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Abstract

We introduce and investigate a new sort of stochastic equations and inclusions
given in terms of mean derivatives defined with respect to conditional expecta-
tion relative to the “past” sigma-algebra of a process. Some existence of solution
results are proved. A new type of approximations to an upper semi-continuous
set-valued mapping with convex compact values, point-wise converging to a mea-

surable selector, is constructed and applied to investigation of inclusions with the
above-mentioned derivatives.
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1 Introduction

The notion of mean derivatives was introduced by Edward Nelson (see [12—-14]) for the
needs of stochastic mechanics (a version of quantum mechanics). Then it was found
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that equations with mean derivatives also arose as equations of motion in some other
branches of mathematical physics (see, e.g., [9-11], etc.).

The key point of Nelson’s idea is the use of conditional expectation in construction
of mean derivatives (see the definitions below). Nelson suggested two versions of con-
struction based on the conditional expectation either relative to the “past” or relative to
the “present’s-algebras (see [9]). For a Markov process they give the same result but
for a nonmarkovian one they are different.

Note that the classical Nelson’s forward mean derivatives give information only
about the drift of stochastic process. In [2, 3] we modified a certain Nelson’s idea
and introduced a new mean derivative relative to the “present”, called quadratic, that
is responsible for the diffusion coefficient. This allowed us to prove that given Nelson’s
forward mean derivative and quadratic derivative (both relative to the “present”), under
some natural conditions it was possible to recover the process. Some existence of so-
lutions theorems for differential equations and inclusions with mean derivatives relative
to the “present” were obtained in [2, 3].

The equations and inclusion with mean derivatives relative to the “past” is a natural
replacement of those relative to the “present” in the case of nonmarkovian processes.
But they require more complicated methods for their investigation. The main aim of
this paper is to describe equations and inclusions with mean derivatives relative to the
“past” and to prove some existence of solutions theorems for this case.

The structure of paper is as follows. In Section 2 we describe the mean derivatives
(both Nelson’s classical and quadratic) relative to the “past” and investigate their prop-
erties used below. In order to distinguish the derivatives relative to the “past” from those
relative to the “present” as in [2, 3], we call the fornf@imean derivatives.

In Section 3 we introduce equations withmean derivatives and prove a simple
existence of solutions theorem. We show that under some rather strong assumptions the
solution of equation exists in the class d Hiffusion type processes. The material of
this section forms the basis for main results on inclusions Wiimean derivatives in
Section 5.

Section 4 is devoted to a complicated technical statement on existence of some
special single-valued continuous approximations to the set-valued mappings appearing
in the right-hand sides of inclusions wifA-mean derivatives. Those approximations
point-wise converge to a measurable selector of the set-valued mapping and possess
some special measurability properties. The use of such approximations is one of key
points in investigation of differential inclusions below.

In Section 5 we prove the main result of the paper, an existence of solutions theorem
for inclusions with’P-mean derivatives, having upper semi-continuous convex-valued
right-hand sides.

We refer the reader to [1, 5] for preliminary facts from the theory of set-valued
mappings and to [8, 16] for those from stochastic analysis.
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2 ‘P-mean Derivatives

Consider thex-dimensional vector spad®" and a stochastic procesg), t € [0, +o0)
with values inR" given on a certain probability spa¢@, 7, P). We say that(t) is L*
if the expectation(£(t)) is well-posed at every.

Denote bfo the o-subalgebra ofF that is generated by preimages of Borel sets
in R™ under all mappingg(s) : Q@ — R", 0 < s < t. By E(- | P) we denote the
conditional expectation with respect/®. According to Nelson [12—14] we ca’® the
past of process(t).

Definition 2.1. The forward mean derivative relative to the paBtriean derivative)
DT¢(t) of a procesg(t) at a time instant is L'-random element of the form

DPE(t) = lim E (f(t + 00 =& ‘Pf) , 2.1)

At—+40 At

where the limit is assumed to exist it and At — +0 means that\¢ tends to0 and
At > 0.

