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Abstract

We introduce and investigate a new sort of stochastic equations and inclusions
given in terms of mean derivatives defined with respect to conditional expecta-
tion relative to the “past” sigma-algebra of a process. Some existence of solution
results are proved. A new type of approximations to an upper semi-continuous
set-valued mapping with convex compact values, point-wise converging to a mea-
surable selector, is constructed and applied to investigation of inclusions with the
above-mentioned derivatives.
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1 Introduction

The notion of mean derivatives was introduced by Edward Nelson (see [12–14]) for the
needs of stochastic mechanics (a version of quantum mechanics). Then it was found
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that equations with mean derivatives also arose as equations of motion in some other
branches of mathematical physics (see, e.g., [9–11], etc.).

The key point of Nelson’s idea is the use of conditional expectation in construction
of mean derivatives (see the definitions below). Nelson suggested two versions of con-
struction based on the conditional expectation either relative to the “past” or relative to
the “present”σ-algebras (see [9]). For a Markov process they give the same result but
for a nonmarkovian one they are different.

Note that the classical Nelson’s forward mean derivatives give information only
about the drift of stochastic process. In [2, 3] we modified a certain Nelson’s idea
and introduced a new mean derivative relative to the “present”, called quadratic, that
is responsible for the diffusion coefficient. This allowed us to prove that given Nelson’s
forward mean derivative and quadratic derivative (both relative to the “present”), under
some natural conditions it was possible to recover the process. Some existence of so-
lutions theorems for differential equations and inclusions with mean derivatives relative
to the “present” were obtained in [2,3].

The equations and inclusion with mean derivatives relative to the “past” is a natural
replacement of those relative to the “present” in the case of nonmarkovian processes.
But they require more complicated methods for their investigation. The main aim of
this paper is to describe equations and inclusions with mean derivatives relative to the
“past” and to prove some existence of solutions theorems for this case.

The structure of paper is as follows. In Section 2 we describe the mean derivatives
(both Nelson’s classical and quadratic) relative to the “past” and investigate their prop-
erties used below. In order to distinguish the derivatives relative to the “past” from those
relative to the “present” as in [2,3], we call the formerP-mean derivatives.

In Section 3 we introduce equations withP-mean derivatives and prove a simple
existence of solutions theorem. We show that under some rather strong assumptions the
solution of equation exists in the class of Itô diffusion type processes. The material of
this section forms the basis for main results on inclusions withP-mean derivatives in
Section 5.

Section 4 is devoted to a complicated technical statement on existence of some
special single-valued continuous approximations to the set-valued mappings appearing
in the right-hand sides of inclusions withP-mean derivatives. Those approximations
point-wise converge to a measurable selector of the set-valued mapping and possess
some special measurability properties. The use of such approximations is one of key
points in investigation of differential inclusions below.

In Section 5 we prove the main result of the paper, an existence of solutions theorem
for inclusions withP-mean derivatives, having upper semi-continuous convex-valued
right-hand sides.

We refer the reader to [1, 5] for preliminary facts from the theory of set-valued
mappings and to [8,16] for those from stochastic analysis.
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2 P-mean Derivatives

Consider then-dimensional vector spaceRn and a stochastic processξ(t), t ∈ [0, +∞)
with values inRn given on a certain probability space(Ω,F , P). We say thatξ(t) is L1

if the expectationE(ξ(t)) is well-posed at everyt.
Denote byPξ

t the σ-subalgebra ofF that is generated by preimages of Borel sets
in Rn under all mappingsξ(s) : Ω → Rn, 0 ≤ s ≤ t. By E(· | Pξ

t ) we denote the
conditional expectation with respect toPξ

t . According to Nelson [12–14] we callPξ
t the

past of processξ(t).

Definition 2.1. The forward mean derivative relative to the past (P-mean derivative)
DPξ(t) of a processξ(t) at a time instantt is L1-random element of the form

DPξ(t) = lim
4t→+0

E

(
ξ(t +4t)− ξ(t)

4t

∣∣∣Pξ
t

)
, (2.1)

where the limit is assumed to exist inL1 and4t → +0 means that4t tends to0 and
4t > 0.

Definition 2.2. The quadratic mean derivative relative to the past (quadraticP-mean
derivative)DP

2 ξ(t) of ξ(t) at t is L1-random element of the form

DP
2 ξ(t) = lim

4t→+0
E

(
(ξ(t +4t)− ξ(t))⊗ (ξ(t +4t)− ξ(t))

4t

∣∣∣Pξ
t

)
, (2.2)

where the limit is assumed to exist inL1, 4t → +0 means that4t tends to0 and
4t > 0 and⊗ denotes the tensor product inRn.

Note that here the tensor product of two vectors inRn is then × n matrix formed
by products of every component of the first vector with every component of the second
one. Note also that for column vectorsX, Y ∈ Rn their tensor productX ⊗ Y equals
the matrix productXY ∗ of column vectorX and row vectorY ∗ (transposed columnY ).

