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Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and 
involves a multi-step process in which intestinal cells acquire malignant characte- 
ristics. It is well established that the appearance of distal metastasis in CRC 
patients is the cause of a poor prognosis and treatment failure. Nevertheless, in 
the last decades, CRC aggressiveness and progression have been attributed to a 
specific cell population called CRC stem cells (CCSC) with features like tumor 
initiation capacity, self-renewal capacity, and acquired multidrug resistance. 
Emerging data highlight the concept of this cell subtype as a plastic entity that has 
a dynamic status and can be originated from different types of cells through 
genetic and epigenetic changes. These alterations are modulated by complex and 
dynamic crosstalk with environmental factors by paracrine signaling. It is known 
that in the tumor niche, different cell types, structures, and biomolecules coexist 
and interact with cancer cells favoring cancer growth and development. Together, 
these components constitute the tumor microenvironment (TME). Most recently, 
researchers have also deepened the influence of the complex variety of microor-
ganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, 
on CRC. Both TME and microorganisms participate in inflammatory processes 
that can drive the initiation and evolution of CRC. Since in the last decade, crucial 
advances have been made concerning to the synergistic interaction among the 
TME and gut microorganisms that condition the identity of CCSC, the data 
exposed in this review could provide valuable insights into the biology of CRC 
and the development of new targeted therapies.

Key Words: Colorectal cancer; Colorectal cancer stem cells; Tumor microenvironment 
factors; Tumor stroma; Gut microbiota; Cancer progression
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Core Tip: Colorectal cancer (CRC) represents one of the most prevalent tumors worldwide. The tumor 
microenvironment (TME) through its proinflammatory role, among others, actively participates in CRC 
progression and the disturbance of gut microbiota (dysbiosis) can influence this inflammatory process. 
CRC stem cells (CCSC) are a tumor cell subpopulation that drives CRC initiation, progression and 
treatment failure. The features and behavior of CCSC are modulated by several factors including TME and 
gut microbiota. Here, we will give an overview of the synergistic interaction among TME and intestinal 
microorganisms that condition the CRC environment and shape CCSC characteristics allowing CRC 
evolution.
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INTRODUCTION
Colorectal cancer (CRC) is a multi-step process where intestinal cells acquire malignant phenotypic 
characteristics that allow them to proliferate, migrate, invade and establish in new tissues[1]. In the last 
decades, screening strategies and treatments have been improved, decreasing the proportion of CRC 
patients by as much as 65%–88%[2]. However, this disease remains the third most prevalent type of 
cancer, having an incidence of 10% and ranking second in mortality (9.4% among all cancer deaths) 
according to global cancer statistics[3]. The leading cause of patient deaths and relapses is the 
appearance of new CRC subtypes and the acquired resistance to currently used therapies[4]. Moreover, 
a great number of CRC are diagnosed with distal metastases and these patients have a poor survival 
rate due to a lack of response to therapy[2]. One of the causes that affect the treatment of this type of 
tumor by inducing resistance and the appearance of recurrences, is the presence of a small subpopu-
lation of cells called CRC stem cells (CCSC). This small number of cells have mutations in specific 
oncogenes that allow them to develop the ability to induce tumor initiation, self-renew, differentiate, 
dedifferentiate, and acquire multidrug resistance[1,5]. The origin of this cell subpopulation is still 
controversial. They may originate from colorectal normal cells, colorectal normal stem cells, or CRC cells 
by genetic alterations or by the influence of environmental factors that induce epigenetic changes[5].

It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and 
interact with cancer cells favoring the growth and development of the tumor. Together these 
components constitute the tumor microenvironment (TME). In the last decades, several investigations 
have demonstrated that tumor surrounding ambiance through its proinflammatory role, among others, 
actively participates in the development, progression and chemoresistance of CRC[1,4].

Researchers have deepened the study of the influence of the complex variety of microorganisms that 
inhabit the intestinal mucosa, collectively known as the gut microbiota, on this inflammatory microen-
vironment. Besides contributing to innate and adaptive immune function, it has been observed that the 
imbalance in the species present in the intestinal microbiota and the consequent variation in microbial 
products can promote the development of CRC and compromise the efficacy of its therapy[6].

Since all the factors mentioned are involved in the CRC progression and therapy resistance and 
considering the great influence of CCSC in several events of this disease, this review aims to analyze the 
available literature that is focused on the interaction of TME and the intestinal microbiota that favors the 
development and maintenance of CCSC properties.

COLON CANCER STEM CELLS: FEATURES AND BEHAVIOR
CRC is a heterogeneous pathology that has a variable clinical course and prognosis[7]. The etiology of 
this disease combines genetic alterations in colorectal epithelial cells with unhealthy lifestyles, such as 
smoking, alcohol consumption and poor nutritional habits[8,9]. In addition, it has been seen that sex, 
age, family history of CRC and the persistence of inflammatory processes or infectious agents in the 
intestinal tract, can be also considered risk factors[5,9-12]. In all these cases, the synergy among genetic 
mutations, epigenetic alterations and the influence of the TME and gut microorganisms promotes the 
acquisition of molecular and phenotypic features that allow tumor progression[5,6,11,13,14]. Therefore, 
within the tumor niche, cells present great heterogeneity but are still strictly organized. In the last 20 
years, the focus has been on the study of cancer stem cells (CSC) derived from colorectal tissue (CCSC), 
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a subpopulation of cells that have a substantial tumorigenic capacity and maintain intestinal tumor 
growth[15]. CSC are responsible for resistance to multiple drugs maintaining a state of undifferentiation 
and slow cell division and also favoring the efficiency of desoxyribonucleic acid (DNA) damage repair 
mechanism[16]. Besides, they have similar features to normal stem cells, such as self-renewal, 
multipotency, cell cycle arrest, quiescence, and reversibility from their resting state[17,18]. As shown in 
Figure 1, the ability of CSC to maintain their population response to symmetric/asymmetric division, 
resulted in the first situation in two identical daughter stem cells and, in the second situation in two 
distinct cells with or without CSC properties[19,20]. In addition to the division theory, CSC undergo a 
bidirectional conversion process between stem and non-stem phenotype[20]. Although initially a 
hierarchical model has been established, in which CSC are the initiators of a monoclonal developmental 
hierarchy, emerging data highlight the concept of phenotypic plasticity of CSC. This new theory is 
supported by a dynamic state of interconversion between CSC and non-CSC that can be driven by the 
TME[21-23]. As the reader can see in Figure 1, during this phenomenon, cells can easily exchange their 
status within the tumor transforming from CSC to intermediate phenotypes to stemless states and vice 
versa[15,18,22,24]. Therefore, based on the data provided by the literature and shown in Figure 1, it can 
be concluded that any cell type is capable of initiating and promoting cancer development[24]. This 
model contributes with new concepts to the classical theory of the origin/behavior of CSC that highlight 
the importance of taking into account the study of phenotypic plasticity and the reversible state of this 
type of cells and that support the criterion that cancer cells with or without stem characteristics must be 
eradicated for successful therapy.

CCSC constitute about 2% of the cell population in the tumor nest and this percentage can be higher 
with tumor progression, particularly after chemotherapy or radiotherapy treatments[17,18,25]. Since an 
increase in the proportion of this cell subtype is an indicator of poor prognosis, in the last decades the 
identification and targeting of CCSC have become one of the key topics of study[26]. The recognition of 
CCSC is possible by the detection of typical phenotypic characteristics such as the expression of surface 
markers, membrane transporters and enzymes. Some of them are Prominin-1/cluster of differentiation 
133 (CD133), a transmembrane glycoprotein that is associated with metastasis, invasiveness and 
chemoresistance in CRC[18]; cluster of differentiation 44 (CD44) a receptor of hyaluronic acid in 
extracellular matrix related to the epithelial to mesenchymal transition (EMT) program and poor 
survival in CRC patients[5,27]; cluster of differentiation 166 (CD166) and cluster of differentiation 24, 
both adhesion molecules whose expressions are associated with the aforementioned markers, and that 
contribute to stratify low, intermediate, and high-risk CRC cases[5,28]; leucine rich repeat containing G-
protein coupled receptor 5 (LGR5) a key CCSC biomarker that decreases in advanced stages of CRC[20,
29] and aldehyde dehydrogenase (ALDH), an intracellular enzyme found in high concentrations in most 
of CSC participating in self-renewal, differentiation and self-protection[20,30,31]. In addition, the study 
of the ATP-binding cassette transporter superfamily through Hoechst 33352 dye efflux is also employed 
to detect CCSC[15,32]. In experimental models, the identification and characterization of CCSC can also 
be performed by fluorescence-activated cell sorting, selection by cell culture properties, in vivo 
transplantation of cells derived from spheroids or organoids, and lineage tracing techniques with 
labeled CCSC[22]. The above mentioned markers are hallmarks of CCSC and are involved in CRC 
pharmacotherapy and pathophysiology[33,34], but can also be present in enterocytes and cells of other 
tissues[20]. Hence, to increase the detection sensitivity and specificity, it is essential to combine the 
analysis of different biomarkers with CCSC isolation techniques.

Another substantial aspect to consider in the study of CSC is their association with other cellular 
processes such as EMT, autophagy and the response to cellular stress[15]. In particular, EMT is a 
physiological process that is also involved in tumor progression. The activation of this program reduces 
intercellular adhesion and causes epithelial cells to acquire mesenchymal properties that increase the 
invasiveness and migration of tumor cells[35]. Several studies have reported a link between EMT and 
the acquisition of CCSC characteristics in both, in vitro and in vivo assays[35-38]. These investigations 
show that transcription factors and signaling pathways that are altered in the EMT program are also 
deregulated in CSC, generating this subpopulation to exhibit phenotypes like EMT[39]. However, recent 
evidence indicates that EMT may not be necessary to acquire CSC properties. Then, although these 
processes can go along with each other, they can also happen through independent paths[15]. One of the 
tumor events that is known to be related to EMT and CSC is the high metabolic demand of TME and the 
existence of a tortuous vasculature that promotes a hypoxic environment. This phenomenon induces the 
release of factors such as hypoxia-inducible factor 1α (HIF-1α) that promotes not only EMT but also 
autophagy associated with CSC. In CRC it was demonstrated that blocking this factor with the 
consequent inhibition of autophagy reduces cell proliferation and the acquisition of stem-like characteri-
stics[40].

Another cause that has been reported that promotes a stem-like phenotype on several types of tumor 
cells is the cellular imbalance derived from oxidative stress[15]. In breast and lung cancer cell lines, 
studies demonstrate that oxidative stress upregulates the CSC marker SRY-box transcription factor 2 
(Sox2) activity, and stem-like properties[41,42]. However, in CRC cells it was shown that the reduction 
of intracellular reactive oxygen species inhibits the formation of CRC stem-like cells[43]. Since this type 
of cellular stress is considered potentially cytotoxic, more studies are necessary to know the mechanisms 
by which it has a positive effect on the development of CCSC[15].
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Figure 1 Theory-based models of cancer stem cell. The ability of cancer stem cells (CSC) to maintain their population response to symmetric/asymmetric 
division, resulting in the first situation in two identical stem cells daughters and in the second situation in two distinct cells with or without CSC properties. In addition 
to the division theory, CSC undergo a bidirectional conversion process between stem and non-stem phenotype. During this phenomenon, cells can exchange their 
status within the tumor transforming from CSC to intermediate phenotypes to stemless states and vice versa. Also differentiated cells, normal stem cells or cancer 
cells through the accumulation of genetic and epigenetic changes are capable of initiating and promoting cancer development. These general theories are applicable 
to colon CSC.

Furthermore, it is important to note that like all processes and phenomena related to tumorigenesis 
and malignant progression, CCSC and their features are modulated by the aberrant activation of various 
signaling pathways. Wnt, NOTCH, hedgehog (HH), and transforming growth factor-β (TGF-β) are 
important cascades that are usually misregulated in CCSC and play a central role in the therapy 
resistance of these cells[5,44].

Thus, understanding CCSC features and all the events and factors associated with cell plasticity 
constitute a fundamental tool for the development of new target therapeutic strategies.

INFLUENCE OF THE TME ON CCSC FEATURES
It has been reported that multiple links exist between inflammatory processes and stemness in CRC[2]. 
In this context, the role of the tumor stroma is crucial. The TME in CRC is a physical shelter for CSC[5] 
composed of biomolecules from the extracellular matrix, an aberrant vasculature and multiple stromal 
and immune cell types. These cells include mesenchymal stem cells, cancer-associated fibroblasts 
(CAFs), endothelial cells (ECs), pericytes, and tumor infiltrating immune cells which comprehend: 
Macrophages, neutrophils, natural killer cells, Treg cells and cytotoxic T lymphocytes[2,4]. The 
interaction between CRC cells and the different types of cellular and non-cellular elements of TME 
involves complex and dynamic crosstalk by paracrine signaling[22]. Therefore, self-renewal, differen-
tiation and properties of CRC cells and CCSC are modified by factors released by the surrounding 
stroma[1]. These factors are cytokines, growth factors and small nucleic acids, which have different 
mechanisms of action. Next, we will discuss those derived from TME that modulate CCSC properties 
and that are summarized in Table 1.

Cytokines have been shown to play a key role in CRC stemness. It was reported that TME-derived 
factors with a pro-inflammatory action such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β 
foster EMT phenotype and stem cell proliferation in human colon cancer cells[45,46]. Besides, it is 
known that CAFs, one of the most studied cells in the TME, produce IL-6, which promotes the 
expression of CCSC markers such as ALDH1 and LGR5[1,47].

The acquisition of a stem-like phenotype is also influenced by the expression and secretion of growth 
factors[48,49]. It was demonstrated that the epidermal growth factor and the insulin-like growth factor 
regulate and promote CCSC growth[50]. Moreover, Muñoz Galván et al[49] have proved that the 
treatment of CRC derived cells with hepatocyte growth factor (HGF) and/or macrophage migration 
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Table 1 Tumor microenvironment factors associated with stemness in colorectal cancer

TME factor Action Ref.

Growth/inducible factors

Epidermal growth factor Regulates and promotes CCSC growth [50]

Insulin-like growth factor Regulates and promotes CCSC growth [50]

TGF-β Participates in the initiation of the EMT, invasion, metastasis and initiation of 
angiogenesis associated to CCSC

[13,29,
50]

Bone mophogenetic protein 4 Induces differentiation and decreases the tumorigenic potential of CCSC [16,60,
63]

Bone mophogenic protein 2 Stimulates the differentiation of CCSC inducting autophagic degradation of β-catenin [44,63]

Hepatocyte growth factor Activates Wnt signaling and the clonogenicity from CCSC [53,54]

Macrophage migration inhibitory factor Increases CCSC properties [49]

Vascular endothelial growth factor Promotes growth, epithelial to mesenchymal transition and stemness [50,51]

Platelet derived growth factor Promotes growth, epithelial to mesenchymal transition and stemness [50]

Osteopontin Regulates EMT and participates in the activation of the Wnt/β-catenin signaling 
pathway, promoting stemness

[4,156]

HIF-1A Activates Wnt/β-catenin pathway inducing self-renewal of CCSC. Promotes survival 
and maintenance of CCSC

[40,157]

Citokines/immune associated proteins

IL-1β Modulates the expression of CCSC markers [158]

IL-4 Facilitates the communication of CCSC with stromal cell, maintains their properties 
and evades the immune system

[5,44]

IL-6 Promotes the expression of the CCSC markers, ALDH1 and LGR5 [1,47]

IL-8 Induces stemness and EMT [50,159]

IL-17A Promotes invasiveness and self-renewal and increases CCSC properties [12]

IL-22 Promotes invasiveness and self-renewal and increases CCSC properties [12]

IL-33 Induces the expression of core stem cell genes in CRC-derived cells [160]

Chemokine (C-C motif) ligand 2 Promotes CCSC properties [4,49]

Tumor necrosis factor- α Modulates CCSC features and induces cell death [158,
161]

Parathyroid hormone related-protein Activates Wnt/β-catenin pathway and promotes events related to stemness [162-
164]

Non-coding RNA

miR-135 a/b and miR-17 Promote stemness through the activation of Wnt/β-catenin signaling [157]

miR-34 and miR-93 Inhibit stemness [157]

miR-92a-3p Promotes Wnt signaling activation and consequently the expression of β-catenin target 
genes related to stemness, the EMT program, and chemoresistance

[165]

miR-20a and miR-106 a/b Repress TGF-β activity and stemness [157]

miR-146 and Let-7 Affect stem cell fate or proliferation, activation of several stemness markers in a colon 
cancer cell line

[157]

miR-221/222 and miR-21 Induce the development and maintenance of CCSC [157]

miR-21 Promotes the activation of the Wnt/β-catenin signaling pathway and increases the 
population of CCSC

[157]

miR-145 Represses miR-21 and its expression inversely correlates with that of CCSC markers [157,
166]

miR-137 Suppresses CCSC tumorigenicity [167]

miR-147 Decreases the expression of CCSC markers

miR-200, miR-203, miR-141 and miR-429 Regulate CCSC through negative modulation of EMT and self-renewal [157]
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lncRNA H19 Promotes CCSC phenotype and drug resistance [168]

Signaling pathway ligands

Wnt ligands Increase CCSC characteristics and enhances tumor-initiating potential [5,157]

Delta like canonical Notch ligand 4 Participates on CSC maintenance [44]

Jagged1 Participates on CSC maintenance [66]

SHH Promotes CCSC survival, self-renewal and drug resistance [67,68]

Enzymes

Phospholipase D2 Promotes CRC stemness [4,49]

Extra-cellular matrix components

Tenascin, fibronectin, collagen type I, secreted protein 
acidic and rich in cysteine, galectin

Contribute to stemness and CCSC activities [1]

EMT: Epithelial to mesenchymal transition; CCSC: Colorectal cancer stem cells; CRC: Colorectal cancer; lncRNA: Long non-coding ribonucleic acid; miR: 
Micro ribonucleic acid; SHH: Sonic Hedgehog protein; TGF-β: Transforming growth factor beta; IL: Interleukin.

inhibitory factor increases the number and size of colonospheras and significantly enhances the 
expression of putative markers like CD133[49].

Proangiogenic factors like vascular endothelial growth factor (VEGF) and platelet derived growth 
factor are also implicated in promoting growth and metastasis, both processes directly related to 
stemness[50]. Furthermore, it was demonstrated that clusters of ECs improve the survival of CCSC and 
promote their spread[51].

As it is known, all these TME factors modulate the activation of different signaling pathways, altering 
gene expression and thus modifying the molecular and phenotypic profile of tumor cells[5,44,50]. Wnt 
signaling is a key stem cell pathway involved in the maintenance of the CCSC and the TME[13,52]. One 
decade ago, Vermeulen et al[53] observed that high activity of the Wnt signaling was associated with 
CCSC features. Furthermore, this activity was mainly observed near fibroblasts in the tumor niche. 
Vermeulen et al[53] then demonstrated that HGF derived from CAFs activates Wnt signaling and the 
clonogenicity from CCSC[53]. This research had a great impact on the study of CSC and recently, Essex 
and collaborators replicated these studies and obtained similar results. They found that TME regulates 
the activation of the Wnt signaling pathway, increases CCSC characteristics and enhances tumor-
initiating potential[54]. Regarding this, it is known that several Wnt ligands are secreted mostly by 
CAFs[53-56]. Moreover, other TME factors participate in the activation of the Wnt/β-catenin pathway 
(Table 1).

Some ligands from other signaling pathways are also related to stem cell phenotype. TGF-β is a 
growth factor that belongs to a superfamily of molecules including inhibins and bone morphogenetic 
proteins (BMP)[13]. It has the ability to promote or suppress tumor development depending on the 
interactions that take place in the TME[57]. As a pro-tumor factor, TGF-β regulates immune responses 
and participates in many neoplastic events such as proliferation, EMT and stemness[13]. TGF-β 
signaling pathway mutations and CCSC are linked[58] and in accordance with this, Zhou et al[29] found 
an association between TGF-β signaling and the expression of LGR5 biomarker in CRC[29]. Even more, 
Gu et al[59] have recently demonstrated that the expression of genes related to CCSC features like the 
carcinoembryonic antigen-related cell adhesion molecule alters TGF-β signaling and promotes CRC[59]. 
Some other members from the TGF-β family, like bone morphogenetic protein 4 and bone morpho-
genetic protein 2 (BMP4 and BMP2, respectively), have the capacity to induce CCSC differentiation and 
increase the response to standard chemotherapy[16,60-62]. Besides, the modulation of the BMP4 
pathway by hormones like triiodothyronine was reported in CCSC, decreasing its tumorigenic potential
[44,63,64]. This result suggests that CCSC features are modulated not only by local molecules from the 
TME but also by endocrine factors[44].

Notch signaling is also associated with the expression of CSC features in CRC cells[16,65]. In fact, it 
was reported that delta like canonical notch ligand 4 and jagged 1, both notch ligands, are overex-
pressed in this type of tumor providing essential signals for CCSC maintenance[44,66]. Moreover, since 
HH signaling is implicated in CRC development[20], in the last years several investigations were 
conducted on the association between this pathway and CCSC properties. Regan et al[67], have shown 
that the activation of the non-canonical HH pathway is required for CCSC survival and depends on 
sonic hedgehog protein (SHH) ligand[67]. Recently, it has been also observed that the modulation of 
HH-related proteins expressions by non-coding ribonucleic acids (ncRNAs) impacts on CCSC self-
renewal capacity and drug resistance[68]. In line with this, Skoda and collaborators showed that 
treatment with HH pathway inhibitors such as vismodegib and sonidegib weakens the ability of CCSC
[69]. Since no significant differences have been found in clinical trials[70], more studies are needed to 
determine the effects of the inhibition of this pathway in CRC patients.
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Besides the aberrant activation of several signaling pathways, hypoxia is known as a hallmark of 
CCSC and TME interaction[5]. This is a condition in the tumor niche whose main cause is the poor 
vasculature associated with the tumor and the upregulation of HIF-1α, a factor released mainly by ECs
[40,71,72]. This condition activates Wnt/β-catenin pathway inducing self-renewal and maintenance of 
CCSC[50,73]. Also, HIF-1α promotes cancer cell proliferation and CCSC survival[40].

Furthermore, short ncRNAs like microRNAs (miRs) and long ncRNAs are secreted not only by tumor 
cells but also by stromal cells in the TME[4]. In the last decades, the study of ncRNAs has gained 
importance in CRC. In the framework of factors and signaling pathways related to CCSC biology, these 
small nucleic acids have a key role[74]. miRs related to stemness in CRC are exposed in Table 1.

As previously mentioned, the interaction between CRC cells and their TME also involves non-cellular 
elements. Colonic stromal cells mediate the remodeling of the extra-cellular matrix favoring the healing 
or progress of the disease[75]. Recently, it has been demonstrated, by lineage tracing, that components 
of the extra-cellular matrix regulate dormancy in CCSC[76]. Tenascin, fibronectin, collagen type I, 
secreted protein acidic and rich in cysteine (SPARC), galectin and some other components of the tumor 
matrix are associated with stemness and CCSC activities[1].

Finally, another important concept to consider in the tumor nest is that CCSC also release various 
factors and cytokines that enable them to communicate with stromal cells, maintain their properties and 
evade the immune system, such as IL-4 and the cluster of differentiation 200[5,44].

The aforementioned data (and shown in Table 1) suggest that TME instructs the development, 
properties, plasticity, maintenance and dissemination of CCSC. In the last decade, the remarkable 
influence of the stroma on CRC development prompted the postulation of a novel classification of this 
disease based on its impact on tumor gene expression[5]. This CRC staging contains four consensus 
molecular subtypes (CMS) plus a group called "unclassified" since their features do not fit into the other 
CMS. All these subtypes are summarized in Table 2[1,5,77-79]. As the reader can see in this table, the 
influence of TME determines a low or high degree of immune and inflammatory response depending on 
the CMS, highlighting the importance of factors from TME in the distinctive characteristics of each CRC 
subtype. Taking into account that the mentioned inflammatory/immune process (that is relevant for 
CRC classification) can be influenced by the intestinal microorganisms, next we will discuss the 
interactions of this microbiota with tumor cells and their microenvironment that modulate the behavior 
and characteristics of CCSC since it is the focus of this review.

ESTABLISHED DYNAMICS BETWEEN THE GUT MICROBIOTA, THE TME AND CCSC
As we mentioned in this work, the inflammatory microenvironment contributes to promoting CRC 
initiation and progression. However, the role of the cell types involved in this process, including 
intestinal microorganisms, has not been completely understood yet.

The human microbiome, a concept that is mentioned throughout this section, represents microor-
ganisms with their genetic elements and the interactions arising with the environment in which they are 
found[80]. Advances in the characterization of this human microbiome have led to the consideration 
that the role of the microbiota in metabolic functions and maintenance of homeostasis is more important 
than previously believed. Currently, the human is considered as a holobiont organism inhabited by 
millions of microorganisms including bacteria, archaea and fungi[81]. The gut microbiota is a complex 
ecosystem that contains more than 500 bacteria species involved in physiological processes like immune 
regulation and maintenance of human health[6] and its composition relies fundamentally on diet and 
lifestyle[74].

In physiological conditions, stromal and immune cells from the gut mucosa interact with this 
ecosystem to maintain intestinal equilibrium[82]. Cells from the immune system recognize antigens 
from foreign cells and generate memory and effector cells, which control or avoid the generation of 
diseases[82].

It has been observed that sustained shifts in this ecosystem, known as intestinal dysbiosis, have 
unfavorable repercussions on health[74,83]. In this sense, the presence of harmful microorganisms 
(“drivers”) could induce changes in the intestinal mucosa and favor the colonization by opportunistic 
bacteria (“passengers”)[84]. This model is known as driver-passenger[84] and could involve changes in 
the immune system allowing the advance of the damage in the intestinal epithelium tissue[85,86]. This 
imbalance of the local microbiota promotes the restructuring of the intestinal environment and alters the 
immune status of the host contributing to the appearance of malignant cells and a favorable niche for 
tumor development, invasion and metastasis[85,87,88]. The mechanisms of these microorganisms that 
influence directly the immune system are different and involve the synthesis of immunomodulatory 
compounds and metabolites, like short-chain fatty acids (SCFAs), polyamines and other fermentation 
products[89,90]. Moreover, it is known that the intratumoral composition of microorganisms affects T-
cell-mediated cytotoxicity and anti-tumor immune surveillance[91]. The unfavorable changes in the 
intestinal microbiota can promote a pro-inflammatory environment and impair anti-cancer immunity
[91]. In this context, cells from TME secrete factors like interferon-γ, TGF-β, IL-6, IL-8, CXCL1 and 
TNF-α,and favoring the differentiation of T helper 17 Lymphocytes to develop an adaptive immune 
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Table 2 Consensus molecular subtypes of colorectal cancer

CMS1-immune (14%) CMS2-canonical 
(37%)

CMS3-metabolic 
(13%) CMS4-mesenchymal (23%) Unclassified (13%)

Hypermutated Epithelial Epithelial TGF-β activation. 
Angiogenesis

General features

Microsatellite unstable WNT and MYC 
signaling activation

Metabolic dysregu-
lation

Upregulation of EMT

Mixed phenotype of 
multiple CMS

Mutations BRAF, MSH6, RNF43, 
ATM, TGFBr2, PTEN

APC, KRAS, TP53, 
PIK3CA

APC, KRAS, TP53, 
PIK3CA

APC, KRAS, TP53, PIK3CA

Decrease of CAFs Decrease of CAFs Decrease of CAFsTME

High immune and 
inflammatory signature

Low immune and 
inflammatory signature

Low immune and 
inflammatory signature

Increase of CAFs; 
Immunosuppressive signature

This Table is based on Islas et al[1], 2022; Fidelle et al[79], 2020; Trinh et al[169], 2018; Becht et al[78], 2016; Guinney et al[77], 2015. APC: Adenomatous 
polyposis coli gene; ATM: Ataxia telangiectasia mutated gene; BRAF: Serine/threonine-protein kinase B-raf gene; CAFs: Cancer associated fibroblasts; CMS: 
Consensus molecular subtype; EMT, Epithelial to mesenchymal transition; KRAS: Ki-ras2 kirsten rat sarcoma viral oncogene homolog gene; MSH6: MutS 
homolog 6 gene; PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene; PTEN: Phosphatase and tensin homolog gene; RNF43: Ring finger 
protein 43 gene; TGF-β: Transforming growth factor beta; TGFBr2: Transforming growth factor beta receptor 2 gene; TME: Tumor microenvironment; TP53: 
Transformation-related protein 53 gene.

response that contributes to immune-prone carcinogenesis and CRC development[79,87,92]. In this 
regard, increasing evidence suggests that gut microorganisms condition CRC patients response to 
immunotherapy, because they alter the expression of elements such as anti-programmed cell death 
protein 1 (PD-1) and its ligand (PD-L1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
[91,93]. PD-1/PD-L1 has been highly studied in the last years on the tumor-microbiome-immune axis
[91]; in fact, several investigations provide evidence that PD-L1 is overexpressed on different tumor cells 
and stromal immune cells, allowing tumors to evade attacks via T-cell infiltration[91,94,95].

The increased expression of PD-L1 in CRC cells both in vitro and in vivo is a mechanism involved in 
the influence of certain pathogenic bacteria associated with an immunosuppressive TME[96]. In 
contrast, bacteria associated with healthy microbiota improve the efficacy of anti-PD-L1 therapy by 
enhancing the accumulation of cytotoxic T cells in the TME[97]. This suggests that TME reprogramming 
through manipulation of the microbiota can modulate the response to immunotherapies in CRC[98]. 
Concerning all this information, CRC could be considered as a bacterial-induced disease and 
disturbance in microbiota could be potentially useful as diagnostic biomarker, indicator of risk and 
predictor of response to therapies for this type of cancer[74,88].

On the other hand, CRC modifies the local metabolic environment[99]. In this context, it is important 
to mention that metabolites and factors derived from CRC cells and TME cells such as spermidine, L-
valine, L-lysine or stearic acid confer an advantage for the growth and development of certain bacterial 
species, conditioning changes in the intestinal microbiota[99]. Although different factors produce 
changes in gut microbiota, recently it has been seen that the shift in the metabolome of tumor cells and 
TME cells is a key aspect in this event[86,99,100]. Thus, TME can be the consequence or the cause of 
intestinal dysbiosis.

The gut microorganisms cited below in this section are described in the available literature due to 
their role in CCSC development and maintenance. They are also summarized in Table 3.

Regarding CSC properties, some pathogenic bacteria such as Helicobacter pylori and Porphyromonas 
gingivalis can promote the expression of markers associated with stemness such as CD44 and CD133 in 
gastrointestinal tumors[101,102]. This association between the presence of certain bacteria genera in the 
gut and the expression of CSC markers has led to the study of the effects of microorganisms shifts and 
bacterial metabolites on CRC. Several models of tumorigenesis induced by bacteria have been proposed, 
suggesting how the interactions of host-microorganism promote the development and progression of 
this type of cancer[101]. In fact, it is known that the metabolites from the intestinal microbiota have the 
potential to act as tumorigenic factors. However, others can act as anti-tumorigenic factors since many 
of these microbiota-derived products are capable of inhibiting CRC progression[103]. Kim et al[43] have 
demonstrated that ursodeoxycholic acid, a secondary bile acid produced by Clostridium species, 
including Clostridium absonum and Clostridium baratii, regulates the oxidative stress suppressing CCSC 
growth and CRC cells proliferation[43]. Moreover, it has been observed that niacin, a product of the 
metabolism of some intestinal bacteria, such as Lactobacillus acidophilus, has different effects on CCSC. 
Depending on the dose, this vitamin can promote proliferation or death in this cell subtype[104]. 
Additionally, bowel microorganisms produce SCFAs such as butyrate, propionate and acetate[92]. It has 
been reported that these SCFAs favor beneficial bacteria proliferation and stimulate regulatory T cells to 
reduce inflammatory mediators, regulating immune response[105]. Butyrate participates in epithelial 
integrity maintenance and has antitumor effects. Several investigations show that in CRC, this product 
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Table 3 Microorganisms present in the intestinal mucosa associated with stemness in colorectal cancer

Microorganism Action Ref.
Bacterioides dorei, Bacterioides vulgatum, Parabacterioides 
distasonis, Lachnoclostridium sp., and Mordavella sp

Inhibit the action of factors related to CCSC phenotype. Inhibit CRC development and 
progression

[59,
114]

Bacterioides fragilis Releases an enterotoxin that promotes immune TME cells activation with secretion of 
factors related to CCSC

[118]

Citrobacter rodentium Protects the inflammatory CCSC niche [121]

Clostridium septicum Contributes to CRC development and to the activation of signaling pathways associated 
with CCSC

[59]

Enterococcus faecalis Induces the expression of TGF-β, thereby activating signaling pathways associated with 
CCSC. Activates Wnt/β-catenin signaling and pluripotent transcription factors 
associated with CCSC

[113,
115]

Escherichia coli Upregulates the expression of CCSC-associated genes. Releases genotoxin colibactin 
which induces the production of growth factors related to CCSC

[112,
117,79]

Fusobacterium nucleatum Stimulates the secretion of immune factors related to CCSC [79]

Helicobacter pylori Promotes the expression of markers associated with stemness [101,
102]

Lactobacillus acidophilus Promotes proliferation or death in CCSC depending on dose [104]

Porphyromonas gingivalis Promotes the expression of markers associated with stemness [101,
102]

Shigella, and Citrobacter Upregulate the expression of CCSC-associated genes [112]

CCSC: Colorectal cancer stem cells; CRC: Colorectal cancer; TGF-β: Transforming growth factor beta; TME: Tumor microenvironment.

inhibits events associated with CSC such as invasion and proliferation[6]. Interestingly, butyrate inhibits 
cell proliferation to a greater extent in CRC derived cells than in non-cancerous cells[92]. Although 
butyrate was reported as an anti-tumor and chemopreventive agent[92,106], other studies have shown 
that it has variable outcomes on CCSC[92]. So, more investigations are necessary to determine the 
mechanistic action of this type of fatty acid. Experiments with other SCFAs like acetate and propionate 
with similar results demonstrated that these acids have opposing effects[6,107]. Besides that, a large 
number of microbial products such as deoxycholic acid, lithocholic acid chenodeoxycholic acid, 
taurochenodeoxycholic acid and others, are associated with the promotion of gastrointestinal tumors 
including CRC[6,108]. Recent studies have found that in CRC patients the microbial composition of the 
colonic crypt is different from that of the intestinal lumen. In the environment of the crypt of the 
colorectal tumor, groups such as Proteobacteria and anaerobes, such as Acinetobacter, Stenotrophomonas 
and Delftia were found[109]. Therefore, specific microorganisms could have a role in the maintenance of 
CCSC, located in the crypt, through the production of specific metabolites[110]. However, more studies 
are needed in this field since the molecular mechanisms underlying the effects of intestinal microbial 
products on CCSC have not yet been fully elucidated.

Currently, the study of mechanisms involved in the communication between the microbiota, the 
tumor cells and their microenvironment has gained impact on CRC. One reported mechanism for this 
interaction is through pattern recognition receptors located on intestinal epithelial cells that have the 
ability to detect distinctive microbial macromolecular ligands called pathogen-associated molecular 
patterns such as lipopolysaccharides and peptidoglycans[111]. Congruently, a recent work documented 
an altered function of CSC in a CRC murine model due to intruding bacteria like Escherichia, Shigella, 
and Citrobacter. This effect results in the activation of a toll-like receptor (TLR), a class of pattern 
recognition receptors, and the consequent upregulation of stem cell-associated genes such as Cd44v6 
and Lgr5[110,112]. In line with this, the microorganisms are capable of activating several signaling 
pathways in tumor cells and/or TME cells inducing the secretion of factors associated with CCSC 
features. In this context, it has been observed in a murine model that microorganisms such as Entero-
coccus faecalis cause colitis after infection and induce expression of TGF-β, thereby activating the Smad 
signaling pathway[113]. A recent study has demonstrated an inverse correlation between the expression 
of molecules associated with TGF-β signaling pathway and stem cells- related genes in CRC. Moreover, 
the authors of this work have compared feces from mice with defects in TGF-β signaling with feces from 
wild-type (WT) mice, and have shown that the first ones had increased bacterial species associated with 
the development and progression of CRC, such as Clostridium septicum, and diminished amounts of 
favorable microorganisms including Bacteroides vulgatus and Parabacteroides distasonis[59]. Similar results 
were obtained by Wang and collaborators who showed that the amounts of beneficial species (
Bacterioides dorei, Lachnoclostridium sp., and Mordavella sp.) are recovered in WT mice but not in those 
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with mutated TGF-β signaling after chemotherapy treatment[114]. These investigations demonstrate the 
close relationship between the microbiota, the production and release of TGF-β and CCSC in the tumor.

Concerning other signaling pathways, Wang et al[115] have shown that Enterococcus faecalis are 
capable of polarizing macrophages by activating Wnt/β-catenin signaling and pluripotent transcription 
factors associated with the dedifferentiation, reprogramming and development of CCSC such as cellular 
myelocytomatosis oncogene, Kruppel-like factor 4, octamer-binding transcription factor 4 (Oct4), and 
Sox2[115]. These events respond to the microbiota-induced bystander effect theory based on the fact that 
macrophages induce genetic mutations and chromosomal instability in intestinal cells[116].

Other signaling pathways associated with pro-inflammatory and growth factors can be activated in 
response to bacterial products. For instance, the unbalance in the amount of the gut bacteria Escherichia 
coli, correlates with CRC progression by producing the genotoxin colibactin[79]. This toxin accelerates 
tumor progression and involves the production of growth factors related to CCSC, such as the HGF and 
the consequent activation of its signaling pathway[79,117]. Also, the enterotoxin produced by Bacteroides 
fragilis promotes immune TME cells activation with the secretion of IL-17 which favors CCSC properties
[118]. Furthermore, as we have previously mentioned, gut microorganisms shape the immune 
environment promoting tumor evolution and CCSC features. For example, Fusobacterium nucleatum 
stimulates IL-8 secretion by TME cells and the inhibition of T and NK cell functions[79]. This bacteria 
has been deeply studied, since clinical analysis of specimens from CRC patients showed that the levels 
of F. nucleatum are significantly higher in neoplastic tissues than in adjacent normal tissues, and 
correlate with tumor invasion and metastasis[119]. These results support the role of F. nucleatum in the 
regulation of CCSC plasticity and EMT[101]. Also, it is known that F. nucleatum and other microor-
ganisms like Epstein–Barr virus are capable of incorporating human ncRNAs favoring microbial growth
[74]. In this regard, Tarallo et al[120] found a human and microbial ncRNA signature in CRC in which 
many miRs associated with CSC features, are overexpressed including miR-21 and miR-200[74,120]. A 
recent study conducted by Wang showed that Citrobacter rodentium infection induces the inhibition of 
miR-34a, which protects the inflammatory CCSC niche[121]. These investigations suggest a close 
relationship between the intestinal microbiota and the regulation of ncRNAs involved in CCSC 
properties.

Finally, not only the shift in the number of microorganisms is responsible for stemness and CRC 
progression, but the interaction and collaboration between several types of bacteria in biofilm 
communities also participate in bowel inflammation and CRC. It was demonstrated that biofilms 
correlate with an increase in IL-6 secretion by TME cells playing a key role in proliferation, cell 
transformation and stemness[79].

The data in this section demonstrate a close interrelationship between the gut microbiota, the TME, 
and CCSC. This information highlights the relevance of further investigating the intestinal microbiota 
switch in patients with CRC and the associated mechanisms that lead to TME changes and promote 
stemness.

THERAPEUTIC TARGETING OF TME AND THE GUT MICROBIOTA: A KEY TOOL TO 
MODULATE STEMNESS IN CRC
Standard chemotherapeutic approaches for CRC are based on attacking the replicative mechanisms of 
tumor cells to induce tumor regression. However, considering CSC properties, this subpopulation 
usually results unharmed by the treatment because they present a low division rate as well as a great 
capacity to correct DNA defects[122]. This entails therapy resistance of CSC and the subsequent 
treatment failure and disease progression. It is interesting to note that in CRC, CSC represent around 
2.5% of neoplastic cells but due to their phenotypic plasticity, they constitute a dynamic population[123,
124]. This fact, together with the lack of response to therapies, highlights the need of new clinical 
strategies targeting CCSC[125].

As we explain throughout this review, the influence of the TME and the intestinal microorganisms on 
CSC properties makes these factors a promising tool in therapy. Many therapeutic agents are capable of 
inhibiting those events associated with the maintenance of CCSC. For instance, Apatinib napabucasin, 
Bigelovin, Wogonin and Metformin are drugs whose mechanisms are associated with the inhibition of 
EMT or angiogenesis in CRC[1]. Moreover, it has been demonstrated that therapeutic agents such as 
Genistein cause the inhibition of CSC characteristics by glioma-associated oncogene1 signaling pathway
[126]. Targeting the activation of those signaling pathways associated with CCSC can also be considered 
as a mechanism to reduce stemness in CRC tumors and thus improve the response to the therapy. 
LGK974, Foxy-5, PRI-724[127] and DKN-01[126] are agents that act targeting the Wnt/β-catenin 
pathway. However, the clinical application of most of these drugs is still under study.

The tumor protective niche also could be modified to eradicate CCSC and overcome chemoresistance. 
As we have mentioned in previous sections, in the TME, immune cells modulate cancer development 
and progression. For that reason, in the last decade the treatment of patients with immune checkpoint 
inhibitors such as CTLA-4 and PD-1/PD-L1 has been studied. Even though employing these drugs 
leads to various systemic and organic complications, immunotherapy may be promising in sorting these 
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obstacles and could ameliorate the response of CRC patients to the treatment[1,128]. In fact, coadjuvant 
therapy with FOLFOX (a combination of leucovorin, fluorouracil and oxaliplatin which are first-line 
chemotherapeutic drugs)[129], and PD-1/PD-L1 inhibitors had an objective response rate of 50% in 
clinical trials[130]. In addition, in a phase II trial in CRC metastatic patients, immune checkpoints 
inhibitors like nivolumab and nivolumab-ipilimumab show improvement in patients survival rate[130]. 
Moreover, monoclonal antibodies against CAFs and antifibrotic drugs were also tested in clinical 
studies[5]. Another type of antitumor therapy was accomplished through the production of a cell-based 
vaccine with specific antigens of CCSC[5].

In addition, plenty of compounds were designed in the last decade to target CCSC signaling 
pathways[5]. These strategies include the inhibition of HH signaling components, NOTCH pathway 
inhibitors, anti-angiogenic agents and Wnt ligand blockers. All these drugs are undergoing clinical trials
[129]. Despite being an encouraging strategy, it still has limitations like the inhibition of signaling 
pathways involved in physiologic processes.

In the last years, the particularities exhibited by extracellular vesicles (EVs) have led researchers to 
consider them as a therapeutic delivery strategy of great value in CRC and other types of tumors. 
Within the different types of EVs are the exosomes, which are secreted by a variety of cells. These 
vesicles carry out the molecular content of donor cells and enable cellular communication over short 
and long distances. These EVs are loaded with coding nucleic acids, ncARNs and bioactive proteins 
which determine their functions. Exosomes can target a specific tissue and internalize in a cell type by 
the recognition of surface ligands/receptors[131]. In this regard, Han et al[132] investigated the delivery 
of human cord blood-derived MSC exosomes loaded with miRs as CRC targeted therapy. The results 
showed an inhibition of tumor growth in vitro and in vivo, as well as a selective increase of these 
ncRNAs in CRC cells[132]. The relation between miRs and CCSC was mentioned in previous sections so 
their delivery may be strong weapons to confront drug resistance and CCSC maintenance[5]. Circular 
RNAs are ncRNAs that exhibit cell-type and tissue-specific signatures. There has recently been consid-
erable attention on these ncRNAs as they modulate miRs expression[129]. In CRC, recent studies have 
focused on their study as biomarkers. However, they have not been applied in patients’ therapy yet[133,
134]. Moreover, the importance that these small molecules could have in CRC is unknown[129].

Foods containing biologically active ingredients are termed functional foods or nutraceuticals[135,
136]. In the past years, the influence of diet on CRC development and evolution was demonstrated. A 
diet with natural products like phytochemicals and nutritional herbs has shown protective effects in 
overcoming CRC associated dysbiosis[137,138]. Diets enriched in dairy are a major source of products 
that are known to have a protective effect on CRC development such as, calcium, vitamin D and folate
[138]. Sulforaphane, a sulfur-rich compound found in cruciferous vegetables like broccoli, has been 
documented to diminish CSC markers and improve the chemotherapeutic efficacy of drugs commonly 
used in CRC treatment such as cisplatin, doxorubicin and fluorouracil[137]. It has been observed that 
dietary polyphenols like quercetin have similar effects[137,139]. Other polyphenols or flavonoids are 
known to target ABCG-2 transporters and miRs strictly associated with CCSC[139]. Curcumin is one of 
several substances present in turmeric plants. It has been demonstrated that this bioactive agent inhibits 
the activation of several signaling pathways related to CSC characteristics. The treatment with this 
natural product on a CSC model diminished the expression of CD44 and CD133 markers[137]. 
Moreover, some other natural products have been observed that interfere with intrinsic CSC pathways, 
like epigallocatechin-3-gallate (EGCG), resveratrol and genistein[140].

Diet can also manipulate the gut microbiota. Indeed, this is achieved by the administration of 
probiotics in the diet. As probiotics and their active metabolites can exert immunomodulatory and anti-
tumorigenic effects[135], the study of them and their metabolites has gained ground in recent decades. 
Probiotics are live microorganisms, normally lactic acid bacteria, recognized as safe by the United States 
Food and Drug Administration[135]. Defined as “live microorganisms that, when administered in 
adequate amounts, confer a health benefit on the host”[141], they can improve health by administration 
along vegetable fibers and other prebiotics stimulating beneficial bacterial growth in the intestine[142].

Probiotics administration can be done by different routes, commonly through functional foods, but 
also by commercial supplements or vaccines[135,138]. It is known that probiotic oral vaccines promote 
mucosal immunity that prevents enteric infections and could complement the standard therapy in the 
patient[143]. Microorganisms administration including probiotics and synbiotics (pharmaceutical 
preparation that contains probiotics and prebiotics that implies a synergy between both) are a potential 
resource for prophylaxis and therapy in CRC[138,144]. In addition, the luminal cocktail of microor-
ganisms in the bowel can be modified not only by dietary approaches but also with the use of antibiotics 
or fecal microbiota transplantation (FMT)[145,146]. In particular, FMT has gained considerable interest 
in recent years as a strategy to treat different gastrointestinal disorders[147-149]. It consists of 
introducing a healthy microbial population from a disease-free host into a diseased host that has a 
dysbiotic community to restore microbial homeostasis[150]. Although there are limited data on the use 
of FMT in the treatment of CRC, several studies are under development to answer relevant questions 
such as if CRC can be detected, treated or prevented with this method. Rosshart and collaborators 
observed that mice treated with this method improved their resistance against colorectal tumorigenesis 
induced by azoximetane[151]. Besides, it has been seen that FMT in Balb-c mice prevents intestinal 
damage, and chemotherapy-induced toxicity[152]. Interestingly, the fecal microbiota from CRC patients 
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has been shown to cause tumors in healthy and germen-free Apcmin/+ mice through the activation of the 
Wnt signaling pathway. In these mice, the intestinal barrier is also altered and the presence of pro-
inflammatory cytokines is increased[153]. These data reveal that the composition of the microbiota may 
play a determinant role in TME conditions during tumorigenesis. Nevertheless, the subjacent 
mechanisms of all these treatments or how they ameliorate the side effects of chemotherapy is not clear 
yet.

In summary, we need a favorable and efficient clearance of tumor cells, all tumorigenic cells 
including CCSC and a restructuring of the TME for the complete eradication of CRC. Based on 
everything described in this review, a specific combination of techniques and therapies for each tumor 
and patient would be necessary to achieve this goal.

FUTURE PERSPECTIVE
According to the information stated in the previous sections, in CRC occurs an alliance between the 
TME, intestinal microorganisms and CCSC that favors tumor progression. In this scenario, it is 
emerging a new query regarding the direct effects of CCSC on gut microbiota. Perhaps the appearance 
of CCSC by spontaneous mutations favors (through paracrine signals and the release of specific factors) 
a dysbiotic and pro-inflammatory environment but in this regard, new investigations are necessary to 
evaluate the regulation of CCSC on CRC microbiota. So, there is great potential in the study of the 
interrelationship between these three components in the tumor niche, mostly for the development of 
new therapies aimed at the eradication of CCSC and non-stem cells, the restructuring of the TME and 
the growth induction of microorganisms that are beneficial to the intestinal mucosa.

Many of the therapies currently in use or under clinical evaluation are associated with systemic 
toxicity since they do not act on a well-defined target[137]. Therefore, the combination of radiotherapy 
and chemotherapy has still remained the strategy of choice in CRC[145] and not much attention is paid 
to nutritional accompaniment. Since the gut microbiota seems to be a pivotal factor in inflammatory 
disease and CRC development, overcoming therapy resistance could also improve with changes in diet. 
For this purpose, is crucial the development of foods containing compounds with anti-CCSC activity 
such as flavonoids but with better bioaccessibility and bioavailability[154]. Moreover, bacteriotherapy is 
a great opportunity to customize CRC treatment and the following tools that we will mention could be 
useful in this type of therapy. The modification of patient microbiome tending to resolve dysbiosis 
through the administration of beneficial bacteria could significantly improve conventional treatment
[93]. Even more, considering that some microbial species exhibit tumor targeting specificity, this 
strategy could ameliorate cytotoxicity in non-tumor cells. Regarding bacterial products, given their low 
molecular weight and hydrophobicity, they can easily enter tumor tissues and exert their action[155]. 
These features result in the use of microorganisms with potential preventive or palliative action in CRC 
currently receiving special attention. In fact, microbe-based therapies, and bacteria-mediated 
modulatory strategies are studied to be used for the delivery of drugs to the tumor site and to produce 
anti-cancer vaccines[145,155]. However, the information about the toxins, metabolism of microbial-
derived agents and complications from bacteriotherapy is still limited155]. Thus, placing emphasis on 
clinical research that allows the use of these new therapies, overcoming the obstacles related to it, will 
be essential in the coming years.

In addition, as we discussed in the previous section, it is also necessary to focus on the restructuring 
of the TME in favor of improving conventional CRC treatment. Restructuring the extracellular matrix, 
modulating the immune response with vaccines, antibodies, or inhibitory drugs, employing drugs that 
induce changes in the secretion profile of TME cells, switching macrophages polarization and inhibiting 
CAFs and processes like fibrosis and inflammation are some of the potential effective techniques under 
investigation[1,5,116,128].

The development of vaccines containing CSC-specific antigens is also under investigation[5]. 
However, since many of the antigens present in this cell subtype are also found in differentiated cells or 
normal stem cells, this is a challenge to overcome for successful therapy.

So, the combination of conventional therapies with new targeted inhibitors (e.g. inhibitors of signaling 
pathways or molecules derived from TME) plus an appropriate diet that favors beneficial colonic 
microbiota, as well as the use of targeting methods such as charged nanoparticles or specific bacterial 
species, could constitute a reliable alternative to fight with CRC chemoresistance and relapses. The use 
of different in vitro and in vivo preclinical models of CCSC such as colonospheras, organoids and 
xenografts, is essential to achieve this goal and bring it to clinical research.

In the near future, the challenge will be the development of selective and combined therapies to 
promote: (1) CSC eradication; (2) Eradication of cancer cells, owing to their phenotypic plasticity, even 
in the absence of CSC features; and (3) Reduction of the damage to cells outside the tumor bulk.

In any case, it is clear that the standardization of treatment protocols is not always effective for this 
disease. It is advisable to resort to a combined and personalized therapy that considers the needs and 
responses of each patient.
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Figure 2 The interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. (1) 
Gut microorganisms and/or their derived products in a dysbiosis context influence the restructuration of tumor microenvironment (TME), favoring the release of 
several factors (growth factors, cytokines, non-coding ribonucleic acids and enzymes), immunological changes and an inflammatory environment; (2) The factors 
released by TME cells impact on intestinal microbiota promoting the growth of unhealthy microorganisms and their sustained unbalance; (3) Moreover, these TME 
factors can modulate the properties and behavior of colorectal cancer stem cells (CCSC) promoting effects such as their growth, survival, maintenance and 
tumorigenic potential; (4) In this context, CCSC response expressing factors that enable them to communicate with stromal cells and also influence a TME 
restructuration; (5) Microorganisms and/or their derived products can directly modulate the features and properties of CCSC, which in response; and (6) Probably 
affect the intestinal microbiota. All these associated events contribute to colorectal cancer progression. CCSC: Colorectal cancer stem cells; TME: Tumor 
microenvironment.

CONCLUSION
Figure 2 shows the interplay between the TME and the gut microbiota that influences the properties/
behavior of CCSC. Besides, the reader can appreciate that CCSC influence on cells from TME favoring 
CRC progression but probably also on gut microbiota. The knowledge described in the present review 
provides data that may promote future research aimed at addressing the complexity of the components 
in the CRC-associated microenvironment and microbiota. Compounding such complexity, CRC is not 
an isolated neoplasm, but it’s rather emerging as a dynamic pathology whose actors are capable, 
regrettably, of contributing to evasion mechanisms of the current therapeutic strategies. Although the 
incidence and mortality from CRC have decreased in recent years, a large number of patients still suffer 
from relapses due to resistance to treatment. The development of metastases and chemoresistance is 
undoubtedly one of the greatest challenges in CRC therapy. As we have seen in this work, the 
properties of the CCSC make this cell subtype have the main responsibility for the recurrences. The shift 
in the tumor niche and the intestinal microbiota favors the acquisition of CSC characteristics, promoting 
a worse prognosis of CRC. Although much is currently known about the interrelationship between 
components of the TME, the microorganisms present in the intestinal mucosa and CCSC, there is still 
much to be discovered in this field.
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Abstract
Literature data on glioblastoma ongoingly underline the link between metabolism 
and cancer stemness, the latter is one responsible for potentiating the resistance to 
treatment, inter alia due to increased invasiveness. In recent years, glioblastoma 
stemness research has bashfully introduced a key aspect of cytoskeletal 
rearrangements, whereas the impact of the cytoskeleton on invasiveness is well 
known. Although non-stem glioblastoma cells are less invasive than glioblastoma 
stem cells (GSCs), these cells also acquire stemness with greater ease if charac-
terized as invasive cells and not tumor core cells. This suggests that glioblastoma 
stemness should be further investigated for any phenomena related to the 
cytoskeleton and metabolism, as they may provide new invasion-related insights. 
Previously, we proved that interplay between metabolism and cytoskeleton 
existed in glioblastoma. Despite searching for cytoskeleton-related processes in 
which the investigated genes might have been involved, not only did we stumble 
across the relation to metabolism but also reported genes that were found to be 
implicated in stemness. Thus, dedicated research on these genes in GSCs seems 
justifiable and might reveal novel directions and/or biomarkers that could be 
utilized in the future. Herein, we review the previously identified cyto-
skeleton/metabolism-related genes through the prism of glioblastoma stemness.
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Core Tip: Glioblastoma stemness intensifies the resistance to treatment via increased invasiveness. Among 
the processes crucial for glioblastoma stem cells, metabolism is known to influence invasion. However, 
the cytoskeleton is currently negligent in glioblastoma stemness research, while it also regulates invasion. 
Herein, we review the link between stemness and cytoskeleton/metabolism-related genes that we 
previously identified in glioblastoma. These genes influence stemness via numerous biological processes; 
for some genes, clinical trials are currently ongoing. Others were connected to glioblastoma stemness for 
the first time. Future glioblastoma-related research should delve into the cytoskeleton since the concept is 
already encouraging.

Citation: Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Delineating the glioblastoma 
stemness by genes involved in cytoskeletal rearrangements and metabolic alterations. World J Stem Cells 2023; 
15(5): 302-322
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/302.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.302

INTRODUCTION
Glioblastoma (GBM) has remained an incurable condition with increasing incidence in many countries
[1,2]. Although GBM is less prevalent than breast, colon, or lung cancer, it outperforms other tumors by 
affecting patients in the prime of their lives and causing them to lose many years of life[3]. The initial 
intervention in newly diagnosed GBM includes a surgical approach, with post-surgery temozolomide 
(TMZ) and radiation therapy[4]. Adding tumor-treating electric fields (TTFields) to maintenance TMZ 
chemotherapy was found to prolong progression-free and overall survival, but is currently limited due 
to the lack of methods to predict or quantify the efficacy of TTFields (the imaging features associated 
with treatment response are unclear and there are no predictive neuroimaging markers). Moreover, the 
treatment device is required to be worn for a predetermined period (typically approximately 75% of the 
time) or until there is a clinical progression of the disease, which introduces a delay in getting used to 
the device and makes patients anxious with regard to the intended therapy effect[5]. Strong motivation 
to predict TTField efficacy in a patient-specific manner was provided[6]. Nevertheless, glioblastoma 
recurrence is practically inevitable which, combined with a grim prognosis and ineffective treatment, 
underlines the importance of further research into this deadliest tumor[3,7].

One of the GBM traits that implicate the lack of effective treatment is the heterogeneity that can be 
explained by both clonal evolution and the presence of stem cells[8]. Stemness refers to the molecular 
events that underlie the essential characteristics of self-renewal and differentiation into daughter cells
[9]. On the cellular level, some processes were indicated as crucial for GBM stemness, namely 
epigenomic regulation, posttranscriptional regulation, and metabolism[10]. Glioblastoma stemness 
research in recent years has also bashfully introduced a key aspect of cytoskeletal rearrangements [11,
12] while it has been long time since this machinery is well-known for controlling two processes that 
influence cancer malignant behavior, i.e., cellular division and invasion[13]. The stemness itself is also 
responsible for potentiating the resistance to treatment[14,15], inter alia due to increased invasiveness
[16]. In addition, more recent studies have identified the role of metabolism in GBM invasion[17]. 
Although non-stem glioblastoma cells are less invasive than GBM stem cells (confirmed by sevenfold 
reduced cell migration through the Matrigel, or 3.8-times and 6.8-times lower expression of matrix 
metalloproteinase-14 and -16)[18], the same cells also acquire stemness with greater ease if they are 
characterized as invasive cells and not tumor core cells[19,20].

The above-mentioned data imply that GBM stemness should be further explored for any phenomena 
related to the cytoskeleton and metabolism, as they may provide the missing puzzle from the point-of-
view of invasion. Moreover, the cytoskeleton and metabolism are related; for instance, the cytoskeleton 
is involved in carbohydrate metabolism[21] and at the same time the actin and tubulin require energy 
from nucleotide hydrolysis to maintain structural dynamics[22]. Cytoskeletal rearrangements and 
metabolic alterations are important not only for GBM cells but also for neuronal and glial progenitors. 
For example, cytoskeleton dynamics underlie the cellular asymmetry while metabolic reprogramming 
ensures a transition in energy production from glycolytic to oxidative[23,24]. Nevertheless, it is possible 
to discriminate normal glial cells from glioblastoma; the cancerous cells present decreased cortical but 
increased intracellular stiffness, and preferentially metabolized glucose into lactate despite the 
abundance of oxygen[17,25]. Stiffness and metabolic adaptations can also influence stem cell differen-
tiation[26,27]. Moreover, the cellular cross-talk that utilizes cytoskeleton or metabolites affects physical 
dynamics and signaling of various cell types including astrocytes, neurons, and oligodendrocytes[28,
29]. In cancers, such cross-talk renders abnormal protrusions or extensions termed as tumor microtubes 
that contribute to glioma resistance[30]. These structures are rich in cytoskeletal proteins, such as actin 
and tubulin, and are known to modify energetic metabolism of the receiving cells via transport of 
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mitochondria[31].
Our previous research has proved that interplay between metabolic alterations and cytoskeletal 

rearrangements exists in GBM[32]. Of genes described below in the present review (some previously 
identified genes were not included if their implication in stemness was not found in the literature) 
(Supplementary Table 1)[33-37], the example of a relationship between metabolism and cytoskeleton can 
be visualized (Figure 1) based on the literature on methylenetetrahydrofolate dehydrogenase 2 
(MTHFD2)[38-41] and ribonucleotide reductase subunit M2 (RRM2)[42-45]. In our previous research, 
despite searching for cytoskeleton-related processes in which the investigated genes might have been 
involved, not only did we stumble across the relation to metabolism, but we also reported some genes 
which were found to be implicated in glioblastoma stemness. Thus, the dedicated work on these genes 
in the GBM stem cells (GSCs) seems justifiable and might reveal novel therapeutic directions and/or 
biomarkers that could be utilized in the future. Herein, we review the previously identified 
cytoskeleton/metabolism-related genes through the prism of GBM stemness. Literature screening 
allowed the decision to split these genes based on whether their role in stemness is known from GBM or 
another tumor, the latter suggesting an urgent need to experimentally verify the observations in the 
glioblastoma context.

GENES WITH CONFIRMED ROLE IN GLIOBLASTOMA STEMNESS
Bone morphogenetic protein 4
Based on the literature abundance, the best-known from its implication in glioblastoma stemness is bone 
morphogenetic protein 4 (BMP4). The bone morphogenetic proteins are growth factors from the TGF-β 
superfamily that undergo expression during embryogenesis and control development. Initially denoted 
as crucial for osteogenesis, they are now described as regulators of gastrulation, neurulation, mesoderm 
patterning, proliferation, and differentiation in many tissues[46]. About 15 years ago, it was found that 
the signaling via BMPs and their cognate receptors (BMPRs) influenced the activity of normal brain stem 
cells but could also inhibit the cancer-initiating GBM stem-like cells[47]. Later the same year, these 
authors confirmed that in vivo delivery of BMP4 blocked the tumor growth and associated mortality, 
which occurred in all mice following intracerebral grafting of human glioblastoma[48]. This protein was 
suggested as a non-cytotoxic therapeutic agent that can be utilized in combination with stem cell-based 
therapy[49]; this complements its usage as an agent used to differentiate GSCs into normal glial cells
[50]. BMP4 has been found promising to the extent that it entailed the development of novel therapies. 
For example, one that utilizes the oncolytic vaccinia virus was developed to alleviate glioblastoma and 
prevent its recurrence[51]. Later on, the cell-based treatment option of BMP4-secreting human adipose-
derived mesenchymal stem cells was found to reduce proliferation and migration both in vitro and in 
vivo, as well as prolong survival in a murine model[52]. Still, Videla Richardson et al[53] admitted that 
little is known about this morphogen regarding triggered cellular events, which prompted the authors 
to establish several GSC-enriched cell lines growing as adherent monolayers and not floating 
neurospheres. Distinct lineage preferences were noticed depending on the expression pattern of BMP 
signaling-astrocyte fate or neuronal commitment was noticed and, under certain conditions, even a 
smooth muscle-like phenotype[53]. Providing new findings to the available data, BMP4-overexpressing 
neural stem cells were found to promote GSCs apoptosis via Smad1/5/8 signaling[54]. Moreover, recent 
studies indicate a formerly underestimated link between BMP4 and metabolism or mechanotrans-
duction which affects oxygen consumption or matrix stiffness[55]. The latter is known to be associated 
with cytoskeletal remodeling[56,57]. With regard to the cytoskeleton, BMP4 was found to re-organize 
actin dynamics via activation of Rac1, Rho, and Cdc42[58]. The impact of BMP4 in inducing asymmetric 
cell division was also noted, limiting the GSCs expansion[59]. The newest literature data on BMP4 
consider it on a broader scale, either evaluating other GBM aspects and referring to BMP4, or invest-
igating upstream/downstream molecules. Ciechomska et al[60] explored EGFR alterations in 
glioblastoma since GSCs with various EGFR levels respond differently to therapy; the authors found 
that EGFR/FOXO3a/BIM signaling pathway determined chemosensitivity of BMP4-differentiated GSCs 
to TMZ. On the other hand, Wu et al[61] identified BIRC3 as an inducer of glioblastoma stemness via 
downstream BMP4 inactivation. At last, the most recent paper by Verploegh et al[62] summarized the 
cellular viability variance in response to BMP4 and proposed early-response markers for sensitivity to 
BMP4. Three cultures with the highest sensitivity for BMP4 revealed a new cell subpopulation that 
presented a reduced cell proliferation but an elevation of apoptosis. These changes in composition 
correlated with treatment efficacy; the latter was predicted using OLIG1/2 expression. Furthermore, 
upregulated RPL27A and RPS27 were considered early-response markers. Interestingly, RPS27 is one of 
the genes identified in our previous study that prompted us to investigate the aspects presented in this 
review. This gene will be described below in a separate subsection.

Glutamate ionotropic receptor NMDA type subunit 2B
Glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B) encodes one subtype of glutamate-
binding GluN2 subunit, which is a part of the N-methyl-D-aspartate receptor (NMDAR). Ionotropic 
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Figure 1 Example of the interplay between cytoskeleton and metabolism using the biological function of methylenetetrahydrofolate 
dehydrogenase 2 and ribonucleotide reductase subunit M2 enzymes. Typically, methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) dehydrogenase 
is known for its activity in folate metabolism, whereas ribonucleotide reductase subunit M2 (RRM2) reductase is known for the conversion of ribonucleotide 
triphosphates to deoxyribonucleotide triphosphates which requires metabolic resources supplied by reduced glutathione. However, these two enzymes (encircled in 
red) are also involved in cytoskeletal rearrangements that are summarized on the right side of the figure. Literature data indicate that they also affect the same 
pathway (i.e., ERK1/2 signaling) but render various outcomes. Moreover, their role in glioma has already been proposed (bottom-right panel). Figure created using 
Inkscape and GeneMania (MTHFD2 and RRM2 as query genes; five “resultant” genes included to highlight interconnectivity; exemplary metabolism-related 
processes included from the built-in functional analysis). NTP: Ribonucleotide triphosphates; dNTPs: Deoxyribonucleotide triphosphates; MTHFD: 
Methylenetetrahydrofolate dehydrogenase; RRM2: Reductase subunit M2.

glutamate receptors from this family mediate Ca2+, i.e., the permeable component of excitatory synaptic 
transmission in the central nervous system (CNS)[63]. NMDARs assemble from four subunits: two 
GluN1 and two GluN2. The former subunits are widely expressed in the nervous system, while four 
subtypes of GluN2 subunits (from “A” to “D”) are characterized by various expression patterns[64]. 
GRIN2B encodes the GluN2B subunit, which is abundantly expressed in the prenatal period, then 
declines in most brain parts[65]. The presence of GluN2B in such an early stage implies that it 
contributes to brain development, circuit formation, synaptic plasticity, as well as migration and differ-
entiation[66]. Glutamate-dependent synaptic transmission is frequently dysfunctional in gliomas[67], 
and regarding this specific subunit, an enrichment of expression was noticed in GSCs[68]. In our 
previous research, with the use of literature data, we related this gene with the cytoskeleton since 
GluN2B interacts with cytoskeletal protein α-actinin-2 via the carboxyl-terminal domain[63]. It might be 
of importance as α-actinin-2 is closely associated with multimerins which are possible markers and 
therapeutic targets in low-grade glioma[69]. Moreover, one of the multimerins encoded by the MMRN1 
gene was found to be correlated to stemness and chemoresistance, although these observations were 
based on the leukemia model[70]. Nevertheless, GRIN2B is confirmed to influence stemness not only in 
glioblastoma but also in lung cancer. She et al[71] identified GRIN2B expression to be higher in primary 
tumors than in normal tissues, and at the same time higher in metastatic lesions than in primary tumors 
which contributed to poorer prognosis. Moreover, the same authors observed inhibition of tumorsphere 
formation during GRIN2B silencing.

Homeobox protein A10 and A1
The homeotic genes, in vertebrates denoted as homeobox, are highly conserved and regulate the proper 
development of various body segments during ontogeny[72]. Homeobox protein A10 (HOXA10) is 
implicated in the embryogenesis of the uterine epithelium, stroma, and muscle[73]. In response to 
hormones, it undergoes periodical expression in the mature endometrium, controlling receptivity 
during the implantation window[74]. Concerning GBM stemness, the functionality of HOXA10 was 
presented as a direct result of the activation of protein from the Trithorax family, which serves as a 
histone methyltransferase, i.e., MLL. Afterward, HOXA10 activated other HOXA genes, such as HOXA7 
and HOXC10[75]. In another study, HOXA10 was marked as one of the strongest candidates (alongside 
the HOX -A9, -C4, and -D9 genes), having value as a therapeutic target and biomarker for both GBM 
and GSCs[76]. Our previous research echoed the data that HOXA10 facilitated cytoskeleton remodeling 
(via CK15)[77], promoted tumorigenesis in glioma[78], and regulated homologous recombinant DNA 
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repair and subsequently TMZ resistance in GBM[79]. Since stemness also contributes to treatment 
resistance[14], the last two events complement each other mutually. Another homeotic gene that we 
identified in our previous study was HOXA1, a homeobox that is abundantly expressed in the 
mesoderm and neuroectoderm at the level of the brainstem precursor[80]. Upregulation of HOXA1 was 
noted in GBM, which inversely correlated with the survival of patients[81]. This homeotic member was 
also implicated in regulating the cytoskeleton via E-cadherin. Namely, CDH1-dependent signaling was 
found to increase HOXA1 expression through Rac1, i.e., the same pathway that regulates actin 
cytoskeleton at cadherin adhesive contacts[79]. With regard to GBM stemness, Schmid et al[82] observed 
upregulated HoxA locus (encompassing, e.g., HOXA1) after they dedifferentiated murine astrocytes into 
GSCs via Rb knockout, Kras activation, and Pten deletion. These cells were sufficient to form GBMs in 
their transplant mouse model. Although the insights did not provide further mechanistic details, the 
regulation loop of HOXA1 and HOXA transcript antisense RNA (HOTAIRM1) was found to be 
involved in stemness maintenance[81,83]. This was presented in colorectal carcinoma and uveal 
melanoma. Still, taking into account the study by Schmid et al[82], the profound investigation of HOXA1 
in GSCs in this aspect should be considered.

Matrix metalloproteinase 13
Matrix metalloproteinases are constituents of extracellular matrix (ECM) belonging to the zinc-
containing endopeptidases family that encompasses 23 members[84]. Functionally, these calcium-
dependent molecules are responsible for the degradation and remodeling of other proteins that 
constitute ECM. Moreover, their roles in various biological and physiological processes dependent on 
hormones, growth factors, and cytokines were described[85]. It is known that different ECM 
components modulate cancer stem cells’ properties; regarding glioblastoma, the confirmed ones were 
type I collagen, laminin α2, fibronectin, periostin, decorin, and lumican[86]. Matrix metalloproteinase 13 
(MMP13) is a collagenase almost universally upregulated in the pan-cancer view[87]; in GBM, its 
overexpression increases migration and invasion[88], as well as confers poor prognosis[89]. The 
relationships between MMP13 and the cytoskeleton[33] or metabolism[90] are known. In terms of 
stemness, Inoue et al[91] suggested that highly invasive potential GSCs depended on MMP13 enzymatic 
activity; the authors also proposed MMP13 as a potential therapeutic target.

