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Abstract

    For the proper water resources management of the Chikugo River
basin, the prediction of both drought and heavy rainfall needs to be carried

out by the conventional and engineering method which can be useful to for

the practitioners who work on the water resources management and flood
control. A relatively simple and efficient way to estimate Iocal and
regional rainfall, as well as other hydrometeorological variables, is now

intensively discussed. This method utilizes the grid data point value
(GPV) to predict the regional rainfall based on the so called atmospheric
downscaling. In this paper, artificial neural networks (ANNs) are em-
ployed. As the input variables, three large-scale meteorological vari-
ables, precipitable water, and zonal and meridional wind speeds, are used.

Output is the mean rainfall intensity in the Chikugo River basin during a

12-hour period. In the model, the serially combined ANNs were em-
ployed to predict the rainfall amount exactly. The result from the seri-
ally combined ANNs is slightly better than the result from the neumerical

weather prediction model of the Japan Meteorological Agency by
comparing the values of CC and RMSE.

Keywords: Atmospheric downscaling, GPV data, precipitable water,
          wind speeds, Artificial neural network, correlation analysis

1. Introduction

    In pace with increasing demands on water resources at the basin scale demands are also

increasing on the predictive techniques for runoff estimation. To increase the forecast lead

time for runoff, modelers are more and more forced to use precipitation estimates from
large-scale atmospheric data bases. The problem remains to best downscale these data to
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actual rainfall at basin scale to be used as input to runoff models.

    A way to estimate local and regional rainfall is to use grids of meteorological data point

value (GPV) as input to a downscaling procedure. These GPVs cover the entire atmosphere
with 20 km grid meshes in the horizontal and 36 layers in the vertical. Among the variables

that can be used are wind speeds, temperature, dew point depression, and pressure.

   At present, however, there exists no optimal method to downscale large-scale meteoro-
logical data to basin-scale rainfall. Several studies have been made using artificial neural

networks (ANN) to arrive at actual rainfall. The advantage of using ANN is that it is
simple and can be updated repeatedly to quantify even complicated nonlinear relationships.

   In the present paper we use GPV data from the Japan Meteorological Agency to
downscale mean rainfall during 12-hour periods for the Chikugo River basin in south Japan

by use of ANN. We compare the results with a physical meteorological model for rainfall
prediction. Finally, we close with a discussion on the practical implications of the results.

2. Methods and experimental area

2.1 Artificialneuralnetwork

    An artificial neural network (ANN) is a flexible mathematical tool for identifying and

utilizing complex and nonlinear relationships between input and output data sets. An ANN

model is usually made up of a number of layers of processing elements (neurons) with
multiple connections between the elements of each layer. Information entering through the
input layer of the ANN, is passed through hidden layers which have weighted connections,
and is transformed by means of particular transfer functions.

   In this study, the ANNs used consised of three layers, an input layer with three neurons

representing meteorological variables described below, a hidden layer, and an output layer

with one neuron representing actual rainfall of the Chikugo River basin. An example the
ANN model is shown in Figure 1. In all experiments, feedforward ANNs were trained by
a backpropagation algorithm for the determination of weights and biasesi). In the ANNs,
every neuron was allocated a Iog-sigmoid transfer function defined as

1

a=   1 + ern
(1)

where n is the input value to the neuron and a is the output value from the neuron.
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Figure 1 An example ANN model consisting of three meteorological variables
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Output from the log-sigmoid function is continuous and confined between zero and one.

    A time series of totally 717 30-min rainfall values was divided into three parts for
training, testing, and validation ofthe ANN. Data corresponding to 25% of the entire series,

were reserved for validation (validation set) and were not used in any step of the training

process. The remaining data were divided in two parts: 800/o were used for training the
ANN (training set) and the remaining 200/o for testing (test set). This arrangement is often

used in ANN applications to avoid overfitting the training data, that is, to avoid the ANN

reproducing noise present in the data.

    A critical issue in ANN applications is to optimize the number of hidden layers and the

number of neurons in each layer. If too many layers and neurons, the ANN may easily
overfit; if too few, the ANN may not be able to reproduce the full variability in the data.

Tests were made using both one and two hidden layers with up to eight neurons in each layer.

    To compare the target data (observed rainfall) with the ANN output (predicted rainfall)
different indexes were used. The root mean square error (RMSE) was calculated as

    where nz is the number of data, Tj is the target value, and Oj is the output of ANN. The
ability of the model to forecast events with zero rainfall was calculated using P(O) according

to

          - No(0)

    where AJT is the number of observed (targeted) zero rainfall (O mm) events in the target

data set and IVo(O) is the number of predicted zero rainfall (0 mm) by the ANN. The total

rainfall rate index Trr was used to characterize the sum of predicted vs. targeted rainfall.