Definition 2.2. The quadratic mean derivative relative to the past (quadfadmean
derivative) D} ¢(t) of £(t) att is L*-random element of the form

(§(t+ A) — £() ® (§(t + At) — £(t) | Pe)
At t )

DIé(t) = lim E< (2.2)

At——+0

where the limit is assumed to exist in', At — +0 means that\t tends to0 and
At > 0 and® denotes the tensor productli?.

Note that here the tensor product of two vector®ihis then x n matrix formed
by products of every component of the first vector with every component of the second
one. Note also that for column vectaks Y € R" their tensor produck ® Y equals
the matrix producX Y™ of column vectotX and row vectoly* (transposed colum).

We denote byL(R",R") the space of linear automorphismsR+t. Without loss
of generality we shall consider points 6fR",R") asn x n matrices. Recall that the
space of such matrices is isomorphid%Q. Everywhere below for a sé in R" or in

L(R"™,R") we use the norm introduced by usual form{ifa|| = sup ||y||. The norm in
yeB

R" is Euclidean, and the norm ib(R", R") is Euclidean irR™ .

In what follows, for the sake of simplicity of presentation, we shall deal with pro-
cesses given on a certain finite time interval [0, 7] C R.

Recall that a stochastic proce$g) in R", given on a certain probability space

(Q, F,P), is called an b diffusion type process if there exist: a vector valued process
t

a(t) non-anticipative with respect t8° and such that the Lebesgue integfala(s)ds
0
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along sample paths is a.s. well-posed; a matrix-valued pro¢ggs= (A!(t)) non-

T
anticipative with respect t®° and such thaP { / (Al(t))%dt < oo} = 1 for all
0

i,j; and a Wiener process(t), adapted tagP:, such thatt(t) = & + / a(s)ds +
0

t t
/ A(s)dw(s). In particular, this means that thé)ltntegral/ A(s)dw(s) is a mar-
0 0

tingale with respect t¢. For simplicity we deal with deterministic initial condition
& € R". Recall also that diffusion type processes do exist, say, as solutions of the
so-called diffusion-type & equations (see, e.g., [8, Theorem 111.2.4]).

Theorem 2.3. For the above-mentioneddtdiffusion type procesgt) the derivatives
DP¢(t) and DY ¢(t) exist and take the fornd”&(t) = a(t) and DYE(t) = A(t) A*(t)
whereA*(t) is the transposed matrix ta(¢).

t+At t+At
Proof. Note that{(t + At) — £(t) = / a(s)ds +/ A(s)dw(s). Since the b
t t

t+At
integral is a martingale with respect®’, F </ A(s)dw(s) | Pf) — 0 and so we
t
get

t+At t+At
E(E(t+ At) —E(t) | PY)=E (/ a(t)dt ( Pf) = / E(a(t) | PF)dt.

t t

Applying formula (2.1) we obtain thad”¢(t) = E(a(t) | PF). Sincea(t) is measurable
with respect taPs, E(a(t) | PF) = a(?).

Taking into account the properties of Lebesgue aadiitegrals and calculating the
tensor product as mentioned above, one can se&tttatAt)—£(t)) R (E(t+At)—E(t))
is approximated bya(t) ® a(t))(At)? + (a(t)At) @ (A(t)Aw(t)) + (At)Aw(t)) ®
(a(t)At) + A(t)A*(t)At. Application of formula (2.2) and of the fact thd(t) A*(¢) is
measurable with respect B, yields DJ (1) = A(t)A*(t). O

By S(n) we denote the linear space of symmeiri& n matrices that is a subspace
in L(R",R™). The symbolS, (n) denotes the set of positive definite symmetrig n
matrices that is a convex open sefim). Note that for each matrix frof, (n) its trace
is a positive real number. The closuref(n), i.e., the set of positive semi-definite
symmetricn x n matrices, is denoted &y, (n).

Note that forA € L(R",R") the matrix productdA* is a symmetric positive semi-
definite matrix. Thus, from Theorem 2.3 it follows that for ai diiffusion type process
£(t) its derivativeD} ¢ (t) takes values S, (n).
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3 Equations with P-mean Derivatives

In what follows, for the sake of simplicity of presentation, we shall deal with processes
given on a certain finite time intervale [0, 7] C R.

