
World Journal of *Diabetes*

World J Diabetes 2019 August 15; 10(8): 421-472

Published by Baishideng Publishing Group Inc

World Journal of Diabetes

Contents

Monthly Volume 10 Number 8 August 15, 2019

REVIEW

421 Bone health in diabetes and prediabetes Costantini S, Conte C

MINIREVIEWS

- Development of therapeutic options on type 2 diabetes in years: Glucagon-like peptide-1 receptor agonist's 446 role intreatment; from the past to future Dogruel H, Balci MK
- 454 Competences for self-care and self-control in diabetes mellitus type 2 in primary health care Amorim MMA, Souza AHD, Coelho AK

ORIGINAL ARTICLE

Retrospective Study

463 Comparison of awareness of diabetes mellitus type II with treatment's outcome in term of direct cost in a hospital in Saudi Arabia Alomar MJ, Al-Ansari KR, Hassan NA

Contents	<i>World Journal of Diabetes</i> Volume 10 Number 8 August 15, 2019		
ABOUT COVER	Editorial Board Member of <i>World Journal of Diabetes</i> , Luohua Jiang, MD, PhD, Assistant Professor, Department of Epidemiology, School of Medicine, University of California, Irvin, CA 92617, United States		
AIMS AND SCOPE	<i>World Journal of Diabetes (World J Diabetes, WJD,</i> online ISSN 1948-9358, DOI: 10.4239) is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians. The <i>WJD</i> covers topics concerning α , β , δ and PP cells of the pancreatic islet, the effect of insulin and insulinresistance, pancreatic islet transplantation, adipose cells, and obesity. We encourage authors to submit their manuscripts to <i>WJD</i> . We will give priority to manuscripts that are supported by major national and international foundations and those that are of great clinical significance.		
INDEXING/ABSTRACTING	The <i>WJD</i> is now abstracted and indexed in Emerging Sources Citation Index (Web of Science), PubMed, PubMed Central, Scopus, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database.		
RESPONSIBLE EDITORS FOR THIS ISSUE	-	nic Editor: Yan-Xia Xing Department Director: Yun-Xiao Jian Wu	
NAME OF JOURNAL		COPYRIGHT	
World Journal of Diabetes		© 2019 Baishideng Publishing Group Inc	
ISSN			
ISSN 1948-9358 (online)		https://www.wjgnet.com/bpg/gerinfo/204	
LAUNCH DATE June 15, 2010		GUIDELINES FOR ETHICS DOCUMENTS https://www.wjgnet.com/bpg/GerInfo/287	
FREQUENCY Monthly		GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH https://www.wjgnet.com/bpg/gerinfo/240	
EDITORS-IN-CHIEF		PUBLICATION MISCONDUCT	
Timothy R Koch		https://www.wjgnet.com/bpg/gerinfo/208	
EDITORIAL BOARD MEMBERS		ARTICLE PROCESSING CHARGE	
https://www.wjgnet.com/1948-9358/editorialboard.htm		https://www.wjgnet.com/bpg/gerinfo/242	
https://www.wjgnet.com/1946-9556/editorialboard.htm			
EDITORIAL OFFICE		STEPS FOR SUBMITTING MANUSCRIPTS	
		STEPS FOR SUBMITTING MANUSCRIPTS https://www.wjgnet.com/bpg/GerInfo/239	
EDITORIAL OFFICE			

© 2019 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

World Journal of Diabetes

Submit a Manuscript: https://www.f6publishing.com

World J Diabetes 2019 August 15; 10(8): 421-445

DOI: 10.4239/wjd.v10.i8.421

ISSN 1948-9358 (online)

REVIEW

Bone health in diabetes and prediabetes

Silvia Costantini, Caterina Conte

ORCID number: Silvia Costantini (0000-0002-3418-9150); Caterina Conte (0000-0001-7066-5292).

Author contributions: Both authors equally contributed to this paper with conception and design of the article, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Conflict-of-interest statement: No potential conflicts of interest to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licen ses/by-nc/4.0/

Manuscript source: Invited Manuscript

Received: April 6, 2019 Peer-review started: April 8, 2019 First decision: May 9, 2019 Revised: June 3, 2019 Accepted: July 20, 2019 Article in press: July 20, 2019 Published online: August 15, 2019

P-Reviewer: Klimontov VV, Serhiyenko VA S-Editor: Cui LJ L-Editor: A Silvia Costantini, Caterina Conte, Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy

Silvia Costantini, Epatocentro Ticino, Lugano 6900, Switzerland

Caterina Conte, IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy

Corresponding author: Caterina Conte, MD, PhD, Assistant Professor, Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, via Olgettina 60, Milan 20123, Italy. conte.caterina@unisr.it **Telephone:** +39-2-36432575

Abstract

Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.

Key words: Bone; Fractures; Type 1 diabetes; Type 2 diabetes; Prediabetes; Diabetes complications; Bone density; Hypoglycemic agents

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Diabetes mellitus, either type 1 or type 2, is associated with increased fracture risk. Diabetic hyperglycemia and insulin resistance underlie functional alterations of bone cells and bone marrow fat that affect several determinants of bone strength, including bone matrix proteins and bone mass, geometry and microarchitecture.

E-Editor: Xing YX

Diabetes-related microvascular complications and certain antidiabetic drugs appear to further increase fracture risk, both directly and indirectly. The prevention and management of bone fragility in diabetes includes identification of patients at risk, correction of modifiable risk factors including appropriate choice of antidiabetic drugs and use of antifracture drugs with proven efficacy.

Citation: Costantini S, Conte C. Bone health in diabetes and prediabetes. *World J Diabetes* 2019; 10(8): 421-445 URL: https://www.wjgnet.com/1948-9358/full/v10/i8/421.htm DOI: https://dx.doi.org/10.4239/wjd.v10.i8.421

INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia leading to serious microvascular and macrovascular complications. In recent years, bone fragility has emerged as a further complication of DM, both Type 1 diabetes (T1D) and type 2 diabetes (T2D). Aim of this review is to provide a comprehensive overview of bone health across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes.

Insulin and bone

Insulin is an anabolic hormone central to the regulation of substrate metabolism in key organs and tissues such as skeletal muscle, the liver and adipose tissue^[1]. Both osteoblasts and osteoclasts express the insulin receptor. Insulin stimulates osteoclast formation and promotes proliferation, differentiation and survival of osteoblasts, with an overall balance in favor of bone formation^[2]. Studies on insulin receptor knockout mice indicate that insulin signaling is necessary for normal bone acquisition^[3,4], likely due to the role of insulin in the regulation of bone energy metabolism. In fact, insulin administration increases ¹⁸F-fluorodeoxyglucose ([18F]FDG) uptake by bone in mice, which is markedly reduced in mice lacking the insulin receptor in osteoblasts^[5]. Furthermore, activation of the insulin receptor in the growth plate of mice fed with a hypercaloric diet stimulates skeletal growth and growth plate chondrogenesis^[6]. Osteoblasts also express the Insulin-like growth factor 1 (IGF-1) receptor^[7]. IGF-1 binds both to the IGF-1 receptor and, with lower binding affinity, to the insulin receptor, thus triggering the insulin signaling pathway and exerting osteoanabolic actions.

DM

Depending on the pathogenic mechanism(s) causing chronic hyperglycemia, DM is classified into few main general categories. T1D is distinguished by absolute insulin deficiency due to destruction of pancreatic beta-cells on an autoimmune or idiopathic base. Latent autoimmune diabetes in adults (LADA) is a less common form of autoimmune diabetes that arises in the adult age and is characterized by circulating islet autoantibodies and insulin independence at diagnosis. In T2D, insulin resistance leading to compensatory increase of insulin secretion causes progressive worsening of beta cell function that eventually results in relative insulin deficiency and hyperglycemia. Other forms of DM include monogenic forms (*e.g.*, maturity onset diabetes of the young, MODY), gestational diabetes, and secondary forms either associated with conditions that affect insulin secretion (*e.g.*, pancreatic diseases) or certain drugs (*e.g.*, glucocorticoids and immunosuppressants after organ transplantation). This review will focus on the main diabetes categories, *i.e.* T1D and T2D, as well as on those alterations of glucose metabolism collectively identified as prediabetes^[8].

Diabetes and prediabetes: clinical impact on bone

Fracture risk in T1D

Fracture risk is increased in T1D, with a 2- to 6-fold higher risk of fracture as compared with non-diabetic subjects, the risk being greatest in T1D women^[9,10]. In a recent analysis that assessed the determinants of fracture risk in T1D adult patients, nearly half of the subjects reported at least one fracture after diabetes diagnosis^[11].

WJD https://www.wjgnet.com

Older age, longer T1D duration, age < 20 years at diagnosis and family history of osteoporosis or osteopenia were associated with fracture occurrence.

Fracture risk in T2D and prediabetes

Individuals with T2D have a 1.2- to 3-fold higher risk of fracture as compared with non-diabetic subjects, particularly for hip fractures^[9,12], but also for upper arm and ankle fractures^[13]. Fracture risk appears to be greater in those with a body mass index (BMI) < 30 kg/m² as compared with obese individuals^[14], and not to significantly differ by gender^[9,15]. Diabetes duration longer than 10 years, low levels of physical activity, use of insulin and systemic corticosteroids and increasing age are also associated with higher fracture risk in T2D^[14]. Falls represent another risk factor for fractures, especially in diabetic women^[14,16,17]. The association between diabetes, especially T2D, and increased risk of falls is well recognized^[18,19] and mainly attributed to diabetes related complications such as therapy-induced hypoglycemic episodes, impaired muscle strength due to sarcopenia, retinopathy-related impaired vision, peripheral artery disease and neuropathy^[20,21]. As in a vicious circle, fractures may lead to imbalance, alterations in posture and decreased muscle strength, eventually reducing physical performance and further increasing the risk of falls^[22]. Predictive factors of falls and their contribution to fracture risk in T1D patients have not been clearly identified^[23].

Despite a clear association between T2D and increased fracture risk^[9,19,24], evidence supporting an association between prediabetes and fracture risk is inconsistent. Observations in adolescents suggest that insulin resistance may be detrimental for bone development through puberty, independent of body composition and the level of physical activity^[25]. However, no association between insulin resistance and fracture risk was evident after adjustment for BMI and bone mineral density (BMD) in a large cohort of elderly subjects^[26]. These findings are consistent with studies that found no statistically significant difference in fracture risk between subjects with or without prediabetes^[27,28], but are in contrast with those reporting an association between prediabetes, adjusted for BMI and/or BMD, and lower fracture risk^[29].

Assessment of fracture risk in diabetes

Schwartz and colleagues analyzed data from nearly 17,000 older community-dwelling men and women, and found that, for a given T-score and age or FRAX[®] score (the most widely used fracture risk index), subjects with diabetes had a higher fracture risk than those without diabetes^[30]. Similarly, Giangregorio *et al*^[31] found that FRAX underestimates the risk of major osteoporotic and hip fractures in individuals with diabetes. Recently, four options have been assessed to enhance the performance of FRAX in patients with DM (using rheumatoid arthritis as a proxy for the effects of DM, trabecular bone score [TBS]-adjustment, reducing the femoral neck T-score input by 0.5 SD, increasing the age input by 10 years)^[32]. Although each correction improved the performance of the FRAX tool in predicting fracture risk, no single method was optimal for all fracture outcomes and durations of diabetes.

DIABETIC BONE DISEASE-PATHOPHYSIOLOGY

Several factors might be responsible for the increased fracture risk in diabetic patients. Diabetes-related changes affect bone strength, which in turn depends on different and complex components, *i.e.* BMD, bone microarchitecture and its microenvironment and material properties.

Bone cells

Cellular and molecular components cross-talk to maintain skeletal integrity in an intricate balance that can be altered in DM. It is important to understand alterations in these components, as they have also direct clinical consequences and may represent targets for clinical interventions. Structural elements with a role in physiologic bone formation include support cells like osteoblasts and osteocytes, remodeling cells known as osteoclasts, and non-cellular components like osteoblast deposited within the matrix. Mesenchymal stem cells (MSC), *i.e.*, the osteoblast precursors, may also differentiate into adipocytes. The fate of MSCs depends on a fine balance between the WNT signaling pathway, which promotes osteogenesis, and the peroxisome proliferator-activated receptor- γ (PPAR- γ) pathway, which promotes adipogenesis^[33]. An imbalance between these pathways may result in one cell type predominating over the other. Along with the bone-resorbing osteoclasts, osteoblasts are involved in a fundamental process that lasts the whole human life, bone remodeling, wherein old bone is substituted with new bone to maintain bone strength and mineral

homeostasis, and to repair microdamage^[34].

Osteoblasts in T1D

Preclinical studies^[25] documented alterations in transcription of osteoblasts promoting genes, in particular Runx2, which is involved in MSC differentiation into pre-OBs and in the regulation of bone matrix protein genes. Some preclinical studies suggested that Runx2 is downregulated by hyperglycemia^[35,36], although other studies reported no modification^[37,38]. The Wnt/beta catenin gene, which is known to promote OB differentiation, is also downregulated^[39]. In T1D, low levels of IGF-1, which promotes differentiation of MSCs into OBs^[40,41] and bone mineralization^[42], may also contribute to reduced bone formation. It is also known that serum from T1D patients decreases collagen production in human OBs when used as a culture medium^[43]. Moreover, individuals with T1D have low levels of parathyroid hormone (PTH)^[44], which in normal conditions prevents OB apoptosis^[45], improves bone density and increases mineralization and enhances, synergistically with IGF-1, osteoblast differentiation into osteocytes^[46]. An increase in circulating levels of proinflammatory cytokines such as TNF-a, IL1 and IL6 due to hyperglycemia^[47,48], may impair OB proliferation and differentiation in vitro^[49-53], or even stimulate OB apoptosis^[54,55], while inhibiting bone healing in vivo^[56]. Overall, the evidence suggests that an impairment on OB function and survival may be responsible for reduced bone formation in T1D.

Osteoblasts in T2D

Few studies on OBs from T2D subjects are available. Postmenopausal women with T2D were reported to have higher levels of OB precursor cells than BMI-matched nondiabetic controls. OBs were more immature compared with controls, and Dickkopfrelated protein 1 (DKK-1), a regulator produced by bone marrow stromal cells that inhibits OB maturation, was increased^[57]. Thus, it appears that individuals with T2D have increased levels of immature OBs, which may explain lower bone quality and higher BMD.

Osteocytes in T1D

In mouse models of T1D, a reduction in osteocyte density and number, and an increase in apoptosis have been reported^[58-60]. Sclerostin, an osteocyte-derived protein that inhibits bone formation^[61,62] and stimulates OB apoptosis^[63], is elevated in adults with long-standing T1D^[64] prediabetes^[65], or T2D^[66]. Surprisingly, however, a large Danish retrospective study of T1D patients found that T1D patients with higher serum levels of sclerostin had a lower incidence of bone fractures^[67].

Osteocytes in T2D and prediabetes

As mentioned, osteocyte-derived sclerostin is elevated in adults with T2D and prediabetes^[65,66]. In T2D, there is a direct correlation between sclerostin levels, disease duration and glycemic control, and an inverse correlation with bone turnover markers^[66,68]. Anti- sclerostin antibodies increased bone mass in diabetic rats^[69]. This finding is of particular interest, as an anti-sclerostin monoclonal antibody (romosozumab) is now available for the treatment of osteoporosis in humans^[70].

Osteoclasts in T1D

In physiological conditions, the OB-derived receptor activator of nuclear factor kappa-B ligand (RANKL), promotes the differentiation and activation of osteoclasts through the receptor RANK on osteoclast surface. This process is inhibited by osteoprotegerin (OPG), also produced by OBs, which binds to RANKL thereby preventing its interaction with RANK. Patients with T1D and poor glycemic control exhibit more active bone resorption. Consistently, the analysis of peripherally detected osteoclasts in patients with T1D showed a lower sensitivity to inhibitory factors such as OPG^[71]. An increased OPG gene expression compared to healthy controls has also been reported^[72], possibly to compensate for the lower sensitivity to OPG. Other *in vitro* studies, however, showed a reduction in RANKL and its cellular actions in hyperglycemic environments^[73], which could indicate a limited role of RANKL and OPG in the pathogenesis of bone alterations in DM. Finally, a higher concentration of markers of osteoclastic activity (cathepsin K, tartrate-resistant acid phosphatase [TRAP], C terminal telopeptide) has been observed in insulinopenic mice^[74,75], although this increase was significant only in the case of severe or long-lasting diabetes. This variability in osteoclastic activation suggests that disease severity and duration may influence the degree of diabetes-induced bone resorption^[76,77].

Osteoclasts in T2D

High glucose levels inhibit osteoclast differentiation and suppress matrix degradation by osteoclasts in animal models of T2D^[78]. Accordingly, circulating osteoclast

precursors were found to be increased and more immature in T2D postmenopausal women compared with BMI-matched healthy controls, possibly due to lower RANKL levels^[57]. It may be speculated that a lower level of maturation compromises OC activity, leading to decreased bone resorption resulting in higher BMD in T2D.

BMD

BMD in T1D: Low BMD is reported in nearly all studies involving T1D patients of any age compared to non-diabetic controls^[79]. The reduction in BMD worsens with longer disease duration^[80], poor glycemic control, early age of onset of T1D, and higher insulin dosage^[81]. Furthermore, T1D adult patients with microvascular complications have lower BMD than those without microvascular disease^[81-86], suggesting a role for bone vascularization in the pathogenesis of diabetic bone disease. Children and adolescents withy T1D have smaller cross-sectional areas and weaker bones despite an increase in bone formation markers, suggesting impaired osteoblast activity during growth^[87]. It is likely that an inadequate peak bone mass is reached at the end of the skeletal maturation due to low levels of IGF-1 and the catabolic effects of uncontrolled hyperglycemia during critical growth period^[88,89]. Consistently, patients with onset of diabetes before age 10 years reach a lower than average mean near-adult height, adult height being inversely correlated with glycemic control^[90].

Altered vitamin D and calcium metabolism due to hyperglycemia may further contribute to reduced BMD in T1D^[91]. Reduced BMD, however, might not be the only factor contributing to increased fracture risk. Recent observations suggest that, opposite to what one would expect, BMD does not worsen over time in patients with T1D as compared with nondiabetic individuals^[92].

BMD in T2D and prediabetes: Subjects with T2D generally have higher BMD as compared with healthy controls, with significant differences of 0.04 (95%CI: 0.02, 0.05) at the femoral neck, 0.06 (95%CI: 0.04, 0.08) at the hip and 0.06 (95%CI: 0.04, 0.07) at the spine^[93]. As insulin is known to exert anabolic effects on bone, high circulating insulin levels may explain the observed increase in BMD in T2D^[94]. Accordingly, some studies indicate a positive association between circulating insulin levels and BMD, independent of BMI^[95-97]. However, in most studies the positive association between insulin levels or indices of insulin resistance and BMD was lost after adjusting for BMI^[26,98-101], implying that the increase in BMD observed in insulin resistant states is mediated by body mass. In fact, obesity has long been considered to be protective towards osteoporosis and osteoporotic fractures, being associated with increased mechanical load stimulating bone formation^[102], androgens-to-estrogens conversion in adipose tissue, lower serum levels of sex hormone binding globulin (SHBG)^[103], increased circulating leptin^[104] and insulin growth factor, and hyperinsulinemia^[99]. Recent findings challenge this belief, suggesting that even though BMD increases with body weight, this cannot compensate for obesity-associated greater impact forces during falls. Data from a multiethnic cohort of nearly 2000 pre- or perimenopausal women indicate that higher BMI is associated with higher BMD, but also with lower composite strength indexes^[105]. Conflicting data on the association between obesity and fracture risk, with earlier studies demonstrating a protective effect^[106-109] and more recent studies indicating an increase in risk^[110-114], suggest that BMI is not the only relevant factor in this context, and that body composition and fat distribution may also play a role^[115]. Elevated waist circumference and waist-to-hip ratio have been associated with an increased hip fracture risk in a large prospective cohort study^[116]. In obese Chinese women, increased fat mass and percent body fat were positively associated with BMD, whereas increased central fat was inversely associated with BMD^[117]. Accordingly, visceral adiposity has been associated with increased risk of both vertebral and non-vertebral fractures^[118,119]. Central adiposity reflects the amount of visceral adipose tissue (VAT), which is more cellular, vascular, innervated and characterized by the presence of more inflammatory and immune cells, lesser preadipocyte differentiating capacity and higher proportion of large adipocytes as compared with subcutaneous adipose tissue (SAT)^[120]. VAT is tightly correlated with insulin resistance^[121], which, together with low-grade chronic inflammation, possibly mediates the relationship between VAT and increased fracture risk.

In Korean men diagnosed with prediabetes using an oral glucose tolerance test, no significant difference in BMD T-score was found as compared with subjects having normal glucose metabolism^[122]. Despite no difference in total body BMD between prepubertal overweight children with prediabetes *vs* non-prediabetic controls (as assessed by OGTT)^[123], total body bone mineral content (BMC) was found to be significantly lower in prediabetic children. Inverse associations were found between BMC and markers of insulin resistance and inflammation (C-reactive protein).

⁸ WJD https://www.wjgnet.com

Bone turnover

Bone turnover may be assessed by measuring bone turnover markers (BTMs), which reflect the bone resorption and formation processes.

Bone turnover in T1D: In general, both T1D and T2D are considered as states of low bone turnover. Different studies have shown that worse glycemic control is associated with lower bone turnover markers in T1D^[124-126], suggesting a negative effect of hyperglycemia on bone turnover. More specifically, patients with T1D exhibit higher sclerostin levels and lower C-terminal telopeptide of type I collagen (CTX) and osteocalcin levels as compared with non-diabetic controls^[127].

Bone turnover in T2D and prediabetes: Bone turnover markers are generally reduced in patients with T2D^[126,128,129], to a greater extent than patients with T1D^[130]. However, not all studies yielded consistent findings. Osteocalcin and CTX are the BTMs most consistently found to be lower in T2D and patients with as compared with subjects without diabetes, whereas sclerostin and osteoprotegerin are generally elevated (Table 1). Conflicting findings have been reported for other markers but, overall, the evidence seems to point towards a suppression of bone formation and bone resorption, both in prediabetes and T2D. Histomorphometric evaluation of bone tissue biopsies from T2D patients confirmed reduced bone turnover^[131,132]. The suppression of bone turnover reported in T2D patients is associated with higher risk of vertebral fractures^[133,134], independent of BMD. This is consistent with the concept that the impairment in bone strength in T2D is due to impaired material properties, which may be caused by low bone turnover, as well as by elevated concentrations of advanced glycation endproducts (AGEs)^[135].

Fewer studies have assessed bone turnover in prediabetes. Impaired fasting glucose (IFG) was associated with lower osteocalcin^[128], CTX and N-amino terminal propeptide of T1D procollagen (P1NP)^[136,137] in women, and lower CTX and P1NP in men^[136], suggesting that, similar to T2D, prediabetes is associated with reduced bone turnover.

Increased bone marrow adiposity

Bone marrow adipose tissue (MAT) has gained increasing attention in recent years as a single anatomic entity, together with its relations with various clinical conditions, including diabetes. MAT consists of MSC-derived adipocytes located within the bone marrow niche. The distribution of MAT around the skeleton is not homogenous, and regulation of marrow adipose depots varies at different skeletal sites. While peripheral depots of MAT (also termed constitutive MAT) rarely change, MAT depots at more central sites (e.g., spine, pelvis and sternum, proximal regions of the long bones) are more diffuse within the red marrow and may increase or decrease in response to environmental or pathological factors (regulated MAT)^[138]. Interestingly, hyperglycemia increases the expression of PPAR genes, which stimulates differentiation of MSC into bone marrow adipocytes^[139]. Similarly, the antidiabetic PPARy agonists thiazolidinediones (TZDs) are thought to increase fracture risk through promotion of marrow adipogenesis at the expense of osteogenesis^[140](Figure 1). Until recently, MAT was thought to be just a reserve of adipose tissue, negatively associated with hematopoiesis, but its complete function has just begun to be revealed. In vivo studies using magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) or computed tomography (CT) to assess MAT quantity and composition have helped understand the mechanisms of increased skeletal fragility and metabolic risk associated with several clinical conditions, including diabetes^[141].

MAT in T1D: In animal models of T1D, hyperglycemia is associated with increased marrow adiposity and bone loss^[37,38,142], whereas no differences in MAT were identified between male patients with T1D and healthy controls^[143,144], and neither duration of disease nor glycemic control were related to bone marrow adiposity. This lack of association between MAT and T1D was confirmed in young women with T1D compared with healthy controls^[145]. Irrespective of the presence of diabetes, in young women MAT was inversely associated with BMD^[145]. Carvalho and colleagues showed that MAT quantity and lipid composition (saturated and unsaturated lipids) were similar between male T1D subjects and controls^[144]. There was, however, a significant inverse correlation between MAT saturated lipids and BMD.

MAT in T2D: In T2D men participating in the Osteoporotic Fractures in Men (MrOS) Study, a large epidemiological study of nearly 6,000 men, vertebral MAT was increased as compared with nondiabetic controls, and inversely associate with BMD^[146]. Although no differences were detected in total MAT content in postmenopausal women, those with T2D and previous fractures had the lowest MAT

Cable 1 Bone turnover markers in prediabetes/insulin resistance and type 2 diabetes					
BTM	Meaning	Pre-DM / IR	Ref.	T2D	Ref.
CTX TRAP	Bone resorption Bone resorption	\downarrow or \leftrightarrow \uparrow ?	[136,276,278-280] [287]	$\downarrow \\ \downarrow \text{ or } \leftrightarrow$	[129,132,134,137,281-286] [132,281]
uNTX Sclerostin	Bone resorption Inhibition of bone formation	↑	[65]	↓ ↑	[285] [284,285,288,289]
OC P1NP	Bone formation Bone formation	$\downarrow \text{ or } \leftrightarrow$ $\downarrow \text{ or } \leftrightarrow$ $Diversity in the set of the set of$	[128,276-278,280,290] [136,277,280] [295]	$\downarrow \text{ or } \leftrightarrow$ $\downarrow \text{ or } \leftrightarrow$	[129,132,134,281,283,285,286,291-294] [88,132,134,137,282,283,285,286] [132,281,284,286,292,294]
BAP ALP OPG	Bone formation Bone formation Inhibition of bone resorption	Direct association with IR ? ↑	? [296]	$\leftrightarrow \text{ or } \downarrow \text{ or } \uparrow$ $\leftrightarrow \text{ or } \uparrow$ \uparrow	[292-294] [293,296]

BTM: Bone turnover marker; pre-DM: Prediabetes; IR: Insulin resistance; T2D: Type 2 diabetes; CTX: Carboxy-terminal cross-linking telopeptide of type I collagen; OC: Osteocalcin; P1NP: Procollagen type 1 amino-terminal propeptide; TRAP: Tartrate-resistant acid phosphatase; uNTX: Urinary N-telopeptide of type I collagen; BAP: Bone-specific alkaline phosphatase; ALP: Alkaline phosphatase; OPG: Osteoprotegerin; \uparrow : Increased; \downarrow : Decreased; \leftrightarrow : Similar to healthy controls; ?: Unknown.

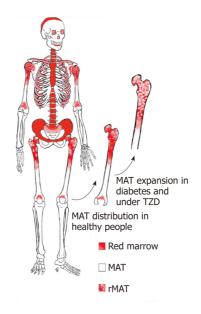
lipid unsaturation and highest MAT saturation levels independent of age, race, and BMD, highlighting the importance of MAT composition in addition to the degree of marrow adiposity^[147]. Furthermore, gender-related differences have been reported in the association between MAT and visceral adipose tissue (VAT)/subcutaneous adipose tissue (SAT) volumes or BMI. While in obese or diabetic women MAT is associated with VAT and SAT^[148,149], no such association was found in older men^[150]. In men, a negative association between MAT and DXA-derived BMD of femoral neck and total hip was reported. Data on MAT in pre-diabetes is scanty, but a potential relation between hyperglycemia and MAT has been suggested^[151].

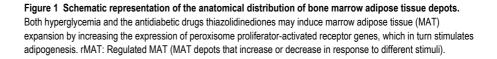
ADVANCED GLYCATION END PRODUCTS-BONE MATRIX IN DIABETES

AGEs are protein or lipid complexes formed through non-enzymatic reactions in the presence of high sugar levels. Their accumulation is thought to play a role in aging and some degenerative diseases^[152]. In *in vitro* studies, AGEs deposits have been demonstrated in bone matrix, where they may exert a direct toxic effect on OBs^[153]. AGEs inhibit bone remodeling and indirectly up-regulate the production of interleukin 6 (IL-6)^[154], a catabolic factor that attenuates OBs activity^[53] and vascular endothelial growth factor A (VEGF-A) by osteocytes, inducing also their apoptosis^[155].

AGEs in T1D: In murine models of T1D, the AGE pentosidine (PEN) in bone is significantly increased, this increase being paralleled by an impairment in bone mechanical properties^[156]. Similarly, PEN levels in bone biopsies from fractured T1D patients were higher than in controls^[80], and circulating PEN levels are associated with prevalent fractures in T1D^[157]. Carboxymethyllysine (CML), another type of AGE that correlates with fracture risk^[158], is increased in mouse models of T1D and inversely associated with bone strength^[159].

AGEs in T2D and prediabetes: Bone strength in T2D postmenopausal women is reduced as compared with non-diabetic controls, and this reduction appears to be associated with increased AGE accumulation, as indirectly estimated by skin autofluorescence (SAF)^[160]. Consistently, increased urinary or serum PEN levels have been associated with greater fracture risk in T2D^[161,162]. To the best of our knowledge, no data are available on AGEs and bone health in prediabetes.


Bone geometry and microarchitecture


Bone geometry and microarchitecture contribute to bone strength. Tools such as highresolution peripheral quantitative computed tomography (HR-pQCT), micromagnetic resonance (μ -MRI) and TBS acquired through dual-energy X-ray absorptiometry (DXA) are available to study bone structure in diabetes^[163,164], offering enough resolution to assess microarchitecture and providing indirect indexes of bone quality.

Bone geometry and microarchitecture in T1D: In rodent models of T1D, deletion of

[®] WJD https://www.wjgnet.com

the insulin receptor from OBs at different stages of maturation leads to anomalous trabecular architecture and higher bone fragility^[3,4]. In adults with T1D, trabecular bone quality is lower as compared with non-diabetic age-, BMI-, and sex-matched controls and is negatively associated with insulin resistance, as assessed by the hyperinsulinemic euglycemic clamp^[165]. Studies using HR-pQCT demonstrated higher cortical porosity, thicker trabeculae and larger spacing between trabeculae in T1D patients with microvascular complications, compared to those without, and in T1D patients compared with matched non-diabetic controls^[166]. Similar findings were reported using μ -MRI^[167]. Moreover, using μ -CT in T1D subjects without vascular complications, worse bone quality was found in those who did experience fractures as compared with those who did not^[166]. An insufficient peak bone mass at the end of skeletal maturation may result in smaller and shorter bones, a geometry that could favor bone fragility^[130]. However, the contribute of altered geometry and defective trabecular and cortical bone to the increased risk of fracture in T1D is yet to be clarified.

