers are used in the neural network model for jet flavour-tagging

described in Section 4.3.2. Other differentiable neural network components have

also been developed to deal with permutation invariant sets [131] or graphs [132] as

input data structures, which could have promising applications in particle collider

experiments analyses.

4.3 Applications in High Energy Physics

Machine learning techniques, in particular supervised learning, are increasingly being

used in experimental particle physics analysis at the LHC [133]. In this section, the

main use cases are described, linking the learning task with the statistical problems

and properties which were described in Chapter 3. In broad terms, most supervised

learning at collider experiments can be viewed as a way to approximate the latent

variables of the generative model based on simulated observations. Those latent

variable approximations are often very informative about the parameters of interest

and then can be used to construct summary statistics of the observations, which

allow to carry out likelihood-free inference efficiently.

4.3.1 Signal vs Background Classification

The mixture structure of the statistical model for the outcome of collisions, discussed

in Chapter 3, facilitates its framing as a classification problem. Intuitively, the

classification objective could be stated as the separation of detector outcomes coming

from processes that contain information about the parameters of interest from those

that do not, which will be referred as signal and background respectively, following

the same nomenclature from Section 3.1.1. The two classes are often non-separable

- i.e. a given detector outcome x (or any function of it) could have been produced

either by signal or background processes, and only probabilistic statements of class

assignment can be made.

In order to use supervised machine learning techniques to classify detector out-

comes, labelled samples are required, yet only the detector readout x is known for col-

lected data. Realistic simulated observations, generated specifically to model events

from a given set processes (e.g. signal and background) can instead be used as training

data, where the categorical latent variable zi that represents a given set of processes
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can effectively used as classification label. If the simulator model is misspecified,

e.g. due to the effect of known unknowns as discussed in Section 3.1.4, the result-

ing classifiers would be trained to optimise the classification objective for different

distributions.

To understand the role of classification in the larger goal of statistical inference

of a subset of parameters of interest in a mixture model, let us consider the general

problem of inference for a two-component mixture problem. One of the components

will be denoted as signal ps(x|θ) and the other as background pb(x|θ), where θ are

of all parameters the distributions might depend on. As discussed in Section 3.1.1,

it is often the case that fs(x|θ) and fb(x|θ) are not known, observations can only be

simulated, which will not affect the validity the following discussion. The probability

distribution function of the mixture can be expressed as:

p(x|µ,θ) = (1− µ)pb(x|θ) + µps(x|θ) (4.26)

where µ is a parameter corresponding to the signal mixture fraction, which will be

the only parameter of interest for the time being. As discussed in Section 3.1.1,

most of the parameters of interest in analyses at the LHC, such as cross sections,

are proportional to the mixture coefficient of the signal in the statistical model. The

results presented here would also be also be valid if alternative mixture coefficient

parametrisations such as the one considered in Section 6.5.1 are used, e.g. µ =

s/(s+ b) where s and b is the expected number of events for signal and background

respectively, as long as b is known and fixed and s is the only parameter of interest.

Likelihood Ratio Approximation

Probabilistic classification techniques will effectively approximate the conditional

probability of each class, as discussed in Equation 4.9 for the binary classification.

A way to approximate the density ratio r(x) between two arbitrary distribution

functions ρ(x) and q(x) is then to train a classifier - e.g. a neural network optimising

cross-entropy. If samples from ρ(x) are labelled as y = 1, while y = 0 is used for

observations from q(x), the density ratio can be approximated from the soft BCE

classifier output s(x) as:

s(x)

1− s(x)
≈ p(y = 1|x)
p(y = 0|x) =

p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0)
= r(x)

p(y = 1)

p(y = 0)
(4.27)
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thus the density ratio r(x) can be approximated by a simple function of the trained

classifier output directly from samples of observations. The factor p(y = 1)/p(y = 0)

is independent on x, and can be simply estimated as the ratio between the total

number of observations from each category in the training dataset - i.e. equal to 1 if

the latter is balanced.

Density ratios are very useful for inference, particularly for hypothesis testing,

given that the likelihood ratio Λ from Equation 3.39 is the most powerful test statistic

to distinguish between two simple hypothesis and can be expressed as a function of

density ratios. Returning to the two component mixture from Equation 4.26, for

discovery the null hypothesis H0 corresponds to background-only p(x|µ = 0,θ) while

the alternate is often a given mixture of signal and background p(x|µ = µ0,θ), where

µ0 is fixed. For the time being, the other distribution parameters θ will be assumed

to be known and fixed to the same values for both hypothesis. The likelihood ratio

in this case can be expressed as:

Λ(D;H0, H1) =
∏

x∈D

p(x|H0)

p(x|H1)
=
∏

x∈D

p(x|µ = 0,θ)

p(x|µ = µ0,θ)
(4.28)

where the p(x|µ = 0,θ)/p(x|µ0,θ) factor could be approximated from the output

of a probabilistic classifier trained to distinguish observations from p(x|µ = 0,θ)

and those from p(x|µ = µ0,θ). A certain µ0 would have to be specified to generate

p(x|µ = µ0,θ) observations in order to train the classifier. The same classifier output

could be repurposed to model the likelihood ratio when H1 is p(x|µ = µ1,θ) with

a simple transformation, yet the mixture structure of the problem allows for a more

direct density ratio estimation alternative, which is the one regularly used in particle

physics analyses.

Let us consider instead the inverse of the likelihood ratio Λ from Equation 4.28,

each factor term is thus proportional to the following ratio:

Λ−1 ∼ p(x|H1)

p(x|H0)
=

(1− µ0)pb(x|θ) + µ0ps(x|θ)
pb(x|θ)

(4.29)

which can in turn be be expressed as:

Λ−1 ∼ (1− µ)

(
ps(x|θ)
pb(x|θ)

− 1

)
(4.30)

thus each factor in the likelihood ratio is a bijective function of the ratio ps(x|θ)/pb(x|θ).
The previous density ratio can be approximated by training a classifier to distin-
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guish signal and background observations, which is computationally more efficient

and easier to interpret intuitively than the direct p(x|H0)/p(x|H1) approximation

mentioned before.

From a statistical inference point of view, supervised machine learning framed as

the classification of signal versus background can be viewed as a way to approximate

the likelihood ratio directly from simulated samples, bypassing the need of a tractable

density function (see Section 3.2.1). It is worth noting that because it is only an

approximation, in order to be useful for inference it requires careful calibration.

Such calibration is usually carried out using a histogram and an holdout dataset

of simulated observations, effectively building a synthetic likelihood of the whole

classifier output range or the number of observed events after cut in the classifier is

imposed (see Section 3.1.3). Alternative density estimation techniques could also be

used for the calibration step, which could reduce the loss of information due to the

histogram binning.

The effect of nuisance parameters, due to known unknowns, have also to be ac-

counted for during the calibration step. The true density ratio between signal and

background depends on any parameter θ that modifies the signal ps(x|θ) or back-

ground pb(x|θ) probability densities, thus its approximation using machine learning

classification can become complicated. In practice, the classifier can be trained for

the most probable likely value of the nuisance parameters and their effect can be ad-

equately accounted during calibration, yet the resulting inference will be degraded.

While this issue can be somehow ameliorated using parametrised classifiers [134],

the main motivation for using the likelihood ratio - i.e. the Neyman-Pearson lemma

- does not apply because the hypothesis considered are not simple when nuisance

parameters are present.

Sufficient Statistics Interpretation

Another interpretation of the use of signal versus background classifiers, which more

generally applies to any type of statistical inference, is based on applying the concept

of statistical sufficiency (see Section 3.1.3). Starting from the mixture distribution

function in Equation 4.26, and both dividing and multiplying by pb(x|θ) we obtain:

p(x|µ,θ) = pb(x|θ)
(
1− µ+ µ

ps(x|θ)
pb(x|θ)

)
(4.31)

from which we can already prove that the density ratio ss/b(x) = ps(x|θ)/pb(x|θ)
(or alternatively its inverse) is a sufficient summary statistic for the mixture coef-

127



4 Machine Learning in High-Energy Physics

ficient parameter µ, according the Fisher-Neyman factorisation criterion defined in

Equation 3.30. The density ratio can be approximated directly from signal versus

background classification as indicated in Equation 4.27.

In the analysis presented in Chapter 5 and in the synthetic problem considered in

Section 6.5.1, as well as for most LHC analysis using classifiers to construct summary

statistics, the summary statistic

ss/(s+b) =
ps(x|θ)

ps(x|θ) + pb(x|θ)

is used instead of ss/b(x). The advantage of ss/(s+b)(x) is that it represents the

conditional probability of one observation x coming from the signal assuming a bal-

anced mixture, so it can be approximated by simply taking the classifier output. In

addition, being a probability it is bounded between zero and one which greatly sim-

plifies its visualisation and non-parametric likelihood estimation. Taking Equation

4.31 and manipulating the subexpression depending on µ by adding and subtracting

µ we have:

p(x|µ,θ) = pb(x|θ)
(
1− 2µ+ µ

ps(x|θ) + pb(x|θ)
pb(x|θ)

)
(4.32)

which can in turn can be expressed as:

p(x|µ,θ) = pb(x|θ)
(
1− 2µ+ µ

(
1− ps(x|θ)

ps(x|θ) + pb(x|θ)

)−1
)

(4.33)

hence proving that ss/(s+b)(x) is also a sufficient statistic and theoretically justifying

its use for inference about µ. The advantage of both ss/(s+b)(x) and ss/b(x) is that

they are one-dimensional and do not depend on the dimensionality of x hence allow-

ing much more efficient non-parametric density estimation from simulated samples.

Note that we have been only discussing sufficiency with respect to the mixture coef-

ficients and not the additional distribution parameters θ. In fact, if a subset of θ

parameters are also relevant for inference (e.g. they are nuisance parameters) then

ss/(s+b)(x) and ss/b(x) are not sufficient statistics unless the ps(x|θ) and pb(x|θ)
have very specific functional form that allows a similar factorisation.

In summary, probabilistic signal versus background classification is an effective

proxy to construct summary statistic that asymptotically approximate sufficient

statistics directly from simulated samples, when the distributions of signal and back-

ground are fully defined and µ (or s in the alternative parametrisation mentioned

before) is the only unknown parameter. If the statistical model depends on addi-
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tional nuisance parameters, probabilistic classification does not provide any suffi-

ciency guarantees, so useful information about that can used to constrain the para-

meters of interest might be lost if a low-dimensional classification-based summary

statistic is used in place of x. This theoretical observation will be observed in practice

in Chapter 6, where a new technique is proposed to construct summary statistics,

that is not based on classification, but accounts for the effect of nuisance parameters

is presented.

4.3.2 Particle Identification and Regression

While the categorical latent variable zi, denoting the interaction process that oc-

curred in a given collision, is very useful to define an event selection or directly as

a summary statistic, information about other latent variables can also be recovered

using supervised machine learning. As discussed in Section 2.3.3, event reconstruc-

tion techniques are used to cluster the raw detector output so the various readouts

are associated with a list of particles produced in the collision. It is possible that

in the near future the algorithmic reconstruction procedure might be substituted by

supervised learning techniques, training directly on simulated data to predict the set

of latent variables at parton level, especially given the recent progress with sequences

and other non-tabular data structures. For the time being, machine learning tech-

niques are instead often used to augment the event reconstruction output, mainly

for particle identification and fine-tuned regression.

The set of physics objects obtained from event reconstruction, when adequately

calibrated using simulation, can estimate effectively a subset of the latent variables

z associated with the resulting parton level particles, such as their transverse mo-

menta and direction. Due to the limitations of the hand-crafted algorithms used,

some latent information is lost in the standard reconstruction process, particularly

for composite objects such as jets. Supervised machine learning techniques can be

used to regress some of these latent variables, using simulated data and considering

both low-level and high-level features associated with the relevant reconstructed ob-

jects. This information could be used to complement the reconstruction output for

each object and design better summary statistics, e.g. adding it as an input to the

classifiers discussed in Section 4.3.1.

The details of the application of machine learning techniques in particle identific-

ation and regression depend on the particle type and the relevant physics case. In

the remainder of this section, the application of new deep learning techniques to jet

tagging within CMS is discussed in more detail. The integration of deep learning jet
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taggers with the CMS experiment software infrastructure was one of the secondary

research goals of the project embodied in this document. Leveraging better machine

learning techniques for jet tagging and regression could substantially increase the

discovery reach of analyses at the LHC that are based on final states containing jets,

such as the search for Higgs boson pair production described in Section 5.

