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Otub1 including its positive regulation of p53, and the 
mechanistic insights into how Otub1 suppresses E2.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: p53; MDM2; Ubiquitination; Deubiquitinat-
ing enzymes; Otub1; Cell cycle; Apoptosis

Core tip: p53 is tightly regulated by dynamic ubiquitina-
tion and deubiquitination. A number of deubiquitinat-
ing enzymes (DUBs) have been shown to regulate p53 
stability and activity by either directly deubiquitinating 
p53 or indirectly deubiquitinating its regulators. We re-
cently discovered that Otub1, an OTU family DUB, sta-
bilizes and activates p53 via  distinct and non-canonical 
mechanism wherein it suppresses the MDM2 cognate 
ubiquitin-conjugating enzymes UbcH5. Here we review 
the current progress made towards the understanding 
of the Otub1 functions as a potent E2 inhibitor and the 
underlying mechanisms.

Sun XX, Dai MS. Deubiquitinating enzyme regulation of 
the p53 pathway: A lesson from Otub1. World J Biol Chem 
2014; 5(2): 75-84  Available from: URL: http://www.wjg-
net.com/1949-8454/full/v5/i2/75.htm  DOI: http://dx.doi.
org/10.4331/wjbc.v5.i2.75

MDM2 AND MDMX: KEEPING P53 
UNDER CONTROL
The p53 tumor suppressor plays a central role in main-
taining the genomic stability and preventing the organism 
from cancer[1-3]. Loss of  p53 function, either through 
direct mutations in the p53 gene or indirectly through 
alterations in the p53 regulatory networks, is associated 
with most, if  not all, human cancers[4,5]. Germline mu-
tations of  p53 result in the cancer-prone Li-Fraumeni 

Xiao-Xin Sun, Mu-Shui Dai

Deubiquitinating enzyme regulation of the p53 pathway: A 
lesson from Otub1
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Abstract
Deubiquitination has emerged as an important mecha-
nism of p53 regulation. A number of deubiquitinating 
enzymes (DUBs) from the ubiquitin-specific protease 
family have been shown to regulate the p53-MDM2-
MDMX networks. We recently reported that Otub1, a 
DUB from the OTU-domain containing protease family, 
is a novel p53 regulator. Interestingly, Otub1 abrogates 
p53 ubiquitination and stabilizes and activates p53 in 
cells independently of its deubiquitinating enzyme ac-
tivity. Instead, it does so by inhibiting the MDM2 cog-
nate ubiquitin-conjugating enzyme (E2) UbcH5. Otub1 
also regulates other biological signaling through this 
non-canonical mechanism, suppression of E2, including 
the inhibition of DNA-damage-induced chromatin ubiq-
uitination. Thus, Otub1 evolves as a unique DUB that 
mainly suppresses E2 to regulate substrates. Here we 
review the current progress made towards the under-
standing of the complex regulation of the p53 tumor 
suppressor pathway by DUBs, the biological function of 
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syndrome in human[6] and deletion of  the p53 gene leads 
to spontaneous tumors in mice[7,8]. p53 is a stress-induced 
transcription factor that activates or represses the expres-
sion of  many target genes, thereby executing its anti-pro-
liferative activity by inducing cell cycle arrest, apoptosis, 
or senescence[1,2,9-11]. Under normal circumstances, p53 is 
tightly controlled at low levels mainly by its negative regu-
lator MDM2[12-14]. As a RING-finger-containing ubiquitin 
ligase (E3)[15,16] MDM2 mediates p53 ubiquitination and 
degradation through the proteasomal system[17,18]. MDM2 
also directly suppresses p53 transactivation activity by 
binding and concealing the N-terminal transactivation 
domain of  p53[19-21]. The centrality of  the MDM2-medi-
ated p53 suppression has been demonstrated by mouse 
genetic studies showing that deletion of  the mdm2 gene 
caused embryonic lethal phenotype, which is completely 
rescued by concomitant deletion of  p53[22,23]. This essen-
tial function of  MDM2 requires its E3 activity, as mice 
with homozygous knock-in of  the E3 inactivation mu-
tant, MDM2C464A, are also embryonic lethal, which can be 
rescued by deleting p53 as well[24]. Consistently, MDM2 
is overexpressed in a number of  human cancers, most of  
which contain wild-type p53[25-29].

The MDM2 homolog MDMX has emerged as an 
equally important p53 regulator as MDM2[30]. MDMX 
shares high homology with MDM2 in their C-terminal 
RING-finger domain and the N-terminal p53-binding 
domain. Like MDM2, MDMX binds to the N-terminal 
transactivation domain of  p53 and suppresses its activity. 
However, MDMX does not have appreciable ubiquitin 
ligase activity towards p53[31,32], yet it assists MDM2 to 
suppress p53 function. MDMX directly binds to MDM2 
via their RING domains[33-35] and renders MDM2 suffi-
ciently stable to ubiquitinate and degrade p53[33,36-38]. Also, 
MDMX suppresses p53 function by specifically promot-
ing p53-induced MDM2 transcription following DNA 
damage[39]. MDM2, in turn, ubiquitinates and degrades 
MDMX in response to DNA damage[40-42]. Thus, the 
mutual regulation between MDM2 and MDMX ensures 
a proper cellular level and activity of  p53. Supporting the 
indispensible role of  MDMX towards p53, deleting the 
p53 gene also rescues the lethal phenotype of  knocking 
out the mdmx gene in mice[43-45]. Like MDM2, MDMX 
is also overexpressed or amplified in several types of  
human cancers that harbor wild-type p53[46-49]. Recent 
studies have provided further molecular insights into 
the non-redundant and indispensible role for MDMX 
in MDM2-mediated p53 degradation. First, like MDM2, 
the RING domain of  MDMX and resulting MDM2-
MDMX heterodimerization are required for the regula-
tion of  MDM2, as deletion of  the RING-finger domain 
of  MDMX or knock-in of  the MDM2-binding defective 
MDMX mutant (C462A) resulted in embryonic lethal 
phenotype, which was completely rescued by deletion 
of  p53[50,51]. Second, The extreme C-terminal short se-
quences outside of  the RING domain of  both MDM2 
and MDMX contribute to the MDM2 E3 activity, owing 
to their role in the formation of  MDM2-MDMX het-
erodimer and perhaps the E3 holoenzyme mediating p53 

polyubiquitination[37,38,52]. Third, a recent in vitro study has 
shown that while MDM2 alone is sufficient to mediate 
multi-monoubiquitination of  p53, the MDM2-MDMX 
complex is required for p53 polyubiquitination[53]. Thus, 
the stoichiometry of  the p53-MDM2-MDMX complex 
is critical for the determination of  whether targeting p53 
for polyubiquitination or monoubiquitination. 

The p53-MDM2-MDMX axis is among the most 
highly regulated pathways. Enormous molecules regulate 
the interplay among the three proteins in response to 
diverse stressors, leading to p53 stabilization and conse-
quent activation. These include various post-translational 
modifications of  all three proteins. Ubiquitination plays 
a key role in controlling the protein stability and activity 
of  all three proteins. Under stress conditions, p53 ubiq-
uitination mediated by MDM2/MDMX is crippled as a 
result of  either dissociation of  MDM2/MDMX from 
p53 or suppression of  MDM2/MDMX activity towards 
p53. For example, DNA damage-mediated phosphoryla-
tion of  both p53 and MDM2 disrupts their interaction, 
resulting in p53 stabilization[54-57]. DNA damage also trig-
gers phosphorylation and degradation of  MDMX, allevi-
ating its suppressive effect on p53[58-63]. Oncogenic stress 
induces p53 via suppression of  MDM2 by ARF[64-68], 
whereas ribosomal stress induces p53 via suppression of  
MDM2 by a number of  ribosomal proteins[69-85]. Again, 
ARF also promotes MDM2-mediated MDMX degra-
dation[40] and ribosomal stress-induced p53 activation 
requires MDM2-mediated MDMX degradation[86]. Thus, 
barricading the inhibition of  p53 imposed by MDM2 and 
MDMX is centrally important for p53 activation in re-
sponse to most, if  not all, stressors. Indeed, both MDM2 
and MDMX bind to p53 at its target gene promoters and 
suppress its transactivation activity[87-89]. Thus, p53 activa-
tion is thought to involve the release of  such repression, 
called anti-repression under stress conditions, through 
diverse posttranslational modifications[90]. In addition, 
p53 is also ubiquitinated by a number of  other ubiquitin 
ligases such as ARF-BP1[91], PIRH2[92], COP1[93], etc.[94,95]. 
For example, p53, under certain cellular levels, is thought 
no longer regulated by the MDM2/MDMX complex. In-
stead, the basal level of  p53 is mainly regulated by ARF-
BP1. Deletion of  ARF-BP1 completely activates p53 in 
the presence of  MDM2[91]. Adding to the complexity of  
the ubiquitination regulation of  the p53 pathway, deubiq-
uitination regulation has recently emerged as an equally 
important mechanism for p53 control.

REGULATION OF THE P53-MDM2-MDMX 
PATHWAY BY DEUBIQUITINATING 
ENZYMES 
Like other posttranslational modifications, ubiquitination 
of  p53, MDM2 and MDMX can be reversed through 
a process called deubiquitination, which is catalyzed 
by a different class of  enzymes called deubiquitinating 
enzymes (DUBs). The human genome encodes ap-
proximately 95 predicted DUBs that are classified into 
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5 families: ubiquitin-specific proteases (USPs), ubiquitin 
C-terminal hydrolases (UCHs), ovarian tumor associated 
proteases (OTUs), Machado-Joseph disease (or Josephin 
domain) proteins (MJDs), and JAB1/MPN/MOV34 pro-
teins (JAMMs). Except that the JAMMs are zinc metal-
loproteases, all other DUBs are cysteine proteases[96,97].

Recently, several DUBs from the USP family have 
been shown to regulate the p53-MDM2-MDMX loop 
(Figure 1). USP7, also called herpesvirus associated USP 
(HAUSP), is the first DUB reported to be a bona fide 
p53 deubiquitinase[98-100]. Overexpression of  USP7 stabi-
lizes and activates p53[99]. Intriguingly, MDM2 seems to 
be a better substrate of  USP7 compared to p53 under 
physiological circumstances, as substantial knockdown of  
USP7 results in destabilization of  MDM2 and activation 
of  p53[98,101]. Further, USP7 also deubiquitinates MDMX 
in cells and in vitro and depletion of  USP7 results in de-
stabilization of  the otherwise stable MDMX[100]. DNA 
damage triggers ATM-dependent phosphorylation of  
MDMX, which disrupts its binding to USP7 and leads to 
the consequent increase of  ubiquitination and degradation 
of  MDMX[100], whereas the interaction between p53 and 
USP7 is increased following DNA damage. Thus USP7 
scrutinizes the homeostatic levels of  p53, MDM2, and 
MDMX under both normal and stress conditions. The 
second p53 DUB, USP10, has also been shown to play a 
critical role in p53 activation following DNA damage[102]. 
Unlike USP7, USP10 is a cytoplasmic DUB and specifi-
cally deubiquitinates p53, but not MDM2 and MDMX[102], 
reversing MDM2-mediated ubiquitination, nuclear export, 
and cytoplasmic degradation of  p53. Following DNA 
damage, ATM phosphorylates USP10 at Thr42 and 
Ser337, resulting in not only the stabilization of  USP10, 
but also the translocation of  a fraction of  USP10 into 
the nucleus to deubiquitinate and activate p53. Consistent 
with its function in regulating p53, USP10 expression is 
down-regulated in high percentage of  clear cell carcino-
mas[102]. Recently, USP42 was reported to be another DUB 
that positively regulates p53 stability and activity. Interest-
ingly, USP42 deubiquitinates p53 only during the early 
stages of  stress response, without significant effect on p53 

regulation under unstressed conditions. Despite of  this, 
it has been shown that USP42 is required for rapid p53 
activation and cell cycle arrest in response to mild or tran-
sient DNA damage stress[103]. In addition, Liu et al[104] has 
shown that USP29 positively regulates p53 stability and 
function following oxidative stress. This is achieved by the 
increased transcription of  USP29 induced by oxidative 
stress, which in turn cleaves polyubiquitinated p53, leading 
to p53-dependent apoptosis in cells. 

In contrast to above USPs positively regulating p53, 
USP2a and USP4 were reported to destabilize p53 and 
suppress p53 function, albeit via targeting different p53 
E3s. USP2a destabilizes p53 by deubiquitinating and sta-
bilizing both MDM2[105] and MDMX[106], whereas USP4 
destabilizes p53 by deubiquitinating and stabilizing ARF-
BP1[107]. Consistently, USP2a is overexpressed in a subset 
of  prostate cancers[108,109], whereas USP4 is overexpressed 
in a broad range of  human cancers[107]. Thus, USP2a and 
USP4 are likely oncogenic DUBs. 

Together, these studies demonstrate that deubiquitina-
tion plays a crucial role in finely tuning the normal ho-
meostasis of  the p53-MDM2-MDMX loop as well as its 
response to stress. They also imply that different DUBs 
could regulate the p53 pathway via different mechanisms 
within different cellular compartments following differ-
ent stress. However, whether p53 is regulated by DUBs 
other than USP family members is previously unknown. 
We recently identified that the OTU domain-containing 
ubiquitin aldehyde-binding proteins 1 (Otubain 1, Otub1 
thereafter), an OTU family DUB, controls p53 stability 
and activity via a novel non-canonical mechanism[110].   

OTUB1: A UNIQUE MEMBER OF OTU 
DUB FAMILY
Otub1 was identified along with its close homolog Otub2 
by affinity purification using the DUB-specific inhibitor, 
Ub aldehyde[111]. Subsequent studies, including our own, 
revealed that Otub1 possesses in vitro deubiquitinating en-
zyme activity preferentially towards K48-linked polyubiq-
uitin chains[110,112,113]. Like other cysteine proteases, Otub1 
contains a catalytic triad consisting of  Cys (C) 91, His (H) 
265, and Asp (D) 268[112]. However, crystal structure stud-
ies demonstrated that Otub1 possesses unique structure 
features wherein H265 is located distantly from the cata-
lytic C91 and D268 and the access of  C91 to ubiquitin is 
blocked by Glu (E) 214 residue, forming a conformation 
incompatible with catalysis by typical cysteine proteases[112], 
implying that the activity of  Otub1 may be highly regulated 
in cells and its activation may be subjected to conforma-
tional change (See below).  Otub1 is ubiquitously expressed 
in tested human tissues. A longer isoform called Otub1 
ARF (alternative reading frame)-1, resulting from alternative 
splicing and start codon, is predominantly expressed in pe-
ripheral blood mononuclear cells, lymph nodes, spleen, and 
the tonsils[114]. The function of  Otub1 ARF-1 is thought to 
antagonize the function of  Otub1 in cells[114].

Functionally, Otub1 has been implicated in the regula-
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Figure 1  Diagram of the regulation of the p53 pathway by deubiquitinating 
enzymes. Arrows indicate activation and bars indicate inhibition. USP7, USP10, 
USP29, and USP42 deubiquitinate and activate p53, whereas USP2 destabilizes 
p53 by deubiquitinating MDM2 and MDMX and USP4 destabilizes p53 by deu-
biquitinating and stabilizing ARF-BP1. Otub1 stabilizes and activates p53 via non-
canonical suppression of the MDM2 cognate E2 UbcH5, thereby inhibiting MDM2-
mediated p53 ubiquitination and degradation. USP: Ubiquitin-specific protease



tion of  immune response, estrogen signaling, DNA dam-
age response, as well as pathogen biology. Soares et al[114] 
first reported that Otub1 regulates CD4+ T cell clonal 
anergy by enhancing degradation of  the ubiquitin ligase 
called GRAIL (gene related to anergy in lymphocytes) and 
promoting interleukin 2 production following antigenic 
stimulation, whereas the Otub1 ARF-1 has an opposite 
effect. Interestingly, the effect of  Otub1 does not depend 
on its catalytic activity. As a matter of  fact, the role of  
Otub1 in degrading GRAIL is opposite to its predicted 
role as a DUB[114]. A possible explanation is that Otub1 
forms a ternary complex with GRAIL and USP8, another 
USP family DUB, thereby suppressing the deubiquitina-
tion of  GRAIL by USP8. In this case, Otub1 may act as 
an ubiquitin editing protease[114]. Li et al[115] reported that 
Otub1 (and Otub2) mediate virus-induced deubiquitina-
tion of  TNF receptor-associated factor 3 (TRAF3) and 
TRAF6, two ubiquitin ligases required for virus-induced 
Interferon regulatory factor 3 (IRF3) and NF-kB activa-
tion, leading to the inhibition of  viral-induced produc-
tion of  INFβ. However, whether this effect requires the 
DUB enzymatic activity of  Otub1 is not clear[115]. Further, 
Otub1 has recently been shown to enhance TGFβ sig-
naling by inhibiting ubiquitination and degradation of  
SMAD2/3[116]. Otub1 also plays a role in pathogen inva-
sion of  the host cells. The Yersinia-encoded virulence fac-
tor YpkA interacts with and phosphorylates Otub1[117] and 
recruits the small GTPase RhoA, leading to the stabiliza-
tion of  the active RhoA[118]. Consequently, overexpression 
of  wild-type, but not the C91S mutant, Otub1 increased 
the susceptibility of  host cells to the Yersinia evasion[118]. 
Otub1 has been shown to deubiquitinate and stabilize 
ERα in chromatin[119], albeit this stabilization results in the 
inhibition of  ERα-mediated transcription. Adding to the 
complexity, the catalytic mutant Otub1, C91S in which 
the catalytic C91 is mutated to S, did not abolish Otub1-
mediated suppression of  ERα activity[119]. Otub1 has been 
shown to inhibit DNA-damage-induced chromatin ubiq-
uitination, which is also independent of  its DUB activity. 
Instead, Otub1 suppresses RNF168-dependent chroma-
tin polyubiquitination by binding to and inhibiting the 
RNF168 cognate E2 enzyme UBC13[120]. Recently, Otub1 
has been shown to regulate apoptosis by deubiquitinating 
the cellular inhibitor of  apoptosis (c-IAP1)[121]. 

Together, Otub1 has been implicated in multiple 
biological processes. In most cases, the effects of  Otub1 
do not require its DUB activity, such as the regulation of  
DNA damage-induced chromatin ubiquitination[120], T-cell 
anergy[114], ERα[119], and SMAD2/3[116], implying a unique 
model of  ubiquitination regulation by a DUB: suppres-
sion of  the ubiquitin-conjugating enzyme (E2) (see be-
low). Because of  this and the fact that it is expressed in 
most tissues, Otub1 may have a broad function in cells. 

OTUB1 IS A NOVEL POSITIVE P53 
REGULATOR
We recently found that Otub1 positively regulates the sta-

bility and activity of  p53[110]. Overexpression of  Otub1, 
but not its close homolog Otub2, markedly stabilizes and 
activates p53 and induces p53-dependent apoptosis and 
cell growth inhibition. Interestingly, Otub1 regulation 
of  p53 does not require its catalytic activity, as mutat-
ing C91 to either A or S did not abolish the activity of  
Otub1 to block MDM2-mediated p53 ubiquitination and 
degradation, to stabilize and activate p53, and to induce 
p53-dependent cell growth inhibition[110]. Mechanistically, 
Otub1 suppresses MDM2-mediated p53 ubiquitination 
by binding to and inhibiting the MDM2 cognate E2 en-
zyme UbcH5s[110]. This is consistent with the non-canon-
ical role for Otub1 in suppressing DNA damage-induced 
chromatin ubiquitination by inhibiting UBC13[120]. There-
fore, our study further supports that the suppression of  
substrate ubiquitination through inhibiting cognate E2s 
by Otub1 represents a unique noncanonical mode of  
DUB regulation compared to classical cysteine proteases 
and this may be a general mechanism for Otub1 to regu-
late the substrate protein ubiquitination and stability. 

Consistent with the noncanonical mode of  regulation, 
mutating C91 to either A or S did not abolish the activity 
of  Otub1 to bind to and suppress UbcH5[110]. However, 
a point mutation of  Asp 88 to Ala (Otub1D88A) abolished 
the function of  Otub1 to suppress p53 ubiquitination 
and degradation and this mutant interacts with p53 
stronger than wild-type Otub1, indicating this mutation 
might create a dominant-negative effect. D88 is located 
closely to the donor ubiquitin-binding surface and thus 
its mutation would affect the binding of  Otub1 to donor 
ubiquitin conjugated to UbcH5. Although D88 is not 
located directly in the E2 binding surface, our experimen-
tal data revealed that this mutation clearly disrupted the 
Otub1-E2 interaction in cells[110]. This might be due to 
the overall structure change after D88 mutation. Support-
ing this conformational change is that D88A mutant also 
results in the loss of  Otub1’s DUB activity. 

Our functional studies of  the endogenous Otub1 
suggest that Otub1 plays an important role in p53 stabili-
zation and activation following DNA damage induced by 
diverse agents. This is consistent, but not completely, with 
the observation that Otub1 suppresses DNA damage-
induced chromatin ubiquitination, thereby suppressing 
DNA repair pathway[120]. One explanation is that upon 
DNA damage, Otub1 might target UbcH5-MDM2 to 
stabilize p53, while it may dissociate from the RNF168-
Ubc13 complex, allowing RNF168 to catalyze K63-linked 
chromatin ubiquitination and subsequent DNA repair re-
sponse. Whether DNA damage-induced posttranslational 
modification plays a role in this functional switch remains 
unclear. However, phosphorylation of  Otub1 has been 
observed at several residues such as T134. Further, it has 
been shown that the phosphorylation mimicking Otub1 
mutant T134E, but not T134A, failed to rescue the DNA 
damage response in Otub1-depleted cells[122]. Thus it is 
interesting to examine the signaling pathways involved 
in the phosphorylation of  Otub1 and how this phos-
phorylation plays a role in regulating Otub1 function in 
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response to DNA damage stress.

MECHANISTIC INSIGHTS INTO THE NON-
CANONICAL SUPPRESSION OF E2 BY 
OTUB1
Recent biochemical and structural studies have shed a 
light on how Otub1 suppresses E2s[122-124]. It has been 
shown that Otub1 preferentially binds to ubiquitin-
charged E2[120,122]. Otub1 contains two ubiquitin-binding 
motifs: a distal site that binds to free ubiquitin and a prox-
imal site that binds to donor ubiquitin conjugated to the 
active site of  an E2 (e.g., Ubc13 or UbcH5). The structure 
of  two ubiquitin binding to Otub1 is reminiscent of  that 
of  K48-linked di-ubiquitin[122]. Interestingly, the binding 
of  a free ubiquitin to the distal site allosterically causes the 
conformational change of  Otub1, allowing the formation 
of  a N-terminal ubiquitin-binding helix where the E2-
charged donor ubiquitin then binds[122,124]. Consequently, 
this binding limits the donor ubiquitin interaction with 
the backside of  another E2 and the attack on the thioes-
ter bond by an acceptor ubiquitin, a step important for 
ubiquitin transfer[122,124]. On the other hand, Otub1 also 
makes contacts with E2 and the Otub1-binding surface 
in E2 (UbcH5 and Ubc13) overlaps with the E3-binding 
surface. Thus this Otub1-E2 interaction may also attenu-
ate the E2-E3 engagement[122,124]. Collectively, Otub1 is a 
potential inhibitor of  the E2 enzymes. Further support-
ing this notion, Otub1 has recently been shown to be a 
major DUB that interacts with the D and E classes of  E2 
as well as UbcE2N[125]. Thus disruption of  the Otub1-E2 
interaction or donor ubiquitin-Otub1 interaction would 
theoretically abolish Otub1’s activity to suppress E2. This 
could distinguish Otub1’s E2 suppressing activity from its 
DUB enzyme activity. Indeed, several mutants involved in 
the E2-contacting surface of  the Otub1, such as F133A, 
T134R, F138A, have been shown to lack the E2-suppress-
ing activity but retain the DUB activity[122,124]. Therefore, 
it is interesting to examine whether these mutants could 
fail to stabilize and activate p53 in cells. On another note, 
we recently found that Otub1 can be monoubiquitinated 
by UbcH5 and this monoubiquitination in turn plays a 
critical role in the Otub1’s E2 suppressing activity. We 
further found that UbcH5 preferentially binds to monou-
biquitinated Otub1, through the ubiquitin interaction 
with the backside ubiquitin-interacting surface of  E2[126]. 
This binding could potentially disrupt the formation of  
self-assembled ubiquitin-charged UbcH5 (UbcH5-Ub) 
conjugates that is critical for ubiquitin transfer, polyubiq-
uitin chain formation and efficient polyubiquitination of  
substrates[127,128], suggesting another novel mechanism of  
Otub1 suppression of  E2. 

CONCLUSION
Recent studies have convincingly demonstrated Otub1 
as a unique DUB that executes diverse biology functions 
by non-canonically suppressing E2 enzymes. Therefore 

it is expected that Otub1 may play broad functions in 
cells. One question would be how these broad functions 
coordinate with each other in cells. We also do not know 
how Otub1’s activity is regulated in cells. Interestingly, a 
recent observation showed that Otub1 DUB activity can 
be regulated by UbcH5, which stimulates the binding of  
the Lys48-linked polyubiquitin substrate by stabilizing 
the folding of  the N-terminal ubiquitin-binding helix of  
Otub1, thereby promoting its deubiquitinating enzyme 
activity[129]. It is interesting to know how these mutually 
regulatory functions are controlled in cells. It is also im-
portant to test how Otub1’s activity and levels are regu-
lated in cells under physiologic and stress conditions. As 
Otub1 is a potent activator of  p53[110] and plays a role in 
DNA damage repair[120], Otub1 may act as a tumor sup-
pressor. Thus it is important to determine whether Otub1 
is deregulated in human cancers. Gene targeting in mice 
could provide further information regarding the function 
of  Otub1 and whether Otub1 indeed possesses tumor 
suppression function in vivo. Further characterization of  
mechanistic insights into the Otub1 suppression of  E2 
could also be useful for developing strategies that target 
the E2 enzymes for cancer therapy, e.g., small molecule 
compounds that resemble Otub1 interaction with E2.

Together, p53 is ubiquitinated by MDM2/MDMX 
and several other E3s whereas it is deubiquitinated by a 
number of  DUBs, including USP7, USP10, USP29 and 
USP42. One obvious question is how these multiple DUBs 
are coordinated to ensure the tight, precise, and dynamic 
control of  p53 stability and activity.  Different DUBs may 
regulate the p53 pathway in response to different cellular 
stress (e.g., USP29 deubiquitinates p53 in response to oxida-
tive stress[104] whereas USP10 deubiquitinates p53 following 
DNA damage[102]). Different DUBs may also regulate p53 
in different cellular compartments (e.g., USP7 regulates p53 
in the nucleus whereas Otub1 regulates p53 in the cyto-
plasm[110] and USP10 relocates from the cytoplasm to the 
nucleus to regulate p53 in response to DNA damage[102]). 
It is interesting to examine whether different DUBs may 
cooperate with each other to synergistically regulate p53 
stability and activity in future studies. 

Nevertheless, efforts have been made towards target-
ing the ubiquitin-proteasome system (UPS) for reactivat-
ing p53 in cancer therapy. For example, compounds have 
been developed to target the p53-MDM2 interaction 
such as Nutlin-3s[130], the p53-MDMX interaction such 
as WK298[131], or both such as RO-2443[132]. Targeting 
DUBs has promising potential as well. For example, the 
cyano-indenopyrazine derivatives small molecule com-
pounds HBX 41108, HBX 19818, and HBX 28258[133] 

and P22077[134] were discovered as USP7 inhibitors. For 
further details about targeting the UPS for cancer therapy, 
please refer our recent review[135]. Future directions will 
aim to discover more potent and specific DUB inhibitors 
that can be used for cancer treatment.
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Core tip: KCNB1 is a K+ channel that plays a key role in 
the brain, pancreas and cardiovascular system. KCNB1 
is unique in that it induces apoptosis in association with 
oxidative stress. In this review article we discuss the 
diverse roles of this channel in the organs where it is 
expressed including recent advances in the molecular 
mechanisms through which KCNB1 causes cytotoxicity.

Sesti F, Wu X, Liu S. Oxidation of KCNB1 K+ channels in cen-
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KCNB1 IS A PROMINENT MEMBER 
OF THE SHAB-RELATED FAMILY OF 
VOLTAGE-GATED K+ CHANNELS 
KCNB1 (HUGO nomenclature), formerly DRK1 and 
Kv2.1, is a Shab delayed rectifier voltage-gated K+ channel 
which was cloned by Frech et al[1] using size-fractionated 
mRNA extracted from rat brain. KCNB1 is expressed in 
the central nervous system, pancreas, pulmonary arteries, 
heart, auditory outer hair cells, stem cells and retina[2-21]. 
As in other voltage-gated K+ channels, KCNB1 spatial 
and temporal expressions are both developmentally regu-
lated. For example, three distinct (4.4, 9.0, 11.5 kb) mRNA 
transcripts are expressed in the rat brain, with the 4.4 kb 
transcript being predominant in embryos and the 11.5 kb 
transcript being predominant in adults[15]. Accordingly, 
multiple KCNB1 isoforms are detected which differ in 
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Abstract
KCNB1, a voltage-gated potassium (K+) channel that 
conducts a major delayed rectifier current in the brain, 
pancreas and cardiovascular system is a key player in 
apoptotic programs associated with oxidative stress. As 
a result, this protein represents a bona fide  drug target 
for limiting the toxic effects of oxygen radicals. Until 
recently the consensus view was that reactive oxygen 
species trigger a pro-apoptotic surge in KCNB1 current 
via  phosphorylation and SNARE-dependent incorpora-
tion of KCNB1 channels into the plasma membrane. 
However, new evidence shows that KCNB1 can be 
modified by oxidants and that oxidized KCNB1 channels 
can directly activate pro-apoptotic signaling pathways. 
Hence, a more articulated picture of the pro-apoptotic 
role of KCNB1 is emerging in which the protein induces 
cell’s death through distinct molecular mechanisms and 
activation of multiple pathways. In this review article 
we discuss the diverse functional, toxic and protective 
roles that KCNB1 channels play in the major organs 
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their developmental expression. Functional KCNB1 chan-
nels can result from the assembly of  four identical pore-
forming subunits along a symmetry axis[22]. However, this 
simple stoichiometry is not likely to be observed in nature. 
In order to serve the specific requisites of  the tissues in 
which the channel is expressed, heterogeneity of  KCNB1 
current can be achieved by formation of  heterometric com-
plexes containing non-conducting, pore-forming subunits 
of  the KCNG and KCNS families as well as by assembly 
with accessory subunits of  the KCNAB and KCNE fami-
lies[16,17,23-28]. KCNB1 exhibits an unusual large number of  
consensus sites for phosphorylation. Accordingly, the chan-
nel is a substrate for protein kinases of  different families 
and is constitutively phosphorylated in native cells[29-32]. 
KCNB1 can also be SUMOylated and acetylated in nervous 
system and pancreas even though the physiological role 
of  these regulations awaits elucidation[33-35]. Finally, mature 
KCNB1 channels are not glycosylated despite the presence 
of  consensus sites in the N-terminus[36]. 

Because of  the potential therapeutic implications, 
the pharmacology of  KCNB1 to a variety of  toxins and 
drugs has been extensively investigated. Thus, KCNB1 
is blocked by tarantula toxins that belong to the same 
structural family of  inhibitor cystine knot spider pep-
tides reticulated by disulfide bridges. Hanatoxin from G. 
spatulata, was the first toxin to be shown to interact with 
KCNB1, followed in more recent years by heteroscordra-
toxin and stromatoxin 1 from H. maculata and S. calceata 
and jingzhaotoxin (JZTX-Ⅰ, -Ⅲ, and -Ⅴ) and guangxi-
toxin (GxTx-1E), isolated from the venoms of  the Chi-
nese tarantulas C. jingzhao and P. guangxiensis[37-40]. All these 
structurally related toxins exhibit variable affinities for the 
channel in the nanomolar to micromolar range and act to 
alter its gating by interacting with the voltage sensor[41,42]. 
KCNB1 is susceptible to inhibition by a number of  com-
pounds of  different classes including classic K+ channel 
blockers tetraethylammonium (TEA) and 4-aminopyri-
dine and antipsychotic, anesthetic and antiarrhythmic 
compounds[43-53]. Of  particular relevance to the topic of  
this review is the fact that acetylcholinesterase inhibitor 
Donepezil, a drug used in the treatment of  Alzheimer’
s disease and vascular dementia, protects neurons from 
apoptosis by inhibiting KCNB1[54]. The exact mecha-
nism awaits elucidation but recent findings showing that 
KCNB1 is subject to direct oxidative modification may 
suggest that the protective effect of  the drug may stem 
from its ability to prevent the oxidation of  KCNB1[55].

In summary, toxins and synthetic drugs have sig-
nificantly contributed to the effort of  dissecting native 
KCNB1 currents in various tissues and probing channel’s 
structure and functional mechanisms of  gating.

KCNB1 IS A CRITICAL MEDIATOR 
OF HIPPOCAMPAL AND CORTICAL 
EXCITABILITY
KCNB1 is broadly expressed in the brain and is a ma-
jor contributor to the delayed rectifier somatodendritic 

K+ current in hippocampal and cortical neurons[14,56]. In 
electrically quiescent neurons, KCNB1 is mostly local-
ized in microdomains in the membranes of  dendrites and 
cell bodies where it is constitutively phosphorylated and 
poorly conducting[20,21,29-32,57-60]. Upon the onset of  neu-
ronal activity, a series of  cellular events are initiated that 
lead to de-phosphorylation of  the channel. This transi-
tion is associated with two major changes in channel’s 
status: (1) its threshold for voltage activation is lowered; 
and (2) KCNB1 is released from the microdomains and 
begins to diffuse in the membrane[30]. The net effect of  
these changes is that KCNB1 conducts a delayed rectifier 
K+ current that acts to slow down and/or terminate pe-
riods of  high frequency firing. Activity-dependent phos-
phorylation/de-phosphorylation of  KCNB1 is partly 
mediated by cyclin-dependent kinase 5 and the phospha-
tase calcineurin. The latter is activated by a calcium influx 
driven by the electrical activity of  the neuron[29-32]. Using 
mass spectrometry, Trimmer and colleagues identified 
16 phosphorylation sites in KCNB1, of  which roughly 
half  provided a substrate for calcineurin[32]. This indicates 
that modulation of  KCNB1 by protein kinases is graded 
to reflect dynamic regulation of  neuron firing proper-
ties. However, KCNB1 can also terminate periods of  
neuronal activity by being directly phosphorylated. For 
example, AMP-activated protein kinase (AMPK, which is 
activated by ATP depletion) can phosphorylate KCNB1 
at residue S440 and induce hyperpolarizing shifts in the 
current-voltage relationship for activation, shifts that 
make the channel more conductive at negative voltages[61]. 

KCNB1 PROMOTES APOPTOSIS IN 
RESPONSE TO OXIDATIVE STRESS
KCNB1 is a specific mediator of  apoptosis in a variety of  
neuronal cell types including hippocampal, cortical and 
granule neurons[62-65]. For example, a study investigating 
the molecular correlate of  the apoptotic K+ current in 
hippocampal neurons found that among nine alpha and 
3 beta Kv subunits screened, KCNB1 was the primary 
correlate[63]. Several groups have demonstrated that the 
key event triggering KCNB1-induced apoptosis is an in-
crease in reactive oxygen species (ROS), either following 
acute oxidation, or as a consequence of  cellular stresses 
such as serum deprivation and excitotoxicity[55,62-65]. It 
is currently accepted that dysregulated K+ homeostasis 
causes apoptosis by inducing mitochondrial swelling 
and depolarization, ROS generation, deficient energy 
production and cell volume decrease[66]. Accordingly, aug-
mented insertion of  KCNB1 channels into the plasma 
membrane is observed in neurons subjected to oxidative 
challenges[67]. The accompanying increase in KCNB1 cur-
rent is thought to be a key step in the apoptotic program. 
The execution of  the latter requires phosphorylation of  
KCNB1 by multiple types of  protein kinases a fact that 
should not surprise considering the primary role that 
phosphorylation plays for the function of  KCNB1. Zhou 
et al[68] investigated apoptosis induced by lack of  serum 
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in granular neurons and found that this was associated 
with upregulation of  KCNB1 via the activation of  a sig-
naling pathway involving cAMP, protein kinase A and 
cAMP response element-binding protein (CREB). Aras 
et al[69] have identified several kinases including apoptosis 
signal-regulating kinase 1 (ASK1), p38 MAPK-dependent 
kinase, c-Src tyrosine kinase, and Ca(2+)/calmodulin-
dependent protein kinase Ⅱ (CaMKII) that interact with 
KCNB1 in response to oxidative stress[70-73]. Their studies 
have provided a model that predicts that oxygen radicals 
induce simultaneous increases in cytosolic levels of  Zn2+ 
and Ca2+. These increases activate the previously listed 
kinases and accelerate KCNB1 forward trafficking by 
modulating and facilitating its interaction with SNARE 
family protein syntaxin. This apoptotic program is tightly 
regulated: knock down of  just a single phosphorylation 
site (S800 for p-38, Y124 for c-Src) is sufficient to sup-
press the pro-apoptotic influence of  KCNB1[70]. Howev-
er, Src tyrosine kinases and protein tyrosine phosphatase 
epsilon (PTP epsilon) also play a role in the physiologi-
cal modulation of  KCNB1. In the Schwann cells of  
mice, Src-mediated phosphorylation of  Y124, (the same 
residue responsible for Zn2+/Ca2+ induced apoptosis), 
causes specific augmentation of  KCNB1 current which 
appears to be critical for Schwann cell proliferation and 
myelination[74,75]. In fact, de-phosphorylation of  KCNB1 
at Y124 by PTP epsilon reduces KCNB1 activity and 
stops KCNB1-induced myelination[76,77]. Accordingly, 
mice lacking PTP epsilon exhibit hypomyelination of  
sciatic nerve axons at an early post-natal age, an effect 
due to constitutive activation of  KCNB1 by Src tyrosine 
kinases[78]. Moreover, a number of  K+ channels can cause 
apoptosis via dysregulated K+ homeostasis in a variety 
of  cell types[66]. Therefore, increased K+ current may not 
be the key feature responsible for the specific ability of  
KCNB1 to promote apoptosis, but rather a consequence 
of  it. Recent work from our laboratory may shed light 
on this issue. Cotella et al[55] showed that oxygen radicals 
directly modify KCNB1 channels, leading to the forma-
tion of  oligomers held together by disulfide bridges[55]. 
A KCNB1 variant which does not form oligomers, ob-
tained by mutating an N-terminal cysteine (C73A), fails 
to increase apoptosis in mammalian cells. Cotella et al[55] 
further showed that in inside-out patches, oxidants inhibit 
KCNB1 current. These findings imply that the formation 
of  oligomers, rather than KCNB1 current, is the event 
that triggers an initial pro-apoptotic stimulus. To answer 
this question, Wu et al[79] have investigated the fate of  the 
KCNB1 oligomers. They found that they accumulate in 
the plasma membrane as a result of  defective internaliza-
tion. Notably, accumulation is transient, and normal en-
docytosis/surface expression are mostly restored within 
one hour post-oxidation. The transient accumulation of  
KCNB1 oligomers is associated with activation of  c-Src 
and JNK kinases coupled to a steady increase in the lev-
els of  free radicals. Thus, oligomer-induced activation of  
a “death pathway” appears to trigger the initial pro-apop-
totic stimulus. As apoptosis progresses and ROS levels 

increase in the cell, the surge of  KCNB1 current follows 
to further execute the apoptotic program (Figure 1).

INHIBITION OF KCNB1 MAY REPRESENT 
A VALID ANTI-APOPTOTIC STRATEGY
Pharmacological inhibition of  KCNB1 current may rep-
resent a valid approach to preventing apoptosis. Accord-
ingly, Peers and colleagues have shown that carbon mon-
oxide (CO) can provide neuronal protection against an 
increase in KCNB1 current via regulating ROS and pro-
tein kinase G activity[80]. The same group has further pro-
posed that the anti-apoptotic effect of  CO may also be 
partially responsible for the etiology of  cancer, as many 
oncogenic cells constitutively express heme oxygenase-1 
(HO-1), which generates CO as a by product of  its cata-
lytic activity[81]. Chronic viruses, which establish a state of  
persistent infection by rendering infected cells resistant 
to apoptosis also appear to exploit inhibition of  KCNB1 
current. In human hepatocytes infected with hepatitis C 
virus (HCV), oxidative insults fail to initiate apoptosis 
because the HCV NS5A protein inhibits phosphorylation 
of  KCNB1 by p38 MAPK and thus suppresses the cur-
rent surge[82,83]. Furthermore, a neuronal NS5A isoform 
from HCV genotype 1b, NS5A1b, protects rat neurons 
against apoptosis by inhibiting KCNB1[73]. However, 
while NS5A acts on tyrosine kinase phosphorylation at 
residue Y124, NS5A1b inhibits p38-MAPK at residue 
S800 suggesting that the actions of  these viral proteins 
are genotype-selective probably reflecting the characteris-
tic of  these viruses to target specific tissues. 

VASOCONSTRICTION OF SMALL 
PULMONARY ARTERIES MAY PROCEED 
THROUGH DIRECT INHIBITION OF KCNB1 
CURRENT BY ROS
Hypoxic pulmonary vasoconstriction is a physiological 
response to alveolar hypoxia, in which blood flow is redi-
rected to better ventilated lobes via constriction of  small 
pulmonary arteries. The mechanical force leading to va-
soconstriction is exerted by pulmonary arteries smooth 
muscle cells (PASMCs). Hypoxia initially promotes 
PASMCs depolarization via inhibition of  an oxygen-
sensitive K+ current. This leads to the activation of  L-type 
Ca2+ channels, which elevate cytosolic calcium thereby 
triggering PASMCs contraction. Biochemical, phar-
macological, electrophysiological and genetic evidence 
designates KCNB1 - alone or mixed with KCNS3 silent 
subunits-as one of  the major molecular correlates of  the 
oxygen-sensitive K+ current in PASMCs[16-18,84,85]. Studies 
using the human ductus arteriosus as model system have 
provided a detailed picture of  the cellular and molecular 
events leading to vasoconstriction during hypoxia[86-88]. 
Changes in O2 levels are translated to the mitochondrial 
electron transport chain (KCNB1 is insensitive to O2

[89]) 
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which responds by speeding the synthesis of  diffusible 
hydrogen peroxide (H2O2). H2O2 causes smooth muscle 
cell depolarization, via inhibition of  K+ current which 
further results in influx of  calcium through L-type chan-
nels. The molecular details of  the mechanism that links 
H2O2 to K+ current inhibition were not known previous-
ly but the fact that KCNB1 can be directly oxidized by 
H2O2 and most importantly, that its current is suppressed 
by oxidants may now provide a natural explanation for 
this mechanism of  inhibition. It is worth noticing that 
chronic hypoxia is characterized by depolarized resting 
potential and elevated cytosolic Ca2+. Chronic depolar-
ization is achieved by downregulation of  KCNB1 pro-
tein[90-93] through mechanisms not completely understood, 
even though studies have implicated 15-lipoxygenase 
catalysis of  arachidonic acid and hypoxia-inducible factor 
1 in the mechanism[94,95]. Thus, different regulations of  
KCNB1 appear to mediate acute versus chronic condi-
tions of  hypoxia.

CONCLUSION
KCNB1 is a channel with a double-hedged sword na-
ture: it is essential to the physiology of  multiple organs, 
including the brain, pancreas and cardiovascular system 
and further acts as a mediator of  apoptosis in response 
to oxidative stresses[2-21]. Dysregulated K+ homeostasis is 
a well established mechanism through which K+ chan-
nels contribute to an apoptotic program with a great deal 
of  evidence implicating that KCNB1 do indeed work in 
this mechanism[55,62-65,67]. However recent findings have 
unveiled new ways through which KCNB1 mediates cell 
death: by giving rise to cytotoxic protein aggregates that 
result from direct oxidation of  the protein[79]. The ac-
cumulation of  these KCNB1 oligomers in the plasma 
membrane is transient but sufficient to trigger a pro-
apoptotic signal via activation of  a c-Src/JNK kinases 

pathway. As the apoptotic program progresses, a surge of  
KCNB1 current follows to induce mitochondrial desta-
bilization, ROS generation, deficient energy production 
and cell volume decrease. Hence, KCNB1 plays a double 
role as both initiator and later executor of  the apoptotic 
program.

Aging pathologies pose new challenges to health care, 
because even as advances in medicine are increasing lifes-
pan, health problems become more prevalent as people 
age. A recent survey done by Harvard University School 
of  Public Health and the Alzheimer’s Europe Consor-
tium suggests that senile dementia is the second leading 
health concern after cancer[96]. Aging is also the most im-
portant risk factor in neurodegenerative conditions such 
as Alzheimer’s disease, the third most costly disease in the 
United Sates[97]. It is projected that the number of  West-
ern elders suffering from dementia and related neurode-
generative disease will increase by 350% by the midcen-
tury[98,99]. Therefore, because of  the impact of  increasing 
lifespan on global human health issues, it is important to 
elucidate the cellular and molecular processes involved in 
aging. Oxidative modifications of  KCNB1 are pervasive 
in the aging nervous system[55]. Hence, KCNB1 oxidation 
has the potential to impact all those conditions character-
ized by an imbalance in the redox status of  the cell, from 
normal senescence to neuropathies such as Alzheimer’s 
disease. Understanding how oxidation of  KCNB1 influ-
ences the function of  the brain during aging may provide 
the insight necessary to design better pharmacological 
strategies; these include targeting KCNB1 for the poten-
tial therapeutic use of  antioxidants in neurological treat-
ments or targeting other components of  the signaling 
pathways activated by oxidation of  KCNB1. 
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Figure 1  A two-step model for the pro-apoptotic actions of KCNB1. Upon exposure to oxidants, KCNB1 oligomers are formed. They accumulate in the plasma 
membrane thereby perturbing the organization of lipid rafts. This results in activation of an apoptotic stimulus mediated by c-Src and downstream, JNK kinases. As re-
sult of activation of c-Src and JNK kinases and in part of NADPH-oxidase (Xilong Wu, private communication) which is localized in the plasma membrane, ROS levels 
increase in the cell. ROS induce a raise in cytosolic Ca2+ and Zn2+ that initiate a phosphorylation-mediated surge of KCNB1 channels that further drives apoptosis. The 
signaling pathway activated by Zn2+ proceeds through activation of p38 by ASK-1 and independently, of c-Src tyrosine kinases (Zn2+ inhibits the activity of the tyrosine 
phosphatase PTP epsilon) which phosphorylate KCNB1 at S800 and Y124 thereby allowing interaction with SNARE family protein syntaxin. The Ca2+ signaling path-
way results in activation of CaMKII kinase which in turn acts to modulate the interaction of KCNB1 with syntaxin. It is not known whether Src and p38 phosphorylation 
directly act to increase KCNB1 current. ROS: Reactive oxygen species.
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specific viral proteins affect the pathways to apoptosis 
and autophagy. Only in this manner will we be able to 
minimize the pathology that they cause.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The pathogenicity of Flaviviruses  derives from 
their ability to infect many types of cells. They can acti-
vate both intrinsic and extrinsic pathways of apoptosis, 
by many means. Dengue and Japanese encephalitis 
virus can also activate autophagy, whereby autophagy 
temporarily spares the infected cell, allowing longer re-
production of virus and protecting the cell against other 
stresses. Given the versatility of these viruses, we need 
to understand much better how the specific viral pro-
teins affect the pathways to apoptosis and autophagy. 
Only in this manner will we be able to minimize the pa-
thology that they cause.
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INTRODUCTION
The aim of  a virus is to infect and propagate and in do-
ing so, affect the cell survival pathways. A wide range of  
viruses from different families (Poxviridae, Adenoviridae, 
Retroviridae, Picornoviridae, Flaviviridae, Orthomyxoviri-
dae) have life cycles that intertwine with critical pathways 
involved in cell death and survival[1]. In this review we 
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Abstract
Flaviviruses , ss(+) RNA viruses, include many of man-
kind’s most important pathogens. Their pathogenicity 
derives from their ability to infect many types of cells 
including neurons, to replicate, and eventually to kill 
the cells. Flaviviruses  can activate tumor necrosis fac-
tor α and both intrinsic (Bax-mediated) and extrinsic 
pathways to apoptosis. Thus they can use many ap-
proaches for activating these pathways. Infection can 
lead to necrosis if viral load is extremely high or to 
other types of cell death if routes to apoptosis are 
blocked. Dengue and Japanese Encephalitis Virus can 
also activate autophagy. In this case the autophagy 
temporarily spares the infected cell, allowing a longer 
period of reproduction for the virus, and the autopha-
gy further protects the cell against other stresses such 
as those caused by reactive oxygen species. Several 
of the viral proteins have been shown to induce apop-
tosis or autophagy on their own, independent of the 
presence of other viral proteins. Given the versatility of 
these viruses to adapt to and manipulate the metabo-
lism, and thus to control the survival of, the infected 
cells, we need to understand much better how the 

World J Biol Chem 2014 May 26; 5(2): 93-105
 ISSN 1949-8454 (online)

© 2014 Baishideng Publishing Group Inc. All rights reserved.

World Journal of
Biological ChemistryW J B C

93WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4331/wjbc.v5.i2.93



Ghosh Roy S et al . Flavivirus -induced cell death pathways

focus our attention on Flavivirus (Flaviviridae).
Flaviviridae, a family of  small and enveloped ss(+)-

RNA virus, consists some of  the worst pathogens known 
to mankind and mammals. The family is grouped into 
three genera, namely, Flavivirus, Hepacivirus and Pestivirus 
with each genus harboring potent killers, viz., dengue 
(DEN), hepatitis C (HCV) and classical swine fever virus 
(CSFV), respectively[2]. The largest and clinically the most 
relevant of  three, Flavivirus contains almost 70 members, 
most of  them transmitted to humans by mosquitos or 
ticks. Among the mosquito-borne are the most virulent 
viruses like dengue (DEN)[3,4], West Nile (WNV)[5], Japa-
nese encephalitis (JEV) and Yellow fever (YFV)[6]. 

Although a few reviews address the role of  cell death 
pathways during viral infection in general[1,7,8], there are 
none solely addressing Flavivirus. Here we summarize the 
most recent findings on survival and cell death pathways 
triggered by key members of  Flavivirus. We focus on fla-
viviruses widely studied in relation to cell death - dengue, 
West Nile and Japanese encephalitis virus. We conclude 
that the viruses affect different parts of  the apoptotic 
pathways in different cell types, and that dengue and JEV 
especially can protect cells by activating autophagy. Anti-
viral therapeutics will have to address these issues.

CELL DEATH AND ITS PATHWAYS
The ascendance of  programmed cell death (PCD) as a 
theme of  modern biology has followed an exciting trail 
from the mid-19th century until the present[9]. The idea of  
a cell programming its death had few takers during the 
early half  of  20th century, though evidence was gathering 
since 1842, when Carl Vogt observed loss of  notochord 
in amphibian metamorphosis[10]. Since then, evidence 
of  programmed cell death has surfaced in various or-
ganisms as diverse as Dictyostelium[11], insects[12], and 
chicken[13]. Recognition of  apoptosis as the primary form 
of  programmed cell death, in the early 1970’s[14] as well as 
recognition that apoptosis is conserved from C. elegans to 
humans)[15,16] has fueled interest among biologists. More-
over, association of  apoptosis and other forms of  cell 
death, notably the lysosomal (autophagic) cell death, with 
AIDS[17], cancer[18,19], Alzheimer’s[20], and viral infection[1] 
has catapulted cell death to the forefront of  biomedical 
research. 

The importance of  cell death was not fully appreci-
ated until the late 1960’s. This delay was partly due to 
the difficulty in documenting dying cells, as compared to 
dividing ones, as it was possible to monitor and finally 
trace a cell’s duplication into daughter cells. While cells 
that have undergone mitosis can be traced considerably 
thereafter, an apoptotic cell in an organism is visible only 
up to 20 min after death[12].

Programmed cell death contributes to the sculpt-
ing of  digits (prenatal disappearance of  interdigital 
epidermis), removal of  unnecessary tissues (involution 
of  mammary glands during post-lactation) or irrelevant 
(wolffian/mullerian ducts after sex determination) or-
gans, elimination of  toxic and harmful cells (self-reactive 

thymocytes, UV-irradiated cells), and winnowing to only a 
properly integrated cell population (as in the case of  dif-
ferentiated neurons)[21,22]. A cell may trigger its own death 
(intrinsic/cell autonomous) or it may be brought upon by 
signals from the microenvironment (extrinsic). Deregu-
lation of  the cell death machinery can inflict upon the 
organism severe consequences like anomalous or stalled 
development, tumor formation, autoimmune disorder or 
neurological disorders (Huntington, Parkinson). In con-
trast, the vestiges of  dead cells in some plants may serve 
important functions[22,23]. 

Most biologists make a clear distinction between 
“programmed” physiological (beneficial) and ‘‘acciden-
tal’’ (hazardous) cell death. The former denotes death 
of  cells essential for physiological events (development, 
organogenesis, homeostasis, and defense) whereas the 
latter may be used for loss of  cells during tissue damage. 
Apart from this functional distinction, cell death can also 
be classified based on morphology (apoptosis, autophagy, 
necrosis, and cornification) and enzyme involvement 
(proteases like calpains, caspases, and endonucleases). 
The Nomenclature Committee on Cell Death (NCCD) 
encourages researchers to clearly distinguish between 
‘‘dying cells’’ and ‘‘dead cells’’, and by using the latter 
term, they should denote cells that have gone past the 
threshold ‘‘point-of-no-return’’ into a state of  irrevers-
ibility. The NCCD has also revised the defining hallmarks 
for a dead cell: dissolution of  the plasma membrane and 
complete fragmentation and engulfment by phagocytosis, 
since the traditional parameters like activation of  caspas-
es, mitochondrial trans membrane permeabilization and 
flipping of  phosphatidylserine (PS) have been associated 
with non-lethal events[24].

APOPTOSIS
The most studied form of  programmed cell death (PCD), 
apoptosis (Greek: falling of  leaves), was first reported by 
Walter Flemming[10]. Kerr et al[14] characterized apoptosis 
(later described by Majno and Joris as PCD type Ⅰ) and 
described it as a general process mistakenly previously 
identified as an arcane form of  death called “shrinkage 
necrosis”. While undergoing apoptosis, the cell separates 
from its neighboring cells, shrinks, undergoes chromatin 
condensation and DNA fragmentation, and is finally en-
gulfed by a phagocyte (macrophage). 

Apoptosis follows two distinct pathways, the extrinsic 
(death receptor) and intrinsic (mitochondrial) pathway[25]. 
The extrinsic branch of  PCD is activated by external 
death signals. The cytotoxic effect is mediated by the 
binding of  ligands [tumor necrosis factor-α (TNF-α), 
FasL, TRAIL] to the death receptors (TNF RI, Fas/
CD95, DR3, TRAIL R1/DR4, or TRAIL R2/DR5) on 
the cell surface[26-28]. This binding leads to the trimeriza-
tion of  the membrane receptor, followed by the down-
stream activation of  the DISC protein complex. The 
multi-protein complex initiates cleavage and activation of  
caspase-8, which in turn cleaves downstream zymogens 
(caspase-7, 10) and this sets forth a chain of  reactions fi-
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nally leading to activation of  caspase-3 and cell death[25,28]. 
The caspase proteins (Cysteine-dependent Aspartate-
directed Proteases = C-A-S-PASES) are central to the 
entire apoptotic machinery within the cell. They are also 
integral to the intrinsic pathway, are synthesized as inac-
tive zymogens that are activated by cleavage. 

Intrinsic apoptosis is activated proximately by dam-
age to mitochondria, which releases cytochrome C and 
apoptosis-activating factor from mitochondria. These 
latter, together with pro-caspase-9, bind together into an 
apoptosome, in which caspase-9 is activated. By means 
of  this complex, caspase-3 is activated and, as in extrin-
sically-activated apoptosis, caspases 3 and 7 destroy the 
substructure of  the cell. 

Like caspases, Bcl-2 family members are also essential 
for carrying out intrinsic apoptosis. Based on domain 
structure and function, the members are grouped into 
anti-apoptotic guardians (Bcl-2, Bcl-xL, MCL-1), pro-
apoptotic effectors (Bax, Bak) and sensors (Bad/Bim/
Bid/Noxa)[29-31]. The intrinsic pathway is initiated by 
intracellular stress signals like ER stress, oxidative stress, 
DNA damage, growth factor withdrawals, and loss of  
contact with the extracellular matrix. Once the decision 
to die is made, the effectors are set free from their nega-
tive interaction with guardians by the sensors. They insert 
into and disintegrate the mitochondrial membrane, a phe-
nomenon known as the mitochondrial outer membrane 
permeabilization (MOMP). This releases pro-apoptotic 
factors (cytochrome C, Smac/Diablo, HTRA2/Omi, 
apoptosis-inducing factor, and endonuclease G) into the 
cytoplasm. Cytochrome C interacts with the APAF-1, 
recruiting pro-caspase-9 (zymogen) to form the apopto-
some, where the latter is cleaved and activated. This event 
triggers cleavage and activation of  downstream caspases 
(2, 3, 7, 8) and accomplishes the death of  cell[32]. Certain 
cell death regulators like inhibitor of  apoptosis (IAP) can 
bind and suppress the apoptotic function of  caspases[33].

AUTOPHAGY
Autophagy or PCD type II, literally meaning ‘‘self-eating’’, 
is a highly conserved catabolic process that is thought 
to precede apoptosis in evolution[34]. It is a surveillance 
process that is involved in the recycling of  basic biomol-
ecules. It oversees the entire cell homeostasis, packaging 
degraded/misfolded proteins or organelles in specialized 
bilayer membranes (autophagosomes) which fuse with 
the lysosome for digestion. This process is induced under 
conditions of  high stress like starvation, growth factor 
withdrawal, viral invasion and ER stress. Deregulation of  
the autophagy pathway has been observed in pathogenic 
conditions like cancer or Parkinson’s[35]. 

The induction of  autophagy involves a set of  mul-
tiprotein complexes, some of  which have ubiquitin-
like properties. mTORC1, a versatile signaling complex, 
strictly inhibits induction of  autophagy by imposing 
an inhibitory phosphorylation on Unc-51-like kinase 
(ULK1). Under stress conditions, this block is removed 
by several factors, such as PTEN, AMPK, and TSC2. Ac-

tivation of  ULK1, which forms a complex with ATG13/
FIP200/ATG101, leads to the nucleation of  the pre-
autophagosomal structure (PAS). This involves the phos-
phatidylinositol-3-kinase class Ⅲ (PI3K Ⅲ)-Vps34-Beclin 
1 (ATG6) complex[36,37]. The subsequent elongation of  
the autophagosome is dependent on two ubiquitin-like 
conjugation systems. E1-like enzyme autophagy related 
gene 7 (ATG7) and E2-like enzymes ATG3, ATG10 are 
involved in the conjugation of  ATG12-ATG5 and LC3 
(ATG8)-phosphatidylethanolamine (PE). ATG12-ATG5 
acts like an E3-like protein for the LC3-PE conjugation 
system, and then forms a complex with ATG16. These 
coordinated and combined steps accomplish the forma-
tion of  a mature autophagosome which then fuses with a 
lysosome through a canonical endocytic pathway[25,38-40].

NECROSIS 
Some forms of  necrosis are programmed and controlled 
through a specific set of  signal transduction pathways 
and degradative mechanisms. Cell death by specific ne-
crosis can also contribute to embryonic development and 
adult tissue homeostasis[41]. Necrosis can be triggered by 
the same death signals that induce apoptosis[42]. The dif-
ference between apoptosis and specific necrosis lies in 
the rapid cytoplasmic swelling and release of  extracellular 
components, seen in specific necrosis, which is often 
due to extreme physiochemical stress, osmotic shock, 
mechanical stress and high concentration of  hydrogen 
peroxide[43]. When a cell is under such conditions, which 
can be produced by physiological or developmental situa-
tions, cell death occurs accidentally and uncontrolled. Ne-
crosis signaling complex forms by interaction of  receptor 
interacting protein 1 (RIPK1) with the receptor interact-
ing protein 3 (RIPK3). This signaling complex forms by 
introducing death receptors either by inhibiting caspases 
or genotoxic stress[43]. In this type of  cell death, unlike 
apoptosis, death is accidental and not programmed. Ne-
crosis does not depend on caspase activation. In a study 
done by Nikoletopoulou et al[42], two different cell lines 
were treated with a tumor necrosis factor-α. In one cell 
line, apoptosis was triggered, whereas in another cell line 
it induced necrosis. In addition, necrosis can be in the 
form of  regulated and programmed form of  cell death. 
This phenomenon is referred to as necroptosis. Various 
death receptors associated with apoptosis, such as FAS, 
TNFR2, TRAILR1 and TRAILR2, have been shown to 
induce necroptosis in different cell types. Furthermore, 
necroptosis can be instigated by the members of  the 
pathogen recognition receptor that are responsible for 
sensing pathogen-associated molecular patterns.  

FLAVIVIRUS-STRUCTURE, INFECTIVITY, 
REPLICATION AND CELL SURVIVAL
Flaviviridae is a medically important family of  animal 
virus, with members responsible for serious pathological 
conditions in human and other important mammals. This 
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group IV family (positive sense RNA) consists of  three 
genera: Flavivirus, Hepacivirus and Pestivirus. The largest 
of  them, Flavivirus (with approximately 70 members), in-
cludes some of  the deadliest arthropod-transmitted virus. 
They are icosahedral, enveloped (+)-ssRNA virus mea-
suring approximately 500Å in diameter. The typical Flavi-
virus (Latin flavus - yellow, indicating Yellow Fever) virion 
is composed of  the genetic material surrounded by the 
capsid protein and 180 copies of  two glycoproteins. The 
average genome size of  the Flavivirus is 11kb, coding for 
a single polyprotein. The amino terminal accounts for the 
structural proteins: capsid (C), membrane precursor (prM) 
and envelope (E), and the remaining genome gives rise to 
the non-structural proteins (NS1, 2A, 2B, 3, 4A, 4B, and 5) 
which form the viral replication complex (RC)[2,44]. 

Infection starts as virions bind to the cell membrane 
through receptor-mediated endocytosis, aided by pri-
mary receptors (DC-SIGN, Grp78/BiP, CD-14 associ-
ated molecules) and low-affinity co-receptors (heparin, 
glycosaminoglycan). Acidification of  the vesicle triggers 
disassembly of  virus, releasing the genetic material into 
the cytoplasm. The resultant polyprotein undergoes co- 
and post-translational processing by viral and host prote-
ases to give rise to the individual proteins. The structural 
proteins then assemble on the ER surface along with the 
RNA which is replicated on intracellular membranes. The 
assembly of  virus in the ER lumen is followed by the 
movement of  these immature viral particles through the 
trans-Golgi network. These are cleaved by the host pro-
tease furin to form mature virions, and are subsequently 
released by exocytosis[45-51]. 

Dengue virus
Among the members of  Flavivirus family, Dengue is 
transmitted to human (in urban areas) and primates (in 
forests) by the urban-adapted mosquito strain Aedes ae-
gypti (primary vector) and the emerging Aedes albopictus[52]. 
Dengue has been declared endemic in approximately 100 
countries with 40% of  the global population susceptible 
to infection. Dengue infection has doubled over the last 
two decades, and current annual figures have risen to 
50-100 million humans affected[53]. 

Dengue has a genome of  10.7 kb positive sense 
single strand RNA that contains a type Ⅰ cap at its 5’ 
terminus[54]. The enveloped icosahedral virion measures 
50 nm in diameter. The RNA is translated by the host 
cell machinery into a 3391-amino acid polyprotein that 
undergoes co- and post-translational processing by viral 
(NS2B-3) and cellular proteases[55-57]. The first quarter of  
the viral genome from the 5’ end codes for the structural 
proteins C (capsid), prM (membrane), and E (lipopolysac-
charide envelope), thus leaving the rest to code for eight 
non-structural proteins (NS1, 2A, 2B, 3, 4A, 2K peptide, 
4B, 5) which are expressed only inside the host cell[58]. 

Dengue from different regions of  the globe show 
four antigenically distinct serotypes (DENV 1-4), each 
having multiple phenotypes[59]. The distribution of  these 
serotypes has spread alarmingly throughout the globe 

since 1970, when only South Asia had all four[60]. This 
spread has added to the complexity of  dengue-induced 
pathogenesis since very little cross-immunity has been 
recorded between these serotypes, leading to multiple se-
quential infections and overwhelmed immune response[61]. 
Outcomes of  dengue infection may lead to diverse patho-
genic conditions, ranging from the mild-flu like febrile 
syndrome (dengue fever) to the very serious conditions 
resulting from infection with a second serotype, the lethal 
hemorrhagic condition dengue hemorrhagic fever (DHF) 
or the dengue shock syndrome (DSS)[62]. Dengue fever, 
the most important arboviral disease in humans, features 
rapid onset of  fever, accompanied by headache, retro-
orbital pain, myalgia, gastrointestinal irritation[63,64]. DHF, 
which claims more lives (5% mortality) than any other 
hemorrhagic fever, is characterized by bleeding, throm-
bocytopenia, increased vascular permeability beyond 
the usual dengue fever symptoms[65]. An equally lethal 
condition DSS is also characterized by vascular leakage, 
which is more pronounced in young children, and very 
low blood pressure[66]. Autopsies conducted on patients 
(predominantly children) dying from DSS have revealed a 
broad range of  dengue susceptible tissue as shown by vi-
rus infecting skin, liver, spleen, lymph node, kidney, bone 
marrow, lung, thymus and brain[67-70].

Cell death and survival after infection with dengue
Dengue has been shown to derive pathogenic effect 
from apoptotic cell death in several types of  mammalian 
cells. The role of  apoptosis in dengue infection has been 
seriously studied since the mid-1990s, along with the 
identification of  Bcl-2 superfamily members. Dengue-
induced apoptosis has been observed in cells from the 
nervous system (human and mice neuroblastoma, murine 
cortical and hippocampal neurons, human cerebral cells); 
liver (human hepatoma); immune system(human periph-
eral blood mononuclear cells like CD8+-T lymphocytes, 
monocyte-derived macrophages, human mast cells like 
KU812, HMC-1, and primary murine macrophages); 
vascular system (human umbilical cord vein endothelial 
cells/EA.hy296, human microvascular endothelial cells, 
pulmonary microvascular endothelial cells/MECs) and, 
digestive tract (intestinal cells); and kidney cells (human 
embryonic kidney HEK 293, green monkey kidney Vero). 
Of  the four antigenically distinct serotypes infection with 
variants of  dengue 1 (human isolates of  dengue type 1 vi-
rus FGA/89 and BR/90, neurovirulent variant FGA/NA 
d1d), 2 (strain NGC, 16681) and 3 (DENV3/5532) lead 
to cell death and apoptosis within 25-36 h post infection. 

Apoptosis is triggered by live virus or dengue proteins 
through components of  both extrinsic and intrinsic apop-
totic signaling (Figure 1). Death ligands and receptors 
participate in dengue-induced apoptosis. Increased levels 
of  pro-apoptotic proinflammatory cytokines (TNF-α 
and interleukin-10) and Apo2L/TRAIL are observed af-
ter infection, which the virus possibly induces in a TNF-
α-fashion[71]. Profiling of  genes reveal the activation of  
death receptors FAS/CD 95, TNFR superfamily member 
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9/CD 137, TNFRI/TNF-α (caspase-independent) and 
IL-1β/ NFκB (caspase-dependent) pathways[72,73].

Viral protein NS5 interacts with death protein 6 
(Daxx), which among other functions interacts with 
death receptor FAS, to activate RANTES (CCL5), a 
cytokine closely associated with DHF[74,75]. Moreover, 
transfection with wild type capsid protein increased the 
expression of  CD137, a member of  the TNFR family. 
Receptor-interacting serine/threonine protein kinase 2 
(RIPK2), a master regulator of  stress pathways[76], is also 
necessary for capsid-induced apoptosis[76]. In addition to 
capsid protein modulation of  death receptor expression, 
infection with live dengue virus leads to differential ex-
pression of  several interferon-inducible genes, the most 
important being XAF1. XAF1 upregulates caspase 3 36 h 
after infection and mediates apoptosis[77]. The activation 
of  caspases leads to the characteristic nuclear fragmenta-
tion and cytoplasmic blebbing of  apoptosis. 

Mitochondria-mediated or intrinsic apoptosis sig-
naling also occurs after dengue infection. The reactive 

oxygen species (ROS) O2 and H2O2, which are predomi-
nantly produced in the mitochondria, increase during 
infection. Toxic levels of  ROS can activate calpains and 
lead to apoptosis. Secondary messenger oxides like nitric 
oxide (NO) also mediate in dengue-triggered apoptosis 
in a caspase dependent manner[78]. Other dengue struc-
tural proteins are also involved in apoptosis. Intracellular 
production of  the M protein from all dengue strains 
activated the intrinsic pathway apoptosis in mouse neuro-
blastoma (Neuro2a) and human hepatoma (HepG2) cells. 
ApoptoM, a nine-residue sequence (M-32 to -40) from the 
M ectodomain (M-1 to -40), is instrumental in the cyto-
pathic effect of  the flavivirus[79].

The activation of  apoptosis at different levels of  the 
extrinsic and intrinsic pathways by several variants of  
dengue virus implies an important role in the life cycle 
of  the virus. As infected cells undergo apoptosis by mul-
tiple means the extrinsic and intrinsic apoptotic pathways 
converge at the activation of  phosphatidylserine (PS) 
for phagocytic clearance during secondary dengue infec-
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tion[80]. 
Apoptosis, supposedly an innate immune response, 

is often manipulated by the viruses like dengue to act 
against the immune system itself, as shown by the more 
numerous apoptotic peripheral blood mononuclear cells 
(PBMC) in dengue infected children. The proportion 
of  apoptosis and its mediators (CD95) in the circulating 
PBMCs was much higher in individuals progressing to-
wards hemorrhage (DHF) than those developing febrile 
symptoms (Dengue Fever), indicating a higher viral load 
in the former. A fact that most of  the apoptotic PBMCs 
were CD8+-T lymphocytes bears testimony to the de-
ranged immune machinery in infected individuals. The 
immune response to increased dengue-induced apoptosis 
does not curb virus proliferation. Apoptosis, in the con-
text of  dengue infection, fails to arrest viral reproduction 
and even correlates with increased virus production[72,73]. 

Unlike lytic viruses that indiscriminately trigger cell 
death, pro-apoptotic variants of  dengue can lose their 
pathogenic ability in certain cells. For example the neu-
rovirulent variant FGA/NA d1d, developed from the 
apoptosis inducing dengue 1 human isolate FGA/89, 
kills neuroblastoma but not hepatoma cells[81]. Apopto-
sis seen during infection of  human umbilical cord vein 
endothelial cells (ECV304) and Swiss Webster primary 
macrophages by Dengue-2 virus strain 16681 is lost in 
MDCK, HeLa, HEK 293T, Vero and Swiss Webster pri-
mary mouse embryo fibroblasts (MEF) even after 144 h (6 
d) post infection[82,83].

The differences in dengue outbreaks are partly ex-
plained by differences in cell killing by clinical isolates of  
virus from a fatal case (Paraguay 2007; DENV3/5532) 
had higher replication rate in monocyte-derived human 
dendritic cells (mdDCs) than isolates of  virus from a 
non-fatal breakout (Brazil 2002; DENV3/290). The 
former also induced more proinflammatory cytokines as-
sociated with apoptosis[71]. Moreover, differences in cell 
toxicity among dengue variants have been attributed to 
mutations in the E and NS3[81]. Although adequate to ex-
plain certain differences in cell killing these mechanisms 
fail to explain the attenuated pathogenicity of  immune/
endothelial toxic dengue against other cells even in the 
presence of  apoptotic agents like staurosporine, cyclo-
heximide, camptothecin and influenza virus[83].

Involvement of  autophagy in dengue infection is 
a relatively new finding, shown first in 2008. DENV2 
caused ATG5-dependent autophagy in hepatic (Huh7) 
and fibroblast (MEF) cells. The virus’ ability to induce 
autophagy correlated positively with viral replication 
without a direct role in infectivity, as its downregula-
tion did not increase amounts of  intracellular virus[84,85]. 
Denv2-mediated autophagy protects from toxic stimuli 
canine kidney epithelial (MDCK) and mouse embryo 
fibroblast (MEF) cells but not murine macrophages, 
where infection leads to apoptotic cell death. Expression 
of  dengue NS4A protein, like infection with live virus, 
induces PI3K-mediated autophagy and protects these 
cells against death from toxins[83]. Specific inhibitors of  
autophagy like spautin-1 have revealed the role autophagy 

plays in maturation of  dengue virion. Blocking autophagy 
in Huh7.a.1, BHK21 cell lines and AG129 mice resulted 
in a heat-sensitive and non-infectious dengue virion[86].

