

Tertiary Partial Denitrification-Anammox (PdNA) Filters for Sustainable Nitrogen Removal

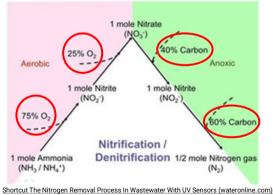
Anthony Young (Presenter) Wendell Khunjar (Co-Author) Katya Bilyk (Co-Author)

Hazen and Sawyer

PRESENTATION OVERVIEW

- 1. Shortcut nitrogen removal?
- 2. What is PdNA and why is it important?
- 3. Overview of PdNA filter:
 - Configuration and start-up
- 4. Results:
 - Start-up
 - Phase 1 operation & results
 - Phase 2 operation & results
 - Molecular analysis
- 5. Techno economic analysis
- 6. Conclusions

GENERAL


Problem:

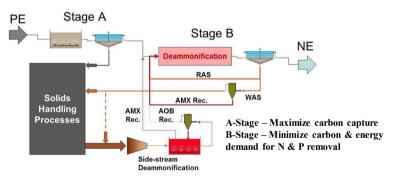
- 1. Concentrated discharges of nitrogen lead to eutrophication
- 2. Stringent TN discharge limits are being placed on WRFs

Biological Nutrient Removal (BNR):

- 1. Provides nitrogen and phosphorus removal from wastewater prior to discharge
- 2. Conventionally: Two step nitrification/denitrification
- 3. However: High aeration, high carbon, and solids generation

SHORTCUT NITROGEN REMOVAL

Capital cost estimates for upgrades to conventional processes have ranged from **125 to 150 million dollars**, in HRSD to meet total nitrogen (TN) limits of 5 mg/L. (Bott n.d.)

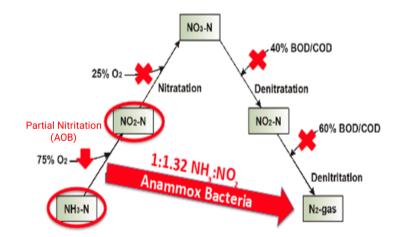

Mainstream Deammonification:

- Offers potential carbon and energy savings (Reduced oxygen demand)
- 2. Has been implemented and controlled in industrial and sidestream applications

Relies on Anammox (Anaerobic Ammonia Oxidizing Bacteria)

Mainstream deammonification achieved via two approaches:

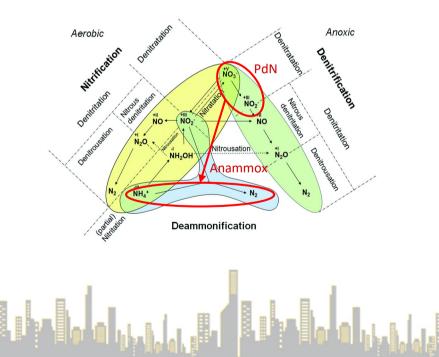
- 1. Partial Nitritation-Anammox
- 2. Our Focus: Partial Denitrification-Anammox (PdNA)


Excerpt From WERF Report on Mainstream Deammonification (2015)

MAINSTREAM DEAMMONIFICATION PARTIAL NITRITATION/ANAMMOX

Previous Application of Anammox:

Partial Nitritation/Anammox (PN/A)


The addition of hydrocyclones for selective anammox bacteria retention (DEMON® process HRSD)

MAINSTREAM DEAMMONIFICATION PARTIAL DENITRIFICATION/ANAMMOX

Our Application of Anammox:

Partial Denitrification/Anammox (PdNA)

So why PdNA?

- 1. Obtaining complete out-selection of Nitrite Oxidizing Bacteria (NOB) is difficult in low-strength nitrogen and cold conditions
- 2. ~38% reduction in O2 demand
- 3. ~ 50% reduction in supplemental carbon
- 4. Reductions in excess sludge

NC AWWA-WEA

Hurdles with PdNA?

1. Inhibition of Anammox at lower temperatures

& Conlor

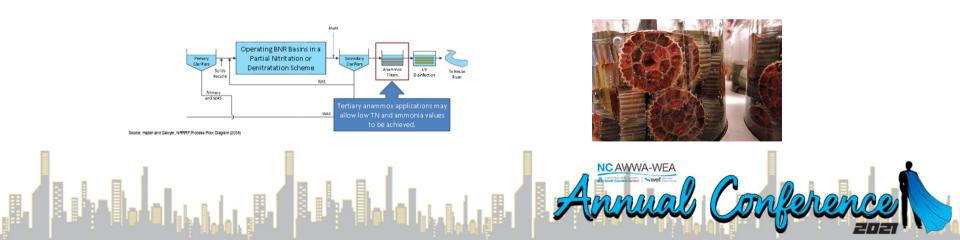
2. Preventing full denitrification (FdN)

STUDY INTO A SINGLE STAGE PDNA FILTER

Conventionally PdNA:

Research has explored multi-stage processes. Separating the biological processes using SBRs.