We denote byL(Rn, Rn) the space of linear automorphisms inRn. Without loss
of generality we shall consider points ofL(Rn, Rn) asn × n matrices. Recall that the
space of such matrices is isomorphic toRn2

. Everywhere below for a setB in Rn or in
L(Rn, Rn) we use the norm introduced by usual formula‖B‖ = sup

y∈B
‖y‖. The norm in

Rn is Euclidean, and the norm inL(Rn, Rn) is Euclidean inRn2

.
In what follows, for the sake of simplicity of presentation, we shall deal with pro-

cesses given on a certain finite time intervalt ∈ [0, T ] ⊂ R.
Recall that a stochastic processξ(t) in Rn, given on a certain probability space

(Ω,F , P), is called an It̂o diffusion type process if there exist: a vector valued process

a(t) non-anticipative with respect toPξ
t and such that the Lebesgue integral

∫ t

0

a(s)ds
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along sample paths is a.s. well-posed; a matrix-valued processA(t) = (Aj
i (t)) non-

anticipative with respect toPξ
t and such thatP

{∫ T

0

(Aj
i (t))

2dt < ∞
}

= 1 for all

i,j; and a Wiener processw(t), adapted toPξ
t , such thatξ(t) = ξ0 +

∫ t

0

a(s)ds +∫ t

0

A(s)dw(s). In particular, this means that the Itô integral
∫ t

0

A(s)dw(s) is a mar-

tingale with respect toPξ
t . For simplicity we deal with deterministic initial condition

ξ0 ∈ Rn. Recall also that diffusion type processes do exist, say, as solutions of the
so-called diffusion-type It̂o equations (see, e.g., [8, Theorem III.2.4]).

Theorem 2.3. For the above-mentioned Itô diffusion type processξ(t) the derivatives
DPξ(t) andDP

2 ξ(t) exist and take the formDPξ(t) = a(t) andDP
2 ξ(t) = A(t)A∗(t)

whereA∗(t) is the transposed matrix toA(t).

Proof. Note thatξ(t +4t)− ξ(t) =

∫ t+4t

t

a(s)ds +

∫ t+4t

t

A(s)dw(s). Since the It̂o

integral is a martingale with respect toPξ
t , E

(∫ t+4t

t

A(s)dw(s) | Pξ
t

)
= 0 and so we

get

E(ξ(t +4t)− ξ(t) | Pξ
t ) = E

 t+4t∫
t

a(t)dt
∣∣∣Pξ

t

 =

t+4t∫
t

E(a(t) | Pξ
t )dt.

Applying formula (2.1) we obtain thatDPξ(t) = E(a(t) | Pξ
t ). Sincea(t) is measurable

with respect toPξ
t , E(a(t) | Pξ

t ) = a(t).
Taking into account the properties of Lebesgue and Itô integrals and calculating the

tensor product as mentioned above, one can see that(ξ(t+4t)−ξ(t))⊗(ξ(t+4t)−ξ(t))
is approximated by(a(t) ⊗ a(t))(∆t)2 + (a(t)∆t) ⊗ (A(t)∆w(t)) + (A(t)∆w(t)) ⊗
(a(t)∆t) + A(t)A∗(t)∆t. Application of formula (2.2) and of the fact thatA(t)A∗(t) is
measurable with respect toPξ

t , yieldsDP
2 ξ(t) = A(t)A∗(t).

By S(n) we denote the linear space of symmetricn× n matrices that is a subspace
in L(Rn, Rn). The symbolS+(n) denotes the set of positive definite symmetricn × n
matrices that is a convex open set inS(n). Note that for each matrix fromS+(n) its trace
is a positive real number. The closure ofS+(n), i.e., the set of positive semi-definite
symmetricn× n matrices, is denoted bȳS+(n).

Note that forA ∈ L(Rn, Rn) the matrix productAA∗ is a symmetric positive semi-
definite matrix. Thus, from Theorem 2.3 it follows that for an Itô diffusion type process
ξ(t) its derivativeDP

2 ξ(t) takes values in̄S+(n).
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3 Equations withP-mean Derivatives

In what follows, for the sake of simplicity of presentation, we shall deal with processes
given on a certain finite time intervalt ∈ [0, T ] ⊂ R.

IntroduceΩ̃ = C0([0, T ], Rn) – the Banach space of continuous curves inRn given
on [0, T ], with usual uniform norm – and theσ-algebraF̃ on Ω̃ generated by cylinder
sets. ByPt we denote theσ-subalgebra ofF generated by cylinder sets with bases over
[0, t] ⊂ [0, T ]. Recall thatF̃ is the Borelσ-algebra oñΩ (see [16]).