West Nile virus 
West Nile virus (WNV), first encountered in the New 
World in New York City (1999), has been the cause of  
three major arboviral neuroinvasive outbreaks in the Unit-
ed States[87]. It belongs to the same Flavivirus serocomplex 
as the Japanese encephalitis virus (JEV) and St. Louis en-
cephalitis virus 15, following a bird-mosquito-bird trans-
mission cycle. In the United States, Culex pipiens serves as 
the major arthropod vector. The human is a ‘‘dead-end 
host’’ for WNV due to low levels of  serum viremia[88]. 
WNV consists of  five phylogenetic lineages, of  which 
1, 2 have been associated with significant outbreaks. The 
primary targets are keratinocytes and dendritic cells, which 
upon infection migrate to visceral organs and the central 
nervous system. The neurovirulence of  WNV is depen-
dent on varying factors-its ability to cross the endothelium 
of  blood-brain barrier (helped by cytokine mediated in-
creased vascular permeability), import of  infected macro-
phages into the CNS (Trojan horse mechanism) and viral 
retrograde transport from peripheral neurons to CNS[89-91]. 
Like dengue, outcome of  infection varies from mild fever 
(WNV fever), accompanied by headache and diarrhea, 
to neurological symptoms (WNV neuroinvasive disease). 
While only 1% of  infected individuals develop the latter, 
mild fever can be seen in 25%. However, neuroinvasive 
infections have a 10% fatality, which makes it extremely 
lethal. The serious pathological conditions (meningitis, en-
cephalitis, acute flaccid paralysis) are also accompanied by 
chills, rash and visual disturbance. The severity is higher 
in elder patients, as is evident from the higher death rate 
(17%) in individuals aged at least 70 from those (0.8%) in 
their mid-40s[88,92,93]. Complete recovery following acute 
infection is extremely rare, and fatigue, cognitive difficul-
ties, depression and muscle aches have been reported even 
after a year[94-97]. Diagnosis is dependent on detection of  
IgM levels in the cerebrospinal fluid by MAC-ELISA, al-
though false positive results have been reported during in-
fection with related Flavivirus[98,99]. To date, treatment has 
been supportive, relying on vector control, and no vaccine 
is licensed for human use. Human being the ‘‘dead-end 
host’’, future vaccinations will not prevent spreading of  
the virus in nature either[100-102]. It is extremely important 
that molecular mechanisms adopted by the virus, like ma-
nipulation of  the cell survival pathway, be studied. This 
would help in developing an effective antiviral therapy.

Cell death and survival after infection with WNV 
The relationship between WNV infectivity and cell sur-
vival pathways has been studied for more than a decade. 
WNV-mediated cell death and cytotoxicity depend on 
the severity of  the initial infection. Vero cells infected 
with many virus particles (multiplicity of  infection, moi > 
10) showed signs of  necrosis (leakage of  HMGB1 and 
high LDH activity) within 8 h of  infection. In contrast, 
cells infected with a lower load (moi < 10) showed signs 
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of  apoptotic cell death at a later stage (32 hpi)[103]. Very 
similar to dengue, WNV induces apoptotic cell death in 
several cell types, such as, immune cells (human leukemic 
-K562), neuronal cells (mouse neuroblastoma - Neuro 
2a, brain tumors), epithelial cells (Vero, A549), fibroblasts 
(MEF, BHK21), and embryonic cells (HEK293T)[104-106]. 

The upstream events leading to apoptotic death in 
WNV infected cells include endoplasmic reticulum (ER) 
stress pathways. Infection of  human neuroblastoma (SK-
N-MC) cells and primary rat hippocampal neurons led 
to activation of  two branches of  ER stress-mediated un-
folded protein response (UPR). ATF6 and PERK path-
ways were induced during infection, resulting in CHOP 
activation and downstream apoptosis[107]. A different ef-
fect on the UPR pathways has been observed. The West 
Nile virus Kunjin strain (WNVKUN) shuts off  PERK 
pathway and interferon-mediated STAT phosphorylation 
in wild type MEFs. However, it activates the remaining 
two UPR (ATF6, IRE1) pathways. Studies with ATF6-/-, 
IRE1-/- MEFs point to the synergetic role these path-
ways play in WNVKUN pathogenesis. They contribute to 
increased cell viability and viral load, by restricting apop-
totic cell death[108].

WNV can regulate both extrinsic and intrinsic path-
ways to launch pathogenesis (Figure 1). The virus induces 
Bax-dependent intracellular apoptosis in human leuke-
mic (K562) and mouse neuroblastoma (Neuro 2a) cells. 
Strains that did not possess the ability to induce apopto-
sis, due to UV-inactivation, could not establish infectivity 
in cells[104]. WNV encephalitis in CNS-derived mouse 
neurons was highly dependent on the activation of  cas-
pase-3, and infection in the permissive T98G (brain-
derived tumor) cells involved both extrinsic and intrinsic 
apoptotic pathways[105,106]. Tetracyclines are well estab-
lished antiviral compounds, and minocycline strongly in-
hibited WNV infection in three CNS-derived human cell 
types (HBN, HRPE, and T98G).The antibiotic blocked 
viral replication, apoptosis and the viral activation of  
JNK/c-jun pathway, establishing a link among them[109]. 
Kobayashi et al[110] proposed that the presence of  ubiqui-
tinated proteins had functional implication in apoptosis 
of  WNV-infected mouse neuroblastoma (Neuro-2a) cells. 
Migration of  CD8+- T lymphocytes to drained lymph 
nodes (dLNs) was hindered in the CNS of Cd22-/- mice, 
which had a higher viral load than the wild type. This 
finding suggests a role for the B-cell marker, also an im-
portant component in cell survival, in modulating cellular 
immunity during infection[111]. 

Apoptosis often restricts viral replication and in-
fection. Shrestha et al[112] showed the beneficial role of  
TNF-α related apoptosis inducing ligand (TRAIL), pro-
duced by CD8+- T cells, in limiting WNV infection in 
mouse central nervous system. CD8+- T cells in TRAIL-/- 

mice encountered difficulty in clearing the viral particles 
from the neurons. Zhang et al[113] demonstrated, using 
mouse neuron as an infection model, rise in the levels of  
TNF-α during infection. The rise served to downregulate 
the chemokine CXCR3, which would otherwise bind an-

tiviral CXCL10 circulating in the central nervous system 
(CNS). This interaction results in calcium transients that 
lead to caspase-3 mediated apoptosis in the neurons, an 
adaptive mechanism to prevent cell death. Smith et al[114] 
showed an important aspect of  WNV infection in human 
cell culture (HEK293, SK-N-MC) and mouse neuronal 
tissues - regulation of  non-coding microRNAs (miRNAs). 
Among several miRNAs, Hs_154 is significantly up regu-
lated in infection. Two of  its targets, CCCTC-binding 
factor (CTCF) and epidermal growth factor receptor 
(EGFR), are associated with cell survival; this accounts 
for the role of  Hs_154 in mediating apoptosis. While this 
activation has been found to lower viral replication, apop-
totic cell death is also the basis for WNV pathogenesis.

As in dengue, both structural and non-structural 
proteins play a role in cellular survival after infection. 
WNV capsid (Cp) protein triggers a caspase-dependent 
apoptosis, leading to inflammation, in mouse brain and 
muscle[115]. WNV capsid is dependent upon p53 for its 
apoptotic effects. It has been shown to sequester HDM2, 
a negative regulator of  p53, into the nucleolus. This 
results in a higher stability of  p53, which can then tar-
get Bax to induce apoptosis in MEF cells[116]. Inhibitor-
based studies on four types of  mammalian cells (A549, 
HEK293T, Vero-76, BHK-21) suggest a role for WNV 
capsid (C) protein in the inhibition of  apoptosis through 
Phosphatidylinositol-3-kinase (PI3K)- Akt prosurvival 
pathway[117]. The helicase and protease domains of  NS3 
protein are instrumental in inducing a caspase-8 depen-
dent apoptosis in three types (Neuro 2a, HeLa, and Vero) 
of  mammalian cells[118]. 

Our present knowledge does not suggest any signifi-
cant role of  autophagy in WNV pathogenesis, distin-
guishing it from dengue and Japanese encephalitis virus. 
Though infection induced autophagy in mice brain slice 
and several mammalian cells, it was actually PI3K that 
was involved in viral replication[119,120]. 

Japanese encephalitis virus
Japanese encephalitis virus (JEV) is extremely important 
as it is spreading throughout Asia, China, India, Australia, 
and Pakistan and is responsible for between 12500 to 
17500 deaths reported annually. JEV is transmitted by a 
primary mosquito vector (Culex tritaeniorhynchus) and sec-
ondary mosquito vector (Culex gelidus, Culex fuscocephala 
and Culex vishnui) that primarily target domestic animals 
and human host[121]. Humans are “dead end host”, since 
they cannot infect the feeding mosquitoes because of  low 
viremia. Children are at higher risk for an infection with 
Japanese encephalitis than adults, especially in rural areas. 
They are also at higher risk for death due to their weaker 
immune system as compared to the adults. In addition, 
people who visit Asia and Indonesia are particularly 
prone to this viral infection since they lack the protective 
antibodies. Asymptomatic infection depends on host’s 
age, immunity, general make-up and current health status. 
Symptoms include headache, fever, tremor, gadtrointes-
tinal comfort as well as severe conditions of  encephalitis 
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and Parkinson-like seizures[122]. 
The means of  the entry of  the virus entry into the 

system plays an important role on the progress of  the in-
fection. If  the carrier, the mosquito, bites directly into the 
blood vessel, it is easier for the virus to spread directly to 
the central nervous system.

There have been efforts to make a vaccine against JEV, 
although its successful implementation has been impeded 
by frequent climate changes. The spread of  Japanese en-
cephalitis virus is assisted by wind-blown mosquitoes, bird 
migration and people traveling with infected virus, which 
further spread the disease. Programs in underdeveloped 
countries are established in order to prevent the increasing 
number of  yearly deaths caused by Japanese encephalitis 
virus. These programs include mosquito control by using 
pesticide, mosquito nets, cattle segregation and vaccina-
tion of  cattle as well as humans[121,123]. 

Cell death and survival after infection with japanese 
encephalitis virus 
As shown in Figure 1, JEV-induced apoptotic cell death is 
reliant on endoplasmic reticulum (ER) stress and produc-
tion of  reactive oxygen species (ROS). ER stress-induced 
activation of  UPR factors (CHOP-p38MAPK) is essen-
tial for triggering the apoptotic response in fibroblasts 
(BHK-21) and neuronal cells (N18, NT-2)[124]. Even repli-
cation-incompetent strains (UV-JEV), as shown by Lin et 
al[125], retain their ability to kill neuronal cells (N18, NT-2) 
by inducing ROS production and activating NF-κB. The 
structural E protein from JEV-YL induces apoptotic cy-
totoxicity in HepG2and Vero cells[126]. Earlier studies had 
pointed to a link between non-structural NS3 protein and 
induction of  apoptosis. Transfection of  pEGFP-NS3 
1-619 plasmid (whole NS3 protein) into Vero cells caused 
apoptotic cell death. The same study also evaluated the 
role of  caspases where it was found that NS3 only acti-
vates the intrinsic branch (casp -9,-3) of  apoptosis[127,128]. 

Bcl-2 proteins can prevent apoptosis by controlling 
the release of  cytochrome C. Overexpression of  bcl-2, 
however, did not block viral replication and distribution 
in mouse neuroblastoma N18 cells, though it delayed cell 
death in BHK-21 cells. Moreover, in BHK-21 and CHO 
cells, bcl-2 overexpression established persistent infection 
by virtue of  its antiapoptotic property. Thus, bcl-2 was 
not a fruitful target for preventing infection. It was due to 
the ability of  this virus to activate complex pathways of  
caspase-dependent apoptosis in some cells. Though JEV 
induced classical intrinsic pathway in N18 neuroblastoma 
cells, it activated both caspase-8 (part of  the extrinsic 
pathway) and caspase-9 in a predominantly mitochondria-
dependent pathway in MCF cells[129-131]. 

Japanese Encephalitis virus causes autophagy to 
facilitate viral replication in certain cell types. Li et al[132] 
showed induction of  autophagy by virulent (RP-9) and 
attenuated (RP-2ms) JEV strain in human NT-2 cells. 
They also showed the positive effect of  rapamycin in-
duced autophagy on viral infection, and the reversal of  
that effect on blocking autophagy. Infection with Japa-

nese encephalitis virus triggers innate immune response 
(through RIG-1/IRF-3 and P13K/NF signaling pathway) 
and activates inflammatory cytokines, chemokines and 
IFN-inducible proteins[133]. JEV Infection also induces 
autophagy in human microglial (CHME-5) cell line, lead-
ing to pro-inflammatory cytokine response. 

CONCLUSION 
Dengue is the worst arboviral human disease and most 
lethal among all Flavivirus members. It is remarkable how 
it manipulates the cell survival pathway in many types of  
cells, ultimately increasing viral load. From the literature, 
it is evident that dengue triggers different responses in 
different mammalian cells. Most of  the dengue proteins 
(NS2, NS3, NS5, C, and E) have been reported to trig-
ger extrinsic apoptosis pathway in many cells, including 
neurons, hepatocytes, immune cells, and endothelial cells. 
TNF-α and interleukins (IL-1β, 10) play a key role in this 
mechanism. However, M protein domains induce intrin-
sic apoptosis in neurons and hepatocytes. The virus may 
have alternate strategies to kill the cell, in case one of  the 
cell death pathways is nonfunctional. In some cases, the 
virus has been able to induce different kinds of  stress (ER, 
ROS, NO) conditions that lead to apoptotic cell death 
(Figure 1). Recent discoveries have shown that dengue 
can also activate autophagy in epithelial cells, fibroblasts 
and hepatocytes. It even uses this pathway to increase en-
ergy production, which would facilitate viral replication. 
Nonstructural proteins (NS2, 3, 4) have been involved 
in this process. The ability of  dengue to use cell death 
or protective autophagy for virus replication in specific 
cell types is crucial in dengue’s versatility. Antivirals ad-
dressing the vast repertoire of  the virus will contribute to 
counteracting dengue pathogenesis.

West Nile virus, though not as versatile as dengue, can 
trigger apoptosis in the central nervous system (CNS) to 
establish neuroinvasiveness. With a higher initial WNV 
dose, necrosis has been observed. An interesting aspect 
of  infection with different strains lies in the differen-
tial regulation of  ER stress-UPR pathways to achieve 
increased viral burden. The capsid protein positively 
interacts with p53 in vivo, activating the intrinsic pathway; 
however, in mammalian cells, it blocks apoptosis through 
PI3KI-Akt pathway. NS3 is involved in extrinsic apopto-
sis in neuroblastoma and cervical cancer cells. However, 
we need to know more about the effects of  individual 
WNV proteins. A promising facet of  WNV research is 
the attention focused on miRNA regulation, which needs 
to be extended to the other members of  Flavivirus. This 
approach holds promise for antiviral therapy.

Japanese encephalitis virus, though pathogenetically 
similar to WNV, manipulates both intrinsic and extrinsic 
pathways to its advantage (Figure 1). JEV induces apop-
tosis in many neuronal cells by inducing upstream stress 
(UPR response, ROS production) events. JEV NS3, in 
contrast to DENV and WNV, induces the intrinsic path-
way of  apoptosis. There is also evidence that the virus 
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can infect and replicate even in the absence of  caspase-3, 
as it can induce caspase-6 and activate caspase-8 and -9 
in a mitochondria dependent pathway. Moreover, caspase 
inhibition does not block viral production. Thus this 
Flavivirus appears to rely more on mitochondrial apop-
tosis for its pathogenesis. To add to the severity, it also 
utilizes autophagy to mediate pro-inflammatory cytokine 
response in neuronal cells. 

Under these circumstances, we postulate that the Fla-
vivirus has the ability to manipulate cell survival and in-
nate immune response. The aftermath of  viral invasion is 
dependent on initial dose and cell type. It can also switch 
to different mechanisms to exert its pathogenic effect in 
different cells of  our body. The current understanding 
of  cell death and survival during Flavivirus infection has 
not addressed many critical and complicated issues like 
the role of  apoptosis and autophagy in killing infected 
cells or helping them to survive. Future studies should 
be aimed at finding out the function of  individual viral 
proteins and the regulation of  non-coding RNAs in viral 
infection. More emphasis needs to be put on studying the 
signaling pathways by which viruses regulate the cell sur-
vival pathways. 
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present the key proteomic findings in the recent litera-
ture related to the cornea, aqueous humor, trabecular 
meshwork, iris, ciliary body and lens. Through this we 
identified unique proteins specific to diseases related to 
the anterior eye.  

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Mass spectrometric based proteomics has 
been an indispensable tool for molecular and cellular 
biology. The ability of mass spectrometry to identify 
and precisely quantify thousands of proteins from com-
plex samples has contributed greatly to biology and 
medicine. Through this we have studied protein-protein 
interactions via  affinity-based isolations on a small 
and proteome-wide scale, the mapping of numerous 
organelles, and the generation of quantitative protein 
profiles from diverse species. The anterior segment of 
the eye is one of the most complicated parts of the hu-
man body with over 5000 proteins identified. Proteomic 
analyses of different parts of the eye, in particular the 
anterior eye structures, involve high throughput meth-
ods that help identify proteins and their posttranslation-
al modifications. In this article we review the current 
state of advancement in the identification of anterior 
chamber proteins. We will present our findings in the 
following order: cornea, aqueous humor, trabecular 
meshwork, ciliary body, iris and lens.
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Abstract
Proteins have important functional roles in the body, 
which can be altered in disease states. The eye is a 
complex organ rich in proteins; in particular, the ante-
rior eye is very sophisticated in function and is most 
commonly involved in ophthalmic diseases. Proteomics, 
the large scale study of proteins, has greatly impacted 
our knowledge and understanding of gene function in 
the post-genomic period. The most significant break-
through in proteomics has been mass spectrometric 
identification of proteins, which extends analysis far 
beyond the mere display of proteins that classical tech-
niques provide. Mass spectrometry functions as a “mass 
analyzer” which simplifies the identification and quan-
tification of proteins extracted from biological tissue. 
Mass spectrometric analysis of the anterior eye pro-
teome provides a differential display for protein com-
parison of normal and diseased tissue. In this article we 
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structures responsible for specific functions. Two inves-
tigational approaches are revealing the importance of  
the organization of  molecular constituents in protein 
structure and function. The first approach focuses on 
one specific molecule at a time, the structure of  the mol-
ecule, and the function the molecule is responsible for 
delivering. The second approach uses a high throughput 
analyses, capturing molecules in specific locations, per-
forming experiments that enables us to determine their 
roles, and functions at these locations. The overarching 
goal of  such high throughput experiments is a faster as 
well as greater understanding of  composition, structure, 
and function. Proteomic analyses of  different parts of  
the eye, in particular the anterior eye structures, involve 
high throughput methods that help identify proteins and 
their posttranslational modifications. Proteomics involves 
all methods that help identify proteins in the anterior eye 
chamber. The mass spectrometric methods to identify 
proteins in different locations in the anterior chamber use 
relatively older techniques and do not properly portray 
our current state of  understanding. We aim to review the 
current state of  advancement in identification of  ante-
rior chamber proteins, compared to the data gathered 
in the earliest era of  proteomic mass spectrometry. We 
will present information on the following areas: cornea, 
aqueous humor, trabecular meshwork, ciliary body, iris, 
and lens. As each section of  the anterior eye is uniquely 
different in proteins, functions and pathology, we have 
written the review specific to, what we believe, are the key 
relevant findings in the literature.

MASS SPECTROMETRIC PROTEOMIC 
ANALYSES OF THE CORNEA 
The human cornea is a transparent, avascular, and highly 
specialized connective tissue which reflects and absorbs 
light into the lens and retina, and contributes two thirds 
of  the eye’s refractive power. It is the most densely inner-
vated tissue in the body and acts to protect the eye from 
infection as well as UV light[1]. The cornea also acts as a 
structural barrier providing the eye with biomechanical 
stability[2]. It is approximately 530 μm in thickness and is 
composed of  five layers: the epithelium, Bowman’s layer, 
the stroma, Descemet’s membrane, and the endothe-
lium[3]. The stroma contributes 90% of  corneal volume[3]. 
Diseases of  the cornea are commonly infectious, trau-
matic or genetic in nature and have a tendency to affect 
certain layers of  the cornea[4]. Especially in developing 
countries, corneal disease often contributes to blind-
ness. The most common etiologies of  corneal blindness 
globally include infectious trachoma (C. trachomatis), 
oncherciasis (O. volvulus), leprosy (M. lepromatosis), and 
hypovitaminosis D (xerophthalmia)[5]. Keratoconus and 
Fuch’s dystrophy, diseases of  the stroma and endotheli-
um respectively, are the most common causes of  corneal 
disease resulting in blindness in developed countries[5].  

In recent years, our understanding of  the identities 
and functions of  the various proteins involved in the cor-

nea has grown immensely. In 2005 just over 140 proteins 
were identified in the cornea[3]. Since then, over 3000 
proteins have been characterized[4]. We have chosen here 
to focus on a narrow set of  12 proteins that have been 
identified in multiple studies, and which have important 
cellular functions. 

Transforming growth factor-beta-induced protein 
(TGFβIp) has been identified in multiple corneal pro-
teome studies[3,6,7] and has been implicated in corneal dis-
ease[8]. Numerous isoforms of  TGFβIp have been found 
in the human cornea with 29 isoforms being found in 
earlier mass spectrometric studies in the mid-2000s[3]. 
This protein group’s most frequently described isoform, 
TGFβIp ig-h3, is 683 amino acids in length and has 
been described in several cellular compartments[7]. These 
include the membrane, Golgi apparatus, cytoplasm, en-
doplasmic reticulum, extracellular matrix/space, and the 
mitochondria[7,8]. Its molecular functions include catalysis, 
binding of  nucleotides, signal transduction, regulation 
of  enzyme activity, protein binding, and cell adhesion[7,8]. 
The relative abundance of  this protein has been shown 
to be especially high in the stroma and endothelium[4]. 
In the stroma, it has been characterized as the second 
most abundant protein (17.6% abundance), and in the 
endothelium it has been described as the most abundant 
protein (36.8% abundance)[4]. As mentioned previously, 
this protein has been implicated in several disease states, 
including Fuch’s endothelial corneal dystrophy[8]. Simply 
put, this disease involves the progressive loss of  endo-
thelial cells, which is associated with impaired vision[5]. 
Increased expression and accumulation of  TGFβIp ig-h3 
has also been associated with other corneal and lattice 
dystrophies[5]. Overall, more than 50 mutations of  this 
protein have been noted to be involved in disease states[5].

Peroxiredoxins are a group of  redox associated pro-
teins[6] which play a role in oxidative stress response in the 
cornea[9]. These proteins decompose peroxide molecules[10]. 
It is thought that decreased expression of  these and other 
antioxidant proteins may play a role in Fuch’s dystrophy 
and keratoconus[8,9]. Peroxiredoxins 1, 2, and 6 have consis-
tently been identified in corneal samples by mass spectrom-
etry[3,6,7]. Peroxiredoxin 1 is 199 amino acids in length, and 
is found in the membrane, cytoplasm, nucleus, extracellular 
space, and mitochondria. It is involved in functions such 
as catalysis, DNA and protein binding, and inhibition of  
oxidation[7]. Peroxiredoxin 2 is 198 amino acids in length, 
found in the cytoplasm, nucleus, cytosol, mitochondria, 
organelle lumena, and chromosomes. It is also involved in 
catalysis, protein binding, and inhibition of  oxidation, as 
well as metallic ion binding[7]. Peroxiredoxin 6 is 224 amino 
acids, and is found in similar cellular compartments as Per-
oxiredoxins 1 and 2, as well as in vacuoles; it also has similar 
cellular activities as its predecessors[7].

Transketolase is an enzyme involved in the pentose 
phosphate pathway and is involved in cell transparency[11]. 
It has been shown to be downregulated in keratoconus[12]. 
This protein is 623 amino acids in length and is found in 
the cytoplasm and cytosol. In addition to catalysis, it is 
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involved in protein and metallic ion binding[7].
Mitochondrial ATP synthase subunit alpha has also 

been found in multiple mass spectrometric corneal pro-
teomic investigations. It is made up of  553 amino acids, 
and is found in the membrane, cytoplasm, extracellular 
space, mitochondria, and organelle lumena. In addition 
to its catalytic function, it also binds proteins, metals, and 
nucleotides and has transporter actions[7].  

At a cellular level, L-lactate dehydrogenase is involved 
in fermentation of  pyruvate to lactate. The protein is up-
regulated in keratoconus[12]. The beta chain of  this protein 
is 334 amino acids and is found in the cytoplasm, cytosol, 
nucleus, extracellular space, and mitochondri. It has been 
found in several corneal proteomics investigations, and in 
addition to its catalytic activity, it plays a role in transcrip-
tion regulation, binding of  nucleotides and metal ions, and 
transporter activity. It also regulates other enzymes[7].

F-actin-capping protein subunit alpha-1 is part of  a 
protein which interacts with the fast-growing ends of  
actin filaments to prevent subunit exchange[13]. Its role in 
the cornea is not well characterized but it may play some 
role in colon cancer[14]. The protein is 286 amino acids in 
length and exists in a wide variety of  cellular spaces. In 
addition to its catalytic activity, it is a structural protein, 
binds proteins and metals, regulates enzyme activity, and 
plays a role in redox reactions[7].

Vimentin is a class Ⅲ intermediate filament protein[15]. 
It is composed of  466 amino acids and is seen in the 
cytoskeleton, membrane, cytoplasm, cytosol, and extra-
cellular space. It functions in catalysis, DNA and protein 
binding, motor and transportation activities, and is in-
volved in structural activities[7]. It has been found to be 
increased in the epithelium of  corneas with keratoconus. 
As this protein is generally found in mesenchymal cells, it 
is thought that epithelial to mesenchymal transformation 
may be a possible characteristic of  keratoconus[15].

Annexin A5 is a blood/plasma protein[6] which is 
thought to be involved in cellular apoptosis and its ex-
pression is used to determine cytotoxicity[16]. This protein 
is found in the cytoplasm and extracellular space. It is 
320 amino acids long, and functions in metal and protein 
binding, as well as in the regulation of  enzymes[7].

Keratin, type Ⅱ cytoskeletal 4 is a protein found in 
the cytoskeleton. It is 534 amino acids in length, and 
functions in a wide array of  cellular roles including ca-
talysis, binding of  nucleotides and proteins, and motor 
and structural molecular activities[7]. Epidermal fatty acid-
binding protein is a small cytoplasmic protein of  135 
amino acids, which is primarily involved in catalysis, pro-
tein binding, and transporter activity[7].

Understanding cornea proteomics has helped identify key 
proteins which in turn increased bimolecular understanding 
of  disease and functions of  proteins in wound healing[17,18].

MASS SPECTROMETRIC PROTEOMIC 
ANALYSES OF THE AQUEOUS HUMOR 
The aqueous humor plays a substantial role in maintain-

ing homeostasis within the eye. The pigmented and non-
pigmented ciliary epithelium is responsible for production 
of  aqueous humor, which is secreted into the posterior 
chamber. From the posterior chamber a majority of  the 
aqueous humor traverses the trabecular meshwork, (a filter 
like structure), and flows into the Schlemm’s canal where 
it continues on to bathe the cornea. A small amount of  
the aqueous humor follows a less conventional pathway, 
the uveosceral pathway. The aqueous humor distributes 
through many sections of  the anterior eye and is thus 
a key component in looking for proteomic biomarkers. 
A complication in the investigation of  these biomark-
ers is is that there is only 150-200 μL of  aqueous humor 
in an average age individual and this amount decreases 
with age. There is also a low overall protein concentra-
tion present in the aqueous humor. These obstacles can 
make protein analysis in the aqueous humor challenging 
and with time, specialized techniques have evolved to 
provide more accurate analysis. Through the evolution of  
these specialized techniques, different groups have used 
specific techniques to analyze the protein make-up of  the 
aqueous humor. 

The aqueous humor is abundant in numerous pro-
teins such as antioxidant proteins, immunoregulatory 
proteins, and anti-angiogenic proteins. These proteins 
were identified using Multidimensional Protein Identi-
fication Technology (MudPIT)[19]. protein composition 
of  the aqueous humor is intricate as it is a key regulatory 
component of  the eye. Up to 676 nonredundant proteins 
have been identified in the aqueous humor of  patients 
with no disease. These proteins were identified using 
nanoflow liquid chromatography electrospray ionization 
tandem mass spectrometry (nano-LC-ESI-MS/MS). An 
issue that complicates this type of  identification is the 
high prevalence of  albumin, a protein that which makes 
up 50% of  the proteins in the aqueous humor. Its abun-
dance result in the masking of  less abundant proteins 
during analysis. In order to overcome this issue, immuno-
depletion of  several aqueous humor samples of  albumin, 
transferrin, antitrypsin, haploglobin, fibrinogen, IgG, and 
IgA is commonly performed[13]. The presence of  comple-
ment regulatory molecules, specifically 23 complement 
proteins, demonstrates the importance of  the aqueous 
humor in maintaining a healthy environment and protect-
ing against autoimmune disease. Catalytic enzymes crucial 
for respiratory pathways are also present in the aqueous 
humor, specifically aldolase and ketolase. Angiogenin, 
and angiogenic inducer were present along with angio-
genic inhibitors, specifically PEDF, type Ⅳ collagen, and 
vitamin D binding protein. Finally, members of  the trans-
forming growth factor β (TGFβ), tumor necrosis factor 
(TNF), fibroblast growth factor, interleukin, and growth 
differentiation families were also present in the aqueous 
humor[20]. Taken together, the numerous components 
present in the aqueous humor make it a powerful regula-
tory mechanism for maintaining homeostasis in the eye. 

The identification of  aqueous humor proteins in nor-
mal samples provided a baseline for further investigation 
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to take part in diseased counterparts. The study of  pro-
tein levels in the aqueous humor in diseased individuals 
provides substantial information for potential biomark-
ers to possibly identify disease earlier. Analyzing these 
protein levels also assists in further profiling the protein 
composition of  the aqueous humor. Glaucoma refers 
to a family of  eye optic nerve disorders, some of  which 
are associated with increased intraocular pressure (IOP). 
The most common form of  glaucoma is primary open 
angle glaucoma. Research has been carried out to analyze 
alterations in the protein composition of  the aqueous 
humor in patients with increased IOP. Endothelial leu-
kocyte adhesion molecule 1 (ELAM 1) plays a key role in 
inflammation and is significantly increased in glaucoma-
tous aqueous humor. Interestingly, apolipoprotein B and 
E are present in increased amounts. Typically, these pro-
teins are responsible for in the delivery of  cholesterol to 
cells. Another set of  proteins present are responsible for 
muscle cell differentiation and function, specifically, my-
otrophin, myoblast determination protein 1, myogenin, 
vasodilator-stimulated phosphoprotein, and ankyrin-2. 
Presence of  stress response proteins such as heat shock 
60 kilodaltons (kDa) and 90 kDa proteins as well as ubiq-
uitin fusion degradation 1-like are responsible for the 
removal of  damaged protein. Finally, phospholipase C, β, 
and γ are shown to take part in signal transduction as well 
as neural development[21]. Similarly, in an investigation 
performed in patients with primary congenital glaucoma, 
a select set of  proteins was shown to be upregulated 
and downregulated. Apolipoprotein A-Ⅳ (APOA-Ⅳ) 
is a plasma protein commonly involved in lipid absorp-
tion and transport. This specific protein is increased in 
glaucomatous samples. Albumin was also increased in 
these samples. This protein is crucial for maintenance of  
colloid osmotic pressure of  plasma, antioxidant activity, 
regulation of  normal microvascular permeability as well 
as fatty acid, and hormone transport. Another protein in-
creased in glaucomatous aqueous humor is antithrombin 
3 (ANT3 or SERPINC1), a protease inhibitor belonging 
to the serpin family. There were several proteins down-
regulated in glaucomatous samples including Transthyre-
tin (TTR), Glutathione independent prostaglandin D 
synthase (PTGDS), opticin (OPT), and Retinol binding 
protein 3 IRBP. TTR is the main iodothyronine-binding 
protein that transfers T4 from the blood in the brain 
across the blood-choroid plexus barrier and tends to de-
crease in serum when acute inflammation is taking place. 
PTGDS is responsible for converting prostaglandin 
H2 (PGH2) to prostaglandin D2 (PGD2), common in 
smooth muscle contraction/relaxation as well as platelet 
aggregation inhibition. This protein has been demon-
strated to bind to retinal and retinoic acid, key players in 
tissue development/maintenance. OPT, a member of  the 
small leucine-rich repeats proteoglycan (SLRP) gene fam-
ily is believed to be anti-angiogenic, is present in normal 
aqueous humor. IRBP is a glycoprotein synthesized by 
rods and cones. This protein binds to retinoids as well as 
fatty acids and may act as a retinoid transporter[22]. The 

presence of  these proteins further supports the idea of  
necessary equilibrium between different elements in the 
eye that needs to take place in order to maintain a healthy 
environment. 

The profiling of  the proteins in the aqueous humor 
has given insight to its importance as a regulator in many 
aspects of  the eye. Investigating these proteins in the 
normal state has been as important as investigating those 
in the diseased state. Overall, the investigations carried 
out in this area further supports underline the importance 
of  maintaining specific protein levels in the aqueous hu-
mor. 

MASS SPECTROMETRIC PROTEOMIC 
ANALYSES OF THE TRABECULAR 
MESHWORK  
The trabecular meshwork (TM) plays a fundamental 
role in the regulation of  intraocular pressure (IOP) and 
is pathophysiologically involved in the development of  
glaucoma. The TM can be divided into the uveal, corneo-
scleral and juxtacanalicular meshworks. It consists of  col-
lagen beams, covered by endothelial cells and surrounded 
by extracellular matrix (ECM)[23,24]. Until recently, the 
pathogenesis of  outflow resistance at the TM was largely 
unknown. Understanding the pathogenesis that con-
tributes to outflow resistance has recently increased. We 
now know that TM cell gene expression alters with IOP 
and mechanical stress[25] which can induce changes in cell 
proteins. This can lead to altered cell behavior including 
the increased tendency of  the TM to contract with raised 
IOP[26,27], alterations in metabolic processes, cell adhesion, 
signal transduction, regulation of  transcription, increased 
stretch activated channels[28], and the remodeling of  ex-
tracellular matrix of  TM in POAG[29-32].  

Proteomic analysis of  the TM has played a major role 
in understanding the mechanisms involved in outflow 
obstruction. Over 850 proteins have been identified in 
the TM[32] and multiple studies have found alterations 
in the expression of  proteins when IOP is raised[32-34].
Multiple proteins are altered in location and quantity with 
glaucoma. We previously discovered that cochlin, a pro-
tein of  unknown function is present in conjunction with 
stretch activated channels, in glaucomatous TM in human 
eyes but absent in normal samples[35]. Cochlin was also 
uniquely found in DBA/2J mice with hypertensive IOP 
but absent in DBA2J with a normal IOP[36]. A study by Yu 
et al[32] used 2-DE protein-expression, combined gel-spot 
to identify proteins in the TM of  human donors, some 
of  which were cultured in dexamethasone. This study 
found 877 proteins in human TM, several of  which were 
previously associated with glaucoma. Several proteins be-
longed to cytoskeletal protein families/extracellular matrix 
proteins, such as vimentin, lamin, actin, and annexin. The 
highest proportion of  proteins found were involved in 
metabolic processes (13%), and similar percentages of  
proteins were involved in anti-apoptosis, motility, carbo-
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hydrate metabolism (10%-11%) (Figure 1). In contrast, 
few proteins were found to play roles in cell division and 
cell to cell signaling. Another study which grouped protein 
by their function found the largest number group were in 
protein folding (16.8%) which was significantly more than 
what we and Yu et al[32] found (2.9% and 4.2%). 

Myocilin is a protein found in the TM; mutations in 
this protein have been associated with glaucoma[38-40]. 
Myocilin a prominent component of  TM exosomes, 
suggesting that exosomes could contribute to aqueous 
humour outflow from the trabecular meshwork. As there 
are few studies which have examined TM exosomeoses 
proteomics and exosome protein mutation is involved in 
disease, this is an area of  which deserves further investiga-
tion.

Transforming growth factor beta 2 (TGFβ2) is often 
elevated in the TM of  patients with POAG. Bollinger et 
al[41] examined TGFβ2-induced proteomic changes from 
four donors who were treated with or without TGFβ2. 
Cellular proteins in the TM were then analyzed by liquid 
chromatography-mass spectrometry iTRAQ. This study 
found that TGFβ2 significantly altered 47 proteins. More 
than half  of  the elevated proteins induced extracellular 
matrix remodeling and cytoskeleton interaction. Thirty 
proteins were elevated and 17 decreased after TGFβ2 
treatment. CD9 antigen and mitochondrial superoxide dis-
mutase 2 (SOD2) were the most significantly reduced pro-
teins 64% and 46%, respectively. Interestingly the proteins 
most greatly decreased were from the mitochondria (40%). 
Downregulation of  mitochondrial proteins may result in 
mitochondrial dysfunction and reduced ATP production, 
which may lead to disruption of  outflow dynamics.  

Overall TM proteomic studies have identified multi-
ple proteins alterations associated with hypertensive IOP. 
Modulated protein patterns in glaucomatous eyes have 
emerged through proteomic studies. Future studies may 
look further into the gene expression of  these altered 
proteins for a better understanding of  their occurrence. 

MASS SPECTROMETRIC PROTEOMIC 
ANALYSES OF THE CILIARY BODY
The ciliary body is a circumfirential layer of  tissue behind 
the iris in the anterior chamber of  the eye. Its epithelium 

serves as the main production center of  aqueous humor. 
In recent years, literature regarding the proteome of  the 
ciliary body has been sparse and had utilized immunohis-
tochemistry, immunofluorescence, and Western blot tech-
nology, resulting in the characterization of  fewer than 50 
discrete proteins[42]. However, in 2013 Goel et al[42] pro-
filed the ciliary body proteome utilizing MS/MS analysis 
on an LTQ-Orbitrap Velos ETD mass spectrometer. In 
this study, samples from the human ciliary body were 
processed and run on an SDS-PAGE. The bands were 
subsequently excised and digested with trypsin prior to 
LC-MS/MS analysis. MS data was then searched against 
the NCBI protein database, and 2815 proteins were char-
acterized. Included in these data were proteins previously 
identified using the aforementioned techniques, includ-
ing collagen type ⅩⅧ alpha 1 (COL18A1), cytochrome 
P450 family 1 subfamily B polypeptide 1 (CYP1B1), 
Opticin (OPTC), and aquaporin 1 (AQP1). Several of  
these proteins have possible implications in ocular dis-
ease. OPTC has been investigated as a possible target for 
primary open angle glaucoma. AQP1 is involved in the 
production of  aqueous humor and its movement into the 
anterior chamber[42].

Goel et al[42] also identified a large number (> 2000) of  
proteins which were unknown to exist in the ciliary body. 
Some of  these novel molecules include proteins involved 
in metabolism and energy pathways such as Neutrophil 
cytosol factor 2, Myosin-11, Pyruvate kinase isozymes 
M1/M2, and Alpha-1-antitrypsin. Other proteins such as 
ER lumen protein retaining receptor 2, Tubulin beta-2A 
chain, Exportin-1 are involved in transport mechanisms. 
Exportin-1 is overexpressed in cancer cells. Leukocyte 
surface antigen CD47 and complement C3 are part of  
the immune response mechanism. Desmin is an interme-
diate filament, which when defective is involved in several 
myopathies.

The Goel et al[42] group further investigated the pro-
teins that were common and disparate between the ciliary 
body and plasma, and the ciliary body and aqueous hu-
mor. The majority of  proteins found in the ciliary body 
(1895 of  2791) were also found in the plasma, which 
contained a total of  9393 proteins and therefore had 
7498 unique proteins. In the comparison of  the ciliary 
body and aqueous humor, 211 of  the 2891 ciliary body 
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Figure 1  Comparing common protein functions in trabecular 
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Metabolic process; 9: Protein folding/metabolism; 10: Signal trans-
duction; 11: Transport.



proteins were also found in the aqueous humor, leaving 
321 unique aqueous humor proteins. These comparisons 
are important to know which proteins are natively found 
in the ciliary body, and which of  them may have originat-
ed from elsewhere. In the future, work regarding ciliary 
body proteomics may explore the proteins now known 
to be unique in order to investigate further therapeutic 
targets.

MASS SPECTROMETRIC PROTEOMIC 
ANALYSES OF THE IRIS
Mass spectrometric analyses of  the human iris proteome 
have not been well-published. Other methods of  pro-
teomic analysis have been used on a small number of  
known iris proteins. One such example includes the im-
munohistochemical analysis of  Opticin (OPTC)[43]. The 
is protein was identified using an antibody targeting its 
amino terminal[43,44]. OPTC is the ortholog of  a cDNA 
sequence which has been shown to be expressed abun-
dantly in the iris[42,44]. Mass spectrometric analyses of  this 
and other iris proteins are required to better characterize 
the more complete human anterior chamber proteome.

Mass spectrometric proteomic analyses of the lens 
The Human lens is responsible for the refractive proper-
ties of  the eye. It is avascular and contains one layer of  
epithelium found in the anterior capsule and posterior 
capsule. The lens is mostly acellular, consisting mainly of  
crystalline proteins with some non-crystalline proteins 
also present[44]. Its main function is to change shape and 
thus allow for accommodation of  vision. Another func-
tion of  the lens is to maintain transparency. Loss of  
accommodation results in presbyopia and loss of  trans-
parency results in cataract. There are 3 main types of  
crystalline proteins in the human body, including type α, 
β, and γ. Type α-A is a heat shock and chaperone protein 
and is found mostly in the lens while α-B is ubiquitous 
throughout the human body. It was also known that the 
α-crystallines play a role as heat shock proteins and are 
chaperone proteins. Most recently protein analysis was 
performed in a mice mouse model in which the genes 
responsible for the α-crystallin wereas missing. This was 
carried out to determine what happens with the other 
proteins inside of  the lens giving further insight into 
the development of  cataracts[45]. Wild type and αA/αB 
knockout mice were compared using two-dimensional 
gel electrophoresis and mass spectrometry. There was a 
greater abundance of  histones H2A,H4, and H2B frag-
ment, and a low molecular weight β1-catenin in postnatal 
2 d of  the knockout mice. There was increased abun-
dance of  βB2-crystallin and vimentin in 30 d-old lenses 
of  knockout mice. Gel permeation chromatography 
was able to demonstrate an aggregation of  β-crystalline. 
Therefore, the absence of  crystalline type αA and αB 
resulted in changes of  protein expression indicating that 
lens proteins also result in interactive functions beyond 
just plain functions the. Aggregation of  α crystalline was 

also found by recent Matrix-assisted laser desorption/
ionization (MALDI) studies[4].

Type γ requires the use of  post-translational modifi-
cation in order to maintain its transparency. Given that 
crystallins are life-long proteins, post-translational modifi-
cation may play a role in the development of  cataracts[46]. 
Heat and deamidation (a chemical reaction in which an 
amide functional group is removed from an organic com-
pound and damages the amide-containing side chains of  
asparagine and glutamine) may play a role in the change 
of  the physical properties of  the protein. This study used 
2D LC-MS/MS to examine which major lens proteins 
undergoes deamidation and the exact sites of  deamida-
tion. It was found that all of  the major proteins found in 
the lens were deamidated. Each crystallin protein differed 
in the sites and extents of  deamidation. Many of  the ar-
eas of  deamidatation were characterized by the presence 
of  a basic amino acid one residue from the glutamine and 
asparagine.   

Although the lens consists mostly of  crystalline pro-
teins, the advent of  new analytical techniques allowed for 
analysis of  proteins involved in lens besides crystalline. 
One of  the first complete proteomics studies to address 
the protein inside of  the lens was in 2008[47]. The lens 
from fetal, cataract, and normal lenses were evaluated by 
2D LC-MS/MS and PANTHER was used for protein 
classification. This study identified a total of  231 proteins 
across all of  the lens samples. Fetal samples showed the 
highest amount of  unique proteins compared to cataract 
and normal lenses. A 5-mm core of  lens was used in the 
adult which some lacked epithelial and outer cortical fi-
bers which play a role in the metabolic machinery of  the 
lens. The fetal samples were all pooled together. While 
many studies have shown the crystallin class as the domi-
nant protein, this study showed that many low abundance 
proteins existed in the lens.   

A more recent study[48] identified using MALDI and 
concentrating on the major protein differences for iden-
tification was performed in order to determine the dif-
ferent between the proteins in age-related cataracts and 
normal lens nuclei . Observers graded cataracts and total 
solubilized proteins were compared using gel electropho-
resis. MALDI was used to identify the proteins that had 
different abundances. LC-MS/MS analyses determined 
the compositions of  > 200 kDa molecular weight aggre-
gates found in age related nuclear cataract lens nuclei. It 
was identified that α, β-A3, βA4, βB1, and γD-crystallin 
were involving with the higher molecular weight aggre-
gates. An uncharacterized protein found and this protein, 
along with αA, αB, and γ-D crystallin, were more found 
to be more prone to aggregation. Therefore, aggregation 
of  crystallins may account for the development of  cata-
racts. Also, some enzymes may play a role in the protein 
aggregation and possibly accelerate the process. 

Membrane proteins were purified from young mouse 
lenses and shotgun proteomics was employed in order to 
analyze the membrane proteins of  the mouse lens cells[49]. 
These same techniques were then applied to analyze the 
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human lens protein of  the membrane[50]. HPLC-mass 
spectrometry with multidimensional protein identification 
technology (MudPIT) with and without phosphopeptide 
enrichment was applied for the study of  the proteome of  
the lens membrane. There were 951 proteins that were 
identified in which 379 were membrane and membrane-
associated proteins. Many of  these proteins are respon-
sible for carbohydrate metabolism, proteasome, cell-cell 
signaling and communication, glutathione metabolism 
and actin regulation. 

LOXL-1 protein and apolipoprotein E, both found in 
the extracellular matrix, were abnormal in pseudoexfolia-
tion syndrome, a disease of  the anterior lens capsule[51]. 
This study performed mass spectrometry on isolated sur-
gically removed anterior capsules in patients with pseu-
doexfoliation syndrome. Direct analysis showed LOXL-1 
protein and apoliprotein E which shows that these extra-
cellular matrix proteins play a role in pseudoexfoliation[52]. 
This study employed MALDI imaging on the anterior 
capsule which showed presence of  LOXL-1 protein was 
more abundant in the iris region and apolipoprotein E 
in the pseudoexfoliation deposits in anterior capsule in 
the pupillary area. There could also be significant post-
translational modification involved in promoting the ag-
gregation of  proteins. 

The lens is unique in that it contains many fibers that 
are acellular and proteins that exist for the lifetime of  the 
individual. The advantage of  studying the proteomics 
of  the lens is that it may provide a powerful model for 
the rest of  the human body with regard to understand-
ing the changes involved in proteins that are maintained 
throughout a lifetime. It is essential that the proteins 
maintain transparency, and aggregation may result in lack 
of  solubility resulting in cataracts. Proteomics work has 
showed that α-crystallins play a role in preventing ag-
gregation and serving as chaperone proteins. α-crystallins 
are present only in the lens while α-B crystallin is ubiqui-
tous throughout the human body and dysfunction of  the 
α-B protein has been implicated in many degenerative 
disorders. Post-translational modification also plays a role 
in the lens protein. 

CONCLUSION
Identification of  proteins in different regions of  the 
anterior chamber including the: cornea, aqueous humor, 
trabecular meshwork, ciliary body, and lens has expanded 
in recent years. Among other proteomic methods, mass 
spectrometry has enabled rapid protein sequencing while 
simultaneously determining posttranslational modifica-
tions in the amino acid residues. Mass spectrometry has 
rapidly evolved since 1990, allowing improved iden-
tification of  proteins. Although the advances in mass 
spectrometry had have been rapid, the identification 
of  proteins from tissue or cell samples often remains 
unsatisfactory. Currently approximately 5000 proteins 
from each anterior eye segment tissue or fluid is identi-
fied against a theoretical prediction of  20000 proteins. 

Thus at best approximately 25% of  actual proteins are 
captured compared to theoretical estimates. Part of  the 
reason why protein identification is relatively poor com-
pared to mRNA is due to differences in the chemistry of  
RNA and proteins. The identification of  posttranslational 
modifications of  proteins, remains another frontier in 
mass spectrometry (or any other suitable high throughput 
method) that is yet to be conquered. One important issue 
remaining to be elucidated is the process of  natural aging. 
Several age-related changes that can be easily quantified 
occur in eyes such as prebyopia and the progressive abil-
ity to form sharp images. Several eye diseases are also 
age associated such as age-related macular degeneration 
and glaucoma. important insight into true age related 
changes, and the result of  aging and disease on protein 
turnover. The Current methods do not allow the juxtapo-
sition of  mRNA and protein information together. Mod-
ern proteomic methods lack in their ability to juxtapose 
mRNA and protein information from inactive proteins, 
deactivated proteins, or proteins undergoing degradation. 
These are the avenues for future advancement which will 
expand our insight into how protein-drug interactions 
keeps proteins in their active states. We presented an ac-
count of  current state of  proteins in different regions 
of  anterior eye chamber and what improvement has oc-
curred compared to that in the previous decade. Further 
improvements will enable us to address the question of  
protein turnover in tissues and better enable us to distin-
guish active, inactive, partially degraded, and degraded 
states of  proteins. 
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known alternative PRMT isoforms and provide a ratio-
nale for how they may impact on cancer and represent 
potentially useful targets for the development of novel 
therapeutic strategies.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: This review focuses on the current knowledge 
regarding alternative protein arginine methyltransfer-
ases (PRMT) isoforms and evidence supporting their 
potential impact in cancer. Alternative PRMT isoforms 
have been identified for PRMT1, PRMT2, CARM1 and 
PRMT7 and more may exist for the other PRMT family 
members. The presence of these isoforms adds a layer 
of complexity to the functional roles PRMTs play in nor-
mal and disease contexts. These alternative isoforms 
have unique characteristics that may offer clarification 
to conflicting roles documented in the literature. Finally, 
understanding the specific functions of these isoforms 
is crucial for fully characterizing the therapeutic poten-
tial of PRMTs in cancer.

Baldwin RM, Morettin A, Côté J. Role of PRMTs in cancer: 
Could minor isoforms be leaving a mark? World J Biol Chem 
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INTRODUCTION
Cancer is a leading cause of  death worldwide. As we 
improve our understanding of  the complex biologic pro-
cesses behind this devastating disease we are able to de-
velop improved treatments and increase patient survival. 
The biology of  human tumours has been characterized as 
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Abstract
Protein arginine methyltransferases (PRMTs) catalyze 
the methylation of a variety of protein substrates, many 
of which have been linked to the development, progres-
sion and aggressiveness of different types of cancer. 
Moreover, aberrant expression of PRMTs has been ob-
served in several cancer types. While the link between 
PRMTs and cancer is a relatively new area of interest, 
the functional implications documented thus far war-
rant further investigations into its therapeutic potential. 
However, the expression of these enzymes and the 
regulation of their activity in cancer are still significantly 
understudied. Currently there are nine main members 
of the PRMT family. Further, the existence of alterna-
tively spliced isoforms for several of these family mem-
bers provides an additional layer of complexity. Specifi-
cally, PRMT1, PRMT2, CARM1 and PRMT7 have been 
shown to have alternative isoforms and others may be 
currently unrealized. Our knowledge with respect to the 
relative expression and the specific functions of these 
isoforms is largely lacking and needs attention. Here 
we present a review of the current knowledge of the 
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having six key hallmarks: sustained proliferative capacity, 
evasion of  growth suppressors, resisting death, enabling 
replicative immortality, inducing angiogenesis and acti-
vating invasion and metastasis[1]. Each of  these features 
is distinct, but they all cooperate to promote tumour 
development, growth and aggressiveness. Identifying key 
molecular regulators of  one or more of  these character-
istics is essential in understanding cancer and potentially 
discovering new and better therapeutic strategies.

Arginine methylation is a common posttranslational 
modification that is known to have a role in several cel-
lular processes, including signal transduction, DNA 
repair, transcription, protein subcellular localization and 
RNA processing[2,3]. Arginine methylation, in mammalian 
cells, is catalyzed by a family of  enzymes called protein 
arginine methyltransferases (PRMTs). This family cur-
rently consists of  nine characterized members in higher 
eukaryotes. These enzymes are subdivided into three 
categories based on the type of  methyl mark produced 
on the arginine residue. These methylation reactions are 
depicted in Figure 1. Type Ⅰ [PRMT1, 3, 4 (CARM1), 6, 
and 8] generate ω-NG,NG-asymmetric dimethylarginine. 
Type Ⅱ (PRMT 5 and potentially PRMT9) generate 
ω-NG,N’G-symmetric dimethylarginine. Finally, Type Ⅲ 
generate ω-NG-monomethylarginine residues. Recently, it 
has been demonstrated that PRMT7 is the only bona fide 
type Ⅲ methyltransferase[4,5]. The majority of  arginine 
methylation is catalyzed by PRMT1 (asymmetric) and 
PRMT5 (symmetric), and loss of  expression of  either 
of  these enzymes is not compatible with life[6,7]. Cur-
rently, there is more that 120 known arginine methylated 
proteins, including histone and non-histone proteins[8,9]. 
The list of  arginine methylated protein substrates is con-
stantly growing, and along with it the discovery of  new 

functional roles and involvement in numerous regulatory 
pathways[8,10,11].

Accumulating evidence convincingly shows that ar-
ginine methylation may represent a driving force behind 
the development, progression and aggressiveness of  sev-
eral cancer types. While the link between arginine meth-
ylation and cancer is a relatively new area of  interest, the 
roles that the PRMTs have been shown to play in cancer 
thus far demonstrate their importance. These roles and 
the cancer types that have been studied are highlighted 
in Table 1. Dysregulated PRMT expression has been ob-
served in a number of  human tumours, including lung, 
breast, prostate, colorectal, bladder and leukemia[12-19]. For 
a comprehensive review summarizing the roles of  each 
PRMT family member in cancer see Yang and Bedford’s 
review article in Nature Reviews: Cancer entitled, Protein 
arginine methyltransferases and cancer[20]. The primary 
focus of  this review is to specifically highlight the current 
knowledge regarding alternatively spliced PRMT family 
members and the potentially distinct roles that they play 
in cancer. While a survey within the Ensembl database 
predicts the existence of  alternatively spliced isoforms 
for all the PRMT gene family members, only the expres-
sion of  PRMT1, PRMT2, CARM1 and PRMT7 isoforms 
has been characterized and confirmed in mammalian 
cells[21-27]. 

Interestingly, the majority of  these alternative iso-
forms were found in cancer cells, suggesting they may 
have specific roles in cancer. Characterization of  several 
of  these alternative PRMT isoforms has shown that they 
are differentially expressed in various cell types and they 
possess distinct functional characteristics. However, the 
individual roles that these alternative isoforms play in 
cells remains poorly understood and understudied. There-
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Figure 1  Arginine methylation reactions catalyzed by pro-
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and Type Ⅲ monomethylated arginine residues.



fore, more attention needs to be given to their individual 
functions under normal biological conditions, as well as 
their contribution to diseases such as cancer. PRMTs are 
thought to be potentially useful therapeutic targets for 
the treatment of  diseases such as cancer[28]. Moreover, 
these alternative PRMT isoforms must be taken into ac-
count when designing and evaluating potential candidate 
therapeutic strategies or compounds. This is essential so 
there is a clear understanding of  the precise mechanism 
of  action. Although our knowledge of  the specific roles 
of  these isoforms is limited, there is evidence in the lit-
erature strongly suggesting that they are not redundant. 
While they may share some similar functions, they also 
have clearly distinct roles.

PRMT ISOFORMS AND CANCER
PRMT1
PRMT1 is a Type Ⅰ arginine methyltransferase and is 
responsible for generating upwards of  85% of  the asym-
metrically dimethylated proteins within cells[29]. PRMT1 is 
the most well characterized protein within this family of  
enzymes. While the PRMT1 protein is mainly described 
in the literature as a single entity, it has been identified, 
that at least seven distinct PRMT1 isoforms are gener-
ated by complex alternative splicing in the 5’ region of  
its pre-mRNA[21,30,31]. The exon structure for the identi-
fied PRMT1 isoforms is summarized in Figure 2 and 
detailed in Goulet et al[21] 2007. Each of  these isoforms, 
named PRMT1v1-v7, has distinct characteristics in terms 
of  expression. PRMT1v1 is the most abundantly ex-
pressed isoform and likely represents the isoform that 
is described as PRMT1 in most reports. The expression 
levels of  PRMT1v1, v2 and v3 have all been shown to 
be ubiquitous across tissues[21,30,31]. Interestingly, a higher 
level of  PRMT1v1 mRNA expression is observed in the 
kidney, liver, lung, skeletal muscle and spleen[21]. PRM-
T1v2 mRNA was found to be elevated in the kidney, liver 
and pancreas, while, PRMT1v3 mRNA expression was 
observed at similar levels in all tissues examined (brain, 
heart, kidney, liver, lung, pancreas, skeletal muscle and 

spleen), however at low levels compared to PRMT1v1 
and PRMT1v2. The mRNA expression levels of  PRM-
T1v4 to v7 showed a more tissue specific profile, with 
v4 being detected only in the heart, v5 mainly in the pan-
creas, and v7 observed in the heart and skeletal muscle. 
PRMT1v6 mRNA was not detected in any normal tissues 
examined[21]. Further studies would need to be performed 
to determine if  this differential expression has any corre-
lation with the development of  cancer from a particular 
tissue of  origin. 

While tissue specific expression of  PRMT1 isoforms 
is observed, at the cellular level there are also differences 
in their subcellular localization (Table 2). PRMT1v3, v4, 
v5 and v6 all show an equal distribution of  nuclear and 
cytoplasmic expression[21]. In contrast, PRMT1v1, v2 and 
v7 display a more compartmentalized expression profile 
within cells. PRMT1v1 and v7 display a more intense nu-
clear expression, while PRMT1v2 is expressed predomi-
nantly in the cytoplasm, however this may vary depending 
on cell type and methylation status of  substrates as it was 
clarified by the Fackelmayer lab[32,33]. The cytoplasmic ex-
pression of  PRMT1v2 is due to the retention of  exon 2 
within the N-terminal coding sequence. This short exon 
contains a leucine-rich nuclear export sequence (NES). 
Careful analysis showed that this NES does in fact con-
trol the nuclear export of  PRMT1v2 and that its export 
is dependent on the nuclear export receptor CRM1[21]. 

A comparison of  the PRMT1 isoforms revealed they 
have dstinct enzymatic activity and substrate specificity 
profiles[21]. Additionally, stable isotope labeling by amino 
acids in cell culture (SILAC[34,35]) followed by immuno-
purification of  PRMT1v1 and PRMT1v2 from cells has 
been used to identify their isoform-specific protein bind-
ing partners and/or substrates (Figure 3). In Figure 3 we 
show the full data set from this analysis comparing the 
SILAC ratios of  PRMT1v1 and PRMT1v2 binding pro-
teins (unpublished data). Each point represents an identi-
fied interacting protein. This clearly shows that there is 
a potential set of  PRMT1v1-specific interacting proteins 
(lower right quadrant) and PRMT1v2-specific interacting 
proteins (upper left quadrant). Also, there are some com-
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Table 1 Protein arginine methyltransferases in cancer cells

PRMT Cancer type Role(s) in cancer Ref.

PRMT1 Breast cancer, Lung cancer, Colon cancer, Bladder cancer, 
Acute myeloid leukemia, Mixed lineage leukemia

Cell proliferation and survival, Transformation, Resistance 
to DNA damaging agents, Invasion

[13,15-17,19,
21,36-38] 

PRMT2 Breast cancer Cell proliferation and invasion [22,72]
PRMT3 Breast cancer Cell survival [101,102]
CARM1/PRMT4 Breast cancer, Prostate cancer, Colorectal cancer Cell proliferation [12,14,77-79,88]
PRMT5 Lung cancer, Leukemia, Lymphoma, Melanoma, 

Gastric cancer, Colorectal cancer
Cell proliferation, Transformation, Invasion, Resistance to 

DNA damaging agents
[18,103-109]

PRMT6 Lung cancer, Bladder cancer Cell proliferation [17,110]
PRMT7 Breast cancer Resistance to DNA damaging agents [27,91,92,94]
PRMT8 ND ND
PRMT9 ND ND

ND: Not determined; PRMT: Protein arginine methyltransferase.



mon binding partners (upper left quadrant). This empha-
sizes the importance of  understanding their individual 
functions. Conservation of  these alternatively spliced 
isoforms of  PRMT1 through evolution suggests they are 
likely to each have their own function(s) within cells and 

tissues.
Deregulated PRMT1 expression has been observed 

in a number of  tumour types, which include those of  the 
lung, breast, colon, bladder and leukemia[13,15-17,19,21,36-38]. 
The question is then, “What are the functions of  these 
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Figure 2  Protein arginine methyltransferase variant isoforms. Schematic representation of the identified variant isoforms of protein arginine methyltransferase 
(PRMT) 1, PRMT2, CARM1/PRMT4 and PRMT7. The PRMT1 sequence has 12 exons. Exon organization of the seven identified PRMT1 isoforms are shown. The 
intronic sequences (-) that have been shown to be included in several of these alternative PRMT1 isoform transcripts are due to the splicing sites[21]. PRMT2 is made 
up of 11 exons. The PRMT2L2 transcript is produced as a result of alternative polyadenylation[72]. This silences the 5’ splice site on exon 7 and results in a transcript 
retains a significant portion of intron 7 and a premature termination codon. PRMT2a has a deletion of exons 8-10 with a frame shift that produces 12 new amino 
acids at the C-terminus (n). The PRMT2b isoform has a deletion of exons 7, 8, 9 resulting in a frame shift that generates 83 alternate amino acids at the C-terminus 
(nn). PRMT2g has an in frame deletion of exons 7 to 10. The full-length CARM1 gene, CARM1/CARM1v1/CARM1FL, consists of 16 exons. CARM1v2 is generated 
through retention of the intron 15 sequence; CARM1v3 is produced through the retention of introns 15 (-) and 16 (-). CARM1v4/CARM1Δ15 results from the skipping 
of exon 15[23,24]. The PRMT7 sequence consists of 19 exons. In Hamster cells, these two PRMT7 isoforms (a and b) are thought to be generated by the use of distinct 
5’ translation initiation codons within the primary transcript. The PRMT7b isoform sequence contains 37 extra amino acids at the N-terminus. Alternatively, at least 
2 alternatively spliced PRMT7 isoforms can be produced from the human PRMT7 gene. These two isoforms have the same N- and C-terminal regions but variant 2 
(PRMT7v2) has an in frame deletion of exon 5.



isoforms and do they have specific roles in cancer?” To 
date our knowledge is limited as to the specific functions 
of  each of  these PRMT1 isoforms. However, there is 
evidence showing potential individual roles for them in 
cancer. In breast cancer, both the mRNA and protein 
expression of  several alternative PRMT1 isoforms is el-
evated (Table 2)[21,31]. This is observed not only in breast 
cancer cell lines, but also in breast tumours. Specifically, 
the mRNA expression of  PRMT1v1, v2, v3 and v7 is 
elevated across several breast cancer cell lines compared 
to a non-transformed mammary epithelial cell line[21]. 
In contrast, PRMT1v5 and v6 were upregulated only 
in a subset of  breast cancer cell lines. Furthermore, 
PRMT1v1, v2 and v3 mRNA expression was increased in 
breast cancer tumour tissue compared to normal tissue. 
Interestingly, while this study concluded an overall upreg-
ulation of  PRMT1 alternative isoforms in breast cancer, 
the cytoplasmically localized PRMT1v2 isoform had the 
greatest increase in expression in breast cancer compared 
to PRMT1v1, the most abundantly expressed isoform. 
It is difficult to assess the protein expression of  each of  
these individual isoforms due to the sequence similarities 
between them. However, in the case of  PRMT1v2, ex-
ploitation of  the exon 2 sequence has allowed for a more 
specific examination. Indeed, results have shown that 
PRMT1v2 protein expression is elevated in breast cancer 
cells[21]. A recent clinical assessment of  PRMT1v1, v2 
and v3 expression within breast cancer tissues has identi-
fied that high PRMT1v1 mRNA expression correlates 
with poor patient prognosis and a reduced disease-free 
survival[16]. An examination of  PRMT1 protein expres-
sion within breast tumours via immunohistochemistry 
demonstrated a predominantly cytoplasmic expression 
and only in rare cases nuclear expression. We, and others 

have shown that PRMT1v2 is predominantly localized to 
the cytoplasm[21,32,39]. Therefore, one could speculate that 
PRMT1v2 could represent a significant proportion of  
the cytoplasmic PRMT1 detected in these breast tumour 
samples. This evidence shows that the expression of  the 
PRMT1v2 isoform is elevated in breast tumours and it 
may have its own unique contributions to breast cancer 
progression. This also emphasizes the need to study these 
alternative isoform individually, in order to determine 
their specific functions and contribution to disease. While 
this has been mainly assessed in breast cancer thus far, 
it does not rule out that these PRMT1 isoforms may be 
expressed in other cancer types as well and this should be 
explored further.

The involvement of  PRMT1 in cancer is supported 
by evidence showing its involvement in pivotal oncogenic 
processes. PRMT1 plays an active role in MLL-mediated 
transformation of  primary myeloid progenitor cells[13]. 
PRMT1 has also been shown to have a significant role 
in cell proliferation/viability and cell cycle progression. 
Depletion of  PRMT1 resulted in a significant decrease 
in the proliferation of  osteosarcoma, breast, bladder and 
lung cancer cell lines[6,17,37]. This reduction in cell prolif-
eration was associated with cell cycle arrest at the G0/G1 
phase. Additionally, breast cancer cells showed a loss of  
cyclin D1 and increase in p21cip1 expression, indicative 
of  a cell cycle arrest at this phase[37]. While these studies 
examined PRMT1 as a whole, PRMT1 isoform-specific 
contributions have also been investigated. The specific 
depletion of  the PRMT1v2 isoform using RNA interfer-
ence in breast cancer cells resulted in a significant reduc-
tion in cell viability and growth[40]. This decreased cell 
viability was attributed, at least in part, to an induction of  
apoptosis occurring with the suppression of  PRMT1v2 
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Table 2 Protein arginine methyltransferase isoform specific subcellular localization and current cancer cell types in which they have 
been shown to be expressed

PRMT isoform Molecular 
weight (kDa)

Subcellular localization Cancer cell type Ref.

PRMT1v1 40.5 Predominantly nuclear Breast cancer cell lines and tumour samples, cervical cancers cells [21]
PRMT1v2 42.5 Predominantly cytoplasmic Breast cancer cell lines and tumour samples, cervical cancers cells [21,39]
PRMT1v3 39.9 Cytoplasmic and nuclear Breast cancer cell lines and tumour samples [21]
PRMT1v4 40.1 Cytoplasmic and nuclear Breast cancer cell lines [21]
PRMT1v5 39.4 Cytoplasmic and nuclear Breast cancer cell lines [21]
PRMT1v6 37.7 Cytoplasmic and nuclear Breast cancer cell lines [21]
PRMT1v7 36.7 Predominantly nuclear Breast cancer cell lines [21]
PRMT2 48.5 Predominantly nuclear, excluding nucleoli Breast cancer cell lines and tumour samples [22,72]
PRMT2L2 32 Predominantly cytoplasmic Breast cancer cell lines and tumour samples [72]
PRMT2a 32.6 Predominantly nuclear, excluding nucleoli Breast cancer cell lines and tumour samples [22]
PRMT2b 34 Cytoplasmic and nuclear, including nucleoli Breast cancer cell lines and tumour samples [22]
PRMT2g 25.8 Predominantly nuclear, excluding nucleoli Breast cancer cell lines and tumour samples [22]
CARM1/CARM1v1/
CARM1FL

66 ND Breast cancer cell lines [23,24]

CARM1v2 71 ND Breast cancer cell lines [23,24]
CARM1v3 63 ND Breast cancer cell lines [23,24]
CARM1v4/CARM1Δ15 64 ND Breast cancer cell lines [23,24]
PRMT7a 78 Cytoplasmic and nuclear ND [27]
PRMT7b 82 Predominantly cytoplasmic ND [27]

ND: Not determined; PRMT: Protein arginine methyltransferase.



expression. Additionally, breast cancer cells overexpress-
ing PRMT1v2 showed an increased growth rate, which 
was not observed upon PRMT1v1 overexpression and 
points to isoform specific effects. This evidence suggests 
that in these breast cancers cells PRMT1v2 may repre-
sent a key cell survival-promoting factor. Overall, this 
evidence links PRMT1 to the self-sustaining proliferative 
signaling acquired by cancer cells, enabling them to grow 
and survive.

The impact that PRMT1 has on the survival and ag-
gressiveness of  cancer cells is becoming increasingly 
evident with the identification of  new intracellular sub-
strates. It has been demonstrated that the asymmetric 
dimethylation of  histone H4R3 is associated with active 
transcription and increased tumour grade in prostate 
cancer[41-43]. However, the downstream consequences of  
this methylation event are poorly understood in most 
cases[44]. Many of  the recently identified PRMT1 sub-
strates are key regulators of  cancer cell growth, survival 
and invasion signaling. PRMT1 has been shown to influ-
ence receptor activation at the cell surface through direct 
methylation of  the receptor or indirect methylation of  a 
receptor associated protein. PRMT1 was shown to direct-
ly methylate the estrogen receptor a (ERa) at arginine (R) 
260 and affects its downstream signaling[37,45]. This results 

in cytoplasmic retention of  ERa and the interaction of  
ERa with Src, focal adhesion kinase (FAK) and the regu-
latory subunit of  PI-3 kinase (p85). All three of  which 
are involved in oncogenic intracellular signaling that 
promotes cancer cell survival and invasiveness[46-50]. Fur-
thermore, loss of  this methylation site on ERa, by point 
mutation, impaired downstream signaling, as evidenced 
by a loss of  PKB/Akt phosphorylation. Recently, it was 
shown that PRMT1 is involved in the induction of  trans-
forming growth factor (TGF) b signaling in response to 
bone morphogenetic protein (BMP) binding its TGFb 
receptors, RⅠ and RⅡ[51]. Activation of  this receptor is 
achieved through the ligation and dimerization of  the R
Ⅰ and RⅡ receptors[52]. The RⅠ receptor is held in an 
inactive state by its association with Smad 6. Upon BMP 
ligation and dimerization of  RⅠ and RⅡ, PRMT1 meth-
ylates Smad 6, causing its dissociation from RI and activa-
tion, thereby inducing BMP signaling which has a role in 
cancer stem cell proliferation and cancer cell invasion[53]. 
PRMT1 has also been shown to interact with PRMT8[54]. 
PRMT8 harbours a unique property, as it is tethered to 
the plasma membrane via an N-terminal myristoylation 
motif. Additionally, PRMT8 is specifically only expressed 
in brain tissue. This PRMT1-PRMT8 interaction effec-
tively localizes PRMT1 activity at the plasma membrane 
and could potentially be affecting a distinct set of  sub-
strates. A specific role for PRMT8 in cancer has not been 
examined. These functions of  PRMT1 occur in the cyto-
plasm of  cells, and the RNA interference method used in 
these studies targeted all PRMT1 isoforms. Therefore, it 
would be of  interest to assess whether specific PRMT1 
isoforms might differentially contribute to the above-
mentioned regulatory pathways. This would offer not 
only more functional understanding, but therapeutic in-
sight as well.

PRMT1 has been shown to methylate key cytoplasmic 
proteins that are linked to apoptotic signaling pathways. 
Intriguingly, there have been conflicting roles presented 
for PRMT1 in apoptotic signal regulation. One study 
demonstrated that PRMT1 methylates apoptosis signal-
regulating kinase 1 (ASK1) and this inhibits its activity[55]. 
This methylation promotes the interaction of  ASK1 with 
its negative regulator, thioredoxin. As a consequence 
breast cancer cells were shown to be more resistant to 
treatment with paclitaxel. In contrast, the BCL-2 antago-
nist of  cell death (BAD) has also been identified as a 
PRMT1 substrate in breast cancer cells[56]. This methyla-
tion prevents PKB/Akt mediated phosphorylation of  
BAD, thus preventing its inactivation, resulting in en-
hanced BAD-induced apoptosis. These conflicting roles 
highlight the complex role that methylation plays within 
cellular signaling pathways. These observations were seen 
in two distinct breast cancer cells, MDA-MB-231 and 
MCF7 respectively. Therefore, it is unknown whether 
these observations are due to cell specific behaviors or 
more interestingly the genetic differences between these 
two distinct breast cancer cells. Furthermore, they may 
also be influenced by differential expression of  alterna-
tive PRMT1 isoforms, potentially reflecting differences in 
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Figure 3  Protein arginine methyltransferase 1v1 and protein arginine 
methyltransferase 1v2 have potentially different interacting protein pro-
files. Stable isotope labeling by amino acids in cell culture (SILAC) and mass 
spectrometry was used to identify protein arginine methyltransferase (PRMT) 
1v1 protein binding partners and PRMT1v2 protein binding partners. Cells sta-
bly expressing GFP alone, GFP-tagged PRMT1v1 or GFP-tagged PRMT1v2 
were grown independently in media containing light (L), medium (M) and heavy 
(H) isotopes of arginine and lysine residues, respectively. Protein lysates were 
collected, immunoprecipitated for GFP (isolation of PRMT1v1 and PRMT1v2 in-
teracting protein), and subjected to mass spectrometry for peptide identification. 
The Log2 of the SILAC ratios for the peptides identified from this experiment 
are plotted on the scatter plot. The x-axis is the Log2 of the H:L SILAC ratio or 
PRMT1v2 interacting proteins. The y-axis is the Log2 of the M:L SILAC ratio or 
PRMT1v1 interacting proteins. Each data point represents a single protein that 
was identified in this experiment. The greater this ratio is for a protein, the higher 
the probability of the interaction being real. This revealed a protein interacting 
profile identifying PRMT1v1-specific interacting proteins (PRMT1v1 quadrant), 
PRMT1v2-specific interacting proteins (PRMT1v2 quadrant) and common inter-
acting proteins (PRMT1v1/PRMT1v2 quadrant; unpublished data). These results 
require further validation.



function and substrate specificities within cancer cells.
A recent study identified Axin, a mainly cytoplasmic 

protein, as a PRMT1 substrate[57]. Importantly, it was 
shown that Axin could be methylated by two PRMT1 
isoforms, PRMT1v1 and PRMT1v2 in vitro. However, 
this methylation analysis was not conducted within cells 
and would have been a very informative experiment, con-
sidering both Axin and PRMT1v2 share a cytoplasmic lo-
calization. Axin is a critical scaffolding protein that com-
plexes with adenomatous polyposis coli (APC), casein 
kinase 1 (CK1) and glycogen synthase kinase 3b (GSK3b), 
forming a degradation complex. This complex negatively 
regulates Wnt signaling and impacts actin cytoskeletal 
dynamics through the degradation of  b-catenin[57,58]. 
Methylation of  Axin by PRMT1 increases Axin protein 
stability, resulting in decreased b-catenin protein levels. 
Interestingly, isoform specific overexpression of  PRM-
T1v1 or PRMT1v2 in a weakly invasive breast cancer 
cell line (MCF7) resulted in an increase in cell motility[40]. 
However, only the overexpression of  the PRMT1v2 
isoform increased cell invasion through a Matrigel bar-
rier. Additionally, specific depletion of  PRMT1v2 in an 
invasive breast cancer cell line, MDA-MB-231, resulted in 
decreased invasion through a Matrigel barrier. PRMT1v2 
overexpression caused a decrease in b-catenin protein 
expression, which was not seen with the overexpression 
of  PRMT1v1. This loss in b-catenin protein expression 
was directly linked to the PRMT1v2-induced invasion 
observed in breast cancer cells. Furthermore, PRMT1v2 
enzymatic activities as well as proper subcellular localiza-
tion were required for its ability to promote invasion. 
Therefore, it is conceivable that within cells Axin is pref-
erentially methylated by PRMT1v2, thereby regulating 
b-catenin protein levels. This evidence has shown for the 
first time direct functional differences between PRMT1 
isoforms in cancer, and identified a specific role for 
PRMT1v2 in promoting breast cancer cell invasion.