It is defined as

           2 o,
      Trr =                                                                           (4)           2 T,

   Finally, the hit rate (HR) index was used to characterize the ANNis ability to partition

between zero and non-zero rainfall. It is defined as
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Figure 2 The area in which GPV meteorological databases were available (Kyushu Island is
marked in black)
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     H/R--l}-(A.zviio,c((oO))+A.zviio,c((ii))l (s)

    where Noc(O) and IVoc(1) are the number of zero and non-zero rainfall values that the

ANN correctly predicted. Similarly, IVt(O) and Nt(1) are the actually observed zero and
non-zero values, respectively, in the target series (Nt =Nt(O) + IVt(1)).

    Two ANN models were used in this study. The first, ANNI, was used to simulate if
rainfall occurred or not. Thus, this model gave an integer output corresponding to O or 1,

indicating zero or non-zero values of rainfall. The second, ANN2, was used to predict the
rainfall intensity. Consequently, Eq. (5) was used only for ANNI.

2.2 Experimental data

    The large-scale atmospheric properties are characterized by meteorological grid point
values (GPV) in a region spanning approximately 105-1600 E and 20-550 N, provided by the
Japan Meteorological Agency (Figure 2). The data consist of sounding measurements (wind
speeds, temperature, dew point depression, and pressure) at OOZ and 12Z (9 am and 9pm JST).

These GPV data are usually used for giving initial conditions to numerical weather predic-
tion. Using the same data, Uvo et a12) showed that zonal and meridional wind speeds at 850
hPa (usso, vsso) in combination with precipitable water (pw) were useful predictors for rainfall

estimation. For this reason, these variables were used as input to the modeling scheme.

   The atmospheric downscaling by use of ANN aimed at estimating mean rainfall in the
Chikugo River basin (2840 km2) located in Kyushu, south Japan (Figure 3a). The river flows
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 Figure 3 The location of the Chikugo River basin and 11 AMeDAS stations
a) Kyushu Island, Southern Japan, and the location of the Chikugo River basin
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Figure 3 The location of the Chikugo River basin and 11 AMeDAS stations
b) The locations of 11 AMeDAS stations and rainfall for the period from 1996 to 1999

Table 1 The rainfall statistics of 11 AMeDAS stations.

Amagi Kurume Kuroki Yanagawa Omuta Yabakei Hita Kusu

Syaka

dake Saga

Mjnami

1996

annualrainfall(mm) 1650 1690 1932 1392 1508 1752 1768 1932 - 1596 2266

summerrainfail*(mm) 813 919 1158 755 873 893 854 1082 1970 928 1179

ratio O,49 O.54 O.60 O.54 O.58 O,51 O.48 O,56 - O.58 O.52

1997

annualrainfall(mm) 2323 2593 2663 2351 2985 2305 2138 2435 3345 2352 2817

summerrainfall*(mm) 1117 1330 1335 1256 1676 972 1041 I140 2169 1155 1420

ratio O.48 O.51 O.50 O,53 O.56 O.42 O.49 O,47 O.65 O.49 O.50

1998

annualrainfall(mm) 1973 2115 2117 1778 1871 1704 1744 1695 3105 1722 2303

summerrainfal]*(mm) 767 811 829 783 785 605 689 557 1298 727 981

ratio O,39 O.38 O.39 O,44 O,42 O.36 O.40 O,33 o.oo O.42 O.43

1999

annualrainfall(mm) 1991 1921 2t61 1778 2177 1986 1980 t861 3371 2107 2515

summerrainfall*(mm) 11OO t045 1134 940 1118 995 1033 1O03 1836 1173 1328

ratio O,55 O.54 O.52 O,53 O,51 O.50 O.52 'O,54 O.54 O.56 O,53

meanrainfallof

fouryears(mm) 1984 2080 2218 1825 2135 1937 1908 I981 3274 1944 2475

meansummerrainfall

offouryears(mm) 949 1026 1114 934 1113 866 904 946 1818 996 1227

"three-month rainfall from June to August
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from a volcanic caldera in central Kyushu and plays an important role as fresh water
resource in this drought-sensitive region3). The main climatological features of the basin,

and Kyushu Island in general, are (i) the so-called Baiu front, which is responsible for the

majority of summer rainfall, (ii) the strong circulation pattern associated with fall rainfall,

and (iii) the strong influence of orographic lifting. The water resources management of the