Let a : [0, T ]× Ω̃ → Rn andα : [0, T ]× Ω̃ → S̄+(n) be measurable mappings. The
first problem is to find a stochastic processξ(t) whose forward and quadraticP-mean
derivatives at eacht area(t, ξ(·)) andα(t, ξ(·)), respectively.

Definition 3.1. The equation withP-mean derivatives is a system of the form{
DPξ(t) = a(t, ξ(·)),
DP

2 ξ(t) = α(t, ξ(·)). (3.1)

Definition 3.2. We say that equation (3.1) has a weak solutionξ(t) if there exists a
probability space(Ω,F , P) and a stochastic processξ(t), given on(Ω,F , P) and taking
values inRn, such that equation (3.1) is fulfilledP-a.s.

For simplicity we deal with deterministic initial conditions only.
Let B : [0, T ]× Ω̃ → Z be a mapping to some metric spaceZ. Below we shall often

suppose that such mappings with various spacesZ satisfy the following condition:

Condition3.3. For eacht ∈ [0, T ] from the fact that the curvesx1(·), x2(·) ∈ Ω̃ coincide
for 0 ≤ s ≤ t, it follows thatB(t, x1(·)) = B(t, x2(·)).
Remark3.4. Note that the fact that a mappingB satisfies Condition 3.3 is equivalent to
the fact thatB at eacht is measurable with respect to Borelσ-algebra inZ andPt in Ω̃
(see [8]).

Lemma 3.5. For a continuous (measurable andCk-smooth fork ≥ 1) mappingα :
[0, T ] × Ω̃ → S+(n) satisfying Condition 3.3, there exists a continuous (measurable,
Ck-smooth, respectively) mappingA : [0, T ]× Ω̃ → L(Rn, Rn) that satisfies Condition
3.3 and such thatα(t, x(·)) = A(t, x(·))A∗(t, x(·)) for each(t, x(·)) ∈ R× Ω̃.

Proof. Since the symmetric matricesα(t, x(·)) ∈ S+(n) are positive definite, all diag-
onal minors ofα(t, x(·)) are positive and, in particular, are not equal to zero. Then for
α(t, x(·)) the Gauss decomposition is valid (see [18, Theorem II.9.3]), i.e., there exist
unique triple of matrices:ζ(t, x(·)), a lower-triangle matrix with units on the diagonal,
z(t, x(·)), an upper-triangle matrix with units on the diagonal, andδ(t, x(·)), a diagonal
matrix such thatα(t, x(·)) = ζ(t, x(·))δ(t, x(·))z(t, x(·)). In addition, the elements of
matricesζ(t, x(·)), δ(t, x(·)) andz(t, x(·)) are rationally expressed via the elements of
α(t, x(·)). Hence, if the matricesα(t, x(·)) are continuous (measurable, smooth) jointly
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in t, x(·), the matricesζ(t, x(·)), δ(t, x(·)) andz(t, x(·)) are also continuous (measur-
able, smooth, respectively) jointly in variablest, x(·). From the fact thatα(t, x(·)) is
a symmetric matrix, one can easily derive thatz(t, x(·)) = ζ∗(t, x(·)) (i.e., z(t, x(·))
equals the transposedζ(t, x(·))). Besides, the elements of diagonal matrixδ(t, x(·))
equal to diagonal minors ofα(t, x(·)) and so they are positive. Thus the diagonal matrix√

δ(t, x(·)) is well-posed: its diagonal contains the square roots of the corresponding
diagonal elements ofδ(t, x(·)). Consider the matrixA(t, x(·)) = ζ(t, x(·))

√
δ(t, x(·)).

By construction,A(t, x(·)) is jointly continuous (measurable, smooth, respectively) in
t, x(·) and

A(t, x(·))A∗(t, x(·)) = ζ(t, x(·))δ(t, x(·))z(t, x(·)) = α(t, x(·)).

The fact thatζ(t, x(·)),
√

δ(t, x(·)) and soA(t, x(·)) satisfy Condition 3.3, follows from
the construction.

Theorem 3.6.Leta : [0, T ]×Ω̃ → Rn andα : [0, T ]×Ω̃ → S+(n) be jointly continuous
in t, x(·) and satisfy Condition 3.3. Let also the following estimates take place:

tr α(t, x(·)) < K1(1 + ‖x(·)‖)2, (3.2)

‖a(t, x(·))‖ < K2(1 + ‖x(·)‖). (3.3)

Then for every initial conditionξ0 ∈ Rn, equation(3.1) has a weak solution that is
well-defined on the entire interval[0, T ].