PRMT1 methylates several proteins within the nu-
cleus that are involved in transcription, telomere stability 
and DNA repair. Similarly to the methylation of  BAD, 
PRMT1 methylates the forkhead box protein 1 (FOXO1) 
at R248 and R250 blocking PKB/Akt-mediated phos-
phorylation of  S253[59]. This methylation results in nucle-
ar retention of  FOXO1, increased transcriptional activity 
and increased oxidative-stress induced cell death. This 
evidence again supports a role for PRMT1 promoting cell 
death. PRMT1 also affects telomere length and stability, 
which impacts the replicative capacity of  cancer cells[1,60]. 
PRMT1 methylates the telomeric repeat binding factor 
2 (TRF2), thereby regulating its association with telo-
meres. TRF2 is a component of  the sheltering complex 
that binds telomeric DNA and functions to protect telo-
meres and maintain their length. Depletion of  PRMT1 
in cancer cells increased the association of  TRF2 with 
telomeres and promoted shortening. This supports a role 
for PRMT1 in dysregulated cancer cell replication. Addi-
tionally, PRMT1 is linked to the DNA damage response 
and DNA repair pathways through the methylation of  

MRE11 and p53 binding protein 1 (53BP1). PRMT1 
has been shown to methylate MRE11 and 53BP1 within 
their GAR motif[61-63]. Methylation of  MRE11 regulates 
its DNA exonuclease activity in response to DNA dam-
age[61]. Similarly, methylation of  53BP1 is necessary for 
its DNA binding activity and localization to sites of  
DNA damage[63]. Mutation of  this methylation motif  in 
both MRE11 and 53BP1 disrupts the functions of  these 
two key proteins in the DNA damage pathway. Finally, 
PRMT1 was shown to methylate the tumour suppressor 
gene BRCA1[36]. Methylation of  BRCA1 had a significant 
impact on its ability to bind to different gene promot-
ers, adding a level of  complexity to the transcriptional 
regulating function of  PRMT1. It would be interesting to 
determine if  these effects are isoform specific, as it has 
been shown that the PRMT1v1 isoform is predominantly 
localized to the nucleus.

These studies demonstrate that PRMT1 has a signifi-
cant impact on the vital processes and signaling that are 
involved in the development, progression and aggressive-
ness of  cancer cells. The majority of  these studies have 
examined PRMT1 as one single enzyme, however the 
existence of  the distinct PRMT1 isoforms adds a level of  
complexity that requires further study and clarification. 
This evidence suggests that PRMT1 may be a potentially 
valuable therapeutic target for the treatment of  several 
cancer types, however our knowledge of  this target is 
limited due to our lack of  understanding of  the precise 
roles of  the alternative isoforms that are present.

PRMT2
PRMT2, also known as HRMT1L1, was discovered 
through its sequence homology with the catalytic domain 
of  PRMT1 (approximately 50%)[30]. Interestingly, within 
its sequence it contains an Src homology 3 (SH3) binding 
domain, which potentially links it to many intracellular 
processes. Initially, it had no characterized methyltransfer-
ease activity. However, more recent evidence has shown 
that it possesses Type Ⅰ arginine methyltransferase ac-
tivity, albeit much lower than that of  PRMT1[64]. There 
is limited knowledge with regards to PRMT2 methyl 
substrates. Evidence has shown PRMT2 is recruited by 
b-catenin to histone H3 where it deposits an asymmetric 
dimethyl mark on R8 of  target gene promoters[65]. How-
ever, further experiments are required in order to gener-
ate a more complete substrate repertoire for PRMT2. 
Nevertheless, it has been demonstrated that PRMT2 can 
affect the activation of  several key receptors via a co-
activator function within cells. PRMT2 has been shown 
to interact with and enhance the transactivation of  ERa, 
progesterone receptor (PR), androgen receptor (AR), 
peroxisome proliferator-activated receptor g (PPARg) 
and the retinoic acid receptor a (RARa) in a ligand inde-
pendent fashion[66]. Interestingly, the activation of  these 
receptors within cells has both distinct and in some cases 
opposing effects. Activation of  ERa, PR and AR has 
been implicated in tumour cell growth and progression, 
while PPARg and RARa activation results in growth ar-
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rest and apoptosis[67-71]. This suggests that the functional 
role PRMT2 plays within cells is quite diverse.

Recently, in two separate papers by Zhong et al[22,72], 
four alternatively spliced PRMT2 isoforms (PRMT2L2, 
PRMT2a, b, and g) in addition to the original PRMT2 
isoform were identified. The PRMT2 gene consists of  
11 exons and these alternative isoforms are generated 
through alterations in sequence that occur from exon 
7 to exon 10 (Figure 2). The first report identified a 
novel PRMT2L2 transcript that is produced as a result 
of  alternative polyadenylation[72]. This polyadenylation 
silences the 5’ splice site on exon 7 and results in a tran-
script that retains a significant portion of  intron 7 and a 
premature termination codon. Subsequently, they identi-
fied PRMT2a, b and g and showed that these isoforms 
are generated through splicing events occurring in the 3’ 
C-terminal region of  the PRMT2 pre-mRNA leading to 
exon exclusion[22]. PRMT2a has a deletion of  exons 8-10 
with a frame shift that produces 12 new amino acids at 
the C-terminus. The PRMT2b isoform has a deletion of  
exons 7, 8, 9 resulting in a frame shift that generates 83 
alternate amino acids at the C-terminus, while PRMT2g 
has an in frame deletion of  exons 7 to 10. All of  these 
deletions in the alternatively spliced isoforms result in 
the loss of  conserved protein arginine methyltransferase 
motifs. They have each lost domain Ⅲ and the THW 
loop. The THW loop has been shown to form part to the 
AdoMet-binding pocket with domains Ⅰ and post Ⅰ[73], 
therefore these variant isoforms may lack arginine meth-
ylation activity. Methylation activity of  these isoforms has 
not yet been examined. An examination of  the subcellu-
lar localization of  GFP tagged PRMT2 isoforms showed 
that PRMT2, PRMT2a and PRMT2g have a predomi-
nantly nuclear localization, excluding the nucleolus (Table 
2)[22]. The PRMT2b isoform showed a relatively even 
distribution throughout the nucleus, including the nucleo-
lus, and also localized to the cytoplasm within cells. The 
PRMT2L2 had a predominantly cytoplasmic localization 
with concentrated perinuclear staining observed[72]. It is 
thought that the 3’ sequence may impact the localization 
of  these isoforms.

Characterization of  these alternative isoforms showed 
differential expression across a panel of  breast cancer 
cell lines (Table 2). Interestingly, mRNA and protein ex-
pression of  all PRMT2 isoforms are elevated in ER, PR-
positive cell lines (MCF7, T47D, BT474 and ZR-75-1) 
compare to double negative cell lines (MDA-MB-231, 
MDA-MB-453 and SK-BR-3)[22,72]. Furthermore, in breast 
tumour samples, the mRNA expression of  all PRMT2 
isoforms was shown to be significantly increased in breast 
tumour tissues compared to normal adjacent breast sam-
ples. Additionally, the expression of  each isoform was 
shown to be slightly higher in ER-positive compared to 
ER-negative tumours. Moreover, an immunohistochemi-
cal analysis, which did not differentiate between isoforms, 
showed that PRMT2 protein expression is elevated in 
breast tumour samples compared to normal breast tis-
sue[22]. Additionally, similar to the mRNA, PRMT2 pro-

tein expression was elevated to a greater extent in ER-
positive tumours compared to ER-negative tumours. 

A functional assessment of  the PRMT2 isoforms 
showed that they are able to directly bind and enhance 
estrogen-mediated transactivation of  ERa, and also en-
hance the promoter activity of  the downstream target 
gene, snail[22,72]. Increased snail transcriptional activity is 
associated with an increased cancer cell invasive poten-
tial[74]. Interestingly, all the isoforms had a lower tran-
scriptional activity compared to PRMT2. Additionally, 
PRMT2b also had the lowest estrogen stimulated tran-
scriptional activity and showed the lowest interaction af-
finity for ERa. This demonstrates that these isoform may 
perform different functions within cells. This interaction 
with ERa occurs via the N-terminus of  the PRMT2 iso-
forms. Each PRMT2 isoform was also shown to directly 
bind to the AR. Intriguingly, it was revealed that PRMT2 
negatively impacts the proliferation of  ERa positive 
breast cancer cells in response to estrogen stimulation[22]. 
Depletion of  the PRMT2 isoforms caused an increase 
in estrogen-induced proliferation and an enhancement 
in E2F expression and downstream activity. This is con-
sistent with results showing that PRMT2 can bind to 
retinoblastoma protein (RB), and this interaction causes 
repression of  E2F transcriptional activity[75]. It should 
be highlighted that the increase in proliferation may be 
specific to the original PRMT2 isoform, as depletion of  
this specific isoform caused a result similar in magnitude 
to the depletion of  all four isoforms (PRMT2, PRMT2a, 
PRMT2b, PRMT2g) simultaneously. Therefore, the 
contribution of  the PRMT2a, PRMT2b, PRMT2g iso-
forms to this proliferation phenotype is unclear. Similar 
to PRMT1, further research is required into the specific 
functions of  these newly identified PRMT2 isoforms in 
order to determine their exact contributions to cancer 
development and progression. Nevertheless, these results 
demonstrate that the expression of  PRMT2 and its alter-
native isoforms are clearly positively correlated with ERa 
status in breast cancers, consistent with a regulatory role 
in this pathway.

PRMT4/CARM1
PRMT4, more commonly known as Co-activator-associ-
ated arginine methyltransferase 1 (CARM1), was originally 
identified through its binding to GRIP1, the p160 steroid 
receptor co-activator[76]. It is involved in the regulation of  
a number of  cellular processes including, transcription, 
pre-mRNA splicing, cell cycle progression and the DNA 
damage response. CARM1 is a type Ⅰ arginine methyl-
transferase. In contrast to other type Ⅰ PRMTs, which 
generally recognize substrate GAR motifs, it has no 
known substrate methylation motif[8,44]. CARM1 is most 
well characterized for its co-activator role in transcription 
which it performs through its interaction and methylation 
of  a diverse substrate repertoire, including both histone 
and non-histone proteins[77-81]. The activity of  CARM1 
has also been shown to be influenced by posttranslational 
modifications. Specifically, CARM1 can be phosphorylat-
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ed at several sites that can inhibit both dimerization (S229) 
and AdoMet binding (S217)[82,83]. Alternatively, phosphor-
ylation at another site (S448) facilitates association with 
the ERa and stimulates ligand-independent activation of  
ERa[84]. Recently, it was identified that CARM1 is also 
regulated by auto-methylation[85]. The auto-methylation 
site was mapped to R551 in exon 15 of  the mouse ho-
molog of  CARM1. This site is conserved in all vertebrate 
CARM1 proteins. Mutation of  this auto-methylation site 
did not affect the enzymatic activity of  CARM1, however 
it significantly impaired both CARM1-activated ERa me-
diated transcription and CARM1 regulated pre-mRNA 
splicing. Furthermore, it has been shown that essentially 
100% of  CARM1 is auto-methylated at R551 in cells[24]. 
Therefore, the regulation of  CARM1 activity appears to 
be complex.

The expression of  CARM1 has been shown to be 
dysregulated in colorectal, prostate and breast can-
cer[12,14,15]. CARM1 was found to be overexpressed in a 
significant number of  colorectal tumours[14]. In prostate 
cancer, CARM1 was found to be overexpressed not only 
in tumours, but also in prostatic intraepithelial neopla-
sia (PIN). PINs are thought to be a precursor to the 
development of  prostate cancer[12,14]. Finally, CARM1 
expression was also found to be upregulated in breast 
cancer[14,86]. Interestingly, in the study conducted by Kim 
et al[14], for both prostate and breast cancers the expres-
sion level of  CARM1 was lower. In a more recent study 
by Cheng et al[86], CARM1 expression was observed to 
be increased in invasive breast cancer, correlating with 
high tumour grade and to a greater extent with HER2, 
p53 and Ki-67 expression. CARM1 expression showed 
a lower correlative rate with ER and PR expression. The 
results from these studies are surprising given the role 
that CARM1 plays in the association and co-activation of  
ERa and AR[87,88]. They suggest that CARM1 has a multi-
faceted contribution to the development and progression 
of  cancers. Furthermore, it shows that CARM1 may be 
an informative prognostic marker for breast cancer.

Within tumour cells, CARM1 plays a role in regulat-
ing cell proliferation and survival through its interaction 
and cooperation with several critical cancer related pro-
teins. CARM1 is recruited to the promoter of  the cyclin 
E1 gene, where it acts as a transcriptional co-activator 
in regulating cyclin E1 protein expression. Furthermore, 
both CARM1 and cyclin E1 were shown to be co-over-
expressed and correlated with grade 3 breast tumours[78]. 
CARM1 has also been shown to be necessary for estro-
gen-stimulated proliferation of  breast cancer cells[77]. This 
occurs via estrogen-stimulated methylation of  H3R17 
by CARM1, resulting in expression of  the cell cycle 
regulator E2F1. Moreover, CARM1 is involved in the 
regulation of  both the stability and activity of  AIB1, a 
transcriptional co-activator that is often overexpressed in 
breast tumours. Additionally, it has been recently shown 
that CARM1 can promote breast cancer cell migration 
and metastasis through the methylation of  BAF155, a 
component of  the chromatin-remodeling complex[89].

While these studies define a role for CARM1 in 
promoting cancer progression, a study by Al-Dhaheri et 
al[79] showed some conflicting effects. Overexpression of  
CARM1 in MCF7 breast cancer cells, an ER+ cell line, 
inhibited estrogen-stimulated cell growth, while over-
expression or depletion of  CARM1 in MDA-MB-231 
(ER-) breast cancer cells had no effect on their growth. 
Interestingly, the inhibited cell growth observed in MCF7 
cells with CARM1 overexpression was accompanied by 
increased expression of  cell cycle inhibitors, p21cip1 and 
p27kip1 and a change in cell morphology reminiscent of  a 
more differentiated phenotype. Additionally, CARM1 was 
shown to repress the expression of  approximately 16% 
of  estrogen-activated target genes. An expression analysis 
in a set of  ER+ tumours showed that CARM1 expres-
sion positively correlates with ERa expression. However, 
it inversely correlated with tumour grade. It should also 
be noted that a recent report suggested that only small 
proportion of  endogenous CARM1 protein expression 
is required in order to perform its biological functions 
in cells[89]. Therefore, suppression of  100% of  CARM1 
protein expression is required in experimentation because 
it is thought that only a very small amount of  CARM1 
protein is necessary for its normal functioning. These 
reports suggest that a further understanding of  CARM1 
regulation and function is required in order to clarify its 
role and potential marker/therapeutic value in cancer.

A plausible explanation for these opposing results in 
breast cancer cells is the existence of  alternatively spliced 
isoforms of  CARM1. In the literature there are two pa-
pers that describe the presence of  distinct alternatively 
spliced CARM1 isoforms. The first by Ohkura et al[23] 
describes, that in normal rat tissue, four isoforms are 
transcribed from the CARM1 gene; the primary isoform 
CARM1 (CARM1v1) and three alternative isoforms, v2, 
v3 and v4 (Figure 2). All four contain the arginine meth-
yltransferase domain and the GRIP1-binding domain. 
The primary CARM1 isoform, CARM1v1, consists of  
16 exons. CARM1v2 is generated through retention of  
the intron 15 sequence, CARM1v3 is produced through 
the retention of  introns 15 and 16 and CARM1v4 results 
from the skipping of  exon 15[23]. Each of  these enzymes 
showed a distinct mRNA expression profile when exam-
ined across a panel of  normal rat tissues. Functionally, 
the CARM1v3 isoform was shown to alter the splicing 
pattern of  both E1A and CD44 reporters. This was not 
observed with the other isoforms suggesting they may 
have different functions. The splicing activity demonstrat-
ed for CARM1v3 was shown to be independent of  the 
CARM1v3 methylation activity. In contrast to this, Cheng 
et al[90] showed that CARM1 enzymatic activity is required 
for its effect on alternative splicing of  the CD44 pre-
mRNA, which is thought to occur co-transcriptionally. 
They also suggest that while CARM1v3 is an alternative 
isoform, it may represent a very rare form not playing a 
major role in cells. Hence the precise biological roles of  
these CARM1 isoforms remains unclear.

Alternatively, in the second paper, Wang et al[24] 
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showed that in human cells and tissues, two CARM1 
isoforms are present. These are designated CARM1 full 
length (CARM1FL) and CARM1Δ15 (Figure 2). The 
CARM1Δ15 is a transcript in which exon 15 is excluded 
by alternative splicing. This alternative isoform represents 
the CARM1v4 isoform described previously. The other 
two isoforms were not detected in human cells or tissues. 
Importantly, exclusion of  exon 15 removes the auto-
methylation site that can functionally regulate CARM1, 
however it does not impact the methylation activity. An 
examination of  mRNA expression across a panel of  nor-
mal human tissues revealed that the CARM1Δ15 isoform 
is the major isoform expressed, with the exception of  the 
brain, heart, skeletal muscle and testis. The CARM1FL 
isoform is expressed highest in these tissues. Additionally, 
the CARM1FL isoform is predominantly auto-methylat-
ed in cells. 

In breast cancer cells, the CARM1Δ15 was shown 
to be the predominant isoform expressed (Table 2)[24]. 
However, only a limited number of  cancer cell lines were 
assessed. It would be interesting to know the expression 
profile in other cancer types as well. Specifically, an as-
sessment of  CARM1 isoform expression in a panel of  
breast cancer cell lines showed a greater percentage of  
the CARM1Δ15 isoform compared to the CARM1FL 
isoform. This is surprising due to the fact that the 
CARM1Δ15 isoform has impaired ERa co-activator ac-
tivity and failed to stimulate ERa transcriptional activity. 
However, it may have distinct roles with respect to activ-
ity and functions within cells. The existence of  these two 
isoforms may shed light on some of  the conflicting re-
ports in the literature with respect to the biological func-
tions of  CARM1 and potential roles in cancer. Further 
study of  these isoforms is required to establish if  they 
are responsible for the methylation of  distinct substrates 
and their individual functions.

PRMT7
PRMT7 was originally identified from a screen of  genetic 
suppressor elements (GSE) aimed at identifying genes 
conferring resistance to cytotoxic agents performed in 
Chinese Hamster cells[91]. This screen identified a gene 
that encoded two proteins, p77 and p82, that were highly 
homologous to the PRMT family and later designated 
PRMT7a and b, respectively[27,91]. In Hamster cells, these 
two isoforms are thought to be generated by the use of  
distinct 5’ translation initiation codons within the primary 
transcript (Figure 2). The PRMT7b isoform sequence 
contains an extra 37 amino acids at the N-terminus. Both 
isoforms were shown to be active and have slightly dif-
ferent methylation profiles[27], though further analysis 
is required to clarify these differences between the iso-
forms. Each isoform has a distinct subcellular localization 
patterns (Table 2). PRMT7a localizes to the cytoplasm 
and nucleus, whereas PRMT7b is exclusively cytoplas-
mic[27]. In human tissues, only a single PRMT7 transcript 
is detected (approximately 3.6 kb) and in two human cell 
cancer cell lines, HeLa and HuH7, one protein at 78 kDa 

was detected. This transcript was shown to share the 
greatest homology to the PRMT7a isoform[25-27]. Howev-
er, the limited subset of  cell lines used cannot completely 
rule out the existence of  PRMT7b isoform expression in 
human cells and a more comprehensive examination of  
expression in cells is required. Moreover, a survey within 
both NCBI and Ensembl databases predicts the existence 
of  at least 2 alternatively spliced PRMT7 isoforms that 
can be produced from the human PRMT7 gene (Figure 2). 
These two isoforms have the same N- and C-terminal re-
gions but variant 2 (PRMT7v2) has an in frame deletion 
of  exon 5. Importantly, this may affect methyltransferase 
activity because it removes the post Ⅰ domain. Function-
ally, PRMT7 was initially characterized as a Type Ⅱ meth-
yltransferase[26], but it has recently been deemed a Type 
Ⅲ and is thus the only PRMT enzyme known to catalyze 
predominantly this reaction in mammalian cells[4,5]. The 
generation of  monomethylarginine is thought to repre-
sent a reaction intermediate for the other PRMTs.

There is limited knowledge into the precise biologi-
cal functions of  PRMT7, however evidence has shown 
it is linked to cancer. A gene expression analysis of  in-
dependent data sets of  more than 1200 breast tumours 
identified increased expression in the chromosomal 
region where the PRMT7 gene is located (16q22)[92]. Im-
portantly, this was also correlated with an increased meta-
static potential of  breast cancer. The PRMT7 gene locus 
was also identified in an unbiased genome-wide study to 
confer resistance to etoposide-induced cytotoxicity in pa-
tients[93]. As previously mentioned, PRMT7 was originally 
identified by a screen for GSEs conferring resistance 
to cytotoxic agents (etoposide and 9-OH-E)[91]. This 
study showed that GSE-mediated repression of  PRMT7 
conferred resistance to topoisomerase Ⅱ inhibitors and 
also cisplatin. In contrast, in this same study, repression 
of  PRMT7 caused increased sensitivity to other DNA-
damaging agents, such as the topoisomerase Ⅰ inhibitor, 
camptothecin, as well as UV-irradiation. Increased sensi-
tivity to camptothecin was also observed when PRMT7 
was depleted from HeLa cells[94]. Intriguingly, depletion 
of  PRMT7 from NIH 3T3 cells conferred resistance to 
cisplatin, mytomycin C and chlorambucil[95]. Additionally, 
one of  its only identified interacting protein partners, 
CTCFL, is a proposed proto-oncogene[96,97]. Further stud-
ies are required to identify additional PRMT7 substrates 
to better understand its role in cells. While these results 
strongly suggest that PRMT7 may play a key role in sev-
eral cancer related processes, the opposing functions of  
PRMT7 in response to cytotoxic agents requires some 
attention. The reason for these differential effects is un-
clear; perhaps PRMT7 has distinct functions in different 
cell types. More interestingly, they could be the result of  
PRMT7 isoforms specific expression and function within 
cells.

CONCLUSION
The importance of  PRMTs in cancer is only beginning to 
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be examined. There have been many key discoveries thus 
far that have demonstrated the potential impact that the 
PRMTs have in regulating critical effectors and pathways 
involved in the development and progression of  cancer. 
In fact, the PRMTs have the potential of  impacting the 
majority of  the described hallmarks of  cancer proposed 
by Hanahan et al[1,98]. Current research efforts aim to iden-
tify and characterize the precise mechanistic roles that 
these PRMTs play in cancer. Importantly, the functional 
contribution of  PRMTs to different cancer types, as well 
as subtypes within the same cancer, requires further in-
vestigation. The significance of  this requirement is high-
lighted by several of  the conflicting findings describe in 
this review. 

Here we have highlighted the existence of  alterna-
tively spliced PRMT isoforms that have been identified 
for PRMT1, PRMT2, CARM1 and PRMT7. While not 
currently realized, more PRMT isoforms for these and 
other PRMT family members may be present in cells. 
The presence of  distinct PRMT alternative isoforms 
adds a further level of  complexity to this family of  en-
zymes. Additionally, the isoforms identified for PRMT1, 
PRMT2, CARM1 and PRMT7 have mainly been assessed 
in breast cancer cells and tissues as indicated in Table 2. 
A more extensive analysis of  their expression in other 
tumour types has not been performed and could uncover 
more interesting results with respect to these PRMT 
isoforms. This fact requires more attention as it may 
provide possible explanations for the opposing functions 
identified within cells. Furthermore, while these isoforms 
may have overlapping functions, it is clear from the data 
presented here that they also possess distinct functions. 
Interestingly, while dysregulated PRMT expression has 
been observed in cancer, no genetic abnormalities have 
been identified, with one exception being PRMT8[99,100]. 
While there may be no obvious change at the genome 
level, a shift in the expression from one alternative PRMT 
isoform to another may be a crucial event that occurs in 
cancer cells, thereby affecting development, progression 
and aggressiveness. Interestingly, a particular PRMT iso-
form may not be expressed or is expressed at lower levels 
in normal tissues and as a consequence of  the tumouri-
genic process cancer cells may preferentially upregulate 
a specific isoform due to its advantageous functions. 
Understanding both the shared and distinct functions of  
these alternative PRMT isoforms will not only improve 
our knowledge of  their biological significance but also 
provide insight into their specific contributions to dis-
eases, such as cancer. 

The roles that the PRMTs play in cancer make them 
an attractive target for the development of  drugs that 
could be used in treatment strategies. This increases 
the importance of  gaining more knowledge about the 
alternative PRMT isoforms, so that there is a complete 
understanding of  the therapeutic mechanism. This will 
enable the development of  an optimal therapeutic strat-
egy and an improved understanding of  the resulting out-
comes when targeting PRMT enzymes as a treatment in 
cancer.
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in many neurological conditions. The renin angiotensin 
system (RAS) is an important blood pressure regula-
tor and controls both sodium and water intake. AngⅡ
is a potent vasoconstrictor molecule and angiotensin 
converting enzyme is the major enzyme responsible for 
its release. AngⅡ acts mainly on the AT1 receptor, with 
involvement in several systemic and neurological disor-
ders. Brain RAS has been associated with physiological 
pathways, but is also associated with brain disorders. 
This review describes topics relating to the involvement 
of both systems in several forms of brain dysfunction 
and indicates components of the KKS and RAS that 
have been used as targets in several pharmacological 
approaches. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: This review is a description of the involvement 
of the kallikrein-kinin and renin-angiotensin systems in 
neurological disorders. We describe all components of 
both systems, relating them to several brain diseases 
such as Alzheimer’s disease, Parkinson’s disease, epi-
lepsy, multiple sclerosis, blood brain barrier disruption, 
stroke and inflammation, including the involvement 
of each molecule, their receptor and specific enzymes 
in individual pathologies. We also show that brain ho-
meostasis depends on a dynamic balance between the 
kallikrein-kinin and renin-angiotensin systems.
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Abstract
The kallikrein-kinin system (KKS) is an intricate endog-
enous pathway involved in several physiological and 
pathological cascades in the brain. Due to the patho-
logical effects of kinins in blood vessels and tissues, 
their formation and degradation are tightly controlled. 
Their components have been related to several central 
nervous system diseases such as stroke, Alzheimer’s 
disease, Parkinson’s disease, multiple sclerosis, epilepsy 
and others. Bradykinin and its receptors (B1R and B2R) 
may have a role in the pathophysiology of certain cen-
tral nervous system diseases. It has been suggested 
that kinin B1R is up-regulated in pathological conditions 
and has a neurodegenerative pattern, while kinin B2R 
is constitutive and can act as a neuroprotective factor 
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KALLIKREIN-KININ SYSTEM IN 
NEUROLOGICAL DISORDERS
Components of the kallikrein-kinin system
The kallikrein-kinin system (KKS) is an intricate endog-
enous pathway involved in blood pressure regulation, 
inflammation, cardiovascular homeostasis, analgesic re-
sponses, pain-transmitting mechanisms, cytokines release, 
prostacyclin, nitric oxide and cell proliferation[1,2].

Initial studies on the importance of  the KKS in mam-
mals were performed at the beginning of  the last century, 
when Abelous et al[3] verified that human urine injected 
into dogs induced a reduction in blood pressure. After 
that, several authors identified a great number of  mol-
ecules, with biological activity, involved in this bioactive 
cascade[4-8]. Thus, since 1900 to date, all components of  
the KKS were sequentially identified in plasma and/or in 
tissue as part of  a complex enzymatic process linked to 
several biological and pathological events.

Due to the effects of  kinins in blood vessels and 
tissues, their formation and degradation are tightly con-
trolled. In plasma, the coagulation factor Ⅻ (Hageman 
factor Ⅻ) is activated to Ⅻa by the negative surface and 
is then able to cleave prekallikrein into the active form of  
kallikrein. This latter enzyme hydrolyzes high molecular 
weight kininogen and releases bradykinin (BK) into the 
circulation, which is an important vasoactive nonapeptide 
(Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9). After 
C-terminal arginine removal, by circulating and/or tissue 
kininases, BK is converted into Des-Arg9BK, another po-
tent peptide or to inactive peptides. BK has high affinity 
for the constitutive kinin B2 receptors (B2R), while Des-
Arg9BK shows preference for binding to inductive kinin 
B1 receptors (B1R)[8].

In tissues, prekallikrein is also converted into kalli-
krein, which hydrolyzes the low molecular weight kinino-
gen, releasing Lys-BK, also known as kallidin. After the 
action of  tissue kininases, Lys-Bk is converted into BK or 
Des-Arg10-Lys-BK, which also have high affinity for B1R, 
while its precursor (kallidin) shows more affinity for B2R 
(Figure 1). All these enzymes involved in the KKS are 
serine-proteases. Plasma kallikrein and tissue kallikrein 1 
(KK1) are the main enzymes involved in kinin release in 
blood and tissue, respectively. 

KKS in the central nervous system
All components of  the KKS have been localized in the 
cerebral cortex, brain stem, cerebellum, hypothalamus, 
hippocampus, and pineal gland, among others. They are 
found surrounding blood vessels, in neurons and glial 
cells[9-12]. Kinins are able to stimulate the production and 
release of  inflammatory mediators such as eicosanoids, 
cytokines, nitric oxide (NO) and free radicals. Kinins also 
induce the release of  excitatory amino acids, increasing 
intracellular (Ca2+)i levels and inducing brain excitotoxic-
ity. These peptides are also involved in disruption of  the 
blood-brain-barrier (BBB) and dilation of  the parenchy-
ma of  cerebral arteries causing edema[13-15]. The mitogen-

activated protein kinase pathway, which culminates in the 
transcription of  many genes involved in later responses[16] 
is also activated by B1R. Stimulation of  both B1R and 
B2R leads to classical G-protein activation with the gen-
eration of  different second messengers (Figure 1). 

In addition, plasma and tissue enzymes, other serino-
proteases, similar to chymo/trypsin-like proteases, have 
been described and they are also known as kallikreins 
(KK1 to KK15). According to Sotiropoulou et al[17], this 
family of  15 enzymes has been related to diseases such as 
hypertension, renal dysfunction, inflammation, neurode-
generation and several types of  cancer[18].

The KKS influences multiple players in the immune 
system acting on targets such as macrophages, dendritic 
cells, T and B lymphocytes modulating the activation, 
proliferation, migration and the effector function of  
these cells[19]. Thus, kallikreins have been associated with 
several pathologies, supporting new insights related to the 
KKS, which could be useful as targets in the treatment of  
pathological conditions. 

KKS in inflammation
In neurodegenerative disorders, inflammation is consider-
ing a primary response to injury or to infection, repairing 
and healing the injured tissue[20]. Vascular permeability 
and blood flow increases in the first stage of  inflamma-
tion and substances produced by mast cells and by plate-
lets such as histamine, BK, leukotrienes, prostaglandins 
and serotonin are released during the initial inflammation 
process[20]. Blood vessel walls change their permeability 
allowing the entry of  proteins and small molecules, which 
are important to the recruitment of  defense cells. At this 
stage, leukocytes, adhesion molecules, cytokines and che-
motactic factors are recruited to the injured site. Indeed, 
the release of  BK may participate in this process and 
several authors have studied KKS targets to improve the 
delivery of  drugs through the blood-tumor barrier[21-23].

KKS and cerebrovascular alterations
According to Kung et al[24], patients with traumatic brain 
injury, subarachnoid hemorrhage, intracerebral hemor-
rhage and ischemic stroke have increased BK levels in 
CSF and these high levels correlate with the intensity of  
edema formation. In addition, patients with aneurysmal 
subarachnoid hemorrhage have low levels of  serum KK6 
and KK6 levels in blood could predict early complica-
tions of  this disease. Thus, Martinez-Morillo et al[25] sug-
gested that KK6 could be a useful prognostic marker in 
this pathological condition. Similarly, cerebral hematoma 
expansion induced by hyperglycemia is mediated by plas-
ma KK[26].

Kininogen-deficient mice show less severe BBB dam-
age, edema and inflammation formation after thrombosis 
and ischemic stroke. According to some authors, kinino-
gen deficiency is able to reduce thrombosis after stroke, 
without increasing the risk of  intracerebral hemorrhage. 
In the absence of  kininogen, mice are completely un-
able to produce BK. This lack of  kininogen underlies 
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the strong anti-inflammatory phenotype observed in the 
context of  brain ischemia in these animals[27]. Moreover, 
genetic depletion of  B1R improves functional outcome 
after focal head injury in mice. This effect is similar to 
that obtained by a pharmacological approach, using a se-
lective B1R antagonist[8]. Thus, mice with B1R depletion 
show minor axonal damage, reduced apoptosis, astrocyte 
activation and less inflammation. In contrast, blockage of  
B2R had no effect on brain protection. 

KKS and dementias
Decreased cerebral flow and BBB disruption are also 
features of  Alzheimer’s disease (AD)[28,29]. BK activity af-
fects cerebrovascular tone and BBB permeability, both 
of  which are abnormal in AD[30]. According to Farrall et 
al[30], the frontal cortex of  patients with AD, the frontal 
and temporal cortex of  patients with vascular demen-
tia showed high levels of  plasma kallikrein as well as its 
mRNA. In addition, this enzyme also had high activity 

showing that kinin production could influence cerebral 
blood flow and vascular permeability related to AD. 
Other types of  KK are also modified in the CSF of  pa-
tients with AD and with frontotemporal dementia. KK6, 
KK7 and KK10 were decreased in the CSF of  patients 
with frontotemporal dementia, while KK10 increased in 
the CSF of  subjects with AD. These differences could be 
useful in the diagnosis of  both diseases[31]. Increased ex-
pression of  KK6 was also observed in CSF, plasma and 
whole blood of  patients with AD[32], showing a strong 
relationship between the KKS and brain degeneration. 
Furthermore, mice expressing human amyloid precur-
sor protein (APP), carrying familial AD gene mutations, 
showed increased expression of  B1R in astrocytes of  the 
hippocampal formation. Similarly, blockage of  this re-
ceptor, using specific antagonists, decreased amyloidosis 
plaque deposits in the somatosensory/cingulate cortex 
and dorsal hippocampus[33]. These authors also showed 
improvements in learning and memory after B1R block-
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age in APP mice. Thus, according to Lemos et al[34] dur-
ing the aging process, B1R could be involved in memory 
degeneration, while B2R could act as a neuroprotective 
factor. 

Kallikrein 8 also known as neuropsin participates 
in extracellular proteolysis involved in long-term 
potentiation (LTP), necessary for the establishment of  
memory acquisition in the hippocampus[35]. According 
to these authors, KK8 knockout mice were impaired, 
failed memory tasks and showed the involvement of  
this enzyme in phosphorylation of  the GluR1 subunit 
of  AMPA receptors, linked with LTP and with memory 
acquisition. Taken together, these data show that the 
KKS participates in these degenerative diseases.

KKS and neuromuscular diseases
Kallikreins are also associated with secondary progressive 
multiple sclerosis and promote neurodegeneration[36]. Ac-
cording to these authors, high levels of  KK1 and KK6 
may serve as biomarkers of  multiple sclerosis progres-
sion. KK1 levels correlate positively with expanded dis-
ability status scale (EDSS) scores and KK6 with future 
prognostic and worsening of  the EDSS scale, in relapsing 
remitting patients. These authors also showed that expo-
sure to kallikrein promoted neurite retraction and neuro-
nal death in murine cortical neurons[36].

Recent work showed that deletion of  the KK6 gene af-
fected the number of  oligodendrocytes and the amount 
of  myelin in the developing spinal cord, in particular the 
myelin basic protein[37]. These data suggest that KK6 has an 
important function in promoting oligodendrocyte develop-
ment in the spinal cord as well as in damaged spinal cords. 
In addition, KK6 has also been associated with hypertro-
phic astrocytes in human pathological conditions, promot-
ing astrocyte stellation, stimulating inflammatory cytokine 
(IL-6) secretion and suppressing GFAP mRNA expres-
sion[38]. Undoubtedly, KK6 seems to be very important for 
the homeostasis of  CNS cells, participating in several events 
during physiological and pathological conditions. 

KKS and epilepsy
It is already known that the brain inflammatory process 
is able to initiate seizures[39] and this event is accompanied 
by an immune-mediated leakage in the BBB. The first 
evidence linking the KKS with epilepsies was demon-
strated by several authors around the 1970s[40,41]. Since 
then, a large number of  studies have emerged localizing 
more specific targets in the KKS cascade that could help 
in understanding epilepsy physiopathology. In 1999, 
Bregola et al[42] showed changes in hippocampal and corti-
cal B1R in two experimental models of  epilepsy. These 
authors reported that Lys-des-Arg9BK, an agonist of  
B1R, increased the overflow of  glutamate after electrical 
stimulation, in hippocampal and cortical slices of  rats 
submitted to kindling. This effect was also visualized in 
rats submitted to the kainate model of  epilepsy, but to a 
lesser extent. The authors associated B1R with the con-
dition of  latent epileptic hyperexcitability[42]. These data 

were confirmed by Mazzuferi et al[43] when they showed 
the increased release of  glutamate after B1R stimulation, 
induced by Lys-des-Arg9-BK in kindled animals.

When studying the expression of  B1R and B2R in the 
hippocampus of  rats submitted to the pilocarpine model 
of  epilepsy, our group[44] found increased expression of  
both receptors in the hippocampus. We also found[45] 
these alterations in knockout mice (B1KO and B2KO) in 
the pilocarpine model. This means that the absence of  
B1R (B1KO) decreases pyramidal cell death, decreases 
mossy fiber sprouting and decreases the number of  
spontaneous recurrent seizures, during the chronic phase, 
showing that B1R is proconvulsant. These data were 
confirmed by Silva et al[46]. However, using the model of  
audiogenic kindling with limbic recruitment, Pereira et 
al[47] found increased expression of  B1R and B2R in the 
hippocampus of  rats, but reported that this increase did 
not correlate with inflammatory levels as IL1β, COX2 
and TNFα were not modified in this tissue.

We also showed[45] that B2R was linked to neuropro-
tection, as its absence is associated with decreased pyra-
midal cell survival and increased mossy fiber sprouting. 
Confirming these data, other authors have shown that 
BK triggers a neuroprotective cascade via B2R activa-
tion, which conferred protection against NMDA-induced 
excitotoxicity[48]. However, different data were recently 
reported concerning the role of  B2R in epileptogenesis. 
Rodi et al[49] found that B2R was overexpressed in limbic 
areas and that slices prepared from B1R knockout mice 
(B1K0) were more excitable than those from wild-type 
mice. This effect was abolished using B2R antagonists. 
Due to this result, the authors concluded that this ex-
citatory phenomenon was B2R dependent. In addition, 
these authors also demonstrated that kainic acid-induced 
seizures are attenuated by a B2R antagonist, supporting 
the hypothesis that B2R is involved in an early event that 
leads a normal brain to epileptic conditions. 

When studying patients with temporal lobe epilepsy 
(TLE) and hippocampal sclerosis we also showed in-
creased levels of  B1R and B2R in the hippocampus[50], 
when compared with autopsy-control tissues. These re-
ceptors were visualized in pyramidal neurons of  the hilus 
and in CA1 and CA3 regions of  the hippocampal forma-
tion. The hippocampus of  these patients also showed 
overexpression of  KK1 by astrocytes, which were co-
localized with GFAP protein, confirming participation of  
the KKS[51].

Together, these data show effective participation of  
the KKS system in TLE and Figure 2 shows our sug-
gestion concerning a possible cross-talk between hip-
pocampal neurons and astrocytes in the KKS in epileptic 
diseases.

RENIN-ANGIOTENSIN SYSTEM AND 
NEUROLOGICAL DISORDERS
Components of the renin-angiotensin system
The renin-angiotensin system (RAS) was initially consid-
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ered to be a circulating humoral system, involved in blood 
pressure regulation and the control of  both sodium and 
water intake. Molecules formed by this system are associ-
ated with vasoconstriction and the release of  aldosterone 
from the adrenal cortex and antidiuretic hormone from 
the neurohypophysis. RAS components act in the vascu-
lature to promote vasoconstriction and at sites within the 
central nervous system to stimulate sympathetic outflow, 
impair the baroreflex sensitivity for heart rate control, 
promote release of  catecholamines and aldosterone, and 
sodium retention, which have an important role in the 
development and maintenance of  hypertension and insu-
lin resistance during aging[52].

Renin is the rate-limiting enzyme of  the RAS and 
acting on its precursor, angiotensinogen, releases an-
giotensin Ⅰ, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu 
(Ang Ⅰ). After dipeptide His-Leu removal by angiotensin 
converting enzyme (ACE), Ang Ⅱ is produced (Asp-Arg-
Val-Tyr-Ile-His-Pro-Phe). Ang Ⅱ is the main effector 
peptide in this system. Binding to Ang Ⅱ type 1 receptor 
(AT1R), Ang Ⅱ stimulates vasoconstriction, aldosterone 

and steroid hormones release, which are involved in so-
dium reabsorption and water retention. AT1R activity 
is also related to hypertension, heart dysfunction, brain 
ischemia, abnormal stress responses, BBB breakdown 
and inflammation in several species[53]. The second re-
ceptor involved in Ang Ⅱ activity is AT2R. However, 
the function of  AT2R is more elusive and controversial. 
AT2R is expressed during fetal development, decreasing 
after birth and remaining at a low concentration during 
adulthood. It has been linked to cell proliferation, differ-
entiation, apoptosis and regeneration of  several tissues[54] 
(Figure 3).

RAS in CNS
In addition to the well-known humoral RAS, in the last 
decades a tissue RAS has been described, particularly in 
the CNS. Thus, all components of  the RAS have been 
found in the brain. However, as this tissue has a low level 
of  renin, it remains controversial as to how AngⅠ is 
generated by this system. Recently[55], the presence of  a 
prorenin receptor (PRR) was reported, which has a high 
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level of  expression in the brain by neurons and astro-
cytes. Prorenin binds to its receptors without proteolytic 
activation and this binding initiates the rate-limiting step 
in angiotensin formation in the CNS. PRR also acts as an 
accessory protein for vesicular ATPase, linked to vesicu-
lar acidification. 

Further to ACE, some homologue components of  
the RAS have been described such as ACE2 and chymase. 
Furthermore, peptides such as angiotensin 1-7 (Ang1-7), 
angiotensin Ⅲ (Ang Ⅲ) and Ang Ⅳ are involved in RAS 
function. Ang Ⅳ acts at AT4R and Ang1-7 at the Mas re-
ceptor. Another enzyme involved in Ang Ⅱ generation is 
Tonin, which is able to hydrolyze angiotensinogen releas-
ing Ang Ⅱ in tissue, without ACE intervention (Figure 3). 

Connection between the KKS and RAS 
There is a connection between the KKS and RAS (Fig-
ure 4), which is produced by ACE linking both of  these 
important systems. ACE is considered to be the most 
potent kininase in the blood and in several tissues, such 

as lung and liver. This enzyme, removes the dipeptide 
His-Leu from Ang Ⅰ, generates AngⅡ, removes Phe-
Arg dipeptide from BK, and inactivates this hypotensor 
peptide. This is a very important link and it is through 
the balance between RAS and KKS, that blood pressure 
can be controlled. This balance is also very important in 
the brain due to control of  BBB permeability. 

RAS and inflammation
Despite its action in important physiological processes, 
RAS has also been associated with pathological condi-
tions. In a recent review[53], authors showed a relation-
ship between the RAS and inflammatory brain disorders, 
focusing attention on the actions of  AT1R in diseases 
such as stress-induced disorders, anxiety and depres-
sion, stroke, brain inflammation, traumatic brain injury 
and DA. These authors reported that AT1R activation 
up-regulates common pro-inflammatory mechanisms, 
activating transcription factors such as NF-ĸB, triggering 
an inflammatory cascade with the production of  adhe-
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sion molecules, cytokines, reactive oxygen species (ROS), 
prostaglandins and NO. It was also proposed that circu-
lating Ang Ⅱ stimulates brain vascular endothelial target 
cells, producing BBB breakdown, allowing macrophage 
infiltration into brain parenchyma, increasing microglia 
and astrocytes activation[53]. Ang Ⅱ also induces C-re-
active protein production by vascular cells as well as by 
macrophages in culture[56].

RAS and cerebrovascular alteration
Several authors have shown that captopril (ACE inhibi-
tor) improves cerebrovascular structure and function in 
old hypertensive rats, attenuating eutrophic and hypertro-
phic inward, remodeling cerebral arterioles. In contrast, 
Tanahashi et al[57] showed that Ang Ⅱ is related to stroke 
protection, mediated by AT2R, AT4R and Ang1-7/Mas 
receptor. However, these authors also indicated that 
recent clinical trials demonstrated that blockade of  the 
RAS has a potential role in stroke prevention. These data 
show that the RAS may have dual function in the brain, 
depending on the action of  different peptides and their 
receptors. 

RAS in extrapyramidal diseases
RAS has been identified in the nigrostriatal system and, 
according to several authors, dopaminergic neurons have 

an intracellular/intracrine RAS[58,59]. As already men-
tioned, Ang Ⅱ acts on the inflammatory cascade, via 
AT1R, producing high levels of  ROS by activating the 
NADPH oxidase complex[60], which are the early process-
es leading to dopaminergic cell death, in the nigrostriatal 
system, in Parkinson’s disease[61]. These data showed that 
AT1R blockage reduces dopaminergic neuron loss as well 
as lipid peroxidation in the Parkinson model (injection of  
6-OHDA in rats). These authors also concluded that the 
RAS is present in dopaminergic neurons with high vul-
nerability in the nigrostriatal system. The interaction of  
dopamine/Ang Ⅱ may be a major factor in age-related 
dopaminergic vulnerability, that could be the result of  
increased AT1R expression, decreased AT2R expression, 
enhanced levels of  inflammatory mediators and ROS in 
dopaminergic pathways[61]. Thus, manipulation of  RAS 
using AT1R antagonists or ACE inhibitors could be help-
ful in the treatment of  Parkinson’s disease. In addition, 
other authors[53,62] also advocate the use of  AT1R block-
ers in the treatment of  several inflammatory brain disor-
ders.

RAS and dementias
Other brain pathologies such as AD have also been 
linked to the RAS. Longitudinal studies have suggested 
an association between high blood pressure and demen-
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tia, showing that hypertension is a risk factor for the 
development of  AD during aging. Patients treated with 
perindopril (ACE inhibitor) with previous stroke and/or 
ischemic events were followed for 4 years and dementia 
and/or cognitive decline were reduced in the treated 
group, showing a connection between these dual patholo-
gies[63]. Captopril (ACE inhibitor) improves cerebrovas-
cular structure in hypertensive subjects. Indeed, benefit 
was found when an ACE inhibitor was able to cross the 
BBB, showing that peripheral action is important, but the 
effect on cognition is not exclusively due to blood pres-
sure control, but is related to the central action of  these 
drugs[64]. Yamada et al[65] showed that perindopril ame-
liorated cognitive performance in rats submitted to AD 
models, through inhibition of  brain ACE. 

In contrast, other authors showed that ACE converts 
Aβ1-42 (amyloidogenic form) to Aβ1-40 (soluble form), 
decreasing the Aβ1-42/Aβ1-40 ratio. According to these 
authors, ACE is also able to degrade Aβ1-42 and Aβ1-40, 
thus reducing the risk of  AD development. They also 
suggested that treatment with captopril promotes pre-
dominant Aβ1-42 deposit in the brain, increasing neu-
ronal vulnerability and death, contradicting the data ob-
tained in patients with hypertension and dementia, treated 
with this ACE inhibitor. These authors suggest that new 
strategies could be implemented to improve ACE activity, 
as novel targets in the treatment of  AD[66]. 

RAS and epilepsy
Other ACE inhibitors such as fosinopril, zofenopril, 
enalapril and captopril have been associated with the po-
tentiation of  antiepileptic drugs[67]. These authors showed 
that the combination of  carbamazepine, lamotrigine, 
topiramate and valproate with ACE inhibitors decrease 
audiogenic seizures. Captopril also potentiates the effect 
of  carbamazepine and lamotrigine against electroshock 
seizures[68]. These data were confirmed in other models 
of  epilepsy. According to Pereira et al[69], ACE inhibitor 
and/or AT1R antagonist were able to reduce the sever-
ity of  audiogenic seizures. These data link the RAS with 
generalized seizures and with other types of  epilepsies.

In 2008 our group showed, for the first time, an up-
regulation of  AT1R as well as its messenger expression 
in the cortex and hippocampus of  patients with temporal 
lobe epilepsy, associated with temporal mesial sclerosis[70]. 
Increased expression of  AT2R was also found in the hip-
pocampus showing that the RAS is inwardly associated 
with this brain disorder. AT1Rs were colocalized with 
NeuN protein, labeling pyramidal neurons in more vul-
nerable areas. We also found that a common mutation, 
which increases ACE activity, occurs in high frequency in 
the blood cells of  patients with TLE and mesial sclerosis. 
Interestingly, in the hippocampus of  these patients, ACE 
activity was down regulated. Investigating this contradic-
tory data we found that carbamazepine, used to treat 
seizures was able to inhibit hippocampal ACE activity in 
these patients. The inhibition of  ACE by carbamazepine 
occurred in vitro and in vivo, confirming a strong link be-

tween TLE and RAS. Patients not treated with carbam-
azepine showed increased ACE activity[71]. 

In trying to understand the alteration of  RAS com-
ponents in the epileptogenic process we studied Ang
Ⅰ, AngⅡ and Ang1-7 levels in the hippocampus of  
rats submitted to pilocarpine-induced TLE. We found 
decreased levels of  AngⅠ in acute (status epilepticus), si-
lent (seizure-free period) and chronic (spontaneous recur-
rent seizures) phases. In contrast, AngⅡ was increased in 
the chronic phase, while Ang1-7 was increased in acute 
and silent periods. These data showed that during the 
epileptogenic process AngⅠ was converted into Ang Ⅱ 
or Ang1-7. However, ACE expression was decreased in 
all phases, showing that other enzymes in the RAS may 
participate in this event such as NEP and Tonin. Indeed, 
both enzymes were upregulated in the hippocampus of  
these rats[72]. Our results also showed an upregulation of  
AT1R during the spontaneous seizure period (chronic 
phase)[71], in accordance with data found in patients with 
TLE[70], supporting the involvement of  this receptor in 
seizure generation. The silent phase was characterized by 
an increase in Ang1-7 levels as well as its Mas receptor. 
Interestingly, during the silent phase of  this model, in-
tense hippocampal reorganization occurs, which has been 
related to Ang1-7/Mas-induced plasticity.

CONCLUSION
In conclusion, peptides generated by the RAS or KKS 
are deeply involved in several neurological diseases and 
an improvement in the knowledge of  their function and 
release in tissues and blood could be useful in the devel-
opment of  new targets and drugs to treat these patholo-
gies. 
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in mitosis-gene A (NIMA)-related kinases (Neks). The 
founding member of this family is the sole member 
NIMA of Aspergillus nidulans, which is crucial for the 
initiation of mitosis in that organism. All 11 human Neks 
have been functionally assigned to one of the three 
core functions established for this family in mammals: 
(1) centrioles/mitosis; (2) primary ciliary function/ciliop-
athies; and (3) DNA damage response (DDR). Recent 
findings, especially on Nek 1 and 8, showed however, 
that several Neks participate in parallel in at least two 
of these contexts: primary ciliary function and DDR. In 
the core section of this in-depth review, we report the 
current detailed functional knowledge on each of the 
11 Neks. In the discussion, we return to the cross-con-
nections among Neks and point out how our and other 
groups’ functional and interactomics studies revealed 
that most Neks interact with protein partners associ-
ated with two if not all three of the functional contexts. 
We then raise the hypothesis that Neks may be the 
connecting regulatory elements that allow the cell to 
fine tune and synchronize the cellular events associated 
with these three core functions. The new and exciting 
findings on the Nek family open new perspectives and 
should allow the Neks to finally claim the attention they 
deserve in the field of kinases and cell cycle biology.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Never in mitosis-gene A (NIMA)-related ki-
nases (Neks) are a family of 11 human kinases involved 
in cell cycle regulation. This article represents an in-
depth review of the current knowledge on the function 
of each of the 11 human Nek kinases. Furthermore, we 
present arguments in the discussion of how systems bi-
ology, especially interactomics, helped to uncover that 
the majority of Neks are involved in more than one of 
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Abstract
Aside from Polo and Aurora, a third but less studied 
kinase family involved in mitosis regulation is the never 
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and to include all recent novelty on the least studied Neks 
as well as our own group’s published and unpublished 
findings, with a special emphasis on the characterization 
of  the functional context based on the identification of  
interacting proteins (interactomics). A point we would 
like to stress here is that most Neks interact with proteins 
of  several of  the classical functional contexts reported 
initially for a subset of  specific Neks. In other words, we 
may characterize the following three areas as the main 
functional contexts of  Neks: (1) centriolar function and 
mitosis regulation (Nek2, 6, 7 and 9); (2) primary cili-
ary function, ciliopathies and microtubule dynamics in 
general (Nek1, 4 and 8); and more recently (3) DDR and 
G2/M checkpoint (Nek1, 4, 6, 8, 10 and 11)[8,9].

However, published interactome data (Figure 2), as 
well as our group’s efforts to identify new interacting 
proteins for all Neks, showed some surprising cross-
connections and novelties, which we would like to point 
out here. Most of  the above mentioned Neks seem to 
interact with proteins that are functionally linked to two 
or even all three of  the above mentioned areas, thereby 
raising the possibility that these are somehow connected 
on a higher regulatory level and that the Neks may be 
key elements to understand how the regulation of  these 
functional contexts is performed. A typical recently 
published example is the role of  Nek8 in both primary 
ciliary function and DNA repair mechanisms[10]. Our 
own studies revealed that Nek6, a kinase primarily as-
sociated with mitotic regulatory events[11,12], also interacts 
with proteins involved in the DNA damage response, 
such as putative DNA repair and recombination protein 
RAD26-like (RAD26L) and PHD finger protein 1 (PHF1) 
(Figure 2)[3]. In fact, for the majority of  Neks we found 
interacting partners of  the DDR or effector proteins of  
different DNA repair pathways, which clearly suggests 
a larger than initially imagined involvement of  Neks in 
these biological processes. Other insights came from the 
identification of  interacting proteins from the apoptosis 
regulatory pathways with several Neks (e.g., Nek 1[13] and 
5). This suggests that, aside the well established mitotic 
context, we must be open minded about additional new 
roles for Neks (Table 1). Before we go into details of  new 
cross-connections and suggested additional functional 
contexts in the final discussion, we will present each of  
the 11 human Neks in detail in the following section of  
this review.

NEK1
Although Nek1 is only the third most studied Nek family 
member after Nek2 and aside from Nek6, it is in many 
ways a representative member of  this family of  protein 
kinases. Along this line, Nek1 started to draw the atten-
tion of  the kinase and signaling research communities, 
not only to itself  but to the Nek family after the publica-
tion of  the seminal article of  Upadhya et al in 2000[14]. 
It reported that deletion mutations in the Nek1 gene in 
mice caused polycystic kidney disease (PKD) among oth-
er pleiotropic effects, ranging from facial dysmorphism, 
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the three Neks core functions: (1) centrioles/mitosis; (2) 
primary ciliary function/ciliopathies; and (3) the DNA 
damage response. Possibly, the Neks act on a higher 
regulatory level which may control the core functions.

Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo 
Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: 
How interactomics contributes to functionally characterize Nek 
family kinases. World J Biol Chem 2014; 5(2): 141-160  Available 
from: URL: http://www.wjgnet.com/1949-8454/full/v5/i2/141.
htm  DOI: http://dx.doi.org/10.4331/wjbc.v5.i2.141

INTRODUCTION
The never in mitosis-gene A (NIMA)-related kinases 
(Neks) represent, aside from the Polo and Aurora kinase 
families, a third family of  mitotic kinases, but remain the 
least studied to date and hence least understood family of  
kinases involved in the regulation of  the cell cycle. The 
founding member of  this family of  kinases is the Asper-
gillus nidulans NIMA, which exists as a single member in 
this fungus, is functionally involved in the initiation of  
mitosis and promotes the chromosome condensation by 
phosphorylation of  histone H3[1]. Humans have 11 mem-
bers of  the Nek family which show highly conserved 
kinase domains but differ significantly in the composition 
and length of  their N- and especially C-terminal regula-
tory and docking domains (Figure 1).

Although some protein interaction partners have been 
described for the majority of  the human Neks (Figure 2), 
the domain of  interaction at the side of  Neks has been 
mapped only for a smaller subset of  interacting proteins 
(Figure 1). As we can see, most interactors are assigned 
to specific regions in the regulatory domains, which rep-
resent in most cases classical protein-protein interaction 
modules, such as coiled coil regions. Identification of  in-
teraction with the kinases domains have been scarce due 
to the transient and weak nature of  these interactions and 
therefore the discovery and characterization of  true bona 
fide in vivo substrates of  Nek kinases remain one of  the 
main challenges in the field. Among the interacting pro-
teins identified by our[2,3] and other groups, through both 
yeast two-hybrid screens and mass spectrometry analyses, 
there were hopefully not only those that regulate the 
Neks but maybe also candidate substrate proteins. The 
binding of  these substrate proteins possibly contributes 
to “opening up” the Neks or to the activation of  these 
kinases and then, as a consequence, these proteins may 
be phosphorylated by the Neks. 

There has been a series of  very good and concise 
reviews on NIMA and Neks in the past years[4-8]. How-
ever, due to scarce or absent knowledge on several family 
members, including Nek5, 10 and 11 for instance, most 
reviews opted to focus on a subset of  Neks or grouped 
them according to phylogenetic or functional relatedness. 
Here, we try to discuss all 11 human Neks in some depth 



dwarfing, male sterility, anemia and cystic choroid plexus. 
The pleiotropic nature of  these phenotypes suggested a 
role of  Nek1 early on in basic cellular functions, possibly 
involved in signaling pathways associated with polycys-
tin-1 and 2, whose mutations also cause PKD and signal-
ing initiates at the renal epithelial cell’s primary cilia[15]. 

Recently, another set of  insertion, non-sense and 
splice site mutations in the Nek1 gene were reported in 
Majewski type short-rib polydactyl syndrome (SRPS), an 
autosomal-recessive familiar ciliopathy[16,17]. Ciliopathies 
have been associated with a series of  defects of  proteins 
involved in intra-flagellar transport (IFT), as well as cilia, 
basal body and centrosome maintenance, and in the 
case of  Nek1, SRPS also presents a broad phenotypic 
spectrum, including reduced cilia number and cell cycle 
associated cilia morphogenesis. This results ultimately in 
severe or lethal embryonic malformations and especially 
osteochondrodysplasia, shortened ribs and tibias, poly-

syndactyly, fused kidneys, heart defects and mouth clefts, 
among others[17].

In terms of  molecular functions, a first breakthrough 
came from a protein interactome study that shed light 
on the involvement of  Nek1 in several pathways related 
to the above diseases, but also opened new avenues in 
the context of  cell cycle regulation and DNA damage re-
sponses[2]. These findings were later not only confirmed 
by functional studies but also extended to other Nek 
family members, including Nek4, 6, 10 and 11[3,8,9,18]. The 
interactome study was a yeast two-hybrid assay using 
Nek1 as bait and a human fetal brain cDNA library as 
prey. Nek1 is a rather large, 1258 amino acids containing 
protein and interacts with these proteins mainly through 
the two N-terminals of  its four coiled coil regions, which 
are located at the C-terminal of  its kinase domain (Fig-
ure 1). Among the Nek1 interacting proteins were the 
kinesin-like protein KIF3A, tuberin and alpha-catulin, 
mutation in all three of  these genes also have been re-
ported to cause PKD. This suggests the existence of  a 
multicomponent signaling or regulatory pathway, which 
regulates the kidney cell’s proliferation and when affected 
by mutations may lead to PKD[19-21]. Evidence in support 
for a major role of  Nek1 in primary ciliary function also 
came from other model organisms, including Chlamydomo-
nas[22].

Surprising at that time was the discovery of  interac-
tions with several cell cycle regulatory proteins, 14-3-3 
protein η (eta, YWHAH), tumor suppressor p53-
binding protein 1 (TP53BP1), serine/threonine-protein 
phosphatase 2A 56 kDa regulatory subunit alpha/delta 
isoform (PPP2R5A/D) and especially with proteins 
involved in the DNA damage response, such as the 
double-strand break repair protein MRE11A (MRE11A) 
and the transcriptional regulator ATRX (ATRX)[2]. 
Soon, additional experiments with the irradiation of  
wild-type and Nek1-/- cells revealed that Nek1 is over-
expressed and activated in response to ionizing radia-
tion (IR) and co-localizes to γ-H2AX positive DNA 
repair foci in the nucleus[23]. Cells without Nek1 died in 
response to sub-lethal doses of  IR and knockdown of  
Nek1 also diminished their capacity to clear DNA dam-
age caused by chemical genotoxic agents, such as cispla-
tin and methyl-metanesulfonate (MMS)[24]. This line of  
experiments culminated recently in a paper where the 
authors showed that Nek1 kinase is not only physically 
associated with ATR-ATRIP, but also required for ATR 
priming to allow an efficient DNA damage signaling[25]. 
Furthermore, Nek1 has been indicated to act in apop-
tosis signaling, especially by phosphorylation of  key 
mitochondrial proteins such as the voltage-dependent 
anion-selective channel protein 1 (VDAC1)[13]. This is a 
pore complex that functions both as a voltage depen-
dent anion channel and permeability pore that regulates 
cytochrome c leakage to the cytoplasm, which upon exit 
initiates apoptotic events[13]. Nek1’s activity to maintain 
cells in homeostasis is mediated through phosphoryla-
tion of  a specific external VDAC1 Ser residue. Upon 
apoptotic stimuli, Nek1 is degraded and the lack of  
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Figure 1  Representation of the domain organization of the eleven human 
Neks depicting the domain regions for selected protein interactions. The 
gene symbols corresponding to interacting proteins are shown above the Neks 
primary structure regions with which they have been found to interact. The list 
of interactors is not intended to be complete but is necessarily shorter than the 
list of all proteins known in the literature to interact with Neks (e.g., see Figure 
2), since, for the majority of interactors, the location of interaction in the Neks 
has not been reported. Different repeated domains have been indicated by the 
color code at the bottom of the figure. The lengths of the full proteins are indi-
cated by number of amino acids (aa) at the C-terminal of the proteins. At least 
two isoforms of Nek1, 2, 3 and three of Nek4 and 11, all generated by alterna-
tive splicing, have been reported and known functional distinctions have been 
briefly discussed in the text, where feasible. References for the proteins and 
their mapped interactors: Nek1[2,13,25]; Nek2[116,121-124]; Nek4[53]; Nek6[3]; Nek9[66]. 
Nek: Never in mitosis-gene A-related kinases.



VDAC1 phosphorylation causes opening of  the chan-
nel, loss of  the membrane potential and leakage of  cy-
tochrome c to the cytoplasm.

Finally, Nek1 has been implicated in gametogenesis 
due to its high expression levels in meiotic tissues[26]. In 
another interactome study, this time using a testicular tis-
sue cDNA library, the protein Nurit was found to be an 
interactor of  Nek1[27]. Nurit is expressed in the late phase 
of  spermatogenesis, has structural resemblance with leu-
cin zippers and contains additional super helix domains, 
possibly involved in its homo-multimerization. Further-
more, the structural maintenance of  chromosomes pro-
tein 3 (SMC3) was found to interact with Nek1, further 
implying important functions in meiotic events such as 
spindle assembly checkpoints[28].  

In summary, Nek1 has been functionally implied in 
three major functional contexts and their sub-functions: cil-
iogenesis (PKD, SRPS), DNA damage response in a wider 
sense, also including cell cycle checkpoints and centrosome 
functions and, finally, gametogenesis. Unpublished recent 
mass spectrometry studies of  the Nek1 interactome after 
challenging cells with genotoxic drugs identified a number 
of  nuclear proteins, the majority of  which were associated 
with DNA repair, replication and transcription regulation. 
This, together with a very recent article which reports on 
Nek1 interaction with NHEJ (Non homologous end join-
ing) repair protein Ku80, clearly establishes Nek1 as a key 
player in DDR signaling[29].  

NEK2
Nek2 is the most studied and most well understood of  
the human Neks. In fact, it will be difficult to cover all 
of  its aspects in the context of  this review. Therefore, 
we focused on the most important features of  Nek2 and 
would like to apologize to the many researchers whose 
work could not be covered here due to space restrictions.  

Nek2 shares the highest sequence similarity with 
NIMA in its kinase domain and many biochemical, 
structural and functional features. This has led many re-
searchers to believe that it may be the prototype NIMA 
among all vertebrate Neks and that Nek2 may maintain 
the primordial functions of  NIMA in mitosis progres-
sion. For this reason, Nek2 became the most studied Nek 
family member in mammals[6]. However, care must be 
taken with such an interpretation since Nek2 cannot res-
cue NIMA defective mutants and Nek1 also shares many 
NIMA characteristics[30]. 

Nek2 expression varies during the cell cycle, being 
maximal between the S and G2 phase, during which it 
localizes predominantly to the centrosome[31,32]. Nek2 is 
a component of  the MTOC (microtubule organization 
center) at mitosis entry and a core component of  the 
centrosome, where it phosphorylates the centrosomal 
key components C-Nap1 and rootletin, which form the 
intercentriolar linker that holds the pair of  centrioles 
physically together. This event in turn promotes centro-
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Figure 2  Global interactome of Nek1-11, involving their published interactors. The proteins color code refers to their main biological function given by the top 
enriched Gene Ontology[125] biological processes (P ≤ 0.05). Common interactors establish crosslinks between Neks, thereby emphasizing their common functional 
contexts. The protein sizes are depicted proportional to their connectivity degree. The protein-protein interaction network was built for the first neighbors of Neks using 
the Integrated Interactome System (IIS) platform, developed at National Laboratory of Biosciences, Brazil (http://www.lge.ibi.unicamp.br/lnbio/IIS/) and visualized us-
ing the Cytoscape software[126]. Nek: Never in mitosis-gene A-related kinases.
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some separation itself[33,34]. During the interphase, Nek2 
is maintained in an inactive state by association with the 
protein kinase MST-2 and the phosphatase PP1, which 
keeps Nek2 dephosphorylated. After mitosis onset, polo-
like kinase 1 (PLK1) phosphorylates MST-2, disrupting 
the trimeric complex and resulting in Nek2´s activation 
through auto-phosphorylation. In addition, the centro-
somal proteins Nlp (ninein-like protein) and centrobin 
contain coiled coils and are dislocated from the centro-
somes in Nek2 overexpression conditions. In contrast, 
the Nek2 knockdown or inhibition of  its catalytic activity 
results in the inhibition of  the centrosome separation[35].

A second important functional context for Nek2 is 
at the spindle assembly checkpoint, where through its 
interaction with the major kinetochore proteins Mad1/2 
and the phosphorylation of  the kinetochore core pro-
tein Hec1, Nek2 may be involved in the identification of  
unaligned sister chromatids[36]. Failure at this checkpoint 
may lead to aneuploidy and other chromosomal abnor-
malities and knockdown or knockout of  other Neks, 
including Nek7, has been reported to cause aneuploidy, 
pointing to a potential major involvement of  the Nek 
family in the spindle assembly checkpoint[37]. 

Another functional context for Nek2 is in the game-
togenesis, where Nek2 acts in chromatin condensation 
reminiscent of  the role of  NIMA in Aspergillus nidulans. 
In spermatocytes, the architectural chromatin protein 
Hmga2 is under control through phosphorylation by 
mitogen-activated protein kinase (MAPK) and possibly 

also by Nek2[38]. 
Finally, in Drosophila, Nek2 was detected at the mid-

body in the late mitosis and overexpression of  Nek2 led 
to actin and actin-binding protein dislocation and cytoki-
nesis failure, among other phenotypic effects[39]. 

NEK3
Nek3 is a 506 amino acid serine/threonine kinase[40] and 
localizes both to the nucleus and cytoplasm[41,42]. It is 
highly expressed in testis, prostate, ovary and brain, and 
shows moderate to low expression in lung and liver[40]. 
Its gene localizes to chromosome 13q14.2 and its mRNA 
is expressed in tumor, normal prostate and blood con-
trol cell lines. Insertion/deletion polymorphisms were 
described, in which a stretch of  adenines at the end of  
exon 9 leads to the introduction of  a premature stop 
codon, resulting in a truncated protein that encodes only 
298 or 299 of  the protein amino acids. Interestingly, this 
polymorphism around 13q14 is a mutational hotspot for 
several cancer types[43-45]. Moreover, human Nek3 has an 
N-terminal catalytic domain and a C-terminal regulatory 
domain and shares high amino acid sequence identities 
with mouse Nek3 (56%), but not with other NIMA-
related kinases due to the absence of  coiled coil regions 
(Figure 1)[46]. This suggests that Nek3 and its orthologs 
constitute a separated sub-family of  the Neks[40].

Nek3 is involved in the invasion and motility of  
T47D cells (a human ductal breast epithelial tumor cell 
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Table 1  Subcellular localization, established and possible additional functions of human and mammalian Neks

Nek Gene/ protein 
synonyms

Subcellular localization Established function Possible additional functions 
(under investigation)

1 NY-REN-55
SRPS2,
SRPS2A, KIAA1901

Cytoplasm, cilia, centrosome, γH2X 
positive DNA damage sites in nucleus

Stability and function of the primary 
cilium/polycystic kidney disease[14], DNA 
damage response to IR and chemical 
mutagens[2,23-25]

Meiosis[26-28], apoptosis mediated by 
mitochondria[13]

2 NEK2A, NLK1, RP67,
HsPK21, SRPS2A

Centrosome Regulation and promotion of centrosome 
segregation[33-35]

DNA damage response[127]

3 HSPK36, 
RP11-248G5.5

Cytoplasm Regulation of prolactin response[41], 
microtubule deacetylation in 
neurons[47]

?

4 STK2, NRK2, 
pp12301

Cilia/basal bodies Microtubule stability (silencing alters 
sensitivity to vincristine/taxol)[54]

DNA damage response[9], replicative 
senescence[9], primary cilia function[53]

5 - ? Skeletal muscle differentiation[60], 
caspase-3 substrate/ apoptosis[60]

?

6 SID6-1512,
RP11-101K10.6

Citotic spindle, centrosome Mitotic spindle formation[11-12], 
centrosome separation[69-70]

DNA damage response[18], NF-kappa B 
signaling?[3,71]

7 - Spindle poles Mitotic spindle formation[12,88], 
centrosome separation[69-70]

DNA damage response?1

8 JCK, NEK12A,
NPHP9, RHPD2

Centrosome, cilia,
γH2X positive DNA damage sites in 
nucleus

Stability and function of the primary 
cilium/polycystic kidney disease[95], DNA 
damage response[10]

Integration of primary cilia function 
and DNA damage response[10]

9 NERCC, NERCC1,
KIAA1995, (NEK8)

Spindle poles, centrosome, cytoplasm Mitotic spindle formation[106], centrosome 
separation[100]

?

10 - Possible centrosome/pericentriolar 
localization (?)

DNA damage response after UV induced 
damage[74]

Centrosome function?

11 - Nucleus, nucleoli DNA damage response induced by IR[73] ?

1Souza et al, unpublished observation.



line) through interaction with the guanine nucleotide ex-
change factor VAV2, which promotes both p21-Rac1 and 
transforming protein RhoA activation. These interactions 
are mediated by prolactin-induced association of  Nek3 
with the human prolactin receptor (PRLR). The signaling 
pathway resulting from prolactin’s binding to its receptor 
promotes phosphorylation of  paxillin, a cell adhesion 
mediator, and is dependent on Nek3’s association with 
VAV2[41,42].

In its C-terminal domain, Nek3 contains a PEST 
motif  which contains Thr475, a residue that is phos-
phorylated upon activation. The Thr475 and the PEST 
domains are phylogenetically conserved, suggesting that 
they are important for Nek’s regulation. Expression of  
mutants without the Thr475 or the PEST domain cause 
changes in cellular morphology and polarity of  both epi-
thelial and neuronal cells. Thus, Nek3 may also be crucial 
to the regulation of  neuronal microtubules and in disor-
ders which involve axonal degeneration, possibly through 
modification of  its acetylation status[47].

Another functional involvement of  Nek3 with cy-
toskeleton components is mediated through its interac-
tion with the EH domain-containing protein 2 (EHD2). 
EHD2 interacts with plasma membrane phospholipids, 
associates with VAV1, and forms the complex VAV1-
NEK3-EHD2, which modulates p21-Rac1 activity, caus-
ing actin reorganization close to the plasma membrane 
at the initial stages of  endocytosis[48]. In summary, Nek3 
plays a role in cytoskeleton organization and dynamics 
through actin re-organization and may be involved in the 
regulation of  neuronal development, endocytosis, cell 
motility and invasiveness of  breast cancer tumor cells.

