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Abstract
Over the past few decades, food fortification and infant 
formula supplementation with high levels of vitamins 
have led to a sharp increase in vitamin intake among 
infants, children and adults. This is followed by a sharp 
increase in the prevalence of obesity and related dis-
eases, with significant disparities among countries and 
different groups within a country. It has long been 
known that B vitamins at doses below their toxicity 
threshold strongly promote body fat gain. Studies have 
demonstrated that formulas, which have very high 
levels of vitamins, significantly promote infant weight 
gain, especially fat mass gain, a known risk factor for 
children developing obesity. Furthermore, ecological 
studies have shown that increased B vitamin con-
sumption is strongly correlated with the prevalence of 
obesity and diabetes. We therefore hypothesize that 
excess vitamins may play a causal role in the increased 
prevalence of obesity. This review will discuss: (1) the 
causes of increased vitamin intake; (2) the non-mono-
tonic effect of excess vitamin intake on weight and fat 
gain; and (3) the role of vitamin fortification in obesity 
disparities among countries and different groups within 
a country.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Vitamin fortification; Refined grain; Infant 
formula; Obesity; Diabetes; Insulin resistance; Oxidative 
stress; Glycemic index; Formula feeding; Epigenetic

Core tip: B vitamins are a known fat gain promoting 
factor. Food fortification-induced high vitamin con-
sumption is followed by a rapid increase in obesity 
prevalence. Why is the fat gain effect of B vitamins ne-
glected in obesity studies? Why does obesity prevalence 
vary from country to country? Why are the poor in de-
veloped countries but the rich in developing countries 
at high risk of obesity? Why is obesity prevalence high-
er in blacks than whites in the United States? Why does 
formula feeding (which is associated with high energy 
expenditure) increase the risk for obesity? Why is physi-
cal inactivity associated with increased obesity risk? This 
paper reviews the role of excess vitamins in obesity and 
proposes a unified answer to these questions.

Zhou SS, Zhou Y. Excess vitamin intake: An unrecognized risk 
factor for obesity. World J Diabetes 2014; 5(1): 1-13  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i1/1.htm  
DOI: http://dx.doi.org/10.4239/wjd.v5.i1.1

INTRODUCTION
Obesity, a state of  excessive accumulation of  fat in the 
body, is a major risk factor for many diseases, such as 
type 2 diabetes and cardiovascular disease[1,2]. In the 1970s 
and 1980s, a rapid increase in the prevalence of  obe-
sity occurred almost simultaneously in many developed 
countries. Since then, developing countries have also ex-
perienced a rapid increase in obesity rates[3,4]. Nowadays, 
obesity has become a global epidemic[5]. It is worth not-
ing that the prevalence of  obesity differs greatly among 

EDITORIAL

Online Submissions: http://www.wjgnet.com/esps/
bpgoffice@wjgnet.com
doi:10.4239/wjd.v5.i1.1

1 February 15, 2014|Volume 5|Issue 1|WJD|www.wjgnet.com

World J Diabetes  2014 February 15; 5(1): 1-13
ISSN 1948-9358 (online) 

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.



countries[3,4,6,7] as well as groups within a country[8-12]. It 
is more prevalent among those with low socioeconomic 
status (SES) in developed countries[6,8-10] but with high 
SES in developing countries, especially at their early stage 
of  development[10-12]. Interestingly, compared with breast-
fed infants, formula-fed infants have higher rather than 
lower levels of  energy expenditure[13,14] and are more at 
risk for obesity in later life[15-17]. Therefore, the rapidly in-
creased prevalence of  obesity cannot be simply explained 
by genetic factors or decreased energy expenditure.

Recently, it has been suggested that changes in the 
global food system may play a role in the increased preva-
lence of  obesity[4]. If  this is the case, the global food 
system must have sharply changed in the 1970s-1980s. 
Notably, in the 1970s and 1980s, the contents of  vita-
mins (organic chemicals affecting the body’s function-
ing) in the food system of  many developed countries 
were sharply increased due to modifications or changes 
in their rules, laws and regulations regarding food for-
tification[18-20]. This led to a nationwide increase in the 
consumption of  many vitamins, especially fat synthesis-
promoting B vitamins[21-24], including B1 (thiamin), B2 (ri-
boflavin), B3 (niacin) and B6, in many countries[18-20]. Thus, 
there is a possibility that the food fortification-induced 
high vitamin intake may be related to the sudden increase 
in the prevalence of  obesity in the 1970s-1980s. Indeed, 
emerging evidence suggests that this food fortification-
induced excess vitamin intake might play a major role in 
the increased prevalence of  obesity[25,26]. In this review, we 
will discuss the cause of  increased vitamin intake and its 
possible role in obesity, as well as the obesity disparities 
among countries and groups within countries.

CAUSES OF EXCESS VITAMIN INTAKE
Until the mid 1930s when the first commercial yeast 
extract vitamin B complex and semi-synthetic vitamin 
C supplement tablets were sold, vitamins were obtained 
solely through natural foods and seasonal changes in diet 
usually greatly altered the types and amounts of  vitamins 
ingested. For example, the intake of  fresh vegetable-de-

rived vitamins might be high in summer but low in win-
ter. However, through evolution, humans have adapted 
to this seasonal variations in vitamin intake by developing 
mechanisms to maintain the vitamin homeostasis. While 
the intake of  vitamins is higher in summer, their elimi-
nation through sweat and sebum[27-30] may also increase 
because the secretion of  sweat and sebum is higher in 
summer than in winter[28,31,32]. Moreover, the body can 
store a certain amount of  vitamins when the supply is ad-
equate, which can be used for some time when the intake 
is inadequate. For example, it will take several months 
before the first symptoms of  vitamin C deficiency appear 
in a vitamin C deprivation condition[33]. From this point 
of  view, it seems unnecessary to take vitamins everyday, 
although estimated daily average requirements (EARs) 
and the recommended dietary allowances are given (Table 
1). Yet over the past several decades, the actual intake of  
vitamins has been significantly higher than the EARs due 
to the following causes.

Increased vitamin intake from vegetable/fruit sources
Over the past several decades, many fresh vegetables and 
fruits with better quality can be obtained year round due 
to widespread out-of-season cultivation. This has not 
only led to an increase in the intake of  vegetable/fruit-
derived vitamins (e.g., vitamin C), but also abolished the 
seasonal vitamin intake variations. Taking the United 
States as an example, the per capita consumption of  veg-
etables and fruits showed an increasing trend in the 1970s 
through the 1990s (Figure 1A), leading to an increase in 
vitamin C intake since the mid-1960s[34].

Increased vitamin intake from animal sources
The consumption of  animal-based foods significantly in-
creased in developed countries in the second half  of  the 
last century. Dietary patterns in developing countries have 
been shifting to a more meat-centric diet over the past 
few decades[5,35]. Such a nutrition transition has increased 
the intake of  vitamins (especially nicotinamide, a form 
of  niacin) from animal-based foods. For example, United 
States per capita consumption of  total meat showed an 
increasing trend between the 1930s and 2000 (Figure 1B), 
which increased the daily intake of  meat-derived nico-
tinamide from 6.8 mg in the 1930s to 11.4 mg in 2000, 
according to the data on meat contribution to daily niacin 
intake[34].

Increased vitamin intake from artificial sources
Besides increased natural vitamin sources, vitamins may 
be obtained from artificial sources, which involves food 
fortification, infant formula fortification, and vitamin-en-
riched drinks. Fortification is the process of  adding syn-
thetic vitamins to foods and infant milk (including breast 
milk or formula) to increase its overall vitamin content[34]. 
Some staple foods (such as flour and maize) are used as 
a vehicle for fortification. Wheat flour fortification with 
synthetic vitamins (B1, B2 and niacin) was started first in 
the United States in the late 1930s, which was soon ad-
opted by many developed countries and then introduced 
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  Vitamin Adult man Adult woman Pregnancy

EAR RDA EAR RDA EAR RDA
  Thiamin 1.0 1.2 0.9 1.1 1.2 1.4
  Riboflavin 1.1 1.3 0.9 1.1 1.2 1.4
  Niacin       12       16       11       14       14       18
  Vitamin B6 1.1 1.3 1.1 1.3 1.6 1.9
  Vitamin C       75       90       60       75       70       90
  Vitamin E       12       15       12       15       12       15

Table 1  The estimated daily average requirements and 
recommended dietary allowances for selected vitamins (mg/d)1

1Data are from the United States Food and Nutrition Board. EAR: Esti-
mated daily average requirement, available from: URL: http://iom.edu/
Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/
Nutrition/DRIs/EAR%20Table.pdf. RDA: Recommended dietary allow-
ance, available from: URL: http://iom.edu/Activities/Nutrition/Summa-
ryDRIs/~/media/Files/Activity%20Files/Nutrition/DRIs/RDA%20and
%20AIs_Vitamin%20and%20Elements.pdf.



to developing countries[19,20]. Notably, ready-to-eat cere-
als are a major vehicle of  fortification of  B vitamins (B1, 
B2, B6 and niacin). Especially since 1974 when the food 
fortification standards for cereals were updated, ready-
to-eat cereals have become the top food source of  many 
vitamins[20,34]. The levels of  vitamins in fortified ready-to-
eat cereals are so high (Table 2) that consumption of  less 
than a quarter pound of  them (because foods per se also 
contain some amount of  vitamins) meets the daily need 
for these vitamins in an adult. Many sugar-sweetened 
beverages are also supplemented with vitamins[36,37], 
which is also an important cause of  increased vitamin in-
take. Since the 1950s, synthetic vitamins have been added 
to infant formulas[38]. In the 1980s, the governments of  
most countries established minimum nutrient require-
ments for commercial infant formulas[39], resulting in a 
significant increase in the content of  vitamins in formu-
las. The levels of  vitamins in some formulas for prema-
ture infants are more than 20 times higher than that of  
human milk (i.e., about the minimum limit for nutrients) 
(Table 3). This leads to a high vitamin intake in infancy.

As a result of  the combination of  the above factors, 
the intake of  vitamins has been significantly increased 

over the past few decades. As shown in Figure 2, United 
States per capita daily consumption of  vitamin B1, B2 and 
niacin has doubled from the 1930s to 2000, which is sig-
nificantly higher than the EARs.

FOOD FORTIFICATION-RELATED 
DISPARITIES
Food fortification may lead to differential exposure to 
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gov/data-products/food-availability-(per-
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  Vitamin U.S. RDA (mg/d) 1974-1992 amount 1974-2000 amount

(mg/per pound)1 (mg/per pound)1

  Thiamin 1.5    6   5.7
  Niacin               20  80                   76
  Riboflavin 1.7 6.8   6.4
  Vitamin C               60                240  227
  Vitamin B6                 2    8   7.6

Table 2  Fortification recommendations for ready-to-eat 
cereals

1Data are from Reference 34. RDA: Recommended dietary allowance.

  Nutrient ML1 TF2 TF/ML PF2 PF/ML

  Macronutrients
     Protein (g)     1.8    2.71 1.5     3   1.7
     Fat (g)     3.3    5.27 1.6    5.43   1.7
  Vitamins
    Vitamin B1 (μg) 40 100 2.5 250   6.3
    Vitamin B2 (μg) 60 150 2.5 620 10.3
    Niacin (nicotinamide, μg)    250   1050 4.2   5000 20.0
    Vitamin B6 (μg) 35   60 1.7 250   7.1
    Vitamin B12 (μg)   0.15    0.25 1.7    0.55   3.7
    Vitamin C (mg)   8     9 1.1   37   4.6
    Biotin (μg)     1.5  4.4 2.9   37 24.7
    Pantothenic acid (mg)    300 450 1.5   1900   6.3
    Folic acid (μg)        4   15 3.8   37   9.3
    Vitamin A (IU)     250 300 1.2   1250   5.0
    Vitamin D (IU) 40   60 1.5 150   3.8
    Vitamin E (IU)     0.7  1.5 2.1     4   5.7
    Vitamin K (μg)   4     8 2.0   12   3.0

Table 3  The minimum limit for infant formulas in the 
United States and commercially labeled values of nutrients 
(per 100 kcal)

1The minimum limit for nutrients set by the United States Infant Formula 
Act of 1980[40]; 2Similac formulas (http://abbottnutrition.com/brands/
similac). ML: Minimum limit; TF: A similac formula for term infants (Simi-
lac Expert Care® 24 Cal With Iron); PF: A Similac formula for low-birth-
weight infants and premature infants (Similac® Special Care® 20 With Iron).

Zhou SS et al . Excess vitamins and obesity



4 February 15, 2014|Volume 5|Issue 1|WJD|www.wjgnet.com

in developed countries[34,47], which may lead to a higher 
intake of  synthetic vitamins in low SES groups than in 
high SES groups in these countries[47,48]. In contrast, in 
developing countries, those who live in urban areas may 
consume more fortified foods than those who live in ru-
ral areas[49,50]. Infant formula milk (Table 3) and children 
foods (e.g., ready-to-eat cereals[34]) are highly fortified with 
vitamins. Thus, infants fed formula milk and children are 
likely to have excess vitamin intake, as reported in the lit-
erature[51-54]; and (3) Different tolerance to fortified foods 
among population groups. Water-soluble vitamins can be 
eliminated through sweat[27,28]. Thus, under the same con-
ditions of  high vitamin intake, people who often sweat 
(e.g., doing physical work and/or living in hot regions) 
may have a lower risk of  excess accumulation of  water-
soluble vitamins in the body than those who rarely sweat 
(e.g., living a sedentary life and/or in cold regions).

VITAMIN FORTIFICATION AND OBESITY 
PREVALENCE
Although there are few studies linking the increased 
prevalence of  obesity to vitamin fortification, existing 
evidence suggests that high-risk populations are those 
who are most likely to have an increased intake of  syn-
thetic vitamins and decreased vitamin elimination, e.g., 
populations in fortified countries[6], individuals with low 
SES in developed countries[6-10] or with high SES in devel-
oping countries[11,12,55], formula-fed infants[15-17], and those 
who live in fortified countries with less rigorous physical 
activity[56-59].

The prevalence of  obesity varies from country to 
country. It seems that this variation may be related to dif-

synthetic vitamins. The major differences include: (1) 
Different vitamin exposure among countries. Food 
fortification has caused significant differences in daily 
synthetic-vitamin consumption among countries due 
to different fortification policies and fortification stan-
dards[19], as shown in Table 4. Nationwide exposure to 
fortified foods in developing countries occurs much later 
than in developed countries[19], e.g., it was not until 1994 
that China began mandatory fortification[41]; (2) Differ-
ent vitamin exposure among groups within countries. 
Wheat flour is fortified with B vitamins. Thus, those who 
use wheat flour products as staple foods possibly con-
sume a higher amount of  synthetic B vitamins. Vitamin-
fortified foods are cheaper than fresh and natural foods 
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  Country Food policy Standard (mg/kg flour, min) Obesity rate 

Niacin Vitamin B1 Vitamin B2 in children
  Canada Mandatory1 52.9 6.4 4 9-104

  United 
  States

Mandatory1 52.9 6.4 4 6.85

  Kuwait Mandatory1 52.9 6.4 4         14.66

  Saudi 
  Arabia

Mandatory1 52.9 6.4 4  6-6.77

  United 
  Kingdom

Mandatory1    16 2.4 0 5.15

  Finland Prohibited2      0        0 0 2.55

  Norway Prohibited2      0        0 0 2.25

  France Prohibited3      0        0 0 1.65

Table 4  Obesity rate in selected countries with different 
wheat flour fortification policies

1Reference 36; 2Reference 19; 3Reference 42; 4Reference 43, children (7-13 
years) in 1996; 5Reference 44, children (10 to 16 years) in 2001-2002; 6Refer-
ence 45, children (10 to 14 years) in 2005-2006; 7Reference 46 Children (1 to 
18 years).
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ferent food fortification policies and standards among 
countries. As shown in Table 4, the ranking of  countries 
according to their prevalence of  child obesity is similar to 
the ranking by the fortification standards of  B vitamins. 
Evidently, flour fortification prohibited countries have a 
low prevalence of  obesity, while countries with high flour 
fortification standard have high rates of  obesity. Over the 
past few decades, food fortification has spread from de-
veloped countries to developing countries[19]. Therefore, 
it is possible that the spread of  obesity from developed 
countries to developing countries may reflect the time se-
quence of  implementing food fortification with vitamins.

Implementation of  a vitamin fortification policy in a 

country will surely cause a sudden nationwide increase in 
vitamin intake in a short period. The initiation of  food 
fortification with B vitamins in the late 1930s-1940s 
and the update of  fortification standards in the 1970s in 
developed countries led to three phases in the consump-
tion of  vitamin B1, B2 and niacin: a rapid increase in the 
1940s, followed by a plateau period between the 1950s 
and the 1960s and a steep increase thereafter, as shown in 
Figure 2. Available evidence has suggested an association 
between these food events and the prevalence of  obesity. 
Two birth cohort studies conducted in Switzerland[60] and 
Denmark[61] showed that there was a significant increase 
in the prevalence of  being overweight and obesity which 
occurred mainly in the cohorts born in the 1930s and 
the 1940s and in the cohorts born in the late 1960s to 
the 1970s. A Fels longitudinal study also showed that the 
child obesity epidemic in the United States is a sudden 
event that started in the 1970s and the 1980s[62]. A similar 
phenomenon is also seen in Saudi Arabia. Saudi Arabia 
started wheat flour fortification in the 1970s[63]. Following 
its food system change, Saudi Arabia experienced a rapid 
increase in obesity rates in the 1980s and the 1990s, and 
its obesity rate in schoolboys sharply increased from 3.4% 
in 1988 to 24.5% in 2005[64]. Our ecological studies clearly 
showed that there are strong lagged correlations between 
United States per capita consumption of  B vitamins (B1, 
B2 and niacin) and the prevalence of  obesity and diabe-
tes[25,26]. Figure 3 clearly shows that both the initiation of  
food fortification in the 1940s and the update of  fortifi-
cation standards in 1974 are followed by a sharp increase 
in diabetes prevalence. The update of  fortification stan-
dards followed a sharp rise in obesity prevalence.

As mentioned above, low SES groups in developed 
countries but high SES groups in developing counties 
may have a high synthetic vitamin intake from fortified 
foods. This may explain the findings that obesity is more 
prevalent in low SES groups in developed countries[6-10] 
but in high SES groups in developing countries[10-12,55]. 
Formula-fed infants have a high vitamin intake. Studies 
have demonstrated that formula-fed infants have a higher 
plasma level of  vitamins compared with human milk-
fed infants[51-53]. It is known that formula feeding[65-67] and 
micronutrient-fortified human milk feeding[68,69] can lead 
to rapid infant weight gain, a known major risk factor for 
children developing obesity[70-72]. Therefore, excess vita-
min intake may mediate the link between formula feeding 
and childhood obesity.

In most developed countries, the energy expenditure 
needed for daily life has decreased since the beginning 
of  the 20th century because of  increasing mechaniza-
tion, urbanization, motorization and computerization[4]. 
However, it is only since the 1970s, when food fortifica-
tion standards were dramatically increased, that obesity 
prevalence has risen substantially. Moreover, although 
formula feeding is associated with an increased risk for 
obesity[15-17], there is no evidence indicating that there is 
a decrease in energy expenditure in formula-fed infants 
compared with breast-fed infants[73,74]. Instead, evidence 
shows that formula-fed infants may have higher total 
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daily energy expenditure[13,14]. These data suggest that 
increased B vitamin intake rather than decreased energy 
expenditure may play a major role in the development of  
obesity. On the other hand, many studies, especially those 
conducted in highly B vitamin fortified countries, such as 
the United States[56], Canada[57], Saudi Arabia[58] and Ku-
wait[59], found that moderate to vigorous physical activity 
is associated with a reduced risk of  obesity. It is proposed 
that this association may involve increased elimination 
of  vitamins through sweat because moderate to vigorous 
physical activity can increase the sweat rate[28]. We have 
demonstrated that excess nicotinamide can be rapidly re-
moved through sweating[75]. Sweat-mediated elimination 
of  nicotinamide may be a crucial factor in preventing nic-
otinamide toxicity because human kidneys hardly excrete 
nicotinamide due to the reabsorption of  renal tubules[76]. 
Therefore, it is conceivable that under the same condi-
tions of  high vitamin intake, those individuals who live a 
life that inhibits the activity of  sweat glands (e.g., physical 
inactivity) may be at greater risk of  obesity. From this 
point of  view, black people should be more sensitive to 
excess vitamins than whites, because the activity of  sweat 
glands of  blacks is lower than that of  whites in the same 
temperature environment[77]. There is evidence show-
ing that black women may have lower levels of  physical 
activity than black men[78]. This may explain why obesity 
prevalence is greater in blacks, especially black women, 
than in whites in the United States[79,80]. Taken together, 
it may be concluded that food fortification-induced high 

intake of  vitamins, especially B vitamins, may be respon-
sible for the increased global prevalence of  obesity.

MECHANISM OF EXCESS VITAMINS-
INDUCED OBESITY
Many vitamins are known to act as coenzymes or as parts 
of  enzymes responsible for essential chemical reactions, 
e.g., the synthesis of  fat and neurotransmitters. Excess 
vitamins may also affect the degradation of  neurotrans-
mitters and one-carbon metabolism. Therefore, excess 
vitamins may trigger obesity through multiple ways, in-
cluding increasing fat synthesis, causing insulin resistance, 
disturbing neurotransmitter metabolism and inducing 
epigenetic changes.

B vitamins enhance fat synthesis
Obesity involves an accumulation of  excess body fat. 
Early studies have already demonstrated that B vitamins 
play a crucial role in fat synthesis and there is a synergis-
tic effect of  B vitamins on fat synthesis. Vitamin B1 and 
B6 are required for the synthesis of  fat from carbohydrate 
and protein[21-23] and their effects on fat synthesis are 
enhanced by the presence of  other B vitamins. Vitamin 
B6 administered together with B1, B2 and B5 (panto-
thenic acid) resulted in a significant increase in body fat 
in rats[22]. Niacin has been found to increase daily feed 
intake, weight gain and percentage of  abdominal fat in 
chicken when increasing supplementation from 0 to 60 
mg nicotinic acid per kilogram diet[24]. It has been found 
that formula feeding leads to more fat gain, which may 
account for increased risk of  later obesity[81,82]. Consider-
ing that formulas contain high levels of  B vitamins (Table 
3) that are a known factor increasing fat synthesis, we 
therefore propose that formula feeding-induced fat gain 
may be due to excess vitamins. Taken together, existing 
evidence suggests that excess vitamins, especially B vita-
mins, may play a role in the development of  obesity.

Excess vitamins cause insulin resistance
Insulin resistance, a characteristic of  obesity and type 
2 diabetes[83], is a condition in which the tissues of  the 
body do not respond appropriately to normal levels of  
insulin. It is known that glycemic and insulin responses 
are related to food. Foods can be classified by their gly-
cemic index (GI, a relative measure of  the incremental 
glucose response per gram of  carbohydrate)[84]. Figure 
4 shows the different glycemic and insulin responses to 
low GI food and high GI food. The typical glycemic re-
sponse to high GI foods is a biphasic response, with an 
initial significantly higher blood glucose and insulin level 
(hyperglycemic phase) followed by significantly lower 
blood glucose level (postprandial reactive hypoglycemic 
phase)[85-87]. Postprandial reactive hypoglycemia stimulates 
appetite and may lead to increased caloric intake[86,88,89]. 
Therefore, it may be particularly important to understand 
how high GI foods induce a biphasic glycemic response.

Grain foods are a major source of  carbohydrates. 
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Historically, high grain intake was associated with a low 
incidence of  obesity. However, over the past few decades, 
refined (processed) grains became high GI foods[86,90,91]. 
Many processed grains (e.g., white bread) produce even 
higher glycemic responses than simple sugars[86]. It seems 
that the effect of  refined grains is not merely a matter of  
increased rate of  digestion and absorption of  carbohy-
drate, but a matter of  increased insulin resistance. Grain 
foods are used as a vehicle of  B vitamin fortification. 
Therefore, it is possible that the increased GI of  pro-
cessed grains may be due to their increased levels of  B 
vitamins. Among the B vitamins fortified in foods, niacin 
is known to induce insulin resistance and glucose intoler-
ance[92-95]. Nicotinamide is the most common form of  
niacin used in food fortification and infant formula sup-
plementation (e.g., Table 3). A study compared the glyce-
mic and insulin responses of  healthy subjects to glucose 
alone and glucose plus nicotinamide. The result showed 
that glucose plus nicotinamide significantly increased the 
levels of  plasma insulin and hydrogen peroxide [a major 
component of  reactive oxygen species (ROS)], followed 
by reactive hypoglycemia and hunger[26]. This study sug-
gested for the first time that drinking nicotinamide-
containing sugar-sweetened beverages may induce insulin 
resistance and nicotinamide fortification may contribute 
to the increased GI of  refined grains.

It is known that increased ROS levels (i.e., oxidative 
stress) may play a causal role in insulin resistance[96,97]. We 
therefore hypothesize that oxidative stress may mediate 
the effect of  nicotinamide. The mechanism may be as 
follows. After glucose and nicotinamide are absorbed into 

the circulation, increased blood glucose level stimulates 
insulin secretion, while increased nicotinamide level may 
induce oxidative stress due to increased ROS generation 
(as found in Ref  26), leading to a decrease in cell func-
tions, including insulin signaling (i.e., insulin resistance). 
This results in a sharp increase in the level of  blood glu-
cose, which stimulates more insulin release (hyperglycemic 
phase). The clearance of  ROS is more rapid than that of  
insulin. With the rapid clearance of  ROS, cell response to 
insulin recovers quickly and as a result, the uptake of  glu-
cose by tissues (including adipose tissue) increases rapidly 
in response to relatively high insulin, which thus leads to 
a rapid fall in the level of  blood glucose (hypoglycemic 
phase). Hypoglycemia initiates the feeling of  hunger 
and subsequent feeding behavior. As mentioned above, 
B vitamins promote fat synthesis from carbohydrates. 
Thus, the cooperation of  increased glucose uptake in the 
hypoglycemic phase and increased fat synthesis by high 
levels of  B vitamins may induce excess fat storage and 
subsequent obesity (Figure 5). Unfortunately, the insulin 
resistance-inducing and obesity-promoting effects of  B 
vitamins might have long been underestimated because 
traditional laboratory tests (e.g., glucose tolerance test) 
are usually performed under fasting conditions, in which 
most, if  not all, of  increased ROS produced in the deg-
radation of  excess vitamins must have been cleared up 
after overnight fasting. For example, we found that oral 
nicotinamide (300 mg) induced increase in circulating hy-
drogen peroxide had returned to normal at 3 h[26].

It has been demonstrated in rats that the weight/fat 
gain-promoting effect of  B vitamins is more efficient 
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Figure 5  Proposed mechanism of excess vitamins-induced obesity. The absorption of sugar stimulates the release of insulin, while absorbed excess vitamins (from 
vitamin-fortified foods and drinks) generate ROS, leading to a decrease in the sensitivity of peripheral tissues to insulin (i.e., insulin resistance). To compensate the 
insulin resistance, additional insulin has to be secreted, resulting in a high blood insulin level. Then, the sensitivity of peripheral tissues recovered with the rapid clear-
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formulas) and drinks may cause fat accumulation in the body and subsequent obesity. ROS: Reactive oxygen species; RSS: ROS scavenging system.
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when given in successive doses (added to the diet, like 
human food fortification) than in periodic doses[98]. 
This may explain why obesity prevalence significantly 
increased after the implementation of  grain fortification 
with B vitamins. Because consumption of  B vitamins-
fortified foods may increase the burden of  pancreatic 
islet B-cells, it is conceivable that obesity is closely as-
sociated with type 2 diabetes. In addition, other vitamins, 
even those that have antioxidant function (e.g., vitamin 
C and E[99]), when used in large doses can increase ROS 
generation. Thus, high consumption of  other vitamins 
may also contribute to the development of  obesity. The 
relationship between dietary carbohydrates, excess vi-
tamins, oxidative stress, insulin resistance, postprandial 
hypoglycemia, increased appetite and the development of  
obesity is proposed in Figure 5.

From the excess vitamin point of  view, it may be easy 
to understand why the price of  fast food, which deter-
mines the consumption of  synthetic vitamins from fast 
food, may affect the body mass index of  teens with low 
SES[100] and why vitamin-rich formulas[15-17] and sugar-
sweetened beverages may increase the risk for obesity 
and type 2 diabetes[17,37,101,102]. It is interesting that some 
overweight children become overweight adults, while oth-
ers do not[103]. One possible explanation for this may be 
a changing vitamin intake during the lifetime. Whether 
obese infants become obese children and then obese 
adults may to a large degree depends on the intake of  
vitamins after weaning. In theory, infants, even with nor-
mal body weight, may become obese adults if  they always 
consume high vitamin-fortified foods (e.g., refined grains) 
after weaning. We therefore recommend that the role of  
vitamin intake be taken into consideration in the study of  
the relationship between infant obesity and later obesity.

Excess vitamins may disturb neurotransmitter 
metabolism
Food intake is regulated by many neurotransmitters, in-
cluding monoamine neurotransmitters (e.g., dopamine and 
serotonin[104,105]) in the central nervous system. Therefore, 
factors that affect monoamine neurotransmitters may af-
fect feeding behavior. Some vitamins are known to play 
an important role in the synthesis of  monoamine neu-
rotransmitters (serotonin and catecholamines). For ex-
ample, vitamin B6 is a cofactor for aromatic L-amino acid 
decarboxylase that catalyzes the formation of  serotonin 
and dopamine[106]. Vitamin C enhances norepinephrine 
synthesis from dopamine by neuronal cells[107]. L-methyl-
folate, a derivate of  the vitamin folate, also regulates the 
synthesis of  the monoamine neurotransmitters serotonin, 
dopamine and norepinephrine[108].

Although small amount of  vitamins can be directly 
eliminated through the urine, sweat[27,28,75] and sebum (such 
as vitamin E[29,30]), most of  them usually undergo a se-
ries of  phase Ⅰ (oxidation, reduction and hydrolysis) and 
phase Ⅱ (conjugation, including glutathione conjugation, 
sulfation, methylation and glucuronidation) biotransfor-
mation before elimination from the body. As a result, 
vitamin degradation produces many metabolites. For 

example, at least 18 metabolites of  vitamin B1 are identi-
fied in the urine, of  which six are major[109]. Niacin is de-
graded mainly to a number of  methylated metabolites[110]. 
Vitamin C is degraded through sulfation[111] and glutathi-
one conjugation[112]. Vitamin E also undergoes extensive 
metabolism and its conjugated metabolites (including 
sulfated) are also identified[113]. Because vitamins and 
neurotransmitters share the same biotransformation and 
detoxification system in the body[106,114], excess vitamins 
may affect the degradation of  neurotransmitters by com-
peting for the detoxification resources. For example, vi-
tamin C has been known to inhibit the sulfation of  other 
chemicals by competing for limited sulfate[111]. Although 
there are no systematic studies on the effect of  vitamin 
fortification on the degradation of  neurotransmitters, ev-
idence has shown that excess vitamin C[115,116] and nicotin-
amide[117] can inhibit the degradation of  catecholamines 
by depletion of  sulfate and methyl groups, respectively. 
Thus, in theory, the effect of  vitamins on the metabolism 
of  monoamine neurotransmitters may affect the function 
of  the nervous system. It is known that niacin can stimu-
late appetite. Niacin deficiency (i.e., pellagra) is associated 
with a loss of  appetite[118], which might involve changes 
in neurotransmitter metabolism in the brain.

Excess vitamins-induced obesity may involve epigenetic 
changes
Epigenetic changes are biochemical modifications that 
affect gene expression without changing the sequence 
of  DNA. Emerging evidence suggests that epigenetic 
mechanisms may play a role in the development of  obe-
sity[119]. Epigenetic mechanisms involve an environment-
gene interaction[120,121]. Nutrition is a crucial environmen-
tal factor which affects health and disease. Both maternal 
undernutrition and overnutrition can induce persistent 
changes in gene expression and metabolism[120]. Over the 
past few decades, one of  the biggest changes in our food 
system has been the extensive use of  synthetic vitamins. 
Therefore, it is possible that excess vitamin intake may 
contribute to epigenetic changes.

DNA methylation, which occurs at cytosine residues 
in CpG dinucleotides in gene promoters, is one of  sev-
eral epigenetic modifications[122]. The primary function of  
DNA methylation is to suppress gene expression. Global 
DNA hypomethylation increases genomic instability[122]. 
Although the mechanism of  global DNA hypometh-
ylation is not well understood, a lack of  methyl groups 
may play a role in abnormal DNA methylation, because 
an adequate supply of  methyl groups is a prerequisite for 
DNA methylation[123]. The biotransformation of  some vi-
tamins, especially niacin[117], may increase the demand for 
labile methyl groups and therefore, an excess intake of  
these vitamins may disturb DNA methylation by compet-
ing methyl groups. Recently, we tested this possibility by 
investigating the effect of  nicotinamide supplementation 
on DNA methylation in rats and found that long-term 
high nicotinamide exposure led to a decrease in the meth-
yl pool and in the levels of  hepatic DNA methylation as-
sociated with alteration of  gene expression[123]. Moreover, 
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maternal nicotinamide supplementation is also found 
to disturb fetal one-carbon metabolism in rats, includ-
ing decreased global DNA methylation and decreased 
DNA uracil content in the brain and liver[124]. These data 
indicate that excess vitamins may be an important factor 
leading to epigenetic changes. The role of  vitamin fortifi-
cation in the development of  methylation-related diseases 
is an open question.

NON-MONOTONIC EFFECT OF VITAMINS 
ON WEIGHT GAIN
Although it is known that B vitamins promote fat syn-
thesis and vitamin-fortified foods and formulas increase 
the risk for obesity, why is there so little attention to the 
relationship between excess vitamin intake and obesity 
prevalence? A possible reason may be due to ignorance 
of  the fact that the effect of  vitamins on weight gain is 
non-monotonic. While vitamins are an important weight 
gain-promoting factor, at toxic levels they are no longer 
associated with weight gain or even cause weight loss.

It has long been known that many micronutrients 
(vitamins and minerals) are essential for life at low con-
centrations but become toxic at high concentrations. This 
phenomenon is termed Bertrand’s rule[125]. The effect of  
vitamins on weight gain also follows this Bertrand’s rule. 
We may take the weight-gain effect of  niacin as an ex-
ample. Jiang and colleagues[24] investigated the effects of  
dietary supplemental nicotinic acid at different doses (0, 
30, 60 and 120 mg/kg diet) on the growth performance 
of  chicken. They found that increasing supplementation 
from 0 to 60 mg nicotinic acid/kg tended to increase 
the average daily feed intake, weight gain and fat gain, 
i.e., the maximum weight and fat gain was achieved at 60 
mg/kg diet. Ivers and Veum found that among the doses 
used (6, 10, 14, 18, 22 and 44 mg/kg diet with adequate 
Trp), 14 mg of  niacin/kg produced maximum weight 
gain in growing pigs[126]. Shibata et al[127] studied the ef-
fect of  nicotinamide at doses of  0, 60, 1000 and 5000 
mg/kg diet on rat weight gain. Their result showed that 
nicotinamide increased the food intake of  rats, especially 
in the groups fed diet containing 60 and 1000 mg/kg of  
nicotinamide. The highest weight gain was observed at 
60 mg/kg, while high-dose nicotinamide (5000 mg/kg 
diet) led to an inhibition of  weight gain at the early stage 
of  exposure due to its toxicity. These animal studies sug-
gest that the supplemental dose for niacin to achieve 
maximum weight-gain effect may be around or less than 
60 mg/kg diet. This dose is similar to that used in wheat 
flour fortification in some countries, e.g., the United 
States, Canada, Saudi Arabia and Kuwait (Table 4). Thus, 
food fortification with niacin in these countries might 
have induced a maximum weight gain effect. In this case, 
further supplementation with niacin or niacin-containing 
multivitamin may offset the weight gain effect due to 
increased toxic effects, such as hepatotoxicity[128-131] and 
oxidative tissue damage[123]. This may account for the ob-
servations that further multivitamin supplementation in 
the United States[132] and Canada[133] or large-dose niacin 

treatment for dyslipidemia (1-3 g/d)[134,135] does not show 
weight gain.

Some other vitamins at high doses may also have toxic 
effects, including death. Davis et al[136] found that sudden 
infant death syndrome (a sudden and unexplained infant 
death) was association with high serum thiamin levels. A 
randomized controlled trial on vitamin C supplementa-
tion in very preterm infants showed that the infants who 
died in the trial were those who had significantly higher 
level of  plasma vitamin C before randomization than sur-
viving infants[137]. A systematic review and meta-analysis 
showed that long-term supplementation with beta caro-
tene, vitamin A and vitamin E may increase mortality[138]. 
Therefore, it is not surprising that multivitamin supple-
mentation in those who live in high-dose vitamin-forti-
fied countries, e.g., the United States[132] and Canada[133], 
may be associated with a slight weight loss. A similar phe-
nomenon has been also observed in formula-fed infants. 
It has been found that formula feeding can lead to a 
more rapid weight gain, especially fat gain[81,82], compared 
to human milk feeding[17,65,67]. However, when formulas 
were further enriched with vitamins, their weight-gain ef-
fect was decreased rather than increased, compared with 
the standard formulas[139]. It seems clear that the weight-
gain effect of  vitamins has already been saturated at forti-
fication doses used in infant formulas, children and adult 
foods, while further increasing the doses (i.e., fortification 
plus additional supplementation) may induce a weight-
loss effect due to the toxic effect. Considering that high 
vitamin intake which may cause hepatotoxicity (e.g., nia-
cin, as mentioned above) is very popular nowadays, we 
suggest that high vitamin intake may contribute to non-
alcoholic fatty liver disease, the most frequent chronic 
liver disease in developed countries[140].

CONCLUSION
Since the late 1930s, when synthetic vitamins were 
first used, the human being has experienced the largest 
growth in vitamin intake in human history. It is possible 
that excess vitamins, especially B vitamins, may contrib-
ute to the development of  obesity. Vitamin-rich formulas 
and food fortification with vitamins may, to a large ex-
tent, be responsible for the increased prevalence of  obe-
sity over the past several decades. Different fortification 
policies and standards may account for the differences 
in the prevalence between countries, while disparities in 
the consumption of  fortified foods may contribute to the 
disparities in obesity between population groups within 
a country. Staple food fortification may be of  great harm 
because it leads to a sustained high vitamin intake. There-
fore, given that there has been a significant increase in 
vitamin supply from natural sources, it is necessary and 
urgent to review and modify the standards of  vitamin 
fortification.
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Abstract
While insulin-like growth factor Ⅰ is a well-known ana-
bolic agent in bone evidence is beginning to accumu-
late that its homologue, insulin, also has some anabolic 
properties for bone. There is specific evidence that 
insulin may work to stimulate osteoblast differentiation, 
which in turn would enhance production of osteocalcin, 
the osteoblast-produced peptide that can stimulate 
pancreatic β cell proliferation and skeletal muscle insu-
lin sensitivity. It is uncertain whether insulin stimulates 
bone directly or indirectly by increasing muscle work 
and therefore skeletal loading. We raise the question 
of the sequence of events that occurs with insulin re-
sistance, such as type 2 diabetes. Evidence to date 
suggests that these patients have lower serum concen-
trations of osteocalcin, perhaps reduced skeletal load-
ing, and reduced bone strength as evidenced by micro-
indentation studies.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Type 2 diabetes; Insulin; Bone; Osteo-
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Core tip: This is a review of recent publications that 
suggest an anabolic loop among bone, pancreas, and 
skeletal muscle.
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INTRODUCTION
The interactions between insulin and bone would on the 
surface appear to be an unlikely subject for an article, let 
alone a review article, but with the advent of  the knock-
out mouse model many relationships that would not have 
been obvious now require investigation. The aim of  this 
paper is to provide evidence supporting an anabolic loop 
including the pancreas, skeletal muscle, and bone.

GROWTH FACTOR
We do not want to confound the anabolic effects of  
insulin with those of  insulin-like growth factor (IGF)-1, 
although the homology of  molecular structure of  both 
molecules may in fact account for some of  the anabolic 
effects of  insulin on bone. It should be emphasized at 
this point that insulin is synthesized in the pancreatic β 
cells while endocrine IGF-1 is synthesized in the liver. 
The stimuli for insulin production include glucose and, 
as we will see, osteocalcin, while endocrine IGF-1 is syn-
thesized by liver in response to growth hormone and the 
paracrine IGF-1 produced by bone cells, including pre-
osteoblasts and osteoblasts, osteocytes and osteoclasts[1,2] 
is synthesized in response to stimuli that have not yet 
been clarified.

While there are copious reports of  the anabolic ef-
fects of  IGF-1 on bone there is a growing amount of  
data suggesting that insulin itself  has an anabolic effect 
on bone. Suggestions of  this effect came from studies 
involving burned children in which a hyperinsulinemic, 
euglycemic clamp was employed resulting in an increase 
in both lean body mass, often indicative of  muscle mass, 
and bone mass at time of  hospital discharge compared 
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to controls, usually between 6 wk to 3 mo post-burn[3]. 
Moreover, both pre-osteoblasts and osteoblasts manifest 
different isoforms of  the insulin receptor (IR), with IRA 
being expressed in pre-osteoblasts and IRB being ex-
pressed in mature osteoblasts[4]. This specificity suggests 
that insulin is a critical element in osteoblast differentia-
tion from marrow stromal cells. This may have signifi-
cance in the generation of  the osteoblast peptide osteo-
calcin, which, as we shall see, has major implications for 
glucose metabolism. Whether the direct effect of  insulin 
on osteoblasts has clinical significance, however, is not 
entirely clear. This is in part because the abovementioned 
report on hyperinsulinemia demonstrated increases in 
both lean body mass and bone mass[3].

INSULIN
The other side of  this proposed loop is the effect of  
bone on insulin. The stimulus for the work that pro-
duced these findings is the knockout mouse model. In 
this model a significant contribution has been made by 
Wei et al[5] who have most recently reported that osteo-
calcin stimulates β cell replication in the pancreas via a 
cyclin D1-dependent mechanism utilizing the G-protein 
coupled receptor family C group 6 member A receptor 
expressed by these cells. This stimulation occurs during 
both peak β cell proliferation, which occurs in the perina-
tal period and in adult mice[5]. Moreover, they described 
the effects of  daily osteocalcin injections in obese type 
2 diabetic mice reporting an increase in the number of  
mitochondria in skeletal muscle as well as an increase in 
energy expenditure[6], indicating that osteocalcin can also 
increase muscle work by increasing insulin sensitivity.

Thus these recent data would suggest that under 
normal conditions insulin may stimulate osteoblast dif-
ferentiation in order to produce more osteocalcin, which 
would then stimulate more insulin production by the 
pancreas and greater insulin sensitivity of  skeletal muscle. 
There are also some recent clinical correlates of  these 
studies in adults. In a recent study Díaz-López et al[7] 
performed a case-control study of  153 diabetic subjects 
and 306 individually matched controls and found that 
both the carboxylated and undercarboxylated forms of  
osteocalcin were lower than matched controls and that 
carboxylated osteocalcin concentrations were inversely 
associated with a model assessment of  insulin resistance 
and fasting glucose concentrations. Another report by 
Gower et al[8] indicated that in obese individuals total os-
teocalcin was directly associated with skeletal muscle but 
not hepatic insulin sensitivity while undercarboxylated 
osteocalcin was associated with β cell function in those 
with abnormal fasting glucose concentrations.

BONE
A major unanswered question is exactly what happens 
to bone in cases of  peripheral insulin resistance? Are the 
IRs in pre-osteoblasts and osteoblasts down-regulated? 
We know that osteocalcin levels are lower in type 2 dia-

betics[7,8]. In addition, we know that insulin resistance is 
also caused by factors that cause bone resorption, such as 
the interleukin-6-mediated chronic low grade inflamma-
tion that contributes to non-alcoholic fatty liver disease 
(NAFLD)[9] and excessive glucocorticoid production, 
another significant contributor to NAFLD[10]. However, 
we do not at this point know precisely how peripheral 
insulin resistance affects bone. One conjecture would be 
that if  muscles expend less energy due to their inability to 
take up glucose then muscle strength may be reduced and 
skeletal loading may also be consequently decreased. This 
scenario could explain abnormalities in bone with type 2 
diabetes. Were this to be so then bone loss would result 
in reduced production of  osteocalcin and a perpetuation 
of  the problem of  peripheral insulin resistance.

So, why has bone loss with type 2 diabetes been so 
difficult to determine up to now? As summarized by 
Ferrari[11] in a review article on diabetes and osteoporo-
sis, bone mineral density (BMD) may not be reduced in 
this condition inasmuch as weight and fat mass must be 
factored into the BMD determinations. The probability 
of  fracture as assessed by use of  the on-line FRAX tool 
developed by the World Health Organization may also 
underestimate fracture risk in this condition. As evi-
dence that this may indeed be the case a recent report by 
Hothersall et al[12] examined the files of  all hip fractures 
in Scotland from 2005-2007 and the prevalence of  both 
type 1 and type 2 diabetes in this population. While there 
was a significant correlation between hip fractures and 
type 1 diabetes, in which insulin deficiency is the issue, 
there was no overall increased risk of  hip fracture in type 
2 diabetes, according to this review. The investigators 
do, however, state that these findings do not rule out 
increased risk in sub-groups of  type 2 diabetics. While 
we have demonstrated that osteocalcin, also a marker of  
bone formation, is lower in patients with type 2 diabetes, 
not all markers of  bone formation or resorption are con-
sistent. For example, Chen et al[13] found that while os-
teocalcin was lower in diabetics vs controls, there was no 
difference in bone specific alkaline phosphatase. Similarly 
while Bhattoa et al[14] found that urinary cross-laps, a re-
sorption marker, was lower in type 2 diabetics vs controls 
while Chen et al[13] found that urinary hydroxyproline was 
elevated.

A new development, however, has shed some light on 
this problem. In a study that has been Epublished ahead 
of  print, Farr et al[15] have reported the use of  in vivo mi-
croindentation of  the tibia as an index of  bone strength. 
In this study of  60 post-menopausal women, half  of  
whom had type 2 diabetes, this technique demonstrated 
decreased bone strength in the diabetic women.

Much more work needs to be done to follow up on 
these findings but clearly the greater chance of  micro-
cracks in the bones of  insulin-resistant diabetics may not 
be detected by bone density determinations.

Therefore, for those who care for diabetic patients, 
the complications involving bone have been subtle and 
difficult to detect but as more attention is being paid to 
this area the pathogenesis of  the bone problem should 
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be more clearly elucidated and new therapeutic targets 
identified.
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Abstract
Cardiac autonomic neuropathy (CAN) is an often over-
looked and common complication of diabetes mel-
litus. CAN is associated with increased cardiovascular 
morbidity and mortality. The pathogenesis of CAN is 
complex and involves a cascade of pathways activated 
by hyperglycaemia resulting in neuronal ischaemia and 
cellular death. In addition, autoimmune and genetic 
factors are involved in the development of CAN. CAN 
might be subclinical for several years until the patient 
develops resting tachycardia, exercise intolerance, pos-
tural hypotension, cardiac dysfunction and diabetic car-
diomyopathy. During its sub-clinical phase, heart rate 
variability that is influenced by the balance between 
parasympathetic and sympathetic tones can help in de-
tecting CAN before the disease is symptomatic. Newer 
imaging techniques (such as scintigraphy) have allowed 
earlier detection of CAN in the pre-clinical phase and 

allowed better assessment of the sympathetic nervous 
system. One of the main difficulties in CAN research 
is the lack of a universally accepted definition of CAN; 
however, the Toronto Consensus Panel on Diabetic 
Neuropathy has recently issued guidance for the diag-
nosis and staging of CAN, and also proposed screen-
ing for CAN in patients with diabetes mellitus. A major 
challenge, however, is the lack of specific treatment 
to slow the progression or prevent the development 
of CAN. Lifestyle changes, improved metabolic control 
might prevent or slow the progression of CAN. Reversal 
will require combination of these treatments with new 
targeted therapeutic approaches. The aim of this article 
is to review the latest evidence regarding the epide-
miology, pathogenesis, manifestations, diagnosis and 
treatment for CAN.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Diabetes mellitus; Cardiac; Cardiovascular; 
Autonomic; Neuropathy; Dysfunction; Cardiac auto-
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myopathy; Postural hypotension

Core tip: Cardiac autonomic neuropathy (CAN) is a 
complication of diabetes mellitus that is often under-
diagnosed but can lead to severe morbidity and mor-
tality, due to the associated cardiovascular burden. 
New evidence has emerged surrounding its complex 
pathways, but its full pathogenesis is yet to be under-
stood. CAN manifests in a spectrum of subclinical and 
clinical presentations, ranging from resting tachycardia 
to cardiomyopathy. Heart rate variability and scintigra-
phy have enabled the diagnosis at a subclinical stage, 
thus providing the opportunity for better prevention 
and treatment. However, no definite therapeutic ap-
proaches have been adopted to date, emphasizing the 
need for newer targeted treatments.
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INTRODUCTION
Diabetes mellitus (DM) is a global epidemic affecting 
at least 8.3% of  the global population and 371 million 
people worldwide with a significant proportion (50%) 
remaining undiagnosed. It is estimated that almost one 
in six people are currently at risk of  developing diabetes-
related complications[1]. Cardiovascular disease (CVD) is 
the leading cause of  mortality and morbidity in patients 
with diabetes and subsequently the primary goal of  dia-
betes treatment is to reduce the burden of  CVD as well 
as the vascular complications associated with diabetes[2,3]. 
Much of  the CVD prevention strategies in patients with 
DM are based on lowering blood pressure and LDL-
cholesterol levels and improving glycaemic control[4-7]. 
Despite that, CVD remains very common and a major 
cause of  mortality and morbidity in patients with DM. 
Hence, better understanding of  pathogenesis of  CVD is 
crucial to develop new therapeutic targets.

Cardiac autonomic neuropathy (CAN) is a very com-
mon and often overlooked diabetes-related complication 
that has a major impact on CVD, mortality and morbidity 
in patients with DM[8,9]. Improving our understanding of  
the pathogenesis of  CAN and its role in CVD, offers the 
potential of  new treatment targets that might reduce the 
burden of  CVD in patients with diabetes. This review 
aims to provide an overview of  the epidemiology, patho-
genesis, cardiovascular consequence, diagnosis, and treat-
ments of  CAN, with particular emphasis on the latest 
developments in the field.

LITERATURE SEARCH STRATEGY
We conducted a review of  the original papers and review 
articles indexed in PubMed, Medline and Google Scholar 
between 1975 and 2013. We have used several terms indi-
vidually or in combination including: diabetes, autonomic 
neuropathy, CAN, cardiovascular, cardiac, autonomic, 
neuropathy, dysfunction. Only articles in English and in 
adult population were reviewed.

DEFINITIONS AND EPIDEMIOLOGY
Based on the CAN Subcommittee of  the Toronto Con-
sensus Panel on Diabetic Neuropathy[10], CAN is defined 
as the impairment of  cardiovascular autonomic control in 
patients with established DM following the exclusion of  
other causes. CAN, especially at the early stages, can be 
sub-clinical and thus as the disease progresses, it becomes 
clinically evident.

The prevalence of  CAN varies between 1%-90% in 

patients with type 1 DM (T1DM) and 20%-73% in pa-
tients with T2DM (Table 1). This huge variation in CAN 
prevalence is due to the inconsistency in the criteria used 
to diagnose CAN and significant differences in the study 
populations, particularly in relation to CAN risk factors 
(such as age, gender and DM duration amongst others).

CAN has been detected at time of  diagnosis of  dia-
betes in patients with either T1DM or T2DM irrespective 
of  age, suggesting that CAN presentation is not limited 
by age or type of  diabetes and can occur before DM is 
evident clinically[11-15]. However, the duration of  diabetes 
is an independent factor for developing CAN irrespective 
to diabetes type[10,16]. CAN is detected in about 7% of  
both T1DM and T2DM at the time of  initial diagnosis[17], 
and it is estimated that the risk for developing CAN in-
creases annually by approximately 6% and 2% in patients 
with T1DM and T2DM respectively[17-19].

Poor glycaemic control is a major risk factor for 
CAN progression[14,19-21]. In the Diabetes Control and 
Complications Trial (DCCT), intensive glycaemic control 
resulted in a 50% decrease in CAN incidence over the 6.5 
years follow-up period[19]. This protective effect persisted 
14 years after the end of  the study despite the disappear-
ance of  HbA1c differences that were achieved between 
the groups during the randomised phase of  trial[18]. Simi-
larly, CAN has been shown to be associated with conven-
tional CVD risk factors, such as hypertension, smoking, 
hyperlipidaemia and obesity[22-24]. In the Steno-2 trial of  
patients with T2DM and microalbuminuria, intensive 
pharmacological intervention targeting hypertension, 
hyperlipidaemia and microalbuminuria combined with 
behavioural treatment (exercise, diet and smoking ces-
sation) reduced the risk of  autonomic neuropathy over 
the course of  a 7.8 years follow-up (HR = 0.37, 95%CI: 
0.18-0.79)[5]. After a mean of  5.5 years following the end 
of  the study, the same protective effect against the devel-
opment of  autonomic neuropathy persisted (RR = 0.53, 
95%CI: 0.34-0.81, P = 0.004). There was also reduction 
in the risk for developing CVD (RR = 0.43, 95%CI: 
0.19-0.94, P = 0.04) and overall mortality (RR = 0.54, 
95%CI: 0.32-0.89, P = 0.02) in this study[25].

Moreover, in a large cohort of  more than 1000 pa-
tients with T2DM the incidence of  CAN over a 7.5 
years follow-up correlated with age (P < 0.001) and mi-
crovascular disease (P = 0.035)[26]. Diabetic nephropathy 
(including microalbuminura), diabetic retinopathy and 
diabetic polyneuropathy have been widely identified as 
clinical predictors of  CAN[23,24,27], which is not surprising 
as diabetic microvascular complications share common 
mechanisms and risk factors. The impact of  gender on 
CAN is controversial. In a multi-centre, cross sectional 
study of  3250 patients with DM, CAN prevalence was 
no different between men and women (35% male vs 37% 
female)[28]. However, in the action to control cardiovascu-
lar risk in diabetes trial including more than 8000 patients 
with T2DM CAN was more prevalent in women (2.6% 
in men vs 4.7% in women for moderate severity CAN 
and 1.4% in men vs 2.2% in women for severe CAN, P < 
0.01 for all three definitions of  CAN in the study)[29].
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tion (Figure 1). Hyperglycaemia and the adverse metabol-
ic environment in patients with DM result in increased 
oxidative and nitrosative stress[17], which can cause direct 
neuronal damage/dysfunction as well as endothelial dys-
function resulting in neuronal ischaemia. Neuronal axons 
are rich in mitochondria which makes them particularly 
susceptible to the direct and indirect effects on oxidative 
and nitrosative stress[32].

Increased oxidative stress results in poly ADP-ribose 
polymerase activation which when coupled with other 
activated downstream pathways including the polyol 
pathway, advanced glycation endproducts produc-
tion, protein kinase C and the hexosamine pathway are 
thought to contribute to glucose toxicity[33-36]. These dif-
ferent pathways can in return exacerbate oxidative stress 
and can induce changes in gene expression, transcrip-
tion factors, diverse cellular products disrupting several 
cellular functions and the communication between the 
cell and the surrounding matrix all of  which leads to 
neuronal dysfunction and death[37-39]. These pathways 
also result in impaired microvascular-- regulation and en-
dothelial dysfunction by different mechanisms, including 
increase in plasminogen activator inhibitor-1 and endo-
thelin-1 production and impairment of  endothelial nitric 
oxide (NO) synthase and NO actions[40,41]. This can lead 
to reduction of  neurovascular perfusion, dysfunction 
and cellular apoptosis[42].

Autoimmunity
The role of  autoimmunity has also been explored par-
ticularly in patients with T1DM. The presence of  com-
plement-fixing antibodies against sympathetic and para-

Ethnicity has also been postulated to be a risk factor 
for CAN as South Asians seem to have lower rates of  pe-
ripheral neuropathy than White Europeans with DM[30]. 
More specifically, the prevalence of  small fibre neuropa-
thy was significantly lower in Indian Asians than in Eu-
ropeans (32% vs 43% respectively, P = 0.03) and mean 
nerve conduction velocity Z scores (measuring large 
fibre neuropathy) were superior in Asians compared to 
Europeans (mean ± SD 0.07 ± -0.62 vs -0.11 ± 0.60, P = 
0.007). However, using heart rate variability (HRV) spec-
tral analysis as well as frequency and time domain analysis 
showed no difference in CAN prevalence between South 
Asians and white Europeans (Tahrani et al, unpublished 
data).

PATHOGENESIS OF CAN
The exact pathogenesis of  CAN is complex and remains 
unclear. Most of  the proposed mechanisms of  neuronal 
injury are based on models of  somatic rather than auto-
nomic neuropathy. Although many of  these mechanisms 
might be shared between autonomic and somatic neurop-
athies, differences do exist as shown by the Steno-2 trial 
(described above) in which the multi-factorial interven-
tion (including intensive metabolic control and lifestyle 
changes) slowed down the progression of  autonomic but 
not somatic neuropathy.

Hyperglycaemia induced neuronal injury and ischaemia
The pathogenesis of  CAN is likely to be multi-factorial[31] 
and to involve several mechanisms and pathways that lead 
to neuronal ischaemia or direct neuronal death/dysfunc-

Hyperglycaemia

   Oxidative and 
Nitrosative stress

DNA damage

PARP activation

GAPDH suppression

Neuronal toxicity
        death

AR activation PKC activation Hexosamine activationAGE production

Vascular occlusion
     endothelial 
     dysfunction
       leakage 
     inflammation

↑ GSH, taurine myo-inositol
↓ NADH

↑ Endothelin-1, TGF-β, VEGF, PAI-1
↓ eNOS

↑ IL-1, TNF-α, TGF-β,VCAM-1
PKC stimulation

↑ N-acetyl glycosamine 
gene expression

Figure 1  Summary of the 
mechanisms that relate hy-
perglycaemia to microvascu-
lar complications in patients 
with diabetes. PKC: Protein 
kinase C; AGE: Advanced 
glycation end-products; PARP: 
Poly ADP-ribose polymerase; 
GAPDH: Glyceraldehyde-3 
phosphate dehydrogenase; 
GSH: Glutathione; NADH: 
Nicotinamide adenine dinu-
cleotide; TGF-β: Transforming 
growth factor; VEGF: Vascular 
endothel ia l  growth factor; 
PAI-1: Plasminogen activator 
inhibitor-1; eNOS: Endothelial 
nitric oxide synthase; IL-1: 
Interleukin 1; TNF-α: Tumour 
necrosis factor-α; VCAM-1: 
Vascular cell adhesion mol-
ecule 1.
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sympathetic tissues in patients with insulin-dependent 
diabetes and their correlation with CAN was described 
in the early 90s[43,44]. In a study of  78 patients with DM, 
the prevalence of  phospholipid autoantibodies (PLA) 
in the patient’s serum was significantly higher in those 
tested positive for autonomic neuropathy (88% of  the 
patients with autonomic neuropathy vs 32% of  those 
without, P < 0.001) and there was a strong correlation 
between the PLA titre and total neuropathy score (r2 = 
0.58, P = 0.0002)[45]. Granberg et al[46] demonstrated in a 
group of  patients with T1DM that patients positive for 
complement-fixing antibodies to the sympathetic gan-
glion, vagus nerve and adrenal medulla had a significant 
higher risk to develop cardiac autonomic dysfunction 
(measured by the E/I ratio during deep inspiration and 
HRV to postural change) over a 6-year follow-up (RR = 
7.5, 95%CI: 1.72-32.80). There are, however, conflict-
ing reports whether these auto-antibodies contribute to 
the pathogenesis of  autonomic neuropathy or represent 
rather incidental findings and can be attributed to auto-
immunity against concurrent conditions, such as thyroid 
disease[47]. A recent study of  mixed T1DM and T2DM 
patients concluded that neither peripheral nor CAN was 
associated with the presence or the levels of  Neuropep-
tide Y Autoantibodies[48].

Residual β -cell function
Several studies have shown a protective effect of  residual 
β-cell function (i.e., C-peptide levels) on the development 
and incidence of  microvascular complications (including 
CAN) in patients with T1DM[49,50]. The exact mechanisms 
for these associations are not clear but it is thought that 
the C-peptide activates Na/K channels, lowers inflam-
mation and improves NO bioavailability and endothelial 
function[51,52]. Small RCTs have shown beneficial effect of  
C-peptide treatment on CAN parameters[53].

Genetic factors
More recently data suggesting genetic predisposition 
to CAN have emerged. In a study of  154 patients with 
T2DM, TCF7L2 gene was found to be strongly associ-
ated with the presence of  CAN, as assessed by deep 
breathing, lying to standing, Valsalva manoeuvre and 
postural hypotension tests (OR = 8.28, P = 0.022 for the 
rs7903146 allele)[54]. Another study on healthy Japanese 
individuals showed that the T393C polymorphism of  
the gene encoding the Gs-protein-α-subunit (GNAS1) 
is significantly associated with cardiovascular autonomic 
dysfunction, detected with power spectral analysis (P < 
0.05 for TT + TC vs CC polymorphism)[55]. Twins studies, 
however, failed to show an association between CAN and 
genetic factors[56].

Obstructive sleep apnoea
Obstructive sleep apnoea (OSA) is emerging as another 
possible factor in the development of  CAN. OSA is very 
common in patients with diabetes and has been associ-
ated with increased sympathetic tone in patients without 

diabetes[57,58]. The interrelationship between OSA and 
CAN in patients with DM requires further investigation 
and is likely to be bidirectional. While the intermittent hy-
poxia that occurs in OSA could lead to increased oxida-
tive stress, nitrosative stress, and impaired microvascular 
complications which could lead to CAN[59], CAN on the 
other hand could lead to changes in upper airways tone 
and changes in respiratory drive which could predispose 
the patient to OSA. One recent study presented in the 
Diabetic Neuropathy Study Group of  the European As-
sociation for the Study of  Diabetes 2012 meeting showed 
that the prevalence of  CAN was similar in patients with 
T2DM with and without OSA, but CAN severity was 
worse in the OSA group (Tahrani et al[59], unpublished 
data). Furthermore, the presence of  CAN was associated 
with more severe apnoea/hypopnea episodes (Tahrani et 
al[59], unpublished data).

NATURAL HISTORY OF CAN
DM affects the autonomic (as well as the peripheral) ner-
vous system in an ascending length-dependent manner. 
The vagus nerve, which anatomically is the longest au-
tonomic nerve and physiologically mediates 75% of  the 
overall parasympathetic activity, tends to be involved early 
in the course of  CAN development. The early stages 
of  CAN therefore involve reduction in parasympathetic 
activity, which results in sympathetic predominance. This 
increase in sympathetic tone continues until the latest 
stage of  CAN when sympathetic denervation ensues, 
which spreads gradually from the apex to the base of  the 
heart[60,61].

CAN is divided into a sub-clinical and a clinical stage. 
During the initial sub-clinical stage, CAN is detected 
through abnormalities in frequency and time domains of  
the spectral analysis of  HRV and the Baroreflex Sensitiv-
ity (BRS) tests, as well as an increased torsion of  the left 
ventricle (LV) on cardiac imaging before the development 
of  abnormalities in standard cardiac autonomic reflex 
testing (CART) (please see below for details)[62-67]. Studies 
have shown that these abnormalities can even be present 
at the time of  diagnosis of  DM[63]. CAN progresses and 
parasympathetic denervation is followed by compensa-
tory sympathetic overdrive, resulting in abnormal CARTs 
followed by symptomatic CAN in which the clinical man-
ifestations become apparent (please see below). At the 
stage of  sympathetic denervation, autonomic dysfunction 
correlates clinically with postural hypotension[63] (Fig-
ure 2). The time scale for the progression of  subclinical 
CAN to the development of  abnormal CART is unclear; 
similarly the natural history of  the development of  early 
cardiac abnormalities (such as torsion or deficits in myo-
cardial perfusion or cardiac energetic) and its relationship 
to subclinical CAN is also unclear. But we estimate that 
many patients with sub-clinical CAN will develop ab-
normal CART and early features of  cardiac involvement 
within 5 years of  developing abnormal frequency and 
time domain parameters.
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CLINICAL MANIFESTATIONS OF CAN
Resting tachycardia
Resting tachycardia is a common manifestation of  CAN 
that occurs at a relatively early stage of  the disease. A 
HR of  90-130 beats per minute (bpm) can be observed 
and is associated with a reduction in parasympathetic 
tone followed by increased sympathetic activity as CAN 
progresses[68]. A fixed HR which does not change dur-
ing sleep, exercise or stress is a sign of  complete cardiac 
denervation[69]. Moreover, poor HR response to adenos-
ine is associated with higher risk for adverse cardiac 
events[70], including all-cause and CVD mortality[71]. 
Hence, resting HR can be used as a diagnostic and prog-
nostic tool in patients with DM after excluding other 
causes of  tachycardia[10].

Exercise intolerance
Impaired blood pressure, HR and cardiac stroke volume 
in response to exercise in the absence of  structural or 
coronary cardiac disease are all features of  CAN[69]. As 
disease progresses, the parasympathetic-sympathetic im-
balance can lead to further impairment of  the above pa-
rameters[68] which limits the diagnostic utility of  exercise 
tolerance testing in these patients due to increased false-
negative outcomes caused by blunted HR response[72]. In 
addition, patients with CAN should be tested using stress 
cardiac imaging (usually echocardiography) prior to start-
ing an exercise program, especially those with high-risk 
profile[69].

Orthostatic hypotension
Orthostatic hypotension is a manifestation of  advanced 
CAN. Orthostatic hypotension is defined as the reduction 
in systolic blood pressure by > 20 mmHg or in diastolic 
blood pressure by > 10 mmHg 2 min following postural 
change from supine to standing[17,19,69]. Orthostatic hy-
potension occurs as a result of  the impairment of  the 
sympathetic response to postural change secondary to 
poor norepinephrine response and abnormalities in the 

baro-receptor sensitivity, resulting in inadequate HR re-
sponse and peripheral vasoconstriction[23,69]. Orthostatic 
hypotension can be aggravated by many medications that 
are commonly used in patients with DM such as diuret-
ics, vasodilators, tricyclic antidepressants and insulin[63]. 
Similar to resting tachycardia, assessing the presence 
of  orthostatic hypotension is of  prognostic value as a 
marker of  advanced CAN[10]. In the middle-aged general 
population, orthostatic hypotension has been shown to 
be an independent prognostic factor for CVD and all-
cause mortality[73].

Silent ischaemia
CAN is associated with a prolonged subjective angina 
threshold (which is defined as the time between the ob-
servation of  1 mm ST depression on the electrocardio-
gram and the development of  symptoms of  angina pec-
toris); thus rendering patients with CAN susceptible for 
experiencing silent myocardial ischaemia and potentially 
infarction, despite being asymptomatic[74]. A meta-analysis 
of  12 cross-sectional studies showed that CAN is associ-
ated with silent ischaemia in patients with DM (the Man-
tel-Haenszel estimate for prevalence rate risk was 1.96, 
95%CI: 1.53-2.51)[17]. A study of  120 patients with DM 
and no previous CVD found evidence that CAN (detected 
using the Valsalva manoeuvre, the deep breath test and 
lying-to-standing HRV) was a better predictor of  major 
cardiac events [i.e., myocardial infarction or myocardial 
infarction (MI)] than the presence of  silent ischaemia 
(OR = 4.16, 95%CI: 1.01-17.19) but when CAN was 
combined with silent ischaemia the risk was even higher (5 
out of  10 had a major event)[75]. A study from Spain that 
included 217 patients with T1DM and T2DM, found that 
the presence of  autonomic neuropathy is independently 
associated with increased risk for developing silent isch-
aemia (as demonstrated by positive exercise test) (OR = 
6.5, 95%CI: 1.3-7.9) especially when combined with other 
cardiovascular risk factors such as microalbuminuria[76]. 
In the Detection of  Ischaemia in Asymptomatic Diabetic 
subjects study which included 1123 patients with T2DM, 

Parasympathetic
denervation

Sympathetic tone
augmentation

Sympathetic
denervation

Subclinical CAN Early stages of clinical CAN Advanced or severe CAN

Impaired R-R
variability
abnormal LV
torsion decreased

Resting tachycardia
reduced exercise
tolerance

Orthostatic hypotension
sympathetic denervation
observed at the base of
the heart

Figure 2  Natural progression of CAN and correlation with clinical signs and symptoms. CAN: Cardiac autonomic neuropathy; LV: Left ventricle.
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CAN (defined as abnormal Valsalva manoeuvre) was also 
a predictor of  silent ischaemia (defined using stress car-
diac perfusion imaging) (OR = 5.6, 95%CI: 2.6-12.4, P = 
0.0001)[77].

It is evident that patients with DM and CAN are 
at high risk of  sustaining a major cardiovascular event 
during exercise, due to the limited perception of  isch-
aemic pain which could delay the appropriate and timely 
response to ischaemia. A recent statement from the To-
ronto Consensus Panel on Diabetic Neuropathy has em-
phasised the importance of  integration of  cardiac auto-
nomic function testing into the current risk stratification 
pathways for patients with DM and established CVD risk 
factors[10].

The mechanisms underpinning relationship between 
CAN and silent ischaemia are not clear. Several mecha-
nisms have been proposed including altered pain thresh-
old, impaired afferent myocardial autonomic pathways 
and ischaemic processes not detected by routine electro-
cardiography. There has also been debate over whether 
the relationship between them is indeed a causative one, 
or both CAN and silent ischaemia are a product of  coro-
nary artery disease observed in diabetes[78,79].

Diabetic cardiomyopathy and LV dysfunction
Diabetic cardiomyopathy is a clinical entity that is char-
acterised by changes in the biochemical signalling in the 
presence of  a sympathetic-vagal imbalance resulting ul-
timately in left ventricular hypertrophy and remodelling, 
and therefore cardiac dysfunction in patients with DM 
in the absence of  coronary artery disease[63]. Diabetic 
cardiomyopathy results in variable degrees of  systolic and 
predominantly diastolic dysfunction in the absence of  
structural or valvular cardiac disease, coronary vessel dis-
ease, or hypertension[80,81]. Changes in the diastolic and/or 
systolic function can be identified on various diagnostic 
imaging modalities in otherwise asymptomatic patients 
and can precede the occurrence of  macrovascular dia-
betic complications[82]. Frequently, the only detectable 
abnormality in the early stages of  CAN is an isolated dia-
stolic dysfunction with a normal LV ejection fraction[83] 
associated with high CVD morbidity[84,85].

Conventional echocardiography studies, with or with-
out Doppler technique, showed that CAN is associated 
with significant reduction in the peak diastolic filling 
and an increase in the atrial component of  diastole[69]. 
The introduction of  new diagnostic modalities, such 
as the cardiac magnetic resonance imaging has allowed 
even more sensitive means of  diagnosing and classify-
ing diabetic cardiomyopathy even in the early stages by 
examining myocardial twist, torsion and strain[86]. Torsion 
is a measure of  the apical rotation along the long axis of  
the heart and is followed by a rapid untwisting, occurring 
during the isovolumic relaxation phase[87]. Both torsion 
and maximal torsion rate have been found to be increased 
in patients with T2DM and preserved systolic function[86]. 
In patients with T1DM, increased torsion appears to be 
independent of  energetic deficits but related to micro-
vascular perfusion deficits and correlates with changes in 

sympathetic denervation[88,89]. Myocardial Perfusion Re-
serve (another diagnostic tool used for the detection of  
microvascular abnormalities) has been shown to detect 
the early stages of  CAN in asymptomatic patients and to 
assess CAN severity[90].

There are several proposed mechanisms for the devel-
opment of  diabetic cardiomyopathy. The parasympathet-
ic denervation observed in the early stages of  the disease 
leads to a dominant sympathetic tone[91], which promotes 
a cascade of  intrinsic metabolic changes, including the 
release of  high myocardial catecholamine levels and cat-
echolamine toxicity[92,93]. This catecholamine rise has been 
shown to induce mitochondrial uncoupling[94,95], switch-
ing energy generation on a cardiac level from myocardial 
glucose to free fatty acids, which is considered an ineffi-
cient energy source[96] and therefore increases the oxygen 
demand[94,95]. These alterations on the cardiac biochemical 
and cellular level, lead ultimately to programmed cell 
death and fibrosis[97,98], elevated oxygen consumption 
relevant to the cardiac work[99,100] and finally hypertrophy 
and remodelling of  the LV[101]. Crucial mediators in the 
above process are the mitochondrial reactive oxygen spe-
cies[102,103], insulin resistance[104] and calcium dependent 
apoptosis[102,105,106].

On a macroscopic level, diastolic dysfunction in CAN 
is associated with delayed relaxation, impaired filling 
and increased stiffness of  the LV[107]. The previously de-
scribed sympathetic predominance is a stimulator of  the 
rennin-angiotensin-aldosterone axis, resulting in increased 
HR, cardiac output and peripheral vasoconstriction[108]. 
Studies have shown that this alteration on the cardiac 
profile can lead to reduction of  coronary blood perfusion 
and diastolic dysfunction in patients with evidence of  
early microangiopathy[60]. Sympathetic overdrive may also 
lead LV wall stress and LV hypertrophy. Pop-Busui et 
al have recently shown in a large cohort of  the DCCT/
EDIC study, that CAN is associated with a mass increase 
as well as a concentric remodelling of  the LV, indepen-
dent of  other risk factors[109].

Mortality/sudden death
CAN is associated with an increased mortality risk (Table 
2). This was described in longitudinal studies in the early 
1990s showing a 50% increase in 5 year-mortality risk in 
patients with DM and autonomic neuropathy compared 
to those without[110-113]. In a meta-analysis of  15 studies 
on the basis that they included patients with DM who 
had baseline assessment of  HRV using one or more tests 
described by Maser et al[114] showed that the pooled esti-
mated relative mortality risk was 2.14, (95%CI: 1.83-2.51, 
P < 0.0001), for those who had CAN. CAN was also 
found to have the strongest association with mortality 
amongst other risk factors in the EURODIAB IDDM 
Complications Study[115].

Even in patients with high CVD risk profile such as 
the population of  the ACCORD trial, CAN was an in-
dependent predictor of  all-cause mortality (HR = 2.14, 
95%CI: 1.37-3.37) as well as CVD mortality (HR = 2.62, 
95%CI: 1.4-4.91) after a mean follow-up of  3.5 years[29]. 
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Interestingly the relationship between CAN and mortal-
ity was similar regardless of  treatment allocation to the 
intensive or standard glycaemic control groups[29].

CAN was also found to be associated with a higher 
mortality risk in patients who had myocardial infarc-
tion[116], suggesting that screening for CAN in patients 
with DM who suffered a myocardial infarction can be 
used for risk stratification[117].

CAN is also associated with increased risk of  sud-
den cardiac death[112,113,118]. This can be explained by the 
increased rate of  fatal cardiac arrhythmias due to the 
imbalance between the sympathetic and parasympathetic 
autonomic function[119], as well as cardiac sympathetic de-
nervation[67]. QT prolongation which has been associated 
with autonomic neuropathy in several studies[120-122], can 
also provide an alternative mechanism, rendering patients 
with CAN more susceptible to suffer life-threatening 
cardiac arrhythmias, including Torsades de Pointes[69]. 
The exact relationship between CAN and sudden cardiac 
death remains, however, under question. As shown by 
the Rochester Diabetic Neuropathy Study, sudden death 
cases are also related to severe coronary artery disease 
or LV dysfunction rather than CAN itself[123]. Nonethe-
less, as we discussed above, CAN seems to contribute to 
cardiovascular mortality even in those with established 
coronary artery disease.

Several mechanisms have been implicated in explain-
ing the relationship between CAN and mortality in 
patients with DM. Autonomic neuropathy can lead to 
impaired response to hypoxic state[124], reduced hypo-
glycaemia awareness and prolonged hypoglycaemic epi-
sodes[111]. The observed mortality can also be attributed 
to a direct effect of  autonomic neuropathy and its micro-
vascular complications[125] as well as to an indirect associa-
tion with end-organ complications, such as nephropathy, 
left ventricular hypertrophy and diastolic dysfunction[100]. 
In addition, the lack of  the physiological nocturnal para-
sympathetic dominance in patients with CAN can lead 
to nocturnal hypertension, causing LV hypertrophy[126,127] 
and increasing the CVD burden[93,128].

Perioperative and intraoperative complications
Patients with CAN exhibit 2- to 3-times fold increase 
in perioperative morbidity (perioperative complications, 
impaired wound healing, impaired drug metabolism) and 
mortality[129,130]. Patients with CAN are more likely to re-
quire vasopressor support in the theatre setting[130]. They 
are also prone to experience a blood pressure and HR 
reduction during the induction of  anaesthesia, as well as 
severe intraoperative hypothermia[131]. The above findings 
can be explained by an impairment or absence of  the 
normal vasoconstrictive response to vasodilating anaes-
thesia in patients with CAN[130].

Cerebrovascular disease
Unlike the strong links between CAN and CVD, there 
is only limited data regarding the impact of  CAN on 
cerebrovascular disease. In a study conducted by Töyry 
et al[132] that included 133 patients with T2DM, CAN was 

found to be an independent risk factor for developing 
stroke after 10 years of  follow-up (OR = 6.7, 95%CI: 
1.5-29.9 for HRV response to deep breathing and OR 
= 1.1, 95%CI: 1.01-1.2 for lying-standing BP). In a sub-
analysis of  the Appropriate Blood Pressure Control in 
Diabetes population, including 950 patients with T2DM 
over a 5-year period, CAN was significantly associated 
with the occurrence of  stroke, independent to other risk 
factors[133]. The later was also confirmed by a recent study 
including 1458 patients with T2DM who were followed 
up for 7 years[134].

Diabetic nephropathy
Several authors have hypothesized that CAN is involved 
in the pathogenesis of  diabetic nephropathy, although 
causation has not been proven[135]. Sympathetic overac-
tivity has been shown to cause glomerular and tubular 
dysfunction in diabetic animal models via indirect (hyper-
tension and angiotensin Ⅱ) and direct (vascular smooth 
muscles proliferation, vasoconstriction, podocytes in-
jury) insults[136]. CAN is associated with increased CVD 
morbidity and mortality[63,135] and with haemodynamic 
changes such as lack of  nocturnal BP dipping (causing 
increased intra-glomerular pressure resulting in albumin-
uria)[137] and diurnal postural falls in BP (resulting in lower 
intra-glomerular pressure)[138] and endothelial dysfunction 
in humans. In addition, CAN is associated with deficits 
in erythropoietin production and, as a result, erythropoi-
etin-deficiency anaemia[137]. Subsequently, CAN patients 
are deprived from the direct nephroprotective action 
of  erythropoietin and thus, anaemia becomes a strong 
predictor of  nephropathy and progression of  chronic 
kidney disease[68]. In streptozotocin-diabetic rats, sympa-
thetic overactivation has been shown to be involved in 
the pathogenesis of  diabetic nephropathy[139] and renal 
denervation was shown to prevent glomerular hyperfiltra-
tion[140]. Hence it is plausible that CAN is involved in the 
development and progression of  diabetic nephropathy. 
Several studies examined the association between CAN 
and either albuminuria and/or glomerular filtration 
rate[141-145], but all these studies had a cross-sectional de-
sign, hence causation cannot be proven, particularly that 
the pathogenesis of  CAN is similar to other microvascu-
lar complications including diabetic nephropathy. Longi-
tudinal studies are scarce and limited to a small number 
of  patients with T1DM[138,146]. Hence, data regarding the 
longitudinal impact of  CAN on diabetic nephropathy in 
patients with T2DM is lacking.

Lower limb complications
CAN has been proposed as a contributing factor in the 
development of  lower limb vascular and neurological 
complications. Autonomic neuropathy can cause altera-
tions in microvascular blood flow (MBF), which predis-
pose to changes in skin structure and quality and impair-
ment of  sweat glands’ innervation resulting in dry skin 
and increased risk of  oedema and foot deformity which 
increases pressure on certain areas causing ulceration[147]. 
It is also believed that CAN, through the sympathetic 
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denervation of  the lower limb vasculature, can induce 
lower extremity hyperaemia, increase inflammation and 
erosion into the joints/bones and therefore contribute in 
Charcot’s neuroarthropathy. As a result, the patient with 
Charcot will typically present with prominent peripheral 
pulses due to vasodilatation and autonomic neuropathy. 
Power Spectral Analysis and HRV has been employed 
in trials for the detection of  autonomic neuropathy in 
patients with Charcot’s disease[148]. Similarly to Charcot’s 
arthropathy, patients with recurrent vascular neuropathic 
ulcers appear to share analogous cardiac autonomic dys-
function, as shown by the use of  HRV, Valsalva ratio and 
orthostatic hypotension[149].

THE DIAGNOSIS OF CAN
CARTs
Ewing et al[150] proposed in early 1970s five simple non-
invasive tests to measure cardiac autonomic function 
based on the HR and blood pressure response to certain 
physiological manoeuvres. These tests include: (1) the HR 
response to deep breathing, which assesses beat to beat 
HR variation (R-R variation) during paced deep breathing 
[expiration-to-inspiration ratio (E:I)]; (2) the HR response 
to standing, which is expressed as the 30:15 ratio which 
is the ratio of  the longest R-R interval (between the 
20th and 40th beat) to the shortest R-R interval (between 
beats 5-25) elicited by a change from horizontal to verti-
cal position; (3) the Valsalva manoeuvre which evaluates 
the HR response during and after a provoked increase in 
the intra-thoracic and intra-abdominal pressures (the pa-
tient normally exhales for a period of  15 seconds against 
a fixed resistance); (4) the blood pressure response to 
standing, which assesses the baro-reflex mediated blood 
pressure change following postural change; and finally; 
and (5) the blood pressure response to sustained hand-
grip, as defined by the diastolic blood pressure increase 
caused by the sustained muscle contraction with the use 
of  a handgrip dynamometer[17]. The first two tests reflect 
defects in the parasympathetic activity (i.e., the ability of  
the vagal nerve to slow the HR during the procedures 
which increases the R-R interval and hence increases the 
ratios), while the last two also describe changes in the 
sympathetic function (i.e., the ability to provide appropri-
ate BP and HR response to the activity involved)[151,152]. 
The autonomic changes that occur during the Valsalva 
manoeuvre are complex and involve both the sympa-
thetic and parasympathetic systems[153], although the 
Valsalva ratio mostly represents parasympathetic activity. 
For more details about the autonomic changes during 
Valsalva please see[17].

While the above described CARTs have been widely 
used since their introduction, there is no evidence on 
the superiority of  one test over another when it comes 
to assessing CAN[10]. However, the HR response to deep 
breathing is the most commonly utilised, because of  its 
high reproducibility and specificity[154] and its ease of  
use[10,155]. All the tests are considered to be valid markers 
of  autonomic dysfunction, given that end organ failure is 

excluded and parameters such as concomitant illness, use 
of  over the counter medications and lifestyle factors (ex-
ercise, smoking, exercise) are taken into consideration[156].

HRV
A reduction in HRV has been associated with the early 
stages of  clinical CAN. In healthy individuals, the beat-
to-beat variability with aspiration is predominantly affect-
ed by the direct sympathetic and parasympathetic activ-
ity[62,157], as well as various other stimuli, including certain 
neurohumoral factors (catecholamines, thyroid hor-
mones), temperature changes and mechanical and ionic 
changes in the sinus node[158]. The efferent sympathetic 
and vagal stimulation is characterised by synchronised 
discharges, modulated by central and peripheral oscilla-
tors, with the former referring to vasomotor and respira-
tory centres and the later to respiratory movements and 
arterial pressure. These synchronous neural discharges 
can manifest as short and long -term oscillations in the 
HR[63].

The R-R intervals recorded under paced breathing are 
transformed to generate the time and frequency domains. 
Conceptually, if  the faster respiratory sinus arrhythmia 
signal and the slower mean HR changes could each be 
separated from the patient’s cardiogram and analyzed 
independently, the result would yield a measure of  Vagal 
outflow from the respiratory sinus arrhythmia and a mea-
sure of  sympathetic activity from the changes in mean 
HR. Effectively this is what is accomplished in the fre-
quency- or spectral-domain. Spectral analysis of  respira-
tory sinus arrhythmia provides the indication of  where in 
the frequency domain the Vagus is influencing the heart. 
The frequency domains are generated using continu-
ous wavelet transform method (Fourier transform) and 
separated to three basic components: very-low-frequency, 
low-frequency (LF) and high-frequency (HF)[61,159]. HF 
represents vagal activity, whereas LF is attributed to the 
combined effect of  sympathetic and parasympathetic 
influence[62,160]. Modern software (such as ANSAR tech-
nology) adjusts for the respiratory rate, hence simplifying 
the process. Parameters generated include: respiratory 
frequency (Rfa, 0.15 to 0.4 Hz, represents parasympa-
thetic function), and LF (Lfa, 0.04 to 0.15 Hz, represents 
sympathetic function). The HRV and BP are recorded 
with the patient in sitting position during resting, deep 
breathing, Valsalva manoeuvre and standing position.

The electrocardiogram (ECG) recordings were ini-
tially longer in duration, usually over a period of  24 h but 
recent data has demonstrated that recording of  shorter 
duration can provide equally reliable information[16,158,161]. 
Time domain analysis is a useful tool in the assessment 
of  parasympathetic activity by measuring the normal R-R 
intervals, whereas the frequency domain is based on the 
spectral analysis of  R-R interval and other cardiovascular 
and respiratory signals based on short-term ECG record-
ings (2-5 min)[69,158].

The key element in the accurate use and interpretation 
of  HRV models is the standardisation of  the conditions 
under which the test is carried, including age, blood pres-
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sure, HR, tobacco smoking or caffeine use and, above all, 
respiration control[69].

Baro-reflex sensitivity
The BRS measures the cardiac vagal and sympathetic 
baro-reflex function. The idea behind its function is that 
an increase in the BP normally induces a reflective in-
crease in the vagal cardiac efferents and a reduction to the 
efferent sympathetic activity, resulting in bradycardia and 
hypotension, due to the reduction in cardiac output as 
well as the peripheral vasodilation[158]. A reduction in BP 
induces opposite responses. Thus, to correctly measure 
the baro-reflex function, both the vagal efferent activity 
(evidenced by changes in HR in response to changes in 
BP), and the sympathetic efferent activity (affecting the 
arterial vessels) should be taken into account.

In practice, the term “baro-reflex sensitivity” nor-
mally applies to the cardiac-vagal arm, and to methods 
measuring changes in HR in response to changes in (sys-
tolic) BP. The test can be performed either with the use 
of  pharmacological methods (intravenous bolus injection 
of  epinephrine)[162] or non-pharmacological techniques 
(physical manoeuvres such as postural change). Although 
the former is considered the gold standard to date for 
evaluating BRS, both of  them correlate well clinically 
with each other[163]. Both techniques require a continuous 
measure of  BP and a continuous and synchronised mea-
sure of  HR (R-R interval)[158].

BRS can be used for detecting sub-clinical CAN[63], 
since BRS can be abnormal in diabetes, before the dem-
onstration of  any clinical signs of  CAN or other con-
ventional autonomic function tests detect any abnormali-
ties[64,65]. Several studies on patients with diabetes have 
concluded that BRS is a strong independent risk factor 
for mortality[164], especially in cohorts suffering from 
heart failure or following a myocardial infarction[162,165].

Scintigraphy
The use of  Single-photon emission computed tomog-
raphy (SPECT) and/or positron emission tomography 
(PET) and sympathetic neurotransmitter analogues, such 
as the 123I-metaiodobenylguanide (123I-MIBG) (SPECT), 
the 11C-metahydroxyephedrine (11C-HED) (PET) and 
11C-epinephrine has enabled the quantitative scintigraphic 
evaluation of  cardiac sympathetic innervation[63].

123I-MIBG undergoes rapid uptake in the myocardium 
but as it is semi-quantitative is not a precise indicator 
of  neuronal uptake[158]. Metabolically stable 11C-HED 
demonstrates a highly specific uptake by the sympathetic 
nerves mediated by norepinephrine transporters[166]. It is 
important, however, to take myocardial perfusion (which 
affects the delivery of  the tracer of  interest) into consid-
eration before interpreting the results of  these imaging 
techniques. Retention defects of  both 123I-MIBG and 
11C-HED have been reported in patients with T1DM and 
T2DM and have been variably correlated with abnormal 
but also normal CARTs[60,67,167]. The consistent pattern 
of  sympathetic denervation in patients with T1DM sup-
ports the notion that 11C-HED can be used to monitor 

the population of  sympathetic nerves and evaluate the 
regional autonomic deficits of  sympathetic innerva-
tions[66,166,167]. In patients with CAN and T1DM, the wash 
rates of  11C-epinephrine have been shown to correlate 
well with those of  11C-HED[158]. The development of  
microvascular complications has been associated with the 
augmentation in sympathetic tone and adrenergic hyper-
responsiveness, by the use of  11C-HED[63]. As CAN 
reaches an advanced stage, a heterogenous pattern of  
11C-HED retention is observed, with a reduced 11C-HED 
retention in the distal LV and a persistent or increased 
11C-HED retention seen proximally, indicating a proximal 
to distal pattern of  sympathetic denervation of  the LV[63].

Increases in the sympathetic nervous tone and elevat-
ed epinephrine levels can affect the retention of  sympa-
thetic neurotransmitter analogues, making the interpreta-
tion of  the above scintigraphic models rather challenging. 
Furthermore, the lack of  standardisation, the high cost 
and the demand on highly skilled operators, restricts the 
role of  scintigraphy as a valuable research tool and not a 
part of  daily clinical routine[68].

When it comes to radiation exposure, 123I-MIBG lacks 
a β-particle emission and has a half-life of  13.2 h, where-
as its energy of  the primary imaging photon is calculated 
at 159 keV (kiloelectron volt)[168]. When compared to 131I, 
123I-labelled agent is to be considered the radiopharma-
ceutical of  choice as it has a more favourable dosimetry 
and better radiation profile. Whole-body radiation is 
markedly lower using 11C-HED PET [effective dose 
equivalent in adults, 1.2 milliSieverts (mSv)] compared 
with 123I-MIBG scintigraphy (effective dose equivalent in 
adults, 6.0 mSv)[169]. The radiation dose to the whole body 
from 20 milliCuri (mCi) 11C-HED is 0.186 rad, less than 
that from 0.5 mCi 131I-MIBG IBG (0.45 rad) or 10 mCi 
123I-MIBG (0.53 rad)[170].

Muscle nerve sympathetic nerve activity
Muscle sympathetic nerve activity (MSNA) is based on 
the ability to record efferent sympathetic nerve signals 
in the skeletal muscles either at rest or in response to 
physiological perturbations with the use of  microelec-
trodes into a fascicle or a distal sympathetic nerve of  the 
skin or muscle (microneurography)-usually the peroneal 
nerve[171].

MSNA is the most direct measure of  peripheral sym-
pathetic activity and therefore a useful research tool. How-
ever, its invasiveness, cost and time-consuming nature is 
not recommended for routine autonomic assessment[158].

Other tests
Occasionally, various tests have been proposed for the 
assessment, diagnosis and monitoring of  CAN. A recent 
study on 167 patients with type Ⅰ diabetes conducted by 
the University of  Liege, found the use of  pulsatile stress, 
which measures the arterial stiffness, correlates well with 
baro-reflex sensitivity, suggesting therefore that arterial 
stiffness can be used as a marker of  CAN[172]. The as-
sociation between arterial stiffness (expressed as carotid-
femoral wave velocity (PWV)) had already been explored 
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by another study. After multivariable linear regression, 
the association between CAN (E/I index in particular) 
and PWV not only remained significant but E/I index 
was the strongest predictor of  PWV in the model (β co-
efficient: -0.326, 95%CI: (-3.110)-(-0.750), P = 0.002)[173]. 
Catecholamine kinetics, most specifically epinephrine and 
norepinephrine plasma clearance have been labelled as 
the biochemical equivalent of  MSNA but they have failed 
to date to produce reliable diagnostic data[158].

Another aspect of  autonomic function is the assess-
ment of  cutaneous MBF. The skin offer an accessible 
organ to asses MBF and endothelial function, which is 
often involved in the development of  micro and macro-
vascular diabetes, correlates with systematic endothelial 
function measures and myocardial microcirculation[174]. 
Several methods are available to assess skin MBF[175]. La-
ser Doppler (LD) allows the determination of  blood flow 
under basal conditions or following physical (e.g., heating) 
or pharmacological (e.g., acetylcholine and/or sodium 
nitroprusside) stimulation; allowing the differentiation 
between endothelial-dependant and independent respons-
es[174]. Furthermore, LD allows the measurement of  nerve 
axon reflex-related vasodilation following acetylcholine 
iontophoresis which is the result of  C-fibre stimula-
tion[176]. LD techniques include LD flowmetry, LD perfu-
sion imaging and laser speckle contrast imaging[158,174].

Another assessment of  the peripheral autonomic 
system is intra epidermal nerve fibre density (IENFD) 
using immuno staining[177]. IENFD is highly sensitive and 
specific to diagnose small fibre neuropathy (88%-98% 
and 88.8%-95% respectively)[178]. IENFD correlates also 
inversely with thermal thresholds[178]. In addition, IENFD 
innervates the sweat glands. Reduction in sweat produc-
tion in the feet contributes to the development of  dry 
skin/callus and hence predispose to the development of  
foot ulceration. This function can be assessed by several 
methods such as Neuropad[147] and Sudoscan[179].

CRITERIA FOR DIAGNOSIS AND 
STAGING
HR responses to deep breathing, standing and Valsalva 
manoeuvre, as well as blood pressure response to stand-
ing (CART) are considered as the gold standard in clinical 
testing for autonomic neuropathy[10]. Their applicability 

in bedside clinical practice is based on their sensitivity, 
specificity, reproducibility, ease and safety of  use and 
standardisation.

According to the CAN Subcommittee of  the Toronto 
Consensus Panel statement following the 8th international 
symposium on diabetic neuropathy in 2010[10], the criteria 
for diagnosis and staging of  CAN are as follows: (1) A 
single abnormal CART result suffices for the diagnosis of  
possible or early CAN; (2) The presence of  two or three 
abnormal test among the seven autonomic cardiovascular 
indices (5 CARTS, time-domain and frequency-domain 
HRV tests) are required for the diagnosis of  definite or 
confirmed CAN; and (3) The presence of  orthostatic 
hypotension in addition to the above criteria signifies the 
presence of  severe of  advanced CAN.

SCREENING FOR CAN
The majority of  diabetes patients with CAN have sub-
clinical or asymptomatic disease, rendering the diagnosis 
and appreciation of  CAN in clinical practice rather dif-
ficult[63]. Once CAN reaches the stage that becomes clini-
cally evident, the disease might have reached an advanced 
level and management becomes more difficult. Screening 
for early CAN is therefore considered good clinical prac-
tice several reasons as summarised in Figure 3[10].

The Toronto Diabetic Neuropathy Expert Group 
in a recent statement have recommended that screening 
should be considered for patients at time of  diagnosis of  
T2DM and within 5 years of  diagnosis of  T1DM, partic-
ularly in patients with other macro- and/or microvascular 
complications[180]. Patients with a history of  poor glycae-
mic control are especially at risk for developing CAN, 
as demonstrated in several studies, suggesting that this 
clinical group may benefit from screening[17]. Due to its 
impact on exercise tolerance, testing for CAN should be 
a part of  the screening in patients that are about to begin 
a new exercise programme that involves more intense 
physical activity than brisk walking[69,181]. Evidence also 
suggests that screening for CAN could be incorporated 
into the perioperative assessment of  patients with poor 
glycaemic control and coronary artery disease, due to the 
association between CAN and haemodynamic instability 
peri- and intra-operatively[182]. Finally, testing for CAN 
could potentially be of  benefit in patients with DM that 
have suffered MI, as this would serve in the risk stratifica-

Figure 3  Current recommendations on screening 
for cardiac autonomic neuropathy. CAN: Cardiac 
autonomic neuropathy; DM: Diabetes mellitus.
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Significance of CAN
     According to the Toronto Consensus Panel on Diabetic Neuropathy statement,
     screening for CAN in the patients with DM should be considered good clinical practice,
     due to the following:
(1) It enables the accurate and clinical relevant diagnosis of various CAN forms
(2) It assists in the appropriate detection and subsequently the tailored treatment of CAN
     multiple clinical manifestations as described in the previous section
(3) It provides a clinical tool for the risk stratification for diabetic complications as well as
     the cardiovascular morbidity and mortality
(4) It can be used for the modulation of targets of diabetes treatment
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tion of  this subgroup and assist into adapting a more ag-
gressive therapeutic approach for those at risk of  sudden 
cardiac death or life threatening arrhythmias.

THERAPEUTIC APPROACHES FOR CAN
CAN treatment can either be symptomatic or aimed at 
slowing or reversing CAN progression. However, effec-
tive therapies to slow or reverse CAN progression are 
rather limited as the complete underlying pathogenesis 
remains unclear. However, based on our current under-
standing of  CAN pathogenesis and risk factors, several 
potential treatments have been examined.

Lifestyle modification
Lifestyle changes have been shown to have a beneficial 
impact on the prevention of  CAN progression in the 
Steno-2 trial[5] and the Diabetes Prevention Program 
(DPP)[183]. In the Steno-2 study, patients with T2DM and 
microalbuminuria were randomised to a multi-factorial 
cardiovascular risk factor intervention that included be-
havioural therapy (diet, physical exercise and smoking 
cessation) and pharmacological intervention (to control 
BP, lipids and hyperglycaemia) or conventional treatment 
in accordance to the national guidelines. After an average 
of  7.8 years of  follow-up, the risk for developing CAN 
was significantly lower on the intervention arm (49% in 
the intensive group vs 65% in the conventional group, 
HR = 0.37, 95%CI: 0.18-0.79, P = 0.002). In the DPP, 
lifestyle modification demonstrated superior results in the 
improvement of  autonomic dysfunction (assessed with 
HRV and QT indexes) as compared to the use of  met-
formin or placebo.

Weight loss and dietary intervention accompanied[69] 
or not[184] by supervised training was associated with im-
provement on CAN indices. Aerobic training has also 
been shown to improve CAN, with some indication that 
mild physical exercise is recommended in less severe 
CAN cases. A recent review summarising the evidence 
for the impact of  life style interventions on CAN has 
concluded that moderate endurance and aerobic exercise 
in both T1DM and T2DM, improve HRV and cardiac 
autonomic function significantly, in favour of  parasympa-
thetic dominance, independent of  BMI, glycaemic or BP 
control and duration of  diabetes[185].

Intensive glycaemic control
Hyperglycaemia is a major risk factor for CAN develop-
ment and progression. Intensive glycaemic control has 
been shown to slow the progression and prevent/delay 
the development of  CAN[18,66,186,187]. In the DCCT trial, 
intensive glycaemic control in a group of  patients with 
T1DM reduced the CAN incidence by 50% over 6.5 
years follow-up compared with conventional therapy (7% 
vs 14% respectively)[19]. These beneficial effects persisted 
13-14 years after close-out of  the trial[18]. Although both 
former treatment arms exhibited deterioration in CAN 
during follow-up after the end of  the DCCT, the former 

intensive treatment group continued to demonstrate a 
statistically significant slower decline in CAN.

PET cardiac imaging with the use of  11C-HED 
showed similar beneficial effects in a 3-year prospective 
trial. Good glycaemic control (defined as mean HbA1c < 
8%) was associated with reduction of  sympathetic dener-
vation as opposed to the group of  poor diabetes control 
(HbA1c ≥ 8%)[167]. In the SEARCH CVD study, 354 
young patients with T1DM were assessed for the pres-
ence of  sub-clinical autonomic dysfunction, as demon-
strated by the use of  HRV parameters and the presence 
parasympathetic loss with sympathetic override. Poor 
glycaemic control, as defined by HbA1C > 7.5%, was 
independently associated with the presence of  subclinical 
CAN as compared to a frequency-matched control group 
without DM[188].

The effects of  glycaemic control in T2DM are not 
similarly encouraging. Data from recent studies have 
failed to demonstrate differences in the incidence of  
CAN based on the application of  intensive therapy in 
T2DM patients[189,190]. The sensitivity of  tests utilised for 
the diagnosis of  CAN in those trials, however have been 
questioned, suggesting that more research is needed to 
investigate the relationship between metabolic control 
and CAN in patients with T2DM.

Therapies based on CAN pathogenesis
There is limited but increasing data on the use of  phar-
macotherapy targeting specific pathogenic pathways. The 
use of  the specific antioxidant α-lipoic acid improved 
CAN in patients with T2DM in a 4-mo controlled ran-
domised trial[191]. In animal models, the pharmacological 
agents FP15 and FeTMPS, which act by catalysing the 
decomposition of  peroxynitrite, have shown promising 
results in improving neuronal function[192-194]. The use of  
glucagon-like peptide 1 analogues or the dipeptidyl pep-
tidase 4 inhibitors have demonstrated cardioprotective[195] 
and neuroprotective properties[196], raising the possibility 
of  their use for treatment not only for peripheral neu-
ropathy, but autonomic neuropathy as well. In small scale 
studies, aldose reductase inhibitors have been shown to 
improve LV function in patients with DAN without any 
alteration on CAN indices[197]. There is also evidence sug-
gesting the vitamin E and C-peptide can both improve 
HRV indices[10]. In a randomised controlled trial, vitamin 
E when compared to placebo managed to increase the 
R-R interval (P < 0.05) and the HF component of  HRV 
(HF; P < 0.05) in 50 patients with T2DM over a period 
of  4 mo[198]. Small RCTs have shown beneficial effect of  
C-peptide treatment on CAN parameters[53]. In a recent 
randomised placebo-controlled trial of  44 patients with 
T1DM, treatment with a triple antioxidant regime (allo-
purinol, α-lipoic acid and nicotinamide) over the course 
of  2 years failed to prevent progression of  CAN and had 
no benefit on myocardial perfusion as demonstrated with 
scintigraphic imaging modalities[199]. Further research is 
required to confirm these findings and explore other po-
tential pathogenetic therapies.
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The renin-angiotensin-aldosterone axis
There is substantial data to support the use of  certain 
pharmacological agents in the improvement of  the left 
ventricular dysfunction associated with autonomic neu-
ropathy in diabetes. In patients with heart failure, the 
use of  bisoprolol[200] or the addition of  spironolactone 
to enalapril, furosemide and digoxin[201], demonstrated 
a beneficial effect on autonomic function, as shown by 
HRV testing and sympatho-vagal balance respectively. 
The use of  angiotensin-converting enzyme (ACE) inhibi-
tors could potentially improve the parasympathetic/sym-
pathetic balance[202] and improve prognosis in cardiac 
failure[203]. The addition of  angiotensin receptor blockers 
to ACE inhibitors may be superior to monotherapy[204-206], 
due to the enhanced blockade on the renin-angiotensin-
aldosterone axis[207]. In a small study by Didangelos et 
al[208], including 62 patients with type Ⅰ and type Ⅱ DM, 
the use of  ACE inhibitors or ARBs, as well their com-
bination, managed to improve both diabetic autonomic 
neuropathy and LV diastolic dysfunction.

Symptomatic treatment of orthostatic hypotension
Treatment of  orthostatic hypotension is required in 
symptomatic patients with autonomic neuropathy. There 
are several strategies available, including lifestyle and be-
havioural measures as well as pharmacological options. 
The former include advice provided to the patients to 
avoid sudden changes in body posture, eat smaller and 
more frequent meals, avoid drugs-precipitants of  pos-
tural hypotension (diuretics, tricyclic antidepressants, 
α-adrenoreceptor antagonists), perform physical counter-
manoeuvres (leg crossing, stooping and squatting), in-
crease fluid and salt intake, avoid physical activity that 
leads to straining and finally use garments over legs and 
abdomen[69,209].

If  the above measures fail to improve symptoms, 
pharmacological intervention may be considered. A risk-
benefit consideration should take place for each individu-
al before starting a medication, especially weighing up the 
risk of  developing marked supine hypertension against 
the benefit of  preserving the erect blood pressure. Should 
a pharmacological agent be considered appropriate by the 
clinician, there are several options available[210-212].

Midodrine, a peripheral selective α1-adrenergic ago-
nist, is considered a first line agent that acts through 
peripheral vasoconstriction of  arterioles and veins. It 
remains to date the only drug approved by the food and 
drug administration (FDA) for the treatment of  ortho-
static hypotension[213,214]. However, post-market trials to 
prove drug’s efficacy are still ongoing and the final results 
on midodrine’s benefits are scheduled to be published in 
2014, 18 years after the drug was given FDA approval[215]. 

9-α-fluorohydrocortisone, a synthetic mineralocor-
ticoid, is another first line option that acts through so-
dium retention and plasma expansion[216]. In a double-
blinded crossover study, 9-α-fluorohydrocortisone 
treated successfully the orthostatic hypotension of  
patients with diabetes and autonomic neuropathy[216]. 
9-α-fluorohydrocortisone doses between 100 and 400 

micrograms decreased significantly the orthostatic hy-
potension in 14 symptomatic patients with DM over a 
mean period of  12 mo (P < 0.001)[217]. Extra care should 
be taken when prescribed in patients with cardiac failure, 
as it can lead to fluid overload. There is usually a period 
of  10-14 d before its effects can become clinically evi-
dent[212].

Somatostatin and somatostatin analogues (octreo-
tide) inhibit the release of  vasoactive peptides from the 
GI tract and thus increase splanchnic vasoconstriction, 
leading to increase in mean blood pressure[218]. The use 
of  long acting octreotide in patients with autonomic neu-
ropathy increased the mean systolic BP from 83.8 ± 7.1 
mmHg to 104.1 ± 3.1 mmHg (P < 0.025) within eight 
weeks, improving orthostatic dizziness and fatigue[219]. In 
a study of  18 patients with idiopathic orthostatic hypo-
tension, octreotide reduced postural, postprandial and 
exertion-induced hypotension, as demonstrated by 24-h 
ambulatory blood pressure profiles and cusum analy-
ses[220].

Other available pharmacological strategies include 
the use of  erythropoietin which can increase the erect 
BP through the increase of  red cell mass and circulating 
volume, the improvement of  anaemia and its regula-
tory effect on vascular tone[221] and desmopressin acetate 
whose efficacy is mainly observed in morning time hypo-
tension[212]. Finally, caffeine and acarbose can potentially 
be used in the management of  post-prandial hypoten-
sion[212]. In a case report of  58 years old patient with DM 
and severe postprandial hypotension refractory to the 
use of  midodrine and octreotide, acarbose (an alpha-
glucosidase inhibitor) reduced the postural drop from 50 
mmHg to 18 mmHg, improving the patients symptoms 
dramatically[222].

Unfortunately, despite the different options available, 
postural hypotension remains a difficult condition to treat 
and many patients require multiple therapies and develop 
severe intractable disabling symptoms. Beta blockers 
might help controlling the tachycardia in some patients[69].

CONCLUSION -SYNOPSIS AND FUTURE 
CONSIDERATIONS
CAN is very common and is an underdiagnosed com-
plication of  DM. CAN is associated with significant in-
crease in morbidity and mortality and plays an important 
role in the development of  diabetic cardiomyopathy and 
silent ischaemia. Clinicians interpreting exercise tolerance 
testing should be aware of  the reduced accuracy of  this 
test in patients with CAN. In addition, CAN might play 
a role in the pathogenesis of  diabetes-related microvas-
cular complications and the development of  lower limb 
complications. However, before CAN is symptomatic 
and evident clinically, patients might have sub-clinical 
CAN for several years. The time scale for the progression 
from sub-clinical to clinically evident CAN is unknown. 
In addition, the time scale for the progression from early 
abnormalities (such as increased LV torsion) to clini-
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cally detectable cardiac disease is also unknown. Recent 
guidelines have recommended screening for CAN in 
patients with diabetes and issued guidance regarding the 
criteria used to diagnose CAN. CAN is assessed using 
several methods including CARTs, HRV, and imaging 
amongst others. The use of  HRV and spectral analysis 
has simplified CAN testing which nonetheless remains 
time consuming. Despite our improved understanding of  
the pathogenesis of  CAN, disease modifying treatment 
is lacking. Improving glycaemic control, life style changes 
and CVD risk factors management are the mainstay of  
treatment, which generally slow the progression of  CAN 
rather than reversing it.

Further research exploring the natural history of  
CAN and the natural history of  the impact of  CAN on 
CVD is needed. Better understanding of  CAN pathogen-
esis is also required in order to develop disease modifying 
treatments. OSA is increasingly recognised as an impor-
tant contributor to the development of  microvascular 
complications in DM, hence it is important to clarify the 
relationship between CAN and OSA as this might iden-
tify new treatment targets.
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Abstract
There are many advantages of combining incretin ther-
apy [glucagon-like peptide-1 (GLP-1) receptor agonists 
and dipeptidyl peptidase-4 (DPP-4) inhibitors] with 
insulin therapy as a glucose-lowering strategy in type 
2 diabetes. One important advantage is the comple-
mentary mode of the mechanistic action of incretin and 
insulin therapy. Another advantage is the reduction 
in risk of hypoglycemia and weight gain when adding 
incretin therapy to insulin. Several clinical trials have 
studied the addition of GLP-1 receptor agonists [exena-
tide BID (twice daily), lixisenatide, albiglutide] or DPP-4 
inhibitors (vildagliptin, sitagliptin, saxagliptin, alogliptin, 
linagliptin) to ongoing insulin therapy or adding insulin 
to ongoing therapy with a GLP-1 receptor agonist (lira-
glutide). These studies show improved glycemia in the 
presence of limited risk for hypoglycemia and weight 
gain with the combination of incretin therapy with in-
sulin. This article reviews the background and clinical 
studies on this combination.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Type 2 diabetes; Glucose lowering; Insulin 
therapy; Glucagon-like peptide-1 receptor agonists; Di-
peptidyl peptidase-4 inhibitors; Incretin therapy; Com-
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Core tip: Incretin therapy (glucagon-like peptide-1 re-
ceptor agonists or dipeptidyl peptidase-4 inhibitors) 
combined with insulin therapy is a glucose-lowering 
strategy in type 2 diabetes. The combination allows 
a complementary mode of mechanistic action and, as 
demonstrated in several clinical trials, is glucose-lower-
ing in association with limited risk for hypoglycemia and 
weight gain. The combination is a promising strategy in 
patients in whom metformin with either incretin thera-
py or basal insulin is insufficient for adequate glycemic 
control. This article reviews the background and clinical 
studies on this combination.

Ahrén B. Insulin plus incretin: A glucose-lowering strategy for 
type 2-diabetes. World J Diabetes 2014; 5(1): 40-51  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i1/40.htm  
DOI: http://dx.doi.org/10.4239/wjd.v5.i1.40

INSULIN IN COMBINATION WITH 
INCRETINS: A MORE COMMONLY USED 
GLUCOSE-LOWERING THERAPY
Life style changes accompanied by addition of  metfor-
min are often first line glucose reducing therapy in type 2 
diabetes[1,2]. When metformin as the only pharmaceutical 
agent is insufficient for adequate glycemic control, several 
options are currently available. Of  these, sulfonylureas, 
thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) inhibi-
tors, glucagon-like peptide-1 (GLP-1) receptor agonists 
and insulin were recently suggested by the joint position 
statement from the American Diabetes Association and 
the European Association of  the Study of  Diabetes to be 
potentials as an add-on to metformin[1]. They were sug-
gested to be individualized to target the best combination 
for the individual patient. However, even after combina-
tion of  metformin with any of  these second-line thera-
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pies, many patients still do not reach the glycemic target 
which is mainly due to the progression of  the disease. At 
this stage, three-drug combinations are suggested to be 
used, involving metformin in combination with two of  
the other options. One such three-drug combination is 
the combination of  insulin therapy with incretin therapy 
(+ metformin) as a glucose-reducing strategy of  type 2 
diabetes[2-6]. This article reviews the current evidence and 
experience for this combination.

BASIS FOR INCRETIN THERAPY
Incretin therapy is based on the anti-diabetic effects of  
GLP-1[7]. As an incretin hormone, GLP-1 is released 
from the gut after meal ingestion and augments insulin 
secretion in a glucose-dependent manner[7,8]. This effect 
on the beta cells is achieved through activating specific 
GLP-1 receptors, which are G protein coupled recep-
tors[9]. GLP-1 also has an important effect to inhibit glu-
cagon secretion[10]. These double effects on islet hormone 
secretion are of  importance for the anti-diabetic action 
of  incretin therapy and, furthermore, by targeting the 
double alpha and beta cell dysfunction, incretin therapy 
targets a main pathophysiological cause of  the disease[11]. 
GLP-1 receptors are, however, also expressed in other 
cells and therefore GLP-1 also exhibits extra-islet effects, 
such as delay of  gastric emptying[12] and satiety through 
a central effect in the hypothalamus[13]. GLP-1 also has 
the potential of  preserving beta cell function through 
inhibition of  apoptosis[14], although this has so far only 
been demonstrated in animal studies and not shown in 
humans.

The first study showing an anti-diabetic action of  
GLP-1 was published in 1992[15]. In the early develop-
ment of  GLP-1 as a therapy, GLP-1 had to be given as 
an intravenous infusion since the hormone is rapidly 
inactivated by DPP-4[16]. The two successful strategies for 
incretin therapy used this knowledge and today we have 
several GLP-1 receptor agonists which are not or only 
weakly inactivated by DPP-4 and DPP-4 inhibitors[17-20].

GLP-1 receptor agonists are injected subcutaneously 
once or twice daily [exenatide BID (twice daily), liraglu-
tide, lixisenatide] or once weekly {exenatide once weekly 
[Quaque weekly (QW)]}. In addition, once weekly GLP-1 
receptor agonists are in late clinical development (albig-
lutide, semaglutide, dulaglutide)[17,20]. The GLP-1 receptor 
agonists therefore differ in several respects, such as dos-
age regimen. However, GLP-1 receptor agonists also dif-
fer in other aspects, as was recently reviewed[17-20]. Thus, 
the different GLP-1 receptor agonists have different mo-
lecular structures and in this context, they may be derived 
from exendin-4, showing approximately 50% homology 
with native GLP-1 (exenatide, lixisenatide), or they may 
be true GLP-1 analogues with a structure showing a high 
(> 90%) homology to GLP-1 (liraglutide, albiglutide, 
semaglutide, dulaglutide). The GLP-1 receptor agonists 
also differ in molecular size since they may be similar in 
size to native GLP-1 (exenatide, lixisenatide, liraglutide, 
semaglutide) or be 15-20 times bigger because of  fusion 

of  GLP-1 with albumin (albiglutide) or immunoglobulin 
(dulaglutide).

DPP-4 inhibitors are oral agents given once or twice 
daily (sitagliptin, vildagliptin, saxagliptin, linagliptin, alo-
gliptin, tenelagliptin, anagliptin, gemagliptin)[18,19]. They 
are different from each other in terms of  molecular 
structure, although they are all small molecules, and they 
also differ, besides in pharmacokinetics with relevance 
for dosing regimen, in elimination mechanisms, as was 
recently reviewed[21].

Incretin therapy is today established as an add-on 
treatment to metformin and is also used in other condi-
tions; it results in reduction of  both fasting and postpran-
dial glucose and it is associated with a low risk of  hypo-
glycemia and no weight gain (weight reduction or weight 
neutrality)[19,20,22].

RATIONALE FOR COMBINATION INSULIN 
THERAPY PLUS INCRETIN THERAPY
The combination of  incretin therapy and insulin therapy 
was initially not clearly evident during the development 
of  incretin therapy. Instead, incretin therapy was mainly 
developed for combination with oral antihyperglycemic 
agents, in particular metformin. This is still a very im-
portant combination. However, as discussed for GLP-1 
receptor agonists[4] and DPP-4 inhibitors[2,3], incretin 
therapy offers mechanistic advantages when used in as-
sociation with insulin, which makes this combination a 
promising strategy for treatment.

The mechanistic complementary actions of  the two 
approaches relate to reduction in fasting glucose, reduc-
tion in postprandial glucose, the low risk for hypoglyce-
mia and the prevention of  weight gain. More mechanistic 
studies are required, however, for a full appreciation of  
the complementary actions of  insulin and incretins in 
combination.

Fasting glucose
Reduction of  fasting glucose is a major goal for glucose-
lowering therapy since fasting glucose contributes largely 
to hemoglobin A1c (HbA1c)[23,24]. A main effect of  basal 
insulin is the reduction of  fasting glucose, which is 
achieved through increased peripheral (mainly muscle and 
fat tissue) glucose utilization and inhibited hepatic glucose 
output[25,26]. Also, GLP-1-receptor agonists and DPP-4 
inhibitors reduce fasting glucose but this is achieved 
through other mechanisms than insulin; mainly a glucose-
dependent inhibition of  glucagon secretion from the islet 
alpha cells[10,27]. In addition, direct liver effects of  GLP-1 
may also contribute[28]. Hence, the combination of  insulin 
with incretin therapy would be expected to complement 
each other to reduce fasting glucose.

Postprandial glucose
Postprandial glucose also contributes to HbA1c and is 
therefore a target for glucose-lowering therapy[23,24]. Post-
prandial glucose is mainly regulated by gastric emptying 
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and the meal-induced islet hormone responses[29-31]. These 
effects are not appreciably affected by basal insulin. In 
contrast, incretin therapy reduces postprandial glucose, 
although the mode of  action to achieve this effect differs 
between GLP-1 receptor agonists and DPP-4 inhibitors. 
GLP-1 receptor agonists reduce postprandial glucose 
mainly by delaying gastric emptying[29-31]. This effect of  
GLP-1 shows, however, tachyphylaxis, meaning that dur-
ing long-term and continuous stimulation, the effect is 
reduced[32,33]. Consequently, intermittently acting GLP-1 
receptor agonists (exenatide BID, lixisenatide) have been 
shown to be more potent to reduce gastric emptying than 
continuously acting GLP-1 receptor agonists (liraglutide, 
exenatide QW)[34,35]. In contrast, DPP-4 inhibitors do not 
inhibit gastric emptying[36] but instead reduce postprandial 
glucose mainly through inhibiting postprandial glucagon 
levels and stimulating beta cell function[27,37]. Both incretin 
therapy strategies therefore reduce postprandial glucose 
and thus complement the lack of  such an effect by insu-
lin in the combination therapy.

Hypoglycemia
Hypoglycemia is an adverse event for glucose-lowering 
therapy and is occasionally the limitation factor for 
achieving good glycemic control. Hypoglycemia is associ-
ated with negative impact, such as unpleasant and some-
times dangerous symptoms, weight gain (due to defense 
eating), deterioration of  glycemic control (due to reduced 
adherence to therapy and therapeutic goals because of  
fear of  new hypoglycemic episodes), increased cardiovas-
cular risk and increased risk for microvascular complica-
tions[38-41]. Insulin therapy is associated with a high risk 
of  hypoglycemia[29-31]. In contrast, incretin therapy is as-
sociated with a low risk of  hypoglycemia[30,31,39-47]. This is 
because the islet effect of  GLP-1 is glucose dependent[7,9] 
and the glucagon counter-regulation to hypoglycemia is 
preserved or augmented[48-50]. Therefore, incretin therapy 
has the potential to prevent the hypoglycemia induced by 
insulin when the two treatments are used in combination.

Body weight
Since increased body weight is associated with long-term 
negative effects, prevention of  weight gain or weight re-
duction is of  importance for glucose-lowering therapies. 
Body weight is increased by insulin therapy[51]. This is 
due to the anabolic action of  insulin but may also be due 
to the self-defense eating associated with hypoglycemic 
events. Incretin therapy, on the other hand, prevents 
weight gain since its lowering of  glycemia is not associ-
ated with increased risk of  hypoglycemia and therefore 
the therapy avoid the self-defense eating[52]. GLP-1 recep-
tor agonists also induce satiety through effects on the sa-
tiety center in the hypothalamus, thereby inducing weight 
reduction[13]. Therefore, the combination of  incretin 
therapy with insulin has a great advantage of  preventing 
the weight gain induced by insulin.

Disease modifying effects
Type 2 diabetes is a progressive disease with is mainly 

due to a continuous decline in beta cell function[53]. It 
has been discussed whether insulin therapy and incretin 
therapy may have complementary disease modifying ef-
fects[5]. The rationale for this suggestion is that insulin 
has been suggested to improve beta cell function through 
its normalization of  fasting glucose, thereby preventing 
glucotoxicity and may also result in “beta cell rest”[54]. On 
the other hand, GLP-1 based therapies may improve beta 
cell function so much that beta cell function will also be 
improved over a long-term perspective, particularly in as-
sociation with inhibited beta cell apoptosis[7,9].

ADVANTAGES OF COMBINING INSULIN 
WITH INCRETIN THERAPY
The complementary actions of  insulin and incretin thera-
py, as discussed above, may result in potential advantages 
that may be observed by using this combination as a 
glucose-lowering strategy when treating people with type 
2 diabetes. The main advantages are: (1) the combined 
reduction of  fasting and postprandial glycemia which 
will lower HbA1c; (2) the lower risk of  hypoglycemia 
which is due to the protection against hypoglycemia with 
incretin therapy in association with the often observed 
reduction in insulin dose when using this combination; (3) 
the lower risk for weight gain, which again is due to the 
protection against weight gain by incretin therapy in as-
sociation with reduced weight gain through reduction in 
the insulin dose; and (4) the potential long-term disease 
modifying prospect of  the combination.

CLINICAL STUDIES OF ADDING GLP-1 
RECEPTOR AGONISTS TO INSULIN
Exenatide
The first proper clinical trial exploring the combination 
of  incretin therapy with insulin was a study in 259 pa-
tients with type 2 diabetes who were treated with insulin 
glargine (± metformin and/or pioglitazone) with insuffi-
cient glycemic control (HbA1c 7.5%-10.5%; mean 8.4%). 
Patients were randomized to receive additional therapy 
with exenatide BID (n = 138) or placebo (n = 123) and 
the dose of  insulin glargine was titrated to achieve a 
fasting glucose level less than 5.6 mmol/L[55]. After the 
study period of  30 wk, HbA1c was reduced by 1.7% in 
the group treated with exenatide BID as an add-on com-
pared to 1.0% by placebo (P < 0.001). The daily insulin 
glargine dose had increased by 20 U (95%CI: 16-24) in 
the placebo group and by 13 U (95%CI: 9-17) in the ex-
enatide BID-group (P = 0.030) (baseline insulin glargine 
dose was 48 U). Postprandial glucose was reduced in the 
exenatide BID-treated group (by 2.0 mmol/L, 95%CI: 
1.5-2.5 mmol/L) but not changed in the placebo group 
(P < 0.001), whereas changes in fasting glucose did not 
differ between the two groups. Body weight was reduced 
(by 1.8 kg) in the exenatide BID group but increased 
(by 1.0 kg) in the placebo-treated group (baseline 94 kg). 
Furthermore, the number of  hypoglycemic events did 
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Lixisenatide
The GLP-1 receptor agonist lixisenatide has been ex-
amined as an add-on to basal insulin in three studies. In 
the first study, patients treated with basal insulin with 
inadequate glycemic control (HbA1c 7%-10%, mean 
7.6%) were randomized to addition of  lixisenatide (n = 
328) or placebo (n = 167) without any insulin titration[57]. 
The used basal insulins in the study were insulin glargine 
(50%), insulin detemir (47%), neutral protamine Hagedo-
rn (NPH) insulin (7%) or premix insulin (2%) and 80% 
of  the patients were additionally treated with metformin. 
After the study period of  24 wk, HbA1c was reduced by 
0.7% by lixisenatide and by 0.4% by placebo (P < 0.001). 
Fasting glucose was reduced in both groups but with no 
significant difference. In contrast, postprandial glucose 
was more pronouncedly reduced in the lixisenatide group 
(by 5.5 ± 0.5 mmol/L) than in the placebo group (by 1.7 
± 0.5 mmol/L, P < 0.001). Body weight (from baseline 
of  88 kg) was reduced by 1.8 kg by lixisenatide and 0.5 kg 
by placebo (P < 0.001). The daily insulin dose (mean 56 
U at baseline) had been reduced by 5 U in the lixisenatide 
group and by 2 U in the placebo group. Twenty-eight 
percent of  patients in the lixisenatide group reported hy-
poglycemia vs 22% in the placebo group.

In the second study on add-on with lixisenatide to 
basal insulin, lixisenatide was added to insulin glargine in 
patients who initially failed to control glycemia with oral 
agents (HbA1c 7%-10%, mean HbA1c 8.6%)[58]. After 
an initial titration phase of  insulin glargine alone for 12 
wk targeting a fasting glucose of  4.4-5.6 mmol/L (mean 
HbA1c was reduced to 7.6%), patients were randomized 
to lixisenatide (n = 223) or placebo (n = 223) together 
with ongoing insulin therapy (+ metformin) for 24 wk. It 
was found that mean HbA1c was further reduced to 7.0% 
in the lixisenatide group vs to 7.3% in the placebo group 
(P < 0.001). Fasting glucose was similarly reduced in both 
groups, whereas postprandial glucose was reduced more 
in the lixisenatide group (by 3.4 ± 0.5 mmol/L) than in 
the placebo group (0.1 ± 0.5 mmol/L; P < 0.001). Body 
weight was increased by 1.2 kg in the placebo group and 
by 0.3 kg in the lixisenatide group (baseline 86 kg) (P = 
0.0012). Confirmed hypoglycemia was reported in 0.80 
episodes per patient year in the lixisenatide group vs 0.44 
in the placebo group.

Finally, the effect of  adding lixisenatide to ongoing 
insulin therapy has also been examined in Asian patients 
with inadequate glycemic control on basal insulin [with 
(70%) or without sulfonylurea therapy][59]. Of  the pa-
tients, 60% were treated with insulin glargine, 27% with 
insulin detemir and 13% with NPH insulin with a mean 
daily insulin dose of  25 U. The patients were random-
ized to addition of  lixisenatide (n = 154) or placebo (n = 
157) together with ongoing therapy with basal insulin ± 
sulfonylurea. After the 24 wk study period, HbA1c was 
reduced by 0.8% in the lixisenatide group vs increased by 
0.1% in the placebo group (P < 0.001). There was a re-
duction in fasting glucose in the lixisenatide group com-
pared to the placebo group (P = 0.0187) and postprandial 

not differ significantly between the groups inspite of  the 
difference in HbA1c (1.4 episodes per patient year in the 
exenatide BID-treated group vs 1.2 episodes per patient 
year in the placebo group) (Table 1).

In another study, a direct comparison was performed 
between adding exenatide BID vs short-acting prandial 
insulin lispro to ongoing insulin glargine (+ metformin) 
in patients who were inadequately controlled on insulin 
glargine + metformin. The study used an initial 12 wk 
titration phase with insulin glargine [fasting glucose (FPG) 
glucose target < 5.6 mmol/L]. Patients who failed to re-
duce HbA1c below 7% during this titration period (mean 
8.3%) were randomized to receive additional exenatide 
BID (n = 316) or insulin lispro (n = 321). The results 
showed that after 30 wk, HbA1c had been reduced by 
1.1% ± 0.1% in both groups (not significantly different). 
Fasting glucose was reduced by 0.5 ± 0.2 mmol/L in the 
exenatide group vs 0.2 ± 0.2 mmol/L in the insulin lispor 
group (P = 0.002) and whereas postprandial glucose was 
similarly reduced after breakfast and evening meals, it 
was more pronouncedly reduced by lispro at lunch (when 
exenatide was not given; P < 0.001). Body weight was 
reduced in the exenatide BID group (by 2.4 ± 0.2 kg) and 
increased in the insulin lispro group (by 2.1 ± 0.2 kg). 
The number of  hypoglycemic events was lower in the ex-
enatide group (n = 206) than in the insulin lispro group (n 
= 522)[56].

Exenatide BID Lixisenatide

  Ref 56  58 59    60
  Number of patients         259     495     446  311
  Duration (wk) 30  24 24    24
  HbA1c Baseline 8.3 ± 0.9  8.4 ± 0.9  7.6 ± 0.5   8.5 ± 0.7

Change -1.7 (-1.9, -1.6) -0.7 ± 0.1 -0.7 ± 0.1  -0.8 ± 0.2
Baseline 

comparator
8.5 ± 1.0  8.4 ± 0.8  7.6 ± 0.5   8.5 ± 0.8

Change 
comparator

-1.0 (-1.2, -0.9) -0.4 ± 0.1 -0.4 ± 0.1 +0.1 ± 0.2

  FPG
 (mmol/L)

Baseline 7.9 ± 2.1  8.1 ± 2.8  6.6 ± 1.7   7.8 ± 2.2
Change -1.6 (-1.9, -1.3) -0.6 ± 0.2 -0.3 ± 0.2  -0.4 ± 0.3
Baseline 

comparator
8.3 ± 2.3  8.0 ± 2.7  6.7 ± 2.0   7.7 ± 2.3

Change 
comparator

-1.5 (-1.8, -1.2) -0.6 ± 0.3 -0.5 ± 0.2   0.3 ± 0.3

  Hypoglycemia GLP-1RA 1.41 2062  283 423; 334

Comparator 1.21 5222  223 243; 284

  Body weight Baseline 95 ± 20  89 ± 21  88 ± 22   66 ± 13
Change -1.8 (-2.4, -1.1) -1.8 ± 0.2  0.3 ± 0.3  -0.4
Baseline 

comparator
93 ± 21  88 ± 20  87 ± 21   66 ± 12

Change 
comparator

1.0 (0.2, 1.7) -0.5 ± 0.3  1.2 ± 0.3 +0.1

Table 1  Published clinical trials with glucagon-like peptide-1 
receptor agonists added to ongoing insulin therapy

Insulin glargine was used in all studies. Occurrence of hypoglycemia was 
reported as number of episodes per patient year1, number of events2 or as 
percentage of patients with at least one hypoglycemic episode3. One study 
also reported percentage of patients not on sulfonylurea who experienced 
at least one hypoglycemic episode4. Variation in baseline is SD, variation 
in effect is SE. Variation within parenthesis is the 95%CI. FPG: Fasting glu-
cose; GLP-1: Glucagon-like peptide-1; HbA1c: Hemoglobin A1c.
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glucose was reduced by 8 mmol/L in the lixisenatide 
group but not changed in the placebo group (P < 0.001). 
Symptomatic hypoglycemia was more frequent with 
lixisenatide (42.9%) vs placebo (23.6%). In contrast, in 
patients not treated with sulfonylurea, hypoglycemia was 
similar between groups (32.6% vs 28.3%, respectively). 
Change in body weight was not significantly different 
between the groups whereas the daily insulin dose was 
reduced by 1.4 U in lixisenatide group vs by 0.1 U in the 
placebo group (P = 0.0019).

Albiglutide
A study compared the effects of  the once weekly GLP-1 
receptor agonist albiglutide (n = 285) vs insulin lispro (n 
= 281) to ongoing insulin glargine therapy (+ oral agents, 
no sulfonylurea) in patients with type 2 diabetes with in-
adequate glycemic control (mean HbA1c 8.5%)[60]. There 
was a titration algorithm for insulin glargine to achieve 
fasting glucose of  4.4-7.2 mmol/L. After the 26 wk study 
period, HbA1c was similarly reduced by albiglutide (0.8% 
± 0.1%) and by insulin lispro (0.7% ± 0.2%). Fasting 
glucose was reduced in both groups with no significant 
difference. Body weight (baseline 92 kg) was reduced 
0.7 ± 0.2 kg by albiglutide and increased by 0.8 ± 0.2 kg 
by insulin lispro (P < 0.001). Mean insulin glargine dose 
did not change during the study. Thirty-two percent of  
patients on albiglutide experienced hypoglycemia vs 50% 
with insulin lispro.

CLINICAL STUDIES OF ADDING DPP-4 
INHIBITORS TO INSULIN
Vildagliptin
The first study examining a DPP-4 inhibitor in combina-
tion with insulin added vildagliptin (vs placebo) to insulin 

treated patients with insufficient glycemic control (HbA1c 
7.5%-11%, mean HbA1c 8.4%; n = 296)[61]. Patients were 
treated with basal and prandial insulin (mean 2.8 injec-
tions per day, mean daily insulin dose 82 U). After the 
24 wk study period, HbA1c was reduced by 0.5% in the 
vildagliptin group vs 0.2% in the placebo group (baseline 
8.4%) (P = 0.01). During the course of  the study, there 
were 113 hypoglycemic events in the vildagliptin group 
compared to 185 in the placebo group and whereas there 
were 6 episodes of  severe hypoglycemia in the placebo 
group, no severe hypoglycemic episode was seen in the 
vildagliptin group. The mean daily insulin dose was re-
duced by 1.9 U in the vildaglitpin vs increased by 2.4 U in 
the placebo group. Change in body weight did not differ 
between the groups (Table 2).

Another study examined the addition of  vildagliptin 
to ongoing insulin (+ metformin) therapy in 449 patients 
over 24 wk[62]. The patients were treated with long-acting 
insulin (22%), intermediate acting insulin (17%) and 
premixed insulin (60%), with a mean daily insulin dose 
of  40 U. They had insufficient glycemic control (HbA1c 
7.5%-11%; mean HbA1c 8.8%). It was found that 
HbA1c was reduced by vildagliptin by 0.8% and by pla-
cebo by 0.1% (P < 0.001). Fasting glucose was reduced in 
the vildagliptin group but not in the placebo group (P = 
0.050). Hypoglycemia was reported in 8.4% of  patients in 
the vildagliptin group and by 7.2% in the placebo group. 
The daily insulin dose was 41 U at baseline and slightly 
reduced in both groups with no difference. There was no 
change in body weight in any of  the groups.

Sitagliptin
The first study examining the combination of  sitagliptin 
with insulin therapy added the DPP-4 inhibitor vs pla-
cebo to ongoing insulin (+ metformin) treatment over 24 
wk in 641 patients with poorly controlled type 2 diabetes 

Vildagliptin Sitagliptin Alogliptin Saxagliptin Linagliptin

  Ref   62   63 64   65   67   69 70
  Number of patients 296 449             641 124 390 455        1261
  Study duration (wk)   24   24 24   24   26   52 24
  Comparator Stable insulin Stable insulin Stable insulin Increasing insulin Stable insulin Stable insulin Stable insulin
  HbA1c (%) Baseline  8.4 ± 1.0  8.8 ± 1.0 8.7 ± 0.9 9.2 ± 1.0 9.3 ± 1.1 8.7 ± 0.9  8.3 ± 0.1

Change -0.5 ± 0.1 -0.8 ± 0.1   -0.6 (-0.7, -0.5) -0.6 (-0.9, -0.3) -0.7     -0.8 ± 0.1 -0.6 ± 0.1
Baseline placebo  8.4 ± 1.1  8.8 ± 1.0 8.6 ± 0.9 9.2 ± 1.1 9.3 ± 1.1 8.6 ± 0.9  8.3 ± 0.1
Change placebo -0.2 ± 0.1 -0.1 ± 0.1      0 (-0.1, 0.1) -0.2 (-0.5, 0.3) -0.1     -0.4 ± 0.1 -0.1 ± 0.1

  FPG (mmol/L) Baseline  9.3 ± 3.1  9.6 ± 2.6 9.8 ± 2.9 9.0 ± 3.3     10.3 ± 3.9 NR  8.2 ± 2.6
Change -0.8 ± 0.3 -0.8   -1.0 (-1.4, -0.7) -1.0 (-2.7, -0.2)     -0.6 ± 0.3 -0.2 ± 0.2

Baseline placebo  8.7 ± 3.1  9.1 ± 2.5 9.9 ± 3.3 8.4 ± 2.8     10.9 ± 4.3 NR  8.4 ± 2.6
Change placebo -0.2 ± 0.4 -0.2 -0.2 (-0.6, 0.2) -1.3 (-1.8, -0.5) 0.3 ± 0.3 -0.3 ± 0.2

  Hypoglycemia  1131   8.42  162      72    202    232  232

  Hypoglycemia placebo  1851   7.22    82    142    402    272  222

  Body weight (kg) Baseline        95 ± 2  78 ± 16 87 ± 19 69 ± 12 87 ± 19 88 ± 18 BMI (31 ± 5)
Change        1.3 ± 0.3             0.1 -0.1 (-0.2, 0.4) -0.7 (-1.4, -0.1)        0.6 ± 0.2   0.8 -0.2 ± 0.1

Baseline placebo        95 ± 2  79 ± 17 87 ± 18 66 ± 10 91 ± 21 86 ± 16 BMI (31 ± 5)
Change placebo        0.6 ± 0.3           -0.4 -0.1 (-0.3, 0.4)        1.1 (0.2, 1.8)        0.6 ± 0.2   0.5        0.1 ± 0.1

Table 2  Published clinical trials with dipeptidyl peptidase-4 inhibitors combined with basal ± prandial insulin

In the studies long and medium acting insulin and premixed insulins were used. Occurrence of hypoglycemia was reported as number of events1 or as per-
centage of patients with at least one hypoglycemic episode2. Variation in baseline is SD, variation in effect is SE. Variation within parenthesis is the 95%CI. 
FPG: Fasting glucose; BMI: Body mass index (kg/m2); HbA1c: Hemoglobin A1c.
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(HbA1c 7.5%-11%, mean HbA1c 8.6%)[63]. Seventy-four 
percent of  the patients were treated with long-acting 
or intermediate-acting insulin and 26% were treated 
with premixed insulin. After the 24 wk study period, 
HbA1c was reduced by 0.6% by sitagliptin vs no change 
by placebo (P < 0.001). Fasting glucose was reduced in 
the sitagliptin group but not in the placebo group (P < 
0.001). Similarly, postprandial glucose was reduced in the 
sitagliptin group (by -1.7 mmol/L, 95%CI: -2.2, -1.2) but 
not changed in the placebo group (0.3 mmol/L, 95%CI: 
-0.2-0.7) (P < 0.001). Hypoglycemia was observed in 16% 
of  the patients on sitagliptin vs 8% of  patients on pla-
cebo. Insulin dose was reduced by 0.1 U in the sitagliptin 
and by 1.6 U in the placebo group (baseline 44 U for long 
acting insulin and 67-74 U with premixed insulin). Body 
weight was reduced by 0.1 kg in both groups.

Another study compared adding sitagliptin to insulin 
therapy vs increasing the insulin dose in 140 patients on 
insulin therapy (+ oral agents) who had inadequate gly-
cemic control (baseline HbA1c 7.5%-11%, mean HbA1c 
9.2%). Patients were treated with insulin glargine alone 
(48%), insulin glargine together with rapid acting insulin 
(23%) or NPH insulin in combination with regular insu-
lin (29%); mean daily insulin dose was 37 U. It was found 
that over the 24 wk study period, sitagliptin (mean insulin 
dose reduced by 2 U) reduced HbA1c by 0.6%, whereas 
increasing the insulin dose (by 10 U) reduced HbA1c by 
0.2% (P < 0.005)[64]. Fasting glucose was reduced by ap-
proximately 1 mmol/L in both groups with no significant 
difference. Hypoglycemia occurred in 7 events per patient 
year in the sitagliptin group vs 14.3 events per patient year 
in the insulin group. Body weight was reduced by 0.7 kg 
in the sitagliptin group vs increased by 1.1 kg in the insu-
lin group (P < 0.05).

A third study examined the add-on of  sitagliptin (n 
= 236) vs placebo (n = 232) to patients who were treated 
with insulin (long-acting, intermediate-acting or premixed 
insulin) in combination with metformin over 6 mo. It was 
found that with the addition of  sitagliptin, HbA1c was 
reduced by 0.8% (baseline 8.5%) vs no change in HbA1c 
after addition of  placebo (P < 0.001). Relative to the pla-
cebo group, fasting glucose was reduced by 1.0 mmol/L 
and postprandial glucose by 2.0 mmol/L. Hypoglycemia 
was observed in 18% of  patients in the sitagliptin group 
vs 8% in the placebo group[65].

Alogliptin
Alogliptin (two doses) or placebo was added to ongoing 
insulin therapy alone (40%) or with metformin in 390 pa-
tients with inadequate glycemic control (HbA1c ≥ 8.0%; 
baseline HbA1c 9.3%)[66]. The insulin treatment that was 
used was premixed insulin or insulin combinations (64%), 
as well as long-acting basal insulin alone (34%) or short-
acting insulin alone (2%); mean daily insulin dose was 
57 U. During the course of  the 26 wk study, daily insulin 
dose was kept constant. Alogliptin reduced HbA1c by 
0.6% (12.5 mg daily; n = 131) and 0.7% (25 mg daily; n 
= 129) vs a reduction by 0.1% in the placebo group (n = 
130) (P < 0.001). Fasting glucose was reduced by aloglitin 

in the 25 mg group (by -0.6 ± 0.3 mmol/L vs the placebo 
group (0.3 ± 0.3 mmol/L; P = 0.030) but not changed 
in the 12.5 mg group. The number of  patients reporting 
hypoglycemia was lower in the two alogliptin groups (21% 
and 20%, respectively) than in the placebo group (40%; P 
< 0.001). There was no difference in hypoglycemia events 
(24%-27% of  patients reported hypoglycemic episodes in 
the three groups). Body weight increased by 0.6 kg (base-
line 88 kg) in all groups.

Saxagliptin
Saxagliptin or placebo was added to ongoing insulin 
therapy (basal insulin or premixed insulin ± metformin) 
in 455 patients with inadequate glycemic control (HbA1c 
7.5-11). During the course of  the 24 wk study, daily insu-
lin dose was kept constant[67]. Placebo-adjusted reduction 
in HbA1c by saxagliptin was 0.4% (P < 0.001). There was 
no difference in hypoglycemia events (18% with saxa-
gliptin, 20% with placebo). Body weight was increased 
by 0.4 kg in the saxagliptin group and by 0.2 kg in the 
placebo group. An extension phase of  this study showed 
sustained effects over 52 wk[68].

Linagliptin
Linagliptin or placebo was added to ongoing basal insu-
lin therapy (± metformin and/or pioglitazone) in 1261 
patients with inadequate glycemic control (HbA1c 7-10). 
During the study, daily insulin dose was kept constant 
during the first 24 wk but could thereafter be titrated ac-
cording to fasting glucose[69]. After 24 wk, HbA1c was 
reduced by 0.6% (baseline 8.3%) by linagliptin and by 
0.1% by placebo (P < 0.001). Placebo-adjusted reduc-
tion in fasting glucose with linagliptin was 0.6 mmol/L 
(95%CI: -0.9-0.4). During the following 28 wk, insulin 
dose was increased by 2.6 U in the linagliptin group and 
by 4.2 U in the placebo group but with no further change 
in HbA1c. There was no difference in hypoglycemia 
events (23% with linagliptin, 22% with placebo after 24 
wk). Body weight was reduced by 0.3 kg in the linagliptin 
group and by 0.04 kg in the placebo group.

COMPARING CONTROLLED TRIALS 
COMBINING ADDING INCRETIN THERAPY 
TO INSULIN
As outlined above, the reduction in HbA1c, fasting and 
postprandial glucose, the lower risk of  hypoglycemia, the 
prevention of  weight gain and the potential disease modi-
fication are the main advantages of  combining incretin 
therapy with insulin. Except for any direct evidence of  
a disease modifying effect of  the combination, the con-
trolled trials summarized above include information on 
these aspects and therefore it is of  interest to compare 
their results in this regard (Tables 1 and 2).

HbA1c
The mean reduction in HbA1c in the controlled clinical 
studies adding incretin therapy to stable dose for 6 mo 
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was -0.8% ± 0.1% compared to -0.3% ± 0.1% when pla-
cebo was added (P < 0.001; Tables 1 and 2). There does 
not seem to be a difference between the two different 
strategies of  incretin therapy since the placebo-adjusted 
reduction in HbA1c was -0.6% ± 0.2% for GLP-1 recep-
tor agonists (n = 4 studies) vs -0.5% ± 0.1% for DPP-4 
inhibitors (n = 6 studies).

Fasting glucose
Fasting glucose is also reduced by adding incretin therapy 
to stable dose of  insulin. It was found to be reduced by 
-0.7 ± 0.1 mmol/L by the incretin therapy vs by -0.3 ± 
0.1 mmol/L in the placebo groups (P = 0.027; Tables 1 
and 2). There does not seem to be a difference between 
the two different strategies of  incretin therapy since fast-
ing glucose was reduced by 0.2 ± 0.2 mmol/L by GLP-1 
receptor agonists (n = 4 studies) vs by -0.6 ± 0.2 mmol/L 
by DPP-4 inhibitors (n = 5 studies).

Postprandial glucose
A few studies also examined postprandial glucose after 
adding incretin therapy to a stable dose of  insulin. They 
showed that postprandial glucose was markedly reduced 
when adding GLP-1 receptor agonists exenatide BID[55] 
and lixisenatide[58], whereas after adding the DPP-4 inhib-
itor sitagliptin, postprandial glucose was more modestly 
reduced[63].

Hypoglycemia
In the studies where incretin therapy has been added 
to insulin compared to ongoing insulin, the occurrence 
of  hypoglycemia was not different between the incretin 
treatment and placebo in most studies (Tables 1 and 
2). Since in most of  these studies HbA1c is lower after 
addition of  incretin therapy compared to placebo, an 
increased risk of  hypoglycemia would be expected af-
ter incretin therapy. Since the opposite was the case, a 
conclusion is that incretin therapy will reduce the risk 
of  hypoglycemia. This conclusion is also evident in the 
studies in which incretin therapy as an add-on to basal 
insulin was compared with the active comparator of  
either adding short-acting insulin[56,60] or increasing the 
insulin dose[64]. A reason for the low risk of  hypoglycemia 
when adding incretin therapy to insulin therapy could be 
the reduced dose of  insulin which often accompanies 
the combination. It may, however, also be caused be a 
sustainment of  the glucagon counterregulation to hypo-
glycemia, as was recently demonstrated for the DPP-4 
inhibitor vildagliptin when added to insulin; the sustained 
glucagon counterregulation assures a sufficient hepatic 
glucose response to prevent hypoglycemia[50].

Weight gain
Body weight was significantly reduced by -0.9 ± 0.5 kg 
by adding GLP-1 receptor agonists to ongoing insulin 
therapy compared to 0.4 ± 0.4 kg in the placebo groups, 
corresponding to a placebo-adjusted reduction by -1.4 ± 
0.5 kg (Table 1). In contrast, DPP-4 inhibitors are weight 

neutral when added to insulin with a placebo-adjusted 
change in body weight of  -0.2 ± 0.1 kg (Table 2).

OTHER STUDIES COMBINING INCRETIN 
THERAPY WITH INSULIN
Adding insulin to a GLP-1 receptor agonist
One study has examined the addition of  basal insulin to 
patients who are treated with a GLP-1 receptor agonist 
with insufficient glycemic control. The study initially ex-
amined addition of  liraglutide to patients failing glycemic 
control on metformin (± sulfonylurea; sulfonylurea was 
removed at start of  study) (n = 988)[70]. After 12 wk, pa-
tients who were still uncontrolled (HbA1c > 7%) were 
randomized to continue metformin plus liraglutide or ad-
dition of  insulin detemir to titrate fasting glucose to 4-6 
mmol/L. After another 26 wk, HbA1c had been reduced 
by 0.5% by the combination of  insulin detemir plus 
liraglutide, whereas those on liraglutide alone (all with 
metformin) had no further change in HbA1c (P < 0.001). 
FPG decreased more in the liraglutide + insulin group 
than in the liraglutide control group (P < 0.001). Hypo-
glycemia rates were 9.2% in the group given insulin de-
temir and liraglutide vs 1.3% with liraglutide alone. Body 
weight (baseline 96 kg) decreased by 3.5 kg by liraglutide 
during the initial period and then by 0.16 kg with insulin 
detemir and liraglutide vs by 0.95 kg with liraglutide with-
out insulin detemir (P = 0.03).

Initial combination of incretin therapy with insulin
Liraglutide has been examined in a fixed ratio combi-
nation with insulin degludec in a randomized study in 
subjects with type 2 diabetes[71]. It was a large trial in 
which patients treated with metformin ± pioglitazone 
and inadequate glycemic control (baseline HbA1c 8.3%) 
were randomized to the addition of  insulin degludec (n = 
414), liraglutide (n = 415) or the combination of  insulin 
degludec and liraglutide (n = 834). After 26 wk of  treat-
ment, HbA1c had been reduced by 1.4% with insulin 
degludec alone, 1.3% with liraglutide alone and 1.9% 
with insulin degludec in combination with liraglutide. 
Body weight had increased by 2.2 kg with insulin de-
gludec alone, was reduced by 2.4 kg by liraglutide and was 
neutral with the combination. Cumulative episodes of  
hypoglycemia were 1.3 per patient in the insulin degludec 
group and reduced to 0.9 per patient in the combination 
group (0.1 in the liraglutide alone group).

Another study randomized 217 patients who had in-
sufficient glycemic control on metformin ± sulfonylurea 
to receiving sitagliptin plus sulfonylurea or sitagliptin plus 
insulin detemir (all on metformin). After the 26 wk study 
period, sitagliptin had reduced HbA1c by 0.9% (mean 
baseline HbA1c 8.5%), whereas sitagliptin plus insulin 
detemir had decreased HbA1c by 1.4%. Hypoglycemia 
was reported in 1.3% of  patients in the insulin detemir 
plus sitagliptin group and 1.7% in the sitagliptin alone 
group. Body weight decreased in both arms with a mean 
decrease of  -1.7 kg in the sitagliptin control group vs -0.8 
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kg with sitagliptin plus insulin detemir group[72].

Uncontrolled studies combining incretin therapy with 
insulin
There are also a few uncontrolled studies of  combin-
ing insulin therapy and incretin therapy in patients with 
type 2 diabetes which arrive at similar conclusions as the 
previously summarized controlled trials. One retrospec-
tive report showed that addition of  exenatide BID to 188 
insulin-treated patients resulted in a reduction in HbA1c 
by 0.66% (baseline 8.1%) after 6 mo with a persistent ef-
fect throughout two years; mean insulin dose could be 
reduced by 15% and only 4% of  patients experienced 
hypoglycemia[73]. Furthermore, a study in obese patients 
with type 2 diabetes added exenatide BID (n = 21) or li-
raglutide (n = 40) to ongoing insulin therapy and showed 
a reduction in HbA1c in these patients by 1.0% (baseline 
8.9%) after 7 mo. At the same time, the daily insulin dose 
was reduced from 91 U to 52 U and only a few hypogly-
cemia episodes were reported[74]. Moreover, a study in 
severely insulin resistant obese subjects treated with in-
sulin U-500 (mean daily dose 192 U) received liraglutide 
for twelve weeks which reduced HbA1c by 1.4% (mean 
baseline HbA1c 8.5%) and at the same time the insulin 
dose was reduced by 28%. There were no reports of  hy-
poglycemia and body weight was reduced by 5 kg (baseline 
body weight 136 kg)[75].

SAFETY OF THE COMBINATION OF 
INSULIN AND INCRETIN THERAPY
Incretin therapy has been shown to be safe with high 
tolerability and the only consistent adverse event is nau-
sea and vomiting during the initial treatment period with 
GLP-1 receptor agonists[17-20,76]. Local injection site reac-
tions (nodules and/or erythema) sometimes occur in as-
sociation with treatment with GLP-1 receptor agonists, 
although such reactions are rare and commonly transient. 
Antibodies may be formed against GLP-1 receptor ago-
nists; more commonly with exendin-4-based agonists 
(exenatide, lixisenatide) than after GLP-1-based agonists. 
In contrast, adverse events are rare during treatment with 
DPP-4 inhibitors, as evident from pooled analysis of  clin-
ical trials[77,78]. Recently, there has been a discussion about 
whether there is an increased risk of  acute pancreatitis in 
incretin therapy. However, pooled or meta-analysis analy-
ses have not demonstrated any increased risk when com-
pared to placebo or other comparators[76-79]. Nevertheless, 
it is important to follow patients on GLP-1 receptor ago-
nists in this regard and in patients with a history of  acute 
pancreatitis, incretin therapy should not be given. Rodent 
data also suggest that GLP-1 receptor agonists may be 
associated with medullary thyroid carcinoma[80]. This has 
not, however, been observed in other animal species or 
humans, possibly because C-cells in humans have a lower 
expression of  GLP-1 receptors than rodent C-cells[81].

Incretin therapy has also been discussed in relation-

ship to cardiovascular safety and meta-analyses have 
shown that there is no detrimental effect of  GLP-1 re-
ceptor agonists[82] or DPP-4 inhibitors[83]. Furthermore, 
several cardiovascular safety trials with incretin therapy 
are at present ongoing and two such recently published 
studies showed no increased risk for cardiovascular dis-
ease with saxagliptin[84] or alogliptin[85].

Also, insulin therapy is safe with the only concern be-
ing the increased risk of  hypoglycemia and weight gain, 
expected adverse events through the glucose-lowering 
actions of  the therapy. By combining incretin therapy 
and insulin, there is no additional concern for safety or 
tolerability, as evident from the studies reported in this 
review[55-69]. Hence, the number of  adverse events is not 
higher in the incretin therapy + insulin treatment groups 
than in placebo groups in placebo-controlled clinical tri-
als on GLP-1 receptor agonists or DPP-4 inhibitors as an 
add-on to insulin therapy, except the nausea and vomit-
ing for the GLP-1 receptor agonists. This also includes 
recently discussed potential adverse events such as acute 
pancreatitis.

Some practical aspects need to be taken into account 
for incretin therapy. This includes the dose reduction of  
sitagliptin, vildagliptin, saxagliptin and alogliptin in pa-
tients with renal impairment due to their renal excretion. 
Furthermore, exenatide and liraglutide should be cau-
tiously used in patients with renal impairment due to in-
sufficient experience in this patient group. Furthermore, 
in patients with hepatic impairment, vildagliptin is not 
recommended. As for all new treatment combinations, 
however, the combination of  incretin therapy with insu-
lin also needs careful follow-up for examining potential 
adverse events which have not yet been observed.

SUMMARY AND CLINICAL POSITIONING 
OF INCRETIN PLUS INSULIN 
COMBINATION
The combination of  insulin therapy with incretin therapy 
is attractive due to experience that this combination 
improves glycemia with a low risk of  increasing risk for 
hypoglycemia and low risk of  weight gain. The combina-
tion is therefore of  particular value in patients on insulin 
therapy in whom HbA1c is not sufficiently reduced. In 
some patients, insufficient improvement of  glycemia may 
be caused by clinical inertia with reluctance to increase 
the insulin dose due to fear of  hypoglycemia or weight 
gain. Addition of  incretin therapy with its lower risk of  
hypoglycemia and low risk of  weight gain may therefore 
prevent the clinical inertia in these patients.

Incretin addition is also of  value in patients who have 
insufficient reduction in HbA1c by intensified basal insu-
lin therapy due to persistent high postprandial glycemia 
or frequent hypoglycemia. Incretin therapy offers advan-
tages over addition of  prandial insulin in these patients. 
Of  particular importance is the prevention of  hypogly-
cemia, since hypoglycemia is associated with both short-
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term and long-term negative impact, not least on cardio-
vascular outcomes. The combination of  incretin therapy 
with insulin may therefore provide advantages both in 
the short-term and by reducing long-term complications 
to the disease.

A main indication for the combination of  incretin 
therapy and insulin is thus in patients who are treated 
with basal insulin (± metformin) in whom there is insuf-
ficient glycemic control and/or an unacceptable high 
rate of  hypoglycemia and/or unacceptable weight gain. 
In patients with HbA1c levels which are not very high 
(< 7.5%), it is advisable to reduce the basal insulin dose 
when starting incretin therapy. The combination of  in-
cretin therapy with insulin is also an important treatment 
strategy in patients who are treated with metformin and 
incretin therapy in combination and in whom the glyce-
mic control is insufficient, i.e., to add basal insulin thera-
py to incretin therapy (+ metformin). The combination 
with incretin therapy and insulin may thus be introduced 
in either way, starting with incretin therapy or starting 
with insulin. It is also a possibility to start immediately 
with initial combination with incretin therapy and insulin 
in patients who are treated with metformin and who are 
in insufficient metabolic control. Such an early introduc-
tion of  the combination may be a solution to the unmet 
need to start aggressive therapy early on during the dis-
ease development to achieve long-term control. Further 
studies are required to examine the long-term effects 
of  this initial combination. One important set of  trials 
would be studies comparing this treatment strategy with 
other three-drug combinations. This would be of  inter-
est to further analyze the potential for the combination 
of  incretin plus insulin therapy (+ metformin). What 
would also be of  value would be to compare different 
incretin therapies (different GLP-1 receptor agonists 
and different DPP-4 inhibitors) to elucidate potential 
differences in effects of  the different compounds when 
combined with insulin. More mechanistic studies would 
also be of  value, for example to examine the relationship 
between insulin therapy and incretin hormones for the 
regulation of  hepatic glucose output, glucose utilization 
and islet function and, furthermore, to study impact of  
the combination therapy on gastric emptying and satiety. 
Moreover, it would also be of  great value to analyze the 
cardiovascular outcome of  this three-drug combination. 
This would be possible in sub-group analysis on the car-
diovascular outcome trials of  incretin treatment in which 
patients on insulin therapy have also been enrolled. Fi-
nally, studies directly aiming at examining the potential 
disease modifying effect of  the combination of  incretin 
therapy and insulin are important; these studies need to 
have a long duration and include mechanistic studies on 
islet function.

The combination of  incretin therapy with insulin (± 
metformin) is thus a promising glucose-lowering strategy 
in type 2 diabetes, allowing a more intensified treatment 
at an earlier stage of  the disease with a lower risk for 
hypoglycemia and weight gain when compared to other 
intensifying therapies.
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Abstract
Approximately 170 million people worldwide are chroni-
cally infected with hepatitis C virus (HCV). Chronic HCV 
infection is the leading cause for the development of 
liver fibrosis, cirrhosis, hepatocellular carcinoma (HCC) 
and is the primary cause for liver transplantation in the 
western world. Insulin resistance is one of the patho-
logical features in patients with HCV infection and of-
ten leads to development of type Ⅱ diabetes. Insulin 
resistance plays an important role in the development 
of various complications associated with HCV infection. 
Recent evidence indicates that HCV associated insulin 
resistance may result in hepatic fibrosis, steatosis, HCC 
and resistance to anti-viral treatment. Thus, HCV as-
sociated insulin resistance is a therapeutic target at any 
stage of HCV infection. HCV modulates normal cellular 
gene expression and interferes with the insulin signal-
ing pathway. Various mechanisms have been proposed 
in regard to HCV mediated insulin resistance, involving 
up regulation of inflammatory cytokines, like tumor 
necrosis factor-α, phosphorylation of insulin-receptor 
substrate-1, Akt, up-regulation of gluconeogenic genes 

like glucose 6 phosphatase, phosphoenolpyruvate car-
boxykinase 2, and accumulation of lipid droplets. In this 
review, we summarize the available information on how 
HCV infection interferes with insulin signaling pathways 
resulting in insulin resistance.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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get of rapamycin/S6K1; Suppressor of cytokine signal-
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Core tip: Insulin resistance is one of the pathological 
features in patients with hepatitis C virus (HCV) infec-
tion and often leads to development of type Ⅱ diabe-
tes. Recent evidence indicates that HCV associated in-
sulin resistance may result in hepatic fibrosis, steatosis, 
hepatocellular carcinoma and resistance to anti-viral 
treatment. In this review, we summarize the available 
information on how HCV infection interferes with insulin 
signaling pathways.

Bose SK, Ray R. Hepatitis C virus infection and insulin resis-
tance. World J Diabetes 2014; 5(1): 52-58  Available from: URL: 
http://www.wjgnet.com/1948-9358/full/v5/i1/52.htm  DOI: http://
dx.doi.org/10.4239/wjd.v5.i1.52

INTRODUCTION
Hepatitis C virus (HCV) contains a positive sense single 
stranded RNA genome and belongs to the family Flavi-
viridae and genus Hepacivirus[1]. HCV genome, 9.6 kb in 
length, is composed of  a 5’ non-translated region (NTR), 
a long open reading frame (ORF) encoding a polyprotein 
and a 3’ NTR. The ORF encodes a polyprotein of  about 
3000 amino acids that is translated via an internal ribo-
some entry site at the 5’ NTR. The polyprotein is then 
cleaved by both cellular and viral proteases into at least 
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10 different proteins[1]. These include three structural 
proteins namely, core and two envelope glycoproteins (E1 
and E2). In addition, a protein called F or ARFP can be 
produced from a frame-shift of  the core protein[2]. An 
ion channel protein p7 is formed by cleavage of  E2[3]. 
Non structural proteins of  HCV include NS2, NS3, 
NS4A, NS4B, NS5A, and NS5B.

The primary host cell for HCV is hepatocytes but 
replication may also occur in other cell types, such as pe-
ripheral blood mononuclear cells, as well as in B and T 
cell lines[4,5]. HCV is a major cause of  acute and chronic 
liver disease worldwide. More than 170 million people are 
currently infected with HCV[6]. Currently HCV vaccine 
is not available. Acute infection is usually asymptomatic, 
making early diagnosis difficult. Approximately 70% of  
acutely infected individuals fail to clear the virus and be-
come chronically infected[7]. Chronic HCV infection is the 
leading cause for the development of  liver fibrosis, cirrho-
sis, hepatocellular carcinoma (HCC), and is the primary 
cause for liver transplantation in the western world. The 
sustained antiviral response rate in treatment of  chronic 
HCV infection with interferon (IFN)-α with ribavirin is 
limited (about 30%-40%)[8,9]. Boceprevir and telaprevir 
protease inhibitors, have been shown to exhibit signifi-
cantly higher rates of  sustained virologic response (SVR) 
against HCV genotype 1 (about 65%-75%) as compared 
with peginterferon-ribavirin alone[10,11]. However, use of  
these antiviral agents display higher incidence of  adverse 
events, such as rash, gastrointestinal disorders, and ane-
mia.

Insulin resistance plays an important role in the devel-
opment of  various complications associated with HCV 
infection. Recent evidence indicates that HCV associated 
insulin resistance may result in hepatic fibrosis, steatosis, 
HCC and resistance to anti-viral treatment[12]. Thus, HCV 
associated insulin resistance is a therapeutic target at any 
stage of  HCV infection. HCV modulates normal cellular 
gene expression and interferes with the insulin signaling 
pathway. The aim of  this review is to summarize the cur-
rently available information on how chronic HCV infec-
tion interferes with insulin signaling pathways resulting in 
insulin resistance.

GLUCOSE UPTAKE AND INSULIN 
RESISTANCE
Glucose is a key metabolite essential for the production 
of  energy (mostly ATP) which is required by cells. There 
are several mechanisms underlying increased glucose 
production. These include production of  free glucose by 
increased glycogenolysis in the liver, increased gluconeo-
genesis, activation of  forkhead box transcription factor 
(FoxO1) and improper insulin-glucagon hormonal bal-
ance, which stimulates increased glucose production[13]. 
Several factors contribute to elevated gluconeogenesis 
in diabetes, namely (1) increased supply of  glucogenic 
precursors to the liver (glycerol, amino acids, free fatty 
acids), (2) increased lipid content, (3) increased cytokines 

and adipokines, and (4) decreased insulin receptor (IR) 
signaling in hepatocytes[13]. Glucose uptake into cells is 
regulated by the action of  specific hormones, namely in-
sulin and glucagon. Insulin is a peptide hormone secreted 
by the β-cells of  the pancreatic islets of  langerhans and 
maintains normal blood glucose levels by facilitating cel-
lular glucose uptake, regulating carbohydrate, lipid and 
protein metabolism and promoting cell division and 
growth through its mitogenic effects[14]. The ability of  in-
sulin to stimulate glucose uptake into tissues is central to 
the maintenance of  whole-body glucose homeostasis[15]. 
Type Ⅱ diabetes mellitus (T2DM), occurs when the pro-
duction of  insulin is not sufficient to overcome a difficul-
ty the body has in properly using insulin. This difficulty is 
called insulin resistance, resulting in increased glucose lev-
els. Both forms of  diabetes can pose an increased risk of  
major lifelong complications. In the case of  insulin resis-
tance, this includes a fivefold increased risk of  coronary 
vascular disease, diabetic retinopathy and neuropathy[16-19]. 
Fatty liver is relatively common in overweight and obese 
persons with T2DM and is an aspect of  body composi-
tion related to severity of  insulin resistance, dyslipidemia, 
and inflammatory markers[20].

Glucose transporter-4 (GLUT-4) was shown to be 
the major isoform responsible for enhanced glucose up-
take into muscle and adipose tissues following the secre-
tion of  insulin into the bloodstream[21,22]. The process of  
glucose uptake by cells requires a series of  events to take 
place in a timely manner. It involves the binding of  in-
sulin to the IR resulting in subsequent phosphorylation 
and activation of  IR substrate 1 and 2 (IRS-1/IRS-2), 
central molecules of  the insulin signaling cascade[23,24]. 
This in turn activates protein kinase B (AKT) by phos-
phorylation of  Ser473 and Thr308 residues. Activated AKT 
causes the translocation of  GLUT-4 from intracellular 
compartments to the cell surface where it is required for 
glucose uptake[25]. Any change in the signaling is likely 
to induce insulin resistance which is associated with a 
number of  pathophysiological changes including glu-
cose intolerance, obesity, dyslipidemia and hypertension. 
Insulin resistance is a physiological condition in which 
cells fail to respond to the normal actions of  the hor-
mone insulin. The body produces insulin, but the cells 
in the body become resistant to insulin and are unable 
to use it as effectively, resulting in an attenuated biologi-
cal response, leading to hyperglycemia[26]. Accumulation 
of  ectopic lipid metabolites, activation of  the unfolded 
protein response pathway, and innate immune pathways 
have all been implicated in the pathogenesis of  insulin 
resistance[27]. During the course of  insulin resistance sev-
eral inflammatory cytokines and lipid metabolites, like 
free fatty acids, interrupt with the normal insulin signal-
ing and promote T2DM.

CHRONIC HCV INFECTION AND INSULIN 
RESISTANCE
Epidemiological studies suggest that patients with chron-
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ic HCV infection have a significantly increased preva-
lence of  T2DM as compared to hepatitis B virus infected 
patients[28-30]. Both insulin resistance and diabetes can 
adversely affect the course of  chronic hepatitis C (CHC), 
leading to enhanced steatohepatitis and liver fibrosis[30-32]. 
Insulin resistance, associated with type 2 diabetes, can 
promote fatty liver, and excessive hepatic accumulation 
of  fat may promote insulin resistance and therefore con-
tribute to the pathogenesis of  the metabolic syndrome[33]. 
Insulin resistance is a critical component of  type 2 diabe-
tes mellitus pathogenesis. Several mechanisms are likely 
to be involved in the pathogenesis of  HCV-related insu-
lin resistance[34]. Several cellular lesions have been associ-
ated with insulin resistance, but the precise mechanism 
by which HCV induces insulin resistance remains elusive 
with numerous viewpoints and opinions[30].

Impairment of  IRS-1 and IRS-2 expression has been 
observed in the liver of  patients with chronic HCV infec-
tion, as well as in HCV core transgenic mice, and from 
in vitro cell culture system[35-38]. HCV mediates dysfunc-
tion of  the insulin signaling pathways via several distinct 
mechanisms, such as upregulating the expression of  
suppressors of  cytokine signaling 3 expression[35], down 
regulation of  peroxisome proliferator-activated receptors 
gamma (PPARγ)[36], activation of  mammalian target of  
rapamycin (mTOR)/S6K1 pathway[38], and increased tu-
mor necrosis factor-α (TNF-α) secretion[39].

MODULATION OF IR SUBSTRATE BY 
HCV
HCV modulates insulin signaling and IRS-1 via multiple 
mechanisms which have been presented in Figure 1. 
Ser/Thr phosphorylation of  IRS-1 inhibits its association 

with the IR, which in turn inhibits tyrosine phosphoryla-
tion of  IRS-1, required for its activation, and promotes 
degradation. Upregulation of  serine phosphorylation of  
IRS-1 is a key negative feedback mechanism under physi-
ological conditions to prevent the action of  insulin. In 
an insulin-resistant state, an imbalance occurs between 
positive IRS-1 Tyr-phosphorylation and negative Ser-
phosphorylation of  IRS-1[40]. HCV core protein expres-
sion in hepatocytes upregulates Ser312 phosphorylation 
status of  IRS-1 and modulates downstream Akt activity 
by inhibiting Thr308 phosphorylation[37]. Ser312 and Ser1101 
phosphorylation of  IRS-1 inhibits its association with the 
IR and stimulates degradation. HCV core protein induces 
insulin resistance by increasing Ser312 and Ser 1101 phos-
phorylation, marking its for degradation via the activated 
mTOR/S6K1 pathway[38], and subsequently blocking Tyr- 
phosphorylation of  IRS-1 and Thr308 phosphorylation of  
Akt for the inhibition of  glucose uptake. Activation of  
mTOR signaling also plays a key role in modulating IRS-1 
activity. HCV genotype 2a infection significantly down-
regulates the expression of  TSC1/TSC2, which in turn 
results in activation of  downstream mTOR and S6K1[38]. 
Phosphorylation of  IRS-1 at Ser1101 via the mTOR-S6K1 
pathway may release IRS-1 from intracellular complexes, 
thereby enabling its degradation[41]. HCV significantly 
increases Ser1101

 phosphorylation of  IRS-1, which enables 
its degradation[38].

A decrease in expression of  IRS-1 and IRS-2, in 
patients with HCV infection has also been reported[35]. 
Down-regulation of  IRS-1 and IRS-2 was also seen in 
HCV core-transgenic mice livers and HCV core-trans-
fected human hepatoma cells[35]. HCV core up-regulated 
suppressor of  cytokine signaling 3 (SOCS3) and caused 
ubiquitination of  IRS-1 and IRS-2. HCV core-induced 
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Figure 1  Schematic showing the interference of Hepatitis C 
virus in the insulin signaling pathway. Hepatitis C virus (HCV) 
core protein is known to up regulate Ser312 phosphorylation of 
insulin receptor substrate (IRS)-1 leading to degradation of IRS-1, 
the key molecule involved in propagation of insulin signal down-
stream from the insulin receptor (IR). HCV infection is also known 
to down regulate TSC1/TSC2 complex, resulting in subsequent 
upregulation of mTOR/S6K1 which leads to Ser1101 phosphorylation 
of IRS-1 and its subsequent degradation. A role of HCV mediated 
upregulation of SOCS3 and tumor necrosis factor-α (TNF-α) has 
also been proposed which leads to degradation and blocking of 
IRS-1 function. HCV also upregulates glucose 6 phosphatase 
(G6P), phosphoenolpyruvate carboxykinase 2 (PCK2) leading to 
increased glucose production, and down regulates glucose trans-
porter (GLUT)-4, GLUT-2, leading to decreased glucose uptake by 
hepatocytes. Overall, these alterations lead to insulin resistance. 
mTOR: Mammalian target of rapamycin.
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that includes insulin resistance, obesity, hypertension, 
and hyperlipidemia[47]. Increasingly, components of  the 
metabolic syndrome are being linked to various forms 
of  cancer, including the risk of  developing HCC. IR is 
induced by HCV-4 irrespective of  severity of  liver dis-
ease. IR starts early in infection and facilitates progres-
sion of  hepatic fibrosis and HCC development[47]. HCC 
patients showed higher IR frequency, and moderate to 
high viral load associated with high HOMA-IR in CHC 
and HCC[47]. Insulin resistance associates with a higher 
risk of  HCC in cirrhotic HIV/HCV-co-infected patients 
also[48]. There are many causes of  HCC, and nonalcoholic 
fatty liver disease (NASH) is emerging as a leading risk 
factor owing to the epidemic of  obesity and T2DM. The 
mechanisms leading to HCC in obesity and T2DM likely 
involve interactions between several signaling pathways, 
many of  which are modulated by HCV infection, and 
also include oxidative stress, inflammation, oncogenes, 
adiponectins, and insulin resistance associated with vis-
ceral adiposity and diabetes[49].

Insulin resistance and subsequent hyperinsulinemia 
are highly associated with fatty liver disease and is an 
important risk factor for the progression of  fibrosis in 
CHC[50,51]. From metabolic aspect, HCV infection resem-
bles NASH in numerous features, such as the presence 
of  steatosis, serum dyslipidemia, and oxidative stress in 
the liver[52]. On the other hand, there are noticeable dif-
ferences between hepatitis C and NASH, in the fact that 
HCV modulates cellular gene expression and intracellular 
signal transduction pathways, while such details have not 
been noted for NASH. HCV core protein expression 
leads to the development of  progressive hepatic steatosis 
and HCC in transgenic mice[53]. Hepatic steatosis is known 
to occur at a high rate (40%-86%) in chronic HCV pa-
tients, and a close relationship between steatosis and intra-
hepatic core protein expression has been noted[54]. Insulin 
resistance is a prominent mechanism linking steatosis and 
fibrogenesis although this link is complex and not prop-
erly understood.

CLINICAL IMPLICATIONS OF 
HCV-MEDIATED INSULIN RESISTANCE
Several epidemiological, clinical and experimental data 
show that HCV plays a direct role in perturbing glucose 
metabolism, leading to both insulin resistance and dia-
betes[28-30]. Curing HCV results in the amelioration of  
insulin resistance and decreased incidence of  diabetes af-
ter the end of  therapy[55,56]. In the only trial that used the 
antidiabetic metformin[57], only a marginal, nonsignificant 
increase of  the SVR rate was observed, despite an in-
creased virological response after 4 wk of  triple therapy. 
The data reported in a study using different schedules 
containing the antiglycaemic PPAR-γ agonist piogli-
tazone[58] are discouraging. Overall, the administration 
of  insulin sensitizers together with the standard of  care 
has not only failed to improve the virological response to 
therapy, but has also fallen short of  providing much use-

down-regulation of  IRS-1 and IRS-2 was not seen in 
SOCS3(-/-) mouse embryonic fibroblast cells, indicating 
the important role played by SOCS3 in mediating down 
regulation of  IRS-1[35]. There have been reports that 
HCV genotypes might play an important role in deciding 
the pathway by which it impairs insulin signaling. It has 
been shown that the core protein of  HCV genotype 3a 
promoted IRS-1 degradation through the downregulation 
of  PPARγ and by upregulating the SOCS7, the core pro-
tein of  genotype 1b activated the mTOR[36].

TNF-α, released in an excess may promote phos-
phorylation of  serine residues of  IRS-1 eventually leading 
to the downregulation of  downstream insulin signaling 
molecule Akt. HCV core protein increases the expression 
level of  TNF-α and promotes insulin resistance[42].

IMPAIRED LIPID AND GLUCOSE 
METABOLISM BY HCV
Insulin resistance is strongly influenced by abnormalities 
in lipid metabolism. Any dysfunction of  the lipid me-
tabolism triggers lipotoxicity through the production of  
free fatty acids thereby promoting insulin resistance[43]. 
HCV core protein down-regulates microsomal triglycer-
ide transfer protein, an enzyme that mediates lipid trans-
location to the endoplasmic reticulum membrane and de-
creases the assembly of  very low density lipoproteins[44]. 
It has been observed that HCV promotes fatty acid 
synthesis by the upregulation of  lipogenic gene sterol 
regulatory element binding protein 1c which promotes 
the transcriptional activation of  other lipogenic genes like 
acetyl CoA carboxylase, ATP citrate lyase, hydroxymeth-
ylglutaryl CoA reductase[45].

HCV infection promotes the expression of  gluco-
neogenic genes namely, glucose 6 phosphatase (G6P) and 
phosphoenolpyruvate carboxykinase 2 (PCK2) resulting 
in increased glucose production and enhanced insulin re-
sistance[46,38]. HCV also down regulates the expression of  
GLUT4, which is necessary for uptake of  glucose. This 
results in a decreased glucose uptake and increased plasma 
glucose, leading to development of  insulin resistance[38].

A schematic showing how HCV interferes with in-
sulin signaling pathway, leading to insulin resistance is 
presented in (Figure 1). HCV modulates functioning of  
IRS-1 via multiple mechanisms, including up regulation 
of  Ser312 or Ser1101 phosphorylation which leads to degra-
dation of  IRS-1. HCV also upregulates SOCS3 and down 
regulates TSC1/TSC2 leading to blocking of  insulin 
signaling. HCV infection leads to increased gluconeogen-
esis via up regulation of  G6P and PCK2. GLUT-4, and 
GLUT-2 expression is also down regulated by HCV lead-
ing to decreased glucose uptake. Overall, all these altera-
tions by HCV leads to development of  insulin resistance.

INSULIN RESISTANCE AND LIVER 
DISEASE PROGRESSION
The metabolic syndrome is a constellation of  problems 
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ful insight into the mechanisms linking reduced response 
to insulin resistance[59]. Early sulfonylureas although use-
ful in lowering blood glucose level, were associated with 
significant off-target effects, and the biguanide phenfor-
min was discontinued due to adverse events[60]. Although 
metformin is in the same drug class, it has a better safety 
profile and is now recommended as first-line treatment 
of  diabetes during HCV infection.

THERAPEUTIC APPROACHES AND 
FUTURE GOALS
Treatment for HCV induced insulin resistance is highly 
linked with anti-viral treatment. Treatment of  chronic 
HCV infection has 2 goals. The first is to achieve SVR (i.e., 
sustained eradication of  HCV, which is defined as the 
persistent absence of  HCV RNA in serum 6 mo or more 
after completing antiviral treatment). The second goal is 
to prevent progression to cirrhosis, HCC, and decom-
pensated liver disease requiring liver transplantation. The 
treatment of  HCV has evolved over the years. Current 
treatment options include combination therapy consisting 
of  ribavirin and pegylated IFN. Protease inhibitors are 
emerging as a third feature of  combination therapy. The 
sustained antiviral response rate in treatment of  chronic 
HCV infection with IFN-α and ribavirin is limited (about 
30%-40%)[8,9]. Boceprevir and telaprevir protease inhibi-
tors have been shown to exhibit significantly higher rates 
of  SVR against HCV genotype 1 (65%-75%) as com-
pared with peginterferon-ribavirin alone[10,11]. More re-
cently, sofosbuvir has also been used for treatment along 
with ribavirin, with significant increased SVR[61]. How-
ever, use of  these antiviral agents display higher incidence 
of  adverse events, such as rash, gastrointestinal disorders, 
and anemia. Thus, development of  therapies with less 
side effects is desirable.

The prevalence of  HCV antibodies in the type 2 
diabetic population ranges between 1.78% and 12.1%[62]. 
Several cross-sectional studies have found a higher preva-
lence of  HCV antibodies in type 2 diabetic patients than 
expected in the general population[62,63]. Early phase and 
total insulin secretion are determined using oral glucose 
tolerance testing (OGTT), Insulin sensitivity was mea-
sured directly by steady-state plasma glucose concentra-
tion during insulin suppression test. Fasting plasma glu-
cose ≥ 126 mg/dL or 2-h plasma glucose > 200 mg/dL 
during OGTT are generally used as criteria for diagnosis 
of  diabetes[64]. Well controlled DM was defined when the 
HbA1c level was < 7%. Agents used in diabetic therapy 
include the following: sulfonylureas, biguanides, alpha-
glucosidase inhibitors, thiazolidinediones, Meglitinide 
derivatives etc[60]. Although effective in reducing blood 
glucose levels, early sulfonylureas were associated with 
significant off-target effects, and the biguanide phenfor-
min was discontinued due to adverse events[60]. Although 
metformin is in the same drug class, it has a better safety 
profile and is now recommended as first-line treatment. 
However, many patients require additional glucose con-
trol treatment with an agent that has a complementary 

mechanism of  action like metformin. Some common 
drugs used for treatment of  T2DM available in the mar-
ket include metformin oral, actos oral, Byetta subQ, Janu-
via oral, etc.

Another possible way of  reversing insulin resistance 
would be via targeting the signaling components in the in-
sulin signaling pathway modulated by HCV. For instance, 
we have shown that HCV up regulates phospho-S6K1, 
which stimulates degradation of  IRS-1[38]. Thus, targeting 
phospho-S6K1 would be a target against HCV induced 
insulin resistance. These studies have not been done yet, 
so at this time it will be difficult to comment on the pre-
dictive outcome on reversal of  insulin resistance. Use of  
specific inhibitors of  SOCS-3, which may become useful 
to correct resistance to both insulin and IFN-α, are not 
available for clinical use. Alternatively, one may envision 
inhibiting TNF-α by administering infliximab or similar 
agents. IR also results from uncontrolled diet and life 
style. Regulation of  weight, diet, and life style manage-
ment will also be key in managing IR.
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Abstract
AIM: To minimize the expansion of pancreatic mesen-
chymal cells in vitro  and confirm that β-cell progenitors 
reside within the pancreatic epithelium.

METHODS: Due to mesenchymal stem cell (MSC) ex-
pansion and overgrowth, progenitor cells within the 
pancreatic epithelium cannot be characterized in vitro , 
though β-cell dedifferentiation and expansion of MSC 
intermediates via  epithelial-mesenchymal transition 
(EMT) may generate β-cell progenitors. Pancreatic epi-
thelial cells from endocrine and non-endocrine tissue 
were expanded and differentiated in a novel pancre-
atic epithelial expansion medium supplemented with 
growth factors known to support epithelial cell growth 
(dexamethasone, epidermal growth factor, 3,5,3’-tri-

iodo-l-thyronine, bovine brain extract). Cells were also 
infected with a single and dual lentiviral reporter prior 
to cell differentiation. Enhanced green fluorescent pro-
tein was controlled by the rat Insulin 1  promoter and 
the monomeric red fluorescent protein was controlled 
by the mouse PDX1 promoter. In combination with len-
tiviral tracing, cells expanded and differentiated in the 
pancreatic medium were characterized by flow cytom-
etry (BD fluorescence activated cell sorting), immunos-
taining and real-time polymerase chain reaction (PCR) 
(7900HT Fast Realtime PCR System).