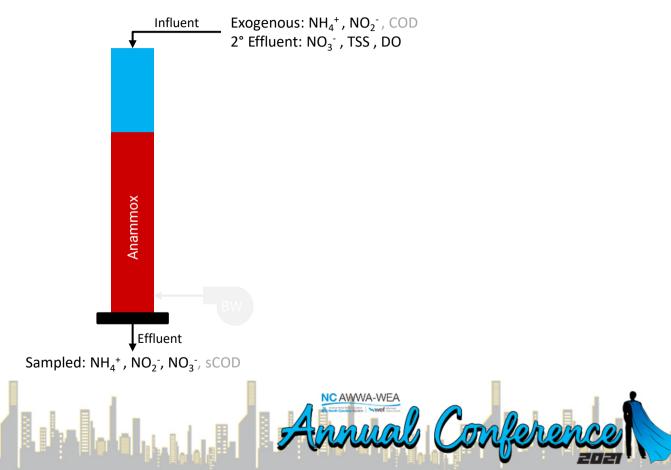
Our Idea:


- 1. Combine processes in filter with a PdN and Anammox phase
- 2. Biofilm overcomes biomass retention and selection issues
- Two reactors were utilized to demonstrate the feasibility of PdNA:
 - a) Reactor #1: PdNA (MicroC 2000 as Carbon Source)
 - **b)** Reactor #2: Conventional DF (FdN) (Methanol as Carbon Source)

NC AWWA-WEA

PILOT-SCALE TERTIARY PDNA FILTERS RESEARCH OBJECTIVES

- 1. Determine the nitrogen removal capability of a PdNA filter, determine whether it can operate at typical filter loading rates, and identify key parameters to ensure performance.
- 2. Identify the microorganisms present within a PdNA filter and determine the relationship between community structures and nitrogen removal.
- 3. Compare conventional biological nutrient removal to a PdNA process utilizing techno-economic analysis (OPEX).


RESEARCH PHASES

- 1. Start-Up
 - a) Anammox Inoculation
- 2. Phase 1
 - a) Supplemental Carbon Feed
- 3. Phase 2
 - a) Feasibility at Typical Filter Loading Rates
 - b) Filter Profiles
- 4. Molecular Analysis
- 5. Techno-Economic Analysis

Schedule (Days)	Phase	Operation	Reactor in Service
0-15	Start-Up	Pre-COVID 19 Anammox Startup	Reactor #1
15-85	Start-Up	COVID 19 Shutdown	Reactor #1
(New Day 0)-92	Start-Up	Post-COVID 19 Anammox Startup	Reactor #1
92-143	Phase 1	Carbon Feed for PdNA & Denitrification Filter Startup	Reactor #1 & #2
143-168	Phase 1	Decreased Nitrite Loading to PdNA	Reactor #1 & #2
168-220	Phase 1	Programmable Pump	Reactor #1 & #2
220-238	Phase 2	Filter Profiles and Reduction to 50 min HRT	Reactor #1 & #2

START-UP CONFIGURATION

START-UP PROCEDURES

- Reactor #1 was loaded with media (Neuse River RRF) and operated at tiered HRTs to ensure establishment of Anammox biomass:
 - a) Filter specifications:
 - i. Typical deep bed filter configuration (6 ft depth of media/1 ft headwater)
 - ii. Diameter = 0.5 ft (Volume= 1.2 ft3)
 - b) Media:
 - i. Effective Grain Size (d10) = 2.75 mm
 - ii. Mixed with 2,800 mL (VSS = 4,070 mg/L) of Anammox Inoculum (HRSD, DEMON)