NEK4
Nek4 was initially described as serine/threonine-protein 
kinase 2 (STK2) by Cance et al[49]. In a study of  a kinase 
specific cDNA library in human breast cancer tumors or 
cell lines, they identified STK2 that showed homology 
to Aspergillus nidulans NIMA and expression levels that 
varied widely in human breast tumors. Later, Levedakou 
et al[50] showed that STK2 is highly expressed in the heart 
and that its mRNA level does not vary along the cell 
cycle. After studies characterizing the murine STK2 the 
nomenclature changed to Nek4[51,52].

The human Nek4 gene is located on chromosome 
3p21.1 and is transcribed into about 4kb mRNA, which 
encodes an 841 amino acid residue protein[50]. It is con-
stituted by a N-terminal kinase domain and a C-terminal 
regulatory domain (Figure 1). Hayashi et al(1999)[51] de-
scribed a short and a long isoform for murine Nek4. 
The long mNek4 isoform differs from hNek4 due to 
the absence of  a small fragment in the regulatory do-
main that corresponds to an Alu sequence[51,52]. To date, 
three isoforms have been described for human Nek4. 
The longest canonical sequence (isoform 1: UniProt-
Accession P51957-1, NCBI RefSeq NM_003157) was 
identified by the Cance and Levedakou groups[49,50] and 
used to compare it to mNek4. The isoform 2 (UniProt 

database (UniProt Accession P51957-2 , KJ592714), is 
identical to mNek4 and lacks the Alu sequence. The iso-
form 3 (UniProtAccession P51957-3 and NCBI RefSeq 
NM_001193533) is the shortest one, with a smaller alter-
native N-terminal region. 

Hayashi et al[51], (1999) showed that two isoforms of  
mNek4 are expressed in most tissues, except in the liver and 
heart where only a short isoform is expressed[50]. Recently, 
hNek4 expression was also observed in ciliated tissues, such 
as the retina, kidney tubules, brain (specifically the ventri-
cles), heart and testis[53]. Expression in testis suggests a role 
in meiosis, as has been already reported for mNek4[52]. Fur-
thermore, these new functional studies demonstrated that 
hNek4 depletion does not alter the cell cycle[53,54]. Therefore, 
as shown for other Nek family members, roles other than 
the regulation of  the cell cycle can be attributed to Nek4, 
including microtubule stabilization, primary cilium assembly 
and, more recently, replicative senescence entry and DNA 
damage response[9,53,54]. 

Interestingly, Nek4 activity is evidenced mainly in the 
presence of  chemotherapeutic agents. For example, in 
lymphoma cells, a simple Nek4 knockdown is not enough 
to change cell cycle or microtubule dynamics, but Nek4 
knockdown triggers taxol resistance and promotes sensi-
bility to vincristine in these cells[54]. These results indicate 
that Nek4 has an effect on microtubule stability in the 
presence of  these drugs and suggests that this particularity 
could be explored in therapies, depending on the patient’s 
specific levels of  Nek4 protein in the tumor cells. 

Besides the direct role in microtubule polymerization, 
Nek4 is also important for primary cilium stabilization, as 
was already described for Nek1 and Nek8[14,55,56]. Nek4 in-
teracts with RPGR-interacting protein 1 (RPGRIP1) and 
RPGRIP1-like protein (RPGRIP1L)[53], both associated 
with ciliopathies. Both the eye-restricted disease “Leber 
Congenital Amaurosis” and the “Joubert and Meckel syn-
drome”, which affects multiple organs, are at the severe 
end of  the ciliopathy spectrum. After Nek4 knockdown, 
the number of  ciliated cells decreases, but this effect 
is apparently not related to RPGRIP1 and RPGRIP1L 
phosphorylation status. This suggests that Nek4 may act 
as a scaffold for other cilia signaling proteins[53] and, to-
gether with Nek1 and Nek8, may be important to other 
ciliopathies such as PKD[14,55,56].

More recently, the role of  Nek4 was also connected 
to the DDR because Nek4 depleted cells were found to 
be resistant to DNA damaging agents, such as etoposide 
or bleomycin, and to γ-irradiation. Besides, Nek4 inter-
acted with DNA-PKcs, Ku70 and Ku80, proteins that 
have important roles in the NHEJ (non-homologous end 
joining) repair pathway. Nek4 depleted cells also show a 
decrease of  histone γ-H2AX activation, probably as a re-
sult of  an impairment of  the DNA-PKcs recruitment[9].

NEK5
Among all members of  the Nek family, Nek5 is the ki-
nase with the least amount of  information. Although 
identified in different organisms such as Homo sapiens, 
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Mus musculus, Arabidopsis thaliana, among others, there is 
little information about its function and localization. In 
humans, Nek5 is a protein of  708 amino acids, whose ki-
nase domain is located at its N-terminus[4,8]. According to 
Moniz et al[7], Nek5 is the only member of  the Nek family 
that has a dead box domain (Figure 1). This domain is 
involved in cellular processes such as pre-mRNA pro-
cessing, rearrangement of  ribonucleoprotein (RNP) com-
plexes and gene expression[57]. In Arabidopsis thaliana, dur-
ing epidermal cell expansion, Nek5 interacts with Nek4 
and 6 and these interactions are important to regulate 
microtubule organization, probably through the phos-
phorylation of  beta-tubulins[58]. Therefore, Nek5 may be 
associated with the already established cascade consisting 
of  Nek9, 6 and 7 (see details below). However, care must 
be taken because the evolutionary gap between mammals 
and flower-plants is too large to deduce direct conclu-
sions and the functional information on Neks in plants is 
even scarcer than in mammals[59]. In human cells, Nek5 is 
able to interact with caspase-3 and this interaction is im-
portant for skeletal muscle differentiation[60]. Caspase-3 is 
a protease involved in mechanisms such as apoptosis and 
cell differentiation. It was proposed by Larsen et al[61] that 
caspase-3 activates caspase-activated DNase to promote 
and regulate DNA strand breaks introduced into pro-
moter regions of  genes encoding effector proteins such 
as p21 and that this process may represent a more gen-
eral mechanism of  genome alterations that occur during 
cell differentiation. Since Nek5 interacts with caspase-3 
during cell differentiation, other members of  this kinase 
family may also be involved in differentiation associated 
molecular events and this possibility should be explored 
in future experiments.

NEK6
Unlike the other Neks, Nek6 and Nek7 are the smallest 
and structurally the simplest Neks, consisting only of  the 
catalytic domain with a relatively short N-terminal exten-
sion[8]. Although they share significant similarity with each 
other, being about 86% identical within their catalytic 
domains, their N-terminal extensions are not conserved 
and it has been suggested that they may play a role in the 
differential regulation of  these kinases[3,62]. SAXS experi-
ments, together with SEC-MALS and comparative mo-
lecular modeling performed by our group revealed that 
hNek6 is a monomeric kinase, slightly elongated, with a 
flexible and disordered N-terminal domain[63].

Nek6 was initially identified in a classic biochemical 
screen for kinases capable of  phosphorylating the hy-
drophobic regulatory site of  the p70 ribosomal S6 kinase 
(S6K). Nek6 phosphorylated the Thr412 residue of  S6K 
and other sites, in vitro and in vivo, suggesting it to be a 
possible regulator of  this kinase[64]. Subsequently, Nek6 
was described as not seeming to be responsible for the 
physiological phosphorylation of  S6K, SGK or PKB 
since it was characterized as having a high preference for 
a Leu three residues N-terminal to the phosphorylation 

site of  the substrate[65], and more recent evidence sup-
ports a NIMA-like mitotic role for Nek6.

Both Nek6 and Nek7 co-purify with Nek9 as a result 
of  specific interactions and strong binding to a region 
located between the RCC1 domain and coiled coil motif  
of  Nek9[66] (Figure 1). The endogenous Nek6 is activated 
during mitosis, concomitant with an increase in its level 
of  expression, but this requires phosphorylation at the 
Ser206 residue, which is mediated through Nek9. Nek7 
too is phosphorylated by Nek9 at Ser195 and both phos-
phorylation sites are found in the activation loops of  
these kinases[67]. This information led to the construction 
of  a model in which Neks 6, 7 and 9 act as partners of  
the same signaling cascade[67], with Nek6/7 being sub-
strates of  Nek9. However, Nek9 remains inactive during 
the interphase but is activated during mitosis, phosphory-
lating and activating Nek6/7, which, in turn, coordinates 
the organization and maintenance of  the mitotic spin-
dle[66].

Overexpression of  a catalytically inactive mutant of  
Nek6 generates cells displaying high mitotic index, de-
fects in mitotic spindle, nuclear abnormalities and apop-
tosis[11]. These phenotypes are also observed from the 
depletion of  Nek6/7 in HeLa cells using siRNA, which 
causes retention of  cells in metaphase, with a normal 
chromatin condensation and alignment, but an inability 
to complete the segregation of  chromosomes. The activ-
ity of  Nek6 and also 7, therefore, seems necessary for 
the progression of  anaphase, where the cells are either 
retained at the spindle assembly checkpoint (SAC), or un-
dergo apoptosis or complete mitosis, but with an elevated 
risk of  acquiring chromosomal abnormalities during the 
process[11,12]. Moreover, treatment of  these depleted cells 
with an Aurora B inhibitor to bypass the SAC led to a re-
duction in the frequency of  metaphase arrest, concomi-
tant with an increase in the frequency of  cells blocked in 
cytokinesis. Cells expressing the hypoactive mutants, even 
in the absence of  the SAC inhibitor, also accumulated 
in cytokinesis. Therefore, Nek6 and Nek7 seem to have 
independent, non-redundant roles in mitotic spindle for-
mation and cytokinesis: one at metaphase that requires a 
certain level of  kinase activity and one in late mitosis that 
requires a higher level of  activity[12]. 

Intriguingly, using phospho specific antibodies that 
detect activated Nek6, Rapley et al[68] showed that Nek6 
activity increased 2 h after release from a nocodazole ar-
rest, when cells would be progressing through cytokine-
sis. In this same study, the kinesin-related motor protein 
Eg5, required for spindle bipolarity, has also been de-
scribed as a substrate of  Nek6. It phosphorylates Eg5 ki-
nesin in vitro at several residues, including Ser1033, which 
is also phosphorylated in vivo during mitosis at the spindle 
poles[68]. A signaling cascade seems to occur where Nek2 
first phosphorylates proteins at the intercentrosomal 
linker in G2 phase, resulting in their dissociation, followed 
by activation of  Nek9 by the cyclin-dependent kinase 1 
(CDK1) and the polo-like kinase 1 (PLK1) in early mito-
sis and subsequent activation of  Nek6 and Nek7. These 
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kinases, in turn, phosphorylate Eg5 (previously phos-
phorylated by CDK1), promoting the separation of  the 
centrosomes by the motor activity of  Eg5 accumulated in 
the centrosomes[69,70]. 

Apart from roles in mitosis, human Nek6 was recent-
ly reported by our group to have a broad set of  protein 
partners involved in diverse biological processes[3]. The 
hNek6 interactome showed that it is a high confidence 
hub kinase possibly involved in several known and novel 
cellular pathways, through interactions with and phos-
phorylation of  diverse proteins. Figure 3 depicts some of  
the main cellular pathways identified for hNek6 based on 
the interacting proteins retrieved by our screenings. The 
novel putative pathways shown are the non-canonical 
Wnt signaling, Notch signaling and the actin cytoskeleton 
regulation, whereas the other pathways were already sug-
gested by other studies: the nuclear factor kappa B (NF-
κB) signaling[71] and the DNA damage response[18]. In 
regard to the DNA damage response category identified 
in our work, many studies show its importance among 
the tasks triggered by Neks[2, 8-10,18,23-25,72-74].

On the other hand, Nek6 phosphorylates the tran-
scription factor Oct-1 (POU2F1), a potent regulator 
of  metabolism and tumorigenicity, at S335 in the DNA 
binding domain during mitosis, causing Oct-1 to dissoci-
ate from the chromatin and concentrate in the centro-
somes, spindle poles, kinetochores and midbody[75]. Fur-
thermore, Nek6 phosphorylates histones H1 and H3 in 
vitro, possibly contributing to mitotic chromatin conden-
sation[76]. Nek6 finally also binds the BTB/POZ domain-
containing protein KCTD5, which appears to have a role 
in cytokinesis[77] and apoptosis[78].

As the other human Neks, hNek6 was recently found 
to be linked to carcinogenesis. It shows an increased 
expression and activity in gastric cancer according to 
the progression of  the disease[79] and up-regulation of  
Nek6 mRNA correlates with the Peptidyl-prolyl cis-
trans isomerase Pin1 up-regulation in 70% of  hepatic 
cell carcinomas[80]. The overexpression of  a catalytically 
inactive Nek6 promotes cell cycle arrest in human breast 
cancer in metaphase and leads to apoptosis[11], while its 
knockdown induces senescence and also apoptosis[81]. 
In a large-scale screening of  serine/threonine kinases 
on different types of  human tumors, Nek6 was shown 
to be up-regulated in non-Hodgkin’s lymphoma, breast, 
colorectal and lung tumors[82]. Moreover, NEK6 gene, be-
sides AURKA, has its expression increased in esophagitis 
and esophageal adenocarcinoma, representing a promis-
ing candidate marker of  these diseases[83]. Recently, it was 
demonstrated that transcript, protein and kinase activity 
levels of  Nek6 were highly elevated in malignant tumors 
and human cancer cell lines compared with normal tis-
sue and fibroblast cells, indicating an important role for 
Nek6 in tumorigenesis[84]. Its phosphorylation at Thr210 
and Ser206 is critical for the phosphorylation of  STAT3 
(signal transducer and activator of  transcription 3) at 
Ser727[85]. Furthermore, its overexpression suppresses 

p53-induced senescence in cancer cells: it inhibits the cell 
cycle arrest at both G1 and G2/M transition, the reduc-
tion in the Cdc2 and cyclin B levels and the increase in 
ROS levels induced by p53[86]. Its overexpression also 
makes cancer cells resistant to premature senescence in-
duced by the anti-cancer drugs camptothecin and doxo-
rubicin[87]. The inhibition of  the Nek6 function sensitizes 
human tumor cells to premature senescence after anti-
cancer drug treatment or serum depletion[81], suggesting 
Nek6 to be a potential therapeutic target for various types 
of  human cancers.

NEK7
Human Nek7 was originally described as a possible regu-
lator of  the p70 ribosomal S6 kinase[64] and of  important 
events in the mitotic progression[12,6,67,88] (see above for 
Nek6). These findings have led to studies on the regula-
tory effects of  hNek7 in key functions of  the cell cycle 
and in cancer. The siRNA-mediated down-regulation of  
hNek7 and expression of  kinase inactive mutants reduced 
centrosomal γ-tubulin levels in interphase cells and caused 
prometaphase arrest with defects in mitotic spindles[6,88]. 
Nek7 overexpression in culture cells, on the other hand, 
resulted in multinucleated cells and a higher proportion 
of  apoptotic cells[89]. In the same line, the Nek7 deple-
tion also decreased microtubule stability, while its ectopic 
overexpression rescued this phenotype[90]. Furthermore, 
hNek7 deficient mice die early in development and, on a 
cellular level, lack of  Nek7 led to decreased chromosome 
numbers, increased centrosome numbers, binucleation, 
micronuclei formation, cytokinesis failure, growth retarda-
tion or cell death[37]. The PCM (centrosomal pericentriolar 
material) proteins do not accumulate at the centrosome in 
Nek7-depleted cells in the G1/S and G2/M transitions[91], 
indicating that Nek7 is required for centriole duplication, 
centrosome maturation and mitotic spindle formation[88]. 

The direct interaction of  Nek7 with the non-catalytic 
domain of  Nek9 allosterically activates Nek7 by inter-
ruption of  its autoinhibitory conformation[92]. Consistent 
with these findings, recent studies demonstrated that 
PLK1 and CDK1 control the centrosome separation 
through phosphorylation and activation of  Nek9 dur-
ing mitosis. This leads to the Nek6/7-dependent phos-
phorylation of  kinesin Eg5, a key event for centrosome 
separation and mitosis[69]. Thus, as in the case of  Nek6, it 
is not surprising that cancer cells express elevated levels 
of  Nek7, suggesting a role in tumor progression. Higher 
expression levels of  Nek7 were found in larynx, breast, 
colorectal[82] and gall bladder cancers[93]. Taken together, 
these findings suggest Nek7 as a potentially important 
regulator of  the cell cycle and reveal it as an essential 
component for growth and survival of  mammalian cells. 
Furthermore, the linkage with a failure in centrosome 
biogenesis, chromosomal stability and ploidy, as well as 
the observed disturbance of  microtubule dynamics con-
nects Nek7 to hallmark features of  oncogenesis. 
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NEK8
Nek8 was first described as the mutated gene in murine 
autosomal recessive juvenile cystic kidney (jck) mice[55]. 
As observed for Nek1, these mutational changes found 
in Nek8 C-terminal domain can cause genetic kidney 
diseases, including polycystic kidney disease (PKD)[55]. 

PKD is one of  the most frequent genetic kidney diseases 
and has a highly variable pathology, involving aberrant 
cell proliferation in the kidney and pleiotropic effects in 
multiple other organ systems, including the liver and the 
pancreas. Evidence that renal cyst formation is caused by 
defects in ciliogenesis or ciliary function is substantial[56]. 
In mouse cells, Nek8 localizes to the proximal region of  
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the primary cilium and is not observed in dividing cells[56]. 
In humans, Nek8 is overexpressed in primary breast tu-
mors[94] and localizes to centrosomes and the proximal 
region of  cilia in dividing and ciliated cells, respectively. 
The localization of  Nek8 to centrosomes and cilia is de-
pendent on both the kinase activity and the C-terminal 
non-catalytic domain homologous to RCC 1 (regulator 
of  chromosome condensation). It is capable of  auto-
phosphorylation in the non-catalytic C-terminal region 
to regulate its localization or activation. Its activity is not 
cell cycle regulated but, in the same way as observed for 
Nek3, activity levels are higher in G0-arrested cells. The 
kinase domain alone, although catalytically active, does 
not localize correctly, while a fragment containing only 
the RCC1 domain shows correct localization and can also 
be phosphorylated by Nek8[95]. 

Nek8 carries the causal mutations of  two of  the eight 
established mouse models of  polycystic kidneys (jck). In 
these models, an abnormal interaction between Nek8 and 
the polycystin complex may give rise to PKD by disturb-
ing microtubule dynamics, the mitotic spindle checkpoint 
and the cytoskeleton. Nek8 mutations cause overexpres-
sion of  galectin-1, sorcin and vimentin and accumulation 
of  the MUP (major urinary protein) in renal cysts of  jck 
mice[96].

The role of  the RCC1 domain in Nek8 is yet un-
known. However, a single G448V substitution is respon-
sible for the jck phenotype[55]. Overexpression of  mutant 
forms of  Nek8 (including G448V) in tissue culture cells 
leads to the formation of  enlarged multinucleated cells 
and reduced numbers of  actin stress fibers, although tu-
bule cells in jck mice are not multinucleated, suggesting 
that the cellular role of  Nek8 may be related to the regu-
lation of  the cytoskeleton[55].

Co-immunoprecipitation experiments demonstrated 
that Nek8 interacts with polycystin-2 (PKD2), a mecha-
nosensing receptor protein, involved in the regulation of  
the cilium length. However, the jck mutation of  Nek8 did 
not apparently affect this interaction directly. These data 
suggest that Nek8 interferes with the polycystic signal 
transduction pathways and/or the control of  the target-
ing process of  these ciliary proteins. Dysfunction of  
Nek8 may lead to cystogenesis by altering the structure 
and function of  cilia in cells located at the distal neph-
ron[97].

Recent results suggest that Nek8 has a function in the 
maintenance of  genomic stability[10]. Loss of  Nek8 leads 
to spontaneous DNA damage and a defect in the re-
sponse of  cells to replication stress. Furthermore, Nek8 
interacts physically and functionally with components of  
the ATR-mediated DDR. The disease-related jck mutant 
of  Nek8 fails to both interact with the ATR pathway 
proteins and to rescue the genome maintenance defects 
associated with Nek8 knockdown. Thus, Nek8 is a critical 
component of  the DDR that links replication stress with 
primary ciliary functions and the related cystic kidney dis-
orders[10].

NEK9
Nek9, also called Nercc1, is one of  the largest Neks with 
979 amino acids, with an extensive C-terminal regulatory 
domain, which contains seven RanGEF homology re-
peats, an RCC1 domain, a segment rich in Ser/Thr/Pro 
residues and, like in Nek2, a coiled coil dimerization mo-
tif  (Figure 1)[66,98].

Nek9 was first described as Nek8 and isolated with a 
catalytic activity against beta-casein in rabbit lung extracts 
treated with IL-1, revealing the co-chromatography of  a 
second protein homologous to the Drosophila bicaudal D 
protein, Bicd2, which is in vitro phosphorylated by Nek9 
and resembles a cytoskeleton structure[99]. Moreover, 
Nek9 immunoprecipitation of  Xenopus laevis egg extracts 
showed γ-tubulin and other members of  the γ-tubulin 
ring complex (γ-TuRC), which are essential for the mi-
crotubule nucleating activity of  the centrosome[98]. Cen-
trosomal γ-tubulin recruitment depends on the adaptor 
protein NEDD1 and is controlled by PLK1. In a recent 
study by Sdelci et al[100], it was reported that PLK1 acti-
vates Nek9, which phosphorylates the Ser377 in NEDD1, 
promoting its recruitment together with γ-tubulin to the 
centrosomes of  dividing cells (independently of  Nek6/7). 
Furthermore, the microinjection of  anti-Nek9 in human 
cells during prophase, after the chromosomes condensa-
tion, interferes in the organization of  the spindles and the 
proper segregation of  chromosomes, resulting in cell cycle 
arrest in prometaphase or aneuploidy[66].

Nek9 expression remains constant in different cell 
cycle phases (G1/S, G2, M, G1); however, as observed for 
NIMA, there is a specific increase in its catalytic activity 
during mitosis, which was found to be triggered by in vitro 
and in vivo phosphorylation events[66]. The recombinant 
wild-type Nek9 shows reduced activity when extracted 
from exponentially growing cells, but its pre-incubation 
with ATP and Mg2+ induces its autophosphorylation at its 
activation loop Thr210 residue and its activation, whereas 
mutants lacking the coiled coil dimerization motif  show 
significantly reduced activity[66,98]. Interestingly, the dele-
tion of  the RCC1 region leads to a catalytic hyperactiv-
ity, indicating that this region may be required for Nek9 
autoinhibition[66]. Moreover, Nek9 binds to dynein light 
chain 1, cytoplasmic (DYNLL1), a highly conserved pro-
tein originally described as a component of  the dynein 
complex, via its C-terminal (K/R) XTQT motif  adjacent 
to Nek9 C-terminal coiled coil motif, resulting in Nek9 
oligomerization, an increase in its autoactivation rate and 
a reduction in its binding to Nek6[101].

It is possible that Nek9 activation in mitosis involves 
a very small percentage (< 5%) of  the total expressed 
protein, and in contrast with the vast majority of  inac-
tive protein, the active Nek9 (Thr210P) is first evident 
during prophase, concentrated at the centrosome, where 
it can be phosphorylated by CDK1/cyclin-B[102], until 
metaphase is reached. During the transition to anaphase, 
the immunoreactivity of  Nek9 (Thr210P) decreases at 
the centrosomes and becomes detectable at the chromo-
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somes, which is evident until telophase. Before disappear-
ing, the active Nek9 is detected at the midbody as two 
points flanking the cleavage furrow during cytokinesis[98]. 

Due to its possible roles in the mitotic spindle or-
ganization and chromosome segregation through its 
activation during mitosis and interaction with Nek6/7, 
it is possible that most of  the phenotypes observed with 
the microinjection of  anti-Nek9 antibodies in human 
cells are caused by interference with Nek6/7 function[66]. 
Taken together, the data suggest that Nek9 is a positive 
upstream regulator of  Nek6/7.

Among other kinases, Nek9 was recently identified by 
quantitative chemical proteomics as a possible marker for 
the diagnosis and therapy of  head and neck tumors[103]. 
Moreover, Nek9 shows, along with other kinases impli-
cated in cancer, its activity inhibited by the drug querce-
tin[104]. Its expression is increased in chronic myeloid leu-
kemia cells resistant to imatinib[105], indicating that its up-
regulation could be involved in chemotherapy resistance 
mechanisms. Depletion of  Nek9 in glioblastoma (U1242) 
and renal carcinoma (Caki2) cells results in failures in 
cytokinesis and cell death in Caki2 cells, after overriding 
mitosis, and incorrect alignment of  chromosomes and 
micronuclei formation. Therefore, it is suggested that 
inhibition of  Nek9 is a potential anti-cancer therapeutic 
strategy by induction of  mitotic catastrophe via reduced 
dynamics of  the spindle, cytokinesis and mitotic check-
point control[106].

NEK10
One of  the most intriguing but less studied members of  
the Nek family is Nek10 since it has its catalytic domain 
flanked by two regulatory domains (Figure 1). Each of  
these two regulatory domains has their own peculiarities. 
As NIMA and Neks 1, 2, 5, 9 and 11, Nek10 also has 
coiled coil regions closely located to the kinase domains[8]. 
Furthermore, four repetitions of  an armadillo repeat 
motif  in its N-terminal regulatory domain may serve as 
an important region for protein-protein interactions, as 
has been reported for other proteins[107]. In the case of  
its C-terminus, a PEST region may be important to the 
proteolytic regulation of  the protein’s abundance. There 
are some contradictions and a debate about Nek10’s full 
length since several different cDNAs have been depos-
ited that differ in the C-terminal domain length.

Mutations in the Nek10 gene locus have been linked 
to breast cancer in different studies that were trying to 
find new polymorphisms in carriers of  mutations in 
BRCA1/2 (breast cancer type 1/2 susceptibility pro-
tein)[108-110]. Moniz et al[74] have shown an important role 
for Nek10, comparing normal and tumor mammary 
gland cell lines. They found that Nek10 affects the 
ERK1/2 (extracellular signal-regulated kinase 1/2) signal-
ing pathway, after activation with UV radiation. Nek10 
has been shown to form a functional complex with RAF1 
and MEK1 (dual specificity mitogen-activated protein 
kinase kinase 1). In this sense, cell cycle arrest in G2/M 

was observed and Nek10 caused both MEK1 activation 
and the ERK1/2 phosphorylation. However, these pre-
liminary data suggest a possible involvement of  Nek10 
in the DDR, as already demonstrated for Nek1, 4, 6, 8 
and 11[2,8-10,18,23-25,72-73]. Moreover, like BRCA1 and BRCA2, 
Nek10 may be a therapeutic target in breast cancer. 

NEK11
Nek11 is one of  the least studied Nek family members 
and has the highest sequence similarity to Nek4. Its gene 
is present on the same chromosome as that of  Nek4 but 
on the long arm (3q22-1). Nek11 was first identified by 
Noguchi et al (2002)[111] and shows a high sequence simi-
larity with Nek4 and 3 in its kinase domain, but is more 
similar to Nek2 in its regulatory region (Figure 1). Inter-
estingly, Noguchi et al[111] have not found Nek4/11-related 
kinases in C. elegans or D. melanogaster, suggesting that the 
Nek11-containing subfamily may have only appeared 
through gene or genome duplication after separation of  
the deuterostome branch in the animal kingdom[111].

Noguchi et al[111] (2002) described two isoforms for 
Nek11. The longer isoform (Nek11L) is composed of  
645 residues, while the shorter one (Nek11S) contains 
only 470 residues. Nek11 shows a N-terminal kinase do-
main and a C-terminal regulatory domain with a coiled 
coil and three PEST sequences, suggesting a proteolytic, 
cell cycle specific regulation of  its expression. Nek11, 
different from Nek1, 2 and 4, is not present in a higher 
quantity in the testis or ovary, but its mRNA is found 
in the brain’s cerebellum, trachea, lung, appendix and 
uterus[111]. Another important difference to Nek4 is that 
Nek11 shows a timely cell cycle related expression pat-
tern, relating it closer to Nek2, with both showing an 
expression peak at the G2/M transition.

The first indication that Nek11 could be important 
in the regulation of  cell cycle checkpoints was the iden-
tification of  histones H1, H2A and H3 as Nek11 phos-
phorylation substrates. Furthermore, in the presence 
of  genotoxic agents, Nek11 showed both an increased 
expression and activity at the G2/M transition. Although 
this is decreased by caffeine, suggesting that Nek11 DDR 
may be associated with the ATM/ATR pathways, which 
also showed the same inhibition by caffeine[111].

Another common point between Nek11 and Nek2 
is their localization to the nucleolus. In the study of  No-
guchi et al[112] (2004), it was observed that in U2OS cells 
Nek11L is present in the nucleolus during interphase and 
telophase and that it probably interacts with Nek2A in 
the nucleolus. Moreover, Noguchi et al[112]speculated that 
Nek2A could phosphorylate Nek11L C-terminal and, in 
this way, antagonize its auto-inhibitory function, which 
would cause Nek11 activation in G1/S arrested cells[112]. 

Recently, some of  Noguchi’s results were followed 
up by Melixetian et al[73]. This study points to Nek11 as 
an important player in cancer development. Melixetian 
et al[73] observed that Nek11 depleted U2OS cells lose an 
important G2/M checkpoint after IR. In this way, it was 
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verified that after IR Chk1 phosphorylates both M-phase 
inducer phosphatase 1 (CDC25A) and Nek11. Nek11 in 
turn also phosphorylates CDC25A, leading to its protea-
somal degradation and subsequent inhibition of  cyclins 
followed by a cell cycle arrest at the G2/M transition.

The studies involving Nek11 so far point to it as an 
important protein for the cell cycle regulation in the con-
text of  the DDR. However, more interactome studies are 
required to clarify other possible functions of  Nek11 in 
the cell.  

DISCUSSION
After knowing sufficient details on all of  the eleven in-
dividual Neks, we will now return to a more general and 
integrative approach and try to find common functional 
contexts for the family as a whole in human cells. As 
pointed out in the introduction, Neks may be assigned to 
three major functional contexts: (1) centrioles and mitotic 
spindle functions; (2) primary ciliary function; and (3) 
G2/M phase associated DDR. Although most individual 
Neks have been associated with one main context, recent 
functional data as well as the identification of  interac-
tion partners for several Neks from two or even all three 
contexts may suggest that Neks have a broader function, 
possibly on a regulatory level, that consequently affects 
the three main functions. A first way of  looking at this is 
by comparing the interaction profiles and functional con-
texts of  the published interacting partners, summarized 
in Figure 2, which shows the Neks global interaction pro-
file and the possible new biological processes in which 
they are involved due to their interaction with multiple 
proteins. 

Several protein interactors with violet color interact 
with Nek1, 2, 3, 8, 9 and 11 and can be described as as-
sociated with the “axon guidance”/transport processes. 
They include, for example, fasciculation and elongation 
protein zeta (FEZ)-1 and 2 that interact with Nek1[2,113,114]. 

Several proteins associated with apoptotic processes 
interact with Nek6: serine/threonine-protein kinase PAK 
6 (PAK6), serine/threonine-protein kinase Sgk1 (SGK1) 
and DBIRD complex subunit KIAA1967 (KIAA1967) 
(darker green color). 

Nek9 interacts with several proteins from the autoph-
agy-related protein 8 family (GABARAP, GABARAPL1, 
GABARAPL2, MAP1LC3A, MAP1LC3B and MA-
P1LC3C) (light blue).

Several proteins from DNA repair processes interact 
with either Nek1, 6, 9 or 10: RuvB-like 2 (RUVBL2), 
Fanconi anemia group I protein (FANCI), transcriptional 
regulator ATRX (ATRX), FACT complex subunit SSRP1 
(SSRP1) and SUMO-1 (SUMO1) (red). The putative 
DNA repair and recombination protein RAD26-like 
(RAD26L), the PHD finger protein 1 (PHF1), and also 
the double-strand-break repair protein rad21 homolog 
(RAD21, not shown in Figure 2), all identified as Nek6 
interactors in our yeast two-hybrid screens[3], are also pos-
sibly involved in the DDR[115,116].

In order to demonstrate the potential discovery of  ad-
ditional functional contexts through interactomics stud-
ies, we will now have a closer look at the Nek6 interac-
tome as described by our group[3] (Figure 3). Novel Nek6 
interacting partners are indicated by yellow ellipses and 
suggest the following new functional contexts: (1) Nek6 
is possibly involved in actin cytoskeleton organization 
through its interaction with cell division control protein 
42 homolog (CDC42) and sorting nexin-26 (SNX26)[3]. 
Since SNX26 has a negative regulatory role on CDC42 
and Nek6 interacts with both of  them, the final output 
of  Nek6 must be addressed by future experiments. How-
ever, these findings are supported by the fact that for 
Nek3 a clear involvement in related processes has been 
reported (see Nek3 section above); (2) Nek6 may be in-
volved in the activation of  the NF-κB signaling on mul-
tiple layers, since it interacts with the transcription factor 
RelB, Prx-Ⅲ and/or TRIP-4[3,71]. Matsuda et al[71] found 
Nek6 as an activating protein in a siRNA knockdown 
screen to identify proteins that participate in the regula-
tion of  cellular survival transcription factor NF-κB[71]. 
The regulation may occur on several levels: through direct 
phosphorylation, interaction or regulation of  the nuclear 
translocation of  key components of  the NF-κB com-
plex, like RelB, or even on the transcriptional level. The 
latter seems likely, since Nek6 also interacts with SNW 
domain-containing protein 1 (SNW1) and a PHF domain 
containing protein (PHF1)[3], both of  which have been 
recently identified as key components involved in the 
complex, multiprotein machinery involved in the tran-
scriptional activation of  the NF-κB gene[117]. Again, Nek6 
regulatory role here may be mediated through interaction 
and/or phosphorylation; (3) the IR-induced DNA dam-
age response is mediated by Nek1, 6 and 11, leading to 
cell cycle arrest[18,23,25,72,73]. The UV-induced DNA damage 
response is mediated by Nek10, also leading to cell cycle 
arrest[74]. This may suggest that different Neks may have 
specialized to mediate different forms of  DNA damage 
responses; and (4) it is known that Nek6 can counteract 
p53 induced senescence[86]. As we can observe in Figure 
3, this may occur indirectly through Nek6 modulation of  
p53 interactors 40S ribosomal protein S7 (RPS7) and/or 
E3 ubiquitin-protein ligase RBBP6 (RBBP6). It is worth 
noting here that Nek4 has the opposite effect of  Nek6. 
Nek4 seems to be required for the cell to enter in senes-
cence[9].

Another important point is the finding that certain 
functions first only described for isolated specific Neks 
have been later confirmed for most if  not all other Neks. 
Nek1 was the first family member to be associated with 
DDR signaling events[23]. In our yeast two-hybrid screen 
to identify Nek1 interacting proteins, we identified pro-
teins involved in the repair process itself  (MRE11A) and 
in different signaling pathways associated with it (ATRX, 
PPP2R5 A/D, YWHAH, TP53BP1) (Figure 4). 

Nek4, 6, 8, 10 and 11 have also been reported to 
physically interact with key members of  DDR pathways 
or to interfere functionally in signaling cascades in a 
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broader context of  the G2/M transition[8-10,18,73-74]. As de-
scribed above for Nek6, the interactors RAD26L, PHF1, 
RAD21[3], FANCI and RUVBL2[118] are all associated with 
the DDR. Together with the relatively recent work by 
Lee et al (2008)[18], this suggests Nek6 may also interfere 
in DDR. However, the stimuli that activate such possible 
pathways via Nek6 are still unknown. In further yeast 
two-hybrid screens and mass spectrometry interactomics 
studies we found other DDR members interacting with 
Nek3, 4, 5, 7, 8, and 10 (unpublished data). Recent publi-
cations clearly confirmed part of  those findings or went 
beyond them by characterizing this new involvement not 
only functionally, but also establishing possible cross-
connections between primary cilia signaling and DDR in 
the case of  Nek8[10]. For Nek4, an involvement in senes-
cence signaling was established and in mass spectrom-
etry experiments, several DDR proteins such as DNA-
PKcs (PRKDC), Ku70/Ku80 (XRCC6/5) and PCNA 
were identified as Nek4 interacting proteins (Figure 4)[9]. 
Furthermore, Nek4 has been reported to interact with 
RPGRIP at the primary cilium[53], thereby establishing an-

other link between DDR and primary cilium function.
A new role for Nek5 in differentiation and apoptosis 

signaling has been identified and characterized through 
its interaction with and proteolytic processing by cas-
pase-3[60]. Evidently, apoptosis signaling is closely related 
to DDR and the G2/M checkpoint because cells unable 
to repair major DNA damage must either halt in the cycle 
or be dispatched by apoptosis. The link between Neks, 
DDR and apoptosis is not new as Chen et al[13] had also 
already reported an interaction of  Nek1 with mitochon-
drial VDAC1. Nek1 phosphorylates VDAC1 and prevents 
apoptosis by avoiding VDAC1 opening and leakage of  
cytochrome c, which would activate apoptotic caspases. 
The down-regulation of  Nek1 protein level or kinase 
activity through apoptosis signaling decreases VDAC1 
phosphorylation and results in its opening and leakage of  
cytochrome c, thereby activating the apoptosis program.

For Nek1, the coexistence of  functional roles in 
both DDR and ciliopathies and primary cilia function 
has been long established (Figure 4). Nek1 interacts with 
several proteins involved in the primary cilia function 

Meirelles GV et al . Nek family kinase interactomes and functions

DNA

Nek2

Nek10

Figure 4  Nek1 interactome and crosstalk with other Neks and protein interactors in the context of the DNA damage response pathways. Interactions be-
tween proteins are depicted as simple lines, activation is depicted as an arrow and inhibition as an arrow with a line as arrowhead. A red arrow for 14-3-3 means that it 
causes activation by the transport of CDC25 to the nucleus. Nek1 interacted with a specific 14-3-3 isoform called YWHAH[2] (gene symbols inside brackets correspond 
to the isoforms of those proteins which were described to interact with Nek1). Not necessarily the same specific 14-3-3 protein promotes the indicated functions. Rath-
er, a family characteristic is intended to be assigned. Nek2 kinase activity is inhibited after DNA damage (arrow)[127]. The red protein names are those that have been 
identified to directly interact with Nek1 as identified by the yeast two-hybrid system[2] or other as indicated in the figure. Gene symbols above/under protein names 
represent other interactors of those proteins. Nek4 interactors have been identified by mass spectrometry[9]. As can be seen, all but three Neks (Nek3, 7 and 9) seem 
to be directly linked to the DNA damage response. Most strikingly, we can see a direct connection for Nek8, 4 and 1 between DDR and primary cilium function and 
ciliopathies. New connections to apoptosis have been recently pointed out for Nek1 and 5. References for interactions are depicted in brackets: Nek6[3,118]; Nek1[2,13,25]; 
Nek4[9,53]; Nek8[10]; Nek11[73]; Nek10[74]; Nek2[127]; Nek5[60]; KIF3A[19]; Fez1/2[128], various known interactions[129].

Nek5

Nek4

Nek8

Nek1

Nek6

Nek11

Chk2
[129]

[129]

[129] [129]

[129]

[73]

[13]

[129]

[60]

[129] [129]
[129]

[128]

[19]

[2]

[2]

[2]
[2]

[2]

[2]

[2]

[74]

[9]
[9]

[53]

[10]
[10]

[23] [29]

[13]
[25]

Caspase-3

Apoptosis

G2 M

Cdc25A

CDK1/CyclinB

Chk1

Claspin

BRCA1/2

ATM

Raf-1

MEK 1

ERK-1/2

[127]

[118]
[3]

DAMAGE

PRKDC (DNA-PKcs)
XRCC6/5 (Ku70/Ku80) 

PCNA RPGRIP1

Primary cilium/ciliopathies

Intraflagellar transport

KIF3A, Tuberin, Alpha-catulin

Fez1/2?

VDAC-1PP2A [PPP2R5A/D]
ATR/ATRIP

MRE11A

14-3-3[YWHAH]

pP53 BP1

FANCI 
RUVBL2 
CDC42 
RAD21 
RAD26L

ATR/ATRIP 
CHK1 
PCNA

XRCC5 (Ku80)

P53



154WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

and especially in kidney duct mechanosensing (KIF3A, 
tuberin, alpha-catulin, polycystin 1/2). Mutations in the 
genes that encode all of  these proteins like those that 
cause expression of  truncated non-functional Nek1 itself, 
cause PKD[14]. Since Nek8 is functionally and evolution-
ary most closely related to Nek1 among the Nek family, it 
came as no surprise that Nek8 mutations were also found 
to cause ciliopathies and cystic kidney disease. Moreover, 
Nek8 interacts with some key DDR proteins, including 
ATR, Chk1 and PCNA, just like Nek1[10]. What is new 
in these milestone discoveries, however, is the possibil-
ity that somehow these two pathways are causative or 
coincidentally connected. Choi et al[10] made the observa-
tion that mice cells with diminished Nek8 kinase activity, 
simulating a kidney ciliopathy, already show a constitutive 
activation of  DDR pathways in the embryonic phase, as 
evidenced by repair foci in their kidney cells nuclei. This 
raises a couple of  possibilities to consider: either the 
cilia have some function in the sensing of  DNA damage 
or in transmitting downstream events, or otherwise, the 
cilia defects somehow transduce (via Nek8) to a possible 
lack of  repair of  replication defects. Of  course a simpler 
explanation could be that both phenomena are affected 
simply because Nek8 participates in both of  them simul-
taneously. However, an additional possibility is that Nek8 
acts on a higher regulatory level that coordinates both 
pathways based on the necessity of  the cell to coordinate 
these events closely during the course of  the cell cycle. 

Clearly, further studies are necessary to evaluate these 
new possibilities. However, it seems to be clear now that 
the three central functions controlled by Neks, mitosis, 
primary cilia and DDR, are more connected than previ-
ously expected and that several if  not all Neks participate 
in more than one of  them. 

A possibility exists that the Neks per se are the key 
regulatory elements that may connect these three func-
tions. The seemingly functional redundancy may in fact 
rather represent connecting elements between hitherto 
non-connected regulatory circuits (Figure 5), e.g., be-
tween primary ciliary function and DDR for Nek8[10] and 
Nek1[2,23,14]. Furthermore, these circuits may cooperate in 
a concerted one or two-directional fashion (Nek8). 

Most interestingly, from a cilium perspective, recent 
evidence also indicates a strong link between cilia, stress 
responses and DNA damage repair processes. A recent 
study showed that environmental stresses, including UV 
and IR, result in altering the protein composition of  
centriolar satellites, thereby promoting de novo ciliogen-
esis[119]. Together with the recent findings that ciliopathy-
associated mutations in DNA damage key regulators 
(e.g., Mre, Znf423) also connect cilia and DDR[120-124], it is 
tempting to speculate that cilia may act as platforms for 
cell cycle checkpoints or the DDR. 

CONCLUSION
Clearly, the past 10 years have provided new and exciting 
insights into the multifaceted functions of  this interest-
ing protein kinase family and the future promises to hold 
more surprises and the discovery of  new functional con-
nections. An exciting time has come to the field of  Nek 
research and the Neks are ready to step out of  the shade 
and take a main role along the other important cell cycle 
regulatory kinases: Polo-like kinases, Aurora kinases and 
Cyclin-dependent kinases. It is time to stop Ne(c)king 
around with them and allow them to enter the spot light 
in the field of  cell cycle biology.
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draft (partial data) genome deposits in public databas-
es. If no further interests are expressed for a particular 
bacterial genome, it is more likely that the sequencing 
of its genome will be limited to a draft stage, and the 
painstaking tasks of completing the sequencing of its 
genome and annotation will not be undertaken. It is 
important to know what is lost when we settle for a 
draft genome and to determine the “scientific value” of 
a newly sequenced genome. This review addresses the 
expected impact of newly sequenced genomes on an-
tibacterial discovery and vaccinology. Also, it discusses 
the factors that could be leading to the increase in the 
number of draft deposits and the consequent loss of 
relevant biological information.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Next-generation sequencing (NGS) technolo-
gies have made high-throughput sequencing available 
to medium- and small-size laboratories, culminating in 
a tidal wave of genomic information. The quantity of 
bacterial genomes has not only brought excitement to 
the field of genomics, it has also heightened expecta-
tions that NGS would boost antibacterial discovery and 
vaccine development. Although many possible drug 
and vaccine targets have been discovered, the success 
rate of genome-based analysis has remained below 
expectations. Furthermore, NGS has consequences for 
genome quality, resulting in an exponential increase in 
draft genome deposits in public databases. This review 
will address the expected impact of newly sequenced 
genomes on antibacterial discovery and vaccinology, as 
well as the impact of NGS on draft bacterial genomes.
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Abstract
Next-generation sequencing (NGS) technologies have 
made high-throughput sequencing available to medium- 
and small-size laboratories, culminating in a tidal wave 
of genomic information. The quantity of sequenced 
bacterial genomes has not only brought excitement to 
the field of genomics but also heightened expectations 
that NGS would boost antibacterial discovery and vac-
cine development. Although many possible drug and 
vaccine targets have been discovered, the success rate 
of genome-based analysis has remained below expec-
tations. Furthermore, NGS has had consequences for 
genome quality, resulting in an exponential increase in 

World J Biol Chem 2014 May 26; 5(2): 161-168
 ISSN 1949-8454 (online)

© 2014 Baishideng Publishing Group Inc. All rights reserved.

World Journal of
Biological ChemistryW J B C

161WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4331/wjbc.v5.i2.161



Barbosa EGV et al . Value of a newly sequenced bacterial genome

2014; 5(2): 161-168  Available from: URL: http://www.wjg-
net.com/1949-8454/full/v5/i2/161.htm  DOI: http://dx.doi.
org/10.4331/wjbc.v5.i2.161

INTRODUCTION
Since its release in 2005, next-generation sequencing 
(NGS) has been responsible for a drastic reduction in the 
price of  genome sequencing and for a tidal wave of  ge-
netic information[1]. NGS technologies have made high-
throughput sequencing available to medium- and small-
size laboratories. The new possibility of  generating a 
large number of  sequenced bacterial genomes not only 
brought excitement to the field of  genomics but also 
heightened expectations that the development of  vac-
cines and the search for new antibacterial targets would 
be boosted. Nevertheless, these expectations were shown 
to be naïve. The complexity of  host-bacteria interactions 
and the large diversity of  bacterial genetic products have 
been shown to play greater roles in vaccine development 
and antibacterial discovery[2-4]. 

Additionally, as with any methodology, NGS presents 
its own drawbacks. Among the new sequencing technolo-
gies the most consolidated in the market are the 454 GS 
FLX platform (Roche), Illumina (Genome Analyzer) and 
SOLiD (Life Technologies)[5,6]. These devices are capable 
of  generating millions of  reads, providing high cover-
age genomic but with a drawback, reads are considerably 
smaller than the ones produced by Sanger methodol-
ogy[7,8]. While Sanger methodology produces reads rang-
ing from 800 to 1000 bases, NGS platforms produces 
reads ranging from 50 (SOLiD V3) to 2 × 150 bases 
(Illumina)[9]. The small amount of  information contained 
in each read makes it difficult to completely assemble a 
genome using exclusively computational tools[10,11]. There-
fore small reads made the genome assembly process a 
quite more laborious task. 

In recent years, approaches that use hybrid assemblies 
were developed to facilitate the assembly process. They 
take advantage of  high read quality of  second genera-
tion sequencers, i.e., Illumina (Genome Analyzer), and 
longer read lengths from third generation sequencers, i.e., 
SMRT sequencers (Pacific Biosciences) and Ion Torrent 
PGM[12,13]. Although empirically logical, this kind of  ap-
proach wasn’t facilitated due to the lack of  integration 
between sequencers. 

In order to improving and verifying quality genome is 
essential to know which combination of  sequencing data, 
computer algorithms, and parameters can produce the 
highest quality assembly[14,15]. Also, it is necessary to know 
the more likely type of  error data a sequencer platform 
will present. For instance, Illumina and SOLiD are more 
likely to present nucleotide substitution, while 454 GS 
FLX and Ion Torrent are more likely to present indels[16]. 
Nearly none bioinformatic system has been developed 
to integrate reads from different sequencers into a single 
assembly[12,17]. This new developed approaches aim to 

reduce the manual intervention in finishing genomes, 
since repetitive regions may be solved using an hybrid ap-
proach.

Although NGS is directly responsible for consider-
able growth in the size of  genomic databases, it has also 
been indirectly responsible for a decrease in genome 
quality[1,10]. The number of  draft genome (partial data) 
deposits in public databases has grown exponentially 
since 2005 (Figure 1). In general, if  no further studies will 
be developed using a particular organism’s genome, it is 
more likely to be deposited as a draft genome. Otherwise, 
the painstaking tasks of  improving and finishing the ge-
nome (complete data) must be undertaken[18].

This review will address the “scientific value” of  a 
newly sequenced genome and the amount of  insight it 
can provide. We will address the factors that could be 
leading to the increase in the number of  draft deposits 
and the consequent loss of  relevant biological informa-
tion. Additionally, we will summarize the expectations 
created by NGS technologies regarding vaccine develop-
ment and antibacterial discovery. 

OveRvIew Of seqUeNCINg aND 
assembly
For 30 years, sequencing technologies based on Sanger 
chemistry dominated the market. Although sequencing 
had undergone numerous improvements over the years, 
gene cloning techniques were still necessary to obtain ge-
nomic DNA sequences. Therefore, the time and cost re-
quired to obtain a complete genome sequence remained 
high. Moreover, the capacity of  parallel sequencing was 
quite limited[19-21]. NGS platforms made it possible to 
sequence complete prokaryotic genomes using massively 
parallel sequencing more rapidly and at a lower cost[20,22].

Although NGS has facilitated sequencing processes, 
its relatively smaller reads make the assembly process 
a computational challenge[10,11]. The main limitation of  
short-read assembly methods is their inability to resolve 
repetitive regions of  the genome without paired librar-
ies[11]. The assembly of  repetitive regions was an impor-
tant issue even before the introduction of  NGS plat-
forms; shorter reads only made the problem worse. 

In 2001, Kececioglu et al[23] argued about the impos-
sibility of  correctly assembling regions of  the genome 
that contain identical copies of  a sequence. Usually, long 
DNA repeats are not exact copies. They contain small 
differences that could, in principle, permit their correct 
assembly. Nevertheless, a major difficulty arises from 
sequencing errors. Assembly software must accept imper-
fect sequencing alignments to avoid missing genuine con-
nections between sequences[22]. With the small amount 
of  information within each read adding to the inherent 
sequencing error, it is difficult to separate true differences 
within repeated sequences from sequencing errors.

A study by Phillippy et al[24] revealed that the major-
ity of  contig ends in draft genomes were associated with 
repeated regions. They concluded that it was possible to 
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categorize the majority of  mis-assembly events into two 
general classes: (1) repeat collapse or expansion; and (2) 
sequence rearrangement and inversion. Each of  these 
classes exhibits specific mis-assembly signatures: the first 
class is the result of  incorrect assembly in repetitive re-
gions, including fewer or additional copies; the second 
class is the result of  the rearrangement of  multiple re-
peated copies, which is caused by the insertion of  a read 
between them. The second class may be considered more 
influential because, if  not fixed, it might be interpreted 
as a real biological rearrangement event[25,26]. If  the as-
sembler cannot resolve the region between two genomic 
fragments, a gap is formed. Gaps may occur due to: (1) 
an intrinsic characteristic of  the sequencing platform that 
leads to incomplete or incorrect information; or (2) the 
inability of  an assembly algorithm to handle regions of  
low complexity or repeated DNA[18,27,28]. The process of  
identifying and closing these gaps is quite laborious and 
requires additional manual intervention. 

Gap closure processes usually involve the design 
of  primers flanking the gap region to perform semi-
automated sequencing of  the unrepresented parts of  the 
genome[28]. Several bioinformatics methodologies have 
been developed to facilitate gap closure. IMAGE is a tool 
that uses de Bruijn methodology to fill gaps with short 
reads that are aligned with flanking regions of  the gap 
and were not used in the assembly[28]. In 2011, Cerdeira et 
al[29] generated a similar strategy by using CLC Genomics 
Workbench for the recursive alignment of  unused short 
reads from the SOLiD platform. GapFiller is another 
tool that uses local alignment; its main advantage is the 
use of  paired reads to estimate gap size and allows de-
fine the type of  paired library: reverse-reverse, forward-
forward, reverse-forward and forward-reverse[30].

From a purely practical standpoint, assembly tools are 
not required to produce a perfectly finished genome as 
an output. Their main function is to reduce the sequenc-
ing reads to a manageable number of  contigs[26]. The pro-
cess of  finishing a genome, ensuring that gaps are closed 
and the gene order is correct, requires human decision-
making. Therefore, the lack of  fully automated processes 
constitutes a bottleneck in generating complete genomes. 

“sCIeNTIfIC valUe” Of a Newly 
seqUeNCeD geNOme
The value of  a newly sequenced genome can be assessed 
using many different metrics. If  publications are consid-
ered the main “currency” within the scientific commu-
nity, there has been a considerable decrease in the value 
of  new sequences over the last four decades.

The introduction of  Sanger methodology in 1977 
was one of  the main landmarks in the early stages of  the 
genomic era[31]. During the first years of  using Sanger se-
quencing, a sequence of  no more than 1000 nucleotides 
was sufficient for a work to be accepted in a journal such 
as Cell (current impact factor: 32.40) or Nature (current 
impact factor: 36.28)[32-34]. In 1980, the shotgun DNA 
sequencing methodology was introduced, enabling the 
sequencing of  longer DNA fragments[35]. Complete bac-
terial operons were sequenced and published in journals 
such as Molecular Microbiology (current impact factor: 
5.01) and Proceedings of  the National Academy of  Sci-
ences (PNAS - current impact factor: 9.68)[36-38].

A combination of  DNA sequencing improvements 
and the newly developed TIGR Assembler[39] culminated 
in the publication of  the first complete bacterial genomes 
in 1995. Papers containing the complete nucleotide se-
quences of  Haemophilus influenzae Rd (1830137 base pairs) 
and Mycoplasma genitalium (580070 base pairs) were both 
published in Science (current impact factor: 31.20)[40,41]. 
Almost 20 years later, a paper containing the sequence 
of  a prokaryotic genome alone may be published in the 
Genome Announcement section of  the Journal of  Bac-
teriology (current impact factor: 3.82) or in Standards in 
Genomic Sciences (SIGS - has not been published suf-
ficiently long to receive an impact factor). A recent article 
by Smith even refers to the not-so-distant “death” of  the 
“genome paper”, noting that the space for genome publi-
cation may come to an end soon[42].

The publication impact of  newly sequenced genomes 
decreased following DNA sequencing improvements, 
and the reason is no mystery. High-impact journals only 
publish groundbreaking original scientific research or 
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Figure 1  Number of complete genome and draft genome (partial data) deposits in public databases. 



results of  outstanding scientific importance. To produce 
a higher-impact publication, more information must be 
extracted from genomes. For instance, several genomes 
may be examined in a comparative genomic analysis or 
pangenomic study[43,44], or an analysis may focus on the 
presence or absence of  specific markers or on small dif-
ferences between DNA sequences[26,45]. In this context, 
the genome becomes a stepping stone to the main goal, 
the comparative analysis. As the basis of  the analysis, the 
genome sequence remains important. Nevertheless, it 
may not be of  sufficient importance for one to undertake 
the painstaking task of  completing the genome sequence. 

whaT Is lOsT wheN we OpT fOR a 
DRafT geNOme?
Over the years, arguments have been presented in fa-
vor both of  complete genomes[41,46] and of  the superior 
“tradeoff ” that a draft genome represents[47]. The discus-
sion has been centered around two main points: (1) to 
provide the greatest amount of  useful data, sequences 
must be as complete as possible; and (2) draft genomes 
(partial data) are sufficient for most scientific contexts. 
The issue at stake is the extra money and manpower nec-
essary to finish a genome. Is the additional information 
contained in a finished genome worth the investment? To 
answer this question, one must identify the information 
that is lost from a draft and analyze the quality of  data 
that is generated using drafts. Furthermore, it is necessary 
to understand the limits of  draft genome use. 

The first issue to consider is whether it is possible to 
properly identify all of  an organism’s genes in a draft ge-
nome. Gene characterization consists of  the following: (1) 
gene prediction with the identification of  an open reading 
frame (ORF); and (2) the functional annotation of  the 
gene product. The main gene identification problems in 
drafts are associated with the partial or complete loss of  
ORFs[10]. Such errors may lead either to over-annotation, 
due to the annotation of  multiple fragments originating 
from the same ORF, or to under-annotation, possibly 
due to the absence of  partial or entire domains from the 
ORF[10]. These problems affect genomic analyses, causing 
errors due to missing ORFs that are not annotated or due 
to multiple fragments that belong to the same ORF but 
are annotated separately. In other words, the mere absence 
of  a gene from a draft cannot be considered definitive 
proof  of  its absence from the organism’s genome[10,41]. 

The pangenomic approach is one type of  analysis that 
may be impaired by reliance on draft genomes, because 
many genes in a draft may be misidentified due to fragmen-
tation. Pangenomic projects attempt to characterize the 
gene pool of  a bacterial species as the genes that are pres-
ent in all strains (the “core genome”) and the genes that are 
present in only a few species (the “dispensable genome”)[43]. 
Horizontal gene transfer (HGT) analysis is another ap-
proach that cannot be performed using drafts. HGT is one 
of  the main sources of  variability among bacteria because 
it allows the acquisition of  several new genes[36,37]. There is 

evidence that most gaps in genomic sequences are associ-
ated with transposases, insertion sequences and integrases, 
structures that usually flank a genomic island[48]. Another 
approach that may be impaired by reliance on drafts is phy-
logenomics, which aims to reconstruct both the vertical and 
lateral gene transfer processes of  a bacterial species using a 
whole-genome analysis[49].

Although not strictly related to drafts, the functional an-
notation of  genes is another feature that is usually neglected 
when we opt for a draft genome (Figure 2). Complete ge-
nomes may also present this problem because the quality 
of  functional annotation is related to the amount of  effort 
dedicated to a genome. DNA sequence is being generated 
much more rapidly than it can be analyzed; thus, a large 
proportion of  the sequence information in databases has 
been annotated solely by automatic algorithms[50]. It is dis-
turbing that although automatic annotation algorithms have 
improved over the years, misannotation has increased over 
time[50]. The misannotation of  a reference strain is particu-
larly harmful because the error will likely be propagated to 
other genomes. In our attempts to exploit the full potential 
of  NGS, we risk having databases filled with incomplete 
and/or incorrect genomic data. 

Because the purpose of  many sequencing projects 
is to identify a small number of  differences between a 
newly sequenced genome and the sequence of  a closely 
related species, a large number of  genomes are left as 
drafts[26]. Considering the constant evolution of  organ-
isms, a sequenced genome represents a snapshot in 
the biological history of  a species. Therefore, a single 
finished genome might be useful for decades of  future 
studies. By opting for draft genomes, we may be shutting 
down the full gamut of  future scientific analysis.

vaCCINe DevelOpmeNT 
Genomic information was expected to boost vaccine dis-
covery. In an attempt to measure the impact of  genomic 
information on this field, Prachi et al[2] analyzed all the 
patent applications that contained genomic information. 
They observed that there was an enormous increase in 
such applications shortly after the first complete genomes 
were released, but since 2002, there has been a continu-
ous decrease. The authors attributed this decrease to 
more stringent legal requirements, which call for empiri-
cal evidence to complement in silico data.

The initial increase in patent applications containing 
genomic information was related to the development of  
a new paradigm in vaccine development. In 2000, Rap-
puoli[51] described the “reverse vaccinology” (RV) con-
cept, in which he proposed inverting the traditional pro-
cess of  antigen identification. Instead of  identifying the 
antigenic components of  a pathogenic organism using 
serological or biochemical methods, RV uses the organ-
ism’s genome to predict all of  its protein antigens. RV ap-
proaches mainly focus on secreted proteins because they 
are more likely to induce immune responses. Secreted 
proteins are involved in several processes that modulate 
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the host-pathogen relationship, such as cell adhesion and 
invasion, as well as resistance to stress conditions[52-54]. 
Over the years, several methodologies have been devel-
oped to predict secreted proteins and to evaluate their 
potential immunological properties.

In 2010, Vaxign was released as the first vaccine design 
tool with a web interface (http://www.violinet.org/vax-
ign/). Vaxign allows users to submit their own sequences 
to perform vaccine target predictions. The Vaxign pre-
dictions have been consistent with existing reports for 
organisms such as Mycobacterium tuberculosis and Neisseria 
meningitides[55]. Another vaccine design tool is MED (Ma-
ture Epitope Density - http://med.mmci.uni-saarland.
de/). MED attempts to select the more promising vaccine 
targets by identifying proteins with higher concentrations 
of  epitopes[56]. There are also tools exclusively for protein 
epitope prediction, such as Immune Epitope Analysis 
(http://tools.immuneepitope.org/main/) and Vaxitope 
(http://www.violinet.org/vaxign/vaxitop/index.php).

Because a large number of  bacterial genomes are 
already available, reverse vaccinology is quite accessible 
and inexpensive. Nevertheless, as has been previously 
discussed[57,58], the expectations for reverse vaccinology 
techniques do not correspond to reality, given the small 
number of  vaccines have been developed using the bac-
terial genome sequences available[59]. This occurs because 
there are also several factors that are involved in the host 
response during infection, for example, the production 
of  antibodies by the immune system.

aNTIbaCTeRIal DIsCOveRy
The period between the 1930s and the 1960s is known as 
the “golden age” of  antibiotic discovery[11,60]. During this 

period, most of  the known classes of  antibiotics were 
discovered. These discoveries involved screening natural 
products regardless of  their mechanisms of  action. After 
most of  the low-hanging fruits were harvested, the rate 
of  antibacterial discovery decreased, culminating in a 
slowdown beginning in the 1990s[61]. 

Hopes for turning this void into a rapid accelera-
tion accompanied the completion of  the first bacterial 
genome sequences. The goal was to use comparative 
genomic analysis to identify potential targets present in a 
desirable spectrum (e.g., the bacteria responsible for upper 
respiratory tract infections)[3,4,62]. It was naive to assume 
that having the genome sequences would be sufficient 
for this level of  discovery; a possible drug target must 
undergo numerous stages, from discovery through hu-
man clinical tests, and it is not possible to develop drugs 
for all potential targets[3,62]. Nevertheless, the prospect of  
exploring hundreds of  potential targets revived the inter-
est of  pharmaceutical companies. 

After some years of  trials, several companies ended 
their target-based programs because of  a lack of  produc-
tivity. Despite reports of  multi-resistant bacterial strains, 
the efforts to discover new antibacterial targets were 
again reduced[63,64]. Although genomics has not been able 
to reverse the lack of  new antibiotic development, it has 
significantly improved screening methodologies. Genom-
ics has facilitated high-throughput drug campaigns, which 
are being used to determine the mechanisms of  action of  
antibacterial compounds and bacterial resistance mecha-
nisms[4].

CONClUsION
Several next-generation platforms have been developed 
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in recent decades, as well as bioinformatics programs to 
an enhancement of  performance and optimization omics 
techniques. Is not yet possible to integrate reads from dif-
ferent sequencers into a single assembly[17,23]. This newly 
developed approach aims to reduce the amount of  man-
ual intervention needed to complete a genome sequence 
by using a hybrid approach to resolve repetitive regions.

Improvements are expected not only in sequencing 
platforms but also in assemblers. Recently, two groups 
assessed the quality of  the currently available assemblers. 
The 2011 Assemblathon was the first competition among 
assemblers[65]. For this competition, simulated data were 
generated and groups of  assemblers were asked to blind-
ly assemble it. The use of  simulated data poses a problem 
in determining the applicability of  the results to other 
data sets. The 2012 GAGE (Genome Assembly Gold-
Standard Evaluations) competition for assembling real 
data resulted in the following conclusions: (1) the data 
quality has a greater influence on the final outcome than 
the assembler itself; and (2) the results do not support the 
current measures of  correctness (related to contiguity)[26]. 

There is a large gap between the availability of  ge-
nomic sequences in databases and the commercial pro-
duction of  vaccines and antibiotics in recent years, espe-
cially in the fields of  investment and success (“expected 
return”). Drug development for all potential targets and 
effective vaccines has produced limited success. In con-
trast, there has been an acceleration in the discovery of  
new targets due to the refinement of  bioinformatics tools 
for this purpose, such as epitope mapping and search-
ing for secreted proteins. However, the major problems 
facing vaccine and antibiotic development, such as resis-
tance mechanisms and host immune responses, remain 
unsolved.

Genome analysis constitutes a strategy for the expan-
sion and diversification of  the pharmacology and vaccin-
ology sectors. This methodology can be used to explore 
a large number of  targets and to reduce the costs of  mo-
lecular and immunological tests. Finally, to improve the 
production of  antibiotics and vaccines, it is necessary to 
know more about bacterial regulatory pathways. New in-
teractome and microbiome studies must be implemented 
to assist this search.
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These cytoprotective properties of APC are mediated 
through EPCR, protease-activated receptors, epidermal 
growth factor receptor or Tie2. Future preventive and 
therapeutic uses of APC in skin disorders associated 
with disruption of barrier function and inflammation 
look promising. This review will focus on APC’s function 
in skin epidermis/keratinocytes and its therapeutical 
potential in skin inflammatory conditions.
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Core tip: The anti-inflammatory, barrier stabilisation and 
anti-apoptotic properties of APC make it an appealing 
treatment for skin conditions associated with inflamma-
tion, barrier disruption and keratinocyte dysfunction.
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INTRODUCTION
Protein C (PC) is a vitamin-K dependent glycopro-
tein that circulates in blood plasma in its zymogenic 
and activated forms [activated PC (APC)]. PC/APC was 
first characterised for its role in blood coagulation, but 
has a range of  cytoprotective functions including anti-
inflammation, anti-apoptosis and barrier stabilisation. 
Although originally thought to be synthesised almost 
exclusively by the liver and vascular endothelial cells, PC/
APC has been found to be synthesised by skin epidermal 
keratinocytes. Keratinocytes are the major cell type in 
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Abstract
Activated protein C (APC) is a physiological anticoagu-
lant, derived from its precursor protein C (PC). Inde-
pendent of its anticoagulation, APC possesses strong 
anti-inflammatory, anti-apoptotic and barrier protective 
properties which appear to be protective in a number 
of disorders including chronic wound healing. The epi-
dermis is the outermost skin layer and provides the 
first line of defence against the external environment. 
Keratinocytes are the most predominant cells in the 
epidermis and play a critical role in maintaining epider-
mal barrier function. PC/APC and its receptor, endothe-
lial protein C receptor (EPCR), once thought to be re-
stricted to the endothelium, are abundantly expressed 
by skin epidermal keratinocytes. These cells respond to 
APC by upregulating proliferation, migration and matrix 
metalloproteinase-2 activity and inhibiting apoptosis/in-
flammation leading to a wound healing phenotype. APC 
also increases barrier function of keratinocyte mono-
layers by promoting the expression of tight junction 
proteins and re-distributing them to cell-cell contacts. 

World J Biol Chem 2014 May 26; 5(2): 169-179
 ISSN 1949-8454 (online)

© 2014 Baishideng Publishing Group Inc. All rights reserved.

World Journal of
Biological ChemistryW J B C

169WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4331/wjbc.v5.i2.169



McKelvey K et al . Activated protein C and keratinocyte function

the skin epidermis, the most outer layer of  human skin 
that provides a semi-impermeable barrier against injury 
from the external environment, including ultraviolet 
radiation, heat, water loss and infectious pathogens. 
On keratinocytes, PC/APC promotes cell proliferation, 
survival, migration, and the barrier function. This review 
will focus on the actions of  APC on skin epidermis/ke-
ratinocytes and its therapeutical potential in the treatment 
of  skin inflammatory conditions.

PC and APC
The PC pathway plays a key role in the regulation of  
blood coagulation. As a vitamin K-dependent zymogen, 
PC is activated to APC when thrombin binds to throm-
bomodulin and cleaves the activation peptide (Fig-
ure 1). This conversion is augmented by its specific 
receptor, endothelial cell protein C receptor (EPCR)[1]. 
In human plasma APC is present at relatively low levels 
approximation 40 pmol/L and has a short physiological 
half-life of  approximation 20 min compared to PC at 70 
nmol/L and approximation 10 h[2,3]. Thrombin is the only 
endogenous activator of  PC. The importance of  APC as 
an anticoagulant is reflected by findings that deficiencies 
in PC result in severe familial disorders of  thrombosis[4]. 
Replenishment of  PC in patients with systemic or local 
hypercoagulation can reverse the abnormality. 

Independent of  its effect on anti-coagulation, APC 
possesses strong anti-inflammatory and anti-apoptotic 
properties, as well as enhancing endothelial and epithelial 
barrier integrity (Figure 1). 

Inhibiting inflammation: The anti-inflammatory effects 
of  APC are associated with a decrease in pro-inflamma-
tory cytokines and a reduction in leukocyte recruitment. 
APC inhibits neutrophil, monocyte and lymphocyte che-
motaxis[5] and directly suppresses expression and activa-
tion of  nuclear factor (NF)-kB[6]; a pathway that controls 
the expression of  a wide range of  inflammatory genes 
including tumour necrosis factor (TNF)-α and cell adhe-
sion molecules. Acute inflammation is exacerbated in 
mice genetically predisposed to a severe PC deficiency[7]. 
In vitro, APC suppresses the activation of  NF-kB and 
production of  TNF-α, upregulates matrix metallopro-
teinase (MMP)-2 activity yet inhibits MMP-9 in rheuma-
toid synovial fibroblasts and monocytes[8]. In addition to 

the degradation of  extracellular matrix, these MMPs can 
regulate inflammation by processing cytokines/chemo-
kines with MMP-9 having stimulatory and MMP-2 hav-
ing inhibitory effects on inflammation both in vitro and in 
vivo[9-11]. 

Promoting cell proliferation and inhibiting cell apop-
tosis: APC promotes cell proliferation in cultured human 
umbilical vein endothelial cells[12], smooth muscle cells[13], 
keratinocytes[14], neural stem and progenitor cells[15,16], 
neuroblasts[17], osteoblasts[18] and ovine tenocytes[19]. Con-
sistent with the stimulatory effects on cell growth, APC 
displays strong anti-apoptotic properties in keratinocytes, 
endothelial cells and podocytes[14,20-22]. APC-dependent 
anti-apoptotic activity shows improved survival in human 
and various animal models of  sepsis[23-28]. APC inhibits 
spontaneous monocyte apoptosis leading to increased 
lifespan and phagocytosis in vivo[29] and protects murine 
cortical neurons from N-methyl-D-aspartate and stau-
rosporine excitotoxicity-induced apoptosis[30].

Stabilising endothelial and epithelial barrier: Endo-
thelial cells normally form a dynamically regulated stable 
barrier at the blood-tissue interface. Breakdown of  this 
barrier is a key pathogenic factor in inflammatory disor-
ders. APC enhances endothelial barrier integrity by stabi-
lising the cytoskeleton and reducing endothelial perme-
ability[20,31-33]. Recently, APC has been shown to promote 
epithelial barrier function in human skin epidermal 
keratinocytes[34] and mouse intestine[35].

APC’s signalling pathway: Many of  the anti-inflam-
matory properties of  APC are mediated through EPCR, 
which itself  is anti-inflammatory[36]. APC bound to EPCR 
can activate protease-activated receptor (PAR)-1 and 
promote the anti-inflammatory actions of  APC[37]. Cyto-
protective effects of  APC are also mediated by the other 
PAR receptors. Akin to PAR-1, APC can bind to PAR-2 
and activate the Akt signaling pathway to promote kerati-
nocyte proliferation[37]. Independent of  EPCR, APC can 
inhibit podocyte apoptosis by activating PAR-3[38]. APC-
mediated arrest of  lymphocyte chemotaxis is dependent 
on epidermal growth factor receptor (EGFR)[39]. In addi-
tion, EGFR transactivation by APC/EPCR/PAR-1 sup-
ports cell motility and invasiveness of  endothelial cells 
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Figure 1  Schematic representation of protein C/acti-
vated protein C activation and cellular effects. APC: 
Activated protein C; EPCR: Endothelial protein C receptor; 
PC: Protein C; PCI: Protein C inhibitor; TM: Thrombomodu-
lin. Figure was produced using Servier Medical Art - www.
servier.com.



and breast cancer cells[40]. APC utilises the angiopoietin/
Tie2 axis to promote endothelial barrier function[33]. In 
addition other receptors such as integrins[41] and apolipo-
protein E receptor-2[42] also mediate the effects of  APC.

Skin function and keratinocytes 
The skin forms an effective barrier between the human 
body and outside environment and protects the body 
from mechanical trauma, pathogens, radiation, dehydra-
tion, and dangerous temperature fluctuations[43]. Skin 
consists of  two main layers, the outermost epidermis 
layer and the underlying dermis (Figure 2). The epidermis 
is a stratified epithelium composed of  proliferating basal 
and differentiated suprabasal keratinocytes. The dermis-
provides the epidermis with mechanical support and 
nutrients. The barrier function of  skin is provided by the 
epidermis. Defective epidermal barrier is responsible for 
many inflammatory and blistering skin disorders[43,44]. 

Keratinocytes are the most abundant cell type in the 
epidermis and are responsible for maintaining structure 
and homeostasis of  the epidermal barrier. The epider-
mal barrier is generated by a sophisticated differentiation 
program[44] comprising stratified epithelium composed of  
basal, spinous, granular, and cornified layers (Figure 2)[45]. 
The basal layer consists of  proliferating keratinocytes, 
that maintain the epidermis and post-mitotic basal kera-
tinocytes which migrate out of  the basal layer. This mi-
gration marks the start of  epidermal differentiation that 
ends with the formation of  the cornified layer, where 
keratinocytes end their lives and are sloughed off. The 
epidermis has complete self-renewal capacity with an esti-
mated turnover time of  approximately 40 d in humans[46].