RESULTS: In the presence of 10% serum MSCs rap-
idly expand in vitro  while the epithelial cell population 
declines. The percentage of vimentin+ cells increased 
from 22% ± 5.83% to 80.43% ± 3.24% (14 d) and 
99.00% ± 0.0% (21 d), and the percentage of epithe-
lial cells decreased from 74.71% ± 8.34% to 26.57% ± 
9.75% (14 d) and 4.00% ± 1.53% (21 d), P  < 0.01 for 
all time points. Our novel pancreatic epithelial expan-
sion medium preserved the epithelial cell phenotype 
and minimized epithelial cell dedifferentiation and EMT. 
Cells expanded in our epithelial medium contained sig-
nificantly less mesenchymal cells (vimentin+) compared 
to controls (44.87% ± 4.93% vs  95.67% ± 1.36%; P  
< 0.01). During cell differentiation lentiviral reporting 
demonstrated that, PDX1+ and insulin+ cells were local-
ized within adherent epithelial cell aggregates com-
pared to controls. Compared to starting islets differenti-
ated cells had at least two fold higher gene expression 
of PDX1, insulin, PAX4 and RFX (P  < 0.05).

CONCLUSION: PDX1+ cells were confined to adherent 
epithelial cell aggregates and not vimentin+ cells (mes-
enchymal), suggesting that EMT is not a mechanism for 
generating pancreatic progenitor cells.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Previously, we demonstrated that mesenchy-
mal stem cells could be expanded from human endo-
crine and non-endocrine pancreas cell fractions in vitro . 
However, we were unable to complete cell differentia-
tion of mesenchymal cell intermediates to functional 
endocrine cells. In this study we utilized a novel cell 
culture medium to prevent epithelial cell de-differenti-
ation and mesenchymal cell expansion. After epithelial 
cell expansion in this medium cells were differentiated 
via  our previously described protocol and we confirmed 
by lineage tracing, flow cytometry, immunostaining and 
real-time polymerase chain reaction that islet progeni-
tors reside in the pancreatic epithelium and are not de-
rived via  a mesenchymal cell intermediate.

Seeberger KL, Anderson SL, Ellis CE, Yeung TY, Korbutt GS. 
Identification and differentiation of PDX1 β-cell progenitors with-
in the human pancreatic epithelium. World J Diabetes 2014; 5(1): 
59-68  Available from: URL: http://www.wjgnet.com/1948-9358/
full/v5/i1/59.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i1.59

INTRODUCTION
Islet transplantation is an attractive alternative to daily 
insulin injections to achieve a more physiological means 
for restoring glucose homeostasis[1-3]. Identifying and 
understanding the origin of  a potential human β-cell 
progenitor could alleviate the current shortage of  donor 
islets and contribute to the overall knowledge of  β-cell 
regeneration. However, the study of  β-cell progenitors 
is fraught with controversy, as several conflicting mod-
els and mechanisms describing the origin and existence 
of  these progenitor cells have been proposed. Despite 
lineage tracing experiments utilizing transgenic mouse 
models[4-6] the exact origin of  β-cell progenitors residing 
within the pancreas is yet to be elucidated. For example 
β-cell progenitors have been proposed to originate from: 
β-cell replication[4], acinar cell transdifferentiation[7,8], 
ductal cell transdifferentiation[9-12], pancreas derived mul-
tipotent precursors[13], pluripotent islet survivor cells[14] 

and β-cell dedifferentiation with expansion of  mesenchy-
mal stem cell (MSC) intermediates via epithelial mesen-
chymal transition (EMT)[15-20].

Previously we reported[21] that MSCs, also referred to 
as multi-potent stromal cells[22], could be expanded 12-fold 
from human islet depleted pancreatic tissue (IDPT) that 
remains following islet isolation. We demonstrated that 
these pancreatic MSCs could be partially differentiated 
into islet-like cells. However, in a follow up study[23] we 
could not restore an epithelial phenotype during tissue 
culture or generate functional endocrine cells. We hypoth-
esized that this was due in part to our experimental culture 
conditions, which favored pancreatic MSC expansion and 
negatively selected pancreatic epithelial cells.

In this study we report that, during in vitro pancreatic 

MSC expansion, epithelial cells also proliferate and when 
these epithelial cells are enriched and differentiated, this 
cell population expresses developmental transcription fac-
tors indicative of  a β-cell progenitor such as PAX4 and 
RFX6[24-26]. Therefore, to maintain epithelial cell pheno-
type and allow long-term study of  this cell population in 
vitro, we utilized a pancreatic epithelial expansion medium 
that minimized epithelial cell dedifferentiation and MSC 
overgrowth in combination with our differentiation pro-
tocol[21,23]. Furthermore, by utilizing single and dual lenti-
viral reporters where, enhanced green fluorescent protein 
(EGFP) is controlled by the rat Insulin 1 (Ins1) promoter 
and monomeric red fluorescent protein (mRFP) is con-
trolled by the mouse PDX1 promoter[26] we determined 
that PDX1+ cells observed after 25 d post-differentiation 
were epithelial cells. Unlike the reversible (EMT) model 
first described by Gershengorn et al[15] and the dedifferen-
tiation of  β-cells then replication of  β-cell-derived cells 
described by Russ et al[20], we propose that β-cell progeni-
tors reside within the human pancreatic epithelium and 
that these cells have the potential to respond favorably 
to in vitro differentiation without dedifferentiation into a 
MSC intermediate via EMT. Overall, we report a novel 
cell culture media that promotes pancreatic epithelial cell 
survival and minimizes MSC overgrowth, and report that 
PDX1+ cells observed 25 d post-differentiation are epi-
thelial cells.

MATERIALS AND METHODS
Cell expansion and differentiation 
Human islets (n = 9) and IDPT (n = 13) were obtained 
from the Edmonton Clinical Islet Transplant Program 
(University of  Alberta and Alberta Health Services). Writ-
ten, informed, consent was provided by donor relatives 
and all protocols were approved by the UofA Research 
Ethics Office. Average donor age was 54 (30-71 years) 
and islet purity assessed by dithizone staining ranged be-
tween 10%-40%. IDPT (< 5% insulin positive cells) was 
obtained following removal of  islets by density gradient 
purification[21,23,27]. Upon receipt, IDPT was cultured in 
Roswell Park Memorial Institute (RPMI) 1640 medium 
(Invitrogen, Burlington, ON Canada) supplemented with 
0.5% w/v fraction V bovine serum albumin (Sigma-Al-
drich, Oakville, ON Canada), 1% insulin-transferrin-sele-
nium (Sigma-Aldrich) and 100 U penicillin/1000 U strep-
tomycin (Invitrogen). Islets were cultured in Connaught 
Medical Research Laboratories-1066 medium (Invitrogen) 
supplemented with 10% fetal bovine serum (FBS, Invit-
rogen), 2 mmol/L L-glutamine (Invitrogen), 10 mmol/L 
hydroxyethyl piperazineethanesulfonic acid (HEPES) 
and 100 U penicillin/1000 U streptomycin (Invitrogen). 
Both IDPT and islets were cultured in 150 mm non-tissue 
culture treated plates (Corning, NY, United States) and 
maintained for 24-48 h at 37 ℃ in 5% CO2 and 95% air. 
Following culture, single cell suspensions were derived by, 
dissociating islets or cellular aggregates derived from the 
cultured IDPT with 0.05% trypsin, 0.5 mmol/L ethylene-
diaminetetraacetic acid (Invitrogen) in 1X PBS.
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Single cell preparations were cultured and expanded 
in pancreatic MSC medium or pancreatic epithelial 
expansion medium. MSC medium is composed of  
RPMI-1640 supplemented with 10% FBS, 10 mmol/L 
HEPES, 1 mmol/L sodium pyruvate (Invitrogen), 71.5 
μmol/L β-mercaptoethanol (Sigma-Aldrich), 20 ng/mL 
epidermal growth factor (EGF, R&D, Minneapolis, 
MN United States), 20 ng/mL fibroblast growth factor 
(Invitrogen) and 100 U pencillin/1000 U streptomy-
cin[21,23,27]. Cell confluence was achieved in 10-14 d and 
cells required passaging every 7 d after that. From both 
islets and IDPT at the 2nd and 3rd passage we routinely 
generate a cell population with MSC characteristics as 
previously described[21,23,27]. To preserve epithelial cell 
phenotype, single cells derived from islets or the IDPT 
were also cultured and expanded in a pancreatic epithe-
lial expansion medium either on 150 mm tissue culture 
treated plates (Corning) or 12 mm poly-l-lysine coated 
cover slips (BD Biosciences) placed in 24 well tissue 
culture treated plates (Corning). Pancreatic epithelial ex-
pansion medium is composed of  Dulbecco’s Modified 
Eagle’s Medium/F12 (Invitrogen) supplemented with 
0.5% FBS, 0.1 μg/mL EGF, 0.4 μg/mL dexamethasone 
(Sigma-Aldrich), 14 mg/mL bovine brain extract (Lonza, 
Walkersville, MD United States), 0.05 μmol/L triiodo-
l-thryonine sodium salt (Sigma-Aldrich), 0.1 mg/mL 
soybean trypsin inhibitor (US Biological, Swampscott, 
MA, United States), 0.5X ITS+premix (BD Biosciences) 
and 100 U penicillin/1000 U streptomycin. Expanded 
cell populations were subsequently differentiated using 
a multi-step protocol previously described[21,23,27,28] and 
characterized by flow cytometry, immunohistochemis-
try and real-time polymerase chain reaction (PCR). For 
differentiation, the cell monolayer was treated with 20 
ng/mL OncostatinM (R&D) for 72 h. In steps 2 and 3 
the medium was supplemented with 10 mmol/L nicotin-
amide (Sigma-Aldrich) for 72 h followed by 10 mmol/L 
nicotinamide and 10 nmol/L exendin4 (Sigma-Aldrich) 
for another 72 h. In step 4, 10 ng/mL of  transforming 
growth factor-β1 (TGFβ-1; EMD Millipore, Billerica, 
MA, United States) was included with nicotinamide and 
exendin4 for 3-10 d with media changes every 72 h. Cell 
monolayers were detached with trypsin and aggregated 
by reconstituting cells at 125000 cells/mL in medium 
supplemented with nicotinamide, exendin4, TGFβ-1, 
0.5X ITS+ premix (BD Biosciences, Beford, MA United 
States) and transferred to 100 mm ultra-low attachment 
non-tissue culture treated plates (Corning).

Immunohistochemistry
Double immunofluorescence (IF) analysis was performed 
on paraffin sections of  single cells that had first been 
fixed with 1% formalin (Fisher Scientific, Nepean, ON 
Canada) and embedded in 2% low melting point agarose 
(Sigma-Aldrich) or cells which had been differentiated on 
12 mm poly-l-lysine cover slips (BD Biosciences). Paraf-
fin sections were processed and immunostained as previ-
ously described[23,28]. Cover slips were fixed in 1% forma-
lin for 30 min in the dark at 4 ℃, and then washed twice 

with 5% normal goat serum (NGS) in PBS. For antibod-
ies requiring permeabilization, 0.3% saponin (Sigma) in 
PBS was applied for one minute, and another two washes 
of  5% NGS followed. All cover slips were then blocked 
with 20% NGS for 1 h in the dark. Primary antibodies 
were diluted in 5% NGS at the following concentrations: 
1/200 anti-epithelial cell adhesion molecule (EpCAM, 
Stem Cell Technologies, Vancouver, BC Canada), 1/100 
anti-vimentin (Dako, Mississauga, ON Canada), 1/25 
anti-human proliferating cell nuclear antigen (PCNA, In-
vitrogen), 1/50 anti-CK19 (Dako), 1/5000 anti-glucagon 
(Sigma-Aldrich), 1/1000 anti-insulin (Dako), 1/1000 anti-
pancreatic polypeptide (Dako), 1/1000 anti-somatostatin 
(Dako), 1/1000 anti-PDX1 (Abcam, Cambridge, MA, 
United States). All appropriate species-specific second-
ary antibodies were AlexaFluor 488 or 594 conjugates 
(Molecular Probes, Eugene, OR, United States) and di-
luted 1/200 in 5% NGS. Slides and or cover slips were 
cover-slipped with ProLong Gold anti-fade reagent with 
4’,6-diamidino-2-phenylindole (Invitrogen) to counter 
stain nuclei and preserve fluorescence. Negative controls 
were incubated without primary antibodies and posi-
tive controls were sections of  normal human and infant 
pancreas. All slides were visualized with an Axioscope Ⅱ 
equipped with AxioCam MRC and analyzed with Axiovi-
sion 4.6 (Carl Zeiss, Gottingen, Germany).

Flow cytometry 
Single cells from islets and IDPT were stained and ana-
lyzed by fluorescence activated cell sorting (FACS) using 
the FACS Calibur (BD Biosciences) and Cell Quest Pro 
software and compared to matched isotype controls[23,27]. 
Cells were permeabilized with 0.3% saponin for 60 min 
and stained with 1/10 vimentin-FITC, 1/5 EpCAM-
FITC and 1/15 PCNA-647 (BioLegend, San Diego, CA, 
United States). Isotype controls were; IgG1-FITC, Ig-
G2a-FITC and IgG2a-647. Values are expressed as mean 
percent ± SE.

RNA isolation and real-time PCR
Islets and IDPT cells prior to cell culture, during expan-
sion and post differentiation were preserved in Trizol 
reagent (Invitrogen) and stored at -80 ℃. RNA was ex-
tracted in combination with the RNeasy Mini Kit (Qiagen, 
Mississauga, ON Canada) as per the manufacturer’s pro-
tocol. cDNA was synthesized as described[21]. Real-time 
PCR was performed using the “TaqMan gene expression 
assay” (Applied Biosystems, Invitrogen) and a 7900HT 
Fast Realtime PCR System (Applied Biosystems). Relative 
quantification was performed by utilizing the comparative 
Ct method and all results were compared to the control 
samples for each time point after normalizing to an en-
dogenous control (beta 2-microglobulin) using the Rela-
tive Quantification Manager software (Applied Biosys-
tems). Values are expressed as mean percent ± SE. cDNA 
negative controls contained water in place of  RNA and 
RT-PCR negative controls contained water in place of  
cDNA, β2-microglobulin (β2m) ensured cDNA integrity.
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Station, TX) using one-way analysis of  variance and Bon-
ferroni post-hoc test. Acceptable level of  significance was 
considered P < 0.05.

RESULTS
Epithelial cells from IDPT proliferate in pancreatic MSC 
medium
Previously, we demonstrated that during in vitro cell ex-
pansion of  cells from IDPT, the proportion of  epithelial 
cells decreased while vimentin positive cells (MSCs) sig-
nificantly increased[21,23]. In this study, to determine if  epi-
thelial cells were still capable of  proliferation, we assessed 
cell proliferation after 14 d in culture via dual IF staining 
and flow cytometry. Cells that were formalin fixed and 
embedded in agarose were stained with antibodies against 
EpCAM or vimentin (MSC) then co-stained for PCNA. 
After 14 d in culture we confirmed that vimentin+ cells 
were the predominant cell population and these cells were 
PCNA+ and proliferating (Figure 1). A small proportion 
of  epithelial cells (EpCAM+) were still present and were 
also PCNA+ thus still proliferating (Figure 1). The pro-
portion of  vimentin and EpCAM cells that were positive 
for PCNA were quantified by FACS analysis at Time 0, 
14 and 21 d in culture (Table 1). During cell expansion; 
the percentage of  vimentin+ cells proliferating (PCNA+) 
increased from 22% ± 5.83% to 80.43% ± 3.24% (14 d) 
and 99.00% ± 0.0% (21 d), and the percentage of  prolif-
erating epithelial cells decreased from 74.71% ± 8.34% 
to 26.57% ± 9.75% (14 d) and 4.00% ± 1.53% (21 d), P 
< 0.01 for all time points. Therefore, MSC expansion cul-
ture conditions favor MSC expansion over epithelial cells

Lentivirus infection
Lentiviral vectors were kindly provided by Dr. James D. 
Johnson (University of  British Columbia, Vancouver, BC, 
Canada) and described in detail by Szabat et al[26]. We re-
ceived the following vectors: dual reporter mouse PDX1 
promoter-mRFP/rat Ins1 promoter-EGFP, single report-
er mouse PDX1 promoter-mRFP, single reporter rat Ins1 
promoter-EGFP as well as the structural and envelope 
vectors. Virus was produced by transfection of  293T cells 
that were a gift from Dr. Patrick MacDonald (University 
of  Alberta, Edmonton, AB, Canada) utilizing FuGENE6 
Transfection Reagent (Roche Diagnostics, IN, United 
States) and the protocol first described by Dr. Garry No-
lan Lab (http://www.stanford.edu/group/nolan/index.
html). Virus was titred using the rat INS1 cell line (a gift 
from Dr. Patrick MacDonald) and titres were between 2-4 
× 106 TU/mL with an infection efficiency of  40%-70%. 
Single cells from human islets or IDPT were plated at a 
density of  0.3 × 106 cells/well onto a 24 well plate that 
contained 12 mm poly-l-lysine cover slips and cultured 
in pancreatic epithelial expansion medium. Cells were al-
lowed to adhere and infected at a multiplicity of  infection 
of  < 1. Protein expression (fluorescence) was monitored 
daily and peak fluorescence of  human primary cells was 
routinely detected between 4-7 d post infection. Differen-
tiation of  infected primary cells was started at 4-7 d post-
infection. Absolute counts of  positive mRFP and EGFP 
cells were counted using ImageJ software[29].

Statistical analysis
Data is expressed as mean ± SE. Statistical comparisons 
were performed with STATA11 (StataCorp LP, College 

Vimentin

EpCAM PCNA Merge

MergePCNA

Figure 1  Double immunofluorescence staining of islet depleted pancreatic tissue expanded cells after 14 d in culture. Cells are positive for vimentin (green), 
EpCAM (green) and PCNA (red). Both vimentin and EpCAM positive cells are positive for PCNA staining (merged) and proliferating. Scale bars are 50 μm. EpCAM: 
Epithelial cell adhesion molecule; PCNA: Proliferating cell nuclear antigen.
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Epithelial cell phenotype is preserved when IDPT is 
cultured in defined pancreatic epithelial expansion 
medium
Our MSC expansion medium limits pancreatic epithe-
lial cell growth in vitro[21,23,27]. We determined that sorted 
epithelial cells could expand and divide in MSC medium 
but vimentin+ MSCs were still the predominating cell 
population (not shown). By reducing the FBS content 
from 10% to 0.5% and including growth factors known 
to promote epithelial cell survival under reduced serum 
conditions such as EGF, 3,5,3’-triiodo-l-thyronine and 
bovine brain extract[30-32] we were able to minimize MSC 
overgrowth and preserve the epithelial cell phenotype 
(Table 2). IDPT cells cultured in pancreatic epithelial 
expansion medium contained significantly less vimentin+ 
cells (44.87% ± 4.93%) than cells expanded in MSC ex-
pansion medium (95.67% ± 1.36%; P < 0.01). Therefore, 
pancreatic epithelial expansion medium was used to trace 
cell fate and was supplemented for cell differentiation.

Culture in differentiation medium increases the
proportion of PDX1 and insulin positive cells
To determine the progenitor cell content within the pan-
creatic epithelium, cells from dissociated islets and IDPT 
were seeded onto poly-l-lysine coated cover slips placed 
in 24 well plates with pancreatic epithelial expansion me-

dium. Prior to differentiation cells were infected with, the 
PDX1-mRFP-Ins1-EGFP dual reporter, PDX1-mRFP 
or Ins1-EGFP single reporter lentivirus then character-
ized via IF staining and real-time PCR. Fluorescence was 
detected between 4-7 d post infection in both islet and 
IDPT preparations, at which time differentiation was 
initiated. Controls were infected but not differentiated. 
During islet cell differentiation, cell aggregates formed 
throughout the cell monolayer. Within these adherent 
aggregates PDX1+ (RFP) and insulin+ (EGFP) express-
ing cells were observed (Figure 2A). In addition, both 
single positive (PDX1+ or INS+) and double positive 
(PDX1+ INS+) cells were observed (Figure 2A). In un-
differentiated conditions fewer positive cells and cell 
aggregates were observed (Figure 2B). When analyzing 
image fields, in 4/4 cell preparations approximately twice 
as many PDX1+ and insulin+ cells were observed in dif-
ferentiated conditions (51.25 ± 17.24 mRFP and 28.13 
± 9.34 EGFP) versus undifferentiated conditions (31.75 
± 10.83 mRFP and 14.50 ± 4.03 EGFP) as determined 
by absolute cell counts. Relative quantification of  gene 
expression by real-time PCR (Figure 2C) confirmed this 
observation and demonstrated that differentiated islet 
cells compared to starting islets had increased expression 
of  PDX1 (P < 0.05), insulin (P < 0.01) PAX4 (P < 0.05) 
and RFX6 (P < 0.01). A similar pattern was observed in 
differentiated (Figure 3A) and undifferentiated (Figure 
3B) wells of  cultured IDPT infected with PDX1-mRFP 
or PDX1-mRFP-Ins1-EGFP, although much less PDX1 
and insulin expression (not shown) was observed com-
pared to islet cell cultures.

PDX1 progenitor cells are localized within the pancreatic 
epithelium
To identify cells within the differentiated cell aggregates 
that were PDX1+, and to confirm expression after lentivi-
ral infection, cells were characterized by IF staining (Fig-
ures 4 and 5) utilizing the following antibodies: EpCAM, 
vimentin, CK19, PDX1, glucagon, insulin, pancreatic 
polypeptide and somatostatin. Cells positive for glucagon, 
pancreatic polypeptide and somatostatin, still remained 
after 25 d in culture compared to controls although 
these cells were infrequent and did not express PDX1+ 
(not shown). PDX1+ cells were shown to be negative 
for vimentin staining (Figure 4) and CK19 (not shown). 
PDX1+ cells did however, co-stain with EpCAM (Figure 
4) demonstrating that in our experimental conditions 
PDX1+ cells are localized to the epithelial cell population. 
PDX1 and insulin expression was verified by, insulin and 
PDX1 primary antibody staining (Figure 5). Nuclear and 
cytoplasmic PDX1 staining (Figure 5) was observed while 
insulin staining was confined to the cytoplasm (Figure 5).

DISCUSSION
Although several recent human studies that involve lin-
eage tracing[13,14,20,26] have been conducted, the debate con-
tinues as to the origin of  human β-cell progenitors. Sev-

  Condition Percent positive

Vimentin EpCAM
  Epithelial Medium (n = 7) 44.87 ± 4.93b 24.10 ± 8.60
  MSC Medium (n = 3) 95.67 ± 1.36b 17.43 ± 6.88

Table 2  Preservation of epithelial cells during culture in a 
defined epithelial medium

Data represent means ± SE. Statistical analysis of the differences between 
the groups was calculated with STATA11 (StataCorp LP, College Station, 
TX) using one-way analysis of variance and Bonferroni post-hoc test. bP 
< 0.01 for vimentin positive cells expanded in epithelial medium vs MSC 
medium. EpCAM: Epithelial cell adhesion molecule; MSC: Mesenchymal 
stem cell.

  Days 
  in
  culture

Percent positive
Vimentin EpCAM PCNA Vim/ EpCAM/

PCNA PCNA
  0 
  (n = 7)

22.71 ± 4.93 87.57 ± 3.96 73.57 ± 8.42 22.00 ± 5.83 74.71 ± 8.34

  14 
  (n = 7)

80.29 ± 3.07b 23.69 ± 7.88b 88.43 ± 2.91 80.43 ± 3.24b 26.57 ± 9.75b

  21 
  (n = 3)

99.00 ± 0.0b   3.33 ± 0.88b 99.00 ± 0.0 99.00 ± 0.0b   4.00 ± 1.53b

Table 1  Cell composition and proportion of proliferating cell 
nuclear antigen positive cells during pancreatic cell expansion 
from islet depleted pancreatic tissue

Data represent means ± SE. Statistical analysis of differences between the 
groups was performed with STATA11 (StataCorp LP, College Station, TX) 
using one-way analysis of variance and Bonferroni post-hoc test. bP < 0.01 
compared to Time 0. EpCAM: Epithelial cell adhesion molecule; PCNA: 
Proliferating cell nuclear antigen.
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Figure 2  Comparison of differentiated and 
undifferentiated islet cells infected with PDX1-
monomeric red fluorescent protein/insulin 
1-enhanced green fluorescent protein. Islet cells 
cultured in differentiation medium (A) form adherent 
cell aggregates within the cell monolayer and insu-
lin+ (GFP) and PDX1+ (RFP) expressing cells are 
localized within these cell aggregates. Islet cells 
cultured in control medium (B, undifferentiated) 
have fewer cell aggregates and insulin (GFP) and 
PDX1+ (RFP) cells. Scale bars are 100 μm. Gene 
expression (C) of PDX1-monomeric red fluorescent 
protein (mRFP)/insulin-enhanced green fluorescent 
protein islet cells (PDX1+ insulin+, white bars; n = 
7) and PDX1-mRFP infected islet cells (PDX1+, 
grey bars; n = 4) post-differentiation compared 
to starting islet tissue (Time 0, black bars; n = 8) 
measured by real-time PCR. aP < 0.05 and bP < 0.01 
compared to Time 0. RFP: Red fluorescent protein.

A

B

Figure 3 Comparison of differ-
entiated (A) and undifferentiated 
(B) cells from the islet depleted 
pancreatic tissue infected with 
PDX1-monomeric red fluorescent 
protein. A few PDX1+ cells (RFP) 
are visible within the adhered aggre-
gates in the differentiated condition 
(A). Cell aggregates are absent in 
the undifferentiated cell conditions 
(B) and PDX1+ cells are within the 
monolayer. Scale bars are 100 μm. 
RFP: Red fluorescent protein.
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eral studies have proposed that β-cell progenitors can be 
derived from a mesenchymal cell intermediate via EMT. 
In our previous studies we were also able to expand 
MSCs from exocrine and endocrine cell explants[21,23]. We 
determined that when the culture medium contained 10% 

serum, pancreatic MSCs could be rapidly expanded from 
pancreatic cells and that these MSCs could be easily dif-
ferentiated into mesoderm (bone, fat and cartilage)[21,28]. 
However, in those studies pancreatic MSCs could only be 
partially differentiated into endocrine cells and we were 

Figure 4  Immunofluorescence staining of differentiated PDX1- monomeric red fluorescent protein infected islet cells with primary antibodies to vimentin 
and epithelial cell adhesion molecule, with secondary antibodies conjugated to Alexa-488 (green). PDX1+ positive cells (RFP) are not co-localized with vimentin 
(merged), but are co-localized with epithelial cell adhesion molecule. Nuclei are stained blue with DAPI. Scale bars are 20 μm. RFP: Red fluorescent protein; DAPI: 
4',6-diamidino-2-phenylindole.

Vimentin

EpCAM Merge
DAPI

Merge
DAPI

RFP

RFP

Figure 5  Immunofluorescence staining of differentiated PDX1-monomeric red fluorescent protein infected islets with primary PDX1 and insulin antibod-
ies with secondary antibodies conjugated to Alexa-Fluor488 (green). PDX1+ cells (RFP) nuclei stain positive with PDX1/Alexa-488 antibody confirming lentiviral 
expression. Insulin/Alexa-Fluor488 (green) stains insulin within PDX1+ infected cells (yellow). Nuclei are stained blue with DAPI. Scale bars are 20 μm. RFP: Red 
fluorescent protein.

PDX1 DAPI

Insulin DAPI

RFP DAPI PDX1 RFP DAPI

RFP DAPI Insulin RFP DAPI
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unable to restore the epithelial cell phenotype or detect 
insulin protein by immunostaining[21,23]. We have since 
hypothesized that in our differentiation conditions it is 
the low percentage of  epithelial cells, which remain after 
mesenchymal cell expansion, that respond favorably to 
our differentiation protocol[21,23] and not MSCs or a MSC 
intermediate. Thus, the dedifferentiation of  islet or IDPT 
cells during long-term culture results in the loss of  epi-
thelial cells thus making this population difficult to follow 
in vitro.

In this study we utilized a reduced serum medium 
supplemented with growth factors known to support epi-
thelial cells (EGF, 3,5,3’-triiodo-l-thyronine, bovine brain 
extract) and were able to minimize EMT and preserve 
the epithelial phenotype (Table 2). We determined that 
by preventing cell dedifferentiation and MSC overgrowth 
we could maintain the epithelial phenotype for greater 
than 25 d. If  in fact epithelial mesenchymal transition[15,20] 
is a necessary process where progenitors or β-cells must 
dedifferentiate to replicate and then be redifferentiated 
into insulin producing cells then an alternate cell culture 
model must be employed. However, it is unclear if  dedif-
ferentiation, expansion then redifferentiation is a prefer-
ential model for increasing β-cells since β-cells generated 
in this model do not secrete physiologic levels of  insulin 
compared to normal β-cells[15,20].

Lentiviral tracing[26] in combination with our pancre-
atic epithelial expansion medium, allowed us for the first 
time to observe morphological changes during in vitro 
differentiation without MSC overgrowth. Compared to 
lentiviral infected controls (undifferentiated) we have 
concluded that it is within the adherent differentiated cel-
lular aggregates where PDX1+ and insulin+ cells reside. In 
addition, it is within these cellular aggregates where epi-
thelial cells (EpCAM) that are PDX1+ are located. More 
importantly we did not observe vimentin+ or ductal epi-
thelial cells (CK19+) that were PDX1 or insulin positive 
within the cell aggregates. Although several citations have 
demonstrated that pancreatic ductal epithelial cells can 
generate new β-cells[9-12], we did not observe this in our 
differentiation model. In addition, the infrequent cells we 
observed that were pancreatic polypeptide, somatostatin, 
and glucagon positive were also negative for PDX1 and 
insulin. By relative quantification we observed increased 
gene expression of  developmental transcription factors 
indicative of  a β-cell progenitor[24-26]. Differentiated cells 
compared to starting islets had at least two fold higher ex-
pression of  PDX1, insulin, PAX4 and RFX (Figure 2C).

In summary we describe a unique cell culture condi-
tion for long-term study of  pancreatic epithelial progeni-
tor cells that minimizes overgrowth of  MSCs (vimentin+) 
and dedifferentiation of  epithelial cells through EMT. We 
confirmed that during differentiation via lentiviral report-
ing that PDX1+ cells were confined to epithelial cell ag-
gregates that form during differentiation and not vimen-
tin+ cells suggesting that EMT is not a mechanism for 
generating pancreatic progenitor cells. Future studies will 
be to determine overall function of  differentiated cells.
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COMMENTS
Background 
Islet transplantation is an attractive alternative to daily insulin injections. Identi-
fying and understanding the origin of a potential human β-cell progenitor could 
alleviate the current shortage of donor islets and contribute to the overall knowl-
edge of β-cell regeneration. However, the study of β-cell progenitors is fraught 
with controversy, as several conflicting models and mechanisms describing the 
origin and existence of these progenitor cells have been proposed.
Research frontiers
A popular model describing the origin of human β-cell progenitors that has been 
proposed is β-cell dedifferentiation and the expansion of a mesenchymal stem 
cell (MSC) intermediate via epithelial-mesenchymal transition (EMT). However, 
there has been limited success when redifferentiating these mesenchymal cells 
back into functional β-cells.
Innovations and breakthroughs
The authors previously demonstrated that MSCs, could be expanded 12-fold 
from human islet depleted pancreatic tissue that remained following islet isola-
tion and demonstrated that these pancreatic MSCs could be partially differenti-
ated into islet-like cells in vitro. However, in a follow up study the authors could 
not restore an epithelial phenotype or generate functional endocrine cells. The 
authors determined that the few remaining epithelial cells after MSC expansion 
were the cells that responded to the authors differentiation protocol. In these 
culture conditions MSC overgrowth prevented pancreatic epithelial progenitor 
expansion and differentiation. In this study the authors report that by using a 
novel pancreatic epithelial medium, MSC expansion and epithelial cell dedif-
ferentiation can be minimized and pancreatic epithelial cell progenitors can be 
successfully expanded and differentiated.
Applications
This study demonstrates that β-cell progenitors reside in the pancreatic epithe-
lium and that EMT should be inhibited in vitro to successfully expand and differ-
entiate these progenitors. The authors conclude that EMT is not a mechanism 
for generating pancreatic progenitor cells.
Terminology
EMT occurs in vitro when epithelial cells de-differentiate and lose their pheno-
type. The resulting cells are MSCs otherwise known as multi-potent stromal 
cells.
Peer review
The authors describe a new method that could in the future allow for in vitro 
generation of insulin-producing cells. The work is well done and appropriately 
presented.
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RESULTS: There was no significant difference in ef-
ficacy parameters. There was no significant difference 
when comparing moderate hypoglycemia events in 
algorithms starting with a 10 U fixed dose and algo-
rithms based on BMI. However, there was a significant 
increase in moderate hypoglycemia events among the 
PLUS treated patients when the LANMET and DeGold 
algorithms were compared with the 2 fast-titration 
PLUS algorithms. We observed 12 hypoglycemia events 
in the first group, which corresponded to 0.94 events/
patient per year, and we observed 42 events in the 
second group, which corresponded to 2.81 events/pa-
tient per year (P  < 0.037). No further significant differ-
ences were observed when other comparisons between 
the algorithms were carried out.

CONCLUSION: Starting insulin glargine based on BMI 
is safe, but fast titration algorithms increase the risk of 
moderate hypoglycemia.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: To start insulin therapy in insulin naïve type 2 
diabetes patients, a long-acting basal insulin, such as 
insulin glargine, is added once a day. The majority of 
algorithms determine insulin titration according to fast-
ing plasma glucose levels, but the dosage differs at the 
initial dose, frequency and speed of adjustments. It is 
difficult to compare the different algorithms employed 
in trials with populations of different socio-economic 
strata and variable access to educational materials. 
Here, we compared the safety of different titration 
algorithms in a population that was homogeneous in 
terms of socio-economic strata and with the same de-
gree of education in diabetes.
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Abstract
AIM: To evaluate the safety of four insulin titration al-
gorithms in a homogeneous population of insulin-naïve 
type 2 diabetic patients.

METHODS: We conducted a 24-wk, open, single-cen-
ter study with 92 insulin-naïve type 2 diabetes patients 
who failed treatment with one or two oral drugs. The 
patients were randomized to one of the four following 
algorithms: LANMET (n  = 26) and LANMET PLUS (n  = 
22) algorithms, whose patients received a fixed initial 
insulin dose of 10 U, and DeGold (n  = 23) and DeGold 
PLUS (n  = 21) algorithms, whose patients’ initial insulin 
dose was based on their body mass index (BMI). In 
addition, patients in the PLUS groups had their insulin 
titrated twice a week from 2 to 8 U. In the other two 
groups, the titration was also performed also twice a 
week, but in a fixed increments of 2 U. The target fast-
ing glucose levels for both groups was 100 mg/dL.
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INTRODUCTION
Type 2 diabetes is characterized by insulin resistance and 
is associated with the incremental loss of  pancreatic beta 
cell mass and/or function[1]. Patients who are initially 
capable of  maintaining a good metabolic control using 
oral anti-diabetes drugs (OADs) frequently need to add 
insulin to their treatment over time[2]. The simplest way to 
begin insulin therapy is to add a long-acting basal insulin, 
such as insulin glargine, once per day[3].

Basal insulin therapy is an efficient glycemia-lowering 
treatment, provided it is delivered in the appropriate 
doses. Therefore, it must be carefully titrated until pa-
tients achieve the established fasting plasma glucose goal 
(FPG)[4]. Several titration algorithms have been validated 
in clinical trials, and they can be used to guide basal in-
sulin dose adjustments. Most algorithms determine in-
sulin titration according to FPG levels, but differ in the 
initial insulin dose, frequency, and speed of  dose adjust-
ments[5-7]. A new algorithm (DeGold) has been recently 
described, and it considers the degree of  insulin resis-
tance due to obesity and recommends initial doses rang-
ing from 0.2 to 0.35 U/kg according to the patient’s body 
mass index (BMI)[8].

The initial insulin dose is important for predicting 
whether a target can be reached and how long titration 
will take[4] before treatment is started. Treatment compli-
ance may be jeopardized if  the treatment period is too 
long and if  patients do not see any significant changes in 
their FPG levels. The frequency and speed at which insu-
lin doses are adjusted also vary according to the chosen 
algorithm. For example, in the AT.LANTUS trial with 
insulin Glargine, titration from 2 to 8 U weekly according 
to the FPG that was performed by physicians was com-
pared to the increment of  2 U every 3 d until the FPG 
reached 100 mg/dL that was performed by the patients 
themselves. The results showed that titration performed 
by patients could be more effective in achieving A1C tar-
gets[6]. In the Canadian INSIGHT Trial, patients titrated 
their insulin Glargine dose by adding 1 U/d until they 
reached the target of  100 mg/dL FPG[5].

Provided it is employed correctly according to the 
“Treat to Target” concept, any algorithm can bring fast-
ing glucose levels to normal and allow patients who are 
not in need of  additional prandial therapy, like rapid act-
ing insulin, to achieve the desired glycated hemoglobin 
(A1C) values[7].

Hypoglycemia may also be a factor in the achieve-
ment of  a glycemic target. The occurrence of  hypoglyce-
mia events is not solely due to the effects caused by exog-
enous insulin[9] but is also fundamentally linked to other 
factors, including the level of  education of  diabetic pa-

tients, especially in regard to compliance to treatment and 
protective measures against hypoglycemia[10]. It is difficult 
to compare the efficacy and the safety of  all different 
algorithms used in trials that have populations belonging 
to different socioeconomic levels and having different 
access to educative measures[4,7,10]. As such, we decided to 
compare the safety of  different titration algorithms in a 
population that was homogeneous in terms of  socioeco-
nomic level and level of  education in diabetes.

The main objective of  the study was to evaluate the 
safety of  four insulin glargine titration algorithms applied 
to a homogeneous sample of  insulin-naïve type 2 diabe-
tes patients and to compare the frequency of  severe and 
moderate hypoglycemia (glycaemia < 56 mg/dL) events, 
the frequency of  nocturnal symptomatic hypoglycemia, 
total number of  hypoglycemic events, and serious adverse 
events. The efficacy parameters analyzed for each algo-
rithm were the changes in A1C from baseline to study 
end, changes in FPG levels, weight variation during the 
study, insulin doses, time needed to reach the FPG target, 
and the proportion of  patients who reached an A1C tar-
get between 7% and 7.5%, and below 7%.

MATERIALS AND METHODS
Population sample and experimental design
This was a 24-wk, single-centered, randomized, open 
study. We screened 125 patients diagnosed with type 2 
diabetes, > 18 years old and BMI < 40 kg/m2 who had 
been on stable treatment with one or two OADs for 
more than 3 mo, and A1C between 7% and 12%. The 
main criteria for exclusion were as follows: chronic kid-
ney disease, liver disease with transaminases ≥ 2.5 times 
the normal value, and any pathology requiring systemic 
corticosteroid treatment. A total of  33 patients were ex-
cluded because their A1C was above threshold, their he-
patic enzymes were above normal, or they had moderate 
renal failure.

The study was approved by the local institucional re-
view board and was conducted according to the Helsinki 
Declaration and the GCP-ICH. Informed consent was 
obtained from all patients. All patients were living in the 
area outside of  São Paulo city, had the same socioeco-
nomic background and were insulin treatment naïve. All 
patients attended the same education sessions on diabe-
tes, and lessons were always given by the same person.

Comparisons between the algorithms were made us-
ing ANOVA/Kruskal-Wallis and Student’s t tests. The 
data on patients who completed the protocol were used, 
and all patients who received at least one dose of  insulin 
to evaluate data on safety parameters were included.

The demographic data of  the randomized patients are 
shown on Table 1. Population homogeneity was tested 
and showed the groups were similar in terms of  age, 
weight, BMI, time they have had diabetes for, initial A1C 
level, and previous treatment with OADs. However, the 
proportion of  M/F gender was significantly different in 
the LANMET PLUS (P < 0.047) group.

After 4 wk of  a run-in period, 92 patients were ran-
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domly distributed to the four algorithms and were treated 
for the next 16 wk. During this period, 10 visits were 
scheduled and telephone monitoring was performed by 
the investigators between visits. A follow-up visit was 
performed 4 wk after the completion of  the study. Three 
patients withdrew their informed consent. No patients 
dropped out due to hypoglycemia or any other adverse 
events.

Most patients were being treated with metformin and 
sulfonylurea, except for one patient in the DeGold PLUS 
group who received nateglinide and metformin, and an-
other one in the LANMET PLUS group who received 
rosiglitazone and metformin. Thirteen patients were on 
monotherapy, of  which seven were on sulfonylurea and 
six were on metformin. All patients were kept solely ei-
ther on metformin 2 g/d or on the maximum tolerated 
dose during the treatment period.

Treatment algorithms
LANMET and LANMET PLUS used the same initial In-
sulin Glargine dose of  10 U, while DeGold and DeGold 
PLUS used an initial insulin Glargine dose based on BMI, 

as shown on Table 2. For the LANMET and DeGold al-
gorithms, the insulin doses were increased by 2 U, twice a 
week, to reach the FPG target of  100 mg/dL. For LAN-
MET Plus and DeGold Plus, titration was performed 
by increasing insulin doses, from 2 to 8 U total, twice a 
week, according to the FPG.

Patients administered the insulin at bedtime and 
adjusted the doses under the supervision of  a person 
over the phone. In all algorithms, the titration of  insulin 
doses was delayed and an immediate reduction of  the 
insulin dose was recommended if  hypoglycemia < 70 
mg/dL. Insulin titration continued in all algorithms until 
the targeted FPG, which was between 80 and 100 mg/
dL, was reached. The insulin dose was then maintained 
and considered adequate when at least 50% of  the sub-
sequent FPG measurements corresponded to the aimed 
target.

Rescue therapy with rapid acting insulin was used on 
one patient who presented with persistent A1C > 8%, 
even though he had his FPG on target for more than 6 wk.

The patients measured their capillary FPG daily and 
were instructed to repeat the measurements if  they start-
ed having symptoms suggestive of  hypoglycemia. When 
necessary, the mean values of  3 d of  capillary FPG were 
used to calculate a new insulin dose.

Classification of hypoglycemia
Severe hypoglycemia: Severe hypoglycemia was defined 
as an event requiring third party assistance and glucose 
levels below 30 mg/dL, or if  the patient recovered after 
receiving oral carbohydrates, intravenous glucose, or glu-
cagon.

Symptomatic hypoglycemia: Symptomatic hypoglyce-
mia was defined as an event where the patient presented 
with symptoms of  hypoglycemia, but responded to oral 
carbohydrate ingestion or had a glycemia < 70 mg/dL 
(mild) or < 56 mg/dL (moderate).

Asymptomatic hypoglycemia: Asymptomatic hypogly-
cemia was defined as an event without any hypoglycemia 
symptoms, but glucose levels below 70 mg/dL.

Asymptomatic nocturnal hypoglycemia: Asymptom-
atic nocturnal hypoglycemia was determined when glyce-
mia under 70 mg/dL was detected before breakfast.
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n Gender Age (yr) Weight (kg) BMI (kg/m2) Duration (yr) Baseline A1C Baseline FPG (mg/dL)  Previous treatment

  Fixed titration 2/2 U
     LANMET 26   8 M   55.0 ± 10      78 ± 16.6   30.7 ± 4.95         8 ± 4.23 9.39% ± 1.67% 193.0 ± 59.4 2 OAD (20) 1 OAD (6)
  Variable titration
     LANMET PLUS 22   6 M 52.3 ± 7.7   70.6 ± 13 27.8 ± 4.7 7.8 ± 3.8 9.35% ± 1.34% 179.4 ± 51.4 2 OAD (21) 1 OAD (1)
  Fixed titration 2/2 U
     DeGold 23 14 M   54.6 ± 8 78.3 ± 13.5 28.8 ± 4.4    10.2 ± 7.1 9.21% ± 1.30% 196.6 ± 54.8 2 OAD (19) 1 OAD (4)
  Variable titration
     DeGold PLUS 21 12 M 53.8 ± 7.6 79.3 ± 15.9 29.5 ± 4.4 9.8 ± 5.4 9.61% ± 1.69% 196.1 ± 53.4 2 OAD (19) 1 OAD (2)

Table 1  Characteristics of the patient population, as grouped according to the four algorithms

OAD: Oral anti-diabetes drug; FPG: Fasting plasma glucose; BMI: Body mass index.

  Initial dose BMI Algorithms
LANMET LANMETPlus DeGold DeGoldPlus

fixed fixed
  Fixed initial 
  dose in U

n.a. 10     10

  Variable dose 
  according to 

     < 26          0.2        0.2

  BMI (kg/m2) 
  in U/kg

26 < 30 0.25 0.25
30 < 35          0.3        0.3
     > 35 0.35 0.35

  Insulin 
  adjustment

FPG

  Fixed Titration 
  twice/week 
  in U

  2          2

  Variable 
  titration 
  according to 

       < 100 0        0

  FPG (mg/dL) 
  twice/week 
  in U

101 < 120      -2      -2
121 < 140 2        2
141 < 180 4        4
       > 180      -2      -2

Table 2  Treatment algorithms used in this study

FPG: Fasting plasma glucose; BMI: Body mass index.
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according to the DeGold PLUS algorithm. No other se-
vere adverse events occurred.

In a pooled analysis, there was no significant differ-
ence when comparing moderate hypoglycemia events 
in algorithms starting with a 10 U fixed dose with algo-
rithms with BMI variation. However, when we compared 
patients (n = 46) whose titration increment was 2 U 
twice a week with patients (n = 43) whose titration varied 
according to FPG, we observed a clear increase in the 
number of  hypoglycemia events in the second group. 
We observed 12 hypoglycemia events in the first group, 
which corresponded to 0.94 events/patient per year, and 
we observed 42 events in the second group, which cor-
responded to 2.81 events/patient per year (P < 0.037, 
Figure 1).

There were no other significant differences in the fur-
ther comparisons between the algorithms.

DISCUSSION
Titration algorithms are important tools for maximiz-
ing the benefits of  insulin therapy for metabolic con-
trol. Many algorithms have been proposed as guides for 
achieving metabolic control with basal insulin therapy. 
These algorithms differ in their initial recommended dos-

Symptomatic nocturnal hypoglycemia: Symptomatic 
nocturnal hypoglycemia was defined when hypoglycemia 
occurred during sleep, after the bedtime insulin dose and 
before wakening. In this case, hypoglycemia was classi-
fied as mild (plasma glucose > 56 mg/dL), moderate (36 
mg/dL < plasma glucose < 56 mg/dL) or severe (plasma 
glucose < 36 mg/dL).

The evaluation of  insulin titration was based on the 
patients’ diaries and glycemia levels at every visit. Treat-
ment compliance was evaluated based on the aforemen-
tioned information.

RESULTS
Table 3 shows insulin glargine doses in U and U/kg, effi-
cacy parameters, namely FPG and A1C at the end of  the 
study, A1C decrease with respect to baseline value, pro-
portion of  patients reaching FPG target (A1C < 7.5% or 
< 7%), and mean titration time to reach the FPG target 
in the various groups.

There was no significant difference between the 
groups in the time required to achieve the target. The 
safety parameters are shown in Table 4. A unique severe 
hypoglycemia event (glycaemia < 36 mg/dL) occurred 
after a prolonged fasting period in a patient randomized 

LANMET LANMET PLUS DeGold DeGold PLUS

  Initial insulin dose (U)             10.0 ± 0             10.0 ± 0             21.0 ± 7.3             18.3 ± 7.0
  Initial insulin dose (U/kg) 0.13 ± 0.02 0.13 ± 0.03 0.26 ± 0.05 0.25 ± 0.05
  Final insulin dose (U) 41.65 ± 14.00 87.00 ± 26.87 54.68 ± 21.63 48.19 ± 38.50
  Final insulin dose (U/kg) 0.54 ± 0.20 0.59% ± 0.27% 0.67% ± 0.24% 0.65% ± 0.52%
  Baseline A1C 9.39% ± 1.67% 9.35% ± 1.34% 9.21% ± 1.30% 9.61% ± 1.69%
  Final A1C 7.36% ± 1.32% 7.32% ± 0.67% 6.82% ± 0.70% 7.38% ± 0.95%
  Reduction in A1C 2.02% ± 1.60% 2.02% ± 1.17% 2.48% ± 1.23% 2.23% ± 1.69%
  Proportion of patients reaching FPG target 19/26 (73) 16/20 (80) 22/23 (95) 20/21 (95)
  Proportion of patients reaching A1C ≤ 7.5% 17/26 (65) 13/20 (65) 20/23 (87) 13/21 (62)
  Proportion of patients reaching A1C ≤ 7.0% 11/26 (42)   5/20 (25) 16/23 (69)   7/21 (33)
  Duration of titration to reach FPG target (d) 28 ± 31 15 ± 19 22 ± 20 20 ± 17
  Weight variation (kg)           0.276 ± 2.94 1.190 ± 2.430 0.954 ± 2.590 1.630 ± 2.500
  Final FPG (mg/dL)           119.4 ± 36.2           109.0 ± 28.7           106.6 ± 18.0           107.6 ± 17.3

Table 3  Treatment efficacy data  n  (%)

FPG: Fasting plasma glucose.

LANMET LANMET 
PLUS

DeGold DeGold
PLUS

LANMET and DeGold and LANMET LANMET PLUS
LANMET PLUS DeGold PLUS and DeGold and DeGold PLUS
Fixed initial dose Variable initial dose Fixed titration Variable titration

  Patients with moderate or 
  severe hypoglycemia (n)

  7 (27)   6 (30)   5 (22)    5 (23) 13 (28) 10 (23) 12 (25) 11 (27)

  Number of moderate or 
  severe hypoglycemia events

   10    22     5   20            32             25         15            42

  Patients with symptomatic 
  night hypoglycemia (n)

13 (50)   4 (15)   5 (22)    4 (19) 17 (37)               9 (20) 18 (37)   8 (19)

  Number of nocturnal 
  symptomatic hypoglycemia events

   46    16     9     8            62             17         31            25

  Patients presenting any 
  type of hypoglycemia (n)

16 (61) 14 (70) 15 (68) 12 (57) 30 (65) 27 (62) 31 (64) 26 (60)

  Number of any type of 
  hypoglycemia events

 113   107   48 111          220           159       157          155

Table 4  Hypoglycemia events  n  (%)
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es, and in the frequency and speed of  basal insulin dose 
adjustments[5,6,11,12]. All were conceived based on the treat-
to-target concept, thus becoming comparable in efficien-
cy if  correctly used. However, because these algorithms 
are being used in different populations, it is difficult to 
compare their safety based on the risk of  hypoglycemia 
because it is unclear whether differences in rates of  hy-
poglycemia are truly due to the algorithm itself  or to the 
patients’ varying levels of  education. In this study, we 
evaluated the efficacy and safety of  four insulin glargine 
titration algorithms in a highly homogeneous population 
to compare the impact of  both the initial dose and the 
titration regimen on hypoglycemia events.

Titration was successfully performed in all groups. 
The DeGold and DeGold PLUS algorithms used a signif-
icantly higher initial insulin doses compared to the other 
two algorithms, which used a 10 U fixed initial dose. Nev-
ertheless, at the end of  the study, the doses were similar 
in all four groups. The doses were slightly higher (0.67 
U/kg) in the DeGold groups, but were comparable to 
previously reported values (0.69 U/kg) in the LANMET 
study[11].

As expected, all four algorithms resulted in a decrease 
in FPG and A1C values, and 85% of  all patients actually 
reached the FPG target and 39% of  the patients achieved 
an A1C < 7% after 18 wk of  treatment. This propor-
tion is lower than the 60% reported in the Treat to Tar-
get study, where the introduced patient population had 
lower initial A1C levels (8.6% vs 9.5%) and results were 
reported after 36 wk of  treatment. In our case, all groups 
presented a mean reduction of  at least 2% in A1C values. 

LANMET is a more conservative algorithm, as it rec-
ommends the smallest initial dose and slower titration, as 
opposed to the DeGold PLUS algorithm, which recom-
mends the initial insulin dose based on BMI and a faster 
titration protocol. As such, the most important safety out-
come to be compared is the frequency of  moderate and 
severe hypoglycemia events, which is a barrier to the accep-
tance of  insulin therapy among clinicians and patients[13,14].

In addition, hypoglycemia is currently acknowledged 
as risk factor that could lead to cardiovascular events and 
death[15-22]. Analysis on the incidence of  mild, asymptom-

atic, or total hypoglycemia events showed no significant 
difference between the groups. However, when compar-
ing the frequency of  severe and moderate hypoglycemia 
events between the two groups on fixed titration and the 
other two groups using a variable regimen, a significant 
increase was observed in the latter groups (0.94 events/
patient per year vs 2.81 events/patient per year, P < 0.037). 

It has previously been reported that patients typically 
experience 3 events/patient per year, which is similar to 
what we observed in the patients who were subject to the 
titration regimen that varied according to FPG[12]. The 
frequency of  symptomatic hypoglycemia events in the 
Treat to Target study was higher than in the LANMET 
trial (4.1 events/patient per year vs 13.9 events/patient 
per year) that used fixed titration, a finding that is in 
agreement with our observations[12,13].

The performance of  the DeGold algorithm was 
especially notable, and it was recently proposed as an 
algorithm to guide the introduction of  insulin glargine in 
replacement of  OADs for inpatients[8]. We extended its 
use to outpatients currently being treated with OADs and 
as a result, after a mean titration period of  22 d, 95% of  
the individuals reached the FPG target and 69% reached 
values of  A1C < 7%, without increase in any hypoglyce-
mia categories.

Nevertheless, there was no significant difference 
between the algorithms regarding efficacy parameters, 
possibly due to a lack of  statistical power because of  the 
small sample size.

An increase in the risk of  hypoglycemia was associ-
ated with the rapid titration algorithms, in comparison to 
patients receiving higher initial doses. A possible explana-
tion for the observed discrepancy may be the extremely 
low number of  events that occur in the beginning of  
treatment. Analysis of  the distribution of  occurrences 
throughout the study showed that only 14% of  all events 
occurred during the first 4 wk of  treatment (data not 
shown). After this period, the insulin doses in the titra-
tion regimens that varied according to FPG were higher, 
irrespective of  the initial dose. Our data suggest that the 
initial dose is not important for achieving glycemic con-
trol, nor was it shown to affect the rates of  hypoglycemia 
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Figure 1  The graphic represents the 
number of moderate hypoglycemic 
events occurred throughout the study. 
The number of hypoglycemia events that 
occurred in the first 2 wk of treatment was 
very low. Algorithms that titration incre-
ment varied according fasting plasma glu-
cose, had a clear increase in the number 
of hypoglycemia events.
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events, as long as titration was performed. However, 
forced and rapid titration did increase the rates of  hypo-
glycemia events.

In conclusion, there is no increase in the risk of  mod-
erate/severe hypoglycemia events when treatment with 
insulin glargine is initiated on insulin-naïve type 2 diabetes 
patients using an algorithm where the initial insulin dose 
is calculated based on BMI, as observed in the DeGold 
algorithm. However, this risk is increased when a faster 
titration schedule was used, compared with a fixed 2-U 
increment twice a week.
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Abstract
AIM: To describe baseline data of the optimal type 
2 diabetes management including benchmarking and 
standard treatment (OPTIMISE) study in Greece.

METHODS: “Benchmarking” is the process of receiv-
ing feedback comparing one’s performance with that 
of others. The OPTIMISE (NCT00681850) study is a 
multinational, multicenter study assessing, at a primary 
care level, whether using “benchmarking” can help to 
improve the quality of patient care, compared with a 
set of guideline-based reference values (“non-bench-
marking”). In the Greek region, 797 outpatients (457 
men, mean age 63.8 years) with type 2 diabetes were 
enrolled by 84 office-based physicians. Baseline charac-
teristics of this population are presented.

RESULTS: Hypertension was the most prevalent con-
comitant disorder (77.3%) and coronary heart disease 
was the most frequent macrovascular complication 
of diabetes (23.8%). Most patients were overweight 

or obese (body mass index 29.6 ± 5 kg/m2), exhibit-
ing mostly abdominal obesity (waist circumference 
102.6 ± 13.6 cm). Biguanides were the most preva-
lent prescribed drugs for the management of diabetes 
(70.1% of all prescriptions), whereas statins (93.5% 
of all prescriptions) and angiotensin receptor blockers 
(55.8% of all prescriptions) were the most prevalent 
prescribed drugs for hyperlipidemia and hypertension, 
respectively. Only 37.4% of patients were on aspi-
rin. Despite treatment, pre-defined targets for fasting 
plasma glucose (< 110 mg/dL), glycated hemoglobin (< 
7%), systolic blood pressure (< 130 mmHg and < 125 
mmHg for patients with proteinuria) and low density 
lipoprotein cholesterol levels (< 100 mg/dL and < 70 
mg/dL for patients with coronary heart disease) were 
reached in a relatively small proportion of patients 
(29%, 53%, 27% and 31%, respectively). In a Greek 
population with type 2 diabetes, the control of glycemia 
or concomitant disorders which increase cardiovascular 
risk remains poor.

CONCLUSION: Despite relevant treatment, there is a 
poor control of diabetes, hypertension and hyperlipid-
emia in Greek outpatients with type 2 diabetes.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Diabetes; Benchmarking; Treatment tar-
get; Glycemic control; Dyslipidemia; Blood pressure

Core tip: This is an epidemiological study assessing the 
prevalence of comorbidities as well as treatment control 
in a Greek population of patients with type 2 diabetes. 
“Benchmarking” is the process of receiving feedback 
and comparing one’s performance to that of others. 
The optimal type 2 diabetes management including 
benchmarking and standard treatment (OPTIMISE) 
study is a multinational, multicenter study comparing 
the efficacy of two follow-up strategies in the manage-
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ment of type 2 diabetic outpatients: “benchmarking” 
vs  “non-benchmarking”. This paper describes the ratio-
nale and the design of the OPTIMISE study as well as 
the baseline characteristics of patients included in the 
Greek region.
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E, Nikas N. Rationale, design and baseline patient character-
istics of the optimal type 2 diabetes management including 
benchmarking and standard treatment study in Greece. World J 
Diabetes 2014; 5(1): 76-83  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i1/76.htm  DOI: http://dx.doi.
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INTRODUCTION
According to the World Health Organization (WHO), 
> 180 million people worldwide suffer from diabetes[1]. 
This number is likely to increase by more than double 
by the year 2030. In 2005 alone, approximately 1.1 mil-
lion people died from diabetes-related complications[1]. 
The WHO projects that without urgent action, deaths 
due to these complications will increase by > 50% in the 
next 10 years[1]. Type 2 diabetes, which is closely related 
to an unhealthy lifestyle and obesity, is associated with 
increased risk of  micro- and macrovascular outcomes, 
including heart attacks, strokes and amputations of  the 
lower limbs[1]. Furthermore, diabetes complications not 
only decrease life expectancy, but also markedly reduce 
the quality of  life. These outcomes result in increasing 
health care costs[2].

This burden can be limited with effective treatment 
practices[2]. However, a marked variability has been docu-
mented in preventive and therapeutic approaches, sug-
gesting that the level of  diabetes care currently delivered 
may not produce the predicted health-related benefits[3]. 
Gaps between medical care as actually practiced and the 
recommendations derived from evidence-based research 
are large and widespread[3]. Approaches improving the 
quality of  patient care include the development of  guide-
lines, flowcharting, data collection and graphical data 
analysis. More recent innovations are benchmarking and 
computerized decision support[3].

Benchmarking is the process of  comparing one’s 
performance with that of  others[4]. This process begins 
with standardized and comparative measurement. It can 
go further to understand why there are performance dif-
ferences between seemingly similar processes[4]. Bench-
marking is practical and action-oriented in its analysis; it 
is not a rigorous research methodology. It is, however, a 
promising technology that breaks through the isolation 
that many clinicians report as the underlying cause of  
variation in clinical practice[4].

The optimal type 2 diabetes management includ-
ing benchmarking and standard treatment (OPTIMISE, 
NCT00681850) study was a multinational, multicenter 
study assessing, at a primary care level, whether us-

ing benchmarking can help in improving the quality of  
patient care as compared with a set of  guideline-based 
reference values. In this paper, baseline data of  patients 
included in the OPTIMISE study in the Greek region are 
analyzed.

The primary objective of  this study was the improve-
ment of  the quality of  diabetic patient care, particularly 
the control of  glycemia, lipids and blood pressure, with 
benchmarking over a set of  guideline-based reference 
values (non-benchmarking). In this context, the percent-
age of  patients in the benchmarking group achieving pre-
set targets for glycated hemoglobin (HbA1c)[1], low den-
sity lipoprotein cholesterol (LDL-C)[1,5] and systolic blood 
pressure (SBP)[1,6] vs non-benchmarking group (control 
group) after 12 mo of  follow-up was assessed.

Secondary objectives were to demonstrate that using 
benchmarking improves the control of  diabetes, lipids 
and blood pressure (1) by means of  the proportion of  
patients achieving pre-set targets for HbA1c[1], glycemia[1], 
LDL-C levels[1,5] and SBP[1,6] or (2) by determining the im-
provement in these parameters after 12 mo of  follow-up. 
Other secondary objectives included (3) the preventive 
screening for several outcomes: retinopathy, neuropathy, 
dietary counseling, microalbuminuria, smoking habits, 
body mass index (BMI) and physical activity and (4) the 
measurement of  physical activity by registering the num-
ber of  steps and the distance walked per day.

MATERIALS AND METHODS
Study design and population
Type 2 diabetic patients, followed by usual physician 
treatment, were recruited for observation. Selection crite-
ria were male or female subjects (1) with a minimum age 
of  18 years; (2) with type 2 diabetes, treated or untreated, 
insulin dependent or not insulin dependent at the time 
of  first visit; and (3) who signed an informed consent to 
participate in the study. Diabetes was defined by plasma 
levels of  glucose (PG); fasting PG was ≥ 126 mg/dL or 
PG levels 2-h post-load was ≥ 200 mg/dL. Patients who 
(1) suffered from type 1 diabetes or gestational diabetes, 
(2) participated in any other clinical study or (3) were hos-
pitalized during the study period (because it is a primary 
care study) were excluded from the study.

Investigators recruited for this study were physicians 
from all over the country who were willing to participate. 
A selection was based on the availability of  sufficient 
diabetic patients in the physician’s practice and the mo-
tivation to fulfill the administrative procedures linked to 
the study. All participating investigators performed their 
usual monitoring, treatment and counseling of  their dia-
betic patients. Investigators were randomized into two 
groups. The group that performed the usual monitoring 
of  their diabetic patients by knowing the relative level 
of  diabetic control of  their patients compared with the 
patients of  other investigators was defined as the bench-
marking group. The other group (non-benchmarking) 
did not receive any information and behaved as a control 
group. The proportion of  investigators receiving that in-
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formation (benchmarking) vs the control group was 3 to 1. 

Follow-up 
All investigators received feedback on the risk factors of  
their patients. Additionally, in the benchmarking group, 
physicians anonymously received information on the level 
of  control of  cardiovascular risk factors for their patients 
compared with their colleagues. This possibly resulted in 
an additional motivational stimulus for investigators and 
patients to follow therapeutic advice and to improve their 
risk factors.

The time interval between visits in this study cor-
responded to the four-times yearly control visits for 
diabetic patients regarding blood pressure, fasting glyce-
mia, HbA1c, body weight, smoking habits and physical 
activity, as recommended by the “International Diabetes 
Federation”[7]. Therefore, according to the study proto-
col, patients were followed-up in four visits. Baseline as-
sessments were recorded at visit 1, and further data were 
collected after approximately 4 mo (visit 2), 8 mo (visit 3) 
and 12 mo (visit 4). The serum lipid profile [total choles-
terol (TC), LDL-C, high density lipoprotein cholesterol 
(HDL-C) and triglyceride (TG) levels] was also recorded 
at baseline and at the same time intervals.

Clinical evaluation
At each visit, blood pressure was measured with the pa-
tient in the sitting position following at least 5 min of  
rest with a manometer with a cuff  of  the recommended 
dimensions. The mean blood pressure based on three 
successive readings was recorded. Somatometrics, includ-
ing body weight, height (only at the first visit) and waist 
circumference, were also measured during the follow-
up. The patient ideally wore light clothing and no shoes 
during the weight measurement. Weight was given in 
kilograms, without decimals (to round up as from 0.5 kg). 
The patient ideally wore no shoes during the height mea-
surement. Height was given in centimeters without deci-
mals (to round up as from 0.5 cm). For the measurement 
of  waist circumference, a measuring tape was placed in a 
horizontal plane around the abdomen at the level of  the 
iliac crest. Before reading the tape measure, investigators 
ensured that the tape was snug without compressing the 
skin and parallel to the floor. The measurement was made 
at the end of  a normal expiration.

Laboratory evaluation
After an 8-h overnight fast, two blood samples (7 mL) 
were obtained. The following parameters were analyzed 
at the central lab BARC (Industriepark Zwijnaarde 7b3, 
B-9052 Ghent, Belgium): (1) HbA1c, (2) fasting PG and 
(3) the serum lipid profile, including TC, TG, HDL-C 
and LDL-C levels. At visits 1 and 4, a urine sample of  4 
mL was collected for analysis of  microalbuminuria.

Pre-defined targets of treatment
Pre-defined targets of  treatment were (1) HbA1c < 7% 
and fasting PG < 110 mg/dL for glycemic control, (2) 
SBP < 130 mmHg and < 125 mmHg in the case of  renal 

impairment and proteinuria > 1 g/24 h for blood pres-
sure control and (3) LDL-C levels < 100 mg/dL and < 70 
mg/dL for very high-risk patients (i.e., those with diabetes 
and coronary heart disease) for serum lipids control.

Patient classification
Patients were categorized according to fasting PG levels 
into (1) “normal” if  fasting PG was < 110 mg/dL, (2) 
“borderline” if  fasting PG was 110-125 mg/dL and (3) 
“diabetics” if  fasting PG was ≥ 125 mg/dL. According 
to HbA1c levels, patients were classified into “good” if  
HbA1c ≤ 7% and “too high” if  HbA1c > 7%. SBP levels 
divided the study population into: “good” if  < 130 mmHg 
and “too high” if  ≥ 130 mmHg. According to LDL-C 
levels, patients were categorized into “good” if  LDL-C < 
100 mg/dL and “too high” if  LDL-C ≥ 100 mg/dL.

A four-point verbal rating scale was used to assess the 
following physical activity: (1) no weekly activity; (2) only 
limited physical activity during most weeks; (3) intense 
physical activity (activity that gives rise to shortness of  
breath, tachycardia and sweating) during at least 20 min, 
once to twice a week; and (4) intense physical activity 
(activity that gives rise to shortness of  breath, tachycardia 
and sweating) during at least 20 min, three times or more 
a week.

Statistical analysis
Descriptive statistics (mean, median, number of  observa-
tions, standard deviation, standard error, 95%CI, mini-
mum and maximum) of  all primary and other variables 
are presented in tables and, if  appropriate and interesting, 
in graphs. This is applicable for the following variables: 
HbA1c, glycemia, LDL-C, SBP, TG, TC, HDL-C, diastol-
ic blood pressure, waist circumference, smoking habits, 
microalbuminuria, BMI, physical activity (rating scale), 
degree of  ophthalmic control and degree of  dietary ad-
vice.

The null hypothesis for the primary objective is that 
the proportion of  patients who reached targets after 12 
mo in both groups is equal. The alternative hypothesis 
is that this proportion is greater in the benchmarking 
group compared with the control group. This analysis is 
performed for the following variables: HbA1C, LDL-C 
and SBP. For secondary objectives, the null hypothesis is 
that the proportion of  patients who reached the target 
after 12 mo is the same as the proportion of  patients 
who reached the target at baseline. The alternative hy-
pothesis is that this proportion is even greater after 12 
mo than at baseline. This analysis is also performed for 
HbA1c, LDL-C and SBP. Another null hypothesis is that 
the mean proportion improvement of  these variables 
after 12 mo is equal to zero. The alternative hypothesis is 
that the mean percentage improvement is different from 
zero.

RESULTS
The study design and the global baseline results of  the 
OPTIMISE study have been previously reported[8,9]. Ad-
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out proteinuria (144 ± 19 mmHg vs 138 ± 17 mmHg). 
Only a small proportion of  patients (27%) reached the 
pre-defined target for blood pressure, whereas most pa-
tients (72%) did not reach this target (Figure 1).

Medical treatment
Prescribed medications are shown in Table 4. Biguanides 
were the most commonly prescribed antidiabetic drugs, 
followed by sulfonylureas. Approximately one fifth of  
the patients in our population were treated with insulin. 
The mean insulin dosage among insulin-treated patients 
was 48 ± 28 units/d. From all antidiabetic drug combina-
tions, biguanide + sulfonylurea was the most commonly 
prescribed (20% of  all prescriptions).

Almost all patients on lipid lowering therapy were 
taking statins (Table 4). Simvastatin was used by 34% of  
the statin-treated patients at a mean dose, atorvastatin by 
36% and rosuvastatin by 24% at a mean dose of  about 
30, 20 and 12 mg/d, respectively. Statins with a mild 
lipid-lowering potency, including fluvastatin and pravas-

ditionally, the benchmarking process has been schemati-
cally described in detail above[8].

History data and clinical evaluation
A total of  797 patients were enrolled in this study (n = 
570 in the benchmarking group and 227 in the control 
group) by 84 participating office-based physicians across 
Greece. History data of  the study population are shown 
in Table 1. Most patients were middle-aged and had a 
positive family history of  diabetes (Table 1). A small 
predominance of  male gender was noted in our popula-
tion. Patients were middle-aged at the time of  diagnosis 
of  diabetes and presented after approximately a 10-year 
course of  diabetes.

Hypertension was a common concomitant disorder 
in our population, present in approximately 8/10 pa-
tients (Table 2). Among macrovascular complications of  
diabetes, coronary heart disease was the most prevalent, 
followed by peripheral artery disease and stroke (Table 2). 
Only two patients have undergone amputation. Retinopa-
thy was the most commonly observed microvascular com-
plication of  diabetes, followed by proteinuria (Table 2).

Table 3 shows the main clinical characteristics of  
the study population. The vast majority of  patients were 
overweight or obese, as reflected by increased BMI. The 
predominance of  visceral obesity was mirrored by abnor-
mally raised measurements of  waist circumference. Most 
patients (i.e., 77%) reported no or light weekly physical 
activity and the rest (23%) reported “intense physical ac-
tivity” for 1-2 times per week.

Both systolic and diastolic blood pressure levels were 
moderately elevated (Table 3). As expected, SBP was 
greater in patients with proteinuria than in patients with-

  Variable Value

  Age (yr) 64 ± 11
  Male gender 457 (57.3)
  Positive family history of diabetes 483 (64.2)
  Family history of premature heart disease 213 (28.4)
  Time since diagnosis of diabetes (yr) 9.2 ± 8.3
  Age at diagnosis of diabetes (yr) 54 ± 11
  Smoking status
     Current smokers 194 (24.3)
     Ex-smokers 171 (21.4)
     Non-smokers 432 (54.2)

Table 1  History data of the study population in Greece

Data are expressed as absolute numbers (percentage) or mean ± SD. 

  Clinical condition Value

  Hypertension 615 (77.2)
  Coronary heart disease 186 (23.8)
  Stroke 50 (6.3)
  Peripheral artery disease   85 (11.1)
  Amputation   2 (0.3)
  Proteinuria 38 (5.6)
  End-stage renal disease   1 (0.1)
  Retinopathy 54 (7.2)

Table 2  Macrovascular and microvascular complications of 
diabetes and concomitant diseases of the study population in 
Greece  n  (%)

  Variable Value

  Height (cm)             167 ± 9
  Weight (kg)   83 ± 16
  Body mass index (kg/m2) 29.6 ± 5.0
  Waist circumference (cm) 103 ± 14
  Systolic blood pressure (mmHg) 138 ± 17
  Diastolic blood pressure (mmHg) 80 ± 9

Table 3  Baseline clinical characteristics of the study 
population in Greece (mean ± SD)   Treatment n  (%)

  Antidiabetic 740 (92.9)
     Insulin 145 (19.6)
     Biguanide (metformin) 519 (70.1)
     Sulfonylurea 343 (46.4)
     Glitazone 142 (19.2)
     Others 104 (14.1)
  Lipid-lowering 553 (69.4)
     Statin 517 (93.5)
     Ezetimibe 53 (9.6)
     Fibrate 17 (3.1)
     Others 43 (7.8)
  Antihypertensive   591 (96.11)
     ARBs 330 (55.8)
     ACEi 202 (34.2)
     CCBs 242 (40.9)
     Beta-blockers 179 (30.3)
     Alpha-blockers 13 (2.2)
     Diuretics 220 (37.2)
     Others 19 (3.2)
  Anti-obesity 40 (5.0)
  Aspirin 298 (37.4)

Table 4  Treatment of the study population in Greece

1The percentage value refers to patients with hypertension. ARBs: Angio-
tensin receptor blockers; ACEi: Angiotensin converting enzyme Inhibitors; 
CCBs: Calcium channel blockers.
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tatin, were less frequently prescribed. The use of  other 
hypolipidemic drugs was limited in our population. The 
dose of  100 mg/d was the predominant dose of  aspirin, 
corresponding to 92% of  all prescriptions.

Renin-angiotensin-aldosterone system blockade was 
the most popular antihypertensive strategy, with angio-
tensin receptor blockers (ARBs) being prescribed in more 
than half  and angiotensin converting enzyme inhibitors 
(ACEi) in approximately one third of  our population 
(Table 4). ARBs were the most commonly prescribed an-
tihypertensive drug category, followed by calcium channel 
blockers (CCBs), diuretics, ACEi and beta-blockers (Table 
4). From combinations of  two antihypertensive drugs, 
ARBs with diuretics or CCBs were the more prevalent 
(each representing approximately 5% of  all prescriptions), 
followed by ACEi with the same categories (approximately 
3% of  all prescriptions for each combination). ARBs, 
CCBs and diuretics combination were the most frequent 
among triple combinations (5% of  all prescriptions).

Target achievement for laboratory parameters
Table 5 shows the glycemic control and serum lipid pro-
file. Glycemic control was poor, with 71% of  all patients 
being out of  the pre-defined target according to fasting 
PG and 47% according to HbA1c (Figure 1). Interesting-
ly, glycemic control was better when assessed by HbA1c 
rather than by fasting PG levels.

Only 31% of  patients reached the pre-defined target 
for LDL-C (< 100 and < 70 mg/dL for patients with 
coronary heart disease). This proportion was greater (i.e., 
40%) for the target of  LDL-C < 100 mg/dL and lower 
(19%) for a more aggressive LDL-C target of  < 80 mg/
dL (Figure 1). Consequently, the LDL-C target was not 
reached in the vast majority of  patients with coronary 
heart disease (82%).

DISCUSSION
The OPTIMISE study is designed to compare two dif-
ferent strategies in the follow-up of  type 2 diabetic 

outpatients regarding the control of  diabetes and its con-
current morbidities. Benchmarking is a relatively recent 
innovation in the quality management sciences, repre-
senting a useful tool in the understanding of  why there 
are performance differences between seemingly similar 
processes[4]. Feedback methods such as benchmarking 
in which clinicians receive reports of  their performance 
compared with the mean performance of  a peer group 
have been used and studied extensively[3,10]. One under-
lying theory holds that viewing personal performance 
within the context of  peer performance is a powerful 
motivator for change[3,11]. In the OPTIMISE study, the 
hypothesis whether “benchmarking” is superior to a 
“non-benchmarking” follow-up strategy in the control of  
diabetes and concurrent morbidities is evaluated.

In the present paper, we discuss baseline characteris-
tics of  a relatively large population of  type 2 diabetic pa-
tients in the Greek region participating in the OPTIMISE 
study. To the best of  our knowledge, this study represents 
one of  the larger diabetes registries in the country.

Type 2 diabetes is becoming an increasingly prevalent 
morbidity in Greece. In the ATTICA study, the preva-
lence of  diabetes in 3042 subjects who were free of  car-
diovascular disease was raised from 8% in 2001 to 12.8% 
in 2006[12]. According to the same study, the age-adjusted 
five-year incidence of  type 2 diabetes was 5.5%[13].

The mean age at diagnosis of  diabetes in the OPTI-
MISE study was 54 years. This finding is in accordance 
with the “Aegaleo” studies in which the increase in dia-
betes begins in those > 50 years of  age[14]. Interestingly, 
current data showed clearly that the prevalence is con-
siderably increased after the age of  30 years[15]. Age was 
found to independently correlate with increased risk for 
diabetes (OR = 1.07, 95%CI: 1.06-1.08)[15].

In the OPTIMISE study, a mild predominance of  
the male gender over female was noted. This finding is 
consistent with epidemiological data from the ATTICA 
study in which the prevalence of  diabetes was higher in 
men than in women (8% vs 6%, respectively)[16]. Likewise, 
in another analysis, male gender was recognized as an 
independent predisposing factor for diabetes (OR = 1.43, 
95%CI: 1.04-1.95)[15]. The possible explanation for these 
sex differences may be that men are more susceptible 
than women to the consequences of  indolence and obe-

  Variable Values

  Glucose (mg/dL) 138 ± 47
  HbA1c (%)   7.2 ± 1.3
  LDL-C (mg/dL) 112 ± 35
  HDL-C (mg/dL)   50 ± 13
  TC (mg/dL) 192 ± 42
  TG (mg/dL) 154 ± 85
  Albuminuria (mg/g Cr)     66.6 ± 249.2

Table 5  Laboratory evaluation of the study population in 
Greece (mean ± SD)

HbA1c: Glycosylated hemoglobin; LDL-C: Low density lipoprotein choles-
terol; HDL-C: High density lipoprotein cholesterol; TC: Total cholesterol; 
TG: Triglycerides; Cr: Creatinine.SBP Glucose HbA1c LDL-C (100) LDL-C (80)

100

  80

  60

  40

  20

    0

%

Off target

On target

Figure 1  Proportion of patients who did not reach or reached pre-defined 
targets of treatment. SBP: Systolic blood pressure; HbA1c: Glycosylated he-
moglobin; LDL-C: Low density lipoprotein cholesterol.
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sity, possibly due to differences in insulin sensitivity and 
abdominal fat deposition[17].

Most of  our diabetic patients had a positive fam-
ily history of  diabetes. It has been shown that Greek 
subjects with a positive family history of  diabetes may 
have approximately a seven-fold higher risk for diabetes 
compared with co-responders without a family history of  
diabetes[15]. Approximately 1/4 of  diabetic patients in our 
population (i.e., 24%) exhibited coronary heart disease, 
a proportion which is similar to that reported for the 
prevalence of  diabetes among Greek patients who had 
suffered a myocardial infarction (i.e., 25%)[18]. Coronary 
heart disease represented the most prevalent disorder 
among all macrovascular complications of  diabetes, with 
the rates for other forms of  cardiovascular disease being 
relatively low.

The prevalence of  hypertension was high among 
our subjects. Hypertension was considered as an inde-
pendent contributing factor for diabetes in Greek adult 
subjects with self-reported diabetes (OR = 2.19, 95%CI: 
1.60-2.99)[15]. The prevalence of  hypertension in our 
population was greater compared with that recorded in 
an urban Greek population of  self-reported diabetes (77% 
vs 51%, respectively)[15]. The great prevalence of  hyper-
tension among Greek subjects with metabolic syndrome 
(i.e., 71%)[19], which represents a pre-diabetic condition, 
may account for high rates of  hypertension in type 2 dia-
betic patients.

According to BMI values, approximately all patients 
were overweight or obese with increased measurements 
of  waist circumference. Being overweight and obese was 
associated with a two-fold increase in the risk for diabetes 
in a Greek population[15]. Abdominal obesity, which is 
present in 82% of  patients with metabolic syndrome in 
Greece[19], may play a major role in the pathogenesis of  
type 2 diabetes by promoting insulin resistance[20]. Physi-
cal inactivity was another important finding of  this study. 
The proportion of  our diabetic patients who reported 
physical inactivity was greater than that recorded in the 
ATTICA study (77.41% vs approximately 50%, respec-
tively)[19]. This unhealthy lifestyle pattern could be related 
to the development of  obesity and diabetes.

The most important finding of  this study lies in the 
low rates of  patients who reached pre-defined targets of  
treatment for SBP, glycemia and LDL-C levels. Approxi-
mately 72% of  patients were off  target regarding SBP. 
This rate is in accordance with the Didima study, which 
shows that only 27% of  treated hypertensive subjects 
reached treatment targets for arterial blood pressure in a 
rural Greek area[21]. In the EUROASPIRE Ⅱ study, 50% 
of  patients with coronary heart disease in 15 European 
countries (including Greece) had raised blood pressure 
levels[22]. Similar were the results of  a Greek trial per-
formed in patients with coronary heart disease of  whom 
only 50% had desirable blood pressure levels[18].

Suboptimal control was noted for LDL-C levels. 
Seven out of  10 patients did not reach the pre-defined 
target of  LDL-C levels < 100 mg/dL and < 70 mg/dL 
for diabetic patients with coronary heart disease. This 

rate was even lower for a more promising target of  < 80 
mg/dL. Interestingly, this was evident despite high rates 
of  patients who were treated with statins (i.e., 65% of  the 
total study population or 94% of  those receiving lipid 
lowering medications), particularly the most potent ones. 
Nevertheless, few patients were treated with drugs that 
could offer further LDL-C lowering, including ezetimibe. 
Lipid-lowering drug combinations, which are currently 
underused, could contribute to a greater percentage of  
patients reaching the targets for LDL-C levels. In the 
EUROASPIRE Ⅱ study, 58% of  patients with coronary 
heart disease had elevated TC levels[22]. In Greece, the 
OLYMPIC study showed that only 26% of  2660 adults 
with dyslipidemia, who had been receiving lipid-lowering 
treatment for at least 3 mo (of  whom 36% had diabetes), 
achieved the NCEP-ATPIII targets for LDL-C levels[23]. 
A greater proportion (i.e., 49%) of  patients achieving the 
2004-updated NCEP ATPIII targets was reported in the 
CEPHEUS (Centralized Pan-European survey on the 
undertreatment of  hypercholesterolemia in patients using 
lipid lowering drugs). This study was performed in 1321 
Greek patients who were on lipid lowering treatment for 
at least 3 mo were stable for at least 6 wk. Interestingly, 
25% of  these patients had diabetes[23].

In the OPTIMISE study, 34% of  the statin-treated 
patients were on simvastatin, most of  them at low doses 
(49% of  them 20 mg/d and 9% 10 mg/d). If  these 
patients were switched to a more potent statin (either 
atorvastatin or rosuvastatin), they might have reached 
the targets for LDL-C. Moreover, > 36% of  patients 
on atorvastatin were using low-to-moderate doses (38% 
of  them 10 mg/d and 44% 20 mg/d). It is possible that 
these patients would reach their targets if  titrated to a 
higher atorvastatin dose or switched to a more potent 
statin, such as rosuvastatin. Finally, 24% of  patients were 
treated with rosuvastatin (76% of  patients used 5-10 mg/
d and only 22% 20 mg/d). A higher rosuvastatin dose 
could potentially offer a higher proportion of  patients 
achieving LDL-C goals. According to international rec-
ommendations, statin treatment should be optimized and 
if  the target is not reached, then a second agent should 
be added. Nevertheless, it appears that statin treatment 
was far from optimal in the OPTIMISE population. An 
optimization of  statin dose or switching to a more potent 
statin could help more patients reach the target. If  the 
target is not reached, then the addition of  a second agent 
could be useful.

Poor glycemic control was also noted in our popula-
tion; only 30% according to fasting PG levels and 50% 
according to HbA1c levels. The results of  the EU-
ROASPIRE Ⅱ study were similar among diabetic pa-
tients with coronary heart disease, with more than 70% 
being out of  target for PG levels[21]. In a Greek popula-
tion of  819 diabetic patients with coronary heart disease, 
only half  of  the patients exerted HbA1c levels < 7.5%[18]. 
Although insulin is considered as a first-line treatment 
choice for the management of  type 2 diabetic patients, 
only one fifth of  patients in the OPTIMISE study were 
treated with insulin. This could have attributed to low 
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rates of  glycemic control.
The OPTIMISE study was designed to compare 

the efficacy of  “benchmarking” compared with “non-
benchmarking” in the control of  type 2 diabetes in an 
outpatient basis. In Greek participants of  this study, poor 
control of  diabetes, hypertension and hyperlipidemia 
were noted at baseline despite treatment. 
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Abstract
Ischemic stroke is a leading cause of mortality and 
long-term disability worldwide. Given the detrimental 
effects of acute stroke, several neuroprotective agents 
have been evaluated in these patients. However, the 
benefits of the evaluated agents appear to be limited 
and none is currently recommended for clinical use. 
On the other hand, prior treatment with agents that 
are used for the primary and secondary prevention of 
stroke, including statins and antiplatelets, has been 
associated with better outcome in patients who experi-
ence an acute stroke. In contrast, there are limited data 
as to whether prior treatment with antidiabetic agents 
is beneficial in diabetic patients who suffer a stroke. In 
this context, the findings of a recent study that showed 
reduced stroke size following pretreatment with lina-
gliptin, a dipeptidyl peptidase-4 (DDP-4) inhibitor, 
compared with glimepiride, in both diabetic and non-di-
abetic mice, appear promising. Despite these preclinical 
findings suggesting neuroprotective effects of DPP-4 in-
hibitors in acute stroke, it is still unclear whether these 
actions will also be observed in humans. Of note, two 
recent large randomized, placebo-controlled studies did 
not show any effect of DPP-4 inhibitors on cardiovascu-
lar events, including stroke. Several other ongoing trials 
are evaluating the effects of DPP-4 inhibitors on car-
diovascular morbidity and mortality. These studies also 

provide a major opportunity to assess whether patients 
treated with this class of antidiabetic agents will suffer 
from less severe strokes and whether their outcome af-
ter stroke will be more favorable.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Type 2 diabetes mellitus; Stroke; Dipeptidyl 
peptidase-4 inhibitors; Sulfonylureas; Neuroprotection

Core tip: A recent study showed reduced stroke size fol-
lowing pretreatment with linagliptin, a dipeptidyl pepti-
dase-4 (DDP-4) inhibitor, compared with glimepiride, in 
both diabetic and non-diabetic mice. It remains to be 
shown whether these neuroprotective actions of DPP-4 
inhibitors will also be observed in humans.

Magkou D, Tziomalos K. Antidiabetic treatment, stroke sever-
ity and outcome. World J Diabetes 2014; 5(2): 84-88  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i2/84.htm  
DOI: http://dx.doi.org/10.4239/wjd.v5.i2.84

INVITED COMMENTARY ON HOT 
ARTICLES
Ischemic stroke is a leading cause of  mortality and long-
term disability worldwide[1]. This often disabling and fre-
quently fatal event puts a substantial burden on the family 
members and medical professionals who care for stroke 
victims[1].

The increasing prevalence of  obesity results in an 
increased incidence of  type 2 diabetes mellitus (T2DM) 
worldwide[2]. T2DM is a major risk factor for cardiovas-
cular events, including stroke[3,4]. In addition, patients with 
T2DM appear to suffer more severe strokes and have a 
worse outcome than subjects without T2DM[3,5-7]. The 
increased incidence of  cardiovascular events in patients 
with T2DM is not only due to hyperglycemia, but insulin 
resistance, low-grade inflammation and activation of  the 
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coagulation cascade are also involved[3,8].
Given the high morbidity and mortality rates associ-

ated with acute ischemic stroke, several neuroprotective 
agents have been evaluated in these patients[9]. However, 
the benefits of  the evaluated agents appear to be limited 
and none is currently recommended for clinical use[9]. On 
the other hand, prior treatment with agents that are used 
for the primary and secondary prevention of  stroke, in-
cluding statins and antiplatelets, has been associated with 
less severe stroke, better functional outcome and reduced 
mortality in patients who experience an acute stroke[10-13]. 
In contrast, there are limited data whether prior treatment 
with antidiabetic agents is beneficial in diabetic patients 
who suffer a stroke. In an early study, prior treatment 
with sulfonylureas had no effect on stroke severity or out-
come[14]. In contrast, a more recent study suggested that 
patients who were on sulfonylureas prior to stroke and 
continued to receive these agents during hospitalization 
were more likely to have a better neurological and func-
tional outcome at discharge[15]. In another study, diabetic 
patients who were on sulfonylureas, metformin or insulin 
prior to stroke had a less severe stroke on admission than 
patients who were not receiving any antidiabetic agent. In 
contrast, functional outcome and mortality rates at 90 d 
after stroke were similar in patients who were on glucose-
lowering treatment and in those who were not[16]. Stroke 
severity and outcome did not differ between patients 
who were on sulfonylureas, metformin or insulin prior 
to stroke[16]. A small retrospective study also suggested 
that thiazolidinediones enhance functional recovery in 
patients with stroke[17] (Table 1).

In this context, the findings of  a recent study that 
compared the effects of  pretreatment with glimepiride, 
a sulfonylurea, and linagliptin, a dipeptidyl peptidase-4 
(DDP-4) inhibitor, on the outcome of  stroke in diabetic 
and non-diabetic mice, appear promising[18]. It has been 
previously reported that administration of  sulfonylureas 
after stroke reduces infarct size and mortality, primarily 
by preventing cerebral edema[19,20]. In this study, 44 male 
C57BL mice were divided into 2 groups. The first group 
(n = 21) was exposed to a high-fat diet for 32 wk, which 
resulted in substantial weight gain and development of  
insulin resistance and hyperglycemia[18]. At week 25, this 
group was assigned to oral administration of  10 mg/kg 
per body weight (bw) linagliptin daily, 2 mg/kg per body 

weight glimepiride daily or vehicle[18]. The second group 
(n = 23) was fed a normal diet and was also assigned to 
linagliptin, glimepiride or vehicle at the same doses with 
the first group[18]. After 4 wk of  treatment, stroke was in-
duced in all mice in both groups by transient occlusion of  
the middle cerebral artery[18]. Treatment with linagliptin, 
glimepiride or vehicle was continued for 3 wk following 
stroke, after which all mice in both groups were sacri-
ficed[18]. The extent of  ischemic stroke was assessed with 
measuring stroke volume and with stereological quantifi-
cation of  surviving neurons in the striatum/cortex[18].

In high-fat diet-fed mice, fed and fasting blood glu-
cose levels decreased in both linagliptin- and glimepiride-
treated mice[18]. This reduction was greater in mice treated 
with glimepiride. In contrast, in normal diet-fed mice, fed 
and fasting blood glucose levels decreased in glimepiride-
treated animals but did not change in linagliptin-treated 
animals[18]. On the other hand, both high-fat- and normal 
diet-fed mice that were treated with linagliptin showed an 
increase in blood glucagon-like peptide-1 (GLP-1) levels 
due to a significant reduction in DPP-4 activity[18]. In 
contrast, GLP-1 levels and DPP-4 activity did not change 
in glimepiride- or vehicle-treated mice regardless of  the 
diet they were fed[18].

Immunohistochemical staining of  the cortex/striatum 
of  high-fat diet-fed mice without stroke revealed GLP-1 
receptor expression exclusively in the neurons[18]. Cortical 
pyramidal neurons showed the most pronounced expres-
sion of  GLP-1 receptors[18].

In high-fat diet-fed mice, treatment with linagliptin 
resulted in a noticeable, albeit not statistically significant, 
trend towards reduction of  stroke volume[18]. In contrast, 
glimepiride had no effect on stroke volume[18]. Moreover, 
stereological counting of  surviving neurons revealed sig-
nificantly more (approximately 30%) surviving neurons 
in linagliptin-treated mice than in either glimepiride- or 
vehicle-treated animals[18]. In contrast, in normal diet-
fed mice, treatment with both linagliptin and glimepiride 
resulted in a comparable and non-significant trend for 
reduced stroke volume and was associated with a compa-
rable and significantly higher number of  surviving neu-
rons compared with vehicle treatment[18].

Overall, this study[18] suggests that treatment with 
linagliptin prior to stroke increases the number of  surviv-
ing neurons more than glimepiride in diabetic mice. This 
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  Ref. Design n Agent Results

  Weih et al[14] Retrospective   146 Sulfonylureas No effect on stroke severity or outcome
  Kunte et al[15] Retrospective      61 Sulfonylureas Better neurological and functional outcome at discharge in patients who were on 

sulfonylureas prior to stroke
  Favilla et al[16] Prospective 1050 Sulfonylureas, 

metformin, insulin
Less severe stroke on admission in patients who were on sulfonylureas, metformin or 
insulin prior to stroke than in patients who were not receiving any antidiabetic agent, 

but no difference in functional outcome and mortality rates at 90 d between the 2 
groups

Similar stroke severity and outcome between patients treated with different antidiabetic 
agents prior to stroke (sulfonylureas, metformin and insulin)

  Lee et al[17] Case-control     60 Thiazolidinediones Enhanced functional recovery in patients treated with thiazolidinediones

Table 1  Major studies that have evaluated the effects of antidiabetic agents on stroke severity and outcome



neuroprotective effect of  linagliptin appears to be glu-
cose-lowering-independent since the reduction in blood 
glucose levels was smaller during treatment with lina-
gliptin compared with glimepiride. In addition, linagliptin 
also prevented neuronal death in non-diabetic mice even 
although it did not affect glucose levels, further sup-
porting a glucose-lowering-independent neuroprotective 
effect. Similar results have been reported very recently 
with another DPP-4 inhibitor, alogliptin[21]. Moreover, in 
humans, even although increased glucose levels at admis-
sion are associated with a worse outcome in patients with 
acute ischemic stroke[22-24], correction of  hyperglycemia 
with administration of  insulin does not reduce infarct 
size or neurological deficit[25-27].

Several alternative mechanisms besides glucose low-
ering may underpin the beneficial effects of  linagliptin 
in the setting of  acute stroke. First, treatment with lina-
gliptin results in increased blood GLP-1 levels and pre-
treatment with exendin-4, a GLP-1 agonist, was shown to 
reduce stroke volume and neurological deficit in animal 
stroke models[28-30]. Antiapoptotic, anti-inflammatory and 
antioxidant actions, as well as stimulation of  the prolif-
eration of  neural stem cells and attenuation of  microglial 
activation, appear to contribute to these neuroprotective 
effects[29-31]. Interestingly, administration of  exendin-4 
in non-diabetic animals immediately after stroke also 
reduces stroke volume and improves outcome through 
similar mechanisms without affecting glucose levels[32]. 
These effects appear to be GLP-1 receptor-mediated 
since they are not observed in GLP-1 receptor knockout 
(-/-) mice[28]. Moreover, GLP-1 readily crosses the blood-
brain barrier[33-35] and GLP-1 receptors are expressed in 
brain neurons in humans[36-39]. In addition, both ischemia 
and treatment with exendin-4 up-regulate the expression 
of  GLP-1 receptors in pyramidal neurons[29]. Given the 
putative neuroprotective effects of  GLP-1, this increased 
expression might be a defense mechanism against isch-
emic damage[29].

A second possible pathway through which linagliptin 
might exert its neuroprotective effects is the increased 
bioavailability of  other bioactive DPP-4 substrates. In-
deed, DPP-4 has many other substrates except GLP-1, 
some of  which appear to exert neurotrophic or neuro-
protective effects[40,41]. The latter include glucose-depen-
dent insulinotropic polypeptide[42], pituitary adenylate 
cyclase-activating polypeptide[43] and stromal cell-derived 
factor 1a[44], which were reported in preclinical models to 
promote synaptic plasticity, neurogenesis and neuronal 
differentiation, to inhibit apoptosis and to reduce stroke 
size.

Another possible explanation of  the different effects 
of  linagliptin and glimepiride on stroke volume is that 
glimepiride exerts detrimental effects rather than that 
linagliptin is protective. Indeed, several recent studies 
suggested that patients treated with sulfonylureas have 
increased cardiovascular morbidity compared with pa-
tients treated with metformin[45-47]. Therefore, it would be 
of  interest to compare the effects of  prior treatment of  

DPP-4 inhibitors with prior treatment with metformin in 
experimental models of  stroke or in patients who suffer 
a stroke.

Despite these promising preclinical findings suggest-
ing neuroprotective effects of  DPP-4 inhibitors in acute 
stroke, it is still unclear whether these actions will also be 
observed in humans. Interestingly, a recent randomized 
double-blind study showed that the addition of  linagliptin 
to metformin reduces the risk of  non-fatal stroke more 
than the addition of  glimepiride, despite comparable de-
creases in HbA1c

[48]. Preliminary data also suggest similar 
reductions in stroke risk with other DPP-4 inhibitors[49]. 
However, these studies were neither planned nor pow-
ered to assess the effects of  DPP-4 inhibitors on cardio-
vascular events[48,49]. On the other hand, two recent large 
randomized, placebo-controlled studies did not show any 
benefit of  DPP-4 inhibitors on cardiovascular events, in-
cluding stroke[50,51]. Several other ongoing trials are evalu-
ating the effects of  DPP-4 inhibitors on cardiovascular 
morbidity and mortality. These studies also provide a 
major opportunity to assess whether patients treated with 
this class of  antidiabetic agents will suffer from less se-
vere strokes and whether their outcome after stroke will 
be more favorable.
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Abstract
Hyperglycemia, a commonly exhibited metabolic dis-
order in critically ill patients, activates the body’s in-
flammatory defense mechanism, causing the waterfall 
release of numerous inflammatory mediators and cy-
tokines, and eventually leads to organ damage. As the 
only glucose-lowering hormone in the body, insulin not 
only alleviates the detrimental effects of hyperglycemia 
through its metabolic regulation, but also directly mod-
ulates inflammatory mediators and acts upon immune 
cells to enhance immunocompetence. In this sense, 
hyperglycemia is pro-inflammatory whereas insulin is 
anti-inflammatory. Therefore, during the past 50 years, 
insulin has not only been used in the treatment of dia-
betes, but has also been put into practical use in deal-
ing with cardiovascular diseases and critical illnesses. 
This review summarizes the recent advances regarding 
the anti-inflammatory effects of insulin in both basic re-
search and clinical trials, with the hope of aiding in the 
design of further experimental research and promoting 

effective insulin administration in clinical practice.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Hyperglycemia is closely correlated with poor 
outcomes of morbidity and mortality in critically ill pa-
tients. As the only glucose-lowering hormone in the 
body, insulin not only alleviates the detrimental effects 
of hyperglycemia through its metabolic regulation, but 
also directly modulates inflammatory mediators and 
acts upon immune cells to enhance immunocompe-
tence. This review summarizes the recent advances 
regarding the anti-inflammatory effects of insulin from 
our laboratory as well as others, in the hope of leading 
to a better understanding of this old, classic and won-
der hormone and its wider and effective applications in 
clinical practice.
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INTRODUCTION
Since its discovery in 1921, the importance of  insulin in 
glucose homeostasis has been established, and it is uni-
versally used as a therapeutic agent for diabetes mellitus. 
Thousands of  lives have been saved and many scientists 
were drawn into the study of  this wonder drug. Under 
continuous intensive research, the mechanisms underly-
ing the effect of  insulin in its metabolic modulation, 
mainly glucose homeostasis, has become clearer, but 
there remains much interest in the elucidation of  further 
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effects of  insulin.
Glucose-insulin-potassium (GIK) has been used as an 

adjunctive therapy in patients with acute myocardial in-
farction (AMI) since  its  introduction in 1962. However, 
the mechanism underlying GIK’s cardioprotection has 
remained largely speculative and controversial during the 
past 50 years. It was not until early in this century that we 
provided convincing in vivo evidence that insulin, rather 
than glucose or potassium, is the predominant protec-
tive component of  GIK, and demonstrated for the first 
time that insulin exerted anti-apoptotic and pro-survival 
effects in the ischemic/reperfused (I/R) myocardium 
through the PI3K-Akt-eNOS-NO signaling pathway[1]. 
This prompted us to conceive the notion of  the “survival 
signal”, a new mechanism of  cell protection which is to-
tally independent of  the metabolic effects of  insulin, and 
explained its cardioprotective effects. In 2001, the clas-
sical landmark clinical trial by van den Berghe[2] revealed 
that maintaining blood glucose at or below 110 mg/dL 
with low-dose insulin infusion, significantly reduced 
mortality and morbidity resulting from multi-organ fail-
ure among critically ill patients in the surgical intensive 
care unit (ICU). A further study reported that markers 
of  inflammation, such as intercellular cell adhesion mo-
lecular-1 (ICAM-1) and E-selectin were suppressed in 
the liver of  these patients as was inducible NO synthase 
(iNOS) expression, which is mainly in monocyte/mac-
rophage cells[3], suggesting an anti-inflammatory role for 
insulin. This article will summarize the relationship be-
tween insulin, glucose and inflammation, and discuss the 
implications for the management of  patients with AMI 
and critical illness.

GLUCOSE, OXIDATIVE STRESS AND 
INFLAMMATION
Hyperglycemia is common in critical illness, and may 
lead to severe complications. It has been reported that 
pronounced hyperglycemia is associated with poor out-
comes of  morbidity and mortality in patients with AMI, 
stroke and coronary artery bypass grafting[4-6]. Glucose is 
pro-inflammatory, and hyperglycemia is even detrimental 
to these patients. A total of  75 g glucose intake causes 
acute oxidative and inflammatory stress, as reflected 
in increased superoxide radical O2

. generation by poly-
morphonuclear leukocytes, mononuclear cells and the 
enzyme nicotinamide adenine dinucleotide phosphate[7]. 
Free radical O2

. generation, on the one hand, reduces 
NO bioavailability, as it combines with NO to form per-
oxynitrite ONOO-; on other hand, it activates a number 
of  redox-sensitive major pro-inflammatory transcription 
factors such as nuclear factor kappa B (NFκB), activa-
tor protein-1 (AP-1), hypoxia induced factor-α (HIF-α) 
and early growth response-1 (Egr-1), leading to increased 
transcription of  the pro-inflammatory genes and thus 
inflammation[8-10]. Meanwhile, glucose increases the ex-
pression of  tumor necrosis factor alpha (TNF-α), inter-

leukin-6 (IL-6) and monocyte chemoattractant protein-1 
(MCP-1) in mononuclear cells. Moreover, it has led to 
increased TNF-α and IL-6 concentrations in plasma in 
a steady state of  hyperglycemia with intravenous insulin 
secretion with somatostatin[11]. To sum up, glucose, oxida-
tive stress and inflammation are inter-related, with recip-
rocal causation. As the only glucose-lowering hormone in 
the body, insulin therapy alleviates the detrimental effects 
of  hyperglycemia through metabolic regulation, therefore 
hyperglycemia is pro-inflammatory whereas insulin is 
anti-inflammatory. 

INSULIN MODULATES INFLAMMATORY 
MEDIATORS 
The discovery of  the anti-inflammatory effect of  insulin 
can be traced back to the observation that insulin exerts 
a vasodilatory effect through endothelial NO release in 
arteries, veins and capillaries[12,13]. By inducing vasodilata-
tion, it reduces leukocyte adhesion to the endothelium 
and subsequent infiltration. Furthermore, it has inhibi-
tory effects on platelet adhesion and aggregation. 

Studies have further confirmed that insulin sup-
pressed three important inflammatory mediators: inter-
cellular cell adhesion molecular-1 (ICAM-1), MCP-1 ex-
pression and NFκB binding in human aortic endothelial 
cells in vitro[14,15]. These suppressive effects can be blocked 
by the NOS inhibitor N(G)-nitro-L-arginine, indicating 
the effects are mediated by NO release. Among all the 
pro-inflammatory cytokines, TNF-α is the most active 
one in triggering the production of  other cytokines such 
as IL-6 and other expression molecules[16]. We provided 
direct evidence in myocardial ischemia/reperfusion (I/R) 
rats that insulin inhibits TNF-α induction locally and sys-
temically, and demonstrated for the first time that in vitro 
treatment with insulin attenuated I/R-induced TNF-α 
production in cardiomyocytes via the Akt-eNOS-NO sig-
naling pathway[17]. Polymorphonuclear neutrophils (PMN) 
are the first defense line against infection and invasive 
microorganisms. Adherence of  PMN to endothelial cells 
is an early requisite event in I/R-induced inflammatory 
injury. Thus we performed in vivo and in vitro experiments 
in a rabbit model to investigate whether insulin inhibits 
PMN-mediated adherence[18]. It was found that insulin re-
duced P-selectin and ICAM-1 expression in endothelium 
which mediates the initial interaction between PMNs and 
the endothelial cell surface, thus insulin attenuated PMN 
adherence and I/R-induced inflammatory injury. The 
Akt-eNOS-NO signaling pathway was involved in these 
effects. Moreover, insulin has been reported to ameliorate 
the endotoxin-induced systemic inflammatory response 
by decreasing IL-6, TNF-α expression and increasing the 
anti-inflammatory cascade in the context of  normoglyce-
mia in rat[19] and porcine models[20]. All these data indicate 
that insulin alleviates inflammation through suppression 
of  pro-inflammatory cytokines and immune mediators, 
pointing strongly to its role as an anti-inflammatory agent.
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INSULIN SUPPRESSES TOLL-LIKE 
RECEPTOR EXPRESSION
Toll-like receptors (TLRs) are a variety of  conserved 
pattern recognition receptors that have been implicated 
in innate immune responses. Accumulating evidence 
suggests that TRLs play an essential role in tissue inflam-
mation and damage such as cardiac I/R, post-ischemic 
remodeling and atherosclerosis[21-23]. TLR signaling and 
its critical roles in inflammatory cardiac conditions has 
been intensively studied, especially TRL2, TRL4’ role 
with myocardial infarction and reperfusion injury. TRL2 
aggravated myocardial tissue injury in I/R-based experi-
mental animal models and its deletion was associated 
with a smaller MI size compared with control[24]. The 
TLR-deficient model, TLR2-/- mice, exhibited improved 
left ventricular dysfunction following I/R[25]. Besides, ad-
ministration of  anti-TLR2 antibody prior to reperfusion 
reduced MI sites and preserved cardiac function. TLR4 is 
the specific receptor of  endotoxin, thus it mediates inflam-
matory changes induced by endotoxins. Oyama et al[26] first 
demonstrated that TLR4-deficient mice had more than 
50% reduction in MI area, which was associated with at-
tenuated myocardial inflammation, as evidenced by less 
neutrophil infiltration and fewer lipid peroxides. Inhib-
ited by eritoran, a specific TLR4 antagonist, resulted in 
a 40% reduction in MI and decrease in TNF-α, IL-1β, 
IL-6 and MCP-1 expression[27,28]. Moreover, TRL4 has 
been found to act as a determinant of  neutrophil infiltra-
tion after global MI through mediating KC and MCP-1 
expression[29]. Suppression of  TRL signaling is associated 
with smaller MI size and is beneficial in I/R-based ani-
mal models. It has been reported that insulin infusion (2 
U/h) with type 2 diabetes (T2D) patients within 2 h has 
significantly suppressed TLR1, -2, -4, -7 and -9 mRNA 
expressions in MNCs, and this prompt suppression may 
be mediated by the suppression of  PU.1 binding and sub-
sequent activation of  TLRs[30]. Thus, insulin suppresses 
the expression of  several TLRs at the transcriptional level 
and alleviates TRL-mediated inflammatory injury.

INSULIN ACTS UPON IMMUNE CELLS
Peripheral blood mononuclear cells (PBMCs) is a critical 
component in the immune system, and mainly comprised 
of  lymphocytes and monocytes. Investigations have been 
conducted to study the effects of  insulin upon mono-
nuclear cells in obese non-diabetic subjects[31]. The results 
showed that insulin reduced activation of  the pro-inflam-
matory transcription factor NFκB, with downregulation 
of  plasma soluble intercellular adhesion molecular-1, 
which facilitates the attachment of  monocytes to endo-
thelial cells and chemotactic factor MCP-1, which en-
courages monocyte migration into the subintimal space. 
This suppressive effect on NFκB in PBMC has also 
been reported in critically ill patients with intensive in-
sulin therapy[32]. Similarly, Egr-1, another important pro-
inflammatory transcription factor, was notably reduced in 

mononuclear cells with insulin treatment, resulting in de-
creased plasma concentrations of  tissue factor and plas-
minogen activator inhibitor-1 (PAI-1)[33]. Taken together, 
insulin suppresses pro-inflammatory transcription factors 
in mononuclear cells and the subsequent inflammatory 
mediators regulated by them, thus ameliorating MNC-
mediated inflammation.

Monocytes/macrophages (MO/Mφ) initiate immune 
and inflammatory responses. Insulin administration (10-7 

mmol/L) retarded macrophage apoptosis and enhances 
BclXL mRNA expression by activating phosphatidylino-
sitol 3’-kinase (PI3K) in a dose-dependent manner, thus 
improving macrophage survival[34]. Use of  wortmannin, 
a specific inhibitor of  PI-3K, has further confirmed 
its position in the anti-apoptotic effect of  insulin in 
lipopolysaccharide-challenged THP-1 cells[35]. HLA-DR 
is a cluster of  membrane molecules of  MO/Mφ which 
are involved in the MO antigen presentation to T cells. 
The intensity of  HLA-DR expression is associated with 
immunocompetency of  MO/Mφ

[36]. Insulin treatment 
with blood glucose maintained between 4.4-6.1 mmol/L 
increased HLA-DR expressions of  peripheral MO cells. 
This upregulation means enhanced antigen presentation 
of  MO cells, indicative of  improved immune function. 
Moreover, the phagocytosis, chemotaxis, and oxidative 
burst capacity of  MO have also been assessed in a burn-
injured rabbit model, suggesting that insulin improved 
the capacity for phagocytosis and oxidative burst, but had 
no effect on chemotaxis[37].

T cell differentiation is important in the immune 
response. A single naïve T cell under cell differentiation 
is able to generate multiple subsets of  memory T cells 
with different phenotypic and functional properties in 
response to infections, resulting in acquisition of  immune 
functions required for pathogen clearance. Insulin was 
first confirmed to induce a shift in Th cell differentiation 
toward Th2 cells which is involved in secretion of  inflam-
matory mediators (IL-4, IL-10, IL-13, etc.) and enhanced 
antibody-mediated responses[38]. Myocarditis is a severe 
disease of  myocardial inflammation and often results 
from an autoimmune reaction. Significant T cell reduc-
tion was observed in cardiac myocarditis[39]. Thus, we in-
vestigated the effect of  insulin on myocardial inflamma-
tion in experimental myocarditis in mice and its potential 
role in T cell regulation. The results showed that insulin 
promoted T cell recovery, particularly CD3+ T cells with-
out changing the naïve-to-memory T-cell ratio and had a 
direct effect on T cell proliferation, thus alleviating myo-
carditis[40]. It is possible that insulin may promote T cell 
recovery in myocarditis, especially in diabetic or hypergly-
cemic patients.

ANTI-INFLAMMATORY EFFECTS OF 
INSULIN IN HUMAN STUDIES
Cardiovascular disease (CVD) is the leading cause 
of  death worldwide, and remains a great challenge in 
healthcare. Various risk factors of  CVD, including hy-
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that obesity, inflammation and IR are inextricably linked 
through the actions of  specific inflammatory immune 
cells. The development of  IR is thought to occur in re-
sponse to increased production of  pro-inflammatory 
cytokines by adipose tissue in obesity, that then have an 
inhibitory effect on insulin signaling pathways in multiple 
tissues. TNF-α was first found to be increased in adipose 
tissue of  obese mice and able to induce IR[48]. In animal 
studies, administration of  exogenous TNF-α induces 
IR, whereas neutralization of  TNF-α improves insulin 
sensitivity. IL-1β, another key inflammatory cytokine, in-
terferes with insulin signaling which leads to IR. TNF-α, 
and more generally, inflammation, activates and increases 
the expression of  several proteins that suppress and im-
pair specific pathways of  insulin signaling, making the 
human body less responsive to insulin and increasing the 
risk of  IR. In turn, IR states are pro-inflammatory. In-
creased levels of  markers and mediators of  inflammation 
such as fibrinogen, CRP, IL-6, PAI-1 and white cell count 
were shown to correlate with T2D[49-53]. These inflamma-
tory mediators perpetuate and promote the progression 
of  IR. Polycystic ovary syndrome, another IR state, was 
found to have chronic low-grade inflammation[54]. In 
other words, inflammation causes IR, and IR is inflam-
matory. Thus, anti-inflammatory treatment could be pro-
posed as a therapeutic strategy in the treatment of  IR.

ANTI-INFLAMMATION THERAPY FOR 
INSULIN RESISTANCE
Inflammation is hallmark of  diabetes and a main cause 
of  its long-term complications. Particularly in obese 
conditions in humans and animals, it contributes to 
the pathogenesis of  T2D through IR. Therefore, anti-
inflammation therapy may be proposed as a strategy for 
the improvement of  IR.

TNF-α is a critical mediator of  inflammation, and 
its increased expression was found to be associated with 
IR in the adipose tissue of  obese mice[48]. In vitro studies 
demonstrated that TNF-α had a direct inhibitory effect 
on insulin signaling and impaired insulin-stimulated glu-
cose uptake and metabolism in human subjects[55]. Clini-
cally, neutralization of  TNF-α with infliximab in patients 
with rheumatoid arthritis has significantly improved IR as 
reflected by the significant reduction in the Homeostasis 
Model Assessment Index[56]. Peroxisome proliferator-
activated receptors (PPAR)γ inactivation leads to sup-
pression of  IRS-2, which is a signaling molecular in 
insulin pathways, thus further promotes IR. The anti-
diabetic thiazolidinediones (TZDs), which include pio-
glitazone, rosiglitazone and troglitazone, are clinically 
used to improve insulin sensitivity in patients with T2D 
by lowering free fatty acids (FFA) in blood by activat-
ing PPARγ. Aspirin, another therapeutic agent, inhibits 
the activity of  multiple kinases induced by TNF-α, and 
thus enhances insulin sensitivity by protecting proteins 
from serine phosphorylation[57]. Statins, as a class of  anti-
inflammatory drugs, have been shown to downregulate 

pertension, diabetes and smoking, can initiate a chronic 
inflammatory reaction. Accumulating epidemiological 
and clinical studies have found strong and consistent rela-
tionships between markers of  inflammation and the risk 
of  future cardiovascular events[41]. Thus, inflammation is 
established as a definitive cardiovascular risk factor.

Hyperglycemia is pro-inflammatory and damaging, 
especially in critically ill patients. Pronounced hyper-
glycemia at hospital admission is associated with poor 
outcomes of  morbidity and mortality in patients with 
AMI, thus effective glucose management is a necessary 
therapeutic intervention. It has been shown in large pilot 
studies, Diabetes and Insulin-Glucose Infusion in Acute 
Myocardial Infarction (DIGAMI)[42] and the Estudios 
Cardiologicos Latinoamerica (ECLA) study[43], that small 
doses of  intravenously delivered insulin markedly im-
proved clinical outcomes in patients with AMI. There 
was a marked 29% reduction in 1-year mortality in the 
insulin-glucose infusion group in the 1995 DIGAMI 
study, and a statistically significant reduction in mortality 
and a consistent trend toward fewer in-hospital events in 
the GIK group in the 1998 ECLA pilot trial, possibly as 
a result of  rigorous glycemic control. The anti-inflamma-
tory effect of  insulin have been applied clinically. Plasma 
C-reactive protein (CRP) and serum amyloid A (SAA) 
concentrations are the two accepted markers of  systemic 
inflammation which were impressively reduced to 40% 
in patients with AMI when treated with low-dose insulin 
infusion[44]. As the CRP concentration is correlated with 
the size of  the infarct in AMI, a reduction is indicative of  
insulin’s cardioprotective effects. Moreover, intensive in-
sulin therapy has been given to critically ill patients in sur-
gical and medical ICUs with improved outcomes[2,45]. In 
1548 critically ill patients undergoing surgery, insulin infu-
sion which maintained fasting blood glucose concentra-
tions under 110 mg/dL dramatically improved the clini-
cal outcomes with a reduction in total mortality by 48%, 
the incidence of  bacteremia by 46%, acute renal failure 
requiring dialysis by 41%, ICU poly-neuropathy by 44%, 
and the need for red cell transfusion by 50% when com-
pared with controls[2]. Mortality and morbidity in the sur-
gical ICUs was dramatically reduced, as was morbidity in 
medical ICUs. No other agent has been shown to reduce 
mortality and morbidity by this magnitude in so many 
diverse ways in the ICU setting. Glucose control seems 
crucial, but several potential mechanisms may add to the 
benefits, including reduction of  systemic inflammation[46], 
prevention of  immune dysfunction[37], and protection of  
the endothelium[3,47]. The exact mechanisms underlying 
this simple and cost-effective intervention need further 
investigations.

INSULIN RESISTANCE AND 
INFLAMMATION
Insulin resistance (IR) is a pathological condition wherein 
insulin-stimulated glucose uptake and clearance in tar-
geted organs are decreased. A few studies suggested 
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transcriptional activities of  NFκB, AP-1 and HIF-1α, 
with reductions in inflammatory cytokines[58]. Despite 
these modest anti-inflammatory properties, the statins do 
not appear to significantly influence either IR or glycemic 
status. In contrast, high-dose salicylates directly suppress 
inflammation by targeting NFκB, which improves insu-
lin sensitivity and reduces blood glucose in patients with 
diabetes[59-61]. The anti-inflammatory properties of  TZDs 
and statins have associated side effects apart from their 
primary modes of  action, thus they may not be safe in 
the long term. It is necessary to investigate new classes 
of  drugs. 

Histone deacetylases (HDACs) are key enzymes that 
regulate gene expression. Inhibition of  histone deacety-
lase activity has been reported as a new approach to 
treat diabetes mellitus. Butyrate or trichostatin A, which 
are histone deacetylase inhibitors, prevented high fat-
induced obesity and improved IR in mice[62]. The multiple 
beneficial effects included: reduced systemic chronic in-
flammation[63-66], reduced lipid toxicity[67,68], promotion of  
beta-cell development, proliferation, differentiation and 
function[69]. Thus HDAC inhibitors may represent a novel 
drug in the treatment of  IR.

CONCLUSION
Hyperglycemia, a commonly exhibited metabolic disorder 
in critically ill patients, activates the body’s inflammatory 
defense system, causing the cascade release of  numerous 
inflammatory mediators and cytokines, and eventually 
leads to organ damage. Insulin inhibits hypermetabo-
lism, such as hyperglycemia and lipid degradation, thus 
could attenuate glucose and FFA-mediated inflammation 

and improve immunocompetence. More importantly, 
insulin directly suppresses pro-inflammatory cytokines 
and induces anti-inflammatory mediators through non-
metabolic pathways (Figure 1). Currently, the effects 
are dependent upon its suppression of  innate immune 
mechanisms and the suppression of  transcription factors 
such as NFκB and Egr-1. With further investigation, the 
discovery and understanding of  the mechanisms underly-
ing the anti-inflammatory effects of  insulin opens up the 
possibility that insulin therapy could be used in multiple 
clinical practices.

Hyperglycemia, inflammation and IR are inter-related 
and of  reciprocal causation. The relationships between 
the three entities are far from being elucidated. Hypergly-
cemia leads to oxidative stress, which further results in in-
flammation. IR, commonly as a manifestation of  hyper-
glycemia, is pro-inflammatory. Reactive oxygen species is 
believed to be an important cause of  many pathological 
conditions, including inflammation and IR. It has been 
established that hyperglycemia is inflammatory whereas 
insulin is anti-inflammatory. From simple glucose mainte-
nance to the discovery of  cardiovascular protection, the 
knowledge and understanding about insulin is increasing. 
The pleiotropic effects of  insulin including glucose con-
trol, and reduction in apoptosis, oxidative/nitrative stress 
and inflammation, contribute to cardiovascular protec-
tion and are beneficial in critical illness. It is not a single 
effect that mediates the important role of  insulin, but it is 
the whole scenario that promotes its myriad effects. With 
consistent research, we will gain a better understanding 
of  these working mechanisms, and in doing so, are likely 
to find more therapeutic targets and wider applications 
for this wonder drug.

Insulin

PI3K/Akt pathway Ras/MAP kinase pathway 

Glucose 
homeostasis NO ↑

TLR
signaling

Immune cells
(MO/Mφ, T cells)

Hyperglycemia
toxicity Inflammatory mediators Immunoregulation

Anti-inflammation

Figure 1  Anti-inflammatory effects of insulin.TLR: Toll-like receptor. 
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Abstract
Type 2 diabetes (T2D) is a common metabolic disorder 
which is caused by multiple genetic perturbations af-
fecting different biological pathways. Identifying genetic 
factors modulating the susceptibility of this complex 
heterogeneous metabolic phenotype in different ethnic 
and racial groups remains challenging. Despite recent 
success, the functional role of the T2D susceptibility 
variants implicated by genome-wide association stud-
ies (GWAS) remains largely unknown. Genetic dissec-
tion of transcript abundance or expression quantitative 
trait (eQTL) analysis unravels the genomic architecture 
of regulatory variants. Availability of eQTL informa-
tion from tissues relevant for glucose homeostasis 
in humans opens a new avenue to prioritize GWAS-
implicated variants that may be involved in triggering 
a causal chain of events leading to T2D. In this article, 
we review the progress made in the field of eQTL re-
search and knowledge gained from those studies in 

understanding transcription regulatory mechanisms in 
human subjects. We highlight several novel approaches 
that can integrate eQTL analysis with multiple layers of 
biological information to identify ethnic-specific causal 
variants and gene-environment interactions relevant to 
T2D pathogenesis. Finally, we discuss how the eQTL 
analysis mediated search for “missing heritability” may 
lead us to novel biological and molecular mechanisms 
involved in susceptibility to T2D. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Type 2 diabetes; Single nucleotide poly-
morphisms; Expression quantitative trait locus; Expres-
sion regulatory SNPs; Gene-environment interaction; 
Genome-wide association study

Core tip: Identification of genetic variants that modu-
late the susceptibility to disease and elucidating their 
function at the molecular level is a major focus of type 
2 diabetes (T2D) research. This article highlights the 
utility of expression quantitative trait analysis in discov-
ering regulatory variants that increase susceptibility to 
T2D by modulating the expression of transcripts in tis-
sues important for glucose homeostasis.
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ders, characterized by elevated levels of  plasma glucose, 
and is responsible for significant mortality and morbidity 
in human populations worldwide[1]. The latest estimate 
from the International Diabetes Federation indicates a 
global prevalence rate of  8.4% in adults and 382 million 
cases of  diabetes in 2013[2]. It is one of  the common dis-
eases with a well-accepted genetic contribution[3]. Type 2 
diabetes (T2D), a late onset subtype of  diabetes, results 
from a derangement in the complex interplay of  multiple 
physiological processes known to be involved in systemic 
glucose homeostasis. These processes include peripheral 
glucose uptake in muscle, secretion of  hormones and 
incretins form pancreas and intestine, secretion of  cy-
tokines/adipokines from adipose tissue, hepatic glucose 
production, and neuro-endocrine regulation by central 
nervous system[4,5]. However, the relative contribution of  
these processes to T2D pathogenesis is debated. Based 
on this knowledge on intertwined and complex physi-
ological processes it can be anticipated that T2D is a 
heterogeneous conglomeration of  phenotypes, caused 
by multiple genetic perturbations and affecting different 
biological pathways. Predictably, deciphering the genetic 
etiology of  T2D has remained challenging.

Until the last decade, searching for an association be-
tween T2D and sequence variants of  selected candidate 
genes was the mainstay of  research for finding genetic 
susceptibility factors. Based on available technology in 
those studies, researchers selected candidate genes either 
from loci detected by genome-wide linkage analyses or 
based on known physiological functions. In our earlier 
reviews, we discussed the knowledge gained from such 
studies in detail[6,7]. Success from those endeavors was 
very limited. However, this approach has identified ge-
netic variants in the TCF7L2 gene, to date is the best 
replicated and strongest (relative risk approximately 1.4) 
genetic susceptibility factor for T2D[8], but its role is still 
controversial[9-11].

In the middle of  the last decade, a transformative 
change took place in the field of  genetics of  complex 
disease research. Advances in high-throughput genotyp-
ing technology, availability of  the complete human ge-
nome sequence, a dense catalogue of  common genetic 
variants, and a population-specific linkage disequilibrium 
map of  these variants lead to the implementation of  
genome-wide association studies (GWAS), which inter-
rogate the entire genome to identify common genetic 
variants (minor allele frequency ≥ 0.05) associated with 
a disease[12]. GWAS have yielded unprecedented success 
in identifying well-replicated susceptibility loci for T2D, 
glucose homeostasis traits, obesity, and related metabolic 
phenotypes[3,13-15]. Nevertheless, these successes come 
with significant caveats. Based on the most recent analy-
ses, the 63 T2DM-associated loci discovered so far in 
Caucasian populations together account only for 5.7% 
of  the liability-scale variance in disease susceptibility, and 
sibling relative risk (λs) attributed jointly by these vari-
ants is 1.104[13]. Moreover, few of  the T2D loci identified 
primarily in European- or Asian-derived populations 
are convincingly replicated in African American, Native 

American, and Hispanic populations, all of  whom have 
a higher prevalence of  T2D than Caucasians[14,16]. These 
GWAS-identified loci do not appear to explain the well-
established roles for adipose, muscle, and liver in diabetes 
pathogenesis[17], and few of  these loci have been linked 
to a molecular mechanism. Several investigators have 
attempted to implicate function to T2D-associated loci 
based on their proximity to a gene, assuming that the 
associated single nucleotide polymorphisms (SNP) al-
ters the function of  a nearby gene[18]. Some have drawn 
enthusiastic conclusions about the role of  these variants 
exclusively in insulin secretion[19]. However, proof  of  
such an assumption is lacking. Given the small effect on 
T2D susceptibility and the statistical noise inherent in 
performing 106 or more tests, exclusive reliance on larger 
T2D GWAS alone is unlikely to identify the source of  
undefined T2D susceptibility (often referred to as “miss-
ing heritability”[20]). 

EXPRESSION QUANTITATIVE TRAITS: 
MOLECULAR ENDOPHENOTYPES
One of  the major findings from the T2D GWAS is 
that most of  the trait-associated SNPs are located in 
intronic, intergenic, or other non-coding regions of  the 
genome[3,21]. Further fine mapping analysis also failed to 
find any coding or other variants that would provide a 
molecular biological explanation of  the elevated disease 
risk attributed by these loci. 

The abundance of  a transcript is a quantitative trait. 
Studies in human populations showed a wide, heritable 
variation of  transcript levels among individuals, and thus 
lead to the concept of  “expression quantitative trait loci”
(eQTL)[22,23]. The heritability of  eQTLs has been repli-
cated in multiple human tissue or cell types, with approxi-
mately 30% of  eQTLs having h2 > 0.3, and an estimated 
58%-85% being heritable[24-28]. The abundance of  a 
transcript can be directly modified by polymorphisms in 
non-coding regulatory elements. Many SNPs are associ-
ated with quantitative transcript levels and are considered 
as expression regulatory SNPs (eSNPs). eSNPs close 
to the transcription start sites (TSS) of  the eQTLs are 
named “cis” or “local” eSNPs , whereas eSNPs located 
> ± 500 kb from the TSS or on a different chromosome 
are considered “trans” or “distal” eSNPs[22,29]. Similar to 
a published study[30], here we will refer to eQTLs as the 
transcripts rather than SNP-transcript pair, and eSNPs as 
the genetic variants (SNPs) associated with the expres-
sion profile of  a transcript.

Based on this knowledge, many laboratories (including 
ours) hypothesized that GWAS-associated non-coding 
variants are eSNPs and can modulate T2D susceptibility 
by altering transcript levels (or splicing). This concept is 
based on the “central dogma” of  gene expression and 
presents a causal model of  genetic susceptibility (Figure 
1). In this model, transcript abundance is considered as 
an intermediate phenotype between genetic loci (DNA 
sequence variants) and subclinical (e.g., insulin resistance) 

98 April 15, 2014|Volume 5|Issue 2|WJD|www.wjgnet.com

Das SK et al . eQTL and type 2 diabetes 



or clinical (e.g., T2D) phenotypes. Since transcript abun-
dance is a proximal molecular endophenotype affected 
by genetic variants, it is likely to be a less heterogeneous 
phenotype (compared to complex clinical phenotypes like 
those of  T2D), and thus more amenable to genetic map-
ping methods due to superior statistical power.

EQTL MAPPING
Study designs and analytical frameworks for eQTL map-
ping are similar to those for mapping any other quantita-
tive traits [e.g., body mass index (BMI), fastin glucose, 
glycosylated hemoglobin]. However, genetic analysis of  
human phenotypes including QTLs carries a unique set 
of  problems[29]. In general, eQTL analyses integrate ge-
nome-wide expression (in tissues or cells) and genotype 
data in multiple individuals (related or unrelated). These 
analyses use linkage- or association-based statistical ge-
netic methods to map regulatory regions and genetic vari-
ants that may explain individual variations in transcript 
expression. Microarray- or RNA-seq[31-33] based methods 
are used to generate large numbers of  quantitative tran-
script phenotypes. Therefore, the number of  statistical 
tests involved in eQTL mapping studies is significantly 
higher than in traditional QTL analysis[34]. A detailed dis-
cussion on methods used in eQTL analysis is beyond the 
scope of  this article, and we refer our readers to other 
reviews on this specific subject[29,34-36]. 

Published eQTL studies have implemented linkage 
analysis by using 400-2000 microsatellite makers[24,26] to 

localize regulatory intervals, whereas other studies have 
genotyped large numbers of  common SNPs ( > 100000) 
to discover the eSNPs[25,28,37] associated with eQTLs. With 
the advancement of  genomic technology, we can now 
simultaneously genotype more than 4.5 million SNPs or 
can have a whole genome sequence for each individual 
included in an eQTL study by highly multiplexed “next 
generation” sequencing methods[38]. These advances pose 
additional statistical and computational challenges, and 
will require appropriate correction and adjustment of  sig-
nificance thresholds for the massive number of  indepen-
dent tests performed (and hypotheses tested) to control 
false discovery. The power to detect eSNPs depends on 
their effects (average difference in the transcript abun-
dance between genotypes, scaled by the standard devia-
tion of  the transcript abundance within genotype classes) 
and allele frequency[34]. Consequently, detection of  eSNPs 
with a lower effect allele frequency and a lower effect size 
will require a larger sample size. 

One interesting observation from published eQTL 
studies is that most of  the strong eSNPs are located 
near the TSS with no discernable trend in the 5’ or 3’ 
direction[28,39,40]. As a result, most studies consider SNPs 
within close proximity of  the TSS (± 500 kb window) 
as cis-eSNPs. Since the genomic context of  most eQTL 
transcripts are known, statistical adjustment for the actual 
number of  SNPs tested within 500 kb will be more ap-
propriate for cis-eSNP discovery. Any SNP outside the cis-
region is tested as a trans-eSNP for a transcript. The mo-
lecular biological basis of  trans-regulation is less studied; 
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Figure 1  A causal model of genetic susceptibility. Genetic regulatory architecture modulates molecular phenotypes in interaction with environmental factors and 
alters disease susceptibility. eSNP: Expression regulatory SNP; eQTL: Expression quantitative trait loci; T2D: Type 2 diabetes.
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mechanisms[24,30,53-59]. 
However, an intriguing application of  eQTL mapping 

is the use of  eSNP data to interpret disease or disease-
related phenotypic association signals, and thereby elu-
cidate specific biological mechanisms underlying the 
increased genetic risk attributed by the DNA sequence 
variants. Identification of  genetic variants simultaneously 
associated with disease and eQTLs (in relevant tissue) 
significantly facilitates identification of  potential causal 
genes. Discovery of  genetic variants in ORMDL3 as a 
susceptibility factor for childhood-onset asthma[60] and 
VNN1 variants that influence high-density lipoprotein 
cholesterol concentrations[26] are two early examples of  
the successful implementation of  eQTL mapping in dis-
ease gene hunting. The review by Cookson et al[36]  offer a 
more detailed discussion on those success stories. 

Several recent studies have integrated GWAS and 
eQTL analyses (data generated in different sets of  sub-
jects) and have used the overlap of  two signals as a tool 
to interpret GWAS findings. Although this work is a 
good starting point, we need to be cautious about us-
ing the overlap of  two statistical signals (eSNP and the 
disease phenotype-associated SNP/phSNP). Careful 
thought is required before making a claim of  identifying 
a disease-causing variant. Montgomery and Dermitzakis 
(2011) described three situations[41] when a coincidence 
of  eQTL and disease phenotype GWA signal may dis-
tract from identification of  causal variants: (1) eSNP and 
phSNP are in the same linkage disequilibrium (LD) block 
but are two different SNPs. This is not considered as 
exact overlap, and they may tag different causal variants; 
(2) eSNPs and phSNPs are the same but SNP density dif-
fers between the eQTL and GWAS data. Lack of  proper 
resolution in one or both studies may be misleading and 
will not elucidate the correct functional SNP; and (3) eS-
NPs may have a pleiotropic effect and may regulate the 
expression of  “gene Y” in “tissue 1”, but the same eSNP 
may regulate the expression of  “gene X” in “tissue 2”. 
Thus, if  the eQTL study is done in “tissue 1” (a “surro-
gate” tissue) but not in “tissue 2” (the “disease-relevant” 
tissue in which the true causal effect is manifested), then 
despite the overlap of  eSNPs and phSNPs, we will incor-
rectly link “gene Y” to the disease phenotype. 

In general, eSNPs that are universal have a stronger 
effect, but a significant proportion of  eSNPs show tis-
sue-specific effects[30,53,54]. However, it is difficult to select 
“relevant” tissue, or the relevant tissue may not be acces-
sible from human subjects for analysis for many complex 
diseases. Ongoing efforts of  international consortia, 
including GTEx, to develop multi-tissue eQTL databases 
(Table 1) is a significant step forward in addressing this 
limitation[61-64]. 

Many investigators have developed statistical ap-
proaches to formally test the overlap of  GWAS and 
eQTL signals to distinguish accidental colocalization 
from true sharing of  causal variants. The regulatory trait 
concordance method designed by Nica et al[65] accounts 
for local LD structure and integrates eQTL and GWAS 
results to reveal the subset of  association signals due to 

current information suggests that the variants that affect 
transcription factors, miRNAs, or long-range chromatin 
interaction may act as trans-eSNPs. To identify trans-
eSNPs, the number of  tests needed is far greater, and the 
tests require more stringent significance threshold criteria 
and a larger sample size. Thus, use of  a false discovery 
rate based on a permutation analysis to correct for mul-
tiple testing[34], and considering the correlation among 
transcript levels and highly correlated SNP structures, are 
useful approaches to identify this biologically important 
class of  regulatory SNPs. 

Several heterogeneous sources of  variability hidden 
in the data may lead to both spurious eSNPs and missed 
associations in eQTL analyses if  not properly addressed. 
Statistical models that correct for hidden structures 
within the sample (such as race, admixture, and family 
relatedness), artifacts in expression data (including batch 
effects and probe bias), environmental influences, and 
other known and unknown factors are required to im-
prove sensitivity and interpretability of  eQTL analyses[41]. 
Methods that showed significant usefulness in tackling 
these confounding factors include Bayesian approaches 
developed by Stegle et al[42] (implemented in probabilistic 
estimation of  expression residuals or probabilistic estima-
tion of  expression residuals software), linear mixed-effects 
model-based approaches developed by Listgarten et al[43] 
(implemented in LMM-EH-PS or Linear Mixed Model-
Expression Heterogeneity-Population Structure software), 
surrogate variable analysis, and inter-sample correlation 
emended approaches[44,45]. 

The heavy computational burden involved in eQTL 
analyses sometimes forces researchers to restrict their 
analysis to a small subset of  selected transcripts and 
SNPs. Improvement of  computational algorithms, paral-
lelization of  programs by efficient scripting, and utiliza-
tion of  efficient processing hardware are among many 
approaches needed to improve scalability and computa-
tional efficiency required for eQTL analyses. Implemen-
tation of  these approaches will enhance discovery by in-
creasing the capacity to utilize the complete data set[46,47].

EQTLS AND DISEASE GENE MAPPING
Molecular and cell biological experiments in model or-
ganisms and cells have significantly advanced our under-
standing about the role of  non-coding DNA sequences 
in genetic regulation, transcriptional circuitry, the tran-
scriptional apparatus, and chromatin regulation. This 
work has led to new insights into the complex mecha-
nisms involved in dysregulation of  gene expression in 
various human diseases[48]. Recent genome-wide studies in 
human cells by different international consortia [includ-
ing ENCyclopedia Of  DNA elements (ENCODE)][49] 
further have improved our mechanistic understanding of  
the role of  DNA sequence variants in quantitative modu-
lation of  gene expression[50-52]. eQTL studies have been 
extensively used to identify genetic regulators involved 
in natural variation of  gene expression[28,37,39] and to un-
derstand tissue-specific architecture of  genetic regulatory 
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cis- or trans-eQTLs. He et al[66] (2013) developed an algo-
rithm named “Sherlock” based on a Bayesian statistical 
framework to identify potential gene-disease associations 
by matching genetic signatures of  expression (collective 
information of  cis- and trans-eSNPs) of  a gene to that 
of  the disease phenotype by using GWAS data of  the 
disease and the eQTL data of  related tissue. These novel 
approaches are likely to expand our ability to harvest new 
insights from genetic association studies for disease phe-
notypes.

T2D-ASSOCIATED VARIANTS ARE 
ESNPS IN TISSUES IMPORTANT FOR 
GLUCOSE HOMEOSTASIS 
Genome-wide eQTL analyses in transformed lympho-
cytes (lymphoblastoid cell lines, or LCLs) provided the 
first evidence that SNPs associated with complex diseases 
phenotypes are more likely to be eSNPs than minor allele 
frequency-matched SNPs randomly selected from high-
throughput GWAS genotyping platforms. Nicolae et al[67] 
(2010) utilized an Affymetrix GeneChip Human exome 
1.0 ST array to generate exon-level expression data of  
LCLs from 87 Caucasian (CEU) and 89 African (YRI) 
subjects from the HapMap project. They performed 
a quantitative-trait transmission disequilibrium test to 
identify eSNPs from 2 million genotyped SNPs. A study 
by Nica et al[65] (2010) utilized an Illumina Sentrix WG-
6-V2 whole-genome expression array to generate total 
transcript-level expression data of  LCLs from 109 un-
related CEU subjects (from the HapMap 3 project) and 
performed Spearman rank correlation analysis to identify 
eSNPs from 1186075 genotyped SNPs. Key findings 
from these studies[65] include: (1) SNPs reproducibly as-
sociated with complex human traits are likely to be eS-
NPs; (2) Enrichment of  complex trait GWAS-implicated 
SNPs are more evident among cis-eSNPs but not among 
trans-eSNPs; and (3) eSNPs discovered in LCLs are more 

strongly enriched for SNPs associated with immunity-
related conditions (e.g., Crohn’s disease, type 1 diabetes, 
rheumatoid arthritis), but such enrichment was not ob-
served for metabolic disorders (e.g., T2D and coronary 
artery disease). These studies indicate that eQTL studies 
using surrogate tissue samples may be helpful for some 
diseases. However, understanding the functional role of  
T2D-associated SNPs will probably require expansion of  
eQTL studies into tissues more relevant for T2D patho-
physiology. These studies also had significantly lower 
power to identify trans-eQTLs due to comparatively small 
sample sizes, and will require reevaluation of  the role of  
trans-eSNPs in larger sample sets.

Zhong et al[68] (2010) used genetics of  gene expres-
sion (GGE) analysis in tissues from two cohorts of  hu-
man subjects (Cohort 1: liver-specific GGE cohort with 
post mortem liver samples from 427 subjects; Cohort 2: 
liver, subcutaneous adipose and omental adipose from 
922 subjects who had Roux-en-Y gastric bypass surgery). 
They identified 18785 unique eSNPs in the combined set 
of  data. They found 2189, 2286, and 1999 eSNPs spe-
cific to liver, omental adipose, and subcutaneous adipose, 
respectively. However, they also noticed that 72% of  cis-
eSNPs identified in liver, 79% of  those found in omental 
adipose and 80.5% from subcutaneous tissue were also 
found in the other two tissues. Given the metabolic rele-
vance of  these tissues, they further interrogated data from 
three large-scale T2D GWAS datasets to test whether the 
set of  eSNPs were more likely to be associated with T2D 
compared to randomly selected SNPs. These tissue eS-
NPs showed a significant enrichment of  T2D-associated 
SNPs. For example, in the DIAGRAM (DIAbetes Genet-
ics Replication and Meta-analysis) GWAS data set, 7.34% 
of  the eSNPs showed a significant association with T2D 
(P < 0.05) compared to an average of  6.12% SNPs in 
the random sets, representing a modest 1.20-fold enrich-
ment for SNPs in the eSNP (or SNP in LD at r2 > 0.89) 
set over the random sets (p-enrichment = 1.33 × 10-9)[68]. 
In that study, omental adipose tissue eSNPs also showed 

  Database Website (URL) Cell/tissue type Project

  eQTL Browser http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/ LCL, liver, brain, fibroblast, T-cell 17 projects
  Genvar http://www.sanger.ac.uk/resources/software/

genevar/
Adipose, LCL Skin fibroblast from healthy female 

twins
MuTHER

LCL from 8 populations Hapamap3
Fibroblast, LCL and T-cell from umbilical cord GenCord

  GTEx eQTL Browser http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi Multiple tissues including liver, brain regions, LCL GTEx
  PACdb http://www.pacdb.org/ Gene-drug or GXD eSNPs from LCL model Dolan and Cox lab

Lusis lab  SGR Database http://systems.genetics.ucla.edu/ 22 mouse and several human datasets.
Data includes aortic endothelial and smooth muscle, 
adipose, brain, liver, macrophages and muscle tissue

Includes GXE eSNP data from cell experiments
  SCAN http://www.scandb.org/newinterface/about.html CEU and YRI LCLs from HapMap Cox Lab
  seeQTL http://www.bios.unc.edu/research/

genomic_software/seeQTL/
HapMap LCLs

Table 1  Selected expression quantitative trait loci databases

SGR: Systems genetics resource; eQTL: Expression quantitative trait loci; T2D: Type 2 diabetes; eSNP: Expression regulatory SNP; LCL: Lymphoblastoid 
cell lines; GXD: Gene-by-drug interaction; GXE: Gene-by-environment interaction; CEU: HapMap caucasian from CEPH collection; YRI: HapMap African 
from Yuroba, Nigeria.
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further significant enrichment when restricted to adipose 
expression network genes differentially expressed with 
T2D. Thus, these studies support the notion that T2D- 
associated SNPs may modulate expression of  transcripts 
in tissues relevant for glucose homeostasis. 

Fu et al[53] (2012) analyzed eQTLs in blood (n = 1240) 
and other tissues (liver, n = 62; muscle, n = 62; subcu-
taneous adipose, n = 83; and visceral adipose, n = 77); 
out of  1954 SNPs associated with complex disease traits 
from a GWAS catalogue, 907 were cis-eSNPs. However, 
28.7% of  these trait-associated cis-eSNPs showed a 
tissue-specific (in blood versus other tissue) and discor-
dant effect on gene expression. The discordant effect 
includes tissue-specific regulation, alternative regulation 
by different eSNPs, different effect size and, in a few 
cases, opposite allelic direction. The study also showed 
that SNPs associated with complex traits are more likely 
(P = 2.6 × 10-10) to exert a tissue- specific effect on gene 
expression[53]. No comparisons were made between other 
tissues due to small sample size. This study indicates that 
use of  tissues in eQTL analysis may have implications for 
inferring transcriptional effects of  SNPs, especially for 
the complex disease susceptibility variants. 

This work also emphasizes the importance of  investi-
gating disease-relevant tissue for characterizing functional 
effects of  T2D and other disease-associated variants. 
However, it is difficult to determine “relevant tissue” 
even for diseases with known pathophysiology. T2D is 
clearly of  polygenic etiology, and relevant tissue could be 
distinct for genes involved. Moreover, gene expression 
is regulated by environmental (e.g., diet), epigenetic, and 

other unknown factors, and eQTL discovery from tis-
sue samples may be affected by the physiological state of  
the donors[41]. For example, profound hyperglycemia and 
dyslipidemia observed in T2D subjects will modulate and 
even may mask primary causal changes in genetic regula-
tory networks. Thus, multi-tissue eQTL analysis in physi-
ologically characterized individuals could be a safe option 
to scrutinize the circularity of  cause and effect in genetic 
regulatory signals, and holds the promise to offer insights 
into the novel mechanisms driving genetic susceptibility 
to T2D.

Most initial eQTL studies seeking to identify a regula-
tory role for T2D-associated SNPs have focused on cis-
eQTLs. However, studies by Voight et al[69] (in adipose, n 
= 603; and blood, n = 745 subjects) and our laboratory 
(in adipose and muscle of  168 non-diabetic subjects who 
were physiologically evaluated) showed that only a few 
top T2D GWAS-identified signals can be explained as cis-
eQTLs, and T2D-associated non-coding SNPs are less 
likely to regulate expression of  the closest gene[70]. Results 
were similar in an eQTL analysis that used human islet 
cells from 63 cadaver donors[71]. A genome- wide study 
by our laboratory[72] in adipose and muscle tissue of  62 
subjects (31 insulin- resistant and 31 insulin-sensitive 
subjects matched for BMI) showed that at a less stringent 
threshold (P < 0.0001), among 68 well-replicated T2D/
glucose homeostasis-associated SNPs, 25 and 19 of  them 
were eSNPs in adipose and muscle, respectively (Figure 
2). However, after stringent (Bonferroni) correction, only 
SNP rs13081389 was a cis-eSNP for the SYN2 gene in 
adipose (P < 4.7 × 10-8, 15507 expressed transcripts were 

Adipose Muscle

SYN2

JAZF1

Figure 2  Type 2 diabetes or glucose homeostasis traits associated variants are expression regulatory SNP. We tested Cis and Trans regulatory role of 68 
SNPs that showed reproducible associations with T2D or Glucose homeostasis traits[72]. At a threshold of P < 0.0001, 25 and 19 of these SNPs in adipose and muscle, 
respectively, showed association with expression of a cis- or trans-transcript. This figure represents a CIRCOS plot of eQTL and eSNP chromosomal location relation-
ships, indicating the predominance of trans-regulation among 183 and 62 significant (P < 0.0001) eQTL-eSNPs associations in adipose and muscle respectively. Rare 
cis-regulation (SYN2 in adipose and JAZF1 in muscle) is marked. eSNP: Expression regulatory SNP; eQTL: Expression quantitative trait loci; T2D: Type 2 diabetes.
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tested in adipose). Interestingly, these 68 SNPs showed 
significant enrichment for trans-eSNPs in adipose and 
muscle, but not in LCLs[72]. Many of  these trans-eSNPs 
show associations with expression of  ≥ 10 transcripts 
and may be a “master regulator”. Expanding this search 
for the top 1000 T2D-associated SNPs from a Wellcome 
Trust Case Control study also confirmed the trans/distal 
regulatory SNPs[72]. We also showed that replicated T2D- 
and glucose homeostasis-associated SNPs are enriched 
for trans-eQTLs for transcripts differentially expressed 
between insulin-resistant and insulin-sensitive people[72]. 
A recent eQTL study using a large cohort of  blood sam-
ples also supported the trans-regulatory role of  233 com-
plex trait-associated SNPs[73]. Thus, the genetic regulatory 
architecture of  T2D is complex, tissue-specific, and likely 
extends beyond the cis-regulatory mechanism.

EQTL ANALYSIS FOR PRIORITIZING 
T2D-ASSOCIATED VARIANTS TO 
IDENTIFY NOVEL CANDIDATE GENES
The multiple testing corrections utilized in genome-wide 
statistical analyses allow detection of  only the strongest 
effects and penalize weaker associations that may be 
biologically meaningful[74]. Investigators have imple-
mented several approaches to prioritize T2D association 
signals from large GWAS datasets to identify biological 
mechanisms responsible for genetic predisposition. One 
common approach includes selection of  genes close to 
T2D GWAS-implicated SNPs and shows differential 
expression in T2D subjects compared to normoglycemic 
subjects (or in animal models of  T2D). This approach is 
based on the idea that T2D-associated variants may mod-
ulate the expression of  nearby genes in tissues important 
for glucose homeostasis. Parikh et al[75] used publicly avail-
able expression microarray data from different tissues 
(pancreas, adipose, muscle, and liver from T2D patients 
and rat models of  T2D) to prioritize among the 275 
genes located near 1170 T2D GWAS-implicated SNPs. A 
recent study by Taneera et al[71] used expression profiling 
of  human pancreatic islet cells for functional prioritiza-
tion of  genes in the vicinity of  47 T2D-associated SNPs. 
However, available data from several human tissue eQTL 
analyses indicate that only a few T2D-associated SNP 
act as cis-eSNPs, and no enrichment of  differentially 
expressed genes was observed around T2D GWAS-
implicated variants[72]. Thus, a logical alternative for pri-
oritizing T2D-associated variants is to utilize a reverse 
genetics approach and restrict the genetic search space to 
the subset of  variants that are eSNPs in relevant tissues. 
These eSNPs are statistically associated with expression 
of  transcript and thus have a strong possibility of  being 
a “key driver” in perturbing gene-expression regulatory 
networks. 

Selecting the genes based on eSNPs among those also 
associated with T2D in large GWAS datasets will priori-
tize genes with a significantly high chance of  being caus-
ally involved with susceptibility to T2D, and thus may 

be helpful in identifying additional genetic susceptibility 
loci from GWAS datasets. A genome-wide analysis of  
adipose tissue transcriptomes from 62 insulin-resistant 
and -sensitive subjects identified 172 differentially ex-
pressed transcripts[76]. We checked adipose eQTL data 
from the MuTHER study[55] to find eSNPs of  these dif-
ferentially expressed transcripts. We further mined the 
DIAGRAM GWA meta-analysis results[13] for association 
of  these eSNPs with T2D. This analysis[77] identified that 
the strongest cis-eSNP (rs11037579, P = 4.21 × 10-6) for 
the HSD17B12 in adipose tissue was also associated with 
T2D [P = 3.80  × 10-4, OR = 1.06 (95%CI: 1.03-1.1)]. 
Individuals carrying the T2D risk allele T for the intronic 
SNP rs11037579 had lower expression of  HSD17B12 in 
adipose tissue. This result corroborates the finding that 
HSD17B12 expression is downregulated in the adipose 
tissue of  insulin-resistant subjects. The HSD17B12 gene 
codes a bifunctional enzyme involved in the biosynthesis 
of  estradiol and the elongation of  very long chain fatty 
acids. Several variants within ± 500 kb of  this gene are 
eSNPs (including a 3’UTR SNP rs1061810) in adipose, 
LCL, and other tissues, and show an association with 
T2D (although below the genome-wide threshold) (Figure 
3). Further functional studies will be required to identify 
true causal SNPs. However, this integrative approach 
demonstrates the validity of  such an approach in priori-
tizing novel T2D susceptibility loci. In fact, two recent in-
tegrative genomic studies showed that eSNPs for PFKM 
(SNP rs11168327) gene in muscle and ARAP1 (SNP 
rs11603334) gene in pancreatic beta cell are associated 
with T2D[78,79]. 

EQTL AND BIOLOGICAL NETWORK 
ANALYSIS TO IDENTIFY 
ETHNIC-SPECIFIC GENES FOR T2D:
Age-standardized prevalence of  T2D varies among 
ethnic and racial groups[14,80]. T2D is almost twice as 
prevalent in adult non-Hispanic African Americans 
(14.9%) in the United States compared to European 
Americans (7.6%)[81]. Yet only a few of  the associated 
T2D-loci - identified primarily in European- or Asian-
derived populations - are replicated in African American, 
Hispanics, and Native Americans[14,16,82-84]. Intriguingly, 
studies have identified distinctive physiologic features of  
glucose homeostasis in African Americans and Hispan-
ics[85-87]. Compared to non-Hispanic Caucasians matched 
on age, gender, and BMI, African Americans are more 
insulin-resistant (lower SI), but show a greater acute insu-
lin response to intravenous glucose (AIRG) and a higher 
disposition index (DI = SI × AIRG). A genetic basis for 
these physiological differences seems likely, but remains 
unidentified. 

Published studies of  expression across ethnic 
groups (mostly restricted to lymphocytes or HapMap 
LCLs) showed distinct ethnic-specific expression[37,88-90]. 
Zhang et al[90] (2008) reported differential expression of  
up to 67% of  transcripts between LCLs from subjects of  
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Figure 3  Prioritizing type 2 diabetes-associated variants by expression quantitative trait loci analysis: An example. HSD17B12 is one of 172 genes differ-
entially expressed in adipose tissue of insulin-resistant (IR, n = 31) vs insulin-sensitive (IS, n = 31) subjects in a genome-wide study (A) by Elbein et al[76]. Its expres-
sion in subcutaneous adipose of non-diabetic subjects (n = 141) also shows a significant correlation (B) with insulin sensitivity (SI). Strongest cis-eSNP for adipose 
tissue (C) expression of HSD17B12 (in adipose eQTL from the MuTHER project)[55] is also associated with T2D (D) in a large GWAS meta-analysis (in DIAGRAM.v3 
data from 12171 T2D and 56862 controls)[13]. This locus also includes a 3’UTR SNP rs1061810 that shows association (E) with T2D and expression of HSD17B12 
(in qRT-PCR analysis in adipose tissue from 141 non-diabetic subjects). eSNP: Expression regulatory SNP; eQTL: Expression quantitative trait loci; T2D: Type 2 
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European (CEU) and African (YRI) descent, with enrich-
ment of  ribosome biogenesis, antimicrobial response and 
cell-cell adhesion. Spielman et al[37] (2007) attributed the 
1097 genes that differed between CEU and Asian (CHB) 
LCL samples to eSNP frequency. Our comparison of  
genome-wide expression profiles (using an Agilent 44K 
expression array) from adipose and muscle tissue of  non-
diabetic Caucasians (n = 40) and African Americans (n = 
22) identified transcripts associated with insulin sensitivity 
(SI), many of  which (e.g., CLIC6, HSD11B1, SERPINA3, 
THBS1, TMEM135 and TNMD in Adipose ) show dis-
tinct ethnic-specific expression[76].

Comparison of  adipose tissue expression data be-
tween Caucasians and African Americans in a larger 
cohort (using an Illumina –HT12.V4 array for 99 Cau-
casians and 37 African Americans) identified 117 differ-
entially expressed (fold change ≥ 1.5 and false discovery 
rate ≤ 5%) transcripts[91]. By mining adipose tissue eQTL 
data from the MuTHER project[55], we found that about 
35% of  these differentially expressed transcripts are 
strongly modulated (P < 1 × 10-5) by cis-eSNPs in adipose 
tissue. In line with the findings by Spielman et al[37] (2007) 
in LCL, we also found that in adipose tissue, the degree 
of  differential expression (fold change African Ameri-
cans/Caucasians) shows strong concordance with the 
difference in the effect allele frequency of  top cis-eSNPs 
(Figure 4) between HapMap African (YRI) and Caucasian 
(CEU) subjects. 

These studies suggest that the distinct genetic archi-
tecture of  eSNPs determines the ethnic-specific expres-
sion profile in tissues important for glucose homeostasis. 
Ethnic-specific derangements of  gene expression net-
works in tissues involved in glucose homeostasis may 
explain distinctive physiologic effects, including differ-
ences in insulin action and secretion between ethnic and 
racial groups. Perturbation of  gene expression networks 
associated with early pathophysiologic events (including 
insulin resistance) is driven by regulatory variants (eSNPs). 
The distinct genetic architecture of  these variants (in-
cluding linkage disequilibrium and allele frequency) may 
determine their ethnic-specific (or predominant) effect 
on expression and T2D susceptibility. Thus, integration 
of  genome-wide expression analysis and eQTL analyses 
may be a useful approach to identify the primary genetic 
factors for ethnic-specific susceptibility to T2D.

Expression of  transcripts involved in the same bio-
logical function tend to be co-regulated by similar factors 
(genetic or environmental) and can be identified as dis-
tinct network modules, where genes within a module are 
more highly interconnected (correlated) with each other 
than genes in other modules. Statistical approaches like 
weighted gene co-expression network analysis (WGCNA 
software package developed in “R” programming envi-
ronment implements this analytical method) are useful 
for identifying modular structures of  the co-expression 
networks[92,93] in tissues important for glucose homeo-
stasis. Evaluation of  the correlation of  each module 
eigengene with the SI and other T2D-related metabolic 
phenotypes, and determination of  the preservation of  
these modules between ethnic groups based on observed 
network density and connectivity, will identify molecular 
processes or molecular interaction structures associated 
with phenotypes that undergo ethnic-specific reconfigu-
ration by genetic or non-genetic causal regulators. 

Several recently developed statistical metrics[94,95], in-
cluding modular differential connectivity, offer powerful 
tools to identify the modules with significant ethnic-spe-
cific changes in interaction strength. The eSNPs are caus-
al variants (or in linkage disequilibrium with causal vari-
ants) that regulate the expression level of  neighboring (or 
distal) genes. Thus, eSNPs serve as a primary source of  
natural perturbation to infer causal relationships among 
and between genes in gene-expression networks[96]. The 
distinct allelic architecture of  these SNPs may determine 
ethnic-specific modular differential connectivity. Genes 
with eSNPs can be considered as “parent nodes” in ex-
pression networks. This information is used as a “struc-
ture prior” in the network reconstruction analysis to 
orient the edges of  the networks. Reconstructing ethnic-
specific networks by utilizing different causality modeling 
methods, including Bayesian network reconstruction ap-
proaches, may identify key causal regulators of  these net-
works[97,98]. Thus, a multiscale biological network analysis 
that utilizes eQTL information to distinguish causal from 
correlated disease effects is a novel approach to under-
stand how causal regulators propagate their effects in 
mediating ethnic-specific susceptibility to disease. 

A similar approach was used recently to identify 
genetic factors in animal models of  diabetes and other 
complex human diseases, including Alzheimer’s disease[95]. 
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Figure 4  Population differences in expression of tran-
scripts in adipose tissue is accounted for by the effect 
allele frequency difference of expression regulatory SNPs 
among racial groups. X axis: Fold change in average ex-
pression of 41 transcripts between African-American (AA, n = 
37) and Caucasian (CA, n = 99) subjects. Y axis: Differences 
in strongest eSNP allele frequency of these transcripts be-
tween HapMap subjects of Caucasian (CEU) and African (YRI) 
ancestry for alleles associated with higher expression. eSNP: 
Expression regulatory SNP.
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A study by Zhong et al[68] (2010) in adipose tissue of  
C57BL/6-ob/ob × BTBR-ob/ob mice F2 progeny iden-
tified a strong causal subnetwork for T2D traits (called 
the “purple” module, enriched for genes involved in plas-
ma glucose and insulin levels). They found that 37 eSNPs 
of  genes in this module showed significant association 
with T2D in a GWAS report. Through additional priori-
tization steps and subsequent function validation studies, 
they identified mallic enzyme (ME1) as a key causal gene 
in this T2D subnetwork. A strong cis-eSNP of  ME1 was 
associated with T2D. Future applications of  such integra-
tive genomic strategies in T2D or related disorders in hu-
man populations may prove insightful.

EQTL ANALYSES TO IDENTIFY 
GENE-ENVIRONMENT INTERACTIONS 
RELEVANT FOR T2D
As discussed above, GWAS have identified DNA se-
quence variants in the susceptibility to T2D, but these 
variants account for only a part of  the estimated heritabil-
ity[13,14]. Interactions between sequence variants and envi-
ronmental stimuli are a logical step in better understand-
ing the development of  T2D. Thus, some of  the missing 
heritability for T2D susceptibility may be explained by 
studies of  the interaction between environmental fac-
tors and genetic variants or gene-environment (GXE) 
interactions[99]. Modeling GXE interactions in clinical or 
epidemiological settings is challenging and costly, due to 
few validated tools for assessing exposure (including di-
etary exposure), the need for large sample sizes, and the 
heterogeneity of  exposures in populations[100-103]. Envi-
ronmental factors usually influence insulin resistance and 
T2D risk over long periods of  time; thus, accurate assess-
ment of  long-term exposure is needed to identify GXE 
interactions. A recent series of  studies by Patel et al[104-106] 
utilized data resources from the National Health and 
Nutritional Examination Survey and integrated GWAS 
and environment-wide association studies to identify 
environmental factors, genetic factors, and GXE interac-
tions involved in T2D susceptibility. However, they noted 
several significant limitations of  such epidemiological 
approaches in adequately addressing influence of  genetic 
variations on differences in environmental response in 
human populations. 

Environmental factors, including diet and derived me-
tabolites, can influence phenotypes by modulating gene 
expression in several ways. Variations in responses to 
environmental factors among individuals, and how these 
responses predispose to metabolic and other disorders, 
have been recognized[107]. Genetic variants modulate the 
environmental factor-mediated transcriptional response, 
which in turn dictates cellular response and may explain 
variability in metabolic responses to those factors[99]. Such 
dependency on external conditions or GXE interactions 
has been reported for genetic effects on gene expres-
sion in different organisms[108-110]. Transcripts responsive 

to environmental perturbation factors may manifest as 
eQTLs and are modulated by cis- and trans-eSNPs. A sub-
set of  these eSNPs associated with T2D, obesity, and/or 
glucose homeostasis traits may thus exhibit distinctive 
patterns of  GXE eSNPs. Thus, identifying environmen-
tal factors that modulate insulin sensitivity and other 
early pathophysiological manifestations of  T2D and its 
integration into eQTL analyses will further improve the 
power to construct causal gene regulatory networks in-
volved in T2D susceptibility.

A few recent studies implemented a novel “cellular 
genomics” approach[111] to elucidate genetic controls on 
GXE interactions, critical to understanding the patho-
physiology of  complex diseases. In this novel paradigm, 
researchers analyzed the molecular consequences of  ge-
netic variants to assess interactions with environmental 
factors via quantification of  processes (like gene expres-
sion) in cells from human subjects grown in uniform 
culture conditions. This concept is illustrated in Figure 5. 
Utilizing transformed lymphocytes, the studies examined 
genetic control in response to radiation, chemothera-
peutic drugs, and hormones (glucocorticoids)[112-114]. Two 
similar studies in primary human cells mapped genetic 
regulators responding to growth factors (BMP-2), hor-
mones (dexamethasone), cytokines (prostaglandin E2 in 
human osteoblasts), and oxidized low density lipoprotein  
(in human aortic endothelial cells)[115,116]. Despite the en-
couraging success of  these studies, no studies so far have 
evaluated GXE interactions with a cellular genomic mod-
el relevant to T2D and related metabolic disorders. Al-
though this model may miss some whole organism-level 
complexity[117] of  T2D pathogenesis (which involves mul-
tiple tissues), it does represent an innovative approach by 
going from cellular to organismal phenotype analysis for 
identification of  function of  genetic variants involved in 
T2D susceptibility. Mapping GXE eSNPs for function-
based prioritization of  T2D and related metabolic dis-
ease-associated SNPs is a critical step towards designing 
efficacious strategies to reduce the public health burden 
of  common metabolic disorders triggered by increased 
exposure to dietary and other environmental factors.

EQTL AND PHARMACOGENOMIC 
STUDIES FOR T2D
Several classes of  anti-diabetic medications are used for 
the treatment of  T2D[118]. Pharmacogenomic studies 
reviewing the role of  genetic variants on drug responses 
(including adverse drug reactions) have yielded significant 
findings, including novel disease mechanisms for several 
complex diseases[119]. But a similar success for T2D has 
not been achieved[5,120]. Pharmacological interventions 
using peroxisomal proliferator activated receptor gamma 
(PPARγ) agonists like pioglitazone improve insulin sensi-
tivity and can reduce the risk of  progression to T2D[121]. 
However, approximately 25% of  patients do not respond 
adequately to PPARγ agonists[122]. Genome-wide tran-
scriptomic analysis by our laboratory showed significant 
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inter-individual variability in gene-expression response 
after pioglitazone treatment in people with impaired 
glucose tolerance[123]. However, little is known about the 
genetic architecture of  variation in pioglitazone-mediated 
transcriptional response in human populations. Identify-
ing the genetic variations that interact with pharmaco-
logical treatments like PPARγ agonists is of  high clinical 
interest. eSNPs may modulate the expression of  key tran-
scripts in response to anti-diabetic drugs in target tissues 
and can explain the interindividual variability in treatment 
outcome[124,125]. Identifying genetic (and epigenetic) vari-
ants that modulate the pharmacological treatment-medi-
ated transcriptional response, which in turn dictates the 
treatment outcome in T2D, is an open area of  research. 
A novel approach that systematically characterizes the set 
of  eSNPs involved in anti-diabetic medicine-mediated 
transcriptional modulation (gene-drug interaction eSNPs, 
or GXD eSNPs) in tissues relevant to glucose homeo-
stasis will be useful in stratifying populations in efficacy 
studies, to improve the quality of  clinical decision-making 
and treatment options for T2D. 

FINDING EQTLS: END FOR A NEW 
BEGINNING
eQTL analyses provide statistical evidence for genotype-
dependent variations in transcript abundance and should 
be considered a starting point for investigating the ef-
fects of  DNA polymorphisms at the molecular level[34]. 
Transcript abundance depends on a dynamic relation-
ship between transcript synthesis, stability, and degrada-
tion[48]. Thus, DNA polymorphisms may affect transcript 
abundance by several known and unknown mechanisms. 
Studies in human subjects have shown that sequence-

specific regulation of  mRNA expression is mediated by 
several molecular mechanisms, including allelic variability 
in transcription factor binding, chromatin remodeling, 
changes in DNase Ⅰ hypersensitivity by histone meth-
ylation and acetylation, interaction between chromatin 
segments, alteration of  splicing, sequence-dependent 
allele-specific DNA methylation, alteration of  miRNA 
synthesis, and miRNA target binding[50-52,126-130]. GWAS-
implicated variants for complex diseases are enriched in 
non-coding functional domains of  the genome, includ-
ing sequences involved in chromatin remodeling[131-133]. 
Many transcripts that show strong co-expression and cis-
eSNPs for one transcript may appear as trans-eSNPs for 
a co-regulated transcript located in other chromosomes. 
Thus, a functional role of  prioritized cis- and trans-eSNPs 
needs to be validated by appropriate molecular experi-
ments to distinguish causal from correlative effects[134-136]. 
Studies have used allelic expression imbalance analysis, 
electrophoretic mobility shift assays, and transient trans-
fection based luciferase reporter assays[56,137-141] to identify 
the molecular effects of  genetic variants (cis-eSNPs) on 
gene expression; however, high-throughput methods are 
needed to validate in parallel the large number of  find-
ings from genomic studies[134,135,142]. Several novel high-
throughput methods, including massively parallel reporter 
assays and massively parallel functional dissection, are 
now available to show evidence of  causality for regula-
tory variants[143-146]. Functional relevance of  the candidate 
eQTL transcripts in T2D pathophysiology also need to 
be validated by demonstrating their effects upon experi-
mental up- or down-regulation in in vitro or in vivo experi-
mental models[147,148].

In summary, many factors (including genetic, epigen-
etic and environmental factors) affect susceptibility to 
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Figure 5  Types of gene-by-environment interactions in cellular genomic models to study gene-by-environment expression quantitative trait locis. Cells 
from a cohort of subjects are grown in pairs under uniform in vitro treated and untreated conditions to study environment-dependent or -independent effects of geno-
type on expression of transcripts (a quantitative trait). β1 and β2 are genotype effects on transcript expression under treated and control conditions, respectively. 
Different models of gene-by-environment (GXE) includes Null model: β1 = β2 = 0 (A and B); No-interaction eQTL model: β1 = β2 ≠ 0 (C); Treated-only expression 
quantitative trait loci model: β1 ≠ 0 and β2 = 0 (D); Control-only eQTL model: β1 = 0 and β2 ≠ 0 (E); and General interaction eQTL model: β1 ≠ 0 and β2 ≠ 0 but β1 ≠ 
β2 (F). Black line indicates expression in cells under control condition (untreated) while blue line indicates expression in environmental/dietary factor treated cells. 
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T2D. Instead of  investigating different sources of  varia-
tion in isolation, an integrative functional omics paradigm 
that traces early molecular changes through layers of  
biological information, including eQTLs, promises to be 
a useful approach[136]. Such an approach will promote op-
timal understanding of  the etiology of  T2D and lead to 
the identification of  ethnic-specific primary causal vari-
ants. Ultimately, the knowledge gained from studies using 
these approaches can be used to build better classifiers 
of  T2D risk than those based on DNA sequence variants 
alone.
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Abstract
Aspirin (ASA) irreversibly inhibits platelet cyclooxygen-
ase-1 (COX-1) leading to decreased thromboxane-medi-
ated platelet activation. The effect of ASA ingestion on 
thromboxane generation was evaluated in patients with 
diabetes (DM) and cardiovascular disease. Thrombox-
ane inhibition was assessed by measuring the urinary 
excretion of 11-dehydro-thromboxane B2 (11dhTxB2), a 

stable metabolite of thromboxane A2. The mean base-
line urinary 11dhTxB2 of DM was 69.6% higher than 
healthy controls (P  = 0.024): female subjects (DM and 
controls) had 50.9% higher baseline 11dhTxB2 than 
males (P  = 0.0004), while age or disease duration 
had no influence. Daily ASA ingestion inhibited urinary 
11dhTxB2 in both DM (71.7%) and controls (75.1%, P  
< 0.0001). Using a pre-established cut-off of 1500 pg/
mg of urinary 11dhTxB2, there were twice as many ASA 
poor responders (ASA “resistant”) in DM than in con-
trols (14.8% and 8.4%, respectively). The rate of ASA 
poor responders in two populations of acute coronary 
syndrome (ACS) patients was 28.6 and 28.7%, in spite 
of a significant (81.6%) inhibition of urinary 11dhTxB2 

(P  < 0.0001). Both baseline 11dhTxB2 levels and rate 
of poor ASA responders were significantly higher in DM 
and ACS compared to controls. Underlying systemic 
oxidative inflammation may maintain platelet function 
in atherosclerotic cardiovascular disease irrespective 
of COX-1 pathway inhibition and/or increase systemic 
generation of thromboxane from non-platelet sources. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Diabetes; Cardiovascular disease; Platelets; 
Thromboxane; Aspirin

Core tip: The effect of aspirin (ASA) on platelet throm-
boxane (11dhTxB2) generation in diabetes (DM) and 
symptomatic cardiovascular disease (CVD) was re-
viewed. Consistent with a heightened platelet hyperac-
tive background, baseline 11dhTxB2 was significantly 
higher in DM and acute coronary syndrome (ACS) than 
healthy individuals. ASA ingestion inhibited 11dhTxB2 in 
all subjects, but there were more ASA poor-responders 
(ASA “resistant”) in DM (14.8%) and ACS (28.7%) 
than controls (8.4%). Only post-ASA 11dhTxB2 levels 
predicted adverse cardiovascular outcomes. ASA poor-
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responders had higher isoprostane (8-isoPGF2α) levels 
suggesting an underlying systemic oxidative inflam-
matory process not affected by ASA that may maintain 
platelet hyperactivity in DM and atherothrombotic CVD.

Lopez LR, Guyer KE, Garcia De La Torre I, Pitts KR, Matsuura 
E, Ames PRJ. Platelet thromboxane (11-dehydro-Thromboxane 
B2) and aspirin response in patients with diabetes and coronary 
artery disease. World J Diabetes 2014; 5(2): 115-127  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i2/115.
htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i2.115

INTRODUCTION
Thromboxane A2 (TxA2) is a clinically important prosta-
glandin metabolite derived from arachidonic acid through 
the cyclo-oxygenase (COX) pathway with roles in he-
mostasis and cardiovascular disease (CVD)[1,2]. Platelet 
enzyme COX-1 converts arachidonic acid into prosta-
glandin G2 (PGG2), followed by the action of  peroxi-
dases into PGH2 and into the biologically active TxA2 by 
thromboxane synthases[3]. Mainly produced by stimulated 
platelets, TxA2 behaves as a vasoactive agent that affects 
blood flow and pressure[4] as well as a pro-thrombotic 
agent capable of  promoting the activation and subse-
quent aggregation of  nearby platelets. The latter function 
is accomplished by TxA2 binding to thromboxane platelet 
receptors (TPR), a typical G protein-coupled receptor 
system with trans-membrane segments. Once bound to 
TPR receptors, phospholipase C is activated to stimulate 
cytoplasmic Ca2+-dependent Rho Kinases that activate 
phospholipase A2 and the up-regulation and expression 
of  glycoprotein complex GPⅡb/Ⅲa on the surface of  
platelets[5,6].

Because TxA2 is the bioactive and clinically relevant 
pro-thrombotic thromboxane metabolite, it would be the 
logical choice for testing in the clinical laboratory. How-
ever, its high instability and very short half-life (20-30 s) 
makes the routine measurement technically difficult and 
impractical. Indeed TxA2 is quickly hydrolyzed into a bio-
logically inactive but more stable thromboxane B2 (TxB2) 
metabolite[7]. Serum TxB2 may be measured in the labora-
tory but its concentration can be overestimated due to ex 
vivo platelet activation during blood collection and pro-
cessing. Other serum factors may also interfere with TxB2 
measurements. TxB2 is further metabolized by the liver 
primarily into an 11-dehydro-thromboxane B2 (11dhTxB2) 
form. This and other minor stable metabolites like 11de-
hydro-2,3-dinorTxB2 and 2,3-dinorTxB2 are excreted in 
the urine (Figure 1). Urinary 11dhTxB2 directly reflects 
the platelet production of  TxA2

[8,9], and represents a good 
and reliable biomarker for the laboratory assessment of  
platelet activity. 

Aspirin (Acetylsalicylic acid, ASA) irreversibly acety-
lates platelet COX-1 for the entire life cycle of  the plate-
let. Ingestion of  low doses of  ASA blocks over 95% 
of  platelet COX-1 activity resulting in the inhibition of  

TxA2 production. For these reasons, ASA is widely pre-
scribed as an aid in the primary and secondary prevention 
of  CVD. Despite its widespread use, not all individuals 
respond to ASA in the same way[10,11]. In addition, ASA 
effectiveness is limited because over 15%-25% of  pa-
tients with arterial thrombosis may develop recurrent 
vascular events while on ASA treatment. This incomplete 
ASA response (or poor-responsiveness) to therapeutic 
doses has been referred to as “aspirin (ASA) resistance”, 
a phenomenon described in healthy populations as well 
as in patients with diabetes (DM) and CVD. The exact 
mechanisms responsible for this clinical unresponsive-
ness remain unclear[12,13].

Currently, ASA is largely prescribed for the primary 
prevention of  cardiovascular events in DM but the evi-
dence supporting its efficacy is surprisingly scarce and 
controversial[14-16]. Recent observations demonstrate 
that healthy subjects and DM patients with poor ASA 
response not only seem to manifest an incomplete inhi-
bition of  COX-1, but also display a pro-inflammatory 
milieu and enhanced oxidative stress[17-19]. On the other 
hand, diet-induced weight loss in subjects with central 
obesity reduced platelet reactivity and restored platelet 
sensitivity to nitric oxide, prostacyclin, and physiologic 
anti-aggregating agents. High on-ASA Platelet Reactivity 
(HAPR) has been proposed as a more appropriate term 
than “ASA resistance” to describe a high platelet reactiv-
ity status despite ASA therapy in an individual patient. 
Further, HAPR has been associated with atherothrom-
botic events following major vascular procedures and 
may identify patients at high risk for re-occlusion follow-
ing percutaneous intervention (PCI) with stenting[20]. 

11DHTXB2 DETERMINATION AND ASA 
RESPONSE 
There are two distinct groups of  tests commonly used to 
measure platelet activity and response to ASA. The first 
group is blood-based and relies on platelet aggregation 
response to exogenous agonists or inhibitors by various 
means[21]. Because platelet activation or inhibition can 
be mediated by different receptors and pathways, it is 
not surprising to see a lack of  correlation between the 
assays[22-24]. The second group of  tests consists of  sero-
logic or urine-based immunoassays that measure both 
platelet (COX-1) and non-platelet (COX-2) production 
of  thromboxanes. This discussion will focus on the mea-
surement of  urinary 11dhTxB2 as a direct indicator of  
TxA2 activity and platelet activation. One advantage of  
this type of  assays is that thromboxane production is the 
primary target of  ASA through an effective and irrevers-
ible COX-1 inhibition.

11dhTxB2 is a biologically inactive down-stream me-
tabolite of  TxA2 with a long (stable) circulating half-life 
that is readily excreted in the urine and relatively unaf-
fected by ex vivo platelet activation and other pre-analyti-
cal variables[25,26], hence 11dhTxB2 usefulness as a reliable 
biomarker to assess platelet activation. Due to its relative 
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small size and low concentrations, urinary 11dhTxB2 

levels are measured by a competitive enzyme-linked im-
munsorbent assay (ELISA) that uses a spot urine sample 
without time constraints. Spot urine 11dhTxB2 levels are 
normalized against urine creatinine concentration making 
the 24 h collection unnecessary. It is important to point 
out that this ELISA measures the systemic production of  
thromboxanes (COX-1 and COX-2-derived), and directly 
reflects COX-1 inhibition by ASA. 11dhTxB2 results are 
first calculated against a reference curve prepared from 
a reference solution and the final results are reported as 
pg/mg (pg 11dhTxB2 per mg creatinine) to normalize 
results for urine concentration. 

To assess the demographic and clinical variables in-
fluencing urinary excretion of  11dhTxB2 we first studied 
apparently healthy adults before and after receiving con-
trolled doses of  ASA. Based on the resulting frequency 
of  11dhTxB2 levels, we established a cut-off  value to 
assess an adequate ASA response at 1500 pg/mg of  
11dhTxB2. This cut-off  has been re-confirmed in sub-
sequent studies using both healthy and diseased popula-
tions before and after ASA ingestion[27]. Those individuals 
with urinary 11dhTxB2 levels after ASA ingestion below 
the cut-off  of  1500 pg/mg are considered good ASA 
responders while those with levels above 1500 pg/mg are 
poor ASA responders (“ASA resistance”). It is important 
to assess high platelet reactivity in spite of  ASA ingestion 
because a series of  actions may be undertaken to man-
age and reverse the incomplete effect of  ASA. The rest 
of  this discussion will focus on a series of  clinical studies 
performed on DM and coronary artery disease (CAD) 

patients measuring 11dhTxB2 and using the quoted 1500 
pg/mg cut-off  to assess the significance of  the ASA re-
sponse in the development of  CVD complications.

ASA poor response or “resistance”: definition and 
clinical implications
ASA “resistance” has been referred to as the lack of  a 
clinical and/or laboratory beneficial effect from ASA 
ingestion[28-30]. A true or complete ASA “resistance”, de-
fined as a lack of  response to ASA ingestion due to phar-
macologic and/or genetic deficiencies, has not been de-
scribed to date. The great majority of  individuals respond 
to ASA ingestion as defined by ex vivo measurements of  
platelet aggregation or thromboxane production. How-
ever, in most individuals the response seems to be only 
partial or incomplete. From the clinical point of  view, the 
term ASA “resistance” has neither been fully described 
nor properly standardized, thus it lacks a nosological 
clinical definition. Furthermore, consensus guidelines for 
treatment or management of  ASA resistance have not 
been put forward[31]. Most experts prefer the term ASA 
“poor or incomplete response” or ASA “insensitivity” 
to the term ASA “resistance”. Throughout this discus-
sion, we will occasionally use the term ASA “resistance” 
but with the clear understanding that we definitely prefer 
“poor or incomplete” ASA response as a more appropri-
ate term. 

Increased platelet turnover, platelet activation by 
alternative pathways, alternative/additional sources of  
TxA2 production such as macrophage/monocyte COX-2, 
drug bioavailability, and genetic polymorphisms, have 
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Thromboxane biosynthesis by cyclooxygenase activation pathways 
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Figure 1  A schematic representation of the arachidonic/thromboxane metabolic pathway: Arachidonic acid generated from membrane phospholipids by phos-
pholipase A2 and phospholipase C undergoes additional enzymatic transformation by cyclooxygenases (COX-1 and COX-2) into prostaglandin and thromboxane me-
tabolites. In platelets, Arachidonic acid (AA) is metabolized by COX-1 into prostaglandins PGG2, PGH2 and by thromboxane synthase into the bioactive thromboxane 
A2 (TXA2), which is a potent activator of platelet aggregation with a short half-life. TXA2 is quickly inactivated into a more stable thromboxane B2 (TXB2) and converted 
in the liver into an 11-dehydro-thromboxane B2 (11dhTXB2) metabolite excreted in the urine. Aspirin (ASA) irreversibly inhibits platelet COX-1 leading to decreased 
thromboxane-mediated platelet activation. TXA2 and 11dhTXB2 can be generated by COX-2 present in various inflammatory cells, pathway not affected by ASA. 
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increasing risk of  heart attacks and 3.5-fold risk of  CV 
death. A sub-study of  CHARISMA[33] that included 3261 
ASA treated CVD patients confirmed the increased CVD 
risk in patients with 11dhTxB2 in the upper quartile as 
previously reported by the HOPE study.

11DHTXB2 AND ASA RESPONSE IN DM
CVD has been long recognized as a leading cause of  
morbidity and mortality in patients with type 1 and type 
2 DM mainly by ischemic heart disease[39,40]. The use 
of  ASA is known to reduce future secondary events in 
DM[41], however, a meta-analysis of  randomized con-
trolled trials failed to demonstrate a clear benefit of  as-
pirin in the primary prevention of  major cardiovascular 
events in patients with DM[42]. To further assess throm-
boxane levels and aspirin response in DM patients, two 
clinical studies were conducted on consecutive type 2 
DM patients attending the endocrinology and diabetes 
outpatient clinics in Mexico. The diagnosis of  DM was 
made by the attending physician following internationally 
accepted diagnostic criteria (World Health Organiza-
tion DM criteria, 1985) that relied on the presence of  
abnormal fasting glucose (normal range 70-110 mg/dL), 
abnormal glucose tolerance test, chronic hyperglycemia 
and metabolic disturbances of  lipid, carbohydrate and 
protein metabolism due to defects in insulin production 
or activity. Males and females between 18 and 79 years of  
age who had not taken ASA or other non-steroidal anti-
inflammatory drugs for the previous 2 wk were included. 
Subjects with liver and kidney disease, symptomatic car-
diovascular disease requiring ASA therapy (myocardial 
infarction, angina, stroke, peripheral artery disease), con-
comitant acute or chronic inflammatory diseases (bacterial 
or viral infections), autoimmune disorders, pregnancy, 
allergy or intolerance to ASA, and bleeding disorders 
were excluded. The use of  ASA in Mexican patients with 
DM for primary prevention of  CVD was significantly 
less common compared to the US, ensuring a good re-
cruitment of  DM patients not taking ASA while avoiding 
possible unethical discontinuation of  the medication.  