Deep Learning for Jet Tagging

The concept of jet tagging, introduced in Section 2.3.3, is based on augmenting the

information of reconstructed jets based on their properties to provide additional de-

tails about latent variables associated to the physics object which were not provided

by the standard reconstruction procedure. Heavy flavour tagging, and in particular

b-tagging, is extremely useful to distinguish and select events containing final states

from relevant physical interactions. The efficiency of b-tagging algorithms in CMS

has been gradually improving for each successive data taking period since the first

collisions in 2010. The advance in b-tagging performance, which was already exem-

plified by Figure 2.12, is mainly due the combined effect of using additional or more

accurate jet associated information (e.g. secondary vertex reconstruction or lepton

information) and better statistical techniques.

Jet tagging can generally be posed as a supervised machine learning classification

problem. Let us take for example the case of b-tagging, i.e. distinguishing jets

originating from b-quarks from those originating from lighter quarks or gluon, which

can be framed as binary classification problem: predicting wether a jet is coming

from a b-quark or not given a set of inputs associated to each jet. The truth label

is available for simulated samples, which are used to train the classifier. The CSVv2

b-tagging algorithm (and older variants) mentioned in Section 2.3.3 is based on the

output of supervised classifiers trained from simulation, i.e. the combination of three

shallow neural network combination depending on vertex information for CSVv2.

The CMVAv2 tagger, which is used in the CMS analysis included in Section 5, is

instead based on a boosted decision tree binary classifier that uses other simpler b-

tagging algorithm outputs as input. Similar algorithms based on binary classification

have been also developed for charm quark tagging and double b-quark tagging for

large radius jets.

The first attempt to use some of the recent advances in neural networks (see Sec-

tion 4.2.2) for jet tagging within CMS was commissioned using 2016 data, and it

is referred to as DeepCSV tagger. The purpose for the development of this tagger

was to quantify the performance gain due to the use of deep neural networks for jet
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tagging in CMS, which was demonstrated effective using a simplified detector sim-

ulation framework [135, 136]. Thus, a classifier based on a 5-layer neural network,

each layer with 100 nodes using ReLU activation functions, was trained based on

the information considered for the CSVv2 tagger. A vector of variables from up to

six charged tracks, one secondary vertex and 12 global variables was considered as

an input, amounting to 66 variables in total. Another change with respect to pre-

vious taggers is that flavour tagging is posed as a multi-class classification problem,

which is a principled and simple for tacking the various flavour tagging problems

simultaneously.

Five exclusive categories were defined based different on the generator level hadron

information1: the jet contains exactly one B hadron, at least two B hadrons, exactly

one C hadrons and no B hadrons, at least two C hadrons and no B hadrons, or none

of the previously defined categories. The softmax operator (see Equation 4.11) was

used to normalise the category output as probabilities and construct a loss function

based on cross entropy (see Equation 4.10). As was shown in Figure 2.12 for b-

tagging performance, the DeepCSV tagger is considerably better than CSVv2 for

the b-jet efficiency/misidentification range - e.g. about 25% more efficient at light

jet and gluon mistag rate of 10−3. In fact, DeepCSV outperforms the CMVAv2 super-

combined tagger, which uses additional leptonic information. While not shown in this

document, the performance for c-tagging was found also comparable with dedicated

c-taggers [85].

The very favourable results obtained for DeepCSV motivated the use of newer

machine learning technologies, such as convolutional and recurrent layers, which were

readily available in open-source software libraries [137, 129], as well as advances in

hardware (i.e. more powerful GPUs for training). The large amount of jets available

in simulated data, e.g. in 2016 about 109 tt̄ events were simulated for CMS (each

with two b-quarks and probably several light quarks), conceptually justifies the use

of more complex machine learning models because over-fitting is unlikely. Thus, a

new multi-class jet tagger referred to as DeepJet (formerly know as DeepFlavour)

was developed, whose architecture is depicted in Figure 4.3, that can be characterised

by a more involved input structure and both convolutional and recurrent layers.

Instead of a fixed input vector, optionally padded with zeroes for the elements

that did not exist (e.g. not reconstructed secondary vertex has been reconstructed), a

1Here by B and C hadrons we refer to hadrons containing b-quarks c-quarks as valence quarks
respectively, which often have a lifetime large enough to fly away from the primary vertex as
discussed in Section 2.3.3.
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The b-tagging performance of DeepJet, by means of the misidentification versus

efficiency curve compared with the DeepCSV tagger, is shown in Figure 4.4. The

additional model complexity and input variables lead to a clear performance improve-

ment, about a 20% additional efficiency at a mistag rate of 10−3 for light quark and

gluon originated jets. Larger relative enhancements with respect to DeepCSV are

seen for b-jet versus c-jet identification. The performance for c-tagging and quark-

gluon discrimination is slightly improved in comparison with dedicated approaches,

with the advantage of using a single model for all the flavour tagging variations. The

expected relative performance boost, especially when compared non deep learning

based taggers (CSVv2 or CMVA) can increase significantly the discovery potential

for analyses targeting final states containing several b-tagged jets, such as the one

presented in Chapter 5. In addition similar model architectures have since been

successfully applied to large radius jet tagging [140] and could be also extended to

other jet related tasks, as providing a better jet momenta estimation by means of a

regression output.
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Figure 4.4: Misidentification probability (in log scale) for jets originating from c quarks
(dashed lines) or light quarks and gluons (solid lines) as a function of the b-
tagging efficiency for both DeepCSV and DeepJet taggers. The corrected mis-
tag/efficiency and its uncertainty for the loose, medium and tight working points
are also included. Figure adapted from [138].
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While both advances in model architecture and the addition of input features allow

notable jet tagging performance gains, they can complicate the integration of these

tools within the CMS experiment software framework [141], which is often referred as

CMSSW. Training and performance evaluation of both DeepCSV and DeepJet was

carried out using the Keras [137] and TensorFlow [129] open-source libraries. In

order to integrate jet tagging models in the standard CMS reconstruction sequence,

which has rather stringent CPU and memory requirements per event because it is run

for both acquired and simulated data in commodity hardware in a distributed manner

around the world in the LHC computing grid [142]. In addition, the lwtnn open-

source library [143], a low-overhead C++ based interface used for the integration of

DeepCSV did not support multi-input models with recurrent layers at the time.

An alternative path to integrate DeepJet into production was thus required. Given

than TensorFlow backend is based on the C++ programming language and a basic

interface to evaluating training was also provided, the direct evaluation of machine

learning model using its native TensorFlow backend was chosen as the best al-

ternative. In addition, this way the integration effort and basic interface developed

could be re-used in future deep learning use cases in the CMS experiment (e.g. large

radius jet tagging), leading to the development of the CMSSSW-DNN module [144].

The integration process was made more challenging due to the difficulty recovering

the same features at reconstruction level, the strict memory requirements and multi-

threading conflicts. After resolving all the mentioned issues [145], the output of the

DeepJet model at production was verified to match that of the training framework

[146] to numerical precision. The successful integration, that is currently in use,

facilitated the measurement of DeepJet b-tagging performance on data for the main

discriminator working points, as shown in Figure 4.4.
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5 Search for Anomalous Higgs Pair

Production with CMS

All Life is Problem Solving.

Karl Popper

In this chapter, the concepts and techniques from the previous sections are applied

in the search for non-resonant production of Higgs boson pairs, using data from

proton-proton collisions at a centre-of-mass energy of 13 TeV collected in 2016 by the

CMS detector at the LHC, corresponding to a total integrated luminosity of 35.9 fb−1.

The most probable decay channel for the Higgs boson pairs, where each Higgs boson

leads to a bb̄, is considered. While the aforementioned final state is the most frequent

by a considerable margin, a large background of similar events is expected from

multi-jet QCD processes, which motivates the use of machine learning techniques to

construct a summary statistic that can exploit the fine differences between signal and

background for statistical inference. In fact, the expected background is so copious

that is not possible to generate a sufficiently large number of simulated observations

to obtain the required level of modelling accuracy, thus we have to resort to the

development of a new data-driven background estimation technique referred to as

hemisphere mixing [147]. In addition to setting upper limits on the Standard Model

(SM) production of Higgs boson pairs, the data analysis framework is also used to set

upper limits in the context of effective field theories (EFT) of anomalous couplings,

that parametrise possible deviations from the SM. The main results presented in this

section have been carried out within the CMS Collaboration, and have been made

public and published [148].

5.1 Introduction

After the discovery of the Higgs boson (H) in 2012 with the LHC experiments [2,

3, 149], the detailed study of its properties has become one of the most important
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topics in fundamental physics. The experimental determinations of its couplings

and production production rates by the CMS and ATLAS collaborations [27, 150],

including the recent observations of the associated production of the Higgs boson with

a tt̄ quark pair [151, 152], are found to be compatible with the Standard Model (SM)

theoretical predictions. That said, several predicted properties remain unmeasured

because of the difficulty of their experimental determination. Among them, the

Higgs boson self-coupling being one of the most relevant parameters since it can be

modified by physics beyond the standard model (BSM) [153, 154, 155, 156, 157].

A principled way to determine the Higgs self-coupling, and thus reconstruct the

scalar potential of the Higgs field that is responsible for spontaneous symmetry break-

ing described in Section 1.1.4, is to measure the production of Higgs boson pairs (HH)

[158]. The SM prediction for the inclusive HH production cross section for 13 TeV

proton-proton collisions, assuming mH = 125.09 GeV [27, 159], can be theoretically

calculated [160, 161, 162, 163, 164] obtaining:

σ(pp→ HH + jets) = 33.49+4.3%
−6.0%(scale)± 2.3%(αS)± 2.1%(PDF) fb (5.1)

where the listed sources of uncertainties correspond to factorisation µR and renor-

malisation µF scales, uncertainties in the strong coupling constant αS , and the un-

certainty associated with the parton distribution functions (PDF), respectively. The

predicted cross section of the HH production process in the SM is very small, several

orders or magnitude smaller than that of single Higgs production, and thus has not

been directly observed the LHC data yet and will require targeted studies at the

HL-LHC or other future colliders. New physics effects beyond the SM can enhance

the HH production cross sections, e.g. as can be modelled by effective theories of

anomalous couplings [165], in a way so HH production could be observed with the

data already collected at the LHC.

The search of possible beyond the SM enhancements of HH production motivated

early searches using
√
s = 8 TeV LHC data [166, 167], as well as several analyses

using data collected during 2015 and 2016 at the LHC experiments, including the

one presented in this work. Several analyses looking for an enhancement of resonant

HH production, leading to a peak in the reconstructed invariant mass of the Higgs

pair due to decay of the hypothetical mediating particle, have also been performed,

Such mechanism for the production of Higgs boson pairs is not considered in this

analysis. Regarding non-resonant production of HH pairs at at
√
s = 13 TeV, both

ATLAS and CMS collaborations have carried out searches for different decay channels
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including bb̄bb̄ [168], bb̄lνlν [169], bb̄ττ [170] and bb̄γγ [171]. In all the mentioned

analyses, one of the Higgs bosons decays to a bb̄ quark pair, which its the most likely

decay model (with a branching fraction of 57.7% for mH = 125 GeV), in order to

consider a large fraction of expected HH decays. The CMS Collaboration has also

carried out an analysis complementary to the one presented here, where one of the

bb̄ is highly boosted and thus reconstructed as a single large-area jet [172]. The most

stringent expected upper limit on the SM HH production cross section to date, which

corresponds to a 95% C.L. exclusion for rates about 19 times the SM prediction, was

obtained by the CMS bb̄γγ channel search [170], which yielded an observed upper

limit of 22 times the SM. The ATLAS bb̄bb̄ channel search has a similar experimental

reach [168], studying the same final state considered in this analysis, however with a

different methodology regarding their summary statistic and background estimation.

A detailed description of the main characteristics and results of an analysis search-

ing for HH production using CMS experiment data, with both Higgs bosons decaying

into bb̄ quark pairs, is included in this chapter. The data considered was acquired by

the CMS detector during the year 2016, corresponding to an integrated luminosity

of 35.9 fb−1. In the final state considered here, each of the four b quark results in a

distinct reconstructed jet. While it is the most likely decay mode for the Higgs pair,

a much larger quantity of similar events with four or more jets are expected from

hard quantum chromodynamics (QCD) interactions. The differences between signal

and background are used to increase the sensitivity by using as a summary statistic

the prediction of a multivariate probabilistic classifier. Because the expected contri-

bution from the QCD multi-jet processes is so abundant, it could not be modelled

with the required precision with the available simulations. To address this issues, a

method for carrying out a fully data-driven background estimation was developed,

that is described in Section 5.6.

