

Contents

Page
SGS: an introduction 3
Overview 7
Cross Reference 9
Part Number Identification 9
Datasheets 13
NMOS Family
— Z8601/L13

- Z861 1/L 35
- Z8621/L 57
- Z8671 79
- Z8681/L 103
- Z8682/L 103
- Z8684/L 103
- Z86E11 129
- Z86E21 155
Packages 183
Reliability Informations 187
Development Products 199
- General Purpose Fundation Module for MCU Emulation 199
- Z8 Emulation and Development Package 203
- Z8 Emulation and Development Package for IBM compatible Personal Computers 207
Technical and Application Notes 213
- Double Layer P-Vapox and $\mathrm{SI}_{3} \mathrm{~N}_{4}$ Glass Passivation 213
- PMZ8: Z8681 in Single Board Computer Application 215
- Single Board Computer Using Z8671 219
— Z8 in Electronic Private Automated Branch Exchange (EPABX 2 Ext./8 Int. Lines) 227
- Using Z8 MCU in Keyboard Controller 237
- Z8 MCU in Dynamic Keyboard 241
- Comparison of Z8611, 8051 and MC6801 Microcomputer 251
- A Programmer's Guide to the Z8 Microcomputer 265

Identity

Late in 1957, SGS was founded around a team of researchers who were already carrying out pioneer work in the field of semiconductors. From that small nucleus, the company has evolved into a Group of Companies, operating on a worldwide basis as a broad range semiconductor producer, with billings over 300 million dollars and employing over 9500 people.

The SGS Group of Companies has now reached a total of 11 subsidiaries, located in Brazil, France, Germany, Italy, Malta, Malaysia, Singapore, Sweden, Switzerland, United Kingdom and the USA.

To go with its logo, the company takes the motto "Technology and Service", underlining the accent given to the development of state-of-the-art technologies and the corporate commitment to offer customers the best quality and service in the industry.

SGS Locations - Europe

* HEADQUARTERS
- FACTORIES
- SALES OFFICES
- DESIGN CENTERS

SGS Locations - North America

* HEADQUARTERS
- SALES OFFICES
- DESIGN CENTERS

SGS Locations - Asia/Pacific

* HEADQUARTERS
- FACTORIES
- SALES OFFICES
- DESIGN CENTERS

Overview

Z8* Family

The Z8 microcomputer family offers the most sophisticated processing capability available on a single chip. As an extension of earlier generations of microcomputers, the Z8 family provides standard on-chip functions, such as:

- $2 \mathrm{~K}, 4 \mathrm{~K}$ or 8 K bytes of ROM
- 144 or 2568 -bit registers
- 32 lines of programmable I/O
- Clock oscillator

In addition, the Z8 Family offers advanced on-chip features, including:

- Two counter/timers
- Six vectored interrupts
- UART for serial I/O communication
- Stack functions
- Power-down option
- TTL compatibility

The Z 8 microcomputer family is expandable off-chip to provide an additional 62 K bytes of program memory and 62 K bytes of data memory for the 2 K -byte ROM version, an additional 60K bytes of program memory and 60 K bytes of data memory for the 4 K -byte ROM version and an additional 56 K bytes of program memory and 56 K bytes of data memory for the 8 K -byte ROM version. The interface to external memory is accomplished through one, one and onehalf, or two of the 8 -bit I/O ports, depending on the number of address bits required for the external functions. The
Z-BUS* protocol allows easy interface to external functions including peripheral chips.

The Z8 family challenges the "multi-chip solution" design currently implemented by general-purpose microprocessors. Designs based on Z8 family microcomputers offer a minimum chip-count configuration that can easily be expanded to meet requirements for enhancement options and for future improvements.

Optimized Instruction Set. The instruction set of the Z 8 family is optimized for highcode density and reduced execution time. This feature is supported by a "working register area" concept that uses short (4-bit) register addresses. The general-purpose registers can be used as accumulators, as address pointers for indirect addressing, as index registers, or for implementing an onchip stack.

The 47 instruction types and six addressing modes-together with the ability to operate on bits, 4 -bit BCD digits, 8 -bit bytes, and l6-bit words-offer unique programming capability and flexibility.

Growing Family. The Z8 microcomputer family is growing to meet the needs of more complex designs. The 8K ROM version, Z8621 completed developed by SGS, offers all the features of the Z8 Family, plus 8 K bytes of on-chip ROM and 256-byte register file. The increased ROM and bytes register file allows the designer to take advantage of the code optimization inherent in the Z8 instruction set when using between 2 K and 8 K bytes at program memory.

The ROMless microcomputers provide an alternative for designers seeking to take advantage of the on-chip features of the Z8681, Z8682 and Z8684 in applications that require external program memory. A $Z 8681$ microcomputer can be used to control a system that addresses up to 128 K bytes of onchip memory, a Z8682 up to 124 K bytes and Z8684 up to 120K bytes.

Newly in the Z8 family the 4 K and 8 K bytes on-chip Eprom Z86E11 and Z86E21, that perform different programming modes, like: Eprom-like, using standard eprom programmer; Self-programming, during normal microcomputer operation and timeefficient self-program facility; and integrated programmable Eprom read-out protection.

For there characteristics the Z86E1l and Z86E2l can be considered as low cost development tools for the Z8 microcomputer family.

Low Power version 80 mA current consumption, on all the family will be available.

Expanded Applications. The Z8 microcomputer family is finding its way into increasingly sophisticated designs. In addition to the low-end capability applications commonly used with microcomputers, the Z8 family can be used effectively in such applications as:

- Computer peripheral controllers
- Smart terminals
- Dumb terminals
- Telephone switching systems
- Arcade games and intelligent home games
- Process control
- Intelligent instrumentation
- Automotive mechanisms

An example of how a Z 8 might be used in the design of an intelligent terminal is shown in Figure 1. The features of such a terminal depend on its specific requirements, but it is clear that the Z8 microcomputers offer unprecedented capability and flexibility to the microcomputer designer.

Figure 1. Z8 Based Intelligent Terminal

Z8 Cross Reference

	SUFFIX DESCRIPTION									
	BASE PART NUMBER	SPEED SUFFIX (MHz)		PL	PACKAGE SUFFIX				TEMP. SUFFIX	
		8.0	12.0		FR	CER	PLCC	LCC	¢ - +	$\begin{array}{r}0 \\ 0 \\ \text { ¢ } \\ + \\ + \\ \hline\end{array}$
$\begin{aligned} & \text { SGS } \\ & \text { ZILOG } \end{aligned}$	286xx Z86XX	*	A	B	F na	D	C V	K	I	6 E

	DEVICE TYPE								
	2K ROM	4K ROM	8K ROM	$\begin{gathered} \text { TINY } \\ \text { BASIC } \end{gathered}$	ROMLESS	4K EPROM	8K EPROM	2K PIGGY- BACK	4K PIGGY BACK
SGS	Z8601	Z8611	Z8621	Z8671	Z8681/2/4	Z86E11	Z86E21	-	-
ZILOG	Z8601	Z8611	-	Z8671	Z8681/2/4	-	-	Z8603RS	Z8613RS

Notes: * Standard Version no suffix required na: Not Available

SGS Part Number Identification

	A	XX	B	1
Circuit Designator				
Speed				
No letter 8.0 MHz A 12.0				
ROM Content where requests				
Package				
B Plastic				
D Ceramic				
F Frit-Seal				
C Plastic Leaded Chip Carrier				
K Ceramic Leadless Chip Carrier				
Temperature Range				
$\begin{array}{rr} 1 & 0 \text { to }+70^{\circ} \mathrm{C} \\ 6 & -40 \text { to }+85^{\circ} \mathrm{C} \end{array}$				

Datasheets

 z8601/
Z8 2K ROM Microcompater

- Complete microcomputer, 2 K bytes of ROM, 128 bytes of RAM, 32 I/O lines, and up to 62 K bytes addressable external space each for program and data memory.
- 144-byte register file, including 124 general-purpose registers, four I/O port registers, and 16 status and control registers.
- Minimum instruction execution time l $\mu \mathrm{s}$, at 12 MHz .
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any of nine working register groups in $1 \mu \mathrm{~s}$.
- On-chip oscillator that accepts crystal or external clock drive.
- Low-power standby option which retains contents of general-purpose registers.
- Single +5 V power supply-all pins TTLcompatible.
- Low Power version (Z8601L):
- Available 8 MHz
- Current consumption 80 mA
- Available in 8 and 12 MHz versions.

General Description

The Z8601 microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z8601 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Under program control, the Z8601 can be
tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 2 K bytes of internal ROM, a traditional microprocessor that manages up to 124 K bytes of external memory, or a parallelprocessing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for I/O.

Figure 1. Logic Functions

General Description (Continued)

Figure 2. Pin Configuration

N.C. =NO CONNECTION

Figure 2a. Chip Carrier Pin Configuration

Architecture

Z8601 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8601 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z8601 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer
to a microprocessor that can address 124 K bytes of external memory.

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144 -byte random-access register file is composed of 124 generalpurpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

Architecture (Continued)

Figure 3. Block Diagram

Pin Description

$\overline{\mathbf{A S}}$. Address Strobe (output, active Low).
Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{A}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\text { DS }}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P 0}_{\mathbf{0}} \mathbf{- P 7 .}$ I/O Port Lines (input/output, TTL compatible). 8 lines Nibble Programmable that can be configured under program control for I/O or external memory interface.
$\mathbf{P 1}_{\mathbf{0}}$-P17. I/O Port Lines (input/output, TTL compatible). 8 lines Byte Programmable that can be configured under program control for I/O or multiplexed address ($\mathrm{A}_{0}-\mathrm{A}_{7}$) and data ($\mathrm{D}_{0}-\mathrm{D}_{7}$) lines used to interface with program/data memory.
P20-P27. I/O Port Lines (input/output, TTL compatible). 8 lines Bit Programmable. In addition they can be configured to provide open-drain outputs.
$\mathbf{P 3}_{\mathbf{0}} \mathbf{- P} \mathbf{3}_{\mathbf{4}}$. Input Port Lines (TTL compatible). They can also configured as control lines.

P35-P37. Output Port Lines (TTL compatible). They can also configured as control lines.

Z8601/L

Pin Descriptions (Continued)

RESET. Reset (input, active Low). $\overline{\text { RESET }}$ initializes the Z8601. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathrm{W}}$. Read/Write (output). R/ $\overline{\mathrm{W}}$ is Low when the Z860l is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (timebase input and output). These pins connect a parallel-resonant crystal (8 or 12 MHz maximum) or an external single-phase clock (8 or 12 MHz maximum) to the on-chip clock oscillator and buffer.

Address Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 2048 bytes consist of on-chip mask-programmed ROM. At addresses 2048 and greater, the Z8601 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.

Data Memory. The Z860l can address 62K bytes of external data memory beginning at locations 2048 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin P_{4}, is used to distinguish between data and program memory space.
Register File. The 144 -byte register file includes four I/O port registers (R0-R3), 124
general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Z8601 instructions can access registers directly or indirectly with an 8-bit address field. The Z8601 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active workingregister group.

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 2048 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 generalpurpose registers (R4-R127).

Address Spaces (Continued)

Figure 4. Program Memory Map

Figure 6. The Register File

Figure 5. Data Memory Map

Figure 7. The Register Pointer 28601/L

Serial Input/Output

Port 3 lines P_{3} and P_{7} can be programmed as serial I/O lines for fullduplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits/second for 8 MHz and 94.8 K bits/second for 12 MHz .

The Z8601 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option.

Transmitted Data
(No Parity)

Transmitted Data
(With Parity)

Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request (IRQ_{4}) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $I R Q_{3}$ interrupt request.

Received Data

(No Parity)

Received Data
(With Parity)

Figure 8. Serial Data Formata

Counter/Timers

The Z8601 contains two 8-bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6 -bit programmble prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.

The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or IRQ_{5} (T_{1})-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload
the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for T_{1} is user-definable and can be the internal microprocessor clock (4 MHz maximum for the 8 MHz device and 6 MHz maximum for the 12 MHz device) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be porogrammably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line P_{6} also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

I/O Ports

The Z8601 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pulldowns compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines P_{3} and $\mathrm{P} 3_{4}$ are used as the handshake contols RDY 1 and $\overline{D A V}_{1}$ (Ready and Data Available).

Memory locations greater than 2048 are referenced through Port l. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port l can be placed in the highimpedance state along with Port 0, $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the Z 8601 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P_{3} as a Bus Acknowledge input and P_{4} as a Bus Request output.

Figure 9a. Port 1
Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port,

Port 0 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{2}$ and P_{5} are used as the handshake controls $\overline{\mathrm{DAV}}_{0}$ and RDY_{0}. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits A_{8} - A_{11} (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}$, $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.

Figure 9b. Port 0
Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{1}$ and $\mathrm{P} 3_{6}$ are

Figure 9c. Port 2

Z8601/L

I/O Ports (Continued)

used as the handshake controls lines $\overline{\mathrm{DA}}_{2}$ and RDY_{2}. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input ($\mathrm{P}_{0}-\mathrm{P}_{3}$) and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0,1 and $2(\overline{\mathrm{DAV}}$ and RDY); four external
interrupt request signals ($\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\mathrm{OUT}}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

Figure 9d. Port 3

Interrupts

The Z8601 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{3}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z8601 interrupts are vectored. When an interrupt request is granted, and interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTALl and XTAL2, using the recommended
capacitors ($\mathrm{C}_{1} \leq 15 \mathrm{pF}$) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel resonant
- Fundamental types, $8 / 12 \mathrm{MHz}$ maximum
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$.

$!$

Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the V_{MM} (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTALl) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 10 shows the recommended circuit for a battery back-up supply system.

Figure 10. Recommended Driver Circuit for Power Down Operation

Instruction Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
\mathbf{X}	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
\mathbf{R}	Register or working-register address
\mathbf{r}	Working-register address only
$\mathbf{I R}$	Indirect-register or indirect working-register
	address
Ir	Indirect working-register address only
$\mathbf{R R}$	Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prelix
SP Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n) " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:

C Carry flag
Z Zero flag
\mathbf{S} Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag
Affected flags are indicated by:
0 Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected
\mathbf{x} Undefined

Condition Codes

Value	Mneomonic	Meaning	Flags Set
1000		Always true	\ldots
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	S $=0$
0101	MI	Minus	S $=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater thaN	$[\mathrm{Z}$ OR (S XOR V) $]=0$
0010	LE	Less than or equal	$[\mathrm{Z} \bigcirc \mathrm{R}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	($\mathrm{C}=0$ AND $\mathrm{Z}=0$) $=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{COR} \mathrm{Z})=1$
0000		Never true	...