Bone geometry and microarchitecture in T2D and prediabetes: The increased fracture risk in T2D may be related to distorted bone microarchitecture, especially in cortical bone^[168-170].

Bone micro-indentation allows measuring the bone material strength index (BMSi), which estimates the resistance to crack propagation in bone[171]. BMSi is reduced in patients with T2D as compared to healthy controls^[88,93], suggesting a lower resistance to fractures. Increased cortical porosity has been identified as a possible causative factor. Patients with T2D have higher porosity in trabecular bones, as assessed by MRI^[170]. Studies using HR-pQCT confirmed a similar trend in porosity. Deficits in cortical bone of T2D patients were more marked in patients with previous fractures compared to those without[169], or present only in T2D patients with microvascular complications compared with patients without complications^[169]. In a cross-sectional analysis of nondiabetic postmenopausal women, higher levels of insulin resistance were associated with lower cortical bone volume, independent of age and weight^[172]. Consistently, female obese late-adolescents had worse trabecular bone microarchitecture at the radius and tibia as compared with non-obese controls, as well as lower bone volume and estimated bone strength^[173]. T2D diabetes and insulin resistance are almost invariably associated with obesity and increased central adiposity, which reflects increased VAT. Studies that explored the relationship between VAT and bone microarchitecture suggest a possible detrimental effect of VAT on bone microarchitecture. Studies have reported a negative impact of VAT on bone microarchitecture, as suggested by a negative association between central adiposity measures and TBS^[174,175]. Furthermore, a negative effect of VAT on femoral

[®] WJD https://www.wjgnet.com

cross-sectional area, cortical bone area and bone strength indexes has been reported^[176]. On the other hand, higher VAT was associated with improved microarchitecture with the exception of higher cortical porosity at the distal radius in the Framingham osteoporosis study^[177]. However, this association lost significance after adjustment for BMI or weight, suggesting that the effects of VAT may not have a substantial effect on the skeleton independent of BMI or weight. In non-diabetic men at the age of peak bone mass, insulin resistance (as assessed by HOMA-IR) was found to be inversely associated with trabecular and cortical bone size, independent of body composition^[178]. Overall, these data suggest a detrimental role of hyperinsulinemia on bone microarchitecture and geometry. Central adiposity might have a negative effect on bone microarchitecture, but this possibility needs to be further explored.

Vascular disease: microangiopathy

Diabetic microvascular complications such as retinopathy and neuropathy may indirectly potentiate the fall risk, impairing vision or physical perception. Diabetic microangiopathy may involve all organs, including bone, possibly contributing to bone fragility. Histomorphometric assessments found microangiopathy in 82% of bone biopsy specimens from diabetic patients, and a concomitant reduction of bone marrow capillaries^[179]. To date, there is no other direct evidence of bone vascular alteration in humans. In mouse models of T1D, administration of an angiogenic factor to ovariectomized mice led to improvements in bone quality^[180]. As mentioned, reduced trabecular BMD, cortical BMD, thinner trabeculae and cortex were reported in T1D patients with known vascular complications, as opposite to T1D patients without complications and non-diabetic controls^[166]. Similarly, in a cross-sectional study that assessed peripheral bone microarchitecture, bone strength and bone remodeling in T2D patients with or without diabetic microvascular disease only T2D patients with established microvascular disease displayed lower cortical volumetric BMD and cortical thickness and higher cortical porosity at the radius compared to controls without microvascular disease^[181]. Impaired microvascular circulation might lead to hypoxia, which in turn may lead to enhanced adipogenesis within the bone marrow and downregulation of OB differentiation^[182].

Pharmacological treatments for diabetes

Metformin. Metformin is widely prescribed for the management of T2D, being recommended as the first-line treatment by international guidelines^[8,183]. It reduces hepatic glucose production and improves peripheral insulin sensitivity, thereby enhancing peripheral glucose disposal^[184]. Metformin has been shown to promote the osteogenic differentiation of adipose-derived MSC, and in general to exert proosteogenic effects in preclinical studies^[185-188]. Clinical observations indicate that metformin has a neutral^[28,189] or even a favorable effect on fracture risk^[12,190,191].

Glucagon-like peptide-1 (GLP-1) receptor agonists (RA): GLP-1 RAs (liraglutide, exenatide, lixisenatide, dulaglutide, semaglutide) are recommended as the best choice for a second agent when combination treatment is needed to achieve glycemic control in patients with T2D in whom atherosclerotic cardiovascular disease, heart failure, or chronic kidney disease predominates^[8,183]. By activating the GLP-1 receptor, GLP-1 RAs slow gastric emptying, suppress glucagon secretion while also stimulating glucose-induced insulin secretion^[192]. These effects result in the suppression of hepatic gluconeogenesis and increased peripheral glucose disposal. In vitro, activation of GLP-1 receptors promotes differentiation of MSC into osteoblasts^[193] and inhibits osteoblast apoptosis^[194], suggesting an anabolic effect on bone. Studies in rats support these findings^[195]. Of note, in animal models of T1D administration of liraglutide significantly improved bone strength and reduced collagen degradation in the bone matrix, although no changes in trabecular no cortical microarchitecture were observed^[196]. Case-control studies and metanalyses of population-based studies and randomized clinical trials including patients with T2D treated with GLP-1 RAs indicate no effect on fracture risk^[197-199]. However, evidence exist that different GLP-1 RAs may exert opposite effects on fracture risk, which appears to increase or decrease in patients treated with exenatide or liraglutide, respectively^[200]. Furthermore, liraglutide was reported to prevent a reduction of BMC after weight loss in obese nondiabetic women, although BMD was not affected^[201,202].

Dipeptidylpeptidase 4 (DPP4)-inhibitors: DPP4-inhibitors (sitagliptin, linagliptin, saxagliptin, vildagliptin, alogliptin, *etc.*) exert their action by inhibiting the enzyme DPP-4, which is responsible for the rapid degradation of the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and GLP-1, thereby enhancing glucose-induced insulin secretion^[203]. Preclinical studies indicate a possible anti-osteoclastogenic and anti-resorptive effect of DPP4-inhibitors^[204,205]. Clinical data

wJD https://www.wjgnet.com

support a neutral^[189,206,207] or even favorable^[208,209] effect of DPP4-inhibitors on fracture risk. In particular, alogliptin may be associated with a lower risk of bone fracture compared with placebo and other drugs in the same class^[210].

Sodium-glucose cotransporter 2 (SLGT2) inhibitors: By inhibiting the renal SGLT2, these drugs (empagliflozin, dapagliflozin, canagliflozin) reduce glucose reabsorption in the kidney, thus increasing urinary glucose excretion and decreasing blood glucose^[211]. Associated increases in serum phosphate may lead to changes in PTH and fibroblast growth factor 23 (FGF23) that could affect bone metabolism^[212]. Along with GLP-1 RAs, SGLT2 inhibitors are recommended as the best choice for a second agent when combination treatment is needed to achieve glycemic control in patients with T2D in whom atherosclerotic cardiovascular disease, heart failure, or chronic kidney disease predominates^[8,183]. Initial reports of increased frequency of bone fractures associated with SGLT2 inhibitors treatment, particularly with canagliflozin, raised concerns about the skeletal safety of these compounds^[213]. Furthermore, increased bone turnover and reduced total hip BMD have been reported in patients with T2D treated with canagliflozin^[214]. Nevertheless, recent population studies and metanalyses including several thousands of patients consistently failed to demonstrate an association between SGLT2 inhibitor treatment and increased fracture risk in patients with T2D^[215-219].

Sulfonylureas and glinides: Sulfonylureas (*e.g.*, glimepiride, gliclazide, glybenclamide) and glinides (*e.g.*, repaglinide) stimulate glucose-independent insulin secretion by binding to specific sites at the β -cell membrane^[220,221]. It has been postulated that sulfonylureas do not affect bone directly, but may increase fracture risk by inducing higher rates of hypoglycemic events^[222]. Studies that assessed the effect of sulfonylureas and glinides on fracture risk yielded conflicting results, with most studies indicating increased risk^[28,189,223-225], but also no effect^[191] even decreased risk^[12].

Thiazolidinediones (TZDs): TZDs (rosiglitazone, pioglitazone) are insulin-sensitizing agents that exert their action by activating the peroxisome proliferator-activated receptor γ (PPAR γ)^[226]. Besides enhancing peripheral insulin sensitivity and suppressing hepatic glucose production, activation of PPAR γ stimulates adipogenesis and suppresses osteoblastogenesis, thereby reducing the osteoblast pool in the bone marrow^[227]. A detrimental effect of TZDs on bone health has been consistently shown. In a cohort study including more than 5000 patients with T2D, current use of TZDs was associated with increased hip fracture risk^[190]. Treatment with pioglitazone significantly increased fracture risk compared with placebo in a randomized double-blind, placebo-controlled study^[228]. The increase in risk has been confirmed in population-based studies^[189] and metanalyses^[229], although the impact on bone seems to be more pronounced in women than in men^[190,229].

Insulin in T1D: Insulin is the pillar of T1D treatment. As previously discussed, insulin exerts anabolic effects on bone. Intensive insulin treatment has been associated with increased BMD in patients with T1D^[82]. Consistently, no association between insulin treatment and single nor multiple fractures was found in a recent study that assessed risk factors for fragility fractures in T1D^[230].

Insulin in T2D: Insulin treatment in patients with T2D is initiated when disease progression overcomes the effect of non-insulin agents^[8,183]. Thus, patients with T2D started on insulin generally have longstanding diabetes, and may have developed serious complications such as retinopathy-related impaired vision, peripheral artery disease and neuropathy, which in turn are risk factors for falls^[20,21]. Insulin use is associated with a 1.4- to 2-fold increase in fracture risk as compared with no insulin use^[189,231], and with a 1.6-fold increase in risk as compared with metformin monotherapy^[232]. However, not all studies point towards a negative effect of insulin on fracture risk^[12,191]. The association between insulin and increased fracture risk despite the anabolic effects of insulin on bone is likely due to the increased risk of falls and hypoglycemic episodes associated with insulin treatment^[222].

Surgical treatments for diabetes

Pancreas and islet transplantation in T1D: Beta cell replacement through pancreas or pancreatic islet transplantation is the only currently available cure for T1D in humans, with pancreas transplantation being more often associated with insulin independence and longer graft function. Successful pancreas transplantation provides physiological insulin repletion, without the risk of hypoglycemia associated with exogenous insulin administration. Evidence exists that combined pancreas-kidney transplantation leads to improvements in BMD^[233], and that fracture rates in patients with T1D are lower

³⁵ WJD https://www.wjgnet.com

after transplantation with a simultaneous pancreas-kidney compared with kidney transplantation alone^[234], suggesting that T1D remission by pancreas transplantation favorably impacts fracture risk. However, individuals with T1D undergoing pancreas-kidney transplantation also have end-stage renal disease, which strongly affects bone health. A study assessing the effect of diabetes remission following pancreas transplantation alone on bone health in individuals with T1D and preserved kidney function is currently ongoing (NCT03869281).

Metabolic surgery for T2D diabetes: Metabolic surgery is now included as a treatment option for appropriate candidates with T2D^[8,235]. Patients undergoing metabolic surgery experience rapid and massive weight loss, which translates into several metabolic benefits, but may be detrimental to bone health. Most available data relate to the Roux-en-Y gastric bypass (RYGB), a restrictive procedure that also involves a malabsorptive component. Sleeve gastrectomy (SG), which has now overcome RYGB and has become the most common bariatric procedure worldwide^[236], is a restrictive procedure. Other bariatric procedures, such as the malabsorptive biliopancreatic diversion and the restrictive laparoscopic adjustable gastric banding (LAGB), are being gradually abandoned. Available data indicate that fracture risk after bariatric surgery varies depending on the bariatric procedure, being lowest in patients undergoing LAGB^[237] and greatest in those undergoing malabsorptive procedures^[238-241], and increases with time after surgery^[237,239-242]. However, weight lossrelated reductions in BMD have even been reported 6-12 months after minimally invasive bariatric procedures not involving resection of the stomach and/or intestine, such as use of the intragastric balloon or an intraluminal liner implanted into the small intestine^[243,244]. Mechanisms underlying the negative effects of bariatric surgery on bone health may involve nutritional factors, mechanical unloading, hormonal factors, and changes in body composition and bone marrow fat^[245]. To the best of our knowledge, no studies have specifically addressed the issue of diabetic bone disease in patients with T2D undergoing bariatric surgery.

PERSPECTIVES: POSSIBLE PREVENTIVE AND THERAPEUTIC APPROACHES

Modifiable risk factors for fracture, including factors that affect fall risk and glycemic control should be tackled to reduce fracture risk, although no prospective studies are available to show the antifracture efficacy of preventive lifestyle and/or treatment strategies. Drugs shown to be associated with increased fracture risk in T2D, such as insulin and TZDs^[231,232,246] should be avoided, when possible. Strict monitoring should be implemented for T2D patients undergoing bariatric surgery in order to prevent nutritional deficiencies that could worsen weight loss-associated bone loss.

Several alterations in calcium homeostasis have been described in diabetic patients, including reduced intestinal calcium absorption and renal tubular calcium reabsorption, and impaired vitamin D synthesis^[247]. It is also recognized that individuals with diabetes, both T1D and T2D, have lower vitamin D levels as compared with non-diabetic controls^[248,249]. Overall, these alterations may negatively impact calcium homeostasis and bone mineralization. International guidelines recommend vitamin D supplementation for the prevention and/or treatment of osteoporosis and osteoporotic fractures in men and postmenopausal women^[250-252], although recent findings bring into question the efficacy of vitamin D supplementation in preventing fractures or falls, or improving BMD^[253]. Vitamin D supplementation was shown to increase bone formation markers^[254] and reduce bone resorption markers^[255] in postmenopausal women with T2D, not to affect bone turnover markers in patients with T2D and chronic kidney disease^[256], and to preserve femoral neck BMD in men with prediabetes^[257]. Few data are available about the effect of the use of osteoporosis medications in patients with diabetes.

Stemming from some positive preclinical results^[258], few recent human studies have focused the attention on nutrients containing antioxidants such as resveratrol, providing encouraging results in terms of on bone density and on bone loss prevention in obese patients^[259] and patients with T2D^[260,261] have been reported.

Recently, hyperbaric therapy^[262,263] has been shown to promote bone regeneration in animal models of diabetes, but further studies are needed to clarify whether this could be an effective approach in humans.

Raloxifene, a second generation selective estrogen receptor modulator (SERM) indicated for the prevention and treatment of postmenopausal osteoporosis^[264], was shown to improve bone material properties (femoral toughness) in diabetes-prone rats^[265]. In postmenopausal women, raloxifene may decrease the bone resorption

⁶⁶ WJD | https://www.wjgnet.com

marker NTX and it has been speculated that it might improve bone quality by reducing AGEs, although no information is available on the effect on reliable bone quality indicators or relevant clinical outcomes such as fracture risk^[265]. In a pilot study that assessed the skeletal effects of a third generation SERM, bazedoxifene, in postmenopausal women with T2D, all bone resorption markers decreased significantly after 12 weeks of treatment. Homocysteine and pentosidine, which were used as bone quality markers in this study, were not affected^[266].

Little is known about osteoporosis therapies in T1D young patients. As T1D usually manifests in young individuals, it is important to remember that caution must be taken in women during reproductive age, as bisphosphonates are stored and released from bones for long time and may affect fetal skeletal ossification. In elderly, postmenopausal, osteoporotic obese women with T2D treated with long-term bisphosphonates, no difference in spine BMD but a significantly greater decline in BMD in regions of the hip, femoral neck, and forearm were observed as compared with non-diabetic controls^[267]. However, the efficacy of these medications must be assessed based on clinically relevant outcomes. Despite being a condition of reduced bone turnover, epidemiological data indicate that diabetes (either T1D or T2D) was shown not to reduce the antifracture efficacy of antiresorptive drugs, which also reduce bone turnover^[268].

In a large study on the efficacy of recombinant PTH (rhPTH 1-34, teriparatide), similar reduction in nonvertebral fracture incidence and increase in BMD were observed in postmenopausal osteoporotic women with or without T2D^[269].

Denosumab is a RANKL-specific antibody indicated as osteoporosis treatment known to increase particularly cortical BMD. This property might be of particular value, as cortical compartment is the most involved in the diabetic bone. A phase 2 clinical trial to assess the skeletal effects of denosumab in T2D is ongoing (NCT03457818). Interestingly, denosumab was shown to improve hepatic insulin sensitivity in humans^[270,271] and, consistently, to reduce fasting plasma glucose in women with diabetes not on antidiabetic medications^[272]. Preclinical studies also indicate that denosumab may stimulate human β -cell proliferation^[273].

Sclerostin seems to have a central role in the pathogenesis of diabetic bone disease. In mouse models of T1D^[273] and T2D^[274], administration of anti-sclerostin antibodies seems to reverse the deficits in bone density and micro-fracture healing. No data are currently available on romosozumab, an anti-sclerostin antibody shown to reduce the risk of clinical and vertebral fractures in postmenopausal women with osteoporosis^[275].

CONCLUSION

Diabetes has a strong impact on bone health, and skeletal fragility is now recognized as a complication of both T1D and T2D. Fracture risk is greater in patients with T1D, and increases with increasing disease duration. Individuals with T1D have decreased BMD, possibly due to absolute insulin deficiency and the inability of exogenous insulin to mirror endogenous insulin secretion. However, the relatively small reduction in BMD does not appear to completely explain the increase in bone fragility observed in T1D^[276-296]. On the other hand, individuals with T2D have either normal or increased BMD, which is in contrast with the increased fracture risk observed in this population. Therefore, it is likely that factors that affect bone quality, rather than bone mass, impact the resistance of T2D bones to fracture (Table 2). Increased nonenzymatic glycation of bone matrix proteins, impaired microcirculation and glucotoxicity itself, *i.e.*, the direct detrimental effect of high glucose on bone cells, may all play a role. Reduced bone turnover and increased bone marrow adipogenesis at the expenses of osteogenesis may also contribute. Despite a clear association between T2D and increased fracture risk, evidence supporting an association between prediabetes and fracture risk is inconsistent, and further studies are needed to clarify whether insulin excess has either a beneficial or rather detrimental effect on bone health. The incomplete understanding of the mechanisms underlying diabetic bone disease makes it difficult to develop reliable tools for fracture risk prediction. To date, no single method is deemed optimal for predicting all fracture outcomes in patients with diabetes^[32]. Fracture history and risk factors should be assessed in older patients with DM, and measurement of BMD is recommended, if appropriate for the patient's age and gender^[8]. Caution should be used with antidiabetic drugs known to negatively affect bone health, such as TZDs and insulin in patients with T2D. Healthcare professionals involved in the management of T2D patients undergoing bariatric surgery should be aware of the possible detrimental effects on bone health, and implement appropriate nutritional strategies. Due to the lack of randomized

ishideng® WJD https://www.wjgnet.com

clinical trials to evaluate the efficacy of antifracture drugs in diabetes, and observational data indicating similar efficacy in those with or without diabetes, such drugs should be used according to existing indications.

Future studies should focus on the mechanisms underlying diabetic bone disease, and on preventative and treatment strategies to implement in order to reduce the morbidity associated with fractures in this frail population.

Table 2 Effects of diabetes and prediabetes on bone health				
	T1D	T2D	Prediabetes	
Fracture risk	$\uparrow \uparrow$	↑	?	
Bone mineral density	\downarrow	\leftrightarrow or \uparrow	\leftrightarrow or \uparrow	
Bone turnover	\downarrow	$\downarrow\downarrow$	↓?	
Bone marrow adiposity	\leftrightarrow	↑	∱?	
Bone matrix - AGEs	\uparrow	↑	?	
Microarchitecture/geometry	↑ cortical porosity	\uparrow cortical porosity	\downarrow trabecular and cortical bone size	

AGEs: Advanced glycation endproducts; T1D: Type 1 diabetes; T2D: Type 2 diabetes; \uparrow : Increased; \downarrow : Decreased; \leftrightarrow : Similar to healthy controls; ?: Unknown.

REFERENCES

- Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. *Physiol Rev* 2018; 98: 2133-2223 [PMID: 30067154 DOI: 10.1152/physrev.00063.2017]
- 2 Pramojanee SN, Phimphilai M, Chattipakorn N, Chattipakorn SC. Possible roles of insulin signaling in osteoblasts. *Endocr Res* 2014; 39: 144-151 [PMID: 24679227 DOI: 10.3109/07435800.2013.879168]
- 3 Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Brüning JC, Clemens TL. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. *Cell* 2010; 142: 309-319 [PMID: 20655471 DOI: 10.1016/j.cell.2010.06.002]
- 4 Thrailkill K, Bunn RC, Lumpkin C, Wahl E, Cockrell G, Morris L, Kahn CR, Fowlkes J, Nyman JS. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone. *J Diabetes Res* 2014; 2014: 703589 [PMID: 24963495 DOI: 10.1155/2014/703589]
- 5 Zoch ML, Abou DS, Clemens TL, Thorek DL, Riddle RC. In vivo radiometric analysis of glucose uptake and distribution in mouse bone. *Bone Res* 2016; 4: 16004 [PMID: 27088042 DOI: 10.1038/boneres.2016.4]
- 6 Wu S, Zhang Y, De Luca F. The effect of a high-calorie diet on bone growth is mediated by the insulin receptor. *Bone* 2019; 122: 166-175 [PMID: 30798001 DOI: 10.1016/j.bone.2019.02.021]
- 7 Fulzele K, DiGirolamo DJ, Liu Z, Xu J, Messina JL, Clemens TL. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. *J Biol Chem* 2007; 282: 25649-25658 [PMID: 17553792 DOI: 10.1074/jbc.M700651200]
- 8 American Diabetes Association. Standards of Medical Care in Diabetes 2019. Available at http://care.diabetesjournals.org/content/42/Supplement_1
- 9 Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. *Am J Epidemiol* 2007; 166: 495-505 [PMID: 17575306 DOI: 10.1093/aje/kwm106]
- 10 Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. *Diabet Med* 2015; 32: 1134-1142 [PMID: 26096918 DOI: 10.1111/dme.12734]
- 11 Dhaliwal R, Foster NC, Boyle C, Al Mukaddam M, Weinstock RS, Rickels MR, Shah VN, DiMeglio LA. Determinants of fracture in adults with type 1 diabetes in the USA: Results from the T1D Exchange Clinic Registry. J Diabetes Complications 2018; 32: 1006-1011 [PMID: 30220582 DOI: 10.1016/i.idiacomp.2018.08.016]
- 12 Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. *Diabetologia* 2005; 48: 1292-1299 [PMID: 15909154 DOI: 10.1007/s00125-005-1786-3]
- 13 Wang H, Ba Y, Xing Q, Du JL. Diabetes mellitus and the risk of fractures at specific sites: a metaanalysis. *BMJ Open* 2019; 9: e024067 [PMID: 30610024 DOI: 10.1136/bmjopen-2018-024067]
- 14 Moayeri A, Mohamadpour M, Mousavi SF, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. *Ther Clin Risk Manag* 2017; 13: 455-468 [PMID: 28442913 DOI: 10.2147/TCRM.S131945]
- 15 Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 2006; 17: 1065-1077 [PMID: 16758143 DOI: 10.1007/s00198-006-0137-7]
- 16 Patel S, Hyer S, Tweed K, Kerry S, Allan K, Rodin A, Barron J. Risk factors for fractures and falls in older women with type 2 diabetes mellitus. *Calcif Tissue Int* 2008; 82: 87-91 [PMID: 18175036 DOI: 10.1007/s00223-007-9082-5]
- 17 Wallace C, Reiber GE, LeMaster J, Smith DG, Sullivan K, Hayes S, Vath C. Incidence of falls, risk factors for falls, and fall-related fractures in individuals with diabetes and a prior foot ulcer. *Diabetes Care* 2002; 25: 1983-1986 [PMID: 12401743 DOI: 10.2337/diacare.25.11.1983]
- 18 Maurer MS, Burcham J, Cheng H. Diabetes mellitus is associated with an increased risk of falls in elderly residents of a long-term care facility. *J Gerontol A Biol Sci Med Sci* 2005; 60: 1157-1162 [PMID: 16183956 DOI: 10.1093/gerona/60.9.1157]
- 19 Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR; Study of Osteoporotic Features Research Group. Older women with diabetes have an increased risk of fracture: a prospective study. *J Clin Endocrinol Metab* 2001; 86: 32-38 [PMID: 11231974 DOI: 10.1210/jcem.86.1.7139]
- 20 Sarodnik C, Bours SPG, Schaper NC, van den Bergh JP, van Geel TACM. The risks of sarcopenia, falls and fractures in patients with type 2 diabetes mellitus. *Maturitas* 2018; 109: 70-77 [PMID: 29452785 DOI: 10.1016/j.maturitas.2017.12.011]
- 21 Schwartz AV, Vittinghoff E, Sellmeyer DE, Feingold KR, de Rekeneire N, Strotmeyer ES, Shorr RI, Vinik AI, Odden MC, Park SW, Faulkner KA, Harris TB; Health, Aging, and Body Composition Study.

Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care 2008; 31: 391-396 [PMID: 18056893 DOI: 10.2337/dc07-1152]

- 22 Kadam PD, Chuan HH. Erratum to: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament. Int Urogynecol J 2016; 27: 505 [PMID: 26811110 DOI: 10.1007/s00192-016-2952-5]
- Shah VN, Carpenter RD, Ferguson VL, Schwartz AV. Bone health in type 1 diabetes. Curr Opin 23 Endocrinol Diabetes Obes 2018; 25: 231-236 [PMID: 29794498 DOI: 10.1097/MED.0000000000421]
- Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have an increased risk 24 of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 2009; 24: 702-709 [PMID: 19049338 DOI: 10.1359/jbmr.081207]
- Rønne MS, Heidemann M, Lylloff L, Schou AJ, Tarp J, Bugge A, Laursen JO, Jørgensen NR, Husby S, 25 Wedderkopp N, Mølgaard C. Bone mass development is sensitive to insulin resistance in adolescent boys. Bone 2019; 122: 1-7 [PMID: 30738213 DOI: 10.1016/j.bone.2019.02.005]
- 26 Napoli N, Conte C, Pedone C, Strotmeyer ES, Barbour KE, Black DM, Samelson EJ, Schwartz AV. Effect of Insulin Resistance on BMD and Fracture Risk in Older Adults. J Clin Endocrinol Metab 2019; 104: 3303-3310 [PMID: 30802282 DOI: 10.1210/jc.2018-02539]
- Looker AC, Eberhardt MS, Saydah SH. Diabetes and fracture risk in older U.S. adults. Bone 2016; 82: 9-27 15 [PMID: 25576672 DOI: 10.1016/j.bone.2014.12.008]
- 28 Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, Dam TT, Barrett-Connor E, Palermo L, Orwoll ES, Cummings SR, Black DM, Schwartz AV. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 2014; 57: 2057-2065 [PMID: 24908567 DOI: 10.1007/s00125-014-3289-6]
- 29 Holmberg AH, Nilsson PM, Nilsson JA, Akesson K. The association between hyperglycemia and fracture risk in middle age. A prospective, population-based study of 22,444 men and 10,902 women. J Clin Endocrinol Metab 2008; 93: 815-822 [PMID: 18073298 DOI: 10.1210/jc.2007-0843]
- Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley 30 JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM; Study of Osteoporotic Fractures (SOF) Research Group; Osteoporotic Fractures in Men (MrOS) Research Group; Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 2011; 305: 2184-2192 [PMID: 21632482 DOI: 10.1001/jama.2011.715]
- Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. FRAX 31 underestimates fracture risk in patients with diabetes. J Bone Miner Res 2012; 27: 301-308 [PMID: 22052532 DOI: 10.1002/jbmr.556]
- Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D. Comparison of Methods for 32 Improving Fracture Risk Assessment in Diabetes: The Manitoba BMD Registry. J Bone Miner Res 2018; 33: 1923-1930 [PMID: 29953670 DOI: 10.1002/jbmr.3538]
- Napoli N, Strollo R, Paladini A, Briganti SI, Pozzilli P, Epstein S. The alliance of mesenchymal stem 33 cells, bone, and diabetes. Int J Endocrinol 2014; 2014: 690783 [PMID: 25140176 DOI: 10.1155/2014/690783]
- Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor 34 Involvement. Physiology (Bethesda) 2016; 31: 233-245 [PMID: 27053737 DOI: 10.1152/physiol.00061.2014
- Fowlkes JL, Bunn RC, Liu L, Wahl EC, Coleman HN, Cockrell GE, Perrien DS, Lumpkin CK, Thrailkill 35 KM. Runt-related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are downregulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology 2008; 149: 1697-1704 [PMID: 18162513 DOI: 10.1210/en.2007-1408]
- Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the 36 expression of transcription factors that regulate osteoblast differentiation. Endocrinology 2003; 144: 346-352 [PMID: 12488363 DOI: 10.1210/en.2002-220072
- Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and 37 peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology 2005; 146: 3622-3631 [PMID: 15905321 DOI: 10.1210/en.2004-1677]
- Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically 38 induced diabetic mice. Endocrinology 2007; 148: 198-205 [PMID: 17053023 DOI: 10.1210/en.2006-1006]
- Hie M, Iitsuka N, Otsuka T, Tsukamoto I. Insulin-dependent diabetes mellitus decreases 39 osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med 2011; 28: 455-462 [PMID: 21567076 DOI: 10.3892/ijmm.2011.697]
- Crane JL, Zhao L, Frye JS, Xian L, Qiu T, Cao X. IGF-1 Signaling is Essential for Differentiation of 40 Mesenchymal Stem Cells for Peak Bone Mass. Bone Res 2013; 1: 186-194 [PMID: 26273502 DOI: 10 4248/BR201302007
- Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, 41 Boisclair YR, LeRoith D. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 2002; 110: 771-781 [PMID: 12235108 DOI: 10.1172/JCI15463]
- Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen 42 CJ, Efstratiadis A, Clemens TL. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 2002; 277: 44005-44012 [PMID: 12215457 DOI: 10.1074/jbc.M208265200]
- Brenner RE, Riemenschneider B, Blum W, Mörike M, Teller WM, Pirsig W, Heinze E. Defective 43 stimulation of proliferation and collagen biosynthesis of human bone cells by serum from diabetic patients. Acta Endocrinol (Copenh) 1992; 127: 509-514 [PMID: 1283477]
- Hamed EA, Faddan NH, Elhafeez HA, Sayed D. Parathormone--25(OH)-vitamin D axis and bone status 44 in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes 2011; 12: 536-546 [PMID: 21426456 DOI: 10.1111/j.1399-5448.2010.00739.x1
- 45 Motyl KJ, McCauley LK, McCabe LR. Amelioration of type I diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival. J Cell Physiol 2012; 227: 1326-1334 [PMID: 21604269 DOI: 10.1002/jcp.22844]
- Qiu T, Crane JL, Xie L, Xian L, Xie H, Cao X. IGF-I induced phosphorylation of PTH receptor enhances 46 osteoblast to osteocyte transition. Bone Res 2018; 6: 5 [PMID: 29507819 DOI: 10.1038/s41413-017-0002-7
- 47 Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A,