5.2 Higgs Pair Production and Anomalous Couplings

At proton-proton colliders, the main production mechanism for a Higgs pair is gluon

fusion. The gluon fusion interaction at leading order includes a fermion loop as depic-

ted in the top diagrams of Figure 5.1, which is largely dominated by the contribution

from top and bottom quarks, and thus explaining the low expected production rate

listed in Equation 5.1. The most common production mode, labelled as (b) in Figure

5.1, features a triangular fermion loop followed by the production of an off-self Higgs

boson, that in turn decays on two on-shell Higgs bosons via a triple Higgs boson
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interaction vertex. In addition, within the SM is also possible to produce a pair of

Higgs bosons at leading order through a fermion box loop, as shown in diagram (a)

of Figure 5.1, which evidently does not depend on the Higgs self-coupling. Both box

and triangle loop contributions interfere destructively in the SM amplitude to give

rise to the total HH production.

(a) (b)

(c) (d) (e)

Figure 5.1: Set of HH production Feynman diagrams, representing all gluon-induced pro-
cesses at leading order. The interactions depicted by (a) and (b) represent pro-
cesses that are expected within the SM, while the contact interactions between
the Higgs bosons and gluons (c) and (d), as well the contact interaction of two
Higgs bosons with top quarks (e), are effective diagrams of BSM interactions.
Figure adapted from [148].

New physics at higher energy scales can affect processes and observables at the

electroweak scale, such as Higgs pair production. As reviewed in Section 1.2.2, the

effective field theory (EFT) approach is a way to calculate observables of possible

extensions of the SM without being tied to a certain class of BSM model, by adding

non-renormalisable local interactions. In the context of Higgs pair production, the

effect of new operators can be parametrised by the following effective Lagrangian:

LH =
1

2
∂µ H ∂µH − 1

2
m2

HH2 − κλ λSMvH3

−mt

v
(v + κt H +

c2
v

HH) (t̄LtR + h.c.)

+
1

4

αS

3πv
(cg H − c2g

2v
HH)GµνGµν

(5.2)

where v = 246 GeV is the vacuum expectation value of the Higgs field. After

neglecting the enhanced coupling of the Higgs boson with bottom quarks due its

experimental constraints and the presence of new light particles, a total of five EFT

parameters remain, which are highlighted by using red colour in Equation 5.2. The

factors κλ = λHHH/λSM and κt = yt/ySM account for possible deviations from the
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SM of the Higgs boson trilinear coupling and the top quark Yukawa coupling, thus

effectively modifying the relative weight of the SM Feynman diagrams described at

the beginning of the section. The absolute parameters cg, c2g and c2 instead lead

to new contact interactions not expected within the SM, represented in the (c), (d)

and (e) Feynman diagrams of Figure 5.1, and which could arise by mediation of

heavy particles beyond the electroweak scale. The previous parametrisation is com-

monly referred to as dimension-six non-linear or anomalous couplings EFT, however

alternative approaches exist, such as the so-called linear EFT [173] which is more

appropriate to model smaller BSM effects.

A theoretical prediction for the differential and total cross section for each point

in the mentioned five-dimensional EFT parameter space (κλ, κt, c2, cg, c2g) can be

computed as outlined in Section 1.3. The distribution of the final state kinematical

variables, i.e. the relative angles and momenta of the Higgs pair, can depend sub-

stantially on the value of some of these couplings. A naive grid or random scan of

the full five-dimensional space would require simulated samples of observations at

too many EFT points and hence it is not feasible. While this signal modelling issue

could be tackled by means of event re-weighting, as described in Section 3.1.2, it is

useful to consider a different methodology to represent the main properties of the

anomalous couplings parameter space where only a reduced number of EFT points

are considered.

For the analysis presented in this work, a total of twelve EFT points referred to as

benchmarks are considered, which have been chosen via a agglomerative clustering

procedure so they represent the main kinematical topologies in the parameter space.

The details of the clustering methodology are detailed in [174], but they amount to

the construction of a distance between the main kinematic distributions at generator

level of each pair of EFT points. The parameters corresponding to each of the

benchmarks, as well as those corresponding to the SM model and the case where

Higgs boson self coupling is zero, are included in Table 5.1.

5.3 Analysis Strategy

The goal of this analysis is to carry out statistical inference on the occurrence of pp →
HH → bb̄bb̄, as predicted by the SM or in BSM effective field theory extensions,

based on experimental data acquired by the CMS detector on 2016. The type of

statistical inference applicable to this search is hypothesis testing, as introduced

in Section 3.2.2. In principle, we would like to test whether the null hypothesis

139



5 Search for Anomalous Higgs Pair Production with CMS

Table 5.1: Effective field theory parameters for the anomalous couplings benchmarks con-
sidered in this analysis, as defined in [174], as well as the modified couplings
corresponding to the Standard Model.

Benchmark point κλ κt c2 cg c2g

1 7.5 1.0 -1.0 0.0 0.0
2 1.0 1.0 0.5 -0.8 0.6
3 1.0 1.0 -1.5 0.0 -0.8
4 -3.5 1.5 -3.0 0.0 0.0
5 1.0 1.0 0.0 0.8 -1.0
6 2.4 1.0 0.0 0.2 -0.2
7 5.0 1.0 0.0 0.2 -0.2
8 15.0 1.0 0.0 -1.0 1.0
9 1.0 1.0 1.0 -0.6 0.6
10 10.0 1.5 -1.0 0.0 0.0
11 2.4 1.0 0.0 1.0 -1.0
12 15.0 1.0 1.0 0.0 0.0
Box 0.0 1.0 0.0 0.0 0.0

SM 1.0 1.0 0.0 0.0 0.0

H0 corresponding to the SM without HH production hypothesis can be rejected.

Several alternate hypothesis H1 are considered, which are based on the SM including

HH production processes, either coming from SM production models or from EFT

extensions. However we do not expect to reject the H0 hypothesis, so the objective is

the one of setting exclusion upper limits on the signal cross section for a given model

including Higgs pair production. This, we would like to adopt an analysis strategy

that maximises the sensitivity to the presence of HH production, which amounts to

minimising the Type II error rate for a given fixed Type I error rate in statistical

terms. The Type II error rate would in turn depend on the alternate hypothesis

H1 considered, which for the optimisation of the analysis strategy would be the SM

including HH production through SM processes at an enhanced rate.

The event selection in this analysis will include some custom online requirements,

which were set at trigger level to reduce the total rate of data collection while keeping

a large fraction of events relevant for this analysis, as well as an offline selection

to reduce the contribution of background processes that are not well modelled, in

order to simplify the construction of powerful summary statistics. The online trigger

requirements as well as the characteristics of the datasets considered in this analysis

are described in Section 5.4, while the adopted event selection is described in detail

in Section 5.5.
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After a basic event selection, mainly comprising the filtering of events with four

or more b-tagged jets1, a subset including four of the reconstructed jets within each

event is paired to construct two di-jet candidates, as an attempt to recover the

kinematic properties of the Higgs bosons, including their reconstructed masses. The

information from the two di-jet candidates can in turn be combined to compute

variables that can approximate the features of the Higgs pair system, which are

also quite useful for inference. A set of variables from the selected jets, the H

candidates and the HH system, are combined in a single discriminating variable

obtained by training a probabilistic classification model, specifically machine learning

model based on boosted decision trees (see Section 4.2.1), to separate signal from

background, in a analogous manner to what was described in Section 4.3.1.

The statistical inference in this analysis is based on constructing a binned likeli-

hood of the expected distribution of the classifier output for events originated from

signal and background processes. This likelihood, which also accounts for the effect of

nuisance parameters as discussed in Section 3.1.3, is used to extract information the

about the parameter of interest (i.e. HH production cross section times the branch-

ing ratio) based on the observed data. While both the SM and the various BSM

signal models can be modelled using simulated observations, the main background

of the analysis, multi-jet QCD production, is hard to model by simulation. Thus

a data-driven background estimation method, described in detail in Section 5.6, is

used both for training the probabilistic classifier and for modelling the background

contribution in the binned likelihood.

After including the effect of the relevant sources of systematic uncertainty, which

are listed in Section 5.7, upper limits are obtained for the pp → HH → bb̄bb̄ cross

section for each of the benchmarks listed in Table 5.1, as well as for the SM HH

production process. The results, which are contained in Section 5.8, include the

upper limit on the mentioned cross section a function of the Higgs self-coupling factor

parameter κλ when κt = 1 and the other EFT parameters are null. While the analysis

could be redone for any arbitrary EFT point by recomputing the limits for the

particular model, given that the benchmarks have been constructed to represented

the main differential cross section differences in a large part of the EFT parameter

space, approximate limits can be obtained by considering the limit obtained for the

closest benchmark using the distance measure from [174].

1Events with a different b-tagged jet definition will be also used to define a data control region,
as will be discussed in Section 5.6.2.
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5.4 Trigger and Datasets

The experimental data considered in this analysis was collected by the CMS detector

in 2016 from proton-proton collisions at centre-of-mass energy
√
s = 13 TeV. The

total integrated luminosity at the CMS interaction point corresponding to the cer-

tified set of datasets used in this analysis is 35.9 fb−1, which is the subset of data

corresponding to periods when the relevant detecting systems were running regu-

larly and no problematic anomalies were discovered during data quality monitoring

(DQM).

Because the rates for the main background processes of this analysis - events ori-

ginating from QCD multi-jet events - are expected to be much higher that those of

the signal, an efficient online trigger selection is essential for maximising the sens-

itivity of the analysis. While the set of standard CMS trigger path includes ones

that select events with several high-energy jets, a more practical strategy is to in-

clude some b-tagging requirements within the high-level trigger sequence. Hence,

this analysis re-uses the multi-jet trigger paths that were developed for the search of

the resonant process pp → X → HH → bb̄bb̄ [175], where X is a heavy mediating

particle. These two paths both require that at least three jets have are b-tagged by

the online version of the Combined Secondary Vertex (CSV) algorithm [85].

The full specification trigger selection used is rather complex, however it may be

represented by a logical OR of the following two HLT trigger paths that were in place

during the CMS 2016 data taking period:

• HLT_DoubleJet90_Double30_TripleBTagCSV_p087

• HLT_QuadJet45_TripleBTagCSV_p087

which represent a particular online selection sequence at the HLT. The sequence

is preceded by a given set of L1 trigger seeds, as conceptually reviewed in Section

2.2.7. The L1 trigger paths are different for each of the HLT paths, but are based

on the logical OR between several conditions requiring a certain number of L1 jets

over a given energy or the total deposited energy on the calorimeter HT to be over

a certain threshold. At the HLT, both paths require some quality criteria on the

reconstructed primary vertex and at least 4 reconstructed jets within a pseudo-

rapidity range defined by |η| < 2.6. The first path in addition requires that the

momenta of two of the reconstructed jets satisfy the requirement pT > 90 GeV,

while two other jets are required to have pT > 30 GeV. The second path instead

requires that the event contains at least four reconstructed jets with pT > 45 GeV.

142



5.4 Trigger and Datasets

As mentioned, both paths include a b-tagging requirement, chiefly that the value of

the online CSV discriminator is larger than the value of 0.87, which is defined as

the “medium working point” of the algorithm, for three of the eight most energetic

reconstructed jets in the event.

Samples of simulated observations from Higgs pair production are generated using

MadGraph5_aMC@NLO [176] at leading-order, following the relevant prescriptions,

including the loop factor on an event-by-event basis detailed in [177]. A total of

300,000 events have been simulated for the SM model production component, as

well as an older version of the clustering benchmarks discussed in Section 5.2 and

the κλ = 0 box model. Regading the parton distribution function used for generation,

the NNPDF30_LO_AS_0130_NF_4 n set [178] was used for all samples.

The datasets for the benchmark points listed in Table 5.1, or any other EFT point

for that matter, can be generated from the previous samples by means of generator

re-weighting. As described in Section 3.1.2, the latent variables of the simulator

can be used to model a different point of the parameter space of the the underlying

theory by computing observables after assigning to each event a weight proportional

to the ratio between probability density functions. In this case, the effect of varying

EFT parameters in Equation 5.2 can be fully characterised by two parton variables

at leading order: the Higgs pair invariant mass mHH and the |cos θ∗|, where θ∗ is the

polar angle of any one of the Higgs bosons with the respect to the beam axis. Once

these two variables are specified, the rest of the simulation does not depend on the

EFT parameters. A set of HH production simulated events generated for a given

vector of EFT parameters θEFT = (κλ, κt, c2, cg, c2g) re-weighted by:

w(mHH, |cos θ∗|) =
p
(
mHH, |cos θ∗| | θ′

EFT

)

p(mHH, |cos θ∗| | θEFT)
(5.3)

could be used to model events generated at the EFT point θ′
EFT, as long as the

both the numerator and denominator are not zero. The previous concept can be

extended to any arbitrary probability distribution of p(mHH, |cos θ∗|), e.g. a large

sample uniformly distributed in the mentioned 2D-space could be re-weighted to

model any EFT parameter point. While the density ratio in Equation 5.3 can also

be estimated exactly as the ratio between the matrix elements [179], a non-parametric

density estimation approach was adopted in this analysis.