Introduce2 = C°([0, T], R") — the Banach space of continuous curveRngiven
on [0, T'], with usual uniform norm — and the-algebraF on Q) generated by cylinder
sets. ByP; we denote the-subalgebra ofF generated by cylinder sets with bases over
[0,] € [0, T]. Recall thatF is the Borels-algebra orf (see [16]).

Leta : [0,7] x Q — R™anda : [0, 7] x Q — S, (n) be measurable mappings. The
first problem is to find a stochastic proce&gs) whose forward and quadratfe-mean
derivatives at eacharea(t,£(+)) anda(t,£(+)), respectively.

Definition 3.1. The equation withP-mean derivatives is a system of the form

{ DP¢(t)
Dy&(t)

alt,€()),
alt,£0)). 1)

Definition 3.2. We say that equation (3.1) has a weak solutj¢) if there exists a
probability spacé€2, 7, P) and a stochastic proce&§&), given on(€2, F, P) and taking
values inR", such that equation (3.1) is fulfille®ta.s.

For simplicity we deal with deterministic initial conditions only.
Let B : [0,7] x Q — Z be a mapping to some metric spaceBelow we shall often
suppose that such mappings with various spacsatisfy the following condition:

Condition3.3. For eacht € [0, T from the fact that the curves (-), z,(-) € Q coincide
for 0 < s <t,itfollows thatB(t,z(-)) = B(t, z2()).

Remark3.4. Note that the fact that a mappirgsatisfies Condition 3.3 is equivalent to
the fact thatB at eacht is measurable with respect to Borehlgebra inZ and?; in 2
(see [8]).

Lemma 3.5. For a continuous (measurable ar@*-smooth fork > 1) mappinga :
0,7] x @ — S, (n) satisfying Condition 3.3, there exists a continuous (measurable,
C*-smooth, respectively) mapping: [0, 7] x Q — L(R", R") that satisfies Condition
3.3 and such that (¢, z(-)) = A(t, z(-))A*(t, z(-)) for each(t, z(-)) € R x Q.

Proof. Since the symmetric matricegt, z(-)) € Si(n) are positive definite, all diag-
onal minors ofa(t, z(-)) are positive and, in particular, are not equal to zero. Then for
a(t, z(+)) the Gauss decomposition is valid (see [18, Theorem 11.9.3]), i.e., there exist
unique triple of matrices¢(¢, z(-)), a lower-triangle matrix with units on the diagonal,
z(t, x(+)), an upper-triangle matrix with units on the diagonal, afdzx(-)), a diagonal
matrix such thatv(¢, z(-)) = ((¢,z(+))d(t, z(-))z(¢,z()). In addition, the elements of
matrices( (¢, z(-)), o(t,z(-)) andz(¢, z(-)) are rationally expressed via the elements of
a(t, z(+)). Hence, if the matrices(t, z(+)) are continuous (measurable, smooth) jointly
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in ¢, z(-), the matriceg (¢, z(-)), d(t,z(-)) andz(t, z(-)) are also continuous (measur-

able, smooth, respectively) jointly in variables:(-). From the fact thatv(¢, z(+)) is

a symmetric matrix, one can easily derive that, z(-)) = (*(¢,z(+)) (i.e., z(¢, z(-))

equals the transposedt, z(-))). Besides, the elements of diagonal matrix, z(-))

equal to diagonal minors ef(t, z(-)) and so they are positive. Thus the diagonal matrix
d(t, x(+)) is well-posed: its diagonal contains the square roots of the corresponding

diagonal elements @¥(t, z(-)). Consider the matri¥i (¢, z(-)) = ((¢,z(:))\/0(¢t, z(-)).

By construction,A(¢, z(-)) is jointly continuous (measurable, smooth, respectively) in

t,z(-) and

At 2 ()AL 2(-) = (W, 2(4))o(t, 2(-)2(t, 2() = a(t, ().