WJD | https://www.wjgnet.com

Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002; 106: 2067-2072 [PMID: 12379575]

- 48 Gonzalez Y, Herrera MT, Soldevila G, Garcia-Garcia L, Fabián G, Pérez-Armendariz EM, Bobadilla K, Guzmán-Beltrán S, Sada E, Torres M. High glucose concentrations induce TNF-a production through the down-regulation of CD33 in primary human monocytes. BMC Immunol 2012; 13: 19 [PMID: 22500980 DOI: 10.1186/1471-2172-13-19]
- Assuma R, Oates T, Cochran D, Amar S, Graves DT. IL-1 and TNF antagonists inhibit the inflammatory 49 response and bone loss in experimental periodontitis. J Immunol 1998; 160: 403-409 [PMID: 9551997]
- Delima AJ, Karatzas S, Amar S, Graves DT. Inflammation and tissue loss caused by periodontal 50 pathogens is reduced by interleukin-1 antagonists. J Infect Dis 2002; 186: 511-516 [PMID: 12195378 DOI: 10.1086/341778
- Franchimont N, Wertz S, Malaise M. Interleukin-6: An osteotropic factor influencing bone formation? 51 Bone 2005; 37: 601-606 [PMID: 16112634 DOI: 10.1016/j.bone.2005.06.002]
- 52 Gilbert LC, Chen H, Lu X, Nanes MS. Chronic low dose tumor necrosis factor-a (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts. Bone 2013; 56: 174-183 [PMID: 23756233 DOI: 10.1016/j.bone.2013.06.002]
- Perrien DS, Brown EC, Fletcher TW, Irby DJ, Aronson J, Gao GG, Skinner RA, Hogue WR, Feige U, 53 Suva LJ, Ronis MJ, Badger TM, Lumpkin CK. Interleukin-1 and tumor necrosis factor antagonists attenuate ethanol-induced inhibition of bone formation in a rat model of distraction osteogenesis. J Pharmacol Exp Ther 2002; 303: 904-908 [PMID: 12438508 DOI: 10.1124/jpet.102.039636]
- Coe LM, Irwin R, Lippner D, McCabe LR. The bone marrow microenvironment contributes to type I 54 diabetes induced osteoblast death. J Cell Physiol 2011; 226: 477-483 [PMID: 20677222 DOI: 10.1002/jcp.22357]
- 55 Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 2000; 141: 3956-3964 [PMID: 11089525 DOI: 10.1210/endo.141.11.7739]
- Boyce BF, Aufdemorte TB, Garrett IR, Yates AJ, Mundy GR. Effects of interleukin-1 on bone turnover in 56 normal mice. Endocrinology 1989; 125: 1142-1150 [PMID: 2788075 DOI: 10.1210/endo-125-3-1142]
- Sassi F, Buondonno I, Luppi C, Spertino E, Stratta E, Di Stefano M, Ravazzoli M, Isaia G, Trento M, 57 Passera P, Porta M, Isaia GC, D'Amelio P. Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord 2018; 18: 55 [PMID: 30089481 DOI: 10.1186/s12902-018-0283-x]
- Lai X, Price C, Modla S, Thompson WR, Caplan J, Kirn-Safran CB, Wang L. The dependences of 58 osteocyte network on bone compartment, age, and disease. Bone Res 2015; 3 [PMID: 26213632 DOI: 10.1038/boneres.2015.9
- Portal-Núñez S, Lozano D, de Castro LF, de Gortázar AR, Nogués X, Esbrit P. Alterations of the 59 Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormonerelated protein in bone from diabetic mice. FEBS Lett 2010; 584: 3095-3100 [PMID: 20621835 DOI: 10.1016/j.febslet.2010.05.047
- Villarino ME, Sánchez LM, Bozal CB, Ubios AM. Influence of short-term diabetes on osteocytic lacunae 60 of alveolar bone. A histomorphometric study. Acta Odontol Latinoam 2006; 19: 23-28 [PMID: 17121195]
- 61 Sapir-Koren R, Livshits G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporos Int 2014; 25: 2685-2700 [PMID: 25030653 DOI: 10.1007/s00198-014-2808-0]
- Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, 62 Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 2003; 22: 6267-6276 [PMID: 14633986 DOI: 10.1093/emboj/cdg599]
- Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, Latham JA. Sclerostin 63 promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 2004; 35: 828-835 [PMID: 15454089 DOI: 10.1016/j.bone.2004.05.023]
- Neumann T, Hofbauer LC, Rauner M, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller 64 UA, Wolf G, Hamann C, Sämann A. Clinical and endocrine correlates of circulating sclerostin levels in patients with type 1 diabetes mellitus. Clin Endocrinol (Oxf) 2014; 80: 649-655 [PMID: 24237244 DOI: 10.1111/cen.12364
- Daniele G, Winnier D, Mari A, Bruder J, Fourcaudot M, Pengou Z, Tripathy D, Jenkinson C, Folli F. 65 Sclerostin and Insulin Resistance in Prediabetes: Evidence of a Cross Talk Between Bone and Glucose Metabolism. Diabetes Care 2015; 38: 1509-1517 [PMID: 26084344 DOI: 10.2337/dc14-2989]
- García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, García-66 Salcedo JA, Muñoz-Torres M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97: 234-241 [PMID: 22031520 DOI: 10.1210/jc.2011-2186]
- Starup-Linde J, Lykkeboe S, Gregersen S, Hauge EM, Langdahl BL, Handberg A, Vestergaard P. Bone 67 Structure and Predictors of Fracture in Type 1 and Type 2 Diabetes. J Clin Endocrinol Metab 2016; 101: 928-936 [PMID: 26756117 DOI: 10.1210/jc.2015-3882]
- Rubin MR. Bone cells and bone turnover in diabetes mellitus. Curr Osteoporos Rep 2015; 13: 186-191 68 [PMID: 25740570 DOI: 10.1007/s11914-015-0265-0]
- Hamann C, Rauner M, Höhna Y, Bernhardt R, Mettelsiefen J, Goettsch C, Günther KP, Stolina M, Han 69 CY, Asuncion FJ, Ominsky MS, Hofbauer LC. Sclerostin antibody treatment improves bone mass, bone strength, and bone defect regeneration in rats with type 2 diabetes mellitus. J Bone Miner Res 2013; 28: 627-638 [PMID: 23109114 DOI: 10.1002/jbmr.1803]
- Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, 70 Grauer A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N Engl J Med 2017; 377: 1417-1427 [PMID: 28892457 DOI: 10.1056/NEJMoa1708322]
- Mabilleau G, Petrova NL, Edmonds ME, Sabokbar A. Increased osteoclastic activity in acute Charcot's 71 osteoarthropathy: the role of receptor activator of nuclear factor-kappaB ligand. Diabetologia 2008; 51: 1035-1040 [PMID: 18389210 DOI: 10.1007/s00125-008-0992-1]
- 72 Loureiro MB, Ururahy MA, Freire-Neto FP, Oliveira GH, Duarte VM, Luchessi AD, Brandão-Neto J, Hirata RD, Hirata MH, Maciel-Neto JJ, Arrais RF, Almeida MG, Rezende AA. Low bone mineral density is associated to poor glycemic control and increased OPG expression in children and adolescents with type 1 diabetes. Diabetes Res Clin Pract 2014; 103: 452-457 [PMID: 24529565 DOI: 10.1016/j.diabres.2013.12.018
- 73 Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner SL. High d(+)glucose

concentration inhibits RANKL-induced osteoclastogenesis. *Bone* 2008; **42**: 1122-1130 [PMID: 18378205 DOI: 10.1016/j.bone.2008.02.006]

- 74 Hie M, Shimono M, Fujii K, Tsukamoto I. Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. *Bone* 2007; 41: 1045-1050 [PMID: 17916452 DOI: 10.1016/j.bone.2007.08.030]
- 75 Thrailkill KM, Clay Bunn R, Nyman JS, Rettiganti MR, Cockrell GE, Wahl EC, Uppuganti S, Lumpkin CK, Fowlkes JL. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. *Bone* 2016; 82: 101-107 [PMID: 26211996 DOI: 10.1016/j.bone.2015.07.025]
- 76 Motyl K, McCabe LR. Streptozotocin, type I diabetes severity and bone. Biol Proced Online 2009; 11: 296-315 [PMID: 19495918 DOI: 10.1007/s12575-009-9000-5]
- 77 Roszer T. Inflammation as death or life signal in diabetic fracture healing. *Inflamm Res* 2011; 60: 3-10 [PMID: 20845059 DOI: 10.1007/s00011-010-0246-9]
- 78 Hu Z, Ma C, Liang Y, Zou S, Liu X. Osteoclasts in bone regeneration under type 2 diabetes mellitus. Acta Biomater 2019; 84: 402-413 [PMID: 30508657 DOI: 10.1016/j.actbio.2018.11.052]
- 79 Hough FS, Pierroz DD, Cooper C, Ferrari SL; IOF CSA Bone and Diabetes Working Group. MECHANISMS IN ENDOCRINOLOGY: Mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. *Eur J Endocrinol* 2016; **174**: R127-R138 [PMID: 26537861 DOI: 10.1530/EJE-15-0820]
- 80 Farlay D, Armas LA, Gineyts E, Akhter MP, Recker RR, Boivin G. Nonenzymatic Glycation and Degree of Mineralization Are Higher in Bone From Fractured Patients With Type 1 Diabetes Mellitus. J Bone Miner Res 2016; 31: 190-195 [PMID: 26234180 DOI: 10.1002/jbmr.2607]
- 81 Eller-Vainicher C, Zhukouskaya VV, Tolkachev YV, Koritko SS, Cairoli E, Grossi E, Beck-Peccoz P, Chiodini I, Shepelkevich AP. Low bone mineral density and its predictors in type 1 diabetic patients evaluated by the classic statistics and artificial neural network analysis. *Diabetes Care* 2011; 34: 2186-2191 [PMID: 21852680 DOI: 10.2337/dc11-0764]
- 82 Campos Pastor MM, López-Ibarra PJ, Escobar-Jiménez F, Serrano Pardo MD, García-Cervigón AG. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 2000; 11: 455-459 [PMID: 10912849]
- 83 Clausen P, Feldt-Rasmussen B, Jacobsen P, Rossing K, Parving HH, Nielsen PK, Feldt-Rasmussen U, Olgaard K. Microalbuminuria as an early indicator of osteopenia in male insulin-dependent diabetic patients. *Diabet Med* 1997; 14: 1038-1043 [PMID: 9455931 DOI: 10.1002/(SICI)1096-9136(199712)14:12<1038::AID-DIA509>3.0.CO;2-1]
- 84 Muñoz-Torres M, Jódar E, Escobar-Jiménez F, López-Ibarra PJ, Luna JD. Bone mineral density measured by dual X-ray absorptiometry in Spanish patients with insulin-dependent diabetes mellitus. *Calcif Tissue Int* 1996; 58: 316-319 [PMID: 8661964]
- 85 Rozadilla A, Nolla JM, Montaña E, Fiter J, Gómez-Vaquero C, Soler J, Roig-Escofet D. Bone mineral density in patients with type 1 diabetes mellitus. *Joint Bone Spine* 2000; 67: 215-218 [PMID: 10875321]
- 86 Strotmeyer ES, Cauley JA, Orchard TJ, Steenkiste AR, Dorman JS. Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. *Diabetes Care* 2006; 29: 306-311 [PMID: 16443878 DOI: 10.2337/diacare.29.02.06.dc05-1353]
- 87 Franceschi R, Longhi S, Cauvin V, Fassio A, Gallo G, Lupi F, Reinstadler P, Fanolla A, Gatti D, Radetti G. Bone Geometry, Quality, and Bone Markers in Children with Type 1 Diabetes Mellitus. *Calcif Tissue Int* 2018; 102: 657-665 [PMID: 29290007 DOI: 10.1007/s00223-017-0381-1]
- 88 Joshi A, Varthakavi P, Chadha M, Bhagwat N. A study of bone mineral density and its determinants in type 1 diabetes mellitus. J Osteoporos 2013; 2013: 397814 [PMID: 23607045 DOI: 10.1155/2013/397814]
- 89 Zhukouskaya VV, Eller-Vainicher C, Shepelkevich AP, Dydyshko Y, Cairoli E, Chiodini I. Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice. *J Endocrinol Invest* 2015; 38: 941-950 [PMID: 25863666 DOI: 10.1007/s40618-015-0284-9]
- 90 Bonfig W, Kapellen T, Dost A, Fritsch M, Rohrer T, Wolf J, Holl RW; Diabetes Patienten Verlaufsdokumentationssystem Initiative of the German Working Group for Pediatric Diabetology and the German Bundesministerium für Bildung und Forschung Competence Net for Diabetes Mellitus. Growth in children and adolescents with type 1 diabetes. *J Pediatr* 2012; 160: 900-3.e2 [PMID: 22244464 DOI: 10.1016/j.jpeds.2011.12.007]
- 91 Maddaloni E, Cavallari I, Napoli N, Conte C. Vitamin D and Diabetes Mellitus. Front Horm Res 2018; 50: 161-176 [PMID: 29597238 DOI: 10.1159/000486083]
- 92 Hamilton EJ, Drinkwater JJ, Chubb SAP, Rakic V, Kamber N, Zhu K, Prince RL, Davis WA, Davis TME. A 10-Year Prospective Study of Bone Mineral Density and Bone Turnover in Males and Females With Type 1 Diabetes. J Clin Endocrinol Metab 2018; 103: 3531-3539 [PMID: 30032248 DOI: 10.1210/jc.2018-00850]
- 93 Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, Yu Q, Zillikens MC, Gao X, Rivadeneira F. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. *Eur J Epidemiol* 2012; 27: 319-332 [PMID: 22451239 DOI: 10.1007/s10654-012-9674-x]
- Conte C, Epstein S, Napoli N. Insulin resistance and bone: a biological partnership. *Acta Diabetol* 2018; 55: 305-314 [PMID: 29333578 DOI: 10.1007/s00592-018-1101-7]
- 95 Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H. Correlations between insulin sensitivity and bone mineral density in non-diabetic men. *Diabet Med* 2000; 17: 124-129 [PMID: 10746482]
- 96 Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J. Circulating insulin levels are related to bone density in normal postmenopausal women. *Am J Physiol* 1993; 265: E655-E659 [PMID: 8238341 DOI: 10.1152/ajpendo.1993.265.4.E655]
- Stolk RP, Van Daele PL, Pols HA, Burger H, Hofman A, Birkenhäger JC, Lamberts SW, Grobbee DE. Hyperinsulinemia and bone mineral density in an elderly population: The Rotterdam Study. *Bone* 1996; 18: 545-549 [PMID: 8805995]
- 98 Dennison EM, Syddall HE, Aihie Sayer A, Craighead S, Phillips DI, Cooper C. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance? *Diabetologia* 2004; 47: 1963-1968 [PMID: 15565368 DOI: 10.1007/s00125-004-1560-y]
- 99 Haffner SM, Bauer RL. The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. *Metabolism* 1993; 42: 735-738 [PMID: 8510518]
- 100 Kim SM, Cui J, Rhyu J, Guo X, Chen YI, Hsueh WA, Rotter JI, Goodarzi MO. Association between sitespecific bone mineral density and glucose homeostasis and anthropometric traits in healthy men and

women. Clin Endocrinol (Oxf) 2018; 88: 848-855 [PMID: 29575061 DOI: 10.1111/cen.13602]

- 101 Srikanthan P, Crandall CJ, Miller-Martinez D, Seeman TE, Greendale GA, Binkley N, Karlamangla AS. Insulin resistance and bone strength: findings from the study of midlife in the United States. *J Bone Miner Res* 2014; 29: 796-803 [PMID: 23983216 DOI: 10.1002/jbmr.2083]
- 102 Michel BA, Bloch DA, Fries JF. Weight-bearing exercise, overexercise, and lumbar bone density over age 50 years. Arch Intern Med 1989; 149: 2325-2329 [PMID: 2802897]
- 103 Albala C, Yáñez M, Devoto E, Sostin C, Zeballos L, Santos JL. Obesity as a protective factor for postmenopausal osteoporosis. *Int J Obes Relat Metab Disord* 1996; 20: 1027-1032 [PMID: 8923160]
- Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. *Calcif Tissue Int* 1998; 63: 456-458 [PMID: 9817937]
- 105 Ishii S, Cauley JA, Greendale GA, Nielsen C, Karvonen-Gutierrez C, Ruppert K, Karlamangla AS. Pleiotropic effects of obesity on fracture risk: the Study of Women's Health Across the Nation. J Bone Miner Res 2014; 29: 2561-2570 [PMID: 24986773 DOI: 10.1002/jbmr.2303]
- 106 Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995; 332: 767-773 [PMID: 7862179 DOI: 10.1056/NEJM19950323321202]
- 107 DiPietro L, Welch GA, Davis DR, Drane JW, Macera CA. Body mass and risk of hip fracture among a national cohort of postmenopausal white women: a reanalysis. *Obes Res* 1993; 1: 357-363 [PMID: 16350586]
- 108 Joakimsen RM, Fønnebø V, Magnus JH, Tollan A, Søgaard AJ. The Tromsø Study: body height, body mass index and fractures. Osteoporos Int 1998; 8: 436-442 [PMID: 9850351]
- 109 Paganini-Hill A, Chao A, Ross RK, Henderson BE. Exercise and other factors in the prevention of hip fracture: the Leisure World study. *Epidemiology* 1991; 2: 16-25 [PMID: 2021661]
- 110 Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES; Glow Investigators. Obesity is not protective against fracture in postmenopausal women: GLOW. *Am J Med* 2011; **124**: 1043-1050 [PMID: 22017783 DOI: 10.1016/j.amjmed.2011.06.013]
- 111 Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C, Cummings SR, Diez-Perez A, Eisman JA, Fujiwara S, Glüer CC, Goltzman D, Hans D, Khaw KT, Krieg MA, Kröger H, LaCroix AZ, Lau E, Leslie WD, Mellström D, Melton LJ, O'Neill TW, Pasco JA, Prior JC, Reid DM, Rivadeneira F, van Staa T, Yoshimura N, Zillikens MC. A meta-analysis of the association of fracture risk and body mass index in women. *J Bone Miner Res* 2014; 29: 223-233 [PMID: 23775829 DOI: 10.1002/jbmr.2017]
- 112 Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, Hillier TA, Cummings S, Compston JE; Study of Osteoporotic Fractures. Risk factors for nonvertebral fracture in obese older women. *J Clin Endocrinol Metab* 2011; 96: 2414-2421 [PMID: 21677038 DOI: 10.1210/jc.2011-0076]
- 113 Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, Nogués X, Compston JE, Díez-Pérez A. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. *J Bone Miner Res* 2012; 27: 294-300 [PMID: 22095911 DOI: 10.1002/jbmr.1466]
- 114 Watts NB; GLOW investigators. Insights from the Global Longitudinal Study of Osteoporosis in Women (GLOW). Nat Rev Endocrinol 2014; 10: 412-422 [PMID: 24751880 DOI: 10.1038/nrendo.2014.55]
- 115 Savvidis C, Tournis S, Dede AD. Obesity and bone metabolism. *Hormones (Athens)* 2018; 17: 205-217 [PMID: 29858847 DOI: 10.1007/s42000-018-0018-4]
- 116 Søgaard AJ, Holvik K, Omsland TK, Tell GS, Dahl C, Schei B, Falch JA, Eisman JA, Meyer HE. Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60-79 years followed for 8 years. Cohort of Norway. *J Intern Med* 2015; 277: 306-317 [PMID: 24597977 DOI: 10.1111/joim.12230]
- **Zhang J**, Jin Y, Xu S, Zheng J, Zhang Q, Chen J, Huang Y, Shao H, Yang D, Ying Q. Associations of fat mass and fat distribution with bone mineral density in Chinese obese population. *J Clin Densitom* 2015; 18: 44-49 [PMID: 24815308 DOI: 10.1016/j.jocd.2014.03.001]
- 118 Hind K, Pearce M, Birrell F. Total and Visceral Adiposity Are Associated With Prevalent Vertebral Fracture in Women but Not Men at Age 62 Years: The Newcastle Thousand Families Study. J Bone Miner Res 2017; 32: 1109-1115 [PMID: 28261864 DOI: 10.1002/jbmr.3085]
- 119 Machado LG, Domiciano DS, Figueiredo CP, Caparbo VF, Takayama L, Oliveira RM, Lopes JB, Menezes PR, Pereira RM. Visceral fat measured by DXA is associated with increased risk of non-spine fractures in nonobese elderly women: a population-based prospective cohort analysis from the São Paulo Ageing & amp; Health (SPAH) Study. Osteoporos Int 2016; 27: 3525-3533 [PMID: 27351667 DOI: 10.1007/s00198-016-3682-8]
- 120 **Ibrahim MM**. Subcutaneous and visceral adipose tissue: structural and functional differences. *Obes Rev* 2010; **11**: 11-18 [PMID: 19656312 DOI: 10.1111/j.1467-789X.2009.00623.x]
- 121 Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. *Nutr Metab Cardiovasc Dis* 2007; 17: 319-326 [PMID: 17110092 DOI: 10.1016/j.numecd.2006.07.005]
- 122 Lee JH, Lee YH, Jung KH, Kim MK, Jang HW, Kim TK, Kim HJ, Jo YS, Shong M, Lee TY, Ku BJ. Bone mineral density in prediabetic men. *Korean Diabetes J* 2010; 34: 294-302 [PMID: 21076577 DOI: 10.4093/kdj.2010.34.5.294]
- 123 Pollock NK, Bernard PJ, Wenger K, Misra S, Gower BA, Allison JD, Zhu H, Davis CL. Lower bone mass in prepubertal overweight children with prediabetes. *J Bone Miner Res* 2010; 25: 2760-2769 [PMID: 20641032 DOI: 10.1002/jbmr.184]
- 124 Pater A, Sypniewska G, Pilecki O. Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2010; 23: 81-86 [PMID: 20432810]
- 125 **Starup-Linde J**. Diabetes, biochemical markers of bone turnover, diabetes control, and bone. *Front Endocrinol (Lausanne)* 2013; **4**: 21 [PMID: 23482417 DOI: 10.3389/fendo.2013.00021]
- 126 Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P. Biochemical markers of bone turnover in diabetes patients--a meta-analysis, and a methodological study on the effects of glucose on bone markers. *Osteoporos Int* 2014; 25: 1697-1708 [PMID: 24676844 DOI: 10.1007/s00198-014-2676-7]
- 127 **Hygum K**, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. MECHANISMS IN ENDOCRINOLOGY: Diabetes mellitus, a state of low bone turnover - a systematic review and meta-

analysis. Eur J Endocrinol 2017; **176**: R137-R157 [PMID: 28049653 DOI: 10.1530/EJE-16-0652]

- 128 Mitchell A, Fall T, Melhus H, Wolk A, Michaëlsson K, Byberg L. Type 2 Diabetes in Relation to Hip Bone Density, Area, and Bone Turnover in Swedish Men and Women: A Cross-Sectional Study. *Calcif Tissue Int* 2018; 103: 501-511 [PMID: 29946974 DOI: 10.1007/s00223-018-0446-9]
- 129 Purnamasari D, Puspitasari MD, Setiyohadi B, Nugroho P, Isbagio H. Low bone turnover in premenopausal women with type 2 diabetes mellitus as an early process of diabetes-associated bone alterations: a cross-sectional study. *BMC Endocr Disord* 2017; **17**: 72 [PMID: 29187183 DOI: 10.1186/s12902-017-0224-0]
- 130 Starup-Linde J, Lykkeboe S, Gregersen S, Hauge EM, Langdahl BL, Handberg A, Vestergaard P. Differences in biochemical bone markers by diabetes type and the impact of glucose. *Bone* 2016; 83: 149-155 [PMID: 26555635 DOI: 10.1016/j.bone.2015.11.004]
- 131 Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. *Diabetes* 1995; 44: 775-782 [PMID: 7789645 DOI: 10.2337/diab.44.7.775]
- 132 Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, Kousteni S, Rubin MR. Circulating osteogenic precursor cells in type 2 diabetes mellitus. *J Clin Endocrinol Metab* 2012; 97: 3240-3250 [PMID: 22740707 DOI: 10.1210/jc.2012-1546]
- 133 Dobnig H, Piswanger-Sölkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, Maier E, Maritschnegg P, Sieberer C, Fahrleitner-Pammer A. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. *J Clin Endocrinol Metab* 2006; **91**: 3355-3363 [PMID: 16735485 DOI: 10.1210/jc.2006-0460]
- 134 Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T. Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 2012; 97: 1277-1284 [PMID: 22337915 DOI: 10.1210/jc.2011-2537]
- 135 Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL; IOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. *Nat Rev Endocrinol* 2017; 13: 208-219 [PMID: 27658727 DOI: 10.1038/nrendo.2016.153]
- 136 Holloway-Kew KL, De Abreu LLF, Kotowicz MA, Sajjad MA, Pasco JA. Bone Turnover Markers in Men and Women with Impaired Fasting Glucose and Diabetes. *Calcif Tissue Int* 2019; 104: 599-604 [PMID: 30680432 DOI: 10.1007/s00223-019-00527-y]
- 137 Jiajue R, Jiang Y, Wang O, Li M, Xing X, Cui L, Yin J, Xu L, Xia W. Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus. *Osteoporos Int* 2014; 25: 1999-2005 [PMID: 24760246 DOI: 10.1007/s00198-014-2714-5]
- 138 Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, Ding SY, Bredella MA, Fazeli PK, Khoury B, Jepsen KJ, Pilch PF, Klibanski A, Rosen CJ, MacDougald OA. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. *Nat Commun* 2015; 6: 7808 [PMID: 26245716 DOI: 10.1038/ncomms8808]
- 139 Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. *J Cell Biochem* 2006; 99: 411-424 [PMID: 16619259 DOI: 10.1002/icb.20842]
- 140 Kim TY, Schafer AL. Diabetes and Bone Marrow Adiposity. Curr Osteoporos Rep 2016; 14: 337-344 [PMID: 27714580 DOI: 10.1007/s11914-016-0336-x]
- 141 **Devlin MJ**, Rosen CJ. The bone-fat interface: basic and clinical implications of marrow adiposity. *Lancet Diabetes Endocrinol* 2015; **3**: 141-147 [PMID: 24731667 DOI: 10.1016/S2213-8587(14)70007-5]
- 142 Motyl KJ, Raetz M, Tekalur SA, Schwartz RC, McCabe LR. CCAAT/enhancer binding protein βdeficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. *Am J Physiol Regul Integr Comp Physiol* 2011; **300**: R1250-R1260 [PMID: 21346244 DOI: 10.1152/ajpregu.00764.2010]
- 143 Armas LA, Akhter MP, Drincic A, Recker RR. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus. *Bone* 2012; 50: 91-96 [PMID: 22001578 DOI: 10.1016/j.bone.2011.09.055]
- 144 Carvalho AL, Massaro B, Silva LTPE, Salmon CEG, Fukada SY, Nogueira-Barbosa MH, Elias J, Freitas MCF, Couri CEB, Oliveira MC, Simões BP, Rosen CJ, de Paula FJA. Emerging Aspects of the Body Composition, Bone Marrow Adipose Tissue and Skeletal Phenotypes in Type 1 Diabetes Mellitus. *J Clin Densitom* 2018 [PMID: 30100221 DOI: 10.1016/j.jocd.2018.06.007]
- 145 Abdalrahaman N, McComb C, Foster JE, Lindsay RS, Drummond R, McKay GA, Perry CG, Ahmed SF. The relationship between adiposity, bone density and microarchitecture is maintained in young women irrespective of diabetes status. *Clin Endocrinol (Oxf)* 2017; 87: 327-335 [PMID: 28656591 DOI: 10.1111/cen.13410]
- 146 Sheu Y, Amati F, Schwartz AV, Danielson ME, Li X, Boudreau R, Cauley JA; Osteoporotic Fractures in Men (MrOS) Research Group. Vertebral bone marrow fat, bone mineral density and diabetes: The Osteoporotic Fractures in Men (MrOS) study. *Bone* 2017; 97: 299-305 [PMID: 28179169 DOI: 10.1016/j.bone.2017.02.001]
- 147 Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, Link TM. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 2013; 28: 1721-1728 [PMID: 23558967 DOI: 10.1002/jbmr.1950]
- 148 Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X, Link TM. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? *J Magn Reson Imaging* 2012; 35: 117-124 [PMID: 22190287 DOI: 10.1002/jmri.22757]
- 149 Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. *Obesity (Silver Spring)* 2011; 19: 49-53 [PMID: 20467419 DOI: 10.1038/oby.2010.106]
- 150 Bani Hassan E, Demontiero O, Vogrin S, Ng A, Duque G. Marrow Adipose Tissue in Older Men: Association with Visceral and Subcutaneous Fat, Bone Volume, Metabolism, and Inflammation. *Calcif Tissue Int* 2018; 103: 164-174 [PMID: 29582133 DOI: 10.1007/s00223-018-0412-6]
- 151 de Paula FJ, de Araújo IM, Carvalho AL, Elias J, Salmon CE, Nogueira-Barbosa MH. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women. *PLoS One* 2015; 10: e0129764 [PMID: 26067489 DOI: 10.1371/journal.pone.0129764]
- 152 **Chaudhuri J**, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. *Cell Metab*

2018; 28: 337-352 [PMID: 30184484 DOI: 10.1016/j.cmet.2018.08.014]