A large sample of HH production events was formed by concatenating all non-

resonant Higgs pair events simulated from each of the 14 samples, creating what

will be referred to as the pangea sample. For all the EFT points of interest, 50,000
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events (300,000 for the SM production) were generated at parton level, which is

rather inexpensive. The per-event weight in Equation 5.3 is estimated by the ratio

of 2D-histograms, which effectively approximate the mentioned density ratio. The

weighted pangea sample can represent any EFT parameter point at leading order

by this procedure, so it is used to model the signal characteristics of all the models

considered in this work.

5.5 Event Selection

Given that the final state studied in this analysis is characterised by the presence

of four highly energetic b quarks, the physics objects of relevance are reconstructed

jets. The details of the reconstruction procedure at CMS were already discussed in

Section 2.3.3. Advanced jet flavour tagging, in particular b-tagging, is also essential

to distinguish jets that originate from b quarks from those originating from lighter

quarks and gluons, and thus very useful to reduce the contribution from a large

number of QCD multi-jet processes.

The subset of collected events that pass the trigger requirements, as well as all the

simulated events, as listed at the beginning of Section 5.4 undergo a process of event

reconstruction, producing a representation of the detector readout that attempts

to recover the latent particle features at parton level, as discussed in Section 3.1.3.

The first step of the offline event selection is to consider for each event the set of

reconstructed particle-flow jets with pT > 30 GeV and |η| < 2.4. An event is only

selected if four or more jet passing those requirement are found.

After filtering out jets with lower energy or falling out of the tracker acceptance,

at least four of the remaining jets are required to be b-tagged to consider the event

in the final selection. The medium working point of the CMVA discriminator [85],

defined as the value of the discriminator for which the expected mis-identification

of light quarks and gluons is 1%, is used as b-tagging criteria. The object selection

efficiency for jets originating from the b quarks produced in the decay of the Higgs

boson pairs has been estimated from simulated samples to be around 65%. For the

SM HH production process, the absolute and relative selection efficiencies of the

trigger and offline selection, and the total number of expected events per fb−1, are

included in Table 5.2, as estimated from the simulated events.

The goal of the previous selection is to reduce the contribution from QCD multi-jet

processes and to isolate the set of signal events where all the jets from the Higgs pair

decays can be fully reconstructed. After such selection, the most often occurring
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Table 5.2: Event selection efficiency and number of events expected per each integrated fb−1

of integrated luminosity for the Standard Model pp → HH → bb̄bb̄ production
process, as estimated using simulated events.

Produced Trigger ≥ 4 btags
N events / fb 11.4 3.9 0.22
Relative eff. 34% 5.6%

Efficiency 34% 1.9%

value for the number of jets in the selected subset of events is five. The four jets

with highest CMVA discriminant are chosen as candidate decay products of the

Higgs bosons. In order to reconstruct features of the Higgs boson candidates, a

pairing between the selected jets has to be defined. The pairing used in this analysis

is rather simple, the invariant masses for the two Higgs candidates MH1
and MH2

are computed for the three possible combinations of the four decay candidate jets,

and the invariant mass difference ∆M (H1,H2) is computed for each combination:

∆M (H1,H2) = |MH1
−MH2

| (5.4)

so the combination with the smallest mass difference is taken. Alternative decay

candidates selection and pairing techniques were considered and tested. The fact that

the chosen procedure does not explicitly use the mass of the Higgs boson makes it

very effective to avoid conditioning also the distributions of the background processes.

The aforementioned procedure correctly pairs the jets to form Higgs candidates in

approximately 54% of the events. The distribution of ∆M (H1,H2) and MH1
versus

MH2
is shown in Figure 5.2. To distinguish between the two Higgs candidates during

the rest of this chapter, the term leading Higgs H1 will be used for the reconstructed

Higgs candidates with the largest invariant mass while trailing Higgs H1 for the other

candidate.

In this analysis, the final summary statistic considered for inference is based on

the output of classifier that discriminates signal and background observations, which

will approximate the likelihood ratio or a sufficient summary statistic if the signal

and background components are fully specified, as discussed in Section 4.3.1. The

machine learning classification technique used is based on gradient boosted decision

trees (BDT), a technique that was summarised in Section 4.2.1. The implementation

from the XGBOOST software library [123] was used to train a probabilistic classifier

using a set of simulated events corresponding to SM Higgs pair production (i.e. 60%

145





5.5 Event Selection

spread for background events. Other features in this sub-group include the transverse

momenta of the reconstructed Higgs candidates pH1

T and pH2

T , the angular distances

between their component jets ∆RH1

jj , ∆RH2

jj , ∆φH1

jj , ∆φH2

jj , and cos θ⋆H1H2−H1
, where

θ⋆H1H2−H1
is the angle between the leading Higgs boson candidate and the leading

jet. The last group includes variables directly associated to the reconstructed jets,

including the transverse momenta p
(i=1−4)
Tj

and pseudo-rapidity η(i=1−4) of the first

four jets, ordered by their value of the CMVA b-tagging discriminant as well as the

scalar sum of their transverse momenta HT . Finally, the scalar pT sum of all the

jets that were not used for the reconstruction of the Higgs pair system Hrest
T and the

b-tagging CMVA discriminant value for the third and fourth jet CMVA3, CMVA4 are

also used. The marginal comparison of the distributions of signal and background

for jet-based based variables is shown in Figure 5.5.
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Figure 5.3: Comparison of the signal (SM HH production) and background (mixed data)
distributions for the HH system features considered in the probabilistic classifier.
See Table 5.3 and associated text for more details.

The trained classifier combines the 25 variables from Table 5.3 in a single scalar

value, that approximates the conditional probability of belonging to the signal con-

ditional on the input p(y = 1|x), which depends on the relative frequencies of signal
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Table 5.3: List of reconstruction-based features used as input of the probabilistic classifier.

HH system H candidates Jet variables

MX, MHH, MH1
, MH2

p
(i=1−4)
Tj

, η(i=1−4),

pH1H2

T pH1

T , pH2

T Hrest
T , HT

cos θ⋆H1H2−H1
cos θ⋆H1−j1

CMVA3, CMVA4,

∆RH1

jj , ∆RH2

jj , ∆φH1

jj , ∆φH2

jj
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Figure 5.4: Comparison of the signal (SM HH production) and background (mixed data)
distributions for the di-jet features considered in the probabilistic classifier. Di-
jet candidates are ordered by their mass value. See Table 5.3 and associated text
for more details.
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Figure 5.5: Comparison of the signal (SM HH production) and background (mixed data)
distributions for the jet-based features considered in the probabilistic classifier.
Jet are ordered by CMVA value. See Table 5.3 and associated text for more
details.
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and background events in the training dataset, as discussed in Section 4.1.1. For

training, signal and background observations were weighted so as to represent the

same prior probability and balance the classification problem. The hyper-parameters

have been chosen based on a simple grid search, with the help of the scikit-learn soft-

ware library [180], based on the area under the curve (AUC) of the resulting classifiers

on a validation hold-out dataset.

5.6 Data-Driven Background Estimation

The principal background of this analysis is composed of events with several jets

coming from multiple quarks and gluon production from QCD processes. While sim-

ulated observations of multi-jet QCD processes can be generated, and were in fact

readily available at the time this analysis was carried out, they are in practice not

useful to realistically model the background contribution for the purposes of this

work. Large datasets modelling inclusive QCD multi-jet production were produced

in the CMS simulation campaign, divided in various consecutive range of total gen-

erator level scalar transverse momenta sum Hgen
T . Leaving aside issues regarding the

accuracy of the modelling of high jet multiplicity event provided by current lead-

ing order plus parton shower generators, the main obstacle for using the simulated

samples is that their equivalent luminosity in the Hgen
T relevant for this analysis is

several orders of magnitude smaller than the actual luminosity.

As a rule of thumb, to accurately model a mixture component using simulated

samples, the number of simulated events has to be at least 10 times more than the

number of expected events, or the modelling uncertainty due to the limited simulation

statistics will greatly degrade subsequent inference. This problem is made worse

when a significant fraction of the simulated dataset has to be used for training a

probabilistic classifier and thus cannot be used for computing any expected value,

because they might lead to biased estimations. A naive solution could be to simulate

more events, but given the large cross section of low energy QCD processes, the total

number of QCD inclusive simulated events required would be well over 1 billion

which is too a large number given the total simulation budget available for the CMS

experiment.

Another option, which was initially explored for modelling the QCD background

in this analysis, was to only simulate events that pass a selection at parton level,

e.g. with two or more high energy b-quarks. This could provide a radical reduction

on the total computing time needed for simulation, especially if combined with the
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approximate simulation techniques described in Section 2.3.2, because the associated

cross section can be greatly reduced. However, such generator level filtering is difficult

to implement in a way that relevant events are not omitted after the event selection.

Because of that, the desired level of modelling accuracy could not be achieved with

this method.

The previously mentioned reasons motivate the direct used of real data to estimate

the background contribution, as discussed in Section 3.1.4. Data-driven background

estimation can be notoriously difficult and often several assumptions about the prop-

erties of the background have to be made. For example, the corresponding search

by the ATLAS collaboration [168], models the background contribution with an in-

dependent data sample characterised by the same trigger and selection but for the

looser requirement of only two b-tagged reconstructed jets. These events are then

re-weighted using a factor that accounts for the probability that QCD processes

produce two additional b-tagged jets, where the mentioned weight is also obtained

from a data side band where not significant signal is expected. While that approach

is proven effective when using the reconstructed MH distribution for inference, it

cannot be easily extended to a situation where all the multi-dimensional features

of the data require to be precisely modelled, as is the case when the output of a

probabilistic classifier is used as the summary statistic.

In the analysis presented here a different path was followed, based on developing a

new data-driven background estimation method based on the concept of hemisphere

mixing and some assumptions of the phase space characteristics of QCD multi-jet

processes [147]. The technique, which is described in Section 5.6.1, directly attempts

to create an artificial dataset using the the whole original dataset as input, hence can

be used both for training the probabilistic classifier and to model the distribution of

the final summary statistic used for inference. Because some aspects of the method

are ad-hoc and cannot be formally demonstrated, it has been calibrated and then

validated using a signal-depleted control region, a procedure that is discussed in

Section 5.7.

5.6.1 Hemisphere Mixing

The basis of the data-driven background estimation method here proposed is to

divide each event in two parts, referred to as hemispheres, so each can be substituted

by an hemisphere from a different event in order to produce an artificial dataset.

A graphical illustration of the hemisphere mixing technique used in this work is

provided in Figure 5.6. The transverse thrust axis, defined as the axis in the x − y
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distributions for the artificial data. The previous condition also avoids creating

artificial events that do not pass the event selection, e.g. by combining an hemisphere

with 2 b-tagged jets with another one including only one b-tagged jet, which would

result in the artificial events having less that four b-tagged jets. For infrequent jet and

b-jet multiplicity categories, the discrete condition is relaxed by considering a unique

category. This is for example the case when four jets or b-jets are present in the

hemisphere. In addition to the mentioned categorisation, the following continuous

distance metric between the original hemisphere ho and each hemisphere from the

library hq is defined as a measure of similarity:

d(ho,hq)
2 =

(Mt(ho)−Mt(hq))
2

Var(Mt)
+

(T (ho)− T (hq))
2

Var(T )

+
(Ta(ho)− Ta(hq))

2

Var(Ta)
+

(Pz(ho)− Pz(hq))
2

Var(Pz)

(5.6)

where Mt(h) is the invariant mass of the system composed of all the jets contained

in the hemisphere, T (h) is the scalar sum of all the transverse momenta projection of

all jets of an hemisphere to the thrust axis, Ta(h) is the scalar sum of the transverse

momenta projections over a axis orthogonal to the thrust axis, and Pz(h) is the

absolute value of the projection of the vectorial sum of the jet momenta along the

beam axis. The denominators in Equation 5.6 are the variances of each of the

variables and discrete category, as estimated directly from the library of hemispheres.