The factthat (¢, z(-)), \/0(t, z(-)) and sA(t, z(-)) satisfy Condition 3.3, follows from
the construction. O

Theorem 3.6.Leta : [0, 7]xQ — R"anda : [0, T]xQ — S, (n) be jointly continuous
in ¢, z(-) and satisfy Condition 3.3. Let also the following estimates take place:

tra(t,z() < Ki(l+[lz()])?% (3.2)

la(t, z(-)|| < K2(1 4 [lz()])- (3.3)

Then for every initial conditiorg, € R", equation(3.1) has a weak solution that is
well-defined on the entire intervi, 7.

Proof. Note thata(t, z(-)) satisfies the hypothesis of Lemma 3.5 and so there exists
continuousA(t, z(+)) such thatA (¢, z(-)) A*(t, z(+)) = a(t, z(-)) andA(t, z(-)) satisfies
Condition 3.3. Immediately from the definition of trace in this case it follows that
tra(t, z(+)) equals the sum of squares of all elements of mat(ix =(-)), i.e., itis the
square of Euclidean norm ib(R",R™). Since in the finite dimensional vector space alll
norms are equivalent, from estimate (3.2) it follows thatt, z(-))|| < Ks(1+ [|z(-)])

for someK; > 0. Recall thata(t, z(-)) is continuous and satisfies Condition 3.3 and
estimate (3.3). Under all these conditions, by [8, Theorem 111.2.4 ] there exists a weak
solution¢(t) of diffusion type stochastic differential equation

t t

Et) = &+ / (s, £())ds + / A(s,€())du(s),

0 0

that is a diffusion type process, well-defined on the entire intggvdl]. From Theorem
2.3 it follows thats(¢) a.s. satisfies (3.1). O

Remark3.7. A more general existence result wher, z(-)) may take values i, (n),
is obtained in Theorem 5.4 below. Its proof follows the scheme of that for Theorem 5.2,
an existence of solutions theorem for inclusions Witmean derivatives.



Stochastic Differential Equations and Inclusions 33

4 A Technical Result on Set-Valued Mappings

Lemma 4.1. Specify an arbitrary sequence of positive numhgrs— 0 ask — oo.

Let B be an upper semi-continuous set-valued mapping with compact convex values
sending[0, 7] x Q to a finite-dimensional Euclidean vector spafeand satisfying
Condition 3.3. Then there exists a sequence of continuous single-valued mappings
[0,T] x Q) — Y with the following properties:

(i) eachB, satisfies Condition 3.3;

(i) the sequenc®, point-wise converges to a selector Bfthat is measurable with
respect to Boreb-algebra inY and the product-algebra of Borel one off), 7]
andF on(;

(i) ateach(t,z(-)) € [0,T] x Q the inequality|| B(t, z(-))|| < ||B(t,z(-))|| holds
for all k;

(iv) if B takes values in a closed convex Set Y, the values of alB, belong to=.

Proof. In this proof we combine and modify ideas used in the proofs of B.D. Gel’'man’s
result [6, Theorem 2] and our result [4, Theorem 2].
Fort € [0, T] introduce the mapping; : 2 — 2 by the formula

xz(s) if 0<s<t
fuel) = { o) if t<s<T 1

Obviously f;z(-) is continuous jointly int € [0,7] andz(-) € Q. SinceB satisfies
Condition 3.3,B(t, z(-)) = B(t, f;x(-)) for eachz(-) € Q andt € [0, T].

Specify an element;, from the sequence. Sind8 is upper semi-continuous, for
every (t,z(-)) € [0,7] x Q there exist),(t,z) > 0 such that for everyt*, z*(-))
from thed, (¢, ) neighbourhood oft, z(-)) the setB(t*, z*(-)) is contained in the€2f-

neighbourhood of the sdB(¢, z(-)). Without loss of generality we can suppadse<

5k(t, $)

dx(t,z) < ¢ for every(t,z(-)). Consider theT-neighbourhood oft,z(-)) in

0,7] x Q and construct the open covering[0f 7] x ) by such neighbourhoods for all
(t,x(+)). Sincel0,T] x Q2 is paracompact, there exists a locally finite refinen{é/rjt}