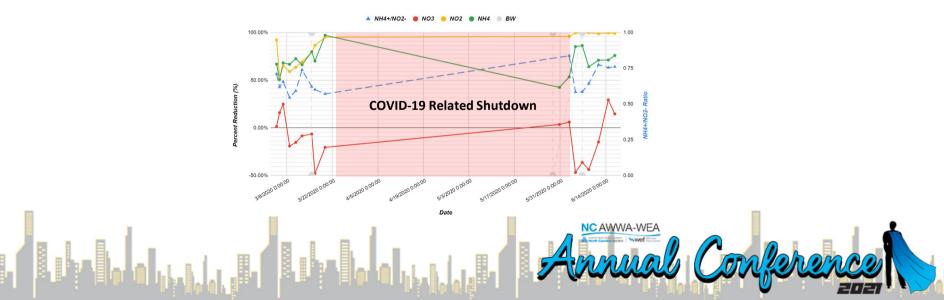
NC AWWA-WEA

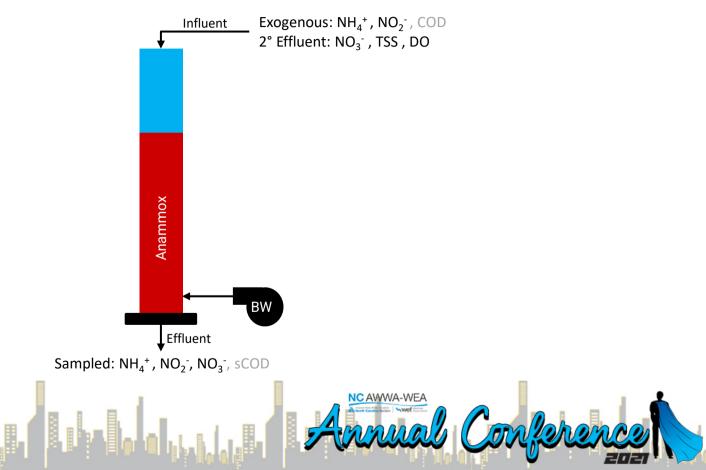
Annual Conference

START-UP PROCEDURES

- 2. Reactor #1 received secondary clarifier effluent:
 - a) Average Influent Characterization:
 - NH₄⁺-N (mg/L): 0.25 NO₂⁻-N (mg/L): 0.22
 - NO₃⁻-N (mg/L): 5.52 TSS= 7.36 mg/L
 - b) Exogenous nitrite and ammonia inline feed (Previous Research: NH₄⁺: NO₂⁻ of 1:1.6)
 - c) Continuous flow into Reactor #1: Progression toward next HRT dependent on achieving 50% influent ammonia and nitrite removal (Anammox Activity):

HRT (min)	Q (L/min)	Filter Loading Rate (gpm/ft²)
90	0.37	0.50
66.7	0.50	0.67
50	0.67	0.90




START-UP PROCEDURES (COVID-19 SHUTDOWN)

- 3. Filter start-up proceeded normally until 3/19/2020 (Day 15 of Operation)
 - a) Due to COVID-19 filter was shut down until 5/28/2020 (New Day 0 of Operation)
 - b) Change in performance noticed between start-up periods
 - c) Noticed Nitrite Oxidizing Bacteria (NOB) interference with elevated DO concentrations in influent (Supplemental

Carbon = Heterotrophic DO reduction)

START-UP CONFIGURATION (BACKWASHING)

START-UP PROCEDURES (BACKWASHING)

- 4. Backwashing Requirements:
 - a) Backwashing initially performed during startup upon noticeable head loss
 - b) Originally, backwashed at 16 gpm for 2 minutes (minimum fluidized bed velocity)

Occurrence	Pre-Backwash Anammox Activity	Post-Backwash Anammox Activity
Full Backwash 97.12%		87.28%
Full Backwash	90.90%	81.95%

- c) Biological filters; so backwashing method adjusted at start of 50 min HRT
 - i. Nitrogen Release Cycle: 4 gpm for 2 min every 8 hours
 - ii. Backwash Cycle: 4 gpm for 10-15 min every 24 hours

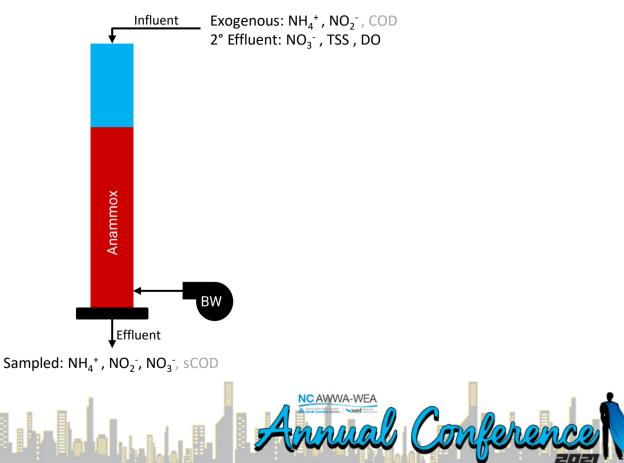
Occurrence	Pre-Backwash Anammox Activity	Post-Backwash Anammox Activity	
Alternative Backwash Scheme (Day 67)	82.52% (Day 67)	79.91% (Day 69)	
Alternative Backwash Scheme (Day 69)	79.91% (Day 69)	87.77% (Day 71)	
		Annual Co	nference

START-UP CONFIGURATION (PHASE 1)

START-UP PROCEDURES (START OF PHASE 1)