- 153 Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. *Bone* 2007; 40: 345-353 [PMID: 17064973 DOI: 10.1016/j.bone.2006.09.011]
- 154 Takagi M, Kasayama S, Yamamoto T, Motomura T, Hashimoto K, Yamamoto H, Sato B, Okada S, Kishimoto T. Advanced glycation endproducts stimulate interleukin-6 production by human bone-derived cells. J Bone Miner Res 1997; 12: 439-446 [PMID: 9076587 DOI: 10.1359/jbmr.1997.12.3.439]
- 155 Chen H, Liu W, Wu X, Gou M, Shen J, Wang H. Advanced glycation end products induced IL-6 and VEGF-A production and apoptosis in osteocyte-like MLO-Y4 cells by activating RAGE and ERK1/2, P38 and STAT3 signalling pathways. *Int Immunopharmacol* 2017; **52**: 143-149 [PMID: 28910744 DOI: 10.1016/j.intimp.2017.09.004]
- 156 Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. *Osteoporos Int* 2006; 17: 1514-1523 [PMID: 16770520 DOI: 10.1007/s00198-006-0155-5]
- 157 Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Sämann A. High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. *Osteoporos Int* 2014; 25: 1527-1533 [PMID: 24599273 DOI: 10.1007/s00198-014-2631-7]
- 158 Barzilay JI, Bůžková P, Zieman SJ, Kizer JR, Djoussé L, Ix JH, Tracy RP, Siscovick DS, Cauley JA, Mukamal KJ. Circulating levels of carboxymethyllysine (CML) are associated with hip fracture risk: the Cardiovascular Health Study. *J Bone Miner Res* 2014; 29: 1061-1066 [PMID: 24877243]
- 159 Rubin MR, Paschalis EP, Poundarik A, Sroga GE, McMahon DJ, Gamsjaeger S, Klaushofer K, Vashishth D. Advanced Glycation Endproducts and Bone Material Properties in Type 1 Diabetic Mice. *PLoS One* 2016; 11: e0154700 [PMID: 27140650 DOI: 10.1371/journal.pone.0154700]
- 160 Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR. Advanced Glycation Endproducts and Bone Material Strength in Type 2 Diabetes. J Clin Endocrinol Metab 2016; 101: 2502-2510 [PMID: 27115060 DOI: 10.1210/jc.2016-1437]
- 161 Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC; Health, Aging, and Body Composition Study. Pentosidine and increased fracture risk in older adults with type 2 diabetes. *J Clin Endocrinol Metab* 2009; 94: 2380-2386 [PMID: 19383780 DOI: 10.1210/jc.2008-2498]
- 162 Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 2008; 93: 1013-1019 [PMID: 18160470 DOI: 10.1210/jc.2007-1270]
- 163 Compston J. Type 2 diabetes mellitus and bone. J Intern Med 2018; 283: 140-153 [PMID: 29265670 DOI: 10.1111/joim.12725]
- 164 Keenan HA, Maddaloni E. Bone Microarchitecture in Type 1 Diabetes: It Is Complicated. Curr Osteoporos Rep 2016; 14: 351-358 [PMID: 27704394 DOI: 10.1007/s11914-016-0338-8]
- 165 Shah VN, Sippl R, Joshee P, Pyle L, Kohrt WM, Schauer IE, Snell-Bergeon JK. Trabecular bone quality is lower in adults with type 1 diabetes and is negatively associated with insulin resistance. *Osteoporos Int* 2018; 29: 733-739 [PMID: 29290026 DOI: 10.1007/s00198-017-4353-0]
- 166 Shanbhogue VV, Hansen S, Frost M, Jørgensen NR, Hermann AP, Henriksen JE, Brixen K. Bone Geometry, Volumetric Density, Microarchitecture, and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients With Type 1 Diabetes Mellitus. *J Bone Miner Res* 2015; 30: 2188-2199 [PMID: 26096924 DOI: 10.1002/jbmr.2573]
- 167 Abdalrahaman N, McComb C, Foster JE, McLean J, Lindsay RS, McClure J, McMillan M, Drummond R, Gordon D, McKay GA, Shaikh MG, Perry CG, Ahmed SF. Deficits in Trabecular Bone Microarchitecture in Young Women With Type 1 Diabetes Mellitus. *J Bone Miner Res* 2015; **30**: 1386-1393 [PMID: 25627460 DOI: 10.1002/jbmr.2465]
- 168 Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, Link TM. Highresolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. *J Clin Endocrinol Metab* 2010; 95: 5045-5055 [PMID: 20719835 DOI: 10.1210/jc.2010-0226]
- 169 Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 2013; 28: 313-324 [PMID: 22991256 DOI: 10.1002/jbmr.1763]
- 170 Pritchard JM, Giangregorio LM, Atkinson SA, Beattie KA, Inglis D, Ioannidis G, Punthakee Z, Adachi JD, Papaioannou A. Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. *Arthritis Care Res (Hoboken)* 2012; 64: 83-91 [PMID: 22213724 DOI: 10.1002/acr.20602]
- 171 Rubin MR. Skeletal fragility in diabetes. Ann N Y Acad Sci 2017; 1402: 18-30 [PMID: 28926113 DOI: 10.1111/nyas.13463]
- Yang J, Hong N, Shim JS, Rhee Y, Kim HC. Association of Insulin Resistance with Lower Bone Volume and Strength Index of the Proximal Femur in Nondiabetic Postmenopausal Women. *J Bone Metab* 2018; 25: 123-132 [PMID: 29900162 DOI: 10.11005/jbm.2018.25.2.123]
- 173 Kindler JM, Pollock NK, Ross HL, Modlesky CM, Singh H, Laing EM, Lewis RD. Obese Versus Normal-Weight Late-Adolescent Females have Inferior Trabecular Bone Microarchitecture: A Pilot Case-Control Study. *Calcif Tissue Int* 2017; 101: 479-488 [PMID: 28710506 DOI: 10.1007/s00223-017-0303-2]
- 174 Kim JH, Choi HJ, Ku EJ, Hong AR, Kim KM, Kim SW, Cho NH, Shin CS. Regional body fat depots differently affect bone microarchitecture in postmenopausal Korean women. *Osteoporos Int* 2016; 27: 1161-1168 [PMID: 26475286 DOI: 10.1007/s00198-015-3329-1]
- 175 Looker AC, Sarafrazi Isfahani N, Fan B, Shepherd JA. Trabecular bone scores and lumbar spine bone mineral density of US adults: comparison of relationships with demographic and body size variables. Osteoporos Int 2016; 27: 2467-2475 [PMID: 26952009 DOI: 10.1007/s00198-016-3550-6]
- 176 Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. *J Clin Endocrinol Metab* 2009; 94: 3387-3393 [PMID: 19531595 DOI: 10.1210/jc.2008-2422]
- 177 Liu CT, Broe KE, Zhou Y, Boyd SK, Cupples LA, Hannan MT, Lim E, McLean RR, Samelson EJ, Bouxsein ML, Kiel DP. Visceral Adipose Tissue Is Associated With Bone Microarchitecture in the Framingham Osteoporosis Study. *J Bone Miner Res* 2017; **32**: 143-150 [PMID: 27487454 DOI:

10.1002/jbmr.2931]

- Verroken C, Zmierczak HG, Goemaere S, Kaufman JM, Lapauw B. Insulin Resistance Is Associated 178 With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass. J Clin Endocrinol Metab 2017; 102: 1807-1815 [PMID: 28001453 DOI: 10.1210/jc.2016-3609]
- Burkhardt R, Moser W, Bartl R, Mahl G. Is diabetic osteoporosis due to microangiopathy? Lancet 1981; 179 1:844 [PMID: 6111708]
- Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang 180 W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 2014; 20: 1270-1278 [PMID: 25282358 DOI: 10.1038/nm.3668]
- Shanbhogue VV, Hansen S, Frost M, Jørgensen NR, Hermann AP, Henriksen JE, Brixen K. 181 Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol 2016; 174: 115-124 [PMID: 26537860 DOI: 10.1530/EJE-15-0860]
- 182 Irwin R, LaPres JJ, Kinser S, McCabe LR. Prolyl-hydroxylase inhibition and HIF activation in osteoblasts promotes an adipocytic phenotype. J Cell Biochem 2007; 100: 762-772 [PMID: 17031858 DOI: 10.1002/jcb.21083
- Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler 183 DJ, Buse JB. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41: 2669-2701 [PMID: 30291106 DOI: 10.2337/dci18-0033]
- Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60: 1577-184 1585 [PMID: 28776086 DOI: 10.1007/s00125-017-4342-z]
- Chen SC, Brooks R, Houskeeper J, Bremner SK, Dunlop J, Viollet B, Logan PJ, Salt IP, Ahmed SF 185 Yarwood SJ. Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)dependent and AMPK-independent mechanisms. Mol Cell Endocrinol 2017; 440: 57-68 [PMID: 27856330 DOI: 10.1016/j.mce.2016.11.011
- Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L. Osteogenic actions of the anti-diabetic 186 drug metformin on osteoblasts in culture. Eur J Pharmacol 2006; 536: 38-46 [PMID: 16564524 DOI: 10.1016/j.ejphar.2006.02.030]
- Smieszek A, Tomaszewski KA, Kornicka K, Marycz K. Metformin Promotes Osteogenic Differentiation 187 of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J Clin Med 2018; 7 [PMID: 30486321 DOI: 10.3390/jcm7120482]
- Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, Arnol V, Sedlinsky 188 C. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 2010; 25: 211-221 [PMID: 19594306 DOI: 10.1359/jbmr.090732]
- 189 Majumdar SR, Josse RG, Lin M, Eurich DT. Does Sitagliptin Affect the Rate of Osteoporotic Fractures in Type 2 Diabetes? Population-Based Cohort Study. J Clin Endocrinol Metab 2016; 101: 1963-1969 [PMID: 26930183 DOI: 10.1210/jc.2015-4180]
- Starup-Linde J, Gregersen S, Frost M, Vestergaard P. Use of glucose-lowering drugs and risk of fracture 190 in patients with type 2 diabetes. Bone 2017; 95: 136-142 [PMID: 27890548 DOI: 10.1016/j.bone.2016.11.026
- Starup-Linde J, Gregersen S, Vestergaard P. Associations with fracture in patients with diabetes: a nested 191 case-control study. BMJ Open 2016; 6: e009686 [PMID: 26873048 DOI: 10.1136/bmjopen-2015-009686]
- Pozo L, Bello F, Suarez A, Ochoa-Martinez FE, Mendez Y, Chang CH, Surani S. Novel pharmacological 192 therapy in type 2 diabetes mellitus with established cardiovascular disease: Current evidence. World J Diabetes 2019; 10: 291-303 [PMID: 31139316 DOI: 10.4239/wjd.v10.i5.291]
- Meng J, Ma X, Wang N, Jia M, Bi L, Wang Y, Li M, Zhang H, Xue X, Hou Z, Zhou Y, Yu Z, He G, Luo 193 X. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin. Stem Cell Reports 2016; 6: 579-591 [PMID: 26947974 DOI: 10.1016/j.stemcr.2016.02.002]
- Wu X, Li S, Xue P, Li Y. Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum 194 Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways. Mol Cells 2018; 41: 234-243 [PMID: 29463067 DOI: 10.14348/molcells.2018.2340]
- Ma X, Meng J, Jia M, Bi L, Zhou Y, Wang Y, Hu J, He G, Luo X. Exendin-4, a glucagon-like peptide-1 195 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J Bone Miner Res 2013; 28: 1641-1652 [PMID: 23427056 DOI: 10.1002/ibmr.1898
- Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, Mabilleau G. Stable Incretin 196 Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus. J Cell Physiol 2015; 230: 3009-3018 [PMID: 26016732 DOI: 10.1002/jcp.25033]
- Driessen JH, de Vries F, van Onzenoort H, Harvey NC, Neef C, van den Bergh JP, Vestergaard P, Henry 197 RM. The use of incretins and fractures - a meta-analysis on population-based real life data. Br J Clin Pharmacol 2017; 83: 923-926 [PMID: 27780288 DOI: 10.1111/bcp.13167]
- Driessen JH, van Onzenoort HA, Starup-Linde J, Henry R, Burden AM, Neef C, van den Bergh JP, 198 Vestergaard P, de Vries F. Use of Glucagon-Like-Peptide 1 Receptor Agonists and Risk of Fracture as Compared to Use of Other Anti-hyperglycemic Drugs. Calcif Tissue Int 2015; 97: 506-515 [PMID: 26184119 DOI: 10.1007/s00223-015-0037-v
- Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone 199 fractures: a meta-analysis of randomized clinical trials. J Diabetes 2014; 6: 260-266 [PMID: 24164867 DOI: 10.1111/1753-0407.12102
- Su B, Sheng H, Zhang M, Bu L, Yang P, Li L, Li F, Sheng C, Han Y, Qu S, Wang J. Risk of bone 200 fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials. Endocrine 2015; 48: 107-115 [PMID: 25074632 DOI: 10.1007/s12020-014-0361-4]
- Conte C, Cecere A, Guglielmi G, Napoli N. Letter to the Editor: "GLP-1 Receptor Agonist Treatment 201 Increases Bone Formation and Prevents Bone Loss in Weight-Reduced Obese Women" by Iepsen E.W., et al. J Clin Endocrinol Metab 2015; 100: L92-L93 [PMID: 26439158 DOI: 10.1210/jc.2015-2970]
- 202 Iepsen EW, Lundgren JR, Hartmann B, Pedersen O, Hansen T, Jørgensen NR, Jensen JE, Holst JJ, Madsbad S, Torekov SS. GLP-1 Receptor Agonist Treatment Increases Bone Formation and Prevents Bone Loss in Weight-Reduced Obese Women. J Clin Endocrinol Metab 2015; 100: 2909-2917 [PMID: 26043228 DOI: 10.1210/jc.2015-1176]
- 203 Deacon CF. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials.

Diabetes Obes Metab 2018; 20 Suppl 1: 34-46 [PMID: 29364584 DOI: 10.1111/dom.13135]
Glorie L, Behets GJ, Baerts L, De Meester I, D'Haese PC, Verhulst A. DPP IV inhibitor treatment

- attenuates bone loss and improves mechanical bone strength in male diabetic rats. *Am J Physiol Endocrinol Metab* 2014; **307**: E447-E455 [PMID: 25053403 DOI: 10.1152/ajpendo.00217.2014]
- 205 Wang C, Xiao F, Qu X, Zhai Z, Hu G, Chen X, Zhang X. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced Osteoporosis<i>In Vivo</i> and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption <i>In Vitro</i>. Front Pharmacol 2017; 8: 407 [PMID: 28713268 DOI: 10.3389/fphar.2017.00407]
- 206 Driessen JH, van Onzenoort HA, Starup-Linde J, Henry R, Neef C, van den Bergh J, Vestergaard P, de Vries F, Burden AM. Use of dipeptidyl peptidase 4 inhibitors and fracture risk compared to use of other anti-hyperglycemic drugs. *Pharmacoepidemiol Drug Saf* 2015; 24: 1017-1025 [PMID: 26183226 DOI: 10.1002/pds.3837]
- 207 Driessen JH, van den Bergh JP, van Onzenoort HA, Henry RM, Leufkens HG, de Vries F. Long-term use of dipeptidyl peptidase-4 inhibitors and risk of fracture: A retrospective population-based cohort study. *Diabetes Obes Metab* 2017; 19: 421-428 [PMID: 27943565 DOI: 10.1111/dom.12843]
- 208 Dombrowski S, Kostev K, Jacob L. Use of dipeptidyl peptidase-4 inhibitors and risk of bone fracture in patients with type 2 diabetes in Germany-A retrospective analysis of real-world data. *Osteoporos Int* 2017; 28: 2421-2428 [PMID: 28455750 DOI: 10.1007/s00198-017-4051-y]
- 209 Hou WH, Chang KC, Li CY, Ou HT. Dipeptidyl peptidase-4 inhibitor use is associated with decreased risk of fracture in patients with type 2 diabetes: a population-based cohort study. Br J Clin Pharmacol 2018; 84: 2029-2039 [PMID: 29766544 DOI: 10.1111/bcp.13636]
- 210 Yang J, Huang C, Wu S, Xu Y, Cai T, Chai S, Yang Z, Sun F, Zhan S. The effects of dipeptidyl peptidase-4 inhibitors on bone fracture among patients with type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials. *PLoS One* 2017; 12: e0187537 [PMID: 29206832 DOI: 10.1371/journal.pone.0187537]
- 211 Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018; 61: 2087-2097 [PMID: 30132032 DOI: 10.1007/s00125-018-4656-5]
- 212 Blau JE, Taylor SI. Adverse effects of SGLT2 inhibitors on bone health. *Nat Rev Nephrol* 2018; 14: 473-474 [PMID: 29875481 DOI: 10.1038/s41581-018-0028-0]
- 213 US Food and Drug Administration. FDA Drug Safety Communication: FDA Revises Label of Diabetes Drug Canagliflozin (Invokana, Invokamet) to Include Updates on Bone Fracture Risk and New Information on Decreased Bone Mineral Density. Available at: https://www.fda.gov/Drugs/DrugSafety/ucm461449.htm. 2016.
- 214 Lupsa BC, Inzucchi SE. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia 2018; 61: 2118-2125 [PMID: 30132031 DOI: 10.1007/s00125-018-4663-6]
- 215 Fralick M, Kim SC, Schneeweiss S, Kim D, Redelmeier DA, Patorno E. Fracture Risk After Initiation of Use of Canagliflozin: A Cohort Study. Ann Intern Med 2019 [PMID: 30597484 DOI: 10.7326/M18-0567]
- 216 Ruanpeng D, Ungprasert P, Sangtian J, Harindhanavudhi T. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. *Diabetes Metab Res Rev* 2017; 33 [PMID: 28440590 DOI: 10.1002/dmrr.2903]
- 217 Azharuddin M, Adil M, Ghosh P, Sharma M. Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: A systematic literature review and Bayesian network metaanalysis of randomized controlled trials. *Diabetes Res Clin Pract* 2018; 146: 180-190 [PMID: 30389620 DOI: 10.1016/j.diabres.2018.10.019]
- 218 Donnan JR, Grandy CA, Chibrikov E, Marra CA, Aubrey-Bassler K, Johnston K, Swab M, Hache J, Curnew D, Nguyen H, Gamble JM. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. *BMJ Open* 2019; 9: e022577 [PMID: 30813108 DOI: 10.1136/bmjopen-2018-022577]
- 219 Li X, Li T, Cheng Y, Lu Y, Xue M, Xu L, Liu X, Yu X, Sun B, Chen L. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: An updated meta-analysis. *Diabetes Metab Res Rev* 2019; e3170 [PMID: 30983141 DOI: 10.1002/dmrr.3170]
- 220 Thulé PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Curr Diab Rep 2014; 14: 473 [PMID: 24563333 DOI: 10.1007/s11892-014-0473-5]
- 221 Wang LC, Fang FS, Gong YP, Yang G, Li CL. Characteristics of repaglinide and its mechanism of action on insulin secretion in patients with newly diagnosed type-2 diabetes mellitus. *Medicine (Baltimore)* 2018; 97: e12476 [PMID: 30235745 DOI: 10.1097/MD.000000000012476]
- 222 Schwartz AV. Diabetes, bone and glucose-lowering agents: clinical outcomes. *Diabetologia* 2017; 60: 1170-1179 [PMID: 28451714 DOI: 10.1007/s00125-017-4283-6]
- 223 Colhoun HM, Livingstone SJ, Looker HC, Morris AD, Wild SH, Lindsay RS, Reed C, Donnan PT, Guthrie B, Leese GP, McKnight J, Pearson DW, Pearson E, Petrie JR, Philip S, Sattar N, Sullivan FM, McKeigue P; Scottish Diabetes Research Network Epidemiology Group. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. *Diabetologia* 2012; 55: 2929-2937 [PMID: 22945303 DOI: 10.1007/s00125-012-2668-0]
- 224 **Rajpathak SN**, Fu C, Brodovicz KG, Engel SS, Lapane K. Sulfonylurea use and risk of hip fractures among elderly men and women with type 2 diabetes. *Drugs Aging* 2015; **32**: 321-327 [PMID: 25825122 DOI: 10.1007/s40266-015-0254-0]
- 225 Chen HH, Horng MH, Yeh SY, Lin IC, Yeh CJ, Muo CH, Sung FC, Kao CH. Glycemic Control with Thiazolidinedione Is Associated with Fracture of T2DM Patients. *PLoS One* 2015; 10: e0135530 [PMID: 26317995 DOI: 10.1371/journal.pone.0135530]
- 226 Natali A, Ferrannini E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. *Diabetologia* 2006; 49: 434-441 [PMID: 16477438 DOI: 10.1007/s00125-006-0141-7]
- 227 Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPARγ signaling and metabolism: the good, the bad and the future. *Nat Med* 2013; 19: 557-566 [PMID: 23652116 DOI: 10.1038/nm.3159]
- 228 Viscoli CM, Inzucchi SE, Young LH, Insogna KL, Conwit R, Furie KL, Gorman M, Kelly MA, Lovejoy AM, Kernan WN; IRIS Trial Investigators. Pioglitazone and Risk for Bone Fracture: Safety Data From a Randomized Clinical Trial. *J Clin Endocrinol Metab* 2017; **102**: 914-922 [PMID: 27935736 DOI: 10.1210/jc.2016-3237]
- 229 Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. *Bone* 2014; 68: 115-123 [PMID: 25173606 DOI: 10.1016/j.bone.2014.08.010]

- 230 Leanza G, Maddaloni E, Pitocco D, Conte C, Palermo A, Maurizi AR, Pantano AL, Suraci C, Altomare M, Strollo R, Manfrini S, Pozzilli P, Schwartz AV, Napoli N. Risk factors for fragility fractures in type 1 diabetes. *Bone* 2019; 125: 194-199 [PMID: 31059862 DOI: 10.1016/j.bone.2019.04.017]
- 231 Losada-Grande E, Hawley S, Soldevila B, Martinez-Laguna D, Nogues X, Diez-Perez A, Puig-Domingo M, Mauricio D, Prieto-Alhambra D. Insulin use and Excess Fracture Risk in Patients with Type 2 Diabetes: A Propensity-Matched cohort analysis. *Sci Rep* 2017; 7: 3781 [PMID: 28630427 DOI: 10.1038/s41598-017-03748-z]
- 232 Losada E, Soldevila B, Ali MS, Martínez-Laguna D, Nogués X, Puig-Domingo M, Díez-Pérez A, Mauricio D, Prieto-Alhambra D. Real-world antidiabetic drug use and fracture risk in 12,277 patients with type 2 diabetes mellitus: a nested case-control study. *Osteoporos Int* 2018; 29: 2079-2086 [PMID: 29860664 DOI: 10.1007/s00198-018-4581-y]
- 233 Rocha A, Martins LS, Malheiro J, Dores J, Santos C, Henriques C. Changes in bone mineral density following long-term simultaneous pancreas-kidney transplantation. *J Bone Miner Metab* 2016; 34: 209-215 [PMID: 25837429 DOI: 10.1007/s00774-015-0657-3]
- 234 Nikkel LE, Iyer SP, Mohan S, Zhang A, McMahon DJ, Tanriover B, Cohen DJ, Ratner L, Hollenbeak CS, Rubin MR, Shane E, Nickolas TL; CURE Group (The Columbia University Renal Epidemiology Group). Pancreas-kidney transplantation is associated with reduced fracture risk compared with kidney-alone transplantation in men with type 1 diabetes. *Kidney Int* 2013; 83: 471-478 [PMID: 23283136 DOI: 10.1038/ki.2012.430]
- 235 Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, Del Prato S, Ji L, Sadikot SM, Herman WH, Amiel SA, Kaplan LM, Taroncher-Oldenburg G, Cummings DE; Delegates of the 2nd Diabetes Surgery Summit. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. *Diabetes Care* 2016; **39**: 861-877 [PMID: 27222544 DOI: 10.2337/dc16-0236]
- 236 Angrisani L, Santonicola A, Iovino P, Vitiello A, Zundel N, Buchwald H, Scopinaro N. Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey 2014. Obes Surg 2017; 27: 2279-2289 [PMID: 28405878 DOI: 10.1007/s11695-017-2666-x]
- 237 Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa TP, Cooper C, Harvey NC. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. *BMJ* 2012; 345: e5085 [PMID: 22867649 DOI: 10.1136/bmj.e5085]
- 238 Lu CW, Chang YK, Chang HH, Kuo CS, Huang CT, Hsu CC, Huang KC. Fracture Risk After Bariatric Surgery: A 12-Year Nationwide Cohort Study. *Medicine (Baltimore)* 2015; 94: e2087 [PMID: 26632892 DOI: 10.1097/MD.00000000002087]
- 239 Nakamura KM, Haglind EG, Clowes JA, Achenbach SJ, Atkinson EJ, Melton LJ, Kennel KA. Fracture risk following bariatric surgery: a population-based study. *Osteoporos Int* 2014; 25: 151-158 [PMID: 23912559 DOI: 10.1007/s00198-013-2463-x]
- 240 Rousseau C, Jean S, Gamache P, Lebel S, Mac-Way F, Biertho L, Michou L, Gagnon C. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. *BMJ* 2016; 354: i3794 [PMID: 27814663 DOI: 10.1136/bmj.i3794]
- 241 Yu EW, Lee MP, Landon JE, Lindeman KG, Kim SC. Fracture Risk After Bariatric Surgery: Roux-en-Y Gastric Bypass Versus Adjustable Gastric Banding. *J Bone Miner Res* 2017; 32: 1229-1236 [PMID: 28251687 DOI: 10.1002/jbmr.3101]
- 242 Lindeman KG, Greenblatt LB, Rourke C, Bouxsein ML, Finkelstein JS, Yu EW. Longitudinal 5-Year Evaluation of Bone Density and Microarchitecture After Roux-en-Y Gastric Bypass Surgery. J Clin Endocrinol Metab 2018; 103: 4104-4112 [PMID: 30219833 DOI: 10.1210/jc.2018-01496]
- 243 Madeira E, Madeira M, Guedes EP, Mafort TT, Moreira RO, de Mendonça LMC, Lima ICB, Neto LV, de Pinho PRA, Lopes AJ, Farias MLF. Impact of Weight Loss With Intragastric Balloon on Bone Density and Microstructure in Obese Adults. *J Clin Densitom* 2019; 22: 279-286 [PMID: 29661687 DOI: 10.1016/j.jocd.2017.12.002]
- 244 Vilarrasa N, Fabregat A, Toro S, Gordejuela AG, Casajoana A, Montserrat M, Garrido P, López-Urdiales R, Virgili N, Planas-Vilaseca A, Simó-Servat A, Pujol J. Nutritional deficiencies and bone metabolism after endobarrier in obese type 2 patients with diabetes. *Eur J Clin Nutr* 2018; **72**: 1447-1450 [PMID: 29352218 DOI: 10.1038/s41430-017-0074-x]
- 245 Gagnon C, Schafer AL. Bone Health After Bariatric Surgery. JBMR Plus 2018; 2: 121-133 [PMID: 30283897 DOI: 10.1002/jbm4.10048]
- 246 Zhang Y, Chen Q, Liang Y, Dong Y, Mo X, Zhang L, Zhang B. Insulin use and fracture risk in patients with type 2 diabetes: A meta-analysis of 138,690 patients. *Exp Ther Med* 2019; 17: 3957-3964 [PMID: 31007738 DOI: 10.3892/etm.2019.7461]
- 247 Wongdee K, Krishnamra N, Charoenphandhu N. Derangement of calcium metabolism in diabetes mellitus: negative outcome from the synergy between impaired bone turnover and intestinal calcium absorption. J Physiol Sci 2017; 67: 71-81 [PMID: 27671701 DOI: 10.1007/s12576-016-0487-7]
- 248 Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. *J Clin Endocrinol Metab* 2007; 92: 2017-2029 [PMID: 17389701 DOI: 10.1210/jc.2007-0298]
- 249 The NS, Crandell JL, Lawrence JM, King IB, Dabelea D, Marcovina SM, D'Agostino RB, Norris JM, Pihoker C, Mayer-Davis EJ. Vitamin D in youth with Type 1 diabetes: prevalence of insufficiency and association with insulin resistance in the SEARCH Nutrition Ancillary Study. *Diabet Med* 2013; 30: 1324-1332 [PMID: 23909945 DOI: 10.1111/dme.12297]
- 250 Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, Kleerekoper M, Lewiecki EM, Miller PD, Narula HS, Pessah-Pollack R, Tangpricha V, Wimalawansa SJ, Watts NB. American association of clinical endocrinologists and american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis - 2016. *Endocr Pract* 2016; 22: 1-42 [PMID: 27662240 DOI: 10.4158/EP161435.GL]
- 251 Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2013; 24: 23-57 [PMID: 23079689 DOI: 10.1007/s00198-012-2074-y]
- 252 Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES, Finkelstein JS; Endocrine Society. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2012; 97: 1802-1822 [PMID: 22675062 DOI: 10.1210/jc.2011-3045]