MTHFD2
The folate cycle is responsible for appropriate cellular metabolism by regulating ATP production, 
methylation reactions for DNA/protein synthesis, or developing immunomodulatory molecules that 
orchestrate signaling and cytotoxicity[92]. The differences between MTHFD1 and MTHFD2, two 
enzymes implicated in the folate pathway, include the use of different co-enzyme (NADP vs NAD), 
functionality (MTHFD1 has three distinct enzymatic activities while MTHFD2 is bifunctional), and 
location (cytoplasm vs mitochondria). Compared to MTHFD1, which generates NADPH and formate for 
purine biosynthesis, MTHFD2 is overexpressed in rapidly proliferating malignant tumors. It is 
considered the “main switch” that enables mitochondria to produce additional growth-facilitating one-
carbon units and generates NADH necessary for protection from reactive oxygen species[93]. MTHFD2 
is also an excellent example to present the link between metabolism and cytoskeleton. Lehtinen et al[39] 
have found that MTHFD2 depletion leads to vimentin organization defects, and identified this gene as a 
regulator of cell migration and invasion. Regarding glioma, MTHFD2 was found to be associated with 
tumor grade and prognosis[38]. Inhibition of this enzyme in GSCs induced apoptosis and affected not 
only central carbon metabolic pathways (e.g., glycolysis, pentose phosphate pathway, and tricarboxylic 
acid cycle) but also unfolded protein response, highlighting a novel connection between one-carbon 
metabolism and reaction to cellular stress[94]. Nishimura et al[95] suggested that the purine synthesis 
pathway, as well as folate-mediated one-carbon metabolism, seem to be crucial for the maintenance of 
tumor-initiating cells. The same authors also concluded that EGF-induced expression of MTHFD2 may 
be mediated by Myc, with the latter regulating the expression of metabolic enzymes for the maintenance 
of brain tumor-initiating cells.

Plant homeodomain finger-like domain-containing protein 5A
Alternative splicing maintains post-transcriptional gene regulation, which enables a single gene to be 
transcribed into various RNAs, diversifying the proteome. Abnormal splicing function can lead to 
tumor-related processes, e.g., proliferation, angiogenesis, and metastasis[96]. Spliceosome, a dynamic 
machinery responsible for splicing, is made of small nuclear ribonucleoproteins (snRNPs; five molecules 
are known: U1, U2, U4, U5, and U6) and numerous non-snRNP proteins[97,98]. U2 snRNP comprises 
U2 snRNA, SF3a complex, and SF3b complex, which are responsible for recognizing branchpoint 
sequences during initial spliceosome assembly stages[99]. Splicing factors comprising the SF3b complex 
include plant homeodomain (PHD) finger-like domain-containing protein 5A (PHF5A), which facilitates 
interactions between the U2 snRNP and RNA helicases[100] but can also bind chromatin via its PHD 
that is composed of a small zinc finger structural fold[101,102]. The knockdown of PHF5A results in 
reduced GBM viability and cell cycle arrest[103]. Trappe et al[104] revealed that systematic deletion of 
its yeast homolog is lethal, showing that PHF5A is crucial for cell viability. The flagship paper on PHF5A 
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in brain tumor[105] indicates that the gene is required to expand GSCs and that in these tumor-initiating 
cells, but not untransformed neural stem cells, PHF5A contribute to the identification of exons having 
unusual C-rich 3’ splice sites in thousands of essential genes. The same authors inhibited PHF5A, which 
reduced GSCs-driven tumor formation in vivo and inhibited the growth of established GBM patient-
derived xenograft tumors.

Ribosomal protein S27
One of the most dynamic and largest molecular motors (driven by a complex thermal ratchet translo-
cation mechanism) are ribosomes[106]. Metallopanstimulin-1, also known as ribosomal protein S27 (
RPS27), is a constituent of the human 40S ribosome that is mainly found in the cytoplasm while it can 
also relocate to the nucleus[107] or even extracellular space[108]. Regarding the nuclear location, it is 
able to interact with DNA via its C4-type zinc finger[109]. In glioblastoma, RPS27 was found to be 
correlated with age in IDH-mutated glioma patients and with Ki67 in GBM patients. Interestingly, it is 
detected in astrocytic tumors but not in normal astrocytes unless the tissue was inflamed[109]. This 
allowed the same authors to emphasize that in comparison to inflammatory tissue (in which only a 
small number of macrophages were positive for RPS27), almost all macrophages in tumor tissue were 
distinctly enriched in RPS27 expression. As for GSCs, the ribosomes and related proteins were generally 
found to reprogram glioma cells to induce plasticity and stemness[110]. Among these molecules, RPS27 
was considered oncogenic with higher expression at the GSC-dominant area[111]. Inquisitive findings 
revealed that RPS27 is also detected in the microvascular proliferation area and pseudopalisading cells 
around necrosis[110]. It is worth underlining that aberrant vessels are crucial for the formation of 
pseudopalisading necrotic regions that provide shelter for residing cancer stem cells from anti-tumor 
agents, which enable these cells to expand and promote proliferation and growth[112]. As mentioned 
above, upregulated RPL27A and RPS27 were considered to be early-response markers related to the 
presence of BMP4. This suggests a link that should be further investigated since the signaling of 
ribosome translation was found to be overexpressed during the response to stress in glioblastoma.

RRM2
A balanced supply of deoxyribonucleotide triphosphates (dNTPs) is a prerequisite of DNA synthesis. 
Still, de novo synthesis of dNTP is also possible via the reaction catalyzed by the ribonucleotide reductase 
(RR) that reduces the C2’-OH bond of the four ribonucleotides triphosphates to form corresponding 
dNTPs[113]. RRM2 encodes the β subunit of RR; each RRM2 monomer contains the tyrosyl radical and 
non-heme iron[114]. Since a sufficient supply of dNTPs drives an uncontrolled DNA replication in 
cancer[115], it is not surprising that RRM2 was frequently subjected to molecular therapy[116,117]. 
Currently, several RRM2 inhibitors have been developed, e.g., radical scavengers, iron chelators, subunit 
polymerization inhibitors, or expression silencers[118-120]; this is to inhibit proliferation, division, but 
also invasion[32]. In glioblastoma, RRM2 is responsible for the advancement of GBM tumorigenicity 
and protection from endogenous replication stress via the BRCA1-RRM2 axis[45]. For glioma in general, 
regulation of proliferation and migration via ERK1/2 and AKT signaling was noted[44]. Available 
literature also links the RRM2 to the cytoskeleton via hPLIC1; the latter decreases during RRM2 
downregulation, which entails actin cytoskeleton re-organization[42]. Perrault et al[121] have suggested 
that RRM2 can be a chemoresistance driver that dictates how GBM cells respond to TMZ. The same 
authors further verified that RRM2-overexpressing cells had enhanced DNA repair efficiency. 
Moreover, the use of a selective FDA-approved RRM2 inhibitor, 3-AP Triapine, enabled Perrault et al
[121] to observe that in comparison to both TMZ and control, glioblastoma treated with the 3AP + TMZ 
formed fewer neurospheres that were also significantly smaller. Another group found that RRM2 
expression dramatically declined after 12 d of dasatinib treatment compared to naïve GSCs of the GSC8 
cell line[122].

Serum amyloid A protein 2
In order to re-establish homeostasis, both adaptable and primordial mechanisms exist; the latter 
comprises the acute-phase response (APR) that is a set of changes that occur after inflammation, 
infection, or trauma[123]. During APR, the changes include the altered levels of serum proteins, with the 
most notable being C-reactive protein and serum amyloid A (SAA)[124]. Being an apolipoprotein, SAA 
is related to plasma high-density lipoprotein and is implicated in the cholesterol transport to the liver 
for excretion as bile[125]. Its other functions include regulation of amyloidogenesis, tumor pathogenesis, 
anti-bacterial events, and inflammatory response[126]. The role of SAA in tumor progression was 
suggested owing to its cytokine-like properties that influence the course of inflammation[127]. SAA2 is 
one of the paralogs of the family and was investigated as a lung cancer biomarker a few years ago[128]. 
The description of its role in glioblastoma is limited, yet it is already known that SAA2 increases GBM 
proliferation and invasion[129]. Knebel et al[130] have confirmed that SAA production occurs not only 
in the liver but also in tumor cells; the authors emphasized that exploring the SAA influence on the 
cytoskeleton and invasiveness using more complex assays is needed. In terms of GBM stemness, 
Adamski et al[131] recently have compiled the literature data and stated that SAA2 is implicated in a 
drug-promoted cellular dormancy, with the latter being closely connected to stem cell characteristics. 
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The group also indicated the ability of SAA2 to sustain inflammatory conditions in the brain, which 
consequently supports TMZ resistance and induces the expression of stemness markers in glioblastoma.

Wilms’ tumor protein 1
The 5-methylcytosine (5mC) and its derivatives have altered patterns in a range of tumors. 5mC can be 
recognized and oxidized to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine by Ten-
Eleven translocation (TET) enzymes[132,133]. One of the transcription factors that directly interacts with 
TET proteins is Wilms’ tumor protein 1 (WT1): A master regulator essential for urogenital, epicardium, 
and kidney development that can act as a tumor suppressor or oncoprotein in multiple tumors[134,
135]. Initially cloned as a suppressor of Wilms’ tumor, WT1 is now considered to be an oncoprotein in 
hematologic malignancies and a variety of solid tumors, as well as the protein with the highest potential 
for cancer immunotherapy[136-138]. According to the phase I/II clinical trial, WT1 peptide-based 
vaccine for glioblastoma patients was considered safe and induced cellular and humoral immune 
response[139]. This is important due to the fact that WT1 is involved in GBM tumorigenicity via 
increasing proliferation and decreasing apoptosis[140]. As for the impact on the cytoskeleton, this 
protein was found to interact with actin both in the cytoplasm and nucleus, as well as supposedly binds 
to RNA in a cytoskeleton-dependent regulation manner[141]. Focusing on GBM stemness, Mao et al[142] 
found that WT1 was expressed predominantly in mesenchymal GSCs which, compared to proneural 
stem cells subtype, are characterized by higher proliferation, greater radioresistance, and implication in 
worse patients’ prognosis. Uribe et al[143] reviewed that mesenchymal GSCs develop tumors having 
more blood vessels, hemorrhagic lesions, and necrotic areas; the expression pattern in these stem cells 
generally facilitates inflammation, angiogenesis, migration, invasion, and glycolysis-mediated 
metabolism. Undoubtedly, more insights are needed concerning GBM molecular pathways in which 
WT1 is implicated.

GENES WITH STILL UNCONFIRMED ROLE IN GLIOBLASTOMA STEMNESS
Chemokine-like factor superfamily 6
Cytokines are soluble proteins that are secreted by immune and non-immune cells in response to 
stimulants such as immunogens or mitogens; this allows them to maintain the immune response and 
homeostasis[144]. Chemokines constitute a specific type of small (8-13 kDa) cytokines that promote the 
directed chemotaxis of nearby cells[145]. Consisting of nine members, the chemokine-like factor 
superfamily (CMTM) is expressed throughout the human tissues and regulates immune, circulatory and 
muscular systems, as well as the hematopoiesis[146-149]. The aberrant CMTM expression is implicated 
in various diseases, e.g., rheumatoid arthritis, atopic dermatitis, focal cerebral ischemia, male infertility, 
as well as tumorigenesis and metastasis[150-153]. The influence of CMTM6 on glioblastoma is known, 
but the research in this entity seems to be in the initial state. Guan et al[154] revealed that the highest 
CMTM6 expression was noted in the glioblastoma (WHO grade IV) compared with WHO grade II and 
III gliomas. Enrichment was also observed in both microvascular proliferation and hyperplastic blood 
vessels, which are both essential for tumor progression. In GBM, CMTM6 was also associated with one 
of the genes of immune checkpoints, i.e., TIM-3. From a broader glioma scale, the same authors 
summarized it as a molecule diminishing T-lymphocyte-dependent anti-tumor immunity, reducing 
patient survival and indicating poor prognosis. However, it is still yet to be elucidated what role 
CMTM6 may play in the GBM stemness. Currently, its contribution to such characteristics is confirmed 
on the basis of data from head-and-neck squamous cell carcinoma. Chen et al[155] observed poorer 
patient prognosis during CMTM6 overexpression that correlated with overactive Wnt/β-catenin 
signaling, i.e., the pathway crucial for tumorigenesis, epithelial-to-mesenchymal transition (EMT) and 
cancer stem cells maintenance. Silencing of CMTM6 led to PD-L1 downregulation, decreased tumor 
growth, and increased CD8+ and CD4+ T-cell infiltration. Eventually, the authors not only suggested the 
therapeutic suitability of CMTM6 but also concluded that this protein is implicated in EMT, stemness, 
and T-cell dysfunction. Similar research in the glioblastoma context is advisable, especially since 
CMTM6 can stabilize PD-L1 protein to impair T-cell function[156,157], as well as their combined 
expression had prognostic significance in pancreatic ductal adenocarcinoma and triple-negative breast 
cancer[158]. Nowadays, the role of PD-L1 in cancer and immunotherapy is unquestionable[159]; 
focusing on another protein related to this well-established molecule might bring novel strategies.

Dual specificity phosphatase 7 
Signal transduction is based on phosphorylation and dephosphorylation events performed by kinases 
and phosphatases, leading to a cellular program relevant to the encountered stimulus[160]. Dual 
specificity phosphatases (DUSP) are responsible for the dephosphorylation of threonine and tyrosine 
residues on mitogen-activated protein kinases, rendering them inactive[161]. Even if DUSP7 was only 
noted as downregulated in glioblastoma, whereas DUSP1, DUSP5, and DUSP6 were induced within 
pseudopalisading and perinecrotic GBM regions[162], the role of DUSP7 in preserving the pluripotency 
of non-cancerous stem cells was certified in a murine model[163]. However, its contribution could be 
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distinct from DUSP1, DUSP5, and DUSP6 but similar to DUSP2, DUSP8, and DUSP9 which were 
clustered together with DUSP7 in the study of Mills et al[162]. At last, it is worth noting that DUSP7 
guides chromosome dynamics which is known for being regulated by cytoskeletal proteins[164,165]. 
The study linking this phosphatase to metabolism revealed that DUSP7 knockout accelerates metabolic 
disorder and insulin resistance in mice with a high-fat diet[166].

Kinesin family member 20A
Cytoskeletal elements that act as scaffolds for intracellular cargo transport are microtubules. Motor 
proteins known as kinesins and dyneins orchestrate microtubule-related transport that is essential for 
cell differentiation or survival[167]. Kinesins constitute a large superfamily responsible for cargo 
trafficking, as well as controlling microtubule growth and stability[168]. Increased expression of kinesin 
superfamily representatives KIF4A, -9, -18A, and -23 was associated with poor prognosis in low-grade 
glioma and glioblastoma[169]. The pro-cancerous characteristics of Kinesin family member 20A (KIF20A) 
were noted more than 15 years ago in pancreatic cancer, which presented a reduction of proliferation 
once KIF20A was downregulated[170]. Currently, accumulating evidence shows that this kinesin is 
overexpressed in multiple tumors[171]. In glioblastoma, KIF20A downregulation induces cell cycle 
arrest and apoptosis via suppressing PI3K/AKT pathway[172]. Regarding cytoskeleton-related events, it 
is not only essential for cytokinesis but also interacts with Rab6 to regulate Golgi-related vesicle 
trafficking[173]. Although the role of KIF20A in GBM stemness has not yet been confirmed, it was 
suggested outside of the glioblastoma context in a study by Qiu et al[174]. The authors conceived the 
importance of KIF20A in controlling proliferation vs differentiation of tumor-initiating cells, based on 
both the fact that cancer stem cells share many mechanisms with neural progenitors, as well as their 
observations where KIF20A was implicated in balancing symmetric and asymmetric divisions during 
cerebral cortical development[175]. The KIF20A inactivation affected cortical neural progenitor cells that 
switched from proliferative to differentiative mode. During divisions, daughter cell-fate specification 
was controlled by KIF20A in coordination with RGS39 and SEPT710[174,176].

Neurofibromatosis type 2 protein
Neurofibromatoses (type 1, type 2, schwannomatosis) are distinct, dominantly inherited disorders that 
have in common the occurrence of nerve sheath tumors[177]. Type 1 neurofibromatosis presents with 
neurofibromas, cafe-au-lait spots/macules, freckling, and optic gliomas, whereas type 2 neuro-
fibromatosis is characterized by bilateral vestibular schwannomas, ependymomas, and meningiomas
[178]. Each disease has a different underlying genetic alteration: Type 1 neurofibromatosis is related to 
the neurofibromatosis type 1 protein (NF1) gene, type 2 is linked to NF2, while schwannomatosis to 
integrase interactor 1 (INI1, also known as SMARCB1). The protein product of NF2 has the same name 
as its gene but can also be referred to as Merlin. Although this tumor suppressor is not mutated in 
GBMs, it exhibited oncogenic properties in glioblastoma when phosphorylated at serine 518; this post-
translational modification inactivates Merlin’s anti-cancer capabilities, which affects the expression of 
EGFR or Notch1 and its downstream targets, i.e., HES1 or CCND1[179]. Other authors demonstrated 
that upon NF2 re-expression, a regulation of YAP, cIAP1/2, and the Hippo signaling pathway led to the 
inhibition of glioma growth and progression[180]. Merlin is also known for regulating cell morphology 
or motility, and its loss renders dramatic changes in cellular adhesion and cytoskeleton organization
[181,182]. Specifically, this protein is closely related to ezrin, radixin, and moesin (collectively denoted 
as “ERM”), i.e., critical proteins that enable the anchorage between membrane proteins and cortical 
cytoskeleton[183]. Ultimately, the link between NF2 and stemness might be related to CD44, the 
receptor of which cytoplasmic tail can interact with both Merlin and “ERM” proteins[184,185]. 
Literature data state that NF2 exhibits tumor suppressor function via negative regulation of CD44[186], 
whereas this receptor has been repeatedly indicated as a marker of cancer stem cells in various tumors, 
such as leukemia and carcinoma of breast, colon, ovarian, prostate, or pancreas[187-191]. Knowing that 
CD44 is also an upstream regulator of the aforementioned Hippo signaling pathway[192], of which 
components regulate the stem cell niche, self-renewal, maintenance, and differentiation[193-196], one 
could investigate Merlin in the GBM stemness context taking into the account the NF2-ERM-CD44-
Hippo regulation network.

Retinoid X receptor gamma
The signal transduction molecules being vitamin A derivatives are retinoids, they regulate cellular 
differentiation and proliferation via members of the nuclear receptors superfamily, including retinoic 
acid receptors (RARs) and retinoid X receptors (RXRs)[197]. The RXR family members (RXRA, RXRB, 
and RXRG) form heterodimers within the superfamily, e.g., with vitamin D, retinoic acid, or peroxisome 
proliferator-activated types of receptors[198,199]. RXRs have tumor suppressor properties and, as 
partners of RARA and RARB, they are implicated in the anti-proliferative effects of retinoic acid[197]. 
RXRG was found to modulate differentiation and apoptosis in various tumors, indicating its function in 
cancer pathogenesis[200]. Glioblastoma-related research certifies the general view that RXRG 
contributes to anti-neoplastic effect via its ligands; in study by Papi et al[201], the treatment of GBM with 
6-OH-11-O-hydroxyfenantrene had anti-proliferative and anti-invasive effects. However, the literature 
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data on glioblastoma stemness seem to focus on RARs rather than RXRs. Ying et al[202] evaluated the 
cellular and molecular responses of GSCs to all-trans retinoic acid; this treatment changed cells 
morphology (e.g., decreased neurosphere-forming capacity), caused growth arrest at G1/G0 to S 
transition, reduced cyclin D1 expression, and elevated p27 expression. Moreover, differentiation 
markers such as Tuj1 and GFAP were induced, while stem cell markers, such as CD133, Msi-1, Nestin, 
and Sox-2, had decreased expression. Friedman et al[203] provided similar observations with regard to 
Nestin level or neurosphere formation but also indicated that GBM differentiation induced by all-trans 
retinoic acid is executed via the ERK1/2 pathway. Evidently, retinoid-related research in the GBM 
context frequently focuses on all-trans retinoic acid while this isomer is bound only by RARs and not by 
both RARs and RXRs, as is the case with another retinoic lipid: 9-cis[204]. Even if two of the best-known 
retinoid receptors (RARA and RXRA) are described in detail by Rodriguez et al[205] in the GBM 
stemness context, the data on RXRG is still lacking and should begin with evaluation of whether 9-cis 
retinoid acid is able to manifest the anti-glioblastoma effects via RXRG and subsequently ERK1/2 
pathway.

SPARC/Osteonectin, CWCV, Kazal-like domains 1
ECM is a component containing elastin, collagen, laminins, glycoproteins, fibronectin, and 
proteoglycans. Together, these elements bind via cell adhesion receptors and form a complex 
macromolecular network[206]. Matricellular proteins are made of matrix-binding proteins and 
cytokines that can be located within the cell or secreted outside[207]. SPARC/Osteonectin, CWCV, 
Kazal-like domains 1 (SPOCK1), also referred to as testican-1, is an ECM proteoglycan from a 
matricellular family of proteins that regulate matrix remodeling and affects tumor progression[208-
210]. As the interplay between ECM and cytoskeleton is known[211], it is not surprising that changes in 
SPOCK1 lead to alterations in cytoskeletal components. For example, Schulz et al[212] noticed that 
SPOCK1 upregulation paralleled that of EPB41L4B, the latter being a cortical cytoskeleton protein 
underlying cellular membrane. With regard to brain tumors, testican-1 contributes to GBM metastasis 
and resistance to TMZ, as well as promotes glioma invasion, migration, and proliferation via Wnt/β-
catenin and PI3K/AKT pathways[213,214]. Mediating TMZ chemoresistance via SPOCK1 in GBM was 
independently confirmed by Sun et al[215]. Although not yet directly concluded by any scientific group, 
it is conceivable that the impact of SPOCK1 on TMZ resistance renders a similar GSCs-related effect as 
SAA2 which was described in one of the previous sections.

Ubiquitin-like with PHD and ring finger domains 1
The proteins’ turnover and degradation depend on ubiquitination that is orchestrated by the ubiquitin-
proteasome system (UPS)[216], of which alterations can lead to several tumor types[217,218]. One of the 
ubiquitin-protein ligases responsible for the UPS specificity is ubiquitin-like with PHD and ring finger 
domains 1 (UHRF1)[219], a molecule also interacting with DNA methyltransferase 1, which together 
constitute the main regulatory axis of cellular senescence[220]. UHRF1 was already identified as a novel 
oncogene and/or druggable epigenetic target for various tumors[221-223], and Jung et al[220] suggested 
its role as a switch molecule between senescence and cancer. In GBM, UHRF1 is overexpressed by 
upstream CD47 and regulates downstream silencing of tumor suppressor gene p16INK4A, leading to 
increased proliferation[224]. Regarding cytoskeleton, UHRF1 contributes to microtubule organization 
through its downstream targets: BRCA2, HOOK1, KIF11, and KIF18A[225]. The role of UHRF1 in 
different types of stem cells is documented but overlooks GSCs. Namely, it was found to be required for 
the proliferative potential of basal stem cells in response to airway injury[226], as well as regulate the 
transcriptional marks at bivalent domains in pluripotent stem cells[227]. On the other hand, UHRF1 
decrease was found to be a major cause of DNA demethylation in embryonic stem cells[228] and led to 
the activation of retroviral elements and delayed neurodegeneration[229]. It is evident that research in 
the glioblastoma context should be pursued in the future, especially since some epigenetic features, next 
to transcriptional ones, are unique in GSCs compared to neural stem cells and may include druggable 
targets for new therapeutic approaches[230].

DISCUSSION
Despite molecular advancements, there is still a considerable need for glioblastoma biomarkers[231], 
especially since the relatively ineffective treatment leaves the patients with a very dismal chance of 
survival[232]. One of the glioblastoma traits involved in the absence of effective treatment is tumor 
heterogeneity which can be explained by clonal evolution and the presence of stem cells[8].

Many independent studies on various tumor types have reported common genes as potential 
therapeutic or diagnostic biomarkers[233]. Al-Fatlawi et al[234] contemplated that biomarker signatures 
for different cancer types should be similar, due to the fundamental mechanisms shared between 
tumors, e.g., survival, tumor growth, or invasion. Thus, we presume that our description of stemness-
related genes, especially those still unconfirmed in GBM, adds significant value to the current 
knowledge and provide insights into novel therapeutic or diagnostic directions.
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For clarity, a graphical presentation was prepared to emphasize the role of described genes 
specifically in stem cells, setting aside the rest of the information provided for each gene (Figure 2). At 
first glance, the most frequently regulated processes are proliferation and chemoresistance, followed by 
differentiation, tumor growth, invasion, and apoptosis. Except for BMP4 (increase in asymmetric cell 
division and apoptosis), NF2 (reduced self-renewal, tumor growth, stemness maintenance), RXRG 
(decrease in invasion and proliferation), and DUSP7 (insufficient data for a definite conclusion), the 
remaining genes exhibit pro-cancerous properties. This corresponds to what was described in 
subsections, separately for each gene. Interestingly, two genes that promote invasiveness of stem cells (
SPOCK1, MMP13) are known to affect the cytoskeleton[33,212] and, in terms of MMP13, also the 
metabolism[90]. Two genes that were also found to regulate both the cytoskeleton and metabolism were 
MTHFD2 and RRM2. On the one hand, they control the organization of vimentin and actin; these 
proteins are known for influencing glioblastoma migratory potential[235,236]. On the other hand, the 
contribution of MTHFD2 and RRM2 to metabolism is related to folate and glutathione cycles that are 
implicated in the resistance of GBM to therapy[237,238].

In order to gravitate towards the link between metabolism, cytoskeleton, and GBM stemness, the 
appropriate representatives of each process (including the most frequently regulated processes that 
were mentioned above), were compiled into a cross-talk network. This allowed us to integrate the aim 
of our review with the main processes that are regulated by genes described in this work, additionally 
with the inclusion of GBM biomarkers (acquired from review by Sasmita et al[231]). Prevalent 
interaction types include co-expression and physical interaction between these representatives, there is 
also a high interconnectivity of the entire network, confirming that these molecular events are related. 
The cross-talk is visualized in Supplementary Figure 1, whereas the datasets used in the workflow are 
summarized in Supplementary Table 2.

The narrative of this review was intended to elaborate on the background of the biological machinery 
in which each successive gene is involved, then proceed with details regarding the regulation of 
glioblastoma, cytoskeleton/metabolism, and stemness (GBM-related or, if not present in the literature, 
any available). It is worth emphasizing that the herein described genes constitute more than half of the 
“top genes” that we established in our previous in silico study via a multi-stage methodology that 
included, e.g., enrichment analysis, machine learning algorithm, and differential expression analysis
[32]. The remainder was not presented due to a lack of stemness-related literature data (Supp-
lementary Table 1). For the part available in this paper, the majority of genes (BMP4, GRIN2B, HOXA10, 
HOXA1, MMP13, MTHFD2, PHF5A, RPS27, RRM2, SAA2, WT1) were confirmed to influence GSCs. The 
attempt to associate CMTM6, DUSP7, KIF20A, NF2, RXRG, SPOCK1, and UHRF1 with glioblastoma 
stemness revealed the promising implication in crucial biological processes that should be validated in 
future experiments. For BMP4, WT1, and RXRG, their contribution to novel therapeutic strategies was 
above-mentioned on the basis of literature data, prompting us to investigate whether any clinical trials 
utilize the products of described genes as drug components or targets. According to the ClinicalTrials 
website (https://clinicaltrials.gov/), cancer-related data can be found for six genes (Table 1); however, 
the seventh trial on GRIN2B was also included because it focused on brain research and highlights that 
selective GRIN2B antagonist is already developed. Moreover, the details on NF2-related intervention are 
not yet disclosed[239]. Collectively, these studies are in the early phases, certifying that there is still a 
room for further research.

CONCLUSION
Taken together, a promising set of genes involved in cytoskeletal rearrangements and metabolic 
alterations were found to influence glioblastoma stemness via a plethora of biological processes. Most of 
the described genes exhibit pro-cancerous properties; among them, clinical trials on GRIN2B, RRM2, 
WT1, and KIF20A are ongoing and focus on selective inhibitors or peptide-based vaccines. Concerning 
tumor suppressors, the anti-cancer effect can also be achieved via delivery of recombinant proteins (
BMP4), ligands for tumor suppressors (RXRG), or counteracting the pathways that become hyperactive 
following an anti-oncogene loss (NF2). The cytoskeletal phenomena currently linked to the described 
genes require experimental verification of their contribution to GSCs expansion. Future GBM stemness-
related research should generally delve into cytoskeleton and related molecular events, since the 
concept is already encouraging.

https://f6publishing.blob.core.windows.net/192c75b5-309c-4228-b76f-295de9c22249/WJSC-15-302-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/192c75b5-309c-4228-b76f-295de9c22249/WJSC-15-302-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/192c75b5-309c-4228-b76f-295de9c22249/WJSC-15-302-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/192c75b5-309c-4228-b76f-295de9c22249/WJSC-15-302-supplementary-material.pdf
https://clinicaltrials.gov/
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Table 1 Clinical trials that utilize the products of described genes as drug components or targets

Gene Compound Condition Trial number and 
phase Intervention details

BMP4 hrBMP4 Glioblastoma NCT02869243 (phase I) Delivery of human recombinant BMP4

GRIN2B EVT 101 Healthy volunteers (brain 
function assessment)

NCT00526968 (phase I) Delivery of selective GRIN2B antagonist

RRM2 COH29 Solid tumors NCT02112565 (phase I) Delivery of ribonucleotide reductase inhibitor

WT1 DSP-7888 Gliomas (incl. GBM) NCT02750891 (phase I/II) Delivery of WT1 peptide-based cancer vaccine

KIF20A KIF20A peptide Small cell lung cancer NCT01069653 (phase I) Delivery of KIF20A peptide-based vaccination

NF2 IAG933 Solid tumors NCT04857372 (phase I) Not yet disclosed (the drug presumably 
counteracts the YAP/TAZ hyperactivity that 
occur following NF2 loss)

RXRG 9-cis retinoic acid Breast cancer NCT00001504 (phase I) Delivery of RXRG ligand

NF2: Neurofibromatosis type 2 protein; BMP4: Bone morphogenetic protein 4; RXRG: Retinoid X receptor gamma; MMP13: Metalloproteinase 13; RRM2: 
Reductase subunit M2; SPOCK1: SPARC/Osteonectin; CWCV: Kazal-like domains 1; ECM: Extracellular matrix; WT1: Wilms’ tumor protein 1; KIF20A: 
Kinesin family member 20A; GRIN2B: Glutamate ionotropic receptor NMDA type subunit 2B.

Figure 2 Impact of described genes on biological processes related to stem cells. The “↑” or “↑” (blue) symbol indicates activation of the process 
while “↓“denotes inhibition. The impact of genes on processes (numbered from 1 to 19) is either directly confirmed (solid arrow next to the number) or recapitulated 
based on available data from various literature sources (dashed arrow next to the number). The “↓” (blue) symbol was not required as any gene inhibited the given 
process in an indirect manner. The white dashed line dividing the stem cell into two halves separates the genes with a confirmed role in glioblastoma stem cells 
(above the line) from those involved in cancer stemness outside the glioblastoma context (below the line). Figure created using Inkscape. NF2: Neurofibromatosis 
type 2 protein; BMP4: Bone morphogenetic protein 4; RXRG: Retinoid X receptor gamma; MMP13: Metalloproteinase 13; RRM2: Reductase subunit M2; SPOCK1: 
SPARC/Osteonectin; CWCV: Kazal-like domains 1; ECM: Extracellular matrix; CMTM: Chemokine-like factor superfamily.
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Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic 
modalities for treating cancer. These approaches are intended to target the more 
mature and rapidly dividing cancer cells. However, they spare the relatively 
quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation 
residing within the tumor tissue. Thus, a temporary eradication is achieved and 
the tumor bulk tends to revert supported by CSCs' resistant features. Based on 
their unique expression profile, the identification, isolation, and selective targeting 
of CSCs hold great promise for challenging treatment failure and reducing the 
risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance 
of the utilized cancer models. A new era of targeted and personalized anti-cancer 
therapies has been developed with cancer patient-derived organoids (PDOs) as a 
tool for establishing pre-clinical tumor models. Herein, we discuss the updated 
and presently available tissue-specific CSC markers in five highly occurring solid 
tumors. Additionally, we highlight the advantage and relevance of the three-
dimensional PDOs culture model as a platform for modeling cancer, evaluating 
the efficacy of CSC-based therapeutics, and predicting drug response in cancer 
patients.

Key Words: Cancer stem cells; Therapy resistance; Tissue-specific cancer stem cell 
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Core Tip: Therapeutic approaches targeting cancer stem cell (CSC) markers hold great promise toward 
developing effective anti-cancer treatment. Tissue-specific CSCs (TSCSCs) possess unique expression 
profile that allows for their identification, isolation, and targeting. TSCSCs, isolated from patient tumor 
tissues, were shown to form organ analogs or patient-derived organoids (PDOs) under specific culturing 
conditions in vitro. These models simulate the original tumor characteristics in a three-dimensional culture 
dish. As such, PDOs have the potential to be used in patient-specific in vitro drug clinical trials and proof-
of-concept studies on CSC-targeted therapies.
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Therapeutic implications. World J Stem Cells 2023; 15(5): 323-341
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INTRODUCTION
Cancer disease remains a leading cause of death worldwide. Despite significant progress directed 
toward developing anti-cancer therapies, the successful management of cancer remains impeded by 
multiple challenges, including metastatic dissemination, conventional-therapy resistance, and disease 
relapse[1,2]. Accumulating evidence suggests that the cancer stem cells (CSCs) subpopulation plays a 
vigorous role in sustaining the tumorigenic properties, thus contributing to tumor re-growth and 
progression[3] (Figure 1). This subpopulation of multipotent cells possesses unique properties of self-
renewal and differentiation and is capable of extensively proliferating and generating different lineages 
of cancerous cells, which constitute the tumor bulk and contribute to the heterogeneous phenotype 
found in tumors[2,4].

CSCs may arise from the transformation of normal stem cells (SCs) found within tissues or from the 
de-differentiation of differentiated cells[5]. They were first identified in acute myeloid leukemia[6], and 
compelling evidence later showed that they exist in a variety of solid tumors where they act as key 
drivers of tumor progression and metastasis[7,8]

CSCs harbor multiple resistance mechanisms that enrich cancer hallmarks and result in the failure of 
conventional anti-cancer therapies. One underlying mechanism is the disrupted intracellular pathways 
that profoundly control CSCs behavior. For instance, overexpression of the Notch pathway plays a dual 
role that is context and cell-type-dependent, acting either as an oncogene or tumor suppressor[9-11]. In 
the context of CSCs, the Notch pathway has been implicated in proliferation, angiogenesis, metastasis, 
stemness maintenance, tumor immune evasion, and resistance to radiation[9,11-13]. Moreover, the Wnt 
pathway has been linked to the activation of dormant CSCs, their proliferation, maintenance, and 
inhibition of apoptosis. This pathway also plays a role in the metastasis and de-differentiation of CSCs
[14,15]. Besides, the Hedgehog pathway is associated with increased proliferation, maintenance, and 
self-renewal of CSCs, as well as their migration, invasiveness, and resistance to chemotherapy[14,16,17]. 
Additionally, the NF-κB pathway is implicated in self-renewal, maintenance, and inhibition of apoptosis 
of CSCs, as well as regulation of epithelial to mesenchymal transition (EMT), angiogenesis, and 
metastasis[18]. Finally, the aberrant expression of the JAK/STAT3 pathway promotes cell survival and 
stemness properties, as well as metastasis and resistance to chemotherapy[14,19]. The intrinsic 
regulation of CSCs also occurs at the level of stemness-related transcription factors (TFs) such as OCT-4, 
SOX2, KLF4, c-MYC, STAT3, and NANOG, as well as epigenetics and epi-transcriptomics, which 
contribute to stemness maintenance and plasticity of CSCs[11]. Additionally, CSCs are regulated at an 
extrinsic level by their microenvironment, specifically by cancer-associated fibroblasts and tumor-
associated macrophages. The tumor microenvironment is a major player in modulating CSCs resistance, 
metastasis, and heterogeneity[11,20].

The resistance mechanisms of CSCs further include their overexpression of DNA repair genes, 
resulting in resistance to radiotherapy and other DNA-damaging agents[21]. Also, they express 
upregulated multidrug efflux pumps such as ATP-binding cassette (ABC) transporters that mediate the 
active transport of chemotherapeutic drugs out of the cell[22]. CSCs were shown as well to overexpress 
aldehyde dehydrogenases (ALDHs) which are enzymes involved in the detoxification of aldehydes, 
chemotherapeutic agents, and reactive oxygen species[23]. Another mechanism that promotes the 
survival of CSCs is their ability to exist at a reversible quiescent state in the G0 phase, which contributes 
to their drug resistance since most chemotherapeutic agents target highly proliferative tumor cells[24]. 
Thus, standard therapies succeed at reducing tumor size but tend to spare the highly resistant CSCs 
subpopulation. The successful elimination of tumors, therefore, necessitates targeting the residual 
dormant CSCs to yield long-lasting eradication of cancer and prevent relapse.

In this review, we provide a recapitulation of the main tissue-specific CSC (TSCSC) biomarkers in five 
of the most diagnosed solid tumors. Importantly, we highlight the beneficial role of these CSCs in 
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Figure 1 Schematic presentation of cancer stem cell markers and their contribution to cancer development, progression, and resistance 
to therapy. Several cancer stem cell (CSC) markers and regulatory signaling pathways are involved in the sustenance and activation of self-renewal, immune 
evasion, and tumor metastasis, and contribution to tumor re-growth and therapy resistance. CSC markers serve as potential therapeutic targets for cancer treatment. 
CSCs: Cancer stem cells.

providing relevant preclinical cancer models and thus improving CSC-targeted therapies.

TISSUE-SPECIFIC CANCER STEM CELLS
Given the importance of CSCs in tumor progression and prognosis, several attempts were made to 
identify and isolate CSCs from the tumor mass based on the markers they express. CSCs express a wide 
spectrum of markers, some of them being more universal than others. Several markers, mostly located 
on the cell surface, are often used in combination to ensure a more tissue-specific isolation of targeted 
CSCs. Here we provide an updated overview of the most prominent TSCSC surface markers, focusing 
on five solid cancers (prostate, colon, bladder, breast, and lung). Refer to Table 1 for the full list of 
markers.

Prostate-specific cancer stem cells
The presence of prostate CSCs (PCSCs) was identified by Collins et al[25] using SCs markers (integrin α2

β1 and CD133) that were previously identified in the normal prostate epithelium[25,26]. This subpopu-
lation of PCSCs isolated from human prostate cancer (PC) biopsies showed a high expression of CD44, 
CD133, and integrin α2β1. The isolated cells exhibited high proliferative ability and were highly invasive 
on MatrigelTM. Moreover, they possessed a high self-renewal ability and could also differentiate into 
cells expressing the same phenotype as PC cells, thus re-establishing the original heterogeneous tumor 
from which they were isolated[27].

CD133 (Prominin-1), a cell surface glycoprotein, remains one of the most used biomarkers to identify 
and isolate PCSCs either alone or in combination with other markers. In fact, CD133+ PC cells that were 
isolated from human PC cell line exhibited self-renewal ability, which was correlated with their 
expression of stemness genes[28]. These cells could also generate a heterogeneous tumor mass when 
transplanted into immunocompromised mice. Moreover, they displayed high clonogenic abilities and 
led to the formation of tumor spheres (prostaspheres) that were more malignant than the ones formed 
by CD133- PC cells. Furthermore, the CD133+ cells were chemo-resistant and demonstrated high prolif-
eration[28]. Interestingly, a well-established combination of CD133+ and CD44+ PC cells allowed the 
isolation of PCSCs and the formation of spheroids characterized by heterogeneous PC cells[29].
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Table 1 Summary of the most prominent biomarkers required to identify and isolate the tissue-specific cancer stem cells in prostate, 
colon, bladder, breast, and lung tumors

TSCSCs markers PCSCs CCSCs BCSCs BrCSCs LCSCs Ref.

CD24 - + + - [64,90,159,160]

CD26 + [161]

CD29 + + + + [99,162-164]

CD44 + + + + + [31,63,74,108,165]

CD47 + + + [78,166,167]

CD49b (integrin α2 or 
ITGA2)

+ + - + + [168-171]

CD49f (integrin α6 or 
ITGA6)

+ + + + + [99,169,172,173]

CD51 + + [69,174]

CD61 + [99]

CD66c + - [84,175]

CD67LR + [84]

CD87 + [116]

CD90 + + + + [99,110,176,177]

CD117 + + + [38,116,178]

CD126 + + + [179-181]

CD133 + + + + + [28,51,87,99,107]

CD151 + [35]

CD166 + + + + [46,104,182,183]

CD326 (EpCAM or ESA) + + + + + [48,56,116,184,185]

Integrin α2β1 + + [27,186]

TRA-1-60 + + [35,187]

Trop2 + [45]

CXCR4 + + + + [102,162,188,189]

ABCB5 + [73]

ABCG2 + + + + + [49,102,177,190,
191]

MAGE-A3 + [177]

GLDC + [102]

ALDH + + + + + [44,68,96,102,177]

BCMab1 + [79]

Lgr5 + + + [53,99,192]

Prox1 + + [70,193]

EMA (MUC1) + + - [77,194,195]

E-cadherin + + [196,197]

ZEB-1 + + + + [198-200]

PSA - [201]

CK5 + + + + [117,202-204]

CK17 + [89]

CK18 - - - [89,205,206]
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CK20 - [89]

Ar-v7 + [207]

+: Over-expressed; -: Under-expressed; Blank: Not found in the literature/controversial. TSCSCs: Tissue-specific cancer stem cells; PCSCs: Prostate cancer 
stem cells; CCSCs: Colon cancer stem cells; BCSCs: Bladder cancer stem cells; BrCSCs: Breast cancer stem cells; LCSCs: Lung cancer stem cells; EpCAM: 
Epithelial cell adhesion molecule; TRA-1-60: T cell receptor alpha locus; ALDH: Aldehyde dehydrogenase; EMA: Epithelial membrane antigen.

CD44 (also referred to as P-Glycoprotein 1) is a transmembrane glycoprotein that interacts with 
several extracellular matrix components, such as collagen, hyaluronic acid, osteopontin, and matrix 
metalloproteinases. It is one of the most conventional markers used to identify and isolate PCSCs. The 
expression of CD44 allowed the isolation of cells that were able to differentiate into all types of PC 
epithelium leading to complete reconstitution of the original tumor bulk when injected into immuno-
compromised mice[30]. Notably, CD44+ PC-derived cells expressed elevated levels of several mRNAs 
associated with stemness[31]. This marker was also associated with several aspects of PC tumorigenesis 
including proliferation, invasion, adhesion, EMT initiation, metastasis, and therapy resistance[32].

T cell receptor alpha locus (TRA-1-60) is a carbohydrate addition to podocalyxinis, which is a cell 
surface antigen that belongs to the CD36 family. TRA-1-60 is expressed on pluripotent SCs conferring 
them the ability to induce differentiation. TRA-1-60 was shown to be overexpressed in PC cells as 
compared to the adjacent normal prostate tissue, which qualifies it as a favorable marker to specifically 
target PCSCs while sparing normal cells[33]. Moreover, it was detected in the peripheral blood of 
patients with metastatic PC[34]. The isolation of TRA-1-60+ cells led to the generation of spheres and 
initiation of PC in a more efficient manner as compared to other known PCSCs markers. TRA-1-60 was 
then combined with two other markers of PCSCs (CD166 and CD151) leading to a more enhanced 
sphere-forming ability. Furthermore, the injection of the triple-marker-positive cells was able to form 
tumors with at least 5-fold more efficiency as compared to TRA-1-60+ cells alone[35].

CD117 (also termed c-Kit) is a member of the Type-III tyrosine kinase receptors known to be involved 
in several cancer mechanisms by binding to its stem cell factor (SCF) ligand[36]. CD117 overexpression 
was detected in PC[37]. A recent study suggested that CD117 may be considered a potential marker for 
PCSCs because it was shown to display a broad spectrum of tumorigenic abilities[38]. In fact, CD117 
stimulated PC cell proliferation and migration. Moreover, CD117+ cells were able to form 1.35-fold 
larger prostaspheres as compared to CD117- cells. Most importantly, CD117+ cells expressed stemness 
genes and their implantation into immunocompromised mice led to PC initiation[38].

CD49f (integrin α6 or ITGA6) is a transmembrane glycoprotein that was demonstrated to be a 
putative marker of PCSCs. CD49fhigh cells were shown to be tumor-initiating cells in the Pten-null PC 
model[39]. Moreover, CD49f was shown to be the most selective marker for targeting colony-forming 
cells[40]. Additionally, it was expressed on the surface as well as in the middle of prostatospheres[41]. 
Importantly, the expression of CD49f allowed the isolation of sphere-forming SCs[42].

In addition to the ones discussed above, there are several markers that can be used to target PCSCs 
including ALDH1A1 (ALDH 1 family member A1)[43,44], trop-2 (Tumor-associated calcium signal 
transducer 2)[45], CD166 (activated leukocyte cell adhesion molecule)[46,47], EpCAM (Epithelial cell 
adhesion molecule)[48], and ABCG2 (ATP binding cassette super-family G member 2)[49].

Colon-specific cancer stem cells
Colon CSCs (CCSCs) were first identified and isolated by Ricci-Vitiani et al[50] after the injection of 
colon cancer (CC) CD133+ cells into immunocompromised mice, which led to the generation of the 
original tumor mass contrary to their CD133- counterparts. The CD133+ cells were able to exponentially 
grow in vitro as undifferentiated spheres while preserving the same phenotypic properties of the initial 
colon tumor[50]. O'Brien et al[51] in 2007 also showed that all CC-initiating cells were CD133+ cells that 
were able to either maintain themselves as undifferentiated CCSCs or to differentiate and therefore 
sustain the tumor heterogeneity[51].

Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) (also recognized as FEX; HG38; 
GPR49; GPR67) is a seven-transmembrane G-protein coupled receptor. LGR5 is an “orphan” receptor 
abundantly expressed in active SCs of the intestinal crypts[52]. LGR5 was shown to be overexpressed in 
CC[53]. A growing body of evidence supports the idea that LGR5 is a main marker of CCSCs. For 
instance, human LGR5+ CC cells were visualized as the CSC pool in proliferating CC tissue[54]. 
Furthermore, LGR5 was demonstrated to be a marker of tumor-initiating cells, where implantation of 
LGR5+ cells was able to form colon tumors, indicating that LGR5 provides a dynamic stemness charac-
teristic in CC[55]. Additionally, LGR5 was correlated with tumor proliferation due to the ability of 
LGR5+ cells to form more multipotent spheres as compared to LGR5- cells[56]. Notably, LGR5 was 
shown to be involved in the colony formation capacity of CCSCs[56,57]. Importantly, LGR5 was found 
to have an essential role in CC metastasis where organoids derived from LGR5+ cells led to liver cancer 
formation in the absence of a primary tumor[55]. In addition, LRG5 was selected to be the most suitable 
CSC marker that identifies immature cancer cells in regional lymph nodes of CC patients[58].
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EpCAM (also known as CD326) is a Type-I transmembrane glycoprotein that serves as an epithelial 
cell adhesion molecule. Interestingly, EpCAM along with its reprogramming TFs were shown to be 
overexpressed in CC-initiating cells leading to a high self-renewal ability and increased invasiveness
[59]. In fact, EpCAM was considered to be a robust CCSCs marker[60]. Indeed, it was used along with 
CD133 and CD44 to initiate CC in mice[61]. Furthermore, EpCAM provided more enhanced CSC-like 
properties when combined with LRG5 and CD44[56]. Moreover, EpCAM was proven to promote CC 
invasion and metastasis, as EpCAMhigh/CD44+ cells were visible in corresponding liver metastasis 
regions of CC patients[62].

CD44 was also shown to be a robust marker for CCSCs. In fact, a single CD44+ cell was able not only 
to generate a sphere, but also to form a tumor with similar characteristics as the primary one from 
which it was isolated[63]. Moreover, the expression of CD44 was correlated with CC proliferation[4]. 
Furthermore, CD44 was reported as a stemness marker in spherical clusters[64]. In addition, CD44 was 
considered a reliable marker for the prediction of hepatic cancer metastasis in CC patients[65].

ALDH1 is also selected as a potential marker for CCSCs. ALDH1 expression increased during CC 
tumorigenesis and the implantation of only 25 ALDH1+ cells into immunocompromised mice led to the 
generation of xenograft tumors even in the absence of other CCSCs markers such as CD133 and CD44
[66]. Furthermore, ALDH1 expression conferred high tumorigenic abilities and chemo-resistance to CC 
cell lines[67]. Interestingly, ALDH1 was linked to lymph node and vascular invasion in CC patients[68].

Among the most specific CSCs related to CC are LGR5, CD44 and EpCAM. However, the 
combination of multiple markers allows more accurate detection of CSCs which was proven when 
LGR5, CD44 and EpCAM resulted in more potent CSCs properties as compared to each marker alone
[56]. Other markers are also attributed to CCSCs such as CD59[69], Prox1 a regulator of Notch-
independent LGR5+ SCs[70,71], CD24[4,64], CD166[72], and ABCB5 (ATP binding cassette super-family 
B member 5)[73].

Bladder-specific cancer stem cells
Bladder CSCs (BCSCs) were first isolated in 2009 by using markers for normal basal bladder SCs 
(CD44+). It was found that the CD44+ subpopulation of bladder cancer (BC) cells was 10 to 200 more 
likely to form tumors in immunocompromised mice in comparison with their CD44 counterparts[74]. 
Additionally, CD44+ BCSCs efficiently maintained the heterogeneity of the initial tumor mass after serial 
transplantation[74].

Epithelial membrane antigen (EMA, also known as MUC1) is a membrane-bound glycoprotein that 
belongs to the family of mucins[75]. EMA+ bladder cells are usually located in the mature differentiated 
layer of the urothelium, whereas EMA- cells are found in the basal layers, where SCs reside. It was 
demonstrated that EMA- BC cells had a greater colony-forming ability when compared with the 
unsorted BC population[75,76]. BCSCs can thus be identified through the combination of EMA- and 
CD44+ BC cells[77].

CD47 (also known as integrin associated protein) is a transmembrane protein overexpressed on the 
surface of CD44+ BCSCs compared to the CD44- subpopulation and was thus hypothesized to be a 
BCSCs marker[78,79]. CD47 acts like a “don’t eat me” signal by interacting with the signal regulatory 
protein-1 receptor on the surface of macrophages and neutrophils. Thus, CD47 has an immunosup-
pressive role, protecting the BSCSC from phagocytosis[78,79], that makes it a promising target for 
cancer therapy[80,81].

ALDH1A1 has also been used to isolate BCSCs. In fact, ALDH1A1+ cells retained the stem-cell ability 
to divide asymmetrically, yielding both ALDH1A1+ and ALDH1A1- cells[82]. Additionally, ALDH1A1+ 
BCSCs exhibited a greater tumorigenic potential both in vitro (sphere formation ability) and in vivo 
(xenografts in immunocompromised mice) compared to ALDH1A1- BC cells[82]. Knocking down the 
ALDH1A1 gene in BCSCs reduced their proliferation, confirming the key role played by the ALDH 
enzyme in BCSCs division and renewal[83]. Furthermore, ALDH1A1 BCSCs maintained the original 
tumor heterogeneity after sequential transplantations into immunocompromised mice[83]. Finally, 
ALDH+ BCSCs demonstrated an enhanced ability to migrate and invade tissues contrary to ALDH- BC 
cells[82].

67LR+ (67KDa Laminin Receptor)/ CD66c- (also known as CEACAM6) BC cells were demonstrated to 
have stemness properties. These markers, similar to CD44, are also present in normal bladder SCs[84]. 
He et al[85] showed that 67LR+ BCSCs were 5 to 10 times more potent in initiating tumors in vivo 
compared to 67LR- ones[85]. In addition, 67LR+ BCSCs expressed a panel of genes involved in stemness 
and resistance to chemotherapy and radiation[85,86]. Similarly, CD66c- cells were demonstrated to be 
more tumorigenic than the CD66c+ counterparts[85].

CD133+ BC cells were shown to upregulate the expression of genes involved in pluripotency. This 
subpopulation of BC cells was also more resistant to the chemotherapeutic agent cisplatin and to 
radiation. Additionally, CD133+ BCSCs exhibited a greater tumorigenicity both in vitro and in vivo, as 
well as a more aggressive proliferation in immunocompromised mice in comparison to CD133- BC cells
[87].

Additional markers are also used for the identification of BSCSC namely MAGE-A3 (Melanoma 
antigen family A, 3)[88], BCMab1[79], and several members of the cytokeratin family of proteins (CK5+, 
CK17+, CK18-, CK20-)[89].
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Breast specific cancer stem cells
The importance of breast CSCs (BrCSCs) markers was first demonstrated by Al-Hajj et al[90] only a 
subpopulation of human breast cancer (BrC) cells appeared to lead to the formation of tumors in 
immunocompromised mice. Al-Hajj et al[90] isolated ESA+CD44+CD24-/Low cells from human BrC tissue, 
and showed that as low as 200 of these cells were enough to initiate cancer in immunocompromised 
mice, whereas more than 50000 BrC cells with a different phenotype were unable to form tumors[90].

CD44 and CD24 are often used in combination to detect and isolate BrCSCs[91]. In addition to its key 
role in adhesion, cell survival, metastasis and angiogenesis, CD44 act as a TF to regulate metastasis and 
stemness of BrCSCs[92,93]. On the other hand, CD24 is a cell surface adhesion glycoprotein which plays 
a key role in cell-cell and cell-extracellular matrix (ECM) interactions[94,95]. Even though CD24 is 
overexpressed in a number of cancers (including BrC), only CD44+CD24-/Low BrCSCs were able to form 
tumors in immunocompromised mice[90]. CD44+CD24-/Low BrCSCs were also shown to be more resistant 
to chemotherapy[91].

ALDH1 has also been used to target BrCSCs, as it was shown that ALDH1+ BrC cells were more 
resistant to chemotherapy and were able to form tumors in immunocompromised mice in comparison 
to ALDH1- cells[96]. ALDH1 is essential for the early development of the stemness properties of BrCSCs
[97]. Interestingly, the subpopulation of BrC cells expressing ALDH1 is distinct from the CD44+CD24-/Low 
BrCSCs, with minimal overlap between the two (approximately 1%)[91]. Moreover, ALDH1+/CD44+ 
BrCSCs were highly tumorigenic, with a higher metastatic potential, and greater resistance to cancer 
therapies[91].

To date, CD44, CD24 and ALDH1 remain the most used biomarkers to isolate BrCSCs. Although 
there is little overlap between CD44+CD24-/Low and ALDH1+ BrCSCs, cells that share all three markers 
were more tumorigenic[98]. Moreover, the CD44/CD24 markers were more associated with cell prolif-
eration and tumorigenesis while the ALDH1 marker was positively correlated with tumor metastasis
[98]. Nonetheless, other markers have been studied and found suitable for the identification of BrCSCs, 
such as CD133 (in triple negative BrC; TNBC), GD2 (ganglioside in TNBC), CD49f, CD61+ (β3 integrin in 
Her2 BrC), CD29 (β1 integrin), CD90, and EpCAM[99-101].

Lung cancer stem cell markers
Lung cancer is histologically divided into non-small cell lung carcinoma cells (NSCLC) and small cell 
lung carcinoma (SCLC)[102]. Due to a higher incidence and the greater ease to obtain NSCLC tissue, 
NSCLC CSCs (referred to afterward as lung CSCs; LCSCs) markers have been better characterized.

CD166 (also known as ALCAM) has also been associated with stemness properties of NSCLC. CD166 
is a member of the immunoglobulin superfamily of cell adhesion molecules and participates in both 
homophilic and heterophilic interactions. Additionally, CD166 plays an important role in migration and 
invasion of LCSCs[103]. CD166 was characterized by Zhang et al[104] as the most robust cell marker for 
isolating LCSCs among other candidates (CD44, EpCAM and CD133)[104]. In contrast to CD166- 
NSCLC cells which failed to form tumors in vivo, CD166+ LCSCs were able to initiate tumors in 
immunocompromised mice. Furthermore, CD166+ NSCLC cells had enhanced self-renewal properties 
and were able to consistently form spheres in vitro.

The CD133+ subpopulation of NSCLC cells were able to indefinitely divide and form spheres in an in 
vitro setting, whereas CD133- NSCLC cells were characterized by a slow growth and an inability to form 
spheres[105]. These results also parallel the in vivo ability of CD133+ LCSCs to form tumors in immuno-
compromised mice compared to CD133- cells; the CD133+ xenografts were histologically similar to the 
initial cancer mass[105,106]. Moreover, the expression of CD133 in LCSCs was associated with increased 
resistance to chemotherapy and radiation[105,107]. Finally, CD133+ LCSCs are more prone to 
metastasize than their CD133- counterparts, especially to lymphoid organs. In fact, detection of CD133+ 
metastatic NSCLC in lymph nodes is indicative of a poor prognosis[107].

CD44 has also been studied as a marker to isolate LCSCs. Accordingly, CD44+ NSCLC cells 
demonstrated a greater ability to form spheres in vitro and to initiate tumors in immunocompromised 
mice in comparison to CD44- cells. Additionally, CD44+ LCSCs upregulated several stemness TFs to 
maintain their pluripotent properties. CD44+ LCSCs were also more resistant to the chemotherapeutic 
agent cisplatin compared to CD44- cells[108]. Moreover, the expression of CD44 in LCSCs was 
associated with an enhanced ability to metastasize and invade tissues[20].

CD90 (also known as Thy-1) is a glycosylphosphatidylinositol-anchored surface protein that is 
involved in cell-cell as well as cell-ECM interactions[109]. Initial studies have shown that CD90+ NSCLC 
cells demonstrated greater self-renewal and proliferative properties and expressed a higher level of 
stemness genes. Additionally, when compared to a control, as few as 5000 CD90+ LCSCs were able to 
initiate tumors in immunocompromised mice, indicating the stronger tumorigenicity associated with 
CD90[110].

ALDH1 was also suggested to be a LCSCs marker. Indeed, ALDH1+ LCSCs exhibited enhanced 
proliferative abilities and self-renewal properties[111,112]. Accordingly, knocking down the ALDH1A3 
gene greatly reduced the tumorigenicity and clonogenicity of LCSCs[113]. In addition, ALDH1high LCSCs 
also showed greater resistance to chemotherapeutic drugs in comparison to ALDH1low cells[112]. 
Interestingly, the overexpression of the TAZ oncogene induces the formation of LCSCs by activating the 
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ALDH1 gene[114] ALDH1 also appears to play a key role in chemoresistance as its inhibition leads to 
the re-sensitization of LCSCs to cisplatin[115].

Of note, additional markers have been used to isolate LCSCs. These include but are not limited to 
CD47, CD87, CD117, EpCAM, and CK5[116,117].

TSCSCS’ BENEFICIAL ROLE IN CANCER MODELING FOR THERAPEUTIC 
IMPLICATIONS
The conception of CSCs-targeted therapies relies on employing the above-mentioned CSCs' resistant 
characteristics and markers, which allows for CSCs' isolation, enrichment, characterization, and 
targeting[118]. CSCs-based therapeutic strategies include selectively targeting the stemness markers, 
such as the TSCSCs' surface markers, TFs, ABC transporters, and ALDHs[14,119]. As well as, the 
disrupted signaling pathways that enrich CSCs'-resistant features and contribute to their survival, 
proliferation, self-renewal, and differentiation. Also, targeting the tumor microenvironment components 
which acts as a foster niche in protecting CSCs[14,119].

In spite of the significant advances in CSCs' research and the great interest in drug discovery, there 
are currently few therapeutic approaches that have reached the late clinical stages. Many CSCs-targeting 
therapeutics performing remarkably in vitro and in vivo cultures have faced multiple hurdles in clinical 
trials[14,120]. One major reason behind this is the irrelevance of the preclinical cancer models being 
used[121-123]. Thus, more relevant CSCs models, that reflect the original tumor behavior of the 
individual patients, might strengthen the rationale for developing effective CSCs-targeted therapeutic 
modalities and complement more conventional cancer therapies.

A new era of targeted and personalized anti-cancer therapies has evolved with the three-dimensional 
(3D) patient-derived organoids (PDOs)[124]. This versatile technique relies on the exclusive ability of 
SCs to give rise to organ-like structures known as organoids[125]. Sato et al[126] established the first 
organoid model with small intestinal crypt LGR5+ SCs[126]. Subsequently, models of normal and cancer 
PDOs from multiple tissues were derived successfully[127-134].

The formation of the 3D microscopic organoids from patient tumor tissues is accomplished using 
specific culturing conditions that are designed to preserve the CSCs component of the patient's tumor
[135]. The formed PDOs, hence, recapitulate the structural and functional complexity constituting the 
originating tumor, mediated by the CSCs’ ability for self-renewal and differentiation into multiple cell 
types[136,137]. PDOs tool allows the modeling of human carcinogenesis in an in vitro culture dish[138,
139]. Precisely, the process followed to generate cancer PDOs includes utilizing a tumor tissue sample, 
surgically isolated from a cancer patient, and dissociating it into single-cell suspension using mechanical 
dissociation and enzymatic digestion methods. The heterogeneous population of cells obtained, 
containing TSCSCs, is then cultured in proper culturing conditions to allow the self-organization of cells 
into functional units or tissue-specific architectures; organ analogs. The suspended culturing system 
includes the usage of biological or synthetic hydrogel scaffolds that mimic the natural ECM 
components. In addition to using a specific culturing medium that contains a cocktail of growth factors 
and inhibitors to imitate the organ stem cell niche, allow the generation of distinct component lineages, 
and stimulate the long-term expansion of organoids[140,141].

As PDOs are CSCs-based structures and replicate faithfully the heterogeneity and histological charac-
teristics of the original cancers, they gain superiority over other models in terms of mimicking tumor 
microenvironments, facilitating the formation of ECM, exhibiting adequate proliferation rates with 
representative cellular morphology, maintaining the expression of ‘stemness-related’ markers and 
genes, and demonstrating a realistic individualized drug response[142-144]. This nominates PDOs to be 
ideal preclinical drug-response models for providing perspectives for testing novel CSCs-targeted 
therapies and evaluating the potential drug effectiveness in cancer patients (Figure 2).

PDOs technique generally shares several main steps but differs in varying degrees depending on the 
type of tissue being processed. Scaffold-based techniques are mostly adopted in culturing PDOs, where 
MatrigelTM is commonly used. The latter is a mixture of heterogeneous and gelatinous proteins secreted 
by mouse sarcoma cells. It comprises mainly adhesive proteins such as laminin, collagen IV, entactin, 
and heparin sulphate glycoprotein, which resemble the ECM and provide interactive and structural 
support to the cells[145-148]. Moreover, the universal organoid medium used in the culturing system 
adopts the first protocol developed by Sato et al[126] which includes advanced DMEM/F12 medium 
supplemented with epidermal growth factor, Noggin (NOG), and Wnt agonist R-spondin-1[126,127]. 
Other factors were then added including anaplastic lymphoma kinase 3/4/5 inhibitor A83-01, 
dihydrotestosterone, fibroblast growth factor-10, fibroblast growth factor-2, prostaglandin E2, nicoti-
namide (NAM), and p38 inhibitor SB202190, N-acetylcysteine (NAC), B27 supplement and Rho kinase 
inhibitor Y-27632 to culture PDOs successfully[149].

To date, organoids derivation from multiple human tumors including prostate, colon, bladder, breast, 
and lung cancers has been described, with varying success rates[133,150-155]. The established PDOs are 
subjected to tissue-specific genes and lineage markers expression studies to confirm that they represent 
the original tumor of the patient. Importantly, the cancerous origin of these organoids is confirmed by 
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Figure 2 Schematic presentation of patient-derived organoid applications in cancer research. Patient-derived organoid (PDO) models can be 
utilized in multiple fields of cancer research including fundamental research, drug development, and clinical application. Cancer PDOs have been used to simulate the 
tumor tissue in vitro, study the disease mechanisms and gene expression patterns, and expose them to different drugs for efficacy screenings and drug discovery 
validations. Organoids are further used as in vitro pre-clinical models for personalized medicine and the generation of ‘living’ organoid biobanks. PDO culturing 
system serves as an advanced tool in the implementation and development of precision medicine.

checking for the CSCs markers specific to each tumor tissue. The patient drug response to the therapy of 
interest can then be evaluated primarily by assessing the organoids' formation efficiency and size.

For example, a study done by Cheaito et al[150] established a minimum of 5-factor medium including 
NAC, NOG, A83-01, B27, and NAM to grow and maintain PC PDOs. Histopathological, transcriptomic, 
immunofluorescent, and immunohistochemical studies showed that the formed PDOs mimicked the 
histological architecture and prostate lineage profiles of their corresponding tissue specimens. This was 
confirmed by the presence of both prostate epithelial lineages, as the organoids stained positive for the 
luminal- (CK8, AR, and PSA) and basal- (CK5, CK14, and p63) specific markers. In addition, an 
intermediate cell population, co-expressing luminal CK8 and basal CK5 markers was also detected. 
Interestingly, CSCs markers, CD44 and CD49f, positive staining demonstrated the existence of putative 
stemlike cells within the bulk of the PDOs. Furthermore, differential drug response, between different 
patient samples, was recognized upon treatment with chemo-, radio-, and androgen-deprivation 
therapies[150]. In another study, Monzer et al[151] succeeded in establishing and propagating PDOs that 
model CC disease. The formed organoids recapitulated the architecture and the characteristics of CC 
tissues as revealed by the co-expression of the epithelial marker lineage CK19 and the CSC surface 
marker CD44. The organoids derived from different patients showed to exhibit different responses to 
Diiminoquinone treatment tested alone or in combination with Fluorouracil (5FU) chemotherapeutic 
drug. Similarly, Al Bitar et al’s study showed different responses to individual and combination 
treatments of radiation and Thymoquinone in CC PDOs[152].

Moreover, Yu et al[153] utilized BC PDOs to evaluate chimeric antigen receptor (CAR)-T cell-
mediated cytotoxicity against BC. Analysis was done to confirm that the established organoids 
recapitulate the heterogeneity and the key features of the parental BCs. Based on a set of luminal (CK20, 
uroplakin II, and GATA3) and basal markers (CK5, P63, and CD44), the formed organoids were 
classified into luminal or basal subtypes, respectively. All the BC PDOs and their corresponding tumors 
expressed Ki67 and E-cadherin, confirming their epithelial origin and high proliferative ability. 
Additionally, the specific surface antigen profiling of each tumor sample was analyzed, and the MUC1 
antigen was shown to be highly expressed among all tested antigens, in both the cancer tissues and their 
derived organoids. MUC1 was then used as a putative target to test the efficacy of second-generation 
CAR-T cells in BC PDOs[153]. Furthermore, a promising study done by Chen et al[154], showed the 
significance and applicability of using BrC PDOs as pre-clinical models for broader cancer studies, and 
more specifically as a tool to provide personalized therapy recommendations for patients with 
advanced refractory disease. This study focused mainly on deriving PDOs from specimens isolated 
from patients with advanced clinical features, including drug-resistant and metastatic BrC. The 
histopathological, immunohistochemical, and genomic characteristics were shown to be well inherited 
by the formed PDOs from the drug-treated as well as treatment-naïve tumors. Distinctive drug 
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responses were also observed[154]. Furthermore, Kim et al[133] demonstrated the distinctive therapeutic 
responses of LC and normal bronchial PDOs, derived from patient tissues comprising five histological 
subtypes of LC and non-neoplastic bronchial mucosa. The differential responses to the tested drugs 
were shown to be affected by the individual genomic alterations profile. The PDOs were also proved to 
duplicate the tissue architecture and maintain the genomic alterations of the parental lung tumors 
during long-term expansion in vitro[133].

CONCLUSION
In this review, we have discussed briefly some of the CSC features that are known to account for cancer 
resistance and relapse and make CSCs promising anti-cancer targets. Additionally, we have 
summarized the updated list of the TSCSC molecular markers in prostate, colon, bladder, and lung 
tumors that are significant to selectively isolate and therapeutically target the CSCs subpopulation. 
Besides, we highlighted the advantage of utilizing the CSC-based PDO models to simulate carcino-
genesis and predict patient-specific drug responses in vitro.

Despite the present challenges[156,157], PDOs are highly credible models that possess more 
physiological and pathological relevance than traditional ones. This robust method proved to faithfully 
maintain the histological, genetic, and stemness characteristics of their respective native tissues. 
Interestingly, the CSCs profile mimicked by the PDOs can serve as a platform for testing CSCs-targeted 
therapeutics. To our knowledge, there are no clinical trials discussing cancer PDOs in a preclinical 
context for testing CSC-targeted therapeutics[158].

Indeed, PDOs have prospective applications in patient-specific in vitro drug clinical trials and proof-
of-concept studies on CSC-targeted therapies and -resistance mechanisms. If remarkable advancements 
are made, cancer patients will ultimately benefit from this radical technology.
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Abstract
Pathological scarring and scleroderma, which are the most common conditions of 
skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular 
matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to 
fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing 
response. The pathogenesis of these diseases has not been fully clarified and is 
unfortunately accompanied by exceptionally high medical needs and poor 
treatment effects. Currently, a promising and relatively low-cost treatment has 
emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell 
therapy, including ASCs and their derivatives-purified ASC, stromal vascular 
fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources 
and easy to obtain. ASCs have been widely used in therapeutic settings for 
patients, primarily for the defection of soft tissues, such as breast enhancement 
and facial contouring. In the field of skin regeneration, ASC therapy has become a 
hot research topic because it is beneficial for reversing skin fibrosis. The ability of 
ASCs to control profibrotic factors as well as anti-inflammatory and immunomod-
ulatory actions will be discussed in this review, as well as their new applications 
in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is 
still unclear, ASCs have emerged as one of the most promising systemic 
antifibrotic therapies under development.

Key Words: Adipose-derived stem cell; Cicatrix, hypertrophic; Keloid; Scleroderma, 
localized; Stromal vascular fraction; Exosomes
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Core Tip: Pathological scarring and scleroderma are the most common conditions of skin fibrosis with high 
medical needs and poor therapeutic effects. Adipose-derived stem cell (ASC) therapy has emerged as a 
promising treatment for skin fibrosis. Here, we discuss the possible mechanism of skin fibrosis as well as 
the latest research about the mechanism of ASC therapy and its application in treating these conditions. 
ASC therapy provides a brand-new insight into the treatment of skin fibrosis.

Citation: Liu YX, Sun JM, Ho CK, Gao Y, Wen DS, Liu YD, Huang L, Zhang YF. Advancements in adipose-
derived stem cell therapy for skin fibrosis. World J Stem Cells 2023; 15(5): 342-353
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/342.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.342

INTRODUCTION
Skin fibrosis is characterized by fibroblast proliferation and extracellular matrix (ECM) deposition. In 
severe cases, it can lead to pathological changes in the skin, such as keloid and hypertrophic scars (HS), 
systemic sclerosis (SSc), and scleroderma[1,2]. The fact that there are no practical disease-modifying 
therapies for those diseases and current treatment is mainly toward managing symptoms and relieving 
complications calls for a new therapy[3,4].

Since 2001, when adipose-derived stem cells (ASCs) were first characterized, ASCs have been broadly 
studied and applied as the most promising sources of cells with regenerative and multilineage charac-
teristics[5]. In recent years, various ASC derivatives, which are rich in not only ASCs but also other 
cellular and tissue components, have been seen as possible alternatives to ASCs and have received 
increasing attention for exploring their potential applications. Due to their immunomodulatory 
properties and abundance of growth factors[6,7], ASCs and their derivatives have become new remedies 
in the treatment of skin fibrosis[8-10].