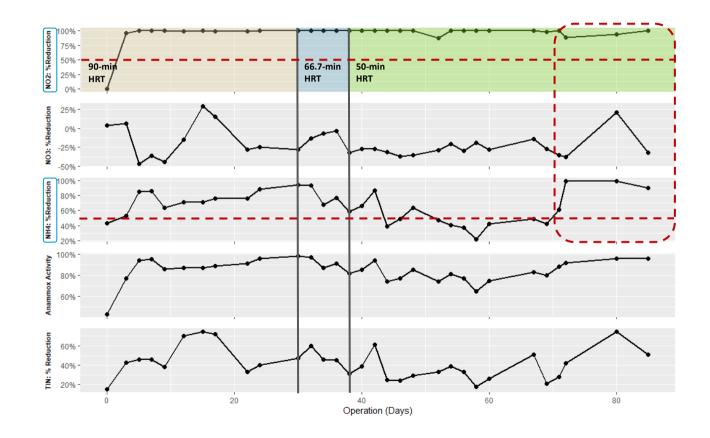
- 5. At the end of start-up: PdN & Reactor #2 (FdN) start-up
 - a) PdNA (Reactor #1):
 - i. Continue NH_4^+ and NO_2^- feed (1:1.6) and begin supplemental carbon
 - Reduce NO₂⁻ feed gradually over time (monitor residual nitrate concentrations) (MicroC 2000) (Designed for a COD/ NO₃⁻-N=2.5)
 - b) FdN (Reactor #2):
 - i. Started with dirty media from NRRRF tertiary filters (Methylotrophs abundant)
 - ii. Utilized existing NO_3^- in SDWRF secondary effluent and began supplemental carbon addition (Methanol) (Designed for a COD/ NO_3^- -N=5.23)

At the end of start-up (Start of Phase 1):


PDN/A: Secondary effluent (NO₃⁻ \rightarrow NO₂⁻) + NO₂⁻ + NH₄⁺ + MicroC 2000 (95% glycerin/5% Methanol)

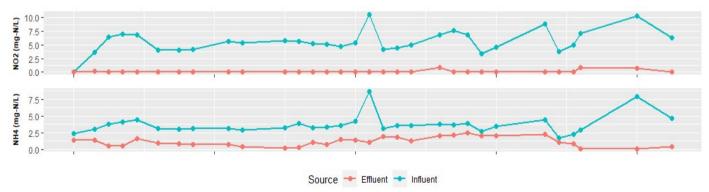
DF: Secondary effluent $(NO_{3^{-}})$ + Methanol (Carbon Source)

OPERATION AND RESULTS

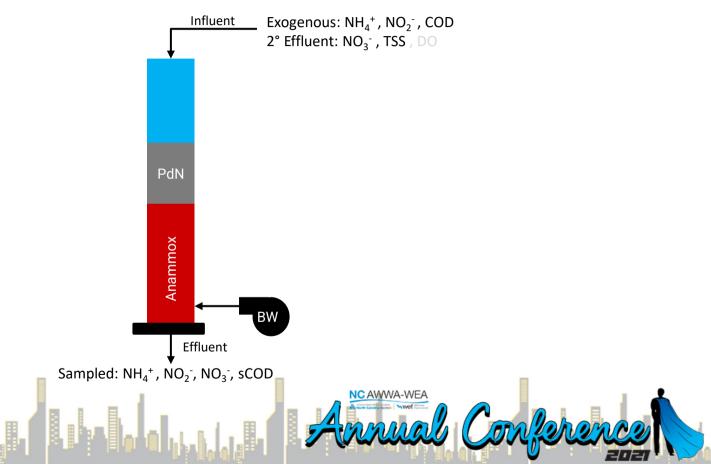


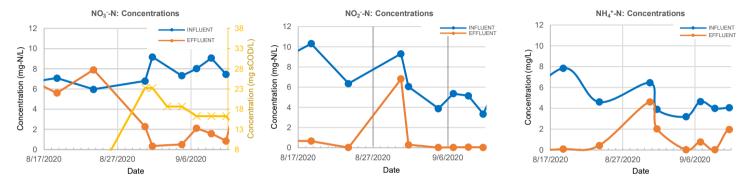
START-UP RESULTS

Start-Up Results (Post-COVID-19 Shutdown)



Start-Up Results

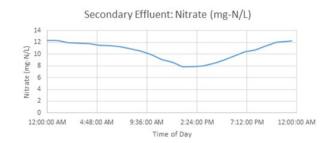

- 1. DO Profile Performed (Top 3-ft):
 - a) Assuming 3.51 5.0 mg/L of DO removal within the first 1 ft of filter media (nitrification)
- 2. Assuming a nitrogenous oxygen demand (NOD) of 4.6 mg O_2 /mg NH_3
 - a) 0.76 1.09 mg NH_3/L removal could be attributed to nitrification


Sampling Location	DO (mg/L)
Headwater	5.46
Port 1	1.95
Port 2	1.92
Port 3	1.98

Problem: Multiple biological pathways possible (AOB, NOB, Denitrification, ANMX)