- 253 Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a systematic review, meta-analysis, and trial sequential analysis. *Lancet Diabetes Endocrinol* 2018; 6: 847-858 [PMID: 30293909 DOI: 10.1016/S2213-8587(18)30265-1]
- 254 **Ogata M**, Iwasaki N, Ide R, Takizawa M, Tanaka M, Tetsuo T, Sato A, Uchigata Y. Role of vitamin D in energy and bone metabolism in postmenopausal women with type 2 diabetes mellitus: A 6-month follow-up evaluation. *J Diabetes Investig* 2018; **9**: 211-222 [PMID: 28371517 DOI: 10.1111/jdi.12666]
- 255 Jafari T, Faghihimani E, Feizi A, Iraj B, Javanmard SH, Esmaillzadeh A, Fallah AA, Askari G. Effects of vitamin D-fortified low fat yogurt on glycemic status, anthropometric indexes, inflammation, and bone turnover in diabetic postmenopausal women: A randomised controlled clinical trial. *Clin Nutr* 2016; 35: 67-76 [PMID: 25794439 DOI: 10.1016/j.clnu.2015.02.014]
- 256 Mager DR, Jackson ST, Hoffmann MR, Jindal K, Senior PA. Vitamin D₃ supplementation, bone health and quality of life in adults with diabetes and chronic kidney disease: Results of an open label randomized clinical trial. *Clin Nutr* 2017; 36: 686-696 [PMID: 27302208 DOI: 10.1016/j.clnu.2016.05.012]
- 257 Larsen AU, Grimnes G, Jorde R. The effect of high-dose vitamin D₃ supplementation on bone mineral density in subjects with prediabetes. Osteoporos Int 2018; 29: 171-180 [PMID: 28921338 DOI: 10.1007/s00198-017-4222-x]
- 258 Tou JC. Evaluating resveratrol as a therapeutic bone agent: preclinical evidence from rat models of osteoporosis. Ann N Y Acad Sci 2015; 1348: 75-85 [PMID: 26200189 DOI: 10.1111/nyas.12840]
- 259 Ornstrup MJ, Harsløf T, Kjær TN, Langdahl BL, Pedersen SB. Resveratrol increases bone mineral density and bone alkaline phosphatase in obese men: a randomized placebo-controlled trial. J Clin Endocrinol Metab 2014; 99: 4720-4729 [PMID: 25322274 DOI: 10.1210/jc.2014-2799]
- 260 Bo S, Gambino R, Ponzo V, Cioffi I, Goitre I, Evangelista A, Ciccone G, Cassader M, Procopio M. Effects of resveratrol on bone health in type 2 diabetic patients. A double-blind randomized-controlled trial. *Nutr Diabetes* 2018; 8: 51 [PMID: 30237505 DOI: 10.1038/s41387-018-0059-4]
- 261 Bo S, Ponzo V, Evangelista A, Ciccone G, Goitre I, Saba F, Procopio M, Cassader M, Gambino R. Effects of 6 months of resveratrol versus placebo on pentraxin 3 in patients with type 2 diabetes mellitus: a double-blind randomized controlled trial. *Acta Diabetol* 2017; 54: 499-507 [PMID: 28238190 DOI: 10.1007/s00592-017-0977-y]
- 262 Dias PC, Limirio PHJO, Linhares CRB, Bergamini ML, Rocha FS, Morais RB, Balbi APC, Hiraki KRN, Dechichi P. Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats. *Connect Tissue Res* 2018; 59: 574-580 [PMID: 29378458 DOI: 10.1080/03008207.2018.1434166]
- 263 Limirio PHJO, da Rocha Junior HA, Morais RB, Hiraki KRN, Balbi APC, Soares PBF, Dechichi P. Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats. *PLoS One* 2018; 13: e0191694 [PMID: 29451877 DOI: 10.1371/journal.pone.0191694]
- 264 Reorganized text. JAMA Otolaryngol Head Neck Surg 2015; 141: 428 [PMID: 25996397 DOI: 10.1001/jama.282.7.637]
- 265 Hill Gallant KM, Gallant MA, Brown DM, Sato AY, Williams JN, Burr DB. Raloxifene prevents skeletal fragility in adult female Zucker Diabetic Sprague-Dawley rats. *PLoS One* 2014; 9: e108262 [PMID: 25243714 DOI: 10.1371/journal.pone.0108262]
- 266 Yoshii T, Yamada M, Minami T, Tsunoda T, Sasaki M, Kondo Y, Satoh S, Terauchi Y. The Effects of Bazedoxifene on Bone, Glucose, and Lipid Metabolism in Postmenopausal Women With Type 2 Diabetes: An Exploratory Pilot Study. J Clin Med Res 2015; 7: 762-769 [PMID: 26345606 DOI: 10.14740/jocmr2278w]
- 267 Dagdelen S, Sener D, Bayraktar M. Influence of type 2 diabetes mellitus on bone mineral density response to bisphosphonates in late postmenopausal osteoporosis. *Adv Ther* 2007; 24: 1314-1320 [PMID: 18165214]
- 268 Vestergaard P, Rejnmark L, Mosekilde L. Are antiresorptive drugs effective against fractures in patients with diabetes? *Calcif Tissue Int* 2011; 88: 209-214 [PMID: 21161194 DOI: 10.1007/s00223-010-9450-4]
- 269 Schwartz AV, Pavo I, Alam J, Disch DP, Schuster D, Harris JM, Krege JH. Teriparatide in patients with osteoporosis and type 2 diabetes. *Bone* 2016; 91: 152-158 [PMID: 27374026 DOI: 10.1016/j.bone.2016.06.017]
- 270 Lasco A, Morabito N, Basile G, Atteritano M, Gaudio A, Giorgianni GM, Morini E, Faraci B, Bellone F, Catalano A. Denosumab Inhibition of RANKL and Insulin Resistance in Postmenopausal Women with Osteoporosis. *Calcif Tissue Int* 2016; **98**: 123-128 [PMID: 26498169 DOI: 10.1007/s00223-015-0075-5]
- 271 Passeri E, Benedini S, Costa E, Corbetta S. A Single 60 mg Dose of Denosumab Might Improve Hepatic Insulin Sensitivity in Postmenopausal Nondiabetic Severe Osteoporotic Women. Int J Endocrinol 2015; 2015: 352858 [PMID: 25873952 DOI: 10.1155/2015/352858]
- 272 Napoli N, Pannacciulli N, Vittinghoff E, Crittenden D, Yun J, Wang A, Wagman R, Schwartz AV. Effect of denosumab on fasting glucose in women with diabetes or prediabetes from the FREEDOM trial. *Diabetes Metab Res Rev* 2018; 34: e2991 [PMID: 29430796 DOI: 10.1002/dmrr.2991]
- 273 Kondegowda NG, Fenutria R, Pollack IR, Orthofer M, Garcia-Ocaña A, Penninger JM, Vasavada RC. Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-kB Ligand Pathway. *Cell Metab* 2015; 22: 77-85 [PMID: 26094891 DOI: 10.1016/j.cmet.2015.05.021]
- 274 Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8: 1898 [PMID: 29312356 DOI: 10.3389/fimmu.2017.01898]
- 275 Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, Hofbauer LC, Lau E, Lewiecki EM, Miyauchi A, Zerbini CA, Milmont CE, Chen L, Maddox J, Meisner PD, Libanati C, Grauer A. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. *N Engl J Med* 2016; **375**: 1532-1543 [PMID: 27641143 DOI: 10.1056/NEJMoa1607948]
- 276 Tonks KT, White CP, Center JR, Samocha-Bonet D, Greenfield JR. Bone Turnover Is Suppressed in Insulin Resistance, Independent of Adiposity. J Clin Endocrinol Metab 2017; 102: 1112-1121 [PMID: 28324004 DOI: 10.1210/jc.2016-3282]
- 277 Laurent MR, Cook MJ, Gielen E, Ward KA, Antonio L, Adams JE, Decallonne B, Bartfai G, Casanueva FF, Forti G, Giwercman A, Huhtaniemi IT, Kula K, Lean MEJ, Lee DM, Pendleton N, Punab M, Claessens F, Wu FCW, Vanderschueren D, Pye SR, O'Neill TW; EMAS Group. Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study. *Osteoporos Int* 2016; 27: 3227-3237 [PMID: 27273111 DOI: 10.1007/s00198-016-3656-x]
 278 Frost M, Balkau B, Hatunic M, Konrad T, Mingrone G, Højlund K. The relationship between bone
- turnover and insulin sensitivity and secretion: Cross-sectional and prospective data from the RISC cohort

study. Bone 2018; 108: 98-105 [PMID: 29305997 DOI: 10.1016/j.bone.2017.12.029]

- 279 Kalimeri M, Leek F, Wang NX, Koh HR, Roy NC, Cameron-Smith D, Kruger MC, Henry CJ, Totman JJ. Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes. *Int J Environ Res Public Health* 2018; 15 [PMID: 29710852 DOI: 10.3390/ijerph15050889]
- 280 Iglesias P, Arrieta F, Piñera M, Botella-Carretero JI, Balsa JA, Zamarrón I, Menacho M, Díez JJ, Muñoz T, Vázquez C. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and beta-CrossLaps in obese subjects with varying degrees of glucose tolerance. *Clin Endocrinol (Oxf)* 2011; 75: 184-188 [PMID: 21521304 DOI: 10.1111/j.1365-2265.2011.04035.x]
- 281 Reyes-García R, Rozas-Moreno P, López-Gallardo G, García-Martín A, Varsavsky M, Avilés-Perez MD, Muñoz-Torres M. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. *Acta Diabetol* 2013; 50: 47-52 [PMID: 22042129 DOI: 10.1007/s00592-011-0347-0]
- 282 Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. *J Bone Miner Res* 2014; 29: 787-795 [PMID: 24123088 DOI: 10.1002/jbmr.2106]
- 283 Bhattoa HP, Onyeka U, Kalina E, Balogh A, Paragh G, Antal-Szalmas P, Kaplar M. Bone metabolism and the 10-year probability of hip fracture and a major osteoporotic fracture using the country-specific FRAX algorithm in men over 50 years of age with type 2 diabetes mellitus: a case-control study. *Clin Rheumatol* 2013; 32: 1161-1167 [PMID: 23588883 DOI: 10.1007/s10067-013-2254-y]
- 284 Gaudio A, Privitera F, Battaglia K, Torrisi V, Sidoti MH, Pulvirenti I, Canzonieri E, Tringali G, Fiore CE. Sclerostin levels associated with inhibition of the Wnt/β-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. *J Clin Endocrinol Metab* 2012; 97: 3744-3750 [PMID: 22855334 DOI: 10.1210/jc.2012-1901]
- 285 Ardawi MS, Akhbar DH, Alshaikh A, Ahmed MM, Qari MH, Rouzi AA, Ali AY, Abdulrafee AA, Saeda MY. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. *Bone* 2013; 56: 355-362 [PMID: 23845326 DOI: 10.1016/j.bone.2013.06.029]
- 286 Shu A, Yin MT, Stein E, Cremers S, Dworakowski E, Ives R, Rubin MR. Bone structure and turnover in type 2 diabetes mellitus. *Osteoporos Int* 2012; 23: 635-641 [PMID: 21424265 DOI: 10.1007/s00198-011-1595-0]
- 287 Huang YJ, Huang TW, Chao TY, Sun YS, Chen SJ, Chu DM, Chen WL, Wu LW. Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome. *Oncotarget* 2017; 8: 78144-78152 [PMID: 29100456 DOI: 10.18632/oncotarget.17839]
- 288 van Lierop AH, Hamdy NA, van der Meer RW, Jonker JT, Lamb HJ, Rijzewijk LJ, Diamant M, Romijn JA, Smit JW, Papapoulos SE. Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. *Eur J Endocrinol* 2012; 166: 711-716 [PMID: 22267280 DOI: 10.1530/EJE-11-1061]
- 289 Gennari L, Merlotti D, Valenti R, Ceccarelli E, Ruvio M, Pietrini MG, Capodarca C, Franci MB, Campagna MS, Calabrò A, Cataldo D, Stolakis K, Dotta F, Nuti R. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. *J Clin Endocrinol Metab* 2012; 97: 1737-1744 [PMID: 22399511 DOI: 10.1210/jc.2011-2958]
- 290 Razny U, Goralska J, Zdzienicka A, Gruca A, Zapala B, Micek A, Dembinska-Kiec A, Solnica B, Malczewska-Malec M. High Fat Mixed Meal Tolerance Test Leads to Suppression of Osteocalcin Decrease in Obese Insulin Resistant Subjects Compared to Healthy Adults. *Nutrients* 2018; 10 [PMID: 30388806 DOI: 10.3390/nu10111611]
- 291 Sarkar PD, Choudhury AB. Relationships between serum osteocalcin levels versus blood glucose, insulin resistance and markers of systemic inflammation in central Indian type 2 diabetic patients. *Eur Rev Med Pharmacol Sci* 2013; 17: 1631-1635 [PMID: 23832730]
- 292 Akin O, Göl K, Aktürk M, Erkaya S. Evaluation of bone turnover in postmenopausal patients with type 2 diabetes mellitus using biochemical markers and bone mineral density measurements. *Gynecol Endocrinol* 2003; 17: 19-29 [PMID: 12724015]
- 293 Movahed A, Larijani B, Nabipour I, Kalantarhormozi M, Asadipooya K, Vahdat K, Akbarzadeh S, Farrokhnia M, Assadi M, Amirinejad R, Bargahi A, Sanjdideh Z. Reduced serum osteocalcin concentrations are associated with type 2 diabetes mellitus and the metabolic syndrome components in postmenopausal women: the crosstalk between bone and energy metabolism. *J Bone Miner Metab* 2012; 30: 683-691 [PMID: 22752126 DOI: 10.1007/s00774-012-0367-z]
- 294 Berberoglu Z, Gursoy A, Bayraktar N, Yazici AC, Bascil Tutuncu N, Guvener Demirag N. Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 2007; 92: 3523-3530 [PMID: 17595249 DOI: 10.1210/jc.2007-0431]
- 295 Cheung CL, Tan KC, Lam KS, Cheung BM. The relationship between glucose metabolism, metabolic syndrome, and bone-specific alkaline phosphatase: a structural equation modeling approach. J Clin Endocrinol Metab 2013; 98: 3856-3863 [PMID: 23796564 DOI: 10.1210/jc.2013-2024]
- 296 Duan P, Yang M, Wei M, Liu J, Tu P. Serum Osteoprotegerin Is a Potential Biomarker of Insulin Resistance in Chinese Postmenopausal Women with Prediabetes and Type 2 Diabetes. Int J Endocrinol 2017; 2017: 8724869 [PMID: 28255300 DOI: 10.1155/2017/8724869]

Raishideng® WJD | https://www.wjgnet.com

Worla Jou Diabetes

World Journal of

Submit a Manuscript: https://www.f6publishing.com

World J Diabetes 2019 August 15; 10(8): 446-453

DOI: 10.4239/wjd.v10.i8.446

ISSN 1948-9358 (online)

MINIREVIEWS

Development of therapeutic options on type 2 diabetes in years: Glucagon-like peptide-1 receptor agonist's role intreatment; from the past to future

Hakan Dogruel, Mustafa Kemal Balci

ORCID number: Hakan Dogruel (0000-0002-6204-9796); Mustafa Kemal Balci (0000-0002-6494-3249).

Author contributions: Dogruel H and Balci MK conceived of and designed the study; Dogruel H searched the literature and drafted the article; both authors revised the article and Balci MK gave final approval for the article.

Conflict-of-interest statement: No potential conflicts of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licen ses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: March 22, 2019 Peer-review started: March 22, 2019 First decision: May 31, 2019 Revised: June 13, 2019 Accepted: July 27, 2019 Article in press: July 27, 2019 Published online: August 15, 2019

P-Reviewer: Koch TR, Samasca G

Hakan Dogruel, Department of Internal Medicine, Antalya Ataturk State Hospital, Antalya 07040, Turkey

Mustafa Kemal Balci, Akdeniz University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Antalya 07070, Turkey

Corresponding author: Mustafa Kemal, MD, Doctor, Department of Internal Medicine, Antalya Ataturk State Hospital, Anafartalar street, No. 100, Antalya 07070, Turkey.

mkbalci@msn.com Telephone: +90-505-4789010 Fax: +90-242-2496040

Abstract

Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia. Type 2 diabetes (T2DM) accounting for 90% of cases globally. The worldwide prevalence of DM is rising dramatically over the last decades, from 30 million cases in 1985 to 382 million cases in 2013. It's estimated that 451 million people had diabetes in 2017. As the pathophysiology was understood over the years, treatment options for diabetes increased. Incretin-based therapy is one of them. Glucagon-like peptide-1 receptor agonist (GLP-1 RA) not only significantly lower glucose level with minimal risk of hypoglycemia but also, they have an important advantage in themanagement of cardiovascular risk and obesity. Thus, we will review here GLP-1 RAsrole in the treatment of diabetes.

Key words: Incretin-basedtherapy; Incretin mimetics; Glucagon-like peptide-1 receptor agonist; Dipeptidyl peptidase-4 inhibitor

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The prevalence of type 2 diabetes and its complications rising dramatically over the last years. It is well known that diabetes and its complications; especially cardiovascular complications lead to increased morbidity and mortality. Treatment options for diabetes have increased as the pathophysiology was understood. We discuss the incretin-based therapy, especially Glucagon-like peptide-1 receptor agonistsand the beneficial effects on comorbidities besides glucose lowering effect.

WJD | https://www.wjgnet.com

S-Editor: Dou Y L-Editor: A E-Editor: Xing YX

Citation: Dogruel H, Balci MK. Development of therapeutic options on type 2 diabetes in years: Glucagon-like peptide-1 receptor agonist's role intreatment; from the past to future. *World J Diabetes* 2019; 10(8): 446-453 **URL:** https://www.wjgnet.com/1948-9358/full/v10/i8/446.htm **DOI:** https://dx.doi.org/10.4239/wjd.v10.i8.446

INTRODUCTION

Diabetes Mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia. Depending on etiology; decreased insulin secretion, decreased glucose utilization and increased glucose production contribute to hyperglycemia^[1]. There are several distinct types of DM. Type 2 DM (T2DM) accounting for 90% of cases globally^[2]. T2DM demonstrate insulin resistance in peripheral tissues, defective insulin secretion particularly in response to glucose stimuli and increased glucose production by the liver as three cardinal abnormalities^[2]. Increased lipolysis in fat tissue, increased production of glucagon, incretin hormone deficiency and resistance, increased renal tubular glucose reabsorption and central nervous system role in metabolic regulation also contribute to the pathophysiology of T2DM^[3]. The worldwide prevalence of DM is rising dramatically over the last decades, from 30 million cases in 1985 to 382 million cases in 2013^[1]. It's estimated that 451 million people had diabetes in 2017^[4]. As the pathophysiology was understood over the years, treatment options for diabetes increased. Thus, we will review here Glucagon-like peptide-1 receptor agonist (GLP-1 RAs) role in the treatment of diabetes. We aimed to summarize not only their glucose lowering effect but also their efficacy on the comorbidities come along with diabetes, such as obesity and cardiovascular disease (CVD).

We selected the articles by searching an electronic database (PubMed) with the following terms; glucagon-like peptide 1 agonists, glucagon-like peptide 1 agonists and CVD, glucagon-like peptide 1 agonists and obesity, dipeptidyl peptidase-4 (DPP-4) inhibitors. The articles not related to diabetes, the case reports, abstract only, comments and conference papers were excluded. Only studies in English language were included. Cardiovascular safety trial of each molecule (GLP-1 RA and DPP-4 inhibitor) were also included. All the included articles reviewed for full text.

ROLE OF INCRETINS IN GLUCOSE HOMEOSTASIS

Glucose is the most important physiologic substance involved in the regulation of insulin secretion from the pancreas^[5-7]. Glucose has a dose-dependent effect on the beta cells. It's well known that oral glucose administration has a greater effect on insulin release than intravenous glucose administration^[8-10]. Known as the incretin effect. In a study, insulin secretion was detected 26% lower in response to IV administration than oral administration^[10]. This increased response to oral glucose shows that glucose absorption from the gastrointestinal tract may cause secretion of some hormones which have an effect on B-cell sensitivity^[5-10]. GLP-1 and glucosedependent insulinotropic polypeptide (GIP) are the major incretin hormones in humans^[11]. GIP is produced in the K-cells and these cells are located predominantly in the proximal parts of the intestine, especially in the duodenum. GLP-1 is produced by the L-cells which distally situated especially in the ileum. L-cells also found in the colon in high density^[12]. Both K-cells and L-cells can be situated throughout all parts of the intestine. It's also detected that there is a population of cells which contain both GLP-1 and GIP^[13]. Secretion of incretin hormones is correlated with food intake and the driving factor is the presence of nutrients in the lumen, not distension since loading of water does not cause a significant increase in GLP-1 and GIP concentrations^[14-16]. The incretins are cleaved by the enzymeDPP-4 and lose their biologic activity^[1,2].

INCRETIN EFFECT IN DIABETES MELLITUS

The incretin effect found substantially reduced or even absent in patients who have T2DM and hyperglycemia^[17-19]. As the fasting plasma glucose level increases above the level defining diabetic state (126 mg/dL), incretin effect seems to start to reduce^[20].

⁸ WJD https://www.wjgnet.com

This reduced effect is universal with the possible exception of East Asians^[21].

T2DM patients almost completely lost response to GIP^[22]. Because much of the incretin effect in healthy individuals is mediated by GIP, lack of activity may explain the reduced incretin effect in T2DM patients^[20]. Besides this; the substantial insulinotropic activity of GLP-1 retains in these patients and GLP-1 activity related to dose and concentration, linearly^[23-25]. However, GLP-1 insulinotropic effect is reduced compared with healthy individuals; a result of reduced B-cell mass, most likely^[25,26]. The effects of GLP-1 on appetite, gastrointestinal motility, food intake, and suppression glucagon secretion are retained^[23,27]. Parenterally given GLP-1 significantly increase insulin secretion, suppress glucagon secretion and normalize glucose concentration^[22].

INCRETIN-BASED THERAPY IN T2DM

As the research in the field of diabetes progressed and the pathophysiologic processes were understood, new therapeutic options were invented. Incretin-based treatment is one of them. Practically, DPP-4 inhibitors or GLP-1 RAs can be used for this therapeutic approach. Besides that, GLP-1 gene transferring has studied in animal models and it was showed that GLP-1 gene transfer may be an alternative to GLP-1 infusion or multiple daily or weekly injections, in the future^[28,29].

There are several GLP-1 agonists used in daily clinical practice. Some of them are listed below in Table 1^[30]. All of the GLP-1 agonists administered by subcutaneous injection but semaglutide also has an oral form^[31]. On the other site, all of the DPP-4 inhibitors are given orally. Alogliptin (25 mg, once daily), linagliptin (5 mg, once daily), saxagliptin (5 mg once daily), sitagliptin (100 mg, once daily) and vildagliptin (50 mg, twice daily) are the DPP-4 inhibitors used in daily clinical practice^[32].

GLP-1 RA and DPP-4 inhibitors are important therapeutic options for patients with T2DM^[33]. European Association for the Study of Diabetes and the American Diabetes Association recommend these agents as the second line for the treatment of T2DM^[34]. The glucose-lowering effect of these agents with minimal risk of hypoglycemia is well studied. They also have a favorable effect on body weight and blood pressure^[35-48]. The efficacy of GLP-1 RAs is greater than DPP-4 inhibitors, in general^[44]. While patients who receive GLP-1 RA experience significant weight loss, the effect of DPP-4 inhibitors on body weight is neutral^[44,45]. In a systematic review of comparative effectiveness of GLP-1 RAs, it was concluded that GLP-1 RAs are similar or more effective than oral glucose-lowering agents in improving glycemic parameters. In the same review, GLP-1 RAs found to provide similar or less decrease in Hba1c level compared with insulin therapy, with less hypoglycemia^[46].

CARDIOVASCULAR OUTCOMES OF INCRETIN-BASED THERAPY IN T2DM

After the meta-analysis, published by Nissen and colleagues in 2007, suggesting that rosiglitazone (an anti-diabetic agent) was associated with increased risk of myocardial infarction (MI) among T2DM patients, United States Food and Drug Administration (FDA) mandated the conduct of large, randomized, placebo-controlled cardiovascular safety trials for all new anti-diabetic agents^[47,48]. FDA defined the standards of these studies^[48]. Several large randomized controlled trials (RCT) have been completed since that time. The RCT examined saxagliptin for cardiovascular safety established an unexpected increased risk of hospitalization for heart failure among patients randomized to saxagliptin^[49,50]. The RCT's examined other DPP-4 inhibitors didn't establish such results^[51-59]. Vildagliptin haven't been studied in RCT for examining cardiovascular safety.

Because the GLP-1 RAs promote weight loss, reduce blood pressure, decrease myocardial and vascular inflammation and decrease platelet aggregation behind their effect on blood glucose level, they thought to reduce cardiovascular risk^[60,61]. Cardiovascular safety was established for the whole class in the RCTs of cardiovascular outcomes with GLP-1 RAs (liraglutide, semaglutide, lixisenatide, and extended-release exenatide). Besides that, the results for cardiovascular efficacy was mixed^[62,65]. Among these RCTs in two studies (SUSTAIN 6 and LEADER) a significant reduction in three-point major adverse cardiovascular events (non-fatal stroke, non-fatal MI and cardiovascular mortality) was shown^[63,64]. Questions emerged after these varying findings about the generalizability of the trials to the drug class. The data available from the RCTs of cardiovascular outcomes with GLP-1 RAs was synthesized in a meta-analysis to examine the overall effect on cardiovascular efficacy and

yg[⊗] WJD https://www.wjgnet.com

Table 1 Glucagon-like peptide-1 receptor agonist				
Drug	Administration	Phase 3 clinical trial		
Exenatide	Twice daily (5 µg or 10 µg)	Amigo		
Liraglutide	Daily (0.6 mg or 0.8 mg or 1.2 mg)	Leader		
Exenatide ER	Weekly (2 mg)	Duration		
Lixisenatide	Daily (10 µg or 20 µg)	Getgoal		
Dulaglutide	Weekly (0.75 mg or 1.5 mg)	Award		
Semaglutide	Weekly (0.5 mg or 1.5 mg)	Sustain		
Albiglutide	Weekly (30 mg or 50 mg)	Harmony		

safety^[66]. According to this meta-analysis; cardiovascular safety appointed for all GLP-1 RAs, use of GLP-1 RAs was associated with a significant 10% relative risk reduction for the three-point major adverse cardiovascular events, also associated with risk reduction in cardiovascular mortality of 13% and all-cause mortality of 12% compared with placebo^[66]. Likewise, it was determined in a retrospective epidemiological study that patients who treated with exenatide were less likely to have CVD, CVD related and all-cause hospitalizations^[67]. The trial of cardiovascular outcomes in patients with T2DM on albiglutide was completed in 2018 and it was shown that albiglutide was both as safe as placebo in terms of cardiovascular outcomes and superior to placebo in efficacy even in short period of time (1.6 years)^[68].

The effect of incretin-based therapy on atherosclerosis was examined in a metaanalysis of RCTs. Incretin-based therapy showed significant improvement of carotid intima media thickness in the long term (2 years) but it has failed to show this effect in 1 year follow up^[69].

Certain experimental studies examined incretin receptors on vascular smooth muscle cells and showed their role in causing atherosclerosis^[70,71]. Also, the efficacy of DPP-4 inhibitors on improvement of endothelial function was shown^[72].

It was generally shown in observational studies that there is a relationship between hyperglycemia and CVD but reduced CVD by reducing hyperglycemia haven't confirmed in clinical trials^[73-78]. Moreover, one trial terminated early because in the intensive glycemic treatment arm, all-cause mortality was increased and, in each subgroup, it was associated with hypoglycemia^[74,79]. It's an important point that GLP-1 RAs and DPP-4 inhibitors have a glucose lowering effect with less hypoglycemia (GLP-1 RAs are more potent than DPP-4 inhibitors)^[35-44].

According to the recent meta-analysis, GLP-1 RAs are seemed to be cardioprotective as a whole class^[80]. They have pleiotropic actions on cardiovascular risk factors with a direct effect on the cardiovascular system (Table 2)^[69,80,81].

A recently published review in which several preclinical studies were examined, it was concluded that using GLP-1 agonists improve functional outcome after ischemic stroke. It's unknown whether these results are valid for humans in clinical practice^[82].

THE EFFECT OF INCRETIN-BASED THERAPY ON BODY WEIGHT

Obesity is an important risk factor and comorbidity of T2DM, and it also elevates cardiovascular risk. Obesity must also be managed for effective treatment of T2DM. GLP-1 RAs were studied in several trials and it was established that GLP-1 RAs cause significant weight loss in T2DM patients with obesity^[46,83,84]. The effect of DPP-4 inhibitors on weight in neutral^[44,45,83]. Although GLP-1 RA's cost and administration route may be limitations for generalized acceptance, they may also offer a reasonable alternative choice for obese patients (liraglutide 3 mgr.) without diabetes who don't achieve weight-loss goals with lifestyle modification alone^[84].

CONCLUSION

T2DM is a chronic disorder which comes along with several comorbidities like obesity, CVD, kidney disease, hypertension, *etc.* As long as the pathophysiologic process of DM was understood over the years, several new therapeutic options emerged. Individualizing care gained importance in the last years for the management of DM. It's important to manage obesity, hypertension, hyperlipidemia

Table 2 Cardiovascular effect of glucagon like peptide-1 receptor agonists		
Anti-atherosclerotic effect	Decrease matrix metalloproteinase 2; decrease vascular smooth muscle cell proliferation	
Improves endothelial function	Increase nitric oxide-induced vasodilation; decrease oxidative stress	
Anti-inflammatory effect	Suppress human macrophagesby inhibition of protein kinase C	
Decrease infarct/injury size	Decrease glucose-induced apoptosis; decrease intracellular calcium overload	
Modifies risk factors	Improve glycemic control; decrease body weight; decrease blood pressure; decrease low-density lipoprotein	

and total cardiovascular risk together with lowering glucose level with minimal risk of hypoglycemia. GLP-1 RAs not only significantly lower glucose level with minimal risk of hypoglycemia but also, they have an important advantage in the management of cardiovascular risk and obesity.

All GLP-1 RAs are administered parenterally but semaglutide also can be given orally by now. Besides that, it was showed that GLP-1 gene transfer may be an alternative to GLP-1 injections, in the future.