In this review, we discuss the mechanism of skin fibrosis and the mechanism of ASC therapy. We 
then summarize the application of ASCs and their derivatives in skin fibrosis. Finally, we 
retrospectively describe the safety of ASC therapy and predict the future of skin fibrosis treatments.

MECHANISM OF SKIN FIBROSIS
Many fundamental studies exploring the molecular mechanisms underlying fibrosis have revealed a 
large number of genes, molecules, and cell types that may contribute to this problem[11,12].

Keloid and HS
The pathogenesis of keloids and HS is not fully understood due to the complex dynamic process of 
wound healing. However, among all the factors that stimulate fibroblasts to differentiate into myofibro-
blasts and produce excessive amounts of collagen and ECM, the role of the inflammatory response is 
increasingly considered important[1,11,13]. Downregulation of proinflammatory cytokines such as 
interleukin 6 (IL-6) and IL-8[14] and upregulation of anti-inflammatory cytokines such as IL-10 may 
reduce scar tissue formation[15]. Additionally, inflammatory cells such as macrophages, T cells, and 
mast cells, all increase and take part in a variety of biological activities in keloids and HS[1,16]. 
Although multiple intracellular signaling pathways such as Smad, signal transducer and activator of 
transcription 3, and extracellular signal-regulated kinase 3, are involved in hypertrophic scar formation, 
transforming growth factor-β (TGF-β)/Smad is thought to be a driving force[17,18]. Thus, the basic 
purpose of current prevention and therapy methods is still to reduce inflammatory processes[19].

SSc and scleroderma
SSc is an immune-mediated rheumatic disease that is characterized by excessive collagen from 
myofibroblasts in the skin and some internal organs, microangiopathy, and impairment of the humoral 
and cellular immunity system[20,21]. Scleroderma features, without the involvement of internal organs, 
are similar to SSc[4]. SSc pathogenesis involves early vasculopathy and innate and adaptive immune 
system dysfunction[12]. Initial vasculopathy and immune system dysfunction are both involved in SSc 
pathogenesis and cause SSc inflammation and tissue fibrosis[22]. Immune cells, endothelial cells, and 
fibroblasts interact with each other and release cytokines and growth factors[21]. Workers are convinced 
that type-1-interferon and interferon-inducible genes play a role in SSc pathogenesis[23]. Additional 
important factors include platelet-derived growth factor, endothelin 1, insulin-like growth factor 1, and 
TGF, which is thought to be a major regulator of fibrosis pathways[24]. Combined treatment that targets 
epigenetic/genetic, vascular, and immunologic defects and progressive fibrosis is urgently needed[12,

https://www.wjgnet.com/1948-0210/full/v15/i5/342.htm
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21,25].

MECHANISM OF ASC THERAPY
ASCs have long been thought to have immune privileges as mesenchymal stromal cells, which do not 
induce a severe allogeneic response when injected into another organism[26,27]. However, they have 
been demonstrated to evoke cellular and humoral responses in vivo, which may lead to the rapid 
elimination of transplanted cells[27]. However, ASCs function primarily through a “hit-and-run 
mechanism” with consequently a small effect on therapeutic efficacy, at least in the short or middle term
[28,29]. Indeed, most ASCs do not require cell-to-cell contact to function but rather function through 
paracrine mechanisms that release cytokines, growth factors, and extracellular microvesicles in the 
surrounding environment[30]. As reported, the therapeutic effect of ASCs and their derivatives depends 
on paracrine secretion[31-34]. ASC-secreted active substances such as cytokines[35], growth factors[36], 
chemokines[37], and extracellular vesicles[38], regulate the microenvironment around fibroblasts and 
themselves[39,40] (Figure 1).

Regulation of the microenvironment
Immunomodulation and anti-inflammatory: After injection, ASCs activate adaptive cellular responses, 
secreting IL-1, prostaglandin E2 (PGE2), IL-4 and IL-10, and TGF-β, which modulate and stimulate 
innate immune cells[41]. It was reported that ASCs suppress CD4+ and CD8+ T-cell expansion and 
differentiation while promoting regulatory T-cell proliferation and enhancing their immunosuppressive 
activity[42]. Additionally, ASCs secrete immunosuppressive substances such as nitric oxide, PGE2, 
hepatocyte growth factor (HGF), and indoleamine 2,3-dioxygenase, which downregulate TGF-β in skin 
fibrosis and attract bone marrow (BM) cells involved in tissue repair[43,44].

Despite their immunomodulatory ability, the anti-inflammatory effects of ASCs have been gaining 
increasing attention. ASCs can drive anti-inflammatory M2 macrophage polarization and ameliorate 
macrophage infiltration[34,45]. Additionally, in a rabbit model of HS, ASCs mediated the inhibition of 
M1-polarized macrophages and defection of inflammation. Moreover, the expression of inflammatory 
cytokines and proteins such as IL-6 and monocyte chemotactic protein-1, which affect inducible nitric 
oxide synthase and cyclooxygenase-2, was notably decreased in the treated groups[46-48].

Angiogenic effects: The angiogenic effects of ASCs have been broadly discussed with regard to 
myocardial infarction, nerve injury, and tissue transplantation[49-52]. The secretion of vascular 
endothelial growth factor (VEGF) as well as the transcription of angiogenic genes are improved by ASCs
[52,53]. ASC transplantation greatly improves revascularization and tissue perfusion in ischemic scars 
by stimulating endotheliocyte proliferation in blood vessels, hastening the resumption of blood 
circulation, providing oxygen and nutrition, and improving scar texture[54]. There is also an interplay 
between ASCs and endothelial precursor cells (EPCs). Growth factors produced by ASCs, such as VEGF, 
increase the migration and survival of EPCs, while EPC-produced platelet-derived growth factor BB 
stimulates ASC proliferation and migration[36].

Regulation of fibroblasts
Proliferation and differentiation: Activated dermal fibroblasts change their phenotype into myofibro-
blasts in response to injury or stress, which increases their expression of α-smooth muscle actin (α-SMA) 
and contractile ability[55,56]. Previous studies have demonstrated that ASC conditioned medium (ASC-
CM) contains abundant growth factors and cytokines, such as IL-10, adrenomedullin, and HGF[7,57]. 
HGF, proven to inhibit fibroblast differentiation into myofibroblasts, contributes to limiting the 
profibrotic functions of myofibroblasts[58,59]. It has also been reported that ectodysplasin-A2, insulin-
like growth factor binding protein-related protein-1/insulin-like growth factor-binding protein-7 
(IGFBP-rp1/IGFBP-7), and thrombospondin-1 are increased in concentration in serum-starved ASC-
CM, which could play a role in the inhibition of fibrosis[60]. These ASC-secreted immunosuppressive 
substances suppress fibrosis by various mechanisms, including reducing the expression of TGF-β1 and 
collagen and promoting the expression of matrix metalloproteinases (MMP), thus significantly 
repressing the activity of fibroblasts in vitro and in vivo[34,61].

Expression of ECM: The synthesis of collagen, hyaluronic acid, and fibronectin by myofibroblasts, in 
particular, is essential for the prolonged and excessive formation of ECM constituents[56,62]. Inhibition 
of HS-derived fibroblast (HSF) proliferation and reduction in α-SMA, type I collagen, and type III 
collagen expression can partly explain the molecular mechanism of the effects of ASCs on HSs[46,63,
64]. In another study, ASC-CM reduced the synthesis of collagen and the expression of connective tissue 
growth factor, fibronectin, and α-SMA[65]. However, in a coculture model of ASCs and normal human 
dermal fibroblasts, ASCs increased the formation of collagen types I, III, and VI in the ECM[66]. It 
appears that ASCs could target abnormal fibroblasts and reduce pathological deposition of ECM.
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Figure 1 The brief mechanism of adipose-derived stem cell therapy in skin fibrosis. ECM: Extracellular matrix; ASC: Adipose-derived stem cell; HGF: 
Hepatocyte growth factor; IGFBP-rp1/IGFBP-7: Insulin-like growth factor binding protein-related protein-1/Insulin-like growth factor-binding protein-7; EDA-A2: 
Ectodysplasin-A2; IL-10: Interleukin 10; IL-4: Interleukin 4; IL-1β: Interleukin 1β; TGF-β: Transforming growth factor beta; PGE2: Prostaglandin E2. Figure 1 is created 
with BioRender.com.

ASC THERAPY APPLICATION
ASC therapy, including the application of ASCs and their derivatives, can be roughly divided into ASC-
based therapy and stem cell-free therapy. ASC-based therapy is mainly composed of various ASCs and 
stromal vascular fractions (SVFs), which have been broadly studied and applied in the clinic (Figure 2). 
Stem cell-free therapy, such as exosomes and ASC-CM, is increasingly popular, with fewer moral and 
safety concerns.

ASCs
One of the most promising stem cell groups, ASCs, are abundant in adipose tissue, easy to extract, and 
have few adverse effects. Compared to BM-mesenchymal stem cells, ASCs exert potent anti-inflam-
matory and remodeling properties with similar therapeutic effects[30].

Intralesional injection of ASCs reduces the formation of scars while improving color quality and scar 
pliability, potentially leading to an effective and novel anti-scarring therapy[59,67,68]. These studies 
revealed that ASCs not only inhibited fibroblast proliferation and migration but also reduced the 
expression of molecules such as TGF-β1 and Notch-1. The antifibrotic effect on fibroblasts was most 
likely mediated by the inhibition of multiple intracellular signaling pathways[18,65].

As they are inherently heterogeneous, different ASC subgroups have been studied in the hope of 
finding suitable subgroups for specific diseases.

A subpopulation of ASCs that are positive for CD74+ possesses enhanced antifibrotic abilities both in 
vitro and in vivo. Additionally, CD74+ ASC-assisted fat grafts reduce dermal thickness and fibrosis in 
radiation-induced fibrosis mouse models[69]. Another CD73+ ASC subpopulation has expressed 
significantly lower levels of procollagen lysyl hydroxylase 1, a potent stimulator of fibrosis, showing 
better therapeutic effects on wound healing[70].

To modify or enhance some properties of ASCs and overcome the limitations of curative effects of 
ASCs only, ASCs are coated or activated with small molecule drugs or genetically overexpressing 
molecules that are involved in fibrosis formation.

After overexpressing MMP-3, ASCs-MMP-3 possess not only the ability of ASCs to accelerate wound 
healing but also the capability of MMP-3 to reduce scarring[71]. Compared with mASCs alone, 
migration ability and HGF production are significantly higher in mASCs activated with LMWH, 
showing higher anti-inflammatory and anti-fibrotic capability, and might be a promising candidate for 
SSc treatment[72]. IL-10-ASCs have been proven to have the capacity to suppress the development of 
HS by reducing inflammation during wound healing as well as the proliferation and migration of HSFs 
that produce ECM[73]. Poly(3-hydroxybutyrate-cohydroxy valerate) loaded with ASCs contains the 
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Figure 2 The culture and classification of adipose-derived stem cells and their derivatives. A: Culture of adipose-derived stem cells (ASC) and their 
derivatives; B: Classification of ASC and their derivatives. EPCs: Endothelial precursor cells; ECM: extracellular matrix; Exo: Exosomes; ASC: Adipose-derived stem 
cell; ASC-CM: ASC-conditioned medium; ASC-Exo: ASC exosomes; SVF: Stromal vascular fraction. Figure 2 is created by Figdraw.

bioactive cues required to improve wound healing and scarring[74].

SVF
SVF is an aqueous fraction that contains ASCs, EPCs, endothelial cells, macrophages, smooth muscle 
cells, lymphocytes, pericytes, and preadipocytes, among other components. The advantages of SVF over 
ASCs are thought to be in two areas. First, the heterogeneous cellular composition of SVF may be 
responsible for the superior therapeutic results seen in comparative animal studies. Second, in contrast 
to ASCs, SVF can be obtained significantly more quickly without the need for cell separation or special 
cultivation conditions. As a result, the therapeutic cellular product is relatively safe and is only required 
to meet minimal regulatory requirements[75]. However, it should be emphasized that whereas ASCs are 
useful for both allogeneic and autologous treatments, SVF is only appropriate for autologous treatments 
because it contains a variety of cell types that are known to trigger immunological rejection. hASCs have 
seemed to be more effective than SVF in HS, related to their higher levels of MMP-2 and MMP-2/tissue 
inhibitors of metalloproteinase-2 ratio, as well as higher expression of TGF-3 and HGF[76]. Whether SVF 
is indeed superior to ASCs in skin fibrosis treatment needs further research[6,77].

In addition to HS and keloids, SVF is also broadly applied clinically to scleroderma and SSc. SVF gel 
has superior anti-inflammatory and antifibrotic effects on scleroderma[78]. Moreover, SSc does not 
impair SVF's ability to heal vascular damage, hence justifying the use of this novel autologous 
biotherapy[79]. SVF injection is a potentially effective treatment that seems to last for at least one year. 
Quality of life, Raynaud's phenomenon, finger edema, and hand impairment and discomfort were 
significantly improved[80-83].

Stem cell-free therapy
The secretome of ASCs, with a focus on exosomes, appears to be a suitable and safe alternative with 
more effectiveness and fewer adverse effects due to restrictions on the use of stem cells in cell-based 
treatment. Moreover, the ability to biobank the ASC secretome is a significant benefit of cell-free 
therapy. In this review, we concentrate on the current understanding of the secretome of ASCs, such as 
ASC exosomes (ASC-Exos) and ASC-CM, used in skin fibrosis stem cell-free therapy (Figure 3).

ASC-Exo: As one of the components of paracrine signaling, ASC-Exos are small, single membranous 
secretory organelles rich in proteins, lipids, nucleic acids, and carbohydrate conjugates[26,84,85]. 
Among other research discoveries, they are thought to have a variety of activities, such as reshaping the 
ECM and transmitting signals and molecules to other cells. In addition, they are not rejected by the 
immune system, have homing effects, and the dose is easily controlled[86,87]. Compared to ASCs, ASC-
Exos offer a great opportunity to create new cell-free therapeutic techniques that could circumvent the 
challenges and dangers related to using natural or synthetic stem cells[86,88].

ASC-Exos release miR-29a-3p, which can suppress the expression of several profibrotic, antiapoptotic, 
remodeling, and methylase genes[89]. ASC-Exos are now a viable new option for the systemic treatment 
of keloids. They significantly suppress the development of ECM in keloids by decreasing collagen 
synthesis and impairing the microvessel structure, enhancing the expression of TGF-3 while inhibiting 
the protein expression of Smad3 and Notch-1[84]. By suppressing the expression of the TGF-1/Smad 
pathway, ASC-EXOs may prevent keloid fibroblasts from proliferating and migrating and consequently 
promoting death[90].
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Figure 3 Adipose-derived stem cell conditioned media, exosomes, and adipose tissue extracts synthesis and therapeutic application. 
ASC: Adipose-derived stem cell; ASC-CM: ASC-conditioned medium; ASC-Exo: ASC exosomes; FBS: fetal bovine serum; PBS: Phosphate-buffered saline. Figure 3 
is created with BioRender.com.

In hypertrophic scar fibrosis, ASC-exosomal miR-192-5p targeted IL-17RA to control the Smad 
pathway, and miR-29a inhibited the TGF-2/Smad3 signaling pathway, which could be responsible for 
the antifibrotic effects[91,92]. Another postoperative study showed that hASC-Exo therapy inhibited 
collagen deposition and myofibroblast aggregation in vivo and reduced the development of HS[93].

ASC-CM: Active chemicals released by ASCs, such as cytokines, exovesicles, exosomes, DNA, and 
RNA, are found in ASC-CM and can facilitate tissue healing and control immunity. ASC-CM can lower 
treatment costs and avoid the safety issues associated with stem cell therapy[94]. One disadvantage of 
CM over stem cells is the short life of active components. Stem cells can anchor inside a tissue or organ 
after local administration and function there for a long time, but CM-containing substances such as 
growth or enzyme factors are rapidly diluted and eliminated by diffusion[95,52].

ASC-CM may reduce collagen deposition and scar formation, inhibiting the p38/mitogen-activated 
protein kinase signaling pathway can have an anti-scarring effect, and the use of ASC-CM may offer a 
unique therapeutic approach for the treatment of HS[96]. According to in vitro and ex vivo experiments, 
chyle fat-derived stem cell-CM reduced the expression of type I collagen (Col1), type III collagen (Col3), 
and SMA, which prevents fibrosis in HSFs[63]. ASCs-CM dramatically elevated MMP-1 expression and 
dose-dependently decreased cell survival, expression of fibrosis markers, tissue inhibitor of metallopro-
teinases-1, the amount of collagen produced, and the ratio of Col1/Col3. These findings show that ASC-
CM efficiently blocks fibrosis-related factors and controls ECM remodeling in HSF[64]. Combining ASC-
CM with therapeutic therapies is another development. A histologic study revealed that ASC-CM 
increased the density of cutaneous collagen and elastin and arranged them in a certain order. A good 
combination therapy for treating atrophic acne scars and skin rejuvenation is ASC-CM with FxCR[97]. 
Stronger antifibrotic effects of CD74+ ASC-conditioned media may have resulted from increased 
production of HGF, FGF2, and TGF-3 and lower levels of TGF-β1[69]. ASC-CM and polysaccharide 
hydrogels might cross-bind in situ, which could significantly improve the therapeutic results by 
reducing scar proliferation, offering a promising alternative for the prevention of HS[98].

UPDATES ON THE CLINICAL APPLICATIONS OF ASC THERAPY
To evaluate the effectiveness of ASCs, numerous clinical trials have been carried out; however, they 
have largely focused on SSCs. More research is required to determine the long-term safety of ASCs, 
detailed mechanisms of effect, and the capacity to translate experimental results into clinical practice.

ASCs are used to treat secondary-progressive multiple sclerosis in 30 individuals. However, 
assessments of treatment efficacy revealed a mild tendency toward effectiveness. Establishing the 
possible therapeutic benefit of this technique would require larger studies and presumably treatment at 
earlier stages[99].

To compare the effectiveness of an injection of ASC-SVF derived from adipose tissue with placebo in 
decreasing hand disability in 40 SSc patients. This research demonstrated a gradual improvement with 
no evidence that the AD-SVF was superior. Given the limitations of this trial, a study with a larger 
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group of patients is urgently needed to accurately determine the value of ASC-SVF therapy[100]. It was 
revealed through a randomized controlled trial that regional adipose tissue grafting is beneficial in 
repairing ischemia digital ulcers in SSc[101].

This study investigates the safety and efficacy of administering autologous SVF cells to SSc patients. 
Early evaluations at six months suggest a possible efficacy that has to be confirmed in a larger 
population randomized placebo-controlled trial. Quality of life, Raynaud's phenomenon, finger edema, 
and hand impairment and discomfort are significantly improved[83]. A sequential 12-mo follow-up 
showed significant improvement in the vascular suppression score, skin sclerosis, motion and strength 
of the hands, and finger edema. The decrease in hand discomfort was statistically significant. A benefit 
was found in daily tasks, housework, and social activities, according to the questionnaire[82].

An open cohort study found that ASCs dramatically reduced the consequences of orofacial fibrosis in 
SSc. With the inhibition of fibroblast proliferation and important fibrogenesis regulators, including TG-1 
and CTGF, ASCs may alleviate skin fibrosis[95].

SAFETY ASSESSMENT
ASCs overcome the ethical issues associated with embryonic stem cells and are therefore considered 
safe. However, as a stem cell therapy, ASCs still have problems with storage and transport, as well as 
the risk of inducing tumors and malformations[102]. Further studies on their efficiency are yet needed, 
taking into account the host environment and patient-related factors. Importantly, a long-term follow-
up is needed to supervise cancer recurrence rates in the context of previous malignancy[103].

CONCLUSION
While the underlying mechanism of skin fibrosis is still unclear, ASC therapy plays multiple roles in the 
treatment of skin fibrosis, with a combination of aesthetic and therapeutic outcomes. Different ASC 
derivatives show various properties, which might be further explored in clinical trials. In the future, 
ASC therapy is likely to become an indispensable part of combined treatment in skin fibrosis.
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Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the 
external environment and makes flexible responses to various types of stimuli. 
Epithelial cells are fast-renewed to counteract constant damage and disrupted 
barrier function to maintain their integrity. The homeostatic repair and rege-
neration of the intestinal epithelium are governed by the Lgr5+ intestinal stem 
cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to 
the different epithelial cell types. Protracted biological and physicochemical stress 
may challenge epithelial integrity and the function of ISCs. The field of ISCs is 
thus of interest for complete mucosal healing, given its relevance to diseases of 
intestinal injury and inflammation such as inflammatory bowel diseases. Here, we 
review the current understanding of the signals and mechanisms that control 
homeostasis and regeneration of the intestinal epithelium. We focus on recent 
insights into the intrinsic and extrinsic elements involved in the process of 
intestinal homeostasis, injury, and repair, which fine-tune the balance between 
self-renewal and cell fate specification in ISCs. Deciphering the regulatory 
machinery that modulates stem cell fate would aid in the development of novel 
therapeutics that facilitate mucosal healing and restore epithelial barrier function.
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Core Tip: The homeostatic repair and regeneration of the intestinal epithelium upon injury are governed by 
the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise 
to different epithelial cell types. We review the current understanding of the intrinsic niche signaling and 
extrinsic stimulating factors that control homeostasis and regeneration of the ISCs. Deciphering the 
regulatory machinery that modulates stem cell fate, and formulating strategies for better repair and 
regeneration would aid in the development of novel therapeutics that facilitate mucosal healing and restore 
epithelial barrier function.
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INTRODUCTION
Intestinal epithelium serves as the first line of defense against the external environment. As an outward 
single-layered epithelial structure, the intestinal mucosa withstands continuous mechanical, physico-
chemical, and biological insults[1,2]. To counteract intestinal injury and preserve their barrier function, 
epithelial cells are renewed every 2–5 d in most adult mammals[3]. The epithelial turnover is 
coordinated by Lgr5+ intestinal stem cells (ISCs) residing at the base of the crypts where they are kept in 
a multipotent state and produce transit amplifying (TA) progenitor cells. TA cells will undergo several 
cycles of division before migrating to the villi and ultimately differentiate into multiple lineages[4,5]. 
The disrupted barrier function and defective mucosal healing are the predominant biological features of 
intestinal pathology, and particularly, chronic gastrointestinal inflammation such as inflammatory 
bowel disease (IBD), which is represented by ulcerative colitis and Crohn’s disease[6-8]. Current clinical 
strategies focus on the symptomatic relief and blockade of inflammatory progression[9,10], while better 
solutions should emphasize the motivation of regenerative response orchestrated by ISCs for complete 
mucosal healing.

Mucosal healing is an integrated network initiated by a series of biological processes and signals[11]. 
Intestinal homeostasis is characterized by constant regeneration which demands a fine-tuned balance 
between ISC proliferation and differentiation[12,13]. In response to diverse insults, the cellular response, 
combined with the stem cell niche adaptions, synthetically modulates the fate of ISCs to restore 
homeostasis by replenishment of damaged epithelial cells, or to hasten cell demise by impairment of cell 
function and vitality[14,15]. Therefore, understanding the cellular response and niche adaptations 
during injury-induced intestinal regeneration is therefore of importance for ISC biology.

Constant efforts have been made to exploit the regulatory mechanisms of critical components that 
seal the fate of ISCs. In this review, we give an overview of ISCs and review the adaptations and signals 
required for homeostasis maintenance. We focus on the cell fate specification and biological alterations 
of ISCs upon diverse insults and provide insights into intestinal regeneration.

INTESTINAL STEM CELL
Two distinct ISC populations located at the crypts have been proposed: Crypt base columnar (CBC) 
cells, the active cycling stem cells that facilitate homeostatic self-renewal[16], and +4 cells, the quiescent 
stem cells reserved for injury-induced repair[17].

CBC cells have been the centerpiece of stem cell research since they were initially identified in 1974 as 
continuously cycling cells at the base of the crypts[18]. Radionucleotide labeling and autoradiography 
have been used to state that the cells derived from the crypts migrate upward along the villi to be 
extruded at the villus tips[19,20]. This conveyor belt mechanism confirms stem cell fueling this rapid 
self-renewal process resides at the base of the crypts[21]. The generation of Lgr5EGFP−IRES−CreERT2 mice 
reveals that Lgr5, a receptor for WNT signaling-associated R-spondins, is a highly suitable candidate for 
CBC cell recognition and specification[3]. Single-sorted Lgr5+ stem cells are also able to form these 
crypt–villus organoids and the Lgr5 hierarchy is maintained in organoids[22]. Recent studies have 
identified that p27 and Mex3a label the slowly cycling subpopulation of Lgr5+ ISCs based on single-cell 
transcriptome profiling[23,24].

In addition to Lgr5+ CBC cells, Bmi1+ cells localized at the fourth position of the crypt base and 
discovered by in vivo lineage tracing and transcriptome analyses, are a possible candidate stem cell 
population[4,25]. Functionally distinct from Lgr5+ ISCs, the quiescent +4 stem cells are considered 
reserved stem cells that replenish the continuously cycling CBC cells pool when required, and are 
highly resistant to radiation and insensitive to Wnt signal[17,26]. In face of chemoradiotherapy, Lgr5+ 
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stem cells are vulnerable to chemical- or irradiation-induced injury, due to their predominantly cycling 
nature[24,27]. Bmi1+ cells quickly revert to ISCs and the de novo-generated Lgr5+ ISCs are vital for 
epithelial regeneration[28]. The evidence summarizes the relationship between active and quiescent 
stem cells and identifies Lgr5+ stem cells as a substantial contributor to homeostatic regeneration[29].

The identification of new ISC markers and the dedication each subpopulation of ISCs commit to 
regeneration have improved the understanding of stem cell biology during homeostasis and disease. 
The emergence of new technologies has promoted the decoding of many key problems in intestinal 
diseases and tumors[4].

INTESTINAL STEM CELL NICHES
The niche in which ISCs reside can be defined as the microenvironment essential for self-renewal and 
stemness maintentance[13]. ISCs are strongly linked with adjacent cells of both epithelial and 
mesenchymal origin. These components, along with their communications, comprise the ISC niche[30,
31]. The specific instructive microenvironment offers a native source of signals that fuel ISCs to maintain 
tissue homeostasis[32]. Various cell types of the niche elaborate typical paracrine signals containing 
Wnt, R-spondin, Notch, mammalian target of rapamycin (mTOR), bone morphogenetic protein (BMP), 
epidermal growth factor (EGF) and Hippo, which fine-tune the balance between differentiation and 
proliferation of ISCs, and ensure the production of an adequate number of cells in homeostatic and 
injury conditions[1,33] (Figure 1).

Wnt signaling
The canonical Wnt signaling acts as the prominent driver for ISC proliferation. Synchronous Wnt 
binding to Frizzled and to LRP5/6 suppresses APC-related ubiquitination of β-catenin which mediates 
its nuclear translocation, the association with lymphoid enhancer binding factor/T cell factor 
transcription factors, and the succeeding transactivation of Wnt target genes[34-36]. Multiple Wnts such 
as Wnt2b, Wnt4, and Wnt5a are abundantly expressed in intestinal stroma[30]. A subset of Foxl1+ 
mesenchymal stromal cells that form a subepithelial plexus around the crypt is a crucial source of 
intestinal Wnt[37]. Genetic elimination of Foxl1+ cells triggers the loss of Wnt family expression in the 
epithelium and an abrupt cessation of proliferation of both epithelial stem cell and TA progenitor cell 
populations, but not Paneth cell[38]. Wnt2b is highly expressed in Gli1+ or αSMA+ subepithelial stromal 
cells, which is sufficient to restore epithelial integrity when injected into mice which is devoid of Wnt 
secretion[39]. Gli1+ subepithelial cells are essential contributors to the integrity of the colonic epithelium 
for Lgr5+ ISC self-renewal in the colon[40]. As a noncanonical Wnt ligand, Wnt5a deficiency causes a 
failure to develop new crypts at the wound site and limits the proliferation of crypt cells after injury in a 
transforming growth factor (TGF)β-dependent manner[41]. These findings reveal the essential role of 
Wnt signal for the stemness and proliferation of ISC and highlight the contribution of stromal cells in 
the ISC niche.

The R-spondins comprise one of crucial elements of the niche. R-spondins are secretory glycoproteins 
which firmly cement the capacity of Wnt ligands for the activation of β-catenin-dependent transcription 
and canonical Wnt signaling, while R-spondins themselves have no intrinsic Wnt signaling activity[29,
42]. Overexpressed R-spondins in vivo forcefully induce the expansion of ISCs and maintain the 
epithelial integrity against damage induced by the chemotherapeutic agent 5-fluorouracil, dextran 
sulfate sodium (DSS), or irradiation[43-45]. Wnt proteins are reported to be insufficient to directly 
regulate ISC self-renewal, while alternatively grant a fundamental competency through motivating R-
spondin ligands to actively motivate ISC[46].

Notch signaling
Notch signaling plays a dominant role in the stem cell niche by preserving the quiescent state of ISCs
[47]. Integration between Notch ligands (Notch1–4) and receptors (Jag1–2 and Dll1–4) in adjacent cells is 
required for Notch activation[48]. Different from Wnt signaling that is mainly generated from a stromal 
microenvironment, Notch signaling may function via neighboring epithelial cells or even stromal 
subpopulations contacting with ISCs, thus featuring an epithelial niche[49].

Disruption of Notch activity leads to the exhaustion of ISC and differentiation from proliferating TA 
cells to secretory cells[50]. Simultaneous Notch1/2 deletion recapitulates the global Notch inhibition 
phenotype of Lgr5+ ISC loss, while the single deletion does not change ISC activity, which suggests the 
synthetical effect of Notch1/2 in stemness maintenance[51,52].

mTOR signaling
The mTOR signaling is a vital pathway for cellular development and metabolism in mammals. mTOR 
signaling directly modulates stemness and proliferation of ISCs, functioning as a crucial determinant of 
cell status within the ISC lineage and modulating differentiation in a nutrient-dependent way[53]. 
Inhibiting mTOR signaling helps to maintain stemness of ISCs, whereas activation of mTOR facilitates 
ISCs differentiation and proliferation[54,55]. In the case of caloric restriction, the activity of mTOR 
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Figure 1 The intestinal stem cell niche and regulatory signals. The intestinal epithelium consists of crypts and villi. The crypts generate a constant stream 
of new cells that differentiate and migrate upward into the villi. These Lgr5+ intestinal stem cells reside at the bottom of the crypts and are wedged between Paneth 
cells, which protect and nurture stem cells. Above the stem cell zone is the lineage-committed progenitor cells, also known as the transit amplifying zone, divided to 
fuel the rapid epithelial cell turnover. Mature epithelial cells originate from the crypt and move up toward the villus tip. The Wnt and Notch signaling exhibit high activity 
in the stem cell niche. Activation of the signals decreases along with the increased distance from the crypt bottom. While the BMP activity stands in the opposite 
direction. WNT, R-spondin, epidermal growth factor, and mammalian target of rapamycin are secreted by Paneth cells or mesenchymal cells. YAP works through the 
Wnt signaling to maintain the crypt–villus integrity. Besides, Paneth cells provide essential Notch signals to stem cells by expressing Notch ligands. The signaling 
network in the niche establishes the baseline for self-renewal, fate determination, proliferation, and differentiation of intestinal stem cells. BMP: Bone morphogenetic 
protein; EGF: epidermal growth factor; mTOR: Mammalian target of rapamycin.

complex 1 is inhibited in Paneth cells, resulting in the paracrine release of cyclic ADP ribose that 
increases self-renewal of ISCs at the cost of differentiation[56]. In high relevance to diet, the mTOR 
pathway controls stem cell fate possibly by regulating mitochondrial metabolic states.

BMP signaling
BMP signaling acts as an initiator of differentiation in the crypt. Wnt and BMP signalings are deemed as 
opposite forces along the crypt–villus axis with counteractive gradients of activity[57]. BMP activity is 
lower in the bottom and higher towards the top of the villus[58]. To offset the inhibitory effects of BMP 
signaling on ISC fate, BMP antagonists like Noggin, Gremlin-1, and Gremlin-2 are highly expressed in 
the crypts, permitting the proliferation of ISCs. The BMP antagonists that enhance ISCs self-renewal are 
secreted by intestinal subepithelial myofibroblasts and smooth muscle cells[59,60].

EGF signaling
EGF is a vital component of the ISC niche[61]. The EGF receptor is abundantly expressed in CBCs, 
whereas its ligands are expressed in Paneth cells[62]. The activity of ErbB signaling is monitored by the 
negative regulation of Lrig1, a transmembrane protein coexpressed with Lgr5 in CBCs[62]. Loss of Lrig1 
leads to the activation of receptors and a concomitant rapid expansion of crypts and cell numbers. 
Blockade of EGF signaling in intestinal organoids drives proliferative ISCs into quiescent state and stops 
organoid budding[63]. The evidence suggests the requirement of EGF in epithelial regeneration.

Hippo signaling
The Hippo pathway, a highly conserved signaling first described in Drosophila as an organ size control 
pathway, is comprised of a core kinase cascade, Mst1/2 and Lats1/2, which phosphorylate and 
suppress transcriptional coactivators Yes1 associated transcriptional regulator (YAP) and Tafazzin 
(TAZ), thereby modulating TEA domain transcription factor 1 (TEAD)-mediated transcriptional 
activation[64,65]. YAP/TAZ are the core components for stem cell-based regeneration. YAP overex-
pression in mice accelerates the self-renewal of colonic epithelium, and augments the number of prolif-
erative cells and the cell migration along the crypt-villus axis, as detected by BrdU marker[43]. While 
YAP depletion causes a significant decrease in crypt proliferation, extensive crypt loss and consequently 
regeneration failure upon DSS or irradiation[66,67]. Loss of YAP activity contributes to higher 
sensitivity of ISCs to apoptosis and lower proliferative capacity during regeneration[68]. Moreover, the 
core Hippo kinases Lats1/2 are essential to maintain ISC activity and their deletion leads to the loss of 
ISCs[69]. This demonstrates their essential effects on epithelial proliferation and tissue regeneration. 
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YAP may actively block Wnt signaling and thus apply negative feedback on Wnt signaling via β-catenin 
inhibition[43], indicating the complex interaction between YAP and other niche signals which may need 
further investigation.

ENDOGENOUS AND ENVIRONMENTAL STIMULI
The intestinal epithelium is exposed to a hostile luminal environment, thus resulting in Lgr5+ ISCs 
continuously encountering sources of stress to maintain dynamic homeostasis. We summarize the major 
endogenous and environmental stimuli that influence stem cell regenerative potential (Figure 2).

Endogenous factors
Niche signals: Damage to the crypts can result from infections, chronic inflammation, chemoradio-
therapy, or traumatic injury and motivate a series of actions in the stem cell niche[31]. The microenvir-
onment monitors the regenerative response via regulating a series of signaling pathways, such as Wnt, 
Notch, BMP, and Hippo. This has been discussed above.

Extracellular matrix: The state of stem cells largely depends on the properties of the extracellular matrix 
(ECM)[31]. The integrin complex assists cells in sensing the stiffness of the ECM and directs the fate of 
ISCs via adhesion signaling[70,71]. In this way, the ECM affects cellular behavior, including proliferation 
and differentiation. ECM stiffness is also a vital endogenous factor of mesenchymal stem cells to differ-
entiate into osteoblasts, myoblasts, or neurons[72]. In particular, YAP/TAZ lay the foundation for ECM 
stiffness sensing and play a prominent role in intestinal repair and regeneration[73]. High matrix 
stiffness significantly enhances ISC expansion in a YAP-dependent manner[74]. These clues speculate 
that ECM sensation is capable of modulating self-renewal in ISCs.

Mitochondrial function: Mitochondrial function emerges as a central player in cell fate determination 
and extensive control of cellular stress responses, metabolism, immunity, and apoptosis[75]. Mito-
chondria are the center of energy metabolism and the regulator of stem cell homeostasis[76,77], and 
oxidative phosphorylation is particularly important to maintain the function of stem cells[78]. For 
example, pyruvate oxidation in the mitochondria works as a metabolic checkpoint of ISC self-renewal 
and/or stemness maintenance[77]. Regulators of mitochondrial signals such as ATP, reactive oxygen 
species (ROS), the mitochondrial unfolded protein response, and AMP-activated protein kinase 
signaling, will in turn affect stemness and cell cycle progression[75].

Enteric nervous system: In spite of the limited studies into the underlying relationship between the 
nervous system and intestinal epithelial regeneration, some novel indications are pointed out that the 
enteric nervous system exerts a potential role with great value. Enteric glial cells are closely connected 
with the intestinal epithelium and depletion of enteric glial cells will exacerbate DSS-induced injury
[79]. The administration of hepatocyte growth factor from neural cells of the enteric nervous system 
attenuates the hostile effects of DSS[80]. Several reports also unveil a potential effect of the enteric glial 
cells in mucosal healing through the release of the specific niche factors like glial-derived neurotropic 
factor, TGF-β1 or 15-deoxy-12,14-prostaglandin J2[41,81,82].

Extrinsic factors
Diet: The biological behavior of stem cells is largely affected by nutritional state[31]. The mTOR 
signaling is responsible for sensing the nutritional state[83]. Mice fed with a calorie-restricted diet 
exhibit an augmented function in Lgr5+ ISCs and Paneth cells compared with mice with a normal diet
[56,84]. Moreover, the calorie-restricted diet diminishes mTOR activity in quiescent stem cells, 
improving their resistance to radiation damage and promoting intestinal repair[85]. In contrast, a high-
fat diet can increase ISC activity despite decreasing Paneth cells activity. ISCs of high-fat diet mice 
exhibit higher resistance to irradiation and more efficient organoid budding potential than control mice. 
The high-fat diet activates Wnt signaling in ISCs dependent on the nuclear peroxisome proliferator-
activated receptor δ[86]. Another study also reveals that an obesogenic diet induces ISCs and progenitor 
cells hyperproliferation, triggers ISC differentiation and cell turnover, and alters the regional character-
istics of ISCs and enterocytes in mice[87]. Acute fasting has been shown to lead to transient phosphatase 
and tensin homolog (PTEN) phosphorylation within quiescent ISCs and render quiescent ISCs 
functionally poised to contribute to the regenerative response during refeeding[88].

Microorganisms: Microorganisms play an indispensable role in gut homeostasis, but the underlying 
mechanisms are complicated and elusive. Small molecules and metabolites produced by gut microbiota 
significantly contribute to the host intestinal development, function, and homeostasis[89]. Lactate from 
lactic acid-producing bacteria plays a pivotal role in promoting ISC proliferation and epithelial 
development[90]. Butyrate within the crypts conveys a growth-inhibiting effect on Lgr5+ ISCs via 
Forkhead box O3[91]. The bacterial product muramyl dipeptide has been reported to decrease the level 
of ROS in ISCs, and promote intestinal organoid growth and tissue repair[92,93]. Salmonella can enter 
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Figure 2 Modulation of stem cell fate determination and epithelial repair by various sources of stress. Both exogenous (inflammation, 
chemoradiotherapy, and diet) and endogenous factors (mitochondrial dysfunction, extracellular matrix, and enteric nervous system) have vital effects on stem cell fate 
modulation. The self-renewal capacity, the balance of proliferation and differentiation are tightly controlled in the process of epithelial repair and regeneration. ECM: 
Extracellular matrix.

the crypts during infection and cause a significant decrease in Lgr5+ ISCs[94,95]. The enteric pathogen 
rotavirus specifically invades and deteriorates differentiated cells at villus tips, and then motivates Lgr5+ 
ISCs, crypt expansion, and hyperproliferation[96]. Gut pathogens are thus distinctive elements capable 
of tuning the stem cell fate.

Inflammatory signaling: In addition to the local niche signals and physicochemical stimuli, the 
activation of the immune system is also involved in the interactions between epithelial cells and the 
niche to guarantee proper initiation and continuation of the regenerative response. Interleukin (IL)-22, 
which derives from the intestine, contains group 3 innate lymphoid cells that reside in close proximity 
to intestinal crypts and are upregulated after injury and support subsequent epithelial regeneration[97]. 
Recombinant IL-22 has been shown to directly target ISCs, thus facilitating the growth of human and 
mice intestinal organoids and promoting ISC self-renewal[98,99]. A recent study also indicates that the 
symmetric division of ISCs can be triggered by inflammatory signals to prevent excessive expansion in 
the process of epithelial repair[100].

Chemoradiotherapy: Intestinal mucosal damage occurs in 40%–60% of patients receiving chemotherapy 
or radiotherapy[101]. Chemotherapy- or radiotherapy-induced cellular apoptosis can be the primary 
factor initiating the gastrointestinal syndrome[102,103]. The injury response of intestinal epithelium 
after chemoradiotherapy has been the most extensively characterized model of Lgr5+ ISC loss and prolif-
eration to date, due to its hypersensitivity to radiation and chemotherapy. Targeting p53-dependent 
stem cell death is the core strategy for intestinal chemo- or radioprotection[102,104,105]. The Toll-like 
receptor 4 signaling pathway[106], Slit guidance ligand 2 (Slit2)/ Roundabout guidance receptor 1 
(Robo1) signaling[45], gut microbiota[90,107], and dietary components such as green tea derivative (-)-
epigallocatechin-3-gallate[108], aspartate[109], pectin[110], and vitamin D[111] have been shown to 
mitigate the loss of ISCs and alleviate intestinal injury. The deletion of CREPT suppresses the prolif-
eration and differentiation of ISCs and reduces Lgr5+ cell numbers after X-ray irradiation[112]. 
Therapeutic strategies based on the inhibition of ISC apoptosis without compromising the efficacy of 
cancer treatment are of great potential.

MODULATION OF STEM CELL FATE
The injury response of intestinal epithelium is critical to restore epithelial integrity upon diverse insults
[13]. The immediate response of intestinal damage is the loss of Lgr5+ ISCs, while it is generally adaptive 
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modulation since the reserved subpopulations are activated to replenish the defects. However, excessive 
damage may cause ISC depletion and militate against epithelial regeneration. Critical cellular 
adaptations have been made to restore homeostasis in ISCs.

Apoptosis
As the best-understood form of programmed cell death, apoptosis has been largely clarified in the field 
of stem cells. Lgr5+ ISCs are more vulnerable to apoptosis than Bmi1+ stem cells are[113]. Considering 
the critical role of mitochondria in stemness maintenance, regenerative capacity determination, and 
modulation between self-renewal and cell death programs, mitochondrial function is the vital 
determinant of stem cell fate[75]. For Lgr5+ ISCs, mitochondrial dysfunction is the major cause of 
apoptosis. A series of molecules such as Bcl-2, Puma, Survivin, Phosphoribosyl pyrophosphate 
synthetase 1 (PRPS1), and X-linked inhibitor of apoptosis have been characterized for modulating ISC 
apoptosis. Other biological processes, including immune response, hormone response, post-transla-
tional modification, and signaling such as Hippo and G protein coupled receptor, are crucial to 
controlling Lgr5+ ISC apoptosis. The pivotal molecules regulating stem cell apoptosis are shown in 
Table 1. The excavation of novel strategies based on ISC survival is of great significance to epithelial 
regeneration.

Necroptosis
Necroptosis is also involved in crypt damage. The loss of SETDB1 in ISCs, a histone methyltransferase 
that induces the trimethylation of histone H3 at lysine 9, triggers Z-DNA-binding protein 1-dependent 
necroptosis, which irreversibly disrupts the integrity of the epithelial barrier and promotes the 
progression of IBD[114]. Intestinal organoids lacking ATG16L1 are more prone to initiate tumor necrosis 
factor (TNF)α-mediated necroptosis, and therapeutic blockage of necroptosis through TNFα or RIPK1 
inhibition ameliorates the severity of IBD[115]. TNFα exacerbates necroptosis of differentiated cells and 
mediates the expansion of LGR5+ ISCs[116]. Therefore, necroptosis inhibitors could be used to promote 
mucosal healing in IBD patients.

Autophagy
Autophagy is a highly conserved process during evolution in eukaryotes, by which the cytoplasmic 
materials are degraded inside the autolysosome. Three distinct forms of autophagy, including 
microautophagy, chaperone-mediated autophagy, and macroautophagy have been described. 
Autophagy has been demonstrated crucial in modulating the interactions between gut microbiota and 
innate and adaptive immunity, in host defense against intestinal pathogens, and in maintaining 
intestinal homeostasis[117].

In the Drosophila intestine, autophagy downregulates the sensitivity of differentiated enterocytes to 
ROS when exposed to commensal bacteria. Mechanistically, the autophagic substrate Ref (2)P/p62 
accumulates upon autophagy deficiency, thus inactivating Hippo signaling and leading to stem cell 
over-proliferation[118]. Autophagy can also protect ISCs against irradiation-induced oxidative stress by 
preserving mitochondrial health and function. Accordingly, stem cell-based intestinal regeneration after 
radiotherapy is impaired in mice with Atg5 deficiency. Another recent work has highlighted the role of 
ATG16L1-dependent autophagy in protecting ISCs from irradiation-induced ROS[92,119]. In a 
Drosophila model, Atg6 deficiency impairs the inhibitory effect of metformin on ISC aging[120]. A recent 
study has confirmed the role of Atg7 in maintaining epithelial integrity against DNA damage and cell 
death[121]. With the rapid progress of Lgr5+ ISC isolation and detection, the role of autophagy in ISCs 
will be further elucidated.

Endoplasmic reticulum stress and unfolded protein response
As the primary organelle for protein folding and quality control, endoplasmic reticulum (ER) is 
sensitive to multiple intrinsic cellular disturbances and extrinsic environmental changes, which would 
alter ER homeostasis and cause misfolded protein accumulation, leading to activation of unfolded 
protein response (UPR)[122]. Previous studies have shown that UPR exerts a significant role in the 
pathogenesis and progression of IBD[123]. Human genetic studies of IBD have identified primary 
genetic abnormalities in several genes, including Xbp1, Agr2, and Ormdl3, that encode proteins 
associated with ER stress[124-126]. More importantly, the control of ISC fate is coordinated by ER stress 
and UPR. Activation of ER stress leads to the loss of stemness of ISCs in a PERK–eIF2α-dependent 
manner[127]. XBP1, a stress sensor involved in the UPR, acts as a signaling hub to regulate stem cell 
function and epithelial DNA damage responses in a p53–DDIT4L-dependent manner[128]. XBP1 is also 
demonstrated to maintain ISC quiescence and control ISC activity[129]. Intestinal epithelium-specific 
deletion of glycoprotein 96, an ER-resident master chaperone, causes rapid destruction of stem cell 
niche, followed by complete eradication of the mucosal layer and epithelial cell death[130]. In summary, 
UPR is indispensable for stemness maintenance and fate determination of ISCs.
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Table 1 Apoptosis regulation of intestinal stem cells

Biological process or 
signaling Molecule Role Evidence

Puma Pro-
apoptotic

Puma depletion reduces chemoradiotherapy- induced apoptosis in a p53-dependent manner
[102,136]

Bcl-2 Anti-
apoptotic

Bcl-2 is highly expressed in ISCs and alleviating radiation-induced damage[137]

Survivin Anti-
apoptotic

An essential guardian of ISC during mucosal healing[138]

Mitochondrial dysfunction

PRPS1 Pro-
apoptotic

PRPS1 deficiency exhibit resistance against intestinal damage in a manner dependent upon 
Lgr5+ ISCs[139]

IL-22 Anti-
apoptotic

IL-22 deficiency led to increased crypt apoptosis, depletion of ISCs[97]Immune response

NOD2 Anti-
apoptotic

Nod2 stimulation triggers stem cell survival against oxidative stress-mediated cell death[93]

Hippo YAP Anti-
apoptotic

Loss of YAP activity results in sensitivity of crypt stem cells to apoptosis and reduced cell 
proliferation during regeneration[140]

GPCR β-
Arrestin1/2

Anti-
apoptotic

βArr reduced the chemotherapy- induced Lgr5+ stem cell apoptosis by inhibiting 
endoplasmic reticulum stress[141,142]

GLP-2 Anti-
apoptotic

GLP-2 expanded intestinal organoids and downregulated apoptosis-related genes[143]Hormone

Ghrelin Anti-
apoptotic

Ghrelin treatment accelerated the reversal of radiation-induced epithelial damage and 
defective self-renewing property of ISCs[144]

Mettl14 Anti-
apoptotic

Specific deletion of the Mettl14 gene resulted in colonic stem cell apoptosis[145]Methylation

GsdmC Anti-
apoptotic

GsdmC N6-adenomethylation protects mitochondrial homeostasis and is essential for Lgr5+ 
cell survival[146]

Glycosylation HYOU1 Anti-
apoptotic

HYOU1 glycosylation modulated by FUT2 protects ISCs against apoptosis[147]

ISCs: Intestinal stem cells; PRPS1: Phosphoribosyl pyrophosphate synthetase 1; GPCR: G protein coupled receptor.

FUTURE DIRECTIONS FOR STEM-CELL-BASED THERAPY
Stem-cell-based therapy holds great promise for the complete mucosal healing of gastrointestinal 
diseases. Related studies have applied exogenous stem cells such as mesenchymal stem cells and 
placental-derived stem cells for treating intestinal inflammation and injury[131,132], and achieved 
encouraging outcomes. With the boost of research in the field of ISCs, the intestinal organoid models, 
especially those of human origin, offer a unique platform to explore the mystery of ISC fate decisions 
and lineage specification in physiological and pathological conditions[14], and excavate novel strategies 
to facilitate the regenerative capacity of ISCs. Integration with novel nanomaterials can provide a more 
effective strategy for facilitating intestinal repair targeting at ISCs, such as grape exosome-like 
nanoparticles[133], polydopamine nanoparticles[134], and carbon nanoparticles[135]. Thus, one 
important future direction in the ISCs field is to precisely tune the fate of stem cells for better 
regeneration.

CONCLUSION
Intestinal epithelial regeneration is a complex network that is based on the function of ISCs. The 
dynamic balance between stemness and self-renewal is fine-tuned by stem cell niche and various 
endogenous or extrinsic factors. Great strides have been made in our understanding of the function and 
fate specification of ISCs in health and disease. In this review, we summarize the different components 
and signals that function in ISCs in the process of intestinal epithelial injury and repair. Cellular 
adaptations including apoptosis, necroptosis, autophagy, and UPR have been extensively investigated. 
Modulating the essential niche signaling or facilitating beneficial elements in the stem cell microenvir-
onment provides novel insights into the regenerative process and opens an avenue for stem cell-based 
therapies for diseases caused by intestinal epithelial injury.
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Abstract
Mesenchymal stem cells (MSCs), distributed in many tissues in the human body, 
are multipotent cells capable of differentiating in specific directions. It is usually 
considered that the differentiation process of MSCs depends on specialized 
external stimulating factors, including cell signaling pathways, cytokines, and 
other physical stimuli. Recent findings have revealed other underrated roles in the 
differentiation process of MSCs, such as material morphology and exosomes. 
Although relevant achievements have substantially advanced the applicability of 
MSCs, some of these regulatory mechanisms still need to be better understood. 
Moreover, limitations such as long-term survival in vivo hinder the clinical 
application of MSCs therapy. This review article summarizes current knowledge 
regarding the differentiation patterns of MSCs under specific stimulating factors.

Key Words: Mesenchymal stem cells; Differentiation; Osteogenic; Chondrogenic; 
Literature review.
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Core Tip: Mesenchymal stem cells (MSCs) are multipotent cells capable of differen-
tiating in specific directions. The differentiation process of MSCs depends on diverse 
specialized external stimulating factors. The results from recent studies have revealed 
other underrated roles in the differentiation process of MSCs. However, several 
questions remain to be solved prior to stable and effective clinical treatment. Our review 
explores the differentiation patterns of MSCs and summarizes the relevant research 
according to stimulus types. Finally, future prospects are discussed with regard to their 
clinical applications.
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INTRODUCTION
Mesenchymal stem cells (MSCs), which were originally identified in the bone marrow, are adult stem 
cells with multilineage differentiation potential. Under specific induction conditions, MSCs could differ-
entiate into bone, adipose, muscle, neural, and endothelial tissue cells[1]. With the development of 
research, MSCs have been obtained from other tissues, including adipose, peripheral blood, umbilical 
cord blood, and periodontal membrane tissue[2-5]. Due to their multilineage differentiation potential 
and rich tissue sources, the application of MSCs in research on regenerative medicine is virtually 
limitless[6]. However, a specific number of MSCs are necessary for tissue regeneration; hence, there is a 
requirement for MSC amplification before therapy[7]. The question of how the differentiation of MSCs 
are controlled in vitro and in vivo remains unanswered, which has limited the effectiveness of MSCs in 
the application of regenerative medicine research. Recently, various external stimulus factors, such as 
biochemical stimuli, hypoxia, physical stimuli, material properties, and exosomes, have been found to 
have an impact on the differentiation process of MSCs (Figure 1). The purpose of this review is to 
discuss a variety of recent findings regarding the important external stimulus factors that influence the 
self-renewal and osteogenic and chondrogenic differentiation potential of MSCs.

BIOCHEMICAL STIMULI 
Growth factors, cytokines, and miRNAs are examples of biochemical stimuli that have typically been 
employed to control the destiny of MSCs. Growth factors and cytokines bind to the corresponding 
receptors and transfer signals, while miRNAs degrade mRNAs or inhibit the translation of mRNAs to 
regulate gene expression and thus influence the differentiation fate of MSCs. Numerous studies have 
examined the effects of various growth factors, cytokines, and miRNAs on the proliferation and differ-
entiation of MSCs into other cellular phenotypes (Table 1).

Growth factors
Growth factors, including fibroblast growth factor (FGF), transforming growth factor (TGF), platelet-
derived growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor and bone 
morphogenetic protein (BMP), are a class of peptides that regulate cell growth and other cell functions 
by binding to specific cell membrane receptors[8].

FGF-2, also known as basic bFGF, has been the subject of the majority of FGF research to date. In a 
concentration-dependent manner, bFGF might promote the proliferation of MSCs from several tissue 
sources, including bone marrow peri-adipocyte cells[9], synovial MSCs[10], adipose-derived stem cells 
(ADSCs)[11], umbilical cord-derived MSCs[12], and bone MSCs (BMSCs)[13,14]. Ramasamy et al[12] 
reported that cell proliferation increased accordingly with increasing bFGF concentrations in the range 
of 0-40 ng/mL. However, Ma et al[11] and Wang et al[14] observed that the proliferation efficiency of 
cells at 5 ng/mL of bFGF was higher than that at 10 ng/mL. As a result, the use of 5 ng/mL of bFGF 
appeared to be an appropriate choice to promote the proliferation of different MSCs. In addition to 
enhancing MSC proliferation, bFGF has been shown to maintain stemness, support cartilage differen-
tiation, and influence osteogenic differentiation[9,10,13]. Intriguingly, Wang et al[14] reported that bFGF 
pretreatment inhibited osteogenic differentiation at the early stage, but promoted it in the medium 
phase[13]. This finding might indicate that the addition of different growth factors at different phases of 
osteogenesis induction could successfully promote osteogenic differentiation. Therefore, more studies 
are needed to clarify the mechanism of action of bFGF at different stages of osteogenic differentiation, as 
well as to identify the best combination of growth factors to effectively promote the osteogenic differen-
tiation of MSCs.

Previous research has demonstrated the involvement of TGF-β in inducing chondrogenic differen-
tiation[5]. However, while promoting cartilage differentiation, TGF-β also led to early hypertrophic 
maturation and the eventual formation of nonfunctional fibrocartilage[2,15]. In addition, TGF-β was also 
found to promote the proliferation of MSCs and their effect on osteogenic differentiation[16,17]. MSC 
osteogenic differentiation was influenced by TGF-β in a dose-dependent manner. According to research 
by Xu et al[17], low concentrations of TGF-β (1 ng/mL) promoted the osteogenic development of 
BMSCs, whereas high concentrations (10–50 ng/mL) of TGF-β inhibited osteogenic differentiation. 
Igarashi et al[18] showed that 5 ng/mL of TGF-β regulated the phenotypic differentiation of BMSCs 
toward osteoblasts but seemed to inhibit osteogenic differentiation at the late stage, suggesting that 

https://www.wjgnet.com/1948-0210/full/v15/i5/369.htm
https://dx.doi.org/10.4252/wjsc.v15.i5.369
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Table 1 Growth factors, cytokines, and their effects on the differentiation of mesenchymal stem cells

Factors Amount/types Concentration Cell dource Results Ref.

FGF-2 10 ng/ml BM-PACs FGF-2 did not lead to cell differentiation 
into a chondrogenic lineage

Endo et al[9]

bFGF 5 ng/ml SMSCs Promoted SMSCs chondrogenic differen-
tiation

Okamura et al[10]

bFGF 0-40 ng/ml UC-MSCs bFGF did not alter osteogenic nor 
adipogenic differentiation potential

Ramasamy et al[12]

FGF

bFGF 20 ng/ml BMSCs bFGF pretreatment inhibited osteogenic 
differentiation of BMSCs at early stage, 
promoted it in the medium phase, and 
maintained it in the later stage during 
osteogenic induction

Wang et al[13]

TGF-β3 10 ng/ml SF-MSCs Increased the expression levels of COL2A1, 
SOX9, ACAN, COL10A1

Jia et al[15]

TGF-β 10 ng/ml ADSCs Promoted ADSCs chondrogenic differen-
tiation but led to early hypertrophic 
maturation

Hesari et al[2]

TGF-β1 1, 10, 20 or 50 ng/ml BMSCs Low concentration of TGF-β1 (1 ng/ml) 
promoted osteogenic differentiation of 
BMSCs while high concentration of TGF-β1 
(10 to 50 ng/ml) significantly inhibited 
osteogenesis

Xu et al[17]

TGF-β 5 ng/ml BMSCs Promoted osteogenic differentiation of 
BMSCs but suppressed the maturation of 
ostroblastic MSC differentiation at the last 
stage of osteogenic process

Igarashi et al[18]

TGF-β

TGF-β3 10 μg/L PDLSCs Induced chondrogenesis Choi et al[5]

IL-6 100 ng/mL BMSCs Promoted BMSCs osteogenic differen-
tiation

Xie et al[21]

IL-17A 5-40 ng/ml BMSCs Promoted the neuronal-associated gene 
expression of BMSCs

Chen et al[24]

IL-17 50 ng/mL Mouse MSCs Enhanced the osteogenic differentiation of 
mMSCs

Liao et al[22]

IL-6 100 ng/mL hMSCs IL-6/soluble IL-6R promoted chondrogenic 
differentiation of MSCs

Kondo et al[20]

IL-17A 50 ng/ml BMSCs Inhibited osteogenic differentiation of 
BMSCs

Wang et al[23]

IL

IL-22 10 ng/ml MSCs Upregulated osteogenic and adipogenic 
transcription factors

El-Zayadi et al[25]

FGF: Fibroblast growth factor; FGF-2/bFGF: Basic fibroblast growth factor; TGFβ: Transforming growth factor β; IL: Interleukin; BMSCs: Bone 
mesenchymal stem cells; BM-PACs: Bone marrow peri-adipocyte cells; ADSCs: Adipose-derived stem cells; hMSCs: Human mesenchymal stem cells; 
SMSCs: Synovial mesenchymal stem cells; UC-MSCs: Umbilical cord-derived mesenchymal stem cells; SF-MSCs: Synovial fluid-derived mesenchymal stem 
cells; PDLSCs: Periodontal ligament stem cells; COL2A1: Collagen type II alpha 1 chain; SOX9: Sex-determining region Y-box 9; ACAN: Aggrecan protein; 
COL10A1: collagen type X alpha 1 chain.

additional cellular signals were necessary for the osteogenic differentiation of some types of MSCs. 
Therefore, it is crucial to determine how to prevent hypertrophy during TGF-β promoted cartilage 
differentiation.

Cytokines
The fate of MSCs might be influenced by many cytokines, such as interleukin (IL), tumor necrosis factor 
(TNF) and interferons (IFN). Studies have previously examined how various cytokines affected 
osteogenic differentiation. IL-10, IL-11, IL-18, and IFN-γ promoted osteogenesis, while TNF-α, TNF-β, 
IL-1α, IL-4, IL-7, IL-12, IL-13, IL-23, IFN-α and IFN-β inhibited osteogenesis[19]. In this article, we focus 
on recently discovered cytokines such as IL-6, IL-17, and IL-22 that have the potential to affect the fate of 
MSCs.

MSCs both produced IL-6 and reacted to it. Furthermore, the gradual reduction in IL-6 secretion by 
MSCs during chondrogenic differentiation suggested that IL-6 was one of the distinguishing character-
istics of undifferentiated MSCs[20]. Nevertheless, the addition of exogenous IL-6 was found to be 
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Figure 1 Overview of stimulating factors in differentiation of mesenchymal stem cells. MSC: Mesenchymal stem cell; IL: Interleukin; FGF: Fibroblast 
growth factor; TGF-β: Transforming growth factor-β.

effective in promoting the osteogenic differentiation and chondrogenic differentiation of MSCs[20,21]. In 
contrast to previous studies, Xie et al[21] discovered that IL-6 secretion by BMSCs increased rather than 
decreased with osteogenic differentiation. The effect of IL-17A on the osteogenic differentiation of MSCs 
also seemed to be contradictory. Liao et al[22] reported that IL-17A inhibited the osteogenic differen-
tiation of MSCs as well as pre-osteoblast cell lines. However, the study by Wang et al[23] showed the 
opposite. The appearance of these phenomena might be due to different microenvironments and 
cellular sources. Additionally, different concentrations of IL-17A have been shown to promote neuronal 
differentiation, with the best effect at 20 ng/mL[24]. The effect of IL-22 on the proliferation and differen-
tiation of MSCs was first reported by scholars in 2017, which showed that IL-22 alone could upregulate 
the levels of osteogenic and lipogenic transcription factors but needed to be combined with IFN-γ and 
TNF to promote the proliferation of MSCs[25].

Cytokines must bind to specific receptors to transmit signals. The amount of the relevant receptor for 
cytokines appeared to be the rate-limiting element regulating the differentiation of MSCs[20]. Therefore, 
more studies are required to determine how cytokines affect the growth and differentiation of MSCs. 
Moreover, a fresh approach will be to look for factors that may raise the number of cytokine receptors 
on the surfaces of MSCs.

miRNAs
Small non-coding RNAs (approximately 20–25 nucleotides) called miRNAs are a subclass that could 
bind to complementary target sites in mRNA molecules to inhibit translation or decrease mRNA 
stability, which controls gene expression[26]. In this case, miRNAs could regulate the expression of key 
genes during the differentiation of MSCs in specific lineages to influence the direction of differentiation 
of MSCs (Table 2).

The osteogenic differentiation of MSCs was found to be regulated by micro RNA-1286[27], micro 
RNA-223-3p[28], micro RNA-346-5p[29], micro RNA-21[4] and micro RNA-130a[30], whereas the 
chondrogenic differentiation of MSCs was found to be regulated by micro RNA-130b[31], micro RNA-
218[32], micro RNA-495[33] and micro RNA-30a[34]. In addition to this, some miRNAs also exhibited 
roles in regulating the adipogenic differentiation[30], endothelial differentiation[26], neuronal differen-
tiation[35], and myocardial differentiation[36,37] of MSCs.

In conclusion, investigating the impact of biochemical stimuli on the growth and differentiation of 
MSCs has aided our understanding of the patterns of the aberrant differentiation of MSCs in diseased 
situations and aided in identifying novel therapeutic targets. It appears to be a promising avenue to 
examine the impact of the combination of diverse biochemical stimuli on the fate of MSCs, since distinct 
biochemical stimuli in the microenvironment in which MSCs are positioned function in a compound 
manner. Additionally, since the functions of cytokines and growth factors are dependent on binding to 
the appropriate receptors and some studies have indicated that receptor expression might be the rate-
limiting factor, it would be preferable to determine methods to boost receptor expression as opposed to 
raising cytokine and growth factor concentrations.
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Table 2 Micro RNA and their effects on the differentiation of mesenchymal stem cells

Amount/types Expression Cell source Results Ref.

micro-RNA-1286 Over expression hMSCs ↓ Osteogenic differentiation Zhou et al[27]

micro-RNA-223-3p Low expression BMSCs ↑ Osteogenic differentiation Long et al[28]

micro-RNA-346-5p Over expression BMSCs ↓ Osteogenic differentiation Zhang et al[29]

micro-RNA-21 Over expression hucMSCs ↑ Osteogenic differentiation Meng et al[4]

micro-RNA-130a Over expression BMSCs ↑ Osteogenic differentiation ↓ adipogenic 
differentiation

Lin et al[30]

micro-RNA-130b Low expression BMSCs ↑ Chondrogenic differentiation Zhang et al[31]

micro-RNA-218 Over expression SDSCs ↑ Chondrogenic differentiation during the 
eraly stage

Chen et al[32]

micro-RNA-495 Over expression hMSCs ↓ Chondrogenic differentiation Lee et al[33]

micro-RNA-30a Over expression BMSCs ↑ Chondrogenic differentiation Tian et al[34]

micro-RNA-145 Low expression ADSCs ↑ Endothelial differentiation Arderiu et al[26]

micro-RNA-124 Over expression ADSCs ↑ Neuronal differentiation Mondanizadeh et al[35]

micro-RNA-10-5p Low expression BMSCs ↑ Myocardial differentiation Li et al[36]

micro-RNA-499a-5p Over expression BMSCs ↑ Cardiomyogenic differentiation Neshati et al[37]

↑: Increase; ↓: Decrease; hMSCs: Human mesenchymal stem cells; BMSCs: Bone mesenchymal stem cells; hucMSCs: Human umbilical cord mesenchymal 
stem cells; SDSCs: Synovium-derived mesenchymal stem cells; ADSCs: Adipose-derived stem cells.

PHYSICAL STIMULI 
In addition to the previously mentioned biochemical stimuli, physical stimuli such as electromagnetic 
fields (EMF), microgravity (MG), fluid shear stress (FSS), and hydrostatic pressure (HP) could also have 
an impact on the proliferation and differentiation of MSCs (Table 3). EMF, a non-invasive biophysical 
therapy, is a combination of electric and magnetic fields and has been widely used in the treatment of 
bone diseases[38,39]. Exposure to sinusoidal EMF (1mT,15Hz,4h/d) promoted the proliferation and 
osteogenic and chondrogenic differentiation of BMSCs[40]. In contrast, Wang et al[41] found that EMF 
also promoted the osteogenic differentiation of MSCs but did not inhibit their proliferation under the 
same parameters. With the exception of 75 Hz square EMF, Asadian et al[42] discovered that EMFs of 
various frequencies and waveforms (25, 50 Hz square, and sinusoidal waveform EMFs) enabled the 
suppression of BMSC growth. This might imply that MSCs from different sources had different sensit-
ivities to EMFs. Distinct EMFs had different responses to MSCs. It is crucial to investigate the most 
appropriate EMF parameters for the proliferation or directed differentiation of MSCs from various 
sources. For instance, MSCs exposed for a brief period of time to low-amplitude and low-frequency 
pulsed EMF could be encouraged to differentiate into chondrogenic cells[43], while sinusoidal EMF at 1 
mT, 15 Hz, 4 h/d was favorable for MSCs to differentiate into osteogenic cells[40,41], and higher-
frequency EMF could also encourage MSCs to differentiate into neuronal cells[42].

Another independent factor influencing the destiny of MSCs has been identified as MG. Most of the 
research was thus for only conducted in a simulated MG (SMG) environment produced by a clinostat or 
rotating vessel, since examining the proliferation and differentiation patterns of MSCs in an actual MG 
environment led to some technical and budgetary challenges[44]. Quynh et al[45] found that SMG 
inhibited the proliferation of human umbilical cord MSCs by blocking the cell cycle; in contrast, a study 
by Nakaji-Hirabayashi et al[46] revealed a proliferative effect. The various SMG action times could be 
responsible for this circumstance. Shorter SMG treatments appeared to inhibit osteogenesis[47-49] and 
promote endothelial cell differentiation[48], neuronal differentiation[44,48], and adipogenic differen-
tiation[48,49]. However, extended SMG decreased the potential for chondrogenic differentiation in 
MSCs[50] and encouraged their differentiation toward osteogenesis[46,48]. Different SMG action times 
had different effects on the cytoskeleton and could even lead to the aforementioned changes through 
different signal transduction pathways. In this regard, further studies are needed to determine the 
appropriate SMG treatment time in regulating the specific lineage differentiation of MSCs.

FSS refers to the mechanical force caused by the friction of fluid flow on the apical cell membrane. It 
has been demonstrated that the proliferation and differentiation of MSCs are significantly influenced by 
the strength, timing, and rate of FSS. Jing et al[51] discovered that the proliferation of BMSCs could be 
effectively induced by 0.06 dyn/cm2 of FSS stimulation, but as the intensity of the FSS increased, cell 
proliferation gradually decreased or was even inhibited. Meanwhile, Zhao et al[52] revealed that FSS 
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Table 3 Physical stimuli and their effects on the differentiation of mesenchymal stem cells

Physical 
stimuli Parameters Cell 

source Results Ref.