This normalisation factor is included in order to reduce the effect of the scale of the

magnitude of each component to the distance metric.

The substitute for each original hemisphere is found by finding the kth nearest-

neighbour hemisphere in the library. The closest hemisphere (k = 0), corresponding

to zero distance, would be the very same original hemisphere which is present in

the library. Rather, the hemisphere is substituted with its kth nearest neighbour,

only considering k ≥ 1. Assuming forward-backward symmetry in the z direction

and φ rotational symmetry, and given that the distance metric d(ho,hq)
2 does not

depend on the sign and absolute magnitude of those quantities, all the jets in the

hemisphere can be rotated in φ or their pz sign to match the original hemisphere

properties. It is possible to considering different k neighbours for each hemisphere,

obtaining a different artificial dataset in each case. Each of this artificial datasets can

be labelled by a tuple (k1, k2), where k1 indicate the ordinal of the neighbour used

as the substitute for the original hemisphere corresponding to a ∆φ > 0 with respect

to the thrust vector rotated π/2 clock-wise, and k2 corresponds to the ordinal of the
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The hemisphere mixing technique is applied to the data events passing the se-

lection described in Section 5.5. Artificial datasets up to kmax = 10 have been

considered, given that good modelling was observed until very large values of kmax.

The test score of the compatibility between the mixed artificial data as a function of

the combination label is included in Figure 5.7, modelling breaks only at high val-

ues, e.g. k = 128. All the neighbour combinations up to kmax = 10 are sub-divided

in three sets used for training the probabilistic classifier (training), validating and

optimised the classifier (validation) and to estimate the background distribution of

the final summary statistic (application). The last dataset is referred to as applic-

ation instead of test set because its purpose is not to obtain unbiased estimates of

the classifier performance, but rather to extract unbiased estimates of the classifier

output distribution of background events. All the artificial datasets are not inde-

pendent, e.g. the (1, 1) and (1, 2) dataset use the same first hemisphere, thus some

careful choices are required when splitting the mixed datasets. The dataset splitting

considered in this analysis, using the (k1, k2) notation described before, correspond

to:

• training set : concatenation of (1, 1), (1, 2), (2, 1) and (2, 2) mixed datasets

• validation set : concatenation of (3, 4), (5, 6), (7, 8) and (9, 10) mixed datasets

• application set : concatenation of (4, 3), (6, 5), (8, 7) and (10, 9) mixed datasets

noting that the observation in the training set are not fully independent, but it

is expected that reusing hemispheres in the training sample at most might degrade

slightly the classifier performance, but does not bias in any way the inference results

if an independent set is used. The next section is devoted to the validation of the

background model in data control regions and the development of a methodology

to correct for possible biases in the final summary statistic expectations. For com-

pleteness, a comparison of the distribution of relevant variables, that are used as

input to the probabilistic classifier, between the QCD multi-jet simulations available

and those estimated using hemisphere mixing, are shown in Figure 5.8. The overall

agreement is good, as expected from the discussion at beginning of this section, the

statistical uncertainties coming from the low HT range simulated QCD dataset are

large.

5.6.2 Background Validation

One of the drawbacks of using data-driven methods, is that they are often based on a

series of implicit assumptions regarding the underlying statistical model of the data,
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which are difficult to demonstrate directly. Therefore, a more practical approach to

verify the validity of a given background model is usually taken, studying its validity

in a set of data control region where the component under study dominates and the

contribution from the signal is negligible. For the purpose of studying the hemisphere

mixing method in this analysis, two data control regions (CRs) are defined:

• mass control region (MH CR): this dataset is obtained using the same selection

described in Section 5.5, but removing all events around the Higgs candidate

masses 90 < MH1
< 150 GeV and 80 < MH2

< 140 GeV. This cut in the

reconstructed Higgs masses plane considerably reduces the signal contribution,

which is expected to peak around MH = 125 GeV.

• b-tag control region (b-tag CR): this dataset is obtained using the same se-

lection described in Section 5.5 but b-tagged jets are defined using the loose

working point of CMVA, which has a misidentification rate of 10% and a b-

tagging efficiency around 85% for jets originating from the Higgs pair decay,

while filtering out events with any jet above the medium working point of the

CMVA discriminator.

The relative signal contribution in each of these control regions is greatly reduced,

e.g the expected nS/nB ratio in the mass (b-tag) control region is only a 16%(17%)

of that of those events inside the 90 < MH1
< 150 GeV and 80 < MH1

< 140 GeV

region. The multi-jet QCD component is still the dominant background in both

control regions. While for carrying out the mass control region comparison is enough

to apply an additional cut over the selection, the b-tag control region study requires

redoing the hemisphere mixing procedure on the new set of event with different b-

tag jet selection. For both control regions, all the relevant one-dimensional marginal

distributions are found to be in good agreement, as shown for a reduced number

of important variables that used as input for the classifier in Figure 5.9 and Figure

5.10.

While the marginal distributions of each variable are well-modelled, the goal of

the technique is rather to obtain an adequate modelling accuracy in the higher di-

mensional space considered as input of the probabilistic classifier. A way to check

the quality of such modelling is to compare the classifier output distribution for the

control region data with the background model. This comparison is shown for the

MH control region in Figure 5.11. The same comparison is not straightforward to

carry out for the b-tag control region, because the classifier was trained using the
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reference distribution of the large sample M , considering a histogram with 80 bins

of equal width in the full range of the classifier output [0.0, 1.0].

The median difference between the distribution of the classifier output between the

large dataset M and each of the mixed replicas Ri is shown in Figure 5.13 for the final

event selection. A small bias is found in the recovered distribution, which is directly

used as a correction to hemisphere mixing technique prediction. Similar results are

obtained in the previously mentioned control region. The effect of the correction in

the classifier output distribution and pulls in the MH control region is also shown

in Figure 5.11. The mean of the predicted values minus the observed values are

compatible with zero in both control regions, while the root-mean-squared of the

pull distribution is not compatible with one in the MH. In order to conservatively

account for the mentioned discrepancy, the variation due to the nuisance parameters

added per bin to account for the limited statistics of the artificial background sample

is multiplied by a factor α = 1.9 so the previous pull distribution root-mean-square

becomes one.
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5.7 Systematic Uncertainties

Both the signal model based on simulated observations and data-driven background

model in this analysis are not perfectly known, hence a set of nuisance parameter

have to be considered in the statistical model to account for such lack of certainty,

as generally discussed in Section 3.1.4. Each nuisance parameter, which can affect

the signal, the background component or both, effectively leads to an increase of the

uncertainty on the parameters of interest. For analysis where upper limits are set

such as this, the presence of these unknown parameters increases the total interval

width. The effect of these parameters in the final statistical estimates is also often

referred as systematic uncertainty. A list of the sources of systematic uncertainty

considered in this analysis, and their estimated relative effect in the expected upper

limit for the SM Higgs pair production, is provided on the Table 5.4.

Table 5.4: List of systematic uncertainties considered in this analysis, and their relative
impact on the expected limit for the SM HH production. The relative impact
is obtained by fixing the nuisance parameters corresponding to each source and
recalculating the expected limit.

Source Affects Exp. limit variation

Bkg. shape bkg. 30%
Bkg. norm. bkg. 8.6%
b-tagging eff. sig 2.8%
Pileup sig <0.01%
Jet energy res. sig <0.01%
Jet energy scale sig <0.01%
Int. luminosity sig <0.01%
Trigger eff. sig <0.01%
µF and µF scales sig <0.01%
PDF sig <0.01%

The main sources of uncertainty in this analysis are those associated with the data-

driven background model. For each classifier output bin, an independent nuisance

parameter is included that accounts for the possible variation of the background

prediction due to the limited data statistics of the artificial events used for building

the background model and the accuracy limitations found during the bias correction

procedure described in Section 5.6.2. Because the data-driven technique described

in the previous section does not provide a way to estimate the normalisation of the

background, the background normalisation is added a nuisance parameter that is left

fully unconstrained.
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Regarding systematic uncertainties due to nuisance parameters of the simulation-

based signal distribution, the most relevant factors are the uncertainties in the meas-

ure differences between data and simulation in b-tagging efficiencies. These are es-

timated by recomputing the signal distribution weighted by a factor that accounts

for a one standard deviation for each of the relevant nuisance parameters and in-

terpolating in-between as described in Section 3.1.3. The uncertainty due to the

modelling of the pile-up contribution is included by considering the different effect of

pile-up reweighting when a ±4.6% variation on the total inelastic cross section value

at 13 TeV is allowed [181]. The effect due to the modelling uncertainties in jet energy

resolution and scale are estimated by smearing or shifting the reconstructed jet en-

ergy respectively, according to their corresponding uncertainties as a function of the

jet pT and |η|, and evaluating the effect on the final summary statistic. For all the

mentioned sources of uncertainty, both the effect on the classifier output distribution

and its normalisation have been considered.

After a correction by the observed discrepancies between the data and simulation,

the uncertainty on the trigger efficiency after to a 2% effect on the signal normalisa-

tion. The total signal component normalisation is also affected by the uncertainty in

the measurement of the integrated luminosity Lint, which has been estimated during

the 2016 data-taking period to be 2.5%[182]. The effect of theoretical uncertainties

that affect the simulation samples are modelled using per-event weights provided by

the simulation software. In particular, the effect of a variation of the renormalisation

µR and factorisation µF scales on the signal efficiency are estimated by taking the

maximum and the minimum difference with respect to the nominal efficiency when

varying µR and µF each individually as well as both together up and down by a factor

of two. For estimating the total signal efficiency variation due to parton distribution

function (PDF) uncertainties, the PDF4LHC recommendations [183] are followed,

computing the variation as the standard deviation of a set of 100 MC replicas of the

NNPDF 3.0 set [178].

5.8 Analysis Results

This section includes the experimental results of the search of non-resonant Higgs pair

production with CMS data collected during 2016 at the LHC. The final summary

statistic is the distribution of a probabilistic classifier output, which was trained

on simulated events of SM HH production and events resulting from the data-

driven background estimation technique described in Section 5.6. Specifically, a
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non-parametric sample likelihood composed by a product of Poisson count likeli-

hoods is used, where each Poisson factor represents a bin of the distribution of the

classifier output, in an analogous manner to Equation 3.28. The classifier distribu-

tion was initially divided in 80 equal sized bins, and the expected number of counts

from each mixture component and their variations due to nuisance parameters were

estimated using simulated observations under the SM hypothesis and each of the

BSM EFT points considered for the signal, and from the bias corrected distribution

for the data-driven background dataset.

Given the slight mis-modelling observed in the lower range of the classifier output

on the control regions discussed in Section 5.6.2, a study studying the variation of

the expected limit when a non-zero minimum value is considered in the likelihood

binning was carried out. It was found that restricting the fit to classifier output values

larger than 0.2 resulted on a negligible loss on sensitivity (i.e. smaller than 2%) while

greatly improving the overall data-background compatibility. For this reason, onty

the rightmost 64 of the initial 80 bins of the classifier distribution are used to build

the Poisson likelihood used for statistical inference. The best-fit distributions for

signal, background and data for the classifier output are shown in Figure 5.14, while

the those corresponding to the reconstructed Higgs boson masses are shown in Figure

5.15.

Only two mixture components are considered in the final statistical model, signal

representing pp → HH → bb̄bb̄, and background estimated from data and dom-

inated by QCD multi-jet processes and secondarily by top quark production with

additional jets. The contribution from other hard processes that can produce four

b-quarks, such as tt̄H, ZH, bb̄H, and single Higgs boson production was estimated

from simulated samples and found to be negligible in comparison with the considered

background uncertainties at the current level of experiment sensitivity.

The same statistical model is used to obtain he observed and expected 95% confid-

ence level (CL) upper limits for non-resonant pp → HH → bb̄bb̄ production, using

the asymptotic approximation [100] of the CLs criterion [101, 102, 184], and the

so-called LHC test statistic, that is based on the profile likelihood ratio. All the

nuisance parameters are treated by profiling the likelihood. The median expected

and observed upper limits for the SM Higgs pair production, as well as the expec-

ted limit 1 and 2 standard deviation intervals around the median are included in

Table 5.5. The median expected limit obtained for SM HH production is 419 fb,

which corresponds to approximately 37 times the SM expectation, which can be

obtained by taking the cross section from Equation 5.1 and multiplying it by the
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same background model (and its associated fluctuations) is considered in the statist-

ical model for all the inference procedures. In particular, the last bins of the classifier

distribution for the data-driven background prediction has a small deficit compared

to the observed data, as can be seen in Figure 5.14.