The physical barrier of  the epidermis is localised pri-
marily in the upper layers of  the epidermis (granular and 
cornified layers). The barrier properties of  nucleated ke-
ratinocytes in the granular layer are largely dependent on 
the function and integrity of  the tight junctions [involving 
the proteins tricellin, occludin, claudins and junctional 

adhesion molecule (JAM)] and their corresponding intra-
cellular proteins, such as zona occludin (ZO)-1[44], which 
seal the intercellular space between neighbouring kerati-
nocytes and control the pathway of  molecules and liquid 
(Figure 3)[46]. 

Deregulation of  these junction proteins perturbs 
this barrier[43] and is characteristic of  many inflamma-
tory skin diseases[47,48]. Psoriatic skin, characterised by 
small scaly plaques, has an over-expression of  occludin 
and ZO-1, while claudin-1 and 3 are down-regulated[49,50]. 
Keratinocyte cytoskeletal elements are also important 
for maintaining the epidermal barrier. Among the 
genetic mutations in atopic dermatitis is the filaggrin 
gene (FLG)[51,52], which encodes a protein in the corneal 
epidermal layer and aids terminal differentiation of  
keratinocytes, water retention and barrier stabilisation[53]. 
Loss or mutation of  this gene contribute to the red, dry, 
itchy skin that is hallmark of  this condition. 

In addition, keratinocytes provide an immunological 
barrier in response to injury or infection. Keratinocytes 
are a potent source of  cytokines and chemokines[54]; 
freshly isolated and cultured keratinocytes express toll-
like receptors[55] and inflammasomes[56]. This allows 
keratinocytes to elicit innate immune responses to 
microbial components when the epidermal barrier is 
breached, particularly through secretion of  interleukin 
(IL)-1β and activation of  leukocytes.

Upon activation, keratinocytes express a plethora of  
cytokines, chemokines and accessory molecules, which 
can transmit both positive and negative signals to cells of  
the innate and adaptive immune system. Dysregulation 
of  the immune response of  keratinocytes is implicated in 
the pathogenesis of  chronic inflammatory skin diseases. 
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Figure 2  Schematic representation of the structure of skin showing the 
epidermal layers. Figure was produced using Servier Medical Art - www.ser-
vier.com.

ZO-1ZO-2

ZO-3

Actin

Occludin

Claudin

JAM

Tricellin

Figure 3  Schematic representation of epidermal tight junction complex. 
JAM: Junctional adhesion molecule; ZO: Zona occludin. Figure was produced 
using Servier Medical Art - www.servier.com.



PC system on keratinocytes
Keratinocytes in the epidermis express all the com-
ponents of  the PC/APC pathway, including EPCR[57], 
thrombomodulin[58], thrombin and PC inhibitor[59], 
PAR-1, EGFR[60], and Tie2[34] which can regulate the acti-
vation of  PC to APC and mediate the functions of  APC 
on keratinocytes in skin epidermis.

PC/APC and its activation on keratinocytes
PC/APC: Since its discovery in 1960[61], PC has been 
characterised as the vitamin-K dependent protein pre-
cursor for the anticoagulant APC[62]. Thought to be 
exclusively synthesised by the liver and vascular endo-
thelial cells, recent evidence shows that keratinocytes 
can also synthesise PC[60]. Cultured keratinocytes express 
PC mRNA and protein, and APC activity is presented 
on these cells[60]. In neonatal foreskin, PC is strongly 
expressed in the basal and suprabasal layers of  the epi-
dermis, with weaker expression in the outer cornified lay-
er[60]. In the adult skin, however, the PC/APC is strongly 
stained in the upper layer of  epidermis (Figure 4)

Thrombin: Thrombin is the only endogenous acti-
vator of  PC. Keratinocytes express mRNA for the 
thrombin precursor, pro-thrombin[63]. Pro-thrombin 
and thrombin are expressed at low levels in normal 
epidermis, with thrombin markedly upregulated in scar 
tissue[63]. Thrombin activity is regulated by keratinocyte 
thrombomodulin at sites of  cutaneous injury[64]. 

Thrombomodulin: Upon binding to thrombomodulin 
on surface of  vascular endothelial cells, thrombin cleaves 
PC at the activation peptide between Arg211 and Leu212 
and converts it to APC. Cultured human keratinocytes 
constitutively express thrombomodulin on their cell 
surface[58,64]. In normal epidermis thrombomodulin is 
present in spinous layer and on the outer root sheath of  
hair follicles[58,64].

PC inhibitor: PC inhibitor is a non-specific serpin that 
inhibits a variety of  serine proteases, including PC and 
thrombin[65]. This inhibitor can inhibit the activation of  

PC to APC by inactivating thrombin and/or preventing 
thrombin binding to thrombomodulin[66,67]. It can 
also inactivate APC. PC inhibitor mRNA and protein 
is constitutively expressed by immortalised human 
keratinocytes (HaCaT) and epidermoid carcinoma cells 
(A431) in culture[59]. Normal skin from the trunk of  
adults show strong staining for PC inhibitor antigen 
throughout the epidermal layers[59].

In summary, epidermal keratinocytes express all as-
pects of  the PC system to not only activate PC to APC, 
but regulate this activation process and APC activity (Fig-
ure 4). 

PC/APC function and regulation
EPCR: EPCR is a type Ⅰ transmembrane protein which 
exhibits significant homology with the major histocom-
patibility class 1/CD1 family of  proteins. EPCR is the 
main receptor to regulate the function of  PC/APC. Al-
though first described as being restricted to the endothe-
lium, EPCR is abundantly expressed by cultured human 
keratinocytes and is strongly expressed in the basal and 
suprabasal layers of  the epidermis of  neonatal foreskin[57]. 

EPCR has similar affinity for both PC and APC[1]. 
After binding to EPCR, APC cleaves PAR-1 to pro-
mote its cytoprotective functions in keratinocytes[57]. 
In addition PAR-1, EGFR and Tie2 are shown to 
mediate keratinocyte proliferation, migration and barrier 
stabilisation. In addition, EPCR enhances the rate of  
PC/APC activation by thrombin/thrombomodulin 3-4 
fold[68]. Inhibition of  EPCR reduces the level of  circulat-
ing APC by more than 80% following thrombin infu-
sion[69]. 

PAR-1: PARs are a family of  G-protein coupled recep-
tors which utilise G-protein and non-G-protein signaling 
pathways to mediate their cellular responses[70]. They are 
expressed by a wide range of  cell types in the skin, in-
cluding keratinocytes[57]. PARs are activated by a range of  
proteases through cleavage of  an activation peptide. The 
most common endogenous activator is thrombin which 
activates PAR-1, PAR-3 and PAR-4, but not PAR-2. Oth-
er serine proteases including trypsin, mast cell tryptase 
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Figure 4  Immunostaining of protein C/activated protein C in human neonatal and adult skin epidermis. A: Neonatal; B: Adult. PC/APC indicated by brown and 
green staining in the epidermis (red arrow) and dermal blood vessels (arrow). APC: Activated protein C; PC: Protein C.



and factor Xa activate PAR-2. In keratinocytes, PAR-1 
mediates APC’s induction of  cell proliferation, anti-
inflammatory and barrier protective effects[34,57]. 

Cytoprotective effects of  APC are also mediated by 
the other PAR receptors. APC can bind to PAR-2[37] and 
activate the Akt signaling pathway to promote keratino-
cyte proliferation[71]. Though only PAR-2 activity appears 
to be required for APC-mediated wound healing in a mu-
rine model[71].

EGFR: EGFR is a crucial receptor for autocrine growth 
of  healthy epidermis. Its activation suppresses terminal 
differentiation, promotes cell proliferation and survival, and 
regulates cell migration during epidermal morphogenesis 
and wound healing[72]. Following tissue injury, EGFR is 
upregulated to promote re-epithelialisation of  the wound 
by encouraging keratinocyte proliferation and migration. 
EGFR regulates cell adhesion, extracellular matrix 
degrading enzymes, and cell migration to contribute to 
the migratory and invasive potential of  keratinocytes[72]. 
In human skin, EGFR and EPCR are expressed in the 
basal and suprabasal layers of  the epidermis, consistent 
with the localisation of  PC/APC[60]. Expression of  EGFR 
by keratinocytes appears to be synchronised with the PC 
pathway. APC treatment increases EGFR expression while 
silencing of  PC decreases EGFR levels[60].

Tie2: Tie2 is a protein-tyrosine kinase receptor expressed 
by endothelial and epithelial cells. Its major ligands are 
angiopoeitin 1 and 2 which bind with similar affinity[73,74]. 
Both Tie2 and its activated form phosphorylated (P)-
Tie2 are present on neonatal foreskin and adult skin 
keratinocytes[34]. However, adult skin keratinocytes 
show less intensive staining for Tie-2 and P-Tie2 when 
compared with neonatal foreskin keratinocytes. Foreskin 
epidermis exhibits faint staining of  Tie2 but strong 
staining for P-Tie2, which is mainly located in the 
uppermost layers of  the epidermis (Figure 4). Similarly, 
P-Tie2 is expressed by normal adult skin epidermis, 
although the staining intensity is considerably lower than 
neonatal foreskin.  

functions of PC/APC in keratinocytes
APC promotes proliferation and inhibits apoptosis 
in keratinocytes: APC promotes cell proliferation in 
cultured human skin keratinocytes[14]. The replicative 
capacity of  keratinocytes is mediated by EGFR, and acts 
to inhibit terminal differentiation and apoptosis. APC 
increases keratinocyte proliferation, while gene silencing 
of  PC increases apoptosis in keratinocytes 3-fold[60]. 
Proliferation is mediated by APC’s regulation of  mitogen 
activated protein (MAP) kinase activity[12,14-16,18]. This 
family of  highly conserved serine/threonine protein 
kinases enhances DNA synthesis, and regulates cell 
survival/apoptosis and differentiation[13]. In human skin 
keratinocytes, PC/APC-induced proliferation is mediated 
by EPCR, PAR-2, EGFR, activation of  ERK1/2 and 
PI3K/Src/Akt signalling and suppression of  p38[34,60,71]. 

Consistent with the stimulatory effects on cell growth, 

APC displays strong anti-apoptotic properties. APC 
prevents apoptosis of  keratinocytes[14]. The molecular 
mechanism of  APC’s ability to protect cells from apoptosis 
is multi-faceted. APC regulates caspase activation, 
DNA degradation and the induction of  anti-apoptotic 
mediators[25-28]. PC regulates the activation of  apoptosis 
marker caspase-3, of  which the inactive form is expressed 
in a wide range of  tissues, including the epidermis[75]. In 
normal oral epithelium, cleaved caspase-3 distinguishes 
apoptotic keratinocytes from cells that are terminally 
differentiated[76]. Recent findings indicate that caspase-14, 
not caspase-3, is activated during normal keratinocyte 
differentiation[77]. Therefore caspase-3 activation appears to 
be restricted to keratinocytes undergoing apoptosis, and is 
increased by blocking PC by siRNA consistent with a role 
for PC in preventing keratinocyte apoptosis[60]. 

While additional anti-apoptotic pathways for APC 
have not yet been demonstrated in keratinocytes, in 
hypoxic retinal epithelia and photoreceptor cells APC 
reduces caspase-8 and 9[78]; decreases p21 and p53 pro-
teins in murine model of  sepsis-induced apoptosis[79]; 
and prevents glucose-induced apoptosis in endothelial 
cells and podocytes by reducing Bax induction and Bcl-2 
suppression[21].

APC promotes migration of  keratinocytes: Kerati-
nocyte migration is a crucial step in stratification of  the 
epidermis to form a protective barrier, and during re-
epithelialisation of  a wound site. EGF is a chemotactic 
factor for keratinocytes, as shown by phagokinetic track 
analysis[80]. In human skin, EGFR localises with PC/APC 
and EPCR in the basal and suprabasal layers of  the epi-
dermis[60]. Recombinant human (rh) APC treatment of  
keratinocytes increases EGFR activation and keratinocyte 
migration[57,60]. APC promotes keratinocyte migration at 
concentrations 5 µg/mL but had an inhibitory effect at 
20 µg/mL[14]. At 5 µg/mL APC, the migration of  kera-
tinocytes was equivalent to that induced by 50 ng/mL 
EGF[14]. Gene silencing of  PC inhibits EGFR expression 
and reduces keratinocyte migration by 20% using an in 
vitro scratch wounding assay[60]. 

MMP secretion appears to be are required for kerati-
nocyte migration, as blockade of  MMP’s using GM6001, 
a broad spectrum MMP inhibitor, eliminated cell migra-
tion in a dose-dependent manner and delayed in vitro 
wound healing[60]. Full-thickness rat excisional skin wound 
healing model, a single topical application of  rhAPC en-
hances wound healing compared to saline by stimulating 
re-epithelialisation[71,81]. This is also observed in human 
skin wound healing. In humans, topical application of  200 
µg/mL rhAPC to chronic wounds of  varying aetiology 
reduced wound area by 52%-95% over 16 wk[82]. A follow-
up study of  venous and diabetic ulcers treated with 400 
µg/mL rhAPC showed a significant reduction in wound 
area and volume compared to baseline at 20 wk[83]. 

APC reduces inflammation of  keratinocytes: APC 
regulates the expression of  serine protease MMP-2. 
MMPs degrade tissue components and are commonly as-
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sociated with skin inflammatory conditions[84]. In cultured 
human keratinocytes, APC enhances MMP-2 activity[14] 
which has anti-inflammatory properties[11,85] and plays a 
vital role in the tissue repair process by remodelling the 
extracellular matrix[86]. In contrast, MMP-9, which ex-
hibits pro-inflammatory actions[11,87-89], is suppressed by 
APC[8,90]. 

Other indirect effects APC may have on suppressing 
cytokine production and activation is via inhibition of  
NF-kB subunits p50 and p52[28]. APC inhibits calcium- 
and lipopolysaccharide-stimulated activation of  NF-kB 
in keratinocytes[14]. The NF-kΒ pathway is important for 
the expression of  a wide variety of  inflammatory genes 
including TNF-α and cell adhesion molecules, intercellu-
lar adhesion molecule-1, vascular cell adhesion molecule-
1and E-selectin. 

APC promotes barrier function of  keratinocyte mon-
olayers: The barrier protective effect of  APC is rel-
evant to skin epidermal keratinocytes[34]. Keratinocytes 
play a critical role in maintaining epidermal barrier 
function via tight junctions[43,91,92]. Dysregulation of  tight 
junction proteins such as occludins, claudins and JAMs 
perturbs this barrier[43,91] and contributes to many skin 
inflammatory conditions[93].

APC enhances the barrier function of  cultured hu-
man keratinocyte monolayers in a dose-dependent 

manner by up-regulating tight junction protein and re-
distributing them to cell-cell contacts via regulation of  
Tie2 and subsequent activation of  Akt[34]. In response to 
APC treatment, Tie2 is activated within 30 min on kera-
tinocyte monolayers, and relocates to cell-cell contacts 
where it impedes barrier permeability[34]. Expression of  
ZO-1, claudin-1 and vascular endothelial cadherin are 
subsequently increased. Interestingly, APC does not ac-
tivate Tie2 through its major ligand, angiopoeitin-1, but 
binds directly to EPCR, cleaves PAR-1, and transactivates 
EGFR, then Tie2 which activates PI3K/Akt signalling to 
increase stabilisation of  the keratinocyte barrier[34].  

Prospective therapeutic potential of PC/APC
The skin, the body’s largest organ, provides an epidermal 
barrier to protect the body from external insults, main-
tain temperature and control evaporation. Breaches of  
this barrier are common events. However, the inability to 
restore this barrier function can result in health problems, 
including inflammatory skin diseases, which are very 
common and have high morbidity. This group of  diseases 
includes: acne, which affects 50% of  teenagers (5% have 
severe acne); rosacea which affects 10% of  the adult pop-
ulation; atopic dermatitis which affects up to 20% popu-
lation; psoriasis which affects 2%-3% population[94,95]; 
chronic wounds which affect < 1% population and the 
devastating, often fatal, toxic epidermal necrolysis[96,97]. 
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These diseases can be controlled to a certain extent, but 
no cure exists and they have high morbidity[98,99].

Management of  most skin inflammatory conditions 
involves the use of  emollients, phototherapy, topical 
corticosteroids, antibiotics, retinoids, immunomodulators 
(tacrolimus, pimecrolimus), or systemic treatments (ciclo-
sporin, azathioprine). While targeted immunosuppressive 
drugs have been developed, including TNF-α inhibitors, 
antibodies and receptor blockers, in most studies they 
do not show improved outcome and their use for skin 
inflammatory conditions remains controversial[97]. For 
other conditions such as Stevens-Johnson syndrome and 
toxic epidermal necrolysis, to date no treatment has been 
identified to be capable of  halting the progression of  
skin detachment[96]. 

APC is emerging as a critical regulator of  keratinocyte 
and epidermal function. APC protects the epidermis by 
promoting keratinocyte proliferation, survival, reducing 
inflammation and maintaining barrier function. These 
keratinocyte cytoprotective functions are dependent on 
APC’s interaction with EPCR, PARs, EGFR and Tie2.

Topical administration of  rhAPC has shown prom-
ising results in the field of  skin wound healing. Single 
or multiple topical applications of  rhAPC to excisional 
wound sites reduced oedema and leukocyte infiltration, in 
addition to promoting angiogenesis and re-epithelialisa-
tion of  wounds in rat models of  skin wound healing[71,81]. 
These same APC-mediated benefits have been demon-
strated in humans chronic wounds of  venous and diabetic 
origin[82,83], as well as recalcitrant orthopaedic wounds[100]. 

The anti-inflammatory, barrier stabilisation and 
anti-apoptotic properties of  APC make it an appealing 
treatment for skin diseases associated with inflammation, 
barrier disruption and keratinocyte dysfunction. A 
summary of  the actions of  APC on keratinocytes and 
skin inflammatory disorders is shown in Figure 5. 

In late 2011, rhAPC (Xigris; drotrecogin alfa [activated]; 
Eli Lily) was withdrawn from the market after failure 
to significantly improve patient outcome in a clinical 
trial of  septic shock[101], in an attempt to replicate earlier 
favourable results[102]. One concern was the observation 
of  serious bleeding in patients, although there was no 
significant difference between patients treated with 
rhAPC and placebo[101,102]. Most in vivo studies, including 
our own, show that systemic rhAPC does not induce any 
bleeding side-effects[71,82,100,103-105]. Bleeding has occurred in 
a subset of  near-death sepsis patients with recent surgery 
and although APC efficacy and safety is controversial in 
treatment of  sepsis patients, it is beneficial and safe in 
clinical trials for chronic wound healing[82,100], acute lung 
injury[106,107], and solid organ transplantation[108]. Recently 
APC mutants (3K3A-APC and APC-2Cys) with minimal 
anticoagulant activity, but normal cytoprotective activity 
have been generated[109,110] and shown pre-clinically to be 
safe[12,111-116]. Although both variants are yet to be assessed 
in the field of  skin inflammatory diseases. The notion 
that rhAPC may increase bleeding during wound healing 
could be circumvented by use of  APC variants lacking 

anticoagulant activity.
Nevertheless, the future for utilising exogenous APC 

as a topical treatment for skin inflammatory conditions 
remains a novel and exciting avenue of  investigation. 
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sol-Eng, is shedded by the matrix metalloprotease-14 
that cleaves within the extracellular juxtamembrane re-
gion. Endoglin interacts with the TGF-β signaling recep-
tors and influences Smad-dependent and -independent 
effects. Recent work has demonstrated that endoglin is 
a crucial mediator during liver fibrogenesis that critically 
controls the activity of the different Smad branches. In 
the present review, we summarize the present knowl-
edge of endoglin expression and function, its involve-
ment in fibrogenic Smad signaling, current models to 
investigate endoglin function, and the diagnostic value 
of endoglin in liver disease.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Telangiectasia; Signalling; Transforming 
growth factor-β; Disease; Bleeding disorders

Core tip: Endoglin is an accessory receptor for trans-
forming growth factor-β impacting various aspects of its 
signaling and biological functions. Endoglin mutations 
are inherited as autosomal dominant disorders and 
may cause severe defects in different organs, includ-
ing brain, lung and liver. In the present review, we will 
highlight the pathogenesis of several of these disorders 
and give an overview about the important role of endo-
glin dysfunction in the pathology of liver fibrosis.

Meurer SK, Alsamman M, Scholten D, Weiskirchen R. Endoglin 
in liver fibrogenesis: Bridging basic science and clinical practice. 
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INTRODUCTION
Endoglin (OMIM 131195) was originally identified 25 
years ago by immunofluorescence staining of  vascular en-
dothelium with a monoclonal antibody (mAb 44G4) that 

Steffen K Meurer, Muhammad Alsamman, David Scholten, Ralf Weiskirchen

Endoglin in liver fibrogenesis: Bridging basic science and 
clinical practice

REVIEW

Steffen K Meurer, Ralf Weiskirchen, Institute of Clinical 
Chemistry and Pathobiochemistry, RWTH University Hospital 
Aachen, D-52074 Aachen, Germany
Muhammad Alsamman, David Scholten, Department of Inter-
nal Medicine Ⅲ, RWTH University Hospital Aachen, D-52074 
Aachen, Germany
Author contributions: All authors contributed to the manu-
script.
Supported by Deutsche Forschungsgemeinschaft SFB/TRR57, 
P13 and P26;  A grant from the Interdisciplinary Centre for Clini-
cal Research within the faculty of Medicine at the RWTH Aachen 
University IZKF Aachen, Project E6-11, to Weiskirchen R
Correspondence to: Ralf Weiskirchen, Professor, Institute of 
Clinical Chemistry and Pathobiochemistry, RWTH University 
Hospital Aachen, Pauwelsstr 30, D-52074 Aachen, 
Germany. rweiskirchen@ukaachen.de
Telephone: +49-241-8088683   Fax: +49-241-8082512
Received: November 20, 2013  Revised: December 29, 2013
Accepted: January 17, 2014
Published online: May 26, 2014 

Abstract
Endoglin, also known as cluster of differentiation 
CD105, was originally identified 25 years ago as a novel 
marker of endothelial cells. Later it was shown that en-
doglin is also expressed in pro-fibrogenic cells including 
mesangial cells, cardiac and scleroderma fibroblasts, 
and hepatic stellate cells. It is an integral membrane-
bound disulfide-linked 180 kDa homodimeric receptor 
that acts as a transforming growth factor-β (TGF-β) 
auxiliary co-receptor. In humans, several hundreds of 
mutations of the endoglin gene are known that give 
rise to an autosomal dominant bleeding disorder that is 
characterized by localized angiodysplasia and arteriove-
nous malformation. This disease is termed hereditary 
hemorrhagic telangiectasia type Ⅰ and induces various 
vascular lesions, mainly on the face, lips, hands and 
gastrointestinal mucosa. Two variants of endoglin (i.e. , 
S- and L-endoglin) are formed by alternative splicing 
that distinguishes from each other in the length of their 
cytoplasmic tails. Moreover, a soluble form of endoglin, i.e., 
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was produced against a human pre-B leukemia cell line[1]. 
It is composed as a homodimer of  two subunits with an 
apparent molecular weight of  95000 kDa that are linked 
by disulfide bonds[1]. Two years later, cDNA clones were 
isolated from an endothelial cell λgt11 expression library 
using a rabbit antibody prepared against endoglin purified 
from placenta[2]. Subsequent screening with an endoglin-
specific cDNA probe resulted in the isolation of  a dif-
ferent splice variant in which the encoded cytoplasmic 
tail contains only 14 amino acids (aa) as opposed to the 
stretch of  47 residues that was published previously[3]. 
The ENG gene was mapped to the long arm of  human 
chromosome 9 (9q34→qter) by Southern blot analysis 
of  DNA isolated from human-hamster somatic cell hy-
brids and by fluorescent in situ hybridization coupled with 
DAPI banding on human chromosomes[4]. The detailed 
chromosomal assignment was subsequently predicted 
from the fact the mouse homolog is located on chromo-
some 2 directly in the close proximity of  the adenylate 
kinase-1 gene that is syntenic to human chromosome 
subband 9q34.1[5,6].

Mutations within endoglin were first brought into 
context of  hereditary hemorrhagic telangiectasia type Ⅰ 
(HHT-1) in three affected individuals in whom nucleotide 
substitutions or deletions gave rise to premature termina-
tion codons[7]. Since that, several hundred independent 
mutations or variations have been identified in the ENG 
gene that most often show regional distribution[8-12]. The 
different mutations show different phenotype-genotype 
correlation with the severity of  HHT-1[13]. Moreover, 
it has been shown that soluble endoglin (sol-Eng) is an 
anti-angiogenesis factor that contributes to the pathogen-
esis of  pre-eclampsia that is associated with hypertension, 
proteinuria, premature labor, hemolysis, liver abnormali-
ties, thrombocytopenia, seizures and death[14,15]. Increased 
levels of  sol-Eng in vascular surgical specimens were also 
brought into context with the pathogenesis of  arterio-
venous malformations (AVM) of  the brain and aberrant 
cerebral vascular remodelling[16]. Other reports propose 
sol-Eng as a marker in diabetic patients[17] for estimating 
progression or treatment efficacy of  the atherosclerotic 
process[18,19], systemic lupus erythematosus[20], non-small 
cell lung cancer patients[21], hypertension[22], disturbed an-
giogenesis in systemic sclerosis[23], Alzheimer’s disease[24], 
breast cancer[25], premalignant lesions of  the colon mu-
cosa[26], outcome of  biliary atresia[27] and cystic fibrosis 
associated liver disease[28], unexplained fetal death[29], ma-
laria pathogenesis[30], prostate cancer[31] and many other 
diseases. In addition, endoglin expression was found to 
be related to tumor size, aggressiveness and metastatic 
potential in patients with gastroenteropancreatic neuro-
endocrine tumors[32].

A similar phenotype, i.e., HHT type 2, is observed 
when the activin-like kinase (ALK)-1 receptor is func-
tionally altered[33]. Likewise, mutations in the gene encod-
ing Smad4 (MADH4) can cause a syndrome called Juve-
nile Polyposis/Hereditary Hemorrhagic Telangiectasia 
Syndrome (JPHT), consisting of  both juvenile polyposis 
and hereditary hemorrhagic telangiectasia phenotypes[34]. 

Also, the mutations of  other yet unidentified genes on 
the long arm of  chromosome 5[35] and on the short arm 
of  chromosome 7[36] were linked to the formation of  
other HHT types.

Endoglin expression and dysregulation has been 
shown in a number of  cell types, including mesangial 
cells, cardiac and scleroderma fibroblasts, and hepatic 
stellate cells (HSC), suggesting some important function 
in cell and organ homeostasis and disease formation[37-40]. 
In particular, many independent findings demonstrate 
that endoglin is a critical factor that orchestrates trans-
forming growth factor-β (TGF-β) signaling in wound 
healing in the pathogenesis of  fibrosis. In regard to he-
patic fibrogenesis, it was shown that endoglin is expressed 
in HSC[41] representing the most pro-fibrogenic cell type 
within the liver. Interestingly, endoglin expression is up-
regulated during liver damage and transiently induced in 
HSC by TGF-β1[40]. In this hepatic subpopulation, endo-
glin binds to the TGF-β type Ⅱ receptor (TβRⅡ), be-
comes phosphorylated by the activity of  the TβRⅡ, and 
shows highest expression during maximal cell activation 
with a transdifferentiation-dependent cellular localisa-
tion and ligand affinity[40]. Interestingly, transient overex-
pression of  endoglin results in a stronger activation of  
the Smad1/Smad5 signaling cascade and a prominent 
increase of  α-smooth muscle actin expression, thereby 
promoting cellular activation and transdifferentiation[40], 
while contrarily the activity of  the TGF-β1/Smad3 
pathway is inhibited[42]. All these findings demonstrate 
that endoglin is one of  the central switches controlling 
fibrotic and anti-fibrotic activities by producing different 
variant forms, adjusting ligand affinity, amending expres-
sion levels, and interacting with a versatile receptor net-
work, thereby modulating the specific outcome of  TGF-
β-dependent and -independent pathways.

In the present review, we will summarize the actual 
knowledge of  endoglin function and discuss the impact 
of  this receptor on disease formation, hepatic fibrogen-
esis and its diagnostic value in initiation, progression and 
prognosis of  various liver diseases.

MOLECULAR AND BIOCHEMICAL 
CHARACTERISTICS OF ENDOGLIN
The human endoglin gene contains 15 exons numbered 
1 to 14, where exon 9 is split into 9a and 9b (Figure 1)[7]. 
Beside the full length endoglin (FL-Eng), a splice variant 
has been identified, i.e., short-endoglin (S-Eng), that is 
characterized by the retention of  intron 14 in the ma-
ture mRNA[3,40,43]. The expression of  S-Eng is increased 
in senescent endothelial cells and alternative splicing is 
most likely performed by the alternative splicing factor 
or splicing factor-2 (ASF/SF2)[44,45]. However, the or-
thologous S-Eng mRNAs of  men and mice give rise to 
different proteins (Figure 1) with either shortened and 
in part alternate C-termini[2,43] or a full length endoglin 
with a peptide insertion in rat[40]. Although the C-terminal 
domain of  FL-Eng does not possess catalytic activity, it 
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is substrate for different kinases and comprises several 
protein-protein interaction domains (Figure 1)[46]. There-
fore, structural alterations imposed by differential splic-

ing of  the mRNA that encodes the intracellular domain 
results in functional consequences for Eng in signaling 
(see below). In addition to splicing, Northern blot analy-
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sequence and experimentally confirmed matrix metalloproteinases-14 cleavage site between aa positions 586 and 587[59]. Middle panel, primary sequence positions: 
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sis of  mouse and rat transcripts revealed two mRNA 
species differing in molecular weight more than the size 
of  the retained intron 14 of  S-Eng. Analysis of  the cor-
responding cDNA with 3’-RACE and inspection of  the 
rat genomic DNA sequence confirmed a variation in the 
non-coding region of  the mRNA and the presence of  a 
second polyadenylation signal in the genomic DNA[40]. 
Whether this differential polyadenylation modulates 
mRNA stability or other features of  the mRNA is cur-
rently not known. Since it has been realized that endoglin 
mutations are causative for HHT-1[7], a wealth of  differ-
ent mutations in the endoglin gene which lead to altered 
expression or formation of  aberrant protein products has 
been identified (see below). Nevertheless, mutations are 
not spread randomly in the genomic sequence. A bias for 
mutations is found in the orphan domain and the N-ter-
minal zona pellucida (ZP-N) subdomain in which three 
highly conserved cysteines (Cys363, Cys382 and Cys412) 
are exceptionally prone to mutations[47].

Biochemical characteristics
Endoglin, a type Ⅰ transmembrane glycoprotein, is ex-
pressed as a disulfide-bound dimer at the cell surface[48]. 
Endoglin belongs structurally to the zona pellucida (ZP) 
family of  sperm receptors sharing a ZP domain of  ap-
proximately 260 aa in their extracellular part[49,50]. This 
domain is localized between Lys362-Asp561 (Figure 1) 
and contains eight highly conserved cysteine residues[47]. 
Common characteristics of  ZP domain proteins are 
that they are: (1) shed to generate a soluble form; (2) 
membrane proteins with a hydrophobic region at their 
C-termini; (3) strongly glycosylated; and (4) finally highly 
expressed in the corresponding tissues in which they oc-
cur[50].

Among TGF-β-family receptors, endoglin and be-
taglycan constitute the TGF-β type Ⅲ receptor family. 
Both receptors share a high degree of  similarity, especial-
ly in their intracellular domain (Figure 2) that is also the 
most conserved region between endoglin from different 
species (Figure 3), implying that this region has an impor-
tant function, although lacking enzymatic activity[40].

In line, the signaling specificity of  endoglin compared 
to betaglycan is at least for some specific functions deter-
mined by the extracellular domain (ECD)[51]. Since both 
of  these receptors possess no enzymatic activity in their 
short C-terminal domain and are not obligatory for gen-
eral signaling, they have been assigned an accessory/mod-
ulating function in signaling[52]. The primary sequence of  
FL-Eng comprises 658 aa in human[2,3], 650 aa in rat[41], 
and 653 aa in mouse (Figure 3)[53]. The ECD of  human 
Eng harbors a Arginine-Glycin-Aspartic acid (RGD) pep-
tide representing a potent binding site for integrins which 
is not present in the rat and mouse homologues[2,41,53]. 
Along with the FL-Eng, a splice variant designated S-Eng 
has been identified. The longer mRNA is due to the re-
tained intron 14 (see above) and codes for a protein with 
a shortened C-terminus of  14 aa in human and 35 aa in 
mouse because of  an in-frame stop codon present in the 

intron which is not found in rat resulting in a protein that 
contains a 49 aa insertion[3,41,53]. As outlined below, the 
shortening of  the C-terminal domain of  the splice vari-
ant in human and mouse have structural and functional 
consequences because specific modules are missing. The 
mentioned insertion in rat FL-Eng only causes minor 
effects which may be due to sterical alterations in the 
C-terminal domain[40]. In addition to these splice variants, 
two transcripts in mouse and rat occur which differ in 
the 3’-non-coding part and which arise from differential 
polyadenylation[40]. With respect to post-translational 
modifications, the primary Eng sequence contains several 
potential N- and O-dependent glycosylation sites. Initial 
enzymatic de-glycosylation studies confirmed the usage 
of  both N- and O-dependent glycosylation consensus 
motives[48]. In a more detailed study, single N-dependent 
glycosylation sites (Asn88, Asn102, Asn121, Asn134 and 
Asn307) have been identified by mutational analysis[54]. 
Although the corresponding N-glycosylation sites seem 
to influence the stability of  the corresponding domain, 
e.g., Asn102 and Asn307[54], the removal of  carbohydrates 
by peptide N-glycosidase F (PNGase F) was shown to be 
exiguous for function of  the ECD[55].

In general, FL-Eng has a tripartide structure comprising 
a short intracellular region (47 aa), a single transmembranal 
portion (25 aa), a large ECD (561 aa) and a predicted signal 
peptide (25 aa)[3]. Preceding the ZP domain there is an or-
phan domain (Glu26-Ile359), sharing no similarity to other 
protein families/domains[47]. The ZP domain (Gln360-
Gly586) is further subdivided in a ZP-N (Gln360-Ser457) 
and ZP-C (Pro458-Gly586) subdomain (Figure 1). Deletion 
and substitution studies revealed that at least Cys582 in 
human FL-Eng in the ECD is involved in intermolecular 
disulfide binding[56]. Additional work revealed that the six 
cysteines between Cys330 and Cys412 are necessary to 
mediate receptor dimerization[57], allowing the receptor to 
be expressed as a dimer at the cell surface, or in case of  
the soluble form as a secreted dimer[58]. A high resolution 
structure established for the ECD of  endoglin revealed 
information about the sterical arrangement of  the 3-dimen-
sional protein fold[47]. These studies confirmed the three-
modular-structure (orphan domain, ZP-N and ZP-C do-
main) and further raised the hypothesis of  the occurrence 
of  a putative cleavage site for a sheddase with specificity for 
the linker region between the folded domains of  ZP-N and 
ZP-C at position Arg437-Lys438-Lys439 (RKK)[47]. How-
ever, the biochemical elucidation showed that the cleavage 
site is located closer to the membrane at position Gly586-
Leu587. The executing enzyme was shown to be matrix 
metalloprotease-14 (MMP-14 or MT1-MMP)[59,60] promot-
ing a shedding process that is similar to that described for 
betaglycan before[61]. On a functional level, endoglin is able 
to interact with the TGF-β signaling receptors (cf. Figure 1, 
Figure 4)[62] as well as other regulatory proteins[63-67]. These 
interactions are mediated by the different subdomains (or 
combinations). In general, FL-Eng is able to interact with 
ALK5 and TβRⅡ independent of  ligand and the activa-
tion state of  the signaling receptors[56]. In more detail it was 
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shown that TβRⅡ interacts with the region 437-558 (mainly 
ZP-C domain) of  the endoglin ECD. In contrast to TβR
Ⅱ, ALK5 contacts two regions, spanning aa 26-437 and aa 
437-558 (orphan and ZP-C domains)[56]. Similarly, the sec-
ond type Ⅰ receptor ALK1 was shown to interact with the 
region Glu26-Gly586 of  the ECD of  endoglin[68].

Since the soluble variant of  endoglin comprises all 
these ECD, it should in principal also be capable of  me-
diating the same receptor interactions. Nevertheless, the 
binding of  the soluble ECD to membrane bound endog-
lin could not be shown[57].

Whereas the binding to the ECD of  FL-endoglin is 

independent of  the signaling receptor activity, interaction 
of  TβRⅡ, ALK5 and ALK1 with the intracellular domain 
of  endoglin is regulated by the activation state of  the sig-
naling receptors since binding of  the constitutive active 
ALK5/ALK1 could not be detected, while the binding of  
kinase dead and wild type ALK5/ALK1 could be demon-
strated[56,68]. In line, the association of  endoglin with the 
inactive form (kinase dead) of  TβRⅡ was reported to be 
stronger when compared to wild type TβRⅡ[56].

It is known that FL-Eng is phosphorylated at serine 
and threonine residues[69,70] and both ALK5 and TβRⅡ 
use the C-terminus of  endoglin as a substrate[56,70,71]. In 
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turn, FL-Eng inhibits autophosphorylation of  TβRⅡ but 
enhances phosphorylation of  ALK5 by TβRⅡ leading 
to a stronger Smad2 transcriptional activity (see below)[56]. 
Aside from ALK5, ALK1 is also able to phosphorylate 
the FL-Eng C-terminus, but in contrast to ALK5, primar-
ily on threonine residues[70]. Threonine phosphorylation 

by ALK1 (Thr654) necessitates serine phosphorylation 
by TβRⅡ which is enforced by removal of  the C-terminal 
PDZ domain[70]. Moreover, ALK1 phosphorylation and 
binding of  endoglin was observed only in the presence 
of  TGF-β1 and this phosphorylation leads to loss of  FL-
Eng from focal adhesions (see below)[70]. This modulates 
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proliferative and adhesive properties of  endothelial cells. 
In more detail, it was shown that the exponentiation ac-
tivity of  endoglin on ALK1 signaling and Smad1 activity 
is located between residues 26-558 within the ECD of  
endoglin[68]. Another interaction with the ECD of  en-
doglin is mediated by integrin α5β1, which contacts not 
only the RGD-peptide but several parts of  the ECD of  
endoglin. Clustering of  α5β1/endoglin/ALK1 leads to 
an enhancement of  TGF-β1-mediated Smad1/Smad5 
activation and signaling[72]. Recently, leucine-rich α2-
glycoprotein 1 (Lrg1) has been further shown to interact 
with the ECD of  endoglin. This protein is a regulator of  
endothelial functions during angiogenesis. In addition to 
endoglin, it interacts with ALK5 and TβRⅡ directly and 
facilitates recruitment of  ALK1 into the receptor com-
plex thereby promoting Smad1/Smad5-signaling[73].

In contrast to the signaling type Ⅰ and type Ⅱ recep-
tors, the type Ⅲ receptors betaglycan and endoglin do 
not possess a kinase activity in their short intracellular 
domains[3,53,41]. Nevertheless, respective domains have 
important functional implications for the interaction with 
the signaling receptors as described above. Although the 
C-termini of  betaglycan and endoglin are very homolo-
gous to each other (Figure 2), several residues used as 
substrates by the signaling receptors are unique to endog-
lin[70].

Phosphorylation by a respective receptor serves as a 
switch to regulate the interaction with a certain receptor. 
Besides receptor interactions, other regulatory proteins 
have been identified which specifically bind to the C-ter-

minal domain of  FL-Eng. Using the two hybrid method, 
zyxin and zyxin-related protein-1 (ZRP-1) were found to 
specifically and exclusively, with respect to type Ⅲ recep-
tors, interact with FL-Eng[63,64]. Association with FL-Eng 
redirects these proteins from focal adhesions to actin 
stress fibers and leads to endoglin dependent inhibition 
of  cell migration[63,64]. Another protein identified in the 
yeast system is the dynein light chain member Tctex2β. 
In addition to FL-Eng, Tctex2β also interacts with TβR
Ⅱ and betaglycan and it inhibits TGF-β signaling[65].

However, it has to be mentioned here that all these 
interaction screens have been solely performed using 
protein baits of  the endoglin intracellular domain which 
have not been posttranslationally modified, e.g., phospho-
rylated. The interaction of  at least zyxin with endoglin 
is stronger with the so called -ΔSMA deletion mutant 
that lacks the 3'-carboxyl-terminal protein part harbour-
ing the PDZ-domain[64]. In line, removal of  this domain 
causes an increase in endoglin phosphorylation[70] imply-
ing that this modification (phosphorylation) most likely 
modulates/regulates protein-protein interaction with the 
carboxyterminal domain (CD) of  endoglin. Therefore, it 
is most likely that the group of  proteins able to interact 
with endoglin is currently somewhat underestimated.

Based upon the high homology of  the CD of  en-
doglin and betaglycan, it is not surprising that both 
β-arrestin2 and GIPC were found to associate with 
both proteins[66,67,74,75]. The interaction of  β-arrestin2 
and endoglin is lost in the absence of  threonine 650 and 
increases when co-expressed with TβRⅡ and ALK1[66]. 
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Whether the latter receptor regulates this interaction via 
phosphorylation is unclear since Thr650 is not a promi-
nent ALK1 substrate[70]. On a functional level, β-arrestin2 
causes endocytosis of  the receptor complex, includ-
ing endoglin, TβRⅡ and ALK1, and impacts MAPK-
signaling in an endoglin-dependent manner[66]. In contrast 
to β-arrestin-2, the C terminus of  the G alpha interacting 
protein (GAIP)-interacting protein (GIPC) binds to the 
C terminus of  endoglin in a manner that is restricted to 
the endoglin class Ⅰ PDZ-motif. This leads to a stabiliza-
tion of  endoglin at the plasma membrane and changes in 
Smad1/Smad5 activation and endothelial cell migration 
(see below)[67]. Moreover, GIPC mediates the interac-
tion of  endoglin and phosphatidylinositol 3-kinase in a 
TGF-β1 dependent manner to regulate endothelial cell 
sprouting and capillary tube stability[76].

ENDOGLIN FUNCTION AND IMPACT ON 
TGF-β SIGNAL TRANSDUCTION
Endoglin is an accessory receptor for TGF-β impacting 
various aspects of  its signaling and biological functions. 
Special features for the full length, soluble and short forms 
of  endoglin have been reported. In the following, we pro-
vide a brief  overview about TGF-β signaling and the im-
pact of  the different endoglin protein variants. Functional 
aspects of  FL-endoglin are summarized in Figure 5.

Brief overview of TGF-β  signaling
Signaling by ligands of  the TGF-β superfamily is initiated 
by binding of  the ligand to a heterooligomeric mem-
brane receptor complex. Binding of  TGF-β1 is mediated 
by a homodimer of  the TGF-β type Ⅱ receptor which 
in turn recruits and phosphorylates a type Ⅰ receptor 

(ALK5 or ALK1) homodimer into the complex. After 
ligand binding, the receptor complexes are internalized in 
general via two different pathways. Endocytosis mediated 
by clathrin-coated vesicles, enriched for Smad anchor 
for receptor activation (SARA), leads to active signaling. 
Depending on the type Ⅰ receptor involved, the signal 
is propagated to two different Smad protein subfamilies, 
with the specificities of  ALK5 phosphorylating Smad2/
Smad3 or ALK1 in triggering phosphorylation of  
Smad1/Smad5. Phosphorylated Smads bind to the com-
mon Smad4, translocate into the nucleus and regulate 
transcription of  target genes. Of  these, the I-Smads, i.e., 
Smad6 and Smad7, are important regulators since they 
are direct target genes and shut off  the signaling cascade 
at diverse points in a negative feedback loop. If  internal-
ization occurs via the lipid-rafts-caveolae-1, the receptors 
are bound to I-Smad/Smurf  complexes targeting the re-
ceptor for ubiquitination and degradation[77].

Since this simple “core” of  TGF-β signaling is in-
volved in the regulation of  a wide array of  different tar-
get genes and control of  diverse cellular responses, cells 
are endowed with a plethora of  switches to adjust this 
cascade for their needs. Such cell type specific regulators 
for example are the type Ⅲ receptors, i.e., betaglycan and 
endoglin, which are engaged in TGF-β receptor-complex 
formation and modulation of  downstream signaling.

In the liver and especially in HSC, it has been assumed 
that the key operating TGF-β1 pathway is the ALK5/
Smad3 branche that regulates proliferation, activation and 
profibrogenic responses of  these cells. However, it has 
been anticipated that other signaling modalities like the 
ALK1/ALK5/Smad1/Smad5/Id1 axis is also engaged 
by TGF-β1 in regulating HSC physiology under normal 
and pathological conditions[40,78,79].
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Impact of full length endoglin on TGF-β 1-signaling
Analysis regarding the role of  endoglin in signaling was 
primarily based on TGF-β-signaling and Smad-activation 
in monocytes and myoblasts[51,80]. Since it is known that 
endoglin is the candidate gene affected in HHT-1, de-
tailed experimental work has been done using different 
endothelial cells[7,81]. So far the functional data regarding 
the involvement of  endoglin in HSC are rather sparse. 
Endoglin is expressed in quiescent HSC and transdif-
ferentiated myofibroblasts (MFB) and is transiently 
upregulated during cellular activation[40,41]. Upregulation 
of  endoglin during activation/differentiation of  cells is 
also seen in endothelial cells and monocytes[82,83]. Similar 
to other cell types, endoglin is not only affecting TGF-
β1-signaling but is itself  regulated by this ligand on 
the transcriptional level, most likely involving the Sp1 
transcription factor[40,84-86]. As a mutual prerequisite, en-
doglin is membrane localized and interacts with and is 
phosphorylated by TβRⅡ in HSC[41,40]. Overexpression 
of  endoglin causes an increased phosphorylation of  
Smad1/Smad5 in HSC of  rat and mouse origin[40,79]. In 
line with the HSC data, it was previously found that en-
doglin enhances ALK1/Smad1/5 signaling in endothelial 
cells and other cell types[87], leading to increased prolifera-
tion and migration (characteristics of  the activation phase 
of  angiogenesis), responses which are negatively affected 
upon endoglin reduction[72,88,89]. However, other labora-
tories claimed that endoglin causes reduced activation of  
ALK1/Smad1/5 as well as reduced migration and prolif-
eration[90] or even having no impact on Smad-signaling at 
all[66]. These differences might be explained in part by the 
experimental set up (method used to modulate the endo-
glin expression, i.e., siRNA vs. knockout, concentration of  
the ligand, time scale of  stimulation, cell type analyzed) 
and by the expression level of  the two corresponding 
type Ⅰ receptors, i.e., ALK1 and ALK5, both of  which 
are expressed in HSC[78]. On the other hand, ALK5/
Smad3 signaling that inhibits proliferation and migration 
(characteristics of  the resolution phase of  angiogenesis) 
is blocked by endoglin[67,88,91]. Interestingly, in contrast to 
ALK5/Smad3 which is downregulated, the signaling via 
ALK5/Smad2 leading to increased eNOS expression/ac-
tivity is promoted in endothelial cells[56,92]. This effect is in 
part due to a stabilization of  the Smad2 protein[92].

Although collagen type Ⅰ expression is reduced, the 
overexpression of  endoglin has no significant impact on 
ALK5/Smad3/Smad2 activation in mouse and rat HSC 
cell lines[40,79]. An inhibitory role of  endoglin in collagen 
type Ⅰ expression has been well documented in diverse 
kinds of  cells, including mesangial cells, fibroblast of  dif-
ferent origins and myoblasts[87,93-95] and was attributed to a 
reduced Smad3 activation[87,94]. A contribution of  MAPK 
in the endoglin dependent modulation of  collagen ex-
pression and Smad3 phosphorylation was postulated for 
JNK1 and ERK1/2[94,96].

In HSC, endoglin causes an increase in TGF-β1 
dependent ERK1/2 activation[79]. A positive effect of  
endoglin on ERK1/2 activation was also observed in hu-

man T cells upon crosslinking of  endoglin[97]. In line with 
an enhancement of  ERK1/2 phosphorylation, TGF-β1 
mediated expression of  the connective tissue growth fac-
tor (CTGF) is promoted by endoglin in HSC[79]. There 
are several other reports showing an ERK1/2 depend-
ent expression of  CTGF, once more underscoring these 
results[98,99]. Nevertheless, the activation of  ERK1/2 and 
increased expression of  CTGF by endoglin is most likely 
cell type specific. In endothelial cells and epidermal cells 
it was shown that endoglin, in association with β-arrestin2, 
leads to suppression of  ERK1/2 activation and a change 
in the cellular distribution[66,100]. On the contrary, in 
myoblasts in which TGF-β1 and endoglin have only a 
minor effect on ERK1/2 activation, CTGF is reduced 
in the presence of  endoglin[87,95]. A negative impact of  
endoglin on CTGF expression was also found in sclero-
derma fibroblasts by some groups[39,101]. However, in a 
subset of  scleroderma fibroblasts it was shown that the 
TGF-β1/ALK1/Smad1 pathway mediates fibrogenic re-
sponses, e.g., collagen Ⅰ and CTGF expression, and that 
endoglin promotes this ALK1 pathway[102,103]. Finally, it 
was shown that ERK1/2 and Smad1 activation are func-
tionally linked[102]. If  endoglin-dependent up-regulation 
of  ERK1/2 phosphorylation in HSC is directly linked to 
Smad1 activation and CTGF expression, and if  ALK1 is 
involved in these responses is currently under investiga-
tion. Moreover, if  the co-expressed betaglycan is involved 
in the up-regulation of  CTGF is actually only specula-
tive[101]. In addition, the basis of  the forced expression 
of  α-smooth muscle actin (α-SMA) in endoglin over-
expressing cells needs to be analyzed[40,79]. One compre-
hensible option is a direct promoting effect on TGF-β1 
signaling mediating α-SMA expression, which was shown 
to rely not exclusively on Smad3[104], or alternatively endo-
glin may cause a general shift in the transdifferentiation 
process leading finally to up-regulation of  α-SMA.

Role of short (S-) endoglin on TGF-β 1-signaling
Similar to FL-Eng, the S-Eng splice variant, although 
missing a large part of  the C-terminal tail, binds to 
TGF-β1[3] and interacts with the signaling type Ⅱ recep-
tor[40] and both type Ⅰ receptors (ALK5 and ALK1)[44]. 
FL-Eng was shown to be phosphorylated at serine 
residues by TβRⅡ receptor[70] that fortuitously can be 
detected by a phospho-specific NF-κB antibody[105]. TβR
Ⅱ-mediated phosphorylation of  both isoforms of  rat 
endoglin could be detected in HSC using this antibody[40], 
implying a functional association of  endoglin and the 
TGF-β-signaling receptors in HSC. Both splice variants 
are co-expressed in endothelial cells and HSC and can 
form heteromeric L-/S-Endoglin dimers[40,43]. Never-
theless, S-Eng is unable to substitute for FL-Eng since 
animals that carry an S-Eng transgene on an Eng null 
background are not viable, implying that S-Eng alone is 
inappropriate to rescue the lethal phenotype[43]. Using 
the afore mentioned S-Eng overexpressing animals in 
a model for tumor angiogenesis and metastatic infiltra-
tion by injecting Lewis lung carcinoma (3LL) cells, it was 
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found that tumor growth is retarded when compared to 
control mice[43]. Even more, in a model of  chemically 
induced skin tumors, overexpression of  S-Eng in the 
vascular endothelium reduces benign tumor formation[43]. 
Nevertheless, functional data obtained in the rat system 
for the specific S-Eng variant yielded similar results when 
compared to FL-Eng[40]. Whether these results can be 
transferred to the mouse or human system is question-
able due to the completely different C-termini.

Soluble endoglin: more than just a disease marker
As described above, endoglin can be shedded by MT1-
MMP (MMP-14) from the cell surface to generate a soluble 
extracellular domain (sol-Eng) which reduces spontaneous 
and VEGF-induced endothelial sprouting[59]. In addition, 
the occurrence of  sol-Eng has been observed in the se-
rum/plasma of  patients suffering from diverse tumors[106]. 
In pre-eclamptic women, the elevation sol-Eng precedes 
the onset of  the disease, correlates with the severity of  the 
disease and therefore its detection is of  prognostic value[107]. 
Increased serum levels of  sol-Eng have been found in cyst-
ic fibrosis associated liver disease (CFLD) patients, with the 
highest levels in patients suffering from HCV coupled with 
cirrhosis[28]. Significantly elevated sol-Eng levels are also 
observed in patients with hepatocellular carcinoma [Hepa-
tocellular carcinoma (HCC)] combined with cirrhosis[108]. 
However, the role of  sol-Eng in TGF-β1 signaling is pres-
ently controversial. Initially it was shown that the soluble 
domain is able to reduce TGF-β1-mediated reporter-gene 
activity and eNOS activation in endothelial cells[14]. In line 
with a ligand sequestering function, complexes of  sol-Eng 
and TGF-β1 have been detected in serum of  breast can-
cer patients using ELISA and co-immunoprecipitation[58]. 
Nevertheless, although part of  the TGF-β1 ligand binding 
complex, a direct binding of  TGF-β1 to endoglin is ques-
tionable[109,110]. If  the signaling receptor type Ⅰ and type Ⅱ 
are present/co-expressed, endoglin can be precipitated to-
gether with labelled ligand. If  endoglin on the other hand is 
overexpressed in cells lacking type Ⅰ and type Ⅱ receptor, 
there is no binding of  TGF-β1 to endoglin[110]. The increase 
of  the sol-Eng concentration in pre-eclamptic women and 
a few studies with a focus on sol-Eng function, using over-
expression systems and luciferase assays, suggest that sol-
Eng indeed has a functional role in TGF-β1 signaling[14,59]. 
In addition, we could show by co-immunoprecipitation that 
heterologous expressed sol-Eng is able to bind to TGF-β1 
directly (SKM unpublished data) but experimental data sug-
gest that it is unlikely for soluble endoglin to simply inter-
fere with TGF-β1 signaling by competing with membrane 
bound type Ⅱ receptor for TGF-β1. Using a BIACore 
facility, the measured dissociation constants are 5 pM for 
TβRⅡ/TGF-β1[111] and in the micromolar range for sol-
Eng/TGF-β1[112], underscoring the higher affinity of  TβR
Ⅱ for TGF-β1 compared to the soluble endoglin coun-
terpart. On the other hand, Van Le et al found that CHO-
overexpressed and purified soluble endoglin increased 
TGF-β1 mediated p3TP-lux activity in U937 monocytic 
cells[55] in which L-endoglin was shown to antagonize sev-

eral TGF-β1-responses[80]. Nevertheless, direct ligand bind-
ing and functional mechanisms used by sol-Eng to affect 
cellular responses have to be analyzed in more detail in the 
future. There are currently no data focussing on functional 
aspects of  sol-Eng, especially in the liver.

ENDOGLIN IN DISEASE
As outlined above, mutations that affect human endoglin 
function are inherited as autosomal dominant disorders 
and may cause AVM in different organs, including brain, 
lung and liver (Figure 6). In the following paragraphs we 
will highlight the pathogenesis of  several of  these disor-
ders and associated diseases and give an overview about 
the important role of  endoglin dysfunction in the pathol-
ogy of  liver fibrosis.

Hereditary hemorrhagic telangiectasia
Hereditary hemorrhagic telangiectasia (HHT, Osler-We-
ber-Rendu syndrome) is an autosomal dominant inherited 
vascular disorder with a variety of  clinical manifestations. 
Common symptoms of  this disease occur due to the 
forming of  AVM in small and large blood vessels. This 
leads to epistaxis, gastrointestinal bleeding and microcytic 
anemia due to iron deficiency, along with characteristic 
mucocutaneous telangiectasia[113]. AVM are found in pul-
monary, hepatic and cerebral vascular tissue (Figure 6). 
The diagnosis of  HHT is based on these clinical features, 
which are summarized in consensus criteria known as the 
“Curaçao criteria”[114]. Rupture of  AVM contributes to 
significant morbidity.

Mutations in at least five genes result in manifesta-
tion of  hereditary hemorrhagic telangiectasia. However, 
about 85% of  the cases develop due to mutations of  the 
ENG gene (coding for endoglin) and ACVRL1 (activin 
A receptor type Ⅱ-like 1 kinase 1, ALK1)[115]. This disease 
is usually autosomal dominantly inherited, varying in pen-
etrance and expression. Juvenile Polyposis/Hereditary He-
morrhagic Telangiectasia (JPHT) is a rare juvenile form of  
HHT which is associated with polyposis and occurs due 
to mutations in the MADH4 gene coding for Smad4[116]. 
In gene linkage analyses, two other loci have been shown 
to be in a disequilibrium with HHT symptoms; one on 
chromosome 5, defining HHT-3[35], the other on chromo-
some 7[13], defining HHT-4. However specific genes on 
these chromosomes involved in disease formation remain 
to be identified. Mice deficient for endoglin or ALK1 ex-
pression show clinical features of  HHT[117]. Eng knockout 
(null) mice are embryonically lethal, dying at day 10.5 p.c. 
due to impaired extraembryonic vascular development 
and several cardiac defects (see below). Heterozygous 
animals show clinical symptoms of  HHT-1 with variable 
penetrance. Human patients with HHT-1 exhibit less 
endoglin expression in peripheral blood monocytes and 
newborn umbilical vein endothelial cells[118].

To prevent fatal clinical events like stroke, high-output 
heart failure, pulmonary hypertension and hemorrhage, 
the embolization of  visceral AVM is a valuable course 
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of  treatment. Furthermore, symptomatical treatment 
approaches with antiangiogenic or antihormonal agents 
have been investigated. In some patients, the use of  an-
tiangiogenic therapies known from cancer therapy, such 
as thalidomide[119], lenalidomide[120] and bevacizumab[121], 
reduces the incidence of  nasal and gastrointestinal bleed-
ing. The β-receptor blocker propanolol, usually used for 
prophylaxis of  esophageal variceal bleeding in patients 
with liver cirrhosis or the treatment in infantile haeman-
giomas, was able to decrease cellular migration and tube 
formation, concomitantly with reduced RNA and protein 
levels of  ENG and ALK1 in cell culture[122]. Other studies 

showed that tamoxifen, an estrogen receptor antagonist, 
and the selective estrogen receptor modulator, raloxifene, 
can reduce episodes of  epistaxis and transfusion require-
ments in patients suffering from nasal vascular malfor-
mations[123,124]. However, limited controlled studies, severe 
side effects of  those drugs and the need for life long 
treatment limits the applicability for most patients.

Pre-eclampsia
Pre-eclampsia is a disease of  high incidence (about 3%) 
in pregnant women with an onset after 20 wk of  gesta-
tion. It complicates pregnancy and can lead to death of  
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Figure 6  Endoglin and disease. The human endoglin gene (ENG) is located on the long arm of human chromosome 9. Mutations are inherited in an autosomal 
dominant manner and affect several organs. In liver, abnormal connection formed between blood vessels, arteriovenous malformations (AVM), malfunction of the chol-
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heart compensates by increasing the cardiac output resulting on long term in heart insufficiency. Similar arteriovenous (pulmonary AVM, cerebral AMV) are found in 
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(sol-Eng) that leads to an imbalance of the antiangiogenic factors resulting in life-threatening obstetric complication (e.g., pre-eclampsia, HELLP syndrome).
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mother and baby. The disease is characterized by new-
onset hypertension (140 mmHg or diastolic blood pres-
sure 90 mmHg) and proteinuria (excess of  protein in 
the urine of  at least 0.3 g of  protein/d)[125]. Eclampsia 
is characterized by additionally occurring grand mal sei-
zures[126]. Typical complications for the pregnant woman 
are the involvement of  the central nervous system, acute 
renal or liver failure, and changes in hematological pa-
rameters. Women with pre-eclampsia are prone to higher 
lifetime cardiovascular morbidity, including hypertension 
and ischemic heart disease. Effects on the fetus can be 
severe and include prematurity, fetal growth restriction, 
oligohydramnios and placental abruption. A family his-
tory of  pre-eclamsia, advanced maternal age, obesity or 
pregestational diabetes increases the mothers risk to de-
velop this condition[127].

The pathophysiology of  pre-eclampsia is still poorly 
understood. Prior to the development of  clinical symp-
toms, cells migrating to the placenta lack the expression 
of  endothelial surface adhesion markers. This leads to 
incomplete invasion of  maternal arteries by the devel-
oping trophoblast, resulting in placental ischemia and 
the release of  antiangiogenic factors, including sol-Eng 
and soluble fms-like tyrosine kinase (sFlt1)[128]. Vascular 
endothelial growth factor (VEGF) and placental growth 
factor are antagonized by soluble fms-like tyrosine ki-
nase-1 (sFlt1 or sVEGFR-1) and sol-Eng antagonizes 
TGF-β1 and TGF-β3 activity[129]. These effects on vascu-
lar homeostasis promote changes in placental circulation. 
Numerous studies show the effect of  VEGF and TGF-β 
signaling pathways on circulation and angiogenesis. These 
pathways directly influence the development of  pre-
eclampsia. By regulating endothelial cell proliferation, mi-
gration, vascular permeability and secretion, VEGF-A is 
an important ligand for angiogenesis. It binds to two ty-
rosine kinase receptors, VEGFR-1 (Flt-1) and VEGFR-2 
(KDR/Flk-1). The soluble receptor VEGFR-1 (sFlt1) 
acts as an endogenous VEGF inhibitor. In patients with 
pre-eclampsia, sFlt1 is overexpressed in the maternal cir-
culation[130], which corresponds to a decrease of  VEGF 
and placental growth factor expression in the placenta 
of  pre-eclampsia patients[131]. This leads to the develop-
ment of  major symptoms of  the disease due to abnormal 
trapping of  VEGFs. The role of  sFlt1 is underlined by 
studies in which pregnant rats were treated with exog-
enous sFlt1, inducing severe pre-eclampsia. Immunopre-
cipitation of  sFlt1 in cells derived from placental villous 
explants normalized their angiogenic responses[129].

In addition, the VEGF-signaling changes in the 
TGF-β signal transduction pathway promotes the de-
velopment of  pre-eclampsia. Placentas of  pre-eclamptic 
women show increased levels of  membrane-bound Eng 
and sol-Eng[14]. Hypoxia and oxidative stress seem to be 
important triggers for the release of  sol-Eng, as shown 
in a study where oxysterol activation promoted MMP-
14-mediated cleavage of  sol-Eng in cells of  trophoblast 
origin[132]. sol-Eng antagonizes TGF-β1 induced vasodila-
tation, leading to vascular hypertension[133-135]. The increase 

of  systemic sol-Eng in pregnant women is a factor that 
prequels the onset of  pre-eclampsia[106,136,137]. Modulating 
the TGF-β pathway, endoglin can, alone or together with 
sFlt1, induce pre-eclamsia symptoms in pregnant rats[14].

The pathogenesis of  pre-eclampsia is defined by the 
imbalance of  the anti-angiogenic factors, sFlt1 and sol-
Eng, and the proangiogenic factors, placental growth fac-
tor, TGF-β and VEGF[138]. Current treatment concepts 
therefore include the use of  antibodies and small mol-
ecules to sequester or limit synthesis of  anti-angiogenic 
molecules. Improvement in blood pressure and renal 
function could be achieved after administration of  ex-
ogenous VEGF in a preclinical model of  pre-eclampsia, 
modulating the balance of  angio- and anti-angiogenic 
factors[139]. Recently, a study using a dextran sulfate col-
umn to remove sFlt1 from the maternal circulation by 
extracorporeal apheresis showed a potential therapeutic 
approach for the treatment of  pre-eclampsia[140]. Other 
studies using induction of  hemoxygenase-1 with cobalt 
protoporphyrin in pre-eclamptic rats[141] and prevention 
of  the release of  sol-Eng by direct inhibition of  MMP-14 
showed promising results[142]. As mentioned before, any 
therapeutic approach must be safe for mother and fetus 
and should be evaluated by controlled studies. Currently 
these problems still limit any effective therapy.

HELLP Syndrome
The HELLP syndrome is a complex of  maternal symp-
toms in pregnancy, including hemolysis, elevated liver 
enzymes and low platelet count. HELLP syndrome oc-
curs in 0.2%-0.8% of  pregnancies and is a serious threat 
for mother and child. 70%-80% of  women expressing 
HELLP symptoms also suffer from pre-eclampsia[143]. 
As in pre-eclampsia, a previous HELLP pregnancy in-
creases the risk of  HELLP as well as pre-eclampsia in 
subsequent pregnancies, suggesting related pathogenetics. 
Anti-angiogenic factors play an important role in both 
symptom complexes. In comparison to pre-eclampsia, 
maternal blood levels of  anti-angiogenic sFlt1 are simi-
lar, but HELLP shows higher sol-Eng levels[144]. The 
pathogenesis of  symptoms defining HELLP is driven by 
those angiopathogenic mechanisms. Activated vascular 
endothelium leads to an inflammatory response, includ-
ing coagulation and complement activation, increased 
white blood count and elevated levels of  inflammatory 
cytokines such as TNF-α and von Willebrand factor, 
leading to clinical symptoms of  disseminated coagula-
tion in microvessels[144,145]. Activation of  these inflamma-
tory signaling cascades leads to hemolysis in response to 
microangiopathy, reduced liver blood flow with elevated 
liver enzymes and low platelet counts due to consump-
tion of  platelets by microvessel thrombosis (= HELLP).

Cystic fibrosis associated liver disease
Cystic fibrosis (CF, mucoviscidosis) is an autosomal re-
cessive genetic disorder affecting lungs, pancreas, liver 
and intestine. A mutation in the gene for the protein 
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cystic fibrosis transmembrane conductance regulator 
(CFTR) causes an abnormal transport of  chloride and 
sodium across an epithelium, resulting in viscous secre-
tions[146]. The most severe symptoms affect the lungs, 
often causing lung transplantation or death in those pa-
tients. Gastrointestinal symptoms due to thick mucus are 
common[147] and cystic fibrosis associated liver disease 
(CFLD) is often (30%) diagnosed, accounting for 2.5% 
of  overall mortality, representing the third most common 
cause of  death in these patients[148].

Rath et al[28] showed in a recent study that patients suf-
fering of  CFLD show elevated serum levels of  TIMP-4 
and endoglin. Expression levels correlate with hepatic 
staging, therefore allowing, together with transient elas-
tography, to increase the sensitivity for the non-invasive 
diagnosis of  CFLD in patients suffering from CF. High 
endoglin levels showed a significant association with the 
severity of  liver injury, suggesting an active role for endo-
glin in the pathology of  liver fibrosis.

Endoglin in liver fibrosis and HCC
Liver fibrosis and cirrhosis is the outcome of  most types 
of  chronic liver injury. The excessive accumulation of  
extracellular matrix (ECM) proteins promotes hepatic 
scarring and eventually leads to organ failure[149]. In the 
pathogenesis of  liver fibrosis, TGF-β is the most potent 
fibrogenic cytokine. It induces fibrosis through mul-
tiple mechanisms, including direct activation of  HSC, 
stimulation of  ECM production, as well as prompting 
the synthesis of  tissue inhibitors of  matrixmetallopro-
teases (TIMPs) and thereby inhibiting ECM degrada-
tion[150]. Knock-out mice with deletions in components 
of  the TGF-β signaling cascade (TGF-β1, SMAD3 and 
MMP13) develop less severe fibrosis[151]. TGF-β ligands 
and receptors form a complex signaling network, which 
can be modulated by endoglin and betaglycan (TGF-β 
type Ⅲ receptor). By inhibiting ALK5-Smad2/3 and 
promoting ALK1-Smad1/5 signaling, endoglin can shift 
TGF-β downstream signals to pro-fibrogenic effects[40]. 
Presently, there is not much knowledge how the expres-
sion of  the different endoglin isoforms and sol-Eng is 
regulated in diverse liver cell subpopulations but it was re-
ported that the concentration of  sol-Eng increases during 
hepatic fibrogenesis (see below). In previous studies, we 
could show that endoglin expression is increased in ac-
tivated HSC in vitro and in murine models of  liver injury 
(carbon tetrachloride application and bile duct ligation) in 
vivo[41]. HSC are the major source for ECM production in 
liver fibrosis. Endoglin overexpression leads to enhanced 
TGF-β-driven Smad1/5 phosphorylation and α-smooth 
muscle actin expression without affecting Smad2/3 sig-
naling in these cells. By shifting TGF-β signaling from 
ALK5-Smad2/3 to ALK1-Smad1/5 pathway, endoglin 
exceeds a central role in TGF-β signal modulation and 
the development of  liver fibrosis.

HCC develops most often (80%) in cirrhotic livers. 
Angiogenesis and irregular capillary distribution are a key 
feature for malignant lesions[152]. Blood vessels are needed 

to supply nutrients and oxygen to the growing tumors. 
Most malignant tumors as well as HCCs have developed 
efficient strategies to promote fast vessel growth. Angio-
genesis is a highly regulated, complex process modulated 
by many intersecting pathways, including vascular en-
dothelial growth factor (VEGF), TGF-β and endoglin[26], 
angiopoietins[153], Notch[154] and integrins[155]. Usually, 
pro-angiogenic and anti-angiogenic factors are tightly 
balanced. In contrast to physiological angiogenesis (i.e., 
in wound healing), tumor angiogenesis is not controlled 
by normal physiological inhibition, resulting in an imbal-
ance of  pro-angiogenic and anti-angiogenic factors. By 
modulating TGF-β signaling, endoglin plays a crucial role 
in angiogenesis and tumor growth and could be linked 
to HCC[108], as well as esophageal cancer[156], breast carci-
noma[157], colorectal cancer[158] and tumor angiogenesis[44].

EXPRESSION OF ENDOGLIN IN ISOLATED 
LIVER CELLS AND LIVER TISSUE
Endoglin expression has been studied in many different 
tissues and diseases. It is highly expressed on proliferating 
vascular endothelial cells[159,160]. However, Meurer et al[40,41] 

showed that endoglin is expressed on HSC and activated 
MFB as well. By molecular cloning of  endoglin cDNA, 
surface labeling, immunoprecipitation and immunocyto-
chemistry experiments, it could be shown that endoglin 
plays a significant role in liver injury and fibrosis develop-
ment[40,41]. Endoglin expression is differentially regulated 
at the plasma membrane of  HSCs and in activated my-
ofibroblasts (MFB)[40,41]. Endoglin expression is increased 
in transdifferentiating HSC and in two models of  liver 
fibrosis but not in hepatocytes. Furthermore, endoglin 
is expressed in cultured portal fibroblasts, representing 
another important fibrogenic cell type in biliary types of  
liver disease. Transient overexpression of  endoglin leads 
to significantly increased TGF-β1-driven Smad1/5 phos-
phorylation and α-smooth muscle actin expression, while 
Smad2 phosphorylation is not changed[40]. These results 
are in line with a study by Lebrin et al[88] which showed 
endoglin promoting TGF-β1/ALK1-Smad1/5 signaling 
in endothelial cells.

To further investigate the influence of  endoglin on 
TGF-β signal transduction, we recently established and 
characterized a new mouse HSC line expressing collagen 
1(I) promoter/enhancer driven green fluorescent pro-
tein (GFP). These cells, originating from quiescent HSC, 
show an activated MFB phenotype in culture and express 
low endogenous endoglin concentrations. By selective 
overexpression of  endoglin in these cells, stimulation 
with TGF-β and PDGF, and specific inhibition of  endo-
glin/ALK signaling with antagonists, the differential ef-
fect of  endoglin on downstream Smad-signaling could be 
shown[77].

Because of  the complexity of  endoglin and TGF-β 
signaling pathways, it is important to investigate the mod-
ulation of  TGF-β signal transduction in cells of  different 
origin. For example, Velasco et al[87] showed the differ-
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ential effects of  endoglin isoforms in L6E9 myoblasts[85]. 
Because these cells have no endogenous endoglin expres-
sion, this cell line is an ideal tool to selectively express 
specific isoforms of  endoglin and show a different and 
sometimes opposing effect of  L- and S-Eng isoforms 
on downstream regulation of  TGF-β-induced responses. 
While endoglin expression is well investigated in vascular 
endothelial cells, HHT and tumor angiogenesis, the role 
of  endoglin in liver disease is poorly understood. Liver 
cell lines overexpressing endoglin or single members of  
the TGF-β pathway, as well as cells with low endogenous 
endoglin expression and specifically induced endoglin ex-
pression are needed to further dissect the functional roles 
of  endoglin in liver injury and fibrosis.

ANIMAL MODELS IN UNDERSTANDING 
ENDOGLIN FUNCTION
Endoglin deficiency in humans has a strong phenotype 
and is responsible for many diseases, such as HHT, pre-
eclampsia liver fibrosis and cancer. To study its impact on 
the pathogenesis of  those diseases, murine endoglin knock-
out models were needed. Because a complete homozygous 
endoglin knockout is embryonically lethal, several alterna-
tive strategies were established. Endoglin plays an impor-
tant role in angiogenesis; a complete endoglin deficiency 
has fatal consequences in the development of  heart and 
major vessels. To study the role of  endoglin in vivo and 
its impact on HHT-1, Arthur et al[161] established a mouse 
carrying a targeted nonsense mutation (deletion of  exons 
9-11) in the endoglin gene. These mice already showed that 
endoglin expression is critical for early vascular develop-
ment. Embryos with two mutated endoglin genes die at day 
10 - 10.5 post coitum (dpc) due to cardiac malformations 
and a failure to form mature blood vessels in the yolk sac. 
Homozygous endoglin knockout embryos generated by a 
deletion of  609 bp including exon 1 show a similar pheno-
type as mice lacking TGF-β1 and the TGF-β receptor Ⅱ, 
suggesting that endoglin plays a crucial role in TGF-β sign-
aling in early vascular development[162,163]. Li and co-workers 
reported that mice lacking functionally active endoglin by 
replacing the first two exons die from defective vascular de-
velopment but do not show defective vasculogenesis, which 
is observed in mice lacking TGF-β1[163]. Loss of  endoglin 
caused poor vascular smooth muscle cell (vSMC) develop-
ment and arrested endothelial remodelling. Therefore, en-
doglin is required for the differential growth and sprouting 
of  endothelial tubes and recruitment and differentiation of  
mesenchymal cells into vSMC and pericytes[164]. Both stud-
ies show slight differences in vascular embryonic develop-
ment. Eng deficient mice generated by Li et al[163] die at day 
11.5 dpc. While Arthur et al[161] used embryonic stem cells 
of  129/Ola origin, Li et al[163] generated endoglin knock-
out mice by targeting embryonic stem cells from 129/SVJ 
background. Those different approaches already suggest a 
strong impact of  genetic background on murine models of  
Eng deficiency.