EMF 1 mT, 15 Hz, 4 h/day BMSCs BMSCs pretreated with EMF exhibited stronger osteogenic and 
chondrogenic differentiation potential and weaker adipogenesis 
capacity

Tu et al[40]

25, 50, 75Hz square and 
sinusoidal waveform EMF

BMSCs EMF induced BMSCs differentiation to neuron cells in all treatment 
groups

Asadian et al[42]

1 mT, 15 Hz, 4 h/day Rabbit 
MSCs

EMF enhanced the osteogenic potential of MSCs Wang et al[41]

PEMF MSCs Brief exposure to low amplitude PEMFs enhanced the ability of MSCs 
to produce and secrete paracrine factors capable of promoting 
cartilage regeneration

Parate et al[43]

SMG 30 g for 72 h or 10 days Adult rat 
MSCs

A shorter period of SMG promoted MSCs to differentiate into 
endothelial, neuronal and adipogenic cells. In comparison, a longer 
period of SMG promoted MSCs to differentiate into osteoblasts

Xue et al[48]

10 rpm, 72 h, 0.001 G BMSCs Inhibited osteogenic differentiation of MSCs Liu et al[47]

30 rpm clinorotation, 3 d Adult rat 
MSCs

Promoted the neuronal differentiation of rat MSCs Chen et al[44]

7 rpm, 21 d hMSCs Lowered the chondrogenic potential of hMSCs Mayer-Wagner et 
al[50]

Microgravity 0.001 G hMSCs microgravity-cultured hMSCs showed a better ability to differentiate 
into osteoblasts and adipocytes compared to cells cultured under 
natural gravity conditions

Nakaji-
Hirabayashi et al
[46]]

Spare 
microgravity

hMSCs Spare microgravity reduced the osteogenic differentiation of hMSCs 
and shifted the osteogenesis of hMSCs into adipogenesis, even during 
ostergenic induction

Zhang et al[49]

FSS 0.375 dyn/cm2, 2 h/d BMSCs Promoted osteogenesis-related genes and proteins in BMSCs Jiang et al[54]

0.06 dyn/cm2, 6 h/d BMSCs Proper FSS stimulation obviously enhanced BMSCs osteogenesis, 
while the expressions of osteogenic genes decreased with higher 
intensity of FSS

Jing et al[51]

0.5, 0.8 Pa, 3 h/d MSCs Promoted MSCs ostegenesis Jiao et al[55]

3-7 dynes/cm2 hMSCs Enhanced osteogenic differentiation Zhao et al[52]

4.2 dynes/cm2 hMSCs FSS could lead to the osteogenic differentiation of hMSCs Liu et al[53]

ΔSS from 0 dyn/cm2 to 10 
dyn/cm2

MSCs Fast ΔSS (0–0′) profits the chondrogenic differentiation, while Slow ΔSS 
(0–2′) advances osteogenic differentiation

Yue et al[57]

ΔSS from 0 dyn/cm2 to 10 
dyn/cm2

MSCs Fast ΔSS (0–0′) profits the chondrogenic differentiation, while Slow ΔSS 
(0–2′) advances osteogenic differentiation

Lu et al[56]

HP 10 MPa, 1 Hz, 4 h/d, 5 
d/w, 3 w

BMSCs HP promoted BMSCs chondrogenic differentiation Steward et al[60]

0-0.5 MPa, 0.5 Hz hMSCs HP promoted the differentiation of the hMSCs toward osteogenesis Huang et al[59]

270 kPa, 1 Hz, 1 h/d, 5 
d/w, 3 w

BMSCs HP promoted chondrogenic differentiation of BMSCs Luo et al[64]

100 psi ADSCs HP significantly increased osteogenic differentiation of AMSCs Ru et al[65]

90 kPa, 1 h BMSCs HP promoted chondrogenic differentiation of BMSCs Zhao et al[61]

90 kPa, 1 h BMSCs HP promoted the expression of marker genes for early osteogenic 
differentiation and chondrogenic differentiation of the BMSCs

Zhao et al[62]

BMSCs: Bone mesenchymal stem cells; EMF: Electromagnetic field; PEMF: Pulsed electromagnetic field; ADSCs: Adipose-derived stem cells; SMG: 
Simulated microgravity; hMSCs: Human mesenchymal stem cells; hucMSCs: Human umbilical cord mesenchymal stem cells; FSS: Fluid shear stress; ΔSS: 
Rate of fluid shear stress; HP: Hydrostatic pressure.

regulated cell proliferation in a rate- and time-dependent manner, with high FSS (9–20 dyn/cm2) and 
the continuous effect of low FSS both inhibiting MSC proliferation, but the intermittent effect of low FSS 
(1–9 dyn/cm2) appeared to have little or no effect. Liu et al[53] shown that FSS (4.2 dyn/cm2) could 
promote the proliferation of MSCs implanted on 3D poly(lactic-co-glycolic acid) scaffolds. Although the 
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effects of FSS on the proliferation of MSCs were differently stated, its promotion of osteogenic differen-
tiation[52-55] seemed to be consistent. Regarding how the rate of FSS (ΔSS) affects MSCs, it was 
observed that quick ΔSS (From 0 dyn/cm2 in 0 min) was more beneficial for MSCs' chondrogenic 
development, whereas slow ΔSS (From 0 dyn/cm2 in 2 mins) encouraged their osteogenic differentiation
[56,57]. Clearly, more research is required to confirm the impact of FSS on MSC proliferation, as well as 
the appropriate stimulus parameters for osteogenic differentiation and MSC proliferation.

HP, unlike other physical stimuli, applies homogeneous tension without causing cellular deformation
[58]. Physiological load (0.1-10 mPa) did not affect the proliferation of MSCs[59,60], whereas a load of 90 
kPa effectively promoted the proliferation of MSCs[61,62], a possibility that resulted from the initiation 
of the cell cycle by HP[62]. Studies conducted in the past have indicated that HP at low loads (1–50 kPa) 
has an osteogenic impact on MSCs, whereas HP at physiological loads efficiently promoted 
chondrogenic differentiation[63]. This concept was also supported by several recent research works[60,
64]. Some investigations, however, discovered a facilitative effect of physiological loading on MSCs' 
osteogenic differentiation[59,65], and a chondrogenic effect of low loading on MSCs[61,62]. 
Additionally, the study by Zhao et al[62] discovered that HP (70 kPa) could not only stimulate RhoA 
activation, which in turn promoted the expression of early osteogenic differentiation genes in BMSCs, 
but could also upregulate Rac1 and downregulate RhoA, which further promoted cartilage deve-
lopment in BMSCs. These findings suggested that further studies are needed to determine the effects of 
different loads of HP on the spectral differentiation of MSCs and their complex mechanisms.

Overall, physical stimuli did influence MSCs’ proliferation and differentiation to varying degrees, but 
there is still no consensus on the parameters that are most conducive to the proliferation and specific 
lineages’ differentiation of MSCs. Cell heterogeneity, various stemness potentials, culture conditions, 
and techniques that simulated physical stimulation might all be contributing factors in this issue. 
Therefore, more studies are needed to determine the appropriate parameters of physical stimuli that 
promote the differentiation of MSCs. In fact, the actual microenvironment in which cells were exposed 
was multifactorial. Therefore, some studies are now starting to consider the effect of compound factors
[50,55,61,66] on the behavior of MSCs. Compound factors could have synergistic effects that increase the 
benefits for MSCs or counteract the drawbacks of a single factor. This might emerge as a new trend.

HYPOXIA
In most studies, MSCs were cultured under atmospheric oxygen tension (20%-21% O2)[67]. However, 
MSCs in different ecological niches encounter oxygen concentrations that are significantly lower than 
20% (Table 4). For instance, the O2 concentration that MSCs experienced varied from 1% to 5%[68] in 
adipose tissue and from 1% to 7%[69] in bone marrow. As a result, MSCs from different tissue sources 
were in a hypoxia microenvironment in vivo. Hypoxia activated various signaling pathways within a 
cell, which could lead to either cell death or cell adaptation[70]. Theoretically, culturing MSCs at 
physiological oxygen concentrations facilitated their proliferation, differentiation, and the secretion of 
cytokines and growth factors. Ciapetti et al[71] discovered that hypoxic circumstances greatly boosted 
BMSCs’ proliferation and colony-forming capacity, as well as the expression of genes relevant to bone, 
such as alkaline phosphatase and osteocalcin, supporting the above idea. In contrast, in a study by Xu et 
al[72], hypoxia inhibited the osteogenic differentiation of BMSCs by activating the Notch pathway. 
Therefore, we focus on the effect of hypoxia on the behavior of MSCs and try to explain the contra-
dictory findings in different studies.

The two primary techniques used nowadays to create in vitro hypoxic settings are anaerobic chambers
[73] and simulation utilizing different chemicals[74]. In a study by Elabd et al[75], moderate hypoxia (5% 
O2) circumstances promoted the chondrogenic and adipogenic differentiation of BMSCs but had no 
effect on proliferation or osteogenic differentiation. At the same oxygen concentration, Lee et al[76] 
showed that hypoxia promoted MSC proliferation and increased the chondrogenic differentiation 
potential. The proliferation of MSCs was also effectively promoted at a 5.5%-6.5% O2 concentration 
simulated by 10 μM CoCl2 and 4.0 mmol/L Na2SO3[74]. In contrast, Yu et al[77] demonstrated that a 50 
M CoCl2-simulated hypoxia environment appeared to prevent the growth of MSCs. Consistently, the 
osteogenic differentiation of MSCs was promoted in hypoxia environments simulated using different 
concentrations of CoCl2[74,77]. Cicione et al[78] investigated the changes in the trilineage differentiation 
potential of BMSCs under severe hypoxia (1% O2) and showed that the trilineage differentiation 
potential of BMSCs was inhibited to different degrees. Additional research demonstrated that the 
activation of the Notch pathway may be responsible for the suppression of the osteogenic differentiation 
of MSCs by severe hypoxia (1% O2)[3,72]. In addition, Kim et al[79] found that hypoxia could inhibit the 
osteogenic differentiation of ADSCs by upregulating insulin-like growth factor binding-protein-3. 
Hypoxia has also been shown to encourage the tendon[73] and neural[80] differentiation of MSCs.

Compared to the laboratory culture environment (20%-21% O2), hypoxia is more representative of the 
oxygen concentration in the ecological niche of MSCs. Varied oxygen concentrations had extremely 
different impacts on MSCs. Moderate hypoxia environment enhanced MSCs’ proliferation, osteogenic 
differentiation, and chondrogenic differentiation. The differentiation capability of all three lineages of 
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Table 4 Hypoxia and their effects on the differentiation of mesenchymal stem cells

Conditions Cell source Results Ref.

Hypoxic culture (5%O2) BMSCs ↑ Chondrogenic differentiation; ↑ adipogenic differentiation Elabd et al[75]

Hypoxic culture (5.5%-6.5%O2) Balb/c mouse clonal 
MSCs

↑ Osteogenic differentiation Kim et al[74]

Hypoxic culture (50 μM CoCl2 
simulation)

Mice MSCs ↑ Osteogenic differentiation Yu et al[77]

Hypoxic culture (5%O2) ADSCs ↑ Chondrogenic differentiation Lee et al[76]

Hypoxic culture (1%O2) PBMSCs ↑ Osteogenic differentiation Yang et al[3]

Hypoxic culture (1%O2) BMSCs ↓ Osteogenic differentiation; ↓ adipogenic differentiation; ↓ chondrogenic 
differentiation

Cicione et al
[78]

Hypoxic culture (1%O2) BMSCs ↑ Neuronal differentiation Wang et al[80]

Hypoxic culture (1%O2) BMSCs ↓ Osteogenic differentiation Xu et al[72]

Hypoxic culture (2%O2) ADSCs ↑ Tenocyte differentiation Yu et al[73]

Hypoxic culture (2%O2) ADSCs ↓ Osteogenic differentiation Kim et al[79]

Hypoxic culture (2%O2) BMSCs ↑ Osteogenic differentiation Ciapetti et al
[71]

↑: Increase; ↓: Decrease; BMSCs: Bone mesenchymal stem cells; MSCs: Mesenchymal stem cells; ADSCs: Adipose-derived stem cells; PBMSCs: Peripheral 
blood mesenchymal stem cells.

MSCs was, however, somewhat hindered under severe hypoxia. The contradictory behavior in the 
aforementioned research might potentially be connected to the cell source of MSCs and whether they 
were differentiated under hypoxia conditions. In view of current studies generally focusing on hypoxia 
exposure either in the phase of expansion or differentiation, which have not been fully grasped, further 
research is necessary to comprehend the effects on MSCs specifically in these two culture forms.

MATRIX STIFFNESS AND SURFACE TOPOGRAPHY
Two crucial material physical characteristics that have a significant impact on MSC behavior are matrix 
stiffness and surface topography. Matrix stiffness is a passive mechanical parameter that the cell can not 
directly sense. By exerting traction pressures on the cytoskeleton through focal adhesion, cells might 
deform the extracellular matrix (ECM), reflecting matrix stiffness[81]. Materials with ECM properties 
are currently being designed to simulate the actual microenvironment of cells. The ECMs of different 
native tissues, such as bone, cartilage, nerves, or blood vessels, are composed of micro- and nanoscale 
topographic patterns[82]. As a result, an increasing number of researchers have begun to look into how 
the substrate surface topography affects MSC behavior. Size and surface roughness are the two most 
fundamental parameters of surface topography[83], and the effects of these two factors, as well as 
substrate stiffness, on the proliferation and differentiation of MSCs are also mainly explored here.

Matrix stiffness 
Stiffness is one of the most common metrics in assessing a material's mechanical properties[81], and it is 
typically expressed in terms of Young's modulus. Matrix stiffness has been shown in many studies to 
affect the proliferation and differentiation of MSCs. MSCs exhibited higher proliferative behavior under 
a higher substrate stiffness, and Winer et al[84] found that MSCs inoculated in 250-Pa polyacrylamide 
gels that mimicked the elasticity of bone marrow and adipose tissue exhibited cell cycle arrest, but these 
arrested cells re-entered the cell cycle when a stiff substrate was present[84]. In comparison to lower-
stiffness gels, higher-stiffness matrices could increase the number of cells by a factor of 10[85]. With 
fibronectin-coated polyacrylamide hydrogels, Sun et al[86] controlled the mechanical environment of 
BMSCs and discovered that BMSCs’ proliferation increased with increasing stiffness. However, as 
opposed to firmer substrates, Lin et al[87] discovered that MSCs cultivated on softer substrates had 
greater cell proliferation rates. Gelma hydrogels with different concentrations not only had different 
hardness, but also showed different porosity as well. Moreover, the pore size also seemed to be one of 
the influencing factors for the proliferation and differentiation of MSCs. Indeed, many studies have 
focused on the effect of matrix stiffness on the direction of differentiation of MSCs. MSCs exhibited the 
upregulation of biomarkers matching tissue stiffness on polyacrylamide gels of different stiffness, such 
as neurogenic (0.1-1 kPa, brain), myogenic (8-17 kPa, muscle), and osteogenic (25-40 kPa, bone) markers
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[88]. BMSCs could be driven to develop into an osteogenic phenotype and expressed increased 
quantities of bone-derived biomarkers including Runt-related transcription factor 2 (RUNX2), alkaline 
phosphatase (ALP), and bone-bridging proteins when grown on polyacrylamide hydrogels (62-68 kPa)
[86]. Rowlands et al[85] found that the osteogenic differentiation of MSCs occurred mainly on polyac-
rylamide gels of 80 kPa stiffness and that RUNX2 was also expressed at high levels. This might be due 
to the fact that the 80 kPa collagen I coating could well simulate the microenvironment of the bone 
tissue. Without an induction medium, the stiffness of the hydrogel itself had a substantial impact in 
controlling MSC differentiation early on, with softer substrates encouraging the adipogenic differen-
tiation of MSCs, while harder substrates encouraged the osteogenic differentiation of MSCs[89]. 
However, this effect seemed to be gradually attenuated by biochemical effects in the culture medium, 
implying that the effects of different factors on the differentiation behavior of MSCs might occur at 
different stages of differentiation. On 22 kPa gels, as opposed to softer matrices, MSCs produced larger 
quantities of ALP, which was consistent with the effect of matrix stiffness on osteogenic fractionation 
shown in the previous work[90]. Although more disagreement has emerged regarding the effect of 
softer matrices on the differentiation fate of MSCs, such as adipogenic differentiation[84,90-92], 
myogenic differentiation[85,88], neurogenic differentiation[88], and endothelial differentiation[87], there 
seems to be a consensus on the osteogenic role of harder matrices for MSCs. The Stiffer matrix enabled 
cells to produce more cytoskeletal tension and sent differentiation signals via transmembrane proteins 
such as integrins[81,85], which promoted osteogenic differentiation. Furthermore, the nuclear 
localization of Yes-associated protein (a key mediator of mechano-transduction) and RUNX2 could be 
impacted by the substrate stiffness[89,90].

Surface topography 
Zhao et al[93] produced nanotubes of various sizes and micro- and nano-hybrid topographies with 
ECM-like micro/nanostructures and examined their effects on the proliferation and osteogenic differen-
tiation of MSCs. They discovered that larger-sized nanotubes hindered the early proliferation of MSCs, 
but the micro- and nano-morphology group had a greater cell number. Additionally, they discovered 
that MSC osteogenic differentiation might be induced by micro/nanotopographies, even in the absence 
of osteogenic inducers[93]. Similar results were obtained by Chen et al[94], who discovered that the 
micron/submicron hybrid topography of Ti surfaces promoted osteogenic and chondrogenic differen-
tiation in the early stages of induced differentiation. By introducing nanoengineered topographic glass 
substrates with different surface roughness, Qian et al[95] investigated the impact of surface 
morphology on the osteogenic differentiation of MSCs. They found that surface roughness could replace 
the osteogenic inducer dexamethasone and worked in concert with ascorbic acid and β-glycero-
phosphate to jointly promote the osteogenic differentiation of MSCs[95]. In the past, it was generally 
agreed that surface roughness seemed to have a positive effect on osteogenic differentiation[95-97]. The 
osteogenic differentiation of MSCs, however, was more strongly influenced by the nanopore size than 
by the surface roughness, according to several recent studies[83,98]. The frequent coupling of size and 
surface roughness in many studies makes it difficult to state the degree of influence of each factor on the 
behavior of MSCs[83]. Moreover, the methods used to prepare rough surfaces in these studies differ, 
such as randomly rough surfaces produced by treatments such as mechanical polishing, acid etching, 
etc., where cells form focal attachments that differ from those seen on surfaces of the same roughness
[98]. Therefore, more research is required to demonstrate how size and surface roughness affect MSC 
proliferation and differentiation, respectively. Through a variety of pathways, including the control of 
adhesion, cytoskeletal tension, and nuclear localization of transcription factors[95], MSCs appeared to 
be able to detect and respond to the surface topography, which in turn influenced their behavior such as 
proliferation and differentiation. At this stage, it has been reported that micro- and nano-surface 
topographies inhibit the proliferation of MSCs and promote osteogenic differentiation to some extent. 
However, there is no detailed elaboration on their respective effects on MSCs in terms of size and 
surface roughness.

EXOSOMES 
Various cells jointly create the microenvironment by secreting functional molecules, which leads to the 
sharing of stimuli between multiple cell lineages[99]. In addition to the ECM and growth factors, 
exosomes were considered to be an important component of the microenvironment[100]. Exosomes are 
small vesicles with a diameter of 30-150 nm that are released by cells through cytosolic action. The 
released exosomes could interact with target cells and translocated proteins, lipids, mRNAs and 
miRNAs to the cytoplasm of target cells[101]. Crosstalk existed between MSCs-osteoblasts and 
monocytes-macrophages and researchers used this to regulate bone homeostasis[99]. In vitro, BMSCs’ 
behaviors were influenced variably by cell-conditioned media produced by variously polarized 
macrophages[102]. Previous studies had suggested that cytokines were the main contributors to the 
function exercised by macrophages. However, Song et al[103] found that lipopolysaccharide (LPS)-
activated macrophage-derived exosomes inhibited the osteogenic differentiation of BMSCs by 
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mediating inflammatory stimuli. Therefore, the effect of exosomes secreted by monocytes-macrophages 
on the differentiation of MSCs should be considered (Table 5).

According to Liu et al[104], miR-21a-5p found in M1 macrophage-derived exosomes directed BMSCs 
toward an osteoblastic fate during the early stages of osteogenesis[104]. In their investigation of the 
effects of MO, M1, and M2 macrophage-derived exosomes on BMSCs, Xia et al[105] discovered that M1 
macrophage-derived exosomes efficiently enhanced the proliferation, osteogenic differentiation, and 
adipogenic differentiation of BMSCs, but M2 macrophage-derived exosomes were harmful to the prolif-
eration of BMSCs and, curiously, all three hindered the chondrogenic differentiation of BMSCs. Xiong et 
al[106] noticed that miRNA-5106, enriched in M2 macrophage-derived exosomes, promoted the 
osteogenic differentiation of BMSCs by suppressing the expression of salt-inducible kinase 2 (SIK2) and 
SIK3, which was consistent with the role of M2 macrophage-derived exosomes in promoting 
osteogenesis in a study by Li et al[107]. Kang et al[108] demonstrated that M0 and M2 macrophage-
derived exosomes were positive for BMSC osteogenesis while M1 macrophage-derived exosomes 
lowered BMP expression and inhibited the osteogenic differentiation of BMSCs[108]. Despite being 
enriched in distinct miRNAs, primary extraction M2 macrophages[109] and RAW264.7 mouse 
monocyte-macrophage leukemia cell[107] derived exosomes both showed osteogenesis-promoting and 
lipogenic differentiation-inhibiting effects. Current research has indicated the impact of exosomes 
produced from monocytes[110], osteoclasts[111], and osteoblasts[112] on BMSCs, in addition to 
exosomes released by macrophages. Ekström et al[110] found that exosomes released from LPS-
stimulated monocytes could be ingested by MSCs and encouraged the osteogenic differentiation of 
MSCs. Liang et al[111] showed that osteoclast-released exosomes promoted osteogenic differentiation 
and facilitated osteogenic mineralization by inhibiting Rho GTPase activating protein 1. This might 
imply that active osteoclasts release large amounts of extracellular vesicles during the resorption phase, 
promoting the osteogenesis of MSCs for better stabilization and bridging the transition between bone 
resorption and formation. The addition of osteoblast exosomes could further enhance the expression of 
RUNX2 and osterix, thereby promoting osteogenic differentiation, and, in addition, osteoblast exosomes 
could even alter adipocyte ECM-mediated lineage differentiation[112].

Exosomes, one of the recently identified microenvironment components, have unique benefits, such 
as a nano size, non-toxicity, low immunogenicity, biocompatibility, and versatility of use, drawing 
widespread attention[113]. The current work appeared to demonstrate the beneficial influence of M2 
macrophage-derived exosomes on the osteogenic differentiation of MSCs. As for MO and M1 
macrophage-derived exosomes, further research is required to understand their impacts on MSC differ-
entiation and the processes at play. At the same time, research has been conducted progressively on the 
influence of exosomes released by cells in the same microenvironment as BMSCs on the differentiation 
of BMSCs, which might represent a new avenue.

CONCLUSION
MSCs play important roles in pathological and physiological processes because of their self-renewal, 
migration, and pluripotency. Especially due to their multi-differentiation potential, MSCs have been 
considered as a new therapeutic agent in regenerative medicine. Since the detailed mechanisms 
involved in these regulation processes has not been fully revealed, research on intrinsic and extrinsic 
factors regulating MSCs’ differentiation may provide new methods in manipulating the cell fate of 
MSCs. Here, we discussed multiple chemical and mechanical factors affecting the osteogenic and 
chondrogenic differentiation of MSCs, including typical differentiation promoting patterns, cell environ-
mental factors, and other interesting research areas, such as material morphology and exosomes. After 
sensing these differentiation-stimulating factors, MSCs from various sources are able to differentiate 
into specific cell lineages. With the rising demand for MSCs in clinical treatment, noble strategies have 
been developed that aim at inducing the stable and directional differentiation of stem cells, and further 
providing efficient methods of MSC regulation in basic research and clinical application.

Meanwhile, there is much more to discover in stem cell research. Due to some limitations of MSCs, 
such as homing efficiency and long-term survival in vivo, most of the research has achieved its results at 
the cellular level in vitro. Moreover, discrepancies remain between single-factor experiments and 
synergistic effects by multiple factors. At present, extensive research on factors stimulating MSCs’ 
differentiation has promoted our understanding of cell functional alterations. However, mechanisms 
involved in manipulating MSCs’ cell fate have so far been incomplete. With the deepening of stem cell 
research alongside technology improvements, the synergistic effect of multiple factors inducing MSC 
differentiation is increasingly likely to be clarified, as well as providing new patterns in clinical stem cell 
therapy.
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Table 5 Exosomes of different cell sources and their effects on the differentiation of mesenchymal stem cells

Source and kind Specific 
cargo Target Results Ref.

M1 macrophages-
EVs

miRNA-21a-
5p

BMSCs ↑ Osteogenic differentiation Liu et al[104]

M0 macrophages-
EVs

BMSCs ↓ Chondrogenic differentiation Xia et al[105]

M1 macrophages-
EVs

BMSCs ↑ Osteogenic differentiation; ↑ adipogenic differentiation; ↓ chondrogenic 
differentiation

M2 macrophages-
EVs

BMSCs ↓ Chondrogenic differentiation

M2 macrophages-
EVs

miRNA-5106 BMSCs;SIK2 and 
SIK3

↑ Osteogenic differentiation Xiong et al[106]

M2 macrophages-
EVs

miRNA-690 BMSCs ↑ Osteogenic differentiation; ↓ adipogenic differentiation Li et al[107]

M0 macrophages-
EVs

MSCs ↑ Osteogenic differentiation Kang et al[108]

M1 macrophages-
EVs

miRNA-155 MSCs ↓ Osteogenic differentiation

M2 macrophages-
EVs

miRNA-378a MSCs ↑ Osteogenic differentiation

M2 macrophages-
EVs

miRNA-26a-
5p

BMSCs ↑ Osteogenic differentiation; ↓ adipogenic differentiation Bin-bin et al
[109]

Macrophages-EVs BMSCs ↓ Osteogenic differentiation Song et al[103]

Monocytes-EVs MSCs ↑ Osteogenic differentiation Ekström et al
[110]

Osteoclasts-EVs miRNA-324 BMSCs ↑ Osteogenic differentiation Liang et al[111]

↑: Increase; ↓: Decrease; EVs: Extracellular vesicles; MSCs: Mesenchymal stem cells; BMSCs: Bone mesenchymal stem cells; SIK2/SIK3: Salt-inducible 
kinase 2/3.
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Abstract
Spinal cord injury (SCI) is a devastating condition with complex pathological 
mechanisms that lead to sensory, motor, and autonomic dysfunction below the 
site of injury. To date, no effective therapy is available for the treatment of SCI. 
Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been 
considered to be the most promising source for cellular therapies following SCI. 
The objective of the present review is to summarize the most recent insights into 
the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this 
work, we review the specific mechanism of BMMSCs in SCI repair mainly from 
the following aspects: Neuroprotection, axon sprouting and/or regeneration, 
myelin regeneration, inhibitory microenvironments, glial scar formation, 
immunomodulation, and angiogenesis. Additionally, we summarize the latest 
evidence on the application of BMMSCs in clinical trials and further discuss the 
challenges and future directions for stem cell therapy in SCI models.
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Core Tip: In this work, we review the specific mechanism of bone marrow-derived mesenchymal stem cell 
(BMMSC) in spinal cord injury (SCI) repair mainly from the following aspects: Neuroprotection, neuronal 
circuit, axon sprouting and or regeneration, myelin regeneration, inhibitory microenvironment, glial scar 
formation, immunomodulation, and angiogenesis. Additionally, we also summarize the latest evidence on 
application of BMMSC in clinical trials and further discuss the challenges and future directions for stem 
cell therapy in SCI models.

Citation: Huang LY, Sun X, Pan HX, Wang L, He CQ, Wei Q. Cell transplantation therapies for spinal cord injury 
focusing on bone marrow mesenchymal stem cells: Advances and challenges. World J Stem Cells 2023; 15(5): 
385-399
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/385.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.385

INTRODUCTION
Spinal cord injury (SCI) is a serious neurological disorder that often results in paralysis during the 
reproductive years, causing temporary or permanent changes in normal motor, sensory, and autonomic 
functions, with significant impacts on individuals, families, and socioeconomic systems[1]. It has been 
reported that more than 27 million patients worldwide experience long-term disability due to SCI[2], 
with 541 cases per 100000 people[3]. Complex pathophysiology and time sensitivity in particular limit 
the therapeutic effects of SCI[4]. In incomplete SCI, there is less hemorrhage in the gray matter and no 
change in the white matter 3 h after injury; 6-10 h after injury, the hemorrhagic foci gradually expand, 
and the neurological tissue becomes edematous, which gradually subsides after 24-48 h. As the degree 
of incomplete SCI differs between mild and severe injuries, milder injuries only have small foci of 
necrosis in the center, and most of the nerve fibers are preserved. Severe injuries may have foci of 
necrosis and softening in the center of the spinal cord and are replaced by gliosis or scarring, and only a 
small portion of the nerve fibers are preserved. Most posttraumatic tissue degeneration is caused by 
multiple secondary injuries, including blood-spinal cord barrier (BSCB) disruption, free radical 
formation, ion imbalance, apoptosis, demyelination, and inflammatory response (Figure 1). 
Spontaneous recovery occurs within a limited time window because the subacute phase of SCI is 
thought to be detrimental to axonal regeneration and functional recovery[5]. Currently, clinical 
treatment includes surgical decompression, stabilization of the spinal cord, relief of spasticity and 
rehabilitation care, which consists primarily of supportive care and injury management. Frustratingly, 
the effectiveness of these treatments is limited because they are not effective in stimulating repair of the 
injured spinal cord.

CLINICAL CHARACTERISTICS AND PATHOLOGY OF SCI
The spinal cord consists of the gray and white matter, which contains nerve cell bodies and ascending 
and descending fibers. Thus, the different locations and levels of SCI can cause various degrees of 
disability, from partial loss of motor or sensory function to complete paralysis below the injured 
location. The resulting lifelong devastating deficits associated with impaired mobility (weakness or 
paralysis), sensation and autonomic dysfunction, and disabled neurological conditions lead to 
permanent and severe impacts on patients’ daily lives and their caregivers.

Pathophysiology following SCI comprises interrelated multicellular, multimolecular interactions and 
multiphasic events[6]. Classically, the pathophysiology of SCI is divided into two phases: Primary 
injury and secondary injury. SCI commonly occurs after sudden trauma because of direct and 
immediate mechanical insult to the spinal cord from vertebral fractures and dislocation with features of 
bone fragments and spinal ligament tearing. This was accompanied by extensive bleeding with further 
compression and interruption of the spinal cord blood supply. Thus, the primary injury mainly includes 
compression, contusion, shear, laceration, and acute stretching. This is followed by disruption of the 
neural parenchyma, shearing of the axonal network, destruction of the glial membrane, and vascular 
disruption[7,8]. Secondary injuries consist of ischemia, spinal cord ischemia-reperfusion injury, vascular 
dysfunction, edema, excitotoxicity, formation of free radicals, glial and neuronal apoptosis, and the 
inflammatory response[7]. This secondary damage is divided into three phases: The acute phase, which 
is accompanied by vascular and cell membrane damage and the secretion of different proinflammatory 
factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), with microglial activation. 
The subacute phase is accompanied by edema and vascular damage, inflammatory cytokine and 
glutamate secretion, astrogliosis, and demyelination for a few days. The chronic phase has symptoms 
such as the formation of a cavity in the spinal cord[8]. Based on further study of the spinal cord 
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Figure 1 Pathophysiology of spinal cord injury and related mechanisms of bone marrow-derived mesenchymal stem cell in spinal cord 
injury. A: The normal spinal cord contains axons wrapped in the myelin sheath, neuron bodies, microglia, fibroblasts, and astrocytes; B: Secondary injuries following 
primary injury include glial and neuronal apoptosis, axon rupture, inflammatory response, ischemia, spinal cord ischemia-reperfusion injury, vascular dysfunction, 
edema, inhibitory microenvironments, excitatory toxicity, and free radical formation; C: Bone marrow-derived mesenchymal stem cell promote the mechanism of 
spinal cord injury repair, including neuroprotection, axon growth, myelination, immune regulation, microenvironment regulation, inhibition of scar formation, and 
promotion of angiogenesis. BMMSCs: Bone marrow-derived mesenchymal stem cells.

microenvironment, pathophysiological changes are divided into tissue, cellular and molecular levels. 
The tissue level involves hemorrhage and ischemia, glial scar formation, demyelination and 
remyelination[9]. The cellular level involves the activation of astrocytes, the differentiation of 
endogenous neural stem cells, oligodendrocyte progenitors and microglia, and the infiltration of 
macrophages. The molecular level involves the expression of neurotrophic factors and their pro-
peptides, cytokines, chemokines, and ion imbalance. There is an imbalance between promoting and 
inhibiting growth molecules in the microenvironment of SCI, where growth inhibitors occupy the 
dominant position.

THE THERAPEUTIC POTENTIAL OF STEM CELLS
Cell transplantation has come to the forefront in SCI regenerative strategies due to its potential 
neuroprotective effects. Many cell types have been widely investigated in SCI treatment, including 
oligodendrocyte precursor cells, Schwann cells, olfactory ensheathing cells, neural stem cells, and 
mesenchymal stem cells (MSCs)[10,11]. MSCs have the capacity for self-renewal and multilineage differ-
entiation potential and can differentiate into osteoblasts, adipocytes, and chondrocytes[12]. Moreover, 
MSCs express surface markers (CD105, CD73 and CD90) and do not show expression of CD45, CD34, 
CD14 or CD11b, CD79a or CD19, or human leukocyte antigen type DR surface molecules[13]. MSCs 
mainly exist in bone marrow and can also be isolated from other tissues and organs, such as umbilical 
cord, adipose tissue and muscle. Among these, bone marrow-derived MSCs (BMMSCs) are the most 
widely studied cell type in SCI application due to their low immunogenicity, easy isolation, few ethical 
concerns and reduced tumorigenesis risks[14]. According to the current research progress at home and 
abroad, BMMSC-based treatment has extraordinary prospects in the field of SCI.
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In this review, we will summarize the applications of BMMSCs in SCI based on the most frequently 
proposed mechanisms: Neuroprotection, neuronal circuit, axon sprouting and/or regeneration, myelin 
regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and 
angiogenesis. A better understanding of these mechanisms could allow the identification of more 
targeted therapies.

NEUROPROTECTIVE EFFECTS OF BMMSCS
Neurons are postmitotic, without the ability to proliferate, and strategies developed to promote 
neuronal protection and regeneration have long-term benefits. Neuroprotective measures are crucial not 
only for the preservation of further injury for optimal neuron survivability but also for the restoration of 
injured nerve cells during pathological progression. BMMSCs reestablish the injured spinal cord via 
neuroprotection, neural regeneration, and remyelination in SCI[15]. MSCs can release growth and 
neurotrophic factors, including brain-derived neurotrophic factor (BDNF)[16], vascular endothelial 
growth factor (VEGF)[17], glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), 
fibroblast growth factor (FGF), neurotrophin-3, and epidermal growth factor, which can enhance 
regeneration and repair in damaged tissues[18,19]. miR-22, regulated by Gasdermin D mRNA, plays a 
role in inhibiting the occurrence of pyroptosis[20]. miR-22-modified BMMSCs suppress pyroptosis-
mediated inflammation and neuronal injury during SCI[20]. Moreover, MSC-derived exosomes enhance 
the survival of neurons and repair of nerve fibers by inhibiting Nod1 inflammasome activation, 
suppressing pyroptosis in pericytes, preserving the integrity of the BSCB[21], inhibiting neuronal 
apoptosis through the Wnt/beta-catenin signaling pathway[22] and eventually improving functional 
recovery. The overexpression of miR-338-5p in exosomes was shown to profoundly increase the 
expression levels of neurofilament 200 and growth-associated protein-43 and decrease those of myelin-
associated glycoprotein (MAG) and glial fibrillary acidic protein (GFAP), which provided neuropro-
tective effects through the cannabinoid receptor 1/Rap1/Akt pathway after acute SCI[23]. cAMP-
mediated Rap1 activation plays an important role in apoptosis reduction and neuronal survival induced 
by the PI3K/Akt pathway[23].

Despite the inhibitory environment in the adult mammalian central nervous system, neuronal-
intrinsic mechanisms are sufficient to support significantly extensive axonal growth and synapse 
formation after SCI, resulting in the formation of new neuronal circuits that restore electrophysiological 
activity and behavior[24]. When stem cells are cotransplanted with a supportive fibronectin matrix 
containing growth factors, axons form connections with host axons over significantly long distances. 
Even when crossing the inhibitory white matter, they elongate rapidly at a rate of 1-2 mm per day[24]. 
In addition, axons from the host spine regenerate into neural stem cell grafts, and this bidirectional 
growth contributes to the recovery of hindlimb mobility[24]. BMMSCs were initially thought to be 
similar to neural stem cells in their ability to multidirectionally differentiate into neurons and glial cells, 
but this theory was gradually discarded. In fact, the mechanism of action of BMMSCs may be cell fusion 
or trans-differentiation rather than cell differentiation[25]. In summary, transplanted BMMSCs after SCI 
exhibit significant autocrine and paracrine activities, which in turn stimulate the proliferation and 
differentiation of other cells and themselves, promoting tissue repair and functional recovery[26].

AXON GROWTH
The axon is a unique cellular structure that maintains communication between neurons[27]. An 
important cause of persistent dysfunction after SCI is axonal disruption, and therefore promoting 
axonal regeneration and plasticity is very promising. However, previous studies have shown that the 
percentage of injected MSCs aggregating in the CNS is 0.75%-18.5%[28] and 6.7%[29], and thus it is 
conceivable that only a fraction of the cells reach the site of SCI. The Nakano et al[30] found that bone 
marrow stromal cell transplantation via cerebrospinal fluid was effective in acute, subacute and chronic 
spinal cord injuries in rats, and although the transplanted cells did not survive more than 7 d, a large 
number of axons crossed longitudinally through the astrocyte-deficient connective tissue. 
Transplantation via the CSF is a more clinically preferred modality because it does not cause secondary 
injury to preserved spinal cord tissue. From another perspective, Okuda et al[31] demonstrated that 
transplantation of BMMSC sheets after SCI prompted Tuj-1-positive axons to span a specially designed 
cell sheet without requiring a scaffold, offering a permissive microenvironment for damaged axons[31].

BMMSC therapy has been shown to play a positive role in rodent models of SCI[32], but evidence of 
its long-term therapeutic efficacy and effectiveness in human clinical trials is limited. Gene modification 
of MSCs, for example, by overexpression of neurotrophic or growth factors, is one of the ways to 
enhance their well-known beneficial effects. Overexpression of IL-13, an inducer of M2 microglia/
macrophages, in BMMSCs significantly ameliorates axonal retraction caused by axonal-attacking 
macrophages[33]. In addition, the combination of neurotrophic factors and physical stimuli is often used 
to enhance the effects of BMMSCs. Cografting stromal-derived factor-1-overexpressing BMMSCs with 
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neural stem cells (NSCs) at day 9 after SCI resulted in better axonal density enhancement than BMMSCs 
alone[34]. Furthermore, physical factor therapy has also shown a synergistic effect, as low-intensity 
pulsed ultrasound-optimized BMMSCs transplanted one week after SCI showed a good promotion 
effect on axonal regeneration[5].

Although the transplanted cells can reach the site of injury, they cannot survive long enough to 
integrate with the host spinal cord tissue, thus showing that these cells do not act as scaffolds for tissue 
repair. The use of biomaterials can provide transplanted cells with an environment closer to their 
physiological state, maintaining and regulating stem cell properties and protecting them from the harsh 
local microenvironment. Permissive bridging material allows nerve fibers with regenerative growth 
potential or collateral sprouting to pass through nonpermissive physical spaces[35]; therefore, tissue-
engineered grafts loaded with cells and growth factors have become popular as bridging therapy for 
SCI. After spinal cord injuries in rats and dogs, NT-3/fibroin-coated gelatin sponge scaffolds were 
shown to continuously release NT-3 for up to 28 d, maintain the cell activity of MSCs, promote axonal 
regeneration, and attenuate the inflammatory response[36]. The multichannel poly lactic-co-glycolic 
acid scaffolds implanted with Schwann cells and BMMSCs were shown to effectively connect the injury 
gap of rats with complete SCI, and the cell combination strategy promoted the survival and neuron-like 
characteristics of BMMSCs and finally facilitated axonal regeneration and functional recovery[37]. The 
short half-life and rapid clearance challenges posed by the innate immune system have hampered the 
popularity of extracellular vesicle therapy[38]. Wang et al[39] synthesized an F127-polycitrate-polyethyl-
eneimine hydrogel (FE) with sustainable and long-term extracellular vesicle release (FE@EVs), and its in 
situ administration after SCI inhibited the inflammatory response and promoted myelination and axonal 
regeneration. There is no shortage of biomaterials in clinical trials for cancer, but no clinical trials on 
biomaterials for SCI repair have been registered on the ClinicalTrials.gov website. Possible reasons for 
this include inconsistency between injury models from preclinical studies and actual injury models in 
the clinic (thoracic SCI models are often used in preclinical studies, but cervical SCI is more common in 
humans[40]), unpredictable residual degradation products in the body, and potentially low payloads
[41]. Caution is needed in drawing conclusions about axonal regeneration because the current consensus 
is that it refers to regrowth of axons after transection[42], whereas there is a significant degree of axonal 
preservation in incomplete spinal cord injuries, and the best model for exploring axonal regeneration is 
complete SCI.

REMYELINATION
Demyelination in traumatic SCI can lead to loss of function, and poor myelination of preserved nerve 
fibers may lead to permanent functional impairment. Myelin loss is accompanied by oligodendrocyte 
apoptosis, and replacement of lost oligodendrocytes and myelin improves conductivity and protects 
axons from degeneration[43]. The process of transplanted cells producing myelin around axons that 
have lost myelin sheaths is a mechanism that enhances recovery after SCI[43]. Conditioned medium 
from MSCs not only improves the survival of oligodendrocytes in vitro in culture but also increases 
levels of Olig2, a transcription factor that plays a key role in the differentiation of oligodendrocytes, in 
SCI[44]. Intravenous infusion of MSCs during the chronic phase in a severely injured SCI model 
promotes remyelination of axons[45]. BMMSCs can act as catalysts for the differentiation of NSCs into 
oligodendrocytes by regulating Id2 and Olig1/2[46]. However, the genetically engineered cells showed 
a more satisfactory therapeutic effect than the original cells. BMMSCs secrete various trophic factors, 
including VEGF, insulin-like growth factor 1 (IGF-1), hepatocyte growth factor (HGF), basic FGF, GDNF
[47,48], and certain extracellular matrix molecules, such as laminin and type IV collagen[49]. Given the 
positive effects of IGF-1 on oligodendrocyte differentiation and survival during normal development
[50], IGF-1-overexpressing BMMSCs better protect the integrity of myelin sheaths[51]. Similarly, GDNF 
is a potential target for axon enhancement and is directly involved in axonogenesis and dopaminergic 
neuronal differentiation via the Ras/MARK pathway and P13K signaling pathway[52].

In addition to the abovementioned cytotrophic factors, myelination-related graft factors can also be 
used as targets for genetic engineering. Silencing Nogo-66 receptor expression was shown to promote 
neurite outgrowth after BMMSC differentiation and increase myelinated nerve fibers after SCI[53]. 
There are benefits from the effects of neuroprotective drugs themselves, which have antioxidant effects, 
inhibit intracellular calcium overload, regulate γ-aminobutyric acid receptors and inhibit apoptosis, and 
combining these drugs can also improve the therapeutic effect of BMMSCs. Currently, the combination 
of BMMSCs and propofol, a neuroprotective anesthetic, has dramatically increased the number of 
myelinated and nonmyelinated fibers after SCI[54]. Transplanted cells with the ability to myelinate do 
not always promote functional recovery, and sufficient myelination needs to occur to achieve significant 
results[55].
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IMMUNOMODULATION
The inflammatory response is a critical component in the secondary injury cascade, which can persist 
for weeks to months after SCI, during which microglia/macrophages and leukocytes are recruited to the 
injury site. A certain inflammatory response in the injured spinal cord is required for clearing 
neurotoxic cellular debris and limiting tissue damage. However, macrophage clearance can promote 
regeneration after SCI. In addition, overactivation of the inflammatory response can aggravate tissue 
damage[56]. In the acute phase of SCI, these cells produce proinflammatory cytokines such as IL-6, IL-β, 
and TNF-α. Reactive oxygen species (ROS), matrix-metalloproteinase (MMP), and inducible nitrous 
oxide synthase are released by neutrophils, macrophages and microglia, which can exacerbate the 
inflammatory response[57]. Microglia/macrophages have been regarded as an important cell type in the 
innate and adaptive immune responses after SCI[58]. Homeostatic macrophages are the main 
phenotype in the normal spinal cord, but resting macrophages are activated into different phenotypes. 
Some macrophages produce proinflammatory cytokines that aggravate inflammation and inhibit axon 
regeneration, while other macrophages produce anti-inflammatory cytokines that promote functional 
recovery, such as IL-10 and transforming growth factor-β (TGF-β)[59]. Therefore, immunomodulatory 
therapeutic approaches are mainly focused on inducing macrophage polarization from the proinflam-
matory phenotype to the anti-inflammatory phenotype following SCI.

Many studies have shown that BMMSC transplantation after SCI can exert therapeutic effects by 
attenuating detrimental inflammation or enhancing beneficial inflammation. Yagura et al[60] found that 
human BMMSC implantation significantly increased CCL5 expression and enhanced macrophage 
polarization. Similarly, another study analyzed the tissue expression levels of IL-1β, TNF-α, and Toll-
like receptor 4 (TLR4) in a rat SCI model after intravenous BMMSC injection[61]. This study 
demonstrated that BMMSCs could attenuate spinal cord inflammation by inhibiting the TLR4-mediated 
signaling pathway and decreasing the expression levels of IL-1β and TNF-α. Similar situations were 
observed in another study that investigated the efficacy of grafted BMMSCs after SCI[62]. Interestingly, 
most recent studies have focused on the anti-inflammatory roles of exosomes derived from BMMSCs in 
SCI treatment[20,63,64]. For example, Sheng et al[63] confirmed that the application of BMMSC-derived 
exosomes promoted the phagocytosis ability of macrophages by upregulating the expression of 
MARCO, an important phagocytic receptor. In addition to modulating the phagocytic capacity of 
macrophages, BMMSC-derived exosomes could also affect the balance of macrophage polarization 
through the nuclear factor-kappaB pathway[65].

BMMSC transplantation exerts immunoregulatory effects following SCI mainly by inducing the 
formation of anti-inflammatory immune cells, modulating the expression levels of TLRs, and inhibiting 
the inflammatory response in the injured spinal cord, thereby promoting functional recovery[61]. 
Immediately after SCI, the organism enters an immunosuppressive state due to shock and stress. The 
first cells to mobilize at the injured site are the myeloid cells of the innate immune system, such as 
neutrophils and macrophages, which phagocytose debris. Then, adaptive immune cells such as B- and 
T-lymphocytes are recruited to the injured spinal cord[66,67]. As previously described, microglia, which 
participate in the clearance of apoptotic and myelin debris, are resident immune cells[68]. In the acute 
stage after SCI, microglia extend their processes toward the injured site and are biased toward the 
activated subtype, which leads to a further loss of neurons and promotes scar formation[69]. During this 
period, although microglia have beneficial effects on tissue recovery by clearing cellular and myelin 
debris, they have also been reported to aggravate secondary tissue damage and axonal retraction[67,
70]. Homeostatic microglia in the injured spinal cord may play a protective role in tissue repair. 
Therefore, therapeutic strategies for targeting immunomodulation should be directed at modulating 
cytokine levels and other factors in the microenvironment and balancing activated/homeostatic 
microglia levels.

IMPROVING THE INHIBITORY MICROENVIRONMENT
In mammals, damaged axons in the spinal cord are unable to regenerate at the lesion site and to 
reestablish synaptic connections with their destination due to “natural barriers” and diminished 
intrinsic regenerative capacity[71,72]. This barrier consists of a lumen and a nonpermissive 
environment. Nogo-A, MAG and oligodendrocyte myelin glycoprotein (OMgp) are well-defined myelin 
breakdown products[73], but knockdown of the MAG and OMgp genes did not lead to neuronal 
growth after SCI, suggesting that Nogo-A plays a dominant role in inhibiting axonal regeneration, while 
MAG and OMgp play secondary roles[74]. In addition, several types of cells, including astrocytes, glial 
cells, and microglia/macrophages, migrate to the center of the injury, leading to the formation of glial 
scars and impeding the progression of axonal growth cones[75]. Glial scarring does not always play a 
negative role; on the one hand, it initiates the injury repair process, limits lesion expansion and inhibits 
the spread of the inflammatory response, and on the other hand, it acts as a physical barrier to nerve 
regeneration[76].
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Few oligodendrocyte markers were found to be expressed in SCI centers transplanted with BMMSCs, 
while the number of axons was significantly increased, indicating that the transplanted cells provided a 
suitable environment for the regeneration and neural differentiation of endogenous neural stem cells
[77]. BDNF in overexpressed BMMSCs further promotes axonal remyelination by affecting 
oligodendrocytes[78]. Zhao et al[79] found that the association of BDNF-overexpressing BMMSCs with 
platelet-rich plasma promoted more axonal remyelination and oligodendrocytes, probably due to 
astrocyte migration to the lesion region and increased graft BDNF-BMSCs, which could provide a 
favorable substrate for stabilizing regenerating axons in an inhibitory environment. However, 
damaging properties of the microenvironment (such as increased ROS) result in extensive stem cell 
death and dysfunction, severely impairing stem cell therapy for SCI.

INHIBITING GLIAL SCAR FORMATION
The spinal injury scar is generally classified into two components: The lesion core and the lesion border
[80]. The lesion core is primarily composed of stromal-derived fibroblasts and inflammatory immune 
cells and is commonly regarded as the fibrotic scar. The lesion border is formed by microglia and 
reactive astrocytes, which surround the core and are generally considered the glial scar. The glial scar 
(mainly astrocytic) strongly upregulates the expression of intermediate filament proteins such as 
vimentin, GFAP, and chondroitin sulfate proteoglycans (CSPGs)[9]. At the acute stage after SCI, the 
glial scar separates healthy tissue from inflammatory cells and limits the spread of inflammation. 
However, the glial scar creates a long-lasting physical and molecular barrier that hinders axon 
regeneration and outgrowth during the chronic period[81]. Over the past decade, accumulating 
evidence has attributed the failure of axon regeneration to diminished intrinsic neuronal plasticity and 
the presence of glial scars and myelin-associated growth inhibitors.

Numerous experimental studies in SCI animal models have shown that BMMSC transplantation can 
suppress glial scar formation. Okuda et al[31] explored whether BMMSC sheets are permissive for 
injured nerve fiber elongation and the extension of astrocyte processes. They found that GFAP-positive 
astrocyte processes penetrated into the BMMSC-transplanted site, which is an indicator of a permissive 
environment for axon outgrowth[31]. Another study showed that transplantation of human BMMSCs in 
an SCI rat model largely reduced the inflammatory reaction and the expression of collagen type IV, one 
of the markers of fibrotic scars[82]. The application of biomaterials to improve the survival rate and 
efficacy of implanted cells has attracted attention in recent years. Some biomaterials are primarily used 
as scaffolds to support the growth of BMMSCs[83,84], while a few biomaterials are capable of 
modulating the harsh microenvironment following SCI[85,86]. For instance, Li et al[84] investigated the 
efficacy of a ROS-responsive hydrogel cotransplanted with BMMSCs in a rat transection SCI model. 
They performed double immunofluorescence staining to identify the formation of two distinct scars: 
The glial scar was labeled by GFAP, and the fibrotic scar was labeled by platelet-derived growth factor 
receptor-β. These results revealed that this BMMSC-encapsulated hydrogel could significantly alleviate 
the formation of both glial and fibrotic scars at the injury site[84]. In addition, CSPGs, which are 
enriched in glial scars and secreted by reactive astrocytes, are potent inhibitors of axonal outgrowth. 
Takeuchi et al[87] found that SCI mice treated with chondroitinase ABC, a kind of CSPG-digesting 
enzyme, can promote axon regeneration and improve functional outcome. Indeed, another study 
explored the efficacy of chondroitinase ABC plus BMMSCs in the repair of SCI. Notably, the application 
of chondroitinase ABC combined with BMMSCs significantly reduced GFAP expression at the injury 
site, and the scar tissue area was much smaller than that in the model group[88].

To date, the specific molecular mechanisms of scar formation have been widely studied. TGF-β 
initiates signaling after binding to transmembrane type I and type II receptors, and then the type I 
receptor leads to the recruitment and phosphorylation of Smad2 and Smad3 proteins[89]. After the 
formation of a heteroprotein complex together with the co-Smad protein SMAD4, this complex can 
translocate into the nucleus, where it acts as a transcription factor to regulate target gene expression
[90]. There is a growing body of evidence to suggest that the TGF-β/Smad signaling pathway plays an 
important role in collagen deposition[91]. Studies have shown that administration of BMMSCs after SCI 
can inhibit scar formation by downregulating TGF-β and collagen expression[92,93]. Furthermore, 
studies have shown that the activation and proliferation of astrocytes can be suppressed after inhibiting 
the JAK/STAT3 or JNK/c-Jun pathway, thus reducing scar formation and promoting functional 
recovery after SCI[94]. Kim et al[95] suggested that acute transplantation of BMMSCs can modulate 
astrogliosis through the MMP2/STAT3 pathway.

In summary, BMMSC transplantation can suppress glial scar formation and provide a favorable 
environment for axon regeneration after SCI. However, there has been some debate in the field on the 
role of scar formation in recovery following SCI[96,97]. Although the glial scar has an important 
protective role in separating healthy tissue from pathology after injury, it has been acknowledged that 
scar formation has an inhibitory role, as it is associated with failed axon regrowth. Recent evidence 
suggests that the phenotypes of reactive glial cells are considered the key regulators of the dual nature 
of the spinal injury scar[98]. In addition, the opposing roles of the scar matrix cannot be ignored, which 



Huang LY et al. SCI focusing on BMMSCs

WJSC https://www.wjgnet.com 392 May 26, 2023 Volume 15 Issue 5

contains beneficial molecules that are required for the formation of scar borders and inhibitory 
molecules such as CSPGs, tenascin, ephin B2, and slit proteins[99]. Therefore, therapeutic strategies for 
targeting the spinal injury scar should be directed at reducing scar formation or blocking inhibitory 
molecules associated with the scar.

PREVENTING BLOOD VESSEL LOSS AND IMPROVING ANGIOGENESIS
After SCI, immediate loss of spinal vascular support occurs, which induces local hypoxia around the 
injury epicenter, followed by a series of molecular cascades that lead to increased microvascular 
permeability and BSCB disruption. Angiogenesis, which is the process of forming new vasculature, 
plays an important role in the proliferation phase of wound healing[100,101]. Therefore, stabilizing the 
provisional vessels and forming a permanent vascular network are necessary for tissue repair following 
SCI. Angiogenesis is a multistep process that requires endothelial proliferation and differentiation, 
crosstalk among endothelial cells and extracellular matrix components, and the interplay of multiple 
proangiogenic and antiangiogenic factors[102]. VEGF, which is an important proangiogenic factor, is 
upregulated after hypoxia stimulus and induces blood vessel morphogenesis by binding to the VEGF 
receptor. Other critical angiogenesis-related proteins include FGF, TGF-β, angiopoietin-1, and 
angiopoietin-2[103].

Accumulating evidence has documented that BMMSC engraftment can promote angiogenesis and 
vascular stability in the treatment of different diseases, especially ischemic diseases, such as myocardial 
infarction and cerebral infarction[104-109]. Similarly, enhancement of angiogenesis by implanted 
BMMSCs has been demonstrated after SCI in animals[108]. In addition, in vitro studies also confirmed 
that BMMSC transplantation promotes vascular formation and vasoprotection[110,111]. In general, 
there is a close relationship between angiogenesis and enhanced functional recovery following SCI. 
Emerging evidence has shown that improved angiogenesis and BSCB integrity can promote motor 
function recovery[112,113]. A recent study found strong correlations between the level of angiogenesis 
and the number of surviving BMMSCs at the injury site. This study demonstrated that the expression of 
occludin and ZO-1 was significantly upregulated, which indicates the maturation and sealing of newly 
formed vasculature[114]. BMMSCs can produce FGF and VEGF-A, which can enhance the proliferation, 
migration, and vascular tube formation of microvascular endothelial cells[115]. BMMSCs also secrete 
specific factors, including IGF-1, HGF, VEGF, NGF, and TGF-β1, which can provide a favorable 
environment for angiogenesis after SCI[116]. For instance, Cantinieaux et al[117] investigated the 
efficacy of conditioned medium from BMMSCs in SCI treatment in a rat model and found that blood 
vessels displayed larger diameters in the conditioned medium-treated group, indicating enhanced 
regional blood perfusion at the lesion epicenter.

BMMSC engraftment can promote revascularization, enhance blood supply and increase BSCB 
integrity, which will attenuate secondary injury and promote axon growth, thereby improving 
functional recovery following SCI. Improved functional outcome after SCI is closely related to 
successful revascularization. First, a well-vascularized injury site can provide a regeneration-permissive 
microenvironment for the transplanted cells to survive. Additionally, blood vessels may act as a scaffold 
to guide transplanted cell migration and axon sprouting after injury. Emerging evidence has 
demonstrated a significant interaction between vascular regrowth and nerve repair. For example, some 
neurotrophins, such as NGF and NT-3, can control the sympathetic innervation of blood vessels, and 
VEGF-A, secreted by neurons and glial cells, can enhance vascular regrowth. To date, treatments based 
on revascularization for SCI include gene modulation, proangiogenic factor administration, cell therapy 
and biomaterial application. However, many aspects of the process of blood vessel formation remain 
unclear, and the therapeutic effect is limited. Therapeutic strategies for targeting angiogenesis after 
injury should be focused on the identification of combined strategies.

CLINICAL TRIALS OF BMMSCS FOR SCI PATIENTS
During past decades, cell transplantation has been regarded as a promising therapy after SCI. There 
have been not only many animal and preclinical studies but also a considerable number of clinical 
studies, and several systematic reviews/meta-analyses have proven the effects of cell transplantation in 
patients with SCI[118-122]. Among them, MSC transplantation is the most widely used and promising 
therapeutic approach for treating SCI. MSCs are mainly derived from adipose tissue and bone marrow 
sources and are accordingly divided into adipose tissue-derived MSCs and BMMSCs. The main stem 
cell type used in clinical trials to treat SCI is the BMMSC, which has lower immunogenicity and a 
widely available source and has been proven to be overall safe, well tolerated and valid in SCI patients, 
with a particular effectiveness in chronic and complete injuries.

After assessing the relevant literature, we found 38 clinical studies containing 1090 participants that 
provided overall evidence of the safety and efficacy of BMMSC cell transplantation for SCI patients, 
which was mainly represented by ASIA score improvement in at least one segment, and both sensory 



Huang LY et al. SCI focusing on BMMSCs

WJSC https://www.wjgnet.com 393 May 26, 2023 Volume 15 Issue 5

and motor improvements were observed according to different previous studies. Some studies have 
shown that up to 70% of patients with complete cervical SCI and 33% of patients with thoracic SCI could 
recover at least one spinal cord level within 1 year after injury by spontaneous recovery[123,124]. 
Chhabra et al[125] indicated that most of the spontaneous neurological recovery in AISA subjects was 
likely to occur within the zone of partial preservation, which was less likely related to cell therapy. Due 
to the complicated process of neuroregeneration, minor therapeutic effects at the anatomical/
histological level were difficult to detect in clinical trials, which might be ignored. Some novel 
assessments may provide further insights into the recovery of neuroregeneration after SCI in future 
clinical research. Furthermore, an increasing number of studies have tended to certify the same efficacy 
on bladder and gastrointestinal functions by slightly improved maximum capacity and decreased 
bladder pressure and residual urine volume, which are still unsatisfactory.

Considering the various therapy effects, there were related issues: Ambiguities in the selection of 
patients, timing of intervention, injection doses and routes of stem cell transplantation in different 
clinical trials. The optimal dose of cell transplantation has not yet been determined, and cell numbers 
between 106-108 seemed to be more beneficial[126-128]. Transplant routes included intrathecal, scaffold-
loaded, intralesional, venous, arterial, and subdural administration, with intrathecal injection as the 
most widely used.

However, there were still some potential adverse events (AEs) observed, such as neuropathic pain, 
muscle spasm, and fever. Some of these AEs were slight and without further injury, while other more 
potentially serious AEs required a longer follow-up visit. Most of the current studies have a small 
number of samples, are low quality, lack control groups, and represent single-arm, early-stage clinical 
trials with the main purpose of evaluating the safety of stem cells. Nonetheless, prospective, well-
designed randomized trials in larger cohorts with extensive follow-up are still awaited to confirm and 
update the findings.

CONCLUSION
Based on the results of previous studies, the effects that can be achieved with a single BMMSC treatment 
are limited, and combination therapy is an important future development direction. Combination 
therapy using various molecules or factors (including gene modulation, etc.) can enhance the effect of 
cellular therapy and achieve multi-effective and superimposed effects. In addition, most preclinical 
studies are currently designed with observation periods of 4 and 8 wk, and longer observation periods 
are important for the clinical translation of stem cell therapy to explore and address certain adverse 
effects when possible. Finally, given the current encouraging preclinical trial results, some treatments 
have been translated into clinical practice. BMMSC transplantation has been shown to be safe in SCI 
patients, and partial efficacy has been seen in some cases, but most clinical studies are still in phases I 
and II, and the results of phase III trials have extraordinary implications for the clinical translation of 
stem cell therapy for SCI. In conclusion, although many problems and challenges remain, researchers 
have been working to optimize preclinical studies and actively translate them to the clinic, and these 
efforts will pave the way for the field of SCI.
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Abstract
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic 
potential, and have therefore been extensively investigated in preclinical studies 
of regenerative medicine. However, while MSCs have been shown to be safe as a 
cellular treatment, they have usually been therapeutically ineffective in human 
diseases. In fact, in many clinical trials it has been shown that MSCs have 
moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the 
heterogeneity of MSCs. Recently, specific priming strategies have been used to 
improve the therapeutic properties of MSCs. In this review, we explore the 
literature on the principal priming approaches used to enhance the preclinical 
inefficacy of MSCs. We found that different priming strategies have been used to 
direct the therapeutic effects of MSCs toward specific pathological processes. 
Particularly, while hypoxic priming can be used primarily for the treatment of 
acute diseases, inflammatory cytokines can be used mainly to prime MSCs in 
order to treat chronic immune-related disorders. The shift in approach from 
regeneration to inflammation implies, in MSCs, a shift in the production of 
functional factors that stimulate regenerative or anti-inflammatory pathways. The 
opportunity to fine-tune the therapeutic properties of MSCs through different 
priming strategies could conceivably pave the way for optimizing their thera-
peutic potential.

Key Words: Mesenchymal stromal/stem cells; Mesenchymal stromal/stem cell therapeutic 
properties; Mesenchymal stromal/stem cell paracrine effects; Mesenchymal stromal/stem 
cell priming; Pro-inflammatory priming; Hypoxic priming, 3D culture priming
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Core Tip: Mesenchymal stromal/stem cells (MSCs) have demonstrated promising therapeutic results in the 
field of regenerative medicine. However, due to their heterogeneity, the application of MSCs in clinical 
trials has shown moderate or poor efficacy. Here, we review data on the principal priming approaches for 
enhancing the therapeutic potential of MSCs. We found that different priming strategies can modify MSC 
properties and, in this case some therapeutic effects on different disease models can be obtained in relation 
to dose and/or combination of the priming factors used. The production of priming type-specific functional 
factors in MSCs could pave the way toward implementing new MSC-based therapies.

Citation: Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies 
improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their 
clinical use. World J Stem Cells 2023; 15(5): 400-420
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/400.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.400

INTRODUCTION
Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells involved in the homeostasis of 
tissue regeneration and, because of their therapeutic potential, have been extensively investigated in 
various clinical conditions[1-6]. Though MSC treatment was initially thought to promote tissue 
regeneration thanks to MSC multipotency of differentiation[7-9], recent evidence has revealed that the 
efficacy of MSC-based therapies is, at least in part, linked to the production of functional paracrine 
factors. These cells are able to secrete numerous products, e.g., growth factors, cytokines, chemokines, 
and extracellular vesicles (EVs), which can regulate many pathophysiological processes, such as fibrosis, 
immune dysregulation, angiogenesis, and stimulation of tissue resident stem cells, in order to 
coordinate both tissue regeneration and functional recovery[10-12]. In injured tissue, MSC engraftment 
is limited because they undergo cell death, and their beneficial effects are exerted through secretion of 
various functional factors that not only enhance the function of resident cells, but also attract immune 
and progenitor cells, contributing to the coordination of tissue repair[13,14]. Therefore, considering the 
importance of the paracrine component in mediating MSC functions, there is growing interest in the 
molecular basis of MSC secretion involved in the therapeutic function of these cells.

Over the years, a large number of tissues, including placenta, adipose, umbilical cord, dental pulp, 
bone marrow, synovial membrane, liver and others, have been used as a source of MSCs[15-20]. It is 
quite clear that MSCs derived from all these sources possess a wide variety of functional effects, which 
they apply physiologically to their own original tissue, regulating homeostasis and regeneration. 
Interestingly, these effects may be useful for therapeutic applications of MSCs[3,21]. Currently, there are 
1487 clinical trials registered at clinicaltrials.gov aimed at studying MSC therapeutic efficacy in the 
treatment of several clinical disorders, including lung, liver, kidney, orthopedic, cardiovascular, 
neurodegenerative, and immune diseases. In different clinical settings, MSC-therapies have been tested, 
showing tolerable safety, and demonstrating therapeutic benefits, and this has led to regulatory 
approvals of some MSC-based therapeutic products in several countries. In 2012, Cartistem, a MSC 
product based on the use of umbilical cord-derived MSCs for the treatment of traumatic or degenerative 
osteoarthritis, was approved by Korea’s Ministry of Food and Drug Safety[22]. Moreover, Remestemcel-
L, based on the use of bone marrow-derived MSCs (BM-MSCs), has been investigated in a phase 3 
clinical trial in patients with steroid-refractory acute graft-versus-host disease (GVHD)[23]. Recently, 
due to the immunomodulatory properties of Remestemcel-L, which are able to work against cytokine 
storm linked to several inflammatory conditions, this therapy has also been tested for the treatment of 
coronavirus disease 2019-associated multisystem inflammatory syndrome[24]. The increasing interest in 
the clinical applications of MSCs as a cellular therapy has also been evidenced by the burgeoning of 
several companies that sell MSC therapies to United States clinics[25]. However, this has highlighted 
that in some cases the propensity for economic gain has outweighed the clinical advantages, despite the 
lack of solid scientific evidence that supports the broad use of MSCs in treating various human 
disorders. Indeed, in many clinical trials it has been shown that MSCs have moderate or poor efficacy, 
and the results from some studies are controversial[26-31]. In particular, due to both the inconsistent 
criteria used for the MSC identity across studies, and MSC heterogeneity, which depends on the 
different MSC origin[32] and the diverse harvesting and culture strategies[33], the clinical results 
obtained after MSC therapy are frequently variable. This makes it very difficult to obtain reliable 
conclusions regarding MSC therapeutic efficacy. Thus, while MSCs demonstrate a good margin of safety 
as cellular treatment, they have usually been therapeutically ineffective in humans[21].

These issues have underscored the urgent need to optimize the clinical use of MSCs or enhance MSC 
therapeutic effects. After determining the most appropriate cell source to use both in terms of 
invasiveness for cell isolation and cell yield, specific standardized production methods are needed to 
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ensure MSC therapeutic abilities and, therefore, their clinical efficacy. MSCs can be considered a key 
regulatory component in the tissue stem cell niche and, starting with the physiological role that these 
cells play in regulating tissue regeneration following injury[3,4,6,34-39], specific priming strategies can 
be understood and adapted for MSC clinical application. In this regard, much attention has been paid to 
the opportunity of MSC pre-conditioning to prime the cells before their clinical use. In this case, the 
therapeutic properties of MSCs can be modulated by pre-treatment of cells with hypoxia, cytokines, as 
well as growing MSCs under three-dimensional (3D) culture. In those instances, in response to MSC 
priming, the phenotype of MSCs was switched toward an anti-inflammatory, pro-trophic and more 
regenerative potential, which results in an enhanced therapeutic function of the cells[3,40-45].

In this review, we summarize the principal priming methods aimed at improving MSC efficacy as a 
therapeutic product. We would also like to highlight the fact that specific priming strategies can be 
considered more suitable for some types of diseases, leading to new therapeutic approaches that could 
be used to develop more powerful and predictable MSC therapies.

THE SECRETION OF PARACRINE FACTORS MEDIATE THE THERAPEUTIC FUNCTION 
OF MSCs
The secretion of functional products is central to MSC-based therapy, as demonstrated in numerous 
studies. Indeed, individual components of MSC secretome, such as functional proteins and EVs, are 
involved in the regulation of various biological processes, including angiogenesis, immunoregulation, 
wound healing, and tissue repair/protection[14,46-49]. Among the MSC-derived functional products, 
exosomes (EXOs), belonging to EVs, are anuclear particles ranging from 50 to 200 nm in size that are 
constitutively released from the endosomal compartment of MSCs. They contain a plethora of functional 
protein and other molecules, including microRNAs (miRNAs), which mediate several MSC properties
[15,50,51]. EXOs are key components of intercellular communication, because they are released into the 
intercellular space where they exert local paracrine or distal systemic effects[52]. In fact, EXOs are able 
to regulate numerous biological processes, including angiogenesis[53], cell proliferation[54], and the 
activation/inhibition of immune cells[55]. Interestingly, EXO content can be changed by various 
priming stimuli[3,40,55]. Recently, it has been revealed that EXO-derived miRNAs play a critical role in 
mediating EXO effects[56]. MiRNAs are 19-22-nucleotide-long non-coding RNAs that regulate mRNA 
translation, and are involved in many cellular processes[56,57]. Therefore, even if some therapeutic 
functions of the MSCs are mediated by cell-to-cell contact, the secretion of paracrine factors can be 
considered the main mechanism by which MSCs elicit functional responses in target cells[3,40,58,59]. In 
many in vitro and in vivo disease models, MSC-derived products have been identified as responsible for 
therapeutic effects[60-63]. For example, promising preclinical therapeutic effects have been obtained 
using MSC-derived EVs. In particular, regarding BM-MSC-derived EVs, Haga et al[64] found that these 
functional factors were able to reduce hepatic injury by modulating cytokine expression in a mouse 
model of fulminant hepatic failure. Reis et al[65] demonstrated that the administration of EXOs in a rat 
model of gentamycin-induced kidney injury, was able to improve the kidney injury score. Moreover, it 
has been shown that EXOs derived from umbilical cord-derived MSCs were able to accelerate wound 
healing in a rat skin burn model[66], and EXOs derived from BM-MSCs overexpressing hypoxia-
inducible factor (HIF)-1α accelerated bone regeneration and angiogenesis in a rabbit model of steroid-
induced avascular bone necrosis[67].

MSCs can also secrete a number of cytokines/chemokines that control both the innate and adaptive 
immune responses, resulting in immunoregulation and the induction of tolerance[68]. Indeed, it has 
been shown that MSCs can produce both anti- and pro-inflammatory factors which, depending on their 
ratio, regulate the pro- or anti-inflammatory activity of MSCs[69]. In this case, final immunoregulatory 
properties may be affected by cell culture conditions that can prime/enhance MSC properties[3,70,71]. 
MSCs also have the ability to roll and adhere to post-capillary venules, and migrate to injured tissues, 
contributing to tissue repair/regeneration[72]. In this case, once MSCs reach the site of the injury, these 
cells put in place an active regulation by producing paracrine factors that impact tissue survival/repair, 
and activate tissue resident stem cells[3,73,74]. The secretion of various soluble factors has also been 
found to be responsible for the pro-angiogenic and anti-apoptotic effects of MSCs[75]. Though not well 
understood, the beneficial effects of conditioned media (CM) derived from MSCs have been clearly 
demonstrated by various experimental findings, supporting the concept of paracrine effects[76]. Several 
preclinical studies have tested the efficacy of CM in different diseases models. MSC-derived CM has 
been shown capable of improving cell viability and reducing inflammation in both in vitro and in vivo 
models of lung ischemia/reperfusion injury (IRI)[59,77]. Moreover, it has been demonstrated that BM-
MSC-derived CM was able to reduce lung inflammation and edema in a mouse model of lipopolysac-
charide-induced lung injury[78], and to improve renal tissue pathology in a mouse model of cisplatin-
induced kidney injury[79]. Youdim et al[80], in a rat model of fulminant hepatic failure, found that the 
CM derived from BM-MSCs reduced leukocytic infiltrates and hepatocellular death. The CM derived 
from the same cells, in a mouse model of antigen-induced arthritis, was also able to reduce joint 
swelling, cartilage loss, and tumor necrosis factor (TNF)-α secretion[81]. In a rat model of lung fibrosis 
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and hypertension, using CM derived from adipose MSCs (AdMSCs), demonstrated the ability of 
secretome to reduce collagen deposition and improve lung blood flow[82]. In a rabbit model of surgical 
bone lesion, Linero and Chaparro[83] found that the CM produced from AdMSC cultures induced bone 
regeneration.