of this covering. Without loss of generality we can consider elqﬁhas annk( z*)-

7 J
neighbourhood of a certalftj, J( )) where by construction the radiug(t* i f) <
619(]’ ])

4
Consider a continuous partition of uni{yo’“} adapted tofV} and introduce the
set-valued mappin@ (¢, z( Zgoj (t, z( coB(ij) whereco denotes the convex

closure. SincéB(t, z(-)) is upper seml -continuous and has compact values, without loss
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of generality we can supposg(t, x) to be such that the imagB(Vj’“) are bounded ity
and so the set@®B(V/*) are compact. Denote by (¢, z(-)) the closure ofb,(t, z(-)).
Then one can easily see tht : [0,7] x Q — Y is a Hausdorff continuous set-valued
mapping with compact convex values.

Introduce®;, : [0, T] x Q — Y by formulaW, (¢, z(-)) = ®,(t, f,=(-)) and consider
the set-valued mappiny (¢, z(-)). Sincef; is continuous, every, is a Hausdorff con-
tinuous set-valued mapping with compact convex values and by construction it satisfies

Condition 3.3.
The couple(a fix(+)) belongs to a finite collection of neighbourhod@;% with cen-
ters at(t% 2% (1)), i = 1,...,n and so by constructiol3 (¢, z(-)) = B(t, fiz(-)) C

B(V}) for eachi. HenceB(t,z(-)) = Bi(t, fiz(-)) C Wi(t, () for every couple
(t,2())-

Let [ be the number from the collection of indicgsas above such thay,(tF, F)
takes the greatest value amomgt] , f). Then aII(tf, z3.(-)) are contained in the
25 (L7, zf)- nelghbourhood oft;,z'(-)) and so every is contained inBn(t;, z)-
neighbourhood oft?, 7(-)) that is contained id, (¢, 7 (-))-neighbourhood oft, 2})
by construction. Hence, also by constructignt, z(-)) belongs to the€2—k-neighbour-
hood of B(t}, z(-)). Since both¥(t,z(-)) and B(t}, zf(-)) are convex, this means
that (¢, z(+)) also belongs to th%ﬁ-neighbourhood oBB(t, 2} (-)). Notice that this

is true for eaclk.
Since B(t,x(-)) C Wi(t,z(-)) C Wi(t,z(-)), for the Hausdorff submetrié/ we
have

Hence for the Hausdorff metrif we obtain that

H(y(t, 2(-), B(t,z(-))) = H(W(t,2(-)), B(t,z("))).

Sincee, — 0, for (¢,z(-)) there exists an integeér = 6(¢,z(-)) > 0 such that
Erro < Ox(t, z(+)). Without loss of generality we can suppose that 1.

ThusB(tF? 2¥t9(.)) belongs to the€2—k-neighbourhood oB(t,z(-)) and so
_ g
H(B(t, 27()), Bt 2())) < .

Since V44(t, z(+)) belongs to the——~ '“”Le e———-neighbourhood ofB(t;*?, 2}*%(.)) (see
above), we obtain that

H(Tpo(t,2(), Bt 2l 0())) < 2.
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Thus
(Weso(t, 7)), Bt 2()) = H(Terolt,a (), B(t, 2(-)))
< H(Wgpo(t, (), B, 270 ()) + H(B ™, a*(), B(t, ()
< k:TJrG Ek<€k

So, at each(t,z(-)) we have thatd (V,(t,z(-)), B(t,z(-))) — 0 ask — oo and
B(t,z(-)) C Vg(t,z(-)) for all k.

Consider the minimal selectd?, (¢, z(-)) of U, (¢, x(-)), i.e., Bi(t, z(-)) is the clos-
est to origin point in¥; (¢, z(-)). We refer the reader to [1] for complete description of
minimal selectors. In particular, it is shown there that minimal selectors in our situation
are continuous. By construction db, satisfy Condition 3.3.

