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Abstract. Data analyses based on maximum likelihood fits are commonly used in the high
energy physics community for fitting statistical models to data samples. This technique requires
the numerical minimization of the negative log-likelihood function. MINUIT is the most common
package used for this purpose in the high energy physics community. The main algorithm in this
package, MIGRAD, searches the minimum by using the gradient information. The procedure
requires several evaluations of the function, depending on the number of free parameters and
their initial values. The whole procedure can be very CPU-time consuming in case of complex
functions, with several free parameters, many independent variables and large data samples.
Therefore, it becomes particularly important to speed-up the evaluation of the negative log-
likelihood function. In this paper we present an algorithm and its implementation which benefits
from data vectorization and parallelization (based on OpenMP) and which was also ported to
Graphics Processing Units using CUDA.

1. Introduction

The maximum likelihood (ML) fitting procedure is a popular statistical technique used to
estimate parameters of a statistical model on a given data sample [1]. Data samples are
a collection of N independent ewvents, an event being the measurement of a set of wariables
& = (z!,...,2") (energies, masses, spatial and angular variables...) recorded in a brief span of
time by physics detectors. The events can be classified in different species, which are generally
denoted with signals, for the events of interest for their physics phenomena, and backgrounds,
all that remains. Each variable l‘jA is distributed for the given species s with a probability
distribution function (PDF) PJ(x7;§7), where 67 are free (not constant) parameters of the PDF.
If the variables are uncorrelated each other, then the total PDF for the species s is expressed by

Py(#;6,) = [ Pi(a’;60). (1)

The ML technique allows to estimate the values of the free parameters, as well the number of
events belonging to each species ng, by maximizing the function

e Z s
L= —rr— HZnS (24;05), (2)



which is called the eztended likelihood function. We should underline that &; are measured and
the PJ functions are well-known, so £ only depends on the free parameters we want to fit on
the data sample.

The search for the maximum for £ can be carried out numerically. Usually, it is used to
minimize the equivalent function —In(L), the negative log-likelihood (NLL). So the NLL to be
minimized has the form?:

N

NLL=>ns—Y_ (mZ nsPs(24; és)> : (3)
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that is a sum of logarithms. The most common method used in the high energy physics
(HEP) community for the minimization is based on the MIGRAD algorithm inside the MINUIT
package. MIGRAD performs the minimization using the wariable metric method [2]. This
method involves the calculation of the derivatives of the NLL for each free parameter. Since
very often we deal with minimizing a function for which no derivatives are provided, MIGRAD is
able to estimate the derivatives of the function by finite differences [3]. The whole procedure of
minimization requires several evaluations of the NLL, which requires themselves the calculation
of the corresponding PDFs for each variable and each event of the data sample. Hence, depending
on the complexity of the NLL function with several free parameters, many independent variables
and large data samples, the minimization procedure can be very time-consuming. In this case
it is important (or even mandatory) to speed-up the evaluation of the NLL [4].

The common software used in HEP community for the evaluation of the NLL is RooFit [5],
which is part of the general data analysis framework ROOT [6]. Currently RooFit implements
an algorithm for the NLL evaluation which cannot take full advantage of data vectorization and
other code optimizations (like function inlining) due to its implementation based on C++ virtual
methods [4]. To overcome these limitations, we have designed and implemented a new optimized
algorithm, and parallelized it using a data parallelism paradigm implemented with OpenMP.
The algorithm has been also implemented to run on a Graphics Processing Unit (GPU) device
by using the CUDA language provided by NVIDIA. In this paper we describe the algorithm
and the two implementations. Finally we show the comparison of the performance between our
CPU implementation and RooFit and the comparison of the performance between CPU and
GPU implementations.

2. NLL Evaluation
The RooFit package is formed of a set of C++ classes constructed on top of the ROOT framework
dedicated to likelihood-based analyses. Basically for each mathematical concept there is a
corresponding C++ class, e.g. classes for the PDFs and variables definition. Then there is a
special class which takes care of finalizing the NLL calculation. Furthermore RooFit provides
an interface to the MINUIT package. We should underline that all floating point operations are
performed in double precision. Data is organized in memory like a matrix where the columns
contain the values for each variable, and the rows represent the values of the variables belonging
to each event. All classes for PDFs inherit from a common abstract class, which provides the
common interface. So each class has a virtual method to get the value of the PDF. Combinations
of PDFs are possible with classes for adding, multiplying and convoluting basic PDF's.