Instruction Formats

One-Byte Instructions

Two-Byte Instructions
Three-Byte Instructions

Figure 12. Instruction Formats

Instruction Summary

Instruction and Operation	Addr Mode dst src	Opcode Byte (Hex)	$\begin{aligned} & \text { Flags Affected } \\ & \hline \text { C ZSVDH } \end{aligned}$
$\begin{aligned} & \text { ADC dst,src } \\ & \text { dst }-\mathrm{dst}+\mathrm{src}+ \end{aligned}$	(Note 1)	$1 \square$	* * * 0 *
ADD dst,src dst - dst + src	(Note 1)	$0 \square$	* * * * 0 *
AND dst,src dst - dst AND src	(Note 1)	$5 \square$	-** 0 - -
CALL dst SP - SP - 2 @SP — PC; PC -	$\begin{gathered} \text { DA } \\ \text { IRR } \end{gathered}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - -
$\begin{aligned} & \text { CCF } \\ & \mathrm{C}-\mathrm{NOT} \mathrm{C} \end{aligned}$		EF	* - - - -
$\begin{aligned} & \text { CLR dst } \\ & \text { dst }-0 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \mathrm{BO} \\ & \mathrm{BI} \end{aligned}$	- - - -
$\begin{aligned} & \text { COM dst } \\ & \text { dst - NOT dst } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \\ \hline \end{gathered}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-** 0 - -
$\begin{aligned} & \text { CP dst, src } \\ & \text { dst - src } \end{aligned}$	(Note 1)	A \square	* * * * - -
DA dst dst - DA dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -
$\begin{aligned} & \text { DEC dst } \\ & \text { dst }-\mathrm{dst}-1 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	- * * * - -
DECW dst dst - dst - 1	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	- * * *
$\begin{aligned} & \mathrm{DI} \\ & \mathrm{IMR}(7)-0 \end{aligned}$		8 F	----
$\begin{aligned} & \text { DJNZ } \mathrm{r}, \mathrm{dst} \\ & \mathrm{r}-\mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \\ & \mathrm{PC}-\mathrm{PC}+\mathrm{dst} \\ & \text { Range: }+127,-128 \end{aligned}$	RA	$\begin{gathered} \mathrm{rA} \\ \mathrm{r}=0-\mathrm{F} \end{gathered}$	-----
$\begin{aligned} & \operatorname{EI} \\ & \operatorname{IMR}(7)-1 \end{aligned}$		9 F	------
$\begin{aligned} & \text { INC dst } \\ & \text { dst }-\mathrm{dst}+\mathrm{l} \end{aligned}$	$\begin{gathered} \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{gathered} \mathrm{rE} \\ \mathrm{r}=0-\mathrm{F} \\ 20 \\ 21 \end{gathered}$	- * * * - -
$\begin{aligned} & \text { INCW dst } \\ & \mathrm{dst}-\mathrm{dst}+1 \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{AO} \\ & \mathrm{Al} \\ & \hline \end{aligned}$	- * * * -
IRET FLAGS - @ SP; S $\mathrm{PC}-@ \mathrm{SP} ; \mathrm{SP}-\mathrm{S}$	$\begin{aligned} & P-S P+1 \\ & S P+2 ; \operatorname{IMR}(\end{aligned}$	$\begin{array}{r} \mathrm{BF} \\ -1 \\ \hline \end{array}$	* * * * * *
JP cc,dst if CC is true PC - dst	DA IRR	$\begin{gathered} c D \\ c=0-F \\ 30 \end{gathered}$	- - . - -
```JR cc,dst if cc is true, PC - PC + dst Range: +127, -128```	RA	$\begin{gathered} c B \\ c=0-F \end{gathered}$	------


Instruction and Operation	Addr Mode		Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C ZSVDH}}$
	dst	src		
$\begin{aligned} & \text { LD dst, src } \\ & \text { dst }-\mathrm{src} \end{aligned}$	r	Im	rC	-
	r	R	r8	
	R	r	r9	
			$\mathrm{r}=0-\mathrm{F}$	
	r	X	C7	
	X	r	D7	
	r	Ir	E3	
	Ir	r	F3	
	R	R	E4	
	R	IR	E5	
	R	Im	E6	
	IR	Im	E7	
	IR	R	F5	
$\begin{aligned} & \text { LDC dst, src } \\ & \text { dst }-\mathrm{src} \end{aligned}$	r	Irr	C2	- - - -
	Irr	r	D2	
LDCI dst, src$\begin{aligned} & \text { dst }-\mathrm{src} \\ & \mathrm{r}-\mathrm{r}+1 ; \mathrm{rr}-\mathrm{rr}+1\end{aligned}$		Irr	C3	- - - - -
		Ir	D3	
LDE dst,src dst - src	r	Irr	82	- - - -
	Irr	r	92	
$\begin{aligned} & \text { LDEI dst, src } \quad \text { Ir } \\ & \text { dst }-\mathrm{src} \\ & \mathrm{r}-\mathrm{r}+1 ; \mathrm{rr} \leftarrow \mathrm{rr}+1 \end{aligned}$		Irr	83	-----
		Ir	93	
NOP			FF	- - -
OR dst,src dst - dst OR src	(Note 1)		$4 \square$	- * * 0 - -
$\begin{aligned} & \text { POP dst } \\ & \mathrm{dst}-@ \mathrm{SP} \\ & \mathrm{SP}-\mathrm{SP}+1 \end{aligned}$	$\stackrel{\mathrm{R}}{\mathrm{IR}}$		50	- - -
			51	
PUSH src		R	70	- - - -
SP-SP-1; @ SP	src	IR	71	
RCF			CF	0-. - -
$\begin{aligned} & \text { RET } \\ & \mathrm{PC}-@ \mathrm{SP} ; \mathrm{SP}-\mathrm{SP}+2 \end{aligned}$			AF	- - - - -
RL dst			90	* * * * -
			91	
RLC dst			10	* * * * -
			11	
RR dst			E0	* * * * - -
RRC dst				* * * - -
			Cl	-
SBC dst,src   dst - dst - src - C	(Note 1)		$3 \square$	* * * * 1 *
$\begin{aligned} & \overline{\text { SCF }} \\ & \mathrm{C}-1 \end{aligned}$			DF	1----
SRA dst 4$\square$ RIR			$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	* * * 0 - -

Instruction Summary (Continued)

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C ZSVDH }}$
	dst	src		
SRP src RP - src		Im	31	- - - -
SUB dst, src dst - dst - src	(Not		$2 \square$	* * * * 1
SWAP dst			$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	X * * X - -

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.
For example, to determine the opcode of an ADC
instruction use the addressing modes $r$ (destination) and Ir (source). The result is 13 .

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C ZS V D H }}$
	dst src		
TCM dst,src   (NOT dst) AND src	(Note 1)	$6 \square$	- * * 0 - -
TM dst, src dst AND src	(Note 1)	$7 \square$	- * * 0 -
XOR dst,src dst - dst XOR src	(Note 1)	$B \square$	- * * 0 - -


Addr Mode		Lower   Opcode Nibble
dst	src	
r	r	2
r	Ir	3
R	R	$\boxed{4}$
R	IR	$[5$
R	IM	$[6$
IR	IM	$[7$



## Registers

R240 SIO
Serial I/O Register
( $\mathrm{FO}_{\mathrm{H}}$; Read/Write)


R241 TMR
Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}}$; Read/Write)


R242 T1
Counter Timer 1 Register
(F2H; Read/Write)

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$



R243 PRE1
Prescaler 1 Register
( $\mathrm{F}_{\mathrm{H}}^{\mathrm{H}}$; Write Only)



## R244 TO

Counter/Timer 0 Register
(F4 ${ }_{H}$; Read/Write)



R245 PRE0
Prescaler 0 Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)



R246 P2M
Port 2 Mode Register
( $\mathrm{F} 6_{\mathrm{H}}$; Write Only)

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$

$\mathrm{P2}_{0}-\mathrm{P}_{2} \mathrm{H} / \mathrm{O}$ DEFINITION
$\mathrm{P2}_{0}-\mathrm{P}_{2}$ I/O DEFINITION
0 DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)


Figure 12. Control Registers

Registers (Continued)

R248 P01M
Port 0 and 1 Mode Register
( $\mathrm{FB}_{\mathrm{H}}$; Write Only)

$\mathrm{PO}_{4}-\mathrm{PO}_{7} \mathrm{MODE}$
OUTPUT $=00$ $\begin{aligned} \text { INPUT } & =01 \\ A_{12}-A_{15} & =1 X\end{aligned}$ EXTERNAL MEMORY TIMING $\begin{aligned} \text { NORMAL } & =0 \\ \text { EXTENDED } & =1\end{aligned}$

$00=$ OUTPU $00=$ OUTPU
$01=$ INPUT
 STACK SELECTION $0=$ EXTERNAL
$1=$ INTERNAL $\mathrm{P}_{10}-\mathrm{P}_{1}$, MODE $00=$ BYTE OUTPUT
$01=$ EYTE INPUT
$10=\mathrm{AD}_{0}-\mathrm{AD}_{7}, ~$
$11=$
$11=$ HIGH.IMPEDANCE AD $D_{0}-\mathrm{AD}_{7}$, $\overline{A S}, \overline{\mathrm{DS}}, \mathrm{R} / \bar{W}, \mathrm{~A}_{8}-\mathrm{A}_{11}, \mathrm{~A}_{12}-\mathrm{A}_{15}$ IF SELECTED

Interrupt Priority Register
( $\mathrm{F9}_{\mathrm{H}}$; Write Only)


R252 FLAGS
Flag Register
( $\mathrm{FC}_{\mathrm{H}}$; Read/Write)

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$



R253 RP
Register Pointer
( $\mathrm{FD}_{\mathrm{H}}$; Read/Write)


R254 SPH
Stack Pointer
( $\mathrm{FE}_{\mathrm{H}}$; Read/Write)

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$



R255 SPL
Stack Pointer
( $\mathrm{FF}_{\mathrm{H}}$; Read/Write)
 STACK POINTE
BYTE $\left(\mathrm{SP}_{0}-\mathrm{SP}_{7}\right)$

Figure 12. Control Registers (Continued)

Opcode Map


## Absolute Maximum Ratings

Voltages on all pins
with respect to GND ....... - 0.3 V to +7.0 V
Operating Ambient
Temperature $\qquad$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:


Figure 13. Test Load 1


Figure 14. Test Load 2


Figure 15. External Clock Interface Circuit
(Both the clock and complement are required)

DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$\mathrm{V}_{\mathrm{CH}}$	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{RL}}$	Reset Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IR}}$	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V} \mathrm{VL}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		120	mA	
$\mathrm{I}_{\mathrm{MM}}$	$\mathrm{V}_{\mathrm{MM}}$		$80^{*}$		
$\mathrm{~V}_{\mathrm{MM}}$	Bapply Current		10	mA	Power Down Mode

* This value is for Z8601 only.


## External I/O or Memory Read and Write Timing

No	Symbol	Paramter	Z8601/L		Z8601A		Notes* $\dagger$
			Min	Max	Min	Max	
1	$\operatorname{TdA}$ (AS)	Address Valid to $\overline{\bar{A}} \bar{S} \uparrow$ Delay	50		35		1,2,3
2	TdAS(A)	$\overline{\overline{A S}} \uparrow$ to Address Float Dealy	70		45		1,2,3
3	$\mathrm{Td} A \mathrm{~S}(\mathrm{DR})$	$\overline{\mathrm{AS}} \uparrow$ "o Read Data Required Valid		360		220	1,2,3,4
4	TwAS	$\overline{\overline{A S}}$ Low Width	80		55		1,2,3
5	$\mathrm{Td} A \mathrm{z}$ (DS)	Address Float to $\overline{\mathrm{D}}$ S $\downarrow$	0		0		1
	-TwDSR-	- $\overline{\mathrm{DS}}$ (Read) Low Width	250		-185		1,2,3,4
7	TwDSW	$\overline{\overline{D S}}$ (Vrite) Low Width	160		110		1,2,3,4
8	$\operatorname{TdDSR}(\mathrm{DR})$	$\overline{\mathrm{DS}} \downarrow$ to Read Datat Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		1
10	$\operatorname{TdDS}(\mathrm{A})$	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		1,2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		1,2,3
	TdR/W(AS)	R// W Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		30		1,2,3
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R/ $\overline{\mathrm{W}}$ Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) $\downarrow$ Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		1,2,3

## NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC .
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC.
5. All timing reference use 2.0 V for a logic «l» and 0.8 V for a logic «0».

* All units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 16. External I/O or Memory Read/Write

## Additional Timing Table

No	Symbol	Paramter	Z8601/L		Z8601A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Timer Input Low Width	100		70		2
	TwTinH-	-Timer Input High Width	$-3 \mathrm{TpC}$		$-3 \mathrm{TpC}$		-2
6	TpTin	Timer Input Period	8 TpC		8 TpC		2
7	TrTin, TfTin	Timer Input Rise And Fall Times		100		100	2
8 a	TwIL	Interrupt Request Input Low Time	100		70		2,3
8 b	TwIL	Interrupt Request Input Low Time	3 TpC		3 TpC		2,4
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		2,3

## NOTES:

1. Clock timing references uses 3.8 V for a logic " l " and 0.8 V for a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$.
4. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$.

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 17. Additional Timing

## Handshake Timing

No	Symbol	Paramter	Z8601/L		Z8601A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TsDİ(DAV)	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY $\downarrow$ Delay		175		120	1,2
	TdDAVOf(RDY)	$\overline{\text { DAV }} \downarrow$ Output to RDY $\downarrow$ Delay-	-0		-0		1,3
6	TdDAVIr(RDY)	$\overline{\overline{D A V}} \uparrow$ Input to RDY $\uparrow$ Delay		175		120	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY $\uparrow$ Delay	0		0		1,3
8	TdDO(DAV)	Data Out to $\overline{\text { DAV }} \downarrow$ Delay	50		30		1
9	TdRDY(DAV)	Rdy $\downarrow$ Input to $\overline{\mathrm{DAV}} \uparrow$ Delay	0	200	0	140	1

## NOTES:

1. Test Load 1
2. Input handshake
3. Output handshake
4. All timing regerences use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 18. Input Handshake


Figure 19. Output Handshake

## 10 Z8601/L

Clock-Cycle-Time-Dependent Characteristics

Number	Symbol	Z8601/L   Equation	Z8601A   Equation
1	$\mathrm{Td} A(A S)$	TpC-75	TpC-50
2	TdAS(A)	TpC-55	TpC-40
3	TdAS(DR)	4TpC-140*	4TpC-110*
4	TwAS	TpC-45	TpC-30
6	TwDSR	-3TpC-125*	3TpC-65*
7	TwDSW	2TpC-90*	2TpC-55*
8	TdDSR(DR)	3TpC-175*	3TpC-120*
10	Td(DS)A	TpC-55	TpC-40
11	TdDS(AS)	TpC-55	TpC-30
12	TdR/W(AS)	TpC-75	-TpC-55-
13	TdDS(R/W)	TpC-65	TpC-50
14	TdDW(DSW)	TpC-75	TpC-50
15	TdDS(DW)	TpC-55	TpC-40
16	TdA(DR)	5TpC-215*	$5 \mathrm{TpC}-160^{*}$
17	TdAS(DS)	TpC-45	TpC-30

* Add 2 TpC when using extended memory timing

Ordering Information

Type	Package	Temp.	Clock	Description
Z8601 B1	Plastic	$0 /+70^{\circ} \mathrm{C}$		2K ROM Microcomputer
Z8601 B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8601 D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8601 D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	8 MHz	
Z8601 Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	8 MHz	
Z8601 C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8601 K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8601 K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8601A Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$		
Z8601A B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8601A D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8601A D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	12 MHz	
Z8601A Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	12 MHz	
Z8601 A C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8601A K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8601A K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8601L Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$		2K ROM Microcomputer
Z8601L B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		Low Power version
Z8601L D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8601L D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	8 MHz	
Z8601L Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	8 MHz	
Z8601L C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8601L Kl	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8601L K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		

## Z8 4K ROM Microcomputer

- Complete microcomputer, 4 K bytes of ROM, 128 bytes of RAM, 32 I/O lines, and up to 60 K bytes addressable external space each for program and data memory.
- 144-byte register file, including 124 general-purpose registers, four I/O port registers, and 16 status and control registers.
- Minimum instruction execution time $1 \mu \mathrm{~s}$ at 12 MHz .
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any of nine working register groups in $1 \mu \mathrm{~s}$.
- On-chip oscillator which accepts crystal or external clock drive.
- Low-power standby option that retains contents of general-purpose registers.
- Single +5 V power supply-all pins TTLcompatible.
- Low Power version (Z861lL):
- Available 8 MHz
- Current consumption 80 mA
- Available in 8 and 12 MHz versions.


## General Description

The Z861l microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z8611 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Under program control, the Z8611 can be
tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 4 K bytes of internal ROM, a traditional microprocessor that manages up to 120 K bytes of external memory, or a parallelprocessing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for I/O.


Figure 1. Logic Functions Z8611/L

## General Description (Continued)



Figure 2. Pin Configuration


Figure 2a. Chip Carrier Pin Configuration

## Architecture

Z8611 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z861l fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z861l can assume many different memory and I/O configurations. These configurations
range from a self-contained microcomputer to a microprocessor that can address 120 K bytes of external memory (Figure 3).

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144 -byte random-access register file is composed of 124 generalpurpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

Architecture (Continued)


Figure 3. Functional Block Diagram

## Pin Description

$\overline{\text { AS. Address Strobe (output, active Low). }}$ Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port l for all external program or data memory transfers are valid at the trailing edge of $\overline{A S}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\text { DS }}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P O}_{\mathbf{0}}$ - $\mathbf{P 0}_{\mathbf{7}}$. I/O Port Lines (input/output, TTL compatible). 8 lines Nibble Programmable that can be configured under program control for I/O or external memory interface.
$\mathrm{Pl}_{\mathbf{0}}-\mathrm{Pl}_{7}$. I/O Port Lines (input/output, TTL compatible). 8 lines Byte Programmable that can be configured under program control for I/O or multiplexed address ( $A_{0}-A_{7}$ ) and data ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) lines used to interface with program/data memory.
P20-P27. I/O Port Lines (input/output, TTL compatible). 8 lines Bit Programmable. In addition they can be configured to provide open-drain output.
$\mathbf{P 3}_{\mathbf{0}}^{\mathbf{0}} \mathbf{- P} \mathbf{3}_{\mathbf{4}}$. Input Port Lines (TTL compatible). They can also configured as control lines.
$\mathbf{P 3}_{5}$ - P37. Output Port Lines (TTL compatible). They can also configured as control lines.

## Pin Description (Continued)

RESET. Reset (input, active Low). $\overline{\text { RESET }}$ initializes the Z8611. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathrm{R} / \overline{\mathrm{W}}$. Read/Write (output). R/ $\overline{\mathrm{W}}$ is Low when the Z861l is writing to external program or data memory.

XTAL1, XTAL2. Crystol 1, Crystal 2 (timebase input and output). These pins connect a parallel-resonant crystal ( 8 or 12 MHz maximum) or an external single-phase clock ( 8 or 12 MHz maximum) to the on-chip clock oscillator and buffer.

## Address Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 4096 bytes consist of on-chip mask-programmed ROM. At addresses 4096 and greater, the Z8611 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The Z86ll can address 60K bytes of external data memory beginning at location 4096 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P}_{4}$, is used to distinguish between data and program memory space.
Register File. The 144 -byte register file includes four I/O port registers (RO-R3), 124
general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Z8611 instructions can access registers directly or indirectly with an 8-bit address field. The Z8611 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active workingregister group.

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 4096 and 65535 . An 8 -bit Stack Pointer (R255) is used for the internal stack that resides within the 124 generalpurpose registers (R4-Rl27).

Address Spaces (Continued)


Figure 4. Program Memory Map


Figure 6. The Register File


Figure 5. Data Memory Map


Figure 7. The Register Pointer

## Serial Input/Output

Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P}_{7}$ can be programmed as serial I/O lines for fullduplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits/second for 8 .

The Z86ll automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted,

regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request ( $\mathrm{IRQ}_{4}$ ) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $I R Q 3_{3}$ interrupt request.

Received Data
(No Parity)


Received Data
(With Parity)


Figure 8. Serial Data Formats

## Counter/Timers

The Z861l contains two 8-bit
programmable counter/timers ( $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ ), each driven by its own 6-bit programmable prescaler. The $T_{1}$ prescaler can be driven by internal ox external clock sources; however, the $T_{0}$ prescaler is driven by the internal clock only.

The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (l to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}$ ( $\mathrm{T}_{1}$ )-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload
the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count Mode.

The clock source for $T_{1}$ is user-definable and can be the internal microprocessor clock ( 4 MHz maximum for the 8 MHz device and a 6 MHz maximum for the 12 MHz device) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (l MHz maximum), a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the $\mathrm{T}_{0}$ output to the input of $\mathrm{T}_{1}$. Port 3 line $\mathrm{P}_{6}$ also serves as a timer output ( $\mathrm{T}_{\mathrm{OUT}}$ ) through which $T_{0}, T_{1}$ or the internal clock can be output.

## I/O Ports

The Z8611 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pulldowns compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{3}$ and $\mathrm{P} 3_{4}$ are used as the handshake contols RDY 1 and $\overline{D A V}_{1}$ (Ready and Data Available).

Memory locations greater than 4096 are referenced through Port l. To interface external memory, Port 1 must be programmed for the multiplexed Address/ Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port l can be placed in the highimpedance state along with Port 0, $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $R / \bar{W}$, allowing the Z861l to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning $\mathrm{P}_{3}$ as a Bus Acknowledge input and $\mathrm{P}_{4}$ as a Bus Request output.


Figure 9a. Port 1
Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines
$\mathrm{P} 3_{2}$ and $\mathrm{P}_{3}$ are used as the handshake controls $\overline{\mathrm{DAV}}_{0}$ and RDY 0 . Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}$ - $\mathrm{A}_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}$, $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.


Figure 9b. Port 0
Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{1}$ and $\mathrm{P} 3_{6}$ are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and $\mathrm{RDY}_{2}$. The handshake signal assignment for Port 3 lines $\mathrm{P} 3_{1}$ and $\mathrm{P} 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.


Figure 9c. Port 2 28611/L

## I/O Ports (Continued)

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input ( $\mathrm{P}_{3}-\mathrm{P}_{3}$ ) and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines $P 3_{0}$ and $\mathrm{P}_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0, 1 and 2 ( $\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals ( $\operatorname{IRQ}_{0}-\operatorname{IRQ}_{3}$ ); timer input and output signals ( $\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\mathrm{OUT}}$ ) and Data Memory Select ( $\overline{\mathrm{DM}}$ ).


Figure 9d. Port 3

## Interrupts

The Z86ll allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z8611 interrupts are vectored. When an interrupt request is granted, and interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

## Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTALl = Input, XTAL2 = Output).

The crystal source is connected across XTALl and XTAL2, using the recommended
capacitors ( $\mathrm{C}_{1} \leq 15 \mathrm{pF}$ ) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel resonant
- Fundamental types, $8 / 12 \mathrm{MHz}$ maximum
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$.


## Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $\mathrm{V}_{\mathrm{MM}}$ (standby) power supply input. This necessitates the use of an external clock generator (input $=\mathrm{XTALl}$ ) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 10 shows the recommended circuit for a battery back-up supply system.


Figure 10. Recommended Driver Circuit for Power Down Operation

## Instruction Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect workingregister pair address
Irr Indirect working-register pair only
$\mathbf{X}$ Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)

IMR Interrupt mask register (control register 251)
Assignment of a value is indicated by the symbol " $\leftarrow$ ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr $(\mathrm{n})$ " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:
C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag


Affected flags are indicated by:
0 Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected

X Undefined

Z8611/L

Condition Codes

Value	Mneomonic	Meaning	Flags Set
1000		Always true	$\ldots$
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater thaN	$[\mathrm{Z} \mathrm{OR} \mathrm{(S} \mathrm{XOR} \mathrm{V)}]=0$
0010	LE	Less than or equal	$[\mathrm{Z} \bigcirc \mathrm{OR}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{COR} \mathrm{Z})=1$
0000		Never true	...

## Instruction Formats

OPC	CCF, DI, EI, IRET, NOP,   RCF, RET, SCF
dSt	OPC

## One-Byte Instruction



Two-Byte Instruction
Three-Byte Instruction

Figure 11. Instruction Formats

Z8611/L

## Instruction Summary



## Instruction Summary (Continued)

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C ZSVDH }}$
	dst	src		
$\begin{aligned} & \text { SRP src } \\ & \text { RP - src } \\ & \hline \end{aligned}$		Im	31	- - - -
$\begin{aligned} & \text { SUB dst, src } \\ & \text { dst }-\mathrm{dst}-\mathrm{src} \end{aligned}$	(Note 1)		$2 \square$	* * * * 1
SWAP dst			F0	X * * X -

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, to determine the opcode of an ADC instruction using the addressing modes $r$ (destination) and Ir (source) is 13 .


## Registers

R240 SIO
Serial I/O Register
( $\mathrm{FO}_{\mathrm{H}}$; Read/Write)

$\longrightarrow$ SERIAL DATA $\left(D_{0}=L S B\right)$

## R241 TMR

Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}}$; Read/Write)


## R242 T1

Counter Timer 1 Register
( $\mathrm{F}_{\mathrm{H}}$; Read/Write)



R243 PRE1
Prescaler 1 Register
( $\mathrm{F}_{3}$ H; Write Only)




COUNT MODE
$0=T_{1}$ SINGLE.PASS
$1=\mathrm{T}_{1}$ MODULO-N
CLOCK SOURCE
$1=T$, INTERNAL
$0=T$, EXTERNAL TIMING INPUT ( $\mathrm{T}_{\mathrm{iN}}$ ) MODE
PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01~00 HEX)

R244 T0
Counter/Timer 0 Register
( $\mathrm{F}_{4}$; Read/Write)


To INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX) (RANGE: 1-256 DECIMAL 01-00 HEX)
To CURRENT VALUE (WHEN READ) $^{\text {COM }}$

## R245 PREO

## Prescaler 0 Register

(F5H; Write Only)



R246 P2M
Port 2 Mode Register
( $\mathrm{F} 6_{\mathrm{H}}$; Write Only)



## R247 P3M

Port 3 Mode Register
( $\mathrm{F}^{\prime}{ }^{\mathrm{H}}$; Write Only)


Figure 12. Control Registers

## Registers (Continued)




## R249 IPR

## Interrupt Priority Register

( $\mathrm{F9}_{\mathrm{H}}$; Write Only)


R250 IRQ
Interrupt Request Register
( $\mathrm{FA}_{\mathrm{H}}$; Read/Write)


IRQO $=\mathrm{P}_{3}$ INPUT $\left(D_{0}=\operatorname{IRQO}\right)$ IRQ1 $=\mathrm{P}_{3}$ INPUT
IRQ2 $=\mathrm{P}_{3}$ INPUT
IRQ3 $=$ P $_{0}$ I INPUT, SERIAL INPUT
IRQ4 $=$ To $_{0}$, SERIAL OUTPUT
RQQ $^{2}=T_{1}$

## R251 IMR

## Interrupt Mask Register

( $\mathrm{FB}_{\mathrm{H}}$; Read/Write)


R254 SPH
Stack Pointer
( $\mathrm{FE}_{\mathrm{H}}$; Read/Write)



R255 SPL

## Stack Pointer

( $\mathrm{FF}_{\mathrm{H}}$; Read/Write)§


STACK POINTER LOWER
BYTE (SP BYTE ( SP $_{0}-\mathrm{SP}_{7}$ )

Figure 12a. Control Registers (Continued)

## Opcode Map

## Lower Nibble (Hex)



## Sequence:

Opcode, First Operand, Second Operand
Note: The blank areas are not deffned.

[^0]
## Absolute Maximum Ratings

Voltages on all pins
with respect to GND
$\ldots . . . .-0.3 \mathrm{~V}$ to +7.0 V

Operating Ambient
Temperature $\qquad$ $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Standard Test Conditions

The characteristics below apply for the $\square+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$ following standard test conditions, unless $\square$ GND $=0 \mathrm{~V}$ otherwise noted. All voltages are referenced $\square 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ to GND. Positive current flows into the reference pin. Standard conditions are as follows:


Figure 13. Test Load 1


Figure 14. Test Load 2


Figure 15. External Clock Interface Circuit (Both the clock and its complement are required)

## DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$\mathrm{V}_{\mathrm{CH}}$	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{RL}}$	Reset Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IR}}$	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		120	mA	
			$80^{*}$		
$\mathrm{I}_{\mathrm{MM}}$	$\mathrm{V}_{\mathrm{MM}}$ Supply Current		10	mA	Power Down Mode
$\mathrm{V}_{\mathrm{MM}}$	Backup Supply Voltage	3	$\mathrm{~V}_{\mathrm{CC}}$	V	Power Down

* This value is for Z8611L only

External I/O or Memory Read and Write Timing

No	Symbol	Paramter	Z8611/L		Z8611A		Notes* $\dagger$
			Min	Max	Min	Max	
1	$\operatorname{TdA}(\mathrm{AS}$ )	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50			360	1,2,3
2	$\mathrm{Td} A \mathrm{~S}(\mathrm{~A})$	$\overline{\mathrm{AS}} \uparrow$ to Address Float Dealy	70		45		1,2,3
3	$\mathrm{Td} A \mathrm{~S}(\mathrm{DR})$	$\overline{\mathrm{AS}} \uparrow$ to Read Data Reguired Valid		360		220	1,2,3,4
4	TwAS	$\overline{\overline{A S}}$ Low Width	80		55		1,2,3
5	$\mathrm{TdAz}(\mathrm{DS})$	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		,
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3,4
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \downarrow$ Hold Time	0		0		1
10	$\operatorname{TdDS}(\mathrm{A})$	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		1,2,3
11	$\mathrm{TdDS}(\mathrm{AS})$	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		1,2,3
$12 \ldots \mathrm{TdR} / \mathrm{W}(\mathrm{AS}) \ldots$ _ $/ \overline{\mathrm{W}}$ Valid to $\overline{\mathrm{AS}} \uparrow$ Delay							
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R//W Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) $\downarrow$ Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	70		45		1,2,3
16	$\mathrm{Td} A(\mathrm{DR})$	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		1,2,3

## NOTES

1. Test Load 1
2. Timing numbers given are for minimum TpC .
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing reference use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 "

* All units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 16. External I/O or Memory Read/Write

## Additional Timing Table

No	Symbol	Paramter	Z8611/L		Z8611A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Timer Input Low Width	100		70		2
5	TwTinH-	-Timer Input High Width	3 TpC		$-3 \mathrm{TpC}$		-2
6	TpTin	Timer Input Period	8 TpC		8TpC		2
7	TrTin, TfTin	Timer Input Rise And Fall Times		100		100	2
8 a	TwIL	Interrupt Request Input Low Time	100		70		2,3
8 b	TwIL	Interrupt Request Input Low Time	3 TpC		3 TpC		2,4
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		2,3

## NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing refer'ence uses 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$.
4. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$.

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 17. Additional Timing

Handshake Timing

No	Symbol	Paramter	Z8611/L		Z8611A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY $\downarrow$ Delay		175		120	1,2
5	-TdDAVOf(RDY)	- $\overline{\text { DAV }} \downarrow$ Output to RDY $\downarrow$ Delay-	-0		-0		1,3
6	TdDAVIr(RDY)	$\overline{\text { DAV }} \uparrow$ Input to RDY $\uparrow$ Delay		175		120	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY $\uparrow$ Delay	0		0		1,3
8	TdDO(DAV)	Data Out to $\overline{\mathrm{DA} V} \downarrow$ Delay	50		30		1
9	TdRDY(DAV)	Rdy $\downarrow$ Input to $\overline{\mathrm{DAV}} \uparrow$ Delay	0	200	0	140	1

NOTES:

1. Test Load 1
2. Input handshake
3. Output handshake
4. All timing regerences use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 18a. Input Handshake


Figure 18b. Output Handshake

## Clock-Cycle-Time-Dependent Characteristics

Number	Symbol	Z8611/L   Equation	Z8611A   Equation
1	TdA(AS)	TpC-75	TpC-50
2	TdAS(A)	TpC-55	$\mathrm{TpC}-40$
3	TdAS(DR)	$4 \mathrm{TpC-140*}$	$4 \mathrm{TpC-110}$ *
4	TwAS	$\mathrm{TpC-45}$	$\mathrm{TpC}-30$
6	-TwDSR-	-3TpC-125*	-3TpC-65*
7	TwDSW	2TpC-90*	$2 \mathrm{TpC-55*}$
8	TdDSR(DR)	3TpC-175*	$3 \mathrm{TpC-120}{ }^{*}$
10	Td(DS)A	TpC-55	$\mathrm{TpC}-40$
11	TdDS(AS)	TpC-55	$\mathrm{TpC}-30$
12	TdR/W(AS)	-TpC-75-	TpC-55-
13	TdDS(R/W)	TpC-65	TpC-50
14	TdDW(DSW)	TpC-75	$\mathrm{TpC}-50$
15	TdDS(DW)	TpC-55	$\mathrm{TpC}-40$
16	$\mathrm{TdA}(\mathrm{DR})$	$5 \mathrm{TpC-215*}$	$5 \mathrm{TpC-160*}$
17	TdAS(DS)	TpC-45	TpC-30

* Add 2 TpC when using extended memory timing.


## Ordering Information

Type	Package	Temp.	Clock	Description
Z8611 Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$		4K ROM Microcomputer
Z8611 B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8611 Dl	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8611 D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	8 MHz	
Z8611 Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	8 MHz	
Z8611 C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8611 K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8611 K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8611A Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$		
Z8611A B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8611A Dl	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8611A D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	12 MHz	
Z8611A Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	12 MHz	
Z8611A C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8611A K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8611A K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8611L B1	Plastic	$0 /+70^{\circ} \mathrm{C}$		4K ROM Microcomputer
Z8611L B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		Low Power version
Z8611L D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8611L D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	8 MHz	
Z8611L Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	8 MHz	
Z8611L C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8611L K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8611L K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		

## Z8621/L

## Z8 8K ROM Microcomputer

- Complete microcomputer, 8 K bytes of ROM, 240 bytes of RAM, 32 I/O lines, and up to 56 K bytes addressable external space each for program and data memory.
- 256 -byte register file, including 236 general-purpose registers, four I/O port registers, and 16 status and control registers.
- Minimum instruction execution time $1 \mu \mathrm{~s}$ at 12 MHz .
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any of nine working register groups in $1 \mu \mathrm{~s}$.
- On-chip oscillator that accepts crystal or external clock drive.
- Low-power standby option that retains contents of general-purpose registers.
- Single +5 V power supply-all pins TTLcompatible.
- Low Power version (Z8621L):
- Available 8 MHz
- Current consumption 80 mA
- Available in 8 and 12 MHz versions.


## General Description

The Z8621 microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z8621 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Under program control, the Z8621 can be
tailored to the needs of its user. It can be configured as a stand-alone microcomputer with 8 K bytes of internal ROM, a traditional microprocessor that manages up to 112 K bytes of external memory, or a parallelprocessing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for $I / O$.


Figure 1. Logic Functions

## General Description (Continued)



Figure 2. Pin Configuration


Figure 2a. Chip Carrier Pin Configuration

## Architecture

Z862l architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z862l fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z8621 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer
to a microprocessor that can address 112 K bytes of external memory (Figure 3).

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 256 -byte random-access register file is composed of 236 generalpurpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

Architecture (Continued)


Figure 3. Block Diagram

## Pin Description

$\overline{\overline{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{A S}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\mathrm{DS}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P O}_{\mathbf{0}} \mathbf{- P 0} \mathbf{7}$. I/O Port Lines (input/output, TTL compatible). 8 lines Nibble Programmable that can be configured under program control for I/O or external memory interface.
$\mathrm{Pl}_{\mathbf{0}}-\mathrm{Pl}_{7}$. I/O Port Lines (input/output, TTL compatible). 8 lines Byte Programmable that can be configured under program control for I/O or multiplexed address ( $\mathrm{A}_{0}-\mathrm{A}_{7}$ ) and data ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) lines used to interface with program/data memory.

P20-P27. I/O Port Lines (input/output, TTL compatible). 8 lines Bit Programmable. In addition they can be configured to provide open-drain output.
$\mathbf{P 3} \mathbf{0}_{\mathbf{0}} \mathbf{- P} \mathbf{3}_{4}$. Input Port Lines (TTL compatible). They can also configured as control lines.
P35-P37. Output Port Lines (TTL compatible). They can also configured as control lines.

## Pin Description (Continued)

RESET. Reset (input, active Low). $\overline{\text { RESET }}$ initializes the Z8621. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output). R/ $\overline{\mathrm{W}}$ is Low when the Z862l is writing to external program or data memory.

XTALL, XTAL2. Crystol 1, Crystal 2 (timebase input and output). These pins connect a parallel-resonant crystal (8 or 12 MHz maximum) or an external single-phase clock ( 8 or 12 MHz maximum) to the on-chip clock oscillator and buffer.

## Address Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 8192 bytes consist of on-chip mask-programmed ROM. At addresses 8192 and greater, the Z8621 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The Z862l can address 56K bytes of external data memory beginning at locations 8192 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P}_{3}$, is used to distinguish between data and program memory space.
Register File. The 256 -byte register file includes four I/O port registers (RO-R3), 236
general-purpose registers (R4-R238) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Z862l instructions can access registers directly or indirectly with an 8-bit address field. The Z8621 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active workingregister group.
Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 8192 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 generalpurpose registers (R4-R238).

## Address Spaces (Continued)



Figure 4. Program Memory Map


Figure 6. The Register File


Figure 5. Data Memory Map


Figure 7. The Register Pointer

## Serial Input/Output

Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P} 3_{7}$ can be programmed as serial I/O lines for fullduplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits $/$ second for 8 .

The Z8621 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted,


Transmitted Data
(With Parity)

regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request ( $\mathrm{IRQ}_{4}$ ) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $\mathrm{IRQ}_{3}$ interrupt request.


Figure 8. Serial Data Formata

## Counter/Timers

The Z8621 contains two 8-bit programmable counter/timers ( $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ ), each driven by its own 6 -bit programmble prescaler. The $\mathrm{T}_{1}$ prescaler can be driven by internal or external clock sources; however, the $\mathrm{T}_{0}$ prescaler is driven by the internal clock only.

The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value ( 1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}$ ( $\mathrm{T}_{1}$ )-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload
the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for $T_{1}$ is user-definable and can be the internal microprocessor clock ( 4 MHz maximum for the 8 MHz device and 6 MHz maximum for the 12 MHz device) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock ( l MHz maximum), a trigger input that can be retriggerable or nonretriggerable, or as a gate input for the internal clock. The counter/timers can be porogrammably cascaded by connecting the $\mathrm{T}_{0}$ output to the input of $\mathrm{T}_{1}$. Port 3 line $\mathrm{P}_{6}$ also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

## I/O Ports

The Z862l has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pulldowns compatible with TTL loads.

Port l can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P}_{4}$ are used as the handshake contols RDY 1 and $\overline{D A V}_{1}$ (Ready and Data Available).

Memory locations greater than 8192 are referenced through Port l. To interface external memory, Port 1 must be programmed for the multiplexed Address/ Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port l can be placed in the highimpedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $R / \bar{W}$, allowing the Z8621 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning $\mathrm{P}_{3}$ as a Bus Acknowledge input and $\mathrm{P}_{4}$ as a Bus Request output.


Figure 9a. Port 1
Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port,

Port 0 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{2}$ and $\mathrm{P}_{5}$ are used as the handshake controls $\overline{\mathrm{DAV}}_{0}$ and $R D Y_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}$, $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.


Figure 9b. Port 0
Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{1}$ and $\mathrm{P}_{6}$ are


Figure 9c. Port 2

## I/O Ports (Continued)

used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and $\mathrm{RDY}_{2}$. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{3}-\mathrm{P}_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines $\mathrm{P}_{3}$ and $\mathrm{P}_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0, 1 and $2(\overline{\mathrm{DAV}}$ and RDY); four external
interrupt request signals ( $\mathrm{IRQ}_{0}$ - $\mathrm{IRQ}_{3}$ ); timer input and output signals ( $\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\mathrm{OUT}}$ ) and Data Memory Select ( $\overline{\mathrm{DM}}$ ).


Figure 9d. Port 3

## Interrupts

The Z8621 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P} 3_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z8621 interrupts are vectored. When an interrupt request is granted, and interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

## Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTALl $=$ Input, XTAL2 $=$ Output).

The crystal source is connected across XTAL1 and XTAL2, using the recommended
capacitors ( $\mathrm{C}_{1} \leq 15 \mathrm{pF}$ ) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel resonant
- Fundamental types, $8 / 12 \mathrm{MHz}$ maximum
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$.


## Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 236 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $\mathrm{V}_{\mathrm{MM}}$ (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTALl) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 10 shows the recommended circuit for a battery back-up supply system.


Figure 10. Recommended Driver Circuit for Power Down Operation

## Instruction Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect workingregister pair address
Irr Indirect working-register pair only
$\mathbf{X}$ Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.

dst	Destination location or contents
src	Source location or contents
cc	Condition code (see list)
@	Indirect address prelix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control register 252)
RP	Register pointer (control register 253)
IMR	Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol " $\leftarrow$ ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr $(\mathrm{n})$ " is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:


## Condition Codes

Value	Mneomonic	Meaning	Flags Set
1000		Always true	$\ldots$
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater thaN	$[\mathrm{Z}$ OR (S XOR V) $]=0$
0010	LE	Less than or equal	$[\mathrm{Z} \bigcirc \mathrm{R}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{C} \bigcirc \mathrm{R} Z)=1$
0000		Never true	$\ldots$

## Instruction Formats



One-Byte Instructions


Two-Byte Instructions


MODE	OPC
src	
OR	
ORt	OR
1	1


MODE	OPC
dst/src	$x$
ADDRESS	

JP

CALL

$\mathbf{c c}$	OPC
$\mathbf{D A}_{U}$	
$\mathbf{D A}_{\mathrm{L}}$	


$\mathbf{O P C}$
$\mathbf{D A}_{U}$
$\mathbf{\mathbf { D A } _ { \mathrm { L } }}$



LD
LD


$\qquad$


## Instruction Summary



## Instruction Summary (Continued)

Inatruction and Operation	Addr Mode		Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C ZSVDH }}$
	dst	src		
$\begin{aligned} & \text { SRP src } \\ & \text { RP - src } \end{aligned}$		Im	31	- - - - -
SUB dst,src dst - dst - src			$2 \square$	* * * *
SWAP dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \text { F0 } \\ & \text { Fl } \end{aligned}$	X * * X -

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, to determine the opcode of an ADC instruction using the addressing modes $r$ (destination) and Ir (source) is 13 .


R241 TMR
Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}}$; Read/Write)


## R242 T1

Counter Timer 1 Register
( $\mathrm{F}_{\mathrm{H}}$; Read/Write)

T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1256 DECIMAL 0100 HEX)
$T$, CURRENT VALUE (WHEN READ)

## R243 PRE1

Prescaler 1 Register
( $\mathrm{F}_{3} \mathrm{H}$; Write Only)

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$



R244 T0
Counter/Timer 0 Register
( F 4 H ; Read/Write)

To INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL 01-00 HEX) $T_{0}$ CURRENT VALUE (WHEN READ)

R245 PREO
Prescaler 0 Register
(F5H; Write Only)



R246 P2M
Port 2 Mode Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)

$\mathrm{P}_{2}-\mathrm{P} 2_{7} / / O$ DEFINITION 0 DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

## R247 P3M

 Port 3 Mode Register( $\mathrm{F} 7_{\mathrm{H}}$; Write Only)



Figure 12. Control Registers

## Registers (Continued)

R248 P01M
Port 0 and 1 Mode Register
( $\mathrm{F} 8_{\mathrm{H}}$; Write Only)


R252 FLAGS
Flag Register
( $\mathrm{FC}_{\mathrm{H}}$; Read/Write)


R249 IPR
Interrupt Priority Register
( $\mathrm{F9}_{\mathrm{H}}$; Write Only)


Q1, IRQ4 PRIORITY (GROUP C) $0=$ IRQ1 $>$ IRQ4 $0=$ IRQ1 $>$ IRQ4
$1=$ IRQ4 $>$ IRQ1

R254 SPH
Stack Pointer
( $\mathrm{FE}_{\mathrm{H}}$; Read/Write)



R253 RP
Register Pointer
( $\mathrm{FD}_{\mathrm{H}}$; Read/Write)



R251 IMR
Interrupt Mask Register
( $\mathrm{FB}_{\mathrm{H}}$; Read/Write)



R255 SPL
Stack Pointer
( $\mathrm{FF}_{\mathrm{H}}$; Read/Write)


Figure 12. Control Registers (Continued)

## Opcode Map

## Lower Nibble (Hex)

		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	$\begin{gathered} 6,5 \\ \text { DEC } \\ R_{1} \end{gathered}$	$\begin{gathered} 6,5 \\ \text { DEC }_{1 R_{1}} \end{gathered}$	$\begin{gathered} 6,5 \\ \text { ADD } \\ r_{1}, r_{2} \end{gathered}$	6, 5 ADD $\mathrm{r}_{1}, \mathrm{I}_{\mathrm{r}} 2$	$\begin{gathered} 10,5 \\ \mathbf{A D D} \\ \mathbf{R}_{2}, \mathrm{R}_{1} \end{gathered}$			$\begin{gathered} 10,5 \\ \mathrm{ADD} \\ \mathrm{IR}_{1}, \mathrm{IM} \end{gathered}$	$\begin{gathered} 6,5 \\ \text { LD } \\ x_{1}, R_{2} \end{gathered}$	$\begin{gathered} 6,5 \\ \text { LD } \\ \mathbf{r}_{2}, \mathrm{R}_{1} \end{gathered}$	12/10,5 DINZ I1, RA	$12 / 10,0$ JR cc, RA	$\begin{gathered} 6,5 \\ \text { LD } \\ { }_{i}, \mathrm{IM} \end{gathered}$	$\begin{gathered} 12 / 10,0 \\ \text { JP } \\ \text { cc, DA } \end{gathered}$	$\begin{gathered} 6,5 \\ \text { INC } \\ r_{1} \end{gathered}$	
	1	$\qquad$	$\begin{gathered} 6,5 \\ \text { RLC }^{\prime 2} \\ \hline R_{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6,5 \\ \text { ADC } \\ r_{1}, \mathrm{r}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 6,5 \\ & \text { ADC } \\ & \mathrm{r}_{1}, \mathrm{Ir}_{2} \end{aligned}$	$\begin{aligned} & 10,5 \\ & \mathbf{A D C}^{2} \\ & \mathrm{R}_{2}, \mathrm{R}_{1} \end{aligned}$	$\begin{aligned} & 10,5 \\ & \text { ADC } \end{aligned}$ $\mathrm{IR}_{2}, \mathrm{R}_{1}$	$\begin{aligned} & 10,5 \\ & \text { ADC } \\ & \mathbf{R}_{1}, \mathrm{IM} \end{aligned}$	ADC AD				$1$				-
	2	6,5   INC   $\mathrm{R}_{1}$	$6,5$   INC   $\mathrm{IR}_{1}$	6, 5 SUB   r1, r2	$\begin{aligned} & \hline 6,5 \\ & \text { SUB } \\ & \mathrm{r}_{1}, \mathrm{I}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 10,5 \\ & \text { SUB } \\ & \mathrm{R}_{2}, \mathrm{R}_{1} \end{aligned}$	$\begin{gathered} 10,5 \\ S_{R_{2}}, R_{1} \end{gathered}$	$\begin{gathered} 10,5 \\ \text { SUB } \\ \mathbf{R}_{1}, I M \end{gathered}$									
	3	$\begin{gathered} 8,0 \\ \mathrm{IRR}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 6,1 \\ \text { SRP } \\ \text { IM } \\ \hline \end{gathered}$	$\begin{gathered} 6,5 \\ \text { SBC } \\ r_{1,1}, \end{gathered}$	$\begin{gathered} \text { 6,5 } \\ \text { SBC } \\ r_{1}, \mathrm{I}_{2} \end{gathered}$	$\begin{array}{r} 10,5 \\ \text { SBC } \\ \mathbf{R}_{\mathbf{2}, \mathrm{R}_{1}} \end{array}$		$\begin{array}{r} 10,5 \\ \text { SBC } \\ \mathbf{R}_{1}, \mathrm{IM} \\ \hline \end{array}$									
	4	$\begin{aligned} & 8,5 \\ & \mathrm{DA} \\ & \mathrm{R}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 8,5 \\ & \mathrm{DA} \\ & \mathrm{IR}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 6,5 \\ \text { OR } \\ r_{1}, r_{2} \\ \hline \end{gathered}$	$\begin{gathered} 6,5 \\ \text { OR } \\ r_{1}, I_{r_{2}} \end{gathered}$	$\begin{gathered} 10,5 \\ \text { OR } \\ \mathbf{R}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10,5 \\ \text { OR } \\ \text { IR }_{2}, R_{1} \end{gathered}$										
	5	$\begin{gathered} 10,5 \\ \text { POP } \\ \mathbf{R}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10,5 \\ \text { POP } \\ \mathrm{IR}_{1} \\ \hline \end{gathered}$	6,5 AND   $\mathrm{r}_{1, \mathrm{r}}$	$\begin{gathered} \text { 6,5 } \\ \text { AND } \\ \mathrm{r}_{1}, \mathrm{Ir}_{2} \end{gathered}$	$\begin{aligned} & 10,5 \\ & \text { AND } \\ & \mathbf{R}_{\mathbf{2}}, \mathrm{R}_{1} \end{aligned}$				-							.
$$	6	$\begin{gathered} 6,5 \\ \text { COM } \\ \mathrm{R}_{1} \end{gathered}$	$6,5$ COM $\mathrm{IR}_{1}$	$\begin{gathered} 6 ; 5 \\ \text { TCM } \\ \text { r1, } 12 \end{gathered}$	$\begin{gathered} 6,5 \\ \text { TCM } \\ r_{1}, \text { Ir }_{2} \\ \hline \end{gathered}$	$\begin{gathered} 10,5 \\ \text { TCM } \\ \mathbf{R}_{\mathbf{2}}, \mathrm{R}_{1} \end{gathered}$		$\begin{array}{\|c\|} \hline 10,5 \\ \text { TCM } \\ \mathbf{R}_{1}, \mathrm{IM} \\ \hline \end{array}$	$\begin{array}{r} 10,5 \\ \mathrm{TCM} \\ \mathrm{IR}_{1}, \mathrm{IM} \\ \hline \end{array}$								
$\begin{aligned} & \text { e } \\ & 0 \\ & 0 \\ & 0 \\ & \text { 品 } \end{aligned}$	7	10/12,1   PUSH   $\mathrm{R}_{2}$	$\begin{gathered} 12 / 14,1 \\ \text { PUSH } \\ I R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 6,5 \\ \text { TM } \\ \mathrm{r}_{1, \mathrm{r} 2} \\ \hline \end{gathered}$	$\begin{gathered} 6,5 \\ \text { TM } \\ \mathrm{I}_{1}, \mathrm{Ir}_{2} \end{gathered}$	$\begin{gathered} 10,5 \\ \mathrm{TM} \\ \mathrm{R}_{2}, \mathrm{R}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10,5 \\ \mathrm{TM} \\ \mathrm{IR}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{array}{\|c\|} \hline 10,5 \\ \mathrm{TM} \\ \mathrm{R}_{1}, \mathrm{IM} \\ \hline \end{array}$									
$\begin{aligned} & 2 \\ & \text { Q } \\ & \frac{\varrho}{2} \end{aligned}$	8	$\begin{gathered} 10,5 \\ \mathrm{DECW} \\ \mathrm{RR}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 10,5 \\ \text { DECW } \\ \mathrm{IR}_{1} \end{gathered}$	$\begin{array}{\|c\|} \hline 12,0 \\ \text { LDE } \\ \mathrm{r}_{1}, \text { Irr } 2^{2} \end{array}$													6,1 DI
	9	$\begin{aligned} & 6,5 \\ & \text { RL } \\ & \mathrm{R}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 6,5 \\ & \text { RL. } \\ & \mathrm{IR}_{1} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12,0 \\ \mathrm{LDE} \\ \mathrm{r}_{2}, \mathrm{Irr}_{1} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18,0 \\ \text { LDEI } \\ \mathrm{Ir}_{\mathbf{2}}, \mathrm{Irr}_{1} \\ \hline \end{array}$												${ }_{6,1}^{\text {EI }}$
	A	$\begin{gathered} 10,5 \\ \text { INCW } \\ R_{1} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10,5 \\ \text { INCW } \\ \text { IR } 1 \end{array}$	$\begin{gathered} 6,5 \\ \mathrm{CP} \\ \mathrm{r}_{1}, \mathrm{r}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 6,5 \\ \text { CP } \\ \mathrm{r}_{1}, \mathrm{Ir}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 10,5 \\ \text { CP } \\ \mathrm{R}_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10,5 \\ \text { CP } \\ \text { IR }_{2}, \mathrm{R}_{1} \end{gathered}$	$\begin{gathered} 10,5 \\ C P \\ \mathrm{R}_{1}, \mathrm{IM} \end{gathered}$	$\begin{gathered} 10,5 \\ \text { CP } \\ \mathrm{IR}_{1}, \mathrm{IM} \end{gathered}$								$\begin{aligned} & 14,0 \\ & \text { RET } \end{aligned}$
	B	$\begin{gathered} \hline 6,5 \\ \text { CLR } \\ R_{1} \end{gathered}$	$\begin{gathered} \hline 6,5 \\ \text { CLR } \\ I_{1} \end{gathered}$	$\begin{gathered} 6,5 \\ \text { XOR } \\ r_{1}, r_{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { 6,5 } \\ \text { XOR } \\ \mathrm{r}_{1}, \mathrm{Ir}_{2} \end{gathered}$	$\begin{aligned} & 10,5 \\ & \text { XOR } \\ & \mathbf{R}_{\mathbf{2}}, \mathrm{R}_{1} \end{aligned}$	$\begin{array}{\|c\|} \hline 10,5 \\ \text { XOR } \\ \mathrm{IR}_{2}, \mathrm{R}_{1} \\ \hline \end{array}$	$\begin{aligned} & \hline 10,5 \\ & \text { XOR } \\ & \mathbf{R}_{1}, \mathrm{IM} \end{aligned}$	$\begin{gathered} 10,5 \\ \text { XOR } \\ \text { IR1,IM } \end{gathered}$								$\begin{gathered} 16,0 \\ \text { IRET } \end{gathered}$
	C	6,5 RRC $\mathrm{R}_{1}$	$\begin{gathered} 6,5 \\ \text { RRC }^{2} \\ \mathrm{IR}_{1} \end{gathered}$	$\begin{array}{\|c\|} \hline 12,0 \\ \text { LDC } \\ \mathrm{r}_{1}, \text { Irr } 2 \end{array}$	$\begin{array}{\|c\|} \hline 18,0 \\ \text { LDCI } \\ \mathrm{Ir}_{1}, \mathrm{Irr}_{2} \\ \hline \end{array}$				10,5   LD   $\mathrm{I}_{1}, \mathrm{x}, \mathrm{R}_{2}$								$\begin{gathered} 6,5 \\ \mathrm{RCF} \end{gathered}$
	D	$\begin{gathered} 6,5 \\ \text { SRA } \\ R_{1} \\ \hline \end{gathered}$	6,5   SRA   $\mathrm{IR}_{1}$	$\begin{gathered} 12,0 \\ \mathrm{LDC} \\ \mathrm{r}_{2}, \mathrm{IrI}_{1} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 18,0 \\ \text { LDCI } \\ \mathrm{I}_{\mathbf{2},}, \mathrm{Irm}_{1} \\ \hline \end{array}$	20,0 CALL* IRR $_{1}$		$20,0$   CALL DA	10,5   LD   $\mathbf{I L}_{2}, \mathrm{x}_{1}, \mathrm{R}_{1}$					$1$			6,5 SCF
	E	$\begin{aligned} & 6,5 \\ & \mathrm{RR}^{2} \\ & \mathrm{R}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 6,5 \\ & \text { RR } \\ & I_{1} \end{aligned}$		$\begin{array}{\|c\|} \hline 6,5 \\ \text { LD } \\ \mathrm{r}_{1}, \mathrm{Ir}_{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10,5 \\ \mathrm{LD} \\ \mathrm{R}_{2}, \mathrm{R}_{1} \\ \hline \end{array}$	$\begin{gathered} 10,5 \\ L D \\ I_{2}, R_{1} \\ \hline \end{gathered}$	$\begin{array}{r} 10,5 \\ L D \\ R_{1}, \mathrm{IM} \\ \hline \end{array}$	$\begin{gathered} 10,5 \\ \mathrm{LD} \\ \mathrm{IR}_{1}, \mathrm{IM} \end{gathered}$		$1$	$1$					$\begin{aligned} & 6,5 \\ & \mathrm{CCF} \end{aligned}$
	F	6, 7 SWAP $\mathrm{R}_{1}$	$6,7$   SWAP $\mathrm{IR}_{1}$		$\begin{gathered} 6,5 \\ \text { LD } \\ \mathrm{I}_{1}, \mathrm{r}_{2} \end{gathered}$		$\begin{gathered} 10,5 \\ \text { LD } \\ \mathrm{R}_{2}, \mathrm{IR}_{1} \\ \hline \end{gathered}$			$1$	$\downarrow$	$\downarrow$	$\downarrow$	$\downarrow$	$\downarrow$	$\downarrow$	6,0 NOP
Bytes per   Instruction   2   3   2																	
			Upper pcode Nibble	ution   Cycles   $\rightarrow \mathrm{A}$			line les   emonic					Legend:   $\mathrm{R}=8$ - Bit   $=4$-Bit   $R_{1}$ or $r_{1}=$ $R_{2}$ or $r_{2}=$   Sequenc	Address   Address   Dst Add   Src Add		*		

[^1]
## Absolute Maximum Ratings

Voltages on all pins with respect to GND ....... - 0.3 V to +7.0 V
Operating Ambient
Temperature $\qquad$
Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:


Figure 13. Test Load 1


Figure 14. Test Load 2


Figure 15. External Clock Interface Circuit (Both the clock and complement are required)

Z8621/L

## DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$\mathrm{V}_{\mathrm{CH}}$	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{RL}}$	Reset Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IR}}$	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		120	mA	
			$80^{*}$		
$\mathrm{I}_{\mathrm{MM}}$	$\mathrm{V}_{\mathrm{MM}}$ Supply Current		10	mA	Power Down Mode
$\mathrm{V}_{\mathrm{MM}}$	Backup Supply Voltage	3	$\mathrm{~V}_{\mathrm{CC}}$	V	Power Down

* This value is for 28621L only


## External I/O or Memory Read and Write Timing

No	Symbol	Paramter	Z8621/L		Z8621A		Notes* $\dagger$
			Min	Max	Min	Max	
1	$\mathrm{Td} A(A S)$	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50			360	1,2,3
2	TdAS(A)	$\overline{\overline{A S}} \uparrow$ to Address Float Dealy	70		45		1,2,3
3	TdAS(DR)	$\overline{\overline{A S}} \uparrow$ to Read Data Required Valid		360		220	1,2,3,4
4	TwAS	$\overline{\text { AS }}$ Low Width	80		55		1,2,3
5	$\mathrm{Td} A \mathrm{z}$ (DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		1
6 - TwDSR—_- $\overline{\mathrm{DS}}$ (Read) Low Width—_ $250 \ldots 185 \longrightarrow 1,2,3,4$							
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3,4
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \downarrow$ Hold Time	0		0		1
10	$\mathrm{TdDS}(\mathrm{A})$	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		1,2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		1,2,3
12	TdR/W(AS)	R/ $\overline{\mathrm{W}}$ Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		-30		1,2,3
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R/W Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) $\downarrow$ Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		1,2,3

## NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC .
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing reference use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* All units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 16. External I/O or Memory Read/Write

## Additional Timing Table

No	Symbol	Paramter	Z8621/L		Z8621A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Timer Input Low Width	100		70		2
	TwTinH	-Timer Input High Width	$-3 \mathrm{TpC}$		-3TpC		-2
6	TpTin	Timer Input Period	8 TpC		8TpC		2
7	TrTin, TfTin	Timer Input Rise And Fall Times		100		100	2
8 a	TwIL	Interrupt Request Input Low Time	100		70		2,3
8 b	TwIL	Interrupt Request Input Low Time	3 TpC		3 TpC		2,4
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		2,3

## NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
3. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P} 3_{3}\right)$.
4. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$.

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 17. Additional Timing

## Handshake Timing

No	Symbol	Paramter	Z8621/L		Z8621A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY $\downarrow$ Delay		175		120	1,2
5	-TdDAVOf(RDY)	$\overline{\text { DAV }} \downarrow$ Output to RDY $\downarrow$ Delay	-0		-0		-1,3
6	TdDAVIr(RDY)	$\overline{\mathrm{DAV}} \uparrow$ Input to RDY $\uparrow$ Delay		175		120	1,2
7	TdDAVOr(RDY)	$\overline{\mathrm{DAV}} \uparrow$ Output to RDY $\uparrow$ Delay	0		0		1,3
8	TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}} \downarrow$ Delay	50		30		1
9	TdRDY(DAV)	Rdy $\downarrow$ Input to $\overline{\mathrm{DAV}} \uparrow$ Delay	0	200	0	140	1

## NOTES:

1. Test Load 1
2. Input handshake
3. Output handshake
4. All timing regerences use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 18a. Input Handshake


Figure 18b. Output Handshake

Clock-Cycle-Time-Dependent Characteristics

Number	Symbol	Z8621/L   Equation	Z8621A   Equation
1	$\operatorname{TdA}$ (AS)	TpC-75	TpC-50
2	$\operatorname{TdAS}(A)$	TpC-55	TpC-40
3	$\operatorname{Td} A S(D R)$	4TpC-140*	$4 \mathrm{TpC-110}$
4	TwAS	TpC-45	TpC-30
6	TwDSR	-3TpC-125*	3TpC-65*
7	TwDSW	2TpC-90*	2TpC-55*
8	TdDSR(DR)	3TpC-175*	3TpC-120*
10	Td(DS)A	TpC-55	TpC-40
11	TdDS(AS)	TpC-55	TpC-30
12	-TdR/W(AS)	-TpC-75	TpC-55
13	TdDS(R/W)	TpC-65	TpC-50
14	TdDW(DSW)	TpC-75	TpC-50
15	TdDS(DW)	TpC-55	TpC-40
16	$\mathrm{Td} A(\mathrm{DR})$	5TpC-215*	$5 \mathrm{TpC-160*}$
17	TdAS(DS)	TpC-45	TpC-30

* Add 2 TpC when using extended memory timing

Ordering Information

Type	Package	Temp.	Clock	Description
Z8621 B1	Plastic	$0 /+70^{\circ} \mathrm{C}$		8K ROM Microcomputer
Z8621 B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8621 Dl	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8621 D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	8 MHz	
Z8621 Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	8 MHz	
Z8621 C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8621 K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8621 K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8621A B1	Plastic	$0 /+70^{\circ} \mathrm{C}$		
Z8621A B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8621A D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8621A D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	12 MHz	
Z8621A Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	12 MHz	
Z8621A C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8621A K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8621A K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8621L Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$		8K ROM Microcomputer
Z8621L B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		Low Power version
Z8621L D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8621L D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	8 MHz	
Z8621L Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	8 MHz	
Z8621L C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8621L K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8621L K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		

## Z8 BASIC/Debug Interpreter

- The Z867l MCU is a complete microcomputer preprogrammed with a BASIC/Debug interpreter. Interaction between the interpreter and its user is provided through an on-board UART.
- BASIC/Debug can directly address the Z8671's internal registers and all external memory. It provides quick examination and modification of any external memory location or I/O port.
- The BASIC/Debug interpreter can call machine language subroutines to increase execution speed.
- The Z8671's auto start-up capability allows a program to be executed on power-up or Reset without operator intervention.
- Single + 5 V power supply - all I/O pins TTL-compatible.
. Available in 8 MHz version.


## General Description

The Z8671 Single-Chip Microcomputer (MCU) is one of a line of preprogrammed chips - in this case with a BASIC/Debug interpreter in ROM-offered by SGS. As a member of the Z8 Family of microcomputers, it offers the same abundance of resources as the other Z8 microcomputers.

Because the BASIC/Debug interpreter is already part of the chip circuit, programming is made much easier. The Z8671 MCU thus offers a combination of software and hardware that is ideal for many industrial applications. The Z867l MCU allows fast hardware tests and bit-by-bit examination and modification of memory location, I/O ports, or registers. It also allows bit manipulation and logical operations. A self-contained line editor supports interactive debugging, further speeding up program development.

The BASIC/Debug interpreter, a subset of Dartmouth BASIC, operates with three kinds of memory: on-chip registers and external ROM or RAM. The BASIC/Debug interpreter is located in the 2 K bytes of on-chip ROM.

Aditional features of the Z8671 MCU include the ability to call machine language subrotines to increase execution speed and the ability to have a program execute on power-up or Reset, without operator intervention.
Maximum memory addressing capabilities include 62 K bytes of external program
memory and 62 K bytes of data memory with program storage beginning at location 800 hex. This provides up to 124 K bytes of useable memory space. Very few 8 -bit microcomputers can directly access this amount of memory.

Each Z8671 Microcomputer has 32 I/O lines, a 144-byte register file, an on-board UART, and two counter/timers.


Figure 1. Logic Function

## $Z 8671$

General Description (Continued)


Figure 2a. Pin Configuration


Figure 2b. Chip Carrier Pin Configuration


Figure 3. Functional Block Diagram

## Architecture

Z8671 architecture is characterized by a flexible I/O scheme, and efficient register and address space structure, and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z867l fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z867l can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer
to a microprocessor that can address 124 K bytes of external memory.

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144 -byte random-access register file is composed of 124 generalpurpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

## Pin Description

$\overline{\mathbf{A S}}$ Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle.
Addressess output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the highimpedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\mathrm{DS}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P O}_{\mathbf{0}}$ - $\mathbf{P 0}_{\mathbf{7}}$. I/O Port Lines (input/output, TTL compatible). 8 lines Nibble Programmable that can be configured under program control for I/O or external memory interface.
$\mathbf{P l}_{\mathbf{0}}-\mathbf{P l}_{\mathbf{7}}$. I/O Port Lines (input/output, TTL compatible). 8 lines Byte Programmable that can be configured under program control for I/O or multiplexed address ( $\mathrm{A}_{0}-\mathrm{A}_{7}$ ) and data ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) lines used to interface with program/data memory.

P20-P27. I/O Port Lines (input/output, TTL compatible). 8 lines Bit Programmable. In addition they can be configured to provide open-drain outputs.
$\mathbf{P 3}_{\mathbf{0}}$ - $\mathbf{P} \mathbf{3}_{\mathbf{4}}$. Input Port Lines (TTL compatible). They can also configured as control lines.

P35-P37. Output Port Lines (TTL compatible). They can also configured as control lines.

RESET. Reset (input, active Low). $\overline{\text { RESET }}$ inizializes the Z867l. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output). R/ $\overline{\mathrm{W}}$ is Low when the Z867l is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (timebase input and output). These pins connect a parallel-resonant crystal ( 8 or 12 MHz maximum) or an external single - phase clock ( 8 or 12 MHz maximum) to the on-chip clock oscillator and buffer.

## Address Spaces

Program Memory. The Z8671's 16-bit program counter can address 64 K bytes of program memory space. Program memory consists of 2 K bytes of internal ROM and up to 62 K bytes of external ROM, EPROM, or RAM. The first 12 bytes of program memory are reserved for interrupt vectors (Figure 4). These locations contain six 16 -bit vectors that correspond to the six available interrupts. The BASIC/Debug interpreter is located in the 2 K bytes of intenal ROM. The interpreter begins at address 12 and extends to 2047.

Data Memory. The Z8671 can address up to 62 K bytes of external data memory beginning at location 2048 (Figure 5). External data memory may be included with, or separated from, the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $P 3_{4}$, is used to distinguish data and program memory space.

Register File. The 144-byte register file may be accessed by BASIC programs as memory locations 0-127 and 240-255. The register


Figure 4. Programm Memory Map
file includes four I/O port registers (R0-R3), 124 general-purpose registers (R4-R127), and 16 control and status registers (Figure 6).


Figure 5. Data Memory Map


Figure 6. Control and Status Registers

## Address Spaces (Continued)

The BASIC/Debug Interpreter uses many of the general-purpose registers as pointers, scratch workspace, and internal variables. Consequently, these registers cannot be used by a machine language subroutine or other user programs. On power-up/Reset, BASIC/Debug searches for external RAM memory and checks for an auto start-up program. In a non-destructive method, memory is tested at relative location xxFD(hex). When BASIC/Debug discovers RAM in the system, it initializes the pointer registers to mark the boundaries between
areas of memory that are assigned specific uses. The top page of RAM is allocated for the line buffer, variable storage, and the GOSUB stack. Figure 7a illustrates the contents of the general-purpose registers in the Z8671 system with external RAM. When BASIC/Debug tests memory and finds no RAM, it uses an internal stack and shares register space with the input line buffer and variables. Figure 7b illustrates the contents of the general-purpose registers in the Z8671 system without external RAM.


Figure 7a. General-Purpose Registers with External RAM


Figure 7b. General-Purpose Registers without External RAM

Address Spaces (Continued)
Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between location 2048 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 124 generalpurpose registers (R4-R127).

Register Addressing. Z 8671 instructions can access registers directly or indirectly with an 8 -bit address field. The Z867l also allows short 4 -bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each group consisting of 16 continguous registers (Figure 8). The Register Pointer addresses the starting location of the active working-register group.


Figure 8. The Register Pointer

## Program Execution

Automatic Start-up. The Z8671 has an automatic start-up capability which allows a program stored in ROM to be executed without operator intervention. Automatic execution occurs on power-on or Reset when the program is stored at address 1020 (hex).

Execution Modes. The Z8671's BASIC/Debug Interpreter operates in two execution modes: Run and Immediate. Programs are edited
and interactively debugged in the Immediate mode. Some BASIC/Debug commands are used almost exclusively in this mode. The Run mode is entered from the Immediate mode by entering the command RUN. If there is a program in RAM, it is executed. The system returns to the Immediate mode when program execution is complete or interrupted by an error.

## Interactive Debugging

Interactive debugging is accomplished with the self-contained line editor which operates in the Immediate mode. In addition to changing program lines, the editor can correct an immediate command before it is executed. It also allows the correction of typing and other errors as a program is entered.

BASIC/Debug allows interruptions and changes during a program run to correct
errors and add new instructions without disturbing the sequential execution of the program. A program run is interrupted with the use of the escape key. The run is restarted with a GOTO command (followed by the appropriate line number) after the desired changes are entered. The same procedure is used to enter corrections after BASIC/Debug returns an error.

## Commands

BASIC/Debug recognizes 15 command keywords. For detailed instructions of command usage, refer to the BASIC/Debug software manual.
GO The GO command unconditionally branches to a machine language subrotine. This statement is similar to the USR function except that no value is returned by the assembly language routine.
GOSUB GOSUB unconditionally branches to a subroutine at a line number specified by the user.
GOTO GOTO unconditionally changes the sequence of program execution (branches to a line number).
IF/THEN This commands is used for conditional operations and branches.
INPUT/IN These commands request information from the user with the prompt "?", then read the input values (which must be separated by commas) from the keyboard, and store them in the indicated variables.
INPUT discards any values remaining in the buffer from previous IN, INPUT, or RUN statements, and requests new data
from the operator. IN uses any values left in the buffer first, then requests new data.
LET LET assigns the value of an expression to a variable or memory location.
LIST This command is used in the interactive mode to generate a listing of program lines stored in memory on the terminal device.
NEW The NEW command resets pointer R10-11 to the beginning of user memory, thereby marking the space as empty and ready to store a new program.
PRINT PRINT lists its arguments, which may be text messages or numerical values, on the output terminal.
REM This command is used to insert explanatory messages into the program.
RETURN This command returns control to the line following a GOSUB statement.
RUN RUN initiates sequential execution of all instructions in the current program.
STOP STOP ends program execution and clears the GOSUB stack.

## Functions

BASIC/Debug supports two functions: AND and USR.

The AND function performs a logical AND. It can be used to mask, turn off, or isolate bits. This function is used in the following format:

> AND (expression, expression)

The two expressions are evaluated, and their bit patterns are ANDed together. If only one value is included in the parentheses, it is ANDed with itself. A logical OR can also be performed by complementing the AND function. This is accomplished by subtracting each expression from - 1 . For example, the function below is equivalent to the OR of A and B.

$$
-1-\operatorname{AND}(-1-A,-1-B)
$$

## Serial Input/Output

Port 3 lines $\mathrm{P} 3_{0}$ and $\mathrm{P}_{7}$ can be programmed as serial I/O lines for fullduplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of $62.5 \mathrm{~K} \mathrm{bit/second} \mathrm{for} 8 \mathrm{MHz}$, and a maximum rate of $94.8 \mathrm{~K} \mathrm{bit/second} \mathrm{for}$ 12 MHz parts.

The Z8671 automatically adds a start bit and two stop bits to transmitted data (Figure 9). Odd parity is also available as an

## Transmitted Data

(No Parity)


Transmitted Data
(With Parity)


The USR function calls a machine language subroutine and returns a value.
This is useful for applications in wich a subroutine can be performed more quickly and efficiently in machine language than in BASIC/Debug.

The address of the first instruction of the subroutine is the first argument of the USR function. The address can be followed by one or two values to be processed by the subroutine. In the following example, BASIC/Debug executes the subroutine located at address 2000 using values literal 256 and variable C.
USR(\%2000,256,C)

The resulting value is stored in Registers 18-19.
option. Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request ( $\mathrm{IRQ}_{4}$ ) is generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $I R Q_{3}$ interrupt request.

## Received Data

(No Parity)


Received Data
(With Parity)


Figure 9. Serial Data Formats

## I/O Ports

The Z8671 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pulldowns compatible with TTL loads.

Port l can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P} 3_{4}$ are used as the handshake controls $\mathrm{RDY}_{1}$ and $\mathrm{DAV}_{1}$ (Ready and Data Available).

Memory locations greater than 2048 are referenced through Port l. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in the highimpedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the Z8671 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning $\mathrm{P}_{3}$ as a Bus Acknowledge input and $\mathrm{P}_{4}$ as a Bus Request output.


Figure 10a. Port 1
Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines
$P 3_{2}$ and $P 3_{5}$ are used as the handshake controls $\overline{\operatorname{DAV}}_{0}$ and RDY . Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles as defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}$, $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.


Figure 10b. Port 0
Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{1}$ and $\mathrm{P} 3_{6}$ are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and $\mathrm{RDY}_{2}$. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.


Figure 10c. Port 2

## I/O Ports (Continued)

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{3}-\mathrm{P}_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines $\mathrm{P}_{3}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Port 0, 1 and $2(\overline{D A V}$ and RDY); four external interrupt request signals ( $\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$ ); timer input and output signals ( $\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$ ) and Data Memory Select (DM).


Figure 10d. Port 3

## Counter/Timers

The Z8671 contains two 8-bit programmable counter/timers ( $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ ), each driven by its own 6-bit programmable prescaler. The $\mathrm{T}_{1}$ prescalers can be driven by internal or external clock sources; however, the $\mathrm{T}_{0}$ prescaler is driven by the nternal clock only.

The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value ( 1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request $-\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}$ $\left(\mathrm{T}_{1}\right)$ - is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload
the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for $\mathrm{T}_{1}$ is user-definable; it can be either the internal microprocessor clock ( 4 MHz maximum for the 8 MHz device and 6 MHz maximum for the 12 MHz device) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the $\mathrm{T}_{0}$ output to the input of $\mathrm{T}_{1}$. Port 3 line $\mathrm{P}_{6}$ also serves as a timer output ( $\mathrm{T}_{\text {OUT }}$ ) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal can be output.

## Interrupts

The Z8671 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{3}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z8671 interrupts are vectored; however, the internal UART operates in a polling fashion. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

The BASIC/Debug Interpreter does not process interrupts. Interrupts are vectored through locations in internal ROM which point to addresses 1000-1011 (hex). To process interrupts, jump instructions can be entered to the interrupt handling routines at the appropriate addresses as shown in Table 1.

Address   (hex)	Contains Jump Instruction and   Sobroutine Address for:
$1000-1002$	$\mathrm{IRQ}_{0}$
$1003-1005$	$\mathrm{IRQ}_{1}$
$1006-1008$	$\mathrm{IRQ}_{2}$
$1009-100 \mathrm{~B}$	$\mathrm{IRQ}_{3}$
$100 \mathrm{C}-100 \mathrm{E}$	$\mathrm{IRQ}_{4}$
$100 \mathrm{~F}-1011$	$\mathrm{IRQ}_{5}$

Table 1. Interrupt Jump instruction

## Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTALl = Input, XTAL2 = Output).

The crystal source is connected across XTALl and XTAL2, using the recommended
capacitance ( $\mathrm{C}_{\mathrm{L}} \leqslant 15 \mathrm{pF}$ maximum) from each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel resonant
- Fundamental type, 8 MHz maximum
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$


## Instruction Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.
IRR Indirect register pair or indirect workingregister pair address
Irr Indirect working-register pair only
$\mathbf{X}$ Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect workingregister address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP $\quad$ Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)

IMR Interrupt mask register (control register 251)
Assignment of a value is indicated by the symbol $" \leftarrow "$. For example,

$$
\text { dst } \leftarrow \text { dst }+ \text { src }
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr( n$)^{\prime \prime}$ is used to refer to bit " n " of a given location. For example,
dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six arithmetical falgs plus two user selectable flags:
C Carry falg
Z Zero flag
$\mathbf{S} \quad$ Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag
$\left.\begin{array}{l}\text { F1 } \\ \text { F2 }\end{array}\right\}$ user flags
Affected flags are indicated by:
0 Clared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected
x Undefined


## Conditions Codes

Value	Mnemonic	Meaning	Flags Set
1000		Always true	---
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$Z=0$
1101	PL	Plus	$S=0$
0101	MI	Minus	S $=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	[Z OR (S XOR V)] $=0$
0010	LE	Less than or equal	$[\mathrm{Z}$ OR (S XOR V)] $=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{COR} \mathrm{Z})=1$
0000		Never true	---

Instruction Formats

OPC	
	CCF, DI, EI, IRET, NOP,   RCF, RET, SCF
dst OPC INC $r$	

## One-Byte Instructions



Two-Byte instruction Three-Byte instruction
Figure 11. Instruction Formats

## Instruction Summary




Instruction Summary (Continued)

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C ZSVDH }}$
	dst src		
RLC dst $\square_{\text {ar }}$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	* * * * -
RR dst		$\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$	*
RRC dst		$\begin{aligned} & \mathrm{C} 0 \\ & \mathrm{Cl} \end{aligned}$	*
SBC dst,src   dst - dst - src-C	(Note 1)	$3 \square$	* * * * 1
$\begin{aligned} & \text { SCF } \\ & \mathrm{C}-1 \end{aligned}$		DF	1 - - -
SRA dst		$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	* * * 0 - -

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes $r$ (destination) and $\operatorname{Ir}$ (source) is 13.

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C ZSVDH}}$
	dst src		
$\begin{aligned} & \text { SRP src } \\ & \text { RP - src } \end{aligned}$	Im	31	- - - -
$\begin{aligned} & \text { SUB dst, src } \\ & \text { dst }-\mathrm{dst}-\mathrm{src} \end{aligned}$	(Note 1)	$2 \square$	* * * *
SWAP dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	X * * X - -
TCM dst,src   (NOT dst) AND src	(Note 1)	$6 \square$	- * * 0 -
TM dst, src dst AND src	(Note 1)	$7 \square$	- * * 0 -
XOR dst,src dst - dst XOR src	(Note 1)	B $\square$	- * * 0 - -


Addr Mode		Lower   Opcode Nibble
dst	src	
r	r	2
r	Ir	3
R	R	$\boxed{4}$
R	IR	5
R	IM	6
IR	IM	7

## 10 28671

## Registers

R240 SIO   Serial I/O Register ( $\mathrm{FO}_{\mathrm{H}}$; Read/Write)

## R241 TMR

Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}} ;$ Read/Write)
$\frac{D_{1}\left[D_{6}\left[D_{5} D_{4} D_{3}\left[D_{2}\right] D_{1}\left[D_{0}\right.\right.\right.}{}$
NOT TOUSED MODES
To OUT $=01$ rout $=01$ internal clock out $=11$
EXTERNAL CLOCK INPUTOT MODES
atar $=00$
GATE INPUT $=01$ (NON.RETAGGGEABBLE)
triggerinput $=11$
(RETRIGGERABLE)

## R242 T1

Counter Timer 1 Register
( $\mathrm{F}_{\mathrm{H}}$; Read/Write)


R243 PRE1
Prescaler 1 Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$



R244 T0
Counter/Timer 0 Register
( $\mathrm{F}_{\mathrm{H}}$; Read/Write)



R245 PREO
Prescaler 0 Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)
$D_{7}\left[D_{6} \mid D_{5}\left[D_{4}\left[D_{3}\left|D_{2}\right| D_{1} \mid D_{0}\right.\right.\right.$

COUNT MODE
$0=T_{0}$ SINGLE.PASS

RESERVED (MUST BE 0)

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

## R246 P2M

Port 2 Mode Register
( $\mathrm{F}_{\mathrm{H}}^{\mathrm{H}}$; Write Only)


R247 P3M
Port 3 Mode Register
( $\mathrm{F}_{\mathrm{H}} \mathrm{H}$; Write Only)



Figure 12. Control Registers

Registers (Continued)

R249 IPR
Interrupt Priority Register
( $\mathrm{F9}_{\mathrm{H}}$; Write Only)

IRQ1, IRQ4 PRIORITY (GROUP C) $0=$ IRQ1 $>$ IRQ4
$1=$ IRQ4 $>$ IRQ1 $\qquad$
RESERVED (MUST BE 0)
IRQ3, IRQ5 PRIORITY (GROUP A)
$0=\operatorname{IRQ5}>\operatorname{IRQa}^{2}$
$0=\operatorname{IRQ5}>\operatorname{IRQ3}$
$1=\mathrm{IRQ3}>\operatorname{IRQ5}$
IRQO, IRQ2 PRIORITY (GROUP B)
$0=I R Q 2>I R Q O$
$1=$ IRQ4 $>$ IRQ1


R252 FLAGS
Flag Register


R253 RP
Register Pointer
( $\mathrm{FD}_{\mathrm{H}}$; Read/Write)


R254 SHP

## Stack Pointer

( $\mathrm{FE}_{\mathrm{H}} ;$ Read/Write)


STACK POINTER UPPER BYTE ( $\mathrm{SP}_{8}-\mathrm{SP}_{15}$ )

R251 IMR   Interrupt Mask Register   ( $\mathrm{FB}_{\mathrm{H}}$; Read/Write)

Figure 12. Control Registers (Continued)

Opcode Map
Lower Nibble (Hex)


2-byte instruction; fetch cycle appears as a 3 -byte instruction

## Absolute Maximum Ratings

Voltage on all pins
with respect to GND . . . -0.3 V to +7.0 V
Operating Ambient
Temperature . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanet damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the
reference pin. Standard conditions are as follows:

- $+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$
- GND $=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leq+70^{\circ} \mathrm{C}$


Figure 15. TTL External Clock Interface Circuit
Figure 14. Test Load 2 (Both the clock and its complement are required)

DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$\mathrm{V}_{\mathrm{CH}}$	Clock input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{RL}}$	Reset Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\text {OH }}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{II}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{II}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IR}}$	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current			120	mA
$\mathrm{I}_{\text {MM }}$	V $_{\text {MM }}$ Supply Current			10	mA
$\mathrm{~V}_{\text {MM }}$	Backup Supply Voltage	3	$\mathrm{~V}_{\mathrm{CC}}$	V	Power Down Mode

External I/O or Memory Read/Write

No.		Parameter	Z8671		Notes ${ }^{*} \dagger$
	Symbol		Min	Max	
1	$\operatorname{TdA}$ (AS)	Address Valid to $\overline{A S} \uparrow$ Delay	50		1,2,3
2	TdAS(A)	$\overline{\overline{A S}} \uparrow$ to Address Float Delay	70		1,2,3
3	TdA(DS)	$\overline{\overline{A S}} \uparrow$ to Read Data Required Valid		360	1,2,3,4
4	TwAS	$\overline{\text { AS Low Width }}$	80		1,2,3
5	TdAz(DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		1
6	TwDSR-	- $\overline{\mathrm{DS}}$ (Read) Low Width	-250		1,2,3,4
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) low Width	160		1,2,3,4
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		200	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		1
10	TdDS(A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		1,2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		1,2,3
	-TdR/W(AS)-	R/ $/ \bar{W}$ Valid to $\overline{\text { AS }} \uparrow$ Delay	50		1,2,3
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to $\mathrm{R} / \overline{\mathrm{W}}$ Not Valid	60		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) $\downarrow$ Delay	50		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write data Not Valid Delay	70		1,2,3
16	TdA(DR)	Address valid to Read Data Required Valid		410	1,2,3,4
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		1,2,3

NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing references use 2.0 V for a logic " I " and 0.8 for a
logic " 0 ".

* All units in nanoseconds (ns).
$\dagger$ All timings are preliminary and subject to change.


Figure 15. External I/O or Memory Read/Write

## Additional Timing

No.	Symbol	Parameter	Z8671		Notes ${ }^{*} \dagger$
			Min	Max	
1	TpC	Input Clock Period	125	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25	1
3	TwC	Input Clock Width	37		1
4	TwTinL	Timer Input low Width	100		2
5	TwTinH-	-Timer Input High Width	$-3 \mathrm{TpC}$		2
6	TpTin	Timer Input Period	8 TpC		2
7	TrTin, TfTin	Timer input Rise And Fall Times		100	2
8 a	TwIL	Interrupt Request Input Low Time	100		2,3
8 b	TwIL	Interrupt Request Input Low Time	3 TpC		2,4
9	TwIH	Interrupt Request Input High Time	3 TpC		2,3

## NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V 3. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$.
for a logic "0"
Timing reference uses 2.0 V for a logic " 1 " and 0.8 V
2. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$.
for a logic "0"

* Units in nanoseconds (ns).
$\dagger$ All timings are preliminary and subject to change.


Figure 16. Additional Timing

## Memory Port Timing

No.	Symbol	Parameter	Min	Max
1	TdA(DI)	Address Valid to Data Input Delay		Notes $\dagger$
2	ThDI $\dagger$ A $)$	Data In Hold Time	0	1,2

## NOTES:

1. Test Load 2
2. This is a Clock-Cycle-Dependent parameter. For clock frequencies other than the maximum, use the following formula: $\mathrm{Z} 8671=5 \mathrm{TpC}-165 ;$ Z $8671-12=5 \mathrm{TpC}-95$

* Units are nanoseconds unless otherwise specified; timing are preliminary and subject to change.


Figure 17. Memory Port Timing

## Handshake Timing

			Z8671		Notes ${ }^{*} \dagger$
No.	Symbol	Parameter	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		
2	ThDI(DAV)	Data In Hold Time	230		
3	TwDAV	Data Available Widih	175		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY $\downarrow$ Delay		175	1,2
5	-TdDAVOf(RDY)	$\overline{\overline{D A V}} \downarrow$ Output to RDY $\downarrow$ Delay	0		1,3
6	TdDAVIr(RDY)	$\overline{\mathrm{DAV}} \uparrow$ Input to RDY $\uparrow$ Delay		175	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY $\uparrow$ Delay	0		1,3
8	TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}} \downarrow$ Delay	50		,
9	TdRDY(DAV)	Rdy $\downarrow$ input to $\overline{\text { DAV }} \uparrow$ Delay	0	200	1

## NOTES:

$\begin{array}{ll}\text { 1. Test load l } & \text { * Units in nanoseconds (ns). } \\ \text { 2. Input handshake } & \dagger \text { All timings are preliminary and subject to change. }\end{array}$
3. Output handshake
4. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".


Figure 17a. Input Handshake


Figure 17b. Output Handshake

## Clock-Cycle-Time-Dependent Characteristics

Number	Symbols	Z8671 Equation
1	TdA(AS)	TpC-75
2	TdAS(A)	TpC-55
3	TdAS(DR)	4TpC-140*
4	TwAS	TpC-45
6	TwDSR-	-3TpC-125*
7	TwDSW	2TpC-90*
8	TdDSR(DR)	3TpC-175*
10	$\mathrm{Td}(\mathrm{DS}) \mathrm{A}$	TpC-55
11	TdDS(AS)	TpC-55
12	-TdR/W(AS)	-TpC-75
13	TdDS(R/W)	TpC-65
14	TdDW(DSW)	TpC-75
15	TdDS(DW)	TpC-55
16	TdA(DR)	5TpC-215*
17	TdAS(DS)	TpC-45

[^2]
## Ordering Information

Type		Package	Temp.	Clock
Z8671	B1	Plastic	$0 /+70^{\circ} \mathrm{C}$	
Z8671	B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$	
Z8671	D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$	
Z8671	D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	
Z8671	Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	BASIC/Debug Interpreter
Z8671	C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$	
Z8671	K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	
Z8671	K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$	

## Z8 ROMless Microcomputer

- Complete microcomputer, 24 I/O lines, and up to 64 K bytes of addressable external space each for program and data memory.
- 143-byte register file, including 124 general-purpose registers, three I/O port registers, and 16 status and control registers.
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- On-chip oscillator that accepts crystal or external clock drive.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any one of the nine working-register groups.
- Low-power standby option that retains contents of general-purpose registers.
- Single +5 V power supply-all I/O pins TTL compatible.
- Available in 8 and 12 MHz versions.
- Low Power version:
- available 8 MHz
- current consumption 80 mA .


## General Description

The Z8681, Z8682 and Z8684 are ROMless versions of the Z 8 single-chip microcomputer. The Z8682/4 are usually more cost effective. These products differ only slightly and can be used interchangeably with proper system design to provide maximum flexibility in meeting price and delivery needs. The Z8681/2/4 offers all the oustanding features of the Z 8 family architecture except an on-chip program ROM. Use of external memory rather than a preprogrammed ROM enables this Z8 microcomputer to be used in low volume applications or where code flexibility is required.

The Z8681/2/4 can provide up to 16 output address lines, thus permitting an address space of up to 64 K bytes of data or program memory. Eight address outputs $\left(A D_{0}-A D_{7}\right)$ are provided by a multiplexed, 8 -bit, Address/Data bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits $A_{8}-A_{15}$.

Available address space can be doubled (up to 128 K bytes for the $\mathrm{Z} 8681,124 \mathrm{~K}$ bytes for the Z8682 and 120K bytes for the Z8684) by programming bit 4 of Port $3\left(\mathrm{P}_{4}\right)$ to act as a data memory select output (DM).

The two states of DM together with the 16 address outputs can define separate data and memory address spaces of up to $64 \mathrm{~K} / 62 \mathrm{~K} / 60 \mathrm{~K}$ bytes each.


Figure 1. Logic Function

## General Description (Continued)

There are 143 bytes of RAM located onchip and organized as a register file of 124 general-purpose registers, 16 control and status registers, and three I/O port registers. This register file can be divided into nine

Figure 2 $\alpha$. DIP Pin Configuration

groups of 16 working registers each.
Configuring the register file in this manner allows the use of short format instructions; in addition, any of the individual registers may be accessed directly.


Figure 2b. Chip Carrier Pin Configuration

## Architecture

Z8681/2/4 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8681/2/4 fulfills this with 24 pins available for input and output. These lines are grouped into three ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an Address bus for interfacing external memory.

Three basic address space are available: program memory, data memory and the register file (internal). The 143 -byte randomaccess register file is composed of 124 general-purpose registers, three I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

## Architecture (Continued)



Figure 3. Functional Block Diagram

## Pin Description

$\overline{\mathbf{A S}}$ Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port l for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$.
$\overline{\text { DS }}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P 0}_{\mathbf{0}} \mathbf{- P 0} \mathbf{7}$. I/O Port Lines (input/output, TTL compatible). 8 lines Nibble Programmable that can be configured under program control for I/O or external memory interface. $\mathbf{P 1}_{\mathbf{0}}-\mathbf{P 1}_{7}$. Address/Data Port (bidirectional). Multiplexed address ( $\mathrm{A}_{0}-\mathrm{A}_{7}$ ) and data ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) lines used to interface with program and data memory.
P20-P27. I/O Port Lines (input/output, TTL compatible). 8 lines Bit Programmable.

In addition they can be configured to provide open drain outputs.
$\mathrm{P}_{0}-\mathbf{P} 3_{4}$. Input Port Lines (TTL compatible). They can also configured as control lines. P3 ${ }_{5}$-P37. Output Port Lines (TTL compatible) They can also configured as control lines.
RESET.* Reset (input, active Low). $\overline{\text { RESET }}$ inizializes the Z8681/2/4. When RESET is deactivated, program execution begins from program location $000 \mathrm{C}_{\mathrm{H}}$ for the $\mathrm{Z} 8681,0812_{\mathrm{H}}$ for the Z8682 and 1012 H for the Z8684.
R/产. Read/Write (output). R/ $\overline{\mathrm{W}}$ il Low when the Z8681/2/4 is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (timebase input and output). These pins connect a parallel-resonant crystal to the on-chip clock oscillator and buffer.

Summary of Z8681, Z8682 and Z8684 Differences

Feature	Z8681	Z8682	Z8684
Address of first instruction executed after Reset	12	2066	4114
Adressable memory space	0-64K	2K-64K	4K-64K
Address of interrupt vectors	0-11	2048-2065	4096-4113
Reset input high voltage	TTL levels*	$7.35-8.0 \mathrm{~V}$	7.35-8.0V
Port 0 configuration after Reset	Input, float after reset. Can be programmed as Address bits.	Output, configured as Address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$	Output, configured as Address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$
External memory timing start-up configurations	Extended Timing	Normal Timing	Normal Timing
Interrupt vectors	2 byte vectors point directly to service routines	2 byte vectors in internal ROM point to 3 byte Jump instructions, which point to service routines.	2 byte vectors in internal ROM point to 3 byte Jump instructions, which point to service routines.
Interrupt response time	$26 \mu \mathrm{sec}$	$36 \mu \mathrm{sec}$	$36 \mu \mathrm{sec}$

* $8.0 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}$ max.


## Address Spaces

Program Memory.* The Z8681/2/4 addresses
$64 \mathrm{~K} / 62 \mathrm{~K} / 60 \mathrm{~K}$ bytes of external program memory space (Figure 4).

For the Z8681, the first 12 bytes of program memory are reserved for the interrupt vectors. These location contain six 16 -bit vectors that correspond to the six available interrupts. Program execution begins at location $000 \mathrm{C}_{\mathrm{H}}$ after a reset.

The $Z 8682$ has six 24 -bit interrupt vectors beginning at address $0800_{\mathrm{H}}$. The vectors consist of Jump Absolute instructions. After a reset, program execution begins at location 0812H for the Z8682.
The $Z 8684$ has six 24 bit interrupt vectors beginning at address $1000_{\mathrm{H}}$. The vectors consists of Jump Absolute instructions. After a reset, program execution begins at location 1012H for the Z8684.

Data Memory.* The Z8681/2/4 can address $64 \mathrm{~K} / 62 \mathrm{~K} / 60 \mathrm{~K}$ bytes of external data memory. External data memory may be included with
or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P} 3_{4}$, is used to distinguish between data and program memory space.

Register File. The 143-byte register file includes three I/O port registers (R0, R2, R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 5.

Z8681/2/4 instructions can access registers directly or indirectly with an 8 -bit address field. This also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine workingregister groups, each occupying 16 contiguous locations (Figure 5). The Register Pointer addresses the starting location of the active working-register group (Figure 6).

[^3]
## Address Spaces (Continued)

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which
can reside anywhere in data memory. An 8 -bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).


Figure 4. Z8681/2/4 Program Memory Map

Address Spaces (Continued)


Figure 5. The Register File


Figure 6. The Register Pointer

## Serial Input/Output

Port 3 lines $\mathrm{P}_{0}$ and $\mathrm{P} 3_{7}$ can be programmed as serial I/O lines for fullduplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits $/$ second at 8 MHz and 93.75 K bits/second at 12 MHz .

The Z8681/2/4 automatically adds a start bit and two stop bits to transmitted data (Figure 7). Odd parity is also available as an option.

Eight data bits are always transmitted, regardless of parity selection. If parity is enabled, the eighth data bit is used as the odd parity bit. An interrupt request $\left(\mathrm{IRQ}_{4}\right)$ is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $\mathrm{IRQ}_{3}$ interrupt request.

## Serial Input/Output (Continued)



## Transmitted Data

(With Parity)


## Received Data

(No Parity)


Received Data
(With Parity)


Figure 7. Serial Data Formats

## Counter/Timers

The Z8681/2/4 contains two 8-bit programmable counter/timers ( $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ ), each driven by its own 6 -bit programmable prescaler. The $T_{1}$ prescaler can be driven by internal or external clock sources; however, the $\mathrm{T}_{0}$ prescaler is driven by the internal clock only.
The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives is counter, which decrements the value ( 1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request $-\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}$ ( $\mathrm{T}_{1}$ ) - is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero
(single-pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for $\mathrm{T}_{1}$ is user-definable; it can be either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the $\mathrm{T}_{0}$ output to the input of $\mathrm{T}_{1}$. Port 3 line $\mathrm{P}_{6}$ also serves as a timer output ( $\mathrm{T}_{\text {OUT }}$ ) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

## I/O Ports

The Z8681/2/4 has 24 lines available for input and output. These lines are grouped into three ports of eight lines each and are configurable as input, output or address. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port $\mathbf{l}$ is a dedicated Z-BUS compatible memory interface. The operations of Port 1 are supported by the Address Strobe ( $\overline{\mathrm{AS}}$ ) and Data Strobe $(\overline{\mathrm{DS}})$ lines, and by the Read/Write ( $\mathrm{R} / \overline{\mathrm{W}}$ ) and Data Memory ( $\overline{\mathrm{DM} \text { ) }}$ control lines. The low-order program and data memory addresses ( $\mathrm{A}_{0}-\mathrm{A}_{7}$ ) are output through Port 1 (Figure 8) and are multiplexed with data in/out ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ). Instruction fetch and data memory read/write operations are done through this port.

Port 1 cannot be used as a register nor can a handshake mode be used with this port.
The Z Z8681, the Z8682 and the Z8684 wake up with the 8 bits of Port l configured as address outputs for external memory. If more than eight address line are required with the Z8681, additinal lines can be obtained by programming Port 0 bits as address bits. The least-significant four bits of Port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{11}$ for 4 K byte addressing or both nibbles of Port 0 can be configured to supply address bits $\mathrm{A}_{8}-\mathrm{A}_{15}$ for 64 K byte addressing.

Port 0* can be programmed as a nibble I/O port, or as an address port for interfacing external memory (Figure 9). When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{2}$ and $\mathrm{P}_{5}$ are used as the handshake controls $\mathrm{DAV}_{0}$ and RDY ${ }_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nubble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}$ - $A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibbles) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing.