Table 5.6: Observed and expected upper limits on the σ(pp → HH → bb̄bb̄) cross section
for the 13 BSM benchmark models listed in Table 5.1 at 95% CL in units of fb.

Benchmark point Observed Expected -2 s.d. -1 s.d. +1 s.d. +2 s.d.

1 602 295 155 209 424 592
2 554 269 141 190 389 548
3 705 346 182 245 497 691
4 939 461 244 327 662 920
5 508 248 131 176 357 501
6 937 457 240 323 657 916
7 3510 1710 905 1210 2440 3390
8 686 336 177 238 483 674
9 529 259 136 183 373 520
10 2090 1000 527 709 1440 2010
11 1080 525 277 372 755 1050
12 1744 859 455 611 1230 1710
Box 1090 542 286 384 775 1080

In addition to the BSM benchmarks, limits are also obtained for the cross section

times branching ratio of Higgs pair production processes in the EFT framework,

varying κλ in the range [−20, 20], while assuming that κt = 1 and the rest of the

couplings are zero. The results are shown in Figure 5.17, noting that the upper

limit changes considerably in this range because the distribution of the final state

properties change considerably, and consequently the associated efficiency for the

process also varies. The EFT cross section prediction as a function of κλ and keeping

κt = 1 is also shown in the previous figure, noting that no values of κλ can be excluded

at the current level of experimental sensitivity.

5.9 Combination with Other Decay Channels

The results of the search presented here have been combined with other Higgs pair

searches carried out by the CMS collaboration for other decay channels for the same

data collection period at
√
13 TeV. For the combination, another three decay modes

are considered in addition to the bb̄bb̄, where one the Higgs decays to a bb̄ pair where

the other decays into γγ, τ τ̄ or a pair or vector bosons, respectively. Combined upper
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limits where obtained by considering the product of the likelihoods, which depend on

the HH cross section and several nuisance parameters. Some sources of uncertainty

that are correlated between different channels, such as the luminosity or b-tagging

uncertainty, where modelled using the same nuisance parameters in each individual

likelihood. More details on the combination procedure are included in the following

CMS Public Analysis Note [185].

The 95% C.L. upper limits for the Higgs pair non-resonant production cross sec-

tion σ(pp → HH) from the pp → HH → bb̄bb̄ can be compared with those obtained

by the other searches in Figure 5.18. In the same figure, the upper limits for the

combination of the four decay modes are also shown. The combination results are

statistically compatible with the SM background contribution. An median expected

limit of 12.8 times the SM expectation is obtained from the combination. The com-

bined observed upper limit is 22.2 times the SM expectation, which is well-within

the expected variation under the background only hypothesis. Analogously to what

was done in Section 5.8, upper limits are also obtained for the cross section times

branching ratio of Higgs pair production processes in the EFT framework, varying

κλ in the range [−20, 20], while assuming that κt = 1 and the rest of the couplings

are zero. This results are shown graphically in Figure 5.19; values for the anomal-

ous self-coupling κλ in the range −11.8 < κλ < 18.8 are not excluded by the data

(−7.1 < κλ < 13.6 was the expected interval). The aforementioned results make this

combination analysis the most sensitive search to date at the LHC for non-resonant

HH production. Substantial improvements can be expected due to the extensions of

each analysis to the full Run II dataset.
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Figure 5.18: Observed and expected σ(pp → HH) cross section limits relative to the SM
for the combination of searches for Higgs boson pair production at 95% CL for
values of κλ in the [-20,20] range, assuming κt = 1. The inner green band and
the outer yellow bands correspond to the range of percentiles around the median
that contain the 68% and 95% times the upper limit under the background-only
hypothesis. Figure adapted from [185].
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Figure 5.19: Observed and expected σ(pp → HH) cross section limits for the combination
of searches for Higgs boson pair production at 95% CL for values of κλ in the
[-20,20] range, assuming κt = 1. The inner green band and the outer yellow
bands correspond to the range of percentiles around the median that contain
the 68% and 95% times the upper limit under the background-only hypothesis.
The anomalous couplings theoretical prediction with κt = 1 is also shown in
red colour. Figure adapted from [185].
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An approximate answer to the right question is worth

a great deal more than a precise answer to the wrong

question.

John Tukey

By this point, it should be evident that powerful statistical inference is the ulti-

mate objective of all experimental high-energy analyses. Supervised learning based

on simulated observations or acquired data from control regions, and in particular

probabilistic classification, provides a way to extract and approximate estimate of

the latent variables of the generative model. Those latent variable estimates are in

turn very useful to construct powerful summary for statistical inference. While this

approach is very often encountered in experimental high energy physics, complex

computer simulations are also required for many other scientific disciplines, making

inference very challenging due to the intractability of the likelihood evaluation for

the observed data. Summary statistics based on a supervised learning algorithms

can be asymptotically optimal if the generative model is fully defined, as is the case

for the output of soft classification for mixture models where we are interested in the

mixture coefficients, as demonstrated in Section 4.3.1. Unfortunately, their useful-

ness can rapidly decrease when additional uncertain parameters affect the generative

model.

As a practical example, in the analysis presented in Chapter 5, the limiting factor

for experimental sensitivity was not in the choice of summary statistics but rather

on the lack of detailed knowledge about the expected contribution from background

processes, which had to be addressed by the inclusion of nuisance parameters. The

technique presented in this chapter, referred to as INFERNO and published in [186],

is an attempt to tackle directly the problem of constructing non-linear summary

statistics from a statistical perspective that directly addresses the goal of the final

inference question. The key contribution required for achieving such goal is to lever-
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age the technology that has been developed for recent machine learning techniques,

to build inference-aware loss functions that approximate the expected uncertainty

on the parameters of interest, accounting for the effect of nuisance parameters.

6.1 Introduction

Simulator-based inference is currently at the core of many scientific fields, such as

population genetics, epidemiology, and experimental particle physics. In many cases

the implicit generative procedure defined in the simulation is stochastic and/or lacks

a tractable probability density p(x|θ), where θ ∈ Θ is the vector of model paramet-

ers. Given some experimental observations D = {x0, ...,xn}, a problem of special

relevance for these disciplines is statistical inference on a subset of model parameters

ω ∈ Ω ⊆ Θ. This can be approached via likelihood-free inference algorithms such

as Approximate Bayesian Computation (ABC) [95], simplified synthetic likelihoods

[187] or density estimation-by-comparison approaches [188].

Because the relation between the parameters of the model and the data is only

available via forward simulation, most likelihood-free inference algorithms tend to

be computationally expensive due to the need of repeated simulations to cover the

parameter space. When data are high-dimensional, likelihood-free inference can rap-

idly become inefficient, so low-dimensional summary statistics s(D) are used instead

of the raw data for tractability. The choice of summary statistics for such cases

becomes critical, given that naive choices might cause loss of relevant information

and a corresponding degradation of the power of resulting statistical inference.

For the particular problem of high energy physics data analyses at the LHC, the

properties of the underlying generative model discussed in Chapter 3 make the like-

lihood intractable, but its structure facilitates the construction of simulation-based

likelihoods of low-dimensional summary statistics that approximate latent variables.

The ultimate aim is nevertheless to extract information about Nature from the large

amounts of high-dimensional data on the subatomic particles produced by energetic

collision of protons, and acquired by highly complex detectors built around the col-

lision point. Accurate data modelling is only available via stochastic simulation of a

complicated chain of physical processes, from the underlying fundamental interaction

to the subsequent particle interactions with the detector elements and their readout.

As a result, the density p(x|θ) cannot be analytically computed.

Due to the high dimensionality of the observed data, a low-dimensional summary

statistic has to be constructed in order to perform inference. A well-known result of
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classical statistics, which was also discussed in Section 3.2.2 as the Neyman-Pearson

lemma[97], establishes that the likelihood-ratio Λ(x) = p(x|H0)/p(x|H1) is the most

powerful test when two simple hypotheses are considered. As p(x|H0) and p(x|H1)

are not available, simulated samples are used in practice to obtain an approximation

of the likelihood ratio by casting the problem as supervised learning classification.

Within high energy physics analysis, the nature of the generative model (a mixture

of different processes) allows the treatment of the problem as signal (S) versus back-

ground (B) classification [189], when the task becomes one of effectively estimating

an approximation of pS(x)/pB(x) which will vary monotonically with the likelihood

ratio. This has been discussed at great lengths in Section 4.3.1. While the use of

classifiers to learn a summary statistic can be effective and increase the discovery

sensitivity, the simulations used to generate the samples which are needed to train

the classifier often depend on additional uncertain parameters (commonly referred to

as nuisance parameters). These nuisance parameters are not of immediate interest

but have to be accounted for in order to make quantitative statements about the

model parameters based on the available data. Classification-based summary stat-

istics cannot easily account for those effects, so their inference power is degraded

when nuisance parameters are finally taken into account.

In this chapter, we present a new machine learning method to construct non-

linear sample summary statistics that directly optimises the expected amount of

information about the subset of parameters of interest using simulated samples,

by explicitly and directly taking into account the effect of nuisance parameters. In

addition, the learned summary statistics can be used to build synthetic sample-based

likelihoods and perform robust and efficient classical or Bayesian inference from the

observed data, so they can be readily applied in place of current classification-based

or domain-motivated summary statistics in current scientific data analysis workflows.

6.2 Problem Statement

Let us consider a set of n i.i.d. observations D = {x0, ...,xn} where x ∈ X ⊆ R
d,

and a generative model which implicitly defines a probability density p(x|θ) used

to model the data. The generative model is a function of the vector of parameters

θ ∈ Θ ⊆ R
p, which includes both relevant and nuisance parameters. We want to

learn a function s : D ⊆ R
d×n → S ⊆ R

b that computes a summary statistic of the

dataset and reduces its dimensionality so likelihood-free inference methods can be
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applied effectively. From here onwards, b will be used to denote the dimensionality

of the summary statistic s(D).

While there might be infinite ways to construct a summary statistic s(D), we are

only interested in those that are informative about the subset of interest ω ∈ Ω ⊆ Θ

of the model parameters. The concept of statistical sufficiency is especially useful

to evaluate whether summary statistics are informative. In the absence of nuisance

parameters, classical sufficiency can be characterised by means of the factorisation

criterion (see Section 3.1.3 for more details):

p(D|ω) = h(D)g(s(D)|ω) (6.1)

where h and g are non-negative functions. If p(D|ω) can be factorised as indicated,

the summary statistic s(D) will yield the same inference about the parameters ω as

the full set of observations D. When nuisance parameters have to be accounted in

the inference procedure, alternate notions of sufficiency are commonly used such as

partial or marginal sufficiency [190, 191]. Nonetheless, for the problems of relevance

in this work, the probability density is not available in closed form so the general

task of finding a sufficient summary statistic cannot be tackled directly. Hence,

alternative methods to build summary statistics have to be followed.

For simplicity, let us consider a problem where we are only interested in performing

statistical inference on a single one-dimensional model parameter ω = {ω0} given

some observed data. Be given a summary statistic s and a statistical procedure to

obtain an unbiased interval estimate of the parameter of interest which accounts for

the effect of nuisance parameters. The resulting interval can be characterised by its

width ∆ω0 = ω̂+
0 − ω̂−

0 , defined by some criterion so as to contain on average, upon

repeated samping, a given fraction of the probability density, e.g. a central 68.3%

interval. The expected size of the interval depends on the summary statistic s chosen:

in general, summary statistics that are more informative about the parameters of

interest will provide narrower confidence or credible intervals on their value. Under

this figure of merit, the problem of choosing an optimal summary statistic can be

formally expressed as finding a summary statistic s∗ that minimises the interval

width:

s∗ = arg mins∆ω0. (6.2)

The above construction can be extended to several parameters of interest by consid-

ering the interval volume or any other function of the resulting confidence or credible

regions.
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6.3 Method

In this section, a machine learning technique to learn non-linear sample summary

statistics is described in detail. The method seeks to minimise the expected variance

of the parameters of interest obtained via a non-parametric simulation-based syn-

thetic likelihood. A graphical description of the technique is depicted on Fig. 6.1.

The parameters of a neural network are optimised by stochastic gradient descent

within an automatic differentiation framework, where the considered loss function

accounts for the details of the statistical model as well as the expected effect of

nuisance parameters.

g θs

x0 x1 ... xg

y0 y1
... yg

f φ

softmax

∑

ŝ0

ŝ1

ŝ2
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ŝb log L̂A

− ∂2

∂θi∂θj
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I−1
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approximation
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summary

statistic
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loss

compute via automatic differentiation

stochastic gradient update φt+1 = φt + η(t)∇φU

Figure 6.1: Learning inference-aware summary statistics (see text for details).