PHASE 1: SUPPLEMENTAL CARBON

Observations:

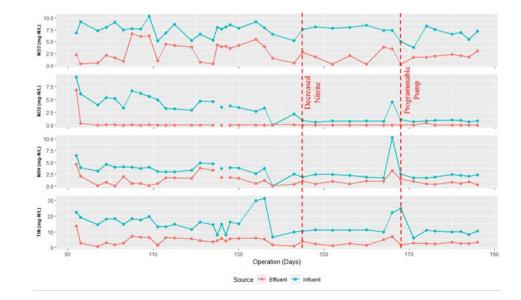

mieren

NC AWWA-WE

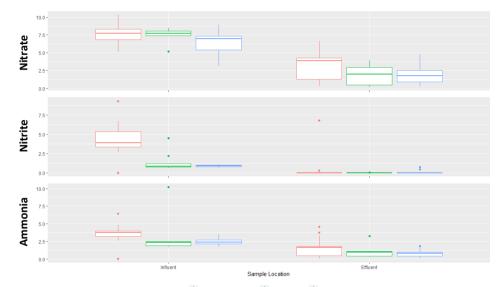
- 1. Sudden fluctuation in nitrite removal attributed to out-selection of NOB:
 - a) Clear shift from nitrite oxidation (NO) to Anammox signaled NOB no longer dominating Anammox community
- 2. Also, spike in nitrite signified initial PdN (NO_3^- to NO_2^-), followed by a drop in to NO_2^- once nitrite reducing bacteria were established (Used residual carbon)
- 3. The only pathway for ammonia removal within the reactor was through Anammox

PHASE 1: SUPPLEMENTAL CARBON

- 1. Supplemental carbon loading:
 - a) Target carbon loading relied on maintaining at least 1.5-2.0 mg/L of nitrate residual
 - b) Carbon loading designed for heterotrophic DO reduction:
 - i. Assuming a Heterotrophic Yield for Substrate = .54 mgCOD/mgCOD
 - ii. Avg. DO of Influent = 5.0 mg/L
- 2. Pilot scale reactors lacked automation & carbon adjustment for diurnal loading conditions:
 - *a)* Ismatec Reglo ICC Digital (pyserial) Peristaltic Pump to match diurnal loading
 - i. Improvements were seen in managing nitrate residual



NC AWWA-WEA



Phase 1: Supplemental Carbon Operational Conditions

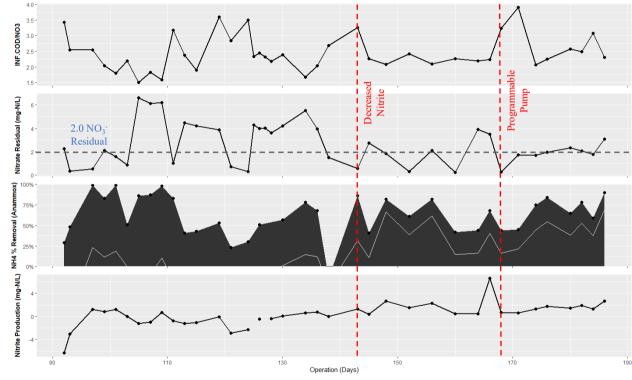
- 1. Within Phase 1 of experimentation (50 min HRT), study was divided into 3 distinct operational conditions:
 - I. Loading a target 1:1.6 (NH_4^+ to NO_2^- ratio) while targeting a nitrate residual of 1.5-2.0 mg-N/L
 - II. Decrease in exogenous nitrite
 - III. Programmable pump configuration to meet diurnal loading

Influent						
High Nitrite Decreased Programma Loading Nitrite Loading Pump						
Nitrate (mg-N/L)	7.73	7.69	6.95			
Nitrite (mg-N/L)	3.88	0.85	0.90			
Ammonia (mg-N/L)	3.78	2.36	2.39			

Effluent							
	Decreased Nitrite Loading	Programmable Pump					
Nitrate (mg-N/L)	3.86 (50.0%)	1.97 (74.4%)	1.76 (74.7%)				
Nitrite (mg-N/L)	0.0170 (99.6%)	0.0025 (99.7%)	0.0055 (99.4%)				
Ammonia (mg-N/L)	1.61 (57.4%)	0.96 (59.3%)	0.802 (66.5%)				

What signified the success of a PdNA filter:

- 1. Ammonia Removal
- 2. Nitrite Accumulation


Equations were developed to evaluate the performance of the PdNA filter:

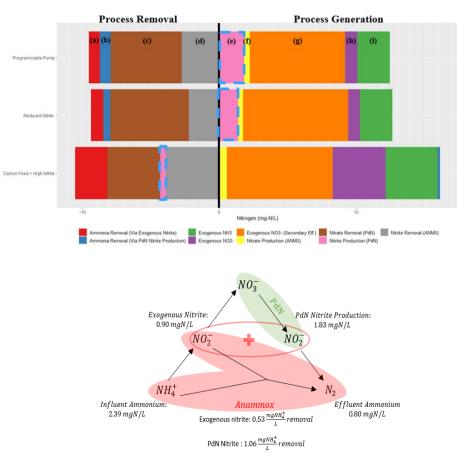
Nitrite Production_{Theoretical PdN}

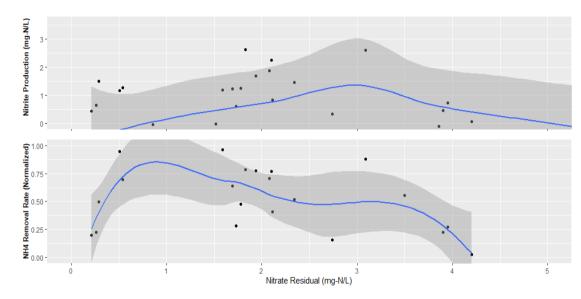
$$= [(INF.NH_4^+ - EFF.NH_4^+) \times 1.6] - INF.NO_2^-$$

 NH_{4}^{+} % Removal_(Overall Anammox Pathway) = $\frac{INF.NH_{4}^{+} - EFF.NH_{4}^{+}}{INF.NH_{4}^{+}} \times 100\%$

$$NH_4^+ \% Removal_{(Normalized)} = \frac{\left|INF.NH_4^+ - \left(\frac{INF.NO_2^-}{1.6}\right)\right| - Eff.NH_4^+}{INF.NH_4^+} \times 100\%$$

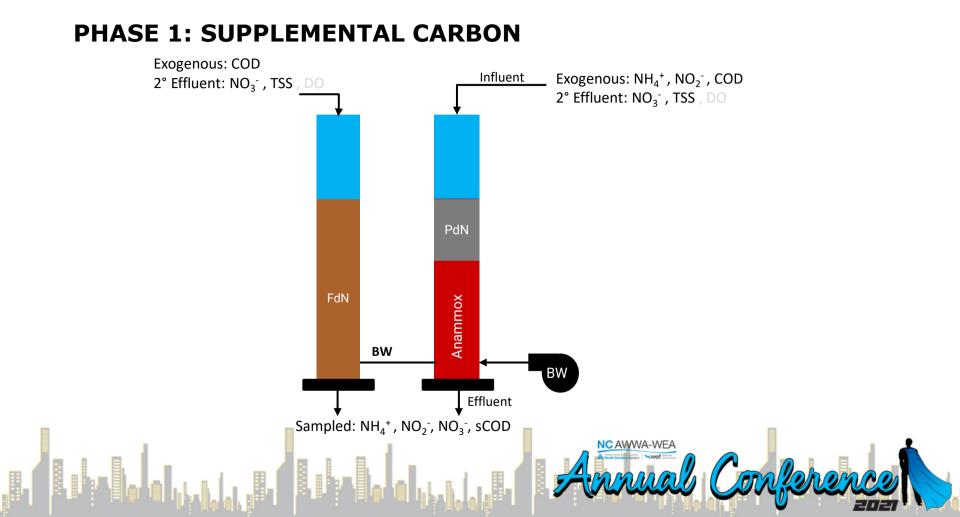
1. 87% ammonia percent reduction


meren

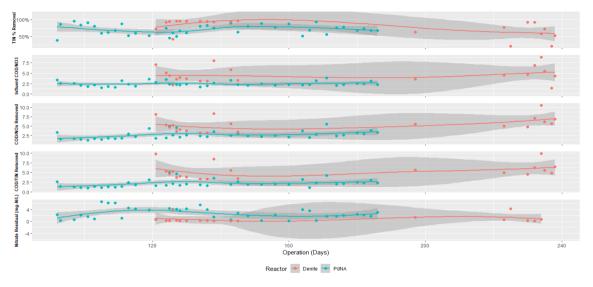

NC AWWA-WEA

- 2. >60% ammonia removal attributed to nitrite accumulation via PdN
- 3. PdN: 2.61 mg-N/L of nitrite accumulation (63% conversion efficiency)

merence NC AWWA-WEA



1. Operational conditions were compiled


meren

NC AWWA-WEA

- 2. PdN activity was observed while maintaining >1.5 mg-N/L nitrate residual:
 - a) Nitrite accumulation
 - b) Steady ammonia removal

1. PdNA vs. FdN C/N ratios demonstrated the viability of the configuration:

- a) Published methanol FdN ratios of 5.19 gCOD/gTIN (Mokhayeri et al. 2009)
- b) Pilot FdN median C/N ratio of 5.1 gCOD/gTIN
- c) PdNA median C/N ratio of 2.08 gCOD/gTIN; advantageous