In the Z8681*, Port 0 lines float after reset; their logic state is unknown until the execution of an initialization routine that configures Port 0 .

Such an initialization routine must reside within the first 256 bytes of executable code and must be physically mapped into memory by forcing the Port 0 address lines to a known state. See Figure 10. The proper Port initialization sequence is:

1. Write initial address $\left(A_{8}-A_{15}\right)$ of initialization routine to Port 0 address lines.
2. Configure Port 0 Mode Register to output $A_{8}-A_{15}$ (or $A_{8}-A_{11}$ ).
To permit the use of slow memory, an automatic wait mode of two oscillator clock cycles is configured for the bus timing of the Z8681 after each reset. The initialization


Figure 9. Port 0

[^4]I/O Ports (Continued)


Figure 10. Port 0 Address Lines Tied to Logic 0
routine could include reconfiguration to eliminate this extended timing mode.

The following example illustrates the manner in which an initialization routine can be mapped in a Z 8681 system with 4 K of memory.
Example. In Figure 10, the initialization routine is mapped to the first 256 bytes of program memory. Pull-down resistors maintain the address lines at a logic 0 level when these lines are floating. The leakage current caused by fanout must be taken into consideration when selecting the value of the pulldown resistors. The resistor value must be large enough to allow the Port 0 output driver to pull the line to a logic one.
Generally, pulldown resistors are incompatible with TTL loads. If Port 0 drives into TTL input loads ( $\mathrm{I}_{\mathrm{LOW}}=1.6 \mathrm{ma}$ ) the external resistors should be tied to $\mathrm{V}_{\mathrm{CC}}$ and the initialization routine put in address space $\mathrm{FFOO}_{\mathrm{H}}-\mathrm{FFFF}_{\mathrm{H}}$.

In the Z8682/4*, Port 0 lines are configured as address lines $\mathrm{A}_{8}$ - $\mathrm{A}_{15}$ after a Reset. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. The Z8682/4 is in the fast memory timing mode
after Reset, so the initialization routine must be in fast memory.

Port 2 bits can be programmed independently as input or output (Figure 11). This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Port 0, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $P 3_{1}$ and $P 3_{6}$ are used as the handshake controls lines DAV 2 and $\mathrm{RDY}_{2}$. The handshake signal assignment for Port 3 linses $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.


Figure 11. Port 2

[^5]
## I/O Ports (Continued)

Port 3 lines can be configured as I/O or control lines (Figure 12). In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P}_{7}\right)$. For serial I/O, lines $\mathrm{P}_{3}$ and $\mathrm{P}_{3}$ are programmed as serial in and serial out, respectively.

Port 3 can also provide the following control functions: handshake for Ports 0 and 2 ( $\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals ( $\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$ ); timer input and output signals ( $\mathrm{T}_{\mathrm{IN}}$ and TOUT) and Data


Figure 12. Port 3 Memory Select ( $\overline{\mathrm{DM}}$ ).

## Interrupts*

The Z8681/2/4 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z8681, Z8682 and Z8684 interrupts are vectored through locations in program memory. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all subsequent interrupts, saves the Program Counter and status flags, and access the program memory vector location reserved for that interrupt. In the Z8681, this memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request. The Z 8681 takes 26 system clock cycles to enter an interrupt subroutine.

The Z8682/4 have a small internal ROM that contains six 2-byte interrupt vectors pointing to addresses 2048-2065/4096-4114,
where 3-byte jump absolute instructions are located (See Figure 4). These jump instructions each contain a l-byte opcode and a 2 -byte starting address for the interrupt service routine. The Z8682/4 take 36 system clock cycles to enter an interrupt subroutine.

Z8682   Address   (Hex)	Z8684   (ddress   (Hex)	Contains Jump Instruction   and   Subroutine Address For
$800-802$	$1000-1002$	$\mathrm{IRQ}_{0}$
$803-805$	$1003-1005$	$\mathrm{IRQ}_{1}$
$806-808$	$1006-1008$	$\mathrm{IRQ}_{2}$
$809-80 \mathrm{~B}$	$1009-1000$	$\mathrm{IRQ}_{3}$
$80 \mathrm{C}-80 \mathrm{E}$	$100 \mathrm{C}-100 \mathrm{E}$	$\mathrm{IRQ}_{4}$
$80 \mathrm{~F}-811$	$100 \mathrm{~F}-1011$	$\mathrm{IRQ}_{5}$

Table 1. z8682/4 Interrupt Processing
Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

[^6]
## Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTALl = Input, XTAL2 = Output).

The crystal source is connected across XTALl and XTAL2, using the recommended capacitance ( $\mathrm{C}_{\mathrm{L}} \leqslant 15 \mathrm{pF}$ maximum) from

## Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available only to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $\mathrm{V}_{\mathrm{MM}}$ (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTALl) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file.
Figure 13 shows the recommended circuit for a battery back-up supply system.
each pin to ground. The specifications for the crystal are as follows:

- AT cut, parallel-resonant
- Series resistance, $R_{s} \leq 100 \Omega$
- For $\mathrm{Z} 8681 / 2 / 4$, Z868XL 8 MHz maximum
- For $\mathrm{Z} 8681 \mathrm{~A} / 2 \mathrm{~A} / 4 \mathrm{~A}, 12 \mathrm{MHz}$ maximum


Figure 13. Recommended Driver Circuit for Power-Down Operation

## Z8681/2/4 Interchangeability

Although the Z8681, Z8682 and Z8684 have minor differences, a system can be designed for compatibility with both ROMless versions. To achieve interchangeability, the design must take into account the special requirements of each device in the external interface, initialization, and memory mapping.
External Interface. The Z8682/4 requires a 7.5 V positive logic level on the RESET pin for at least 6 clock periods immediately following reset, as shown in Figure 14. The Z8681 requires a 3.8 V or higher positive logic level, but is compatible with the Z8682/4 RESET waveform. Figure 15 shows a simple circuit for generating the 7.5 V level.
Initialization. The Z8681 wakes up after reset with Port 0 configured as an input, which means Port 0 lines are floating in a high-impedance state. Because of this pullup or pulldow, resistors must be attached to Port 0 lines to force them to a valid logic level
until Port 0 is configured as an address port.
Port 0 initialization is discussed in the section on ports. An example of an initialization routine for Z8681/2/4 compatibility is shown in Table 2. Only the Z8681 need execute this program.


Figure 14. Z8682/4 $\overline{\text { RESET }}$ Pin Input Waveform

## Z8681/2/4 Interchangeability (Continued)



Figure 15. RESET Circuit


Figure 16a. Z8681/2 Logical Program Memory Mapping

Address	Opcodes	Instruction	Comments
000C	E6 0000	LD PO \# 00H	Set $A_{8}-A_{15}$ to 0
000F	E6 F8 96	LD P01M \# 96H	Configure Port 0 as $A_{8}-A_{15}$. Eliminate extended memory timing.
0012	8D 0812	JP START ADDRESS	Execute application program.

Table 2. Initialization Routine
Memory Mapping. The Z8681, Z8682 and Z8684 lower memory boundaries are located at 0,2048 and 4076 respectively. A single program ROM can be used with either product if the logical program memory map shown in Figure 16 is followed. The Z8681 vectors and initialization routine must be starting at address 0 and the Z8682/4 3-byte vectors (jump instructions) must be at address 2048/4096 and higher. Addresses in the range 21-2047/2l-4095 are not used. Figure 17 shows pratical schemes for implementing this memory map using 4 K and 2 K ROMs.


Figure 16b. Z8684 Logical Program Memory

## Z8681/Z8682/Z8684 Interchangeability (Continued)


a. Logical to Physical Memory Mapping for 4K ROM

b. Logical to Physical Memory Mapping for 2K ROM

Figure 17. Pratical Schemes for Implementing Z8681 and Z8682 Compatible Memory Map

## Instruction Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.


IMR Interrupt mask register (control register 251)
Assignment of a value is indicated by the symbol " $\leftarrow$ ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation addr( $n$ ) is used to refer to bit " $n$ of a dst (7)

Flags. Control Register R252 contains the following six arithmetic flags plus two user selectable flags:

Condition Codes

Value	Mnemonic	Meaning	Flags Set
1000		Always true	---
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	$[\mathrm{Z}$ OR (S XOR V $)$ ] $=0$
0010	LE	Less than or equal	$[\mathrm{Z} O R(S X O R V)]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{COR} \mathrm{Z})=1$
0000		Never true	---

## Instruction Formats



One-Byte Instruction


Figure 18. Instruction Formats

Instruction Summary

Instruction and Operation	$\frac{\text { Addr Mode }}{\text { det erc }}$	Opcode Byte (Hox)	$\frac{\text { Flags Affected }}{\text { C ZS VD H }}$
ADC dst,src   dst - dst + src +	(Note 1)	$1 \square$	* * * 0 *
ADD dst,src dst - dst + src	(Note 1)	$0 \square$	* * * 0 *
AND dst,src dst - dst AND src	(Note 1)	$5 \square$	-** 0 - -
CALL dst   SP - SP - 2   @SP - PC; PC -	$\begin{aligned} & \text { DA } \\ & \text { IRR } \\ & \text { lst } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	- - - -
$\begin{aligned} & \text { CCF } \\ & \mathrm{C}-\mathrm{NOT} \mathrm{C} \end{aligned}$		EF	* - - -
CLR dst $\mathrm{dst}-0$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & \mathrm{BO} \\ & \mathrm{B1} \end{aligned}$	- - -
COM dst dst - NOT dst	$\begin{gathered} \hline \mathrm{R} \\ \mathrm{IR} \\ \hline \end{gathered}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	-** 0 --
$\begin{aligned} & \text { CP dst, src } \\ & \text { dst - src } \end{aligned}$	(Note 1)	A-	* * * * -
$\begin{aligned} & \text { DA dst } \\ & \text { dst - DA dst } \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X - -
$\begin{aligned} & \text { DEC dst } \\ & d s t-d s t-1 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \text { IR } \end{gathered}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	- * * - -
DECW dst   dst - dst - 1	$\begin{aligned} & \text { RR } \\ & \text { IR } \end{aligned}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	-*** -
$\begin{aligned} & \mathrm{DI} \\ & \mathrm{IMR}(7)-0 \end{aligned}$		8 F	---
$\begin{aligned} & \text { DJNZ } r \text {, dst } \\ & r-r-1 \\ & \text { if } r \neq 0 \\ & \text { PC }-P C+d s t \\ & \text { Range: }+127,-128 \end{aligned}$	RA	$\begin{gathered} r A \\ r=0-F \end{gathered}$	- - - - -
$\begin{aligned} & \text { El } \\ & \operatorname{IMR}(7)-1 \end{aligned}$		9 F	------
$\begin{aligned} & \text { INC dst } \\ & d s t-d s t+1 \end{aligned}$	$\begin{gathered} \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{gathered} r \mathrm{E} \\ \mathrm{r}=0-\mathrm{F} \\ 20 \\ 21 \\ \hline \end{gathered}$	- ***
$\begin{aligned} & \text { INCW dst } \\ & \text { dst }- \text { dst }+1 \end{aligned}$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	- * * * - -
IRET   FLAGS - © SP; SP $\mathrm{PC}-@ \mathrm{SP} ; \mathrm{SP}-\mathrm{S}$	$\begin{aligned} & -\mathrm{SP}+1 \\ & \mathrm{P}+2 ; \mathrm{IMR}(7 \end{aligned}$	$\begin{array}{r} \mathrm{BF} \\ -1 \\ \hline \end{array}$	* * *
JP cc,dst if Cc is true PC - dst	DA IRR	$\begin{gathered} c D \\ c=0-F \\ 30 \end{gathered}$	- - - -
JR cc,dst   if cc is true,   PC - PC + dst   Range: $+127,-128$	RA	$\begin{gathered} c B \\ c=0-F \end{gathered}$	- - - - -


Instruction and Operation	Addr Mode		Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { CzSVDH}}$
	dst	src		
$\begin{aligned} & \text { LD dst, src } \\ & \text { dst }- \text { src } \end{aligned}$	r	Im	rC	- - - -
	$r$	R	r8	
	R	r	r9	
			$\mathrm{r}=0-\mathrm{F}$	
	r	X	C7	
	X	r	D7	
	r	Ir	E3	
	$1 r$		F3	
	R	R	E4	
	R	IR	E5	
	R	IM	E6	
	IR	IM	E7	
	IR	R	F5	
LDC dst,src   dst - sre	$\stackrel{\mathrm{r}}{\mathrm{I} r}$	$\mathrm{Irr}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{D} 2 \end{aligned}$	- - - -
$\begin{aligned} & \text { LDCI dst, src } \quad \text { Ir } \\ & \text { dst }-\mathrm{src} \\ & \mathrm{r}-\mathrm{r}+1 ; \mathrm{rr}-\mathrm{rr}+1 \end{aligned}$		$\underset{\mathrm{Ir}}{\mathrm{Ir}}$	$\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$	- - - -
LDE dst,src dst - src	$\stackrel{\mathrm{r}}{\mathrm{Irr}}$	Ir	$82$	- - - -
$\begin{aligned} & \text { LDEI dst, src } \quad \text { Ir } \\ & \text { dst } \mathrm{src} \\ & \mathrm{r}-\mathrm{r}+1 ; \mathrm{rr}-\mathrm{rr}+1 \end{aligned}$				- - - -
			93	
NOP			FF	----
OR dst, srcdst - dst OR src $\quad$ (Note 1)			$4 \square$	-** 0 - -
$\begin{aligned} & \text { POP dst } \\ & \text { dst }-@ \text { SP } \\ & S P-S P+1 \end{aligned}$			50	- - - -
			51	
PUSH src$S P-S P-1 ; @ S P-s r c$				
		$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	- - - - -
$\begin{aligned} & \text { RCF } \\ & \mathbf{C}-0 \\ & \hline \end{aligned}$			CF	$0 \ldots$
$\begin{aligned} & \mathrm{RET} \\ & \mathrm{PC}-@ S P ; S P-S P+2 \end{aligned}$			AF	- - -
RL dst $\square \square \mathrm{R}$			$\begin{aligned} & 90 \\ & 91 \end{aligned}$	* ***-
RLC dst			10	* * * *
			11	
RR dst $\square$			E0	* * * *
RRC dst				
			$\begin{aligned} & \mathrm{CO} \\ & \mathrm{Cl} \end{aligned}$	* * * - -
SBC dst,src   dst - dst - src-C	(Note 1)		$3 \square$	* ** * *
$\begin{aligned} & \text { SCF } \\ & C-1 \end{aligned}$			DF	1- - -
SRA dst $\square$ ar			$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	* * 0 - -

Instruction Summary (Continued)

Instruction and Operation	Addr Mode		Opcode Byte (Hox)	Flags Affected CZSVDH
	dat	$\pm{ }^{\text {arc }}$		
$\begin{aligned} & \text { SRP src } \\ & \text { RP - src } \end{aligned}$		Im	31	- - - -
$\begin{aligned} & \text { SUB dst, src } \\ & \text { dst - dst - src } \end{aligned}$	(Note 1)		$2 \square$	* * * *
SWAP dst	$\text { - } \begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$		$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	X * * X - -

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, to determine the opcode of an ADC instruction using the addressing modes $r$ (destination) and Ir (source) is 13.


## Registers



R240 SIO
Serial I/O Register
( $\mathrm{FO}_{\mathrm{H}}$; Read/Write)

$\square$ SERIAL DATA $\left(D_{0}=\right.$ LSB $)$

## R241 TMR

Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}}$; Read/Write)


R242 T1
Counter Timer 1 Register
( $\mathrm{F} 2_{\mathrm{H}}$; Read/Write)

## 



R244 TO
Counter/Timer 0 Register
( $\mathrm{F} 4_{\mathrm{H}}$; Read/Write)

To INITIAL VALUE (WHEN WRITTEN) RANGE: 1-256 DECIMAL 01-00 HEX) (RANGE: 1-258 DECIMAL 01-00 HEX)
$\mathrm{T}_{0}$ CURRENT VALUE (WHEN READ)

## R245 PRE0

Prescaler 0 Register
( $\mathrm{F} 5_{\mathrm{H}}$; Write Only)


R246 P2M
Port 2 Mode Register
(F6H; Write Only)


$\mathrm{P2}_{0}-\mathrm{P}_{2}$ YO DEFINITION
O DEFINES BIT AS OUTPUT 1 DEFINES BIT AS INPUT

R243 PRE1
Prescaler 1 Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)



R247 P3M
Port 3 Mode Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)


Figure 19. Control Registers

Registers (Continued)


R252 FLAGS
Flag Register
( $\mathrm{FC}_{\mathrm{H}}$; Read/Write)


-always extended timing after reset


## R250 IRQ

Interrupt Request Register
( $\mathrm{FA}_{\mathrm{H}}$; Read/Write)

| $D_{7}$ | $D_{3}$ | $D_{5}$ | $D_{4}$ | $D_{3}$ | $D_{2}$ | $D_{1}$ | $D_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

ROO $=\mathrm{P}_{3}$ INPUT $\left(\mathrm{D}_{0}=\operatorname{IRCO}\right)$ IRQ1 $=\mathrm{P}_{3}$ INPUT
IRG3 $=\mathrm{P}_{0}$ INPUT, SERIAL INPUT
IRO3 $=P_{3}$ INPUT, SEAIAL
IRO4 $=T_{0}$. SERIAL OUTPUT
IROA $=T_{0}$
IRO6 $=T_{1}$

R254 SPH
Stack Pointer
( $\mathrm{FE}_{\mathrm{H}}$; Read/Write)

STACK POINTER UPPER
BYTE (SP $\mathbf{S P}^{\left.-S P_{15}\right)}$

R255 SPL
Stack Pointer
( $\mathrm{FF}_{\mathrm{H}}$; Read/Write)


BYTE ( $\mathrm{SP}_{0}-\mathrm{SP}_{7}$ )

Figure 19. Control Registers (Continued)

## 28681/L 28684/L

Opcode Map
Lower Nibble (Hex)

	0

[^7]
## Absolute Maximum Ratings

Voltage on all pins* with respect to GND . . . -0.3 V to +7.0 V
Operating Ambient
Temperature . . . . . . . $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:


Figure 20. Test Load 1

■ $+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$

- GND $=0 \mathrm{~V}$
- $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for S (Standard temperature
- $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for E (Extended temperature


Figure 21. External Clock Interface Circuit

DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$\mathrm{V}_{\mathrm{CH}}$	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	See Note
$\mathrm{V}_{\mathrm{RL}}$	Reset Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\text {OH }}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IR}}$	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		120	mA	
			$80^{*}$		
$\mathrm{I}_{\text {MM }}$	$\mathrm{V}_{\text {MM }}$ Supply Current			10	mA
$\mathrm{~V}_{\text {MM }}$	Backup Supply Voltage	3	$\mathrm{~V}_{\mathrm{CC}}$	V	Power Down Mode

## NOTE:

The Reset line (pin 6) is used to place the $Z 8682$ in external memory mode. This is accomplished as shown in Figure 14

* This value is for $78681 \mathrm{~L} / 2 \mathrm{~L} / 4 \mathrm{~L}$ only.


## External I/O or Memory Read and Write Timing

No.	Symbol	Parameter	$\begin{array}{ll} \hline \text { Z8681/2/4 Z8681A/2A/4A } \\ \text { Z8681L/2L/4L } \end{array}$				
			Min	Max	Min	Max	Notes ${ }^{*} \dagger$
1	TdA(AS)	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		35		1,2,3
2	TdAS(A)	$\overline{\overline{A S}} \uparrow$ to Address Float Delay	70		45		1,2,3
3	TdAS(DR)	$\overline{\mathrm{AS}} \uparrow$ to Read Data Required Valid		360		220	1,2,3,4
4	TwAS	$\overline{\text { AS Low Width }}$	80		55		1,2,3
5	TdAz (DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		1
6	TwDSR-	- $\overline{\mathrm{DS}}$ (Read) Low Width	250		185		-1,2,3,4
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3,4
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		1
10	TdDS(A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		1,2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}}$ Delay	70		55		1,2,3
	-TdR/W(AS)	R/W Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		30		1,2,3
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R// $\overline{\mathrm{W}}$ Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) $\downarrow$ Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\text { AS }} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		1,2,3

## NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC
3. Also see clock cycle dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing reference use 2.0 V for logic " I " and 0.8 V for a logic " 0 ".

* All units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 22. External I/O or Memory Read/Write Timing

## Additional Timing Table

No.	Symbol	Parameter	$\begin{aligned} & \text { Z8681/2/4 Z8681A/2A/4A } \\ & \text { Z8681L/2L/4L } \end{aligned}$				
			Min	Max	Min	Max	Notes ${ }^{*} \dagger$
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Timer Input Low Width	100		70		2
	TwTinH-	-Timer Input High Width	-3TpC		3 TpC		2
	TpTin	Timer Input Period	TpC		TpC		2
7	TrTin, TfTin	Timer Input Rise And Fall Times	8	100	8	100	2
8	TwIL	Interrupt Request Input Low Time	100		70		2,3
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		2,3

NOTES:
l. Clock timing references uses 3.8 V for a logic " l " and 0.8 V for a logic " 0 "
2. Timing reference uses 2.0 V for a logic " l " and 0.8 V for a logic " 0 "
3. Interrupt request via Port 3 .

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change


Figure 23. Additional Timing

## Handshake Timing

No.	Symbol	Parameter	$\begin{aligned} & \text { Z8681/2/4 Z8681A/2A/4A } \\ & \text { Z8681L/2L/4L } \end{aligned}$				
			Min	Max	Min	Max	Notes ${ }^{*} \dagger$
1	TsDİ(DAV)	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY $\downarrow$ Delay		175		120	1,2
	-TdDAVOf(RDY)	$\overline{\text { DAV }} \downarrow$ Output to RDY $\downarrow$ Delay			0		1,3
6	TdDAVIr(RDY)	$\overline{\mathrm{DAV}} \uparrow$ Input to RDY $\uparrow$ Delay		175		120	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY $\uparrow$ Delay	0		0		1,3
8	TdDO(DAV)	Data Out to $\overline{\overline{D A V}} \downarrow$ Delay	50		30		1
9	TdRDY(DAV)	Rdy $\downarrow$ Input to $\overline{\text { DAV }} \uparrow$ Delay	0	200	0	140	1

## NOTES:

1. Test load 1

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.

2. Input handshake
3. Output handshake
4. All timing references use 2.0 V for a logic " I " and 0.8 V
for a logic " 0 ".


Figure 24a. Input Handshake Timing


Figure 24b. Output Handshake Timing

Clock-Cycle-Time-Dependent
Characteristics

Number	Symbols	28681/2/4   Z8681L/2L/4L   Equation	Z8681A/2A/4A   Equation
1	TdA (AS)	TpC-75	TpC-50
2	TdAS(A)	TpC-55	TpC-40
3	TdAS(DR)	$4 \mathrm{TpC}-140 *$	4TpC-110*
4	TwAS	TpC-45	TpC-30
6	TwDSR-	-3TpC-125*	-3TpC-65*
7	TwDSW	2TpC-90*	$2 \mathrm{TpC}-55 *$
8	TdDSR(DR)	3TpC-175*	$3 \mathrm{TpC-120*}$
10	$\mathrm{Td}(\mathrm{DS}$ )A	$\mathrm{TpC}-55$	TpC-40
11	TdDS(AS)	TpC-55	- TpC-30
12	TdR/W(AS) -	- $\mathrm{TpC}-75$	-TpC-55-
13	TdDS(R/W)	$\mathrm{TpC}-65$	TpC-50
14	TdDW(DSW)	TpC-75	TpC-50
15	TdDS(DW)	TpC-55	TpC-40
16	TdA(DR)	$5 \mathrm{TpC-215*}$	$5 \mathrm{TpC-160*}$
17	TdAS(DS)	TpC-45	TpC-30

* Add 2 TpC when using extended memory timing.

Ordering Information

Type		Package	Temp.	Clock	Description
Z8681/2/4	Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$	8 MHz	ROMless Microcomputer
Z8681/2/4	B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8681/2/4	D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8681/2/4	D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$		
Z8681/2/4	Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8681/2/4	C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8681/2/4	Kl	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8681/2/4	K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8681/2/4A	B1	Plastic	$0 /+70^{\circ} \mathrm{C}$		
Z8681/2/4A	B6	Plastic	$-40 /+85^{\circ} \mathrm{C}$		
Z8681/2/4A	Dl	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8681/2/4A	D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	12 MHz	
Z8681/2/4A	Cl	Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	12 MHz	
Z8681/2/4A	C6	Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8681/2/4A	K1	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8681/2/4A	K6	Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8681L/2L/4L	Bl	Plastic	$0 /+70^{\circ} \mathrm{C}$		ROMless Microcomputer
Z8681L/2L/4L		Plastic	$-40 /+85^{\circ} \mathrm{C}$		Low Power Version
Z8681L/2L/4L	Dl	Ceramic	$0 /+70^{\circ} \mathrm{C}$		
Z8681L/2L/4L	D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$	8 MHz	
Z8681L/2L/4L		Plastic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$	8 MHz	
Z8681L/2L/4L		Plastic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		
Z8681L/2L/4L	Kl	Ceramic Chip Carrier	$0 /+70^{\circ} \mathrm{C}$		
Z8681L/2L/4L		Ceramic Chip Carrier	$-40 /+85^{\circ} \mathrm{C}$		

## Z8 4K EPROM Microcomputer

- Complete microcomputer, 4 K bytes of EPROM, 128 bytes of RAMm 32 I/O lines, and up to 60 K bytes addressable external space each for program and data memory. Fully compatible with standard ROM version.
- l44-byte register file, including 124 general-registers, four I/O port registers, and 16 status and control registers.
- Minimum instruction execution time $1 \mu \mathrm{~s}$, at 12 MHz .
- Vectored priority interrupts for I/O, counter/timers, and UART.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any of nine working-register groups in $1.5 \mu \mathrm{~s}(8 \mathrm{MHz})$.
- On-chip oscillator which accepts crystal or external clock drive.
- Low-power standby option which retains contents of general-purpose registers.
- Single +5 V power supply - all pins TTL compatible.
- Two Eprom programming modes:
- Eprom-like, using a standard Eprom programmer,
- Autoprogram, self-programming during normal program execution.
- An on-chip ROM provides a Program/ Verify facility to allow a simple and time-efficient self-program operation.
- Integrated programmable protection avoids EPROM content read-out.

■ Available in 8 and 12 MHz versions.


Figure 2. Pin Configuration

## General Description

The Z86Ell microcomputer is an EPROM member of the Z8 family; completely developed by SGS, it maintains the sophisticated architecture and full compatibility with the currently available ROM-based units.

It can be configured as a stand-alone microcomputer with 4 K bytes of internal EPROM, or as a traditional microcomputer that manages up to 120 K bytes of external memory, or as a parallel-processing element in a system with other processors and peripheral controllers.

The $4 \mathrm{~K} \times 8$ on-board EPROM can be programmed in two modes, Eprom-like and Autoprogram. In Eprom-like, the programming procedure is similar to that for
a M2732, with the only exception being for the programming voltage which must be 12.5 V related to the SGS NMOS-E3 used technology. Autoprogram permits byteprogramming during normal microcomputer program execution.

An important facility is the programmable read-out protections which allow the user to inhibit external access to proprietory program code by programming 2 nonvolatile transistors. These locks can be reset only by erasing the entire EPROM array.

For its characteristics, the Z86E1l can be considered as a low cost development tool for the Z8 microcomputer family.

## Architecture

Z86Ell architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z86E1l fulfills this with 32 pins dedicated to input/output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, address/data bus for interfacing external memory, and address, data and selections in EPROM mode.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z86Ell can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 120 K bytes of external memory (Figure 3).

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file
(internal). The 144 -byte random-access register file is composed of 124 generalpurpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

An autoprogram logic permits Eprom byteprogramming during the normal microcomputer program execution, using the STORE constant isntruction.

This permits the microcomputer to look at the contents of the working register's register for an external RAM allocated to the program memory space, addressed using two of the register file registers. The renamed external RAM was expressly developed for the Autoprogram function, thus it is externally inaccessible.

## Z86E11

Architecture (Continued)


Figure 3. Block Diagram

## Pin Description

$\mathbf{P O}_{\mathbf{0}}-\mathbf{P} \mathbf{0}_{7}$. I/O Port Lines (input/outputs, TTL compatible). 8 lines Nibble Programmable that can be configured under program control for I/O or external memory interface and, $\mathrm{A}_{0}-\mathrm{A}_{7}$ in EPROM mode. $\mathrm{PO}_{7}$ can be configured as Read-out protection in memory expansion mode (PROTB), applying a high voltage level ( 10 V )
$\mathbf{P l}_{\mathbf{0}}-\mathbf{P l}_{\mathbf{7}} . I / O$ Port Lines (input/outputs, TTL compatible). 8 lines Byte Programmable that can be configured under program control for I/O or multiplexed address ( $A_{0}-A_{7}$ ) and data ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) lines used to interface with program/data memory, and $0_{0}-0_{7}$ in EPROM mode. $\mathrm{Pl}_{0}$ can be configured as Read-out
protection in Testing-mode and EPROMmode (PROTA), applying a high voltage level (10 V).
P20-P27. I/O Port Lines (input/outputs, TTL compatible). 8 lines Bit Programmable where the 4 less significant bits can be configured as $A_{8}-A_{11}$ in EPROM mode.
$\mathbf{P 3}_{\mathbf{0}}^{\mathbf{- P}} \mathbf{3}_{7}$. I/O Port Lines (TTL compatible) 4 lines input $\left(\mathrm{P}_{0}-\mathrm{P} 3_{3}\right), 4$ lines output $\left.\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. They can also be configured as control lines. In EPROM mode: P3 2 becomes EPM (Epromlike) when a high voltage level ( $\geqslant 7 \mathrm{~V}$ ) is applied, $\mathrm{P}_{3}$ becomes $\mathrm{V}_{\mathrm{pp}}(12.5 \mathrm{~V} \pm$ 300 mV ), $\mathrm{P}_{4}$ becomes $\overline{\mathrm{CE}}$ to perform program enable/verify. Z86E11

## Pin Description (Continued)

$\overline{\mathbf{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{A}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with ports 0 and 1, Data Strobe and Read/Write.
$\overline{\mathrm{DS}}$. Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.

initializes the Z86E1l. When $\overline{\mathrm{RESET}}$ is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output). R/W is Low when the Z86Ell is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (timebase input and output). These pins connect a series-resonant crystal ( 8 MHz maximum) or an external single-phase clock ( 8 MHz maximum) to the on-chip clock oscillator and buffer.

## Address Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 4096 bytes consist of on-chip EPROM. At addresses 4096 and greater, the Z86Ell executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The Z86Ell can address 60K bytes of external data memory beginning at locations 4096 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P}_{4}$, is used to distinguish between data and program memory space.

Register File. The 144 -byte register file includes four I/O port registers (R0-R3), 124 general-purpose registers (R4-R127) and 16
control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Z86E1l instructions can access registers directly or indirectly with an 8-bit address field. The Z86Ell also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active workingregister group.
Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 4096 and 65535 . An 8 -bit Stack Pointer (R255) is used for the internal stack that resides within the 124 generalpurpose registers (R4-Rl27).

## Address Spaces (Continued)



Figure 4. Program Memory Map

LOCATION		IDENTIFIERS
255	STACK POINTER (BITS 7-0)	SPL
254	STACK POINTER (BITS 15-8)	SPH
253	REGISTER POINTER	RP
252	PROGRAM CONTROL FLAGS	FLAGS
251	INTERRUPT MASK REGISTER	IMR
250 .	INTERRUPT REQUEST REGISTER	IRQ
249	INTERRUPT PRIORITY REGISTER	IPR
248	PORTS 0-1 MODE	P01M
247	PORT 3 MODE	P3M
246	PORT 2 MODE	P2M
245	TO PRESCALER	PREO
244	TIMER/COUNTER 0	T0
243	T1 PRESCALER	PRE1
242	TIMER/COUNTER 1	T1
241	TIMER MODE	TMR
240	SERIAL I/O	SIO
	NOT IMPLEMENTED	
127		
	GENERAL-PURPOSE REGISTERS	
4		
3	PORT 3	P3
2	PORT 2	P2
1		
0	PORT 0	PO

Figure 6. The Register File


Figure 5. Data Memory Map


Figure 7. The Register Pointer

## Serial Input/Output

Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P}_{7}$ can be programmed as serial I/O lines for fullduplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits $/$ second.

The Z86Ell automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted,

regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request ( $\mathrm{IRQ}_{4}$ ) is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $I R Q_{3}$ interrupt request.

Received Data
(No Parity)


Received Data
(With Parity)


Figure 8. Serial Data Formats

## Counter/Timers

The Z86Ell contains two 8-bit programmable counter/timers ( $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ ), each driven by its own 6-bit programmable prescaler. The $\mathrm{T}_{1}$ prescaler can be driven by internal ox external clock sources; however, the $T_{0}$ prescaler is driven by the internal clock only.

The 6 -bit prescaler can divide the input frequency of the clock source by any number from 1 to 64 . Each prescaler drives its counter, which decrements the value ( 1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $-\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}$ ( $\mathrm{T}_{1}$ )-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload
the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for $T_{1}$ is user-definable and can be the internal microprocessor clock ( 4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock ( 1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascated by connecting the $T_{0}$ output to the input of $T_{1}$. Port 3 line $\mathrm{P}_{6}$ also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

## I/O Ports

The Z86E1l has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/ data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.
All the ports assume different configurations in EPROM mode.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port l may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P} 3_{3}$ and $\mathrm{P} 3_{4}$ are used as the handshake contols RDY 1 and $\overline{\mathrm{DAV}}_{1}$ (Ready and Data Available).

Memory locations greater than 4096 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/ Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port l can be placed in the highimpedance state along with Port 0, $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the Z86Ell to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning $\mathrm{P}_{3}$ as a Bus Acknowledge input and $\mathrm{P}_{4}$ as a Bus Request output.


Figure 9a. Port 1
Port $\mathbf{0}$ can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines
lines $\mathrm{P}_{2}$ and $\mathrm{P} 3_{5}$ are used as the handshake controls $\overline{\mathrm{A}}_{0}$ and $\mathrm{RDY}_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}$, $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.


Figure 9b. Port 0
Port 2 bits can be programmed independently as input or output. This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{1}$ and $\mathrm{P}_{6}$ are used as the handshake controls lines $\overline{D A V}_{2}$ and $\mathrm{RDY}_{2}$. The handshake signal assignment for Port 3 lines $\mathrm{P}_{1}$ and $\mathrm{P} 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.


Figure 9c. Port 2

## I/O Ports (Continued)

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{3}-\mathrm{P}_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0, 1 and 2 ( $\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals ( $\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$ ); timer input and output signals ( $\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\mathrm{OUT}}$ ) and Data Memory Select (DM).


Figure 9d. Port 3

## Interrupts

The Z86Ell allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{3}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z86Ell interrupts are vectored. When an interrupt request is granted, and interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

## Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTAL1 = Input, XTAL2 = Output).

The crystal source is connected across XTALl and XTAL2, using the recommended capacitors ( $\mathrm{C}_{1} \leqslant 15 \mathrm{pF}$ ) from each pin to
ground. The specifications for the crystal are as follows:

- AT cut, series resonant
- Fundamental types, $8 / 12 \mathrm{MHz}$ maximum
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$.


## Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $\mathrm{V}_{\mathrm{MM}}$ (standby) power supply input. This necessitates the use of an external clock generator (input $=\mathrm{XTALl}$ ) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 10 shows the recommended circuit for a battery back-up supply system.


Figure 10. Recommended Driver Circuit for Power Down Operation

## EPROM Mode

Eprom-like programming. In this mode, the microcomputer memory is programmed, using a standard Eprom Programmer, with the same procedure as for our M2732 (32K EPROM). This has been made possible by the following Z86Ell configuration, where $\mathrm{Pl}_{0}-\mathrm{Pl}_{7}$ are used as 8 -bit I/O data ( $0_{0}-\mathrm{O}_{7}$ ), $\mathrm{P}_{0}-\mathrm{PO}_{7}$ and $\mathrm{P}_{2}-\mathrm{P} 2_{3}$ are used as 12 -bit Addresses ( $A_{0}-A_{11}$ ); the microcomputer must be in Reset state, forcing the related pin to GND, and the clock must be active for the complete operation.

Three other pins are available for that purpose: the EPM pin on port $\mathrm{P}_{2}$, which allows the microcomputer to recognize the Eprom-like condition when a high voltage ( $\geqslant 7 \mathrm{~V}$ ) is applied; the $\mathrm{V}_{\mathrm{PP}}$ pin on port $\mathrm{P}_{3}$, which is used to furnish programming voltage fixed on $12.5 \mathrm{~V} \pm 300 \mathrm{mV}$; and the $\overline{\mathrm{CE}}$ pin on port $\mathrm{P} 3_{4}$, which is used to perform program enable/verify.

For a correct microcomputer set-up the $\mathrm{V}_{\mathrm{CC}}$ must be applied at least 100 ms before the programming procedure starting (Figure 11).

A simple interface board, described in Figure 12, allows programming to be carried out through use of a standard Epromprogrammer.


Figure 11. Set-up Waveforms


Figure 12. EPROM Programmer Interface Board Z86E11

EPROM Mode (Continued)
Autoprogramming. This mode permits programming one byte of the on-chip Eprom during normal microcomputer program execution. The instruction to be used is the Load Constant LCD @RR1,R2 (operating code D2).

This instruction allows the standard $\mathrm{Z8}$ to load the contents of the working register to an external RAM memory allocated in the program memory space, addressed by a working register pair. The Z86Ell uses this instruction also to program the 4 K bytes onchip Eprom.

Addressing one of the on-chip Eprom bytes, using this instruction, the programming operation takes place when an high voltage level on the $\mathrm{V}_{\mathrm{PP}}$ pin ( $12.5 \mathrm{~V} \pm$ 300 mV ) is applied.

In this case, both the address and the data memory are internally stored for the necessary programming time, where the time is defined by the execution of 1024 NOP operations ( 1 NOP operation $=12$ clock pulses). The programming time is contained between 1 ms ( 12 MHz clock) and 12 ms ( l MHz clock).

As just mentioned, during this time, the CPU is internally forced to execute NOP instructions (operating code FF), while a RET instruction (operating code AF) is automatically executed at the end of programming.

For a correct program, restart is necessary to save the address of the Load Constant (LDC) next instruction in the Stack. This can be done by loading into the Stack the return address calling a Subroutine like follow, where, to permit a correct return to the main program, it is necessary to disable the interrupt before LDC execution.

	DI   CALL WRITE   EI
WRITE	$\underset{\text { RET }}{\text { LDC }} @$ RR1,R2

Programming Facility. The most flexible way for on-chip Eprom programming is, as
we know, the use of a standard Epromprogrammer, selecting the Eprom-like facility, and using an appropriate interface board (Figure 12).

If, however, the planned operation is only a particular memory loading into the on-chip Eprom, it is possible to perform this operation in a much simpler way, using a board which allows the Z86Ell to read and load the renamed particular memory, using the autoloading procedure.
The software required for this operation is stored in the Z86E1l Test-memory (inaccessible). Figure 13 shows the autoloading program flow-chart.

When the microcomputer is forced in Test mode by applying a high voltage level ( $\geqslant 7 \mathrm{~V}$ ) on the Reset pin, ports P0 and Pl are configured as Address/Data to access the external memories.
At this point, a test on port P2 is executed to decide if the on-chip Eprom autoloading is to be executed. This facility is accessed by forcing the values $40_{\mathrm{H}}$ or $41_{\mathrm{H}}$ on port P 2 to execute, respectively, the Verify or Autoloading routine.

Consequently, the registers required for the operation are initialized, the data to be compared or stored is read, and the routine chosen is executed.
The Autoloading routine is an intelligent programming which executes a number of overwriting cycles equal to three times the number of programming cycles required to perform a correct byte programming (up to a maximum of 25). In this way, the on-chip Eprom programming time is optimized and equal to 25 sec . with an 8 MHz clock.

The verify routine is simply a byte-byte comparison between the external memory and the on-chip Eprom.
A possible failure, whether in Autoloading or Verify, produces a High logical level forced on P 37 . Similarly, when the operation is finished, the positive conclusion is underlined, bringing $\mathrm{P}_{5}$ High. An Autoloading/Verify Board diagram is shown in Figure 14, where the VPP line control is necessary to not allow high voltage into the device when it has not yet been supplied.

EPROM Mode (Continued)


Figure 13. Autoloading Flow Chart

## EPROM Mode (Continued)



Figure 14. Autoloading/Verify Board

Memory Read-Out Protection. The protection, once activated, blocks reading memory content. Such reading can be carried out in two ways:

1. Entering Test Mode you can execute an external memory program which allows the on-chip Eprom reading through LOAD instructions execution.
2. Entering Eprom-like Mode, using the Verify facility.

Programming the first protection bit blocks reading in these two conditions (PROTA on port $\mathrm{Pl}_{0}$ ).

Another protection bit (PROTB on port $\mathrm{PO}_{7}$ ) can be activated when the Z86Ell is in external memory configuration.
This protection prevents software
manipulation of the external memory from who decides to read the on-chip memory content for a complete understanding of the user application board.
When the Z86Ell works in external memory facility the ports PO and Pl are configurated as Address/Data bus, so that the external memory instructions can be executed during the normal microcomputer operation. These instructions can be also an appropriate routine able to pull out the all on-chip memory content using LOAD instructions. When the protection is activated, each reading attempt of the internal memory content, using LOAD instructions, is vainificated because the data out will be always " $\mathrm{FF}^{\prime}$ ".

EPROM Mode (Continued)
In consequence this protection activation inhibit the LOAD instructions execution from external to internal memory. To overcome this problem is necessary to call a "READ" routine written in on on-chip memory space.

The protections are activated by programming 2 non-volatile transistors simply forcing 10 V for a time more than 100 ms on the desired pin, on condition that the microcomputer is in Reset state, the Clock signal is present and the EPM pin is not set.

If a complete protection is desired, both protections must be programmed.
A simple board diagram for read-out protection activation is shown in Figure 15.


Figure 15. Read-out Protection Activation Diagram

## Instruction Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.
IRR Indirect register pair or indirect workingregister pair address
Irr Indirect working-register pair only
$\mathbf{X} \quad$ Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)

IMR Interrupt mask register (control register 251) Assignment of a value is indicated by the symbol " $\leftarrow$ ". For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr $(\mathrm{n})$ " is used to refer to bit " n " of a given location. For example, dst (7) refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six flags:

C	C	$\mathrm{b}_{7}$				$\mathrm{b}_{0}$		
Z	Zero flag	c z	S	V	D	H		
S	Sign flag							
V	Overflow flag							
D	Decimal-adjust Half-carry flag				F2			er flags

Affected flags are indicated by:
0 Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected
$\times \quad$ Undefined

Condition Codes

Value	Mneomonic	Meaning	Flags Set
1000		Alwäys true	$\ldots$
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	[Z OR (S XOR V)] $=0$
0010	LE	Less than or equal	[Z OR (S XOR V)] = 1
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	( $\mathrm{C}=0$ AND $\mathrm{Z}=0$ ) $=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{C} O R \mathrm{Z})=1$
0000		Never true	$\cdots$

## Instruction Formats



CCF, DI, EI, IRET, NOP RCF, RET, SCF

INC r

## One-Byte Instruction



Two-Byte instruction
Three-Byte instruction

Figure 16. Instruction Formats

## Instruction Summary



Instruction and Operation	Addr Mode		Opcode Byte   (Hex)	$\frac{\text { Flags Affected }}{\text { C } 2 S V D H}$
	dst	src		
LD dst,src   dst - src	r	Im	rC	- - -
	r	R	r8	
	R	r	r9	
			$\mathrm{r}=0-\mathrm{F}$	
	r	X	C7	
	X	r	D7	
	r	Ir	E3	
	Ir	r	F3	
	R	R	E4	
	R	IR	E5	
	R	Im	E6	
	IR	Im	E7	
	IR	R	F5	
LDC dst,src   dst - src	r	Irr	C2	- - - -
	Irr	r	D2	
LDCI dst,src   dst - src   $\mathrm{r}-\mathrm{r}+1 ; \mathrm{rr}-\mathrm{rr}+1$		Irr	C3	- - - -
		Ir	D3	
LDE dst,src dst - src	r	Irr	82	- - - - -
	Irr	r	92	
			83	- - -
			93	
NOP			FF	- - -
OR dst, srcdst -dst OR src (Note 1)			4■	- * * 0 - -
$\begin{aligned} & \text { POP dst } \\ & \text { dst }-@ S P \\ & S P-S P+1 \end{aligned}$			50	- - -
			51	
PUSH src$S P-S P-1 ; @ S P-\operatorname{src}$		R	70	- - -
		IR	71	
$\begin{aligned} & \mathrm{RCF} \\ & \mathrm{C}-0 \end{aligned}$			CF	0-. - -
$\begin{aligned} & \text { RET } \\ & \mathrm{PC}-@ S P ; S P-S P+2 \end{aligned}$			AF	- - -
RL dst			90	* * * * - -
RLC dst			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	* * * * - -
RR dst			$\begin{aligned} & \text { EO } \\ & \text { E1 } \end{aligned}$	* * * * - -
RRC dst			$\begin{aligned} & \mathrm{CO} \\ & \mathrm{Cl} \end{aligned}$	* * * * -
SBC dst,src   dst - dst - src - C			$3 \square$	* * * * 1 *
$\begin{aligned} & \mathbf{S C F} \\ & C-1 \end{aligned}$			DF	1----
SRA dst $\sqrt{15}$$\square$ $\stackrel{R}{\mathrm{R}}$			$\begin{aligned} & \text { D0 } \\ & \text { D1 } \end{aligned}$	* * * 0 - -

## Instruction Summary (Continued)

Instruction and Operation	Addr Mode		Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { CZSVDH }}$
	dst	sre		
$\begin{aligned} & \text { SRP src } \\ & \text { RP }- \text { src } \end{aligned}$		Im	31	- - - - -
SUB dst,src dst - dst - src	(Not		$2 \square$	* * * * 1
SWAP dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	X * * X - -

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the addressing modes $r$ (destination) and $\operatorname{Ir}$ (source) is 13 .

Addr Mode		Lower Opcode Nibble
dst	src	
r	r	[2]
r	Ir	3
R	R	[4]
R	IR	5
R	IM	6
IR	IM	[7]

Z86E11

## Registers



## R241 TMR

Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}}$; Read/Write)


## R242 Tl

Counter Timer 1 Register
( $\mathrm{F} 2_{\mathrm{H}}$; Read/Write)

T, INITIAL VALUE (WHEN WRITTEN)
(RANGE 1256 DECIMAL 01 OO HEX)
T, CURENT VALUE (WHEN READ)

## R243 PRE1

Prescaler 1 Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$



R244 T0
Counter/Timer 0 Register
( $\mathrm{F}_{4}$ H; Read/Write)


TO INITIAL VALUE (WHEN WRITTEN) (RANGE: 1256 DECIMAL $01 \cdot 00$ HEX)
$T_{0}$ CURRENT VALUE (WHEN READ)

## R245 PREO

## Prescaler 0 Register

( $\mathrm{F} 5_{\mathrm{H}}$; Write Only)


COUNT MODE
$0=T_{0}$ SINGLE.PASS
$1=T_{0}$ MODULOAS
TR

PRESCALER MODULO
(RANGE: 1-64 DECIMAL 01-00 HEX)

R246 P2M
Port 2 Mode Register
(F6H; Write Only)

P2 ${ }_{0}$ - P2, UO DEFINITION 0 DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

## R247 P3M

Port 3 Mode Register
( $\mathrm{F} 7_{\mathrm{H}}$; Write Only)



Figure 17. Control Registers

Registers (Continued)


Figure 17. Control Registers (Continued)

## Opcode Map

Lower Nibble (Hex)


[^8]
## Absolute Maximum Ratings

Voltages on all pins with respect to GND ........ -0.3 V to +7.0 V
Operating Ambient Temperature $\qquad$ $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature

$$
\ldots . . .-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:


$$
\begin{aligned}
& \square+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\
& \square \mathrm{GND}=0 \mathrm{~V} \\
& \square 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}
\end{aligned}
$$

Figure 18. Test Load 1

Figure 19. Test Load 2


## DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$\mathrm{V}_{\mathrm{CH}}$	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{RL}}$	Reset Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IR}}$	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		120	mA	
$\mathrm{I}_{\mathrm{MM}}$	$\mathrm{V}_{\mathrm{MM}}$ Supply Current		10	mA	Power Down Mode
$\mathrm{V}_{\mathrm{MM}}$	Backup Supply Voltage	3	$\mathrm{~V}_{\mathrm{CC}}$	V	Power Down

## External I/O or Memory Read and Write Timing

No	Symbol	Paramter	Z86E11		Z86E11A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TdA(AS)	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		35		1,2,3
2	TdAS(A)	$\overline{\mathrm{AS}} \uparrow$ to Address Float Dealy	70		45		1,2,3
3	TdAS(DR)	$\overline{\overline{A S}} \uparrow$ to Read Data Required Valid		360		220	1,2,3,4
4	TwAS	$\overline{\text { AS Low Width }}$	80		55		1,2,3
5	Td Az (DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		1
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3,4
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		200		130	, 1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		1
10	TdDS(A)	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		1,2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		1,2,3
$12 \ldots \mathrm{TdR} / \mathrm{W}(\mathrm{AS}) \ldots \mathrm{R} / \overline{\mathrm{W}}$ Valid to $\overline{\mathrm{AS}} \uparrow$ Delay							
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R/W Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) $\downarrow$ Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		1,2,3

## NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC.
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing references use 2.0 V for a logic " l " and 0.8 V for a logic " 0 ".

* All units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 21. External I/O or Memory Read/Write

## Additional Timing Table

No	Symbol	Paramter	Z86E11		Z86E11A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Timer Input Low Width	100		70		2
	TwTinH-	Timer Input High Width	3 TpC		-3TpC		2
6	TpTin	Timer Input Period	8 TpC		8 TpC		2
7	TrTin, TfTin	Timer Input Rise And Fall Times		100		100	2
8 a	TwIL	Interrupt Request Input Low Time	100		70		2,3
8b	TwIL	Interrupt Request Input Low Time	3 TpC		3 TpC		2,3
9	TwIH	Interrupt Request Input High Time	3 TpC		3TpC		2,3

## NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for a logic "0".
3. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$.
4. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$.

Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 22. Additional Timing

## Handshake Timing

No	Symbol	Paramter	Z86E11		Z86E11A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY $\downarrow$ Delay		175		120	1,2
5	-TdDAVOf(RDY)	$\overline{\text { DAV }} \downarrow$ Output to RDY $\downarrow$ Delay-	-0		-0		-1,3
6	TdDAVIr(RDY)	$\overline{\text { DAV }} \uparrow$ Input to RDY $\uparrow$ Delay		175		120	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY $\uparrow$ Delay	0		0		1,3
8	TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}} \downarrow$ Delay	50		30		1
9	TdRDY(DAV)	Rdy $\downarrow$ Input to DAV $\uparrow$ Delay	0	200	0	140	1

## NOTES:

1. Test Load 1
2. Input handshake
3. Output handshake
4. All timing regerences use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* Units in nanoseconds (ns)
$\dagger$ Timings are preliminary and subject to change.


Figure 23a. Input Handshake


Figure 23b. Output Handshake

## Clock-Cycle-Time-Dependent Characteristics

Number	Symbol	Z86E11   Equation	Z86E11A   Equation
1	Td ( AS )	$\mathrm{TpC-75}$	$\mathrm{TpC-50}$
2	TdAS(A)	TpC-55	TpC-40
3	TdAS(DR)	$4 \mathrm{TpC}-140 *$	$4 \mathrm{TpC-110*}$
4	TwAS	TpC-45	TpC-30
6	TwDSR-	$-3 \mathrm{TpC-125*}$	$-3 \mathrm{TpC}-65 *$
7	TwDSW	$2 \mathrm{TpC}-90 *$	$2 \mathrm{TpC-55*}$
8	TdDSR(DR)	$3 \mathrm{TpC-175*}$	$3 \mathrm{TpC-120*}$
10	Td(DS)A	TpC-55	TpC-40
11	TdDS(AS)	TpC-55	TpC-30
12	TdR/W(AS)	TpC-75-	TpC-55-
13	TdDS(R/W)	TpC-65	TpC-50
14	TdDW(DSW)	TpC-75	TpC-50
15	TdDS(DW)	TpC-55	TpC-40
16	TdA(DR)	$5 \mathrm{TpC-215*}$	$5 \mathrm{TpC-160*}$
17	TdAS(DS)	TpC-45	TpC-30

* Add 2 TpC when using extended memory timing.


## Ordering Information

Type		Package	Temp.	Clock	Description
Z86E11	D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$	8 MHz	4K EPROM Microcomputer
Z86E11	D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$		
Z86E11A		Ceramic	$0 /+70^{\circ} \mathrm{C}$	N	
Z86E11A		Ceramic	$-40 /+85^{\circ} \mathrm{C}$	MHz	

## Z8 8K EPROM Microcomputer

- Complete microcomputer, 4 K bytes of EPROM, 240 bytes of RAMm 32 I/O lines, and up to 56 K bytes addressable external space each for program and data memory. Fully compatible with standard ROM version.
- 256-byte register file, including 236 general-registers, four I/O port registers, and 16 status and control registers.
- Minimum instruction execution time $1 \mu \mathrm{~s}$ at 12 MHz .
- Vectored priority interrupts for I/O, counter/timers, and UART.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any of nine working-register groups in $1.5 \mu \mathrm{~s}(8 \mathrm{MHz})$.
- On-chip oscillator which accepts crystal or external clock drive.
- Low-power standby option which retains contents of general-purpose registers.
- Single +5 V power supply - all pins TTL compatible.
- Two Eprom programming modes:
- Eprom-like, using a standard Eprom programmer,
- Autoprogram, self-programming during normal program execution.
- An on-chip ROM provides a Program/ Verify facility to allow a simple and time-efficient self-program operation.
- Integrated programmable protection avoids EPROM content read-out.
- Available in 8 and 12 MHz versions.


Figure 1. Logic Functions


Figure 2. Pin Configuration

Z86E21

## General Description

The Z86E21 microcomputer is an EPROM member of the Z8 family; completely developed by SGS, it maintains the sophisticated architecture and full compatibility with the currently available ROM-based units.

It can be configured as a stand-alone microcomputer with 8 K bytes of internal EPROM, or as a traditional microcomputer that manages up to 112 K bytes of external memory, or as a parallel-processing element in a system with other processors and peripheral controllers.

The $8 \mathrm{~K} \times 8$ on-board EPROM can be programmed in two modes, Eprom-like and Autoprogram. In Eprom-like, the programming procedure is similar to that for
a M2764, with the only exception being for the programming voltage which must be 12.5 V related to the SGS NMOS-E3 used technology. Autoprogram permits byteprogramming during normal microcomputer program execution.

An important facility is the programmable read-out protections which allow the user to inhibit external access to proprietory program code by programming 2 nonvolatile transistors. These locks can be reset only by erasing the entire EPROM array.

For its characteristics, the Z86E21 can be considered as a low cost development tool for the Z8 microcomputer family.

## Architecture

Z86E21 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z86E21 fulfills this with 32 pins dedicated to input/output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, address/data bus for interfacing external memory, and address, data and selections in EPROM mode.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z86E2l can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a microprocessor that can address 112 K bytes of external memory (Figure 3).

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file
(internal). The 256 -byte random-access register file is composed of 236 generalpurpose registers, four I/O port registers, and 16 control and status registers.
To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of user-selectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

An autoprogram logic permits Eprom byteprogramming during the normal microcomputer program execution, using the STORE constant isntruction.
This permits the microcomputer to look at the contents of the working register's register for an external RAM allocated to the program memory space, addressed using two of the register file registers. The renamed external RAM was expressly developed for the Autoprogram function, thus it is externally inaccessible.

Architecture (Continued)


Figure 3. Block Diagram

## Pin Description

$\mathbf{P O}_{\mathbf{0}}-\mathbf{P} \mathbf{0 7}_{7}$. I/O Port Lines (input/outputs, TTL compatible). 8 lines Nibble Programmable that can be configured under program control for I/O or external memory interface and, $\mathrm{A}_{0}-\mathrm{A}_{7}$ in EPROM mode. $\mathrm{PO}_{7}$ can be configured as Read-out protection in memory expansion mode (PROTB), applying a high voltage level ( 10 V )
$\mathbf{P l}_{\mathbf{0}}-\mathrm{Pl}_{7}$. I/O Port Lines (input/outputs, TTL compatible). 8 lines Byte Programmable that can be configured under program control for I/O or multiplexed address ( $A_{0}-A_{7}$ ) and data ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) lines used to interface with program/data memory, and $0_{0}-0_{7}$ in EPROM mode. $\mathrm{Pl}_{0}$ can be configured as Read-out
protection in Testing-mode and EPROMmode (PROTA), applying a high voltage level (10 V).
P20-P27. I/O Port Lines (input/outputs, TTL compatible). 8 lines Bit Programmable where the 4 less significant bits can be configured as $A_{8}-A_{11}$ in EPROM mode.
P30-P37. I/O Port Lines (TTL compatible) 4 lines input $\left(\mathrm{P}_{3}-\mathrm{P} 3_{3}\right)$, 4 lines output $\mathrm{P}_{4}-\mathrm{P}_{7}$ ). They can also be configured as control lines. In EPROM mode: $\mathrm{P}_{2}$ becomes EPM (Epromlike) when a high voltage level ( $\geqslant 7 \mathrm{~V}$ ) is applied, $\mathrm{P}_{3}$ becomes $\mathrm{V}_{\mathrm{pp}}(12.5 \mathrm{~V} \pm$ 300 mV ), $\mathrm{P}_{4}$ becomes $\overline{\mathrm{CE}}$ to perform program enable/verify. Z86E21

Pin Description (Continued)
$\overline{\mathbf{A S}}$. Address Strobe (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port l for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with ports 0 and 1, Data Strobe and Read/Write.
$\overline{\text { DS. }}$ Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
RESET. Reset (input, active Low). $\overline{\text { RESET }}$
initializes the Z86E21. When $\overline{\mathrm{RESET}}$ is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathrm{W}}$. Read/Write (output). R/ $\overline{\mathrm{W}}$ is Low when the Z86E21 is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (timebase input and output). These pins connect a series-resonant crystal ( 8 MHz maximum) or an external single-phase clock ( 8 MHz maximum) to the on-chip clock oscillator and buffer.

## Address Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 8192 bytes consist of on-chip EPROM. At addresses 8192 and greater, the Z86E21 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The Z86E2l can address 56K bytes of external data memory beginning at locations 8192 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P}_{3}$, is used to distinguish between data and program memory space.
Register File. The 256-byte register file includes four I/O port registers (R0-R3), 236 general-purpose registers (R4-R127) and 16
control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.

Z86E21 instructions can access registers directly or indirectly with an 8-bit address field. The Z86E21 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine working-register groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active workingregister group.
Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 8192 and 65535. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 generalpurpose registers (R4-R127).

## Address Spaces (Continued)



Figure 4. Program Memory Map


Figure 6. The Register File


Figure 5. Data Memory Map


Figure 7. The Register Pointer

## Serial Input/Output

Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P} 3_{7}$ can be programmed as serial I/O lines for fullduplex serial asynchronous receiver/ transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits/second.

The Z86E21 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted,

Transmitted Data
(No Parity)


Transmitted Data
(With Parity)

regardless of parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request $\left(\mathrm{IRQ}_{4}\right)$ is generated on all transmitted characters.

Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $\mathrm{IRQ}_{3}$ interrupt request.

## Received Data

(No Parity)

(With Parity)


Figure 8. Serial Data Formats

## Counter/Timers

The Z86E2l contains two 8-bit
programmable counter/timers ( $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ ), each driven by its own 6-bit programmable prescaler. The $\mathrm{T}_{1}$ prescaler can be driven by internal ox external clock sources; however, the $T_{0}$ prescaler is driven by the internal clock only.

The 6 -bit prescaler can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (l to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}$ ( $\mathrm{T}_{1}$ )-is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-pass mode) or to automatically reload
the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.

The clock source for $T_{1}$ is user-definable and can be the internal microprocessor clock ( 4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock ( 1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascated by connecting the $\mathrm{T}_{0}$ output to the input of $\mathrm{T}_{1}$. Port 3 line $\mathrm{P}_{6}$ also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

## I/O Ports

The Z86E2l has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/ data. Under software control, the ports can be programmed to provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.
All the ports assume different configurations in EPROM mode.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port l may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P}_{4}$ are used as the handshake contols RDY 1 and $\overline{\operatorname{DAV}}_{1}$ (Ready and Data Available).

Memory locations greater than 4096 are referenced through Port 1. To interface external memory, Port 1 must be programmed for the multiplexed Address/ Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port l can be placed in the highimpedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allowing the Z86E21 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning $\mathrm{P}_{3}$ as a Bus Acknowledge input and $\mathrm{P}_{4}$ as a Bus Request output.


Figure 9a. Port 1
Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines
lines $\mathrm{P}_{2}$ and $\mathrm{P} 3_{5}$ are used as the handshake controls $\mathrm{DAV}_{0}$ and $\mathrm{RDY}_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the high-impedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}$, $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.


Figure 9b. Port 0
Port 2 bits can be programmed independently as input or output. This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $P 3_{1}$ and $P 3_{6}$ are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and $\mathrm{RDY}_{2}$. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.


Figure 9c. Port 2

## I/O Ports (Continued)

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input $\left(\mathrm{P}_{3}-\mathrm{P}_{3}\right)$ and four output $\left(\mathrm{P}_{4}-\mathrm{P} 3_{7}\right)$. For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P}_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0,1 and 2 ( $\overline{\mathrm{A} \bar{V}}$ and RDY); four external interrupt request signals ( $\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$ ); timer input and output signals ( $\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$ ) and Data Memory Select ( $\overline{\mathrm{DM}}$ ).


Figure 9d. Port 3

## Interrupts

The Z86E21 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z86E21 interrupts are vectored. When an interrupt request is granted, and interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

## Clock

The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal or to any suitable external clock source (XTALl = Input, XTAL2 = Output).

The crystal source is connected across XTALl and XTAL2, using the recommended capacitors ( $\mathrm{C}_{1} \leqslant 15 \mathrm{pF}$ ) from each pin to
ground. The specifications for the crystal are as follows:

- AT cut, series resonant
- Fundamental types, $8 / 12 \mathrm{MHz}$ maximum.
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$.


## Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 236 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $\mathrm{V}_{\mathrm{MM}}$ (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTALl) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file.
Figure 10 shows the recommended circuit for a battery back-up supply system.


Figure 10. Recommended Driver Circuit for Power Down Operation

## EPROM Mode

Eprom-like programming. In this mode, the microcomputer memory is programmed, using a standard Eprom Programmer, with the same procedure as for our M2764 (64K EPROM). This has been made possible by the following Z86E2l configuration, where $\mathrm{Pl}_{0}-\mathrm{Pl}_{7}$ are used as 8 -bit I/O data ( $00-0_{7}$ ), $\mathrm{PO}_{0}-\mathrm{PO}_{7}$ and $\mathrm{P}_{2}-\mathrm{P}_{2}$ are used as 12 -bit Addresses ( $A_{0}-\mathrm{A}_{11}$ ); the microcomputer must be in Reset state, forcing the related pin to GND, and the clock must be active for the complete operation.

Three other pins are available for that purpose: the EPM pin on port $\mathrm{P}_{2}$, which allows the microcomputer to recognize the Eprom-like condition when a high voltage ( $\geqslant 7 \mathrm{~V}$ ) is applied; the $\mathrm{V}_{\mathrm{PP}}$ pin on port $\mathrm{P}_{3}$, which is used to furnish programming voltage fixed on $12.5 \mathrm{~V} \pm 300 \mathrm{mV}$; and the $\overline{C E}$ pin on port $P 3_{4}$, which is used to perform program enable/verify.

For a correct microcomputer set-up the $\mathrm{V}_{\mathrm{CC}}$ must be applied at least 100 ms before the programming procedure starting (Figure 11).

A simple interface board, described in Figure 12, allows programming to be carried out through use of a standard Epromprogrammer.


Figure 11. Set-up Waveforms


Figure 12. EPROM Programmer Interface Board

Z86E21

## EPROM Mode (Continued)

Autoprogramming. This mode permits programming one byte of the on-chip Eprom during normal microcomputer program execution. The instruction to be used is the Load Constant LCD @RR1,R2 (operating code D2).

This instruction allows the standard $\mathrm{Z8}$ to load the contents of the working register to an external RAM memory allocated in the program memory space, addressed by a working register pair. The Z86E2l uses this instruction also to program the 4 K bytes onchip Eprom.

Addressing one of the on-chip Eprom bytes, using this instruction, the programming operation takes place when an high voltage level on the $\mathrm{V}_{\mathrm{PP}}$ pin ( $12.5 \mathrm{~V} \pm$ 300 mV ) is applied.

In this case, both the address and the data memory are internally stored for the necessary programming time, where the time is defined by the execution of 1024 NOP operations ( 1 NOP operation $=12$ clock pulses). The programming time is contained between lms ( 12 MHz clock) and 12 ms ( l MHz clock).

As just mentioned, during this time, the CPU is internally forced to execute NOP instructions (operating code FF), while a RET instruction (operating code AF) is automatically executed at the end of programming.

For a correct program, restart is necessary to save the address of the Load Constant (LDC) next instruction in the Stack. This can be done by loading into the Stack the return address calling a Subroutine like follow, where, to permit a correct return to the main program, it is necessary to disable the interrupt before LDC execution.

	$\ldots \ldots$
	DI
	CALL WRITE
	EI
WRITE	LDC. $@$ RR1,R2
	RET

Programming Facility. The most flexible way for on-chip Eprom programming is, as
we know, the use of a standard Epromprogrammer, selecting the Eprom-like facility, and using an appropriate interface board (Figure 12).

If, however, the planned operation is only a particular memory loading into the on-chip Eprom, it is possible to perform this operation in a much simpler way, using a board which allows the Z86E21 to read and load the renamed particular memory, using the autoloading procedure.

The software required for this operation is stored in the Z86E21 Test-memory (inaccessible). Figure 13 shows the autoloading program flow-chart.

When the microcomputer is forced in Test mode by applying a high voltage level
( $\geqslant 7 \mathrm{~V}$ ) on the Reset pin, ports P0 and Pl are configured as Address/Data to access the external memories.

At this point, a test on port P2 is executed to decide if the on-chip Eprom autoloading is to be executed. This facility is accessed by forcing the values $40_{\mathrm{H}}$ or $41_{\mathrm{H}}$ on port P 2 to execute, respectively, the Verify or Autoloading routine.

Consequently, the registers required for the operation are initialized, the data to be compared or stored is read, and the routine chosen is executed.
The Autoloading routine is an intelligent programming which executes a number of overwriting cycles equal to three times the number of programming cycles required to perform a correct byte programming (up to a maximum of 25). In this way, the on-chip Eprom programming time is optimized and equal to 25 sec . with an 8 MHz clock.

The verify routine is simply a byte-byte comparison between the external memory and the on-chip Eprom.

A possible failure, whether in Autoloading or Verify, produces a High logical level forced on $\mathrm{P} 3_{7}$. Similarly, when the operation is finished, the positive conclusion is underlined, bringing $\mathrm{P}_{5}$ High. An Autoloading/Verify Board diagram is shown in Figure 14, where the VPP line control is necessary to not allow high voltage into the device when it has not yet been supplied.

## EPROM Mode (Continued)



Figure 13. Autoloading Flow Chart

## Z86E21

## EPROM Mode (Continued)



Figure 14. Autoloading/Verify Board

Memory Read-Out Protection. The protection, once activated, blocks reading memory content. Such reading can be carried out in two ways:

1. Entering Test Mode you can execute an external memory program which allows the on-chip Eprom reading through LOAD instructions execution.
2. Entering Eprom-like Mode, using the Verify facility.
Programming the first protection bit blocks reading in these two conditions (PROTA on port $\mathrm{Pl}_{0}$ ).

Another protection bit (PROTB on port $\mathrm{PO}_{7}$ ) can be activated when the Z86E2l is in external memory configuration.
This protection prevents software
manipulation of the external memory from who decides to read the on-chip memory content for a complete understanding of the user application board.
When the Z86E21 works in external memory facility the ports P 0 and Pl are configurated as Address/Data bus, so that the external memory instructions can be executed during the normal microcomputer operation. These instructions can be also an appropriate routine able to pull out the all on-chip memory content using LOAD instructions. When the protection is activated, each reading attempt of the internal memory content, using LOAD instructions, is vainificated because the data out will be always "FF".

## EPROM Mode (Continued)

In consequence this protection activation inhibit the LOAD instructions execution from external to internal memory. To overcome this problem is necessary to call a "READ" routine written in on on-chip memory space.

The protections are activated by programming 2 non-volatile transistors simply forcing 10 V for a time more than 100 ms on the desired pin, on condition that the microcomputer is in Reset state, the Clock signal is present and the EPM pin is not set.

If a complete protection is desired, both protections must be programmed.

A simple board diagram for read-out protection activation is shown in Figure 15.


Figure 15. Read-out Protection Activation Diagram

## Instruction Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.
IRR Indirect register pair or indirect workingregister pair address
Irr Indirect working-register pair only
$\mathbf{x}$ Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.

dst	Destination location or contents
src	Source location or contents
cc	Condition code (see list)
$@$	Indirect address prefix
SP	Stack pointer (control registers 254-255)
PC	Program counter
FLAGS	Flag register (control reqister 252)
RP	Register pointer (control register 253)

IMR Interrupt mask register (control register 251)
Assignment of a value is indicated by the symbol «ז». For example,

$$
\mathrm{dst} \leftarrow \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr(n)" is used to refer to bit " $n$ " of a given location. For example, dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:


Affected flags are indicated by:

1 Set to one

* Set or cleared according to operation
- Unaffected
$\times \quad$ Undefined


## Condition Oodes

Value	Mneomonic	Meaning	Flags Set
1000		Always true	$\ldots$
0111	C	Carry	$\mathrm{C}=1$
1111	NC	No carry	$\mathrm{C}=0$
0110	Z	Zero	$\mathrm{Z}=1$
1110	NZ	Not zero	$\mathrm{Z}=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	S $=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
0110	EQ	Equal	$\mathrm{Z}=1$
1110	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	$[Z \bigcirc \mathrm{R}(\mathrm{S} \mathrm{XOR} V)]=0$
0010	LE	Less than or equal	$[\mathrm{Z} \bigcirc \mathrm{R}(\mathrm{S} \mathrm{XOR} \mathrm{V})]=1$
1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
0111	ULT	Unsigned less than	$\mathrm{C}=1$
1011	UGT	Unsigned greater than	( $\mathrm{C}=0$ AND $\mathrm{Z}=0$ ) $=1$
0011	ULE	Unsigned less than or equal	$(\mathrm{C} \bigcirc \mathrm{OR})=1$
0000		Never true	...

## Instruction Formats

OPC	
dSt	OPC

One-Byte Instruction


Two-Byte instruction
Three-Byte instruction

Figure 16. Instruction Formats

## $M$ Z86E21

Instruction Summary


## Instruction Summary (Continued)

Instruction and Operation	Addr Mode		Opcode Byte (Hox)	$\frac{\text { Flags Affected }}{\text { CZSVDH }}$
	dat	src		
SRP src RP - src		Im	31	- - - -
SUB dst,src dst - dst - src	(Not		$2 \square$	**** 1 *
SWAP dst	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$		$\begin{aligned} & \text { F0 } \\ & \text { F1 } \end{aligned}$	X * * X - -

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.
For example, the opcode of an ADC instruction using the addressing modes $r$ (destination) and $\operatorname{Ir}$ (source) is 13 .

Instruction and Operation	Addr Mode	Opcode Byte (Hox)	Flags Affected C 2 SVD H
	dst src		
TCM dst, sre   (NOT dst) AND src	(Note 1)	$6 \square$	- * 0 -
TM dst, src dst AND src	(Note 1)	$7 \square$	- * * 0 - -
XOR dst,src dst - dst XOR src	(Note 1)	B $\square$	-**0--


	Addr Mode	
	dst	src


Opcode Nibble\end{array}\right]\)| r | r | 2 |
| :---: | :---: | :---: |
| r | Ir | 3 |
| R | R | 4 |
| R | IR | 5 |
| R | IM | 6 |
| IR | IM | $\boxed{7}$ |

## Registers

R240 SIO
Serial I/O Register
( $\mathrm{FO}_{\mathrm{H}}$; Read/Write)



## R241 TMR

Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}}$; Read/Write)

NOT TOUT MODES $\begin{aligned} \text { TUSED } & =00 \\ T_{0} \text { OUT } & =01\end{aligned}$

OUT $=01$
OUT $=10$
 $0=$ NO FUNCTION $1=$ LOAD $\mathrm{T}_{0}$
$\mathrm{T}_{1}$ OUT $=10$ INTERNAL CLOCK OUT $=11$ EXTERNAL CLOCK INPUT ${ }^{T}{ }^{\text {MOD }}=00$

GATE INPUT $=01$
TRIGGER INPUT $=10$
(NON-RETRIGGERABLE)
TRIGGER INPUT $=$
(RETRIGGERABLE)

## R242 T1

Counter Timer 1 Register
(F2H; Read/Write)


R243 PRE1
Prescaler 1 Register
( $53_{\mathrm{H}}$; Write Only)

D,



R244 T0

## Counter/Timer 0 Register

( $\mathrm{F} 4_{\mathrm{H}}$; Read/Write)

$D_{1}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$

TO INITIAL VALUE (WHEN WRITTEN)
TRANGE: 1256 DECIMAL O1 OO HEX) (RANGE: 1256 DECIMAL 0100 HEX)
$T_{0}$ CURRENT VALUE (WHEN READ)

## R245 PREO

Prescaler 0 Register
( $\mathrm{F} 5_{\mathrm{H}}$; Write Only)



R246 P2M
Port 2 Mode Register
( $\mathrm{F} 6_{\mathrm{H}}$; Write Only)


R247 P3M
Port 3 Mode Register
( $\mathrm{F} 7_{\mathrm{H}}$; Write Only)

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$



Figure 17. Control Registers

Registers (Continued)

## R248 P01M

Port 0 and 1 Mode Register
(F8 H; Write Only)


R249 IPR
Interrupt Priority Register
( $\mathrm{F9}_{\mathrm{H}}$; Write Only)

R250 IRQ
Interrupt Request Register
( $\mathrm{FA}_{\mathrm{H}}$; Read/Write)



R252 FLAGS
Flag Register
( $\mathrm{FC}_{\mathrm{H}} ;$ Read/Write)


## R253 RP <br> Register Pointer

( $\mathrm{FD}_{\mathrm{H}}$; Read/Write)

## R254 SHP

## Stack Pointer

( $\mathrm{FE}_{\mathrm{H}}$; Read/Write)

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$

STACK POINTER UPPER BYTE (SP $\left.{ }_{8}-S P_{15}\right)$

R251 IMR
Interrupt Mask Register


R255 SPL
Stack Pointer
( $\mathrm{FF}_{\mathrm{H}}$; Read/Write)


Figure 17. Control Registers (Continued)

Opcode Map
Lower Nibble (Hex)


## Sequence:

Opcode, First Operand, Second Operand
Note: The blank areas are not defined.

[^9]
## Absolute Maximum Ratings

Voltages on all pins with respect to GND $\ldots \ldots . .-0.3 \mathrm{~V}$ to +7.0 V
Operating Ambient
Temperature $\ldots \ldots \ldots \ldots \ldots \ldots . . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced$+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$GND $=0 \mathrm{~V}$$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ to GND. Positive current flows into the reference pin. Standard conditions are as follows:


Figure 18. Test Load 1

Figure 19. Test Load 2

## DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$\mathrm{V}_{\mathrm{CH}}$	Clock Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{CL}}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{RH}}$	Reset Input High Voltage	3.8	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{RL}}$	Reset Input Low Voltage	-0.3	0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OL}}$	Output Leakage	-10	10	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IR}}$	Reset Input Current		-50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current		120	mA	
$\mathrm{I}_{\mathrm{MM}}$	$\mathrm{V}_{\text {MM }}$ Supply Current		10	mA	Power Down Mode
$\mathrm{V}_{\mathrm{MM}}$	Backup Supply Voltage	3	$\mathrm{~V}_{\mathrm{CC}}$	V	Power Down

External I/O or Memory Read and Write Timing

No	Symbol	Paramter	Z86E21		Z86E21A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TdA(AS)	Address Valid to $\overline{\mathrm{AS}} \uparrow$ Delay	50		35		1,2,3
2	TdAS(A)	$\overline{\overline{A S}} \uparrow$ to Address Float Dealy	70		45		1,2,3
3	TdAS(DR)	$\overline{\mathrm{AS}} \uparrow$ to Read Data Required Valid		360		220	1,2,3,4
4	TwAS	$\overline{\text { AS Low Width }}$	80		55		1,2,3
5	$\mathrm{Td} A \mathrm{z}$ (DS)	Address Float to $\overline{\mathrm{DS}} \downarrow$	0		0		1
6 - TwDSR_- $\overline{\mathrm{DS}}$ (Read) Low Width—_ $250 \ldots 185$ - 1, 2, 3, 4							
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3,4
8	TdDSR(DR)	$\overline{\mathrm{DS}} \downarrow$ to Read Data Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		1
10	$\operatorname{TdDS}(\mathrm{A})$	$\overline{\mathrm{DS}} \uparrow$ to Address Active Delay	70		45		1,2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \uparrow$ to $\overline{\mathrm{AS}} \downarrow$ Delay	70		55		1,2,3
$12 \ldots \mathrm{TdR} / \mathrm{W}(\mathrm{AS}) \ldots$ _ $/ \overline{\mathrm{W}}$ Valid to $\overline{\mathrm{AS}} \uparrow$ Delay							
13	TdDS(R/W)	$\overline{\mathrm{DS}} \uparrow$ to R//ָ Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) $\downarrow$ Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \uparrow$ to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\mathrm{AS}} \uparrow$ to $\overline{\mathrm{DS}} \downarrow$ Delay	80		55		1,2,3

## NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC .
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* All units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 21. External I/O or Memory Read/Write

## Additional Timing Table

No	Symbol	Paramter	Z86E21		Z86E21A		Notes* $\dagger$
			Min	Max	Min	Max	
1	TpC	Input Clock Period	125	1000	83	1000	1
2	TrC, TfC	Clock Input Rise And Fall Times		25		15	1
3	TwC	Input Clock Width	37		26		1
4	TwTinL	Timer Input Low Width	100		70		2
	TwTinH	-Timer Input High Width-	-3TpC		$-3 \mathrm{TpC}$		-2
6	TpTin	Timer Input Period	8TpC		8TpC		2
7	TrTin, TfTin	Timer Input Rise And Fall Times		100		100	2
8 a	TwIL	Interrupt Request Input Low Time	100		70		2,3
8 b	TwIL	Interrupt Request Input Low Time	3 TpC		3 TpC		2,3
9	TwIH	Interrupt Request Input High Time	3 TpC		3 TpC		2,3

## NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for a
3. Interrupt request via Port $3\left(\mathrm{P}_{1}-\mathrm{P}_{3}\right)$.
4. Interrupt request via Port $3\left(\mathrm{P}_{0}\right)$.
logic " 0 ".

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 22. Additional Timing

## Handshake Timing

No	Symbol	Paramter	Z86E21		Z86E21A		Notes* $\dagger$
			Min	Max	Min	Max	
1	$\mathrm{TsDI}(\mathrm{DAV})$	Data In Setup Time	0		0		
2	ThDI(DAV)	Data In Hold Time	230		160		
3	TwDAV	Data Available Width	175		120		
4	TdDAVIf(RDY)	$\overline{\text { DAV }} \downarrow$ Input to RDY $\downarrow$ Delay		175		120	1,2
$5-\mathrm{TdDAVOf}(\mathrm{RDY})-\overline{\mathrm{DAV}} \downarrow$ Output to RDY $\downarrow$ Delay $-0-1,3$							
6	TdDAVIr(RDY)	$\overline{\text { DAV }} \uparrow$ Input to RDY $\uparrow$ Delay		175		120	1,2
7	TdDAVOr(RDY)	$\overline{\text { DAV }} \uparrow$ Output to RDY $\uparrow$ Delay	0		0		1,3
8	TdDO(DAV)	Data Out to $\overline{\text { DAV }} \downarrow$ Delay	50		30		,
9	TdRDY(DAV)	Rdy $\downarrow$ Input to DAV $\uparrow$ Delay	0	200	0	140	1

## NOTES:

1. Test Load
2. Input handshake
3. Output handshake
4. All timing regerences use 2.0 V for a logic "l" and 0.8 V for a logic " 0 ".

* Units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.


Figure 23a. Input Handshake


Figure 23b. Output Handshake

## Clock-Cycle-Time-Dependent Characteristics

Number	Symbol	Z86E21   Equation	Z86E21A   Equation
1	$\mathrm{Td} A(A S)$	TpC-75	TpC-50
2	TdAS(A)	TpC-55	TpC-40
3	TdAS(DR)	4TpC-140*	4TpC-110*
4	TwAS	TpC-45	TpC-30
6	TwDSR	-3TpC-125*	-3TpC-65*
7	TwDSW	2TpC-90*	2TpC-55*
8	$\operatorname{TdDSR}(\mathrm{DR})$	3TpC-175*	3TpC-120*
10	Td(DS)A	TpC-55	TpC-40
11	$\operatorname{TdDS}(\mathrm{AS})$	TpC-55	TpC-30
12	-TdR/W(AS)	-TpC-75	-TpC-55
13	TdDS(R/W)	TpC-65	TpC-50
14	TdDW(DSW)	TpC-75	TpC-50
15	TdDS(DW)	TpC-55	TpC-40
16	TdA(DR)	5TpC-215*	5TpC-160*
17	TdAS(DS)	TpC-45	TpC-30

[^10]
## Ordering Information

Type		Package	Temp.	Clock	Description
Z86E21	D1	Ceramic	$0 /+70^{\circ} \mathrm{C}$	8 MHz	8K EPROM Microcomputer
Z86E21	D6	Ceramic	$-40 /+85^{\circ} \mathrm{C}$		
Z86E21A		Ceramic	$0 /+70^{\circ} \mathrm{C}$	12 MHz	
Z86E21A		Ceramic	$-40 /+85^{\circ} \mathrm{C}$		

Packages

## Packages

## 40 - Lead Plastic DIP



40 - Lead Ceramic DIP (Frit-Seal)


40 - Lead Ceramic DIP (Glass lens)


## Packages

## 44 - Leaded Plastic Chip Carrier



44 - Leadless Ceramic Chip Carrier


## Reliability Informations

## Quality Assurance Organization Chart



## Handling

SGS has choosen a no-compromise strategy in MOS ESD protection. From wafer level to the shipping of finished units, we fully guarnatee each work station and processing of the parts. This is achieved through total adoption of shiedlding and grounding media. Final shipment is in antistatic sticks vacuum sealed, in a conductive shielding bag.

The supplier's best commitment is useless if the end user does not provide the same level of protection and care in application. Here are the the basic static control protection rules:
A - Handle all components in a static-safe work area.
B - Transport all components in static shielding containers.

To comply with the rules the following procedures must be set up.
1-Static control wrist strap (from a qualified source) should be worn and connected properly.
2 - Each wor surface must be protected with a conductive mat, properly grounded.
3 - Extensive use of conductive floor mats.
4 - Static control shoe straps should be worn insulative footwear, such as those with crepe or thick rubber soles is worn.
5 - Ionized air blowers are a necessary part of the protective system, to neutralize static
charges on conductive items.
6 - Use only the grounded tip variety of soldering iron.
7 - Single components, tubes, printed circuit cards should always be contained in static shielding bags; keep our parts in the original bags up to the very last possible point in your opertion line.
8 - If bigger containers (tote box) are used for in-plant transport of devices op PC boards they must be electrically conductive, like the carbon loaded types.
9 - All tools, persons, testing machines, which could contact device leads must be conductive and grounded.
10 - Avoid the usage of high dielectric materials (like polystyrene) for subassembly construction, storage, transportation.
ll - Follow a proper power supply sequence in testing and application. Supply voltage should be applied before and removed after input signals; insertion removal from sockets should be done with no power applied.
12 - Filtration, noise suppression, slow voltage surges should be guaranteed on the supply lines.
13 - Any open (floating) input pin is a potential hazard to your circuit: ground or short them to $V_{D D}$ whenever possible.


MOS /CMOS STD Process Flow-Chart (Continued)


MOS/CMOS STD \& Optional Process Flow-Chart


## MOS /CMOS STD Visual and Electrical Final Acceptance



OPTIONAL RELIABILITY TESTS (GROUP B C D TESTS)
(TO BE AGREED WITH CUSTOMER)

ELECTRICAL ACCEPTANCE AT $25^{\circ} \mathrm{C}$ (STD CLASSES)

ELECTRICAL ACCEPTANCE LOW AND HIGH TEMPERATURE (STD CLASSES)

VISUAL ACCEPTANCE (MIL 883 B MTH 2009) (STD CLASSES)

SOLDERABILITY INSPECTION RESISTANCE TO SOLVENT HERMETICITY (FINE AND GROSS)
PHYSICAL DIMENSIONS

PACKING AND DOCUMENTATION ACCEPTANCE (STD CLASSES) CERTIFICATE OF CONFORMITY (ON REQUEST)

FOR TEST CONDITIONS SEE PAGE 191

## Production Quality Tests Description and Screenings

Process   Steps	Tests	$\quad$Descriptions
1	MATERIAL ACCEPTANCE	WAFER - MASKS - WIRES - FRAMES - PHOTORESIST -   CHEMICALS - PREFORMS - RESIN - BONDING TOOLS   PLASTIC TUBES - GLAZED CERAMIC PARTS   MULTILAYER CERAMIC PACK - GOLD PLATED CAPS
2 A	MASK ACCEPTANCE	VISUAL DIMENSIONS

Production Quality Tests Description and Screenings (Continued)

Process Steps	Tests	Descriptions
	LID TORQUE CONTROL	GROSS LEAK   MIL-STD 883C MTH 1014 COND. C (FLUOROCARBON   GROSS LEAK) 5 TORR VACUUM FOR 1 HR EXCEPT FOR ICV > 0.1 CC FOLLOWED BY PRESSURIZATION IN MINERAL   OIL AT: 4 ATM FOR 2 HRS FOR ICV < 0.1 CC OR   4 ATM FOR 10 H FOR ICV $>0.1 \mathrm{CC}$   AND SUBSEQUENT IMMERSION IN MINERAL OIL AT   $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$   CERAMIC PACKAGES ONLY MIL-STD 883C   MTH 2024
15	CROPPING / BENDING CONTROL	MIL STD 883C MTH 2009
17	TIMING ACCEPTANCE	SOLDERABILITY MIL STD 883C MTH $2003 \mathrm{~T}_{\text {amb }}=245+5^{\circ} \mathrm{C}$ FOR $5+0.5$ SEC. WITH PRECONDITIONING FOR 1 HR ABOVE BOILING DIST. WATER (I.E.C. MTH AVAIL. ON REQUEST)
19	INTERNAL WATER VAPOR CONTENT CONTROL	DEW POINT MTH MIL-STD 883C MTH 1018 PROCEDURE   3-5000 PPM MAX (DEW POINT TEMPER. LESS THAN $-15^{\circ} \mathrm{C}$ )
20	RAW LINE ACCEPTANCE	EXTERNAL VISUAL MIL-STD 883C MTH 2009 LID TORQUE TEST: AS PER STEP 13   CONSTANT ACCELERATION MIL-STD 883C MTH 2001 COND. E $(30,0006)$ Yl ORIENTATION ONLY*   SEAL CONTROL: AS PER STEP 13
21	RELIABILITY TEST (REAL TIME AND GROUP B C D TESTS)	MONITOR ON STD CLASSES, GATE ON REQUEST   (TEST AND SAMPLE SIZE TO BE AGREED WITH CUSTOMER) AUDIT ON ALL FACTORIES
23	VISUAL AND ELECTRICAL FINAL ACCEPTANCE STD CLASS	VISUAL AND MECHANICAL INSPECTION   CUMULATIVE ELECTRICAL AND INOPERATIVE MECHANICAL FAILURES
23 A	MECHANICAL	SOLDERABILITY INSEPCTION RESISTANCE TO SOLVENT HERMETICITY (FINE AND GROSS) PHYSICAL DIMENSIONS
27	PACKING AND DOCUMENTATION ACC.ANCE	VISUAL

[^11]
## Reliability Group B Tests Description

Performed every week or every 3 months on raw line material and/or finished products

Test	MIL-STD-883C	
	Method	Condition
SUBGROUP 1   (1)   PHYSICAL DIMENSIONS	2016	MAJOR DIMENSIONS ACCORDING TO DATA SHEET
SUBGROUP 2 (1) $\qquad$ RESISTANCE TO SOLVENT	2015	1 MINUTE IMMERSION IN SOLVENT SOLUTION   FOLLOWED BY 10 STROKES WITH A SOFT BRUSH (THE PROCEDURE SHALL BE REPEATED 3 TIMES) SOLVENT SOLUTION 2.la ONLY FOR MOULD. PACK.
SUBGROUP 3   (1) SOLDERABILITY	2003	SOLDERING TEMPERATURE $245 \pm 5^{\circ} \mathrm{C}$ for $5 \pm 0.5$ SEC. WITH PRECONDITIONING FOR 1 HR ABOVE BOILING DISTILED WATER AND 5 TO 10 SEC . IN ROSIN BASE FLUX
SUBGROUP 4   STEADY STATE AND OPERATING LIFE TEST   END-POINT ELECTRICAL   PARAMETERS	1005	1000 HRS AT Tamb $=125^{\circ} \mathrm{C}$; ACCORDING TO DETAIL SPECIFICATION   AS SPECIFIED IN THE APPLICABLE DEVICE SPEC. MEASUREMENTS AT 0, 168, 500, AND 1000 HRS
SUBGRUP 5 (HERMETIC PACKAGES ONLY) TEMPERATURE CYCLING	1010	TEST CONDITION C (10 CYCLES Tamb $=-65^{\circ} \mathrm{C}$ TO $+150^{\circ} \mathrm{C}$ ); 10 MINUTES AT EXTREME TEMPERATURES; 5 MINUTES TRANSFER TIME
CONSTANT ACCELERATION	2001	TEST CONDITION E (30000 G) Y 1 ORIENTATION ONLY (2)
SEAL - FINE - GROSS	1014	TEST CONDITION Al (SEE STEP 13 PAGE 191) TEST CONDITION C
END-POINT ELECTRICAL PARAMETERS		AS SPECIFIED IN THE APPLICABLE DEVICE SPEC.
SUBGROUP 6 (1)   (MOULDED PACKAGES ONLY)		
PRESSURE POT		Tamb $=121^{\circ} \mathrm{C}, 2 \mathrm{ATM}, 96 \mathrm{HRS}$
END-POINT ELECTRICAL PARAMETERS		AS SPECIFIED IN THE APPLICABLE DEVICE SPEC.

[^12]
## Reliability Group C Tests Description

Performed every 6 months on raw line material

Test	MIL-STD-883C	
	Method	Condition
SUBGROUP 1 LEAD INTEGRITY	2004	TEST CONDITION B2 (LEAD FATIGUE)   WIRE LEADS: A FORCE OF $0.229 \pm 0.014 \mathrm{KG}$ FOR   THREE $90 \pm 5^{\circ}$ ARCS ON EACH LEAD BENDING CYCLE: 2 TO 5 SEC.   DUAL-IN-LINE MOULDED PACKAGE: THREE LEADS SHALL BE BENT, 3 TIMES, SIMULTANEOUSLY FOR AT LEAST $15^{\circ}$ PERMANENT BEND, RETURNING THEN TO THE ORIGINAL POSITION.
SEAL   (HERMETIC PACKAGES ONLY)   - FINE   - GROSS	1014	TEST CONDITION A1 TEST CONDITION C
SUBGROUP 2   THERMAL SHOCK (2)   (HERMETIC PACKAGES ONLY)	1011	TEST CONDITION B; 15 CYCLES (Tamb $=-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ ) 5 MIN. AT EXTREME TEMPERATURES TRANSFER TIME $\leq 10$ SEC.
TEMPERATURE CYCLING (2)	1010	TEST CONDITION C; 100 CYCLES $\left(T a m b=-65^{\circ} \mathrm{C}\right.$ TO $\left.+150^{\circ} \mathrm{C}\right) 10$ MIN AT EXTREME TEMPERATURES; TRANSFER TIME 5 MINUTES
MOISTURE RESISTANCE (HERMETIC PACKAGES ONLY)	1004	10 CYCLES OF 24 HRS ; Tamb $=25^{\circ} \mathrm{C}$ TO $65^{\circ} \mathrm{C}$ RH = 80\% TO $100 \%$   ONE 3 HRS CYCLE AT Tamb $=-10^{\circ} \mathrm{C}$
SEAL   (HERMETIC PACKAGES ONLY)   - FINE   - GROSS	1014	TEST CONDITION Al TEST CONDITION C
VISUAL EXAMINATION		PER VISUAL CRITERIA OF METHOD 1004 AND 1010
END-POINT ELECTRICAL PARAMETERS		AS SPECIFIED IN THE APPLICABLE DEVICE SPEC.
SUBGROUP 3   (HERMETIC PACKAGE ONLY)		
MECHANICAL SHOCK	2002	TEST CONDITION B; 1500 G-0.5 MSEC. - 5 BLOWS IN EACH OF THE 6 ORIENTATIONS - NOT OPERATING
VIBRATION, VARIABLE FREQUENCY	2007	TEST CONDITION A; $20 \mathrm{G}-3$ ORIENTATIONS $\mathrm{F}=20$ TO 2000 CPS; FOUR 4 MINUTES CYCLES, 48 MINUTES TOTAL - NOT OPERATING
CONSTANT ACCELERATION (1) SEAL   - FINE   - GROSS	$\begin{aligned} & 2001 \\ & 1014 \end{aligned}$	TEST CONDITION E (30000 G), YI ORIENTATION ONLY   TEST CONDITION Al   TEST CONDITION C (SEE STEP 13 PAGE 191)
VISUAL EXAMINATION		PER VISUAL CRITERIA OF METHOD 1011 OR 1010
END-POINT ELECTRICAL PARAMETERS		AS SPECIFIED IN THE APPLICABLE DEVICE SPEC.

[^13]Reliability Group C Tests Description (Continued)
Performed every 6 months on raw line material

Test	MIL-STD-883C	
	Method	Condition
SUBGROUP 4   SALT ATMOSPHERE   SEAL   (HERMETIC PACKAGE ONLY)   - FINE   - GROSS   VISUAL EXAMINATION	1009	TEST CONDITION A; 10 TO 50 G OF NaCl PER SQUARE METER PER DAY FOR 24 HRS Tamb $=-35^{\circ} \mathrm{C}$   TEST CONDITION Al   TEST CONDITION C (SEE STEP 13 PAGE 191)   PER VISUAL CRITERIA OF METHOD 1009
SUBGROUP 5   (MOULDED PACKAGES ONLY)   HUMIDITY TEST   (4)   END-POINT ELECTRICAL   PARAMETERS	$\begin{gathered} \text { CECC } \\ 9000 \end{gathered}$	$85^{\circ} \mathrm{C} / 85 \%$ RH WITH BIAS, $\mathrm{t}=1000$ HRS   ACCORDING TO DETAIL SPECIFICATION   AS SPECIFIED IN THE APPLICABLE DEVICE SPEC. MEASUREMENTS AT 0, 168, 500 AND 1000 HRS
SUBGROUP 6   (HERMETIC PACKAGE ONLY)   INTERNAL WATER-VAPOR CONTENT	1018	DEW POINT METHOD-PROCEDURE 3 (5000 PPM MAX)
SUBGROUP 7   LID TORQUE (3)   (HERMETIC PACKAGES ONLY)	2024	(SEE STEP 13 PAG. 191)
SUBGROUP 8   ELECTROSTATIC DISCHARGE SENSITIVITY   END-POINT ELECTRICAL PARAMETERS	3015	$\begin{aligned} & \mathrm{R}=1.5 \mathrm{~K} \Omega \\ & \mathrm{C}=100 \mathrm{pF} \\ & \mathrm{~V}=\mathrm{ACCORDING} \text { TO DETAIL SPECIFICATION } \end{aligned}$   AS SPECIFIED IN THE APPLICABLE DEVICE SPECIFICATION

3) Lid torque test shall apply only to packages which use a glass-frit-seal to lead frame, lead or package body (i.e. wherever frit seal estabilishes hermeticity or package integrity).
4) Performed monthly.

## Development Products

UX8-GPFM/2

## General Purpose Foundation Module for MCU Emulation

- Combined with dedicated personality packages it allows complete hardware and software development and debugging for MCUs
- Emulation memory: 8K bytes of static RAM
- Breakpoint memory: 8 K bits of static RAM allowing up to 8196 breakpoints on addresses and/or data
- Real time trace memory: $1 \mathrm{~K} \times 25$ bits of static RAM allowing up to

1024 events to be recorded during program execution

- Personality module interface: a parallel interface with an external personality POD is provided
- Standard double - euro card format fully compatible with SGS UX8-22
Development System and with the Z8 Emulation and Development package for IBM compatible Personal Computers


## General Description

The UX8-GPFM/2 is a general purpose foundation module for MCUs emulation. It is designed to be plugged into a UX8-22 Development System and to interface with an externally connected POD.

UX8-GPFM/2 gives the user the basic and general hardware tools in order to carry out complete debugging and emulation for MCUs.

In order to set up a complete development and debugging tool for a specific single-chip microcomputer it's necessary to integrate the UX8-GPFM/2 with a specific personality
package. The personality package is basically composed of a software package for cross-assembling/linking/ debugging and of an external POD for the hardware interface with the target microcomputer (see UX8-EDPZ8 data sheet for Z8 personality package general features). The basic features of the UX8-GPFM/2 include: emulation memory, breakpoint memory, real time trace memory, control logic, interface with GAMMA-BUS and a parallel interface for an external POD.


UX8-GPFM/2

## Hardware Features

- EMULATION MEMORY: the emulation memory is implemented with 8 K bytes of static RAM.
It is a dual port access memory connected from one side to the GAMMABUS and to the other to the interface circuitry with the external POD.
- BREAKPOINT MEMORY: the breakpoint memory is composed of 8 K bits of static RAM. The memory is addressed in parallel with the emulation memory and allows some addresses to be defined as "significant" for breakpoint purposes. Up to 8192 breakpoints can be contemporarily active and breakpoint detection on a specific location can be specified in read/write/fetch/op code/ generic or preset value mode.
- BREAKPOINT COUNTER: an 8 bit event counter is also provided to allow easy
implementation of single/multi-step program execution.
- REAL TIME TRACE MEMORY: $1 \mathrm{~K} \times 25$ bits of static RAM memory is used to record, during program execution by the emulated microprocessor, up to 1024 events, including address, data read/written, type of cycle (fetch/read/write) and interrupts.
- GAMMA-BUS INTERFACE: the interface with UX8-22 resources takes place by means of 32 contiguous I/O addresses, therefore the emulator doesn't share or request memory resources at UX8-22 level.
- POD INTERFACE: 13 address lines, 8 data lines, 7 control lines and power supply lines are provided for interfacing with an external POD. Physical connection is made by means of a 50 wire flat cable.

Figure 1-Block Diagram


Ordering Information

Type	Description
UX8-GPFM/2	General Purpose Foundation Module for Single Chip Emulation

DOCUMENTATION: The complete technical manual with product description, schematics drawings and component layout is normally supplied with each product. Technical manuals are also available separately for purchase.

UX8-EDPZ8/2

## Z8 Emulation and Development Package

- Designed to run on SGS UX8-22

Development System and to interface with UX8-GPFM/2 board (General Purpose Foundation Module) for single chip microprocessor emulation

- Composed of:
- Z8 personality POD
- Software development and debugging package
- Z8 personality POD:
hardware interface between GPFM/2
board (installed inside UX8-22
Development System) and Z8 based target
- Software development and debugging package running on UX8-22 Development System under CP/M* 2.2, for:
- cross assembling
- cross linking
- debugging


## General Description

UX8-EDPZ8/2 is an advanced hardware and software emulation and development package for the Z 8 single chip microcomputer.

The package has been expecially designed for the SGS UX8-22 Development System
and is composed of 2 separate items:

- Z8 personality POD
- Software development and debugging package



## General Description (Continued)

The EDPZ8/2 package requires as a prerequisite at UX8-22 level the UX8-GPFM/2 Module (General Purpose Foundation Module for MCU Emulation).

The Z 8 personality POD is the hardware interface between UX8-GPFM/2 and a Z8 based user target.

The software development and debugging package is formed by a cross assembler, linker loader and debugger for Z8
microcomputer; it runs on the UX8-22 under CP/M 2.2 operating system.

Using the EDPZ8/2 package the designer can develop software programs and carry out complete hardware and software debugging of Z8 based systems using the UX8-22 Development System. A simple but effective command set is provided in order to access, read and modify registers, memory and ports. Breakpoint and real time trace capabilities are also provided.

## Main Features

Z8 Personality POD. Z8 Personality POD contains the Z8 development microcomputer and the interface circuits both with the GPFM/2 (the general purpose emulation board) and with the Z8 based target system. Connections take place at both sides by means of flat cables.

The POD employs the development
microcomputer Z8612, adequate for the emulation of Z 82 K ROM (Z8601) and Z8 4 K ROM (Z8611).

The POD is able both to generate the clock for the development microcomputer or to use the signal of an external clock (switch selectable option).

## Software Development and Debugging Package

The software development and debugging package is basically composed of MAKZ8, a program development package and Z8DBG, a debugging package.
MAKZ8 - Assembler. MAKZ8 is a powerful disk-based editor/assembler system for Z8 single chip microprocessor program development.

It includes also all the features necessary for the creation/modification of assembly languages programs for Z8 and file handling, such as:

Executive for handling all input/output operation.
Text Editor for creation and modification of
source program files.
Assembler: a relocating macroassembler with cross reference generator and linking loader.

Z8DBG - Debugger. Z8DBG is a software tool allowing complete debugging of previously assembled programs.
Its main function are:

- Control of the interface and data transfer among $\mathrm{Z8}$ personality POD, the general purpose emulator GPFM/2 and system resources.
- handling of debugging session and execution of debugging comands required by the user.


## Software Development and Debugging

 Package（Continued）
## Z8DBG Command List

BAse x lold	Change／select base of numbers
Break［＜options〉］	Display／set breakpoint
CB［〈addr＞l＜from＞＜to〉］	Clear breakpoints
Cmp［＜adl ${ }^{\text {d }}$＜ad2＞［＜count＞	］Compare memory
DL［ $\langle$ addr〉 l $\langle$ from〉 $\langle$ to $\rangle$ ］	Display memory in listing format
DM［〈addr〉 l＜from＞＜to＞］	Display／change program memory
DR［ $\langle\mathrm{n}\rangle \mathrm{l}$ 〈reg $\mathrm{ra}^{\text {］}}$	Display／change registers
FM 〈from〉〈to〉〈pat＞	Fill memory with pattern
Fr＜from＞＜to〉＜pat＞	Fill registers with pattern
Go［〈from＞］	Start user program execution
Help	Gives this help
HWTEST	Execute Diagnostic test
Load 〈file〉［／］	Load memory from a file
Move＜from＞＜to〉［＜count＞］	］Move memory block
Next［＜steps ${ }^{\text {］}}$	Single／multi step mode
Quit	Abandon the program
REset	Reset CPU
SAve＜file〉［＜from＞［＜to〉］］	Save memory into a file
SB 〈addr〉 l＜from＞〈to＞	Set address breakpoints
SEarch＜from〉＜pat＞	Search pattern in memory
SET［＜options〉］	Set／Display system options
SR［〈n〉l＜reg〉［＜value〉］］	Set register
Trace［＜count＞］	Display traced execution
Use〈file〉	Execute command file
VE	Enter Execute screen mode
VM［〈addr＞］	Enter Memory screen mode
VR	Enter Register screen mode
WR	Display working register set

Ordering Information

Type	Description
UX8－EDPZ8／2	Z8 Emulation and Development Package

DOCUMENTATION：The complete technical manual with product description，schematics drawings and component layout is normally supplied with each product．Technical manuals are also available separately for purchase． EMU-Z8PC