To overcome the problems of  embryonic lethality and 

to study the effect of  endoglin in disease, several groups 
have used alternative approaches to generate endoglin 
deficient mice. Allinson et al[164] for example generated a 
mouse in which the endoglin gene is flanked by loxP sites 
at exons 5 and 6. These mice show a normal phenotype 
comparable to wild type littermates. Using the Cre-loxP 
genetic recombination system and an appropriate Cre 
expressing mouse line, specific endoglin knockout mice 
can be created. To generate a null allele of  the endoglin 
gene, the floxed construct was designed to allow a con-
ditional deletion of  exons 5 and 6, which would also lead 
to frameshift mutation in exon 7 before reaching a stop 
codon, resulting in a functional inactive endoglin[164].

Using this approach, two mouse models were generated 
expressing Cre in smooth muscle (SM22αcre) and endothe-
lial cells (Tie2cre) to evaluate the role of  endoglin in vascu-
lar smooth muscle and endothelial cells during angiogen-
esis[165]. In this study, endoglin null embryos show ectopic 
arterial expression of  the venous specific marker COUPTF
Ⅱ (chicken ovalbumin upstream promoter transcription 
factor Ⅱ). Normal expression of  COUPTFⅡ was restored 
after endoglin re-expression in endothelial cells. COUPTF
Ⅱ plays an important role in vascular development, includ-
ing heart, blood vessels and smooth muscle cell differentia-
tion. Endoglin induces changes in COUPTFⅡ expression 
patterns and therefore can influence vSMC recruitment and 
differentiation in angiogenesis.

Other groups used heterozygous endoglin knockout 
mice to investigate the function of  endoglin and avoid 
embryonic lethality. Bourdeau et al[166] developed a mouse 
model with a single copy of  the endoglin gene and an-
other mouse line with a homozygous deletion of  the en-
doglin gene. As already observed by Arthur et al[161], mice 
lacking any functional endoglin die at day 10.0-10.5 dpc 
due to defects in vessel and heart development. Embryos 
show a normal angiogenesis and vessel formation until 
hemorrhage occurs in the yolk sac around 9.0-10.5 dpc. 
Heart development stopped at day 9.0 and the atrioven-
tricular canal endocardium did not undergo mesenchymal 
transformation and cushion-tissue formation. Similar 
to the study published by Arthur et al[161], Bourdeau et 
al[166] used 129/Ola origin on C57BL/6 background. The 
heterozygous mouse displays a multiorgan vascular phe-
notype similar to the human HHT, which is often caused 
by endoglin haploinsufficiency. To evaluate the impact of  
the genetic background on endoglin deficiency, different 
Eng/null mouse strains were generated. The 129/Ola 
strain developed HHT symptoms at an earlier age and 
with greater severity than C57BL/6 mice. The F2 strain 
intercrosses between both strains showed an intermediate 
phenotype. As in humans, Eng deficiency shows variable 
penetrance. Of  171 mice observed in this study over a 12 
mo period, 50 developed clinical signs of  HHT. Disease 
prevalence was high in the 129/Ola strain (72%), inter-
mediate in the intercrosses (36%), and low in C57BL/6 
backcrosses (7%)[166].

Using the heterozygous Eng null mouse generated by 
Bordeau et al[166], another study showed that endoglin is 
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required for paracrine TGF-β signaling between endothe-
lial cells and adjacent smooth muscle cells to promote 
smooth muscle cell differentiation[167].

In primary cultures of  endothelial cells generated 
from mice carrying only one functional Eng allele, a 
significantly reduced migration and proliferation along 
with increased collagen production, vascular endothelial 
growth factor (VEGF) secretion and decreased NO syn-
thase expression was observed[168]. This again highlights 
the important role of  endoglin in vascular pathology.

As outlined above, endoglin modulates both the 
ALK1 and ALK5 pathways. Park et al[169] generated an 
ALK1 conditional knockout mouse line. The specific 
deletion of  ALK1 in vascular endothelial cells by an 
endothelial specific Cre was lethal through massive he-
morrhage in the lungs. ALK1 deficient mice showed 
heavy pulmonary vascular malformations mimicking all 
pathological features of  HHT-2, such as dilation of  ves-
sel lumen, thinning of  vascular walls, loss of  capillaries, 
development of  excessive tortuous vessels, and AVM[169].

Dolinsec et al[170] used another approach to investigate 
endoglin deficiency in murine models without affecting 
embryonical vascular development[170]. By applying siR-
NA against endoglin to human and murine endothelial 
cells (HMEC-1, 2H11) in vitro and in TS/A mammary ad-
enocarcinoma growing in BALB/c mice, they evaluated 
the therapeutic potential of  siRNA in cancer treatment. 
In vitro, the transfection resulted in reduced levels of  en-
doglin mRNA and protein, leading to a 60% decrease of  
endothelial cell proliferation. In vivo silencing of  endoglin 
expression showed lower endoglin mRNA levels and a 
decreased number of  tumor blood vessels resulting in 
significantly reduced TS/A tumor growth. The study 
demonstrated that siRNA molecules against endoglin 
have a good anti-angiogenic therapeutic potential[171].

The endoglin gene gives rise to two different isoforms 
resulting from differential splicing, i.e., S- and L-Eng (for 
details see above). Pérez-Gómez et al[43] investigated the 
role of  S-Eng in vivo using a mouse with ICAM-2 driven 
overexpression of  human S-Eng on the vascular endo-
thelium. Interestingly, breeding these mice to endoglin 
deficient mice did not rescue the embryogenic lethal phe-
notype. Furthermore, this study investigates the impact 
of  S-Eng on carcinogenesis. Therefore, Lewis lung carci-
noma cells were transplanted into mice expressing S-Eng. 
Carcinoma cells in these mice showed reduced tumor 
growth and less neovascularization. Additionally, benign 
papilloma formation was reduced significantly in respec-
tive S-Eng positive mice. These results show that S-Eng 
has anti-angiogenic properties in cancer development, 
showing new potential approaches for tumor therapy[43].

DIAGNOSTIC VALUE OF ENDOGLIN IN 
LIVER-ASSOCIATED DISEASES
Genetic testing
HHT is phenotypically heterogeneous both between af-
fected families and amongst members of  the same family 
in regard to penetrance and age of  disease onset. There 

are hundreds of  different mutations in the human ENG 
gene known that affect proper gene function. Although 
HHT is most common in Caucasians, disease causing 
mutations with ethnic-related differences also occur in 
Asians, Africans and Middle Eastern[171]. The overall 
incidence of  HHT in North America is more frequent 
than initially estimated and ranges between 1:5000 and 
1:10000[172], while the frequency in Europe varies between 
1:2500 to 1:40000[173-175]. In a cohort of  the northern part 
of  Japan, the prevalence of  HHT in the population was 
estimated to be 1:8000[176], demonstrating that HHT is 
more common among Asians than often assumed.

HHT is a dominantly inherited autosomal disorder 
and genetic testing of  individuals with a known family 
history is generally performed for disease confirmation 
(Figure 7). In addition, pre-symptomatic screening of  rel-
atives of  patients with a positive molecular diagnosis and 
in patients with suggestive (but not confirmatory) clinical 
features of  HHT is well established[177].

At the molecular level, there is a large spectrum of  
different gene mutations that influence the expression, 
integrity and stability of  the endoglin protein. Missense 
(nonsynonymous) mutations introducing different aa, 
nonsense mutations introducing premature stop codons, 
splice-site mutations that affect consensus splice donor 
sites and provoke exon skipping, frame shift and in frame 
deletions resulting in proteins with markedly different 
sizes, and several intronic mutations are rather common 
and show an ethnic and regional distribution[7-10,178-180]. 
However, the penetrance of  the different mutations and 
gene variations are rather different and subtle genotype-
phenotype correlations in HHT-1 have been reported, re-
vealing that truncating mutations in ENG are associated 
with more affected organs and more severe hemorrhage 
than ENG missense mutations[13]. Pulse-chase experi-
mentation and overexpression studies have further shown 
that several endoglin gene mutations form proteins that 
are only barely detectable, do not form heterodimers with 
normal endoglin, and are further unable to interfere with 
endoglin trafficking to the cell surface and remain intrac-
ellular as a precursor form[12,181]. On the contrary, another 
study that investigated six different missense and two 
truncation mutations have shown that not all mutants are 
unable to dimerize with normal endoglin, suggesting that 
haploinsufficiency and dominant-negative protein inter-
actions both can cause HHT-1[12,182]. No homozygotes 
that carry two abnormal copies of  the ENG gene have 
been reported so far, suggesting that this constellation is 
not compatible with life[183]. Likewise, mice lacking both 
copies of  the ENG gene die at gestational day 10.0-10.5 
due to defects in vessel and heart development[161].

However, there are four other genetic types of  HHT 
identified that are not associated with alterations in the 
ENG gene. It is essential to know that there are likely to 
be differences in the normal requirements for the indi-
vidual disease-causing genes in different vascular beds 
and cell types that, when affected by mutation, result in 
somewhat diverse clinical features and symptoms[183]. 
The onset of  epistaxis for example was found to have 
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an earlier onset in patients with HHT-1 than those with 
HHT-2 and AVM of  the brain and lungs were more 
common in respective patients, while hepatic and spinal 
AVM were noticed at a lower frequency in patients with 
HHT-2[13,178,184,185]. Based on all these findings, several 
guidelines were proposed in which the ENG gene should 
be first targeted for mutational screening when large vis-
ceral AVM in the lungs in patients younger than 45 years 
occur[185]. However, based on the fact that all 15 exons 
and their non-coding introns can be easily sequenced, it 
is self-evident that these molecular diagnostic tests have 
refined and supplemented the criteria that were first pro-
posed for clinical diagnosis of  HHT[114].

Serum measurements
Based on the finding that the serum or plasma concen-
tration of  sol-Eng is increased dramatically in several 
disease conditions, its predictive value for the outcome 
of  various diseases is presently intensively discussed 
and a large variety of  commercially available ELISA test 
systems that allow reliable and accurate detection of  en-
doglin in biological fluids have been established by many 
companies. It was shown that serum sol-Eng that plays a 
major role as an anti-angiogenic factor increases two- and 
three-fold in preterm and term pregnancy compared to 
non-pregnant controls and further dramatically increases 
two to three months before the onset of  pre-eclampsia 
and in patients with HELLP syndrome, suggesting that 
sol-Eng alone or in combination with other variables 

is usable as a biomarker with a high predictive value in 
pregnancy complications[14,106,186,187]. Other studies demon-
strated that plasma sol-Eng levels are significant higher in 
patients with diabetes than in healthy control subjects and 
that the duration of  diabetes is an independent predic-
tor of  plasma sol-Eng increase[17]. The measurement of  
sol-Eng also has predictive value for the progression of  
the atherosclerotic process and correlates well with the 
expression of  eNOS in endothelium, repair of  the vessel 
wall, plaque neoangiogenesis, production of  collagen and 
stabilization of  atherosclerotic lesions[19]. As an indicator 
of  endothelial dysfunction, the measurement of  sol-Eng 
was proposed to monitor the therapy efficacy during ex-
tracorporeal LDL-cholesterol elimination therapy for fa-
milial hypercholesterolemia[18]. Since endoglin expression 
was shown to be extremely relevant for cancer forma-
tion[159], it is not surprising that sol-Eng is a potential ang-
iogenic marker to indicate and predict diseases associated 
with metastases[32,188-190]. Patients suffering from Alzhe-
imer’s disease were also found to have elevated levels 
of  sol-Eng combined with decreased levels of  TGF-β, 
possibly indicating impairment of  cerebral circulation 
that is associated with this neurodegenerative process[24]. 
Of  course, the wide expression pattern of  endoglin that 
encompasses endothelial cells, subsets of  bone marrow 
cells, activated macrophages, fibroblasts, chondrocytes, 
smooth muscle cells and pro-fibrogenic cells (e.g., HSC) 
as well as its linkage with the TGF-β signaling pathways 
has further offered several new avenues in which sol-Eng 
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Figure 7  Endoglin in diagnostics. Several distinct mutations in the endoglin gene (ENG) give rise to hereditary hemorrhagic telangiectasia (HHT) that is mainly 
characterized by epistaxes (nosebleed), various visceral lesions, telangiectasia (spider veins) and arteriovenous malformations. Patients often show an appropriate 
family history. The clinical diagnosis “HHT” is made if three of the four classical signs (i.e., epistaxes, visceral lesions, telangiectasia and family history) occur. Elevated 
levels of soluble endoglin have been reported in patients suffering from hemolysis, elevated liver enzymes and low platelets syndrome (HELLP), pre-eclampsia, type 2 
diabetes, atherosclerosis, tumorgenesis in several organs, and fibrogenesis.
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measurements might be beneficial. In regards to liver, it is 
well established that intrahepatic and circulating levels of  
endoglin are elevated in patients suffering from chronic 
hepatitis C infection, liver cirrhosis and carcinoma. In 
addition, there is a correlation of  histological and serum 
markers of  hepatic fibrosis and endoglin is abundantly 
expressed in hepatic sinusoidal endothelium of  non-
tumor tissues with cirrhosis[108,191,192]. Increased endoglin 
expression was recently also documented by proteomic 
profiling in patients suffering from cystic fibrosis associ-
ated liver disease[28]. Likewise, high circulating endoglin 
concentrations are correlated with a poor outcome for 
biliary atresia that represents a chronic progressive disor-
der of  the extrahepatic and intrahepatic biliary system[27]. 
Therefore, there is no doubt that these measurements en-
rich the panel of  available diagnostic options to identify 
proliferative disorders, including organ diseases that are 
associated with fibrogenesis.

CONCLUSION
Endoglin is found on many cell surfaces and plays a cru-
cial role in TGF-β signaling. It forms homodimers and 
consists of  a large extracellular domain, a hydrophobic 
transmembrane domain and a short cytoplasmic tail. This 
receptor binds to a large variety of  extra- and intracel-
lular binding partners and modulates numerous cellular 
properties, including morphology, migration, endocytic 
vesicular transport, microtubular structures and function-
ality of  focal adhesion proteins. Several hundred inde-
pendent ENG gene mutations result in HHT that is asso-
ciated with various vascular lesions, mainly on the face, 
lips, hands and gastrointestinal mucosa. Recent work has 
demonstrated that endoglin expression is also altered dur-
ing ongoing hepatic fibrogenesis. The unravelling of  the 
underlying pathways that are associated with alterations in 
endoglin expression will be of  fundamental interest, not 
only for establishment of  potential new therapeutic op-
tions for HHT treatment, but might allow re-establishing 
the activities of  Smad2/3 and Smad1/5/8 that are both 
part of  TGF-β homeostasis and pathologically altered in 
ongoing and established organ fibrosis.
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Core tip: The ceruloplasmin-ferroportin system rep-
resents the main pathway for cellular iron egress in 
vertebrates and it is responsible for physiological regu-
lation of cellular iron levels. This review focuses on the 
structural and functional features of the two proteins, 
with special emphasis on their coordinate regulation at 
the transcriptional and post-transcriptional levels.

Musci G, Polticelli F, Bonaccorsi di Patti MC. Ceruloplasmin-
ferroportin system of iron traffic in vertebrates. World J Biol 
Chem 2014; 5(2): 204-215  Available from: URL: http://www.
wjgnet.com/1949-8454/full/v5/i2/204.htm  DOI: http://dx.doi.
org/10.4331/wjbc.v5.i2.204

IntroductIon
The importance of  iron for all eukaryotes, and particular-
ly for humans, is well established. Iron is fundamental for 
the transport, storage and activation of  oxygen, for elec-
tron transport and for many other important metabolic 
processes. It is therefore not surprising that any genetic 
defect leading to iron imbalance can have severe conse-
quences on our health. The loss of  regulation of  iron 
metabolism can lead to development of  iron overload as 
seen in hereditary hemochromatosis, a common inherited 
disorder which may lead to progressive organ dysfunc-
tion. Conversely, iron deficiency is typical of  many patho-
logical states, such as the anemia of  chronic disease or 
anemia associated with inflammation. In the last fifteen 
years, several new genes and proteins involved in iron 
disorders in animal models and in humans have been 
identified, which has greatly improved our understand-
ing of  the molecular mechanisms of  iron absorption, the 
regulation of  iron transport and general iron homeostasis 
in mammals[1-3].
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Abstract
Safe trafficking of iron across the cell membrane is a 
delicate process that requires specific protein carriers. 
While many proteins involved in iron uptake by cells 
are known, only one cellular iron export protein has 
been identified in mammals: ferroportin (SLC40A1). 
Ceruloplasmin is a multicopper enzyme endowed with 
ferroxidase activity that is found as a soluble isoform in 
plasma or as a membrane-associated isoform in specific 
cell types. According to the currently accepted view, 
ferrous iron transported out of the cell by ferroportin 
would be safely oxidized by ceruloplasmin to facilitate 
loading on transferrin. Therefore, the ceruloplasmin-
ferroportin system represents the main pathway for 
cellular iron egress and it is responsible for physiologi-
cal regulation of cellular iron levels. The most recent 
findings regarding the structural and functional features 
of ceruloplasmin and ferroportin and their relationship 
will be described in this review.
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Topic Ref.

Fpn identification and structure [4,6,8,9,12,14,16]
Cp structure and function [29,34,35,39,43,45,46,49,50,52,82]
Cp/Fpn connection [40,42,52,53]
Transcriptional regulation of Cp/Fpn [56-58,61,62,64,68,71]
Post-transcriptional regulation of Fpn [21,24,73]
Aceruloplasminemia [75-78,81,85]
Fpn disease [10,88,89,91,92,94]

Cp: Ceruloplasmin; Fpn: Ferroportin.

Table 1 List of the most relevant papers

Musci G et al . Ferroportin and ceruloplasmin

Serum transferrin and the almost ubiquitously ex-
pressed transferrin receptor-1 (TfR1) represent the most 
important system for distribution and delivery of  iron 
to the different organs of  the body. Iron delivery to the 
bloodstream for transferrin-dependent transport is medi-
ated by enterocytes, which release iron absorbed from 
the diet, and mostly by macrophages, which recycle iron 
from damaged and senescent erythrocytes. These special-
ized cells export iron through the recently identified pro-
tein ferroportin (SLC40A1, initially also named Ireg-1 or 
MTP-1), the only known mammalian iron exporter[4-6]. A 
group of  enzymes that convert Fe2+ to Fe3+ collaborates 
with ferroportin, facilitating iron loading onto transfer-
rin, which binds only Fe3+. These enzymes belong to the 
family of  the blue multicopper oxidases and possess fer-
roxidase activity; members of  this family include cerulo-
plasmin, hephaestin and zyklopen in mammals.

In this review the most recent findings regarding the 
structural and functional features of  ceruloplasmin and 
ferroportin and their relationships will be described. A 
list of  the most relevant papers in the field is presented in 
Table 1.

FerroportIn, structure and 
FunctIon
Human ferroportin (Fpn) is constituted by 571 amino ac-
ids, the corresponding SLC40A1 gene is located on chro-
mosome 2 (2q32), it spans about 20 kb and has 8 exons. 
Fpn has been identified in many organisms and its amino 
acid sequences can be easily retrieved from annotated ge-
nome projects. The protein is well conserved, with over 
60% identity between distantly related proteins such as 
human and zebrafish Fpn, indicating a wide distribution 
and a critical role for Fpn. This assumption is supported 
by the finding that inactivation of  the Fpn gene in mice is 
embryonically lethal[7].

Fpn is a polytopic membrane protein with a predicted 
9-12 transmembrane topology. A model proposed by Liu 
et al[8] suggested that Fpn has 12 transmembrane domains. 
A number of  studies have indicated that the N-terminus 
of  Fpn is cytosolic[8-11]. On the other hand, the loca-
tion of  the C-terminus is unclear, with studies based on 
epitope-tagged proteins supporting the hypothesis of  a 
cytosolic localization[8,12] and other studies claiming that 

the C-terminus is extracellular. In particular, Yeh et al[13] 
suggested that the presence of  the epitope might affect 
the topology of  Fpn. It should be noted, however, that 
epitope-tagged Fpn is fully functional with respect to 
transport activity and regulation.

putative structure of human ferroportin
Most questions regarding the structure and mechanism 
of  action of  Fpn could be answered by an experimentally 
determined three-dimensional structure of  the protein. 
Unfortunately, such a structure will probably not be avail-
able in the near future due to the difficulties of  obtaining 
crystals of  membrane proteins. Therefore, functional 
studies of  Fpn mostly rely on theoretical modeling to 
provide a framework for analysis of  Fpn wild type and 
mutants.

Recently, two molecular models of  human Fpn based 
on different approaches have been reported[9,14]. Both 
models predict that Fpn belongs to the major facilita-
tor superfamily (MFS) of  membrane transporters. Wal-
lace and coworkers based their model on the topology 
proposed by Liu et al[8], and confirmed the intracellular 
localization of  both N- and C-termini. They used the 
structure of  the glycerol-3-phosphate transporter from E. 
coli as template for building a three-dimensional model of  
Fpn. Using the model, they showed that all reported loss-
of-function Fpn mutations localize at the membrane/cy-
toplasm interface, while gain-of-function mutations are 
largely associated with the inner channel running down 
the axis of  Fpn (see below for details on Fpn mutations 
and “ferroportin disease”). They concluded that the phe-
notypic variability of  “ferroportin disease” likely arises 
from the different functional consequences of  the vari-
ous mutations.

On the other hand, using sensitive profile-profile 
alignment methods, Le Gac et al[14] provided an alignment 
of  Fpn with MFS proteins. Along with the crystal struc-
ture of  the E. coli EmrD antiporter, this alignment served 
as a basis for the homology modeling of  the three-
dimensional structure of  Fpn. The authors focused their 
attention on key functional amino acids and disease-caus-
ing mutations, and showed that their model of  Fpn could 
be used to identify critical amino acids. In particular, they 
proved the involvement of  a specific tryptophan residue 
in both the iron export function and the mechanism of  
inhibition by hepcidin.

Neither model gives any clue about the localization of  
iron binding site(s) inside Fpn. We are currently building a 
different structural model of  human Fpn using two MFS 
E. coli proteins (manuscript in preparation). A preliminary 
analysis shows that the model allows to postulate the pres-
ence of  a potential iron binding site in the central cavity 
of  the protein, whose relevance can be tested through 
measurement of  the iron export ability of  wild type and 
mutated Fpn. A depiction of  our preliminary Fpn model 
and of  the iron binding site is shown in Figure 1.

oligomeric state of ferroportin
The multimeric structure of  Fpn is still the subject of  
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much debate, with reports demonstrating that the pro-
tein is dimeric[10,12,15] while other studies have suggested 
that it is a monomer[11,16-19]. Most of  the studies address-
ing the oligomeric state of  Fpn have relied on the use 
of  recombinant Fpn tagged with different epitopes. 
The techniques employed are mainly (but not only) co-
immunoprecipitation, gel-filtration chromatography and 
cross-linking. Evaluation of  the effect of  co-transfection 
of  wild type and mutant Fpn on iron export function 
and subcellular localization has also been taken into 
consideration[10,15,16,18,19]. Conflicting results on the multi-
meric structure of  Fpn obtained by the methods outlined 
above can have many explanations: the efficiency of  co-
immunoprecipitation can depend on the tags (and anti-
bodies) or the experimental conditions imposed on the 
cell lysates. For instance, different groups have reported 
that it is possible to co-immunoprecipitate Fpn-GFP and 
Fpn-flag while co-precipitation of  Fpn-flag and Fpn-myc 
was less reproducible. Also, high expression levels of  re-
combinant Fpn could be in part responsible for reported 
discrepancies. Some negative results obtained with dif-
ferent cross-linkers might be explained by the chemical 
features of  the reagent (i.e., group reactivity and spacer 
arm length), which can be suboptimal. Similarly, negative 
results obtained by fusion of  Fpn to fluorescent/lumi-
nescent protein tags to exploit FRET or BRET do not 
necessarily imply the lack of  Fpn dimers because these 
techniques are highly dependent on close spatial proximi-
ty of  the probes. The most convincing evidence that Fpn 
is dimeric comes from cross-linking of  endogenous Fpn 
in rat glioma C6 cells and bone marrow-derived macro-
phages, which resulted in doubling of  the molecular mass 
of  the protein[12]. This experimental set-up circumvents 
the possibility of  artifacts due to the presence of  the tags 
and/or overexpression of  Fpn. In any case, the strength 
of  the interaction between monomers appears to be quite 
low because differently tagged Fpn expressed separately 
and mixed after detergent-extraction from the lipid bi-
layer do not co-immunoprecipitate[10,12]. Multimerization 
of  Fpn is particularly attractive to explain the dominant 

inheritance of  “ferroportin disease” (see below).

Ferroportin and hepcidin
Fpn is the receptor for hepcidin, a peptide of  25 amino 
acids forming a bent β-hairpin stabilized by four disulfide 
bonds. Inflammatory states and/or increased iron stores 
trigger the hepatic synthesis of  the peptide[20]. Binding of  
hepcidin to Fpn leads to the internalization and degrada-
tion of  Fpn, resulting in impaired iron export[21].

Conflicting reports have been published on the mo-
lecular mechanism of  hepcidin-induced Fpn degrada-
tion. In particular, there is no agreement on the possible 
phosphorylation by JAK2 kinase of  two tyrosine residues 
on Fpn in hepcidin-triggered internalization of  the pro-
tein[22,23]. On the other hand, Fpn is certainly ubiquitinat-
ed on lysine residues before degradation[23,24]. The hepci-
din binding site has been identified on the extracellular 
loop of  Fpn containing cysteine in position 326[25]. Cells 
expressing the C326S mutant Fpn export iron normally 
but do not bind the peptide and export iron even in the 
presence of  hepcidin[26]. Modeling of  the hepcidin-Fpn 
interaction suggested that Cys326 is involved in a thiol-
dependent interaction with hepcidin, perhaps involving 
the disulfide framework of  hepcidin, while Phe324 and 
Tyr333 may form crucial contacts with two phenylalanine 
residues on the hepcidin moiety[27].

ceruloplasmIn, structure and 
FunctIon
structure of ceruloplasmin and of its copper binding 
sites
Ceruloplasmin (Cp) is an enzyme, ubiquitous among 
vertebrates, that belongs to the family of  the multicopper 
oxidases. Members of  this family posse multiple copper 
sites that can be classified, on the basis of  their spectro-
scopic properties, in type 1, type 2 and type 3 sites[28]. 
Human Cp is constituted by 1046 amino acids; the Cp 
gene maps on chromosome 3 (3q23-q24), it spans about 
65 kb and it is organized in 20 exons. Determination of  
the three-dimensional structure of  Cp[29,30] has shown 
that this enzyme is made up of  six domains arranged in a 
ternary symmetry. Domains 1 and 2, 3 and 4, and 5 and 6 
interact with each other through extensive, highly packed 
hydrophobic interfaces, while polar interactions and 
loosely packed interfaces are observed between domains 
2 and 3 and 4 and 5. Three of  the six domains (domains 
2, 4 and 6) bind a type 1 blue copper coordinated by 
nitrogen and sulphur ligands, supplied by histidine and 
cysteine residues arranged in tetrahedral geometry with 
an axial methionine ligand, which is absent in the type 1 
site of  domain 2. 

Three more copper ions are coordinated by eight 
histidine ligands at the interface between domain 1 and 
6. The latter copper ions represent the trinuclear cluster 
formed by two antiferromagnetically coupled type 3 and 
one type 2 copper ions. The oxidation of  substrates is 
coupled to the reduction of  oxygen to water in a mecha-
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Figure 1  Structural model of human ferroportin viewed along the mem-
brane plane. The gray box indicates the location of a putative iron-binding site, 
ferrous iron flows through the protein from the cell interior and is then oxidized 
by ceruloplasmin at the extracellular side. The figure was produced with Chi-
mera[96].



nism involving electron transfer from the type 1 copper 
sites, the primary sites of  substrate oxidation, to the 
trinuclear cluster, where oxygen binds and is reduced in 
a controlled way, i.e., without release of  potentially toxic 
intermediates (O2

-, H2O2). While electron entrance at type 
1 copper sites in domains 4 and 6 is established, the role 
of  the blue copper ion in domain 2 is less clear. In fact, 
there is no experimental evidence from crystallographic 
data that reducing substrates can bind in domain 2. More-
over, site-directed mutagenesis at this copper site failed 
to modify either the spectroscopic or catalytic properties 
of  the protein[31]. Thus, the blue copper ion in domain 2 
could be an “evolutionary relic” or, alternatively, it could 
serve for still unknown other functions. Figure 2 reports 
the structure of  human Cp and the localization of  its 
copper sites. 

Beside copper, other metals have been proposed to 
bind to Cp. In particular, refined crystallographic data 
showed an extra metal-binding site in domain 1, likely 
filled with a calcium ion. The finding of  a calcium bind-
ing site is consistent with a previous study from our labo-
ratory showing that human and sheep Cp bind divalent 
ions, and that this could be exploited in a one-step puri-
fication protocol based on the affinity of  the protein for 
calcium ions[32]. 

physiological role of ceruloplasmin
Cp is mainly synthesized by hepatocytes, where the P-type 
ATPase ATP7B incorporates copper into apo-Cp during 
transit through the trans-Golgi network[33], and secreted 
into the plasma where it is found at micromolar concen-
tration. The molecular mechanism of  copper loading 
of  Cp by ATP7B is still unknown. Inspection of  the 

structure of  Cp shows that large solvent exposed loops 
connect the six domains of  Cp. Despite a low degree of  
sequence homology, all these loops start with a C-X-R/K 
motif, with the cysteine residue stabilizing the loop by 
forming a disulfide bridge. Our recent work indicates 
that the basic residues of  the five loops connecting the 
six domains of  Cp, and the disulfide bridges that stabi-
lize the loops, are required for proper copper loading by 
ATP7B[34].

A GPI-anchored form of  Cp was initially identified 
on the plasma membrane of  astrocytes[35] and leptomen-
ingeal cells[36] in the CNS, in Sertoli cells[37] and in the 
retina[38]. Synthesis of  this isoform is via alternative splic-
ing of  exons 19 and 20 where the last 5 amino acids are 
replaced by 30 alternative residues leading to addition 
of  the GPI anchor[39]. More recently Cp-GPI has been 
detected also in macrophages[40], immune cells and hepa-
tocytes[41] and in many other tissues[42], indicating a wider 
than anticipated distribution of  this isoform.

Despite the knowledge of  the details of  the three-
dimensional structure, the true biological function of  Cp 
has been the subject of  much debate mainly because Cp 
is a rather promiscuous enzyme, as regards the multitude 
of  substrates it can act on and the possibility that copper 
bound to sites other than the active site can give rise to 
accessory activities. In fact, several functions have been 
attributed to Cp, ranging from copper transport to fer-
rous iron and biological amines oxidation, as well as anti-
oxidant activity via prevention of  the formation of  free 
radicals in serum[43]. Conversely, pro-oxidant activity lead-
ing to LDL oxidation has also been attributed to Cp due 
to the presence of  a seventh copper atom that is bound 
to a site unrelated to the active site[44]. However, among 
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Figure 2  Structure of human ceruloplasmin. 
Overall structure of the protein (PDB 1KCW) 
in two orientations (A: Side view and B: Bot-
tom view), the copper atoms are shown as red 
spheres, the side chains of the copper ligands 
are represented as sticks; C: Close-up view of 
the type 1 and trinuclear cluster catalytic copper 
binding sites. The figure was produced with Chi-
mera[96].



various substrates, the enzyme displays the highest affin-
ity for ferrous ions and a role for Cp in iron metabolism 
had been proposed as early as in 1966[45]. The study of  
the ferroxidase activity of  Cp evidenced two Km values 
which differ by approximately two orders of  magnitude 
(Km1 0.6 µmol/L and Km2 50 µmol/L) and binding of  
Fe2+ in the vicinity of  type 1 copper sites has been dem-
onstrated by X-ray diffraction studies, soaking crystals 
of  Cp with Fe2+[46]. Cp is thought to promote iron release 
from cells, facilitating loading of  the metal onto transfer-
rin, which only binds Fe3+. An important point regarding 
the ferroxidase activity of  Cp is that Fe2+ readily oxidizes, 
at physiological pH, even in the absence of  a protein 
catalyst. However, spontaneous oxidation of  Fe2+ is po-
tentially dangerous as it triggers the formation of  oxygen 
radicals via Fenton chemistry. Thus ferroxidation by Cp 
would prevent iron-induced oxidative stress.

An increasing body of  evidence supports earlier 
work[47,48] and points to an essential role for Cp in iron 
metabolism (and specifically in iron efflux from cells) via 
its ferroxidase activity. Stimulation of  iron release from 
macrophages by Cp in the presence of  apotransferrin 
and hypoxia has been demonstrated[49]. Targeted Cp gene 
disruption in mouse evidenced a striking impairment in 
the movement of  iron out of  reticuloendothelial cells 
and hepatocytes[50]. Moreover, increased deposition of  
iron in several regions of  the CNS was noted in Cp-/- 
mice[51], and Cp-GPI was found to be required for iron 
efflux from astrocytes[52]. In addition, individuals carrying 
a defective gene coding for Cp, thus suffering from ac-
eruloplasminemia, show normal copper homeostasis but 
present a severely impaired iron metabolism.

ceruloplasmIn-FerroportIn 
Ceruloplasmin is essential for ferroportin stability
The essential role of  the ferroxidase activity of  Cp in iron 
release from cells was attributed to facilitation of  load-
ing of  the metal onto transferrin, which only binds Fe3+. 
However, a new molecular connection between Cp and 
Fpn has been established by the finding that ferroxidase 
activity is required to stabilize Fpn at the cell surface in 
cells expressing Cp-GPI[40]. Thus, Cp can be considered as 
a second determinant of  Fpn stability after hepcidin (Fig-
ure 3). As described in detail below, ferroxidase active Cp 
stabilizes Fpn at the plasma membrane supporting iron 
export (Figure 3A); on the other hand, absence of  Cp or 
presence of  an inactive Cp lead to degradation of  Fpn in 
specific cell types (Figures 3B, C); hepcidin induces inter-
nalization and degradation of  Fpn also if  Cp is present 
(Figure 3D), unless hepcidin levels are very low. It is worth 
noting that removal of  Fpn from the plasma membrane 
appears to be the only means to ‘turn off ’ iron export 
from the cell because no inhibitor of  Fpn is known.

The starting point was the observation that loss of  
Cp-GPI either by gene silencing or by incubation of  rat 
C6 glioma cells and bone marrow macrophages with the 
copper chelator BCS led to disappearance of  Fpn from 

the cell surface. Fpn was rapidly internalized and degraded 
in the absence of  Cp-GPI. Addition of  exogenous Cp 
or of  the yeast ferroxidase Fet3p or of  an iron chelator 
such as BPS or DFO, restored Fpn at the cell surface in 
cells silenced for Cp-GPI. The activity of  the ferroxidase 
or the presence of  the iron chelator were essential to 
lower the concentration of  extracellular Fe2+ establish-
ing an iron gradient and promoting removal of  the metal 
from Fpn. In the absence of  Cp-GPI, radioactive 59Fe 
remained associated with Fpn and the protein was found 
to be ubiquitinated on Lys253. It can be hypothesized that 
a conformational state of  Fpn with bound iron is recog-
nized by a specific ubiquitin ligase, triggering degradation 
of  the transporter. The requirement for a ferroxidase to 
maintain iron transport appears specific to cells that ex-
press Cp-GPI, because transfected Fpn is stable in many 
cell lines that do not express this isoform of  Cp. In this 
respect, this new function of  Cp is particularly relevant 
for brain iron metabolism because any factor affecting the 
ferroxidase activity of  Cp-GPI cannot be compensated 
by circulating plasma Cp, which is unable to cross the 
blood-brain barrier. Iron uptake by endothelial cells of  the 
blood-brain barrier takes place through the Tf-TfR1 sys-
tem, how the metal is then moved out of  these cells and 
taken up by CNS cells is still unclear. Recent data indicate 
that iron efflux from brain microvasculature endothelial 
cells is mediated by Fpn and requires the action of  a fer-
roxidase, which can be either endogenous hephaestin or 
extracellular Cp[53]. These findings highlight once again 
the importance of  ferroxidases for correct cellular iron 
management. Astrocytes are in close contact with the ab-
luminal surface of  capillary endothelial cells and therefore 
are ideally positioned to control the transport of  metabo-
lites between the blood and the neuropil. Since astrocytes 
are able to take up and release iron, they have been pro-
posed to be largely responsible for distributing iron in the 
brain[54]. Therefore, Fpn and Cp-GPI would represent the 
central system for release of  iron from astrocytes to meet 
the requirements of  neurons and other brain cells.

A physical interaction between Cp and Fpn has 
not been evidenced despite many efforts; however, it 
has been reported that Cp is able to partially prevent 
hepcidin-induced internalization of  Fpn when cells are 
treated with 0.15 µmol/L hepcidin[42]. This finding could 
be taken as an indication that Cp can compete with hep-
cidin for binding to Fpn, suggesting that probably such 
interaction exists but it is transient and/or too weak to 
be detected. A direct consequence of  this hypothesis is 
that the Cp-binding site on Fpn would partially overlap 
with the hepcidin-binding site. An alternative explana-
tion would be that Cp interacts with hepcidin, making the 
peptide unavailable for binding to Fpn.

Transcriptional regulation of the ceruloplasmin-ferropor-
tin system
The Cp-Fpn functional connection is strengthened also 
by the finding that expression of  the two proteins can be 
coordinately regulated in specific cell types.
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Cp was recognized to be an acute phase protein many 
years ago, and it is known to be induced in response to 
pro-inflammatory stimuli, such as IL-1β[55-57], INF-γ[58] 
and IL-6[59]. Recent data demonstrate that IL-6 mediates 
induction of  Cp via the transcription factor FOXO1[60]. 
Metal-dependent regulation of  Cp has not been conclu-
sively assessed, although indirect effects of  iron deficien-
cy mediated by hypoxia-inducible factor-1 (HIF-1) have 
been reported[61].

Expression of  Fpn is regulated by different stimuli: 
iron and transition metals, heme, hypoxia and inflam-
mation among others. Many studies have highlighted a 
tissue-specific regulation of  expression of  Fpn and point 
to Fpn regulation by systemic rather than local signals of  
iron status. Actually, two layers of  regulation are active to 
control Fpn: one at the level of  mRNA (transcriptional 
and post-transcriptional) and one at the level of  the 
protein (hepcidin-dependent and hepcidin-independent 
internalization and degradation). Moreover, any factor af-
fecting hepcidin synthesis in turn will affect Fpn protein 
levels.

The Fpn promoter contains different response ele-
ments sensitive to hypoxia, heme/oxidative stress and 
metals. The presence of  HIF-Responsive-Elements was 
evidenced using Fpn reporter constructs and HIF2α was 
demonstrated to be a direct activator of  Fpn transcrip-
tion[62]. It is worth noting that HIF2α expression has 
recently been shown to depend on IRP1[63], strengthening 
the link between iron and hypoxia. Metal-Responsive-
Element induction of  Fpn mediated by the transcription 

factor MTF-1 in response to zinc was recently demon-
strated[64]. Antioxidant-Responsive-Elements enable up-
regulation of  Fpn transcription in response to heme via 
activation of  the redox-sensitive transcription factor Nrf2 
in mouse and human macrophages[65,66]. Other studies in-
dicated that heme-induced Fpn transcription required the 
release of  iron from heme[67]. Ultimately, these results link 
transcriptional control of  Fpn synthesis directly and indi-
rectly to iron levels: i.e., iron is crucial for HIF2α stability 
and IRP1-mediated expression, iron mediates oxidative 
stress and activation of  Nrf2.

Fpn is down-regulated by pro-inflammatory cy-
tokines in reticuloendothelial cells, as demonstrated by 
the finding that treatment with IFN-γ and LPS reduced 
Fpn mRNA and iron release from monocytes[68,69]. Fpn 
mRNA and protein levels were also found to decrease 
significantly in astrocytes treated with LPS but not with 
IL-6 or TNF-α[70]. Interestingly, we have found that in rat 
C6 glioma cells Cp and Fpn are up-regulated by IL-1β, 
suggesting that the response of  Fpn to cytokines might 
be tissue-specific[57]. The expression of  Cp and Fpn in 
response to IL-1β requires the activation of  MAP kinase 
pathways as a consequence of  IL-1β receptor stimulation. 
Moreover, we have observed that IL-1β regulates the ex-
pression of  Cp and Fpn genes through (1) p38 MAPK-
mediated activation of  C/EBP transcription factor; (2) 
ERK1/2-, JNK1- and partially p38 MAPK-dependent 
activation of  AP-1; and (3) activation of  NF-κB partially 
mediated by p38 MAPK[71]. A similar pathway was found 
to activate Fpn expression in response to the isoflavone 
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genistein[72]. In this case, p38 MAPK activation was found 
to be triggered by activation of  the estrogen receptor β.

post-transcriptional regulation of ferroportin
At the post-transcriptional level, Fpn expression is regu-
lated by iron-responsive sequences both at the 5’ UTR 
and at the 3’ UTR. Repression of  Fpn mRNA translation 
in conditions of  iron deficiency was shown to be medi-
ated by the well-characterized IRE/IRP system, due to 
the presence of  an IRE sequence at the 5’ UTR. Also the 
3’ UTR of  Fpn plays a role in post-transcriptional regula-
tion of  expression through a recently discovered miR-
NA-dependent mechanism. microRNAs are small non-
coding RNAs that bind the 3’ UTR of  target mRNAs 
driving translational repression or mRNA degradation. In 
particular, it has been demonstrated that miR-485-3p is 
induced during iron deficiency and it targets the 3’ UTR 
of  Fpn to reduce iron export in several cell lines and pri-
mary macrophages[73]. In duodenal and erythroid precur-
sor cells alternative splicing produces an isoform of  Fpn 
lacking the 5’ IRE indicating that these cells can evade 
IRE/IRP-dependent translational repression[74] becoming 
sensitive to systemic rather than local (intracellular) cues. 
It would be interesting to evaluate whether miR-485-3p 
is expressed in these cell types and this isoform of  Fpn is 
subject to miRNA-mediated control.

ceruloplasmIn-FerroportIn 
sYstem and patHoloGY
The importance of  the ceruloplasmin-ferroportin system 
is highlighted by the fact that mutations in the Cp and 
Fpn genes lead to severe consequences. Impairment of  
the Cp-Fpn system is common to aceruloplasminemia 
and “ferroportin disease”, two genetic diseases that share 
a common phenotype of  iron overload.

Aceruloplasminemia
Aceruloplasminemia is a rare autosomal disease caused 
by mutations in the Cp gene[75,76]. Approximately forty 
mutations of  the Cp gene have been so far described, in-
cluding frameshift, nonsense and missense mutations[77,78]. 
Heterozygous individuals have partial Cp deficiency with 
normal iron metabolism and no clinical symptoms, with 
some exceptions. Homozygotes present iron overload 
mainly in the brain, but also in liver, pancreas and retina. 
Patients develop retinal degeneration, diabetes mellitus 
and neurological symptoms, which include ataxia, in-
voluntary movements and dementia. Onset of  clinical 
manifestations usually occurs in adulthood. Laboratory 
findings include absence of  serum Cp ferroxidase activity 
(although low levels of  Cp protein were reported in some 
cases), low transferrin saturation, high serum ferritin and 
moderate anemia; magnetic resonance imaging of  the 
brain shows iron deposits in the basal ganglia, striatum, 
thalamus and dentate nucleus. These features place ac-
eruloplasminemia in the group of  disorders known as 
NBIA (neurodegeneration with brain iron accumulation), 

clearly distinguishing it from hereditary hemochromatosis 
(serum iron is high and the brain is usually not affected) 
and from disorders of  copper metabolism, Menkes and 
Wilson disease, that are also characterized by low/absent 
serum Cp ferroxidase activity because of  impaired func-
tioning of  copper ATPases ATP7A and ATP7B, respec-
tively[33].

Iron-mediated oxidative stress has been shown to 
contribute to tissue injury and neuronal cell death in 
aceruloplasminemia. In particular, it has been suggested 
that astrocytes, which are the most affected cell type, ac-
cumulate iron and die from iron toxicity, while neuronal 
loss would be secondary to loss of  metabolic support 
provided by astrocytes[79,80].

The ferroxidase activity of  Cp-GPI plays a critical 
role in the targeting of  Fpn to the plasma membrane in 
astrocytes and bone marrow-derived macrophages[40]. 
Thus, brain iron overload and low serum iron levels ob-
served in aceruloplasminemia patients can be explained 
by impaired iron export from these cell types due to lack 
of  active Cp. On the other hand, the origin of  iron over-
load in liver and pancreas, which is observed in acerulo-
plasminemia patients has still to be clarified.

Actually, the situation is even more complicated. In 
fact, while it is obvious that frameshift and nonsense 
mutations produce a truncated non-functional Cp, in vitro 
characterization of  missense mutants yielded some unex-
pected findings. The first mutants to be studied invariably 
lacked ferroxidase activity either due to retention in the 
endoplasmic reticulum (P177R) or to production as apo-
Cp lacking copper (D58H, G631R Q692K and G969S), 
due to structural or folding defects[81-84]. Indeed, residue 
Pro177 is found in a hydrophobic pocket, while residues 
Gly631, Gln692 and Gly969 are close to type 1 copper 
sites, suggesting that substitutions in these positions can 
affect folding and copper binding. Residue Asp58 is lo-
cated on the protein surface and it has been suggested 
that substitution with histidine could cause aberrant in-
corporation of  copper. However, another set of  mutants 
(I9F, Q146E, F198S, W264S, A331D, G606E, G876A) 
that we characterized based on their ability to stabilize 
Fpn on the plasma membrane of  rat C6 glioma cells si-
lenced for endogenous Cp-GPI, revealed that they were 
partly or fully functional[85]. Also other studies showed 
that some mutants (Y356H, G876A) appeared to partly 
retain ferroxidase activity, but were less efficient than 
wild type Cp in protecting Fpn from hepcidin[42]. In these 
cases, inspection of  the structure of  Cp suggests that the 
position of  the mutations is such that the protein can re-
tain ferroxidase activity.

A quite different scenario was apparent for mutant 
R701W, which has been found in a very young heterozy-
gous patient with severe extrapyramidal movement coor-
dination deficit[86]. Both isoforms of  Cp R701W (secreted 
and GPI-anchored) were inactive due to lack of  copper, 
and dominant over wild type Cp in glioma cells. More-
over, they induced dispersal of  the Golgi apparatus and 
“functional silencing” of  ATP7B[85]. Of  note, Cp R701W 
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could load copper in appropriate conditions, in particu-
lar when Ccc2p, the yeast homologue of  ATP7B, was 
co-expressed. The resulting holo-Cp R701W was fully 
functional with respect to stabilization of  Fpn[85]. It was 
reported that Cp R701W expressed in HeLa cells retained 
some oxidase activity but it was unable to stabilize Fpn at 
the cell surface[42], raising the possibility that a threshold 
level of  activity might be required to observe this stabiliz-
ing effect. Further investigations have demonstrated that 
Cp R701W caused massive production of  reactive oxy-
gen (ROS) species in the cell. Scavenging ROS produc-
tion with different antioxidants, such as N-acetyl-cysteine, 
glutathione and zinc, restored Golgi morphology and 
rescued Fpn on the cell membrane[87]. Whether ROS are 
produced directly by Cp R701W or by other cellular sys-
tems such as NOX, remains to be established. Residue 
Arg701 is found in the surface-exposed loop connecting 
domains 4 and 5 of  Cp and it is difficult to understand 
why replacement with tryptophan should cause such a 
dramatic phenotype.

Ferroportin disease
Hemochromatosis is the most common genetic iron 
overload disease, it is inherited recessively and it is caused 
by defects of  genes (HFE, TfR2, HJV, HAMP) that 
ultimately lead to inefficient synthesis of  hepcidin. Fpn 
missense mutations are responsible for a different form 
of  hemochromatosis which exhibits autosomal dominant 
inheritance with rather heterogeneous phenotypes, the 
so-called “ferroportin disease”[88]. Decreased function of  
Fpn appears to be limiting for macrophage iron export 
but not for intestinal iron export, due to the very dif-
ferent amounts of  the metal mobilized by enterocytes 
(1-2 mg/d) compared to reticuloendothelial cells (20-30 
mg/d). Fpn missense mutants can give rise to two dif-
ferent phenotypes: iron overload in macrophages and 
low serum transferrin saturation due to mutants that are 
transport incompetent or are not correctly targeted to the 
plasma membrane (loss-of-function mutants); hepatocyte 
iron overload and high serum transferrin saturation due 
to mutants that are unable to respond to hepcidin (gain-
of-function mutants)[89,90]. Most of  the mutations identi-
fied so far appear to lead to loss-of-function of  Fpn, af-
fecting plasma membrane localization of  the protein and 
(less commonly) iron export function.

Many studies on the molecular features of  the Fpn 
mutants have attempted to correlate mutation with 
phenotype. However, such analyses are complicated by 
difficulties in establishing a satisfactory experimental 
model. In most cases, recombinant Fpn mutants have 
been overexpressed in HEK293T or polarized MDCK 
cells. Subcellular localization is determined by employing 
Fpn-GFP fusions, Fpn function is investigated by ana-
lyzing hepcidin-induced internalization and by assessing 
intracellular iron levels. Conflicting results have been re-
ported for some Fpn mutants, possibly due to the differ-
ent experimental systems and conditions employed. For 
example, expression of  Fpn in polarized MDCK cells 

resulted primarily in plasma membrane localization for 
all 16 mutants examined[11], compared to nonpolarized 
HeLa or HEK293T cells where some intracellular stain-
ing was apparent but could be eliminated by treatment 
with cycloheximide. Discrepancies in hepcidin resistance 
can probably be attributed to differences in hepcidin 
concentration and time of  incubation, such that partial 
resistance at low (0.4-0.7 µmol/L) hepcidin concentra-
tion[9,10,91,92] can become sensitivity at high (2 µmol/L) 
hepcidin concentration[11]. Also, if  a mutant is found to 
be predominantly intracellular, impaired iron export or 
hepcidin-resistance would simply reflect unavailability of  
Fpn at the plasma membrane and not a true property of  
the mutant protein.

Resistance to hepcidin can derive from different 
mechanisms: mutation of  residues belonging to the 
hepcidin-binding site (C326Y/S and S338R) or impair-
ment of  the mechanism of  internalization of  Fpn (Y64N, 
N144H/D/T)[26]. Mutation of  other residues (G204S, 
Y501C, H507R) has been reported to result in hepcidin 
resistance[93-95], suggesting that the hepcidin-binding site is 
probably formed by residues belonging to more that one 
extracellular loop of  Fpn.

Other mutations impact the iron transport function 
of  Fpn for as yet unidentified reasons (I152F). In sum-
mary, it is evident that the difficulties of  working in vitro 
with Fpn make it tricky to unequivocally link patient 
phenotype to molecular defects of  Fpn. This is further 
complicated by phenotypic heterogeneity among patients 
carrying the same Fpn mutation[93], suggesting that modi-
fier genes might influence the penetrance of  the disease.

conclusIon
Less than fifteen years have passed from the initial dis-
covery of  Fpn and a huge amount of  information has 
been gained on this elusive protein. However, many 
questions still require an answer regarding our under-
standing of  the structure and function of  Fpn and the 
full implications of  the connection between Fpn and Cp. 
Fpn is predicted to belong to the MFS transporters that 
function with an alternate “inward open-outward open” 
mechanism, involving extensive conformational changes 
to translocate their substrate across the membrane. The 
molecular details of  how Fpn works are still a mystery, it 
is also unknown if  transport of  iron is coupled to other 
ions (either as symport or antiport). Why does Cp stabili-
ze Fpn only in specific cell types is not clear.

Future studies should be aimed at addressing these 
and many other questions, in order to gain a better un-
derstanding of  how Fpn and Cp collaborate for correct 
iron handling by cells.
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models, it has been shown that FBW7 regulates the ex-
pression of KLF5 target genes through the modulation of 
KLF5 stability. In this review, we summarize the current 
progress on delineating FBW7-mediated KLF5 ubiquitina-
tion and degradation.

© 2014 Baishideng Publishing Inc. All rights reserved.

Key words: Krüppel-like factor 5; FBW7; Ubiquitin pro-
teasome system; Degradation; Krüppel-like factor family

Core tip: The protein levels of Krüppel-like factor (KLF)5 
are tightly controlled in cell. Ubiquitination and destruc-
tion of KLF5 via  FBW7, a famous tumor suppressor, has 
proved to have important roles in multiple cellular pro-
gresses by different studies. Here, we summarize these 
studies and show the physiological and pathological 
significance of FBW7-mediated degradation of KLF5.

Luan Y, Wang P. FBW7-mediated ubiquitination and degrada-
tion of KLF5. World J Biol Chem 2014; 5(2): 216-223  Available 
from: URL: http://www.wjgnet.com/1949-8454/full/v5/i2/216.
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INTRODUCTION
Krüppel-like factor (KLF) family proteins are important 
transcription factors that regulate numerous cellular pro-
cesses[1]. KLF5 is a member of  the KLF family that has 
been well-studied and shown to play a key role in mediat-
ing multiple cellular activities, such as proliferation and 
differentiation, in both normal and tumor cells[2]. Post-
translational modifications of  KLF5, including ubiqui-
tination, SUMOylation, acetylation, and phosphorylation, 
can impact both the stability and activity of  KLF5, thus 
affecting its downstream cellular functions[3-8].

FBW7 is the mammalian homolog of  CDC4 in Sac-
charomyces cerevisiae and SEL10 in C. elegans. It is a compo-
nent of  the SCF (SKP1-CUL1-F-box protein) ubiquitin 
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Abstract
Krüppel-like factor (KLF) family proteins are transcription 
factors that regulate numerous cellular functions, such as 
cell proliferation, differentiation, and cell death. Posttrans-
lational modification of KLF proteins is important for their 
transcriptional activities and biological functions. One KLF 
family member with important roles in cell proliferation 
and tumorigenesis is KLF5. The function of KLF5 is tightly 
controlled by post-translational modifications, including 
SUMOylation, phosphorylation, and ubiquitination. Recent 
studies from our lab and others’ have demonstrated that 
the tumor suppressor FBW7 is an essential E3 ubiquitin 
ligase that targets KLF5 for ubiquitination and degrada-
tion. KLF5 contains functional Cdc4 phospho-degrons 
(CPDs), which are required for its interaction with FBW7. 
Mutation of CPDs in KLF5 blocks the ubiquitination and 
degradation of KLF5 by FBW7. The protein kinase Glyco-
gen synthase kinase 3β is involved in the phosphoryla-
tion of KLF5 CPDs. In both cancer cell lines and mouse 
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ligase complex. FBW7 is thought to have an important 
role in tumor biology by serving as a critical regulator of  
several oncoproteins, and mutations of  FBW7 are found 
in a rapidly expanding number of  human neoplasms[9].

In this review, we summarize the progress of  research 
on FBW7-mediated KLF5 degradation and ubiquitina-
tion and show the physiological and pathological signifi-
cance of  KLF5 regulation by FBW7. 

KRÜPPEL-LIKE FACTOR FAMILY AND 
KLF5
KLFs are a family of  transcription factors with homolo-
gies to the Krüppel protein and the transcription factor 
Sp1 in Drosophila melanogaster and mammals, respec-
tively[1]. To date, 17 mammalian KLFs have been identi-
fied, all of  which contain three zinc finger motifs at the 
carboxyl-terminals, which are responsible for binding 
to GC-rich DNA sequences[10,11]. The KLFs have been 
demonstrated to play essential roles in development, im-
munity and cancer[1,10-15].

KLF5, also known as BTEB2 and IKLF, is an impor-
tant KLF factor. KLF5 is widely expressed in various tis-
sues, including lung, colon, intestine, and pancreas[2,16-19]. 
KLF5 is located at chromosomal position 13q22.1 in 
the human genome. It is involved in the regulation of  
diverse cellular functions, including cell cycle, prolifera-
tion, apoptosis, differentiation and stem cell self-renewal, 
by regulating the expression of  numerous genes (Figure 
1)[2,20-23]. Previous studies have shown that KLF5 plays a 
pivotal role in regulating cardiovascular remodeling[24-26]. 
Heterozygous KLF5-knockout mice showed reduced re-
sponses to cardiac injury, angiogenesis, hypertrophy and 
fibrosis[24,25]. In addition, KLF5 activity is regulated by 

other transcriptional regulators and nuclear receptors that 
are also involved in cardiovascular remodeling and injury 
response[24,25]. In tumor biology, KLF5 also has context-
dependent proliferative or anti-proliferative activities in 
cancer cells and may function as either a tumor suppres-
sor or an oncoprotein[27-29]. 

The functions of  KLF5 are tightly controlled by post-
translational modifications, including ubiquitination, 
SUMOylation, acetylation and phosphorylation[3-8,21,30,31]. 
For example, the SUMOylation of  Lys151 and Lys202 
regulates KLF5 nuclear localization[3]. Phosphorylation 
of  KLF5 by PKC may enhance the transcriptional activi-
ties of  KLF5 by promoting its interaction with CREB-
binding protein[21]. In addition, KLF5 activity is also 
regulated by its acetylation status[4]. Moreover, KLF5 is a 
short-lived protein in cells and its protein level is tightly 
controlled by the ubiquitin-proteasome system[5-8,31,32]. 
Several E3 ubiquitin ligases, such as Smurf2, WWP1 and 
EFP, have been shown to degrade KLF5[7,31,32]. In 2010, 
Dr. Chen C’s group and our laboratory both reported 
that KLF5 is targeted for ubiquitination and degradation 
by the E3 ubiquitin ligase FBW7[6,8]. In the past three 
years, several studies from different groups have also pro-
vided evidence strongly supporting KLF5 as an essential 
FBW7 substrate under both physiological and pathologi-
cal conditions[6-8,31-34]. 

UBIQUITIN-PROTEASOME SYSTEM AND 
FBW7
Cellular protein levels are tightly controlled by protein 
degradation. The ubiquitin-proteasome system (UPS) is 
the major pathway for the degradation of  approximately 
90% of  all proteins in cells[35-37]. The UPS acts by pro-
moting protein ubiquitination and delivering the ubiq-
uitinated proteins to the 26S proteasome for degrada-
tion[36]. The UPS is an enzymatic cascade containing three 
enzymes: enzyme-1 (E1), the ubiquitin-activating enzyme; 
E2, the ubiquitin carrier protein (ubiquitin-conjugating 
enzyme); and E3, the ubiquitin-protein ligase. E3 deter-
mines the specificity of  protein degradation[35]. To date, 
more than 600 E3s have been identified in mammals and 
categorized into either the RING or HECT family of  E3 
ubiquitin ligases[38-40].

FBW7 (F-box and WD repeat domain-containing 
7, also named CDC4, SEL10, or AGO) is the substrate 
recognition subunit of  the E3 ubiquitin ligase complex 
SCFFBW7 (Skp1-Cullin-FBW7), which can target various 
proteins that are involved in cell proliferation for degra-
dation[9]. Many substrates of  FBW7 have been identified, 
including c-Myc, Cyclin E, Notch, TGIF, c-Jun, Mcl-1, 
p100 and so on (Table 1)[41-56]. There are three known iso-
forms of  FBW7 with different subcellular localizations, 
including FBW7α, FBW7β and FBW7γ[9,57]. FBW7α is 
mainly localized to the nucleoplasm. FBW7β contains a 
transmembrane domain and is localized to the cytosol. 
FBW7γ is localized to the nucleolus via a nucleolar local-
ization signal at its N terminus[9]. Each FBW7 isoform 
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Figure 1  Regulation of gene expression by Krüppel-like factor 5. VEGF: 
Vascular endothelial growth factor; MCP-1: Monocyte chemoattractant pro-
tein-1; NK-kB: natural killer kB; MMP-9: Matrix metalloproteinase-9; PAI-1: 
Plasminogen activator inhibitor-1; iNOS: Inducible nitric oxide synthase.



contains a F-box domain and WD40 repeats. The F-box 
domain contains approximately 40 amino acids that are 
involved in recruiting the SCF complex through direct in-
teraction with SKP1. WD40 repeats are thought to form 
multiple contacts with various substrates[57-62].

FBW7 recognizes its substrates through a conserved 
phospho-epitope known as the Cdc4 phospho-degron 
(CPD), in which a central phospho-threonine/serine is em-
bedded within hydrophobic residues in a I/L-I/L/P-pT-P-
<K/R>4 (where K and R are unfavorable residues at posi-
tions 2 to 5) motif[9]. Most of  the FBW7 substrates contain 
at least one conserved CPD, and the phosphorylation of  
the central Ser/Thr is usually mediated by the protein ki-
nase Glycogen synthase kinase 3 (GSK-3)β[61,63,64].

Numerous studies have demonstrated that FBW7 
functions as a tumor suppressor in various cancers. Mu-
tant FBW7 is frequently found in human tumors. For ex-
ample, amino acid substitutions such as Q264R, H460R, 
and R465C have been found in breast cancer, cholangio-
carcinoma and colon cancer, respectively[52,65-67]. 

FBW7 INTERACTS WITH KLF5 IN VIVO 
AND IN VITRO
KLF5 contains several potential CPDs[6]. Data from Dr. 
Chen’s group and our laboratory have indicated that all 
three isoforms of  FBW7 can bind to KLF5 in vivo[6,8]. 
Mass spectrometry data have also shown that endog-
enous KLF5 can be co-purified with FBW7 in different 
cell types[46]. The interaction of  KLF5 with FBW7 is 
dependent on the KLF5 CPD(s). Mutations within the 
KLF5 CPDs were shown to abolish the interaction. In 
addition, FBW7 binds to KLF5 via the WD40 repeats on 

FBW7. This interaction is also dependent on the phos-
phorylation of  KLF5 CPDs by GSK3β, and inhibition 
of  GSK3β activity can reduce FBW7 binding to KLF5. 
GSK3β activity is regulated by various extracellular stim-
uli such as Wnt and growth factors[68,69], but it is still un-
clear whether the interaction between KLF5 and FBW7 
is also regulated by extracellular signals.

FBW7 TARGETS KLF5 FOR 
UBIQUITINATION AND DEGRADATION
As a component of  the SCF E3 ubiquitin ligase com-
plex, co-expression of  FBW7α or FBW7γ was shown 
to markedly promote the degradation of  co-expressed 
KLF5, which could be blocked by the proteasome inhibi-
tor MG132. In contrast, other F-box-containing proteins 
such as β-TrCP1, FBXW2, FBXW5 and FBXW8 had lit-
tle effect on KLF5 stability. FBW7 with its F-box domain 
deleted or the WD40 domain of  FBW7 alone failed to 
mediate KLF5 degradation, suggesting that FBW7-medi-
ated KLF5 degradation requires the recruitment of  other 
components of  SCF E3 ligase. R338 residue in FBW7 is 
considered as a key residue in regulating the interaction 
of  FBW7 with its substrates. Mutation of  R338 to lysine 
blocks FBW7 mediated KLF5 degradation (Figure 2). 
Depletion of  endogenous FBW7 significantly increased 
the amount of  endogenous KLF5 protein without affect-
ing the KLF5 mRNA level. KLF5 protein level was also 
upregulated in FBW7-deficient DLD1 cells and the half-
life of  endogenous KLF5 was dramatically extended in 
these cells compared with the WT DLD1 cells.

Moreover, FBW7 also promotes KLF5 ubiquitination 
in vitro and in vivo. The ubiquitination of  KLF5 by FBW7 
is dependent on the phosphorylation of  KLF5 CPDs. 
Mutation of  KLF5 CPDs dramatically blocked FBW7-
induced KLF5 ubiquitination.

In addition to FBW7, WWP1, EFP and Smurf2 were 
also identified as E3 ligases that can target KLF5 for 
degradation[7,31,32]. Both WWP1 and Smurf2 belong to 
the HECT E3 ubiquitin ligase family[70,71]. Unlike FBW7, 
WWP1 and Smurf2 degrade KLF5 in a phosphorylation-
independent manner. Interestingly, FBW7 and WWP1 ap-
pear to degrade KLF5 in a compensatory manner because 
knockdown of  WWP1 was shown to cause an increase in 
FBW7 expression, and vice versa[8]. Degradation of  KLF5 
by multiple E3 ubiquitin ligases signifies the importance 
of  the regulation of  KLF5 protein stability under various 
physiological and pathological conditions[5-8,31-34].

KLF5 CONTAINS CPDS THAT ARE 
REQUIRED FOR ITS DEGRADATION 
THROUGH FBW7
FBW7 targets a substrate for degradation through the 
CPD consensus sites on the substrate[63]. KLF5 contains 
three potential CPDs: 242-LNTPDLDM, 301-PPSPPSSE 
and 322-NLTPPPSY (Table 1). Mutations of  individual 
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Table 1  Sequences of Cdc4 phospho-degrons in FBW7 substrates

Substrate Cdc4 phospho-degron Phospho-site

CyclinE LLTPPQSG T380  S384
Myc LPTPPLSP T58   S62
JUN GETPPLSP T239  S243
NOTCH1 FLTPSPE T2512
TGIF FNTPPPTP T235  T239
SRC3 VHSPMASS S505  S509
mTOR LLTPSIHL T631
MCL1 DGSLPSTP S159 T163 S121
KLF5 LNTPDLDM/PPSPPSSE/

NLTPPPSY
T244 S303 T324

KLF2 PDTPPLSPD/LLTPPSSP T171 S175 T243 S247
SREBP TLTPPPSDAGSP T426 S430 S434
SV40 large T antigen PPTPPPEP T701
MED13/MED13L SSVTLTPPTS T326
NF-kB2 LPSPPTSDSDSD S707 S711
C/EBP HPTPPPTP T222 T226
C/EBP QPTPPQSP T157 S161
HIF1a DQTPSPSDGSTRQSS T497 S451
AuroraA LSYCHSK/NSSKPSN S245 S387
C-Myb LMTPVSED T572 S556 S528
NRF1 LFSPEVE S350
PGC1 PLTPESPN/GLTPPTTP T263 T295

NK-kB: natural killer kB; KLF: Krüppel-like factor.



CPDs in mouse KLF5 were shown to have a minor effect 
on FBW7-mediated degradation. However, simultaneous 
mutations of  two CPDs markedly blocked KLF5 interac-
tion with FBW7 and KLF5 degradation. Mutations of  all 
three CPDs completely abolished FBW7-induced KLF5 
ubiquitination and degradation. Although KLF5 contains 
three CPDs, both Dr. Chen’s group and ours have found 
that phosphorylation of  Ser303 in 301-PPSPPSSE is 
especially essential for FBW7-mediated degradation. In 
addition, Dr. Vincent W Yang’s group also found that 
P301 in KLF5 CPD is important for interaction between 
FBW7 and KLF5 and FBW7-mediated degradation of  
KLF5. P301S KLF5, a somatic mutation in KLF5 found 
in human colorectal cancer tissues, has a higher transcrip-
tional activity than WT KLF5 and is resistant to FBW7α-
mediated degradation, suggesting that P301S KLF5 mu-
tant play an oncogenic role in colorectal cancer[72].

GSK3α IS A KEY PROTEIN KINASE 
FOR KLF5 PHOSPHORYLATION AND 
DEGRADATION 
GSK-3 is a serine/threonine protein kinase[73] that phos-
phorylates the central serine/threonine residues in the 
CPDs of  numerous FBW7 substrates[9], including KLF5. 
Co-expression of  KLF5 with GSK3β was shown to 
promote KLF5 phosphorylation and KLF5 interaction 
with FBW7. Data from in vitro phosphorylation assays 
indicated that phosphorylation of  wild-type KLF5 by 
GSK3β was much greater than that of  a CPD-deficient 
KLF peptide, indicating that the KLF5 CPDs are phos-
phorylation targets of  GSK3β. Inhibition of  GSK3β by 

LiCl was shown to block FBW7-mediated KLF5 degra-
dation. Conversely, KLF5 degradation was enhanced in 
the presence of  the constitutively active GSK3β-S9A. Dr. 
Chen’s group reported similar results, and together these 
data indicate that GSK3β is required for FBW7-mediated 
degradation of  KLF5.

Protein phosphorylation by GSK3β requires the 
phosphorylation of  the priming phosphate group on 
a Ser/Thr residue that is located at the +4 position of  
a target residue[63]. For example, phosphorylation of  
c-Myc at T58 by GSK3β requires prior mitogen-activated 
protein kinase-dependent phosphorylation at serine 
S62[74-77]. Two of  the KLF5 CPDs, 301-PPSPPSSE and 
322-NLTPPPSY, contain a Ser at the +4 position. The 
protein kinase(s) that is involved in the phosphorylation 
of  priming sites on KLF5 CPDs is still unknown.

REGULATION OF CANCER CELL 
PROLIFERATION BY FBW7-MEDIATED 
KLF5 DEGRADATION
We have previously shown that FBW7 negatively regu-
lates the biological activity of  KLF5[6]. An earlier study 
has also shown that KLF5 promotes the growth and 
proliferation of  colorectal cancer cells[78]. Co-expression 
of  FBW7 with KLF5 significantly inhibited the wild-
type KLF5-mediated cell proliferation but had little effect 
on the proliferation of  cells containing a CPD-mutant 
KLF5[6]. FBW7 can also inhibit the expression of  KLF5 
target genes, such as survivin, which regulates mitosis and 
caspase activity[79]. A high level of  KLF5 has also been 
correlated with low survival in breast cancer patients[28]. 
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Figure 2  A model for FBW7 mediated Krüppel-like 
factor 5 degradation. SCFFBW7 recognizes KLF5 via 
conserved Cdc4 phospho-degron (CPD) in KLF5, GSK3 
phosphorylates the threonine of the CPD, which facilitates 
the degradation of KLF5. FBW7 plays an important role in 
tumor suppression via targeting numerous oncoproteins for 
degradation, such as Myc, cyclin E, mammalian target of 
rapamycin (Mtor), Mcl-1, and so on. KLF5 has an important 
role in regulating cellular functions, including promoting 
cell proliferation, cell cycle, and embryonic stem cell (ESC) 
self-renewal. FBW7 promotes KLF5 ubiquitination and deg-
radation through 26S proteasome. KLF: Krüppel-like factor.



Dr. Chen and his colleagues have determined the expres-
sion of  FBW7 and KLF5 in multiple cancer cell lines, 
including HeLa, MCF10A, and 184B5 cells. Interestingly, 
they found that degradation of  KLF5 by FBW7 is de-
pendent on both the cell type and the FBW7 isoform[8]. 
For example, in 184B5 mammary gland cells, knockdown 
of  FBW7α but not of  the FBW7β and FBW7γ isoforms, 
upregulated the expression of  KLF5 and its downstream 
target FGF-BP, which is a known promoter of  breast 
cancer cell proliferation[8,80], suggesting that the different 
isoforms of  FBW7 specifically regulate KLF5 stability 
and activity in breast cells.

REGULATION OF KLF5 BY FBW7 IN 
MOUSE MODELS
Recently, several lines of  evidence from mouse models 
indicate that KLF5 stability can be regulated by FBW7 
in vivo[33,34,81]. As mentioned above, mutations of  FBW7 
occur frequently in multiple cancers, including those of  
the lung, colorectum, stomach, blood, pancreas, and en-
dometrium. FBW7 R482Q is one of  the loss-of-function 
mutants that have been identified in various cancers. A 
mouse model harboring the R482Q mutation was gener-
ated in Dr. Ian Tomlinson’s laboratory. Interestingly, the 
protein levels of  KLF5 and TGIF1 were upregulated 
in the lungs of  the heterozygous mutant mice, but the 
mRNA levels of  these two genes remained the same be-
tween the mutant and the wild type mice[33,34]. Further in-
vestigation revealed that the levels of  KLF5 and TGIF1 
were also upregulated in normal intestine and adenomas 
of  FBW7-deficient or FBW7-mutant mice. These data 
serve as strong in vivo evidences for KLF5 regulation by 
FBW7.

Regulation of  KLF5 target gene expression by FBW7 
has also been demonstrated in a mouse model[81]. Ku-
madaki et al[81] showed that in vivo knockdown of  FBW7 
significantly increased the hepatic expression of  PPARγ2 
as well as its targeted genes. More importantly, the degra-
dation of  KLF5 by FBW7 was associated with the inhi-
bition of  PPARγ2 expression. Thus, these findings sug-
gested that degradation of  KLF5 by FBW7 contributes 
to hepatic lipid metabolism.