By construction the minimal selectoBs, (¢, z(+)) of ¥, (¢, z(+)) point-wise converge
to the minimal selectoB(¢, z(+)) of B(t, z(-)) ask — oo since at anyt, z(-)) we have
that H(U,(t,2(-)), B(t,z(-))) — 0ask — oo and B(t,z(-)) C W.(t,z(-)) for all
k (see above). It is a well-known fact that the point-wise lifitof the sequence of
continuous mapping®;. is measurable with respect to Borelalgebras inY” and in
[0,7] x Q (see [15]). The latter coincides with the productlgebra of Borel one
on[0,7] andF on () (see [16]). Properties (iii) and (iv) immediately follow from the
construction. O

Remark4.2. Note that unlikel, (¢, z(-)), the set-valued mappingy (¢, z(-)) may not
satisfy Condition 3.3 since two different curved-) andx(-) coinciding on[0, t], may
have different neighbourhoodg’“, to which they belong, and so the valukgt, z,(-))

and®,(t, z,(-)) may be different. On the other hand, it follows from [6] thiat is an
e,-approximation ofB while it is not true ford,,.

5 Differential Inclusions with P-mean Derivatives

Consider set-valued mapping$t, ) anda(t, =) sending0, 7] x Q to R and.S, (n),
respectively, and satisfying Condition 3.3. The differential inclusion with forw2rd
mean derivatives is a system of the form

DP§<t) S a(t7§<'))7
{ DYE(t) € alt, &()). (5.1)

Definition 5.1. We say that inclusion (5.1) has a weak solution with initial condition
& € R" if there exists a probability space and a stochastic pragegsgiven on it and
taking values iR", such that (0) = &, and a.s¢(¢) satisfies inclusion (5.1).

As well as in Section 3 we deal with deterministic initial conditions only.
If, say, a(t,z) and«(t, x) are lower semi-continuous and have closed convex val-
ues, then by Michael’'s theorem they have continuous selectars(-)) anda(t, z(-)),
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respectively. If those selectors satisfy conditions of Theorem 3.6, the weak solution of
(3.1) with coefficientsu(t, z(-)) anda(t, z(+)) that exists by Theorem 3.6, is obviously
a weak solution of (5.1).

The main result of this paper is the following existence theorem for the case where
a(t,z) anda(t, x) are upper semi-continuous.

Theorem 5.2. Let a(t,z) : [0,7] x Q@ — S.(n) be an upper semi-continuous set-
valued mapping with closed convex values that satisfies Condition 3.3 and let for every
a(t,z(+)) € a(t,z(-)) the estimate

tra(t,o() < Ki(l+ [z()])* (5.2)

hold for somei; > 0. .
Leta(t,z(-)) be an upper semi-continuous set-valued mapping ffom] x € to
R™ with closed convex values that satisfies Condition 3.3 and the estimate

la(t, ()] < K1+ [lz()]) (5.3)

for someK, > 0.
Then for any initial conditiorg (0) € R", inclusion(5.1) has a weak solution.

Proof. Choose a sequence of positive numbegrs— 0. The set-valued mapping
a(t,z(+)) satisfies the conditions of Lemma 4.1 and so there exists a sequence of contin-
uous single-valued mappings : [0, 7] x Q0 — R" that point-wise converges to a certain
measurable selecta(t, z(-)) of a(t, z(-)) and everyu, (¢, z(-)) satisfies Condition 3.3
and the estimate

law(t, 2())| < Ka(1+ [lz()]). (5.4)

The mappingx(t, z(-)) that takes values in the closed convex Setn) in the space

of all symmetricn x n matrices, also satisfies the conditions of Lemma 4.1 and so
there exists a sequence of continuous single-valued mapping®, 7] x Q — S (n)

that point-wise converges to a measurable seleetorz(-)) of a(t, z(-)) and every
ax(t, xz(+)) satisfies Condition 3.3 and the estimate

tré(t, () < K (1 + [l2()])* (5.5)

Create another sequenag(t, z(-)) = ax(t,z(-)) + e/ whereI is the unit matrix,
that evidently point-wise converges &dt, z(-)) as well. All mappingsy (¢, z(-)) are
continuous, satisfy Condition 3.3 and estimate (5.5) — at least large enough — and
in addition they all take values in the open $&t(n) of positive definite symmetric
matrices. Thus by Lemma 3.5 for every(¢, z(-)) there exists continuoud;, : [0, 7| x
Q :— L(R™,R") such thabv(t, z(-)) = Ag(t,z(-))AL(t,z(-)) and allA(t, z(-)) satisfy
Condition 3.3.