## Z8 Emulation and Development Package for IBM Compatible Personal Computers

- Designed to run on Personal Computers IBM-PC parallel bus compatible.
- Composed of:
- GPFM/2 General Purpose Foundation Module for single chip emulator
- Z8 personality POD
- Bus interface board between GAMMABUS and IBM-BUS
- Power Supplier (110/220V - 50/60Hz)
- Software Development and Debugging package running under MS/DOS operating system for:
- cross assembling
- cross linking
- debugging
- Hardware features are:
- able to emulate Z 82 K and/or 4 K ROM versions
- 4 Kbytes of emulation memory
- 4 Kbytes of break point memory
- 1 Kbyte of time trace memory
- IBM parallel bus interface
- 8 MHz internal clock or up to 12 MHz switch selectable external clock
- pulse output (TTL compatible) enabled every time the PC reaches a Break Point address


## General Description

The EMU-Z8PC is an advanced hardware and software emulation package for the Z8 microcomputer family.

The package has been especially designed by SGS to run and interface to IBM compatible personal computers and is composed of four main parts:

- the single chip emulator box which contains the GPFM/2 (General Purpose Foundation

Module), the back panel board and the main power supplier;

- the Z8 personality POD;
- the interface board;
- the Z8 Assembler, Linker and Debugger software, delivered on a $51 / 4^{\prime \prime}$ single side, single density, Floppy Disk.



## Hardware Features

GPFM/2. The General Purpose Foundation Module is a double Eurocard format board, essentially made up of a random-access memory (RAM) with a twin access port: from one side (port), it provides the program memory required by the development microcomputer, while, on the other, it opens access to the common memory, both in read and write, to the IBM PC host computer. For more detailed explanations, reference should be made to the previous chapter
(see page 199).
Z8 Personality POD. This is a module which contains the Z8 development microcomputer and the interface circuits both with the GPFM/2, contained in the emulation box, and with the Z8-based target system, the socket to be inserted into the user board in place of the emulated microcomputer. Connections take place on both sides by means of flat cables. The POD employs the development microcomputer Z8612 adequate for the emulation of Z8 2 K ROM (Z8601) and Z8 4K ROM (Z8611). The POD is able to generate the clock for the development microcomputer or to use the signal of an external clock (switch selectable option).

Power Supply. A main power supplier for $220 \mathrm{~V} / 50 \mathrm{~Hz}$ and $110 \mathrm{~V} / 60 \mathrm{~Hz}$ is built inside the single chip emulator box to supply the GPFM/2 and the personality POD.

Interface Board. This allows electrical interface between the GPFM/2 board and the IBM compatible personal computer bus, converting the GAMMA-BUS running on GPFM/2 to an IBM parallel bus. This board is inserted in the internal personal computer slot with an addressing range dedicated by
the IBM personal computer to prototype card communication.

Minimum System Configuration Required

- 64K bytes system memory
- 1 disk driver
- alphanumeric and monocromatic video


## Software Development and Debugging

Package. The software development and debugging package is basically composed of XMAC-Z8, a program development package and Z8DBG, a debugging package.

XMAC-Z8 - Assembler. XMAC-Z8 is a powerful disk-based editor/assembler system for Z 8 single chip microcomputer program development. It includes also all the features necessary for the creation/modification of assembly language programs for Z8 and file handling, such as:
Executive for handling all input/output operation;
Text Editor for creation and modification of source program files;
Assembler a relocating macroassembler with cross reference generator and linking loader.

Z8DBG - Debugger. Z8DBG is a software too, running under the MS/DOS operating system, that allows complete debugging of previously assembled programs.
Its main functions are:

- control of the interface and data transfer among Z8 personality POD, the general purpose emulator GPFM/2 and system resources.
- handling of debugging session and execution of debugging commands required by the user.


## Z8DBG Command List

BAse x lold	Change／select base of numbers
Break［＜options〉］	Display／set breakpoint
CB［〈addr＞l＜from＞＜to〉］	Clear breakpoints
Cmp［＜adl ${ }^{\text {c }}$＜ad2 ［［＜count $\rangle$	JCompare memory
DL［＜addr＞l＜from＞＜to〉］	Display memory in listing format
	Display／change program memory
DR［ $\langle\mathrm{n}\rangle \mathrm{l}$ 〈reg ${ }^{\text {l }}$ ］	Display／change registers
	Fill memory with pattern
Fr＜from＞〈to＞〈pat＞	Fill registers with pattern
Go［ $\langle$ from＞］	Start user program execution
Help	Gives this help
HWTEST	Execute Diagnostic test
Load 〈file〉［／］	Load memory from a file
Move＜from＞＜to〉［＜count＞］	Move memory block
Next［＜steps＞］	Single／multi step mode
Quit	Abandon the program
REset	Reset CPU
SAve $\left\langle\right.$ file〉［＜from＞［＜to ${ }^{\text {d }}$ ］］	Save memory into a file
	Set address breakpoints
SEarch 〈from〉〈pat＞	Search pattern in memory
SET［＜options〉］	Set／Display system options
	Set register
Trace［＜count ${ }^{\text {c }}$ ］	Display traced execution
Use〈file〉	Execute command file
VE	Enter Execute screen mode
VM［＜addr＞］	Enter Memory screen mode
VR	Enter Register screen mode
WR	Display working register set

Ordering Information

Type	Description
EMU－Z8PC	Z8 Emulation and Development Package for
	IBM Compatible Personal Computers

DOCUMENTATION：The complete technical manual（User，Hardware and Installation）with product description，schematics drawings and component layout is normally supplied with each product．Technical manuals are also available separately for purchase．

# Double Layer P-Vapox and $\mathrm{Si}_{3} \mathbf{N}_{4}$ Glass Passivation A. Panchieri Q.A. MOS DIVISION 

## Newly developed passivation process for NMOS/HS-CMOS devices gives improved protection to die encapsulated in plastic packages.

## Process Description

The process consists of a two layer film of P Vapox (phosphorus doped silicon oxide) and $\mathrm{Si}_{3} \mathrm{~N}_{4}$ (silicon nitride), obtained by two different masking and etching steps to avoid defects caused by lack of dieletric integrity.

The process gives good metal step coverage together with PECVD (Plasma Enhanced Chemical Vapox Deposition) to avoid cracking near metal edge and possible hillocks defects.

The double layer enables us, by means of an appropriate oversize either at the boundaries of the die side or at the bonding pad side, to ensure full sealing of the underlying P-Vapox layer.

This prevents the layer from being exposed to moisture coming from the package. Thus the probability of metal corrosion on the bonding pad due to phosphoric acid is drastically reduced.

As a result the die is provided with a very good humidity immunity.

Process Flow



Fig. 1-Typical Microsection of Device with Nitride Passivation.


Fig. 2 - Section Along the Scribing Line.


Fig. 3 - Section Along the Pad

## Reliability Results

The reliability performance in moist ambient was evaluated using both $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH} / \mathrm{BIAS}$ and $121^{\circ} \mathrm{C}$ Pressure Pot test:

Different products in different plastic packages were tested.

To give an idea of reliability performances obtained on products with the new passivation process, we have set out the process qualification test results in the following table:

	CMOS Logics			$\mu$ Processors		Memories	
	Hours	Sample	Fail	Sample	Fail	Sample	Fail
Static/Dynamic	1000	1355	0	385	0	270	0
Life Test	2000	915	0	385	0	270	0
$\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	3000	600	0	-	-	-	-
$\mathrm{V}_{\text {CC }}=$ std.	4000	600	0	-	-	-	-
Temp Humidity	1000	740	0	240	0	360	0
BIAS $\left(85^{\circ} \mathrm{C} / 85 \%\right.$ RH)	2000	510	0	240	0	360	0
$\mathrm{~V}_{\text {CC }}=$ std.	3000	260	1 funct.	-	-	-	-
	4000	259	0	-	-	-	-
Pressure Pot	96	965	0	540	0	250	0
$\mathrm{~T}_{A}=121^{\circ} \mathrm{C}-2$ atm	144	775	1 funct.	540	0	250	0
	192	320	0	300	0	120	0
	288	320	0	300	1 funct.	120	0

## PMZ8: Z8681 in Single Board Computer Application

The PMZ8 Single Board Computer is a very small system, based on the Z8681 MCU, which is one of the ROMless version of the Z8 single chip microcomputer family.

The Z868l offers all the outstanding features of the Z8 family architecture except the on-chip program ROM. It provides up to 16 output address lines, thus permitting an address space of up to 64 K bytes of data on program memory. Available address space (up to 128 K bytes) can be doubled by programming bit 4 of Port 3 (P34) to act as a data memory select output (DM). The two states of DM, together with the 16 address outputs, can define separate data and memory address spaces of up to 64 K
bytes each.
The available address space is mapped into three devices, with up to 2 K bytes each: one EPROM and one RAM/EPROM for the program space and one data space RAM. The EPROM contains the monitor program (the first 2 K bytes), which allows the user to change the content of memory and registers, load or save the memory from and to a Host System and to run programs. The second 2 K bytes of address space in the data space are further decoded to four strobe lines (WREXO/l and RDEXO/l), which permits the addition of two 8-bit input and two 8-bit output ports externally.

## Operation

Start Up. After power- on or reset, the ports, the timer and the stack pointer are initialized. No interrupt is enabled. After that, the memory device in the IC 5 socket is tested. If this device is an EPROM, the program therein is started from location 00 CH ; otherwise, the monitor software is entered. This auto start feature permits starting a user program without any keyboard entry.

In the user program, the location 000 CH must not contain 0FFH (NOP).

Terminal. The PMZ8 can be operate with any ASCII terminal, using the following set-up:

9600 BAUD
8 DATA BITS
1 or 2 STOP BITS
NO PARITY
XON-XOFF PROTOCOL
No hardware handshake (CTS/RTS, etc.) is provided.

Monitor. The monitor software provides the following commands:
? .................. Help (display this)
c[*,/] [addr]..... Change memory content
d[*,/] [addr]..... Dump memory content
g[addr]........... Go and execute program
l.................. Load from host
r[reg] . . . . . . . . . . . Dump or change register
$\mathrm{s}<*$,/>addr,leng . Save to host
t................... Test (terminal)

Upper and lower case letters are treaded as the same. All numbers are in hexadecimal.
"*" and "/" indicate the selected memory space, where "*" is the program space and " $/$ " is the data space.

Operation (Continued)
c: Change Memory Content. The type of memory (* or /) is the last one use if not specified. The address of the location to be changed must be entered. The type of memory, the current address and the current content will be displayed, and the user may or may not enter a new value for that location. The input will be accepted after the following keys:
RETURN The new value (if any) will be stored, and the next location will be displayed.
^ The new value (if any) will be stored, and the previous location will be displayed.

- The new value (if any) will be stored, and the current location will be displayed again.
q The new value (if any) will be stored, and the c-Command will be terminated.
d: Dump Memory Content. The type of memory (* or /) is the last one used if not specified. If the address is not specified, then it is the address of the location which would be displayed next if the previous command was also a d-Command. The memory content is displayed in HEX, and in ASCII, if possible.
g: Go and Execute. If the address is not specified, 00 CH is used.

1: Load from Host. The type of memory, the address and the length will be sent by the host.
r: Dump or Change Register Contents. If no register number is specified, then a complete dump of all registers takes place. Otherwise, the register number, the abbreviation (if any) and the current content is displayed. The software doesn't take account of write only or read only registers. The input of new values is the same as described above for the c-Command.
s: Save Memory Content to Host. The type of memory, the address and the length must be specified. The content of the specified memory block is sent in pure bynary, and the software running on the host is responsible for converting the data to HEX. No blocks longer than 2048 bytes may be transferred immediately.

Monitor Entry Points. There is a jump table at 800 H , which allows the use of some of the monitor routines, as you can see opposite.

The user program may be simply terminated by return (AFH). In this case, the monitor software is re-entered.

If the configuration of the microcomputer is changed by the user's software, it must be restored before returning to the monitor.

The monitor uses only the registers from 4 to 0 FH and some locations below 80 H for the stack.

Operation (Continued)

Address	Routine	Description
800	JP MON	Restart or start monitor
803	JP PUTC	Sends character in R7 to the terminal
806	JP GETC	Waits for character from terminal, returns it in R7
809	JP UNGETC	Ungets one character until next getc
80C	JP GETHEX	Reads HEX number from terminal until first non-HEX character is entered, returns it in RR4
80F	JP TOUP	Converts character in R7 to upper case, and stores it in R6
812	JP PRTHEX	Prints number in R6 in HEX on the terminal
815	JP PRTCRLF	Prints CR and LF on the terminal
818	JP PRTSTR	Prints string on the terminal: start address of string in RR4; bit 7 high in last character
81 B	JP SPCl	Prints one space on the terminal
81 E	JP SPC2	Prints two spaces on the terminal
821	JP SPC4	Prints four spaces on ther terminal
FOC		This is reset entry point.

## Jump Table



Figure 1-P.C. Board and Components Layout

Operation (Continued)


Figure 2 - Functional Description

## Single Board Computer Using Z8671

## Introduction

The Z8671 single chip microcomputer is actually a Z 8601 with 2 K bytes of Basic/Debug interpreter masked in the chip's resident ROM space. Like the Z8601, the Z867l has 2 counter timers with prescalers, synchronous serial communication interface with programmable baud rates. Addressing capability includes 62 K bytes of external program memory, 144 bytes of on-chip register and 62 K bytes of external data memory.

The Z8671 single board computer is an evaluation board which via a RS-232 link to a terminal allows the user to access the
features of the Z8601 using BASIC commands.

The evaluation board with 2 K bytes of RAM on board allows immediate or program mode execution of BASIC commands.

Applications of this board ranges from microcontrollers to a tiny BASIC microcomputer. This Technical Bulletin introduces the hardware and software aspects of the Z867l single board computer to the user. To use this board to its' full potential, the $Z 8$ Technical Manual (O.C. DAZ8TM/2) and the $Z 8671$ Basic/Debug Software Manual (DAZ8671SOF/1) should be read.

## Installation

The Z867l board needs +5 V and ground to run all the components on the board except the 1488 EIA line driver. The 1488 needs +12 V and -12 V in addition to the +5 V and ground.

Power supply connection is via molex connectors of $+5 \mathrm{~V}, \mathrm{GND},+12 \mathrm{~V}$ and -12 V .

Terminal connection is via molex connector too, using only 3 pins, serial in,
serial out and GND.
Any terminal with a standard RS232 interface can be used. Baud rate is set in EPROM location FFFDH.

With power connected to the board and the terminal connected to it, the reset button resets the Z8671 and the prompt character appears (":"). The board is then ready for a Basic command when the ":" appears.

## Features

- 2 K bytes Basic/Debug interpreter in the internal ROM
- 2 K bytes of user RAM
- 2 K bytes of user-programmable Eprom
- Full-duplex serial operation with programmable baud rates
- RS232 interface
- 8 bit counter/timer with associated 6 bit prescalers
- 124 general-purpose registers internal to the Z867l
- 14 I/O lines available to the user
- 3 lines for external interrupts
- 3 sources of internal interrupts
- Vectored interrupt structure with
programmable priority levels. Each can be individually enabled or disabled
- External memory expansion up to 124 bytes
- Allows calling of assembly language subroutines for time critical applications
- Allows writing and debugging of programs in Basic, simplifying the programming of on-critical subroutines
- Basic/Debug can directly address the Z8671's internal registers and all external memory. It provides quick examination and modification of any external memory location or I/O port
- On board static RAM can be replaced by Eprom for auto program execution on power up or Reset.


## Architecture

The Z8671 Single Board Computer uses the following IC packages

ICl Z8671

IC2 M5516
IC3 T74LS373
IC4 M2716/M2732 (2K bytes of EPROM)
IC5 MC1488 (RS232 line driver)
IC6 MC1489 (RS232 line receiver)
IC7 T74LS30 (8 inputs nand gate)
IC8 T74LS30 (8 inputs nand gate)

Memory Addressing. The addressing of the on board 2716 EPROM is fully decoded at F800H to FFFFH and the 2 K RAM at 1000 H to 17FFH. The M2716 Eprom can be replaced with a 4 K Eprom with the correct jumper pads soldered. To use as a microcontroller, the 2 K RAM can be replaced by a 2 K Eprom after the ram contents is transferred to the 2 K Eprom.

Decimal	Hex	Contents
$0-2047$	$(0-7 \mathrm{FF})$	Internal ROM   (BASIC/DEBUG)
$4069-6143$	$(1000-17 \mathrm{FF})$	RAM (5116)
$63488-65535$	(F800-FFFF)	EPROM (2716)

Table 1. Memory Addressing

## Interfacing the Z8671 with RS232 Port

The Z86.7l uses its serial communication port to communicate with the RS232 port line driver and receiver are used to supply the proper RS232 signals.

The serial interface does not use the control signals Clear to Send, Data Set Ready, etc. It uses only serial In, Serial Out and Ground, so it is a very simple interface.

The Z8671 uses one timer and its associated prescaler for baud rate control. On reset, the Z8671 reads location FFFD and uses the byte stored there to select the baud rate.

On reset the Z8671 reads FFFDH, which is in EPROM and decodes the baud rate from the contents of that location.
Table 2 shows what the location FFFDH
should read to select a particular baud rate to be used by the Z8671.

	Content of   location FFFDH		Baud rate
1	1	LSB	
1	1	1	300
1	0	0	110
1	0	1	1200
0	1	0	2400
0	1	1	4800
0	0	0	9600
0	0	1	19200

Table 2 Baud Rate Code

## I/O Ports.

Port l of the Z8671 is used as a multiplexed Address/Data bus, a octal latch (IC3) is used to latch on the address signals.
The latch is enabled by the $\overline{\mathrm{AS}}$ output of the Z8671.
Port 0 outputs the higher 8 bits of the address from $\mathrm{A}_{8}-\mathrm{A}_{15}$.
Two 8 -inputs nand gates (IC7 \& IC8) fully decodes the addressing of the M5116 RAM and M2716 Eprom. On Port 3, line 0 and 7
are used for serial input/output communication. These lines are driven by the line drivers/receivers (IC5 \& IC6).
Port 3 lines l to 6 are free for user configuration.
All 8 lines of Port 2 are also available to the user. These lines can be programmed for open-collector or normal TTL outputs as well as inputs.

## Software

When the Z8671 is reset, a prompt (":") appears, Basic commands can then be in direct or program mode.
The following sequence is a simple I/O example.
:10 input a
:20 "a=";
:run
? 5
$a=5$
:list
10 input a
20 "a="; ${ }^{2}$

When a number is entered as the first character of a line, the Basic monitor stores the line as part of a program.
In this example, " 10 input $a^{\prime}$ is entered.
Basic stores this instruction in memory and prints another ":" prompt. The run command causes execution of the stored program. In this example, Basic asked for input by printing "?". A number (5) is typed at the terminal. Basic accepts the number, stores it in the variable " $a$ ", and executes the next instruction. The next instruction (20 " $\mathrm{a}=$ "; a ) is an implied print statement: writing an actual "print" command is not necessary here. The command "list" caused Basic to display the program stored in memory on the terminal.

Reading Directly From Memory. Basic lets the user directly read any byte or word in memory using the Print command and "@" for byte references or " $\uparrow$ " for word references:
:print @8
10
:printhex (@8)
A
:printhex (18)
AF6
:
The first statement prints the decimal value of register 8 .

The next statement prints the hexadecimal value of Register 8 and the last statement prints the hexadecimal value of Register 8 ( OHH ) and Register 9 ( F 6 H ).

Writing Directly to Memory. Basic lets the user write directly to any register or RAM location in memory using the Let command and either "@" or "个".
: @ \%a= \%ff
: $\uparrow 4096=255$
:print @10 255
:printhex( $\uparrow \% 1000)$
FF
:
The let command is implied to save memory space but can be included. The first statement loads the hex-decimal FF into register 10 decimal (AH). The next instruction loads the decimal value 253 into register 4096 decimal ( 1000 H ). The print commands write to the terminal the values that were put in with the first two instruction.

Software (Continued)

Commands. Basic/Debug recognises 15 command Keywords. For detail instructions of command usage refer to the Basic/Debug Software Reference manual.

GO The GO command unconditionally branches to a machine language subroutine. This statement is similar to the USR function except that no value is returned by the assembly language routine.
GOSUB GOSUB unconditionally branches to a subroutine at a line number specified by the user.
GOTO GOTO unconditionally changes the sequence of program execution (branches to a line number).
IF/THEN This command is used for conditional operations and branches.
INPUT/IN These commands request information from the user with the prompt "?" then read the input values (which must be separated by commas) from the keyboard, and store them in the indicated variables INPUT discards any values remaining in the buffer from previous IN, INPUT or RUN statements, and requests new data from the operator. IN uses any values left in the buffer first, then requests new data.
LET LET assigns the value of an expression to a variable or memory on the terminal device.
NEW The NEW command resets pointer R10-11 to the beginning of user memory, thereby marking the space as empty and ready to store a new program.
PRINT PRINT lists its arguments, which may be text messages or numerical values, on the output terminal.

REM This command is used to insert explanatory messages into the program.

RETURN This command returns control to the line following a GOSUB statement.
STOP STOP ends program execution and clears the GOSUB stack.
RUN RUN initiates sequential execution of all instructions in the current program.

Functions. Basic/Debug supports two functions: AND and USR.

The AND function performs a logical AND. It can be used to mask, turn off, or isolate bits. This function is used in the following format:

AND (expression, expression)
The two expressions are evaluated, and their bit patterns are ANDed together. If only one value is included in the parentheses, it is ANDed with itself. A logical OR can also be performed by complementing the AND function. This is accomplished by subtracting each expression from -1. For example the function below is equivalent to the $O R$ of $A$ and $B$.

$$
-1-\operatorname{AND}(-1-\mathrm{A},-1-\mathrm{B})
$$

Machine Language Functions. An application often requires a subroutine which can be performed more quickly and efficiently in machine language than in Basic/Debug.

Basic/Debug can call a machine language subroutine which returns a value for further computation by the USR function. To call a subroutine which return no valve, the GO@ command is available.

After the machine language routine is assembled and placed in unoccupied memory, it can be called as follows:

USR (\% 2000)

Software (Continued)
The address and arguments are expressions separated by commas. Argument 256 and c variable are passed to the subroutine via registers R20-21 and R18-19 and the machine language subroutine must leave the return value in R18-19.

Call	R18-19 Contains	R20-21 Contains
USR (\% 700,A,B)	B	A
USR $(\% 700, A)$,	$A$	$A$

## Table 3 USR Argument and Registers

The machine language subroutine must end with a RET instruction, and leave the value to be returned in R18-19.

Basic/Debug assigns addresses 0 through 255 to the register file. The 144 registers
include four I/O port registers (R0-R3), 124 general purpose registers and sixteen control and status registers. These registers are common to all Z8 Family CPU chips and are described in the Z8 Family Technical Manual. However, Basic/Debug uses many of the general purpose registers as pointers, scratch workspace and internal variables. So, in the Z867l single board computer, these registers cannot be used by a machine language subroutine or other user programs.

The 2 K of internal ROM on the Z8671 chip contains the Basic/Debug interpreter. It begins at address 00 and extends up to 2047, but because Basic/Debug assigns the addresses 0-255 to the register file, the lower 256 bytes of internal ROM may be accessed only by machine language instructions.


## Initialization And Automatic Start-Up.

On Power-On/Reset, Basic/Debug checks for external RAM memory and also for an auto start-up program.

Basic/Debug non-destructively tests memory from low to high addresses. Only one byte of every 256 is tested at relative location XXFD(hex). The first byte of RAM found determines the lower boundary of user memory. Basic/Debug assumes that if XXFD is RAM, XX00 is also RAM and sets pointer R8-9 to XX00 (hex). Basic/Debug continues to test up through memory until it finds a byte that does not contain in RAM.

Basic/Debug assumes it has RAM up to and including YYFF(hex) where YYFD is the last location tested that contained RAM. The top of user memory pointer, R4-5, is set to YY20.

Automatic start-up allows a program stored in ROM to be executed on reset without operator intervention. Automatic execution occurs on power-up/Reset when the program

- is stored in ROM
- begins at 1020(hex)
- begins with a line number between 1 and 254 inclusive.


Figure 1 - P.C. Board and Components Layout

.

## Z8 in Electronic Private Automated Branch Exchange (EPABX 2 Ext./8 Int. Lines)

## EPABX Typical Features

Day/Night Service. During night service a telephone set has some priority features (E.G., operator). It can receive external calls and switch on others.
Put in Hold. During a conversation one party can be placed in "hold condition" to allow other connections and then be reconnected to the original conversation.

Transfer. A party can be transferred to another third party.

Conference Call. 3 people can speak simultaneously.
Alternative Conversation. Led by one party, connection can be alternated between two other parties.

Telephone Set. Uses standard two wire $48 \mathrm{~V} / 30 \mathrm{~mA}$ telephone set.

## General Description

The EPABX is a small electronic private branch exchange with the ability to set up connections between internal extensions and external two wire trunk lines. The EPABX is suitable for connection to a public telephone network.

The switching matrix and the related control logic are semiconductor devices driven by a Z8 single chip microprocessor. The system concept is based on the spacedivision principle.


EPABX: General Structure

## Operating Modes

Two basic modes of operation are possible:
Day Service (see Figure 1 and 2). The incoming calls from either external trunk line ring all internal extensions. Any extension can pick up the incoming call by going off-hook.
Access to outgoing line is gained by dialling 0.

At point C (in Figure 1) an alternate conversation ( J or t ) controlled by " I " is possible using the command " $* 5$ ". Or a call conference using the command $* 4$ or a recall using the command $* 6$.
For flow chart $B$ the call cannot be picked up if "I" has a person on hold.


S-7903


Figure 1. Pick Up an Incoming Call


Figure 2. Generation of an External Ring Signal in Day Service

Operating Modes (Continued)
Night Service (see figure 3 and 4). The incoming calls are routed to one extension (the operator's telephone set). If the operator does not answer within 30 seconds, all the telephone are activated and any internal
extension may pick up the call.
If the operator's extension is busy, with either an external or internal conversation, the incoming call will cause a busy tone to be activated into the operator's connection.


Figure 3. Night Service


Figure 4. Generation of an External Ring Signal in Night Service

## Network Configuration

The network permits the connection of up to 8 internal extensions to the 2 trunk lines. Up to 4 simultaneous conversations can take place ( 2 internal and 2 external maximum). (see Figure 5 and 6).

Power Supplies and Power Failure. The EPABX is powered from an AC line. A power failure will automatically route the two external trunks to two internal extensions which will operate normally without AC power.

Physical Description. The EPABX should be housed in a wall-mounted enclosure. The internal lines (telephone sets) and the external trunk lines are connected to a terminal strip.

## Type of Internal Telephone Set and Line

 Resistance. The EPABX uses a standard $48 \mathrm{~V} / 30 \mathrm{~mA}$ telephone set with either pulse or DTMF dialing. The maximum line resistance for internal extensions is 1000 ohms.

Figure 5. Single Cell Matrix Structure by M079 2x2 Cross Point, for Balanced Connection

The M079 is used in severe conditions (low attenuation, fully separation of channell, due to double switches).


Figure 6. EPABX (Matrix)

## Network Configuration (Continued)

Internal Circuit Blocks. The main EPABX system is divided into the following blocks: The power supply unit providing -48 V supply for the telephone sets, $70 \mathrm{~V} / 20 \mathrm{~Hz}$ ringing voltage with $1 \mathrm{sec} / 4 \mathrm{sec}$ modulation, tone generator for

- Busy tone,
- Dial tone,
- Ringing tone, giving a 425 Hz sine wave modulated as shown in flow chart l, with an output level of -10 dBm ,
A central unit containing the microprocessor and switching matrix circuits (Figure 7), and line interface circuitry for 8 local extensions and two trunk lines. (Figure 8 and 9). Both Must Perform:
- Galvanic insulation
- DC/AC DC coupling
- AC signal bias (to be treated by electronic matrix)
- Line status supplied to microprocessor protection
"A" Type must provide:
- Dialling actuator (only for pulse dialling)
"B" Type must provide:
- Ring injection (70V, 20 HZ )
- DC feeding ( -48 V )


Figure 7. Switching Matrix Circuit


Figure 8. "A" Type: External Interface


Figure 9. "B" Type: Internal Interface

Network Configuration (Continued)

## Allocation of Numbers for Extensions and Functions.

Internal extensions 2 to 9
Prefix to a call 0 for trunk access 1 for trunk call answer
Suffix during a call 4 for conference call 5 alternate conversation 6 recall/hold
Internal Calls. (see Figure 10). When an extension is taken "off hook" a dial tone is received. An extension number from 2 to 9 may be dialled. If the called party is idle, a ringing tone is received, if the called party is busy, a busy tone is received.
When the conversation has ended, and one of the extensions is placed "on-hook", the other will receive a busy tone.


Figure 10. Internal Calls

Outgoing Calls. (see Figure 11). An outgoing call is initiated when an extension is taken "off-hook" and a " 0 " is dialled. If one of the two trunk lines is free, it will become available and will be received a dial tone from the public exchange. There is no limit on, or control over the number subsequently dialled.


Figure 11. Outgoing Calls

## Network Configuration (Continued)

Hold/Recall. (see Figure 12). After a call is placed on hold by following the appropriate procedure, another internal or external line may be dialled. The call 'on hold' may be recalled by dialling 6 and the previous conversation resumed.

Transfer. (see Figure 12). After placing a conversation on hold and establishing a conversation with another person, a transfer may be executed by going "on-hook". However, a transfer to interconnect two external lines is not allowed.


Figure 12. Hold/Recall and Transfer

## Notes:

- J can be external or internal
- K can be external or internal, transfer will not take place if J and K one both external.
- I is the master of the call and J and K are "slaves". If the generator goes on-hook the second person called becomes the master (only if the second person called is not a trunk, otherwise the first person called becomes the master or viceversa). If a slave goes on-hook, the generator remains the master.

Alternate Conversation. (see Figure 13). When a call has been placed on hold and another conversation initiated, a user may alternate between the two lines by dialling 5 .


Figure 13. Alternate Conversation

## Notes:

- I is an internal extension and is the master of the call.
- J \& K are internal or external but if J \& K are external call conference is allowed.
- Alternate calls are controlled ( $* 5$ ) by the person who called the 3rd party with $* 6$.
- If a person on-hold hangs up, he is automatically disconnected, and consequently not found with the $* 5$ command; the generator receives a busy tone and the original conversation can, however, be resumered with the $* 6$ command. If the generator goes onhook the second person called becomes the master (only if the 2nd person called is not a trunk, otherwise the first person called becomes the master or viceversa.
- If a slave goes on-hook the generator remains the master.


## Network Configuration (Continued)

Conferece Call. (see Figure 14). A conference call is possible up to a maximum of either one external and 2 internal conversations, 3 internal conversations, or 2 external and 1 internal (where allowed).


Figure 14. Conference Call

## Notes:

- I, J and M may be:
(a) three internal lines
(b) two internal and one external or viceversa.
- Two external lines can be put inconference.
- I is an internal extension and is the master.
- If I leaves, the second person called becomes the master (only if the 2nd person called is not a trunk, otherwise the first person called becomes the master or viceversa.
- If J or M (slaves) leaves the generator (I) remains the master.


## Flow Chart Comments

In these flow charts the following symbols are used:

I, J, K, M $\quad$| user identifications |
| :--- |
| (internal or external) |

T1, T2 trunk lines 1 and 2
dial tone
busy tone self explanatory ring back tone
E.I.C.
momentary depression of the rest (or pushing the momentary connection button on phones equipt with this feature)
dialling $l$ to 0
connection and conversation of I with J
external incoming call

## Tone Definition Timing



Figure 15. Busy Tone Over Speech


Figure 16. Definition of Tones, Busy Tone.


Figure 17. Dial Tone


Figure 18. Ring. Back Tone

## Ring Signals Definition Timing



Figure 19. General Bell Ring Signal


Figure 20. Internal Incoming Call, Ring Signal


Figure 21. External Incoming Call, Ring Signal
S. 7913

## General Timing Description

Parameter	Characteristic
Dial pulse internal   - Break space   - Mark space	More than 50 ms . Less than 75 ms More than 30 ms
Dial pulse on trunk	As generated on internal extension
Inter digit	800 ms
Flash	More than 200 ms - Less than 800 ms
Flash on trunk line	80 ms
On-hook	More than 800 ms
Antibounce on DTMF key	37.5 ms
Delay after freeing the trunk line before engaging the line again	200 ms
Dial tone	Continuous 425 Hz
Busy tone	$200 \mathrm{~ms} \mathrm{ON} / 200 \mathrm{~ms} \mathrm{OFF} / 425 \mathrm{~Hz}$
Busy tone over speech	$100 \mathrm{~ms} \mathrm{ON} / 3.2 \mathrm{sec}$ OFF/ $/ 425 \mathrm{~Hz}$
Ring back tone	$800 \mathrm{~ms} \mathrm{ON} / 3,2 \mathrm{sec}$ OFF/425Hz
Internal call ring signal	800 ms ON/3.2 sec OFF
External call ring signal	$800 \mathrm{~ms} \mathrm{ON} / 1.6 \mathrm{sec}$ OFF
Gen bell signal	$800 \mathrm{~ms} \mathrm{ON} / 1.6 \mathrm{sec}$ OFF
Antibounce on ext-incoming call signal receiving	37.5 ms sec

# Using Z8 MCU in Keyboard Controller 

## Introduction

The Z8 MCU can be used advantageously in a professional keyboard controller, with serial scanning.

The principal points on which the application is based are, in essence:

- Use of a new generation highperformance microcomputer (Z8), which is well adapted to real time applications; and
- implementation of a serial scanning technique for the matrix, facilitated by Z8's remarkable execution velocity, with the possibility of defining a single dedicated interface circuit which includes a limited number of pins (28), and is thus less costly.


## Description

It should be particularly noted that, if the architecture and the software available in the Z8 MCU are used in a timely way, it is possible to achieve scanning times at a level of 2.7 msec for 128 keys with the $8 \mathrm{MHz} \mathrm{Z8}$. Using faster versions ( 12 MHz ), it is possible to achieve shorter scanning times.

The matrix interface circuit interacts with Z 8 by means of 2 lines:

- CK coming from Z8; and
- IN going toward Z8.

The CK signal is generated by Z8 and enables the column counter and the line multiplexer with its rising edge.

The circuit interfaces with the matrix via the 16 enabling column outputs in opendrain, and the 8 line inputs.

For these inputs, the specific thresholds (VILmax $=1.5 \mathrm{~V}$ ) guarantee a correct interface with the matrix.

During the micro's initialization phase, this takes place when the interface matrix is reset, transmitting a timely impulse to the IN pin, which thus becomes bidirectional.

This arrangement permits leaving out a
less reliable function, power-on reset, which is built into the device, without adding it to a later pin, which would result in the package being carried to a higher pin number (40), thus at a higher cost.

The complexity of the interface function has been valued at the equivalent of about 200 gates.

The other functions available in the keyboard, namely: mouse control; and serial conversation control synchronized with the P.C. can be easily worked out using 3 of the 4 external IRQ pins.

These vectorized interrupt requests can be masked and prioritized through use of software. An eventual function, namely controlling asynchronous serial conversation, can be freely obtained, since it already exists in the Z8. In this case, one of the 2 internal timers is used as a baud rate generator.

Driving eventual LEDs (caps lock, number lock) can be achieved directly by programming the respective pins of port 2 in open-drain. Using LED limiting resistance in series, the typical level of current of 10 mA can be programmed.

## Note Concerning the Block Diagram

It is possible to write a single program which can automatically recognize if the device being used is a Z8 ROMless or a Z8 masked. This permits an immediate branching from the version with external

EPROM to that using $\mathrm{Z} 82 \mathrm{~K} / 4 \mathrm{~K}$ ROM. The test is applied to bits D3 and D4 of register 248 (MODE REGISTER P0 and Pl)
immediately after reset.

## Note Concerning the Printout

Status is coded on 2 bits. The status table is made up of 32 bytes with 4 states per byte. The status coding used is the following:

$0=$ KEY OFF
$1=K E Y O N$

This type of coding permits:

- Branching from the previous state S1 S2 to the new state S 2 IN by retaining a bit from the previous state (S2) and introducing the real state of the key (IN). Status updating is, therefore, easily achieved through rotation and shift operations.
- A simple test for a valid key: the valid key (on or off) is identified by having the 2 status bits identical (00, 11). This permits testing key validity and jumping to the corresponding service routine, using the single instruction JR NOV, OUT. The previous instruction on rotation really sets an overflow bit if the two status bits are different.

Z8


Figure 1. Block Diagram

## Program Routine

A TYFFE KEYX.ASM			
FGASE:	EQU	OEOH	;EASE FOK WORKING REGISTERS
TPTR:	EQU	FEASE+13	; R13=TAELE FOINTER (TFTR)
NSCAN:	EQU	KEASE+14	; $\mathrm{R} 14=$ COUNTER OF N . OF SCANNING INTO THE TAELE (4)
NEYTE:	EQU	RBASE +15	; F15=COUNTER OF $N$. OF EYTES INTO The TAELE (32)
	ORG	OCH	
	LD	F2H, 0	;F20-F27 OUTFUTS,CLK OUTFUTS ON F27
	LD	P3K, $\ddagger 01$	;F2 WITH FULL-UF'S ACTIUATED
	LD		;F10-F17 OUTFUTS,FO0-F'07 INFUTS, INTERN.STACK
	; KEY	INF'UT ON F'OO	
	LD	TFTF, $\# 10 \mathrm{H}$	;FOINTEF TO 1ST EYTE to freset
	LD	NEYTE, $\# 20 \mathrm{H}$	; NUMEER OF EYtES to clear
	LD	F7, \# OFFH	; MASK TO Freset status taele
OPEN:	LD	ETPTR,F7	
	INC	TPTE	
	DJNZ	NEYTE, OFEN	;FRESET ALL KEY STATUS TO OFEN CONDITION
	LD		; MASK TO RESET CLK
	LD		;MASK TO SET CLK
	OR	R2,R4	; RESET CLK
	LD	NEYTE, $\ddagger 01$	
	LD	NSCAN, \#01	
	JR	IN	
STARTO:	LD	TFTR, \# OFH	;TFTR=STARTING C OF STATUS TAELE MINUS ONE
	LD	NEYTE, ${ }^{\text {20H }}$	; NEYTE=NUMEER OF EYTES Into the taEle
STAFT1:	LD	NSCAN, 04	; NSCAN=N. OF SCANNING TO DO FOR EACH EYTE
	INC	TPTR	
START2:	RL	ETPTK	
	RL	etpte	
	FRC	k0	; Shift infut to carky flag
	OR	R2,F4	; RESET CLK
	FRC	ETFTE	
	FFiC	ETfit	;GENERATE NEW STATUS ON EITS 6 AND 7
	JR	nov,out	; test new status and go out if it's OO OR 11
IN:	AND	K2,Fis	;SET CLK
	RL	QTPTR	
	FL	ETFTK	; Prefare the taele for the next key value
	DJNZ	NSCAN, STAFT2	;CHECK If ALL THIS EYTE IS SCANNED
	DJNZ	NEYTE, STAFTI	; Check if the tasle is completed
	Jk	Starto	; at the first key Jf to starto
OUT:	Jk	IN	

## Z8 MCU in Dynamic Keyboard

## The Measurements of Pressure Velocity on the Keyboard of $a$ Musical Instrument

## Introduction

Among the characteristics requested from new generations of musical instruments, in particular the piano effect, is the control of amplitude in connection with the velocity of keyboard pressure, in other words, the socalled dynamic keyboard.

Software using the Z8 and supported by the M112 has been studied by SGS in order to permit the creation of a dynamic keyboard with unlimited poliphonicity, up to a maximum of 104 usable keys on one two keyboards.

The Z8/D, which may be considered as a standard component for this function,
together with the Mll2, makes it possible for builders of musical instruments to create a dynamic keyboard without having to develop the software or to use complex and costly circuits.

The number of M112s used together with the Z8/D depends on the poliphonicity desired, given the fact that each M112 provides a polyphonicity of 8 notes.

The circuitry necessary for each channel's configuration is significantly reduced thanks to the M112's characteristics of being able to carry out internally the SUSTAIN and RELEASE phase.

## Main Characteristics

- The number of usable keys is programmable from 40 to 104.
- Contact may be made by a double bar or by a double rubber contact.
- Total polyphonicity, limited only by the number of M112s and by the velocity of the master/micro.
- Asynchronous conversation with master micro.
- 21 tables which specify the amplitude of the sound identified in relation to flight time (key speed).
- 2 output forms for each key, arranged for choice among the 21 available.
- Each table consists of 15 words of 6 bits each.
- Transition time between the two bars: $\min .3 \mathrm{~ms}$ and $\max .39 \mathrm{~ms}$ with $\mathrm{CK}=8$

MHz (from 0 to 3 ms , equals maximum amplitude, while, beyond, 39 ms equals the minimum level).

- Possibility to change the transition time by varying the CK.
- Exclusion of rebounds on either bar.
- Sending reset to master/micro during initialization and in case of error.
- Percussive and/or sustained effects.
- Each key is defined by 14 bits in the following way: 7 bits codify the key number from 0 to 103; l, the condition of the key; 6 codify the amplitude.

Note: the Mll2s should have $3 \mathrm{~V} \pm 10 \%$ on pin 12 $(\mathrm{Vt})$; HOLD command $=0$ and the code for attack time should never be $\mathrm{al}=\mathrm{a} 2=\mathrm{a} 3=0$. Thus the RELEASE phase can be controlled by the M112.

## Operation

The keyboard, or keyboards, the extension of which is programmable, make up a matrix of 8 xN ( $\mathrm{Nmax}=13$, or in other words, 104
keys max.) and every N line is made up of 2 bars, one for release and the other for pressure (see Figure 8) - the double contact

## Operation (Continued)

rubber can also be used (see Figure 9).
Keys not being used are in contact with the release bar and when they are played, they touch the pressure bar.

Transition time between one bar and the other, which we will call "flight" time, does not include rebounds insofar as the count starts from the last rebound on the release bar and ends with the first contact with the pressure bar.

The calculation of flight time takes place by increasing, every time the keyboard shifts, a 4 -bit counter with which a pair of tables chosen by the user from among the 21 available can be addressed.

Acquisition of the two tables selected and of the number of keys is only possible at mains on.

The time for a shift cycle represents the basic measuring unit of "flight" time and thus is fixed at a constant value of 1.5 ms through use of the Z8/D's internal timer with CK $=8 \mathrm{Mhz}$.

The first 5 steps are increased every 1.5 ms , while the successive 10 are every 3 ms .

A key is considered pressed at its first contact with the pressure bar, and released at its first contact with the release bar; eventual rebounds, even unlimited ones on the same bar, are ignored.

The Z8/D microprocessor reads the keyboard in a sequential mode and measures flight time for each key that is pressed; that
of release is not taken into consideration. This time can thus only assume 15 discrete values.

Each of these 15 values addresses a pair of amplitudes or levels which should have the note which corresponds to that key.

The micro Z8/D will present on 6 pins (3 associated with port P0 and 3 associated with P3) the code for the first amplitude. After 2 $\mu \mathrm{s}$, the 3 pins P0 (234) which serve, through the use of 3 input AND to strobe and thus memorize this first amplitude, are set to 1 .

The second amplitude is made available on the same 6 pins, $20 \mu$ s after the first, and is maintained until the release of the key or until the successive output (see Figure 3).

The acceptance of keys by the Z8/D is conditioned by the velocity of the acquisition of the master/micro with respect to the quantity of variations of keys in the unit of time.

In order to not limit polyphonicity because of excessive slowness of the master/micro, a FIFO type memory area, has been prepared inside the Z8/D, capable of holding up to 10 variations ready for the master/micro to use.

The Z8/D micro accepts any key pressed indistinctly, taking account of the fact that those coming after filling the FIFO are lost. The decision of which keys to send to the M112 and thus to play, is left to the master/micro.

## Communicating with the Master/Micro

At switch on, the Z8/D puts, on port Pl, the code FF which is received by the master/micro and interpreted as a reset.

This code is also sent when, for any reason, the FIFO finds itself in an anomolous condition - for example when the read counter is more advanced than the write pointer. In effect this could leave the "keys pressed" and never cancell them again.

It is therefore necessary that the master micro cancels all pressed keys it has in memory when it receives FF.

All data supplied by the Z8/D is comprised of 14 bits which have the following format:
-7 bits $\left(\mathrm{Pl}_{0}-\mathrm{Pl}_{6}\right)$ give the key number with $\mathrm{Pl}_{0}$ being the LSB.

- 1 bit $\left(\mathrm{Pl}_{7}\right)$ gives the key condition ( $\mathrm{l}=\mathrm{pressed}$ )
- 6 bits ( $\mathrm{P} 0[567]$ and $\mathrm{P} 3[567]$ give the two amplitudes with $\mathrm{PO}_{5}$ being the LSB.
Transmission is asynchronous with two signals from the Z8/D being used: DAV ( $\mathrm{P} 3_{4}$ ) which, when a " 1 ", signals to the master/micro that data is ready to be transmitted and RDY $\left(\mathrm{P}_{3}\right)$ which must go to " 1 " to alow the Z8/D to make the data available on its ports.


Figure 1

## Communicating with the <br> Master/Micro (Continued)

The timing shown in Figure 2 is relative to an 8 MHz clock.

DAV can go to " 1 " only if RDY is zero and vice versa.
$a=972 \mu \mathrm{~s}$
$\mathrm{b}=16.5 \mu \mathrm{~s}$ If, however, RDY is not yet at zero, DAV will wait until it goes to zero and, then, after 2.5 us, will go to " 1 ".
c,e,g,m:
These times depend on the master/micro. However they should not be less than zero.
$\mathrm{d}=7 \mu \mathrm{~s} \quad$ In this case, RDY cannot last less than $7 \mu \mathrm{~s}$.
f can vary from $150 \mu \mathrm{~s}$ to 1.5 ms .
$\mathrm{h}=53 \mu \mathrm{~s} \quad$ When this time has passed, the data is complete, but the partial times are:

* $13 \mu \mathrm{~s}$ OUTPUT Pl (TP and Key No.)
* $33.5 \mu$ s OUTPUT first amplitude with related strobe
* $55 \mu$ s OUTPUT second amplitude
$\mathrm{i}=4 \mu \mathrm{~s}$
n can vary from $7 \mu \mathrm{~s}$ to 1.5 ms .
Figure 3 shows the detailed timing beginning from the switching of RDY, in other words, from the request for new data and on the supposition that such data is already available:

The data on Pl and those concerning the second amplitude remain stable until the next switching of RDY.


Figure 2


Figure 3. RDY Timing

## Typical Application

Possible applications of Z8/D are many; in this note, two of these are shown, related to percussive effects.

The technique used in this application is bused on the fact that the attack phases are not contemporary, in other words, it is not possible to have two or more keys with their attack time overlapping.

This first application allows the saving of a latch or sample and hold for each channel, however the cross-over level between two note decay levels of will not be defined and thus this point must be defined by a timer which, in this case, is made up of rd and Cd.

The following waveforms demonstrate the movement in the signals concerning diagram, in Figure 10.
$\mathrm{Ta}=(\operatorname{Ro}(4051)+\operatorname{Ro}(\mathrm{D} / \mathrm{A})) * \mathrm{C}=\sim \mathrm{l}$
Kohm*C
$\mathrm{Td}=\mathrm{RD} * \mathrm{C}(\mathrm{RD}$ can be controlled with the assistance of a duty-cycle variable oscillator)
$\mathrm{Ts}=3 \mathrm{Mohm} *$ ( 3 Mohm is the internal resistance to Mll2 connected to the mass)
$\operatorname{Tr}=\mathrm{Rp} * \mathrm{C}(\mathrm{Rp}$ is the internal resistance to M112 programmable among rl, r2 and r3)

Tp represents the time interval during which the key is pressed.

St.D and ta are generated by the master/micro:

- St.D is the strobe for data transmission for the M112. The negative transition renders the M112 data operational, and initiates the attack phase of the external development circuit.
- ta, which should begin before the defined St.D, with its negative transition, the attack phase. This time is quite well controlled by the master/micro because, given the characteristics of this application, the next key can begin the attack phase only at the end of the present tA.
- td is the decay phase time, which should not be confused with the time constant Td; its value is determined by the product $\mathrm{rd} * \mathrm{Cd}$ and by the threshold of 4503.

The second application (see Figure 11), reguires a temporary memorization of the SUSTAIN level for each channel, however, it permits better envelope control.

In fact, the DECAY phase now tends toward a digitally controlled level and thus the cross-over point between the two slopes is perfectly calculable even to the variation of maximum size in relation to minimum key pressure.


Figure 4. Signal Diagram Relative to Figure 10

## Typical Application (Continued)

Both of the applications just described can be carried out either with the double bar contacts or those with conductive rubber.

If one examines various tables among the 21 available, it is sufficient to choose table 21 and any other one to obtain from the 4 least important bits (P05, P06, P07 and P35) the "flight" time code, from 1 to 15 , with which one can address any table inside the
master micro, as is shown in Figure 5, or else an external memory.

Figure 5 shows a possible circuit to read the tables located in the micro/management minimizing the number of pins used in the conversation.

Table 1 and Figure 6 show the numerical and graphical progression of the 21 tables contained in Z8/D.


Figure 5. Circuit to Read Tables Resident in the Master/Micro

Flying   time   (ms)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$
3	63	63	63	63	63	63	63	63	63	54	48	45	44	40	31	29	28	28	27	26	$\mathbf{1}$
4,5	63	63	62	62	61	61	59	56	52	51	44	42	40	37	33	31	30	29	28	27	2
6	63	62	61	60	58	56	52	48	45	49	42	36	37	35	35	32	32	30	29	27	3
7,5	62	59	58	58	54	51	47	43	41	47	39	30	35	33	36	32	33	30	30	28	4
9	60	54	50	56	47	47	41	39	39	44	37	27	33	32	34	30	34	29	31	28	5
12	53	46	42	51	43	45	35	36	37	40	33	25	30	29	31	28	33	27	32	29	6
15	47	43	40	49	42	43	34	35	37	35	31	25	28	27	29	27	30	36	32	30	7
18	44	39	38	47	41	42	33	34	35	32	29	24	27	26	29	26	28	25	32	30	8
21	43	37	36	45	40	42	32	34	34	30	27	24	26	25	28	26	27	25	31	30	9
24	42	34	33	40	37	40	31	33	34	28	26	24	25	24	27	25	26	25	30	29	10
27	40	32	30	35	34	37	29	31	31	27	26	24	25	24	27	25	25	24	28	28	11
30	38	30	29	32	31	35	28	29	29	26	25	23	25	23	26	24	25	24	26	26	12
33	36	29	28	30	29	34	27	27	27	25	24	23	24	23	25	24	24	24	26	25	13
36	35	28	28	27	27	34	25	26	26	24	24	23	24	23	24	24	24	23	25	24	14
39	34	28	27	22	26	34	24	24	24	24	24	22	24	22	24	23	24	23	24	24	15

Tab. 1. Table of Amplitude Codes Against Fligth Times


Figure 6. Layout of Tables Resident in the Z8/D


Figure 7

- The release bars are even-numbered.
- Unusual keys are closed with a diode near the release bar.
- The matrix is read at regular intervals of $1,5 \mathrm{~ms}$ with $\mathrm{CK}=8 \mathrm{MHz}$.


Figure 8. Diagram of Double Bar Keyboard and Commands


Figure 9. Diagram of Double Rubber Contact Keyboard


Converter D/A


Figure 10. Diagram for Percussive Effects


Figure 11. Diagram for Percussive Effects

## Comparison of Z8611, 8051 and MC6801 Microcomputers

## Introduction

The microcomputer industry has recently developed single-chip microcomputers that incorporate on one chip functions previously performed by peripherals. These microcomputer units (MCUs) are aimed at markets requiring a dedicated computer.

This report describes and compares the most powerful MCUs in today's market: the Z8611, the 8051, and the MC6801. Table 1 lists facts that should be considered when comparing these MCUs.

FEATURES	Z8611*	8051	MC6801
On-Chip ROM	$4 \mathrm{~K} \times 8^{*}$	$4 \mathrm{~K} \times 8$	$2 \mathrm{~K} \times 8$
General-Purpose Registers	124	128	128
Special-Function   Registers   Status/Control   I/O ports	$\begin{aligned} & 16 \\ & 4 \end{aligned}$	$\begin{aligned} & 16 \\ & 4 \end{aligned}$	$\begin{aligned} & 17 \\ & 4 \end{aligned}$
I/O   Parallel lines   Ports   Handshake	32   Four 8-bit Hardware on three ports	32   Four 8-bit   None	29   Three 8-bit, one 5-bit Hardware on one port
Interrupts   Source   External source   Vector   Priority   Maskable	$\begin{aligned} & 8 \\ & 4 \\ & 6 \\ & 48 \text { Programmable } \\ & \text { orders } \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 5 \\ & 2 \text { Programmable } \\ & 5 \text { orders } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \\ & 7 \end{aligned}$   Nonprogrammable $6$
External   Memory	120K bytes	124K bytes	64 K bytes
Stack   Stack pointer Internal stack   External stack	16-bit   Yes, uses   8-bits   Yes	8-bit   Yes   No	16-bit   Yes   Yes
Counter/Timers   Counters   Prescalers	Two 8-bit   Two 6-bit	Two 16-bit or two 8-bit No prescale with 16-bits; 5-bit prescale with 8-bits	One 16-bit   None

[^14]Table 1. MCU Comparison

Introduction (Continued)

FEATURES	Z8611*	8051	MC6801
Addressing   Modes			
Register	Yes	Yes	No
Indirect Register	Yes	Yes	No
Indexed	Yes	Yes	Yes
Direct	Yes	Yes	Yes
Relative	Yes	Yes	Yes
Immediate	Yes	Yes	Yes
Implied	Yes	Yes	Yes
Index   Registers	124, Any generalpurpose register	1, Uses the accumulator for 8 -bit offset	1, Uses 16 -bit index register
Serial   Communication   Interface   Full duplex UART   Interrupts for transmit and receive   Registers Double buffer   Serial Data Rate	Yes   One for each   Receiver   $62.5 \mathrm{~K} \mathrm{~b} / \mathrm{s}$   @ 8 MHz	Yes   One for both   Receiver   187.5 K b/s   (a) 12 MHz	Yes   One for both   Transmitter/Receiver   $62.5 \mathrm{~K} \mathrm{~b} / \mathrm{s}$   @ 4 MHz
Speed   Instruction execution average   Longest instruction	$2.2 \mu \mathrm{sec}$   $4.25 \mu \mathrm{sec}$	$\begin{aligned} & 1.5 \mu \mathrm{sec} \\ & 4 \mu \mathrm{sec} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \mu \mathrm{sec} \\ & 10 \mu \mathrm{sec} \\ & \hline \end{aligned}$
Clock Frequency	8 MHz *	12 MHz	4 MHz
Power Down Mode	Saves first 124 registers	Save first 128 registers	Saves first 64 registers
Context Switching	Saves PC and flags	Saves PC; programmer must save all register	Saves PC, PSW, accumulators, and Index register
Development	$\begin{aligned} & \text { 40-Pin ROMless } \\ & \text { (Z8681/82/84) } \end{aligned}$	40-Pin (8751)	40-Pin (68701)
Eprom	4K bytes 8 K bytes	4K bytes	2 K bytes

* $\mathrm{Z} 8601=2 \mathrm{~K}$ ROM version

Table 1. MCU Comparison (Continued)

## Architectural Overview

The three chips have somewhat similar architectures. There are, however, fundamental differences in design criteria.

The 8051 and the MC6801 were designed to maintain compatability with older products, whereas the Z86ll design is free from such restrictions and incorporates many new ideas. Because of this, the accumulator architectures of the MC6801 and the 8051 are not as flexible as that of the Z8611, which allows any register to be used as an accumulator.

Memory Spaces. The Z8611 CPU manipulates data in four memory spaces:

- 60 K bytes of external data memory
- 60K bytes of external program memory
- 4 K bytes of internal program memory (ROM)
- 144-byte register file

The 8051 CPU manipulates data in four memory spaces;

- 64 K bytes of external data memory
- 60 K bytes of external program memory
- 4 K bytes of internal program memory
- 148 -byte register file

The MC6801 manipulates data in three memory spaces:

- 62 K bytes of external memory
- 2 K bytes of internal program memory
- 149-byte register file

On-Chip ROM. All three chips have internal ROM for program memory. The Z861l and the 8051 have 4 K bytes of internal ROM, and the MC6801 has 2 K bytes. In some cases, external memory may be required with the MC6801 that is not necessary with the Z8611 or the 8051 .

On-Chip RAM. All three chips use internal RAM as registers. These registers are divided into two categories: general-purpose registers and special function registers (SFRs).

The 124 general-purpose registers in the Z8611 are divided into eight groups of 16
registers each. In the first group, the lowest four registers are the I/O port registers. The other registers are general purpose and can be accessed with an 8 -bit address or a short 4 -bit address. Using the 4 -bit address saves bytes and execution time. Four-bit short addresses are discussed later. All generalpurpose registers can be used as accumulators, address pointers, or Index registers.
The 128 general-purpose registers in the 8051 are grouped into two sets. The lower 32 bytes are allocated as four 8 -register banks, and the upper registers are used for the stack or for general purpose. The registers cannot be used for indexing or as address pointers.
The MC6801 also has a 128-byte, generalpurpose register bank, which can be used as a stack or as address pointers, but not as index registers.
The main contrast is that any of the Z8611 general-purpose registers can be used for indexing; the MC6801 and the 8051 cannot use registers this way. The Z861l can use any register as an accumulator; the MC6801 and the 8051 have fixed accumulators. The use of registers as memory pointers is very valuable, and only the Z8611 can use its registers in this way.
The number of general-purpose registers on each chip is comparable. However, because of its flexible design, the Z8611 clearly has a more powerful register architecture.
The Z8611 has 20 special function registers used for status, control, and I/O. These registers include:

- Two registers for 16 -bit Stack Pointer (SPH, SPL)
- One register used as Register Pointer for working registers (RP)
- One register for the status flags (FLAGS)
- One register for interrupt priority (IPR)
- One register for interrupt mask (IMR)
- One register for interrupt request (IRQ)
- Three mode registers for the four ports (P1M, P2M, P3M)
- Serial communications port used like a register (SIO)
- Two counter/timer registers (T0, T1)


## Architectural Overwiev (Continued)

- One Timer Mode Register (TMR)
- Two prescaler registers (PREO, PREl)
- Four I/O ports accessed as registers (PORT0, PORT1, PORT2, PORT3)

The 8051 also has 20 special function registers used for status, control, and I/O. They include:

- One register for the Stack Pointer (SP)
- Two accumulators (A, B)
- One register for the Program Status Word (PSW)
- Two registers for pointing to data memory (DPH, DPL)
- Four registers that serve as two 16 -bit counter/timers (TH0, THl, TL0, TLl)
- One mode register for the counter/timers (TMOD)
- One control register for the counter/timers (TCON)
- One register for interrupt enable (IEC)
- One register for interrupt priority (IPC)
- One register for serial communications buffer (SBUF)
- One register for serial communications control (SCON)
- Four registers used as the four I/O ports (P0, P1, P2, P3)
The MC6801 has 21 special function registers used for status, control, and I/O. These include:
- One register for RAM/ROM control
- One serial receive register
- One serial transmit register
- One register for serial control and status
- On serial rate and mode register
- One register for status and control of port 3
- One register for status and control of the timer
- Two registers for the 16 -bit timer
- Two registers for l6-bit input capture used with timer
- Two registers for 16 -bit output compare used with timer
- Four data direction registers associated with the four I/O ports
- Four I/O ports

The special function registers in the three chips seem comparable in number and function. However, upon closer examination, the SFRs of the MC6801 prove less efficient than those of the Z8611. The MC6801 has five registers associated with the I/O ports, whereas the Z86ll uses only three registers for the same functions. The MC6801 uses four registers to perform the serial communication function, whereas the Z8611 uses only one register and part of another.
The 8051 uses two registers for the accumulators; the Z861l is not limited by this restriction. The 8051 also uses two registers for the serial communication interface, whereas the Z8611 accomplishes the same job with one register. Another two registers in the 8051 are used for data pointers; these are not necessary in the Z8611 since any register can be used as an address pointer.
The Z86ll uses registers more efficiently than either the MC6801 or the 8051. The registers saved by this optimal design are used to perform the functions needed for enhanced interrupt handling and for register pointing with short addresses. The Z861l also supplies the extra register required for the external stack. These features are not available on the 8051 or the MC6801.
External Memory. All three chips can access externall memory. The Z8611 and the 8051 can generate signals used for selecting either program or data memory. The Data Memory strobe (the signal used for selecting data or program memory) gives the Z8611 access to 120 K bytes of external memory (60K bytes in each program and data memory). The 8051 can use 124 K bytes of external memory ( 64 K bytes of external data memory and 60K bytes of external program memory). The MC6801 can access only 62 K bytes of external memory and does not distinguish between program and data memory. Thus, the Z861l and the 8051 are cleary able to access more external memory than the MC6801.

## Architectural Overwiev (Continued)

On-Chip Peripheral Function. In addition to the CPU and memory spaces, all chips provide an interrupt system and extensive I/O facilities including I/O pins, parallel I/O ports, a bidirectional address/data bus, and a serial port.

Interrupts. The Z86ll acknowledges interrupts from eight sources, four are external from pins $\operatorname{IRQ}_{0}-\mathrm{IRQ}_{3}$, and four are internal from serial-in, serial-out, and the two counter/timers. All interrupts are maskable, and a wide variety of priorities are realized with the Interrupt Mask Register and the Interrupt Priority Registers (see Table l).
All Z8611 interrupts are vectored, with six vectors located in the on-chip ROM. The vectors are fixed locations, two bytes long, that contain the memory address of the service routine.

The 8051 acknowledges interrupts from five sources: two external sources (from INT0 and INT1) and three internal sources (one from each of the internal counters and one from the serial I/O port). All interrupts can be disabled individually or globally. Each of the five sources can be assigned one of two priorities: high or low. All 8051 interrupts are vectored. There are five fixed locations in memory, each eight bytes long, allocated to servicing the interrupt.

The MC6801 has one external interrupt, one nonmaskable interrupt, an internal interrupt request, and a software interrupt. The internal interrupts are caused by the serial I/O port, timer overflow, timer output compare, and timer input capture. The priority of each interrupt is preset and cannot to be changed. The extenal interrupt can be masked in the Condition Code register. The MC6801 vectors the interrupts to seven fixed addresses in ROM where the 16 -bit address of the service routine is located.

When an interrupt occurs in the 8051, only the Program Counter is saved; the user must save the flags, accumulator, and any registers that the interrupt service routine might affect. The MC6801 saves the Program Counter, accumulators, Index register, and the PSW; the user must save all registers that the interrupt service routine might affect. The Z86ll saves the Program Counter and the Flags register. To save the 16 working
registers, only the Registers Pointer register need be pushed onto the stack and another set of working registers is used for the service routine.

With regard to interrupts, the Z 8611 is cleary superior. The Z8611 requires only one command to save all the working registers, which greatly increases the efficiency of context switching.

I/O Facilities. The Z8611 has 32 lines dedicated to I/O functions. These lines are grouped into four ports with eight lines per port. The ports can be configured individually under software control to provide input, output, multiplexed address/data lines, timing, and status. Input and output can be serial or parallel, with or without handshake. One port can be configured for serial transmission and four ports can be configured for parallel transmission. With parallel transmission, ports 0,1 , and 2 can transmit data with the handshake provided by port 3.

The 8051 also has 32 I/O lines grouped together into four ports of eight lines each. The ports can be configured under program control for parallel or serial I/O. The ports can also be configured for multiplex address/data lines, timing, and status. Handshake is provided by user software.

The MC6801 has 29 lines for I/O (three 8 -bit ports and one 5 -bit port). One port has two lines for handshake. The ports provide all the signals needed to control input and output either serially or in parallel, with or without multiplexed address/data lines. They can be used to interface with external memory.

The main differences in I/O facilities are the number of 8 -bit ports and the hardware handshake. The Z861l and the 8051 have four 8-bit ports, whereas the MC6801 has three 8 -bit ports and an additional 5 -bit port. The Z861l has hardware handshake on three ports, the MC6801 has hardware handshake on only one port, and the 8051 has no hardware handshake.

Counter/Timers. The Z8611 has two 8-bit counters and two 6-bit programmable prescalers. One prescaler can be driven internally or externally; the other prescaler is driven internally only. Both timers can

## Architectural Overwiev (Continued)

interrupt the CPU when counting is completed. The counters can operate in one of two modes: they can count down until interrupted, or they can count down, reload the initial value, and start counting down again (continuously). The counters for the Z86ll can be used for measuring time intervals and pulse widths, counting events, or generating periodic interrupts.

The 8051 has two 16 -bit counter/timers for measuring time intervals and pulse widths, generating pulse widths, counting events, and generating periodic interrupts. The counter/timers have several modes of operation. They can be used as 8 -bit counters or timers with two 5-bit programmable prescalers. They can also be used as 16 -bit counter/timers. Finally, they can be set as 8 -bit modulo-n counters with the reload value held in the high byte of the 16-bit register. An interrupt is generated when the counter/timer has completed counting.
The MC680l has one 16 -bit counter which can be used for pulse-width measurement and generation. The counter/timer actually consists of three 16 -bit registers and an 8 -bit control/status register. The timer has an input capture register, an output compare register, and a free-running counter. All three 16 -bit registers can generate interrupts.

Serial Communications Interface. The Z861l has a programmable serial communication interface. The chip contains a UART for full-duplex, asynchronous, serial receiver/transmitter operation. The bit rate is controlled by counter/timer 0 and has a maximum bit rate of $93.500 \mathrm{~b} / \mathrm{s}$. An interrupt is generated when as assembled character is transferred to the receive buffer. The transmitted character generates a separate interrupt. The receive register is doublebuffered. A hardware parity generator and
detector are integrated.
The 8501 handless serial I/O using one of its parallel ports. The 8051 bit rate is controlled by counter/timer 1 and has a maximum bit rate of $187,500 \mathrm{~b} / \mathrm{s}$. The 8051 generates one interrupt for both transmission and receipt. The receive register is doublebuffered.

The MC680l contains a full-duplex, asynchronous, serial communication interface. The bit rate is controlled by a rate register and by the MCU's clock or an external clock. The maximum bit rate is $62,500 \mathrm{~b} / \mathrm{s}$. Both the transmit and the receive registers are double-buffered. The MC6801 generates only one interrupt for both transmit and receive operations. No hardware parity generation or detection is available, although it does have automatic detection of framming errors and overrun conditions.

The 8051 and the MC6801 generate only one interrupt for both transmit and receive, whereas the Z86ll has a separate interrupt for each. The ability to generate separate interrupts greatly enhances the use of serial communications, since separate service routines are often required for transmitting and receiving.

Other differences between the Z8611, MC6801, and the 8051 occur in the hardware parity detector, the double-buffering of registers, framing error detectors and overrun conditions. The 8051 has a faster data rate than either the Z8611 or the MC6801. The MC6801 has the advantage of a hardware framing error detector and automatic detection of overrun conditions. The MC6801 also has both its transmit and receive registers double-buffered. The Z8611 has hardware parity detector, and for detection of framing errors and overrun conditions, a simple, low-overhead software check is possible using only two instructions.

## Instruction Architecture

The architecture of the Z8611 is designed specifically for microcomputer applications. This fact is manifest in the instruction composition. The arduous task of programming the MC6801 and the 8051 starkly contrasts with programming the Z8611.

Addressing Modes. The Z861l and the 8051 both have six addressing modes: Register, Indirect Register, Indexed, Direct, Relative, and Immediate. The MC6801 has five addressing modes: Accumulator, Indexed, Direct, Relative, and Immediate. A quick comparison of these addressing modes

Instruction Architecture (Continued)
reveals the versatility of the Z8611 and the 8051. The addressing modes of the MC6801 have several restrictions, as shown in Table 1. While the 8051 has all the addressing modes of the Z8611, its use of them is restricted. The Z861l allows many more combinations of addressing modes per instruction, because any of its registers can be used as an accumulator. For example, the instructions to clear, complement, rotate, and swap nibbles are all accumulator oriented in the 8051 and operate on the accumulator only. These same commands in the Z8611 can use any register and access it either directly, with register addressing, or with indirect register addressing.

Indexed Addressing. All three chips differ in their handling of indexing. The Z861l can use any register for indexing. The 8051 can use only the accumulator as an Index register in conjunction with the data pointer or the Program Counter. The MC6801 has one 16 -bit Index register. The address located in the second byte of an instruction is added to the lower byte of the Index register. The carry is added to the upper byte for the complete address. The MC6801 requires the index value to be an immediate value.

The MC6801 has only one 16 -bit Index register and an immediate 8 -bit value from the second byte of the instruction. Hence, the Indexed mode of the MC6801 is much more restrictive than that of the Z8611. The 8051 must use the accumulator as its only Index register, loading the accumulator with the register, address each time a reference is made. Then, using indexing, the data is moved into the accumulator, eradicating the previous index. This forces a stream of data through the accumulator and requires a reload of the index before access can be made again. The Z8611 is clearly superior to both the MC6801 and the 8051 in the flexibility of its indexed addressing mode.

Short and Long Addressing. Short addressing helps to optimize memory space and execution speed. In sample applications of short register addressing, and eight percent decrease in the number of bytes used was recorded.

Al three chips have short addressing modes, but the Z86ll has short addressing for both external memory and register memory. The 8051 has short addressing for the lowest 32 registers only.

The Z861l has two different modes for register addressing. The full-byte address can be used to provide the address, or a 4 -bit address can be used with the Register Pointer. To use the working registers, the Register Pointer is set for a particular bank of 16 registers, and then one of the 16 registers is addressed with four bits. Another feature for addressing external memory is the use of a 12-bit address in place of a full 16 -bit address. To use the 12 -bit address, one port supplies the eight multiplexed address/data lines and another port supplies four bits for the address. The remaining four bits of the second port can be used for I/O. This feature allows access to a maximum of 10K bytes of memory.

The 8051 uses short addresses by organizing its lowest 32 registers into four banks. The bank select is located in a 2 -bit field in the PSW, with three bits addressing the register in the bank.
The MC6801 used extended addressing for addressing external memory. With a special, nonmultiplexed expansion mode, 256 bytes of external memory can be accessed without the need for an external address latch. The MC6801 consumes one 8-bit port for the address and another port for the data.

Stacks. The Z8611 and the MC6801 provide for external stacks, which require a 16 -bit Stack Pointer. Internal stacks use an 8 -bit Stack Pointer. The 8051 uses only a limited internal stack requiring an 8 -bit Stack Pointer. Using an external stack saves the internal RAM register for general-purpose use.

Summary. The stack structure of the Z8611 and the MC6801 is better than that of the 8051. In most applications, the 8051 is more flexible and easier to program than the MC6801. The Z8611 is easiers to use than either the 8051 or the MC6801 because of its register flexibility and its numerous combinations of addressing modes. The 8051 features a unique $4 \mu \mathrm{~s}$ multiply and divide

## Instruction Architecture (Continued)

command. The MC6801 has a multiply, but it takes $10 \mu \mathrm{~s}$ to perform it.

In summary, the Z8611 has the most flexible addressing 'modes, the most
advanced indexing capabilities, and superior space-and time-saving abilities with respect to short addressing.

## Development Support

All vendors provide development support for their products. This section discusses the different support features, including development chips, software, and modules.

Chips. SGS offers an entire family of microcomputer chips for product development and final product. The Z861l is a single-chip microcomputer with 4 K bytes of mask-programmed ROM. For development, two other chips are offered. The Z86E1l 4K EPROM and the Z86E21 8K EPROM versions.

Intel offers a similar line of development chips with its 8051 family. The 8031 has no internal ROM and the 8751 has 4 K of internal EPROM.

Motorola offers the MC6801, MC6803, MC6803NR, and MC68701. These are all similar except the MC68701 has 2 K bytes of EPROM and the MC6801 has 2 K bytes of ROM. The MC6803 has no internal ROM and the MC6803NR has neither ROM nor RAM on board.

Software. Development software includes assemblers, and conversion programs. All manufacturers offer some or all of these features.

Since the MC6801 is compatible with the 6800, there is no need for a new assembler. The Z8611 and the 8051 both offer assemblers for their products. The Z8611 MACZ8 assembler generates relocatable and absolute object code. MACZ8 also supports high-level control and data statements, such as IF... THEN... ELSE. Intel offers an absolute macroassembler, ASM51, with their product. They also offer a program for converting 8048 code to 8051 code.

Modules. The Z8611 development module has two 64-pin development versions of the 40-pin, ROM-masked Z8611. Intel offers the EM-51 emulation board, which contains a modified 8051 and PROM or EPROM in place of memory. Motorola has the MEX6801EVM evaluation board for program development.

## Additional Features

Additional features include Power Down mode, selftesting, and family-compatibility.

Power Down Mode. All three microcomputers offer a Power Down mode. The Z8611 and the 8051 save all of their registers with an auxiliary power supply. The MC6801 uses an auxiliary power supply to save only the first 64 bytes of its register file.

The Z8611 uses one of the crystal input pins for the external power supply to power the registers in Power Down mode. Since the XTAL2 input must be used, an external clock generator is necessary and is input via

XTALl. The 8051 and the MC6801 both have an input reserved for this function. The MC6801 uses the $\mathrm{V}_{\mathrm{CC}}$ standby pin, and the 8051 uses the $\mathrm{V}_{\text {pd }}$ pin.

Family Compatibility. Another strenght of the Z8611 is its expansion bus, which is completely with the Z8000 Family Z-BUS. This means that all Z-BUS peripherals can be used directly with the Z861l.

The MC6801 is fully compatible with all MC6800 family products. The 8051 is software compatible with the older 8048 series and all others in that family.

## Benchmark

The following benchmark tests were used in this report to compare the Z8611, 8051, and MC6801:

- Generate CRC check for 16-bit word.
- Search for a character in a block of memory.
- Execute a computed GOTO - jump to one of eight locations depending on which of the eight bits in set.
- Shift a 16 -word five places to the right.
- Move a 64 -byte block of data from external memory to the register file.
- Toggle a single bit on a port.
- Measure the subroutine overhead time.

These programs were selected because of their importance in microcomputer applications. Algorithms that reflect a unique function or feature were excluded for the sake of comparison. Although programs can be optimized for a particular chip and for a particular attribute (code density or speed) these programs were not.

The figures cited in this text are taken directly from the vendor's documentation. Therefore, the cycles given below for the MC6801 and the 8051 are in machine cycles and the Z8611 figures are given in clock cycles. The Z861l clock cycles should be divided by six to give the instruction time in microseconds. The 8051 and MC6801 machine cycle is $1 \mu \mathrm{~s}$, and the Z861l clock cycle is $.166 \mu$ s at 12 MHz .

Because of the lack of availability of the MC6801 and the 8051, the benchmark programs listed here have not yet been run. When these products are readily available, the programs will be run and later editions of this document will reflect any changes in the findings.

Program Listing

CRC Generation				
8051			Machine Cycles	Bytes
	MOV	INDEX, \#8	l	2
LOOP:	MOV	A,DATA	1	2
	XRL	A,HCHECK	1	2
	RLC	A	1	1
	MOV	A,LCHECK	1	2
	XRL	A,LPOLY	1	2
	RLC	A	1	1
	MOV	LCHECK, A	1	2
	MOV	A, HCHECK	1	2
	XRL	A,HPOLY	1	2
	RCL	A	1	1
	MOV	HCHECK, A	1	2
	CLR	C	1	1
	MOV	A, DATA	1	2
	RCL	A	1	
	MOV	DATA,A	1	2
	DJNZ	INDEX,LOOP	2	3
	RET			
	$\begin{array}{r} \mathrm{N}=3+ \\ @ 12 \end{array}$	$\begin{aligned} & 17 \mathrm{XB}=139 \mathrm{cycles} \\ & \mathrm{MHz}=139 \mu \mathrm{~s} \end{aligned}$		
	Instr	ctions $=18$		
	Byte	$=31$		
MC6801			Machine	
			Cycles	Bytes
	LDAA	$\mu \$ 08$	2	2
LOOP:	STAA	COUNT	3	2
	LDAA	HCHECK	3	2
	EORA	DATA	3	2
	ROLA		2	1
	LDAD	POLY	4	2
	EORA	HCHECK	3	2
	EORB	LCHECK	3	2
	ROLB		2	,
	ROLA		2	1
	STAD	LCHECK	4	2
	ASL	DATA	6	3
	DEC	COUNT	6	3
	BNE	LOOP	4	2
	RTS		5	1
	$\mathrm{N}=45$	$8+7=367$ cycles		
	@ 4	$\mathrm{Hz}=367 \mu \mathrm{~s}$		
	Instr	ctions $=15$		
	Byte	$=28$		
Z8611			Clock	
			Cycles	Bytes
	LD	INDEX, \#8	6	2
LOOP:	LD	R6,DATA	6	2
	XOR	R6,HCHECK	6	2
	RLC	R6	6	2
	XOR	LCHECK,LPOLY	6	2
	RLC	LCHECK	6	2
	XOR	HCHECK, HPOLY	6	2
	RLC	HCHECK	6	2
	RCF		6	1
	RLC	DATA	6	2
	DJNZ	INDEX,LOOP	$12 \mathrm{orl0}$	2
	RET		14	1
	$\mathrm{N}=20+66 \mathrm{X} 7+64=546$ cycles			
	$@ 12 \mathrm{MHz}=91 \mu \mathrm{~s}$   Instructions $=12$			
	Bytes $=22$			

Benchmarks (Continued)

Character Search Through Block of 40 Bytes				
8051			Machine Cycles	Bytes
	MOV	INDEX, \# 41	1	2
	MOV	DPTR, \# TABLE	2	3
LOOPl:	DJNZ	INDEX,LOOP2	2	2
	SJMP	OUT	2	2
LOOP2:	MOV	A,INDEX	1	2
	MOVC	A, @ + DPTR	2	1
	CJNE	A,CHARAC,LOOPl	2	3
OUT:	$\begin{gathered} \mathrm{N}=3+3 \\ @ 12 \\ \text { Instru } \\ \text { Bytes } \end{gathered}$	$\begin{aligned} & 39 \mathrm{XZ}+4=280 \text { cycles } \\ & \mathrm{MHz}=280 \mu \mathrm{~s} \\ & \text { uctions }=7 \\ & =15 \end{aligned}$		
MC6801			Machine   Cycles Bytes	
	LDAB	\# \$ 40	2	2
	LDAA	\# CHARAC	2	2
	LDX	\#TABLE	3	3
LOOP:	CMPA	\$0, X	4	2
	BEQ	OUT	4	2
	INX		3	1
	DECB		2	1
	BNE	LOOP	4	2
OUT:	-			
	-			
	-			
	$\mathrm{N}=7+40 \times 7=687 \text { cycles }$			
	Instructions $=8$			
	Bytes $=15$			
Z8611			Clock	
			Cycles	Bytes
	LD	INDEX, \# 40	6	2
LOOP:	LD	DATA, TABLE (INDEX)	10	3
	CP	DATA, CHARAC	6	2
	JR	Z,OUT	12 or 10	2
	DJNZ	INDEX,LOOP	12 or 10	2
OUT:	-			
	-			
	$\begin{aligned} & \mathrm{N}=6+38 \mathrm{X} 40=1524 \text { cycles } \\ & @ 12 \mathrm{MHz}=254 \mu \mathrm{~s} \end{aligned}$			
	Instructions $=5$			
	Bytes $=11$			



Benchmarks (Continued)



Benchmarks (Continued)

Toggle a Port Bit			
8051	XRL PO, \# YY $\mathrm{N}=2$ Cycles @ $12 \mathrm{MHz}=2 \mu \mathrm{~s}$ Instructions $=1$ Bytes $=3$	Machine Cycles 2	$\begin{gathered} \text { Bytes } \\ 3 \end{gathered}$
MC680	LDAA PORTO EORA \#YY STAA PORTO $\mathrm{N}=8$ Cycles $@ 4 \mathrm{MHz}=8 \mu \mathrm{~s}$ Instructions $=3$ Bytes $=6$	$\begin{gathered} \text { Machine } \\ \text { Cycles } \\ 3 \\ 2 \\ 3 \end{gathered}$	Bytes 2 2 2 2
Z8611	$\begin{aligned} & \text { XOR PORT0\# YY } \\ & \mathrm{N}=10 \mathrm{Cycles} \\ & @ 12 \mathrm{MHz}=1.7 \mu \mathrm{~s} \\ & \text { Instructions }=1 \\ & \text { Byte }=2 \end{aligned}$	Clock Cycles 10	$\begin{gathered} \text { Bytes } \end{gathered}$


Subroutine Call/Return Overhead			
8051   SUBR:	LCALL SUBR   $-$   -   -   -   -   -   RET   $\mathrm{N}=4$ Cycles   @12 MHz $=4 \mu \mathrm{~s}$   Instructions $=2$   Bytes $=4$	Machine Cycles 2   2	Bytes 3
MC6801   SUBR:	JSR SUBR   -   -   -   -   -   RTS   $\mathrm{N}=14$ Cycles   $@ 4 \mathrm{MHz}=14 \mu \mathrm{~s}$   Instructions $=2$   Bytes $=3$	Machine Cycles 9   5	Bytes 2
Z8611   SUBR:	CALL @SUBR   -   -   -   -   -   -   RET   $\mathrm{N}=34$ Cycles   $@ 12 \mathrm{MHz}=5.7 \mu \mathrm{~s}$   Instructions =2   Bytes $=3$	Clock Cycles 20 $14$	Bytes 2

## Benchmarks (Continued),

Results Table 2 summarizes the results of this comparison. The relative performance column lists the speeds of the MC6801 and 8051 divided by the $Z 8611$ speeds ( 12 MHz ). The overall performance averages the separate relative performances. The higher the number, the faster the Z861l as compared to the MC6801 and the 8051.

The relative performance figures show that
the Z8611 runs 50 percent faster than the 8051 and 250 percent faster than the MC6801. Although speed is not necessarily the most important criterion for selecting a particular product, the Z8611 proves to be an undeniably superior product when speed is added to the advantages of programming ease, code density, and flexibility.

Benchmark   Test	$\begin{gathered} \text { MC6801 } \\ (4 \mathrm{MHz}) \\ \text { cycles time } \end{gathered}$	$\begin{gathered} 8051 \\ (12 \mathrm{MHz}) \\ \text { cycles time } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Z8} \\ (8 \mathrm{MHz}) \\ \text { cycles time } \end{gathered}$	$\begin{gathered} \mathrm{Z8} \\ \text { (12 MHz) } \\ \text { cycles time } \end{gathered}$	Relative Performance MC6801 8051
CRC   Generation	367367	139139	546137	54691	4.03 l.53
Character   Search	687687	$280 \quad 280$	1524382	$1524 \quad 254$	$2.70 \quad 1.10$
Computed GOTO	110110	$75 \quad 75$	22857	22838	$2.89 \quad 1.97$
Shift Right   5 Bits	6161	$46 \quad 46$	15438	15426	$2.35 \quad 1.78$
Move 64-Byte block	23062306	577577	1924481	1924321	$7.18 \quad 1.80$
Subroutine   Overhead	$14 \quad 14$	$4 \quad 4$	$34 \quad 8.5$	$34 \quad 5.7$	$2.46 \quad 0.70$
Toggle a Port Bit	88	22	10. 2.5   Overall   Performance	$10 \quad 1.7$	4.71 1.18   3.76 1.44

Note: All times are given in microseconds
Table 2. Benchmark Program Result

|  | Bytes |  |  | Instructions |  |  | Time (microseconds) |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MC6801 | $\mathbf{8 0 5 1}$ | Z8611 | MC6801 | $\mathbf{8 0 5 1}$ | Z8611 | MC6801 | $\mathbf{8 0 5 1}$ | Z8611 |
| CRC Generation | 28 | 31 | 22 | 15 | 18 | 12 | 367 | 139 | 91 |
| Character Search | 15 | 15 | 11 | 8 | 7 | 5 | 687 | 280 | 254 |
| Shift Right 5 Bits | 11 | 15 | 9 | 6 | 9 | 5 | 61 | 46 | 26 |
| Computed GOTO | 17 | 21 | 15 | 8 | 12 | 7 | 110 | 75 | 38 |
| Move Block | 21 | 10 | 6 | 11 | 7 | 3 | 2306 | 577 | 321 |
| Toggle Port Bit | 6 | 3 | 2 | 3 | 1 | 1 | 8 | 2 | 1.7 |
| Subroutine Call | 3 | 4 | 3 | 2 | 2 | 2 | 14 | 4 | 5.7 |

Table 3. Byte/Instruction/Time Comparison

## Benchmarks (Continued)

Summary The hardware of the three chips compared is very similar. The Z8611, however, has several advantages, the most important of which is its interrupt structure. It is more advanced than the interrupt structures of both the 8051 and the MC6801. Other advantages of the Z86ll over either the MC6801 or the 8051 include I/O facilities with parity detection and hardware handshake and a larger amount of internal ROM (the MC6801 has only 2 K bytes).

Substantial differences are apparent with regard to software architecture. The addressing modes of the Z861l are more
flexible than those of either the MC6801 or the 8051. The Z8611 can use byte-saving addressing with working registers, and it has short external addresses for saving I/O lines. It can also provide for an external stack. The register architecture (as opposed to the accumulator architecture) of the Z8611 saves execution time and enhances programming speed by reducing the byte count.

The Z8611 microcomputer stands out as the most powerful chip of the three, and concurrently, it is the easiest to program and configure.

## A Programmer's Guide to the Z8 Microcomputer

## Introduction

The Z 8 is the firts microcomputer to offer both a highly integrated microcomputer on a single chip and a fully expandable microprocessor for I/O-and memory-intensive applications. The Z8 Z8601, the first one, has two timer/counters, a UART, 2K bytes internal ROM, and a 144 -byte internal register file including 124 bytes of RAM, 32 bits of I/O, and 16 control and status registers. In addition, the Z 8 can address up to 124 K bytes of external program and data memory, which can provide full, memorymapped I/O capability.

This application note describes the
important features of the Z8, with software examples that illustrate its power and ease of use. It is divided into sections by topic; the reader need not read each section sequentially, but may skip around to the sections of current interest.
It is assumed that the reader is familiar with the $\mathrm{Z8}$ and its assembly language, as described in the following documents:

- 28 Technical/Manual (O.C.: DAZ8TM/2)
- Z8 Programming Manual (O.C.: DAZ8PM/2)


## Accessing Register Memory

The Z 8 register space consists of four I/O ports, 16 control and status registers, and 124 general-purpose registers. The generalpurpose registers are RAM areas typically used for accumulators, pointers, and stack area. This section describes these registers and how they are used. Bit manipulation and stack operations affecting the register space are discussed in Sections 4 and 5, respectively.
Registers and Register Pairs. The Z8 supports 8 -bit registers and 16 -bit register pairs. A register pair consists of an evennumbered register concatenated with the next higher numbered register 00 H and $01 \mathrm{H}, 02 \mathrm{H}$ and $03 \mathrm{H}, \ldots .7 \mathrm{EH}$ and $7 \mathrm{FH}, \mathrm{FOH}$ and FlH, ... FEH and FFH). A register pair must be addressed by reference to the evennumbered register. For example,
F1H and F2H is not a valid register pair;
FOH and F 1 H is a valid register pair, addressed by reference to FOH .
Register pairs may be incremented (INCW) and descremented (DECW) and are useful as pointers for accessing program and external data memory. Section 3 discusses the use of register pairs for this purpose.

Any instruction which can reference or modify an 8 -bit register can do so to any of the 144 registers in the Z , regardless of the inherent nature of that register. Thus, I/O ports, control, status, and general-purpose registers may all be accessed and manipulated without the need for specialpurpose instructions. Similarly, instructions which reference or modify a 16 -bit register pair can do so to any of the valid 72 register pairs. The only exceptions to this rule are:

- The DINZ (decrement and jump if nonzero) instruction may successfully operate on the general-purpose RAM registers ( $04 \mathrm{H}-7 \mathrm{FH}$ ) only.
- Six control registers are write-only registers and therefore, may be modified only by such instructions as LOAD, POP, and CLEAR. Instructions such as OR and AND require that the current contents of the operand be readable and therefore will not function properly on the writeonly registers. These registers are the following: the timer/counter prescaler registers PREO and PRE1, the port mode registers P01M, P2M, and P3M, the interrupt priority register IPR.


## Accessing Register Memory (Continued)

Register Pointer. Within the register addressing modes provided by the Z8, a register may be specified by its full 8 -bit address ( $0-7 \mathrm{FH}, \mathrm{FOH}-\mathrm{FFH}$ ) or by a short 4 -bit address. In the latter case, the register is viewed as one of 16 working registers with-in a working register group. Such a group must be aligned on a 16 -byte boundary and is addressed by Register Pointer RP (FDH). As an example, assume the Register Pointer contains 70 H , thus pointing to the working register group from 70 H to 7 FH . The LD instruction may be used to intialize register 76 H to an immediate value in one of two ways:

LD 76H, \# l	!8-bit register address is   given by instruction (3 byte   instruction)!
or	LD R6, \# l
	!4-bit working register   address is given by   instruction; 4-bit working   register group address is   given by Register Pointer   (2 byte instruction)!

The address calculation for the latter case is illustrated in Figure 1. Notice that 4-bit working-register addressing offers code compactness and fast execution compared to its 8 -bit counterpart.

To modify the contents of the Register Pointer, the Z 8 provides the instruction

SRP \#value
Execution of this instruction will load the upper four bits of the Register Pointer; the lower four bits are always set to zero. Although a load instruction such as

LD RP, \#value
could be used to perform the same function, SRP provides execution speed (six vs. ten cycles) and code space (two vs. three bytes) advantages over the LD instruction. The instruction

SRP \#70H
is used to set the Register Pointer for the above example.


Figure 1. Address Calculation Using the Register Pointer

Context Switching. A typical function performed during an interrupt service routine is context switching. Context switching refers to the saving and subsequent restoring of the program counter, status, and registers of the interrupted task. During an interrupt machine cycle, the Z8 automatically saves the Program Counter and status flags on the stack. It is the responsibility of the interrupt service routine to preserve the register space. The recommended means to this end is to allocate a specific portion of the register file for use by the service routine. The service routine thus preserves the register space of the interrupted task by avoiding modification of registers not
allocated as its own. The most efficient scheme with which to implement this function in the Z8 is to allocate a working register group (or portion thereof) to the interrupt service routine. In this way, the preservation of the interrupted task's registers is solely a matter of saving the Register Pointer on entry to the service routine, setting the Register Pointer to its own working register group, and restoring the Register Pointer prior to exiting the service routine. For example, assume such a register allocation scheme has been implemented in which the interrupt service routine for IRQ0 may access only working register Group 4 (registers $40 \mathrm{H}-4 \mathrm{FH}$ ). The

## Accessing Register Memory (Continued)

service routine for $\operatorname{IRQ} 0$ should be headed by the code sequence:

PUSH RP !preserve Register Pointer of interrupted task!
SRP \# 40H !address working register group 4!
Before exiting, the service routine should execute the instruction

POP RP
to restore the Register Pointer to its entry value.

It should be noted that the technique described above need not be restricted to interrupt service routines. Such a technique might prove efficient for use by a subroutine requiring intermediate registers to produce its outputs. In this way, the calling task can assume that its environment is intact upon return from the subroutine.

Addressing Mode. The Z8 provides three addressing modes for accessing the register space: Direct Register, Indirect Register, and Indexed.
Direct Register Addressing. This addressing mode is used when the target register address is known at assembly time. Both long (8-bit) register addressing and short (4-bit) working register addressing are supported in this mode. Most instructions supporting this mode provide access to single 8 -bit registers. For example:
LD FEH, \# HI STACK
!load register FEH (SPH)
with the upper 8-bits of the
label STACK!

Increment word (INCW) and decrement word (DECW) are the only two Z8 instructions which access 16 -bit operands. These instructions are illustrated below for the direct register addressing mode.

INCW RRO !increment working register pair RO, Rl:
$\mathrm{Rl} \leftarrow \mathrm{Rl}+\mathrm{l}$
RO $\leftarrow$ R0 + carry!

DECW 7EH !decrement working register pair 7EH, 7FH:
$7 \mathrm{FH} \leftarrow 7 \mathrm{FH}-1$
$7 \mathrm{EH} \leftarrow 7 \mathrm{EH}$ - carry!
Note that the instruction
INCW RR5
will be flagged as an error by the assembler (RR5 not even-numbered).

Indirect Register Addressing. In this addressing mode, the operand is pointed to by the register whose 8 -bit register address or 4 -bit working register address is given by the instruction. This mode is used when the target register address is not known at assembly time and must be calculated during program execution. For example, assume registers $60 \mathrm{H}-7 \mathrm{FH}$ contain a buffer for output to the serial line via repetitive calls to procedure SERIAL__OUT.
SERIAL__OUT expects working register 0 to hold the output character. The following instructions illustrate the use of the indirect addressing mode to accomplish this task:

LD Rl, \# 20H
!working register 1 is the byte counter: output 20 H bytes!
LD R2, \#60H
!working register 2 is the buffer pointer register!
out__again:
LD R0,@R2
!load into working register 0 the byte pointed to by working register 2 !
INC R2 !increment pointer!
CALL SERIAL__OUT
!output the byte!
DJNZ Rl, out__again
!loop till done!
Indirect addressing may also be used for accessing a 16 -bit register pair via the INCW and DECW instructions. For example.

INCW @R0 !increment the register pair whose address is contained in working register 0 !

## DECW @7FH

!decrement the register pair whose address is contained in register 7FH!

## Accessing Register Memory (Continued)

The contents of registers R0 and 7FH should be even numbers for proper access; when referencing a register pair, the least significant address bit is forced to the appropriate value by the Z8. However, the register used to point to the register pair need not be an even-numbered register.

Since the indirect addressing mode permits calculation of a target address prior to the desired register access, this mode may be used to simulate other, more complex addressing modes. For example, the instruction
SUB 4,BASE(R5)
requires the indexed addressing mode which is not directly supported by the Z8 SUBtract instruction. This instruction can be simulated as follows:

LD R6, \#BASE
!working register 6 has the base address!
ADD R6,R5 !calculate the target address!
SUB 4,@R6 !now use indirect addressing to perform the actual subtract!

Any available register or working register may be used in place of R6 in the above example.

Indexed Addressing. The indexed addressing mode is supported by the load instruction (LD) for the transference of bytes between a working register and another register. The effective address of the latter register is given by the instruction which is offset by the contents of a designated working (index) register. This addressing mode provides efficient memory usage when addressing consecutive bytes in a block of register memory, such as a table or a buffer. The working register used as the index in the effective address calculation can serve the additional role of counter for control of a loop's duration.

For example, assume an ASCII character buffer exists in register memory starting at address BUF for LENGTH bytes. In order to determine the logical length of the character
string, the buffer should be scanned backward until the first nonoccurrence of a blank character. The following code sequence may be used to accomplish this task:

LD R0, \# LENGTH
!length of buffer! !starting at buffer end, look for lst non-blank!
loop:
LD R1,BUF-1(RO)
CP Rl,\#''
JR ne,found
!found non-blank!
DJNZ R0,loop
!look at next!
all__blanks: !length $=0$ !
found:
5 instructions
12 bytes
$1.5 \mu$ s overhead
$10.5 \mu$ (average) per character tested
At labels "all__blanks" and "found," R0 contains the length of the character string. These labels may refer to the same location, but they are shown separately for an application where special processing is required for a string of zero length. To perform this task without indexed addressing would require a code sequence such as:

LD Rl, \# BUF + LENGTH - 1
LD R0, \#LENGTH
!starting at buffer end, look for lst non-blank!
loopl:
CP @R1,\#',
JR ne,foundl
!found non-blank!
DEC Rl !dec pointer!
DJNZ R0,loopl
!are we done?!
all__blanksl: $\quad!$ length $=0$ !
foundl:
6 instructions
13 bytes
$3 \mu$ s overhead
$9.5 \mu$ (average) per character tested

## Accessing Register Memory (Continued)

The latter method requires one more byte of program memory than the former, but is faster by four execution cycles ( $1 \mu \mathrm{~s}$ ) per character tested.

As an alternate example, assume a buffer exists as described above, but it is desired to scan this buffer forward for the first occurrence of an ASCII carriage return. The following illustrates the code to do this:

$$
\begin{gathered}
\text { LD RO, \# - }- \text { LENGTH } \\
\text { !starting at buffer start, look } \\
\text { for lst carriage return } \\
(=0 \mathrm{DH}) \text { ! }
\end{gathered}
$$