REFERENCES

- Powers AC. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J. Harrisonâs Principles of Internal Medicine. 19th ed. New York: McGraw-Hill, 2015.
- 2 **PolonskyKS**, BurantCF. In: Shlomo Melmed KS, Polonsky PR, Larsen HM. Kronenberg Williams Textbook of Endocrinology. 13th ed. 2016.
- 3 Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. *Diabetes* 2009; 58: 773-795 [PMID: 19336687 DOI: 10.2337/db09-9028]
- 4 **International Diabetes Federation**. IDF Diabetes Atlas, 8th ed. Brussels: International Diabetes Federation, 2017.
- 5 **Porte D**, Pupo AA. Insulin responses to glucose: evidence for a two pool system in man. *J Clin Invest* 1969; **48**: 2309-2319 [PMID: 5355342 DOI: 10.1172/JCI106197]
- 6 Chen M, Porte D. The effect of rate and dose of glucose infusion on the acute insulin response in man. J Clin Endocrinol Metab 1976; 42: 1168-1175 [PMID: 932179 DOI: 10.1210/jcem-42-6-1168]
- 7 Ward WK, Beard JC, Halter JB, Pfeifer MA, Porte D. Pathophysiology of insulin secretion in noninsulin-dependent diabetes mellitus. *Diabetes Care* 1984; 7: 491-502 [PMID: 6094129 DOI: 10.2337/diacare.7.5.491]
- 8 Faber OK, Madsbad S, Kehlet H, Binder C. Pancreatic beta cell secretion during oral and intravenous glucose administration. *Acta Med Scand Suppl* 1979; 624: 61-64 [PMID: 371342 DOI: 10.1111/j.0954-6820.1979.tb00720.x]
- 9 Madsbad S, Kehlet H, Hilsted J, Tronier B. Discrepancy between plasma C-peptide and insulin response to oral and intravenous glucose. *Diabetes* 1983; 32: 436-438 [PMID: 6341127 DOI: 10.2337/diab.32.5.436]
- 10 Shapiro ET, Tillil H, Miller MA, Frank BH, Galloway JA, Rubenstein AH, Polonsky KS. Insulin secretion and clearance. Comparison after oral and intravenous glucose. *Diabetes* 1987; 36: 1365-1371 [PMID: 3315785 DOI: 10.2337/diab.36.12.1365]
- 11 **Deacon CF**, Ahrén B. Physiology of incretins in health and disease. *Rev Diabet Stud* 2011; **8**: 293-306 [PMID: 22262068 DOI: 10.1900/RDS.2011.8.293]
- 12 Eissele R, Göke R, Willemer S, Harthus HP, Vermeer H, Arnold R, Göke B. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. *Eur J Clin Invest* 1992; 22: 283-291 [PMID: 1499644 DOI: 10.1111/j.1365-2362.1992.tb01464.x]
- 13 Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. *Regul Pept* 2003; 114: 189-196 [PMID: 12832109 DOI: 10.1016/S0167-0115(03)00125-3]
- 14 Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. *J Endocrinol* 1993; **138**: 159-166 [PMID: 7852887 DOI: 10.1677/joe.0.1380159]
- 15 Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. *Scand J Gastroenterol* 1996; **31**: 665-670 [PMID: 8819215 DOI: 10.3109/00365529609009147]
- 16 **Ahrén B**, Carr RD, Deacon CF. Incretin hormone secretion over the day. *Vitam Horm* 2010; **84**: 203-220 [PMID: 21094901 DOI: 10.1016/B978-0-12-381517-0.00007-2]
- 17 Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulindependent) diabetes. *Diabetologia* 1986; 29: 46-52 [PMID: 3514343 DOI: 10.1007/bf02427280]
- 18 Knop FK, Vilsbøll T, Højberg PV, Larsen S, Madsbad S, Vølund A, Holst JJ, Krarup T. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? *Diabetes* 2007; 56: 1951-1959 [PMID: 17513701 DOI: 10.2337/db07-0100]
- 19 Bagger JI, Knop FK, Lund A, Vestergaard H, Holst JJ, Vilsbøll T. Impaired regulation of the incretin effect in patients with type 2 diabetes. *J Clin Endocrinol Metab* 2011; 96: 737-745 [PMID: 21252240 DOI: 10.1210/jc.2010-2435]
- 20 Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? *Diabetes* 2010; 59: 1117-1125 [PMID: 20427697 DOI: 10.2337/db09-1899]
- 21 Oh TJ, Kim MY, Shin JY, Lee JC, Kim S, Park KS, Cho YM. The incretin effect in Korean subjects with normal glucose tolerance or type 2 diabetes. *Clin Endocrinol (Oxf)* 2014; 80: 221-227 [PMID: 23405851

DOI: 10.1111/cen.12167]

- Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, 22 pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016; 4: 525-536 94 DOI: 10.1016/S2213-8587(15)00482-9
- Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of 23 glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 301-307 [PMID: 8423228 DOI: 10.1172/JCI116186]
- Mentis N, Vardarli I, Köthe LD, Holst JJ, Deacon CF, Theodorakis M, Meier JJ, Nauck MA. GIP does not 24 potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 2011; 60: 1270-1276 [PMID: 21330636 DOI: 10.2337/db10-1332]
- Kjems LL, Holst JJ, Vølund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin 25 secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380-386 [PMID: 12540611 DOI: 10.2337/diabetes.52.2.380]
- 26 Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased betacell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102-110 [PMID: 12502499 DOI: /diabetes.52.1.102
- Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting 27 hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36: 741-744 [PMID: 8405741 DOI: 10.1007/bf00401145]
- Tasyurek HM, Altunbas HA, Balci MK, Griffith TS, Sanlioglu S. Therapeutic Potential of Lentivirus-28 Mediated Glucagon-Like Peptide-1 Gene Therapy for Diabetes. Hum Gene Ther 2018; 29: 802-815 [PMID: 29409356 DOI: 10.1089/hum.2017.180]
- Lee Y, Kwon MK, Kang ES, Park YM, Choi SH, Ahn CW, Kim KS, Park CW, Cha BS, Kim SW, Sung 29 JK, Lee EJ, Lee HC. Adenoviral vector-mediated glucagon-like peptide 1 gene therapy improves glucose homeostasis in Zucker diabetic fatty rats. J Gene Med 2008; 10: 260-268 [PMID: 18085721 DOI: 10.1002/igm.1153
- Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: Current 30 advancements & amp; challenges. Biomed Pharmacother 2018; 108: 952-962 [PMID: 30372907 DOI: 10.1016/j.biopha.2018.08.088]
- Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S, Rosenstock J. Effect of Oral 31 Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA 2017; 318: 1460-1470 [PMID: 29049653 DOI: 10.1001/jama.2017.14752]
- 32 Sesti G, Avogaro A, Belcastro S, Bonora BM, Croci M, Daniele G, Dauriz M, Dotta F, Formichi C Frontoni S, Invitti C, Orsi E, Picconi F, Resi V, Bonora E, Purrello F. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetol 2019; 56: 605-617 [PMID: 30603867 DOI: 10.1007/s00592-018-1271-3]
- Liu J, Li L, Deng K, Xu C, Busse JW, Vandvik PO, Li S, Guyatt GH, Sun X. Incretin based treatments 33 and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ 2017; 357: j2499 [PMID: 28596247 DOI: 10.1136/bmi.i2499]
- Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender 34 R, Matthews DR. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015; 38: 140-149 [PMID: 25538310 DOI: 10.2337/dc14-2441]
- Kawalec P, Mikrut A, Łopuch S. The safety of dipeptidyl peptidase-4 (DPP-4) inhibitors or sodium-35 glucose cotransporter 2 (SGLT-2) inhibitors added to metformin background therapy in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab Res Rev 2014; 30: 269-283 [PMID: 24829965 DOI: 10.1002/dmrr.2494]
- Tricco AC, Antony J, Khan PA, Ghassemi M, Hamid JS, Ashoor H, Blondal E, Soobiah C, Yu CH, 36 Hutton B, Hemmelgarn BR, Moher D, Majumdar SR, Straus SE. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis. BMJ Open 2014; 4: e005752 [PMID: 25537781 DOI: 10.1136/bmjopen-2014-005752]
- Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A. Dipeptidyl peptidase-4 inhibitors for 37 treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ 2012; 344: e1369 [PMID: 22411919 DOI: 10.1136/bmj.e1369]
- Katout M, Zhu H, Rutsky J, Shah P, Brook RD, Zhong J, Rajagopalan S. Effect of GLP-1 mimetics on 38 blood pressure and relationship to weight loss and glycemia lowering: results of a systematic meta-analysis and meta-regression. Am J Hypertens 2014; 27: 130-139 [PMID: 24263424 DOI: 10.1093/ajh/hpt196]
- 39 Aroda VR, Henry RR, Han J, Huang W, DeYoung MB, Darsow T, Hoogwerf BJ. Efficacy of GLP-1 receptor agonists and DPP-4 inhibitors: meta-analysis and systematic review. Clin Ther 2012; 34: 1247-1258.e22 [PMID: 22608780 DOI: 10.1016/j.clinthera.2012.04.013]
- Karagiannis T, Liakos A, Bekiari E, Athanasiadou E, Paschos P, Vasilakou D, Mainou M, Rika M, Boura 40 P. Matthews DR. Tsapas A. Efficacy and safety of once-weekly glucagon-like peptide 1 receptor agonists for the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2015; 17: 1065-1074 [PMID: 26395850 DOI: 10.1111/dom.1254]
- Zhang X, Zhao Q. Effects of dipeptidyl peptidase-4 inhibitors on blood pressure in patients with type 2 41 diabetes: A systematic review and meta-analysis. J Hypertens 2016; 34: 167-175 [PMID: 26682782 DOI: 10.1097/HJH.000000000000782
- Sun F, Chai S, Li L, Yu K, Yang Z, Wu S, Zhang Y, Ji L, Zhan S. Effects of glucagon-like peptide-1 42 receptor agonists on weight loss in patients with type 2 diabetes: a systematic review and network metaanalysis. J Diabetes Res 2015; 2015: 157201 [PMID: 25688373 DOI: 10.1155/2015/157201]
- Esposito K, Mosca C, Brancario C, Chiodini P, Ceriello A, Giugliano D. GLP-1 receptor agonists and 43 HBA1c target of <7% in type 2 diabetes: meta-analysis of randomized controlled trials. Curr Med Res Opin 2011; 27: 1519-1528 [PMID: 21663496 DOI: 10.1185/03007995.2011.590127]
- 44 Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008; 60: 470-512 [PMID: 19074620 DOI: 10.1124/pr.108.000604]
- Smilowitz NR, Donnino R, Schwartzbard A. Glucagon-like peptide-1 receptor agonists for diabetes 45 mellitus: a role in cardiovascular disease. Circulation 2014; 129: 2305-2312 [PMID: 24891623 DOI: 10.1161/CIRCULATIONAHA.113.006985
- 46 Levin PA, Nguyen H, Wittbrodt ET, Kim SC. Glucagon-like peptide-1 receptor agonists: a systematic

WJD | https://www.wjgnet.com

review of comparative effectiveness research. *Diabetes Metab Syndr Obes* 2017; **10**: 123-139 [PMID: 28435305 DOI: 10.2147/DMSO.S130834]

- 47 Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457-2471 [PMID: 17517853 DOI: 10.1056/NEJ-Moa072761]
- 48 US Food and Drug Administration. Guidance for Industry: Diabetes Mellitus-Evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008. Available from: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pd f
- 49 Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I; SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. *N Engl J Med* 2013; **369**: 1317-1326 [PMID: 23992601 DOI: 10.1056/NEJMoa1307684]
- 50 Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, Udell JA, Mosenzon O, Im K, Umez-Eronini AA, Pollack PS, Hirshberg B, Frederich R, Lewis BS, McGuire DK, Davidson J, Steg PG, Bhatt DL; SAVOR-TIMI 53 Steering Committee and Investigators. Heart Failure, Saxagliptin, and Diabetes Mellitus: Observations from the SAVOR-TIMI 53 Randomized Trial. *Circulation* 2015; 132: e198 [PMID: 26459088 DOI: 10.1161/CIR.00000000000330]
- 51 White WB, Bakris GL, Bergenstal RM, Cannon CP, Cushman WC, Fleck P, Heller S, Mehta C, Nissen SE, Perez A, Wilson C, Zannad F. EXamination of cArdiovascular outcoMes with alogliptIN versus standard of carE in patients with type 2 diabetes mellitus and acute coronary syndrome (EXAMINE): a cardiovascular safety study of the dipeptidyl peptidase 4 inhibitor alogliptin in patients with type 2 diabetes with acute coronary syndrome. *Am Heart J* 2011; 162: 620-626.e1 [PMID: 21982652 DOI: 10.1016/j.abj.2011.08.004]
- 52 Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Lam H, White WB; EXAMINE Investigators. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, doubleblind trial. *Lancet* 2015; 385: 2067-2076 [PMID: 25765696 DOI: 10.1016/S0140-6736(14)62225-X]
- 53 White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F; EXAMINE Investigators. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. *N Engl J Med* 2013; 369: 1327-1335 [PMID: 23992602 DOI: 10.1056/NEJMoa1305889]
- 54 Green JB, Bethel MA, Paul SK, Ring A, Kaufman KD, Shapiro DR, Califf RM, Holman RR. Rationale, design, and organization of a randomized, controlled Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) in patients with type 2 diabetes and established cardiovascular disease. *Am Heart J* 2013; 166: 983-989.e7 [PMID: 24268212 DOI: 10.1016/j.ahj.2013.09.003]
- 55 Bethel MA, Green JB, Milton J, Tajar A, Engel SS, Califf RM, Holman RR; TECOS Executive Committee. Regional, age and sex differences in baseline characteristics of patients enrolled in the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). *Diabetes Obes Metab* 2015; 17: 395-402 [PMID: 25600421 DOI: 10.1111/dom.12441]
- 56 McGuire DK, Van de Werf F, Armstrong PW, Standl E, Koglin J, Green JB, Bethel MA, Cornel JH, Lopes RD, Halvorsen S, Ambrosio G, Buse JB, Josse RG, Lachin JM, Pencina MJ, Garg J, Lokhnygina Y, Holman RR, Peterson ED; Trial Evaluating Cardiovascular Outcomes With Sitagliptin (TECOS) Study Group. Association Between Sitagliptin Use and Heart Failure Hospitalization and Related Outcomes in Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol 2016; 1: 126-135 [PMID: 27437883 DOI: 10.1001/jamacardio.2016.0103]
- 57 Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, Lachin JM, McGuire DK, Pencina MJ, Standl E, Stein PP, Suryawanshi S, Van de Werf F, Peterson ED, Holman RR; TECOS Study Group. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. *N Engl J Med* 2015; 373: 232-242 [PMID: 26052984 DOI: 10.1056/NEJMoa1501352]
- 58 Marx N, Rosenstock J, Kahn SE, Zinman B, Kastelein JJ, Lachin JM, Espeland MA, Bluhmki E, Mattheus M, Ryckaert B, Patel S, Johansen OE, Woerle HJ. Design and baseline characteristics of the CARdiovascular Outcome Trial of LINAgliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA®). Diab Vasc Dis Res 2015; 12: 164-174 [PMID: 25780262 DOI: 10.1177/1479164115570301]
- 59 Rosenstock J, Marx N, Neubacher D, Seck T, Patel S, Woerle HJ, Johansen OE. Cardiovascular safety of linagliptin in type 2 diabetes: a comprehensive patient-level pooled analysis of prospectively adjudicated cardiovascular events. *Cardiovasc Diabetol* 2015; 14: 57 [PMID: 25990013 DOI: 10.1186/s12933-015-0215-2]
- 60 Secrest MH, Udell JA, Filion KB. The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors. *Trends Cardiovasc Med* 2017; 27: 194-202 [PMID: 28291655 DOI: 10.1016/j.tcm.2017.01.009]
- 61 **Drucker DJ**. The Cardiovascular Biology of Glucagon-like Peptide-1. *Cell Metab* 2016; **24**: 15-30 [PMID: 27345422 DOI: 10.1016/j.cmet.2016.06.009]
- 62 Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, Maggioni AP, McMurray JJ, Probstfield JL, Riddle MC, Solomon SD, Tardif JC; ELIXA Investigators. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. *N Engl J Med* 2015; 373: 2247-2257 [PMID: 26630143 DOI: 10.1056/NEJMoa1509225]
- 63 Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375: 311-322 [PMID: 27295427 DOI: 10.1056/NEJMoa1603827]
- 64 Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. *N Engl J Med* 2016; 375: 1834-1844 [PMID: 27633186 DOI: 10.1056/NEJMoa1607141]
- 65 **Ginterová A**, Janotková O. A simple method of isolation and purification of cultures of wood-rotting fungi. *Folia Microbiol (Praha)* 1975; **20**: 519-520 [PMID: 289 DOI: 10.1056/NEJMoa1612917]
- 66 Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, Pagidipati NJ, Chan JC, Gustavson SM, Iqbal N, Maggioni AP, Öhman P, Poulter NR, Ramachandran A, Zinman B, Hernandez AF, Holman RR; EXSCEL Study Group. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in

patients with type 2 diabetes: a meta-analysis. *Lancet Diabetes Endocrinol* 2018; **6**: 105-113 [PMID: 29221659 DOI: 10.1016/S2213-8587(17)30412-6]

- 67 Best JH, Hoogwerf BJ, Herman WH, Pelletier EM, Smith DB, Wenten M, Hussein MA. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. *Diabetes Care* 2011; 34: 90-95 [PMID: 20929995 DOI: 10.2337/dc10-1393]
- 68 Hernandez AF. Green JB, Janmohamed S, D'Agostino RB Sr, Granger CB, Jones NP, Leiter LA, Rosenberg AE, Sigmon KN, Somerville MC, Thorpe KM, McMurray JJV, Del Prato S; Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. *Lancet* 2018; **392**: 1519-1529 [PMID: 30291013 DOI: 10.1016/S0140-6736(18)32261-X]
- 69 Barbarawi M, Aburahma A, Zayed Y, Osman M, Rashdan L, Swaid B, Bachuwa G. Anti-atherosclerotic effect of incretin mimetics: a meta-analysis of randomized controlled trials. *J Community Hosp Intern Med Perspect* 2018; 8: 349-356 [PMID: 30559943 DOI: 10.1080/20009666.2018.1542919]
- 70 Jojima T, Uchida K, Akimoto K, Tomotsune T, Yanagi K, Iijima T, Suzuki K, Kasai K, Aso Y. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. *Atherosclerosis* 2017; 261: 44-51 [PMID: 28445811 DOI: 10.1016/j.atherosclerosis.2017.04.001]
- 71 Shi L, Ji Y, Jiang X, Zhou L, Xu Y, Li Y, Jiang W, Meng P, Liu X. Liraglutide attenuates high glucoseinduced abnormal cell migration, proliferation, and apoptosis of vascular smooth muscle cells by activating the GLP-1 receptor, and inhibiting ERK1/2 and PI3K/Akt signaling pathways. *Cardiovasc Diabetol* 2015; 14: 18 [PMID: 25855361 DOI: 10.1186/s12933-015-0177-4]
- 72 Nakamura K, Oe H, Kihara H, Shimada K, Fukuda S, Watanabe K, Takagi T, Yunoki K, Miyoshi T, Hirata K, Yoshikawa J, Ito H. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. *Cardiovasc Diabetol* 2014; 13: 110 [PMID: 25074318 DOI: 10.1186/s12933-014-0110-2]
- 73 Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD; VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. *N Engl J Med* 2009; 360: 129-139 [PMID: 19092145 DOI: 10.1056/NEJMoa0808431]
- 74 Action to Control Cardiovascular Risk in Diabetes Study Group. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-2559 [PMID: 18539917 DOI: 10.1056/NEJMoa0802743]
- 75 Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34. UK Prospective Diabetes Study (UKPDS) Group. *Lancet* 1998; **352**: 854-865 [PMID: 9742977 DOI: 10.1016/S0140-6736(98)07037-8]
- 76 Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837-853 [PMID: 9742976 DOI: 10.1016/S0140-6736(98)07019-6]
- 77 Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589 [PMID: 18784090 DOI: 10.1056/NEJ-Moa0806470]
- 78 ADVANCE Collaborative Group. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. *N Engl J Med* 2008; **358**: 2560-2572 [PMID: 18539916 DOI: 10.1056/NEJMoa0802987]
- 79 Bonds DE, Miller ME, Bergenstal RM, Buse JB, Byington RP, Cutler JA, Dudl RJ, Ismail-Beigi F, Kimel AR, Hoogwerf B, Horowitz KR, Savage PJ, Seaquist ER, Simmons DL, Sivitz WI, Speril-Hillen JM, Sweeney ME. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. *BMJ* 2010; **340**: b4909 [PMID: 20061358 DOI: 10.1136/bmj.b4909]
- 80 Andrikou E, Tsioufis C, Andrikou I, Leontsinis I, Tousoulis D, Papanas N. GLP-1 receptor agonists and cardiovascular outcome trials: An update. *Hellenic J Cardiol* 2018 [PMID: 30528435 DOI: 10.1016/j.hjc.2018.11.008]
- 81 Lim S, Kim KM, Nauck MA. Glucagon-like Peptide-1 Receptor Agonists and Cardiovascular Events: Class Effects versus Individual Patterns. *Trends Endocrinol Metab* 2018; 29: 238-248 [PMID: 29463450 DOI: 10.1016/j.tem.2018.01.011]
- 82 Milonas D, Didangelos T, Hatzitolios AI, Tziomalos K. Incretin-Based Antihyperglycemic Agents for the Management of Acute Ischemic Stroke in Patients with Diabetes Mellitus: A Review. *Diabetes Ther* 2019; 10: 429-435 [PMID: 30725400 DOI: 10.1007/s13300-019-0580-z]
- 83 Ji Q. Treatment Strategy for Type 2 Diabetes with Obesity: Focus on Glucagon-like Peptide-1 Receptor Agonists. Clin Ther 2017; 39: 1244-1264 [PMID: 28526416 DOI: 10.1016/j.clinthera.2017.03.013]
- 84 **Ottney A.** Glucagon-like peptide-1 receptor agonists for weight loss in adult patients without diabetes. *Am J Health Syst Pharm* 2013; **70**: 2097-2103 [PMID: 24249759 DOI: 10.2146/ajhp130081]

Gaishideng® WJD | https://www.wjgnet.com

World Journal of Diabetes

Submit a Manuscript: https://www.f6publishing.com

World J Diabetes 2019 August 15; 10(8): 454-462

DOI: 10.4239/wjd.v10.i8.454

ISSN 1948-9358 (online)

MINIREVIEWS

Competences for self-care and self-control in diabetes mellitus type 2 in primary health care

Maria Marta Amancio Amorim, Alessandra Hugo de Souza, Adriana Keller Coelho

ORCID number: Maria Marta Amancio Amorim (0000-0001-8268-2508); Alessandra Hugo de Souza (0000-0001-8828-1019); Adriana Keller Coelho (0000-0001-7559-7903).

Author contributions: Amorim MMA contributed to revision of bibliography and text formatting; de Souza AH contributed to translation of article with revision; Coelho AK contributed to text editing.

Conflict-of-interest statement: No potential conflicts of interest relevant to this article were reported.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licen ses/by-nc/4.0/

Manuscript source: Invited Manuscript

Received: February 21, 2019 Peer-review started: February 22, 2019 First decision: June 3, 2019 Revised: June 7, 2019 Accepted: July 20, 2019 Maria Marta Amancio Amorim, Centro De Estudos Em Migrações E Relações Interculturais, Belo Horizonte 302240010, Brazil

Alessandra Hugo de Souza, Programa de Pós graduação em Biologia de Vertebrados, Pontificia Universidade Católica de Minas Gerais, Belo Horizonte 30535901, Brazil

Adriana Keller Coelho, Geriatric Unit, Hospital do Instituto de Previdência dos Servidores do Estado de Minas Gerais, Belo Horizonte 3010110, Brazil

Corresponding author: Maria Marta Amancio Amorim, Centro De Estudos Em Migrações E Relações Interculturais, Rua Herval 515, Belo Horizonte 302240010, Brazil. martamorim@hotmail.com **Telephone:** +55-31-999576733

Abstract

The purpose of the guidelines of self-care and self-control of type 2 diabetes mellitus proposed by the Brazilian Ministry of Health is to strengthen and qualify users and health care professionals through the integrality and longitudinality of care with this disease. This article aims to present the self-care and self-control of people with type 2 diabetes mellitus in objective terms, taking into account the current recommen-dations based on scientific evidence and also from the subjective point of view, that is, emphasizing the aspects related to experience and subjectivity of these people. Next, we present the essential skills for self-care and self-control of users and professionals working in primary health care.

Key words: Diabetes mellitus type 2; Self-care; Primary health care

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This article aims to present the self-care and self-control of people with type 2 diabetes mellitus under the objective point of view, taking into account the current recommendations based on scientific evidence, and also from the subjective point of view, emphasizing the aspects related to experience and the subjectivity of these people. Next, we present the essential skills for self-care and self-control of users and professionals working in primary health care.

Citation: Amorim MMA, Souza AH, Coelho AK. Competences for self-care and self-control in diabetes mellitus type 2 in primary health care. *World J Diabetes* 2019; 10(8): 454-462

WJD https://www.wjgnet.com

Article in press: July 20, 2019 Published online: August 15, 2019

P-Reviewer: Sahoo J S-Editor: Cui LJ L-Editor: Filipodia E-Editor: Xing YX

URL: https://www.wjgnet.com/1948-9358/full/v10/i8/454.htm **DOI**: https://dx.doi.org/10.4239/wjd.v10.i8.454

INTRODUCTION

Type 2 diabetes mellitus (DM2) is currently a global epidemic. Incidence and prevalence are increasing in developing and newly industrialized countries. Its impact on public health worldwide consists of social problems, such as reduced quality of life and reduced survival of people with DM2, and economic problems, such as reduced productivity and high treatment costs^[1].

Among the several types of diabetes, DM2 accounts for 90%-95% of cases. It is characterized by an imbalance of the metabolism of carbohydrates, lipids, and proteins and is associated with a deficiency in the secretion and/or action of the hormone insulin secreted by the pancreas. As a consequence, there is a decrease in tissue sensitivity or insulin responsiveness and an increase in blood glucose levels. As a way to combat the complications of hyperglycemia, the goal of treatment is to achieve normal blood glucose levels^[2].

An individual with DM2, if not properly treated and controlled, may develop acute complications, such as hypoglycemia, hyperglycemia, and chronic progressive changes in the retina, kidneys, and peripheral nerves, and may trigger atherosclerotic lesions of the heart, brain, and peripheral members^[2].

Due to the requirement of constant glycemic control, chronicity, and lack of cure, the person with DM2 remains linked to the health system for decades and needs continuous attention focused on the integral care provided by family health and family support nucleus in actions to promote, monitor, and prevent complications of DM2. The complexity of care for people with DM2 requires an interdisciplinary approach with health professionals open to dialogue and willing to plan appropriate consultations and interventions to the specific needs of people with DM2 that are centered on the actions of self-care and glycemic control^[5].

The purpose of the guidelines of self-care and self-control of DM2 proposed by the Brazilian Ministry of Health is to strengthen and qualify care to users and to health professionals through the integrality and longitudinality of care with this disease. Thus, users with DM2 and health professionals who work in primary care should have competencies for self-care and self-control in this pathology. According to Cyrino^[4], competence is a person's ability to mobilize different knowledge to master specific problematic situations faced in daily life and to develop attitudes and practices.

To achieve the goals detailed by the Strategy for the Care of People with Diabetes Mellitus published in the Basic Care Book number 36 of the Ministry of Health^[5], it is proposed that primary care professionals adopt the approach of person-centered health with DM2^[6,7]. This approach allows primary care professionals to use objective methods such as anamnesis, physical examination, and laboratory tests as well as subjective methods for analyzing and understanding feelings and ideas, the effects of DM2 on one's life, and expectations of treatment^[8]. Thus, health professionals, in addition to the epidemiological and pathophysiological knowledge of DM2, must understand the psychosocial aspects of people; have pedagogical skills, communication skills, listening, understanding, and negotiating with the interdisciplinary health team^[9]. On the other hand, people with DM2 must have the skills and autonomy to assume self-care and self-control.

In this way, this article aims to present the self-care and self-control of people with DM2 under the objective point of view, taking into account the current recommendations based on scientific evidence, and also from the subjective point of view, emphasizing the aspects related to experience and the subjectivity of these people. Next, we present the essential skills for self-care and self-control of users and professionals working in primary health care.

SELF-CARE AND SELF-CONTROL OF PEOPLE WITH DM2 UNDER THE OBJECTIVE POINT OF VIEW

Self-care and self-control are shown as possibilities for the person with DM2 to reduce the repercussions caused by the disease. Self-care is understood as the set of activities that involve dietary, corporal, drug, and glucose monitoring practices performed by

the patient to promote his health, minimizing hypoglycemia and excessive weight gain. Self-control is the monitoring of the conditions of health and disease by the subject himself, according to objective parameters obtained by biochemical tests of blood glucose and glycohemoglobin^[4].

The main goal of self-management and self-control of people with DM2 is metabolic control and includes tests for fasting blood glucose and glycated hemoglobin^[10]. Glycated hemoglobin is the gold standard that provides an index of glycemic control for 6 to 12 wk^[11], dosed quarterly until reaching control and then every 6 mo ^[3]. In order not to increase the risk of hypoglycemia or other complications of treatment, the patient aims to reach values lower than or equal to 6.5 a 7.0^[1,10].

The monitoring of the annual lipid profile (triglycerides, total cholesterol and its fractions) is of fundamental importance for the control of DM2, since this indicator is associated with cardiovascular diseases, obesity, and arterial hypertension, which may favor the development of insulin resistance and metabolic syndrome^[10].

Blood pressure should be measured query, with ideal targets for systolic pressure < 130 mmHg and diastolic blood pressure of < 80 mmHg. In addition, ophthalmologic evaluations, urinary albumin excretion, and comprehensive examination of feet should be made after the diagnosis in order to avoid retinopathies, nephropathies, ulcers, and amputations, respectively^[10].

For self-care and self-management of DM2 in order to maintain glycemic control, to avoid acute complications, and to reduce the risk of long-term complications, it is recommended that people with D2M regularly participate in medical appointments and care health monitoring of biochemical and blood pressure tests, weight and abdominal circumference measurements, as well as evaluation of drug treatment, diet, and physical activity^[10]. But not enough people attend consultations regularly, making necessary adherence to self-care and self-control, which begins with the incorporation of dietary practices and physical activity prescribed by professionals in primary health care.

Behavioral modification related to dietary practices is a requirement imposed by the disease, and the selection of foods and fractionation of meals, energy consumption for the purpose of reducing or avoiding weight gain, and decreased consumption of trans and saturated fats, cholesterol, and sodium should be reviewed. These modifications improve insulin resistance and decrease plasma glucose, abdominal circumference, and visceral fat levels by improving the metabolic profile with reduced levels of low-density lipoprotein, triglycerides and increased high-density lipoprotein^[12,15].

As for the body practices, 150 min per week of aerobic physical activity of moderate intensity is recommended. These activities include walking, cycling, running, swimming, and dancing, preferably three times a week, provided that there is no medical contraindication. Exercise improves glycemic control, reduces glycated hemoglobin and cardiovascular risk, contributes to weight reduction, and improves self-esteem^[1]. When associated with changes in eating habits, important components of maintenance of glycemic control and weight loss programs are important^[10].

When the desired glycemic levels have not been reached after the use of dietary measures and exercise, antidiabetic medicinal products should be used. Some people with DM2 will require insulin therapy soon after the diagnosis and many throughout the treatment^[1].

SELF-CARE AND SELF-CONTROL OF PEOPLE WITH DM2 FROM THE POINT OF VIEW OF THEIR EXPERIENCE AND SUBJECTIVITY

The subjects should be prepared and motivated from diagnosis to take the treatment. Although people are adaptable to the realization of self-care and self-control, compliance with these practices is not so easy for most people with DM2. At the moment the disease is discovered, the structure of daily life and the forms that sustain it are interrupted. First, ruptures occur with the new limits of normal daily life, as behaviors performed before being sick must be changed, potentially leading to deep breaks in one's biography and self-concept. Finally, in the various segments of daily life, due to the care they need, people with DM2 must mobilize resources to face the changed situation^[14].

At this stage, the person may be faced with the obstacle of food (one of the most difficult to overcome), the non-acceptance of DM2, fear of insulin, a lack of knowledge about the disease and self-care, the need for commitment and discipline, unfavorable financial situation, and the emotional component involved with feeding^[4,15].

Thus, living with the limits imposed by a diagnosis of DM2 is full of conflicts,

[®] WJD https://www.wjgnet.com

ruptures, questioning, and nonconformity. Knowing the experience and the subjectivity of these people, of the meanings attributed to them by the disease, favor the identification of limiting aspects and the way in which they articulate different aspects that interact in the production of self-care and consequently in self-control.

Some studies seek to approach the subject and his experience with the disease, taking into account the vision and participation in the management of care^[16] treatment adherence^[17], the involvement of friends and family in the treatment^[18], as well as support or self-help groups and social networks^[19].

The experiences of individuals with the disease are socially shared, and their analysis is possible when expressed as subjective narration, that is, the conscious or unconscious mind of people. Thus, one approach to the subjective questions is the social representations, understood as complex subjective productions, because they have an impersonal aspect, in the sense of belonging to all; they are the representation of others, belonging to other people or to another group and are also a personal representation, perceived effectively as belonging to the ego^[20].

Social representations play a fundamental role in the dynamics of social relations by understanding and explaining reality, guiding behaviors and practices, explaining and justifying behaviors in a situation or with partners, and defining identity^[21]. The author emphasizes a clear relationship between social representation, identity, and the behavior of people.

It is necessary, then, to understand the social representations in which people with DM2 are anchored and the social identities that underlie them. With this intention, Amorim et al^[22,23] investigated the identity representations of users with DM2 of a basic health unit, located in Belo Horizonte, Brazil. From the guiding question: "what comes to mind when I speak, I am diabetic", the speeches were categorized and interpreted by the technique of content analysis and theories of social representation and social identity. As a result of this research, some people with DM2 studied are considered normal, others accept the disease, there are those who are dissatisfied, and others lead a life with difficulty. The "normal" participants coexist with illness in a positive way and minimize the impact of DM2 on their identity when they experience the process of normalization of illness and care, in which the changes and adaptations required to the treatment become routine and are incorporated into daily life. Participants who "accept the disease" do not ideally accept their chronic illness. The ideal acceptance of a disease consists of a psychological state in which the illness is part of the perception of reality and is not perceived as a factor that limits the person. The unfavorable attitudes of the "non-conforming" participants, the information about the risks of the disease and the image of danger that they elaborate on the illness, help to understand the sense that the participants attribute to the "diabetic being". Participants who think that they "have a life fraught with difficulties" face obstacles in taking care of themselves, culminating in negative feelings and attitudes about the disease. It is possible that people with "distressed" DM2, not feeling confident about the future and facing adversity, do not make sustained efforts to achieve their goals, neglecting self-control and self-care. Thus, the obstacles faced by participants who think they are "accepting the disease, think they are "discontented" and "have difficulties" when they put into practice self-care, especially in relation to food, should be understood by the team that works in primary health care, biomedical logic^[22,23].