As well as in Theorem 3.3, immediately from the definition of trace in this case it
follows thattr a4 (¢, z(-)) equals the sum of squares of all elements of matyi, z(-)),
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i.e., itis the square of Euclidean norm&f (¢, z(-)) in L(R",R"™). Hence, from (5.5) it
follows that

1Akt ()| < VEL(L+ [|2()]). (5.6)

Thus from (5.4) and (5.6) it follows that for eaétthe couple(ay(t, x(+)), Ax(t, z(+)))
satisfies the so-calleddicondition

lla(t, 2D+ AR () < KL+ (lz()]) (5.7)

with a certaink” > 0 the same for alk.
Consider the sequence of diffusion typ@ stochastic differential equations

t t

&(t) = & —I—/ak(s,fk(-))ds—i— /Ak(s,gk(-))dw(s). (5.8)

0 0

Since their coefficients are continuous, satisfy Condition 3.3 and estimate (5.7) with the
samek, by [8, Theorem III.2.4] they all have weak solutiofigt), well-posed on the
entire interval0, T, and the set of measurgs generated by, () on (Q, F), is weakly
compact (see [8, Corollary to Lemma 111.2.2]). Hence we can choose a subsequence
(we keep notatiop,, for this subsequence) that weakly converges to a certain probability
measure:. Denote by (¢) the coordinate process on probability spéeer, 1) (recall:
this means thag(t, z(-)) = z(t)).

Show that{(¢) is a solution we are looking for. First of all note tlfatis the “past”
o-algebra of(¢).

Denote by the normalized Lebesgue measure[oyi’]. Introduce measures,
on (Q, F) by the relationsly, = (1 + ||z(-)||)du. It is a well known fact (see, e.g.,
[8] or [4, Lemma 4]) thaty, weakly converge to the measuredefined by relation
dv = (1+ |o(-)[|)dp.

As a;(t,z(-)) converge a3 — oo to a(t,z(-)) point-wise, it converges a.s. with
. il 2() alt, ()

pect to all x pu, and so the functlonm converge tom a.s. with
respect to all x v,. Specifyé > 0. By Egorov’s theorem (see, e.g., [17]) for ahy
there exists a subsét? c [0, 7] x Q such tha{\ x 1) (K¥) > 1 — ¢, and the sequence

ai(t, x(")) a(t, x("))

converges to——— = uniformly on K. Introduce(K; = _J K7}). The

L+ [[z()] 1+ [Jz()] U
a;(t, () a(t,z(-)) _ ) )
sequence———- converges to——— - uniformly on K and(Ax vy, ) (K5) > 1-6
forall k=0, T+ e s and(\ <o) ()

orallk=0,...,00.

Notice thata(t, z(-)) is continuous on a set of full measukex v on [0, 77 x Q.
Indeed, consider a sequenige— 0 and the corresponding sequercg from Egorov’s
theorem. By the above constructieft, z(-)) is a uniform limit of continuous functions
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on eachK;,. Thus it is continuous on eadks, and so on every finite unioU Ks,.
i=1
n

Evidently lim (A x v)(|_J K5,) = (A x v)([0,T] x ).

n—00 )
=1

aft, x(-))
+ =0l

Let g;(z ()) be a bounded (sayy,(z(-))| < © for all z(-) € Q) and continuous
P,-measurable function of.

Because of the above uniform convergenceanfor all £ and boundedness gf
we get that fork large enough

‘ /f(& (/ttwt(ak(ﬂﬂ?(')) — a(T,x(-)))dT) ge(z(-))dpg

- ‘ /I:{(; (/ttJrAt i 361(4)—)||;(a)(ﬁ7x())d7'> gi(z(-))duy,

. - ar(t, () — a(t, ()
Since(A x ug)(Ks) > 1 — ¢ for all £, T+ 0]

Hence is continuous on a set of full measuxe< v on [0, 7] x Q.