The family of summary statistics s(D) considered in this work is based on a

neural network model applied to each dataset observation f(x;φ) : X ⊆ R
d →

Y ⊆ R
b, whose parameters φ will be learned during training by means of stochastic

gradient descent, as will be discussed later. Therefore, using set-builder notation the

considered family of summary statistics considered can be denoted as:

s(D,φ) = s( { f(xi;φ) | ∀ xi ∈ D } ) (6.3)

where f(xi;φ) will reduce the dimensionality from the input observations space X
to a lower-dimensional space Y. The next step is to map observation outputs to

a dataset summary statistic, which will in turn be calibrated and optimised via a

non-parametric likelihood L(D;θ,φ) created using a set of simulated observations

Gs = {x0, ...,xg}, generated at a certain instantiation of the simulator parameters

θs.
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In experimental high energy physics experiments, which are the scientific context

that initially motivated this work, histograms of observation counts are the most

commonly used non-parametric density estimator because the resulting likelihoods

can be expressed as the product of Poisson factors, one for each of the considered bins.

A naive sample summary statistic can be built from the output of the neural network

by simply assigning each observation x to a bin corresponding to the cardinality

of the maximum element of f(x;φ), so each element of the sample summary will

correspond to the following sum:

si(D;φ) =
∑

x∈D




1 i = argmaxj={0,...,b}(fj(x;φ))

0 i 6= argmaxj={0,...,b}(fj(x;φ))
(6.4)

which can in turn be used to build the following likelihood, where the expectation

for each bin is taken from the simulated sample Gs:

L(D;θ,φ) =
b∏

i=0

Pois

(
si(D;φ) |

(
n

g

)
si(Gs;φ)

)
(6.5)

where the n/g factor accounts for the different number of observations in the simu-

lated samples. In cases where the number of observations is itself a random variable

providing information about the parameters of interest, or where the simulated obser-

vations are weighted, the choice of normalisation of L may be slightly more involved

and problem specific, but nevertheless amenable. Note the relation between the sum-

mary statistics and likelihoods defined in this section and those discussed in Section

3.1.3.

In the above construction, the chosen family of summary statistics is not differ-

entiable due to the argmax operator, so gradient-based updates for the parameters

cannot be computed. To work around this problem, a differentiable approximation

ŝ(D;φ) is considered. This function is defined by means of a softmax operator:

ŝi(D;φ) =
∑

x∈D

efi(x;φ)/τ

∑b
j=0 e

fj(x;φ)/τ
(6.6)

where the temperature hyper-parameter τ will regulate the softness of the operator.

In the limit of τ → 0+, the probability of the largest component will tend to 1

while others to 0, and therefore ŝ(D;φ) → s(D;φ). Similarly, let us denote by

L̂(D;θ,φ) the differentiable approximation of the non-parametric likelihood obtained
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by substituting s(D;φ) with ŝ(D;φ). Instead of using the observed dataD, the value

of L̂ may be computed when the observation for each bin is equal to its corresponding

expectation based on the simulated sample Gs, which is commonly denoted as the

Asimov likelihood [100] L̂A:

L̂A(θ;φ) =
b∏

i=0

Pois

((
n

g

)
ŝi(Gs;φ) |

(
n

g

)
ŝi(Gs;φ)

)
(6.7)

for which it can be easily proven that argmaxθ∈θ(L̂A(θ;φ)) = θs, so the maximum

likelihood estimator (MLE) for the Asimov likelihood is the parameter vector θs

used to generate the simulated dataset Gs. In Bayesian terms, if the prior over the

parameters is flat in the chosen metric, then θs is also the maximum a posteriori

(MAP) estimator. By taking the negative logarithm and expanding in θ around θs,

we may obtain the Fisher information matrix [107] for the Asimov likelihood:

I(θ)ij =
∂2

∂θi∂θj

(
− log L̂A(θ;φ)

)
(6.8)

which can be computed via automatic differentiation if the simulation is differentiable

and included in the computation graph, or if the effect of varying θ over the simulated

dataset Gs can be effectively approximated. While this requirement does constrain

the applicability of the proposed technique to a subset of likelihood-free inference

problems, it is quite common in e.g. physical sciences that the effect of the parameters

of interest and the main nuisance parameters over a sample can be approximated

by the changes of mixture coefficients of mixture models, translations of a subset of

features, or conditional density ratio re-weighting.

If θ̂ is an unbiased estimator of the values of θ, the covariance matrix fulfils the

Cramér-Rao lower bound [108, 109]:

covθ(θ̂) ≥ I(θ)−1 (6.9)

and the inverse of the Fisher information can be used as an approximate estimator

of the expected variance, given that the bound would become an equality in the

asymptotic limit for MLE. If some of the parameters θ are constrained by inde-

pendent measurements characterised by their likelihoods {L0
C(θ), ...,LcC(θ)}, those
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constraints can also be easily included in the covariance estimation, simply by con-

sidering the augmented likelihood L̂′
A instead of L̂A in Eq. 6.8:

L̂′
A(θ;φ) = L̂A(θ;φ)

c∏

i=0

LiC(θ). (6.10)

In Bayesian terminology, this approach is referred to as the Laplace approxima-

tion [110] where the logarithm of the joint density (including the priors) is expanded

around the MAP to a multi-dimensional normal approximation of the posterior dens-

ity:

p(θ|D) ≈ Normal(θ; θ̂, I(θ̂)
−1

) (6.11)

which has already been approached by automatic differentiation in probabilistic pro-

gramming frameworks [192]. While a histogram has been used to construct a Poisson

count sample likelihood, non-parametric density estimation techniques can be used

in its place to construct a product of observation likelihoods based on the neural

network output f(x;φ) instead. For example, an extension of this technique to

use kernel density estimation (KDE) should be straightforward, given its intrinsic

differentiability.

The loss function used for stochastic optimisation of the neural network paramet-

ers φ can be any function of the inverse of the Fisher information matrix at θs,

depending on the ultimate inference aim. The diagonal elements I−1
ii (θs) correspond

to the expected variance of each of the φi under the normal approximation men-

tioned before, so if the aim is efficient inference about one of the parameters ω0 = θk

a candidate loss function is:

U = I−1
kk (θs) (6.12)

which corresponds to the expected width of the confidence interval for ω0 accounting

also for the effect of the other nuisance parameters in θ. This approach can also

be extended when the goal is inference over several parameters of interest ω ⊆ θ

(e.g. when considering a weighted sum of the relevant variances). A simple version

of the approach just described to learn a neural-network based summary statistic

employing an inference-aware loss is summarised in Algorithm 1.
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Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation g(θ).

Input 2: initial parameter values θs.

Input 3: parameter of interest ω0 = θk.

Output: learned summary statistic s(D;φ).

1: for i = 1 to N do

2: Sample a representative mini-batch Gs from g(θs).

3: Compute differentiable summary statistic ŝ(Gs;φ).

4: Construct Asimov likelihood LA(θ,φ).
5: Get information matrix inverse I(θ)−1 = H−1

θ (logLA(θ,φ)).
6: Obtain loss U = I−1

kk (θs).

7: Update network parameters φ → SGD(∇φU).

8: end for

6.4 Related Work

Classification or regression models have been implicitly used to construct summary

statistics for inference in several scientific disciplines. For example, in experimental

particle physics, the mixture model structure of the problem makes it amenable to

supervised classification based on simulated datasets [193, 194]. While a classification

objective can be used to learn powerful feature representations and increase the

sensitivity of an analysis, it does not take into account the details of the inference

procedure or the effect of nuisance parameters like the solution proposed here.

The first known effort to include the effect of nuisance parameters in classification

and explain the relation between classification and the likelihood ratio was by Neal

[195]. In the mentioned work, Neal proposes training of classifier including a function

of nuisance parameter as additional input together with a per-observation regression

model of the expectation value for inference. Cranmer et al. [188] improved on this

concept by using a parametrised classifier to approximate the likelihood ratio which

is then calibrated to perform statistical inference. At variance with the mentioned

works, we do not consider a classification objective at all and the neural network is

directly optimised based on an inference-aware loss. Additionally, once the summary

statistic has been learnt the likelihood can be trivially constructed and used for

classical or Bayesian inference without a dedicated calibration step. Furthermore,
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the approach presented in this work can also be extended, as done by Baldi et al.

[134] by a subset of the inference parameters to obtain a parametrised family of

summary statistics with a single model.

Recently, Brehmer et al. [196, 197, 198] further extended the approach of paramet-

rised classifiers to better exploit the latent-space structure of generative models from

complex scientific simulators. Additionally they propose a family of approaches that

include a direct regression of the likelihood ratio and/or likelihood score in the train-

ing losses. While extremely promising, the most performing solutions are designed for

a subset of the inference problems at the LHC and they require considerable changes

in the way the inference is carried out. The aim of the algorithm proposed here is

different, as we try to learn sample summary statistics that may act as a plug-in

replacement of classifier-based dimensionality reduction and can be applied to gen-

eral likelihood-free problems where the effect of the parameters can be modelled or

approximated.

Within the field of Approximate Bayesian Computation (ABC), there have been

some attempts to use neural network as a dimensionality reduction step to generate

summary statistics. For example, Jiang et al. [199] successfully employ a summary

statistic by directly regressing the parameters of interest and therefore approximating

the posterior mean given the data, which then can be used directly as a summary

statistic.

A different path is taken by Louppe et al. [200], where the authors present a

adversarial training procedure to enforce a pivotal property on a predictive model.

The main concern we have on the use of that approach is that a classifier which

is pivotal with respect to nuisance parameters might not be optimal, neither for

classification nor for statistical inference. Instead of aiming for being pivotal, the

summary statistics learnt by our algorithm attempt to find a transformation that

directly reduces the expected effect of nuisance parameters over the parameters of

interest.

6.5 Experiments

In this section, we first study the effectiveness of the inference-aware optimisation

in a synthetic mixture problem where the likelihood is known. We then compare

our results with those obtained by standard classification-based summary statist-

ics. All the code needed to reproduce the results presented here is available in an
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online repository [201], extensively using TensorFlow [129] and TensorFlow

Probability [192, 202] software libraries.

6.5.1 3D Synthetic Mixture

In order to exemplify the usage of the proposed approach, evaluate its viability and

test its performance by comparing to the use of a classification model proxy, a three-

dimensional mixture example with two components is considered. One component

will be referred as background fb(x|λ) and the other as signal fs(x); their probability

density functions are taken to correspond respectively to:

fb(x|r, λ) = N
(
(x0, x1)

∣∣∣∣∣ (2 + r, 0),

[
5 0

0 9

])
Exp(x2|λ) (6.13)

fs(x) = N
(
(x0, x1)

∣∣∣∣∣ (1, 1),
[
1 0

0 1

])
Exp(x2|2) (6.14)

so that (x0, x1) are distributed according to a multivariate normal distribution while

x2 follows an independent exponential distribution both for background and signal,

as shown in Fig. 6.2a. The signal distribution is fully specified while the background

distribution depends on r, a parameter which shifts the mean of the background dens-

ity, and a parameter λ which specifies the exponential rate in the third dimension.

These parameters will be the treated as nuisance parameters when benchmarking

different methods. Hence, the probability density function of observations has the

following mixture structure:

p(x|µ, r, λ) = (1− µ)fb(x|r, λ) + µfs(x) (6.15)

where µ is the parameter corresponding to the mixture weight for the signal and

consequently (1−µ) is the mixture weight for the background. The low-dimensional

projections from samples from the mixture distribution for a small µ = 50/1050 is

shown in Fig. 6.2b.

Let us assume that we want to carry out inference based on n i.i.d. observations,

such that E[ns] = µn observations of signal and E[nb] = (1 − µ)n observations of

background are expected, respectively. While the mixture model parametrisation

shown in Eq. 6.15 is correct as is, the underlying model could also give information

on the expected number of observations as a function of the model parameters. In

this toy problem, we consider a case where the underlying model predicts that the
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which would correspond to the optimal classifier (in the Bayes risk sense) separating

signal and background events in a balanced dataset (equal priors):

s∗(x|r, λ) = fs(x)

fs(x) + fb(x|r, λ)
(6.18)

noting that this quantity depends on the parameters that define the background dis-

tribution r and λ, but not on s or b that are a function of the mixture coefficients.