2. PdNA especially advantageous when comparing:

- a) Theoretical glycerol FdN C/N ratio of 6.35 gCOD/gNO3-N (Bill et al. 2009)
- b) PdNA median C/N ratio of 2.37 gCOD/gNO3-N

PHASE 2: PDNA FEASIBILITY AT TYPICAL FILTER LOADING RATES

1. Pushed past 50 min HRT and planned to follow schedule to reach typical filter loading rate:

Reactor #1 @ Start of Denite Filter	Task 2 Phase 1 (9/24)	Task 2 Phase 2 (10/01)	Task 2 Phase 3 (10/08)	Task 3 Phase 1 (10/15)	Task 3 Phase 2 (10/22)	Task 3 Phase 3 (10/29)	Task 3 Phase 4 (Feasible?)
Secondary Effluent Feed							
HRT (min)	37.50	37.50	37.50	32.00	26.50	21.00	15.50
Sec Eff Q (mL/min)	889.60	889.60	889.60	1042.50	1258.87	1588.57	2152.25
Filter Loading Rate							
(gpm/sf)	1.20	1.20	1.20				
	COD/N	COD/N	COD/N	Unachievable			
	Testing (3.0	Testing (2.5	Testing (2.0				
Note:	COD/N?)	COD/N?)	COD/N?)				

- 2. Pilot Scale PdNA filters could not reach typical filter loading rates (2.9 gpm/sf):
 - a) Cold weather (increased glycerol viscosity)
 - b) Small diameter filters
 - c) Caking on the surface of filter
- 3. As a result, filter profiles performed to simulate reduced HRTs and typical filter loading rates

Two Specific Filter Profiles:

mieren

NC AWWA-WE

PdNA (01/08/2021)							
Port	NO ₂ -	$\rm NH_3$	NO ₃ -	COD	HRT		
Inf	0.07	0.91	5.59	16.90	0		
1	0.27	0.02	0.98	0.00	8.3		
3	0.14	0.04	0.72	0.00	25.0		
5	0.17	0.04	1.12	0.00	41.7		

	PdNA (01/10/2021)								
	Port	NO ₂ -	NH3	NO ₃ -	COD	HRT			
	Inf	1.212	2.76	5.3	0.00	0			
	1	0.469	1.964	4.66	0.00	8.3			
	3	0.083	1.58	4.34	0.00	25.0			
_	5	0.009	1.55	4.23	0.00	41.7			

FdN								
Port	NO ₂ -	NΗ₃	NO ₃ -	COD	HRT			
Inf	0.066	0.908	5.59	25.1	0			
1	0.065	0.9	0.5	0	8.3			
3	0.055	0.91	0.54	0	25.0			
5	0.002	0.923	0.6	0	41.7			

FdN								
Port	NO ₂ -	NH₃	NO ₃ -	COD	HRT			
Inf	0.047	0.147	5.30	0.00	0			
1	0.012	0.086	5.23	0.00	8.3			
3	0.016	0.017	4.68	0.00	25.0			
5	0.012	0.039	4.28	0.00	41.7			

Carbon Loading & No Exogenous Nutrients

81% TIN removal (FdN: 78% TIN removal) 98% Ammonia Removal 1.08 mg-N/L Nitrite Accumulation C/N Ratio: 3.19 gCOD/gTIN (4.92 gCOD/gTIN)

No Supplemental Carbon (Nutrients added):

33% TIN removal (FdN: 3% TIN removal) 44% Ammonia Removal Nitrite all consumed by ANMX

Techno-Economic Analysis (OPEX)

Components of Typical Techno-Economic Analysis:

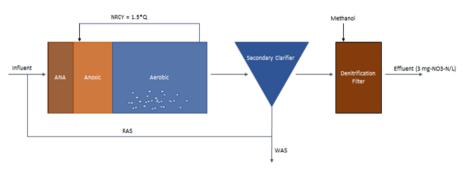
TOTEX (Total Expenditure) = OPEX (Operational Expenditure) + CAPEX (Capital Expenditure)

Our Focus:

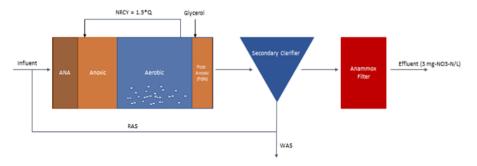
OPEX: Over the life of the treatment facility OPEX contributes foremost to TOTEX

Compared PdNA and conventional configuration, key information regarding plant design and operational conditions were required:

- 1. The influent and treated wastewater quality (BOD, Ammonia, NOx, and TSS)
- 2. Energy required for blowers/pumps (Aeration, NRCY, and WAS Pumps)
- 3. Supplemental carbon loading