THE SECRETION OF MSC PARACRINE FACTORS CAN BE MODULATED BY VARIOUS 
PRIMING STRATEGIES
Given the heterogeneity of results supporting the efficacy of MSCs in the treatment of different human 
disorders, there is a need to improve the therapeutic properties of MSCs, and the best way might be that 
of preconditioning/priming. Though this approach has been widely used in the field of immunology, 
has also been effectively applied to MSCs[3,84,85]. Among commonly used priming strategies, leading 
approaches can be attributed to three main categories: (1) MSC priming with inflammatory molecules; 
(2) MSC priming with hypoxia; and (3) MSC priming with 3D cultures. These priming signals activate 
potential MSC mediators, including surface receptors and ligands, signalling molecules that induce 
survival/growth, regulatory molecules such as miRNAs, and transcription factors, which can modify 
the MSC phenotype[86-89], with a consequent boosting of MSC therapeutic functions (Figure 1).

Priming with inflammatory molecules
Numerous studies have revealed that the immunosuppressive properties of MSCs are not intrinsically 
possessed, but require priming of MSCs by inflammatory factors[90-92]. Depending on the inflam-
matory conditions, it has been demonstrated that MSC phenotypes can be polarized into MSC type 1 
(with pro-inflammatory properties) and MSC type 2 (with immunosuppressive properties)[93,94]. 
Several strategies have been implemented to modulate/enhance the secretion of functional molecules in 
MSCs. As shown in Figure 2, the treatment of MSCs with inflammatory cytokines, including interferon-
gamma (IFN-γ), interleukin (IL)-1α/β, IL-25, IL-6, TNF-α, and IL-17 enhanced the immunomodulatory 
properties of MSCs[40,95-112]. These treatments increase the production/secretion of functional factors, 
including hepatocyte growth factor (HGF), transforming growth factor-β, IL-6, prostaglandin E2 (PGE2), 
leukemia inhibitory factor, granulocyte colony-stimulating factor, IL-10, macrophage inflammatory 
protein-1α, indoleamine 2,3-dioxygenase (IDO), intercellular adhesion molecule, programmed death 
ligand 1-2, monocyte chemoattractant protein (MCP)-1, monokine induced by IFN-γ, induced protein 
10, and macrophage inflammatory protein-1β, which in turn confer more paracrine immunomodulatory 
properties to MSCs (Figure 2). It has been demonstrated that CM enriched with the above-described 
factors was able to inhibit T cell proliferation/activation, reduce the secretion of inflammatory 
mediators, and induce monocyte polarization towards anti-inflammatory the M2 phenotype[40,102,105-
112]. It has been shown that the treatment with inflammatory cytokines was also able to improve the 
immunomodulatory capabilities of EXOs, and these effects appear to be mediated by specific miRNAs, 
such as miR-21, miR-23a, miR-26b, miR-125b, miR-130b, miR-140, miR-146a, miR-203a, miR-223, miR-
224, and miR-320a[40,109,111,113].

Priming with hypoxia
Differently from inflammatory cytokines, hypoxic treatment of MSCs seems to stimulate primarily the 
secretion of functional factors involved in the processes of angiogenesis and tissue proliferation/
regeneration (Figure 2). Hypoxic preconditioning was able to promote angiogenic potential of MSCs via 
the activation of the HIF-1α-GRP78-Akt axis, and the overproduction of vascular endothelial-derived 
growth factor (VEGF) and HGF[114]. Lee and Joe[115] demonstrated that hypoxia priming induces an 
increase in HIF-1α expression and consequent VEGF production, improving the ability of MSCs to 
stimulate migration and tube formation of human umbilical vein endothelial cells (HUVECs). Moreover, 
Bader et al[116] found that hypoxic preconditioning induces the anti-apoptotic and pro-angiogenic 
effects of MSCs compared with untreated cells. In particular, Bcl-xL, BAG1, and VEGF were overex-
pressed after hypoxic priming, enhancing HUVEC proliferation and migration. Hypoxic MSCs are also 
able to produce numerous factors related to tissue remodelling, including matrix metallopeptidase 1 
(MMP1), MMP2, and MMP9[117-119], as well as crucial factors such as IL-8 and MCP-1, involved in the 
chemotaxis and activation of innate immune responses[120,121]. Also with regard to EVs, hypoxic 
priming has been shown to have important effects. Xue et al[122] discovered that EXOs derived from 
hypoxia-treated MSCs were able to increase migration and tube formation of HUVECs through the PKA 
signalling pathway. Moreover, Ge et al[123] demonstrated the efficacy of hypoxic MSC-derived EXOs in 
enhancing angiogenesis. In particular, they showed that hypoxic EXOs containing miR612 promoted, 
through HIF-1α activation, the production of VEGF in human brain microvascular endothelial cells, 
inducing proliferation, migration, and angiogenic activities of these cells.

Priming with 3D culture of MSCs
Various in vitro strategies have been applied for the production of MSCs, with improved therapeutic 
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Figure 1 Potential mechanisms mediating mesenchymal stromal/stem cell-primed therapeutic properties. Mesenchymal stromal/stem cells 
(MSCs) can be primed through different signals, including hypoxia, three-dimensional cultures, and inflammatory cytokines to obtain a therapeutic phenotype. The 
potential mediators of this new phenotype comprise a plethora of regulatory molecules within MSCs, including surface receptors and ligands, signalling molecules 
inducing survival/growth, regulatory molecules such as microRNAs, and transcription factors regulating several pathways. Thus, primed MSCs can modulate 
inflammation, stimulate angiogenesis, and promote tissue repair/regeneration. MSCs: Mesenchymal stromal/stem cells; miRNAs: MicroRNAs.

properties, and priming with inflammatory factors may impact the expression of HLA-DR, thus altering 
allogeneic therapeutic possibilities[124-126]. MSC priming through 3D culture techniques, which allows 
for the generation of MSC spheroids, strictly recapitulates the in vivo MSC niche and enhances the 
phenotypic profile of MSCs, increasing both trophic and immunomodulatory functionalities. MSC 
spheroid action is exerted by the paracrine secretion of functional factors that possess anti-inflam-
matory, angiogenic, anti-fibrotic, anti-apoptotic, and mitogenic properties (Figure 2)[127]. Recently, 
through omics approaches, such as RNA sequencing and analysis of DNA methylation, it has been 
demonstrated that, compared with conventional 2D culture, MSC spheroids were able to modify their 
transcriptome profile by overexpressing genes that can regulate proliferation/differentiation, as well as 
immunomodulatory and angiogenic processes[128]. Concerning immunomodulatory and regenerative 
effects, 3D culture of MSCs seems to have more intermediary functions than the above-mentioned 
priming strategies (priming with inflammatory molecules or hypoxia) (Figure 2). 3D MSC spheroids 
have been shown to be capable of secreting multiple functional factors. For example, it has been found 
that various regenerative and immunomodulatory factors, such as stromal cell-derived factor-1α, 
growth-related oncogene α, MCP-1/3; IL-4, IL-10; epidermal growth factor (EGF), leukemia inhibitory 
factor, placental growth factor-1, VEGF-A/D, HGF, insulin like growth factor 1, TNFAIP6, STC1, 
platelet-derived growth factor B, transforming growth factor-β, PGE2, and IDO were up-regulated in 3D 
MSC spheroids compared with those of the MSCs cultivated under conventional 2D conditions[43,44,59,
73,128-131] (Figure 2). The paracrine effects of 3D MSC appear to be also mediated by EVs. In particular, 
EXOs derived from MSC 3D cultures have been shown to have higher yields and enhanced activity. 
Indeed, compared with 2D cultures, EXOs isolated from CM of MSC spheroids were able to inhibit T 
cell proliferation and stimulate angiogenesis in vitro[44], as well as attenuate inflammation and period-
ontitis in vivo[132], and stimulate tissue regeneration in both in vitro and in vivo models[133].

THERAPEUTIC PROPERTIES OF PRIMED MSCs IN PRECLINICAL MODELS
Principal priming strategies to treat chronic immune-related disorders
By virtue of their immunomodulatory properties, MSCs are being studied to treat numerous chronic 
conditions, including GVHD and inflammatory bowel disorders, in order to attenuate inflammation and 
induce tissue recovery (Table 1). As already mentioned, treating MSCs with inflammatory factors 
enhances their immunomodulatory properties, and renders these cells able to inhibit T cell prolif-
eration/activation and induce monocytes toward an anti-inflammatory phenotype. This quality makes 
these cells more clinically effective when applied to chronic inflammatory-related diseases (Figure 2). 
Indeed, several experimental studies have demonstrated that the treatment of MSCs with inflammatory 
factors, such as IFN-γ, IL-1β, and IL-25, enhanced MSC therapeutic effects in in vivo models of chronic 
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Table 1 Representative priming strategies of mesenchymal stromal/stem cells and their application in preclinical studies

MSCs Dose Priming treatments Study model Observed therapeutic effects Ref.

AMSCs 1 × 105 MSCs/5 × 105 
PBMCs

IFN-γ In vitro model of T cell 
activation and monocyte 
M1/M2 polarization

Regulation of T cell 
activation/anergy and induction of 
M2-like polarized phenotype in 
monocytes

[40]

BM-MSCs 0.5 × 106 MSCs/mouse IFN-γ In vivo model of chronic 
colitis

Attenuation of inflammation and 
colitis

[96]

BM-MSCs NA IFN-γ; TNF-α In vitro model of MLR Inhibition of allogeneic MLR [97]

CB-MSC-derived 
EVs

NA IFN-γ In vivo model of acute 
kidney injury and in vitro 
model of T cell activation

Regulation of T cell activation and 
amelioration of kidney injury with 
unprimed MSCs only

[100]

BM-MSCs and 
CB-MSCs

1 × 106 MSCs/mouse IFN-γ In vivo model of GVHD Reduction of the symptoms of 
GVHD

[101]

BM-MSCs 1 × 104 MSCs/2 × 103 
macrophages

IFN-γ; LPS; TNF-α In vitro model of monocyte 
M1/M2 polarization

Induction of monocyte polarization 
toward an anti-inflammatory M2 
phenotype

[102]

UC-MSCs 1 × 106 MSCs/mouse IFN-γ; TNF-α In vivo model of GVHD Reduction of the symptoms of 
GVHD

[103]

BM-MSCs 2.5 × 105 MSCs/5 × 105 
macrophages

IFN-γ; IL-1β In vitro model of monocyte 
M1/M2 polarization

Induction of monocyte polarization 
toward an anti-inflammatory M2 
phenotype

[105]

BM-MSC-
derived CM

NA IFN-γ; IL-1α/β; TNF-α In vitro model of LPS-
injured microglial cells

Reduction in the secretion of inflam-
matory factors 

[106]

AdMSCs; BM-
MSCs; CB-MSCs.

NA IFN-γ In vitro model of T cell 
activation

Suppression of T cell proliferation [110]

BM-MSCs NA IFN-γ; spheroids In vitro model of T cell 
activation

Suppression of T cell activation and 
proliferation

[112]

BM-MSCs 2 × 106 MSCs/mouse IFN-γ Autoimmune encephalomy-
elitis

Attenuation of pathologic manifest-
ations

[134]

BM-MSCs 1 × 106 MSCs/mL IFN-γ In vitro model of T cell 
activation and in vivo model 
of colonic wounds

Regulation of T cell activation and 
acceleration of healing of colonic 
mucosal wounds

[135]

UC-MSCs 2 × 106 MSCs/mouse IL-1β In vivo model of chronic 
colitis

Attenuation of inflammation and 
colitis

[98]

UC-MSCs 1 × 106 MSCs/mouse IL-1β In vivo model of sepsis Increase in survival rate [109]

MSC-derived 
EVs

40 μg/mouse IL-1β In vitro model of monocyte 
M1/M2 polarization and in 
vivo model of sepsis

Induction of monocyte M2 
polarization and amelioration of 
sepsis

[111]

AdMSC-derived 
CM

20 μL/rat TNF-α In vivo model of wound 
healing

Acceleration of wound closure and 
angiogenesis

[99]

BM-MSCs 1.6 × 106 MSCs/mouse TNF-α In vivo model of peritonitis Attenuation of inflammatory 
responses

[136]

BM-MSCs 5 × 106 MSCs/rat IL-25 In vivo model of chronic 
colitis

Attenuation of inflammation and 
colitis

[95]

BM-MSCs 1 × 106 MSCs/mL IL-6 In vivo model of liver 
fibrosis

Reduction of liver injury and fibrosis [104]

BM-MSCs 3.91 × 104 MSCs/3.91 × 
106 T cells

IL-17 In vitro model of T cell 
activation

Suppression of T cell 
proliferation/activation and Th1 
cytokines

[108]

AdMSCs 5 × 105 MSCs/mouse Hypoxia In vivo model of hindlimb 
ischemia

Improvement of angiogenesis [114]

BM-MSC-
derived CM

100 μL/mouse Hypoxia In vivo model of wound 
healing

Acceleration of skin wound healing [120]

BM-MSCs 2.5 × 105 MSCs/mouse Hypoxia In vivo model of pancreatic 
islet transplantation

Reversion of impaired glucose 
tolerance

[121]

In vivo model of hindlimb BM-MSCs 5 × 105 MSCs/mouse Hypoxia Improvement of angiogenesis [139]
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ischemia

AdMSCs 5 × 105 MSCs/mouse Hypoxia In vivo model of hindlimb 
ischemia

Improvement of functional recovery 
and neovascularization

[140]

AdMSC-derived 
CM

NA Hypoxia In vivo model of partial 
hepatectomy

Enhanced liver regeneration [142]

AdMSCs 2 × 106 MSCs/rat Hypoxia In vivo model of acute 
kidney injury

Improvement of angiogenesis and 
inhibition of ROS generation

[145]

AdMSC-derived 
CM

100 μL/mouse Hypoxia In vivo model of acute 
kidney injury

Improvement of renal function and 
reduction of inflammation

[146]

BM-MSCs 1 × 106 MSCs/rat Hypoxia In vivo model of lung IRI Attenuation of pathologic lung 
injury score by inhibiting inflam-
mation and generation of ROS and 
anti-apoptotic effects

[147]

BM-MSCs NA Hypoxia In vivo model of radiation-
induced lung injury

Improvement of antioxidant ability [148]

BM-MSCs 1 × 106 MSCs/rat Hypoxia In vivo model of myocardial 
infarction

Improvement of angiogenesis and 
function

[150]

BM-MSCs 1 × 106 MSCs/mouse Hypoxia In vivo model of myocardial 
infarction

Prevention of apoptosis in 
cardiomyocytes

[151]

BM-MSC-
derived EVs

1 μg of EVs/mouse Hypoxia In vivo model of myocardial 
infarction

Reduction of cardiac fibrosis [152]

BM-MSC-
derived EVs

50 μg of EVs/rat Hypoxia In vivo model of cardiac IRI Reduction of IRI and improvement 
of cardiomyocyte survival

[153] 

BM-MSC-
derived EVs

200 μg of EVs/20 g Hypoxia In vivo model of myocardial 
infarction

Improved cardiac repair by 
amelioration of cardiomyocyte 
apoptosis

[154]

BM-MSCs 1 × 106 MSCs/rat Hypoxia In vivo model of cerebral 
ischemia

Enhanced angiogenesis and 
neurogenesis

[157]

BM-MSC-
derived CM

100 μg of CM/kg Hypoxia In vivo model of traumatic 
brain injury

Improved neurogenesis, motor and 
cognitive function

[158]

UC-MSCs 1 × 105 MSCs/rat Hypoxia In vivo model of spinal cord 
injury

Increase in axonal preservation and 
decrease of apoptosis

[159]

PMSC-derived 
CM

100 μL/mouse Hypoxia In vivo model of scar 
formation

Reduction of scar formation [162]

BM-MSCs 5 × 106 MSCs/rat Hypoxia In vivo model of partial 
hepatectomy

Enhanced liver regeneration [164]

DP-MSCs N.A. Hypoxia In vivo model of dental pulp 
injury

Regeneration of dental pulp with a 
rich vasculature

[167]

AF-MSC-derived 
CM

N.A. Hypoxia In vivo model of wound 
healing

Acceleration of skin wound healing [168]

AMSC-derived 
CM and EVs

200 μL CM and 5 μg 
EVs/1 × 105 PBMCs, and 
100 μL CM and 5 μg 
EVs/1 × 104 HUVECs

3D cultures/spheroids In vitro model of T cell 
activation and HUVEC cells

Induction of angiogenesis and 
inhibition of T cell proliferation

[44]

AMSCs 250 μL CM/ 1.5 × 105 
alveolar epithelial cells

3D cultures/spheroids In vitro model of lung IRI Attenuation of IRI side effects by 
improving the efficacy of in vitro 
EVLP

[59]

AMSC-derived 
CM

50 μL CM/ 1 × 104 liver 
cells

3D cultures/spheroids In vitro model of liver IRI Attenuation of IRI side effects by 
inhibiting inflammation and 
apoptosis

[131]

BM-MSCs 3 × 106 MSCs/mouse 3D cultures/spheroids In vivo model of peritonitis Production of anti-inflammatory 
cytokines

[137]

BM-MSCs 1.5 × 106 MSCs/mouse 3D cultures/spheroids In vivo model of peritonitis Attenuation of inflammatory 
responses

[138]

CB-MSCs 1 × 107 MSCs/mouse 3D cultures/spheroids In vivo model of hindlimb 
ischemia

Improvement of survival and 
angiogenesis 

[141]

Reduction of apoptosis and tissue 
damage, promotion of vascular-
ization, and amelioration of renal 

AdMSCs 2 × 106 MSCs/rat 3D cultures/spheroids In vivo model of acute 
kidney injury

[143]
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function

UC-MSC-
derived EVs

200 μg of EVs/mouse 3D cultures/spheroids In vivo model of acute 
kidney injury

Attenuationof pathological changes 
and improvement of renal function

[144]

BM-MSCs 2 × 106 MSCs/rat 3D cultures/spheroids In vivo model of myocardial 
infarction

Promotion of cardiac repair [155]

BM-MSCs 5 × 105 MSCs/rat 3D cultures/spheroids In vivo model of myocardial 
infarction

Stimulation of a vascular density 
and improvement of cardiac 
function

[156]

AdMSCs 1 × 107 MSCs/mouse 3D cultures/spheroids In vivo model of hindlimb 
ischemia

Improvement of angiogenesis [163]

AdMSCs 2 × 106 MSCs/rabbit 3D cultures/spheroids In vivo model of disc 
degeneration

Induction of disc repair [169]

BM-MSCs NA 3D cultures/spheroid In vivo model of bilateral 
calvarial defects

Induction of bone regeneration [170]

SMSCs NA 3D cultures/spheroid In vivo model of 
osteochondral defects

Induction of cartilage regeneration [171]

MSCs: Mesenchymal stem cells; BM-MSCs: Bone marrow-derived mesenchymal stem cells; AMSCs: Amnion-derived mesenchymal stem cells; UC-MSCs: 
Umbilical cord-derived mesenchymal stem cells; AdMSCs: Adipose-derived mesenchymal stem cells; CB-MSCs: Cord blood-derived mesenchymal stem 
cells; WJ-MSCs: Wharton’s Jelly-derived mesenchymal stem cells; PMSCs: Placenta-derived mesenchymal stem cells; AF-MSCs: Amniotic fluid derived 
mesenchymal stem cells; SMSCs: Synovial derived mesenchymal stem cells; EVs: Extracellular vesicles; CM: Conditioned medium; NA: Not available; 
GVHD: Graft-versus-host disease; IRI: Ischemia-reperfusion injury; 3D: Three-dimensional; IFN: Interferon; TNF: Tumor necrosis factor; IL: Interleukin; 
MLR: Mixed lymphocyte reactions; LPS: Lipopolysaccharide; HUVEC: Human umbilical vein endothelial cell.

colitis[95,96,98]. Rafei et al[134], in a mouse in vivo model of autoimmune encephalomyelitis, found that 
treatment with allogeneic MSCs primed with IFN-γ reduced clinical signs in a dose-dependent manner. 
In this study the authors showed that, though the priming treatment induced the increase of CCL2 and 
MHCI/II expression in IFN-γ-primed MSCs, it inhibited manifestations of autoimmune encephalomy-
elitis while keeping their immunogenicity low. The use of IFN-γ- or TNF-α-primed MSCs has also been 
shown to attenuate symptoms of GVHD[101,103]. In these cases, in the first study it was shown that 
therapeutic effects of MSCs were mediated by overproduction of IDO induced through the IFN-γ-JAK-
STAT1 pathway[101]. In the second study, the therapeutic function of MSCs was activated by TNF-α, 
which induced overexpression of Chi3 L1 and consequent suppression of T-helper 17 cells[103]. 
Recently, it has been revealed that the priming of MSCs with IL-1β relieved the side effects of sepsis[109,
111]. In particular, Song et al[109] demonstrated that IL-1β makes MSCs more effective in inducing 
macrophage polarization toward an anti-inflammatory M2 phenotype, and this effect was mediated, at 
least in part, through overproduction of EXOs containing miR146a. Similar results on M2 macrophage 
polarization were also obtained by Yao et al[111], who revealed the ability of IL-1β to stimulate the 
production of MSC-derived EXO containing miR21. The therapeutic efficacy of MSCs primed with IFN-
γ was also found in an in vivo model of colonic wounds. Particularly, García et al[135] showed that these 
cells were able to enhance healing of colonic mucosal wounds in both immunocompromised and 
immunocompetent mice. Similar results were also obtained using MSCs primed with TNF-α, which 
were able to accelerate wound closure and angiogenesis in an in vivo model of wound healing[99]. The 
priming with inflammatory cytokines seems to also be effective for the treatment of chronic liver 
diseases. Indeed, treatment with IL-6 improved the ability of MSCs to reduce liver injury[104]. The 
study reported that in a mouse in vivo model of liver fibrosis, treatment with IL-6-primed MSCs reduced 
both fibrosis and apoptosis, and improved liver functions[104]. Moreover, TNF-α-primed MSCs were 
also able to attenuate inflammation in an in vivo model of peritonitis[136]. In this study, the authors 
demonstrated that TNF-α induced the overproduction of the anti-inflammatory factor TSG-6, generating 
a mechanism that reduces inflammation in an in vivo model of zymosan-induced peritonitis[136]. 
Interestingly, in a similar experimental model, Bazhanov et al[137] found that after intraperitoneal 
injection MSCs formed 3D aggregates, and stimulated the production of anti-inflammatory cytokines, 
such as IL-10 and PGE2. In this regard, Bartosh et al[138] showed that the priming of MSCs with 3D 
culture decreased inflammation in an in vivo model of peritonitis[138]. In particular, the authors suggest 
that MSC spheroids overexpressed TSG-6, and these cells were more effective than conventional MSCs 
as therapy for diseases characterized by unresolved inflammation.

Overall, the above-mentioned studies suggest that treatment with pro-inflammatory cytokines or the 
3D culture of MSCs represents promising priming strategies for enhancing the MSC immunoregulatory 
phenotype, making these cells more suitable for clinical disorders related to exacerbated immune 
responses (Figure 2).
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Figure 2 Schematic representation of the molecular effects after priming of mesenchymal stromal/stem cells. Mesenchymal stromal/stem cells 
(MSCs) can be primed through various stimuli, including hypoxia, three-dimensional cultures, and pro-inflammatory cytokines to enhance their therapeutic potential. 
Each priming method induces the production of specific factors (e.g., trophic factors, angiogenetic factors, chemokines, cytokines, and exosomes containing both 
proteins and microRNAs), which induce the activation of biological processes such as angiogenesis, tissue repair/regeneration, chemoattraction, and modulation of 
inflammation. Each priming strategy seems to stimulate the production of functional factors in a different way, thus eliciting different responses. miRNA: MicroRNA; 
VEGF: Vascular endothelial-derived growth factor; CXCR: Chemokine receptor; HGF: Hepatocyte growth factor; MMP: Matrix metallopeptidase; BDNF: Brain-derived 
neurotrophic factor; SDF: Stromal cell-derived factor; HIF: Hypoxia-inducible factor; ICAM: Intercellular adhesion molecules; MCP: Monocyte chemoattractant protein; 
IL: Interleukin; LIF: Leukemia inhibitory factor; PIGF: Placental growth factor; EGF: Epidermal growth factor; FGF: Basic fibroblast growth factor; PDGF: Platelet-
derived growth factor; GRO: Growth-related oncogene; TGF: Transforming growth factor; PGE2: Prostaglandin E2; IDO: Indoleamine 2,3-dioxygenase; PDL1-2: 
Programmed death ligand 1-2; MIG: Monokine induced by interferon-gamma; G-CSF: Granulocyte colony-stimulating factor; IP-10: Induced protein 10; MIP: 
Macrophage inflammatory protein; IRI: Ischemia/reperfusion injury; MSCs: Mesenchymal stromal/stem cells; 3D: Three-dimensional.

Main priming strategies for treating acute injury
Priming strategies for MSCs have been considered a crucial tool for enhancing their therapeutic effects, 
making these cells more suitable for application in the field of regenerative medicine[3,85]. However, 
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while the priming of MSCs with pro-inflammatory cytokines potentially represents the principal 
strategy modulating inflammation in chronic immune-related disorders (or, in any case, conditions in 
which the inflammation is exacerbated), the priming of MSCs with hypoxia is thought to represent the 
more appropriate priming strategy for boosting MSC effects for the stimulation of tissue function 
recovery after acute injury (Figure 2). This has been demonstrated in numerous study models, and on 
different organs (Table 1). For example, hypoxia pre-conditioning significantly improved blood flow 
recovery in mouse models of hindlimb ischemia. Rosová et al[139] demonstrated that hypoxic MSCs 
better migrate to the injured site compared with non-hypoxic MSCs, thus speeding up the restoration of 
blood flow. The authors demonstrated that the observed effects were likely mediated by the HGF-cMET 
axis. It has been shown that hypoxia helps MSCs to better integrate in the damaged tissue. Han et al[140] 
revealed that hypoxic priming enhanced survival and proliferation of transplanted MSCs, thus 
improving the regeneration of hindlimb ischemic tissues. After MSC treatment, the authors observed 
inhibition of apoptosis and promotion of neovascularization and, as they showed the increased 
expression of the normal cellular prion protein upon hypoxia pre-conditioning, they identified this 
prion as a potential target for MSC therapy. In a similar manner, Lee et al[115] recently identified GRP78 
as new potential target for the development of functional MSCs. GRP78 has been shown to be induced 
by hypoxia, thus increasing transplanted-MSC survival and proliferation in a mouse model of hindlimb 
ischemia. Moreover, the authors found that the HIF-1α-GRP78-Akt axis regulates the suppression of cell 
death signals, and increases angiogenic cytokine secretion, thus strongly improving tissue recovery 
from the damage[114]. Recently, it has been found that mild hypoxia can be induced in MSCs when they 
are cultured as spheroids. Various studies have clearly demonstrated that 3D culture conditions induce 
hypoxia in the core of the spheroid, thus stimulating the production of both growth and pro-angiogenic 
factors, which in turn stimulate the fast recovery of damaged tissues in mouse models of hindlimb 
ischemia[141,142]. Interestingly, it has also been shown that the CM derived from MSCs primed by 3D 
culture attenuated injury and inflammation in two IRI in vitro models of both lung and liver[59,131]. 3D 
pre-conditioning has been shown to also be effective for other type of diseases, such as acute kidney 
injury (AKI). Xu et al[143] found that 3D pre-conditioned MSCs, when transplanted in mice with AKI, 
are more viable than the 2D cultured cells, and exhibit higher paracrine secretions, as evidenced by the 
increased levels of VEGF and TSG-6. Furthermore, the authors show that the paracrine secretion, which 
also includes basic fibroblast growth factor, insulin like growth factor, and EGF, significantly improved 
renal function and reduced tissue apoptosis, thus speeding up the regeneration of renal tissues upon 
injury[143]. Recently, the secretome of 3D MSCs transplanted for the treatment of AKI was furtherly 
investigated. For example, Cao et al[144] found that the paracrine effect on AKI was mediated not only 
by soluble factors, such as anti-inflammatory cytokines, but also by EXOs, whose production is 
increased after 3D pre-conditioning. Furthermore, by using a cisplatin-inducing AKI model in mice, the 
authors showed that the increased number of EXOs upon 3D culture enhanced the renoprotective and 
anti-inflammatory efficacy of MSCs[144]. Treatment of AKI with MSC therapy has been implemented in 
recent years by defining new protocols of MSC pre-conditioning. Along with 3D culturing, hypoxia 
priming has been used for the treatment of IRI-inducing AKI in animal models, and Zhang et al[145] 
demonstrated that hypoxia priming enhanced angiogenic and antioxidative MSCs properties in a rat 
model of renal IRI. In addition, in the same model, the authors found that transplanted MSCs attenuated 
renal apoptosis by reducing cleaved caspase3 activation. Notably, hypoxia also enhanced MSC 
therapeutic potential in a cisplatin-induced mouse model of AKI. Overath et al[146] found that hypoxic 
conditions increased the efficacy of transplanted MSCs in attenuating renal damage upon injury both by 
reducing creatinine and N-GAL serum levels, and decreasing pro-inflammatory cytokine release. MSC 
hypoxia pre-conditioning has also been found to be strongly effective for the treatment of IRI in the 
lung. For example, MSC infusion in lung perfusates demonstrated that hypoxic MSCs quickly migrate 
from the pulmonary artery to the lung tissue, where they attenuate parenchymal damage by reducing 
oxidative stress, inflammation, and apoptosis, and by stimulating cell proliferation and survival[147]. In 
a similar manner, MSC hypoxia has been found to have important effects also for radiation-induced 
lung injury (RILI). A mouse model of RILI was recently established by exposing the lungs of mice to 
irradiation, thus generating tissue damage. Upon irradiation, the authors demonstrated that hypoxic 
MSCs reside for longer in the injured tissue compared with normoxic MSCs. In addition, Li et al[148] 
showed that hypoxia-primed MSCs enhanced cell viability and proliferation, as well as anti-oxidative 
and anti-apoptotic capabilities in lung parenchymal cells. Finally, the authors highlighted the role of 
HIF-1 in modulating resistance to lung hypoxic stress induced by RILI, thus promoting tissue repair and 
regeneration upon injury.

The use of MSCs as cellular therapy has also been shown to be effective for the treatment of acute 
myocardial injury in several preclinical models (Table 1). Also in this case, to ameliorate the therapeutic 
effects of MSCs various priming strategies have been evaluated. In particular in myocardial infarction 
(MI), it has been widely believed that tissue injury is related to ischemia and the hypoxic environment. 
Therefore, the in vitro hypoxic condition was tested to improve MSC therapeutic effects in MI animal 
models[149]. In a mouse model of MI, it was found that intramyocardial injection of hypoxia-precondi-
tioned MSCs reduces infarct size, influences heart remodelling by modulating vasculogenesis, and 
improves heart functions, promoting cell survival[150,151]. Of note, expression analysis in hypoxic 
MSCs has revealed an increase in expression of pro-survival and pro-angiogenic factors, including HIF-
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1α, ANGPT1, VEGF, Flk-1, Bcl-2, Bcl-xL, and these proteins can act in a paracrine manner on MI, 
inducing functional recovery[150]. It has also been observed that hypoxic MSCs influence the expression 
of specific miRNAs that can be secreted through EVs. In particular, Feng et al[152] demonstrated that 
after hypoxic treatment of MSCs an increase of miR22 was observed in EXOs, and this miRNA was 
considered responsible for targeting Mecp2, with beneficial effects on survival of cardiomyocytes 
exposed to ischemia. Similarly, EVs derived from hypoxic MSCs overexpressing miR26 were able to 
reduce the damage from ischemia/reperfusion in a rat model[153]. In the same way, in an MI mouse 
model the intracardial injection of hypoxic-preconditioned MSC-derived EXOs was able to positively 
regulate cardiomyocyte proliferation and survival, and this effect was ascribable to the overexpression 
of miR125b[154]. In addition to the use of hypoxia priming, the use of 3D culture has also been shown to 
be effective in the improvement of MSC therapeutic effects on the treatment of acute myocardial injury. 
You et al[155], in an acute MI rat model, found that treatment with 3D-primed MSCs resulted in a 
retention of MSCs at the epicardium, where MSCs exerted cardiac protection/repair, and functional 
recovery. Moreover, in the same animal model, Wang et al[156] revealed that 3D MSCs were able to 
stimulate vascular density and improve cardiac function after MI.

Over the last decade, MSCs have also been intensively studied for their potential use in the treatment 
of neurological acute injury, including cerebral ischemia, traumatic brain injury, and spinal cord 
damage. For example, in an in vivo model of cerebral ischemia, it has been shown that hypoxic-precon-
ditioned MSCs enhanced angiogenesis and neurogenesis after ischemia[157]. In an in vivo model of 
traumatic brain injury, Chang et al[158] demonstrated that the priming of MSCs with hypoxia improved 
their therapeutic function, and resulted in an amelioration of neurogenesis, and motor and cognitive 
functions. Moreover, in a rat model of spinal cord injury, hypoxic MSCs were also able to increase 
axonal preservation and decrease apoptosis[159].

Principal priming strategies for stimulating tissue regeneration
MSCs are involved in tissue homeostasis, which is necessary for physiologically coordinating 
regeneration/repair of tissue, also after injury[3,6,36]. Thus, the use of MSCs in regenerative therapies is 
garnering great interest due to their potentially numerous clinical applications.

In the complex process of cutaneous wound healing, a central role is played by fibroblasts, which 
contribute, through the interaction with surrounding cells, to the production of ECM, glycoproteins, 
adhesive molecules, and various growth factors[160]. Recent evidence suggests that CM produced by 
primed MSCs from different sources, such as bone marrow[120], adipose tissue[160], amnion fluid[161], 
and placenta[162] enhanced the migration and proliferation of fibroblasts in vitro, and accelerated 
wound healing in in vivo models (Table 1). In all these cases, hypoxia treatment represented the chosen 
priming strategy for driving MSCs in increasing secretion of various angiogenic factors, cytokines, and 
chemokines. Therefore, the priming of MSCs with hypoxia might well represent the main approach to 
improving the therapeutic effects of MSCs to be applied in the stimulation of tissue regeneration 
(Figure 2). This idea has also been supported by other studies (Table 1). Indeed, in both hepatectomized 
mouse and rat models, it has been demonstrated that hypoxic MSCs produce crucial functional 
molecules, including HGF and VEGF, which were considered responsible for the induction of liver 
regeneration[163,164]. Kuo et al[165] showed that systemic infusion of MSCs restored liver function and 
promoted liver regeneration in rodents. In this regard, in a rat massive hepatectomy model, Yu et al[164] 
found that hypoxia-conditioned MSCs secreted significantly more VEGF than normoxia-conditioned 
cells, and the infusion of primed MSCs promoted proliferation of hepatocytes and liver regeneration. 
Several studies have focused on the signalling pathways up-regulated by MSC during liver 
regeneration. Lee et al[163] using a partially hepatectomized mouse model, found that treatment with 
hypoxic MSC-derived CM increased the viability of hepatotoxic hepatocytes, and enhanced liver 
regeneration through JAK/STAT3 signalling. These data were also confirmed by Lee et al[166], who 
confirmed the activation of JAK/STAT3 signalling induced by MSC CM during mouse liver generation. 
Hypoxic MSCs that secrete high level of VEGF were also able to regenerate pulp-like tissues and 
vasculature similar to the native pulp in a rat model of pulp repair[167]. HGF and VEGF produced by 
hypoxic MSCs were considered by Chang et al[158] to be responsible for improvement of neuronal 
proliferation. Moreover, Zhilai et al[159] demonstrated that both HGF and VEGF produced by hypoxia-
primed MSCs facilitated axonal survival in a rat model of spinal cord injury. Han et al[140], in a murine 
hindlimb ischemia model, found that the expression levels of EGF, VEGF, fibroblast growth factor, and 
HGF were significantly higher in ischemic tissue treated with hypoxic MSCs, where an improvement of 
neovascularization was observed. The efficacy of hypoxic MSCs was also tested in reducing scar 
formation and inducing wound healing in various in vivo models[120,162,168].

Despite the fact that the principal MSC priming strategy used for both in vitro and in vivo 
regeneration experiments was hypoxia treatment, 3D culture of MSCs as priming strategy has also been 
investigated in tissue regeneration (Figure 2). In fact, MSC spheroids have also shown therapeutic 
abilities with regard to both bone and cartilage regeneration. In particular, it has been found that 
treatment with MSC spheroids was effective in inducing disc repair in an in vivo model of disc 
degeneration, bone regeneration in an in vivo model of bilateral calvarial defects, and cartilage 
regeneration in an in vivo model of osteochondral defects[169-171].
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CONCLUSION
The therapeutic effects of MSCs have been demonstrated in both in vitro and in vivo studies. 
Nevertheless, due to their heterogeneity related mainly to tissue source, which can impact MSC 
functional properties[85,172], the application of MSCs in clinical trials has shown moderate or poor 
efficacy. MSCs are considered key regulators of tissue repair and, in this case, different stimuli are 
crucial in modulating the functional properties of these cells. In fact, it is believed that inflammation and 
low oxygen levels are essential signals for triggering MSC activity in a suitable manner. Moreover, it has 
recently been shown that different priming approaches can eliminate the functional heterogeneity of 
MSCs[173]. Therefore, specific priming strategies have been implemented to improve the regenerative 
and immunomodulatory properties of MSCs. In this review, we have explored data regarding the 
principal priming approaches used to enhance the therapeutic potential of MSCs. The above-mentioned 
data underscore that several factors play a role in the ability to modify MSC properties. Moreover, some 
therapeutic effects, on different disease models, can be obtained in relation to dose and/or combination 
of the priming factors used.

Several diseases have in common tissue injury and repair processes, in which inflammation plays a 
central role in coordinating different pathways that regulate tissue regeneration and functional 
recovery. Indeed, after acute injury, a low level inflammation (acute inflammation) occurring after 
specific triggers, is crucial in stimulating wound healing and tissue repair, facilitating the resolution of 
inflammation and restoring tissue structure/function (inflammation drives regeneration). On the other 
hand, in the case of abnormal damage repair, chronic unregulated inflammation can lead to pathological 
processes, including hormonal metabolic changes, which culminate in the onset of specific diseases, 
including cancer and fibrosis[174,175]. Therefore, the regulation of both acute and chronic inflammation 
is essential for a proper restorative response and, in this scenario, MSCs can have a crucial physiopatho-
logical role. In fact, it has been shown that when MSCs coordinate damaged tissue for repair, they 
undergo local stimuli such as inflammatory cytokines, and hypoxia, which in turn boost and direct the 
reaction of MSCs to orchestrate tissue regeneration[85,176]. In Figure 3, we depict a hypothetical model 
that occurs during physiopathologic tissue injury and repair. In this model, MSCs are activated 
differently by various microenvironment stimuli to manage tissue functional recovery. One of the first 
factors that arises after tissue injury is the establishment of a hypoxic and weakly inflammatory 
microenvironment, which in turn activates local cells to protect/regenerate tissues[3,177]. Hypoxia 
rapidly up-regulates the level of intercellular adhesion molecule-1 in local-inflamed endothelium, 
promoting MSC migration to injured tissues[178,179]. Moreover, a mild inflammation may stimulate 
MSCs to release chemokines for attracting immune cells and amplifying immune responses[180]. Once 
MSCs reach the site of injury, the paracrine properties of MSCs to release chemotactic and angiogenic 
factors is significantly amplified under hypoxic conditions[181]. In this case, naïve MSC are activated to 
recruit neutrophils and stimulate the formation of new blood vessels. Neutrophil action is followed by 
monocyte/macrophage activity that ensures sustained release of pro-inflammatory cytokines and 
potentiation of the fibroproliferative response[182,183]. If these processes are not adequately regulated, 
a state of chronic inflammation occurs. Thus, cytokines such as IFN-γ, TNF-α, and IL-1 accumulate in 
the injured tissues, and the inflammatory environment becomes central in affecting the regulatory role 
of MSCs that exhibit immunosuppressive capacities[184]. The MSC phenotype is switched into a lower 
regenerative potential and a higher anti-inflammatory phenotype (Figure 3). Thus, high amounts of pro-
inflammatory cytokine confer a dramatic immunomodulatory ability to MSCs[40,91,124,125,185,186] 
which, in turn, act as a homeostatic regulator to control the inflammatory response. Overall, this 
scenario describes what occurs when MSCs are exposed to low levels of both oxygen and inflammation, 
and their phenotype is potentially inclined to low immunomodulation and high stimulation of tissue 
regeneration. Otherwise, high levels of inflammation can imprint a MSC phenotype inclined toward 
high immunomodulation and weak stimulation of tissue regeneration (Figure 3). In this regard, Vigo et 
al[87] found that IFN-γ can orchestrate MSCs functions in a dose-manner, and this is reflected in the 
opportunity to modulate MSC properties before their use in clinical practice. In addition, considering 
the heterogeneous immune regulatory functions of MSCs due to intrinsic characteristics of individual 
clones, the priming of MSCs with pro-inflammatory factors can equally amplify immune therapeutic 
properties of MSCs, and eliminate the variances among different MSC clones[173].

Priming with inflammatory signals polarizes MSCs toward an anti-inflammatory and pro-trophic 
phenotype allowing, on the one hand, the regulation of inflammatory responses, and on the other the 
final remodelling and recovery of damaged tissue. Likewise, different priming strategies can be used to 
direct the therapeutic effects of naïve MSCs toward specific pathological processes. As also highlighted 
by the studies we have noted in this review, while hypoxic priming of MSCs could be used mainly to 
treat acute disease, to principally stimulate angiogenesis and tissue regeneration, inflammatory 
cytokines could be used mainly to prime MSCs for treating chronic immune-related disorders. The 
change of perspective from regeneration to inflammation implies in the MSCs the shift in the production 
of functional factors that stimulate regenerative or anti-inflammatory pathways (Figure 2). Interestingly, 
the 3D culture of MSCs as priming strategy appears to be an intermediate functional priming between 
the two mentioned above. The production of priming type-specific functional factors in MSCs could 
well pave the way for optimizing their therapeutic potential, aimed at a greater effectiveness as an 
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Figure 3 Schematic illustration of the physiological role and biological action of mesenchymal stromal/stem cells primed in vivo in a 
model of tissue injury and repair. During tissue injury and repair, mesenchymal stromal/stem cells (MSCs) are differently activated by various 
microenvironment stimuli to orchestrate tissue repair and functional recovery. First, naïve MSC activation (hypoxic activation) leads to the release of both angiogenic 
factors and chemokines, which stimulate the formation of new blood vessels, the recruitment of neutrophils, and the expression of adhesion molecules. Neutrophil 
action is followed by macrophage activity, which ensures sustained release of pro-inflammatory cytokines, and potentiation of the fibroproliferative response. If this 
process is not adequately regulated, a state of chronic inflammation occurs; the MSC phenotype is switched into an anti-inflammatory phenotype. MSCs: 
Mesenchymal stromal/stem cells; 3D: Three-dimensional.

advanced therapy medicinal product.
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Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the 
accumulation of immunoglobulin-secreting clonal plasma cells at the bone 
marrow (BM). The interaction between MM cells and the BM microenvironment, 
and specifically BM mesenchymal stem cells (BM-MSCs), has a key role in the 
pathophysiology of this disease. Multiple data support the idea that BM-MSCs not 
only enhance the proliferation and survival of MM cells but are also involved in 
the resistance of MM cells to certain drugs, aiding the progression of this hemato-
logical tumor. The relation of MM cells with the resident BM-MSCs is a two-way 
interaction. MM modulate the behavior of BM-MSCs altering their expression 
profile, proliferation rate, osteogenic potential, and expression of senescence 
markers. In turn, modified BM-MSCs can produce a set of cytokines that would 
modulate the BM microenvironment to favor disease progression. The interaction 
between MM cells and BM-MSCs can be mediated by the secretion of a variety of 
soluble factors and extracellular vesicles carrying microRNAs, long non-coding 
RNAs or other molecules. However, the communication between these two types 
of cells could also involve a direct physical interaction through adhesion mole-
cules or tunneling nanotubes. Thus, understanding the way this communication 
works and developing strategies to interfere in the process, would preclude the 
expansion of the MM cells and might offer alternative treatments for this 
incurable disease.

Key Words: Multiple myeloma; Mesenchymal stem cells; Bone marrow microen-
vironment; Soluble factors; Extra-cellular vesicles; Cells adhesion molecules; Tunnelling-
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Core Tip: Mesenchymal stem cells (MSCs), the main cell population of the bone marrow (BM) stroma, can 
influence BM microenvironment through their paracrine activity, involving both soluble factors and 
extracellular vesicles, but also through direct communication. Being the BM the predominant localization 
of multiple myeloma cells (MM), finding the appropriate conditions at this niche, is key for the survival 
and expansion of tumour cells and thus, for the progression of the disease. Since the activity of BM-MSCs 
could determine the fate of MM cells at BM, these cells could be interesting targets for the design of new 
antitumor drugs.

Citation: García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M, Pérez-Campo 
FM. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: Impact on 
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INTRODUCTION
Multiple myeloma (MM) is one of the most common hematological diseases, only second to non-
Hodgkin lymphoma[1]. MM affects mainly older adults, with the median age of diagnosis being around 
69 years. Only in 2020, 32270 new cases and 12830 deaths in the United States were estimated by the 
American Cancer Society Statistics Centre. In global terms, the cases would reach 160000, accounting for 
0.9% of all cancer diagnosis. Importantly, incidence of MM has risen 126% globally, and hence, there is 
an increasing need to find new effective treatments for this incurable disease[2,3].

Besides the initial treatments for MM, consisting in alkylating agents often combined with corticost-
eroids, the last couple of decades have seen an important advance in the available treatments for this 
disease. We first saw the introduction of proteasome inhibitors (Bortezomib), histone deacetylase 
inhibitors (Panobinostat) and drugs such as Selinexor, with a nuclear export inhibition activity. In recent 
years monoclonal antibodies such as Daratumumab (anti-CD38) or Elotuzumab (anti-SLAMF7), and 
more recently the use of chimeric antibody receptor (CAR) T-cell products, has introduced immuno-
therapy as a viable approach to MM treatment[4]. According to data from the National Cancer Institute 
(Bethesa, MD, United States), all these treatments have had a deep impact on patients' survival, substan-
tially raising the survival rate to 55% in the period between 2011 and 2017. More recently, the use of 
small molecules, with a molecular weight smaller than 1kDa, has also improved treatments, since it 
offers important advantages compared to the former therapies, as the easy cell entry, the simplicity of 
the molecules, and a much lower production cost than other drugs[5]. However, despite these 
advancements, there are still limitations to existing treatment options. Some patients may not respond 
to or may develop resistance to certain medications, many patients can become refractory to treatment 
and thus, there is a high risk of relapse. This promotes the search for new treatments to handle relapsed 
or refractory MM.

MM is caused by aberrant plasma cells (PC) proliferation in the bone marrow (BM). The premalignant 
states, known as monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM, 
transition under specific conditions to the malignant state of PC leukemia or extramedullary myeloma
[6]. A key characteristic of MM is the infiltration into and the colonization of the BM, one of the two 
primary lymphoid organs[7]. This colonization produces typical lytic bone lesions that would be present 
in approximately 80% of patients with newly diagnosed MM and are the major source of morbidity[8]. 
The bone lesions, resulting from the stimulation of bone resorption by B-cell plasmacytomas, are 
associated with hypercalcemia and often, severe bone pain and bone fractures[8,9].

While the initiation of a tumor mainly depends on the accumulation of genetic defects, the transition 
from a premalignant to a malignant state highly relies on the interaction of the tumor cell with a 
permissive microenvironment that would support the malignant transformation and the proliferation of 
the tumor cells, aiding them to evade apoptosis. The relevance of tumor microenvironment in disease 
progression was first discussed in the “seed and soil hypothesis” formulated by Stephen Paget in 1889, 
where the establishment of tumor metastatic sites is influenced by the cross-interaction between the 
seeds (cancer cells) and the soil (a particular microenvironment)[10]. This is not different in MM[11,12]. 
The progression to MM, which would occur in approximately 50% of patients diagnosed with MGUS
[6], requires multiple genomic events, but also a permissive BM microenvironment[13]. MM cells 
proliferate almost exclusively within the BM niche, highlighting the role of this microenvironment in 
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supporting cancer growth. In fact, there is also mounting evidence indicating this BM microenvir-
onment is not only key for PCs survival, but also has a crucial role in resistance to treatment and disease 
recurrence[14,15].

The MM cells infiltrating the BM will encounter a complex microenvironment formed by cellular and 
non-cellular components. Amongst the non-cellular components influencing the BM microenvironment, 
it is important to consider the extracellular matrix (ECM) proteins as well as a milieu of cytokines, 
chemokines, and growth factors. Many of these factors can have a positive effect on MM cells, boosting 
their proliferation and survival and the resistance to different types of drugs. A good example of these 
cytokines supporting MM progression are interleukin (IL)-6 and ligands of the B-cell maturation 
antigen, such as a proliferation-inducing ligand and B-cell activating factor (BAFF)[16,17]. Regarding the 
cellular components of the BM niche, many different types of bone cells (osteoblasts, or bone forming 
cells, and osteoclasts, or bone resorbing cells, and osteocytes) and cells from the immune system 
(macrophages, natural killer cells and regulatory T-cells) share this niche. Other cells present here are fat 
cells (adipocytes), fibroblasts, endothelial cells and two multipotent stem cells, BM mesenchymal stem 
cells (BM-MSCs), which differentiate into different mesodermal cell lineages, and hematopoietic stem 
cells (HSCs), that would differentiate into hematological lineages, including the myeloid lineage that 
would give rise to osteoclasts. MM cells are likely to interact with all the cells in the BM niche and elicit 
mutual influence[18]. In fact, it is known that communication between MM cells and BM-MSCs is 
essential in the progression of MM[19]. Once MM cells infiltrate the BM, their presence in the BM niche 
alters the activity of many of the cells found there, including those involved in bone homeostasis such as 
osteoclasts[20,21] and osteoblasts[22-24]. While in normal bone homeostasis, the activities of osteoblast 
and osteoclasts are carefully balanced to ensure a correct bone regeneration, the influence of MM cells 
disrupts this balance increasing both the resorptive activity of osteoclast and their numbers, and 
decreasing osteoblasts numbers as well as their osteogenic capacity[25], overall leading to an increase in 
bone destruction and the appearance of the aforementioned osteolytic lesions typical of this disease. 
Other cells at the BM niche which activity is highly influenced by MM cells are BM-MSCs. The presence 
of MM cells at the BM niche alters the MSCs behavior in different ways. In fact, changes in the 
expression of certain microRNAs (miRNAs) in BM-MSCs leading to important alterations of their 
secretory profile and osteogenic differentiation potential have been observed after co-cultivation of BM-
MSCs and MM cells[26,27]. These changes at the BM niche upon MM invasion produce a microenvir-
onment that would support disease progression. Indeed, there is strong evidence indicating that is 
precisely this interaction what leads to the formation of the lytic bone lesions[28]. One of the character-
istics of this permissive microenvironment is the high presence of pro-inflammatory cytokines that 
would favor the progression of neoplasia[29]. The crosstalk between MM cells and the BM-MSCs at the 
BM niche is key to sustain this pro-inflammatory microenvironment and thus, to allow MM cell 
persistence and growth[30]. It is important to clarify, that this pro-inflammatory microenvironment 
would be the result of the action not only of the infiltrated MM cells but also of other cells residing at the 
BM niche, including BM-MSCs.

MSCs, have a key role in regulating the BM microenvironment through their paracrine activity, but 
also through direct cell-to-cell interaction. Regarding their paracrine activity, these cells produce a 
plethora of soluble biomolecules and vesicular components, known altogether as “secretome”, that exert 
multiple actions on other cells at the BM microenvironment[31]. BM-MSCs role in MM disease 
development and progression has been reported as having both inhibitory[32] and supportive roles[33,
34]. Sadly, the latter is the most frequent. Once at the BM niche, MM will exert their influence on 
resident MSCs, altering their signaling and gene expression pattern and thus, also their secretion 
pattern. After interaction with MM cells, MSCs will produce a secretome rich in pro-inflammatory 
cytokines. In fact, it has been previously described how MSCs react to IL-1 produced by the myeloma 
PCs by producing large quantities of IL-6, a cytokine that would in turn stimulate the survival of the 
MM cells[35,36]. Therefore, the soluble part of this secretome has a key role in the progression of tumor. 
Moreover, in the last few years, several molecules (miRNAs) that are present in the cargo in the 
extracellular vesicles (EVs) produced by BM-MSCs upon MM cells stimulation also seem to have a key 
role in the disease promotion. Although the soluble proteins and EVs produced by the BM-MSCs are the 
main actors in the communication between BM-MSCs and MM cells, other ways of communication have 
also been implicated. This will be discussed in the following sections.

Current available treatments for MM patients mainly target MM cells but have none or limited effect 
on other cells in the BM or de BM microenvironment. Knowledge of the different interactions between 
BM-MSCs and MM cells is key to understand how MM cells behave and grow within the BM and how 
osteolytic lesions are formed. In this work, we will address key aspects of the different ways of 
communication between MSCs and MM cells as well as the outcome of this crosstalk.

SOLUBLE FACTORS IN THE COMMUNICATION BETWEEN BM-MSCs AND MM CELLS
The multiple cellular interactions taking place in the BM, make this microenvironment a dynamic 
compartment with a myriad of soluble factors that would affect the behavior of the various cell types 
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concurring at that microenvironment. Although many of those cells have paracrine activity, BM-MSCs 
are the ones that have a stronger impact in the BM microenvironment due to the wide variety of soluble 
and non-soluble factors secreted by these cells. Various constituents of the, so called, BM-MSC 
secretome orchestrate the fate of the MM cells, from the first step encompassing the homing of those 
cells to the BM, onwards.

Role of soluble factors in the homing of MM cells to the BM
A key factor in the communication between BM cells and MM cells during the first stages of BM 
colonization, is the cytokine stromal cell derived factor 1α (SDF1α), also known as CXCL12. This factor, 
produced by BM-MSCs, works as a chemoattractant, being responsible of the homing of HSCs to the BM 
once they abandon the fetal liver during development[37]. SDF1α activity is mediated by the binding to 
a specific G-protein 7-span transmembrane receptor (CXCR4) at the target cells. CXCR4 is expressed at 
the surface of different cells in the BM microenvironment[38], and also at the surface of MM cells and 
other tumor cells[39]. Thus, SDF1α/CXCR4 interaction might have a relevant role in directing de 
metastasis of hematopoietic malignancies. Similar to its effect on HSCs, the interaction of SDF1α with its 
receptor at the MM cells, increases their migration, homing and adhesion towards the BM, in fact, knock 
down of CDCR4 in BM-MSCs or the use of the CXCR4 inhibitor AMD3100 (AnorMED), that blocks the 
binding of SDF1α to its receptor[40], seems to inhibit the migration of MM towards the BM[41]. The 
binding of SDF1α to its receptor at the MM cells, also triggers the activation of the phosphatidylinositol 
3-kinase (PI3K) and the MAPK kinase (MEK)-extracellular signal regulated kinase (ERK, MEK/ERK) 
pathways, inducing a rearrangement in the cytoskeleton of MM cells that facilitates BM colonization
[41]. SDF1α has also been described to act in a more indirect way, not mediated by the binding to 
CXCR4. SDF1α interacts with other molecules including matrix metalloproteinases (MMPs), integrins or 
growth factors such as hepatocyte growth factor (HGF), insulin like growth factor-1 (IGF-1) or 
molecules of the GTPases family. All of these effects elicited by SDF1α, in one way or another, lead to a 
promotion in MM cells migration, homing or adhesion into the BM[38].

Role of soluble factors in the promotion of proliferation and MM cell survival
Many of the factors secreted by BM-MSCs and by other cells of the BM microenvironment, activate key 
signaling pathways in the MM cells that would increase their chances to survive and proliferate in the 
BM microenvironment. A summary of these factors as well as the signaling pathways involved in this 
communication are shown in Figure 1. In fact, some mutations activating those pathways have also been 
found in patients with MM. We will address some of those key pathways in this section.

Once in the BM, for the tumor to progress further, MM cells would need a permissive microenvir-
onment. This microenvironment would be created by multiple soluble factors secreted by the different 
cell types present at the BM. The soluble factors produced by the BM-MSCs seem to be the main, but not 
the only, effectors of the changes elicited in the MM cells. Besides SDF1α, BM-MSCs seem to secrete 
other important soluble factors such as IL-6, IL-17, vascular endothelial growth factor (VEGF), fibroblast 
growth factors (FGF), tumor necrosis factor-α (TNF-α), BAFF or leukemia inhibitory factor-1; osteoclasts 
mainly secrete IL-6 and VEGF; and vascular endothelial cells secrete cyclophilin-A[42,43]. These factors 
will activate specific signaling pathways in the MM cells such as PI3K/Akt, MEK/ERK, Janus kinase 2 
(JAK2)-signal transducer and activator of transcription 3 (STAT3, JAK2/STAT3) pathways, related to 
cell survival, proliferation and drug resistance[43]. It is important to highlight that this communication 
is bi-directional, since MM cells would also produce cytokines such as IL-1β, VEGF, and transforming 
growth factor-beta (TGF-β) that would exert their effect on BM-MSCs, activating the nuclear factor 
kappa-Β (NFκΒ) pathway and thus, inducing further secretion of cytokines by the BM-MSCs into the 
BM microenvironment, particularly IL-6[44,45].

IL-6 is the main activator of the JAK2/STAT3 pathway, known to be implicated in the pathogenicity 
of cancer. JAK2/STAT3 pathway activation promoted by IL-6 leads in MM cells to the expression not 
only of potent proto-oncogenes such as c-myc and cyclin D1, but also of anti-apoptotic genes like Mcl-1, 
Bcl-XL and Bcl-2. Moreover, STAT3 activation has also a immunosuppressive effect since it regulates T-
cell mediated cytotoxic immune response[46], contributing to the establishment of a immunosuppressed 
microenvironment that would contribute to the survival and proliferation of the MM cells in the BM. On 
the other hand, IL-6 activation of JAK2/STAT3 pathways, also has an important role in bone 
destruction, a hallmark of MM. IL-6/JAK2/STAT3 axis induces the expression of the receptor activator 
of NFκΒ ligand (RANKL)[36,47] whose binding to its receptor at the surface of pre-osteoclasts, promotes 
their differentiation towards mature osteoclasts, activating bone resorption and thus, promoting the 
formation of osteolytic lesions.

It is important to highlight that the NFκΒ signaling pathway also has an important role in the survival 
of MM cells and in the maintenance of the tumorigenic microenvironment at the BM. Both canonical and 
non-canonical NF-kB pathways are activated by different factors present in the BM microenvironment, 
including IL-6, IGF-1, TNF-α or BAFF[48]. While IGF-1 is able to activate NFκΒ pathway, inducing the 
expression of anti-apoptotic, caspase-8 inhibitors FLIP and cIAP-2[49], TNF-α has a pro-survival effect 
through NFκΒ pathway mediators such as NFκΒ (NEMO) and IκB kinase subunit 2[44]. On the other 
hand, BAFF activates NFκΒ non-canonical pathway upregulating the expression of antiapoptotic 
proteins including Mcl-1, Bcl-XL, Bcl-w and Bcl-2[50]. There is also evidence indicating that IL-6 is 
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Figure 1 Schematic representation of the main factors involved in the bidirectional communication between multiple myeloma cells and 
cells in the bone marrow microenviroment (bone marrow mesenchymal stem cells, osteoclasts, osteoblast, etc.). The main signaling 
patwthays activated by these factors are also depicted (Created with Biorender.com). VEGF: Vascular endothelial growth factor; FGF: Fibroblast growth factors; HGF: 
Hepatocyte growth factor; OPN: Osteopontin; ECs: Endothelial cells; IL: Interleukin; SDF1α: Stromal cell derived factor 1α; TNF-α: Tumor necrosis factor-α; BAFF: B-
cell activating factor; DKK-1: Dickkopf-1; MM: Multiple myeloma; BM-MSC: Bone marrow mesenchymal stem cells; JAK: Janus kinase; STAT3: Signal transducer and 
activator of transcription 3; NFκΒ: Nuclear factor kappa-Β; PI3K: Phosphatidylinositol 3-kinase; RANKL: Receptor activator of NFκΒ ligand; Ang-1: angiopoietin-1; 
MEK: MAPK kinase; ERK: Extracellular signal regulated kinase; LIF1: Leukemia inhibitory factor-1. Created with BioRender.com.

linked to the expression of VEGF in MM cells, being some of the VEFG isoform expression driven by the 
NFκΒ pathway[51,52].

The MEK/ERK pathway is the signaling pathway most found activated in MM patients, with a 
prevalence in between 43% and 53% of the patients[53]. Changes in MEK/ERK pathway have important 
effects in cell cycle, due to the alteration in the expression of molecules such as cyclin D1, cyclin E, Cdk2 
and Cdk4 and in apoptosis prevention by the induction of the phosphorylation of the pro-apoptotic 
protein Bim. This phosphorylation results in the release of anti-apoptotic molecules such as Mcl-1, Bcl-
XL and Bcl-2, also related to Akt pathway[54]. In the absence of mutations that activate this pathway, 
the stimulation of the MEK/ERK pathway in the MM cells might also occur by the action of different 
soluble factors present in the BM microenvironment such as BAFF, IL-6, SDF1α, VEGF or TNF-α among 
others[42]. As with other relevant signaling pathways that become activated in MM, the MEK/ERK is 
also studied as a potential therapeutic target.

PI3K/Akt signaling pathway also has a relevant role in cell proliferation, cell cycle and apoptosis. 
Alteration of the PI3K/Akt/mTOR pathway due to genetic modifications or its hyper-activation 
contributes to carcinogenesis, metastasis, invasion, proliferation and drug resistance of tumor cells. 
However, no activating mutations have been described in MM cells yet. Despite this fact, PI3K/Akt/
mTOR pathway is important for MM cells survival[55,56].

Role of soluble factors in angiogenesis and bone homeostasis
Up to this point, we have mentioned some of the effects of the pro-tumorigenic microenvironment in the 
BM on the MM cell survival and growth. However, once modified by the BM microenvironment, MM 
cells will start to release different soluble factors that will not only perpetuate that tumorigenic microen-
vironment, but also will have a deep impact in angiogenesis and bone homeostasis.

Neovascularization in the bone is an essential feature for MM progression and the presence of high 
density of micro-vessels in the BM microenvironment is characteristic in MM. Cells residing at BM, such 
as BM-MSCs, osteoblasts, HSCs, or endothelial precursor cells, commonly express various angiogenic 
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factors, such as VEGF, FGF-2, TNF-α, HGF, IL-6, BAFF, SDF-1α, angiopoietin-1 or osteopontin (OPN). 
Also, MM cells are able to directly produce VEGF stablishing a VEGF autocrine loop where the 
produced VEGF would stimulate MM cells proliferation through the MEK-1/ERK pathway[57,58]. FGF-
2 is another key pro-angiogenic molecule that would be produced by both MM cells and BM-MSCs[59]. 
However, contrary to VEGF, which is produced by all MM cells, FGF-2 production by MM does not 
seem to be a general feature in all MM cases[59]. Other molecules with pro-angiogenic activity such as 
MMPs[60,61] or OPN, also produced by MM cells, have also a relevant role in promoting micro-vessels 
formation in the BM microenvironment. The overall increase in the production of such angiogenic 
factors is elicited by the MM cells. The activation of angiogenesis linked to tumor progression is known 
as “angiogenic switch”[62] .

Bone homeostasis is a dynamic process driven by osteoclasts, osteoblast and osteocytes. Alterations in 
the balance between these cell types will lead to the remodeling of the bone. The characteristic bone 
lesions found in MM derive from the disruption of bone homeostasis initiated by the activation of 
JAK2/STAT3 pathway by IL-6 and the subsequent induction of RANKL expression by MM cells. Not 
only this but, as will be discussed later, cell-to-cell interaction of MM cells with BMSCs also induce the 
expression of the macrophage inflammatory protein (MIP)-1α[63]. Both RANKL and MIP-1α are 
mediators in the bone destruction driven by MM as they have an both in the number of osteoclasts and 
in their activity. MIP-1α is a chemoattractant for osteoclasts and stimulates osteoclast formation[64], 
while RANKL after being recognized by its receptor RANK, will induce the commitment of the 
macrophage/monocyte precursor cells to the osteoclast lineage[65].

Secreted by MM cell in response to the activation of the JNK pathway, Dickkopf-1 (DKK-1) is also a 
disruptor in bone homeostasis[66]. DKK-1 is an extracellular inhibitor of the Wnt pathway. DKK-1 
interacts with membrane receptors as transmembrane proteins Kremen 1/2 and the human low-density 
lipoprotein receptor-related protein 5/6, thus competing with Wnt[67]. As one of the main regulatory 
pathways for osteogenic differentiation of BM-MSCs into osteoblasts[68], the inhibition of the Wnt/β-
catenin pathway by DKK-1 will result in a reduced number of osteoblasts. By the action of these factors, 
RANKL, MIP-1α and DKK-1, the balance between bone formation and bone resorption driven by 
osteoblasts and osteoclasts is disrupted, resulting in the characteristic bone lesions present in MM 
patients.

A table summarizing the latest scientific evidence regarding key factors involved in MM/BM-MSCs 
communication and their effect is shown (Table 1).

EVs-MEDIATED COMMUNICATION BETWEEN BM-MSCs AND MM CELLS
Under non-pathological conditions, BM homeostasis is maintained by cell-to-cell contact, soluble 
molecules, and EVs. Whereas, over the years solid evidence has accumulated about the relevance of the 
first two, the involvement of EVs-mediated communication in the maintenance of BM homeostasis has 
started to be contemplated only in the last few decades[69]. Despite being a fairly new field, important 
advances have been made in the knowledge of EVs, such as their classification, in terms of their size and 
biogenesis, into three major categories (exosomes, micro-vesicles, and apoptotic bodies) and the fact that 
its content varies according to the state of their parental cells[31].

As we have previously discussed, MM cells have the capacity to alter the environment in which they 
reside[70] as well as the characteristics of cells present in that microenvironment. Thus, it is not 
surprising that the EVs produced by MM cells also play a key role in disease progression. In fact, it has 
recently been shown that, exosomes (a particular class of EVs) produced by both BM-MSCs and MM 
cells are largely responsible for MM pathogenesis[71]. This recent demonstration of the relevance of EVs 
in MM progression has resulted in several studies in the lats few years, however, the multitude of 
agents and interactions involved in the development and progression of this disease has made it 
difficult to fully understand the molecular mechanisms involved. In this section we aim to gather the 
available information so far.

Effect of MM-EVs on the BM-MSCs and bone homeostasis
As previously mentioned, osteolysis, one of the main hallmarks of MM disease, is linked to the negative 
effect of MM cells on cells responsible for bone homeostasis, such as MSCs, osteoblasts and osteoclasts
[72]. In particular, myeloma bone disease (MBD) has a unique feature compared to other diseases that 
encompass bone destruction, since in MBD osteoblast activity is also severely impaired[24]. Several 
authors have suggested that an essential part of this bone damage is related to EVs directly produced by 
MM cells (MM-EVs). Zhang et al[73] demonstrated that the cargo of MM-EVs was enriched in various 
molecules which negatively regulate osteogenesis. They confirmed that MM-EVs induced high 
expression of miR-103a-3p in BM-MSCs, which led to impaired osteogenesis in vitro. Moreover, they 
showed that injection of MM-EVs in mouse tibia resulted in defective bone formation. Interestingly, in 
vitro assays also revealed that MM-EVs were also able to influence MM cells increasing viability and IL-
6 production, known to regulate MM cell proliferation thus, establishing an autocrine feedback. MM-
EVs also increased miR103a-3p expression in MM cells however, in those cells the increased prolif-
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Table 1 Summary for the key soluble factors involved in multiple myeloma/bone marrow mesenchymal stem cells communication

Soluble factors Origin Function Ref.

SDF1α BMSCs Chemoattractant of MM cell towards the BM microenvironment [38]

IL-1β MM cells Act over BMSCs inducing the secretion of soluble factors, mainlyIL-6 [45]

Closely related with cancer pathogenicity due to it proto-oncogenic and anti-apoptotic effect 
over MM cells

[46,47]

Immunosuppressive effect over T cells

IL-6 BMSCs

Also related with bone destruction by inducing the expression of RANKL by the MM cells

VEGF BM cells, MM cells Promotes bone neovascularization, essential for tumour progression [58]

RANKL MM cells Induce the commitment of the macrophage/monocyte precursor cells to the osteoclast 
lineage. Promoting indirectly bone destruction

[63]

DKK-1 MM cells Disruptor of bone homeostasis by inhibiting BMSCs differentiation into osteoblasts [66,67]

SDF1α: Stromal cell derived factor 1α; BM-MSC: Bone marrow mesenchymal stem cells; MM: Multiple myeloma; IL: Interleukin; RANKL: Receptor 
activator of NFκΒ ligand; VEGF: Vascular endothelial growth factor; DKK-1: Dickkopf-1.

eration of MM cells after exposures to MM-EVs does not seem to be related to miR103a-3p but to other 
miRNAs also present in the MM-EVs cargo, such as miR107 and miR181a-3p[24].

Among the different biomolecules found as part of the exosome cargo, long non-coding RNAs 
(lncRNAs) and miRNAs have been the focus of attention due to their key regulatory roles. Various 
miRNAs found in MM-EVs have been studied for their involvement in the disruption of osteogenesis. 
miR-129-5p was identified as a player in vesicle-mediated bone disease[74]. In particular, miR-129-5p 
seemed to inhibit the transcription factor specificity protein 1, leading to a reduction of ALPL, both at 
the mRNA and protein levels, during the early osteogenic differentiation of MSCs. On the other hand, 
the long non coding RNA Long Intergenic Non-Protein Coding RNA 461, found as part of the MM-
exosomes cargo, has also been found to inhibit osteoblast differentiation by reducing the activity of 
Wnt/β-Catenin pathways, responsible for osteoblast proliferation, differentiation and activity[75]. Other 
molecules, such as soluble proteins present in the MM-EVs cargo also showed anti-osteogenic activity 
Faict et al[72] revealed that Wnt/β-Catenin inhibitor DKK-1 is present in MM-EVs and observed a lower 
expression of Osterix (OSX), Collagen 1A1 and alkaline phosphatase in differentiated MC3T3-E1 cells 
after MM-EVs treatment.

Runx2 is the master regulator of early osteogenic differentiation, and therefore a possible target for 
the anti-osteogenic effect of MM-EVs. In fact, lncRNA RUNX2-AS1 present in the MM-EVs cargo was 
identified as a bioactive molecule able to reach MSCs and form a transcriptionally repressed RNA 
duplex with RUNX2 premRNA, reducing the osteogenic activity[76]. In addition, a MM-EVs impact in 
osteoblastic differentiation through reduction of Runx2, together with OSX and OCN, has been 
described by Liu et al[77]. These authors also record increased levels of IL-6 secretion via APE1/NF-kB 
which, as aforementioned, is an important survival factor of MM cells.

Once the EVs produced by MM cells reach the BM-MSCs, their cargo modifies the BM-MSCs 
behaviour in the benefit of MM cells. A clear example of this is miR-146a which acts in a positive loop to 
favor disease progression[19]. Once this miRNA targets BM-MSCs, it produces an increase in the 
secretion of several cytokines and chemokines from those cells, including CXCL1, IL-6, IL-8, inducible 
protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), and CCL-5, which, in turn, once 
released into the BM microenvironment, would favor MM cell viability and migration. In addition, MM-
EVs cargo miR-146a and miR-21, participate in proliferation and transformation of MSCs into cancer 
associated fibroblasts (CAFs). This is a type of cell which could contribute to a tumour-supportive 
microenvironment through secretion of cytokines, including IL-6 and TGF-β[78].