< 9.

< @ for all £ and

lg:(x(+))] < © (see above), we get

‘l&a([HNWMﬂmU)—Mﬂxo»m)%@@ka

B ’ /fz\f<5 (/tHAt e xl(;)r)]\;(c.b;ﬁx('))dT) ge(x(+))dvy

From the fact that is an arbitrary positive number it follows that

mnQ(lwm%@@mmT—l“maﬂu»m>%@@mwzo

aft, x(-))

+ =)l

Hence by [7, Lemma in Section VI.4] from the weak convergence, @b v it follows
that
t+At
tim [ ([ atrat)ar ) el
o [ atmal) Y
- [ 1y ) st
B t+At CL(T ZE( )) . y
= [ ) st
t+At
= [ ([ atratr) atetnan (5.9)
Q t

< 2004,

The funct|on is \ x v-a.s. continuous (see above) and boundef GA] x ).
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Obviously

Jim [ ((t+ At) — 2(8))dpuy = ,}L‘?o (t1+ +AH?:<-_> IT(t)

Q
x(t + At) — z(t B .
/ 1+ () Lay - / (2(t + At) — z(t))dp.  (5.10)

Q Q

dl/k

Notice that

/(2 ([x(t + At) — x(t)] . /ttwt ak(T,x(.))dT> ge(z())dpy = 0 (5.11)

since

/Q[»”C(t + A1) = w()lge(x () dpx = E (&t + At) = &.(£))ge (& (1)]

L] atratr) atepam = B[( [ axtrstonar ) ateuco)]

andé(t) is a solution of (5.8). Formulae (5.9), (5.10) and (5.11) yield
t+At
/ ([x(t A1) — (1) - / als, x(~))ds> g (2())dp = 0.
) t
Sinceg, is an arbitrary continuous bounded function measurable with resp@tt the
last relation is equivalent to

t+At
E ([5(t+ At) —g(t)] - / als, €(-))ds 7%) ~0. (5.12)
From (5.12) it evidently follows that

DP¢(t) = a(t,&()) C alt,&()) (5.13)

t

and that the procesgt) — /a(s,g(-))ds is a martingale ori(2, F, ;1) with respect to
0
P;.
Now turn to A, (¢, z(+)). Recall thaio (¢, z(-)) = Ax(t, z(-))AL(t, z(-)) point-wise
converge tax(t, z(-)), a measurable selectoraft, z(-)). In complete analogy with the
above arguments one can show that

/ ([(x(t LAY —2(t) @ ((t + At) — x(t))} _ / als, x(-))ds) ge(z(-))dp = 0

Q t

(5.14)
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with g; as above. Relation (5.14) is equivalent to

E ([<£<t+m>s<t>>®<f<t+m>5@))} - [ asgeas n) 0

t

from which it evidently follows that

DyE(t) = a(t,&()) C et &()) (5.15)

and that the proceds(t) ® &(t)] — / a(t,£(-))dt is a martingale or{Q2, F, 1) with

0
respect todP;. Relations (5.13) and (5.15) mean tl§ét) is a solution of (5.1) that we
are looking for. O

Remark5.3. From (5.12) it evidently follows that the solutigit) of (5.1) obtained in
t

Theorem 5.2, is a semi-martingale with respecPicincef(t) — / a(s,&(+))ds is a
martingale with respect tB;. ’

Theorem 5.4. Leta(t, z(-)) anda(t, z(-)) be as in Theorem 3.6 butsendg0, 7] x
to S, (n) instead ofS, (n). Then for every initial conditiog, € R" equation(3.1) has
a weak solution that is well-defined on the entire intefal’].

Indeed, we can construct a sequence of continuous single-valued mappirgs
a+epl 1 [0,T] x Q — S, (n) satisfying Condition 3.3, that convergedo Then the
proof of Theorem 5.4 follows the same scheme as that of Theorem 5.2.
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