Baseline 11dhTxB2 levels in DM
Baseline (ASA-free) urinary 11dhTxB2 levels were mea-
sured in 100 subjects, 53 with DM and 47 healthy vol-
unteers. None of  the patients or controls in this group 
had received ASA for at least 2 wk prior to testing. The 
main objective of  this study was to establish an average 
baseline urinary 11dhTxB2 level in DM. The hypothesis 
was that patients with DM had increased baseline urinary 
11dhTxB2 levels hence a higher risk of  developing car-
diovascular atherothrombotic complication and would 
receive ASA therapy compared to healthy controls. The 
mean age of  the population studied was 53.9 ± 12.6 years 
(54 females, 46 males) with mean disease duration of  9.1 
± 7.7 years. 

The distribution of  baseline (ASA-free) 11dhTxB2 

levels of  DM patients and healthy volunteers is shown in 
Figure 2A. DM patients presented with a baseline mean 

been implicated in ASA poor responsiveness[13]. Recent 
reports suggested that CAD patients with high serum 
concentrations of  cholesterol, triglyceride and C-reactive 
protein had reduced response to ASA measured by plate-
let aggregation and urinary 11dhTxB2

[29]. Compared to 
asymptomatic patients, those with full blown CAD had 
significantly higher levels of  urinary 11dhTxB2 following 
ASA ingestion. The HOPE[32] and CHARISMA[33] stud-
ies showed that urinary 11dhTxB2 levels in ASA-treated 
patients predicted the future risk of  stroke, myocardial 
infarction and cardiovascular death. These findings raised 
the possibility that elevated urinary 11dhTxB2 excretion 
identifies patients on ASA treatment that are at elevated 
risk of  adverse events and may benefit from additional 
anti-platelet agents or treatment modification.

Patients who experience a vascular ischemic event 
while taking ASA have been referred to as having a 
clinical ASA “resistance”. Patients who show a limited 
inhibition of  thromboxane levels, platelet activation, or 
aggregation after ASA ingestion assessed by biochemical 
or laboratory tests are referred to as having a laboratory 
ASA “resistance”[30]. This discussion focuses on the bio-
chemical or laboratory ASA resistance, and more spe-
cifically on the clinical impact of  the reduced inhibition 
of  COX-1 thromboxane levels. As with any other drug, 
the dose, drug interference and poor patient compliance 
should be kept in mind when evaluating ASA responsive-
ness. The prevalence of  laboratory ASA “resistance” 
ranges from 10% to 25% with occasional peaks up to 
60%. However, this wide variability depends on the 
methods used to measure the ASA response and the pa-
tient population under study rather than on the individual 
response. Nonetheless, other important causes of  a poor 
response to ASA are emerging amongst which is stress-
induced inflammation/oxidation[34,35].

An overall poor response to ASA has been associ-
ated with up to 13-fold increase risk of  atherothrombotic 
complications in patients with CVD[13,36,37]. A recent 
meta-analysis of  over 20 clinical studies performed on 
a total of  2930 CVD patients taking ASA (75-325 mg) 
demonstrated a 4-fold increased risk for any cardiovas-
cular (CV) event including CV death in those patients 
with poor ASA response[38]. About twenty-eight percent 
(28%) patients were classified as ASA poor responders 
(“resistance”) suggesting an association with CVD risk. 
CV-related events were observed in 41%, death in 5.7%, 
and acute coronary syndrome (ACS) in 39.4% of  patients 
with poor ASA response. It must be pointed out that the 
clinical studies included in the meta-analysis used dif-
ferent methods to measure platelet ASA inhibition and 
their own criteria to classify the response to ASA. An 
interesting observation of  the meta-analysis is that ASA 
poor responders did not benefit from other anti-platelet 
therapy. The HOPE[32] study screened 5529 patients and 
measured urinary 11dhTxB2 in 488 ASA-treated CVD 
patients. Age and sex matched controls also received 
ASA. CV outcomes including CV death were recorded 
during a 5-year follow-up. Poor ASA responders with 
urinary 11dhTxB2 levels in the upper quartile had a 2-fold 

Lopez LR et al . Thromboxane and aspirin response in diabetes 



119 April 15, 2014|Volume 5|Issue 2|WJD|www.wjgnet.com

urinary 11dhTxB2 excretion of  5656 pg/mg, a value 
69.5% higher than the mean baseline 11dhTxB2 excre-
tion of  healthy controls at 3337 pg/mg, (P = 0.024). The 
highest 11dhTxB2 value seen in the DM group reached 
27661 pg/mg while the highest value in healthy controls 
was 11323 pg/mg. Figure 2B shows the cumulative base-
line frequency of  urinary 11dhTxB2 excretion of  healthy 
controls (up) and DM patients (down). The frequency of  
healthy controls followed a normal (Gaussian-like) distri-
bution while DM patients had a distinctive flat distribu-
tion. 

Influence of gender, age and disease duration on 
11dhTxB2 levels
There were 34 females plus 19 males with DM, and 20 
females plus 27 males in the healthy control group. Figure 
3 depicts the urinary baseline (ASA-free) 11dhTxB2 levels 
according to gender. When evaluating all 100 subjects 
(DM patients and healthy controls), females exhibited a 
mean baseline urinary 11dhTxB2 excretion 50.9% higher 
than that of  males (5902 vs 2998 pg/mg, P = 0.0004). 
When evaluating the influence of  gender separately in 
DM patients and healthy controls, females consistently 
display significantly higher baseline 11dhTxB2 levels than 
males (DM P = 0.01, controls P = 0.02).

The mean age of  DM patients was 56 years (range 
29-80 years) and that of  healthy controls 35 years (range 
22-82 years). Figure 4 depicts the association of  urinary 
baseline (ASA-free) 11dhTxB2 levels with the subject’s age 
(in years). In this analysis all 100 subjects (DM patients 
and healthy controls) were included. The mean disease 
duration for the DM patients was 9.6 years (range 1-29 

11dhTxB2 pg/mg 
P value1  Group Mean ± SD Range Median

  Diabetes (n  = 53) 5656 ± 5257 524-27661 4511 0.024
  Controls (n  = 47) 3337 ± 1859 200-11323 3113

Box plot: Boxes represent 75/25 percentiles. The horizontal line within the 
box represents the median for each group. Whisker are 90/10 percentile 
bars.
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Figure 2  Distribution of baseline (aspirin-free) urinary 11-dehydro-throm-
boxane B2 levels (pg/mg) measured in healthy individuals and diabetes 
patients (A, top), and frequency distribution (histogram) of baseline uri-
nary 11-dehydro-thromboxane B2 levels in the two groups studied (B, bot-
tom). A: Comparison of baseline 11-dehydro-thromboxane B2 levels of diabetes 
and controls; B: Frequency (Histogram) of baseline 11-dehydro-thromboxane 
B2 levels in diabetes and controls.
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11dhTxB2 pg/mg 
P value1  Gender Mean ± SD Range Median

  Females (n = 54) 5902 ± 5083   524-27661 4364 0.0004
  Males (n = 46) 2998 ± 1833 200-7333 2891

1P  value: Wilcoxon/Kruskal-Wallis test. 1P  value: Wilcoxon/Kruskal-Wallis test.

Figure 3  Distribution of baseline (aspirin-free) urinary 111-dehydro-throm-
boxane B2 levels (pg/mg) measured in healthy individuals and diabetes 
patients according to gender. F: Females; M: Males. 
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years). There was weakly positive correlation (r = 0.322, 
P = 0.001) between age (in years) and baseline urinary 
11dhTxB2 levels (left), and a weak (but not statistically 
significant) positive correlation (r = 0.124, P = 0.3) be-
tween disease duration (in years) and baseline urinary 
11dhTxB2 levels (right).

These variables were entered into a linear regression 
model to predict 11dhTxB2 levels (as a dependent vari-
able). Only female gender remained as a significant (P = 
0.02) predictor of  11dhTxB2 levels. Sex-related differ-
ences in platelet function and aspirin pharmacokinetics in 
rabbits and man have been previously described[43]. These 
results support previous findings that ASA reduces the 
risk of  first heart attack in men but not in women sug-
gesting that the ASA effect in women is different[42,44,45]. 
The results also support the relevance of  measuring uri-
nary 11dhTxB2 levels in DM patients to assist health care 
providers in assessing the risk for CVD and implement-
ing an ASA preventive regimen.

Effect of ASA on 11dhTxB2 levels in DM 
The effect of  ASA in DM was studied in 137 subjects, 54 
patients with DM and 83 healthy volunteers. Each DM 
patient or control subject contributed two urine samples: 
one before receiving ASA (baseline) and a second sample 
after receiving 100 or 325 mg of  ASA for 7 d. The main 
objective of  the study was to corroborate that ASA in-
gestion reduces 11dhTxB2 levels in DM patients. The 
hypothesis was that ASA would inhibit urinary 11dhTxB2 
excretion in DM patients but with more ASA non-
responders (11dhTxB2 levels > 1500 pg/mg) compared 
to healthy controls. The mean age of  the final population 
under study was 54.3 ± 13.1 years with 90 females and 47 
males. The mean disease duration was 9.6 ± 7.6 years. 

The baseline (ASA-free) and post-ASA ingestion 
values of  DM patients and healthy controls are shown 
in Figure 5. ASA ingestion suppressed the mean base-
line 11dhTxB2 excretion of  DM patients by 71.5% (P < 
0.0001) as well as the mean baseline of  healthy controls 
(75.1%, P < 0.0001). The baseline 11dhTxB2 excretion of  
DM patients was greater than that of  controls (3664 vs 

2450 pg/mg, P = 0.001). Similarly, post-ASA 11dhTxB2 

excretion of  DM patients was greater than that of  healthy 
controls (995 vs 624 pg/mg, P < 0.0001). Regarding the 
effect of  the dose of  ASA, the mean 11dhTxB2 excre-
tion of  subjects taking 100 mg of  ASA was 708 pg/mg 
± 507, whereas the mean of  subjects taking 325 mg was 
827 pg/mg ± 811 (P = 0.8). In this study, ASA dose used 
in DM and healthy controls had no significant influence 
of  post-ASA 11dhTxB2 levels. Furthermore, a regression 
model to predict 11dhTxB2 levels (as a dependent vari-
able) showed ASA (P = 0.0293) and obesity (P = 0.0467) 
as statistically significant predictors of  11dhTxB2 levels.

11dhTxB2 excretion shifted below the cut-off  (1500 
pg/mg) after ASA treatment in the majority of  healthy 
controls, leaving 8.4% (7/83) of  subjects classified as 
non-responders. In DM patients, 11dhTxB2 excretion 
shifted below the cut-off  (1500 pg/mg) after ASA in-
gestion in the majority of  patients, except for 14.8% 
(8/46) of  subjects subsequently classified as ASA non-
responders. These results confirm that ASA treatment 
significantly inhibits baseline urinary 11dhTxB2 levels 
in both healthy individuals and DM patients, However, 
there were twice as many ASA poor responders among 
the DM patients possibly implicating a high platelet reac-
tive phenotype associated with DM [40,46,47].

Having established that DM patients express elevated 
baseline levels of  11dhTxB2 and twice as many ASA non-
responders, we investigated the effect of  oxidative stress 
and anti-oxidant biomarkers on 11dhTxB2 excretion in 
DM[35]. Urinary 8-iso-prostaglandin-F2α (8-isoPGF2α) and 
sP-Selectin, nitrite (NO2

-), nitrate (NO3
-) and paraox-

onase 1 (PON1) activity were measured in baseline (ASA 
free) and post-ASA samples from these DM patients and 
controls. Compared to controls, DM expressed increased 
levels of  8-isoPGF2α (1457 vs 1009 pg/mg, P < 0.0001), 
NO2

- (11.8 vs 4.8 µmol/L, P < 0.0001), NO3
- (50.4 vs 

20.9 µmol/L, P < 0.0001) and sP-Selectin (120.8 vs 93.0 
ng/mL, P = 0.02). ASA demonstrated no effect on 
8-isoPGF2α, NO2

-, NO3
-, sP-Selectin or PON1 activity in 

either DM or controls. Again, higher urinary 11dhTxB2 
levels in DM suggest a state of  heightened platelet acti-

30000

25000

20000

15000

10000

5000

0

11
dh

Tx
B2

 p
g/

m
g 

cr
ea

tin
in

e

20        30        40         50        60       70         80       90

Age (yr)

30000

25000

20000

15000

10000

5000

0

11
dh

Tx
B2

 p
g/

m
g 

cr
ea

tin
in

e

0            5           10           15          20           25          30

dis dur (yr)

11-dehydro-thromboxane B2 vs  age (yr)                                                11-dehydro-thromboxane vs  disease duration (yr)

Figure 4  Correlation of baseline (aspirin-free) urinary 11-dehydro-thromboxane B2 levels (pg/mg) measured in healthy individuals and diabetes patients 
with age (left), and disease duration of diabetes patients (right). Red lines: Linear regression fit.

Lopez LR et al . Thromboxane and aspirin response in diabetes 



121 April 15, 2014|Volume 5|Issue 2|WJD|www.wjgnet.com

vation. In addition to platelet hyperactivity, DM patients 
presented with an inflammatory/oxidative background 
not affected by ASA. In fact, among the biomarkers mea-
sured, only urinary 8-isoPGF2α was significantly higher (P 
< 0.009) in DM patients with poor ASA response. These 
findings are in agreement with the hypothesis that an oxi-
dative and inflammatory stress may maintain platelet acti-
vation irrespective of  COX-1 pathway inhibition and/or 
increase the systemic generation of  thromboxane from 
non-platelet sources via COX-2 pathway[34,48-50].

ASA treatment for CVD prevention is a widely ac-
cepted practice according to recommended guidelines, 
but evidence supporting its efficacy is somewhat conflic-
tive and scarce, particularly for patients with DM[51]. The 
JPAD study (Japanese Primary Prevention of  Athero-
sclerosis with ASA for Diabetes) involved 2539 type 2 
DM patients between 40-85 years with no history of  ath-
erosclerosis randomized into ASA (81 or 100 mg/d) or 
non-ASA groups. ASA did not demonstrate a significant 
reduction in risk for any of  the CVD-related endpoints. 
The POPADAD study (Prevention of  Progression of  
Arterial Disease and Diabetes) included 1276 adults (> 
40 years) with type 1 or 2 DM asymptomatic for CVD 
(ankle-brachial index less than 0.99). ASA (100 mg/d) 
also failed to demonstrate a significant reduction in risk 
for any CVD endpoint. Finally, the AAA study (Aspirin 
for Asymptomatic Atherosclerosis) included 3350 adults 
(50-75 years) asymptomatic for CVD (ankle-brachial 
index less than 0.95). ASA (100 mg/d) again did not 
demonstrate a significant reduction in risk for any end-
point. These studies suggest that DM somehow blunts 
the beneficial effect of  ASA in CVD prevention. Ad-

ditional mechanisms to explain these clinical findings are 
forthcoming and likely will help clarify the controversy 
surrounding the concept of  clinical ASA “resistance”.

11DHTXB2 AND ASA RESPONSE IN ACS 
Two clinical studies of  ACS patients will be discussed. 
One study measured urinary 11dhTxB2 levels after ASA 
ingestion on 77 consecutive patients attending acute care 
facilities. ACS patients over 18 years of  age undergo-
ing elective PCI at the participating institutions were 
enrolled. All patients were treated with 325 mg of  ASA 
for at least one week. Each patient provided one urine 
sample while on ASA. The main objective of  the study 
was to assess urinary 11dhTxB2 excretion in response to 
325 mg of  ASA in relation to the manufacture’s cut-off  
value of  1500 pg/mg established in apparently healthy 
individuals. The mean levels of  urinary 11dhTxB2 after 
325 mg of  ASA ingestion was 1550 pg/mg. The major-
ity of  ACS patients responded to ASA with 11dhTxB2 

levels below the cut-off. However, the percent of  ASA 
non-responders in this ACS population was 28.6%. One 
common question ponders the dose of  daily ASA neces-
sary to inhibit COX-1 and overcome ASA poor response. 
Urinary 11dhTxB2 levels were measured in 71 consecu-
tive patients with stable CAD and randomized to receive 
81 mg, 162 mg and 325 mg per day of  ASA for 4 wk. 
The mean 11dhTxB2 decreased from 931 to 763 pg/mg (P 
= 0.046) with increasing doses of  ASA. In this study, the 
rate of  ASA poor responders decreased with increasing 
ASA dosage. This ASA dose-dependent response is in 
agreement with previous reports by Gurbel et al[22]. Thus, 
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  11-dehydro-thromboxane B2 pg/mg 
  Group Mean ± SD Range Median P  value1 % ASA poor resp
  DM baseline (n  = 54)     3665 ± 2465 508-13578 3255 < 0.0001
  DM post-ASA     996 ± 845 50-5016   693 14.8
  Control baseline (n  = 83)     2450 ± 1572 212-12082 2180 < 0.0001
  Control post-ASA     624 ± 509 37-2834   457 8.4

1P  value: paired t  test.

Figure 5  Distribution of baseline (aspirin-free) and post-aspirin urinary 11-dehydro-thromboxane B2 levels (pg/mg) measured in healthy individuals (right) 
and diabetes patients (left). 14.8% of diabetes patients were classified as aspirin (ASA) poor responders compared to 8.4% of healthy controls (post-ASA 11-dehy-
dro-thromboxane B2 over the cutoff 1500 pg/mg).

Diabetes mellitus Health controls

Lopez LR et al . Thromboxane and aspirin response in diabetes 



122 April 15, 2014|Volume 5|Issue 2|WJD|www.wjgnet.com

ASA dose should be considered when evaluating ASA 
poor responses.  

A second study included 287 consecutive aspirin-free 
ACS patients admitted to a hospital in Japan for PCI to 
evaluate a possible association between urinary 11dhTxB2 
levels before and after aspirin ingestion with adverse 
events (AE)[52]. Inclusion criteria included ST elevation 
myocardial infarction (STEMI), non-STEMI or early 
onset (within 24 h) invasive revascularization procedure. 
Upon enrollment and prior to PCI, a baseline (ASA-free) 
urine sample was obtained, followed by a daily regimen 
of  100 mg of  ASA. Urine samples from ASA-treated 
patients were collected at hospital discharge (7-14 d) and 
upon follow up at 6 and 12 mo. Adverse cardiovascular 
events (AE) were recorded during a 12 mo patient fol-
low-up. Primary end-points included stent thrombosis, Q 
wave myocardial infarction (QMI), non-QMI, and death 
(cardiac and non-cardiac). Secondary end-points included 
stroke, transient ischemic attack (TIA), target lesion re-
vascularization of  PCI or CABG, or other vascular event.

The mean age of  these ACS patients was 68.9 years. 
Age did not influence baseline 11dhTxB2 levels (r = 0.060, 
P = 0.310), but females had significantly higher mean 
baseline 11dhTxB2 (7675 pg/mg) compared to males 
(6949 pg/mg, P = 0.0171). The mean baseline ASA-free 
11dhTxB2 was 7322 pg/mg for this cohort of  ACS pa-
tients and was 2-3 times higher than healthy individuals 
(range 2450-3337 pg/mg). ASA significantly suppressed 
(81%, P < 0.0001) of  baseline 11dhTxB2 levels to 1349 
pg/mg at discharge and subsequent time points. The 

distribution of  baseline (before ASA) 11dhTxB2 levels 
of  the ACS patients is shown in Figure 6. In spite of  a 
significant inhibition of  11dhTxB2 by ASA, 28.7% of  
ACS patients were classified as poor responders by fail-
ing to achieve levels below the 1500 pg/mg cut-off. The 
overall rate of  AEs was 17.1%. The rate of  AEs accord-
ing to baseline (ASA-free) 11dhTxB2 levels decreased 
slightly from 19.4% in quartile 1 to 15.5% in quartile 4. 
In contrast, the rate of  AEs in ASA treatment quartiles 
increased from 9.1% in quartile 1 to 24.2% in quartile 3 
and 20% in quartile 4. The relative risk for AEs of  quar-
tile 3 was 2.7 (P = 0.019). When upper quartiles (3 and 4) 
were compared to lower quartiles (1 and 2), the relative 
risk was 2.1 (P = 0.011).

High baseline 11dhTxB2 levels were consistent with 
an underlying platelet hyperactivity that may contribute to 
the development of  atherothrombosis. However, baseline 
ASA-free 11dhTxB2 levels did not predict 1-year AEs. 
High levels (> 1500 pg/mg) of  11dhTxB2 after ASA 
ingestion likely represent extra-platelet (i.e., monocyte/
macrophage-derived) COX-2 production of  thrombox-
ane. The increased relative risk (2.7) for AEs associated 
with high post-ASA 11dhTxB2 levels (upper quartiles) 
suggest that COX-2 production of  thromboxane may be 
a factor associated with a cardiovascular inflammatory 
process. It is important to point out that ASA insensitive 
thromboxane generation has been associated with a pro-
inflammatory milieu and enhanced oxidative stress in 
diabetes. Among several biomarkers tested, only baseline 
urinary 8-isoPGF2α discriminated between normal and 
poor thromboxane responders, suggesting that oxida-
tive stress may maintain platelet function irrespective of  
COX-1 inhibition and/or increased systemic generation 
of  thromboxane from non-platelet sources. Throm-
boxane alone may not be directly implicated in athero-
thrombosis. Nonetheless, these results confirm previous 
reports that post-ASA urinary 11dhTxB2 may be useful 
in predicting adverse outcomes in ACS patients.

Oxidative inflammation (stress) refers to prevail-
ing levels of  reactive oxygen species (ROS) in biologi-
cal systems that overcome their removal by cellular or 
plasma repair (anti-oxidant) mechanisms[53]. The excess 
of  superoxide anion (O2

•-) produced by inflammatory 
cells may exert a free radical attack on cell membranes 
and/or lipoproteins in a process called lipid peroxida-
tion. While the arachidonic acid metabolism mediated by 
enzymatic (COX) pathways has received most attention, 
a non-enzymatic free radical pathway is demonstrating 
relevance. The free radical oxidation of  arachidonic acid 
generates biologically active F2-isoprostanes reflecting 
the oxidative status of  the organism; is considered a 
reliable marker of  oxidative stress in vivo; and has been 
shown to be an independent risk factor for CAD[54,55]. 
Some in vitro studies have demonstrated that 8-isoPGF2α 
is capable of  stimulating platelet activation while other 
studies described pro-atherogenic properties through its 
interaction with the thromboxane platelet receptor (TPR). 
If  8-isoPGF2α binds to TPR, it may also be capable of  
competing with TxA2 and activating the Ca2+/Rho kinase 
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11-dehydro-thromboxane B2 pg/mg 
  ACS (n = 287) Mean ± SD Range Median P  value1 % ASA 

poor resp
  BL (baseline) 7322 ± 13419 86-142691 4242 < 0.0001
  Post-ASA 1349 ± 1110 228-12797 1035 28.7

1P  value: Paired t  test.

Figure 6  Distribution of baseline (aspirin-free) and post-aspirin urinary 
11-dehydro-thromboxane B2 levels (pg/mg) measured in acute coronary 
syndrome patients. 28.7% of acute coronary syndrome patients were classi-
fied as ASA poor responders (post-ASA 11-dehydro-thromboxane B2 over the 
cutoff 1500 pg/mg). ACS: Acute coronary syndrome; ASA: Aspirin.

Acute coronary syndrome
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pathway[56,57]. This may be particularly important because 
while TxA2 enzymatic synthesis is inhibited by ASA, the 
non-enzymatic 8-isoPGF2α production increases, per-
haps as an alternative mechanism to maintain physiologic 
platelet activity. 

Low dose ASA ingestion blocks COX-1 but has no 
effect on COX-2 or 8-isoPGF2α. During an oxidative 
inflammatory response, increased platelet hyperactivity 
would come from the combined COX-1, COX 2 and 
isoprostane (8-isoPGF2α) pathways. If  ingesting ASA, 
platelet hyperactivity would be induced by COX-2 and 
8-isoPGF2α alone. Limited or no COX-1 TxA2 produc-
tion after ASA ingestion would leave unoccupied TPR 
available to bind 8-isoPGF2α that has a longer half-life 
(1-10 min vs 20-30 s) and higher plasma concentration 
(351-1831 vs 1-66 pg/mL) than TxA2

[6]. Thus, blocking 
F2-isoprostane derived from oxidative inflammatory path-
ways not affected by ASA may be considered in CVD 
management especially in those individuals with poor 
ASA response.

CLINICAL SIGNIFICANCE OF 11DHTXB2 
MEASUREMENTS
The irreversible inhibition of  platelet COX-1 and sub-
sequent reduction of  TxA2 production by ASA has been 
recognized long ago, making ASA a cost-effective pre-
vention regimen for atherothrombotic CVD. Low doses 
of  ASA have been claimed to prevent over 150000 heart 
attacks annually. Furthermore, ASA ingestion has ac-
counted for an overall 25% risk reduction of  CV events, 
including a 34% reduction of  non-fatal heart attacks, 
25% of  non-fatal strokes and 18% of  all-cause mortal-
ity. However, between 25% to 50% of  the patients with 
CAD and ACS did not fully benefit from ASA inges-
tion[12,13,58]. Thus, TxB2 measurements to detect those in-
dividuals with poor ASA response and higher CVD risk 
is clinically relevant. 

Our studies demonstrated that baseline (ASA-free) 

urinary 11dhTxB2 excretion showed an upward trend 
across healthy controls, DM and ACS (Figure 7). The 
mean 11dhTxB2 of  the two control groups studied was 
2893.5 pg/mg with an upper range up to 11702 pg/mg. 
The mean for DM groups was 4660.5 pg/mg with an up-
per range up to 20619 pg/mg and for ACS patients the 
mean was 7322 pg/mg with an upper range over 100000 
pg/mg. The rate of  ASA poor responders had a similar 
upward trend: controls with 8.4%, DM 14.8% and ACS 
over 28%. 

Baseline 11dhTxB2 levels in both the healthy and 
diseased populations clearly indicated a wide range of  
platelet reactivity with a considerable overlap among the 
groups. This wide range observed likely prevented the 
establishment of  an ASA-free 11dhTxB2 cut-off  or even 
a normal range for clinical use. One relevant observa-
tion from the ACS study was that over 40% of  ACS 
patients with high baseline (ASA-free) 11dhTxB2 showed 
a poor response after ASA ingestion. This observation 
is in agreement with the concept that higher baseline 
levels in DM and ACS patients may predict higher rates 
of  ASA poor responders. An explanation for these find-
ings comes from reports that patients with metabolic 
syndrome (obesity, dyslipidemia, insulin resistance) have 
increased oxidative stress (oxLDL), higher CVD risk[59], 
platelet hyperactivity[60] and suboptimal inhibition of  
platelet COX-1 by aspirin[61], suggesting that higher TxB2 

places these patients at higher risk for thromboembolic 
events. 

Russo et al[18] described that diet-induced weight loss 
in subject with central obesity reduces platelet activa-
tion restoring the sensitivity to anti-platelets agents. The 
Health Aging and Body Composition Study reported 
that the inflammatory marker interleukin-6 was a robust 
predictor for new negative health-related events and 
high urinary 8-isoPGF2α and 11dhTxB2 were associated 
with higher mortality risk[62]. More recently, Santilli et al[63] 
reported that high intensity physical exercise has broad 
beneficial effect on platelet activation biomarkers; urinary 
11dhTxB2 and 8-isoPGF2α decreased 26% and 21% re-
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Figure 7  Mean and upper range of baseline (aspirin-free) urinary 11-dehydro-thromboxane B2 levels (pg/mg) measured in healthy controls, diabetes and 
acute coronary patients (left), and percent (%) of aspirin poor responders (post-aspirin 11-dehydro-thromboxane B2 over the cutoff 1500 pg/mg) in the 
populations studied (right). DM: Diabetes; ACS: Acute coronary syndromes.
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spectively and esRAGE increased 61% compared to the 
sedentary control group and multiple regression analysis 
demonstrated that 8-isoPGF2α and esRAGE were the 
only significant predictors of  11dhTxB2 levels. 

The suggestive algorithm discussed below (Figure 
8) was developed taking into account the clinical stud-
ies discussed above and is proposed to interpret urinary 
11dhTxB2 results for CVD risk management.

If the subject is not taking aspirin and the 11dhTxB2 
level is
Below 2500 pg/mg: no action is necessary; Between 2500 
and 10000 pg/mg: consider giving ASA to assess ASA 
response and/or consider other underlying CVD risk 
factors; Over 10000 pg/mg: give ASA to assess ASA re-
sponse and/or look for other CVD risk factors. 

If the subject is taking ASPIRIN and the 11dhTxB2 level 
is
Below 1500 pg/mg: no action is necessary (good ASA re-
sponse), continue monitoring CVD risk; Above 1500 pg/
mg: the subject is a poor ASA responder (“resistance”). 
Consider patient compliance, adjusting ASA dosage, ad-
ditional anti-platelet therapy, etc. And more importantly 
investigate and modify underlying CVD risk factors such 
as dyslipidemia and inflammatory/oxidative pro-athero-
genic background likely responsible for the incomplete 
inhibition of  thromboxanes.

The major impact of  this algorithm is that consis-
tently high baseline 11dhTxB2 levels in subjects not 
taking ASA may justify further investigations for under-
lying CVD risks. However, only the presence of  post-
ASA high 11dhTxB2 levels predicts increased risk of  
atherothrombotic disease. This highlights the need of  

a comprehensive (multimodal-approach) management 
that includes both anti-platelet as well as anti-atherogenic 
treatments. 

CONCLUSION
Poor response to ASA frequently indicates an underlying 
incomplete COX-1 inhibition and increased CVD risk. 
Among several assays used to measure ASA effect on 
platelets, urinary 11dhTxB2 reflects systemic production 
of  thromboxanes and platelet reactivity directly affected 
by ASA. The incidence of  ASA poor responders increas-
es in DM and ACS patients, suggesting an active oxida-
tive/inflammatory background likely responsible for both 
a continued platelet hyperactivity and a pro-atherogenic 
phenotype not affected by ASA.

Our studies of  urinary 11dhTxB2 levels in response to 
ASA ingestion in diseased populations indicate the fol-
lowing: (1) patients with DM and CAD have significantly 
higher mean baseline levels of  urinary 11dhTxB2 than 
healthy controls likely indicating a higher platelet activa-
tion and risk for CVD. Female gender seems to have a 
weak positive influence on 11dhTxB2 and platelet reac-
tivity; (2) ASA ingestion significantly inhibited urinary 
11dhTxB2 in DM, ACS and controls. However, the rate 
of  DM ASA poor responders (14.8%) was about 2 times 
higher than controls (8.4%). This may also be a reflection 
of  an increased platelet activation status in DM patients; 
(3) the rate of  ACS ASA poor responders (28.7%) was 
about 3 times higher than controls; and (4) The results of  
the studies provide additional support to the laboratory 
measurement of  urinary 11dhTxB2 levels not only in ap-
parently healthy individuals but also in patients with DM 
and CAD to assess their response to ASA ingestion.
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Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease 
in which both genetic and environmental factors in-
teract in determining impaired β-cell insulin secretion 
and peripheral insulin resistance. Insulin resistance in 
muscle, liver and fat is a prominent feature of most 
patients with T2DM and obesity, resulting in a reduced 
response of these tissues to insulin. Considerable evi-
dence has been accumulated to indicate that heredity is 
a major determinant of insulin resistance and T2DM. It 
is believed that, among individuals destined to develop 
T2DM, hyperinsulinemia is the mechanism by which the 
pancreatic β-cell initially compensates for deteriorating 
peripheral insulin sensitivity, thus ensuring normal glu-
cose tolerance. Most of these people will develop T2DM 
when β-cells fail to compensate. Despite the prog-
ress achieved in this field in recent years, the genetic 
causes of insulin resistance and T2DM remain elusive. 
Candidate gene association, linkage and genome-wide 
association studies have highlighted the role of genetic 
factors in the development of T2DM. Using these strat-
egies, a large number of variants have been identified 
in many of these genes, most of which may influence 
both hepatic and peripheral insulin resistance, adipo-
genesis and β-cell mass and function. Recently, a new 

gene has been identified by our research group, the 
HMGA1 gene, whose loss of function can greatly raise 
the risk of developing T2DM in humans and mice. Func-
tional genetic variants of the HMGA1 gene have been 
associated with insulin resistance syndromes among 
white Europeans, Chinese individuals and Americans of 
Hispanic ancestry. These findings may represent new 
ways to improve or even prevent T2DM.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Genome-wide association study; Candidate 
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Core tip: Despite the progress in clinical and labora-
tory investigations, the fundamental cause of type 2 
diabetes mellitus (T2DM) remains uncertain. Candidate 
gene, linkage and genome-wide association studies 
have highlighted the role of genetics in the develop-
ment of T2DM. Using these strategies, a large number 
of variants have been identified in many genes, most 
of which may influence an individual’s risk of develop-
ing T2DM. In this review, we compile information on 
genetic factors that influence the risk of T2DM. In addi-
tion, we discuss the results from recent studies on the 
role of HMGA1 on the issue, which might be important 
for future breakthroughs in this field.
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a chronic endocrine 
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and metabolic disease that is often associated with be-
ing overweight or frank obesity. It affects millions of  
people worldwide, with a rapidly increasing incidence and 
prevalence[1,2]. The latest estimate from the International 
Diabetes Federation (http://www.idf.org) is equivalent to 
a global prevalence rate of  8.4% of  the adult population, 
while worldwide diabetes cases hit a new record at 382 
million in 2013. Among the determinants of  this steadily 
increasing trend is the combination of  genetic and envi-
ronmental factors responsible for either a positive energy 
balance resulting in body fat accumulation and weight 
gain and/or a reduced energy expenditure from a reduc-
tion in physical activity and a sedentary lifestyle. Despite 
extensive attempts at clinical management of  T2DM, 
many diabetic patients will develop a wide variety of  
long-term complications, including retinopathy, nephrop-
athy and cardiovascular diseases that are among the most 
frequent causes of  morbidity and mortality in affected 
people, whose effective prevention and treatment require 
enormous efforts and funding[3]. Typically, T2DM is pre-
sented as a common, heterogeneous, complex disease in 
which both predisposing genetic factors and precipitat-
ing environmental factors interact together and cause 
hyperglycemia, which constitutes the primary hallmark of  
T2DM[4,5]. Although still poorly understood, the role of  
genetics in T2DM is well documented. This is supported 
by a series of  evidence, including the strong familial ag-
gregation of  the disease, in which the risk of  developing 
T2DM is 40% for those who have an affected parent 
(higher if  the mother rather than the father) and 70% 
if  both parents are diabetics[6]. The highest risk in first-
degree relatives, compared to the general population, per-
sists even after removal from the family of  origin, for ex-
ample, as a result of  adoption. Furthermore, in identical 
monozygotic twins (with identical genetic makeup), the 
concordance rate for the disease approaches 100%, much 
higher than that seen in non-identical (dizygotic) twins or 
among siblings[7]. Genetic predisposition in T2DM is also 
supported by the observation that differences in disease 
prevalence rates exist among populations, even after mi-
gration of  entire ethnic groups to another country, thus 
independent from the environmental influences[8].

On the other hand, the role of  environmental fac-
tors in influencing susceptibility to T2DM is equally well 
known. Among these factors are increased caloric intake 
and a sedentary lifestyle, two conditions common in 
populations with a higher standard of  living and a more 
westernized lifestyle, responsible for most of  the ex-
cess weight and obesity in the modern adult’s life[9]. The 
spread of  the western way of  life in developing countries 
also explains the epidemic explosion of  the disease[1,2], 
whereas the existing epidemiological data show that the 
spatial and temporal distribution of  T2DM in the geo-
graphical areas examined is comparable to the trend of  
being overweight and obesity[10]. The excess weight causes 
insulin resistance, which represents the initial step in the 
natural history of  T2DM. Initially, in individuals destined 
to become diabetic, pancreatic β-cells compensate for the 
insulin resistance by secreting increased levels of  insulin, 

thus ensuring post-prandial euglycemia[11]. Hyperglycemia 
in insulin resistant subjects develops later when the β-cells 
fail to compensate. Thus, from a pathophysiological 
standpoint, T2DM is characterized by a combination of  
peripheral insulin resistance and inadequate insulin secre-
tion by the pancreatic β-cells. As supported by numerous 
studies in the literature[12,13], both defects are the result of  
a complex interaction between genetic and environmen-
tal factors (Figure 1), including chemical agents (calcium 
and zinc ions) and polluting organic substances that are 
suspected to play a role in amyloid fiber formation in 
pancreatic β-cells, thus contributing to the pathology 
of  T2DM[14-17]. The involvement in the pathogenesis of  
T2DM of  multiple genes that interact with each other in 
an epistatic manner may explain why, despite the enor-
mous efforts made to date, the identification of  genetic 
determinants responsible for an increased susceptibility 
to T2DM still remains unsolved[18,19].

The present review aims to give an overview of  the 
recent findings in this context. We also discuss the results 
from some recent studies which might be important for 
future breakthroughs in this field.

GENETIC STUDIES
Over the past few years, various international research 
centers have been involved in the study and identification 
of  genes predisposing to T2DM using various methods 
of  investigation. Linkage analysis was used to identify 
potential genes associated with the disease, starting 
from the analysis of  families and then studying a small 
number of  individuals genetically related to each other. 
Genotyping for genetic markers in family members with 
and without T2DM has allowed the identification of  
DNA regions containing loci associated with disease risk. 
Thanks to this method, the association of  T2DM with 
the calpain-10 (CAPN10) gene[20] was initially identified 
and later its association with the transcription factor 7-like 
2 (TCF7L2) gene[21], whose genetic variants in affected 
individuals increase the risk of  diabetes approximately 1.5 
times[19]. 

Another approach used was to search for genetic 
variants within functional candidate genes encoding 
for protein(s) with important implications for glucose 
homeostasis and positional candidate genes that have 
a genetic association on the basis of  a previous linkage 
study. This experimental strategy is applied to population 
studies rather than studies of  families. Association studies 
of  functional candidate genes represent one of  the most 
powerful approaches as the pathogenetic mechanism of  
any genetic abnormality would be easily explained. The 
limit of  this strategy, however, is constituted by the fact 
that it allows focused attention on a single gene at a time. 
Although many studies have reported associations of  
functional and positional candidate genes with T2DM, 
only some of  these showed a significant and reproducible 
association with the disease (Table 1).

From 2007 onwards, the list of  candidate genes has 
grown considerably, largely due to genome-wide associa-
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  Gene Chr Odds ratio RAF Study Function and probable mechanism Ref

  ADAMTS9   3 1.09-1.05 0.68-0.81 MA Metalloproteinase/Insulin action [22–24]
  ADCY5   3 1.12 0.78 MA Adenylyl cyclases/Insulin action [25]
  ANK1   8 1.09 0.76 MA, CC Cell stability/β-cell function [26–28]
  ANKRD55   5 1.08 0.7 MA, CC Insulin action [26,27]
  ANKS1A   6 1.11 0.91 GWAS Pathway regulator/Unknown [29]
  ARAP1 11 1.08-1.14 0.81-0.88 GWAS, MA Actin cytoskeleton modulator/β-cell function [22,24]
  BCAR1 16 1.12 0.89 MA, CC Docking protein/β-cell function [26,27]
  BCL2 18 1.09 0.64 GWAS Cell death regulator/Unknown [24]
  BCL11A   2 1.08-1.09 0.46 MA Zinc finger/β-cell function [22]
  CAMK1D
  CDC123

10 1.07-1.11 0.18 LA, MA Protein kinase/β-cell function [22–24]
Mitotic protein/β-cell function

  CAPN10   2 1.09-1.18 0.73-0.96 MA Calpain cysteine protease/Insulin action [30–33]
  CDKAL1   6 1.10-1.20 0.27-0.31 GWAS, MA β-cell function [24,34–36]
  CDKN2A
  CDKN2B

  9 1.19-1.20 0.82-0.83 GWAS Cyclin-dependent kinase inhibitor/β-cell function [24,34,35]

  CENTD2 11 1.08-1.13 0.81-0.88 GWAS β-cell function [22,24]
  CHCHD9
  TLE4

  9 1.11-1.20 0.93 MA Unknown [22]

  CILP2 19 1.13 0.08 MA, CC Unknown [26,27]
  DGKB   7 1.04-1.06 0.47-0.54 MA Diacylglycerol kinase/Insulin action [24,25]
  DUSP9 X 1.09-1.27 0.12-0.77 MA Phosphatase [22,24]
  FOLH1 11 1.10 0.09 GWAS Transmembrane glycoprotein/Unknown [24]
  FTO 16 1.06-1.27 0.38-0.41 GWAS, MA Metabolic regulator/Insulin action [24,37]
  GATAD2A 19 1.12 0.08 GWAS Transcriptional repressor/Unknown [24]
  GCK   7 1.07 0.20 MA Glucokinase/Insulin action [25]
  GCKR   2 1.06-1.09 0.59-0.62 MA Glucokinase regulator/Insulin action [24,25]
  GIPR 19 1.10 0.27 GWAS G-protein coupled receptor/Unknown [24]
  GRB14   2 1.07 0.60 MA, GCS Adapter protein/Insulin action [26,27]
  HFE   6 1.12 0.29 MA Membrane protein/Unknown [38]
  HHEX 10 1.12-1.13 0.53-0.60 AL, MA Transcriptional repressor/ [22,24,34,39]
  IDE Intracellular insulin degradation/
  KIF11 Motor protein
  HMG20A 15 1.08 0.68 MA, GCS Chromatin-associated protein/Unknown [26,27]
  HMGA1   6 1.34-15.8 0.10 GCS Transcriptional regulator/Insulin action [40-42]
  HMGA2 12 1.10-1.20 0.09-0.10 MA Transcriptional regulator [22,24]
  HNF1A 12 1.07-1.14 0.77-0.85 MA Pancreatic and liver transcriptional activator [22,24]
  HNF1B 17 1.08-1.17 0.47-0.51 GCS, MA Transcription factor/β-cell function [22,24]
  IGF2BP2   3 1.14 0.29-0.32 GWAS, MA Binding protein/β-cell function [22,24,34,35]
  IRS1   2 1.09-1.12 0.64-0.67 GCS, MA Insulin signaling element/Insulin action [22,24,43]
  JAZF1   7 1.10 0.52 MA Zinc finger/β-cell function [22,23]
  KCNJ11 11 1.09-1.14 0.37-0.47 GCS, MA Potassium channel/β-cell function [22,24,34,44]
  KCNQ1 11 1.08-1.23 0.44 GWAS Potassium channel/β-cell function [22,45,46]
  KLF14   7 1.07-1.10 0.55 MA Transcription factor/Insulin action [22]
  KLHDC5 12 1.10 0.80 MA, CC Mitotic progression and cytokinesis/Unknown [26,27]
  LAMA1 18 1.13 0.38 GWAS Cellular migration mediator/Unknown [29]
  MC4R 18 1.08 0.27 MA, CC G-protein–coupled receptor/Unknown [26,27]
  MTNR1B 11 1.05-1.08 0.28-0.30 GWAS, MA Melatonin receptor/β-cell function [24,47-49]
  NOTCH2   1 1.06-1.13 0.10-0.11 MA Membrane receptor [22-24]
  PPARG   3 1.11-1.17 0.85-0.88 GCS, MA Nuclear receptor/Insulin action [22,24,34,50]
  PRC1 15 1.07-1.10 0.22 MA Cytokinesis regulator [22]
  PROX1   1 1.07 0.50 MA Homeobox transcription factor/Insulin action [25]
  PTPRD   9 1.57 0.10 GWAS Protein tyrosine phosphatase [51]
  RBMS1   2 1.11-1.08 0.79-0.83 MA DNA modulator/Insulin action [24,52]
  SLC2A2   3 1.06 0.74 GWAS Glucose sensor/β-cell function [24]
  SLC30A8   8 1.11-1.18 0.65-0.70 GWAS, MA Zinc efflux transporter/β-cell function [22,24,25,34,53]
  SREBF1 17 1.07 0.38 GWAS Lipid transcriptional regulator/Unknown [24]
  SRR 17 1.28 0.69 GWAS Serine racemase [51]
  TCF7L2 10 1.31-1.71 0.26-0.30 LA, MA,GWAS Participates in the Wnt signaling pathway/β-cell 

function
[21,22,24,34]

  THADA   2 1.15 0.90 MA Thyroid adenoma-associated protein/β-cell function [22-24]
  TH/INS 11 1.14 0.39 GWAS Catecholamine synthesis/Unknown [24]
  TLE1   9 1.07 0.57 MA, CC Transcriptional corepressor/Unknown [26,27]
  TP53INP1   8 1.06-1.11 0.48 MA Proapoptotic protein/Unknown [22]
  TSPAN8 12 1.06-1.09 0.27-0.71 MA Cell surface glycoprotein/β-cell function [22-24]
  LGR5 G-protein coupled receptor/β-cell function
  WFS1   4 1.10-1.13 0.60-0.73 GCS Transmembrane protein/β-cell function [22,24,54,55]
  ZBED3   5 1.08-1.16 0.26 MA Zinc finger/b-cell function [22]

Table 1  Type 2 diabetes mellitus susceptibility genes

Brunetti A et al . Genetics of type 2 diabetes mellitus Brunetti A et al . Genetics of type 2 diabetes mellitus Brunetti A et al . Genetics of type 2 diabetes mellitus 



131 April 15, 2014|Volume 5|Issue 2|WJD|www.wjgnet.com

understood. In this respect, the intrinsic limitations of  
both the linkage analysis and GWAS are amplified by the 
fact that, in most cases, the genetic variants identified are 
located in non-coding regions of  the DNA, whereby it 
becomes even more difficult to trace the role and influ-
ence of  the associated gene in the development of  the 
disease. In cases in which it was possible to ascertain the 
precise pathogenic mechanism, for example, through the 
study of  association with the circulating levels of  insulin 
or through the direct analysis of  the gene’s protein prod-
uct, it has been seen that most of  the genes identified are 
involved in pancreatic β-cell mass and/or function, thus 
with implications in insulin secretion defects (Table 1). 
This observation suggests that most of  the risk associ-
ated with T2DM in the general population relates to ge-
netic defects in β-cells, while peripheral insulin resistance 
predominantly suffers from the environmental compo-
nent[18,19,60].

GENES INVOLVED IN β-CELL INSULIN 
SECRETION
Figure 2 depicts some of  the genes whose alteration 
confers an elevated risk of  T2DM. Using the analysis 
of  functional or positional candidate genes, several vari-
ants have been identified, including polymorphisms of  
the gene insulin receptor substrate-1 (IRS-1)[22,24,43]. The 
Gly972Arg variant of  IRS-1 determines a defect in the 

tion studies (GWAS), a technique commonly used to find 
links between genes and diseases across a substantial pop-
ulation. This strategy uses a database of  over a million 
known genetic variants, which represent the majority of  
all common variants (minor allele frequency > 5%-10%), 
thus offering the possibility of  simultaneously analyzing 
thousands of  variations in a large number of  patients and 
to perform meta-analysis of  data from multiple studies. 
This methodology has helped to identify dozens of  new 
associations between T2DM and genes with known or 
unknown functions (Table 1)[22-57], confirming some of  
the results from previous studies. However, despite the 
great potential of  this approach, it is estimated that ge-
netic variants identified through GWAS explain only 10% 
heritability for T2DM[58,59]. These relatively modest results 
can be explained taking into account some important 
limits of  this strategy, such as the involvement of  novel 
genetic variants not yet covered in the GWAS database, 
or the presence of  variants with a frequency lower than 
the minimum threshold value. This means that the genes 
identified by GWAS so far are just the tip of  the iceberg 
and that T2DM, far from being a condition limited to a 
few genetically and phenotypically prevalent forms, actu-
ally encompasses a heterogeneous group of  genetically 
distinct disorders[18]. 

However, in many genetic studies carried out to date, 
the functional mechanism(s) by which the associated 
gene may increase susceptibility to T2DM is often poorly 

  ZFAND6 15 1.01-1.11 0.60-0.72 MA Zinc finger/β-cell function [22,24]
  ZMIZ1 10 1.08 0.52 MA, CC Transcriptional regulator/Unknown [26,27]
  Haplogroup B mtDNA 1.52 0.25 GCS [56]
  OriB mtDNA 1.10 0.30 MA [57]

Chr: Chromosome; MA: Meta-analysis; LA: Linkage analysis; GWAS: Genome-wide association study; GCS: Gene candidate study.
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Figure 1  Overview of the pathogenic factors 
underlying development of type 2 diabetes 
mellitus. As a complex disease, T2DM is caused 
by a combination of genetic, environmental and 
lifestyle factors, all of which interact together to 
produce insulin resistance and β-cell dysfunc-
tion, leading to hyperglycemia, which is the clini-
cal hallmark of diabetes. FFA:  Free fatty acids.
T2DM: Type 2 diabetes mellitus.
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binding of  the p85 subunit of  the phosphatidylinosi-
tol 3-kinase (PI3K) which in pancreatic β-cells causes 
a marked decrease in insulin secretion in response to 
glucose and sulfonylureas[61]. Other polymorphisms im-
plicated in T2DM have been identified in the ABCC8 
(also known as SUR1) and KCNJ11 genes, whose protein 
products take place in the formation of  the Adenosine 
triphosphate (ATP)-sensitive potassium channel/sulfo-
nylurea receptor of  the pancreatic β-cell. The therapeutic 
response to sulfonylureas is compromised in patients with 
mutations in these genes. Other genes whose mutations 
were initially considered responsible for the less common 
forms of  diabetes mellitus have subsequently been asso-
ciated with an increased risk of  T2DM[19]. Among these 
are the hepatocyte nuclear factor-1 homeobox A ( AHN-
F1A) gene, whose mutations are responsible for the most 
common monogenic form of  MODY (MODY3), a form 
of  maturity onset diabetes of  the young (also known as 
HNF1A-MODY), and the gene hepatocyte nuclear fac-
tor-1 homeobox B (HNF1B), which determines a less 
frequent but more severe monogenic form of  diabetes, 
the MODY5. Both of  these genes encode nuclear tran-
scription factors involved in the development and func-
tion of  pancreatic islets.

As already mentioned, the association between TC-
F7L2 gene polymorphisms and susceptibility to T2DM 
was highlighted initially by linkage studies and confirmed 
thereafter by GWAS. However, only recently has the role 
played by the transcription factor TCF7L2 in the β-cell 
insulin secretion become evident[62]. Another gene that 
has recently been associated with T2DM is the melato-
nin receptor 1B (MTNR1B) gene which encodes for the 
receptor of  the pineal hormone melatonin, MTNR1B, 
that is involved in the regulation and facilitation of  sleep. 
Genetic variants of  the MTNR1B gene, associated with 
gain-of-function of  the MTNR1B receptor protein and a 
reduction in insulin secretion, have been reported in dia-
betic patients with abnormalities in melatonin secretion 
and circadian rhythm disorders of  the sleep-wake cycle[63]. 
Another example of  genetic abnormality associated with 

β-cell dysfunction and the risk of  T2DM involves the 
ADRA2A gene that encodes for the alpha 2A-adrenergic 
receptor, which mediates the adrenergic suppression of  
insulin secretion[60]. Diabetic patients with polymorphisms 
of  the ADRA2A gene may have overexpression of  the 
alpha 2A receptor, resulting in insulin secretion deficiency. 
In pancreatic islets obtained from diabetic patients car-
rying this variant, pharmacological treatment with alpha 
(2A)-AR antagonists rescued insulin secretion[64].

Recently, large scale GWAS meta-analyses and im-
putation-based GWAS studies have demonstrated that 
the ankyrin 1 gene, a gene encoding for a protein of  the 
ankyrin family, is associated with T2DM in different eth-
nicities[26-28]. Ankyrin 1 is typically expressed in the eryth-
rocytes and functions as an adaptor molecule between 
membrane and skeleton proteins. Interestingly, mutations 
of  this gene are known to determine hereditary sphero-
cytosis. How this protein can be implicated in T2DM is 
not yet understood; however, ankyrin 1 is also expressed 
in β-cells, where a cognate protein, ankyrin B, plays a role 
in regulating ATP sensitivity by interacting with the sul-
phonylurea receptor isoform SUR1. 

Another recent study has identified new loci and 
variants in a large-scale gene-centric meta-analysis that 
included the SLC2A2 (solute carrier 2A2) gene[24]. This 
gene encodes the glucose transporter Glut2, which is 
expressed in pancreatic β-cells, liver and kidney, and 
functions as a glucose sensor to maintain glucose homeo-
stasis. These findings support a previously postulated role 
of  Glut2 in T2DM[65]. Also, variants of  genes involved in 
the cell cycle, like the CDKN2A and CDKN2B (cyclin-
dependent kinase inhibitor 2A and 2B) genes, have been 
associated with T2DM. Although not proved in humans, 
data from animal models support the idea that these ge-
netic variants may affect β-cell mass later in life[66].

GENES INVOLVED IN INSULIN 
RESISTANCE
The first step in the mechanism of  action of  insulin is 

Figure 2  Schematic representation of the 
pancreatic β-cell. Reduced insulin secretion 
is shown in β-cells with gene variants linked to 
T2DM. Genes associated with defects in β-cell 
mass and/or function are indicated in white italic 
uppercase. T2DM: Type 2 diabetes mellitus.
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the interaction of  the hormone with its specific receptor, 
the insulin receptor (INSR), on the cell surface of  insulin 
responsive cells and tissues (Figure 3). The functional ac-
tivation of  INSR is a key moment in the pathophysiology 
of  insulin action, followed by the selective activation of  
specific intracellular signaling pathways which are neces-
sary for proper hormonal signal transduction. Although 
defects in INSR have been reported in a large number of  
patients with T2DM, mutations in the INSR gene have 
been found only in a small percentage (3%-4%) of  these 
patients in whom genetic defects leading to receptor 
protein abnormalities were identified as cause of  disease. 
However, certain patients with apparently normal INSR 
genes have reduced expression of  both the INSR protein 
and INSR mRNA levels[13,18,19]. In these patients, it is pos-
sible that there are mutations in genes encoding trans-
acting factors which regulate the level of  INSR gene 
expression[40]. 

The mechanisms by which gene variants may impair 
insulin action in insulin target tissues are schematized in 
Figure 3. Among the genes involved in insulin resistance 
are those encoding for the glucokinase regulatory protein, 
GKRP, and the insulin-like growth factor-Ⅰ, IGF-Ⅰ. 
Genetic variants of  these genes that predispose a person 
to develop insulin resistance have been recently identified 
by GWAS[25]. In addition, T2DM risk alleles at three loci 
(at FTO, KLF14 and PPARG) have been associated with 
higher fasting insulin (which is consistent with a primary 
defect on insulin action) and reduced insulin sensitiv-
ity[22]. In particular, variations in the fat mass and obesity-
associated (FTO) gene appear to influence predisposition 
to T2DM through a positive effect on body mass index 
and obesity. Instead, the Krüppel-like factor 14 (KLF14) 
gene is considered a super gene with the ability to control 
other genes linked to body fat. The risk alleles at KLF14, 
along with those at peroxisome proliferator-activated re-
ceptor gamma (PPARG), appear to have a primary effect 
on insulin action which, unlike the alleles at FTO, is not 
driven by obesity[22]. 

A recently uncovered gene implicated in T2DM is 
the growth factor receptor-bound 14 (GRB14) gene[26,27], 
which codes for the Grb14 adaptor protein. Grb14 con-
tains a C-terminal SH2 domain implicated in the inter-
action with a number of  tyrosine kinase receptors and 
signaling proteins, and a domain called BPS (between 
pleckstrin homology), also required for binding to the 
INSR. This protein has been shown to specifically at-
tenuate insulin action by inhibiting the catalytic activity of  
the INSR in insulin target tissues[67]. Many other recently 
identified diabetes-associated genes play still unknown 
roles in the pathophysiology of  T2DM. Among them, 
the sterol regulatory element-binding transcription factor 
1 (SREBF1) gene, which is involved in the transcriptional 
regulation of  lipid homeostasis[24], and the high mobility 
group 20A (HMG20A) gene, which encodes a chroma-
tin-associated protein and has previously been associated 
with a greater incidence of  diabetes in obese subjects[26,27]. 

THE HIGH MOBILITY GROUP A1 GENE
Among the group of  genes recently associated with insu-
lin resistance and T2DM is the HMGA1 gene, which en-
codes the architectural transcription factor, High Mobility 
Group A1 (HMGA1), a nonhistone basic protein that 
binds to AT-rich sequences of  DNA via AT hooks, fa-
cilitating the assembly and stability of  a multicomponent 
enhancer complex, the ‘‘enhanceosome’’, which drives 
gene transcription[68]. We previously found that HMGA1 
is a key regulator of  INSR gene expression[69-71] (Figure 4). 
Consistent with these findings, we identified two patients 
with insulin-resistant T2DM who had defects in HMGA1 
expression and concomitant decreased INSR mRNA and 
protein in muscle, fat and circulating monocytes[72]. These 
individuals had normal INSR genes but had a novel 
genetic variant (c.*369del) in the 3’ noncoding region of  
the HMGA1 mRNA that contributed to the reduction 
of  mRNA half-life and subsequent decline in HMGA1 
expression. Epstein-Barr virus (EBV)-transformed 
lymphoblasts from these patients demonstrated defects 
in HMGA1 and INSR expression, indicating that the 
defects observed in vivo were not due to the altered meta-
bolic state of  the patients. In addition, the in vitro restora-
tion of  HMGA1 RNA and protein expression in these 
cells normalized INSR gene expression and restored both 
cell-surface INSR protein expression and insulin binding 
capacity[72]. The pathogenetic role of  HMGA1 in T2DM 
was confirmed in genetically modified mice, in which the 
loss of  HMGA1 expression (induced by disrupting the 
HMGA1 gene) considerably decreased INSR expression 
in the major target tissues of  insulin action[72], thus sup-
porting the concept that functional HMGA1 gene vari-
ants decrease INSR expression in human and mice.

In the context of  these investigations, we later 
showed that four functional variants of  the HMGA1 
gene, leading to reduced INSR expression, were associ-
ated with insulin resistance and T2DM[40]. The most 
frequent functional HMGA1 variant, c.136-14_136-
13insC (also designated rs146052672), was detected in 
7%-8% of  patients with diabetes in individuals of  white 
European ancestry[40]. Analysis of  cultured EBV-trans-
formed lymphoblasts from patients with T2DM and the 
rs146052672 variant revealed that these cells had lower 
levels of  HMGA1 and INSR protein than cells from 
either patients with wild-type T2DM or controls. Once 
again, in transformed lymphoblasts from the patients 
with the HMGA1 rs146052672 variant, restoration of  
HMGA1 protein expression by complementary DNA 
transfection (in the sense but not antisense direction) 
restored INSR protein expression and insulin binding 
to these cells[40]. Although not replicated in a heteroge-
neous French population[73], the HMGA1 rs146052672 
variant was significantly associated with T2DM among 
Chinese[41] and Hispanic-American[38] individuals. Further 
evidence, implicating the HMGA1 locus as one confer-
ring a high cross-race risk for the development of  insulin 
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resistant diseases, has been provided recently by showing 
that the HMGA1 rs146052672 variant significantly asso-
ciates with the metabolic syndrome in Italian and Turkish 
individuals and predisposes these (and other) populations 
to the unfavorable anthropometric and metabolic traits 
of  the metabolic syndrome[74,42]. 

Overall, these data are consistent with the impres-
sion that the association of  HMGA1 gene variants with 
T2DM is accomplished through a pathogenetic mecha-
nism related to peripheral insulin resistance. However, 
additional studies in vitro and in vivo, in normal and mu-
tant mice, indicate that HMGA1, in addition to its role 
on INSR gene and protein expression, acts as a novel 
downstream target of  the INSR signaling pathway[75], 
thus representing a critical nuclear mediator of  insulin 
action and function. In this regard, evidence has been 
provided indicating that HMGA1 plays an essential role 
in the transcriptional regulation of  a variety of  insulin-
target genes, such as the IGFBP-1 gene, as well as the 
gluconeogenic genes PEPCK and G6Pase[76], contribut-
ing to the transcriptional regulation of  glucose homeo-

stasis.

PERSPECTIVES
Significant advances have been made in recent years in 
relation to the pathogenesis of  T2DM. This has sig-
nificantly improved our knowledge of  one of  the most 
serious health threats in the world, allowing identifica-
tion of  genes and pathways involved in the development 
and progression of  the disease. It has recently become 
possible to acquire molecular and genetic level informa-
tion from an individual (i.e., DNA genotyping, gene ex-
pression, epigenomic profile, etc.). However, while such 
information is becoming increasingly available, how the 
identified genes and pathways impact on T2DM still re-
main largely unknown, due to the multifactorial nature of  
the disease. Understanding the pathogenesis of  T2DM is 
necessary to enable the identification of  prognostic and 
predictive biomarkers, as well as new therapeutic targets, 
which in turn should lead to improved outcomes in af-
fected patients. Thus, once new therapeutic targets of  

Figure 3  Mechanisms of insulin 
resistance. The figure shows the 
mechanisms by which gene variants 
may impair insulin action in the in-
sulin target tissues muscle, fat and 
liver. Peripheral insulin resistance 
in muscle and fat reduces cellular 
glucose uptake, whereas insulin 
resistance in liver results in a failure 
to suppress glucose production and 
gluconeogenesis. Genes whose 
variations can influence the risk of 
developing insulin resistance and 
T2DM are indicated in black italic 
uppercase. T2DM: Type 2 diabetes 
mellitus.

Figure 4  Model for the role of High Mobility Group A1 in type 2 diabetes mellitus. As a transcriptional regulator of the INSR gene, HMGA1 gene variants may lead to 
decreased INSR gene transcription. This loss of insulin receptor (INSR) underlies the resultant insulin resistance and T2D in affected individuals. T2D: Type 2 diabetes.
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interest are identified, it is necessary to develop molecules 
that can rescue function to disease-associated genes or 
pathways and conduct studies that provide new strategies 
for the treatment of  T2DM.

CONCLUSION
T2DM is a heterogeneous disease with a strong genetic 
component and familial inheritance. Considerable effort 
has been made in the last decades to identify genes that 
may explain all the diabetic phenotypes. Currently, how-
ever, genetic studies on T2DM can explain only a small 
percentage of  its heritability. Until now, the HMGA1 
gene displays the strongest association with T2DM and 
its most frequent variant, rs146052672, confers the high-
est risk for human T2DM. Hence, from a strategic point 
of  view, this finding suggests directing future research 
towards the identification of  rare genetic variants with a 
stronger association, rather than common variants with a 
relatively small effect on the disease. It is evident that if  
a genetic variant confers a high susceptibility to T2DM 
it may become a useful biomarker to search for. For 
example, the genetic variants identified in the HMGA1 
gene may represent a predictive marker for early detec-
tion of  T2DM, especially in those individuals with a 
family history of  the disease. Moreover, variants in the 
human HMGA1 gene may induce a different clinical 
course of  disease compared to diabetic patients without 
the variant and may predict response to therapy, allowing 
identification of  a priori patients who could most benefit 
from a specific pharmacological treatment[77]. Another 
important point in support of  genetic studies in T2DM is 
the fact that they may integrate and improve our knowl-
edge about the molecular mechanisms underpinning the 
pathophysiology of  this disease. 
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Abstract
The P2X7 receptor is one of the members of the fam-
ily of purinoceptors which are ligand-gated membrane 
ion channels activated by extracellular adenosine 5’-tri-
phosphate. A unique feature of the P2X7 receptor is 
that its activation can result in the formation of large 
plasma membrane pores that allow not only the flux of 
ions but also of hydrophilic molecules of up to 900 Da. 
Recent studies indicate that P2X7-mediated signaling 
can trigger apoptotic cell death after ischemia and dur-
ing the course of certain neurodegenerative disorders. 
Expression of the P2X7 receptor has been demonstrated 
in most types of cells in the retina. This purinoceptor 
mediates the contraction of pericytes and regulates 
the spatial and temporal dynamics of the vasomotor 
response through cell-to-cell electrotonic transmission 
within the microvascular networks. Of potential clini-
cal significance, investigators have found that diabetes 
markedly boosts the vulnerability of retinal microvessels 
to the lethal effect of P2X7 receptor activation. This pu-
rinergic vasotoxicity may result in reduced retinal blood 
flow and disrupted vascular function in the diabetic 
retina. With recent reports indicating an association 
between P2X7 receptor activation and inflammatory cy-
tokine expression in the retina, this receptor may also 
exacerbate the development of diabetic retinopathy by 
a mechanism involving inflammation.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: P2X7 receptor; Diabetic retinopathy; Vaso-
toxicity; Retinal microvessels; Interleukin-1β; Tumor 
necrosis factor-α

Core tip: This review summarizes the studies regarding 
the putative role of the P2X7 receptor in triggering puri-
nergic vasotoxicity in the retina and thereby contribut-
ing to the progression of diabetic retinopathy.
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INTRODUCTION
One of  the most important characteristics of  diabetic 
retinopathy (DR) is the death of  microvascular pericytes 
and endothelial cells[1]. The loss of  pericytes, contractile 
cells located on the abluminal wall of  capillaries[2], ap-
pears to play a critical role in the development of  mi-
croaneurysms and neovascular tufts[3]. Damage in the 
endothelial cells can result in a breakdown of  the blood–
retinal barrier and macular edema[4].

Currently, the mechanisms by which diabetes induces 
apoptosis in the retinal microvasculature remain uncertain, 
although oxidative stress, formation of  advanced glycation 
end products, upregulation of  protein kinase C, increased 
polyol pathway flux and focal leukostasis may be taken as 
important factors[5]. In fact, multiple lethal pathways may 
be activated during chronic hyperglycemia[6].

Extracellular adenosine 5’-triphosphate (ATP) is an 
excitatory transmitter both in the peripheral and central 
nervous systems. P2X receptors are a family of  ligand-
gated membrane ion channels activated by extracellular 
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ATP. P2X receptors consist of  seven isoforms designated 
P2X1 to P2X7

[7,8]. They are widely distributed in most 
types of  cells in nearly every origin. They are involved in 
many actions, such as synaptic transmission in the periph-
eral and central nervous systems, contraction of  smooth 
muscle, platelet aggregation, macrophage activation, cell 
death and immunomodulation[9,10].

In contrast to other ligand-gated channels in the pu-
rinoceptor family, the P2X7 receptor possesses unique 
features that are likely to be of  both physiological and 
pathophysiological significance. Most importantly, not 
only does the initial activation of  these receptors result in 
the opening of  a non-selective plasma membrane chan-
nel, but with sustained activation there is in many types 
of  cells the formation of  trans-membrane pores that are 
permeable to hydrophilic molecules of  up to 900 Da[11,12]. 
Indicative of  P2X7 receptors having a role in cell patholo-
gy, this receptor has been found to be highly up-regulated 
in neurons and glial cells located in the ischemic cerebral 
cortex[13]. P2X7-mediated signaling is also implicated in 
neurodegenerative diseases, such as Parkinson’s disease, 
Alzheimer’s disease and multiple sclerosis[14].

P2X7 RECEPTOR IN THE RETINA
Expression of  the P2X7 receptor has been demonstrated 
in most types of  cells in the retina; these include neu-
rons such as the ganglion cells[15,16], as well as glia[17,18] and 
vascular cells[19]. The P2X7 receptor was found to medi-
ate the contraction of  pericytes through an increase in 
intracellular calcium levels[19]. Interestingly, the spatial and 
temporal dynamics of  this vasomotor response are estab-
lished by the ability of  P2X7 activation to potently inhibit 
cell-to-cell electrotonic transmission within the retinal 
microvascular network[19].

In the adult rat retina, immunolabeling for the P2X7 
receptor is detected in a number of  cells in the inner 
nuclear layer and ganglion cell layer, suggesting amacrine 
cells and ganglion cells[15]. This receptor was also found in 
processes presynaptic to rod bipolar cells, as well as other 
conventional synapses, suggesting that purines play a role 
in neurotransmission within the retina and may modulate 
both photoreceptor and rod bipolar cell responses[20].

In addition to the putative physiological roles of  P2X7 
receptors, it is reported that stimulation of  these recep-
tors can kill retinal ganglion cells in vitro and in vivo by a 
mechanism that appears to be dependent on a rise in in-
tracellular Ca2+[21,22]. One of  those reports also suggested 
that the balance between extracellular ATP and its pro-
tective metabolite adenosine can influence ganglion cell 
survival in the living eye[22]. Another study suggested that 
an early up-regulation of  neuronal P2X7 receptors may 
cause injury of  retinal neurons and thereby contribute to 
the retinal damage[23]. Furthermore, data from our labo-
ratory indicate that the activation of  P2X7 receptors is 
involved in hypoxia-induced death of  retinal neurons[24]. 
Other researchers have indicated mechanical strain trig-
gers ATP release directly from retinal ganglion cells and 
that this released ATP autostimulates P2X7 receptors. 

Since extracellular ATP levels in the retina increase with 
elevated intraocular pressure and stimulation of  P2X7 
receptors on retinal ganglion cells can be lethal, this au-
tocrine response may exert a deleterious effect on retinal 
ganglion cells in glaucomatous eyes[25]. 

P2X7 RECEPTOR AND DIABETIC 
RETINOPATHY
A study showed that human primary fibroblasts in a 
medium with a high glucose concentration underwent 
substantial ATP-mediated morphological changes and 
increased apoptosis. P2X7 was identified as the main 
purinergic receptor involved in these responses[26]. It has 
also been reported that fibroblasts from type 2 diabetes 
patients are characterized by a hyperactive purinergic 
loop based either on a higher level of  ATP release or on 
increased P2X7 reactivity[27]. Another study revealed that 
changes in Müller cell membrane conductance in prolifer-
ative diabetic retinopathy (PDR), i.e., the down-regulation 
of  active Kir channels and the membrane depolarization, 
likely disturb voltage-dependent Müller cell functions, 
such as regulation of  local ion concentrations and uptake 
of  neurotransmitters[28]. The enhanced entry of  calcium 
ions from the extracellular space and the subsequent 
stimulation of  calcium-activated potassium channels may 
trigger Müller cell proliferation in PDR. Others reported 
that prolonged stimulation of  the P2X7 receptor elicited 
permeabilization exclusively in microglial cells but not in 
neurons of  the inner retina[29].

Our experiments, using pericyte-containing retinal mi-
crovessels, have shown a diabetes-induced increase in the 
vulnerability of  retinal microvessels to the lethal effect of  
P2X7 receptor activation[30]. In other words, the agonist 
concentration needed to open large membrane pores and 
trigger apoptosis decreased markedly soon after the onset 
of  streptozotocin-induced hyperglycemia in rats (Fig-
ure 1). It was also found that extracellular nicotinamide 
adenosine dinucleotide (NAD+) caused cell death in the 
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Figure 1  Cell death induced in non-diabetic and diabetic retinal microves-
sels by the P2X7 agonist, benzoylbenzoyl adenosine triphosphate. From 
Sugiyama et al[30] with permission from Investigative Ophthalmology and Visual 
Sciences. BzATP: Benzoylbenzoyl adenosine triphosphate.



retinal microvasculature by a mechanism involving the 
activation of  the P2X7 purinoceptor and the formation 

of  transmembrane pores. Soon after the onset of  diabe-
tes, the sensitivity of  retinal microvessels to the vasotoxic 
effect of  extracellular NAD+ increased by approximately 
100-fold[31]. In our in vivo study using the laser speckle cir-
culation analyzer and electroretinography, soon after the 
onset of  alloxan-induced diabetes, retinal blood velocity 
and function become more vulnerable to reduction initi-
ated through the P2X7 receptor (Figure 2)[32]. Additional 
investigations indicate that, under physiological condi-
tions, the formation of  P2X7 pores is tightly regulated via 
a nitric oxide- and P2Y4-dependent pathway that limits 
the rise in pericyte calcium during the activation of  these 
purinoceptors[33]. However, if  this regulatory mechanism 
becomes dysfunctional, as appears to occur in the dia-
betic retina (Figure 3)[33], then purinergic vasotoxicity may 
contribute to the microvascular cell death that is a hall-
mark of  DR. 

Of  additional interest, recent studies of  DR in ex-
perimental models suggest the P2X7

 receptors may have a 
role in mediating cytokine-induced vascular inflammatory 
reactions that can degrade the integrity of  the blood-
retinal barrier and thereby contribute to retinal vascular 
occlusion and ischemia[34]. More specifically, there are a 
number of  reports linking P2X7 receptor activation in the 
retina with the expression of  inflammatory cytokines[35]. 
For example, P2X7 agonists enhance the release of  inter-
leukin (IL)-1β and tumor necrosis factor (TNF)-α from 
hypoxia-activated retinal microglia[17]. In addition, our 
recent data suggest that the up-regulation of  TNF-α, IL-
1β and IL-6 may be involved in the retinal ganglion cell 
death that can occur with P2X7 receptors activated after 
an elevation in the intraocular pressure[36]. Although it is 
clear that more investigation is needed, these new find-
ings further suggest that this purinoceptor may have a 
role in the progression of  DR. 
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of Ophthalmology. BzATP: Benzoylbenzoyl adenosine 
triphosphate.
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In conclusion, a variety of  recent experimental stud-
ies are providing evidence that the P2X7 purinoceptor is a 
potential therapeutic target of  a pharmacological strategy 
designed to diminish or prevent cell death in the diabetic 
retina. 
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Abstract
Insulin resistance is a hallmark of type 2 diabetes. In 
an effort to understand and treat this condition, re-
searchers have used genetic manipulation of mice to 
uncover insulin signaling pathways and determine the 
effects of their perturbation. After decades of research, 
much has been learned, but the pathophysiology of 
insulin resistance in human diabetes remains contro-
versial, and treating insulin resistance remains a chal-
lenge. This review will discuss limitations of mouse 
models lacking select insulin signaling molecule genes. 
In the most influential mouse models, glucose metabo-
lism differs from that of humans at the cellular, organ, 
and whole-organism levels, and these differences limit 
the relevance and benefit of the mouse models both 
in terms of mechanistic investigations and therapeutic 
development. These differences are due partly to im-
mutable differences in mouse and human biology, and 
partly to the failure of genetic modifications to produce 
an accurate model of human diabetes. Several fac-
tors often limit the mechanistic insights gained from 
experimental mice to the particular species and strain, 
including: developmental effects, unexpected meta-
bolic adjustments, genetic background effects, and 
technical issues. We conclude that the limitations and 

weaknesses of genetically modified mouse models of 
insulin resistance underscore the need for redirection of 
research efforts toward methods that are more directly 
relevant to human physiology. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Insulin resistance; Mice; Knockout; Disease 
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tion

Core tip: Insulin resistance is central to the pathophysi-
ology of type 2 diabetes. The molecular origins of insu-
lin resistance have been investigated using genetically 
modified mice. Much has been learned from this work, 
but new treatments for insulin resistance have not been 
forthcoming. Knockout mouse models of diabetes are 
limited by several factors including species differences 
in glucose metabolism. These are due partly to spe-
cies differences in physiology, and partly to the failure 
of genetic modifications to produce an accurate model. 
Advancement may require a redirection of research ef-
forts toward methods that are more directly relevant to 
human physiology. 
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INTRODUCTION
Type 2 diabetes is a growing public health problem af-
fecting approximately 26 million adults in the United 
States, with pre-diabetes affecting an additional 79 mil-
lion[1]. The natural history of  type 2 diabetes starts with 
insulin resistance, which develops over time and often 
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precedes a diagnosis by many years. The pancreas com-
pensates for insulin resistance by increasing insulin secre-
tion, often leading to hyperinsulinemia. For many insulin-
resistant patients, the pancreas is unable to sustain a high 
level of  insulin secretion. As the pancreas fails to meet 
the demand for insulin, plasma glucose rises. Patients are 
then at risk of  morbidity and mortality associated with 
complications such as neuropathy, retinopathy, nephropa-
thy, and increased risk of  cardiovascular disease. Overall, 
type 2 diabetes decreases life expectancy at age 50 or 
older by about 8 years[2]. Aside from diabetes and the 
metabolic syndrome, insulin resistance is also associated 
with polycystic ovarian syndrome and other problems. 
Understanding the cellular and molecular causes of  insu-
lin resistance is an area of  active research because of  the 
need to discover new therapies to help patients.

Animal models are often used to investigate mecha-
nisms of  insulin resistance and develop therapeutic 
agents. In the field of  type 1 diabetes, serious limitations 
of  animal models have become apparent[3]; we therefore 
sought to assess the utility of  select mouse models used 
in type 2 diabetes research, specifically insulin signaling 
and resistance. We begin with a brief  summary of  insulin 
signaling, followed by a closer look at general limitations 
of  mouse models and specific limitations of  knockouts 
lacking select insulin signaling molecule genes.

Insulin resistance is defined as the failure of  cells to 
respond normally to insulin, and most importantly, to 
insulin’s glucose-lowering effects. It can be measured by a 

number of  approaches, including the Homeostatic Model 
Assessment of  Insulin Resistance, which is based on fast-
ing glucose and insulin levels, and the gold standard ap-
proach, a hyperinsulinemic-euglycemic clamp test[4]. On 
a cellular level, insulin resistance manifests differently in 
different tissues (Figure 1). Insulin-resistant muscle cells 
fail to uptake glucose and other nutrients in response to 
insulin, whereas in adipose tissue, insulin resistance leads 
to greater hydrolysis of  stored triglycerides in addition to 
decreased nutrient uptake. In the liver, insulin promotes 
glycogen synthesis and prevents the release of  stored glu-
cose, thereby raising blood glucose levels. In the brain, in-
sulin decreases appetite and hepatic glucose production[5].

The molecular mechanisms of  insulin resistance in 
type 2 diabetes have not been fully characterized, al-
though many important biochemical, metabolic, and ge-
netic features have been identified. Accumulated findings 
have highlighted several pathways to insulin resistance, 
including lipid accumulation, oxidative stress, and inflam-
mation[6]. An important common feature of  these mecha-
nisms is the activation of  stress-sensitive kinases includ-
ing protein kinase C ζ (PKCζ) that cause a dampening of  
insulin signaling[6,7]. 

Insulin is involved in a number of  cellular processes 
apart from nutrient metabolism, including protein syn-
thesis, mitochondrial biogenesis, growth, autophagy, pro-
liferation, differentiation, and migration[8-10]. As illustrated 
in Figure 2, the binding of  insulin to its receptor triggers 
a cascade of  cellular events that leads to nutrient uptake 
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Figure 1  Insulin actions in main insulin-sensitive tissues. Insulin has different actions in each of the main insulin-sensitive tissues. In muscle, insulin promotes 
glucose uptake and glycogen synthesis. In liver, insulin promotes glycogen synthesis and lipogenesis and reduces gluconeogenesis and the release of stored glu-
cose. In adipose tissue, insulin increases glucose uptake and lipogenesis and decreases lipolysis. In the brain, insulin Inhibits hepatic glycogenolysis and lipolysis and 
decreases appetite.



and activation of  these various cellular programs[8]. Un-
der insulin-sensitive conditions, as shown in Figure 2A, 
insulin receptor substrate (IRS) activates phosphoinosit-
ide 3-kinase (PI3K), which produces a metabolite that 
activates protein kinase B (AKT) and PKCλ/ι. PKC λ/ι, 
which also depends on lipids for activation, can inhibit 
insulin signaling by a feedback mechanism. The nuclear 

receptor peroxisome proliferator-activated receptor 
gamma, or peroxisome proliferator-activated receptor γ 
(PPARγ), is important in lipid metabolism, and is the tar-
get of  insulin sensitizing thiazolidinedione drugs (TZDs). 
PPARγ becomes activated upon binding of  lipids and 
promotes expression of  genes involved in fat storage. As 
shown in Figure 2B, under insulin-resistant conditions, 

148 April 15, 2014|Volume 5|Issue 2|WJD|www.wjgnet.com

Insulin

Insulin receptor

Lipids

MAPK pathway

Nucleus

Lipid storage

Insulin

Protein 
synthesis

Figure 2  Insulin signaling in health and disease. Insulin signaling in health and disease. A: The binding of insulin to its receptor triggers a cascade of cellular 
events that lead to nutrient uptake and activation of various cellular programs. Insulin receptor substrate (IRS) activates phosphoinositide 3-kinase (PI3K) which pro-
duces a metabolite that activates protein kinase B (AKT) and protein kinase C λ/ι (PKCλ/ι). PKCλ/ι, which also depends on lipids for activation, can inhibit insulin 
signaling by a feedback mechanism. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), is important in lipid metabolism, and is the tar-
get of insulin sensitizing thiazolidinedione drugs. PPARγ becomes activated upon binding of lipids and promotes expression of genes involved in fat storage; B: Under 
insulin-resistant conditions, accumulation of lipids, oxidative stress, and pro-inflammatory cytokines cause activation of stress-sensitive kinases such as protein kinase 
C θ ( PKCθ), inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ) and c-Jun N-terminal kinase 1 (JNK1), which inhibit insulin signaling.
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GLUCOSE DISPOSAL IN MICE AND 
HUMANS
A central aspect of  glucose homeostasis is glucose dis-
posal, meaning the facilitated transport of  glucose from 
blood into storage tissues and organs. Insulin resistance 
in humans with type 2 diabetes involves defects in glu-
cose sensing and disposal in a number of  tissues, but the 
most significant effects on glucose homeostasis result 
from insulin resistance in the major glucose-disposing tis-
sues: skeletal muscle, liver and adipose tissue. 

Glucose disposal and glycogen storage patterns differ 
in mice and humans. In healthy humans, about one-third 
of  glucose is taken up by the liver[21]. Estimates of  skel-
etal muscle glucose uptake vary widely, in part because 
they are often based on indirect measurements and as-
sumptions regarding muscle mass and blood flow. One 
report that measured muscle glucose more directly using 
nuclear magnetic resonance demonstrated muscle absorb-
ing 64%-91% of  infused glucose in a single male volun-
teer[22]. A follow-up study of  11 subjects reported muscle 
glucose uptake of  90% in normal subjects and 67% in 
diabetic subjects[23]. In a separate study of  10 healthy vol-
unteers, muscle accounted for 38.3% of  systemic glucose 
disposal, based on data from blood sampled from a fore-
arm vein[24]. Overall, the data show greater glucose uptake 
in skeletal muscle than liver in humans. Genetic evidence 
underscores the importance of  skeletal muscle to whole-
body glucose tolerance in humans. Polymorphisms in the 
gene for the primary glucose transporter in muscle, glu-
cose transporter isoform 4 (GLUT4), have been linked to 
type 2 diabetes and insulin resistance[25]. Overall, defects 
in skeletal muscle glucose disposal are a major compo-
nent of  insulin resistance in humans[26].

By contrast, the liver is much more important for 
glucose disposal in mice. Interfering with glucose uptake 
in mouse liver causes whole-body insulin resistance and 
glucose intolerance, but similar manipulations in muscle 
usually do not. The muscle-specific insulin receptor 
knockout mouse has normal glucose tolerance, insulin 
sensitivity, and glucose and insulin levels, with only mild 
dyslipidemia[27]. Muscle-specific deletion of  IRS1 and 
IRS2 also does not produce a diabetic phenotype, nor 
does a whole-body knockout of  the major muscle glucose 
transporter, GLUT4[28,29]. One exception to this pattern 
may be a muscle-specific GLUT4 knockout strain that 
developed a diabetic phenotype in one study[30], a result 
that has not been replicated by others[31,32]. In contrast to 
the above strains deficient in muscle insulin signaling, a 
liver-specific insulin receptor knockout mouse strain was 
insulin resistant and severely hyperinsulinemic, and devel-
oped hyperglycemia and glucose intolerance at an early 
age (2 mo)[33]. Liver-specific deletion of  IRS1 and IRS2 
also cause insulin resistance under certain conditions[34]. 
Mice with a deletion of  the primary glucose transporter 
in the liver, GLUT2, are hyperglycemic and die at 2-3 wk 
of  age[35].

Glycogen storage is a major destination for glucose 
in mammals. In mice, approximately 8 times more glyco-

accumulation of  lipids, oxidative stress, and pro-inflam-
matory cytokines cause activation of  stress-sensitive ki-
nases such as PKCθ, inhibitor of  nuclear factor kappa-B 
kinase subunit β (IKK-β) and c-Jun N-terminal kinase 1 
(JNK1), which inhibit insulin signaling[6,7].

Evidence for insulin signaling pathways and mecha-
nisms of  insulin resistance comes from human and ani-
mal cell and tissue studies, clinical studies, and whole ani-
mal experiments. While data from various models have 
been useful in formulating and testing hypotheses, some 
approaches are more promising than others. Rodent 
models have been used in the study of  type 2 diabetes 
and insulin resistance for decades. Conditions relevant to 
the study of  insulin resistance and diabetes are induced 
in rodents using several approaches, including genetic, 
pharmacological, surgical, and dietary inductions. A num-
ber of  these approaches and models have been reviewed 
elsewhere[11-14]. Many researchers favor targeted genetic 
manipulation because it allows specific and complete 
or near-complete removal of  target gene function in a 
whole organism or specific tissues[15]. In combination 
with pharmacological, cell-based and molecular studies, 
these knockout mouse studies have mapped the insulin 
signaling pathway in mice to a high level of  detail. Other 
authors have described how pathway connections tested 
in humans have been shown to be conserved (i.e.,[16]). 
Many would argue that knockout mouse studies have 
been especially important in defining the function of  
genes for which no pharmacological or other molecular-
based functional ablation is available[17]. In this respect, 
the genetic approach has become a central component of  
preclinical research in diabetes and other fields. 

Despite this progress in our understanding of  insulin 
action, the causative molecular basis for acquired hu-
man insulin resistance remains unclear and controver-
sial. Furthermore, improved understanding of  rodent 
cell signaling has not translated into improved human 
therapeutics. To wit, it has been almost 20 years since 
the first insulin signaling knockout mouse studies were 
published[18,19], but no new drugs targeting the insulin 
signaling phosphorylation cascade have emerged to treat 
insulin resistance in type 2 diabetes[9]. While much of  this 
research is conducted for the purpose of  hypothesis test-
ing rather than drug development per se, the identification 
of  drug targets is often a primary or secondary goal[20]. 
In light of  this, we discuss the limitations of  research on 
insulin resistance using knockout mice of  select proteins 
important in the insulin signaling cascade (Figure 2). The 
following sections will focus mainly on peripheral insulin 
resistance and extrapancreatic insulin-sensitive tissues, 
since many therapeutic and research efforts are in this 
area. We first address physiological, cellular, and molecu-
lar differences in glucose metabolism between mice and 
humans that limit translatability. We then review select 
knockout mouse models of  insulin signaling dysfunction, 
identifying cases with contradictory or untranslatable re-
sults. Finally, we briefly discuss the limitations of  genetic 
manipulations of  these targets in mice in regard to the 
search for safe and effective drugs for type 2 diabetes. 
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gen is stored in the liver than skeletal muscle[36], but the 
reverse is true in humans, where 3-8 times more glycogen 
is found in skeletal muscle[37]. These physiological differ-
ences in glucose disposal and storage have implications 
for modeling insulin resistance, since muscle and liver 
have different roles and different metabolic and signaling 
pathways.

There are two important differences in glucose trans-
port between liver, the primary glucose disposal organ in 
mice, and skeletal muscle, the primary glucose disposal 
organ in humans. First, skeletal muscle cells have multiple 
pathways for glucose transport. Contraction-stimulated 
glucose transport in skeletal muscle is insulin-indepen-
dent, mediated through 5’ adenosine monophosphate  
activated protein kinase-mediated signaling mecha-
nisms[38]. In contrast, liver has no such activity-stimulated 
transport method. Second, the transporters involved in 
glucose uptake are different in the two tissues. In liver, 
the low-affinity GLUT2 is present at high levels on cell 
membranes independent of  insulin or other signaling[39], 
and glucose transport rates vary with the extracellu-
lar concentration of  glucose[40]. In contrast, in skeletal 
muscle cells, the high-affinity glucose transporter GLUT4 
is translocated from internal vesicles to the plasma mem-
brane in response to glucose uptake signals[41]. In human 
skeletal muscle cells, this transport is facilitated by clath-
rin isoform CHC22, which is not present in the mouse[42]. 
The rate-limiting step in glucose metabolism in liver is 
phosphorylation, while in skeletal muscle it is transport 
through GLUT4[43]. The divergent features of  cells in 
these organs, combined with the divergent physiology of  
rodents and humans, means that glucose disposal is af-
fected very differently in the different species. 

Because mice rely principally on the liver for glucose 
homeostasis, while humans rely on skeletal muscle where 
transport mechanisms and biochemical pathways dif-
fer, mice may not be expected to be analogous to type 
2 diabetes patients in regards to mechanisms of  glucose 
metabolism or its dysfunction.

Mice and humans have a number of  other metabolic 
differences. The small size and fast metabolism of  mice 
enables heart rates in the range of  350-550 beats per 
minute, while in humans, normal heart rate is about 70 
beats per minute[44]. Mice are capable of  the physiological 
state of  torpor, a state of  reduced metabolic rate, while 
humans are not[45]. Prolonged fasting in humans impairs 
insulin-stimulated glucose utilization, but causes enhance-
ment in mice[46]. In regards to eating patterns, mice con-
sume most of  their food at night[45], and an overnight fast 
of  14-18 h, typical for laboratory experiments, induces a 
state akin to starvation[47]. In addition, circulating lipids 
have an inverted composition in mice, with high-density 
lipoprotein (HDL) being typically higher than low-density 
lipoprotein (LDL), while HDL is lower in humans[48]. The 
thermoneutrality point, that is, the temperature at which 
an organism expends minimal energy for temperature 
regulation, is higher in mice[49]. This last difference could 
be compensated for if  mice were housed above room 
temperature, but that is not standard practice. 

Finally, experiments investigating mouse metabolism 
present technical challenges. Insulin sensitivity is often 
measured using a hyperinsulinemic-euglycemic clamp 
test, which involves either implanted arterial catheters or 
repeated blood sampling. The results of  this test are de-
pendent on a number of  experimental factors which are 
not standardized between laboratories, including fasting 
time, anesthesia use, and blood sampling site[46]. Fast-
ing glucose, insulin, and lipid levels are often measured 
after 14-18 h overnight fasts, but this induces a catabolic 
state in mice, who normally eat mostly at night. Data 
shows that a 6 h fast is best to assess glucose tolerance in 
mice[50].

KNOCKOUT MODELS OF INSULIN 
SIGNALING
Mouse models of  diabetes are often used to explore sig-
naling pathways[13]. The following sections highlight cases 
relevant to insulin signaling dysfunction where similar or 
identical genetic manipulations produced disparate re-
sults. These cases are consistent with other results show-
ing differences in insulin action, secretion, and responses 
to hypoglycemia in different inbred mouse strains[51]. 
Previous reviewers have also noted the strong effect of  
genetic background in knockout mouse experiments[52]. 
Other factors influencing disparate findings include com-
pensatory metabolic adjustments and technical challenges 
associated with evaluating mouse metabolism. Later, we 
will focus on the challenges of  translating mouse knock-
out results to humans. 

INSULIN RECEPTOR AND INSULIN 
RECEPTOR SUBSTRATE
Binding of  insulin to the insulin receptor is the first step 
in the insulin signaling pathway. Mice with complete dele-
tion of  the insulin receptor are about 10% underweight 
and suffer from chronic hyperglycemia[53,54]. They die 
within several days of  birth due to diabetic ketoacido-
sis. In humans, donohue syndrome is a rare monogenic 
disease resulting from mutation of  the insulin receptor. 
Individuals with this disease suffer from severe pre-natal 
and post-natal growth retardation, fasting hypoglycemia, 
and post-prandial hyperglycemia[55]. They generally die 
before adulthood. The difference between the glucose 
homeostasis in mice and humans with this mutation may 
be attributable to the fact that the human pancreas devel-
ops earlier in gestation, hence better enables the compen-
satory hyperinsulinemia[55]. 

The pancreatic beta-cell specific insulin receptor 
knockout mouse strain (called BIRKO) has impaired in-
sulin response to glucose challenge and develops impaired 
glucose tolerance and high insulin levels[56]. In the initial 
description of  this mutant strain, glucose levels and body 
weight were normal, however, a follow-up report from 
the same laboratory described consistent hyperglycemia 
and sporadic obesity[57]. In the same report, a muscle 
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and beta-cell double insulin receptor knockout (BIRKO-
MIRKO) mouse strain had an unexpectedly mild condi-
tion. This strain had impaired glucose tolerance, mild 
hyperglycemia, high triglycerides and free fatty acids, and 
extra fat pad mass. These findings would seem to indicate 
that muscle-mediated glucose disposal is dispensable for 
normal glucose homeostasis in mice, but 2-deoxyglucose 
uptake studies showed that both muscle-specific insulin 
receptor knockout (MIRKO) and BIRKO had normal 
muscle glucose uptake, suggesting most muscle glucose 
uptake under these conditions is insulin-independent[57]. 
Studies of  liver glycogen synthesis and liver glycogen 
content confirm that mice with insulin insensitive muscle 
shifted glucose utilization away from muscle and towards 
liver[57].

Mouse strains lacking insulin receptor in other tissues 
have been developed. A knockout of  insulin receptor in 
neuronal tissue (NIRKO) demonstrated elevated body 
weight, white adipose tissue, serum triglycerides, and cir-
culating leptin, with most of  these changes being more 
pronounced in the females[58]. In addition, both sexes of  
NIRKO mice had reduced fertility, demonstrating the 
importance of  insulin in reproduction. A knockout of  
insulin receptor in adipose tissue (FIRKO) had low fat 
mass, and the normal relationship between leptin levels 
and fat mass was disrupted[59]. These mice were protected 
against age-related glucose intolerance.

The IRS proteins transmit signals from the insulin 
and IGF1 (insulin-like growth factor 1) receptors. Two 
groups independently showed a significant pre-natal and 
post-natal growth defect in IRS1 knockout mice[18,19] 
(Table 1). Despite having similar genetic backgrounds, 
only one of  the strains exhibited glucose intolerance as 
measured by a glucose tolerance test[18]. In addition, the 
two strains had significantly different growth defect se-
verities, with a 40%-60% decrease in weight at various life 
stages observed in one study[18], and a 20%-30% decrease 
in the other[19]. These differences could have been due to 
the genetic manipulation approaches or the genetic back-
grounds. 

Two independent groups described IRS2 knockout 
mouse models, and the phenotypes were different despite 
similar genetic backgrounds. Withers et al[60] observed a 
10% decrease in body weight throughout all life stages 
for the IRS2 knockout mice in a C57BL6 × 129Sv back-
ground, while Kubota et al[61] observed the IRS knockouts 
to be of  normal size in a C57BL/6 × CBA mixed back-
ground. Fasting hyperglycemia was observed at age 6 wk 
in Withers et al[60], but average glucose levels did not reach 
hyperglycemic levels in Kubota et al[61]. Hyperinsulinemia 
and glucose tolerance showed a similar pattern: more se-
vere, earlier phenotypes observed in Withers et al[60] than 
in Kubota et al[61]. Reduced β-cell mass was observed by 
both groups.

  Model Ref. Genetic background Observed discrepancy

  IRS1 knockout Tamemoto et al[19] C57BL/6 × CBA Growth defect twice as severe in Araki 1994
Araki et al[18] C57BL/6

  IRS2 knockout Withers et al[60] C57BL6 × 129Sv Growth defect observed only in Withers et al[60]. Much more 
severe glucose dysregulation in Withers et al[60]Kubota et al[61] C57BL/6 × CBA mixed

  IR and IRS1 double 
  heterozygous knockout

Kulkarni et al[62] C57BL/6
129/Sv
DBA/2

Diabetes not observed in 129/Sv mice, observed in 85% of 
C57BL/6 mice and 64% of DBA/2 mice. Glucose intolerance 
only in C57BL/6 strain

  AKT2 knockout Cho et al[64] C57BL/6 More severe hyperglycemia and hyperinsulinemia in 
Garofalo et al[63]. Growth defect only in Garofalo et al[63]Garofalo et al[63] DBA/1lacJ

  AKT1 knockout Chen et al[65] C57BL/6 × 129R1 High neonatal mortality only in Cho et al[64]. Improved glucose 
tolerance and insulin sensitivity only in Buzzi et al[68]Cho et al[66] C57BL/6

Buzzi et al[68] 129/Ola, C57BL/6 mixed
  Pik3r1 heterozygote Mauvais-Jarvis et al[72] 129Sv, C57BL/6 mixed Improved glucose tolerance and insulin sensitivity and low 

glucose and insulin levels on normal diet only in Mauvais-
Jarvis et al[72]McCurdy et al[73] C57BL/6SVJ

  Liver-specific Pik3ca Sopasakis et al[74] 129Sv, C57BL/6, FVB mixed Insulin resistance and glucose intolerance on normal diet in 
Sopasakis et al[74] onlyChattopadhyay et al[75] 129, C57BL/6J mixed

  GLUT4 heterozygous knockout Stenbit et al[76] CD1, C57BL/6 mixed Unexpected more severe phenotype in heterozygous knockout 
than homozygous

  PKCλ heterozygous knockout Farese et al[79] C57BL/6, 129P2/Sv, FVB mixed Unexpected more severe hepatic steatosis in heterozygous 
knockout than homozygous

  PKCδ knockout Leitges et al[81] 129/SV × Ola High neonatal mortality observed only in Bezy et al[82]

Bezy et al[82] C57BL6/J
  PPARγ
 

He et al[86] C57BL/6J Resistance to diet-induced insulin resistance only in 
Jones et al[85] studyJones et al[85] C57BL/6J, FVB mixed

 Muscle-specific PPARγ Norris et al[87] 129/sv, C57BL/6, FVB mixed Insulin resistance and glucose intolerance on normal diet in 
Hevener et al[88] only. Improvement with rosiglitazone in Norris 
et al[87] only

Hevener et al[88] C57BL6/J

Table 1  Knockout mouse reproducibility

Reproducibility problems in knockout mouse studies. Some variant results can be explained by differences in genetic background. IRS: Insulin receptor 
substrate 1; IR: Insulin receptor; AKT2: Protein kinase B isoform 2; GLUT4: Glucose transporter isoform 4; PKCλ: Protein kinase C λ; PPARγ: Peroxisome 
proliferator-activated receptor γ.
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Kubota et al[61] suggested that the difference in glucose 
and insulin levels between the two reports was likely due 
to low β-cell mass in their strain, caused either by β-cell 
death or by the failure of  insulin-resistance induced hy-
perplasia, and acknowledge that genetic differences other 
than the intended manipulation may influence the results. 
The authors concluded based on their data and data from 
a related study that both β-cell dysfunction and reduced 
β-cell mass can contribute to the murine diabetic state, 
but only studies of  human patients can validate whether 
one or both mechanisms are more important in the 
pathogenesis of  type 2 diabetes in humans. 

Double heterozygous knockout of  IR and IRS1 
were generated in three different genetic backgrounds: 
C57BL/6, 129/Sv and DBA/2[62]. While all three strains 
had mild growth retardation, the results in regards to glu-
cose homeostasis were drastically different. In C57BL/6 
mice, the double heterozygous knockout caused severe 
hyperglycemia and hyperinsulinemia in the vast majority 
of  cases, whereas the glucose levels of  129Sv mice were 
not significantly different from control littermates. In 
DBA mice, more than half  of  the mice were hypergly-
cemic but maintained normal glucose tolerance. Triglyc-
erides were significantly reduced in the double heterozy-
gous knockouts of  the B6 and DBA strains, and the wild 
type DBA strain had significantly elevated triglycerides as 
compared to the other wild type strains[62]. 

AKT/PROTEIN KINASE B
The metabolite phosphatidylinositol 3,4,5-trisphosphate 
(PIP3) activates AKT/protein kinase B and atypical 
protein kinase C. AKT has three isoforms in mammals, 
of  which AKT1 and AKT2 are most important for me-
tabolism. Two independently developed AKT2 knockout 
mouse strains in different backgrounds developed hyper-
glycemia, glucose intolerance, and insulin resistance[63,64]. 
Garofalo et al[63] observed hypoinsulinemia due to pan-
creatic β-cell death in a subset of  male mice, and hyper-
insulinemia with no pancreatic changes in the remainder, 
while Cho et al[64] observed hyperinsulinemia and associ-
ated pancreatic hyperplasia. In Garofalo et al[63], both hy-
perglycemia and hyperinsulinemia were more severe than 
in Cho et al[64], with average fed insulin measurements 
five times higher. Also, Cho et al[64] observed normal growth 
in the AKT2 knockout, but Garofalo et al[63] observed 
a mild growth deficiency evident at all life stages. Only 
Garofalo et al[63] observed lipoatrophy and high levels of  
serum triglycerides. The control mice in Garofalo et al[63] 
had near-diabetic random fed glucose levels that were al-
most as high as the knockout mice in Cho et al[64] Neither of  
these knockout strains were obese. 

The characteristics of  AKT1 knockout mouse strains 
are also sensitive to genetic background and environ-
mental factors. Two labs independently reported that 
AKT1 knockout mice with different genetic backgrounds 
had a growth defect causing 15%-20% reduced body 
weight[65,66]. One of  the studies observed high neonatal 
mortality among the knockout mice[66], while the other 

observed high mortality with γ-radiation[65]. Glucose tol-
erance in Chen et al[65] appeared normal, but the glucose 
tolerance test was performed using a longer fasting time 
and lower glucose dose than is optimal[50]. One study 
demonstrated a non-significant improvement in glucose 
tolerance and insulin sensitivity in males. A similar strain 
was later shown to be resistant to diet-induced obesity[67]. 
Later data on a third, independently developed AKT1 
knockout strain showed dramatic improvement in glu-
cose tolerance and insulin sensitivity[68]. 

Studies of  spontaneous human genetic variants in 
AKT1 and AKT2 have confirmed the importance of  
these proteins in growth and glucose homeostasis, mostly 
respectively, although the manifestations of  the mutations 
differ between humans and mice[16]. For example, the 
human patients with a specific AKT2 mutation display 
asymmetric hypertrophy[69], while the above-described 
AKT2 knockout mouse models have normal growth[64] or 
a growth deficiency[63].

PHOSPHOINOSITIDE 3-KINASE
PI3K, an enzyme complex composed of  a regulatory 
subunit and a catalytic subunit that produces the metabo-
lite PIP3. PI3K is activated by IRS proteins in the insu-
lin signaling cascade (Figure 2). In humans, PI3K gene 
polymorphisms are associated with cancer risk[70] but not 
diabetes, to our knowledge.

Complete loss of  the Pik3r1 gene, which encodes 
isoforms of  the regulatory subunit of  PI3K, results in 
perinatal lethality in mice, perhaps due to impaired B 
cell development[71]. Mice heterozygous for Pik3r1 dele-
tion, having attenuated expression of  all isoforms of  the 
regulatory subunit, had improved glucose tolerance and 
insulin sensitivity and low glucose and insulin levels[72]. 
Lipid metabolism was unchanged except for a modest 
increase in serum free fatty acids, indicating that the ob-
served insulin sensitivity was not due to indirect effects 
via changes in lipid metabolism. A minor increase in basal 
muscle glucose uptake was observed, but the authors 
note that changes in liver were likely most responsible for 
the increased insulin sensitivity[72]. A later, independent 
study observed that the heterozygous knockout mice 
were essentially indistinguishable from control mice on 
a normal diet[73]. On a high-fat diet, these mice showed 
lower fasting insulin levels, improved overall insulin sen-
sitivity, and improved glucose uptake in fat and muscle[73]. 
Macrophage accumulation was reduced in the adipose 
tissue of  these heterozygous knockout mice, but results 
from bone marrow transplant experiments suggested the 
improved insulin sensitivity did not occur solely via PI3K’s 
role in inflammation.

The catalytic subunits of  PI3K have also been stud-
ied using knockout mouse strains. Liver-specific deletion 
of  Pik3ca caused mild obesity, insulin resistance, glucose 
intolerance, and high glucose and insulin levels[74]. The 
same genetic manipulation in a second laboratory pro-
duced a strain with normal glucose and insulin levels and 
body weight[75]. The Pik3ca knockout mice in the second 
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study were resistant to high-fat diet induced hepatic ste-
atosis and somewhat resistant to diet-induced glucose 
intolerance as well[75]. For this gene, liver-specific deletion 
produced diabetes-like symptoms in one laboratory, but 
in another laboratory, glucose homeostasis was identical 
in control and knockout mice[74,75]. 

GLUT4
As described above, GLUT4 is the major glucose trans-
porter in muscle, the most important tissue type for 
glucose disposal in humans. Unexpectedly, in GLUT4 
knockout mice, glucose levels are normal except for mild 
fed hyperglycemia and fasted hypoglycemia observed 
only in males[29]. Consistent with results regarding insulin 
signaling and growth[18], these animals display signifi-
cant growth retardation, shortened life spans, cardiac 
hypertrophy, and reduced adipose tissue[29]. Somewhat 
surprisingly, mice heterozygous for the GLUT4 knockout 
have a more severe phenotype. A diabetes-like condition 
developed at varying ages, with a majority of  males both 
hyperinsulinemic and hyperglycemic by age 5-7 mo[76]. 

The authors pointed out that the unexpectedly mild 
condition of  the homozygous GLUT4 knockout and 
more severe condition in the GLUT4 knockout het-
erozygote were likely due to compensatory metabolic 
adjustments that occur during development. These 
could include the transfer of  glucose disposal from tis-
sues that primarily use GLUT4 to tissues that primarily 
use GLUT2, as observed in the muscle-specific GLUT4 
knockout[30], or the upregulation of  alternative glucose 
transporters[52]. 

PROTEIN KINASE C
Protein kinase C enzymes (PKCs) are involved in regulat-
ing a variety of  cellular functions in mammals, including 
insulin signaling[77]. Atypical PKCs include the isoforms 
PKCλ/ι and ζ (PKCλ refers to the mouse isoform of  
PKCι)[78]. Activated PKCs can inhibit insulin signaling by 
a feedback mechanism that prevents signal transduction 
between insulin receptor and IRS[7,78]. 

Atypical protein kinase C family member PKCλ was 
knocked out specifically in mouse muscle, resulting in 
diabetic symptoms including glucose intolerance, insu-
lin resistance, hyperglycemia, and high insulin levels[79]. 
Altered fat metabolism was also observed: high triglycer-
ides, and mildly elevated free fatty acids and liver triglyc-
erides. While some symptoms were observed in both the 
heterozygous and homozygous muscle-specific knockout 
of  PKCλ, the heterozygotes were as insulin resistant and 
glucose intolerant as the homozygous knockouts, and 
had more abdominal obesity and hepatic steatosis[79]. This 
is unexpected, since the heterozygous knockout had re-
duced, but not ablated, expression of  PKCλ. 

Differential expression of  PKCδ has been identified 
as one factor in the different vulnerability of  common 
laboratory mouse strains to diabetes[80]. One study of  a 

PKCδ knockout mouse strain in a 129/Sv × Ola genetic 
background had normal growth and development[81]. 
Surprisingly, the same deletion in the C57BL6/J strain 
caused a high mortality rate, with survivors being 14% 
underweight[82]. The C57BL6/J PKCδ knockout mouse 
had better glucose tolerance than control mice[82], but 
glucose tolerance was not tested in the original knockout. 
The authors noted that improved glucose tolerance may 
have been due to decreased inflammation in adipose tis-
sue[82]. In humans, PKCδ deficiency can cause B-cell defi-
ciency with severe autoimmunity[83]. 

PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTOR γ
The nuclear receptor PPARγ, becomes activated upon 
binding of  lipids and is important for lipid metabolism 
and storage, adipogenesis, and insulin sensitivity. This nu-
clear receptor is the target of  insulin-sensitizing TZDs[84]. 

Two independently generated adipose tissue-specific 
PPARγ knockout strains showed important differences 
in glucose homeostasis under high-fat diet conditions. 
On normal chow, both these strains had reduced adipose 
tissue mass, high blood lipid levels, and hepatic steatosis, 
but glucose tolerance was normal[85,86]. On high-fat diet 
with 40% of  calories from fat, He et al[86] observed hy-
perinsulinemia and insulin resistance in both the knockout 
and control mice, although these traits were more severe in 
the knockout. The knockout strain studied by Jones et al[85] 
was resistant to diet-induced hyperinsulinemia and insulin 
resistance despite being subjected to a more extreme 
high-fat diet, with 60% of  calories from fat. The knock-
out strains in both studies were more prone to high-fat 
diet induced hepatic steatosis.

Two studies on independently developed muscle-spe-
cific PPARγ knockout models have provided contradicto-
ry findings regarding the mechanism of  action of  TZDs. 
The first strain was more susceptible to diet-induced 
obesity, glucose intolerance, and insulin resistance but 
was indistinguishable from controls on a normal diet[87]. 
Rosiglitazone reduced the hyperinsulinemia and impaired 
glucose homeostasis observed in this strain on high-fat 
diet, therefore the authors suggested that muscle PPARγ 
is not required for the positive effects of  this TZD[87]. In 
contrast, the second strain developed insulin resistance 
and glucose intolerance on a normal diet[88]. Glucose dis-
posal in a hyperinsulinemic-euglycemic clamp experiment 
was not improved with rosiglitazone treatment, suggest-
ing that the insulin sensitizing effect of  TZDs is depen-
dent on muscle PPARγ. In this case, two mouse models 
have provided conflicting data not just on the role of  a 
gene, but also on a drug mechanism of  action. 

In conclusion, we above described several cases where 
genetic modification of  insulin signaling genes produced 
significantly, sometimes dramatically, different results in 
separate studies or varied genetic backgrounds (Table 1). 
We also described two cases where heterozygous knock-
outs had unexpectedly severe phenotypes: GLUT4 and 
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PKCλ. Although the mechanisms behind the unexpected 
observations are unknown, it is known that organisms 
respond unpredictably to the absence of  gene products 
during development. Compensatory metabolic adjust-
ments that may occur during development constitute 
a general limitation of  knockout mouse models. These 
concerns are mitigated by the use of  conditional knock-
outs, however, those strains require injection or gavage of  
an inducing drug, which can produce artifacts[89]. These 
examples illustrate the challenges associated with produc-
ing reliable, reproducible, and translatable results in mice.

CLINICAL TRANSLATION
In the following section, we will address factors which 
limit the applicability of  mouse models to human thera-
peutic treatment development. As described above, 
insulin signaling gene knockout mice often have pheno-
types unrelated to type 2 diabetes including growth de-
fects[18,33,60,63], neonatal mortality[66], and others, including 
resistance to tumor formation[90]. These phenotypes are a 
result of  the loss of  diverse non-metabolic insulin func-
tions, and these studies have yielded information about 
those biological processes in mice. At this juncture, it is 
worth examining whether these mouse models of  insulin 
resistance are contributing positively to the development 
of  new, unique, safe, and effective type 2 diabetes treat-
ments. Here we focus on select pharmaceuticals targeting 
the signaling proteins discussed above. 

As might be predicted based on the importance of  
insulin to growth, several drugs targeting insulin signal-
ing molecules PI3K and AKT are under investigation as 
therapeutics for cancer[91,92]. Unsurprisingly, some PI3K 
inhibitors have been shown to induce insulin resistance[93].

The nuclear receptor PPARγ is an important drug 
target, and is genetically linked to insulin sensitivity and 
type 2 diabetes risk[94,95]. However, PPARγ-activating 
TZD drugs are associated with a number of  side effects 
and risks, including congestive heart failure[96]. Although 
some studies have been inconclusive in regards to cer-
tain risks associated with the TZD rosiglitazone[97], one 
meta-analysis of  42 studies found that the risk of  cardio-
vascular death increased 64%[98]. Rodent studies did not 
predict these deaths, and in fact have provided conflict-
ing evidence regarding cardioprotective and cardiotoxic 
effects of  TZDs. The TZD pioglitazone was shown to 
limit myocardial infarct size after coronary occlusion in 
mice[99]. Similar results have been seen for rosiglitazone 
after ischemia/reperfusion injury[100]. TZDs have been 
shown to have both positive and negative effects on car-
diac hypertrophy in rodents[101,102]. 

An inhibitor of  PKCβ, LY333531, or ruboxistaurin, 
has been investigated as a potential treatment for diabetic 
microvascular complications[103]. Although initially prom-
ising results were observed in a trial for diabetic neuropa-
thy, the drug was not shown to be effective in a larger, 
placebo-controlled study[104]. Promising results were also 
seen in a small trial for diabetic kidney disease[105], but 
these have not been replicated at a larger scale. Eli Lilly 

withdrew the marketing authorization application for 
ruboxistaurin as a treatment for diabetic retinopathy. 
Rather than diabetes or its complications, PKC inhibitors 
are now being investigated as potential treatments for 
cancer[106] and conditions requiring immunosuppressive 
therapy[107].

CONCLUSION
The limitations of  these mouse models of  insulin sig-
naling dysfunction arise from a number of  sources. 
Described above are physiological and molecular-level 
differences between mice and humans, reproducibility 
problems in mouse experiments, and complicating fac-
tors in drug discovery efforts that interfere with translat-
ing mouse results to human patients.

Researchers in a variety of  fields have commented on 
the limitations of  mouse models of  human disease[108,109]. 
No single mouse model can accurately represent the 
spectrum of  symptoms and complications associated 
with type 2 diabetes[11]. The translation of  results from 
mice is further complicated by a plethora of  immutable 
species differences at every level of  glucose regulation 
from the molecular to the population level[110-113]. In addi-
tion, mice are not prone to hypertension, high LDL cho-
lesterol, atherosclerosis, sedentary behavior, obesity, insu-
lin resistance, or many other features common to human 
type 2 diabetes patients. Although all laboratory mice are 
more insulin resistant and have more fat tissue than their 
free-living counterparts[114], the risk for mice developing 
these symptoms varies widely depending on the specific 
inbred strain[62,80]. Genetic background, housing condi-
tions, and diet can dramatically affect results. Examples 
highlighted here have shown that different studies even 
from the same laboratory often obtain different results 
with identical genetic modifications.

The idea that the limitations of  genetically modified 
mouse models of  human disease, and rodent models in 
general, are severe enough to warrant a shift in research 
approaches is controversial, and will likely continue to 
be for the next decade. Nonetheless, science in many 
medical fields has been progressing away from crude, 
animal-based experiments and towards more high-tech 
and human-based research methods, and that trend will 
continue. For example, one area of  active research is ad-
ditional uncharacterized insulin signaling cofactors, which 
could be identified using phosphoproteomics[115], protein 
array techniques, or protein interaction-based tech-
niques[116] including yeast two-hybrid and computational 
approaches. Similar approaches could be used to identify 
gene products involved in acquired insulin resistance. In 
addition, insulin resistance can be investigated in human 
cells by gene silencing[117], metabolomics[118], and microar-
ray technology. Remaining questions about the role of  
inflammation and accumulated intracellular lipids can be 
studied using tissue biopsy samples from various patient 
populations[119]. Many more in vitro[120], in silico[121], non-
invasive[122], and minimally invasive[123] approaches are 
available and in development. 
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In the last 20 years, the use of  genetically modified 
mice to investigate diabetes has become routine. While 
some findings have borne out in humans, investigations 
of  insulin resistance using knockout mouse models are 
inherently limited by physiological, genetic, and metabolic 
differences between mice and humans. Researchers and 
patients would benefit from a transition towards human-
based research methods.
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Abstract
Chromium is considered to have positive effects on 
insulin sensitivity and is marketed as an adjunctive 
therapy for inducing glucose tolerance in cases of in-
sulin resistance (“the glucose tolerance factor”). Case 
reports on patients who received prolonged parenteral 
nutrition indeed showed that the absence of trivalent 
chromium caused insulin resistance and diabetes. How-
ever, whether patients with type 2 diabetes can develop 
a clinically relevant chromium deficiency is unclear. This 
review summarizes the available evidence regarding the 
potential effectiveness of chromium supplementation 
on glycemic control (Hemoglobin A1c levels) in patients 
with type 2 diabetes. No studies investigating the long-
term safety of chromium in humans were found. All clin-
ical trials that have been performed had a relative short 
follow-up period. None of the trials investigated whether 
the patients had risk factors for chromium deficiency. 
The evidence from randomized trials in patients with 

type 2 diabetes demonstrated that chromium supple-
mentation does not effectively improve glycemic control. 
The meta-analyses showed that chromium supplemen-
tation did not improve fasting plasma glucose levels. 
Moreover, there were no clinically relevant chromium ef-
fects on body weight in individuals with or without dia-
betes. Future studies should focus on reliable methods 
to estimate chromium status to identify patients at risk 
for pathological alterations in their metabolism associ-
ated with chromium deficiency. Given the present data, 
there is no evidence that supports advising patients with 
type 2 diabetes to take chromium supplements.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Chromium; Type 2 diabetes mellitus; Insu-
lin resistance; Therapy; Supplements

Core tip: In some patients who received prolonged par-
enteral nutrition, absence of trivalent chromium caused 
insulin resistance and diabetes and supplementation 
with trivalent chromium “cleared” this metabolic dis-
ease. The question is, whether chromium deficiency 
is a relevant factor in the cause of type 2 diabetes in 
general and whether supplementation with trivalent 
chromium can have beneficial effects in type 2 dia-
betes. Unfortunately, no reliable methods to estimate 
chromium status exists and according to current evi-
dence, chromium does not improve glycemic control in 
patients with type 2 diabetes and patients should be 
advised not to take chromium supplements.
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INTRODUCTION
Insulin resistance is an important target for pharmaco-
logical and non-pharmacological interventions in patients 
with type 2 diabetes. In addition to the well-established 
interventions, a multitude of  suggested alternative solu-
tions outside the field of  regular conventional medicine is 
available. One of  these suggested beneficial interventions 
is oral supplementation with chromium. Chromium is 
marketed as a substance that improves insulin sensitiv-
ity (being as part of  the “Glucose Tolerance Factor” 
molecule), weight loss and improving glycemic control in 
patients with diabetes[1,2]. Chromium has become the sec-
ond most popular dietary supplement after calcium in the 
United States, with sales amounting to approximately 100 
million dollars annually[1,2]. 

Some studies have demonstrated that chromium 
supplementation in chromium deficient states indeed 
led to beneficial effects[3-6]. There are strong arguments 
supporting the hypothesis that chromium supplementa-
tion improves glycemic control in chromium deficient 
patients by improving insulin sensitivity[7]. In addition, 
patients with diabetes are thought to have a chromium 
deficient status that is induced by an altered chromium 
metabolism[4,8,9]. However, other studies have suggested 
that chromium metabolism is not altered in type 2 diabe-
tes[10]. Unfortunately, cut-off  points for chromium levels 
correlating with relevant changes in glucose metabolism 
and insulin resistance are lacking. There is no clinically 
defined chromium deficiency state, nor is there a vali-
dated method for estimating the total body chromium 
status[11-13]. A reliable assessment of  the chromium status 
in biological tissues and fluids is difficult due to extremely 
low chromium levels[12]. Although some studies have 
demonstrated successful chromium level determination 
in hair, sweat, and blood, there is still no exact method 
for defining chromium deficiency[8]. In this theoretical 
framework the “diabetic state” is linked to chromium 
deficiency and chromium supplementation would amend 
glycemic control by improving insulin sensitivity. This 
review discusses chromium physiology and summarizes 
the current evidence that chromium supplementation im-
proves glycemic control in patients with type 2 diabetes.

Several case reports demonstrated beneficial effects 
of  chromium supplementation in patients requiring total 
parenteral nutrition for prolonged periods[3,5-7,14,15]. One 
case report, published in 1977, discussed a 40-year-old 
woman who had undergone a total enterectomy after 
mesenterial thrombosis and became dependent on to-
tal parenteral nutrition[14]. After three years, she started 
losing weight and developed diabetes mellitus. She was 
young, had a low body weight, and required 50 IE of  
insulin daily to reach a near-normoglycemic state. Chro-
mium deficiency was considered as a possible cause. 
The chromium concentration in her serum and hair was 
measured and found to be low [154 ng/g (N > 500 ng/g) 
and 0.55 ng/g (N = 4.9-9.5 ng/g), respectively]. She was 
treated intravenously with 250 micrograms of  chromium 
chloride daily for two weeks. This treatment decreased 

the amount of  insulin needed, and after four months of  
chromium supplementation, she remained normoglyce-
mic without insulin. After this and several other case re-
ports[3,9,14], chromium was added to parenteral nutrition as 
a standard ingredient[6]. Nevertheless, the extent of  chro-
mium supplementation necessary during total parenteral 
nutrition is still debated[16,17]. 

CHROMIUM PHYSIOLOGY 
The two most common forms of  chromium are the triva-
lent (3+) and the hexavalent (6+) forms. Chromium 6+ is 
not present in nature and is toxic. The chromium found 
in food and in dietary supplements is the trivalent form. 
Whole grain products, such as whole grain bread, vegeta-
bles, nuts, and some spices contain low concentrations of  
trivalent chromium. Chromium supplements are available 
as chromium chloride, chromium nicotinate, chromium 
picolinate, high-chromium yeast, and chromium citrate. 
Chromium chloride appears to have a poor bioavailability, 
although there is limited data on chromium absorption in 
humans[12,15,18]. 

The role of  trivalent chromium in glucose metabo-
lism has been known since the 1950s[15]. Chromium can 
alter insulin sensitivity at the cellular level. The oligo-
peptide Apo-Low-Molecular-Weight-Chromium bind-
ing peptide (also known as Apo-chromoduline) plays 
an important role in potentiating the insulin response 
in insulin sensitive cells[18,19]. The Apo-chromoduline is 
loaded intracellularly with a maximum of  four chromium 
ions. Chromium-loaded Apo-chromoduline is called 
Holo-chromoduline. The Holo-chromoduline molecule 
binds to the insulin receptor and potentiates the insulin 
response by activating the receptor. The degree of  insulin 
receptor activation depends on the number of  chromium 
ions bound to this peptide, with a minimum of  0 and a 
maximum of  4 ions. This chromium binding may lead to 
an 8-fold difference in insulin receptor activation (when 
4 ions are bound compared to 0). Experiments using rat 
adipocyte cells with equal serum insulin concentrations 
confirmed that insulin receptor activation is eight times 
stronger in the presence of  chromium than in the ab-
sence of  chromium[18].

ADVERSE EFFECTS OF CHROMIUM
Several cell culture and animal studies using supraphysi-
ological chromium doses yielded results suggesting that 
chromium may increase DNA damage[20-23]. Chromium 
is not unique in this respect; a number of  other nutrients 
such as vitamins A and D, nicotinic acid, and selenium 
have also been implicated in causing toxicity when taken 
in excess[24]. Clinical trials of  oral chromium supplementa-
tion did not demonstrate toxicity in patients on parenteral 
nutrition[24,25]. We could not find long-term chromium 
safety studies. The DNA damage identified in cases of  
supraphysiological trivalent chromium concentrations did 
not translate into potentially carcinogenic effects when a 
more physiological dose of  oral trivalent chromium was 
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used in humans[24,26].

CLINICAL EVIDENCE FOR CHROMIUM 
USE 
In 1997, the intervention trial by Anderson et al[27] was 
one of  the first chromium-intervention studies in pa-
tients with type 2 diabetes. In this randomized controlled 
trial, chromium picolinate supplements or placebo were 
administered to 180 Chinese patients with type 2 diabetes. 
The patients were randomized into three groups: placebo, 
200 mg chromium, and 1000 mg of  chromium daily. After 
four months, the hemoglobin A1c (HbA1c) levels in the 
placebo group were unchanged (8.5%), while they decreased 
significantly in the 200 mg group, from 8.5% to 7.5%, and 
decreased in the 1000 mg group, from 8.5% to 6.6%. 

In 2007, Balk et al[28] performed a systematic review 
of  randomized controlled trials investigating chromium 
supplementation in patients with type 2 diabetes. At that 
time, 14 studies with 18 different chromium-based inter-
ventions had been performed using HbA1c levels as an 
endpoint. In 11 out of  these 14 trials, there was no sig-
nificant effect of  chromium supplementation. The review 
by Balk et al[28] concluded that, due to the poor quality 
and heterogeneity of  the data, additional studies addressing 
these limitations were needed before definitive claims could 
be made about the effect of  chromium supplementation[28]. 
Nevertheless, the meta-analysis by Balk et al[28] reported an 
overall significant effect of  chromium supplementation 
on HbA1c levels (-0.6%; 95%CI: -0.9% to -0.2%). This 
-0.6% mean benefit was largely due to the inclusion of  
the data reported by Anderson et al[27]. When the An-
derson study was excluded, the effect of  chromium on 
HbA1c levels was -0.3% (95%CI: -0.5% to -0.1%; NS)[28]. 
It should be noted however, that the Anderson study was 
inadequately blinded with concerns for detection bias and 
selection bias, and should be considered to be of  poor-
methodological quality[27,28]. 

Significant effects in the meta-analysis were only 
found in studies with poor methodological quality or in 
studies sponsored by chromium supplement producing 
companies. In addition, the effects of  chromium supple-
mentation were shown to be absent or non-relevant after 
stratifying the studies according to methodological qual-
ity, sponsor involvement, and a western vs non-western 
study location[6,29].

After the review written by Balk et al[28], a second 
Dutch double blind trial was performed in 2008 that 
studied the effects of  chromium on HbA1c levels in 
patients with type 2 diabetes[29]. After 6 mo, the effect 
of  chromium supplementation compared to placebo 
on HbA1c levels was 0.24% (95%CI: -0.06% to 0.54%). 
HbA1c levels were lower in the placebo group compared 
with the chromium group. All of  the trials that have been 
performed had a relatively short follow-up period. No 
studies have been performed with sufficient follow-up 
and the ability to reliably investigate cardiovascular and/
or microvascular end-points. All studies used surrogate 

end-points. None of  the trials investigated whether pa-
tients had risk factors for chromium deficiency.

Although this review focuses on the most relevant 
method of  estimating glycemic control (HbA1c lev-
els)[30-32], several studies investigated the effect of  chromi-
um on other markers of  glycemic control[11,13,33-35]. Meta-
analyses showed that chromium supplementation did 
not improve fasting plasma glucose levels[33,36] and had 
no clinically relevant effect on body weight in individuals 
with or without diabetes[37-39].

DISCUSSION
Chromium plays a role in insulin physiology, and severe 
chromium deficiency can lead to insulin resistance. Chro-
mium supplementation may be beneficial in rare cases 
of  prolonged total parental nutrition when standard 
chromium supplementation is lacking[6]. Despite the lack 
of  sufficient evidence that chromium supplementation 
improves glycemic control[28,29], chromium is still widely 
marketed as an effective supplement for improving glyce-
mic control in patients with type 2 diabetes.

Do we need to worry that a low chromium status 
contributes to hyperglycemia in our patients? 
For the average patient with type 2 diabetes, the answer 
is no. Trivalent chromium is sufficiently available in food, 
and the occurrence of  severe chromium deficiency is 
highly unlikely. The sparse evidence that chromium sup-
plementation might have effects on glycemic control in a 
broader population is derived from studies with impor-
tant methodological flaws[27,28]. Well-performed trials and 
meta-analyses consistently show that there is no evidence 
for consistent beneficial effects on glycemic control (as 
assessed by HbA1c levels) that support prescribing chro-
mium supplements to patients with type 2 diabetes[6,40]. 
Furthermore, the long-term safety of  chromium supple-
mentation has not been established. 

Is all hope lost for chromium supplementation in 
patients with type 2 diabetes? 
An important concern when interpreting the data from 
studies investigating chromium effects is the lack of  a 
validated and precise estimate of  chromium status. There 
is no reliable method for assessing the body’s chromium 
status, and there is no information on the bioavailabil-
ity of  the different forms of  chromium[41]. Performing 
randomized trials in patients with type 2 diabetes will 
become interesting only when we can properly assess 
the chromium status in patients at risk for chromium 
deficiency and when clinically relevant end points are de-
fined. 

Recommendations
Future research on chromium should focus on establish-
ing a reliable method for assessing the body’s chromium 
status. The bioavailability of  different forms of  chro-
mium in Western and non-Western patients should be 
investigated in order to define a potential effective dose 
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and to identify patients at risk for chromium deficiency. 
New randomized trials should only be considered in type 
2 diabetes patients with an established chromium defi-
ciency. The long-term safety of  chromium supplementa-
tion should be investigated in large population studies. 
Currently, chromium supplementation in patients with 
type 2 diabetes should not be recommended.
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Abstract
Hypertriglyceridaemia (HTG) is a risk factor for car-
diovascular disease (CVD) in type 2 diabetes and is 
caused by the interaction of genes and non-genetic 
factors, specifically poor glycaemic control and obe-
sity. In spite of statin treatment, residual risk of CVD 
remains high in type 2 diabetes, and this may relate to 
HTG and atherogenic dyslipidemia. Treatment of HTG 
emphasises correcting secondary factors and adverse 
lifestyles, in particular, diet and exercise. Pharmaco-
therapy is also required in most type 2 diabetic pa-
tients. Statins are the first-line therapy to achieve rec-
ommended therapeutic targets of plasma low-density  
lipoprotein cholesterol and non-high-density lipoprotein 
cholesterol. Fibrates, ezetimibe and n-3 fatty acids are 
adjunctive treatment options for residual and persis-
tent HTG. Evidence for the use of niacin has been chal-
lenged by non-significant CVD outcomes in two recent 
large clinical trials. Further investigation is required to 
clarify the use of incretin-based therapies for HTG in 
type 2 diabetes. Extreme HTG, with risk of pancreati-
tis, may require insulin infusion therapy or apheresis. 
New therapies targeting HTG in diabetes need to be 
tested in clinical endpoint trials. The purpose of this 
review is to examine the current evidence and provide 

practical guidance on the management of HTG in type 
2 diabetes.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Diabetic dyslipidemia relates collectively to 
hyperglycaemia, insulin resistance, hyperinsulinaemia, 
abdominal visceral adipose disposition, increased liver 
fat content, and dysregulated fatty acid metabolism. 
Insulin resistance in diabetes induces hypertriglyceri-
daemia by increasing the enterocytic production of 
chylomicrons and an impaired clearance capacity is also 
involved. Usual care for diabetic dyslipidemia is statin 
treatment, but a significant proportion of patients have 
residual dyslipidemia, related to hypertriglyceridaemia 
and atherogenic dyslipidemia. Current evidence sup-
ports the use of fenofibrate in type 2 diabetics with 
high triglyceride levels. 
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INTRODUCTION
Hypertriglyceridaemia (HTG) is an important risk factor 
for cardiovascular disease (CVD)[1] and is defined as a 
fasting plasma triglyceride concentration > 95th percentile 
for age and sex in a population. HTG may be as preva-
lent as 50% in type 2 diabetes and is often unresponsive 
to statin treatment[2,3]. We review recent evidence on the 
role of  HTG in atherosclerotic CVD and provide practi-
cal guidance on the management of  HTG in type 2 dia-
betes.
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PATHOPHYSIOLOGY OF 
HYPERTRIGLYCERIDAEMIA IN TYPE 2 
DIABETES
Triglycerides, which originate from the intestine post-
prandially or endogenously from the liver, are packaged 
into lipoprotein particles containing apolipoprotein 
B-48 (apoB-48; chylomicrons) and apolipoprotein B-100 
(apoB-100; very-low density lipoprotein, VLDL), respec-
tively. Abnormalities in triglyceride-rich lipoprotein (TRL) 
metabolism are cardinal features of  type 2 diabetes. Met-
abolic dysregulation resulting in HTG include enhanced 
hepatic secretion of  TRL due to insulin resistance and 
delayed clearance of  TRL involving lipoprotein lipase 
(LPL)-mediated lipolysis. Several genes causing loss of  
function of  LPL can result in severe HTG, such as LPL, 
APOC2, APOA5, GPD1, CPIHBP1 and LMF1[4,5]. Very 
few patients will have a monogenic disorder. Individuals 
with severe HTG are likely to be homozygous or com-
pound heterozygous for mutations which impair the TRL 
catabolic pathway. However, HTG in type 2 diabetes due 
to several genes with mild effects that interact with non-
genetic factors is probably more likely. These non-genetic 
factors include hyperglycaemia, alcohol abuse, concomi-
tant medication, sedentary lifestyle, chronic kidney dis-
ease and insulin resistance[6].

Insulin resistance activates de novo lipogenesis, result-
ing in oversecretion of  hepatic TRLs. This is also evident 
in the postprandial state, with enterocytic oversecretion 
of  TRLs in the form of  chylomicrons. With both secre-
tion pathways on overdrive, competition between the 
TRLs and their remnants for lipolytic and receptor-medi-
ated clearance further induces HTG. Insulin resistance is 
also associated with increased rates of  apolipoprotein C-
Ⅲ (apoC-Ⅲ) secretion, which further impairs receptor-
mediated uptake of  hepatic chylomicron remnants[7]. 
Glucose has also found to activate apoC-Ⅲ transcription, 
which may be the link between hyperglycaemia, HTG 
and CVD in type 2 diabetics[8].

Both LPL and hepatic lipase (HL) control the clear-
ance of  triglycerides. HL plays a particularly important 
role in the delipidation cascade from VLDL to LDL. Tri-
glyceride-rich VLDL derives small, dense LDL particles 
which are more susceptible to oxidation[9]. Additionally, 
increased TRL in postprandial diabetic dyslipidemia leads 
to the exchange of  TRL-triglyceride for HDL-cholesteryl 
ester and hence, triglyceride enrichment of  HDL via 
cholesteryl ester transfer protein (CETP). CETP progres-
sively decreases postprandially and limits the efficient 
removal of  cholesterol[10]. Triglycerides in HDL are good 
substrates for hepatic lipase which leads to the produc-
tion of  small dense HDL particles and enhanced apoli-
poprotein A-Ⅰ (apoA-Ⅰ) clearance[11].

Given that HTG is related to a plethora of  risk fac-
tors, the lack of  independent association between tri-
glyceride and CVD is expected[12], although two recent 
Mendelian randomisation studies have shown a causal 
association between variations in two related genes (LPL 

and APOA5) and myocardial infarction[13]. This supports 
that TRL causes CVD, and this probably applies to diabetes. 

Hence, diabetic dyslipidemia relates collectively to 
hyperglycaemia, insulin resistance, hyperinsulinaemia, 
abdominal visceral adipose disposition, increased liver fat 
content, and dysregulated fatty acid metabolism. Diabetic 
dyslipidemia may also be exacerbated by chronic kidney 
disease and by co-prescribed medications, such as thia-
zide diuretics, non-selective beta-blockers and steroids.

MANAGEMENT OF 
HYPERTRIGLYCERIDAEMIA IN TYPE 2 
DIABETES
Measurement and assessment
Triglyceride concentration is commonly measured with 
a fasting lipid profile. The fasting triglyceride level fa-
cilitates the calculation of  the LDL cholesterol by the 
Friedewald equation[14]. Non-fasting triglyceride concen-
trations are reflective of  the postprandial state and can be 
useful as a simple and practical screening test for HTG. A 
second non-fasting measurement is recommended if  the 
initial triglyceride is > 2.0 mmol/L. Two or more mea-
surements of  elevated triglyceride in both postabsorptive 
and postprandial states are clinically indicative of  HTG. 
Categories of  HTG are differentially defined in interna-
tional guidelines (Table 1).

Non-HDL cholesterol is another appealing method 
of  assessment as it does not attract additional costs. Non-
HDL cholesterol (total cholesterol minus HDL-choles-
terol) does not rely on a fasting triglyceride concentration 
and provides a simple amalgamated measure all the ath-
erogenic lipoproteins[15]. ApoB, on the other hand, does 
not adequately reflect chylomicron remnants and involves 
additional laboratory expenses. Discordance between 
non-HDL cholesterol and apoB measures, particularly 
in patients with type 2 diabetes and HTG, questions its 
value in assessing risk and defining treatment targets[16]. 
In the context of  statin-treated patients, a meta-analysis 
has shown that non-HDL cholesterol is superior in its as-
sociation with risk of  future major cardiovascular events 
compared with LDL cholesterol and apoB[17]. Other TRL 
markers such as remnant-like particle cholesterol, apoC-
Ⅲ and apoB-48 are expensive and are yet to be clinically 
established.

The hypertriglyceridaemic waist (HTWC) phenotype 
has suggested to be useful in assessing glucometabolic 
risk[18-21], in particular, among patients with a family his-
tory of  diabetes[22]. The HTWC phenotype is defined by 
a waist circumference of  ≥ 90 cm in men and ≥ 85 cm in 
women and triglyceride concentration ≥ 2.0 mmol/L. Men 
with the HTWC phenotype have been shown to have a 
four-fold risk of  diabetes compared to those with waist 
circumference and triglyceride in the normal ranges[23]. 
There is also a two-fold risk for development of  coro-
nary artery disease (CAD) in women[24] and an overall 
deterioration of  cardiometabolic risk[25] in relation to pro-
gression of  type 2 diabetes[26].
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Guidelines and recommendations
Guidelines for managing HTG in diabetes have been 
published, with lifestyle modifications being first-line 
therapy followed by statins, fibrates, n-3 fatty acids 
and/or niacin[27-30]. The national cholesterol education 
program (NCEP) adult treatment panel (ATP) Ⅲ guide-
lines recommend LDL cholesterol as the primary treat-
ment target and non-HDL cholesterol as a secondary 
target, with the exception of  a fasting triglyceride > 5.60 
mmol/L, only then, triglyceride becomes the primary 
target owing to the risk of  pancreatitis[31]. A simplifica-
tion of  the NCEP ATP Ⅲ guideline is presented in 
Table 2. Regardless of  atherosclerotic disease and pres-
ence of  other cardiovascular risk factors, type 2 diabetes 
is considered a coronary heart disease risk equivalent by 
the NCEP ATP Ⅲ.

The American Diabetes Association (ADA)/Ameri-
can College of  Cardiology Foundation consensus state-
ment recommends a non-HDL cholesterol target of  3.40 
mmol/L in diabetic patients with no other cardiovascular 
risk factor and a target of  2.60 mmol/L if  there is one 
or more cardiovascular risk factor such as hypertension, 
smoking, dyslipidemia and family history of  CAD[32]. 
The LDL cholesterol target is 2.60 and 1.80 mmol/L, 
respectively[32] or alternatively a 30%-40% reduction from 
baseline levels[30]. The ADA position statement is the 
only guideline that provides desirable targets for triglycer-
ide levels for patients with type 2 diabetes: less than 1.70 
mmol/L[30]. Both the NCEP ATP and ADA guidelines 
place emphasis on weight loss and physical activity. A 
summary of  recommended treatment targets is presented 
in Table 3.

The Scientific Statement from the American Heart 
Association (AHA) on triglycerides and CVD particularly 
emphasises the dietary and lifestyle modifications (weight 
loss, macronutrient distribution and aerobic exercise) for 
the treatment of  elevated triglycerides, presenting a prac-
tical algorithm for screening and management[28]. The 
European Society of  Cardiology (ESC) guidelines on 

diabetes and CVD developed in collaboration with the 
European Association for the Study of  Diabetes (EASD) 
suggests targeting residual risk in patients with elevated 
TG (> 2.2 mmol/L), with dietary and lifestyle advice and 
improved glucose control[33], post first-line treatment. The 
Endocrine Society task force agrees with the NCEP ATP 
Ⅲ treatment goals and recommends fibrates as first-line 
treatment for lowering triglycerides in patients at-risk for 
pancreatitis[34].

The International Atherosclerosis Society position 
paper recognises the atherogenicity of  VLDL and triglyc-
erides and also favours non-HDL cholesterol as the main 
target for therapy, optimally at < 3.40 mmol/L[35]. The 
American College of  Cardiology (ACC)/AHA published 
a new clinical practice guideline for the treatment of  el-
evated blood cholesterol in people at high risk for CVD. 
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  Ref. Year 
published

Triglyceride 
categories

Triglyceride 
concentration (mmol/L)

  National institutes   
  of Health[31]

2001 Normal 1.7
Borderline high 1.7-2.3

High 2.3-5.6
Very high > 5.6

  Rydén et al[33] 2011 Desirable < 1.7
Elevated 1.7-5.5

Very high 5.5-25.0
Extremely high > 25.0

  Berglund et al[34] 2012 Normal < 1.7
Mild 1.7-2.3

Moderately high 2.3-11.2
Severely high 11.2-22.4

Very severely high > 22.4
  Hegele et al[37] 2013 Normal < 2.0

Mild-to-moderate 2.0-10.0
Severe > 10.0

Table 1  Clinical categorisation of hypertriglyceridaemia 
according to guidelines based on fasting triglyceride 
concentrations

  Steps

  1 Obtain fasting lipid profile
  2 Classify LDL-cholesterol concentration (primary target of 

therapy)
  < 2.60 mmol/L – optimal
  2.60-3.39 mmol/L – above optimal
  3.40-4.14 mmol/L – borderline high
  4.15-4.90 mmol/L – high
  > 4.90 mmol/L – very high
Establish therapy: 
  LDL-cholesterol > 2.60 mmol/L – initiate dietary and lifestyle   
  modifications
  LDL-cholesterol > 3.40 mmol/L – consider pharmacotherapy 
  simultaneously with dietary and lifestyle modifications

  3 Identify presence of atherosclerotic disease
  Clinical coronary heart disease
  Symptomatic carotid artery disease
  Peripheral artery disease

  4 Assess:
  Glycaemic control
  Obesity
  Dietary intake (e.g., Fructose, simple sugars, caloric intake)
  Physical activity
Determine presence of other risk factors:
  Smoking
  Hypertension
  Family history of premature coronary heart disease (i.e,. in first-  
  degree relative, male < 55 years, female < 65 years)
  Low HDL-cholesterol, < 1.0 mmol/L

  5 Order of treatment considerations:
  Improve glycaemia (dietary and lifestyle modifications)
  Treat secondary risk factors
  Statins
  Fibrates
  n-3 fatty acids/niacin

  6 Treat elevated triglyceride if triglyceride concentrations are > 
2.30 mmol/L after LDL-cholesterol concentration target of < 2.60 
mmol/L is reached 
  Target non-HDL cholesterol (< 3.40 mmol/L) 
  Triglyceride > 2.30 mmol/L – intensify LDL-lowering therapy or   
  add fibrate 
  Triglyceride > 5.60 mmol/L – very low-fat diet (< 15% of calories   
  from fat), weight management, physical activity and add fibrate

Table 2  Clinical guide for the assessment and treatment of 
hypertriglyceridaemia  in type 2 diabetes

Adapted from the NCEP ATP Ⅲ guidelines[31]. LDL: Low density lipopro-
tein; HDL: High density lipoprotein. 
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lowering TG in individuals with overt HTG[47]. Alcohol 
abstinence in patients with excessive alcohol intake can 
markedly lower plasma triglyceride levels[48,49]. Smoking 
cessation is also imperative[50].

Pharmacotherapy
Statin monotherapy: Statin therapy is the cornerstone 
of  treatment of  dyslipidemia in diabetes. Whilst reach-
ing the LDL cholesterol target in most patients, only 
modest effects are exerted on triglyceride and HDL cho-
lesterol. Hence, diabetics with HTG often have residual 
CVD risk[51] in spite of  an optimal LDL cholesterol 
target. Statins may lower plasma triglyceride by increas-
ing lipolysis and the clearance of  TRLs, particularly with 
potent statins such as atorvastatin and rosuvastatin (up 
to 26% and 28% reduction in plasma triglyceride, respec-
tively)[52-54]. Large statin outcome trials have supported 
its use in reducing coronary events and mortality[55-58]. 
All trials to-date have not specifically selected for HTG 
and in diabetics. However, sub-group analyses have been 
undertaken showing risk prevention with pravastatin[59], 
simvastatin[60] and rosuvastatin[61] in a subset of  patients with 
high plasma triglyceride, recently reviewed by Maki et al[62], 
and supporting statins as first line of  therapy. Whilst use 
of  higher doses of  statin has been linked to incidence of  
diabetes[63-65], the benefits of  statin therapy for reducing 
CVD risk and events are outweighed for all diabetic pa-
tients with high CVD risk[57,63]. Aminotransferase, creatine 
kinase, creatinine and glucose should be monitored prior 
to initiating statins and before initiating a second agent, if  
required.

Fibrates and statin-fibrate combination: Fibrates 
(gemfibrozil, fenofibrate) act on peroxisome proliferator-
activated receptor alpha. Fibrates decreases hepatic 
VLDL secretion and can confer an up to 30% reduc-
tion in plasma triglyceride, TRL remnants and apoB[66]. 
Five fibrate trials have undertaken secondary analyses in 
high triglyceride subgroups[67-79], two of  these trials were 
in type 2 diabetic patients[70-72] and one had a subset of  
diabetics[73,74]. Collectively, these trials advocate the use 
of  fibrates in reducing CVD events among patients with 

The guidelines do not provide recommendations for specific 
LDL-cholesterol or non-HDL targets and instead defines 
four major groups of  primary and secondary prevention pa-
tients for whom LDL lowering is proven to be most benefi-
cial[36]. Future guidelines to cover the treatment of  HTG are 
proposed. A recent review by Hegele et al[37] recommended 
the simplification and redefinition of  HTG: < 2.0 mmol/
L as normal, 2.0-10.0 mmol/L as mild-to-moderate and 
> 10.0 mmol/L as severe; with desirable targets of  < 1.7 
mmol/L for triglycerides, < 2.6 mmol/L for non-HDL 
cholesterol and < 0.8 g/L for apoB in high-risk patients

Treatment of  HTG depends on its severity, co-ex-
isting lipid abnormalities and overall cardiovascular risk. 
Severe HTG serves as increased risk of  pancreatitis and 
warrants treatment to acutely reduce triglyceride levels. 
Current therapeutic strategies include diet and lifestyle 
modification, pharmacotherapy and in rare cases, con-
tinuous insulin infusion and apheresis.

Dietary and lifestyle modifications
Lifestyle interventions are central for controlling hyper-
glycaemia and HTG in patients with type 2 diabetic pa-
tients and impaired fasting glucose. These interventions 
include weight reduction, altered dietary composition, ex-
ercise and regulation of  alcohol consumption. In type 2 
diabetes, modest (5%-10%) weight loss can lower plasma 
triglyceride levels by up to 25%[38,39] and normalise post-
prandial triglyceride concentration[40]. Physical activity can 
aid the maintenance of  weight loss achieved through ca-
loric restrictions[41], although evidence for linking lifestyle 
modifications and sustained weight is limited[42]. 

The recently published look AHEAD trial, an inten-
sive lifestyle intervention in type 2 diabetics, employing 
weight loss through caloric restriction and increased 
physical activity did not reduce the rate of  cardiovascular 
events[43]. Whether alterations in dietary composition, 
such as with the Mediterranean diet, improves clinical 
outcome in diabetes warrants additional investigation[44], 
though the Mediterranean and low-carbohydrate diet can 
produce a greater reduction in triglyceride levels com-
pared to the restricted-calorie diet in moderately obese 
individuals[45,46]. Plant sterols have been suggested for 

NCEP ATP Ⅲ[31] ADA[30] NVDPA[128] European Guidelines[33]

  LDL-cholesterol (mmol/L) Very high risk < 1.8 < 1.8 < 2.0 < 1.8
High risk < 2.6 < 2.6 < 2.0 < 2.5

  Triglycerides (mmol/L) < 1.7 < 2.0 < 1.7
  HDL-cholesterol (mmol/L) Male > 1.0 ≥ 1.0 > 1.0

Female > 1.3 ≥ 1.0 > 1.2
  Non-HDL cholesterol (mmol/L) Very high risk < 2.6 < 2.6 < 2.5 < 2.6

High risk < 3.4 < 3.4 < 2.5 < 3.3
ApoB (g/L) Very high risk < 0.8 < 0.8

High risk < 0.9 < 1.0

Table 3  Recommended treatment targets for diabetic dyslipidaemia

NCEP ATP Ⅲ: Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cho-
lesterol in adults (Adult treatment panel Ⅲ); ADA: American diabetes association; NVDPA: National vascular disease prevention alliance of australia; LDL: 
Low density lipoprotein; HDL: High density lipoprotein.
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a high triglyceride and low HDL cholesterol levels[75-78]. 
Of  note, the Fenofibrate Intervention and Event Lower-
ing in Diabetes (FIELD) study showed that fenofibrate 
decreased progression of  diabetic retinopathy[79], though 
unrelated to dyslipidemia, and the Action to Control Car-
diovascular Risk in Diabetes (ACCORD) study also showed 
a delay in the onset of  eye complications[80]. Meta-analyses 
suggest that fibrates are useful for treatment of  HTG[76] in 
diabetic patients[71,81,82]. Every 0.10 mmol/L reduction in 
triglyceride with fibrates confers a 5% reduction in CVD 
event, although no benefits were found on cardiovascular 
mortality[77,78].

Niacin and statin-niacin combination: Niacin can de-
crease plasma triglyceride by 30%[83] via the inhibition of  
hepatic diacylglycerol acyltransferase-2 (DGAT-2), a rate-
limiting enzyme of  triglyceride synthesis. Despite the ear-
lier studies showing reduced mortality[84] and regression 
of  subclinical atherosclerosis[85-87], the current use of  nia-
cin has been challenged by two large recent clinical trials 
which have failed to show significant benefits on CVD 
events[88,89] in spite of  positive changes in lipid param-
eters. Both trials have limitations. The Atherothrombosis 
Intervention in Metabolic Syndrome with Low HDL/
High Triglycerides: Impact on Global Health (AIM-
HIGH) study was underpowered and confounded by the 
higher statin and/or ezetimibe doses to match LDL cho-
lesterol between groups[88]. The Heart Protection Study 
2-Treatment of  HDL to Reduce the Incidence of  Vascu-
lar Events (HPS2-THRIVE) study is the largest extend-
release niacin trial to-date combined with laropiprant, a 
prostaglandin D2 inhibitor[89]. Despite no significant ben-
efit on primary CVD endpoints, a recent sub-analysis in 
patients with both high triglyceride (> 2.24 mmol/L) and 
low HDL cholesterol (< 0.85 mmol/L) showed a trend 
towards benefit with niacin, although not reaching statis-
tical significance (HR = 0.74, P = 0.073)[90]. Of  note, the 
lack of  potential benefit or harm in the HPS2-THRIVE 
study may not necessarily be due to niacin, but potentially 
to laropiprant. The safety of  niacin use in type 2 diabetes 
has previously been questioned owing to impairment in 
glycaemic control and insulin sensitivity[91-93]. However, 
two prospective trials have showed that the effect of  nia-
cin on glycaemic control is minimal in a majority of  pa-
tients with stable diabetes[94] and with no changes in low-
dose (1 g/d) niacin[95].

Ezetimibe and statin-ezetimibe combination: Ezeti-
mibe inhibits intestinal cholesterol absorption and pri-
marily lowers LDL cholesterol via the Niemann-Pick C1-
Like 1 protein. Ezetimibe has minimal effects in lowering 
plasma fasting triglyceride (8%)[96]. A more prominent 
effect is observed in ameliorating postprandial lipaemia 
and lowering TRL remnants in spite of  background 
statin[97,98]. In a 6-wk trial of  simvastatin-ezetimibe vs. 
simvastatin monotherapy, fasting and postprandial plasma 
triglyceride and apoB-48 concentrations were lowered in 
type 2 diabetic patients[99]. However, intensive lipid low-

ering with a statin plus ezetimibe may not consistently 
lower subclinical carotid atherosclerosis in type 2 diabe-
tes, although progression of  carotid artery intima-media 
thickness was inhibited with the combination[100,101]. The 
Improved Reduction of  Outcomes: Vytorin Efficacy In-
ternational Trial (IMPROVE-IT) study that is currently 
entering completion will endeavour to provide definitive 
evidence for the role of  ezetimibe in high risk subjects 
on optimal statin therapy[102,103].

n-3 fatty acid and statin-n-3 fatty acid combination: 
Supplemental n-3 polyunsaturated fatty acids (PUFAs), 
mainly eicosapentaenoic acid (EPA) and docosahexae-
noic acid (DHA), are well known to improve HTG[104]. 
However, recent clinical outcome trials with have failed 
to show significant CVD benefits in high risk subjects 
including diabetics[105,106]. Both trials were undertaken 
against a background of  optimal therapy, including 
statins. Also, patients were not selected for elevated plas-
ma triglyceride levels. Pure EPA (1800 mg/d), added to 
statin therapy, showed promise in the Japan Eicosapen-
taenoic acid Lipid Intervention Study (JELIS) with major 
coronary events reduced by 19% (P = 0.011) in hyper-
cholesterolaemic patients[107]. Two 12-wk EPA (AMR101) 
intervention trials in patients with very high[108] and per-
sistent[109] baseline triglyceride observed significant reduc-
tions in triglyceride levels. The greatest decrease was seen 
in the highest triglyceride tertile where there was a 31% 
reduction compared to placebo on 4 g/d of  AMR101. 
The Reduction of  Cardiovascular Events with EPA-
Intervention Trial (REDUCE-IT) is in progress and will 
endeavour obtain the CVD outcome data with AMR101 
4 g/d in high-risk patients with HTG and at-target LDL 
cholesterol on statin therapy[110]. There are also recent 
data suggesting an increased risk of  prostate cancer with 
high dietary intake of  n-3 PUFAs[111]. Hence, caution is 
warranted when recommending long-term intake.

Incretin-based therapy: Incretins, such as glucagon-
like peptide-1 (GLP-1), are insulinotropic, gut-derived 
hormones secreted in response to diet. GLP-1 receptor 
analogs such as liraglutide and exenatide, delay gastric 
emptying and this parallels the reduction in postprandial 
triglyceride response[112]. This mechanism may ameliorate 
impaired TRL metabolism in type 2 diabetes. By increasing 
plasma concentrations of  GLP-1, Dipeptidyl peptidase-4 
(DPP-4) inhibitors, such as sitagliptin, saxagliptin and alo-
gliptin, can improve insulin sensitivity, β-cell function[113] 
and postprandial glycaemia[114] and lipaemia[115]. These 
agents could potentially prevent CVD events, indepen-
dent of  changes in glucose and lipid metabolism. A recent 
saxagliptin outcome trial failed to demonstrate significant 
changes in ischaemic events, though the rate of  heart fail-
ure increased significantly[116]. Similarly, a trial in type 2 dia-
betic patients post-acute coronary syndrome with aloglipi-
tin did not improve cardiovascular event rates compared 
with placebo[117]. Further investigation is required to clarify 
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their mechanism and use in type 2 diabetes.

MANAGEMENT OF SEVERE 
HYPERTRIGLYCERIDAEMIA IN TYPE 2 
DIABETES
Insulin infusion, apheresis and gene replacement 
therapy
In severe cases of  diabetic HTG and poorly controlled 
diabetes, continuous intravenous insulin infusion appears 
to be beneficial in restoring serum glucose and triglyc-
eride[118]. Most of  these patients will have an underlying 
genetic defect in TRL metabolism. A recent study in a 
group of  15 diabetics with a median triglyceride concen-
tration of  26.23 mmol/L at admission had their triglyc-
eride levels corrected to a median of  5.75 mmol/L at 
discharge with an average of  48 h of  continuous insulin 
infusion[119]. For prevention of  recurrent severe HTG in 
susceptible patients, counselling on medication adherence 
and long-term diet and lifestyle medications should be 
considered[120].

In extremely severe HTG and drug refractory HTG, 
plasma apheresis may be required[121,122], particularly with 
severe chylomicronaemia complicated by acute pancreati-
tis. A single session of  apheresis can dramatically lower 
excessive triglyceride levels, 65.8% reduction in 2 h[123,124]. 
This method of  triglyceride lowering is only indicated 
in medical emergencies owing to high costs and limited 
availability[125]. Further study is required to clarify the role 
of  plasma exchange in the treatment of  hyperlipidaemic 
pancreatitis.

In patients genetically diagnosed with familial LPL 
deficiency, Glybera® (alipogene tiparvovec; Amsterdam 
Molecular Therapeutics, Amsterdam, the Netherlands) 
is the first approved gene-replacement therapy[126,127]. 
Glybera® has only been studied in 27 patients, in whom 
the agent was well tolerated and with plasma triglyceride 
concentration significantly lowered with reduced rates of  
acute pancreatitis[126]. Long-term follow-up data and cost-
effectiveness studies is warranted[126,127].

CONCLUSION
HTG is common in type 2 diabetes. HTG associates with 
a spectrum of  cardiometabolic risk factors and increases 
CVD risk in type 2 diabetes. Dietary and lifestyle modi-
fication involving weight loss and exercise is fundamen-
tal to the management of  HTG. Improved glycaemic 
control with use of  metformin, DPP-4 inhibitors and 
insulin can also improve HTG. The expression of  HTG 
in context of  diabetes may depend on co-existing mono-
genic and/or multigenic disorders of  lipid metabolism, 
such as familial combined hyperlipidaemia, familial hy-
pertriglyceridaemia and type Ⅱ hyperlipoproteinaemia. 
Statins are the first-line of  lipid-lowering therapy to tar-
get LDL cholesterol and triglycerides. Current evidence 
supports the use of  fenofibrate in type 2 diabetics, with 

high triglyceride and low HDL, but also to prevent and 
treat diabetic retinopathy. More evidence is required from 
CVD outcome trials for the other add-on options, some 
of  which are currently underway. Several new therapies 
with potential applications for treating HTG are DGAT 
inhibitors, microsomal triglyceride transfer protein inhibi-
tors, and apoC-Ⅲ antisense oligonucleotides. These will 
agents will require to be tested for efficacy, safety and 
cost-effectiveness in future clinical trials.
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Abstract
Diabetes mellitus (DM) is a widely spread epidemic dis-
ease that results from the absence of insulin, decreased 
secretion and/or impaired function. Since DM is a multi-
factorial disease, the available pharmaceuticals, despite 
their sensible treatment, target mostly one pathway 
to control hyperglycemia and encounter several side 
effects. Therefore, new therapeutic paradigms aim to 
hit several pathways using only one agent. Tradition-
ally, antidiabetic plants and/or their active constituents 
may fulfill this need. More than 200 species of plants 
possess antidiabetic properties which were evaluated 
mostly by screening tests without digging far for the 
exact mode of action. Searching among the different 
literature resources and various database and in view of 
the above aspects, the present article provides a com-
prehensive review on the available antidiabetic plants 
that have been approved by pharmacological and clini-
cal evaluations, and which their mechanism(s) of ac-
tion is assured. These plants are categorized according 
to their proved mode of action and are classified into 
those that act by inhibiting glucose absorption from in-
testine, increasing insulin secretion from the pancreas, 

inhibiting glucose production from hepatocytes, or en-
hancing glucose uptake by adipose and muscle tissues. 
The current review also highlights those that mimic in 
their action the new peptide analogs, such as exena-
tide, liraglutide and dipeptidylpeptidase-4 inhibitors that 
increase glucagon-like peptide-1 serum concentration 
and slow down the gastric emptying. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
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Core tip: Diabetes is a serious metabolic disorder that is 
currently treated by different types of synthetic oral hy-
poglycemic agents, in addition to insulin. However, due 
to the unwanted side effects, the efficacies of these 
compounds are debatable and there is a demand for 
new compounds for the treatment of diabetes. There-
fore, attention has been directed towards nutraceuti-
cals originating from plants that are rich in antidiabetic 
phyto-constituents. Although the evidenced-based 
therapeutic usage of many plants is scarce, the plants 
cited in this review are those reputed traditionally for 
their antidiabetic effect and that were verified either 
experimentally or clinically.

El-Abhar HS, Schaalan MF. Phytotherapy in diabetes: Re-
view on potential mechanistic perspectives. World J Diabe-
tes 2014; 5(2): 176-197  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i2/176.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i2.176

INTRODUCTION
Diabetes mellitus (DM) is a common disorder of  car-
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bohydrate, fat and protein metabolism reflected by an 
inappropriate fasting and postprandial high blood glu-
cose levels (hyperglycaemia). This ailment results from 
the absence or scantiness of  insulin secretion with or 
without concurrent impairment of  insulin action. Conse-
quently, the disease was classified into two types known 
as type Ⅰ (insulin dependent, IDDM) and Ⅱ (non-insulin 
dependent, NIDDM) according to the degree of  the 
pancreatic defect. This classification has been even recog-
nized since the time of  Ibn Sinaa who mentioned it in his 
book “The Canon of  Medicine”. 

DM is not confined to abnormal blood glucose level, 
but it progresses to affect other body systems. This fact 
was confirmed by several epidemiological studies and 
clinical trials that linked hyperglycemia to several compli-
cations at the macrovascular (coronary artery disease and 
cerebrovascular disease), as well as the microvascular lev-
els (renal failure, blindness, limb amputation, neurological 
complications and pre-mature death)[1]. 

Based on the pathophysiology and severity of  this 
disease, it can be controlled by dietary restriction, exer-
cise, different types of  synthetic oral hypoglycemic agents 
and/or insulin. Since DM is one of  the multi-factorial 
based diseases, therefore, a balanced modulation of  sev-
eral targets can provide a superior therapeutic effect and 
a decrease in the side effects profile compared to the 
action of  a single selective agent[2]. Hence, the current 
strategy used for the treatment of  type Ⅱ DM depends 
on combining an insulin secretagogue and an insulin 
sensitizer to provide a sensible therapeutic approach 
(Figure 1)[3]. Albeit reasonable management provided by 
these drugs, yet over time, some of  the type Ⅱ diabetic 
patients lose response towards conventional antidiabetics, 
leading to an inadequate control of  their blood glucose 
level. Moreover, several side effects could hinder their 
capability in alleviating the symptoms of  diabetes, such 
as severe hypoglycemia, lactic acidosis, idiosyncratic liver 

cell injury, permanent neurological deficit, digestive dis-
comfort, headache, dizziness and even death. In addition, 
treatment of  IDDM using insulin has also its compli-
cations, since continuous exposure to insulin causes a 
reduction in the number of  receptors on the cell surface 
by promoting internalization, as well as degradation of  
hormone-occupied receptors[4]. 

In spite of  the introduction and extensive utiliza-
tion of  hypoglycaemic agents, diabetes and its related 
complications continue to be a major health problem 
worldwide. Globally, around 150 millions of  people are 
believed to be diabetic and the incidence rate is expected 
to double by 2025[5]. These expectations are “good to be 
true”, especially for NIDDM, since the slothful lifestyle 
along with the high consumption of  westernized diet, are 
considered to be the cornerstone for the development of  
this type of  DM. Hence, it is a requisite to have safer and 
more effective oral hypoglycemic agents which can hit 
many targets to fulfill the new paradigm in drug discov-
ery[6]. To achieve this objective, one may either employ 
a single compound to strike multiple targets; this can be 
termed as a one compound-multiple-target strategy[2], or 
use a combination of  active compounds in one drug[7]. 
Therefore, attention has been directed towards nutraceu-
ticals, since they can fulfill these criteria. 

Herbal products may contain several active constitu-
ents or compounds that can act by several modes of  
action to influence multiple biological pathways and to 
alleviate the diabetic symptoms, providing thereby multi-
faceted benefits[8]. Nevertheless, this vision is not totally 
new, since prior to and after the discovery of  insulin, 
herbs with hypoglycaemic effect have been used in folk 
medicine and are still prevalent[9-11]. As a support for this 
concept, metformin, which is notable for its substantial fa-
vorable impact on diabetes prevention, was purified from 
the French lilac Galega officinalis L.[12]. Moreover, the low 
cost of  these compounds and the minimal side effects are 
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Figure 1  Pathophysiological mechanisms of hyperglycemia matched with the suitable pharmacotherapeutics (Data adapted from Hui et al[3]). 



other reasons behind the hunt for effective natural agents 
to be used as complementary and/or alternative medicine.

Since restoring glucose homeostasis is influenced by 
several aspects, the current article classifies the hypogly-
cemic herbs that are available in literature resource from 
various database, into poroper categorization according 
to their potential mode of  action to reduce blood glucose 
level. Different search engines were explored includ-
ing Pubmed, Google, Asci database by using different 
keywords, as well as some of  the traditional tertiary re-
sources. Priority was given to research articles and infor-
mation given by authentic organizations and federations. 
Plants cited in this review are those reputed traditionally 
for their antidiabetic effect and that were verified, either 
experimentally or clinically. The efficacy of  hypoglycemic 
herbs is achieved by inhibiting glucose absorption from 
intestine, increasing insulin secretion from the pancreas, 
inhibiting glucose production from hepatocytes, or en-
hancing glucose uptake into the peripheral tissue via the 
glucose transporters (GLUT). Additionally, the plants 
that act by simulating the action of  the new incretin pep-
tide analogs were also mentioned in the present review.  

INHIBITION OF GLUCOSE ABSORPTION
Postprandial hyperglycemia plays an important role in the 
incidence of  type Ⅱ DM, since recent studies suggest 
that it could induce the non-enzymatic glycosylation of  
various proteins, resulting in the development of  chronic 
complications. Therefore, controlling its level, via inhibit-
ing the activities of  α-glucosidase enzymes, is believed 
to be an important strategy to manage this disease. Alfa-
glucosidase enzyme is a member of  the glucosidases 
located in the brush-border surface membrane of  the 
intestinal cells and is a rate-limiting step in the conversion 
of  oligosaccharides and disaccharides into monosac-
charides, necessary for gastrointestinal absorption[13]. In 
addition, α-amylase, which is present in both salivary and 
pancreatic secretions[14], is responsible for cleaving large 
malto-oligosaccharides to maltose which is a substrate 
for the intestinal α-glucosidase. Hence, the inhibition of  
α-glucosidase and/or α-amylase enzymes is currently in 
vogue, especially if  these inhibitors stem from natural 
bases. The following are some examples of  plants or their 
constituents that are proven to possess anti-enzymatic 
properties.

Methanolic extract of  Adhatoda vasica Nees (Acantha-
ceae) was shown to have the highest sucrase inhibitory 
activity among forty species tested in an experimentally 
screening study by Gao et al[15]. This effect was attrib-
uted to its active constituents, viz., vasicine and vasicinol, 
beside other constituents, offering thus, a possibility 
to develop successful α-glucosidase inhibitors. Previ-
ous studies by Gao et al[15] also reported the isolation of  
maltase inhibitory principles from the fruits of  Terminalia 
chebula[16] and Tussilago farfarae[17].

Belonging to the same Acanthaceae family, in vitro 
studies on the ethanolic extract of  Andrographis paniculata 
(Burm. f.) Nees and its principal active constituent, an-

drographolide (AG), seem to possess an antihyperglyce-
mic activity[18]. They delay the quick digestion of  starch, 
as well as sucrose, and prolong the absorption time of  
carbohydrates, pointing to an α-glucosidase inhibitory 
activity. Moreover, essential oils obtained from the woods 
of  Cedrus libani A. Rich (Pinaceae), but not its leaves or 
cones, were able to inhibit the α-amylase activity[19].

Nigella sativa L. (Ranunculaceae), a plant commonly 
used in the Middle Eastern and North African traditional 
medicine was validated for its multi-factorial anti-diabetic 
actions. The crude aqueous extract tested in experimen-
tal rats was able to restore glucose homeostasis[20] and to 
improve glucose tolerance as efficiently as metformin. 
Apart from its effect to enhance insulin sensitivity in liver 
cells[21], and to possess an insulinotropic and insulin-like 
activities in cultured pancreatic β-cells, skeletal muscle 
cells and adipocytes[22], it is now documented[23] that the 
crude aqueous extract of  Nigella sativa seeds directly in-
hibits the electrogenic intestinal absorption of  glucose 
in vitro. This effect is mediated by reducing the intestinal 
sodium-dependent D-glucose cotransporter-1 (SGLT1) 
which is the major transporter of  glucose in the intes-
tine[24,25]. SGLT1 is also considered a key molecule in the 
sensing of  glucose entry that is highly regulated by pep-
tides and hormones[26]. 

Another plant that is widely used as an anti-diabetic in 
folk medicine in México is Tournefortia hartwegiana, where 
the decoction of  its aerial parts controls the disease, when 
given orally for 10-14 d to alloxanized rats. The plant is 
thought to control the glucose level via several routes, in-
cluding the inhibition of  the intestinal α-glucosidase and 
other intestinal enzymes, as maltase and sucrase that are 
implicated in the digestion of  polysaccharides and oligo-
saccharides[27,28]. The inhibitory effect of  this decoction 
suppresses the absorption of  carbohydrates from intestine 
and thereby reduces the post-prandial increase in the glu-
cose level. On the other hand, Ortiz-Andrade et al[27] re-
ferred the anti-diabetic effect of  the methanolic extract of  
the same plant to the enhancement of  insulin secretion 
and/or action. Furthermore, other machineries , such 
as the modulation of  the pancreatic and extrapancreatic 
effects[29-32], besides the enhancement of  β-cell glucose 
metabolism or an activation of  enzyme system generating 
cyclic adenosine mono phosphate (AMP) or phospho-
lipid derived messenger[33], and/or blockage of  glucose 
co-transporters from intestine to circulation[34], cannot be 
ruled out. These diverse mechanisms are attributed to the 
different components that were tested for their individual 
hypoglycemic action, where the “cocktail” of  these con-
stituents could trigger a synergic effect.

In 2004, Asano et al[34] in their search for an anti-
glycosidase, succeeded to isolate new alkaloids from the 
bulbs of  Scilla peruviana (Hyacinthaceae) that display an in-
hibitory action of  bacterial β-glucosidase and bovine liver 
β-galactosidase to varying degrees. In addition, the meth-
anolic extract of  the rhizome of  Rheum emodi, known as 
Himalayan rhubarb, inhibited the activity of  both mild 
yeast and mammalian intestinal α-glucosidase as proven 
by Suresh Babu et al[35]. This action correlates with the 
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the anti-diabetic property of  Salacia is partially attributed 
to its intestinal α-glucosidase inhibitory activity.  

Mangifera indica Linn. (Anacardiaceae) is a plant that pos-
sesses several properties, one of  which is hypoglycemia 
that favors it to control type Ⅱ DM in some rural African 
communities[46]. Mangiferin is one of  the active constitu-
ents of  this plant, besides the polyphenolics, flavonoids, 
triterpenoids, and other chemical compounds. Therefore, 
the mangiferin-mediated inhibition of  α-glucosidase ac-
tivity[47], offers one mechanism for the hypoglycemic ef-
fect of  this plant. 

The potential antidiabetic activity of  six pentacyclic 
triterpenes (oleanolic acid, arjunolic acid, asiatic acid, 
maslinic acid, corosolic acid and 23-hydroxyursolic acid) 
were isolated from the ethyl acetate extract of  the leaves 
of  Lagerstroemia speciosa (LSL) and were investigated by 
α-amylase and α-glucosidase inhibition assay[48]. How-
ever, the compounds showed week α-amylase inhibitory 
effect, while α-glucosidase was moderately inhibited, 
mainly by corosolic acid. In a search for an α-amylase in-
hibitory compound from plant origin, Ali et al[49] studied 
extracts of  six selected Malaysian plants with a reputation 
of  usefulness in treating diabetes using an in vitro model. 
Their work depicted that the hexane extract of  Phyllanthus 
amarus had α-amylase inhibitory properties, an effect that 
was provoked by only three pure pentacyclic triterpe-
noids, namely, oleanolic acid, ursolic acid and lupeol.
The antidiabetic capacity of  the standardized extract of  
maritime pine bark, derived from Pinus pinaster, Aiton. 
subs. Atlantica des Villar (Pycnogenol®), was documented 
clinically by Liu et al[50]. In their study a double-blind, 
placebo-controlled, randomized, multicenter study was 
performed with 77 type Ⅱ diabetic patients to investigate 
the potential antidiabetic effects of  the French matitime 
pine bark extract, Pynogenol (100 mg) for 12 wk. Supple-
mentation of  Pycnogenol to conventional diabetes treat-
ment loweres glucose levels and improves the endothelial 
functions, as evidenced by the significant reduction in 
HbA1c and endothelin-1. To characterize the possible 
mechanism of  action, the authors attributed the effect 
of  Pycnogenol to the suppression of  α-glucosidase en-
zyme[50], rather than enhancing the insulin secretion, an 
effect that was more potent than green tea or acarbose[51]. 
The clinical antidiabetic effect was found also to be dose 
dependent and correlates positively with the procyanidins 
comprising of  catechin and epicatechin subunits with 
varying chain lengths[52,53].

Another plant that is used extensively in folk medi-
cine is the Fenugreek (Trigonella foenum-graecum L.), which 
is a member of  the Leguminosae family, and is cultivated 
predominantly in Asia, the Mediterranean, and North Af-
rican regions. Mainly the seeds are the part used for cen-
turies for a wide range of  diseases, as they were shown 
experimentally to possess significant hypoglycemic[54], 
antiathrosclerotic[55], anti-inflammatory[56], antinocicep-
tive[57], antiulcerogenic[58], and antineoplastic effects[59]. 
Studies carried to elucidate its anti-diabetic mechanism(s) 
reveal that the plant works by inhibiting the intestinal gly-
cosidase[60], in addition to its positive effect on glycolytic, 

active components isolated from this rhizome such as 
chrysophanol-8-O-β-D-glucopyranoside, desoxyrhapon-
ticin and torachrysone-8-O-β-D-glucopyranoside which 
showed a potent to moderate mammalian α-glucosidase 
inhibitory activity. 

In a recent study, Loizzo et al[36] examined the in-
fluence of  nine extracts of  plant species collected in 
Lebanon, viz., Calamintha origanifolia, Satureja thymbra, 
Prangos asperula, Sideritis perfoliata, Asperula glomerata, 
Hyssopus officinalis, Erythraea centaurium, Marrubium 
radiatum and Salvia acetabulosa. The authors prepared 
different extractions with methanol, n-hexane and chloro-
form, yet the methanolic extracts of  Marrubium radiatum 
and Salvia acetabulosa exerted the strongest activity against 
α-amylase and α-glucosidase. The leaf  extract of  the 
Marrubium related species, viz., Marrubium vulgare, is used 
in Brazilian and Mexican traditional medicine for its anti-
diabetic role, an effect that was documented clinically in 
patients with type Ⅱ non-controlled diabetes mellitus[37]. 
Several Salvia species have been reported for their hypo-
glycaemic effect in Iranian folk medicine[38,39] where they 
act by different mechanisms. For example, Salvia lavandu-
laefolia extract acts by decreasing the intestinal absorption 
of  glucose, increasing the peripheral uptake of  glucose, 
potentiating glucose-induced insulin release, and causing 
pancreatic islet cells hyperplasia[40].

The hypoglycemic mechanisms of  another anti-dia-
betic plant, Plantago ovata husk, has also been studied and 
it was found that its aqueous extract hinders markedly the 
intestinal glucose absorption in rats; however, the extract 
failed to affect insulin secretion nor glucose transport in  
adipocytes[41]. 

Salacia species (Celastraceae) are widely distributed in 
East Asian countries and many plants from this genus (e.g., 
S. oblonga, S. reticulata and S. prinoides) have been used for 
thousands of  years in traditional medicines, particularly 
for the treatment of  diabetes and obesity. Pharmacologi-
cal studies have demonstrated that Salacia roots modulate 
multiple targets, including the inhibition of  α-glucosidase, 
aldose reductase and pancreatic lipase, as well as the ac-
tivation of  peroxisome proliferator-activated receptor-
alpha (PPAR-α)-mediated lipogenic gene transcription. 
All these mechanisms reinforce its usage in Ayurvedic 
medicine for diabetes and obesity. The methanolic ex-
tracts of  S. reticulata and S. oblonga stems and roots re-
duced, dose-dependently, the postprandial hyperglycemia 
induced in rats by maltose, sucrose or starch, but not by 
glucose or lactose[42-44], pointing to their inhibitory effect 
on intestinal enzymes. Moreover, the aqueous extract of  S. 
reticulata inhibited strongly the activities of  α-glucosidase 
and α-amylase[42], while that of  S. chinensis inhibited the 
α-glucosidase activity only[45]. These favorable effects 
are attributed to the identified components of  the plant, 
viz., mangiferin, salacinol, kotalanol and kotalagenin 
16-acetate. Mangiferin causes concentration-dependent 
α-glucosidase inhibition in vitro[46], while salacinol, kota-
lanol and kotalagenin 16-acetate inhibited the increased 
serum glucose levels in maltose and sucrose loaded rats 
more than acarbose[43,44]. Thus, these findings suggest that 
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gluconeogenic, and lipogenic enzymes to restore glucose 
homeostasis in various animal models[60,61].

The in vitro α-glucosidase inhibitory model has been 
used by several research teams to verify the potential 
antidiabetic properties of  different plant parts/extracts. 
In this context the antidiabetic effect of  the Corni fruc-
tus (Cornus officinalis Sieb. et Zucc.) extract is mediated 
partly by inhibiting the α-glucosidase activity, an effect 
that reached to over 80% by one of  the extract tested 
fractions[62]. Likewise, the alcohol extract of  Alismatis 
Rhizoma-related hypoglycemic effect is mediated via the 
same mechanism, owing to its protostane-type triter-
penes, besides promoting the glucose uptake in vitro[63]. 
Similarly, chemical components isolated from the saf-
flower seed (Carthamus tinctorius L.)[64] and from the leaves 
of  Ficus deltoidea, viz., vitexin and isovitexin[65], as well 
as the methanolic extract of  the aerial parts of  Swertia 
corymbosa (used in Ayurveda herbal preparations in In-
dia)[66] exhibited in vitro/in vivo α-glucosidase inhibition. 

Moreover, the same in vitro technique showed that the 
grape seed extract inhibits the intestinal α-glucosidases 
and α-pancreatic amylase that may delay carbohydrate 
digestion and absorption. Recently, this fact has been 
further documented, where grape seed extract has low-
ered the postprandial plasma glucose concentration in an 
acute, randomized, controlled crossover design study, in 
which healthy subjects received high carbohydrate meal 
with or without grape seed extract[67].

A prospective epidemiology links heavy coffee con-
sumption to a substantial reduction in risk for type 2 dia-
betes, yet there is no evidence that coffee improves insu-
lin sensitivity. Thus, it is reasonable to suspect that coffee 
influences the risk for beta cell “failure” that precipitates 
diabetes in subjects who are already insulin resistant. In-
deed, coffee was proven to increase the production of  
the incretin hormone glucagon-like peptide-1 (GLP-1), 
possibly by its chlorogenic acid constituent (CGA-the 
chief  polyphenol in coffee). The latter was also found to 
inhibit the intestinal glucose transport, as documented 
by the consumption of  plants containing CGA, to be in-
cluding coffee[68]. Further studies correlated the presence 
of  CGA, the main polyphenolic compound in coffee, 
to the decreased diabetic risk where CGA slows carbo-
hydrate absorption by its effect on the intestinal brush 
border membrane glucose transport, thus mimicking the 
effect of  acarbose at the experimental level[69], as well as 
acutely modifies gastrointestinal hormone secretion and 
glucose tolerance in humans[70]. CGA inhibits also the ac-
tivity of  glucose-6-phosphate translocase[71] which is now 
believed to play a role in glucose absorption[72,73]. In 2008, 
Andrade-Cetto et al[74] have tested the hypoglycemic effect 
of  butanolic extracts of  some Mexican plants and have 
found that Malmea depressa Baill R.E. and Acosmium pana-
mense Benth. extracts resemble the effect of  acarbose and 
decrease the plasma glucose level significantly by affect-
ing the α-glucosidase enzyme. Nevertheless, the effect 
of  the butanolic extract of  Cecropia obtusifolia Bertol. was 
the most potent and it produced the highest reduction 
in the plasma glucose level that was even lower than the 

fasting level after 90 min, an effect that suggests an addi-
tive mechanism of  action. This assumption could be true 
since this plant contains CGA which hits several targets 
in the diabetes metabolic pathways, besides its acarbose-
like effect[75,76].

ENHANCEMENT OF GLUCOSE UPTAKE 
AND UPREGULATION OF GLUCOSE 
TRANSPORTERS
Stimulating the peripheral glucose uptake is one of  the 
multiple mechanisms that control blood glucose level; 
hence, targeting this point is among the most promising 
goals for the treatment of  type-Ⅱ DM. Basically, several 
factors assimilate to facilitate the glucose uptake process, 
including the activation of  the GLUT in liver (GLUT-2), 
adipocytes and skeletal muscles (GLUT-4), the induction 
of  the nuclear receptors, viz., PPARs, especially the gam-
ma subtype, as well as increasing the release of  positive 
adipocytokines, such as adiponectin[77]. 

As illustrated in Figure 2, the cell membrane lipid bi-
layer is impermeable to carbohydrates, which necessitates 
the presence of  specific transporters. These carriers are 
differentiated into two families, the first one is a sodium-
linked GLUT that works actively and is limited to the 
intestine and kidney. The second family consists of  eight 
homologous transmembrane proteins, GLUT-1-8, that 
are encoded by distinct genes, and they convey glucose by 
the facilitated diffusion down the glucose-concentration 
gradients[77]. However, the GLUT proteins have distinct 
substrate specificities, kinetic properties, and tissue dis-
tributions that dictate their functional roles. GLUT-1 
is expressed in the brain, erythrocytes and endothelial 
cells, while GLUT-2 is found in the liver, kidney, small 
intestine, and pancreatic β-cells. This low-affinity GLUT 
(GLUT-2) has a role in sensing glucose concentrations 
in the islets of  Langerhans. GLUT-3 is responsible for 
transporting glucose in neurons and placenta, while 
GLUT-4 is present in skeletal muscles, cardiac muscles 
and the adipose tissue. Of  all the GLUT, only GLUT-4 is 
insulin-responsive. GLUT-5 has high affinity to transport 
fructose rather than glucose and it exists in the small in-
testine, sperm, kidney, brain, and adipose cells[77]. In 2003, 
Gorovits et al[78] found that GLUT-8, present in liver, 
plays a role in the regulation of  glucose in case of  diabe-
tes. GLUT-4 is sequestered intracellularly and is translo-
cated to the plasma membrane upon its stimulation by 
insulin. Thus, a decrease in the expression of  GLUT-4 
mRNA and protein reduced the insulin-mediated glucose 
uptake in diabetes[79]; in other words, imperfect GLUT-4 
function could be a causative factor for insulin resis-
tance[80].

From this point of  view, herbs or their active con-
stituents that can up-regulate GLUT-4 expression or that 
increase the translocation of  this transporter could aid in 
the treatment of  insulin resistance and hyperglycemia. 

Cecropia obtusifolia Bertol (Cecropiaceae) is a plant exten-
sively used for the empirical treatment of  type Ⅱ diabe-
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tes in México[76]. The active hypoglycemic compounds 
found in this plant are CGA and isoorientin which are 
also found in other anti-diabetic plants as mentioned 
before[76]. In 2008, Alonso-Castro et al[76] studied the anti-
diabetic mechanisms of  Cecropia obtusifolia aqueous extract 
and its active compound CGA, and reported that the two 
preparations exert their anti-diabetic effects by stimulat-
ing glucose uptake in both insulin-sensitive and insulin-
resistant adipocytes without appreciable pro-adipogenic 
effects. Thus, they could act by potentiating the insulin 
action or by activating a signaling pathway parallel to the 
insulin pathway.