```
next:
 LD rl,BUF + LENGTH(RO)
 CP Rl,#ODH
 JR eq,cr !found it!
 INC R0 !update counter/index!
 JR nz, next
 !try again!
cr:
 ADD R0,#LENGTH
 !R0 has length to CR!
 7 instructions
 16 bytes
 l.5 \mus overhead
 12 \mus (average) per character tested
```


## Accessing Program and External Data Memory

In a single instruction, the Z 8 can transfer a byte between register memory and either program or external data memory. Load Constant (LDC) and Load Constant and Increment (LDCI) reference program memory; Load External (LDE) and Load External and Increment (LDEI) reference external data memory. These instructions require that a working register pair contain the address of the byte in either program or external data memory to be accessed by the instruction (indirect working register pair addressing mode). The register byte operand is specified by using the direct working register addressing mode in LDC and LDE or the indirect working register addressing mode in LDCI and LDEI. In addition to performing the designated byte transfer, LDCI and LDEI automatically increment both the indirect registers specified by the instruction. These instructions are therefore efficient for performing block moves between register and either program or external data memory. Since the indirect addressing mode is used to specify the operand address within program or external data memory, more complex addressing modes may be simulated as discussed earlier in Section 2.4.2. For example, the instruction

## LDC R3,BASE(R2)

requires the indexed addressing mode, where BASE is the base address of a table in program memory and R2 contains the offset from table start to the desired table entry.

The following code sequence simulates this instruction with the use of two additional registers ( RO and Rl in this example).

LD R0,\#.H BASE
LD Rl,\#.L BASE
!RRO has table start address!
ADD R1,R2
ADC R0,\#0
!RRO has table entry address!
LDC R3,@RR0
!R3 has the table entry!

## Configuring the Z 8 for I/O Applications vs.

Memory Intensive Applications. The Z8
offers a high degree of flexibility in memory and I/O intensive applications. Thirty-two port bits are provided of which 16,12 , eight, or zero may be configured as address bits to external memory. This allows for addressing of $62 \mathrm{~K}, 4 \mathrm{~K}$ or 256 bytes of external memory, which can be expanded to $124 \mathrm{~K}, 8 \mathrm{~K}$, or 512 bytes if the Data Memory Select output ( $\overline{\mathrm{DM}}$ ) is used to distinguish between program and data memory accesses. The following instructions illustrate the code sequence required to configure the Z 8 with 12 external addressing lines and to enable the Data Memory Select output.