Proof. Note thatα(t, x(·)) satisfies the hypothesis of Lemma 3.5 and so there exists
continuousA(t, x(·)) such thatA(t, x(·))A∗(t, x(·)) = α(t, x(·)) andA(t, x(·)) satisfies
Condition 3.3. Immediately from the definition of trace in this case it follows that
tr α(t, x(·)) equals the sum of squares of all elements of matrixA(t, x(·)), i.e., it is the
square of Euclidean norm inL(Rn, Rn). Since in the finite dimensional vector space all
norms are equivalent, from estimate (3.2) it follows that‖A(t, x(·))‖ < K3(1 + ‖x(·)‖)
for someK3 > 0. Recall thata(t, x(·)) is continuous and satisfies Condition 3.3 and
estimate (3.3). Under all these conditions, by [8, Theorem III.2.4 ] there exists a weak
solutionξ(t) of diffusion type stochastic differential equation

ξ(t) = ξ0 +

t∫
0

a(s, ξ(·))ds +

t∫
0

A(s, ξ(·))dw(s),

that is a diffusion type process, well-defined on the entire interval[0, T ]. From Theorem
2.3 it follows thatξ(t) a.s. satisfies (3.1).

Remark3.7. A more general existence result whereα(t, x(·)) may take values in̄S+(n),
is obtained in Theorem 5.4 below. Its proof follows the scheme of that for Theorem 5.2,
an existence of solutions theorem for inclusions withP-mean derivatives.
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4 A Technical Result on Set-Valued Mappings

Lemma 4.1. Specify an arbitrary sequence of positive numbersεk → 0 as k → ∞.
Let B be an upper semi-continuous set-valued mapping with compact convex values
sending[0, T ] × Ω̃ to a finite-dimensional Euclidean vector spaceY and satisfying
Condition 3.3. Then there exists a sequence of continuous single-valued mappingsBk :
[0, T ]× Ω̃ → Y with the following properties:

(i) eachBk satisfies Condition 3.3;

(ii ) the sequenceBk point-wise converges to a selector ofB that is measurable with
respect to Borelσ-algebra inY and the productσ-algebra of Borel one on[0, T ]
andF̃ on Ω̃;

(iii ) at each(t, x(·)) ∈ [0, T ] × Ω̃ the inequality‖Bk(t, x(·))‖ ≤ ‖B(t, x(·))‖ holds
for all k;

(iv) if B takes values in a closed convex setΞ ⊂ Y , the values of allBk belong toΞ.

Proof. In this proof we combine and modify ideas used in the proofs of B.D. Gel’man’s
result [6, Theorem 2] and our result [4, Theorem 2].

For t ∈ [0, T ] introduce the mappingft : Ω̃ → Ω̃ by the formula

ftx(·) =

{
x(s) if 0 ≤ s ≤ t
x(t) if t ≤ s ≤ T.

(4.1)

Obviouslyftx(·) is continuous jointly int ∈ [0, T ] andx(·) ∈ Ω̃. SinceB satisfies
Condition 3.3,B(t, x(·)) = B(t, ftx(·)) for eachx(·) ∈ Ω̃ andt ∈ [0, T ].

Specify an elementεk from the sequence. SinceB is upper semi-continuous, for
every (t, x(·)) ∈ [0, T ] × Ω̃ there existsδk(t, x) > 0 such that for every(t∗, x∗(·))
from theδk(t, x) neighbourhood of(t, x(·)) the setB(t∗, x∗(·)) is contained in the

εk

2
-

neighbourhood of the setB(t, x(·)). Without loss of generality we can suppose0 <

δk(t, x) < εk for every (t, x(·)). Consider the
δk(t, x)

4
-neighbourhood of(t, x(·)) in

[0, T ]× Ω̃ and construct the open covering of[0, T ]× Ω̃ by such neighbourhoods for all
(t, x(·)). Since[0, T ] × Ω̃ is paracompact, there exists a locally finite refinement{V k

j }
of this covering. Without loss of generality we can consider eachV k

j as anηk(t
k
j , x

k
j )-

neighbourhood of a certain(tkj , x
k
j (·)) where by construction the radiusηk(t

k
j , x

k
j ) ≤

δk(t
k
j , x

k
j )

4
.

Consider a continuous partition of unity{ϕk
j} adapted to{V k

j } and introduce the

set-valued mappingΦk(t, x(·)) =
∑

j

ϕk
j (t, x(·))coB(V k

j ) whereco denotes the convex

closure. SinceB(t, x(·)) is upper semi-continuous and has compact values, without loss
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of generality we can supposeδk(t, x) to be such that the imagesB(V k
j ) are bounded inY

and so the setscoB(V k
j ) are compact. Denote byΦk(t, x(·)) the closure ofΦk(t, x(·)).

Then one can easily see thatΦk : [0, T ]× Ω̃ → Y is a Hausdorff continuous set-valued
mapping with compact convex values.

IntroduceΨk : [0, T ]× Ω̃ → Y by formulaΨk(t, x(·)) = Φk(t, ftx(·)) and consider
the set-valued mappingΨk(t, x(·)). Sinceft is continuous, everyΨk is a Hausdorff con-
tinuous set-valued mapping with compact convex values and by construction it satisfies
Condition 3.3.