Other anti-diabetic plants that act via increasing the 
glucose uptake in adipocytes, alone and in combination 
with insulin, include the ethanolic extract of  Amomum 
xanthioides seeds[81], Lagerstroemia speciosa[82] and plants used 
by the Cree Nation in Canada, such as Abies balsamea, 
Pinus banksiana and Rhododendron groenlandicum[83]. More-
over, an aqueous extract from Cinnamomum zeylanicum[84], 
aqueous and ethanolic extracts of  Momordica charantia[85], 
and aqueous extract of  Guazuma ulmifolia[86], stimulated 
glucose uptake in 3T3-L1 adipocytes. However, none 
was evaluated on insulin-resistant adipocytes, except for 
Guazuma ulmifolia, which similar to Cecropia obtusifolia, me-
diated its action by stimulating glucose uptake in normal 
and diabetic adipocytes without inducing adipogenesis; 
nevertheless, its hypoglycemiant component(s) are not 
fully characterized. 

Miura et al[87] validated the antidiabetic activity of  
Lyophyllum decastes (Tricholomataceae) in KK-Ay mice, an 
animal model of  genetically type Ⅱ diabetes with hyper-
insulinemia. The results of  their work reported that mice 
receiving the aqueous extract showed an increase in the 
muscle content of  GLUT-4 protein, which is respon-
sible, at least in part, for decreasing insulin resistance. In 
2004, Miura et al[88] again used the same model to test the 
hypoglycemic effect of  corosolic acid, and found that it 
increased GLUT-4 translocation in muscle, without af-
fecting the insulin level. This acid is one of  the active 

constituents of Lagerstroemia speciosa L., banaba leaf. The 
plant is used traditionally in Philippines to treat diabetes 
and was studied by Takagi et al[89] who referred the antidia-
betic effect to the inhibition of  sucrose hydrolysis. How-
ever, the effect of  corosolic acid on GLUT-4 can not be 
ruled out, although this requires further verification

In another study[90], the 3T3-L1 adipocytes were used 
to prove that the methanolic extract of  Liriope platyphylla 
Wang et Tang ( LPWT), Liliaceae, increased insulin-induced 
glucose uptake in adipocytes, by virtue of  its homoisofla-
vone. This uptake was mediated through the translocation 
of  GLUT-4 to the plasma membrane, via Insulin receptor 
Substrate - phosphatidyl inositol 3 kinase-Akt signaling 
mechanism. Aside from delaying the carbohydrate ab-
sorption via affecting α-glucosidase enzyme[19], Androgra-
phis paniculata adopts another mechanism of  action for its 
hypoglycemic effect through increasing the expression of  
GLUT-4. This was confirmed by the administration of  
its main constituent andrographolide in diabetic mice us-
ing streptozocin (STZ)[91]. 

Panax ginseng, also known as Korean red ginseng, ap-
pears to be a powerful anti-diabetic plant that has multi 
modes of  action, due to its potent active constituents 
including ginsenoside Rh2. In a study by Lai et al[92], the 
authors reported that the ginsenoside Rh2 increases the 
gene expression of  GLUT-4, at the mRNA and protein 
levels, in soleus muscle obtained from STZ-diabetic rats. 
They also suggest that the GLUT-4 expression is in-
creased as a result of  the increased β-endorphin secretion 
which will be detailed later in this review. 

In an attempt to develop new substances for treat-
ing insulin resistance, obese Zucker rats were employed 
to screen the effect of  myricetin, an active principle of  
Abelmoschus moschatus (Malvaceae), on insulin resistance[93]. 
The findings showed that myricetin increased insulin sen-
sitivity by increasing the expression of  GLUT-4 and by 
activating the phosphorylation of  insulin receptor sub-
strate-1. These results were also obtained from another 
study[94] using the methanolic extract of Aegles marmelos 
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Figure 2  Insulin signaling pathway and 
insulin insensitive. The inner part of insulin 
receptor (IR) reveals a tyrosine kinase activity 
and coupled with multifunctional docking pro-
teins IRS-1 and IRS-2. The in turn signaling 
leads to an activation of the MAPK cascade 
involved in mitogenesis and the open status 
of a hexose transporter protein (GLUTs) 
which is located in the cell membrane and 
is the only channel for glucose entery into 
cells. The decreased serine/threonine phos-
phorylation of IR, inactivates hexokinase 
and glycogen synthase, as well as defects 
in the phosphorylation of glucose transporter 
protein (GLUT4) and genetic primary defect 
in mitochondrial fatty acid oxidation, lead-
ing to insulin resistance and an increase of 
triglyceride synthesis contribute to this insulin 
insensitivity. The action sites of hypoglycemia 
herbs are indicated with red arrows[3].
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and Syzygium cumini that are anti-diabetic medicinal plants 
used in Indian traditional medicine. The latter study re-
ported an additive mechanism for lowering glucose level 
via the elevation of  PPAR-γ, a nuclear receptor that will 
be discussed in the following section. Azadirchata indica 
Neem is among the Indian herbs that possess an antidia-
betic effect. The hydroalcoholic extract of  this herb ex-
erted its antihyperglycemic activity by increasing glucose 
uptake, as well as glycogen deposition[95]. Furthermore, 
the anti-diabetic action of  Tinospora cordifolia is medi-
ated by increasing the expression of  GLUT-4 by about 5 
folds, as well as PPARα and γ, as tested in differentiated 
myocytes, L6 cells[96].

ACTIVATION OF THE NUCLEAR 
RECEPTOR PPAR-γ
The PPAR family belongs to type Ⅱ nuclear hormone 
receptors involved in the regulation of  fatty acid, carbo-
hydrate and glucose metabolism[97]. There are three iso-
forms of  PPARs with specific tissue distribution and bio-
logical activity; they are identified as α, β or δ and γ with 
two subforms PPAR-γ1 and PPAR-γ2

[98]. The receptors are 
ligand dependent, with the antidiabetic thiazolidinediones 
(TZDs) being the potent PPAR-γ agonist[97]. After their 
stimulation by their specific ligands, they regulate the 
transcriptional process via their heterodimerization with 
RXR, a retinoid X receptor, and then bind to peroxisome 
prolixferator-response element (PPRE)[97,98]. Clinical data 
demonstrated that the PPAR-γ agonists TZDs modulate 
glucose homeostasis by enhancing the peripheral glucose 
uptake through increasing GLUT-4 expression and trans-
location in adipocytes[99], as well as decreasing hepatic 
glucose output[100]. TZDs alleviate insulin sensitization by 
the redistribution of  adipose deposits where these agents 
minimize visceral adipose content, responsible for the 
induction of  insulin resistance, and redeposit it subcuta-
neously, in a phenomenon known as the “fatty acid steal” 
hypothesis[101]. In addition, activating PPAR-γ increased 
adipocyte fatty acid uptake, and decreased lipotoxic dam-
age to insulin-sensitive tissues[102].

To date, the chief  research interest in finding a nu-
traceutical compound(s) that mimics the PPAR-γ ligands 
constitute promising approaches for the treatment of  
diabetes, obesity and metabolic syndrome. Previously, 
multiple trials have shown conflicting results whether cin-
namon lowers glucose or hemoglobin A1C (HbA1C). In 
2009, Crawford[103] tested the cinnamon hypoglycemic ac-
tivity in patients with type 2 diabetes through a random-
ized, controlled trial to evaluate whether daily cinnamon 
plus usual care versus usual care alone lowers HbA1c. 
Cinnamon lowered HbA1C (0.83%) compared with usual 
care alone lowering HbA1C (0.37%). Because one of  the 
proposed mechanisms of  cinnamon is increasing insulin 
sensitivity, hence, the treatment of  patients with metabol-
ic syndrome by adjunct cinnamon may yield weight loss, 
improved lipid profiles, and better glucose tolerance.

Park et al[104] used db/db mice, a typical non-insulin-

dependent model, to study the anti-diabetic mechanism 
of  Mulberry leaf  water extract, Korean red ginseng 
and/or banaba leaf  water extract. Herbs alone and their 
combination increased the expressions of  liver PPAR-α 
mRNA and adipose tissue PPAR-γ mRNA in animals 
fed diets supplemented with the test herbs, in addition to 
restoring glucose and lipid homeostasis. Furthermore, the 
Labiate herbs rosemary and sage were documented in a re-
cent study[105] as activators of  the human PPAR-γ, possibly 
by their active constituents carnosol and  carnosic acid.

What provides a potential validation for using tradi-
tional herbs as antidiabetics are the results of  the screen-
ing study attained by Rau et al[106]. Among 52 ethanolic 
extracts, obtained from traditionally used herbs, the 
researchers found amazingly that nearly half  the extracts 
activated PPAR-γ and 14 activated PPAR-α, while three 
of  them were pan-PPAR activators, findings which were 
considered exceptionally high hit rate. The most active 
extracts were those of  Alisma plantago aquatica (ze xie/Eu-
ropean waterplantain), Catharanthus roseus (Madagascar 
periwinkle), Acorus calamus (sweet calamus), Euphorbia 
balsamifera (balsam spurge), Jatropha curcas (barbados nut), 
Origanum majorana (marjoram), Zea mays (corn silk), Capsi-
cum frutescens (chilli) and Urtica dioica (stinging nettle). 

The effect of  the North American ginseng (Panax 
quinquefolius), a close relative to Panax ginseng, on glucose 
control was verified in a study by Banz et al[107], using 
male Zucker diabetic fatty rats. The findings showed that 
ginseng had marked effects on the expression of  genes 
involved in PPAR actions and triglyceride metabolism. 
The authors encourage further research to determine the 
therapeutic value of  this medicinal herb in treating hu-
man diabetes.

Green tea (Camellia sinensis L.) leaf  extract on triglycer-
ide and glucose homeostasis was evaluated in a fructose-
fed insulin-resistant hamster model[108]. Supplementation 
of  the green tea epigallocatechin gallate-enriched extract 
improves lipid and glucose homeostasis and increases 
the expression of  PPAR-α and PPAR-γ proteins.  These 
data suggest that intake of  the green tea extract increases 
insulin-sensitivity, at least through boosting up PPAR.

Clematis species (Ranunculaceae) have been used con-
tinuously as anti-inflammatory agents by indigenous Aus-
tralians.  During examining the ethanol extract of  C. pick-
eringii, C. glycinoides and C. microphylla, on COX-1, COX-2 
and 5-lipoxygenase[109], the authors found that Clematis 
pickeringii has activated significantly the protein expression 
of  both PPAR-α and PPAR-γ. These results merit the 
study of  the potential antidiabetic mechanism(s) of  these 
species. In a search for a natural PPAR-γ agonist, Atana-
sov et al[110] reported that the natural product honokiol 
from the traditional Chinese herbal drug Magnolia bark 
stimulates the basal glucose uptake in a comparable pat-
tern to pioglitazone, but without inducing adipogenesis.

INCREASING ADIPONECTIN RELEASE 
An additive role for PPAR-γ in the manipulation of  glu-
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cose homeostasis is the modulation of  adipocytokines. 
These bioactive substances are produced and secreted 
from adipose tissues which happened to be an endocrine 
organ[111]. Adipocytokines play central role in body insulin 
resistance, where the dysregulation of  their production 
participates in the pathophysiology of  the metabolic syn-
drome.

The plasma level of  adiponectin is documented to 
be lower in patients with diabetes[112] and ischemic heart 
disease[113] than their age- and body mass index (BMI)-
matched nondiabetic mates. This fact was further docu-
mented in a screening study on Japanese patients with 
type 2 diabetes and their age- and BMI-matched nondia-
betic control subjects, and is attributed to the genetic mu-
tation of  the adiponectin gene associated with metabolic 
syndrome, including insulin resistant diabetes and athero-
sclerotic disease[114].

Consequently, adiponectin possesses antidiabetic 
and antiatherogenic properties[115]. The antidiabetic 
mechanism(s) involves enhancement of  glucose uptake 
in skeletal muscles, activation of  IRS-1-mediated phos-
phatidylinositol-3 kinase[115,116], acceleration of  muscle 
β-oxidation via the activation of  AMP-kinase[117], and 
suppression of  hepatic glucose production[118,119]. These 
events are summarized in Figure 3. 

Normal adiponectin plasma level is under the influ-
ence of  PPAR-γ, where stimulation of  this nuclear recep-
tor potentiates its direct binding with the PPRE respon-
sive element in the promoter region of  the adiponectin 
gene, thus, enhancing the production and secretion of  
this cytokine. 

Clinical studies now assure the beneficial effects of  
some plants in controlling glucose disorders. For in-
stance, the extract of  white-skinned sweet potato Ipomoea 
batatas (Caiapo) has been evaluated in type Ⅱ diabetic 
patients, and was shown to control plasma glucose level 
through increasing insulin sensitivity along with the level 
of  adiponectin[120]. Moreover, the mushroom Agaricus 
blazei Murill (ABM) extract was documented to improve 
insulin resistance and to elevate adiponectin level in 
subjects with type Ⅱ diabetes receiving metformin and 
gliclazide; the latter cytokine provides at least one poten-
tial antidiabetic mechanism of  this plant[121]. Concerning 

the antiatherogenic property of  adiponectin, the extract 
of  Aronia melanocarpa E. was administered to forty-four 
patients who survived myocardial infraction and have 
received statin therapy[121]. Compared to placebo, the 
chokeberry flavonoid extract increased adiponectin level, 
among other corrected parameters that nominate this ex-
tract as an adjunct therapy in patients with ischemic heart 
disease.

Momordica charantia owes its anti diabetic effect to its 
insulin-like action[122,123], antioxidant property[124,125], and 
glucose uptake enhancement[79]. The latter mechanism 
could be explained by the finding of  Ryu et al[126], who 
stated that Momordica-induced glucose uptake is accompa-
nied by, and may be the result of, increased adiponectin 
secretion, which is the communication between adipose 
tissue and skeletal muscle. 

Adiponectin was also induced by the oral ingestion 
of  Plum ekisu, tested on insulin- resistant obese Wistar 
fatty rats[127]. Dried plum is highly consumed in the West 
as a healthy food and is used in India as medicine to 
protect against geriatric related diseases, possibly by their 
phenolic compounds. Rats receiving plum concentrated 
juice showed better insulin sensitivity, increased PPAR-γ 
mRNA expression and marked elevation in adiponectin. 
These mechanisms are tightly correlated, where stimula-
tion of  PPAR-γ initiates the cycle, leading to increased 
production of  adiponectin and alleviation of  insulin sen-
sitivity.  

Apart from the multiple machineries by which Salacia 
reticulate extract mediates its antidiabetic effect[42], increas-
ing the release of  adiponectin adds also to these effects, 
which make it useful in the treatment of  diabetes mel-
litus, insulin resistance and other metabolic diseases[128].

GLYCOGEM METABOLISM 
Another cornerstone in controlling blood glucose level 
is the “hepatic output”, which correlates with liver meta-
bolic functions, including lipogenesis and glycogenesis. 
The latter process is precisely adjusted by adequate levels 
of  insulin[129], which stimulates glycogen synthase and 
inhibits glycogen phosphorylase, resulting in the proper 
glycogen deposition in various tissues, especially skeletal 
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muscle. Since glycogen is the storable form of  glucose, 
thus, insulin inadequacy initiates muscle protein break-
down to provide gluconeogenic precursors that could be 
the reason behind diabetes-induced weight loss. Conse-
quently, compounds that enhance glycogen formation 
and/or increase its content in liver and muscles are con-
sidered beneficial anti-diabetic agents. 

In an attempt to elucidate the anti-diabetic mechanism(s) 
of  some plants used in the management of  diabetes, it was 
found that Caralluma sinaica L. (Asclepiadaceae)[130] found in 
south Hejaz, west of  Saudi Arabia, and Sinai region of  
Egypt, showed an anti-diabetic effect. This plant exerts 
its effect through opposing the STZ-induced glycogen 
depletion in liver and muscle, and by reversing weight 
loss in the diabetic rabbits, results that may be promoted 
by the realease of  insulin.

Panax ginseng is suggested to induce glycemic control 
by sparing insulin and increasing glucose transport. Vari-
ous preparations of  Panax ginseng have been shown to 
upregulate insulin and non-insulin stimulated glucose 
transport in different animal models and cell lines[131-133]. 
Furthermore, Momordica charantia was able to renovate 
β-cells in the pancreas or partially destroyed ones[85] and 
to stimulate pancreatic insulin secretion[134]. These insulin-
like properties[122,123] kindle glycogen storage by the liver 
and improve peripheral glucose uptake[126]. The anti-dia-
betic property of  the aqueous extract of  Tamarindus indica 
seed (T. indica) was also verified in a type Ⅰ and Ⅱ experi-
mental models[135]. This action is mediated by restoring 
glycogen levels in liver and skeletal muscles, as well as 
inhibiting the glucose-6-P-ase activity. Increasing insulin 
level, however, was limited only to the type Ⅰ model. Re-
cently in 2012 the aqueous extract tested on STZ-induced 
diabetes showed that complex mechanisms stand behind 
its antidiabetic effect, such as β-cell neogenesis, calcium 
handling, as well as increasing GLUT-2 and GLUT-4. 
These findings show the scope for formulating a new 
herbal drug for diabetes therapy[136].

INSULINOMIMETIC AND 
INSULINOTROPIC EFFECT
In 2007, Eidi et al[137] studied again the hypoglycemic ef-
fect of  the fenugreek seeds which was previously found 
to inhibit α-glucosidase, and they reported that the 
ethanolic extract significantly decreased serum glucose, 
triacylglycerol, cholesterol, urea, uric acid, AST, and ALT, 
whereas it increased serum insulin levels in treated STZ-
induced diabetic rats. As a result, the authors concluded 
that fenugreek seeds extract encompasses antidiabetic 
activities similar to that observed for glibenclamide used 
as a standard drug. Eidi et al[138] have tested also the pos-
sible antidiabetic mechanism of  Garlic (Allium sativum, 
Liliaceae) which is a common spice flavoring agent be-
lieved to lower plasma glucose level in diabetic patients. 
Therefore, using STZ-induced diabetic rats, they found 
that the alcoholic extract of  garlic potentiates the insulin 
effect by increasing its pancreatic secretion from existing 

β-cells or its release from bound insulin. These effects 
are attributed mainly to the allicin-type compounds[139,140] 
which are disulphide compounds that can react with en-
dogenous thiol containing molecules, such as cysteine, 
glutathione, and serum albumins to spare insulin from 
SH inactivation[141]. In another study, using STZ/high-
fat diet Sprague Dawley rats, a comparison between the 
anti-diabetic effects of  dietary freeze-dried ginger and 
garlic, was conducted. The experimental results revealed 
that ginger and garlic are insulinotropic rather than hy-
poglycemic, and that the anti-diabetic effects of  ginger 
are better than those of  garlic[142]. Using the same rat 
model, Islam et al143] investigated the insulinotropic effect 
of  dietary red chilli (Capsicum frutescens L.) in low and high 
concentrations and revealed that 2% dietary red chilli is 
insulinotropic rather than hypoglycemic at least in this 
experimental condition.

The effects of  the ethanol extract and five partition 
fractions of  the Asparagus racemosus root and Ocimum sanc-
tum leaf  were evaluated on insulin secretion together with 
exploration of  their mechanisms of  action. The ethanol 
extract and each of  the hexane, chloroform and ethyl 
acetate partition fractions stimulated insulin secretion in 
isolated perfused rat pancreas, isolated rat islet cells and 
clonal β-cells. These findings reveal that constituents of  
both extracts have wide-ranging stimulatory effects on 
physiological insulinotropic pathways[144]. Similarly, the 
aqueous extract of  Asparagus adscendens induced a signifi-
cant increase in glucose-dependent insulinotropic actions 
in the clonal pancreatic β-cell line, enhanced glucose up-
take in 3T3-L1 adipocytes and decreased starch digestion 
in vitro. These outcomes revealed that Asparagus adscendens 
possesses insulinotropic, insulin-enhancing activity and 
inhibitory effects on starch digestion[145].  

The antihyperglycemic action of  Stevia rebaudiana (As-
teraceae) Bertoni leaves extracts were confirmed using type 
II diabetic Goto-Kakizaki rats[146]. The large quantities of  
the glycoside stevioside in the Stevia rebaudiana leaves are 
responsible for the anti-hyperglycaemic, insulinotropic, 
and glucagonostatic actions of  the herb; results which 
support the traditional use of  this herb in the treatment 
of  diabetes in Paraguay and Brazil. Similar efficacy pat-
tern was obtained by the crude extract of Viscum album 
(V. album) leaf  which produced about 35.3% decrease in 
glucose concentration in STZ-induced diabetic rats and 
stimulated insulin secretion by about 81.5%. Although, 
only a subtle suppression in glucagon level was observed, 
yet it was significant. Thus, the V. album leaves extract 
may possess antihyperglycaemic, insulinotropic, and pos-
sibly, mild glucagonostatic agent(s) and may, therefore be 
a candidate for the anti-diabetic drugs[147]. 

Butanol extract of  Zizyphus spina-christi L. (Rhamnaceae) 
leaves and its major saponin glycoside, christinin-A, were 
tested to evaluate their effect on serum glucose and insu-
lin levels in non-diabetic control, type-Ⅰ and type-Ⅱ dia-
betic rats[148]. Both the extract and the saponin compound 
improved the oral glucose tolerance , potentiated glucose-
induced insulin release, reduced the serum glucose level 
and increased the serum insulin level of  non-diabetic control 
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and type-Ⅱ diabetic rats, but not those of  type-Ⅰ diabetic 
rats. They also enhanced the glucose lowering and insu-
linotropic effects of  glibenclamide. The data pointed to 
the insulinotropic capacity of  the tested plant.

Furthermore, in traditional Nepalese folk medicine 
the leaf  extract of  the annual herb Biophytum sensitivum is 
used for the treatment of  hyperglycemic patients. This 
property was documented by Puri[149] who ascribed the 
leaf  extract hypoglycemic response to its insulinotropic 
effect, where he found that the tested extract induces the 
release and/or synthesis of  insulin. 

Similar insulinotropic effect was presented by pteros-
tilbene, a flavonoid constituent derived from the wood 
of  Pterocarpus marsupium, a herb used in the Indian folk 
medicine; the active compound causes pancreatic β-cell 
regranulation[150]. Marsupin, pterosupin and liquiritigenin 
obtained from the plant showed also antihyperlipidemic 
activity. Moreover, epicatechin, an active principle, has 
been found to be insulinogenic, enhancing the insulin 
release and the conversion of  proinsulin to insulin in vitro. 
Like insulin, epicatechin stimulates oxygen uptake in fat 
cells and increases glycogen content of  rat diaphragm. 
Aloe vera (Liliaceae) exerts its hypoglycemic effect in rats 
by its bitter principle through stimulating the release of  
insulin from the β-cells of  Langerhans as documented 
after the use of  single, as well as repeated doses of  the 
bitter principle of  the Aloe vera in diabetic rats[150]. Other 
insulinptropic Indian herbs include Acacia Arabica (Bab-
hul), Eugenia jambolana (Indian gooseberry), Annona squa-
mosa (sugar apple), Caesalpinia bonducella (Fevernut), Hibis-
cus rosa-sinesis (Gudhal), Scoparia dulcis (sweet broomweed) 
and Tinospora crispa[96].

Patel et al[151] presented a thorough review on 65 spe-
cies of  plants with insulinomimetic or insulin secreta-
gogue. Most of  these belong to the family Leguminoseae, 
Lamiaceae, Liliaceae, Curcubitaceae, Asteraceae, Mora-
ceae, Rosaceae and Araliaceae. The most active plants are 
Allium sativum, Gymnema sylvestre, Citrullus colocyn-
this, Trigonella foenum greacum, Momordica charantia 
and Ficus bengalensis. Citrullus colocynthis (Cucurbitaceae) 
pulp ethanolic extract at 300 mg/kg, p.o. was found to 
increase insulin and decrease plasma glucose levels sig-
nificantly in alloxan-induced diabetic rats. Moreover, the 
aqueous extract also showed a dose-dependent increase 
in the insulin release from isolated islets, as well as other 
different extracts, such as crude extract, aqueous, alcohol-
ic, purified extract and beta-pyrazol-1-ylalanine, the major 
free amino acid derivative present in the seeds[151].

Trigonella foenum-graecum has been observed to cause 
glucose-induced insulin release in vitro and in vivo. 4-Hy-
droxyleucine, a novel amino acid from fenugreek seeds, 
increased glucose-stimulated insulin release from isolated 
islet cells in rats, mice and humans, and possibly hydroxy-
isoleucine which represents 80% of  the free amino acids 
in Trigonella foenum-graecum seeds. The extracts, powder 
and gum of Trigonella foenum-graecum seeds may help to im-
prove insulin sensitivity presumably due to the presence 
of  fibers, which slow the metabolism of  carbohydrates, 
resulting in reduced insulin levels and lowered blood glu-

cose[151]. 
Alcoholic extract of  Gymnema sylvestre (Asclepiadaceae) 

stimulated insulin secretion from the rat islets of  Langer-
hans and several pancreatic β-cell lines. In another study, 
the oral administration of  the water-soluble leaves extract 
(400 mg/d) to 27 IDDM patients on insulin therapy low-
ered their fasting blood glucose and their insulin require-
ments. In type II diabetic patients on Gymnema sylvestre 
supplementation the pancreatic β-cells is suggested to 
be regenerated or repaired as supported by the raised 
insulin levels in their serum. This assumption has been 
concluded also when the number of  the pancreatic islet 
and β-cells, as well as insulin levels wre increase after oral 
administration of  the aqueous extract to diabetic rats. 
Gymnemic acid molecules dihydroxy gymnemic triacetate 
had the ability to release the insulin by the stimulation of  
a regeneration process and revitalization of  the remaining 
β-cells. The aqueous extract of  Gymnema sylvestre leaves 
stimulated insulin secretion from mouse cells and isolated 
human islets in vitro, without compromising cell viabil-
ity[151].

Among the glucagonostatic Indian herbs are Caesal-
pinia bonducell, Coccinia indica, Boerhavia diffusa, Enicostema 
littorale and Murraya koenigii. These herbal extracts increase 
glycogenesis, restore the activities of  lipoprotein lipases 
and decrease the glucose-6-phosphatases, thereby inhibit-
ing the glycogenolysis,  and gluconeogenesis processes, as 
well as increasing the peripheral glucose utilization[150].

In a recent study, the ethanolic extract of  ethanolic 
extract of  Schizandra arisanensis and its isolated constitu-
ents provided some insulinotropic effects by ameliorating 
cytokine-mediated β-cell death and dysfunction via anti-
apoptotic and insulinotropic actions[152].

ELEVATION OF D-CHIRO-INOSITOL
D-chiro-inositol (D-CI) is a rare inositol isomer present 
in inositol phosphoglycans (IPGs) which are putative 
insulin second messengers. These mediators are released 
from cell membranes, cells and human blood by insulin 
and other growth factors[153] and mediate some, but not 
all, of  insulin actions[154]. D-CI acts as an insulin surrogate 
where it exhibited an anti-hyperglycaemic effect in vivo[155], 
and enhanced insulin-induced glucose incorporation into 
glycogen, in vitro[155]. Albeit, D-CI modulates favorably insu-
lin’s effect on peripheral glucose utilization under physiologi-
cal conditions, Kennington et al[156], reported abnormal low 
or immeasurable levels of  D-chiro-inositol in urine and 
muscle from type Ⅱ diabetic patients, suggesting that 
D-CI deficiency might be related to the insulin resistance. 
Accordingly, D-chiro-inositol when administered to STZ 
diabetic rats[157] and humans[158] decreased hyperglycemia 
and enhanced glucose disposal (Table 1). 

Cucurbita ficifolia is traditionally used in Asia for the 
management of  diabetes; however, its mechanism of  ac-
tion was not clarified. In 2006, Xia et al159] found that C. 
ficifolia may be a natural source of  D-CI which is present 
in fairly high levels in this plant and may be the cause 
for its anti-diabetic character. Using STZ diabetic rats, 
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the fruit extract of  C. ficifolia lowered the blood glucose 
level and increased the hepatic glycogen content, and the 
plasma insulin. Furthermore, the same extract improved 
the blood glucose tolerance when an oral glucose toler-
ance test was performed in fasted diabetic and normal 
rats. The results of  this experimental animal study lend a 
pharmacological credence to the suggested folkloric uses 
of  the plant in the management and control of  diabetes 
mellitus, owing to its high content of  the insulin-mimetic, 
D-CI. This compound is also the active constituent of  
Fagopyrum tataricum L. Gaench that possesses an insulin-

like bioactivity. Yao et al[160] illustrated that the D-CI-
enriched extract of  Fagopyrum tataricum lowered plasma 
glucose, C-peptide, improved glucose tolerance, and en-
hanced insulin immunoreactivity in KK-Ay mice. 

INCRETIN MIMETICS AND INCRETIN 
ENHANCERS
A new target for the management of  type Ⅱ DM is the 
gut hormone, GLP-1 (incretin) which is secreted as a 
riposte to meal. This hormone maintains glucose bal-
ance by different routes where it stimulated glucose-
dependent insulin secretion, delays gastric emptying, 
inhibits glucagon secretion, and protects or even exerts a 
trophic effect on β-cells, as illustrated in Figure 4. How-
ever, the hormone is rapidly degraded by dipeptidylpepti-
dase-4 (DPP-4), an enzyme that inactivates also glucose-
dependent insulinotropic peptide (GIP)[161]. Thus, the aim 
in pharmaceutical research is either to inhibit DPP-4, to 
prolong GLP-1 duration of  action, or to use compounds 
that can partially resist DPP-4. These compounds are 
either incretin-mimetic agents that simulate GLP-1 (ex-
enatide) or a long-acting incretin analogue (liraglutide)[162]. 
Incretin, thus, challenged the pharmaceutical researchers 
to find a nutraceutical compound that could modulate 
this hormone.

In this regard, recent data reported that inulin-type 
fructans extracted from chicory roots regulated glucose 
and lipid homeostasis by enhancing colon production 
of  GLP-1. Therefore, Urías-Silvas et al[163] evaluated the 
fructans extracted from Agave tequilana Gto. and Dasylirion 
spp. on glucose and lipid metabolism. The data showed a 
decrease in body weight of  mice fed fructans-containing 
diet, besides the restoration of  glucose and lipid levels. 
As a conclusion, the authors reported that fructans from 
any botanical origin initiates the production of  GLP-1 
from colon, and it is responsible for the amendment of  
glucose and lipid metabolism. 

The potential antihyperglycemic activity of  an etha-
nolic extract of  Artemisia dracunculus L., called Tarralin, 
in diabetic mice was studied by Ribnicky et al[164]. This 
extract posed a positive antidiabetic action, via decreas-
ing the mRNA expression of  phospho-enolpyruvate 
carboxykinase (PEPCK), the main catalyzing enzyme in 
gluconeogenesis, and increasing the binding of  incretin 
(GLP-1) to its receptor. 

Impairment of  β-cell function results from the im-
proper insulin/IGF-1 signaling cascade through insulin 
receptor substrate-2 (IRS-2). Thus, induction of  IRS-2 in 
β-cells can potentiate its function and mass, an effect that 
was attained by the GLP-1 receptor agonist, exendin-4, 
through elevation of  intracellular cyclic Adenosine mono 
phosphate (cAMP)[165]. GLP-1/exendin-4 is known to en-
hance glucose-stimulated insulin secretion and to increase 
β-cell transcription factors, such as pancreas duodenum 
homeobox-1 (PDX-1), to promote β-cell growth and 
survival[165]. These promising actions of  exendin-4 were 
associated with the induction of  IRS-2, the pathways of  

  1 Abies pindrow (Pinaceae ) 34 Momordica charantia 
(Cucurbitaceae)

  2 Aegle marmelos (Rutaceae) 35 Mucuna pruriens 
(Leguminosae)

  3 Agrimony eupatoria (Rosaceae) 36 Nigella sativa oil 
(Ranunculaceae)

  4 Aloe barbadensis (Liliacea) 37 Olea europia (Oleacea)
  5 Annona squamosa (Annonacea) 38 Panax ginseng (Araliaceae)
  6 Averrhoa bilimbi(Oxalidacea) 39 Pandanus odorus 

(Pandanaceae)
  7 Bixa orellana (Bixaceae) 40 Parinari excelsa 

(Chrysobalanaceae)
  8 Boerhaavia diffusa (Nyctaginaceae) 41 Prunella vulgaris (Labiatae)
  9 Bougainvillea spectabilis   
  (Nyctaginaceae)

42 Psidium guajava (Myrtaceae)

  10 Brassica nigra (Cruciferae) 43 Pterocarpus marsupium 
(Fabaceae)

  11 Camellia sinensis (Theaceae) 44 Radix glycyrrhizae (Fabaceae)
  12 Capsicum frutescens (Solanacea) 45 Radix rehmanniae 

(Scrophulariaceae)
  13 Catharanthus roseus (Apocyaceae) 46 Rehmania glutinosa 

(Scrophulariacea)
  14 Cinnamon zeylaniucm (Lauraceae) 47 Ricinus communis 

(Euphorbiaceae)
  15 Coccinia indica (Cucurbitaceae) 48 Salvia lavandifolia (Lamiacea)
  16 Cornus officinalis (Cornaceae) 49 Sarcopoterium spinosum 

(Rosaceae)
  17 Elephantopus scaber (Asteraceae) 50 Scoparia dulcis 

(Scrophulariaceae)
  18 Enicostemma littorale 
  (Gentianaceae)

51 Selaginella tamariscina 
(Selaginellaceae)

  19 Ephedra distachya (Ephedraceae) 52 Semen coicis (Ggramineae)
  20 Eriobotrya japonica 
  (Rosaceae)

53 Smallanthus sonchifolius 
(Asteraceae)

  21 Euccalyptus globulus (Myrtaceae) 54 Stevia rebaudiana (Asteraceae)
  22 Fermented unsalted soybeans 55 Swertia chirayita (Gentianaceae)
  23 Ficus bengalensis (Moraceae) 56 Swertia punicea (Gentianaceae)
  24 Genistein 57 Syzygium cumini (Rutaceae)
  25 Ginkgo biloba (Ginkgoaceae) 58 Tabernanthe iboga 

(Apocynaceae)
  26 Helicteres isora (Sterculiaceae) 59 Teucrium polium (Lamiaceae)
  27 Hibiscus rosa (Malvacea) 60 Tinospora crispa 

(Menispermaceae)
  28 Hordeum vulgare (Gramineae) 61 Tribuluks terrestris 

(Zygophyllaceae)
  29 Ipomoea batata (Convolvulaceae) 62 Urtifca dioica (Urticaceae)
  30 Juniperus communis (Pinacea) 63 Vinca rosea (Apocyanacea)
  31 Lausena anisata (Rutacea) 64 Zingiber officinale 

(Zingiberaceae)
  32 Lepechinia caulescens 
  (Lamiaceae)

65 Zizyphus spina-christi 
(Rhamnaceae)

  33 Medicago sativa (Fabaceae)

Table 1  Following is a list of plants that are reported to have 
insulin mimetic or insulin secreatory action
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which play an important role in β-cell expansion, and 
augmentation of  insulin secretion.

In a recent study, Park et al[165] examined the potential 
antidiabetic mechanism(s) of  six herbs used in Chinese 
medicine to treat diabetes. These herbs were Galla rhois, 
Rehmanniae radix (Rehmannia glutinosa Liboschitz var. pur-
purea Making), Machilus bark (Machilus thynbergii Siebold 
et Zuccarini), Polygonatum radix (Polygonatum odoratum 
Miller Druce), Ginseng radix (Panax ginseng C.A. Meyer), 
and Scutellariae radix (Scutellariae baicalensis Georgi). The 
authors reported that these herbs induced IRS-2 in rat 
islets, improved glucose-stimulating insulin secretion and 
increased β-cell survival. In addition, Rehmanniae radix, 
Ginseng radix and Scutellariae radix were found to mediate 
insulin secretion through cAMP/PKA-dependent and/or 
-independent pathways. These herbs also induced PDX-1 
and glucokinase, besides the increased expression of  
IRS-2. Activation of  glucokinase could vindicate the en-
hancement of  glucose stimulated insulin secretion, while 
induction of  PDX-1 was associated with β-cell prolifera-
tion[165]. The promising effects of  Ginseng radix and Scutel-
lariae radix could be ascribed to the active constituents, 
ginsenosides and the flavonoid baicalein, respectively. 
The finding, hence, point to the presence of  natural 
agents that possess incretin-like action and that mimic 
exendin-4. 

ROLES OF ENDOGENOUS OPIOIDS ON 
GLUCOSE HOMEOSTASIS
Apart from the well known pharmacological actions of  
opiates, their binding to opioid receptors located in the 
pancreatic β-cells and their ability to manipulate diabetic 
disorders has been documented[166]. The opioid peptide 
β-endorphin, secreted from the adrenal gland[167] has 
been shown to induce insulin secretion also via activating 
the pancreatic opioid receptors[168]. Besides, this peptide 
also was found to regulate glucagon and somatostatin 
release from isolated islets of  Langerhans[169,170]. There-
fore, increased glucose utilization and decreased hepatic 
output may be a consequence to the increased release 
of  β-endorphin and the activation of  peripheral opioid 
µ-receptors (MOR). Activation of  these receptors might 
enhance the expression of  muscle GLUT and/or reduce 

hepatic gluconeogenesis at the gene level[171]. MOR-in-
duced glucose uptake is accomplished by increased gene 
expression of  GLUT-4 via a phospholipase C-protein ki-
nase (PLC-PKC) dependent pathway[172]. It has also been 
observed that stimulation of  α1-adrenoceptors in the 
adrenal gland provokes the secretion of  β-endorphin[173] 
depending also on the PLC-PKC pathway[174,175].

 In STZ-diabetic rats, Hsu et al[176] stated that β-endorphin 
biosynthesis increases in the adrenal gland, along with the 
opioid µ-receptors gene expression[177]; events that may com-
pensate for the glucose disturbed homeostasis. Therefore, 
development of  pharmaceutical or nutraceutical agents 
that target β-endorphin secretion and/or stimulate pe-
ripheral MOR, via an insulin-independent action, donates 
a new hit that may have merit in glycemic control.

Since application of  herbal plants or their products 
in the management of  glucose metabolism is extensively 
searched, investigations were conducted to study their 
potential effect on β-endorphin and peripheral opioid 
µ-receptor. One of  the early studies in this regard, is that 
carried out by Hsu et al[178] using caffeic acid, which is a 
phenolic compound contained in the fruit of  Xanthium 
strumarium. After an intravenous injection of  caffeic acid 
into diabetic rats of  both STZ-induced and insulin-re-
sistant models, a dose-dependent decrease in the plasma 
glucose was observed; moreover, it increased the glucose 
uptake in isolated adipocytes. This trial was followed by 
another study[179] to verify the mechanism of  caffeic acid 
using STZ-induced diabetic rat. In this experiment, caffe-
ic acid increased the release of  β-endorphin from the ad-
renal gland through the activation of  α1A -adrenoceptors. 
These receptors were adopted as one of  the antidiabetic 
mechanisms of  andrographolide present in the leaves 
of  Andrographis paniculata (Burm. f.) Nees. Using cultured 
myoblast C2C12 cells, andrographide was documented 
to activate these adrenoceptors via PLC-PKC depen-
dent pathway to fascilitate glucose uptake[180]. Inhibiting 
α-glucosidase[19] and increasing GLUT-4 mRNA[91] were 
other mechanisms mediated by this active constituent. A 
recent study by Yu et al[181] validated the andrographolide-
induced α1A-adrenoceptors activation in type I diabetes-
like animals, which enhance β-endorphin release that in 
turn stimulates the opioid micro-receptors. The authors 
reported also an increased expression of  the GLUT-4 in 
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soleus muscle and a reduced expression of  PEPCK in 
liver, effects that may explain the registered reduction in 
hepatic gluconeogenesis and enhancement of  the glucose 
uptake. A similar pattern was recorded to rationalize the 
antidiabetic mechanisms of  myricetin, the active principle 
of  Abelmoschus moschatus (Malvaceae) using STZ-diabetic 
rats[182]. Myricetin, in insulin-deficient animals, activated 
peripheral MOR, in response to increased β-endorphin 
secretion. Opioid µ-receptor activation is held responsible 
for the enhancement of  muscle GLUT-4 gene expression 
and the attenuation of  hepatic PEPCK gene expression 
observed in these myricetin-treated diabetic animals.

Another study was carried out to investigate the an-
tihyperglycemic mechanisms of  syringin, an active prin-
ciple purified from the rhizome and root parts of  Eleu-
therococcus senticosus (Araliaceae). STZ-diabetic rats showed 
an increased release of  β-endorphin from the adrenal 
medulla after receiving a bolus intravenous injection of  
syringing[183]. Niu et al[183] concluded that the decreased 
plasma glucose, in the diabetic rats lacking insulin, is me-
diated by the effect of  β-endorphin on peripheral micro-
opioid receptors.

The antidiabetic potency of  isoferulic acid, one of  
the active components in Cimicifugae rhizoma, is attained by 
lowering glucose level, improving glucose uptake in skel-
etal muscle along with inhibiting hepatic gluconeogenesis 
in rats with an insulin deficiency[184]. For precise clarifica-
tion of  its mode of  action, Liu et al[185] tested its impact 
on the α1A-adrenoceptor/β-endorphin system in a STZ 
diabetic rats. Formerly, Liu et al[186] showed that isoferulic 
acid can activate α1A-adrenoceptor, leading to increased 
glucose uptake into cultured mouse myoblast C2C12 
cells; however, the role of  β-endorphin in the plasma 
glucose-lowering action of  isoferulic acid is still unclear. 
In this work[187], the authors proved that isoferulic acid in-
creased β-endorphin level via affecting α1A-adrenoceptors, 
leading to stimulation of  peripheral opioid receptors, 
resulting in increased expression of  GLUT-4, and reduc-
tion of  hepatic gluconeogenesis. Moreover, the same 
laboratory examined the mechanism(s) of  plasma glucose 
lowering action of  puerarin in STZ-induced diabetic rats 
and concluded that this isoflavone can act as a ligand to 
activate α1A-adrenoceptors on the adrenal gland to initiate 
the aforementioned cascades[187].

ANTIOXIDANTS
In the course of  normal aerobic metabolism, oxygen free 
radicals are produced during the reduction of  oxygen into 
water. Since these radicals are inherently toxic, cells have 
built up defense systems to quench them. These defense 
systems are either enzymatic, including superoxide dis-
mutase (SOD), catalase (CAT), glutathione-S-transferase 
(GST), glutathione reductase and glucose-6-phosphate 
dehydrogenase, or non-enzymatic, such as vitamins C and 
E as well as thiols, especially the reduced glutathione mol-
ecule[188]. If  these oxygen free radicals, referred as reac-
tive oxygen species (ROS), are excessively produced and 
are able to overwhelm the endogenous defense systems, 

then a state of  oxidative stress originates. These ROS can 
bind with most normal cellular components to “pair up” 
its unpaired electrons; thus, they react with the unsatu-
rated bonds of  membrane lipids, denature proteins, and 
attack nucleic acids, resulting in cellular oxidative dam-
age[189]. It has been suggested that oxidative stress plays 
an important role in many diseases, including DM, since 
hyperglycemia alone could not be exclusively responsible 
for the later complications associated with the disease[190]. 
ROS are considered an important independent risk fac-
tor that is developed in DM via what is known as “auto-
oxidative glycosylation, a process which is relevant at 
elevated blood glucose level[191]. Hyperglycemia may 
also raise aldose reductase which depletes NADPH cell 
stores, thus perturbing defense system[192]. The elevated 
blood glucose level causes also non-enzymatic glycation 
of  plasma proteins[193] leading to the production of  more 
powerful oxidizing species[194]. Furthermore, it induces 
mitochondrial superoxide overproduction, which influ-
ences again the previous steps[195], creating what is known 
as “hyperglycemic memory”[196]. As oxidative stress plays 
a key role in insulin-resistance and β-cell dysfunction[197], 
ample of  data allows the hypothesis that a viscous circle 
exists between hyper-insulinemia and free radicals that 
may be responsible for deterioration of  insulin action[198], 
possibly via down-regulating insulin-mediated glucose up-
take[199].

Given that antioxidants are favorably used as comple-
mentary agents in diabetic patients to reduce diabetic 
complications[200-203], attempts to discover antioxidants as 
useful drug candidates to combat diabetic complications 
are going on persistently.

Of  the plants that exert their positive effects in ex-
perimental DM through their antioxidant characters are 
Ficus carica via restoring levels of  fatty acids and vitamin 
E[204], as well as some Indian herbs, viz., Allium sativum, 
Azadirachta indica, Momordica charantia, and Ocimum sanc-
tum extracts, which not only lowered the blood glucose 
level, but also inhibited the formation of  lipid peroxides, 
reactivated the antioxidant enzymes, and restored levels 
of  GSH and metals[124]. These results may authorize the 
use of  the aforementioned herbs in the prevention of  
diabetes-associated complications. In addition, Momordica 
grosvenori, a traditional medicinal herb in China used as 
a substitute sugar for obese and diabetic patients, was 
tested in alloxan-induced diabetic mice[205]. The plant cor-
rected the altered glucose level and effectively regulated 
the immune imbalance in diabetic mice. The authors 
assigned these effects to the plant-induced upregulation 
of  heme oxygenase-1 (HO-1) protein, which has anti-
inflammatory activities and antioxidant properties. 

The ethanolic extract of  Scutellaria baicalensis, as well, 
proves its antioxidant role in a STZ-induced diabetic 
model, and enhances the antidiabetic effect of  metfor-
min[206]. In addition, in a study on the antioxidant and an-
tiglycation properties of  some traditional Chinese medi-
cine used to treat DM, Aralia taibaiensis outperformed 
other extracts in most of  the assays except for the inhi-
bition of  early glycation products formation which was 
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mostly inhibited by Acanthopanax senticosus extract[207]. The 
antioxidant and antiglycation activities of  these extracts 
were correlated with their saponin content[207]. The aque-
ous extract of  Albizzia lebbeck was also verified for its an-
tioxidant property using alloxan-induced diabetic rats[208]. 
The authors registered that the extract rescued all altered 
parameters caused by alloxan which confirmed the ability 
of  the herb to resist the oxidative insult. 

The hypoglycemic and hypolipidemic effects of  Ly-
cium barbarum fruit extract, its crude polysaccharides (LBP) 
extract and purified polysaccharide fractions (LBP-X), 
were documented in alloxan-induced diabetic rabbits[209]. 
Although the hypoglycemic effect of  LBP-X surpassed 
the other extracts, yet the latter exhibited stronger antiox-
idant activity because crude extracts were identified to be 
rich in antioxidants (e.g., carotenoids, riboflavin, ascorbic 
acid, thiamine, nicotinic acid). In Li[210] has isolated Lycium 
barbarum polysaccharides (LBP), which are identified as 
one of  the active ingredients of  the fruits, and tested its 
capacity to stand the oxidative insult using a STZ-induced 
hyperglycemic model. The author found again that the 
LBP reinstated the STZ-induced abnormal oxidative in-
dices, results that are in line with another study by Wu et 
al[211], who also studied the antidiabetic effects of  these 
polysaccharides, using rats with NIDDM. The authors 
found that LBP can control blood glucose and modulate 
the metabolism of  glucose, leading to a significant im-
provement of  oxidative stress markers (SOD, MDA), in 
addition to its ability to decrease DNA damage, possibly 
via leveling off  oxidative stress. These findings point to 
the potential protective effect of  LBP against deleterious 
oxidative stress, hence, preventing the development of  
diabetic complications.

Additionally, Strobilanthes crispus (Acanthaceae), which 
is used traditionally for the treatment of  several ailments 
including DM, has shown antihyperglycemic and antili-
pidemic properties when tested in STZ-induced diabetic 
rats. The antioxidant effect of  the herbal hot water ex-
tract (fermented and unfermented) contributed possibly 
to its and polyphenol contents[212]. 

Clinically, the valuable antioxidant effect of  the herbal 
medicine, Silybum marianum seed extract (silymarin), was 
confirmed in a randomized, double-blind, placebo-con-
trolled, clinical study of  51 type Ⅱ diabetic patients[213], 
where this extract induced a marked improvement in the 
glycemic profile of  these patients. 

In an attempt to study the effect of  some herbal com-
ponents against free radicals, Xiong et al[214] assessed the 
protective effect of  puerarin, an isoflavone purified from 
Chinese herb radix of  Pueraria lobata, on hydrogen perox-
ide (H2O2)-induced rat pancreatic islets damage. The re-
sults emphasize that puerarin can preserve islet cells from 
the ROS-induced damage. Likewise, the extract of  Plan-
tago depressa var. montata. was able to correct glucose and 
lipid homeostasis and to restore redox status in alloxan-
induced diabetic mice, effects that are probably due to its 
antioxidant and free radical scavenging properties[215].

Another herbal drug evaluated for its hypoglycemic 

and anti-oxidant activities is the dried roots of  Morinda of-
ficinalis, which was tested in STZ-treated rats and resulted 
in a decrease in fasting glucose and lipid peroxide levels, 
along with the restoration of  the assessed redox indices. 
The study concluded that Morinda officinalis has anti-dia-
betic and antioxidant potentials[216]. Similarly, Amaranthus 
esculantus grain and oil fraction were found effective as 
both antioxidant and anti-diabetic, suggesting their ben-
eficial effect in correcting hyperglycemia and preventing 
diabetic complications[217].

In the Turkish folkloric medicine Gentiana olivieri 
Griseb. (Gentianaceae) is used as a hypoglycemic plant, an 
effect that was verified by a recent study[218]. The hypogly-
cemic effect was attributed to its main active constituent, 
isoorientin, a compound that was documented for its 
favorable action on glucose homeostasis[219] partly via sav-
ing β-cells from oxidative damage by virtue of  its potent 
antioxidant properties. Additionally, this compound may 
sensitize the insulin receptor to insulin or stimulate the 
stem cell of  islets of  Langerhans in pancreas of  STZ-
induced diabetic rats to restore plasma level of  insulin[219]; 
however, these assumptions need to be tested.

Moreover, the ability of  ginseng to scavenge free radi-
cals is thought to add to its antidiabetic mechanisms[220]. 
Ginseng was found to decrease the rate of  monosac-
charide auto-oxidation, to elevate the activity of  defence 
enzymes as SOD; and directly eliminate the superfluous 
free radicals. The same hold true for garlic (Allium sativum 
L., Liliaceae) which mediates its antidiabetic action by acts 
by its antioxidant character and by increasing insulin se-
cretion[221].

The methanolic extract of  Phyllanthus amarus (Eu-
phorbiaceae), used traditionally in Indian herb medicine, 
was found to have a potent antioxidant activity added to 
its antihyperglycemic efficacy  tested in alloxan-induced 
diabetic rats[222]. Other plants known for their antioxidant 
properties include Capparis deciduas, Camellia sinensis, Em-
blica officinalis, Ficus bengalensis, Musa sapientum and Punica 
granatum[151]. Additionally, the antidiabetic effects of  fruit 
of  Vaccinium arctostaphylos L. (Ericaceae), which is tradi-
tionally used in Iran for improving of  health status of  
diabetic patients, was found to encounter several machi-
naries among which were the notable rising of  the eryth-
rocyte superoxide dismutase (57%), glutathione peroxi-
dase (35%) and catalase (19%) activities of  the alloxan-
treated rats[223]. 

Hyperglycemia-induced aldose reductase activation 
results in the depletion of  NADPH which is required 
for GSH reductase, hence, altering endogenous defense 
system. Therefore, inhibitors of  aldose reductase could offer 
new approaches for the treatment of  diabetes. Feng et al[224] 
reported in his study that some herbal active constituents, 
viz., flavonoid compounds and their derivates, have the 
ability to inhibit the activity of  this enzyme, such as querce-
tin, silymarin, puerarin, and others. In addition, some Salacia 
root species possess this function, for example, the crude 
methanolic extract and ethyl acetate soluble fractions of  
S. oblonga showed inhibitory activity on rat lens-derived 
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aldose reductase[43]. In addition, the extract of  S. reticulata 
stems, with its active constituent mangiferin, exhibited 
aldose reductase inhibitory activity[225], as well as the aque-
ous methanolic extract of  S. chinensis[45]. 

CONCLUSION
From the previous data reviewed in the current article, 
it is obvious that herbs and/or their active constituents 
could attack several pathways of  the hyperglycemic 
process. The multi-modes of  their action allow them to 
outperform the conventional diabetic agents, besides the 
cost effectiveness and higher safety profile. These plants 
could be used as valuable therapeutic agents or as add-on 
conventional therapies for controlling glucose homeo-
stasis. Although the evidenced-based therapeutic usage 
of  many plants is scarce, the plants cited in this review 
are those reputed traditionally for their antidiabetic effect 
and that were verified, either experimentally or clinically.
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Abstract
Neonatal diabetes mellitus (NDM) is a type of diabetes 
mellitus caused by genetic abnormality which devel-
ops in insulin dependent state within 6 mo after birth. 
HbA1c is widely used in clinical practice for diabetes 
mellitus as the gold standard glycemic control indica-
tor; however, fetal hemoglobin (HbF) is the main he-
moglobin in neonates and so HbA1c cannot be used as 
a glycemic control indicator in NDM. Glycated albumin 
(GA), another glycemic control indicator, is not affected 
by HbF. We reported that GA can be used as a glycemic 
control indicator in NDM. However, it was later found 
that because of increased metabolism of albumin, GA 
shows an apparently lower level in relation to plasma 
glucose in NDM; measures to solve this problem were 
needed. In this review, we outlined the most recent 
findings concerning glycemic control indicators in neo-
nates or NDM.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Fructosamine; 1,5-anhydroglucitol; Neonatal diabetes 
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Core tip: Neonatal diabetes mellitus (NDM) is a type of 
diabetes mellitus caused by genetic abnormality which 
develops in insulin dependent state within 6 mo af-
ter birth. Because fetal hemoglobin (HbF) is the main 
hemoglobin in neonates, HbA1c cannot be used as a 
glycemic control indicator in NDM. On the other hand, 
glycated albumin (GA), another glycemic control indica-
tor, is not affected by HbF. We reported that GA can be 
used as a glycemic control indicator in NDM. In this re-
view, we outlined the most recent findings concerning 
glycemic control indicators in neonates or NDM.

Suzuki S, Koga M. Glycemic control indicators in patients with 
neonatal diabetes mellitus. World J Diabetes 2014; 5(2): 198-208  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
v5/i2/198.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i2.198

INTRODUCTION
To prevent chronic diabetic complications, it is neces-
sary to try to achieve normoglycemia as much as pos-
sible. Previously, glycemic control used to be evaluated 
by plasma glucose or urinary glucose. However, these 
indicators fluctuate continuously due to factors such as 
dietary intake, and it was difficult to evaluate glycemic 
control correctly by taking measurements at a particu-
lar time. Therefore, hemoglobin A1c (HbA1c), which 
reflects mean plasma glucose during the past 1 to 2 mo, 
was introduced as a glycemic control indicator[1], and is 
now widely used in clinical practice for diabetes mellitus. 
HbA1c can be used to evaluate glycemic control status; if  
poor glycemic control is observed, it is possible to make 
additions, changes, etc. to the treatment of  diabetes mel-
litus[2].

Large-scale researches such as the Diabetes Control 
and Complications Trial revealed that HbA1c is related 
to the development and progression of  diabetic microan-
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giopathy[3]. That is, the development and progression of  
diabetic microangiopathy can be prevented by maintain-
ing excellent glycemic control using HbA1c as an indica-
tor. Recently, it also became possible to use HbA1c for 
the diagnosis of  diabetes mellitus[4].

However, the following problems of  HbA1c were 
pointed out: (1) abnormal HbA1c values may be ob-
served because of  variantl hemoglobin, hemolytic ane-
mia, etc.; (2) HbA1c does not correctly reflect short-term 
glycemic control status; and (3) HbA1c does not correctly 
reflect postprandial plasma glucose/fluctuation of  plas-
ma glucose. Accordingly, new glycemic control indicators 
such as fructosamine, 1,5-anhydroglucitol (1,5-AG), and 
glycated albumin (GA) were introduced. Although these 
indicators compensate the disadvantages of  HbA1c, they 
have their own disadvantages. For example, 1,5-AG is 
affected by the threshold of  urinary glucose excretion in 
the kidney, and fructosamine and GA are affected by al-
bumin metabolism[5].

Because fetal hemoglobin (HbF) is the main hemo-
globin in neonates, HbA1c cannot be used as a glycemic 
control indicator in neonates. Therefore, glycemic control 
in neonatal diabetes mellitus (NDM) was traditionally 
performed using blood glucose measured by self-moni-
toring of  blood glucose as an indicator, without using a 
glycemic control indicator. We demonstrated that GA, 
which is not affected by HbF, reflects glycemic control in 
NDM and can be used as a glycemic control indicator in 
NDM[6]. We also obtained various other findings about 
GA and HbA1c in neonates/infants or NDM. In this 
review, we outlined the most recent findings concerning 
glycemic control indicators in neonates or NDM.

NEONATAL DIABETES MELLITUS 
NDM is a type of  diabetes mellitus caused by single-
gene abnormality which develops acutely in insulin de-
pendent state; NDM accounts for the majority of  cases 
of  diabetes mellitus which develops within 6 mo after 
birth[7]. The frequency of  NDM according to this defi-
nition is 1 in 89000 births, showing that NDM is a rare 
disease[8]. So far, more than 20 causative genes of  NDM 
have been discovered; genetic mutations of  some kind 
have been identified in not less than 70% of  patients[8,9]. 
NDM is similar to type 1 diabetes mellitus in terms of  
the form of  development (diabetes mellitus develops 
acutely); however, type 1 diabetes mellitus very rarely 
develops within 6 mo after birth, judging from studies 
on the frequency of  human leukocyte antigen risk alleles 
and the presence of  pancreatic autoantibodies[10,11]. Based 
on the clinical course, NDM is classified into two major 
categories: transient NDM (TNDM) and permanent 
NDM (PNDM)[12]. TNDM is a condition in which insulin 
secretion is restored spontaneously and normoglycemia 
is achieved without treatment; PNDM is a condition in 
which remission is not achieved and life-long treatment 
is required. The frequency of  TNDM is about 60%, and 
that of  PNDM is about 40%.

Although patients with TNDM require insulin therapy 

at the time of  onset because of  marked hyperglycemia, 
they can be weaned from insulin therapy at an average 
of  3 mo after the start of  treatment[13-16]. This is called 
the remission period. However, in about half  of  patients, 
diabetes mellitus relapses from childhood to adoles-
cence[14,17]. In 70% of  patients with TNDM, the cause is 
overexpression of  an imprinted gene PLAGL1 which is 
located in the chromosome 6q24 region and is expressed 
from paternal allele (6q24-TNDM)[14,15,18,19]. In 25% of  
patients with TNDM, mutations of  KCNJ11 and ABCC8 
genes which encode the ATP-sensitive potassium channel 
(KATP channel) essential for glucose-stimulated insulin se-
cretion have been identified (KATP-TNDM)[14,20,21]. 6q24-
TNDM has the following characteristics: (1) it often 
develops within 1 wk after birth; (2) it is often diagnosed 
asymptomatically on routine blood collection; and (3) it 
is rarely accompanied by ketoacidosis[15,19]. On the other 
hand, the time of  diagnosis of  KATP-TNDM is 1 to 4 mo 
after birth, which is later than that of  6q24-TNDM[14].

The main causes of  PNDM are KATP channel abnor-
mality [KCNJ11 gene (31%); ABCC8 gene (10%)] and in-
sulin gene mutations (12%); the median age at the time of  
diagnosis is 8 wk after birth and 10 wk after birth, respec-
tively[9]. In contrast to TNDM, PNDM shows symptoms 
such as dehydration, poor sucking, and poor weight gain 
at the time of  onset and is often accompanied by ketoaci-
dosis[15,19]. A large proportion of  other causative genes are 
expressed by autosomal recessive inheritance and account 
for about 10% of  PNDM. In about 35% of  patients with 
NDM, causative genes have not been identified[7].

Insulin therapy is required at the time of  onset of  
NDM regardless of  disease type in order to improve 
metabolic abnormality and weight increase[22]. It has been 
reported that because neonates have a small body and 
then receive a small dose of  insulin, excellent glycemic 
control is achieved by an insulin pump which is capable 
of  fine regulation[23-25]. As a treatment after withdrawal 
from the acute phase, a switch to high-dose administra-
tion of  sulfonylurea (SU) drugs is an effective causal ther-
apy for KATP channel abnormality; in not less than 90% 
of  patients, a dramatic improvement of  glycemic control 
is observed immediately without hypoglycemia and is 
maintained for a long period[26-28]. Therefore, when NDM 
is diagnosed, it is important to determine by gene analysis 
whether or not KATP channel abnormality is present. Early 
diagnosis makes it possible to switch to SU drugs during 
infancy, resulting in an extremely high quality-of-life[29-32].

1,5-ANHYDROGLUCITOL IN NEONATES
1,5-AG is a polyol with a structure in which hydroxyl 
at the 1st position of  glucose is reduced; 1,5-AG is con-
tained in a wide variety of  food, but is hardly metabolized 
in the body[33]. Therefore, after being absorbed from the 
intestine, 1,5-AG contained in food is widely distributed 
in various organs to form an internal pool. The amount 
of  1,5-AG supplied from daily food intake is smaller than 
the internal pool, and so there is no change in serum 
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1,5-AG concentration before and after meal. Excessive 
intake of  1,5-AG is excreted in urine. 

Usually, about 180 g of  glucose is excreted daily from 
glomeruli; about 100% of  the excreted glucose is reab-
sorbed by sodium glucose cotransporter 2 (SGLT2), which 
is located in proximal renal tubules and are specific to 
glucose[34], and SGTL1, which is located downstream of  
SGLT2. After the onset of  diabetes mellitus, excretion 
of  glucose will increase; when the increased excretion of  
glucose exceeds the reabsorption capacity of  SGLT2 and 
SGLT1, reabsorption of  glucose via 1,5-AG/mannose/
fructose cotransporter (SGLT4), which is located down-
stream of  SGLT2 and SGLT1, will start. Because glucose 
is usually not present, 99.9% of  1,5-AG is reabsorbed by 
SGLT4; however, this reabsorption mechanism is common 
to glucose; therefore, if  inflow of  glucose into tubules 
increases, reabsorption of  1,5-AG will be inhibited[35-37]. 
Therefore, in a hyperglycemic condition, excretion of  
1,5-AG into urine will increase and serum 1,5-AG will de-
crease. Thus, serum 1,5-AG is a glycemic control indicator 
which reflects the degree of  urinary glucose excretion.

Because serum 1,5-AG increases and decreases by 
excretion of  urinary glucose, serum 1,5-AG reflects 
short-term changes in glycemic control more subtly than 
HbA1c. When glycemic control has worsened rapidly, 
serum 1,5-AG will decrease rapidly because the increased 
excretion of  a large amount of  glucose will inhibit reab-
sorption of  1,5-AG via SGLT4. In patients with marked 
hyperglycemia and a high excretion of  urinary glucose, 
serum 1,5-AG will not increase in a short period even if  
glycemic control has improved rapidly because the inter-
nal pool of  1,5-AG has decreased.

Serum 1,5-AG is also affected by the threshold for 
urinary glucose excretion, and therefore shows a low 
level in renal glycosuria in which the threshold decreases. 
In addition, serum 1,5-AG shows an abnormally low 
level in conditions such as chronic renal failure in which 
reabsorption of  1,5-AG decreases[38-40],  pregnancy[41], 
oxyhyperglycemia in which urinary glucose is observed 
transiently[42], patients receiving long-term hyperalimenta-
tion[43], and liver cirrhosis[44,45]. One of  the causes of  an 
abnormally high level of  1,5-AG is oral administration of  
a kind of  Chinese medicines such as Ninjin-yoei-to and 
Kami-kihi-to which contain large amounts of  1,5-AG[46].

It is known that serum 1,5-AG during the neonatal 
period shows an apparently low level[47]. This is consid-
ered to be due to a small intake of  1,5-AG during the 
neonatal period. We reported that serum 1,5-AG is sig-
nificantly lower in subjects with a habit of  consuming 
dairy products than in subjects without such a habit[48]. 
The fact that breast milk or formula which contains ga-
lactose is the main source of  nutrition during the neona-
tal period may be related to a low level of  serum 1,5-AG 
in neonates.

FRUCTOSAMINE IN NEONATES
Protein undergoes glycation reaction in accordance with 
plasma glucose concentration, and ketoamine, an early 

Maillard reaction product, is produced via aldimine. Be-
cause the side chain binding of  ketoamine takes a fruc-
tose structure, ketoamine is generically named fructos-
amine. Fructosamine is measured using the property that 
fructose-lysine (fructosamine), in which glucose is bound 
to the lysine residues of  protein, has reducing ability un-
der alkaline conditions. A large proportion of  measure-
ments are made by the chemical method; measurements 
are made by colorimetric determination by producing re-
duction color reaction using nitroblue tetrazolium (NBT) 
as a chromogen. Because 60% to 70% of  serum protein 
is albumin, the main component of  fructosamine is gly-
cated albumin, but fructosamine contains glycated lipo-
protein and glycated globulin as well. Fructosamine is not 
affected by anemia or variant hemoglobin. In addition, 
because the turnover of  albumin, which accounts for the 
most part of  serum protein, is faster than that of  hemo-
globin, it is possible to evaluate short-term glycemic con-
trol by measuring fructosamine[49]. A low fructosamine 
level is observed in hyperthyroidism[50,51] and nephrotic 
syndrome[52] in which protein (albumin) metabolism is 
accelerated; a high fructosamine level is observed in hy-
pothyroidism[50,51] in which protein (albumin) metabolism 
is prolonged.

HbA1c and GA are glycation products of  hemoglo-
bin and albumin (single proteins), respectively, whereas 
fructosamine is the generic name of  all glycated proteins 
and lacks specificity. Because albumin accounts for 60% 
to 70% of  serum protein, fructosamine has similar prop-
erties to GA; however, there is a problem that because 
other glycated proteins are measured as well, a high 
fructosamine level is observed in myeloma[53]. Because 
HbA1c and GA are expressed as the ratio of  hemoglobin 
and the ratio of  albumin, respectively, they are not af-
fected by dilution of  serum; on the other hand, because 
fructosamine is expressed as reducing ability per 1 mL 
of  serum, it is affected by serum protein concentration, 
and an apparently low level of  fructosamine is observed 
in dilutional anemia. The level of  fructosamine in young 
children is lower than that in adults[54], which is also partly 
due to low serum protein concentration. Because fructos-
amine is measured by colorimetric determination based 
on reduction color reaction, fructosamine is affected by 
bilirubin with reducing ability, etc. It is considered that the 
effects of  ascorbic acid and vitamin E are mild; however, 
if  a large amount of  ascorbic acid or vitamin E is con-
sumed, measurement of  fructosamine may be affected.

GLYCEMIC CONTROL INDICATORS OF 
CORD BLOOD
The composition of  hemoglobin in healthy adults is as 
follows: adult hemoglobin (HbA): 97%; HbA2: 2.5%; 
HbF: 0.5%[55]. On the other hand, HbF accounts for 80% 
to 90%, and HbA accounts for only 10% to 20% imme-
diately after birth. After then, HbF decreases logarithmi-
cally and is replaced by HbA; by 6 mo after birth, the 
largest proportion of  Hb is HbA; however, it is not until 
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evaluating the diagnosis of  NDM and effects of  therapy. 
Therefore, we hypothesized that GA is a useful glycemic 
control indicator in NDM[58] and conducted an investiga-
tion[6]. We found that GA, as a glycemic control indicator 
in NDM, has various advantages: (1) GA is not affected 
by HbF; (2) unlike fructosamine, GA is not affected by 
serum protein (albumin) because it is expressed as a ratio 
to albumin; (3) unlike fructosamine, GA is not affected 
by other proteins and has a high specificity because it 
reflects glycation products of  a single protein (albumin); 
(4) GA reflects plasma glucose during a shorter period 
than HbA1c; and (5) HbA1c reflects mean plasma glu-
cose, whereas GA reflects fluctuation of  plasma glucose 
(postprandial hyperglycemia) in addition to mean plasma 
glucose[68-70]. HbA1c (%) is expressed as HbA1c/total 
Hb; therefore, if  HbF is high, a relatively low HbA1c 
level will be observed. At the time of  onset of  NDM 
(mostly 1 to 2 mo after birth), a large amount of  HbF 
remains in blood; therefore, a lower HbA1c level is ob-
served in relation to plasma glucose level. In addition, 
it is estimated that during infancy, during which HbA 
increases, if  plasma glucose level is constant, HbA1c will 
increase. In fact, in an investigation of  five patients with 
NDM (age at the time of  diagnosis: 38 ± 20 d), plasma 
glucose was markedly high [29.7 ± 13.1 mmol/L (535 ± 
236 mg/dL)], whereas HbA1c measured by the HPLC 
method was within the normal range (5.4% ± 2.6%)[6]. 
As the course of  treatment progressed, plasma glucose 
tended to decrease (Figure 1A), whereas HbA1c tended 
to increase (Figure 1B). A significant negative correlation 
was observed between HbA1c and HbF (Figure 2A), 
whereas no significant correlation was observed between 
HbA1c and plasma glucose level (Figure 2B). On the 
other hand, GA at the time of  diagnosis was abnormally 
high (33.3% ± 6.9%)[6]. In contrast to HbA1c, GA de-
creased as treatment progressed (Figure 1C) and showed 
a strong positive correlation with plasma glucose level 
(Figure 2C). Thus, it was found that GA, but not HbA1c, 
is an appropriate glycemic control indicator in NDM.

From what age can HbA1c be used as a glycemic 
control indicator? Alternatively, if  the effect of  HbF is 
excluded or if  a different principle of  measurement is 
employed, might HbA1c be an appropriate indicator? 
And when using GA as a glycemic control indicator in 
NDM, what should be taken into account? In the follow-
ing chapters, we will discuss these issues in relation to the 
current status and challenges in infants and NDM.

HBA1C IN NEONATES AND NDM
As mentioned above, when HbA1c is expressed as 
HbA1c/total Hb, it cannot be used as a glycemic control 
indicator in NDM. There are two ways to eliminate the 
effect of  HbF. One way is to determine the HbA1c level 
corrected by HbF (HbF corrected HbA1c) by the formu-
la: HbA1c/(total Hb-HbF), resulting in the correction of  
an apparently low HbA level. The other way is to deter-
mine GHb relative to all hemoglobins including HbF and 
to use this as a glycemic control indicator. For the latter, it 

1 year after birth when the proportion of  HbF decreases 
to less than 1% (level of  HbF in adults)[56,57]. Therefore, it 
is difficult to use the cation exchange high-performance 
liquid chromatography (HPLC) method, the immuno-
logical (latex immunoturbidimetry; LA) method, and the 
enzyme method which specifically measure HbA1c as 
glycemic control indicators in NDM.

We measured glycohemoglobin (GHb) in cord blood 
by various methods[58]. GHb measured by the HPLC 
method was less than the detection limit when Arkray’s 
HA-8180 was used and was as low as 1.8% ± 0.2% when 
Tosoh’s G8 was used. GHb measured by the LA method 
was less than the detection limit; HbA1c measured by the 
enzyme method was 1.1% ± 0.3%. Because these meth-
ods for measuring GHb measure HbA1c specifically and 
do not measure glycated HbF, the result is less than sensi-
tivity or a very low level, and it was confirmed that these 
methods cannot be used as glycemic control indicators in 
NDM.

It is considered that measurement of  GHb by the af-
finity method using boronic acid may be used as a glyce-
mic control indicator during the neonatal period as well 
because it measures all glycated hemoglobins[59,60]. It has 
been reported that GHb in cord blood is higher in patients 
whose mother has diabetes mellitus than in patients whose 
mother does not have diabetes mellitus[61-63]. Our investi-
gation revealed that GHb was 3.9% ± 0.2%, which was 
slightly lower than the reference value for adults (4.6% to 
6.2%)[58]. Plasma glucose in cord blood was normal (94 ± 
27 mg/dL); therefore, it is considered that the low GHb 
levels were due to shortened life span of  red blood cells[64].

GA in cord blood was 9.4% ± 1.1%, which was 
slightly lower than the reference value for adults (11.6% 
to 16.2%)[58]. We demonstrated that low GA levels are 
observed in neonates because albumin metabolism in 
neonates is accelerated[65,66]. Low GA levels in cord blood 
are considered to be due to accelerated metabolism of  
albumin.

The level of  1,5-AG in cord blood measured in preg-
nant women including those with diabetes mellitus was 
similar to that in maternal blood at the time of  delivery[67]. 
This finding was considered to be due to the fact that 
1,5-AG in maternal blood was distributed in the fetus via 
the placenta.

The above results show that both GHb measured by 
the affinity method and GA were slightly lower than the 
reference value for adults, but could be used as glycemic 
control indicators in NDM. On the other hand, HbA1c 
measured by the HPLC method, the LA method, or the 
enzyme method and 1,5-AG cannot be used as glycemic 
control indicators.

GLYCEMIC CONTROL INDICATORS IN 
NDM: HBA1C AND GA
The etiologic diagnosis and treatment of  NDM have 
been making rapid progress; however, there have been 
few studies on glycemic control indicators useful for 
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is possible to measure all GHb by the affinity method[71].
We measured HbA1c by the HPLC method and the 

LA method in 26 healthy infants (0 to 8 mo old), calculat-
ed HbA1c values corrected by HbF [Adj-HbA1c (HPLC) 
and Adj-HbA1c (LA), respectively], measured GHb by 
the affinity method [GHb (Affinity)], and evaluated cor-
relations between these values and plasma glucose and 
between these values and GA[72]. As a result, only GHb 
(Affinity) had a significant correlation with both plasma 
glucose and GA (Figure 3A). Adj-HbA1c (LA) was cor-
related only with GA (Figure 3B); Adj-HbA1c (HPLC) 
was not correlated with either plasma glucose or GA 
(Figure 3C). These results suggest that GHb (Affinity) 
may be used as a glycemic control indicator in NDM. In 
this research, however, GHb (Affinity) within one month 
was lower than the reference range of  HbA1c during 8 to 
12 mo (4.8% to 6.0%)[73], and a large proportion of  GHb 
values from 1 to 5 mo were lower than the reference 

range. The following three factors are thought to contrib-
ute together to this finding. The first factor is the effect 
of  a low plasma glucose level during infancy, especially 
within one month after birth[65,74]. The second factor is 
the short half-life of  red blood cells (about 90 d) during 
infancy[64]. The third factor is the glycation rate of  HbF 
which is considered to be lower than that of  HbA. In this 
regard, Little et al[75] reported that GHb measured by the 
affinity method is low when a sample which contains not 
less than 15% of  HbF is used. In the LA method, HbA1c 
is measured using antibodies which specifically recog-
nize peptides including glycated valine of  hemoglobin 
β-chain N-terminal[76]. Theoretically, when interpreting 
Adj-HbA1c (LA) levels, it is necessary to consider a low 
plasma glucose level and shortened half-life of  red blood 
cells of  the infant; however, it is considered that Adj-
HbA1c (LA) may be used as a glycemic control indicator; 
in fact, a correlation between Adj-HbA1c (LA) and GA 
was observed. However, the LA method is too compli-
cated to be used in clinical settings because it is necessary 
to measure HbF using the HPLC method. In addition, 
our investigation revealed that Adj-HbA1c (HPLC) is not 
an appropriate indicator for the evaluation of  HbA1c in 
infants. In the HPLC analysis, HbF and HbA1c migrate 
to adjacent locations. When a high HbF level is observed, 
separation of  HbF and HbA1c becomes insufficient and 
so HbA1c cannot be measured correctly, which is con-
sidered to be one of  the causes of  the above-mentioned 
phenomenon. On the other hand, Little et al[75] and Rohlf-
ing et al[77] reported on HbF-corrected HbA1c as follows: 
if  HbF is not more than 30%, HbA1c measured by the 
HPLC method using Tosoh’s G7 and G8 can be used as 
a glycemic control indicator. However, they did not use 
samples which contained 30% or more of  HbF, and they 
did not state whether or not Hb in the samples used was 
derived from infants; therefore, these facts may be the 
reason for the difference from our data obtained from 
samples of  infants.

So far, there have been no studies on the age at 
which HbA1c can be used for patients with NDM, and 
so research is needed to clarify the relationship between 
mean plasma glucose and HbA1c and between CGM 
and HbA1c. Regarding the reference value of  HbA1c 
in healthy infants, there is only a report by Jansen et al[73] 
who investigated 100 healthy infants of  8 to 12 mo old. 
In that report, the reference value of  HbA1c for infants 
was 4.8% to 6.0%, which was similar to the reference 
value of  HbA1c for adults (4.6% to 6.2%). From our 
results, HbA1c levels in most infants of  6 mo of  age 
or older were also within the reference range shown by 
Jansen et al[73] HbF decreases to less than 5% by 6 mo 
after birth[56,57]; therefore, it is considered possible to use 
HbA1c as a glycemic control indicator in patients with 
NDM of  6 mo of  age or older.

GA IN NEONATES AND NDM
GA is a useful glycemic control indicator under condi-
tions in which hemoglobin metabolism is affected. On 
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the other hand, abnormal albumin metabolism affects 
GA. It has been reported under various conditions that 
GA shows a low level when albumin metabolism is accel-

erated and shows a high level when albumin metabolism 
is suppressed[78].

While GA is a useful glycemic control indicator in 
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Figure 3  Correlations between glycated hemoglobin measure by various methods and plasma glucose or glycated albumin. Correlations between GHb mea-
sured by the affinity method [GHb (affinity)] (A), HbF-adjusted HbA1c measured by the immunological method [Adj-HbA1c (LA)] (B), and HbF-adjusted HbA1c mea-
sured by the HPLC method [Adj-HbA1c (HPLC)] (C), and PG or GA in 26 healthy infants were shown (modified from Ref[72], with permission from Copyright Clearance 
Center Inc.). GA: Glycated albumin;  PG: Plasma glucose; GHb: Glycated hemoglobin; HbF: Fetal hemoglobin.
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patients with NDM, it is necessary to keep in mind the 
following characteristics of  GA during infancy: (1) it 
shows a lower level in relation to plasma glucose; and (2) 
it shows a positive correlation with logarithmically trans-
formed age[65,66]. For GA in healthy infants, before the 
currently widely used enzyme method was developed[79], 
it had already been reported that GA measured by the 
HPLC method was lower than the reference value for 
adults[54]. It is known that protein metabolism is acceler-
ated during infancy[80,81]. In addition, it has been reported 
that albumin synthesis is accelerated as well[82]. Therefore, 
acceleration of  albumin metabolism may contribute to a 
low GA level during infancy. We compared the relation-
ship between GA and plasma glucose level in patients 
with NDM and in patients with juvenile type 1 diabetes 
mellitus (T1DM), and found that patients with NDM had 
higher plasma glucose levels but lower GA levels than 
patients with T1DM (Figure 4); thus, we obtained a result 
which supports the phenomenon of  accelerated metabo-
lism of  albumin during infancy[65]. In addition, we inves-
tigated in healthy infants the relationship between change 

in GA according to age and plasma glucose and between 
change in GA according to age and serum albumin. As a 
result, a strong positive correlation was observed between 
GA and logarithmically transformed age in days (Figure 
5A), and multivariate analysis revealed that age and serum 
albumin affect GA levels more significantly than plasma 
glucose[66]. Because GA is expressed as a percentage rela-
tive to serum albumin, it is not affected by serum albu-
min, which is an advantage of  GA over fructosamine[54]. 
However, an increase in serum albumin associated with 
aging is observed during infancy (Figure 5B) and there 
is a positive correlation between GA and serum albumin 
during this period (Figure 5C)[66]. Accordingly, we deter-
mined the reference value of  GA in infants according to 
age in mo from the regression equation of  GA and age, 
and proposed that a comparison between GA level and 
the reference value[65].

On the other hand, we found that regardless of  age, 
GA can be evaluated based on the reference value for 
adults without using the reference value for infants by de-
termining age adjusted GA (Aa-GA)[83]. We investigated 
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GA in 376 subjects without diabetes mellitus of  a wide 
range of  age (neonates, children, and adults), and found 
that GA can be expressed as a primary regression equa-
tion of  logarithmically transformed age (Figure 6). Based 
on this equation, the following formula for calculating 
Aa-GA was derived: Aa-GA = GA × 14.0 /[1.77 × log-
age (d) + 6.55] or Aa-GA = GA × 14.0 /[1.77 × log-age 
(yr) + 11.1]. As mentioned above, GA in NDM shows an 
apparently low level; therefore, if  GA in NDM is com-
pared with the reference value for adults, the glycemic 
control status may be underestimated. By calculating Aa-
GA and comparing it with the reference value for adults, 
it is possible to accurately evaluate the glycemic control 
status in NDM. The advantages of  evaluating Aa-GA 
by the reference value for adults instead of  evaluating 
GA by the reference value for infants according to age in 
month are as follows: (1) it is not necessary to consider 
the reference value according to age in month; and (2) 
regardless of  age, it is possible to make comparisons of  
longitudinal changes in glycemic control status.

It is known that because the half-life of  GA is shorter 
than that of  HbA1c, GA reflects short-term plasma 
glucose correctly[84,85]. This characteristic also indicates 
the usefulness of  GA as a glycemic control indicator in 
NDM. Because a large proportion of  NDM develops 
within one month, the duration of  the hyperglycemic sta-
tus is short. This form of  development is similar to that 
of  fulminant type 1 diabetes mellitus[86]. In fulminant type 
1 diabetes mellitus, pancreatic beta cells are destroyed in 
a very short period, and ketoacidosis develops shortly 
after the onset of  diabetic symptoms. Therefore, at the 

time of  onset, HbA1c is normal or only slightly high, but 
GA is already obviously high[87]. We reported that GA at 
the time of  onset of  NDM was abnormally high (33.6 ± 
6.9%) in all patients[6], and an abnormally high GA level 
in NDM may be useful for differential diagnosis from 
transient hyperglycemia. In addition, when evaluating re-
mission of  patients with TNDM and when evaluating the 
effect of  SU drugs administered to patients with PNDM, 
it will be possible to promptly evaluate an improvement 
of  such glycemic control by using GA[5].

CONCLUSION
The usefulness of  GA as a glycemic control indicator in 
NDM was demonstrated. However, it was found that GA 
is affected by albumin metabolism and shows an appar-
ently low level. Therefore, it is necessary to compare GA 
with the reference value according to age or to calculate 
age-adjusted GA (Aa-GA). On the other hand, HbA1c 
measured by the HPLC method, the LA method, or the 
enzyme method does not correctly reflect the glycemic 
control status because it is affected by a high HbF level. 
GHb measured by the affinity method reflects the glyce-
mic control status in NDM; however, this method is cur-
rently hardly used and cannot easily measure GHb rou-
tinely. In addition, it is unknown whether the kinetics of  
glycation reaction of  HbF are similar to those of  HbA. 
Taking into account such circumstances, it is desirable 
to select GA as a glycemic control indicator for patients 
with NDM and to evaluate the glycemic control status 
using Aa-GA.
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Abstract
AIM: To investigate the presence and potency of natu-
ral enzyme inhibitors with hypoglycemic potentials 
amongst Eucalyptus Spp. by in vitro  assays.

METHODS: The leaf extracts of the three different 
Eucalyptus species [E.  globulus (EG), E.  citriodora (EC), E. 
camaldulensis  (ECA)] were subjected to in vitro  assay 
procedures to explore the prevalence of natural en-
zyme inhibitors (NEIs) after preliminary qualitative and 
quantitative phytochemical evaluations, to study their 
inhibitory actions against the enzymes like α-amylase, 
α-glucosidase, aldose reductase, angiotensin convert-
ing enzyme and dipeptidyl peptidase 4 playing patho-
genic roles in type 2 diabetes. The antioxidant potential 
and total antioxidant capacity of the species were also 
evaluated.

RESULTS: Major bioactive compounds like polyphenols 

(341.75 ± 3.63 to 496.85 ± 3.98) and flavonoids (4.89 
± 0.01 to 7.15 ± 0.02) were found in appreciable quan-
tity in three species. Based on the IC50 values of the 
extracts under investigation, in all assays the effectivity 
was in the order of EG > ECA > EC. The results of the 
ferric reducing antioxidant power assay showed that 
the reducing ability of the species was also in the order 
of EG > ECA > EC. A strong correlation (R2 = 0.81-0.99) 
was found between the phenolic contents and the in-
hibitory potentials of the extracts against the targeted 
enzymes. 

CONCLUSION: These results show immense hypo-
glycemic potentiality of the Eucalyptus Spp. and a re-
markable source of NEIs for a future phytotherapeutic 
approach in Type 2 diabetes.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Natural enzyme inhibitors; Hypoglycemic; 
Eucalyptus ; In vitro  assays; Pathogenic; Polyphenols; 
Flavonoids

Core tip: Enzymes play an essential role in mediating 
important biochemical processes of life but hyper or 
hypo activity of such enzymes leads to malfunctions of 
the processes. Etiopathogenesis of diseases at molecu-
lar level has shown that enzyme inhibitors can serve as 
effective therapeutic bullets for several diseases. The 
plant kingdom is a giant hub of phytomolecules with 
variant pharmacology, largely unexplored. Volatile and 
non-volatile fractions of Eucalyptus  include bioactive 
compounds like terpenes, triterpenoids, flavonoids, 
polyphenols, etc.  The exploration of enzyme inhibitors 
amongst Eucalyptus  species by in vitro  assays will help 
in bioactivity guided isolations of such inhibitors to be 
targeted as natural hypoglycemics.
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INTRODUCTION
Diabetes mellitus (DM) is fast becoming the epidemic of  
the 21st century, becoming one of  the major killers of  the 
health of  mankind after Acquired Immuno Deficiency 
Syndrome, cancer and cerebrovascular diseases[1]. The 
statistics of  the global diabetic population is expected to 
show a steady growth to 366 million by 2030. The inter-
national diabetes federation has estimated the number of  
diabetics in India to be 40.9 million, which is expected to 
grow to 60.9 million by 2025[1,2]. Diabetes is a common 
metabolic disorder with abnormal elevations in the blood 
glucose lipid profile, leading to major complications like 
diabetic neuropathy, nephropathy leading to end stage re-
nal disease, retinopathy leading to blindness and diabetic 
foot ulcers necessitating limb amputations[1,2]. But despite 
tremendous strides in modern medicines, the availability 
of  insulin therapy and synthetic hypoglycemics, their fail-
ure to restore normoglycemia without adverse effects calls 
for phytotherapy and alternative medicine[3,4]. Enzymes 
play a vital role in mediating essential biochemical life pro-
cesses like metabolism, cell cycling, signal transduction, etc. 
However, hyper or hypo activity of  such enzymes leads 
to malfunctions of  the respective biochemical processes 
which in many cases are the underlying causes of  diseases 
like diabetes, Alzheimer’s disease, myasthenia gravis and 
Parkinson’s disease, as depicted by their etiopathogenesis 
at the molecular level. It is anticipated that enzyme in-
hibitors serve as important therapeutic targets for these 
diseases[5]. It has been found that enzymes like α-amylase, 
α-glucosidase, dipeptidyl peptidase 4 (DPP4), aldose re-
ductase (AR), angiotensin converting enzyme (ACE) and 
peroxisome proliferator activated receptor-γ (PPAR-γ) 
contribute significantly to the pathogenesis of  type 2DM. 
Reactive oxygen species (ROS) also play a pathogenic role 
in type 2DM. 

Phytomolecules, as natural enzyme inhibitors (NEIs), 
can serve as successful therapeutic bullets in the control 
of  this chronic disease[2,5-8]. The World Health Organiza-
tion has recommended phytotherapy for diabetes due 
to safety, effectivity, availability and affordability. The 
NAPRALERT database (NAtural PRoducts ALERT) 
and the ethnobotanical literature have reported more 
than 800 anti-diabetic plant species[4,7-9]. 

Eucalyptus, also known as “gum tree”, is taxonomi-
cally from the family Myrtaceae, indigenous to Tasmania, 
Australia and cultivated mostly in subtropical and warm 
temperate regions of  the world. The bark and leaves of  
Eucalyptus Spp. have been used in folk medicine for the 
treatment of  ailments such as colds, fever, toothache, di-
arrhea and snake bites. Uses of  Eucalyptus leaf  hot decoc-
tions as “herbal tea” have been recorded in Aboriginal, 
European and British Pharmacopeias for the traditional 

remedy of  type DM[10-21]. A rich literature exists, reporting 
over 500 Eucalyptus species with different pharmacologi-
cal actions[11-22]. Hypoglycemic potentials of  Eucalyptuses 
are documented, but the mechanistic actions need to be 
explored further [11-21].

Inhibiting the actions of  carbohydrate hydrolyzing en-
zymes like α-amylase and α-glucosidase helps to reduce 
post-prandial (PP) hyperglycemia. Inhibition of  other 
enzymes like AR, DPP-4, ACE and PPAR-γ also presents 
an effective strategy to combat type 2 DM naturally[5,6,8,11]. 
Extensive literature surveys and our previous works have 
reported that Eucalyptus shows the presence of  terpe-
noids, triterpenoids, flavonoids, polyphenols and tannins 
in its various volatile and non-volatile fractions[8,21,22]. Ma-
jor phytomolecules isolated from the Eucalyptus Spp and 
their inhibitory activity against the enzymes are depicted 
in Table 1. 

AR, a member of  the aldo-keto reductase super fam-
ily, is the first and rate-limiting enzyme in the polyol 
pathway and reduces glucose to sorbitol, utilizing reduced 
form of  nicotinamide adenine dinucleotide phosphate 
(NADPH) as a cofactor. In type 2DM, due to increased 
availability of  glucose in sensitive tissues like lens, nerves 
and retina, there is an increased formation of  sorbitol 
through the polyol pathway. Intracellular accumulation 
of  sorbitol leads to cataract, retinopathy and neuropa-
thy. AR-inhibitors prevent the conversion of  glucose 
to sorbitol and are capable of  controlling diabetic com-
plications[8,23-32]. Limited literature data and molecular 
docking analysis have shown that natural biomolecules 
with potent aldose reductase inhibitory actions include 
flavonoids like quercetin, quercitrin, myricitrin, couma-
rins, monoterpenes, stilbenes, etc. Flavonoids with binding 
energy (BE) ranging between -9.33 to -7.23 kcal/mol ex-
hibited AR inhibitory properties, as evidenced by in-silico 
docking studies[8,32,33]. Five bioactive compounds, namely 
macrocarpals A-E detected in the ethanol extracts of  the 
leaves of  E. globulus, showed antibacterial actions, HIV-
RTase (HIV-reverse transcriptase) inhibitory activity and 
also inhibited AR[8,32,33].

Attenuation in ROS level may be due to increased 
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  Phytochemicals Enzymes inhibited ↓

  Flavonoids, like quercetin, kaempferol,   
  myricetin; Phenolics-tannins, ellagic 
  acid, and gallic acid; terpinoids-ursolic 
  acid, oleanolic acid, p-cymene, and 
  1,8-cineole, 1-(S)-α-pinene

α-amylase

  Polyphenols, proanthocyanidins, 
  anthocyanins

α-glucosidase

  Flavonoids, flavonols, terpenoids, 
  mono-terpenes

Aldose reductase

  Flavonoids, flavonols, terpenoids, 
  mono-terpenes

Angiotensin converting enzyme

  Terpenoids Peroxisome proliferator 
activated receptor

  Triterpenoids, phenolic compounds Di-peptidyl peptidase 4

Table 1  List of phytochemicals of Eucalyptus Spp. inhibiting 
the enzymes 



production or diminished depletion of  enzymes, like 
catalase, glutathione peroxidase and superoxide dis-
mutase. Natural antioxidants which scavenge free radicals 
can provide a synergistic action to the overall antidiabetic 
potential of  a plant[12,13]. Osawa and Namiki (1981, 1985) 
reported the presence of  a powerful antioxidant, 4-hy-
droxytritriacontane-16,18 dione, in the leaf  wax of  differ-
ent Eucalyptus species[24,25].

The enzyme ACE is associated with hypertension, 
a long term complication of  diabetes. ACE activates 
histidyl leucine dipeptide called angiotensin-І into a po-
tent vasoconstrictor called angiotensin-Ⅱ. Angiotensin-
ІІ influences aldosterone release which increases blood 
pressure by promoting sodium retention in distal tubules. 
Biomolecules like flavonoids, flavonols, anthocyanins and 
triterpenes are potent ACE inhibitors[8,34,35]. Molecular 
docking studies also recommend the use of  herbal ACE 
inhibitors in the management of  type 2 DM[8,34,35]. 

PPAR-γ is a key receptor in lipid and glucose ho-
meostasis because of  its ability to reduce the plasma free 
fatty acids and phytomolecules can exert their insulin 
sensitizing actions with their high affinity for the receptor 
PPAR-γ. Terpenoids act as PPAR modulators regulating 
carbohydrate and lipid metabolism. Several terpenoids 
have been isolated from the Eucalyptus species and PPAR 
antagonism is amongst the suggested modes of  hypogly-
cemic action of  Eucalyptus[8,36]. 

Glucagon-like peptide-1 (GLP-1) is a remarkable 
antidiabetic gut hormone with combinatorial actions of  
stimulating insulin secretion, inhibiting glucagon secre-
tion, increasing beta cell mass, reducing the rate of  gastric 
emptying and inducing satiety. DPP4 rapidly deactivates 
GLP-1. Phytomolecules, mostly triterpenoids, steroids 
and phenolic constituents with DPP4 inhibitory activity, 
help to increase the levels of  endogenous active GLP-1 
and act as an important therapeutic compound against 
type 2 DM, the fact being further supported by molecular 
docking studies[8,37].

The present report documents our studies aiming to 
explore the major phytochemicals amongst three Eucalyp-
tus species, E. globulus (EG, blue gum or Tasmanian blue 
gum), E. citriodora (EC, lemon scented gum) and E. camal-
dulensis (ECA, river red gum or Murray red gum), along 
with the existence of  NEIs of  enzymes like α-amylase, 
α-glucosidase, AR, DPP4, ACE and antioxidant enzymes 
by in vitro assays, with the perspective to evaluate the po-
tentiality of  these three species to combat type 2 DM and 
its complications. Furthermore, such research will help in 
bioactivity guided isolation of  potent NEIs.

MATERIALS AND METHODS
Plant materials
Fresh leaves of  EG, EC and ECA were collected from 
natural and man-made forest areas of  IIT Kharaghpur 
and adjoining areas, like Balarampur, Gopali and Arabari 
forest areas, and authenticated by Dr Shanta AK, Biotech-
nologist, Nirmala College of  Pharmacy, Guntur, India.

Reagents and chemicals
Yeast α-glucosidase, bovine serum albumin, sodium 
azide,  para-nitrophenyl α-D-glucopyranoside solu-
tion (pNPG ), ACE (from rabbit lung, 3.5 units/mg of  
protein), starch azure, porcine pancreatic amylase, Tris-
HCl buffer, hippuryl-L-histidyl-L-leucine (HHL) and 
1,1-diphenyl-2-picrylhydrazyl (DPPH) were obtained 
from Sigma Chemicals, United States. Other chemicals 
like diagnostic reagents, surfactants, polyphosphate, dex-
tran sulphate, etc., were purchased from Merck Co, India. 
Acarbose was a kind gift sample from Zota Pharmaceuti-
cals Pvt. Ltd, Chennai, India.

Preparation of eucalyptus leaf extracts 
A uniform methodology was followed for preparing the 
leaf  extracts of  the three different species of  Eucalyptus. 
Typically, the leaves were washed first with tap water and 
then with distilled water to remove all dust, subjected to 
shade drying at 25 ± 3 ℃ temperature, and then finely 
powdered in an electrical grinder (Bajaj GX 11, India). 
The leaf  powder was stored at room temperature in an 
airtight container until use and labeled separately as EG, 
EC and ECA. Extraction was carried out as described by 
Sugimoto et al[20,21] with few modifications. Briefly, 500 g 
of  leaf  powder of  each species was extracted separately 
with ethanol-water (1:2 v/v) under reflux for 2 h, filtered 
through a Whatman filter paper no. 1, concentrated us-
ing a rotary evaporator (Buchi, Flawil, Switzerland) and 
dried in a vacuum oven. The percentage yield of  extracts 
was calculated with regard to the initial weight of  dry 
powders and final weight of  the extracts.  These extracts 
were then subjected to preliminary and quantitative phy-
tochemical evaluations and in vitro assay procedures. 

Phytochemical investigations of the eucalyptus leaf extract
Phytochemical analysis of  the major bioactive com-
pounds of  interest of  the three different extracts (EG, 
EC and ECA) was performed using the methods of  Har-
bone (1984), Trease and Evans (1989) and other literature 
methods[22,38]. The three extracts were analyzed for gly-
cosides (Keller Killiani and Borntrager’s tests), alkaloids 
(Mayer’s, Dragendorff ’s reagents), saponins (Foam test), 
triterpenes (Salkowski and Libermann Burchard tests) 
and 1,8-cineole (Marquis reagent, Gallic acid reagent, 
conc. H2SO4 and phloroglucinol). 

The total polyphenol content of  the extracts was de-
termined by ultra violet (UV) spectrophotometry (Perkin 
Elmer Lambda 25 UV-vis) at 760 nm using Folin-Ciocal-
teu reagent by the method of  Othman et al[39] and Mod-
nicki et al[40] (2009)[41,42]. The concentrations of  the total 
polyphenols were determined in Gallic equivalents (GAE) 
per gram of  the extract. The polyphenol content was 
calculated by the formula: X = (5.6450 × A)/m. Where 
X is total phenolic compounds (%), A is absorbance of  
investigated extract and m is mass (g) of  the investigated 
sample.

The total flavonoid content of  the extracts was deter-
mined by the method of  Djeridane et al[43], 2006, which 
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was suspended in a tube containing 0.2 mL of  0.5 mol 
tris-phosphate buffer (pH = 6.9) containing 0.01 mol 
calcium chloride as the substrate. After boiling the tube 
for 5 min, it was preincubated for 5 min at 37 ℃. Differ-
ent concentrations (10, 20, 40, 60, 80 and 100 µg/mL) 
of  the extracts of  EC, EG and ECA were prepared by 
dissolving in 1 mL of  0.1% dimethyl sulfoxide. Then 0.2 
mL of  the extract of  particular concentrations was put 
in the tube containing the substrate solution. Next, 0.1 
mL of  porcine pancreatic amylase in tris-HCL buffer 
(2 units/mL) was added to the tube containing extracts 
and substrate, at 37 ℃. After 10 min, the reaction was 
stopped by adding 0.5 mL of  50% acetic acid in each 
tube and the reaction mixture was centrifuged (Eppen-
dorf-5804R) at 3000 g for 5 min at 4 ℃. The absorbance 
of  the resulting supernatant was measured at 595 nm. 
Acarbose (Acar) in the concentration range of  1.25, 2.5, 
5 and 10 µg/mL in distilled water was used to create the 
calibration curve. The assay was performed in triplicate. 
The concentration of  the Eucalyptus extracts of  three 
species (EG, EC and ECA) required to inhibit 50% of  
α amylase activity under the assay conditions is referred 
to as IC50 values. Absorbance was calculated using the 
formula: a amylase activity = [(Ac+) - (Ac-) - (As-Ab)]/
[(Ac+) - (Ac-)] × 100.

α-glucosidase inhibitory assay: The assay procedure 
was developed as described by Basak et al[12] and Sub-
ramanian et al[47], with slight modifications. An aqueous 
ethanol extract of  the three species (EG, EC and ECA) 
was used for the study. The yeast α-glucosidase enzyme 
solution was prepared by dissolving at a concentration 
of  0.1 U/mL in 100 mmol phosphate buffer, pH = 7.0, 
containing bovine serum albumin and sodium azide 
which was used as enzyme source. This enzyme solution 
was added to the aqueous-ethanolic extracts of  EG, EC 
and ECA in increasing concentrations (1, 1.5, 2, 2.5, 3, 3.5 
µL/mL). The reaction was initiated by adding 0.20 mL of  
para-nitrophenyl α-D-glucopyranoside solution (pNPG); 
2 mmol pNPG in 50 mmol sodium phosphate buffer 
pH = 6.9) which acted as the substrate. The reaction was 
terminated by adding 1 mL 0.1 mol/L Na2HPO4. The 
test tubes were cooled under tap water and α-glucosidase 
inhibitory activity was determined at 405 nm by measur-
ing the quantity of  P-nitrophenol released from pNPG. 
The assay was performed in triplicate for each extract 
and the data presented as mean ± SD. The concentration 
of  the Eucalyptus extracts (EG, EC and ECA) required 
inhibiting 50% of  α-glucosidase activity under experi-
mental conditions is defined as the IC50 value. Acarbose 
(Acar) was dissolved in distilled water to prepare a series 
of  dilutions (1.25, 2.5, 5, 10 mg/mL) and was used as the 
positive control. The percentage inhibition was calculated 
according to the formula: %inhibition = (Abs400 control 
- Abs400 extarct)/Abs400 control.

IC50 values were determined from the plots of  per-
centage inhibition vs log inhibitor concentration and were 
calculated by nonlinear regression analysis from the mean 
inhibitory values.

is based on the formation of  a complex of  flavonoid-
aluminium, and the concentration of  the flavonoids was 
expressed in terms of  QE per gram extract. 

The flavonol content of  the extracts was determined 
according to Abdel-Hameed, 2009, which is based on the 
formation of  a complex between the extract with AlCl3 
and sodium acetate and the total flavonol content was ex-
pressed in terms of  quercetin equivalent (QE) per gram 
extract[42]. 

Tannins were measured according to the protocol of  
Hagerman and Butler, 1978, which is based on the ob-
tention of  a colored complex Fe2+-phenol whose absor-
bance was measured spectrophotometrically at 510 nm. 
The tannin content was obtained in mg of  tannic acid 
equivalent (TAE) per gram extract[44]. 

The three extracts were subjected to color reactions 
with Marquis Reagent, gallic acid reagent, concentrated 
H2SO4 and phloroglucinol reagent. Standard 1,8-cineole 
gives orange color with Marquis reagent, yellow color 
with gallic acid, dark yellow color with concentrated 
H2SO4, and no coloration with phloroglucinol re-
agent[22,38]. 

Gas chromatographic analysis of 1,8-cineole
Fresh leaves of  the three Eucalyptus spp. (EG, EC and 
ECA) were air dried and 100 g leaves of  each variety 
were subjected to hydrodistillation for 3-4 h to extract the 
essential oil, employing a Clevenger type apparatus[45]. Ex-
tracted oils were decanted from the water layer and dried 
over anhydrous sodium sulfate. The extracted oils of  the 
three species were subjected to gas chromatographic (GC) 
analysis (perkin elmer clarus 500, with Flame Ionization 
Detector) as described by Quereshi et al[45]. The operat-
ing conditions were: nitrogen as carrier gas, injector and 
detector temperature of  -250 ℃; column of  30 m (length) 
× 0.25 mm (inner diameter) and film thickness of  0.25 
µm. The temperature was gradually increased at a rate of  
15 ℃/min to 240 ℃ for 4 min.

In vitro assay procedures
After phytochemical investigations of  the leaf  extracts of  
EG, EC and ECA, in vitro-inhibitory assays of  α-amylase, 
α-glucosidase, aldose reductase, ACE, DPP4, antioxidant 
assays like DPPH free radical scavenging activity, scav-
enging of  hydrogen peroxide and total antioxidant activ-
ity in the ferric reducing antioxidant power (FRAP) assay 
were carried out following standard methods[46-57].

The enzymes mentioned above contribute to the 
pathogenesis of  type 2 DM in one way or another. In-
hibition of  such enzymes helps to combat type 2 DM 
naturally. There are ample research works highlighting the 
hypoglycemic potentials of  Eucalyptus. We explored such 
NEIs by the above mentioned in vitro assays and once 
again evaluated the hypoglycemic potentiality of  Eucalyp-
tus.

α-Amylase inhibitory assay: The study was carried 
out following standard literature methodologies with 
slight modifications[12,46,47]. Briefly, 2 mg of  starch azure 
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Aldose reductase inhibitory assay: The assay was 
carried out following reported literature methods and 
the experimental protocol approved by the Institutional 
Ethical Committee[48-50]. Two to three mo old healthy 
adult Wistar albino rats weighing about 150-200 g were 
acclimatized to laboratory conditions (12 h light and 12 
h dark cycle, 25 ± 5 ℃, 30%-60% relative humidity) with 
free access to pelleted food and water ad libitum. Imme-
diately after sacrifice, lenses were removed from the eyes, 
washed with saline and the fresh weights of  a lens were 
measured. Next, a 10% homogenate was prepared from 
the rat lens in 0.1 mol/L phosphate-buffered saline (PBS) 
at pH 7.4, centrifuged at 5000 g for 10 min in the cold 
and the supernatant collected. The protein content of  the 
supernatant was determined by literature methods[48-50]. 

For the determination of  the aldose reductase (AR) 
inhibitory activity, 0.7 mL of  phosphate buffer (0.067 
mol), 0.1 mL of  NADPH (25 × 10-5 mol), 0.1 mL of  
DL-glyceraldehyde (substrate, 5 × 10-4 mol) and 0.1 mL 
of  lens supernatant were mixed in the sample cuvette. 
Absorbance was taken against a reference cuvette con-
taining all other components except the substrate, DL-
glyceraldehyde. The final pH of  the reaction mixture was 
adjusted to pH = 6.2. On adding substrate to the solution 
mixture, the enzymatic reaction starts and absorbance 
(OD) was recorded at 340 nm for 3 min at 30 s intervals. 
AR activity was calculated and expressed as OD/min per 
milligram protein.

For the determination of  the AR inhibitory activity 
of  the Eucalyptus extracts, a stock solution was prepared 
by dissolving the Eucalyptus extracts (EG, EC and ECA) 
in PBS and different concentrations prepared from stock 
solutions were added to both the reference and standard 
cuvettes. The reaction was initiated by the addition of  0.1 
mL DL-glyceraldehyde and the reaction rate measured as 
mentioned above. Percentage inhibitions of  AR activity 
of  the extracts were calculated with reference to normal 
rat lens to have 100% activity. The concentrations of  the 
extracts required to inhibit 50% of  AR activity under as-
say conditions is defined as the IC50 values which were 
calculated for each sample by plotting a graph between 
log dose concentrations vs percentage inhibition. Querce-
tin, a known AR inhibitor, was used as the positive con-
trol. 

ACE inhibitory assay: The assay method was based on 
the liberation of  hippuric acid from hippuryl-L-histidyl-
L-leucine (HHL) catalyzed by the ACE. The assay pro-
cedure was carried as described [51,52] and other methods 
with slight modifications. Briefly, 50 µL of  sample solu-
tions (extracts of  EC, EG and ECA) in the concentration 
range of  0.1-2.5 mg/mL were preincubated with 50 µL 
of  ACE (25 mU/mL) at 37 ℃ for 10 min. Next, 150 µL 
of  substrate solution (8.3 mmol HHL in 50mmol sodium 
borate buffer containing 0.5 mol NaCl at pH 8.3) was 
added and incubated for 30 min at 37 ℃. The reaction 
was terminated by addition of  250 µL 1.0 mol HCl. To 
the resulting solution, 0.5 mL of  ethyl acetate was added 
and centrifuged (Eppendorf-5804R) for 15 min. Then, 

0.2 mL of  the upper layer was transferred to a test tube, 
evaporated under room temperature in vacuum and the 
liberated hippuric acid was dissolved in 1 mL distilled wa-
ter and the absorbance was measured at 228 nm. Experi-
ments were performed in triplicates. Captopril was used 
as standard (3.5 µg/mL) in the assay. The percentage of  
inhibition (ACEI) was calculated using the formula: %in-
hibition = (A-B)/(A - C) × 100. Where A is the OD at 
228 nm with ACE but without inhibitor, B is the OD in 
presence of  both ACE and inhibitor, C is the OD with-
out ACE and inhibitor.

DPP4 inhibitory assay: The assay was carried out fol-
lowing reported literature methods using GPN-Tos 
(Gly-Pro p-nitroanilide toluenesulfonate salt) as the sub-
strate[53-55]. Briefly, 0.5 mL of  the assay mixture contained 
40 mmol K-Na-phosphate buffer, pH 7.5, an enzyme 
sample. The reaction was initiated by adding a substrate 
to a concentration of  0.24 mmol and stopped by adding 
0.2 mol acetic buffer at pH 5.5. The differential absorp-
tion at 390 nm was recorded against an identical mixture 
without the enzyme and the amount of  p-nitroaniline de-
pleted was evaluated from its extinction coefficient at the 
wavelength of  9.9 mmol/L/cm-1.

Evaluation of antioxidant activity
Dpph free radical scavenging activity: The antioxidant 
activity of  the Eucalyptus extracts (EC, EG and ECA) was 
determined on the basis of  the scavenging effect on the 
stable DPPH free radical activity[12,39,51,56]. A stock solution 
of  DPPH in methanol (33 mg in 1 L) was freshly pre-
pared and kept in the dark at 4 ℃; after checking its ini-
tial absorbance, 5 mL of  this stock solution was added to 
1 mL of  the solution of  the extracts prepared in concen-
trations of  50-500 µg/mL. Next, 2.8 mL of  95% metha-
nol was added and the mixture was shaken vigorously 
and after 30 min the absorption was measured at 517 
nm. Ascorbic acid was used as the standard. The radical 
scavenging capacities of  the test samples were expressed 
as percentage inhibition and calculated according to the 
equation: % inhibition of  DPPH activity = (Absorbance 
control - Absorbance)/(Absorbance control) × 100.

Plotting was done of  percentage inhibition vs con-
centration, and the concentration of  sample required for 
50% inhibition is regarded as IC50 value for each of  the 
test samples. 

Total antioxidant activity (FRAP assay): Total anti-
oxidant activity was determined by the FRAP assay as 
described by Pracheta et al[56] and Shahwar et al[57]. It is a 
direct test of  antioxidant capacity. The assay of  reduc-
ing activity is based on the reduction of  ferric to ferrous 
form in the presence of  antioxidants in the tested sam-
ples (extracts of  Eucalyptus species). The stock solutions 
included 10 mmol/L 2,4,6-tripyridyl-s-triazine (TPTZ) 
in 40 mmol HCl and 20 mmol FeCl3, and 300 mmol ac-
etate buffer (pH 3.6). The working solutions were freshly 
prepared by mixing 25 mL acetate buffer, 2.5 mL TPTZ 
and 2.5 mL of  FeCl3. The temperature of  the solution 
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was raised to 37 ℃ prior to use. Eucalyptus extracts (200 
µL) were allowed to react with FRAP solution (2900-3000 
µL) for 30 min in the dark. Absorbance of  the colored 
product formed (ferrous tripyridyl triazine complex) 
was recorded at 595 nm. Results were expressed in µM 
equivalent to FeSO4 by extrapolation from the calibration 
curve.

Statistical analysis
The experimental results were expressed as mean ± SD 
of  three replicates. The data were subjected to one way 
analysis of  variance (ANOVA) using commercially avail-
able software (Prism version 5.0; Graph Pad Software, 
San Diego, CA, United States). Results were analyzed by 
Student’s t test (paired or unpaired, as appropriate) or 
Tukey’s multiple comparison test. Statistical analysis was 
performed by using GraphPad Prism where P < 0.05 was 
considered statistically significant.

RESULTS
The yield of  the Eucalyptus leaf  extracts (extractions car-

ried out in triplicates) were 49% ± 3.3% for EG, 46.5% 
± 4.2% for EC, and 45.8 ± 3.9% for ECA. The details 
of  phytochemicals amongst Eucalyptus Spp. and the en-
zymes inhibited by them are presented in Tables 1 and 
2 and Figure 1. The color test results for the presence 
of  1,8-cineole in the extracts of  EG, EC and ECA are 
presented in Table 3. GC analysis of  the oils extracted 
from three species (EG, EC and ECA) showed the high-
est 1,8-cineole content in EG (about 50%). ECA also 
showed the presence of  1,8-cineole in addition to several 
other peaks indicating the presence of  other compounds. 
In EC citronellal was found to be the major component.

All three extracts (EG, EC and ECA) showed promis-
ing inhibitory potentials for enzymes, including α-amylase, 
α-glucosidase, AR, ACE and DPP4. The antioxidative 
potential of  the extracts were determined by DPPH radi-
cal scavenging and the total antioxidative capacity by the 
FRAP assay. The results of  all such inhibitory assays are 
presented in Figure 2 and the summary of  the IC50 values 
of  tested samples in Table 4.

The correlation coefficient (R2) between polyphenol 
and flavonoid content and IC50 inhibitory values of  the 
enzymes ranged between 0.81-0.99 and 0.57-0.99 respec-

  Extract1 Polyphenol 
(mg/g extract2)

Tannins 
(mg/g extract2)

Flavonoid 
(mg/g extract2)

Flavonol 
(mg/g extract2)

  EG 496.85 ± 3.98 329.06 ± 6.25 7.15 ± 0.02 4.98 ± 0.01
  EC 341.75 ± 3.63 199.75 ± 5.49 4.89 ± 0.01 3.87 ± 0.05
  ECA 429.91 ± 4.03 253.15 ± 4.96 5.01 ± 0.02 4.09 ± 0.01

Table 2  Total polyphenol, flavonoid, flavonol and tannin 
contents of E. globulus , E. citriodora  and E. camaldulensis

1Content expressed per gram of relevant extracts (EG, EC and ECA); 
2Values are expressed as mean ± SD from triplicate determination. EG: E. 
globulus; EC: E. citriodora; ECA: E. camaldulensis.

  Extracts Marquis test Gallic acid test Concentrated 
H2SO4

Phloroglucinol

  EG Orange Yellow Dark yellow No color
  EC Orange Dark Yellow Dark yellow No color
  ECA Orange Yellow Bright orange-

yellow
Pink

Table 3 Color test results for the presence of 1,8-cineole in E. 
globulus , E. citriodora  and E. camaldulensis  extracts

EG: E. globulus; EC: E. citriodora; ECA: E camaldulensis.
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Figure 1  Graphical presentations of the presence of phytochemicals in Eucalyptus extracts. Data are presented as the mean ± SD of each triplicate test. EG: 
E. globulus; EC: E. citriodora; ECA: E. camaldulensis. 
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tively. 
The polyphenol content of  three Eucalyptus Spp. (EG, 

EC and ECA) was compared with the IC50 values of  
different inhibitory assays using Tukey’s multiple com-
parison test (one-way ANOVA), considering P < 0.05 
as significant. All P values were found to be < 0.05. The 
results suggested that the inhibitory potentials of  the ex-
tracts are largely dependent upon the polyphenol content 

in Eucalyptus Spp. 

DISCUSSION
Qualitative and quantitative phytochemical investigations 
of  the Eucalyptus leaf  extracts EG, ECA and EC showed 
appreciable levels of  bioactive components like polyphe-
nols and flavonoids. From the IC50 values of  Eucalyptus 
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extracts in different assays (Table 4), it appears that all 
three extracts showed significant inhibitory potentials 
against the six enzymes assayed, in the order EG > ECA 
> EC. Based on the results of  FRAP assay, the reducing 
ability of  EG was highest and that of  EC lowest (Figure 
2). 1,8-cineole is the major constituent of  the volatile 
fractions in EG and ECA, whereas in EC the major 
constituent is citronellal with citronellol and spathulenol. 
According to the literature, compounds with highest re-
ducing ability have delocalized chemical bonds[56-60]. Prior 
research suggested a strong positive correlation (R2 = 
0.99) between phenolic content and antioxidative poten-
tial[12,18,58,59]. Polyphenols received wide attention because 
of  their antioxidant properties which refers to their ability 
to prevent damage from ROS through radical scavenging 
or prevent the generation of  these species by iron chela-
tion[61]. Polyphenols also bind and inhibit the enzymes 
α-amylase and α-glucosidase[61]. Polyphenols have also 
been shown to facilitate insulin response and attenuate se-
cretion of  glucose dependent insulinotropic polypeptide 
and glucagon like GLP-1. Other suggested mechanisms 
for the hypoglycemic actions of  polyphenols were down 
regulation of  the expression of  liver glucokinase, upregu-
lation of  phosphoenolpyruvate carboxykinase (PEPCK), 
induction of  the AMP-activated protein kinase (AMPK) 
pathway, enhancing peripheral glucose utilization by 
stimulating glucose transporter subtype 4 (GLUT-4), 
etc.[62]. In this context, it is to be mentioned that green tea 
extract (GTE) contains polyphenols like catechin, epicat-
echin, etc. Epigallocatechin gallate (EGCG), an abundant 
form of  catechin, is the major attributable factor for the 
beneficial effects of  green tea. EGCG inhibits adipocyte 
proliferation, increases fat oxidation and enhances the 
expression of  GLUT-4, as shown in animal studies[63,64]. 

Literature surveys have shown that flavonoids and 
its subfamilies significantly inhibit the ACE enzyme by 
generating chelate complexes within the active center 
of  ACE[65]. Flavonoids were found to attenuate hepatic 
gluconeogenesis by decreasing the activity of  glucose-
6-phosphate and PEPCK, subsequently improving gly-
cemic control[65]. Our research data are in accordance 
with this phenomenon. A strong correlation was found 
between polyphenol (R2 = 0.81-0.99) and flavonoid con-
tents (R2 = 0.57-0.99) with the antioxidative and enzyme 

inhibitory potentials of  the extracts. 
NEIs can serve as an important therapeutic tool 

against type 2 DM. The current research aims to provide 
the state-of-the-art search of  NEIs amongst Eucalyptus 
Spp. by in vitro assays which can be further utilized for 
bioactivity-guided isolations of  such enzyme inhibitors. 
Our research results show the hypoglycemic potential of  
the Eucalyptus Spp. (extracts) for future exploitations in 
phytotherapy of  type 2 DM. However, further extensive 
pharmacology and toxicological studies in animal and hu-
man models are warranted.
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Background
The current research aims to explore the presence of biomolecules by in vitro 
assays amongst three eucalyptus species acting as natural enzyme inhibitors 
for enzymes with significant pathogenic roles in type 2 diabetes. 
Research frontiers
Enzymes like α-amylase, α-glucosidase, aldose reductase, angiotensin con-
verting enzyme and dipeptidyl peptidase 4 play important pathogenic roles in 
type 2 diabetes. Phytomolecules acting as inhibitors of such enzymes can act 
as effective therapeutic targets in type 2 diabetes. Volatile and non-volatile 
fractions of Eucalyptus Spp. include biomolecules like terpenes, triterpenoids, 
flavonoids, polyphenols, etc. The exploration of enzyme inhibitors amongst Eu-
calyptus Spp. by in vitro assays will help in bioactivity guided isolation of such 
inhibitors to be targeted as natural hypoglycemics.
Innovations and breakthroughs
Enzymes play a vital role in mediating essential biochemical life processes. 
However, hyper or hypo activity of such enzymes leads to malfunctions of the 
respective biochemical processes, which in many cases are the underlying 
causes of diseases like diabetes. The current research aims to provide the 
state-of-the-art search of natural enzyme inhibitors amongst Eucalyptus Spp. 
by in vitro assays which can be further utilized for bioactivity-guided isolations 
of such enzyme inhibitors. Those research findings have shown that the Euca-
lyptus Spp. under study have immense hypoglycemic potentials with high IC50 
values against the targeted enzymes. Moreover, the inhibitory potentials of the 
species are also well correlated with the polyphenol-flavonoid contents of the 
species. 
Applications
The Eucalyptus Spp. (extracts) under study showed significant hypoglycemic 
potentialities for future exploitations in phytotherapy of type 2 DM.
Terminology
Natural Enzyme Inhibitors: Malfunctions of certain enzymes are the root causes 
of many diseases. Effective enzyme inhibitors have great clinical significance 
and a substantial role in the drug delivery process. Such enzyme inhibitors of 
natural origin are more acceptable due to safety and lower incidences of side 
effects on short and long term treatment modalities.
Peer review
Dey et al investigated the potential hypoglycemic actions of Eucalyptus extracts 
in vitro. The extracts were found to significantly inhibit a number of enzymes 
related to T2DM, such as amylase, glucosidase, dipeptidyl peptidase 4, etc. The 
rationale of this study and methodology were adequately described. The selec-
tion of enzymes and antioxidant activity is based on the hypothesis that these 
activities are involved in the pathogenesis of type 2 diabetes. The three extracts 
show broad enzyme inhibitory activity and antioxidant activity, which differs in 

  Assays EG EC ECA

  α-amylase   3.01 ± 0.01   4.13 ± 0.09   3.65 ± 1.04
  α-glucosidase   2.08 ± 0.01   2.68 ± 0.11   2.11 ± 0.19
  Aldose reductase   2.06 ± 0.03   6.72 ± 0.65   2.56 ± 0.84
  Angiotensin converting  
  enzyme 

  4.31 ± 0.09 30.83 ± 0.45   6.85 ± 0.98

  Dipeptidyl peptidase 3.098 ± 0.09 6.138 ± 0.68   3.99 ± 0.91
  1,1-diphenyl-2-
  picrylhydrazyl (DPPH)

12.32 ± 0.91 68.42 ± 0.05 14.44 ± 1.91

Table 4  IC50 inhibitory values of Eucalyptus extracts E. 
globulus , E. citriodora  and E. camaldulensis  in different assays

EG: E. globulus; EC: E. citriodora; ECA: E. camaldulensis.
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magnitude between the three extracts. The authors conclude that the extracts 
might serve as starting material for new therapeutic modalities for type 2 dia-
betes and that their data fit with the idea that leaves from trees could provide a 
base material for drug discovery and development programs. 
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Abstract
AIM: To examine the contribution of toll-like receptors 
(TLRs) expression and activation to the prolonged in-
flammation often seen in human diabetic wounds.

METHODS: Debridement wound tissue was collected 
from diabetic patients with informed consent. Total RNA 
and protein were isolated and subjected to real-time 
polymerase chain reaction and Western blot analyses. 

RESULTS: TLR1, 2, 4, and 6 mRNA expressions were 
increased significantly in wounds of diabetic patients 
compared with non-diabetic wounds (P < 0.05). MyD88 
protein expression was significantly increased in dia-
betic wounds compared to non-diabetic wounds. Inter-
leukin-1beta, tumor necrosis factor-alpha concentration 
nuclear factor-kappa B activation, and thiobarbituric 
acid reactive substances were increased in diabetic 
wounds compared to non-diabetic wounds (P < 0.01). 

CONCLUSION: Collectively, our novel findings show 
that increased TLR expression, signaling, and activation 
may contribute to the hyper inflammation in the human 
diabetic wounds. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Increased TLR2/4-MyD88-nuclear factor-
kappa B expression and signaling with attendant oxida-
tive stress may contribute to the hyperinflammation 
frequently seen in human diabetic wounds.
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INTRODUCTION
Diabetes mellitus (DM) is a constellation of  metabolic 
aberrations that collectively manifest as debilitating path-
ological complications affecting the quality of  life in DM 
patients. Around 348 million people worldwide and 36 
million people in United States have DM and 40%-60% 
of  these patients develop foot wounds accounting to 
more than 20% of  all hospitalizations equating to one 
amputation every 30 s[1-3]. Emerging experimental data 
and human studies suggest that systemic inflammation 
orchestrated by innate immune receptors plays a role in 
the pathogenesis of  DM complications[4]. Toll-like recep-
tors (TLRs) are pivotal innate immune receptors that 
induce inflammatory responses[5] and their expression 
and activation is increased in a plethora of  inflamma-
tory disorders including DM and its complications[6-9]. 
Recent data from our group and others have provided 
evidence that TLR expression, activation, and signaling 
are significantly increased in monocytes of  DM patients, 
non-obese diabetic (NOD) mice, and db/db mice (see 
review, 4). In addition, we showed that genetic ablation 
of  TLR2/4 in diabetic mice attenuates inflammation as 
indicated by decreased circulating cytokine/chemokine 
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levels and improved wound healing[8-10]. However, it is not 
known if  TLR expression and activation contributes to the 
uncontrolled inflammation seen in wounds of  DM patients. 
Thus, in the present study, we examined TLR expression, 
signaling, and inflammation in human DM wounds.

MATERIALS AND METHODS
Patients 
The study population consisted of  type 2 DM patients 
presenting for care of  a diabetic ulcer located anywhere 
on the foot and non-DM patients (controls) with a leg 
ulcer, aged between 45-65 years. We collected wound tis-
sues from diabetic (n = 8) and non-diabetic subjects (n 
= 4) during initial debridement as part of  standard of  
care, with informed patient consent at the Sacramento 
VA clinics. Patient evaluations consisted of  a medical his-
tory, physical examination, and wound site measurements 
(including location, size, presence of  periulcerative tis-
sue, and clinical infection) were recorded. Serum glucose 
and HbA1c levels were extracted from patient charts 
that were done within the last 60 d. All the human study 
protocols were approved by the Institutional Review 
Board at University of  California at Davis and VA of  
Northern California, MatherField CA.

Collection of debridement wound tissue
Study inclusion criteria were as follows: age 18 or older; 
ulcer size > 2 cm2 and < 25 cm2; ulcer duration of  ≥ 4 
wk; no clinical signs of  infection; glycosylated haemoglobin 
(HbA1c) < 12%; and adequate circulation to the affected 
extremity Patients were excluded if  any of  the following 
preexisting conditions: presence of  charcot foot, index 
ulcer probing to bone; currently receiving radiation or 
chemotherapy; known or suspected malignancy of  current 
ulcer; diagnosis of  autoimmune connective tissue disease; 
received a biomedical or topical growth factor for their 
wound within the previous 30 d; taking medications 
considered to be immune system modulators, antibiotics, 
with C-reactive protein levels (> 10 mg/dL), and CBC (white 
blood cells < 4 to > 11 K/mm3) indicative of  infection. 
Debridement tissue was collected using sharp debridement 
technique[11] and immediately snap frozen in liquid nitrogen 
for mRNA and protein analyses.

Real time-polymerase chain reaction 
Total RNA was isolated from all the snap frozen wound 
tissues and mRNA expression was determined by REal 
time-polymerase chain reaction (RT-PCR) using com-
mercial sequence-specific primers and probes purchased 
from SA Biosciences, Gaithersburg, MD, United States). 
The first strand of  cDNA was synthesized using total 
RNA (1 μg per reaction). cDNA (50 ng) was amplified 
using primer probe sets for TLR1, TLR2, TLR4, TLR6,  
Myeloid differentiation factor-88 (MyD88), Interleukin 
receptor activated kinase-1 (IRAK-1), myeloid differen-
tiation protein-2 (MD2), nuclear factor-kappa B (NF-κB), 
tumor necrosis factor-alpha (TNF-α) and 18s (SA Biosci-
ences) following the manufacturer’s cycling parameters. 

Data were calculated using the 2-ΔΔCt method and are pre-
sented as ratio of  transcripts for TLR gene normalized to 
18s as described previously[8,9].

Western blot and ELISA
For Western blot assays, wound tissues were homog-
enized in tissue lysis buffer and total protein was de-
termined using bicinchoninic acid protein quantitation 
method[8-10]. Equal amounts of  protein (25 μg) were 
separated by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis, transferred to polyvinylidene fluoride 
membranes, and were probed with MyD88 (Imgenix, 
United States) and β-actin (Santa Cruz, United States) 
antibodies as reported earlier[8,9]. Densitometric ratios 
of  the bands were calculated as reported earlier[8,9] and 
expressed as MyD88/β-actin ratio. Interleukin-1beta (IL-
1β) and TNF-α levels were measured in the wound tissue 
lysates using ELISA (R and D systems) assay as reported 
earlier[8-10]. Intra- and interassay coefficient of  variation 
(CV) of  ELISA assays were determined to be < 10%[8-10]. 
Nuclear extracts were used to perform NF-κB transcrip-
tion factors activation assays (Active Motif, Carlsbad, CA, 
United States) to verify activation of  NF-κB in the dia-
betic wounds, indicative of  increased inflammation. As-
says were performed in accordance to the manufacturer’
s protocols. Intra- and inter-assay CV for transcription 
factor assays was < 8%[8-10].

Thiobarbituric acid reactive substances
We measured oxidative stress through lipid peroxida-
tions [Thiobarbituric acid reactive substances (TBARs)] 
in wound tissues to reflect the pathogenic mechanisms 
in impaired wound healing in DM wounds compared 
with control wounds. TBARs are a surrogate marker of  
oxidative stress and malondialdehyde equivalents were 
determined by reading the absorbance at 532 nm using 
1,1,3,3-tetramethoxypropane as an external standard[8,12]. 
Results were expressed as malondialdehyde equivalents 
(nmol/mg protein) as reported previously[8,12].

Statistical analyses
Data are presented as mean ± SD. We used two-tailed t 
tests with appropriate post hoc analyses. P < 0.05 was con-
sidered statistically significant. All statistical analyses were 
performed using GraphPad Prism software[8-10].

RESULTS
All the patients had DM for > 5 years (mean glucose of  
132 ± 10 mg/dL and HbA1c of  7.5% ± 0.8%) and are 
on routine standard care for a chronic diabetic foot ulcer 
of  at least 4-wk duration and showed no signs of  clinical 
infection. We first examined mRNA levels of  TLRs and 
associated inflammatory signaling mediators in DM and 
control wound tissue to test the hypothesis that increased 
TLR expression and activation accentuate inflammation 
in diabetic wounds, using RT-PCR. TLR1, TLR2, TLR4, 
TLR6, MyD88, IRAK-1, NF-κB, IL-1β, and TNF-α 
mRNA expression were significantly increased compared 
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to non-diabetic wounds (P < 0.05) (Table 1) implicating 
a role for TLR-MyD88-NF-κB signaling on hyperin-
flammatory phenotype often seen in DM wounds[7-9]. 
The mRNA data was validated using Western blot and 
enzyme-linked immunosorbent assay (ELISA) assays[7-9]. 
MyD88 is an immediate and common downstream adap-
tor molecule recruited by activated TLRs through their 
TIR domain. MyD88, in turn, recruits IRAK-1, leading to 
the activation of  NF-κB transcription factor, and atten-
dant inflammatory cytokine gene expression[5]. Thus, we 
chose MyD88 for further validation. As shown in Figure 
1, MyD88 protein expression was significantly higher in 
DM wounds compared to the non-diabetic wounds (P 
< 0.05 vs non-diabetic wounds). Figure 2 depicts signifi-
cantly increased NF-κB activation in the nuclear extracts 
of  diabetic wounds compared to non-diabetic wounds (P 
< 0.001). Next, local IL-1β and TNF-α levels known to 
be expressed as a result of  TLR-MyD88-NF-κB activa-
tion, were determined using ELISA assay. Figure 3 shows 
significantly increased IL-1β and TNF-α levels in DM 
wounds compared to non-diabetic wounds (P < 0.05) sup-
porting our hypothesis that TLR signaling and activation 
contribute to the prolonged inflammation seen in DM 
wounds[7-9]. Because oxidative stress and inflammation are 
linked by TLRs[13] as a surrogate index of  oxidative stress, 
we measured TBARS formation during an acid-heating 
reaction in wound tissues as described earlier[8,12]. Figure 4 
depicts significantly higher TBAR levels in diabetic wounds 
compared to non-diabetic wounds (P < 0.01). Thus our 
data for the first time attests to the concept that persistent 
activation of  TLR-MyD88-NF-κB signaling pathway and 
increased oxidative stress contribute to the hyperinflamma-
tion frequently seen in human DM wounds.

DISCUSSION
The interactions among increased glucose levels elevated 
free fatty acids and resultant proinflammatory cytokines 
in DM have clear implications for the immune sys-
tem[14,15]. A diabetic foot ulcer is primarily comprised of  
keratinocytes, dermal cells, and leukocytes with a coex-
isting paucity for angiogenesis[16]. All the evidence point 

towards uncontrolled inflammation and frequent bacte-
rial colonization at the site of  injury as the main causes 
for foot ulcers not healing in a timely manner or not heal 
at all[7,16]. In addition, chronic diabetic ulcers may also 
persist due to disrupted formation of  granulation tissues 
and deep tissue necrosis[7,16,17]. Along with cell specific 
abnormalities, inflammatory cytokine expression such as 
IL-1β and TNF-α are elevated and sustained by hyper-
glycemia implying the role of  innate immunity[14,18]. TLRs 
in the wound bed environment play an important role in 
mediating innate immune functions and inflammation 
whereby potential healing may be impaired[6,8,9].

Studies in animal models as well as humans have sug-
gested that inflammation is a major contributing factor 
to DM pathology primarily orchestrated by the innate 
immune receptors[8-10]. Mohammad et al[19] reported in-
creased TLR2 and TLR4 expression in bone marrow 
derived macrophages of  non-obese diabetic (NOD) 
mice, correlating with increased NF-κB activation and 
increased pro-inflammatory cytokines. Kim et al[20] us-
ing TLR2-/-, TLR4-/- knockouts, and NOD mice have 
demonstrated that TLR2 senses beta cell death and con-
tributes to the instigation of  autoimmune diabetes. Re-
cently, we showed increased TLR2 and TLR4 expression, 
intracellular signaling, and TLR2/4 mediated inflamma-
tion in monocytes with significant correlation to HbA1c 
levels in DM patients[21,22]. Creely et al[23] showed increased 
TLR2 expression in the adipose tissue of  type 2 diabetes 
(T2DM) patients with strong correlates to plasma endo-
toxin levels. Also, Song et al[24] reported increased TLR4 
mRNA expression in differentiating adipose tissue of  
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  Gene Non-diabetic wounds 
mRNA/18s ratio

Diabetic wounds 
mRNA/18s ratioa

  TLR1 0.6 ± 0.1 1.9 ± 0.4
  TLR2 1.2 ± 0.3 3.6 ± 0.5
  TLR4 1.3 ± 0.2 3.8 ± 0.2
  TLR6 0.2 ± 0.1    2 ± 0.5
  MyD88 1.4 ± 0.2 3.1 ± 0.4
  IRAK-1 1.1 ± 0.1 2.8 ± 0.6
  MD2   0.2 ± 0.04 1.6 ± 0.3
  NF-κ B   0.8 ± 0.05 2.3 ± 0.2
  TNF-α    1 ± 0.4 2.6 ± 0.6

Table 1  Toll-like receptor pathway genes expressed in 
debridement wound tissue 

Human diabetic wounds (n = 8) show significantly higher mRNA/18s 
ratio compared to non-diabetic wounds (n = 4) (aP < 0.05 vs non-diabetic 
wounds). TLR: Toll-like receptor.

Non-diabetic Diabetic

0.13 0.19 0.13 1.6 2.2 1.5

MyD88

β-actin

MyD88/β-actin ratio

Figure 1  Representative Western blot showing the MyD88 protein expres-
sion in non-diabetic and diabetic wound tissues. Wound tissues were col-
lected, lysed and 25 μg protein was blotted for MyD88 and β-actin. Densitomet-
ric ratios (MyD88/β-actin) are indicated below. Each lane presents protein from 
an individual patient wound debridement tissue (n = 3/group).
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Figure 2  The DNA-binding activity of nuclear nuclear factor-kappa B 
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reasonable approach to alleviate inflammation accelerat-
ing DM wound-healing process. 

Collectively, these findings are best valued when rec-
ognizing that TLR activation, signaling, and inflammation 
may be undesirable for proper healing of  wounds in DM 
patients. The limitations of  the current study include 
the lack of  correlative evidence between hyperglycemia, 
duration of  diabetes, wound size, and TLR expression 
due to small sample size. Future and ongoing studies are 
focussed on collecting sequential wound debridement 
specimens, infected wound tissues to record the relation-
ship between TLR activation and wound healing as this 
will aid in establishing the timing of  the receptor expres-
sion and activation and the relationship between innate 
immunity and infection in manifesting the impaired 
wound healing phenotype. At the same time, TLR ex-
pression and activation may be used as a cue for healing. 
Prolonged and exacerbated cytokine production leads to 
sustained inflammatory responses and impaired healing, 
causing extensive tissue damage (amputations in case of  
diabetic wounds). Therefore, it is important to understand 
local inflammatory mechanisms that might be useful in 
developing therapeutic strategies for the management of  
difficult wounds burdened by excessive inflammation. 
Our findings suggest a role for TLRs in the human DM 
wound pathology and emphasize the importance of  un-
derstanding the various pathogenic mechanisms involved 
in a complicated wound-healing process.
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COMMENTS
Background
Toll-like receptors (TLRs) are sentinel pathogen recognition receptors with a 
pivotal role in inflammation, tissue injury, diabetes and its complications.
Innovations and breakthroughs
Increased TLR expression, signaling, and activation may contribute to the hyper 
inflammation in the human diabetic wounds.

db/db mice. Furthermore, Davis et al[25] have shown that 
the TLR4-deficient 10ScN mouse strain fed with diet rich 
in saturated fat is protected from systemic inflammation. 
Taken together, these observations suggest a potential 
role for TLR2 and TLR4 in the pathology of  DM. Fur-
thermore, recent findings have shown increased TLR2/4 
expression, signaling, ligands, and functional activation in 
DM subjects with and without complications[20,26]. All the 
above studies suggest that TLR activation and signaling 
contribute to the prolonged inflammatory condition seen 
in DM and may lead to complications in line with our 
current data.

Functional activation of  TLRs includes dimerization 
and this results in cytokine production. TLR2 requires 
heterodimerization with TLR1 or TLR6 for activity[27]. 
We have previously shown that hyperglycemia induces 
TLR2/TLR6 heterodimerization resulting in cytokine 
secretion in human monocytes[14] consistent with the 
increased mRNA expression as seen in this study. How-
ever, it is to be noted that characterization of  dimeriza-
tion events in vivo is technically challenging. Besides, we 
also observed changes in TLR1 mRNA expression and it 
is not known if  either TLR1 or TLR6 by themselves are 
inflammatory and if  TLR2/1 heterodimerization play a 
role in the peristent inflammation. TLR2 primarily acti-
vates MyD88-dependent signaling pathway[28]. The activa-
tion of  MyD88-dependent signaling pathway leads to the 
induction of  inflammatory cytokines[28]. There are studies 
showing delayed dermal wound healing in nondiabetic 
MyD88-deficient mice[29], suggesting that alternate TLR 
pathways may be active in diabetic milieu (for example, 
TLR4/MD2). Here, we provide the first evidence, that in 
human DM wounds, there is increased TLR2 and TLR4 
expression, with corresponding increased NF-κB activ-
ity, increased expression of  downstream adapter proteins 
such as MyD88 and IRAK-1, resulting in increased local 
pro-inflammatory cytokines. Similar findings were found 
when cells were treated in vitro under hyperglycemic, dys-
lipidemia, and increased oxidative stress conditions[4,6,27]. 
Thus, we suggest that abrogating inflammation in human 
DM wounds using TLR2/4 as a target appears to be a 
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Abstract
We experienced a case of liver abscess due to Clostrid-
ium perfringens  (CP) complicated with massive hemo-
lysis and rapid death in an adequately controlled type 
2 diabetic patient. The patient died 6 h after his first 
visit to the hospital. CP  was later detected in a blood 
culture. We searched for case reports of CP  septicemia 
and found 124 cases. Fifty patients survived, and 74 
died. Of the 30 patients with liver abscess, only 3 cases 
survived following treatment with emergency surgical 
drainage. For the early detection of CP  infection, de-
tection of Gram-positive rods in the blood or drainage 
fluid is important. Spherocytes and ghost cells indicate 
intravascular hemolysis. The prognosis is very poor 
once massive hemolysis occurs. The major causative 
organisms of gas-forming liver abscess in diabetic pa-
tients are Klebsiella pneumoniae (K. pneumoniae) and 
Escherichia coli (E. coli ). Although CP  is relatively rare, 

the survival rate is very poor compared with those of K. 
pneumoniae  and E. coli . Therefore, for every case that 
presents with a gas-forming liver abscess, the possibil-
ity of CP  should be considered, and immediate aspira-
tion of the abscess and Gram staining are important.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Gas-forming liver abscess caused by Clos-
tridium perfringens  can result in massive hemolysis and 
death within several hours. For survival, urgent surgical 
intervention and antibiotic administration are necessary.
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INTRODUCTION
Gas-forming infections are an example of  a severe type 
of  infection in diabetic patients. Although life threaten-
ing, there still remains time for treatment[1,2]. However, 
in rare cases of  Clostridium perfringens (CP) infection, the 
time remaining for the patient is very limited[3-7]. CP is 
an anaerobic Gram-positive rod that is found in the soil 
and the human gastrointestinal and urogenital tracts. CP 
causes septicemia in cases of  food intoxication, wound-
associated soft tissue infections, liver abscess, and lung 
abscess. CP may cause septicemia without any apparent 
wound through bacterial translocation[5-8]. Patients typical-
ly have an underlying condition such as diabetes, malig-
nancy, liver cirrhosis, or an immunosuppressive state[4-23]. 
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In some reports, CP septicemia occurred after an invasive 
procedure in the hepatobiliary tract[24-26] or gastrointes-
tinal tract or following gynecological treatment[27,28] or 
line insertion[29]. Early diagnosis is difficult because only 
nonspecific inflammation and gas formation in the focus 
are present. However, once α-toxin triggers hemolysis, 
it progresses very rapidly and is followed by acidosis and 
renal failure[30,31]. According to the literature, the mortal-
ity rate ranges from 70% to 100%[3]. For survival, surgical 
removal of  the focus, appropriate antibiotics, control of  
hemolysis, and supportive care including hemodialysis are 
necessary. These treatments should be started before the 
blood culture result is returned. For early diagnosis, the 
detection of  spherocytes and Gram-positive rods in the 
blood is important[5,32,33]. We experienced a case of  liver 
abscess in an adequately controlled diabetic patient with-
out any triggering event. The patient died within hours 
following massive hemolysis and cardiac arrest. Although 
the majority of  gas-forming infections in diabetics are 
caused by Escherichia coli (E. coli) and Klebsiella pneumoniae (K. 
pneumoniae)[34], the possibility of CP infection should be 
considered. 

CASE REPORT
The patient was a 65-year-old Brazilian of  Japanese 
origin. He had a 3-day history of  fever, appetite loss, 
nausea, and upper abdominal pain. The patient had type 
2 diabetes treated with an oral hypoglycemic agent. He 
also had hypertension and dyslipidemia. He had a history 
of  coronary stenting but no history of  liver cirrhosis or 
malignancy. On physical examination, consciousness was 
clear, his blood pressure was 157/90 mmHg, and hyper-
ventilation and coldness of  the limbs were noted. Slight 
scleral jaundice and slight tenderness of  the abdomen 
were noted. Laboratory examinations indicated mild liver 
dysfunction and elevation of  serum bilirubin, C-reactive 
protein, and the white blood cell count (Table 1). At this 
time, the serum did not show any sign of  intravascular 
hemolysis (Figure 1A). CT of  the abdomen revealed 
a liver abscess 4 cm in diameter with gas formation in 
the right lobe (Figure 1C). A blood culture sample was 
taken, and ceftriaxone injection was started immediately. 
The patient briefly returned to his dormitory to prepare 
for admission and was found unconscious by a fellow 
worker. He was transferred to the hospital, and CPR was 
performed in vain. The serum color at this time point 
revealed strong hemolysis (Figure 1B). He died 6 h after 
his first visit to the hospital. The remarkably high levels 
of  serum potassium (11.8 mEq/L) and lactate dehydro-
genase (LDH) (6203 IU/L) during CPR suggested mas-
sive intravascular hemolysis. CP was later detected in the 
blood culture. Autopsy was refused, and we were unable 
to determine whether he had an occult malignancy.

Recently, van Bunderen et al[3] reported 40 cases of  
CP septicemia and hemolysis between 1990 and 2010. 
In total, 80% of  the patients had died; among the 11 
cases with liver abscess, 10 (90.9%) had died. These 10 
cases included two cases of  microabscess. In one case, 

the focus of  infection was removed, and the patient sur-
vived. On the other hand, Fujita et al[35] studied patients 
with systemic inflammatory response syndrome (SIRS) 
with CP-positive blood cultures and reported that 5 of  
18 cases had died (27.8%). Yang et al[36] reported the 
prognosis of  CP septicemia in a tertiary care hospital. 
They found 93 cases over 10 years, and the 30-d mortal-
ity rate was 26.9%. Therefore, the mortality rate of  CP 
septicemia differs considerably. We hypothesized that the 
complication of  liver abscess decreases the survival rate. 
We searched PubMed for papers published since 2010 
and the database of  the Japan Medical Abstract Society 
since 1994 with the keywords “Clostridium perfringens” 
and “septicemia”. We found 20 cases from PubMed and 
104 cases from Japan, including our case[4-33,35,37-39]. Fifty 
patients survived, and 74 (59.7%) died. 

Several possible triggers of  septicemia were found, 
including transarterial embolization of  the hepatoma[24,25], 
laparoscopic cholecystectomy[26], amniocentesis[27], abor-
tion[28], and intravenous line insertion[29]. Among the 
30 cases with liver abscess, 27 (90%) died. Six cases 
underwent drainage or laparotomy, and three cases sur-
vived[8,30,38]. Among the cases with liver abscess, 23 were 
male and 7 were female; the average patient age was 67.2 
years old, and 11 patients had diabetes. The median time 
from the first visit to death was only 6 h. Of  the 74 de-
ceased patients, 45 were male, 21 were female, and 8 were 
not described; the average age was 64.4 years old. Malig-
nancy was the frequent underlying disease. Twenty-one 
cases had a history of  cancer in the liver, stomach, colon, 
rectum, gall bladder, biliary duct, lung, pancreas, breast, 
prostate gland, or uterus. Ten cases had a history of  leu-
kemia, lymphoma, or multiple myeloma. One patient had 
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  Parameter Admission On CPR Reference 
range

  White blood count (× 109/L)       24.8        26.0 3.5 to 9.7
  Red blood count (× 109/L)     4980 1280 4380 to 5770
  Hemoglobin (g/L) 135     81 136 to 183
  Hematocrit (%)      40.7        10.8 40.4 to 51.9
  Platelet (× 109/L) 243      118.8 140 to 379
  Total bilirubin (mg/dL)        6.4            6.96 0.2 to 1.0
  Aspartate aminotransferase (IU/L) 140    261   8 to 38
  Alanine aminotransferase (IU/L) 102    297   4 to 44
  Alkaline phosphatase (IU/L) 178    469 104 to 338
  γ-glutamyl transpeptidase (IU/L)    25        6 18 to 66
  Lactate dehydrogenase (IU/L) 373 6203 106 to 211
  Creatine phosphokinase (IU/L) 220    438 104 to 338
  Urea (mg/dL)      24.2        30.5   8 to 20
  Creatinine (mg/dL)           1.33            1.12 0.63 to 1.03
  Sodium (mEq/L) 134    128 137 to 147
  Potassium (mEq/L)        4.6         11.8 3.5 to 5.0
  Chloride (mEq/L)   95      84   98 to 108
  C-reactive protein (mg/dL)      23.2         16.0 < 0.30
  International normalized ratio          1.05         19.4 0.9 to 1.1
  APTT (s)    38       122.9 25 to 40
  Glucose (mg/dL) 226    129

Table 1  Serial laboratory results for a patient with liver 
abscess and massive hemolysis caused by Clostridium 
perfringens

APTT: Activated partial thromboplastin time.



a brain tumor. In total, 30 cases (45.5%) had a history 
of  at least one malignancy. Eighteen cases had diabetes. 
Four cases had liver cirrhosis. The median time from 
the first visit to death was 6 h. Only 12 cases (16%) had 
undergone emergency surgery or drainage. Two patients 
received hemoperfusion using a polymyxin B-immobilized 
fiber column (PMX-F), which is used for endotoxin 
removal in Japan and Italy[40-43]. Of  the 50 surviving pa-
tients, 16 were male, 19 were female, and 15 were not de-
scribed. Females were significantly more prevalent among 
the survivors, according to a chi-squared test (P < 0.05). 
Three cases involved children younger than 2 years old. 
The average age, excluding these small children, was 58.1 
years. The age difference between the deceased and sur-
viving cases was not significant (P = 0.06), according to a 
two-sided t test. Six cases had leukemia, and 4 cases had 
cancer or sarcoma in the breast, uterus, or colon. Six cas-
es had diabetes. Twenty (40%) cases underwent surgical 
removal or drainage of  the focus. A significantly greater 
number of  patients who underwent surgical debridement 
or drainage were among the surviving cases compared 
with the deceased cases, according to a chi-squared test 
(P < 0.01). PMX-F was used to treat 5 patients who sur-
vived. Among the surviving cases, steroid pulse therapy 
was performed in three cases and hyperbaric oxygen 
therapy was used in two.

DISCUSSION
Although our case did not show anemia at first presen-
tation and the size of  liver abscess was only 4 cm, he 
developed massive fatal hemolysis within hours, despite 
prompt treatment with the appropriate antibiotics. There-
fore, CP septicemia should be considered in diabetic 
patients with fever and gas-forming lesions before any 
signs of  hemolysis develop. van Bunderen et al[3] reported 
40 cases of  septicemia caused by CP during 1990-2010. 
Over half  of  the patients presented elevated bilirubin 
and LDH as well as anemia, suggesting hemolysis at the 

initial presentation. Thirty-two of  the patients died, and 
the median time from admission to death was only 8 h. We 
searched new cases of  CP septicemia. We found 124 cases, 
and the death rate was 59.7%. However, in cases with 
liver abscess, the death rate reached 90%, and the median 
time from visit to death was only 6 h.　Rapid hemolysis 
caused by α-toxin is an important complication that makes 
rescue difficult. The α-toxin of  CP has two domains plus 
one loop in between. The N-terminal domain has phos-
pholipase activity, and the C-terminal domain is hydro-
phobic and inserts into the cell membrane[44]. The loop 
between the N- and C-terminal domains contains a GM1 
ganglioside-binding motif  and specifically binds GM1a. In 
addition to disrupting membrane phospholipids through 
phospholipase activity, α-toxin binding to GM1a trig-
gers specific signaling events. The activation of  a tyrosine 
kinase A (TrkA)[45] and the subsequent signaling cascade 
results in the release of  tumor necrosis factor-α (TNF-α). 
The catastrophic events induced by α-toxin may in part be 
mediated by TNF-α signaling. The hemolysis of  erythro-
cytes by α-toxin is reported to depend on Ca2+ uptake[46].

The key for patient rescue is how fast the appropri-
ate treatments are started. At the moment of  suspicion 
of  CP septicemia, aggressive early management is war-
ranted, including timely debridement or drainage of  the 
focus, initiation of  appropriate antibiotics without delay, 
and support of  circulation with a multi-disciplinary team 
approach. For the early diagnosis of  CP infection, Gram 
staining of  the blood or drainage sample is important 
because CP is a Gram-positive rod, whereas K. pneumoniae 
and E. coli are Gram negative. The early signs of  hemoly-
sis are elevated LDH, total or indirect bilirubin, and po-
tassium. Spherocytes or ghost cells may be found in the 
blood film. A red color of  the serum or hemoglobinuria 
may be observed after substantial hemolysis.

Shah et al[47] reported 25 cases of  CP septicemia in a 
tertiary-care hospital from 1995 to 2003 and classified 
antibiotics into two categories. The antibiotics classified 
as “appropriate” for Clostridium were penicillin G, clinda-
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Figure 1  The serum color before and after massive he-
molysis and computed tomography imaging results. A: 
Patient serum color on admission showed no sign of hemolysis 
(white arrow); B: The dark red color of serum taken during 
CPR indicated massive hemolysis (black arrow); C: Computed 
tomography of the abdomen revealed a 4 cm × 2 cm abscess 
with gas formation in the right lobe (white arrow).
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1998 to 2001; 79% of  them were caused by CP, and the 
overall mortality was 29%. Younger age and gastroin-
testinal/hepatobiliary tract disease were associated with 
mortality. However, considering the very high mortality 
rate associated with liver abscess, excluding CP infection 
is important. 

In summary, CP septicemia is a rare but well-known 
cause of  massive intravascular hemolysis. Diabetic pa-
tients with fever and gas-forming lesions should always 
be suspected of  having CP septicemia.

COMMENTS
Case characteristics
A 65-year-old male with treated diabetes presented with fever and upper ab-
dominal pain.
Clinical diagnosis
Hypertension, hyperventilation, coldness of limbs, scleral jaundice, and tender-
ness of the abdomen were noted.
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Obstructive jaundice complicated with biliary infection and liver abscess.
Laboratory findings
White blood cell 24.8 × 109/L, hemoglobin 135 g/L, total bilirubin 6.4 mg/dL, 
aspartate aminotransferase 140 IU/L, alanine aminotransferase 178 IU/L, cre-
atinine 1.33 mg/dL, C-reactive protein 23.2 mg/dL, and glucose 226 mg/dL.
Imaging diagnosis
Computed tomography imaging showed a gas-forming mass (4 cm × 2 cm) in 
the right lobe of the liver.
Pathological diagnosis
Autopsy was not allowed, and blood culture revealed infection by Clostridium 
perfringens.
Treatment
Injection of ceftriaxone was started immediately.
Related reports
The reported mortality rate of Clostridium perfringens septicemia varies widely 
from 26.9% to 80%; however, 90% of patients with liver abscess have been 
reported to die.
Term explanation
Polymyxin B-immobilized fiber column (PMX-F) is hemoperfusion with a poly-
myxin B-immobilized fiber column used to remove endotoxin in cases of septic 
shock.
Experiences and lessons
Although rare, fatal liver abscess patients should be under close observation, 
and the possibility of Clostridium perfringens infection should be considered 
upon the slightest sign of hemolysis.
Peer review
This is a well written manuscript in which the author gave detailed description of 
death report associated with CP infection.
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Abstract
Blood glucose control in intensive care unit (ICU) pa-
tients, addressed to actively maintain blood glucose 
concentration within defined thresholds, is based on 
two major therapeutic interventions: to supply an ad-
equate calories load and, when necessary, to continu-
ously infuse insulin titrated to patients needs: intensive 
insulin therapy (IIT). Short acting insulin analogues 
(SAIA) have been synthesized to improve the chronic 
treatment of patients with diabetes but, because of the 
pharmacokinetic characteristics that include shorter on-
set and off-set, they can be effectively used also in ICU 
patients and have the potential to be associated with a 
more limited risk of inducing episodes of iatrogenic hy-
poglycemia. Medical therapies carry an intrinsic risk for 
collateral effects; this can be more harmful in patients 
with unstable clinical conditions like ICU patients. To 
minimize these risks, the use of short acting drugs in 
ICU patients have gained a progressively larger room in 
ICU and now pharmaceutical companies and research-
ers design drugs dedicated to this subset of medical 
practice. In this article we report the rationale of using 
short acting drugs in ICU patients (i.e. , sedation and 
treatment of arterial hypertension) and we also de-
scribe SAIA and their therapeutic use in ICU with the 
potential to minimize iatrogenic hypoglycemia related 

to IIT. The pharmacodynamic and pharmachokinetic 
characteristics of SAIA will be also discussed.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Insulin analogues; Short acting drugs; In-
tensive insulin therapy; Glycemia management; Inten-
sive care

Core tip: In this article we report the rationale of using 
short acting drugs in intensive care unit (ICU) patients 
(i.e. , sedation and treatment of arterial hypertension) 
and we also describe short acting insulin analogues 
(SAIA) and their pharmacokinetic (PK) and pharma-
codynamic profile. SAIA have been synthesized to 
improve the chronic treatment of patients with diabe-
tes but, because of the PK characteristics that include 
shorter onset and offset, they can be effectively used 
also in ICU patients and have the potential to be asso-
ciated with a more limited risk of inducing episodes of 
iatrogenic hypoglycemia.

Bilotta F, Guerra C, Badenes R, Lolli S, Rosa G. Short acting 
insulin analogues in intensive care unit patients. World J Dia-
betes 2014; 5(3): 230-234  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i3/230.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i3.230

INTRODUCTION
Blood glucose control in intensive care unit (ICU) pa-
tients, addressed to actively maintain blood glucose 
concentration (BGC) within defined thresholds, is based 
on two major therapeutic interventions: to supply an ad-
equate calories load and, when necessary, to continuously 
infuse insulin titrated to patients needs: intensive insulin 
therapy (IIT)[1,2]. Among the most relevant risks related 
to active management of  BGC is the induction of  iatro-
genic hypoglycemia[1-4]. Endogenous insulin is a 51 amino 
acids protein formed by 2 chains (A and B chains) linked 
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by disulphide bridges: “A” chain comprises 21 amino ac-
ids and has an N-terminal helix linked to an anti-parallel 
C-terminal helix with a critical role in the tertiary struc-
ture; “B” chain comprises 30 amino acids and has a cen-
tral helical segment where it joins the N- and C-terminal 
helices of  the A chain[5]. Physiologically, insulin is released 
by the pancreas with a characteristic biphasic profile as 
response to BGC increase: a rapid phase, due to exocy-
tosis of  “ready pool” granules and associated with the 
release of  5%-10% of  the insulin contained in the beta 
cells, is activated within few minutes after an increase in 
BGC and terminates rapidly; a slow phase, due to the re-
lease of  “reserve pool” granules, and lasts longer. Beside 
BGC driven insulin release, there is also a continuous 
insulin secretion throughout the day, not associated with 
meals that accounts for about 50% of  the whole daily en-
dogenous insulin secretion[5].

As underlined by several authors and by the patho-
physiology of  chetoacidosis in diabetic patients and in 
ICU patients, to supply an adequate calories load is a 
preliminary step for optimal management of  BGC and 
should be established before insulin infusion is instituted, 
even in patients with high BGC values[1,2,6].

Currently the standard of  care for the treatment of  
hyperglycemia in ICU patients is to establish intensive in-
sulin therapy by infusing rapid (R) insulin but-and this is 
among the most important drawback of  this therapeutic 
approach-it induces some additional risk of  iatrogenic 
hypoglycemia[1]. Various strategies have been used to 
minimize the risk of  inducing hypoglycemia when IIT is 
instituted, these include: to adopt a tighter BGC monitor-
ing protocol, to target a narrower BGC range, to increase 
the supplied calories load[1,7-10].

In 2001, a large randomized controlled trial in criti-
cally ill surgical patients demonstrated that tight glucose 
control (defined as the restoration and maintenance of  
BCG at or below 6.1 ± 2.1 mmol/L) by IIT was associat-
ed with a decreased mortality and rate of  complications[6]. 
Currently, other authors demonstrated that the incidence 
of  moderate hypoglycemia was significantly increased 
when target was BGC < 6.7 mmol/L and BGC < 8.3 
mmol/L may be a reasonable target for clinical practice[8]. 
Widening the target-range BGC might reduce the risk of  
hypoglycemia and hyperglycemia developing, thus limit-
ing neuronal damage[2]. In the subgroup of  neurocritical 
care patients both hypoglycemia and hyperglycemia may 
cause extended neuronal damage and potentially long-
lasting brain injury[1,2]. These patients must therefore 
undergo strict glycemia monitoring and abnormal blood 
glucose values should be immediately corrected[1].

In this article we report the rationale of  using short 
acting drugs in ICU patients (i.e., sedation and treatment 
of  arterial hypertension) and we also describe short act-
ing insulin analogues (SAIA) and their therapeutic use in 
ICU with the potential to minimize iatrogenic hypoglyce-
mia related to IIT. The pharmacodynamic and pharma-
chokinetic characteristics of  SAIA will be discussed.

RATIONALE FOR USING SHORT ACTING 
DRUGS IN CRITICAL CARE PATIENTS
In pharmaceutical research there is a trend to provide 
short acting drugs-also called “soft” drugs-to treat critical-
ly ill patients and the unstable phase of  acute illness and 
for anesthesia/sedation and perioperative management[11]. 
The use of  short acting vasodilators (i.e., nitroglycerin) 
in the acute phase of  acute myocardial infarction, acute 
episodes of  arterial hypertension in the treatment of  the 
acute phase of  heart failure and pulmonary edema is the 
paradigm of  the need for short acting drugs in the treat-
ment of  acute illness[12-14]. Recent antihypertensive drugs 
(as esmolol) and short acting opioids (as remifentanil) are 
prototypical “soft” drugs designed to fulfill the need for 
limiting drug-related residual effects when infusion is dis-
continued[11]. These molecules frequently rely on plasmatic 
metabolism by non specific bloodstream esterases. A 
common molecular paradigm to reduce pharmacokinetic 
(PK) characteristics (including onset and half  life) is to 
modify the parent compound into a “soft” drug by adding 
an ester linkage, thus, increasing its susceptibility to blood-
stream metabolism[11]. In anesthesia new drugs have been 
developed (midazolam, propofol, desflurane) modifying 
existing compounds in order to shorten anesthesia induc-
tion and awakening times[11,15].

Antihypertensive
Sympathetic stimulation contributes to cerebral hyper-
emia during emergence from craniotomy. B-blocking 
drugs may be considered to limit hemodynamic changes 
of  neurosurgical recovery. Esmolol blunted the increase 
in cerebral blood flow during recovery from neurosurgi-
cal anesthesia[16]. Hypertensive emergencies generally 
require intravenous treatment to achieve a rapid decrease 
in blood pressure and patients admitted to these care set-
tings may be sicker than patients treated with oral agents. 
The first choice antihypertensive drug varied by treat-
ment location. In ICU nitroglycerine was by far the most 
widely used (60%); in the emergency department furose-
mide was used in 34% of  patients and nitroglycerine was 
used in 27%; perioperatively urapidil was used in 34% 
of  patients and clonidine was used in 28%[12]. While ni-
troglycerine should be used as an adjunctive therapy, the 
high rates of  use in the European registry for Studying 
the Treatment of  Acute hypertension population likely 
reflect familiarity with its use, together with its ease of  
administration, titration and rapid reversibility[12].

Analgesia-sedation 
Analgesics and sedatives are commonly prescribed in 
ICU environment for patient comfort; however, recent 
studies have shown that these medications can them-
selves lead to adverse patient outcomes[17]. The use of  
short acting medications is associated with improved out-
comes such as decreased time of  mechanical ventilation 
and ICU length of  stay[17]. Using a short-acting opioid 
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with short context-sensitive half-life in an analgesia based 
sedation protocol may significantly decrease the duration 
of  mechanical ventilation and the ICU length of  stay 
even though not significantly in long term sedation, while 
improving the achievement of  sedation goals despite a 
lower requirement for adjunctive hypnotic agents, with 
no additional costs. The context-sensitive half-life of  
remifentanil is significantly shorter than those of  other 
opiates. In the remifentanil group, the decreases in need 
for mechanical ventilation and ICU length of  stay were 
associated with a significant decrease in the use of  add-
on hypnotics, suggesting that remifentanil was faster ad-
justable to the required sedation level[18].

Regarding sedation, Clinical Practice Guidelines[19] 
recommend the use of  propofol-rapid onset of  sedation 
(highly lipid soluble and quickly crosses the blood-brain 
barrier), and rapid offset (quickly redistribution with high 
hepatic and extrahepatic clearance)-and dexmedetomi-
dine (selective α2-receptor agonist rapidly redistributed 
into peripheral tissues) over benzodiazepines fot ICU 
sedation.

Inhaled anesthetics (short acting drugs) may be ideal 
sedatives for the ICU[20] because of  their pulmonary 
elimination, limited amount of  metabolism, bronchodi-
lation and cardioprotective effects[21]. However, inhaled 
anesthetics are not widely used for sedation in the ICU, 
since most modern ICU ventilators do not readily accom-
modate an anesthetic vaporizer. The new anesthetic con-
serving device, AnaConDa (Sedana Medical™, Sweden) 
uses a syringe pump to deliver inhaled anesthetic in liquid 
form into the breathing circuit of  a standard ICU ventila-
tor. Belda et al[22] adapted a classical PK model to obtain 
an infusion scheme for the clinical use of  the AnaConDa 
with sevoflurane. Another short acting drug in ICU.

SHORT ACTING INSULIN ANALOGUES
SAIA were developed to improve postprandial glycemic 
control and to minimize BGC excursions in diabetic pa-
tients[23-25]. Due to a PK profile closer to that of  endog-
enous insulin, when physiologically released by the trigger 
of  meals, SAIA have a faster rise in plasma concentration, 
higher peak concentration and shorter subcutaneous resi-
dence time than unmodified human insulin[26]. The clinical 
use of  SAIA is associated with lower postprandial peak 
BGC as compared with rapid insulin and doesn’t increase 
the incidence of  hypoglycemia[23-25].

Currently, 3 SAIA are available for clinical use: lyspro 
insulin (Humalog®; Eli Lilly, Indianapolis, IN, United 
States), aspart insulin (Novolog®/NovoRapid®; Novo 
Nordisk, Bagsvaerd, Denmark) and glulisine insulin (Api-
dra®; Sanofi, Paris, France).

Lyspro insulin, first SAIA that became available for 
clinical use in 1996, is characterized by a change in the 
amino acid sequence of  insulin B chain-proline in posi-
tion 28 and lysine in position 29 are inverted [Lys(B28), 
Pro(B29)]-that results in a reduced self  association[27-29]. 
These changes result in an insulin molecule with a re-
duced capacity for self-association[27,28]. Proline at posi-

tion B28 near the COOH-terminal of  the B-chain of  
human insulin is important for the proper configuration 
of  a p-sheet involving residues B24 through B26. Two 
insulin molecules align along this surface in an antiparallel 
orientation to form a nonpolar dimer. At this point, the 
nonpolar dimer interacts with zinc to form a hexamer, 
the basis of  Regular insulin formulations. The sequence 
of  lysine at B28 and proline at B29 can be found in 
insulin-like growth factor Ⅰ (IGF-Ⅰ) and is thought to 
be responsible for its lower degree of  self-association in 
comparison to insulin. Accordingly, IGF-Ⅰ is the model 
upon which the structure of  lyspro is based[27-29]. As a 
result of  these modifications, lyspro exhibits monomeric 
behavior in solution, binds zinc less avidly, and displays 
faster pharmacodynamic action than human Regular in-
sulin (Humulin R®). These findings are consistent with 
the rapid absorption expected from monomeric insulin 
injected subcutaneously[27,29].

Aspart insulin, second SAIA to achieve regulatory 
approval in 2000, is characterized by a change in the 
amino acid sequence of  insulin B chain-proline in posi-
tion 28 is substituted with the charged aspartic acid-this 
reduces self-association of  the molecule, allowing only 
weak dimeric and hexameric formation and thereby rapid 
dissociation after subcutaneous injection[27,29,30]. Receptor 
interaction kinetic studies have shown that aspart insulin 
behaves essentially like human insulin with regard to both 
the insulin and IGF-Ⅰ receptor with a similar potency 
to that of  human insulin[29,30]. Aspart insulin is absorbed 
twice as fast as regular insulin and reaches a maximum 
concentration in plasma of  approximately twice that of  
human insulin. Its activity profile is very similar to that of  
human insulin[29,30].

Glulysin insulin, third SAIA to receive regulatory ap-
proval, is characterized by a change in the amino acid 
sequence of  insulin B chain-lysine and glutamic acid are 
substituted for asparagine and glycine in positions 3 and 
29 respectively-it is thought that this latter substitution 
is predominantly responsible for its PK properties[27,29,31]. 
Studies indicate that glulisine has a very comparable PK 
and pharmacodynamic profile to insulin lispro[27,29,31]. 
Overall, the bioequivalence of  glulisine is similar to that 
of  human insulin[27,29,31].

DISCUSSION
In this review article we originally report the use of  SAIA 
in critical care patients. The pharmacodynamic and phar-
macokinetic characteristics of  SAIA available for clinical 
use are described and the rationale for using shorter act-
ing insulin is presented.

Altered pharmacology in the intensive care unit
Critically ill patients, not infrequently present alterations 
of  physiological parameters that determine the suc-
cess/failure of  therapeutic interventions as well as the 
final outcome[32]. Most common and complex syndromes 
occurring in ICU affect drug absorption, disposition, 
metabolism and elimination[33]. Pharmacological man-
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agement of  ICU patients requires consideration of  the 
unique PKs associated with these clinical conditions and 
the likely occurrence of  drug interaction[34]. Rational 
adjustment in drug choice and dosing contributes to the 
appropriateness of  treatment of  those patients[35].

Adverse drug events in intensive care unit
Intensive care medicine provides great benefits to pa-
tients with life-threatening acute illness or trauma. These 
benefits are a consequence of  advancements in diagnos-
tic testing, technological interventions and pharmacother-
apy. Simultaneously, the complexity and intensity of  care 
required by ICU patients is also associated with greater 
risks resulting from care[36]. Adverse drug events (ADEs), 
including adverse reactions and medication errors, are 
harmful and occur with alarming frequency in critically ill 
patients[37].

Patients in ICUs may be at especially high risk of  an 
ADE for the following reasons[38,39]: (1) The complexity 
of  diseases; (2) Pathophysiological status characterized 
by a wide range of  changes in organ dysfunction (altering 
PKs); (3) The high number of  medications administered; 
(4) Administration of  complex drug regimens; and (5) 
Increased length of  hospital stay. Hypoglycemia and hy-
perglycemia are in the 10 top ADE in the ICU[40].

Drug-drug interactions in ICU 
Drug-drug interactions (DDIs) in the ICU are associated 
with longer ICU stays, ADE and end-organ damage[41]. 
Critically ill patients are at an increased risk of  ADE 
related to DDIs because of  the large number of  medica-
tions that they receive and PK characteristics of  the ad-
ministered medications[42].

The 10 most frequently ocurring DDI in the ICU 
include insuline/metoprolol (moderate severity rating, 
β-blockers may enhance the hypoglycemic effects of  in-
sulin) and insulin/prednisone (moderate severity rating, 
corticosteroids may diminish the hypoglycaemic effect of  
antidiabetic agents)[43].

In this context, medical therapies carry an intrinsic 
risk for collateral effects; this can be more harmful in 
patients with unstable clinical conditions like ICU pa-
tients[44]. To minimize these risks, the use of  short acting 
drugs in ICU patients have gained a progressively larger 
room in ICU and now pharmaceutical companies and re-
searchers design drugs dedicated to this subset of  medical 
practice[11]. SAIA have been synthesized to improve the 
chronic treatment of  patients with diabetes but, because 
of  the PK characteristics that include shorter onset and 
offset, they can be effectively used also in ICU patients 
and have the potential to be associated with a more limit-
ed risk of  inducing episodes of  iatrogenic hypoglycemia. 
Clinical studies addressed to assess the dosing profile and 
the safety of  SAIA when used-as intravenous continuous 
therapy- to accomplish IIT in ICU patients.
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Abstract
Diabetes mellitus (diabetes) is a devastating disease 
that affects millions of people globally and causes a 
myriad of complications that lead to both patient mor-
bidity and mortality. Currently available therapies, 
including insulin injection and beta cell replacement 
through either pancreas or pancreatic islet transplanta-
tion, are limited by the availability of organs. Stem cells 
provide an alternative treatment option for beta cell 
replacement through selective differentiation of stem 
cells into cells that recognize glucose and produce and 
secrete insulin. Embryonic stem cells, albeit pluripotent, 
face a number of challenges, including ethical and politi-
cal concerns and potential teratoma formation. Adipose 
tissue represents an alternative source of multipotent 
mesenchymal stem cells, which can be obtained us-
ing a relatively simple, non-invasive, and inexpensive 
method. Similarly to other adult mesenchymal stem 
cells, adipose-derived stem cells (ADSCs) are capable 
of differentiating into insulin-producing cells. They are 
also capable of vasculogenesis and angiogenesis, which 
facilitate engraftment of donor pancreatic islets when 
co-transplanted. Additionally, anti-inflammatory and 
immunomodulatory effects of ADSCs can protect donor 

islets during the early phase of transplantation and sub-
sequently improve engraftment of donor islets into the 
recipient organ. Although ADSC-therapy is still in its in-
fancy, the potential benefits of ADSCs are far reaching.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus; Diabetes; Insulin; Stem 
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Core tip: Adipose-derived stem cells (ADSCs) can pro-
vide a promising cell therapy for treatment of diabetes 
and associated complications. ADSCs’ multipotency al-
lows differentiation into insulin-producing β-cells. Anti-
inflammatory and immunomodulatory capabilities of AD-
SCs can facilitate enhanced engraftment of transplanted 
donor islets. Although many challenges lie ahead for 
ADSC-based cell therapies are used clinically to treat 
diabetic hyperglycemia, ADSCs represent a novel treat-
ment option to many diabetic patients worldwide.

Paek HJ, Kim C, Williams SK. Adipose stem cell-based regen-
erative medicine for reversal of diabetic hyperglycemia. World J 
Diabetes 2014; 5(3): 235-243  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i3/235.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i3.235

INTRODUCTION
Diabetes mellitus (diabetes) is a chronic disease, affecting 
over 347 million people globally[1-8]. Due to diets with high 
fat and high sugar accompanied by sedentary lifestyles, the 
global epidemic of  diabetes is expected to rise. Further-
more, the economic burden imposed by diabetes and its 
complications easily exceeds $100 billion annually[9].

The most common treatment for type 1 and some 
type 2 diabetes is insulin therapy. Intensive insulin treat-
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ment can maintain normoglycemia, and control acute 
hypoglycemia as well as long-term complications[10,11], 
however, fails to achieve normal hemoglobin A1c levels. 
Advancements in commercial glucose monitors, insulin 
formulation, and insulin pumps are also providing im-
proved control of  diabetic symptoms[10,12]. However, even 
with widely available insulin therapy, the life expectancy 
of  diabetic patients is approximately 12 years shorter on 
average than that of  non-diabetic individuals[9,13]. Ad-
ditionally, those with child-onset type 1 diabetes have a 
significantly increased risk of  retinopathy, nephropathy, 
neuropathy, and various cardio-, cerebro- and peripheral 
vascular diseases[5,6,9,10,14-21].

More definitive treatment options for type 1 diabetes, 
which is characterized by autoimmune destruction of  
insulin-producing β-cells in pancreatic islets of  Langer-
hans, are pancreas or pancreatic islet transplantation[22-26]. 
Over a century ago, pancreas extracts were the first trans-
plants tested in diabetic patients[27]. Modern-day pancreas 
and pancreatic islet transplantations are relatively effective 
in normalizing fasting and postprandial blood glucose 
levels, hemoglobin A1c levels as well as restoring insulin 
and C-peptide production[9]. However, the severe shortage 
of  available donors limit the widespread adoption of  this 
form of  therapy[10,28], and thus, appear to only benefit less 
than 0.5% of  type 1 diabetics[28]. Additionally, life-long 
requirement of  immunosuppression and adverse effects 
caused by immunosuppressants, such as nephrotoxicity, 
hypertension, and hypersensitivity to infection, often leads 
to patient non-compliance[10,28,29]. Lastly, reoccurring auto-
immunity against pancreatic β-cells continues to be a ma-
jor challenge associated with transplantation therapies[9].

Recent advancements in stem cell isolation and differ-
entiation methodologies have resulted in production of  
cell lines with the capability to synthesize, package, and 
subsequently secrete insulin in response to glucose. Al-
beit pluripotent, embryonic stem (ES) cell differentiation 
often leads to the development of  multiple cell lineages, 
resulting in a mixed population of  cells along with target 
cells[9]. Definitive endodermal markers are also absent in 
ES cells, and undifferentiated teratogenic ES cells may 
pose serious risks as well[9,28]. Due to ethical and legal 
concerns and risks of  teratoma formation, embryonic 
stem cells face austere challenges in becoming a clinically 
viable solution although cellular isolation device may 
provide a method to implant embryonic stem cells with 
insulin producing capabilities[30].

Multipotent progenitor cells are now known to be 
localized in many different organs[31]. Although multipo-
tent, adult stem cells provide a relatively reliable source of  
mesenchymal stem cells for cell-based therapies. Recently, 
adult stem cells from bone marrow, umbilical cord blood, 
pancreatic duct, periosteum, and adipose tissue have 
shown a capacity to differentiate into insulin-producing 
cells[32-43].

Among the many tissue sources for adult stem cells, 
adipose tissue is particularly attractive based on its stem 
cell abundance and ease of  tissue procurement through 
a minimally invasive and relatively inexpensive proce-

dure[44-48]. Mesenchymal stem cells from bone marrow 
and adipose tissue share similar cell populations, along 
with cell characteristics[49-51]. Adipose tissue has also 
been reported to contain a significantly greater number 
of  mesenchymal stem cells than bone marrow per unit 
weight[6,52-54]. In this review, adipose-derived stem cells 
will be specifically examined for their utility in developing 
treatments for diabetes and diabetic complications.

Direct differentiation into pancreatic hormone producing 
cells
Kodama et al[55] proposed four mechanisms of  pancreatic 
regeneration: (1) replication of  mature β-cells; (2) differ-
entiation of  stem cells; (3) cell fusion; and (4) transdiffer-
entiation of  one stem cell type to another. Most studies 
on cell-based therapies focus on direct differentiation of  
stem cells into insulin-producing β-cells.

Mesenchymal stem cells derived from adipose tissue 
exhibit unique characteristics well suited for transdif-
ferentiation into a pancreatic endocrine lineage, which 
is of  the endodermal origin. Freshly isolated adipose-
derived stem cells (ADSCs) also expressed stem cell fac-
tor (SCF) and its receptor (c-kit)[44,56], but not ABCG2, 
nestin, Thy-1, and Isl-1. Lin et al[6] reported that ADSCs 
constitutively expressed glucagon and NeuroD as well 
as insulin. The proliferative ADSCs, on the other hand, 
expressed the transcription factor Isl-1 and Pax-6, which 
are critical transcription factors required for β cell de-
velopment[44,56], as a previous study showed that forma-
tion of  insulin- and glucagon-positive cells were found 
inhibited during development of  Isl-1 knock-out mice[57]. 
Therefore, the intrinsic expression of  Isl-1 in ADSCs 
provides a considerable advantage for generating insulin-
producing cells. Proliferative ADSCs also express stem 
cell markers nestin, ABCG2, SCF, and Thy-1. Nestin 
was originally thought to be a neural stem/progenitor 
cell marker but was recently reported to be a multipo-
tent pancreatic stem cell marker as well, detected within 
pancreatic islets[16,58]. ABCG2 has also shown to be as-
sociated with pancreatic islet-derived precursor cells and 
neural stem cells[10,59]. Kojima et al[60] demonstrated that 
extrapancreatic insulin-producing cells, which were posi-
tive for proinsulin and insulin, were present in the adi-
pose tissue of  streptozotocin-induced diabetic rodents. 
Based on these intrinsic characteristics, ADSCs can serve 
as a promising source of  pancreatic hormone-producing 
cells following differentiation.

Derivation of  insulin producing cells from stem cells 
is made possible through the understanding of  key steps 
during embryonic development and the coordinated ac-
tivation of  intracellular transcription factors. Similar to 
embryonic stem cells[61-65], derivation of  insulin-producing 
cells from ADSC is executed through a progressive multi-
stage differentiation protocol: starting from definitive 
endoderm into pancreatic endoderm and finally into 
pancreatic hormone-expressing cell[2,44,56,66-68]. outlines the 
culture conditions used by various groups to stimulate 
ADSCs into an insulin-producing cell lineage.

All of  the differentiated cell populations reported 
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were stained positively for dithizone, indicating the pres-
ence of  endogenous insulin. Furthermore, these stem 
cell-derived insulin producing cells exhibited abundant 
expression of  Pdx-1, C-peptide, insulin, glucagon, so-
matostain, pancreatic polypeptide, and Glut-2[2,44,56]. En-
hanced expression of  Isl-1, Pax-4, Ngn-3, Ipf-1,  Pax-6, 
Nkx-2.2, Nkx-6.1, FoxA2, GLP-1 receptor, and glucoki-
nase was also confirmed in differentiated cells, implicat-
ing pancreatic lineage[2,16,44,56,69]. Interestingly, transcrip-
tion of  leptin and adiponectin was also well maintained 
in differentiated cells, still demonstrating adipose tissue 
characteristics. Additionally, expression of  visfatin, 
which activates insulin receptors and has a blood glucose 
lowering effect similar to insulin, was significantly upreg-
ulated following differentiation into an insulin producing 
phenotype[44].

Following transplantation of  human ADSC-derived 
insulin producing cells into streptozotocin-induced dia-
betic mice, a significant level of  human C-peptide was 
detected in subjects, demonstrating successful insulin 
production in vivo. Although these differentiated cells 
demonstrated a capacity to lower blood glucose levels, 
the insulin secretion level compared to mature pancreatic 
islets was significantly lower, and they failed to restore 
normoglycemia in STZ-induced diabetic mice[6,44,67].

The ability of  ADSCs to differentiate into insulin-
producing cells akin to mature native pancreatic cells also 
remains under question. Dor et al[70] used a genetic lineage 
tracing method to determine whether pancreatic stem 
cells contribute to pancreatic β-cell replenishment during 
adult life. In this study, they demonstrated that terminally 
differentiated mature β-cells maintain their prolifera-
tive capacity and serve as a major source of  new β-cells 
in mice, contrary to previously reported studies[71-74]. 
Although this study directly rejected pluripotent adult 
stem cells’ role in replacing β-cells in vivo following partial 
pancreatectomy, it does not directly refute the utility of  
insulin-producing cells, differentiated from adult stem 
cells in vitro, as a potential new treatment option for dia-
betics as demonstrated by a number of  studies previously 
reported[71-74].

Engraftment of transplanted islets
Success of  pancreatic islet transplantation depends on 
successful engraftment into the recipient liver where do-
nor islets are transfused through the hepatic portal vein. 
However, apoptosis, inflammation and ischemia frequent-
ly interfere with successful engraftment[75], and therefore 
two or more pancreata are frequently required to procure 
sufficient numbers of  islets for each transplant. This is 
a major limitation to the widespread use of  this therapy, 
considering the acute shortage of  donor organs. Due to 
unavoidable destruction of  native islet structures, includ-
ing intraislet vasculature, during isolation, islet engraft-
ment could take up to several weeks[76,77]. Further deterio-
ration of  islets and β-cell death can occur due to ischemia 
and inflammation, ultimately leading to graft failure[78,79]. 
A mean to improve engraftment of  transplanted islets 

will lead to a reduction of  the required number of  pan-
creata and more positive clinical outcomes.