Interestingly, it has been shown that conventional chemotherapeutic agents including melphalan, and 
anti-proteases such as bortezomib and carfilzomib can stimulate a considerable MM-EVs release. The 
EVs produced under these circumstances are called “chemoexosomes”. These chemoexosomes are 
characterized by the high presence of the heparanase enzyme in their surface. This heparanase is 
implied in several cellular changes leading to chemoresistance and the subsequent relapse of the patient. 
Heparanase EVs content is delivered in MM cells and activate ERK pathway as well as TNF-α 
production by macrophages, matrix degradation and migration promotion[71].

Effect of EVs produced by BM-MSCs on MM cells and MM progression
So far, we have analyzed the influence of MM-EVs on BM-MSCs, however, this communication, as 
previously mentioned, is bidirectional. In 2016, Wang et al[69] showed that BM-MSC-EVs from MM 
patients contained a lower level of the tumor suppressor miR-15a, and higher levels of oncogenic 
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proteins, cytokines, and adhesion molecules, when compared to EVs from healthy BM-MSCs. Cytokines 
such as IL-1ra, interferon-IP-10, MCP-1, MIP-1α, MIP-1β, and SDF1α were detected in murine BM-MSC-
EVs. They confirmed that BM-MSC-EVs from MM patients act on MM cells activating proliferation, 
survival, and migration, as well as drug resistance to bortezomib, a widely used clinical drug for MM 
treatment.

In a similar study, a reduction of mir-15a levels in the cargo of BM-MSCs-EVs from MM patients was 
also detected. This change was shown to promote cell proliferation and dissemination or metastasis to 
other niches, which is a hallmark of MM. The same authors also revealed the importance of some of the 
proteins present in BM-MSCs-EVs cargo, as they detected higher content levels of IL-6, CCL2, γ-catenin 
and fibronectin, which are key to MM pathogenesis[70]. Other miRNAs cargo were also implicated in 
these processes. miR-483-5p was found packed in BM-MSCs-EVs and was responsible for promoting 
MM cell proliferation and reduced apoptosis via the miR-483-5p/TIMP2 axis[79]. Umezu et al[80] 
highlighted the role of miR-10a in MM disease since its transference via BM-MSC-EVs promoted cell 
proliferation in several MM cell lines (RPMI 8226, KMS-11, and U266) compared to BM-MSC-EVs with 
miR-10a blocked. Moreover, Gao et al[81] studied miR-155 present in BM-MSC-EVs cargo, which turned 
out to be involved in viability, stemness and drug resistance in MM cells. The role of miR-155 was 
underscored by the fact that incubation of the MM cells line mitochondrial pyruvate carrier 11 (MPC-11) 
with miR-155-mimics for 24 h resulted in a significantly reduced cell apoptosis in vitro and augmented 
expression of stemness maintenance markers OCT-4 and Nanog and drug resistance-associated proteins 
MRP1, ABCG2 and P-g.

As in the previous section, a table summarizing the main works referred to the relevance of 
communication between MM cells and BM-MSCs through EVs and the role of their cargo is shown 
(Table 2).

The resistance to treatment is precisely one of the major problems in MM at the clinical level, as this is 
directly responsible for the relapses. Some studies investigating the mechanisms behind this resistance 
have highlighted the implication of the activation of several signaling pathways, including p38, p53, c-
Jun N-terminal kinases and Akt through the assessment of bortezomib treatment. The role of BM-MSC-
EVs in interfering with the antitumor effect developed by bortezomib in MM was confirmed through 
different experiments. BM-MSC-EVs were able to alter apoptosis-related proteins Bcl-2, Bax, caspase-8, 
caspase-9, and caspase-3 promoting an antiapoptotic profile in both murine and human cells. These EVs 
blocked the significant reduction of Bcl-2 expression caused by bortezomib and reduced cleaved 
caspase-9, caspase-3, and PARP either in the absence or presence of bortezomib. Moreover, the use of 
GW4869, a neutral sphingomyelinase inhibitor of the formation of exosomes by the ceramide pathway, 
in combination with bortezomib treatment led to a significant effect on tumor load reduction[71,82].

In conclusion, the two-way communication between MM cells and BM-MSCs mediated by EVs is 
extremely intricate and plays a pivotal role in the progression of the disease. Since BM-MSCs-EVs have a 
key role in supporting MM development, this could become a key target to develop new therapies for 
the treatment of this hematological disease.

COMMUNICATION THROUGH CONTACT DEPENDENT MECHANISMS
As well as the already described interactions through paracrine secretion of different cytokines and EVs, 
MM cells also interact with BM-MSCs by direct cell-to-cell contact. These cell-to-cell interactions are not 
restricted to MM and BM-MSCs since MM cells also interact with other cells of the BM microenvir-
onment such as osteoclasts and osteoblasts, endothelial cells, and lymphocytes. It is known that these 
contacts are also key to protect MM cells against chemotherapy, helping them to accumulate inside the 
BM[83], to adhere to endothelium, and to spread into the bloodstream[84], although the detailed 
mechanisms involved in those processes have not been completely elucidated[85].

Cell adhesion molecules in MM/BM-MSCs communication
Direct cell-to-cell adhesion and communication mechanisms have been known for more than 40 years
[86,87]. These cell-to-cell communication is mediated by Cell Adhesion Molecules (CAMs), a 
subcategory of adhesion proteins located at the cell surface, involved in binding either to other cells, or 
in attaching cells to proteins of the ECM[88], suchas fibronectin, laminin or collagen (Figure 2). While it 
has been well documented that the ECM promotes the survival of different types of tumors, much less is 
known about the influence of the direct contact of BM-MSCs in their progression.

CAMs play a central role in cell communication and the maintenance of tissue homeostasis[89]. There 
are different superfamilies or groups of CAMs with different specificities and distributions. These 
families would include the Immunoglobulin superfamily CAMs (IgCAMs), integrins, cadherins and one 
superfamily of proteins that contain a C-type lectin-like domain (C-type lectin domain proteins or 
CTLDs)[89]. Following other criteria, CAMs can be classified into calcium-independent or calcium-
dependent molecules[90], meaning that these molecules would need Ca2+ ions binding to different 
domains of the protein in order to rigidify their extracellular domains and enable interaction[91]. 
Integrins and IgCAMs belong to the calcium independent group whereas CLTDs and selectins belong to 
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Table 2 Summary of evidence about the relevance of different cargo molecules in the extracellular vesicles of multiple myeloma cells 
and bone marrow mesenchymal stem cells s to the progression of multiple myeloma

Function Ref.
MM-EVs cargo

lncRNA RUNX2-AS1 Form a RNA duplex with RUNX2 premRNA, reducing the osteogenic activity in MSCs [76]

miR-146a Increase the secretion of several cytokines in BM-MSCs that favor MM cell viability and 
migration and induce CAF transformation

[78]

DKK-1 Lower expression of OSX, COL1A1 and ALP in osteoblast precusor cell line (MC3t3-E1) [72]

MSC-EVs cargo

mir-15a Promote MM cell proliferation and dissemination to other niches [70]

miR-483-5p Induce MM cell proliferation and reduced apoptosis [79]

miR-155 Reduce MM cell apoptosis and augment expression of stemness maintenance and drug 
resistance markers

[81]

EVs: Extracellular vesicles; MM: Multiple myeloma; BM-MSC: Bone marrow mesenchymal stem cells; CAF: Cancer associated fibroblast; DKK-1: Dickkopf-
1; OSX: Osterix; COL1A1: Collagen 1A1; ALP: Alkaline phosphatase.

Figure 2 Schematic representation of the main cell adhesion molecules in multiple myeloma cells and bone marrow mesenchymal stem 
cells. The main interactions between cell adhesion molecules (CAMs) of these two types of cells as well as the interactions of these CAMs with proteins of the 
extracellular matrix are displayed (Created with Biorender.com). ICAM-1: Intercellular adhesion molecule 1; VCAM-1: Vascular cell adhesion molecule-1; LFA-1: 
Leukocyte function-associated antigen 1; N-CAM: Neural cell adhesion molecule; VLA: Very late antigen. Created with BioRender.com.

calcium dependent group[92]. Cell adhesion molecules bind to different ligands. Cadherins, selectins 
and IgCAMs are associated with the cell-to-cell contact, while integrins are involved in the attachment 
of MM cells to the ECM[93]. All these molecules are integral in modeling cellular mechanisms such as 
growth, contact inhibition and apoptosis. In fact, changes in cell adhesion, involving these molecules, 
can be the defining event in a wide range of diseases, including cancer development[94], as lower 
intercellular adhesiveness allows malignant cells to scape from their site, thus, destroying the 
architecture of the original tissue, commonly the first step leading to cancer[94].

As well as the already described interactions through paracrine secretion of different cytokines and 
EVs, MM cells also interact with BM-MSCs by direct cell-to-cell contact. In fact, recent studies revealed 
that many of the changes undergone by BM-MSCs supporting the progression of MM, are acquirable by 
physical contact with MM cells[95]. In MM, this cell-to-cell interactions are not restricted to MM and 
BM-MSCs since MM cells also interact with other cells of the BM microenvironment such as osteoclasts 
and osteoblasts, endothelial cells, and lymphocytes. All these interactions are regulated by CAMs. It is 
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known that these contacts are key to protect MM cells against chemotherapy, helping them to 
accumulate inside the BM[83], to adhere to endothelium, and to spread into the bloodstream[84], 
although the detailed mechanisms involved in those processes have not been completely elucidated[85].

The most relevant role of CAMs in MM pathophysiology is related to the homing of malignant PCs to 
the BM. To complete the process of homing, mediated by CXCL12, MM cells need to adhere to either 
ECM proteins or BM-MSCs. This is mediated by CAMs such as very late antigen (VLA)4, VLA5, CD44, 
leukocyte function-associated antigen 1 (LFA-1), intercellular adhesion molecule 1 (ICAM-1), MPC-1 
and syndecan (Figure 2).

One way of ensuring adhesion of MM to the ECM is the binding of its integrin VLA-4 to fibronectin, a 
common component of the ECM. VLA-4, which is in fact a heterodimer of two integrins CD49d(a4) and 
CD29(b1), also mediates the interaction of MM cells with BM-MSCs, through the vascular cell adhesion 
molecule-1 (VCAM-1), located at the BM-MSCs[96]. This interaction activates the secretion of MIP-1α 
and MIP-1β in MM cells, leading to an increase of osteoclastogenic activity[97]. Moreover, the direct 
contact of these two types of cells through VLA-4 also induces the production of DKK-1 by MM cells, 
which inhibits osteoblastic differentiation of BM-MSCs. Thus, these two actions, promotion of osteoclas-
togenesis and inhibition of osteogenesis, would have a detrimental effect on bone structure, contributing 
to the typical osteolytic lesions in MM. In addition, BM-MSCs unable to undergo osteoblastic differen-
tiation would produce higher levels of IL-6, a cytokine that would stimulate the proliferation of DKK-1-
secreting MM cells[25]. Moreover, it has been observed that VLA-4–fibronectin binding is an essential 
step that supports the IL-6-mediated induction of PCs in normal BM, since antibodies against VLA-4 
were found to inhibit the secretion of IL-6 in co-cultures of MM cells and BM-MSCs cells[96,98,99].

The interaction between MM cells and BM-MSCs is also mediated by ICAM-1 (CD54) and LFA-1 
(CD11α/CD18) expressed in BM-MSCs and MM respectively. The glycoprotein ICAM-1 is the main 
ligand for b2 integrins and its expression is induced in response to an inflammatory microenvironment
[100], such as the one resulting in the BM following the colonization by MM cells. The ICAM-1/LFA-1 
interaction seems to have a key role in the progression of MM since the blocking of LFA-1 through the 
use of monoclonal antibodies, inhibits the production of IL-6 by BM-MSCs. Thus, this interaction is 
focus of various studies aimed to the development of treatments for MM[101].

Syndecan (CD138) is the principal transmembrane proteoglycan expressed in the surface of MM cells 
and has in fact been used as a marker for the detection of this pathology. Syndecan has multiple 
functions in MM. This molecule mediates de adhesion of MM cells to the collagen in the ECM through 
direct interaction with collagen molecules but can also mediate myeloma cell-cell adhesion[102]. 
Syndecan-1 also plays a broad role in cells signaling since heparan sulfate chains on syndecan-1 can 
bind to and sequester growth factors and cytokines, regulating their availability to cells. Also, a recent 
study has shown that syndecan contributes to the survival of mature MM cells by enhancing IL-6 
signaling[103]. Finally, the binding of syndecan to VEGF and other angiogenic factors, has been shown 
to promote angiogenesis in MM[104].

Finally, CD44, a transmembrane glycoprotein, interacts mainly although not exclusively with 
hyaluronic acid in the ECM[105]. CD44 signaling has been shown to activate various signaling 
pathways in different types of cancer including PI3k/AKT, MAPK/ERK and NF-kB[106], which, as we 
have seen, promote MM cell survival.

Although normal PC and MM cells express basically the same set of CAMS, some of these molecules 
were found to be more significantly overexpressed in MM cells when compared to healthy patients. In 
this group we can include, leukocyte adhesion molecule LFA-3 (CD58)[107] and neural cell adhesion 
molecule (CD56)[108]. MM cells can also express the lymphocyte function-associated antigen LFA-1 
(CD11α/CD18) which was associated with tumor growth and homotypic tumor cell adhesion or 
aggregation[109]. It is also worth mentioning that some homing molecules could not be detected on 
MPCs: Selectin molecule L-selectin and collagen receptor VLA-2[89]. Although this study provides 
relevant information, for this information to be biologically relevant, ligands of these receptors had to be 
available within the tumor environment.

Overall, given the importance of some of these CAMs in the process of MM cells homing, these 
molecules could be important targets for designing antitumoral treatments. Several approaches have 
been explored, including antibodies specifically targeting these molecules on the cell surface, as well as 
small molecule inhibitors that interfere with the binding of the CAMs to their ligands. Moreover, 
receptor-blocking antibodies against most of these CAMs (VLA-4, CD56, MPC-1, CD21) were found to 
partially block MM cells adhesion to the BM stroma. This partial effect could be attributed to an 
additional adhesion mechanism yet to be discovered[110,111].

In MM a specific type of drug resistance seems to be mediated by CAMs, the so called, CAMs 
mediated drug resistance[112]. CAMs can activate intracellular pathways that promote cell survival, 
promote cancer cell adhesion to the ECM and regulate the expression of drug transporters that could 
pump chemotherapy drug out of cancer cells and reduce their efficacy. It is also important to highlight 
that MM spreading in the last stages of the diseases also involve important changes in cell adhesion. 
MM can abandon de BM microenvironment and become stroma independent because of different 
processes involving changes in the expression levels of CAM and certain cytokines. Once this happens, 
cells can be found to spread extramedullary at different sites such as lungs, liver, or pleural fluid[113,
114].
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Role of tunneling nanotubes in MM/BM-MSCs communication
As we have seen, communication between MM and BM-MSCs cells can take place through mechanisms 
that can be classified as contact-dependent and/or contact-independent mechanisms[115]. While the 
previous section has been dedicated to direct communication mediated by cell adhesion molecules, in 
this last section we will briefly discuss transport via tunneling nanotubes (TNTs), another form of 
contact-dependent interaction.

TNTs are transient intercellular structures formed by the polymerization of F-actin which provide an 
important and general mechanism of cell-to-cell communication[116,117] and constitute a reliable 
infrastructure for vesicle and protein trafficking[118]. Numerous examples of communication between 
MSCs and malignant hematological cells such as B cells, MM and chronic lymphocytic leukemia, are 
already known, as well as the effects of this communication, such as increased drug resistance. This has 
already been demonstrated in acute myeloid leukemia (AML), B-cell precursor acute lymphocytic 
leukemia (ALL) or CML[119,120]. Therefore, TNTs are considered one of the key pharmacological 
targets in current research.

The role of TNTs is to deliver autophagosomes, mitochondria and other lipophiles to MSCs. This 
induces the secretion of specific cytokines, including interferon-γ-IP-10, CXCL10, IL-8, MCP-1 and CCL2 
and other growth factors which, in turn, induce tumor cell survival, enhanced growth and even drug 
resistance[121]. This has been checked in AML, where increased survival of cells against chemotherapy 
treatments is observed by means of mitochondrial transfer from MSCs routed by TNT. In this case, the 
mitochondrial transfer translates into an increase of up to 14% in mitochondrial mass in co-cultures of 
tumor cells with MSCs and a 1.5-fold increase in mitochondrial adenosine triphosphate production 
(ATP), making them less prone to mitochondrial depolarization and thus resulting in increased survival 
against chemotherapy treatments[122].

Numerous lines of treatment are currently under development for various hematological diseases 
that reduce the formation of TNT by blocking actin polymerization. This inhibits the cellular commun-
ication that promotes disease progression. Those treatments include cytochalasin D, cytarabine, 
latrunculin A and B, daunorubicin, everolimus, metformin, nocodazole CK-666, ML-141 or 6-thio-GTP
[123]. In addition, vinca alkaloids or taxanes are also being targeted because of their role in the polymer-
ization of microtubules[124].

Although the fate of mitochondria transferred into tumor cells remains unclear, there is evidence 
indicating that MSCs play a key role in the progression of AML, ALL, MM and mitochondrial transfer 
chemoresistance. It is well known that the initiation of cancer requires metabolic adjustments, since 
rapid proliferation cancer cells have high metabolic requirements. This mitochondrial and/or 
mitochondrial DNA transfer to cancer cells increases mitochondrial content and enhances the 
mitochondrial process of oxidative phosphorylation (Oxphos), which generates a larger quantity of ATP 
than glycolysis, thus, promoting cell proliferation and invasion[125]. Therefore, targeting mitochondrial 
respiration and Oxphos is also a treatment option, FOXM1 is known to regulate myeloma cell 
metabolism by increasing glycolysis and Oxphos. NB73 is a FOXM1 inhibitor that promotes FOXM1 
degradation and thus growth of MM cells, making it a potential drug targeting Oxphos[126].

Studies to date have elucidated that mitochondrial transfer dynamically induced resistance occurs 
between MM cells and other cells in the BM microenvironment via TNT, providing a starting point for 
the development of new targeted therapies[127]. An example of this line of treatment for MM is the use 
of anti-CD38 monoclonal antibodies[128]. This antibodies have different mechanisms of action, 
including cell apoptosis[129]. Moreover, their administration in mice has shown inhibition of 
mitochondrial transfer, a reduction in tumor volume and, in general, increased survival[1]. However, it 
should be noted that, although patients who have received this treatment show increased survival, it 
has been observed that resistance to these treatments can be acquired in the long term.

CONCLUSION
Conditions at the BM microenvironment are essential for the establishment and progression of MM. The 
complex BM microenvironment encompasses hematopoietic cells, immune cells, and cells involved in 
bone homeostasis such as osteoclasts, osteoblasts and BM-MSCs. Thus, it is understandable that the 
disruption of microenvironment homeostasis by MM cells results in angiogenesis, osteolysis, immune 
suppression and anemia[69].

As key regulators of this microenvironment, BM-MSCs play an important role in the progression of 
the disease. The crosstalk between MM cells and BM-MSCs takes place at different levels, through 
soluble cytokines, EVs, and direct cell-to-cell contact.

The interaction between these two cell types can have both positive and negative effects on the prolif-
eration and survival of MM cells. The communication between MM cells and BM-MSCs can promote 
tumor growth. The survival and proliferation of MM cells once they reach the BM is associated with 
immune suppression, eliminating the possibility of an effective antitumor response. Although it is the 
interaction between all cells in the BM what produces this immunosuppressive microenvironment, BM-
MSCs have a relevant role in the construction of this particular microenvironment due not only to their 
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important paracrine activity, but also to their ability to establish direct communication with other cells 
in that microenvironment. All these direct or indirect interactions activate a pleiotropic proliferative and 
antiapoptotic cascades favoring disease progression.

On the other hand, the communication between MM cells and BM-MSCs can also have a negative 
impact on cancer cell growth and survival. BM-MSCs can secrete factors that inhibit the growth and 
survival of MM cells.

Currently, therapeutic advances in the treatment of this disease are based on targeted therapies using 
monoclonal antibodies or CAR-T. These treatments have improved patient prognosis, although long-
term resistance is still observed, and further research is needed into the specific mechanisms by which 
cells acquire this resistance. In the quest for new effective treatments for MM, the importance of 
communication between MM cells and BM-MSCs cannot be overstated. Understanding the molecular 
mechanisms involved in this two-way communication can provide valuable insights into MM 
pathogenesis and help identify key targets involved in the survival and proliferation of MM cells in the 
BM microenvironment and thus, opening new opportunities for the design of targeted therapies to 
avoid disease progression.
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Abstract
Head and neck squamous cell carcinoma is the seventh most common cancer 
worldwide with high mortality rates. Amongst oral cavity cancers, tongue 
carcinoma is a very common and aggressive oral cavity carcinoma. Despite the 
implementation of a multimodality treatment regime including surgical inter-
vention, chemo-radiation as well as targeted therapy, tongue carcinoma shows a 
poor overall 5-year survival pattern, which is attributed to therapy resistance and 
recurrence of the disease. The presence of a rare population, i.e., cancer stem cells 
(CSCs) within the tumor, are involved in therapy resistance, recurrence, and 
distant metastasis that results in poor survival patterns. Therapeutic agents 
targeting CSCs have been in clinical trials, although they are unable to reach into 
therapy stage which is due to their failure in trials. A more detailed 
understanding of the CSCs is essential for identifying efficient targets. Molecular 
signaling pathways, which are differentially regulated in the CSCs, are one of the 
promising targets to manipulate the CSCs that would provide an improved 
outcome. In this review, we summarize the current understanding of molecular 
signaling associated with the maintenance and regulation of CSCs in tongue 
squamous cell carcinoma in order to emphasize the need of the hour to get a 
deeper understanding to unravel novel targets.

Key Words: Head and neck squamous cell carcinoma; Cancer stem cells; Signaling; 
Tongue squamous cell carcinoma
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Core Tip: Tongue squamous cell carcinoma is one of the most common and aggressive oral cavity 
carcinomas, particularly among the Indian population. Despite various treatment strategies employed, the 
survival rates of the patients remain poor. A rare population i.e., cancer stem cells (CSCs), plays an 
important role in resistance, recurrence as well as metastasis which are factors responsible for the poor 
survival outcome. In this review, we discuss the recent findings regarding cell signaling pathways and 
markers associated with the CSCs and the need to gain a deeper understanding on the properties of the 
CSCs.

Citation: Joshi P, Waghmare S. Molecular signaling in cancer stem cells of tongue squamous cell carcinoma: 
Therapeutic implications and challenges. World J Stem Cells 2023; 15(5): 438-452
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/438.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.438

INTRODUCTION
Global cancer statistics by GLOBOCAN in 2020 showed that 2.0% of new cancer cases reported 
worldwide were lip and oral cavity cancers, while 1.8% of the total cancer-related deaths were of lip and 
oral cavity cancers. Lip and oral cavity cancers are the most commonly diagnosed cancers that are 
responsible for most cancer-related deaths in India[1]. Most cases of oral squamous cell carcinomas 
(OSCCs) are presented at advanced stages, i.e., stages III or IV [tumor-node-metastasis (TNM) staging], 
where the 5-year survival of the patients is less than 50%. Further, 40% of the oral carcinomas are 
presented as tongue carcinomas[2].

Head and neck squamous cell carcinomas (HNSCCs) are carcinomas of the oral cavity, nasopharynx, 
oropharynx, larynx, and hypopharynx[3]. The oral cavity carcinomas comprise the anterior 2/3rd of the 
tongue, buccal mucosa, retromolar trigone, lower and upper alveolar ridge, hard palate, and floor of the 
mouth[3].

The poor survival observed in HNSCCs is primarily attributed to loco-regional/ distant metastasis 
and therapy resistance. Therefore, understanding the molecular mechanism underlying these properties 
of tumors has become very crucial. Current treatments for HNSCCs include surgery, chemo- 
radiotherapy, and targeted therapy.

The first evidence of cancer stem cells (CSCs) was observed in acute myeloid leukemia[4], where it 
was reported that only 10000 cells expressing CD34+/CD38- could give rise to leukemia in non-obese 
diabetic-severe combined immunodeficient (NOD-SCID) mice. These cells possess high tumorigenic 
potential, which are termed as CSCs. CSCs exhibit stem cell-like properties such as self-renewal, slow 
cycling, and the ability to divide and differentiate into various sub-populations[5]. Further, CSCs were 
isolated from solid tumors such as breast cancer, HNSCCs, colorectal cancer, ovarian cancer, lung 
cancer, etc[5].

Owing to their unique properties, these CSCs escape the current treatment regimes, thereby adversely 
affecting patient survival. Therefore, to design an effective treatment regime in order to achieve better 
efficiency and treatment outcome, it is crucial to understand the molecular mechanism involved in 
maintaining these CSCs within the tumor. In this review, we focus on the tongue squamous cell 
carcinoma (TSCC) and have summarized the known molecular markers of CSCs, molecular signaling 
involved in the regulation of CSCs, the inhibitors used in clinics for treatment, and the ones that are in 
clinical trials.

CSC MARKERS FOR TSCC
CD44 and variants
CD44 is a single-chain proteoglycan transmembrane glycoprotein expressed on human embryonic stem 
cells at the developmental stages of cell types such as bone marrow and connective tissue. CD44 
interacts with molecules such as hyaluronic acid (HA), collagen, osteopontin, fibronectin, chondroitin 
and serglycin/sulfated proteoglycan. CD44 has variant isoforms such as CD44, CD44s, CD44v3, 
CD44v6, CD44v8-10[6] with HA as the most specific ligand for CD44 and its isoforms[6].

The first report of isolation and characterization of CSCs from HNSCC showed that 5000 CD44+/Lin- 
cells gave rise to in vivo tumors in NOD-SCID mice[7]. CD44 expression is co-related with the expression 
of known stem cell marker BMI-1 in HNSCC cells.

Recently, CD44v3 is reported to be overexpressed in HNSCC tumors as compared to the cut margin. 
Transfection of CD44v3 in the HNSCC cells increases cell migration[8]. Tumor cell growth, migration, 
matrix metalloproteinase activity, and lymph node metastasis in patients are associated with CD44v3 
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overexpression in HNSCC cells[9]. Decreased expression of CD44v9 co-relates with poor overall 
survival (OS) in TSCC[10]. Overexpression of CD44 co-relates with tumor invasiveness and epithelial-
mesenchymal transition (EMT). Expression of CD44 in invasive margins of OSCC was associated with 
samples showing poor histopathological differentiation, high tumor budding activity, and single-cell 
invasion[11]. Further, increased expression of CD44, together with increased expression of NANOG was 
associated with poor survival in HNSCC patients as compared to those showing low expression of 
CD44 and NANOG[12].

Cells overexpressing CD44 (CD44+) showed self-renewal property with high tumorigenic potential, 
metastasis, and chemo-resistance. Therefore, CD44+ cells in HNSCC tumors are considered as CSC-rich 
population. CD44, paired with the overexpression of other stem cell markers, such as aldehyde 
dehydrogenase (ALDH) and CD133, are being used for the isolation of CSCs from HNSCC tumors[13]. 
In TSCC, CD44+/CD133+ cells showed stem cell-like properties such as high proliferation, invasion, and 
migration with high tumorigenicity[13].

There have been recent reports linking CD44+ cells in HNSCC tumors to early angiogenesis[14], 
lymph node metastasis[15], and occult metastasis[16]. Moreover, overexpression of CD44 in adjacent 
normal epithelia of TSCC co-related with clinical stage and nodal metastasis in patients[17]. CD44 
mRNA expression did not show any co-relation with age, sex, smoking history, size of the tumor, or 5-
year survival rate[18].

ALDH
ALDH is an enzyme superfamily which converts aldehydes to carboxylic acids that are involved in drug 
resistance and detoxification. The human ALDH1A subfamily is involved in the retinoic acid pathway, 
which regulates gene expression and cell development in both normal and cancer cells. The enzymes 
belonging to ALDH1A subfamily viz., ALDH1A1, ALDH1A2, and ALDH1A3 are located in the cytosol 
that catalyze the irreversible conversion of retinaldehyde to retinoic acid.

Amongst the ALDH1A subfamily, ALDH1A1 is overexpressed in the CSCs of HNSCC. Overex-
pression of ALDH has co-related with overexpression of other stem cell markers such as OCT-3/4, 
NANOG, STELLA, SNAIL, and BMI-1 in HNSCC. ALDHhigh cells have also been shown to have 
increased in vitro sphere formation ability and in vivo tumorigenesis ability[19,20]. Higher expression of 
ALDH also co-related with poor patient survival. Importantly, 500 ALDHhigh cells isolated from HNSCC 
tumors showed a higher tumorigenic potential upon in vivo serial transplantations as compared to 
ALDHlow cells[21]. High expression of ALDH1A1 in oropharyngeal carcinoma co-related with poor 
differentiation in tumors and poor OS patterns in patients[22]. ALDHhigh TSCC cells showed serum 
independency and a higher ability to form tumorospheres than ALDHlow cells. ALDHhigh cells also 
exhibited overexpression of stem cell-related genes such as NOTCH2[23]. ALDH1A1 expression was 
directly co-related with OS and lymph node metastasis in HNSCC[24]. The study showed a co-relation 
of ALDH1A1 expression with TWIST1 expression in primary tumor tissues and lymph node metastases. 
Recent reports have demonstrated the involvement of ALDH isoforms in cisplatin resistance in HNSCC. 
Treating cells with ALDH inhibitors showed decreased cell viability and reduced tumor burden in vivo 
when given in combination with cisplatin as compared to only cisplatin treatment. This study also 
showed that treating cells with the ALDH3A1 activator along with cisplatin increased cell survival[25]. 
Overexpression of ALDH1A1 in HNSCC tissues co-relates with poor survival as compared to low 
ALDH1A1 expression[26]. Additionally, the expression of ALDH1 increased from epithelial dysplasia to 
oral carcinoma, that co-related with poor survival rates in OSCC patients[27]. In addition, low 
ALDH1A1 in the HNSCC patients showed significantly better OS as compared to high ALDH1A1 
expression[25].

CD133
CD133/AC133/prominin-1 is a 97 kDa pentaspan transmembrane glycoprotein encoded by the 
prominin 1 (PROM1) gene. CD133 protein has an intracellular C-terminal domain, an extracellular N-
terminal domain, and five transmembrane segments[28].

Spheroids obtained from HNSCC patient tumor cells showed higher CD133 expression than normal 
epithelial cells[29]. High expression of CD133 with high expression of CD44 and CD117 was observed as 
marker of CSCs in OSCC cells[30]. TSCC cells overexpressing CD133 showed a higher in vitro and in 
vivo tumorigenicity as compared to cells with low expression of CD133[31]. Recent reports showed that 
CD133+ OSCC cells exhibit properties such as self-renewal, drug resistance, higher tumorigenic 
potential, and higher growth rate as compared to CD133- cells. Further, increased expression of stem cell 
markers such as NANOG, OCT4, SOX2, and ALDH1A1 in CD133+ cells suggested that CD133 is a 
potential CSC marker for OSCC CSCs[32]. TSCC-derived spheroids were reported to overexpress 
CD133[33].

Other markers
Stemness markers such as OCT-3/4, NANOG, SOX2, KLF-4, and BMI-1 have been associated with 
characteristics such as self-renewal, pluripotency, and development of embryonic stem cells are overex-
pressed in CSCs in TSCCs.
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Invasive TSCC cells overexpressing CD44 and SOX9 showed a higher expression of SOX2 and OCT-4
[34]. SOX2 overexpression in TSCC tissues co-related with poor OS in patients[35]. In addition, SOX2 
overexpression co-related with tumor size, cell differentiation, nodal metastasis, and clinical TNM stage. 
In TSCC cells, the knockdown of SOX2 showed a decrease in cell proliferation, cell migration and 
invasion, and colony forming, which was reversed with overexpression of SOX2[36]. Moreover, an 
increased SOX2 expression was associated with poor OS, disease-specific survival, and disease-free 
survival (DFS) in TSCC[37]. Downregulation of SOX2 by MTA-3 was reported to repress CSC properties 
and tumor growth in TSCCs, and patients exhibiting MTA3low/SOX2high showed the worst prognosis
[38]. Additionally, SOX2 regulated HEY1, which in turn regulates NOTCH4 expression, followed by 
increased EMT in HNSCC cells[39].

The expression of both OCT-3/4 and NANOG was high in side population cells that co-related with 
distant metastasis[40]. Also, high OCT-4 expression in TSCC samples and NANOG in adjacent cut 
margin tissues have been reported as indicators of lymph node metastasis and worse prognosis[12]. 
Furthermore, TSCC showed an association between BMI-1 overexpression and increased proliferation, 
nodal metastasis, and decreased OS in patients. Further, knocking down BMI-1 in TSCC cells showed a 
reduction in cell proliferation and migration, increased cell apoptosis, senescence, and cisplatin 
sensitivity[41]. Ectopic overexpression of BMI-1 increased susceptibility of tongue carcinogenesis after 
exposure to 4-nitroquinoline-1-oxide in mice. The ectopic expression of BMI-1 was shown to regulate 
the pathways such as mTOR signaling, EIF2 signaling, and p70S6K signaling[42]. Additionally, high 
expression of OCT4 and BMI-1, along with ALDH1, co-related with poor survival in OSCC patients[27].

The TRIM (tripartite motif) gene family have ubiquitin ligase function that plays an important role in 
various human diseases such as muscular dystrophies and atrophies and HIV infections etc[43]. A 
recent report showed that overexpression of TRIM14 induces CSC-like properties with an increased 
sphere formation ability and cisplatin resistance in TSCC cells. Further, on inhibition of TRIM14 by miR-
15b, these characteristics were reversed, implying that TRIM14 might play an important role in the 
maintenance of these properties[44].

MOLECULAR SIGNALING
The Wnt pathway
The Wnt signaling consists of the Canonical (involving β-catenin) and non-canonical pathways. 
Canonical Wnt signaling initiates when Wnt ligand binds to FRZ receptor and low-density LRP5/6 co-
receptors. In the absence of the Wnt ligand, a complex of Axin, APC, GSK3, and CK1 phosphorylates β-
catenin, leading to ubiquitination and subsequent proteasomal degradation of β-catenin. When present, 
Wnt ligand binds to FRZ receptor leading to FRZ-induced LRP5/6 phosphorylation followed by 
activation of the scaffold protein DVL. Activated DVL recruits Axin to receptors, which then inhibits the 
phosphorylation of β-catenin. Subsequently, β-catenin translocates into the nucleus promoting the 
transcription of Wnt target genes by interacting with T cell-specific factor/lymphoid enhancer-binding 
factor. Proper functioning of the Wnt signaling pathway is important for embryonic development and 
self-renewal of normal stem cells[45]. Deregulated Wnt signaling is involved in the development of 
various cancers such as colorectal cancer, epidermal cancer[46], hepatocellular carcinoma, breast cancer, 
glioma, etc[47].

Recent studies showed that the suppression of the Wnt signaling inhibits the progression of OSCC. 
Micro RNAs such as miR-29a[48], miR-638[49], miR-106a*[50], etc., have been shown to suppress tumor 
progression by regulating the Wnt signaling. The miR-638 and miR-106a* regulate Wnt through 
downregulating oncogenes PLD1 and MeCP2, while miR-29a caused reduction in β catenin levels. In 
addition, chemical compounds such as quercetin (bioactive flavonoid) and niclosamide (anthelminthic) 
were reported to inhibit tumor progression by affecting the Wnt signaling in OSCC. Quercetin induced 
miR-22 expression, thereby inhibiting the Wnt1/β catenin axis[51], while Niclosamide downregulated 
the expression of β-catenin, DVL2, phosphorylated GSK3β, and Cyclin D1[52]. SOX8 was shown to 
regulate chemo-resistance and EMT in TSCC cells by activating the Wnt pathway suggesting that it 
might play a crucial role in the maintenance of tongue CSCs[53]. Furthermore, the spheroid forming 
ability and expression of CSC markers (CD44 and ALDH) was negatively impacted in the presence of 
the Wnt antagonist sFRP4 in tongue carcinoma cells. In presence of the Wnt ligand, WNT3a, these 
properties were reverted[54]. The Wnt on and off pathway and its role in TSCC is shown in (Figure 1).

The Hedgehog pathway
The Hedgehog pathway has three different types of ligand proteins in mammals such as Sonic-
Hedgehog (SHH), Indian-Hedgehog, and Desert-Hedgehog. The ligand binds to the receptor PTCH1 
and removes the inhibition on the transmembrane protein Smoothened (SMO). This further leads to 
SMO accumulation in the cytoplasm. Subsequently, the translocation of glioma-associated oncogene 
(Gli) proteins into the nucleus initiates the transcription of target genes that are involved in intercellular 
communication, organogenesis, regeneration, and homeostasis[55].
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Figure 1 The Wnt signaling pathway and cancer stemness. In the absence of a Wnt ligand, in the canonical pathway,, a complex of Axin, CK1α, APC, 
PP2A, and GSK3 (termed destruction complex) phosphorylates β-catenin targeting it for ubiquitinylation, that leads to its proteasomal degradation. When the Wnt 
ligand binds to the Frizzled receptor and LRP5/6 co-receptor, the destruction complex gets localized to the receptor, preventing the degradation of β-catenin that 
localizes to the nucleus that further activates transcription of the target genes. It has been reported that miRNAs such as miR-29a, miR-638, and miR-106a* reduce 
levels of β-catenin and Wnt ligand. The miR-638 targets PLD1, a generally accepted oncogene, leading to the reduction β-catenin levels[49]. The miR-29a also 
directly causes a reduction in β-catenin levels in TSCC cell lines[48]. The miRNA miR-106a* causes a reduction in MeCP2 (a gene expression regulator and 
oncogene) levels that inhibit the binding of Wnt ligand to the receptor that in turn causes downregulation of the Wnt pathway[50]. Chemical compounds such as 
Quercetin and Niclosamide downregulate the Wnt signaling pathway. Quercetin causes an increase in levels of miR-22 that in turn inhibits the Wnt1/β-catenin axis
[51], while Niclosamide directly binds to DVL2, phosphorylated GSK3β, and Cyclin D1 that reduces levels of β-catenin[52]. Sox8 is shown to activate the Wnt 
pathway by inducing the expression of Frizzled-7[53].

Hedgehog pathway activation promotes angiogenesis in OSCC. Overexpression of SHH ligand in 
human TSCC and expression of PTCH1, Gli1, and Gli2 proteins in microvascular cells have been 
observed in the tumor invasive front[56]. The involvement of Hedgehog pathway has been shown in 
angiogenesis by macrophages and endothelial cells[57]. Hedgehog and TGFβ signaling are involved in 
bone invasion and destruction. Gli2 expression is associated with bone invasion. Silencing of Gli2 
showed a reduction in invasiveness in orthotopic mice models[58]. Gli3 knockdown in TSCC cells have 
resulted in the downregulation of the CSC markers such as CD44, OCT-4, and BMI-1 genes and a 
reduction in CSCs[59]. Further, increased expression of Gli1 has been shown in spheroid forming cells in 
TSCC cell line[60]. The Hedgehog pathway and its role in TSCC have been shown along with inhibitors 
in clinical trials for various cancers except for HNSCC (Figure 2).

The Notch pathway
The Notch pathway has four receptors such as NOTCH 1, NOTCH 2, NOTCH 3, and NOTCH 4. The 
ligands are of two types, viz. Delta-like ligands (DLL1, DLL3 and DLL4) and Jagged ligands (JAG1 and 
JAG2). Notch pathway also involves proteolysis by metalloprotease, tumor necrosis factor-α-converting 
enzyme (TACE), and γ-secretase. The binding of the ligand to the receptor releases the extracellular 
domain by TACE activity, which then binds to the receptor on an adjacent cell, while the intracellular 
domain is cleaved by γ-secretase activity that further gets translocated into the nucleus, which acts like a 
transcriptional factor for the activation of the target genes (HES family, HEY, NF-κB, VEGF, and c-MYC)
[61].

Notch signaling has been shown to induce EMT in OSCC cells. Activation of Notch signaling is 
directly co-related with the expression of markers such as E-cadherin and Vimentin and increased 
invasiveness of OSCC cells[62,63]. Decreasing NOTCH1 in the TSCC cells showed a reduction in the 
invasiveness of the cells and decreased expression of MMP-2 and MMP-9 (associated with metastasis 
and invasion) in TSCC[64]. Additionally, activation of the notch intracellular domain in TSCC cell line 
co-related with stemness characteristics such as spheroid formation and expression of stemness markers 
viz. OCT4, SOX2 and CD44. The knockdown of NOTCH1 co-related with chemo-sensitization and loss 
of spheroid-forming ability. Further, high expression of NOTCH1 showed a significantly poor OS as 
well as DFS in HNSCC patients[65]. Further, NOTCH4 expression promoted cell-cycle dysregulation, 
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Figure 2 The Hedgehog signaling pathway and cancer stemness. In the absence of Hedgehog ligand, Patched inhibits smoothened (SMO), leading to 
the full-length Gli protein that gets phosphorylated by PKA, GSK-3 and CK-1 and converted into Gli repressor through proteolytic digestion. The Gli repressor further 
inhibits the Hedgehog pathway. When the Hedgehog ligand binds to the Patched receptor, the inhibition on SMO is released, leading to the dissociation of Gli from 
SUFU and Kif7 that lead to the activation of the Gli protein (Gli A). Further, Gli A translocates to the nucleus that further activates transcription of target genes. 
Activation of the Hedgehog pathway promotes angiogenesis and invasiveness in vivo[57,58]. Downregulation of Gli3 reduces expression of stemness markers such 
as CD44, OCT-4, and BMI-1 in tongue carcinoma (TSCC) cells[59], while upregulation of Gli1 increases the spheroid formation ability of TSCC cells[60]. IPI-926 and 
BMS-833923 (XL139) are SMO inhibitors used to therapeutically target the Hedgehog pathway. IPI-926 is a semi-synthetic derivative of cyclopamine, while BMS-
833923 (XL139) is a small molecule inhibitor of SMO. Ptch: Patched; SMO: Smoothened; Hh: Hedgehog ligand; Gli FL: Full length glioma associated oncogene; Gli 
A: Gli activator; Gli R: Gli repressor; IPI-926, BMS-833923 (XL139): Smoothened inhibitors.

cell proliferation, drug resistance, and inhibition of apoptosis. Elevated expression of NOTCH4 along 
with HEY1 co-related with OCT4, SOX2, and CD44 overexpression that showed increased migration 
and invasion in TSCC cells[66]. Recently, it was reported that a STAT3-activated long non-coding RNA, 
hepatocyte nuclear factor 1 homeobox A antisense RNA 1, promoted tumorigenesis by activating the 
Notch pathway in OSCC cells[67]. Further, high expression of NOTCH1 and JAG1 have been shown to 
be predictors of poor OS as well as DFS in oral carcinoma patients[68]. The notch signaling pathway and 
its role in TSCC is shown in (Figure 3).

The HGF/c-MET pathway
The HGF/c-MET pathway is involved in tumorigenesis in various cancers such as HNSCC, non-small 
cell lung cancer, hepatocellular carcinoma, ovarian cancer, bladder cancer, cervical cancer, etc.[69]. The 
binding of ligand HGF to the kinase receptor c-MET leads to the dimerization of two subunits. The 
dimerization results in the auto-phosphorylation of tyrosine residues in the cytoplasmic domain of the 
receptor, which then creates a docking site for various adaptor proteins that regulate pathways such as 
PI3K/AKT pathway and Wnt pathway[69].

HGF treatment has been shown to increase the expression of CSC markers and sphere forming ability 
of HNSCC cells, which were decreased upon c-MET knockdown. The transcriptional level of c-MET was 
higher in cells with high ALDH activity (one of the HNSCC CSC markers). Moreover, c-MET 
knockdown in the HNSCC stem-like cells resulted in better survival in in vivo orthotopic tongue 
xenograft models[70].

Significant co-relation has been observed in TSCC between the c-MET expression and tumor stage, 
nodal status, clinical stage, locoregional recurrence, and distant metastasis. In addition, high expression 
of c-MET and autocrine motility factor receptor (AMFR) was associated with worse DFS. The study 
suggested that c-MET and AMFR expression can be potent prognosis marker that targets to decrease 
metastasis in OSCC[71]. Immunostaining for the c-MET showed a significant co-relation with lymph 
node metastasis, recurrence, and pathological stage of TSCC[72]. High c-MET expression was co-related 
with lymph node metastasis, greater depth of invasion, decreased patient survival, increased invasion & 
migration in in vitro and subcutaneous in vivo mice model injected with TSCC cells[73]. Further, the 
knockdown of c-MET has shown to reduce cervical lymph node metastasis and improve survival 
patterns in in vivo models[74]. Overexpression of c-MET was shown to co-relate with occult metastasis 
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Figure 3 The Notch signaling pathway and cancer stemness. In absence of the Notch ligand, the Notch pathway is in the inactivate state. The binding of 
ligand to the Notch receptor leads to cleavage by ADAM-family metalloproteases releasing the extracellular domain of the receptor. Further, the receptor is cleaved 
by γ-secretase leading to the formation of the Notch intracellular domain (NICD), thereby activating it. The NICD then translocates to the nucleus and releases 
inhibition on the target genes by dissociating the corepressor complex and forms a complex with RBP-J and co-activator complex thereby activating the transcription 
of target genes. Further, knockdown of Notch-1 expression has been shown to increase chemo-sensitization and decrease the spheroid formation ability of tongue 
squamous cell carcinoma (TSCC) cells[64]. An increase in Notch-4 levels increases stemness markers such as CD44, SOX2, and OCT-4 in TSCC cells[66].  NICD 
activation has been shown to increase levels of CD44, OCT-4, and SOX2 in TSCC cells[65]. Activation of the Notch pathway increases the invasiveness in TSCC 
cells[62,63,66,67]. NICD: Notch intracellular domain.

in TSCC[75]. The HGF/c-MET pathway and its role in TSCC is shown along with inhibitor in clinical 
trials for various cancers except for HNSCC (Figure 4).

Other pathways
The transcription factor Nrf2 has been shown to induce the expression of genes involved in cellular 
antioxidant and anti-inflammatory responses. Normally, Nrf2 is located in the cytoplasm. Upon 
activation, it translocates to the nucleus, forming heterodimers with proteins such as c-JUN and small 
musculoaponeurotic fibrosarcoma protein that bind to antioxidant response element, which regulate the 
expression of around 200 genes that regulate anti-inflammatory and antioxidant response. Nrf2 is 
involved in the regulation of mitochondrial biogenesis pathways[76]. A compound named Plumbagin is 
shown to suppress EMT and stemness characteristics by regulating redox homeostasis and inducing 
reactive oxygen species (ROS) generation within the cell by suppressing the Nrf2-regulated pathways
[77].

The Hippo/transcriptional coactivator with PDZ-binding (TAZ) signaling pathway is also involved 
in the regulation of properties such as cell proliferation, apoptosis, invasion, migration etc. in TSCC. 
When the pathway is off, the Yes-associated protein (YAP) and TAZ motif translocate to the nucleus, 
thereby inducing the transcription of various genes by binding to the TEA domain family proteins and 
other transcription factors. LATS1 is activated by MST1 with Salvador through phosphorylation, which 
then phosphorylates the YAP/TAZ, retaining it in the cytoplasm, which then binds to 14-3-3 and gets 
degraded[78]. Factors such as HIF-1α[79] and epigallocatechin-3-gallate[80] affect the Hippo pathway to 
modulate proliferation, apoptosis, invasion, and migration in TSCC cells.

Approximately 90% HNSCCs overexpress the EGFR pathway[81]. The EGFR is a receptor tyrosine 
kinase of the ErbB family. The ligands of the EGFR are EGF, heparin-binding EGF, and TGFα. Upon 
receptor-ligand binding, the inactive monomer of the receptor dimerizes, either with another monomer 
of EGFR forming a homodimer or with another ErbB family receptor forming a heterodimer. This active 
dimer then auto-phosphorylates the C-terminal domain of the receptor providing a docking site for the 
phospho-tyrosine binding domain and Src homology 2 domain resulting in the activation of several 
signaling pathways such as MAPK, PI3K/Akt pathway, and phospholipase Cγ pathways[82]. 
Stimulation of OSCC cells by EGF showed an induction of EMT in the cells, which revealed morpho-
logical changes with the downregulation of E-cadherin and the upregulation of vimentin in the cells. In 
addition, stimulated cells showed enrichment of stem-like population (CD44+/CD24-) with an increase 
in CSC markers such as ALDH1 and BMI-1, suggesting that EGF may be responsible to induce CSC 
properties in OSCCs[83].
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Figure 4 The HGF/c-MET signaling pathway and cancer stemness. In the absence of the HGF ligand, the HGF/c-MET pathway remains inactivated. The 
binding of the HGF ligand to the c-MET kinase receptor results in the dimerization of two subunits that further leads to auto-phosphorylation of the tyrosine residues in 
the cytoplasmic domain of the receptor creating a docking site for adaptor proteins, which regulate pathways, such as PI3K, RAS, Wnt, Notch and STAT pathway. 
Transcriptional levels of c-MET were high in ALDHhigh cells[70]. Activation of c-MET results in an increase in invasiveness and metastasis in vitro as well as in vivo[73,
74]. Ficlatuzumab is a humanized IgG1 monoclonal antibody targeting HGF used to therapeutically target the HGF/c-met pathway. ALDH: Aldehyde dehydrogenase; 
Ficlatuzumab: HGF/c-MET pathway inhibitor.

Ephrin (EPH) receptors and their ligands play important roles in controlling the actin cytoskeleton 
and cellular responses, including attraction/repulsion, migration, and cell positioning during develop-
mental stages[84]. Recent report has shown regulation of the expression of stemness markers by 
EPHA10. EPHA10 and its ligand EFNA4 increased cell migration, sphere formation, and expression of 
markers such as SNAIL, NANOG, and OCT4 in OSCC cells. It was also reported that high mRNA levels 
of EFNA4 with NANOG or OCT4 co-related with poor survival patterns in OSCC patients[85].

CURRENT TREATMENT REGIME
The current treatment regime for HNSCCs is dependent on the TNM staging of the carcinoma based on 
T (tumor size considering the depth of invasion), N (nodal metastasis considering extranodal extension 
or ENE), and M (presence of distant metastasis)[86]. For early stage of cancer, single modality treatment, 
in which mostly surgery, is preferred. With the progression of disease manifested either through larger 
tumor dimensions or nodal metastasis, multimodality in treatment is employed, wherein surgery is 
followed by adjuvant chemotherapy or radiotherapy. In case of distant metastasis, where surgical 
intervention is difficult, chemotherapy is the preferred choice. Further, administration of adjuvant 
chemo or radiation therapy following surgery is shown to exhibit better patient survival[87]. 
Chemotherapeutic agents commonly administered are cisplatin, carboplatin, docetaxel, 5-fluorouracil, 
methotrexate, and paclitaxel. Radiotherapy is also employed in cycles of 1.8-2 Gy/day with a total dose 
of 66-72 Gy[88]. Targeted therapies, specifically acting on certain upregulated pathways, such as EGFR, 
are administered. For example, cetuximab targets the EGFR pathway in HNSCC patients or anti-PD1 
agents for immunotherapy in HNSCC. Agents such as pembrolizumab and nivolumab, which target 
PD-1, have shown promising results in clinical trials[87]. Although, recent reports highlighted that 
owing to heterogeneity in PD-L1 expression throughout tumors and utilization of different methods and 
antibodies, there might arise errors in immuno-histochemical assessment of PD-L1 prior to therapy 
decisions[89-92]. In the course of currently existing assessment methods across various cancers, Marletta 
et al[91] observed that in HNSCC, the registration trial utilized the 22C3 clone (Dako) on Agilent 
autostainer link 48 while the European Medicines Agency granted administration of immunotherapy 
regardless of antibody, and the instrument used. The reports emphasized on the establishment of a 
standardized uniform protocol considering the heterogeneity of expression as well as the antibodies and 
platforms used for the assessment of PD-L1 before deciding whether immunotherapy should be 
administered to the patients[89-92].
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Table 1 Clinical trials currently active for head and neck squamous cell carcinoma

Region Drug name Target Phase NCT 
number

Everolimus Inhibitor of mTOR

Cetuximab Monoclonal anti-EGFR antibody

I NCT01637194

Bevacizumab (with fluorouracil and 
hydroxyurea)

Anti VEGF-A antibody I NCT00023959

Trastuzumab (with IL-12) Monoclonal anti-EGFR antibody I NCT00004074

Erlotinib Tyrosine kinase receptor (EGFR)

Cetuximab Monoclonal anti-EGFR antibody

With or without bevacizumab Anti VEGF-A antibody

I, II NCT00101348

Erlotinib hydrochloride Tyrosine kinase receptor (EGFR)

Cetuximab Monoclonal anti-EGFR antibody

I, II NCT00101348

Erlotinib hydrochloride Tyrosine kinase receptor (EGFR)

Cetuximab Monoclonal anti-EGFR antibody

I NCT00397384

Zalutumumab (after radiotherapy) Monoclonal anti-EGFR antibody III NCT00496652

Temsirolimus mTORC1 inhibitor

With or without cetuximab Monoclonal anti-EGFR antibody

II NCT01256385

Cetuximab Monoclonal anti-EGFR antibody

Sorafenib tosylate Tyrosine kinase inhibitor

II NCT00939627

Cetuximab Monoclonal anti-EGFR antibody

Erlotinib hydrochloride Tyrosine kinase receptor (EGFR)

II NCT01316757

Varlilumab Monoclonal anti-CD27 antibody

Nivolumab Monoclonal anti-PD-1 antibody

I, II NCT02335918

MEDI7247 Monoclonal anti-ASCT2 antibody conjugated with 
pyrrolobenzodiazepine dimer

I NCT03811652

Cetuximab with lenalidomide Monoclonal anti-EGFR antibody I NCT01254617

Durvalumab Monoclonal antibody that blocks PD-1/PD-L1 interaction

With or without tremelimumab Monoclonal antibody against CTLA-4

I NCT03144778

Sitravitinib Inhibitor of receptor tyrosine kinases

Nivolumab Monoclonal anti-PD-1 antibody

Early 
phase I

NCT03575598

Nivolumab Monoclonal anti-PD-1 antibody

Pembrolizumab with trigriluzole Monoclonal anti-PD-1 antibody

I NCT03229278

BKM120 PI3K inhibitor

Cetuximab Monoclonal anti-EGFR antibody

I, II NCT01816984

FATE-NK100

Cetuximab Monoclonal anti-EGFR antibody

Trastuzumab Monoclonal anti-EGFR antibody

I NCT03319459

Nivolumab with SBRT Monoclonal anti-PD-1 antibody II NCT02684253

BYL719 PI3K inhibitor

Poziotinib EGFR inhibitor

Nintedanib Angiokinase inhibitor

Abemaciclib CDK4 and CD6 inhibitor

Durvalumab Monoclonal antibody that blocks PD-1/PD-L1 interaction

Worldwide

II NCT03292250
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Tremelimumab Monoclonal anti-CTLA-4 antibody

Nivolumab and tadalafil Monoclonal anti-PD-1 antibody Early 
phase I

NCT03238365

Gefitinib (Iressa) with cisplatin and 
radiotherapy

EGFR inhibitor (tyrosine kinase inhibitor) II NCT00229723

Lapatinib EGFR inhibitor (tyrosine kinase inhibitor) II NCT00371566

Gefitinib with methotrexate EGFR inhibitor (tyrosine kinase inhibitor) III NCT00206219

P276-00 with EBRT CDK inhibitor I, II NCT00899054

P276-00 CDK inhibitor II NCT00824343

Lapatinib with chemoradiation EGFR inhibitor (tyrosine kinase inhibitor) III NCT00424255

Lapatinib with chemoradiation EGFR inhibitor (tyrosine kinase inhibitor) II NCT00387127

MEDI4736 Monoclonal antibody blocking interaction between PD-L1 
with its receptors

Involving Indian 
institutes

Tremelimumab with chemotherapy Monoclonal anti-CTLA-4 antibody

III NCT02551159

SBRT: Stereotactic radiation therapy.

Recently, a clinical trial consisting of 13 TSCC patients showed that immunotherapy of cytokine-
induced killer cells after chemotherapy helped in the reversion of immunosuppression caused during 
chemotherapy and surgery. Twelve out of thirteen patients survived for more than 90 mo post-therapy. 
No immune system related toxicities were reported in the surviving patients. No other side effects of the 
treatment were observed except complaints of aphthous ulcers by two patients[93]. This showed that 
multiple modality treatments might improve the survival and quality of life of the patients. However, 
for further improvement in treatment, more targets specific to CSCs need to be explored.

There have been few clinical trials worldwide as well as those involving Indian institutes for newer 
molecules targeting EGFR pathway, immune checkpoints, PD-L1, cyclin-dependent kinases, etc., as 
single treatment agent or in combination with other chemotherapeutic agents/radiation in HNSCC 
(Table 1). However, these trials are still in the early phases and do not particularly target CSCs. 
Therefore, further detailed study is essential in finding newer targets specific to CSCs in HNSCC.

CONCLUSION
The CSC population plays an important role in therapy resistance, recurrence, and metastasis. These 
factors adversely affect patients’ survival. In spite of several years of research, most of the treatment 
regimes employed currently target the tumor bulk. CSCs possess self-renewing property, slow cycling, 
aberrant cell signaling, dynamic ABC transporter system, DNA repair mechanism, epigenetic modific-
ations, and metabolic regulation, etc., which enable CSCs to escape this therapy and thereby play an 
important role in recurrence, therapy resistance, and loco-regional/distant metastasis.

A better understanding of the aberrant signaling pathways involved in poor prognosis and 
maintenance of the CSC population would be more effective in improving treatment outcome. Such an 
understanding would also be important in the prognosis, prediction, and designing of treatment regime 
that not only reduce the bulk of the tumor but also effectively eliminate the CSC population thereby 
improving patient survival.

Molecules specifically targeting signaling pathways that regulate the CSC population administered in 
combination with conventional therapy or as a single treatment modality need to be studied in TSCC. 
Uncovering the signaling pathways for CSCs, and targeting them would enable better clinical outcomes.

ACKNOWLEDGEMENTS
Joshi P is supported by ACTREC PhD fellowship. The work was funded by TMC-IRB (3542) and 
ACTREC annual funds.

FOOTNOTES
Author contributions: Waghmare S conceptualized the review article; Waghmare S and Joshi P wrote the manuscript.



Joshi P et al. Cell signaling in CSCs of tongue carcinoma

WJSC https://www.wjgnet.com 448 May 26, 2023 Volume 15 Issue 5

Conflict-of-interest statement: The authors have no conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by 
external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license 
their derivative works on different terms, provided the original work is properly cited and the use is non-
commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: India

ORCID number: Sanjeev Waghmare 0000-0002-3693-5620.

Corresponding Author's Membership in Professional Societies: International Society for Stem Cell Research.

S-Editor: Zhang H 
L-Editor: A 
P-Editor: Zhang H

REFERENCES
1 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: 

GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin  2021; 
71: 209-249 [PMID: 33538338 DOI: 10.3322/caac.21660]

2 Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol 2015; 8: 11884-11894 [PMID: 26617944]
3 Chin D, Boyle GM, Porceddu S, Theile DR, Parsons PG, Coman WB. Head and neck cancer: past, present and future. 

Expert Rev Anticancer Ther  2006; 6: 1111-1118 [PMID: 16831082 DOI: 10.1586/14737140.6.7.1111]
4 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive 

hematopoietic cell. Nat Med  1997; 3: 730-737 [PMID: 9212098 DOI: 10.1038/nm0797-730]
5 Batlle E, Clevers H. Cancer stem cells revisited. Nat Med  2017; 23: 1124-1134 [PMID: 28985214 DOI: 

10.1038/nm.4409]
6 Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J 

Hematol Oncol  2018; 11: 64 [PMID: 29747682 DOI: 10.1186/s13045-018-0605-5]
7 Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. 

Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc 
Natl Acad Sci U S A  2007; 104: 973-978 [PMID: 17210912 DOI: 10.1073/pnas.0610117104]

8 Reategui EP, de Mayolo AA, Das PM, Astor FC, Singal R, Hamilton KL, Goodwin WJ, Carraway KL, Franzmann EJ. 
Characterization of CD44v3-containing isoforms in head and neck cancer. Cancer Biol Ther 2006; 5: 1163-1168 [PMID: 
16855392 DOI: 10.4161/cbt.5.9.3065]

9 Wang SJ, Wreesmann VB, Bourguignon LY. Association of CD44 V3-containing isoforms with tumor cell growth, 
migration, matrix metalloproteinase expression, and lymph node metastasis in head and neck cancer. Head Neck  2007; 29: 
550-558 [PMID: 17252589 DOI: 10.1002/hed.20544]

10 Sato S, Miyauchi M, Kato M, Kitajima S, Kitagawa S, Hiraoka M, Kudo Y, Ogawa I, Takata T. Upregulated CD44v9 
expression inhibits the invasion of oral squamous cell carcinoma cells. Pathobiology  2004; 71: 171-175 [PMID: 15263805 
DOI: 10.1159/000078670]

11 Boxberg M, Götz C, Haidari S, Dorfner C, Jesinghaus M, Drecoll E, Boskov M, Wolff KD, Weichert W, Haller B, Kolk 
A. Immunohistochemical expression of CD44 in oral squamous cell carcinoma in relation to histomorphological 
parameters and clinicopathological factors. Histopathology  2018; 73: 559-572 [PMID: 29468726 DOI: 
10.1111/his.13496]

12 Rodrigues MFSD, Xavier FCA, Andrade NP, Lopes C, Miguita Luiz L, Sedassari BT, Ibarra AMC, López RVM, 
Kliemann Schmerling C, Moyses RA, Tajara da Silva EE, Nunes FD. Prognostic implications of CD44, NANOG, OCT4, 
and BMI1 expression in tongue squamous cell carcinoma. Head Neck  2018; 40: 1759-1773 [PMID: 29607565 DOI: 
10.1002/hed.25158]

13 Sun Y, Han J, Lu Y, Yang X, Fan M. Biological characteristics of a cell subpopulation in tongue squamous cell 
carcinoma. Oral Dis  2012; 18: 169-177 [PMID: 22023137 DOI: 10.1111/j.1601-0825.2011.01860.x]

14 Ludwig N, Szczepanski MJ, Gluszko A, Szafarowski T, Azambuja JH, Dolg L, Gellrich NC, Kampmann A, Whiteside 
TL, Zimmerer RM. CD44(+) tumor cells promote early angiogenesis in head and neck squamous cell carcinoma. Cancer 
Lett  2019; 467: 85-95 [PMID: 31593802 DOI: 10.1016/j.canlet.2019.10.010]

15 Ortiz RC, Lopes NM, Amôr NG, Ponce JB, Schmerling CK, Lara VS, Moyses RA, Rodini CO. CD44 and ALDH1 
immunoexpression as prognostic indicators of invasion and metastasis in oral squamous cell carcinoma. J Oral Pathol Med 
2018; 47: 740-747 [PMID: 29791975 DOI: 10.1111/jop.12734]

16 Morand GB, Ikenberg K, Vital DG, Cardona I, Moch H, Stoeckli SJ, Huber GF. Preoperative assessment of CD44-
mediated depth of invasion as predictor of occult metastases in early oral squamous cell carcinoma. Head Neck  2019; 41: 
950-958 [PMID: 30561155 DOI: 10.1002/hed.25532]
González-Moles MA, Bravo M, Ruiz-Avila I, Esteban F, Bascones-Martínez A, González-Moles S. Adhesion molecule 
CD44 expression in non-tumour epithelium adjacent to tongue cancer. Oral Oncol  2004; 40: 281-286 [PMID: 14747059 

17

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0002-3693-5620
http://orcid.org/0000-0002-3693-5620
http://www.ncbi.nlm.nih.gov/pubmed/33538338
https://dx.doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/26617944
http://www.ncbi.nlm.nih.gov/pubmed/16831082
https://dx.doi.org/10.1586/14737140.6.7.1111
http://www.ncbi.nlm.nih.gov/pubmed/9212098
https://dx.doi.org/10.1038/nm0797-730
http://www.ncbi.nlm.nih.gov/pubmed/28985214
https://dx.doi.org/10.1038/nm.4409
http://www.ncbi.nlm.nih.gov/pubmed/29747682
https://dx.doi.org/10.1186/s13045-018-0605-5
http://www.ncbi.nlm.nih.gov/pubmed/17210912
https://dx.doi.org/10.1073/pnas.0610117104
http://www.ncbi.nlm.nih.gov/pubmed/16855392
https://dx.doi.org/10.4161/cbt.5.9.3065
http://www.ncbi.nlm.nih.gov/pubmed/17252589
https://dx.doi.org/10.1002/hed.20544
http://www.ncbi.nlm.nih.gov/pubmed/15263805
https://dx.doi.org/10.1159/000078670
http://www.ncbi.nlm.nih.gov/pubmed/29468726
https://dx.doi.org/10.1111/his.13496
http://www.ncbi.nlm.nih.gov/pubmed/29607565
https://dx.doi.org/10.1002/hed.25158
http://www.ncbi.nlm.nih.gov/pubmed/22023137
https://dx.doi.org/10.1111/j.1601-0825.2011.01860.x
http://www.ncbi.nlm.nih.gov/pubmed/31593802
https://dx.doi.org/10.1016/j.canlet.2019.10.010
http://www.ncbi.nlm.nih.gov/pubmed/29791975
https://dx.doi.org/10.1111/jop.12734
http://www.ncbi.nlm.nih.gov/pubmed/30561155
https://dx.doi.org/10.1002/hed.25532
http://www.ncbi.nlm.nih.gov/pubmed/14747059


Joshi P et al. Cell signaling in CSCs of tongue carcinoma

WJSC https://www.wjgnet.com 449 May 26, 2023 Volume 15 Issue 5

DOI: 10.1016/j.oraloncology.2003.08.016]
18 Kaboodkhani R, Karimi E, Khorsandi Ashtiani MT, Kowkabi S, Firouzifar MR, Yazdani F, Yazdani N. Evaluation of the 

Correlation between CD44, Tumor Prognosis and the 5-Year Survival Rate in Patients with Oral Tongue SCC. Iran J 
Otorhinolaryngol 2016; 28: 407-411 [PMID: 28008391]

19 Wu J, Mu Q, Thiviyanathan V, Annapragada A, Vigneswaran N. Cancer stem cells are enriched in Fanconi anemia head 
and neck squamous cell carcinomas. Int J Oncol  2014; 45: 2365-2372 [PMID: 25340704 DOI: 10.3892/ijo.2014.2677]

20 Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, Hung SC, Kao SY, Chang CJ, Chiou SH. Bmi-1 Regulates 
Snail Expression and Promotes Metastasis Ability in Head and Neck Squamous Cancer-Derived ALDH1 Positive Cells. J 
Oncol  2011; 2011 [PMID: 20936121 DOI: 10.1155/2011/609259]

21 Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME. Single-marker identification of 
head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck  2010; 32: 1195-1201 
[PMID: 20073073 DOI: 10.1002/hed.21315]

22 Qian X, Coordes A, Kaufmann AM, Albers AE. Expression of aldehyde dehydrogenase family 1 member A1 and high 
mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time. Oncol Lett  2016; 12: 
3429-3434 [PMID: 27900016 DOI: 10.3892/ol.2016.5100]

23 Zou B, Sun S, Qi X, Ji P. Aldehyde dehydrogenase activity is a cancer stem cell marker of tongue squamous cell 
carcinoma. Mol Med Rep  2012; 5: 1116-1120 [PMID: 22307065 DOI: 10.3892/mmr.2012.781]

24 Qian X, Wagner S, Ma C, Coordes A, Gekeler J, Klussmann JP, Hummel M, Kaufmann AM, Albers AE. Prognostic 
significance of ALDH1A1-positive cancer stem cells in patients with locally advanced, metastasized head and neck 
squamous cell carcinoma. J Cancer Res Clin Oncol  2014; 140: 1151-1158 [PMID: 24770634 DOI: 
10.1007/s00432-014-1685-4]

25 Szafarowski T, Sierdziński J, Ludwig N, Głuszko A, Filipowska A, Szczepański MJ. Assessment of cancer stem cell 
marker expression in primary head and neck squamous cell carcinoma shows prognostic value for aldehyde dehydrogenase 
(ALDH1A1). Eur J Pharmacol  2020; 867: 172837 [PMID: 31811857 DOI: 10.1016/j.ejphar.2019.172837]

26 Kim J, Shin JH, Chen CH, Cruz L, Farnebo L, Yang J, Borges P, Kang G, Mochly-Rosen D, Sunwoo JB. Targeting 
aldehyde dehydrogenase activity in head and neck squamous cell carcinoma with a novel small molecule inhibitor. 
Oncotarget  2017; 8: 52345-52356 [PMID: 28881734 DOI: 10.18632/oncotarget.17017]

27 Rao RS, Raju K L, Augustine D, Patil S. Prognostic Significance of ALDH1, Bmi1, and OCT4 Expression in Oral 
Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Cancer Control  2020; 27: 1073274820904959 [PMID: 
32951453 DOI: 10.1177/1073274820904959]

28 Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med  2018; 7: 18 [PMID: 
29984391 DOI: 10.1186/s40169-018-0198-1]

29 Kaseb HO, Fohrer-Ting H, Lewis DW, Lagasse E, Gollin SM. Identification, expansion and characterization of cancer 
cells with stem cell properties from head and neck squamous cell carcinomas. Exp Cell Res  2016; 348: 75-86 [PMID: 
27619333 DOI: 10.1016/j.yexcr.2016.09.003]

30 Silva Galbiatti-Dias AL, Fernandes GMM, Castanhole-Nunes MMU, Hidalgo LF, Nascimento Filho CHV, Kawasaki-
Oyama RS, Ferreira LAM, Biselli-Chicote PM, Pavarino ÉC, Goloni-Bertollo EM. Relationship between CD44high/
CD133high/CD117high cancer stem cells phenotype and Cetuximab and Paclitaxel treatment response in head and neck 
cancer cell lines. Am J Cancer Res 2018; 8: 1633-1641 [PMID: 30210931]

31 Wang K, Zhou XK, Wu M, Kang FW, Wang ZL, Zhu Y. Role of CD133(+) cells in tongue squamous carcinomas: 
Characteristics of 'stemness' in vivo and in vitro. Oncol Lett  2016; 12: 863-870 [PMID: 27446361 DOI: 
10.3892/ol.2016.4719]

32 Ma Z, Zhang C, Liu X, Fang F, Liu S, Liao X, Tao S, Mai H. Characterisation of a subpopulation of CD133(+) cancer 
stem cells from Chinese patients with oral squamous cell carcinoma. Sci Rep  2020; 10: 8875 [PMID: 32483269 DOI: 
10.1038/s41598-020-64947-9]

33 Shrivastava S, Steele R, Sowadski M, Crawford SE, Varvares M, Ray RB. Identification of molecular signature of head 
and neck cancer stem-like cells. Sci Rep  2015; 5: 7819 [PMID: 25588898 DOI: 10.1038/srep07819]

34 Misuno K, Liu X, Feng S, Hu S. Quantitative proteomic analysis of sphere-forming stem-like oral cancer cells. Stem Cell 
Res Ther  2013; 4: 156 [PMID: 24423398 DOI: 10.1186/scrt386]