The couple(t, ftx(·)) belongs to a finite collection of neighbourhoodsV k
ji

with cen-
ters at(tkji

, xk
ji
(·)), i = 1, . . . , n and so by constructionB(t, x(·)) = B(t, ftx(·)) ⊂

B(V k
ji
) for eachi. HenceB(t, x(·)) = B(t, ftx(·)) ⊂ Ψk(t, x(·)) for every couple

(t, x(·)).
Let l be the number from the collection of indicesji as above such thatηk(t

k
l , x

k
l )

takes the greatest value amongηk(t
k
ji
, xk

ji
). Then all(tkji

, xk
ji
(·)) are contained in the

2ηk(t
k
l , x

k
l )-neighbourhood of(tkl , x

k
l (·)) and so everyV k

ji
is contained in3ηk(t

k
l , x

k
l )-

neighbourhood of(tkl , x
k
l (·)) that is contained inδk(t

k
l , x

k
l (·))-neighbourhood of(tkl , x

k
l )

by construction. Hence, also by construction,Ψk(t, x(·)) belongs to the
εk

2
-neighbour-

hood ofB(tkl , x
k
l (·)). Since bothΨk(t, x(·)) andB(tkl , x

k
l (·)) are convex, this means

thatΨk(t, x(·)) also belongs to the
εk

2
-neighbourhood ofB(tkl , x

k
l (·)). Notice that this

is true for eachk.
SinceB(t, x(·)) ⊂ Ψk(t, x(·)) ⊂ Ψk(t, x(·)), for the Hausdorff submetric̄H we

have

H̄(B(t, x(·)), Ψk(t, x(·))) = 0.

Hence for the Hausdorff metricH we obtain that

H(Ψk(t, x(·)), B(t, x(·))) = H̄(Ψk(t, x(·)), B(t, x(·))).

Sinceεk → 0, for (t, x(·)) there exists an integerθ = θ(t, x(·)) > 0 such that
εk+θ < δk(t, x(·)). Without loss of generality we can suppose thatθ ≥ 1.

ThusB(tk+θ
l , xk+θ

l (·)) belongs to the
εk

2
-neighbourhood ofB(t, x(·)) and so

H̄(B(tk+θ
l , xk+θ

l (·)), B(t, x(·))) <
εk

2
.

SinceΨk+θ(t, x(·)) belongs to the
εk+θ

2
-neighbourhood ofB(tk+θ

l , xk+θ
l (·)) (see

above), we obtain that

H̄(Ψk+θ(t, x(·)), B(tk+θ
l , x

k+θ)
l (·))) <

εk+θ

2
.
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Thus

H(Ψk+θ(t, x(·)), B(t, x(·))) = H̄(Ψk+θ(t, x(·)), B(t, x(·)))
≤ H̄(Ψk+θ(t, x(·)), B(tk+θ

l , xk+θ
l (·))) + H̄(B(tk+θ

l , xk+θ
l (·)), B(t, x(·)))

<
εk+θ

2
+

εk

2
< εk.

So, at each(t, x(·)) we have thatH(Ψk(t, x(·)), B(t, x(·))) → 0 as k → ∞ and
B(t, x(·)) ⊂ Ψk(t, x(·)) for all k.

Consider the minimal selectorBk(t, x(·)) of Ψk(t, x(·)), i.e.,Bk(t, x(·)) is the clos-
est to origin point inΨi(t, x(·)). We refer the reader to [1] for complete description of
minimal selectors. In particular, it is shown there that minimal selectors in our situation
are continuous. By construction allBk satisfy Condition 3.3.

By construction the minimal selectorsBk(t, x(·)) of Ψk(t, x(·)) point-wise converge
to the minimal selectorB(t, x(·)) of B(t, x(·)) ask →∞ since at any(t, x(·)) we have
that H(Ψk(t, x(·)), B(t, x(·))) → 0 ask → ∞ andB(t, x(·)) ⊂ Ψk(t, x(·)) for all
k (see above). It is a well-known fact that the point-wise limitB of the sequence of
continuous mappingsBk is measurable with respect to Borelσ-algebras inY and in
[0, T ] × Ω̃ (see [15]). The latter coincides with the productσ-algebra of Borel one
on [0, T ] andF̃ on Ω̃ (see [16]). Properties (iii) and (iv) immediately follow from the
construction.

Remark4.2. Note that unlikeΨ̄k(t, x(·)), the set-valued mappinḡΦk(t, x(·)) may not
satisfy Condition 3.3 since two different curvesx1(·) andx2(·) coinciding on[0, t], may
have different neighbourhoodsV k

j , to which they belong, and so the valuesΦ̄k(t, x1(·))
andΦ̄k(t, x2(·)) may be different. On the other hand, it follows from [6] thatΦ̄k is an
εk-approximation ofB while it is not true forΨ̄k.