Adipose-derived stem cells have been reported to 
possess inherent regenerative angiogenic potential and 
anti-apoptoic capability through their secretion of  tro-
phic factors[80-82]. ADSCs also have anti-inflammatory 
and immunomodulatory properties, including suppres-
sion of  T-cell proliferation[82-88]. Therefore, ADSCs can 
potentially allow improved engraftment of  transplanted 
islets with enhanced vascularization and suppression of  
inflammation.

ohmura et al[79] tested hybrid islet transplantation by 
co-transplanting allogeneic mouse pancreatic islets along 
with autologous ADSC under the kidney capsule of  re-
cipient mice and demonstrated that autologous murine 
ADSCs were able to significantly prolong allogeneic islet 
survival and achieve normoglycemia for up to 14 d. Al-
logeneic islets alone could not survive under the kidney 
capsule for longer than 2 d, and normoglycemia was 
never achieved. The islets following hybrid transplanta-
tion showed well-preserved islet architecture and were 
surrounded by endothelial cells compared to islet grafts 
transplanted without ADSCs, suggesting vascularization 
had been improved. Infiltration by CD4+/CD8+ T cells 
and CD68+ macrophages were also markedly reduced, 
suggesting successful anti-inflammation and immuno-
modulation by ADSCs and prolonged graft islet retention 
when ADSCs were co-transplanted with donor islets[79]. 
Although it is still uncertain whether this hybrid trans-
plantation method will work in a clinical model, which 
utilizes the hepatic portal vein route for islet transplanta-
tion rather than the kidney capsule, the potentially enor-
mous benefits of  ADSCs in islet engraftment is clearly 
promising.

Veriter et al[89] also showed the utility of  ADSCs by 
co-encapsulating xenogeneic porcine islets with autolo-
gous primate ADSCs in semipermeable capsules and 
transplanting them in primates. Compared to islets encap-
sulated alone, improved oxygenation, graft survival and 
function, and glycated hemoglobin correction, as well as 
greater vasculogenesis were observed in co-encapsulated 
implants, consequently reducing the cellular stress imme-
diately following transplantation[89].

It is widely accepted that a significantly large num-
ber of  pancreatic islets are lost during the first 10-14 d 
following infusion into human liver through the portal 
vein[90], even in the presence of  immunosuppression. 
Furthermore, 60% of  transplanted islets were reported 
to die during this period even in syngeneic animal mod-
els[91]. An ability to prevent such early death immediately 
following transplantation, as demonstrated by ohmura 
et al[79], Veriter et al[89] and Cavallari et al[92], using ADSCs, 
may prove to be enormously beneficial to the successful 
engraftment of  transplanted islets.

Challenges and opportunities for ADSCs in diabetes
Several uncertain factors in stem cell-based cell therapy 
for diabetes still remain: (1) the absence of  gold-standard, 
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sulin secretion will fail due to a lack of  innervation[106,107]. 
These structural challenges are critical to overcome for 
stem cell-derived β-cells or islets to be clinically viable in 
the future.

Nearly all of  the insulin-producing cells derived 
from adult stem cells co-express glucagon, somatostatin, 
pancreatic polypeptide along with insulin, all of  which 
are characteristic of  immature pancreatic islets of  Lang-
erhans. This suggests an incomplete differentiation of  
stem cells, and could be one of  the main reasons why 
these cells were unable to achieve normoglycemia in dia-
betic animals. Further differentiation and maturation are 
required to achieve a more mature substitute capable of  
functioning similarly to a normal pancreas. However, oth-
ers also argue that terminally differentiated mature β-cells 
might not be required for treatment of  diabetes. Konno 
et al[108] and Kajiyama et al[109] reported that transplantation 
of  adipose-derived stem cells overexpressing Pdx-1 ame-
liorated hyperglycemia and improved survival rate. Fur-
thermore, ecto-pancreatic transplantation enabled nor-
malization of  hemoglobin A1c levels and subsequently 
attenuated or partially reversed nerve and kidney damages 
caused by diabetes[10,110,111]. Achieving normal hemoglobin 
A1c levels may also prove to be critical for future stem 
cell-based therapies.

Diabetic conditions present a uniquely detrimental en-
vironment to various cell types. The proliferative capabil-
ity of  mesenchymal stem cells isolated from adipose tis-
sue of  streptozotocin-induced type 1 and 2 diabetic rats 
was reported to be compromised[112]. When ADSCs were 
exposed to high glucose concentration in vitro prior to 
implantation into a hindlimb ischemia model, their pro-
liferative capacity and ability to reverse hindlimb ischemia 
were significantly and irreversibly reduced, compared to 
ADSCs cultured at a normal glucose concentration[112]. In 
type 1 diabetic patients, however, autoimmunity did not 
seem to fundamentally influence the regenerative capabil-
ity of  islets and their progenitor cells[34,113]. Hess et al[114] 
demonstrated that bone marrow derived stem cells initi-
ated pancreatic regeneration and reversed hyperglycemia 
by stimulating proliferation of  the recipient’s innate pan-
creatic progenitor cells and β-cells. It is highly possible 
the same mechanism can be utilized for ADSCs, and 
therefore, warrants further investigation as well. Improv-
ing the relative regenerative capacity of  pancreatic islets 
using ADSCs would potentially benefit diabetic patients.

Transplantation of  islet-like cells or pancreas-like tis-
sues generated from stem cells in vitro may be accompa-
nied by graft rejection, graft hypertrophy with subsequent 
chronic hypoglycemia, and potentially malignant transfor-
mation. The intrinsic immunomodulatory capabilities of  
ADSCs have shown to enhance engraftment of  multiple 
types of  tissues when co-transplanted[115-117]. Vanikar et 
al[115] reported that transfusion of  ADSCs may reduce the 
need of  immunosuppression during renal transplanta-
tions. The ability to reduce the required dosage of  im-
munosuppressants would subsequently minimize compli-
cations caused by these agents and improve the clinical 

reproducible differentiation protocol for generating 
insulin-producing cells from adult stem cells; (2) an exact 
dosage of  stem cell-derived β-cells to reverse diabetic 
conditions and feasibility of  producing such dosage in 
vitro; (3) proliferative capacity and maintenance of  differ-
entiated insulin-producing cells; (4) sensitivity to counter-
regulatory hormones; (5) potential adverse effects of  
undifferentiated adult stem cells; and (6) potential in vivo 
migration of  differentiated cells following implanta-
tion[8,15]. Consensus of  investigators on the criteria for 
transdifferentiation and plasticity to avoid confusion with 
cell fusion, contaminating stem cell populations, and to 
prevent over interpretation of  the data, is necessary[8,93-95].

A major challenge also lies in imitating the physiologi-
cal mechanism of  insulin secretion. Insulin secretion oc-
curs through complex regulatory systems, involving mul-
tiple hormonal feedback mechanisms and neurological 
stimulation, within the islet of  Langerhans. For instance, 
insulin secretion by β-cells can inhibit glucagon secre-
tion by α-cells[96]. Somatostatin secreted by δ-cells also 
regulates insulin secretion by β-cell[97]. In order to mimic 
normal or near normal metabolic control, differentiated 
cells must be able to interact with existing pancreatic en-
docrine cells. Another mechanism of  controlling insulin 
release is through the secretion of  incretin hormones, 
including glucose-dependent insulinotropic peptide and 
glucagon-like peptide 1[10,98-101]. These intestinal tract sig-
naling hormones have shown to be responsible for up 
to 70% of  glucose-induced postprandial insulin secre-
tion[99,100]. An ability to respond to these signals is also a 
critical characteristic that stem cell-derived β-cells need 
to possess in order to closely mimic physiological pro-
cesses. Lastly, insulin secretion is a pulsatile rather than a 
constant release, and such pulsatility may be significant 
in its action[102]. Stem cells differentiated into a pancreatic 
lineage that simply produces insulin, even in a glucose-
responsive manner, without capability to accommodate 
these complex interactions, will unavoidably fail to re-
verse diabetic conditions.

The general architecture of  natural pancreatic islets 
also poses another challenge for the efficacy of  dif-
ferentiated insulin-producing cells. Individual islets are 
highly vascularized and innervated. The endothelial cells 
comprising the microvasculatures of  pancreatic islets of  
Langerhans may even be glucose responsive[10,103]. Stem 
cell-derived islet-like structures thus far have not shown 
to contain any intrinsic vascularity within them when de-
rived in vitro, and therefore rely on the circulation external 
to the cell aggregates. The distance between β-cells and 
capillaries can potentially affect the kinetics of  insulin re-
lease, and non-physiological integration of  islet-like struc-
tures to circulation may in turn affect the engraftment, 
survival, and efficacy of  implants[104]. Insulin release by 
β-cells is affected not only by increased blood glucose 
level but also by nervous control (cephalic phase) mostly 
through cholinergic neurons during meal ingestion[10,105]. 
Even with whole organ or pancreatic islet transplanta-
tion, complete restoration of  the cephalic phase of  in-
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outcome of  islet transplantation.
Approximately 90% of  people with diabetes are suf-

fering from type 2 diabetes. However, only a few cases of  
stem cell-based research were performed recently[118-122] to 
develop a therapeutic option for type 2 diabetes, as type 
1 diabetes has stood as the forefront. Deriving insulin-
secreting β-cells from stem cells for treatment of  type 
1 diabetes seems relatively straightforward compared to 
developing an alternative treatment option for type 2 
diabetes. Further research on the complex disease mecha-
nisms of  type 2 diabetes in association with the potential 
utility of  stem cells may improve the quality of  life for 
hundreds of  millions patients.

CONCLUSION
It is now undeniable that the utility of  ADSCs in the 
treatment of  diabetes is extremely promising. The abun-
dance of  available source tissue, high frequency and mul-
tipotency of  adipose-derived mesenchymal stem cells, its 
trophic and regenerative capabilities, all serve as valuable 
solutions to the ever-increasing diabetic population and 
associated health crises observed around the world. Un-
derstanding of  ADSCs and the development of  ADSC-
based treatments for diabetes are still considered to be in 
their infancy, and numerous challenges and opportuni-
ties still lie ahead. The exact mechanism of  generating 
insulin-producing cells from ADSCs as well as further 
maturation of  those cells into functional pancreatic islets 
still needs to be further explored. Sustainability of  differ-
entiated insulin-producing cells is still under investigation. 
Autoimmune attack on β-cells, which is a fundamental 
disease mechanism of  type 1 diabetes, has not been 
completely resolved and can make any future cell-based 
therapy unfeasible.

Current therapies for diabetes ranging from insulin 
injection to pancreatic islet transplantation are not truly 
the best options for patients. Stem cells that are theoreti-
cally limitless in numbers and multipotent will provide 
hopes and viable therapies for millions of  diabetic pa-
tients in the future. However, if  all stem cell-based thera-
pies only eliminate the need for glucose monitoring and 
insulin injection for convenience and modestly improve 
diabetic symptoms, it would not justify the adoption 
of  these therapies in the future. Therefore, stem cell-
based therapies must be able to provide fundamentally 
improved multifaceted metabolic controls and concomi-
tantly improve long-term prognosis in diabetic patients to 
be widely accepted as a clinically viable therapy.
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Abstract
In healthy people, balance between glucose production 
and its utilization is precisely controlled. When circulat-
ing glucose reaches a critical threshold level, pancreatic 
β cells secrete insulin that has two major actions: to 
lower circulating glucose levels by facilitating its uptake 
mainly into skeletal muscle while inhibiting its produc-
tion by the liver. Interestingly, dietary triglycerides are 
the main source of fatty acids to fulfill energy needs of 
oxidative tissues. Normally, the unconsumed fraction 
of excess of fatty acids is stored in lipid droplets that 
are localized in adipocytes to provide energy during 
fasting periods. Thus, adipose tissue acts as a trap for 
fatty acid excess liberated from plasma triglycerides. 
When the buffering action of adipose tissue to store 
fatty acids is impaired, fatty acids that build up in other 

tissues are metabolized as sphingolipid derivatives such 
as ceramides. Several studies suggest that ceramides 
are among the most active lipid second messengers to 
inhibit the insulin signaling pathway and this review de-
scribes the major role played by ceramide accumulation 
in the development of insulin resistance of peripherals 
tissues through the targeting of specific proteins of the 
insulin signaling pathway.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Muscle and liver represent major sites for 
insulin-mediated glucose metabolism. The ability of 
insulin to promote its peripheral action is reduced sig-
nificantly by excess of saturated fat that stimulates in-
tracellular production of second-messenger lipids such 
as ceramide. Studies suggest that ceramide could be 
important contributors to lipotoxicity, as the inhibition 
of early steps its biosynthesis pathway has large ben-
eficial effects in rodent models of obesity and diabetes. 
In this review, we describe mechanisms by which ce-
ramide acts on insulin-sensitive tissues and we propose 
that targeting this lipid family could be an interesting 
approach to fight diabetes.
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both developed and developing countries. Indeed, there 
is a dramatic increasing incidence of  diabetes in most of  
these countries. In 2005, 217 million people worldwide 
had diabetes, and the World Health Organisation predicts 
that it will increase to 366 million in 2030[1]. In 2050, 
33% of  the population of  the United States will suffer 
from diabetes[2]. One consequence is that over the years, 
diabetes has become life-threatening, with increased risk 
of  cardiovascular diseases, retinopathy, kidney failure, 
and nerve and artery damages[3]. Diabetes is one of  the 
first causes of  haemodialysis, of  blindness and of  non-
traumatic amputation of  the legs. Another consequence 
is the increasing of  health spending due to diabetes. For 
example, in the United States, diabetes costing is actually 
evaluated to more than $174 billion per year and it’s ex-
pected to increase in subsequent years[2].

PATHOPHYSIOLOGY OF TYPE 2 
DIABETES
There are different types of  diabetes: (1) type 1 diabetes 
or maturity onset diabetes of  the young associated to im-
pairment of  insulin production; and (2) type 2 diabetes, 
corresponding to 85%-90% of  all diabetes, with both 
insulin secretion defects and peripheral insulin resistance. 
Type 2 diabetes is associated with obesity and although 
genetic factors play a role in the pathophysiology of  this 
disease, other environmental factors such as diet and 
physical activity both play large roles. Several mechanisms 
have been proposed to explain both insulin resistance and 
insulin secretion defects observed in type 2 diabetes. Li-
potoxicity, glucotoxicity, low grad systemic inflammation, 
oxidative stress and endoplasmic reticulum stress[4-6] cor-
respond to different mechanisms that converge on a com-
mon pathway to induce insulin resistance. In this review 
we will focus on cellular lipid toxicity, i.e., lipotoxicity.

LIPOTOXICITY
Systemic lipid imbalances are common in metabolic 
syndrome, in pre-diabetes and in type 2 diabetes and it 
is now clear that lipotoxicity can induce glucose dysregu-
lation and participate to the pathophysiology of  type 2 
diabetes[7-9]. For example, prospective epidemiological 
studies performed in population with low or high risk to 
develop type 2 diabetes have shown that high free fatty 
acid (FFA) concentrations in plasma are associated with 
the risk of  incident type 2 diabetes[10-12].

A major characteristic of  type 2 diabetes is the loss of  
the ability of  pancreatic β cells to increase insulin secre-
tion to maintain normoglycemia in the face of  insulin 
resistance[13]. Because of  genetic predisposition, β cells 
could be unable to compensate the insulin resistance in-
duced by FFA, but chronic exposition of  β cells to high 
levels of  FFA could equally explain defects in β cell func-
tion and decreased mass observed in type 2 diabetes. In-
deed, in vitro studies have shown that FFA are associated 
with a decrease of  insulin expression, synthesis and pro-

cessing[14-16]. Another mechanism that can explain insulin 
secretion dysfunction in type 2 diabetes is that high FFA 
levels in islets induce β cell death[17]. In this review, we 
will not deal with this topic but we will rather focus our 
message on lipid-induced peripheral insulin resistance. To 
more information on lipotoxicity in pancreatic beta cells, 
confer to the excellent review of  Boslem et al[18].

Since skeletal muscle constitutes 40% of  human body 
mass and is quantitatively the most important tissue in 
regard to insulin-stimulated glucose disposal, it is con-
sidered the main cellular target in the development of  
insulin resistance. Thus, most of  the studies investigating 
mechanisms of  lipotoxicity induced insulin resistance 
were mostly performed in muscle tissue.

In 1963, Randle et al[19] have postulated that a com-
petition between glucose and fatty acids for their oxida-
tion and uptake is responsible for the onset of  insulin 
resistance in muscle and adipose tissue. In vivo studies 
performed in both rodents and humans confirmed such 
insulin resistance obtained after lipid infusion but they 
also demonstrated that, in opposite to Randle’s hypothe-
sis, insulin resistance induced by lipids was not secondary 
to decreased glycolysis[20]. Indeed, lipids act directly on in-
sulin signaling, resulting in an inhibition of  the transloca-
tion of  the insulin sensitive glucose transporter GLUT4 
to the plasma membrane in response to the hormone, 
with subsequent reduced glucose uptake[21-25]. In human, 
data clearly show a strong correlation between lipid intra-
muscular content and insulin resistance[26-28] and a cross-
sectional analysis performed in young, normal weight and 
non-diabetic adults reveals that a better correlation exists 
between muscle insulin sensitivity, assessed by the hy-
perinsulinaemic-euglycaemic clamp technique, and intra-
myocellular lipid content rather than with circulating lipid 
levels, body mass index, fasting blood glucose and age[29].

Liver is another important organ implicated in insulin 
resistance and, like in muscle indirect data also suggest an 
inverse relationship between lipid liver content and insu-
lin sensibility. Indeed, ectopic lipid accumulation in the 
liver, termed nonalcoholic fatty liver disease (NAFLD), 
is associated with insulin resistance. Interestingly, in an 
animal model of  lipodystrophy with steatosis, but with-
out increased visceral fat, lipid liver content is associated 
with insulin resistance. Insulin resistance is reversed after 
reduction of  steatosis with liver transplantation or re-
combinant leptin treatment[30]. Such association between 
steatosis and insulin resistance has also been observed in 
patients with severe lipodystrophy with equally a good 
response to recombinant leptin therapy[31]. Similarly, he-
patic specific overexpression of  lipoprotein lipase leads 
specifically to hepatic steatosis and hepatic insulin resis-
tance[32,33]. During type 2 diabetes, reduction of  steatosis 
by caloric restriction, or gastric bypass, is associated with 
increased insulin sensibility independently of  visceral fat 
mass reduction[34,35].

Strong evidence exists between ectopic lipid accumu-
lation and insulin resistance. However, in some cases, like 
in the “athlete’s paradox”, there is a lack of  correlation 
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between ectopic lipid accumulation and peripheral insulin 
resistance. Indeed, athletes display high insulin sensitivity 
but also present increased levels of  intramuscular fatty 
acids[36]. Thus, it seems that ectopic accumulation of  fatty 
acids in non-adipose tissues can only be used as markers 
for the onset of  insulin resistance but cannot be consid-
ered as a direct cause. Even if  they do not seem to be di-
rectly involved, fatty acids contribute to insulin resistance 
as they lead to the synthesis of  many lipid derivative in-
termediates such as diacylglycerol (DAG) and ceramide.

Over the years, studies have provided conclusive 
proof  that ceramide plays a key role in the progression of  
insulin resistance in insulin sensitive tissues, targeting and 
inhibiting specific actors of  the insulin signaling pathway.

INSULIN SIGNALING PATHWAY AND 
METABOLIC FUNCTIONS
Insulin is a polypeptide hormone whose major physi-
ological role is to control glucose homeostasis by stimu-
lating glucose uptake into insulin sensitive tissues (skeletal 
muscle and adipose tissue) and by inhibiting glucose out-
put from the liver[37]. Insulin consists of  two polypeptide 
chains, a α chain of  21 amino acid residues linked by two 
disulfide bonds to a β chain of  30 amino acid residues. 
Insulin is produced in the β cells of  the Islets of  Lang-
erhans found in the pancreas. It is initially synthesized 
as an immature single polypeptide chain of  110 amino 
acids called pre-proinsulin. Pre-proinsulin contains an 
N-terminal domain of  24 amino acids that acts to direct 
the polypeptide to the endoplasmic reticulum during 
translation. This domain is later cleaved to yield proin-
sulin. Proinsulin is transported to the secretory vesicles 
of  the pancreatic β cells, where a proteolytic enzyme 
removes the central 35 residues of  the peptide (termed 
the C-peptide) that connect α and β chains to produce 
insulin. Insulin is then released into the blood stream by 
exocytosis. Secretion of  the hormone is regulated by the 
glucose abundance in the plasma.

In skeletal muscle, insulin promotes the uptake of  
glucose and its conversion into glycogen. This tissue is an 
important target of  the hormone, representing the major 
site of  glucose disposal in vivo[37] and is reported to medi-
ate 70%-80% of  whole body insulin-stimulated glucose 
transport[38]. In the liver, insulin stimulates the synthesis 
of  glycogen while inhibiting gluconeogenesis and glyco-
genolysis, halting hepatic glucose output. In adipocytes, 
insulin promotes the uptake of  glucose and its conver-
sion into a glycerophosphate of  which can be esterified 
by 3 fatty acids, allowing to form triglycerides for long 
term storage, whereas simultaneously inhibiting the lipo-
lytic pathway[39]. In addition to glucose metabolism, insu-
lin also regulates many other cellular processes including 
amino acid transport, lipogenesis, protein synthesis and 
mitogenesis.

The first step in the activation of  the insulin signaling 
pathway is the binding of  insulin with its membrane re-
ceptor, the insulin receptor (IR). IR is a heterotetrameric 

complex of  two subunits: α-subunit, and β-subunit that 
possess a transmembrane domain and an intracellular 
part. Binding of  insulin to α subunits of  IR induces a 
rapid conformational change in the receptor. This in 
turn stimulates the intrinsic tyrosine kinase activity of  
the β subunit resulting in trans-autophosphorylation of  
tyrosine residues in the intracellular region of  the β sub-
units[40]. As a result of  this autophosphorylation, the IR 
becomes catalytically active and promotes the tyrosine 
phosphorylation of  a number of  cellular proteins includ-
ing the IR Substrate (IRS) proteins.

IRS proteins are major physiological targets of  the ac-
tivated insulin receptor kinase. Six different IRS isoforms 
have been identified so far[41]. In skeletal muscle and adi-
pose tissue, IRS1 is the isoform that mediate insulin sig-
naling. In the liver, however, IRS2 is the one that drives 
insulin metabolic functions. In the pancreas, IRS2 is an 
important regulator of  cell growth and regeneration[41]. 
Studies have also shown that both IRS3 and IRS4 can be 
activated in response to insulin and insulin-like growth 
factor 1 (IGF1)[42] and that IRS3 can mediate insulin sig-
naling in adipocytes[42]. Mice lacking either IRS3 or IRS4, 
however, display no major phenotype, suggesting that 
neither isoform plays a direct role in controlling glucose 
metabolism[43,44] but may rather act as negative regulators 
of  the IGF1 signaling pathway by suppressing the func-
tion of  other IRS isoforms[45].

One key molecule that is activated by the IRSs in 
response to insulin is phosphoinositide-3-kinase (PI3K). 
PI3K is a lipid kinase, which phosphorylates the D3 po-
sition of  the inositol ring within inositol lipids resulting 
in the generation of  3-phosphoinositides (e.g., PI-3P, PI-
3,4P2, and PI-3,4,5P3). Eight mammalian isoforms of  
PI3K exist and they are grouped into three classes on the 
basis of  their substrate specificity and structure: class Ⅰ, 
class Ⅱ, and class Ⅲ. Only class Ⅰ can phosphorylate 
phosphatidylinositol, 4, 5-bisphosphate (PIP2)[46]. Follow-
ing PI3K activation, PIP3 is generated from the substrate 
PIP2. PIP3 binds a protein displaying a PH domain and 
called the 3-phosphoinositide-dependent protein Kinase 
1 (PDK1). Activated-PDK1 triggers downstream targets 
such as protein kinase B (PKB/Akt)[47].

PKB/Akt also called Akt is the third central node 
activated by insulin. It plays a crucial role in mediating 
signaling effects on metabolism, cell growth and cell 
cycle[48,49]. PKB/Akt has three isoforms: PKBα/Akt1, 
ubiquitously expressed, PKBβ/Akt2 mostly present in in-
sulin responsive tissues (liver, adipose tissue and muscle), 
and PKBγ/Akt3 predominant in the brain. PKBβ/Akt2 
is the isoform implicated in the regulation of  glucose 
metabolism since neither PKBα Akt1 nor PKBγ/Akt3 
ablation affects glucose metabolism[50].

PKB/Akt is activated through PI3K-produced PIP3 
which binds its PH domain. Then, PKB/Akt is recruited 
to the plasma membrane where it is activated by phos-
phorylation on two critical sites: threonine 308 (T308) in 
the activation loop and serine 473 (S473) in the hydropho-
bic motif[51]. PDK1 phosphorylates PKB/Akt on T308. 
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disease[70,71]. Elevated DAG content and activation of  
protein kinase C (PKC)ε has been associated with hepatic 
insulin resistance and the involvement of  this “lipid-
activated pathway” has been validated through the use of  
antisense oligonucleotide against PKCε in rats. Knocking 
down PKCε expression in liver protected rats from lipid-
induced hepatic insulin resistance, despite increase in he-
patic lipid content[72].

Several studies have decrypted the mechanism by 
which DAG-activated PKCs inhibit insulin signaling in 
liver. They show that IRS proteins are likely to be PKC’s 
preferential targets. DAG-activated PKCs inhibit IRSs ac-
tivity through their phosphorylation on several serine res-
idues, preventing consequently insulin activation of  IRSs 
through their phosphorylation on tyrosine residues[73-75].

In muscle, however, data are contradictory. Itani et 
al[76] were the first to point out the positive association 
between DAG content and muscle insulin resistance by 
comparing a group of  subject receiving a lipid infusion 
to a control group. Lipid infusion resulted in a 3-fold 
increase in total DAG content in muscle, and reduced 
insulin sensitivity. Straczkowski et al[77] observed that total 
muscle DAG concentrations were higher in obese com-
pared to lean controls and lean offspring type 2 diabetics, 
and this increased DAG content was inversely related to 
insulin sensitivity. Other studies have also confirmed this 
correlation[78,79].

However, the association between DAG and muscle 
insulin resistance is still questioned. Indeed, Vistisen et 
al[80] performed muscle biopsies during glucose clamps 
and they observed a reduction in insulin sensitivity af-
ter lipid infusion, without any changes in muscle DAG 
content. These results were confirmed by Anastasiou et 
al[81] that compared obese type 2 diabetic patients to non-
diabetics subjects and found no difference in muscle 
DAG content between the groups. Similarly, Perreault et 
al[82] compared insulin resistant obese patients to glucose 
tolerant obese patients and again found no difference in 
DAG content between the groups. Even more intriguing, 
Amati el al[83] observed a two-fold increase in DAG con-
tent in insulin sensitive human muscle biopsies compared 
to insulin resistant human muscle biopsies. More recently, 
the same group showed no difference in muscle DAG 
content between lean subjects compared to obese insulin 
resistance patients[84].

Altogether, and in opposite to liver, it seems that 
DAG does not appear to be a crucial player in the onset 
of  insulin resistance in muscle, and maybe more investi-
gations are needed to really be able to conclude.

CERAMIDE AND INSULIN RESISTANCE
Ceramide biosynthesis
One of  the main sphingolipid that has been demonstrat-
ed to play a crucial role in insulin resistance is ceramide. 
During obesity, ceramide is mainly generated from long 
chain fatty acyl-CoAs[85,86], and has been shown to be tox-
ic lipid when it accumulates in tissues during obesity[87-89].

The kinase that phosphorylates the S473 site is the com-
plex mammalian target of  rapamycin complex 2, a regula-
tor of  cell growth and proliferation[52].

PKB/Akt is highly activated within minutes following 
cell exposure to insulin to mediate the metabolic effects 
of  the hormone[49,53].

Indeed, principle roles of  PKB/Akt in insulin sensi-
tive tissues are to: (1) Stimulate glucose uptake in muscle 
and adipose tissue; (2) Trigger glucose storage as glyco-
gen in muscle and in the liver; (3) Stimulate the conver-
sion of  glucose excess into lipids in the liver; (4) Induce 
protein synthesis in muscle; (5) Inhibit glycogen break-
down in both muscle and liver; (6) Suppress liberation 
of  free fatty acids from adipose tissue; (7) Inhibit de novo 
production of  glucose in the liver; and (8) Impede pro-
tein breakdown in muscle (Figure 1).

Considering the crucial role PKB/Akt plays in medi-
ating insulin metabolic actions in cells, impairing PKB/
Akt activity represents the best way to compromise the 
whole system.

LIPID SECOND MESSENGER AND LOSS 
OF INSULIN SENSITIVITY
In pathological situations such as obesity and type 2 
diabetes that are characterized by insulin resistance, ec-
topic fatty acid accumulation is increased due to reduced 
mitochondrial fatty acid oxidation and to enhanced fatty 
acid uptake[54-57]. This increased fat content inversely cor-
relates with insulin sensitivity in skeletal muscle, liver and 
adipocytes[58-61].

Interestingly and depending on the degree of  satura-
tion, free fatty acid may exert different effects on insulin 
signaling. Studies have demonstrated that saturated fatty 
acids such as palmitate (16:0) and stearate (18:0) impair 
insulin sensitivity in muscle[62,63], whereas mono-unsatu-
rated fatty acids or poly-unsaturated fatty acids have no 
effect or even enhance insulin action[64-66]. Although the 
exact reasons behind these differences are unclear, stud-
ies have suggested that unsaturated fatty acids may be 
preferentially targeted for triglyceride synthesis and stor-
age, whilst saturated fatty acids may be used for synthesis 
of  critical lipid intermediates such as DAG and ceramide. 
These two lipid second messengers have been demon-
strated to mediate deleterious actions of  saturated fatty 
acids on insulin signaling.

DAG AND INSULIN RESISTANCE
DAG is a glyceride consisting of  two fatty acid chains 
covalently bonded to a glycerol molecule. DAG, interme-
diate of  both triglyceride and phospholipid metabolism, 
is an important second messenger involved in intracellular 
signaling[67].

DAG has been shown to accumulate in insulin resis-
tant liver[68,69] and studies have shown that intra-hepatic 
DAG is an important mediator of  hepatic insulin re-
sistance in obese people with nonalcoholic fatty liver 
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Ceramide is a bioactive sphingolipid that has been 
implicated in mediating or regulating many cellular pro-
cesses, including cell cycle arrest, proliferation, apoptosis, 
senescence, and stress responses. Ceramide plays also an 
important role in cell membrane structure[90].

Formation of  ceramide can be induced by different 
stimuli such as tumor necrosis factor-α, heat stress, oxida-
tive stress, ionizing radiation, and chemotherapeutics[91].

Multiple metabolic pathways converge to ceramide 
(Figure 2): (1) The de novo synthesis pathway from satu-
rated fatty acids that takes place in the endoplasmic 
reticulum; (2) The sphingomyelinase pathway that uses 
sphingomyelinase to break down sphingomyelin in the 
cell membrane to release ceramide; and (3) The salvage 
pathway in lysosomes that occurs through breakdown of  
complex sphingolipids to give sphingosine, which is then 
rescued by reacylation to form ceramide.

In time of  fatty acid plethora, the de novo ceramide bio-
synthesis pathway is the pathway that is likely to be most 
harnessed to synthesize ceramide. It occurs in the leaflet 
membrane of  the endoplasmic reticulum where ceramide 
is synthesized through a series of  reactions[92,93]. De novo 
synthesis of  ceramide begins with the condensation of  
palmitate and serine to form 3-keto-dihydrosphingosine 
(Figure 2). This reaction is catalyzed by serine palmitoyl 
transferase (SPT) and is the rate-limiting step of  the 
pathway. In turn, 3-keto-dihydrosphingosine is reduced 
to dihydrosphingosine, which is then followed by acyla-
tion by ceramide synthases (CerS) to produce dihydrocer-
amide. In mammals, six CerS isoforms are expressed and 
are called CerS 1 to 6. They carry out the same chemical 
reaction, but display distinct specificities for the acyl-CoA 
chain length they use for N-acylation[94]. Thus, CerS iso-
forms are responsible for the fatty acid composition of  
ceramide. Interestingly, several studies have shown distinct 
cellular functions for ceramides with different N-acyl 
chain length[95,96]. The final reaction to produce ceramide 
is catalysed by dihydroceramide desaturase.

Inverse relationship between ceramide content and 
insulin sensitivity
Studies in animal and models: One of  the early stud-
ies that analyzed ceramide content in obese Zucker fa/fa 
rats (rats homozygous for truncated, non-functional 
leptin receptor) was Turinsky et al[97] in 1990. The authors 
found that these rats present an increase in ceramide 
content in both muscle and liver. Increased ceramide 
content was also detected in insulin resistant models of  
rodents, as in ob/ob mice, mice fed on high fat diet, and 
in intra-lipid infused mice[85,98,99]. Altogether these reports 
illustrate the inverse relationship between ceramide and 
insulin sensitivity in rodent muscle. This association was 
also confirmed in vitro in cultured C2C12 and L6 myo-
tubes, as well as in adipocytes[99-101]. Exposing cultured 
muscle cells to saturated fatty acids (like palmitate) at-
tenuates insulin activation of  glycogen synthesis and 
glucose transport concomitantly with increasing intracel-
lular ceramide amounts[63,99]. Additionally, incubation of  
muscle cells and adipocytes with analogues of  ceramide 
mimics the inhibitory effects of  FFAs on insulin signal-
ing and suppresses insulin-stimulated glycogen synthesis 
and glucose transport[100,101].

Studies in human subjects: In accordance with data 
obtained in rodents, studies in human subjects also sup-
port the inverse relationship between ceramide accumula-
tion and insulin sensitivity. It has been shown that under 
basal conditions, total amount of  ceramide in skeletal 
muscle is increased in obese subjects compared to lean 
ones[83,84,87]. Another study performed in human skeletal 
muscle of  lean normoglycemic subjects revealed again an 
inverse relationship between muscle ceramide accumula-
tion and insulin sensitivity[102]. The same authors show 
in another study a ceramide accumulation in muscle of  
type 2 diabetic patient offsprings compared to muscle of  
control subjects[77]. Furthermore, the group of  Goodpas-
ter demonstrated that physical exercise reduces ceramide 
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content in obese and insulin resistant subjects, and this 
was correlated with improved insulin sensitivity[83,103]. Like 
in muscle, accumulation of  ceramide content in human 
adipocytes has also been demonstrated to be related to 
insulin resistance[104,105].

Altogether, these studies prove a solid association 
between insulin resistance and an increase in ceramide 
content in both muscle and adipocytes.

Unlike in muscle and adipose cells, a role of  ceramide 
in the onset of  hepatic insulin resistance is more debated. 
Indeed, some studies see no ceramide accumulation in 
fatty liver[68,70,71], making improbable these lipids as me-
diators hepatic insulin resistance. This is in contradic-
tion with another study showing increases in hamster 
hepatic ceramide levels in response to lipopolysaccharide 
administration[106]. In addition, Longato et al[107] saw a dys-
regulated ceramide metabolism in high fat diet-induced 
hepatic steatosis.

Interestingly, and in opposite to muscle and adipose 
tissue, ceramide cannot accumulate in the liver. Indeed, 
very recently, Watt et al[108] have shown that lipid infusion 
in healthy subjects resulted in a rapid hepatic secretion 
of  ceramide in the circulation, primarily within very low-
density lipoprotein[109,110], thereby protecting the liver from 
the deleterious effects of  their intracellular accumulation. 
It would be interesting, however, to assess whether lipid-
induced ceramide secretion is affected in fatty liver (ste-
atosis).

Altogether, if  ceramide does not seem to accumulate 

in liver during lipotoxic conditions, its secretion into the 
circulation could be deleterious for other peripheral tis-
sues such as pancreatic β cells and muscle cells.

Implication of ceramide in the progression of insulin 
resistance
Two methods were used to validate the implication of  
ceramide in impaired insulin sensibility: the first one 
was to inhibit ceramide production, and the second was 
to enhance ceramide metabolism towards less harmful 
sphingolipid species.

Inhibition of  ceramide production improves insulin 
sensitivity: One method used to demonstrate the role 
of  ceramide in the onset of  insulin resistance was to 
inhibit ceramide biosynthesis. The most commonly stud-
ied molecular target involved in suppressing ceramide 
production is the enzyme SPT, enzyme that catalyzes 
the initial rate-limiting step in de novo ceramide synthesis 
(Figure 3)[90]. Several potent inhibitors of  SPT have been 
documented, although the most widely used is myriocin, 
a naturally occurring fungal metabolite isolated from 
Myriococcum albomyces[111]. In studies carried out in 
vivo, administration of  myriocin was found to attenuate 
PKB/Akt inhibition in response to lipid infusion or high-
fat feeding, as well as improving glucose tolerance and 
peripheral insulin sensitivity in obese ob/ob mice and 
Zucker Diabetic Fatty rats[112-114]. As expected, these ben-
eficial effects of  myriocin were associated with reduced 
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levels of  ceramide and were reproduced when alternative 
inhibitors of  de novo ceramide synthesis such as L-cyclo-
serine (which also inhibits SPT) and Fenretinide (dihydro-
ceramide synthase inhibitor) were used[63,115].

Studies performed in vitro in myotubes confirmed 
what was observed in vivo. They demonstrated that acute 
inhibition of  SPT using myriocin ameliorates the loss in 
insulin-stimulated PKB/Akt activation in cultured L6 or 
C2C12 myotubes caused by palmitate-driven ceramide 
synthesis[62,63].

Interestingly, a very recent study shows that inhibi-
tion of  the de novo synthesis of  ceramide using myriocin 
reduces hepatic lipid accumulation in liver of  rats with 
NAFLD[116]. This inhibition of  ceramide biosynthesis is 
accompanied with decreased in both DAG and triglycer-
ide contents, resulting in amelioration of  hepatic insulin 
resistance and improvement of  glucose homeostasis[116].

Stimulation of  ceramide conversion into less harm-
ful sphingolipids improves insulin sensibility: The 
degradation of  ceramide is initiated by the action of  
ceramidase that produces sphingosine, which is then 
phosphorylated to sphingosine-1-phosphate (S1P) by 
sphingosine kinase[117]. S1P is the final metabolic prod-
uct of  sphingolipid degradation and can function as an 

intracellular second messenger or in an autocrine and/or 
paracrine manner to activate and signal through S1P re-
ceptors[118]. Interestingly, S1P itself  opposes the effects of  
ceramide on intracellular signaling. S1P has been shown 
to ameliorate insulin-stimulated glucose uptake, possibly 
through the activation of  PKB/Akt[118-121]. Therefore, 
studies have aimed at finding ways to enhance ceramide 
metabolism into S1P in muscle in order to restore their 
insulin sensitivity. Bruce et al[122] used transgenic mice 
overexpressing sphingosine kinase. They show that high 
fat fed transgenic mice display improved insulin sensitiv-
ity compared to control mice. In addition, they used a 
drug called FTY720 which inhibits ceramide synthase 
activity and decrease ceramide accumulation in skeletal 
muscle[123]. As expected, they saw an improvement of  
insulin sensitivity. FTY720 prevented muscle ceramide 
accumulation in high fat fed mice and subsequently im-
proved glucose homeostasis[124]. Other studies show that 
overexpression of  ceramidase (converting ceramide to 
sphingosine) protects from lipid-induced muscle insulin 
resistance in C2C12 myotubes[125].

Altogether, these results demonstrate that preventing 
the aberrant accumulation of  ceramide by promoting its 
metabolism into sphingosine and sphingosine-derivatives 
might restore normal insulin sensitivity and glucose me-
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tabolism in models of  insulin resistance.

Ceramide inhibitory effect on the insulin signaling 
pathway
Several studies have reported that ceramide may attenuate 
insulin-stimulated glucose transport and glycogen synthe-
sis by antagonizing early events in insulin signaling such 
as activation of  IRS-1[126] and possibly PI3K[127]. How-
ever, these results are controversial, as several groups 
reported no defects in the activation of  these molecules 
upon challenging cells with ceramide[100,101]. In contrast, a 
number of  groups suggested that PKB/Akt is the target 
of  ceramide, and that inhibition of  this kinase may ac-
count for reduced glucose transport and apoptosis ob-
served in ceramide treated cells[99-101,128]. Consistent with 
this, defects in PKB/Akt activation have been noted in a 
variety of  ceramide-treated cell types, including 3T3-L1 
adipocytes[101], foetal brown adipocytes[129], L6 rat and 
C2C12 mouse skeletal muscle[99,100], A75R5 smooth muscle 
cells[130], and MCF7 breast cancer cells[131].

Furthermore, the inhibition of  PKB/Akt by ceramide 
is not limited to experiments using exogenously sup-
plied lipids. The hormonal activation of  PKB/Akt is also 
blunted in muscle cells treated with free fatty acids in a 
manner which is dependent on the intracellular conver-
sion of  palmitate to ceramide[62,63,99]. Taken together these 
results suggest that ability of  ceramide to impair PKB/
Akt activity may be an important determinant of  insulin 
sensitivity.

A key issue is the mechanism by which ceramide 
inhibits PKB/Akt activity. Depending on the cell enrich-
ment in caveolin-enriched domain[132], ceramide inhib-
its the insulin-stimulated PKB/Akt either through the 
protein phosphatase 2A (PP2A), or via the atypical PKC 
(aPKC) pathway (Figure 3).

PP2A depended inhibition of  insulin-induced acti-
vation of  PKB/Akt: PP2A is a cytoplasmic serine/thre-
onine phosphatase ubiquitously expressed that plays an 
important role in the regulation of  diverse cellular pro-
cesses, including metabolic enzymes, hormone receptors, 
kinase cascades, and cell growth[133]. It has been shown 
that insulin inhibits PP2A in physiologic conditions[134]. In 
contrast, several groups demonstrated that ceramide acti-
vates PP2A to promote the de-phosphorylation of  PKB/
Akt[62,135,136]. Two different inhibitors of  PP2A activity, 
okadaic acid or SV40 small T antigen that binds with 
PP2A[137] were used to demonstrate the role of  ceramide-
induced PP2A inactivation of  PKB/Akt. The presence 
of  either inhibitor in cells treated with palmitate or short 
chain ceramide analogue (C2-ceramide), alleviated inhibi-
tion on PKB/Akt and re-established a normal, insulin 
signaling[62,128]. Therefore, one way for ceramide to inhibit 
PKB/Akt activity is by promoting its dephosphorylation 
at Thr308 and Ser473 through activation of  PP2A.

Atypical PKCs another ceramide-stimulated protein 
altering PKB/Akt activation: The second mechanism 

of  inactivation of  PKB/Akt by ceramide requires the 
activation of  aPKCs (PKCζ/λ). There is mounting evi-
dence in the literature suggesting that aPKC may regulate 
PKB/Akt signaling and that the relationship between the 
two kinases may be subject to modulation by ceramide. 
It is 20 years since investigators first demonstrated that 
PKCζ/λ could associate with PKB/Akt in COS-7 fibro-
blasts[138]. It has also been demonstrated that PKCζ inter-
acts directly with PKB/Akt in other cells types such as 
Chinese hamster ovary cells and COS-1 cells[139], as well 
as the BT-549 human breast cancer cell line[140].

In pathological conditions, ceramide-activated aPKCs 
impair insulin signaling. aPKCs phosphorylate PKB/Akt 
on its Thr34/Ser34 residue (Thr34 in PKBα and PKBβ, 
Ser34 in PKBγ), thus preventing PIP3 to bind the kinase 
on its PH domain, and to translocate to the plasma mem-
brane and its subsequent activation in response to insu-
lin[132,141,142]. Based on these observations, it was proposed 
that an increase in intracellular ceramide leading to the 
activation of  aPKCs promotes the stabilization of  the 
aPKC-PKB/Akt complex and attenuates the recruitment 
of  PKB/Akt to the plasma membrane as a result of  dis-
rupted PIP3 binding (Figure 3).

CERAMIDE, A THERAPEUTIC TARGET?
Mechanisms by which saturated fatty acids act on insulin 
signaling are now getting clearer. They involve several lip-
id and protein intermediates that play an essential role to 
mediate the deleterious effects of  accumulated saturated 
lipids in insulin sensitive tissues. Thus, two main options 
exist to counteract the action of  these fatty acids on insu-
lin signaling: (1) acting on ceramide downstream signaling 
targets (aPKCs or PP2A); or (2) modulating directly ce-
ramide content[143]. Considering the large involvement of  
both aPKCs and PP2A in numerous paths[144,145], it would 
be more logical to try to directly inhibit the accumulation 
of  ceramides in tissues. Several problems would arise 
with a complete inhibition of  ceramide biosynthesis since 
these bioactive sphingolipids are in the center of  sphin-
golipid metabolism. Indeed, ceramide signaling has been 
directly or indirectly involved in the diverse functions 
such as regulation of  cell growth, differentiation, senes-
cence, necrosis, proliferation, and apoptosis[90]. Therefore, 
inhibiting completely ceramide biosynthesis would be 
likely to be very harmful to the cells. Targeting specific 
ceramides species would be more appropriate since it has 
been shown that specific ceramide species could be asso-
ciated with different functions, depending upon the cell 
type[94].

Concretely, it will be important to determine which 
ceramide species accumulate under lipotoxic conditions 
and then to evaluate whether these identified ceramide 
species enhance or reduce the deleterious effects of  lipo-
toxicity in insulin sensitive tissues.

Interestingly, data existing already suggest that ce-
ramide with distinct acyl chain-length are associated with 
different cell dysfunction in lipotoxic conditions. The 
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enzyme responsible of  generating different ceramide acyl 
chain-length is the CerS. Six mammalian CerS have been 
described, with each utilizing fatty acyl CoAs of  relatively 
defined chain lengths for ceramide synthesis[94]. In pan-
creatic β-cells, C18:0, C22:0 and C24:1 ceramides induce 
apoptosis, and inhibition of  the CerS (CerS4) respon-
sible for their synthesis blocks this phenomenon[146]. In 
the liver, CerS1 and CerS6, producing mainly C16:0 and 
C18:0 ceramides are associated with insulin resistance[147], 
whereas C22:0 and C24:0 ceramides produced through 
CerS2 are rather protective[148].

In muscle cells, however, no definitive and conclusive 
investigation has been carried out to date. The expression 
of  C16:0, C18:0 and C24:0 ceramide species are increased 
in myotubes of  type 2 diabetic patients compared to lean 
donors[149]. However, one recent paper shows that over-
expression of  each CerS isoform in L6 muscle cells does 
not point out any ceramide species in the generation of  
insulin resistance[150]. Since the implication of  ceramide 
in the onset of  insulin resistance in muscle has been con-
vincingly demonstrated both in vivo and in vitro (see previ-
ous chapters), more investigations are needed before to 
make any conclusion in this tissue.

In summary, deciphering the mechanisms by which 
ceramides act negatively on insulin signaling has already 
been a step forward. However, the identification of  the 
putative ceramide species that mediates lipotoxicity in 
cells or pushing ceramides to be converted into less toxic 
lipids remains the priority in order to find a way to coun-
teract ceramide negative actions.
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Abstract
Murry et al  in 1986 discovered the intrinsic mechanism 
of profound protection called ischemic preconditioning. 
The complex cellular signaling cascades underlying this 
phenomenon remain controversial and are only partially 
understood. However, evidence suggests that adenos-
ine, released during the initial ischemic insult, activates 
a variety of G protein-coupled agonists, such as opi-
oids, bradykinin, and catecholamines, resulting in the 
activation of protein kinases, especially protein kinase C 
(PKC). This leads to the translocation of PKC from the 
cytoplasm to the sarcolemma, where it stimulates the 
opening of the ATP-sensitive K+ channel, which con-
fers resistance to ischemia. It is known that a range of 
different hypoglycemic agents that activate the same 
signaling cascades at various cellular levels can inter-
fere with protection from ischemic preconditioning. This 
review examines the effects of several hypoglycemic 
agents on myocardial ischemic preconditioning in ani-
mal studies and clinical trials.
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INTRODUCTION
In the last 3 decades, the prevalence of  diabetes mel-
litus in adults 18 years and older has increased 2-fold[1]. 
Approximately 50%-60% of  patients with diabetes die 
from cardiovascular disease (CVD)[2]. Among various 
CVDs, acute myocardial infarction (AMI) has a high rate 
of  mortality, and infarct size is a primary determinant of  
prognosis in these patients[3-5]. Furthermore, patients with 
diabetes are more likely than patients without diabetes to 
develop heart failure after AMI[6]. Thus, the development 
of  new cardioprotective strategies capable of  protecting 
the myocardium are imperative in order to improve clini-
cal outcomes in diabetic patients with coronary heart dis-
ease. Moreover, hyperglycemia is an important risk factor 
for coronary artery disease and death; however, the use 
of  some medications to achieve glycemic control is con-
troversial, as their use has not consistently been shown 
to reduce mortality. The University Group Diabetes Pro-
gram (UGDP) in 1970 showed that the administration of  
tolbutamide, a first-generation sulfonylurea, may increase 
the risk of  cardiovascular death[7].

As a cardioprotective strategy, ischemic precondition-
ing (IPC) has received much attention for its powerful 
infarct size-limiting effect. This intrinsic mechanism of  
profound protection was suggested by Murry et al[8] in 
1986 who found in a canine model that 4 consecutive pe-
riods of  coronary occlusion of  5 min were able to reduce 
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the infarct size by as much as 75%, after induction by a 
subsequent period of  occlusion for 40 min. For the first 
time, it was demonstrated that limitation of  infarct size 
was theoretically possible.

IPC causes 2 phases of  protection: “early” or “first 
window” and “second window of  protection” (SWOP). 
The first window protects the heart for about 2 h and 
then wanes; the SWOP appears 24 h after the initiation 
of  the IPC protocol and can last for 3 d (Figure 1)[9].

Although IPC was initially referred to as the ability 
of  short periods of  ischemia to limit infarct size, some 
investigators extended this definition to include a benefi-
cial effect on reperfusion-induced arrhythmias[10] and on 
myocardial stunning[11].

Experimental findings on IPC cannot be directly 
extrapolated to humans, because of  obvious ethical re-
strictions and because its mechanisms are different from 
those of  other animal species. IPC in human hearts has 
been demonstrated by results of  in vitro experiments using 
human ventricular myocytes[12] and atrial trabeculae[13]. In 
addition, surrogate clinical endpoints have also been used, 
including contractile function, electrocardiographic isch-
emic changes, or biochemical evidence of  cell damage.

CELLULAR MECHANISMS OF CLASSICAL 
PRECONDITIONING
The cellular mechanisms that confer resistance to isch-
emia have been extensively studied. However, these 
pathways remain controversial and are only partially un-
derstood[14,15]. It has been proposed that endogenous ade-
nosine released during the brief  ischemia of  the IPC pro-
tocol enhances the release of  G-protein coupled receptor 
(GPCR) agonists, such as opioids, adenosine, bradykinin, 
or catecholamines[16-18]. These GPCR agonists appear to 
work simultaneously and in parallel to provide redun-
dancy to the preconditioning stimulus. Although these 3 
receptors trigger signaling through divergent pathways, 
this signaling activates prosurvival kinase or reperfusion 
injury salvage kinase paths, including phosphatidylinositol 

3-kinase, protein kinase B, and protein kinase C[14,15]. In 
turn, it leads to the translocation of  protein kinases from 
the cytoplasm to sarcolemmal receptors[19] and mitochon-
drial membranes[20], where it phosphorylates a substrate 
protein, the ATP-sensitive K+ (KATP) channel[21]. Mari-
novic et al[22] demonstrated in mouse cardiac myocyte cells 
that the opening of  the sarcolemmal KATP channels 
plays an important role in the prevention of  cardiomyo-
cyte apoptosis during metabolic stress, and may interact 
with mitochondrial channels. Thus, opening of  KATP 
channels are strongly involved in the protection provided 
by preconditioning[23-26].

Due to the growing knowledge about the cellular 
pathways of  this important protective mechanism, we 
must consider whether IPC can be applied as a cardio-
protective therapy in ischemic heart disease patients.

PHARMACOLOGICAL INTERACTIONS
Pharmacological agents have the capacity to either in-
terfere with signaling or trigger protection. The use of  
agents capable of  mimicking the protective effects of  
preconditioning, besides brief  ischemia, may offer a more 
benign approach for eliciting cardioprotection. Agents 
commonly used in coronary disease may interfere with 
the protection of  IPC pathways. Penson et al[27] demon-
strated in rat-isolated atria and ventricles that activation 
of  beta-adrenoceptors mimics preconditioning. However, 
β-adrenoceptor blockers impair cardioprotection in ani-
mals[28]. Other agents such as Ca2+ channel blockers[29] 
and nonsteroidal anti-inflammatories may interfere with 
protection by IPC pathways[30,31]. Liu et al[16] reported 
that an adenosine receptor antagonist could block IPC 
protection and that adenosine or the A1-selective agonist 
adenosine, instead of  brief  ischemia, could duplicate IPC 
protection. Other potential candidates currently in clinical 
use include nicorandil or diazoxide[32,33]. These drugs have 
been shown to open KATP channels in ischemic cardio-
myocytes, and might act as pharmacological imitators of  
the preconditioning phenomenon.

HYPOGLYCEMIC DRUGS AND IPC
Hyperglycemia is an important risk factor for coronary 
artery disease and death. However, the use of  some hy-
poglycemic medications is controversial, because they 
have not been shown to reduce mortality. Indeed, physi-
cians face challenges regarding the use of  new agents in 
patients with diabetes who are at high cardiovascular risk. 
Several factors contribute to this concern, and among 
these is IPC. As described above, the UGDP raised con-
cerns that the administration of  tolbutamide may increase 
the risk of  cardiovascular death, but this result remained 
unexplained until data were reported suggesting deleteri-
ous effects of  some sulfonylureas (glyburide), specifically 
in the mechanisms of  IPC[23,24].

Insulin secretagogues stimulate insulin secretion by 
the shutdown of  the KATP channel in pancreatic β 
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Figure 1  Diagrammatic representation of the temporal nature of the 2 
windows of preconditioning (adapted from Baxter et al [9]). SWOP: Second 
window of protection.



cells[34]. KATP channels are composed of  2 types of  sub-
units, inwardly rectifying K+ channels (Kir6.x) and sulfo-
nylurea receptors (SURx), arranged as tetradimeric com-
plexes (Kir6.x/SURx)[35]. Closure of  the KATP channel 
results in membrane depolarization and influx of  calcium 
(Ca2+) into the β cell. The increase in intracellular Ca2+ 
causes release of  insulin from β cell secretory granules. 
KATP channels are also abundant in both cardiomyo-
cytes[36,37] and arterial smooth muscle cells[38].

The β cell and cardiac muscle KATP channels have 
been shown to possess a common pore-forming subunit 
(Kir6.2) but different sulfonylurea receptor subunits 
(SUR1 and SUR2A, respectively). Although the roles of  
KATP channel in extrapancreatic tissues are less well 
characterized, it is likely that they open in response to 
metabolic stress, such as during cardiac ischemia[39]. Thus, 
the ideal sulfonylurea for treatment of  type 2 diabetes 
would be one that interacts only with the β cell KATP 
channel.

EFFECT OF SULFONYLUREAS ON IPC
There is concern about the effect of  sulfonylureas on 
preconditioning protection. Unfortunately, little is known 
about the ability of  the clinically used insulin secreta-
gogues to interfere with IPC. To evaluate studies on the 
effects of  sulfonylureas on IPC, it is important to assess 
their selectivity for SUR receptor subtypes. These drugs 
have a range of  affinities for KATP channels with differ-
ent SUR isoform composition, resulting in different abili-
ties to stimulate the KATP channel activity. Tolbutamide 
has a high affinity for SUR 1 receptors in β cells, but a 
very low affinity for SUR 2A receptors in the myocardi-
um[40,41]. Glibenclamide (glyburide) inhibits cardiac as well 
as pancreatic receptors with high affinity[42,43]. Glimepiride 
has affinity for pancreatic and cardiac SUR comparable 
to glibenclamide, thereby, does not differentiate between 
B cells, cardiac muscle, or smooth muscle KATP chan-
nels[43,44]. In contrast, preliminary studies reported that 
glimepiride had less cardiovascular activity than gliben-
clamide had[45-48]. Several reasons seem to correlate with 
this finding and, among them, highlight the difference 
in selectivity for SUR between in vitro and in vivo studies, 
and different effects of  doses utilized in most studies and 
in treatment of  patients with type 2 diabetes mellitus. In 
addition, gliclazide, a second generation sulfonylurea, is 
distinguished by having a higher selectivity for pancreatic 
SUR receptors[43,49].

Numerous studies using animal models support the 
hypothesis that IPC is impaired by glibenclamide[23,47,50,51]. 
Studies using human hearts analyzed IPC in isolated 
human atrial muscle trabeculae, obtained from type 2 
diabetic patients treated with sulfonylureas before coro-
nary artery surgery, and noted that IPC was abolished in 
patients receiving sulfonylureas[52]. Tomai et al[53] evaluated 
IPC in 20 patients pretreated with either glibenclamide or 
placebo. They recorded ST-segment changes on ECGs 
during 2 subsequent episodes of  intracoronary balloon 
inflation. They concluded that human IPC during brief  

repeated coronary occlusions was completely abolished 
by pretreatment with glibenclamide. Similar results were 
shown when the effects of  glibenclamide and glimepiride 
were compared during balloon inflation in percutaneous 
transluminal coronary angioplasty[45,54].

Tomai et al[55] investigated the effects of  glibenclamide 
on the “warm up phenomenon”, which is a clinical 
model of  IPC. It refers to an increased tolerance to 
myocardial ischemia during the second of  2 consecutive 
exercise tests. In this study, glibenclamide abolished the 
improvement in ischemic threshold during the second ex-
ercise test, compared with placebo[55]. Ovünç[56], in a simi-
lar study reported concordant results and suggested that 
glibenclamide should be used with caution in patients 
with coronary heart disease and diabetes mellitus, be-
cause this agent leads to a decrease in ischemic threshold 
and exercise capacity. Ferreira et al[57], in a study in which 
IPC was evaluated by 2 consecutive exercise tests, also 
investigated the effects of  chronic treatment with gliben-
clamide. Forty patients with angina pectoris were allocat-
ed into 3 groups: 20 nondiabetic patients, 10 diabetic pa-
tients receiving treatment with glibenclamide for at least 
6 mo, and 10 diabetic patients receiving other treatments. 
All patients underwent 2 consecutive exercise tests. The 
results suggested that IPC protection was blocked in dia-
betic patients exposed to long-term treatment with glib-
enclamide. In a recent study, Bilinska et al[58] evaluated 64 
men, 17 nondiabetic and 47 diabetic, aged 54 ± 5 years. 
Diabetic patients were allocated into 3 groups: one treat-
ed with glibenclamide, one with gliclazide, and the other 
with diet. All patients performed 2 consecutive exercise 
tests, with 30 min between them. The authors compared 
the improvement in ischemic parameters among these 
groups of  patients and concluded that the warm-up ef-
fect was preserved in diabetic patients treated with diet, 
partially preserved in patients treated with gliclazide, and 
abolished in patients treated with glibenclamide. In con-
trast, other studies reported no effect of  treatment with 
glibenclamide on the electrocardiographic shifts of  the 
ST-segment during consecutive exercise tests[59,60].

In summary, most studies with glibenclamide (glybu-
ride) reported deleterious effects on IPC, suggesting cau-
tion with the use of  this agent in patients at high risk for 
myocardial ischemia.

In animal studies, glimepiride treatment facilitated the 
cardioprotective effect elicited by IPC[47,48,61-63]. Indeed, 
data from clinical studies is of  great interest. Experimen-
tal findings on IPC cannot be directly extrapolated to 
humans, because in humans its mechanisms are differ-
ent from those in other animal species. Thus, Klepzig et 
al[45] compared the effects of  glibenclamide, glimepiride, 
and placebo administration on ST-segment shifts during 
balloon inflation in percutaneous transluminal coronary 
angioplasty. They concluded that IPC was maintained 
after glimepiride administration and prevented after 
glibenclamide. Lee et al[46], studied the impact of  gliben-
clamide or glimepiride administration on cardioprotective 
effects in patients with and without diabetes undergoing 
coronary angioplasty. The results demonstrated that the 
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effect of  glinides on type 2 diabetic patients with coro-
nary artery disease would be of  great interest for both 
therapeutic and scientific reasons.

EFFECT OF INCRETINS ON IPC
Incretins are gut-derived peptides secreted in response 
to meals, specifically in the presence and absorption of  
nutrients in the intestinal lumen. The major incretins are 
glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic peptide. Incretin is mainly represented by 
GLP-1. The half-life of  GLP-1(7-36) in circulation is 
very brief  (1 to 2 min), as it is rapidly degraded by the en-
zyme dipeptidyl peptidase-Ⅳ (DPP-Ⅳ) to the metabolite 
GLP-1(9-36), which does not act on the GLP-1 receptor. 
GLP-1 receptors are expressed in pancreatic islet cells 
and in the kidney, lung, brain, gastrointestinal tract, and 
heart[67]. The incretin modulator class includes the GLP-1 
analogues or mimetics, which are functional agonists of  
the GLP-1 receptor. In addition, oral inhibitors of  DPP-
Ⅳ, in essence, increase the plasma concentrations of  
the biologically active form of  endogenously secreted 
incretins[68]. Bose et al[69] observed in an isolated rat heart 
model that GLP-1(7-36) is protective against myocardial 
ischemia-reperfusion injury when given either as a pre-
conditioning mimetic or at reperfusion. Although several 
investigators have reported the cardioprotective effect of  
GLP-1, there is a lack of  studies about its effects on IPC. 
Our research group compared the actions of  the DPP-Ⅳ 
inhibitor (vildagliptin) and repaglinide using an IPC pro-
tocol. The results showed that vildagliptin preserved IPC 
in 72% of  54 patients, while repaglinide maintained the 
cardioprotective response in only 17% of  42 patients[70]. 
Our group demonstrated 2 effects of  hypoglycemic 
drugs on IPC. These findings support the importance 
of  identifying underlying mechanisms of  endogenous 
myocardial protection to improve the protective effect of  
pharmacological therapy (Table 1).

EFFECTS OF GLITAZONES ON IPC
The glitazones or thiazolidinediones offer the first thera-
peutic option specifically directed at reversing the basic 
problem of  type 2 diabetes, which is resistance to insu-
lin. These drugs act on tissues such as liver and skeletal 
muscle, sensitizing them to insulin action, and thereby 
increasing glucose uptake and decreasing its hepatic out-
put. The oldest and best-studied glitazone is troglitazone, 
which was withdrawn from the market by the United 
States Food and Drug Administration (FDA) because of  
concerns about its safety. Muriglitazar, which stimulates 
both PPARγ and alpha receptors, increased adverse car-
diovascular events and was also withdrawn by its manu-
facturer after rejection by the FDA. Roziglitazone and 
pioglitazone are also drugs in the PPARγ agonist family. 
Nissen et al[71] reported in a meta-analysis a significant 
increase in the risk of  myocardial infarction with rosigli-
tazone and a trend towards increased risk of  death from 
cardiovascular causes. This information has been includ-

changes in the ST-segment and metabolic parameters 
were more severe after pretreatment with glibenclamide 
than with glimepiride, in patients with and without type 2 
diabetes.

Only a few studies[45,46] have used IPC protocols in hu-
mans to evaluate the effect of  glimepiride. To date, these 
trials have revealed beneficial effects on cardioprotective 
mechanisms.

In isolated Langendorff  perfused rat hearts, the in-
farct sizes were smaller in the group treated with glicla-
zide compared with the group treated with glibenclamide. 
However, the glimepiride group had a smaller infarct size 
than the gliclazide group[48]. In an in-vivo rat study, Mad-
dock et al[51] compared the effects of  glibenclamide and 
gliclazide on IPC and nicorandil-induced protection. The 
IPC protocol consisted of  2 cycles of  5 min of  regional 
ischemia/reperfusion preceding prolonged ischemia. Gli-
clazide had no adverse effects on IPC or on nicorandil-
induced protection. Loubani et al[64] assessed the dose-
response effect of  gliclazide and glibenclamide on IPC. 
Different doses of  glibenclamide and gliclazide were add-
ed for 10 min prior to implementation of  the IPC proto-
col. The cardioprotection was abolished by gliclazide only 
at supratherapeutic concentrations, while glibenclamide 
prevented IPC at all concentrations.

Bilinska et al[58] evaluated the effects of  diet, gliben-
clamide, or gliclazide on the warm-up phenomenon in 
type 2 diabetic patients with stable angina. They con-
cluded that the warm-up effect was partially preserved in 
the gliclazide-treated and abolished in the glibenclamide-
treated group.

The analysis of  the reported data described above 
suggests that gliclazide does not induce potentially harm-
ful IPC effects.

EFFECT OF GLINIDES ON IPC
The drugs from the glinide class are characterized as in-
sulinotropic agents with a rapid onset and short duration 
of  action. Although glinides do not have a sulfonylurea 
structure, their role as an insulin secretagogue occurs by 
binding to the Kir6.2/SUR1 complex, which leads to the 
closure of  KATP channels. 

Glinides non-selectively inhibit the pancreatic, myo-
cardial, and non-vascular smooth muscle KATP chan-
nels[65]. For these reasons, the selectivity of  glinides for 
the pancreatic compared with the cardiovascular KATP 
channels has relevance for IPC. Unfortunately, little is 
known about the ability of  the clinically used glinides 
to interfere with IPC. An original study conducted in 
our service[66], evaluated the effect of  repaglinide on the 
warm-up phenomenon. Forty-two patients with type 2 
diabetes mellitus and coronary artery disease underwent 2 
consecutive treadmill exercise tests. After 7 d of  receiving 
repaglinide, 83% of  patients no longer had myocardial 
IPC.

Due to the great difference of  in vitro selectivity ratios 
of  repaglinide and other drugs in the glinide class (miti-
glinide and nateglinide)[43,65], clinical studies assessing the 
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ed in the prescribing information for all rosiglitazone-
containing products. However, the glitazones have been 
shown to improve many of  the traditional as well as the 
emerging risk factors associated with CVD[72]. The effect 
of  the glitazones, rosiglitazone, and pioglitazone on IPC 
is still a matter of  debate in the literature, as experimental 
studies demonstrate contradictory results. Methodologi-
cal differences are one of  the reasons for that. In studies 
using rat models, pioglitazone was associated with benefi-
cial effects on cardiomyocyte injury, limiting infarct size, 
and ventricular arrhythmias[73-75]. These beneficial effects 
may be related to the opening of  mitochondrial (ATP)-
sensitive potassium channels[76] and by other kinases like 
phosphatidylinositol 3 kinase and P42/44 MAPK by 
pioglitazone[77]. On the other hand, in a porcine model, 
pioglitazone and rosiglitazone had the opposite results[78]. 
Finally, in the clinical setting, the possible actions of  the 
glitazones on IPC are still uncertain.

EFFECTS OF METFORMIN ON IPC
The cardiovascular benefits observed in diabetic patients 

with chronic coronary artery disease with the use of  
metformin[79] have also been observed in experimental 
studies, which have shown positive results of  metfor-
min in the cardiovascular system, and that includes its 
effect in IPC. It is still not completely understood how 
metformin protects IPC in the heart, but it is postulated 
that it activates some kinases involved in IPC, such as 
(AMP)-activated protein kinase[80], which increases ad-
enosine, activating cardioprotective mechanisms. Recent 
studies have also demonstrated that metformin increases 
hexokinase Ⅱ, another important kinase found in mito-
chondria, which seems to be one of  the end-effectors of  
IPC, and that ultimately protects many cell types, includ-
ing cardiomyocytes, against apoptosis and ischemic cell 
death[81]. Ischemia inhibits the loss of  hexokinase Ⅱ from 
mitochondria, consequently preventing the opening of  
the mitochondrial permeability transition pore. This pore 
is responsible for the stabilization of  the mitochondrial 
membrane potential, the prevention of  cytochrome C 
release and also the reduction in reactive oxygen spe-
cies production, which all finally lead to mitochondrial 
protection against ischemic injury[82,83]. These actions 
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Table 1  Effects of hypoglycemic drugs on ischemic preconditioning

Study Model Diabetic drug Effect

Animal studies
   Gross et al[23], 1992 Dogs Glibenclamide (glyburide) Abolished
   Toombs et al[50], 1993 Rabbits Glibenclamide Abolished
   Mocanu et al[47], 2001 Rats Glimepiride Preserved
   Maddock et al[51], 2004 Rats Glibenclamide Abolished

Glimepiride Preserved
   Hausenloy et al[61], 2013 Rats Glimepiride Preserved
   Ye et al[62], 2008 Rats Pioglitazone Preserved

Glibenclamide (glyburide) Abolished
Glimepiride Preserved

   Horimoto et al[63], 2002 Rabbits Glibenclamide Abolished
Glimepiride Preserved

   Bose et al[69], 2005 Rats Native sequenced human GLP-1 Preserved
   Zhu et al[73], 2011 Rats Pioglitazone IPC mimic
   Sasaki et al[74], 2007 Rats Pioglitazone IPC mimic
   Ahmed et al[75], 2011 Rats Pioglitazone IPC mimic
   Li et al[76], 2008 Rats Pioglitazone Preserved
   Wynne et al[77], 2005 Rats Pioglitazone IPC mimic
   Sarraf et al[78], 2012 Porcine Pioglitazone Abolished

Rosiglitazone Abolished
Human studies
   Cleveland et al[52], 1997 Atrial muscle trabeculae Glibenclamide (glyburide) Abolished
   Tomai et al[53], 1994 Human Glibenclamide Abolished
   Klepzig et al[45], 1999 Human Glibenclamide Abolished

Glimepiride Preserved
   Lee et al[54], 2002 Human Glibenclamide Abolished
   Tomai et al[55], 1999 Human Glibenclamide Abolished
   Ovünç[56], 2000 Human Glibenclamide Abolished
   Ferreira et al[57], 2005 Human Glibenclamide Abolished
   Bilinska et al[58], 2007 Human Glibenclamide Abolished

Gliclazide Partially preserved
   Bogaty et al[59], 1998 Human Glibenclamide Preserved
   Correa et al[60], 1997 Human Glibenclamide Preserved
   Loubani et al[64], 2005 Right atrial appendages Glibenclamide Abolished

Gliclazide Preserved (but abolished in supratherapeutic concentrations)
   Hueb et al[66], 2007 Human Repaglinide Abolished
   Rahmi et al[70], 2013 Human Repaglinide Abolished

Vildagliptin Preserved

GLP-1: Glucagon-like peptide-1; IPC: Ischemic preconditioning.
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associated with metabolic alterations, such as the preven-
tion of  acidosis through enhanced coupling of  glycolysis 
and glucose oxidation and inhibition of  fatty acid oxida-
tion[81], are the responsible pathways by which metformin 
protects the myocardium from ischemia, in addition to its 
well-known effects in glucose control.

CLINICAL IMPLICATIONS
Ischemic preconditioning is a complex, dynamic phe-
nomenon that can be the target of  drug activities affect-
ing the heart’s ability to adapt to ischemic stress. In the 
clinical setting, however, the literature contains conflicting 
results regarding whether the use of  conventional oral 
hypoglycemic agents affect cardiovascular mortality[84-90]. 
The findings from studies about the effects of  hypogly-
cemic drugs on IPC have implications for diabetic pa-
tients, especially for those with a high risk of  myocardial 
ischemic events, because the results infer that the myo-
cardium may or may not benefit from a cardioprotective 
response when under the influence of  such drugs. The 
most important consideration in this matter is that thera-
peutic options for diabetes treatment go beyond glucose-
lowering efficacy in populations with increased risk of  
coronary ischemic events, and further large clinical trials 
will be necessary to determine whether the interference 
with myocardial preconditioning translates into clinical 
evidence.
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Abstract
Type 2 diabetes is a complicated metabolic disorder 
with both short- and long-term undesirable complica-
tions. In recent years, there has been growing evidence 
that functional foods and their bioactive compounds, 
due to their biological properties, may be used as 
complementary treatment for type 2 diabetes mellitus. 
In this review, we have highlighted various functional 
foods as missing part of medical nutrition therapy in 
diabetic patients. Several in vitro , animal models and 
some human studies, have demonstrated that function-
al foods and nutraceuticals may improve postprandial 
hyperglycemia and adipose tissue metabolism modulate 

carbohydrate and lipid metabolism. Functional foods 
may also improve dyslipidemia and insulin resistance, 
and attenuate oxidative stress and inflammatory pro-
cesses and subsequently could prevent the develop-
ment of long-term diabetes complications including 
cardiovascular disease, neuropathy, nephropathy and 
retinopathy. In conclusion available data indicate that 
a functional foods-based diet may be a novel and com-
prehensive dietary approach for management of type 2 
diabetes.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Insulin resistance; Func-
tional foods; Whole grain; Legumes; Nuts; Fruits; 
Herbs or spices; Vegetables; Prebiotics; Probiotics

Core tip: Medical nutrition therapy (MNT) is a main part 
of type 2 diabetes management. Apparently the thera-
peutic and medicinal properties of foods maybe a miss-
ing step during MNT process, and could enhance the 
effectiveness of dietary management of type 2 diabetes.
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INTRODUCTION
Type 2 diabetes is a metabolic disorder characterized 
by hyperglycemia, developing insulin resistance, β-cell 
dysfunction and impaired insulin secretion[1,2]. Multiple 
metabolic disorders including impaired lipid and lipopro-
tein metabolism, oxidative stress (over production of  free 
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radicals and defect in endogenous antioxidant defense 
system), sub-clinical inflammation, vascular endothelial 
dysfunction and hypertension are commonly accompa-
nied by type 2 diabetes[3-5]; these metabolic disorders lead 
to long-term pathogenic conditions such as micro- and 
macro-vascular complications including neuropathy, reti-
nopathy, nephropathy, and a decreased quality of  life and 
an increased mortality rate[6,7].

Despite availability of  many pharmacological inter-
ventions including oral hypoglycemic agents and insulin 
therapy for diabetes management, current evidence 
shows an alarming rising trend in the occurrence of  un-
desirable complications among these patients[1].

Medical nutrition therapy (MNT) is also a main part 
of  type 2 diabetes management; estimation of  energy 
and nutrients requirements, carbohydrate counting as 
well as glycemic index and glycemic load, recommenda-
tion for dietary fats and cholesterol and protein intakes, 
explanation the foods exchange list for patients and com-
mon important recommendations for a healthy diet are 
the main components of  diet planning in type 2 diabetic 
patients[8,9]; however it is not clear whether this approach 
per se is sufficiently adequate for prevention of  long-term 
complications of  diabetes. Administration of  various 
supplements, including antioxidant vitamins, fibers, ω3 
fatty acids, numerous nutraceuticals, and herbs has also 
been proposed for glycemic control but data available 
supporting these recommendations for diabetic patients 
are insufficient[10-14]. Apparently the therapeutic and me-
dicinal properties of  foods maybe a missing step during 
MNT process, and could enhance the effectiveness of  
dietary management of  type 2 diabetes.

During the past two decades, the concept of  func-
tional food is fast expanding; functional foods beyond 
the basic nutritional functions have potential benefits to 
promote health and reduce the risk of  chronic diseases 
and have hence been given much attention[15,16]. In recent 
years, researchers have focused on properties of  the bio-
active compounds of  functional foods in the control of  
various aspects of  diabetes mellitus; some protective ef-
fects of  these compounds and food sources have been in-
vestigated in vitro and in vivo, and several clinical trials have 
even confirmed these advantages in diabetic patients[17-19].

Here, based on the multiple biological properties 
of  functional foods and their bioactive compounds, a 
functional foods-based diet has been hypothesized as a 
novel and comprehensive dietary approach for manage-
ment of  type 2 diabetes and prevention of  long-term 
complications.

RESEARCH
The evidence cited in this review was obtained through 
searches in PubMed, Scopus, and Google scholar using 
the following key words: “Type 2 diabetes or hypergly-
cemia”, “insulin resistance”, “cardiovascular disease”, 
“obesity”, “metabolic syndrome”, “oxidative stress”, “in-
flammation”, long-term diabetic complications” in com-
bination with “functional foods”, “nutraceuticals”, “bio-

active food compounds”, “fiber”, “polyphenols”, “whole 
grain”, “legumes”, “nuts”, “fruits”, “herbs or spices” 
“vegetables”, “prebiotics”, “probiotics”, and “bioactive 
peptides”. Relevant articles of  acceptable quality were 
used. Briefly, in this article we tried to highlight some 
of  the following important functional foods including 
whole grains, phytochemical-rich fruits and vegetables, 
legumes, nuts, dairy products, green tea and some spices, 
as required components of  a health-promoting diet for 
diabetic patients.

Whole grains
Grains and cereal-based products are the basic sources 
providing energy and carbohydrate in human diets. Since 
the dietary carbohydrate sources in type 2 diabetic pa-
tients play a determining role in glycemic and insulin 
secretary response, the use of  functional grains including 
whole grain cereals, and bakery products prepared using 
whole wheat, rye, oat, and barley is the first step in plan-
ning of  a functional foods-based diet.

Some previous studies report that dietary carbohy-
drate modification in patients with metabolic syndrome 
resulted in favorable metabolic consequences especially 
increased insulin sensitivity, decreased adipocyte cell size, 
and modulated expression of  adipose tissue genes in-
volved in insulin signaling pathways (insulin-like-growth-
factor binding protein-5, insulin receptors, hormone-
sensitive lipase[20,21].

Compared to refined grains, whole grains (WGs) have 
more non-digestible complex polysaccharides includ-
ing soluble and insoluble fibers, inulin, β-glucan, and 
resistant starches, as well as non-carbohydrate functional 
components including carotenoids, phytates and phytoes-
terogens, phenolic acids (ferulic acid, vanilic acid, caffeic 
acid, syringic acid, P-cumaric acid), and tocopherols. The 
most well-known protective effects of  whole grain-based 
products against obesity, type 2 diabetes, cardiovascular 
diseases, hypertension, metabolic syndrome and various 
types of  cancer, have been attributed to these bioactive 
compounds[22-25]. Among the several mechanisms avail-
able in current data regarding the beneficial effects of  
WGs and cereal-based products in diabetic patients, some 
of  the more important are that bioactive compounds of  
WGs could effectively regulate glycemic response, in-
crease insulin sensitivity, improve pancreatic β-cell func-
tions and increase insulin secretion[26,27]. High contents of  
inulin and β-glucan, main soluble and fermentable fibers 
in WGs, in addition to their hypolipidemic and hypogly-
cemic effects, act as prebiotics in the gut and modulate 
gut microbiota via stimulation of  growth and activity of  
bifidobacteria and lactic acid bacteria[28,29], effects leading 
to more metabolic responses (Figure 1).

Long-term follow-ups of  diabetic patients indicate 
that higher consumption of  whole grain, cereal fiber, 
bran, and germ were associated with decreased all-cause 
and cardiovascular disease-cause mortality[30]. Epidemio-
logical studies also confirmed that regular consumption 
of  WGs products could modify the main risk factors of  
atherosclerotic diseases including triglyceride and LDL-C 
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levels, blood pressure and serum homocysteine levels, as 
well as vascular functions, and oxidative and inflamma-
tory status[31].

Rye, a widely used grain especially in Northern and 
Eastern Europe, is considered a functional grain. The 
high fiber content of  rye products decreases digestion 
and absorption of  dietary carbohydrates, and increase 
metabolites derived from colonic fermentation of  the 
soluble fiber of  rye products, including propionic and bu-
tyric acids which effectively stimulate secretion of  insulin 
from β-cells; studies have indicated that the bioactive 
compounds of  rye (phenolic acids, tannins, benzoic acid, 
phenylalanine) derivates have a similar efficacy with anti-
diabetic drugs in insulin secretion[26,32]. In one study, the 
consumption of  rye products in the breakfast meal in-
creased colonic fermentation, decreased ghrelin levels and 
satiety rating in the late postprandial phase after breakfast 
as well as energy intake at a subsequent lunch meal, and 
improved acute glucose and insulin responses[32].

Oat meal products have also been investigated as 
healthy carbohydrate sources for diabetic patients; they 
are rich sources of  soluble fiber especially β-glucan, anti-
oxidants and bioactive compounds including carotenoids, 
phytic acid, phenolic acids (hydroxycinammic acids, caf-
feic acid, ferulic acid), flavonoids and phytosterols[33]. 
Studies show that consumption of  oat products improves 
glycemic, insulinemic, and lipidemic responses in diabetic 
patients, and act as active ingredient reducing postpran-
dial glycemia[34,35]. In diabetic animal models, oat products 
attenuated hyperglycemia-induced retinal oxidative stress, 
increased glycogen content of  liver, decreased plasma 
free fatty acids and succinate dehydrogenase activity and 
inhibited pancreatic β-cell apoptosis as well[36].

The beneficial effects of  barley and its by products 
for diabetic patients are mainly attributed to its high 
content of  β-glucan; Administration of  barley β-glucan 
extract in pre-diabetic subjects improved glucose toler-
ance and insulin resistance index[27]. In addition, barley 
may use as base of  a meal; the use of  barley combined 

with refined grains such as white rice maybe a practical 
way to attenuate their undesirable effects on glycemic 
control; in a randomized crossover study, combination of  
cooked barley with white rice dose-dependently reduced 
the area under the curves of  plasma glucose and insulin 
concentrations, suppressed postprandial decrease of  
plasma desacyl ghrelin levels and consequently increased 
satiety[37]. The hypolipidemic properties, antioxidant and 
anti inflammatory activities of  barley products have also 
been investigated[38,39]. In animal diabetic models, barley 
improved some features of  fatty liver, decreased lipid 
content of  the liver, increased fatty acid oxidation and 
adiponectin levels[40].

Several positive effects of  whole wheat and its byprod-
ucts on carbohydrate and insulin metabolism have also 
been reported; wheat bran and whole wheat products are 
rich sources of  dietary fiber, magnesium (main cofactor 
of  enzymes involved in glucose metabolism and insulin 
secretion), potassium, phenolic acids, α-tocopherols, ca-
rotenoids and antioxidants[41]. It is believed that the major-
ity of  beneficial effects of  whole wheat grain are related 
to bran and germ fractions; wheat bran is a main source 
of  fiber, lignans, phenolic acid and alkylresorcinol, and 
beyond the health promotion of  gastrointestinal tract and 
weight management, could improve postprandial glycemic 
response, glycosylated hemoglobin, lipid disorders and 
other cardiovascular risk factors in diabetic patients[42]. 
Studies showed that alkylresorcinol of  wheat bran inhib-
ited platelet activity and aggregation, decreased triglyceride 
de novo synthesis, and decreased cardiovascular disease 
risk factors[43]. Wheat germ is rich in non-digestible oligo-
saccharides, phytosterols, benzoquinone and flavonoids 
that play a potent role in induction of  antioxidant and an-
ti-inflammatory properties and modulation of  immunity 
responses[44]. Avemar, fermented wheat germ extract, had 
interesting properties in the treatment of  cardiovascular 
disease, and improved metabolic abnormalities includ-
ing hyperglycemia, lipid peroxidation and abdominal fat 
gain[45].
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Whole grains

Fructooligosaccharids, inulin,
β-glucan, resistance starches

↑ Growth and activity 
of lactobacillus and 
bifidobacteria, modulation 
of gut microbiota

↓ Production of
endotoxemic metabolites

↓ Lipogenesis, inflammation and steatosis 
in liver
↓ Macrophage infiltration in adipose tissue
↑ Insulin sensitivity in skeletal muscle

↑ Secretion of GLP-1, PYY
↓ Secretion of ghrelin

↑ Satiety and ↓ energy intake
Improve pancreatic β-cell 
function and insulin secretion

Improve glycemic control
Weight management
Improve insulin sensitivity

Figure 1  Role of prebiotic compounds of whole grains and cereal-based products in modulation of gut microbiota and con sequent metabolic effects 
could lead to better glycemic control.
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cals, and considering the colors in selection of  these food 
groups provide a wide range of  nutraceuticals. In Table 
1, some phytochemical-rich fruits and vegetables, their 
bioactive compounds and favorable effects on diabetic 
related conditions are reviewed. Studies showed that to-
mato and its by products, as main sources of  lycopene, 
β-carotene, flavonoids and other bioactive components, 
could attenuate blood pressure and dyslipidemia, decrease 
cardiovascular risk factors and enhance antioxidant de-
fense system; other sources of  lycopene and carotenoids 
such as grapefruit and watermelon have also beneficial 
properties to regulate lipid and lipoprotein metabolism, 
blood pressure and vascular function. Anthocyanins-rich 
fruits including red apple, berries family, grapes, cherries, 
red cabbage, and pomegranate have mainly hypoglycemic 
effects (↓ digestion and absorption of  dietary carbohy-
drates, ↓ postprandial glycemic response and ↓ glycosyl-
ated hemoglobin) as well as protective properties against 
oxidative damages (Table 1).

LEGUMES
Legumes (peas, beans, lentils, peanuts) are valuable 
sources of  dietary protein, non-digestible carbohydrates 
including dietary fiber, resistance starches, oligosaccha-
rides, and bioactive compounds such as functional fatty 
acids (linoleic acid, α-linolenic acid), isoflavones (daidzein, 
genistein, glycitein), phenolic acids, saponins, and phytic 
acid; some polyphenols including pelargonidin, cyanidin, 
delphinidin, and malvidin are also found in legumes[134,135]. 
Legumes are considered a component of  a healthy diet 
and there is much evidence showing that regular con-
sumption of  legumes has protective effects against 
obesity, type 2 diabetes, and cardiovascular disease[136]. 
Legumes may be considered as an important component 
of  a functional-foods based diet for management of  type 
2 diabetes. α-amylase inhibitory peptides are one of  the 
bioactive compounds in legumes and beans that reduce 
digestion and absorption of  dietary carbohydrates, and 
modulate postprandial glycemic response; other bioactive 
peptides of  grain legumes including the 7S globulin α 

chain and conglutin γ have unique properties to regulate 
lipid metabolism and normalize lipid and lipoprotein lev-
els[137]. Low glycemic index, high fiber and phytochemical 
content of  legumes have made them functional food for 
diabetic patients.

Lentils (Lens culinaris), the most consumed legume 
grains, are rich sources of  dietary fiber, slowly digestible 
starch and resistant starch, tannins, β-glucan, functional 
antioxidant ingredients, a wide range of  phenolic acids 
including gallic acid, proanthcyanidins, prodelphinidin, 
procyanidins, catechins, epicatechin, kampferol, querce-
tin, cinapic acid and apigenin[138]. Studies show that bio-
active proteins of  lentil reduce plasma levels of  LDL-C, 
triglyceride content of  the liver, and adipose tissue lipo-
protein lipase activity; moreover, polyphenols of  lentil 
could prevent angiotensin Ⅱ-induced hypertension, and 
pathological changes including vascular remodeling and 

Brown rice and its byproducts is another grain in-
vestigated as a functional food. Compared to white rice, 
brown rice has lower glycemic load and glycemic index, 
and higher content of  fiber, vitamins and minerals, phytic 
acids, polyphenols, tocopherols, tocotrienols, and other 
bioactive compounds[46]; consumption of  brown rice has 
benefits on glycemic control, dyslipidemia, endothelial 
function, abdominal obesity and liver functions in type 
2 diabetic patients[47]. Studies show that γ-orizanol found 
in brown rice modulates high-fat diet induces oxidative 
stress, improves β-cell function, enhances glucose-stim-
ulated insulin secretion and prevents the development 
of  type 2 diabetes[48]. Germinated and pre-germinated 
brown rice, as more interesting functional foods, have 
unique components including γ-amino butyric acid, and 
bioactive acylated steryl glucosides with potent anti-
diabetic properties; these bioactive components attenuate 
oxidative-induced peripheral nervous system, prevent 
diabetic neuropathy, inhibit oxidative-induced pancreatic 
β-cell apoptosis and enhance insulin secretion[49-51]. Bran 
rice, a byproduct of  brown rice, contains within 31% fi-
ber (mainly insoluble fiber), β-glucan, pectin, tocopherols, 
orizanol, ferulic acid, lutein, xanthine, vitamin K, thiamin, 
niacin, pantothenic acid, α-lipoic acid, coenzyme Q10 and 
other nutraceuticals; administration of  bran rice in dia-
betic patients reduced glycosylated hemoglobin, LDL-C 
and total cholesterol as well as increased HDL-C[52].

In conclusion, replacement of  whole grain and cereal-
based products with refined grains in diet planning may 
be an effective and practical strategy for MNT in type 
2 diabetic patients; this approach beyond the improve-
ment of  glycemic control, leads to more benefits for 
management of  other aspects of  diabetes, attenuation of  
diabetes-induced metabolic disorders, and prevents long-
term complications especially atherosclerosis and cardio-
vascular disease.

PHYTOCHEMICAL-RICH FRUITS AND 
VEGETABLES
Fruits and vegetables are rich sources of  dietary fiber 
(soluble and insoluble fiber), vitamins, and various phy-
tochemicals and play a vital role in health promotion and 
prevention of  chronic disease[53]. Dietary modification 
based on fruits and vegetables certainly is a definitely im-
portant strategy for management of  type 2 diabetes and 
prevention of  its complications; several studies indicate 
that regular consumption of  various fruits and vegetables 
in diabetic patients can lead to an improved glycemic 
control, reduced HbA1c and triglyceride levels, enhanced 
antioxidant defense system, attenuated oxidative stress 
and inflammatory markers, decreased risk of  diabetic 
retinopathy, and a lower burden of  carotid atherosclero-
sis[54-57]. Since various fruits and vegetables provide many 
different micronutrients and bioactive compounds, con-
sumption of  varied fruits and vegetables is mainly recom-
mended; it should be noted that the color of  fruits and 
vegetables reflects predominant pigmented phytochemi-
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Table 1  Bioactive compounds and functional properties of some of favorable fruits and vegetables

Ref. Possible functional properties in diabetes Main bioactive components and phytochemicals Fruits and vegetables

[58-62] ↓ Systolic and diastolic blood pressure
↑ apolipoprotein a1 and HDL-C
↓ LDL oxidation, improve diabetes-induced lipid disorders
↓ cardiovascular risk factors
↓ aldose reductase activity and cataract
↑ antioxidative enzymes activity

Lycopene, β-carotene, flavonoids, anthocyanins, 
phytoan, phyto flava, quercetin, kampferol

Tomato and its by products

[63-65] ↓ Triglyceride levels, enhance endogenous antioxidant defense 
system, regulation of appetite

Lycopene, pectin, naringin, hesperidin Grapefruit

[66-69] ↑ Nitric oxide biosynthesis, improve endothelial function
↓ blood pressure
↑ plasma arginine levels and consequently
↓ insulin resistance and adipocyte size

Lycopene, carotenoids, cytrolin Watermelon

[70-73] ↓ Absorption of dietary carbohydrate
↓ postprandial glycemia, improve pancreatic β-cell function
↓ free radical generation
↓ lipid peroxidation
↑ plasma total antioxidant capacity, prevent vascular damage, 
improve dyslipidemia

Soluble fiber, quercetin, catechins, epicatechin, 
P-cumaric acid, chlorogenic acid, gallic acid, 

phlordizin, procyanidins

Red apple, apple peel, apple 
and its by products 

[74-81] Glycemic control, inhibit α-glucosidase and α-amylase activity
↓ digestion and absorption of dietary carbohydrates
↓ insulin resistance, improve dyslipidemia
↓ postprandial oxidative stress
↓ lipid peroxidation
↑ plasma total antioxidant capacity
↓ systolic blood pressure
↑ antioxidative enzymes activity
↑ adipocytes lipolysis
↓ inflammatory processes, modulation of peroxisome 
proliferator-activated receptors

Anthocyanins, tannins, ellagitanins, α-carotene, 
β-carotene, lutein, delphinidins, pelargonidins, 
ciyanidins, catechins, hydroxy-cinnamic acid

Berries; cranberry, 
blackberry, black raspberry, 

blueberry, red raspberry, 
strawberries

[82-86] Protective effects on vascular system
↓ platelet hyperactivity and aggregation
↓ cardiovascular diseases
↓ oxidative damage
↓ rennin-angiotensin activity
↑ production of nitric oxide
↓ blood pressure
↑ bone-marrow-derived endothelial progenitor cells

Anthocyanins, resveratrol Grapes, grape by products

[87-91] ↓ Hyperglycemia
↓ HbA1c, improve lipid disorders, anti-inflammatory properties 
(inhibit cyclooxygenase)
↓ abdominal fat
↓ microalbuminuria, improve metabolic syndrome and fatty 
liver features
↓ oxidative stress
↓ production of cytokines, induction of PPARγ
↓ diabetic neuropathy

Anthocyanins, quercetin, hydroxy-cinnamic acid, 
carotenoids, melatonin, phenolic acids, gallic 

acid, lutein, xanthine, β-carotene 

Cherries

[92-95] ↓ Hyperglycemia, attenuate hyperglycemia-induced metabolic 
disorders
↓ lipid peroxidation, induction of gluthathione reductase, 
glutathione peroxidase, superoxide dismutase, delay 
progression of nephropathy
↓ inflammatory processes, improve dyslipidemia

Isothiocyanates, anthocyanins (red cabbage), 
carotenoids, lutein, β-carotene

Cabbage, Cauliflower

[96-100] ↓ Hyperglycemia
↑ endothelial nitric oxide synthase activity, inhibit angiotensin 
converting enzyme
↓ blood pressure, improve vascular function
↓ cholesterol and atherogenic lipids
↓ lipid peroxidation
↓ progression of atherosclerosis
↑ plasma total antioxidant capacity, modulate activation of 
PPARγ and nuclear factor κB
↑ activity of paraxonase 1 and HDL-C levels
↓ serum resistin levels and ameliorate obesity-induced insulin 
resistance

Anthocyanins, tannins, catechins, gallocatechins, 
punicalagin  acid, ellagic acid, gallic acid, 

oleanolic acid, ursolic acid, uallic acid

Pomegranate and its by 
products, pomegranate peel 

and seeds
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vascular fibrosis[139,140].
Beans are also other important legume grains in the 

human diet with high content of  fiber, phytate, ω3 fatty 
acids, antioxidants, phenolic compounds. The hypogly-
cemic effect of  beans (via inhibition of  α-amylase and 
β-glucosidase activity) has been reported as being similar 
to those of  anti-diabetic drugs[141-143]. Including beans 
(pinto, dark red kidney, black beans) in diet planning for 
type 2 diabetic patients effectively helps weight manage-
ment, attenuates postprandial glycemic response, and 
improves dyslipidemia[144-146].

Soybean, a rich source of  unique phytoesterogens 
(genistein, daidzein, glycitein), is another important 
functional food which has been considered in diabetes; 
the isoflavones and bioactive peptides of  soybean have 

favorable effects on glycemic control and insulin sensi-
tivity, dyslipidemia, and kidney function[147-149]. It seems 
that the anti-diabetic effects of  soybean mainly occur 
through interaction with estrogen receptors (ERs); stud-
ies show that soy isoflavones selectively bind to both 
α and β estrogen receptors; ERα is considered as key 
modulator of  glucose and lipid metabolism, and regulate 
insulin biosynthesis and secretion as well as pancreatic 
β-cell survival[150]. Soy protein could induce insulin sen-
sitivity and improve lipid homeostasis via activation of  
peroxisome proliferator-activated receptor and liver X 
receptors, and inhibition of  the sterol regulatory ele-
ment binding protein-1c[151]. Regular consumption of  soy 
products could help diabetic patients in the management 
of  dyslipidemia[152]. Soy protein and isoflavones decrease 
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[101-105] ↓ Hyperglycemia, induce insulin secretion from β-cell
↓ blood pressure, inhibit enzyme involved in cholesterol 
biosynthesis, improve dyslipidemia, prevent atherosclerosis
↓ lipid peroxidation
↓ platelet hyperactivity and aggregation, regulate glycolysis, 
gluconeogenesis and carbohydrate metabolism pathways
↑ insulin sensitivity

Allyl sulfors, flavonoids, quercetin, 
dihydroflavonols, anthocyanins (red onion)

Garlic, onions

[106-111] ↓ Endothelial macrophage activation
↓ hyperactivity and aggregation of platelet, improve vascular 
function
↓ oxidative stress and inhibit stress-sensitive signaling 
pathways
↓ digestion of dietary lipids, improve dyslipidemia
↓ pro-inflammatory cytokines
↓ lipid peroxidation

Lutein, xanthine, α-cryptoxanthin, 
β-cryptoxanthin, naringenin, hesperidin, 

β-carotene, phytosterols

Citrus fruits

[112-113] ↓ Free radical generation and lipid peroxidation, binding to bile 
acids
↑ cholesterol excretion, improve lipid profile
↑ plasma total antioxidant capacity

Lutein, betaine, violaxanthine, opioid peptides 
(rubisculins), P-cumaric acid, ferulic acid

Spinach

[114-115] Improve glycemic and insulinemic response
↓ systemic inflammation
↓ cardiovascular disease risk factors

Carotenoids, pectin, oleic and linolenic acids Pumpkin

[116] Improve hyperglycemia and dyslipidemia
↑ adiponectin, antioxidant and anti-inflammatory effect

Fiber, polyphenols, chlorogenic acid, flavonoids, 
anthocyanins

Plums

[117-119] Improve dyslipidemia, anti-inflammatory properties
↓ lipid peroxidation
↑ plasma total antioxidant capacity

Soluble fiber (pectin), α-carotene, β-carotene 
lutein, phenolic acids, stilbenes

Carrots

[120-122] Inhibit α-amylase
↓ postprandial glycemia
↑ glycogen synthesis, improve dyslipidemia
↓ lipid peroxidation, protective effect against diabetic 
nephropathy

Carotenoids, quercetin, kampferol, gallic acid, 
caffeic acid, catechins, tannins, mangiferin

Mango

[123-127] Regulate carbohydrate metabolism 
(↑ glucokinase and glucose-6-phosphate dehydrogenase 
activity
↓ glucose-6-phosphatase activity)
↓ lipid peroxidation
↓ protein carbonylation
↑ antioxidant enzyme activity, improve metabolic syndrome 
features
↑ insulin sensitivity
↓carbohydrate absorption
↓ plasma free fatty acid 

Anthocyanins, alkaloid compounds (berberine, 
oxycontin)

Barberry

[128-131] Protective effects against diabetic neuropathy
↓ lipid peroxidation, induce antioxidant enzymes, protect liver 
and kidney against oxidative damage

Dietary fiber, polyphenols, acid cinnamic, 
melatonin

Date fruit

[132-133] Improve lipid and lipoprotein metabolism
↑ insulin sensitivity
↓ blood pressure

Dietary fiber, pectin, flavonoids, gallic acid, 
chlorogenic acid, catechins, anthocyanins

Figs

PPARγ: Peroxisome proliferator-activated receptor γ.
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production of  atherogenic apolipoproteins such as apo B, 
increase biosynthesis of  HDL-C, induce LDL-C recep-
tors, increase biosynthesis and excretion of  bile acids, 
decrease gastrointestinal absorption of  steroids, induce 
favorable changes in hormonal status, including the insu-
lin to glucagon ratio, and thyroid hormones which lead to 
improvement of  dyslipidemia[153,154]. Recently two bioac-
tive peptides, identified in glycinin (a main soy protein), 
have unique hypolipidemic properties. These peptides 
inhibit 3-hydroxy-3methyl glutaryl CoA reductase, key en-
zyme involved in cholesterol biosynthesis. β-conglycinin, 
another main soy bioactive protein with anti-atherogenic 
properties via regulation of  lipogenesis, decease liver 
lipogenic enzyme activity, inhibits fatty acid biosynthesis 
in liver, and facilitates fatty acid β-oxidation; other bio-
logical activities of  soy peptides include antioxidant, anti-
inflammatory, and hypotensive effect[155].

Another feature of  soybean and soy products as well 
as other legumes which may highlight them as main part 
of  a functional foods-based diet, is their established ef-
fectiveness in weigh management; since the overweight 
and obesity are the common problems in diabetic pa-
tients and main contributors in development of  insulin 
resistance, benefit from anti-obesity properties of  le-
gumes is considered another key approach in these pa-
tients. Thermogenic effects, induction of  satiety through 
some important appetite regulatory gut peptides, media-
tion in gene expression and secretion of  key adipocyto-
kines such as leptin and adiponectin, as well as inhibitory 
effects on proliferation and differentiation of  adipocytes 
are some of  the mechanisms that could explain the role 
of  legumes on weight management[140,156-159]. In conclu-
sion, considering the potential benefits of  legumes and 
its by products, regular consumption of  these functional 
foods may be an effective strategy for management of  
various aspects of  type 2 diabetes.

NUTS
Based on current evidence, nuts may play a protective 
effect against cardiovascular disease risk factors. Al-
monds, pistachios, walnuts and hazelnuts are commonly 
used nuts; these functional foods are considered as rich 
sources of  high-biological value proteins, bioactive pep-
tides, functional fatty acids (mono and poly unsaturated 
fatty acids), fiber, phytosterols, polyphenols, tocopherols 
and other antioxidant vitamins; the antioxidative effect 
of  nuts mainly is related to a high content of  α and γ 
tocopherol, phenolic acids, melatonin, oleic acid and se-
lenium, while the anti-inflammatory effect is related to 
ellagic acid, α-linolenic acid and magnesium[160,161].

Most current evidence reveals that consumption of  
nuts in type 2 diabetic patients other than improving the 
overall diet quality also has beneficial effects on postpran-
dial glycemic response following high-carbohydrate meals, 
attenuates postprandial oxidative stress and inflammatory 
processes, normalizes lipid and lipoprotein levels and 
decreases lipid atherogenicity, and improves insulin resis-
tance[162,163]. Moreover, habitual intake of  nuts could help 

to effectively manage weight especially in diabetic patients; 
the anti-obesity effects of  nuts investigated in some stud-
ies may be attributed to thermogenic effects, induction of  
satiety, decreased dietary fat absorption, and increased fat 
excretion; bioactive components of  nuts also modulate 
regulatory appetite neurotransmitters and adipose tissue 
metabolism, as well as decrease proliferation and differen-
tiation of  adipocytes, inhibit lipogenesis and induce fatty 
acid β-oxidation[164,165]. Studies show that consumption of  
nuts effectively decreases serum levels of  high-sensitivity 
C-reactive protein; a well measure of  systemic low-grade 
inflammation, interleukin 6 (a potent pro-inflammatory 
cytokine) and fibrinogen while increase plasma concentra-
tion of  adiponectin, a potent anti-inflammatory cytokine 
released from adipose tissue; dietary patterns, high in nuts, 
were also related to lower levels of  soluble inflammatory 
and cardiovascular risk markers including intercellular 
adhesion molecule 1 and vascular cell adhesion molecule 
1[166,167]. Another beneficial effect of  nuts which is impor-
tant especially in diabetic patients is favorably influence on 
endothelial function; high content of  L-arginine, a main 
precursor of  nitric oxide, as well as antioxidants and poly-
phenols could contribute to this effect[161].

In conclusion, it seems that a diet enriched with nuts 
may be an effective strategy to improve glycemic con-
trol and prevent cardiovascular disease in type 2 diabetic 
patients.

OTHER BENEFICIAL FUNCTIONAL FOODS 
AND BIOACTIVE COMPONENTS FOR 
DIABETIC PATIENTS
Although there are a large number of  natural foods, 
nutraceuticals or bioactive components that could be 
considered as functional ingredients and have beneficial 
effects for diabetes management, addressing all these is-
sues is beyond the scope of  this article. Table 2 shows 
some of  these potential functional foods including dairy 
products and probiotics, fish meat, green tea, spices are 
presented.

CONCLUSION
Type 2 diabetes is a complicated metabolic disorder with 
both short- and long-term undesirable complications as 
well as various pathogenic conditions including dyslipid-
emia, vascular dysfunction, oxidative stress, sub-clinical 
inflammation, and altered signaling pathways. Ineffective-
ness of  the current medical treatments in management 
of  long-term diabetes complications confirms that other 
complementary approaches are required; the use of  func-
tional foods and bioactive compounds is one of  these 
new approaches. Functional foods and their bioactive 
compounds could attenuate carbohydrate metabolism 
and hyperglycemia, improve pancreatic β-cell function 
and insulin secretion as well as insulin resistance, regulate 
lipid and lipoprotein metabolism and adipose tissue me-
tabolism, modulate oxidative/antioxidative balance and 

273 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Mirmiran P et al . Management of type 2 diabetes



inflammatory processes, improve weight management 
and prevent micro and macro vascular complications.

Considering the beneficial properties of  functional 
foods, it seems that diet planning based on these healthy 
foods may be considered an effective strategy for man-
agement of  various aspects of  diabetes and promotion 

of  health in diabetic patients.
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Table 2  Bioactive compounds and functional properties of some of favorable functional foods

Ref. Possible functional properties in diabetes  Main bioactive components and nutraceuticals Functional foods  

[168-179] Improve the features of metabolic syndrome, modulate gut microbiota, 
regulate satiety and food intake
↑ adiponectin, modulate adipocytokines, induce thermogenesis, lipolysis 
and β-oxidation
↑ dietary fat excretion
↓ adiposity and body weight
↓ oxidative stress and inflammatory markers, hypo-lipidemic and anti-
thrombotic effects
↑ insulin sensitivity, modulate immune responses in diabetic patients
↑ total antioxidant capacity
↓ lipid peroxidation
↓ HbA1c

Calcium, vitamin B, bioactive proteins such as 
casein and whey, immunoglobulines, bioactive 
peptides (α- and β-lactorphines, lactoferrin, 
lactoferricin, α-lactalbumin, β-lactoglobulin, 
growth factors), conjugated linoleic acids, lactic 
acid bacteria and bifidobacteria

Dairy products 
and probiotics

[180-185] Improve hypertriglyceridemia and hypertension
↓ cardiovascular disease
↓ insulin resistance and inflammation, improve glycemic management
↓ proteinuria
↓ oxidative stress, inhibit lipogenesis and induce lipolysis, induce PPARα 
and  PPARβ
↓ adiposity and weight management
↑ thermogenesis and energy expenditure, inhibit angiotensin converting 
enzyme and modulate blood pressure

Bioactive peptides, antioxidant compounds, 
ω3 fatty acids (docosahexaenoic acid, 
eicosapentaenoic acid), selenium, taurine

Fish and seafood

[186-189] Regulate cholesterol metabolism
↓ LDL oxidation, protect vascular endothelium against atherogenesis, 
inhibit platelet aggregation
↓ atherosclerosis development
↓ pro-inflammatory cytokines, activate PPARγ, improve sub-clinical 
inflammation

Oleic acid, ω3 fatty acids, Flavonoids, cinnamic 
acid, benzoic acid, lignans, cumaric acid, ferulic 
acid, tocopherols, carotenoids, oleuropein, 
oleocanthal

Olive oil

[190-193] Promote endogenous antioxidant defense system, induce superoxide 
dismutase and catalase
↓ lipid peroxidation, improve glycemic control
↑ insulin sensitivity
↓ gluconeogenesis 
↑ glycogen content
↓ glycation of collagen and fibrosis, protect cardiac muscle, regulate 
lipid metabolism as well as adipose tissue metabolism, inhibit lipogenic 
enzymes
↓ satiety
↑ thermogenesis
↓ proliferation and differentiation of adipocytes
↓ pro-inflammatory cytokines
↓ monocyte chemotactic protein-1

Polyphenols, phenolic acids, catechins, 
epigallocatechin-3-gallat, chlorophyll, 
carotenoids, pectin, plant sterols

Green tea

[194-196] ↑ Iinsulin sensitivity, improve peripheral uptake of glucose, increase 
glycolysis and gluconeogenesis, hypoglycemic and hypolipidemic effects, 
antioxidant and anti-inflammatory properties

Cinnamaldehyde, cinnamic acid, coumarin, 
catechins, epicatechin, procyanidins B-2

Cinnamon 

[197-199] Inhibit enzymes involved in inflammation including cyclooxygenase-2, 
lipoxygenase, and nuclear factor κB, inhibit α-glucosidase and α-amylase 
activity
↓ postprandial  glycemic response
↓ proteinuria, activate PPARγ and regulate carbohydrate and lipid 
metabolism,  prevent diabetic cataract

Curcuminoids, stigmasterol, β-sitosterol, 
2-hydroxy methyl anthraquinone, bioactive 
peptide turmerin

Turmeric

[200-203] Attenuate oxidative stress, protective effects against oxidative damage
↓ serum creatinine and urea, improve dyslipidemia
↓ atherogenic lipoprotein levels
↓ lipid peroxidation in renal tissue, inhibit α-glucosidase activity
↓ carbohydrate digestion and absorption, protect liver against diabetes-
induced oxidative damage

Tannins, flavonoids, anthocyanins,  phenolic 
acid, gallic acid

Sumac

PPAR: Peroxisome proliferator-activated receptor.
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factors linked with long-term survival is the absence of 
features of the metabolic syndrome and more specifi-
cally the presence of insulin sensitivity. Genetic factors 
also play a role, with a family history of longevity and 
an absence of type 2 diabetes and hypertension in the 
family being important considerations. There is thus a 
complex interaction between multiple risk factors in de-
termining which patients with type 1 diabetes are likely 
to live into older age. However, these patients can 
often be identified clinically based on a combination of 
factors as outlined above.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: People with type 1 diabetes are generally as-
sumed to have a shortened lifespan. This contention is 
supported by a number of epidemiological studies con-
firming a trend towards premature death, primarily due 
to cardiovascular disease. However, a subset of type 
1 individuals survives for many years, living for over 
50 years or more with type 1 diabetes. This review 
explores the clinical features that are linked to long-
term survival in people with type 1 diabetes, allowing 
identification of these individuals. Recognising these 
individuals will aid in assessing prognosis, and treating 
the identified risk factors could improve survival.
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INTRODUCTION
Prior to the discovery of  insulin, patients with type 1 
diabetes had an expected lifespan of  less than 3 years[1]. 
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Abstract
While the lifespan of people with type 1 diabetes has 
increased progressively since the advent of insulin 
therapy, these patients still experience premature 
mortality, primarily from cardiovascular disease (CVD). 
However, a subgroup of those with type 1 diabetes 
survives well into old age without significant morbidity. 
It is the purpose of this review to explore the factors 
which may help in identifying these patients. It might 
be expected that hyperglycaemia plays a major role in 
explaining the increased incidence of CVD and mortal-
ity of these individuals. However, while a number of 
publications have associated poor long term glycaemic 
control with an increase in both all-cause mortality and 
CVD in those with type 1 diabetes, it is apparent that 
good glycaemic control alone cannot explain why some 
patients with type 1 diabetes avoid fatal CVD events. 
Lipid disorders may occur in those with type 1 diabetes, 
but the occurrence of elevated high-density lipoprotein-
cholesterol is positively associated with longevity in 
this population. Non-renal hypertension, by itself is a 
significant risk factor for CVD but if adequately treated 
does not appear to mitigate against longevity. How-
ever, the presence of nephropathy is a major risk factor 
and its absence after 15-20 years of diabetes appears 
to be a marker of long-term survival. One of the major 
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With the advent of  modern therapy, survival has in-
creased progressively. However, those with type 1 diabe-
tes remain with an increased incidence of  coronary artery 
disease (CAD) and mortality compared to the general 
population. By 1991, reported standard mortality rates 
for those with type 1 diabetes under the age of  60 years 
were 9.1 for males and 13.5 for females[2]. Subsequently, 
a cohort of  23751 patients from the United Kingdom 
and diagnosed with diabetes under the age of  30 years 
between 1972 and 1993 were analysed for cardiovascular 
mortality up to 2000[3]. These results confirmed higher 
mortality rates at younger ages for those with type 1 dia-
betes (Figure 1). Of  interest, not only are the mortality 
rates for women with diabetes considerably higher than 
for women without diabetes, but also higher than for 
men without diabetes. Soedamah-Muthu et al[4], utilizing 
the United Kingdom General Practice research database, 
have also confirmed that the risk of  cardiovascular dis-
ease (CVD) remains high in patients with type 1 diabetes. 
Typically, patients with type 1 diabetes reach a 10-year 
risk of  fatal CVD of  5% about 10 to 15 years before 
the general population. Furthermore, incidence rates of  
CAD in type 1 patients range between 1.2% and 2% per 
year, vs 0.1% and 0.5% in the general population[5]. The 
incidence of  stroke is also increased in type 1 diabetes, 
with overall standardised incidence ratios being 17.94 for 
men and 26.11 for women[6].

It is therefore clear, that despite a better understand-
ing and treatment of  appropriate risk factors and bet-
ter general care, those with type 1 diabetes still have a 
tendency towards a shortened life span, primarily due to 
premature CVD. Yet a subgroup of  individuals with type 
1 diabetes survives well into old age in relatively good 
health. This review explores the factors that may help to 
identify these patients. This can be done either by identi-
fying a group of  long-surviving type 1 patients and ana-
lysing any unique clinical or biological features that may 
be specific to this cohort, or by assessing surrogate end-
points of  vascular disease, such as carotid artery Intima-
Media Thickness (IMT) measurement or arterial calcifica-
tion and identifying those who appear to be “protected” 
from vascular disease.

THE ROLE OF GLYCAEMIC CONTROL
Type 1 diabetes is a condition of  “pure” hyperglycaemia. 
The only abnormality is one of  β-cell failure and insulin 
deficiency in an otherwise “normal” or “healthy” indi-
vidual. It could therefore be expected that hyperglycaemia 
might play a major role in explaining the increased inci-
dence of  CVD and mortality seen in these individuals. A 
number of  publications have associated poor long-term 
glycaemic control with an increase in both all-cause mor-
tality and CVD in those with type 1 diabetes. Grauslund 
et al[7] demonstrated a direct relationship between HbA1c 
and survival. When patients were categorized into quar-
tiles of  HbA1c measurements, patients in the highest 
quartile had a significantly higher risk of  all-cause mortal-
ity, cardiovascular mortality and ischaemic heart disease 

when compared to patients in the lowest quartile (Figure 
2). While at the conclusion of  the Diabetes Control and 
Complications Trial (DCCT) there was no significant dif-
ference between the conventional and intensive treatment 
groups regarding cardiovascular outcomes or death from 
CVD, the 10-year Epidemiology of  Diabetes Interven-
tions and Complications (EDIC) follow-up demonstrated 
a significant difference between the two groups with re-
gard to both CV outcomes and death. An overall 42% risk 
reduction was seen in the previously intensively treated 
group[8]. This sustained effect of  improved control in 
the DCCT years was ascribed to “metabolic memory”. 
Patients followed in the DCCT/EDIC cohort were also 
submitted to IMT measurements, and it was demonstrat-
ed that intensive therapy during the DCCT resulted in de-
creased progression of  IMT six year after the end of  the 
trial[9]. These findings imply that early glycaemic control is 
an important factor in preventing CVD in type 1 diabetes.

However, good blood glucose levels alone cannot ex-
plain why some patients with type 1 diabetes avoid fatal 
CVD events. In the “Golden Years Cohort” of  400 type 
1 patients who survived for over 50 years with diabe-
tes[10], the mean HbA1c was 7.6% (± 1.4), with some of  
these patients having HbA1c levels as high as 8.5%-9%. 
None had an HbA1c below 7%. In addition, a number 
of  other publications have shown only a weak correla-
tion between long-term glycaemic control, CVD and 
mortality. Larsen et al[11], performed coronary angiogra-
phy on 29 asymptomatic patients with a mean duration 

Distiller LA. Prognosis in type 1 diabetes

283 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

M
or

ta
lit

y 
pe

r 
10

00
00

 p
er

 y
ea

r 
(lo

g 
sc

al
e)

Age (yr)
10-19          20-29          30-39         40-49          50-59        60-69

10000

1000

100

10

1

0.1

0.01

General, males

Cohort, males

General, females

Cohort, females

Figure 1  Ischaemic heart disease mortality rates in people with type 1 
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of  type 1 diabetes of  30.6 years. Of  these, 34% had sig-
nificant coronary artery stenosis. While a significant rela-
tionship existed between stenosis and glycaemic control 
(a 6.1% increase in vessel stenosis for every 1% increase 
in HbA1c over 18 years), glycaemic control was less 
significant as a risk factor than the age of  the subjects 
and the effect of  elevated serum cholesterol. In another 
cohort of  125 patients with a mean duration of  diabetes 
of  22 years[12], IMT was compared to an index of  life-
time glycaemic exposure. This demonstrated significantly 
increased IMT only on those at the highest tertile of  
glycaemic exposure. IMT measurements performed in 
148 long-surviving patients with type 1 diabetes (duration 
> 15 years)[13] showed no significant correlation between 
HbA1c and IMT, although ordinal logistic regression 
showed that for every 1% increase in HbA1c, there was 
a 27% less chance of  the IMT falling into the low-risk 
group (defined as an IMT below 0.6 mm and no plaque). 
A prospective observational study of  a meta-analysis of  
the relationship between CVD and glycaemic control[14], 
revealed an only moderate increase in cardiovascular risk 
with increasing levels of  glycated haemoglobin in per-
sons with diabetes mellitus. However, this meta-analysis 
included patients with both type 1 and type 2 diabetes. 
The data suggested that there is an increased risk of  
CVD of  15% for every 1% increase in HbA1c (RR = 
1.15; 95%CI: 0.92-1.43).

The evidence therefore suggests that while early good 
glycaemic control is important in the prevention of  CVD 
and survival, the importance of  glycaemic control may 
diminish as patients survive longer. While glycaemic con-
trol is clearly a risk factor for CAD and mortality in type 
1 diabetes, this is not the major determinant of  survival. 
Good glycaemic control alone cannot explain why some 
type 1 patients survive into old age.

LIPIDS IN TYPE 1 DIABETES
Patients with type 1 diabetes may show quantitative lipid 
disorders. There is a clear relationship between the level 
of  glycaemic control and lipid abnormalities, with an inde-
pendent correlation between HbA1c and low-density lipo-
protein (LDL)-cholesterol, non-high-density lipoprotein 
(HDL) cholesterol and triglycerides[15]. Abnormal lipid lev-
els are associated with worse cardiovascular outcomes[5]. 
The lipid profiles of  patients with well-controlled type 1 
diabetes are very different from those with poor glycaemic 
control[16], related possibly to the presence of  adequate 
peripheral insulin levels in the better controlled subjects. 
There are direct metabolic consequences of  administer-
ing insulin subcutaneously. Peripheral hyperinsulinemia 
is associated with increased lipoprotein lipase activity[17], 
which may account for reduced triglyceride levels. In addi-
tion, LDL-cholesterol may also be slightly reduced due to 
decreased very LDL production[18]. The more sensitive the 
individual is to insulin, the greater is this effect.

As might be expected, Serum LDL-cholesterol and 
non-HDL-cholesterol levels are positively associated with 
not only an increase in IMT[9], increased Arterial Stiff-

ness[19] and coronary artery stenosis[11], but also CAD and 
mortality[5,7,20]. A major factor that appears to be associated 
with prolonged survival in patients with type 1 diabetes is 
elevated HDL-cholesterol. HDL levels are often elevated 
in those with type 1 diabetes. This is more marked with 
better glycaemic control and may be due to an elevated 
lipoprotein lipase/hepatic lipase ratio (Increased periph-
eral lipoprotein lipase activity due to peripheral hyperin-
sulinemia from subcutaneous insulin administration and 
normal hepatic lipase activity). Bain et al[10] reported a high 
mean HDL-level in those surviving over 50 years with dia-
betes (1.84 ± 0.057 mmol/L), and this was associated with 
lower triglyceride levels (1.49 ± 0.79 mmol/L). In long-
surviving type 1 patients, IMT measurements showed a 
significant inverse association to HDL levels and com-
puted tomography/HDL ratios for all measure of  risk (IM 
thickness and/or plaque)[13]. A number of  other studies 
have supported the protective effects of  HDL-cholesterol 
with regard to CVD[5,7,9,11,20]. In addition to this direct as-
sociation between HDL-cholesterol and CVD, higher 
HDL-cholesterol levels may provide protection against 
the development of  albuminuria[21].

Therefore, it can be concluded that in addition to the 
expected effect of  dyslipidaemia (high LDL and non-
HDL-cholesterol), HDL-cholesterol itself  exerts a signifi-
cant protective effect on the development of  CVD in pa-
tients with type 1 diabetes and elevated HDL-cholesterol 
levels appears to play a major role in longevity in these 
patients.

BLOOD PRESSURE AS A RISK FACTOR
Hypertension in those with type 1 diabetes is often a 
manifestation of  underlying nephropathy. However, 
hypertension can also occur as a stand-alone risk factor 
(non-renal hypertension). A significant positive associa-
tion between high blood pressure and arterial stiffness 
in youth with type 1 diabetes was demonstrated in the 
SEARCH CVD Study[19].

In type 1 diabetes, hypertension without nephropathy 
has been shown to be a major risk factor for the develop-
ment of  carotid artery plaque [OR = 5.26 (P < 0.004)], 
but the effect of  hypertension on IMT was moderate 
and not significant[13]. In the DCCT/EDIC at 6 years, 
the presence of  hypertension and particularly systolic 
hypertension was significant, but had less of  an effect 
on IMT than did smoking, lipids or glycaemic control[9]. 
In the Golden years cohort[10], 29% of  the patients were 
receiving antihypertensive treatment but had nevertheless 
survived for over 50 years with diabetes.

It therefore appears as though hypertension itself, 
while a significant risk factor for CVD, if  treated does 
not mitigate against longevity in this population.

MICROVASCULAR DISEASE AS A 
MARKER OF SURVIVAL
The presence of  diabetic nephropathy, microalbuminuria 

284 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Distiller LA. Prognosis in type 1 diabetes



were blind. In relatively long-surviving people with type 
1 diabetes, the presence of  retinopathy had a significant 
association with the presence of  plaque (OR = 3.65; P 
< 0.033), independent of  glycaemic control[13]. However, 
there was no association between the presence of  reti-
nopathy and IMT measurements. It therefore appears as 
though retinopathy is not a major risk factor for CVD 
or mortality in those with type 1 diabetes, as opposed to 
those with type 2 diabetes where the presence of  retinop-
athy may indicate CAD and mortality risk[27].

With regard to peripheral neuropathy, no prospective 
trials link the presence of  neuropathy to either CAD or 
mortality other than the EURODIAB study, which did 
detect peripheral and autonomic neuropathy as risk mark-
ers for future mortality[20].

TYPE 1 DIABETES AND THE METABOLIC 
SYNDROME
There is no reason to expect patients with type 1 diabetes 
to have a lower prevalence of  obesity and the metabolic 
syndrome (MetS) than the general population and a MetS 
frequency in type 1 patients of  over 30% has been re-
ported[28]. A significant relationship exists between mor-
tality and central obesity in those with type 1 diabetes[20] 
and type 1 subjects with the MetS have been shown to 
have an increased prevalence of  macrovascular disease[29]. 
The presence of  MetS features in patients with type 1 
diabetes is associated with risk factors similar to many 
patients with type 2 diabetes, and the superimposition 
of  the insulin resistance due to obesity or the MetS in a 
patient who already has type 1 diabetes has been termed 
“Double diabetes”[30].

Identifying patients with the MetS in the presence of  
type 1 diabetes is difficult. Of  the diagnostic criteria, the 
presence of  dysglycaemia is a foregone conclusion and 
cannot be used. Hypertension should only be included if  
it is non-renal as nephropathy-induced hypertension has 
other implications as outlined above. Quantifying insu-
lin resistance is also difficult and requires a euglycaemic 
clamp study to document it properly. A derived estimate 
of  glucose disposal rate has been suggested to measure 
of  insulin resistance[31] but this includes the presence 
of  hypertension and waist-hip ratio in the formula and 
therefore cannot be used in assessing insulin resistance 
in the context of  the MetS, since both of  these variables 
are separate components of  the MetS in their own right. 
Insulin dosage provides a surrogate measurement of  
insulin resistance in these patients, and in their series of  
long-surviving type 1 patients, Distiller et al[32] arbitrarily 
chose insulin doses in the top quartile of  their series of  
patients (0.75 U/kg body weight), to be a measure of  
insulin resistance. In this series, a multiple linear regres-
sion analysis showed a significant relationship between 
waist circumference and insulin dose and carotid artery 
IMT when corrected for age of  onset, current age and 
duration of  diabetes. Interestingly, neither body mass 
index (BMI) nor HbA1c were significantly associated 
with carotid artery IMT. Overall, there was a significant 

or macroalbuminuria is a significant risk factor for CAD, 
cardiovascular mortality and all cause mortality, and there 
is a strong independent relationship between albuminuria 
and CAD (Table 1)[7]. The occurrence of  stroke in sub-
jects with type 1 diabetes is also increased by the presence 
of  nephropathy [microalbuminuria: HR = 3.2 (1.9-5.6), 
macroalbuminuria: HR = 4.9 (2.9-8.2), End Stage Re-
nal Disease: HR = 7.5 (4.2-13.3)][22]. The DCCT/EDIC 
Study showed a sustained effect of  good glycaemic con-
trol[23] on the reduction in albumin excretion 7 years after 
the conclusion of  the DCCT study, with an 83% risk 
reduction in those patients initially treated with intensive 
therapy, confirming the concept of  “metabolic memory”. 
The long-term risk of  a reduction in estimated glomeru-
lar filtration rate (eGFR) was also shown to be 50% lower 
among those who were treated early in the course of  type 
1 diabetes with intensive diabetes therapy than among 
those treated with conventional diabetes therapy[24]. The 
development of  hypertension was also delayed in the 
intensively treated group. These effects appeared to be 
largely mediated by the levels of  glycaemia achieved dur-
ing the DCCT. However, as pointed out by the authors, a 
long time elapsed between treatment intensification dur-
ing the DCCT early in the course of  the diabetes and the 
effect on eGFR, and the advantages of  improved glycae-
mic control in persons already with advanced complica-
tions may not apply. This further supports the contention 
that good glycaemic control in the early years of  the dia-
betes may be more important achieved in those who have 
had the condition for some years.

In type 1 diabetes, the peak incidence of  nephropathy 
occurs between 15 and 20 years after the development 
of  the diabetes[25,26]. Progression from microalbuminuria 
to overt neuropathy has been shown to reduce from 
45% in those with diabetes of  less than 15 years, to 26% 
in those with diabetes of  over 15 years duration. By the 
time someone has had diabetes for over 40 years, it drops 
to just 4% per year[25]. In this regard, none of  the long 
surviving patient in the “Golden Years cohort”[10] had 
evidence of  overt nephropathy.

It is therefore apparent, that those individuals with 
type 1 diabetes who are likely to survive, would remain 
free of  any evidence of  nephropathy.

No prospective studies in type 1 patients have found a 
strong independent relationship between retinopathy and 
CVD or mortality. However, the presence of  retinopathy 
increases the risk of  stroke[22]. Severe diabetic retinopathy 
was common in the “Golden Years Cohort”[10]. Forty-
three percent of  subjects had had laser therapy and 2% 
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Table 1  Cox proportional hazard models for risk of cardio
vascular disease from nephropathy (from: Grausland et al [7])

All cause mortality Cardiovascular mortality IHD

Creatinine > 120 μmol/L 5.1 6.29 4.25
Microalbuminuria   1.32 1.44 1.40
Macroalbuminuria 2.4 2.57 1.77

Distiller LA. Prognosis in type 1 diabetes

IHD: Ischaemic heart disease.



increase in IMT in type 1 subjects with the MetS (Figure 
3). A significant association was demonstrated between 
IMT risk and the number of  features of  the MetS (P = 
0.01). Fifty percent of  patients with 0-1 features had low 
risk IMT, whereas 60% of  patients with 3-4 features had 
high risk IMT measures. This finding was confirmed 
by the SEARCH CVD Study[16], a longitudinal study of  
298 youth with diabetes, where those with the MetS had 
consistently increased arterial wall stiffness when com-
pared to type 1 patients without the Syndrome and with 
the same duration of  diabetes. This was born out by 
the “Golden Years Cohort”[10], where the patients were 
generally on low doses of  insulin. The mean daily insulin 
dose was 37.5 U (± 16.2) (0.52 U/kg body weight), the 
mean BMI of  these long surviving patients was 25 kg/m2, 
and HDL-cholesterol was high and triglycerides were 
low. These features could be considered the antithesis of  
the MetS.

GENETIC FACTORS
The best predictor of  old age is the age one’s parents 
achieved. This adage was supported by the “Golden Years 
Cohort”[10], where on average, both parents of  those 
surviving 50 years with diabetes lived to over 70 years. 
Furthermore, a family history of  either type 2 diabetes or 
hypertension has been shown to result in significantly in-
creased IMT in type 1 diabetes subjects[12].

Clearly, a complex interaction exists between multiple 
risk factors in determining which patients with type 1 dia-
betes are likely to live into older age (Figure 4). However, 

these patients can often be identified clinically based on a 
combination of  factors (Table 2).

CONCLUSION
While the longevity of  those with type 1 diabetes has im-
proved considerably over the past century, these patients 
remain with a reduced life expectancy compared to the 
non-diabetic population. Nevertheless, a subgroup of  
these individuals may survive into older age despite their 
diabetes. Certain clinical and biochemical features can 
identify these people. This understanding may provide 
clinicians with further evidence that correction of  modi-
fiable risk factors like glycaemic control, blood pressure 
control, avoidance of  excessive weight gain and lipid con-
trol is vital in ensuring the ongoing longevity of  patients 
with type 1 diabetes.
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Abstract
Growing prevalence of diabetes (type 2 as well as type 
1) and its related morbidity due to vascular complica-
tions creates a large burden on medical care worldwide. 
Understanding the molecular pathogenesis of chronic 
micro-, macro- and avascular complications mediated 
by hyperglycemia is of crucial importance since novel 
therapeutic targets can be identified and tested. Thia-
mine (vitamin B1) is an essential cofactor of several 
enzymes involved in carbohydrate metabolism and 
published data suggest that thiamine metabolism in 
diabetes is deficient. This review aims to point out the 
physiological role of thiamine in metabolism of glucose 
and amino acids, to present overview of thiamine me-
tabolism and to describe the consequences of thiamine 
deficiency (either clinically manifest or latent). Further-
more, we want to explain why thiamine demands are 
increased in diabetes and to summarise data indicat-
ing thiamine mishandling in diabetics (by review of 
the studies mapping the prevalence and the degree of 

thiamine deficiency in diabetics). Finally, we would like 
to summarise the evidence for the beneficial effect of 
thiamine supplementation in progression of hypergly-
cemia-related pathology and, therefore, to justify its 
importance in determining the harmful impact of hy-
perglycemia in diabetes. Based on the data presented it 
could be concluded that although experimental studies 
mostly resulted in beneficial effects, clinical studies of 
appropriate size and duration focusing on the effect of 
thiamine supplementation/therapy on hard endpoints 
are missing at present. Moreover, it is not currently 
clear which mechanisms contribute to the deficient ac-
tion of thiamine in diabetes most. Experimental studies 
on the molecular mechanisms of thiamine deficiency 
in diabetes are critically needed before clear answer to 
diabetes community could be given.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Published data suggest deficient action of thi-
amine in diabetes, however, it is not currently clear by 
which mechanisms. Plasma levels might be decreased 
in diabetics (although renal function has a prevailing 
effect), nevertheless, intracellular concentration of thia-
mine diphosphate is the crucial parameter and there is 
not a direct relationship with the plasma thiamine since 
the rate of transmembrane transport (via  thiamine 
transporters) and intracellular activation by thiamine 
pyrophosphokinase might affected by hyperglycemia 
at first place. Experimental studies on the molecular 
mechanisms of thiamine deficiency in diabetes are criti-
cally needed before clear answer to diabetes commu-
nity could be given.
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INTRODUCTION
Diabetes mellitus, the most common metabolic disease 
resulting from insufficient insulin action (either absolute 
or relative), is characterized by various degree of  chronic 
hyperglycemia and is often accompanied by specific 
microvascular complications including nephropathy, 
retinopathy and neuropathy. Diabetes also substantially 
increases the risk of  macrovascular complications (coro-
nary heart disease, stroke and peripheral vascular disease). 
Both micro- and macrovascular complications affecting 
diabetic patients are associated with reduced quality of  
life and contribute substantially to considerable morbidity 
and mortality.

Hyperglycemia (the cumulative exposure to excess 
of  glucose as well as individual pattern of  glucose fluc-
tuation) together with increased availability of  free fatty 
acids (a consequence of  deregulated lipolysis in adipose 
tissue as well as their “spill over” in case of  adipocyte 
saturation in obese subjects) are the two dominant meta-
bolic alterations characterising gluco- and lipotoxicity in 
diabetes and are causally responsible for the development 
of  vascular complications.

Although selected aspects of  thiamine metabolism 
abnormalities in relation to diabetes has been reviewed 
earlier[1,2], comprehensive view and findings from recent 
studies were not included. In this review we therefore 
aim (A) to point out the physiological role of  thiamine 
in metabolism of  glucose and amino acids, to present 
overview of  thiamine metabolism and to describe the 
consequences of  thiamine deficiency (either clinically 
manifest or latent). Furthermore, (B) we want to explain 
why thiamine demands are increased in diabetes and to 
summarise data indicating thiamine mishandling in dia-
betics (review of  the studies mapping the prevalence and 
the degree of  thiamine deficiency in diabetics). Finally, (C) 
we would like to summarise the evidence for the benefi-
cial effect of  thiamine supplementation in progression of  
hyperglycemia-related pathology and, therefore, to justify 
its importance in determining the harmful impact of  hy-
perglycemia in diabetes.

PHYSIOLOGICAL ROLE OF THIAMINE 
IN GLUCOSE METABOLISM, THIAMINE 
METABOLISM AND CONSEQUENCES OF 
ITS DEFICIENCY
Role of thiamine in energy metabolism 
Thiamine (vitamin B1) is a water soluble vitamin that be-

longs to the large group of  B vitamins. Several forms of  
thiamine exist: (1) free thiamine; (2) thiamine monophos-
phate (TMP); (3) thiamine diphosphate (TDP); (4) thia-
mine triphosphate; and (5) adenosine thiamine triphos-
phate. The active form of  thiamine-TDP-together with 
magnesium is an essential cofactor of  several enzymes 
important for carbohydrate [transketolase (TKT), pyru-
vate dehydrogenase and α-ketoglutarate dehydrogenase] 
and amino acid (branched-chain α-keto acid dehydroge-
nase) metabolism[3].

Overview of thiamine metabolism
As thiamine is an essential micronutrient for humans 
its needs are supplied from diet rich in thiamine, such 
as yeast, pork, legume and cereal grains. Enzyme called 
thiaminase I (EC2.5.1.2), present in raw fish, shellfish, 
tea and coffee, decreases thiamine absorption. Thiamine 
is absorbed in the small intestine, predominantly in the 
duodenum. Thiamine esters are hydrolysed by pancre-
atic nucleotide pyrophosphatase (EC3.6.1.9) or alkaline 
phosphatase (EC3.1.3.1) to form unphosphorylated 
thiamine that is taken-up by enterocytes via thiamine 
transporters at low concentrations or via passive diffusion 
at higher concentrations[4]. Within enterocyte thiamine is 
phosphorylated by thiamine pyrophosphokinase (TPK1, 
EC2.7.6.2) to TDP preventing its return back to the in-
testinal lumen. Most of  the TDP must be hydrolysed to 
cross the basolateral membrane using specific ATP-de-
pendent transporter or reduced folate carrier 1 (RFC-1)[5]. 
Thiamine and TMP are the most abundant forms in plas-
ma. Uptake of  thiamine and TMP by cells is mediated 
by specific thiamine transporters 1 (THTR1 encoded by 
SLC19A2 gene) and 2 (THTR2 encoded by SLC19A3) 
and RFC-1. Majority of  thiamine in the cytoplasm (ap-
proximately 90%) is phosphorylated by TPK1 to TDP 
and used as a cofactor of  cytosolic enzymes while the 
rest remains unphosphorylated[3]. Most of  the TDP (ap-
proximately 90%) is transported into mitochondria via 
thiamine transporter from the solute carrier family of  
proteins encoded by the SLC25A19 gene[6]. Two muta-
tions in the SLC25A19 cause Amish lethal microcephaly, 
an autosomal recessive disorder characterized by severe 
microcephaly, delayed brain development, α-ketoglutaric 
aciduria and premature death[7]. Overview of  intracellular 
thiamine metabolism is presented in Figure 1. Thiamine 
also crosses blood-brain barrier[8] and placenta[9].

Thiamine is excreted by kidneys and its rate depends 
on glomerular filtration, tubular reabsorption and also 
on plasma thiamine concentration[10]. Normally, thiamine 
filtered in glomerulus is effectively reabsorbed in the 
proximal tubule through thiamine/H+ antiport[11]. Long-
term diuretic therapy is known to produce thiamine 
deficiency[10]. As thiamine deficiency develops, thiamine 
urinary excretion falls rapidly[12].

Thiamine deficiency
Thiamine reserves are low, limited amount (up to 30 
mg) is stored in skeletal muscle, brain, heart and kidneys. 
Thiamine stores may become depleted within weeks of  
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a deficient diet since the biological half-life of  thiamine 
is 9 to 18 d[13]. Thiamine deficiency can result from de-
creased intake (most often due to its low content in diet 
or compromised absorption), increased demands (e.g., in 
pregnancy) or increased renal loss. In developed countries 
overt thiamine deficiency due to a malnutrition is rare, 
however, occurs in various health conditions with alcohol 
abuse and chronic diseases (e.g., cancer) being the most 
common causes. Secondary thiamine deficiency can also 
accompany heart failure, severe infections or long-term 
diuretic use.

Although all cell types utilize thiamine, the nervous 
system is particularly sensitive to thiamine deficiency 
due to its role in the synthesis of  acetylcholine and 
γ-aminobutyric acid in the brain. Also the heart is strong-
ly sensitive to thiamine limitation due to the high level 
of  oxidative metabolism. Early symptoms of  thiamine 
deficiency are in general nonspecific including fatigue, 
anorexia, nausea, weight loss and depression. Serious 
thiamine deficiency can clinically manifest as beriberi, 
Wernicke’s encephalopathy or Korsakoff ’s psychosis[14]. 
Beriberi, classically categorized as dry or wet, is present 
in populations relying on diet constituting predominantly 
of  polished rice (very low thiamine content). Wet beriberi 
(also known as thiamine deficiency with cardiopathy) af-
fects primarily heart and can lead to a congestive heart 
failure with peripheral oedemas, tachycardia, dyspnoea 
and weakness[15]. Patients with dry form usually suffer 
from peripheral neuropathy leading to paralysis, weak-
ness, leg paraesthesia, wasting of  muscle and various 
other symptoms.

Thiamine deficiency is common in alcoholics as alcohol 
negatively affects thiamine uptake and intracellular phos-
phorylation, thus contributing to a marked thiamine defi-
ciency. Central nervous system manifestations of  thiamine 
deficiency in alcoholics are known as Wernicke-Korsakoff  
syndrome. The symptoms include changes of  mental sta-
tus (e.g., confusion), ocular signs (nystagmus) and ataxia. 
Thiamine deficiency in alcoholics can also be accompanied 
by severe loss of  memory denoted as Korsakoff  psychosis. 
Both symptoms commonly occurs together constituting so 

called Wernicke-Korsakoff  syndrome[16].
Intracellular thiamine deficit due to mutations in the 

gene SLC19A2 encoding for THTR1 causes thiamine-
responsive megaloblastic anaemia syndrome (TRMA)[17]. 
TRMA is an autosomal recessive disorder that typically 
manifests as megaloblastic anaemia, hearing loss and 
diabetes[18].

Supplementation in case of  proven thiamine defi-
ciency can be achieved by free thiamine that was shown 
to increase plasma thiamine levels as well as intracellular 
TDP although the rate of  thiamine transport through the 
plasma membrane is quite slow[19]. Several lipophilic thia-
mine derivatives have been synthesized (e.g., fursultiamine 
and sulbutiamine) which are able to diffuse through plas-
ma membrane independent of  transporters thus being 
more effective than free thiamine. Within the cell they are 
converted to thiamine. Benfotiamine (S-benzoylthiamine 
O-monophosphate) is another derivative with better 
availability than thiamine (reflected by higher plasma 
thiamine levels). However benfotiamine must be dephos-
phorylated to S-benzoylthiamine by ecto-alkaline phos-
phatase to become lipophilic prior crossing plasma mem-
brane. No adverse effects of  either high-dose thiamine 
or benfotiamine supplementation have been reported so 
far probably due to an efficient renal excretion or rapid 
uptake by hepatocytes with subsequent transformation to 
thiamine and release into the blood, respectively[19].

Laboratory test used for estimation of thiamine status
The two main tests routinely used for the assessment of  
thiamine status are the measurement of  erythrocyte TKT 
activity and the so called thiamine effect. The former is 
measured by a kinetic reaction without adding thiamine. 
Thiamine effect expresses the increase of  TKT activity 
after addition of  saturating amount of  thiamine to the 
reaction. The increase up to 15% is considered as normal 
thiamine status, higher increase is an indicator of  mild 
(up to 25%) or severe (more than 25%) thiamine defi-
ciency[15]. Plasma thiamine levels can also be measured al-
though they predominantly reflect thiamine intake rather 
than cellular levels. Combination of  erythrocyte TKT 
activity and thiamine effect measurement is considered as 
the most reliable indicator of  thiamine status in clinical 
settings.

DIABETES AS A STATE OF INCREASED 
DEMAND FOR THIAMINE AND THE 
EVIDENCE FOR THE ALTERED THIAMINE 
METABOLISM IN DIABETES
Consequences of hyperglycemia for thiamine availability
Diabetes of  all types is ex definitione characterised by hy-
perglycemia. Contribution of  fasting and postprandial 
glucose elevation is variable though in various degrees of  
abnormal glucose tolerance and most likely also interindi-
vidually. Increased glucose supply stimulates its intracel-
lular metabolism (glycolysis) with subsequent increase in 
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cells in high glucose conditions (26 mmol/L) decreases 
both mRNA and protein expression of  THTR1 and 
THTR2 compared to 5 mmol/L glucose[25]. Renal clear-
ance of  thiamine is increased by 8-fold in experimental 
model of  diabetes. Interestingly, increased clearance was 
prevented by high-dose thiamine supplementation[26]. 
Thiamine renal clearance is also increased in subjects with 
T1DM (by 24-fold) and T2DM (by 16-fold)[24].

Further changes of  thiamine metabolism probably oc-
cur with the development of  chronic diabetic microvas-
cular complications namely diabetic nephropathy togeth-
er with chronic kidney disease (CKD). While in diabetics 
with preserved renal function plasma thiamine levels tend 
to be lower most likely on account of  increased renal 
clearance, in subjects with CKD stages corresponding 
with renal insufficiency and failure the situation dramati-
cally changes. We have previously comprehensively stud-
ied plasma and intracellular parameters of  thiamine me-
tabolism in diabetics with the aim to dissect the complex 
relationships between the effect of  diabetes and renal 
function[27]. We reported that plasma levels of  thiamine 
and its esters and TKT activity in RBCs increased with 
severity of  diabetic nephropathy (and CKD respectively) 
being highest in subjects with end-stage renal disease, 
however, levels of  TDP in RBCs did not show propor-
tional trend. Since the effectiveness of  intracellular TDP 
production depends on substrate availability (i.e., the rate 
of  transmembrane transport via thiamine transporters) 
and TPK activity we therefore hypothesized that these 
could be the processes diminished by hyperglycemia and 
the causal reasons for the failure of  protective action 
of  PPP under hyperglycemia. While T1DM and T2DM 
patients with normal renal function have been shown 
to have a higher expression of  THTR1 and THTR2 in 
mononuclear cells compared to healthy subjects by one 
study[28], data on TPK activity and THTR2 expression in 
diabetes are missing at all. Obviously, there is still a large 
gap in our understanding of  the precise molecular mech-
anisms of  thiamine deficiency and the problem definitely 
warrants further study.

OVERVIEW OF IN VITRO, ANIMAL AND 
HUMAN STUDIES WITH THIAMINE OR 
BENFOTIAMINE SUPPLEMENTATION IN 
DIABETIC CONDITIONS
In vitro studies
Several studies explored the effect of  thiamine and/or 
benfotiamine on pathways implicated in the pathogenesis 
of  hyperglycemia-induced damage in vitro. Cultivation 
of  RBC in hyperglycemia with addition of  thiamine in-
creased activity of  TKT, decreased production of  triose 
phosphates and methylglyoxal and increased concentra-
tions of  sedoheptulose-7-phosphate and ribose-5-
phosphate[29]. Benfotiamine as well as thiamine have been 
shown to correct defective replication of  human umbili-
cal vein endothelial cells (HUVEC) and to decrease their 

the production of  reactive oxygen species (ROS) in mito-
chondria[20,21]. Overproduction of  ROS in mitochondria 
links- via inhibition of  the key glycolytic enzyme glyceral-
dehyde-3-phosphate dehydrogenase-hyperglycemia with 
activation of  several biochemical pathways involved in 
the development of  microvascular complications of  dia-
betes incl. hexosamine and polyol pathways, production 
of  advanced glycation end products (AGEs) and activa-
tion of  protein kinase C[22]. However, cells in general are 
capable of  either decreasing overproduction of  ROS by 
enzymatic and non-enzymatic antioxidant mechanisms 
and/or eliminating of  damaging metabolites and their 
substrates (generated by overloaded glycolysis) that ac-
cumulate within cells. Pentose phosphate pathway (PPP) 
is an example of  the latter mechanism. PPP represents an 
alternative pathway for glucose oxidation fulfilling three 
important functions: (1) production of  reducing equiva-
lent NADPH necessary for reduction of  oxidized gluta-
thione thus supporting intracellular antioxidant defence; 
(2) production of  ribose-5-phosphate required for the 
synthesis of  nucleotides; and (3) metabolic use of  pentos-
es obtained from the diet. PPP consists of  two branches: 
(1) irreversible oxidative branch necessary for NADPH 
and pentose phosphates production; and (2) reversible 
non-oxidative branch in which interconversion of  three 
to seven carbons containing sugars occurs. TKT (EC 
2.2.1.1), one of  the key enzymes of  non-oxidative branch 
of  PPP, can limit the activation of  damaging pathways 
through lowering availability of  their precursors. TKT 
transports two-carbon units and catalyses formation of  
ribose-5-phosphate from glycolytic intermediates. As a 
cofactor of  TKT, thiamine may have a profound effect 
on glucose metabolism through the regulation of  PPP 
and indeed, TKT activation by benfotiamine (see below) 
in endothelial cells blocked several pathways responsible 
for hyperglycemic damage and prevented development 
and progression of  diabetic complications in animal 
models[23]. The mechanism responsible for the observed 
effect upon activation of  non-oxidative reversible branch 
of  PPP by thiamine or its derivative benfotiamine was 
the diminished accumulation of  triosephosphates and 
fructose-6-phosphate induced by hyperglycemia[2].

Thiamine mishandling in diabetes
Little is known about the precise mechanisms how diabe-
tes affects thiamine metabolism. Patients with type 1 and 
2 diabetes mellitus (T1DM and T2DM) do not have a 
marked thiamine deficiency [conventionally defined as an 
increase of  TKT activity in red blood cells (RBC) higher 
than 15% after addition of  saturating amount of  TDP]. 
However, plasma thiamine levels in diabetics are de-
creased by 75% compared to healthy subjects[24]. RFC-1 
and THTR1 protein expression in RBCs obtained from 
diabetic patients (both T1DM and T2DM) is higher than 
in healthy subjects[24].

Experimental evidence suggests abnormal thiamine 
handling in the kidneys in diabetes that might be one 
of  the reasons for decreased plasma thiamine levels in 
diabetics. Incubation of  human primary proximal tubule 
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production of  AGEs induced by hyperglycemia[30]. Thia-
mine also suppressed markers of  endothelial cell damage 
(inhibited cell migration and increased von Willebrand 
factor secretion) induced by hyperglycemia in bovine aor-
tic endothelial cells[31]. Both thiamine and benfotiamine 
decreased activation of  polyol pathway (aldose reductase 
mRNA expression, enzyme activity and intracellular lev-
els of  sorbitol) while increasing expression and activity 
of  TKT in HUVEC and bovine retinal pericytes cultured 
in hyperglycemia[32]. Notably, benfotiamine restored im-
pairment of  endothelial progenitor cells differentiation 
caused by hyperglycemia[33]. Possible benfotiamine anti-
oxidant properties and protective effect on DNA have 
also been investigated. Benfotiamine prevented oxidative 
stress (probably through direct antioxidant effect) and 
also DNA damage[34]. The same study also confirmed 
that benfotiamine increased TKT expression and activity. 
Intermittent exposure of  human retinal pericytes to fluc-
tuating glucose levels induced their apoptosis, the effect 
was however prevented by thiamine and benfotiamine[35]. 
It has also been studied whether thiamine and/or ben-
fotiamine affect glucose and lipid metabolism in human 
skeletal muscle cells. Benfotiamine but not thiamine 
increased glucose oxidation while lipid oxidation and 
metabolism was influenced by neither of  the two. Benfo-
tiamine also down-regulated NADPH oxidase 4 expres-
sion[36].

Animal models
The first published study exploring the effect of  thiamine 
and benfotiamine supplementation on peripheral nerve 
function and production of  AGEs in diabetic rats found 
that benfotiamine but not thiamine had protective effect 
with respect to both processes[37]. Already mentioned key 
study provided evidence for the role of  PPP in diabetes 
showing that benfotiamine (activating TKT) inhibited 
three harmful pathways and NF-κ signalling activated by 
hyperglycemia and prevented development of  diabetic 
retinopathy in experimental rats[23]. The group of  Thor-
nalley published a series of  papers investigating the effect 
of  thiamine and/or benfotiamine supplementation on 
the development of  diabetic microvascular complica-
tions, predominantly diabetic nephropathy. They found 
that thiamine and benfotiamine were able to suppress 
the accumulation of  AGEs in the kidney, eye, nerves and 
plasma of  diabetic rats[38]. Furthermore, they reported 
that high-dose thiamine and benfotiamine therapy pre-
vented diabetic nephropathy through increased TKT ex-
pression, decreased level of  triosephosphates a decreased 
protein kinase C activation. Importantly, since no changes 
in fasting plasma glucose and HbA1c were observed 
this effect is independent of  diabetes compensation[26]. 
Furthermore, high-dose thiamine therapy had positive 
effect on diabetes-induced dyslipidaemia (preventing the 
increase of  plasma cholesterol and triglycerides but not 
high-density lipoprotein decrease). Benfotiamine and low-
dose thiamine failed to achieve the same effect[39]. They 
also quantified AGEs in plasma of  diabetic rats. Both 
thiamine and benfotiamine supplementation have been 

shown to normalize AGEs derived from methylglyoxal 
and glyoxal. On the contrary, carboxy methyl lysine and 
N-epsilon(1-carboxyethyl)lysine residues have been nor-
malized by thiamine only[40]. Finally, they quantified pro-
tein damage caused by glycation, oxidation and nitration 
in diabetic rats and found increased AGEs content in the 
diabetic kidney, eye, nerve and plasma that was reversed 
by thiamine and benfotiamine therapy. Thiamine itself  
also reversed increase of  plasma glycation free adducts. 
Both therapies reversed increased urinary excretion of  
glycation, oxidation and nitration free adducts[41]. Several 
studies evaluated the effect of  thiamine/benfotiamine 
treatment with respect to heart function in diabetes 
animal model. Benfotiamine alleviated abnormalities in 
parameters related to the contractile dysfunction in dia-
betic mouse. It also reduced oxidative stress induced by 
diabetes however production of  AGEs was unchanged[42]. 
High-dose thiamine therapy prevented diabetes-induced 
cardiac fibrosis through increased expression of  genes 
with pro-fibrotic effect and decreased matrix metallopro-
teinase activity in hearts of  diabetic rats[43]. Another study 
revealed that benfotiamine therapy protected diabetic 
mice from heart failure with several pathogenic mecha-
nism suggested including improved cardiac perfusion, 
reduced fibrosis and cardiomyocyte apoptosis[44]. Same 
authors found that benfotiamine improved prognosis of  
diabetic mice after myocardial infarction in terms of  sur-
vival, functional recovery, reduced cardiomyocyte apop-
tosis and neurohormonal activation[45]. The same was true 
for control non-diabetic mice probably due to increased 
activity of  pyruvate dehydrogenase in hearts of  diabetic 
rats by thiamine treatment. Subsequent in vitro experiment 
revealed that responsible molecular mechanism may be 
suppression of  O-glycosylated protein[46]. Both in vitro and 
in vivo benfotiamine supplementation had positive effect 
on cardiac progenitor cells in terms of  their prolifera-
tion, abundance, functionality and TKT activity (all listed 
parameters being compromised by hyperglycemia)[47]. In 
mouse diabetes model of  limb ischemia benfotiamine 
increased TKT activity, prevented toe necrosis, improved 
perfusion and restored vasodilation. Moreover, benfo-
tiamine prevented accumulation of  AGEs in vessels and 
inhibited pro-apoptotic caspase-3 in muscles[48]. Another 
work assessed cerebral oxidative stress in diabetic mice. 
Benfotiamine was found to lower oxidative stress (esti-
mated as reduced/oxidized glutathione) however levels 
of  AGEs, protein carbonyl and tumor necrosis factor-α 
were unchanged[49]. Administration of  benfotiamine and 
fenofibrate alone or in combination attenuated endothe-
lial dysfunction and nephropathy in diabetic rats. Lipid 
profile however was normalized only by fenofibrate not 
by benfotiamine[50].

Human studies
Only few studies in diabetic patients have been published 
so far that explored the effect of  thiamine or benfo-
tiamine treatment on hard endpoints, i.e., development or 
progression of  clinically manifest diabetic complications, 
namely kidney disease and neuropathy. In the pilot study, 
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high-dose thiamine therapy for 3 mo significantly de-
creased urinary albumin excretion (UAE) without affect-
ing glycaemic control, lipids and blood pressure in T2DM 
patients[51]. In another study however, 3 mo of  benfo-
tiamine therapy improved thiamine status (assessed as a 
TKT activity and the whole blood thiamine concentra-
tion) but did not change UAE and/or kidney marker of  
tubular damage in T2DM patients[52]. The same authors 
also determined AGEs production and markers of  en-
dothelial dysfunction and low-grade inflammation in the 
same cohort. Benfotiamine did not affect any of  the as-
certained markers[53]. In patients with diabetic neuropathy, 
short-term benfotiamine therapy was found to improve 
neuropathy score and to decrease the pain perception[54]. 
In the recent study, long-term (1 year) benfotiamine ther-
apy did not affect peripheral nerve function and soluble 
inflammatory markers (e.g., interleukin-6 or E-selectin) 
despite significantly increasing the whole blood levels of  
thiamine and TDP in T1DM patients[55]. This study was 
however criticized for inappropriate study design and 
definition of  end-points[55]. Several other studies in hu-
man diabetics explored various surrogate markers related 
to pathologic processes occurring in hyperglycemia, the 
results are summarized in Table 1.

CONCLUSION
Since glucose metabolism depends on thiamine as an 
enzyme cofactor, it is biologically feasible to suppose that 
adequate thiamine supplementation in diabetics might 
have a profound effect on metabolic compensation and 
thus development of  vascular complications. It could 
also possibly influence earlier stages of  abnormal glucose 
tolerance such as components of  metabolic syndrome. 
Data on surrogate markers of  endothelial dysfunction 
and cardiovascular disease indicate that thiamine could 
be of  interest also for the broader spectrum of  diseases 
apart from diabetes. While experimental studies mostly 
resulted in beneficial effects clinical studies of  appropri-
ate size and duration focusing on the effect of  thiamine 
supplementation/therapy on hard endpoints are miss-
ing at present. Moreover, it is not currently clear which 
mechanisms contribute to the deficient action of  thia-

mine most. Based on the data presented boosting solely 
plasma levels might not be the right way to go since 
intracellular TDP levels are not a mere reflection of  the 
plasma levels of  their precursor. Apparently experimental 
studies on the molecular mechanisms of  thiamine defi-
ciency in diabetes are critically needed before giving clear 
answer to diabetes community.
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Abstract
Diabetes is the sixth leading cause of death in the Unit-
ed States. To date, most research and resulting clinical 
strategies have focused on the individual with short-
term health improvements that have not been main-
tained over time. Researchers more recently have rec-
ognized the need to consider the social determinants of 
diabetes and health along with individual factors. The 
purpose of this literature review is to examine current 
understanding of the social determinants affecting dia-
betes and health. A search of medical and nursing liter-
ature was conducted using PubMed, PsychInfo, CINAHL 
and MEDLINE databases, selecting articles published 
between 2000 and 2013. Search terms included: type 
2 diabetes, social determinants, and health determi-
nants. Inclusion criteria were: English language, human 
studies, social determinants of diabetes and health, 
and research in the United States. Additional search 
methods included reference chaining of the literature. 
Twenty research articles met the inclusion criteria for 
the review and analysis and included quantitative and 
qualitative methods. All studies selected for this review 
were descriptive in nature (n  = 20). Fifteen studies 
were quantitative studies and five were qualitative 
studies. No intervention studies met inclusion criteria. 
Each study is summarized and critiqued. Study findings 
indicate that external or upstream factors consistently 

affect individuals diagnosed with diabetes, influencing 
self-management. Significant methodological limitations 
result directly from small sample sizes, convenience or 
nonprobability sampling, and low statistical power.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Social determinants; Heal-
th determinants; Research; United States

Core tip: Social determinants of health and diabetes 
need to be considered when focusing on improving 
diabetes outcomes. Future research studies should fo-
cus on testing health outcomes of people with diabetes 
within the social determinants of health framework. 
Such research is particularly significant due to high 
rates of diabetes and subsequent disease sequelae.
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INTRODUCTION
Diabetes Mellitus affects approximately 25.6 million indi-
viduals or 11.3% of  those over age 20. It is the sixth lead-
ing cause of  death in the United States[1]. Diabetes places 
the individual at risk for serious long term complications 
including blindness, cardiovascular disease, end stage 
renal disease, hypertension, stroke, neuropathy, lower 
limb amputations, and premature death[1]. Estimated an-
nual healthcare cost in 2012 for diabetes and its resulting 
complications was $245 billion[2]. Given the consider-
able differences internationally in methods of  allocating 
health care resources, systems of  funding and/or paying 
for care, and cultural attitudes to health and health care, 
the purpose of  this review of  the literature is to examine 
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current understanding of  the social determinants affect-
ing diabetes and health in the United States, and to make 
recommendations for future research.

Historically, research and resulting clinical approaches 
focusing on the individual have led to improvement in 
self-management outcomes and reduction of  cardiovas-
cular risk factors; however, these short-term improve-
ments have not been maintained over time. Researchers 
more recently have recognized the need to consider 
factors external to the individual, namely the social de-
terminants of  diabetes and health in order to achieve the 
goal of  sustainable improvement in health outcomes[3,4]. 
For example, the United States government document 
Healthy People 2020 emphasizes the social and envi-
ronmental factors that affect the individual and his/her 
health. A Healthy People 2020 goal for the diabetes 
health indicator is to “reduce the disease and economic 
burden of  diabetes mellitus, and improve the quality of  
life for all persons who have, or at risk for diabetes”[5].

Social determinants of  health are social-ecological 
factors affecting health[6]. The person, his/her social net-
work, and cultural and environmental conditions form 
the overall framework. Constructs include external/envi-
ronmental socio-ecological influences on the individual 
(Figure 1); for example, culture, environment, education, 
working conditions, access to medical care, and com-
munity infrastructure[5]. Therefore, external or upstream 
determinants such as social support and elements of  the 
community affect the health of  the individual. Specific 
socio-ecological factors identified from this literature re-
view are examined below.

Built environment/community infrastructure
Components of  the physical environment include factors 
such as transportation, neighborhood safety, and healthy 
food. When barriers to these factors are present to in-
dividuals with diabetes, inadequate access to resources 
among such disadvantaged populations means fewer 

resources are available to overcome barriers, thus effects 
are magnified[7-9]. For example, limited transportation 
in rural areas may require travel outside the local com-
munity to gain access to healthcare providers or access 
to healthy foods[6]. Urban residents may face transporta-
tion barriers such as lack of  sidewalks[9], discouraging 
individuals from walking as a form of  physical activity. 
Lack of  public transportation in rural or urban areas can 
hinder travel for access to healthcare. Lack of  neighbor-
hood safety contributes to health disparities. An example 
of  compounding factors is as follows: urban centers may 
have high crime rates with consequently fewer businesses 
and employment; reduced access to services including 
food and medical care; and diminished opportunity for 
outdoor activity including exercise[10]. Research has shown 
a relationship between improved health outcomes and ac-
cess to healthy foods[11,12]. Emerging research in the area 
of  nutraceuticals indicates that certain foods may provide 
health benefits to reduce disease process progression in 
diabetes and hyperlipidemia[12]. However, this relationship 
is a complicated one, as demonstrated by Jones-Smith et 
al[13] who found that, even with access to healthy food, 
socioeconomic status remains a strong predictor for obe-
sity among African Americans diagnosed with diabetes.

Economic stability
Research has demonstrated a direct relationship between 
socio-economic status and health outcomes; however, 
other factors may explain a degree of  variance in this 
relationship[14]. Zheng et al[14] found that education level, 
employment, and family income affect socioeconomic 
status and therefore health.

Education
Greater educational attainment has been linked with im-
proved health outcomes[15] possibly because of  a greater 
likelihood of  socio-economic stability compared to those 
with lower levels of  education. Other related factors may 
be the stability derived from marriage and/or a wider 
range of  opportunities for better employment[15]. More-
over, research has shown that individuals with higher lev-
els of  education are more likely to participate in preven-
tive healthcare including eating healthier (foods), being 
more physically active, and avoiding obesity[16].

Health care/access to medical care
Individuals may be subject to disparity in the availability 
of  healthcare resources, including access to medical care, 
based on factors such as socioeconomic status, place of  
residence, race/ethnicity, and culture. Socioeconomic 
factors include educational level which in turn influences 
health insurance status[16]. Low income inner cities and re-
mote rural regions often lack both primary and specialty 
healthcare providers, decreasing access to healthcare for 
inhabitants with chronic illnesses such as diabetes, hyper-
tension, and cardiovascular disease. Absent or inadequate 
care may result in worsening or compounding of  long-
term effects of  chronic diseases[17,18]. For example, recent 
research focusing on infants born preterm or with low 
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Figure 1  Social determinants influencing the individual’s self-manage-
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birth weight demonstrates an increase in the develop-
ment of  insulin resistance and impaired glucose tolerance 
as adults[19,20]. Lower socioeconomic status may be associ-
ated with an individual’s perception that lack of  a col-
laborative patient-provider relationship is associated with 
improved diabetes outcomes[21].

Culture/social and community support
Social support includes individuals’ “formal and infor-
mal relationships that give rise to a belief  that one is 
cared for or supported emotionally in a defined situation 
such as working toward improving health outcomes”[22]. 

Degree of  social support may vary between individuals 
and among ethnic groups; for example, research revealed 
that Hispanic individuals diagnosed with diabetes pre-
fer group medical visits for self-management support 
whereas individuals from other ethnic groups have no 
preference[23]. Just as greater social support correlates 
with improved self-management outcomes, the percep-
tion of  negative or low levels of  social support has been 
shown to increase the risk of  fewer self-management 
behaviors[24].

RESEARCH
A search of  medical and nursing literature was conducted 
using PubMed, PsychInfo, CINAHL and MEDLINE 
databases. Additional search methods included reference 
chaining of  the literature. Search terms included type 2 
diabetes, social determinants and health determinants. 
Inclusion criteria were English language, human studies, 
social determinants of  diabetes and health, and research 

in the United States. Exclusion criteria were type 1 dia-
betes, reviews, and studies not focusing primarily on 
social determinants of  diabetes and health; for example, 
biomarkers. The initial search of  the literature retrieved 
59036 articles on type 2 diabetes; 12871 articles on social 
determinants; 14866 articles on health determinants. Sixty 
one duplicate articles, one book review brief, one editorial 
commentary, and two conference proceeding abstracts 
were also excluded (Figure 2). Twenty articles met criteria 
for the review (Table 1).

Twenty articles met the inclusion criteria for the re-
view and analysis. All studies selected for this review were 
descriptive in nature (n = 20). Fifteen studies were quanti-
tative studies and five were qualitative studies[25-29,32-44]. Al-
though sample size ranged from 15 to 81917 participants, 
many samples were fewer than one hundred subjects. All 
studies focused on individuals diagnosed with diabetes. 
There were no interventional or randomized control 
trial studies. The majority were cross-sectional, collecting 
data only once. For quantitative studies, two were mixed 
methods, including a survey and interview; five were 
secondary data analysis, and eight were surveys. Qualita-
tive studies used either focus groups or individual semi-
structured interviews (n = 5). Fourteen studies focused 
on social determinants from the patient or client per-
spective; three studies focused both on staff/healthcare 
provider and patient/client, while three studies viewed 
social determinants of  health from the perspective of  the 
healthcare provider alone. All studies focused on one or 
more of  the constructs of  social determinants of  health: 
built environment, economic stability, health care, or cul-
ture/social support.

Built environment/community infrastructure
Authors of  four articles discussed the built environment 
and community infrastructure. Research studies used pur-
posive sampling, limiting the generalizability of  findings 
to other populations. Three studies focused on popula-
tions known to have a disproportionate burden of  type 2 
diabetes, including African Americans and Hispanic/La-
tino. The built environment was a stronger predictor of  
health outcomes than race. Three studies[25-27] reported on 
upstream social determinants and the influence on food 
environments for at risk immigrant Hispanic population. 
Findings included high rates of  poverty with 60% of  liv-
ing below United States definition of  poverty and 40% 
living at 170% below federal poverty level. Educational 
attainment was less than the United States average with 
80% of  individuals not entering college. Thirty-three per-
cent had not completed elementary school. In compari-
son the national United States rate of  high school com-
pletion is 89.9% in 2010[25]. One study focused on Asian 
Americans. No studies included American Indians or 
Pacific Islanders. Two studies were community-based, fo-
cusing on food environment and access to healthy food. 
Transportation was discussed in three articles as a barrier 
to access both healthcare and healthy food. Research par-
ticipants reported lack of  access to quality, quantity, and 
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                       Initial Search
Databases: PubMed, PsychINFO, CINAHL, Medline
Terms: type 2 diabetes (n  = 43501)
           Social determinants (n  = 1463)
           Health determinants (n  = 516)

                     Total = 219 articles

Step 1 abstract review

Excluded (n  = 121)
  Not focused on social determinants
  of diabetes and health

Included (n  = 98)

Step 2 article review and analysis

Excluded (n  = 78)
  Duplication of included articles
  Not related to the scope of the study
  (Non-United States, non-research)

Included (n  = 20)
  Peer reviewed
  Published in English
  United States
  Original research

Figure 2  Manuscript selection for systematic review of the social determi-
nants of diabetes and health.
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American populations[26,34,37]. Findings included individual 
acknowledgement that economic distress in diabetes self-
management was important however, factors were also 
identified as sources of  additional strength for individu-
als diagnosed with diabetes. Sources of  support included 
culture and/or social support[26,34]. The influences of  
economic factors by race/ethnicity on diabetes outcomes 
were non-conclusive. Therefore, economic stability may 
be a strong determinant of  diabetes and health regardless 
of  race/ethnicity. Studies focused on target populations, 
limiting to selected urban regions for study.

Health care/access to medical care
There were nine studies found in which researchers ex-
amined the role of  health care and/or access to medical 
care within the social determinants of  diabetes and health 
framework. One study compared patients’ and health-
care providers’ perspectives on diabetes management[32]. 
Another research report examined healthcare providers’ 
perception of  patient barriers to diabetes management[29]. 
The remaining seven articles focused on the patient’s 
perceptions of  healthcare related to diabetes manage-
ment and barriers to care. Sample size for the patient-
only studies ranged from 13 to 81917. Eight studies 
were cross-sectional descriptive in design, and one was a 
secondary data analysis from the Behavioral Risk Factor 
Surveillance System. Most researchers reported that pa-
tients viewed their health in a more positive light than did 
providers based on medical record reviews. The concerns 
of  healthcare provider included the costs associated with 
diabetes management[29,32]. Patient-provider communica-
tion varied among patients. Three articles focused on 
positive health outcomes with open patient-provider 
communication[31,40,43]. One article described physicians 
as often initiating communication about medication ad-
herence, whereas patients were hesitant to initiate com-
munication with physicians relating to medication burden 
and costs[28]. This may, in part, explain perceived lack of  
patient medication adherence which increases the po-
tential for poorer health outcomes. One qualitative study 
described patients’ preference for diabetes care teams in 
which the team’s link between patient and physician was 
a nurse[31]. Two studies demonstrated increased quality 
of  life and better glycemic control with positive patient-
provider communication[40,43]. However, when looking at 
diabetes prevention and knowledge, two studies reported 
the need for provision of  diabetes education focusing on 
basic management and the need for discussion of  weight 
management or weight loss for diabetes prevention[33,41].

Culture/social and community support
Seven articles met the inclusion criteria focusing on the 
constructs of  culture and community support. Four of  
the seven researchers reported on cross-sectional surveys, 
one study involved focus groups in a community setting, 
one study used a phenomenological method of  analysis, 
and one used mixed methods incorporating a computer 
diary and individual interviews. Two of  the seven articles 

included healthcare provider perceptions. Of  these two 
articles, one had a sample of  both patient and healthcare 
provider. Sample size for the seven articles ranged from 
12 to 273. Two articles focused on cultural determinants 
of  diabetes and health in Latino/Hispanic populations. 
Cultural beliefs in Hispanic populations included the be-
lief  that diabetes was caused by increased stress[30]. The 
authors noted that the discovery of  this belief  provides 
an opportunity for healthcare providers or trusted com-
munity sources to provide education to increase diabetes 
knowledge. Three articles focused on the traditional roles 
of  gender and culture, whereby married women pro-
vided increased support to their spouse when he voiced 
concerns about diabetes and health[26,36,39]. One article 
focusing on Korean Americans found that women had 
an increase in unmet needs when providing support for 
their spouses, which negatively affected their diabetes 
self-care[36]. Two articles discussed social support or social 
networks as positive influences for diabetes self-man-
agement and health[26,32]. However, one article described 
African American patients’ concern about their diabetes 
management and health when multiple members of  their 
social network were diagnosed with diabetes or experi-
enced complications of  diabetes[35]. One article discussed 
healthcare providers’ perceived barriers in rural health-
care settings[29], pointing out an apparent lack of  cultur-
ally appropriate educational materials within healthcare 
clinic settings.

CONCLUSION
This critique of  the literature about social determinants 
of  diabetes and health focused on research of  United 
States populations published between 2000 and 2013. 
A total of  20 research studies met established criteria. 
All 20 studies identified for this review were descriptive. 
The majority of  studies were published in journals with a 
focus on public health or nursing. Results of  this review 
are useful for health professionals who develop programs 
and/or interventions for people diagnosed with diabetes 
because evidence indicates that social determinants affect 
patient adherence, effectiveness of  treatments, and over-
all health outcomes.

Study findings indicate that external or upstream fac-
tors prominently affect individuals diagnosed with diabe-
tes, in part by influencing self-management and in turn 
exerting lasting effects on long-term diabetes and health 
outcomes. The most significant methodological limita-
tions of  the studies examined result directly from small 
sample size, convenience or nonprobability sampling, and 
low statistical power. Methodological limitations of  stud-
ies included in this review also include a lack of  interven-
tion studies. Future research needs to include community-
based intervention studies focusing on the reduction of  
diabetes disparities and improvement of  health outcomes 
within the social determinants of  health framework. Such 
research is particularly needed given the high rates of  dia-
betes and subsequent disease sequelae. Cultural tailoring 
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of  diabetes prevention educational materials and cultural 
tailoring of  education in group settings may afford the 
means to increase patients’ knowledge of  the disease for 
earlier diagnosis and earlier intervention to prevent dia-
betes complications. Encouragement of  spousal support 
within the construct of  acknowledging cultural norms 
may provide a means for improving diabetes outcomes 
and health. The influence of  social determinants of  
health on diabetes outcomes needs to be tested in in-
tervention studies to provide a foundation for effective 
interventions to impact the current epidemic of  diabetes 
in the United States and around the globe. Prospective 
interventional studies evaluating the influence of  social 
determinants will be key to lay a foundation for effective 
interventions and improvement of  diabetes and health 
outcomes.
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Abstract
Type 2 diabetes mellitus is a metabolic disorder of 
deranged fat, protein and carbohydrate metabolism 
resulting in hyperglycemia as a result of insulin resis-
tance and inadequate insulin secretion. Although a 
wide variety of diabetes therapies is available, yet lim-
ited efficacy, adverse effects, cost, contraindications, 
renal dosage adjustments, inflexible dosing schedules 
and weight gain significantly limit their use. In addi-
tion, many patients in the United States fail to meet the 
therapeutic HbA1c goal of < 7% set by the American 
Diabetes Association. As such new and emerging diabe-
tes therapies with different mechanisms of action hope 
to address some of these drawbacks to improve the 
patient with type 2 diabetes. This article reviews new 
and emerging classes, including the sodium-glucose 

cotransporter-2 inhibitors, 11β-Hydroxysteroid dehy-
drogenase type 1 inhibitors, glycogen phosphorylase 
inhibitors; protein tyrosine phosphatase 1B inhibitors, G 
Protein-Coupled receptor agonists and glucokinase acti-
vators. These emerging diabetes agents hold the prom-
ise of providing benefit of glucose lowering, weight 
reduction, low hypoglycemia risk, improve insulin sensi-
tivity, pancreatic β cell preservation, and oral formula-
tion availability. However, further studies are needed 
to evaluate their safety profile, cardiovascular effects, 
and efficacy durability in order to determine their role 
in type 2 diabetes management.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes mellitus; Sodium dependent 
glucose co-transporter 2 inhibitors; 11β-Hydroxysteroid 
dehydrogenase type 1 inhibitors; Glycogen phosphory-
lase inhibitors; Protein tyrosine phosphatase 1B inhibi-
tors; G protein-coupled receptor agonists; Glucokinase 
activators

Core tip: Type 2 diabetes mellitus is a metabolic dis-
order of deranged fat, protein and carbohydrate me-
tabolism resulting in hyperglycemia. Limited efficacy, 
adverse effects, cost, contraindications, renal dosage 
adjustments, inflexible dosing schedules and weight 
gain significantly limit the use of currently available an-
ti-hyperglycemic agents. In the past, drug researchers 
targeted defects of pancreatic β-cell failure and insulin 
resistance, but more recent attention has shifted to 
other contributing factors. This article reviews new and 
emerging diabetes classes, including the sodium-glu-
cose cotransporter-2 inhibitors, 11β-Hydroxysteroid de-
hydrogenase type 1 inhibitors, glycogen phosphorylase 
inhibitors, protein tyrosine phosphatase 1B inhibitors, 
G protein-coupled receptor agonists, and glucokinase 
activators.
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INTRODUCTION
Type 2 diabetes mellitus is a metabolic disorder of  de-
ranged fat, protein and carbohydrate metabolism result-
ing in hyperglycemia from insulin resistance and inade-
quate insulin secretion, which can cause complications of  
nephropathy, retinopathy, neuropathy, and cardiovascular 
disorders[1,2].

Diabetes mellitus is an epidemic in the United States 
and the world. According to the International Diabetes 
Federation’s 2013 statistics, 382 million people worldwide 
have diabetes, which is estimated to increase to 592 million 
by 2035[3]. The Centers for Disease Control and Preven-
tion estimates 79 million Americans have pre-diabetes and 
approximately 26 million have diabetes mellitus of  which 
seven million of  these are still undiagnosed[4].

Despite a wide variety of  available food and drug as-
sociation (FDA) approved oral and injectable diabetes 
therapies, limited efficacy, adverse effects, cost, contra-
indications, renal dosage adjustments, inflexible dosing 
schedules and weight gain significantly limit their use[5,6].

In addition, less than 50% of  patients with type 2 dia-
betes in the United States achieve the HbA1c goal of  < 
7% set by the American Diabetes Association[7].

Currently available oral agent classes include sulfonyl-
ureas, meglitinides, biguanide, α-glucosidase inhibitors, 
dipeptidyl peptidase-4 (DPP-4) inhibitors, dopamine 
agonist, bile acid sequestrant, thiazolidinediones and their 
combinations. Injectable agents include insulin, amylin 
analogue and incretin mimetics.

In the past, drug researchers and manufacturers target-
ed the primary pathophysiologic defects in type 2 diabetes 
of  pancreatic β-cell failure and insulin resistance, but more 
recent attention has shifted to other contributing factors 
including increased glucose reabsorption by the kidneys, 
and the contributing effects to hyperglycemia by glucagon, 
glucocorticoid, glycogen, 11β-Hydroxysteroid dehydro-
genase-2 and others. As such new and emerging diabetes 
therapies with new mechanisms of  action hope to address 
these contributing pathophysiologic defects and offer new 
approaches in order for the patient to achieve therapeutic 
goals[1,6]. Table 1 lists the new and emerging drug therapy 
and approaches[8].

An ideal antihyperglycemic agent will be a safe, toler-
able, efficacious, cost effective oral agent with a flexible 
dosage schedule providing clinically significant weight 
loss with cardiovascular and mortality benefits. This ar-
ticle reviews several new classes of  antihyperglycemic 
agents, including the sodium-glucose cotransporter-2 
inhibitors (which are furthest along in development); 
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD-1) 
inhibitors, glycogen phosphorylase inhibitors, protein 

tyrosine phosphatase 1B inhibitors, G Protein-Coupled 
receptor agonists and glucokinase (GK) activators.

SODIUM DEPENDENT GLUCOSE 
CO-TRANSPORTER 2 INHIBITORS
Kidney and sodium dependent glucose co-transporter 2 
transporters
Glucose homeostasis involves the liver, pancreas and 
the kidney[9]. Glucose transporter proteins (GLUT) and 
sodium-dependent glucose co-transporters (SGLT) are 
responsible for glucose transportation across the plasma 
membrane into cells[10].

Over the course of  24 h, the kidney filters 180 g of  
glucose while only 500 mg is excreted in the urine, and 
the rest is reabsorbed as it flows from the glomerulus 
to the proximal convoluted tubules then to the blood-
stream[10]. GLUTs and SGLTs are involved in this glucose 
reabsorption and active transportation of  glucose across 
cell membranes against concentration gradients[10,11].

SGLT-1 is responsible for 10% of  glucose uptake and 
is expressed in the heart, skeletal muscle, gastrointestinal 
tract, liver, lung and the S3 segment of  the proximal tu-
bule of  the kidney, while SGLT-2 is responsible for 90% 
of  glucose uptake and is expressed in the S1 segment of  
the proximal tubule of  the kidneys[11,12].

In addition to the reabsorption of  approximately 99% 
of  glucose, recent studies show the kidney takes up lac-
tate, glutamine, glycerol, and alanine and converts them 
to glucose by the process of  gluconephrogenesis, which 
can account for about 20% of  all glucose released into 
the circulation and nearly 90% of  the glucose released by 
the kidney[13].

The SGLT-2 inhibitors inhibit SGLT-2, which in-
creases renal excretion of  glucose thus reducing glucose 
in the plasma. Due to the minimal glucose uptake by 
SGLT-1 and the important roles of  SGLT-2 in glucose 
reabsorption, several researchers and manufacturers have 
turned their attention to SGLT-2 inhibitors for treating 
hyperglycemia[14-16]. There are several SGLT-2 inhibitors 
in varying phases of  studies including dapagliflozin, em-
pagliflozin, ipragliflozin, ertugliflozin, luseogliflozin, tofo-
gliflozin and LX4211[6,17].

The FDA approved canagliflozin (Invokana®) to treat 
type 2 diabetes based on the agreement that post market-
ing studies will be completed for evaluating cardiovascu-
lar outcomes, malignancies, severe pancreatitis, hypersen-
sitivity and photosensitivity reactions; liver abnormalities, 
adverse events during pregnancy, bone safety, and two 
pediatric studies under the Pediatric Research Equity Act 
CR[18].

Dapagliflozin was approved in Europe, Australia, Bra-
zil, Mexico and New Zealand as Forxiga®, but the FDA 
initially delayed its approval as there were concerns of  
increased breast and bladder cancer in patients taking the 
drug compared to placebo[19].

In January 2014, the FDA approved dapagliflozin 
as Farxiga® with six postmarketing studies including a 
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cardiovascular outcomes trial (CVOT) to evaluate the 
cardiovascular risk in patients with high cardiovascular 
disease risk and the evaluation of  bladder cancer risk in 
patients enrolled in the CVOT[20].

Although there are several SGLT-2 inhibitors in 
varying phases of  development, canagliflozin and dapa-
gliflozin will be presented here due to availability of  hu-
man safety and efficacy data.

Canagliflozin (invokana®) clinical trials
Wilding et al[14] designed a randomized, double-blind, 
placebo-controlled, phase 3, multicenter, 52-wk study to 
evaluate the safety and efficacy of  canagliflozin added 
to metformin plus sulphonylurea in patients with type 2 
diabetes.

The trial, called CANagliflozin Treatment And Trial 
Analysis-Metformin plus SUIphonylurea, included pa-
tients if  they were 18-80 years with type 2 diabetes, who 
were stable on maximum or near maximum dosages of  
metformin and sulfonylureas with an A1c ≥ 7% and ≤ 
10.5%[14].

The primary efficacy endpoint was A1c change from 
baseline to 26 wk. The secondary end points included 
change in baseline A1c at 52-wk, change in baseline in 
fasting plasma glucose (FPG), systolic blood pressure 
(BP), percent change in body weight, triglycerides, and 
high density lipoprotein (HDL) cholesterol, and percent 
patients reaching A1c 7%[14]. The investigators evaluated 
safety by observing adverse event reports, vital signs and 
laboratory tests[14]. Patients were randomized to receive 

either 100 mg or 300 mg canagliflozin or placebo in addi-
tion to their metformin and sulphonylurea therapies[14].

Results of  the study show that 381 (81%) of  469 
patients, who were randomized to the study, completed 
the 52-wk study. By week 26, the A1c was significantly re-
duced in the canagliflozin 100 mg and 300 mg study arm 
to -0.85% and 1.06% which was statistically significant 
compared to baseline and the A1c was sustained over 
the entire 52 wk study period[14]. Results are presented 
in Table 2[14]. FPG was significantly improved at 26 wk 
and 52 wk with both canagliflozin 100 mg and 300 mg 
compared to placebo. Canagliflozin significantly reduced 
weight but there were no significant changes with systolic 
blood pressure, pulse or cholesterol parameters[14].