The social representations about the feeding of these people with DM2 were investigated. Some respondents indicated that the person with DM2 should eat healthy. Others relied on the quality of food, representing it as "eating vegetables and fruits" and "avoiding sweets." There are still those whose speech was based on eating little, worrying about the quantities of food eaten. There are those who represented eating as not eating too much, focusing on the frequency of feeding, as they consider that breaking down the food in many meals is not appropriate. Others focused their speech on selective food intake, specifically those that do not harm the body. Finally, others considered that food does not imply following a specific diet^[24,25].

In analyzing the social representations of the diet of people with DM2 as they represent their identity and its implications for glycemic control, it was found that adequate HbA1c values of the participants considered to be "normal" are adequate and are related to the actions of self-care, allowing to infer about the effectiveness of feeding. Proper nutrition improves insulin resistance, decreases the levels of plasma glucose and waist circumference, and improves metabolic visceral fat profile of triglycerides and cholesterol. People who think they have a normal life represent eating in the categories eating healthy, eating reduced, eating vegetables and fruits, and divert from sweets^[26].

The particular way in which the participants who judge "accepting the disease", "having difficulties", and "nonconformists" perform the self-care related to the alimentary practice is derived from the different processes of subjectivation in which each one of them relies on to construct its social representations on the identity and

[®] WJD https://www.wjgnet.com

feeding and consequently have mean values of HbA1c above normal values. Participants who "accept the disease" are based on "no" to represent their diet: do not eat too much and do not eat at all. Participants who "have a life with difficulties" represent their eating in the negative categories: do not eat too much, do not eat at all, and do not follow the diet. A participant who represents eating in eating vegetables and fruits, unlike normal people, has difficulty putting their thinking into practice. "Nonconformists" represent their food in the negative categories: not eating much and not eating at all. Two participants represented their diet in eating vegetables, but in practice they eat the forbidden foods^[26].

USER ABILITIES REQUIRED FOR SELF-CARE AND SELF-CONTROL

The adherence of people with DM2 to self-care and self-control therapies is still low in developed countries, with around 50%, and it is estimated that in developing countries this percentage is lower, compromising the effectiveness of the treatment^[27].

Due to the complexity of self-care and self-control in DM2, Cyrino^[4], based on the literature and the joint evaluation with specialists in the area, defined a list of competencies required by people with DM2 to conduct the treatment. A total of 47 skills classified in the fields of knowledge - technical dimension of illness and knowhow-practical dimension were elaborated, contemplating the general notions about DM2 and its complications, glycemic self-control, self-care in acute complications, and self-care in drug treatment.

In addition to the knowledge and skills portrayed in the competency roll, it is necessary to consider the attitudes and the necessary awareness that influence the user's behavior and consequently the health improvement^[28]. For Sousa *et al*^[29] the increase in knowledge when correlated significantly with attitude is associated with the predisposition to assume self-care.

In order to verify the knowledge and attitudes of people with DM2 who participated in a self-care education program, Rodrigues *et al*^[30] used the instruments validated for use in Brazil, the Diabetes Knowledge Questionnaire and the Diabetes Attitude Questionnaire. The Diabetes Knowledge Questionnaire covers issues related to knowledge about basic physiology, hypoglycemia, food groups and their substitutions, management of DM2 in the course of another disease, and general principles of care. The Diabetes Attitude Questionnaire presents issues that include stress associated with DM2, treatment receptivity, treatment confidence, personal efficacy, health perception, and social acceptance^[30]. After applying these two instruments, Rodrigues *et al*^[30] concluded that although participants had a good level of knowledge, they still did not change their attitude towards coping with the disease.

As knowledge does not always lead to a change in attitude towards the daily demands that treatment imposes on daily life, it is necessary to listen to the feelings, the hidden complaints of the person with DM2. In this line of reasoning, according to which the subjective perspective of the patient is considered and valued, Cyrino^[4] developed a study with the objective of knowing the skills developed by users with DM2 of a health service for self-care and self-control in DM2, from their testimonials. A set consisting of 98 competences derived from the knowledge of the experience of those who live the disease was raised, distributed in the fields of knowledge, knowhow and know how to be and know how to communicate. The competences related to psychological and social difficulties to self-care were expressed by people with DM2, showing differences in conceptions about the disease and care among health professionals and their patients^[4].

To know the skills of people with DM2 for self-care, a scale containing 27 items was developed and validated, assessing physical abilities (vision, touch, dexterity, and manual ability), mental abilities (reading, attention, memory, discrimination and classification of knowledge within certain situations, judgment of certain situations, and conceptualization of a system of actions to act in certain situations), and motivational and emotional capacities^[31,32]. This scale of identification of the competence of the person with DM2 for self-care (ECDAC) allows a qualitative and quantitative evaluation of the capacities of people with DM2 for the exercise of the self-care actions necessary for the maintenance of health^[33]. The deficiencies in the physical, mental, and motivational capacities pointed out by the ladder provide subsidies for the planning and implementation of intervention methods based on the person-centered approach, favoring a global and individualized assistance practice.

anishideng® WJD | https://www.wjgnet.com

ABILITIES OF HEALTH PROFESSIONALS NECESSARY FOR SELF-CARE AND SELF-CONTROL

The complexity involved in self-care and self-management of people with DM2 requires an approach of interdisciplinary care with family health strategy professionals and family health support nucleus open to dialogue, with the ability to communicate, employing person-centered care and valuing the objective and subjective aspects. In this sense, it is recommended that these professionals overcome the biomedical paradigm of being the experts responsible for curing diseases and help people achieve health and normality^[34], through a systemic and comprehensive view of the individual, family, and community in the promotion, specific protection, rehabilitation, and care, working with creativity and critical thinking^[35].

Within this context, Torres *et al*^[36] developed a training program for primary health care professionals for DM2 education. The competency role required by people with DM2 to conduct the treatment developed by Cyrino^[4] was adapted and applied, including questions related to pathophysiology, nutrition, physical exercise, and insulin therapy, to assess the knowledge of the professionals of basic health units concerning self-care. The difficulties identified by the professionals pointed out the need for continuing education and supported the planning and development of the educational program in DM2. For the professionals' training, the work workshops modality was used to motivate the exchange of experiences and knowledge and reflection on the obstacles they experienced in their daily lives when caring for people with DM2.

In order to overcome these obstacles, primary health care professionals should value the individual's own experience, his subjectivity, his conceptions of illness^[17,37], as well as his beliefs^[38,39]. By living the disease in their everyday experience, the subject mobilizes knowledge and attributes meanings to master specific problematic situations, developing the skills (*i.e.* attitudes and practices related to self-care and self-control in DM2)^[4].

Thus, in practicing the person-centered approach, health professionals should have the ability to distinguish the disease from the experience of the disease, so that they find methods of health promotion and preventive care more appropriate to the world of the person, varying according to the person, the moment, and the question of health care. The use of qualitative methodologies provides an in-depth understanding of the broad context of understanding the subjective issues of the person being treated^[40].

After this stage, health professionals and the person in care should work together on a joint problem management plan to define goals, care priorities, and care roles^[40]. To apply problem solving requires the ability to recognize the problem, ability to generate alternative solutions, and insight to select an appropriate option^[41].

This pathology requires a holistic view of the health-disease process by the health professional, with the apprehension of the subject in its biopsychosocial dimension, integrating preventive, promotional, and coordinated assistance actions, for a more comprehensive understanding of the disease and to favor more effective interventions and accession. A structured intervention in multidisciplinary teams for the effective development of programs of education and health promotion of these patients and relatives is fundamental^[42].

The abilities for self-care and self-control in DM2 of users and health professionals are illustrated in Table 1.

CONCLUSION

People with diabetes face obstacles, often filled with social representations. The rules to be followed by these individuals should be adapted to deal with the restrictions, prohibitions, and difficulties that act as contingency to put into practices the desired behavior.

So, to ensure the effectiveness in meeting the people with DM2, the experience of listening, the ability to communicate and understand the subjective aspects of people and the context in which they operate, is a key skill to be developed by health professionals in primary health care. A change in the behavior of health professionals is possible to be motivated by the institution in which it is linked as well as by an internal involvement mediated by the self-conscience of its professional activity.

On the other hand, people with DM2 should have knowledge about the disease, motivation and positive attitude from diagnosis to self-control and self-care, and support from the social network and family. Participation in the educational process should be active, this essential condition to ensure effective results for better

wJD | https://www.wjgnet.com

ble 1 Abilities for self-care and self-control in diabetes mellitus type 2		
Abilities for self-care and self-control in diabetes mellitus type 2	User	Health professionals
	Physical abilities	Interdisciplinary approach
	Mental abilities	
	Motivational abilities	Person-centered approach
	Emotional abilities	

acceptance of the disease, treatment adherence, metabolic control, and quality of life.

REFERENCES

- Sociedade Brasileira de Diabetes. Gomer BM, Leraio AC. Oliveria JEP, Montenegro Junior, RM, Venicio S. (Org.) Diretrizes da Sociedade Brasileira de Diabetes, 2017-2018 [Guidelines of the Brazilian Diabetes Society, 2017-2018]. [Accessed on 2 June 2019]. Available from: URL: https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf
- 2 Franz MJ, Mahan, L. Terapia clínica nutricional no diabetes melito e hipoglicemia de origem não diabética [Nutritional clinical therapy in diabetes mellitus and hypoglycemia of non-diabetic origin]. In: Mahan, L.K, Escott-Stump, S (Eds.). Krause alimentos, nutrição dietoterapia. 13. ed. Mahan, L. São Paulo: Roca 2002; 718-755 [Accessed on 2 June 2019] Available from: URL: https://issuu.com/elsevier_saude/docs/mahan_sample
- 3 Brasil. Ministério da Saúde. Estratégia nacional para educação em saúde para o autocuidado em diabetes mellitus [National strategy for health education for self-care in diabetes mellitus]. Florianópolis: SEAD/UFSC 2009; Available from: URL: http://pesquisa.bvsalud.org/bvsms/resource/pt/mis-34528
- 4 Cyrino APP. As competências no cuidado com o diabetes mellitus: contribuições à educação e comunicação em saúde [Skills in diabetes mellitus care: contributions to health education and communication]. Tese (Doutorado em Ciências). São Paulo: Faculdade de Medicina de São Paulo, Universidade de São Paulo, 2005. [Accessed on 2 June 2019]. Available from: http://www.teses.usp.br/teses/disponiveis/5/5137/tde-02022006-155115/pt-br.php
- 5 Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde, Departamento de Atenção Básica. Estratégia para o Cuidado da Pessoa com Diabetes Mellitus [Strategy for the Care of the Person with Diabetes Mellitus]. Brasília: Ministério da Saúde 2013; [Accessed on 2 June] Available from: http://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf
- 6 Brown JB, Weston WW, Stewart M. O primeiro componente: explorando a doença e a experiência da doença [The first component: exploring disease and disease experience]. In: Stewart, M., Brown, JB., Weston, McWhinney, IR., McWilliam, CL., (Org). Medicina centrada na pessoa transformando o método clínico 2010; 53-70 [Accessed in 2 June 2019] Available from: URL: file:///C:/Users/lenovo/Downloads/STEWART%20et%20al%202017_Medicina%20Centrada%20na%20P essoa %20Tr%20-%20Moira%20Stewart.pdf
- 7 Brow JB, Weston WW, McWilliam CL. O sexto componente: sendo realista [The sixth component: being realistic]. In: Stewart, M., Brown, JB., Weston, WW, McWhinney, IR., McWIilliam, CL, (Org). Medicina centrada na pessoa- transformando o método clínico 2010; 151-168 [Accessed in 2 June 2019] Available from:

file:///C:/Users/lenovo/Downloads/STEWART%20et%20al%202017_Medicina%20Centrada%20na%20P essoa %20Tr%20-%20Moira%20Stewart.pdf

8 McWilliam CL, Freeman TR. O quarto componente: incorporando prevenção e promoção da saúde [The fourth component: incorporating prevention and health promotion]. In: Stewart, M., Brown, JB., Weston, McWhinney, IR, McWilliam, C. L. (Org). Medicina centrada na pessoa - transformando o método clínico 2010; 119-130 [Accessed in 2 June 2019] Available from: file:///C/IJeers/lenguy/Downloads/STEW/A PT%20el%2001/2 Medicina%20Centrade%20ne%20P

file:///C:/Users/lenovo/Downloads/STEWART%20et%20al%202017_Medicina%20Centrada%20na%20P essoa_%20Tr%20-%20Moira%20Stewart.pdf

- 9 Roter DL, Hall JA, Merisca R, Nordstrom B, Cretin D, Svarstad B. Effectiveness of interventions to improve patient compliance: a meta-analysis. *Med Care* 1998; 36: 1138-1161 [PMID: 9708588 DOI: 10.1097/00005650-199808000-00004]
- 10 American Diabetes Association. *Standards of Medical Care in Diabetes*-2019 Abridged for Primary Care Providers. *Clin Diabetes* 2019; **37**: 11-34 [PMID: 30705493 DOI: 10.2337/dc19-Sint01]
- 11 **Brasil Ministério da Saúde**. *Cadernos de Atenção Básica. Diabetes mellitus* 2016; [Accessed on 2 June 2019] Available from: http://bvsms.saude.gov.br/bvs/publicacoes/diabetes_mellitus.PDF
- 12 Klein S, Sheard NF, Pi-Sunyer X, Daly A, Wylie-Rosett J, Kulkarni K, Clark NG; American Diabetes Association; North American Association for the Study of Obesity; American Society for Clinical Nutrition. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. *Am J Clin Nutr* 2004; 80: 257-263 [PMID: 15277143 DOI: 10.1093/ajcn/80.2.257]
- 13 Sartorelli DS, Sciarra EC, Franco LJ, Cardoso MA. Primary prevention of type 2 diabetes through nutritional counseling. *Diabetes Care* 2004; 27: 3019 [PMID: 15562232 DOI: 10.2337/diacare.27.12.3019]
- 14 Bury M. Chronic illness as biographical disruption. Sociol Health 1982; 4: 167-182 [DOI: 10.1111/1467-9566.ep11339939]
- 15 Motta DG. Educação nutricional diabetes tipo 2 compartilhando saberes, sabores e sentimentos [Nutrition Education Type 2 Diabetes - Sharing Knowledge, Flavors and Feelings]. Piracicaba: Jacinta Editores, 2009 [Accessed in 2 June 2019]. Available from: URL: https://www.google.com/search?q=Educa%C3%A7%C3%A3o+nutricional+%26+diabetes+tipo+2+%E2

- 16 Holman H, Lorig K. Patients as partners in managing chronic disease. Partnership is a prerequisite for effective and efficient health care. *BMJ* 2000; **320**: 526-527 [PMID: 10688539 DOI: 10.1136/bmj.320.7234.526]
- 17 Rezende MFC. Um estudo de caso sobre a experiência da doença de diabéticos tipo 2 usuários de uma unidade básica de saúde de Araguari/MG [A case study on the experience of the disease of type 2 diabetics users of a basic health unit of Araguari/MG]. Dissertação (mestrado profissional). Brasília: Fundação Oswaldo Cruz. Centro de Pesquisas Aggeu Magalhães, 2010. [Accessed in 2 June 2019] Available from: https://www.arca.fiocruz.br/bitstream/icict/13302/1/457.pdf
- 18 Netteleton S. The sociology of health and illness. Cambridge: Polity Press, 1995. [Accessed in 2 June 2019] Available from:
 https://www.nette.et/action/2/0205085
 - https://www.researchgate.net/publication/260305985_The_Sociology_of_Health_and_Illness_by_Sarah_N ettleton_Cambridge_Polity_Press_2013_3rd_edition_ISBN_978-0-74564-601-5_1999_pbk
- 19 Heaney CA, Israel, BA, Glanz, K. Social Networks and social support. Glanz, K. Lewis, FM., Rimer, BK (Editors). Health behavior and health education: theory, research and practice, 2 ed. São Francisco: Jossey-Bass Publishers 1996; 179-205 [Accessed in 2 June 2019] Available from: http://fhc.sums.ac.ir/files/salamat/health_education.pdf
- 20 Moscovici S. Representações sociais investigações em psicologia social [Social representations investigations in social psychology]. 2ª ed. Petrópolis: Vozes, 2004. [Accessed in 2 June 2019] Available from: https://www.amazon.com.br/Representa%C3%A7%C3%B5es-sociais-Investiga%C3%A7%C3%B5es-psicologia-social/dp/8532628966
- 21 Abric JA, Moreira, ASP, Oliveira, DC. Abordagem estrutural das representações sociais [Structural approach to social representations]. Moreira, ASP, Oliveira, DC. (Editores). Estudos interdisciplinares de representação social. Goiânia: Ed. AB 1998; https://www.worldcat.org/title/estudos-interdisciplinares-de-representação-social/oclc/55904340
- 22 Amorim MM, Ramos N, Brito MJ, Gazzinelli MF. Identity Representations of People With Diabetes. Qual Health Res 2014; 24: 913-922 [PMID: 24970248 DOI: 10.1177/1049732314539577]
- 23 Amorim MMA, Ramos N, Gazzinelli, MF. Representação identitária dos usuários com diabetes mellitus da atenção primária [Identity representation of users with diabetes mellitus in primary care]. *Psicologia, Saúde & Doenças* 2016; 17: 45-51 [DOI: 10.15309/16psd170107]
- 24 Amorim MMA, Ramos N, Gazzinelli, MF. Social Representations of Feeding People with Type-2 Diabetes. *J Endocrinol Diab* 2016; **3**: 1-9 [DOI: 10.15226/2374-6890/3/2/00148]
- 25 Amorim MMA, Ramos N, Gazzinelli, MF. Alimentação na Visão das Pessoas com Diabetes Mellitus: Contributo das Representações Sociais [Food and Diet According to People With Diabetes Mellitus: Contribution of Social Representations]. Psychology. Com Health 2018; 7: 97-108 [DOI: 10.5964/pch.v7i1.197]
- 26 Amorim MMA, Ramos N, Gazzinelli, MF. Representações sociais das pessoas com Diabetes Mellitus: implicações no controle glicêmico [Identity representation of people with diabetes mellitus: implications for glycemic control]. Psicologia. Saúde Doenças 2018; 19: 293-309 [DOI: d10.15309/18psd190211]
- 27 Theme-Filha MM, Szwarcwald CL, Souza-Júnior PR. Socio-demographic characteristics, treatment coverage, and self-rated health of individuals who reported six chronic diseases in Brazil, 2003. *Cad Saude Publica* 2005; 21 Suppl: 43-53 [PMID: 16462996 DOI: 10.1590/S0102-311X2005000700006]
- 28 Funnell MM, Anderson RM, Arnold MS, Barr PA, Donnelly M, Johnson PD, Taylor-Moon D, White NH. Empowerment: an idea whose time has come in diabetes education. *Diabetes Educ* 1991; 17: 37-41 [PMID: 1986902 DOI: 10.1177/014572179101700108]
- 29 Sousa VD, Zauszniewski JA. Toward a theory of diabetes self-care management. J. Theory Construc Testing 2005; 61-67 [Accessed in 2 June 2019] Avaible from: https://www.questia.com/read/1P3-1036335671/toward-a-theory-of-diabetes-self-care-management
- 30 Rodrigues FF, Zanetti ML, dos Santos MA, Martins TA, Sousa VD, de Sousa Teixeira CR. Knowledge and attitude: important components in diabetes education. *Rev Lat Am Enfermagem* 2009; 17: 468-473 [PMID: 19820852 DOI: 10.1590/S0104-11692009000400006]
- 31 Torres HC, Virginia A H, Schall VT. [Validation of Diabetes Mellitus Knowledge (DKN-A) and Attitude (ATT-19) Questionnaires]. *Rev Saude Publica* 2005; **39**: 906-911 [PMID: 16341399 DOI: 10.1590/S0034-89102005000600006]
- 32 Nunes AMP. Desenvolvimento de um instrumento para identificação da competência do diabético para o autocuidado [Development of an instrument to identify the competence of the diabetic for self-care]. Dissertação (Mestrado). Florianópolis. Universidade Federal de Santa Catarina, 1982. Available on https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/74965/174906.pdf?sequence=1isAllowed=y. Accessed in 2 June 2019.
- 33 Witt RR. Avaliação do grau de competência de diabéticos para o autocuidado [Evaluation of the degree of competence of diabetics for self-care]. In: Stewart M, Brown JB, Westton WW, McWhinney IR, McWilliam CL (Org). Medicina centrada na pessoa - transformando o método clínico 2010; 251-266[Accessed in 2 June 2019] Avaible from:

file:///C:/Users/lenovo/Downloads/STEWART%20et%20al%202017_Medicina%20Centrada%20na%20P essoa_%20Tr%20-%20Moira%20Stewart.pdf

- 34 Oliver M. Theories in health care and research: theories of disability in health practice and research. BMJ 1998; 317: 1446-1449 [PMID: 9822407 DOI: 10.1136/bmj.317.7170.1446]
- 35 **Programa Saude da Familia**. *Rev Saude Publica* 2000; **34**: 316-319 [PMID: 10920458 DOI: 10.1590/S0034-8910200000300018]
- 36 Torres HC, Amaral MA, Amorim MMA, Cyrino AP, Bodstein R. Capacitação de profissionais da atenção primária à saúde para a educação em diabetes mellitus [Training of primary health care professionals for diabetes mellitus education]. Acta Paul Enferm 2010; 23: 751-756 [DOI: 10.1590/S0103-21002010000600006]
- 37 Cyrino APP, Teixeira RRA. Educação para o autocuidado no diabetes mellitus tipo 2: da adesão ao "empoderamento" [Education for self-care in type 2 diabetes mellitus: from adherence to "empowerment"]. Interface Comunicação Saúde Educação 2009; 13: 93-106 [DOI: 10.1590/S1414-32832009000300009]
- 38 Ribas CRP. Representações sociais dos alimentos para pessoas com diabetes mellitus tipo 2 [Social representations of foods for people with type 2 diabetes mellitus]. Dissertação (Mestrado). Ribeirão Preto: Escola de Enfermagem, Universidade de São Paulo 2009;

file:///C:/Users/lenovo/Downloads/CamilaRezendePimentelRibas%20(2).pdf

- 39 Pontieril FM, Bachion MM. Crenças de pacientes diabéticos acerca da terapia nutricional e sua influência na adesão ao tratamento [Beliefs of diabetic patients about nutritional therapy and its influence on treatment adherence]. *Ciência Saúde Coletiva* 2010; 15: 151-160 [DOI: 10.1590/S1413-81232010000100021]
- 40 McWilliam CL, Brown JB. Usando metodologias qualitativas para entender o atendimento centrado na pessoa [Using qualitative methodologies to understand person-centered care]. In: Stewart, M, Brown, JB, Weston, McWhinney, IR, McWilliam, CL (Org). Medicina centrada na pessoa transformando o método clínico 2010; 273-290[Accessed in 2 June 2019] Available from: URL: file:///C:/Users/lenovo/Downloads/STEWART%20et%20al%202017_Medicina%20Centrada%20na%20P essoa %20Tr%20-%20Moira%20Stewart.pdf
- 41 Weston WW, Brown JB. Desenvolvendo um currículo centrado na pessoa [Developing a person-centered curriculum]. In: Stewart M, Brown JB, Weston WW, McWhinney IR, McWilliam CL (Org). Medicina centrada na pessoa transformando o método clínico 2010; 251-266 [Accessed in 2 June 2019] Available from: URL:

file:///C:/Users/lenovo/Downloads/STEWART%20et%20al%202017_Medicina%20Centrada%20na%20P essoa_%20Tr%20-%20Moira%20Stewart.pdf

42 Amorim MMA, Ramos N, Bento IC, Gazzinelli, MF. Intervenção Educativa na Diabetes Mellitus [Educational intervention in diabetes mellitus]. Psicologia, Saúde Doenças 2013 14: 168-184 [Accessed in 2 June 2019]. Available from: URL: http://www.scielo.mec.nt/scielo.npn?script=sci.arttext&nid=S1645-00862013000100011&Ing=pt&nrm=is

http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S1645-00862013000100011&lng=pt&nrm=is o

Submit a Manuscript: https://www.f6publishing.com

World J Diabetes 2019 August 15; 10(8): 463-472

DOI: 10.4239/wjd.v10.i8.463

ISSN 1948-9358 (online)

ORIGINAL ARTICLE

Retrospective Study Comparison of awareness of diabetes mellitus type II with treatment's outcome in term of direct cost in a hospital in Saudi Arabia

Muaed Jamal Alomar, Khadeja Rashed Al-Ansari, Najeeb A Hassan

ORCID number: Muaed Jamal Alomar (0000-0001-6526-2253).

Author contributions: Alomar MJ contributed in the proposal, design of the method, writing revision and analysis; Al-Ansari KR contributed in the performance of data collection writing and analysis; Hassan NA contributed equally to the work including design, writing and analysis.

Institutional review board

statement: The study was reviewed and approved by the Ministry of Health and Prevention Research Ethics Committee.

Informed consent statement: We used a data collection form without signed consent.

Conflict-of-interest statement: There is no conflict of interest to this study.

Data sharing statement: No additional data are available.

Open-Access: This is an openaccess article that was selected by an in-house editor and fully peerreviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licen Muaed Jamal Alomar, Khadeja Rashed Al-Ansari, Najeeb A Hassan, Clinical Pharmacy Department, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates

Corresponding author: Muaed Jamal Alomar, BPharm, BSc, MSc, PhD, Associate Professor, Head of Department, Clinical Pharmacy Department, College of Pharmacy and Health Sciences, Ajman University, University Street, Ajman, United Arab Emirates. muayyad74@yahoo.com Telephone: +97-150-7157641

Abstract

BACKGROUND

Saudi Arabia is among the top 10 countries with the highest prevalence of diabetes. Cost of prevention and the indirect cost must be calculated to increase the awareness of society and to emphasize disease prevention and limit further complications.

AIM

To understand the importance of awareness and the impact on the expenditure of diabetes mellitus and treatments outcomes.

METHODS

A prospective descriptive and comparative survey was carried out among patients with diabetes mellitus in Saudi Arabia.

RESULTS

One hundred and one participants were included in the study of which 40% were female and one third were above the age of 50. The mean of the first HbA1c reading was 6.95, and the median was 7. The mean of the second reading of HbA1c was 7.26, and the median was 7. The mean body mass index was 32.1, and the median was 30.9. The average yearly cost of the medication was 995.14 SR. Comparing participants who think that a healthy low-sugar diet can affect blood sugar with those who do not, showed a statistically significant difference when cost was considered (P value = 0.03). Also, when comparing the group of participants who know when to take their oral hyperglycemic medicine and their yearly direct cost and those who do not know when to take it, by using independent sample T test, showed significant statistical difference (P value = 0.046).

Alomar MJ et al. The comparison of awareness of DM type II with treatment's outcome in term of direct cost

ses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: May 2, 2019 Peer-review started: May 5, 2019 First decision: May 31, 2015 Revised: June 8, 2015 Accepted: July 20, 2019 Article in press: July 20, 2019 Published online: August 15, 2019

P-Reviewer: Saeki K S-Editor: Dou Y L-Editor: Filipodia E-Editor: Xing YX

CONCLUSION

It is essential for the governments to invest in ways to prevent and help in the early detection of such an expensive disease by performing national screening and education programs. Many pharmaco-economic studies can be done to help the decision-maker in our hospitals think about strategies to help the patient to be physically fit by offering gymnasium or places to walk or contract.

Key words: Middle East; Diabetes; Lifestyle; Hypoglycemic

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This study evaluated diabetic patients' compliance to hypoglycemic medications, dietary control, and their impact on cost effectiveness. It shows that lack of compliance has negative impact on patients' therapeutic outcomes, which in turn affects cost of medications and management of diabetic complications. Further educational campaigns are important among diabetic patients in order to reduce negative health consequences and economic outcomes.

Citation: Alomar MJ, Al-Ansari KR, Hassan NA. Comparison of awareness of diabetes mellitus type II with treatment's outcome in term of direct cost in a hospital in Saudi Arabia. *World J Diabetes* 2019; 10(8): 463-472 **URL**: https://www.wjgnet.com/1948-9358/full/v10/i8/463.htm **DOI**: https://dx.doi.org/10.4239/wjd.v10.i8.463

INTRODUCTION

Diabetes mellitus (DM) is a non-communicable metabolic degenerative disorder associated with a high risk of chronic complications and comorbidities^[1]. Obesity and many other inabilities could lead to diabetes if they happen in pre diabetic patients^[2].

Around 422 million people are diagnosed with DM, and 80% of diabetes deaths occur in low- and middle-income countries. Approximately 1.5 million deaths in 2012 were directly caused by diabetes worldwide, while 2.2 million deaths were caused by higher blood glucose level due to the increases of risk of cardiovascular disease in the same year. The prevalence of the disease increased dramatically many fold during the last 3 decades, aligning with the increase of prevalence of obesity, overweight, and physical inactivity^[3]. If no drastic actions are taken, the number of people living with diabetes is expected to reach 552 million by 2030^[4-6]. Cost of prevention and indirect cost must be calculated to increase the awareness of society and to emphasize the importance of disease prevention and limiting further complications^[7]. Saudi Arabia is among the top 10 countries with the highest prevalence of diabetes^[8-10]. Early prevention can limit the complications and their impact on the person's quality of life, reducing the cost with positive impact on the Health system^[11]. Most countries spend between 5% and 20% of their total health expenditure on diabetes^[12,13]. Fourteen percent of the population in the Eastern Mediterranean Region has diabetes^[14], approximately 35 million people. The expected prevalence of diabetes in Middle East and North America (MENA) will be 60 million in 2030^[15,16].

The sixth edition of the International Diabetes Federation Diabetes Atlas reports that only 2.5% of global health expenditure on diabetes is spent in the MENA Region^[17]. The anticipated prevalence for diabetes 2010-2030 in the Gulf countries are: United Arab Emirates 18.7%-21.4%, Kingdom of Saudi Arabia 16.8%-18.9%, Bahrain 15.4%-17.3%, Kuwait 14.6%-16.9%, and Oman 13.4%-14.9%^[18,19]. The recent and rapid socio-economic development of the Gulf Cooperation Council countries has been associated with this rising prevalence.