5 Differential Inclusions with P-mean Derivatives

Consider set-valued mappingsa(t, x) andα(t, x) sending[0, T ]× Ω̃ to Rn andS+(n),
respectively, and satisfying Condition 3.3. The differential inclusion with forwardP-
mean derivatives is a system of the form{

DPξ(t) ∈ a(t, ξ(·)),
DP

2 ξ(t) ∈ α(t, ξ(·)). (5.1)

Definition 5.1. We say that inclusion (5.1) has a weak solution with initial condition
ξ0 ∈ Rn if there exists a probability space and a stochastic processξ(t) given on it and
taking values inRn, such thatξ(0) = ξ0 and a.s.ξ(t) satisfies inclusion (5.1).

As well as in Section 3 we deal with deterministic initial conditions only.
If, say,a(t, x) andα(t, x) are lower semi-continuous and have closed convex val-

ues, then by Michael’s theorem they have continuous selectorsa(t, x(·)) andα(t, x(·)),
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respectively. If those selectors satisfy conditions of Theorem 3.6, the weak solution of
(3.1) with coefficientsa(t, x(·)) andα(t, x(·)) that exists by Theorem 3.6, is obviously
a weak solution of (5.1).

The main result of this paper is the following existence theorem for the case where
a(t, x) andα(t, x) are upper semi-continuous.

Theorem 5.2. Let α(t, x) : [0, T ] × Ω̃ → S+(n) be an upper semi-continuous set-
valued mapping with closed convex values that satisfies Condition 3.3 and let for every
α(t, x(·)) ∈ α(t, x(·)) the estimate

tr α(t, x(·)) < K1(1 + ‖x(·)‖)2 (5.2)

hold for someK1 > 0.
Let a(t, x(·)) be an upper semi-continuous set-valued mapping from[0, T ] × Ω̃ to

Rn with closed convex values that satisfies Condition 3.3 and the estimate

‖a(t, x(·))‖ < K2(1 + ‖x(·)‖) (5.3)

for someK2 > 0.
Then for any initial conditionξ(0) ∈ Rn, inclusion(5.1)has a weak solution.

Proof. Choose a sequence of positive numbersεk → 0. The set-valued mapping
a(t, x(·)) satisfies the conditions of Lemma 4.1 and so there exists a sequence of contin-
uous single-valued mappingsak : [0, T ]×Ω̃ → Rn that point-wise converges to a certain
measurable selectora(t, x(·)) of a(t, x(·)) and everyak(t, x(·)) satisfies Condition 3.3
and the estimate

‖ak(t, x(·))‖ < K2(1 + ‖x(·)‖). (5.4)

The mappingα(t, x(·)) that takes values in the closed convex setS̄+(n) in the space
of all symmetricn × n matrices, also satisfies the conditions of Lemma 4.1 and so
there exists a sequence of continuous single-valued mappingsα̃k : [0, T ]× Ω̃ → S̄+(n)
that point-wise converges to a measurable selectorα(t, x(·)) of α(t, x(·)) and every
α̃k(t, x(·)) satisfies Condition 3.3 and the estimate

tr α̃k(t, x(·)) < K1(1 + ‖x(·)‖)2. (5.5)

Create another sequenceαk(t, x(·)) = α̃k(t, x(·)) + εkI whereI is the unit matrix,
that evidently point-wise converges toα(t, x(·)) as well. All mappingsαk(t, x(·)) are
continuous, satisfy Condition 3.3 and estimate (5.5) – at least fork large enough – and
in addition they all take values in the open setS+(n) of positive definite symmetric
matrices. Thus by Lemma 3.5 for everyαk(t, x(·)) there exists continuousAk : [0, T ]×
Ω̃ :→ L(Rn, Rn) such thatαk(t, x(·)) = Ak(t, x(·))A∗k(t, x(·)) and allA(t, x(·)) satisfy
Condition 3.3.

As well as in Theorem 3.3, immediately from the definition of trace in this case it
follows thattr αk(t, x(·)) equals the sum of squares of all elements of matrixAk(t, x(·)),
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i.e., it is the square of Euclidean norm ofAk(t, x(·)) in L(Rn, Rn). Hence, from (5.5) it
follows that

‖Ak(t, x(·))‖ <
√

K1(1 + ‖x(·)‖). (5.6)

Thus from (5.4) and (5.6) it follows that for eachk the couple(ak(t, x(·)), Ak(t, x(·)))
satisfies the so-called Itô condition

‖ak(t, x(·))‖+ ‖Ak(t, x(·))‖ < K(1 + ‖x(·)‖) (5.7)

with a certainK > 0 the same for allk.
Consider the sequence of diffusion type Itô stochastic differential equations