Safety profile and adverse events: Although investiga-
tors reported that adverse effects were higher with cana-
gliflozin than placebo, they were comparable across the 
treatment groups. Patients on canagliflozin had higher 
rates of  genital mycotic infections compared to placebo, 
which were described as mild to moderate in severity[14]. 
Patients who developed a mycotic infection, especially 
women, had a prior history of  genital mycotic infections 
compared to those women who received canagliflozin 
and did not have adverse effects[14]. Genital mycotic in-
fections were treated without interrupting canagliflozin 
therapy[14].

Canagliflozin compared to sitagliptin
Canagliflozin has been shown to be non-inferior to sita-
gliptin and in another analysis superior to sitagliptin with 
regard to lowering of  A1c[16].

In a randomized, double-blind, active-control, multi-
center, phase three, 52-wk study, Schernthaner evaluated 
the efficacy and safety of  canagliflozin 300 mg compared 
with sitagliptin 100 mg as add-on therapy in patients with 
type 2 diabetes mellitus inadequately controlled with met-
formin and a sulfonylurea[16].

The inclusion criteria were similar to the previously 
described study, and patients were randomized to receive 
either 300 mg canagliflozin or 100 mg sitagliptin[16]. The 
primary efficacy endpoint was A1c change from baseline 
to 52 wk while the secondary endpoints were similar to 
the previously described study[16].

Results of  the study show that 464 (61%) of  755 
patients, who were randomized to receive either cana-
gliflozin 300 mg or sitagliptin 100 mg daily, completed 
the study. Most of  the withdrawals were observed in 
the sitagliptin therapy arm of  the trial due to the lack of  
glycemic rescue therapy[16]. Canagliflozin demonstrated 
both noninferiority and in another analysis, showed supe-
riority to sitagliptin 100 mg in reducing A1c (-1.03% and 
-0.66%, respectively). There were greater reductions with 
canagliflozin vs sitagliptin in FPG, body weight, and sys-
tolic BP. More patients on canagliflozin compared with 
sitagliptin achieved A1c < 7.0%, and A1c < 6.5% at week 
52, though the authors did not confirm statistical signifi-
cance[16]. Results are presented in Table 3[16].
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Table 1  Emerging classes of medications and approaches[8]

SGLT inhibitors
11β-HSD-1 inhibitors
GKA
AMPK agonists
SIRT activators
PTP-1B inhibitors
GCGR antagonists
GR antagonists
Novel insulin sensitizers
GPR119 agonists
Other drugs augmenting GLP-1 secretion: GPR40, G-protein coupled 
bile acid receptor (TGR5) agonists
Acyl-CoA: DGAT1 inhibitors
FGF-21-receptor agonists
Ranolazine
Other glucometabolic approaches
Other metabolic approaches
Anti-inflammatory approaches
Induction of immune tolerance
Pancreatic beta cell protection and regeneration
Pancreatic islet cell transplantation
Various antidiabetic approaches

SGLT: Sodium-dependent glucose co-transporter; 11beta-HSD-1: 11beta-
hydroxysteroid dehydrogenase type 1; GKA: Glucokinase activators; 
AMPK: Adenosine monophosphate activated protein kinase; SIRT: Sirtuin; 
PTP-1B: Protein tyrosine phosphatase-1B; GCGR: Glucagon receptor; GR: 
Glucocorticoid receptor; GPR119: G-protein coupled receptor 119; GLP-1: 
Glucagon like peptide-1; Acyl-CoA: Acyl-coenzymeA; DGAT1: Diacylg-
lycerol acyltransferase1; FGF-21: Fibroblast growth factor-21.
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randomized parallel-group, double-blind, placebo-con-
trolled study to evaluate the safety and efficacy of  dapa-
gliflozin. The primary objective was to compare the mean 
change from baseline A1c in type 2, treatment-naïve adult 
patients (age 18-79) with A1c ≥ 7% and ≤ 10%[23].

Patients were randomly assigned to one of  five once-
daily dapagliflozin doses (2.5, 5, 10, 20 or 50 mg), metfor-
min XR (750 mg force titration to 1500 mg) or placebo. 
Investigators also evaluated changes in FPG, weight, and 
adverse effects[23].

Results of  the study show that 348 (89%) of  389, 
who were randomized to the study completed the study 
at week 12[23]. At the end of  the study, dapagliflozin had 
statistically significant mean dose-dependent reduction 
of  A1c from -0.55% to -0.90% when compared with 
placebo -0.18% but not with metformin of  -0.73%[23]. 

Dapagliflozin also had significant reduction in FPG of  
-16 to -31 mg/dL compared to 6 mg/dL with placebo 
and -18 mg/dL with metformin[23]. Dapagliflozin caused 
a weight loss change of  -1.3 to 2 kg[23]. In this trial, dapa-
gliflozin did not demonstrate any renal function chang-
es[23]. The percentage of  patients achieving A1c < 7% was 
40%-59% for the dapagliflozin group vs 32% for placebo 
and 54% for metformin[23]. Hypoglycemia was reported 
in 6%-10% of  patients treated with dapagliflozin but this 
was not dose related, compared to 4% of  placebo pa-
tients and 9% of  metformin-treated patients[23].

Dapagliflozin in combination with metformin
Henry et al[24] conducted two randomized, double-blind, 

Safety profile and adverse events: There were no dif-
ferences in adverse effects, hypoglycemia or discontinua-
tion of  therapy between treatment groups. Nevertheless, 
canagliflozin had higher rates of  genital mycotic infec-
tions (vulvovaginitis in females and balanitis in males) 
compared to sitagliptin[16]. In other studies, canagliflozin 
is implicated in urinary tract infections, hypoglycemia and 
gastrointestinal upset when used alone or in combination 
with other antihyperglycemic therapy[21].

Canagliflozin was associated with a dose dependent 
increase in serum creatinine, decrease in estimated glo-
merular filtration rate, renal impairment, and acute failure 
in patients especially those with moderate renal impair-
ment and hypovolemia[22].

 Canagliflozin 100-300 mg is recommended for pa-
tients with creatinine clearance > 60 mL/min per 1.73 m2 
and canagliflozin 100-mg is recommended for patients 
with creatinine clearance of  45-60 mL/min per 1.73m2[22]. 
Canagliflozin is not recommended in patients with cre-
atinine clearance of  30-44 mL/min per 1.73 m2

, and it 
is contraindicated in patients with creatinine clearance 
of  < 30 mL/min per 1.73m2[22]. Clinicians should assess 
patients’ renal functions when initiating therapy and for 
long term drug monitoring. This agent will be a safe and 
efficacious addition to a dual therapy regimen such as 
metformin and sulfonylurea based on this study[16].

DAPAGLIFLOZIN AS MONOTHERAPY
List et al[23] designed a prospective, dose ranging 12-wk, 
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Table 2  Results of phase 3, CANagliflozin treatment and trial analysis-metformin plus SUIphonylurea, n  = 469[14]

Parameters Canagliflozin 100 mg Canagliflozin 300 mg Placebo Comments

A1c (%) week 26 -0.85     -1.06    -0.13 P < 0.001
A1c (%) week 52 -0.74     -0.96    -0.01 P < 0.001
% Patients with A1c < 7% week 26  43.2  56.6 18.0 P < 0.001
% Patients with A1c < 7% week 52  39.4  52.6 18.7 P < 0.001
FPG (mg/dL) week 26 -21.6 -34.2 - P < 0.001
FPG (mg/dL) week 52 -28.8 -37.8 - P < 0.001
Weight -1.10   -1.7 - P < 0.001
Change in systolic blood pressure (mmHg) -2.20   -1.6 - Non significant
Change in pulse (beats/min)  0.90   -1.2  -0.4 Non significant

A1c: Hemoglobin A1c; FPG: Fasting plasma glucose.

Table 3  Results of canagliflozin compared with sitagliptin for patients with type 2 diabetes: (n  = 755)[16]

Parameters Canagliflozin 300 mg Sitagliptin 100 mg Comments

A1c (%) week 52     -1.03   -0.66 Non inferiority to sitagliptin (upper limit of the 
95%CI < 0.3%) and superiority to sitagliptin (upper 

limit of the 95%CI < 0.0%)
Percent (%) of patients with A1c < 7% at week 52  47.6 35.3 Not significant
Percent (%) of patients with A1c < 6.5% at week 52  22.5 18.9 Not significant
FPG (mg/dL) week 26 -29.9   -5.9 P < 0.001
Weight (kg)   -2.3   -0.1 P < 0.001
Change in systolic blood pressure (mmHg)   -5.1      0.9 P < 0.001
Change in diastolic blood pressure (mmHg)   -3.0   -0.3 Not significant

A1c: Hemoglobin A1c; FPG: Fasting plasma glucose.
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three-arm 24-wk trials to compare the combination of  
dapagliflozin plus metformin vs dapagliflozin mono-
therapy and metformin monotherapy to determine if  the 
combination would be an advantage for treatment naïve 
type 2 diabetes patients with high baseline A1c.

Study 1 compared dapagliflozin 5 mg in combination 
with metformin XR, dapagliflozin 5 mg in combination 
with placebo, and metformin XR plus placebo. Study 
2 compared dapagliflozin 10 mg in combination with 
metformin XR, dapagliflozin 10 mg in combination with 
placebo, and metformin XR plus placebo[24].

Eligible patients had a baseline A1c 7.5%-12%, and 
the primary endpoint was a change in A1c from baseline 
while the investigators also evaluated the change in FPG 
and weight as secondary endpoints[24].

Results show that in both trials, the combination of  
dapagliflozin and metformin resulted in significantly 
lower reductions in A1c compared with either metformin 
or dapagliflozin monotherapy[24]. Results of  the study are 
presented in Table 4[24]. The combination therapy was sta-
tistically superior to monotherapy in reduction of  FPG 
and was more effective than metformin for weight reduc-
tion. Dapagliflozin 10 mg was non-inferior to metformin 
in reducing A1c in study 2[24].

Safety profile and adverse events: Adverse effects of  
mild to moderate cases of  genital infection of  vulvo-
vaginitis and balanitis and urinary tract infections were 
reported and treated without discontinuing the study[24]. 
There were no major hypoglycemic events reported. 
Diarrhea was more common in patients on combination 
therapy with metformin than with dapagliflozin therapy 

alone[24].

Summary of  SGLT-2 inhibitors: Canagliflozin and 
dapagliflozin have been shown to lower renal threshold 
for glucose in a dose dependent fashion by increasing 
urinary glucose excretion through SGLT-2 inhibition, 
which leads to clinical significant reduction in A1c, FPG, 
and body weight[14,24]. The reduction in renal threshold 
is above the threshold for hypoglycemia demonstrating 
this agent has a low risk of  hypoglycemia[17]. The SGLT-2 
inhibitors can be used with any other agent whether in a 
treatment naïve patient or a patient with a long history of  
type 2 diabetes[22,23,25]. Both therapies are safe and toler-
able, but clinicians need to observe for genital infections, 
which can be easily treated without discontinuation of  
therapy.

METABOLIC APPROACHES TO THERAPY
11β-HSD-1 inhibitors
High levels of  glucocorticoids have been associated 
with hyperglycemia, insulin resistance, dyslipidemia and 
visceral obesity[4]. 11β-HSD is an enzyme, presenting as 
two distinct isoenzymes: 11β-HSD-1 and 11β-HSD-2. 
11β-HSD-1 is found in the liver and adipose tissue 
and converts inactive cortisone to active cortisol while 
11β-HSD-2 is found primarily in the kidneys and colon 
and it inactivates glucocorticoids by converting active cor-
tisol to inactive cortisone[4,26].

It has been suggested that the increased glucocorti-
coid activity in the white adipose tissue by 11β-HSD-1 is 
a key player in the development of  visceral obesity, insu-
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Table 4  Dapagliflozin in combination with metformin[24]

Study 1 Study 2

Parameters DAPA 5 ± MET DAPA 5 ± PBO MET ± PBO DAPA 10 ± MET DAPA 10 ± PBO MET ± PBO
A1c at 24 wk (%)
   Baseline (n)    9.21 (185)       9.14 (196)       9.14 (195)     9.1 (202)        9.03 (216)      9.03 (203)
   A1c (%) at 24 wk (baseline change)    7.13 (-2.05)       7.96 (-1.19)       7.79 (-1.35)     7.1 (-1.98) 7.59 (-1.45) 7.6 (-1.44)
   DAPA ± MET vs DAPA -0.86 (-1.11, -0.62) -0.53 (-0.74, -0.32)
   P value < 0.0001 < 0.0001
   DAPA ± MET vs MET -0.70 (-0.94, -0.45) -0.43 (-0.75, -0.33)
   P value < 0.0001 < 0.0001
Patients with A1c < 7% at 24 wk
   n (%) 96/185 (52.4%) 46/196 (22.5%) 68/195 (34.6%) 92/202 (46.6%)   69/216 (31.7%) 72/203 (35.2%)
   DAPA ± MET vs DAPA              29.9 22.5 14.9
   P value < 0.0001         0.0012
   DAPA ± MET vs MET              17.8 11.3
   P value < 0.0001         0.0165
Plasma glucose at 24 wk (mg/dL)
   Baseline FPG (mg/dL)  193.14 (n = 192)  190.62 (n = 203)  196.56 (n = 200) 189.36 (n = 209) 197.28 (n = 216)  189.72 (n = 207)
   FPG after 24 wk (baseline change)      132.3 (-61.02)       150.3 (-41.94)       161.1 (-33.48) 130.86 (-60.3) 147.6 (-46.44)  156.42 (-34.74)
   DAPA ± MET vs DAPA -19.08  -13.86
   P value < 0.0001 < 0.0001
   DAPA ± MET vs MET -27.54  -25.56
   P value < 0.0001 < 0.0001
Total body weight at 24 wk (kg)
   Baseline weight (n)   84.24 (192)  86.20 (203)  85.75 (200)  88.56 (209)      88.53 (219)    87.24 (208)
   Change from baseline -2.66 (-3.14, -2.19) -2.61 (-3.07, -2.15)  -1.29 (-1.76, -0.82) -3.33 (-3.80, -2.86) -2.73 (-3.19, -2.27) -1.36 (-1.83, -0.89)

DAPA: Dapagliflozin; MET: Metformin; PBO: Placebo; FPG: Fasting plasma glucose; A1c: Hemoglobin A1c.
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lin resistance, diabetes, type 2 diabetes, dyslipidemia and 
hypertension in mice[27]. Increased levels of  11β-HSD-1 
in adipose tissue produce a metabolic syndrome in mice 
while 11β-HSD-1 deficiency or inhibition has beneficial 
metabolic effects on liver metabolism[27].

In humans, researchers discover that though patients 
with glucocorticoid excess develop central obesity, yet the 
circulating glucocorticoid levels are normal. The metabol-
ic syndrome resembles Cushing’s syndrome, but without 
the elevated circulating glucocorticoid levels. Researchers 
suggest that it is the increased activity of  11β-HSD-1 in 
humans, which is metabolizing cortisol from cortisone 
within adipose tissue that may play a major role in the 
pathophysiology of  obesity[28]. Inhibition of  this enzyme 
may potentially decrease weight and blood glucose.

Non selective 11β-HSD-1 inhibitors
Older non-selective 11β-HSD-1 inhibitors such as li-
quorice and its active metabolite glycyrrhizic and glycyr-
rhetinic acids inhibit both 11β-HSD-1 and 11β-HSD-2 
enzymes[29].

Ingesting liquorice and glycyrrhizic or glycyrrhetinic 
acids have been shown to produce a type of  “mineralo-
corticoid excess” syndrome, hypertension encephalopa-
thy, and hypokalemic paralysis[29]. It can also cause weight 
loss, sodium retention, potassium loss, and hypertension 
through the inhibition of  11β-HSD-2[29].

Carbenoxolone, a non-selective 11β-HSD-1 inhibitor 
and product of  liquorice reduces glucose concentrations 
and increases weight loss; inhibits hepatic triglyceride 
production, inhibits lipolysis, and increase HDL-C levels, 
but also causes sodium retention, potassium loss, and hy-
pertension by inhibiting 11β-HSD-2[29].

Vitamin A enriched diets also decrease fat and improve 
insulin sensitivity in animals and humans as it may inhibit 
11β-HSD-1 and mRNA[29]. These non-selective agents 
were evaluated in small trials with short durations[29].

Several 11β-HSD-1 inhibitors have been developed 
and are being tested for patients with obesity and dia-
betes, including INCB013739, MK0916, PF915275, 
AMG221 produced by a variety of  manufacturers. 
Results from INCB013739 clinical studies show that 
11β-HSD-1 inhibitors when administered to patients 
with type 2 diabetes for 2 wk prevented the conversion 

of  oral cortisone to cortisol, decreased hepatic gluconeo-
genesis, decreased fasting plasma glucose and low density 
lipoprotein cholesterol[30].

Clinical trial of INCB13739 (a 11β-HSD-1 inhibitor)
Rosenstock et al[30] evaluated the efficacy and safety of  the 
agent INCB13739 (an 11β-HSD-1 inhibitor) for patients 
with type 2 diabetes, who were inadequately controlled 
on a mean dosage of  1.5 g daily of  metformin therapy.

The study was a double-blind, placebo-controlled 
parallel study conducted with 302 type 2 diabetes mel-
litus patients on metformin therapy with an A1c of  7% 
to 11%[30]. Patients received one of  five dosages (5, 15, 
50, 100 or 200 mg) of  INCB13739 or placebo once daily 
for 12 wk in addition to metformin. The primary end 
point was a change in A1c at the end of  12 wk. Investiga-
tors also reviewed FPG, lipids, weight loss, and adverse 
events[16,30]. Patients had a mean duration of  type 2 dia-
betes of  6.2 years with baseline body mass index of  32.4 
kg/m2, A1c 8.3% and FPG 173 mg/dL[30].

Results of  the study show that 228 of  302 (75%) 
patients completed the study[30]. At the end of  the study, 
INCB13739 resulted in a dose dependent reduction in 
A1c of  -0.38% and -0.47% in the 100 mg and 200 mg 
groups respectively[30]. However, it was noted that there 
were more significant A1c changes in obese patients on 
the higher dosages[30]. In addition, those with A1c > 8% 
had more significant decrease in A1c which was dos-
age dependent[30]. Results of  the study are presented in 
Table 5[30]. The investigators reported that at the end of  
12 wk, 25% of  patients who were randomized to the 100 
mg and 200 mg therapy groups achieved an A1c < 7% 
compared to 9.5% of  placebo patients[30]. FPG decreased 
in a dose and time dependent fashion in the 100-200 mg 
treatment groups while there was significant weight loss 
in the 15, 100 and 200 mg groups[30]. The investigators 
reported that this study group had generally controlled 
blood pressure and plasma lipids at baseline but there was 
a modest dose dependent decrease in total cholesterol 
-7 mg/dL (ptrend = 0.026) from baseline in the 200 mg 
group[30]. There was no significant difference with HDL 
cholesterol[30].

Safety profile and adverse events: The therapy was well 
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Table 5  Efficacy assessment of INCB13739 in combination with metformin[30]

Placebo 5 mg 15 mg 50 mg 100 mg 200 mg

Baseline A1c (%)       8.3 ± 1        8.2 ± 1       8.3 ± 1       8.3 ± 1       8.2 ± 1       8.2 ± 1
LS mean change A1c (%) from baseline     0.09 ± 1    -0.21 ± 1b,e    -0.11 ± 1    -0.09 ± 2   -0.38 ± 1a,e     0.47 ± 1d,h

A1c > 8% (n) -0.10 ± 0.2 (23) -0.39 ± 0.2e (23) -0.24 ± 0.2 (18)   -0.65 ± 0.3b,e (11)   -0.72 ± 0.2a,e (16) 0.65 ± 0.2 (19)
A1c (%) for BMI > 30 mg/m2 (n)  0.17 ± 0.1 (29)  -0.24 ± 0.2b,f (23) -0.10 ± 0.2 (26) -0.25 ± 0.2b (18) -0.36 ± 0.2a (26)   -0.76 ± 0.2d,h (18)
Baseline FPG (mg/dL)      179 ± 51       172 ± 41      175 ± 44      178 ± 53      170 ± 64      165 ± 41
LS mean change from baseline (mg/dL)     12.6 ± 6.1           6 ± 6.3       2.3 ± 6.4     -4.7 ± 7.2b     -1.6 ± 6.1b    -11.5 ± 6.2d,f

Weight (kg)      -0.2 ± 0.3      -0.5 ± 0.38      -0.6 ± 0.4e         0 ± 0.4     -1.1 ± 0.3b,e      -0.9 ± 0.3h

HOMA-IR     0.25 ± 0.4    -0.29 ± 0.4     0.33 ± 0.4   -0.42 ± 0.5     0.51 ± 0.4    -1.06 ± 0.4a,e

Data are placebo adjusted least-squares (LS) mean change from baseline: mean ± SE. aP < 0.05, bP < 0.01, dP < 0.01, active vs Placebo, eP < 0.05, fP < 0.01, hP 
< 0.01, week 12 vs baseline. A1c: Hemoglobin A1c; FPG: Fasting plasma glucose; LS: Least squares; BMI: Body mass index; HOMA-IR: Homeostatic model 
assessment-insulin resistance.
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tolerated and adverse events were similar across all treat-
ment groups[30]. There were no serious events reported 
except for cardiac arrest unrelated to study therapy and 
there were no hypoglycemia reported. The most common 
adverse event in four patients was nausea in the 200 mg 
group but this resolved during continuation of  therapy[30]. 

It was noted that there was also a dose dependent 
statistically significant reduction in Homeostasis Model 
Assessment of  Insulin Resistance (HOMA-IR) suggest-
ing an insulin sensitizing mechanism of  action in the 200 
mg group[30]. The authors concluded that in patients with 
type 2 diabetes inadequately controlled with metformin, 
INCB13739 added to metformin significantly improved 
A1C, FPG and HOMA-IR[30]. INCB13739 also decreased 
weight though it did not affect the waist to hip ratio[30].

Summary: 11β-HSD-1 is increased in the adipose tis-
sues of  obese patients and those with the metabolic syn-
drome. 11β-HSD-1 inhibitors may be a viable option for 
these patients since it converts inactive cortisol to active 
cortisol in target tissues, which inhibits pancreatic beta 
cell insulin production, and prevents peripheral glucose 
uptake promoting weight loss, and decrease in blood glu-
cose[30]. Researchers and clinicians have questions with re-
gard to effects on the immune system, duration and tim-
ing of  therapy, the long term effects of  weight and lipids, 
glycemic control, insulin action, atherosclerotic plaque 
formation and cardiovascular risk[30]. The reduction in 
A1c was moderate but further studies will answer many 
of  these questions to determine the safety and efficacy 
of  11β-HSD-1 inhibitors.

Glycogen phosphorylase inhibitors
The liver contributes to glucose production by both glu-
coneogenesis (glucose synthesis) and glycogenolysis (gly-
cogen breakdown)[31]. Type 2 diabetes is characterized by 
excessive glucose production and inadequate suppression 
of  hepatic gluconeogenesis postprandially[31].

Except for metformin, the production of  gluco-
neogenesis inhibitors has yielded disappointing results 
with an increase in compensatory hepatic glycogenoly-
sis, which maintains excessive hepatic glucose produc-
tion[31,32]. Researchers hypothesized that glycogenolysis in-
hibition can improve blood glucose control by observing 
patients with hepatic glycogen storage disease experience 
intermittent hypoglycemia[31]. Glycogen phosphorylase is 
an enzyme that catalyzes the breakdown of  glycogen to 
glucose-1-phosphate in the liver and tissues that demand 
high energy[33].

Hepatic glycogenolysis has a major role in the regula-
tion of  plasma glucose levels in diabetic mice, and sug-
gests that glycogen phosphorylase inhibitors may be use-
ful in the treatment of  type 2 diabetes[31]. Further studies 
will elucidate if  this is so.

Two types of  glycogen phosphorylase inhibitors ex-
ist[31]. One is a glucose analog, which binds near the active 
site of  the enzyme, and the other is caffeine and other 
heteroaromatic analogs which bind at the purine inhibitory 

site (I-site). The I-site is a target for therapy as compounds 
which bind at this inhibitory site are more potent in the 
presence of  high glucose concentrations[31]. Researchers 
hypothesized that the inhibitory activity can be regulated 
by blood glucose concentrations and the inhibitory activity 
can decrease as normal blood glucose is achieved, which 
would decrease the risk of  hypoglycemia[31].

CP-91149-a glycogen phosphorylase inhibitor in 
animal studies: CP-91149 was identified as a potent 
inhibitor of  hepatic glucose production in in vivo stud-
ies in diabetic ob/ob mice[31]. CP-91149 exhibited rapid 
dose dependent decreases in plasma glucose concentra-
tions (36-120 mg/dL) at 10, 25, and 50 mg/kg doses (p 
< 0.001) without producing hypoglycemia. Hypoglycemia 
was defined as glucose < 60 mg/dL for CP91149 in this 
study[31]. Administration of  CP-91149 to normoglycemia 
non diabetic mice at 25-100 mg/dL did not affect glucose 
lowering. The glucose lowering of  CP91149 was accom-
panied by an inhibition of  hepatic glycogen breakdown 
in the diabetic ob/ob mice[31].

CP-316819-a glycogen phosphorylase inhibitor: 
CP-316819 is an analogue of  CP-91149, which binds to 
the inhibitor site of  glycogen phosphorylase to prevent its 
transformation to a more active form of  the enzyme[33].

One of  the concerns was that this analogue does not 
demonstrate hepatic specificity, so potentially affecting 
skeletal tissues and having possible deleterious effects to 
patients who exercise[33]. In a study by Baker, CP-316819 
reduced glycogen phosphorylation activation in rat skel-
etal muscle at rest and maximal contraction, which pro-
duced a modest reduction in muscle lactate production[33]. 
According to the researcher, the study demonstrated that 
the concern related to potential negative effects of  gly-
cogen phosphorylase inhibition on quality of  life due to 
impaired muscle function are unfounded[33].

Summary of glycogen phosphorylase inhibitors
These findings support the possible use of  the glycogen 
phosphorylase inhibitors as a possible addition to the 
treatment of  patients with type 2 diabetes. Further stud-
ies are needed to evaluate the effects of  glycogen phos-
phorylase inhibition after chronic oral dosages and under 
a variety of  exercise activities[33].

PROTEIN TYROSINE PHOSPHATASE 1B 
INHIBITORS
Type 2 diabetes and obesity are both characterized by in-
sulin and leptin resistance[34,35].

Insulin resistance is found in tissues important for 
glucose homeostasis such as the liver, fat, central nervous 
system and muscle[34]. Leptin suppresses food intake and 
increases energy expenditure, but its levels are elevated in 
obesity demonstrating leptin resistance. Protein tyrosine 
phosphatases play a major role in leptin resistance by 
suppressing leptin signaling[36].
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Protein tyrosine phosphatase 1B (PTP-1B) is an en-
zyme that removes phosphate from tyrosine residues in 
protein such as insulin receptors, so it is described as a 
negative regulator for insulin and leptin, by dephosphory-
lating phosphorylated tyrosine residues from the insulin 
receptor[34]. PTP-1B activity is increased in insulin resis-
tance and obese patients[34].

Summary
Diabetes mice treat with specific PTP-1B inhibitors ex-
hibited normalized BG control, improved insulin sensitiv-
ity, and modulated fat storage, and lipogenesis in adipose 
tissue[34]. Therefore these inhibitors have emerged as a po-
tential oral agent that can provide a strategy for the treat-
ment of  type 2 diabetes and obesity and may work best in 
patients with beta cell function that releases insulin[35].

Further studies will elucidate if  these agents can also 
be a potential addition to the armamentarium of  oral 
diabetes agents affecting both obesity and the metabolic 
syndrome.

G-PROTEIN-COUPLED RECEPTOR 119 
AGONISTS
A dysfunction in pancreatic β cell leading to decreased 
insulin secretion is a major abnormality in type 2 diabetes 
mellitus[37]. The pharmacotherapy approach of  stimulat-
ing insulin release in a glucose-dependent manner using 
G-protein-coupled receptor has been investigated[38]. 
Specifically, G-protein-coupled receptor 119 (GPR119) 
is largely distributed in pancreatic islet cells, somewhat in 
the gastrointestinal tract, and found to be involved in glu-
cose metabolism[39-41].

GPR119 may be stimulated by endogenous ligands 
or synthetic compounds resulting in an elevated cyclic 
adenosine monophosphate[42]. Studies have shown that 
stimulation of  GPR119 yields glucose-dependent insulin 
release from the pancreatic β cells, glucagon-like peptide 
1 (GLP-1) and glucose-dependent insulinotropic peptide 
secretions from intestinal cells[42]. Thus, pharmacologi-
cal agents that target GPR119 results in glucose reduc-
tion with low hypoglycemia risk, body weight loss, and 
potential for pancreatic β cell preservation[42]. These 
characteristics are very similar to the commercially avail-
able GLP-1 agonists, however the studied GPR119 
agents may be orally administered. Several GPR119 mol-
ecules (GSK1292263, MBX-2982, PSN-821, AR231453, 
AR-7947) have been studied in preclinical and/or early 
clinical trials with poor outcomes due to loss of  pharma-
cological effect or minimal glycemic lowering effect[42]. 
Furthermore, GPR119 agonists have also been consid-
ered in combination with DPP-4 inhibitors in an attempt 
to enhance the GLP-1 effects[42].

Summary
GPR119 agonists have strong potential to meet the needs 
of  patients with type 2 diabetes because of  their relative 
safety profile, lack of  weight gain, oral formulation, and 

possible β cell preservation effect. However, there have 
been challenges to their development due to potential 
tachyphylaxis and low anti-hyperglycemia efficacy.

GK ACTIVATORS
GK is a key enzyme in the hexokinase family that facili-
tates glucose homeostasis via glucose phosphorylation 
and metabolism mainly in the pancreatic β cells and he-
patocytes[43-45]. GK functions as a glucose sensor in pan-
creatic β cells, thereby stimulating glucose-stimulated in-
sulin secretion and regulating glucose metabolism within 
the liver, including gluconeogenesis, glycolysis, glycogen 
synthesis, glucose oxidation, lipogenesis, urea, and uric 
acid production[43,45-48].

Since the initial development of  small molecules 
known as GK activators (GKAs) that bind to an alloste-
ric site of  the enzyme in 2003, more than 150 patents 
have been established[49-51]. Preclinical and clinical phase 
trials of  GKAs have demonstrated glucose lowering ef-
fect in both animal and humans[52]. This novel class of  
anti-diabetic agents holds promise particularly because 
both mechanistic actions of  GK are impaired in type 2 
diabetes[53]. However, there are concerns about potential 
side effects including hyperlipidemia, hypoglycemia, and 
fatty liver that may limit the development of  GKAs[54]. 
For example, a small Phase Ⅰ clinical trial involving the 
GKA piragliatin was discontinued in type 2 diabetes pa-
tients with unrevealed rationale[55].

Another GKA molecule, MK0941 was evaluated in a 
54-wk Phase Ⅱ trial in type 2 diabetes patients, but was 
discontinued because of  observed hyperlipidemia, vascu-
lar hypertension and early therapy failure[56].

Summary of GKA
GKAs offer a unique pharmacotherapeutics approach to 
type 2 diabetes management and have demonstrated use-
ful potential in glycemic management. However, further 
development is needed to address the potential side ef-
fects observed in clinical trials. Additional advancements 
may include modifications of  the GKAs structures and 
activities to minimize hypoglycemia, hyperlipidemia, fatty 
liver, and vascular hypertension[44].

CONCLUSION
The management of  type 2 diabetes present many treat-
ment challenges, but new and emerging drug therapies 
are a welcome addition to complement the current 
agents. The SGLT-2 inhibitors have shown significant 
benefits as monotherapy and in combination with avail-
able agents like metformin, sulphonylurea and insulin 
therapy. The selective 11β-HSD-1 inhibitor is another 
class of  possibly safe and efficacious agent that lowers 
fasting blood glucose, A1c and weight, although the A1c 
lowering was modest. The glycogen phosphorylase in-
hibitors appear to show rapid and safe blood glucose de-
creases in mice without the risk of  hypoglycemia. Hope-
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fully similar results translate into human studies. PTP-1B 
is still in clinical trials and may show significant decrease 
in weight and glucose levels in insulin and leptin resistant 
patients. Mice studies show positive results of  normalized 
blood glucose control, improved insulin sensitivity and 
improvements in lipogenesis. The GPR119 agonists have 
strong potential for meeting the needs of  type 2 diabetes 
patients because of  their safety profile, lack of  weight 
gain and possible beta cell preservation effect. However, 
the GK inhibitors may have some potential problems as 
agents so far have been discontinued due to dyslipidemia, 
vascular hypertension and early therapy failure. Prescrib-
ers and pharmacists may have to recognize that these 
new agents may not be first line agents due to costs, 
monitoring parameters, modest reductions of  A1c, and 
lack of  cardiovascular disease data. Further studies will 
help to more clearly define these new and emerging anti-
hyperglycemia agents’ roles in therapy.

REFERENCES
1 Akkati S, Sam KG, Tungha G. Emergence of promising ther-

apies in diabetes mellitus. J Clin Pharmacol 2011; 51: 796-804 
[PMID: 20705952 DOI: 10.1177/0091270010376972]

2 American Diabetes Association. Diagnosis and classifica-
tion of diabetes mellitus. Diabetes Care 2013; 36: S67-S74 [DOI: 
10.2337/dc13-S067]

3 International Diabetes Federation. IDF Diabetes Atlas. 
6thed. Brussels, Belgium: International Diabetes Federation, 
2013

4 Centers for Disease Control and Prevention. National Dia-
betes Facts Sheet: national estimates and general information 
on diabetes and prediabetes in the United States, 2011. Avail-
able from: URL: http: //www.cdc.gov/diabetes/pubs/pdf/
ndfs_2011.pdf

5 Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini 
E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. 
Management of hyperglycemia in type 2 diabetes: a patient-
centered approach: position statement of the American 
Diabetes Association (ADA) and the European Association 
for the Study of Diabetes (EASD). Diabetes Care 2012; 35: 
1364-1379 [PMID: 22517736 DOI: 10.2337/dc12-0413]

6 Ahmed I, Ukrainski M, Bischoff L, Gandrabura T. On the 
horizon: new oral therapies for type 2 diabetes mellitus. Inter 
J Diabetol Vascul Dis Res 2013; 1: 301-306

7 Resnick HE, Foster GL, Bardsley J, Ratner RE. Achievement 
of American Diabetes Association clinical practice recom-
mendations among U.S. adults with diabetes, 1999-2002: the 
National Health and Nutrition Examination Survey. Diabetes 
Care 2006; 29: 531-537 [PMID: 16505501]

8 Research and Markets. Competitor analysis: emerging dia-
betes drugs. Available from: URL: http: //www.research-
andmarkets.com/reports/650944/competitor_analysis_eme
rging_diabetes_drugs.pdf

9 DeFronzo RA, Davidson JA, Del Prato S. The role of the 
kidneys in glucose homeostasis: a new path towards normal-
izing glycaemia. Diabetes Obes Metab 2012; 14: 5-14 [PMID: 
21955459 DOI: 10.1111/j.1463-1326.2011.01511.x]

10 Wood IS, Trayhurn P. Glucose transporters (GLUT and 
SGLT): expanded families of sugar transport proteins. Br J 
Nutr 2003; 89: 3-9 [PMID: 12568659 DOI: 10.1079/BJN2002763]

11 Bakris GL, Fonseca VA, Sharma K, Wright EM. Renal sodi-
um-glucose transport: role in diabetes mellitus and potential 
clinical implications. Kidney Int 2009; 75: 1272-1277 [PMID: 
19357717 DOI: 10.1038/ki.2009.87]

12 Nguyen Q, Thomas K, Lyons K, Nguyen L, Plodkowski R. 
Current therapies and emerging drugs in the pipeline for 
type 2 diabetes. Am Health Drug Benefits 2011; 4: 303-311

13 Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluco-
neogenesis: its importance in human glucose homeosta-
sis. Diabetes Care 2001; 24: 382-391 [PMID: 11213896 DOI: 
10.2337/diacare.24.2.382]

14 Wilding JP, Charpentier G, Hollander P, González-Gálvez G, 
Mathieu C, Vercruysse F, Usiskin K, Law G, Black S, Cano-
vatchel W, Meininger G. Efficacy and safety of canagliflozin 
in patients with type 2 diabetes mellitus inadequately con-
trolled with metformin and sulphonylurea: a randomised 
trial. Int J Clin Pract 2013; 67: 1267-1282 [PMID: 24118688 
DOI: 10.1111/ijcp.12322]

15 Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, 
Balis DA, Canovatchel W, Meininger G. Efficacy and safety 
of canagliflozin versus glimepiride in patients with type 2 
diabetes inadequately controlled with metformin (CANTA-
TA-SU): 52 week results from a randomised, double-blind, 
phase 3 non-inferiority trial. Lancet 2013; 382: 941-950 [PMID: 
23850055 DOI: 10.1007/s00125-013-3039-1]

16 Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, 
Yee J, Kawaguchi M, Canovatchel W, Meininger G. Cana-
gliflozin compared with sitagliptin for patients with type 2 
diabetes who do not have adequate glycemic control with 
metformin plus sulfonylurea: a 52-week randomized trial. 
Diabetes Care 2013; 36: 2508-2515 [PMID: 23564919 DOI: 
10.2337/dc12-2491]

17 Raskin P. Sodium-glucose cotransporter inhibition: thera-
peutic potential for the treatment of type 2 diabetes mellitus. 
Diabetes Metab Res Rev 2013; 29: 347-356 [PMID: 23463735 
DOI: 10.1002/dmrr.2403]

18 FDA: US Food and Drug Administration. FDA approves 
Invokana to treat type 2 diabetes: First in a new class of dia-
betes drugs. Available from: URL: http: //www.fda.gov/
NewsEvents/Newsroom/PressAnnouncements/ucm345848.
htm

19 Food and Drug Administration. Center for Drug Evaluation 
and Research: Endocrinology and Metabolic Drug Advisory 
Committee. 2011. Available from: URL: http: //www.fda.
gov/downloads/AdvisoryCommittees/CommitteesMeet-
ingMaterials/Drugs/EndocrinologicandMetabolicDrugsAd-
visoryCommittee/UCM268727.pdf

20 Food and Drug Administration: FDA News Release. FDA 
approves Farxiga to treat type 2 diabetes. Available from: 
URL: http: //www.fda.gov/NewsEvents/Newsroom/Pres-
sAnnouncements/ucm380829.htm

21 Riser Taylor S, Harris KB. The clinical efficacy and safety 
of sodium glucose cotransporter-2 inhibitors in adults with 
type 2 diabetes mellitus. Pharmacotherapy 2013; 33: 984-999 
[PMID: 23744749 DOI: 10.1002/phar.1303]

22 Janssen Pharmaceuticals. HIGHLIGHTS OF PRESCRIBING 
INFORMATION. Available from: URL: http: //www.invo-
kanahcp.com/prescribing-information.pdf

23 List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-
glucose cotransport inhibition with dapagliflozin in type 2 
diabetes. Diabetes Care 2009; 32: 650-657 [PMID: 19114612 
DOI: 10.2337/dc08-1863]

24 Henry RR, Murray AV, Marmolejo MH, Hennicken D, 
Ptaszynska A, List JF. Dapagliflozin, metformin XR, or both: 
initial pharmacotherapy for type 2 diabetes, a randomised 
controlled trial. Int J Clin Pract 2012; 66: 446-456 [PMID: 
22413962 DOI: 10.1111/j.1742-1241.2012.02911.x]

25 Clar C, Gill JA, Court R, Waugh N. Systematic review of 
SGLT2 receptor inhibitors in dual or triple therapy in type 2 
diabetes. BMJ Open 2012; 2: [PMID: 23087012 DOI: 10.1136/b
mjopen-2012-001007]

26 Gathercole LL, Lavery GG, Morgan SA, Cooper MS, Sinclair 
AJ, Tomlinson JW, Stewart PM. 11β-Hydroxysteroid dehy-

313 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Rochester CD et al . Emerging diabetes mellitus drug therapies



drogenase 1: translational and therapeutic aspects. Endocr Rev 
2013; 34: 525-555 [PMID: 23612224 DOI: 10.1210/er.2012-1050]

27 Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels 
B, Fievet C, Walker BR, Flier JS, Mullins JJ, Seckl JR. Novel 
adipose tissue-mediated resistance to diet-induced visceral 
obesity in 11 beta-hydroxysteroid dehydrogenase type 1-de-
ficient mice. Diabetes 2004; 53: 931-938 [PMID: 15047607 DOI: 
10.2337/diabetes.53.4.931]

28 Tomlinson JW, Moore J, Cooper MS, Bujalska I, Shahmanesh 
M, Burt C, Strain A, Hewison M, Stewart PM. Regulation of 
expression of 11beta-hydroxysteroid dehydrogenase type 1 
in adipose tissue: tissue-specific induction by cytokines. En-
docrinology 2001; 142: 1982-1989 [PMID: 11316764]

29 Anagnostis P, Katsiki N, Adamidou F, Athyros VG, Kara-
giannis A, Kita M, Mikhailidis DP. 11beta-Hydroxysteroid 
dehydrogenase type 1 inhibitors: novel agents for the treat-
ment of metabolic syndrome and obesity-related disorders? 
Metabolism 2013; 62: 21-33 [PMID: 22652056 DOI: 10.1016/j.
metabol.2012.05.002]

30 Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, 
Yao W, Hollis G, Flores R, Levy R, Williams WV, Seckl JR, 
Huber R. The 11-beta-hydroxysteroid dehydrogenase type 
1 inhibitor INCB13739 improves hyperglycemia in patients 
with type 2 diabetes inadequately controlled by metformin 
monotherapy. Diabetes Care 2010; 33: 1516-1522 [PMID: 
20413513 DOI: 10.2337/dc09-2315]

31 Martin WH, Hoover DJ, Armento SJ, Stock IA, McPherson 
RK, Danley DE, Stevenson RW, Barrett EJ, Treadway JL. Dis-
covery of a human liver glycogen phosphorylase inhibitor that 
lowers blood glucose in vivo. Proc Natl Acad Sci USA 1998; 95: 
1776-1781 [PMID: 9465093 DOI: 10.1073/pnas.95.4.1776]

32 Somsák L, Nagya V, Hadady Z, Docsa T, Gergely P. Glucose 
analog inhibitors of glycogen phosphorylases as potential 
antidiabetic agents: recent developments. Curr Pharm Des 
2003; 9: 1177-1189 [PMID: 12769745 DOI: 10.2174/138161203
3454919]

33 Baker DJ, Timmons JA, Greenhaff PL. Glycogen phos-
phorylase inhibition in type 2 diabetes therapy: a systematic 
evaluation of metabolic and functional effects in rat skeletal 
muscle. Diabetes 2005; 54: 2453-2459 [PMID: 16046314 DOI: 
10.2337/diabetes.54.8.2453]

34 Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine 
phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 
2002; 1: 696-709 [PMID: 12209150 DOI: 10.1038/nrd895]

35 Chen YT, Tang CL, Ma WP, Gao LX, Wei Y, Zhang W, Li JY, 
Li J, Nan FJ. Design, synthesis, and biological evaluation of 
novel 2-ethyl-5-phenylthiazole-4-carboxamide derivatives as 
protein tyrosine phosphatase 1B inhibitors with improved 
cellular efficacy. Eur J Med Chem 2013; 69: 399-412 [PMID: 
24090912 DOI: 10.1016/j.ejmech.2013.09.017]

36 St-Pierre J, Tremblay ML. Modulation of leptin resistance by 
protein tyrosine phosphatases. Cell Metab 2012; 15: 292-297 
[PMID: 22405067 DOI: 10.1016/j.cmet.2012.02.004]

37 Chu ZL, Jones RM, He H, Carroll C, Gutierrez V, Lucman A, 
Moloney M, Gao H, Mondala H, Bagnol D, Unett D, Liang Y, 
Demarest K, Semple G, Behan DP, Leonard J. A role for beta-
cell-expressed G protein-coupled receptor 119 in glycemic 
control by enhancing glucose-dependent insulin release. 
Endocrinology 2007; 148: 2601-2609 [PMID: 17289847 DOI: 
10.1210/en.2006-1608]

38 Ha TY, Kim YS, Kim CH, Choi HS, Yang J, Park SH, Kim 
DH, Rhee JK. Novel GPR119 agonist HD0471042 attenuated 
type 2 diabetes mellitus. Arch Pharm Res 2014; 37: 671-678 
[PMID: 23897163 DOI: 10.1007/s12272-013-0209-0]

39 Soga T, Ohishi T, Matsui T, Saito T, Matsumoto M, Takasaki J, 
Matsumoto S, Kamohara M, Hiyama H, Yoshida S, Momose 
K, Ueda Y, Matsushime H, Kobori M, Furuichi K. Lysophos-
phatidylcholine enhances glucose-dependent insulin secre-
tion via an orphan G-protein-coupled receptor. Biochem Bio-
phys Res Commun 2005; 326: 744-751 [PMID: 15607732 DOI: 

10.1016/j.bbrc.2004.11.120]
40 Bonini J, Borowsky B, Adham N, inventors. Synaptic Phar-

maceutical Corporation, assignee. Methods of identifying 
compounds that bind to SNORF25 receptors. USA patent 
6468756 B1. 2002

41 Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman 
A, Pedraza M, Mondala H, Gao H, Bagnol D, Chen R, Jones 
RM, Behan DP, Leonard J. A role for intestinal endocrine 
cell-expressed g protein-coupled receptor 119 in glycemic 
control by enhancing glucagon-like Peptide-1 and glucose-
dependent insulinotropic Peptide release. Endocrinology 2008; 
149: 2038-2047 [PMID: 18202141 DOI: 10.1210/en.2007-0966]

42 Kang SU. GPR119 agonists: a promising approach for T2DM 
treatment? A SWOT analysis of GPR119. Drug Discov To-
day 2013; 18: 1309-1315 [PMID: 24060477 DOI: 10.1016/j.
drudis.2013.09.011]

43 Oh YS, Lee YJ, Park K, Choi HH, Yoo S, Jun HS. Treatment 
with glucokinase activator, YH-GKA, increases cell prolifera-
tion and decreases glucotoxic apoptosis in INS-1 cells. Eur J 
Pharm Sci 2014; 51: 137-145 [PMID: 24056026 DOI: 10.1016/
j.ejps.2013.09.005]

44 Matschinsky FM, Zelent B, Doliba N, Li C, Vanderkooi JM, 
Naji A, Sarabu R, Grimsby J. Glucokinase activators for dia-
betes therapy: May 2010 status report. Diabetes Care 2011; 34 
Suppl 2: S236-S243 [PMID: 21525462 DOI: 10.2337/dc11-s236]

45 Matschinsky FM, Zelent B, Doliba NM, Kaestner KH, 
Vanderkooi JM, Grimsby J, Berthel SJ, Sarabu R. Research 
and development of glucokinase activators for diabetes ther-
apy: theoretical and practical aspects. Handb Exp Pharmacol 
2011; (203): 357-401 [PMID: 21484579 DOI: 10.1007/978-3-642
-17214-4_15]

46 Arden C, Petrie JL, Tudhope SJ, Al-Oanzi Z, Claydon AJ, 
Beynon RJ, Towle HC, Agius L. Elevated glucose represses 
liver glucokinase and induces its regulatory protein to safe-
guard hepatic phosphate homeostasis. Diabetes 2011; 60: 
3110-3120 [PMID: 22013014 DOI: 10.2337/db11-0061]

47 Agius L. Glucokinase and molecular aspects of liver glyco-
gen metabolism. Biochem J 2008; 414: 1-18 [PMID: 18651836 
DOI: 10.1042/BJ20080595]

48 Nissim I, Horyn O, Nissim I, Daikhin Y, Wehrli SL, Yudkoff 
M, Matschinsky FM. Effects of a glucokinase activator on he-
patic intermediary metabolism: study with 13C-isotopomer-
based metabolomics. Biochem J 2012; 444: 537-551 [PMID: 
22448977 DOI: 10.1042/BJ20120163]

49 Grimsby J, Sarabu R, Corbett WL, Haynes NE, Bizzarro FT, 
Coffey JW, Guertin KR, Hilliard DW, Kester RF, Mahaney 
PE, Marcus L, Qi L, Spence CL, Tengi J, Magnuson MA, Chu 
CA, Dvorozniak MT, Matschinsky FM, Grippo JF. Allosteric 
activators of glucokinase: potential role in diabetes therapy. 
Science 2003; 301: 370-373 [PMID: 12869762 DOI: 10.1126/sci-
ence.1084073]

50 Sarabu R, Berthel SJ, Kester RF, Tilley JW. Novel glucoki-
nase activators: a patent review (2008 - 2010). Expert Opin 
Ther Pat 2011; 21: 13-33 [PMID: 21155690 DOI: 10.1517/13543
776.2011.542413]

51 Filipski KJ, Futatsugi K, Pfefferkorn JA, Stevens BD. Glu-
cokinase activators. Pharm Pat Anal 2012; 1: 301-311 [PMID: 
24236843 DOI: 10.4155/ppa.12.26]

52 Matschinsky FM. GKAs for diabetes therapy: why no clini-
cally useful drug after two decades of trying? Trends Phar-
macol Sci 2013; 34: 90-99 [PMID: 23305809 DOI: 10.1016/ 
j.tips.2012.11.007]

53 Matschinsky FM. Assessing the potential of glucokinase 
activators in diabetes therapy. Nat Rev Drug Discov 2009; 8: 
399-416 [PMID: 19373249 DOI: 10.1038/nrd2850]

54 Gude D. Red carpeting the newer antidiabetics. J Pharma-
col Pharmacother 2012; 3: 127-131 [PMID: 22629086 DOI: 
10.4103/0976-500X.95507]

55 Bonadonna RC, Heise T, Arbet-Engels C, Kapitza C, Avo-
garo A, Grimsby J, Zhi J, Grippo JF, Balena R. Piragliatin 

314 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Rochester CD et al . Emerging diabetes mellitus drug therapies



(RO4389620), a novel glucokinase activator, lowers plasma 
glucose both in the postabsorptive state and after a glucose 
challenge in patients with type 2 diabetes mellitus: a mecha-
nistic study. J Clin Endocrinol Metab 2010; 95: 5028-5036 
[PMID: 20739378 DOI: 10.1210/jc.2010-1041]

56 Meininger GE, Scott R, Alba M, Shentu Y, Luo E, Amin H, 
Davies MJ, Kaufman KD, Goldstein BJ. Effects of MK-0941, a 
novel glucokinase activator, on glycemic control in insulin-
treated patients with type 2 diabetes. Diabetes Care 2011; 34: 
2560-2566 [PMID: 21994424 DOI: 10.2337/dc11-1200]

P- Reviewers: Masaki T, Pastromas S    S- Editor: Ma YJ    
L- Editor: A    E- Editor: Liu SQ  

315 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Rochester CD et al . Emerging diabetes mellitus drug therapies



12q24 locus association with type 1 diabetes: SH2B3 or 
ATXN2?

Georg Auburger, Suzana Gispert, Suna Lahut, Özgür Ömür, Ewa Damrath, Melanie Heck, Nazlı Başak

Georg Auburger, Suzana Gispert, Ewa Damrath, Melanie 
Heck, Experimental Neurology, Goethe University Medical 
School, 60590 Frankfurt am Main, Germany
Suna Lahut, Özgür Ömür, Nazlı Başak, NDAL, Kuzey Park 
Building, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
Author contributions: Auburger G proposed the manuscript 
concept and surveyed the literature; Gispert S, Lahut S, Ömür 
Ö, Damrath E, Heck M, Başak N generated relevant background 
data and expanded the manuscript.
Correspondence to: Dr. Georg Auburger, Professor, Experi-
mental Neurology, Goethe University Medical School, Building 
89, Theodor Stern Kai 7, 60590 Frankfurt am Main, 
Germany. auburger@em.uni-frankfurt.de
Telephone: +49-69-63017428  Fax: +49-69-63017142
Received: October 29, 2013      Revised: March 13, 2014
Accepted: April 11, 2014
Published online: June 15, 2014

Abstract
Genetic linkage analyses, genome-wide association 
studies of single nucleotide polymorphisms, copy num-
ber variation surveys, and mutation screenings found 
the human chromosomal 12q24 locus, with the genes 
SH2B3  and ATXN2 in its core, to be associated with an 
exceptionally wide spectrum of disease susceptibilities. 
Hematopoietic traits of red and white blood cells (like 
erythrocytosis and myeloproliferative disease), autoim-
mune disorders (like type 1 diabetes, coeliac disease, 
juvenile idiopathic arthritis, rheumatoid arthritis, throm-
botic antiphospholipid syndrome, lupus erythemato-
sus, multiple sclerosis, hypothyroidism and vitiligo), 
also vascular pathology (like kidney glomerular filtra-
tion rate deficits, serum urate levels, plasma beta-2-
microglobulin levels, retinal microcirculation problems, 
diastolic and systolic blood pressure and hypertension, 
cardiovascular infarction), furthermore obesity, neuro-
degenerative conditions (like the polyglutamine-expan-
sion disorder spinocerebellar ataxia type 2, Parkinson’s 
disease, the motor-neuron disease amyotrophic lateral 
sclerosis, and progressive supranuclear palsy), and 

finally longevity were reported. Now it is important to 
clarify, in which ways the loss or gain of function of 
the locally encoded proteins SH2B3/LNK and ataxin-2, 
respectively, contribute to these polygenic health prob-
lems. SH2B3/LNK is known to repress the JAK2/ABL1 
dependent proliferation of white blood cells. Its null 
mutations in human and mouse are triggers of autoim-
mune traits and leukemia (acute lymphoblastic leuke-
mia or chronic myeloid leukemia-like), while missense 
mutations were found in erythrocytosis-1 patients. 
Ataxin-2 is known to act on RNA-processing and trophic 
receptor internalization. While its polyglutamine-expan-
sion mediated gain-of-function causes neuronal atro-
phy in human and mouse, its deletion leads to obesity 
and insulin resistance in mice. Thus, it is conceivable 
that the polygenic pathogenesis of type 1 diabetes is 
enhanced by an SH2B3-dysregulation-mediated predis-
position to autoimmune diseases that conspires with an 
ATXN2-deficiency-mediated predisposition to lipid and 
glucose metabolism pathology.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Within the multifactorial pathogenesis of type 
1 diabetes mellitus (T1D), a genetic risk mediated by 
the chromosome 12q24 locus was consistently ob-
served. Mutations in the ATXN2 gene there trigger the 
pathogenesis of obesity, while mutations in the SH2B3 
gene there trigger the pathogenesis of autoimmune 
processes. Given that both genes show co-regulated 
expression, their combined effects may drive these two 
core aspects of T1D. Tissue and phenotype studies of 
mouse mutants will identify molecular targets for causal 
therapies.
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INTRODUCTION
The pathogenesis of  many common multifactorial dis-
eases was successfully elucidated over the past years, prin-
cipally through genome-wide association studies (GWAS) 
in many thousands of  sporadic patients vs control indi-
viduals. For diabetes mellitus type 1 (T1D), more than 40 
chromosomal loci were uncovered to modulate disease 
risk[1,2]. However, now the challenge consists in establish-
ing causality between one of  the multiple genes contained 
in any locus and one of  the disease features. One promis-
ing approach is the careful consideration of  phenotypes 
and pathology caused by disruption or overexpression 
of  any candidate gene, e.g., in mouse, and the subsequent 
comparison with relevant traits that occur within the first 
years of  the disease course. Thus, clinical information 
may help to guide the characterization of  mutant animals, 
while conversely the tissue analysis of  mutant animals 
may help to elucidate presymptomatic stages of  disease. 
A particularly complex example is the subject of  this 
review-the association of  T1D and many other medical 
conditions with mostly two single nucleotide polymor-
phisms (SNPs) on chromosome 12q24-rs3184504 and 
rs653178.

THE EXCEPTIONALLY PLEIOTROPIC 
DISEASE SUSCEPTIBILITY LOCUS ON 
CHROMOSOME 12Q24 EXTENDS FROM 
THE SH2B3 GENE ACROSS THE ATXN2 
GENE, BUT MAY STRETCH BEYOND 
THESE BORDERS
Chromosome 12q contains one of  the largest blocks 
of  linkage disequilibrium (LD) in the human genome[3]. 
It was observed early on in European/Asian/African 
populations and found to span > 1 Megabase pairs 
(Mbp) across several genes including the growth repres-
sor SH2B3, the RNA processing factor ATXN2, the 
nuclear localization inhibitor BRAP, the mitochondrial 
fatty acid beta-oxidation enzyme ACAD10, the alco-
hol metabolism enzyme ALDH2, and the stress kinase 
MAPKAPK5[4]. The core LD block was localized to exon 
1 of  the ATXN2 gene in a population of  European 
ancestry, and was explained by positive selection of  the 
(CAG)-repeat size in this exon[4]. Indeed, the most fre-
quently observed disease associations at this 12q24 locus 
are within a 200000 basepairs (bp) fragment, which com-
prises the ATXN2 gene and the immediately adjacent 
SH2B3 gene (Figure 1). According to the United States 
National Center for Biotechnology Information refer-
ence sequences, human SH2B3 is transcribed in orienta-

tion from the centromere, covering about 46000 bp, and 
spans 9 predicted exons to constitute an mRNA of  5425 
nucleotides, which encodes a protein of  575 amino acids. 
ATXN2 is transcribed in orientation from the telomere, 
covering about 147000 bp, and spans 24 predicted ex-
ons with several splice-isoforms, of  which the longest 
constitutes an mRNA of  4712 nucleotides and encodes 
a protein of  1313 amino acids. The missense SNP 
rs3184504 in SH2B3 open reading frame (resulting in the 
substitution W262R) was observed in perfect cosegrega-
tion (r2 = 1) with the SNP rs653178 deep within intron 
2 of  the ATXN2 gene[5], in spite of  a physical distance 
of  123148 bp. Since rs653178 is far away from ATXN2 
splice sites and since the W262 codon in SH2B3 is not 
conserved between human and mouse[6], both of  these 
polymorphisms are probably innocent bystanders and 
are noticed only through their frequency, depending on 
their random distribution within population stratifica-
tions. They are presumably coinherited with other rare 
sequence variants, e.g., within the promoters or within the 
mRNA 3’-untranslated regions, which alter the transcript 
expression levels slightly upwards or downwards. Indeed, 
both of  these cosegregating SH2B3 and ATXN2 vari-
ants correlated with significant changes in the expression 
of  both ATXN2 and SH2B3 mRNAs[7]. This coinheri-
tance together with correlated expression changes makes 
it inherently difficult to establish causality between any 
of  the individual traits within a complex disease and any 
of  the neighbouring genes. This is exemplified by the 
allocation of  six hematologic and three blood pressure 
traits to the region from SH2B3 to ATXN2 by genome-
wide studies, reflecting the exceptional pleiotropy of  this 
locus[8]. The 12q24 linkage disequilibrium block in some 
studies of  restricted populations included further genes, 
namely CUTL2, FAM109A, SH2B3, ATXN2, BRAP, 
ACAD10, ALDH2, MAPKAPK5, TMEM116, ERP29[9], 
NAA25/C12orf30, TRAFD1, HECTD4/C12orf51, 
RPL6, PTPN11[10-12], thus extending across 1.5 Mbp. For 
these reasons it is crucial to consider monogenic mutants 
for each gene and their phenotypic effects, so as to decide 
which of  them might contribute to each of  the diseases. 
However, for most of  these genes the relevant mouse 
mutants are not yet characterized.

NULL MUTATIONS IN MOUSE AND 
HUMAN DEMONSTRATE SH2B3 TO 
REPRESS THE PROLIFERATION OF 
WHITE BLOOD CELLS, IN PARTICULAR 
B-LYMPHOCYTES
The generation of  mice with deletion of  SH2B3 (also 
called Lnk) demonstrated primary splenomegaly and 
extramedullary hematopoiesis with progenitor hyper-
sensitivity to various cytokines[13]. It caused the ac-
cumulation of  pre-B and immature B-lymphocytes in 
enlarged spleens as well as an increase in B-lineage cells 
in the bone marrow, in parallel to unimpaired T-cell de-
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velopment in thymus[14]. It accelerated and exacerbated 
oncogenic JAK2-induced myeloproliferative diseases 
through an expansion of  myeloid progenitors, acceler-
ated myelofibrosis and finally features of  chronic myeloid 
leukemia (CML). These murine data supported notions 
that SH2B3 directly inhibits oncogenic JAK2 and coop-
erates with the BCR/ABL oncogene in the development 
of  CML[15]. Deletion of  SH2B3 was also observed in a 
genomic and transcriptomic study of  patients with BCR-
ABL1-positive acute lymphoblastic leukemia with poor 
outcome (Ph-like ALL), together with promising thera-
peutic benefits from tyrosine kinase inhibitors[16]. Human 
germline homozygous SH2B3 mutations including a 
frameshift with translation stop resulted in growth retar-
dation, high white cell counts in parallel to anemia and 
thrombocytopenia, splenomegaly and liver cirrhosis, au-
toimmune Hashimoto thyroiditis, speech delay and ALL. 
In addition, this study identified homozygous somatic 
SH2B3 frameshift mutations in ALL cases[17]. A 5 bp de-
letion of  SH2B3, which was predicted to affect both the 
PH domain and the SH2 domain, manifested clinically 
as primary myelofibrosis. In contrast, a somatic E208Q 
missense mutation in the PH domain was observed in a 
patient with essential thrombocythemia[18]. SH2B3 was 
also shown to interact with platelet-derived growth factor 
receptor and repress its downstream signaling[19]. Inter-
estingly, a selective increase in red blood cells (isolated 
erythrocytosis) was observed in two individuals with the 
SH2B3 missense mutations E208X and A215V[20]. How-
ever, SH2B3 sequencing in 23 erythrocytosis patients 
uncovered only one non-synonymous polymorphism 
of  unclear relevance[6]. Systematic SH2B3 sequencing 
analysis in 42 patients with chronic phase myeloprolif-
erative neoplasms detected a missense mutation in 7% 
of  cases, either in the SH2 domain or in the C-terminal 
domain, which were always accompanied by a JAK2 mu-
tation[21]. Myeloproliferative SH2B3 mutations within the 
PH domain were also shown to reduce SH2B3 function 

without altering its binding properties to JAK2, CBL and 
14-3-3[22]. An analysis of  peripheral mononuclear blood 
cells stimulated with anti-CD28 and anti-CD3 antibodies 
detected an increased proliferation of  T-lymphocytes in 
carriers of  the W262R missense SH2B3 variant, indepen-
dent of  the presence of  juvenile type 1 diabetes[23]. In vitro 
studies had previously shown SH2B3 to attenuate the 
ability of  SH2B1 to promote JAK2 activation and subse-
quent tyrosine phosphorylation of  insulin receptor sub-
strate-1 by JAK2[24]. SH2B3-deficient hematopoietic stem 
cells displayed an increased postnatal expansion and en-
hanced thrombopoietin responsiveness[25]. In subsequent 
studies they showed increased resistance to apoptosis due 
to enhanced expression of  Bcl-xL upon thrombopoietin 
stimulation[26]. A limitation of  growth by SH2B3 was also 
observed in the rat neuronal PC12 cell line and in prima-
ry cortical neurons, where neurotrophin-induced neurite 
outgrowth was downregulated by the binding of  SH2B3 
to the phosphorylated neurotrophin receptor TrkA and 
the repression of  downstream signaling[27].

AUTOIMMUNE DISEASES (EOSINOPHIL 
NUMBERS, COELIAC DISEASE, 
JUVENILE IDIOPATHIC ARTHRITIS, 
RHEUMATOID ARTHRITIS, THROMBOTIC 
ANTIPHOSPHOLIPID SYNDROME, 
LUPUS ERYTHEMATOSUS, MULTIPLE 
SCLEROSIS, HYPOTHYROIDISM, 
VITILIGO) MAY BE MODULATED BY 
SH2B3
Possibly as an effect of  SH2B3 on B-lymphocyte prolif-
eration, the 12q24 locus modulates the risk for various 
autoimmune diseases. A GWAS in the Icelandic popula-
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SH2B3-ATXN2 genomic locus

Figure 1  The core 200000 bp region of the chromosome 12q24 locus covering the immediately adjacent SH2B3 and ATXN2 genes, with an illustration of 
the single nucleotide polymorphism rs3184504 encoding the W272R missense variant of the SH2B3/LNK protein (as shown in the United States National 
Center for Biotechnology Information database) as well as the (CAG)-repeat structure encoding the unstable polyglutamine domain of the ataxin-2 protein.
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derived inflammatory biomarker in diabetes and infarc-
tion also showed the association with the SH2B3 SNP 
rs3184504[46]. Candidate studies of  2 and 21 SNPs in 
T1D cases from Russia and United States, respectively, 
replicated the SH2B3 association[47,48]. Since the effect is 
so consistent, SH2B3 SNP genotyping was integrated 
into a signature of  8 polymorphisms that provide optimal 
prediction of  T1D risk[49]. However, it is likely that the 
SH2B3 sequence variant rs3184504 is not biologically re-
sponsible by itself, since sequencing studies failed to find 
similar SH2B3 variants in NOD mice that model many 
T1D features[50].

EVIDENCE FROM MOUSE MUTANTS 
IMPLICATES ATXN2 IN METABOLIC 
SYNDROME
While the autoimmune component of  T1D might be ex-
plained by the SH2B3 effect on lymphocyte proliferation, 
some metabolic features of  T1D might be exacerbated by 
the ataxin-2 effect on glucose and lipid metabolism. Mice 
with targeted deletion of  Atxn2 exon 1 and frameshift in 
homozygous state displayed marked obesity and infertil-
ity in two independently generated mutant lines[51,52]. He-
patic lipid and glycogen accumulation was evident already 
at age 6 mo. As in other insulin resistance syndromes, 
pancreatic and blood serum insulin levels were increased, 
in parallel to a reduction of  insulin receptor (IR) protein 
levels in the liver, in spite of  increased IR mRNA levels. 
Serum cholesterol was significantly increased[52]. Although 
ataxin-2 is mostly localized at the rough endoplasmic 
reticulum and has strong effects on mRNA process-
ing[53-59], its effect on the IR is possibly explained through 
interactions with the endocytic internalization machinery 
of  receptor tyrosine kinases[60,61]. TDP-43 is an interac-
tor protein of  ataxin-2 via joint RNA-binding[57], was also 
demonstrated to regulate glucose homeostasis and fat 
deposition, with its levels showing direct correlation with 
the expression levels of  the obesity gene Tbc1d1, while its 
deletion affects the splicing of  apolipoprotein A-Ⅱ[62-64].

EVIDENCE FROM HUMAN MUTATIONS 
IMPLICATES ATXN2 IN OBESITY
The investigation of  obesity in 92 children by systematic 
sequencing of  the ATXN2 coding regions demonstrated 
a greatly increased frequency of  the SNP rs695872 al-
lele C and an overrepresentation of  (CAG)-repeat sizes 
> 22[65]. Indeed, obesity and polyphagia were marked 
features of  infants in middle stages of  the neurodegen-
erative process caused by (CAG)-repeat expansions in 
ATXN2[66]. Thus, monogenic evidence links obesity to 
ATXN2 both in mice and in human. This is possibly 
reflected by a genome-wide SNP genotyping analysis, 
where SH2B3 variants were associated with low-density 
lipoprotein (LDL) cholesterol[67]. Interestingly, an asso-
ciation with obesity was also observed for the ataxin-2 

tion studying eosinophil counts observed association with 
the SH2B3 SNP rs3184504[28]. A GWAS into coeliac dis-
ease found the SH2B3 SNP rs3184504 and the ATXN2 
intronic SNP rs653178 to be associated[29]. Follow up 
studies of  coeliac disease focusing on 9 and 11 candidate 
SNPs confirmed the association with SH2B3[30,31], and re-
ported upregulation of  SH2B3 mRNA expression levels 
in intestinal mucosa to be triggered by coeliac disease and 
by the risk allele T of  the SH2B3 SNP rs3184504[31]. Fur-
ther haplotype studies were confirmatory, and functional 
experiments indicated that carriers of  the rs3184504 risk 
allele show stronger activation of  the NOD2 recogni-
tion pathway in response to lipopolysaccharides and 
muramyl dipeptide[32]. A candidate study of  sixteen SNPs 
known from coeliac disease and from T1D found an as-
sociation of  the ATXN2 SNP rs653178 with juvenile 
idiopathic arthritis[33]. GWAS studies into rheumatoid 
arthritis indicated association with SH2B3 particularly 
among rheumatoid-factor-positive patients[34]. A GWAS 
meta-analysis confirmed that the ATXN2 intronic SNP 
rs653178 is associated not only with coeliac disease, but 
also with rheumatoid arthritis[35]. A study of  thrombo-
philia in antiphospholipid antibody positive individuals 
by array-comparative genomic hybridization analysis 
of  copy number variations with subsequent fine map-
ping identified a risk haplotype comprising one SH2B3 
SNP and two ATXN2 SNPs[36]. A GWAS of  systemic 
lupus erythematosus observed association with the SNP 
rs17696736 within the ERP29 gene downstream from 
SH2B3[9]. A candidate study of  12 SNPs in almost 3000 
Spanish multiple sclerosis patients detected association 
with the SH2B3 SNP rs3184504[37]. A GWAS into hypo-
thyroidism reported the SH2B3 SNP rs3184504 to be 
associated, with autoimmune Hashimoto thyroiditis as a 
likely explanation for this observation[38]. A GWAS into 
the autoimmune skin disease vitiligo reported an associa-
tion with the 12q24 locus extending from the SH2B3 
across the ATXN2 gene[39].

T1D MELLITUS
The first GWAS into T1D encountered a maximal as-
sociation with the 12q24 SNP rs17696736 in an intron 
of  the C12ORF30/NAA25 gene, while the effect was 
consistently observed also in its neighbourhood across 
a 1.5 Mbp LD block[10]. An extended GWAS confirmed 
this observation and pointed out that the association 
with the W272R missense variant encoded in exon 3 of  
SH2B3 was sufficient to model the regional effect[40]. 
GWAS of  additional cases corroborated the association 
with SH2B3[41], a further GWAS with meta-analysis and 
combined comparisons supported the association with 
rs3184504[42], and also a GWAS of  affected sib-pair fami-
lies showed association with the region from the SH2B3 
SNP rs739496 across the ERP29 SNP rs17696736 until 
the SNP rs10850061 beyond PTPN11[11,43]. GWAS of  
autoantibody positive T1D patients again detected the 
association with SH2B3[44,45]. GWAS of  soluble inter-
cellular adhesion molecule-1 levels as an endothelium-

319 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



binding protein 1 (A2BP1 or RBFOX1) both in a GWAS 
among Pima Indians and in a candidate approach among 
French Caucasian adults[68].

ATXN2 IS IMPORTANT FOR 
NEURODEGENERATIVE DISEASES
The polyglutamine (polyQ) domain at the N-terminal 
end of  ataxin-2 normally has a size of  Q22-23, usually 
encoded by a (CAG)8CAA(CAG)4CAA(CAG)8 sequence 
in exon 1 of  the ATXN2 gene on chromosome 12q24. 
Its unstable expansion to large sizes beyond (CAG)31 is 
the monogenic cause of  an autosomal dominant multi-
system atrophy of  the nervous system, which was named 
spinocerebellar ataxia type 2[69-86]. CAG-repeat expansions 
with cytosine adenosine adenosine (CAA) interruptions 
may also manifest as Parkinson’s disease[87,88]. Intermedi-
ate CAG-repeat sizes of  26-31 units, sometimes with 
CAA interruptions, act as polygenic risk factor for the 
motor-neuron disease amyotrophic lateral sclerosis[57,89]. 
Intermediate CAG-repeat expansions enhance also the 
risk for progressive supranuclear palsy[90]. Published 
evidence suggests that the polyglutamine expansions in-
crease the half-life of  ataxin-2 and that a gain-of-toxic-
function through accumulation of  ataxin-2 aggregates 
with sequestration of  interactor proteins such as the 
poly(A)-binding-protein PABPC1 underlies the neuro-
degenerative process[57,91]. In spite of  the vast evidence 
that excess ataxin-2 is the biological cause for neuronal 
death, SNP genotyping and association studies curiously 
found an SH2B3 allele haplotype to be more informative 
and to better predict amyotrophic lateral sclerosis risk 
than the ATXN2 alleles[92]. This observation underscores 
old experiences that maximal linkage logarithm of  odds 
scores and maximal haplotype association scores within 
any chromosomal region depend on random population 
stratification effects and on the frequency/informativity 
of  alleles. Thus, they are not suitable for the fine map-
ping of  disease genes.

LONGEVITY
Interestingly, the discovery set of  a GWAS of  exceptional 
longevity in centenarians detected a significant association 
with the ATXN2 SNP rs653178, in parallel to several 
other disease associated SNPs, while the strongest effect 
correlated with the SNP rs2075650 at the TOMM40/
apolipoprotein E (APOEO locus. TOMM40 encodes the 
channel forming subunit of  the translocase across the 
mitochondrial outer membrane, while APOE encodes 
the apolipoprotein E, which mediates the binding and 
clearance of  lipoprotein particles such as chylomicrons 
and very LDLs. Apolipoprotein E polymorphisms are 
the main known genetic factors associated with the risk 
of  Alzheimer’s disease[93,94]. While it remained unclear in 
this longevity GWAS, whether an LD effect was consis-
tently observed also for SNPs that surround ATXN2, 
and whether blood cell traits, autoimmune disorders, 
obesity, neurodegenerative processes or vascular pathol-

ogy were underlying this observation, the authors re-
ported their observation of  a reduced frequency of  the 
ATXN2 SNP rs653178 allele T among centenarians [with 
a log10(BayesFactor) of  1.2] in the light of  previous 
ATXN2 GWAS association data with hypertension[93,94].

KIDNEY DISEASE, MICROCIRCULATION, 
HYPERTENSION AND CARDIOVASCULAR 
INFARCTION
Indeed, several independent GWAS found renal func-
tion (estimated glomerular filtration rate on the basis 
of  cystatin c) and chronic kidney disease to be modu-
lated by the rs653178 variant within an intron of  the 
ATXN2 gene in populations of  European and African 
ancestry[5,95-97]. Also a GWAS into plasma levels of  beta-
2-microglobulin as a biomarker of  kidney function, 
cardiovascular diseases and mortality reported an associa-
tion with the ATXN2 SNP rs653178[98]. Furthermore, a 
recent GWAS into serum urate concentrations uncovered 
an association with the ATXN2 SNP rs653178[99]. The 
analysis of  83 candidate SNPs showed kidney disease 
variants to be associated with vascular phenotypes only 
in the case of  rs653178 within the ATXN2 gene and 
two SNPs at the SH2B3 locus[100]. A GWAS studying 
microcirculation as measured by retinal venular caliber 
reported 4 loci, with only the rs10774625 SNP within an 
ATXN2 intron showing also significant association with 
hypertension and coronary heart disease[12]. The ATXN2 
SNP rs653178 and the SH2B3 SNP rs3184504 associa-
tion with diastolic as well as systolic blood pressure, mean 
arterial pressure and pulse pressure was reported in three 
independent GWAS of  populations with European and 
African ancestry[7,101-103]. Similarly, an association of  the 
SH2B3 SNP rs3184504 with diastolic and systolic blood 
pressure and hypertension was detected in a GWAS of  
200000 individuals of  European descent[104]. A GWAS as-
sociation of  the ATXN2 SNP rs653178 with myocardial 
infarction was shown in Icelandic individuals[28]. A recent 
candidate SNP study replicated the association between 
the SH2B3 SNP rs3184504 and coronary heart disease 
also in South Asian patients[105]. Thus, it appears that the 
12q24 locus has a marked effect on vascular pathology.

RED BLOOD CELL TRAITS
It is unclear whether the above vascular disorders are 
consequences of  vessel wall pathology or of  blood cell 
pathology. It may therefore be relevant that a GWAS into 
the genetic basis of  six traits of  erythrocytes (including 
hemoglobin concentration, hematocrit, mean corpuscular 
volume, mean corpuscular hemoglobin, mean corpuscu-
lar hemoglobin concentration and red blood cell count) 
also showed associations with the 12q24 locus from 
SH2B3 across the ATXN2 gene[106].

CONCLUSION
For further mechanistic insights it will be important to 
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generate and characterize rodent mutants for each of  the 
genes in the pleiotropic 12q24 disease susceptibility locus. 

With the limited knowledge available so far, it is cred-
ible that SH2B3 modulates B-lymphocyte proliferation 
and autoimmune traits. Ataxin-2 gain-of-function is a 
well-established modulator of  several neurodegenerative 
diseases, while its deficiency appears to predispose to in-
sulin resistance, blood cholesterol elevation, hepatic gly-
cogen and lipid accumulation with overall obesity. Thus, 
downstream effects of  both genes might cooperate to 
enhance the risk for type 1 diabetes.

Since T1D is an age-associated disease, it will be im-
portant to age Atxn2-null mice beyond 6 mo to the end 
of  their natural lifespan around 2 years. This will allow us 
to assess whether their obesity leads to hypertension and 
vascular pathology, e.g., in kidneys, whether red blood cell 
traits are altered, and whether their longevity is abnormal. 
In particular, the insulin resistance/obesity/dyslipidemia/
hepatosteatosis induced by Atxn2-null mutations should 
be studied regarding their long-term consequences. Mech-
anistically, it will be intriguing to elucidate how the RNA 
processing effects of  ataxin-2 lead to this pathology.

In view of  the polyQ expansion effects extending 
the protein half-life and causing a gain-of-function of  
ataxin-2, it is conceivable that the polyQ shrinkage sizes 
(Q13-21) could mediate a decreased half-life of  the pro-
tein and a partial loss-of-function. Thus, these rare vari-
ants might be associated with phenotypes that were ob-
served in the Atxn2-null mouse, such as obesity, insulin-
resistance and diabetes mellitus.

ACKNOWLEDGMENTS
We are grateful to Ulrich Müller and Jan Rozman for 
critical reading of  the manuscript.

REFERENCES
1 Polychronakos C, Li Q. Understanding type 1 diabetes thro-

ugh genetics: advances and prospects. Nat Rev Genet 2011; 
12: 781-792 [PMID: 22005987 DOI: 10.1038/nrg3069]

2 Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring 
Harb Perspect Med 2012; 2: a007732 [PMID: 22315720 DOI: 
10.1101/cshperspect.a007732]

3 Scherer SE, Muzny DM, Buhay CJ, Chen R, Cree A, Ding 
Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes 
AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan 
ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, 
Milosavljevic A, Miner GR, Montgomery KT, Morgan MB, 
Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, 
Lovering RC, Wheeler DA, Worley KC, Yuan Y, Zhang Z, 
Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, 
Chen Z, Clerc-Blankenburg KP, Davis C, Delgado O, Dinh 
HH, Draper H, Gonzalez-Garay ML, Havlak P, Jackson LR, 
Jacob LS, Kelly SH, Li L, Li Z, Liu J, Liu W, Lu J, Maheshwari 
M, Nguyen BV, Okwuonu GO, Pasternak S, Perez LM, Plop-
per FJ, Santibanez J, Shen H, Tabor PE, Verduzco D, Wal-
dron L, Wang Q, Williams GA, Zhang J, Zhou J, Allen CC, 
Amin AG, Anyalebechi V, Bailey M, Barbaria JA, Bimage 
KE, Bryant NP, Burch PE, Burkett CE, Burrell KL, Calderon 
E, Cardenas V, Carter K, Casias K, Cavazos I, Cavazos SR, 
Ceasar H, Chacko J, Chan SN, Chavez D, Christopoulos C, 
Chu J, Cockrell R, Cox CD, Dang M, Dathorne SR, David R, 

Davis CM, Davy-Carroll L, Deshazo DR, Donlin JE, D’Souza 
L, Eaves KA, Egan A, Emery-Cohen AJ, Escotto M, Flagg N, 
Forbes LD, Gabisi AM, Garza M, Hamilton C, Henderson N, 
Hernandez O, Hines S, Hogues ME, Huang M, Idlebird DG, 
Johnson R, Jolivet A, Jones S, Kagan R, King LM, Leal B, Leb-
ow H, Lee S, LeVan JM, Lewis LC, London P, Lorensuhewa 
LM, Loulseged H, Lovett DA, Lucier A, Lucier RL, Ma J, 
Madu RC, Mapua P, Martindale AD, Martinez E, Massey E, 
Mawhiney S, Meador MG, Mendez S, Mercado C, Mercado 
IC, Merritt CE, Miner ZL, Minja E, Mitchell T, Mohabbat F, 
Mohabbat K, Montgomery B, Moore N, Morris S, Munidasa 
M, Ngo RN, Nguyen NB, Nickerson E, Nwaokelemeh OO, 
Nwokenkwo S, Obregon M, Oguh M, Oragunye N, Oviedo 
RJ, Parish BJ, Parker DN, Parrish J, Parks KL, Paul HA, Pay-
ton BA, Perez A, Perrin W, Pickens A, Primus EL, Pu LL, 
Puazo M, Quiles MM, Quiroz JB, Rabata D, Reeves K, Ruiz 
SJ, Shao H, Sisson I, Sonaike T, Sorelle RP, Sutton AE, Svatek 
AF, Svetz LA, Tamerisa KS, Taylor TR, Teague B, Thomas 
N, Thorn RD, Trejos ZY, Trevino BK, Ukegbu ON, Urban JB, 
Vasquez LI, Vera VA, Villasana DM, Wang L, Ward-Moore 
S, Warren JT, Wei X, White F, Williamson AL, Wleczyk R, 
Wooden HS, Wooden SH, Yen J, Yoon L, Yoon V, Zorrilla 
SE, Nelson D, Kucherlapati R, Weinstock G, Gibbs RA; Bay-
lor College of Medicine Human Genome Sequencing Center 
Sequence Production Team. The finished DNA sequence of 
human chromosome 12. Nature 2006; 440: 346-351 [PMID: 
16541075 DOI: 10.1038/nature04569]

4 Yu F, Sabeti PC, Hardenbol P, Fu Q, Fry B, Lu X, Ghose S, 
Vega R, Perez A, Pasternak S, Leal SM, Willis TD, Nelson 
DL, Belmont J, Gibbs RA. Positive selection of a pre-expan-
sion CAG repeat of the human SCA2 gene. PLoS Genet 2005; 1: 
e41 [PMID: 16205789]

5 Köttgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, 
Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, O’Connell 
JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang 
SJ, Johnson AD, Dehghan A, Teumer A, Pare G, Atkinson EJ, 
Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kro-
nenberg F, Tonjes A, Hayward C, Aspelund T, Eiriksdottir 
G, Launer LJ, Harris TB, Rampersaud E, Mitchell BD, Arking 
DE, Boerwinkle E, Struchalin M, Cavalieri M, Singleton A, 
Giallauria F, Metter J, de Boer IH, Haritunians T, Lumley T, 
Siscovick D, Psaty BM, Zillikens MC, Oostra BA, Feitosa M, 
Province M, de Andrade M, Turner ST, Schillert A, Ziegler 
A, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Illig 
T, Klopp N, Meisinger C, Wichmann HE, Koenig W, Zgaga 
L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Igl 
W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus 
D, Schreiber S, Aulchenko YS, Felix JF, Rivadeneira F, Uitter-
linden AG, Hofman A, Imboden M, Nitsch D, Brandstatter 
A, Kollerits B, Kedenko L, Magi R, Stumvoll M, Kovacs P, 
Boban M, Campbell S, Endlich K, Volzke H, Kroemer HK, 
Nauck M, Volker U, Polasek O, Vitart V, Badola S, Parker 
AN, Ridker PM, Kardia SL, Blankenberg S, Liu Y, Curhan 
GC, Franke A, Rochat T, Paulweber B, Prokopenko I, Wang 
W, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Fer-
rucci L, Shlipak MG, van Duijn CM, Borecki I, Kramer BK, 
Rudan I, Gyllensten U, Wilson JF, Witteman JC, Pramstaller 
PP, Rettig R, Hastie N, Chasman DI, Kao WH, Heid IM, Fox 
CS. New loci associated with kidney function and chronic 
kidney disease. Nat Genet 2010; 42: 376-384 [PMID: 20383146 
DOI: 10.1038/ng.568]

6 McMullin MF, Wu C, Percy MJ, Tong W. A nonsynony-
mous LNK polymorphism associated with idiopathic eryth-
rocytosis. Am J Hematol 2011; 86: 962-964 [PMID: 21990094 
DOI: 10.1002/ajh.22154]

7 Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith 
EN, Johnson T, Castillo BA, Barnard J, Baumert J, Chang YP, 
Elbers CC, Farrall M, Fischer ME, Franceschini N, Gaunt 
TR, Gho JM, Gieger C, Gong Y, Isaacs A, Kleber ME, Mateo 
Leach I, McDonough CW, Meijs MF, Mellander O, Molony 

321 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



CM, Nolte IM, Padmanabhan S, Price TS, Rajagopalan R, 
Shaffer J, Shah S, Shen H, Soranzo N, van der Most PJ, Van 
Iperen EP, Van Setten JA, Vonk JM, Zhang L, Beitelshees AL, 
Berenson GS, Bhatt DL, Boer JM, Boerwinkle E, Burkley B, 
Burt A, Chakravarti A, Chen W, Cooper-Dehoff RM, Curtis 
SP, Dreisbach A, Duggan D, Ehret GB, Fabsitz RR, Fornage 
M, Fox E, Furlong CE, Gansevoort RT, Hofker MH, Hovingh 
GK, Kirkland SA, Kottke-Marchant K, Kutlar A, Lacroix AZ, 
Langaee TY, Li YR, Lin H, Liu K, Maiwald S, Malik R, Muru-
gesan G, Newton-Cheh C, O’Connell JR, Onland-Moret NC, 
Ouwehand WH, Palmas W, Penninx BW, Pepine CJ, Pet-
tinger M, Polak JF, Ramachandran VS, Ranchalis J, Redline 
S, Ridker PM, Rose LM, Scharnag H, Schork NJ, Shimbo D, 
Shuldiner AR, Srinivasan SR, Stolk RP, Taylor HA, Thorand 
B, Trip MD, van Duijn CM, Verschuren WM, Wijmenga C, 
Winkelmann BR, Wyatt S, Young JH, Boehm BO, Caulfield 
MJ, Chasman DI, Davidson KW, Doevendans PA, Fitzgerald 
GA, Gums JG, Hakonarson H, Hillege HL, Illig T, Jarvik 
GP, Johnson JA, Kastelein JJ, Koenig W, Marz W, Mitchell 
BD, Murray SS, Oldehinkel AJ, Rader DJ, Reilly MP, Reiner 
AP, Schadt EE, Silverstein RL, Snieder H, Stanton AV, Uit-
terlinden AG, van der Harst P, van der Schouw YT, Samani 
NJ, Johnson AD, Munroe PB, de Bakker PI, Zhu X, Levy D, 
Keating BJ, Asselbergs FW. Loci influencing blood pres-
sure identified using a cardiovascular gene-centric array. 
Hum Mol Genet 2013; 22: 1663-1678 [PMID: 23303523 DOI: 
10.1093/hmg/dds555]

8 Huang J, Johnson AD, O’Donnell CJ. PRIMe: a method for 
characterization and evaluation of pleiotropic regions from 
multiple genome-wide association studies. Bioinformatics 
2011; 27: 1201-1206 [PMID: 21398673 DOI: 10.1093/bioinfor-
matics/btr116]

9 Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun 
X, Ortmann W, Kosoy R, Ferreira RC, Nordmark G, Gun-
narsson I, Svenungsson E, Padyukov L, Sturfelt G, Jönsen A, 
Bengtsson AA, Rantapää-Dahlqvist S, Baechler EC, Brown 
EE, Alarcón GS, Edberg JC, Ramsey-Goldman R, McGwin 
G, Reveille JD, Vilá LM, Kimberly RP, Manzi S, Petri MA, 
Lee A, Gregersen PK, Seldin MF, Rönnblom L, Criswell LA, 
Syvänen AC, Behrens TW, Graham RR. A large-scale replica-
tion study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and 
IL10 as risk loci for systemic lupus erythematosus. Nat Genet 
2009; 41: 1228-1233 [PMID: 19838195 DOI: 10.1038/ng.468]

10 Wellcome Trust Case Control Consortium. Genome-wide 
association study of 14,000 cases of seven common diseases 
and 3,000 shared controls. Nature 2007; 447: 661-678 [PMID: 
17554300]

11 Cooper JD, Walker NM, Smyth DJ, Downes K, Healy BC, 
Todd JA. Follow-up of 1715 SNPs from the Wellcome Trust 
Case Control Consortium genome-wide association study 
in type I diabetes families. Genes Immun 2009; 10 Suppl 1: 
S85-S94 [PMID: 19956107 DOI: 10.1038/gene.2009.97]

12 Ikram MK, Sim X, Jensen RA, Cotch MF, Hewitt AW, Ikram 
MA, Wang JJ, Klein R, Klein BE, Breteler MM, Cheung N, 
Liew G, Mitchell P, Uitterlinden AG, Rivadeneira F, Hofman 
A, de Jong PT, van Duijn CM, Kao L, Cheng CY, Smith AV, 
Glazer NL, Lumley T, McKnight B, Psaty BM, Jonasson F, 
Eiriksdottir G, Aspelund T, Harris TB, Launer LJ, Taylor KD, 
Li X, Iyengar SK, Xi Q, Sivakumaran TA, Mackey DA, Mac-
gregor S, Martin NG, Young TL, Bis JC, Wiggins KL, Heck-
bert SR, Hammond CJ, Andrew T, Fahy S, Attia J, Holliday 
EG, Scott RJ, Islam FM, Rotter JI, McAuley AK, Boerwinkle E, 
Tai ES, Gudnason V, Siscovick DS, Vingerling JR, Wong TY. 
Four novel Loci (19q13, 6q24, 12q24, and 5q14) influence the 
microcirculation in vivo. PLoS Genet 2010; 6: e1001184 [PMID: 
21060863 DOI: 10.1371/journal.pgen.1001184]

13 Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely 
S, Bernstein A, Paige CJ, Pawson T. Cytokine signaling and 
hematopoietic homeostasis are disrupted in Lnk-deficient 
mice. J Exp Med 2002; 195: 1599-1611 [PMID: 12070287]

14 Takaki S, Sauer K, Iritani BM, Chien S, Ebihara Y, Tsuji K, 
Takatsu K, Perlmutter RM. Control of B cell production by 
the adaptor protein lnk. Definition Of a conserved family 
of signal-modulating proteins. Immunity 2000; 13: 599-609 
[PMID: 11114373]

15 Bersenev A, Wu C, Balcerek J, Jing J, Kundu M, Blobel GA, 
Chikwava KR, Tong W. Lnk constrains myeloproliferative 
diseases in mice. J Clin Invest 2010; 120: 2058-2069 [PMID: 
20458146 DOI: 10.1172/JCI42032]

16 Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, 
Chen SC, Payne-Turner D, Churchman ML, Harvey RC, 
Chen X, Kasap C, Yan C, Becksfort J, Finney RP, Teachey 
DT, Maude SL, Tse K, Moore R, Jones S, Mungall K, Birol I, 
Edmonson MN, Hu Y, Buetow KE, Chen IM, Carroll WL, 
Wei L, Ma J, Kleppe M, Levine RL, Garcia-Manero G, Larsen 
E, Shah NP, Devidas M, Reaman G, Smith M, Paugh SW, Ev-
ans WE, Grupp SA, Jeha S, Pui CH, Gerhard DS, Downing 
JR, Willman CL, Loh M, Hunger SP, Marra MA, Mullighan 
CG. Genetic alterations activating kinase and cytokine re-
ceptor signaling in high-risk acute lymphoblastic leukemia. 
Cancer Cell 2012; 22: 153-166 [PMID: 22897847 DOI: 10.1016/
j.ccr.2012.06.005]

17 Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo 
I, LeDuc CA, Kelly K, Jalas C, Paietta E, Racevskis J, Rowe 
JM, Tallman MS, Paganin M, Basso G, Tong W, Chung WK, 
Ferrando AA. Genetic loss of SH2B3 in acute lymphoblastic 
leukemia. Blood 2013; 122: 2425-2432 [PMID: 23908464 DOI: 
10.1182/blood-2013-05-500850]

18 Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD, 
Merker JD, Zehnder JL, Nolan GP, Gotlib J. Novel mutations 
in the inhibitory adaptor protein LNK drive JAK-STAT sig-
naling in patients with myeloproliferative neoplasms. Blood 
2010; 116: 988-992 [PMID: 20404132 DOI: 10.1182/blood-201
0-02-270108]

19 Gueller S, Hehn S, Nowak V, Gery S, Serve H, Brandts CH, 
Koeffler HP. Adaptor protein Lnk binds to PDGF receptor 
and inhibits PDGF-dependent signaling. Exp Hematol 2011; 39: 
591-600 [PMID: 21310211 DOI: 10.1016/j.exphem.2011.02.001]

20 Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 
mutation-negative erythrocytosis. N Engl J Med 2010; 363: 
1189-1190 [PMID: 20843259 DOI: 10.1056/NEJMc1006966]

21 Ha JS, Jeon DS. Possible new LNK mutations in myelopro-
liferative neoplasms. Am J Hematol 2011; 86: 866-868 [PMID: 
21922527 DOI: 10.1002/ajh.22107]

22 Koren-Michowitz M, Gery S, Tabayashi T, Lin D, Alvarez R, 
Nagler A, Koeffler HP. SH2B3 (LNK) mutations from myelo-
proliferative neoplasms patients have mild loss of function 
against wild type JAK2 and JAK2 V617F. Br J Haematol 2013; 
161: 811-820 [PMID: 23590807 DOI: 10.1111/bjh.12327]

23 Lavrikova EY, Nikitin AG, Kuraeva TL, Peterkova VA, 
Tsitlidze NM, Chistiakov DA, Nosikov VV. The carriage of 
the type 1 diabetes-associated R262W variant of human LNK 
correlates with increased proliferation of peripheral blood 
monocytes in diabetic patients. Pediatr Diabetes 2011; 12: 
127-132 [PMID: 20546165 DOI: 10.1111/j.1399-5448.2010.0065
6.x]

24 Li M, Li Z, Morris DL, Rui L. Identification of SH2B2beta as 
an inhibitor for SH2B1- and SH2B2alpha-promoted Janus 
kinase-2 activation and insulin signaling. Endocrinology 2007; 
148: 1615-1621 [PMID: 17204555]

25 Buza-Vidas N, Antonchuk J, Qian H, Månsson R, Luc S, 
Zandi S, Anderson K, Takaki S, Nygren JM, Jensen CT, Ja-
cobsen SE. Cytokines regulate postnatal hematopoietic stem 
cell expansion: opposing roles of thrombopoietin and LNK. 
Genes Dev 2006; 20: 2018-2023 [PMID: 16882979]

26 Suzuki N, Yamazaki S, Ema H, Yamaguchi T, Nakauchi H, 
Takaki S. Homeostasis of hematopoietic stem cells regulated 
by the myeloproliferative disease associated-gene product 
Lnk/Sh2b3 via Bcl-xL. Exp Hematol 2012; 40: 166-174.e3 
[PMID: 22101255 DOI: 10.1016/j.exphem.2011.11.003]

322 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



27 Wang TC, Chiu H, Chang YJ, Hsu TY, Chiu IM, Chen L. 
The adaptor protein SH2B3 (Lnk) negatively regulates 
neurite outgrowth of PC12 cells and cortical neurons. PLoS 
One 2011; 6: e26433 [PMID: 22028877 DOI: 10.1371/journal.
pone.0026433]

28 Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir 
A, Sulem P, Jonsdottir GM, Thorleifsson G, Helgadottir H, 
Steinthorsdottir V, Stefansson H, Williams C, Hui J, Beilby 
J, Warrington NM, James A, Palmer LJ, Koppelman GH, 
Heinzmann A, Krueger M, Boezen HM, Wheatley A, Alt-
muller J, Shin HD, Uh ST, Cheong HS, Jonsdottir B, Gislason 
D, Park CS, Rasmussen LM, Porsbjerg C, Hansen JW, Backer 
V, Werge T, Janson C, Jönsson UB, Ng MC, Chan J, So WY, 
Ma R, Shah SH, Granger CB, Quyyumi AA, Levey AI, Vacca-
rino V, Reilly MP, Rader DJ, Williams MJ, van Rij AM, Jones 
GT, Trabetti E, Malerba G, Pignatti PF, Boner A, Pescollde-
rungg L, Girelli D, Olivieri O, Martinelli N, Ludviksson BR, 
Ludviksdottir D, Eyjolfsson GI, Arnar D, Thorgeirsson G, 
Deichmann K, Thompson PJ, Wjst M, Hall IP, Postma DS, 
Gislason T, Gulcher J, Kong A, Jonsdottir I, Thorsteinsdot-
tir U, Stefansson K. Sequence variants affecting eosinophil 
numbers associate with asthma and myocardial infarction. 
Nat Genet 2009; 41: 342-347 [PMID: 19198610 DOI: 10.1038/
ng.323]

29 Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, 
Bruinenberg M, Romanos J, Dinesen LC, Ryan AW, Pane-
sar D, Gwilliam R, Takeuchi F, McLaren WM, Holmes GK, 
Howdle PD, Walters JR, Sanders DS, Playford RJ, Trynka 
G, Mulder CJ, Mearin ML, Verbeek WH, Trimble V, Stevens 
FM, O’Morain C, Kennedy NP, Kelleher D, Pennington DJ, 
Strachan DP, McArdle WL, Mein CA, Wapenaar MC, De-
loukas P, McGinnis R, McManus R, Wijmenga C, van Heel 
DA. Newly identified genetic risk variants for celiac disease 
related to the immune response. Nat Genet 2008; 40: 395-402 
[PMID: 18311140 DOI: 10.1038/ng.102]

30 Romanos J, Barisani D, Trynka G, Zhernakova A, Bardella 
MT, Wijmenga C. Six new coeliac disease loci replicated 
in an Italian population confirm association with coeliac 
disease. J Med Genet 2009; 46: 60-63 [PMID: 18805825 DOI: 
10.1136/jmg.2008.061457]

31 Plaza-Izurieta L, Castellanos-Rubio A, Irastorza I, Fernán-
dez-Jimenez N, Gutierrez G, Bilbao JR. Revisiting genome 
wide association studies (GWAS) in coeliac disease: replica-
tion study in Spanish population and expression analysis 
of candidate genes. J Med Genet 2011; 48: 493-496 [PMID: 
21490378 DOI: 10.1136/jmg.2011.089714]

32 Zhernakova A, Elbers CC, Ferwerda B, Romanos J, Trynka 
G, Dubois PC, de Kovel CG, Franke L, Oosting M, Barisani 
D, Bardella MT, Joosten LA, Saavalainen P, van Heel DA, 
Catassi C, Netea MG, Wijmenga C. Evolutionary and func-
tional analysis of celiac risk loci reveals SH2B3 as a protec-
tive factor against bacterial infection. Am J Hum Genet 2010; 
86: 970-977 [PMID: 20560212 DOI: 10.1016/j.ajhg.2010.05.004]

33 Hinks A, Martin P, Flynn E, Eyre S, Packham J, Barton A, 
Worthington J, Thomson W. Investigation of type 1 diabetes 
and coeliac disease susceptibility loci for association with ju-
venile idiopathic arthritis. Ann Rheum Dis 2010; 69: 2169-2172 
[PMID: 20647273 DOI: 10.1136/ard.2009.126938]

34 Coenen MJ, Trynka G, Heskamp S, Franke B, van Diemen 
CC, Smolonska J, van Leeuwen M, Brouwer E, Boezen MH, 
Postma DS, Platteel M, Zanen P, Lammers JW, Groen HJ, 
Mali WP, Mulder CJ, Tack GJ, Verbeek WH, Wolters VM, 
Houwen RH, Mearin ML, van Heel DA, Radstake TR, van 
Riel PL, Wijmenga C, Barrera P, Zhernakova A. Common 
and different genetic background for rheumatoid arthritis 
and coeliac disease. Hum Mol Genet 2009; 18: 4195-4203 
[PMID: 19648290 DOI: 10.1093/hmg/ddp365]

35 Zhernakova A, Stahl EA, Trynka G, Raychaudhuri S, Festen 
EA, Franke L, Westra HJ, Fehrmann RS, Kurreeman FA, 
Thomson B, Gupta N, Romanos J, McManus R, Ryan AW, 

Turner G, Brouwer E, Posthumus MD, Remmers EF, Tucci 
F, Toes R, Grandone E, Mazzilli MC, Rybak A, Cukrowska 
B, Coenen MJ, Radstake TR, van Riel PL, Li Y, de Bakker PI, 
Gregersen PK, Worthington J, Siminovitch KA, Klareskog 
L, Huizinga TW, Wijmenga C, Plenge RM. Meta-analysis of 
genome-wide association studies in celiac disease and rheu-
matoid arthritis identifies fourteen non-HLA shared loci. 
PLoS Genet 2011; 7: e1002004 [PMID: 21383967 DOI: 10.1371/
journal.pgen.1002004]

36 Ochoa E, Iriondo M, Bielsa A, Ruiz-Irastorza G, Estonba A, 
Zubiaga AM. Thrombotic antiphospholipid syndrome shows 
strong haplotypic association with SH2B3-ATXN2 locus. 
PLoS One 2013; 8: e67897 [PMID: 23844121 DOI: 10.1371/
journal.pone.0067897]

37 Alcina A, Vandenbroeck K, Otaegui D, Saiz A, Gonzalez JR, 
Fernandez O, Cavanillas ML, Cénit MC, Arroyo R, Alloza I, 
García-Barcina M, Antigüedad A, Leyva L, Izquierdo G, Lu-
cas M, Fedetz M, Pinto-Medel MJ, Olascoaga J, Blanco Y, Co-
mabella M, Montalban X, Urcelay E, Matesanz F. The auto-
immune disease-associated KIF5A, CD226 and SH2B3 gene 
variants confer susceptibility for multiple sclerosis. Genes 
Immun 2010; 11: 439-445 [PMID: 20508602 DOI: 10.1038/
gene.2010.30]

38 Eriksson N, Tung JY, Kiefer AK, Hinds DA, Francke U, 
Mountain JL, Do CB. Novel associations for hypothyroid-
ism include known autoimmune risk loci. PLoS One 2012; 7: 
e34442 [PMID: 22493691 DOI: 10.1371/journal.pone.0034442]

39 Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, 
Cole JB, Gowan K, Holland PJ, Bennett DC, Luiten RM, 
Wolkerstorfer A, van der Veen JP, Hartmann A, Eichner S, 
Schuler G, van Geel N, Lambert J, Kemp EH, Gawkrodger 
DJ, Weetman AP, Taïeb A, Jouary T, Ezzedine K, Wallace 
MR, McCormack WT, Picardo M, Leone G, Overbeck A, Sil-
verberg NB, Spritz RA. Genome-wide association analyses 
identify 13 new susceptibility loci for generalized vitiligo. 
Nat Genet 2012; 44: 676-680 [PMID: 22561518 DOI: 10.1038/
ng.2272]

40 Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, 
Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, Lowe 
CE, Szeszko JS, Hafler JP, Zeitels L, Yang JH, Vella A, Nut-
land S, Stevens HE, Schuilenburg H, Coleman G, Maisuria M, 
Meadows W, Smink LJ, Healy B, Burren OS, Lam AA, Ov-
ington NR, Allen J, Adlem E, Leung HT, Wallace C, Howson 
JM, Guja C, Ionescu-Tîrgovişte C, Simmonds MJ, Heward 
JM, Gough SC, Dunger DB, Wicker LS, Clayton DG. Robust 
associations of four new chromosome regions from genome-
wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857-864 
[PMID: 17554260]

41 Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, 
Yang JH, Howson JM, Stevens H, McManus R, Wijmenga 
C, Heap GA, Dubois PC, Clayton DG, Hunt KA, van Heel 
DA, Todd JA. Shared and distinct genetic variants in type 1 
diabetes and celiac disease. N Engl J Med 2008; 359: 2767-2777 
[PMID: 19073967 DOI: 10.1056/NEJMoa0807917]

42 Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper 
JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, 
Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, 
Todd JA, Walker NM, Rich SS. Genome-wide association 
study and meta-analysis find that over 40 loci affect risk of 
type 1 diabetes. Nat Genet 2009; 41: 703-707 [PMID: 19430480 
DOI: 10.1038/ng.381]

43 Cooper JD, Walker NM, Healy BC, Smyth DJ, Downes K, 
Todd JA. Analysis of 55 autoimmune disease and type II 
diabetes loci: further confirmation of chromosomes 4q27, 
12q13.2 and 12q24.13 as type I diabetes loci, and support for 
a new locus, 12q13.3-q14.1. Genes Immun 2009; 10 Suppl 1: 
S95-120 [PMID: 19956108 DOI: 10.1038/gene.2009.98]

44 Howson JM, Rosinger S, Smyth DJ, Boehm BO, Todd JA. 
Genetic analysis of adult-onset autoimmune diabetes. Dia-
betes 2011; 60: 2645-2653 [PMID: 21873553 DOI: 10.2337/

323 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



db11-0364]
45 Plagnol V, Howson JM, Smyth DJ, Walker N, Hafler JP, 

Wallace C, Stevens H, Jackson L, Simmonds MJ, Bingley PJ, 
Gough SC, Todd JA. Genome-wide association analysis of 
autoantibody positivity in type 1 diabetes cases. PLoS Genet 
2011; 7: e1002216 [PMID: 21829393 DOI: 10.1371/journal.
pgen.1002216]

46 Paré G, Ridker PM, Rose L, Barbalic M, Dupuis J, Dehghan 
A, Bis JC, Benjamin EJ, Shiffman D, Parker AN, Chas-
man DI. Genome-wide association analysis of soluble 
ICAM-1 concentration reveals novel associations at the 
NFKBIK, PNPLA3, RELA, and SH2B3 loci. PLoS Genet 
2011; 7: e1001374 [PMID: 21533024 DOI: 10.1371/journal.
pgen.1001374]

47 Nikitin AG, Lavrikova EIu, Seregin IuA, Zil’berman LI, 
Tsitlidze NM, Kuraeva TL, Peterkova VA, Dedov II, Nosikov 
VV. [Association of the polymorphisms of the ERBB3 and 
SH2B3 genes with type 1 diabetes]. Mol Biol (Mosk) 2010; 44: 
257-262 [PMID: 20586186]

48 Reddy MV, Wang H, Liu S, Bode B, Reed JC, Steed RD, 
Anderson SW, Steed L, Hopkins D, She JX. Association be-
tween type 1 diabetes and GWAS SNPs in the southeast US 
Caucasian population. Genes Immun 2011; 12: 208-212 [PMID: 
21270831 DOI: 10.1038/gene.2010.70]

49 Winkler C, Krumsiek J, Lempainen J, Achenbach P, Grallert 
H, Giannopoulou E, Bunk M, Theis FJ, Bonifacio E, Ziegler 
AG. A strategy for combining minor genetic susceptibility 
genes to improve prediction of disease in type 1 diabe-
tes. Genes Immun 2012; 13: 549-555 [PMID: 22932816 DOI: 
10.1038/gene.2012.36]

50 Li YJ, Li XY, Guo XR, Li Y, Shen BF, Shi YC, Zhang JY. 
Absence of SH2B3 mutation in nonobese diabetic mice. 
Genet Mol Res 2012; 11: 1266-1271 [PMID: 22614355 DOI: 
10.4238/2012.May.9.6]

51 Kiehl TR, Nechiporuk A, Figueroa KP, Keating MT, Huynh 
DP, Pulst SM. Generation and characterization of Sca2 (atax-
in-2) knockout mice. Biochem Biophys Res Commun 2006; 339: 
17-24 [PMID: 16293225]

52 Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, Buch-
mann J, Hintermann E, Sandhoff K, Schürmann A, Nowock 
J, Auburger G. Insulin receptor and lipid metabolism pathol-
ogy in ataxin-2 knock-out mice. Hum Mol Genet 2008; 17: 
1465-1481 [PMID: 18250099 DOI: 10.1093/hmg/ddn035]

53 Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila ho-
molog, ATX2, physically assemble with polyribosomes. Hum 
Mol Genet 2006; 15: 2523-2532 [PMID: 16835262]

54 Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Ya-
spo ML, Lehrach H, Krobitsch S. Ataxin-2 interacts with 
the DEAD/H-box RNA helicase DDX6 and interferes with 
P-bodies and stress granules. Mol Biol Cell 2007; 18: 1385-1396 
[PMID: 17392519]

55 Tharun S. Roles of eukaryotic Lsm proteins in the regulation 
of mRNA function. Int Rev Cell Mol Biol 2009; 272: 149-189 
[PMID: 19121818 DOI: 10.1016/S1937-6448(08)01604-3]

56 van de Loo S, Eich F, Nonis D, Auburger G, Nowock J. 
Ataxin-2 associates with rough endoplasmic reticulum. Exp 
Neurol 2009; 215: 110-118 [PMID: 18973756 DOI: 10.1016/j.
expneurol.2008.09.020]

57 Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, 
Fang X, Armakola M, Geser F, Greene R, Lu MM, Padma-
nabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, 
Gruber PJ, Rüb U, Auburger G, Trojanowski JQ, Lee VM, 
Van Deerlin VM, Bonini NM, Gitler AD. Ataxin-2 interme-
diate-length polyglutamine expansions are associated with 
increased risk for ALS. Nature 2010; 466: 1069-1075 [PMID: 
20740007 DOI: 10.1038/nature09320]

58 McCann C, Holohan EE, Das S, Dervan A, Larkin A, Lee JA, 
Rodrigues V, Parker R, Ramaswami M. The Ataxin-2 protein 
is required for microRNA function and synapse-specific long-
term olfactory habituation. Proc Natl Acad Sci USA 2011; 108: 

E655-E662 [PMID: 21795609 DOI: 10.1073/pnas.1107198108]
59 Lim C, Allada R. ATAXIN-2 activates PERIOD translation to 

sustain circadian rhythms in Drosophila. Science 2013; 340: 
875-879 [PMID: 23687047 DOI: 10.1126/science.1234785]

60 Nonis D, Schmidt MH, van de Loo S, Eich F, Dikic I, No-
wock J, Auburger G. Ataxin-2 associates with the endocyto-
sis complex and affects EGF receptor trafficking. Cell Signal 
2008; 20: 1725-1739 [PMID: 18602463 DOI: 10.1016/j.cell-
sig.2008.05.018]

61 Drost J, Nonis D, Eich F, Leske O, Damrath E, Brunt ER, Las-
tres-Becker I, Heumann R, Nowock J, Auburger G. Ataxin-2 
modulates the levels of Grb2 and SRC but not ras signaling. J 
Mol Neurosci 2013; 51: 68-81 [PMID: 23335000 DOI: 10.1007/
s12031-012-9949-4]

62 Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC. 
Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to 
obesity, and alters body fat metabolism. Proc Natl Acad Sci 
USA 2010; 107: 16320-16324 [PMID: 20660762 DOI: 10.1073/
pnas.1002176107]

63 Stallings NR, Puttaparthi K, Dowling KJ, Luther CM, Burns 
DK, Davis K, Elliott JL. TDP-43, an ALS linked protein, 
regulates fat deposition and glucose homeostasis. PLoS 
One 2013; 8: e71793 [PMID: 23967244 DOI: 10.1371/journal.
pone.0071793]

64 Mercado PA, Ayala YM, Romano M, Buratti E, Baralle FE. 
Depletion of TDP 43 overrides the need for exonic and in-
tronic splicing enhancers in the human apoA-II gene. Nucleic 
Acids Res 2005; 33: 6000-6010 [PMID: 16254078 DOI: 10.1093/
nar/gki897]

65 Figueroa KP, Farooqi S, Harrup K, Frank J, O’Rahilly S, 
Pulst SM. Genetic variance in the spinocerebellar ataxia type 
2 (ATXN2) gene in children with severe early onset obesity. 
PLoS One 2009; 4: e8280 [PMID: 20016785 DOI: 10.1371/jour-
nal.pone.0008280]

66 Abdel-Aleem A, Zaki MS. Spinocerebellar ataxia type 2 
(SCA2) in an Egyptian family presenting with polyphagia 
and marked CAG expansion in infancy. J Neurol 2008; 255: 
413-419 [PMID: 18297329 DOI: 10.1007/s00415-008-0690-4]

67 Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, 
Gaunt TR, Pallas J, Lovering R, Li K, Casas JP, Sofat R, Ku-
mari M, Rodriguez S, Johnson T, Newhouse SJ, Dominiczak 
A, Samani NJ, Caulfield M, Sever P, Stanton A, Shields DC, 
Padmanabhan S, Melander O, Hastie C, Delles C, Ebrahim 
S, Marmot MG, Smith GD, Lawlor DA, Munroe PB, Day 
IN, Kivimaki M, Whittaker J, Humphries SE, Hingorani 
AD. Gene-centric association signals for lipids and apoli-
poproteins identified via the HumanCVD BeadChip. Am J 
Hum Genet 2009; 85: 628-642 [PMID: 19913121 DOI: 10.1016/
j.ajhg.2009.10.014]

68 Ma L, Hanson RL, Traurig MT, Muller YL, Kaur BP, Perez 
JM, Meyre D, Fu M, Körner A, Franks PW, Kiess W, Kobes 
S, Knowler WC, Kovacs P, Froguel P, Shuldiner AR, Bog-
ardus C, Baier LJ. Evaluation of A2BP1 as an obesity gene. 
Diabetes 2010; 59: 2837-2845 [PMID: 20724578 DOI: 10.2337/
db09-1604]

69 Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier 
JM, Weber C, Mandel JL, Cancel G, Abbas N, Dürr A, Didi-
erjean O, Stevanin G, Agid Y, Brice A. Cloning of the gene 
for spinocerebellar ataxia 2 reveals a locus with high sensi-
tivity to expanded CAG/glutamine repeats. Nat Genet 1996; 
14: 285-291 [PMID: 8896557 DOI: 10.1038/ng1196-285]

70 Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen 
XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, 
Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg 
JR, Figueroa C, Sahba S. Moderate expansion of a normally 
biallelic trinucleotide repeat in spinocerebellar ataxia type 
2. Nat Genet 1996; 14: 269-276 [PMID: 8896555 DOI: 10.1038/
ng1196-269]

71 Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, 
Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito 

324 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, 
Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, 
Tanaka H, Takahashi H, Tsuji S. Identification of the spino-
cerebellar ataxia type 2 gene using a direct identification of 
repeat expansion and cloning technique, DIRECT. Nat Genet 
1996; 14: 277-284 [PMID: 8896556 DOI: 10.1038/ng1196-277]

72 Auburger G, Diaz GO, Capote RF, Sanchez SG, Perez MP, 
del Cueto ME, Meneses MG, Farrall M, Williamson R, Cham-
berlain S. Autosomal dominant ataxia: genetic evidence for 
locus heterogeneity from a Cuban founder-effect population. 
Am J Hum Genet 1990; 46: 1163-1177 [PMID: 1971152]

73 Orozco Diaz G, Nodarse Fleites A, Cordovés Sagaz R, Au-
burger G. Autosomal dominant cerebellar ataxia: clinical 
analysis of 263 patients from a homogeneous population 
in Holguín, Cuba. Neurology 1990; 40: 1369-1375 [PMID: 
2392220 DOI: 10.1212/WNL.40.9.1369]

74 Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero 
L, Scheufler K, Riley B, Allotey R, Nothers C. Chromosomal 
assignment of the second locus for autosomal dominant cer-
ebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet 
1993; 4: 295-299 [PMID: 8358438 DOI: 10.1038/ng0793-295]

75 Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. 
Spinocerebellar ataxia 2 (SCA2): morphometric analyses 
in 11 autopsies. Acta Neuropathol 1999; 97: 306-310 [PMID: 
10090679 DOI: 10.1007/s004010050989]

76 Lastres-Becker I, Rüb U, Auburger G. Spinocerebellar ataxia 
2 (SCA2). Cerebellum 2008; 7: 115-124 [PMID: 18418684 DOI: 
10.1007/s12311-008-0019-y]

77 Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, 
Seidel K, Korf HW, Deller T. Clinical features, neurogenetics 
and neuropathology of the polyglutamine spinocerebellar 
ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 2013; 104: 38-66 
[PMID: 23438480 DOI: 10.1016/j.pneurobio.2013.01.001]

78 Gierga K, Bürk K, Bauer M, Orozco Diaz G, Auburger G, 
Schultz C, Vuksic M, Schöls L, de Vos RA, Braak H, Del-
ler T, Rüb U. Involvement of the cranial nerves and their 
nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuro-
pathol 2005; 109: 617-631 [PMID: 15906049 DOI: 10.1007/
s00401-005-1014-8]

79 Velázquez-Pérez L, Seifried C, Santos-Falcón N, Abele M, 
Ziemann U, Almaguer LE, Martínez-Góngora E, Sánchez-
Cruz G, Canales N, Pérez-González R, Velázquez-Manresa 
M, Viebahn B, von Stuckrad-Barre S, Fetter M, Klockgether T, 
Auburger G. Saccade velocity is controlled by polyglutamine 
size in spinocerebellar ataxia 2. Ann Neurol 2004; 56: 444-447 
[PMID: 15349876 DOI: 10.1002/ana.20220]

80 Rüb U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, 
Reifenberger G, Seifried C, Schultz C, Auburger G, Braak 
H. Thalamic involvement in a spinocerebellar ataxia type 2 
(SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, 
and its clinical relevance. Brain 2003; 126: 2257-2272 [PMID: 
12847080 DOI: 10.1093/brain/awg234]

81 Hernández A, Magariño C, Gispert S, Santos N, Lunkes A, 
Orozco G, Heredero L, Beckmann J, Auburger G. Genetic 
mapping of the spinocerebellar ataxia 2 (SCA2) locus on 
chromosome 12q23-q24.1. Genomics 1995; 25: 433-435 [PMID: 
7789976 DOI: 10.1016/0888-7543(95)80043-L]

82 Gispert S, Lunkes A, Santos N, Orozco G, Ha-Hao D, Rat-
zlaff T, Aguiar J, Torrens I, Heredero L, Brice A. Localiza-
tion of the candidate gene D-amino acid oxidase outside the 
refined I-cM region of spinocerebellar ataxia 2. Am J Hum 
Genet 1995; 57: 972-975 [PMID: 7573064]

83 Tuin I, Voss U, Kang JS, Kessler K, Rüb U, Nolte D, Loch-
müller H, Tinschert S, Claus D, Krakow K, Pflug B, Stein-
metz H, Auburger G. Stages of sleep pathology in spinocer-
ebellar ataxia type 2 (SCA2). Neurology 2006; 67: 1966-1972 
[PMID: 17159102 DOI: 10.1212/01.wnl.0000247054.90322.14]

84 Riess O, Laccone FA, Gispert S, Schöls L, Zühlke C, Vieira-
Saecker AM, Herlt S, Wessel K, Epplen JT, Weber BH, Kreuz 
F, Chahrokh-Zadeh S, Meindl A, Lunkes A, Aguiar J, Macek 

M, Krebsová A, Macek M, Bürk K, Tinschert S, Schreyer 
I, Pulst SM, Auburger G. SCA2 trinucleotide expansion in 
German SCA patients. Neurogenetics 1997; 1: 59-64 [PMID: 
10735276 DOI: 10.1007/s100480050009]

85 Belal S, Cancel G, Stevanin G, Hentati F, Khati C, Ben Hami-
da C, Auburger G, Agid Y, Ben Hamida M, Brice A. Clinical 
and genetic analysis of a Tunisian family with autosomal 
dominant cerebellar ataxia type 1 linked to the SCA2 locus. 
Neurology 1994; 44: 1423-1426 [PMID: 8058142 DOI: 10.1212/
WNL.44.8.1423]

86 Schöls L, Gispert S, Vorgerd M, Menezes Vieira-Saecker 
AM, Blanke P, Auburger G, Amoiridis G, Meves S, Epplen 
JT, Przuntek H, Pulst SM, Riess O. Spinocerebellar ataxia 
type 2. Genotype and phenotype in German kindreds. Arch 
Neurol 1997; 54: 1073-1080 [PMID: 9311350 DOI: 10.1001/arc
hneur.1997.00550210011007]

87 Charles P, Camuzat A, Benammar N, Sellal F, Destée A, 
Bonnet AM, Lesage S, Le Ber I, Stevanin G, Dürr A, Brice A. 
Are interrupted SCA2 CAG repeat expansions responsible 
for parkinsonism? Neurology 2007; 69: 1970-1975 [PMID: 
17568014 DOI: 10.1212/01.wnl.0000269323.21969.db]

88 Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I, Geisen 
C, Gitler AD, Becker T, Weber M, Berg D, Andersen PM, 
Krüger R, Riess O, Ludolph AC, Auburger G. The modu-
lation of Amyotrophic Lateral Sclerosis risk by ataxin-2 
intermediate polyglutamine expansions is a specific ef-
fect. Neurobiol Dis 2012; 45: 356-361 [PMID: 21889984 DOI: 
10.1016/j.nbd.2011.08.021]

89 Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, de Car-
valho M, Meyer T, Tysnes OB, Auburger G, Gispert S, Bo-
nini NM, Andersen PM, Gitler AD. Ataxin-2 intermediate-
length polyglutamine expansions in European ALS patients. 
Hum Mol Genet 2011; 20: 1697-1700 [PMID: 21292779 DOI: 
10.1093/hmg/ddr045]

90 Ross OA, Rutherford NJ, Baker M, Soto-Ortolaza AI, Car-
rasquillo MM, DeJesus-Hernandez M, Adamson J, Li M, 
Volkening K, Finger E, Seeley WW, Hatanpaa KJ, Lomen-
Hoerth C, Kertesz A, Bigio EH, Lippa C, Woodruff BK, 
Knopman DS, White CL, Van Gerpen JA, Meschia JF, Mack-
enzie IR, Boylan K, Boeve BF, Miller BL, Strong MJ, Uitti 
RJ, Younkin SG, Graff-Radford NR, Petersen RC, Wszolek 
ZK, Dickson DW, Rademakers R. Ataxin-2 repeat-length 
variation and neurodegeneration. Hum Mol Genet 2011; 20: 
3207-3212 [PMID: 21610160 DOI: 10.1093/hmg/ddr227]

91 Damrath E, Heck MV, Gispert S, Azizov M, Nowock J, 
Seifried C, Rüb U, Walter M, Auburger G. ATXN2-CAG42 
sequesters PABPC1 into insolubility and induces FBXW8 
in cerebellum of old ataxic knock-in mice. PLoS Genet 
2012; 8: e1002920 [PMID: 22956915 DOI: 10.1371/journal.
pgen.1002920]

92 Lahut S, Ömür Ö, Uyan Ö, Ağım ZS, Özoğuz A, Parman Y, 
Deymeer F, Oflazer P, Koç F, Özçelik H, Auburger G, Başak 
AN. ATXN2 and its neighbouring gene SH2B3 are associated 
with increased ALS risk in the Turkish population. PLoS 
One 2012; 7: e42956 [PMID: 22916186 DOI: 10.1371/journal.
pone.0042956]

93 Sebastiani P, Solovieff N, Puca A, Hartley SW, Melista E, 
Andersen S, Dworkis DA, Wilk JB, Myers RH, Steinberg 
MH, Montano M, Baldwin CT, Perls TT. Genetic signatures 
of exceptional longevity in humans. Science 2010; 2010: 
[PMID: 20595579 DOI: 10.1126/science.1190532]

94 Sebastiani P, Solovieff N, Dewan AT, Walsh KM, Puca A, 
Hartley SW, Melista E, Andersen S, Dworkis DA, Wilk JB, 
Myers RH, Steinberg MH, Montano M, Baldwin CT, Hoh 
J, Perls TT. Genetic signatures of exceptional longevity in 
humans. PLoS One 2012; 7: e29848 [PMID: 22279548 DOI: 
10.1371/journal.pone.0029848]

95 Köttgen A. Genome-wide association studies in nephrology 
research. Am J Kidney Dis 2010; 56: 743-758 [PMID: 20728256 
DOI: 10.1053/j.ajkd.2010.05.018]

325 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



96 Böger CA, Heid IM. Chronic kidney disease: novel insights 
from genome-wide association studies. Kidney Blood Press Res 
2011; 34: 225-234 [PMID: 21691125 DOI: 10.1159/000326901]

97 Liu CT, Garnaas MK, Tin A, Kottgen A, Franceschini N, Per-
alta CA, de Boer IH, Lu X, Atkinson E, Ding J, Nalls M, Shri-
ner D, Coresh J, Kutlar A, Bibbins-Domingo K, Siscovick D, 
Akylbekova E, Wyatt S, Astor B, Mychaleckjy J, Li M, Reilly 
MP, Townsend RR, Adeyemo A, Zonderman AB, de An-
drade M, Turner ST, Mosley TH, Harris TB, Rotimi CN, Liu Y, 
Kardia SL, Evans MK, Shlipak MG, Kramer H, Flessner MF, 
Dreisbach AW, Goessling W, Cupples LA, Kao WL, Fox CS. 
Genetic association for renal traits among participants of Af-
rican ancestry reveals new loci for renal function. PLoS Genet 
2011; 7: e1002264 [PMID: 21931561 DOI: 10.1371/journal.
pgen.1002264]

98 Tin A, Astor BC, Boerwinkle E, Hoogeveen RC, Coresh J, 
Kao WH. Genome-wide association study identified the hu-
man leukocyte antigen region as a novel locus for plasma 
beta-2 microglobulin. Hum Genet 2013; 132: 619-627 [PMID: 
23417110 DOI: 10.1007/s00439-013-1274-7]

99 Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, 
Hundertmark C, Pistis G, Ruggiero D, O’Seaghdha CM, 
Haller T, Yang Q, Tanaka T, Johnson AD, Kutalik Z, Smith 
AV, Shi J, Struchalin M, Middelberg RP, Brown MJ, Gaffo 
AL, Pirastu N, Li G, Hayward C, Zemunik T, Huffman J, 
Yengo L, Zhao JH, Demirkan A, Feitosa MF, Liu X, Malerba 
G, Lopez LM, van der Harst P, Li X, Kleber ME, Hicks AA, 
Nolte IM, Johansson A, Murgia F, Wild SH, Bakker SJ, Peden 
JF, Dehghan A, Steri M, Tenesa A, Lagou V, Salo P, Mangino 
M, Rose LM, Lehtimaki T, Woodward OM, Okada Y, Tin 
A, Muller C, Oldmeadow C, Putku M, Czamara D, Kraft 
P, Frogheri L, Thun GA, Grotevendt A, Gislason GK, Har-
ris TB, Launer LJ, McArdle P, Shuldiner AR, Boerwinkle E, 
Coresh J, Schmidt H, Schallert M, Martin NG, Montgomery 
GW, Kubo M, Nakamura Y, Tanaka T, Munroe PB, Samani 
NJ, Jacobs DR, Jr., Liu K, D’Adamo P, Ulivi S, Rotter JI, Psaty 
BM, Vollenweider P, Waeber G, Campbell S, Devuyst O, 
Navarro P, Kolcic I, Hastie N, Balkau B, Froguel P, Esko T, 
Salumets A, Khaw KT, Langenberg C, Wareham NJ, Isaacs 
A, Kraja A, Zhang Q, Wild PS, Scott RJ, Holliday EG, Org 
E, Viigimaa M, Bandinelli S, Metter JE, Lupo A, Trabetti E, 
Sorice R, Doring A, Lattka E, Strauch K, Theis F, Walden-
berger M, Wichmann HE, Davies G, Gow AJ, Bruinenberg M, 
Stolk RP, Kooner JS, Zhang W, Winkelmann BR, Boehm BO, 
Lucae S, Penninx BW, Smit JH, Curhan G, Mudgal P, Plenge 
RM, Portas L, Persico I, Kirin M, Wilson JF, Mateo Leach I, 
van Gilst WH, Goel A, Ongen H, Hofman A, Rivadeneira 
F, Uitterlinden AG, Imboden M, von Eckardstein A, Cucca 
F, Nagaraja R, Piras MG, Nauck M, Schurmann C, Budde 
K, Ernst F, Farrington SM, Theodoratou E, Prokopenko I, 
Stumvoll M, Jula A, Perola M, Salomaa V, Shin SY, Spector 
TD, Sala C, Ridker PM, Kahonen M, Viikari J, Hengstenberg 
C, Nelson CP, Meschia JF, Nalls MA, Sharma P, Singleton 
AB, Kamatani N, Zeller T, Burnier M, Attia J, Laan M, Klopp 
N, Hillege HL, Kloiber S, Choi H, Pirastu M, Tore S, Probst-
Hensch NM, Volzke H, Gudnason V, Parsa A, Schmidt R, 
Whitfield JB, Fornage M, Gasparini P, Siscovick DS, Polasek 
O, Campbell H, Rudan I, Bouatia-Naji N, Metspalu A, Loos 
RJ, van Duijn CM, Borecki IB, Ferrucci L, Gambaro G, Deary 
IJ, Wolffenbuttel BH, Chambers JC, Marz W, Pramstaller 
PP, Snieder H, Gyllensten U, Wright AF, Navis G, Watkins 
H, Witteman JC, Sanna S, Schipf S, Dunlop MG, Tonjes A, 
Ripatti S, Soranzo N, Toniolo D, Chasman DI, Raitakari O, 
Kao WH, Ciullo M, Fox CS, Caulfield M, Bochud M, Gieger 
C. Genome-wide association analyses identify 18 new loci 
associated with serum urate concentrations. Nat Genet 2013; 
45: 145-154 [PMID: 23263486 DOI: 10.1038/ng.2500]

100 Olden M, Teumer A, Bochud M, Pattaro C, Köttgen A, 
Turner ST, Rettig R, Chen MH, Dehghan A, Bastardot F, 
Schmidt R, Vollenweider P, Schunkert H, Reilly MP, Fornage 

M, Launer LJ, Verwoert GC, Mitchell GF, Bis JC, O’Donnell 
CJ, Cheng CY, Sim X, Siscovick DS, Coresh J, Kao WH, Fox 
CS, O’Seaghdha CM. Overlap between common genetic 
polymorphisms underpinning kidney traits and cardiovas-
cular disease phenotypes: the CKDGen consortium. Am J 
Kidney Dis 2013; 61: 889-898 [PMID: 23474010 DOI: 10.1053/
j.ajkd.2012.12.024]

101 Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Deh-
ghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, 
Aulchenko Y, Lumley T, Köttgen A, Vasan RS, Rivadeneira F, 
Eiriksdottir G, Guo X, Arking DE, Mitchell GF, Mattace-Raso 
FU, Smith AV, Taylor K, Scharpf RB, Hwang SJ, Sijbrands EJ, 
Bis J, Harris TB, Ganesh SK, O’Donnell CJ, Hofman A, Rotter 
JI, Coresh J, Benjamin EJ, Uitterlinden AG, Heiss G, Fox CS, 
Witteman JC, Boerwinkle E, Wang TJ, Gudnason V, Larson 
MG, Chakravarti A, Psaty BM, van Duijn CM. Genome-
wide association study of blood pressure and hypertension. 
Nat Genet 2009; 41: 677-687 [PMID: 19430479 DOI: 10.1038/
ng.384]

102 Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, 
Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Pa-
padakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, 
Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst 
P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, 
Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, 
Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak 
A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beck-
mann JS, Bergmann S, Lim N, Song K, Vollenweider P, Wae-
ber G, Waterworth DM, Yuan X, Groop L, Orho-Melander 
M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, 
Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, 
Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke 
M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, 
Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken 
MA, Doring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer 
A, Wichmann HE, Kathiresan S, Marrugat J, O’Donnell CJ, 
Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Har-
tikainen AL, McCarthy MI, O’Reilly PF, Peltonen L, Pouta 
A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, 
Hamsten A, Peden JF, Seedorf U, Syvanen AC, Tognoni G, 
Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, 
Dorr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann 
T, Rettig R, Volker U, Galan P, Gut IG, Hercberg S, Lathrop 
GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai 
G, Salomaa V, Laakso M, Elosua R, Forouhi NG, Volzke H, 
Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, 
Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, 
Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto 
J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham 
NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, El-
liott P, Abecasis GR, Caulfield M, Munroe PB. Genome-wide 
association study identifies eight loci associated with blood 
pressure. Nat Genet 2009; 41: 666-676 [PMID: 19430483 DOI: 
10.1038/ng.361]

103 Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani 
SK, Liu K, Morrison AC, Ganesh S, Kutlar A, Ramachandran 
VS, Polak JF, Fabsitz RR, Dries DL, Farlow DN, Redline S, 
Adeyemo A, Hirschorn JN, Sun YV, Wyatt SB, Penman AD, 
Palmas W, Rotter JI, Townsend RR, Doumatey AP, Tayo BO, 
Mosley TH, Lyon HN, Kang SJ, Rotimi CN, Cooper RS, Fran-
ceschini N, Curb JD, Martin LW, Eaton CB, Kardia SL, Tay-
lor HA, Caulfield MJ, Ehret GB, Johnson T, Chakravarti A, 
Zhu X, Levy D. Association of genetic variation with systolic 
and diastolic blood pressure among African Americans: the 
Candidate Gene Association Resource study. Hum Mol Genet 
2011; 20: 2273-2284 [PMID: 21378095 DOI: 10.1093/hmg/
ddr092]

104 International Consortium for Blood Pressure Genome-
Wide Association Studies; Ehret GB, Munroe PB, Rice KM, 
Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, 

326 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O’Reilly 
PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, 
Launer L, Zhao JH, Aulchenko Y, Heath S, Sober S, Parsa A, 
Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, 
Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, 
Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, 
Kumari M, Go MJ, van der Harst P, Kao WH, Sjogren M, 
Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whin-
cup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim 
X, Nguyen KD, Lehtimaki T, Matullo G, Wu Y, Gaunt TR, 
Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy 
R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, 
Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig 
B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, 
Garcia M, Chang YP, O’Connell JR, Steinle NI, Grobbee DE, 
Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, 
McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani 
AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, 
Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis 
JC, Kahonen M, Viikari J, Adair LS, Lee NR, Chen MH, Old-
en M, Pattaro C, Bolton JA, Kottgen A, Bergmann S, Mooser 
V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann 
J, Kulkarni SR, Bornstein SR, Grassler J, Groop L, Voight BF, 
Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Em-
ilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, 
Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, 
Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand 
SM, Staessen JA, Wang TJ, Burton PR, Soler Artigas M, Dong 
Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, 
Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner 
D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy 
V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Single-
ton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai 
N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, 
Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, 
Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hed-
blad B, Nilsson P, Smith GD, Wong A, Narisu N, Stancakova 
A, Raffel LJ, Yao J, Kathiresan S, O’Donnell CJ, Schwartz 
SM, Ikram MA, Longstreth WT, Jr., Mosley TH, Seshadri 
S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, 
Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh 
J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, 
van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, 
Mattace-Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivad-
eneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, 

Kangas AJ, Lyytikainen LP, Soininen P, Tukiainen T, Wurtz 
P, Ong RT, Dorr M, Kroemer HK, Volker U, Volzke H, Galan 
P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino 
M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, 
Terzic J, Kumar MV, Denniff M, Zukowska-Szczechowska 
E, Wagenknecht LE, Fowkes FG, Charchar FJ, Schwarz PE, 
Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, 
Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem 
K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, 
Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper 
RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak 
AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak 
GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, Kooner 
JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, 
Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, 
Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler 
D, Loos RJ, Shuldiner AR, Gieger C, Meneton P, Uitterlinden 
AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, 
Strachan DP, Witteman JC, Hartikainen AL, Beckmann JS, 
Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Jarvelin 
MR, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, van 
Duijn CM, Newton-Cheh C, Levy D, Caulfield MJ, Johnson T. 
Genetic variants in novel pathways influence blood pressure 
and cardiovascular disease risk. Nature 2011; 478: 103-109 
[PMID: 21909115 DOI: 10.1038/nature10405]

105 Lian J, Huang Y, Huang RS, Xu L, Le Y, Yang X, Xu W, 
Huang X, Ye M, Zhou J, Duan S. Meta-analyses of four eo-
sinophil related gene variants in coronary heart disease. J 
Thromb Thrombolysis 2013; 36: 394-401 [PMID: 23328882 DOI: 
10.1007/s11239-012-0862-z]

106 Ganesh SK, Zakai NA, van Rooij FJ, Soranzo N, Smith AV, 
Nalls MA, Chen MH, Kottgen A, Glazer NL, Dehghan A, 
Kuhnel B, Aspelund T, Yang Q, Tanaka T, Jaffe A, Bis JC, 
Verwoert GC, Teumer A, Fox CS, Guralnik JM, Ehret GB, 
Rice K, Felix JF, Rendon A, Eiriksdottir G, Levy D, Patel 
KV, Boerwinkle E, Rotter JI, Hofman A, Sambrook JG, Her-
nandez DG, Zheng G, Bandinelli S, Singleton AB, Coresh J, 
Lumley T, Uitterlinden AG, Vangils JM, Launer LJ, Cupples 
LA, Oostra BA, Zwaginga JJ, Ouwehand WH, Thein SL, 
Meisinger C, Deloukas P, Nauck M, Spector TD, Gieger C, 
Gudnason V, van Duijn CM, Psaty BM, Ferrucci L, Chakra-
varti A, Greinacher A, O’Donnell CJ, Witteman JC, Furth S, 
Cushman M, Harris TB, Lin JP. Multiple loci influence eryth-
rocyte phenotypes in the CHARGE Consortium. Nat Genet 
2009; 41: 1191-1198 [PMID: 19862010 DOI: 10.1038/ng.466]

P- Reviewer: Joseph P    S- Editor: Song XX    
L- Editor: A    E- Editor: Liu SQ

327 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Auburger G et al . 12q24 diabetes: SH2B3  or ATXN2?



interrelationships between ghrelin, insulin and glucose 
homeostasis: physiological relevance

François Chabot, Alexandre Caron, Mathieu Laplante, David H St-Pierre

François Chabot, David H St-Pierre, Département de Kinan-
thropologie, Université du Québec à Montréal, Montréal (Qué-
bec), H3C3P8, Canada
Alexandre Caron, Mathieu Laplante, Department of Anatomy 
and Physiology, Institut universitaire de cardiologie et de pneu-
mologie de Québec, Québec (Québec), G1V 4G5, Canada
Author contributions: Chabot F and Caron A have both equally 
contributed to the design and the redaction of the manuscript; 
Laplante M has participated to the redaction and the review of the 
manuscript; and St-Pierre DH has supervised the paper, partici-
pated in the redaction and the review of the paper.
Supported by Fonds de Recherche du Québec en Santé (to 
Laplante M and St-Pierre DH); Operating grants from Natural 
Sciences and Engineering Research Council of Canada and Di-
abète Québec; Laplante M also holds operating grants from the 
Canadian Institutes of Health Research, Canadian Liver Founda-
tion and the Fondation de l’Institut Universitaire de Cardiologie 
et de Pneumologie de Québec
Correspondence to: David H St-Pierre, PhD, Professor, 
Département de Kinanthropologie, Université du Québec à Mon-
tréal, 141 Ave Président-Kennedy, Montréal (Québec), H3C3P8, 
Canada. st-pierre.david_h@uqam.ca
Telephone: +1-514-9873000  Fax: +1-514-9876616
Received: December 9, 2013  Revised: February 8, 2014
Accepted: May 8, 2014
Published online: June 15, 2014

Abstract
Ghrelin is a 28 amino acid peptide mainly derived from 
the oxyntic gland of the stomach. Both acylated (AG) 
and unacylated (UAG) forms of ghrelin are found in 
the circulation. Initially, AG was considered as the only 
bioactive form of ghrelin. However, recent advances 
indicate that both AG and UAG exert distinct and com-
mon effects in organisms. Soon after its discovery, 
ghrelin was shown to promote appetite and adiposity 
in animal and human models. In response to these an-
abolic effects, an impressive number of elements have 
suggested the influence of ghrelin on the regulation of 
metabolic functions and the development of obesity-
related disorders. However, due to the complexity of 

its biochemical nature and the physiological processes 
it governs, some of the effects of ghrelin are still de-
bated in the literature. Evidence suggests that ghrelin 
influences glucose homeostasis through the modula-
tion of insulin secretion and insulin receptor signaling. 
On the other hand, insulin was also shown to influence 
circulating levels of ghrelin. Here, we review the rela-
tionship between ghrelin and insulin and we describe 
the impact of this interaction on the modulation of glu-
cose homeostasis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Acylated ghrelin; Unacylated ghrelin; Insu-
lin secretion; β-cell functions; Insulin receptor signal-
ling; Glucose homeostasis

Core tip: The present invited review intends to summa-
rize the current knowledge on the relationships between 
ghrelin, insulin and glucose homeostasis in cellular, ani-
mal and human models.

Chabot F, Caron A, Laplante M, St-Pierre DH. Interrelationships 
between ghrelin, insulin and glucose homeostasis: Physiological 
relevance. World J Diabetes 2014; 5(3): 328-341  Available from: 
URL: http://www.wjgnet.com/1948-9358/full/v5/i3/328.htm  
DOI: http://dx.doi.org/10.4239/wjd.v5.i3.328

INTRODUCTION
Obesity and ensuing metabolic complications are major 
concerns for public health and these disturbances are 
anticipated to cause the first reduction of  life expectancy 
in modern history[1]. Unfortunately, efforts to curb and 
especially prevent this alarming trend have so far been 
met with disappointment. Although it was initially hypoth-
esized that metabolic dysfunctions develop in response to 
overeating and sedentarity, recent advances show that the 
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pathophysiological process is much more complex than 
anticipated. That is, obesogenic environmental and genetic 
factors disturb homeostatic crosstalk between tissues, pro-
mote excessive fat deposition and ultimately alter cellular 
functions[2-7]. Recently, a close relationship between the de-
velopment of  obesity-related disturbances and gut-derived 
hormonal dysregulations has been clearly established[8-11]. 
For instance, studies of  gut-derived peptides such as 
peptide tyrosine-tyrosine 3-36, glucagon-like peptide 1, 
glucose-dependent insulinotropic peptide and oxynto-
modulin have provided key information regarding factors 
promoting satiety, insulin secretion and glucose disposal. 
More recently, studies on ghrelin have significantly im-
proved our understanding of  mechanisms underlying the 
stimulation of  food intake, lipid accumulation in adipose 
tissues and the development of  metabolic dysfunctions 
such as insulin resistance and type 2 diabetes[12].

Ghrelin is a 28 amino acid peptide predominantly 
produced by the stomach[13-15] but also expressed at lower 
levels in other tissues such as the liver, pancreas, heart, 
central nervous system (CNS), esophagus and testis[16-18]. 
Although it was isolated from rat stomach extracts[13] 
ghrelin was initially shown to induce potent somatotro-
phic activity in the anterior pituitary[19-21]. Subsequent 
studies have also revealed the relevance of  ghrelin in the 
regulation of  appetite, storage and metabolism of  energy 
substrates, inflammation, stress and other key biological 
functions[22,23]. Strong evidence indicates the effects of  
ghrelin in the regulation of  metabolic functions and its 
potential role in the etiology of  obesity-related dysfunc-
tions such as insulin resistance and type 2 diabetes[24]. For 
the purpose of  the present work, we will emphasize on 
reviewing the inter-relationships between ghrelin, insulin 
and glucose homeostasis.

GHRELIN RECEPTOR
In the circulation, ghrelin is present under acylated (AG) 
and unacylated (UAG) forms[13]. The enzyme ghrelin 
o-acyltransferase (GOAT) was shown to be mandatory 
for the posttranslational addition of  the acyl chain on 
serine-3 of  ghrelin[25]. In blood, the half-life of  AG is ap-
proximately 10 min while UAG displays more stability 
with a half-life of  more than 35 min[26]. Although UAG 
accounts for approximately 50%-90% of  total ghrelin 
concentrations in the circulation, this form was initially 
considered as an artifact devoid of  biological activity[26,27]. 
However, recent advances indicate that UAG indepen-
dently mediates specific biological functions while shar-
ing others with AG.

The effects of  AG are mediated through the activa-
tion of  the native growth hormone (GH) secretagogue 
receptor 1a (GHS-R1a)[13,28]. Following the discovery of  
ghrelin, the AG form was reported to stimulate the re-
lease of  GH and to promote appetite through its action 
on the brain[13,29-31]. In contrast to its acylated counterpart, 
UAG was not shown to interact with the GHS-R1a. It 
has recently been suggested that AG and UAG may exert 

their effects through the interaction with other recep-
tors than the already identified GHS-R1a. The human 
ghrelin analog BIM-28163, which fully inhibits GHS-R1a 
receptor activation induced by native ghrelin, was shown 
to blunt AG-induced GH secretion[32]. However, since 
both AG and BIM-28163 induce neuronal activation in 
the dorsomedial hypothalamus, an important nucleus 
involved in regulating food intake, it is suggested that an 
unknown ghrelin receptor could mediate AG’s action in 
promoting weight gain[33,34]. Accordingly, it is proposed 
that the GHS-R1a acutely mediates AG action on ap-
petite, whereas an unknown ghrelin receptor modulates 
its chronic peripheral weight-increasing effects[35,36]. It has 
also been suggested that GHS-R1a could heterodimer-
ize with G protein-coupled receptor 83 (Gpr83)[37]. This 
study shows that the Gpr83/GHS-R1a dimerization 
affects ghrelin’s ability to activate its only known endog-
enous receptor, indicating that Gpr83 is an important 
regulator of  ghrelin receptor activity. AG was also shown 
to interact with several other G protein-coupled recep-
tors such as the dopamine receptor subtypes 1 and 2 
(DRD1/2) and melanocortin receptor 3 (MC3R) in the 
central nervous system[37-41]. Because the existence of  
another ghrelin receptor remains speculative, the follow-
ing sections will emphasize on the interactions between 
GHS-R1a and insulin synthesis/release and signalling.

In a landmark article, Tschöp et al[30] had observed 
that AG increases both food intake and adiposity in rats 
and mice, suggesting that the hormone promotes positive 
energy balance. GHS-R1a is predominantly expressed 
in the central areas known to be influenced by insulin, 
including hypothalamic neuropeptide Y (NPY)/agouti-
related protein (AgRP) neurons[42,43]. Furthermore, we 
and others have reported that the orexigenic effects of  
AG are mediated through the activation of  NPY and 
AgRP as well as the inhibition of  proopiomelanocortin 
(POMC)/cocaine- and amphetamine-regulated transcript 
(CART) neurons in the arcuate nucleus (ARC) of  the 
hypothalamus[29,44-49]. It has recently been hypothesized 
that the adipogenic effects of  both AG and UAG could 
be mediated in the CNS by the activation of  GHS-R1a[50]. 
Mice lacking GHS-R1a are protected against early-onset 
obesity, indicating the importance of  ghrelin signaling in 
regulating body weight[51]. The effect of  AG on food in-
take is believed to be mainly attributable to its interaction 
with the melanocortin system[44,52]. In fact, in the hypo-
thalamus, ghrelin promotes the expression of  the enzyme 
prolylcarboxypeptidase and therefore the degradation of  
melanocortin receptor agonist α-melanocyte-stimulating 
hormone[53]. Central melanocortin signaling has been 
shown to directly regulate insulin levels and to be inde-
pendently involved in the control of  glucose homeosta-
sis[54]. Moreover, the melanocortin system is an important 
downstream target for the effects of  insulin to regulate 
food intake and body weight[55]. The melanocortin system 
is active in areas where both insulin and ghrelin signalling 
components are expressed; therefore, potential crosstalks 
between these systems could be envisaged.
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COMMON PATHWAY FOR GHRELIN AND 
INSULIN RECEPTOR SIGNALING
in the central nervous system
As mentioned above, it is believed that the effects of  
ghrelin on feeding are mainly exerted through the 
ARC[29,56,57]. Since the central administration of  ghrelin in-
creases the mRNA expression of  NPY and AgRP while 
inhibiting the transcription of  POMC and CART, it has 
been suggested that the orexigenic actions of  ghrelin are 

mediated through the activation of  these neurons[29,44-49,58]. 
As presented in Figure 1A, GHS-R1a activation regulates 
intracellular calcium through the adenylate cyclase-protein 
kinase A (PKA) and phospholipase C-protein kinase C 
(PKC) pathways[43,59]. The PKA pathway has been shown 
to be related to the orexigenic effects of  ghrelin since 
inhibitors of  PKC do not influence the calcium response 
to ghrelin in NPY neurons of  the ARC[43]. Consequently, 
GHS-R1a activation in the ARC elicits calcium signaling 
through N-type calcium channel-dependent mechanisms.
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Figure 1  Crosstalks between ghrelin and insulin signaling. A: In the CNS, the interaction between GHS-R1a and ghrelin leads to the activation of PKC and PKA 
and ultimately to the opening of calcium channels. In the ARC, AG’s orexigenic effects are solely mediated through PKA activation and the intracellular entry of Ca2+; 
which in turn, generate a depolarization/activation of NPY neurons. GHS-R1a activation also triggers AMPK phosphorylation. Also, the activation insulin signaling path-
way leads to a phosphorylation cascade that involves PI3K, Akt/PKB and mTORC1. mTORC1 has been shown to reduce food intake by inhibiting NPY expression in 
ARC neurons. This suggests the existence of a crosstalk between these two signaling pathways, considering that AMPK inhibits mTORC1 activation while ghrelin also 
reduces the anorexigenic effects of insulin-mTORC1. GHS-R1a could also mediate mTORC1 activation through an AMPK-independent mechanism. Moreover, GHS-
R1a has been shown to dimerize with some GPCRs such as Gpr83, DRD1/2 and MC3R; B: In the periphery, the adipogenic effects of ghrelin have been shown to 
synergize with insulin signaling. In contrast to its central effects, the interaction between GHS-R1a and AG leads to decreases in AMPK activity in the periphery. GHS-
R1a also activates Akt, PKB, mTORC1 and ultimately PPAR-γ to stimulate insulin-induced adipogenesis. CNS: Central nervous system; PKC: Protein kinase C; PKA: 
Protein kinase A; ARC: Arcuate nucleus; GHS-R1a: Growth hormone secretagogue receptor 1a; NPY: Neuropeptide Y; AG: Acylated ghrelin; AMPK: AMP-activated 
protein kinase; mTORC1: Mechanistic target of rapamycin complex 1; MC3R: Melanocortin receptor 3; DRD1/2: Dopamine receptor subtypes 1 and 2; Gpr83: G 
protein-coupled receptor 83; GPCR: G protein-coupled receptors; PPAR-γ: Peroxisome proliferator-activated receptor γ; IR: Insulin receptor.
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in AMPK activation between the brain and the periphery, 
it is expected that ghrelin and insulin signaling crosstalks 
will be different in the CNS versus the periphery. In the 
periphery, it was observed that ghrelin stimulates adipo-
genesis[10,22]. The adipogenic effects of  ghrelin are mediat-
ed, at least in part, through the activation of  peroxisome 
proliferator-activated receptor γ (PPAR-γ), a nuclear 
receptor whose activity is positively influenced by key 
components of  the insulin pathway, namely Akt/PKB 
and mTORC1[71-73]. In fact in the periphery, AG promotes 
adipogenesis through PPAR-γ. Interestingly, a fully op-
erational form of  the mTORC1 complex is required for 
PPAR-γ activation; suggesting that AG’s adipogenic ef-
fects could be mediated through mTORC1. Consistently, 
ghrelin promotes activation of  the Akt/PKB pathway in 
macrophages, and this activation results in an enhanced 
activation of  PPAR-γ[74]. Unlike in the CNS, GHS-R1a 
adipogenic actions seem to synergize with the insulin 
signaling pathway, establishing the need to further under-
stand the discrepancies between mTOR, AMPK, insulin 
and ghrelin action in the brain versus peripheral tissues. It 
is noteworthy that both endogenous and pharmacological 
activation of  AMPK prevent adipogenesis while down-
regulating the expression of  key adipogenic genes includ-
ing PPAR-γ in the periphery[75,76]. Overall, these elements 
suggest that ghrelin needs to inhibit peripheral AMPK to 
exert its effects on fat accumulation.

It is also suggested that the insulin signaling pathway 
and insulin per se can affect ghrelin production and signal-
ing. It has been shown that components of  the mTOR 
signaling pathway are expressed in the endocrine cells of  
gastric mucosa, where nearly all ghrelin-positive cells are 
positively stained for these signaling molecules[77]. More-
over, rapamycin, a mTORC1 inhibitor increases gastric 
ghrelin mRNA, gastric preproghrelin levels and circulat-
ing ghrelin, demonstrating that the mTORC1 signaling 
pathway is crucial in ghrelin expression and secretion[78]. 
Therefore, insulin could also directly affect ghrelin se-
cretion. Altogether, these findings strongly suggest the 
existence of  a link between ghrelin and insulin signaling 
pathways. The following sections will focus on the physi-
ological impact of  such a relationship on glucose ho-
meostasis, insulin secretion and ghrelin levels in cellular, 
animal and human models.

GHRELIN AND GLUCOSE HOMEOSTASIS
The influence of  ghrelin on the regulation of  glucose ho-
meostasis was first hypothesized following the observa-
tion of  a negative correlation between circulating ghrelin 
and insulin levels in humans[79]. Later, an association be-
tween ghrelin and the homeostasis model of  assessment, 
an index of  insulin resistance, in women with polycystic 
ovary syndrome (PCOS) further supported the involve-
ment of  ghrelin in the development of  insulin resistance 
and type 2 diabetes[80]. Subsequently, the association of  
ghrelin with insulin, glucose and insulin resistance index-
es was investigated in different populations with definite 
metabolic profiles. For instance, in obese and non-obese 

AMP-activated protein kinase (AMPK) plays an im-
portant role in the regulation of  energy metabolism. This 
kinase is activated following an increase in the AMP/ATP 
ratio within the cell, a condition linked to cellular energy 
depletion[60]. Once activated, AMPK phosphorylates 
acetyl-CoA carboxylase and switches on catabolic pro-
cesses to promote ATP production[60]. Current evidence 
indicates that ghrelin could be considered as a signal of  
energy deficiency since it activates AMPK in the CNS. 
Moreover, ghrelin-induced calcium entry is substantially 
suppressed by an AMPK inhibitor[61]. Consistent with 
these observations, GHS-R1a positively modulates hy-
pothalamic AMPK[61,62]. In turn, the pharmacological 
activation of  AMPK was also shown to stimulate food 
intake in the hypothalamus[62]. This reinforces the view 
that AMPK is critical in the control of  feeding. How-
ever, little is known regarding the potential mechanisms 
through which AMPK-activation would mediate ghrelin’s 
orexigenic effects. Recent data suggest that in response to 
fasting, increased ghrelin levels promote feeding through 
AMPK-mediated activation of  hypothalamic fatty acid 
metabolism in the ventromedial hypothalamus (VMH)[63]. 
Further studies are needed to identify the mechanisms 
underlying ghrelin’s activation of  AMPK and to charac-
terize the neuronal centers involved in the stimulation of  
appetite.

AMPK influences the insulin signaling pathway, sug-
gesting that ghrelin-induced activation of  AMPK could 
affect this pathway. In fact, the activation of  AMPK in-
hibits the mechanistic target of  rapamycin (mTOR) com-
plex 1 (mTORC1) activity, a key protein complex activated 
downstream of  the insulin receptor (IR). mTORC1 is a 
central regulator of  cell metabolism, growth, proliferation 
and survival and acts as a nutrient/hormone sensor[64,65]. 
In the CNS, mTORC1 activation reduces food intake at 
least by reducing the hypothalamic expression of  NPY 
and AgRP[66,67]. Recent data indicate that ghrelin requires 
an intact hypothalamic mTORC1 to stimulate food in-
take[68]. In this study, the authors suggest that orexigenic 
effect of  ghrelin is mediated by AMPK in the VMH, 
but through the mTORC1 in the ARC. These results are 
rather counterintuitive since the effects of  AMPK and 
mTORC1 usually antagonize each other. AMPK activa-
tion promotes food intake whereas mTORC1 does the 
opposite. Indeed, injection of  insulin in rodents inhibits 
AMPK activity in the hypothalamus, promotes mTORC1 
activation, and reduces food consumption[69]. Recently, is 
has been suggested that ghrelin plays a dual time-depen-
dent role in modulating hypothalamus, since it only tran-
siently affects AMPK, which might explain the conflicting 
results[70]. More studies are needed to better understand 
the signaling events mediating the effects of  ghrelin on 
the regulation of  food intake.

in the periphery
As indicated in Figure 1B, in contrast to its central ef-
fects, ghrelin decreases AMPK activity in the periphery, 
indicating that the hormone bilaterally controls AMPK 
in the brain and peripherally. Because of  this divergence 
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children and obese adults with or without insulin resis-
tance or type 2 diabetes, pre-meal total ghrelin levels were 
inversely associated to insulin levels and the severity of  
insulin resistance[81-83]. The recent development of  new 
and more sensitive immunoassays has allowed the charac-
terization of  distinct biological activity of  AG and UAG 
in healthy and pathological conditions. This led to the 
observation that AG, rather than UAG, reduces insulin 
secretion while promoting insulin resistance in individuals 
with or without metabolic dysfunctions[27,84]. 

Soon after its discovery, ghrelin was shown to be se-
creted in a pulsatile manner in response to the nutritional 
status[31]. In clinical studies, ghrelin levels were initially 
measured from a unique sample in participants submit-
ted to an overnight fast. However more elaborate study 
designs have been developed to allow the determination 
of  ghrelin levels at different time points in pre-meal and 
postprandial conditions. The first evidence suggesting 
the involvement of  ghrelin in the regulation of  insulin 
secretion was provided by the observation of  a positive 
association between suppression of  total ghrelin levels 
and insulin concentrations in the postprandial condition 
in participants with uncomplicated obesity[85]. In addition, 
total ghrelin levels were negatively correlated to insulin 
resistance in obese children and adolescents[83].

As previously reviewed[86,87], several research teams 
have reported a link between ghrelin and the regulation 
of  glucose homeostasis but this was often achieved us-
ing one single fasting sample of  total ghrelin. Although 
they provided key information, data generated from 
these studies were often not in line with results obtained 
using AG or UAG treatments in cell, animal and human 
models. Accordingly, the inverse correlations of  ghrelin 
with insulin levels and insulin resistance commonly de-
scribed in the literature seem rather counter-intuitive at 
first glance for an adipogenic hormone promoting food 
intake and decreased energy expenditure. Indeed, we 
would expect that ghrelin, which drives food intake and 
adiposity would be positively associated with impaired 
metabolic functions. It is therefore likely that under 
physiological conditions, ghrelin acts as a regulator of  
energy balance to stimulate appetite and the storage of  
energy substrates while reducing energy expenditure in 
periods of  limited food availability. However, when nutri-
ents are abundant, ghrelin levels decrease to prevent the 
excessive accumulation of  energy substrates. Some also 
suggest the existence of  a state of  ghrelin resistance since 
high-fat consumption blunts the effects of  intracerebro-
ventricular-administrated ghrelin on GH secretion, ARC 
neurons activation and NPY/AgRP expression[88]. From 
an evolutionary perspective, ghrelin could favor survival 
for individuals having limited access to nutrients. How-
ever, impairments in the regulation of  ghrelin secretion, 
caused by the ingestion of  specific nutrients or other ge-
netic/environmental factors, could promote the excessive 
accumulation of  lipids and ultimately the development 
of  metabolic dysfunctions such as insulin resistance and 
type 2 diabetes.

EFFECTS OF GHRELIN ON INSULIN 
SECRETION
It was initially reported that a population of  ghrelin- and 
insulin-producing cells would have common embryonic 
progenitors within the developing endocrine pancreas[89]. 
In the pancreas, ghrelin-positive ε-cells are found as 
single cells in islet periphery. Ghrelin is also co-expressed 
with glucagon-secreting cells in humans and rats[17,90-94]. 
The expression of  GHS-R1a was also detected in islets 
as well as in several pancreatic cell lines, suggesting that 
ghrelin and its receptor could influence pancreatic func-
tions in a paracrine manner[95].

As presented in Table 1, the first direct evidence sug-
gesting the influence of  ghrelin on the regulation of  in-
sulin secretion was provided by Broglio et al[21] in healthy 
volunteers. In fasting condition, AG administered at 1 
μg/kg intravenously (iv) significantly reduced circulating 
insulin levels while increasing glycemia. Using the same 
conditions, AG was shown to reduce insulin secretion 
in young and elderly participants[106]. Since AG has a 
relatively short half-life in circulation, continuous admin-
istrations of  the peptide were performed to confirm the 
results obtained using bolus injections. The continuous 
infusion of  AG (1 μg/kg per hour) decreased the first 
phase of  insulin secretion postprandially, while causing 
a significant rise in glycemia[96,107]. This increase in blood 
glucose was also associated to an enhanced second-
phase insulin response. Similarly, Vestergaard et al[101-105] 
observed that AG infusions (0.3 μg/kg per hour to 1.0 
μg/kg per hour) promote insulin resistance; however they 
did not detect any fluctuation in insulin secretion[100,101]. 
At lower concentrations (0.3 to 1.5 ng/kg per hour), 
AG infusions reduced insulin secretion and glucose lev-
els[108]. The same authors have also observed a decrease 
in insulin secretion in response to the administration of  
physiological concentrations of  AG (0.2 and 0.6 ng/kg 
per hour)[26,109]. Consequently, it is suggested that physi-
ological levels of  ghrelin directly impair β-cell functions 
but the mechanisms underlying these effects remain to be 
clarified[109]. One appealing hypothesis is that these inhibi-
tory effects of  AG on insulin release could be mediated 
through the stimulation of  somatostatin production[97]. In 
contrast, a single bolus of  AG (1 μg/kg) did not induce 
any alteration of  glucose or insulin levels in obese wom-
en[110]. In a clinical study, UAG was administered for 16 
h at 1.0 μg/kg per hour and the postprandial insulin re-
sponse was potentiated in healthy volunteers[111]. Follow-
ing a meal, the inhibitory effect of  AG on insulin release 
was abrogated by the co-administration with UAG[96]. 
Furthermore, Kiewiet et al[112] reported that the combined 
treatment with AG and UAG increased insulin sensitivity 
in morbidly obese patients. Altogether, these studies show 
that ghrelin has complex effects when administered to 
humans and that the impact of  this hormone on glucose 
homeostasis likely depends on the dose, the nutritional 
status and the metabolic profile of  the population stud-
ied. Furthermore, the biphasic insulin response observed 
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after the administration of  AG indicates that the peptide 
could exert distinct effects on β-cells: an initial inhibition 
of  insulin release combined to a subsequent stimulation 
of  insulin synthesis[96,107]. Further studies are needed to 
clarify the causes of  the variability in insulin secretion 
and glucose homeostasis observed in response to ghrelin. 
To do so, it is critical to establish the concentrations at 
which ghrelin will be administered, and to design clinical 
protocols with well-established nutritional status and suf-
ficient blood samples to allow detecting positive/negative 
effects on insulin release under specific metabolic condi-
tions.

Similarly to the available data in humans, data derived 
from most rodent studies indicate that AG inhibits insu-
lin secretion. In wild type mice, iv administrations of  AG 
(5 nmol to 150 nmol) were shown to inhibit fasting and 
glucose-induced insulin secretion[113]. In contrast, insuli-
notropic effects have been reported in response to an iv 
injection of  AG (25 nmol/L) in rats[114]. In mice, the ad-
ministration of  AG (1 to 10 nmol/kg, iv) was also shown 
to induce biphasic responses[115]. In fact AG was shown 
to inhibit insulin release by blocking the effects of  a cho-
linergic antagonist on the activation of  phospholipase C 
(PLC) after 2 min but this effect was reversed 6 min after 
treatment[115]. During the early phase (2 min), ghrelin also 
promoted the stimulation of  insulin secretion by poten-
tiating the response of  the phosphodiesterase inhibitor 
IBMX, but this effect could no longer be observed at 6 
min. The same group also reported that the stimulatory 
effect of  ghrelin on insulin release was accompanied 
by increases in nitric oxide and that this outcome was 
mediated by the activation of  the neuronal constitutive 
nitric oxide synthase[116]. In mice, AG promptly inhibits 
insulin release but this effect is reversed over time. This 
suggests that AG could block the first-phase of  insu-
lin secretion and subsequently allow β-cells to release 
the hormone. Although these effects were modulated 
through PLC and phosphodiesterase, the mechanisms 
underlying these observations remain to be elucidated. 
Consequently, following the description of  this biphasic 

response, it is even possible to speculate that AG’s effects 
could be mediated through the activation of  more than 
one distinct receptor. For instance, these effects could 
potentially be regulated by the formation of  homo- and 
heterodimers between GHS-R1a and other receptors 
such as Gpr83 and DRD1/2[37,41]. Interestingly, the ex-
pression of  both GHS-R1 and DRD2 was previously re-
ported in β-cells[41,95]. Furthermore, DRD2 was shown to 
inhibit insulin secretion through the activation of  the β2-
adrenergic receptor[117]. This indicates that under distinct 
conditions, AG (and potentially UAG) could mediate the 
dimerization of  GHS-R1 and consequently exert differ-
ent effects on β-cell functions.

Genetic manipulations have also provided key data 
regarding ghrelin actions. Overexpression of  the ghrelin 
(Ghrl) gene was shown to decrease insulin levels in mice, 
while its inactivation was shown to enhance insulin secre-
tion and to prevent glucose intolerance[118-120]. In leptin-
deficient mice, the deletion of  the Ghrl gene potentiates 
insulin secretion and improves glucose homeostasis[121,122]. 
The pharmacological inhibition of  GHS-R1 was also 
shown to increase insulin secretion and improve glucose 
homeostasis[123]. In contrast, the ablation of  the Ghs-r1 
gene decreased glucose control and reduced insulin se-
cretion in leptin-deficient mice[124]. This impaired insulin 
response was associated with the upregulation of  Uncou-
pling protein-2 (Ucp-2), Sterol regulatory-element binding 
protein-1c (Srebp-1c), Carbohydrate-responsive element-
binding protein (Chrebp) and Macrophage migration in-
hibitory factor-1 (Mif-1) and with the downregulation of  
Hypoxia-inducible factor-1α (Hif-1α), fibroblast growth 
factor-21 (Fgf-21) and Pancreatic and duodenal homeo-
box-1 (Pdx-1) in whole pancreases[124]. These genes are 
known to decrease (Ucp-2, Srebp-1c, Chrebp and Mif-1) 
or improve (Hif-1α , Fgf-21 and Pdx-1) β-cell functions. 
Another group has also suggested that the effect of  AG 
could be mediated through an increased production of  
the β-cell autoantigen for type 1 diabetes (IA-2β)[125]. In 
perfused rat pancreases, the influence of  AG on insulin 
release was also investigated. AG (10 nmol/L) was shown 
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Table 1  Effects of ghrelin treatment in human participants

Model Treatment Dose Condition Endogenous insulin Insulin sensitivity

Healthy or hypopituitary 
humans

AG vs Ctrl (iv) AG + Arg vs Arg (iv) AG: 1 to 2.2 μg/kg
Arg: 0.5 g/kg

Fasting (overnight) Decreased Decreased[21,96-99]

Healthy or hypopituitary 
humans

AG + FFA vs FFA AG + UAG AG: 1 μg/kg
FFA: 25 g
UAG: 1 μg/kg

Fasting (overnight) Decreased No change[96,98]

Healthy humans AG + OGTT (iv) vs OGTT UAG 
vs Ctrl (iv) AG + UAG vs Ctrl (iv)

AG: 1 μg/kg
OGTT: 100g
UAG: 1 μg/kg

Fasting (overnight) No change No change[96,98]

Healthy humans AG vs Ctrl (iv) AG: 1 μg/kg Fasting (overnight) Increased Decreased[96]

Healthy humans AG vs Ctrl infusion 3h (iv) AG: 5 pmol/kg per minute Fasting (overnight) - Decreased[100]

Healthy, gastrectomized 
or hypopituitary humans

EHC: AG vs Ctrl 5 h (iv) pancreatic 
clamp + EHC:AG vs Ctrl 5 h (iv)

AG: 5 pmol/kg per minute Fasting (overnight) - Decreased[101-104]

Healthy humans EHC: AG 5 h (intramuscular) AG: non-specified 
supraphysiological dose

Fasting (overnight) - Increased[105]

AG: Acylated ghrelin; iv: Intravenous; Arg: Arginine; Ctrl: Control; UAG: Unacylated ghrelin; OGTT: Oral glucose tolerance test; EHC: Euglycemic/hyper-
insulinemic clamp.
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to promptly decrease insulin in situ secretion[126].
The effects of  ghrelin on the regulation of  insulin 

secretion were also investigated in vitro. In pancreatic tis-
sue fragments of  normal and diabetic rats, treatments 
with AG (1 pmol/L to 1 μmol/L) induced insulinotropic 
effects[127]. This effect was also observed in response to 
high doses of  AG (0.1 to 1 μmol/L) in cultured isolated 
mice islets[115]. In contrast, AG was shown to inhibit in-
sulin secretion in immortalized pancreatic β-cells (AG at 
0.1 μmol/L) and in cultured mouse islets (AG 1 to 100 
pmol/L)[115,128]. It is noteworthy that glucose levels and 
time of  incubation were critical elements mediating AG’s 
effects on insulin release. Accordingly, AG’s insulinotro-
pic effects were only detected at glucose concentrations 
above 8.3 mmol/L[94,115,127,128]. Data obtained in rodents 
indicate that ghrelin promptly mediates its effects on 
β-cell function[115]. In the circulation, AG must exert its 
activity quickly before being degraded. However, in vitro 
AG treatments were carried out for at least 30 min. It is 
therefore necessary to design experiments allowing the 
characterization of  ghrelin’s effects on insulin release in 
a time-resolved manner. This would allow determining 
whether ghrelin directly mediates insulin release and/or 
its synthesis within β-cells.

The effects of  AG and UAG on β-cells have been 
explored to clarify the effects of  both ghrelin forms on 
survival, proliferation and insulin release. It has been 
demonstrated that both AG and UAG stimulate insulin 
release in different β-cell lines[129,130]. Furthermore, in 
response to an intravenous glucose tolerance test, the 
administration of  UAG at 30 nmol/kg was shown to po-
tentiate insulin release in anesthetized rats[131]. Although 
these effects could not be detected in rat and mouse iso-
lated islets, the inhibitory effect of  AG on insulin release 
was reversed by the combined treatment with UAG[132]. 
Granata et al[130,133] also reported that both ghrelin forms 
promote cell survival and prevent apoptosis in different 
β-cell lines. This group also reported that UAG treatment 
(two subcutaneous administrations of  100 μg/kg for 7 
d) could prevent diabetes in newborn rats treated with 
streptozocin. Although UAG has been shown to influ-
ence the release of  insulin, important questions remain 
regarding the mechanisms underlying these effects in 
the pancreas. For instance, it will be critical to determine 
whether ghrelin influences the acute release of  insulin or 
its synthesis within β-cells.

The information contained in the above paragraphs 
suggests that AG inhibits while UAG restores insulin 
secretion. Although there are many discrepancies in the 
literature, evidence suggests that the influence of  ghrelin 
on β-cell function depends on the dose of  ghrelin used 
for the treatment as well as the glycemic state under 
which experiments are carried out. The available data also 
indicates the relevance of  establishing a time-frame dur-
ing which responses occur. In fact, different groups have 
described that ghrelin mediates a biphasic response with 
rapid inhibition and subsequent stimulation of  insulin re-
lease. Also, homo- and heterodimerization of  the GHS-
R1a receptor could explain the conflictual observations 

currently reported in the literature. It is therefore critical 
to fully determine the (1) optimal doses of  AG and UAG; 
(2) conditions; and (3) the time continuum under which 
ghrelin influences β-cell functions. Due to its adipogenic 
nature, it is also of  potential interest to investigate wheth-
er chronic hyperprolinemia could promote lipotoxicity 
within β-cells.

EFFECTS OF INSULIN ON CIRCULATING 
GHRELIN LEVELS
Early after the discovery of  ghrelin, an inverse relation-
ship was observed between the ghrelin and insulin levels 
in animal and human models. In the previous section, 
the effects of  AG and UAG on insulin were reviewed. 
However, the influence of  insulin on both ghrelin forms 
has also been investigated. It was initially observed that 
ghrelin levels decrease significantly in healthy participants 
in response to food intake[134,135]. Moreover, under fast-
ing conditions, ghrelin levels were shown to be inversely 
correlated with insulin values[79]. Taken together, these 
elements suggest that insulin could reduce circulating 
ghrelin levels.

Ghrelin levels have been measured following the 
intake of  different types of  meals. However, to isolate 
the effect of  insulin and eliminate potential confounding 
factors, specific models mimicking postprandial condi-
tions such as the oral glucose tolerance test (OGTT) or 
the euglycemic hyperinsulinemic clamp (EHC) have been 
used. It was first reported that total ghrelin levels are sig-
nificantly reduced in response to OGTT or mixed meals 
in healthy participants after approximately 35 min[136,137]. 
In these studies, circulating ghrelin levels were decreased 
in response to insulin but not following the combined 
parenteral administration of  insulin and glucose[136,137]. 
These results suggest that decreases in ghrelin levels are 
not directly mediated by insulin but rather through other 
mechanisms that require nutrients transiting in the gastro-
intestinal tract.

Clinical protocols were also designed to study the 
variations in total ghrelin levels under defined hyperin-
sulinemic conditions. For instance, in healthy and obese 
volunteers submitted to EHC or hypoglycemia, total 
ghrelin levels were significantly reduced[85,138]. Interest-
ingly, in slightly overweight individuals submitted to 
EHC, total ghrelin concentrations were reduced by 25% 
and these effects were still detectable 15 min after the 
insulin infusion ended[139]. Also, under the euglycemic/hy-
perinsulinemic condition, total ghrelin levels were further 
reduced by the co-administration with GH and an inhibi-
tor of  hormone-sensitive lipase activity in GH-deficient 
patients[140]. Similar results were observed in response to 
three-steps hypo-, eu- and hyperglycemic/hyperinsulin-
emic clamps[141]. Although total ghrelin concentrations 
were stable before the administration of  insulin, the lev-
els of  the hormone promptly decreased in response to 
hyperinsulinemia and remained stable during the hypo- 
and euglycemic states. However, the most important 
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reductions in ghrelin levels were noted during the hyper-
glycemic/hyperinsulinemic conditions. In another study, 
healthy participants were submitted to three different 
types of  clamps[142]. During the first clamp, hyperglycemia 
and the resulting elevation of  endogenous insulin did not 
alter ghrelin levels[142,143].

The impact of  EHC on ghrelin levels was also studied 
in different pathological conditions including Pradder-
Willi syndrome (PWS), PCOS, and hyper- and hypothy-
roidism. For instance, elevated total ghrelin levels were 
reported in children with PWS. The influence of  EHC 
on total ghrelin levels was therefore investigated in both 
patients with PWS and normal children[144]. Under these 
conditions, total ghrelin levels were decreased to a greater 
extent but still remained higher throughout the EHC in 
patients with PWS compared to controls. Total ghrelin 
levels were higher in PWS children and their response to 
EHC was proportional to the one of  control individuals. 
Glucose disposal was similar between normal children 
and PWS patients, suggesting that under hyperinsulin-
emic conditions ghrelin levels are reduced in function of  
the degree of  insulin resistance rather than being solely 
influenced by insulin and glucose levels. To confirm this, 
patients with type 2 diabetes and healthy individuals were 
also submitted to EHC. In these patients, fasting total 
ghrelin levels were lower than in healthy individuals. As 
expected, total ghrelin levels reduction was significantly 
less pronounced in patients with type 2 diabetes com-
pared to healthy individuals[145]. This suggests that im-
pairments in IR signaling could disturb the physiological 
regulation of  ghrelin levels. It is recognized that ghrelin 
levels and insulin sensitivity are lower in women with 
PCOS. To further study the effect of  insulin sensitivity 
on the regulation of  ghrelin levels, women with PCOS 
were submitted to EHC. Unexpectedly ghrelin levels 
were not differently modulated in PCOS than in normal 
women, indicating that the androgen levels could also in-
fluence the modulation of  ghrelin in this population[146].

Patients with hyperthyroidism also exhibit a nega-
tive association between total ghrelin levels and energy 
expenditure[147]. In these patients, ghrelin levels are also 
decreased. To investigate the effect of  hyperthyroidism 
normalization, ghrelin levels were measured during EHC 
before and after medical treatment with antithyroid hor-
mones. Similarly, increased ghrelin levels are observed be-
fore and after normalization in patients with hypothyroid-
ism[148]. Despite this difference, ghrelin profiles observed 
during EHC were not altered by antithyroid treatment or 
by L-thyroxine (T4) replacement[148,149]. These results in-
dicate that the reduction in ghrelin observed during EHC 
is independent of  thyroid status. The effect of  ghrelin on 
the hypothalamo-pituitary-thyroid axis was also investi-
gated in healthy participants. In contrast to the results ob-
tained in patients who underwent hyper- or hypothyroid 
normalization, the administration of  AG (50 μg) directly 
increased free T4 while reducing thyroid stimulating hor-
mone concentrations in the circulation[150]. This suggests 
that the thyroid status does not influence the inhibitory 
effect of  insulin on ghrelin secretion; however ghrelin 

treatment could directly regulate thyroid functions.
Total ghrelin levels are decreased to a greater extent 

during EHC in individuals with high insulin sensitivity. 
However the impact of  insulin on the circulating levels 
of  AG and UAG remained uncharacterized for many 
years. To further characterize the effects of  hyperinsu-
linemia on the different forms of  circulating ghrelin, we 
decided to measure AG and total ghrelin (and estimate 
UAG levels by subtracting total ghrelin-AG values) dur-
ing EHC in insulin-sensitive (ISO) and insulin-resistant 
(IRO) obese postmenopausal women[27]. Total ghrelin 
and UAG levels were significantly decreased by EHC in 
ISO and IRO women. However, during EHC, AG levels 
were significantly reduced only in ISO individuals and 
the maximal amplitude of  reduction was more impor-
tant than in ISO participants. Similarly, the AG/UAG 
ratio was significantly lower in ISO women in the fast-
ing condition and throughout EHC. Interestingly, in the 
total population (ISO + IRO), the maximal amplitude of  
reduction for total ghrelin and AG were both positively 
correlated with insulin sensitivity. It was later shown that 
fasting AG and UAG levels are decreased between the 
second and the third term of  pregnancy in women with 
diabetes[151]. This was also associated with less important 
decreases in UAG but not in AG during EHC.

The molecular mechanisms by which insulin regulates 
ghrelin levels were investigated only in a limited number 
of  studies. Similarly to the results obtained in humans, 
insulin was shown to reduce total ghrelin levels in rats[152]. 
Data presented in the signaling section also provided 
evidence that the gastric insulin signaling activation influ-
ences ghrelin mRNA, gastric preproghrelin and circulat-
ing ghrelin. Results from two different studies in rodents 
also indicate that a hyperinsulinemic state could enhance 
ghrelin mRNA expression but there is no information 
available on protein levels[31,114]. Although the effects of  
insulin on total ghrelin levels have been abundantly stud-
ied in the literature, it remains that AG and UAG profiles 
need to be further characterized. Therefore it is critical to 
decipher the mechanisms mediating the effects of  insulin 
and potential receptor signaling impairments on AG and 
UAG secretion both in animal and human models under 
normal and pathological conditions.

CONCLUSION
Although it was discovered more than ten years ago 
and was the object of  an impressive number of  publi-
cations, important questions still remain regarding the 
physiological control of  AG and UAG secretion and 
the distinct role of  both ghrelin forms in the regulation 
of  metabolic functions. The present work intends to 
highlight the interrelationships between ghrelin, insulin 
and glucose homeostasis. Available data indicate that 
ghrelin influences insulin secretion and vice versa. New 
evidence suggests the existence of  crosstalks between the 
signaling pathways induced by the activation of  the na-
tive ghrelin receptor, GHS-R1a and the insulin receptor. 
However, these interactions seem to oppose themselves 
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as they are taking place in the central nervous system or 
in the periphery. This suggests that in different tissues 
and organs, the heterodimerization of  GHS-R1a with 
Gpr83, DRD1/2, MC3R and potentially other receptors 
could trigger the activation of  distinct signaling pathways. 
Other important issues were denoted in the literature 
regarding the insulinotropic effects of  ghrelin in cellular, 
animal and human models. This suggests the critical need 
to better determine doses under which AG and UAG op-
timally activate distinct metabolic functions. Taking into 
consideration the complexity of  ghrelin’s physiology it is 
also important to characterize the conditions under which 
altered responses to AG and UAG are observed. Overall, 
these clarifications should provide a better understanding 
of  the mechanisms underlying AG and UAG secretion as 
well as to allow the deciphering of  their role in the regu-
lation of  distinct metabolic functions.
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screening, targeting HbA1c < 7.0% for glucose control, 
the use of renin angiotensin system inhibitors to control 
blood pressure, the use of statins or fibrates to control 
dyslipidemia, and multifactorial treatment. Reducing 
microalbuminuria is therefore an important therapeutic 
goal, and the absence of microalbuminuria could be 
a pivotal biomarker of therapeutic success in diabetic 
patients. Other therapies, including vitamin D receptor 
activation, uric acid-lowering drugs, and incretin-related 
drugs, may also be promising for the prevention of 
DKD progression.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: We show the significance of targeting the 
remission/regression of microalbuminuria in type 2 
diabetic patients, leading to protection against the pro-
gression of diabetic kidney disease (DKD) and cardio-
vascular events. To achieve the remission/regression 
of microalbuminuria, the multifactorial intervention and 
the early detection of microalbuminuria with continuous 
screening is important, as management of DKD. Multi-
factorial intervention includes glucose, blood pressure 
and lipid control. Additionally, other therapies, including 
vitamin D receptor activation, uric acid-lowering medi-
cine and incretin-related medicines may be promising 
for preventing the progression of DKD. We review the 
current standard treatment for DKD and other prospec-
tive therapies for DKD.
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Abstract
Diabetic kidney disease (DKD) is the most common 
cause of chronic kidney disease, leading to end-stage 
renal disease and cardiovascular disease. The overall 
number of patients with DKD will continue to increase 
in parallel with the increasing global pandemic of type 
2 diabetes. Based on landmark clinical trials, DKD has 
become preventable by controlling conventional fac-
tors, including hyperglycemia and hypertension, with 
multifactorial therapy; however, the remaining risk of 
DKD progression is still high. In this review, we show 
the importance of targeting remission/regression of mi-
croalbuminuria in type 2 diabetic patients, which may 
protect against the progression of DKD and cardiovas-
cular events. To achieve remission/regression of mi-
croalbuminuria, several steps are important, including 
the early detection of microalbuminuria with continuous 
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INTRODUCTION
The prevalence of  diabetes mellitus is increasing. Ac-
cording to the International Diabetes Federation Atlas of  
2012, the estimated diabetes prevalence in 2012 was 371 
million, representing 8.3% of  the world’s adult popula-
tion; it was predicted that by 2030, the number of  people 
with diabetes in the world will have risen to 552 million[1]. 
Long-term diabetes results in vascular changes and dys-
function, and diabetic complications are the major causes 
of  morbidity and mortality in diabetic patients. Among 
diabetic vascular complications, diabetic kidney disease 
(DKD) is a common cause of  chronic kidney disease 
(CKD) and is a leading cause of  end-stage renal disease 
(ESRD)[2]. In addition, microalbuminuria/proteinuria 
and a decline in the glomerular filtration rate (GFR) are 
observed in CKD and are recognized as independent risk 
factors for the development of  ESRD and the onset of  
cardiovascular diseases, respectively. Therefore, it is im-
portant to establish therapeutic strategies for DKD.