In order to calculate the NLL from the formula (3), the current available RooFit algorithm
consists of the following steps (in order):

e For a given set of values of NLL free parameters, loop over the events ¢ = 1...IN:

— read the values of the variables for event 7;

! We omit the N! term in the expression, which does not depend on the parameters.



— calculate the PDFs for the event ¢;

— combine, by means of addition and multiplication, the results of the individual PDFs
to calculate the total PDF value for the event i;

— calculate the logarithm of the total PDF value, which is the term in the sum of the NLL;

— accumulate the terms of the sum.

e Finalize the calculation of the NLL.

The key part of this procedure is the calculation of all PDFs for each event, and then there is a
single loop over all events. Since this is done by having recourse to calls of the virtual method
of each PDF, this algorithm does not allow particular code optimization, like inlining and data
vectorization, and it introduces the obvious overhead due to the virtual method calls.

In order to advantage from code optimization, we redesigned the algorithm to reduce the
number of calls to virtual methods. Furthermore, the data is stored differently: the values of
each variable are organized in independent arrays, so that we can profit from the coalescing of
memory accesses for each variable. The new algorithm follows a different procedure with respect
to the RooFit algorithm described above:

e For a given set of values of the parameters and a given PDF, we evaluate the PDF on each
event of the data sample (which means calculating the PDF on the corresponding arrays of
variables), and we save the results of this calculation in an array. So we do a loop over all
events ¢ = 1...INV and calculate the PDF for each of them.

e Repeat the previous step for all PDFs, so we end up with several arrays of partial results
(an array for each PDF). Each array of results is composed by N elements, i.e. a result for
each event.

e Combine, by means of addition and multiplication, all arrays of partial results,
corresponding to each event, providing a final array of results, i.e. the array of results
of the total PDF.

e Calculate the logarithm of the total PDF results.
e Do the sum of the total PDF results and finalize the calculation of the NLL.

The key part of this procedure is the calculation of each PDF for all events, so that instead of
one single global loop over the events, now we have independent local loops for each PDF (and
their combinations). For the implementation of this new algorithm in RooFit, we add a new
virtual method for each PDF class with a reference to the data sample as parameter. Inside
this method we perform the local loop over all values of the variables of the corresponding PDF,
storing the results of the calculations in an array of partial results. Then the method returns a
reference to this array. Since this new virtual method is called just once per each PDF during
an NLL evaluation, and then within local loops we perform the calculations of the mathematical
functions for all events, we can conclude that the number of calls to virtual methods does not
depend by the number of events. Furthermore, thanks to the new data structure organized
as arrays for each variable, this code can easily be vectorized for the calculation of each PDF.
The loop over the final results of the total PDF to calculate and finalize the NLL evaluation is
done in the usual class for the NLL finalization. We should note that a drawback of this new
algorithm is that we have to manage all the arrays for the temporary results.

3. Parallelization Strategy and Implementation

We parallelize the implementation of the new algorithm using OpenMP. Since the iterations in
the loops inside the new virtual methods for the calculation of the PDFs are independent, we
can parallelize them for the execution on CPUs via the #pragma omp parallel for directive.
Each iteration in these loops calculates the corresponding PDFs for a single event. The
scheduling of the iterations is static, and each thread does a fixed number of iterations and



accesses to consecutive elements of the arrays of input variables and partial results, allowing
data vectorization of the loops. Arrays of input variables and results are shared among the
threads, so that there is a negligible increment in the global memory footprint of the application
when running it in parallel. We parallelize also the sum over the final results of the total PDF
inside the class for the NLL finalization (parallel reduction). To mitigate rounding problems in
the parallel reduction, which depend on the number of threads, we adopt the algorithm described
in [7].