CONCLUSION
In summary, FBW7 is an E3 ubiquitin ligase for KLF5. 
KLF5 contains functional CPDs that are phosphorylated 
by GSK3β, thus promoting the interaction between 
KLF5 and the WD40 domain of  FBW7. This interaction 
subsequently leads to KLF5 ubiquitination and degrada-
tion by the ubiquitin-proteasome system. Mutation or 
deletion of  FBW7 in cancer cells results in increased 
level of  the KLF5 protein due to impaired degradation 
of  KLF5, which in turn causes increased expression of  
KLF5 target genes, many of  which can promote cell 
proliferation. Moreover, the KLF5 protein level is tightly 
controlled by FBW7 under normal physiological condi-

tions, thus affecting many developmental and metabolic 
processes. In summary, the FBW7-KLF5 axis is impor-
tant for both normal cellular activities, such as lipid me-
tabolism, and cancer cell proliferation. This pathway may 
therefore serve as a novel target for cancer therapy
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as a major O-GlcNAcylated protein, and EOGT mediates 
Dumpy-dependent cell adhesion. In mammals, extracel-
lular O -GlcNAc was detected on extracellular proteins 
including heparan sulfate proteoglycan 2, Nell1, laminin 
subunit alpha-5, Pamr1, and transmembrane proteins, 
including Notch receptors. Although the physiological 
function of O -GlcNAc in mammals has not yet been 
elucidated, exome sequencing identified homozygous 
EOGT mutations in patients with Adams-Oliver syn-
drome, a rare congenital disorder characterized by apla-
sia cutis congenita and terminal transverse limb defects. 
This review summarizes the current knowledge of extra-
cellular O-GlcNAc and its implications in the pathological 
processes in Adams-Oliver syndrome.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The O-linked β-N-acetylglucosamine (O-GlcNAc) 
on extracellular protein domains is the most recently 
identified O -glycosylation of epidermal growth factor 
repeat-containing proteins such as Notch receptors. This 
O -GlcNAc modification occurs in the secretory pathway by 
an endoplasmic reticulum-resident O-GlcNAc transferase, 
extracellular O-linked β-N-acetylglucosamine (EOGT). In 
Drosophila , Dumpy, a membrane-tethered cuticle protein, 
was identified as a major O-GlcNAcylated protein that 
mediates the interaction between epithelial cells and the 
extracellular matrix. In mammals, extracellular O-GlcNAc 
was detected on Hspg2, Nell1, Lama5, Pamr1, and Notch 
receptors, although the physiological function of O-GlcNAc 
in mammals has not yet been elucidated. However, the 
recent finding that EOGT is a causative gene for Adams-
Oliver syndrome provided important insights into the 
significance of extracellular O-GlcNAc in mammals. This 
review summarizes the current knowledge of extracellular 
O-GlcNAc and its implications in the pathological process-
es in Adams-Oliver syndrome.
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Abstract
The O-linked β-N -acetylglucosamine (O-GlcNAc)ylation 
of cytoplasmic and nuclear proteins regulates basic cel-
lular functions and is involved in the etiology of neuro-
degeneration and diabetes. Intracellular O-GlcNAcylation 
is catalyzed by a single O-GlcNAc transferase, O-GlcNAc 
transferase (OGT). Recently, an atypical O-GlcNAc trans-
ferase, extracellular O -linked β-N -acetylglucosamine 
(EOGT), which is responsible for the modification of 
extracellular O -GlcNAc, was identified. Although both 
OGT and EOGT are regulated through the common 
hexosamine biosynthesis pathway, EOGT localizes to 
the lumen of the endoplasmic reticulum and transfers 
GlcNAc to epidermal growth factor-like domains in an 
OGT-independent manner. In Drosophila , loss of Eogt  
gives phenotypes similar to those caused by defects in 
the apical extracellular matrix. Dumpy, a membrane-an-
chored apical extracellular matrix protein, was identified 
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INTRODUCTION
O-linked β-N-acetylglucosamine (O-GlcNAc) was first 
identified in 1984 as a cell-surface saccharide moiety on 
intact lymphocytes[1]. Later studies, however, revealed 
that O-GlcNAc is present on nuclear, cytosolic, and 
mitochondrial proteins. This modification is preva-
lent in multicellular organisms, where more than 1000 
O-GlcNAcylated proteins have been identified[2]. Intra-
cellular O-GlcNAcylation is reversible, and its cycling is 
dynamically regulated by O-GlcNAc transferase (OGT) 
and O-GlcNAcase[3-5]. A large number of  studies have 
indicated that O-GlcNAcylation is involved in various 
cellular functions, including transcription, epigenesis, cel-
lular signaling, cell differentiation, and glucose sensing [6-9]. 
It had long been believed that O-GlcNAc is a unique in-
tracellular modification and that OGT is the sole enzyme 
catalyzing the O-GlcNAc transfer reaction. However, 
extracellular O-GlcNAc was recently discovered on the 
extracellular domains of  Notch receptors (Figure 1A). In 
this minireview, we will focus on extracellular O-GlcNAc 
and its relevance to human disease. 

EXTRACELLULAR O-GLCNAC ON EGF 
DOMAINS
The first example of  the O-GlcNAc modification of  
extracellular protein domains was the 20th EGF domain 
(EGF20) of  Drosophila Notch expressed in S2 cells. Bio-
chemical analyses revealed that O-GlcNAcylation occurs 
on the threonine located between the fifth and sixth cys-
teine[10]. Moreover, in vivo studies revealed that O-GlcNAc 
is abundantly expressed in the Drosophila cuticle[11]. Among 
cuticle proteins, Dumpy, a giant 2.5-MDa membrane-
anchored cuticle protein containing a very large number 
of  EGF-like domains (308 EGF-like repeats), was identi-
fied as a major O-GlcNAcylated protein[11]. In addition to 
Notch and Dumpy, Delta and Serrate, ligands for Notch 
receptors, have been shown to be O-GlcNAcylated by 
extracellular O-linked β-N-acetylglucosamine (EOGT)[10,12] 
(Figure 1B) in Drosophila S2 cells.

Similar to intracellular O-GlcNAc, extracellular 
O-GlcNAc is conserved in mammals but can be sub-
jected to subsequent modification. The co-expression 
of  Notch1 with EOGT in HEK293T cells suggests that 
the O-GlcNAc moiety is further modified with galactose 
to form O-linked N-acetyl-lactosamine (O-LacNAc)[13]. 
Recently, five extracellular O-GlcNAcylated proteins 
[Hspg2(Perlecan), Nell1, Lama5, Pamr1, and Notch2] 
were identified by a modified chemical/enzymatic photo-

chemical cleavage approach for enriching O-GlcNAcyl-
ated peptides from mouse cerebrocortical brain tissue[14]. 
Another carbohydrate analysis revealed that O-GlcNAcyl-
ation occurs in the native thrombospondin-1 (TSP1) pu-
rified from platelets as well as in the recombinant TSP1 
fragments expressed in insect High Five cells[15] (Figure 
1B). The sequence alignment of  O-GlcNAcylated pro-
teins suggests that the predictive consensus sequence for 
the modification is C5XXGX(T/S)GXXC6, where C5 and 
C6 are the fifth and sixth conserved cysteines of  the EGF 
domain, respectively. It should be noted, however, that 
no experimental data are available to indicate whether 
the C5XXGX(T/S)GXXC6 sequence is necessary or suf-
ficient for the modification[10].

EOGT IS RESPONSIBLE FOR 
EXTRACELLULAR O-GLCNAC
In contrast to the OGT-catalyzed intracellular modi-
fication, the addition of  O-GlcNAc onto extracellular 
proteins is mediated by a distinct O-GlcNAc transfer-
ase, the EGF-domain specific O-GlcNAc transferase 
(EOGT)[11,13]. Eogt is evolutionarily conserved from 
Caenorhabditis elegans to humans. EOGT contains a hy-
drophobic region corresponding to a signal peptide 
and a KDEL-like ER-retrieval sequence at the carboxyl 
terminus (Figure 2A)[11]. EOGT exhibits no similarity to 
OGT, but it is phylogenetically related to plant xylosyl-
transferases. EOGT possesses a putative UDP-GlcNAc-
binding DXD motif[12]. EOGT specifically utilizes uridine 
diphosphate (UDP)-GlcNAc as a sugar donor, and its in 
vitro enzyme activity is enhanced in the presence of  diva-
lent cations, especially Mn2+[11,13]. 

Because the levels of  O-GlcNAcylation on Notch are 
increased by treatment with glucosamine or GlcNAc[8], 
it is suggested that the hexosamine biosynthesis pathway 
(HBP) is upstream of  extracellular O-GlcNAc modifica-
tion. The end product of  the HBP is UDP-GlcNAc, 
which is utilized by EOGT as a donor substrate to modify 
proteins with O-GlcNAc in the ER. The transport of  
UDP-GlcNAc across the ER or Golgi membrane is me-
diated by nucleotide-sugar transporters[16-19]. However, it 
remains unclear which UDP-GlcNAc transporters are 
required for O-GlcNAcylation by EOGT.

Although EOGT expression has been detected in all 
adult mouse tissues, its expression is highest in the lung 
and lowest in the skeletal muscles[13]. During mouse de-
velopment, high expression was detected in the growing 
edge of  the limb buds; the expression was localized to 
the digits of  the four limbs at later stages[20].

BIOLOGICAL FUNCTION OF 
EXTRACELLULAR O-GLCNAC IN 
DROSOPHILA
The biological function of  extracellular O-GlcNAc was 
first suggested by the phenotype of  the Eogt mutant in 
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Drosophila[11]. Although the Eogt mutant does not exhibit the 
classical Notch phenotype, it shows defects in the wings, 
notum, and cuticle (i.e., wing blistering, vortex, and cuticle 
detachment), similar to the dumpy mutant[11,12]. As men-
tioned above, Dumpy is a membrane-tethered protein that 
represents a major O-GlcNAcylated protein in the cuticle[11]. 
Moreover, the genetic interaction and phenotypic similarity 
between Eogt and dumpy suggests that EOGT is required 
for Dumpy-dependent epithelial cell-matrix interactions. 

Previous studies using Eogt mutant embryos suggest-
ed that O-GlcNAc is required for the correct targeting of  
Dumpy into the chitinous matrix, possibly by mediating 
interactions with other components in the extracellular 
matrix (ECM)[11]. Currently, the molecular mechanisms by 
which Dumpy mediates cell adhesion are unknown, and 
thus the precise mechanism by which O-GlcNAc medi-
ates cell adhesion must await the functional characteriza-

tion of  Dumpy. However, it is intriguing to speculate that 
multiple O-GlcNAc moieties arranged regularly along 
the EGF repeats of  Dumpy have the ability to associate 
with unidentified chitin (a polymer of  GlcNAc)-binding 
lectins in the ECM, thereby enabling the cuticle assem-
bly/maintenance required for epidermis adhesion. 

Interestingly, comprehensive genetic interaction studies 
revealed an interaction between Eogt and pyrimidine me-
tabolism in the wing blister phenotype[12]. Thus, an alter-
native possibility is that loss of  Eogt directs the increased 
UDP-GlcNAc pool in the cytoplasm. This will lead to 
elevated pyrimidine synthesis, such as uracil, that is likely 
to promote wing blistering[12]. If  this is the case, EOGT 
might regulate pyrimidine metabolism by O-GlcNAcylat-
ing Dumpy. The contribution of  pyrimidine metabolism 
to the Eogt phenotype was also suggested by the genetic 
interaction between Eogt and the Notch signaling genes, 
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O-GlcNAcylated proteins O-GlcNAc site Protein function Species Ref.

Notch1 LNAFSCQCMPGYTGQKC Receptor for Notch signaling Drosophila [10]

Dumpy Unspecified Apical extracellular matrix protein Drosophila [11,12]

Hspg2 (Perlecan) ACAPGYTGRRCES heparan sulfate proteoglycan/extracellular matrix component Mouse [14]

Nell1 VCPSGFTGSHCEK Glycoprotein involved in bone physiology Mouse [14]

Lama5 TCPPGLSGERCDT One of the vertebrate laminin alpha chains Mouse [14]

Pamr1 ACLAGYTGQRCEN Regeneration-associated Muscle protease homolog Mouse [14]

Notch2 VCSPGFTGQRCNI (?) Receptor for Notch signaling Mouse [14]

thrombospondin-1 CGACPPGYSGNGIQCTLELVPR Adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions Human [15]

Delta Unspecified Ligand for Notch signaling Drosophila [11,12]

Serrate Unspecified Ligand for Notch signaling Drosophila [12]

A

B

Figure 1  Extracellular O-linked β-N-acetylglucosamine. A: The O-linked β-N-acetylglucosamine (O-GlcNAc)ylation of extracellular protein domains is a newly 
identified translational modification of epidermal growth factor (EGF) domains, including Notch, HSPG2, Pamr1, and Lama5. Extracellular O-GlcNAc is mediated by 
EOGT in the endoplasmic reticulum (ER). Mutations in EOGT were recently identified in patients with Adams-Oliver syndrome (AOS). The role of EOGT in the patho-
genesis of AOS is currently unknown. Given that RBPJ, a transcriptional factor for Notch signaling, is a causative gene for AOS, O-GlcNAcylation of Notch receptors 
by EOGT might regulate Notch receptor trafficking or Notch-ligand interactions. ARHGAP31 or DOCK6, another causative gene for AOS, affects the actin cytoskeleton 
by regulating Cdc42 and Rac1 activity. Thus, another possibility is that the O-GlcNAcylation of unidentified cell adhesion molecules by EOGT affects actin dynamics. 
It should be noted, however, that Dumpy homologues are not present in mammals. The O-GlcNAcylation of Notch ligands was reported in Drosophila. The causative 
genes for AOS are shown by asterisks; B: Summary of proteins with extracellular O-GlcNAc identified to date. 
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which are involved in pyrimidine synthesis regulation[12]. 

EXTRACELLULAR O-GLCNAC AND ITS 
RELATIONSHIP TO ADAMS-OLIVER 
SYNDROME
The significance of  the O-GlcNAcylated proteins was 
only tested in the context of  Dumpy function, and the 
physiological roles of  O-GlcNAc in mammals have not 
been investigated. However, exome sequencing in Ad-
ams-Oliver syndrome (AOS) patients provided important 
insights into the significance of  extracellular O-GlcNAc 
in mammals. AOS is a rare congenital disorder charac-
terized by vertex scalp defects [aplasia cutis congenital 
(ACC)] and terminal transverse limb defects (TTLDs)[21]. 
Recently, homozygous mutations in EOGT were identi-
fied in some patients with AOS[20,22]. These mutations 
include missense mutations (W207S and R377Q) and 
a frame shift mutation that creates a premature stop 
codon (G359Dfs*28) (Figure 2A). Currently, the blood 
levels of  extracellular O-GlcNAc, the sugar moiety and 
its metabolites in the patients have not yet been investi-
gated. However, the frame shift mutation in EOGT likely 
abolishes the enzyme activity because the truncated form 

of  EOGT lacks the putative catalytic region containing 
the sequences conserved between EOGT and GTDC2, 
another ER-resident GlcNAc transferase modifying 
a-dystroglycan[23-25] (Figure 2B). The biochemical proper-
ties of  the W207S and R377Q mutations have not yet 
been addressed. However, the R377 residue of  EOGT 
is conserved in GTDC2. Thus, it is likely that the R377 
residue may be important for GlcNAc transferase activ-
ity in EOGT and GTDC2 and that the R377Q mutation 
impairs the O-GlcNAc transferase activity of  EOGT.

AOS is genetically heterogeneous, and its molecu-
lar pathology appears complex. In addition to EOGT, 
homozygous mutations of  DOCK6, gain-of-function 
mutations of ARHGAP31, and heterozygous mutations 
for RBPJ were reported in AOS[26-28] (Figure 1A). ARH-
GAP31 and DOCK6 encode proteins that regulate the 
activity of  key regulators of  the actin cytoskeleton, RAC1 
and CDC42. Accordingly, patient fibroblasts harbor-
ing disease-causing ARHGAP31 or DOCK6 mutations 
exhibited disorganized cytoskeletons and morpholo-
gies[27,28]. By contrast, EOGT mutant fibroblasts showed a 
typical spindle appearance comparable to that of  control 
fibroblasts[22]. Therefore, it appears that EOGT does not 
directly affect the actin cytoskeleton, although the pos-
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Figure 2  Extracellular O-linked β-N-acetylglucosamine mutations found in Adams-Oliver syndrome. A: A schematic representation of the primary structure of 
EOGT. The amino-terminal signal peptide is shown in yellow and the carboxyl-terminal Lys-Asp-Glu-Leu-like endoplasmic reticulum (ER) retrieval signal is in orange. 
The putative DXD motif involved in binding the nucleotide sugar is shown in blue. The position of each mutation is indicated by a red line; B: The amino acid sequence 
alignment of mouse EOGT (NP_780522, 149-562 aa) and mouse GTDC2/EOGT-L (Q8BW41, 55-468 aa). Identical amino acid residues are indicated by aster-
isks. Amino acid residues corresponding to the mutations in patients with Adams-Oliver syndrome are highlighted by red letters. EOGT: Extracellular O-linked β-N-
acetylglucosamine.
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sibility remains that EOGT affects actin dynamism in 
restricted cell-types other than fibroblasts. 

EXTRACELLULAR O-GLCNAC AND 
NOTCH SIGNALING
Another intriguing possibility for the role of  EOGT in 
the pathogenesis of  AOS involves Notch regulation be-
cause RBPJ encodes the transcriptional factor for Notch 
signaling. It has been reported that disease-causing RBPJ 
mutations decrease binding to the Notch target promot-
er, HES1[26]. Therefore, if  EOGT and RBPJ act through 
a common signaling pathway in AOS, EOGT might posi-
tively regulate Notch signaling by the O-GlcNAcylation 
of  Notch receptors. It should be noted, however, that no 
experimental data are available to support this hypothesis.

In Drosophila, O-GlcNAcylated EGF domains could 
be simultaneously modified with other O-glycosylations, 
namely O-fucose and O-glucose. O-fucosylation and 
O-glucosylation are catalyzed by ER-resident glycosyl-
transferases, POFUT1/Ofut1[29] and POGLUT1/Rumi[30]. 
These enzymes play indispensable roles for Notch signal-
ing by affecting the trafficking, processing, and ligand-
binding ability of  Notch receptors[30-37]. In contrast, 
O-GlcNAc is dispensable for the majority of  Notch 
receptor functions because Eogt mutants failed to exhibit 
apparent defects in most Notch-dependent biological 
processes, including embryonic neurogenesis, wing mar-
gin formation, and wing vein specification[11]. Given that 
the mutation of  Ofut1 or rumi does not produce Dumpy-
like phenotypes, O-GlcNAcylation and O-fucosylation/
O-glucosylation appears to be significant for the separate 
protein functions and distinct developmental processes in 
Drosophila. Nonetheless, there remains the possibility that 
these O-glycosylations may have partially redundant roles 
for Notch function, which would be revealed by genetic 
interaction studies between Eogt and rumi/Poglut1 or Eogt 
and Ofut1/Pofut1. 

Currently, no animal models for AOS have been es-
tablished, and no AOS-related phenotypes were reported 
in RBPJ heterozygous mice[38]. In this regard, it would be 
interesting to investigate whether EOGT mutant mice 
would serve as a disease model for AOS.

CONCLUSION
The O-GlcNAc on extracellular protein domains is the 
most recently identified O-glycosylation of  EGF repeat-
containing proteins such as Notch receptors. This 
O-GlcNAc modification occurs in the secretory pathway 
by EOGT in the ER. In Drosophila, Dumpy was identified 
as a major O-GlcNAcylated protein that contributes to 
the interaction between epithelial cells and cuticles. Re-
cent reports revealed that the mutations in EOGT cause 
AOS. However, the significance of  the O-GlcNAcylated 
proteins was only tested in the context of  Dumpy func-
tion in Drosophila, and the roles of  O-GlcNAc in mam-

mals have not been elucidated. In mammals, extracellular 
O-GlcNAc was detected on the TSP1, Hspg2, Nell1, 
Lama5, Pamr1, and Notch receptors[14,15]. Consider-
ing that a number of  extracellular and transmembrane 
proteins are potentially O-GlcNAcylated by EOGT, ad-
ditional studies will be required to address the roles of  
extracellular O-GlcNAc in Notch-dependent and inde-
pendent biological processes in mammals as well as the 
molecular pathogenesis of  human disease.
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Core tip: The differential subcellular localization of sig-
nal transducer and activator of transcription 3 makes it 
play distinct functions in transcriptional regulation, cell 
proliferation and cellular respiration, thus contributing 
to development, reproduction and tumorigenesis in 
physiological and pathological conditions.

Qi QR, Yang ZM. Regulation and function of signal trans-
ducer and activator of transcription 3. World J Biol Chem 
2014; 5(2): 231-239  Available from: URL: http://www.wjg-
net.com/1949-8454/full/v5/i2/231.htm  DOI: http://dx.doi.
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INTRODUCTION
Signal transducer and activator of  transcription factors 
(STATs) are a family of  transcription factors that regulate 
cell growth, survival, differentiation, and motility. Struc-
tural studies identified that STAT proteins consist of  an 
N-terminal domain, a coiled-coil domain, a DNA-binding 
domain, a Src homology 2 (SH2) domain and a transacti-
vation domain, of  which the DNA-binding domain is re-
quired for the recognition of  specific binding sequences. 
Until now, seven members of  the STAT family have been 
identified and characterized, including STAT1, STAT2, 
STAT3, STAT4, STAT5a, STAT5b and STAT6. Despite 
the difference from canonical oncogenes, STAT3 has 
been recognized as a critical regulator in tumor cells since 
its identification[1]. STAT3 is over-expressed or activated 
by various carcinogenic agents, and can induce cell pro-
liferation, differentiation and anti-apoptosis by activat-
ing the target genes, including STAT3, c-Myc and p53[2]. 
STAT3 exists in two main isoforms, full-length STAT3α 
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Abstract
Signal transducer and activator of transcription 3 
(STAT3), a member of the STAT family, is a key regula-
tor of many physiological and pathological processes. 
Significant progress has been made in understanding 
the transcriptional control, posttranslational modifica-
tion, cellular localization and functional regulation of 
STAT3. STAT3 can translocate into the nucleus and 
bind to specific promoter sequences, thereby exerting 
transcriptional regulation. Recent studies have shown 
that STAT3 can also translocate into mitochondria, par-
ticipating in aerobic respiration and apoptosis. In addi-
tion, STAT3 plays an important role in inflammation and 
tumorigenesis by regulating cell proliferation, differen-
tiation and metabolism. Conditional knockout mouse 
models make it possible to study the physiological func-
tion of STAT3 in specific tissues and organs. This review 
summarizes the latest advances in the understanding 
of the expression, regulation and function of STAT3 in 
physiological and tumorigenic processes. 
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and truncated STAT3β generated by alternative splicing. 
Under normal circumstances, STAT3α is the main iso-
form expressed in cells. STAT3β can competitively bind 
to the promoter of  STAT3α target genes and inhibit 
the transactivation function of  STAT3α. Additionally, 
STAT3β has its own specific target genes that differ from 
those of  STAT3α[3].

STAT3 protein exists in a latent or inactive form 
in the cytoplasm. STAT3 can be activated by receptor-
associated kinases and phosphorylated at various phos-
phorylation sites, particularly at Tyr-705 and Ser-727. Pre-
vious studies suggested that only phosphorylated STAT3 
(p-STAT3) can translocate into the nucleus. However, 
recent data indicated that the nuclear translocation and 
transcriptional activity are partially independent of  phos-
phorylation pathways[4]. Furthermore, STAT3 may trans-
locate into mitochondria to control cell metabolism inde-
pendent of  its transcriptional regulatory activity[5]. Here 
we review the emerging biochemical and biological data 
on STAT3 and discuss its comprehensive roles in animal 
development and etiopathology of  various diseases. 

TRANSCRIPTIONAL REGULATION OF 
STAT3
STAT3 protein is expressed at a basal level in cells but 
rapidly increases once activated by specific cytokines. 
STAT3 is a critical factor in interleukin-6 (IL-6) induced 
gene regulation. STAT3 can be phosphorylated by IL-6 
signal pathway, whereas IL-6 can also activate STAT3 at 
the transcriptional level. The level of  STAT3 mRNA in-
creases 1 h after IL-6 treatment and reaches to the maxi-
mum value at 3 h. There is an IL-6 response element (IL-
6RE) in the promoter of  STAT3 which contains a low 
affinity STAT3-binding element and a cAMP-responsive 
element (CRE). STAT3 executes its regulation in co-
operation with this CRE-binding protein through self-
activation[6]. 

In diabetic mice, estrogen administration can increase 
the level of  STAT3 mRNA. There is a binding site of  es-
trogen receptor α (ERα) in STAT3 promoter. Estrogen 
treatment induces the accumulation of  ERα on STAT3 
promoter and regulates the expression of  STAT3[7]. 
STAT3 overexpression in tumor cells is related to the 

cytoplasmic/nuclear accumulation of  β-catenin and the 
activation of  β-catenin/T-cell factors (TCF) pathway. 
β-catenin is a key mediator in cell adhesion and signal 
transduction. Overexpression of  β-catenin enhances 
both STAT3 mRNA and protein levels. There is a func-
tional TCF binding element in STAT3 promoter, indicat-
ing that β-catenin/TCF may participate in the regulation 
of  STAT3 expression[8].

The suppressors of  cytokine signaling (SOCS) family 
consists of  eight members, including SOCS1 to SOCS7 
and cytokine-inducible SH2 domain proteins (CIS)[9]. 
SOCS proteins exist at low levels in resting cells and dra-
matically increase after STAT activation. SOCS proteins 
serve as classic negative regulatory factors of  STAT acti-
vation[10]. Among them, SOCS3, a target gene of  STAT3, 
contributes to negative feedback regulation of  the JAK/
STAT3 signal pathway, and inhibits the self-activation of  
STAT3[11]. Bone marrow SOCS3 deficient mice exhibit 
overexpression of  STAT3 and continuous activation of  
the JAK/STAT3 signal pathway, suggesting that STAT3 
expression is negatively regulated by SOCS3[12]. 

POST-TRANSCRIPTIONAL REGULATION 
OF STAT3 EXPRESSION
Human STAT3 gene is located on the long (q) arm of  
chromosome 17 at position 21.31. The encoding product 
of  the STAT3 gene is an 89 kDa protein[13]. Further study 
identified a cDNA clone encoding a variant of  STAT3 
(named STAT3β), which is different from classic STAT3 
(named STAT3α). Compared to STAT3α, STAT3β is the 
truncated form and lacks the internal domain of  50 base 
pairs located near the C-terminus (Figure 1). The encod-
ing product of  STAT3β is an 80 kDa protein. Under nor-
mal conditions, STAT3β exists in various cells, such as 
monocytes, lymphocytes and neutrophil granulocytes. In 
COS cells, STAT3β is phosphorylated at tyrosine sites by 
IL-5R treatment and binds to the palindromic IL-6/inter-
feron-g response element (pIRE) located in the promoter 
of  intercellular adhesion molecule-1 (ICAM-1). However, 
this phosphorylated STAT3β exhibits a negative tran-
scriptional regulation through inhibiting the transactiva-
tion potential of  STAT3α, suggesting that STAT3β may 
be a dominant-negative regulator of  transcription and 
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Figure 1  Domain structure of signal transducer and activator of transcription (3α and 3β). The signal transducer and activator of transcription 3α (STAT3α) 
protein is composed of N-terminal, coiled-coil, DNA binding, linker, SH2, and transactivation domains. However, the transactivation domain is absent in the alternative 
splicing variant, STAT3β. 



promotes apoptosis[14]. 
Depending on context, truncated STAT3β can be 

phosphorylated at tyrosine 705 and bind to DNA se-
quence that is equal to that bound by STAT3α with 
negative transcriptional regulation. Overexpression 
of  STAT3β can induce apoptosis and inhibit tumor 
growth[15,16]. However, alternative splicing regulation 
by antisense oligodeoxynucleotides targeting STAT3 
can specifically shift the expression from STAT3α to 
STAT3β. High expression of  endogenous STAT3β pro-
motes cell apoptosis and leads to cell cycle arrest. This 
apoptosis-promoting effect of  STAT3β is independent 
on the inhibition of  STAT3α target genes. Several genes 
that differ from classic STAT3α target genes are specifi-
cally decreased by STAT3β knockdown, including lens 
epithelium-derived growth factor, p300/CBP-associated 
factor, Cyclin C, peroxisomal biogenesis factor 1 and 
STAT1β[3], indicating that STAT3β may promote cell 
apoptosis through regulating its own specific target genes 
in addition to negative transcriptional regulation of  STA-
T3α. 

POST-TRANSLATIONAL MODIFICATION 
OF STAT3
STAT3 phosphorylation
STAT3 protein exists in the cytoplasm as an inactive 
form until phosphorylation by receptor-associated ki-
nases. Activated JAK kinases phosphorylate STAT3 
through binding of  the SH2 domain to a phosphorylated 
tyrosine residue, by which the C-terminus of  p-STAT3 
triggers its release from receptor, and form a homo- or 
hetero-dimerization of  p-STAT3. Dimerized STAT3 
translocates to the nucleus and binds to the promoters 
bearing cognate DNA-binding sequences[17]. STAT3 can 
be also phosphorylated by other tyrosine kinases, such 
as the Src family. However, such Src-induced STAT3 
phosphorylation does not always result in STAT3 activa-
tion[18]. Tyrosine phosphorylation is necessary for STAT3 
activity. In addition, serine phosphorylation at residue 
727 of  STAT3 also leads to the up-regulation of  the tran-
scriptional activity. STAT3 phosphorylation at Ser-727 
is mediated by MAPK, P38 and c-Jun N-terminal kinase 
(JNK) pathways, and involved in transcriptional regula-
tion of  the target genes of  STAT3[19]. Ser-727 mutant 
STAT3 knock-in mice display impaired development 
and survival process[20]. Recently, several articles reported 
that un-phosphorylated STAT3 can interact with nuclear 
factor-kB (NF-kB). Un-phosphorylated STAT3 (U-
STAT3)/NF-kB complex translocates into the nucleus 
and activates the expression of  NF-kB target genes[21]. 

STAT3 acetylation
Protein acetylation is a crucial post-translational modifi-
cation of  gene expression and involved in extensive phys-
iological and pathological processes[22]. Investigation on 
protein acetylation is focused on the alteration of  chro-
matin structure and activation of  transcription factors. 

The inhibition of  histone deacetylases (HDACs) can in-
duce the acetylation of  STAT3 at Lys-685, and acetylated 
STAT3 (Ac-STAT3) regulates the function of  dendritic 
cells through activating the transcription of  indoleamine 
2,3-dioxygenase[23]. 

The significant increase in STAT3 acetylation at 
Lys-685 is detected in tumor tissues. CD44, a transmem-
brane glycoprotein, has been recognized as a marker for 
tumor cells. Activated CD44 can bind STAT3 and p300 
in the nucleus and acetylate STAT3 at Lys-685. CD44/
Ac-STAT3 complex activates cyclinD1 expression by 
binding to its promoter, leading to cell proliferation[24]. 
Additionally, Ac-STAT3 may be the major determinant 
for promoter methylation of  tumor suppressor genes. 
DNA methyltransferase 1 (DNMT1) is primarily in-
volved in the maintenance of  methylation. Ac-STAT3/
DNMT1 complex can induce gene silencing through 
binding to target genes, leading to increased CpG island 
methylation. STAT3 mutant at Lys685 exhibits impaired 
STAT3 acetylation and tumor growth. Acetylation inhibi-
tors and HDAC activators can inhibit STAT3 acetylation 
with demethylation and reactivation of  several tumor-
suppressor genes, including cyclin-dependent kinase 
inhibitor 2A (CDKN2A), deleted in lung and esophageal 
cancer 1 (DLEC1) and STAT1. In triple-negative breast 
cancer cells and melanoma, Ac-STAT3 is related to the 
methylation of  the ERα gene. Therefore, inhibition of  
Ac-STAT3 is favorable for hormone therapy through re-
activating ERα expression[25].

Other post-translational modification of STAT3
Except for phosphorylation and acetylation, STAT1 
and STAT3 are also subjected to SUMOylation through 
binding to small ubiquitin-like modifier (SUMO). STAT3 
SUMOylation suppresses the transcriptional activity of  
STAT3 by affecting STAT3 phosphorylation and dimer-
ization[26].

STAT3 LOCALIZATION AND FUNCTION
Nucleo-cytoplasmic shuttling of p-STAT3
Since protein synthesis and modification are processed 
in the cytoplasm, most transcription factors need to pass 
through the nuclear pore complex and enter into the 
nucleus to exert their transcriptional activity. In general, 
proteins that have a molecular weight greater than 50 
kDa require specific structural domain named nuclear 
localization sequence (NLS) and nuclear export sequence 
(NES). Both NLS- and NES-containing proteins can 
recognize and combine with specific soluble carriers to 
mediate the nucleo-cytoplasmic trafficking[27]. Most NLS 
can recognize importin α and co-regulate the shuttling of  
proteins through interacting with importin β1[28]. 

The transcriptional regulatory activity of  STAT3 is 
dependent on nuclear translocation. The distinction be-
tween STAT3 and other STAT members is that activated 
STAT3 can shuttle between the cytoplasm and nucleus, 
and accumulate in the nucleus to play the role in tran-
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scriptional activation. In the canonical nuclear transloca-
tion, p-STAT3 is released from the receptor, forms a 
homo- or hetero-dimer, and translocates into the nucleus. 
Importin α3 can specifically recognize the coiled-coil 
domain and mediate the nucleo-cytoplasmic shuttling of  
STAT3 protein[29].

Nucleo-cytoplasmic shuttling of U-STAT3
Previous studies showed that STAT3 protein acquires 
its DNA binding activity only in a phosphorylated form. 
However, recent studies indicated that the transcriptional 
activation of  STAT3 in the nucleus is also independent 
of  phosphorylation[21]. Both phosphorylated and un-
phosphorylated STAT3 proteins exist in the nucleus and 
regulate different target genes. Data from fluorescently-
labeled STAT3 mutants in STAT3 deficient cells show 
that U-STAT3 can shuttle constitutively between the 
cytoplasm and nucleus under the condition of  NLS and 
NES mutation, indicating that the nuclear accumulation 
of  U-STAT3 is independent of  the binding of  NLS or 
NES and importins. Both native gel electrophoresis and 
dual-focus fluorescence correlation spectroscopy identify 
that the N-terminal domain is essential for dimer forma-
tion and nuclear accumulation of  U-STAT3. The mono-
meric N-terminal deletion mutant can be phosphorylated 
and dimerized in response to IL-6 treatment without 
nuclear accumulation. Therefore, the N-terminal domain 
has an important role in nucleo-cytoplasmic trafficking 
of  U-STAT3[30]. 

STAT3 in mitochondria 
Except for the classic transcriptional regulation during 
cell proliferation and differentiation through nuclear 
translocation, STAT3 translocation in different organ-
elles may regulate cell metabolism and be involved in a 
broad range of  biological functions independent of  tran-
scriptional activity. For instance, phosphorylated STAT3 
at Serine 727 (P-Ser-STAT3) is localized to the mito-
chondria of  hepatocytes and myocardial cells. STAT3 
deficient cells exhibit a low activity of  complex Ⅰ and 
Ⅱ[31], suggesting that STAT3 regulates mitochondrial 
respiration via electron transport chain. Data from co-
immunoprecipitation indicate that the translocation of  
STAT3 to mitochondria is mediated by the presequence 
receptor Tom20[32]. However, the mechanism that STAT3 
alters mitochondrial respiration is controversial. There 
is an unfavorable ratio of  complexes Ⅰ/Ⅱ and STAT3 
in cardiac tissue, which implied the existence of  an addi-
tional mechanism of  STAT3 regulation of  ATP produc-
tion in vivo[33]. The sirtuin 1 (SIRT1), a NAD-dependent 
deacetylase, is located in the nucleus and known as a key 
factor regulating and controlling the mitochondrial bioen-
ergetics by means of  activating gene expression through 
deacetylating some important signal molecules, such as 
STAT3. In Sirt1-null cells, there is a significantly higher 
serine-phosphorylated STAT3 level in mitochondria with 
an increase in the mitochondrial bioenergetics and ATP 
formation[34].

In eukaryotes, the primary function of  mitochondria 
is aerobic respiration and energy production, in which the 
reactive oxygen species (ROS) is the inevitable by-prod-
ucts. During the process of  ischemia-reperfusion injury 
in the myocardium, the opening of  mitochondrial perme-
ability transition pore (MPTP) is a major response to car-
diomyocyte death, while the ROS from respiratory chain 
is the primary endogenous reason for MPTP opening. 
Mitochondria play a major role in cardio-protection, most 
likely by preventing MPTP opening, while mitochondrial 
STAT3 has an impact on inhibiting MPTP opening and 
cardio-protection. In calcium-induced MPTP opening 
model, STAT3-KO mitochondria tolerate less induction 
of  MPTP opening. The function of  STAT3 in MPTP sta-
bility may be carried out through binding to cyclophilin 
D[32]. Another study found that GRIM-19-induced mito-
chondrial STAT3 location may involve in TNF-mediated 
necroptosis[35].

It is identified that cancer cells have the feature of  
metabolic turnover in aerobic glycolysis - the Warburg 
effect[36], in which STAT3 acts as a central mediator of  
cell metabolism through both HIF-1α-dependent and 
-independent mechanisms. Oncogenic signals activate 
STAT3 phosphorylation and induce STAT3 translocation 
into the nucleus where it regulates HIF-1α expression. 
Mitochondrial STAT3 displays Serine 727 phosphoryla-
tion, while tyrosine phosphorylation or DNA binding 
activity is not detected, unlike canonical transcriptional 
activation. p-Ser-STAT3 located in mitochondria shows 
many metabolic functions and induces malignant trans-
formation mediated by oncogenic Ras[37]. Fibroblast 
growth factor receptor 4-R388 (FGFR4-R388), a known 
single nucleotide polymorphism which promotes breast 
cancer cell motility and invasiveness, can promote mi-
tochondrial cytochrome c activity and induce pituitary 
tumor cell growth through STAT3 serine phosphoryla-
tion. Therefore, serine phosphorylation of  STAT3 and 
mitochondrial translocation may contribute to tumor cell 
transformation and tumorigenesis[38].

FUNCTION OF STAT3 IN 
PATHOPHYSIOLOGY AND 
DEVELOPMENT
STAT3 in stem cells
Mouse embryonic stem cells (ES cells) are pluripotent 
cells derived from the inner cell mass of  blastocysts. The 
self-renewal and pluripotency of  ES cells depend on leu-
kemia inhibitory factor (LIF) and bone morphogenetic 
protein 2 (BMP2) during in vitro culture[39]. Based on 
chromatin immunoprecipitation-deep sequencing (ChIP-
seq), 13 specific transcriptional factors (Nanog, Oct4, 
STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, 
Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators 
(p300 and Suz12) are identified in the regulatory network 
of  ES cells, and these factors are involved in LIF and 
BMP signaling pathways, and play important roles in self-

234WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

Qi QR et al . Regulation and function of STAT3



renewal, reprogramming and pluripotency of  ES cells[40].
LIF activates STAT3 through the Janus kinase (JAK) 

signal pathway. p-STAT3 is functionally associated with 
the transcriptional regulation of  target genes for the 
self-renewal of  ES cells, including Kruppel-like factors 
(Klf4 and Klf5)[41]. Furthermore, persistently activated 
STAT3 can maintain the self-renewal process without 
LIF[42]. Transcriptional factors Nanog and STAT3 are the 
molecular markers of  ES cells. Nanog and STAT3 co-
regulate the transcriptional activation of  STAT3 target 
genes through binding to their promoters, such as α2M 
and Nanog promoters. This activation is abrogated by 
eliminating LIF, indicating that the function of  Nanog 
and STAT3 is dependent on the LIF signal pathway[43]. 
Overexpression of  STAT3 target genes, such as Klf4 
and Klf5[41], has been shown to promote self-renewal of  
ES cells, while knockdown of  these genes has no impact 
on the self-renewal in the presence of  LIF or STAT3[44]. 
Gastrulation brain homeobox 2 (Gbx2), a LIF/STAT3 
target gene, can facilitate the pluripotency of  ES cells 
when over-expressed without LIF and STAT3[45]. These 
results illustrated that LIF/STAT3 may act upstream to 
trigger the maintenance of  ES cells through activating a 
range of  downstream target genes. 

STAT3 in proliferation and apoptosis
P-STAT3 can activate proliferation-related genes to pro-
mote cell proliferation. Moreover, U-STAT3 can bind to 
the promoters of  pro-apoptotic genes and inhibit their 
expression in tumor cells, but not in normal cells. Inhibi-
tors of  STAT3 phosphorylation or dominant-negative 
STAT3 mutants facilitate the expression of  pro-apoptosis 
factors, suggesting that STAT3 plays a dominant role in 
regulating cell proliferation and anti-apoptosis[46]. STAT3 
knockout mice exhibit complete embryonic lethality. 
STAT3 deficient embryos show a rapid degeneration on 
day 7 of  pregnancy, highlighting the important role of  
STAT3 in embryo development[47]. Conditional ablation 
of  STAT3 in myocardial cells leads to higher susceptibil-
ity to drug-induced heart failure[48]. In addition, ischemic 
preconditioning can induce the phosphorylation of  
STAT3 at Tyr-705 and Ser-727 in myocardial cells. How-
ever, the expression of  cardio-protective factor (COX-2 
and HO-1) and anti-apoptotic proteins [Mcl-1, Bcl-x (L) 
and c-FLIP (S)] is elevated in normal cells 24 h later, but 
not in STAT3 deficient cells[49]. These results illustrated 
the function of  STAT3 in anti-inflammation and anti-
apoptosis. 

Mammary gland involution initiates at the ending of  
lactation, involving extensive apoptosis of  the secretory 
alveolar epithelium and inflammatory response. Although 
STAT3 is expressed in the mammary gland throughout 
the whole reproductive cycle, it is only activated by LIF 
on the day of  delivery and at 6-12 h after weaning[50]. 
STAT3 has an important role in mammary gland involu-
tion. Conditional ablation of  STAT3 in mammary cells 
causes delayed involution of  the mammary gland[51]. 
STAT3 is involved in the apoptotic process of  mammary 

epithelial cells and tissue remodeling through inducing 
the expression of  pro-apoptotic factors and regulating 
the balance of  matrix metalloproteinase (MMP) and tis-
sue inhibitor of  metalloproteinase (TIMP)[52]. Mammary 
STAT3 deficient mice have impaired accumulation of  
inflammatory factors, macrophages and mastocytes in the 
mammary gland[53]. In addition, p-STAT3 in mammary 
epithelial cells is also involved in lysosomal-mediated 
cell death pathway through up-regulating the expression 
of  lysosomal proteases cathepsin B and L[54]. Therefore, 
STAT3 expression in the mammary gland may participate 
in apoptosis under physiological conditions. 

STAT3 in tumorigenesis and cancer-related inflammation 
As a key transcriptional factor, p-STAT3 can translocate 
into the nucleus and bind to specific DNA sequences to 
activate the expression of  target genes, including c-Myc 
and FGFR2, consequently regulating the proliferation, 
differentiation and anti-apoptosis of  tumor cells[55,56]. 
Furthermore, acetylated STAT3 can induce the down-
regulation of  tumor suppressor genes through promoter 
methylation and facilitate tumorigenesis. MicroRNAs 
are short non-coding RNAs (ncRNAs) mediating post-
transcriptional down-regulation of  target genes and func-
tioning in cell proliferation and apoptosis. MicroRNA-21 
(miR-21) is an oncogene that contributes to anti-apopto-
sis in most tumor cells. There are two strictly conserved 
STAT3 binding sites in the enhancer of  miR-21. MiR-21 
induction by IL-6 is STAT3-dependent. ChIP results also 
confirm the accumulation of  STAT3 in the upstream 
enhancer of  miR-21[57], indicating that IL-6/STAT3 path-
way contributes to miR-21 induction. 

Chronic infection and inflammation contribute to 
about 15% of  human cancers. The inflammatory re-
sponse can induce necrotic cell death accompanied with 
activation of  numerous cytokines, growth factors and 
chemokines which facilitate cell proliferation and sur-
vival[58]. The STAT3 signal pathway is the major intrinsic 
pathway for inflammation in tumor cells. STAT3 activates 
many inflammatory-related genes including BCL-XL, 
intercellular adhesion molecule 1 and vascular endothe-
lial growth factor, and is involved in the maintenance of  
inflammatory environment[59]. NF-kB has the ability to 
induce the expression of  inflammatory mediators, and is 
the major pathway functioning in inflammation-induced 
carcinogenesis and anti-tumor immunity. The signaling 
pathways of  STATs, especially STAT3, are closely re-
lated with NF-kB signaling[60]. The inflammatory factor 
IL-6, the target gene of  NF-kB, is the important STAT3 
activator. In tumor cells, STAT3 directly interacts with 
NF-kB, translocates into the nucleus and contributes to 
the constitutive NF-kB activation in cancer. In addition, 
STAT3 binding to NF-kB also regulates numerous onco-
genic and inflammatory genes[61]. 

Targeting the STAT3 pathway should be a promis-
ing and novel form of  treatment for human cancers. 
Blocking STAT3 by siRNAs, antisense oligonucleotides, 
dominant-negative mutants, and specific inhibitors of  
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STAT3 in combination with chemotherapeutics can syn-
ergistically inhibit the growth, invasion and metastasis of  
carcinoma cells[62-64]. Therefore, inhibiting STAT3 signals 
are a promising therapeutic target for most types of  hu-
man cancers with constitutively activated STAT3. 

STAT3 in reproduction
In mammals, the uterus is receptive to blastocyst during a 
restricted time termed as “implantation window”. LIF is 
expressed at a high level during implantation window in 
humans and mice. LIF deficient mice display embryo im-
plantation failure[65]. In mouse uterus, STAT3 protein is 
expressed and phosphorylated in the luminal epithelium 
on day 4 of  pregnancy. LIF treatment induces the STAT3 
phosphorylation in mouse uterine luminal epithelium 
isolated from day 4 of  pregnancy but not for days 3 and 
5[66]. LIF antagonist (LA, truncated LIF protein) injection 
led to the failure of  mouse embryo implantation through 
inhibiting STAT3 phosphorylation[67]. In humans, LIF 
and STAT3 are expressed in decidual tissues during early 
pregnancy. LIF can activate STAT3 phosphorylation in 

both non-decidualized and decidualized human endome-
trial stromal cells in vitro[68], indicating that LIF/STAT3 
signaling is involved in human embryo implantation and 
decidualization. 

To investigate the function of  STAT3 during embryo 
implantation, a cell-permeable STAT3 peptide inhibitor 
is injected into mouse uterine lumen before implantation, 
which significantly reduces embryo implantation by 70%. 
STAT3 phosphorylation in uterine luminal epithelium 
activated by LIF and some LIF targeted genes, such as 
Irg1, is significantly inhibited by STAT3 inhibitors both 
in vivo and in vitro[69]. Meanwhile, the injection of  STAT3 
decoy into uterine lumen during implantation also causes 
implantation failure[70]. Co-immunoprecipitation assay 
showed that STAT3 can bind to progesterone receptor 
A (PR-A) and co-regulate the embryo implantation and 
decidualization in mice. Conditional ablation of  STAT3 
only in PR-positive cells (PRcre/+Stat3f/f; Stat3d/d) is used to 
investigate the role of  STAT3 in reproduction. Condi-
tional ablation of  STAT3 in the uterus (Stat3d/d) results in 
embryo implantation failure. Furthermore, Stat3d/d mice 
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are also defective in hormonally induced decidual reac-
tion[71], suggesting that the interaction between STAT3 
and PR is essential for successful implantation. 

CONCLUSION
STAT3 is a key transcription factor and regulates a mul-
titude of  genes important for proliferation, differentia-
tion, apoptosis, inflammation and tumorigenesis. STAT3 
expression and activity are regulated through alternative 
splicing, post-translational modification and subcellu-
lar localization. STAT3β, the new isoform of  STAT3, 
participates in apoptosis and plays a role distinct from 
STAT3α. Despite the different mechanism, STAT3 
activation through phosphorylation or acetylation can 
facilitate tumorigenesis synergistically. STAT3 shuttles 
among the cytoplasm, nucleus, mitochondria and some 
other possible organelles, and exerts its diverse functions 
in transcriptional regulation, cellular respiration, prolif-
eration and apoptosis. A variety of  animal models reveal 
that STAT3 is essential for embryo development, pluri-
potency maintenance of  stem cells, embryo implantation 
and decidualization. Increasing evidence confirms that 
STAT3 is a key modulator of  cancer and inflammation 
(Figure 2). Hence, further clarification of  the biological 
function of  STAT3 will validate its promising application 
prospect for gene therapy in multi-directions.
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ferences in the voltage dependence of K+-induced cur-
rents, and analysis of the transient currents indicated 
that the extracellular Na+ affinity was not affected. 
Mutant G855R showed no pump activity detectable by 
TEVC. Also for L994del and Y1009X, pump currents 
could not be recorded. Analysis of the plasma and 
total membrane fractions showed that the expressed 
proteins were not or only minimally targeted to the 
plasma membrane. Whereas the mutation K1003E had 
no impact on K+ interaction, D999H affected the volt-
age dependence of K+-induced currents. Furthermore, 
kinetics of the transient currents was altered compared 
to the wild-type enzyme, and the apparent affinity for 
extracellular Na+ was reduced.

CONCLUSION: The investigated FHM2/SHM mutations 
influence protein function differently depending on the 
structural impact of the mutated residue.   

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Na+/K+-ATPase; Electrophysiology; Voltage 
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β-subunit

Core tip: Mutations of the human ATP1A2 gene, which 
encodes the Na+/K+-ATPase α2-subunit, are associated 
with familial hemiplegic migraine (FHM2) that is in-
herited in an autosomal dominant fashion. We studied 
seven ATP1A2 mutations related to FHM2 or sporadic 
hemiplegic migraine by electrophysiological and bio-
chemical methods to characterize functional impair-
ments. The mutations G855R, G900R, E902K, L994del, 
D999H, K1003E and Y1009X were selected according 
to their structural importance: in putative interaction 
sites between α- and β-subunit and in the α-subunit’
s C-terminal region. Some of these mutations showed 
a severe loss of function, and we discuss the functional 
and physiological consequences in order to better un-
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Abstract
AIM: Functional characterization of ATP1A2 mutations 
that are related to familial or sporadic hemiplegic mi-
graine (FHM2, SHM).

METHODS: cRNA of human Na+/K+-ATPase α2- and β1-
subunits were injected in Xenopus laevis  oocytes. FHM2 
or SHM mutations of residues located in putative α/β 
interaction sites or in the α2-subunit’s C-terminal region 
were investigated. Mutants were analyzed by the two-
electrode voltage-clamp (TEVC) technique on Xenopus  
oocytes. Stationary K+-induced Na+/K+ pump currents 
were measured, and the voltage dependence of ap-
parent K+ affinity was investigated. Transient currents 
were recorded as ouabain-sensitive currents in Na+ 
buffers to analyze kinetics and voltage-dependent pre-
steady state charge translocations. The expression of 
constructs was verified by preparation of plasma mem-
brane and total membrane fractions of cRNA-injected 
oocytes.

RESULTS: Compared to the wild-type enzyme, the 
mutants G900R and E902K showed no significant dif-
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derstand the molecular basis for neurological impair-
ments.

Spiller S, Friedrich T. Functional analysis of human Na+/K+-ATPase 
familial or sporadic hemiplegic migraine mutations expressed 
in Xenopus oocytes. World J Biol Chem 2014; 5(2): 240-253  
Available from: URL: http://www.wjgnet.com/1949-8454/full/v5/
i2/240.htm  DOI: http://dx.doi.org/10.4331/wjbc.v5.i2.240 

INTRODUCTION
Migraine is a common neurological disease, and the dif-
ferent forms are defined by the International Headache 
Society criteria[1]. Familial hemiplegic migraine (FHM) 
and sporadic hemiplegic migraine (SHM) are rare auto-
somal-dominant subforms of  migraine with aura. These 
syndromes are associated with some degree of  motor 
weakness (hemiparesis) and other neurological symptoms 
during the aura phase. FHM is inherited in an autosomal 
dominant fashion and genetically heterogeneous. There 
are a number of  mutations related to FHM in three dif-
ferent genes: the CACNA1A gene (FHM1) coding for 
the neuronal Cav2.1 calcium channel[2,3], the ATP1A2 
gene (FHM2) encoding the α2-subunit of  the Na+/K+-
ATPase[4], and the SCN1A gene (FHM3) encoding the 
neuronal Nav1.1 sodium channel[5]. The clinical symp-
toms of  SHM are identical to those of  FHM but without 
affected family members. 

The Na+/K+-ATPase is a transmembrane protein 
which transports two K+ ions in and three Na+ ions out 
of  the cell upon hydrolysis of  ATP (Figure 1A). This elec-
trogenic P-type ATPase assumes two principal conforma-
tional changes during its reaction cycle. Upon binding of  
three intracellular Na+ ions in the ATP-bound E1 confor-
mation, the phosphorylated intermediate with occluded 
Na+, E1P(3Na+), is formed, followed by a change to the 
phosphorylated E2P(3Na+) conformation, from which 
Na+ ions are released to the extracellular medium. Because 
of  the increased affinity for K+ in this configuration, two 
K+ ions bind subsequently, which triggers the dephos-
phorylation, and binding of  intracellular ATP accelerates 
the conformational change from E2 to E1. At last, the K+ 
ions dissociate to the cytoplasm. The sequential transloca-
tion of  Na+ and K+ ions requires strict cation specificity 
of  the phosphorylation and dephosphorylation reactions. 
According to the 3Na+/2K+ stoichiometry of  transport, 
electrogenic turnover activity of  the Na+/K+-ATPase cor-
responds to outward movement of  one positive charge 
per reaction cycle, and the major electrogenic event has 
been shown to take place during extracellular release or 
reverse binding of  Na+[6-8]. This has been suggested to 
arise from passage of  Na+ ions through a narrow, high-
field access channel or ‘ion well’[9,10].

The Na+/K+-ATPase consists of  at least two manda-
tory subunits (Figure 1B). The large catalytic α-subunit 
is composed of  ten transmembrane domains (M1-M10), 
which are linked by five extracellular and four intracel-

lular loops. The smaller regulatory β-subunit is a single-
span transmembrane protein (βM) with an ectodomain 
exhibiting several glycosylation sites. Several isoforms of  
both subunits are expressed in human cells in a tissue-
specific manner. In human brain, the α2-subunit is mainly 
expressed in glial cells (astrocytes), and loss-of-function 
of  the Na+/K+-ATPase can result in neuronal hyperex-
citability, which is commonly explained as follows. The 
Na+/K+-ATPase maintains the gradients for K+ and Na+ 
ions, which are essential for the accurate function of  
secondary active transporters or ion channels, whose ac-
tivities depend on these gradients. On one hand, changes 
of  the Na+ gradient influence, first, the activity of  the 
Na+/Ca2+ exchanger (NCX) which is crucial for, e.g., Ca2+ 
signaling. Second, the ability of  the glial Na+/glutamate 
symporter to remove the neurotransmitter glutamate 
from the synaptic cleft is affected. On the other hand, 
an altered K+ gradient impairs the repolarizing activity 
of  neuronal K+ channels, which is critical for setting the 
threshold of  action potential generation. Hyperkalemia is 
known to trigger the phenomenon of  cortical spreading 
depression (CSD), the putatively causal mechanism of  
the aura phase during a migraine attack[11].

Up to now, far more than 50 mutations of  the AT-
P1A2 gene, which are associated with SHM or FHM2, 
have been described in literature[12,13]. Yet, most of  these 
mutations have not been studied by electrophysiological 
techniques, which is a prerequisite for a better understand-
ing of  the functional consequences on enzyme activity.

In continuation of  previous works[14,15], we studied 
seven FHM2 or SHM mutations, which are located in 
regions that are putatively critical for transport properties 
of  the human Na+/K+-ATPase α2-subunit, (Figure 1B), 
with the two-electrode voltage-clamp technique (TEVC) 
and biochemical methods to analyze protein expression. 
Since mutations in the α2-subunit’s C-terminal region 
were shown to have complex effects on enzyme activity, 
cation affinities and voltage dependence[16-19], we analyzed 
four mutations in the transmembrane segment αM10 and 
in the C-terminus (L994del, K1003E[13], D999H[20] and 
Y1009X[21]) to further understand structure-function rela-
tionships in the C-terminal region. Furthermore, interac-
tions between the α- and β-subunit are not satisfactorily 
clarified so far. Especially, the highly conserved SYGQ 
motif  in the αM7/M8-loop is believed to interact with 
the β-ectodomain[22,23]. The FHM2 mutations G900R[24] 
and E902K[25] are located within this motif  and were 
functionally analyzed in this work. In addition, Gly852 
(αM7) has previously been shown to interact with two 
tyrosines of  the βM[26]. In this work, we show that the 
FHM2 mutation G855R[27] which is located near this 
interaction site, has severe consequences on the mutant 
protein’s plasma membrane expression.

MATERIALS AND METHODS
Mutagenesis
As described before[14,19], human Na+/K+-ATPase α2- and 
β1-subunit cDNAs were subcloned into a modified pCD-
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NA3.1 vector. To distinguish the activity of  the heterolo-
gously expressed constructs from the endogenous Xeno-
pus Na+/K+-ATPase, the mutations Q116R and N127D 
were introduced in the human α2-subunit to reduce the 
ouabain sensitivity (IC50 in a mmol/L range)[28]. This con-
struct is herein referred to as “RD-WT”. Mutants were 
designed by introducing mutations into the RD-WT α2-
construct by site-directed mutagenesis (Quikchange® kit, 
Stratagene). All PCR-derived fragments were verified by 
sequencing (Eurofins MWG Operon, Ebersberg, Ger-
many). 

Two-electrode voltage-clamp 
cRNA synthesis was carried out with the T7 mMessage 
mMachine kit (Ambion, Austin, TX). 25 ng of  α2- and 2.5 
ng of  β1-subunit cRNAs were coinjected into oocytes of  
Xenopus laevis. After three days incubation in ORI buffer 
(contents in mmol/L: 110 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 
5 HEPES, pH 7.4, and 50 mg/L gentamycin) at 18 ℃, 
oocytes were subjected to a Na+ loading procedure pre-
ceding experiments to elevate [Na+]in. For this purpose, 
oocytes were incubated for 45 min in Na+ loading solu-
tion (contents in mmol/L: 110 NaCl, 2.5 sodium citrate, 
5 MOPS, 5 TRIS, pH 7.4) and stored subsequently in Na+ 
buffer (in mmol/L: 100 NaCl, 1 CaCl2, 5 BaCl2, 2 MgCl2 
and 2.5 MOPS, 2.5 TRIS, pH 7.4) for at least 30 min.

Currents were recorded at room temperature 
(21 ℃-23 ℃) using a Turbotec 10CX amplifier (NPI 
instruments, Tamm, Germany) and pClamp 10 soft-
ware (Axon Inst., Union City, CA). Solutions used for 
measurements were: Na+ buffer (in mmol/L: 100 NaCl, 
1 CaCl2, 5 BaCl2, 2 MgCl2, 2.5 MOPS, 2.5 TRIS, 0.01 
ouabain, pH 7.4), and K+ buffers with distinct K+ con-
centrations, which were prepared by adding appropriate 
amounts of  KCl to Na+ buffer. 

Stationary currents
K+-induced currents were determined as the difference 
of  currents measured in a distinct K+ buffer and currents 
measured in Na+ buffer. Oocytes were subjected to the 
following voltage pulse protocol: from -30 mV holding 
potential, cells were clamped to potentials between +60 
mV and -140 mV (in -20 mV decrements) for 200 ms, 
followed by a pulse back to -30 mV. All currents within 
one experiment were normalized to the pump current 
amplitude at 10 mmol/L K+ and 0 mV. To determine the 
apparent affinity for extracellular K+, voltage-dependent 
K0.5(K+

ex) values were determined using fits of  a Hill 
equation  
                               

to the normalized K+-induced currents at a given mem-
brane potential (K0.5 is the concentration at half-maximal 
current, and nH is the Hill coefficient). nH values from the 
fits were between 1 and 1.5.

Analysis of transient currents
To obtain kinetic information about extracellular Na+ 
binding/release and the voltage-dependent distribution 
of  pump molecules between E1P and E2P states, pre-
steady state currents under Na+/Na+ exchange conditions 
were recorded. These ouabain-sensitive transient currents 
were calculated as the difference between currents mea-
sured in Na+ buffer with 10 µmol/L ouabain (blocking 
only the endogenous Na+ pump) and in the presence of  
10 mmol/L ouabain (to inhibit the RD-mutated enzyme). 
Data were fitted by using a monoexponential function, 
excluding the first 3-5 ms to eliminate capacitive artifacts, 
yielding time constants τ and amplitudes A. The trans-
located charge Q was determined from the product A
×τ. The resulting Q(V) curves were approximated by a 
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Figure 1  Reaction mechanism and structural detail of the Na+/K+-ATPase. A: Schematic reaction cycle of one Na+/K+-ATPase pump molecule. The cytosolic side 
is shown at the bottom of each molecule depicted with an ion pathway to the right, whereas the extracellular side is set at the top. Na+ ions are shown as red circles, 
and K+ ion are shown as green squares. Blue circles depict the phosphorylated state; B: Simplified structure of the Na+/K+-ATPase indicating FHM2/SHM mutation 
positions studied in this work. The α-subunit is composed of ten transmembrane domains (blue). The N- and C-terminus are located intracellularly. The β-subunit 
comprises only one transmembrane domain (green) and a large ectodomain with several glycosylation sites. FHM2/SHM mutations are marked in red. 
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Boltzmann function: 

where Qmax and Qmin are the saturation values of  Q(V), V0.5 
is the half-maximal voltage at which equal distribution of  
E1P and E2P states is achieved, zq the fractional charge, F 
the Faraday constant, R the molar gas constant, T the tem-
perature, and V the membrane potential. After fitting, the 
translocated charge values were normalized to saturating 
values (Qmax - Qmin) after subtracting Qmin. 

Isolation of membrane fractions from oocytes 
To assess impairments in plasma membrane targeting 
or expression of  mutant proteins that showed no pump 
current activity in TEVC experiments, plasma membrane 
(PM) and total membrane (TM) fractions were isolated 
from oocytes injected with cRNA of  the constructs as 
described before[14,29]. All obtained samples were dissolved 
in SDS-PAGE sample buffer, and the amount of  protein 
corresponding to the equivalent of  two oocytes was sepa-
rated by 10%SDS-PAGE and blotted on nitrocellulose 
membranes. Since oocytes are homogenous in size, the 
procedure of  loading the equivalent of  a certain number 
of  cells provides an internal loading standard, as shown 
previously[15]. The α2-subunits of  Na+/K+-ATPase were 
detected with the specific polyclonal antibody AB9094 
(Chemicon, Temecula, CA). Afterwards, blots were incu-
bated with a HRP-conjugated secondary antibody (Dako, 
Glostrup, Denmark). Proteins were visualized by an en-
hanced chemiluminescence reaction (Roche, Mannheim, 
Germany).

Structural examinations and figures
Structural inspections of  the Na+/K+-ATPase (PDB 
structure entry 3B8E) were carried out with Swiss PDB 
viewer 3.7. Figures were prepared with PyMOL 1.0r1 
(http://www.pymol.org). Data analysis and figure presen-
tation were carried out with Origin 7.0 (OriginLab Corp., 
Northampton, MA).

Statistical analysis
Statistical analyses were carried out based on the Student’
s t-test for independent samples. The significance level P 
< 0.05 is indicated in the figures by an “a” above the data 
points reaching this significance level.

RESULTS
Stationary K+-induced pump currents and apparent K+

ex 
affinity 
From the investigated ATP1A2 mutants, only G900R, 
E902K, D999H and K1003E showed K+-induced cur-
rents with amplitudes that were sufficiently large for elec-
trophysiological analysis (> 10 nA, Figure 2), whereas no 
measurable pump activity could be detected for the mu-
tants G855R, L994del and Y1009X. For G900R, E902K 
and K1003E, the bell-shaped I(V) curves at different 
[K+]ex did not differ significantly from those of  the RD-

WT enzyme. This voltage dependence of  currents is due 
to the extracellular competition between K+ and Na+ ions 
for the two “shared” cation binding sites. With proceed-
ing hyperpolarization of  the membrane, reverse binding 
of  extracellular Na+ is stimulated and K+ pump activity 
inhibited[30,31]. 

For D999H, in contrast, the voltage dependence of  
K+-induced currents apparently deviated from RD-WT 
behavior (Figure 2C). In general, at negative potentials, 
the current amplitudes of  the mutant were small com-
pared to RD-WT amplitudes (data not shown), but at 
+60 mV, they were in the same range as RD-WT ampli-
tudes (100-200 nA). We suppose that the activity of  the 
D999H construct was similar to the RD-WT enzyme at 
positive potentials. In contrast to the RD-WT enzyme, 
the I(V) curves of  D999H at high K+ concentrations (2, 5, 
10 mmol/L) were nearly constant at potentials between 
-100 to -40 mV and even increased at hyperpolariza-
tion below -100 mV, indicating that the inhibition of  K+ 
pump activity by reverse binding of  extracellular Na+ is 
not as efficient as in the RD-WT enzyme. At potentials 
more positive than -20 mV, the K+-induced currents 
started to rise steeply, which shows that positive mem-
brane potentials had a stronger effect on enzyme activity 
of  the D999H mutant compared to the RD-WT enzyme 
in this voltage range. 

As for the apparent K+ affinity in Na+ containing buf-
fers, K0.5(K+) values were determined from K+-induced 
currents at different [K+]ex and plotted as a function 
of  the membrane potential (Figure 3). For G900R, 
E902K, K1003E and RD-WT, the voltage dependence 
of  K0.5(K+) values can be approximated by a parabolic 
function. The minimal K0.5(K+) values were similar, with 
values between 1.09-1.25 mmol/L (Table 1). For the 
RD-WT enzyme, the apparent K+ affinity decreases at 
negative potentials because the reverse binding of  ex-
tracellular Na+ is stimulated. In contrast, the K0.5(K+) 
values determined for mutant D999H did not increase at 
hyperpolarization, but were nearly voltage-independent 
between -140 mV and -40 mV (Figure 3C). The minimal 
K0.5(K+) value was 0.67 mmol/L and shifted to negative 
potentials. Apparently for D999H, extracellular Na+ does 
not compete as efficiently with K+ as for the RD-WT 
enzyme, which indicates a reduced affinity of  the mu-
tant for extracellular Na+ (or destabilization of  the Na+-
bound E2 state). To further investigate this question, the 
electrogenic Na+/Na+ exchange mode was examined.

Electrogenic Na+/Na+ exchange
To investigate changes in apparent Na+

ex affinity, we 
measured transient currents under Na+/Na+ exchange 
conditions (ouabain-sensitive currents, 0 mmol/L K+). 
Representative transient currents of  the RD-WT enzyme 
are shown as inset in Figure 4E, and the reciprocal time 
constants of  the charge translocation are shown in Fig-
ure 5. Basically, the voltage dependence of  the reciprocal 
time constants determined for mutants G900R, E902K 
and K1003E conformed to that of  the RD-WT protein. 
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Q(V) = Qmin + 
Qmax-Qmin

1 + exp (zq × F(V-V0.5) )RT



However, kinetics of  charge translocation was slightly 
faster for these mutants compared to the RD-WT en-
zyme. Especially for G900R and E902K, the rise of  the 
reciprocal time constants (τ-1) at hyperpolarizing poten-
tials was enhanced. 

The voltage dependence of  charge translocation is 
shown in Figure 4 and provides information about the 
distribution of  pump molecules between E1P and E2P 
states[32]. For the mutants G900R and E902K, the Q(V) 
curves are similar to that of  the RD-WT protein, and the 
V0.5 values in particular did not differ (Table 1). The V0.5 
value of  mutant K1003E was shifted by -5 to -15 mV. 
This hints at a slightly reduced apparent Na+

ex affinity of  
this mutant[10,33], which, however, does not seem to impair 
function in terms of  the voltage dependence and the am-
plitudes of  K+-induced currents (Figure 2D). 

The D999H mutation had more severe consequences 
on Na+/Na+ exchange. In general, the transient current 
signals were fast and small compared to the RD-WT en-
zyme (data not shown). In addition, the Q(V) curve of  
translocated charge was linearly dependent on membrane 
potential, and saturating values were not clearly detect-
able within the investigated voltage range (Figure 4C). 
Hence, the approximation with a Boltzmann function and 
determination of  V0.5 proved to be difficult. For fitting, 
the zq value (Table 1) was reduced until the fitted function 
superposed the Q values. For this reason, the determined 
zq can only be regarded as an upper limit, and with a value 
of  0.33, zq was very small compared to the RD-WT en-
zyme (0.77). Since V0.5 also directly depends on the quality 
of  the fit, it is likely that the shift of  V0.5 by about -70 mV 
is only a rough estimate for the lower limit of  the actual 
shift. Nonetheless, this strong negative shift shows that 
D999H has a considerably reduced affinity for extracel-
lular Na+ since very strong hyperpolarization is required 
to force Na+ ions into the binding sites and to enable the 
subsequent conformational change to E1P[10,33]. This is in 
good agreement with the simultaneously reduced K0.5(K+) 
values at negative potentials. Furthermore, kinetics of  
the D999H transient currents was less voltage-dependent 
than for the RD-WT protein (Figure 5C). τ-1 values varied 
between 200 and 300 s-1 at potentials below 0 mV and in-
creased up to 400 s-1 at depolarization. These results show 
that the apparent affinities for Na+ and K+ (or stabiliza-
tion of  the cation-occluded state) as well as charge trans-
location and kinetics of  the Na+/Na+ exchange reaction 
were significantly affected by this mutation. 

Plasma membrane protein expression
Since the constructs G855R, L994del and Y1009X did 
not yield measurable Na+/K+ pump currents in TEVC 
experiments, it was necessary to examine whether or not 
these proteins were expressed in oocytes and properly 
targeted to the plasma membrane. For this purpose, 
plasma membrane (PM) and total intracellular membrane 
(TM) fractions were prepared using oocytes that had been 
injected with cRNA of  these constructs. Representative 
Western blots with TM and PM fractions of  G855R, 
L994del (Figure 6C) and Y1009X (Figure 6B) are shown 
in Figure 6. Densitometric analysis of  four Western blots 
prepared from independent cell batches indicated a dis-
turbed expression pattern of  these mutants (Figure 6C). 
By trend, larger amounts of  mutant proteins could be 
detected in the TM fraction than for the RD-WT pro-
tein, which in turn was highly concentrated in the PM 
fraction. However, analysis of  the PM fractions showed 
that the mutants were not or only minimally expressed 
in the plasma membrane. The band intensities of  PM 
fractions were only 10%-20% of  RD-WT values. Thus, 
G855R, L994del and Y1009X accumulate in cytoplasmic 
membranes, and targeting to the plasma membrane was 
disturbed by these mutations. 

DISCUSSION
α /β -interactions
Several studies have shown that the C-terminal ectodo-
main of  the β-subunit is important for modulation of  
cation transport by the Na+/K+-ATPase[34-36]. A motif  of  
eight amino acids (Asp897-Tyr905, amino acid sequence 
DSYGQEWTY) in the αM7/M8-loop seems to be of  
special importance. Interactions of  the β-subunit with 
this sequence element that encompasses a highly con-
served SYGQ motif  were identified as crucial for correct 
folding of  newly synthesized α-subunits in the endoplas-
mic reticulum, and furthermore, it is suspected that an 
hypothetical sequence motif  for proteolytic degradation 
is masked by these interactions[22,37,38]. Four FHM2/SHM-
associated mutations have been identified in the extra-
cellular αM7/M8-loop so far: W887R, G900R, E902K 
and R908Q[4,24,25,39]. W887R and R908Q, which are not 
directly located in the SYGQ motif, have already been 
analyzed[26,40]. 

The W887R construct was found to be correctly 
targeted to the plasma membrane of  Xenopus oocytes[40], 
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Table 1 Minimal K0.5 values from [K+]ex dependence of pump currents and parameters of 
Boltzmann fits to Q(V) curves derived from transient currents (means ± SE)

Minimal K0.5 (K+)/mmol/L Membrane potential at minimum/mV V0.5/mV       zq

RD-WT 1.12 ± 0.01   -6.2 ± 1.5    0.9 ± 1.3 0.77 ± 0.02
G900R 1.09 ± 0.04    0.2 ± 4.7    0.3 ± 3.1 0.76 ± 0.02
E902K 1.25 ± 0.03 -15.2 ± 2.3   -2.1 ± 2.1 0.81 ± 0.02
D999H 0.67 ± 0.08 -97.6 ± 4.4    -67 ± 14 0.33 ± 0.11
K1003E 1.10 ± 0.03    6.6 ± 3.3 -11.3 ± 4.3 0.75 ± 0.06



but this mutation caused a complete loss-of-function and 
a strongly reduced ouabain affinity. Koenderink et al[29] 
argued that Trp887 might rather have an influence on 
Arg880, which is critical for ouabain sensitivity, than on 
targeting-relevant interactions between α- and β-subunits. 
However, the loss of  catalytic function might be due to 
disturbed α/β-interactions during ion transport. The 
R908Q mutation, which is very close to the SYGQ mo-
tif, indeed affected targeting, since plasma membrane 
expression in Xenopus oocytes was reduced compared 
to the RD-WT protein, which easily explains the dimin-
ished pump currents[26]. The highly conserved residues 
Gly900 and Glu902 are located directly in the SYGQ 

motif  and are presumably important for interactions with 
the β-ectodomain. It was expected that the mutations 
G900R, which substitutes the small unpolar glycine with 
a large positively charged arginine, and E902K, where the 
negatively charged glutamic acid is replaced by a posi-
tively charged lysine, would have a strong effect on func-
tion. However, both constructs showed no differences 
compared to the RD-WT enzyme, neither regarding 
pump activity (Figure 2A, B) nor the apparent affinities 
for extracellular K+ (K0.5(K+) values in Figure 3A, B) and 
for extracellular Na+ (Q(V) curves and V0.5 values in Fig-
ure 4A, B). Presumably, either these amino acids are not 
directly interacting with the β-subunit, or the positively 
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Figure 2  Voltage and [K+]ex dependence of stationary currents for ATP1A2 RD-WT, G900R, K902E, D999H and K1003E. A-E: Dependence of K+-induced 
stationary currents of the RD-WT enzyme (E) and the mutants G900R (A), E902K (B), D999H (C) and K1003E (D) on the extracellular K+ concentration and on mem-
brane potential. [K+]ex-dependent currents were calculated as the difference between currents induced by voltage steps first in presence of different [K+]ex and then at  
[K+]ex = 0. The amplitudes at [K+]ex = 10 mmol/L and 0 mV were used for normalization. Different [K+]ex are indicated by symbols. The RD-WT curve at 10 mmol/L K+ is 
superimposed as dotted line for comparison. Data are means ± SE obtained from 5-15 cells of at least three batches.



charged side chains of  arginine and lysine do not inter-
fere with α/β-interactions, at least under the conditions 
of  our study.  