35 Huang CF, Xu XR, Wu TF, Sun ZJ, Zhang WF. Correlation of ALDH1, CD44, OCT4 and SOX2 in tongue squamous cell 
carcinoma and their association with disease progression and prognosis. J Oral Pathol Med  2014; 43: 492-498 [PMID: 
24450601 DOI: 10.1111/jop.12159]

36 Liu X, Qiao B, Zhao T, Hu F, Lam AK, Tao Q. Sox2 promotes tumor aggressiveness and epithelial‑mesenchymal 
transition in tongue squamous cell carcinoma. Int J Mol Med 2018; 42: 1418-1426 [PMID: 29956740 DOI: 
10.3892/ijmm.2018.3742]

37 Du L, Yang Y, Xiao X, Wang C, Zhang X, Wang L, Li W, Zheng G, Wang S, Dong Z. Sox2 nuclear expression is closely 
associated with poor prognosis in patients with histologically node-negative oral tongue squamous cell carcinoma. Oral 
Oncol  2011; 47: 709-713 [PMID: 21689966 DOI: 10.1016/j.oraloncology.2011.05.017]

38 Habu N, Imanishi Y, Kameyama K, Shimoda M, Tokumaru Y, Sakamoto K, Fujii R, Shigetomi S, Otsuka K, Sato Y, 
Watanabe Y, Ozawa H, Tomita T, Fujii M, Ogawa K. Expression of Oct3/4 and Nanog in the head and neck squamous 
carcinoma cells and its clinical implications for delayed neck metastasis in stage I/II oral tongue squamous cell carcinoma. 
BMC Cancer  2015; 15: 730 [PMID: 26483189 DOI: 10.1186/s12885-015-1732-9]

39 Fukusumi T, Guo TW, Ren S, Haft S, Liu C, Sakai A, Ando M, Saito Y, Sadat S, Califano JA. Reciprocal activation of 
HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma. Int J Oncol  2021; 
58: 226-237 [PMID: 33491747 DOI: 10.3892/ijo.2020.5156]

40 Li Z, Wang Y, Yuan C, Zhu Y, Qiu J, Zhang W, Qi B, Wu H, Ye J, Jiang H, Yang J, Cheng J. Oncogenic roles of Bmi1 
and its therapeutic inhibition by histone deacetylase inhibitor in tongue cancer. Lab Invest 2014; 94: 1431-1445 [PMID: 
25286028 DOI: 10.1038/labinvest.2014.123]
Yao Z, Du L, Xu M, Li K, Guo H, Ye G, Zhang D, Coppes RP, Zhang H. MTA3-SOX2 Module Regulates Cancer 41

https://dx.doi.org/10.1016/j.oraloncology.2003.08.016
http://www.ncbi.nlm.nih.gov/pubmed/28008391
http://www.ncbi.nlm.nih.gov/pubmed/25340704
https://dx.doi.org/10.3892/ijo.2014.2677
http://www.ncbi.nlm.nih.gov/pubmed/20936121
https://dx.doi.org/10.1155/2011/609259
http://www.ncbi.nlm.nih.gov/pubmed/20073073
https://dx.doi.org/10.1002/hed.21315
http://www.ncbi.nlm.nih.gov/pubmed/27900016
https://dx.doi.org/10.3892/ol.2016.5100
http://www.ncbi.nlm.nih.gov/pubmed/22307065
https://dx.doi.org/10.3892/mmr.2012.781
http://www.ncbi.nlm.nih.gov/pubmed/24770634
https://dx.doi.org/10.1007/s00432-014-1685-4
http://www.ncbi.nlm.nih.gov/pubmed/31811857
https://dx.doi.org/10.1016/j.ejphar.2019.172837
http://www.ncbi.nlm.nih.gov/pubmed/28881734
https://dx.doi.org/10.18632/oncotarget.17017
http://www.ncbi.nlm.nih.gov/pubmed/32951453
https://dx.doi.org/10.1177/1073274820904959
http://www.ncbi.nlm.nih.gov/pubmed/29984391
https://dx.doi.org/10.1186/s40169-018-0198-1
http://www.ncbi.nlm.nih.gov/pubmed/27619333
https://dx.doi.org/10.1016/j.yexcr.2016.09.003
http://www.ncbi.nlm.nih.gov/pubmed/30210931
http://www.ncbi.nlm.nih.gov/pubmed/27446361
https://dx.doi.org/10.3892/ol.2016.4719
http://www.ncbi.nlm.nih.gov/pubmed/32483269
https://dx.doi.org/10.1038/s41598-020-64947-9
http://www.ncbi.nlm.nih.gov/pubmed/25588898
https://dx.doi.org/10.1038/srep07819
http://www.ncbi.nlm.nih.gov/pubmed/24423398
https://dx.doi.org/10.1186/scrt386
http://www.ncbi.nlm.nih.gov/pubmed/24450601
https://dx.doi.org/10.1111/jop.12159
http://www.ncbi.nlm.nih.gov/pubmed/29956740
https://dx.doi.org/10.3892/ijmm.2018.3742
http://www.ncbi.nlm.nih.gov/pubmed/21689966
https://dx.doi.org/10.1016/j.oraloncology.2011.05.017
http://www.ncbi.nlm.nih.gov/pubmed/26483189
https://dx.doi.org/10.1186/s12885-015-1732-9
http://www.ncbi.nlm.nih.gov/pubmed/33491747
https://dx.doi.org/10.3892/ijo.2020.5156
http://www.ncbi.nlm.nih.gov/pubmed/25286028
https://dx.doi.org/10.1038/labinvest.2014.123


Joshi P et al. Cell signaling in CSCs of tongue carcinoma

WJSC https://www.wjgnet.com 450 May 26, 2023 Volume 15 Issue 5

Stemness and Contributes to Clinical Outcomes of Tongue Carcinoma. Front Oncol  2019; 9: 816 [PMID: 31552166 DOI: 
10.3389/fonc.2019.00816]

42 Kalish JM, Tang XH, Scognamiglio T, Zhang T, Gudas LJ. Doxycycline-induced exogenous Bmi-1 expression enhances 
tumor formation in a murine model of oral squamous cell carcinoma. Cancer Biol Ther 2020; 21: 400-411 [PMID: 
32037955 DOI: 10.1080/15384047.2020.1720485]

43 Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G. Genomic analysis of the TRIM family reveals two groups of 
genes with distinct evolutionary properties. BMC Evol Biol  2008; 8: 225 [PMID: 18673550 DOI: 
10.1186/1471-2148-8-225]

44 Wang X, Guo H, Yao B, Helms J. miR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by 
targeting TRIM14 in oral tongue squamous cell cancer. Oncol Rep  2017; 37: 2720-2726 [PMID: 28350138 DOI: 
10.3892/or.2017.5532]

45 Li N, Lu N, Xie C. The Hippo and Wnt signalling pathways: crosstalk during neoplastic progression in gastrointestinal 
tissue. FEBS J  2019; 286: 3745-3756 [PMID: 31342636 DOI: 10.1111/febs.15017]

46 Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature  2005; 434: 843-850 [PMID: 15829953 DOI: 
10.1038/nature03319]

47 Taciak B, Pruszynska I, Kiraga L, Bialasek M, Krol M. Wnt signaling pathway in development and cancer. J Physiol 
Pharmacol 2018; 69 [PMID: 29980141 DOI: 10.26402/jpp.2018.2.07]

48 Huang C, Wang L, Song H, Wu C. MiR-29a inhibits the progression of oral squamous cell carcinoma by targeting Wnt/β-
catenin signalling pathway. Artif Cells Nanomed Biotechnol  2019; 47: 3037-3042 [PMID: 31342798 DOI: 
10.1080/21691401.2019.1576712]

49 Tang KL, Tang HY, Du Y, Tian T, Xiong SJ. MiR-638 suppresses the progression of oral squamous cell carcinoma 
through wnt/β-catenin pathway by targeting phospholipase D1. Artif Cells Nanomed Biotechnol  2019; 47: 3278-3285 
[PMID: 31379206 DOI: 10.1080/21691401.2019.1647222]

50 Zhang N, Wei ZL, Yin J, Zhang L, Wang J, Jin ZL. MiR-106a* inhibits oral squamous cell carcinoma progression by 
directly targeting MeCP2 and suppressing the Wnt/β-Catenin signaling pathway. Am J Transl Res 2018; 10: 3542-3554 
[PMID: 30662606]

51 Zhang C, Hao Y, Sun Y, Liu P. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating 
microRNA-22/WNT1/β-catenin axis. J Pharmacol Sci  2019; 140: 128-136 [PMID: 31257059 DOI: 
10.1016/j.jphs.2019.03.005]

52 Wang LH, Xu M, Fu LQ, Chen XY, Yang F. The Antihelminthic Niclosamide Inhibits Cancer Stemness, Extracellular 
Matrix Remodeling, and Metastasis through Dysregulation of the Nuclear β-catenin/c-Myc axis in OSCC. Sci Rep  2018; 
8: 12776 [PMID: 30143678 DOI: 10.1038/s41598-018-30692-3]

53 Xie SL, Fan S, Zhang SY, Chen WX, Li QX, Pan GK, Zhang HQ, Wang WW, Weng B, Zhang Z, Li JS, Lin ZY. SOX8 
regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/
β-catenin pathway. Int J Cancer  2018; 142: 1252-1265 [PMID: 29071717 DOI: 10.1002/ijc.31134]

54 Warrier S, Bhuvanalakshmi G, Arfuso F, Rajan G, Millward M, Dharmarajan A. Cancer stem-like cells from head and 
neck cancers are chemosensitized by the Wnt antagonist, sFRP4, by inducing apoptosis, decreasing stemness, drug 
resistance and epithelial to mesenchymal transition. Cancer Gene Ther  2014; 21: 381-388 [PMID: 25104726 DOI: 
10.1038/cgt.2014.42]

55 Carballo GB, Honorato JR, de Lopes GPF, Spohr TCLSE. A highlight on Sonic hedgehog pathway. Cell Commun Signal  
2018; 16: 11 [PMID: 29558958 DOI: 10.1186/s12964-018-0220-7]

56 Kuroda H, Kurio N, Shimo T, Matsumoto K, Masui M, Takabatake K, Okui T, Ibaragi S, Kunisada Y, Obata K, Yoshioka 
N, Kishimoto K, Nagatsuka H, Sasaki A. Oral Squamous Cell Carcinoma-derived Sonic Hedgehog Promotes 
Angiogenesis. Anticancer Res 2017; 37: 6731-6737 [PMID: 29187450 DOI: 10.21873/anticanres.12132]

57 Valverde Lde F, Pereira Tde A, Dias RB, Guimarães VS, Ramos EA, Santos JN, Gurgel Rocha CA. Macrophages and 
endothelial cells orchestrate tumor-associated angiogenesis in oral cancer via hedgehog pathway activation. Tumour Biol  
2016; 37: 9233-9241 [PMID: 26768620 DOI: 10.1007/s13277-015-4763-6]

58 Cannonier SA, Gonzales CB, Ely K, Guelcher SA, Sterling JA. Hedgehog and TGFβ signaling converge on Gli2 to 
control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget 2016; 7: 76062-76075 [PMID: 
27738315 DOI: 10.18632/oncotarget.12584]

59 Rodrigues MFSD, Miguita L, De Andrade NP, Heguedusch D, Rodini CO, Moyses RA, Toporcov TN, Gama RR, Tajara 
EE, Nunes FD. GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma. Int J 
Oncol  2018; 53: 2458-2472 [PMID: 30272273 DOI: 10.3892/ijo.2018.4572]

60 Essid N, Chambard JC, Elgaaïed AB. Induction of epithelial-mesenchymal transition (EMT) and Gli1 expression in head 
and neck squamous cell carcinoma (HNSCC) spheroid cultures. Bosn J Basic Med Sci 2018; 18: 336-346 [PMID: 
30172250 DOI: 10.17305/bjbms.2018.3243]

61 Xiao YF, Yong X, Tang B, Qin Y, Zhang JW, Zhang D, Xie R, Yang SM. Notch and Wnt signaling pathway in cancer: 
Crucial role and potential therapeutic targets (Review). Int J Oncol  2016; 48: 437-449 [PMID: 26648421 DOI: 
10.3892/ijo.2015.3280]

62 Ishida T, Hijioka H, Kume K, Miyawaki A, Nakamura N. Notch signaling induces EMT in OSCC cell lines in a hypoxic 
environment. Oncol Lett  2013; 6: 1201-1206 [PMID: 24179495 DOI: 10.3892/ol.2013.1549]

63 Zhang J, Zheng G, Zhou L, Li P, Yun M, Shi Q, Wang T, Wu X. Notch signalling induces epithelial‑mesenchymal 
transition to promote metastasis in oral squamous cell carcinoma. Int J Mol Med 2018; 42: 2276-2284 [PMID: 30015856 
DOI: 10.3892/ijmm.2018.3769]

64 Yu B, Wei J, Qian X, Lei D, Ma Q, Liu Y. Notch1 signaling pathway participates in cancer invasion by regulating MMPs 
in lingual squamous cell carcinoma. Oncol Rep 2012; 27: 547-552 [PMID: 21993452 DOI: 10.3892/or.2011.1492]

65 Lee SH, Do SI, Lee HJ, Kang HJ, Koo BS, Lim YC. Notch1 signaling contributes to stemness in head and neck squamous 
cell carcinoma. Lab Invest  2016; 96: 508-516 [PMID: 26927514 DOI: 10.1038/labinvest.2015.163]
Fukusumi T, Guo TW, Sakai A, Ando M, Ren S, Haft S, Liu C, Amornphimoltham P, Gutkind JS, Califano JA. The 66

http://www.ncbi.nlm.nih.gov/pubmed/31552166
https://dx.doi.org/10.3389/fonc.2019.00816
http://www.ncbi.nlm.nih.gov/pubmed/32037955
https://dx.doi.org/10.1080/15384047.2020.1720485
http://www.ncbi.nlm.nih.gov/pubmed/18673550
https://dx.doi.org/10.1186/1471-2148-8-225
http://www.ncbi.nlm.nih.gov/pubmed/28350138
https://dx.doi.org/10.3892/or.2017.5532
http://www.ncbi.nlm.nih.gov/pubmed/31342636
https://dx.doi.org/10.1111/febs.15017
http://www.ncbi.nlm.nih.gov/pubmed/15829953
https://dx.doi.org/10.1038/nature03319
http://www.ncbi.nlm.nih.gov/pubmed/29980141
https://dx.doi.org/10.26402/jpp.2018.2.07
http://www.ncbi.nlm.nih.gov/pubmed/31342798
https://dx.doi.org/10.1080/21691401.2019.1576712
http://www.ncbi.nlm.nih.gov/pubmed/31379206
https://dx.doi.org/10.1080/21691401.2019.1647222
http://www.ncbi.nlm.nih.gov/pubmed/30662606
http://www.ncbi.nlm.nih.gov/pubmed/31257059
https://dx.doi.org/10.1016/j.jphs.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/30143678
https://dx.doi.org/10.1038/s41598-018-30692-3
http://www.ncbi.nlm.nih.gov/pubmed/29071717
https://dx.doi.org/10.1002/ijc.31134
http://www.ncbi.nlm.nih.gov/pubmed/25104726
https://dx.doi.org/10.1038/cgt.2014.42
http://www.ncbi.nlm.nih.gov/pubmed/29558958
https://dx.doi.org/10.1186/s12964-018-0220-7
http://www.ncbi.nlm.nih.gov/pubmed/29187450
https://dx.doi.org/10.21873/anticanres.12132
http://www.ncbi.nlm.nih.gov/pubmed/26768620
https://dx.doi.org/10.1007/s13277-015-4763-6
http://www.ncbi.nlm.nih.gov/pubmed/27738315
https://dx.doi.org/10.18632/oncotarget.12584
http://www.ncbi.nlm.nih.gov/pubmed/30272273
https://dx.doi.org/10.3892/ijo.2018.4572
http://www.ncbi.nlm.nih.gov/pubmed/30172250
https://dx.doi.org/10.17305/bjbms.2018.3243
http://www.ncbi.nlm.nih.gov/pubmed/26648421
https://dx.doi.org/10.3892/ijo.2015.3280
http://www.ncbi.nlm.nih.gov/pubmed/24179495
https://dx.doi.org/10.3892/ol.2013.1549
http://www.ncbi.nlm.nih.gov/pubmed/30015856
https://dx.doi.org/10.3892/ijmm.2018.3769
http://www.ncbi.nlm.nih.gov/pubmed/21993452
https://dx.doi.org/10.3892/or.2011.1492
http://www.ncbi.nlm.nih.gov/pubmed/26927514
https://dx.doi.org/10.1038/labinvest.2015.163


Joshi P et al. Cell signaling in CSCs of tongue carcinoma

WJSC https://www.wjgnet.com 451 May 26, 2023 Volume 15 Issue 5

NOTCH4-HEY1 Pathway Induces Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Clin 
Cancer Res  2018; 24: 619-633 [PMID: 29146722 DOI: 10.1158/1078-0432.CCR-17-1366]

67 Liu Z, Li H, Fan S, Lin H, Lian W. STAT3-induced upregulation of long noncoding RNA HNF1A-AS1 promotes the 
progression of oral squamous cell carcinoma via activating Notch signaling pathway. Cancer Biol Ther  2019; 20: 444-453 
[PMID: 30404566 DOI: 10.1080/15384047.2018.1529119]

68 Elhendawy HA, Al-zaharani N, Ehab Z, Soliman N, Ibrahiem AT. Notch1-Jagged1 Signaling Pathway in Oral Squamous 
Cell Carcinoma : Relation to Tumor Recurrence and Patient Survival. Open Access Maced J Med Sci  2022; 10: 1417-1426 
[DOI: 10.3889/oamjms.2022.10200]

69 Zhang H, Feng Q, Chen WD, Wang YD. HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. 
Int J Mol Sci  2018; 19 [PMID: 30360560 DOI: 10.3390/ijms19113295]

70 Lim YC, Kang HJ, Moon JH. C-Met pathway promotes self-renewal and tumorigenecity of head and neck squamous cell 
carcinoma stem-like cell. Oral Oncol  2014; 50: 633-639 [PMID: 24835851 DOI: 10.1016/j.oraloncology.2014.04.004]

71 Endo K, Shirai A, Furukawa M, Yoshizaki T. Prognostic value of cell motility activation factors in patients with tongue 
squamous cell carcinoma. Hum Pathol  2006; 37: 1111-1116 [PMID: 16867875 DOI: 10.1016/j.humpath.2006.03.020]

72 Kim CH, Koh YW, Han JH, Kim JW, Lee JS, Baek SJ, Hwang HS, Choi EC. c-Met expression as an indicator of survival 
outcome in patients with oral tongue carcinoma. Head Neck  2010; 32: 1655-1664 [PMID: 20848408 DOI: 
10.1002/hed.21383]

73 Lim YC, Han JH, Kang HJ, Kim YS, Lee BH, Choi EC, Kim CH. Overexpression of c-Met promotes invasion and 
metastasis of small oral tongue carcinoma. Oral Oncol  2012; 48: 1114-1119 [PMID: 22704061 DOI: 
10.1016/j.oraloncology.2012.05.013]

74 Tao X, Hill KS, Gaziova I, Sastry SK, Qui S, Szaniszlo P, Fennewald S, Resto VA, Elferink LA. Silencing Met receptor 
tyrosine kinase signaling decreased oral tumor growth and increased survival of nude mice. Oral Oncol  2014; 50: 104-112 
[PMID: 24268630 DOI: 10.1016/j.oraloncology.2013.10.014]

75 Shin JH, Yoon HJ, Kim SM, Lee JH, Myoung H. Analyzing the factors that influence occult metastasis in oral tongue 
cancer. J Korean Assoc Oral Maxillofac Surg  2020; 46: 99-107 [PMID: 32364349 DOI: 10.5125/jkaoms.2020.46.2.99]

76 Petri S, Körner S, Kiaei M. Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic 
Target in ALS. Neurol Res Int  2012; 2012: 878030 [PMID: 23050144 DOI: 10.1155/2012/878030]

77 Pan ST, Qin Y, Zhou ZW, He ZX, Zhang X, Yang T, Yang YX, Wang D, Zhou SF, Qiu JX. Plumbagin suppresses 
epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue 
squamous cell carcinoma cells. Drug Des Devel Ther  2015; 9: 5511-5551 [PMID: 26491260 DOI: 
10.2147/DDDT.S89621]

78 Ma S, Meng Z, Chen R, Guan KL. The Hippo Pathway: Biology and Pathophysiology. Annu Rev Biochem  2019; 88: 577-
604 [PMID: 30566373 DOI: 10.1146/annurev-biochem-013118-111829]

79 Chen JY, Zhang YG, Du JD. HIF-1α restricts proliferation and apoptosis of Tca8113 cells through up regulation of Hippo 
signaling pathway under hypoxic conditions. Eur Rev Med Pharmacol Sci 2018; 22: 6832-6837 [PMID: 30402847 DOI: 
10.26355/eurrev_201810_16151]

80 Li A, Gu K, Wang Q, Chen X, Fu X, Wang Y, Wen Y. Epigallocatechin-3-gallate affects the proliferation, apoptosis, 
migration and invasion of tongue squamous cell carcinoma through the hippo-TAZ signaling pathway. Int J Mol Med 
2018; 42: 2615-2627 [PMID: 30106116 DOI: 10.3892/ijmm.2018.3818]

81 Rabinowits G, Haddad RI. Overcoming resistance to EGFR inhibitor in head and neck cancer: a review of the literature. 
Oral Oncol  2012; 48: 1085-1089 [PMID: 22840785 DOI: 10.1016/j.oraloncology.2012.06.016]

82 Rajaram P, Chandra P, Ticku S, Pallavi BK, Rudresh KB, Mansabdar P. Epidermal growth factor receptor: Role in 
human cancer. Indian J Dent Res  2017; 28: 687-694 [PMID: 29256471 DOI: 10.4103/ijdr.IJDR_534_16]

83 Xu Q, Zhang Q, Ishida Y, Hajjar S, Tang X, Shi H, Dang CV, Le AD. EGF induces epithelial-mesenchymal transition and 
cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect. Oncotarget  2017; 8: 9557-9571 
[PMID: 27926487 DOI: 10.18632/oncotarget.13771]

84 Klein R. Eph/ephrin signalling during development. Development  2012; 139: 4105-4109 [PMID: 23093422 DOI: 
10.1242/dev.074997]

85 Chen YL, Yen YC, Jang CW, Wang SH, Huang HT, Chen CH, Hsiao JR, Chang JY, Chen YW. Ephrin A4-ephrin 
receptor A10 signaling promotes cell migration and spheroid formation by upregulating NANOG expression in oral 
squamous cell carcinoma cells. Sci Rep  2021; 11: 644 [PMID: 33436772 DOI: 10.1038/s41598-020-80060-3]

86 Huang SH, O'Sullivan B. Overview of the 8th Edition TNM Classification for Head and Neck Cancer. Curr Treat Options 
Oncol  2017; 18: 40 [PMID: 28555375 DOI: 10.1007/s11864-017-0484-y]

87 Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin 
Oncol  2019; 16: 669-683 [PMID: 31189965 DOI: 10.1038/s41571-019-0227-z]

88 Gharat SA, Momin M, Bhavsar C. Oral Squamous Cell Carcinoma: Current Treatment Strategies and Nanotechnology-
Based Approaches for Prevention and Therapy. Crit Rev Ther Drug Carrier Syst  2016; 33: 363-400 [PMID: 27910740 
DOI: 10.1615/CritRevTherDrugCarrierSyst.2016016272]

89 Girolami I, Pantanowitz L, Munari E, Martini M, Nocini R, Bisi N, Molteni G, Marchioni D, Ghimenton C, Brunelli M, 
Eccher A. Prevalence of PD-L1 expression in head and neck squamous precancerous lesions: a systematic review and 
meta-analysis. Head Neck  2020; 42: 3018-3030 [PMID: 32567746 DOI: 10.1002/hed.26339]

90 Nocini R, Vianini M, Girolami I, Calabrese L, Scarpa A, Martini M, Morbini P, Marletta S, Brunelli M, Molteni G, 
Parwani A, Pantanowitz L, Eccher A. PD-L1 in oral squamous cell carcinoma: A key biomarker from the laboratory to the 
bedside. Clin Exp Dent Res  2022; 8: 690-698 [PMID: 35593124 DOI: 10.1002/cre2.590]

91 Marletta S, Fusco N, Munari E, Luchini C, Cimadamore A, Brunelli M, Querzoli G, Martini M, Vigliar E, Colombari R, 
Girolami I, Pagni F, Eccher A. Atlas of PD-L1 for Pathologists: Indications, Scores, Diagnostic Platforms and Reporting 
Systems. J Pers Med  2022; 12 [PMID: 35887569 DOI: 10.3390/jpm12071073]
Paolino G, Pantanowitz L, Barresi V, Pagni F, Munari E, Moretta L, Brunelli M, Bariani E, Vigliar E, Pisapia P, 
Malapelle U, Troncone G, Girolami I, Eccher A. PD-L1 evaluation in head and neck squamous cell carcinoma: Insights 

92

http://www.ncbi.nlm.nih.gov/pubmed/29146722
https://dx.doi.org/10.1158/1078-0432.CCR-17-1366
http://www.ncbi.nlm.nih.gov/pubmed/30404566
https://dx.doi.org/10.1080/15384047.2018.1529119
https://dx.doi.org/10.3889/oamjms.2022.10200
http://www.ncbi.nlm.nih.gov/pubmed/30360560
https://dx.doi.org/10.3390/ijms19113295
http://www.ncbi.nlm.nih.gov/pubmed/24835851
https://dx.doi.org/10.1016/j.oraloncology.2014.04.004
http://www.ncbi.nlm.nih.gov/pubmed/16867875
https://dx.doi.org/10.1016/j.humpath.2006.03.020
http://www.ncbi.nlm.nih.gov/pubmed/20848408
https://dx.doi.org/10.1002/hed.21383
http://www.ncbi.nlm.nih.gov/pubmed/22704061
https://dx.doi.org/10.1016/j.oraloncology.2012.05.013
http://www.ncbi.nlm.nih.gov/pubmed/24268630
https://dx.doi.org/10.1016/j.oraloncology.2013.10.014
http://www.ncbi.nlm.nih.gov/pubmed/32364349
https://dx.doi.org/10.5125/jkaoms.2020.46.2.99
http://www.ncbi.nlm.nih.gov/pubmed/23050144
https://dx.doi.org/10.1155/2012/878030
http://www.ncbi.nlm.nih.gov/pubmed/26491260
https://dx.doi.org/10.2147/DDDT.S89621
http://www.ncbi.nlm.nih.gov/pubmed/30566373
https://dx.doi.org/10.1146/annurev-biochem-013118-111829
http://www.ncbi.nlm.nih.gov/pubmed/30402847
https://dx.doi.org/10.26355/eurrev_201810_16151
http://www.ncbi.nlm.nih.gov/pubmed/30106116
https://dx.doi.org/10.3892/ijmm.2018.3818
http://www.ncbi.nlm.nih.gov/pubmed/22840785
https://dx.doi.org/10.1016/j.oraloncology.2012.06.016
http://www.ncbi.nlm.nih.gov/pubmed/29256471
https://dx.doi.org/10.4103/ijdr.IJDR_534_16
http://www.ncbi.nlm.nih.gov/pubmed/27926487
https://dx.doi.org/10.18632/oncotarget.13771
http://www.ncbi.nlm.nih.gov/pubmed/23093422
https://dx.doi.org/10.1242/dev.074997
http://www.ncbi.nlm.nih.gov/pubmed/33436772
https://dx.doi.org/10.1038/s41598-020-80060-3
http://www.ncbi.nlm.nih.gov/pubmed/28555375
https://dx.doi.org/10.1007/s11864-017-0484-y
http://www.ncbi.nlm.nih.gov/pubmed/31189965
https://dx.doi.org/10.1038/s41571-019-0227-z
http://www.ncbi.nlm.nih.gov/pubmed/27910740
https://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016016272
http://www.ncbi.nlm.nih.gov/pubmed/32567746
https://dx.doi.org/10.1002/hed.26339
http://www.ncbi.nlm.nih.gov/pubmed/35593124
https://dx.doi.org/10.1002/cre2.590
http://www.ncbi.nlm.nih.gov/pubmed/35887569
https://dx.doi.org/10.3390/jpm12071073


Joshi P et al. Cell signaling in CSCs of tongue carcinoma

WJSC https://www.wjgnet.com 452 May 26, 2023 Volume 15 Issue 5

regarding specimens, heterogeneity and therapy. Pathol Res Pract  2021; 226: 153605 [PMID: 34530257 DOI: 
10.1016/j.prp.2021.153605]

93 Huang X, Zhang J, Li X, Huang H, Liu Y, Yu M, Zhang Y, Wang H. Rescue of iCIKs transfer from PD-1/PD-L1 immune 
inhibition in patients with resectable tongue squamous cell carcinoma (TSCC). Int Immunopharmacol  2018; 59: 127-133 
[PMID: 29653410 DOI: 10.1016/j.intimp.2018.04.011]

http://www.ncbi.nlm.nih.gov/pubmed/34530257
https://dx.doi.org/10.1016/j.prp.2021.153605
http://www.ncbi.nlm.nih.gov/pubmed/29653410
https://dx.doi.org/10.1016/j.intimp.2018.04.011


WJSC https://www.wjgnet.com 453 May 26, 2023 Volume 15 Issue 5

World Journal of 

Stem CellsW J S C
Submit a Manuscript: https://www.f6publishing.com World J Stem Cells 2023 May 26; 15(5): 453-465

DOI: 10.4252/wjsc.v15.i5.453 ISSN 1948-0210 (online)

MINIREVIEWS

Human pluripotent stem cell-derived extracellular vesicles: From 
now to the future

Bruno Moises de Matos, Marco Augusto Stimamiglio, Alejandro Correa, Anny Waloski Robert

Specialty type: Cell and tissue 
engineering

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B, B 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Chen LJ, China; Gao 
YT, China; Li SC, United States

Received: December 26, 2022 
Peer-review started: December 26, 
2022 
First decision: January 31, 2023 
Revised: February 14, 2023 
Accepted: April 12, 2023 
Article in press: April 12, 2023 
Published online: May 26, 2023

Bruno Moises de Matos, Marco Augusto Stimamiglio, Alejandro Correa, Anny Waloski Robert, 
Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, 
Brazil

Corresponding author: Anny Waloski Robert, PhD, Technician, Stem Cells Basic Biology 
Laboratory, Carlos Chagas Institute, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 
81350010, Paraná, Brazil. anny.robert@fiocruz.br

Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived 
bioactive molecules in a lipid bilayer and serve as intercellular communication 
tools. Accordingly, in various biological contexts, EVs are reported to engage in 
immune modulation, senescence, and cell proliferation and differentiation. 
Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. 
Little has been studied regarding EVs derived from human pluripotent stem cells 
(hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue 
regeneration and unlimited proliferative ability. In this review article, we provide 
an overview of studies using hPSC-EVs, focusing on identifying the conditions in 
which the cells are cultivated for the isolation of EVs, how they are characterized, 
and applications already demonstrated. The topics reported in this article 
highlight the incipient status of the studies in the field and the significance of 
hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.

Key Words: Pluripotent stem cells; Extracellular vesicles; Exosome; Cell-free therapy
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Core Tip: The research on extracellular vesicles (EVs) derived from different cell types, 
such as adult stem cells, has shown potential in the treatment of various pathologies. 
However, little has been explored regarding EVs derived from human pluripotent stem 
cells (hPSC-EVs). In this review, we provide an overview of studies carried out on these 
EVs, highlighting methodologies used for the culture of hPSCs for isolating EVs, their 
characteristics, and potential applications. We note the potential of hPSC-EVs as future 
acellular therapies. However, studies are in the infancy, and more research is needed to 
confirm their benefits.
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INTRODUCTION
Extracellular vesicles (EVs) are nanometric particles that are enclosed by a lipid bilayer and released by 
all cell types. They lack a functional nucleus and are therefore unable to replicate[1]. EVs are composed 
of bioactive factors such as lipids, proteins, and nucleic acids, including mRNAs and non-coding RNAs
[2]. EV is an umbrella term that encompasses a heterogeneous population of membrane vesicles 
generated through a variety of mechanisms. The two major EV subpopulations include microvesicles 
(MVs) and exosomes (EXOs). EXOs are intraluminal vesicles of endosomal origin released when 
multivesicular bodies fuse with the plasma membrane, whereas MVs or ectosomes are generated from 
the outer budding of the plasma membrane[3]. Due to their distinct biogenesis, MVs are generally larger 
(up to 1000 nm in diameter) than EXOs (less than 200 nm). However, these vesicle populations overlap 
not only in terms of size but also in composition[4]. Recently, other nomenclatures were described in the 
“Minimal information for studies of extracellular vesicles 2018” guidelines (MISEV2018) based on the 
physical characteristics of EVs, for example, size (< 200 nm, small EVs; > 200 nm, medium or large EVs) 
or density (low, middle, or high)[1].

Potential uses of EVs, such as for the diagnosis and treatment of pathologies or as potential drug 
carriers, have been investigated. In the field of regenerative medicine, the secretomes of adult stem cells, 
primarily mesenchymal stem/stromal cells (MSCs), including their EVs, are of great interest as they 
have been shown to act mainly in a paracrine manner rather than their potential for differentiation[5]. 
An interesting list of advantages and disadvantages of the use of EVs instead of stem cells has been 
presented by Öztürk et al[6]. Among the advantages of using EVs cited by them and others are low 
immunogenicity and toxicity; minimal risk of malign transformation; minimal risk of getting trapped in 
the lung or causing vasculature obstruction; avoidance of contamination with undesired cell types; 
avoidance of uncontrolled cell division; the ability to manipulate EVs in order to obtain potential 
improvements; optimization of MSC culture to obtain a higher amount of EVs; and their ability to cross 
the blood-brain barrier, among others[4,6]. In addition, EVs mimic the beneficial effects of MSCs in cell 
therapies in a wide range of animal models for different diseases[7-9].

MSC-derived EV (MSC-EV) has been extensively studied and has demonstrated several promising 
effects, as reviewed by Gowen et al[10], Tieu et al[11], Fuloria et al[12], Kou et al[13], and Yudintceva et al
[14]. However, despite the high potential of MSC-EVs, several factors limit their use. Recently some 
reviews highlighted the difficulty of establishing criteria to define the specific characteristics of MSC-EV 
and discussed the great variation in the MSC-EV preparations[15,16]. Disadvantages of MSCs as a 
source for EVs include the variability between cells derived from different tissues, the variability 
between different donors, their limited ability to proliferate, the fact that they enter senescence, and 
genomic instability after a few passages[17]. This raises the question of whether pluripotent stem cell 
(PSC) derived EVs have a similar to or better therapeutic potential than adult stem cell-derived EVs.

In this context, our objective is to show, using a non-systematic search, studies that use or charac-
terize EVs derived from human PSC (hPSC-EVs) to understand the advances in the area. We also aim to 
identify the conditions in which the cells are cultivated for the isolation of EVs, how these are charac-
terized, and any demonstrated applications (in vivo or in vitro).

HPSC-EVS
Overview of hPSCs
hPSCs are characterized by unlimited proliferation and the potential to generate specialized cell lineages
[18]. Human embryonic stem cells (hESC) were first isolated from human blastocysts in 1998 by 
Thomson et al[19], and to date, hundreds of hESC lineages have been established worldwide. hESC-
based therapeutic technologies have applications in many diseases and conditions, such as spinal cord 
injuries, age-related tissue degeneration, and diabetes[20]. However, ethical issues related to using cells 
from embryos have hindered the application of hESCs in research and treatment, leading to the 
development of the induced PSC (iPSC) technology by Takahashi and Yamanaka[21] and Takahashi et al
[22]. Since the generation of the first iPSC, many research groups have developed human iPSC (hiPSC) 
lineages reprogrammed from different adult cells, and obtained lineages very similar to hESC in terms 
of morphology and differentiation potential[23]. For more information about hPSCs, see Karagiannis et 
al[24], Liu et al[25], and Yamanaka[26].
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Especially after the discovery of hiPSCs, pluripotent cells represented a promising alternative for 
regenerative medicine, transplants, disease modeling, and many other research applications[27-29]. The 
possibility of generating pluripotent cells from patients and, from them, differentiated cells for tissue 
repair may mitigate common transplant issues, such as immunologic rejection. Nevertheless, the 
immunogenicity of pluripotent cells remains controversial[30], and the potential for tumorigenesis 
hinders the wide application of these cells in clinics. The risks of contaminating the differentiated cell 
populations with remaining pluripotent or proliferative cells, as well as the transmission of active 
pluripotency transcription factors or the acquisition of mutations by the pluripotent cells during in vitro 
culture[26,31], limit the acceptance of hPSC-based therapies. Therefore, cell-free therapeutic approaches, 
including EVs, offer promising possibilities for applying hPSC-derived products[32].

It seems that the role of the secretomes of these cells has only recently begun to be investigated, 
possibly due to the difficulties still encountered in using hPSCs in the clinic. Some interesting studies 
show that EVs from ESCs could help with embryo implantation[33] and maintaining ESC stemness[34], 
while others have investigated the biogenesis of ESC-EVs[35,36], although they used murine PSCs. We 
will focus this review on studies with hPSCs due to their potential clinical applications.

HPSC-EVs: Isolation and characterization methodologies
The first investigation on the isolation of EVs from hPSC dates from 2015. In this initial approach, EVs 
were isolated from hiPSC cultured in Essential 8™ medium using differential centrifugation (DF)/
ultracentrifugation (UC). It was shown that the hiPSC-derived EVs (hiPSC-EV) contain a variety of 
microRNAs (miRNAs) (such as miR-382, miR-611, and others) related to pathways such as focal 
adhesion, Wnt, PI3K-Akt, and MAPK signaling, as well as proteins related to processes involved in 
signal transduction, receptor binding, and others. In addition, the EVs positively affected the 
metabolism, proliferation, apoptosis rate, and differentiation capacity of cardiac MSCs. Better results 
were obtained when cells were exposed for only 22 h to EVs[37]. This initial attempt demonstrated how 
hPSC-EVs could be beneficial and of interest for future acellular therapy applications.

Despite the potential of hPSC-EVs, we observed that the number of publications in this area is still 
low, and most of the existing publications date from the last five years (Figure 1A, Table 1). Some 
studies evaluate EVs that were isolated during the differentiation process or from cells that differen-
tiated from PSCs, such as hiPSC-derived keratinocytes[38]; hPSC-derived cardiac progenitors or 
cardiomyocytes[39-41]; hPSC-derived MSCs[42-44]; hiPSC-derived neurons[45-47]; and hESC-derived 
chondroprogenitor cells[48]. However, our review explores studies that isolated EVs from undifferen-
tiated hPSCs.

Using a non-systematic search, we found 36 studies that isolate hPSC-EVs mainly from the hiPSC 
lineages (Figure 1B). Table 1 summarizes these studies, highlighting the cell culture medium used to 
culture the PSC, time of conditioned medium collection, EV isolation method, and EV mean size. The 
most common culture media were commercial, with defined components (Figure 1D). The two most 
common media used were mTeSR™1 (StemCell Technologies) and Essential 8™ medium (Thermo 
Fisher) (Table 1). A study published by Luo et al[49] aimed to optimize culture conditions for isolation of 
hiPSC-EVs. Using DMEM with different concentrations of EV-depleted KnockOut™ Serum Repla-
cement (ED-KSR), they observed that cells remained viable at a 0.5% ED-KSR concentration and were 
able to isolate EVs from PSCs cultured in this condition efficiently. However, after 5 d of culture, there 
was a reduction in the expression of some pluripotency markers. Thus, although it may be cheaper than 
commercial media, it is necessary to consider the additional step of centrifugation of the KSR to remove 
particles, as well as the effects of the change in pluripotency-related parameters on the composition and 
potential of the EVs.

The biggest variations in EV isolation methods relate to the collection time of the conditioned 
medium: Many studies do not state the conditioning time. In most studies, however, the EVs were 
isolated after 24 h of cell culture or every 24 h for 3-5 consecutive days (Table 1), avoiding exceeding the 
80%-90% cell confluence in the cell cultures. This collection time is possibly related to the nature of 
PSCs, as the culture medium must be changed daily, and cells must not reach 100% confluence to 
guarantee their viability and pluripotency.

Other relevant aspects of EVs are their size, morphology, and estimated particle concentrations. Most 
studies presented the information listed in MISEV2018, including positive and negative protein markers 
in EVs, usually using the western blot technique (31/36 articles) and performing a single EV analysis 
mainly using transmission electron microscopy (31/36 articles) to verify EV morphology and 
nanoparticle tracking analysis (20/36 articles) to verify their mean size and concentration (Figure 1C). 
The greatest number of studies used small EVs/EXOs, with sizes up to 200 nm (small EVs) (Table 1).

The most common method for hPSC-EV isolation is DF (here defined as the initial centrifugations to 
remove cellular debris and apoptotic bodies) followed by UC (Table 1). Although this is the most 
common method used, it is unsuitable for isolating EVs from large-scale experiments and clinical trials. 
Using a large-scale 2D culture, Andrade et al[69] isolated hPSC-EVs using tangential flow filtration 
(TFF) with or without subsequent UC (TFF + UC). The isolated EVs presented a size of approximately 
100 nm, regardless of whether UC had been performed, with similar particle concentration, although 
TFF + UC resulted in a smaller number of proteins. The effect of different culture conditions (hypoxia - 
1% O2, physiological hypoxia - 5% O2, and normoxia) on the therapeutic potential of hPSC-EVs was also 
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Table 1 Human pluripotent stem cell-derived extracellular vesicles: Methods of isolation and vesicle size

Ref. Culture medium EV collection time EV isolation method EV mean size 
(nm)

Bobis-Wozowicz et 
al[37], 2015

Essential 8™ medium NI (cells in 70%-90% 
confluency)

DC + UC 146

Ju et al[50], 2017 PSCeasy medium (Cellapy) 24 h DC + UC 122, 132

Zhou et al[51], 2017 mTeSR™-1 medium NI (cells in 60%-90% 
confluency)

DC + 0.22 μm filter + UC 101

Ding et al[52], 2018 mTeSR™-1 medium 48 h DC + UC 103.1

Kaur et al[53], 2018 Essential 8™ Flex medium 48 h DC + UC or miR-CURY™ Exosome Isolation 
Kit (Exiqon A/S)

100-200

Kobayashi et al[54], 
2018

DMEM-F12 + NEAA, 200 mM L-
gln, KSR, 0.1 M BME

2-3 d before passage MagCapture Exosome Isolation Kit PS 
(Wako)

100

Oh et al[55], 2018 Essential 8 medium Daily, from day 2 to 
day 5

0.45 μm filter + ExoQuick-TC kit 85.8

Peng et al[56], 2018 mTeSR™-1 medium 24 h (cells in about 80% 
confluency)

MV: DC + 16500 g, 1 h; EXO: DC + 120000 g, 2 
h

MV = 200-600; 
EXO = 40-80

Saito et al[57], 2018 mTeSR™-1 medium NI DC + concentration in 100-KDa filter + 
MagCapture™ Exosome Isolation Kit PS

179

Chen et al[58], 2019 mTeSR™-1 medium NI DC + UC 50-150

Liu et al[59], 2019 Essential 8™ medium Daily, for 3-5 d DC + concentration in 100-kDa filter + SEC 150

Marzano et al[60], 
2019

mTeSR™-1 medium Daily, for 4 d 0.22 μm filter + concentration in 100-kDa filter 
+ Total Exosome Isolation Reagent (Thermo 
Fisher) or DC + UC

about 240

Povero et al[61], 
2019

NI 24-48 h DC + UC 300-400

Sun et al[62], 2019 mTeSR™-1 medium 48 h DC + concentration in 100-kDa filter + 
Exosome Isolation Kit (PureExo) + UC + 0.22 
μm filter

70-100 (cell-
dependent)

Zhu et al[63], 2019 mTeSR™-1 medium 48h (cells 80%-90% 
confluency)

DC + 0.22 μm filter + UC 70.2

Collino et al[64], 
2020

mTeSR™-1 medium 24 h DC + UC 119

Hu et al[65], 2021 ncEpic hPSC medium NI DC + 0.22 μm filter + UC 72.4 ± 21.3

Kurtzwald-Josefson 
et al[66], 2020

DMEM/F12 Ham 1:1 + 20% KSR, 
1% NEAA, 1% L-gln, 0.2% BME, 4 
ng/mL rhFGF basic

24 h (cells in about 80% 
confluency)

Total exosome isolation reagent (Thermo 
Fisher Scientific)

115 ± 7

Liu et al[67], 2020 mTeSR™-1 medium NI DC + UC 50-75

Wang et al[68], 2020 PGM1 medium NI DC + 0.22 μm filter + UC 30-120

Andrade et al[69], 
2021

mTeSR™-1 mediuma Daily, for 4-5 days TFF with or without subsequent UC 103-109

Ashok et al[39], 2021 StemMACS medium with 10 μM 
ROCK inhibitor and 0.2% Pluronic 
F68

Days 3, 4, and 5 prior to 
differentiation

DC + 0.22 μm filter + UC + SG 50

Hu et al[65], 2021 ncEpic hPSC medium NI DC + 0.22 μm filter + UC -100

Karnas et al[70], 
2021

Essential 8™ medium NI DC + UC 215.7

Ke et al[71], 2021 Exo-depleted FBS 48 h MV: DC + 16500 g, 60 min; Exo: DC + 120000 
g, 120 min

MV = 200-600; Exo 
= 40-80

Luo et al[49], 2021 DMEM/F12 + KSR (0.5%, 2.5%, 5%, 
or 20%)

Daily, for 5 d DC + 0.45 μm filter + concentration in 10-kDa 
filter + 0.22 μm filter + UC or ExoQuick-TC 
kit (SystemBioscience)

187.8, 168.2

Saito et al[46], 2021 StemFit AK-03N medium 
(Ajinomoto)

NI 15000 × g, 30 min + 0.22 μm filter + UC 70
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Wang et al[72], 2021 mTeSR™-1 medium NI DC + UC 120-140

Xia et al[73], 2021 Nuwacell hiPSC/hESCs medium 24 h DC + 0.22 μm filter + UC 50-150

Bi et al[74], 2022 ncTarget medium (Nuwacell. Ltd, 
China)

24 h (cells in about 80% 
confluency)

DC + UC + 0.22 μm filter + UC hESC = 133.1; 
hIPSC = 157.7

Gu et al[75], 2022 mTeSR™-1 medium NI 0.45 μm filter + concentration in 100-kDa filter 
+ GC + 0.22 μm filter + UC

143.5

Gupta et al[76], 2022 StemFlex™ medium 48 h DC + one-step sucrose cushion UC 123.6 ± 60

Hsueh et al[77], 2023 StemFlex™ medium 48 h DC + UC 136.8

Li et al[78], 2023 ncEpic hPSC medium NI DC + UC 74.70 ± 20.77

Li et al[79], 2022 mTeSR™-1 medium NI DC + 0.22 μm filter + UC 50.75-105.7

Pan et al[80], 2022 mTeSR™-1 medium 24 h (cells in about 80% 
confluency)

DC + UC 142.2 ± 64.1

DC: Differential centrifugation; EXO: Exosome; FBS: Fetal bovine serum; MV: Microvesicle; NI: Not informed; SEC: Size exclusion chromatography; SG: 
Sucrose gradient; TFF: Tangential flow filtration; UC: Ultracentrifugation; hPSC: Human pluripotent stem cell; hESC: Human embryonic stem cells; hIPSC: 
Human induced pluripotent stem cell; KSR: KnockOut™ Serum Replacement.

Figure 1 Overview of studies on human pluripotent stem cell-derived extracellular vesicles published between 2012 and 2022. A: Timeline 
of published articles on human pluripotent stem cell-derived extracellular vesicles (hPSC-EVs). 1Two articles were published online in 2022 but published in print in 
2023; B: Analysis of the percentage of articles that use human embryonic stem cells, human induced pluripotent stem cell, or both cell types to isolate EVs; C: 
Methods used in the studies to characterize hPSC-EVs. The graphic depicts the number of articles using certain techniques/total number of articles included in the 
analysis; D: Analysis of media used to culture hPSC to isolate the EVs. AFM: Atomic force microscopy; DLS: Dynamic light scattering; FC: Flow cytometry; NTA: 
Nanoparticle tracking analysis; qPCR: Quantitative polymerase chain reaction; SRM: Super-resolution microscopy; TEM: Transmission electron microscopy; TRPS: 
Tunable resistive pulse sensing; WB: Western blot; hESC: Human embryonic stem cells; hIPSC: Human induced pluripotent stem cell.
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investigated. The results showed that EVs derived from hPSC cultured in 1% O2 (hypoxia) had greater 
angiogenic potential than those derived under other conditions and that better results were achieved 
when obtaining EVs using TFF[69].

Another highly discussed topic about PSCs is the possible formation of teratomas, as well as the 
biodistribution of these cells when applied in in vivo models. These concerns also extend to PSC-EVs. To 
clarify these points, Gu et al[75] evaluated the safety and biodistribution of hiPSC-EVs. They used 
several approaches to show that PSC-EVs are safe, have no adverse effects on cells (e.g., do not cause 
hemolysis), are not genotoxic, and can be administered by different routes (nasal, intramuscular, or 
intravenous) without generating adverse effects (e.g., inflammation at the site or pathological changes in 
the organs of rats).

Potential therapeutic applications of hPSC-EVs
Although few investigations have been carried out with hPSC-EVs, we notice that almost all of them 
have already applied hPSC-EVs to different disease models, both in vitro and in vivo. PSC-EVs have been 
described as having: Protective effects in in vitro and in vivo models of ischemia-reperfusion kidney 
injury[64]; neural protective abilities[60]; the capacity to modulate neuroinflammation and protect 
against ischemic stroke through Treg cell expansion[73]; antifibrotic effects in vivo and in in vivo models 
of liver injury[61,72]; and reduced cartilage degradation in an osteoarthritis model[77]. They have 
shown improvements in wound closure, angiogenesis, and increased nerve fiber density in a wound-
healing diabetic mouse model[54,79]; and improved recovery of ovarian function in a premature 
ovarian failure mouse model[67]. EVs were also associated with acellular nerve grafts, demonstrating 
their potential to repair peripheral nerve defects[80].

It was also demonstrated that MVs, but not EXOs, dedifferentiated Müller cells into retinal progenitor 
cells in vitro[71]. Other studies showed the ability of PSC-EVs to promote regeneration of diseased or 
damaged retinas[56] and to accelerate corneal epithelium defect healing in vivo[68]. Other potential uses 
cited for PSC-EVs are: In antitumoral activity[51,63]; in angiogenesis stimulation[69]; as a gene delivery 
vector[50]; to increase the functional properties of cord blood-derived hematopoietic stem and 
progenitor cells[70]; and to improve the number of beating EBs depending on the hiPSC origin[66].

One noteworthy effect shown in some studies is the capacity of PSC-EVs to “rejuvenate” different cell 
types, such as senescent endothelial cells[52,58], senescent human dermal fibroblasts[55], senescent 
chondrocytes[77], and others. Considering this potential, the hPSC-EVs, hESC-EVs, and hiPSC-EVs were 
investigated as therapeutic tools for age-related diseases. Regarding neurological diseases, the hPSC-
EVs showed potential in recovery of senescent hippocampal neural stem cells in rats with vascular 
dementia - partially through the transfer of miRNAs that inhibit mTORC1 activation - resulting in an 
improvement in disease status (e.g., reverse cognitive impairment)[81]. Furthermore, using mice of 
varying ages, hPSC-EVs were found to rejuvenate hippocampal neural stem cells partly through the 
transfer of SMAD proteins that activate myelin transcription factor 1 (MYT1), which is reduced in 
senescent cells, and activates a signaling cascade in the MYT1-Egln3-Sirt1 axis[81].

In an ischemic stroke model, hPSC-EVs reduced the expression of inflammatory cytokines and 
leukocyte infiltration, and increased the number of regulatory T cells and other immunomodulatory 
effects that alleviate neurological deficits[73]. They also reduced blood-brain barrier damage in aged 
stroke mice through blood-brain barrier rejuvenation, partially through the transfer of AKT1 and CALM 
from EVs to endothelial cells leading to activation of the endothelial nitric oxide synthase-Sirt1 axis[78]. 
Therefore, hPSC-EVs could be a promising cell-free therapy to treat age-related diseases associated with 
cellular senescence.

In order to evaluate the benefit of hPSC-EVs compared to other EVs, one interesting study 
demonstrated that both hiPSC-EVs and hMSC-EVs, isolated through size exclusion chromatography 
(Table 1), could improve the proliferation of senescent MSCs and alleviate cellular aging in a replicative 
aging model, possibly modulating reactive oxygen species production with peroxiredoxins presented in 
EVs. However, despite the similar effects, EVs derived from iPSCs enter target cells more efficiently, 
and the production of hiPSC-EVs was about 16-fold higher than that of MSC-EVs (using the same 
culture medium)[59].

hPSC-EV composition
Even though many articles described the effects of hPSC-EVs, few made deeper characterizations of, for 
example, the protein and miRNA content of these EVs. Some performed proteomic analysis to help 
explain some of the effects[59] or as a control (time 0) to study the differentiation process[39,46]. In one 
interesting approach using high-density lectin microarray, Saito et al[57] demonstrated that rBC2LCN, a 
specific lectin for hPSCs, bound to hiPSC-derived EVs but not to adipose-derived stem cell-, hemodi-
afiltration-, or chondrocyte-derived EVs, which suggests a particular glycan-signature for hiPSC-EVs, 
resembling the glycome signature of the cell surface.

One recent study that provided a detailed description of the contents of hPSC-EVs was conducted by 
Bi et al[74]. The proteomics of hESC-, hiPSC-, and hMSC-EXOs showed that the main enriched proteins 
were related to distinct pathways between vesicles of pluripotent and multipotent cells. In hPSCs, EXO 
content was more focused on development, metabolism, and anti-aging properties, and in hMSCs, it 
was related to immune regulation. Another study in 2022 also indicated that hMSC-EV content is 
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strongly related to immune regulation while hPSC-EV content does not present many of the proteins 
related to this function[76]. Actually, 79 proteins were found to be shared between hMSC- and hPSC-
EVs, yet the main biological processes related to them were DNA regulation, signal transduction and 
cell communication[76]. Liu et al[59] also compared the protein content of hiPSC-EVs and hMSC-EVs 
and described more than 1100 proteins shared between the different EVs, allowing to identify proteins 
that could be responsible for the anti-senescent effect observed in the study.

Considering the protein content of hESCs and hiPSC-EXOs, Bi et al[74] suggested that hESC-EXOs are 
more prone to regulate development and pluripotency pathways, and hiPSC-EXOs have a stronger 
correlation with metabolism. Regarding the most enriched miRNAs for both hPSC-EVs, it was shown 
that they were related to cell cycle and metabolism regulation. Interestingly, miRNAs found in both 
hESC-EXOs and hiPSC-EXOs were involved in cell differentiation, development, and cell cycle, even 
though the hiPSC-EXO set of miRNAs seemed to play a less significant role in these functions than the 
hESC-EXO set[74].

In order to explore whether apoptosis-linked gene 2-interacting protein X (ALIX), a protein present in 
the endosomal sorting complex required for the transport and biogenesis of EXOs, could regulate the 
protein content of EV, Sun et al[62] isolated EVs from hiPSCs in which ALIX was overexpressed (using 
lentiviral transduction) or were knocked out (using CRISP-Cas9 system). EVs isolated from these cell 
lineages were of similar size, although EVs generated from knockout cells were slightly larger. The 
evaluation of protein content in EVs showed that those derived from knockout cells had fewer proteins, 
while EVs from overexpressing cells presented a higher number of proteins. These differences could be 
related to the differences demonstrated in functional assays, e.g., cell viability, apoptosis inhibition, and 
formation of capillary-like structures, where EVs from overexpressing cells had better effects. So, EVs 
with different protein profiles could have different therapeutic applications.

CONCLUSION
Although hPSC cultivation has been carried out for some time, the requirements for in vitro culture of 
these cells are very specific, as many factors are necessary to maintain them in their undifferentiated 
state. This, together with the cost, could be one of the reasons why secretomes and isolation of hPSC-
EVs have not been extensively studied so far. Commercial media are now defined with a few 
components that are no longer as expensive as before, which may have contributed to the increase in 
publications in recent years.

An overview of the hPSC-EV studies is shown in Figure 2, which illustrates the potential use of these 
EVs for regenerative medicine. Regarding EV characterization, we observed in the publications that 
hPSC-EVs follow the basic requirements described in MISEV2018. However, despite the recent increase 
in research in this area, further characterization of the content of these EVs needs to be carried out. In 
addition, studies with modified cells aimed to enrich the content of EVs with some specific protein or 
miRNA may be of great interest. One interesting approach requiring more extensive discussion is the 
possible use of hPSC-EVs in reprogramming adult cells into PSCs. A recent study used EVs derived 
from ESCs undergoing cardiac differentiation to transdifferentiate fibroblasts to cardiomyocyte-like cells 
with relatively high efficiency[82].

Our review shows that hPSC-EVs have therapeutic potential, although no publications demonstrate 
that they are effectively better than other EVs, such as hMSC-EVs. hPSC can be obtained from different 
sources (embryonic or reprogrammed from adult cells) and, despite showing some heterogeneity 
between lineages, they are highly similar in their main characteristics: They are pluripotent and with a 
high proliferative capacity. The latter makes it possible to obtain a large number of EVs. It should be 
noted that PSC-EV derived from different hPSC lineages may show some variability in their content. 
But considering the fact that we can isolate EVs from a single source (a homogenous culture), this can 
possibly bring less variability between batches compared to other common EV sources. However, 
studies in this area are still needed as current results are highly variable. Alternatives to EVs include the 
use of cell-engineered nanovesicles generated by serial extrusion of hiPSCs, as described by Lee et al
[83], which presented similar results to PSC-EVs, but with higher production yield. However, more 
studies are needed to verify the viability of this method for future applications. Thus, challenges that 
remain are the large-scale production of EVs, which in the case of hPSC cultivation can be expensive, 
and the investment in efficient methodologies for EV isolation that could be used in good manufac-
turing practices for future acellular therapies.
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Figure 2 Diagram of pluripotent stem cell-derived extracellular vesicle isolation, its most common characterizations, and the applications 
described or indicated for these extracellular vesicles. EV: Extracellular vesicle; miRNA: MicroRNA; lncRNA: Long noncoding RNA; PSC: Pluripotent stem 
cell. The images were obtained from Servier Medical Art (http://smart.servier.com), licensed under a Creative Commons Attribution 3.0 Unported License.
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Abstract
The corneal epithelium is composed of stratified squamous epithelial cells on the 
outer surface of the eye, which acts as a protective barrier and is critical for clear 
and stable vision. Its continuous renewal or wound healing depends on the prolif-
eration and differentiation of limbal stem cells (LSCs), a cell population that 
resides at the limbus in a highly regulated niche. Dysfunction of LSCs or their 
niche can cause limbal stem cell deficiency, a disease that is manifested by failed 
epithelial wound healing or even blindness. Nevertheless, compared to stem cells 
in other tissues, little is known about the LSCs and their niche. With the advent of 
single-cell RNA sequencing, our understanding of LSC characteristics and their 
microenvironment has grown considerably. In this review, we summarized the 
current findings from single-cell studies in the field of cornea research and 
focused on important advancements driven by this technology, including the 
heterogeneity of the LSC population, novel LSC markers and regulation of the 
LSC niche, which will provide a reference for clinical issues such as corneal 
epithelial wound healing, ocular surface reconstruction and interventions for 
related diseases.

Key Words: Cornea; Limbal stem cells; Single cell RNA sequencing; Heterogeneity; Novel 
markers; Niche regulation
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Core Tip: Limbal stem cells (LSCs), a cell population that resides at the limbus in a highly regulated niche. 
With the advent of single-cell RNA sequencing, our understanding of LSC characteristics and their 
microenvironment has grown considerably. This review focuses on the current research on single cell 
sequencing in LSCs. We highlight the heterogeneity, novel specific markers and niche regulation of LSCs.
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INTRODUCTION
The cornea is a unique transparent tissue in the human body exposed to the external environment and is 
the window for sight[1,2]. Specifically, the corneal epithelium acts as a protective barrier on the ocular 
surface and is constantly regenerating. This unique property of the corneal epithelium is dependent on 
self-renewing epithelial stem cells located at the limbus, known as limbal stem cells (LSCs)[3-5]. LSCs 
reside in the “palisades of Vogt” (also known as limbal epithelial crypts) and are critical for corneal 
epithelial regeneration and wound healing. LSCs respond to corneal epithelial cell renewal or wound 
healing by differentiating to produce limbal progenitor cells (LPCs) and transient amplifying cells 
(TACs), which then migrate to the central cornea to replenish the corneal epithelium[6-9]. This process 
was summarized as the XYZ hypothesis[10] and explained the balance of cell numbers and homeostasis 
in the corneal epithelium maintained by LSCs.

Like the stem cells in other tissues, the surrounding microenvironment or limbal niche strictly 
supports and regulates the functional behaviors of LSCs[11,12]. The limbal niche has unique character-
istics and components, including mesenchymal cells, immune cells, melanocytes, vascular cells, 
extracellular matrix and signaling molecules (e.g., growth factors and cytokines)[13-16]. Significant 
pathology involving any component of the limbal niche can lead to the dysfunction of LSCs or even 
result in limbal stem cell deficiency (LSCD), a disease that is characterized by impaired wound healing 
or blindness[17,18].

Various studies have identified numerous markers of LSCs but identifying definitive molecular 
signatures to distinguish LSCs and other corneal epithelial cells is still challenging. The unclear internal 
heterogeneity of the LSC population can increase the difficulty in efficiently isolating pure LSCs for 
clinical transplantation. In addition, emerging evidence supports that reconstruction of the limbal niche 
may be introduced to treat LSCD. Therefore, understanding the function and niche regulation of LSCs is 
needed to discover novel therapies for ocular surface disease.

With the development and maturity of sequencing technology, more and more genomic, trans-
criptomic, epigenetic and proteomic sequencing technologies have been applied to studying eye tissues
[19-22]. In recent years, single-cell RNA sequencing (scRNA-Seq) technology has provided a powerful 
tool for discovery of new cell types and for dissecting their potential heterogeneity in unprecedented 
resolution[23-25]. For multicellular organisms, cell heterogeneity is defined by differences in genetic 
background, transcriptomic and proteomic profiles[26]. Compared to other traditional techniques for 
detecting the average expression of genes in multiple cells, single-cell sequencing can detect differential 
signals between individual cells, improve the resolution of research from the tissue to the cellular level
[27-29]. A single-cell atlas has been compiled for several ocular tissues, such as the uvea[30], retina[31-
34], iris[35,36], sclera[37,38] and human cornea[39,40]. In this review, we summarize the current 
advances on LSCs derived from single-cell studies to better understand the features and functions of 
LSCs and the precise cellular and molecular mechanisms of niche regulation. Overall, this review 
presents key points from recent discoveries to enrich our knowledge on LSC biology and ocular surface 
homeostasis reconstruction or other clinical problems.

HETEROGENEITY OF THE LSC POPULATION
LSCs are located in the basal layer of the corneal epithelium. As previously mentioned, they are charac-
terized by a high proliferative potential, small size, high nucleoplasmic ratio and slow cell cycle[41,42]. 
LSCs are scarce, and finding bona-fide markers to distinguish them from other basal epithelial cells is 
challenging. In addition, few studies have investigated the heterogeneity and hierarchy of LSCs. 
Understanding the heterogeneity of LSCs is important for comprehending the function to effectively 
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isolate them for clinical transplantation.
Dou et al[43] performed scRNA-Seq on human limbal tissues and identified four subclusters of stem/

progenitor cells after single-cell transcriptome analysis. In this study, the authors annotated eight cell 
types, including prominent limbal epithelial cells, stromal cells and other rare cell populations. The 
authors then subclustered limbal epithelial cells and resolved their heterogeneity, including limbal 
stem/progenitor cells (LSPCs), limbal suprabasal cells and limbal superficial cells. To further explore 
the LSC population, the authors then subclustered LSPCs and obtained four subpopulations (Figure 1) 
including: (1) A subpopulation with the classical LSC marker TP63[44]; (2) A subpopulation with high 
expression of CCL20, which is a chemokine that can induce cell migration and proliferation[45]; (3) A 
subpopulation with specific expression of GPHA2, a marker recently identified in quiescent LSCs 
(qLSCs) from humans and mice[46,47]; and (4) A subpopulation with high expression of KRT6B, which 
is associated with rapid keratinocyte division and contributes to inhibiting the migration of mitotic cell 
populations from the basal layer[48]. The authors then investigated the differences in stemness and 
differentiation status and observed that TP63+ and CCL20+ cells presented a high stemness state, 
whereas GPHA2+ and KRT6B+ showed a high differentiation state.

Another study by Li et al[49] annotated five subtypes from the limbal basal epithelium of the human 
cornea. They characterized terminally differentiated cells (TDCs), post-mitotic cells, TACs, LPCs and 
LSCs. Furthermore, the authors discovered that these five subtypes represented the major stages and 
trajectories of human LSC proliferation and differentiation (from LSCs, LPCs, TACs and post-mitotic 
cells to TDCs), and they were spatially situated in different regions from the limbus to the central 
cornea. In TDCs, corneal epithelium-specific differentiation markers and keratinocyte keratinization 
markers were expressed at the highest levels, while the LSC differentiation markers had the lowest 
expression.

LSCs in mice are also heterogeneous and behave differently than human LSCs. Altshuler et al[46] 
combined scRNA-Seq and quantitative lineage tracing for in-depth analysis of mouse limbal epithelium. 
The authors revealed the presence of two distinct subpopulations of mouse LSCs that were in separate 
and well-defined spatial locations called the “inner” and “outer” limbus (Figure 2). The inner limbus 
contains active LSCs, which maintain the homeostasis of the corneal epithelium. The outer limbus 
contains qLSCs that have a significantly lower rate of division and are involved in wound healing and 
border formation. Spectral tracking experiments displayed that qLSCs can quickly exit the dormant 
state and enter the cell cycle in response to injury, suggesting that qLSCs are a reservoir for tissue 
regeneration. In addition, their circumferentially extended clonal growth model and continuous 
localization on the border highly indicates that these cells play a crucial role in border maintenance. 
Notably, this finding was also confirmed by a study utilizing the two-photon live imaging approach
[50]. Collectively, LSCs are highly heterogeneous in both humans and mice, unlike stem cells in other 
tissues. Further studies are needed to investigate the self-renewal and differentiation mechanisms of 
LSCs.

NOVEL MARKERS FOR LSCS
Since 1989, when LSCs were discovered[4], a series of markers have been found to identify these cells, 
such as TP63, KRT3, KRT12. However, the marker pattern typically labels the broad limbal basal cell 
population. Accurately distinguishing LSCs from other epithelial cells is still challenging and is still an 
active area of research. Altshuler et al[46] discovered a novel set of markers to accurately identify LSCs. 
They applied in situ hybridization probes for Krt4 and Krt12 to label mouse conjunctival and corneal 
basal and suprabasal cells, respectively. Gpha2 staining could obviously demarcate the outer LSCs (also 
known as qLSCs), while the inner LSCs (also known as active LSCs) were labeled as Atf3+. Then, they 
used immunofluorescence staining to confirm that the outer limbal epithelial basal cells were Krt15+/
Ifitm3+/Cd63+, and the inner limbal epithelial basal cells were Atf3+/Mt1-2+. Next, the authors explored 
the correlation between mouse and human LSC markers. Immunofluorescence images revealed that 
KRT15, IFITM3 and GPHA2 were expressed in human limbus epithelial basal cells. Ifitm3 was found to 
be restricted to cellular vesicles in the cytoplasm of undifferentiated limbal cells, which was consistent 
with a previous study’s findings[51]. Ifitm3 knockdown led to a differentiation phenotype and a reduced 
colony-forming capacity. These experiments suggest that Ifitm3 and Gpha2 can be used to identify LSCs, 
and Ifitm3 mediates the undifferentiated state.

Gpha2 has been frequently studied in human LSCs. Dou et al[43] explored the four subclusters of 
LSPCs, which were identified by TP63, CCL20, GPHA2 and KRT6B. Collin et al[47] identified several 
novel genes, one of which was GPHA2, using an unbiased approach to recognize marker genes that 
were highly expressed in human LSCs relative to other corneal epithelial cells. High and specific 
expression of GPHA2 was observed in the limbus crypts, which was consistent with the findings of 
Altshuler et al[46]. Moreover, the authors used RNA interference (RNAi) to downregulate GPHA2 and 
observed a significant reduction in cell proliferation and differentiation efficiency, indicating an 
important role of GPHA2 in maintaining the undifferentiated state of human LSCs. The authors also 
performed flow activated cell sorting analysis with colony forming efficiency assays to confirm the 
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Figure 1 Heterogeneity of limbal stem cells in humans. A: The t-distributed stochastic neighbor embedding plot of four subpopulations of limbal stem cells; 
B: Schematic diagram of the heterogeneous limbal stem cells in the human limbus. LSPC: Limbal stem/progenitor cell.

Figure 2 Heterogeneity of limbal stem cells in mice. A: The t-distributed stochastic neighbor embedding plot of the corneal epithelial cell subpopulations in 
the mouse limbus. The limbal stem cells are highlighted in red; B: Schematic diagram of the heterogenous limbal stem cells in the mouse limbus. aLSC: Active limbal 
stem cell; CB: Corneal basal cell; CjB: Conjunctival basal cell; CjS: Conjunctival suprabasal cell; CS: Corneal superficial cell; CW: Corneal wing cell; LS: Limbal 
superficial cell; M1/M2: Cells in mitosis; qLSC: Quiescent limbal stem cell.

RNAi data.
Other LSC markers have also been identified. Li et al[49] identified TSPAN7+ and SOX17+ cells 

distributed in a scattered pattern in human limbus epithelium basal cells. The authors established an in 
vitro model of epithelial cells and discovered TSPAN7 and SOX17 were not strongly expressed in 
human limbal epithelial cells. However, mRNA and protein expression levels were significantly 
activated after injury, especially during cell migration and growth. The authors also utilized RNAi to 
downregulate TSPAN7 and SOX17 and observed inhibited cell proliferation and significantly delayed 
epithelial regeneration during wound healing. Overall, the discovery of novel markers of LSCs (Table 1) 
can help us to better distinguish LSCs from other cells to further understand the function and state of 
LSCs and provide a more effective strategy for the isolation, culture and clinical application of LSCs.

NICHE REGULATION OF THE LSCS AT THE LIMBUS
LSC proliferation, migration and differentiation are inseparable from the regulation of the limbal niche 
microenvironment. The stem cell niche is the local microenvironment directly promoting or protecting 
stem cell populations[52-54]. The LSC niche provides a sheltered environment that protects LSCs from 
stimulation[55-58]. If the LSC niche is involved in pathological damage, then LSC dysfunction can occur. 
Therefore, the study of the LSC niche is essential.