Together with the implementation based on OpenMP parallelization, we also implement a
parallelization for a GPU device based on the CUDA language. Basically, the loops inside the
new virtual methods for the calculation of the PDFs are substituted by calls to CUDA kernels.
Hence, the kernels execute the calculation of the PDF's in parallel tasks, where a task represents
the calculation of a given PDF on a single event. Each task gets evaluated by a CUDA thread,
i.e. there is a one to one correspondence between tasks and threads. Of course the occupancy
of the resources used by each CUDA kernel depends on the corresponding PDF function to be
evaluated, which means that an optimization of the occupancy would require a custom task
partitioning for each kernel. However, we have checked in simple cases (a kernel used for a
Gaussian PDF) that the benefit from such an optimization is small, while it would require
more efforts for implementing it. So we prefer to use the current configuration, leaving to next
versions of the code the possibility to consider a better partitioning of the tasks per CUDA
kernel. Threads are synchronized after the corresponding kernel call for each PDF. All data
and calculations execute on the GPU are, as before, in double precision floating point. Arrays
of the input variables are copied from the host to the device global memory using synchronous
functions. These arrays are read-only during the entire execution of the application, so we can
copy them once to the device memory at the beginning of the minimization procedure and then
use them for all NLL evaluations. The arrays of partial results for each PDF are only allocated
and kept resident in the global memory of the device, i.e. no copy from device to host, except
for the array of the final results which has to be copied to the host memory for the final sum of
the NLL. Also in this case the communication is done by using synchronous functions. Then,
we perform the parallel reduction of the final results using the OpenMP implementation. To
summarize, during the minimization there is a single copy of the arrays of the input variables and
a copy of the the array of the final results for each NLL evaluation. With this implementation
we are able to strongly reduce the time spent for the communication between host and device
memories. The number of threads per block of the CUDA kernels depends on the maximum
shared-memory size, number of registers per thread, and number of threads required to use
full thread warps of the CUDA architecture. All these factors are directly connected to the
complexity of the NLL evaluation, i.e. which PDFs are involved in the calculation and the
dimension of the input data sample. Therefore this number depends on the user analyses. From
our tests we have found a very small improvement (< 1%) of performance when we tune this
number for each kernel. So, we have decided to simplify the procedure, using for all kernels a
common value for the number of threads per block, independent of the tasks carried out by the
kernels (the default value is 256). The number of blocks per kernel is then calculated from the
number of events divided by the number of threads per block, rounded to the greatest integer
number.

We would like to underline that data analysts can choose which implementation to use
for the NLL evaluation among the original RooFit algorithm, the OpenMP or the CUDA
implementations, by using a flag at runtime. They do not need to change their applications, i.e.
there is a common interface for the user to the three implementations.



4. Tests

In the following tests we use a statistical model based on the BABAR analysis for the branching
fraction measurement of the neutral B meson to 1’ K2 decay [8]. The model has 3 variables and
5 species. In total there are 29 PDFs: 11 Gaussians, 5 polynomials, 3 Argus functions, which
are combined in 5 PDFs for multiplication and for addition, respectively. In our fit we leave
16 parameters free to float. The events for each species are generated from the corresponding
PDF's using Monte Carlo generation techniques, not considering the time for the generation in
the tests (we only consider the time spent for the fitting procedure). We use RooFit v3.14, which
is part of ROOT v5.28. As minimizer we use MINUIT2 of the same ROOT distribution [9].

The first test we perform is a comparison between the original RooFit algorithm and the
OpenMP implementations, running with a single thread. We run the tests on a dual socket Intel
Westmere-based system: CPU (L5640) @ 2.27GHz (12 physical cores, 24 hardware threads in
total), 10x4096MB DDR3 memory @ 1333MHz. The system is running 64-bit Scientific Linux
CERN 5.5 (SLC5), based on Red Hat Enterprise Linux 5 (server). The default SLC5 Linux kernel
(2.6.18-194.8.1.el5) is used for all the measurements. We use the Intel C++ compiler version 11.1
(20100414). In this test we are also interested to see the effect of the vectorization in the new
algorithm. To do that we compile the application deactivating the data auto-vectorization made
by the compiler (flag -no-vec). The results are shown in table 1. Due to different optimizations
applied by the compiler, we expect small differences on the results when running in the three
different cases (well below the parameters error values), which are negligible from the perspective
of the fit results (small fractions of the free parameter errors), but they can lead to a different
number of NLL evaluations required for the minimization. For this reason we compare the
results using the wall clock time divided by the number of NLL evaluations. We findin that the
new algoritm implementation with a single thread is about 2.5x and 4.5x faster than the RooFit
implementation when running without and with vectorization, respectively. The speed-up due
to the data vectorization is 1.8x, close to the theoretical maximum of 2x, since the CPU can
handle in parallel two floating point operations with double precision using SIMD instructions.