The pathogenesis of  DKD is complex and has not 
yet been completely elucidated. Hyperglycemia is one 
major factor that is responsible for the pathogenesis of  
DKD[3]. Moreover, elevated systemic blood pressure and 
intra-glomerular pressure, which are associated with the 
renin-angiotensin system (RAS), several cytokines and 
growth factors induced by metabolic and hemodynamic 
factors, and abnormal lipid metabolism are involved 
in the pathogenesis of  DKD[4,5]. Current therapeutic 
strategies targeting these mechanisms, particularly the 
control of  blood glucose and blood pressure, have been 
established in many hallmark clinical trials. In addition, a 
reduction in microalbuminuria is more frequent than pro-
gression to overt proteinuria, and a multifactorial control 
approach is important for this reduction in microalbu-
minuria, leading to reductions in renal and cardiovascular 
risk. In this review, we discuss the current standard treat-
ment and other prospective therapies in DKD (especially 
early stage) that target a reduction of  albuminuria.

MECHANISMS OF ALBUMINURIA IN DKD
Albuminuria is a signature feature of  DKD. Albuminuria 
in DKD is predominantly due to impairment in the glo-
merular filtration barrier, consisting of  the glomerular 
endothelial cells, the glomerular basement membrane 
(GBM), and the podocytes[6]. Podocytes are the pre-
dominant component of  this barrier, and the reduced 
number of  podocytes due to increased apoptosis and 
detachment from the GBM is observed in the diabetic 
kidney, resulting in leakage of  albumin through areas 
of  denuded podocytes[7-12]. In addition to a decrease in 
podocyte number and density, the widening of  the foot 
processes, shortening of  the slit diaphragm/loss of  slit 
diaphragm proteins, changes in the actin cytoskeleton, 
and decreases in negative charge may cause albuminuria 
in DKD[13-15]. Furthermore, endothelial cell injuries in 
diabetic conditions leading to reduced nitric oxide pro-
duction[16,17], altered vascular endothelial growth factor 

(VEGF) signaling[18,19] and diminished glycocalyx[20]
 also 

play pivotal roles in albuminuria. Glomerular endothelial 
cells and podocytes crosstalk through several mediators, 
including VEGF-A[19], angiopoietin-1[21,22] and -2[23] and 
activated protein C[24]; therefore, the missing link between 
endothelial cells and podocytes in diabetic conditions 
contributes to dysfunction of  both cell types, resulting 
in increased albuminuria[25]. Glomerular hemodynamic 
changes, including hyperfiltration and hyperperfusion, are 
observed in diabetic conditions and hypertension. Elevat-
ed intraglomerular pressure creates a shear stress on the 
glomeruli and leads to an increase in albuminuria due to 
endothelial and podocyte dysfunction[26]. Vascular endo-
thelial dysfunction is closely related to the pathogenesis 
of  the initiation of  cardiovascular disease (CVD); albu-
minuria also reflects glomerular endothelial dysfunction. 
Therefore, albuminuria is a marker of  both glomerular 
and early systemic endothelial dysfunction[27,28].

Tubular cell injury may also contribute to albumin-
uria by impairing proximal tubular albumin and protein 
reabsorption. In diabetes, proximal tubular reuptake of  
albumin and protein may be impaired by high glucose[29], 
transforming growth factor (TGF)-β[30], or angiotensin Ⅱ
[31]. Tubulointerstitial injury is enhanced and the ability to 
reabsorb albumin and protein is further reduced, along 
with the development of  glomerular disease, and there is 
a direct correlation between the degree of  tubulointersti-
tial scarring and the extent of  albuminuria[32].

SCREENING METHODS AND DIAGNOSIS 
OF DIABETIC KIDNEY DISEASE
The early clinical sign of  DKD is elevated urinary albu-
min excretion, referred to as microalbuminuria, which 
progresses to overt proteinuria and leads to nephritic-
range proteinuria in some cases. Increasing albuminuria 
(proteinuria) leads to a decline in renal function, which is 
defined in terms of  the GFR[33] and generally progresses 
inexorably to ESRD 6-8 years after the detection of  
overt proteinuria[34]. Microalbuminuria is defined as a 
urinary albumin-creatinine ratio (ACR) of  30-299 mg/g 
creatinine (Cr), and macroalbuminuria is defined as an 
ACR > 300 mg/g Cr[35]. Elevated ACR should be con-
firmed in the absence of  urinary tract infection in two 
additional first-void specimens collected during the fol-
lowing 3 to 6 mo[35].

Microalbuminuria in diabetic patients has been rec-
ognized as a useful biomarker for diagnosing DKD and 
as a predictive factor for progression to ESRD. In most 
patients with diabetes, CKD should be attributed to dia-
betes if  any of  the following is true: macroalbuminuria 
is present, microalbuminuria is present in the presence 
of  diabetic retinopathy, or type 1 diabetes has occurred 
with a duration of  at least 10 years[35]. However, other 
causes of  CKD should be considered in the presence of  
any of  the following circumstances: diabetic retinopathy 
is absent, GFR is low or rapidly decreasing, proteinuria 
is increasing or there is evidence of  nephritic syndrome, 
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refractory hypertension is noted, active urinary sediments 
are present, signs or symptoms of  other systemic diseases 
are present, or a > 30% reduction in GFR has occurred 
within 2-3 mo after initiation of  treatment with an angio-
tensin converting enzyme (ACE) inhibitor or angiotensin 
Ⅱ receptor blocker (ARB)[35].

Additionally, microalbuminuria has been shown to be 
closely associated with an increased risk of  cardiovascu-
lar morbidity and mortality[36-38]. In a sub-analysis of  the 
United Kingdom Prospective Diabetes Study (UKPDS), 
the cardiovascular mortality of  type 2 diabetic patients 
with microalbuminuria was reported to be two times 
higher than that of  patients with normoalbuminuria[39]. 
Therefore, microalbuminuria is not only a biomarker for 
the diagnosis of  DKD but is also an important thera-
peutic target for improving the prognosis of  renal and 
cardiovascular risk in diabetic patients.

THERAPEUTIC STRATEGY FOR DIABETIC 
KIDNEY DISEASE
The current therapeutic strategy for DKD is shown in 
Figure 1. A multifactorial therapeutic approach, including 
glycemic control, blood pressure management, and lipid 
control, is recommended to prevent the progression of  
DKD. The remission and regression of  albuminuria as a 
result of  multifactorial therapy may be closely associated 
with reduced risk of  both the progression of  DKD and 
cardiovascular disease. In addition to these therapies, vita-
min D receptor activation, uric acid-lowering drugs, and 
incretin-related drugs are potential treatments for DKD.

BLOOD GLUCOSE CONTROL
Targeting HbA1c
Chronic hyperglycemia is the main causal factor underly-

ing diabetic vascular complications, including DKD. Mul-
tiple potential molecular mechanisms have been proposed 
to explain hyperglycemia-induced diabetic complications. 
Some of  the most-studied mechanisms include disrup-
tion of  the polyol pathway, activation of  the diacylglycer-
ol-protein kinase C pathway, increased oxidative stress, in-
creased formation and activity of  advanced glycation end 
products, and activation of  the hexosamine pathway[3]. 
Additionally, alterations in signal transduction pathways 
induced by hyperglycemia or toxic metabolites have been 
reported to cause multiple vascular dysfunctions, such as 
abnormal blood flow, and increased apoptosis, inflam-
mation, and accumulation of  extracellular matrix in the 
kidney by alteration of  gene expression or protein func-
tion[3]. Therefore, glycemic control is fundamentally nec-
essary to prevent the onset and progression of  DKD by 
influencing both hyperglycemia itself  and hyperglycemia-
induced metabolic abnormalities; this premise has been 
supported by several randomized controlled clinical trials 
in both type 1 and type 2 diabetes, as described below.

Type 1 diabetes: In the Diabetes Control and Compli-
cations Trial (DCCT), the average HbA1c levels were 
7% and 9% for the intensive and conventional therapy 
groups, respectively. Intensive glycemic control was as-
sociated with a risk reduction of  34% for the onset 
of  microalbuminuria and a risk reduction of  56% for 
progression to overt albuminuria[40]. Additionally, in the 
Epidemiology of  Diabetes Interventions and Complica-
tions study (the follow-up study to the DCCT), intensive 
glycemic control prevented the onset of  microalbumin-
uria (yielding a decrease in the odds ratio of  84% for the 
intensive therapy group) and the progression to overt 
albuminuria (yielding a decrease in the odds ratio of  59% 
for the intensive therapy group) at 7-8 years after the 
end of  the DCCT, although the differences in HbA1c 
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          Multifactorial therapy
Glycemic control without hypoglycemia
Blood pressure control using 
renin-angiotensin system inhibitors 
Lipid control using statins or fibrates

         Other prospective therapy
Vitamin D receptor activation
Uric acid lowering medicines
Incretin-related medicines
   (independent of glucose lowering?) 
   (GLP-1 receptor agonists and DPP-4 inhibitors)

Remission of albuminuria

Diabetic kidney disease

End stage renal disease Cardiovascular disease

+

Figure 1  Therapeutic strategy for diabetic kidney disease. Multifactorial therapy, consisting of glycemic, blood pressure, and lipid control, is recommended to pre-
vent the progression of diabetic kidney disease (DKD). The remission and regression of albuminuria by multifactorial therapy may be closely associated with reduced 
risk of progression of both DKD and cardiovascular disease. In addition to these therapies, vitamin D receptor activation, uric acid-lowering drugs, and incretin-related 
drugs should be considered in the prospective treatment of DKD.
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at the end of  the study were 6.4% and 7.5% for the in-
tensive and conventional therapy groups, respectively. 
Intensive glycemic control reduced the onset of  microal-
buminuria by 21% and the progression to macroalbumin-
uria by 32%[45] (Table 1). In the Action in Diabetes and 
Vascular disease: Preterax and Diamicron MR Controlled 
Evaluation (ADVANCE) study, the HbA1c levels at the 
end of  the study were 6.5% and 7.3% for the intensive 
and conventional therapy groups, respectively. Intensive 
glycemic control resulted in a 21% reduction in new 
onset or worsening nephropathy defined by new onset 
macroalbuminuria, doubling of  serum Cr, need for kid-
ney replacement therapy, or death due to kidney disease. 
Additionally, intensive glycemic control decreased the 
development of  new onset microalbuminuria by 9%, 
and development of  macroalbuminuria by 30%[46] (Table 
1). In the Veterans Affairs Diabetes Trial (VADT) study, 
the HbA1c levels at the end of  the study were 6.9% and 
8.4% for the intensive and conventional therapy groups, 
respectively. Intensive glycemic control resulted in a 32% 
reduction in the progression from normal albuminuria 
to microalbuminuria or macroalbuminuria, and a 37% 
reduction in the progression from normal albuminuria 
to microalbuminuria to macroalbuminuria, and a 34% 
reduction in any increase in albuminuria[47] (Table 1). The 
ACCORD, ADVANCE, and VADT studies showed the 
beneficial effects of  intensive glycemic control on the 
prevention of  microalbuminuria and reduced progression 
to macroalbuminuria; however, these studies showed no 
significant benefit of  more intensive glycemic control on 
Cr-based estimates of  GFR (eGFR).

Based on the results from these clinical trials, the 
Standards of  Medical Care in Diabetes 2014 of  the 
American Diabetes Association (ADA)[33], the Kidney 
Disease Improving Global Outcomes (KDIGO) 2012 
Clinical Practice Guidelines for the Evaluation and Man-
agement of  Chronic Kidney Disease and the National 
Kidney Foundation Kidney Disease Outcomes Quality 
Initiative (KDOQI) guidelines for the management of  di-
abetes with CKD[35]　recommend a target HbA1c < 7.0% 

between the intensive and conventional therapy groups 
had decreased over that time. Moreover, 24 cases exhib-
ited elevated serum Cr levels (≥ 2.0 mg/dL); of  these 24 
cases, 19 were in the conventional therapy group, and five 
were in the intensive therapy group[41]. In the follow-up 
study conducted 22 years after initiation of  the DCCT[42], 
a decrease in the GFR (< 60 mL/min per 1.73 m2) was 
observed in the intensive therapy group, with a risk re-
duction of  50% compared with the conventional therapy 
group. The decrease in GFR per year was significantly 
suppressed in the intensive therapy group compared with 
the conventional therapy group (intensive therapy: con-
ventional therapy, 1.27 mL/min per 1.73 m2/year: 1.56 
mL/min per 1.73 m2/year).

Type 2 diabetes: In the UKPDS33, the median HbA1c 
levels were 7.0% and 7.9% for the intensive and con-
ventional therapy groups, respectively. The development 
of  diabetic microvascular complications, including ne-
phropathy, in the intensive therapy group was reduced 
by 25% relative to the conventional therapy group[43]. In 
the follow-up study conducted 10 years after the end of  
the UKPDS, the development of  microvascular compli-
cations, including nephropathy, in the intensive therapy 
group was still reduced by 24% compared with the con-
ventional therapy group, although the differences in the 
HbA1c levels between the intensive and conventional 
therapy groups had diminished.

In the Kumamoto Study, the average HbA1c levels 
were 7.5% and 9.8% for the intensive and conventional 
therapy groups, respectively. The cumulative rates for 
the development and progression of  nephropathy after 
6 years were 7.7% for the intensive therapy group and 
28.0% for the conventional therapy group in the primary 
prevention cohort; these rates were 11.5% and 32.0%, 
respectively, in the secondary intervention cohort. In 
this study, an HbA1c < 6.9% was identified as the target 
for preventing the onset and progression of  diabetic 
nephropathy[44]. In the Action to Control Cardiovascular 
Risk in Diabetes (ACCORD) study, the HbA1c levels 
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Table 1  Effects of intensive glucose control on the onset and progression of diabetic kidney disease

Study  HbA1c Outcome of albuminuria or renal events

Intensive treatment Conventional treatment
ACCORD[45] 6.4% vs 7.6% 21% ↓ in onset of microalbuminuria

32% ↓ in progression to macroalbuminuria
ADVANCE[46] 6.5% vs 7.3% 9% ↓ in onset of microalbuminuria

30% ↓ in progression to macroalbuminuria
21% ↓ in renal events
   New onset macroalbuminuria
   Doubling of serum Cr
   Kidney replacement therapy
   Death due to kidney disease

VADT[47] 6.9% vs 8.4% 32% ↓ in progression from normal to microalbuminuria or macroalbuminuria
37% ↓ in progression from normal to microalbuminuria to macroalbuminuria
34% ↓ in any increase in albuminuria

ACCORD: Action to Control Cardiovascular Risk in Diabetes; ADVANCE: Action in Diabetes and Vascular disease: Preterax and Diamicron MR Controlled 
Evaluation; VADT: Veterans Affairs Diabetes Trial.

Kitada M et al . Therapeutic targets of diabetic kidney disease



to prevent or delay the progression of  DKD. However, 
clinical evidence that intensive glycemic control reduces 
DKD is limited to the prevention of  microalbuminuria 
and reduced progression to macroalbuminuria. Evidence 
of  intensive glucose control effecting renal outcomes, 
including reduced eGFR or the doubling of  plasma Cr 
levels, or on cardiovascular disease, is still ambiguous. 
Additionally, no reports have prospectively examined the 
effect of  intensive blood glucose control on overt ne-
phropathy with macroalbuminuria, and ESRD or CKD 
stage 4.

Risk of hypoglycemia
Recent clinical trials, including ADVANCE[46], AC-
CORD[48], and VADT[47], which reported HbA1c levels 
of  6.5%, 6.4%, and 6.9%, respectively, showed 1.5-3-fold 
increases in hypoglycemia in patients with type 2 diabetes 
who received intensive therapy to reach target glucose 
levels (with targeted HbA1c levels of  < 6.5%, < 6.0%, 
and < 6.0%, respectively). However, intensive therapy did 
not decrease the risk of  cardiovascular events. Moreover, 
in the ACCORD study[48], the mortality rates for patients 
treated with intensive therapy were significantly higher 
compared to conventional therapy patients. Although the 
source of  the relationship between hypoglycemia and 
increased mortality in this study was unclear[49], hypogly-
cemia should be avoided. Therefore, glycemic control 
without hypoglycemia is important, and the use of  glyce-
mic control to target HbA1c levels should be considered 
in light of  the risk factors pertinent to the individual pa-
tient, such as the presence of  diabetic vascular complica-
tions, history of  diabetes, and age. At the advanced stage 
of  overt nephropathy with a reduction in renal function-
ing, the risk of  hypoglycemia may be increased because 
of  decreased gluconeogenesis in the kidney, changes in 
pharmacokinetics resulting from reduced renal function, 
and reduced insulin metabolism in the kidney. Therefore, 
it is necessary to select anti-diabetic medicines while con-
sidering the individual patient’s renal functioning.

BLOOD PRESSURE CONTROL
Targeting blood pressure
Systolic blood pressure control is universally recom-

mended in patients with diabetes to reduce the incidence 
of  stroke, heart failure, diabetes-related death, and reti-
nal photocoagulation, as well as to reduce the risk of  
the onset of  microalbuminuria or progression to overt 
proteinuria. The early findings from the UKPDS sug-
gest that a 10 mmHg decrease in systolic blood pressure 
is associated with a reduction of  diabetic microvascular 
complications, including nephropathy, by 13%[50]. Ad-
ditionally, in the ADVANCE study, a reduction of  blood 
pressure from 140/73 mmHg (control group) to 136/73 
mmHg (indapamide-perindopril group) was shown to 
reduce the risk of  a major macro- or microvascular 
(mostly new microalbuminuria) event and mortality from 
any cause, including cardiovascular disease[51]. Therefore, 
the goal of  blood pressure < 130/80 mmHg appears 
to be appropriate in type 2 diabetes to fight against the 
development and progression of  DKD[52]. However, 
there are recent clinical guidelines for the management 
of  high blood pressure in patients with diabetes and 
CKD. The KDIGO 2012 Clinical Practice Guidelines 
for the Evaluation and Management of  Chronic Kidney 
Disease recommends targets for blood pressure in dia-
betes and CKD as follows. Blood pressure in diabetic 
adults with CKD and urine albumin excretion < 30 
mg/24 h (or ACR < 30 mg/g Cr) should be treated to 
≤ 140/90 mmHg, and blood pressure in diabetic adults 
with CKD and urine albumin excretion ≥ 30 mg/24 h 
(or ACR ≥ 30 mg/g Cr) should be treated to ≤ 130/80 
mmHg. Moreover, the Standards of  Medical Care in 
Diabetes 2014 of  the ADA[33] recommends that people 
with diabetes and hypertension should be treated to < 
140/80 mmHg, and lower systolic targets, such as < 130 
mmHg, may be appropriate for certain individuals, such 
as younger patients. However, the 2014 Evidence-Based 
Guidelines for the Management of  High Blood Pres-
sure in Adults from the Panel Members Appointed to 
the Eighth Joint National Committee (JNC8)[53] recom-
mend a blood pressure goal of  < 140/90 mmHg in the 
population aged ≥ 18 years with CKD or/and diabetes. 
Thus, recommendations for blood pressure targets differ 
between the guidelines (Table 2); however, blood control 
targets should be considered with the risk of  the indi-
vidual patient, such as the presence or absence of  other 
diabetic vascular complications, history of  CVD and age, 
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Table 2  Target of blood pressure in diabetic kidney disease (different of clinical guidelines)

Clinical guideline Target population Target of blood pressure

Standard of Medical Care in Diabetes-2014 (ADA) Diabetic patients < 140/80 mmHg (< 130 mmHg, younger patients 
if it can be achieved  without undue treatment 
burden)

KDIGO 2012 CKD guideline Diabetes + CKD
UAE < 30 mg/24 h or ACR < 30 mg/gCr ≤ 140/90 mmHg
UAE ≥ 30 mg/24 h or ACR ≥ 30 mg/gCr ≤ 130/80 mmHg

JNC8 Diabetic patients < 140/90 mmHg
CKD patients

CKD: Chronic kidney disease; UAE: Urinary albumin excretion; ACR: Albumin creatinine ratio; ADA: American Diabetes Association; KDIGO: The kidney 
Disease Improving Global Outcomes; JNC8: The Eighth Joint National Committee.
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as well as glucose control targets.

ACE Inhibitors and ARBs
RAS activation is implicated in the pathogenesis of  
DKD. In diabetic patients with microalbuminuria or 
overt proteinuria, RAS inhibitors play a pivotal role in the 
prevention and treatment of  DKD[54,55]. Landmark stud-
ies including type 1 and type 2 diabetic patients at various 
stages of  DKD have provided abundant clinical evidence 
that treatment with RAS inhibitors, including ACE in-
hibitors and ARBs, slow the progressive decline of  GFR, 
reduce micro- and macroalbuminuria, and reduce cardio-
vascular mortality and morbidity[54], as shown in Figure 
2. Therefore, the use of  RAS inhibitors for hypertension 
and albuminuria in diabetic patients is recommended as a 
first-line treatment[56-66].

Dual RAS blockade with an ACE inhibitor and 
ARB may be more effective in reducing proteinuria 
than monotherapy in patients with DKD. Based on the 
Ongoing Telmisartan Alone and in Combination with 
Ramipril Global Endpoint Trial, combination therapy 
with ramipril and telmisartan reduces proteinuria bet-
ter than monotherapy; however, it worsens major renal 
outcomes, including dialysis, the doubling of  serum Cr 
levels, and death[67,68]. Additionally, the Veterans Affairs 
Nephropathy in Diabetes Clinical Trials showed that 
combination therapy with an ARB (losartan) and an 
ACE inhibitor (lisinopril) in type 2 diabetic patients with 
macroalbuminuria significantly increased the risk of  hy-
perkalemia and acute kidney injury[69]. Thus, combined 
RAS blockade should not be used in diabetic patients, 
especially elderly type 2 diabetic patients with normo- 
or microalbuminuria. First, an ACE inhibitor or ARB 
should be used, and its dosage should be increased to 
obtain an optimal anti-albuminuric or proteinuric re-

sponse. Combination treatment with both an ACE in-
hibitor and an ARB should be prescribed by a nephrolo-
gist and given to patients with overt proteinuria or severe 
proteinuria, notwithstanding the use of  the maximum 
dosage of  the ACE inhibitor or ARBs. In such diabetic 
patients, monitoring of  renal function is necessary, and 
treatment should be halted in the event of  acute kidney 
injury, low blood pressure, or high potassium levels.

Mineralocorticoid receptor antagonists
Some clinical trials have demonstrated that treatment with 
spironolactone and eplerenone in addition to an ACE 
inhibitor or an ARB reduces proteinuria in patients with 
diabetes[70-75]. However, the long-term effect of  mineralo-
corticoid receptor antagonists on GFR is not clear, and 
serum potassium levels should be monitored carefully.

Aliskiren
Aliskiren, a direct renin inhibitor, has been promoted 
for the suppression of  DKD and cardiovascular disease. 
In the Evaluation of  Proteinuria in Diabetes study[62], 
patients with DKD with overt proteinuria were treated 
with 100 mg of  losartan, followed by the addition of  a 
placebo or aliskiren (300 mg). Treatment with 300 mg of  
aliskiren reduced the mean urinary ACR compared with 
placebo treatment. However, the Aliskiren Trial in Type 2 
Diabetes Using Cardio-Renal Endpoints study[76], which 
was performed to confirm the effectiveness of  combina-
tion treatment with either an ACE inhibitor or an ARB 
plus aliskiren on both renal and cardiovascular events, 
was terminated because of  adverse outcomes, including 
hyperkalemia and hypotension, and predicted futility in 
meeting the cardiovascular and renal endpoints.

Calcium channel blockers and diuretics
Because many hypertensive patients with DKD will re-
quire a combination therapy to adequately control blood 
pressure, commonly used combination therapies include 
an ACE inhibitor or an ARB plus a diuretic or a calcium 
channel blocker (CCB).

The Gauging Albuminuria Reduction With Lotrel 
in Diabetic Patients With Hypertension study tested the 
effect on albuminuria of  initial combination therapy of  
either a dihydropyridine calcium channel blocker or a 
thiazide diuretic combined with the same ACE inhibi-
tor in patients with type 2 diabetes and hypertension. 
In the study, both amlodipine and hydrochlorothiazide 
(HCTZ) combined with an initial treatment using benaz-
epril decreased the median percent change in ACR from 
baseline to the end of  the study; however, the benazepril 
plus HCTZ group had a greater reduction in albuminuria 
compared to the benazepril plus amlodipine group (me-
dian percent change in ACR: -72.1 vs 40.5, P < 0.0001)[77]. 
In contrast, the mean decrease in the eGFR during the 
observational period was less in the benazepril plus am-
lodipine group than in the benazepril plus HCTZ group 
(-2.03 ± 14.2 mL/min vs -13.64 ± 16.1 mL/min, P < 
0.0001)[77].

347 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Type 1 diabetes Type 2 diabetes

Microalbuminuria

Macroalbuminuria

End stage renal disease

Trandolapril (BENEDICT)[56]

Lisinopril (EUCLID)[64]

Imidapril (JAPAN-IDDM)[65]

Irbesartan (IRMA2)[57]

Valsartan (MARVAL)[58]

Telmisartan (DETAIL)[59]

Telmisartan (INNOVATION)[60]
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Aliskiren (AVOID)[63]

Figure 2  Beneficial effects of renin-angiotensin system inhibitors. Numer-
ous landmark studies have shown the effectiveness of renin-angiotensin system 
inhibitors on diabetic kidney disease.
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The Avoiding Cardiovascular Events through Combi-
nation Therapy in Patients Living with Systolic Hyperten-
sion (ACCOMPLISH) trial was a randomized and dou-
ble-blind trial in which 11506 patients with hypertension 
(60% of  whom were diabetics) who were at high risk for 
cardiovascular events were assigned to receive treatment 
with either benazepril plus amlodipine or benazepril 
plus HCTZ. The benazepril-amlodipine combination 
had a relative risk reduction of  19.6% in cardiovascular 
events[78]. According to the sub-analysis of  the AC-
COMPLISH trial on renal outcomes, the events of  CKD 
progression defined as a doubling of  serum Cr concen-
tration or ESRD (eGFR < 15 mL/min per 1.73 m2 or 
need for dialysis) occurred at a frequency of  2.0% in the 
benazepril plus amlodipine group compared to 3.7% in 
the benazepril plus HCTZ group (HR = 0.52, 0.41-0.65, 
P < 0.0001). However, in the patients with CKD (more 
than half  of  patients have DKD), both the progression 
of  CKD and cardiovascular mortality did not differ be-
tween groups[79].

It is still unclear which additional anti-hypertensive 
drug (CCB or diuretic) is better for providing both reno- 
and cardioprotection in DKD. Therefore, the risk of  the 
individual patient, such as the history of  CVD and age, 
should be taken into consideration.

LIPID CONTROL
Dyslipidemia, statins, and fibrates
Dyslipidemia is a major risk factor for atherosclerotic 
cardiovascular disease, which is a cause of  mortality and 
morbidity in patients with diabetes and CKD[80,81]. In par-
ticular, low-density lipoprotein cholesterol (LDL-C) plays 
an important role in the development of  coronary artery 
disease. Several clinical trials using statin-based lipid-low-
ering therapies in patients with CKD and diabetes have 
shown reductions in the risk of  major atherosclerotic 
events. In addition to reducing the risk of  cardiovascular 
diseases in CKD patients, evidence suggests that statin 
therapy in patients with predialysis CKD may slow the 
progressive loss of  kidney function, measured as changes 
in urinary albumin/protein excretion or eGFR[82-89]. In 
the Collaborative Atorvastatin in Diabetes Study, atorvas-
tatin (10 mg/d) treatment was associated with increased 
GFR in comparison with a placebo, and a modest ben-
eficial effect was observed, particularly in patients with 
albuminuria. Moreover, atorvastatin was effective at 
decreasing cardiovascular disease (by 42%) in patients 
with a moderately decreased eGFR (30-60 mL/min per 
1.73 m2), and this treatment effect was similar to the 37% 
reduction in cardiovascular disease observed in patients 
without decreased eGFR[90]. Furthermore, a meta-analysis 
showed that statin therapy was associated with decreased 
albuminuria compared to a placebo[87].

The Fenofibrate Intervention and Event Lowering in 
Diabetes study demonstrated that fenofibrate (200 mg/d) 
reduced cardiovascular events, reduced albuminuria, and 
slowed eGFR loss over 5 years, although it initially and 

reversibly increased plasma Cr levels. In a meta-analysis, 
fibrates reduced the risk of  albuminuria progression in pa-
tients with diabetes and reduced the risk of  major cardio-
vascular events and cardiovascular death in patients with an 
eGFR of  30-59.9 mL/min per 1.73 m2[91,92].

Statins and fibrates can exert renoprotective effects 
pleiotropically, such as anti-oxidant, anti-inflammation, 
and anti-fibrotic effects, independent of  their lipid-lower-
ing effects, in experimental animal models[93,94].

KDOQI guidelines and the ADA recommend that 
the LDL-C target in patients with diabetes or/and CKD 
should be < 100 mg/dL, and a lower LDL-C goal of  
< 70 mg/dL is a therapeutic option in individuals with 
overt CVD, by treatment with statins. Triglyceride levels 
< 150 mg/dL and high-density lipoprotein cholesterol 
(HDL-C) > 40 mg/dL in males and > 50 mg/dL in fe-
males are desirable[33,35].

MULTIFACTORIAL INTENSIVE THERAPY
Effects on the progression of diabetic kidney disease
The Steno-2 study showed the effect of  multifactorial 
intensive therapy on the progression of  nephropathy in 
patients with type 2 diabetes[95]. In this study, 160 patients 
with type 2 diabetes and microalbuminuria (average age, 
55 years) were randomly divided, with 80 patients as-
signed to a standard therapy group and 80 patients as-
signed to an intensive therapy group. The progression 
of  nephropathy was evaluated as a secondary end point. 
During the 1993-1999 period, the targets for glycemic 
control, systolic blood pressure, diastolic blood pressure, 
total cholesterol levels, and triglyceride levels were < 6.5%, 
< 140 mmHg, < 85 mmHg, < 190 mg/dL, and < 150 
mg/dL, respectively, in the intensive therapy group. Pa-
tients were administered ARB or ACE inhibitors (regard-
less of  their blood pressure); patients with ischemic heart 
disease or peripheral vascular disease were given aspirin, 
and supplementation with vitamin C and E was also pro-
vided. Additionally, diet therapy (lipid restriction, < 30% 
of  energy intake per day and < 10% from saturated fatty 
acid intake) and exercise therapy (3-5 times/wk, moder-
ately intense activity) were prescribed. In the 2000-2001 
period, the targets for fasting total cholesterol levels, 
systolic blood pressure, and diastolic blood pressure 
were changed to < 175 mg/dL, < 130 mmHg, and < 80 
mmHg, respectively, because the treatment guidelines in 
Denmark changed. In the average observation period of  
7.8 years, HbA1c; systolic and diastolic blood pressure; 
total cholesterol, LDL-C, and triglyceride levels; and fat 
intake were significantly reduced in the intensive therapy 
group compared with the standard therapy group. More-
over, the use of  aspirin was significantly higher in the in-
tensive therapy group, and urinary albumin excretion was 
significantly decreased in the intensive therapy group (46 
mg/d) compared with the standard therapy group (126 
mg/d). Moreover, the risk of  onset and progression of  
nephropathy was reduced to a hazard ratio of  0.39 (CI: 
0.17-0.87).
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Furthermore, after the Steno-2 study, 63 patients in 
the standard therapy group underwent intensive therapy 
with 67 patients of  the intensive therapy group in the 
average follow-up period of  5.5 years[96]. In the follow-up 
study, the onset and progression of  nephropathy were as-
sessed as secondary endpoints. At the end of  the follow-
up period, glucose, blood pressure, and lipid control in 
the standard therapy group were improved to almost the 
same levels as in the intensive therapy group. However, 
for the total observation period of  13.3 years combined 
with an average follow-up period of  7.8 years, the onset 
and progression of  nephropathy were decreased in the 
intensive therapy group [HR = 0.44 (CI: 0.25-0.77)]. Six 
cases and one case progressed to ESRD in the standard 
and intensive therapy groups, respectively (P = 0.04).

Additionally, a cohort study with a 4-year follow-up 
of  1290 type 2 diabetic patients with normal albumin-
uria was performed using multifactorial intensive thera-
py[97]. In this cohort study, the targets of  blood glucose, 
blood pressure, LDL and triglyceride levels were as fol-
lows: HbA1c < 7.0%, < 130/80 mmHg, < 100 mg/dL, 
< 150 mg/dL, and HDL ≥ 40 mg/dL (male) per 50 
mg/mg per deciliter (female). New microalbuminuria 
appeared in 211 patients (16.4%) and HbA1c levels < 
7% (HR = 0.729, 95%CI: 0.553-0.906, P = 0.03), blood 
pressure < 130 mmHg [HR = 0.645 (CI: 0.491-0.848), 
HDL ≥ 40 mg/dL (male) per 50 mg/dL (female), HR 
= 0.715 (CI: 0.537-0.951)] were associated with the on-
set of  albuminuria.

Accordingly, multifactorial intensive therapy is recom-
mended for suppressing the onset and progression of  
early diabetic nephropathy; however, it should be noted 
that this recommendation is based on a small RCT. More-
over, the suppressive effect of  multifactorial intensive 
therapy on nephropathy is not clear in the advanced stage 
of  overt nephropathy.

Effects on the onset of cardiovascular events
In the Steno-2 study described above, the incidence of  
cardiovascular diseases, including cardiovascular death, 
non-fatal myocardial infarction, non-fatal stroke, revascu-
larization, and amputation, were evaluated as the primary 
endpoints over 7.8 years[95]. Thirty-three cardiovascular 
events (24%) in 19 cases were observed for the intensive 
therapy group; conversely, 35 cardiovascular events (40%) 
were observed in the standard therapy group. These 
results indicate that the risk of  cardiovascular disease in 
type 2 diabetic patients with microalbuminuria was signif-
icantly reduced after multifactorial intensive therapy com-
pared with standard therapy [HR = 0.47 (CI: 0.24-0.73)].

In the Steno-2 follow-up study, performed for an 
average of  5.5 years in addition to the original 7.8 years, 
the incidence of  lower limb amputation, nonfatal stroke, 
nonfatal myocardial infarction, coronary artery bypass 
grafting, and percutaneous transluminal coronary angio-
plasty were assessed as the primary endpoints[96]. At the 
end of  the follow-up period, glycemia, blood pressure, 
and lipid control for the standard therapy group had im-
proved to levels similar to those found in the intensive 

therapy group. However, for the total observation period 
of  13.3 years, the onset of  cardiovascular disease was 
decreased in the intensive therapy group. In addition, 
there were 48 cases and 158 cardiovascular events in the 
standard therapy group, in contrast to 28 cases and 51 
cardiovascular events in the intensive therapy group.

Remission and regression of albuminuria
Reduction of  microalbuminuria in diabetic patients oc-
curred more frequently than we expected. Araki et al[98] 
reported that microalbuminuria in type 2 diabetic patients 
could improve to normoalbuminuria (remission) or could 
decrease by more than 50% from the baseline (regres-
sion) based on the results of  a prospective observational 
follow-up study over a 6-year period. The 6-year cumula-
tive incidence of  progression from microalbuminuria to 
overt proteinuria was 28% (95%CI: 19%-37%), whereas 
the remission and regression rates were 51% (95%CI: 
42%-60%) and 54% (95%CI: 45%-63%), respectively 
(Figure 2). In a pooled logistic regression analysis, each 
modifiable factor was trisected according to the num-
ber of  patients and was applied as three categories in 
the analysis. The results showed that microalbuminuria 
of  short duration, the use of  RAS blockade, HbA1c < 
7.35%, and lower systolic blood pressure (< 130 mmHg) 
were identified as independent factors associated with 
remission/regression of  microalbuminuria.

ARBs have also been shown to induce remission and 
regression of  microalbuminuria in type 2 diabetic pa-
tients. In the Incipient to Overt: Angiotensin Ⅱ Blocker, 
Telmisartan, Investigation on Type 2 Diabetic Nephropa-
thy study, remission of  microalbuminuria at the final 
observation point occurred in 21.2% of  patients treated 
with 80 mg of  telmisartan, 12.8% of  patients treated 
with 40 mg of  telmisartan, and 1.2% of  patients given a 
placebo (both telmisartan doses vs placebo, P < 0.001)[58]. 
Additionally, patients receiving 80 or 40 mg of  telmis-
artan achieved superior renoprotection, as indicated by 
lower transition rates to overt nephropathy compared to 
the placebo patients. Taken together, these results strong-
ly indicate that RAS blockade using an ARB not only 
prevents the progression of  microalbuminuria to overt 
proteinuria but also induces remission and regression of  
microalbuminuria in type 2 diabetic patients.

The Steno-2 study also demonstrated that a high 
proportion of  patients with microalbuminuria returned 
to normoalbuminuria through the multifactorial interven-
tion. After a mean of  7.8 years of  follow-up, 46 (31%) 
patients returned to normoalbuminuria, 58 (38%) pa-
tients still had microalbuminuria, and 47 (31%) patients 
progressed to overt proteinuria[99]. Lower HbA1c levels, 
initiation of  antihypertensive therapy, and initiation of  
RAS inhibitors during the follow-up period were inde-
pendently associated with remission of  microalbuminuria. 
A recent analysis focusing particularly on the effect of  
lowering blood pressure clearly showed that more than 
half  of  all type 2 diabetic patients with microalbuminuria 
and macroalbuminuria returned to normoalbuminuria 
with receiving any blood pressure-lowering drugs in the 
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ADVANCE study[100]. However, more patients achieved 
remission to　normoalbuminuria in the perindopril-in-
dapamide treatment group than in the placebo treatment 
group.

Clinical impact of the remission and regression of 
albuminuria on cardiovascular events and kidney 
function
The clinical impact of  the remission and regression of  
microalbuminuria was demonstrated by the observed 
reduction in the risk of  renal and cardiovascular events 
during an expanded 2-year follow-up (beyond the initial 
6 years of  the study reported by Araki et al[101], described 
above). The primary outcome measure consisted of  
“combined incidence,” defined as cardiovascular death 
by and first hospitalization for renal and cardiovascular 
events. A secondary outcome was kidney function, as 
determined by the annual decline of  eGFR. During the 
total 8-year follow-up period, 47 patients experienced pri-
mary renal and cardiovascular events. Eleven first occur-
rences of  outcomes occurred in subgroups that achieved 
remission of  microalbuminuria; in contrast, 36 such 
events were observed for the non-remission group. The 
pooled logistic analysis, adjusted for sex, age, initial ACR 
levels, history of  cardiovascular disease, current smoking, 
HbA1c level, total cholesterol level, blood pressure, use 
of  RAS inhibitors, use of  lipid-lowering drugs, and body 
mass index, showed that the relative risk for outcomes 
in patients who achieved remission was 0.25 (95%CI: 
0.07-0.87) compared with those whose microalbumin-
uric status did not change during the follow-up period, 
whereas the relative risk for patients who progressed to 
overt proteinuria was 2.55 (95%CI: 1.04-6.30) (Figure 2). 
First occurrences of  these outcomes were classified into 
subgroups defined by achieving a reduction greater than 
50% in urinary albumin excretion in the course of  12 
events for the regression group and in 35 events in the 
non-regression group; these patients were labeled as hav-
ing failed to achieve remission.

Kaplan-Meier estimations showed that the cumulative 
incidence of  evaluated events was significantly lower in 
the regression group than in the non-regression group. 
The 8-year cumulative incidence of  these outcomes in 
the regression group showed a 59% decrease compared 
to the non-regression group. The adjusted risk for out-
comes in patients who achieved regression was 0.41 
(95%CI: 0.15-0.96) compared with those whose micro-
albuminuric status did not show regression during the 
follow-up. As anticipated, the annual decline of  eGFR 
for the progression group (median: 4.2 mL/min per 
year) was significantly faster than that for the non-change 
group (2.4 mL/min per year), whereas the annual decline 
of  eGFR for the remission group was significantly slower 
(1.1 mL/min per year) and was almost identical to the 
decline experienced through normal aging reported in 
healthy people[102].

The effect of  reducing microalbuminuria on kidney 
functioning was also shown in a secondary analysis of  the 
Steno-2 study[101]. The patients who reverted to normoal-

buminuria had an average eGFR decrease of  2.3 mL/min 
per year; however, those who still had microalbuminuria 
experienced an average eGFR decrease of  3.7 mL/min 
per year, and those who progressed to overt proteinuria 
showed the highest eGFR decline of  5.4 mL/min per 
year. These results show that remission of  microalbumin-
uria is closely related to the improved renal functioning 
over the long term.

OTHER PROSPECTIVE THERAPEUTIC 
STRATEGIES
Vitamin D receptor activation
Stimulation of  vitamin D receptors exerts protective ac-
tivity through multiple mechanisms, including inhibition 
of  the RAS, regulation of  proliferation and differentia-
tion, reduction of  proteinuria, anti-inflammation, and 
anti-fibrosis[103]. Growing evidence indicates that vitamin 
D exerts anti-proteinuric and renoprotective effects in 
DKD patients. The VITAL study demonstrated that 
treatment with paricalcitol, a selective vitamin D receptor 
activator, reduced urinary albumin excretion in type 2 dia-
betic patients treated with RAS inhibitors[104]. Addition-
ally, Kim et al[105] showed beneficial effects of  vitamin D 
(cholecalciferol) repletion on urinary albumin and trans-
forming growth factor-β1 excretion in type 2 diabetic pa-
tients with CKD undergoing established RAS inhibition 
therapy; similar effects were also observed in the VITAL 
study. Treatment with cholecalciferol led to significantly 
higher levels of  circulating 25(OH)D and 1,25(OH)2D3 
relative to baseline, and increased levels of  active forms 
of  vitamin D were correlated with a decrease in urinary 
ACR and TGF-β1 at the end of  a 4-mo intervention pe-
riod. These data indicate that vitamin D compounds may 
be useful tools for delaying the progression of  DKD 
beyond the effects expected from established RAS inhibi-
tion protocols.

Uric acid-lowering drugs
Multiple longitudinal cohort studies have shown that el-
evated serum uric acid levels are associated with a higher 
risk of  the onset and progression of  microalbuminuria 
in addition to sustained decline of  GFR among type 1 
diabetic patients[106-108]. In a cohort study of  263 newly 
diagnosed type 1 diabetic patients performed by the 
Steno Diabetes Center group[106], serum uric acid levels 
measured shortly after the onset of  type 1 diabetes were 
a significant independent predictor of  macroalbumin-
uria 18 years later (HR = 2.37, 95%CI: 1.04-5.37, P = 
0.04). Additionally, the Coronary Artery Calcification in 
Type 1 Diabetes study showed that serum uric acid levels 
predicted the transition from microalbuminuria to mac-
roalbuminuria[107]. In 324 type 1 diabetic patients, every 1 
mg/dL increase in uric acid levels at baseline was associ-
ated with an 80% increase in the predicted odds ratio of  
developing microalbuminuria or macroalbuminuria after 
6 years of  follow-up (OR = 1.8, 95%CI: 1.2-2.8, P = 
0.005). A 6-year follow-up of  a prospective cohort study 
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of  type 1 diabetic patients without proteinuria conducted 
by the Joslin Diabetes Center demonstrated a significant 
association (P < 0.0002) between serum uric acid and 
an early decrease in GFR, defined as a GFR cystatin de-
crease exceeding 3.3% per year[108]. When baseline uric 
acid concentrations were treated categorically (in mg/dL: 
< 3.0, 3.0-3.9, 4.0-4.9, 5.0-5.9, and ≥ 6), the risk of  early 
decrease in GFR increased linearly (9%, 13%, 20%, 29%, 
and 36%, respectively). This linear increase corresponds 
to an OR of  1.4 (95%CI: 1.1-1.8) per 1 mg/dL increase 
in uric acid levels.

Furthermore, a post-hoc analysis of  the Reduction of  
Endpoints in non-Insulin Dependent Diabetes Mellitus 
with the Angiotensin Ⅱ Antagonist Losartan trial showed 
that the decrease in serum uric acid levels induced by 
losartan accounted for 20% of  the renoprotective benefit 
provided by this medication[109]. However, it is not clear 
whether reducing uric acid levels could prevent or delay 
GFR decline in diabetic patients who are at high risk for 
the progression of  DKD; therefore, clinical trials are 
necessary to elucidate the beneficial effects of  uric acid-
lowering medicine on preventing DKD.

GLP-1 receptor agonists and DPP-4 inhibitors
Incretin-related therapies, including dipeptidyl peptidase 
(DPP)-4 inhibitors and glucagon-like peptide (GLP)-1 re-
ceptor agonists, have been developed as one of  the most 
promising treatments for type 2 diabetes because of  their 
effectiveness at reducing glucose levels with a low risk of  
hypoglycemia and no weight gain[110-112]. DPP-4 inhibi-
tors increase the concentration of  endogenous incretins, 
such as GLP-1 and glucose-dependent insulinotropic 
polypeptides, and GLP-1 analogues that are not degraded 
by DPP-4 may stimulate GLP-1 receptors in turn. Stimu-
lation of  GLP-1 receptors increases glucose-dependent 
insulin secretion from pancreatic β-cells and suppresses 
glucagon release from α-cells, leading to improved glu-
cose control[110]. In addition to its action on the pancreas, 
GLP-1 may have direct effects on other cells and tissues, 
including the kidney, heart, and blood vessels, via stimu-
lation of  the GLP-1 receptor[113,114], independent of  its 
glucose-lowering effects. 

The GLP-1 receptors in the kidney are expressed 
in the glomerular endothelial cells, mesangial cells, and 
proximal tubular cells[115-120], and previous reports have 
shown that the expression of  GLP-1 receptors decreases 
in the diabetic kidneys of  animal models[115]. The reno-
protective effect of  GLP-1 may be accomplished through 
anti-inflammation[116], anti-oxidants mediated through 
cyclic AMP-mediated protein kinase A activation[117,120], or 
blood pressure regulation via sodium handling in proxi-
mal tubular cells[121]. DPP-4 is expressed in renal tubular 
cells, especially in the brush-border and microvillus frac-
tions, podocytes, and endothelial cells[122,123]; however, the 
physiological role of  DPP-4 in the kidney has not been 
elucidated. Previous reports have shown that DPP-4 
expression is increased in the diabetic kidneys of  animal 
models[124]. DPP-4 is a serine exopeptidase that cleaves 

X-proline dipeptides from the N-terminus of  polypep-
tides. Therefore, DPP-4 cleaves not only incretins but 
also many substrates, such as cytokines, chemokines, hor-
mones, and neuropeptides[125]. Among these substrates, 
high-mobility group protein-B1, meprin β, and neuro-
peptide Y have been identified as candidate targets for 
GLP-1-independent effects of  DPP-4 inhibitors in the 
kidneys[114].

Several clinical studies have shown beneficial effects 
of  DPP-4 inhibitors[126,127] and GLP-1 analogues[128] on al-
buminuria in type 2 diabetic patients. Recent reports have 
demonstrated that linagliptin administration in addition 
to stable RAS inhibition leads to a significant reduction 
in type 2 diabetes with albuminuria and renal dysfunc-
tion, independent of  changes in glucose levels or systolic 
blood pressure[129]. Further studies, including randomized 
controlled clinical trials in large populations, are neces-
sary to confirm the long-term effects of  incretin-related 
medicines in DKD.

CONCLUSION
Reduced microalbuminuria may be frequent in diabetic 
patients. Physicians have to care for these diabetic pa-
tients with an aggressive multifactorial management plan 
as early as possible after the development of  microal-
buminuria. This multifactorial management regimen in-
cludes glycemic control without triggering hypoglycemia, 
blood pressure control using RAS inhibitors, and lipid 
control using statins or fibrates. In addition to these ther-
apies, vitamin D receptor activators, uric acid-lowering 
drugs, and incretin-related drugs for glycemic control 
are promising therapies for stopping the progression of  
DKD. However, in the future, the development of  novel 
therapies that not only function to prevent renal decline 
but also simultaneously attenuate CVD are necessary 
because the current multifactorial treatment is not still 
enough.

The remission or regression of  microalbuminuria 
results in reduced risk of  both renal and cardiovascular 
events; therefore, albuminuria is a useful biomarker for 
the diagnosis of  DKD and the assessment of  therapeutic 
effects for DKD. However, some patients with diabetes 
have advanced renal pathological changes and progressive 
kidney function decline even though urinary albumin lev-
els are in the normal range, indicating that albuminuria is 
not the perfect biomarker for early detection of  DKD[130]. 
Recent studies have provided some possible new markers 
for DKD in type 1[131,132] and type 2 diabetic patients[133]. 
Serum concentrations of  the soluble receptors 1 and 2 
for Tissue Necrosis Factor (sTNFR1 and sTNFR2) had 
a stronger correlation with decline in GFR than urinary 
ACR[131,132]. sTNFR1 was associated with the develop-
ment of  ESRD in type 2 patients during a 12 year follow-
up[133]. However, additional clinical data about such new 
biomarkers for the early diagnosis and prediction of  
DKD should be accumulated, and at the same time, it is 
necessary to determine whether the new biomarker is a 
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predictive marker for CVD.
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Core tip: This review summarizes recent laboratory and 
clinical studies on the influence of various adipokines, 
including adiponectin, resistin, adipocyte fatty acid 
binding protein, omentin-1, and chemerin, on the de-
velopment of atherosclerosis.

Yoo HJ, Choi KM. Adipokines as a novel link between obesity 
and atherosclerosis. World J Diabetes 2014; 5(3): 357-363  Avail-
able from: URL: http://www.wjgnet.com/1948-9358/full/v5/
i3/357.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.357

INTRODUCTION
Obesity is an important risk factor for atherosclerosis, but 
the underlying mechanism for this association is poorly 
understood. Adipose tissue was considered to be a store 
of  surplus energy, but is now recognized as an indepen-
dent and active endocrine organ. Various adipokines, such 
as leptin (a protein secreted by fat cells), tumor necrosis 
factor-α (TNF-α), resistin, and adiponectin significantly 
affect obesity-related metabolic diseases by controlling fat 
metabolism, energy homeostasis, and insulin sensitivity[1]. 
Independent of  their effects on glucose and fat metabo-
lism, some adipokines have been regarded recently as di-
rect links between obesity and atherosclerosis because of  
their influence on the function of  endothelial cells, arterial 
smooth muscle cells, and macrophages in vessel walls[2] 
(Figure 1). The identification of  a novel adipokine that 
regulates the atherosclerotic process might provide new 
opportunities for developing more effective approaches 
for preventing cardiovascular disease. This review will 
focus on adipokines that mediate obesity and atheroscle-
rosis, including adiponectin, resistin, adipocyte fatty acid 
binding protein (A-FABP), omentin-1, and chemerin.

ADIPONECTIN
Adiponectin was the first 30-kDa protein cloned from fat 
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Abstract
The traditional perception of adipose tissue as a stor-
age organ of fatty acids has been replaced by the no-
tion that adipose tissue is an active endocrine organ, 
releasing various adipokines that are involved in the 
pathogenesis of obesity-related metabolic disturbances. 
Obesity is a well-known risk factor for atherosclerosis, 
and accelerates atherosclerosis by many mechanisms 
such as increase in blood pressure and glucose level, 
abnormal lipid profiles, and systemic inflammation. 
Furthermore, growing evidence suggests that some adi-
pokines directly mediate the process of atherosclerosis 
by influencing the function of endothelial cells, arterial 
smooth muscle cells, and macrophages in vessel walls. 
In obese patients, the secretion and coordination of 
such adipokines is abnormal, and the secretion of spe-
cific adipokines increases or decreases. Accordingly, 
the discovery of new adipokines and elucidation of their 
functions might lead to a new treatment strategy for 
metabolic disorders related to obesity, including cardio-
vascular diseases.
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tissues[3]. Adiponectin is a metabolically active adipokine 
that is inversely associated with obesity, insulin resistance, 
and atherosclerosis[4,5]. Adiponectin promotes fatty acid 
oxidation through the phosphorylation of  5-AMP-acti-
vated protein kinase (AMPK), thereby stimulating acetyl-
CoA carboxylase. The adiponectin receptors AdipoR1 
and AdipoR2 are responsible for adiponectin signaling 
and biological function. Yamauchi et al[6] reported that in-
sulin resistance occurred in AdipoR1/R2 knockout mice, 
but when AdipoR1 or AdipoR2 were overexpressed in the 
liver by using adenovirus, glucose metabolism improved 
in terms of  increase in AMPK vitality and peroxisome 
proliferator-activated receptors α expression. Adiponectin 
is a metabolically active adipokine which has anti-inflam-
matory, antiatherogenic, and antidiabetic properties[7] and 
is therefore inversely associated with obesity, insulin resis-
tance, and atherosclerosis. Hypoadiponectinemia has been 
established as an independent risk factor for type 2 dia-
betes and cardiovascular disease (CVD)[8]. We previously 
showed that, after adjusting for age, sex, obesity, history 
of  impaired fasting glucose or impaired glucose tolerance, 
hypertension, and dyslipidemia, lower baseline serum 
adiponectin concentrations are associated significantly 
with the development of  type 2 diabetes and metabolic 
syndrome[9]. On the other side, the Health Professionals 
Follow-Up Study showed that high plasma adiponectin 
levels were associated with a lower risk of  myocardial in-
farction in men during 6 years of  follow-up studies[10].

Experimental studies have shown that adiponectin 
plays a protective role against the development of  inflam-
mation and atherosclerosis. Ouchi et al[11] demonstrated 
that adiponectin specifically suppressed TNF-α-induced 
nuclear factor κ light chain enhancer of  activated B 
cells (NF-κB) activation in human aortic endothelial 
cells (HAECs) through a cAMP-dependent pathway. 
Furthermore, adiponectin suppressed TNF-α-mediated 
induction of  adhesion molecule expression in HAECs. 
Recently, we reported that serum adiponectin levels had a 
significant negative correlation with vascular inflammation 

as indicated by the mean target to background ratio (TBR), 
suggesting a cardio-protective effect of  adiponectin[12].

RESISTIN
Resistin was originally discovered as an adipokine with 
a possible link between obesity and insulin resistance 
in rodents[13]. In contrast to rodents, human resistin is 
expressed primarily in inflammatory cells and has been 
shown to be involved in obesity-related subclinical in-
flammation, atherosclerosis, and CVD[14]. Reilly et al[15] 
showed that circulating resistin levels are correlated with 
inflammation markers and are predictive of  coronary ath-
erosclerosis, as measured by coronary artery calcification 
scores, independent of  C-reactive protein. Kawanami et 
al[16] found that resistin induces the expression of  adhe-
sion molecules, such as vascular cellular adhesion mol-
ecule-1 and intercellular adhesion molecule-1 and that 
adiponectin inhibit the effect of  resistin in vascular en-
dothelial cells. Lee et al[17] observed that resistin promotes 
foam cell formation via the dysregulation of  scavenger 
receptors macrophages. In men with acute myocardial 
infarction, a multivariate model revealed that obesity and 
C-reactive protein were independent variables associated 
with higher resistin levels[18]. In a cross-sectional study of  
3193 Chinese subjects, resistin was more significantly as-
sociated with fibrinolytic and inflammatory markers than 
with obesity or insulin resistance[19]. Moreover, Weikert 
et al[20] reported that individuals in the highest quartile of  
resistin levels had a significantly increased risk of  myocar-
dial infarction compared with those in the lowest quartile 
of  resistin levels after adjustment for cardiovascular risk 
factors, including C-reactive protein (RR = 2.09; 95%CI: 
1.01-4.31) in 26490 middle-aged subjects. Among 397 
South Korean patients with acute myocardial infarction, 
high resistin level was an significant predictor for all-
cause mortality, independent of  other confounding risk 
factors[21]. We also showed that serum resistin levels were 
positively correlated with vascular inflammation mea-
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sured using 18F-fluoro-deoxyglucose positron emission 
tomography[12]. These studies suggest that resistin may 
represent a novel linkage of  metabolic signals, inflamma-
tion, and atherosclerosis.

ADIPOCYTE FATTY ACID BINDING 
PROTEIN
A-FABP is a cytoplasmic protein that combines with 
saturated and unsaturated fatty acids to control the dis-
tribution of  fatty acids in various inflammatory response 
and metabolic pathways[22]. Since Xu et al[23] established 
that the serum concentration of  A-FABP, which is 
synthesized in cytoplasm and secreted into serum, is 
significantly correlated with components of  metabolic 
syndrome, the role of  A-FABP in metabolic syndrome 
has been studied with renewed interest. Uysal et al[24] 
proved through an oral glucose tolerance test that insulin 
sensitivity was increased in A-FABP knock out ob/ob 
mice compared with control mice. In prospective stud-
ies, circulating A-FABP has been shown to predict the 
development of  metabolic syndrome and type 2 diabetes 
independent of  adiposity and insulin resistance[25,26].

A-FABP has been shown to be a major mediator of  
vulnerable plaque formation in various animal and in vitro 
studies. The survival rates of  apoE-/- mice null for both 
A-FABP and mal1 were significantly higher than apoE-/- 
control mice, primarily because of  increased stability of  
atherosclerotic plaques[27]. In macrophage cell lines, ade-
novirus-mediated over-expression of  A-FABP directly in-
duced foam cell formation by increasing intracellular lipid 
accumulation, which is an essential step in the formation 
of  atherosclerotic plaques[28]. In contrast, A-FABP-/- mac-
rophages displayed significantly decreased intracellular 
cholesterol ester accumulation in vitro[29] and suppressed 
production of  inflammatory cytokines, such as TNF-α, 
monocyte chemoattractant protein-1, and interleukin 
(IL)-6, compared with wild-type controls[30]. Furthermore, 
Furuhashi et al[31] reported that an orally active small mol-
ecule inhibitor of  A-FABP was an effective therapeutic 
agent against severe atherosclerosis in mouse models. Re-
cently, a few clinical studies have shown that circulating 
A-FABP levels are closely related to the development of  
atherosclerosis in humans. In Korean subjects in whom 
coronary angiograms were performed for evaluation of  
chest pain, serum A-FABP levels increased as the number 
of  stenotic coronary arteries increased[32]. Serum A-FABP 
was shown to be independently associated with carotid 
intima-media thickness (IMT) in Chinese women after 
adjusting for other risk factors, including age, obesity, 
and blood pressure[33]. In patients with coronary artery 
disease recruited to undergo elective percutaneous coro-
nary intervention, Miyoshi et al[34] showed that increased 
serum A-FABP levels were significantly associated with a 
greater coronary plaque burden as quantified by intravas-
cular ultrasound. After adjusting for other cardiovascular 
risk factor in South Korean men without cardiovascular 
disease or diabetes, we reported that circulating A-FABP 

levels were independently associated with vascular inflam-
mation as measured by maximum TBR values[35], suggest-
ing A-FABP as a promising key link between different 
metabolic pathways of  adiposity and inflammation.

OMENTIN-1
Omentin is a visceral fat-specific adipokine discovered 
through expressed sequence tag analysis[36] that has para-
crine and autocrine roles in improving insulin sensitivity. 
Yang et al[37] demonstrated that the addition of  recom-
binant omentin stimulated glucose uptake in human 
adipocytes via the activation of  Akt phosphorylation. 
Recent studies showed that omentin increased insulin 
signal transduction and that it was significantly negatively 
correlated with metabolic risk factors, including obesity 
and hyperglycemia, thereby suggesting a beneficial role in 
energy homeostasis[38-40]. In human clinical studies, it has 
been suggested that serum omentin-1 levels were signifi-
cantly decreased in metabolically unhealthy states, such as 
metabolic syndrome, types 2 diabetes mellitus, and poly-
cystic ovarian syndrome[38-40].

Expression of  the omentin gene in interstitial and 
endothelial cells suggests multi-functionality[41,42]. Fain 
et al[43] were the first to demonstrate the predominant 
expression of  omentin mRNA in human epicardial fat, 
suggesting that omentin might influence coronary ath-
erogenesis like other periadventitial epicardial adipokines. 
Some researchers reported that omentin might modulate 
vascular function through direct action on endothelial 
cells[44,45]. The vasodilating effect of  omentin on isolated 
rat aorta, mediated by endothelium-derived nitric oxide, 
was first examined by Yamawaki et al[45]. Treatment of  
human endothelial cells with omentin prevented TNF-α-
induced cyclooxygenase-2 expression by inhibiting c-Jun 
N-terminal kinase signaling, suggesting an anti-inflamma-
tory function of  omentin on endothelial cells[44]. Recently, 
several in vivo studies that might explain the mechanism 
underlying the connection between circulating omentin-1 
and the atherosclerotic process have been published. In 
human endothelial cells, omentin significantly decreased 
C-reactive protein and TNF-α-induced NF-κB[46]. Xie et 
al[47] reported that adenovirus-mediated overexpression 
of  omentin-1 attenuated arterial calcification in OPG-/- 
mice, suggesting that increasing concentrations of  omen-
tin-1 might be beneficial by protecting arteries. In an in vi-
tro study, treatment of  calcifying vascular smooth muscle 
cells (CVSMs) with omentin inhibited osteoblastic differ-
entiation of  CVSMCs via the phosphatidylinositol 3-ki-
nase/Akt signaling pathway[48]. Very recently, Maruyama 
et al[49] reported that systemic delivery of  an adenoviral 
vector expressing omentin enhanced blood flow recovery 
and capillary density in ischemic limbs of  wild type mice. 
Taken together, these in vitro data suggest the possibility 
that lower omentin levels contribute to the development 
of  cardiovascular disease from initiating early endothelial 
dysfunction to arterial calcification.

There have been many clinical studies examining the 
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indicating that chemerin might mediate the metabolic al-
terations in obesity.

Although chemerin is a well-known secreted protein 
with an established role in immune function, recent ex-
perimental data indicate that chemerin might provide a 
link between obesity and chronic inflammation[61]. Re-
cently, Sell et al[62] reported that chemerin activated the 
NF-κB pathway and impaired glucose uptake in primary 
human skeletal muscle cells. Moreover, TNF-α treatment 
of  3T3-L1 adipocytes increased bioactive chemerin levels, 
suggesting that inflammatory cytokines contribute to the 
up-regulation of  chemerin in obesity[63]. Thus, adipocyte-
derived chemerin might be involved in the pathogenesis 
of  obesity-related inflammatory disorders, including ath-
erosclerosis. Although Becker et al[64] showed that the ex-
pression of  chemerin did not significantly alter the extent 
of  atherosclerosis in low-density lipoprotein cholesterol 
receptor knockout mice, they hypothesized that chemerin 
might affect early atherosclerotic plaque development 
and morphology rather than the extent of  the athero-
sclerotic lesion area. Hart et al[65] showed that chemerin 
rapidly stimulated the adhesion of  macrophages to the 
extracellular matrix protein, fibronectin, and to the adhe-
sion molecule, vascular cell adhesion molecule-1, sug-
gesting that chemerin might promote the progression of  
atherosclerosis. Furthermore, Kaur et al[66] demonstrated 
the novel presence of  a G-protein coupled chemerin re-
ceptor 1 in human endothelial cells and its significant up-
regulation by pro-inflammatory cytokines (TNF-α, IL-
1β, and IL-6). Thus, the altered expression of  chemerin 
and its receptors during an inflammatory process might 
cause dysregulated angiogenesis, leading to the develop-
ment of  cardiovascular disease.

However, there have been very few clinical studies 
that examined the influence of  circulating chemerin on 
the atherosclerotic process. Lehrke et al[67] showed that 
circulating chemerin was positively correlated with the 
atherosclerotic plaque burden, as assessed by multi-slice 
computed tomography angiography, but that the associa-
tion was lost after adjusting for established cardiovascular 
risk factors. Very recently, we showed that the circulating 
chemerin level was an independent risk factor for arte-
rial stiffness even after adjusting other cardiovascular risk 
factors[68].

CONCLUSION
Various adipokines have been reported to directly modu-
late the atherogenic environment of  the vessel wall by 
regulating the function of  endothelial, arterial smooth 
muscle, and macrophage cells. Therefore, the identifi-
cation of  a novel adipokine that regulates the athero-
sclerotic process might provide new opportunities for 
developing more effective approaches for preventing 
cardiovascular disease.
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Abstract
Adrenomedullin (ADM) is a peptide hormone widely 
expressed in different tissues, especially in the vascu-
lature. Apart from its vasodilatatory and hypotensive 
effect, it plays multiple roles in the regulation of hor-
monal secretion, glucose metabolism and inflamma-
tory response. ADM regulates insulin balance and may 
participate in the development of diabetes. The plasma 
level of ADM is increased in people with diabetes, while 
in healthy individuals the plasma ADM concentration re-
mains low. Plasma ADM levels are further increased in 
patients with diabetic complications. In type 1 diabetes, 
plasma ADM level is correlated with renal failure and 
retinopathy, while in type 2 diabetes its level is linked 
with a wider range of complications. The elevation of 
ADM level in diabetes may be due to hyperinsulinemia, 
oxidative stress and endothelial injury. At the same 
time, a rise in plasma ADM level can trigger the onset 
of diabetes. Strategies to reduce ADM level should be 
explored so as to reduce diabetic complications.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Adrenomedullin; Diabetes; Diabetic compli-
cations; Hyperglycemia; Therapeutics

Core tip: Adrenomedullin (ADM) is a peptide hormone 
with vasorelaxing and hypotensive properties. It also 
plays multiple roles in the regulation of hormonal secre-
tion, glucose metabolism and inflammatory response. A 
major observation is the elevation of plasma ADM level 
in diabetes, and is associated with diabetic complica-
tions in both type 1 and 2 diabetes. The increase could 
be resulted from oxidative stress, hyperinsulinemia and 
endothelial injury. This raises the potential application 
of ADM as a marker in diabetes, and strategies aimed 
at reducing ADM level could be explored so as to allevi-
ate diabetic complications.

Wong HK, Tang F, Cheung TT, Cheung BMY. Adrenomedullin 
and diabetes. World J Diabetes 2014; 5(3): 364-371  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i3/364.
htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.364

INTRODUCTION
Adrenomedullin (ADM) is a peptide recently discovered 
with multiple functions. Its characteristic actions include 
vasorelaxing effect and hypotensive properties. Given 
its widespread expression and production in different 
organs, ADM can also act as an autocrine, endocrine or 
paracrine mediator in various biological systems. The 
prospects of  ADM as a potential disease modulator 
comes from the observation of  increased levels in plasma 
in various disease states. For instance, increased plasma 
ADM levels were observed in cardiovascular diseases and 
diabetes[1-3]. However, different from the observations in 
cardiovascular diseases, the explanation and significance 
for such an increase is not clear. Since then, research 
progress has been made in the association between ADM 
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and diabetes. For instance, ADM plays a role in glucose 
metabolism and insulin balance[4]. These evidence may 
provide clue on the involvement of  ADM in diabetes.

In this review, we summarized the current knowl-
edge on ADM based on research progress in the recent 
decade and provided an account on the role of  ADM 
played in the context of  diabetes. This would help us 
understand better on the clinical application of  ADM in 
diabetic patients.

DISCOVERY OF ADRENOMEDULLIN AS A 
REGULATORY PEPTIDE
ADM was initially discovered by Kitamura in 1993, ex-
tracted from pheochromocytoma in humans by monitor-
ing the elevated 3’,5’ cyclic adenosine monophosphate 
(cAMP) production in human platelets[5]. It was later 
found that the peptide had a potent hypotensive and va-
sorelaxing effects. It forms a ring structure by 52 amino 
acid residues held by a disulfide bond. Since the peptide 
was abundantly found in the adrenal medulla, therefore 
this accounts for the name. The peptide is classified as a 
member of  the calcitonin gene-related peptide (CGRP) 
superfamily. Although high level of  ADM was identified 
in the adrenal medulla[6], circulating ADM was the most 
abundant in vascular wall[7].

BIOSYNTHESIS AND DISTRIBUTION
ADM has a very high tissue distribution. Its biosynthesis 
has been studied by applying radioimmunoassays, and 
by detecting tissue ADM mRNA[8]. Immunoreactive 
ADM is detected in cardiovascular, respiratory, renal, 
endocrine, reproductive, neurological, intestinal and im-
mune system[9,10]. Among these systems the highest ADM 
concentrations were detected at the adrenal glands. ADM 
mRNA is also detected in various peripheral tissues[11]. 
Such wide distributions indicate the multi-facet roles of  
ADM.

In the cardiovascular system, ADM is synthesized in 
both atria and ventricles in heart and blood vessels. With-
in the vasculature, ADM is actively manufactured and 
secreted by both the endothelial and the vascular smooth 
muscle cells[7,12]. It is also demonstrated that the vascula-
ture had much higher ADM mRNA expression than the 
adrenal glands. This was further supported by the finding 
of  a low ADM precursor ratio in the total ADM immu-
noreactivity in blood vessels[11].

Besides, ADM is synthesized in the lung[13], brain as 
well as in the pancreatic islets[14,15]. The widespread ADM 
expression suggests its diverse role in the regulations of  
cell functions. Since ADM is mainly produced by vascular 
endothelial and the smooth muscle cells, its regulatory 
function of  vascular tone has become a major target for 
investigation.

ADM production is controlled by various humoral 
factors and physical factors. Inflammatory cytokines such 
as tumor necrosis factor (TNF)-α, TNF-β, interleukin 

(IL)-1α and IL-1β all are known to stimulate ADM pro-
duction and secretion[16]. While mechanical factors like 
sheer stress and hypoxia are involved in the up-regulation 
of  vascular ADM mRNA expression[17].

In healthy individuals, circulating plasma ADM level 
is as low as in the picomolar range, similar to the atrial 
natriuretic peptide, and its level changes in order to com-
pensate for the vasoconstrictive effects. It is reported that 
in various pathological conditions, the increase in plasma 
ADM level correlates with severity of  disease states. For 
instance, elevated plasma ADM level has been associated 
with heart failure, hypertension, artherosclerosis and dia-
betes mellitus[18].

RECEPTOR SIGNALING
Specific binding sites for ADM were identified in many 
different places in rat and in human models[19,20]. In hu-
mans, the binding sites are most abundant in the micro-
vascular endothelium[20]. The biological actions of  ADM 
are exerted mainly through CGRP receptors and the spe-
cific ADM receptors, which share a common molecular 
component of  a G-protein coupled receptor called calci-
tonin receptor-like receptor (CRLR)[21]. The specificity of  
CRLR depends on different subtypes of  another associ-
ated proteins, namely the receptor-activity-modifying pro-
teins (RAMP1, 2 and 3)[22]. Co-expression of  CRLR with 
different subtypes of  RAMPs will form different ADM 
receptors. The specificity brought about by the RAMPs 
involves glycosylation and transport of  the receptor-
RAMP complex.

PHYSIOLOGICAL EFFECTS
ADM can act as both a hormone and a cytokine to 
regulate the regional blood flow, vascular tone, leukocyte 
migration and differentiation, electrolyte balance, cardiac 
function, glucose uptake and hormone secretion[18]. It 
plays an important role in cardiovascular system[23]. ADM 
imposes a potent vasodilatory effect in humans and in-
creases blood flow to various organs[24,25]. For instance, 
increased ADM expression could enhance hepatic and 
renal circulation[26]. In systemic circulation, vasodilation 
could be resulted from either endothelium-dependent[27], 
or endothelium-independent mechanisms[28], through 
ADM and CGRP receptors. In addition, the endotheli-
um-derived vasodilation could be mediated by cAMP and 
nitric oxide[29,30].

Previous studies have identified the role of  ADM in 
inflammation and immunity. ADM possesses anti-micro-
bial properties against bacteria[31]. In vitro and in vivo study 
has demonstrated that ADM secretion and expression are 
up-regulated upon pathogenic exposure[32]. ADM expres-
sion also increases during local inflammation and sepsis[33] 
In particular, ADM levels in lung, heart and vasculature[34], 
liver and kidney[26], all increase upon endotoxin adminis-
tration[35]. Macrophages could also augment ADM expres-
sion in inflammation[33].

The role of  ADM in the inflammatory process var-
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ies after the onset of  inflammation. ADM can activate 
and modulate cytokine production, while it can also in-
hibit overproduction of  pro-inflammatory cytokines[36]. 
It plays a crucial role in initiating inflammatory response 
by stimulating the release of  migratory inhibitory factor 
and IL-1β, while activate anti-inflammatory response by 
suppressing TNF-α production and up-regulating IL-6 
production, as the latter is anti-inflammatory and inhibit 
lipopolysaccharide-induced TNF-α production[37-39]. Such 
co-ordinated functions of  ADM suggest that it is associ-
ated with injury, infection and inflammation. Apart from 
inflammation, ADM expression in immune cells serves 
diverse functions. ADM can be detected in macrophages 
in the atherosclerotic plaques[40], where it may play a role 
in reducing inflammation and thereby exerting an anti-
atherosclerotic effect.

While circulating ADM in plasma contributes to a 
large part of  its physiological functions, ADM also serves 
as a local regulator of  cellular functions. The paracrine 
effect of  ADM can be demonstrated in the kidney, as it 
has been shown that ADM is histochemically localized 
in renal tubules, and recently mesangium was suggested 
to be one source of  ADM in the kidney[41]. The local 
ADM modulates mesangial proliferation and is regulated 
by different growth factors and cytokines. This suggests 
that regulation of  renal function by ADM may operate 
in an autocrine/paracrine manner. Another example of  
the localized effect of  ADM is in the vascular smooth 
muscle cells, where its biosynthesis is regulated through a 
feedback loop. In one study, stimulation of  ADM mRNA 
levels was observed together with a decrease in the im-
munoreactive ADM peptide secretion resulted from 
glycolytic inhibition[42]. As ADM could inhibit vascular 
smooth muscle cell migration and proliferation in re-
sponse to growth factors[43], a decreased ADM secretion 
might stimulate its migration and growth locally, and lead 
to remodeling upon vascular injuries.

ADRENOMEDULLIN AND 
PANCREATOLOGY
ADM is deeply involved in pancreatic endocrinology, 
mainly in insulin secretion[44]. It is known that ADM, 
CRLR and RAMPs are both expressed in the islets of  
the pancreas[45]. Previous findings demonstrated that ex-
ogenous ADM added to freshly isolated rat islets led to a 
dose-dependent inhibition of  insulin secretion by 78% at 
1 μmol/L ADM, and was accompanied by cAMP eleva-
tion[3]. Oral glucose tolerance tests have illustrated injec-
tion of  ADM lowered insulin levels in blood by 2 folds 
20 min after glucose administration, accompanied by an 
increase in circulating glucose[4]. This supports a role of  
ADM in insulin regulation in pancreas, and implies that 
ADM is associated with hyperglycemia[46].

Another function of  ADM is inhibiting amylase se-
cretion in pancreatic acini[47]. As ADM receptors were not 
identified in the acini, this suggest that such inhibition is 

mediated through other receptors[45].

ADRENOMEDULLIN AND DIABETES
As suggested above, ADM inhibits insulin release after 
an oral glucose load. Therefore, it can be expected that 
ADM contributes to diabetes and even leads to the devel-
opment of  diabetic complications[48].

Diabetes is characterized by hyperglycemia. It is 
resulted from dysregulation of  insulin secretion or pe-
ripherial resistance. Diabetes mellitus causes retinopathy, 
neuropathy, nephropathy, and atherosclerosis. These 
complications are the results of  prolonged hyperglyce-
mia, altered metabolic pathways and non-enzymatic gly-
cation of  proteins[49].

There have been advances in the understanding of  
the relationship between ADM and diabetes. Plasma 
ADM level is elevated in patients with poorly controlled 
diabetes than in normal subjects, which suggests a di-
rect effect of  glucose on ADM release[1]. The effect of  
hyperglycemia on ADM expression is mediated through 
protein kinase C in vascular smooth muscle cells[50]. The 
observation that ADM expression in aorta, but not in 
adrenal gland, was raised in diabetic rats (plasma glucose 
= 567 ± 167 mg/dL) compared to control (plasma glu-
cose = 94 ± 10 mg/dL), suggests that ADM expression 
in the vasculature could be the source of  plasma ADM 
in diabetic patients[50]. In the streptozotocin-diabetic rat, 
there were increases in ADM synthesis in the ventricles 
and possible ADM secretion in the ventricles, atria and 
the thoracic aorta[51]. On the other hand, ADM may re-
duce the levels of  inflammatory cytokines and endothelin 
in the adipose tissue and the skeletal muscle and hence 
increase glucose uptake[37].

However, another study examining the relationship 
between plasma ADM level and clinical parameters of  
diabetes demonstrated contradictory results. It showed 
no significant difference in plasma ADM level between 
diabetic patients without nephropathy and normal indi-
viduals, despite a significant higher level of  HbA1c and 
plasma glucose in patients with diabetes[52]. Therefore, 
patients with renal impairment should be excluded when 
examining the relationship between plasma ADM level 
and blood glucose level, since patients with renal impair-
ment might demonstrate an increase in the plasma ADM 
levels. Despite the direct effect of  circulating glucose 
on plasma ADM level has not been well established, a 
positive association between plasma ADM level and the 
mean blood pressure has been demonstrated in the same 
study. Given the high plasma ADM levels in various 
disorders[53], the elevated ADM levels in diabetes might 
suggest that it has a protective role. Earlier research also 
showed an elevated plasma ADM level in patients with 
hypertension and chronic renal failure, particularly a 3-fold 
elevation in plasma ADM level associated with more se-
vere renal failure. The elevation in ADM may help to pre-
vent blood pressure increase and body fluid retention[54], 
and represent a compensatory mechanism for diabetic 
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the endothelial cells[59], so plasma level of  ADM increases 
upon endothelial injury. A significant positive association 
between ADM and cAMP in diabetic patients further 
supported the hypothesis that ADM plays a counter-
regulatory role to prevent excessive vasoconstriction and 
vessel damage, and promotes natriuresis[54,60,61].

All these findings suggested an increase in plasma 
ADM level is the consequence rather than the cause of  
type 1 diabetes, since there are insufficient findings to 
demonstrate the direct link between ADM and the dis-
ease states. This can be further supported by the compar-
ison of  hypoglycemic- and hyperglycemic-patients in the 
same study in which no difference in the plasma ADM 
level was found.

ADM AND TYPE 2 DIABETES
Several studies have been carried out in an attempt to 
explain the rise in plasma ADM level and its implications 
in diabetic complications. One study showed that plasma 
ADM level was elevated in type 2 diabetes but did not 
correlate with glucose level in circulation[62]. Instead, in-
creased ADM level was correlated with various diabetic 
complications, and the severity of  diabetic nephropathy 
and retinopathy. Other parameters like serum creatinine 
level, systolic blood pressure, and urinary protein excre-
tion were found to be related to ADM levels as well. 
ADM levels might therefore be related to the develop-
ment of  microangiopathy.

Another study examined a group of  patients with a 
common feature of  hyperglycemia development. The 
group had recent onset of  diabetes induced by a drug 
treatment[63]. Results showed that the group can be char-
acterized by a subset of  patients with extremely high 

complications.

ADM AND TYPE 1 DIABETES
One characteristic of  type 1 diabetes is the destruction 
of  β-cells in the islets of  Langerhans which produces 
insulin. Previously there was a report investigating the as-
sociation of  ADM and type 1 diabetes. ADM and cAMP 
levels were compared between type 1 diabetes patients 
with various complications and healthy individuals[55]. 
According to the data, increased plasma ADM level was 
identified only in patients having renal insufficiency, while 
patients with other complications had normal ADM level. 
A significant inverse correlation was also found between 
ADM levels and the creatinine clearance by multiple re-
gression analysis. This suggested that when the kidney 
function was impaired, clearance of  ADM was possibly 
decreased and resulted in an increase in the plasma level. 
Such hypothesis deserves further confirmation because 
most of  the circulating ADM was shown to be cleared 
in the lungs instead of  the kidneys[56]. In the same analy-
sis, the relationship between the plasma ADM and the 
disease duration suggested the change in ADM level is 
resulted from the endothelial dysfunction.

Despite the uncertainty of  the origin of  plasma 
ADM, a recent study postulated that the selective dilation 
of  glomerular capillaries in type 1 diabetes was attributed 
to the up-regulation of  ADM and RAMP2 expression in 
the afferent arterioles and glomeruli, through the induced 
release of  nitric oxide[57]. This may provide a hint that lo-
cally produced ADM can elicit vasodilatation action by 
paracrine control, independent of  any changes in plasma 
ADM levels. ADM is also involved in the pathogenesis 
of  retinopathy[58]. Since ADM is produced in the vas-
culature, endothelial activation caused by vessel damage 
may explain the increase in plasma ADM level. Another 
possibility is that ADM acts as a factor for survival of  

367 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

AM
 c

on
ce

nt
ra

tio
n 

(f
m

ol
s/

m
L)

Diabetic patients                     Normal controls

70

60

50

40

30

20

10

  0

Figure 1  Adrenomedullin concentrations in blood serum from type 2 
diabetic patients (in squares) and normal controls (in triangles), shaded 
squares are outliers. Reprinted from [63].
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point with significant difference compared with saline controls. Modified 
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Wong HK et al . Adrenomedullin and diabetes



ADM levels (Figure 1). Even though the source of  such 
excessive ADM is unknown, the results suggested that 
hyperglycemic patients are characterized by higher circu-
lating ADM levels. In the same studies, the influence of  
ADM in blood glucose modulation was studied using an 
obese SHR rat model mimicking human type 2 diabetes. 
Synthetic ADM, blocking monoclonal antibody against 
ADM or saline were injected into the animals, and then 
glucose tolerance tests were carried out. In support to a 
previous study[4], ADM injection increased blood glucose 
level more significantly in diabetic rats, while application 
of  antibody effectively reduced blood glucose level to 
even lower than saline control and improved postprandial 
recovery in diabetic rats (Figure 2). All these data raise 
the possibility that ADM is a causative factor in type 2 
diabetes and has a negative impact on glycemic control.

To further explore the role of  ADM incausing type 2 
diabetes, the effect of  ADM on insulin secretion has to 
be considered. There are studies addressing the associa-
tion of  ADM with insulin balance. There is a positive 
association between insulin resistance and plasma midre-
gion pro-adrenomedullin levels[64]. The link between acute 
hyperinsulinemia and ADM has been proposed, in which 
plasma ADM levels increased in acute hyperinsulinemia[65]. 
There was a concomitant increase in plasma ADM levels 
with increasing insulin production, and a significant posi-
tive correlation between serum insulin levels and plasma 
ADM was seen in type 2 diabetic patients. The authors 
speculated that the increased insulin-stimulated ADM 
production from the pancreatic islets compensated for the 
diminished vasodilatory effect of  insulin, hence this pro-
tects against arterial hypertension.

In the recent decade the effect of  oxidative stress on 
ADM expression has been suggested. One study evaluat-
ed such relationship by measuring plasma levels of  8-epi-
prostaglandin F2α (8-epi-PGF2α, a marker of  oxidative 

stress) and ADM in normal and hypertensive subjects[66]. 
Both plasma levels were elevated in the hypertensive 
group (P < 0.05 for 8-epi-PGF2α and P < 0.02 for ADM 
respectively), and the data showed that 8-epi-PGF2α was 
associated with ADM in hypertensive patients with type 
2 diabetes (r = 0.696, P < 0.01). It is known that oxida-
tive stress could stimulate ADM mRNA expression and 
secretion from endothelial and vascular smooth muscle 
cells[67]. Sustained ADM deficiency increased oxidative 
stress and led to insulin resistance via impaired insulin 
signaling, which is supported by an angiotensin (Ang)-Ⅱ 
treated mouse model[68]. Ang-Ⅱ could induce oxidative 
stress and hypertensive conditions, and it was shown that 
Ang-Ⅱ reduced insulin sensitivity in ADM-knockout het-
erozygous mice more than wild type mice. This suggests 
that endogenous ADM may act against insulin resistance 
induced by oxidative stress and offer protection from or-
gan damage through its anti-oxidant action.

The interactions between ADM and diabetic com-
plications are dynamic and complex. While conflicting 
arguments have been put forward to the link between 
poor metabolic control and increased ADM levels[64], it is 
generally accepted that plasma ADM levels are positively 
linked to oxidative stress[66], acute hyperinsulinemia[65], 
and other risk factors causing endothelial injury (Figure 
3). This leaves much ground for further research about 
the causes and significance for the plasma ADM level 
increase.

CONCLUSION
There are two main questions that have to be answered 
in order to establish a link between ADM and diabetes: 
Firstly, what are the causes for the increase in plasma 
ADM levels in diabetic patients, and what are the 
sources for the elevated circulating ADM? What kind of  
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stress or stimulation are involved? Secondly, what is the 
implication for the elevated level? Would it further wors-
en the glycemic condition and result in various diabetic 
complications?

Based on the above questions, numerous studies have 
been commenced. Research has demonstrated the asso-
ciation between diabetic complications and the increase 
in plasma ADM level. Plasma ADM levels were mainly 
associated with renal failure and retinopathy in type 1 dia-
betes. However, the correlation with hyperglycemia is still 
not clear and requires further investigation.

On the other hand, plasma ADM levels in type 2 
diabetes patients are linked to a wider range of  compli-
cations. The rise may be attributed to acute hyperinsu-
linemia, oxidative stress and endothelial damage. These 
stimuli increases ADM production from pancreatic islets 
and vascular endothelium. Such a rise may represent a 
causative factor triggering the onset of  disease and insulin 
resistance. If  this assumption holds, a controlled reduc-
tion in ADM levels may improve hyperglycemia. To un-
derstand the casual role of  ADM in diabetes, genetic vari-
ants could be a potential variable to study using Mendalian 
randomization, since it is unlikely to be confounded by 
environmental factors. Our recent study has demonstrated 
a positive link between a single nucleotide polymorphism 
(SNP) of  ADM gene and development of  dysglycemia[69]. 
Our other studies also demonstrates that plasma ADM 
level is associated with one of  its SNP, IL-6 and adipo-
nectin SNPs[70-72]. In the future regulation of  ADM level 
could be a key in controlling glycemia in people with dia-
betes and this warrants further investigation.
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Abstract
Both diabetes mellitus and cancer are prevalent diseas-
es worldwide. It is evident that there is a substantial in-
crease in cancer incidence in diabetic patients. Epidemi-
ologic studies have indicated that diabetic patients are 
at significantly higher risk of common cancers including 
pancreatic, liver, breast, colorectal, urinary tract, gas-
tric and female reproductive cancers. Mortality due to 
cancer is moderately increased among patients with di-
abetes compared with those without. There is increas-
ing evidence that some cancers are associated with 
diabetes, but the underlying mechanisms of this poten-
tial association have not been fully elucidated. Insulin 
is a potent growth factor that promotes cell prolifera-
tion and carcinogenesis directly and/or through insulin-

like growth factor 1 (IGF-1). Hyperinsulinemia leads to 
an increase in the bioactivity of IGF-1 by inhibiting IGF 
binding protein-1. Hyperglycemia serves as a subordi-
nate plausible explanation of carcinogenesis. High glu-
cose may exert direct and indirect effects upon cancer 
cells to promote proliferation. Also chronic inflamma-
tion is considered as a hallmark of carcinogenesis. The 
multiple drugs involved in the treatment of diabetes 
seem to modify the risk of cancer. Screening to detect 
cancer at an early stage and appropriate treatment of 
diabetic patients with cancer are important to improve 
their prognosis. This paper summarizes the associations 
between diabetes and common cancers, interprets pos-
sible mechanisms involved, and addresses implications 
for medical practice.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The diabetes-cancer link is summarized and 
discussed in detail and it may potentially be attributed 
to hormonal disorders, chronic inflammation and meta-
bolic alterations. Besides, implications for medical prac-
tice are also addressed.
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INTRODUCTION
The prevalence of  diabetes mellitus (DM) is increasing 
worldwide. According to the estimates by the Interna-
tional Diabetes Federation, the global prevalence of  type 
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2 diabetes mellitus (T2DM) is 8.3%. The prevalence of  
T2DM varies by country and area. The highest rate is 
10.5% in North America, 8.7% in South-East Asia, 6.7% 
in Europe and 4.3% in Africa. It is predicted that 552 
million people worldwide will develop diabetes by 2030[1].

DM and cancer are frequently diagnosed in the same 
individual[2]. DM is reported to be associated with an 
increased risk of  different types of  cancer, including 
pancreatic, liver, breast, colorectal, urinary tract, gastric, 
and female reproductive cancers. The relative risk ranges 
from 2.0 to 2.5 for liver, pancreatic and endometrial can-
cers, and 1.2 to 1.5 for breast, colon and bladder cancers 
associated with DM[3]. It is worth noting that DM is a 
growing health problem worldwide. Even if  the increased 
risk in cancer incidence and mortality due to DM is small, 
the consequence would be significant at the population 
level[4].

The mechanism of  DM associated with cancer re-
mains uncovered and needs to be examined in further 
studies. The mechanism for the diabetes-cancer link has 
been hypothesized to be mainly related to hormonal 
[insulin and insulin-like growth factor (IGF)-1], inflam-
matory or metabolic (hyperglycemia) characteristics of  
the DM and even to certain treatments[5]. Anti-diabetic 
medications may have effects on the risk for cancer. In-
creasing evidence shows that insulin sensitizers such as 
metformin and thiazolidinediones (TZDs) are associated 
with prostate cancer[6] and HER2-positive breast cancer[7] 
among diabetic patients. The diabetic patients who are 
treated with insulin or insulin secretagogues are more 
likely to develop cancer than those with metformin[8-11].

In this paper, we summarize the associations between 
diabetes and cancer in epidemiologic studies, possible 
mechanisms and implications for medical practice.

POSSIBLE BIOLOGIC LINKS BETWEEN 
DIABETES AND CANCER RISK
Insulin resistance
Insulin resistance is very common in T2DM, in which 
circulating insulin level is frequently increased. The insu-
lin/IGF axis plays an important role in diabetes-associat-
ed increased risk and progression of  cancer. The cancer 
cells overexpress insulin and IGF-1 receptors[2].

Hyperinsulinemia is a hallmark of  insulin resistance. 
The mechanisms whereby hyperinsulinemia could link di-
abetes and cancer have been extensively investigated and 
discussed. Hyperinsulinemia may influence cancer devel-
opment through ligand by binding with the insulin recep-
tor (IR) and/or indirectly through increasing circulating 
IGF-1 levels[12]. Insulin signal transduction is mediated 
through two IR isoforms: IR-A and IR-B[13]. IR-A rec-
ognizes insulin and IGFs, with a higher affinity for IGF2 
than IGF1, and IR-B is insulin specific and is mainly 
involved in glucose homeostasis. Insulin binds with IR-A 
and exerts a direct pro-growth mitogenic effect. When 
elevated, insulin can increase the hepatic expression of  
IGF-1 and then activate the IGF-1 receptor, further 

stimulating cell growth through this mechanism[14,15]. 
IR-A and IGF-1 receptor are expressed primarily in fetal 
tissues and cancer cells[16].

The independent role of  the IR is confirmed by the 
observation that down-regulation of  IRs in LCC6 cells 
reduces xenograft tumor growth in athymic mice and in-
hibits lung metastasis[17]. Besides, blockade of  the IGF-1 
receptor has been associated with decreased growth of  
breast cancer cells[18,19]. Hyperinsulinemia also results in 
decreased levels of  IGF binding protein-1 and thus in-
creased levels of  bioactive IGF-1[20,21].

Multiple downstream signaling pathways are activated 
after IRs or IGF-1 receptors interact with their ligands. By 
phosphorylation of  adaptor proteins, two major pathways 
are involved: (1) the phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt)/mammalian target of  rapamycin 
(mTOR), PI3K/Akt/forkhead box O, and Ras/MAPK/
extracellular signal-related kinase 1/2 pathway which plays 
important roles in cancer cell growth and carcinogen-
esis[22,23] is activated; and (2) the inhibitor of  the oncogenic 
β-catenin signaling (glycogen synthase kinase 3β) is inacti-
vated, through the PI3K/Akt signaling pathway, resulting 
in β-catenin signaling activation that has been related to 
cancer stem cells and chemoresistance[24].

Hyperglycemia
Hyperglycemia has been classically considered as a subor-
dinate whereas hyperinsulinemia as a primary causal fac-
tor for cancer[25].

Several large cohort and case-control studies have 
found a positive relationship between hyperglycemia and 
the risk of  cancer[26-29]. In a tumor-prone animal model, 
it was found that the number and size of  liver tumors 
increased and apoptosis was reduced in insulin-deficient 
hyperglycemic mice compared with insulin-sufficient 
mice. This phenomenon was reversed by insulin thera-
py[30]. However, in vivo studies showed that T1DM, which 
is characterized by hyperglycemia, reduces the tumor 
growth. This finding does not support that hypergly-
cemia increases tumor growth, at least in the setting of  
insulin deficiency[31]. A recent research found that tumors 
continue to consume high amounts of  glucose, regard-
less of  plasma glucose levels[32]. A recent meta-analysis 
confirmed this finding that improved glycemic control 
does not reduce cancer risk in diabetic patients[33]. Hyper-
glycemia may be an independent risk factor for cancer. 
Further studies are needed to evaluate the relative roles 
of  insulin and glucose.

The possible mechanisms of  hyperglycemia increas-
ing cancer risk include “indirect effect” and “direct ef-
fect”[34]. The “indirect effect” is the action that takes place 
at other organs and will later on influence tumor cells by 
inducing production of  circulating growth factors (insu-
lin/IGF-1) and inflammatory cytokines. The “direct ef-
fect” is the effect that is exerted directly upon tumor cells 
by increasing proliferation, inducing mutations, augment-
ing invasion and migration and rewiring cancer-related 
signaling pathways. Recently, Wnt/β-catenin signaling has 
been suggested as a key cancer-associated pathway and 
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high glucose enhances this signaling pathway by allowing 
nuclear retention and accumulation of  transcriptionally 
active β-catenin independently of  hyperinsulinemia, adi-
pokines or inflammation[35,36].

Chronic inflammation
The deregulated metabolism in poorly controlled diabetes 
causes a long-term pro-inflammatory condition character-
ized by increased levels of  interleukin-6 (IL-6), tumor ne-
crosis factor-alpha (TNF-α), C-reactive protein, and other 
markers of  chronic inflammation. Emerging evidence 
suggests that persistent inflammation can promote genetic 
instability and chronic inflammation is associated with in-
creased cancer risk[37-40]. This finding is also supported by 
the classical evidence that non-steroidal anti-inflammatory 
drugs can reduce the risk of  certain cancers[41-44].

Tumor-promoting mechanism of  inflammation in dia-
betic patients is not much clear. Chronic inflammation and 
chronic oxidative stress go hand-in-hand. Oxidants affect 
almost all stages of  the inflammatory response process, 
including the release of  inflammatory cytokines, the sens-
ing by innate immune receptors from the families of  Toll-
like receptors and the nucleotide-binding oligomerization 
domain-like receptors, and the activation of  signaling 
initiating the adaptive cellular response to such signals[40]. 
Reactive oxygen species can cause damage to lipids, 
protein and DNA, and then initiate carcinogenesis[45-47]. 
Meanwhile, chronic inflammation is associated with high 
levels of  TNF-α, which would strongly activate nuclear 
factor-kappa B (NF-κB) and further induce downstream 
signaling transduction to promote the development and 
progression of  many tumors. NF-κB is involved in the 
proliferation and survival of  malignant cells, promotes an-
giogenesis and metastasis, subverts adaptive immunity, and 
mediates responses to hormones and/or chemotherapeu-
tic agents[48-50]. Therefore, continued exposure to chronic 
inflammation and oxidative stress puts susceptible cells at 
risk of  progression toward malignant transformation[31].

IMPACT OF DIABETES ON CANCER
Evidence from animal studies
DM is mainly characterized by insulin resistance, hyper-
insulinemia, hyperglycemia, and dyslipidemia. The inde-

pendent role of  diabetes and obesity in caner develop-
ment has been difficult to distinguish since obesity is also 
related to inflammation and hyperinsulinemia. Studies in 
transgenic diabetic mice might shed light on the relative 
contributions of  these factors. In a transgenic model of  
skin and mammary carcinogenesis, non-obese diabetic 
mice (A-ZIP/F-1) developed more tumors than wild-type 
controls[51]. In MKR mouse models of  mammary carci-
nogenesis, female mice with T2DM showed accelerated 
mammary gland development and breast cancer progres-
sion independent of  obesity and inflammation[52]. Hyper-
insulinemia promoted the growth of  primary mammary 
tumor and subsequent metastasis to the lung[53]. Tumor 
progression was abrogated with the decreased level of  
serum insulin after treatment with anti-insulin drugs[54]. 
Taken together, findings from animal studies support that 
diabetes plays interconnected roles in the development 
of  cancer.

Epidemiologic findings 
The findings from a meta-analysis of  12 cohort studies 
showed that diabetes increased the risk of  all-cancer inci-
dence for overall subjects, with a pooled adjusted RR of  
1.14 (1.06-1.23) for men, and 1.18 (1.08-1.28) for wom-
en[55]. Diabetes is reported to be associated with several 
types of  cancer, including pancreas, liver, breast, colorec-
tal, urinary tract, gastric, and female reproductive cancers. 
Meta-analyses on the associations between diabetes and 
site specific cancer are summarized in Table 1.

Liver cancer: In various studies examining the link be-
tween DM and cancer, the highest risk has been seen 
for liver cancer. A meta-analysis demonstrated that in-
dividuals with diabetes had a 2.0-fold increased risk of  
developing hepatocellular carcinomas (HCC), compared 
with non-diabetics. And this link was observed in both 
men and women[56]. The liver is exposed to high concen-
trations of  endogenously produced insulin transported 
via the portal vein. Hyperinsulinemia stimulates the 
production of  IGF-1, which further promotes cellular 
proliferation and then inhibits apoptosis in the liver. The 
important role of  hyperinsulinemia and IGF-1 in hepatic 
carcinogenesis has been demonstrated by in vitro, in vivo, 
and epidemiologic studies[57,58]. Liver steatosis, hepatitis, 
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Table 1  Combined relative risk and 95%CI in meta-analyses of cohort studies of cancer risk in different organs of diabetic patients

Cancer Ref. No. of cohort studies RR (95%CI) RR (95%CI) male RR (95%CI) female

Pancreas Ben et al[76], 2011 35 1.94 (1.66-2.27)  1.70 (1.55-1.87)1  1.60 (1.43-1.77)1

Liver Wang et al[56], 2012 18 2.01 (1.61-2.51)  1.96 (1.71-2.24)1  1.66 (1.14-2.41)1

Breast De Bruijn et al[66], 2013 20 1.23 (1.12-1.34) NA 1.23 (1.12-1.34)
Endometrium Zhang et al[67], 2013 15 1.81 (1.38-2.37) NA 1.81 (1.38-2.37)
Colon-rectum Jiang et al[62], 2011 30 1.27 (1.21-1.34)  1.25 (1.17-1.33)1  1.23 (1.13-1.33)1

Kidney Bao et al[70], 2013 11 1.39 (1.09-1.78) 1.28 (1.10-1.48) 1.47 (1.18-1.73)
Bladder Zhu et al[73], 2013 29 1.29 (1.08-1.54) 1.36 (1.05-1.77) 1.28 (0.75-2.19)
Prostate Zhang et al[78], 2012 25 0.92 (0.81-1.05) 0.92 (0.81-1.05) NA
Gastric Yoon et al[81], 2013 11 1.20 (1.08-1.34) 1.10 (0.97-1.24) 1.24 (1.01-1.52)
Non-Hodgkin’s lymphoma Castillo et al[85], 2012 11 1.21 (1.02-1.45) 1.13 (0.96-1.34) 1.24 (0.97-1.58)

1Based on the studies reported by gender. NA: Unavailable.
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in men [RR = 1.36 (1.05-1.77)][73]. In addition to general 
factors, the frequent infections of  the urinary tract in dia-
betic patients might also be involved[74].

Pancreatic cancer: In a 3-year follow-up study[75], sub-
jects with new-onset DM had a higher risk of  pancreatic 
cancer with a RR of  7.94 than the subjects without DM. 
A meta-analysis of  35 cohort studies showed that DM 
was associated with an increased risk of  pancreatic cancer 
in both men and women[76]. However, the question arises 
about whether diabetes is a risk factor or the conse-
quence of  the pancreatic cancer (so-called “reverse cau-
sality”). Pancreatic cancer might induce a diabetic status 
because of  impaired pancreatic beta cells. In vitro studies 
show that blockage of  insulin receptors and impaired in-
sulin action and glucose transport in a model of  pancre-
atic cancer led to insulin resistance[77]. However, the new 
onset of  pancreatic cancer induced DM depends on the 
peripheral insulin resistance rather than on the impaired 
pancreatic beta cells. On the other hand, in patients with 
T2DM exocrine pancreatic cells are exposed to very high 
insulin levels because of  their proximity to insulin secret-
ing islets. Insulin stimulates the growth of  cancer cells. 
Thus, hyperinsulinemia might account for the risk of  de-
veloping pancreatic cancer in T2DM.

Prostate cancer: Prostate cancer risk appears to de-
crease in patients with diabetes. An inverse association 
was observed between diabetes and risk of  prostate can-
cer in the studies from the United States but not in the 
studies from other countries, as shown by an updated 
meta-analysis[78]. The protective effect of  DM was also 
observed in different grades or stages of  prostate cancer 
in another meta-analysis[79]. One possible explanation is 
that low testosterone levels have been shown in diabetic 
men. The conversion of  testosterone to dihydrotestoster-
one promotes prostate cell growth[80].

Other cancers in diabetes: A 20% increased gastric can-
cer risk in diabetic patients was found in a meta-analysis. 
A positive association was observed in female diabetic pa-
tients, whereas it was not the case in diabetic men[81]. The 
IGF/IGF-IR axis interacts with the vascular endothelial 
growth factor/vascular endothelial growth factor receptor 
system in gastrointestinal malignancies[82,83]. It is also pos-
sible that reactive oxygen-dependent DNA damage fur-
ther enhances the effect of  Helicobacter pylori on epithelial 
cell proliferation[84]. A meta-analysis of  large prospective 
cohort studies has shown a moderate increase of  non-
Hodgkin’s lymphoma in diabetic patients, whereas strati-
fied analysis by gender shows no significance based on the 
studies with reported cancer incidence by gender[85]. The 
immune dysfunction related to impaired neutrophil activ-
ity and abnormalities in cellular and humoral immunity in 
diabetes may contribute to cancer development[86].

MORTALITY
A meta-analysis suggests that preexisting diabetes is as-

and cirrhosis are more frequent among diabetic patients 
and are well known risk factors for HCC. Insulin resis-
tance stimulates the release of  multiple pro-inflammatory 
cytokines and consequently promotes the development 
of  hepatic steatosis and inflammation and subsequent 
cancer in the liver[59]. A causal relationship was also re-
ported by Jee et al[60], who found that fasting glucose and 
liver cancer risk had a dose-responsive relationship. Be-
sides, T2DM-induced hyperglycemia induces the release 
of  TNF-α and IL-6 in patients with hepatic steatosis and 
enhances the pathogenesis of  cancer[61].

Colorectal cancer: A meta-analysis comprising 30 co-
hort studies showed that diabetes was associated with an 
increase in the risk of  colorectal cancer, with a combined 
RR of  1.27 (1.21-1.34). This association was consistent 
for both men and women[62]. Our previous retrospective 
cohort study showed that a significant association of  
diabetes was found with colon cancer and not with rectal 
cancer[63]. This finding indicated that there was a subsite 
specific association of  T2DM with colorectal cancer. 
General factors like hyperinsulinemia and IGF-1 have 
contributed to intramucosal adenocarcinomas. Diabetic 
patients have slower bowel peristalsis and more common 
constipation and thus increased exposure to bowel toxins 
(i.e., elevated concentrations of  fecal bile acids) and po-
tential carcinogens[64]. Animal models have demonstrated 
that increased concentrations of  fecal bile acids could 
induce colorectal carcinogenesis[64,65].

Breast and other female cancers: A meta-analysis in-
cluding 20 cohort studies found an association between 
diabetes and breast cancer with a summary RR of  1.23 
(1.12-1.34)[66]. A meta-analysis including 15 cohort studies 
reported an increased risk [RR = 1.81 (1.38-2.37)] of  en-
dometrial cancer in diabetic women[67]. Hyperinsulinemia 
could increase the levels of  bioactive estrogens by reduc-
ing the concentration of  circulating sex hormone binding 
protein in diabetic women. It is well known that bioactive 
estrogens are the risk factors for malignancies of  female 
reproductive organs[68,69]. Increased bioactive estrogen will 
stimulate the proliferation of  breast and endometrial cells 
and the inhibition of  apoptosis to increase cancer risk.

Kidney and bladder cancers: A meta-analysis including 
eleven cohort studies showed that diabetes was signifi-
cantly associated with an increased risk of  kidney cancer 
[RR = 1.39 (1.09-1.78)]. The association was slightly 
stronger in women [RR = 1.47 (1.18-1.83)] than in men 
[RR = 1.28 (1.10-1.48)][70]. Hypertension and late stage 
renal disease, two common comorbidities of  DM, con-
tribute to the increased incidence of  kidney cancer[71,72]. 
Impaired renal function results in higher circulating levels 
of  carcinogens and toxins and immune inhibition and 
thereby renders the kidney susceptible to carcinogens 
and tumor growth. Findings from a meta-analysis of  29 
cohort studies suggest that individuals with DM display 
an increase in the risk of  bladder cancer [RR = 1.29 
(1.08-1.54)]. The positive association is only observed 
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sociated with a higher risk of  all-cause long term cancer 
mortality compared with non-diabetic individuals HR 
= 1.41 (1.28-1.55)[87]. Mortality among diabetes was sig-
nificantly increased for liver, breast, and bladder cancers, 
with pooled RRs of  1.56 (1.30-1.87)[56], 1.38 (1.20-1.58)[66], 
and 1.33 (1.14-1.55)[73], respectively. Similar but mild re-
sults are also seen in gastric cancer[88] and colorectal can-
cer[62]; with 29% and 20% increased all-cause mortalities, 
respectively (Table 2). Non-significance is found for the 
cancers of  the pancreas[87], prostate[87], kidney[70], endome-
trium[67], and non-Hodgkin’s lymphoma[89] (Table 2).

Several possible explanations might elucidate the in-
creased risk of  cancer death in DM. Impaired immune 
function and pro-inflammatory condition in diabetes may 
make the cancer more aggressive, favor cancer growth by 
making host organism less resistant to cancer progres-
sion, and strengthen the metastatic potential of  cancer. 
Hyperglycemia may be an important risk factor. There is 
evidence that poor glycemic controls can lead to poorer 
outcomes. Survival rates in cancer are decreasing linearly 
with declining glycemic controls[90]. Diabetic patients may 
have a worse response to chemotherapy with a higher oc-
currence of  adverse effects compared with non-diabetic 
individuals.

Diabetes patients are more often poor candidates 
for surgery. Preexisting diabetes was associated with in-
creased odds of  postoperative mortality across all cancer 
types [OR = 1.51 (1.13-2.02)][91].

IMPLICATIONS FOR MEDICAL PRACTICE
Cancer screening is required for patients with 
preexisting diabetes
As shown by the above studies, patients with DM have 
a higher risk of  developing certain types of  cancer. A 
healthy diet, physical activity, and weight management 
could decrease the risk and improve outcomes of  DM 
and some types of  cancer. This was supported by a con-
sensus report of  the American Diabetes Association 
and the American Cancer Society[2]. In order to improve 
the prognosis, early screening of  DM-related cancers is 
important for T2DM patients. Cancer screening tests of  
proven benefit for malignancies (breast, colon, endome-
trial cancer, etc.) in at-risk individuals/populations should 

begin relatively earlier than the general population. Future 
cancer screenings should be based on current existing 
recommendations. However, specific DM-related cancer 
screening recommendations remain to be made.

The impact of anti-diabetic treatments on cancer risk
The major classes of  DM drugs function to replace cir-
culating insulin and reduce hyperglycemia by different 
mechanisms or to reduce the associated obesity[92]. Insulin 
sensitizers, including metformin and TZDs, are oral anti-
diabetic drugs that decrease insulin resistance by altering 
signaling through the AKT/mTOR pathway[93,94].

Metformin has been used with confidence in the 
treatment of  T2DM[95]. Emerging evidence from research 
on humans and from the preclinical setting suggests that 
metformin has an anti-cancer effect. A meta-analysis of  
17 randomized controlled trials showed a clinically signifi-
cant 39% decreased risk of  cancer with metformin use in 
patients with or at risk for diabetes, compared to no use 
of  metformin[96]. Metformin can decrease cell prolifera-
tion and induce apoptosis in certain cancer cell lines[97,98]. 
In a recent retrospective cohort study, metformin use is 
not associated with improved survival in subjects with ad-
vanced pancreatic cancer[99]. Whereas metformin use was 
also reported to be associated with a lower risk of  colon, 
liver, pancreas, or breast cancers, it was not associated 
with the risk of  prostate cancer[100,101]. In a meta-analysis 
by Colmers et al[102], TZD-based therapy has been associ-
ated with a potential cancer risk, primarily pioglitazone 
with bladder cancer, as well as a protective role in breast, 
lung, and colorectal cancers. In combination, the majority 
of  studies showed that metformin therapy decreases and 
insulin and insulin secretagogues slightly increase the risk 
of  certain cancers in T2DM. Nonetheless, it is premature 
to prescribe metformin and TZDs solely for those as yet 
unproven indications for cancers.

Managing diabetic patients with cancer
Managing diabetes can be a daunting task for patients 
with cancer. Diabetes may negatively impact both cancer 
risk and outcomes of  cancer treatment. It is clear that 
comorbidities may play a role in clinical outcomes in 
patients with cancer. Clinicians who treat cancer patients 
with T2DM should pay more attention to comorbidi-
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Table 2  Pooled HRs and 95%CI of all-cause mortality in cancer patients with and without preexisting diabetes mellitus

Cancer Ref. No. of cohort studies HR (95%CI) HR (95%CI) male HR (95%CI) female

Pancreas Barone et al[87], 2008   4 1.09 (0.70-1.69) NA NA
Liver Wang et al[56], 2012   3 1.56 (1.30-1.87) 1.84 (1.34-2.51) 1.31 (1.06-1.61)
Breast De Bruijn et al[66], 2013 20 1.38 (1.20-1.58) NA 1.38 (1.20-1.58)
Endometrium Zhang et al[67], 2013   6 1.23 (0.80-1.90) NA 1.23 (0.80-1.90)
Colon-rectum Jiang et al[62], 2011 11 1.20 (1.03-1.40) 1.26 (1.04-1.52) 1.18 (0.98-1.41)
Kidney Bao et al[70], 2013   8 1.12 (0.99-1.20) NA NA
Bladder Zhu et al[73], 2013 11 1.33 (1.14-1.55)  1.54 (1.30-1.82)1  1.50 (1.05-2.14)1

Prostate Barone et al[87], 2008   3 1.51 (0.94-2.43) 1.51 (0.94-2.43) NA
Gastric Tian et al[88], 2012 NA 1.29 (1.04-1.59) NA NA
Non-Hodgkin’s lymphoma Lin et al[89], 2007   1 1.33 (0.61-2.90) NA NA

1Based on the studies reported by gender. NA: Unavailable.
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ties. Thus, rigorous and multifactorial approaches should 
be adopted to control diabetes for patients undergoing 
treatment for malignancies. Poor glycemic control in-
creases morbidity and mortality in patients with cancer. 
Therefore, hyperglycemia management in patients with 
cancer is important. Monitoring symptoms of  both hy-
perglycemia and hypoglycemia is necessary. DM patients 
with cancer and their family members should monitor 
these symptoms and render suitable medical treatment 
once these symptoms occur. For hospitalized patients 
with acute concurrent complications, aggressive glycemic 
management should be taken to improve the prognosis.

CONCLUSION
Previous evidence provides strong support for an in-
crease of  both cancer risk and mortality in diabetic pa-
tients and more evidence for certain site-specific cancers. 
The molecular mechanisms for the association between 
diabetes and cancer development are still uncovered. 
As underlined in this review, mechanisms on hormonal 
(insulin and IGF-1), inflammatory and metabolic (hyper-
glycemia) characteristics have been proposed to elucidate 
this association. Guidelines specific for diabetic patients 
should include both treatment in medical practices and 
mass screening for specific cancers according to the risk 
factor profile of  each patient.
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Abstract
Obesity, sleep apnea, diabetes and cardiovascular 
diseases are some of the most common diseases en-
countered by the worldwide population, with high so-
cial and economic burdens. Significant emphasis has 
been placed on obtaining blood pressure, body mass 
index, and placing importance on screening for signs 
and symptoms pointing towards cardiovascular disease. 
Symptoms related to sleep, or screening for sleep ap-
nea has been overlooked by cardiac, diabetic, pulmo-
nary and general medicine clinics despite recommenda-
tions for screening by several societies. In recent years, 
there is mounting data where obesity and obstructive 
sleep apnea sit at the epicenter and its control can lead 
to improvement and prevention of diabetes and cardio-
vascular complications. This editorial raises questions 
as to why obstructive sleep apnea screening should be 
included as yet another vital sign during patient initial 
inpatient or outpatient visit.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Obstructive sleep apnea; Diabetes; Ob-
structive sleep apnea screening; Obstructive sleep ap-
nea; Cardiovascular complications

Core tip: Obesity, diabetes, cardiovascular disease and 
obstructive sleep apnea are one of the most common 
chronic diseases involving population globally. Efforts 
have been directed towards prevention and public edu-
cation about the disease process of each of this condi-
tion separately. Though these diseases are interlinked, 
but educational efforts are failing short to address them 
together.

Surani SR. Diabetes, sleep apnea, obesity and cardiovascular 
disease: Why not address them together? World J Diabetes 
2014; 5(3): 381-384  Available from: URL: http://www.wjgnet.
com/1948-9358/full/v5/i3/381.htm  DOI: http://dx.doi.org/10.4239/
wjd.v5.i3.381

OBSTRUCTIVE SLEEP APNEA
Should obstructive sleep apnea (OSA) screening be in-
cluded as yet another vital sign during the patient first 
visit? Obesity and metabolic syndromes are emerging as 
major public health issues. One point one billion adults 
population worldwide are overweight, and approximately 
312 million of  them are obese[1]. Obesity is highly preva-
lent in United States but the prevalence is increasing in 
China, Southeast Asia, Middle East and Pacific Island[2]. 
The increasing incidence of  childhood obesity and its as-
sociation with the cardiovascular disease is also becoming 
a major public health concern[3,4]. The number of  indi-
viduals inflicted with diabetes worldwide is approximately 
285 million, but is expected to increase to 439 million by 
2030[5]. 17 million deaths out of  57 million total world-
wide deaths are attributable to cardiovascular disease[6]. 
The prevalence of  OSA is between 4%-7% and increas-
ing[7].

Obesity and OSA seem to be an epicenter for most 
of  the chronic disease catastrophe. OSA is one of  the 
most common diseases, with a high incidence and preva-
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lence rate that parallels with increasing obesity globally. 
OSA can be seen in non-obese patients with craniofacial 
abnormality and children with enlarged tonsils and ad-
enoids too[8-10]. The growing prevalence of  obesity and 
the increasing population body mass index has created 
major public health challenges[11]. Obstructive sleep apnea 
has been independently linked with hypertension, atrial 
fibrillation, cardiac disease, worsening of  diabetes, insulin 
resistance, peri-operative and postoperative complications 
and coronary artery disease (CAD), to name the few[12-16]. 
In other words, the data links obstructive sleep apnea to 
a majority of  chronic illnesses. In addition to the illness, 
untreated OSA increases the health care utilization, im-
pairs work place efficiency, occupational injuries and in-
crease healthcare utilization leading to billions of  dollars 
in economic burden worldwide[17]. OSA if  recognized can 
be adequately treated by an armamentarium of  several 
different treatment modalities. Despite that 85% of  the 
patients with clinically significant and treatable OSA have 
never been diagnosed, in other word the data has not 
made to the bedside[18].

OSA involves partial or complete collapse of  the up-
per airway, despite respiratory efforts alternating with 
normal breathing. It affects 4%-7% of  the population[7] 
and its prevalence in patients with cardiovascular disease 
is very high. Apnea is defined as a decline in peak signal 
excursion by ≥ 90% of  their pre-event baseline for ≥ 10 
s. Hypopnea is defined as a drop in the signal excursion 
by ≥ 30% of  their pre-event baseline for ≥ 10% and 
≥ 3% arterial oxygen desaturation or accompanied by 
an arousal[19]. OSA severity is based on Apnea-hypopnea 
index/h (AHI/h) It can be divided into mild OSA (AHI 
5-15/h), Moderate OSA (AHI 15-30/h), and severe OSA 
(AHI > 30/h). The pathophysiology of  obesity and OSA 
is intimately linked together. Obesity is a major risk fac-
tor for OSA. In obese patients there is an enlargement 
of  soft tissue structures in the upper airway, leading to 
airway obstruction, especially during rapid eye movement 
sleep when there is atonia. In addition to obesity, there is 

an increase in fat deposition under the mandible, macro-
glossia, and palate, which can then lead to narrowing of  
airway and lead to apnea and hypopnea[20,21]. Obesity has 
been linked as the central and reversible cardiovascular 
risk factor that positively influences OSA, diabetes mel-
litus (DM), metabolic syndrome, hypertension, and lipid 
metabolism[17]. Children are not immune to the obesity, 
as the prevalence of  obesity among children aged 2-5 is 
10% and 6-19 years old is 15%[22].

OSA affects an estimated 15 million adult Americans, 
especially patients with hypertension, Atrial fibrillation 
(A-Fib), CAD, and congestive heart failure (CHF) where 
it is pervasive and levels are very high[23]. Additionally, 
OSA treatment has also been shown to improve atrial 
fibrillation incidence, coronary stent reclogging, and im-
provement of  CHF and improvement in blood glucose 
and insulin resistance[24-29]. Recent evidence directly links 
OSA and obesity to CAD, heart failure, cardiomyopathy, 
A-Fib and DM and they are interrelated too as shown 
in Figure 1. The rise of  obesity and DM has been an 
increased threat to the health of  the global population, 
which has been catalyzed and compounded by the in-
creased occurrence of  OSA. In a recent study by Sleep 
AHEAD Research Group, OSA (AHI ≥ 5) was found to 
be in 86% of  the population, whereas the pervasiveness 
of  all forms of  cardiovascular disease was 14%[30]. On the 
other hand, individuals who have DM and metabolic syn-
drome have an increased risk of  cardiovascular disease 
and stroke[31].

The screening for OSA for commercial drivers has 
been suggested by several societies as American College 
of  Chest Physician, American College of  Occupational 
and Environmental Medicine, and National Sleep Foun-
dation. The International Diabetes federation also rec-
ommends screening patients for possible OSA[32]. This 
screening among the commercial drivers has been suc-
cessfully implemented, on the other hand, peri-operative 
screening has been suggested but not implemented in 
majority of  the hospitals despite the availability of  simple 
screening tools as STOP-Bang Questionnaire[33], Berlin 
Questionnaire[34], neck size, airway, morbidity, Epworth 
Sleepiness Score, snoring (NAMES) criteria, all with the 
sensitivity ranging from 80% to 86%[35].

This data has been in literature now for several years, 
indicating the associations of  OSA with almost any 
disease as glaucoma, end stage renal disease, chronic ob-
structive pulmonary disease, polycystic ovarian syndrome, 
metabolic syndrome, cardiovascular disease, stroke, de-
pression, obesity and DM. Moreover, the treatment has 
led to improvements in the underlying condition[36-38]. 
The screening test carries high sensitivity, but also has 
a low specificity. This can result in a plethora of  false 
positive diagnosis and may increase the health care cost. 
There is high relationship between OSA, hypertension, 
cerebrovascular disease, CAD and A-Fib. Early diagno-
sis and treatment of  OSA will help in preventing the 
increase morbidity and mortality associated with those 
conditions. Studies have shown the improvement in ejec-
tion fraction, carotid intimal thickening and benefits in 
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Figure 1  Showing the relationship of obstructive sleep apnea to cardio-
vascular diseases, diabetes, metabolic syndrome and obesity. CAD: Coro-
nary artery disease; HTN: Hypertension; CVA: Cerebrovascular accident; DM: 
Diabetes mellitus; OSA: Obstructive sleep apnea.



coronary artery disease, maintenance of  sinus rhythm 
from A-Fib after cardioversion and improvement in insu-
lin resistance. Moreover untreated OSA is also associated 
with increased risk of  death[39-46]. The question arises, if  
it is the prime time to push for OSA screening for every 
patient walking in outpatient clinic or hospital? Or do we 
have to adjust the cutoff  of  points of  our screening test 
so we can compromise with a decrease in sensitivity to 
have better specificity to avoid excess healthcare cost as a 
result of  high false positive tests. It is the opinion of  the 
author that Stop-Bang questionnaire, Berlin or NAMES 
questionnaire can be utilized as the screening tool. In the 
presence of  symptoms, patient should undergo formal 
sleep study with home sleep study or overnight in lab 
polysomnography[33-35]. Regardless, one thing is clear: that 
every physician, nurse and midlevel provider needs to ed-
ucate patients on risk prevention and education regarding 
the causes, signs and symptoms of  diabetes, sleep apnea, 
obesity prevention and cardiovascular disease prevention. 
It is about time that health care providers take the re-
sponsibility of  preventative education of  such diseases as 
a package rather than fragmentation of  education of  dia-
betes in diabetic clinics, sleep apnea in sleep clinics, and 
cardiovascular disease in heart clinics, as these diseases 
are interrelated. I will leave the debate open as to if  it is 
about time to push for screening of  OSA as one of  the 
vital signs on every patient initial visit.
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Abstract
Protein kinase C-β (PKCβ), a member of the lipid-
activated serine/threonine PKC family, has been impli-
cated in a wide range of important cellular processes. 
Very recently, the novel role of PKCβ in the regulation 
of triglyceride homeostasis via  regulating mitochondrial 
function has been explored. In this review, I aim to 
provide an overview of PKCβ regarding regulation by 
lipids and recently gained knowledge on its role in en-
ergy homeostasis. Alterations in adipose PKCβ expres-
sion have been shown to be crucial for diet-induced 
obesity and related metabolic abnormalities. High-fat 
diet is shown to induce PKCβ expression in white adi-
pose tissue in an isoform- and tissue-specific manner. 
Genetically manipulated mice devoid of PKCβ are lean 
with increased oxygen consumption and are resistant 
to high-fat diet-induced obesity and hepatic steatosis 
with improved insulin sensitivity. Available data support 
the model in which PKCβ functions as a “diet-sensitive” 
metabolic sensor whose induction in adipose tissue by 
high-fat diet is among the initiating event disrupting mi-
tochondrial homeostasis via  intersecting with p66Shc sig-
naling to amplify adipose dysfunction and have systemic 
consequences. Alterations in PKCβ expression and/or 

function may have important implications in health and 
disease and warrants a detailed investigation into the 
downstream target genes and the underlying mecha-
nisms involved. Development of drugs that target the 
PKCβ pathway and identification of miRs specifically 
controlling PKCβ expression may lead to novel thera-
peutic options for treating age-related metabolic dis-
ease including fatty liver, obesity and type 2 diabetes.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: High-fat diet; Signal transduction; Obesity; 
Mitochondrial function; Insulin resistance

Core tip: Nutrition has important long-term conseque-
nces for health. It is one of the lifestyle factors that 
contribute to the development and progression of obe-
sity (increased fat accumulation), diabetes, and cardio-
vascular diseases. In fact, obesity rates are increasing 
dramatically worldwide and obesity amplifies the risk of 
developing various age-related chronic diseases, such 
as type 2 diabetes and cardiovascular disease. The pre-
vention or management of chronic diseases is a global 
priority since they constitute a serious strain on health 
care systems and account for more than half of the 
deaths worldwide. Although correct lifestyle remains 
the mainstream solution to this problem, pharmacologi-
cal strategies are also being actively seeked. Current 
antiobesity strategies have not controlled increasing 
epidemic of obesity and obesity-related disorders. We 
hope that a better knowledge of the molecular play-
ers and biochemical mechanism linking dietary fat to 
fat accumulation and development of glucose intoler-
ance are critically needed. This review examines a way 
of metabolizing dietary fat into heat instead of storing 
them as fat, and the possibility that the “browning” of 
white fat is regulated by a diet-inducible kinase Protein 
kinase C-β (PKCβ) may help us explore new transla-
tional approaches to combat obesity, improve insulin 
sensitivity and potentially increase longevity. Finally, 
attenuation of inflammation in fat by PKCβ inhibition 
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could have profound clinical consequences because of 
the large size of the fat organ and its central metabolic 
role.

Mehta KD. Emerging role of protein kinase C in energy homeo-
stasis: A brief overview. World J Diabetes 2014; 5(3): 385-392  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
v5/i3/385.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.385

INTRODUCTION
Protein kinase C (PKC) family is the largest serine/thre-
onine-specific kinase family known to comprise approxi-
mately 2% of  the human kinome[1]. PKCs are broadly 
conserved in eukaryotes, ranging in complexity from a 
single isoform in budding yeast (Saccharomyces cerevi-
siae) to 5 isoforms in Drosophila melanogaste and 12 in 
mammals[2,3]. Three distinct subfamilies can be identified 
according to their dependency on three combinations of  
activators: conventional (α, βⅠ, βⅡ, γ) require phospha-
tidylserine, diacylglycerol, and Ca2+; novel (δ, ε, η, θ) need 
phosphatidylserine (PS) and DAG but not Ca2+; atypical 
PKCs (λ/l, ζ) are insensitive to both DAG and Ca2+. PKC 
isoforms differ in primary structure, tissue distribution, 
subcellular localization, in vitro mode of  action, response 
to extracellular signals, and substrate specificity. The role 
of  individual PKC isoform is thought to be determined 
through sub isoform-specific activation processes or iso-
form-specific substrates in the region downstream of  the 
PKC pathway[4]. Specific role of  each isoform is begin-
ning to be understood using isoform-specific transgenic 
and knockout mouse models. PKCs have been extensively 
discussed in the literature, and the aim of  this review is to 
focus on the functions of  PKCβ in the context of  obesity 
and related metabolic syndromes.

REGULATION OF PKCβ ACTIVITY AND 
EXPRESSION BY LIPIDS
PKCβ is unique among all PKC isoforms in that a single 
gene locus encodes two proteins, PKCβⅠ and PKCβⅡ, 
which are generated by alternative splicing of  C-terminal 
exons and are shown to be physiologically relevant[5]. 
The difference between these two isoforms resides in the 
C-terminal V5 domains, which still exhibit a moderate 
homology (45%) at their amino acid sequences[6,7]. PKCβ 
is highly expressed in the brain and adipose tissue, and 
widely expressed at a lower level in multiple tissues in-
cluding liver, kidney, and skeletal muscle. Analysis of  the 
primary structure of  PKCβ reveals the presence of  four 
domains conserved across PKC isoforms (C1-C4) and 
five variable domains that are divergent (V1-V5). Two 
functional domains have been described: an amino ter-
minal regulatory domain and a carboxyl terminal catalytic 
domain. The regulatory domain (V1-V3) contains the so-
called pseudosubstrate site which is thought to interact 

with the catalytic domain to retain PKCβ in an inactive 
conformation. The regulatory domain also contains sites 
for the interaction of  PKC with PS, DAG/phorbol ester, 
and Ca2+. The Ca2+ dependency is mediated by the C2 
region, while phorbol-ester binding requires the presence 
of  two cysteine-rich zinc finger regions within the C1 
domain. The catalytic domain contains two conserved 
regions, C3 and C4, which are essential for the kinase 
activity and the binding of  adenosine-5’-triphosphate 
(ATP)/substrate (Figure 1).

In addition to the above specific inputs, other regu-
latory processes influence the function of  PKCβ, in-
cluding phosphorylation and interaction with specific 
binding partners. PKCβ is processed by three distinct 
phosphorylation events before it is competent to re-
spond to the coactivators and is phosphorylated at three 
conserved serine/threonine residues in the C-terminal 
domain[8]. Phosphorylation at the activation loop (Thr500) 
is generally proposed to be first and to be followed by 
two ordered phosphorylations at the C-terminal tail, the 
turn motif  (Thr641 in PKCβⅡ) and then the hydropho-
bic motif  (Ser660 in PKCβⅡ). The phosphorylation of  
the turn motif  depends on the mTORC2 complex; this 
phosphorylation triggers autophosphorylation of  the hy-
drophobic motif[9,10]. The fully-phosphorylated “mature” 
PKCβ is in a closed conformation in which the pseu-
dosubstrate occupies the substrate-binding cavity, thus 
autoinhibiting the kinase. Signals that cause hydrolysis 
of  phosphatidylinositol-4,5-bisphosphate result in trans-
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location of  PKCβ to the membrane by a low-affinity 
interaction where it binds DAG via the C1 domain. En-
gaging both the C1 and C2 domains on the membrane 
results in a high-affinity membrane interaction that 
results in release of  the pseudosubstrate, allowing down-
stream signaling. The membrane-bound conformation 
is highly phosphatase-sensitive, so that prolonged mem-
brane binding results in dephosphorylation of  PKCβ 
by pleckstrin homology domain Leucine-rich repeat 
protein phosphatase and PP2A, and subsequent degra-
dation[11]. Binding of  Hsp70 to the dephosphorylated 
turn motif  on the C-terminus stabilizes PKCβ, allowing 
it to become rephosphorylated and reenter the pool of  
signaling-competent PKC. PKCβ that is not rescued by 
hsp70 is ubiquitinated by E3 ligases such as the recently 
discovered RINCK and degraded[12].

PKCβ is also responsive to oxidative stress[13-15]. Why 
is PKCβ sensitive to oxidative stress? In the PKCβ struc-
ture, two pairs of  zinc fingers are found within the regu-
latory domain. They are sites of  DAG and phorbol ester 
binding. Each zinc finger is formed by a structure that is 
composed of  six cysteine residues and two zinc atoms. 
The high level of  cysteine residues renders the regulatory 
domain susceptible to redox regulation[16,17]. The oxidant 
destroys the zinc finger conformation, and the autoinhi-
bition is relieved, resulting in a PKCβ form that is cata-
lytically active in the absence of  Ca2+ or phospholipids[18].

Besides the lipid activation at the post-transcriptional 
level, PKCβ expression also fluctuates in response to 
high-fat diet intake. It is shown that feeding high-fat diet 
(HFD) for 12 wk induces adipose PKCβ expression in 
an isoform and tissue-specific manner[19]. The molecular 
mechanism(s) underlying transcription induction have 
yet to be elucidated but previous studies have cloned and 
sequenced PKCβ promoter[20-22]. A putative 5’-promoter 
region for PKCβ is identified and suggested that there is 
heterogeneity in the active promoter region dependent 
upon the cellular context. Analysis of  the 5’-promoter 
of  PRKCB revealed that a region between -110 bp and 
-48 bp contains two Sp1 binding sites which are im-
portant for basal expression of  PKCβ gene. In addition 
two PROX1 sites are also present 3’ to Sp1 sites and are 
involved in inhibiting Sp1-mediated basal transcription 
of  PKCβ promoter[23]. In fact, an inverse relationship be-
tween PROX1 and PKCβ levels exist in colon cancer cell 
lines. It was also found that treatment with a demethylat-
ing agent, 5-aza-2’-deoxycytidine, restored PKCβ mRNA 
expression in PROX1-expressing cells, suggesting that 
the 5’-promoter of  PKCβ is methylated in these cells[23]. 
Actually, a CpG island in this region, in particular a CpG 
site within the distal Sp1 site is identified in this study, 
leading to downregulation of  PKCβ transcription. Hy-
permethylation of  PROX1 sites inhibits direct Sp1 bind-
ing to this region in PROX1 overexpressing cells. Finally, 
previous studies have also identified a repressor region 
located upstream of  -110 bp in the PKCβ promoter and 
the identity of  the nuclear factor(s) binding to this region 
has not been characterized.

NOVEL ROLE OF PKCβ IN LIPID 
HOMEOSTASIS
A significant conceptual advance in our understanding of  
the importance of  PKCβ signaling in obesity has come 
from realization that mice deficient in PKCβ express 
higher levels of  genes that regulate fatty acid oxidation 
and proteins involved in energy dissipation, highlighting 
its role as a corepressor and in controlling the balance 
between energy consumption and energy expenditure[24]. 
On the contrary, genes involved in FA synthesis and glu-
coneogenesis seem to be downregulated in the absence 
of  PKCβ[25,26]. As a consequence, PKCβ mice are lean, 
with a significant reduction of  body fat and body weight 
compared to WT mice and are resistant to HFD-induced 
obesity and hepatic steatosis so that these mice maintain 
their insulin sensitivity[19]. Moreover, PKCβ levels are 
shown to be elevated in adipose tissue of  leptin-deficient 
(ob/ob) mice and deletion of  PKCβ in ob/ob mice at-
tenuates obesity syndrome of  these mice[26]. An impor-
tant mechanistic insight is the revelation that in PKCβ-
deficient mice white adipose tissue (WAT) express genes 
characteristic of  BAT including peroxisome proliferator-
activated receptor-gamma coactivator-1alpha (PGC-1α), 
fatty acid transporter carnitine palmitoyltransferase, and 
uncoupling protein-1 (UCP-1). Targeted disruption in 
mice of  several genes directly involved in energy metabo-
lism and fat accumulation also leads to lean phenotype 
with a marked increase in UCP-1 expression in adipo-
cytes, particularly in white fat depots[27-29]. Thus total en-
ergy consumption is increased significantly in PKCβ-null 
mice, presumably as a consequence of  energy dissipation 
in WAT resulting from the expression of  UCP-1 and 
increased mitochondrial activity. The ability of  white and 
brown adipocytes in each depot to reversibly switch into 
one another has been reported, but the extent to which 
this occurs and the precise mechanisms involved are not 
fully understood. The search for regulators that could 
mediate conversion of  white adipocytes (energy storing) 
into brown adipocytes (energy consuming) has led to the 
identification of  PGC-1α, FOXC2 and positive regula-
tory domain-containing 16 as transcriptional regulators 
that have been found to promote a brown fat genetic 
program, while retinoblastoma protein and RIP140 have 
been described to favor a white adipose phenotype[27-30]. 
Another important aspect of  these studies relates to 
possible connection between PKCβ and β-adrenergic 
receptor levels in WAT. Results presented argue strongly 
in favor of  an inverse relationship between PKCβ and 
β3-adrenergic receptor expression[26]. The proposed re-
lationship is consistent with earlier reports showing that 
sustained PKC activation suppressed β-ARs expression 
at the transcriptional level[31-33]. The net consequence of  
PKCβ-mediated adipose dysfunction could have pro-
found clinical consequences because of  the large size of  
the fat organ and its central metabolic role. Interestingly, 
in agreement with the above animal studies, adipose 
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diabetes and cardiovascular diseases[47]. Moreover, oxida-
tive stress induced by ROS stimulates fat tissue develop-
ment both in vitro and in vivo. H2O2-induced oxidative 
stress is shown to facilitate the differentiation of  preadi-
pocytes into adipocytes by accelerating mitotic clonal ex-
pansion[48]. Antioxidants such as flavonoids and N-acetyl-
cysteine inhibit both adipogenic transcription factors 
C/EBP-β and PPAR-γ expression, as well as adipogenic 
differentiation in 3T3-L1 preadipocytes[49,50]. N-acetyl cys-
teine (NAC) was also shown to reduce ROS levels and fat 
accumulation in a concentration-dependent manner[50]. 
Moreover, animals on a HFD with the antioxidant NAC 
exhibited lower visceral fat and body weight[51]. Finally, 
ROS scavenging is associated with fat reduction in obese 
Zucker rats[52].

Recent studies have highlighted a novel, unexpected 
signaling pathway bridging the oxidative challenge of  
a cell to the activation of  PKCβ/p66Shc-controlled mi-
tochondrial lifespan[53,54]. PKCβ activated by oxidative 
stress is shown to be required for phosphorylation of  
the Ser36 of  p66Shc and the effect of  PKCβ overexpres-
sion on mitochondrial Ca2+ signaling was not observed 
in p66Shc-/- cells. Importantly, the mitochondrial conse-
quences of  hydrogen peroxide are blocked by hispidine, 
a specific PKCβ inhibitor. The pathway emerging from 
these studies is the following: during oxidative stress 
PKCβ is activated and induces p66Shc phosphorylation, 
thus allowing p66Shc to be recognized by Pin1, isomer-
ised and imported into mitochondria after dephosphory-
lation by type 2 protein serine/threonine phosphatase. 
The p66Shc protein translocated into the appropriate cell 
domain, can exert the oxidoreductase activity, generating 
H2O2 and inducing the opening of  MPTP. This event in 
turn perturbs mitochondria structure and function. Iden-
tification of  a novel signaling mechanism, which is op-
erative in the pathophysiological condition of  oxidative 
stress, may open new possibilities for pharmacologically 
addressing the process of  organ deterioration during 
aging. The above studies are among the first to dissect 
the downstream target genes and regulatory properties 
of  the PKCβ protein, and therefore make an important 
contribution to our understanding of  the molecular 
basis to the lean phenotype exhibited by PKCβ-/- mice. 
Based on a very recent demonstration that PKCβ/p66Shc 
mitochondrial axis inhibits autophagy[55] and the evolv-
ing role of  autophagy in energy homeostasis[56-61], it is 
possible that a combination of  adipose PKCβ activation, 
mitochondrial dysfunction and insufficient autophagy 
may contribute to the development of  diet-induced 
obesity. In addition to mitochondrial effects, PKCβ is 
an upstream regulator of  NOX but this signaling axis 
actively produces superoxide across the membranes of  
neutrophils and phagosomes[62-65]. Accumulating data so 
far implicates mitochondria as the main source for regu-
lation of  autophagy by ROS production in adipocytes[66], 
whereas NOX contributes to activation of  selective, bac-
terial autophagy[67] (Figure 2).

Although biological function of  PKCβ in energy 

PKCβ activation is subsequently linked to obese side ef-
fects of  antipsychotic drugs in humans[34]. Moreover, in 
agreement with its role in energy homeostasis, PKCβ 
is shown to be required for adipocyte differentiation[35], 
PKCβ inhibition promotes insulin signaling in adipo-
cytes[36,37], and PKCβ promoter polymorphism is associ-
ated with insulin resistance in humans[38].

The role of  PKCβ in obesity is further supported by 
its potential involvement in angiogenesis. To ensure a suf-
ficient supply of  nutrients and oxygen and to transport 
fatty acids and adipokines, an extended microvasculature 
is mandatory for adipose tissue. Adipogenesis and angio-
genesis are two closely related processes during adipose 
tissue enlargement, as shown in animal studies and in 
vitro models[39,40]. As adipocyte hypertrophy endures, local 
adipose tissue hypoxia may occur due to hypoperfusion 
since the diameter of  fat cells overgrows the diffusion 
limit of  oxygen. As a result, hypoxia-inducible transcrip-
tion factors are expressed triggering the expression of  
angiogenic factors [vasuclar endothelial growth factor 
(VEGF), hepatocyte growth factor, plasminogen activa-
tor inhibitor-1]. In view of  role of  PKCβ/HuR in regu-
lating VEGF expression at the post-transcriptional level, 
simultaneous induction of  PKCβ is expected to promote 
VEGF expression[41,42].

Finally, specific overexpression of  a constitutively 
active PKCβⅡ mutant in mouse skeletal muscle demon-
strated that this splice variant of  PKCβ not only induces 
insulin resistance, but also affects the levels of  several 
genes involved in lipid metabolism[43]. Thus impairment 
in the expression of  PGC-1α, acyl CoA oxidase and 
hormone-sensitive lipase, but enhanced expression of  the 
lipogenic transcription factor sterol response element-
binding protein 1c in skeletal muscle, were associated 
with decreased lipid oxidation and increased intra-myo-
cellular lipid deposition. In addition to these direct effects 
in muscle, these animals showed defects in insulin action 
in the liver and brain, as well as hepatic lipid accumula-
tion similar to that seen in fat-fed animals.

POTENTIAL ROLE OF PKCβ IN 
MITOCHONDRIAL FUNCTION
Several studies have emphasized the association between 
enhanced mitochondria-derived H2O2 and insulin resis-
tance, particularly in the context of  excessive nutrient 
intake that results in metabolic imbalance[44-47]. Oxidative 
stress has also been described clinically, as well as in WAT 
of  many additional mouse models of  obesity, such as the 
KKAy and db/db mice. Systemic markers of  oxidative 
stress increase with adiposity, consistent with the role of  
reactive oxygen species (ROS) in the development of  
obesity-induced insulin resistance. Available data suggest 
that an increase in ROS significantly affects WAT biol-
ogy and leads to deregulated expression of  inflammatory 
cytokines such as tumor necrosis factor-α, interleukin-6, 
and macrophage chemoattractant protein-1, and insulin 
resistance, which could contribute to obesity-associated 
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homeostasis appears to be mostly linked with events 
occurring at the mitochondria, however, increasing 
evidence has implied a role for this kinase in nuclear 
functions, suggesting this may be a pathway to com-
municate signals generated at the plasma membrane to 
the nucleus. For example, Goss et al[68] first showed that 
PKCβ translocates to the nucleus at G2/M, concomitant 
with the phosphorylation of  lamin B1. Subsequently, 
a considerable number of  nuclear proteins have been 
identified which are in vivo and/or in vitro substrates 
for PKCβ. These proteins include: histone H3, DNA 
topoisomerase Ⅰ and Ⅱa, DNA polymerase α and β, cy-
clic AMP-response element-binding protein, retinoblasto-
ma protein, and vitamin D receptor[69-73]. It has even been 
shown that PKCβⅠ co-localizes with androgen receptor 
and lysine-specific demethylase 1 on target gene promot-
ers and phosphorylation of  histone H3 at threonine 6 
by PKCβⅠ is the key event that prevents lysine-specific 
demethylase 1 from demethylating histone H3 lysine 4[69]. 
Finally, activated PKCβ indirectly can affect other signal-
ing cascades, including PI3-kinase/Akt pathway, extracel-
lular signal-regulated kinase, and p38 pathway which can 
impact nuclear events[74-79]. It is thus clear that character-
ization of  PKCβ downstream signaling in the nucleus 
and its relevance to energy homeostasis is another facets 
that requires in-depth investigation.

The above findings are applicable to the pathogenesis 
of  obesity and type 2 diabetes since mitochondrial loss 
in WAT correlates with the development of  obesity and 
type 2 diabetes[80,81]. Indeed, mitochondrial DNA copy 
number, mitochondrial mass, and mitochondrial activity 
are all decreased in the white adipose tissue of  mouse 
models of  obesity, such as ob/ob and db/db mice[82,83]. 
Similarly in patients with insulin resistance, type 2 diabe-
tes, and severe obesity, the abundance of  mitochondria 
and the expression of  key genes pertinent to mitochon-
drial function are significantly reduced in white adipose 
tissue, in concert with decreased adipocyte oxygen con-
sumption rates and ATP production[84,85]. The mitochon-
drial dysfunction, which could impair substrate oxidation 

in adipose tissue, is thought to participate in metabolic 
impairment capacity, thereby accentuating the develop-
ment of  obesity and associated pathologies, such as type 
2 diabete. As a result, WAT mitochondria are emerging as 
highly attractive organelles for therapeutic interventions 
with the potential to impact upon systemic metabolism. 
Interestingly, the insulin-sensitizing effects of  thiazoli-
dinediones are closely matched by robust increases in 
adipose tissue mitochondrial biogenesis[86].

CONCLUSION
We have reviewed recent advances pertaining to the po-
tential role of  PKCβ in regulating energy homeostasis 
and contribution to the development of  metabolic syn-
drome. Evidence gathered recently point to an essential 
role for PKCβ in diet-induced obesity. As a signaling 
pathway, PKCβ is highly sensitive to changes in environ-
ment and fluctuations in lipid supply activate adipose 
PKCβ, which in turn appears to promote fat accumu-
lation via modulating mitochondrial function. A posi-
tive loop between oxidative stress and PKCβ/p66Shc is 
promising and may be the major mechanism underlying 
contribution of  PKCβ activation in generating oxidative 
stress observed in the obese state. The main gap in our 
understanding today lies in the specific, molecular and 
chemical mechanisms of  PKCβ-mediated energy homeo-
stasis. What are the mitochondrial and nuclear targets of  
PKCβ physiologically relevant to energy homeostasis? 
How is the dietary lipid signals transmitted to the PKCβ 
promoter? Is PKCβ regulatory signaling network dysreg-
ulated in metabolic disease states? Can PKCβ inhibition 
be adopted to prevent human obesity? These important 
questions should be the target of  future studies. The 
manipulation of  PKCβ levels, activity, or signaling might 
represent a therapeutic approach to combat obesity and 
associated metabolic disorders.
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Figure 2  Proapoptotic signals, including reactive oxygen species, ac-
tivate protein kinase C-β, which in turn phosphorylates p66Shc at serine 
36. Phosphorylated p66Shc translocates to the inner mitochondrial membrane 
and acts as a redox enzyme to amplify oxidative stress by generating H2O2. 
Increased H2O2, in turn, causes opening of the mitochondrial permeability tran-
sition pore and apoptosis. Protein kinase C-β (PKCβ) activated by reactive oxy-
gen species further induces p66Shc phosphorylation. This event in turn perturbs 
mitochondria structure and function.
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Abstract
Diabetic nephropathy (DN) is the leading cause of 
end-stage renal failure worldwide. Besides, diabetic 
nephropathy is associated with cardiovascular disease, 
and increases mortality of diabetic patients. Several fac-
tors are involved in the pathophysiology of DN, includ-
ing metabolic and hemodynamic alterations, oxidative 
stress, and activation of the renin-angiotensin system. 
In recent years, new pathways involved in the develop-
ment and progression of diabetic kidney disease have 
been elucidated; accumulated data have emphasized 
the critical role of inflammation in the pathogenesis 
of diabetic nephropathy. Expression of cell adhesion 
molecules, growth factors, chemokines and pro-in-
flammatory cytokines are increased in the renal tissues 
of diabetic patients, and serum and urinary levels of 
cytokines and cell adhesion molecules, correlated with 
albuminuria. In this paper we review the role of inflam-
mation in the development of diabetic nephropathy, 
discussing some of the major inflammatory cytokines 
involved in the pathogenesis of diabetic nephropathy, 
including the role of adipokines, and take part in other 
mediators of inflammation, as adhesion molecules.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetic Nephropathy; Inflammation; Albu-
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Core tip: In recent years, new pathways involved in 
the development and progression of diabetic kidney 
disease have been elucidated; accumulated data have 
emphasized the critical role of inflammation in its 
pathogenesis. Expression of cell adhesion molecules, 
growth factors, chemokines and pro-inflammatory cyto-
kines increased in renal tissues of diabetic patients, and 
serum and urinary levels of cytokines and cell adhesion 
molecules, correlated with albuminuria. We review the 
role of inflammation in the development of diabetic ne-
phropathy, discussing some of the major inflammatory 
cytokines involved in its pathogenesis, including the 
role of adipokines, and other mediators of inflamma-
tion, as adhesion molecules.

Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and 
inflammation. World J Diabetes 2014; 5(3): 393-398  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i3/393.
htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.393

INTRODUCTION
Diabetes mellitus (DM) is the leading cause of  chronic 
renal failure in development countries and is increasing as 
a cause of  morbility and mortality worldwide. Both type 
1 and 2 diabetes, but principally the last one, plays an im-
portant role in this problem because of  the impact of  its 
complications[1-4].

Among all these complications, diabetic nephropathy 
(DN) has become the principal cause of  end-stage renal 
failure and cardiovascular mortality, this condition ap-
pears after many years of  diabetes beginning[3,5].

It is well understood that type-2 DM is not an im-
mune disease but at this time we could consider that 
there is evidence that the combine of  immunologic and 
inflammatory mechanisms play a pivotal role in its pre-
sentation, development and finally its progression.
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The DN take place nearby one-third of  patient with 
type 1 DM and 25% approximately of  patients with type 
2[4,6].

In México, it is described that the main cause of  
chronic renal failure is type 2 DM, nevertheless we know 
that not all diabetic patients develop DN, moreover glu-
cose control is not a warranty of  a life free of  microan-
giopathic complications[7].

It has been found that despite all pharmacologic ther-
apies available for DN treatment, some patients develop 
kidney damage, that is why the need of  complete under-
standing of  molecular, metabolic and environmental fac-
tors that lead to DN and their interaction between them.

Among diverse factors that could interact actively in 
pathogenesis and progression of  DN have been studied 
the age, gender, smoking, hypertension and hyperurice-
mia, all of  them with suggestive results of  correlation 
with renal disease[2].

In this paper we review the inflammatory factors that 
lead to the development and progression of  DN.

PHYSIOPATHOLOGY
DN is characterized by glomerular hypertrophy, thickness 
of  basement, tubular and glomerular membranes and ac-
cumulation of  extracellular matrix in these membranes 
that finally cause tubulointerstitial and glomerular fibrosis 
and sclerosis[2,6,8]. As we can see several kidney structures 
are susceptible to hyperglycemia, and this metabolic 
change cause organ damage due to several cellular via 
including genetic activation and expression, advanced 
glycation end products generation, polyol pathway activa-
tion, abnormal protein kinase activation (PKC), raise of  
oxidative stress and the molecules that act as growth fac-
tors, transcription factors and others[4,8].

There is a response for hyperglycemia from the sys-
tem, the transcription factors regulate the gene encod-
ing some cytokines like transforming growth factor β 
(TGF-β), chemokine C-C motif  ligand 2, fibronectin, 
osteopontin, decorin, thrombospondin, aldose reductase 
and plasminogen activator inhibitor 1, all these molecules 
involved in inflammation, extracellular matrix synthesis 
and its degradation are increased in type-2 DM[4].

Some other factors in relation to DN, it is known 
that some metabolic via activated by hyperglycemia are 
not enough to cause the kidney complication. The family 
predisposition to disease, race and other environmental 
factors interact with hemodynamic changes producing, as 
a result, advanced glycation end products, glucose reduc-
tion and sorbitol accumulation into the cell, overproduc-
tion of  reactive oxygen species and activation of  signal-
ing via as PKC and mitogen-activated protein kinase[2].

Diabetic patients then could have albuminuria since 
early phases or stages of  organ damage, it is also consid-
ered as a very sensible marker of  kidney disease progres-
sion. As a result there are many glomerular abnormalities 
including podocyte structure alteration, reduction of  
nephrin expression and increase of  filtration rate, a hall-
mark of  DN[9].

Many mechanisms were investigated in this process, 
for a better understanding these are divided in mecha-
nisms of  immune cell infiltration of  kidney, molecules in-
volved in progression and intracellular pathways activated 
in DN.

Role of inflammation
Now we know that activation of  the immune system 
and chronic inflammation are both involved in patho-
genesis of  DM and as a result DN. Some studies have 
demonstrated that cytokines, chemokines, growth factors, 
adhesion molecules, nuclear factors as well as immune 
cells as monocytes, lymphocytes and macrophages are all 
involved in DM pathogenesis and of  course play an im-
portant role in DM complications[1,5].

IMMUNE CELLS
Macrophages
Macrophages are recognized as the principal inflamma-
tory cell involved in kidney damage, their accumulation 
relates with severity of  DN in experimental models[3].

These cells are responsible of  the calling “renal re-
modeling”, so therapeutics proposed to inhibit their ac-
cumulation may help to stop progression.

Two subtypes are mainly involved in DN, M1 macro-
phages activated by Th1 cells, that are able to increase in-
flammatory response by cytokines expression [interleukins, 
tumor necrosis factor (TNF) and interferon γ]; and M2 
macrophages activated by Th2 cells that promote tissue 
repairmen, remodeling and neovascularization by antiin-
flammatory cytokines expression[3]. Is in this way that in-
vestigations are working, it is known that the macrophage 
subtype levels related with recruitment of  circulating 
monocytes from vascular space to glomerular tissue.

Meanwhile M1 macrophages enhance inflammatory 
response by upper production of  reactive oxygen species 
(ROS), this point will be reviewed later.

As to activated M2 macrophages, they help in inflam-
mation ending with the participation of  interleukin 10 
(IL-10), TGF-β1, both with anti-inflammatory functions. 
Besides they produce proinflammatory factors as chemo-
kines, cytokines and superoxide anions[3].

Many investigations are directed to show that statins 
are capable to block M1 macrophage actions but at the 
same time improve M2 functions. It will be helpful as one 
of  the strategies used in the treatment of  DN directed to 
this point.

T lymphocytes
T lymphocytes play a determinant role in early kidney 
damage in DN, they have cytotoxic effects besides mac-
rophages tissue activation[3].

The first contribution of  the studies was about the 
increase in local accumulating T cells in diabetic experi-
mental models. Xiao et al[10] and Moon et al[11] showed an 
increase in CD4 and CD8 lymphocytes in diabetic mouse, 
these changes were observed in glomeruli and interstice.

In type 1 DM there is an increase of  T lymphocytes 
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in juxtaglomerular tissue that results in a disturbance in 
albumin glomerular excretion and a decrease of  renal fil-
tration. Many other studies have shown at this time that 
T lymphocytes systemic, specifically circulating CD8, cor-
related with albuminuria[6].

Lei et al[6] demonstrated with a multiple regression 
analysis a positive association between lymphocytes CD8 
and albuminuria in type 2 DM patients and the cell acti-
vation could be a systemic response.

Several metabolic and genetic via, may activate sys-
temic T lymphocytes. In type 2 DM those cells may be 
activated by hemodynamic, environmental and metabolic 
changes. The most important activation seen due to 
hyperglycemia, that activates nuclear factor κB and this 
results in an over stimulation of  lymphocytes by specific 
cytokines as IL-12 produced by macrophages, and then, 
production of  interferon further lymphocyte activation[6].

CHEMOKINES
These molecules are active components of  inflammatory 
cells recruitment in kidney and are present in every phase 
of  kidney damage[8].

Many chemokines are involved in the inflammatory 
response in DN, monocyte chemoattractant protein 
(MCP-1) was first described in its role in early phases of  
atherosclerosis[12].

MCP-1
MCP-1 can promote transformation of  monocytes in 
macrophages, the last ones produce diverse cytokines as 
IL-6 and TNF-α, both induce atherosclerosis changes in 
vascular walls that results in illness progression. Because 
of  its expression is as high in the atherosclerotic plaques 
than in impaired plaques, systemic MCP-1 was measured 
in many studies in order to show an association between 
this chemokine and DN markers. Takebayashi et al[12] 
found that patients with urinary albumin excretion pre-
sented higher circulating levels of  MCP-1 than patients 
without this alteration.

All these findings could suggest that MCP-1 plays an 
important role in pathogenesis of  DN as the protein pro-
duced not only in vascular wall, atherosclerotic plaques 
but also in tubular epithelial cells.

CYTOKINES
Cytokines are molecules with a wide spectrum of  physi-
ological actions, many of  them due to their pleiotropic 
actions. They have capacity to combine actions in order 
to amplify their effects and then induce synthesis or ex-
pression of  other cytokines if  needed.

In 1991 it was suggested for the first time the par-
ticipation of  cytokines with inflammatory actions in the 
development of  DN, by demonstration of  high produc-
tion of  these molecules from macrophages in glomerular 
membranes from diabetic rats, but not from non-diabetic 
rats[5].

At this time we now that inflammatory cytokines 

play an important role in DN, but cytokines have been 
involved in the development of  other microangiopathic 
complications of  DM[1].

Interleukins
Interleukins are a group of  cytokines produced by many 
cells in different tissues. According to their physiologic 
actions, they are classified as antiinflammatory and proin-
flammatory molecules[3].

IL-1
Many studies have shown that IL-1 promotes an in-
crease of  adhesion molecules in glomerular endothelium 
as well as expression of  these molecules in other kidney 
structures[1].

Mesangial cells and renal tubular epithelium overex-
press intercellular adhesion molecule-1 (ICAM-1) and 
E-selectin, additionally, IL-1 induces prostaglandin E2 
synthesis in mesangial cells, this fact cause alterations in 
the glomerular hemodynamics[1].

Moreover, IL-1 stimulates hyaluronan synthesis, lead-
ing to cell proliferation in DM patients, this facts contrib-
utes to development of  DN. It is known that this proin-
flammatory cytokin is increased in experimental models 
with albuminuria and at the same time with macrophages 
accumulation[1]. According to these pathological changes, 
IL-1 modifies vascular permeability and increase expres-
sion of  chemokines that as a result leads proliferation 
and synthesis of  extracellular matrix in mesangium[3].

IL-6
IL-6 is another molecule that has been studied in DN 
due to its pleiotropic effects. Many authors showed that 
IL-6 concentration is increased in DN. IL-6 has a direct 
effect in glomerular and infiltrating cells, this effect modi-
fied extracellular matrix dynamics affecting membrane 
thickening in renal glomeruli[1,3].

IL-6 is a cytokine that can enhance proliferation, 
overexpression of  extracellular matrix and affect vascular 
permeability; these actions lead to DN progress[1].

It has been shown that serum IL-6 is increased in pa-
tients with type 2 DM with nephropathy[3].

IL-18
The principal actions of  this inflammatory cytokine are; 
to enhance the production of  other inflammatory cyto-
kines by mesangial cells, and upregulation of  ICAM-1. Its 
serum concentration is increased in DN as well as other 
interleukins and has a determinant role in endothelium 
apoptosis[1].

IL-18 has several sources in the diabetic kidney as 
infiltrating, T-lymphocytes, macrophages, monocytes as 
well as proximal tubule cells. There is a direct correlation 
between IL-18, albuminuria and albumin excretion rate, so 
it’s relationship with nephropathy has been identified[13].

TNF-α
This is an inflammatory cytokine with many determinant 
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fibroblasts; this process is responsible of  renal fibrosis, a 
result of  persistent inflammation.

TGF-β1 is considered too as a cytokine which prin-
cipal function in inflammation is to inhibit this process. 
Letterio et al[14] discovered that experimental models with 
impairment in TGF-β1 gene are highly susceptible to sev-
eral inflammation resulting in autoimmune diseases and 
even death[15,16].

El Mesallamy et al[8] correlated TGF-β1 concentra-
tions with Connective tissue growth factor level; their 
findings showed that between these two molecules there 
is a closed interaction in DN. So as we can see, TGF-β1 
is a molecule that can regulate not only its own release 
and its actions but also it has the ability to modulate oth-
er molecular releases and their interactions in signaling 
pathways.

It seems like TGF-β1 has a complex role in renal in-
flammation, we know that this protein is present as active 
and as a latent forms, the first one is related to mediator 
of  renal fibrosis that can progress according to many 
other factors. The second form is a protective factor for 
the development of  renal damage. Some mechanisms for 
these findings are not well understood yet[17].

TF
Proteins known as TF bind themselves to some gene 
specific regions to activate or inhibit nuclear transcription 
process[4].

TF were classified according to its main action, they 
can be constitutively active or regulatory factors and they 
can be activated by several metabolic and environmental 
stimuli in many cellular sites. Due to this last point we 
can subclassify TF in nuclear factors, cytoplasmic factors 
and steroid receptor superfamily[4].

Several TF are involved in DN development, here we 
have the most relevant.

Upstream stimulatory factors 1 (USF1) and USF2 are 
a part of  Myc family and encoded by two different genes.

USF1 and USF2 are involved in some glucose genes 
responses in many types of  cells including kidney cells. It 
has been shown that overexpression or increase in con-
centration of  these TF are related with albuminuria devel-
opment and even more the upregulation of  many other 
molecules with proved actions in DN pathogenesis[4].

Smads
Smads conform a transcription factor family that regulates 
the expression of  certain genes. Three classes are known: 
the receptor-regulated Smads (R-SMAD) which include 
SMAD1, SMAD2, SMAD3, SMAD5 and SMAD8/9; the 
common-mediator Smad (co-SMAD) which includes only 
SMAD4, which interacts with R-SMADs to take part in 
signaling and the antagonistic or inhibitory Smads which 
include SMAD6 and SMAD7, they block the activation of  
R-SMADs and co-SMADs[17].

As mentioned before this family is closely involved 
with TGF-β1, which phosphorylate Smad 2 and Smad 3 
to form a complex with Smad 4, all this process leads to 
regulate gene in cell nuclei[17].

actions in inflammatory response by several tissues and 
pleiotropic effects. TNF-α is produced by infiltrating 
cells, as monocytes, macrophages and T lymphocytes, as 
well as kidney cells. Previous reports shown that TNF-α 
can be stored as a proactive form[1].

Its actions are widely known as systemic and in many 
cases direct cytotoxic effect in kidney cells principally. 
Nevertheless actions as activation of  second messengers, 
transcription factors (TF), growth factors, cell adhesion 
molecules, express or synthesis of  cytokines and others 
are recognized as variable biological effects of  this mol-
ecule, of  course all of  them playing a determinant role in 
DN pathogenesis[1].

When TNF-α binds to the receptors, several signaling 
pathways are activated and a cascade of  molecules begin 
their expression in renal cells, many of  this actions results 
in apoptosis and necrosis[5].

The negative effects have been described in experi-
mental models and in humans[1]. Those effects were 
manifested as DM nephropathy, hypertension, nephritis 
and glomerulonephritis, this fact could be demonstrated 
with the correlation found by Navarro-González et al[5]. 
in 2005 between renal TNF-α and albumin excretion in 
diabetic mice. This observation demonstrated that this 
inflammatory molecule is directly involved in pathogen-
esis of  DN by leading cell and tissue damage; moreover 
albuminuria has been related to a enhanced stimuli for 
overexpression of  TNF-α[3].

TNF-α alters glomerular hemodynamics and pro-
motes increased vascular endothelium permeability. 
Infiltration by inflammatory cells, neo-formation of  
extracellular matrix, production of  ROS and blood flow 
disturb are others recognized effects of  TNF-α in renal 
structures[1].

TGF-β1
TGF-β1 is a cytokine member of  TGF-β1 superfamily 
considered also as a transcription factor related to de-
velopment of  renal damage by promoting renal fibrosis. 
Its activity is recognized as inflammatory and fibrogenic, 
with two isoforms, TGF-β2 and TGF-β3, all produced 
by kidney cells, the union between this cytokine and its 
receptor phosphorylate the Smads. Smads are intracel-
lular proteins that transduce extracellular signals from 
TGF-β ligands to the cellular nucleus and activate down-
stream gene transcription. This family is considered to be 
involved in development of  inflammation and fibrosis in 
the kidney[4,8,13].

That is why TGF-β1 is recognized as one of  the 
principal mediators of  structural changes seen in DN, its 
concentration is higher in DM patients with urinary albu-
min excretion than in normal individuals[8].

The upregulation of  TGF-β1 promotes extracel-
lular matrix proliferation and at the same time inhibits 
the degradation, so that is why actually overexpression 
of  this factor is directly associated with severe forms 
of  glomeruloesclerosis and glomerulonephritis[8]. Some 
other changes are favored by TGF-β1, for example the 
induction of  transforming epithelial cells of  tubules into 
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Smad 4 is the most related with inflammation, if  there 
is an abnormality of  this protein, the inflammatory re-
sponse is more intense and leads a higher concentration 
of  diverse cytokines and adhesion molecules.

There is another relationship that leads the process 
to be functional for kidney, this happens when TGF-β1 
regulates Smad 7 transcription by Smad 3 and Smad 4 
binding, so, when Smad 4 is impaired we can see and ex-
aggerated inflammatory response for reduction of  Smad 
7 expression, activation of  Nuclear Factor κB and fibro-
sis inhibition[17].

Smad 4 seems to be a key point in regulation of  TGF- 
β1 and its different functions media the conjunction with 
Smad 7 and Smad 3 expression in kidney.

The case of  Smad 7 is quiet interesting, it acts in an 
inhibitory way and regulates the active function of  Smad 
2 and Smad 3 but by a negative feedback.

The Smad 7 expression is enhanced by TGF-β1 that 
in normal condition has a negative feedback inhibit the 
action of  Smad and at the same time degrade this tran-
scription factors. When Smad 7 gets degraded then kidney 
fibrosis begins. If  Smad 7 decline renal inflammation per-
sists and as a result begins fibrosis via TGF-β and Smad 3.

In as much as the pivotal role of  Smad 7 some inves-
tigators decided to study therapeutic effects of  this factor 
in experimental models. When Smad 7 was transferred to 
kidney they found that if  there is an overexpression of  
Smad 7, inflammation and fibrosis decrease.

Adhesion molecules
ICAM-1 and vascular adhesion molecule-1 (VCAM-1) are 
involved in the attachment of  leukocytes to the vascular 
wall and penetration into the intima, once there, leuko-
cytes can produce proteolytic enzymes that lead to tissue 
and organ damage, or differentiate into foam cells that 
lead to the atherosclerotic process[15].

Several animal models have shown that mice deficient 
in ICAM-1 are resistant to nephropathy in experimental 
models of  diabetes, while treatment with anti-ICAM-1 
monoclonal Ab prevents mononuclear cell infiltration 
into diabetic glomeruli[3].

Our group has shown that the levels of  VCAM-1 cor-
relate with the severity of  albuminuria in diabetic hyper-
tensive patients[15]. In addition, Seron et al[16] reported that 
VCAM-1 expression is increased in kidney biopsies from 
patients with DN, they also found a correlation between 
levels of  VCAM-1 and numbers of  infiltrating immune 
cells[18].

ADIPOKINES
Adiponectin and resistin were first described as adipo-
cyte-secreted hormones (adipocytokines) that modulate 
insulin action. Both; hypoadiponectinemia and hyperre-
sistinemia are associated with inflammation[19].

Hypoadiponectinemia has been reported as a risk fac-
tor for the development of  albuminuria in mice[19], where-
as in humans, resistin is mainly a monocyte-macrophage 
product. In humans hyperresistinemia promotes the ex-

pression of  adhesion molecules[20], and is involved in the 
pathways that lead to albuminuria and renal damage[21].

WHICH INFLAMMATORY MOLECULE?
Certainly, inflammation is an important player in the 
pathogenesis of  DN, However, because of  multiple path-
ways that joint inflammation with diabetic complications, 
it looks unlikely that one single molecule be sufficient for 
the development of  DN. It is also true that the blockade 
of  the principal mediators could be useful in the preven-
tion of  this complication; several studies have been de-
signed in order to indentify therapeutic targets.

The evidence suggest that TNF-α, MCP-1 and adhe-
sion molecules have a prominent role in the development 
of  DN, and all these mediators may be considered thera-
peutic targets for the prevention and treatment of  DN, 
as we will discuss in the next section.

PERSPECTIVES
Microinflammation is the most important mechanism for 
development and progression of  DN. Our knowledge 
related to signaling pathways involved in its pathogenesis 
has not been elucidated at all.

There are several pivotal mediators of  inflammation, 
and their interactions are determinant in the process.

We have reviewed not only biological actions of  these 
mediators, but also their possible therapeutic effects in 
experimental models.

The Smad family plays a very important role in in-
flammation and fibrosis in renal disease, its different ac-
tions among all molecular mediators leads to open several 
optional researches in DN.

A very interesting advanced is that if  levels of  Smad 
7 could be restored in sick kidneys we could balance in-
flammatory responses in patients with renal diseases.

But not only Smad family could be a therapeutic op-
tion for DN patients, at this time it is very important take 
into a count that gene polymorphisms encoding several 
molecules in this patients have to be modified. Is in this 
way that investigations are aimed, looking to stop the 
progression of  the disease, and not just for uncontrolled 
DM but also for other diseases involving the kidney.

Many options for interfering in transcription factors 
activation have been proposed, first blocking TF bind-
ing and second blocking TF pathways for activation. For 
these conditions there were used by both TF and experi-
mental molecules.

Several studies are needed for interfering with signal-
ing pathways not just for treatment of  an abnormal con-
dition as DN but also to prevent it.

Experimental studies have shown that inhibition of  
TNF-α (with the use of  soluble TNF-α receptor fusion 
proteins, monoclonal antibodies or pentoxifylline) might 
be an efficacious treatment for renal disease secondary to 
diabetes mellitus, being pentoxifylline equivalent in effica-
cy and safety to captopril, and the addition of  than drug 
to inhibitors of  the renin-angiotensin system increases 
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their antiproteinuric effect[1,5].
Our group found that the reduction of  urinary albu-

min excretion with the use of  the fixed dose combination 
trandolapril-verapamil, depends not only from its anti-
hypertensive effect, but also from its action on VCAM-1 
adhesion molecules levels[22].

CONCLUSION
Inflammation plays an essential role in the development 
of  DN, this participation involves increased chemokine 
production, infiltration of  inflammatory cells to the kid-
ney, pro-inflammatory cytokine production and tissue 
damage.

Several components of  the diabetic milieu, as hyper-
glycemia, renin-angiotensin system and oxidative stress 
can activate the inflammatory process in the kidneys, 
which results in the infiltration of  the organ by mono-
cytes and lymphocytes, which secrete injurious molecules, 
such as proinflammatory cytokines and reactive oxygen 
species.

This leukocyte activity amplifies the inflammatory 
response and promotes cell injury and the development 
of  fibrosis. Better understanding of  the inflammatory 
response in diabetic kidneys is expected to identify novel 
anti-inflammatory strategies for the potential treatment 
of  human DN.
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Abstract
Canagliflozin (CFZ) is a member of new class of glucose 
lowering agents, sodium-glucose co-transporter (SGLT) 
inhibitors, which got approval by food and drug admin-
istration. It has insulin independent action by blocking 
the transporter protein SGLT2 in the kidneys, resulting 
in urinary glucose excretion and reduction in blood glu-
cose levels. In clinical trials, CFZ significantly decreased 
HbA1c level when administered either as monotherapy 
or as combined therapy with other anti-diabetic drugs. 
Intriguingly, it showed additional benefits like weight 
reduction and lowering of blood pressure. The com-
monly observed side effects were urinary and genital 
infections. It has exhibited favorable pharmacokinetic 
and pharmacodynamic profiles even in patients with re-
nal and hepatic damage. Hence, this review purports to 
outline CFZ as a newer beneficial drug for type 2 diabe-
tes mellitus.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes mellitus; Sodium-glucose 
co-transporter 2; Canagliflozin; Clinical trial; Safety 
profile

Core tip: This review article focuses upon the current 
pharmacokinetic, pharmacodynamic and clinical trial 
data on the newly introduced sodium-glucose co-trans-
porter 2 inhibitor, canagliflozin, for the treatment of 
type 2 diabetes mellitus. It also discusses briefly about 
the safety profile and future prospective of canagliflozin.

Bhatia J, Gamad N, Bharti S, Arya DS. Canagliflozin-current sta-
tus in the treatment of type 2 diabetes mellitus with focus on clin-
ical trial data. World J Diabetes 2014; 5(3): 399-406  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i3/399.
htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.399

INTRODUCTION
Diabetes mellitus (DM) is a metabolic disorder character-
ized by insulin resistance, hyperglycemia and progressive 
pancreatic β-cell dysfunction. Poorly controlled hypergly-
cemia leads to irreversible microvascular and macrovas-
cular complications like visual impairment and blindness, 
kidney failure, peripheral neuropathy, myocardial infarc-
tion, stroke and lower limb amputation. In 2012, world-
wide > 371 million people suffered from diabetes. Out 
of  which 4.8 million people died due to its complications. 
This global burden is estimated to increase to 552 million 
by 2030[1]. This implies that the available drugs for DM 
are not able to maintain or achieve good glycemic control. 
Potential adverse events like gastrointestinal disturbances 
(with biguanides like metformin, α-glucosidase inhibitors 
like acarbose, glucagon-like peptide-1 agonists like exena-
tide, amylin agonists like pramlintide), hypoglycemia (with 
insulin, secretagogues like sulfonylureas and meglitinides), 
weight gain (with insulin, secretagogues like sulfonylureas 
and meglitinides, thiazolidinediones like pioglitazone) and 
risk of  cardiovascular disease (with thiazolidinediones like 
pioglitazone) limit their dosage; and ensuing β-cell failure 
limits their effectiveness. Current guidelines recommend 
a target HbA1c value of  < 7.0%, with patient-centered 
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approach allowing some flexibility in terms of  the actual 
target, and treatment with lifestyle changes and drugs for 
better glycemic control in diabetics. But the target HbA1c 
is rarely achieved with a single anti-diabetic agent and 
in only about half  of  adult patients with diabetes taking 
combination therapy[2,3]. Hence, there is ongoing hunt for 
newer efficacious and safer treatment strategies.

Kidney plays a pivotal role in maintaining glucose 
homeostasis through specialized transporters-sodium-
glucose co-transporter (SGLT)1 and SGLT2-present in 
the proximal convoluted tubule (PCT). Together, they 
absorb almost all of  the glucose filtered in the glomeru-
lus. SGLT1 is a low capacity, high affinity transporter 
present mostly in small intestine, some in S3 segment of  
PCT in kidney, and in heart. It is responsible for approxi-
mately 10% of  glucose reabsorption in the kidney. While 
SGLT2 is a high capacity, low affinity transporter present 
almost exclusively in S1 segment of  PCT, responsible 
for approximately 90% of  glucose reabsorption[4,5]. But 
kidney was never the target for treatment of  diabetes 
until phlorizin was discovered. Phlorizin was isolated 
from the apple trees in 1835 and was initially tested for 
fever, infectious diseases and malaria. It was noticed that 
high doses caused glycosuria and chronic administration 
in dogs caused polydipsia and polyuria with normoglyce-
mia. Subsequent detection of  SGLT1 and SGLT2 in kid-
ney, their role in glucose reabsorption and confirmation 
of  inhibitory action of  phlorizin on these transporters 
in animal studies paved way to consider phlorizin in the 
treatment of  type 2 diabetes mellitus (T2DM). However, 
phlorizin was not clinically developed due to its poor 
pharmacokinetics and side effects attributed to SGLT1 
inhibition such as glucose-galactose malabsorption, de-
hydration and diarrhea[6,7]. Later on T-1095 was discov-
ered, a derivative of  phlorizin which had comparatively 
better pharmacokinetic profile. Nevertheless, it was 
discontinued in the Phase-Ⅱ clinical trial[8]. Meanwhile, 
it was observed that there was upregulation of  SGLT2 
and increase in maximum tubular transport of  glucose in 
diabetic patients[9]. The underline defect in patients with 
familial renal glycosuria is also attributable to SGLT2 
gene mutation. The patients with gene defect excrete 
increased amount of  glucose in urine and are clinically 
asymptomatic[10]. These two observations with SGLT2 
transporter, i.e., the upregulation of  SGLT2 in diabetes 
and its role in familial renal glycosuria, triggered research 
that ultimately led to the discovery of  specific SGLT2 
inhibitors viz. sergliflozin and remogliflozin. Unfortu-
nately, these drugs too exhibited unfavorable pharmaco-
kinetic profile, efficacy and side effect and hence did not 
progress in clinical trials[11].

Dapagliflozin is the first SGLT2 inhibitor that came to 
the European market in 2012. Food and drug administra-
tion (FDA) approved dapagliflozin on 8th January, 2014[12]. 
It was initially rejected by FDA due to serious concerns 
about bladder and breast cancer[13]. Canagliflozin was the 
first of  its kind to get approval from FDA on March 29, 
2013. Currently it is in phase-Ⅱ trial for the treatment of  

obesity in the United States and Europe[14]. Ipragliflozin, 
empagliflozin and many other SGLT2 inhibitors are un-
der different phases of  clinical trials.

This article reviews the available data on the pharma-
cokinetics, the pharmacodynamics and the therapeutic 
potential and safety of  canagliflozin (CFZ).

SEARCH METHODOLOGY
PubMed, ClinicalTrials.gov and Google scholar databases 
were used for mining the data. Following Medical sub-
ject headings words were used in the above mentioned 
databases: canagliflozin, canagliflozin and SGLT2, cana-
gliflozin and diabetes, canagliflozin and pharmacokinetics, 
canagliflozin and pharmacodynamics and canagliflozin 
and adverse events. Up to date information was included 
till 31st March 2014.

PHARMACOKINETIC PROPERTIES
When CFZ is taken orally it gets rapidly absorbed from 
gastrointestinal tract in a dose dependent manner with 
the dose range of  50-300 mg and mean oral bioavail-
ability of  approximately 65%. Median t1/2 is 1-2 h and 
steady state concentration is achieved after 4 to 5 d of  
daily intake of  100 mg and 300 mg. Maximum plasma 
concentration is not altered in renal injury. It accumulates 
in the plasma up to 36% following multiple doses of  100 
and 300 mg. The plasma protein binding is 99%, which 
is constant irrespective of  its plasma concentrations or 
hepatic or renal damage[15,16]. It is metabolized into two 
inactive O-glucuronide metabolites (M5 and M7). Major 
O-glucuronidation is by UDP glucuronosyltransferase 
(UGT)1A9 and UGT2B4, while CYP3A4 mediated 
oxidative metabolism accounts for only 7%. Single oral 
radioactive [14C] CFZ to healthy subjects demonstrated 
41.5%, 7.0% and 3.2% of  administered radioactive 
dose in feces as CFZ, a hydroxylated metabolite and an 
O-glucuronide metabolite, respectively. The amount of  
CFZ excreted in urine in unchanged form is less than 1%, 
whereas the urine excretion of  its metabolites namely M7 
is 21%-32% and M5 is 7%-10%. Studies conducted so 
far have shown no clinically significant effect of  age, sex, 
BMI/weight and race on pharmacokinetics of  CFZ[15,16].

PHARMACODYNAMIC PROPERTIES
CFZ primarily inhibits SGLT2 in kidney and is respon-
sible for increased urinary glucose excretion and reduc-
tion in blood glucose levels. It also inhibits SGLT1 in 
intestine and its potency on SGLT1 is 160 times lesser as 
compared to SGLT2[15,16]. It reduces glucose absorption 
by 31% in first hour and 20% by next hour of  food in-
take. So, when given before meal, it reduces postprandial 
glucose excursions[15,17]. This insulin independent action is 
unique and differentiates CFZ from other available anti-
diabetic agents. Moreover, there is dose dependent reduc-
tion in the renal threshold for glucose excretion (RTG) 
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with maximal suppression of  RTG from 240 mg/dL to 
approximately 70-90 mg/dL at the dose of  300 mg. Un-
like other oral hypoglycemic drugs, CFZ is tolerated well 
in mild to moderate hepatic and renal failure patients. 
However, it is contraindicated in patients with estimated 
GFR (eGFR) < 30 mL/min per 1.73 m2, end stage kid-
ney disease and patients on dialysis[15].

DOSAGE AND ADMINISTRATION
The recommended starting dose of  CFZ is 100 mg once 
daily to be taken before the first meal of  the day. If  pa-
tients with eGFR of  ≥ 60 mL/min per 1.73 m2 tolerate 
CFZ 100 mg once daily and require additional glycemic 
control, then dose can be increased to 300 mg once daily. 
Volume depletion has to be corrected in patients prior 
to the initiation of  CFZ to compensate for CFZ induced 
increased urination[15].

DRUG INTERACTIONS
UGT inducers (e.g., rifampin, phenytoin, phenobarbital, 
ritonavir) increase the metabolism of  CFZ, thereby re-
ducing active CFZ levels in the blood. Thus, the dose of  
CFZ may be increased from 100 to 300 mg in such pa-
tients. On the other hand, CFZ increases Area Under the 
Curve for digoxin and hence patients on digoxin treat-
ment should be monitored[15].

THERAPEUTIC POTENTIAL
CFZ has shown promising results in many preclinical and 
clinical studies of  T2DM. A study in Zucker fatty rats 
and Zucker diabetic fatty rats with CFZ (3-30 mg/kg) 
decreased renal threshold for glucose and increased uri-
nary glucose excretion (UGE). This resulted in decreased 
blood glucose, HbA1c, weight gain, dose dependent 
increased fatty acid metabolism, de novo lipogenesis and 
improved insulin sensitivity in these animals[18].

Table 1 lists the published clinical trials on CFZ use as 
monotherapy and combined therapy. The CANagliflozin 
Treatment And Trial Analysis (CANTATA Trials) evalu-
ated CFZ as monotherapy or as an add-on therapy to 
metformin, metformin and sulphonylurea and metformin 
and pioglitazone. These trials were randomized; double 
blind, placebo-or active-controlled with primary endpoint 
of  finding the change in HbA1c at the end of  26 or 52 
wk from baseline. In a trial using CFZ as monotherapy, 
both the doses 100 mg and 300 mg produced a statisti-
cally significant decrease in HbA1c (P < 0.001), body 
weight (-2.8% by 100 mg and -3.9% by 300 mg vs pla-
cebo, P < 0.001) as well as systolic blood pressure (-3.7 
mmHg by 100 mg and -5.4 mmHg by 300 mg vs placebo, 
P < 0.001)[19]. Similar significant results were obtained in 
combined therapy trials viz. CANTATA-D (Dual therapy 
trial-CFZ compared with Sitagliptin)[20] and CANTATA-
MP (CFZ compared with metformin and pioglitazone)[21].