ξk(t) = ξ0 +

t∫
0

ak(s, ξk(·))ds +

t∫
0

Ak(s, ξk(·))dw(s). (5.8)

Since their coefficients are continuous, satisfy Condition 3.3 and estimate (5.7) with the
sameK, by [8, Theorem III.2.4] they all have weak solutionsξk(t), well-posed on the
entire interval[0, T ], and the set of measuresµk generated byξk(t) on(Ω̃, F̃), is weakly
compact (see [8, Corollary to Lemma III.2.2]). Hence we can choose a subsequence
(we keep notationµk for this subsequence) that weakly converges to a certain probability
measureµ. Denote byξ(t) the coordinate process on probability space(Ω̃, F̃ , µ) (recall:
this means thatξ(t, x(·)) = x(t)).

Show thatξ(t) is a solution we are looking for. First of all note thatPt is the “past”
σ-algebra ofξ(t).

Denote byλ the normalized Lebesgue measure on[0, T ]. Introduce measuresνk

on (Ω̃, F̃) by the relationsdνk = (1 + ‖x(·)‖)dµk. It is a well known fact (see, e.g.,
[8] or [4, Lemma 4]) thatνk weakly converge to the measureν defined by relation
dν = (1 + ‖x(·)‖)dµ.

As ai(t, x(·)) converge asi → ∞ to a(t, x(·)) point-wise, it converges a.s. with

respect to allλ× µk, and so the functions
ai(t, x(·))
1 + ‖x(·)‖

converge to
a(t, x(·))
1 + ‖x(·)‖

a.s. with

respect to allλ × νk. Specifyδ > 0. By Egorov’s theorem (see, e.g., [17]) for anyk
there exists a subset̃Kk

δ ⊂ [0, T ]× Ω̃ such that(λ× νk)(K̃
k
δ ) > 1− δ, and the sequence

ai(t, x(·))
1 + ‖x(·)‖

converges to
a(t, x(·))
1 + ‖x(·)‖

uniformly onK̃k
δ . Introduce(K̃δ =

∞⋃
i=0

K̃k
δ ). The

sequence
ai(t, x(·))
1 + ‖x(·)‖

converges to
a(t, x(·))
1 + ‖x(·)‖

uniformly onK̃δ and(λ×νk)(K̃δ) > 1−δ

for all k = 0, . . . ,∞.
Notice thata(t, x(·)) is continuous on a set of full measureλ × ν on [0, T ] × Ω̃.

Indeed, consider a sequenceδk → 0 and the corresponding sequenceK̃δk
from Egorov’s

theorem. By the above constructiona(t, x(·)) is a uniform limit of continuous functions
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on eachK̃δk
. Thus it is continuous on each̃Kδk

and so on every finite union
n⋃

i=1

K̃δi
.

Evidently lim
n→∞

(λ× ν)(
n⋃

i=1

K̃δi
) = (λ× ν)([0, T ]× Ω̃).

Hence
a(t, x(·))
1 + ‖x(·)‖

is continuous on a set of full measureλ× ν on [0, T ]× Ω̃.

Let gt(x(·)) be a bounded (say,|gt(x(·))| < Θ for all x(·) ∈ Ω̃) and continuous
Pt-measurable function oñΩ.

Because of the above uniform convergence onK̃δ for all k and boundedness ofgt

we get that fork large enough∥∥∥∥∫
K̃δ

(∫ t+∆t

t

(ak(τ, x(·))− a(τ, x(·)))dτ

)
gt(x(·))dµk

∥∥∥∥
=

∥∥∥∥∫
K̃δ

(∫ t+∆t

t

ak(τ, x(·))− a(τ, x(·))
1 + ‖x(·)‖

dτ

)
gt(x(·))dνk

∥∥∥∥ < δ.

Since(λ × µk)(K̃δ) > 1 − δ for all k,

∥∥∥∥ak(t, x(·))− a(t, x(·))
1 + ‖x(·)‖

∥∥∥∥ < Q for all k and

|gt(x(·))| < Θ (see above), we get∥∥∥∥∫
Ω̃\K̃δ

(∫ t+∆t

t

(ak(τ, x(·))− a(τ, x(·)))dτ

)
gt(x(·))dµk

∥∥∥∥
=

∥∥∥∥∫
Ω̃\K̃δ

(∫ t+∆t

t

ak(τ, x(·))− a(τ, x(·))
1 + ‖x(·)‖

dτ

)
gt(x(·))dνk

∥∥∥∥ < 2QΘδ.

From the fact thatδ is an arbitrary positive number it follows that

lim
k→∞

∫
Ω̃

(∫ t+∆t

t

ak(τ, x(·))dτ −
∫ t+∆t

t

a(τ, x(·))dτ

)
gt(x(·))dµk = 0.