Chikugo River basin is an important subject for fishery, agriculture, industry, and drinking

water supply. The water resources management is crucial both within the Chikugo River
basin as well as for the Fukuoka Metropolitan area located to the north of the Chikugo River

basin because of dependence on water supply.
    Mean rainfall in the Chikugo River basin was determined as the arithmetic average of
11 precipitation gauges operated within the Japanese national meteorological network
(AMeDAS). These gauges are evenly distributed within or near the catchment area (Figure
3b). Measurements were made on an hourly basis, but 12-hour totals were used to compare
with the modeling using the GPV data. Each 12-h period started at the time of the GPV
soundings, that is, every GPV value was used to estimate the rainfall during the next 12-h

period. Data were available between April 1996 and August 1999 ; a total of 2417 12-h
periods. Here, the analysis was limited to summer data (June-August), as the majority of
'extreme events occur during this season (of the 50 Iargest events, 38 occurred in summer). In

total, 717 12-h values were used in this study.

    Table 1 shows rainfall properties of the 11 rainfall stations used. From this, we can see

that orography is important in the area. The rainfall amount is high in the mountain area
(e.g., Syakadake and Minamioguni), on the other hand, in the Iower lying areas (e.g., Saga,

Kurume, and Yanagawa) the rainfall amount is small. The station which has the highest
rainfall is Syakadake at 1200 m altitude. The summer rainfall is almost half the annual
rainfall. Consequently, the summer rainfall is very important for water resources availabil-

ity in the Chikugo River basin.

    In order to use efficient predictors as input to the ANN an investigation was made to
clarify which meteorological variables over what specified area that were best correlated to

Chikugo River basin rainfall. Variables intended as input data to ANN need to be inves-
tigated as suggested by Wilby and Wigley`). Uvo et al. (2000) calculated the standard
correlation between the time series of rainfall in the Chikugo River basin and meteorological

variables to determine the influencing variables and area. They found that precipitable
water (pw), and zonal and meridional wind speed at 850 hPa, (usso , vsso) were the most

influencing variables that are specified at a 100Å~100 km resolution over the area (43Å~51

points), to the rainfall in the Chikugo River basin.

Figure 4 shows the results from the correlation analysis for summer periods from 1996 to
1999. The shaded area in Fig. 4 indicates areas highly correlated with Chikugo River basin

rainfall. These were identified by defining areas in which correlation coefficients were
statistically significant at the 5%-level. The correlation coefficients correspond to values

greater than O.25. From a meteorological viewpoint the areas can be characterized as a
region where atmospheric instability increases due to intrusion of large amounts of water

vapor from the southern ocean forming a stationary Baiu front.

3. ANN prediction of 12-hour rainfall

   Initial tests showed that frequent dry periods, i.e., 12-hour periods with no rainfall

created problems to fully reproduce the intermittency of observed rainfall. Attempting to

overcome this problem, we designed a modeling system involving two ANNs coupled in a
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        Table 2 The result of ANNI HLI? for different number of layers and neurons.

HRofCalibration HRofValidation

[32•-1.1 tt
tt tt tttt

•••' ,s

l,,,,ie,,i.7.7••,,•1•,i•i'

[331] O.75 O.72

[341] O.76 O.75

[351] O.76 O.72

[381] O.77 O.75

[3221] O.77 Or76

[3421] O.74 O.71

[3331] O.75 O.76
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series. The first ANN (ANNI) was used to separate between zero (rain) and non-zero (no
rain) values. The second ANN (ANN2) was then used to determine intensities for non-zero
values. The ANNI consequently feed the ANN2 with input data in form of 1 (rain) or O (no
rain) values. The idea behind this approach is that ANNI will produce an accurate value of
P(O), and ANN2 will have a better chance to reproduce high intensities.

   All input variables were standardized to a mean value of O and a standard deviation of

1. This was done to ensure that every input variable would receive equal attention during
the training (e.g., Maier and Dandy, 2000)5).

3.1 Rainfalloccurrence,ANNI

   According to the above, ANNI was set to predict whether it will rain or not. For this
purpose, each target value (observed rainfall) of the whole period was replaced by 1 or O,

where 1 indicates rainfall more than 1 mm/12-h, and O indicates less than 1 mm/12-h. To
represent discrete binary targets, output value from ANNI less than O.5 was treated as O, and

output larger than O.5 was treated as 1.

    To optimize the number of hidden layers and the number of neurons in each layer, we
tested by trial and error using both one and two hidden layers with up to eight neurons in each

layer. The root mean square error, RMSE, and hit rate, HR, were used as indicators to
compare the different models. The best result was obtained using an ANNI which has one
hidden layer with two neurons. This model gave the highest HR and smallest RMSE.