It can be proven (see Section 4.3.1 ) that s∗(x) is a sufficient summary statistic

with respect to an arbitrary two-component mixture model if the only unknown

parameter is the signal mixture fraction µ (or alternatively s in the chosen paramet-

risation). In practice, the probability density functions of signal and background are

not known analytically, and only forward samples are available through simulation,

so alternative approaches are required.

The synthetic nature of this example allows to rapidly generate training data on

demand, yet a training dataset of only 200,000 simulated observations has been

considered, in order to study how the proposed method performs when training data

is limited. Half of the simulated observations correspond to the signal component

and half to the background component. The latter has been generated using r = 0.0

and λ = 3.0. A validation holdout from the training dataset of 200,000 observations

is used exclusively for computing relevant metrics during training and to control

over-fitting. The final figures of merit that allow to compare different approaches

are computed using a larger dataset of 1,000,000 observations. For simplicity, mini-

batches for each training step are balanced so the same number of events from each

component is taken both when using standard classification or inference-aware losses.

A common treatment of this problem in high-energy physics consist of posing the

problem as one of classification based on a simulated dataset, as discussed in Section

4.3.1. A supervised machine learning model such a neural network can be trained

to discriminate signal and background observations, considering a fixed parameters

r and λ. The output of such a model typically consist in class probabilities cs and cb

given an observation x, which will tend asymptotically to the optimal classifier from

Eq. 6.18 given enough data, a flexible enough model and a powerful learning rule.

The conditional class probabilities (or alternatively the likelihood ratio fs(x)/fb(x))

are powerful learned features that can be used as summary statistic; however their

construction ignores the effect of the nuisance parameters r and λ on the background

distribution. Furthermore, some kind of non-parametric density estimation (e.g. a

histogram) has to be considered in order to build a calibrated statistical model using
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of Poisson counts (or its differentiable approximation) if a non-parametric counting

model as the one described in Sec. 6.3 is used. Instead the effect of r and λ, both

nuisance parameters that will define the background distribution, is more easily mod-

elled as a transformation of the input data x. In particular, r is a nuisance parameter

that causes a shift on the background along the first dimension and its effect may

be accounted for in the computation graph by simply adding (r, 0.0, 0.0) to each ob-

servation in the mini-batch generated from the background distribution. Similarly,

the effect of λ can be modelled by multiplying x2 by the ratio between the λ0 used

for generation and the one being modelled. These transformations are specific for

this example, but alternative transformations depending on parameters could also

be accounted for as long as they are differentiable or substituted by a differentiable

approximation.

For this problem, we are interested in carrying out statistical inference on the

parameter of interest s. In fact, the performance of inference-aware optimisation as

described in Sec. 6.3 will be compared with classification-based summary statistics

for a series of inference benchmarks based on the synthetic problem described above

that vary in the number of nuisance parameters considered and their constraints:

• Benchmark 0: no nuisance parameters are considered, both signal and back-

ground distributions are taken as fully specified (r = 0.0, λ = 3.0 and b =

1000.).

• Benchmark 1: r is considered as an unconstrained nuisance parameter, while

λ = 3.0 and b = 1000 are fixed.

• Benchmark 2: r and λ are considered as unconstrained nuisance parameters,

while b = 1000 is fixed.

• Benchmark 3: r and λ are considered as nuisance parameters but with the

following constraints: N (r|0.0, 0.4) and N (λ|3.0, 1.0), while b = 1000 is fixed.

• Benchmark 4: all r, λ and b are all considered as nuisance parameters with

the following constraints: N (r|0.0, 0.4), N (λ|3.0, 1.0) and N (b|1000., 100.).

When using classification-based summary statistics, the construction of a sum-

mary statistic does depend on the presence of nuisance parameters, so the same

model is trained independently of the benchmark considered. In real-world inference

scenarios, nuisance parameters have often to be accounted for and typically are con-

strained by prior information or auxiliary measurements. For the approach presented

here, inference-aware neural optimisation, the effect of the nuisance parameters and

their constraints can be taken into account during training. Hence, 5 different train-
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trained during 200 epochs with SGD using mini-batches of 2000 observations and a

learning rate γ = 10−6. All the model initialisations converge to summary statistics

that provide low variance for the estimator of s when the nuisance parameters are

accounted for.

To compare with alternative approaches and verify the validity of the results, the

profiled likelihoods obtained for each model are shown in Fig. 6.4b. The expected

uncertainty if the trained models are used for subsequent inference on the value of

s can be estimated from the profile width when ∆L = 0.5. Hence, the average

width for the profile likelihood using inference-aware training, 16.97 ± 0.11, can be

compared with the corresponding one obtained by uniformly binning the output of

classification-based models in 10 bins, 24.01 ± 0.36. The models based on cross-

entropy loss were trained during 200 epochs using a mini-batch size of 64 and a fixed

learning rate of γ = 0.001.

A more complete study of the improvement provided by the different INFERNO

training procedures is provided in Table 6.1, where the median and 1-sigma per-

centiles on the expected uncertainty on s are provided for 100 random-initialised

instances of each model. In addition, results for 100 random-initialised cross-entropy

trained models and the optimal classifier and likelihood-based inference are also in-

cluded for comparison. The confidence intervals obtained using INFERNO-based

summary statistics are considerably narrower than those using classification and

tend to be much closer to those expected when using the true model likelihood for

inference. The only exception being the results obtained for Benchmark 0, where no

nuisance parameters are considered, and thus the classification approach is expected

to approximate a sufficient summary statistic. Much smaller fluctuations between

initialisations are observed for the INFERNO-based cases. The improvement over

classification increases when more nuisance parameters are considered. The res-

ults also seem to suggest the inclusion of additional information about the inference

problem in the INFERNO technique leads to comparable or better results than its

omission.

Given that a certain value of the parameters θs has been used to learn the sum-

mary statistics as described in Algorithm 1 while their true value is unknown, the

expected uncertainty on s has also been computed for cases when the true value of

the parameters θtrue differs. The variation of the expected uncertainty on s when

either r or λ is varied for classification and inference-aware summary statistics is

shown in Fig. 6.5 for Benchmark 2. The inference-aware summary statistics learnt

for θs work well when θtrue 6= θs in the range of variation explored.
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This synthetic example demonstrates that the direct optimisation of inference-

aware losses as those described in the Section 6.3 is effective. The summary statistics

learnt accounting for the effect of nuisance parameters compare very favourably to

those obtained by using a classification proxy to approximate the likelihood ratio. Of

course, more experiments are needed to benchmark the usefulness of this technique

for real-world inference problems as those found in High Energy Physics analyses at

the LHC.
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So Long,

and Thanks for All the Fish.

Douglas Adams

A large part of this thesis has dealt with the role of statistical learning techniques in

the context of particle collider analyses, and their usefulness from a statistical infer-

ence perspective. After a broad introduction to the theoretical models of fundamental

interactions and a summary of the main characteristics and working principles of the

Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC), the

fundamentals for statistical modelling at the LHC has been discussed. The relation

between the theoretical parameters of interest and the experimental observations

can only be modelled accurately by means of a complex simulation chain of the

underlying physical processes and expected detector response. The generative-only

nature of the simulation-based model combined with its high dimensionality make

the definition of the probability density or likelihood function intractable, thus clas-

sical inference techniques cannot be applied to carry out statistical inference based

on the acquired observations.

The statistical model for particle colliders can be described by a mixture model,

each mixture component originating from a group of fundamental physical interac-

tions. The latent variable structure of the generative model can be mapped to the

different simulation steps in the simulation: process type, parton-level four-momenta,

parton-shower outcome and detector readout. While the dimensionality of the latent

space greatly increases for each subsequent step, the joint distribution can be factor-

ised as a product of conditionals, the information about the parameters of interest

being compactly expressed by the lowest dimensional latent variables. An efficient

way to reduce the dimensionality of the data is thus to approximate the latent vari-

ables using the observations. This can be done by a well-calibrated combination

of the different detector readouts, as is the case when using event reconstruction is

performed, or by directly estimating the latent variables using supervised learning

techniques trained on simulated observations.
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Recent advances in supervised learning techniques have led to more accurate lat-

ent variable estimation that can scale to more data and use advanced non-linear

transformations to obtain better performance in complex tasks, both in the context

of classification and regression. Signal versus background probabilistic classification,

a common conceptual framework for simplifying the event selection problem and

constructing low-dimensional summaries in high-energy physics, has been formally

proven to produce sufficient summary statistics for the mixture coefficients when the

generative model is fully defined. The usefulness of probabilistic classification for

such tasks, even in the optimal classifier case, cannot be guaranteed when nuisance

parameters affect significantly the distribution of observed samples. In addition,

particle identification and regression problems that augment the reconstruction out-

put and can be tackled with machine learning techniques are also discussed. The

use of deep learning techniques for advanced jet flavour tagging in CMS are used to

exemplify the previous use case, which demonstrates the possible performance im-

provements due to the combined use of deep neural networks and non-standard input

transformations that can deal with sequences. Newer machine learning methodolo-

gies that can deal with sets, graphs and other types of non-vector input coupled

with powerful parallel hardware could be a promising path to substitute a larger

part of the event reconstruction chain by latent variable approximations based on

simulated observations, providing higher accuracy and throughput than hand-tuned

algorithms.

An analysis using 35.9 fb−1 of data collected in 2016 by the CMS detector at the

LHC was also included in this work. Proton-proton collisions at a centre-of-mass

energy of 13 TeV were used to study the pp → HH → bb̄bb̄ process in the context

of the Standard Model (SM) and anomalous couplings effective field theory (EFT)

extensions. The main challenge for this LHC analysis was the large background con-

tribution from multi-jet QCD processes, so numerous that could not be modelled

accurately by simulated observations. Hence, a data-driven estimation method, re-

ferred to as hemisphere mixing, was developed and validated on control regions to

model the background contribution. The final summary statistic used in the analysis

is based on the output of a probabilistic classifier, an ensemble of gradient boosted

decision trees, trained using simulated signal observations and artificial events pro-

duced by the background estimation method. After assessing the different sources of

systematic uncertainties and including their effect in the statistical model, a median

expected limit obtained for SM HH production of 419 fb was obtained, which corres-

ponds to approximately 37 times the SM expectation. The observed limit obtained
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is 847 fb, which is about two standard deviations above the expected limit. Limits

were also obtained for a set of EFT benchmarks, which summarise the kinematical

properties of a large space of EFT models. The results of the combination of this

analysis with other HH decay channels were also included. The estimation of QCD

multijet backgrounds will likely remain an important issue for future jet-based ana-

lysis at the LHC, given that the biases of the data-driven estimation methods would

become increasingly relevant as more data is available.

The ultimate goal of LHC analyses is statistical inference, in the form of hypo-

thesis testing or parameter estimation. Machine learning techniques are useful to

approximate latent variables which can then be used to construct powerful summary

statistics for inference. In the presence of a generative model that depends on addi-

tional uncertain parameters, often referred to as nuisance parameters, the merits of

classification or regression based summary statistics are greatly diminished. These

concerns have motivated the development of a new family of techniques to construct

powerful summary statistics that account directly for the final inference objective. By

building and minimising loss functions that approximate the expected uncertainty on

the parameters of interest, also accounting for the effect of nuisance parameters, the

INFERNO approach can leverage recent machine learning technologies to construct

better summary statistics for the inference problem at hand. These techniques were

applied to a series of synthetic problems and were found to significantly outperform

classification-based summary statistics (e.g. a deep neural network and the optimal

classifier) when nuisance parameters are included in the problem. More experiments

are needed to evaluate the value of this technique for real-word inference problems,

such as those found in particle physics analyses.

As machine learning algorithms become increasingly popular in scientific contexts,

it will be more important to formally describe the particularities of the problems we

are trying to solve, in order to understand whether the tools at hand are answering

the right questions. Otherwise we risk falling for the anti-pattern “if all you have is a

hammer, everything looks like a nail”, which could significantly slow down the pace of

scientific progress. This issue is particularly pressing for particle collider experiments,

where the acquired familiarity with a given set of data analysis techniques might

hinder the rigour in their application relative to the final objective. Some effort is

then required to make sure of the role of a given tool is aligned with the task at

hand instead on the subtleties of the tool itself. When using advanced statistical

techniques or machine learning, the final analysis goal is of the upmost relevance

and cannot be neglected in favour of procedural conventions. If those measures are
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coupled with open research practices and a careful use of domain-specific language

and constructs in order to promote collaboration with other disciplines, better tools

are likely to be developed which could in turn lead to major advancements in this

research field.
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