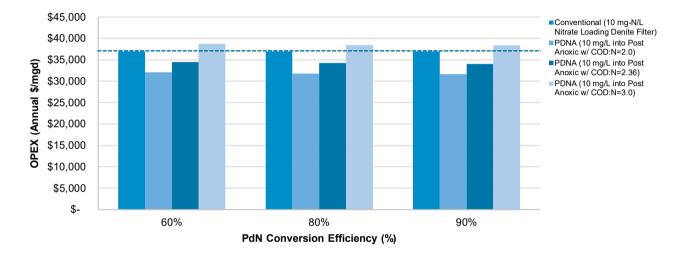

Costs			
Glycerol	2.25 \$/gal		
Methanol	1.50 \$/gal		
NC Electricity Rate	.0866 \$/kWh		

Influent Characteristics			
Flow	16 mgd		
cBOD	200 mg/L		
TKN	40 mg/L		
Ammonia	26 mg/L		
Nitrite	0 mg/L		
Nitrate	0 mg/L		


Techno-Economic Analysis (OPEX): *Configurations*

merenc

NC AWWA-WEA



Conventional A²/O + Denitrification Filter Configuration

A²/O (3-Stage MLE + Post-Anoxic PdN) + Anammox Filter Configuration

Techno-Economic Analysis (OPEX): *Findings*

OPEX Comparison Plot:

meren

NC AWWA-WE

- 1. Comparing conventional configuration to the best-case PdNA configuration:
 - a) 14% reduction in OPEX
 - b) Annual savings of \$5,160 per mgd treated.

2. With pilot PdNA filter, C/N ratio of 2.36 g COD/g NO_3^- :

- a) 7% reduction in OPEX
- b) C/N ratio of 2.8 g COD/g NO_3^- is the breakeven

CONCLUSIONS

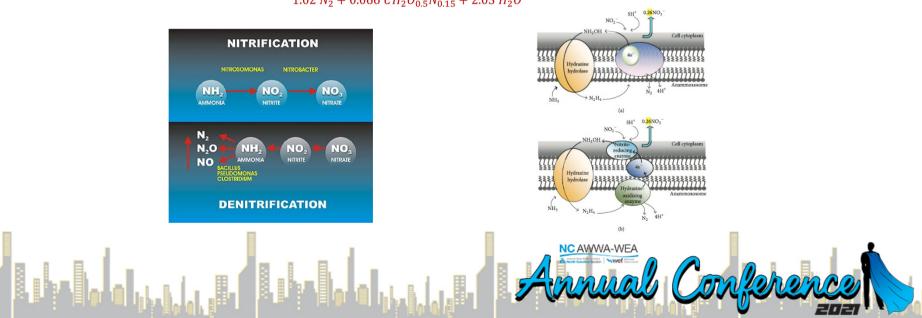
1. PdNA works in a Single-Stage Filter:

- a. Retaining >1.5 mg/L of nitrate residual allows for highest PdN efficiency
- b. > 50% reductions in supplemental carbon
- c. Reduction in supplemental carbon & aeration requirements:
 - PdNA has the potential to reduce OPEX by 14% and provide substantial savings in CAPEX
- d. We have only been able to show that PdNA is feasible at filter loading rates up to around 1.0 gpm/sf. (Profiles did prove feasibility at typ. filter loading rates)
- 2. It is clear carbon feed control is essential to highly efficient reactors
- 3. Couldn't answer all our questions due to infrastructure challenges:
 - a. Research suggests PdNA is feasible for full scale treatment facilities after additional refinement and process controls!

NC AWWA-WEA

QUESTIONS?

Annual Conference


STOICHOMETRIC RELATIONSHIPS

PdN Reaction:

 $\begin{array}{l} C_{3}H_{8}O_{3}+5.25\;NO_{3}^{-}+0.13\;H^{+}\rightarrow2.33\;CO_{2}+\\ 5.12\;NO_{2}^{-}+\;.13\;C_{5}H_{7}O_{2}N+3.59\;H_{2}O \end{array}$

Anammox Reaction:

 $NH_4^+ + 1.32 \ NO_2^- + 0.066 \ HCO_3^- + 0.13 \ H^+ \rightarrow 0.26 \ NO_3^- + 1.02 \ N_2 + 0.066 \ CH_2O_{0.5}N_{0.15} + 2.03 \ H_2O$

PHASE 2: PDNA FEASIBILITY AT TYPICAL FILTER LOADING RATES (PROFILE LOADING RATES)

Location	HRT (min)	Q (L/min)	Loading Rate (gpm/ft²)
Headwater	0.0	0.00	0.00
Port 1	8.3	4.00	5.39
Port 2	16.7	2.00	2.69
Port 3	25.0	1.33	1.80
Port 4	33.3	1.00	1.35
Port 5	41.7	0.80	1.08
Port 6	50.0	0.67	0.90
Effluent	50.0	0.67	0.90

Annual Conference