```
LD PO1M,#(2)00010010H
 !bit 3-4: enable AD }\mp@subsup{\textrm{AD}}{0}{}-\mp@subsup{\textrm{AD}}{7}{}\mathrm{ ;
 bit 0-1: enable A8- A Al!
LD P3M,#(2)00001000H
 !bit 3-4: enable }\overline{\textrm{DM}}\mathrm{ !
```


## Accessing Program and External Data Memory (Continued)

The two bytes following the mode selection of ports 0 and 1 -should not reference external memory due to pipelining of instructions within the Z8. Note that the load instruction to P3M satisfies this requirement (providing that it resides within the internal 2 K bytes of memory).

LDC and LDE. To illustrate the use of the Load Constant (LDC) and Load External (LDE) instructions, assume there exists a hardware configuration with external memory and Data Memory Select enabled. The following module illustrates a program for
tokenizing an ASCII input buffer. The program assumes there is a list of delimiters (space, comma, tab, etc.) in program memory at address DELIM for COUNT bytes (accessed via LDC) and that an ASCII input buffer exists in external data memory (accessed via LDE). The program scans the input buffer from the current location and returns the start address of the next token (i.e. the address of the first nondelimiter found) and the length of that token (number of characters from token start to next delimiter).


## Accessing Program and External Data Memory (Continued)



0 ERRORS
ASSEMBLY COMPLETE

## 27 instructions

58 bytes
Execution time is a function of the number of leading delimiters
before token start ( $x$ ) and the number of characters in the
token (y): $123 \mu \mathrm{~s}$ overhead $+59 \times \mu \mathrm{s} 2102 \mathrm{y} \mu \mathrm{s}$
(average) per token

## Accessing Program and External Data Memory (Continued)

LDCI. A common function performed in Z8 applications is the initialization of the register space. The most obvious approach to this function is the coding of a sequence of "load register with immediate value" instructions (each occupying three program bytes for a register or two program bytes for a working register). This approach is also the most efficient technique for initializing less than eight consecutive registers or 14 consecutive working registers. For a larger register block, the LDCI instruction provides an economical means of initializing consecutive registers from an initialization table in program memory. The following code excerpt illustrates this technique of initializing control registers F2H through FFH from a l4-byte array (INIT__tab) in program memory:

```
SRP #OOH
 !RP not FOH!
LD R6,#.H INIT__tab
LD R7,#.L INIT__tab
LD R8,#F2H
 !1st reg to be initialized!
LD R9,#14
 !length of register block!
loop:
 LDCI @R8,@RR6
 !load a register from the init
 table!
 DJNZ R9,loop
 !continue till done!
```


## 7 instructions

14 bytes
$7.5 \mu$ s overhead
$7.5 \mu \mathrm{~s}$ per register initialized
LDEI. The LDEI instruction is useful for moving blocks of data between external and register memory since auto-increment is performed on both indirect registers designated by the instruction. The following code excerpt illustrates a register buffer being saved at address 40 H through 60 H into external memory at address SAVE:

LD Rl0,\#.H SAVE
!external memory!
LD Rll,\#.L SAVE
!address!
LD R8, \# 40H
!starting register!
LD R9, \#21H
!number of registers to save
in external data memory!
loop:
LDEI @RR10,@R8
!init a register!
DJNZ R9,loop
!until done!
6 instructions
12 bytes
$6 \mu$ s overhead
$7.5 \mu \mathrm{~s}$ per register saved

## Bit Manipulations

Support of the test and modification of an individual bit or group of bits is required by most software applications suited to the Z8 microcomputer. Initializing and modifying the Z8 control registers, polling interrupt requests, manipulating port bits for control of or communication with attached devices, and manipulation of software flags for internal control purposes are all examples of the heavy use of bit manipulation functions. These examples illustrate the need for such functions in all areas of the Z 8 register space. These functions are supported in the Z8 primarily by six instructions:

- Test under Mask (TM)
- Test Complement under Mask (TCM)
- AND
- OR
- XOR
- Complement (COM)

These instructions may access any Z8 register, regardless of its inherent type (control, I/O, or general purpose), with the exception of the six write-only control registers (PREO, PRE1, P01M, P2M, P3M, IPR) mentioned earlier in Section 2.1. Table l summarizes the function performed on the destination byte by each of the above instructions. All of these instructions, with the exception of COM, require a mask
operand. The "selected" bits referenced in Table 1 are those bits in the destination operand for which the corresponding mask bit is $\rho$ logic 1.

Opcode	Use
TM	To test selected bits for logic 0
TCM	To test selected bits for logic l
AND	To rest all but selected bits to logic 0
OR	To set selected bits to logic l
XOR	To complement selected bits
COM	To complement all bits

Table 1. Bit Manipulation Instruction Usage
The instructions AND, OR, XOR, and COM have functions common to today's micro-processors and therefore are not described in depth here. However, examples of the use of these instructions are laced throughout the remainder of this document, thus giving an integrated view of their uses in common functions. Since they are unique to the Z8, the functions of Test under Mask and Test Complement under Mask, are discussed in more detail next.

Test under Mask (TM). The Test under Mask instruction is used to test selected bits for logic 0 . The logical operation performed is

## destination AND source

Neither source nor destination operand is modified; the FLAGS control register is the only register affected by this instruction. The zero flag $(Z)$ is set if all selected bits are logic 0 ; it is reset otherwise. Thus, if the selected destination bits are either all logic 1 or a combination of 1 s and 0 s , the zero flag would be cleared by this instruction. The sign flag ( S ) is either set or reset to reflect the result of the AND operation; the overflow flag (V) is always reset. All other flags are unaffected. Table 2 illustrates the flag settings which result from the TM instruction on a variety of source and destination
operand combinations. Note that a given TM instruction will never result in both the Z and S flags being set.

Test Complement under Mask. The Test Complement under Mask instruction in used to test selected bits for logic l. The logical operation performed is
(NOT destination) AND source.
As in Test under Mask, the FLAGS control register is the only register affected by this operation. The zero flag ( $Z$ ) is set if all selected destination bits are 1; it is reset otherwise. The sign flag ( S ) is set or reset to reflect the result of the AND operation; the overflow flag (V) is always reset. Table 3 illustrates the flag settings which result from the TCM instruction on a variety of source and destination operand combinations. As with the TM instruction, a given TCM instruction will never result in both the Z and S flags being set.

Destination	Source	Flags		
(binary)	(binary)	Z	S	V
10001100	01110000	1	0	0
01111100	01110000	0	0	0
10001100	11110000	0	1	0
11111100	11110000	0	1	0
00011000	10100001	1	0	0
01000000	10100001	1	0	0

Table 2. Effects of the TM Instruction

Destination	Source	Flags		
(binary)	(binary)	Z	S	V
10001100	01110000	0	0	0
01111100	01110000	1	0	0
10001100	11110000	0	0	0
11111100	11110000	1	0	0
00011000	10100001	0	1	0
01000000	10100001	0	1	0

Table 3. Effects of the TCM Instruction

## Stack Operations

The Z 8 stack resides within an area of data memory (internal or external). The current address in the stack is contained in the stack pointer, which decrements as bytes are pushed onto the stack, and increments as bytes are popped from it. The stack pointer occupies two control register bytes (FEH and FFH ) in the Z 8 register space and may be manipulated like any other register. The stack is useful for subroutine calls, interrupt service routines, and parameter passing and saving. Figure 2 illustrates the downward growth of a stack as bytes are pushed onto it.


Figure 2. Growth of $\alpha$ Stack
Internal vs. External Stack. The location of the stack in data memory may be selected to be either internal register memory or external data memory. Bit 2 of control register P01M (F8H) controls this selection. Register pair SPH (FEH), SPL (FFH) serves as the stack pointer for an external stack. Register SPL is the stack pointer for an internal stack. In the latter configuration, SPH is available for use as a data register. The following illustrates a code sequence that initializes external stack operations:

LD P01M, \# (2)00000000H
!bit 2: select external stack!
LD SPH,\#.H STACK
LD SPL,\#.L STACK
CALL. A subroutine call causes the current Program Counter (the address of the byte following the CALL instruction) to be pushed onto the stack. The Program Counter is loaded with the address specified by the

CALL instruction. This address may be a direct address or an indirect register pair reference.
For example,
LABEL 1: CALL 4F98H
!direct addressing: PC is loaded with the hex value 4F98;
address LABEL $1+3$ is pushed onto the stack!
LABEL 2: CALL @RR4
!indirect addressing: PC is loaded with the contents of working register pair R4, R5; address LABEL $2+2$ is pushed onto the stack!
LABEL 3: CALL@7EH
!indirect addressing: PC is loaded with the contents of register pair 7EH, 7FH; address LABEL $3+2$ is pushed onto the stack!

RET. The return (RET) instruction causes the top two bytes to be popped from the stack and loaded into the Program Counter. Typically, this is the last instruction of a subroutine and thus restores the PC to the address following the CALL to that subroutine.

Interrupt Machine Cycle. During an interrupt machine cycle, the PC followed by the status flags is pushed onto the stack. (A more detailed discussion of interrupt processing is provided in Section 6).

IRET. The interrupt return (IRET) instruction causes the top byte to be popped from the stack and loaded into the status flag register. FLAGS (FCH); the next two bytes are then popped and loaded into the Program Counter. In this way, status is restored and program execution continues where it had left off when the interrupt was recognized.

Stack Operations (Continued)

PUSH and POP. The PUSH and POP instructions allow the transfer of bytes between the stack and register memory, thus providing program access to the stack for saving and restoring needed values and passing parameters to subroutines.

Execution of a PUSH instruction causes the stack pointer to be decremented by 1 ; the operand byte is then loaded into the location pointed to by the decremented stack pointer. Execution of a POP instruction causes the byte addressed by the stack pointer to be loaded into the operand byte; the stack pointer is then incremented by 1 . In both cases, the operand byte is designated by either a direct register address or an indirect
register reference. For example:
PUSH Rl !direct address: push working register 1 onto the stack!
POP 5 !direct address: pop the top stack byte into register 5!
PUSH @R4 !indirect address: pop the top stack byte into the byte pointed to by working register 4!
PUSH @17 !indirect address: push onto the stack the byte pointed to by register 17!

## Interrupts

The Z 8 recognizes six different interrupts from four internal and four external sources, including internal timer/counters, serial I/O, and four Port 3 lines. Interrupts may be individually or globally enabled/disabled via Interrupt Mask Register IMR (FBH) and may be prioritized for simultaneous interrupt resolution via Interrupt Priority Register IPR (F9H). When enabled, interrupt request processing automatically vectors to the designated service routine. When disabled, and interrupt request may be polled to determine when processing is needed.

Interrupt Initialization. Before the $\mathrm{Z8}$ can recognize interrupts following RESET, some initialization tasks must be performed. The initialization routine should configure the Z8 interrupt requests to be enabled/disabled, as required by the target application and assigned a priority (via IPR) for simultaneous enabled-interrupt resolution. An interrupt request is enabled if the corresponding bit in the IMR is set ( $=1$ ) and interrupts are globally enabled (bit 7 of IMR =1). An interrupt request is disabled if the corresponding bit in the IMR is reset ( $=0$ ) or interrupts are globally disabled (bit 7 of IMR $=0$ ).

A RESET of the Z 8 causes the contents of the Interrupt Request Register IRQ (FAH) to be held to zero until the execution of an EI
instruction. Interrupts that occur while the Z8 is in this initial state will not be recognized, since the corresponding IRQ bit cannot be set. The EI instruction is specially decoded by the Z 8 to enable the IRQ; simply setting bit 7 of IMR is therefore not sufficient to enable interrupt processing following RESET. However, subsequent to this initial EI instruction, interrupts may be globally enabled either by the instruction
EI !enable interrupts!
or by a register manipulation instruction such as

OR IMR, \#80H
To globally disable interrupts, execute the instruction

DI !disable interrupts!
This will cause bit 7 of IMR to be reset.
Interrupts must be globally disabled prior to any modification of the IMR. IPR or enabled bits of the IRQ (those corresponding to enabled interrupt requests), unless it can be guaranteed that an enabled interrupt will not occur during the processing of such instructions. Since interrupts represent the occurrence of events asynchronous to program execution, it is highly unlikely that such a guarantee can be made reliably.

Interrupts (Continued)

Vectored Interrupt Processing: Enabled interrupt requests are processed in an automatic vectored mode in which the interrupt service routine address is retrieved from within the first 12 bytes of program memory. When an enabled interrupt request is recognized by the Z8, the Program Counter is pushed onto the stack (low order 8 bits first, then high-order 8 bits) followed by the FLAGS register (\#FCH). The corresponding interrupt request bit is reset in IRQ, interrupts are globally disabled (bit 7 of IMR is reset), and an indirect jump is taken on the word in location $2 \times, 2 \times+1$ ( $x=$ interrupt request number, $0 \leq x \leq 5$ ). For example, if the bytes at addresses 0004 H and 0005 H contain 05 H and 78 H respectively, the interrupt machine cycle for IRQ2 will cause program execution to continue at address 0578H.

When interrupts are sampled, more than one interrupt may be pending. The Interrupt Priority Register (IPR) controls the selection of the pending interrupt with highest priority. While this interrupt is being serviced, a higher-priority interrupt may
occur. Such interrupts may be allowed service within the current interrupt service routine (nested) or may be held until the current service routine is complete (nonnested).

To allow nested interrupt processing, interrupts must be selectively enabled upon entry to an interrupt service routine. Typically, only higher-priority interrupts would be allowed to nest within the current interrupt service. To do this, an interrupt routine must "know" which interrupts have a higher priority than the current interrupt request. Selection of such nesting priorities is usually a reflection of the priorities established in the Interrupt Priority Register (IPR). Given this data, the first instructions executed in the service routine should be to save the current Interrupt Mask Register, mask off all interrupts of lower and equal priority, and globally enable interrupts (EI). For example, assume that service of interrupt requests 4 and 5 are nested within the service of interrupt request 3 . The following illustrates the code required to enable IRQ4 and IRQ5:


Interrupts (Continued)
Note that IRQ4 and IRQ5 are enabled by the above sequence only if their respective IMR bits $=1$ on entry to IRQ3__service.

The service routine for an interrupt whose processing is to be completed without interruption should not allow interrupts to be nested within it. Therefore, it need not modify the IMR, since interrupts are disabled automatically during the interrupt machine cycle.

The service routine for an enabled interrupt is typically concluded with an IRET instruction, which restores the FLAGS register and Program Counter from the top of the stack and globally enables interrupts. To return from an interrupt service routine without re-enabling interrupts, the following code sequence could be used:

POP FLAGS
RET $\quad$ !FLAGS $\leftarrow @$ SP!
This accomplishes all the functions of IRET, except that IMR is not affected.


## Timer/Counter Functions

The $Z 8$ provides two 8-bit timer/counters, $\mathrm{T}_{0}$ and $T_{1}$, which are adaptable to a variety of application needs add thus allow the software (and external hardware) to be relieved fo the bulk of such tasks. Included in the set of such uses are:

- Interval delay timer
- Maintenance of a timer-of-day clock
- Watch-dog timer
- External event counting
- Variable pulse train output
- Duration measurement of external event
- Automatical delay following external event detection
Each timer/counter is driven by tis own 6 -bit prescaler, which is in turn driven by the internal Z 8 clock divided by four. For $\mathrm{T}_{1}$, the internal clock may be gated or triggered by an external event or may be replaced by an external clock input. Each timer/counter may operate in either single-pass or continuous mode where, at end-of-count, either counting stops of the counter reloads and continues counting. The counter and prescaler registers may be altered individually while the timer/counter is running; the software controls whether the new values are loaded immediately or when end-of-count (EOC) is reached.

Although the timer/counter prescaler registers (PREO and PRE1) are write-only, there is a technique by which the timer/counters may simulate a readable prescaler. This capability is a requirement for high resolution measurement of an event's duration. The basic approach requires that one timer/counter be initialized with the desired counter and prescaler values. The second timer/counter is initialized with a counter equal to the prescaler of the first timer/counter and a prescaler of 1 . The second timer/counter must be programmed for continuous mode. With both timer/ counters driven by the internal clock and started and stopped simultaneously, they will run synchronous to one another; thus, the value read from the second counter will always be equivalent to the prescaler of the first.

## Time/Count Interval Calculation To

determine the time interval (i) until EOC, the equation

$$
\mathrm{i}=\mathrm{t} \times \mathrm{p} \times v
$$

characterizes the relation between the prescaler (p), counter (v), and clock input period ( t$)$; t is given by

## l/(XTAL/8)

where XTAL is the Z8 input clock frequency; $p$ is in the range $1-64 ; v$ is in the range $1-256$. When programming the prescaler and counter registers, the maximum load value is truncated to six and eight bits, respectively, and is therefore programmed as zero. For an input clock frequency of 8 MHz , the prescaler and counter register values may be programmed to time and interval in the range
$1 \mu \mathrm{~s} \times \mathrm{l} \times \mathrm{l} \leq \mathrm{i} \leq \mathrm{l} \mu \mathrm{s} \times 64 \times 256$
$1 \mu \mathrm{~s} \leq \mathrm{i} \leq 16.384 \mathrm{~ms}$
To determine the count (c) until EOC for $\mathrm{T}_{1}$ with external clock input, the equation

$$
\mathrm{c}=\mathrm{p} \times \mathrm{v}
$$

characterizes the relation between the $T_{1}$ prescaler ( p ) and the $\mathrm{T}_{1}$ counter ( v ). The divide-by-8 on the input frequency is bypassed in this mode. The count range is

$$
\begin{aligned}
& 1 \times 1 \leq \mathrm{c} \leq 64 \times 256 \\
& 1 \leq \mathrm{c} \leq 16,384
\end{aligned}
$$

TOUT Modes. Port 3, bit $6\left(\mathrm{P}_{6}\right)$ may be configured as an output (TOUT) which is dynamically controlled by one of the following:

```
- T0
- T
- Internal clock
```

When driven by $T_{o}$ or $T_{1}, T_{\text {OUT }}$ is reset to a logic 1 when the corresponding load bit is set in timer control register TMR (FlH) and toggles on EOC from the corresponding counter. When TOUT is driven by the internal clock, that clock is directly output on $\mathrm{P}_{6}$.

While programmed as $\mathrm{T}_{\text {OUT }}, \mathrm{P}_{6}$ is disabled from being modified by a write to port register 03H; however, its current output may be examined by the Z 8 software by a read to port register 03 H .

## Timer/Counter Functions (Continued)

TIN Modes. Port 3, bit $1\left(\mathrm{P}_{1}\right)$ may be configured as an input ( $\mathrm{T}_{\text {IN }}$ ) which is used in conjunction with $\mathrm{T}_{1}$ in one of four modes:

- External clock input
- Gate input for internal clock
- Nonretriggerable input for internal clock
- Retriggerable input for internal clock

For the latter two modes, it should be noted that the existence of a synchronizing circuit within the $\mathrm{Z8}$ causes a delay of two to three internal clock periods following an external trigger before clocking of the counter actually begins.

Each High-to-Low transition on $T_{\text {IN }}$ will generate interrupt request IRQ2, regardless of the selected $T_{\text {IN }}$ mode or the enabled/ disabled state of $T_{1}$. IRQ2 must therefore be masked or enabled according to the needs of the application.

The "external clock input" $\mathrm{T}_{\text {IN }}$ mode supports the counting of external events, where an event is seen as a High-to-Low transition on $\mathrm{T}_{\text {IN }}$. Interrupt request IRQ5 is generated on the $n^{\text {th }}$ occurrence (single-pass mode) or on every $\mathrm{n}^{\text {th }}$ occurrence (continuous mode) of that event.

The "gate input for internal clock" $\mathrm{T}_{\mathrm{IN}}$ mode provides for duration measurement of an external event. In this mode, the $\mathrm{T}_{1}$ prescaler is driven by the $\mathrm{Z8}$ internal clock, gated by a High level on $\mathrm{T}_{\mathrm{IN}}$. In other words, $\mathrm{T}_{1}$ will count while $\mathrm{T}_{\text {IN }}$ is High and stop counting while $\mathrm{T}_{\text {IN }}$ is Low. Interrupt request IRQ2 is generated on the High-toLow transition on $\mathrm{T}_{\text {IN }}$. Interrupt request IRQ5 is generated on $T_{1}$ EOC. This mode may be used when the width of a High-going pulse needs to be measured. In this mode, IRQ2 is typically the interrupt request of most importance, since it signals the end of the pulse being measured. If IRQ5 is generated prior to IRQ2 in this mode, the pulse width on $\mathrm{T}_{\text {IN }}$ is too large for $\mathrm{T}_{1}$ to measure in a single pass.

The "nonretriggerable input" $\mathrm{T}_{\text {IN }}$ mode provides for automatic delay timing following and external event. In this mode, $\mathrm{T}_{1}$ is loaded and clocked by the Z8 internal clock following the first High-to-Low transition on $\mathrm{T}_{\text {IN }}$ after $\mathrm{T}_{1}$ is enabled. $\mathrm{T}_{\text {IN }}$ transitions that occur after this point do not affect $\mathrm{T}_{1}$. In single-pass mode, the enable bit is reset on

EOC; further $\mathrm{T}_{\text {IN }}$ transitions will not cause $\mathrm{T}_{1}$ to load and begin counting until the software sets the enable bit again. In continuous mode, EOC does not modify the enable bit, but the counter is reloaded and counting continues immediately; IRQ5 is generated every EOC until software resets the enable bit. This $\mathrm{T}_{\text {IN }}$ mode may be used, for example, to time the line feed delay following end of line detection on a printer or to delay data sampling for some length of time following a sample strobe.
The "retriggerable input" $\mathrm{T}_{\text {IN }}$ mode will load and clock $\mathrm{T}_{1}$ with the $\mathrm{Z8}$ internal clock on every occurrence of a High-to-Low transition on $\mathrm{T}_{\mathrm{IN}}$. $\mathrm{T}_{1}$ will time-out and generate interrupt request $\operatorname{IRQ5}$ when the programmed time interval (determined by $\mathrm{T}_{1}$ prescaler and load register values) has elapsed since the last High-to-Low transition on $\mathrm{T}_{\text {IN }}$. In single-pass mode, the enable bit is reset on EOC; further $\mathrm{T}_{\text {IN }}$ transitions will not cause $T_{1}$ to load and begin counting until the software sets the enable bit again. In continuous mode, EOC does not modify the enable bit, but the counter is reloaded and counting continues immediately; $\operatorname{IRQ5}$ is generated at every EOC until the software resets the enable bit. This $\mathrm{T}_{\text {IN }}$ mode may provide such functions as watch-dog timer (e.g., interrupt if conveyor belt stopped or clock pulse missed), or keyboard time-out (e.g., interrupt if no input in xms ).

Examples. Several possible uses of the timer/counters are given in the following four examples.
Time of Day Clock. The following module illustrates the use of $T_{1}$ for maintenance of a time of day clock, which is kept in binary format in terms of hours, minutes, seconds, and hundredths of a second. It is desired that the clock be updated once every hundredth of a second; therefore, $\mathrm{T}_{1}$ is programmed in continuous mode to interrupt 100 times a second. Although $\mathrm{T}_{1}$ is used for this example, $\mathrm{T}_{0}$ is equally suited for the task.

The procedure for initializing the timer (TOD__INIT), the interrupt service routine (TOD) which updates the clock, and the interrupt vector for $\mathrm{T}_{1}$ end-of-count (IRQ__5) are illustrated below. XTAL $=7.3728 \mathrm{MHz}$ is assumed.

## Timer/Counter Functions (Continued)

MACZ8	2.0
LOC	OBJ COD

## Timer/Counter (Continued)

Variable Frequency, Variable Pulse Width Output. The following module illustrates one possible use of Tout. Assume it is necessary to generate a pulse train with a $10 \%$ duty cycle, where the output is repetitively high for 1.6 ms and then low for 14.4 ms . To do this, TOUT is controlled by end-of-count from $\mathrm{T}_{1}$, althrough $\mathrm{T}_{0}$ could alternately be chosen. This example makes use fo the Z 8 feature that allows a timer's counter register to be modified without disturbing the count in progress. In continuous mode, the new value is loaded when $T_{1}$ reaches EOC. $T_{1}$ is first loaded and enabled with values to generate the short interval. The counter register is then immediately modified with the value to generate the long interval; this value is loaded into the counter automatically on $\mathrm{T}_{1}$ EOC. The prescaler selected value must be the same for both long and short intervals. Note that the initial loading of the $\mathrm{T}_{1}$ counter
register is followed by setting the $\mathrm{T}_{1}$ load bit of timer control register TMR (FlH); this action causes TOUT to be reset to a logic l output. Each subsequent modification of the $\mathrm{T}_{1}$ counter register does not affect the current TOUT level, since the $\mathrm{T}_{1}$ load bit is NOT altered by the software. The new value is loaded on EOC, and TOUT will toggle at that time. The $\mathrm{T}_{1}$ interrupt service routine should simply modify the $T_{1}$, counter register with the new value, alternating between the long and short interval values.

In the example which follows, bit 0 of register 04 H is used as a software flag to indicate which value was loaded last. This module illustrates the procedure for $\mathrm{T}_{1} /$ TOUT initialization (PULSE__INIT), the $\mathrm{T}_{1}$ interrupt service routine (PULSE), and the interrupt vector for $\mathrm{T}_{1} \mathrm{EOC}\left(\mathrm{IRQ} _\right.$) $) . \mathrm{XTAL}=8 \mathrm{MHz}$ is assumed.


## Timer/Counter Functions (Continued)

P 0017	E6	F2	E1	36	LD	T1, \#225
P 001A	B6	04	01	37	XOR	04H, \#1
P 001D	6B	03		38	JR	Z,PULSE_EXIT
P 001F	E6	F2	19	39	LD	T1, \#25
				40 PULSE_EXIT:		
P 0022	BF			41	IRET	
P 0023				42 END	PULSE	
					43 END	TIMER2

!new load value! !which value next?!
!should be 225!
Ishould be 25!

Cascaded Timer/Counters. For some applications it may be necessary to measure a greater time interval than a single timer/counter can measure ( 16.384 ms ). In this case, $\mathrm{T}_{\text {IN }}$ and TOUT may be used to


Figure 3. Cascaded Timer/Counters
cascade $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ to function as a single unit. TOUT, programmed to toggle on $\mathrm{T}_{0}$ end-of-count, should be wired back to $\mathrm{T}_{\text {IN }}$, which is selected as the external clock input for $\mathrm{T}_{1}$. With $\mathrm{T}_{0}$ programmed for continuous mode, TOUT (and therefore $\mathrm{T}_{\text {IN }}$ ) goes through a High-to-Low transition (causing $\mathrm{T}_{1}$ to count) on every other $\mathrm{T}_{0}$ EOC. Interrupt request IRQ5 is generated when the programmed time interval has elapsed. Interrupt requests IRQ2 (generated on every $\mathrm{T}_{\text {IN }}$ High-to-Low transition) and IRQ4 (generated on $T_{0} E O C$ ) are of no importance in this application and are therefore disabled.

To determine the time interval (i) until EOC, the equation

$$
\mathrm{i}=\mathrm{t} \times \mathrm{p} 0 \times \mathrm{v} 0 \times(2 \times \mathrm{pl} \times \mathrm{vl}-\mathrm{l})
$$

characterizes the relation between the $\mathrm{T}_{0}$ prescaler ( p 0 ) and counter ( v 0 ), the $\mathrm{T}_{1}$ prescaler ( pl ) and counter (vl), and the clock input period ( $t$ ); $t$ is defined in Section 7.1. Assuming XTAL $=8 \mathrm{MHz}$, the measurable time interval range is

$$
\begin{aligned}
& l \mu \mathrm{~s} \times 1 \times \mathrm{l} \times(2 \times 1-1) \leq \mathrm{i} \leq \\
& 1 \mu \mathrm{~s} \times 64 \times 256 \times(2 \times 64 \times 256-1) \\
& \mathrm{l} \mu \mathrm{~s} \leq \mathrm{i} \leq 536.854528 \mathrm{~s}
\end{aligned}
$$

Figure 3 illustrates the interconnection between $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$. The following module illustrates the procedure required to initialized the timers for a 1.998 second delay interval:

Timer/Counter Functions (Continued)


0 ERRORS
ASSEMBLY COMPLETE

11 instructions
27 bytes
$26.5 \mu \mathrm{~s}$

Clock Monitor. $\mathrm{T}_{1}$ and $\mathrm{T}_{\text {IN }}$ may be used to monitor a clock line (in a diskette drive, for example) and generate an interrupt request when a clock pulse is missed. To accomplish this, the clock line to be monitored is wired to P3, ( $\mathrm{T}_{\text {IN }}$ ). $\mathrm{T}_{\text {IN }}$ should be programmed as a retriggerable input to $T_{1}$, such that each falling edge on $\mathrm{T}_{\text {IN }}$ will cause $\mathrm{T}_{1}$ to reload and continue counting. If $\mathrm{T}_{1}$ is programmed to time-out after an interval of one-and-a-half times the clock period being monitored, $\mathrm{T}_{1}$ will time-out and generate interrupt request IRQ5 only if a clock pulse is missed.

The following module illustrates the procedure for initializing $\mathrm{T}_{1}$ and $\mathrm{T}_{\mathrm{IN}}$ (MONITOR__INIT) to monitor a clock with a period of $2 \mu \mathrm{~s}$. XTAL $=8 \mathrm{MHz}$ is assumed. Note that this example selects single-pass rather than continuous mode for $\mathrm{T}_{1}$. This is to prevent a continuous stream of IRQ5 interrupt requests in the event that the monitored clock fails completely. Rather, the interrupt service routine (CLK_ERR) is left with the choice of whether or not to reenable the monitoring. Also shown is the $\mathrm{T}_{1}$ interrupt vector ( $\mathrm{IRQ}_{2}$ ).

## Timer/Counter Functions (Continued)



MONITOR_INIT:
9 instructions
21 bytes
$21.5 \mu \mathrm{~s}$
$C L K _E R R$ :
$2+$ instructions
$4+$ bytes
$18.5+\mu$ s including interrupt response time

## I/O Functions

The Z8 provides 32 I/O lines mapped into registers 0-3 of the internal register file. Each nibble of port 0 is individually programmable as input, output, or address/data lines ( $\mathrm{A}_{15}-\mathrm{A}_{12}, \mathrm{~A}_{11}-\mathrm{A}_{8}$ ). Port 1 is programmable as a single entity to provide input, output, or address/data lines ( $\mathrm{AD}_{7}-\mathrm{AD}_{0}$ ). The operating modes for the bits of Ports 0 and 1 are selected by control register P01M (F8H). Selection of I/O lines as address/data lines supports access to external program and data memory; this is discussed in Section 3. Each bit of Port 2 is individually programmable as an input or an output bit. Port 2 bits programmed as outputs may also be programmed (via bit 0 of P3M) to all have active pull-ups or all be open-drain (active pull-ups inhibited). In Port 3, four bits $\left(\mathrm{P}_{3}-\mathrm{P} 3_{3}\right)$ are fixed as inputs, and four bits $\left(\mathrm{P}_{4}-\mathrm{P}_{7}\right)$ are fixed as outputs, but their functions are programmable. Special functions provided by Port 3 bits are listed in Table 4. Use of the Data Memory select output is discussed in Section 3; uses of $\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$ are discussed in Section 7 .

## Asynchronous Receiver/Transmitter

Operation. Full-duplex, serial asynchronous receiver/transmitter operation is provided by the Z 8 via $\mathrm{P}_{7}$ (output) and $\mathrm{P} 3_{0}$ (input) in conjunction with control register SIO (FOH), which is actually two registers: receiver buffer and transmitter buffer. Counter/Timer $\mathrm{T}_{0}$ provides the clock for control of the bit rate.

The Z8 always receives and transmits eight bits between start and stop bits. However, if parity is enabled, the eighth bit $\left(D_{7}\right)$ is replaced by the odd-parity bit when transmitted and a parity-error flag ( $=1$ if error) when received. Table 5 illustrates the state of the parity bit/parity error flag during serial I/O with parity enabled.

Although the Z8 directly supports either odd parity or no parity for serial I/O operation, even parity may also be provided with additional software support. To receive

Functions	Bit	Signal
Handshake	$\mathrm{P}_{1}$	$\overline{\text { DAV2/RDY2 }}$
	$\mathrm{P}_{2}$	DAV0/RDY0
	$\mathrm{P}_{3}$	$\overline{\mathrm{DAV}} 1 / \mathrm{RDY} 1$
	$\mathrm{P}_{4}$	RDY1/ $\overline{\text { DAV }} 1$
	$\mathrm{P}_{5}$	RDY0/ $\overline{\text { DAV } 0}$
	$\mathrm{P}_{6}$	RDY2/ $/ \overline{\text { AVV }} 2$
Interrupt Request	$\mathrm{P}_{3}$	IRQ3
	$\mathrm{P}_{1}$	IRQ2
	$\mathrm{P}_{2}$	IRQ0
	$\mathrm{P}_{3}$	IRQ1
Counter/	$\mathrm{P3}_{1}$	$\mathrm{T}_{\text {IN }}$
Timer	P30	Tout
Data Memory   Select $\begin{cases}\mathrm{P}_{4} & \overline{\mathrm{DM}}\end{cases}$		
Status Out		
Serial I/O	$\mathrm{P}_{3}$	Serial In
	$\mathrm{P}_{7}$	Seria Out

Table 4. Port 3 Special Functions
and transmit with even parity, the Z 8 should be configured for serial I/O with odd parity disabled. The Z8 software must calculate parity and modify the eighth bit prior to the load of a character into SIO and then modify a parity error flag following the load of a character form SIO. All other processing required for serial I/O (e.g. buffer management, error handling, etc.) is the same as that for odd parity operations.

To configure the Z8 for Serial I/O, it is necessary to:

- Enable $P 3_{0}$ and $P 3_{7}$ for serial I/O and select parity,
- Set up $\mathrm{T}_{0}$ for the desired bit rate,
- Configure IRQ3 and IRQ4 for polled or automatic interrupt mode,
- Load and enable $\mathrm{T}_{0}$.

Character Loaded   Into SIO	Transmitted To   Serial Line	Received From   Serial Line	Character   Transferred to SIO	Note*
11000011	01000011	01000011	01000011	no error
11000011	01000011	01000111	11000111	error
01111000	11111000	11111000	01111000	no error
01111000	11111000	01111000	11111000	error

## I/O Functions (Continued)

To enable $\mathrm{P}_{0}$ and $\mathrm{P}_{7}$ for serial I/O, bit 6 of P3M (R247) is set. To enable odd parity, bit 7 of P3M is set; to disable it, the bit is reset. For example, the instruction

LD P3M, \#40H
will enable serial I/O, but disable parity. The instruction

## LD P3M, \# COH

will enable serial I/O, and enable odd parity.

In the following discussions, bit rate refers to all transmitted bits, including start, stop and parity (if enabled). The serial bit rate is given by the equation:

$$
\text { bit rate }=\frac{\text { input clock frequency }}{\left(2 \times 4 \times \mathrm{T}_{0} \text { prescaler } \times \mathrm{T}_{0} \text { counter } \times 16\right)}
$$

The final divide-by-16 is incurred for serial communications, since in this mode $\mathrm{T}_{0}$ runs at 16 times the bit rate in order to synchronize the data stream. To configure the Z8 for a specific bit rate, appropriate values must first be selected for $\mathrm{T}_{0}$ prescaler and $T_{0}$ counter by the above equation; these values are then programmed into registers $\mathrm{T}_{0}$ ( F 4 H ) and PREO (F5H) respectively. Note that PREO also controls the continuous vs. single-pass mode for $\mathrm{T}_{0}$; continuous mode should be selected for serial I/O. For example, given an input clock frequency of 7.3728 MHz and a selected bit rate of 9600 bits per second, the equation is satisfied by $\mathrm{T}_{0}$ counter $=2$ and prescaler $=3$. The following code sequence will configure the $\mathrm{T}_{0}$ counter and $\mathrm{T}_{0}$ prescaler registers:

LD $\mathrm{T}_{0} \# 2 \quad!\mathrm{T}_{0}$ counter $=2!$
LD PREO, \# (2)00001101H
! bit 2-7: prescaler $=3$; bit 0 : continuous mode!

Interrupt request 3 (IRQ3) is generated whenever a character is transferred into the receive buffer; interrupt request 4 (IRQ4) is generated whenever a character is
transferred out of the transmit buffer. Before accepting such interrupt requests, the Interrupt Mask, Request, and Priority Registers (IMR, IRQ, and IPR) must be programmed to configure the mode of interrupt response. The section on Interrupt Processing provides a discussion of interrupt configurations.

To load and enable $\mathrm{T}_{0}$, set bits 0 and 1 of the timer mode register (TMR) via an instruction such as

OR TMR, \#03H
This will cause the $T_{0}$ prescaler and counter registers (PREO and $\mathrm{T}_{0}$ ) to be transferred to the $\mathrm{T}_{0}$ prescaler and counter. In addition, $\mathrm{T}_{0}$ is enabled to count, and serial I/O operations will commence.

Characters to be output to the serial line should be written to serial I/O register SIO (FOH). IRQ4 will be generated when all bits have been transferred out.

Characters input from the serial line may be read from SIO. IRQ3 will be generated when a full character has been transferred into SIO.

The following module illustrates the receipt of a character and its immediate echo back to the serial line. It is assumed that the Z8 has been configured for serial I/O as described above, with IRQ3 (receive) enabled to interrupt, and IRQ4 (transmit) configured to be polled. The received character is stored in a circular buffer in register memory from address 42 H to 5 FH . Register 41 H contains the address of the next available buffer position and should have been initialized by some earlier routine to \# 42H.

I/O Functions (Continued)
$\begin{array}{ll}\text { MACZ8 } & 2.0 \\ \text { LOC } & \text { OBJ CODE STMT SOURCE STATEMENT }\end{array}$


O ERRORS
ASSEMBLY COMPLETE

## 10 instructions

25 bytes
$35.5 \mu s+5.5 \mu \mathrm{~s}$ for each additional pass through the echo_wait loop, including interrupt response time

Automatic Bit Rate Detection. In a typical system, where serial communication is required (e.g. system with a terminal), the desired bit rate is either user-selectable via a switch bank or nonvariable and "hardcoded" in the software. As an alternate method of bit-rate detection, it is possible to automatically determine the bit rate of serial data received by measuring the length of a start bit. The advantage of this method is that it places no requirements on the hardware design for this function and provides a convenient (automatic) operator interface.

In the technique described here, the serial channel of the Z 8 is initialized to expect a bit rate of 19,200 bits per second. The number of bits ( n ) received through Port pin P30 for each bit transmitted is expressed by

$$
n=19,200 / b
$$

where $b=$ transmission bit rate. For example, if the transmission bit rate were 1200 bits per second, each incoming bit would appear to the receiving serial line as $19,200 / 1200$ or 16 bits.

## I/O Functions (Continued)

The following example is capable of distinguishing between the bit rates shown in Table 6 and assumes an input clock frequency of 7.3728 MHz , a $\mathrm{T}_{0}$ prescaler of 3 , and serial I/O enabled with parity disabled. This example requires that a character with its low order bit $=1$ (such as a carriage return) be sent to the serial channel. The start bit of this character can be measured by counting the number of zero bits collected before the low order l bit. The number of zero bits actually collected into data bits by the serial channel is less than $n$ (as given in the above equation), due to the detection of start and stop bits.
Figure 4 illustrates the collection (at 19,200 bits per second) of a zero bit transmitted to the Z8 at 1,200 bits per second. Notice that only 13 of the 16 zero bits received are collected as data bits.

Once the number of zero bits in the start bit has been collected and counted, it remains to translate this count into the appropriate $T_{0}$ counter value and program that value into $\mathrm{T}_{0}(\mathrm{~F} 4 \mathrm{H})$. The patterns shown in the two binary columns of Table 6 are utilized in the algorithm for this translation.

As a final step, if incoming data is to
commence immediately, it is advisable to wait until the remainder of the current "elongated" character has been received, thus "flushing" the serial line. This can be accomplished either via a software loop, or by programming $\mathrm{T}_{1}$ to generate an interrupt request after the appropriate amount of time has elapsed. Since a character is composed of eight bits plus a minimum of one stop bit following the start bit, the length of time to delay may be expressed as

$$
(9 \times n) / b
$$

where n and b are as defined above. The following module illustrates a sample program for automatic bit rate detection.


Figure 4. Collection of a Start Bit Transmitted at 1,200 BPS and Receive at 19,200 BPS

Bit Rate	Number of Bits Received   Per Bit Transmitted	Number of $\mathbf{0}$ Bits Collected   as Data Bits		T0 Counter	
		dec	binary	dec	binary
19200	1	0	00000000	1	00000001
9600	2	1	00000001	2	00000010
4800	4	3	00000011	4	00000100
2400	8	7	00000111	8	00001000
1200	16	13	00001101	16	00010000
600	32	25	00011001	32	00100000
300	64	49	00110001	64	01000000
150	128	97	01100001	128	10000000

Table 6. Inputs to the Automatic Bit Rate Detection Algorithm

MACZ8
LOC
2.0

OBJ CODE STMT SOURCE STATEMENT
$\begin{array}{lll}1 & \text { bit_rate } & \\ 2 & \text { EXTERNAL } \\ 3 & \text { DELAY PROCEDURE } \\ 4 & \text { GLOBAL } & \\ 5 & \text { main PROCEDURE } \\ 6 & & \text { ENTRY }\end{array}$
P 0000

MODULE

I/O Functions (Continued)

P 0000	8 F		7	di		!disable interrupts!			
P 0001	56	FB 77	8	and	IMR, \# 77H	! IRQ3 polled mode!			
P 0004	56	FA F7	9	and	IRQ, \# F7H	!clear IRQ3!			
P 0007	E6	F7 40	10	ld	P3M, \# 40H	!enable serial I/O!			
P 000A	E6	F4 01	11	ld	T0, \# 1				
P 000D	E6	F5 0		ld	PRE0,\#(3)	SHL 2) +1 !bit rate $=19,200$; continuous count mode!			
			$\begin{aligned} & 12 \\ & 13 \end{aligned}$						
P 0010	B0	E0	14	clr	R0	! init. zero byte counter!			
P 0012	E6	Fl 0	15	ld	TMR, \# 3	!load and enable T0!			
			16						
			17 !collect input b		the number	of null			
					non-zero by	e received!			
P 0015	76	FA 08	20	TM	IRQ, \#08H	!character received?!			
P 0018	6B	FB	21	jr	z, collect	!not yet!			
P 001A	18	F0	22	ld	R1, SIO	!get the character!			
P 001C	56	FA F7	23	and	IRQ, \# F7	!clear interrupt request!			
P 001F	1E		24	inc	Rl	!compare to 0 ...!			
P 0020	1A	05	25	djnz	Rl,bitloop	!...(in 3 bytes of code)!			
P 0022	06	E0 08	26	add	R0, \#8	!update count of 0 bits!			
P 0025	8B	EE	27	jr	collect				
			28 bitloop: 29			!add in zero bits from low! end of lst non-zero byte!			
P 0027	E0	El	30	RR	R1				
P 0029	7B	03	31	jr	c, count__do				
P 002B	OE		32	inc	R0				
P 002C	8B	F9	33	jr	bitloop				
			34						
			35 !R0 has number of zero bits collected!						
			36 !translate R0 to the appropriate T0 counter value!						
			37 count__d	one:		!R0 has count of zero bits!			
P 002E	1 C	07	38	ld	R1,\#7				
P 0030	2C	80	39	ld	R2, \#80H	!R2 will have T0 counter value!			
P 0032	90	E0	40	RL	R0				
			41						
P 0034	90	E0	42 loop:	RL	R0				
P 0036	7B	04	43	jr	c, done				
P 0038	E0	E2	44	RR	R2				
P 003A	1 A	F8	45	djnz	rl,loop				
			46						
P 003C	29	F4	47 done:	ld   g en	T0,R2	!load value for detected bit rate! stream!			
			48						
			49 !Delay long enough to clear serial line of bit stream! 50 call   51 !clear receive interrupt request!						
P 003E	D6	0000*							
P 0041	56	FA F7	52	and	IRQ, \#F7H				
P 0044			53 END						
P 0044			55 END	bit_					

0 ERRORS

## ASSEMBLY COMPLETE

[^15]
## I/O Functions (Continued)

Port Handshake. Each of Ports 0, l and 2 may be programmed to function under input or output handshake control. Table 7 defines the port bits used for the handshaking and the mode bit settings required to select handshaking. To input data under handshake control, the Z8 should read the input port when the $\overline{\mathrm{DAV}}$ input goes Low (signifying that data is available from the attached device). To output data under handshake control, the Z8 should write the output port when the RDY input goes Low (signifying that the previously output data has been accepted by the attached device). Interrupt requests IRQ0, IRQ1, and IRQ2 are generated by the falling edge of the handshake signal input to the Z 8 for Port 0 , Port 1, and Port 2 respectively. Port handshake operations may therefore be processed under interrupt control.

Consider a system that requires communication of eight parallel bits of data under hand-shake control from the Z 8 to a peripheral device and that Port 2 is selected as the output port. The following assembly code illustrates the proper sequence for initializing Port 2 for output handshake.

CLR P2M !Port 2 mode register: all Port 2 bits are outputs!
OR 03H, \# 40H
!set $\overline{\mathrm{DAV}} 2$ : data not available!
LD P3M,\#20H
!Port 3 mode register: enable Port 2 handshake!
LD 02H,DATA
loutput first data byte; $\overline{\mathrm{DAV}} 2$ will be cleared by the Z 8 to indicate data available to the peripheral device!
Note that following the initialization of the output sequence, the software outputs the first dat byte without regard to the state of the RDY2 input; the $\mathrm{Z8}$ will automatically hold DAV2 High until the RDY2 input is High. The peripheral device should force the Z8 RDY2 input line Low after it has latched the data in response to a Low on $\overline{D A V} 2$. The Low on RDY2 will cause the Z8 automatically force $\overline{\mathrm{DAV}} 2$ High until the next byte is output. Subsequent bytes should be output in response to interrupt request IRQ2 (caused by the High-to-Low transition on RDY2) in either a polled or an enabled interrupt mode.

	Port 0	Port 1	Port 2
Input handshake lines	$\left\{\begin{array}{l}\mathrm{P} 3_{2}=\overline{\mathrm{DAV}} \\ \mathrm{P} 3_{5}=\mathrm{RDY}\end{array}\right.$	$\begin{aligned} & \mathrm{P}_{3}=\overline{\mathrm{DAV}} \\ & \mathrm{P}_{4}=\mathrm{RDY} \end{aligned}$	$\begin{aligned} & \mathrm{P} 3_{1}=\overline{\mathrm{DAV}} \\ & \mathrm{P}_{6}=\mathrm{RDY} \end{aligned}$
Output handshake lines	$\left\{\begin{array}{l}\mathrm{P}_{2}=\mathrm{RDY} \\ \mathrm{P}_{5}=\overline{\mathrm{DAV}}\end{array}\right.$	$\mathrm{P} 3_{3}=\mathrm{RDY}$ $\mathrm{P} 3_{4}=\overline{\mathrm{DAV}}$	$\begin{aligned} & \mathrm{P} 3_{1}=\mathrm{RDY} \\ & \mathrm{P}_{6}=\overline{\mathrm{DA} \bar{V}} \end{aligned}$
To select input handshake:	$\left\{\begin{array}{l} \text { set bit } 6 \& \text { reset bit } 7 \text { of } \\ \text { P0lM (program high } \\ \text { nubble as input) } \end{array}\right.$	set bit 3 \& reset bit 4 of P01M (program byte as input)	set bit 7 of P2M (program high bit as input)
To select output handshake:	$\left\{\begin{array}{l} \text { reset bits } 6,7 \text { of P01M } \\ \text { (program high nibble as } \\ \text { output) } \end{array}\right.$	reset bits 3,4 of P 01 M (program byte as output)	reset bit 7 of P 2 M   (program high bit as output)
To enable handshake:	$\left\{\begin{array}{l}\text { set bit } 5 \text { of Port } 3\left(\mathrm{P}_{5}\right) \text {; } \\ \text { set bit } 2 \text { of P3M }\end{array}\right.$	set bit 4 of Port $3\left(\mathrm{P}_{4}\right)$;   set bits 3, 4 of P3M	set bit 6 of Port $3\left(\mathrm{P}_{6}\right)$; set bit 5 of P3M

Table 7. Port Handshake Selection

## Arithmetic Routines

This section gives examples of the arithmetic and rotate instructions for use in multiplication, division, conversion, and $B C D$ arithmetic algorithms.

Binary to Hex ASCII. The following module illustrates the use of the ADD and SWAP arithmetic instructions in the conversion of a 16-bit binary number to its hexadecimal ASCII representation. The 16 -bit number is
viewed as a string of four nibbles and is processed one nibble at a time from left to right, beginning with the high-order nibble of the lower memory address. 30 H is added to each nibble if it is the range 0 to 9 ; otherwise 37 H is added. In this way, 0 H is converted to $30 \mathrm{H}, 1 \mathrm{H}$ to $31 \mathrm{H}, \ldots \mathrm{AH}$ to 41 H , ... FH to 46 H . Figure 5 illustrates the conversion of RRO (contents $=$ F2BEH) to its hex ASCII equivalent; the destination buffer is pointed to by RR4.


Figure 5. Conversion of (RRO) to Hex ASCII

MACZ8 2.99 INTERNAL RELEASE
LOC OBJ CODE STMT SOURCE STATEMENT


Arithmetic Routines (Continued)


15 instructions
34 bytes
$120.5 \mu$ s (average)

BCD Addition. The following module illustrates the use of the add with carry (ADC) and decimal adjust (DA) instructions for the addition of two unsigned BCD strings of equal length. Within a BCD string, each nibble represents a decimal digit (0-9). Two such digits are packed per byte with the
most significant digit in bits 7-4. Bytes within a BDC string are arranged in memory with the most significant digits stored in the lowest memory location. Figure 6 illustrates the representation of 5970 in a 6-digit BCD string, starting in register 33 H .


Figure 6. Unsigned BCD Representation

Arithmetic Routine (Continued)


[^16]Arithmetic Routines (Continued)

Multiply. The following module illustates an efficient algorithm for the multiplication of two unsigned 8-bit values, resulting in a l6-bit product. The algorithm repetitively shifts the multiplicand right (using RRC), with the low-order bit being shifted out (into the carry flag). If a one is shifted out, the multiplier is added to the high-order byte of
the partial product. As the high-order bits of the multiplicand are vacated by the shift, the resulting partial-product bits are rotated in. Thus, the multiplicand and the low byte of the product occupy the same byte, which saves register space, code, and execution time.


## 9 instructions

16 bytes
$92.5 \mu$ s (average)

Divide. The following module illustrates an efficient algorithm for the division of a 16 -bit unsigned value by an 8 -bit unsigned value, resulting in an 8 -bit unsigned quotient. The algorithm repetitively shifts the dividend left (via RLC). If the high-order bit shifted out is a one or if the resulting high-order dividend byte is greater than or equal to the divisor,
the divisor is subtracted from the high byte of the dividend. As the low-order bits of the dividend are vacated by the shift left, the resulting partial-quotient bits are rotated in. Thus, the quotient and the low byte of the dividend occupy the same byte, which saves register space, code, and execution time.

Arithmetic Routine (Continued)


[^17]
## Conclusion

This Application Note has focused on ways in which the Z8 microcomputer can easily yet effectively solve various application problems. In particular, the many sample routines illustrated in this document should
aid the reader in using the Z 8 to greater advantage. The major features of the Z 8 have been described so that the user can continue to expand and explore the Z8's repertoire of uses.

Copyright 1980, 1981, 1983 by Zilog Inc. All rights reserved. No part of this publication may be reproduces, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Zilog. The information contained herein is published by SGS and subject to change without notice. SGS assumes no responsibility for the use of circuitry embolied in the product. No other circuit patent licences are implied.

## SGS GROUP OF COMPANIES

[^18]
## SGS OFFICES

## INTERNATIONAL HEADQUARTERS

SGS Microelettronica SpA
Via C. Olivetti 2, -20041 Agrate Brianza-Italy
Tel.: 039-65551
Telex: 330131-330141 - SGSAGR

## BENELUX

SGS Microelettronica SpA
Sales Office:
Bruxelles 1040
Bld. Reyerslaan, 207209
Tel.: 02-7366060
Telex: 24149
BRAZIL
SGS Semicondutores LTDA
Sales Office:
05413 Sao Paulo
Av. Henrique Schaumann 286 - CJ33
Tel.: 011-853-5062
Telex: 37988 UMBR BR

## DENMARK

SGS Semiconductor A.B.
Sales Office:
2730 Herlev
Herlev Torv, 4
Tel.: 02-948533
Telex: 35411

## FRANCE

Société Générale de Semiconducteurs

## 92120 Montrouge

21-23 Rue de la Vanne
Tel.: 01-47460800
Telex: 250938F

## HOLLAND

SGS Microelettronica SpA

## 5612 CM Eindhoven

Kruisstraat, 130
Tel.: 040-433566
Telex: 51186 SGSEI NL

## HONG KONG

SGS Semiconductor Asia Limited
Hunghom, Kowloon
9th Floor, Block N,
Kaiser Estate, Phase III,
11 Hok Yuen St.,
Tel.: 03-644251/6
Telex: 33906 ESGIE HK

## ITALY

SGS Microelettronica SpA
Direzione Italia e Sud Europa
20090 Assago (MI)
V.le Milanofiori - Strada 4 - Palazzo A/4/A

Tel.: 02 - 8244131 ( 10 linee)
Telex: 330131-330141 SGSAGR
Sales Offices:
40033 Casalecchio di Reno (BO)
Via R. Fucini 12
Tel.: 051-591914
Telex: 226363
00161 Roma
Via A. Torlonia, 15
Tel.: 06-8444474

## KOREA

SGS Semiconductor Asia Ltd.
Korea Liason Office
Mapo, Seoul 121
Rm 1306 KMIC Bldg
168-9 Yumlidong
Tel.: 712-7071/2/3
Telex: K 26493

## SINGAPORE

SGS Semiconductor (Pte) Ltd.
Singapore 2056
28 Ang Mo Kio
Industrial Park 2
Tel.: 482-1411
Telex: RS 55201 ESGIES

## SPAIN

SGS Microelettronica SpA

## 28036 Madrid

Representative Office
Calle Agustin De Foxà, 25
Tel.: 01-7337043
Telex: 41414

## SWEDEN

SGS Semiconductor A.B.
19500 Märsta
Bristagatan, 16
Tel.: 0760-40120
Telex: 054-10932

## SWITZERLAND

SGS Semiconductor S.A.
Sales Offices:
1218 Grand-Saconnex (Geneve)
Chemin François-Lehmann, 18/A
Tel.: 022-986462/3
Telex: 28895

## TAIWAN-REPUBLIC OF CHINA

SGS Semiconductor Asia Ltd

## Taipei Sec 4

6th floor, Pacific Commercial Bldg.
285 Chung Hsiao E Road
Tel.: 2-7728203
Telex: 10310 ESGIETWN

## UNITED KINGDOM

SGS Semiconductor Limited

## Aylesbury, Bucks

Planar House, Walton Street
Tel.: 0296-5977
Telex: 051-83245

## WEST GERMANY

SGS Halbleiter Bauelemente GmbH
8018 Grafing bei München
Haidling, 17
Tel.: 08092-690
Telex: 0527378

## Sales Offices:

3012 Langenhagen
Hans Boeckler Str., 2
Tel.: 0511-789881
Telex: 923195

## 8500 Nürnberg 40

Allersberger Str., 95
eingang Wilhelminenstr. 1
Tel.: 0911-464071
Telex: 626243

8023 Pullach bei München
Seitnerstrasse, 42
Tel.: 089-793 0662
Telex: 5215784
7000 Stuttgart 31
Loewenmarkt, 5
Tel.: 0711-881101
Telex: 723625

## U.S.A.

SGS-Semiconductor Corporation
Phoenix, AZ 85022
1000 East Bell Road
Tel.: (602) 867-6100
Telex: 249976 SGSPH UR
Sales Offices:
Bloomington, MN 55420
One Appletree Square
Suite 201-K
Tel.: (612) 854-0525
Ft. Lauderdale FL 33309
1001 NW 62nd Street
Suite 314
Tel.: (305) 4938881
Telex: 291588
Hauppauge, NY 11788
330 Motor Parkway
Suite 100
Tel.: (516) 435-1050
Telex: 221275 SGSHA UR
Indianapolis, IN 46268
8777 Purdue Road
Suite 113
Tel.: (317) 872-4404
Telex: 209144 SGSIN UR
Irvine, CA 92714
18271 W. McDurmott Drive
Suite J.
Tel. (714) 863-1222
Telex: 277793 SGSOR UR
Plano, TX 75074
850 East Central Parkway
Suite 180
Tel.: (214) 881-0848
Telex: 203997 SGSDA UR
Poughkeepsie, NY 12601
201 South Avenue
Suite 206
Tel.: (914) 473-2255
Santa Clara, CA 95051
2700 Augustine Drive
Suite 209
Tel.: (408) 727-3404
Telex: 278833 SGSSA UR
Schaumburg, IL 60196
600 North Meacham Road
Tel.: (312) 490-1890
Telex: 210159 SGSCH UR
Southfield, MI 48076
21411 Civic Center Dr. 309
Mark Plaza Bldg.
Tel.: (313) 358-4250
Telex: 810-224-4684 "MGA DET SOFD"
Waltham, MA 02154
240 Bear Hill Road
Tel.: (617) 890-6688
Telex: 200297 SGSWH UR

Technology and Service


[^0]:    *2-byte instruction; fetch cycle appears as a 3-byte instruction

[^1]:    -2-byte instruction; fetch cycle appears as a 3-byte instruction

[^2]:    * Add 2TpC when using extended memory timing.

[^3]:    *This feature differs in the Z8681, Z8682 and Z8684

[^4]:    * This feature differs in the Z8681, Z8682 and Z8684

[^5]:    * This feature differs in the Z8681, Z8682 and Z8684

[^6]:    * This feature differs in the Z8681 and Z8682

[^7]:    -2-byte instruction; fetch cycle appears as a 3-byte instruction

[^8]:    *2-byte instruction; fetch cycle appears as a 3-byte instruction

[^9]:    $\bullet 2$-byte instruction; fetch cycle appears as a 3 -byte instruction

[^10]:    * Add 2 TpC when using extended memory timing.

[^11]:    * 20,000 G FOR PACKAGES WITH CAVITY PERIMETER OF 5 CM OF MORE AND/OR WITH A MASS OF 5 GRAMS OR MORE

[^12]:    1) Performed weekly on finished products.
    2) 20000 g for package with cavity perimeter of 5 cm or more and/or with a mass of 5 grams or more
[^13]:    1) 20000 grams for packages with cavity perimeter of 5 cm or more and/or mass or 5 grams or more.
    2) Performed weekly.
[^14]:    * $\mathrm{Z8601}=2 \mathrm{~K}$ ROM version

[^15]:    30 instructions
    68 bytes
    Execution time is variable based on transmission bit rate.

[^16]:    11 instructions
    20 bytes
    Execution time is a function of the number of bytes (n) in input $B C D$ string: $20 \mu \mathrm{~s}+12.5(\mathrm{~m}-1) \mu \mathrm{s}$

[^17]:    15 instructions
    26 bytes
    $124.5 \mu \mathrm{~s}$ (average)

[^18]:    Italy - Brazil - France - Malta - Malaysia - Singapore - Sweden - Switzerland - United Kingdom - U.S.A. - West Germany
    © 1986 SGS, All Rights Reserved - Printed in Italy

    * Z 8 is a registered trademark of Zilog Inc.