Table 3 Output from ANNI, compared with the AMeDAS data (rain or no rain).

Validation AMeDAS ANN1 hitnumber HR
CountofO(norain) 95 86 71 O.76

Countof1(rain) 70 79 56 O.80

Sumofdatapoints 165 165 127
tttt tt//t/ /tt t/ t//

3
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Figure 5 The result of ANNI HR and rainfall time series.
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Table4 Theresultof2-ANNswithdifferentnumberoflayersandneurons.

Validation cc RMSEp(o) Trr peakratio

[331] O.51 13.2 O.52 1r38 O.34

[341] O.55 13.1 O.51 1.40 O.40

[351] O.56 13.3 O.52 1.47 O.45

[381] e.6o 12.4 O.52 1.3e O.43

[3221] O.52 13.8 O.52 1.46 O.39

[3421] O.56 13.2 O.52 1.46 O.40

[3331] O.54 13e7 O.52 1.47 O.44

Table 2 shows the result of these experiments. To summarize, we found that the structure
of the ANN is not important because HR was between O.71 and O.77 for the validation period.

Consequently, the most simple ANN which has one hidden layer with two neuron was chosen.
    Table 3 shows the results of validation for ANNI and Fig. 5 the time series of observed

and predicted rain or no rain. The hit number in Table 3 indicates the count of observed
rainfall equal to O (AMeDAS==0) and ANNI =O (no rain), as well as, the count of observed

rainfall greater than zero (AMeDAS :1) and ANNI =:1 (rain). To summarize, the ANNI
had a HR of O.77 and thus, could consequently rather well forecast rain or no rain for 12-h
rainfall.

3.2 Rainfall intensity, ANN2

    As a next step, the ANN2 was used to,determine the intensity during identified rainy
periods. The input variables were first standardized. The observed rainfall data (target

values for periods with rain) were rescaled into the range O.1 to O.9. This, in order to
compare directly with the output from the log-sigmoid transfer functions in ANN2. Also,
for the ANN2, initial tests by trial and error were used to determine the best structure of the

networkmodel. Table4showstheresultsforthesetests. AccordingtothetableanANN2
with one hidden layer and eight neurons was chosen. This model structure gave the highest
correlation coefficient (CC) and smallest RMSE and total rainfall rate (Trr).

    Table 5 shows a summary of prediction results for the validated rainfall time series of
1999. As seen from the table RMSE was 12.4 mm and a CC of O.06. The predicted P(O)
(probability of no rain) was O.52 while that of the observed time series was O.57. The total

rainfall rate, Trr,, was 1.3, about 300/o larger than observed (AMeDAS). The peak rainfall

was also underestimated by about 650/o. Table 5 also shows a comparison with a meteorolog-

ical model run by JMA (Japan Meteorological Agency). This model was run to give output
at the location of the 11 AMeDAS stations. As seen from the table RMSE is larger for the

meteorological model. Also, several other prediction indicators show that the ANN can
better predict the rainfall rate.

   Figure 6 shows time series of observed vs. predicted rainfall by the ANN and the JMA
meteorological model. As seen from the figure, the ANN can well identify when rainfall
occurs but is not able to fully reproduce the variability of rainfall amounts. The model
appears to often generate a similar rainfall rates, less than 40 mm. This means that large

observed amounts (more than 40 mm) become underestimated and small amounts (less than
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Table 5 Comparison of 2-ANNs with a numerical model output by JMA.

1999(165values) 2-ANNs AMeDAS JMA
cc O.60 1 O.52

RMSE(mm) 12.4 o 13.6

p(o) O.52 O.57 O.68

totalrainfall(mm) 1337 1030 448

totalrainfallratio 1.30 1 O.43

peakrainfall(mm) 41.4 95.4 45.1

peakratio O.43 1 O.47
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40mm)overestimated.

4. Summary and discussion

    The comparison according to the above showed that the ANN model generally works
slightly better than the meteorological model (JMA), even if the results are rather similar.

The JMA generally produces too small rainfall rates as compared to observed values. On
the other hand, the ANN, often underestimates high rainfall intensities and overestimates
low rainfall intensities. This shows that it is difficult for the ANN to accurately predict the

intensity. By comparing P(O), we can say that the two step ANN is better than the JMA

model concerning predicting whether it will rain or not. The ANN-based statistical method
is relatively simple, but has output accuracy comparable to the more advanced and physically

based JME model. However, it is clear that the design, training, and application of the ANN

are very important for the method to be successful. Further studies are needed to establish

the applicability of the approach, for example, other seasons and other geographical loca-
tions.
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