The function
a(t, x(·))
1 + ‖x(·)‖

is λ×ν-a.s. continuous (see above) and bounded on[0, T ]×Ω̃.

Hence by [7, Lemma in Section VI.4] from the weak convergence ofνk to ν it follows
that

lim
k→∞

∫
Ω̃

(∫ t+∆t

t

a(τ, x(·))dτ

)
gt(x(·))dµk

= lim
k→∞

∫
Ω̃

(∫ t+∆t

t

a(τ, x(·))
1 + ‖x(·)‖

dτ

)
gt(x(·))dνk

=

∫
Ω̃

(∫ t+∆t

t

a(τ, x(·))
1 + ‖x(·)‖

dτ

)
gt(x(·))dν

=

∫
Ω̃

(∫ t+∆t

t

a(τ, x(·))dτ

)
gt(x(·))dµ. (5.9)
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Obviously

lim
k→∞

∫
Ω̃

(x(t + ∆t)− x(t))dµk = lim
k→∞

∫
Ω̃

x(t + ∆t)− x(t)

1 + ‖x(·)‖
dνk

=

∫
Ω̃

x(t + ∆t)− x(t)

1 + ‖x(·)‖
dν =

∫
Ω̃

(x(t + ∆t)− x(t))dµ. (5.10)

Notice that∫
Ω̃

([
x(t + ∆t)− x(t)

]
−

∫ t+∆t

t

ak(τ, x(·))dτ

)
gt(x(·))dµk = 0 (5.11)

since ∫
Ω̃

[x(t + ∆t)− x(t)]gt(x(·))dµk = E [(ξk(t + ∆t)− ξk(t))gt(ξk(t))] ,∫
Ω̃

(∫ t+∆t

t

ak(τ, x(·))dτ

)
gt(x(·))dµk = E

[(∫ t+∆t

t

ak(τ, ξk(τ))dτ

)
gt(ξk(t))

]
andξk(t) is a solution of (5.8). Formulae (5.9), (5.10) and (5.11) yield∫

Ω̃

[
x(t + ∆t)− x(t)

]
−

t+∆t∫
t

a(s, x(·))ds

 gt(x(·))dµ = 0.

Sincegt is an arbitrary continuous bounded function measurable with respect toPt, the
last relation is equivalent to

E

[
ξ(t + ∆t)− ξ(t)

]
−

t+∆t∫
t

a(s, ξ(·))ds
∣∣∣Pt

 = 0. (5.12)

From (5.12) it evidently follows that

DPξ(t) = a(t, ξ(·)) ⊂ a(t, ξ(·)) (5.13)

and that the processξ(t) −
t∫

0

a(s, ξ(·))ds is a martingale on(Ω̃, F̃ , µ) with respect to

Pt.
Now turn toAk(t, x(·)). Recall thatαk(t, x(·)) = Ak(t, x(·))A∗k(t, x(·)) point-wise

converge toα(t, x(·)), a measurable selector ofα(t, x(·)). In complete analogy with the
above arguments one can show that∫
Ω̃

[
(x(t + ∆t)− x(t))⊗ (x(t + ∆t)− x(t))

]
−

t+∆t∫
t

α(s, x(·))ds

 gt(x(·))dµ = 0

(5.14)



40 S. V. Azarina and Y. E. Gliklikh

with gt as above. Relation (5.14) is equivalent to

E

[
(ξ(t + ∆t)− ξ(t))⊗ (ξ(t + ∆t)− ξ(t))

]
−

t+∆t∫
t

α(s, ξ(·)))ds
∣∣∣Pt

 = 0

from which it evidently follows that

DP
2 ξ(t) = α(t, ξ(·)) ⊂ α(t, ξ(·)) (5.15)

and that the process[ξ(t) ⊗ ξ(t)] −
∫ t

0

α(t, ξ(·))dt is a martingale on(Ω̃, F̃ , µ) with

respect toPt. Relations (5.13) and (5.15) mean thatξ(t) is a solution of (5.1) that we
are looking for.

Remark5.3. From (5.12) it evidently follows that the solutionξ(t) of (5.1) obtained in

Theorem 5.2, is a semi-martingale with respect toPt sinceξ(t) −
∫ t

0

a(s, ξ(·))ds is a

martingale with respect toPt.

Theorem 5.4.Leta(t, x(·)) andα(t, x(·)) be as in Theorem 3.6 butα sends[0, T ]× Ω̃
to S̄+(n) instead ofS+(n). Then for every initial conditionξ0 ∈ Rn equation(3.1)has
a weak solution that is well-defined on the entire interval[0, T ].

Indeed, we can construct a sequence of continuous single-valued mappingsαk =
α + εkI : [0, T ] × Ω̃ → S+(n) satisfying Condition 3.3, that converge toα. Then the
proof of Theorem 5.4 follows the same scheme as that of Theorem 5.2.
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