Then we run another test to see the scalability of the OpenMP implementation (with
vectorization) when running in parallel with a fixed number of events (100,000). We use the same
system described before. The threads are pinned to the cores running them. When we reach
the maximum number of physical cores (12), then the threads are pinned to hardware threads
(24), still maximizing the amount of physical cores used. Also in this case the number of NLL
evaluations required for the minimization is different due to the parallel reduction approximation
(ranging between 10336 and 12665). For this reason the scalability is calculated considering the
time spent for each NLL evaluation. The results are shown in figure 1. We reach a 8.5x speed-up
with 12 threads (maximum number of physical cores) and 9.9x with 24 threads (maximum load
for the system). The main limitation in the scalability is given by the remaining sequential part
of the program (mainly the calculation of the normalization integral of each PDF) and from
handling in memory the multiple arrays of results.

The last test we present is the comparison between running the fit with OpenMP and CUDA
implementations on the CPU and GPU, respectively. In this case we use the following system:
single socket Intel Nehalem-based CPU (i7 965) @ 3.2GHz (4 physical cores), with 2048MB
DDR3 memory @ 1333MHz, and Graphics Card ASUS ENGTX470 (based on the NVIDIA
GF100 “Fermi” architecture). The operating system and the compiler versions are the same
used in the previous tests, and we use CUDA v3.2. We do the test varying the number of
events of the data sample. The comparison is done considering the time spent for each NLL
evaluation, because of the different number of NLL evaluations required for minimization for the
two different implementations. (the difference in number of calls is up to 12% of the total calls).
We take as reference the optimized parallel OpenMP implementation, requiring four parallel
threads, so that we fully load the available CPU. In case of the CUDA implementation, we



Table 1. Results of the comparison executing the fit on different number of events for the
three cases: original RooFit, OpenMP with one thread without vectorization, OpenMP with
one thread with vectorization. The time per evaluation is obtained dividing the wall-clock time
by the number of NLL evaluations required for the minimization, which is used in the RooFit
versus OpenMP comparison.

# Events 10,000 25,000 50,000 100,000
RooFit
# NLL evaluations 15810 14540 19041 12834
Time (s) 826.0 1889.0 5192.9 6778.9

Time per NLL evaluation (ms)  52.25  129.92 272.72 528.19

OpenMP (w/o vectorization)

# NLL evaluations 15237 17671 15761 11396
Time (s) 315.1  916.0 1642.6 2397.3
Time per NLL evaluation (ms)  20.68 51.84 104.22 210.36
w.r.t. RooFit 2.5x 2.5x 2.6x 2.5x

OpenMP (w/ vectorization)

# NLL evaluations 15304 17163 15331 12665
Time (s) 178.8 4921  924.2  1536.9
Time per NLL evaluation (ms) 11.68  28.67 60.28  121.35
w.r.t. RooFit 4.5x 4.5x 4.4x 4.4x

include the time spent for the copy of the events from host memory to the device memory and
for the copy of the array of final results back to the host memory. From the hardware point of
view, we are comparing two systems which can be considered commodity systems: a single GPU,
whose main target is for computer gaming, versus a standard single socket desktop system with
4 cores. The results are shown in figure 2. We can see how the CUDA implementation behaves
better for high number of events, which is due to the specific ability of the GPU architectures
to take advantage of multiple threads.

5. Conclusion

In this paper we have described a different algorithm for the NLL evaluation in maximum
likelihood fits with respect to the algorithm used in the RooFit package. We implemented
this algorithm to run in parallel on CPU, using OpenMP, and GPU, using CUDA. In our
test the OpenMP implementation with a single thread is about 4.5x faster than the RooFit
implementation (table 1). Furthermore the OpenMP algorithm was executed in parallel, giving
a speed-up of about 10x with respect to a single thread execution in our test on 12 cores
(24 hardware threads) system (figure 1). The comparison between the OpenMP and CUDA
implementations are made using commodity systems, that can be considered, in terms of price
and power consumption, easily accessible to general data analysts. In this case, running the
OpenMP implementation in parallel (with 4 threads), we were able to reach a boost of 2.8x with
the CUDA implementation (figure 2).
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