According to the crystal structure of  the Na+/K+-
ATPase[16,23], Tyr39 and Tyr43 of  βM can directly interact 
with residues at positions 848-856 in αM7 (Figure 7A). 
Especially, interactions between Gly852 (M7) and both 
aforementioned tyrosines of  the β-subunit seem to stabi-

lize the E2 conformation, and, as confirmed by mutagen-
esis studies[26,41], not only are hydrogen bonds involved, 
but also the aromatic ring system of  the tyrosines. The 
β-subunit stabilizes the orientation of  αM7 and, conse-
quently, also the position of  αM5 because Tyr851 (αM7) 
can interact with Asn780 in αM5. These interactions are 
relevant for conformational stabilization during K+ trans-
port[26].
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Figure 3  Apparent K+ affinity. A-E: K0.5 values for the [K+]ex dependence of stationary currents at different membrane potentials for the RD-WT enzyme (E) and the 
mutants G900R (A), E902K (B), D999H (C) and K1003E (D), as calculated from fits of a Hill function to the data in Figure 2, respectively. Data were approximated with 
polynomial functions of second or third (D999H) grade to determine the minimum. The curve derived from RD-WT data is superimposed as dotted line for comparison. 
An “a” indicates that the data point was significantly different from the RD-WT data (aP < 0.05 vs RD-WT, Student’s t-test). Data are means ± SE obtained from 5-15 
cells of at least three batches. 
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Gly855 is separated by three positions from Gly852, 
but due to the α-helical structure, it is oriented towards 
αM5 rather than to βM (Figure 7A). Two mutations at 
this position have been identified in patients with hemi-
plegic migraine forms: G855R (FHM2)[27] and G855V 
(SHM)[13], with G855R presumably having a stronger 
effect on Na+/K+-ATPase function. Our study indeed 
shows that the G855R mutant protein is not correctly tar-
geted to the plasma membrane of  Xenopus oocytes (Fig-

ure 6A, C) although it could well be detected in the total 
intracellular membrane fraction. However, disruption of  
α/β-interactions would cause degradation of  the protein 
already in the ER. It is conceivable that the long side chain 
of  the introduced arginine might disturb the structure in 
a way that transmembrane domains (especially αM7 and 
αM5) are not correctly positioned. Here, we cannot clarify 
if  the integration in the plasma membrane of  G855R is 
affected because of  deficient α/β-interactions or because 
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Figure 4  Voltage dependence of translocated transient charge. A-E: Normalized Q(V) curves from ouabain-sensitive transient currents for the RD-WT enzyme (E), 
and for the mutants G900R (A), E902K (B), D999H (C) and K1003E (D). Fits of a Boltzmann function to the data are superimposed. Qmin and Qmax determined by the 
fit were used for normalization. The Boltzmann curve of the RD-WT enzyme is shown as a dotted line for comparison. Transient current signals are shown in a box for 
the RD-WT enzyme in panel (E). An “a” indicates that the data point was significantly different from the RD-WT data (aP < 0.05 vs RD-WT, Student’s t-test).   
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of  misfolding, but Gly855 seems to be a critical position. 
In this context, the effect of  Y1009X and L994del, 

which are not targeted to the plasma membrane either 
but are present in the TM fraction (Figure 6), might be of  
interest. As shown in Figure 7A, the flexible C-terminus 
(orange) of  the α-subunit is oriented towards a region be-
tween βM and αM7, in interaction distance to Lys770 in 
αM5 (Figure 7B). It was suggested that Tyr998 in αM10 
directly interacts with βM[23]. The Y1009X mutant protein 

lacks the 11 C-terminal residues, and in L994del, the 25 
C-terminal amino acid residues are shifted N-terminally 
by one position. These modifications in the C-terminus 
might affect the orientation of  αM7 and αM5 and there-
by, correct protein folding. To what extent α/β-interac-
tions are influenced cannot be clarified in this study. 

C-terminal region
A number of  functional studies imply that the C-terminus 
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Figure 5 Reciprocal time constants of transient currents. A-E: Voltage dependence of reciprocal time constants τ-1 from ouabain-sensitive transient currents of 
RD-WT enzyme (E) and the mutants G900R (A), E902K (B), D999H (C) and K1003E (D) under K+-free Na+/Na+ exchange conditions. The fit of a polynomial function 
to RD-WT values is superimposed as a dotted line. An “a” indicates that the data point was significantly different from the RD-WT data (aP < 0.05 vs RD-WT, Student’s 
t-test). Data are means ± SE from 5-21 oocytes of at least three batches. 
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is intimately involved in the stabilization of  the third 
Na+ binding site[16,19,42,43], including analyses of  mutations 
which are suspected to trigger neurological diseases. 
Elongation of  the C-terminus provoked different func-
tional abnormalities. Investigations on a mutation found 
in a patient with rapid-onset dystonia parkinsonism, 
where the α3-subunit’s C-terminus is extended by one 
tyrosine, implied a direct participation of  the C-terminus 
in Na+ binding[43]. Another C-terminal mutation X1021R 
(mutation of  the stop codon resulting in an elongation 
of  the C-terminus by 28 amino acids) was analyzed elec-
trophysiologically in Xenopus oocytes[14]. Interestingly, 
this mutation affected the apparent Na+

ex affinity of  the 
enzyme in a similar way as the D999H mutation. The 
Q(V) curve of  transient currents of  X1021R was com-
parably shallow, as for D999H (Figure 4C), and linear in 
the tested potential range. The zq value was reduced to 0.3 
for both mutations, which implies that Na+ release and 
rebinding is less voltage-dependent. Furthermore, the 
reciprocal time constants of  transient currents showed 
inverse voltage dependence compared to the RD-WT 
enzyme (kinetics accelerated with increasing potentials, 
Figure 5C). Similar curves were also detected for other 
C-terminally mutated enzymes like ΔYY or ΔKE(S/T)YY 
(deletion of  the last two or five amino acids, depending 
on species isoform)[17-19]. The transient currents corre-

late with the movement of  the third Na+ ion through a 
substantial fraction of  the membrane dielectric, which 
reaches its bindings site through a high-field access chan-
nel[10,33]. The τ-1(V) curve measured for D999H (Figure 
5C) or ΔYY[19] corresponds to a voltage dependence that 
is predicted by Vasilyev et al[19,44] for a reaction cycle in 
which the intra- and extracellular access for Na+ to its 
binding sites is facilitated. In conclusion, the C-terminus 
stabilizes the Na+-occluded state. This argumentation is 
also shared by Vedovato and Gadsby, who argued that 
the C-terminally deleted mutations increase the free en-
ergy for E1P(3Na+)[18]. This destabilization manifests in a 
faster conformational change or in a faster access/release 
of  intracellular Na+ ions, which means that the function 
of  the E1P(3Na+) state is impaired and correct closure of  
an intracellular occlusion gate for Na+ ions is not assured. 

Not only are the two terminal tyrosines involved in 
this stabilization, but also the residues Arg937 (αM8/M9-
loop), Asp999 (M10) and Arg1002 (M10) are part of  
a network of  interactions with these tyrosines (Figure 
7B). The FHM2/SHM mutations R937P, R1002Q[42] and 
D999H, as well as the ΔYY or ΔKE(S/T)YY sequence 
variants have similar effects on transient currents (kinetics 
and Q(V) distribution). The functional studies all show 
that the C-terminus not only regulates the apparent Na+

ex 
affinity in the E2P conformation, but also the Na+

in affin-
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ity in the E1 conformation[17,19,43]. Based on molecular dy-
namics simulations of  the wild-type enzyme and C-termi-
nally mutated α2-subunits, it was proposed that the amino 
acids Arg937, Asp999, Arg1002 and Tyr1019/1020 
form an intracellular ion pathway with Asp930 at its end, 
which controls the access to the third Na+ binding site 
depending on the protonation state of  Asp930[42]. Our 
study confirms that Asp999 is at least indirectly involved 
in the stabilization of  Na+ binding because its substitu-
tion by a histidine affected electrogenicity and kinetics of  
Na+ charge translocation in a similar fashion. In contrast, 
the overall electrophysiological data of  K1003E did not 
show severe functional abnormalities, and with regard 
to the crystal structure of  the Na+/K+-ATPase, we con-
clude that Lys1003 (αM10) is not directly involved in the 
C-terminal network (Figure 7B).

Functional consequences
Dysfunction of  the Na+/K+-ATPase affects excitatory 
processes in the CNS, especially in patients suffering 
from hemiplegic migraine. How do the mutations studied 
in this work affect the physiological processes in neuronal 
signaling cascades, since the α2-isoform in human brain 
is mainly expressed in astrocytes and not in neurons? The 
CSD phenomenon is discussed as pathophysiological 
mechanism of  the migraine aura. It is promoted by hy-
perexcitability caused by insufficient removal of  K+ and 
neurotransmitters such as glutamate from the synaptic 
cleft, which is the primary function of  astrocytes. The 
glial Na+/K+-ATPase is directly involved in K+ transport, 
and it indirectly influences glutamate and Ca2+ transport 
by regulating the Na+ gradient, which is the energy source 
of  the glutamate transporter (EAAT) and the Na+/Ca2+-
exchanger (NCX).  

G900R, E902K and K1003E did not show significant 
functional abnormalities compared to the RD-WT en-

zyme, at least under the conditions tested here. It is pos-
sible that these mutations impair the enzymatic function 
in human cells e.g. due to different temperature condi-
tions (37 ℃ as opposed to oocytes, which need to be kept 
at room temperature), as shown previously for another 
FHM2 mutation P979L[15]. Furthermore, the constructs 
G855R, L994del and Y1009X exhibited strongly reduced 
expression in the plasma membrane (Figure 6). This hints 
at an incomplete or improper folding of  the protein so 
that these mutants could not be correctly targeted to the 
plasma membrane. In patients with such mutations, the 
pump enzyme is seriously damaged, and cannot contrib-
ute to the maintenance of  ion gradients or to the removal 
of  K+. As a consequence, hyperexcitability is probable.  

Compared to all other mutants in this study, which 
gave rise to measurable Na+/K+ pump currents, the 
D999H mutation had the largest impact on pump func-
tion. The voltage dependence of  Na+/K+ pump activity 
was shifted to positive potentials compared to the RD-
WT enzyme (Figure 2C). We suppose that K+ transport 
of  this construct is only effective at around zero or posi-
tive membrane potentials. Since the α2-isoform is domi-
nant in astrocytes with resting potentials at -85 to -90 mV, 
this mutant exhibits a severe loss-of-function. K+ cannot 
be removed efficiently from the synaptic cleft at negative 
potentials, which lowers the excitation threshold and may 
trigger CSD. Furthermore, regarding the negative shift 
of  the Q(V) curve (Na+/Na+ exchange conditions, Fig-
ure 4C) and the low K0.5(K+) values at hyperpolarization 
(Figure 3C), we conclude that the apparent affinity for 
extracellular Na+ is reduced in the D999H mutant. As ex-
plained above, Asp999 is part of  the C-terminal interac-
tion network which plays a role in Na+ binding (especially 
concerning stabilization of  the third Na+ binding site, 
Figure 7B). Mutations at positions Arg937 and Tyr1019/
Tyr1020, which are also part of  this network, affected the 

Spiller S et al . Functional analysis of FHM2 mutations

Intracellular

Y39

S848

M7

G852

Y851

G855

M5
M10

M856

Extracellular

Y43

N780

βM

C-Terminus

M5

M7

M10

D999

K1003 M8/M9 loop

R937

R1002

Y1019
Y1020

K770

A B

Figure 7  Structural details of the C-terminal region and α/β-interactions. A: Structural details (PDB structure entry 3B8E) of putative interactions between the 
α- and β-subunit. Interacting residues are shown as sticks. Tyr39 and Tyr43 in the β-transmembrane domain (green) can interact with αM7 (purple). The α-helix is 
unwound at residue Gly952 (αM7). Tyr851 can form hydrogen bonds to Asn780 in αM5 (marine), which is part of the K+ binding site Ⅰ and Ⅱ. Also shown is αM10 (light 
blue) with the C-terminus (orange) of the α-subunit; B: Structural details of the C-terminal region viewed from the intracellular side. Possibly interacting residues are 
shown in sticks. The C-terminal Tyr1019 and Tyr1020 (orange) can interact with Arg1002 in αM10 (light blue), Arg937 (αM8/M9-loop in purple) and Lys770 in αM5 
(marine). Asp999 (αM10) can form hydrogen bonds to Arg1002. Lys1003 (αM10) is not involved in the C-terminal network.



251WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

affinity for both, intra- and extracellular Na+[17,19,43]. The 
ATP1A2 α2-isoform (expressed in non-excitable cells of  
the CNS) has a slightly increased Na+

in affinity compared 
to the α3-isoform[45,46], which is expressed in neurons. 
This is advantageous because enzyme activity in astro-
cytes presumably depends mainly on the increase of  the 
intracellular Na+ concentration. In other words, [Na+]in 
is the important factor determining the sensitivity of  the 
Na+/K+-ATPase towards increasing extracellular K+[47]. 
For instance, the intracellular Na+ concentration increases 
upon glutamate uptake by EAAT, and this stimulates 
pump activity and K+ transport. Accordingly, a reduced 
Na+

in affinity would constrain forward pumping with seri-
ous consequences for the recovery of  the neuronal rest-
ing potential. 

In effect, K+ and glutamate removal from the synaptic 
cleft not only depends on Na+/K+-ATPase activity, but 
other transporting enzymes are also involved. Further-
more, the penetrance of  ATP1A2 mutations can be low 
or heterogenous because of  a large diversity of  pheno-
typic expression depending on genetic and environmental 
conditions[48-50]. In consequence, physiological impacts of  
α2-mutations vary and provoke clinical symptoms of  dif-
ferent severity.

In conclusion, this study shows that the investigated 
FHM2/SHM mutations influence protein function dif-
ferently depending on the structural impacts of  the 
mutated residue, and thereby, the spectrum of  molecular 
phenotypes of  ATP1A2 mutations is widened. We have 
identified at least two positions that are critical for correct 
protein function, with Asp999 being involved in Na+-
binding and with Gly855 being essential for plasma mem-
brane targeting. The functional analysis of  FHM2/SHM 
mutations are mandatory to elucidate structure-function 
relationships of  the Na+/K+-ATPase and, furthermore, 
to identify biochemical linkage between impairments of  
protein function and neurological diseases. Our results 
may help to understand molecular mechanisms in order 
to develop a basic approach for future therapeutic strate-
gies.
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by extracting freshly prepared ROS in the dark. The 
guanine nucleotide binding activity of transducin was 
determined by Millipore filtration using β,γ-imido-(3H)-
guanosine 5’-triphosphate. Recognition of the recon-
stituted pigments by rhodopsin kinase was determined 
by autoradiography following incubation of ROS mem-
branes containing the various regenerated pigments 
with partially purified rhodopsin kinase in the presence 
of (γ-32P) ATP. Binding of arrestin-1 to the various pig-
ments in ROS membranes was determined by a sedi-
mentation assay analyzed by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis.

RESULTS: Reconstituted rhodopsin and rhodopsin 
analogues containing 9-cis -retinal and 13-cis -retinal 
rendered an absorption spectrum showing a maximum 
peak at 498 nm, 486 nm and about 467 nm, respec-
tively, in the dark; which was shifted to 380 nm, 404 
nm and about 425 nm, respectively, after illumina-
tion. The percentage of reconstitution of rhodopsin 
and the rhodopsin analogues containing 9-cis -retinal 
and 13-cis -retinal was estimated to be 88%, 81% and 
24%, respectively. Although only residual activation of 
transducin was observed in the dark when reconsti-
tuted rhodopsin and 9-cis -retinal-rhodopsin was used, 
the rhodopsin analogue containing the 13-cis  isomer of 
retinal was capable of activating transducin indepen-
dently of light. Moreover, only a basal amount of the 
reconstituted rhodopsin and 9-cis -retinal-rhodopsin was 
phosphorylated by rhodopsin kinase in the dark, where-
as the pigment containing the 13-cis -retinal was highly 
phosphorylated by rhodopsin kinase even in the dark. 
In addition, arrestin-1 was incubated with rhodopsin, 
9-cis -retinal-rhodopsin or 13-cis -retinal-rhodopsin. Ex-
periments were performed using both phosphorylated 
and non-phosphorylated regenerated pigments. Basal 
amounts of arrestin-1 interacted with rhodopsin, 9-cis -
retinal-rhodopsin and 13-cis -retinal-rhodopsin under 
dark and light conditions. Residual arrestin-1 was also 
recognized by the phosphorylated rhodopsin and phos-
phorylated 9-cis -retinal-rhodopsin in the dark. However, 
arrestin-1 was recognized by phosphorylated 13-cis -
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Abstract
AIM: To investigate the interaction of reconstituted rho-
dopsin, 9-cis -retinal-rhodopsin and 13-cis -retinal-rho-
dopsin with transducin, rhodopsin kinase and arrestin-1.

METHODS: Rod outer segments (ROS) were isolated 
from bovine retinas. Following bleaching of ROS mem-
branes with hydroxylamine, rhodopsin and rhodopsin 
analogues were generated with the different retinal 
isomers and the concentration of the reconstituted 
pigments was calculated from their UV/visible absorp-
tion spectra. Transducin and arrestin-1 were purified 
to homogeneity by column chromatography, and an 
enriched-fraction of rhodopsin kinase was obtained 
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retinal-rhodopsin in the dark. As expected, all reformed 
pigments were capable of activating transducin and 
being phosphorylated by rhodopsin kinase in a light-
dependent manner. Additionally, all reconstituted pho-
tolyzed and phosphorylated pigments were capable of 
interacting with arrestin-1.

CONCLUSION: In the dark, the rhodopsin analogue 
containing the 13-cis  isomer of retinal appears to fold 
in a pseudo-active conformation that mimics the active 
photointermediate of rhodopsin.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Rhodopsin; Rhodopsin analogues; 9-cis -
Retinal; 11-cis -Retinal; 13-cis -Retinal; Photointermedi-
ates; Transducin; Rhodopsin kinase; Arrestin-1; Visual 
process

Core tip: Rhodopsin is a specialized G protein-coupled 
receptors composed of a single polypeptide chain, 
opsin, and a covalently linked 11-cis -retinal. It is well 
known that rhodopsin uses the 11-cis  form of retinal 
exclusively as the chromophore. Retinal analogues 
have long been used to probe the chromophore bind-
ing pocket and to study ligand-protein relationships to 
better understand the photochemical cis-trans isomeri-
zation of rhodopsin. However, little is known about the 
interactions of rhodopsin analogues with other proteins 
in the visual cascade. Here, we were able to reconsti-
tute a rhodopsin analogue containing 13-cis -retinal. We 
compared the binding of reconstituted rhodopsin, 9-cis-
retinal-rhodopsin and 13-cis -retinal-rhodopsin to trans-
ducin, rhodopsin kinase and arrestin-1, both in the dark 
and under illumination. Interestingly, we found that in 
the dark the rhodopsin analogue containing the 13-cis  
isomer of retinal appears to fold in a pseudo-active 
conformation that mimics the active photointermediate 
of rhodopsin.

Araujo NA, Sanz-Rodríguez CE, Bubis J. Binding of rhodopsin 
and rhodopsin analogues to transducin, rhodopsin kinase and ar-
restin-1. World J Biol Chem 2014; 5(2): 254-268  Available from: 
URL: http://www.wjgnet.com/1949-8454/full/v5/i2/254.htm  
DOI: http://dx.doi.org/10.4331/wjbc.v5.i2.254

INTRODUCTION
G protein-coupled receptors (GPCRs) activate signaling 
paths in response to a diverse number of  stimuli such 
as photons, Ca2+, organic odorants, amines, hormones, 
nucleotides, nucleosides, peptides, lipids and even large 
proteins[1]. All GPCRs share a conserved seven-transmem-
brane-helix structural bundle connected by six loops of  
varying lengths. Binding of  specific ligands to the trans-
membrane or extracellular domains of  members of  the 
GPCR superfamily causes conformational changes that 
act as a switch to relay the signal to heterotrimeric G pro-

teins that in turn evoke further intracellular responses[2]. 
The dim-light photoreceptor rhodopsin is a highly 

specialized GPCR composed of  a single polypeptide 
chain of  348 amino acids that conforms the apoprotein 
opsin, and a covalently linked 11-cis-retinal chromophore 
that is tightly packed within the bundle of  helices[3,4]. The 
chromophore is bound to the ε-amino group of  Lys296, 
located in the seventh helix (TM7) via a protonated Schiff  
base linkage. In the ground state this charge is stabilized 
by the counter-ion Glu113 that is located in the third he-
lix (TM3)[5]. Another important structural feature of  the 
11-cis-retinal chromophore in rhodopsin is its extended 
polyene structure, which accounts for its visible absorp-
tion properties and allows for resonance structures[6].

In rhodopsin, 11-cis-retinal serves both as the chro-
mophore and as an inverse agonist that holds the visual 
pigment protein in an inactive conformation. Absorption 
of  a photon by the 11-cis-retinal of  rhodopsin causes 
its photoisomerization to the all-trans form[7], convert-
ing the ligand into an agonist, and leading to a confor-
mational change of  the protein moiety that triggers the 
signal transduction cascade via reactions of  the G protein 
transducin. Following cis-trans isomerization of  the chro-
mophore, rhodopsin relaxes through a series of  photo-
products, which have been identified by their character-
istic absorption spectra. One of  the photointermediates, 
metarhodopsin Ⅱ (meta Ⅱ), is the active conformation 
of  rhodopsin responsible of  binding transducin and initi-
ating the signaling process. Transducin, which is arranged 
as two units, the α subunit and the βγ-complex, transmits 
the visual stimuli by activating a potent cGMP phospho-
diesterase known as PDE6. The resulting decrease in the 
cytosolic concentration of  cGMP causes the closure of  
cation-specific cGMP-gated channels located in the plas-
ma membrane, leading to the hyperpolarization of  the 
rod cell. Additional protein molecules participate in mod-
ulating the duration of  the signal and the achievement of  
the appropriate response[8]. Particularly, the phosphoryla-
tion of  photoactivated rhodopsin by rhodopsin kinase, 
also known as GPCR kinase 1 or GRK1, and its interac-
tion with arrestin-1, are both involved in signal desensiti-
zation since the transducin activation phase is terminated 
by the interaction of  meta Ⅱ with rhodopsin kinase and 
arrestin-1[9,10]. Subsequently, the retinal Schiff  base is hy-
drolysed and the photolysed all-trans-retinal is released 
from its binding site. Regeneration of  the light sensitive 
rhodopsin ground state requires the supply of  new 11-cis-
retinal through the so-called retinoid cycle[11,12].

It is well known that the rod visual pigment rhodopsin 
uses the 11-cis form of  retinal exclusively as the chromo-
phore, and the strict selection of  this isomer appears to 
have occurred early in the evolution of  visual function. 
Under certain pathological conditions, however, also the 9-cis 
configuration of  retinal is observed, which generates a pig-
ment known as isorhodopsin[13]. Retinal analogues have long 
been used to probe the chromophore binding pocket and 
to study ligand-protein relationships to better understand 
the photochemical cis-trans isomerization of  rhodopsin[14] 
and cone opsins[15]. Yet, little is known about the interac-
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tions of  rhodopsin analogues with other proteins in the vi-
sual cascade. Although, it has been reported that the retinal 
binding site in the inactive state of  rhodopsin can accom-
modate the 7-cis, 9-cis and 11-cis isomers of  retinal, but not 
the longer all-trans or 13-cis isomers[16], in the present work 
we were able to reconstitute a rhodopsin analogue contain-
ing 13-cis-retinal, in addition to photoreceptor proteins 
containing 9-cis-retinal and 11-cis-retinal. We compared the 
binding of  reconstituted rhodopsin, 9-cis-retinal-rhodopsin 
and 13-cis-retinal-rhodopsin to transducin, rhodopsin kinase 
and arrestin-1, both in the dark and under illumination. The 
chemical structures of  the geometrical retinal isomers used 
here and of  all-trans-retinal are shown in Figure 1.

MATERIALS AND METHODS
Materials 
Bovine eyes were obtained from the nearest abattoir (Ben-
eficiadora Diagon, CA, Matadero Caracas, Venezuela). Reti-
nae were extracted in the dark, under red light, and were 
maintained frozen at -80 ℃. Reagents were purchased from 
the following sources: β,γ-imido-(3H)-guanosine 5’-triphos-
phate [(8-3H) GMPpNp] (17.9 Ci/mmol) and (γ-32P) ATP 
(3000 Ci/mmol), Amersham; 9-cis-retinal, 13-cis-retinal, bo-
vine serum albumine (BSA), hydroxylamine, phytic acid or 
inositol hexakisphosphate (IP6), n-dodecyl β-D-maltoside, 
and DEAE-cellulose, Sigma-Aldrich; ATP, heparine-
sepharose and concanavalin A-Sepharose 4B, Pharmacia; 
molecular weight pre-stained protein markers, and Bradford 
reagent, Bio-Rad; anti-rabbit IgG antibodies conjugated to 
alkaline phsophatase, KPL; bromocloroindolyl phosphate/
nitro blue tetrazolium (BCIP/NBT), and molecular weight 
protein standards, Promega; X-ray films, Kodak. The 11-cis-
retinal was donated by Dr. Debra Thompson, University of  
Michigan, United States.

Preparation of rod outer segments and washed 
membranes
Rod outer segments (ROS) were isolated from frozen 

bovine retinas as described previously[17]. Dark depleted 
ROS membranes were prepared by washing ROS with 5 
mmol/L Tris-HCl (pH = 7.4), 2 mmol/L EDTA, and 5 
mmol/L β-mercaptoethanol until no significant amount 
of  peripheral proteins was released with the wash buffer. 
ROS and dark-depleted ROS membranes were stored in 
the dark at -80 ℃. Rhodopsin concentration was calculat-
ed from its UV/visible absorption spectra, using its mo-
lar extinction coefficient (40700 M-1cm-1, at 500 nm)[18]. 
In addition, rhodopsin was identified by sodium dodecyl 
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and Western blot using anti-bovine rhodopsin polyclonal 
antibodies raised in mice.

Purification of transducin
Transducin was obtained from ROS prepared under room 
light, at 4 ℃, following the affinity procedure described by 
Kühn[19]. GTP (100 μmol/L) was employed to elute trans-
ducin from the washed illuminated ROS, and transducin 
was further purified to homogeneity by anion exchange 
chromatography on a DEAE-cellulose column as de-
scribed elsewhere[20]. Fractions containing transducin were 
identified by SDS-PAGE and Western blot using anti-
bovine transducin polyclonal antibodies raised in mice.

Preparation of an Enriched fraction of Rhodopsin 
Kinase 
Freshly prepared ROS were washed three times with 
an isotonic buffer containing 70 mmol/L potassium 
phosphate (pH = 6.8), 5 mmol/L magnesium acetate, 5 
mmol/L β-mercaptoethanol, and 0.1 mmol/L phenyl-
methylsulfonyl fluoride (PMSF). Following centrifugation, 
the washed ROS pellet was hypotonically extracted with 
5 mmol/L Tris-HCl (pH = 7.4), 5 mmol/L magnesium 
acetate, 5 mmol/L β-mercaptoethanol, and 0.1 mmol/L 
PMSF[21]. Under these conditions, soluble proteins and 
proteins weakly associated with the membrane, including 
transducin, cGMP phosphodiesterase PDE6, arrestin-1, 
and rhodopsin kinase, appear in the supernatant gener-
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Figure 1  Structures of retinal analogues. A: 9-cis-retinal; B: 11-cis-retinal; C: 13-cis-retinal; D: all-trans-retinal.



ated after centrifugation. This supernatant was considered 
as the enriched fraction of  rhodopsin kinase. The whole 
procedure was carried out at 4 ℃, in the dark under red 
light.

Purification of arrestin-1 
Arrestin-1 was purified following the procedure described 
by Buczyłko et al[22]. Frozen bovine retinas were homog-
enized with 10 mmol/L Hepes (pH = 7.5), 0.1 mmol/L 
PMSF, 1 mmol/L β-mercaptoethanol, under dim red 
light, at 4 ℃. Following centrifugation at 70000 g, for 25 
min, the supernatant containing the soluble proteins was 
chromatographed on a DEAE-cellulose column, previ-
ously equilibrated in the same buffer. The column was 
washed with 10 mmol/L Hepes (pH = 7.5), 15 mmol/L 
NaCl, 0.1 mmol/L PMSF, 1 mmol/L β-mercaptoethanol 
(Buffer A) until the absorbance at 280 nm dropped be-
low 0.1. Adsorbed proteins were eluted with a 0 to 150 
mmol/L linear gradient of  NaCl in Buffer A, and the 
fractions containing arrestin-1 were identified by SDS-
PAGE and Western blot using anti-bovine arrestin-1 
polyclonal antibodies prepared in rabbits. These fractions 
were pooled and applied to a heparin-sepharose col-
umn, which was previously equilibrated with 10 mmol/L 
Hepes (pH = 7.5), 100 mmol/L NaCl, 0.1 mmol/L 
PMSF, 1 mmol/L β-mercaptoethanol (Buffer B). Arres-
tin-1 was eluted using a gradient of  0 to 8 mmol/L phytic 
acid in Buffer B. The peak of  arrestin-1 was pooled, 
dialyzed against Buffer A, applied to a second heparin-
sepharose column, and eluted with 10 mmol/L Hepes 
(pH = 7.5), 400 mmol/L NaCl, 0,1 mmol/L PMSF, 1 
mmol/L β-mercaptoethanol. 

Bleaching of rhodopsin in washed ROS membranes 
Washed ROS membranes were incubated with 50 mmol/
L hydroxylamine in 10 mmol/L Tris-HCl (pH = 7.4), at 
4 ℃, for 15 min, under illumination with a tungsten 100 
W lamp. Then, the mixture was centrifuged at 50000 g 
for 20 min, at 4 ℃. The supernatant was discarded and 
the pellet was washed twice with 5 mmol/L Tris-HCl 
(pH = 7.4), 5 mmol/L magnesium acetate, 5 mmol/L 
β-mercaptoethanol.

Regeneration of rhodopsin and rhodopsin analogues 
Samples of  bleached washed ROS membranes contain-
ing about 25 μmol/L of  opsin were resuspended in 10 
mmol/L Tris-HCl (pH = 7.4). Then, appropriate ali-
quots of  stock solutions of  9-cis-retinal, 11-cis-retinal, 
and 13-cis-retinal prepared in ethanol were added in the 
dark. A molar ratio of  3:1 retinal to opsin was used for 
the reconstitution of  the pigment with the 9-cis-retinal 
and 11-cis-retinal isomers, whereas a ratio of  15:1 reti-
nal to opsin was employed for the regeneration of  the 
rhodopsin analogue containing the 13-cis-retinal isomer. 
Following an overnight incubation, at room temperature, 
all samples were centrifuged at 50000 g, for 20 min, at 
4 ℃. The regeneration of  the pigments was followed by 
UV-Vis spectroscopy using the extinction coefficient of  
rhodopsin[18]. The excess of  9-cis-retinal, 11-cis-retinal, 

and 13-cis-retinal was eliminated by washing the mem-
branes containing the reconstituted pigments with 2% 
BSA in 10 mmol/L Tris-HCl (pH = 7.4). BSA was then 
removed by successive washes with 5 mmol/L Tris-HCl 
(pH 7.4), 5 mmol/L magnesium acetate, 0.1 mmol/L 
PMSF, 5 mmol/L β-mercaptoethanol. ROS membranes 
containing the reconstituted pigments were resuspended 
in 5 mmol/L Tris-HCl (pH = 7.4), 100 mmol/L NaCl, 
1 mmol/L magnesium acetate, 0.1 mmol/L PMSF, 5 
mmol/L β-mercaptoethanol.

Binding of (8-3H) GMPpNp to transducin 
Guanine nucleotide binding was measured by Millipore 
filtration using (8-3H) GMPpNp, a radioactive non-
hydrolyzable analogue of  GTP, as previously described[23]. 

Phosphorylation of reconstituted rhodopsin and 
rhodopsin analogues 
ROS membranes containing the reconstituted pigments 
were incubated with a 50-μL aliquot of  an enriched frac-
tion of  rhodopsin kinase, in the presence of  50 mmol/L 
Tris-HCl (pH = 7.5), 12 mmol/L MgCl2, 20 mmol/L KF, 
40 µmol/L [γ-32P] ATP (specific activity about 4500 cpm/
pmol), 0.1 mmol/L PMSF, 5 mmol/L β-mercaptoethanol. 
Following incubation for 1 h, at room temperature, under 
illumination with a 100 W tungsten lamp, the phosphory-
lated membranes were centrifuged at 100000 g, for 20 
min, at 4 ℃. Identical control experiments were carried 
out in the dark. Samples were separated by SDS-PAGE 
and the phosphorylated bands were identified by autora-
diography following staining and drying of  the gels.

Regeneration of phosphorylated rhodopsin and 
phosphorylated rhodopsin analogues 
ROS containing 1.9 mg of  rhodopsin were sedimented by 
centrifugation at 100000 g for 20 min, and resuspended 
in 50 mmol/L Tris-HCl (pH = 7.5), 12 mmol/L MgCl2, 
20 mmol/L KF, 40 µmol/L ATP, 0.1 mmol/L PMSF, 5 
mmol/L β-mercaptoethanol, in the presence of  a 50-μL 
aliquot of  an enriched fraction of  rhodopsin kinase. 
Following illumination for 1 h with a tungsten 100 W 
lamp, the mixture was centrifuged and the resulting pellet 
containing the phosphorylated protein was resuspended 
in 10 mmol/L Tris-HCl (pH = 7.4). Phosphorylated rho-
dopsin was bleached with 50 mmol/L hydroxylamine to 
obtain phosphorylated opsin. Samples of  phosphorylated 
opsin were reconstituted with 9-cis-retinal, 11-cis-retinal 
and 13-cis-retinal as described above.

Interaction of reconstituted rhodopsin and rhodopsin 
analogues with arrestin-1 
The binding of  arrestin-1 to the pigments reconstituted 
in washed ROS membranes was determined according to 
Gurevich et al[24], with slight modifications. Briefly, sam-
ples of  arrestin-1 (14 μg) were incubated with 12 μg of  
the regenerated pigments, for 1 h, at room temperature. 
Experiments were performed in 100 μL of  5 mmol/L 
Tris-HCl (pH = 7.4), 5 mmol/L magnesium acetate, 0.1 
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mmol/L PMSF, 5 mmol/L β-mercaptoethanol, both in 
the dark and under illumination, using phosphorylated 
and non-phosphorylated pigments (about molar ratio 
of  1:1 arrestin-1 to pigment). The original mixture, and 
the resulting supernatant and pellet after centrifugation 
at 100000 g, for 20 min, were separated by SDS-PAGE. 
The gels were colored by silver staining and the bands of  
arrestin-1 and rhodopsin or rhodopsin analogues were 
evaluated by densitometry. 

Other procedures
Protein concentration was determined as reported by 
Bradford[25] using BSA as protein standard. SDS-PAGE 
was carried out on 1.5-mm thick slab gels containing 12% 
polyacrylamide as described by Laemmli[26]. Coomassie 
blue R-250 or silver staining was used for protein visual-
ization. For Western blot analyses, the proteins were elec-
trophoretically transferred from the gels to nitrocellulose 
sheets (0.45 μm pore size) as reported by Towbin et al[27]. 
Rhodopsin was purified to homogeneity by batchwise af-
finity chromatography on concanavalin A-Sepharose[28], 
using n-dodecyl β-D-maltoside instead of  n-octyl β-D-
glucopyranoside as the detergent. Polyclonal antibodies 
against rhodopsin and transducin were prepared in mice 
as described[29]. Purified arrestin-1 was used to raise poly-
clonal antibodies in rabbit serum following the procedure 
described by Harlow et al[30]. 

Statistical analysis
For statistical analysis, mean value comparisons were 
performed by using the Student t-test or Anova and 
Krunskal-Wallis test. P-values below 0.05 were considered 
significant. Data in all histograms are graphed as mean ± 
SD.

RESULTS
Analysis by SDS-PAGE showed that isolated ROS mem-
branes contained all the proteins involved in the pho-
toexcitation process (Figure 2A), including rhodopsin, 
transducin, cGMP phosphodiesterase PDE6, arrestin-1 
and rhodopsin kinase[19]. As revealed by Western blot 
using anti-rhodopsin polyclonal antibodies, the major 
polypeptide band with an apparent molecular mass of  
approximately 35 kDa corresponded to rhodopsin (Fig-
ure 2B). Since rhodopsin has a tendency to oligomerize, 
higher order oligomers of  rhodopsin, such as dimers, 
trimers, etc., were also detected by immunoblotting (Figure 
2B). Rhodopsin polypeptide bands were observed in the 
original ROS sample and remained in the pellet follow-
ing the washing procedure (Figure 2A and B). The pres-
ence of  rhodopsin was also demonstrated by measuring 
the UV/visible absorption spectra of  the samples and 
estimating the ratio of  the absorbance at 280 nm to the 
absorbance at 500 nm[28,31]. Crude ROS showed a spectral 
ratio A280 nm/A500 nm of  2.68, which decreased to 2.05 in 
dark-depleted ROS membranes after removal of  the pe-

ripheral proteins (Figure 2C). 
Rhodopsin was bleached by exposing washed ROS 

membranes to light in the presence of  hydroxylamine. 
This treatment caused the complete detachment of  the 
retinal chromophore. Rhodopsin and rhodopsin ana-
logues containing the 9-cis and 13-cis isomers of  retinal 
were reformed by incubating opsin with an excess of  
each retinal in the dark. The regeneration of  rhodopsin is 
shown in Figure 2D as an example. As illustrated in Fig-
ure 2D, the 11-cis-retinal molecule possessed a broad ab-
sorption band at about 370 nm that overlapped with the 
absorption peak of  the reconstituted rhodopsin pigment. 
Washes in the presence of  BSA completely removed the 
residual retinal (Figure 2D).

As can be seen in Figure 3, pigments were reconsti-
tuted after the addition of  the three retinal isomers to 
opsin in the dark. Reconstituted rhodopsin rendered the 
characteristic absorption spectrum of  rhodopsin in the 
dark (Figure 3B), showing a maximum peak at 498 nm 
(about 500 nm). Following illumination, this band was 
shifted to 380 nm that corresponded to the meta Ⅱ pho-
tointermediate. In the dark, the reconstituted pigment 
analogue containing 9-cis-retinal (isorhodopsin) showed 
an absorbance peak at 486 nm (Figure 3A), which was 
slightly blue shifted in comparison to rhodopsin. Once 
photolyzed, the maximum of  illuminated isorhodopsin 
was obtained at 404 nm which was slightly red shifted 
in comparison to meta Ⅱ. The absorption spectra of  
the rhodopsin analogue containing 13-cis-retinal showed 
broader bands than rhodopsin and isorhodopsin, under 
both, dark and light conditions (Figure 3C). In the dark, 
the absorption peak of  13-cis-retinal-rhodopsin was blue 
shifted showing its maximum at about 467 nm. After 
photolysis, the highest absorption peak of  the illuminated 
13-cis-retinal-rhodopsin was acquired at about 425 nm, 
more red shifted than meta Ⅱ and illuminated isorho-
dopsin. The percentage of  reconstitution of  the three 
pigments was estimated by comparing the absorption 
values at their maximum wavelength, using the extinction 
coefficient of  rhodopsin as an approximate value[18], and 
the amount of  total protein determined for each sample 
by the method of  Bradford[25]. Our results showed that 
rhodopsin and isorhodopsin were reconstituted with a 
yield of  88% and 81%, respectively, whereas the rhodop-
sin analogue containing the 13-cis isomer of  retinal was 
reformed with a yield of  only 24%. 

A partially purified transducin sample was initially 
obtained by GTP elution from illuminated ROS mem-
branes. Then, transducin was purified to homogeneity by 
chromatography on a DEAE-cellulose column (Figure 
4A). The elution of  transducin was evaluated by measur-
ing the rhodopsin- and light-dependent guanine nucleo-
tide binding by a filtration assay using (8-3H) GMPpNp. 
SDS-PAGE revealed that the same fractions comprising 
the GMPpNp binding activity also contained the poly-
peptide bands corresponding to the α-, β-, and γ-subunits 
of  transducin (Figure 4A, Inset, top). In addition, anti-
transducin polyclonal antibodies that preferentially detect 
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the α-subunit of  transducin also recognized the α-subunit 
in the fractions containing the protein peak (Figure 4A, 
Inset, bottom). 

Transducin binding to reconstituted rhodopsin and 
rhodopsin analogues was evaluated by measuring their 
capacity to induce the exchange of  guanine nucleotides 
on transducin. The amount of  reconstituted pigment, 
instead of  the total amount of  protein, was employed 
to normalize the reported values. As shown in Figure 
5, all reformed pigments were capable of  catalyzing the 
GMPpNp binding activity of  transducin in a light-depen-
dent manner. As expected, little activation of  transducin 
(about 10%-15%) was observed in the dark when re-
constituted rhodopsin and isorhodopsin were employed 
(Figure 5). Moreover, the apoprotein opsin was unable of  
inducing the exchange of  GMPpNp on transducin (data 
not shown). In contrast and surprisingly, the rhodopsin 
analogue containing the 13-cis isomer of  retinal was capa-

ble of  activating transducin independently of  light (about 
40%) (Figure 5), suggesting that this pigment possesses a 
conformation in the dark that is similar to that of  meta Ⅱ. 

Figure 4B (left) shows the polypeptide composition 
of  an aliquot of  the enriched fraction of  rhodopsin ki-
nase, compared with samples of  ROS and washed ROS 
membranes. This partially purified fraction of  rhodopsin 
kinase contained polypeptide bands that corresponded 
to reported ROS peripheral proteins (transducin, cGMP 
phosphodiesterase PDE6, arrestin-1, rhodopsin kinase, 
etc.). As shown in Figure 4B (right) by autoradiography, 
intact ROS included active rhodopsin kinase given that 
rhodopsin was specifically phosphorylated in a light-
dependent manner. Phosphorylated rhodopsin oligomers 
were also obtained in the crude ROS sample (Figure 4B, 
right). The enriched fraction of  rhodopsin kinase was 
also capable of  phosphorylating rhodopsin in washed-
ROS membranes and under illumination (Figure 4B, 

259WJBC|www.wjgnet.com May 26, 2014|Volume 5|Issue 2|

Araujo NA et al . 13-cis -Retinal-rhodopsin is pseudo-active in the dark

R
O

S

W
as

he
d 

R
O

S

M kDa

200

97.4

68

43

29

18.4

Rho3

Rho2

Rho

PDEα+
PDEβ

Rho-K

Arr

Tα

Tβ

PDEγ+
Tγ

114
81.2

47.9

31.5

16.6

24.8

Rho3

Rho2

Rho1

R
O

S

W
as

he
d 

R
O

S

kDa

0.4

0.3

0.2

0.1

0.0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

Ab
so

rb
an

ce

Wavelength (nm)

ROS

Washed ROS

0.50

0.25

0.00

1.20

0.60

0.00

Ab
so

rb
an

ce

250                 450                   650
Wavelength (nm)

Figure 2  Isolation of rod outer segments, preparation of washed rod outer segments membranes, and reconstitution of rhodopsin. A: ROS were isolated 
from frozen bovine retinas and were hypotonically washed in the dark until no peripheral proteins were released. Arrows indicate the migration of rhodopsin (Rho), 
rhodopsin oligomers (Rho2 and Rho3), α-, β- and γ-subunits of the cGMP phosphodiesterase PDE6 (PDEα, PDEβ and PDEγ), α-, β- and γ-subunits of transducin 
(Tα, Tβ and Tγ), rhodopsin kinase (Rho-K), and arrestin-1 (Arr); B: ROS and dark-depleted ROS membranes were separated by SDS-PAGE, electrotransferred to 
a nitrocellulose filter and analyzed using polyclonal anti-rhodopsin antibodies. Arrows point out the migration of rhodopsin (Rho), rhodopsin dimers (Rho2), and rho-
dopsin trimers (Rho3). C: Absorption spectra of solubilized ROS and washed-ROS membranes in the dark; D:  Regeneration of rhodopsin. A sample of depleted ROS 
membranes was bleached with hydroxylamine and incubated with an excess of 11-cis-retinal. Shown is the UV/visible spectra of rhodopsin in the dark, before (dashed 
line) and after (continuous line) removing the excess of 11-cis-retinal by washing with BSA. M: Molecular weight markers; ROS: Rod outer segments.

A B

DC



right). 
The ability of  the reconstituted rhodopsin and rho-

dopsin analogues to serve as substrates for rhodopsin 
kinase was then measured by incubating each sample with 
an aliquot of  the enriched fraction of  rhodopsin kinase. 
As shown in Figure 6A by Coomassie blue staining, the 
same amount of  each reconstituted protein was loaded 
in the gel lanes. Figure 6B illustrates by autoradiography 
that an enriched fraction of  rhodopsin kinase was ca-
pable of  phosphorylating all the reformed pigments in 
a light-dependent manner. Only basal amounts of  the 
reconstituted rhodopsin and isorhodopsin samples were 
phosphorylated by rhodopsin kinase in the dark (Figure 
6B). Opsin behaved similar to inactive rhodopsin given 
that the apoprotein was not phosphorylated by rhodopsin 
kinase (data not shown). However, the pigment containing 
the 13-cis-retinal was highly phosphorylated by rhodopsin 
kinase even in the dark (Figure 6B). Autoradiograms were 
quantified by densitometry in Figure 6C, corroborating 
the results qualitatively obtained in Figure 6B. The amount 
of  regenerated pigment, instead of  the total amount of  
protein, was used to normalize the reported values. These 
results suggest that 13-cis-retinal-rhodopsin, in its dark 
state, folds in a conformation that appears to be compa-
rable to that of  meta Ⅱ, given that it can be recognized by 

rhodopsin kinase even in the absence of  light.
Arrestin-1 was purified to homogeneity by using three 

consecutive chromatography steps: (1) a DEAE-cellulose 
column; (2) a heparin-sepharose column that was eluted 
with a gradient of  phytic acid; and (3) a second heparin-
sepharose column that was eluted with 400 mmol/L 
NaCl[21]. Figure 4C shows the protein profile obtained 
after the last chromatography step. The elution of  ar-
restin-1 was evaluated by SDS-PAGE analysis, which 
showed a polypeptide band with an apparent molecular 
mass of  approximately 50 kDa (Figure 4C, Inset, top). 
This band was specifically recognized by anti-arrestin-1 
polyclonal antibodies (Figure 4C, Inset, bottom). The 
ability of  arrestin-1 to interact with the reconstituted rho-
dopsin and rhodopsin analogues was then evaluated by an 
affinity binding procedure. Arrestin-1 was incubated with 
rhodopsin, isorhodopsin or the 13-cis-retinal-rhodopsin, 
which were reconstituted using washed ROS membranes. 
Experiments were performed both in the dark and under 
illumination, and using phosphorylated and non-phos-
phorylated pigments. An experiment using opsin was also 
included as a control. After centrifugation, the resulting 
supernatants and pellets of  all the samples were sepa-
rated by SDS-PAGE. The interaction between arrestin-1 
and the three pigments was determined qualitatively by 
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measuring the amount of  arrestin-1 that was translocated 
from the initial mixture to the pellet. No arrestin-1 was 
bound to non-phosphorylated apoprotein opsin in the 
dark or light (Figure 7A and B, lane P). Moreover, as seen 
in the same figure (Figure 7A and B, lane P), no arrestin-1 

interacted with phosphorylated opsin in the dark or light. 
Basal amounts of  arrestin-1 interacted with rhodopsin, 
isorhodopsin and the 13-cis-retinal-rhodopsin complex, 
both in the dark and under illumination (Figure 7A and 
B, lane P), and as expected, all reformed photolyzed and 
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Figure 4  Purification of transducin and 
arrestin-1, and preparation of an enriched 
fraction of rhodopsin kinase. A: Transducin 
was purified to homogeneity on a DEAE-
cellulose column. The elution profile was moni-
tored at 280 nm (■). Fractions were analyzed 
for [8-3H] GMPpNp binding activity (CPM) in 
the absence (○, continuous line) or presence 
(○, dashed line) of light-activated rhodopsin 
(as dark-depleted ROS membranes). Fractions 
were also examined by SDS-PAGE (Inset, 
top) and Western blot using anti-transducin 
polyclonal antibodies (Inset, bottom). Lanes a, 
b, c, d, e, f, and g correspond to column frac-
tions Nº 155, 160, 165, 170, 175, 180 and 185, 
respectively. Arrows indicate the migration of 
α-, β- and γ-subunits of transducin (Tα, Tβ 
and Tγ); B: Autoradiography showing the light-
induced in vitro phosphorylation of rhodopsin 
by rhodopsin kinase (Rho-K). Left, Coomassie 
blue staining; Right, Autoradiography. Samples 
of intact ROS membranes, a partially purified 
fraction of Rho-K, or a mixture of dark-depleted 
ROS membranes together with the enriched 
fraction of Rho-K were incubated with [γ-32P] 
ATP under light conditions as described in 
Materials and Methods. Arrows indicate the 
migration of phosphorylated rhodopsin (Rho), 
rhodopsin dimers (Rho2), rhodopsin trimers 
(Rho3) and rhodopsin tetramers (Rho4). A 
polypeptide band of 80 kDa was phosphorylat-
ed in the Rho-K enriched fraction. M: Molecular 
weight markers; C: Arrestin-1 was purified to 
homogeneity after three consecutive chro-
matography steps, a DEAE-cellulose column, 
a heparin-sepharose column eluted with a 
gradient of phytic acid, and a second heparin-
sepharose column eluted by increasing the salt 
concentration in the buffer. Shown is the elution 
profile of the last heparin-sepharose column, 
which was monitored at 280 nm (•). Fractions 
were inspected by SDS-PAGE (Inset, top) and 
Western blot using anti-arrestin-1 polyclonal 
antibodies (Inset, bottom). Lanes a, b, c, d, e, 
f, g, h, i, and j correspond to column fractions 
Nº 17, 21, 23, 25, 27, 29, 31, 33, 35, and 36. 
Arrows indicate the migration of arrestin-1 (Arr). 
ROS: Rod outer segments.
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phosphorylated pigments were capable of  recognizing 
and binding arrestin-1 (Figure 7B, lane P). Although only 
residual arrestin-1 was bound to phosphorylated rhodop-
sin and phosphorylated isorhodopsin in the dark (Figure 
7A, lane P), arrestin-1 was efficiently recognized by phos-
phorylated 13-cis-retinal-rhodopsin in the dark (Figure 
7A, lane P). The silver stained gels shown in Figure 7A 
and B were quantified by densitometry (Figure 7C) and 
confirmed the results described above. The amount 
of  reconstituted pigment, instead of  the total amount 
of  protein, was used to normalize the reported values 
shown in the histograms. The interaction of  arrestin-1 
with phosphorylated 13-cis-retinal-rhodopsin in the dark 
is consistent with our findings using transducin and rho-
dopsin kinase, that suggest that the rhodopsin analogue 
containing the 13-cis isomer of  retinal exists as a pseudo-
active state even without illumination.

DISCUSSION 
To study ligand binding pockets in proteins, specific ana-
logues with systematically altered chemical property in 
their structural moieties have usually been employed to 
establish structure-activity relationships with regard to 
their functional groups. Retinal has four C = C double 
bonds that give rise to the four mono-cis isomers, the 
7-cis, 9-cis, 11-cis and 13-cis forms. These isomers undergo 
cis–trans isomerization upon photoexcitation. The chro-
mophore of  rhodopsin is 11-cis-retinal and, thus, in its 
absence, opsin is not photosensitive and no visual func-
tion exists. Here, the 9-cis and 13-cis retinal isomers have 
been used to probe the rhodopsin chromophore binding 
pocket and to study ligand-protein relationships to better 
understand the photochemical cis-trans isomerization of  
rhodopsin. 

The production of  11-cis-retinal occurs in the retinal 
pigment epithelium. One of  the more abundant pro-

teins in this tissue is RPE65, which has been shown to 
be essential for the conversion of  all-trans-retinyl ester 
to 11-cis-retinol[32]. Leber’s congenital amaurosis, a child-
hood blinding disorder, results from disruption of  a 
number of  genes, but in many cases, the gene for RPE65 
is defective[33-36]. When RPE65 is mutated or lacking, as 
in the RPE65 knockout mouse and Leber’s congenital 
amaurosis, visual function is impaired[32]. However, in the 
RPE65 knockout mouse, where synthesis of  11-cis-retinal 
does not occur, a minimal visual response from rod 
photoreceptors is obtained, which is mediated by isorho-
dopsin, the rod pigment formed with 9-cis-retinal, rather 
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than rhodopsin[13]. Isorhodopsin, is photosensitive and 
appears to be very similar to rhodopsin, as determined 
in numerous in vitro studies and experiments using intact 
retinae and isolated photoreceptors[37,38]. Then, although 
endogenous 9-cis-retinal has not been reported in the 
retina, the high expression of  9-cis-retinol dehydrogenase 
(RDH4/RDH5) in the retinal pigment epithelium[39,40] 
suggests that 9-cis-retinal could be generated in that tis-
sue. Actually, 9-cis-retinoids do exist in many tissues, with 
highest concentrations in liver and kidney, and are es-
sential for gene regulation, growth and development[41,42]. 
In contrast, the 13-cis configuration of  retinal has never 
been observed in vision and as such is not physiologi-
cally relevant in the visual process. Nevertheless, all-trans-
retinal is an essential component of  type Ⅰ, or microbial, 
opsins such as bacteriorhodopsins, channelrhodopsins, 
sensory rhodopsins and halorhodopsin. Type Ⅰ opsin 
genes are found in prokaryotes, algae, and fungi, where 
they control diverse functions such as phototaxis, energy 
storage, development, and retinal biosynthesis[43]. Using 
microbial opsin genes, prokaryotes can transduce light 
to shift proton gradients, modulate chloride balance, or 
switch flagellar motor direction, whereas motile algae 
transduce light to change flagellar beating to direct loco-
motion toward environments optimally illuminated for 
their photosynthetic requirements. In these seven-trans-

membrane-segment receptor proteins, light causes the 
all-trans-retinal to become 13-cis-retinal, which then cycles 
back to all-trans-retinal in the dark state. Unlike the situa-
tion with rhodopsin, in which the retinal-protein linkage 
is hydrolyzed after photoisomerization[44], the activated 
retinal molecule in type Ⅰ opsins, 13-cis-retinal, does not 
dissociate from its opsin protein, but thermally reverts 
to the all-trans state while maintaining a covalent bond to 
its protein partner[45]. Accordingly, 13-cis-retinal is physi-
ologically crucial in those organisms that possess type Ⅰ 
opsins. 

The regular instability of  11-cis-retinal limits its com-
mercial availability. The standard procedure used to pre-
pare 11-cis-retinal consist of  an isomerization reaction of  
all-trans-retinal by irradiation under 436 nm[46-48], which 
generates a mixture of  9-cis-retinal, 11-cis-retinal and 
13-cis-retinal that requires to be separated by chromatog-
raphy techniques, such as alumina column chromatogra-
phy, thin-layer chromatography, high-performance liquid 
chromatography (HPLC), or flash countercurrent chro-
matography (FCCC). Photochemical and enzymatic pro-
cessing of  retinoids in the eye is essential for perception 
of  the light signal and for sustaining vision by regenera-
tion of  visual pigments[12]. Specifically, the photoisomer-
ized all-trans-retinal is converted back to the 11-cis-retinal 
chromophore by an enzymatic pathway of  chemical 
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silver staining. In Panel C, the amount of arrestin-1 that interacted with the phosphorylated pigments in the pellet fraction was quantified by densitometry. Mean ± SD 
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reactions termed the retinoid cycle[11,12]. Why the 9-cis- 
and 13-cis-isomers of  retinal are not formed in the eye in 
addition to 11-cis-retinal? The retinal G protein-coupled 
receptor (RGR) is a protein that structurally resembles 
visual pigments and other G protein-coupled receptors. 
RGR appears to play a role as a photoisomerase in the 
production of  11-cis-retinal. The proposed function of  
RGR, in a complex with 11-cis-retinol dehydrogenase 
(RDH5), is to regenerate 11-cis-retinal under light condi-
tions[49]. Maeda et al[50] evaluated the role of  RGR using 
RGR single knockout mice, and RGR and RDH5 double 
knockout mice, under various conditions. The most strik-
ing phenotype of  RGR knockout mice after illumination 
included light-dependent formation of  9-cis- and 13-cis-
retinoid isomers. These isomers were not formed in wild-
type mice because either all-trans-retinal is bound to RGR 
and protected from isomerization to 9-cis- or 13-cis-retinal 
or because RGR is able to eliminate these isomers directly 
or indirectly. These results suggest that RGR and RDH5 
are likely to function in the retinoid cycle.

In the present manuscript, we focused on comparing 
the interactions of  rhodopsin and rhodopsin analogues 
containing 9-cis-retinal and 13-cis-retinal with other pro-
teins of  the visual cascade, such as transducin, rhodop-
sin kinase and arrestin-1. Under dark conditions, 13-cis-
retinal-rhodopsin was capable of  catalyzing transducin 
GDP/GTP exchange and was highly phosphorylated by 
rhodopsin kinase. Since 13-cis-retinal-rhodopsin behaves 
like active rhodopsin independently of  light, and given 
that both transducin activation and phosphorylation by 
rhodopsin kinase require the generation by photolysis of  
the meta Ⅱ intermediate of  rhodopsin, we propose that 
the structure of  dark 13-cis-retinal-rhodopsin adopts a 
tridimensional conformation that mimics the active pho-
toproduct of  rhodopsin. Moreover, arrestin-1 was also 
efficiently recognized by phosphorylated 13-cis-retinal-
rhodopsin in the dark. As shown by Gurevich et al[24], ar-
restin-1 binds phosphorylated light-activated rhodopsin 
with remarkable selectivity. However, arrestin-1 binding 
to an equal amount of  dark (inactive) phosphorylated 
rhodopsin or active unphosphorylated rhodopsin (light-
activated rhodopsin) is 10-20 times lower, whereas its 
binding to inactive unphosphorylated rhodopsin is barely 
detectable[24]. Thus, rhodopsin activation or phosphoryla-
tion alone promotes relatively weak arrestin-1 interaction. 
In addition, arrestin-1 binding to phosphorylated light-
activated rhodopsin is many times greater than the sum 
of  dark phosphorylated rhodopsin and light-activated 
rhodopsin levels, suggesting that the binding mechanism 
is more sophisticated than a simple cooperative two-site 
interaction. Gurevich et al[24] proposed a model positing 
that arrestin-1 has two sensor sites, an activation sensor 
that binds receptor elements that change conforma-
tion upon activation, and a phosphate sensor that binds 
receptor attached phosphates. When the receptor is 
phosphorylated and active at the same time, both sensors 
bind. Simultaneous engagement of  the two sensor sites 
allows arrestin-1 transition into the active high affinity 

receptor-binding state. Since the conformation of  dark 
13-cis-retinal-rhodopsin appears to mimic the structure 
of  the meta Ⅱ photointermediate, phosphorylated 13-cis-
retinal-rhodopsin seems to be sufficient to be recognized 
by arrestin-1 even in the absence of  light. 

Since the 9-cis, 11-cis, and 13-cis isomers of  retinal are 
not planar, changes at the cis configuration in the polyene 
structure may cause important non-planar distortions 
in the retinal molecule that in turn may affect its longi-
tudinal size. Employing the molecular orbital program 
MOPAC (version 1.11), we determined the structures 
of  minimal energy for the various retinal isomers used 
here. The distances from carbon C-2 to carbon C-15 
were found to be 10.84 Å, 10.96 Å, and 11.54 Å for 
11-cis-retinal, 9-cis-retinal, and 13-cis-retinal, respectively. 
The retinal molecule reaches its longest longitude in its 
all-trans configuration (13.02 Å). A clear relationship be-
tween the size of  each isomer and its accessibility to the 
chromophore binding pocket in the apoprotein opsin 
can be established when these theoretical distances were 
taken in consideration and contrasted with the percentage 
of  pigment that was regenerated with each retinal isomer. 
11-cis-Retinal and 13-cis-retinal, which corresponded to 
the shortest and longest isomers, showed the highest and 
lowest percentage of  pigment reconstitution, respectively. 
Thus, it is evident that some size restrictions exist within 
the prosthetic group binding site. In addition, structural 
differences may occur when the various retinal isomers 
are incorporated and accommodated into the apoprotein 
to reform the distinct pigments. 

It is known that the spectral properties of  9-cis-retinal, 
11-cis-retinal, and 13-cis-retinal are very similar; all three 
compounds show absorption maxima at 365-370 nm. 
Interaction between 11-cis-retinal and opsin generates the 
ground state of  rhodopsin with its characteristic peak at 
about 500 nm. The red shift of  11-cis-retinal in rhodopsin 
is a result of  the protonated Schiff  base linkage between 
the aldehyde and the ε-amino group of  Lys296, which 
is stabilized by the Glu113 counter-ion. Moreover, the 
positive charge is delocalized through the polyene moiety 
of  retinal. Rhodopsin is constrained in an inactive con-
formation because binding of  11-cis-retinal to Lys296 via 
the protonated Schiff  base induces changes in rhodopsin’
s helical transmembrane domain and cytoplasmic surface 
that prevent interaction with native transducin, rhodopsin 
kinase and arrestin-1. Upon photoisomerization of  11-cis-
retinal to all-trans-retinal, the receptor undergoes major 
structural rearrangements that include displacement of  
the positively charged Schiff  base from its interaction 
with negatively charged Glu113. Based on this mecha-
nism of  action, a bulky ligand might affect and modify 
the regular distance between the Glu113 counter-ion 
and the retinal attachment site in the protein, affecting 
in turn the spectroscopic properties of  the regenerated 
pigment. Blue shifts in isorhodopsin (λmax = 486 nm) and 
13-cis-retinal-rhodopsin (λmax - 467 nm) correlate well 
with the increase in longitudinal size of  9-cis-retinal and 
13-cis-retinal compared to 11-cis-retinal. During the rho-
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dopsin photocycle, the protein relaxes through a series 
of  distinct photointermediates, each with characteristic 
UV/visible absorption maxima. Most of  these intermedi-
ates can only be trapped by using ultra freezing tempera-
tures. The metarhodopsin Ⅰ photointermediate (meta Ⅰ), 
which is the inactive precursor of  meta Ⅱ, possesses a 
characteristic peak at 478 nm. Interestingly, the spectro-
scopic properties of  13-cis-retinal-rhodopsin in the dark 
were comparable to those of  meta Ⅰ. The resemblance 
of  meta Ⅰ and the 13-cis-retinal-rhodopsin pigment might 
cause the pseudo-activation state seen for the latter even 
without illumination. Since meta Ⅰ can only be generated 
following freeze-trapping at -40 ℃, and at temperatures 
below the phase transition temperature of  the surround-
ing lipids, it was not viable for us to carry out a direct 
comparison between the properties of  meta Ⅰ and the 
13-cis-retinal-rhodopsin analogue.

Rhodopsin pigment regeneration studies using avail-
able retinal isomers showed that stable isomeric pigments 
can be formed using a diversity of  isomers such as 11-cis, 
9-cis, 7-cis, 9,13-dicis, 7,13-dicis, 9,11-dicis, 7,11-dicis, 7,9-dicis, 
7,9,11-tricis, 7,9,13-tricis, etc., with varying rates of  pig-
ment formation[51]. With the exception of  9-cis-retinal, all 
isomers required much longer times to give isomeric pig-
ments at reduced yields[51]. By using the crystal structures 
of  rhodopsin, Liu et al[52] reproduced the binding cavity 
of  rhodopsin containing the 11-cis-retinal, and examined 
whether other isomers were capable of  being accommo-
dated within the pocket. When the 9-cis and 7-cis isomers 
of  retinal were tested it was clear that all atoms of  the 
two isomeric pigment analogs fitted well within the bind-
ing cavity. However, when the pigment was replaced with 
atoms of  the 13-cis protonated Schiff  base, it was clear 
that the 13-methyl group and partly C13 and C14 of  the 
13-cis chromophore was projected far beyond the binding 
pocket overlapping with atoms in the β-sheet of  the loop 
that connects the TM4 and TM5 helices[52]. These results 
confirm that steric restrictions exist in the binding cavity 
and explain previous reports showing nonbinding of  the 
13-cis or all-trans isomers to the inactive state of  the pro-
tein[16], as well as our results that showed a low percentage 
of  regeneration of  the 13-cis-retinal-rhodopsin analog. 
The much reduced rate for pigment formation for the 
13-cis isomer and other retinal isomers is likely due to 
the altered ring conformations, the relocated 9-methyl 
groups, and shifts of  the polyene chain.

The C-9 and C-13 methyl groups of  the 11-cis-
retinal appear to be pivotal elements in ligand-receptor 
communication. For instance, 9- and 13-demethylreti-
nals yielded analogue pigments, but with an increase in 
constitutive activity and/or much reduced physiological 
activity[53,54]. Ebrey et al[55] observed that 13-demethyl-
rhodopsin, which is opsin regenerated with 11-cis-
13-demethyl-retinal, activated transducin as measured 
by cGMP-phosphodiesterase PDE6 activity in the dark. 
This finding was surprising, since 13-demethyl-retinal 
lacks only the methyl group in position 13. However, 
the 9-cis isomer of  13-demethylretinal like all the other 

activating pigments required light[55]. When, 11-cis-13-
demethyl-retinal was preincubated with opsin in the dark, 
significant phosphorylation was observed[56]. The activ-
ity was increased when the all-trans isomer was used, 
but decreased with 9-cis-13-demethyl-retinal. The results 
obtained by Buczyłko et al[56] were consistent with the 
observations of  Ebrey et al[55]. Deletion of  methyl groups 
to form 9-demethyl and 13-demethyl analogues, as well 
as addition of  a methyl group at C10 or C12, shifted the 
meta Ⅰ/meta Ⅱ equilibrium toward meta Ⅰ, such that 
the retinal analogues behaved like partial agonists[54]. To 
examine the steric limits of  the 9-methyl and 13-methyl 
binding pocket of  opsin, deGrip et al[57] prepared cyclo-
propyl and isopropyl derivatives of  11-cis- and 9-cis-retinal, 
at C-9 and C-13, and of  α-retinal at C-9. Most isopropyl 
analogues showed very poor binding, whereas most cy-
clopropyl derivatives exhibit intermediate binding activity. 
The data of  deGrip et al[57] were in line with the growing 
body of  evidence showing that the interplay between a 
receptor and its ligand is very finely tuned. Small modi-
fication of  a ligand can already alter this interplay and 
thereby redirect the conformational space of  a receptor, 
leading to a different activity profile. Here we have shown 
that 13-cis-retinal-rhodopsin behaves as a pseudo-active 
pigment in the dark. Similar to 11-cis-13-demethyl-retinal-
rhodopsin, the structure of  13-cis-retinal-rhodopsin 
probably embraces a tridimensional conformational fold 
that mimics to some extent the active meta Ⅱ photoin-
termediate of  rhodopsin. Consequently, 13-cis-retinal-
rhodopsin is capable of  interacting with transducin, rho-
dopsin kinase and arrestin-1 even without illumination. 
Palczewski et al[58] have also shown that active pseudo-
photoproducts, which stimulate transducin activation and 
opsin phosphorylation by rhodopsin kinase, are formed 
with opsin and retinal analogues lacking the 13 methyl 
or the terminal two carbons of  the polyene chain as well 
as with opsin and all-trans-retinal. Other reports have 
also shown that an activated receptor may be generated 
without illumination by addition of  all-trans-retinal or 
its analogues to opsin[56,59-61]. Cohen et al[59] found that 
transducin activation by the all-trans-retinal-opsin com-
plex was strongly pH-dependent with the most efficient 
catalysis at pH = 5-6. Hofmann et al[60] demonstrated that 
free all-trans-retinal can react with the apoprotein to form 
pseudo-photoproducts that are spectrally identical to the 
photoinduced metarhodopsin species (meta Ⅰ/Ⅱ/Ⅲ). 
By measuring the increased phosphorylation of  opsin 
by rhodopsin kinase, Buczyłko et al[56] showed that the 
potency of  stimulation depended on the chemical and 
isomeric nature of  the analogues and the length of  the 
polyene chain. For example all-trans-C17 aldehyde was the 
most effective in stimulation of  opsin phosphorylation, 
while longer (all-trans-retinal) and shorter analogues (all-
trans-C15 aldehyde) were less potent. All-trans-C22 alde-
hyde was not effective suggesting that the length of  this 
retinoid excluded it from the binding to opsin, while the 
shortest aldehyde, all-trans-C12 aldehyde, was only mod-
estly effective. This specificity suggested a unique inter-
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action of  opsin with retinoids, rather than a nonspecific 
lipid-like effect or interaction with peripheral amines[56]. 
Ligand-free opsin is also capable of  activating transducin, 
although at a much reduced level than light-activated rho-
dopsin[61,62], but this activity was enhanced by a factor of  
about 10 by the presence of  all-trans-retinal. Interestingly, 
when the sizes of  the various isomers of  retinal used in 
the present work were compared, 13-cis-retinal was more 
alike to all-trans-retinal than 9-cis-retinal or 11-cis-retinal.

Various tridimensional conformations of  the photo-
receptor protein have been solved. Park et al[63] reported 
the X-ray crystal structure of  ligand-free native opsin 
from bovine retinal rod cells. Compared to rhodop-
sin[64], opsin shows prominent structural changes in the 
conserved E(D)RY and NPxxY(x)5,6F motifs and in the 
transmembrane fifth to transmembrane seventh regions 
(TM5-TM7). These structural changes reorganize the 
empty retinal-binding pocket to disclose two openings 
that may serve for the entry and exit of  retinal. The 
lack of  the interacting prosthetic group causes distinct 
structural alterations in the retinal-binding pocket. For 
example, part of  the space occupied by the β-ionone ring 
of  retinal is filled in opsin with the side chains of  some 
aromatic residues[63]. In rhodopsin, retinal is held along 
the polyene chain by amino acids located in TM3, TM6 
and loop E2[64]. In opsin, the extracellular part of  TM3 
and loop E2 are slightly moved away from helices TM5-
TM7. Thereby, the retinal-binding pocket becomes wider 
towards the retinal attachment site in Lys296, and the 
ε-amino group of  Lys296 does not seem to be involved in 
a salt bridge with Glu113, which corresponds to the reti-
nal Schiff  base counter-ion in the rhodopsin dark state, or 
with Glu181, which was proposed to be part of  a com-
plex counter-ion which forms in meta Ⅰ[65]. Moreover, it 
has been shown that opsin can readily adopt inactive and 
active conformations in vitro, and low pH and a synthetic 
peptide derived from the C terminus of  the α-subunit 
of  transducin stabilized this active conformation of  
opsin[66]. Scheerer et al[67] reported the crystal structure 
of  the complex between active opsin and the carboxy 
terminus peptide of  the α-subunit of  transducin, and 
clear conformational differences can be detected when 
the structures of  inactive and active opsin are compared. 
More recently, Choe et al[68] used the low pH induced-ac-
tive conformation of  opsin to obtain crystals of  meta Ⅱ, 
by soaking crystals of  active opsin with all-trans-retinal. 
They presented the crystal structures of  meta Ⅱ alone or 
in complex with a C-terminal fragment derived from the 
α-subunit of  transducin. The binding site for all-trans-ret-
inal appears to be preformed in the active conformation 
of  opsin because the presence of  retinal in the meta Ⅱ 
structures causes only a small adjustment of  some amino 
acid side chains[68], while the Lys296 side chain, which is 
more flexible in ligand-free opsin[63], becomes ordered 
due to its linkage with retinal. From the crystal structures 
of  rhodopsin, opsin, activated opsin and meta Ⅱ, it is 
clear that changes in the prosthetic group binding pocket 
occur in each of  the different conformations of  the pro-

tein, and receptor can make use of  the conformational 
flexibility of  the ligand and the variability of  its interac-
tion with the binding site.
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in the main text. Provide a brief  title for each figure on a sepa-
rate page. Detailed legends should not be provided under the 
figures. This part should be added into the text where the figures 
are applicable. Figures should be either Photoshop or Illustra-
tor files (in tiff, eps, jpeg formats) at high-resolution. Examples 
can be found at: http://www.wjgnet.com/1007-9327/13/4520.
pdf; http://www.wjgnet.com/1007-9327/13/4554.pdf; http://
www.wjgnet.com/1007-9327/13/4891.pdf; http://www.
wjgnet.com/1007-9327/13/4986.pdf; http://www.wjgnet.
com/1007-9327/13/4498.pdf. Keeping all elements compiled is 
necessary in line-art image. Scale bars should be used rather than 
magnification factors, with the length of  the bar defined in the leg-
end rather than on the bar itself. File names should identify the fig-
ure and panel. Avoid layering type directly over shaded or textured 
areas. Please use uniform legends for the same subjects. For ex-
ample: Figure 1  Pathological changes in atrophic gastritis after treat-
ment. A: ...; B: ...; C: ...; D: ...; E: ...; F: ...; G: …etc. It is our principle 
to publish high resolution-figures for the printed and E-versions.

Tables
Three-line tables should be numbered 1, 2, 3, etc., and mentioned 
clearly in the main text. Provide a brief  title for each table. Detailed 
legends should not be included under tables, but rather added into 
the text where applicable. The information should complement, 
but not duplicate the text. Use one horizontal line under the title, a 
second under column heads, and a third below the Table, above any 
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footnotes. Vertical and italic lines should be omitted.

Notes in tables and illustrations
Data that are not statistically significant should not be noted. aP < 0.05, 
bP < 0.01 should be noted (P > 0.05 should not be noted). If  there 
are other series of  P values, cP < 0.05 and dP < 0.01 are used. A third 
series of  P values can be expressed as eP < 0.05 and fP < 0.01. Other 
notes in tables or under illustrations should be expressed as 1F, 2F, 3F; 
or sometimes as other symbols with a superscript (Arabic numer-
als) in the upper left corner. In a multi-curve illustration, each curve 
should be labeled with ●, ○, ■, □, ▲, △, etc., in a certain sequence.
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