"The prevalence of obesity in adults of 30-60 years in Saudi Arabia increased by 1.5% for women and 4.1% for men annually between 1992 and 2005. In Qatar and Kuwait, 35% and 36% of male; and 45% and 48% of female adults were found to be obese"^[20]. Equally alarming are the numbers for younger age cohorts: In Kuwait, 21% of males and 18% of females aged 10-19 years were obese^[21-23].

The statistics of World Health Organization in Saudi Arabia in 2016 showed that the rate of diabetes in males was higher than that in females. Also, the level of overweight females was higher than that in males, and the rate of physical inactivity

MJD https://www.wjgnet.com

was higher among women 67.7%, while in men it was 52.1%^[24].

The purpose of this study was to describe the relationship between direct medical costs and individual demographic characteristics, different regimen of treatment, and glycemic control. Here, we include the monthly cost of medications and the pharmacy average consumption of each oral hypoglycemic medication listed in the formulary. In addition, awareness of these patients of the disease and the role of lifestyle modifications in addition to oral hypoglycemic medication are explored. Lack of sufficient awareness will lead to high treatment cost with low therapeutic outcomes.

MATERIALS AND METHODS

A prospective descriptive and comparative face-to-face survey was carried out among patients with DM in Saudi Arabia. The study included both genders of patients visiting the primary care medical center. Patients aged between 35 to 75 years who were on oral hypoglycemic were selected within the inclusion criteria. Pregnant women were excluded from the study. The prices and quantities of average monthly ordering costs of the medicine were collected from the institution.

A random convenience sample of patients following up with the chronic disease clinic (CDC) were selected for this study to help ensure a representative sample. The participants were males and females from different backgrounds and educational and socio-economic levels. The total number of patients registered to follow up in December 2016 was 371, among which 196 patients were not able to come to the appointment and therefore considered as no shows. Among the remaining, 112 patients were involved in this study. The sample size for the study was calculated using raosoft online calculator (http://www.raosoft.com/samplesize.html), with a margin of error of 9%, confidence interval of 96%, and response distribution of 50%, and the population number of patients is 371 was used.

A structured questionnaire was used to collect data. The questionnaire was translated into Arabic, the national language of Saudi Arabia, to ensure proper understanding of the questions. The questionnaire was collected by the researcher. The questionnaire was divided into two parts. The first section included questions about the respondents socio-demographic data including, gender, age range, onset of the disease, medical history, and the and the regimen of the hyperglycemic medication. The second part was used to determine the level of knowledge about DM type 2 by checking the awareness of disease, their knowledge about its complications, and how far they are trying to control it by healthy diet and exercise. After finishing the data collection process, data were extracted as an Excel file, and then data were copied on SPSS (version 24, Armonk, NY, United States). Responses were coded and entered into SPSS for analysis using basic frequencies, descriptive, independent samples *t*-test.

Ethical standards for conducting the study were maintained as follows: (1) Confidentiality of all patients guaranteed; (2) Patients' information obtained from the survey was confidential; and (3) Patients can withdraw from the study at any time.

RESULTS

A total of 112 questionnaires were collected, of which 11 responses were incomplete and hence excluded from the study. At the end, a total of 101 responses out of 112 received responses were adopted for the study. Socio-demographic characteristics are listed in Table 1.

Health status of respondent

One third of the participants had only DM (30.7%) as past medical history. More than half (63.4%) suffered from DM with other cardiovascular comorbidities, and 5.9% had diabetes with other diseases.

During 2015 to 2016, the last subsequent two reading of HbA1c of intervals from 3-9 mo were recorded from patients' files, the mean of the first reading was 6.95, and the median was 7. The mean of the second reading of HbA1c was 7.26, and the median was 7. The mean body mass index (BMI) was 32.1, and the median was 30.9.

Lifestyle behavior

Among all participants, 36.6% were not doing any exercise, the remaining (n = 65) were classified according to the type of exercise they do, which was mostly walking 55.4%. About one forth (25.7%) of 952 of the people doing exercise said they do it daily, and 13% said they exercised once a week. The mean was 2.7, and the median of

Characteristic	Frequency	Percentage
Gender		
Male	61	60.4
Female	40	39.6
Age		
30-39	12	11.9
40-49	22	21.8
50-59	34	33.7
60-69	27	26.7
70-79	6	5.9
Onset of the disease		
<1	7	6.9
1-5	37	36.6
6-10	28	27.7
> 10	29	28.7
Regimen of treatment		
No medicine, only healthy lifestyle	2	2
Single therapy	51	50.5
Double therapy	35	34.7
Triple therapy	13	12.9

the time to exercise per week was 2. Around one third (33.7%) of the participants exercised between 30 to 59 min every time they exercised, while 36.6% did not do any exercise at all.

In their daily diet, more than half of the participants ate three meals/d (60.4%), 25.7% ate two meals/d, 9.9% ate four meals/d, 3% ate one meal/d, and 1% ate five meals/d. Concerning preferred food, 53.5% prefer mixed refined carbohydrates and complex carbohydrates, 31.7% said they prefer refined carbohydrates, 12.9% prefer protein-based diet, and 2% prefer complex carbohydrates only. About their daily consumption of dates, their answers varied between 5.9% did not eat any dates, to 1% eating 22 dates/d. The mean of their consumption was 6.12 dates/d and the median was 5.

General awareness of participants

Approximately 75% of participants believe that healthy diet can help control blood sugar level, 11.9% did not know, while 12.9% did not believe that it has an effect on blood sugar and suggested that diabetes is a result of if emotional and genetic factors. More than half of the participants (51.5%) were not following any healthy low sugar diet. As regard to exercise, 67.3% believe that it can lower blood sugar level, and 32.7% did not believe that it has any direct effect on blood sugar but did think it is good for general health. Most of the participants (93%) know when to take their oral hyperglycemic medication, while 8% did not know exactly the correct time to take their medicine either before or after food. Around half of them (45.5%) will skip their tablet if ever missed, 35.6% will take the tablet once they remember, 10.9% will double the next dose, and 7.9% said they did not have an idea what to do if ever they missed their oral hyperglycemic medications.

Regarding hypoglycemic symptoms, one third of them (28%) did not know how to deal with them, and 73% knew how to deal with them. More than half of them (63.4%) never visited a diabetic educator. Sixty-five percent said they have full awareness of the disease, while around one third of participants (34.7%) think they are not aware enough. The average yearly direct cost of the hyperglycemic medication of the participants (without any medicine used to treat its complications) was 995.14 SR. The median was 614.4SR with results of being widely distributed. Only two of the participants were not on any medicine because they do not adhere to the regimen (yearly cost is zero), and they were instead following a strict healthy diet and exercise only. The maximum yearly direct cost was 3417 SR, and this patient was taking 6 mg of Glimeperide once a day and 50 mg of Vildagliptine twice a day.

When comparing participants who think a healthy low-sugar diet can affect blood sugar level with their yearly direct cost (mean of yearly direct cost is 952.8 SR) and

those who think low-sugar diet has no effect on their blood sugar level (mean of yearly direct cost is 1334.6 SR) the difference is statistically significant. This is when using independent sample *t*-test, with *P* value = 0.03. Comparing participants who know when to take their oral hyperglycemic medicine and their yearly direct cost (the mean of direct cost = 976.7 SR) and those who did not know (the mean of direct cost = 1209.1 SR) by using independent sample *t* -test, showed significant statistical difference with *P* value = 0.046.

On the other hand, when comparing the yearly cost between the group of participants who are following low sugar diet and those who are not following such a diet, it showed no significant statistical difference by independent sample *t*-test with *P* value = 0.656. Also, there was no statistically significant in the yearly direct cost between the group of participants who think exercise can lower blood sugar level and those who think it has no effect on blood sugar with *P* value = 0.141.

Comparing male and female genders regarding lifestyle showed a statistically significant difference between the number of dates consumption with a *P* value = 0.003 by Levene's test for Equality of Variance by Independent Samples Test. Also, when comparing the type of food preferred as refined carbohydrates and the awareness of participants about the importance of a healthy diet on blood sugar level *versus* gender the *P* value = 0.004 and 0.009, respectively, by using Linear-by-Linear association Chi square test. Using the same type of test to compare gender *versus* full awareness of disease, the *P* value = 0.078. When comparing gender *versus* how to deal with hypoglycemic attack with *P* value = 0.026 by using Linear-by-Linear Association. On the other hand, there was no significant statistical difference for gender *versus* following healthy diet and visiting diabetic educator.

Awareness of a healthy lifestyle

The mean HbA1c for the second reading of the participants who said a low-sugar diet can help to decrease blood sugar level *versus* participants who said there is no effect of a low-sugar diet on blood sugar-level was 7.04 *versus* 7.98, respectively, which was statistically significance different (*P* value = 0.007) by independent sample test. On the other hand, there was no relationship between awareness of the significance of healthy diet and BMI levels. The mean BMI of the participants who said the healthy low-sugar diet can lower blood sugar level was 31.6 and the mean of those who said it has no effect on the blood sugar level was 31.8 (independent sample *t* test, *P* value = 0.951).

Thirty-eight percent of the participants were not following a low-sugar diet, although they had the awareness of the impact of a healthy low-sugar diet on blood sugar results. Eight-point nine percent of participants were not following such a diet because they did not have an idea if low-sugar diets had an effect or not. The significant statistical difference according to Pearson chi-square asymptotic significance had a *P* value of 0.001.

Regarding the awareness of the importance of exercise, the mean BMI of the participants who think exercise can lower blood sugar level was 32.05, and the mean of those who said it had no effect on the blood sugar level was 32.20 (independent sample *t*-test, *P* value = 0.695). When comparing the second HbA1c reading between people who think exercise would improve blood sugar level (the mean is 7.11) and those who think it would not (mean is 7.57), it was statistically significant (*P* value = 0.049, Levene's test for equality of variance descriptive data). Of those patients who think exercise could decrease blood sugar, 41.1% of them did not exercise, 10 of 68 exercised once/wk, and only 16 of 68 exercised daily. On other hand, 10 out of 33 who did not think exercise has an effect on blood glucose level do exercise daily for general health only, not because of its importance on blood sugar level. While 28.7% (19 out of 66) think they have full awareness of the disease, they do not think exercise can lower blood sugar level.

Visiting diabetic educator

Among participants who have visited a diabetic educator, 48.6% will skip the missed dose (18 out of 37), 32.4% will take it once remember, and 18.9% of them will double the next dose to compensate for the missed one. There was no statistically significant difference between the people who ever visit diabetic educator and their daily preferred type of food (*P* value = 0.832). Data taken from the pharmacy and supply department in the hospital where the study was conducted showed that the direct cost of diabetes is 133258620 SR.

Participants who are aware of the importance of a low sugar diet have better HbA1c (7.04) in comparison to those who do not have this awareness (HbA1c = 7.98) (P value = 0.007). There is, however, no significant difference in BMI between participants who have an awareness of healthy diet (31.6) and not (31.8). Both

categories are obese. On the other hand, participants who are aware of the importance of exercise have better a HbA1c result (mean of HbA1c is 7.11) in comparison to those who did not have this awareness (mean of HbA1c is 7.57) (*P* value = 0.049, Levene's test for equality of variance descriptive data). These data will encourage us to increase their awareness in order to give better HbA1c results.

DISCUSSION

This study explored participant awareness of DM and the importance of a healthy lifestyle (diet and physical activity) and its impact on their health from a financial and therapeutic point of view. The main past medical history among participants is diabetes with other cardiovascular diseases. Since diabetes is associated with many comorbidities, it is recommended that individuals maintain a healthy lifestyle and HbA1c levels below 7.0%^[25]. The International Expert Committee recommended that persons with HbA1c level between 6.0 and 6.5% were at particularly high risk and might be considered for diabetes prevention interventions^[26,27]. As mentioned in results, HbA1c score worsened instead of improving during the treatment course, which reflected some defect in the chain of treatment. United Kingdom Prospective Diabetes Study and Diabetes Control and Complications Trial demonstrated that improving HbA1c by 1% for diabetic patient cuts micro-vascular complications risk by 25%^[28]. In addition to other research that has also shown that people with type 2 diabetes who reduce their HbA1c level by 1% are 19% less likely to suffer cataract, 16% are less likely to suffer heart failure and 43% are less likely to suffer amputation or death due to peripheral vascular disease^[29,30]. Diabetic patients must be encouraged to lose weight, be more physically fit, and follow a healthy diet and active lifestyle to minimize their risk of complications and increase their quality of life. A high BMI score is associated with substantially shorter healthy and chronic disease-free life expectancy. Physical inactivity has been identified globally as the fourth leading risk factor for mortality. It becomes increasingly important to identify high-risk populations and to implement strategies to delay or prevent diabetes onset^[31]. It is recommended to all individuals with diabetes to have physical activity as part of the therapy plan^[32]. The recommendation is to exercise at least 150 min/wk. It is recommended to do at least 30 min of moderate or vigorous physical activity 5 d of the week. To lose weight or maintain weight loss, they might need to do 60 min or more of physical activity 5 d/week^[33].

In this study, the results are far away from the international recommendations; participants were not following the correct duration and frequency of exercise. Studies have shown that weight loss of 5%-7% improves blood glucose control in type 2 diabetes, reduces cardiovascular risk factors, reduces insulin resistance, contributes to weight loss, and improves well-being^[34,35]. Another way of lowering BMI and controlling blood sugar is to follow a healthy diabetic diet, it is one of the most important services that should be offered to diabetic patients. The recommendation is to limit refined carbohydrates and processed meals. They should focus on high fiber diet and complex carbohydrates like vegetables. Complex carbohydrates are digested slowly, thus preventing the body from producing too much insulin. Carbohydrate counting is a way to plan meals. It has a bigger impact on blood sugar levels than fats and proteins. Some studies have shown that eating too much protein, especially animal protein, may actually cause insulin resistance. A key factor in diabetes is a healthy diet that includes protein, carbohydrates, and fats[36]. According to this study's results, when compared with the recommended diabetic diet, most of the participants preferred to eat carbohydrates with a smaller number of meals. This result when compared with another study conducted in Iran in 2015, showed that consumption of 24.2 g of one type of dates (approximately two dates) at the snack time did not cause significant alterations in blood glucose level^[37]. However, as sugar caused the same effect on blood glucose, these snacks may not be considered very healthy for patients with type 2 diabetes, even though they have good content of minerals, vitamins, fiber, and antioxidants[38,39]

Lack of knowledge among participants regarding hyperglycemic medicine affects the incidence of hypoglycemic reactions, which is considered as indirect cost. Unfortunately, many studies from both developed and developing countries have reported that diabetes knowledge is generally poor among diabetic patients^[40-43]. Health care clinic programs to increase patients' awareness about DM and to keep them educated and motivated are essential in order to improve their understanding, compliance, and management and, thereby, their ability to cope with the disease. According to Canadian guidelines for diabetes care, they recommend that all people with diabetes who are able should be taught how to self-manage their diabetes and

offered timely diabetes education that is tailored to enhance self-care practices with comprehensive programs. Incorporate behavioral/psychosocial interventions, as well as knowledge and skills training with shared decision making, and problem-solving skills are more likely to improve a diabetic's glycemic control^[44-46]. Education of diabetics is one of their rights to be offered in the healthcare system to enhance their treatment outcomes and to minimize the side effect and complications. In this study, the yearly direct cost was higher with the group of participants who had less awareness about the impact of a healthy low-sugar diet on blood sugar level and the group of participants who did not know how to take their oral hyperglycemic medications. But the difference was not statistically significant between the yearly direct cost and those of participants who said they were on diabetic diet (maybe due to their misunderstanding of the best type of carbohydrate and portion recommended), number of meals, dates consumption, and other techniques of a diabetic diet. The same result was found for yearly direct cost and the group of participants who think exercise can lower blood sugar level, which was maybe due to the improper and insufficient time of exercise that does not follow the guideline recommendations mentioned above.

Although around 60% of both genders never visited a diabetic educator, they are almost the same in the awareness of healthy diet and its impact on blood sugar level. Men prefer refined carbohydrates + complex carbohydrates (which are healthier) compared to half of women who mainly prefer refined carbohydrates. The male participants consumed more dates than women, and this difference was highly statistically significant (*P* value = 0.003). With all of this similarities and differences, there was no significant difference in the yearly cost of both genders.

The rise in diabetes in the gulf region has been linked to many different factors, including diet, exercise, and lifestyle changes due to rapid economic change, increased fast food, and sedentary lifestyle^[47]. In Saudi Arabia, for example, the consumption of meat for each person had increased by 2.2% per year between 1993 and 2003, while fiber rich food has decreased^[48]. The dietary regime in the Gulf Cooperation Council region has moved away from "predominantly consuming dates, milk, fresh vegetables and fruit, whole wheat bread, and fish to mostly foods rich in high saturated fats and refined carbohydrate diets coupled with a low dietary fiber intake"^[49].

In conclusion, poor awareness and limited diabetic education service were considered barriers to get better treatment outcomes. Male patients were more likely to be aware about the disease and adhere more to physical activity than females. There is a greater need for primary care providers to offer continuous diabetes awareness to the public whenever possible to provide the knowledge of preventing disease progression as it is global endemic disease with rapidly increasing prevalence. According to the World Health Organization, it can be prevented and managed through diet and physical activity. The burden of diabetes is huge worldwide; this study showed that the standards of diabetes care in the region can be improved. It may be useful to consider some of the interventions applied worldwide. These could potentially be as effective, and there is a degree of overlap. For example, the use of patient education by small group or a one-on-one setting education programs, diabetes specialist nurses, and self-glucose monitoring appear to be potentially useful and are relatively well-developed components of systems elsewhere.

It is essential for the governments to invest in ways to prevent and help in the early detection of such an expensive disease by performing national screening and education programs. Many pharmaco-economic studies can be done to help the decision maker to think about strategies to help the patient to be physically fit by offering gymnasiums or places to walk or to have a contract with a specialized gym to refer them there. Even if this seems costly, it has a good economic impact.

ARTICLE HIGHLIGHTS

Research background

Saudi Arabia is among the top 10 countries with the highest prevalence of diabetes. Cost of prevention and indirect cost must be calculated to increase the awareness of the society and to emphasize the importance of disease and limiting further complications.

Research motivation

Diabetes complications are the most expensive medical consequences encountered during diabetes management. Lack of patient education regarding lifestyle changes and medication use leads to treatment failure, which adds burden to both patients and the government.

Research objectives

« WJD https://www.wjgnet.com

The purpose of this study was to describe the relationship between direct medical costs and individual demographic characteristics, different regimen of treatment, and well glycemic control. Here, we include the monthly cost of medications and the pharmacy average consumption of each oral hypoglycemic medication listed in the formulary. In addition, awareness of these patients of the disease and the role of lifestyle modifications in addition to oral hypoglycemic medication are explored. Lack of sufficient awareness will lead to high treatment cost with low therapeutic outcomes.

Research methods

A prospective descriptive and comparative face-to-face survey was carried out among patients with diabetes mellitus in Saudi Arabia. The study included both genders of patients visiting the primary care medical center. Patients aged between 35 to 75 years who were on oral hypoglycemic were selected within the inclusion criteria. Pregnant women were excluded from the study. The prices and quantities of average monthly ordering costs of the medicine were collected from the institution.

Research results

Results of this study show a lack of proper counseling about lifestyle changes and medication use among patients with diabetes. This study urges other researchers to focus on patient counselling techniques and the barriers diabetic patients encounter during therapy.

Research conclusions

This study shows that there is a lack in patient education about the proper way to manage diabetes, which affects money expenditure on diabetic management. This study proposes the use of well-structured techniques by diabetic educators that include organized follow up plan and utilization of modern technology to reduce diabetic complications and improve quality of life.

Research perspectives

Future research should focus on the utilization of social media in promoting diabetes education in both diabetic and pre diabetic patients.

REFERENCES

- 1 **World Health Organization**. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. 1999. Available from: URL: https://apps.who.int/iris/handle/10665/66040
- 2 International Diabetes Federation. IDF Diabetes Atlas. 15th edition, International Diabetes Federation, Brussels. 2011
- 3 World Health Organization. WHO Diabetes Fact sheet N312. Available from: http://www.who.int/mediacentre/factsheets/fs312/en/
- 4 Guariguata L, Whiting D, Weil C, Unwin N. The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. *Diabetes Res Clin Pract* 2011; 94: 322-332 [PMID: 22100977 DOI: 10.1016/j.diabres.2011.10.040]
- 5 Caro JJ, Ward AJ, O'Brien JA. Lifetime costs of complications resulting from type 2 diabetes in the U.S. Diabetes Care 2002; 25: 476-481 [PMID: 11874933 DOI: 10.2337/diacare.25.3.476]
- 6 Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837-853 [PMID: 9742976 DOI: 10.1016/S0140-6736(98)07019-6]
- Huse DM, Oster G, Killen AR, Lacey MJ, Colditz GA. The economic costs of non-insulin-dependent diabetes mellitus. *JAMA* 1989; 262: 2708-2713 [PMID: 2509743 DOI: 10.1001/jama.1989.03430190092037]
- 8 King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. *Diabetes Care* 1998; 21: 1414-1431 [PMID: 9727886 DOI: 10.2337/diacare.21.9.1414]
- 9 Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. *Endocrinol Metab Clin North Am* 2003; 32: 805-822, viii [PMID: 14711063 DOI: 10.1016/S0889-8529(03)00071-9]
- 10 Alhyas L, McKay A, Balasanthiran A, Majeed A. Quality of type 2 diabetes management in the states of the Co-operation Council for the Arab States of the Gulf: a systematic review. *PLoS One* 2011; 6: e22186 [PMID: 21829607 DOI: 10.1371/journal.pone.0022186]
- 11 Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B; Professional Practice Committee, American Diabetes Association; European Association for the Study of Diabetes. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetologia* 2006; 49: 1711-1721 [PMID: 16802130 DOI: 10.1007/s00125-006-0316-2]
- 12 Blonde L, Klein EJ, Han J, Zhang B, Mac SM, Poon TH, Taylor KL, Trautmann ME, Kim DD, Kendall DM. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. *Diabetes Obes Metab* 2006; 8: 436-447 [PMID: 16776751 DOI: 10.1111/j.1463-1326.2006.00602.x]
- 13 Henriksson F, Agardh CD, Berne C, Bolinder J, Lönnqvist F, Stenström P, Ostenson CG, Jönsson B. Direct medical costs for patients with type 2 diabetes in Sweden. J Intern Med 2000; 248: 387-396 [PMID: 11123503 DOI: 10.1046/j.1365-2796.2000.00749.x]
- 14 Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. *Diabetes Care* 2005; 28: 1083-1091 [PMID: 15855571 DOI: 10.2337/diacare.28.5.1083]
- 15 Klautzer L, Becker J, Mattke S. The curse of wealth Middle Eastern countries need to address the rapidly rising burden of diabetes. Int J Health Policy Manag 2014; 2: 109-114 [PMID: 24757686 DOI:

10.15171/ijhpm.2014.33]

17

- Bos M, Agyemang C. Prevalence and complications of diabetes mellitus in Northern Africa, a systematic 16 review. BMC Public Health 2013; 13: 387 [PMID: 23617762 DOI: 10.1186/1471-2458-13-387]
 - Chiu CJ, Wray LA. Factors predicting glycemic control in middle-aged and older adults with type 2 diabetes. Prev Chronic Dis 2010; 7: A08 [PMID: 20040223]
- Cholesterol Treatment Trialists' (CTT) Collaborators. Kearney PM, Blackwell L, Collins R, Keech A, 18 Simes J, Peto R, Armitage J, Baigent C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008; 371: 117-125 [PMID: 18191683 DOI: 10.1016/S0140-6736(08)60104-X]
- Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 19 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317: 703-713 [PMID: 9732337 DOI: 10.1136/bmi.317.7160.7031
- Ng SW, Zaghloul S, Ali HI, Harrison G, Popkin BM. The prevalence and trends of overweight, obesity 20 and nutrition-related non-communicable diseases in the Arabian Gulf States. Obes Rev 2011; 12: 1-13 [PMID: 20546144 DOI: 10.1111/j.1467-789X.2010.00750.x]
- Kuwait Ministry of Health (MoH). Kuwait Nutrition Surveillance (2001–2004). Food and Nutrition 21 Administration. Kuwait: Ministry of Health: 2004.
- 22 Al-Sendi AM, Shetty P, Musaiger AO. Prevalence of overweight and obesity among Bahraini adolescents: a comparison between three different sets of criteria. Eur J Clin Nutr 2003; 57: 471-474 [PMID: 12627185 DOI: 10.1038/sj.ejcn.1601560]
- van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and 23 its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 2010; 17 Suppl 1: S3-S8 [PMID: 20489418 DOI: 10.1097/01.hjr.0000368191.86614.5a]
- 24 Badran M, Laher I. Type II Diabetes Mellitus in Arabic-Speaking Countries. Int J Endocrinol 2012; 2012: 902873 [PMID: 22851968 DOI: 10.1155/2012/902873]
- 25 Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights 2016; 11: 95-104 [PMID: 27398023 DOI: 10.4137/BMI.S38440
- 26 American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care 2014; 37 Suppl 1: S14-S80 [PMID: 24357209 DOI: 10.2337/dc14-S014]
- 27 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011; 34 Suppl 1: S62-S69 [PMID: 21193628 DOI: 10.2337/dc11-S062]
- Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Cheng AY. Canadian 28 Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Introduction. Can J Diabetes 2013; 37 Suppl 1: S1-S3 [PMID: 24070926 DOI: 10.1016/i.icid.2013.01.009
- Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman 29 RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405-412 [PMID: 10938048 DOI: 10.1136/bmi.321.7258.405
- Dennett SL, Boye KS, Yurgin NR. The impact of body weight on patient utilities with or without type 2 30 diabetes: a review of the medical literature. Value Health 2008; 11: 478-486 [PMID: 18489671 DOI: 10.1111/j.1524-4733.2007.00260.x
- World Health Organization. Global Recommendations on Physical Activity for Health. Geneva: WHO; 31 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305057/
- Lin JS, O'Connor E, Whitlock EP, Beil TL. Behavioral counseling to promote physical activity and a 32 healthful diet to prevent cardiovascular disease in adults: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 2010; 153: 736-750 [PMID: 21135297 DOI: 10.7326/0003-4819-153-11-201012070-00007
- 2008 Physical Activity Guidelines for Americans summary. Available from: 33
 - http://health.gov/paguidelines/guidelines/summary.asp
- Chen L, Pei JH, Kuang J, Chen HM, Chen Z, Li ZW, Yang HZ. Effect of lifestyle intervention in patients 34 with type 2 diabetes: a meta-analysis. Metabolism 2015; 64: 338-347 [PMID: 25467842 DOI: 10.1016/j.metabol.2014.10.018
- Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC, Liu S, Song Y. Effects of Exercise Training 35 on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2015; 4 [PMID: 26116691 DOI: 10.1161/JAHA.115.002014]
- Savoca MR, Miller CK, Ludwig DA. Food habits are related to glycemic control among people with type 36 2 diabetes mellitus. J Am Diet Assoc 2004; 104: 560-566 [PMID: 15054341 DOI: 10.1016/j.jada.2004.01.013
- Meyer BF, Alsmadi O, Wakil S, Al-Rubeaan K. Genetics of type 2 diabetes in Arabs: What we know to 37 date. Int J Diabetes Mellit 2009; 1: 32-34 [DOI: 10.1016/j.ijdm.2009.03.003]
- Ghrairi F, Lahouar L, Amira EA, Brahmi F, Ferchichi A, Achour L, Said S. Physicochemical composition 38 of different varieties of raisins (Vitis vinifera L.) from Tunisia. Ind Crop Prod 2013; 43: 73-77 [DOI: 10.1016/j.indcrop.2012.07.008]
- Baliga MS, Baliga BRV, Kandathil SM, Bhat HP, Vayalil PK. A review of the chemistry and 39 pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 2011; 44: 1812-1822 [DOI: 10.1016/j.foodres.2010.07.004
- Ben Abdelaziz A, Thabet H, Soltane I, Gaha K, Gaha R, Tlili H, Ghannem H. [Knowledge of patients 40 with type 2 diabetes about their condition in Sousse, Tunisia]. East Mediterr Health J 2007; 13: 505-514 [PMID: 17687822]
- Al-Adsani AM, Moussa MA, Al-Jasem LI, Abdella NA, Al-Hamad NM. The level and determinants of 41 diabetes knowledge in Kuwaiti adults with type 2 diabetes. Diabetes Metab 2009; 35: 121-128 [PMID: 19250850 DOI: 10.1016/j.diabet.2008.09.005]
- 42 He X, Wharrad HJ. Diabetes knowledge and glycemic control among Chinese people with type 2 diabetes. Int Nurs Rev 2007; 54: 280-287 [PMID: 17685912 DOI: 10.1111/j.1466-7657.2007.00570.x]
- Murata GH, Shah JH, Adam KD, Wendel CS, Bokhari SU, Solvas PA, Hoffman RM, Duckworth WC. 43 Factors affecting diabetes knowledge in Type 2 diabetic veterans. Diabetologia 2003; 46: 1170-1178 [PMID: 12856126 DOI: 10.1007/s00125-003-1161-1]
- 44 Minet L, Møller S, Vach W, Wagner L, Henriksen JE. Mediating the effect of self-care management

WJD | https://www.wjgnet.com

intervention in type 2 diabetes: a meta-analysis of 47 randomised controlled trials. *Patient Educ Couns* 2010; **80**: 29-41 [PMID: 19906503 DOI: 10.1016/j.pec.2009.09.033]

- 45 Ellis SE, Speroff T, Dittus RS, Brown A, Pichert JW, Elasy TA. Diabetes patient education: a metaanalysis and meta-regression. *Patient Educ Couns* 2004; 52: 97-105 [PMID: 14729296 DOI: 10.1016/S0738-3991(03)00016-8]
- 46 Norris SL, Engelgau MM, Narayan KM. Effectiveness of self-management training in type 2 diabetes: a systematic review of randomized controlled trials. *Diabetes Care* 2001; 24: 561-587 [PMID: 11289485 DOI: 10.2337/diacare.24.3.561]
- 47 World Health Organization. Global status report on noncommunicable diseases 2010. Geneva: WHO; 2011. Available from: URL: https://www.who.int/nmh/publications/ncd_report2010/en/
- 48 **National Commercial Bank (NCB) Capital.** GCC Agriculture: Bridging the food gap. Economic Research [Internet]. March 2010. Available from: URL:
- http://www.gulfbase.com/ScheduleReports/GCC_Agriculture_Sector_March2010.pdf
 Yosef AR. Health beliefs, practice, and priorities for health care of Arab Muslims in the United States. J Transcult Nurs 2008; 19: 284-291 [PMID: 18445762 DOI: 10.1177/1043659608317450]

Published By Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-2238242 Fax: +1-925-2238243 E-mail: bpgoffice@wjgnet.com Help Desk:https://www.f6publishing.com/helpdesk https://www.wjgnet.com