Collin et al[47] investigated the interaction between LSCs and the limbal niche by single-cell analysis. 
The authors combined scRNA-Seq and ATAC-Seq and performed CellPhoneDB analysis[59]. They 
identified multiple significant interactions between human LSCs and regulatory factors of immune cells 
such as proinflammatory cytokines [tumor necrosis factor, interleukin (IL)-1β, IL-6, IL-17A, interferon γ, 
and oncostatin M], proinflammatory cell surface receptor (triggering receptor expressed on myeloid 
cells 1), proinflammatory cytokine expression (adaptor complexes 1) and regulators of inflammatory 
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Table 1 Novel limbal stem cell markers identified by single-cell RNA sequencing

LSC subtype Marker Species Ref.

LSPC with high stemness TP63, CCL20 Human

LSPC with high differentiation GPHA2, KRT6B Human

[43]

LSC TSPAN7, SOX17, SELE, ECSCR, RAMP3, RNASE1, NPCD1, NNMT, SLC2A3, KLF2, PDK4 Human

Limbal progenitor cell DCN, PLIN2, DEGS1, MMP10, IFITM3, SLC6A6, LTB4R, SLP1 Human

[49]

qLSC Gpha2, Cd63, Ifitm3 Mouse

aLSC Atf3, Socs3, Mt1, Prdm1 Mouse

[46]

aLSC: Active limbal stem cell; LSC: Limbal stem cell; LSPC: Limbal stem/progenitor cell; qLSC: Quiescent limbal stem cell.

responses (nuclear factor kappa B, RELA, colony-stimulating factor 2, phosphoinositide 3-kinase, 
extracellular signal-regulated kinase 1/2, and F2). The authors verified that limbal epithelial cells were 
significantly reduced in cell culture medium containing tumor necrosis factor-α and IL-1β. This 
suggested that proinflammatory cytokines produced by immune cells were involved in the apoptosis of 
limbal epithelial cells[60], thus mimicking the central corneal defect and stimulating the proliferation of 
LSCs[61]. This was also consistent with other reports showing that the addition of proinflammatory 
factors to limbal epithelial cell cultures can directly affect the expression of LSC markers and their 
colony forming efficiency capacity[60,62-64].

Dou et al[43] systematically explored intercellular communication between LSPCs and other cell 
populations based on ligand-receptor analysis. By correlating the corresponding receptor-ligands in 
human LSPCs and their niche cells, the authors observed that LSPCs were regulated by the limbal niche 
as well as by other cells in the limbal niche. The Notch signaling pathway was also involved in cell-cell 
interaction between LSPCs and their niche cells. NOTCH1-4 receptors were expressed in LSPCs, and 
their relevant ligands were primarily identified in niche cells, such as Schwann cells, stromal cells, 
pericytes and LSPCs. Likewise, the WNT7A, WNT7B and WNT5A ligands, which participate in the 
Wnt/β-catenin signaling pathway, were detected on LSPCs. Their corresponding receptors were 
primarily detected on limbal epithelial cells, stromal cells, immune cells, Schwann cells and LSPCs. The 
presence of multiple chemokines, such as CCL4, CCL4L2, IL-1β and IL-24, on LSPCs and their paired 
receptors indicated that immune cell interactions may potentially regulate LSPCs.

Altshuler et al[46] revealed that T cells acted as niche cells and served its function in the maintenance 
of quiescence, epithelial thickness control and wound healing. By studying the limbus of the severe 
combined immunodeficiency (SCID) and non-obese diabetic SCID mice, which are unable to make 
mature T and B lymphocytes, it was observed that the GPHA2 protein was substantially decreased to 
almost undetectable levels. In contrast, the expression of Ifitm3 did not rely on the existence of immune 
cells, implying that it was regulated by other niche cells. When T cells were inhibited by topical 
application of the corticosteroid dexamethasone, LSCs showed a dramatic reduction in Cd63 and Gpha2 
expression levels and increased cell proliferation, demonstrating that T cells played a crucial role in 
regulating qLSCs. Finally, corneal epithelial debridement followed by epithelial closure by fluorescein 
dye infiltration revealed delayed epithelial wound healing in mice lacking T cells.

In addition, other niche cells were determined to be important for the microenvironment regulation 
of LSCs. Oxidative stress can lead to a variety of eye diseases, such as keratitis, cataracts and retinal 
diseases, which are subject to varying degrees of oxidative damage[65,66]. Recently, studies found that 
melanocytes in the limbal niche (as antioxidant systems) protected LSPCs from UV-induced oxidative 
damage and reduced oxidative stress through the transfer of melanosomes[67,68]. Moreover, by ligand 
analysis, Dou et al[43] identified the intercellular communications between melanocytes and LSCs. 
NAMPT, as a ligand, was highly expressed in melanocytes and had been reported to act as a critical 
switch in melanoma cells. CD44 acted as a receptor and was also highly enriched in melanocytes.

Vascular endothelial cells are also one of the important niche cells of LSCs. It has been reported that 
vascular endothelial cells were highly correlated with the classic Wnt signaling pathway involved in the 
regulation of the corneal limbal niche[69,70]. Furthermore, Dou et al[43] performed a differential 
expression analysis with the integration of the scRNA-Seq datasets from the limbus and the skin and 
observed that the vascular endothelial cells from the limbus highly expressed anti-vascular factors 
compared to that from the skin, consistent with characteristics of corneal angiogenic privilege. Above 
all, these studies have shown that the regulation of the LSC niche (Figure 3) occupies a key role in the 
growth, development, proliferation and differentiation of LSCs.
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Figure 3 Structure and cellular compositions in the limbal stem cell environment. Niche cells regulate limbal stem cells. LSCs: Limbal stem cells; BC: 
Basal cell; DC: Dendritic cell; LEnC, Lymphatic endothelial cell; LSbC: Limbal suprabasal cell; LSfC: Limbal superficial cell; MC: Mast cell; MeC: Melanocyte; 
Mono/Mac: Monocyte/macrophage; N: Nerve; PeC: Peripheral cell; ScC: Schwann cell; StC: Stromal cell; T: T cell; VEnC: Vascular endothelial cell.

CONCLUSION
The first Drop-Seq experiments were performed on mouse retina in 2015[23]. Since this revolutionary 
experiment, single-cell sequencing technology has been widely used in many fields, including ophthal-
mology, and gene expression has been studied at an unprecedented resolution in multiple ocular 
tissues. Corneal transparency is essential for normal vision; thus, comprehension of the mechanisms 
related to corneal wound healing and regeneration is crucial for the treatment of patients suffering from 
corneal disease. Currently, corneal epithelial regeneration is a relatively satisfactory approach and has 
the potential to treat corneal superficial scars. However, for multiple corneal basal scars or endothelial 
disease, corneal transplantation remains the only option to restore clear vision[71-73]. Unfortunately, 
corneal clouding remains one of the leading causes of blindness worldwide due to the lack of corneal 
donor tissue or the limited availability of corneal surgery[74,75]. Although most studies support corneal 
regeneration through LSC therapies[76,77], the study of LSCs is particularly important.

This review focused on the current research on single-cell sequencing in LSCs. We highlighted the 
heterogeneity of LSCs and presented several novel specific markers of LSCs and the role of niche 
regulation of LSCs. LSCs can be identified in both humans and mice, and several markers, such as 
GHPA2 and IFITM3, can be highly and specifically expressed on LSCs. Moreover, both T cell regulation 
in mice studied by Altshuler et al[46] and immune cell regulation in humans studied by Collin et al[47] 
and Dou et al[43] suggest that niche regulation is of vital importance for LSCs.

Future research can still benefit from RNA-Seq technology as it can aid in acquisition of further 
knowledge on the functions and characteristics of LSCs, including in the discovery of more novel highly 
specific expression markers and more niche regulated components that can promote or inhibit the 
proliferation and differentiation of LSCs. These discoveries should be translated into better prevention 
and treatment strategies to treat blindness and improve the clinical prognosis of patients with LSCD and 
other LSC-related diseases.
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Abstract
BACKGROUND 
Wound healing impairment is a dysfunction induced by hyperglycemia and its 
effect on endothelial precursor cells (EPCs) in type 2 diabetes mellitus. There is 
increasing evidence showing that exosomes (Exos) derived from adipose-derived 
mesenchymal stem cells (ADSCs) exhibit the potential to improve endothelial cell 
function along with wound healing. However, the potential therapeutic 
mechanism by which ADSC Exos contribute to wound healing in diabetic mice 
remains unclear.

AIM 
To reveal the potential therapeutic mechanism of ADSC Exos in wound healing in 
diabetic mice.

METHODS 
Exos from ADSCs and fibroblasts were used for high-throughput RNA 
sequencing (RNA-Seq). ADSC-Exo-mediated healing of full-thickness skin 
wounds in a diabetic mouse model was investigated. We employed EPCs to 
investigate the therapeutic function of Exos in cell damage and dysfunction 
caused by high glucose (HG). We utilized a luciferase reporter (LR) assay to 
analyze interactions among circular RNA astrotactin 1 (circ-Astn1), sirtuin (SIRT) 
and miR-138-5p. A diabetic mouse model was used to verify the therapeutic effect 
of circ-Astn1 on Exo-mediated wound healing.

RESULTS 
High-throughput RNA-Seq analysis showed that circ-Astn1 expression was 
increased in ADSC Exos compared with Exos from fibroblasts. Exos containing 
high concentrations of circ-Astn1 had enhanced therapeutic effects in restoring 
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EPC function under HG conditions by promoting SIRT1 expression. Circ-Astn1 expression 
enhanced SIRT1 expression through miR-138-5p adsorption, which was validated by the LR assay 
along with bioinformatics analyses. Exos containing high concentrations of circ-Astn1 had better 
therapeutic effects on wound healing in vivo compared to wild-type ADSC Exos. Immunofluor-
escence and immunohistochemical investigations suggested that circ-Astn1 enhanced angiopoiesis 
through Exo treatment of wounded skin as well as by suppressing apoptosis through promotion of 
SIRT1 and decreased forkhead box O1 expression.

CONCLUSION 
Circ-Astn1 promotes the therapeutic effect of ADSC-Exos and thus improves wound healing in 
diabetes via miR-138-5p absorption and SIRT1 upregulation. Based on our data, we advocate 
targeting the circ-Astn1/miR-138-5p/SIRT1 axis as a potential therapeutic option for the treatment 
of diabetic ulcers.

Key Words: Adipose-derived mesenchymal stem cells; Circular RNA astrotactin 1; Diabetic; Exosomes; 
Angiogenesis

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Circular RNA astrotactin 1 (circ-Astn1) promoted the therapeutic effect of adipose-derived 
mesenchymal stem cells-exosomes and thus improved wound healing in diabetes via miR-138-5p 
absorption and SIRT1 upregulation. Based on our data, we advocate targeting the circ-Astn1/miR-138-
5p/SIRT1 axis as a potential therapeutic alternative for diabetic ulcers.

Citation: Wang Z, Feng C, Liu H, Meng T, Huang WQ, Song KX, Wang YB. Exosomes from circ-Astn1-modified 
adipose-derived mesenchymal stem cells enhance wound healing through miR-138-5p/SIRT1/FOXO1 axis 
regulation. World J Stem Cells 2023; 15(5): 476-489
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/476.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.476

INTRODUCTION
Diabetes affects 30 million children as well as adults in the United States, i.e. one out of every eleven 
people in the United States, which leads to $327 billion costs each year. Consequently, it is important to 
develop a new method of diabetes treatment. Interventions that improve healing rates and decrease 
diabetic ulcer size could lower the infection incidence, amputation rate, and care cost[1]. Diabetic foot 
(DF) is a severe complication of type 2 diabetes mellitus (T2D). DF infection is the main reason for DF 
development and deterioration, and controlling infection plays an important role in disease treatment. 
Previous studies have found that diabetes is associated with hyperglycemia, one of the most important 
causes of oxidative stress. Endogenous antioxidants are able to destroy the reactive species and create a 
balance between antioxidants and free radicals[2,3]. The impaired function and senescence of 
endothelial progenitor cells (EPCs) and high glucose (HG)-induced reactive oxygen species likely 
exacerbate DFs[4].

Accumulated evidence shows that mesenchymal stem cell (MSC)transplantation promotes 
angiogenesis and accelerates diabetic wound healing[5,6]. Adipose-derived mesenchymal stem cells 
(ADSCs) therapy provides potentially new therapeutic options to improve diabetic wound healing[7], 
and autologous stem cell transplantation reduces the cost of drug development, which in turn reduces 
financial costs. However, the mechanism is not clear.

Stem cells live in niches, which are complicated microenvironments that exert important functions in 
directing the division, differentiation, and activity of stem cells. However the direction of differentiation 
is affected by hypoxia, cytokines, trophic factors, chemical and pharmacological agents, and physical 
factors[8]. Considering the safety of in vivo transplantation, some investigations have suggested that 
exosomes (Exos) from ADSCs play a similar functional role to ADSCs in promoting diabetic wound 
healing. Exos are tiny endosomal membrane-bound vesicles, 50–200 nm in length, that have a variety of 
contents including protein and nucleic acids which vary with cell or tissue origin. They play their full 
role by fusing with selected cells and releasing their cargo that could contain bioactive molecules 
including lipids, proteins, non-coding-RNA (ncRNA)[9-11] and mRNAs. Previous studies have found 
that Exos can regulate the epithelial–mesenchymal transition and disease progression in different 
cancers[12,13]. Exos secreted from ADSCs attenuate diabetic nephropathy by promoting autophagy flux 
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and by inhibiting apoptosis in podocytes[14]. Exos from nuclear factor erythroid 2–related factor 2-
overexpressing ADSCs accelerate cutaneous wound healing by promoting vascularization in a DF ulcer
[4]. Exos from linc00511-overexpressing ADSCs accelerate angiogenesis in healing DF ulcers by 
suppressing progestin and adipoQ receptor family member 3-induced Twist1 degradation[15]. 
However, it remains largely unknown if Exos from ncRNA-modified ADSCs can improve wound 
healing.

The ncRNAs include circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA 
(miRNA). circRNA activity is indispensable during the regulation of gene expression, demonstrating 
that circRNAs function not only as candidate therapeutic agents but also as diagnostic markers. 
circRNA 5’ and 3’ extremities are linked to form an integrated circular structure, which makes circRNAs 
more resistant to RNA exonuclease degradation. as well as more stable 8than linear RNAs[16,17]. A 
previous study found that circRNAs possess activity and potential clinical benefits in skin wound 
healing[18].

To identify relevant circRNAs as therapeutic targets, we used high-throughput sequencing detection 
to identify the function of mmu_circ_0000101 (circ-Astn1), which acts as the key factor in delivery by 
ADSC Exos. Exos from circ-Astn1-modified ADSCs improve wound repair in diabetic rats through miR-
138-5p/SIRT1 pathway regulation. The present study verified the effect of treatment with Exos from 
circ-Astn1-overexpressing ADSCs on HG-induced EPC dysfunction. The abundance and simple 
methods of sampling of ADSC-Exos make it safer in terms of trauma and other adverse reactions.

MATERIALS AND METHODS
Ethics statement
The Animal Care and Use Committee of Peking Union Medical College Hospital approved the invest-
igation protocol (No: XHDW-2020-01; Beijing, China). We carried out all postoperative animal care 
along with surgical interventions following the National Institutes of Health Guidelines for the Care and 
Use of Laboratory Animals. All surgeries and euthanasia were performed under sodium pentobarbital 
anesthesia (30 mg/kg) by intraperitoneal injection, and all efforts were made to minimize suffering.

High-throughput and strand-specific RNA sequencing library construction
Total RNA from ADSCs and fibroblast Exos was isolated using TRIzol reagent (Invitrogen, Carlsbad, 
CA, United States). Our team prepared about 3 μg total RNA per sample using the VAHTS Total RNA-
seq (H/M/R) Library Prep Kit from Illumina (Vazyme Biotech Co., Ltd., Nanjing, China) to isolate the 
ribosomal RNA and remove other RNAs such as ncRNA and mRNA. We then performed RNA 
purification using RNase R (Epicenter, 40 U, 37 °C for 3 h) followed by TRIzol. An RNA sequencing 
RNA-Seq) library was prepared using the KAPA Stranded RNA-Seq Library Prep Kit (Roche, Basel, 
Switzerland) and they were exposed in order following extensive codifying with Illumina HiSeq 4000 
from Aksomics, Inc. (Shanghai, China).

Cell treatment
To investigate endothelial precursor cell (EPC) dysfunction as well as apoptosis, we cultivated EPCs at 
37 °C with 5% carbon dioxide in EPC medium (Gibco, Carlsbad, CA, United States) and processed them 
after 1 d using 5.5 or 30 mmol/L glucose. We harvested EPCs for detection of apoptosis as well as to test 
their response to Exo therapy. In order to study the protective function of Exos on EPCs, we added 100 
μg/mL Exos to cultures following 80% EPC fusion to evaluate the protective function against damage 
caused by prior HG treatment with various glucose concentrations.

ADSC isolation and identification
We isolated ADSCs from adipose tissue following the method used in a previous study[4]. We observed 
no uninduced differentiation in cultural expansion. We induced osteogenic differentiation via a 3-wk 
culture of ADSCs in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine 
serum (FBS), 0.1 μM dexamethasone, 50 μM ascorbate-2-phosphate, and 10 mmol/L β-glycero-
phosphate. We induced adipogenic differentiation through culturing ADSCs for 2 weeks in DMEM 
supplemented with 10% FBS, 10 μM insulin, 0.5 mmol/L isobutylmethylxanthine, 200 μM indome-
thacin, and 1 μM dexamethasone. We also investigated the osteogenic or adipogenic differentiation of 
ADSCs through Oil-Red O and alkaline phosphatase staining.

Identification and isolation of ADSC-derived Exos
We isolated ADSC-derived Exos when cells reached 80%-90% confluence. Our team rinsed ADSCs from 
various groups with phosphate-buffered saline (PBS), and then cultured them in FBS-free endothelial 
cell growth medium (EGM)-2MV, which was supplemented with 1 × serum replacement solution 
(PeproTech, Rocky Hill, NJ, United States) for another 2 d. Then, we collected conditioned culture 
medium and centrifuged it at 300 × g for 10 min to remove cells and at 2000 × g for another 10 min to 
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remove apoptotic cells and cellular debris. Following centrifugation at 10000 × g for 30 min, we filtered 
the supernatant through a 0.22 μm filter (Millipore, Billerica, MA, United States), then transferred 15 mL 
supernatant to the Amicon Ultra-15 Centrifugal Filter Unit (100 kDa) and centrifuged it at 4000 × g to 
concentrate to approximately 1 mL. The ultrafiltration unit was washed twice with PBS centrifuged it 
again at 100000 × g, and the supernatant was aspirated. All processes were conducted at 4 °C. We 
resuspended the Exo pellets obtained in 500 μL PBS. Finally, the Exo protein content was evaluated 
using the Pierce bicinchoninic acid assay (BCA) Protein Assay Kit (Thermo Fisher Scientific, Waltham, 
MA, United States). We stored Exos at -80 °C until subsequent use for experiments and identified Exos 
by western blotting and transmission electron microscopy.

Diabetic wound induction
We utilized Balb/c mice and induced diabetes through a single intraperitoneal injection of 60 mg/kg 
streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 4.5). Three days after STZ administration, we 
confirmed diabetes development by measuring fasting blood glucose levels in blood samples obtained 
from the tail vein. We considered a mouse with fasting blood glucose levels > 250 mg/dL diabetic, 
which we maintained for 1 mo and employed for subsequent analyses of posterior blood glucose stabil-
ization. Following diabetes validation, we anesthetized mice through intramuscular injection with 
ketamine hydrochloride and xylazine cocktail at 80 and 10 mg/kg, respectively. Once anesthesia was 
established, hair was shaved from the dorsal leg area and the region was sterilized using povidone 
iodine solution. A sterile biopsy punch was used to generate a full-thickness 4 mm excisional wound. 
Then we allocated mice randomly to subcutaneous injection with 100 μL PBS containing 200 μg ADSC 
Exos or equivalent amount of PBS without Exos at four sites near the wound (25 μL/site). We 
euthanized mice and harvested skin specimens for histopathological validation.

RNA overexpression or interference
RNA overexpression or interference was induced by transfection of miR-138-5p mimics or inhibitor, 
circ-Astn1 and SIRT1 overexpression vector, and siRNA against circ-Astn1 (si-circ-Astn1) obtained from 
RiboBio (Guangzhou, China). Our team performed transfection using Lipofectamine 2000 (Thermo 
Fisher Scientific) following a method previously described[19].

Quantitative polymerase chain reaction
We isolated total RNA from skin tissue or cells from wounds using a TRIzol reagent kit. Our team 
synthesized cDNA to amplify with TaqMan miRNA Reverse Transcription Kit. Our team then 
performed quantitative polymerase chain reaction (qPCR) using a TaqMan Human miRNA Assay Kit, 
using the 2−ΔΔCT approach to detect fold changes with respect to expression. We used U6 and glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) as internal references. Primers utilized were: Circ-Astn1, 
F: 5’-CTGGACCCTTGTGAACACCAATG-3’, R, 5’-GGATCATCACCAGGCACAAGATG-3’; FOXO1, F: 
5’-AAGGCCATCGAGAGCTCAGC-3’, R, 5’-GATTTTCCGCTCTTGCCTCC-3’; miR-138-5p, F: 5’-
GCTGGTGTTGTGAATCAG-3’, R: 5’-GAACATGTCTGCGTATCTC-3; U6, F: 5’-AGTAAGCCCTTGCT-
GTCAGTG-3’ ,  R:  5’-CCTGGGTCTGATAATGCTGGG-3’ ;  GAPDH: F:  5’-GTCTCCTCT-
GACTTCAACAGCG-3’, R: 5’-ACCACCCTGTTGCTGTAGCCAA-3’, and were designed by Gene 
Pharma (Shanghai, China).

Apoptosis detection
To assess apoptosis, we collected cells into centrifuge tubes and centrifuged them at 1000 rpm for 5 min. 
We resuspended cells in PBS at 4 °C and removed the supernatant following centrifugation. We 
resuspended the cell pellet at 1–5 × 106/mL in 1 × binding buffer, then 100 μL cell suspension was mixed 
with 5 μL Annexin V/fluorescein isothiocyanate in the dark at room temperature for 5 min. Lastly, we 
added 10 μL propidium iodide (PI) and 400 μL PBS to stain the cells. We analyzed data using the FlowJo 
package.

Immunofluorescence and immunohistochemical assays
We fixed skin tissue samples in 10% formalin solution, embedded them in paraffin, and sectioned them 
at 5 μm. Our team stained tissue sections with hematoxylin and eosin (HE) for histological detection, 
and cluster of differentiation 31 (CD31) immunofluorescence staining was used to detect histopatho-
logical changes associated with angiogenesis. We performed terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) to identify apoptotic cells. Our team visualized sections using 
fluorescence (Nikon, Tokyo, Japan) or light microscope (Zeiss, Oberkochen, Germany), and 
photographed them using a digital camera.

Western blot analysis
Skin tissues were lysed, and lysates were centrifuged at 12000 rpm at 4 °C following addition of a 
protease inhibitor. The protein concentration was determined using the Pierce BCA kit (Thermo Fisher). 
Proteins were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electro-
transferred to PVDF membranes. The primary antibodies used to assay protein expression were SIRT1 
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(1:600), forkhead box O1 (FOXO1) (1:600) (all from Santa Cruz Biotechnology, Santa Cruz, CA, United 
States), and anti-GAPDH (1:1000; Sigma-Aldrich, St. Louis, MO, United States), followed by a 
horseradish peroxidase-conjugated secondary antibody (1:1000; Abcam, Cambridge, MA, United 
States). An enhanced chemiluminescence kit (Millipore, Burlington, MA, United States) was used to 
read the bands.

Luciferase reporter assay
We created and cloned wild-type (WT) and 3’-UTR mutant (MUT) SIRT1, as well as WT and MUT circ-
Astn1 into pMIR firefly luciferase-expressing vectors. We co-transfected the vectors into HEK293T cells 
once they reached 70% confluence, using 500 ng pMIR-SIRT1-wt/pMIR-SIRT1-Mut or pMIR-circ-Astn1-
wt/pMIR-circ-Astn1-Mut combined with 50 nM miR-138-5p mimics using a Lipofectamine 2000 
Transfection Kit for the luciferase assay. We assayed luciferase activity using a Dual-Luciferase Reporter 
System (Promega, Madison, WI, United States). We performed five independent assays.

Tube formation assay
We performed an EPC tube formation assay using Matrigel (BD Biosciences, Franklin Lakes, NJ, United 
States). Matrigel solution was mixed with ECMatrix diluent buffer then spread on μ-Slide plates and 
incubated at 37 °C for 1 h for the matrix solution to solidify. Next, we added various treatments to the 
EPCs (2 × 104 cells/well) to wells containing solid matrix and cultured them with EGM-2 medium at 37 
°C for a period of 12 h. Our team detected tube formation under an inverted light microscope (100 ×) 
and evaluated three independent representative fields from each well to determine mean tube number.

Cell Counting Kit (CCK)-8 assay
EPC proliferation was evaluated using the Cell Counting Kit-8 (CCK-8) (BD Biosciences). Our team 
cultivated transfected cells in 96-well plates with Exos in HG conditions for 1 d in wells to which 10 μL 
CCK-8 reagent and 90 μL fresh culture medium was previously added. Absorbance was detected at 450 
nm using a microplate reader following incubation at 37 °C for 2 h.

Statistical analyses
We denoted continuous parameters by the mean ± SD and employed one-way variance of analysis 
(ANOVA) to compare data using GraphPad Prism (GraphPad, La Jolla, CA, United States). P ≤ 0.05 
indicated a statistically significant difference.

RESULTS
ADSC and Exo characterization
Isolated ADSCs have classical cobblestone-like morphology (Figure 1A). Immunofluorescence staining 
showed that ADSCs from mouse adipose tissue samples were positive for expression of the 
mesenchymal cell surface markers CD29 (Figure 1B), CD44 (Figure 1C), CD90 (Figure 1D), and CD105 
(Figure 1E), but negative for expression of the endothelial cell marker CD31 (Figure 1F) as well as von 
Willebrand Factor (Figure 1G). The results of Oil Red O staining (Figure 1H) together with alkaline 
phosphatase staining (Figure 1I) verified that isolated ADSCs possessed both osteoblastic and 
adipocytic differentiation capacity. We concluded that ADSCs have the potential for multidirectional 
differentiation[20].

Exos were isolated by ultra-high-speed centrifugation. Transmission electron microscopy revealed 
that ADSC Exos had spherical or cup-shaped morphology with a diameter ranging from 50 to 120 nm 
(Figure 1J) as previously reported[21]. Western blotting suggested that ADSC Exos were positive for the 
Exo markers CD81 and CD63, which are cellular components (Figure 1K).

Exos derived from circ-Astn1-modified ADSCs play important roles in the restoration of EPC function 
by decreasing apoptosis under HG conditions
To determine the role of circRNAs in ADSC Exo-mediated restoration of EPC function under HG 
conditions, circRNA expression in ADSCs and fibroblast Exos was explored by RNA-Seq. The results 
verified that the contents of mmu_circ_0000101, mmu_circ_0008040, mmu_circ_0008061, and 
mmu_circ_0008099 were all significantly upregulated in ADSC Exos compared with fibroblast Exos 
(Figure 2A). RT-qPCR analysis confirmed that mmu_circ_0000101, mmu_circ_0008040, 
mmu_circ_0008061 and mmu_circ_0008099 expression in EPCs decreased after exposure to HG 
conditions (Figure 2B), with expression of mmu_circ_0000101 in particular decreasing most 
significantly. Consequently, mmu_circ_0000101 was selected for subsequent study. Mmu_circ_0000101 
originated from Astn1 gene exon 5, so mmu_circ_0000101 was also known as circ-Astn1. The entire 
mature spliced sequence length was 967 bp. The gene is on chromosome 1: 160432178-160441253 
(Figure 2C).
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Figure 1 Characterization of adipose-derived mesenchymal stem cells and exosomes. A: Adipose-derived mesenchymal stem cells (ADSCs) 
showed a typical cobblestone-like morphology. Scale bar: 100 μm; B–G: Immunofluorescence staining of cell surface markers. ADSCs exhibited positive expression 
of cluster of differentiation 90 (CD90), CD29, CD44, and CD105, but not von Willebrand factor or CD34. Scale bar: 100 μm; H and I: The differentiation potential of 
ADSCs assessed by Oil Red O (H) and alkaline phosphatase (I) staining. Scale bar: 200 μm; J: Transmission electron micrographs demonstrated ADSC exosome 
morphology. Scale bar: 100 nm; K: Western blotting detection of CD81 and CD63 expression in exosomes and ADSCs.

Flow cytometry investigations have shown that HG (30 mmol/L glucose) treatment promotes EPC 
apoptosis. Treatment with Exos from WT ADSCs suppressed HG-induced EPC apoptosis, and 
treatment with Exos from ADSCs overexpressing circ-Astn1 had a more significant effect in suppressing 
HG-induced apoptosis of EPCs than Exos from WT ADSCs (Figure 2D and E), suggesting that circ-
Astn1 played an important role in ADSC-Exo-mediated EPC protection under HG conditions. CCK8 
detection confirmed that treatment with Exos containing high levels of circ-Astn1 had a greater effect in 
restoring the proliferative ability of EPCs under HG conditions (Figure 2F). We used tubule formation 
by EPCs in Matrigel-coated culture wells as an in vitro angiogenesis model, and evaluated their potential 
by counting the branch numbers formed. HG conditions suppressed angiogenesis, and treatment with 
Exos containing high levels of circ-Astn1 was more effective in promoting angiogenesis of EPCs under 
HG conditions (Figure 2G-J).

The circ-Astn1-mediated miR-138-5p/SIRT1/FOXO1 signaling pathway protects EPCs under HG 
conditions by promoting angiogenesis
Bioinformatics data showed that circ-Astn1 regulates SIRT1 expression via inhibition of miR-138-5p. 
SIRT1 functions critically in promoting angiogenesis by activating the FOXO1 signaling pathway[22]. To 
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Figure 2 Exosomes derived from circular RNA astrotactin 1-modified adipose-derived mesenchymal stem cells function importantly in 
endothelial precursor cell function restoration by decreasing apoptosis under high glucose conditions. A: Heat map regarding all differentially 
expressed circular RNAs (circRNAs) between adipose-derived mesenchymal stem cells (ADSCs) exosomes and fibroblast exosomes; B: Quantitative polymerase 
chain reaction giving mmu_circ_0000101 (circular RNA astrotactin 1), mmu_circ_0008040, mmu_circ_0008061, and mmu_circ_0008099 expression in endothelial 
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precursor cells (EPCs) with or without high glucose (HG) treatment. Data are denoted by the mean ± SD; bP < 0.001 vs normal; C: The genomic loci of circ-Astn1; D 
and E: We pretreated EPCs with ADSC exosomes before treatment with exosomes for 1 d under HG conditions. Our team assayed EPC apoptosis via flow cytometry 
after annexin V-FITC staining. bP < 0.001 vs normal. dP < 0.001 vs HG; F: EPC proliferation under different treatments, determined by Cell Counting Kit-8 assay. bP < 
0.001 vs normal. dP < 0.001 vs HG; G-J: Representative photomicrographs of tube-like structures. Scale bar: 50 μm. Technician-counted tube branch points (H), 
relative tube length (I) and the total number of branches were calculated. bP < 0.001 vs normal. dP < 0.001 vs HG. PI: Propidium iodide.

validate the interaction among circ-Astn1, SIRT1, and miR-138-5p, we created a luciferase reporter (LR) 
vector. The candidate miR-138-5p-binding sites on circ-Astn1 as well as sites with point mutations 
inserted to prevent binding are shown in Figure 3A. Luciferase activity assay using 293T cells, which we 
transfected with MUT or WT circ-Astn1, verified that miR-138-5p suppressed circ-Astn1 activity 
(Figure 3B). RT-qPCR analysis suggested that circ-Astn1 overexpression suppressed miR-138-5p 
expression in EPCs (Figure 3C). Meanwhile the tubule formation assay showed that upregulation of 
circ-Astn1 restored angiogenic differentiation ability under HG conditions, but miR-138-5p overex-
pression destroyed the protective effect of circ-Astn1 (Figure 3D-G).

Next, we created the LR vector. Candidate miR-138-5p-binding sites on SIRT1 3'-UTR and those with 
point mutations inserted to prevent binding were constructed (Figure 3H). We transfected 293T cells 
with MUT or WT SIRT1 3'-UTR, which verified that WT miR-138-5p suppressed SIRT1 activity 
(Figure 3I). RT-qPCR analysis illustrated that miR-138-5p overexpression suppressed FOXO1 and SIRT1 
expression at both mRNA and protein levels relating to EPCs (Figure 3J and K). However, overex-
pression of SIRT1 promoted SIRT1 and downregulated FOXO1 expression even after miR-138-5p 
overexpression. Analysis of tubule formation verified that miR-138-5p upregulation decreased 
angiogenic differentiation ability, but overexpression of SIRT1 restored the angiogenic differentiation 
ability of EPCs (Figure 3L-O).

Exos from circ-Astn1-modified ADSCs possess high therapeutic effect, enhancing wound healing
We investigated the influence of ADSC Exos on wound healing in full-thickness cutaneous wounds in 
mouse feet in a model of STZ-induced diabetes. Mice were treated by subcutaneous injection of Exos 
from WT or circ-Astn1-modified ADSCs, or an equivalent volume of PBS Exo diluent. Exos with high 
circ-Astn1 concentration accelerated wound closure significantly compared to PBS-treated control mice. 
The wounds treated with high circ-Astn1-containing Exos were almost closed by 14 d, while large areas 
of scarring were visible in both controls and circ-Astn1-knockdown-Exo-treated wounds (Figure 4A). 
Immunofluorescence with CD31 staining verified that microvascular development was more extensive 
with Exo treatments, specifically with high-circ-Astn1-containing Exos compared with the control 
group. However, circ-Astn1-knockdown suppressed the therapeutic effect of Exos (Figure 4B and C). 
TUNEL staining suggested that circ-Astn1 Exos significantly suppressed skin tissue apoptosis compared 
with control treatment, but circ-Astn1-knockdown suppressed the therapeutic effect of Exos (Figure 4D 
and E). Hematoxylin and eosin staining also showed that circ-Astn1 Exos treatment significantly 
promoted skin tissue wound healing compared with control treatment, but circ-Astn1-knockdown 
suppressed the therapeutic effect of Exos (Figure 4F). RT-qPCR analysis confirmed that circ-Astn1 Exos 
significantly suppressed miR-138-5p expression (Figure 4G) but promoted SIRT1 (Figure 4H) and 
decreased FOXO1 (Figure 4I) expression at both the mRNA and protein levels compared with controls.

DISCUSSION
Vascular deficits are fundamental factors regarding diabetes-related traits. Although former investig-
ations have revealed that the proangiogenic wound healing phase is blunted by diabetes, detailed 
knowledge of factors regulating skin revascularization as well as capillary stabilization in diabetic 
wounds was missing[23]. Previous investigations revealed that Exos derived from ADSCs promote 
diabetic wound healing by regulating the disease microenvironment[4,20]. There is also evidence that 
circRNAs belong to a new RNA family that has been found to be broadly expressed, and have 
indispensable biological activities in regulating skin wound healing[18]. In this study, we found a series 
of circRNAs, which RNA-Seq detection showed were abnormally expressed in ADSC Exos compared 
with fibroblast Exos. Among the abnormally expressed circRNAs, expression of mmu_circ_0000101 
(circ-Astn1), mmu_circ_0008040, mmu_circ_0008061, and mmu_circ_0008099 was all increased 
significantly in ADSC Exos. Further study showed that circ-Astn1 decreased more significantly in EPCs 
after exposure to HG conditions. This suggesting that ADSC Exos protected EPCs from HG-induced 
damage related to circ-Astn1 delivery.

Our in vitro experiments revealed that HG conditions promoted EPC apoptosis and destroyed the 
ability of EPCs to differentiate into blood vessels. Transplantation of ADSC Exos exerted a protective 
effect in reversing HG-induced EPC damage. Increasing the circ-Astn1 content of Exos increased the 
protective effect. Bioinformatics analyses identified miR-138-5p as the circ-Astn1 downstream target, 
and this was confirmed by luciferase reporter (LR) experiments. A previous study revealed that overex-
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Figure 3 The circular RNA astrotactin 1-mediated mi-138-5p/SIRT1/forkhead box O1 signaling pathway plays an important protective role 
in endothelial precursor cells under high glucose conditions by promoting angiogenesis. A and B: Luciferase expression levels in HEK293 cells 
transfected with cloned circular RNA astrotactin 1 (circ-Astn1) wild-type (WT) or mutant (MUT) vector and miR-138-5p mimics. Data are denoted by the mean ± SD. b

P < 0.001; C: Quantitative polymerase chain reaction (qPCR) detection suggested that miR-138-5p expression was reduced after transfection with circ-Astn1-
overexpressing vector in endothelial precursor cells (EPCs). Data are denoted as the mean ± SD. bP < 0.001 vs NC; D-G: Representative photomicrographs of tube-
like structures of EPCs under high glucose (HG) conditions after transfection with negative control or circ-Astn1-overexpressing vector. bP < 0.001 vs HG. dP < 0.001 
vs circ-Astn1; H and I: Luciferase expression level in HEK293 cells transfected with cloned SIRT1 WT- or MUT-3' UTR vector and miR-138-5p mimics. Data are 
denoted by the mean ± SD. bP < 0.001; J and K: qPCR and western blot analysis indicated that SIRT1 and forkhead box O1 expression were reduced after 
transfection with miR-138-5p overexpression vector in EPCs. Data are expressed as the mean ± SD. bP < 0.001 vs NC. dP < 0.001 vs miR-138-5p mimics; L-O: 
Representative photomicrographs of EPC tube-like structures under HG conditions after transfection with miR-138-5p mimics combined with or without SIRT1 
overexpression vector. Data are denoted by the mean ± SD. bP < 0.001 vs NC. dP < 0.001 vs miR-138-5p mimics.

pression of miR-138 aggravates HG-induced vascular cell damage[24]. Our current investigation also 
found that circ-Astn1 overexpression decreased miR-138-5p expression. Meanwhile miR-138-5p overex-
pression reduced vascular EPC differentiation, suggesting that circ-Astn1 protected against HG-induced 
EPC damage by miR-138-5p adsorption.

Additional bioinformatics results showed that SIRT1 was also a miR-138-5p downstream target and 
this was verified by LR experiments. SIRT1 is a highly conserved nicotinamide adenosine dinucleotide 
(NAD)-dependent deacetylase, which plays a regulatory role in metabolism and aging[25]. miR-138-5p 
overexpression reduced SIRT1 expression. Overexpression of SIRT1 restored vascular differentiation of 
EPCs after miR-138-5p upregulation. Previous studies have suggested that the SIRT1/FOXO1 pathway 
activity improves the stress microenvironment[26-28]. SIRT1 correlates to and deacetylates FoxO1. 
Moreover, previous studies have confirmed that SIRT1, a deacetylase that suppresses FoxO1 acetylation 
which is a crucial negative blood vessel development regulator, restrains anti-angiogenic activity[22,29,
30]. Recently, it was reported that oxidative stress induces FoxO1 nuclear translocation which plays an 
important role in apoptosis regulation[26]. In vivo experiments have confirmed that Exos originating 
from circ-Astn1-modified ADSCs function indispensably in restoring EPC function and promoting 
wound healing by promotion of angiogenesis and suppression of apoptosis. RT-qPCR analysis 
demonstrated that treatment with Exos containing high levels of circ-Astn1 reduced miR-138-5p 
expression and promoted SIRT1. This increase in SIRT1 level suppressed FOXO1 expression, suggesting 
that Exos derived from circ-Astn1-modified ADSCs enhanced wound healing in a diabetic mouse model 
via miR-138-5p/SIRT1/FOXO1 axis regulation.

CONCLUSION
In conclusion, our research indicated that Exos derived from circ-Astn1-modified ADSCs enhanced 
wound healing in a diabetic mouse model via miR-138-5p/SIRT1/FOXO1 axis induction. Our study 
verified the therapeutic effects of circ-Astn1-Exos on an STZ-induced diabetic wound healing model. 
However, more in-depth studies are required to determine the actual role of miR-138-5p/SIRT1/FOXO1 
in wound healing.
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Figure 4 Exosomes from circular RNA astrotactin 1-modified adipose-derived mesenchymal stem cells have greater therapeutic effect in 
promoting wound healing in a diabetic mouse model. A: Representative images of full-thickness skin defects after treatment with adipose-derived 
mesenchymal stem cell (ADSC) exosomes or circular RNA astrotactin 1-modified ADSC exosomes for 0, 1, and 2 wk after wounding; B and C: Microvascular 
formation evaluated by immunofluorescence staining with cluster of differentiation 31. bP < 0.001 vs control. dP < 0.001 vs exosomes; D and E: We assayed apoptosis 
level via terminal deoxynucleotidyl transferase dUTP nick end labeling staining. bP < 0.001 vs control. dP < 0.001 vs exosomes; F: Hematoxylin and eosin staining 
shows wound changes; G-I: Quantitative polymerase chain reaction and western blot analysis showing mi-138-5p (G), SIRT1 (H), and forkhead box O1 (I) 
expression. bP < 0.001 vs control. dP < 0.001 vs exosomes.

ARTICLE HIGHLIGHTS
Research background
Wound healing impairment is a dysfunction induced by hyperglycemia and its effect on endothelial 
precursor cells (EPCs) in type 2 diabetes mellitus. There is increasing evidence showing that exosomes 
(Exos) derived from adipose-derived mesenchymal stem cells (ADSCs) exhibit the potential to improve 
endothelial cell function along with the wound healing process.

Research motivation
The potential therapeutic mechanism of ADSC Exos in wound healing in diabetic mice remains unclear.

Research objectives
To verify the effect of treatment with Exos from circular RNA astrotactin 1 (circ-Astn1)-overexpressing 
ADSCs on high glucose (HG)-induced EPC dysfunction.

Research methods
In this study, Exos from ADSCs and fibroblasts were used for high-throughput RNA sequencing (RNA-
Seq). ADSC-Exo-mediated healing of full-thickness skin wounds in a diabetic mouse model was invest-
igated. We utilized EPCs to investigate the therapeutic function of Exos in cell damage and dysfunction 
caused by HG. We utilized a luciferase reporter (LR) assay to detect interactions among circ-Astn1, 
SIRT1 and miR-138-5p. We employed diabetic mice to verify the therapeutic effect of circ-Astn1 on Exo-
mediated wound healing.

Research results
High-throughput RNA-Seq detection showed that circ-Astn1 expression was increased in ADSC Exos 
compared with Exos from fibroblasts. Exos containing high concentrations of circ-Astn1 had enhanced 
therapeutic effect in restoring EPC function under HG conditions by promoting SIRT1 expression. Circ-
Astn1 expression enhanced SIRT1 expression through miR-138-5p adsorption, which was validated by 
LR assay along with bioinformatics analyses. Exos containing high concentrations of circ-Astn1 had 
better therapeutic effect on wound healing in vivo compared to wild-type ADSC Exos. Immunofluor-
escence and immunohistochemical investigations suggested that circ-Astn1 enhanced angiopoiesis 
through Exo treatment of wounded skin as well as suppressing apoptosis through promotion of SIRT1 
and decreased FOXO1 expression.

Research conclusions
In summary, we concluded that circ-Astn1 promoted the therapeutic effect of ADSC-Exos and thus 
improved wound healing in diabetes via miR-138-5p absorption and SIRT1 upregulation. Based on our 
data, we advocate targeting the circ-Astn1/miR-138-5p/SIRT1 axis as a potential therapeutic alternative 
for treatment of diabetic ulcers.



Wang Z et al. ADSC exosomes enhance wound healing

WJSC https://www.wjgnet.com 488 May 26, 2023 Volume 15 Issue 5

Research perspectives
More in-depth studies are required to determine the actual role of miR-138-5p/SIRT1/FOXO1 in wound 
healing.
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Abstract
BACKGROUND 
Mesenchymal stem cells (MSCs) have been applied to treat degenerative articular 
diseases, and stromal cell-derived factor-1α (SDF-1α) may enhance their 
therapeutic efficacy. However, the regulatory effects of SDF-1α on cartilage differ-
entiation remain largely unknown. Identifying the specific regulatory effects of 
SDF-1α on MSCs will provide a useful target for the treatment of degenerative 
articular diseases.

AIM 
To explore the role and mechanism of SDF-1α in cartilage differentiation of MSCs 
and primary chondrocytes.

METHODS 
The expression level of C-X-C chemokine receptor 4 (CXCR4) in MSCs was 
assessed by immunofluorescence. MSCs treated with SDF-1α were stained for 
alkaline phosphatase (ALP) and with Alcian blue to observe differentiation. 
Western blot analysis was used to examine the expression of SRY-box trans-
cription factor 9, aggrecan, collagen II, runt-related transcription factor 2, collagen 
X, and matrix metalloproteinase (MMP)13 in untreated MSCs, of aggrecan, 
collagen II, collagen X, and MMP13 in SDF-1α-treated primary chondrocytes, of 
glycogen synthase kinase 3β (GSK3β) p-GSK3β and β-catenin expression in SDF-1α
-treated MSCs, and of aggrecan, collagen X, and MMP13 in SDF-1α-treated MSCs 
in the presence or absence of ICG-001 (SDF-1α inhibitor).

RESULTS 
Immunofluorescence showed CXCR4 expression in the membranes of MSCs. ALP 
stain was intensified in MSCs treated with SDF-1α for 14 d. The SDF-1α treatment 

https://www.f6publishing.com
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promoted expression of collagen X and MMP13 during cartilage differentiation, whereas it had no 
effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in 
MSCs. Further, those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes. 
SDF-1α promoted the expression of p-GSK3β and β-catenin in MSCs. And, finally, inhibition of this 
pathway by ICG-001 (5 µmol/L) neutralized the SDF-1α-mediated up-regulation of collagen X and 
MMP13 expression in MSCs.

CONCLUSION 
SDF-1α may promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-
catenin pathway. These findings provide further evidence for the use of MSCs and SDF-1α in the 
treatment of cartilage degeneration and osteoarthritis.

Key Words: Stromal cell-derived factor-1α; Mesenchymal stem cells; Chondrogenic differentiation; Wnt/β-
catenin; C-X-C chemokine receptor 4

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this study, we investigated the effect of stromal cell-derived factor-1α (SDF-1α) on the differ-
entiation of bone marrow mesenchymal stem cells (MSCs) and primary chondrocytes in vitro. We 
demonstrated that SDF-1α promotes the chondrogenic differentiation of MSCs, and similar results were 
observed in primary chondrocytes. In addition, SDF-1α also activates the Wnt/β-catenin pathway to 
regulate chondrocyte hypertrophy and maturation in MSCs.

Citation: Chen X, Liang XM, Zheng J, Dong YH. Stromal cell-derived factor-1α regulates chondrogenic 
differentiation via activation of the Wnt/β-catenin pathway in mesenchymal stem cells. World J Stem Cells 2023; 
15(5): 490-501
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/490.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.490

INTRODUCTION
Osteoarthritis (OA) is a chronic, multifactorial disease characterized by progressive degradation of 
articular cartilage[1]. The underlying molecular mechanism responsible for the pathogenesis of OA is 
not yet fully elucidated; as such, a disease-modifying therapy remains elusive[2], although a potential 
therapeutic strategy of cell-based cartilage regeneration using mesenchymal stem cells (MSCs) has been 
proposed[3,4]. It is known that following cartilage injury, MSCs undergo proliferation to form new 
cartilage and repair damage. During this process, chemokines play a role in targeted cell recruitment[5]. 
The chemokine stromal cell-derived factor-1α [SDF-1α, also known as C-X-C chemokine ligand (CXCL) 
12 α][6] binds to the CXC receptor 4 (CXCR4) present in synovial fluid and cartilage tissues[7]. SDF-1α 
plays an important role in the targeted recruitment and chemotaxis of MSCs[8], and increased SDF-1α 
levels promote the entry of CXCR4-positive MSCs into damaged cartilage[9]. In addition, MSC 
recruitment mediated by the SDF-1α/CXCR4 axis has been shown to play an important role in other 
tissue repair processes[10]. Indeed, a previous study showed that intra-articular injection of meniscus 
progenitor cells promoted cartilage regeneration and improved OA via the SDF-1α/CXCR4 axis and by 
inducing progenitor cell homing[11]. Earlier, Hitchon et al[12] had reported the finding of upregulated 
expression levels of CXCR4 mRNA and protein in chondrocytes of rats with post-traumatic OA, while 
Kanbe et al[13] reported high SDF-1α expression in human chondrocytes of rheumatoid arthritis and OA 
joint fluid. This latter study also indicated that synovectomy significantly reduced SDF-1α and matrix 
metalloproteinase (MMP) concentrations in serum. Finally, Xiang et al[14] reported their study of 
human OA cartilage and in vitro SDF-1-induced OA chondrocytes, which demonstrated that inhibition 
of SDF-1α signaling was able to attenuate OA.

MSCs can differentiate into chondrocytes, which are characterized by SRY-box transcription factor 9 
(Sox9), aggrecan, and collagen II expression[15]. In vivo, human MSCs used for cartilage repair undergo 
hypertrophic differentiation, which is characterized by an increase in cell volume and in the expression 
levels of several markers of hypertrophy, including runt-related transcription factor 2 (RUNX2), 
collagen X, MMP13, Indian hedgehog homolog, and alkaline phosphatase (ALP)[16]. Under 
physiological conditions in vivo, hypertrophic chondrocytes exhibit endochondral ossification. 
Furthermore, SDF-1α mediates several changes in the bone and cartilage[17], with roles in both 
physiologic and pathogenic processes. For example, SDF-1α/CXCR4 signaling regulates the bone 
morphogenetic protein-2-induced chondrogenic differentiation of MSCs and enhances chondrocyte 
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proliferation and maturation[18]. However, it also increases the expression of MMP3 in chondrocytes, 
leading to mechanical destruction of the bound matrix[19]. Therefore, despite its role in MSC 
recruitment, the direct effect of SDF-1α on cartilage differentiation by MSCs requires further clari-
fication.

The present study focused on the direct role of SDF-1α in chondrocyte differentiation and 
demonstrated that SDF-1α participated in chondrocyte differentiation in MSCs. In addition, the Wnt/β-
catenin pathway mediated the effects of SDF-1α on cartilage differentiation.

MATERIALS AND METHODS
MSC isolation and culture
MSCs were obtained from Sprague-Dawley (SD) rats. Ten male 4-8-wk-old SD rats weighing 150-200 g 
were housed in standard housing conditions with a 12-h light/dark cycle. The rats were euthanized 
using 20 mg/kg of ketamine intraperitoneally. Bone marrow was flushed from femurs of the SD rats 
using a 10-mL injector filled with Dulbecco's modified eagle medium (DMEM) and Ham’s F12 medium 
containing 10% fetal bovine serum (all from Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, United 
States), 100 IU/mL penicillin, and 100 IU/mL streptomycin (Boster Biological Technology, Pleasanton, 
CA, United States). The cultures were maintained at 37 °C in an atmosphere of 5% CO2. The cells were 
grown for 48 h, and the medium was replaced. The cells were allowed to reach 70%-80% confluence and 
passaged by trypsinization using 0.05% trypsin/ ethylene diamine tetraacetic acid (Boster Biological 
Technology). The culture medium was replaced every 2 d. Rat MSCs cultured to passage 3 were used 
for the experiments.

Isolation and culture of primary chondrocytes
Ten male 3-d-old SD rats were euthanized by intraperitoneal ketamine, and their cartilage samples were 
soaked in a beaker containing 75% alcohol for 15 min. The cartilage surface of the proximal tibia was 
removed to a depth of 1.0-1.5 mm3 using the micro-shear method and digested with 0.25% trypsin at 37 
°C for 30 min. Following 10 min of centrifugation at 500 × g, the tissue pieces were collected and 
incubated with 0.25% collagenase II (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) at 
37 °C for 24 h. After a second centrifugation, the chondrocytes were cultured under the same conditions 
as described for the MSCs.

Multilineage differentiation of MSCs
To confirm that the isolated cells were MSCs, their differentiation into bone, cartilage, and adipose cell 
lineages was induced. For bone differentiation, passage 3 cells were cultured with osteogenic medium 
(RASMX-90021; Cyagen Biosciences, Inc., Santa Clara, CA, United States). After 21 d, the cells were 
stained with 0.5% alizarin red S at room temperature. In brief, the cells were washed twice with 
phosphate-buffered saline (PBS), fixed with 4% paraformaldehyde for 15 min at room temperature, and 
then stained with alizarin red S solution for 30 min at room temperature. Morphology was evaluated 
using an inverted microscope (Leica DM IRM; Leica Microsystems, Wetzlar, Germany). Chondrogenic 
differentiation was achieved by pelleting 2.5 × 105 passage 3 cells in a 15-mL centrifuge tube at 500 × g 
for 5 min then resuspending the cells in 0.5 mL of chondrogenic induction medium [DMEM high-
glucose, 100 nmol/L dexamethasone, 10 ng/mL transforming growth factor (TGF)-β 3, 50 mg/mL 
ascorbic acid 2-phosphate, 100 mg/mL sodium pyruvate, 40 mg/mL proline and insulin transferrin 
selenous acid-supplement][20]. The medium was replaced every 3 d. After 21 d, the pellets were fixed 
with 4% paraformaldehyde for 1 h at room temperature, then embedded in paraffin, cut into 5-µm 
sections, and stained with Alcian blue. Adipogenesis of MSCs was induced by culturing the cells in 6-
well culture plates containing adipogenic medium (Cyagen Biosciences, Inc.). After 21 d, the cultures 
were fixed with 4% paraformaldehyde, stained with oil red O working solution (60% of 0.5% oil red O/
isopropanol in distilled water) for 1 h at room temperature, and observed using light microscopy (Leica 
DM IRM; Leica Microsystems).

Fluorescence staining
MSCs cultured in 12-well plates were prepared for immunofluorescence analysis (performed at room 
temperature). First, MSCs were fixed with 4% paraformaldehyde for 15 min at room temperature. The 
fixed cells were then permeabilized by incubating in 0.1% Triton (Boster Biological Technology, Inc.) in 
PBS for 10 min. After the cells were blocked with 3% bovine serum albumin (BSA; Boster Biological 
Technology, Inc.) in 0.1% Triton/PBS for 1 h at room temperature. The cells were initially incubated 
with anti-CXCR4 antibody (1:200; Abcam, Cambridge, United Kingdom) overnight at 4 °C and 
subsequently with an fluorescein isothiocyanate-labeled goat anti-rabbit IgG antibody (H + L) (1:200; 
Beyotime Institute of Biotechnology, Jiangsu, China) for 30 min at room temperature. The labeled cells 
were mounted with 4',6-diamidino-2-phenylindole (DAPI) at room temperature and observed by 
fluorescence microscopy.
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MSC micromass culture
MSCs were first resuspended in F12-DMEM medium containing 10% fetal bovine serum, 0.25% 
penicillin-streptomycin, and 0.25% L-glutamine, and plated at a density of 2.5 × 105 cells/10 µL. After 
incubation for 4 h, a micromass culture medium supplemented with 1 mmol/L β-glycerophosphate and 
0.25 mmol/L ascorbic acid with or without SDF-1α (PeproTech, Inc., Rocky Hill, NJ, United States) was 
added. The cells were cultured in chondrogenic induction medium that was replaced every other day. 
On day 7, the cells were stained with Alcian blue, and the absorbance of the supernatant was measured 
at 600 nm.

Chondrogenic differentiation assays
MSCs and primary chondrocytes were seeded in 6-well plates containing the chondrogenic induction 
medium. The following three conditions were assessed: Control (cytokine-free); 50 ng SDF-1α; and 100 
ng SDF-1α[21]. The expression levels of collagen II, collagen X, aggrecan, MMP13, Sox9, and RUNX2 
were determined. The expression levels of Wnt/β-catenin were measured in cells incubated for 24 h 
with 100 ng SDF-1α and ICG-001, an inhibitor of the Wnt/β-catenin pathway in MSCs.

Protein isolation and western blotting
Collagen II (1:2000), collagen X (1:2000), aggrecan (1:2000), MMP13 (1:1000), Sox9 (1:5000), and RUNX2 
(1:2000) antibodies were purchased from Abcam, whereas the p- glycogen synthase kinase 3β (GSK3β) 
(1:2000), GSK3β (1:2000) and β-catenin (1:2000) antibodies were purchased from Cell Signaling 
Technology, Inc. (Danvers, MA, United States). Secondary mouse IgG (1:10000) or rabbit IgG (1:10000) 
antibodies were purchased from Abcam, and the anti- glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) (1:1000) antibody was from Boster Biological Technology. Protein was extracted from the cells 
using 100 mL radio immunoprecipitation assay buffer (Boster Biological Technology, Inc.) supple-
mented with protease and phosphatase inhibitors. After microcentrifugation for 20 min at 10000 × g, the 
lysates were prepared as described above. The cell protein concentration was detected with a 
bicinchoninic acid kit (Boster Biological Technology, Inc.). Briefly, a total of 20 µg of cellular protein per 
sample was loaded onto a 10% Bis-Tris gel according to the protocol provided by the manufacturer. The 
separated proteins were then transferred to polyvinylidene fluoride membranes (Thermo Fisher 
Scientific), which were blocked for 1 h at room temperature with 5% BSA (Boster Biological Technology, 
Inc.) in Tris-buffered saline containing 0.1% Tween-20 (TBST). The blots were probed overnight at 4 °C 
with rabbit antibodies against GAPDH, collagen II, collagen X, aggrecan, MMP13, Sox9, RUNX2, p-
GSK3β, GSK3β and β-catenin. Following three washes with TBST, the blots were incubated for 1 h at 
room temperature with anti-mouse or anti-rabbit IgG-horseradish-peroxidase-labeled secondary 
antibodies and washed three times with TBST. Finally, immunoreactivity was detected with enhanced 
chemiluminescence, and densitometry was performed using Quantity One software (Bio-Rad 
Laboratories, Inc., Hercules, CA, United States).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 6.0 software (GraphPad Software, Inc., La 
Jolla, CA, United States). The results were summarized as mean ± standard deviation. Every experiment 
contained ≥ 3 replicate and was performed three independent times, unless otherwise stated. One-way 
analysis of variance and Fisher’s least significant difference post hoc test were performed to compare 
differences between multiple groups. P < 0.05 indicated a statistically significant difference. we use 1 to 
express P < 0.05 and 2 to express P < 0.01.

RESULTS
MSC culture and multilineage differentiation potential
The cells were initially quiescent but began to proliferate rapidly after day 3. Growth yielded a 
monolayer structure, composed of fibroblasts (Figure 1A). At passage 3, the isolated cells were 
successfully differentiated into the three skeletal cell lineages: Bone, cartilage, and adipose tissue. After 
culture in the osteogenic medium, nodules formed that were positive for alizarin red S staining, 
indicating calcium-bearing mineral deposits (Figure 1B). After culture with cartilage induction medium, 
cartilage microspheres were positive for Alcian blue staining. Blue granules were also noted in MSCs 
(Figure 1C). After culture in the adipogenic induction medium, lipid accumulation in the form of lipid 
droplets was noted in some of the cells, which were stained red by oil red O (Figure 1D).

Expression of CXCR4 in rat MSCs
CXCR4 expression was detected in the membrane of the rat MSCs, while DAPI staining was confined to 
the nuclei of the MSCs (Figure 2).
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Figure 1 Characterization of mesenchymal stem cells. A: At passage 3, the cells resembled fibroblasts. Scale bar = 100 μm; B: Differentiation into bone 
cells was demonstrated by alizarin red S staining. Scale bar = 100 μm; C: Alcian blue staining indicated that the cells had successfully transformed into chondrocytes. 
Scale bar = 500 μm; D: Oil red O staining confirmed differentiation of the cells into adipose cells. Scale bar = 100 μm.

Figure 2 Expression of C-X-C chemokine receptor type 4 on rat mesenchymal stem cells. Representative image of the expression of C-X-C 
chemokine receptor type 4 (green fluorescence) on mesenchymal stem cell membranes. CXCR4: C-X-C chemokine receptor type 4; DAPI: 4',6-diamidino-2-
phenylindole.

SDF-1a exerted no effect on early cartilage formation of MSCs but enhanced hypertrophic 
differentiation
No significant differences were noted between control (untreated) cells and cells treated with 50 ng SDF-
1α or 100 ng SDF-1α in regards to the size of the cartilage micelles or the absorbance of Alcian blue 
(Figure 3A and B). ALP expression and activity levels were increased after 14-d SDF-1α treatment 
compared to control cells (Figure 3C and D).

Effect of SDF-1a on MSCs during cartilage differentiation
Western blotting indicated no significant differences in the expression levels of early chondrocyte differ-
entiation markers (Sox9, aggrecan, and collagen II) between MSCs treated with SDF-1α and untreated 
MSCs on day 7 (Figure 4A). On day 14, however, the expression levels of chondrocyte hypertrophy 
markers (RUNX2, collagen X, and MMP13) were increased in a dose-dependent manner in the SDF-1α-
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Figure 3 Alkaline phosphatase activity levels in mesenchymal stem cells treated with stromal cell-derived factor-1α were noted in the 
absence of an effect on cartilage formation. A: Mesenchymal stem cells (MSCs) were cultured in vitro and stained with Alcian blue following 7 d of culture 
with or without stromal cell-derived factor-1α treatment; B: Alcian blue staining was measured after chemical extraction by measuring the absorbance of the 
supernatant at 600 nm; C: MSCs were positive for alkaline phosphatase (ALP; light purple staining); D: ALP expression was quantitatively analyzed. The values were 
representative of the mean ± standard deviation (n = 3). aP < 0.05 vs control. ALP: Alkaline phosphatase; sdf-1α: Stromal cell-derived factor-1α.

Figure 4 Effects of stromal cell-derived factor-1α on cartilage differentiation of mesenchymal stem cells. Representative images of western blot 
analysis of rat mesenchymal stem cells treated with stromal cell-derived factor-1α. A: No changes in the expression levels of SRY-box transcription factor 9 (Sox9), 
aggrecan, and collagen II were observed; B: Increased expression levels of Runt-related transcription factor 2 (RUNX2), collagen X, and matrix metalloproteinase 13 
(MMP13) were observed; C: Relative Sox9, aggrecan, and collagen II protein expression; D: Relative RUNX2, collagen X, and MMP13 protein expression. aP < 0.05 
vs control (Student’s t-test). bP < 0.01 vs control (Student’s t-test). sdf-1α: Stromal cell-derived factor-1α; Sox9: SRY-box transcription factor 9; RUNX2: Runx family 
transcription factor 2; MMP13: Matrix metalloproteinase 13.



Chen X et al. SDF-1α regulates chondrogenic differentiation in MSCs

WJSC https://www.wjgnet.com 496 May 26, 2023 Volume 15 Issue 5

Figure 5 Effects of stromal cell-derived factor-1α on the cartilage phenotype of primary rat chondrocytes. A: Expression levels of collagen II, 
aggrecan, collagen X, and matrix metalloproteinase 13 (MMP13) were determined by western blotting in primary chondrocytes treated with stromal cell-derived factor-
1α (100 ng/mL); B: Relative collagen II, aggrecan, collagen X, and MMP13 protein expression. aP < 0.05 vs control (Student’s t-test), bP < 0.01 vs control (Student’s t-
test). MMP13: Matrix metalloproteinase 13; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; sdf-1α: Stromal cell-derived factor-1α.

treated group (Figure 4B).

Effects of SDF-1a on the cartilage phenotype of primary chondrocytes.
Western blotting showed that SDF-1α treatment did not affect the expression levels of collagen II and 
aggrecan in primary chondrocytes, whereas it significantly increased the expression levels of collagen X 
and MMP13 in the MSCs (Figure 5).

Wnt/β-catenin pathway was involved in the effect of SDF-1a on cartilage differentiation.
SDF-1α promoted the expression of p-GSK3β, decreased degradation of β-catenin, and a gradual 
increase in β-catenin expression were demonstrated (Figure 6A). Upon blockade of the Wnt/β-catenin 
pathway via ICG-001, the SDF-1α-mediated increase in the expression levels of collagen X and MMP13 
was neutralized (Figure 6B).

DISCUSSION
In the present study, rat MSCs, which were successfully differentiated into the three skeletal cell 
lineages and were positive for the expression of the CXCR4 receptors on the cell membrane, were used 
to assess the effects of SDF-1α on cartilage formation. The results indicated that the size of the cartilage 
micromass, the absorbance of Alcian blue, and the expression levels of Sox9, aggrecan, and collagen II 
did not significantly change in response to SDF-1α. However, the expression and activity levels of ALP 
and the expression levels of RUNX2, collagen X, and MMP13 were significantly increased. These results 
demonstrated that SDF-1α promoted hypertrophic cartilage differentiation in MSCs, while not affecting 
the early differentiation of cartilage. Similar results were obtained in primary chondrocytes. The data 
further indicated that SDF-1α caused a gradual increase in the expression levels of p-GSK-3β in vitro and 
activated the Wnt/β-catenin pathway, leading to increased collagen X and MMP13 expression levels. 
These findings demonstrated that the SDF-1α/CXCR4 axis was required in the cartilage differentiation 
process. Previous studies have implicated other chemokine types, including CXCL8 and CXCL1, as 
capable of promoting chondrocyte hypertrophy and calcification[22,23].

The Wnt/β-catenin pathway is a classical Wnt signaling pathway involved in tissue development and 
cell proliferation, differentiation, and apoptosis[24,25]. The signal transduction of the Wnt/β-catenin 
pathway is well defined and proceeds as follows. Initially, the extracellular Wnt proteins (Wnt-3a, Wnt-
4, Wnt-8c, and Wnt-9a) combine with the frizzled and LRP proteins on the cell membrane to form an 
activation complex. Subsequently, the phosphorylation of GSK-3β blocks the phosphorylation and 
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Figure 6 Wnt/β-catenin pathway involvement in the effects of stromal cell-derived factor-1α on cartilage differentiation. A: Expression levels 
of β-catenin, p-glycogen synthase kinase 3β (p-GSK-3β), and GSK-3β by western blotting; B: Blockage of the Wnt/β-catenin pathway with ICG-001 inhibited the 
expression levels of collagen X and matrix metalloproteinase 13; C: Relative β-catenin protein expression; D: Ratio of relative protein expression of p-GSK-3β to 
relative protein expression of GSK-3β (p-GSK-3β/GSK-3β); E: Relative aggrecan, collagen X, and MMP13 protein expression. 1P < 0.05, bP < 0.01, Student’s t-test. p-
GSK-3β: p-glycogen synthase kinase 3β; GSK-3β: Glycogen synthase kinase 3β; MMP13: Matrix metalloproteinase 13; GAPDH: Glyceraldehyde-3-phosphate 
dehydrogenase; sdf-1α: Stromal cell-derived factor-1α.

degradation of β-catenin. Finally, β-catenin enters the cell nucleus and modulates T cell factor/
Lymphoid enhancer factor binding, which initiates the transcription of downstream genes, thus causing 
biological changes[26-30]. Several Wnt signaling components regulate the hypertrophic maturation of 
chondrocytes. Specifically, Wnt can induce the accumulation of β-catenin, which then enters the nucleus 
and binds to cell factor/lymphoid enhancer-binding factor to promote the transcription of the collagen 
X and MMP13 genes. Ultimately, P-GSK3β can add phosphate groups to the serine/threonine residues 
at the β-catenin N terminus to promote its degradation[4.31].

Overexpression of the Wnt receptor frzb-1 was shown to hinder chondrocyte maturation and 
mineralization[32]. In a subsequent study, knock-out of the secreted frizzled-related protein 1, a Wnt 
signaling antagonist, led to a reduced height of the growth plate and increased calcification of 
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hypertrophic areas, indicating that activation of the Wnt signaling pathway accelerated endochondral 
ossification[33]. The findings of the present study are consistent with the collective previous results 
indicating that the SDF-1α/CXCR4 axis activates the Wnt/β-catenin signaling pathway in MSCs, which 
in turn increases the production of collagen X and MMP13. Conversely, when we treated the MSCs with 
the Wnt/β-catenin inhibitor ICG-001, the effects of SDF-1α were no longer observable, which confirmed 
the regulatory role of Wnt/β-catenin. Thus, the present study indicates that SDF-1α does not promote 
the early stages of cartilage differentiation nor increase the expression of Sox9, which is similar to the 
results of Kim et al[34].

Hypertrophic differentiation of chondrocytes is the primary barrier preventing the use of MSCs in 
therapeutic cartilage repair[35,36]. Hypertrophy is sometimes noted in OA[37,38]. However, SDF-1α 
also mediates MSC recruitment and can exert a positive role in OA[31]. The identification of cytokines 
that block cartilage hypertrophy caused by SDF-1α, promote physiological endochondral ossification, 
prevent mineralization of the extracellular matrix, and mediate chondrocyte apoptosis will contribute to 
an improved understanding of the pathogenesis of OA and provide targets for development of future 
treatment strategies for this disease[39].

There were some limitations in this study, which must be considered when seeking to generalize our 
findings. First, measuring the stimulation with SDF-1α in MSCs is challenging because the only 
verification technique is overexpression or knockdown of the CXCR4 receptor. Second, this study 
primarily used cell experiments and lacked an in vivo perspective to the experimental research. 
Regardless, through this study, we were able to adequately demonstrate effects of SDF-1α on cartilage 
differentiation in MSCs and primary chondrocytes.

CONCLUSION
The present study demonstrated a role of SDF-1α in promoting hypertrophic cartilage differentiation in 
MSCs and primary chondrocytes in vitro. SDF-1α activated the Wnt/β-catenin pathway in MSCs. Identi-
fication of the novel molecular mechanism by which SDF-1α promotes cartilage differentiation in MSCs 
suggests a therapeutic approach to OA and cartilage repair.

ARTICLE HIGHLIGHTS
Research background
Stromal cell-derived factor-1α (SDF-1α) has a chemotactic effect on mesenchymal stem cells (MSCs), and 
SDF-1α and MSCs are used together to treat cartilage degeneration and cartilage defects. The specific 
effects of SDF-1α on cartilage differentiation in MSCs need to be clarified.

Research motivation
Understanding the effects of SDF-1α on MSCs will provide a new theoretical basis for the use of MSCs 
in the repair of cartilage degeneration.

Research objectives
To explore the role and mechanism of SDF-1α on cartilage differentiation in MSCs and primary 
chondrocytes.

Research methods
MSCs were treated with SDF-1α and subsequently stained for alkaline phosphatase and with Alcian 
blue to demonstrate chondrogenic differentiation. Western blot analysis was used to examine the 
expression of cartilage differentiation-related and Wnt/β-catenin pathway proteins in MSCs and 
primary chondrocytes.

Research results
After extraction and incubation with the appropriate differentiation media, MSCs differentiated into the 
three skeletal lineages. SDF-1α exerted no effect on early cartilage formation but enhanced hypertrophic 
differentiation in MSCs. SDF-1α had no effect on the expression of SRY-box transcription factor 9, 
aggrecan, and collagen II but increased the expression of runx family transcription factor 2, collagen X, 
and matrix metalloproteinase 13 in MSCs and primary chondrocytes. SDF-1α increased the expression of 
p- glycogen synthase kinase 3β and β-catenin.

Research conclusions
SDF-1α enhanced hypertrophic differentiation in MSCs and primary chondrocytes. This effect was 
achieved by activating the Wnt/β-catenin pathway.
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Research perspectives
These findings provide a new theoretical basis for the treatment of cartilage degeneration with MSCs.
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