The CANTATA-SU (CFZ compared with Sulpho-

nylurea) trial established reductions in HbA1c in the 
glimepiride and CFZ 100 mg groups but greater reduc-
tions occurred in CFZ 300 mg group. CFZ 100 mg was 
reviewed as non-inferior where as CFZ 300 mg group 
was considered as superior to glimepiride arm. There 
was greater reduction in body weight, blood pressure 
(BP) and greater rise in high density lipoprotein (HDL) 
levels in CFZ group[23]. CANTATA-MSU (CFZ com-
pared with metformin and sulphonylurea) results also 
demonstrated statistically significant reductions (P < 
0.001) in HbA1c, fasting blood glucose (FBG) and body 
weight[24]. In another CANTATA-D2 (Triple therapy 
trial-CFZ compared with Sitagliptin) trial, at the end of  
52 wk, it was showed that CFZ 300 mg was superior 
to sitagliptin 100 mg when added to sulphonylurea and 
metformin, in reducing HbA1c, FBG, body weight and 
systolic blood pressure. There was also significant in-
crease in HDL (P < 0.001) in CFZ groups as compared 
to sitagliptin 100 mg[25].

CANTATA trials have unveiled various interesting 
clinical observations of  CFZ use in the management of  
T2DM patients. CFZ improved glycemic control without 
a concomitant increase in the occurrence of  hypoglyce-
mia. It lowered RTG but lowering of  RTG remained above 
the hypoglycemic threshold (60-70 mg/dL) and since 
UGE occurs below the RTG, the incidence as well as risk 
of  hypoglycemia with CFZ was minimal[19,26]. Further, 
the amplified UGE of  80-120 g/d accounted for net loss 
of  calories (approximately 400 kcal/d) that contributed 
to the weight loss, which was maintained over the trial 
period of  52 wk[24,26]. This weight loss was predominantly 
from loss of  fat mass rather than lean body mass[22]. The 
reversal of  glucotoxicity and weight loss together helped 
to improve beta cell function as indicated in improvement 
in Homeostasis Model Assessment estimating steady state 
beta cell function in percentage[19,21,24,26]. The mechanism 
for increased low-density lipoprotein-C with CFZ is not 
known, however, improvement in HDL-C and triglycer-
ides was likely to be due to improved glycemic control 
and weight loss associated with CFZ[19,21,22]. Mild reduc-
tion in BP was also observed in the trial participants. This 
was due to the mild osmotic diuretic response to UGE 
and natriuretic effect of  CFZ[24]. Thus, in nutshell, CFZ 
can reduce blood glucose levels and has the least risk 
of  producing hypoglycemia as compared to other anti-
diabetic agents. In addition, it can also modify the insulin 
resistance, reduce weight and BP and increase HDL-C. 
These diverse effects are specific to CFZ and would ex-
plain the better outcome with CFZ treated patients as 
compared to other anti-diabetic agent treatment groups. 
The CANTATA trials have concluded that CFZ could 
be taken as an initial drug for T2DM patients whose gly-
cemic control is not achieved with diet and exercise; and 
also as an effective alternative to sulphonylurea, sitagliptin 
or pioglitazone in dual therapy with metformin.

CFZ was also studied as an add-on to insulin therapy 
in a 28-d trial. Participants were T2DM patients not opti-
mally controlled with insulin and receiving up to one oral 
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sorbed by SGLT1 in kidney. In addition to the reported 
side effects of  CFZ like UTI, genital mycotic infections, 
volume depletion and hypotension, the high cost of  CFZ 
may prove to be a limiting factor in its wide spread use. 
However, for the time being CFZ has been proven to 
be safe and well tolerated and it is for the further long 
term studies to establish it more firmly as a major break-
through in the clinical armamentarium for patients with 
diabetes.
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BUN: Blood urea nitrogen.
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Abstract
AIM: To assess the effectiveness of the Chronic Dis-
ease Self-Management Program (CDSMP) on glycated 
hemoglobin A1c (HbA1c) and selected self-reported 
measures.

METHODS: We compared patients who received a 
diabetes self-care behavioral intervention, the CDSMP 
developed at the Stanford University, with controls who 

received usual care on their HbA1c and selected self-re-
ported measures, including diabetes self-care activities, 
health-related quality of life (HRQOL), pain and fatigue. 
The subjects were a subset of participants enrolled in a 
randomized controlled trial that took place at seven re-
gional clinics of a university-affiliated integrated health-
care system of a multi-specialty group practice between 
January 2009 and June 2011. The primary outcome 
was change in HbA1c from randomization to 12 mo. 
Data were analyzed using multilevel statistical models 
and linear mixed models to provide unbiased estimates 
of intervention effects.

RESULTS: Demographic and baseline clinical charac-
teristics were generally comparable between the two 
groups. The average baseline HbA1c values in the 
CDSMP and control groups were 9.4% and 9.2%, re-
spectively. Significant reductions in HbA1c were seen 
at 12 mo for the two groups, with adjusted changes 
around 0.6% (P  < 0.0001), but the reductions did not 
differ significantly between the two groups (P  = 0.885). 
Few significant differences were observed in partici-
pants’ diabetes self-care activities. No significant differ-
ences were observed in the participants’ HRQOL, pain, 
or fatigue measures.

CONCLUSION: The CDSMP intervention may not low-
er HbA1c any better than good routine care in an inte-
grated healthcare system. More research is needed to 
understand the benefits of self-management programs 
in primary care in different settings and populations.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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tes is the Stanford Chronic Disease Self-Management 
Program (CDSMP). Although the CDSMP has been stud-
ied extensively, its impact on glycemic control has not 
been thoroughly evaluated in a randomized controlled 
trial to date. To the best of our knowledge, this is the 
first study to evaluate the effectiveness of the CDSMP 
in a randomized controlled trial. Our finding that the 
CDSMP intervention may not lower hemoglobin A1c any 
better than good routine care in an integrated health-
care system calls for further research.

Forjuoh SN, Ory MG, Jiang L, Vuong AM, Bolin JN. Impact of 
chronic disease self-management programs on type 2 diabetes man-
agement in primary care. World J Diabetes 2014; 5(3): 407-414  
Available from: URL: http://www.wjgnet.com/1948-9358/full/v5/
i3/407.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.407

INTRODUCTION
Diabetes is a serious chronic condition affecting mil-
lions of  people worldwide. According to estimates by the 
World Health Organization, about 350 million people 
have diabetes globally[1]. Diabetes has a severe and signifi-
cant health and economic impact on all nations. It is the 
6th leading cause of  death in Canada and the 7th leading 
cause of  death in the United States, costing an estimated 
$174 billion[2,3]. The bulk of  this cost is attributable to the 
serious long-term complications associated with the con-
dition including limb amputations, blindness, coronary 
health disease, stroke, and kidney disease[3]. Type 2 dia-
betes accounts for 90%-95% of  all diabetes[3]. Although 
type 2 diabetes is more prevalent among people aged 40 
years or older, the prevalence among younger populations 
is increasing dramatically because of  the rise in obesity 
and physical inactivity in children and the youth[4].

Supportive programs to enhance patient self-care 
have been touted as a pre-requisite to diabetes manage-
ment in spite of  differences in individual needs to cope 
with this debilitating condition[5]. The traditional didactic 
models of  care that involved teaching patients to improve 
the knowledge of  their health condition are giving way to 
the current models that focus on behavioral or self-care 
approaches aimed at providing patients with the skills and 
strategies to promote and change their behavior[6]. In fact, 
several national organizations including the American 
Diabetes Association and the American Association of  
Diabetes Educators consider self-care an essential com-
ponent of  effective diabetes management[7-9].

One of  the most studied evidence-based behavioral 
or self-care programs targeting chronic conditions is the 
Chronic Disease Self-Management Program (CDSMP). 
Developed at the Stanford University, the program of-
fers the potential to improve overall health of  individuals 
with chronic conditions, while preventing further decline 
in their general health status[10-12]. Designed as a 6-wk, 
community-based self-care education program, CDSMP 
focuses on assisting participants to gain confidence or 

self-efficacy and acquire skills to better manage their 
chronic conditions. It is taught by trained leaders using a 
structured protocol.

The CDSMP has been found to be highly effective 
in improving general health and lowering hospitalization 
rates[10]. It has therefore been implemented worldwide 
for several chronic conditions such as heart disease, 
lung disease, arthritis, and diabetes as well as evaluated 
in various settings including the United States, Canada, 
United Kingdom, Australia, New Zealand, Bangladesh, 
China, Hong Kong, and The Netherlands[13-20]. While the 
original CDSMP validation study found improvements 
in general health status, health behaviors, and healthcare 
utilization[10], the findings of  more recent studies from a 
variety of  self-management programs have been incon-
sistent[5,21-27]. A recent literature review of  randomized 
controlled trials comparing self-management support 
interventions for general chronic diseases vs usual care re-
vealed mixed results. While positive findings were found 
regarding self-efficacy, less positive ones were found for 
quality-of-life measures[5]. Also although the CDSMP has 
been studied extensively, its impact on glycemic control 
has not been thoroughly assessed. In particular, its effec-
tiveness on glycemic control has not been evaluated in a 
randomized controlled trial in the United States to date. 
A recent study concluded that the CDSMP is a useful and 
appropriate program for lowering glycated hemoglobin 
A1c (HbA1c) among those out of  control[28]. However, 
this was a longitudinal study with no comparison group. 
Another related study found the CDSMP to improve life-
style behaviors among patients with type 2 diabetes[23,29]. 
But again this was a single-group design.

The aim of  this study was to assess the effectiveness 
of  the CDSMP on glycemic control and selected self-
reported measures among patients with type 2 diabetes in 
a large integrated healthcare organization in central Texas 
that serves large racially/ethnically diverse populations.

MATERIALS AND METHODS
Design
This study was a comparison of  one intervention arm, 
the CDSMP, and the control arm from an open-label, 
4-arm randomized controlled trial that was designed to 
evaluate the effectiveness of  two different type 2 diabetes 
mellitus (T2DM) self-care interventions (implemented 
singly and in combination) on glycemic control. Designed 
with the acknowledgment that both patients and re-
searchers would be aware of  the random assignment, the 
study protocol consisted of  screening potential subjects 
for eligibility, randomizing them to one of  four study 
arms, and following them over a 24-mo period. However, 
the primary end-point was change in HbA1c from ran-
domization/baseline to 12 mo of  follow-up. The current 
study reported here focuses on participants in two of  the 
four original study arms.

The study protocol was approved by the Institutional 
Review Boards (IRB) of  Scott and White Healthcare Sys-
tem and Texas A and M Health Science Center. All quali-
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fied participants accepted the conditions of  the study and 
gave informed written consent at enrollment/orientation. 
Enrollment occurred between January 2009 and June 
2011 and data collection was completed in July 2012. We 
adhered to the CONSORT protocol[30] and registered the 
trial with clinicaltrials.gov (NCT01221090).

Setting, participants, and recruitment
Participants represent a subset of  subjects that were 
recruited from seven participating clinics of  a large in-
tegrated healthcare system, a university-affiliated, multi-
specialty group practice associated with a 250000-mem-
ber Health Maintenance Organization in central Texas. 
Potential participants were identified through electronic 
medical records if  they: (1) had a diagnosis of  T2DM; (2) 
were ≥ 18 years; (3) had a lab assessed HbA1c value ≥ 
7.5% (≥ 58 mmol/mol) within the last six months; and 
(4) were able to communicate in English. Subjects were 
excluded if  they: (1) had documented reports of  alco-
holism or drug abuse; (2) were pregnant or planning to 
become pregnant within 12 mo; or (3) were unwilling to 
sign an informed consent. Recruitment was solicited by 
physicians within the seven clinics who agreed to invite 
their patients to participate in the study.

Physicians were provided with IRB approved invi-
tation-to-participate letters and a list of  their T2DM 
patients meeting the threshold HbA1c level at their last 
visit. Contact was initiated with potential subjects through 
physician-sent letters, describing the study and requesting 
a completed screening enrollment card if  interested. Sub-
jects who returned a screening enrollment card were con-
tacted by project coordinators, who provided additional 
information and screened them to determine eligibility. 
To verify the inclusion and exclusion criteria, subject 
permission was obtained to review their medical records. 
Other recruitment strategies included oral referrals by 
physicians and patient educators and posting messages in 
waiting areas of  study clinics.

Lab assessments were continuously monitored at each 
phase of  the study recruitment to ensure that enrolled 
participants had HbA1c values ≥ 7.5% (≥ 58 mmol/
mol) within the last six months since individuals who 
previously met this criterion may no longer fulfill that re-
quirement at orientation. A follow-up telephone interview 
was conducted to determine participation interest. Lab 
results were screened to ensure that the participant met 
qualifying HbA1c and if  needed, tests were scheduled.

Intervention
Participants randomized to the CDSMP arm were invited 
to attend a 6-wk, classroom-based program for diabetes 
self-management. The effectiveness of  the CDSMP has 
been described elsewhere[10]. With the goal of  increas-
ing self-efficacy to ultimately decrease chronic disease 
related symptoms and avoidable healthcare utilization, 
the CDSMP teaches participants techniques to facilitate 
enhanced decision making, action planning, and effec-
tive communication. CDSMP workshops were hosted 

in clinical environments and community-based settings. 
While fidelity to the individual classes was not monitored, 
CDSMP license requires that lay leaders use pre-scripted 
materials and that experienced master trainers/lay leaders 
(who attend a required four-day training program) lead 
the workshops.

Participants randomized to the control arm did not 
receive any treatment other than their usual clinical diabe-
tes care, along with some publicly available Texas Diabe-
tes Council patient education materials.

Data collection
Study measures were obtained at orientation/baseline, 6 
mo, and 12 mo of  follow-up. Participants received mon-
etary compensation in the form of  a gift card for travel 
expenses and time, consisting of  $20 at orientation and at 
the 12-mo follow-up visit.

At orientation, a questionnaire was administered to 
obtain several pieces of  information including: (1) de-
mographics such as age, gender, and race/ethnicity; (2) 
diabetes self-care activity monitoring (number of  days, 
0-7, that any specific self-care activity was performed in 
the past week) as measured by the Summary of  Diabetes 
Self-Care Activities instrument; (3) self-reported health-
related quality of  life (HRQOL) measures (e.g., number 
of  days physical/mental health was not good); and (4) 
pain and fatigue measures (on a scale of  1-10, 1 indicat-
ing none and 10 severe). Questionnaires were adminis-
tered every 6 mo. However, as our primary end point was 
12 mo, analyses were only conducted for this time period.

Anthropometric data were obtained at orientation and 
at subsequent follow-up visits. Height in inches was mea-
sured without shoes. Weight was measured in pounds on 
a balance beam scale or an electronic scale without shoes. 
Body mass index (BMI) was computed from height and 
weight measurements. Blood pressures were recorded with 
either a mercury sphygmomanometer or a validated au-
tomated device. Participants who were unable to come in 
for their follow-up appointments had their height, weight, 
and blood pressure data abstracted from electronic health 
records (EHRs). Measures recorded fell within the range 
of  10 d prior to and 45 d after participants’ scheduled 
follow-up dates. This was done to obtain participant visits 
as close to their target dates as possible, but also allow 
for enough time after the target date to accommodate for 
scheduling errors (i.e., missed appointments, rescheduling).

Measures of  HbA1c were collected from EHRs dat-
ing back 6 mo prior to orientation to the last day of  study 
participation (45 d after the 12-mo follow-up period). If  a 
participant did not have any HbA1c value within the EHR 
for any particular follow-up visit, a lab test was scheduled 
to obtain a measure. Of  the HbA1c collected 6 mo prior 
to orientation, the value measured closest to the orienta-
tion date was considered as the baseline HbA1c value. 
HbA1c values that were measured on dates preceding the 
baseline HbA1c were not included; i.e., HbA1c values in-
cluded in the analysis were those collected since the base-
line HbA1c and until the last day of  study participation.
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Demographic data and baseline comparison of study 
population
Demographic and baseline clinical characteristics were 
generally comparable between the two groups (Table 
1). The mean age of  participants was 57.6 ± 10.9 years. 
Slightly more than a third (36.4%) was of  minority status, 
self-reporting as either African American or Hispanic. 
The majority of  participants had received post-secondary 
education; 40% had attended some college or vocational 
school, 20% were college graduates, and 13% had com-
pleted higher forms of  education. Approximately one-
third reported annual incomes greater than $50000, while 
almost 40% reported annual incomes between $25000 
and $49999.

An overwhelming majority (92.9%) of  the partici-
pants were either overweight or obese, with a mean BMI 
of  34.3 ± 7.4 kg/m2. While measures of  systolic blood 
pressure were comparable between study arms, with 
a mean of  134.8 ± 19.3 mmHg, measures of  diastolic 
blood pressure were significantly different (P < 0.002). 
The mean baseline HbA1c for participants was 9.3% ± 
1.6% and did not differ significantly between the two 
groups.

Table 2 summarizes participants’ diabetes self-care 
activity (DSCA) monitoring, HRQOL measures, and 
pain and fatigue measures at baseline. Participants in the 
control arm reported checking their feet more frequently 
than those in the CDSMP arm (P = 0.04). Although 
participants in the control group reported inspecting the 
inside of  their shoes more frequently and also tended to 
report fewer unhealthy physical days and experience less 
limited days due to physical and mental health, these did 
not reach statistical significance (P ≥ 0.05).

Changes in HbA1c from baseline to 12 mo
There were modest but statistically significant reductions 
in HbA1c from baseline to 12 mo of  follow-up. The 
results of  the linear mixed model are presented in Table 
3. The adjusted reductions in HbA1c over the 12 mo 
of  follow-up for the CDSMP and control groups were 
0.559% and 0.576%, respectively (P < 0.0001). However, 
the interaction term of  the treatment group and time 
was not statistically significant (P = 0.885), implying no 
significant difference in HbA1c reductions by treatment 
assignment.

Changes in DSCA monitoring, HRQOL measures, and 
pain and fatigue measures
The mean difference in the number of  days (within the 
last 7 d), from baseline to 12 mo of  follow-up, that par-
ticipants reported using specific diabetes self-care activity 
features were compared between the CDSMP and con-
trol arms (table not shown). While there were no differ-
ences on 12 of  the 14 self-care indicators, participants in 
the control arm had a higher rate of  change in checking 
their feet than those in the CDSMP arm (increase of  0.28 
d/mo vs 0.20 d/mo; P = 0.02). Similarly, participants in 
the control arm reported an increase of  0.15 d/mo eat-

Definition of a completed follow-up participation
A participant was considered to have completed a follow-
up if  there was an available HbA1c within the designated 
follow-up period, i.e., within the cut-off  dates, defined 
as within 45 d after the scheduled follow-up dates. For 
the 6-mo follow-up measure, if  at least one HbA1c was 
available after baseline and before the 6-mo cut-off, the 
participant was considered to have completed a follow-
up. For the 12-mo follow-up measure, the designated 
range was between the 6-mo cut-off  date and the 12-mo 
cut-off  date. Participants who were unable to complete 
an assessment at one time period were not excluded from 
future assessments. For instance, if  a participant did not 
have any HbA1c measured within the specified time pe-
riod for their 6-mo follow-up but had one available for 
their 12-mo follow-up, he/she was considered to have 
completed the 12-mo follow-up, but not the 6-mo.

Outcome measures
The primary study outcome measure was change in HbA1c 
from randomization to 12 mo of  follow-up. Secondary 
outcome measures included BMI and blood pressure, 
along with several self-management behavioral measures 
(e.g., foot care) from randomization to 12 mo of  follow-up.

Statistical analysis
Analysis was based on intent-to-treat. Descriptive sta-
tistics were used to describe baseline demographic, an-
thropometric, and clinical characteristics by study arm. 
Analysis of  variance as used to compare average changes 
in self-management behaviors between study arms. To 
determine whether the treatment had an effect on the 
rate of  change in HbA1c level over time, we used linear 
mixed models that included time as a continuous variable. 
A spatial power covariance structure with time as the dis-
tance measure accounted for the time-series correlation 
among repeated measurements on each subject. Forward 
selection was utilized, in which powers of  time were add-
ed one at a time to the base model including treatment 
group effects only. Time and treatment effects were then 
added gradually and evaluated with likelihood ratio tests 
to assess any effect modification. The final mixed model 
included time, time squared, treatment group, and the 
interaction between time and treatment group as fixed 
effects. HbA1c values included in the analysis were those 
falling within the time frame of  6 mo prior to orientation 
until the 12-mo follow-up cut-off  point.

RESULTS
Subject enrollment, participation and retention
The flow diagram of  participant enrollment and disposi-
tion in the trial has been described elsewhere[31]. Of  the 
subjects randomized, 101 entered the CDSMP arm and 
95 entered the control arm. Of  the participants assigned 
to the CDSMP, 75.6% attended 4 of  6 sessions required 
for successful completion.
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ing 5 or more servings of  fruits and vegetables compared 
to an increase of  0.01 d/mo reported by those in the 
CDSMP arm (P = 0.02).

DISCUSSION
In this study, we sought to assess the effectiveness of  the 
CDSMP on HbA1c and selected self-reported measures 
among patients with type 2 diabetes who were out of  
control. We found no significant differences between the 
CDSMP intervention and usual care in this integrated 
healthcare system. To the best of  our knowledge, this 
is the first study to evaluate the effectiveness of  the 
CDSMP in a randomized controlled trial in the United 
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Table 1  Characteristics of study participants (n  = 196)

Controls (n  = 95) CDSMP (n  = 101) P -value

No. % No. %
Age group (yr) 0.32
   30-44 15 15.8 12 11.9
   45-64 55 57.9 69 68.3
   ≥ 65 25 26.3 20 19.8
Gender 0.74
   Female 53 55.8 54 53.5
   Male 42 44.2 47 46.5
Hispanic 0.46
   Yes 15 15.8 20 19.8
   No 80 84.2 81 80.2
Minority1 0.32
   Yes 32 33.7 41 40.6
   No 63 66.3 60 59.4
Race/Ethnicity 0.60
   African American 17 17.9 21 20.8
   Hispanic 15 15.8 20 19.8
   Neither Hispanic or African-American 63 66.3 60 59.4
Income 0.40
   < $15000   9 10.5 12 13.6
   $15000-$24999 16 18.6 11 12.5
   $25000-$49999 30 34.9 41 46.6
   $50000-$75000 17 19.8 12 13.6
   > $75000 14 16.3 12 13.6
Education 0.48
   High school graduate or less 25 26.3 26 25.7
   Some college/vocation school 36 37.9 46 45.5
   College graduate or higher 34 35.8 29 28.7
HbA1c (%), mean ± SD      9.2   1.6      9.4   1.7 0.48
SBP (mm/Hg), mean ± SD  132.9 21.7  131.9 14.1 0.73
DBP (mm/Hg), mean ± SD    75.8 13.6    79.4   9.8 0.05
BMI (kg/m2), mean ± SD    33.9   7.7    33.5   8.0 0.70

1African American or Hispanic. CDSMP: Chronic Disease Self-Management Program; HbA1c: Hemoglobin A1c; SBP: Systolic blood pressure; DBP: Dia-
stolic blood pressure; BMI: Body mass index.

Table 2  Baseline diabetes self-care activities monitoring, 
health-related quality of life, pain and fatigue measures

Measure Controls CDSMP P

Diabetes self-care activity monitoring (d/wk)
   30 min of any physical activity? 3.01 3.50 0.17
   Daily exercise session? 2.23 2.53 0.40
   Test your blood sugar? 4.22 4.38 0.70
   Test sugar times provider recommends? 3.58 3.29 0.50
   Check your feet? 5.20 4.41 0.04
   Wash your feet? 6.58 6.36 0.29
   Soak your feet? 1.73 1.21 0.14
   Dry between your toes? 5.21 5.37 0.68
   Inspect inside of shoes? 3.25 2.43 0.06
   Follow a healthful eating plan? 3.80 3.92 0.71
   Space carbohydrates evenly? 3.25 3.12 0.74
   Eat ≥ 5 fruit/vegetable servings? 3.80 3.44 0.30
   Eat high-fat products (red meat, full-fat diary)? 3.63 3.63 0.98
   Eat packaged or bakery goods? 2.05 2.16 0.71
Health related quality of life (d/mo)
   Physical health not good 3.98 5.96 0.07
   Mental health not good 4.09 4.72 0.56
   Physical/mental health hindered 
   usual activities

1.82 3.65 0.05

Pain and fatigue measures (scale 1-10)
   Average daily pain in the past 2 wk 3.74 3.74 1.00
   Average daily fatigue in the past 2 wk 4.41 4.54 0.72

CDSMP: Chronic Disease Self-Management Program.

Table 3  Results from the linear mixed models

Controls CDSMP Difference between
(n  = 95) (n  = 101) the two groups

Mean ± SE1 Mean ± SE1 Mean ± SE1

Baseline 9.018 ± 0.153 9.175 ± 0.149 0.157 ± 0.213
12 mo 8.442 ± 0.160 8.615 ± 0.156 0.173 ± 0.218
12 mo-Baseline -0.576 ± 0.093a -0.559 ± 0.091a 0.016 ± 0.112

1Adjusted means from linear mixed models. aP < 0.0001 for test vs H0: 
mean equals to 0.

Forjuoh SN et al . Impact of chronic disease self-management programs



States. It is also one of  the first studies to evaluate and 
compare these interventions in a racially/ethnically di-
verse population in a practice setting outside of  testing 
done by the original program developers. It therefore 
provides important exploratory data, shaping our knowl-
edge and understanding of  factors which may be im-
portant to minority and ethnic populations in adopting 
diabetes self-management techniques.

Our results corroborate the findings of  others that 
participation in the CDSMP may be associated with bet-
ter glycemic control[28]. However, a comparison with the 
control group indicates that usual care might do equally 
well. Therefore, our study findings need to be tempered 
due to the possibility of  methodological confounds such 
as unaccounted group demographic and health differ-
ences at baseline, relatively small sample sizes, and better 
awareness among those in a clinical trial or high quality 
routine diabetes care that emphasizes the importance of  
glycemic control. For example, participants in this study 
were, on average, younger than those studied in other 
recent CDSMP studies[23,29]. Additionally, the controls in 
this study appeared slightly healthier and better educated 
than their counterparts in the CDSMP intervention 
which might have made them more receptive to both 
clinical and community-based diabetes self-management 
and obesity prevention messages. It should be noted that 
Scott and White Health System employs diabetes educa-
tors for their patients with diabetes. Scott and White also 
employs dedicated endocrinologists and their usual care 
for diabetes exceeds the recommendations set by the 
Texas Diabetes Association.

Other study limitations need to be noted. First, our 
subjects were selected from a randomized controlled trial 
with three interventions, restricting the numbers available 
in any one group. Second, post-hoc analysis showed that 
we were somewhat under-powered: we only had 60% 
power to detect a difference of  0.5% HbA1c reduction 
between the two groups at the current sample size. Other 
future analyses should focus on randomizing a larger 
number of  participants in the treatment arm being inves-
tigated. Third, there were notable differences between the 
intervention and control groups, with the control group 
appearing to be healthier at baseline. Fourth, there was 
attrition in terms of  treatment completion for the inter-
vention group (75.6% attended 4 of  6 sessions required 
for successful completion) as well as differential research 
attrition between the two groups (14.9% or 15% par-
ticipants in the treatment group and 23.2% or 22% par-
ticipants in the control group did not have 12 mo data). 
Finally, this study was conducted in only one integrated 
health care system, limiting generalizability to other set-
tings and populations.

There is also a debate in the self-management field 
regarding whether generic vs disease-specific self-man-
agement is more beneficial[24,32]. While our view was that 
a generic program would be valuable for patients expe-
riencing several comorbidities including diabetes, more 
positive results might have been observed if  the diabetes 
specific CDSMP was utilized (which was not evidence-

based at the time of  initial program selection for English 
speaking patients)[33].

In conclusion, we found in this study that although 
a behavioral intervention such as the CDSMP can result 
in some modest improvements in glycemic control, the 
same improvements may be found among participants 
that receive usual care. The reduction in HbA1c levels 
found in our control group that received usual care sug-
gests that good routine care in an integrated healthcare 
system can also lead to better glycemic control. More 
research is needed to understand the benefits of  self-
management programs both independently and in 
conjunction with primary care. For example, are there 
settings where self-management programs might be espe-
cially needed, e.g., in medically underserved areas? What 
kinds of  participants might improve most with self-
management programs? Such knowledge is important for 
providing better tailoring diabetes care to patients.
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Abstract
The accumulation of fat in the pancreatic gland has 
been referred to using various synonyms, such as pan-
creatic lipomatosis, fatty replacement, fatty infiltration, 
fatty pancreas, lipomatous pseudohypertrophy, non-al-
coholic fatty pancreatic disease and pancreatic steatosis 
We believe that pancreatic steatosis is the best descrip-
tion of fat accumulation in the pancreatic gland without 
fat replacement, and this term also describes the pos-
sibility that the fat accumulation is a reversible process. 
A review of the existing literature was carried out, and 
it was found that there was notable evidence from both 
the pathological and the imaging point of view that 
pancreatic steatosis is an increasing problem due to 
the increasing incidence of obesity. The conclusion was 
that pancreatic steatosis was easily detectable using 
modern imaging techniques, such as ultrasonography, 
endoscopic ultrasonography, computed tomography 
and magnetic resonance imaging. Pancreatic steatosis 
was not due to the presence of diabetes mellitus but 
was highly associated with the metabolic syndrome. 
The possible presence of steatopancreatitis should be 
better evaluated, especially regarding the inflammatory 

cascade, and additional studies are needed which are 
capable of assessing whether non-alcoholic steatopan-
creatitis really exists as does non-alcoholic steatohepa-
titis. Finally, the presence of exocrine pancreatic func-
tion should be extensively evaluated in patients with 
pancreatic steatosis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Pancreatic steatosis is easily detectable using 
modern imaging techniques, such as ultrasonography, 
endoscopic ultrasonography, computed tomography 
and magnetic resonance imaging. It is not due to the 
presence of diabetes mellitus but is highly associated 
with the metabolic syndrome. The possible presence of 
steatopancreatitis should be better evaluated, especial-
ly regarding the inflammatory cascade, and additional 
studies are needed which are capable of assessing 
whether non-alcoholic steatopancreatitis really exists as 
does non-alcoholic steatohepatitis. Additional studies 
regarding the exocrine pancreatic function in patients 
with pancreatic steatosis are needed.
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nomic groups. It was calculated that, in 1995, there were 
approximately 200 million obese adults worldwide and 
another 18 million children under five classified as over-
weight. In 2000, the number of  obese adults increased 
to over 300 million, and there are also obese subjects in 
developing countries; it has been estimated that over 115 
million people suffer from obesity-related problems[1]. 
Due to the worldwide presence of  this problem, the 
term “globesity” has been coined by the World Health 
Organization[2].

Obesity is associated with an elevated number of  
diseases, and the top 10 obesity-related diseases are high 
blood pressure, diabetes, heart disease, brain disease, can-
cer, infertility, back pain due to injury to the most vulner-
able parts of  the spine, skin infections, gastric ulcers and 
gallstones.

In the livers of  obese patients, a bright liver is seen 
at ultrasound along with increased levels of  hepatic en-
zymes, such as alanine aminotransferase, aspartate ami-
notransferase or γ-glutamyltransferase; their prevalence 
increases progressively with increasing body mass index 
(BMI)[3]. At liver biopsy, subjects with moderate or severe 
fatty change, lipogranulomas, focal necroses or paren-
chymal inflammation are significantly more obese than 
patients without these changes[4]. Two key components 
of  the metabolic syndrome, glucose and triglycerides, are 
overproduced by a fatty liver, and the liver is a key deter-
minant of  metabolic abnormalities[5]. The effects of  the 
metabolic syndrome on the exocrine pancreas have been 
less investigated than that of  the liver. Thus, we have 
reviewed the existing data in the literature regarding the 
effects of  obesity and diabetes mellitus on the exocrine 
pancreas.

DEFINITION OF PANCREATIC STEATOSIS
The accumulation of  fat in the pancreatic gland (Figures 
1 and 2) has been referred to using various synonyms, 
such as pancreatic lipomatosis, fatty replacement, fatty 
infiltration, fatty pancreas, lipomatous pseudohypertro-
phy, non-alcoholic fatty pancreatic disease and pancreatic 
steatosis[6]. According to the well-written paper of  Smits 
et al[6], we believe that pancreatic steatosis is the best 
description of  fat accumulation in the pancreatic gland 
without fat replacement, and this term also describes the 
possibility that fat accumulation is a reversible process. 

HISTOLOGICAL ASPECTS OF EXOCRINE 
PANCREATIC STEATOSIS: THE ERA OF 
AUTOPTIC STUDIES
The first extensive study on this topic was that of  Ogilvie 
who evaluated the exocrine pancreas of  19 obese patients 
(17 of  whom were females, having a mean age of  52 
years with a range from 27 to 67 years) and in 19 non-
obese subjects (11 of  whom were female, having a mean 
age of  48.5 years with a range from 19 to 67 years)[7]. He 

found that all pancreatic glands in the controls and in 
the majority of  obese patients showed varying degrees 
of  adiposity, and that the degree of  adiposity was higher 
in obese patients (mean 17.1%, range 0-48.5) than in 
the controls (mean 9.3%, range 2.5-23.6). Regarding the 
endocrine pancreas, Ogilvie found hypertrophy of  the 
islet of  Langerhans in obese patients with respect to 
the controls. After the study of  Ogilvie, the problem of  
a fatty pancreas was neglected for several years and, in 
1978, Olsen[8] evaluated the presence of  a fatty pancreas 
in 394 autopsies. He graded the pancreatic fat into four 
categories: Grade 1 sections with few scattered fat cells 
in the exocrine parenchyma, Grade 4 with the partial or 
total replacement of  exocrine lobules with fatty tissue, 
and Grades 2 and 3 with a number of  fat cells between 
Grades 1 and 4. The cadavers were divided into three 
groups: those having below normal weight, those having 
normal weight and those having above normal weight. 
He found a relationship between the content of  fatty 
pancreatic cells and age, and between the presence of  fat 
in the pancreas and being overweight. However, in these 
two studies, the presence of  fat in the pancreas was re-
lated to the presence of  obesity, but not to the presence 
of  diabetes mellitus.
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Figure 1  Magnetic resonance imaging using force sensitive resistor T2 
sequence, showing the presence of fat infiltration in body and tail of the 
pancreas. The fat present is hyperintense (white) as the abdominal fat, while the 
pancreatic normal tissue is hypointense.

Figure 2  Magnetic resonance imaging during the arterial phase showing 
the presence of diffuse fat infiltration in the body and tail of the pancreas. 
The fat present in the pancreatic gland is black using LAVA sequence (LAVA 
combines contrast-enhanced, multi-phase imaging of the abdomen with high 
resolution, large coverage and uniform fat suppression).



More recently, it has been demonstrated in postmor-
tem material collected from 80 patients that interlobular 
and total pancreatic fat were both related to the non-
alcoholic fatty liver disease activity score in patients 
without steatogenic medication but, when corrected for 
body mass index, no relationship was found. Thus, total 
pancreatic fat was a significant predictor of  the presence 
of  non-alcoholic fatty liver disease, and the presence of  
intralobular pancreatic fat was related to non-alcoholic 
steatohepatitis whereas total fat was not; this relationship 
seemed to be mediated by general obesity[9]. 

IMAGING ASPECTS OF EXOCRINE 
PANCREATIC STEATOSIS: THE ERA OF 
“IN VIVO” AUTOPTIC STUDIES
With the introduction of  increasingly refined imaging 
techniques into clinical practice, it is possible to perform 
increasingly sophisticated imaging studies which are, in 
some ways, similar to autopsies carried out “in vivo”. 

The most largely used technique is ultrasonography; 
Lee et al[10] used this technique to evaluate the fat content 
of  the pancreas. They used the increase echogenicity of  
the pancreatic body over kidney echogenicity as the index 
of  a fatty pancreas, and they found that a fatty pancreas is 
related only to the metabolic syndrome. These data were 
also confirmed using an endoscopic ultrasonography in 
a study comprising 60 patients and 60 controls[11]; in this 
latter study, hepatic steatosis, alcohol use and an increased 
BMI were predictors of  pancreatic steatosis fat[11].

In one study, the pancreatic volume from birth to 
advanced age (100 years old) was evaluated in a ret-
rospective study[12]; the authors studied by computed 
tomography 133 subjects with under 20 years of  age, 
1721 adults over 20 years of  age and 165 patients having 
type-2 diabetes, and in these patients, the fat within the 
pancreatic gland was also evaluated. What were the re-
sults? The pancreas volume increased relatively rapidly in 
childhood, changed little from 20 to 60 years of  age and 
then declined in subjects over 60 years of  age; the pan-
creatic volume was 16%-32% greater in obese patients as 
compared to non-obese patients, and the increase in the 
volume of  the pancreas in obese patients was similar in 

males as compared to females[12]. The fat volume was also 
increased in obese patients, and this effect remained so 
until the age of  70 years[12]. Of  importance, both the total 
and the parenchymal pancreatic volume were decreased 
in diabetic patients, and there was no difference in fat 
volume between patients with type-2 diabetes and non-
diabetics; in addition, in cadavers in whom an autopsied 
pancreas was available, the pancreatic fat was similar 
between diabetic and non-diabetic subjects but, in non-
diabetic patients, the fat increased with obesity and age[12].

The best imaging technique for evaluating the pres-
ence of  fat in the pancreas is magnetic resonance imaging 
(MRI). There are at least three methods utilized to mea-
sure the fat in the pancreas using MRI; the most com-
mon is to utilize the frequency shift between the water 
and the fat resonances to generate in-phase and opposed-
phase images in which the signal of  the water and fat net 
magnetization vectors are at a maximum or a minimum. 
The Dixon method which visualizes the water and fat 
fractions by the post-processing of  the in-phase and 
opposed-phase spin echo images and leads to water- and 
fat-selection. The last method, called the spectral-spatial 
excitation technique, combines chemical shift selectivity 
with simultaneous slice-selective excitation in gradient-
echo imaging sequences. Schwenzer et al[13] found that the 
fat content calculated from images recorded with the fat-
selective spectral-spatial gradient-echo sequence corre-
lated well with the fat fraction determined with in-phase/
opposed-phase imaging. In addition, the fat percentage 
increased from the head to the tail of  the pancreas as 
shown in Figure 3. Finally, in another study, the pancreat-
ic fat increased with BMI only in non-diabetic patients[14], 
confirming the previously published data of[12,15-17]. 

RELATIONSHIPS BETWEEN INSULIN AND 
PANCREATIC STEATOSIS
Insulin secretion increases parallel to insulin resistance in 
order to maintain normal glucose homeostasis in obese 
patients; the patients that are predisposed to diabetes fail 
to compensate adequately for the greater insulin require-
ments[18]. Fat accumulation in the pancreatic islets leads to 
a decreased insulin secretion and might explain why insu-
lin resistant people cannot encounter the higher demands 
of  insulin and then develop type 2 diabetes mellitus[19-24]. 
In addition, a greater proportion of  pancreatic fat was 
associated with increased insulin levels in obese nondia-
betic subjects. This may indicate that the toxic effect of  
pancreatic fat accumulation might require a long time 
before manifesting in impaired β-cell function and it has 
been assessed that pancreatic β-cell damage is present for 
more than a decade before diabetes is diagnosed[25]. 

PANCREATIC STEATOSIS AND 
EXOCRINE PANCREATIC FUNCTION
Exocrine pancreatic insufficiency has been reported in 
14.3% of  patients with type 2 diabetes mellitus; it is usu-
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Figure 3  Percent of fat fraction according to three pancreatic regions; data 
are reported as mean and standard deviation (modified from reference[13]).
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ally only of  a mild to a moderate degree and does not 
lead to clinically overt steatorrhea in the majority of  
diabetics[26]; however, in patients with pancreatic steatosis 
the data are scarce and are mainly based on case reports. 
Lozano et al[27] have reported two adult patients with 
weight loss and massive steatorrhea in whom abdominal 
computed tomograms demonstrated severe pancreatic 
steatosis; oral pancreatic enzyme replacement in associa-
tion with cimetidine led to a marked reduction of  steat-
orrhea and weight gain in both patients. Using computed 
tomography, So et al[28] found a pancreas completely 
replaced by fat in a 57-year-old woman having a 22-year 
history of  chronic diarrhea. Aubert et al[29] reported two 
cases of  diffuse and primitive fat replacement of  the exo-
crine pancreas associated with chronic diarrhea and steat-
orrhea in whom the administration of  pancreatic extracts 
improved symptoms. Thus, pancreatic functional studies 
are necessary to establish the degree of  fat replacement 
capable of  determining exocrine pancreatic insufficiency.

CONCLUSION
Pancreatic steatosis is easy detectable using modern im-
aging techniques, such as ultrasonography, endoscopic 
ultrasonography, computed tomography and magnetic 
resonance imaging. Pancreatic steatosis is not due to the 
presence of  diabetes mellitus but is highly associated 
with the metabolic syndrome. The possible presence of  
steatopancreatitis should be better evaluated, especially 
regarding the inflammatory mediators involved, and ad-
ditional studies are need capable of  assessing whether 
non-alcoholic steatopancreatitis really exists as does non-
alcoholic steatohepatitis. Finally, the presence of  exocrine 
pancreatic function should be extensively evaluated in 
patients with pancreatic steatosis.
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Abstract
The major malfunction in diabetes mellitus is severe 
perturbation of glucose homeostasis caused by defi-
ciency of insulin. Insulin deficiency is either absolute 
due to destruction or failure of pancreatic β cells, or 
relative due to decreased sensitivity of peripheral tis-
sues to insulin. The primary lesion being related to in-
sulin, treatments for diabetes focus on insulin replace-
ment and/or increasing sensitivity to insulin. These 
therapies have their own limitations and complications, 
some of which can be life-threatening. For example, 
exogenous insulin administration can lead to fatal hy-
poglycemic episodes; islet/pancreas transplantation 
requires life-long immunosuppressive therapy; and 
anti-diabetic drugs have dangerous side effects includ-
ing edema, heart failure and lactic acidosis. Thus the 
need remains for better safer long term treatments for 
diabetes. The ultimate goal in treating diabetes is to 
re-establish glucose homeostasis, preferably through 
endogenously generated hormones. Recent studies 
increasingly show that extra-pancreatic hormones, 
particularly those arising from adipose tissue, can 
compensate for insulin, or entirely replace the function 

of insulin under appropriate circumstances. Adipose 
tissue is a versatile endocrine organ that secretes a va-
riety of hormones with far-reaching effects on overall 
metabolism. While unhealthy adipose tissue can exac-
erbate diabetes through limiting circulation and secret-
ing of pro-inflammatory cytokines, healthy uninflamed 
adipose tissue secretes beneficial adipokines with 
hypoglycemic and anti-inflammatory properties, which 
can complement and/or compensate for the func-
tion of insulin. Administration of specific adipokines 
is known to alleviate both type 1 and 2 diabetes, and 
leptin mono-therapy is reported to reverse type 1 dia-
betes independent of insulin. Although specific adipo-
kines may correct diabetes, administration of individual 
adipokines still carries risks similar to those of insulin 
monotherapy. Thus a better approach is to achieve 
glucose homeostasis with endogenously-generated 
adipokines through transplantation or regeneration of 
healthy adipose tissue. Our recent studies on mouse 
models show that type 1 diabetes can be reversed 
without insulin through subcutaneous transplanta-
tion of embryonic brown adipose tissue, which leads 
to replenishment of recipients’ white adipose tissue; 
increase of a number of beneficial adipokines; and fast 
and long-lasting euglycemia. Insulin-independent glu-
cose homeostasis is established through a combination 
of endogenously generated hormones arising from the 
transplant and/or newly-replenished white adipose tis-
sue. Transplantation of healthy white adipose tissue is 
reported to alleviate type 2 diabetes in rodent models 
on several occasions, and increasing the content of 
endogenous brown adipose tissue is known to combat 
obesity and type 2 diabetes in both humans and ani-
mal models. While the underlying mechanisms are not 
fully documented, the beneficial effects of healthy adi-
pose tissue in improving metabolism are increasingly 
reported, and are worthy of attention as a powerful 
tool in combating metabolic disease.
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Core tip: Diabetes mellitus is characterized by perturba-
tion of glucose homeostasis due to insulin deficiency, 
either absolute or relative. Traditional treatments over 
the past century have focused on insulin replacement 
and/or enhancing insulin sensitivity. Ultimate goal in 
treating diabetes is to re-establish glucose regulation. 
Recent studies increasingly show the ability of extra-
pancreatic hormones, particularly of adipose tissue 
origin, to compensate for insulin. Adipose tissue is a 
versatile endocrine organ which, under appropriate 
circumstances, can exert numerous metabolic benefits 
and may maintain glucose regulation entirely inde-
pendent of endocrine pancreas. This review discusses 
such alternative therapies based on beneficial effects of 
healthy adipose tissue.

Gunawardana SC. Benefits of healthy adipose tissue in the treat-
ment of diabetes. World J Diabetes 2014; 5(4): 420-430  Avail-
able from: URL: http://www.wjgnet.com/1948-9358/full/v5/
i4/420.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i4.420

INTRODUCTION
Diabetes is one of  the most serious and widespread met-
abolic diseases today, affecting 10%-15% of  the United 
States population and 371 million people worldwide. 
The major characteristics of  diabetes mellitus include 
defects in insulin secretion at the pancreatic β cell level, 
and defects in insulin sensitivity at the peripheral tissue 
level. Depending on which of  these defects is primary, 
diabetes is broadly classified into types 1 and 2. Type 
1 diabetes (T1D) is associated with absolute deficiency 
of  insulin due to auto-immune mediated destruction 
of  pancreatic β cells, while T2D results in relative or 
functional insulin deficiency due to gradually progress-
ing resistance to insulin in peripheral tissues. Such re-
sistance leads to initial compensatory hyperinsulinemia 
and overexertion of  β cells, which may progress into ab-
solute insulin deficiency through eventual β cell failure. 
T1D accounts for 5% of  cases, affecting over 2 million 
Americans and 11-22 million people worldwide, with 
78000 new cases diagnosed each year. Characterized by 
absolute deficiency of  insulin resulting in severe hyper-
glycemia, T1D is fatal if  untreated. Available therapies 
for diabetes, directed at insulin replacement and/or im-
proving insulin sensitivity in peripheral tissues, have vari-
ous limitations, some of  which could be life-threatening. 
Recent studies demonstrate the ability of  healthy adipose 
tissue to complement or compensate for the function of  
endocrine pancreas, independent of  insulin. Adipose tis-
sue related therapies show promise in overcoming many 
of  the limitations/complications associated with tradi-
tional treatments for diabetes.

AVAILABLE THERAPIES
Both type 1 and 2 diabetes are associated with β cell 
failure due to different mechanisms. Insulin replace-
ment is necessary in all cases of  T1D and many cases 
of  T2D. Treatments for T1D primarily focus on insulin 
replacement, either directly or through transplantation of  
insulin-secreting tissue such as pancreas or pancreatic is-
lets. Whole pancreas transplantation is currently the most 
successful means available for achieving long-term insu-
lin independence for T1D patients, and is also helpful in 
specific cases of  T2D associated with significant insulin 
deficiency[1-3].

Traditional insulin replacement therapies, either direct 
or through islet/pancreas transplantation, have certain 
limitations. Direct insulin replacement does not cure the 
disease and requires repeated administration. A major 
concern with administration of  exogenous insulin is pos-
sible overdose, requiring precise monitoring of  dosage 
and blood glucose to avoid fatal hypoglycemic episodes. 
Whole pancreas transplantation, when successful, pro-
vides insulin independence for many years. However it 
is an invasive surgical procedure not to be undertaken 
lightly, and carries the risks and complications associated 
with any major surgery[1,4-7]. Islet transplantation, although 
a safer and less invasive procedure, is limited by low suc-
cess rate in the long term due to apoptosis, rejection or 
poor vascularization of  islets. Other concerns include the 
necessity of  large numbers of  donor islets and specific 
complications associated with portal vein cannulation 
such as portal vein thrombosis and portal hyperten-
sion[6-12]. The need for life-long immune-suppressive 
therapy is also a concern with both islet and pancreas 
transplantation. Thus, the need remains for better thera-
pies aimed at establishing long-term glucose regulation 
with fewer complications. 

Xenotransplantation of  porcine and non-human pri-
mate islets has been proposed as a means to overcome 
the limitations in availability and preservation of  human 
islets. A major challenge with xenotransplantation is hy-
peractive rejection. Methods proposed to circumvent this 
problem include encapsulation of  islets, and local im-
munosuppression through genetic manipulation. While 
long-term graft survival and insulin independence have 
not yet been achieved, early studies show great poten-
tial[13-15]. Recent advances on insulin replacement include 
generation of  insulin-producing cells from embryonic 
stem cells; transdifferentiation, i.e., generation of  endog-
enous β-cells from non-β-cells using transcription factors 
that govern pancreatic development; and engineering 
endogenous surrogate β-cells by tissue-specific insulin 
gene delivery[15-17]. Stem cell therapy is promising, except 
for some limitations such as the inability to generate ad-
equate numbers of  insulin-producing cells, generation of  
unnecessary cell types, and harmful side effects such as 
teratoma formation. In addition to replacing or regener-
ating insulin-producing cells, another intriguing potential 
in stem cell therapy is to prevent further destruction of  
beta cells by appropriately controlling the autoimmune 
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response. Recent studies describe the potential of  stem 
cell educator therapy for reversal of  T1D[18-20]. Human 
cord blood-derived multipotent stem cells modulate auto-
immune responses through altering regulatory T cells and 
human islet β-cell-specific T cell clones. While suspend-
ing the immune response results in significant improve-
ments of  glucose regulation, insulin dependence remains 
an ongoing concern.

Management of  T2D includes various agents that 
improve insulin sensitivity in peripheral tissues, in com-
bination with agents that increase insulin secretion at β 
cell level. With advancing β cell failure, these treatments 
have to be combined with insulin replacement or even 
pancreas transplantation[21-23]. Drugs that improve periph-
eral insulin resistance include thiazolidendiones and bigu-
anides. While effective in improving insulin sensitivity at 
varying degrees, these drugs are limited by a number of  
dangerous side effects including edema, hypertension, 
heart failure, bone fractures, lactic acidosis and cognitive 
impairment[21-26]. Complementary strategies include alpha-
glucosidase inhibitors which reduce blood glucose by 
preventing digestion and absorption at gut level. Drugs 
that increase insulin secretion at β cell level such as sulfo-
nylureas and meglitinides have the same risk of  hypogly-
cemia unawareness as insulin therapy. With progressive β 
cell failure in T2D the effectiveness of  these drugs even-
tually decreases[23].

A common limitation among all aforementioned ap-
proaches is the ongoing need for insulin, and the difficulty 
of  maintaining physiologically appropriate levels and func-
tion of  insulin after exogenous delivery or endogenous 
production following different treatments. Studies in the 
past decade point to the intriguing possibility of  insulin-
independent glycemic regulation. Although insulin is the 
major physiological regulator of  glucose, numerous extra-
pancreatic hormones also exert a powerful influence on 
glucose homeostasis. Such hormones primarily originate 
from the gut and adipose tissue[27,28]. While many of  these 
hormones enhance insulin function, some have glucose-
lowering actions entirely independent of  insulin.

Glucagon-like peptide-1 (GLP-1) is an incretin se-
creted from entero-endocrine cells in response to food 
intake. In addition to glucose-dependent augmentation 
of  insulin secretion, GLP-1 has a variety of  beneficial 
effects throughout the body[28-33]. These include insulin-
independent effects on glucose metabolism such as direct 
suppression of  glucagon, decrease of  hepatic glucose 
output, decreased absorption via delayed gastric empty-
ing and increased glucose uptake by muscle. GLP-1 is 
also reported to decrease inflammation[29,33,34], decrease 
cardiovascular risk factors in human patients[35-37], and 
promote insulin-independent glucose uptake into brown 
adipose tissue (BAT) in mouse studies[38]. Due to their hy-
poglycemic effects, analogs of  GLP-1 and inhibitors of  
dipeptidyl peptidase-4 (DPP-4) (enzyme that metabolizes 
GLP-1) are now widely used as therapeutic agents for 
T2D[28,29,39-42]. Direct administration of  GLP-1 produces 
acute hypoglycemia and suppression of  glucagon in T1D 

as well[43,44], and GLP-1’s anti-inflammatory effects are be-
lieved to be potentially therapeutic in correcting insulitis 
and enhancing beta cell regeneration in T1D[45]. Despite 
these beneficial effects, incretin therapy also involves 
risks such as fatal pancreatitis[46,47].

DIABETES AND ADIPOSE TISSUE
Adipose tissue, believed to be merely a storage organ in 
the past century, is now widely known for its far-reaching 
metabolic and endocrine functions. Adipose tissue is clas-
sified into white and brown fat based on their morphol-
ogy, embryonic origin and basic function. White adipose 
tissue (WAT), the large energy reserve distributed all over 
the body, stores and accumulates fat, whereas BAT local-
ized into a few small depots, metabolizes fat, generates 
heat and increases overall metabolism. WAT and BAT 
have distinct embryologic origins and appear at different 
stages of  development. While WAT is believed to origi-
nate from mesodermal stem cells, BAT originates from 
dermatomyotomal precursor cells in common with skel-
etal muscle, and has an interchangeable developmental 
relationship with skeletal muscle rather than WAT[48-50]. 
Due to its function in energy metabolism, BAT is highly 
vascularized and innervated compared to WAT, giving it 
the characteristic “brown” appearance. Brown adipocytes 
contain small multilocular lipid droplets as opposed to 
the large unilocular droplets found in white adipocytes. 

WAT is broadly classified into subcutaneous and 
visceral fat depots which are then further subdivided 
according to their specific location[51,52]. Healthy WAT 
is a versatile endocrine organ that secretes a range of  
hormones which influence physiological functions at all 
levels, including nutrient metabolism, satiety signaling, 
immune/inflammatory response, and angiogenesis[27,52-55]. 
The major adipokines of  importance in metabolic ho-
meostasis are adiponectin and leptin. Adiponectin, well 
known for its insulin-sensitizing effects on peripheral tis-
sues, is secreted from WAT in micromolar quantities and 
acts on several receptors such as AdipoR1, AdipoR2, and 
T-cadherin, enhancing AMP-activated protein kinase and 
the peroxisome proliferator-activated receptor-α pathway 
in the liver and skeletal muscle. Adiponectin levels are 
inversely proportionate to insulin resistance, obesity and 
diabetes. In addition to insulin sensitization, adiponectin 
directly increases fatty acid oxidation; inhibits gluconeo-
genesis; enhances glucose uptake into adipocytes; and 
exerts anti-inflammatory and anti-atherosclerotic effects, 
which collectively enhance overall health[27,55-62]. Leptin, 
long known for its central effects on decreasing appetite 
and food intake, also increases fat oxidation in many 
peripheral tissues including liver, adipose tissue and skel-
etal muscle. Obesity is associated with increased leptin 
levels and resistance to leptin action, whereas enhanced 
sensitivity to leptin results in leanness and protection 
from diet-induced obesity. Non-metabolic effects of  
leptin include enhancing immune response, pro and anti-
inflammatory effects, and angiogenesis[27,53-55,63]. Numer-
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ADIPOSE TISSUE RELATED THERAPIES 
FOR T1D
The ultimate cure for T1D is to establish permanent and 
long-term physiological glucose homeostasis. Consid-
ering the limitations associated with insulin replace-
ment, and the remarkable influence of  non-pancreatic 
hormones on glucose regulation, establishing glucose 
control without insulin is an intriguing and increasingly 
plausible solution. 

Insulin-independent amelioration of  T1D includes 
mono-therapy with specific hypoglycemic adipokines, 
first reported in the past decade. There is a strong nega-
tive correlation between diabetes and plasma adiponec-
tin levels[53-58]. Adiponectin gene expression and plasma 
levels are increasingly used as predictors of  metabolic 
disease in human patients[84-88]. Administration of  adipo-
nectin via gene therapy has been long known to improve 
metabolism in T2D in swine and rodent studies, and a 
few reports indicate similar results with T1D as well[89-95]. 
Adiponectin gene therapy with hydrodynamic injection 
into streptozotocin-diabetic mice resulted in improved 
glucose homeostasis[90], while long-term central infusion 
of  recombinant adiponectin in normal and pancreatec-
tomized rats resulted in improved metabolic homeostasis 
through several mechanisms including increase in insulin 
sensitivity and fat oxidation, and decreases in visceral adi-
posity, hepatic glucose output and beta cell death[91]. The 
ability of  leptin to correct T1D independent of  insulin is 
now well-documented. As first demonstrated in 2008 by 
Yu et al[96], hyperleptinemia produced by adenoviral trans-
fer results in long-term reversal of  T1D in mice. Leptin is 
now well known to correct T1D independent of  insulin 
in rodent models, primarily through suppression of  the 
hyperglycemic effects of  glucagon[96-99]. In both chemi-
cally and genetically induced T1D models, leptin admin-
istration can produce long-lasting normoglycemia within 
days of  initiation of  therapy.

Mono-therapy with other adipokines is also reported 
to alleviate T1D. Apelin can alleviate complications of  
T1D in mice, and prevent loss of  beta cell mass and 
alleviate ER stress, major pathogenic mechanisms of  
T1D[100,101]. ln human T1D patients IGF-1 is shown to 
significantly decrease insulin requirement as well as plas-
ma glucose and HbA1c when used as an adjunct to insu-
lin therapy[102]. Incretin therapy, primarily used in T2D, is 
shown to have significant benefits in T1D as well. Direct 
administration of  GLP-1 produces acute hypoglycemia 
and suppression of  glucagon in human T1D patients[43,45], 
and the anti-inflammatory effects of  GLP-1 and DPP-4 
inhibitors are potentially therapeutic in correcting insulitis 
and enhancing β cell regeneration in T1D in both ro-
dents and humans[103-106].

While these reports demonstrate the remarkable 
ability of  alternate hormones to complement and/or 
compensate for insulin, mono-therapy with individual 
hormones still carries the same complications associated 
with insulin mono-therapy. Another major barrier in its 

ous other hormones of  WAT origin, including but not 
limited to angiopoietin like proteins, apelin, insulin-like 
growth factor-1 (IGF-1) and visfatin, also have direct or 
indirect effects on glucose homeostasis through influenc-
ing functions such as insulin sensitivity, insulin secretion 
at beta cell level, glucose uptake in peripheral tissues, li-
pogenesis/lipolysis, and inflammation[27,52-55,64-68]. 

Under normal healthy conditions, these extra-pancre-
atic hormones actively complement endocrine pancreas 
in overall glucose regulation. However, WAT can exert 
a beneficial influence only as long as it remains healthy 
and un-inflamed. Inflammation results in conversion of  
WAT from a beneficial to harmful organ, which then 
secrets increasing amounts of  hyperglycemic adipokines 
such as resistin and retinol binding protein 4, and pro-
inflammatory cytokines such as tumor necrosis factor 
alpha (TNFα) and interleukins 1 and 6[54,55,69-73]. Such 
compounds increase inflammation and exacerbate hyper-
glycemia, leading to a vicious cycle of  insulin resistance 
and T2D. While obesity is generally associated with 
adipose tissue dysregulation, recent studies show that 
it is the metabolic dysfunction of  adipose tissue which 
primarily leads to insulin resistance, regardless of  the 
presence of  obesity[70]. Such metabolic dysfunction is also 
associated with decreased sensitivity to leptin and resul-
tant hyperleptinemia. Although leptin generally improves 
metabolism and leanness, pro-inflammatory properties 
of  leptin would lead to further perturbation of  adipose 
tissue function. One of  the primary functions of  insulin 
is lipogenesis and maintenance of  adipose tissue. Ab-
sence of  adequate amounts of  insulin results in lipolysis 
and necrosis of  adipocytes. In T1D absolute insulin de-
ficiency results in extensive loss of  adipose tissue. Even 
though T2D tends to be associated with obesity, the 
adipose tissue in T2D patients is unhealthy, and inflamed 
with extensive cell death and macrophage infiltration[69-73]. 
T1D is also characterized by generalized inflammation 
particularly affecting adipose tissue[74,75]. Thus diabetes is 
associated with progressive dysfunction of  adipose tissue.

Considering the strong correlation between adipose 
tissue inflammation and metabolic disease, maintaining 
adipose tissue in a healthy state is critical in preventing 
metabolic disease, and decreasing inflammation is a prom-
ising approach to improve and correct such disorders. A 
major mechanism of  insulin-sensitizing agents such as 
thiazolidinediones is to reduce inflammation in adipose 
tissue[76-78]. When human T1D patients are treated with 
insulin replacement, either directly or through transplanta-
tion of  insulin secreting tissue, there is recovery of  adi-
pose tissue[79,80]. While it is generally believed that insulin 
is necessary for the maintenance of  adipose tissue, our 
recent research shows that it is feasible to generate and 
maintain healthy adipose tissue in the absence of  insulin, 
and that healthy adipose tissue can compensate for the 
function of  endocrine pancreas[81-83]. Transplantation of  
embryonic BAT in the subcutaneous space of  diabetic 
mice results in remarkable regeneration of  WAT, decrease 
of  WAT inflammation, and reversal of  diabetes. 
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applicability to human patients is administration. Gene 
therapy and adenoviral transfer, as has been used in ro-
dent studies of  successful adiponectin and leptin mono-
therapy, are not viable options due to adverse effects. 
In addition, adverse effects associated with large supra-
physiological doses of  these hormones should be kept 
in mind, including carcinogenesis as has been reported 
with leptin[107,108]. In addition to the pro-inflammatory 
and immunogenic properties of  leptin, other potential 
adverse effects include hypertension and thrombosis, 
and hypoglycemic risk due to excessive suppression of  
glucagon[63]. 

Considering the anti-diabetic properties of  the afore-
mentioned adipokines when administered alone, it is 
predictable that a combination of  beneficial adipokines 
at physiological levels would perform better through 
additive and/or complementary effects, with fewer ad-
verse reactions caused by supraphysiological doses. The 
feasibility of  such an approach is demonstrated in our 
recent study, where replenishment of  healthy WAT fol-
lowing subcutaneous BAT transplants led to reversal of  
T1D without insulin[81-83]. Transplantation of  embryonic 
BAT into T1D mouse models, chemically or autoimmune 
induced, results in fast and long-lasting euglycemia ac-
companied by weight gain, proliferation of  subcutaneous 
WAT, and remarkable decrease of  WAT inflammation. 
These effects are independent of  insulin, as indicated by 
consistently subnormal levels of  plasma insulin and dras-
tically low pancreatic insulin content post-mortem. Re-
versal of  diabetes is associated with significant increases 
of  adipokines including adiponectin, leptin and IGF-1, 
as well as suppression of  glucagon. Thus it appears that 
glucose homeostasis is achieved through a chronic equi-
librium of  alternate hormones originating from newly 
replenished healthy WAT[81-83]. Both the severe loss of  
WAT and inflammation of  WAT associated with T1D 
are corrected by BAT transplants, presumably due to ad-
ipogenic and anti-inflammatory factors arising from the 
transplant. BAT is long known to protect against inflam-
mation as well as improve metabolism[109,110].

Use of  BAT transplants to reverse T1D without 
insulin is a promising step towards simpler and safer 
therapies for this serious disease. This approach bypasses 
the serious limitations associated with traditional insulin 
replacement therapy, such as hypoglycemia unawareness 
and the need for invasive surgery and/or immunosup-
presive therapy. The subcutaneous site is superficial and 
easily accessible, and can be used for repeated transplants 
if  necessary. Since glycemic regulation is achieved by a 
physiological combination of  endogenously-generated 
hormones, this approach avoids all limitations in mono-
therapy with other hormones as well. In addition to the 
underlying mechanisms being as yet unknown, the major 
limitation in this technique is the need for embryonic tis-
sue which is currently not applicable in clinical situations. 
Work in progress include attempts to reproduce the re-
sults with adult adipose tissue transplants with appropri-
ate modifications. 

ADIPOSE TISSUE RELATED THERAPIES 
FOR T2D
Metabolic diseases such as insulin resistance, obesity and 
T2D are characterized by unhealthy adipose tissue, de-
ficient in beneficial adipokines such as adiponectin, and 
with excess of  harmful or inflammatory factors[53-55,69-73]. 
Recovery from such metabolic disease, through drug 
therapy, lifestyle changes or surgical intervention, is as-
sociated with decrease of  inflammation and improved 
functionality of  adipose tissue, including increased secre-
tion of  beneficial adipokines[111-118].

Many studies report alleviation of  T2D through 
administration of  individual adopokines. Adiponectin 
gene therapy or hydrodynamic delivery have normalized 
the metabolic perturbation associated with diet-induced 
obesity, insulin resistance and T2D in several different 
animal models including rats, mice and swine[89-95]. In 
diet-induced diabetic swine, a single injection of  puri-
fied recombinant human adiponectin resulted in acute 
decrease of  basal blood glucose levels associated with an 
increase of  insulin sensitivity but independent of  insulin 
secretion[89]. Long-term central infusion of  recombinant 
adiponectin in normal rats and pancreatectomized high 
fat fed rats, a T2D model, resulted in improved meta-
bolic homeostasis through several different mechanisms, 
including increase in insulin sensitivity and fat oxidation, 
and decreases in visceral adiposity, hepatic glucose output 
and beta cell death[91]. Adiponectin gene therapy is also 
known to ameliorate hypertension associated with obesity 
in mouse models[92-94]. While there is promise in adipo-
nectin mono-therapy, so far the glycemic regulation has 
been either transient or not followed for an adequately 
long period, and administration remains a problem with 
clinical applications. Mouse studies show that Angiopoi-
etin like proteins improve glucose and lipid homeostasis 
and alleviate metabolic disease such as T2D, obesity 
and cardiovascular disease[64,65,119]. IGF-1 administration 
resulted in remarkable improvement of  glucose regula-
tion and insulin sensitivity in human patients with T2D 
or T1D, even though this therapy is limited by a number 
of  undesirable side effects[102,120]. Leptin is demonstrated 
to reverse T1D independent of  insulin in rodent mod-
els[96-99], and recent reports show promising effects on 
T2D as well[121-123]. However on short term human trials 
have not yielded positive results so far[121].

As with T1D, transplantation/regeneration of  healthy 
adipose tissue is a potential approach for correction of  
T2D, insulin resistance and obesity. Several studies on 
rodent models show improvement of  glucose tolerance 
following transplantation of  healthy WAT, in both nor-
mal and diabetic subjects[124-130]. Lipoatrophic diabetes, 
characterized by hyperglycemia and hyperinsulinemia 
combined with severe loss of  adipose tissue, is corrected 
by transplantation of  WAT from healthy donors in a 
dose-dependent manner[125]. Subcutaneous transplanta-
tion of  gonadal fat pads from healthy donors into leptin-
deficient obese ob/ob mice resulted in decrease of  obesity, 
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normalization non-fasting insulin levels and insulin toler-
ance, and restoration of  fertility in females. The results 
were long-lasting, and dependent on the age and length 
of  leptin deficiency of  recipients, and the dose of  WAT 
transplanted[126]. Transplantation of  human WAT into 
leptin-deficient mice resulted in significant improvements 
in body weight and hepatic steatosis in a dose-dependent 
manner, associated with increased plasma levels of  
donor-origin leptin[127]. The importance of  the source of  
WAT is demonstrated in several studies where the remov-
al of  visceral fat and replacement with subcutaneous fat, 
or transplantation of  subcutaneous fat from healthy do-
nors, is shown to alleviate or prevent metabolic dysregula-
tion[128-130]. Intra-abdominal and peritoneal transplantation 
of  epididymal WAT prevented the development of  age-
induced insulin resistance in rats, while transplantation of  
visceral adipose tissue from normal healthy donors pre-
vented the spontaneous development of  T1D and severe 
fat loss in BB/OK rats in a sex-dependent manner[129,130].

WAT transplantation, while promising, has not 
yet been successful in complete reversal of  metabolic 
disease. Possible reasons include the inability of  WAT 
transplants to transform inflamed WAT of  recipients to 
a healthy state, as BAT transplants can. In addition there 
are ongoing problems with transplant rejection and im-
mune response, and maintenance of  adipose tissue grafts 
may be problematic in T1D where adequate insulin is 
not available to prevent lipolysis. Considering BAT trans-
plants lead to replenishment of  WAT without insulin, it 
is possible that specific factors arising from BAT and/or 
embryonic tissue may help maintain WAT grafts. Once 
identified, BAT-derived messengers may prove useful in 
maintaining WAT transplants. While complete reversal 
of  T1D without insulin has been achieved only with em-
bryonic BAT so far, recent studies show promise in adult 
BAT transplants in alleviating T2D and obesity. Glucose 
tolerance in diet induced obese mice is significantly im-
proved through transplantation of  inguinal fat pads from 
healthy donors into the subcutaneous space of  recipient 
mice[131]. High fat diet induced obesity and insulin resis-
tance in mice were reversed by visceral or subcutaneous 
transplantation of  healthy adult BAT, in addition to im-
provements in glucose tolerance, insulin sensitivity and 
fat mass[132,133]. Mechanisms include increased glucose up-
take into peripheral tissues, increased sympathetic activity 
and elevated levels of  BAT-derived signaling molecules 
such as FGF21 and interleukin 6.

Another technique to improve the health of  adipose 
tissue is to increase the content of  endogenous BAT. 
There is a well-documented relationship between BAT 
content and nutritional homeostasis[109,110,134]. Recent stud-
ies show that human adults have BAT depots, and that the 
content of  BAT is inversely proportionate to obesity and 
metabolic disease[135-139]. BAT deficiency in mice results 
in progressive obesity without hyperphagia, and selective 
stimulation of  β-3 adrenergic receptors, abundantly ex-
pressed in BAT, leads to increased energy expenditure and 
weight loss without affecting food intake[109]. Induction of  
brown fat lipoatrophy in mice results in increased visceral 

adiposity associated with excessive secretion of  pro-in-
flammatory cytokines such as TNFα, followed by vascular 
insulin resistance and vascular dysfunction[139]. Methods 
such as stimulation of  β-3 adrenergic receptors, adminis-
tration of  compounds such as thyroid hormone or atrial 
natriuretic peptide, and specific BAT-derived messenger 
molecules, are known to increase endogenous BAT con-
tent[140-146]. Thyroxine therapy on a patient with extreme 
insulin resistance was reported to produce full remission 
from T2D preceded by proliferation of  BAT[140]. Specific 
transcriptional factors arising from BAT such as PRDM16 
are now known to impart BAT-like properties to WAT, 
i.e., cause “browning” of  WAT, which results in overall 
increase of  energy expenditure, decrease of  weight gain 
and improvement of  glucose homeostasis as reported in 
rodent studies[141,142,146]. Another recently identified mes-
senger molecule originating from skeletal muscle, irisin, 
also improves energy expenditure in mice with no changes 
in movement or food intake, leading to improvements in 
obesity and glucose homeostasis[143]. Induction of  BAT in 
WAT depots can also be accomplished with other stimuli, 
such as cyclo-oxygenase 2 or cardiac natriuretic peptides, 
leading to increased energy expenditure[144-146]. These stud-
ies demonstrate the benefits of  increasing endogenous 
BAT content with various techniques, and overt adverse 
effects are not yet reported. 

CONCLUSION
Taken together, the aforementioned studies demonstrate 
the powerful global influence of  adipose tissue as an 
endocrine organ, and its strong potential in combating 
metabolic disease. Adipose tissue is unique in generating 
a large number of  hormones influencing metabolism and 
inflammation, which may compensate for the function 
of  other endocrine organs upon their malfunction. Re-
cent studies demonstrate the ability of  adipose tissue to 
replace the function of  endocrine pancreas under appro-
priate circumstances. Once the underlying mechanisms 
are documented such therapies would be applicable to 
other metabolic disorders as well. Specific characteristics 
of  adipose tissue such as its abundance, accessibility, and 
extensive ability to regenerate, make it a very useful and 
convenient source for transplantation.
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Abstract
Diabetes mellitus entails significant health problems 
worldwide. The pathogenesis of diabetes is multifac-
torial, resulting from interactions of both genetic and 
environmental factors that trigger a complex network 
of pathophysiological events, with metabolic and hemo-
dynamic alterations. In this context, inflammation has 
emerged as a key pathophysiology mechanism. New 
pathogenic pathways will provide targets for preven-
tion or future treatments. This review will focus on the 
implications of inflammation in diabetes mellitus, with 

special attention to inflammatory cytokines. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Diabetic kidney disease is the main cause of 
renal insufficiency. This complication results from inter-
actions of genetic and environmental factors that trig-
ger a complex network of pathophysiological events. 
Inflammation has emerged as a key pathophysiology 
mechanism with important implications from a thera-
peutic perspective. 
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INFLAMMATION IN DIABETIC KIDNEY 
DISEASE
Diabetes mellitus (DM) is one of  the most significant 
health problems worldwide. According to the projec-
tions, the number of  adult diabetic patients will be higher 
than 430 million in 2030. Diabetic kidney disease (DKD) 
is one of  the most prevalent complications, and is now 
the leading cause of  end-stage renal disease (ESRD) in 
developed countries[1,2]. In the general population, ESRD 
rate increases due to the rise of  diabetes mellitus. How-
ever, a recent study by Burrows et al[3] found that the 
incidence of  ESRD in the diabetic population had shown 
a reduction, suggesting that the strategies for controlling 
DKD, including early diagnosis, adequate control targets 
and follow-up, early initiation of  therapy, and the use of  
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effective renoprotective therapies, may be efficacious. 
However, it might be premature to state a real decline in 
ESRD in diabetes, since other reasons may be possible, 
such as the lack of  enough time to develop ESRD in a 
large proportion of  new diabetic subjects diagnosed in 
the last 20 years. In addition, the change of  the diagnostic 
criteria for diabetes by the ADA in 1997, may have de-
rived in the diagnosis of  diabetes in a earlier stage of  the 
disease, with a much less organ damage, and therefore, 
when diabetes have a more prolonged evolution, it is pos-
sible that this trends in the incidence of  ESRD secondary 
to diabetes may reverse. Finally, another factor is the lon-
ger survival of  diabetic patients, and thus, these subjects 
would have an increased risk of  developing renal damage 
and ESRD.

Although kidney biopsy is required to definitively es-
tablish the diagnosis of  DKD, in clinical practice this is 
unusual, since the careful screening of  patients allow to 
identify people with DKD. The main criteria to diagnose 
DKD is the presence of  an increased urinary albumin 
excretion (UAE), which is divided arbitrarily into micro-
albuminuria and macroalbuminuria, which is associated 
with an increased risk of  decline in glomerular filtration 
rate (GFR) and a high risk of  kidney failure.

DKD has been classically considered as the conse-
quence from the interaction between hemodynamic and 
metabolic factors. However, renal damage is not com-
pletely explained by these factors. Current knowledge 
indicates that this represents only a partial view of  a 
much more complex scenario. Clear evidence indicates 
that the pathogenesis of  DKD is multifactorial, with the 
interaction of  both genetic and environmental factors 
that trigger a complex network of  pathophysiological 
events[4,5]. Clinical observations and epidemiological stud-
ies in different ethnic groups have indicated that there is 
familial aggregation of  DKD. Although this information 
does not allow clearly establishing a model of  transmis-
sion, diabetic nephropathy has been widely considered 
as a polygenic disease. There may be many genes, and 
each has a cumulative genetic effect and interacts with 
environmental factors in the development of  DKD. The 

challenge in genetic studies of  diabetic nephropathy is to 
dissect its genetic complexity. Researchers have searched 
for the genes involved in susceptibility, resistance or 
progression to DKD. The aim of  genetic studies is to 
provide useful information for better understanding the 
pathogenesis and further developing novel therapeutic 
approach in this disease. Genome wide linkage analyses, 
candidate gene population association, family-based as-
sociation and genome wide association studies have been 
used for the identification of  the genes in DKD. 

In this context, inflammation has become a cardinal 
pathophysiological mechanism in the development and 
progression of  DKD. This review will focus on the im-
plications of  inflammation in DKD, with special atten-
tion to inflammatory cytokines.

INFLAMMATION IN DIABETES MELLITUS
Growing evidence indicates that pathogenesis of  diabetes 
mellitus is widely related to the activation of  the innate 
immune system and the presence of  a chronic subclinical 
low-grade inflammatory state[6,7]. Many studies suggest 
that individuals who developed DM present characteris-
tics of  inflammation several years before the diagnosis of  
DM[8,9]. Population-based studies have shown that diverse 
inflammatory markers, such as cytokines, are strong pre-
dictors of  the development of  diabetes[10-12]. In addition, 
inflammatory cytokines have been involved in the patho-
genesis of  microvascular diabetic complications, includ-
ing DKD[13-18]. 

DKD: AN INFLAMMATORY-BASED 
COMPLICATION
DM is associated with multiple deviations from normal 
homeostasis, including hemodynamic and metabolic 
alterations that produce the activation of  diverse trans-
duction pathways in the kidney. At the present time, in-
flammation is recognized as an important mechanism in 
the pathogenesis of  this complication, through oxidative 
stress, transcription factors, including nuclear factor κB 
(NFκB), janus kinase/signal transducers and activators 
of  transcription (JAK/STAT) pathway, and inflammatory 
cytokines[13,14] (Figure 1).

OXIDATIVE STRESS
There is solid experimental evidence of  a key role for re-
active oxygen species (ROS) and oxidative stress and their 
interplay with the renin-angiotensin-aldosterone system 
(RAAS) and inflammation, in the pathogenesis of  DKD. 
There is a disproportionate production of  ROS second-
ary to hyperglycemia by different renal cells[19-25]. Nuclear 
factor erythroid 2-related factor 2 (Nrf2) is a transcrip-
tion factor that participates importantly in the regulation 
of  the cellular antioxidant response[26,27]. Nrf2 appears 
to counteract renal damage in diabetes, possibly through 
inhibition of  transforming growth factor-β1 (TGF-β1). 
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Figure 1  Schematic representation of inflammatory-mediated renal injury 
in diabetic kidney disease. DM: Diabetes mellitus; NFκB: Nuclear factor κB; 
DKD: Diabetic kidney disease; JAK/STAT: Janus kinase/signal transducers and 
activators of transcription.



In both in vitro and in vivo experimental studies, Nrf2 ame-
liorated streptozotocin-induced renal damage. Nrf2(-/-) 
mice produced greater amounts of  ROS and suffered 
more severe oxidative renal damage compared with wild 
type mice[28].

NFκB
NFκB is a transcription factor that controls the expres-
sion of  genes involved in different processes, such as 
the immune response, cell differentiation and develop-
ment, apoptosis, cycle progression, inflammation, and 
tumorigenesis. Importantly, this factor is activated by 
many stimuli related to DKD[29]. Many of  the signalling 
molecules that produce the activation of  NFκB may be 
potential targets for the inhibition of  this factor, some 
of  them acting within a network of  signals leading to the 
activation of  NFκB.

NFκB is continuously present in cells in an inactive 
state. In resting cells, NFκB dimers are cloistered by 
inhibitors of  NFκB (IκBs), which prevents the transloca-
tion of  NFκB to the nucleus. Triggering of  the NFκB 
signalling cascade results in degradation of  IκBs, allowing 
the liberation of  NFκB, and thus, this factor translocates 
to the nucleus and induces transcription. IκB can be clas-
sified into several groups: classical IκB (IκBα, IκBβ and 
IκBε), NFκB precursors (p105 and p100) and nuclear 
IκB (IκBζ, Bcl-3 and IκBNS). All of  them have a central 
ankyrin repeat domain (ARD), which permits the interac-
tion with NFκB. The activation process of  NFκB needs 
the phosphorylation of  IκB, which results in polyubiq-
uitination, a sign for destruction of  the IκB by protea-
some. The Ser/Thr-specific IκB kinases (IKKs) are the 
main points for the activation of  NFκB. The IKK holo-
complex incorporates IKKα or IKKβ, and the protein 
NEMO (IKKγ or FIP-3). IKK turning on occurs with 
phosphorylation of  the activation loop Ser residues in 
the canonical MAP kinase kinase consensus motif  SxxxS 
in the kinase domain. NEMO is crucial for the turning 
on of  IKK since in cells without this protein, IKKα and 
IKKβ cannot be activated by any of  the conventional 
NFκB activators. IKKβ is a key factor for turning on of  
the canonical NFκB pathway secondary to inflammation, 
whereas IKKα has a critical function in the non-canoni-
cal NFκB pathway through the phosphorylation of  p100.

Different extracellular signals initiate the activation 
of  NFκB. After entering the nucleus, this factor interacts 
with specific sequence motifs (κB sites) on their target 
genes, resulting in transcriptional turning on. The par-
ticular DNA-binding site characteristics of  diverse NFκB 
dimers for a group of  related κB sites, and the specific 
protein-protein binding at target promoters explain the 
specificity of  NFκB signaling. In the majority of  in-
stances, turning on of  NFκB is temporary and cyclical 
under the existence of  a continuous inducer. This cyclical 
characteristic is secondary to recurrent destruction and 
production of  IκB and the resulting turning on and inac-
tivation of  NFκB, respectively.

NFκB regulates a huge variety of  target genes, includ-
ing those coding for adhesion molecules, chemokines, 
inflammatory cytokines, nitric oxide synthase, and other 
molecules related to inflammation and proliferation, all 
of  them involved in the pathogenesis of  DKD[30]. NFκB 
is activated by a wide variety of  stimuli[31] such as cyto-
kines, oxygen radicals, inhaled particles, ultraviolet irradia-
tion, bacterial or viral products, and metabolic abnormali-
ties. High glucose may produce the activation of  NFκB 
in diverse cells, including endothelial and vascular smooth 
muscle cells, and cells of  the proximal tubule[32,33]. NFκB 
is central in the interplay among the different factors, 
molecules and pathways resulting in structural alterations 
and functional abnormalities observed in DKD, such as 
activation of  the RAAS, advanced glycation end-prod-
ucts accumulation, and NADPH-dependent oxidative 
stress[34]. In experimental models of  DKD, it has been 
established the activation of  NFκB in the renal cortical 
tissue[35]. Moreover, in human DKD, proteinuria itself, 
is an important activator of  NFκB and it’s an important 
pro-inflammatory stimulus for tubular cells. Chemoat-
tractants and adhesive molecules for inflammatory cells 
are upregulated by excess ultrafiltered protein load of  
proximal tubular cells via activation of  NFκB-dependent 
and NFκB-independent pathways[36]. 

NFκB represents a central factor in inflammation, 
with the generation of  intrincated regulatory circuits 
that include a huge variety of  cellular mediators, such 
as adhesion molecules, intracellular second messengers, 
microRNA, growth and transcription factors, and cyto-
kines. NFκB system is critical for the flow of  biological 
messages from DNA information to protein synthesis. In 
addition, these elements have important pathogenic and 
pathophysiologic roles in human disease, including DKD. 

JAK/STAT PATHWAY
In animal models and in clinical studies in DKD, it has 
been demonstrated the enhanced activation of  JAK/
STAT pathway in the glomeruli and tubulointerstitial 
cells. The JAK proteins are intracellular, non receptor 
tyrosine kinases that transduce cytokine-mediated signals. 
Secondary to the binding of  the ligand to the cytokine 
receptor, the JAK proteins associated with the intracel-
lular domain of  the receptor, phosphorylate and activate 
each other. The autophosphorylation of  the JAK pro-
teins induces a conformational modification, allowing 
the transduction of  the intracellular signal by further 
phosphorylating and activating the STAT transcription 
factors. The activated STAT molecules dissociated from 
the receptor and form dimers and translocate to the 
cell nucleus, where they activate many target genes. The 
JAK/STAT signaling route is a major connecting system 
between the receptors located at the cell surface and the 
transcriptional events occurring within the cell nucleus.

It has been demonstrated the great importance of  
the JAK/STAT pathway in the pathogenesis of  DKD 
through its participation in several processes, such as the 
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of  diabetes, were able to induce the production of  sig-
nificantly higher quantity of  the inflammatory cytokines 
tumor necrosis factor (TNF)-α and interleukin 1 (IL-1) 
when were incubated with peritoneal macrophages, as 
compared with the production of  those cytokines when 
the macropages were cultured with membranes from 
normal rats. Later works showed that all types of  resi-
dent renal cells, as well as infiltrating cells (monocytes, 
macrophages and lymphocytes) are able to synthesize 
proinflammatory cytokines[47,48]. Nowadays, the results 
of  numerous studies support the notion that cytokines 
play a transcendent role in the pathogenesis of  microvas-
cular complications of  DM[13,49,50]. The renal effects of  
cytokines in DKD are associated with different actions, 
including intrarenal hemodynamic alterations, modifica-
tions of  the renal structure with changes in extracellular 
matrix and basement membranes, abnormalities in the 
expression of  diverse molecules, cellular necrosis and 
apoptosis, modification in the permeability of  glomeru-
lar endothelium, and increment in the production of  
ROS[50-54]. 

IL-1
In experimental models of  DKD, renal expression of  
IL-1 is elevated[55,56], which has been associated with 
changes in the expression of  molecules related to chemo-
taxis and cellular adhesion. Specifically, IL-1 augments the 
production of  intercellular adhesion molecule 1 (ICAM-1) 
and vascular cell adhesion molecule 1 by different renal 
cells, including endothelial, mesangial and tubular epithe-
lial cells. In addition, IL-1 also stimulates the expression 
of  endothelial-leukocyte adhesion molecule 1[57,58].

IL-1 produces abnormalities of  intraglomerular 
hemodynamics. These effects are secondary to modi-
fications in the synthesis of  prostaglandins by mesan-
gial cells. Experimental in vitro studies have shown that 
glomerular mesangial cells incubated with recombinant 
human IL-1 are stimulated to produce prostaglandin E2 
and delivery phospholipase A2[51]. Futhermore, these cells 
present an increased secretion of  prostaglandin E2 in 
response to Ang Ⅱ[52], whereas the permeability of  vas-
cular endothelial cells is enhanced[59]. Finally, this cytokine 
raises the production of  hyaluronan by epithelial cells of  
renal proximal tubule[60], which has been related with the 
development of  hypercellularity in experimental models 
of  diabetes[61]. 

IL-6
Clinical studies have shown that IL-6 levels are signifi-
cantly higher in patients with DKD in comparison with 
DM patients without nephropathy[62]. In addition, the 
histopathological analysis of  human renal samples by 
immunohistochemistry has demonstrated an increased 
expression of  mRNA encoding IL-6 in cells infiltrating 
the mesangium, interstitium and tubules, with a positive 
relationship with the severity of  mesangial expansion[63]. 
Other functional and structural abnormalities related to 
DKD and progression of  renal damage have been associ-

hypertrophy of  mesangial cells induced by angiotensin 
Ⅱ (Ang Ⅱ), and the synthesis of  TGF-β, collagen Ⅳ 
and fibronectin. In addition, the high levels of  glucose 
stimulate the production of  ROS within the cells, which 
in turn activates the JAK/STAT pathway.

Although there are several types of  JAK proteins, 
the one primarily studied in renal and vascular tissue 
is JAK2[37]. Experimental studies in animal models of  
diabetic nephropathy have showed that hyperglycemia 
is able to turning on the JAK2/STAT pathway in renal 
cells[38-42]. Moreover, clinical studies in patients with early 
of  advanced stages of  DKD have showed an increased 
expression of  JAK/STAT mRNAs and JAK2 protein in 
the glomerular and tubulointerstitial compartment, with 
an inverse correlation between JAK2 mRNA levels and 
estimated GFR in these patients[43]. 

The intimate mechanism by which hyperglycemia 
promotes JAK2 activation has been related to the inter-
action between JAK2 and ROS caused by high glucose. 
ROS enhance the activity of  JAK2, whereas the use of  
an inhibitor of  ROS formation (diphenylene iodonium) 
resulted in a marked inhibition of  Ang Ⅱ-induced activa-
tion of  JAK2. These facts reveal that ROS act as an in-
tracellular activator of  the JAK-STAT pathway, and that 
ROS also act as a second messenger for the regulation of  
JAK2 activation by Ang Ⅱ. One of  the leading causes 
of  the increased JAK2 tyrosine phosphorylation is the 
alteration of  tyrosine phosphatases (SHP-1 and SHP-2). 
SHP-1 phosphorylation is abolished under hyperglyce-
mia, whereas SHP-2 phosphorylation is increased under 
basal and Ang Ⅱ stimulation, suggesting that JAK2 sus-
tained activation under hyperglycemia is partly due to de-
creased SHP-1 and increased SHP-2 phosphorylation. In 
addition, these effects are due to hyperglycemia and not 
to hyperosmolarity, since no alterations in the tyrosine 
phosphorylation of  both SHP-1 and SHP-2 have been 
observed under conditions with elevated osmolarity with-
out hyperglycemia[38-41].

INFLAMMATORY CYTOKINES
Cytokines are low molecular weight polypeptides with 
autocrine, paracrine and juxtacrine effects, and very com-
plex activities. The classic function of  cytokines is related 
to the regulation of  the inflammatory process, but they 
are also crucial effectors of  the immune system. Cyto-
kines often have multiple target cells and multiple pleio-
tropic actions, and thus a particular cytokine may activate 
diverse reactions based on the type of  cell, the time of  
action, and the situation and ambience. Moreover, cyto-
kines may share receptor subunits and intracellular signal-
ling pathways, and they can act synergistically in many 
contexts[44].

The first studies suggesting that inflammatory cyto-
kines were engaged in the pathogenesis of  DKD were 
published more than 20 years ago by Hasegawa et al[45,46]. 
The authors reported that glomerular basement mem-
branes (GBM) obtained from rats after the induction 
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ated with IL-6, including abnormalities in the permeabil-
ity of  glomerular endothelium, expansion of  mesangial 
cells and enhanced expression of  fibronectin[54] and in-
crease in the thickness of  the GBM[64,65]. Our experimen-
tal studies have demonstrated an increase in the mRNA 
levels of  IL-6 in the renal cortex of  diabetic rats, which 
is positively associated with the urinary concentration of  
this cytokine[56]. In addition, in animal models of  diabe-
tes, wet kidney weight, a marker of  renal hypertrophy and 
an early phenomenon in kidney involvement in DM[66], 
has been reported to be enhanced, which was related to 
mRNA gene expression levels and urine concentration 
of  this cytokine[56]. 

IL-6 signals through a cell surface receptor, which is 
formed by the ligand-binding IL-6 receptor (IL-6R)-α 
chain (CD126) and the signal-transducing component 
CD130, also called gp130. In addition to the membrane 
form of  the IL-6R, there is a soluble form which is pro-
duced by cleavage of  the membrane-bound form. These 
soluble form of  the IL-6R comes to the circulation and 
is able to control the activity of  this cytokine. Regarding 
this regulatory process, it is important to differentiate the 
actions of  soluble CD126 and CD130. In plasma, soluble 
CD126 binds to IL-6 and results in the increase of  the 
complex half-life, amplifying the bio-activity of  this 
cytokine to tissues that express the membrane form of  
CD130. On the contrary, soluble form of  CD130 in the 
circulation functions as an IL-6 antagonist. Recent studies 
have shown that the soluble form of  the IL-6R is closely 
implicated in the evolution from the initial to the final 
stages of  the inflammatory reaction. IL-6 has many bio-
logical properties, including the activation of  the STAT3 
transcription factor, and the induction of  the expression 
of  adhesion molecules and other inflammatory cytokines. 

IL-18
IL-18, a potent inflammatory cytokine that belongs to 
the IL-1 superfamily[67,68], is implicated in different ac-
tions, including the release of  interferon (IFN)-γ[69] (which 
stimulates functional chemokine receptor expression in 
human mesangial cells)[70], the synthesis of  other mole-
cules involved in the inflammatory reaction, such as IL-1 
and TNF-α, the increase in the expression of  ICAM-1, 
and the apoptotic process of  endothelial cells[71-73]. Tu-
bular renal cells show an increase in the expression of  
IL-18 in patients with DKD[74], which has been related 
to the triggering of  mitogen-activated protein kinase 
(MAPK) pathways secondary to the action of  TGF-β[75]. 
Many other cells may also produce this cytokine, such 
as infiltrating monocytes, macrophages and T cells[67,68]. 
High levels of  IL-18 has been found in serum and urine 
of  patients with DKD, with an independent relationship 
with UAE[76-78]. In addition, serum IL-18 levels are associ-
ated with the urine concentration of  β-2 microglobulin, 
a low-weight protein that is used as a marker of  tubular 
dysfunction[77]. In a recent longitudinal study in patients 
with type 2 diabetes, serum and urinary levels of  IL-18 
were direct and independently associated with UAE. In 

addition, the concentrations of  this cytokine in serum 
and urine were also significantly associated with changes 
in albuminuria during the evolution of  the study[77].

TNF-α
TNF-α is a cytokine with prominent proinflammatory ef-
fects. It is mainly produced by monocytes, macrophages 
and T cells, but also intrinsic kidney cells[47,79-81]. TNF-α 
exists in the cells as a precursor of  the active form. This 
precursor is transformed in the active form through the 
action of  the TNF-α-converting enzyme[82]. There are 
two specific TNF-α receptors: the TNF-α receptor 1 
(TNFR1), an epithelial-cell receptor also named p55, and 
the TNFR2, which is an myeloid-cell receptor (p75). The 
exact roles of  the receptors are not yet completely un-
derstood and may differ depending on the organ type[83]. 
While TNFR1 modulates the immune response (IL-6 
synthesis) and apoptosis (apoptotic signaling kinase 1 and 
NFκB of  mesangial cells), TNFR2 has been recognized 
as one of  the proinflammatory mediators in glomerulo-
nephritis[84,85]. After binding to these receptors, the intra-
cellular transduction cascade is activated, leading to the 
final biological actions of  this cytokine[86], with a potential 
role in the pathogenesis of  DKD. Experimental studies 
in animal models of  diabetes have showed that TNF-α 
levels and mRNA encoding TNF-α are enhanced in renal 
glomeruli and tubules[47,56,80,87-89].

TNF-α may cause direct cytotoxicity to renal cells, 
inducing direct renal injury[90], apoptosis and necrotic cell 
death[91,92]. It can also produce alterations of  intraglomer-
ular blood flow and reduction of  glomerular filtration 
as consequence of  the disequilibrium between factors 
promoting vasoconstriction and vasodilation[93], in addi-
tion to changes in the permeability of  endothelial cells. 
Other actions of  this cytokine are the modification in 
the location of  molecules involved in the adhesion pro-
cess among cells, such as the endothelial-cadherincatenin 
complexes, as well as the alteration of  normal endothelial 
permeability due to alterations of  cellular junctions sec-
ondary to the lack of  F-actin stress fibers[94]. In addition, 
TNF-α is able to directly induce the formation of  ROS 
by renal cells[95]. Experimental researches has shown that 
TNF-α induces the activation of  NADPH oxidase in 
isolated rat glomeruli through the activation of  the intra-
cellular pathways protein kinase C/phosphatidylinositol-3 
kinase and MAPK[96]. Thus, TNF-α prompts local ROS 
production, independent of  hemodynamic mechanisms, 
resulting in alterations of  the glomerular capillary wall 
and consequently increased albumin permeability[53]. 

An increase in renal size (kidney hypertrophy) and 
glomerular filtration rate (hyperfiltration) are early and 
relevant findings of  DKD, which are significantly related 
to TNF-α[88,89]. In vitro studies demonstrated that TNF-α 
stimulates the solute uptake in proximal tubular cells sec-
ondary to the activation of  sodium-dependent cotrans-
porters[97], whereas in vivo studies in diabetic rats found an 
enhanced urinary excretion of  TNF-α excretion, which 
was related to sodium retention and renal hypertrophy. 
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All these effects could be blocked by the use of  a soluble 
TNF-α receptor fusion protein[89,97]. In the renal distal 
tubule TNF-α activates the epithelial sodium channel 
resulting in an increased reabsorption of  sodium, which 
can be abrogated by blockers of  this renal channel, such 
as amiloride, and inhibitors of  extracellular signal related 
protein kinase. The increment in renal sodium reabsorp-
tion might induce the expression of  TFG-β, with the 
development of  renal hypertrophy[98]. 

Expression mRNA levels in the renal cortex and uri-
nary TNF-α excretion show a positive and independent 
correlation with albuminuria[56,87]. Moreover, microdialysis 
studies showed that the concentration of  TNF-α in the 
kidney interstitial fluid is elevated, as well as in the urine, 
with no data of  cellular renal infiltration. These findings 
are observed previously to the detection of  an increase 
in UAE. In addition, there is an elevation in the levels of  
TNF-α in urine after the increase in UAE, which suggest 
that the rise of  albuminuria has a stimulatory effect in the 
production of  TNF-α by the kidney[99]. These findings 
support the intimate relationship between proteinuria and 
inflammation. Current data indicates that proteinuria per 
se is an important factor in the development of  tubu-
lointerstitial damage, but also by the capacity of  activate 
an inflammatory cellular response via chemoattractants, 
adhesive molecules and proinflammatory cytokines. These 
changes lead to the renal infiltration by blood circulating 
cells, with the subsequent damage to renal cells, damage 
of  tubular and interstitial structures, and finally, to the de-
velopment of  renal fibrosis and scarring[100].

Finally, many clinical studies in patients with DKD 
have reported that the serum and urinary concentrations 
of  TNF-α are elevated as compared with non-diabetic 
individuals or with diabetic subjects and kidneys, and that 
these concentrations increase concomitantly with the 
progression of  DKD. These findings indicate a potential 
relationship between the elevated levels of  this inflamma-
tory cytokine and the development and progression of  
renal injury in DM[76,101,102].

In addition to TNF-α, also TNF-α receptors have 
been related to DKD. In an observational study in type 
1 diabetic patients, the serum levels of  TNFR1 and 
TNFR2 were linked with renal function with indepen-
dence of  other variables, such as albuminuria, supporting 
the important participation of  this cytokine in DKD[103]. 
In addition, this involvement has also been found in type 
2 DM (T2DM). Thus, after more than 10 years of  follow-
up, the Nurses’ Health Study showed that increased con-
centrations of  the soluble TNFR2 were a powerful pre-
dictor of  the loss of  renal function in these patients[104].

Finally, are also important the findings derived from 
studies focused on another cytokine within the TNF su-
perfamily, the TNF-α-related apoptosis-inducing ligand 
(TRAIL). TRAIL participates in diverse cellular process-
es, including apoptosis, cell expansion and maturity[105]. 
Clinical studies in patients with diabetes have shown that 
the renal expression of  this cytokine is enhanced, and 
more importantly, the grade of  expression is directly re-

lated with the seriousness of  kidney injury[106]. Regarding 
the cell types that express TRAIL, immunohistochemis-
try studies demonstrated that the renal expression of  this 
cytokine was maximal in tubular epithelial cells. However, 
it is important to highlight that the expression of  TRAIL 
has been also observed in podocytes[106,107]. It has been 
suggested the participation of  TRAIL in the pathogen-
esis of  DKD based on the finding that the magnitude of  
renal tissue staining for this cytokine was directly associ-
ated with the grade of  tubulointerstitial inflammation, 
scarring and degeneration.

INFLAMMATION IN DKD: A 
THERAPEUTIC OPPORTUNITY
Established therapeutic strategies for prevention and 
treatment of  DKD focus on blood pressure and glucose 
control, RAAS blockade and anti-thrombotic/-inflamma-
tory treatment with aspirin. However, these therapies are 
insufficient[108] and new approaches are required[109].

Oxidative stress
In experimental models, the administration of  different 
antioxidant drugs (tempol, thiol, kallistatin)[110-112] im-
proved oxidative stress-induced renal injury, decreasing 
albuminuria and fibrosis. Triterpenoids, synthetic ana-
logues of  oleanolic acid with potent anti-inflammatory 
and antioxidant properties, activate the ARE-Keap1-Nrf2 
pathway. 

The renoprotective action of  bardoxolone methyl, a 
triterpenoid that reduces oxidative stress and inflamma-
tion through Nrf2 activation and inhibition of  NFκB, has 
been recently explored in humans. A large multicenter 
double-blind, randomized trial (BEAM study), includ-
ing 227 patients with moderate-severe CKD and T2DM, 
showed that administration of  bardoxolone was associat-
ed with significantly improvement of  GFR at 24 wk, but 
some adverse events were found (mild reversible increase 
of  albuminuria, decreased serum magnesium, muscle 
spasms, nausea and loss of  body weight)[113]. Later, the 
BEACON trial, a multinational, multicentric and double-
blind randomized, placebo-controlled Phase 3 trial, was 
designed to determine whether bardoxolone would have 
beneficial effects on the progression of  renal injury and 
the hazard of  ESRD in subjects with T2DM and severe 
stages of  renal disease. Regrettably, the increased risk of  
heart failure and cardiovascular events observed in the 
bardoxolone arm of  the BEACON study led to the pre-
mature ending of  this trial[114].

The most commonly reported serious adverse event 
in the bardoxolone group was heart failure. The mecha-
nism linking bardoxolone methyl to heart failure is un-
known, although some aspects deserve consideration. 
Firstly, body weight declined significantly in the bardoxo-
lone methyl group, which may suggest a situation of  he-
modilution secondary to fluid retention, since a reduction 
in the serum albumin and hemoglobin concentrations 
was observed. Secondly, it was observed an increase in 
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blood pressure in the bardoxolone arm, which might 
result in an elevation of  cardiac afterload. This fact, to-
gether with the increase in heart preload secondary to 
fluid retention, combined with a rise in heart rate, result 
in a situation likely to trigger heart failure. This hypoth-
esis is congruent with the increase in the concentration 
of  B-type natriuretic peptide with bardoxolone methyl, 
which may reflect an elevated left ventricular wall stress. 

NFκB
The renoprotective effects conferred by blockade of  
RAAS, provides pleiotropic and anti-inflamatory issues 
through the suppression of  NFκB-dependent pathways, 
beyond the control of  blood pressure and proteinuria[115]. 
In addition, the beneficial effects on the kidney showed 
by other drugs, such as thiazolidinediones, have been also 
associated to a suppressive effect on the activation of  this 
transcription factor[116,117]. In addition, recent experimental 
studies indicates that suppression of  NFκB activation by 
various agents, such as 1,25-dihydroxyvitamin D3[118], cilo-
stazol[119], and curcumin[120], could lead to amelioration of  
DKD, suggesting the importance of  NFκB as a therapeu-
tic target of  DKD.

JAK/STAT pathway
Studies in experimental animal models of  DKD have re-
ported that the use of  AG490, a specific tyrosine kinase 
inhibitor of  JAK2, was able to abrogate the elevation of  
systolic blood pressure[121] and the increase of  UAE[122]. 
On the other hand, recent studies have highlighted the 
role of  suppressors of  cytokine signaling (SOCS) pro-
teins, a group of  molecules that bind and interfere with 
initiating JAK proteins, and act as intracellular negative 
regulators of  JAK/STAT activation in DKD[37]. Ortiz-
Muñoz et al[123] demonstrated that high concentrations 
of  glucose were associated in vitro with activated JAK/
STAT/SOCS in human mesangial and tubular cells. 
Overexpression of  SOCS reversed the glucose-induced 
activation of  this pathway, expression of  STAT-depen-
dent genes and cell proliferation. On the other hand, the 
inoculation of  recombinant SOCS1 and SOCS3 adeno-
virus to diabetic rats resulted in an improvement of  renal 
function at 7 wk, and renal lesions such as mesangial 
expansion, fibrosis or influx of  macrophages were also 
reduced. However, further research into JAK inhibitors, 
SOCS expression or SOCS mimetics is required, given 
the critical immunomodulatory role of  this pathway, with 
possible adverse effects[37].

Inflammatory cytokines
Experimental works using animal models of  both types 
of  DM have revealed probable benefits from the use 
of  immunosuppressive drugs. Mycophenolate mofetil 
(MMF), an immunosuppressive agent with anti-inflam-
matory properties, was able to avoid the initiation and 
progression of  glomerular damage and albuminuria in 
rats with streptozotocin-induced diabetes[124]. Subsequent 
works demonstrated that MMF produced a marked re-

duction of  proteinuria, as well as the amelioration of  
both renal glomerular and tubulointerstitial scarring[125]. 
All these renoprotective effects did not have any relation-
ship with beneficial changes of  hemodynamic or meta-
bolic determinants, suggesting that the benefits probably 
resulted from its immunosuppressive and anti-inflamma-
tory actions. Thus, it was demonstrated that MMF is able 
to reduce glomerular and tubulointerstitial inflammatory 
cell infiltration[126] and abrogate different processes re-
lated to the action of  TNF-α, such as the expression of  
ICAM1, the adhesion of  neutrophils to the endothelium, 
as well as the production and discharge of  inflammatory 
cytokines (IL-6 and TNF-α)[127-129]. Despite these promis-
ing experimental results, immunosuppressive treatments 
actually are not a current clinical therapeutic option in 
patients with DKD. 

Modulation of  inflammatory cytokines, mainly 
TNF-α, has been evaluated in experimental works, as well 
as in studies with diabetic patients. In experimental stud-
ies, the use of  etanercept, a recombinant human soluble 
TNF-α receptor, was associated with the reduction of  
the urinary excretion of  this cytokine and the avoidance 
of  initial kidney structural injury and renal hypertrophy in 
experimental models of  DKD[88]. Similarly, the use of  the 
monoclonal anti-TNF-α antibody infliximab on rats with 
DKD led to a significant reduction in the urine excretion 
of  TNF-α and albuminuria[130]. At the present time, the 
use of  soluble TNF-α receptors or monoclonal antibod-
ies as therapy for DKD have been not tested in clinical 
trials. However, pentoxifylline (PTF), a drug used in the 
treatment of  peripheral vascular disease, possesses modu-
lating effects on TNF-α, with significant anti-inflamma-
tory properties that has potential clinical applications as a 
therapy for DKD. 

PTF, a methylxanthine derived with non-specific phos-
phodiesterase activity, possess significant anti-inflamma-
tory properties: this drug is able to abrogate the transcrip-
tion of  the TNF-α  gene and hamper the augmentation of  
TNF-α mRNA[131,132], regulate IL-1, IL-6 and IFN-γ, and 
lessen diverse cell actions related to inflammation, such as 
activation, adherence and phagocytosis[133,134]. PTF is able 
to reduce the generation of  profibrotic factors (fibronectin 
and TGF-β) in human mesangial cells caused by elevated 
glucose levels, and also it protects these cells from the 
harmful effects of  angiotensin Ⅱ on matrix proteins[135]. 
Furthermore, in animal models of  DKD, PTF signifi-
cantly decreased the width of  the GMB, the plastering 
of  podocyte foot processes, and the disappearance of  
the fenestrations of  glomerular endothelium[136]. In addi-
tion, PTF prevents the increased renal expression of  the 
inflammatory cytokines TNF-α, IL-1 and IL-6 secondary 
to diabetes, resulting in a reduction of  UAE, the urinary 
concentration of  these cytokines, as well as a decrease of  
renal hypertrophy and sodium retention[56,87,88]. 

Beyond the results from experimental works, a num-
ber of  clinical studies have showed that PTF is effective 
to reduce albuminuria and has potential beneficial effects 
on renal function in diabetic patients[137-143]. The antipro-
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teinuric action of  PTF has been straightly associated with 
its anti-TNF-α activity. This effect has been demonstrat-
ed to affect molecules with a high and a low molecular 
weight, such as IgG, ceruloplasmin, transferrin, albumin, 
and α 1-antitrypsine, lysozyme and β2-microglobulin, 
respectively[144]. The reduction of  proteinuria after PTF 
administration has been confirmed in various prospec-
tive, controlled, randomized clinical studies[144-146]. Fur-
thermore, PTF has showed beneficial effects on the 
urinary excretion of  markers of  tubular damage, such as 
N-acetylglucosaminidase[145]. The effectiveness of  PTF 
to reduce urinary protein excretion has been compared 
with that of  angiotensin-converting enzyme inhibitors 
(ACEI) in T2DM, and the results reveal that PTF is simi-
lar to captopril[144,145]. Moreover, the use of  PTF on top 
of  blockade of  the RAAS with ACEI or angiotensin Ⅱ 
receptor blockers, provide a supplementary and synergis-
tic decrease of  albuminuria[147,148], an effect not related to 
blood pressure and metabolic control, but positive and 
directly related with a lowering in the urinary concentra-
tion of  TNF-α[147].

The capacity of  PTF to reduce UAE in subjects with 
DKD has been confirmed by a recent meta-analysis, 
which highlighted that the anti-inflammatory properties 
of  this drug, with a decrease in the generation of  proin-
flammatory cytokines, was the main potential mechanism 
to explain its antiproteinuric effect[149]. A prospective, 
randomized clinical trial is now ongoing to evaluate the 
effects of  PTF on the renal function of  patients with 
DKD[150], and new definitive trials (multicentre, adequate-
ly powered, prospective, placebo controlled) are needed 
to give definitive evidence for the use of  PTF as a real 
option for the treatment of  DKD.

CONCLUSION
Diabetes mellitus is a major global health problem. DKD 
is one of  the most important complications and consti-
tutes a challenge for physicians. Conventional treatments 
provide incomplete protection for the development of  
renal failure. Therefore, new approaches and therapeutic 
targets are needed. Based on the results of  recent studies, 
nowadays inflammation is acknowledged as a key factor 
in the development and progression of  DKD. Future 
therapies will focus on modulation of  inflammatory 
pathways, including targets such as inflammatory cyto-
kines, oxidative stress, JAK/STAT pathway, or NFκB. In 
addition, further research is needed to understand how 
inflammatory pathways interact with other pathogenic 
factors in the context of  diabetes.  
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Abstract
Diabetes mellitus is a chronic condition that occurs 
when the body cannot produce enough or effectively 
use of insulin. Compared with individuals without dia-
betes, patients with type 2 diabetes mellitus have a 
considerably higher risk of cardiovascular morbidity and 
mortality, and are disproportionately affected by car-
diovascular disease. Most of this excess risk is it associ-
ated with an augmented prevalence of well-known risk 
factors such as hypertension, dyslipidaemia and obesity 
in these patients. However the improved cardiovascular 
disease in type 2 diabetes mellitus patients can not be 
attributed solely to the higher prevalence of traditional 
risk factors. Therefore other non-traditional risk factors 
may be important in people with type 2 diabetes melli-
tus. Cardiovascular disease is increased in type 2 diabe-
tes mellitus subjects due to a complex combination of 
various traditional and non-traditional risk factors that 
have an important role to play in the beginning and the 
evolution of atherosclerosis over its long natural history 
from endothelial function to clinical events. Many of 
these risk factors could be common history for both di-

abetes mellitus and cardiovascular disease, reinforcing 
the postulate that both disorders come independently 
from “common soil”. The objective of this review is to 
highlight the weight of traditional and non-traditional 
risk factors for cardiovascular disease in the setting of 
type 2 diabetes mellitus and discuss their position in 
the pathogenesis of the excess cardiovascular disease 
mortality and morbidity in these patients.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes mellitus; Cardiovascular 
disease; Dyslipidaemia; Blood pressure; Obesity; Mi-
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Core tip: The objective of this review is to highlight the 
importance of traditional and non-traditional risk factors 
for cardiovascular disease in the setting of type 2 dia-
betes mellitus and discuss their position in the patho-
genesis of the excess cardiovascular disease mortality 
and morbidity in these patients.

Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, 
del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular 
disease: Have all risk factors the same strength? World J Dia-
betes 2014; 5(4): 444-470  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i4/444.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i4.444

INTRODUCTION
Diabetes mellitus (DM) is a chronic condition that occurs 
when the body cannot produce enough or effectively use 
of  insulin, and are induced by a genetic predisposition 
coupled with environmental factors[1].

Three hundred sixty six million people have DM 
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in 2011; half  of  these (183 million people) are undiag-
nosed[2]. The number of  people with DM worldwide is in-
creasing and by 2030 this will have risen to 552 million[2].

DM is a well-established risk factor for cardiovascu-
lar disease (CVD). People with type 2 diabetes mellitus 
(T2DM) have a higher cardiovascular morbidity and 
mortality, and are disproportionately affected by CVD 
compared with non-diabetic subjects[3]. Diabetic vascular 
disease is responsible for two-four-fold rise in the occur-
rence of  coronary artery disease (CAD) and stroke, and 
two-eight-fold improve in the risk of  heart failure[4]. It has 
been described that patients with T2DM and no previous 
history of  CAD have the similar risk for cardiac events 
as subjects with a prior myocardial infarction[5]. However, 
subsequent studies have revealed variable results[6], which 
more indication that diabetes status may not be a CVD 
equivalent in all conditions, thus highlighting the neces-
sity for multivariate approach as an suitable basis for risk 
stratification for CVD prevention in persons with diabe-
tes[7]. The CVD risk follows a gradient, and taking this 
gradient depends on the combination of  numerous risk 
factors[7]. Most of  this excess risk is it associated with an 
improved prevalence of  well-known risk factors such as 
hypertension, dyslipidaemia and obesity in these subjects. 
During the recent decade, conclusive evidence has been 
gathered that treatment of  traditional risk factors is of  
immense importance for patients with T2DM in the re-
duction of  CVD risk[8,9]. The poor control of  the major-
ity of  cardiovascular risk factors observed in the diabetic 
population[10] supports the need for more aggressive 
arrangement of  modifiable cardiovascular risk factors, 
especially in patients with previous CVD. However the 
improved cardiovascular disease in T2DM patients can-
not be attributed solely to the higher prevalence of  tra-
ditional risk factors. Therefore other non-traditional risk 
factors may be important in people with T2DM[11] (Table 
1). Very few studies have shown prospectively the asso-
ciation of  non-traditional risk factors in T2DM, indepen-
dent of  traditional risk factors[12]. Moreover therapies that 
are currently used in the management of  T2DM such 
insulin-sensitizers and statins have a variety of  effects on 
many of  these non-traditional risk factors[13,14]. The relative 
magnitude of  these risk factors has been widely reviewed 
in the literature[15].

Several studies have aided elucidate the mechanisms 
underlying the vascular dysfunction that leads to cardio-
vascular outcomes in DM. This vascular dysfunction is 
related with visceral adiposity, insulin resistance (IR) and 
changes in the levels of  a diversity of  circulating fac-
tors[16]. The atherogenesis begins as an endothelial cell 
dysfunction when various noxious insults as dyslipidae-
mia, hypertension, diabetes, smoking, etc. induce deficits 
of  nitric oxide (NO) and prostacyclin. Next, mononu-
clear cells such as monocytes and T lymphocytes binding 
to the endothelium; this process is mediated by adhesion 
molecules present on the endothelial surface, such as 
vascular cell adhesion molecule (VCAM), intercellular 
adhesion molecule (ICAM) and E-selectin. Monocyte 

migrates into the sub endothelial space, matures into a 
resident macrophage and takes up lipid through certain 
scavenger receptors such as SR-A and CD-36, becomes 
a foam cell. Later, smooth muscle cells migrate to the 
surface and form the fibrous cap of  the lesion, and lastly 
lipid-laden macrophages release matrix metalloproteinase’
s causing plaque rupture and acute coronary syndromes 
such as myocardial infarction and unstable angina. Oxida-
tive stress (OE) play an important role in atherogenesis, 
especially in DM[17,18], by proatherogenic role of  oxidized 
low-density lipoprotein and its “in vivo” existence[19,20]. El-
ements that may promote increased OE in DM comprise 
antioxidant deficiencies, increased production of  reactive 
oxygen species and the process of  glycation and glyco-
oxilation[20]. Increased plasma levels of  nitrotyrosine, a 
marker of  protein oxidation[21,22], elevated both plasma 
and urine levels of  F2-isoprostane, a marker of  OE[21-23] 
also the evidence of  oxidative damage to DNA[24], was 
observed in patients with T2DM.

In summary, CVD is elevated in T2DM due to a 
complex combination of  various traditional and non-
traditional risk factors, that have an important role to 
play in the beginning and the evolution of  atherosclerosis 
over its long natural history from endothelial function to 
clinical events[25]. The clustering of  vascular risk observed 
in association with IR has led to the view that cardio-
vascular risk appears early, before the development of  
T2DM, whereas the solid interactions between hypergly-
caemia and microvascular disease suggests that this risk 
is not appear until frank hyperglycaemia appears. These 
notions highlight the progressive nature of  both T2DM 
and related cardiovascular risk which propose specific 
challenges at diverse stages of  the life of  a subject with 
DM[26]; but do diabetic patients have specific risk factors 
which could explain the observed increase in CVD, or 
have all cardiovascular risk factors, traditional and non-
traditional, the same strength?

The objective of  this review is to highlight the weight 
of  traditional and non-traditional risk factors for CVD 
in the setting of  T2DM and debate their position in the 
pathogenesis of  the excess CVD mortality and morbid-
ity in these patients. It is essential to know that these risk 
factors do not act in isolation. Risk factors occur simul-
taneously[27], compounding the risk for a cardiovascular 
event, although such interactions are difficult to quantify 
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Table 1  Cardiovascular risk factors in diabetes mellitus

Traditional Nontraditional

Dyslipidaemia Insulin resistance and Hyperinsulinemia
Hypertension Postprandial Hyperglycaemia
Obesity Glucose variability
Abdominal obesity Microalbuminuria
Physical exercise Haematological factors 
Cigarette smoking Thrombogenic factors

Inflammation C-reactive protein
Homocysteine and vitamins
Erectile dysfunction
Genetics and Epigenetics



(Figure 1). Many of  these risk factors may be common 
history for both DM and CVD, reinforcing the postulate 
that both disorders come independently from “common 
soil”[28].

TRADITIONAL RISK FACTORS
Dyslipidaemia
In T2DM, IR increases the mobilization of  free fatty 
acids from adipose tissue. There are three mechanisms 
across which there is increased very low-density lipo-
proteins hepatic production: an increased lipogenesis, an 
exacerbation of  substrate availability, and decreased apo-
lipoprotein B-100 (ApoB) degradation. These changes 
carry to a lipid profile marked by low high-density lipo-
protein cholesterol (HDL-C), high triglycerides (TGs), 
increased ApoB synthesis and small dense LDL par-
ticles[29]. This LDL subtype is more inclined to oxidation, 
playing an important role in atherogenesis. Stronger than 
LDL cholesterol, a low HDL-C or lonely elevated TGs, 
atherogenic dyslipidaemia (Low HDL-C and ApoA, El-
evation of  both fasting and post-prandial TGs, Elevation 
of  small dense LDL particles, Elevation of  ApoB) is in 
T2DM patients a self-determining predictor of  cardiovas-
cular risk. The protective function of  HDL may be lost 
in type 2 diabetics owing to alterations of  the protein, 
resulting in a pro-oxidant, inflammatory phenotype[30]. 

Association between dyslipidaemia and cardiovas-
cular risk in T2DM: A causal association exists between 
elevation of  TGs-rich particles and their remnants, low 
HDL-C and cardiovascular risk[31,32] as is shown in large 
data from case-control, genetic, and large observational 
studies. Still in patients with a normal LDL-C levels, 
results from statin trials confirm the place of  low HDL 
as an independent cardiovascular risk marker[33,34]. Car-
diovascular event rates were significantly greater in those 
with dyslipidaemia: LDL-C > 2.6 mmol/L, HDL-C ≤ 
0.88 mmol/L and TGs ≥ 2.3 mmol/L[35,36], as is proved 
in the Fenofibrate Intervention and Event Lowering in 
Diabetes (FIELD) study and in the Action to Control 
Cardiovascular Risk in Diabetes (ACCORD) study. The 

FIELD study[37] defined the following variables as best 
predictors of  cardiovascular events during a five year 
monitoring: lipid ratios non-HDL/HDL-C and total/
HDL-C. Ratio of  ApoB/ApoA is also associated to CVD 
outcomes, but this ratio wasn’t superior to conventional 
lipid ratios. Data from the Emerging Risk Factor Col-
laboration (ERFC) study[38] with 302430 persons with no 
history of  cardiovascular disease, demonstrated that Apo 
B and non-HDL-C each had very similar association with 
coronary heart disease (CHD) regardless of  the existence 
of  diabetes. The ERFC study showed that an increase 
of  0.38 mmol/L or 15 mg/dL in HDL-C was associated 
with a 22% reduction in risk of  CHD. Non-HDL-C was 
the best tool to define the risk linked with TGs rise in 
clinical practice[38].

Management of  dyslipidaemia, significance in the 
prevention of  CVD in T2DM: As the development of  
atherogenic dyslipidaemia precedes the onset of  overt 
glycaemia and the clinical diagnosis of  diabetes, early ef-
fective intervention is recommended to reduce the risk 
of  premature CVD.

In T2DM large data exists on action mechanism and 
efficacy of  statins in the prevention of  CVD events[39]. 
The Collaborative Atorvastatin Diabetes Study assessed 
the benefits of  a statin in T2DM patients and at least 
one of  the following risk factors: albuminuria, retinopa-
thy, hypertension or current smoking[40]. In this study, 
2838 type 2 diabetics were randomized to placebo or 
atorvastatin 10 mg/d. The study was finished ahead of  
time, because to a 37% reduction (P = 0.0001) in the 
primary endpoint (first acute CHD event). In the Heart 
Protection Study, simvastatin (40 mg/d) reduced the 
composite primary endpoint by 33% (P = 0.0003)[41]. 
This study was performed with 2912 patients (mainly 
T2DM) without pre-existing CVD. Also, atorvastatin 10 
mg decreased the rate of  major CVD events in 23% in 
the Anglo-Scandinavian Cardiac Outcomes Trial sub-
group. Diabetic patients were free from CVD[42].

Residual risk in people on LDL-lowering therapy: 
Patients with T2DM at the LDL-C target are still at a 
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Figure 1  Interactions of traditional and non-traditional risk factors in diabetes mellitus.
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Treatment targets: Lowering blood pressure (BP) un-
der 140 mmHg systolic and 85 mmHg diastolic (Table 2) 
have shown positive effects on cardiovascular outcomes 
in randomized controlled trials[49-52]. The United King-
dom Diabetes Prospective Study (UKPDS) showed that 
strict (mean 144/82 mmHg), compared with less strict 
(mean 154/87 mmHg) control decreased macrovascular 
events by 24%. DM-related mortality decreased 15% with 
each 10 mmHg drop, down to a systolic BP (SBP) of  120 
mmHg, with no indication of  further decrease, as it was 
shown in a post-hoc observational analysis of  the UK-
PDS trial[53]. Later, the ACCORD trial doesn’t support a 
decrease of  SBP below 130 mmHg[50].

Recent evidence suggests visit-to-visit variability in 
SBP and masked hypertension are predictors of  cardio-
vascular disease in T2DM.

Effects of  visit-to-visit variability in SBP on CVD in 
T2DM patients[54]: Using the data from ambulatory BP 
monitoring, previous studies reported that short-term or 
circadian variability of  BP was an important prognostic 
factor of  cardiovascular outcomes[55-58]. Similarly, a num-
ber of  observational studies have investigates the impact 
of  long-term or visit-to-visit BP variability on the risks 
of  cardiovascular outcomes[59-63]. In the Blood Pressure-
Lowering Arm of  the Anglo-Scandinavian Cardiac Out-
comes Trial, Rothwell et al[59] reported that visit-to-visit 
SBP variability was a strong predictor of  CVD among 
patients with transient ischemic attack or stroke and 
among hypertensive patients. In the Action in Diabetes 
and Vascular Disease (ADVANCE) Trial, which included 
8811 patients, visit-to-visit SBP variability was clearly 
associated with myocardial infarction and cardiovascu-
lar death. Another new and important finding of  this 
analysis was that visit-to-visit variability of  SBP clearly 
predicted the future development of  major microvascular 
complications among patients with T2DM[54].

Risk associated with masked hypertension in T2DM 
patients[64]: Masked hypertension (MH) is defined as an 
ambulatory hypertension with a normal conventional BP 
(CBP).

The International Database on Ambulatory BP (ABP) 
in relation to Cardiovascular Outcomes[65], which contain 
a great number of  diabetic patients, many of  whom have 
MH, detected a higher prevalence of  MH in DM than in 
non DM, and this finding was even more remarkable in 
treated vs non treated diabetics. Currently is not known 
the mechanism by which antihypertensive treatment is 
linked with a higher prevalence of  MH. Cardiovascular 
risk in diabetic patients who are not receiving antihy-
pertensive treatment and presenting with MH was sig-
nificantly higher than in their normotensive comparator 
group. In contrast, antihypertensive-treated diabetics with 
MH had cardiovascular risk that was identical to treated 
stage 1 and stage 2 hypertensive subjects. This suggests 
that a significant percentage of  these subjects had real hy-
pertension that simulated MH in the presence of  elevated 

significant risk of  CVD events[31]. This residual risk is as-
sociated to several factors as increased on TGs-rich pro-
teins, decreased HDL-C and small, dense LDL particles. 
Data of  FIELD study demonstrated that fenofibrate 
therapy did not decrease the primary endpoint (non-
fatal myocardial infarction and CAD-related death), but 
total CVD events were decreased from 14% to 12.5% 
(P = 0.035)[35,43]. However, a subgroup analysis of  dys-
lipidaemic people (TGs > 2.3 mmol/L and HDL-C ≤ 
0.9 mmol/L) in this study showed a 27% reduction in 
CVD risk[35]. In the ACCORD trial, 5518 patients were 
allocated to fenofibrate plus simvastatin (20-40 mg daily) 
or placebo without any additional effect on the primary 
endpoint. In a pre-specified subgroup analysis of  people 
with TGs > 204 mg/dL and HDL-C < 34 mg/dL, car-
diovascular risk was decreased in 31% in the fenofibrate-
plus-simvastatin group[44]. In both ACCORD and FIELD, 
treatment with fenofibrate was related with a strong 
reduction of  TGs (22%), whereas increase of  HDL-C 
remained less than expected (2% and 2.4%, respectively). 
The clinical benefits of  fibrates on major CVD events 
have been confirmed in meta analyses; but not on cardio-
vascular mortality[43,44]. The effects seem to be appeared 
to an improvement in TGs[45].

Blood pressure 
Arterial hypertension is present in more than 60% of  
T2DM patients[46]. This is directly linked to: (1) increased 
renin-angiotensin-aldosterone system activity; (2) hyper-
insulinemia associated to increased renal reabsorption 
of  sodium; and (3) increased sympathetic tone[47]. Aging, 
obesity, and the onset of  renal disease also promote an 
increase in the prevalence of  hypertension. Hyperten-
sion and DM are additive risk factors for CVD. While 
the diagnosis of  diabetes doubles the cardiovascular 
risk in men and more than triples the risk in women, 
hypertension quadruple cardiovascular risk in diabetic 
patients[5,48].
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Table 2  Recommendations for blood pressure control in di
abetes

Recommendations Class Level

Blood pressure control is recommended in patients with 
diabetes mellitus and hypertension to lower the risk of 
cardiovascular events

Ⅰ A

It is recommended that a patient with hypertension and 
diabetes mellitus is treated in an individualized manner, 
targeting a blood pressure of < 140/85 mmHg

Ⅰ A

It is recommended that a combination of blood pressure 
lowering agents is used to achieve blood pressure control

Ⅰ A

A RAAS blocker (ACE-I or ARB) is recommended in the 
treatment of hypertension in diabetes mellitus, particularly 
in the presence of proteinuria or microalbuminuria

Ⅰ A

Simultaneous administration of two RAAS blockers 
should be avoided in patients with diabetes mellitus

Ⅲ B

ACE-I: Angiotensin converting enzyme-inhibitors; ARB: Angiotensin re-
ceptor blockers; RAAS: Renin angiotensin aldosterone system; Class: Class 
of recommendation; Level: Level of evidence.
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ABP and normalized CBP[65]. 
Nevertheless, currently, there aren’t credible studies 

in diabetics with MH to evidence the benefit of  anti-
hypertensive therapy or to indicate how low to go with 
the reduction in ABP to achieve optimal reduction in 
cardiovascular risk. We may have to balance the potential 
advantage of  further reduction in systolic ABP and CBP 
values with the increased cardiovascular risk of  lower dia-
stolic ABP and CBP.

Obesity and abdominal obesity
Generalised obesity assessed by the body mass index 
(BMI), and abdominal obesity determined by the waist 
circumference (WC), are related with a variety of  CVD 
risk factors. Clinical guidelines do not indicate whether 
BMI or the WC measurements have identical utility in 
predicting cardiovascular risk in individuals with T2DM 
compared to non-diabetic patients[66,67].

The impact of  obesity on both atherogenesis and in 
novel procoagulant and prothrombotic cardiovascular 
risk factors is of  particular interest in cases of  T2DM, as 
they contribute to increased CVD mortality in these indi-
viduals[68-72].

In diabetic patients the coexistence of  multiple vari-
ables such as diabetic duration, glycaemic control and 
the drugs used for achieving it, lipid profile, BP or the 
existence of  risk behaviours such as smoking or alcohol 
use may confound the impact of  obesity on the risk of  
CVD[73].

The Bypass Angioplasty Revascularization Investi-
gation 2 Diabetes (BARI 2D) study[73] was designed to 
establish the association between indexes of  obesity and 
atherothrombotic risk factors in patients with T2DM 
and document CVD. By only taking into account this 
study’s baseline it was possible to evaluate among this 
group of  patients if  a higher BMI or higher WC was 
associated with specific cardiovascular risk factors, and 
whether a higher WC was related with cardiovascular 
risk factors independent of  diabetic patient’s BMI. The 
review of  the study baseline results showed, on the one 
hand, that patients with BMI ≥ 40 experienced more 
cases of  heart failure. However, a history of  myocardial 
infarction was less common in patients with BMI ≥ 35 
(26%-30%) than in those with BMI ≤ 29.9 (34%-36%), 
possibly because patients with BMI ≥ 35 reported fewer 
years smoking than those with BMI of  ≤ 29.9. Smoking 
was proportionally, inversely related to BMI. Further-
more the BMI, independent of  the WC, had a strong 
association with SBP, the plasminogen activation inhibi-
tor type 1 (PAI-1), the C-reactive protein (CRP) and fi-
brinogen, whereas WC had robust associations with the 
HDL-C and TGs levels. 

It is well known that CVD is among the most fre-
quent causes of  mortality for diabetics and obese in-
dividuals. Studies have established the mortality risk in 
obese T2DM subjects taking the age into account. The 
data obtained from a study conducted in Verona with 
3398 T2DM patients who were followed up for 10 years 

showed that in patients > 65 years a moderate excess 
weight predicted longer survival, whereas obesity was a 
negative prognostic factor in patients < 65 years[74].

On the other hand, the ADVANCE study compared 
the association between cardiovascular risk and BMI, 
WC, and the waist to hip ratio in 11140 T2DM patients, 
and reached the conclusion that the waist to hip ratio is 
the best predictor of  cardiovascular events and mortality 
in diabetics[75].

Physical exercise
Regularly practicing physical exercise is correlated with 
a lower risk of  cardiovascular morbidity and mortality, 
both in primary and in secondary prevention. However 
it should be taken into account that this type of  evidence 
is often subject to other lifestyle changes that take place 
together with exercise (for example stopping smoking, a 
balanced diet, etc.)[76,77].

Multiple observational studies, conducted in diabetic 
patients, support that stated above. One such case is 
an American prospective cohort study of  2896 T2DM 
adults which showed that those who walked at least two 
hours per week had lower frequency of  CVD mortal-
ity compared with inactive patients (HR = 0.66; 95%CI: 
0.45-0.96; 1.4% vs 2.1% per year, respectively), and that 
the risk was even lower for those who walked 3 or 4 h a 
week. In this study the protective effect of  exercise was 
independent of  gender, age, race, BMI, diabetes dura-
tion, coexisting comorbidities and physical limitations. 
The authors estimated that one death per year would be 
prevented for every 61 individuals with diabetes who 
were persuaded to walk at least two hours per week[78]. 
The same occurred in a Finnish study, with 3316 diabetic 
patients, who showed that physical activity at work and 
during leisure time was linked with a decrease in cardio-
vascular mortality and total mortality[79].

It is important to note that patients with T2DM have a 
reduced capacity for exercise due to age, the high BMI and 
the frequent presence of  left ventricular dysfunction[80]. 
Exercise improves insulin sensitivity in diabetic patients in 
the same way as it does in non-diabetic patients[81-83]. Pa-
tients with diabetes have greater IR which can be mediated 
by different defects in the glucose metabolism, and some 
of  which would improve with physical exercise. These 
defects include not only a decreased number of  insulin 
receptors and glucose transporters, but also a reduction in 
the intracellular enzymes activity (pyruvate dehydrogenase 
and glycogen synthase) and reduced oxygenation during 
exercise. Increased physical activity achieves higher mito-
chondrial enzyme activity and increases insulin sensitivity; 
however the number of  muscle capillaries in diabetic pa-
tients with microvascular complications does not increase 
or is practically negligible[84-86].

Multiple studies have shown physical exercise to im-
prove cardiovascular risk factors (dyslipidaemia, hyper-
tension and body composition) in patients with T2DM[87]. 
Although it is not all kinds of  physical activity exert the 
same influence on this risk. Aerobic exercise only or 
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combined with resistance exercise improves glycaemic 
control, BP, the amount of  TGs and WC. But resistance 
exercise alone does not have a clear impact on cardiovas-
cular risk factors.

In prospective cohort studies, exercise was associated 
with improved CVD and reduced cardiovascular mortality 
and total mortality in patients with T2DM[88]. Results from 
the Nurses’ Health Study[89] reported that 5125 women 
with T2DM who exercised for at least 4 h per week had 
a 40% lower risk of  developing CVD (comprising heart 
disease and stroke) compared to those who did not. This 
risk improvement remained after adjustments for smok-
ing, BMI, and another cardiovascular risk factors.

Smoking
Smoking is linked with deterioration in metabolic con-
trol in diabetic patients[90,91], which is associated with an 
increased risk for development of  macrovascular and mi-
crovascular complications and mortality in DM[92,93].

The suggested mechanisms for the influence of  
smoking on risk of  T2DM are summarized in Table 3. 
Administration of  nicotine rise the circulating levels of  
insulin-antagonistic hormones (growth hormone, cat-
echolamines and cortisol)[94-97], and also has been proved 
to affect the autonomic nervous system[98,99]. Nicotine, 
via these and possibly also other mechanisms, decreases 
insulin sensitivity, directly or indirectly. Also smoking 
increases circulating free fatty acid levels[95], and this is an 
additional negative factor for the insulin-mediated glu-

cose uptake[100].

Smoking and macrovascular complications in T2DM: 
CVD is responsible for the main proportion of  mortal-
ity associated with T2DM. There is evidence that smok-
ing improves the risk of  CAD in T2DM. Based on data 
from 4540 patients with T2DM followed in the UKPDS, 
smoking was shown to rise the risk of  CHD[101] in males 
and females with T2DM. The expected RR incidence of  
a fatal or non-fatal myocardial infarction or sudden death 
attributable to smoking was 1.350 (95%CI: 1.11-1.59). 
This study reveals that smoking is an independent and 
significant risk factor for stroke[102] and peripheral vascu-
lar disease[15].

However, it was proved that smoking is significantly 
related with an augmented risk for CHD, but not for 
stroke, in T1 and T2DM patients in the London cohort 
of  the prospective (8-year follow-up) World Health Or-
ganization Multinational Study of  Vascular Disease in 
Diabetics[93].

In a prospective cohort of  female nurses with T2DM[103], 
cigarette smoking was found to be robustly associated 
with the risk of  CHD, and this risk improved with the 
number of  cigarettes smoked per day. Compared with 
the nurses who had never smoked, the RR for CHD was 
1.21 (95%CI: 0.97-1.51) for past smokers; 1.66 (95%CI: 
1.10-2.52) for current smokers of  up to 14 cigarettes per 
day; and 2.68 (95%CI: 2.07-3.48) for current smokers of  
15 cigarettes per day or more.

A relatively large prospective study examined the 
effects of  smoking cessation on cardiovascular risk in 
diabetic patients[104]. Data from this study reveal that 
stopping smoking decreases mortality risk in diabetes, but 
risks keep increased some years after stopping and are 
highly dependent on the duration of  smoking.

Diabetic patients who are current smokers should be 
proposed a planned smoking cessation program that in-
cludes pharmacological treatment if  is necessary. Detailed 
instruction should be provided according to the five A 
principles (Table 4) as is developed in the 2012 Joint Eu-
ropean Prevention Guidelines[105].

NON-TRADITIONAL RISK FACTORS
Insulin resistance and hyperinsulinemia
IR is a principal characteristic of  T2DM and it develops 
in multiple organs involving the skeletal muscle, liver, adi-
pose tissue and the heart. The onset of  hyperglycaemia 
and diabetes is often preceded by several years of  IR. 
Obesity plays a major role in this phenomenon and pro-
vides an important link between T2DM and the accumu-
lation of  fat[106]. A significant section of  the population 
with T2DM is obese[107].

The hyperinsulinemia, as a result of  IR, occurs even 
before the onset of  DM, and could be, by chance, related 
to vascular disease[108-111].

The IR, measured by the hyperinsulinaemic-eugly-
cemic clamp, or surrogate methods such as the HOMA 
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Table 3  Suggested mechanisms for the influence of smoking 
on risk of type 2 diabetes

Direct effects due to inhalation of smoke from tobacco products
   Impaired insulin sensitivity based on influence of 
   haemodynamic dysregulation in capillary vascular bed
   Impaired insulin sensitivity due to increase in inflammatory markers 
   secondary to bronchitis and pulmonary infections caused by smoking
   Impaired beta-cell function due to toxic effects of tobacco smoke
   Lipotoxicity due to influence of increased triglyceride levels
   Hypercortisolaemia and increase in abdominal fat tissue
   Elevated sympathetic nervous activation
Indirect effects on glucose metabolism
   Unhealthy lifestyle in smokers (poor diet, lack of physical activity)
   Increased alcohol consumption (toxic effects on beta cells)
   Psychosocial stress and impaired sleep associated with smoking
   Impaired fetal growth in smoking pregnant women, associated 
   with increased diabetes risk in offspring in adult life

Table 4  The strategic “five As” for smoking cessation

A-ASK: Systematically inquire about smoking status at every 
opportunity

A-ADVISE: Unequivocally urge all smokers to quit
A-ASSESS: Determine the person’s degree of addiction and 

readiness to quit
A-ASSIST Agree on a smoking cessation strategy, including setting 

a quit date, behavioral counseling, and pharmacological 
support

A-ARRANGE Arrange a schedule for follow-up
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index, the frequently-sampled intravenous glucose toler-
ance test or the insulin suppression test, appears in more 
than 76% of  subjects, and is accompanied by compensa-
tory hyperinsulinemia[112]. Although molecular mecha-
nisms of  IR are not yet entirely understood, abnormali-
ties in insulin signalling have been explained[113]. Under 
normal conditions, insulin starts its action by binding to 
its specific cell surface receptor in peripheral tissues such 
as liver and skeletal muscle. The conformational changes 
of  the insulin receptor induced by insulin binding to the 
extracellular alpha-subunit of  the insulin receptor, causes 
the dimerization of  neighboring receptors and the acti-
vation of  the tyrosine kinase domain of  the intracellular 
beta-subunit. Autophosphorylation of  the beta-subunit 
itself, promoted by the onset of  tyrosine kinase activ-
ity of  insulin receptor, and the rapid phosphorylation 
of  docking proteins, such as insulin receptor substrates 
-1, -2, -3 and -4, and some other proteins, comprising 
collagen homology proteins (shc) and SRC homology 
2 (SH2), activates consecutively multiple intracellular 
signalling intermediates. In their phosphorylated forms, 
these proteins develop points of  anchoring for intracel-
lular proteins containing complementary SH2 domains, 
playing an important regulatory function in the insulin-
signalling cascade. Specifically, the activation of  Akt or 
protein kinase B, which plays an essential role in the 
mechanism of  insulin action on GLUT-4 translocation, 
glucose transport, and the activation of  NO synthase 
(“metabolic signalling pathway”), is determined by the 
interaction between insulin receptor substrate-1 proteins 
and phosphatidylinositol (PI) 3-kinase. On the contrary, 
the activation of  Ras (predominantly through shc and, 
to a lesser degree, insulin receptor proteins), Raf, and 
mitogen-activated protein kinases (MAPK) (“growth 
signalling pathway”) are implicated in the mitogenic, 
nonmetabolic, pro-inflammatory and proliferative ef-
fects of  insulin[114]. A decreased activation of  insulin 
signalling via the insulin receptor substrate-1/PI3-kinase 
(PI3K), can be showed in insulin-resistant animals and in 
vitro models. This reduction leads to a decreased glucose 
uptake, diminished NO synthesis, and reduced glucose 
utilisation in insulin target tissues pathway. Similar de-
crease in glucose transport is detected in the pancreatic 
beta cells, which induces a compensatory rise in insulin 
secretion. In spite of  this, the MAPK-mediated insulin 
pathway persists unaffected. Under these conditions of  
hyperinsulinemia, this selective imbalance of  the two 
signal transduction pathways can lead to a dispropor-
tionate proliferative/growth-promoting signal, while the 
normal transport of  glucose and glucose homeostasis is 
conserved. Compensatory hyperinsulinemia stimulates 
in vascular smooth muscle and endothelial cells, an in-
creased production of  endothelin, PAI-1, proinflamma-
tory cytokines and an augmented surface expression of  
adhesion molecules[115-118].

Homeostasis of  blood vessels is conserved through 
the activation of  endothelium-derived NO, stimulated by 
insulin. By rapid posttranslational mechanisms, which are 

mediated through PI3K/Akt signaling pathway, insulin 
augments the endothelial NO production by activating 
endothelial NO synthase Ⅲ (endothelial NOS)[119]. In 
IR states, the selective inhibition of  the PI3K/Akt path-
way detected in skeletal muscle from obese people and 
subjects with T2DM[120], and in the vasculature and the 
myocardium of  obese Zucker rats, leads to endothelial 
dysfunction, with a consequent rise in the interaction 
between endothelial cells and leukocytes, an increase in 
vascular tone and BP, and a prothrombotic state. In this 
selective state, largely due to the ability of  insulin to in-
crease NO production, its physiological anti-atherogenic 
effects become proatherogenic[121].

Postprandial hyperglycaemia and glucose variability 
Postprandial hyperglycaemia has been appeared to be 
related with an augmented risk of  cardiovascular events 
in patients with and without T2DM[122-125]. Postprandial 
glucose excursions, especially when accompanied by in-
creased postprandial TGs levels, are pathophysiologically 
related to augmented OE, systemic inflammation and 
endothelial dysfunction, all of  which are associated to in-
creases in atherosclerosis and cardiovascular events[126,127]. 
Postmeal hyperglycaemia is also linked to retinopathy, 
cognitive dysfunction in old people and specific can-
cers[128]. Relevantly, even in the setting of  controlled 
fasting glucose levels, postprandial spikes in glucose pow-
erfully improve both atherogenesis and cardiovascular 
events[122-125,129].

Two studies have examined the predictive strength of  
postprandial glycemia on cardiovascular events. The In-
tervention Diabetes Study[130], a prospective population-
based multicentre trial, conducted in 1139 subjects, aged 
30-55 years, newly diagnosed of  T2DM, followed up for 
11 years; showed that postprandial blood glucose was an 
independent predictor for death. However, this study did 
not consider HbA1c. On the other hand, the San Luigi 
Gonzaga Diabetes Study[122], conducted in 505 T2DM pa-
tients followed up for 14 years, indicated that both post-
prandial blood glucose and HbA1c predict cardiovascular 
events and all-cause mortality, showing the independent 
predictive power of  postprandial glycemia on cardiovas-
cular events after correction for HbA1c.

It has been shown that intensive control of  hyper-
glycemia prevents macrovascular events and all-cause 
mortality in individuals with T2DM. A meta-analysis of  
5 randomized controlled trials showed that, in T2DM 
subjects, intensive glycaemic control considerably de-
creases coronary events without an increased risk of  
death [131]. However, the specific effect of  postprandial 
blood glucose control on cardiovascular events and 
mortality, is less clear. The following evidence is avail-
able: (1) Intervention with acarbose, a drug that dimin-
ish postprandial blood glucose excursions by delaying 
carbohydrate digestion in the small intestine, can prevent 
myocardial infarction and CVD in T2DM patients[132]. 
Moreover, in patients with impaired glucose tolerance, in 
Study to Prevent Non Insulin Dependent Diabetes Mel-
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litus, acarbose was associated with a 49% relative risk re-
duction in the development of  cardiovascular events[133]; 
(2) Nateglinide, a drug that lowers postprandial blood 
glucose by stimulating insulin secretion from the pan-
creas, was incapable in the Nateglinide and Valsartan in 
Impaired Glucose Tolerance Outcomes Research trial[134] 
to diminish cardiovascular events among persons with 
impaired glucose tolerance and established CVD; how-
ever, patients on Nateglinide presented an increase of  2-h 
postchallenge blood glucose[134]; and (3) The Hypergly-
cemia and its Effect after Acute myocaRdial infarcTion 
on cardiovascular outcomes in patients with T2DM trial, 
planned to compare the effects of  prandial vs fasting 
glycemic control on risk for cardiovascular outcomes in 
subjects with T2DM after acute myocardial infarction, 
revealed that treating diabetic survivors of  acute myocar-
dial infarction with two distinct insulin regimens (prandial 
vs basal) achieved differences in fasting blood glucose, 
less-than-expected differences in postprandial blood glu-
cose, and no difference in risk for future cardiovascular 
event rates[135].

Therefore, the role of  postprandial glycemia as a pre-
dictor of  cardiovascular events, and its importance as a 
treatment target, are issues to discuss.

These assessments had led to the concept of  glucose 
variability. Recently, it has been suggested that blood glu-
cose variability may contribute, even more than HbA1c, 
to the development of  diabetes complications. However, 
the lack of  consensus on the best approach to define the 
glucose variability, and difficulty of  measuring it, are still 
unsolved problems. The relationship between glucose 
variability and OE, is an important physiopathological 
element for the development of  the cardiovascular com-
plications of  diabetes. Glucose variability, thus, looks set 
to become the main target for future treatments for dia-
betes, aimed to reaching better efficacy in the metabolic 
control of  diabetes and the prevention of  complications 
related to it[136]. 

Microalbuminuria
The term microalbuminuria (MA), a urinary albumin 
excretion between 30 and 300 mg/24 h, has been in-
troduced to identify subjects at increased risk of  early 
cardiovascular death and progressive renal disease. In 
individuals with T2DM, MA is a prematurely clinical sign 
suggestive of  vascular damage to the glomerulus. MA has 
also been currently reported as an important risk factor 
for CVD and remains the main and most widely used 
marker of  diabetic renal damage in clinical practice. It 
is also a marker of  organ dysfunction, and has been ap-
peared to be associated with an increased risk of  cardio-
vascular morbidity and mortality in T2DM patients[137]. At 
present, an increased albumin excretion is considered to 
be a renal symptom of  generalized endothelial dysfunc-
tion[138]. According to different studies, the prevalence of  
MA is up to 19% in T2DM[139-142].

The epidemiology of  MA shows a close association 
with systemic and glomerular endothelial dysfunction and 

with vascular disease. Damage to glycocalyx, a protein 
rich surface layer on the glomerular endothelium, prob-
ably represents the initial step in the development of  dia-
betic MA[143].

MA is a marker for diabetic nephropathy. It also sig-
nifies CVD as well as nephropathy in T2DM. MA may 
precede T2DM, and forms one of  the components of  
the IR/metabolic syndrome which confer a particularly 
high risk of  cardiovascular deaths. Therefore, MA ac-
counts for the increased risk of  vascular disease in sub-
jects with metabolic syndrome[144]. Other indicators of  
cardiovascular risk, such as markers of  inflammation, 
are related with MA in population of  patients with and 
without diabetes[145]. The existence of  MA in people with 
T2DM is the most important early sign that we alert us 
to the onset of  a systemic vascular disease, and associ-
ated target organ damage to the heart, the brain and the 
kidney. Their presence serves to recognize patients at 
risk of  early cardiovascular death and advancement of  
kidney disease[146].

Patients with MA are at very high vascular risk and 
should share identical objectives of  a vascular risk factor 
control as patients with overt CVD[147]. MA in patients 
with T2DM positively correlates with the severity of  
coronary atherosclerosis[148]. Reinhard et al[149] showed 
that half  of  asymptomatic patients with T2DM and MA, 
which received an intensive multifactorial treatment for 
cardiovascular risk diminution, had significant athero-
sclerosis in at least one vascular territory. They observed 
a higher prevalence of  coronary atherosclerosis than 
carotid disease[149]. On the other hand, MA was higher in 
T2DM patients with silent myocardial ischemia[150].

The presence of  MA also indicates that a low-level 
inflammatory process is ongoing. In hypertensive indi-
viduals, with or without diabetes, increasing MA is related 
with augmented levels of  inflammatory markers, endo-
thelial dysfunction and platelet activation[151]. Elevated 
plasma osteoprotegerin, a cytokine receptor, is an inde-
pendent predictor of  the presence of  CVD in asymp-
tomatic T2DM patients with MA[152], and CRP, a marker 
of  inflammation, was an independent risk factor for de-
velopment of  nephropathy in T2DM patients[153]. Finally, 
D-dimer, a fibrin degradation product, is associated with 
MA in T2DM patients; this suggests that glomerular dys-
function is in part mediated by hypercoagulability[154].

Duration of  diabetes[139], diabetes severity[139], unco-
ntrolled hypertension[139,141,153,155-157], baseline levels of  
urinary albumin excretion > 12 mg/24 h[153], BMI[139,157], 
central obesity[139,140,155], high HbA1c[139,141,157], smoking hab-
its[140,155,157], age of  the patients[156], creatinine[141], CRP > 3 
mg/L[153], as well as TGs and HDL-C[136,156] were indepen-
dent risk factors for the development of  MA in T2DM 
patients. These risk factors were independently associated 
with established MA. Population of  normotensive sub-
jects with T2DM and MA, female sex, was related with 
elevated risk of  fatal and nonfatal CVD, independent 
of  the traditional cardiovascular risk factors, the severity 
of  nephropathy or existence of  retinopathy, or health 
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care utilization[158]; and a decreased estimated glomeru-
lar filtration rate and the occurrence of  MA were each 
related with a near doubling of  the prevalence of  CVD, 
independently of  classical cardiovascular risk factors and 
glycaemia control in subjects with T2DM[159].

Carotid stiffness, quantified by quantitative carotid 
stiffness, a local functional measurement of  the arterial 
wall, is augmented in T2DM patients with MA[160]. MA is 
also independently linked with arterial stiffness and vas-
cular inflammation in individuals with newly diagnosed 
T2DM[161], but not with carotid intima-media thick-
ness[161,162], with emphasizes the significance of  proactive 
clinical investigations for atherosclerotic complications in 
subjects with MA in newly diagnosed DM. On the other 
hand, patients with MA have more severe angiographi-
cally detected CAD than those without MA[163]. Thus 
relative is independent of  other risk factors and is par-
ticularly evident in patients with T2DM[164].

In conclusion, MA is a marker for diabetic nephropa-
thy. It also signifies CVD in T2DM. MA is predictive, 
independent of  classical risk factors and all causes of  
mortality in T2DM individuals. Determination of  MA 
has been shown to be helpful to recognize patients with 
T2DM at high risk of  renal and CVD. MA is correlated 
with higher cardiovascular mortality, especially in diabet-
ics, but the direct relationship between MA and vascular 
wall properties is still not clear.

Haematological and thrombogenic factors
Atherothrombosis, defined as the formation of  a throm-
bus on a pre-existing atherosclerotic plaque, is the leading 
cause of  mortality in the Western world. Diabetes has 
been recognised as an independent risk factor and ath-
erothrombosis accounts for the 80% of  deaths in these 
patients[165,166]. It is the result of  the progression of  ath-
erosclerosis, and its major manifestations are sudden car-
diac death, myocardial infarction, stroke and peripheral 
arterial ischemia[167].

Diabetes is related with a hypercoagulable state, which 
is more pronounced during the postprandial period. Hy-
peractivated platelets at injured endothelial interfaces act, 
together with an improved availability of  thrombotic pre-
cursors, decreased coagulation inhibitors and diminished 
fibrinolysis[168]. The UKPDS clearly showed that macrovas-
cular events in patients with T2DM accounted for more 
than 50% of  total mortality[169]. Atherosclerosis develops 
more quickly and aggressively in diabetes, and leads more 
frequently to thrombotic events due to the interaction be-
tween the vascular wall and hypercoagulability[170,171].

In DM, the activation of  the intrinsic coagulation 
pathway occurs more easily and fibrinolysis diminishes[172]. 
The increased platelet activity signifies increased adhe-
sion and aggregation in diabetic patients (Figure 2). In-
dividuals with various stages of  diabetes were showed to 
have increased numbers of  CD62P-positive and CD63-
positive platelets (activated platelets) compared to healthy 
subjects. This increase in circulating activated platelets 
is not associated with glycaemic control improvement 
thereby intensifying insulin therapy. Surprisingly this 
increase in CD62P-positive platelets can also be found 
in healthy, first-degree relatives of  patients with T1DM. 
Additionally, significant increments in basal thromboxane 
B[164] are seen in the platelets of  both type T1 and T2DM, 
both in patients with an absence of  vascular complica-
tions, as well as those with good diabetic control.

Flow cytometry has revealed that a large, hyperactive 
platelet subpopulation circulates in patients with DM, at 
a similar level to patients who have experienced a myo-
cardial infarction. This suggests that the increased aggre-
gation potential of  these platelets lowers their activation 
threshold, thus contributing to the augmented incidence 
of  acute cardiovascular events in DM[173].

Apart from platelet hyperactivity, DM also predis-
poses the coagulation system to other disorders[174]. 
Fibrinolysis is a natural defence system against throm-
bosis. Under physiological conditions, there is a balance 
between plasminogen activators and inhibitors; however, 
an imbalance can be caused by a reduction in the tissue 
plasminogen activator levels or an increase in the PAI-1 
levels. This prethrombotic state in diabetic patients has 
been explained by multiple hypotheses. One such hypoth-
esis is based on various studies showing the high levels 
of  PAI-1 found in diabetic patients[175,176]. High concen-
trations of  PAI-1 have been implicated with an increase 
in cardiovascular morbidity and mortality with age. A 
search was made for the relation of  PAI-1 with various 
factors such as age, gender and ethnicity in subjects with 
T2DM and stable CAD enrolled in the BARI 2D study. 
The results of  this study concluded that in subjects with 
T2DM and stable CAD, the levels of  PAI-1 antigen and 
its activity were paradoxically lesser with advancing age; 
and in contrast, D-dimer (P < 0.0001) was increased, re-
vealing elevated fibrinolysis. These results may indicate a 
protective phenomenon resulting in an improved survival 
in some older people with DM that endowed them with 
longevity enough to permit them to participate in the 
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BARI 2D study[177].
Another hypothesis in this prethrombotic state is 

that hyperglycaemia permits the protein glycosylation 
process, such as the fibrinogen, which affects the clot’s 
physiological structure, and thus it is more resistant to 
plasmin degradation.

DM is also associated with increased plasma fibrino-
gen, which is considered as another cardiovascular risk 
factor[12,178]. This increase in fibrinogen is also associated 
with other vascular risk factors such as old age, increased 
BMI, smoking, total cholesterol and TGs. Fibrinogen 
has been extensively studied by many researchers, and a 
connection between the amount of  fibrinogen and fibrin 
present in the vascular wall, the fibrinogen plasma con-
centration and the severity of  atherosclerosis has been 
established. This association has been shown to be more 
evident in patients with diabetes[179,180]. Furthermore, an 
elevated concentration of  fibrinogen has been found in 
diabetic patients with albuminuria. Some authors believe 
that the increased levels of  fibrinogen, factor Ⅶ and von 
Willebrand factor which have been found in DM patients 
serve as predictors of  coronary atherosclerosis and car-
diovascular risk factors[181]. This association supports the 
fact that diabetic patients develop cardiovascular compli-
cations more frequently than the healthy population.

Inflammation: C-reactive protein
Atherosclerotic CHD and other forms of  CVD are the 
main cause of  mortality in T2DM, as well a major con-
tributor to morbidity and lifetime costs. When diabetes 
occurs in subjects with established CAD, absolute risk 
for future events is very high. Inflammation has been in-
volved in the pathogenesis of  CVD, T2DM, and cancer. 
Different biochemical parameters may be utilised for the 
evaluation of  CVD risk in T2DM patients of  different 
age[182]. CRP is an acute-phase protein produces in the 
liver; its release is stimulated by cytokines (interleukin 6 
and tumour necrosis factor alpha). Increased levels of  it 
are related with the presence and severity of  CAD and 
renal impairment in individuals with T2DM[183]. Although 
the determination of  high-sensitivity CRP (hs-CRP) level 
represents an interest in the screening of  CVD in T2DM 
patients[184]. 

Increased concentrations of  hs-CRP are associated 
with IR, T2DM and the development of  CVD. In par-
ticular, inflammation strongly linked with endothelial 
dysfunction is accepted as one of  the cardiovascular 
risk factors clustering in the IR syndrome or metabolic 
syndrome. Moreover, low-grade inflammation might 
play an important role in the pathobiology of  the meta-
bolic syndrome[185,186]. The exact mechanism linking IR 
and inflammation remain unclear. Several studies have 
drawn attention to the finding of  increased levels of  hs-
CRP in T2DM patients with features of  the metabolic 
syndrome[187-190]. The elevation of  hs-CRP was strongly 
correlated with BMI, serum lipids, fasting glucose and 
WC[191-197], features of  the metabolic syndrome, indicating 
potential roles of  obesity and abdominal obesity in the 

development of  inflammation associated with the meta-
bolic syndrome in T2DM patients. The strong association 
between IR and inflammation in atherogenesis insinuates 
that therapies that address both parameters, such thia-
zolidinediones may have benefits in decreasing diabetes-
related macrovascular complications[198].

Serum concentration of  hs-CRP is a good biomarker 
of  chronic low-grade inflammation and is an established 
prognostic marker in acute coronary syndrome. In sub-
jects with DM, the presence of  high plasma levels of  hs-
CRP are predictive for fatal and non-fatal CHD[199,200]. 
Although suffering from an acute CAD, patients with 
T2DM have a poor outcome compared with non-diabetic 
patients, in part explained by a persistent endothelium-
dependent dysfunction and inflammatory activity in these 
patients after acute myocardial infarction[201]. Finally, hs-
CRP was related with silent myocardial ischemia, and 
might help to detect silent myocardial ischemia in diabetic 
patients[202]. 

On the other hand, in T2DM patients hs-CRP was 
an independent risk factor for CHD deaths[203]. In a case 
control study including 60 T2DM subjects with normal 
lipid profile and 60 age and sex-matched healthy controls, 
hs-CRP was an independent cardiac risk predictor even 
with normal lipid profile and can help measure additional 
risk[204]. Moreover the Diabetes Heart Study (DHS) docu-
ments the utility of  hs-CRP in predicting risk for all-
cause mortality in 846 European Americans with T2DM, 
and supports its use as a screening tool in risk predic-
tion models[205]. However, in acute coronary syndrome 
few studies found no significant differences in hs-CRP 
between patients with and without diabetes[206]. Khatana 
et al[207] have found that hs-CRP may not be suitable to 
predict changes in cardiovascular risk among diabetic 
patients, and should not be a surrogate for achieving 
evidence based goals in traditional cardiovascular risk fac-
tors; in the Prospective Evaluation of  Diabetic Ischaemia 
Heart Disease by Coronary Tomography Study, there was 
a negative association between coronary artery calcifica-
tion score, obtained by electron beam tomography, and 
CRP in T2DM patients[208]; and the Irbesartan Diabetic 
Nephropathy Trial with baseline data obtained from 722 
diabetic nephropathy patients showed a lack of  associa-
tion between hs-CRP and specific established or emerg-
ing cardiovascular risk factors[209].

Diabetic patients with MA and hypertension had more 
frequent association with increased marker of  inflamma-
tion such hs-CRP[210]. The correlation found between hs-
CRP levels and albuminuria in T2DM patients[211] suggest 
that the inflammatory process plays a role in diabetic ne-
phropathy patients. However, in these patients CRP does 
not add predictive information above and beyond that of-
fered by traditional established risk factors[212].

Several large prospective studies have proved that 
baseline levels of  hs-CRP are an independent predic-
tor of  cardiovascular events among apparently healthy 
individuals. However, prospective data on whether hs-
CRP predicts cardiovascular events in diabetic patients 
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are limited so far. The Prevention of  Renal and Vascular 
End stage Disease study, a prospective population-based 
cohort study in the Nederland’s, including 8592 partici-
pants[213] show that elevated hs-CRP, has added value 
to the present metabolic syndrome defining variables 
in predicting new onset CVD. In a prospective cohort 
study, baseline hs-CRP level is associated with increased 
first cardio-cerebral vascular event in the population 
with DM[214]. In the Casale Monferrato Study[215], hs-CRP 
measurement is independently related with short-term 
mortality risk in T2DM patients, even in normoalbumin-
uric individuals, and in those without a prior diagnosis 
of  CVD; and in the Chennai Urban Rural Epidemiology 
Study (CURES)[216], an ongoing population-based study 
conducted on 150 subjects selected from the CURES, 
hs-CRP demonstrated a solid association with CAD and 
diabetes even after adjusting for age and gender. Finally, 
in a prospective study a cohort of  746 American men 
aged 46-81 years who were free of  CVD at the time of  
blood collection in 1993-1994 were followed[217]. In this 
study elevated plasma levels of  hs-CRP were related 
with an improved risk of  incident cardiovascular events 
among diabetic men, independent of  currently estab-
lished lifestyle risk factors, blood lipids and glycaemic 
control.

On the other hand, in the recent ADVANCE study[218], 
the authors deduce that interleukin-6 levels but not CRP 
or fibrinogen levels, add significantly to the prediction 
of  macrovascular events and mortality in patients with 
T2DM who have baseline CVD or risk factors.

In conclusion, the serum levels of  hs-CRP, which is a 
marker of  systemic inflammation and a mediator of  ath-
erosclerotic disease, have been correlated with the risk of  
CVD in T2DM patients. The determination of  it is very 
important as screening of  CVD in T2DM patients.

Homocysteine and vitamins
Homocysteine (HC) is a sulphur-containing essential 
amino acid derived from methionine. Vitamins B6, B12 
and folic acid act as coenzymes in the metabolism of  
methionine and HC, and individual deficiency may cause 
hyperhomocysteinemia (HHC)[219]. Therefore, a negative 
correlation exists between HC plasma levels and vita-
mins B6, B12 and folic acid levels[220]. The HC plasma 
levels are higher in men, in women they increase after the 
menopause, and in both sexes they rise with aging[219]. An 
increase in HC levels has also been described in chronic 
kidney disease through a mechanism that is still not 
entirely understood, although it has been related to de-
creased renal clearance and metabolism and/or a descent 
in the extrarenal metabolism resulting from retained in-
hibitory substances[221].

In T2DM subjects, elevated HC levels have been 
related with a rise in the risk of  suffering from cardiovas-
cular events, independent of  other risk factors[222,223], such 
as age and renal function[223]. The close relation between 
HC and CVD confirms the atherosclerotic role in the 
same[224]. For some authors, higher HC levels are consis-

tent not only with aging and the male gender, but also in 
line with the development of  DM[225]. HC levels do not 
appear to be related with anthropometric indices such 
as weight, BMI, percentage of  fat mass and triceps skin 
fold[226].

On the other hand, the HC could play an etiologic 
role in the pathogenesis of  T2DM, promoting OE, sys-
temic inflammation and endothelial dysfunction[227]. HC 
seems to be the cause of  increased mortality in T2DM 
subjects[223], and some authors consider it as a predictor 
of  mortality[228]. The highest HC levels have been found 
in diabetic patients who have suffered several cardiovas-
cular events[222]. 

The role of  HC as a cardiovascular risk factor in DM 
is unclear. The poor metabolic control of  the T2DM 
patients appears to have a predominant role. There exists 
a positive correlation between the HC levels and those 
of  HbA1c, and a negative correlation with those of  insu-
lin[229]. On the other hand, a decline in HC levels has been 
observed in diabetic patients with a high cardiovascular 
risk and an elevated intake of  foods high in folate, and 
vitamins B6 and B12[230]. Furthermore, an important pre-
dictor of  cardiovascular risk in T2DM is arterial compli-
ance which may not only be associated with age, but also 
with HC levels and renal function parameters[231].

The HHC as a cardiovascular risk factor includes 
CHD, both in the general population and in the diabetic 
population, although the role it plays on T2DM is un-
known. However, the HHC in plasma is closely related to 
the development of  CAD[232]. Thus, elevated HC levels 
have been found in patients with CHD, closely correlated 
with the occurrence of  the same in the presence of  de-
creased levels of  folic acid and HDL-C[233]. 

Silent myocardial ischemia is one of  the most fre-
quent causes of  mortality in the United States and it 
not only affects the diabetic population. Traditional risk 
factors have been identified such as T2DM itself, hyper-
tension, dyslipidaemia and smoking, but there are also a 
series of  novel factors such as lipoprotein (a), CRP and 
HC that can help improve the evaluation of  patients with 
this disease[233]. In patients with T2DM, silent myocardial 
infarctions have been associated with these novel cardio-
vascular risk factors such as increased HC[234]. The HHC 
is related with increased mortality in T2DM patients suf-
fering from CAD, without, however, being a predictor 
factor of  cardiovascular mortality[235].

MA is a predictor of  CVD and shows a close re-
lationship with HC. The reason for this association is 
unknown; however it could be in the origin of  MA. 
There are studies that show a relationship between HC 
and MA, irrespective of  T2DM and hypertension[236]. In 
T2DM subjects with a high prevalence of  peripheral ar-
terial disease and nephropathy, there exists a relationship 
between the levels of  HC and those of  MA[226]. Finally, 
HHC is considered as a risk factor for the development 
of  peripheral arterial disease in T2DM individuals over 
65 years of  age[237].

HHC is linked with the risk of  developing peripheral 
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and autonomic neuropathy. In T2DM, HC is associated 
with neuropathy developing through an ischemia. The 
rise of  HC appears to be independently associated with 
autonomic neuropathy, showing no association with pe-
ripheral diabetic neuropathy. For each increase in HC, 
there is a 7.1% increased risk of  developing autonomic 
neuropathy[238]. 

In a study of  T2DM subjects vs non diabetic con-
trol subjects, HC levels were found as elevated as those 
found with preproliferative retinopathy and glaucoma, 
suggesting that HC was a risk factor for the development 
of  microvascular lesions in these subjects[239]. Small HC 
elevations in patients with diabetic retinopathy have been 
associated with capillary and endothelial dysregulation, in 
which the HHC could be an important risk factor for the 
development of  a macular oedema[240].

An increase in HC levels has been described together 
with a decrease in levels of  folic acid and vitamin B12[241]. 
However, taking folic acid, and vitamins B12 and B6 
supplements with the aim of  reducing HC levels does 
not decrease the risk of  developing CVD[237]. Vitamin 
B12 deficiency together with an elevation of  HC will 
predispose towards an augmented risk of  cardiovascular 
morbidity and mortality in T2DM subjects. Vitamin B12 
supplementation in these patients will not reduce the car-
diovascular risk[242]. 

As regards vitamin A, it is capable of  affecting the 
inflammatory mechanisms and the immune function and 
therefore be associated to CVD. However, there does not 
appear to be a relation to the cardiovascular risk, as varia-
tions of  the same are not found in T2DM[243,244]. Neither 
has an association been found between the zinc levels 
and cardiovascular risk with the HbA1c levels in T2DM 
patients[244].

The actions of  vitamin D are mediated by binding to 
a specific nuclear vitamin D receptor (VDR)[247]. Allelic 
variations of  the VDR gene are related with improved 
risk of  CAD in T2DM patients[245]. The hypothesis that 
vitamin D might protect against vascular disease, com-
prising atherosclerosis and endothelial dysfunction, is 
postulated since it has been observed that the VDR is 
also expressed in the vasculature[246]. An increased pro-
duction of  NO, the inhibition of  macrophage to foam 
cell formation, or a decreased expression of  adhesion 
molecules in endothelial cells, might mediate the vascular 
protective actions of  vitamin D[247-249]. Both endothe-
lial dysfunction and increased arterial stiffness[246,250], 
and more recently cardiovascular risk factors including 
T2DM[251], and an elevated risk of  CVD[252] are related 
with low vitamin D levels. Of  published observational 
studies, most have shown that lower levels of  vitamin D 
are related with a high incidence of  cardiovascular events 
and mortality[253-257]. Even asymptomatic CAD was as-
sociated with lower vitamin D levels in high risk T2DM 
patients, as observed in a recent observational study[258]. 
On the other hand, in T2DM patients, severe vitamin D 
deficiency predicts improved risk of  all-cause and cardio-
vascular mortality, independent of  urinary albumin excre-

tion rate and conventional cardiovascular risk factors[259], 
and vitamin D deficiency appears to be a significant risk 
factor for T2DM severity and associated cardio-metabolic 
risk[260]. Furthermore, in a double-blind, parallel group, 
placebo-controlled randomized trial, a single large dose 
of  100000 IU vitamin D2 improves endothelial function 
in patients with T2DM and vitamin D insufficiency[261]; 
and in a prospective study, vitamin D supplementation 
(2000 IU/d) in patients with T2DM on different thera-
peutic regimens, those patients on insulin in combination 
with other drugs was the group that benefited the most 
as compared with other groups in terms of  improving 
cardiovascular risk[262]. Thus, we can conclude that in 
T2DM vitamin D deficiency is an independent cardiovas-
cular risk factor, but whether vitamin D supplementation 
can significantly improve cardiovascular outcomes is yet 
largely unknown. However, early intervention may be 
considered to improve prevention of  T2DM related car-
diovascular complications. 

It has been believed for years that caffeine, one of  
the substances most used worldwide and included in cof-
fee, tea, energy drinks and chocolate, increases coronary 
risk, hypertension and HC concentrations. However their 
high consumption could modulate insulin sensitivity and 
blood glucose levels, and in the long term it may reduce 
the incidence of  T2DM[263]. Therefore caffeine would 
not have any adverse cardiovascular effects, as it demon-
strates an antioxidant capacity, and presents an inverse 
risk association with regard to T2DM[264].

Chronic alcoholism may produce an HC plasma in-
crease due to nutritional deficiencies associated with the 
said habit[265,266]. An association between alcohol and the 
development of  atherosclerosis has been observed in 
patients with T2DM. Alcohol consumption and HHC 
together could explain the occurrence of  atherosclerosis 
in diabetic subjects[267].

Finally, regarding treatments for T2DM, metformin 
appears to reduce folic acid levels in the blood, which in 
the long-term would raise HC levels. Folate management 
in these patients would reduce the levels of  the same[268].

Erectile dysfunction
Men with DM have a higher prevalence of  erectile dys-
function (ED) compared with the general population[269]. 
In these individuals, the prevalence of  ED augments with 
age and duration and severity of  disease[269,270]. ED and 
atherosclerosis are frequent complications of  DM[271]. 
There are close relations between ED and atherosclerosis 
in patients with T2DM, and ED might serve as a clini-
cal marker for coronary, peripheral, or cerebrovascular 
diseases in these subjects[272]. Several studies have found 
a positive correlation between ED and the risk of  car-
diovascular events[273,274]. The total cardiovascular risk in-
creases severity of  ED in T2DM patients without having 
overt CVD[275]. A cohort study concluded that the pres-
ence of  ED in men with T2DM and without clinically 
overt CVD predicted CHD[276], and another study indi-
cates that ED appears to be robustly and independently 
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related with silent CAD in apparently uncomplicated 
T2DM subjects[272]. Moreover, a meta-analysis of  obser-
vational studies concludes that the presence of  ED was 
related with an elevated risk of  cardiovascular events in 
diabetic men[277]. 

Finally, a recent paper suggests that vitamin D defi-
ciency is closely related with both ED and CVD, and the 
authors postulate that optimizing serum vitamin D levels 
through vitamin D supplementation helps delay the onset 
of  ED[278].

Genetics and epigenetics
T2DM is an independent risk factor for developing CVD 
with the relative risk of  CVD mortality of  4.9 in women 
and 2.1 in men, relative to non-diabetics subjects[165,279]. 
Genetic and environmental factors contribute to this risk. 
In the past decade, genome-wide association studies had 
elevated the number of  common single-nucleotide poly-
morphisms, which confirmed the relationship between 
T2DM and CVD (Figure 3).

Haptoglobin polymorphisms and CVD in T2DM: 
Haptoglobin (HP) has been involved in both T2DM, 
and T2DM related CVD[280,281]. HP binds to ApoA1 in 

the same location as lecithin-cholesterol acyltransferase 
(LCAT); this lead to a decrease LCAT activity and con-
sequently limiting HDL maturation. This inhibits reverse 
cholesterol transport causing HDL to become proath-
erogenic[282].

Several studies have investigated HP polymorphisms 
and CVD risk in T2DM. In 2002 Levy et al[283] reported 
an OR of  CVD events in diabetes five times greater with 
the HP 2-2 phenotype, than with HP 1-1 in a study that 
involved 206 CVD patients and 206 CVD controls (146 
and 93 were affected by T2DM, respectively, as part of  
the Strong Heart Study). In 2004, a subsequent study by 
Levy et al[284] involved 3273 subjects in the Framingham 
Heart Study, however only a subset of  433 patients were 
affected with T2DM, and of  these, only 86 had a history 
of  prevalent CVD. Finally, a 2003 study in patients with 
acute myocardial infarction reported that individuals 
with T2DM and the HP2 allele had improved mortal-
ity following acute myocardial infarction, compared to 
subjects with T2DM and the HP 1-1 genotype (included 
only 224 T2DM affected patients)[285]. The DHS is a 
study of  the genetic and epidemiological causes of  CVD 
in patients with T2DM. In a sub-study of  1208 subjects 
from the DHS, the HP 2-2 genotype was associated with 
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increased carotid intima-media thickness[286].

Apolipoprotein E gene polymorphism and risk of  
CVD in T2DM: ApoE plays an important role in lipid 
metabolism as a ligand for many cell-surface receptors 
comprising the LDL receptor, LDL-receptor related pro-
tein and VLDL receptor[287]. Human ApoE is genetically 
controlled by three alleles (e2, e3, and e4) at a single gene 
locus in chromosome 19; these code for three isoforms 
(E2, E3, and E4) and thus determine the six genotypes 
(e2/2, e4/2, e3/2, e3/3, e4/3, and e4/4)[287]. ApoE ε2 
allele has been reported to be related with higher plasma 
levels of  ApoE, reduced plasma levels of  LDL-C and 
lower risk of  CAD[288], while ApoE ε4 is related with 
lower plasma level of  ApoE, elevated plasma levels of  
total cholesterol, LDL-C, VLDL-C, and greater risk of  
CAD when compared to ApoE3 homozygotes[289]. In dia-
betic population, Apoe4 allele is related with the risk of  
CAD[290,291], augmented occurrence of  exercise-induced 
silent myocardial ischemia[292], impairment of  endotheli-
um-dependent artery dilation[293], and CAD death[294].

Genetic factors in the overproduction of  Apolipopro-
tein C-Ⅲ and the risk of  CVD in T2DM: Apolipopro-
tein C-Ⅲ (ApoC-Ⅲ) plays an important role in regulating 
the metabolism of  TGs-rich lipoproteins (TRLs). ApoC-
Ⅲ is an inhibitor of  lipoprotein lipase and of  TRLs rem-
nant uptake by hepatic lipoprotein receptors. Elevated 
ApoC-Ⅲ, may cause accumulation of  plasma TRLs lead 
to hypertriglyceridaemia (Figure 4).

The APOC3 gene exists in a gene cluster with the 
ApoAⅣ and ApoAⅠ genes on chromosome 11q23[295]. 
ApoC-Ⅲ expression is down-regulated, in part, by in-
sulin via the promoter insulin response element on the 
APOC3 gene[296]. This indicates that ApoC-Ⅲ expression 
can be regulated by insulin sensitivity[297]. IR may blunt 
the sensitivity to the normal insulin-mediated suppres-
sion of  ApoC-Ⅲ gene expression. The transcription of  

APOC3 gene is also mediated by peroxisome proliferator 
activated receptors (PPAR)[298]. The induction of  PPAR, 
principally the PPAR-α form, decreases APOC3 gene 
expression[299,300].

Several studies reveal that naturally occurring se-
quence variation in APOC3 genes affects plasma ApoC-
Ⅲ (and TGs) concentrations in humans. The APOC3 
promoter variants at positions -455 and -482 have been 
studied more extensively because they relate to respon-
siveness to insulin. Moreover, there is increasing evidence 
showing the possibility of  interactive effects between the 
APOC3 gene variant and other environmental factors 
such as dietary intakes or smoking[301,302].

Epigenetics and the risk of  CVD in T2DM: There 
is evidence linking epigenetic factors to various diseases 
such as DM and CVD[303]. Epigenetic factors could be 
an important mediator between DM, CVD and chronic 
inflammatory response, and, by different types of  reac-
tions such as acetylation and methylation, could mediate 
the interaction between genes and environment resulting 
in activation, repression or silencing the genetic tran-
scription (Figure 5). In particular, DNA methylation has 
been linked to several cardiovascular-related biomark-
ers, including HC and CRP[304]. Hyperglycaemia may 
induce epigenetic changes of  genes involved in vascular 
inflammation. Poor glycemic control increases nuclear 
transcription factor-κB (NF-κB), which regulates the 
expression of  genes involved in inflammatory diseases, 
including atherosclerosis and diabetic complications[305], 
activity in monocytes and gene expression of  inflamma-
tory cytokines[306,307]. Moreover, in human aortic endothe-
lial cells, the excess of  reactive oxygen species resulting 
from a transient exposure to hyperglycaemia (16 h) can 
induce monomethylation of  lysine from histone 3, in-
creasing the expression of  the subunit p65 of  NF-κB[308], 
responsible for the increased transcription of  VCAM-1, 
monocyte chemoattractant molecule 1, and some inflam-
matory proteins like interleukin-6, ICAM-1, and NOS, 
that are associated to hyperglycaemia-induced arterial 
pathology[307]. Epigenetic changes in the NF-κB p65 pro-
moter induced by transient hyperglycaemia, which persist 
for 6 d during culture at normal glucose levels, can be 
regulate for two histones: a histone methylase and a his-
tone demethylase[309]. In fact, the hyperglycaemic memory 
could be explained by epigenetic changes induced by 
transient hyperglycemia. Epidemiological studies insinu-
ate that hyperglycemia may induce epigenetic changes 
of  proinflammatory genes, which subsequently regulate 
gene expression and thereby the development of  vascular 
inflammation[310].

PERSPECTIVES AND CONCLUSIONS
The complex interaction of  risk factors in T2DM make 
it necessary to apply a holistic approach to the manage-
ment of  this chronic disorder, and a comprehensive care 
plan should therefore include modification of  all cardio-
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vascular risk factors. Targeting multiple markers of  CVD 
risk hopefully offers the best chance of  improving CVD 
outcomes.

There are consistent evidences that optimal glycaemic 
control, along with control of  hypertension, dyslipidae-
mia, smoking cessation, and weight loss are necessary for 
reducing cardiovascular risk in T2DM patients. Cardio-
vascular benefits are obtained if  the control of  traditional 
cardiovascular risk factors begins early in subjects with 
short duration of  DM and low cardiovascular risk. On 
the contrary, in elderly subjects with long duration of  
DM, exposed to hyperglycemia for a long time, and high 
cardiovascular risk, the same is not true. This beneficial 
or harmful effect could be explained by the hypothesis 
called as metabolic memory, in which the effect of  the 
early glycemic exposure environment is imprinted in tar-
get organs, resulting in long-term protective or deleteri-
ous long-term effects. 

In recent years there have been major advances of  the 
influence of  non-traditional risk factors for CVD in DM. 
This knowledge should gradually lead to the development 
of  more effective therapeutic strategies to prevent cardio-
vascular events. Currently there is no evidence that rou-
tine monitoring of  these risk factors in diabetic patients 
leads to better diagnostic and therapeutic results. Nor is 
there solid evidence to justify screening for subclinical 
atherosclerosis in asymptomatic subjects with DM.

Further work is needed to understand the impact of  

epigenetic changes of  complications of  T2DM, which 
can lead to the development of  new therapeutic strategies 
for these patients. Research should focus on the factors 
that lead to dysfunction and failure of  islet, particularly 
those acquired at an early age because they can be pre-
vented. Epigenetic regulation of  metabolic genes may be 
one of  the fields of  research. 
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Abstract
Diabetes mellitus type 2 (T2DM) is a global pandemic 
that will affect 300 million people in the next decade. It 
has been shown that early and aggressive treatment of 
T2DM from the onset decreases complications, and the 
patient’s active role is necessary to achieve better gly-
cemic control. In order to achieve glycemic control tar-
gets, an active attitude in patients is needed, and self-
monitoring of blood glucose (SMBG) plays a significant 
role. Nowadays, SMBG has become an important com-
ponent of modern therapy for diabetes mellitus, and is 
even more useful if it is performed in a structured way. 
SMBG aids physicians and patients to achieve a specific 
level of glycemic control and to prevent hypoglycemia. 
In addition, SMBG empowers patients to achieve nutri-
tional and physical activity goals, and helps physicians 
to optimize the different hypoglycemic therapies as 
demonstrated in the St Carlos study. This article de-
scribes the different ways of using this educational and 
therapeutic tool from the medical point of view as well 
as from the patient’s perspective. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Structured self-monitoring of blood glucose; 
Educational; Therapeutic; Tool; Management; Diabetes 
mellitus type 2

Core tip: Structured self-monitoring of blood glucose 
(SMBG) has recently become an important component 
of modern therapy for diabetes mellitus due to its edu-
cational and therapeutic role. SMBG aids physicians and 
patients to achieve a specific level of glycemic control 
and to prevent hypoglycemia. It empowers patients 
to achieve nutritional and physical activity goals, and 
helps physicians to optimize the different hypoglycemic 
therapies as demonstrated in the St Carlos study. 

Ruiz Gracia T, García de la Torre Lobo N, Durán Rodríguez Her-
vada A, Calle Pascual AL. Structured SMBG in early manage-
ment of T2DM: Contributions from the St Carlos study. World J 
Diabetes 2014; 5(4): 471-481  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i4/471.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i4.471

INTRODUCTION 
Diabetes mellitus is known by a number of  syndromes 
that are a consequence of  a lack of  insulin secretion or 
by a defect in its hypoglycemic action. Hyperglycemia is 
the common feature in all of  these syndromes, and if  it 
is present for a long period of  time it can cause vascular 
damage. Despite the significant development in hypogly-
cemic drug therapies over the past two decades, diabetes 
remains the leading cause of  new cases of  blindness, kid-
ney failure, and limb amputations not related to accidents 
or injury in adults. Moreover, the incidence and preva-
lence of  this disease continues to increase, as a result of  
an unhealthy and sedentary lifestyle in developed coun-
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tries, and is nowadays considered a pandemic disease. Ac-
cording to the International Diabetes Federation (IDF), 
in the next decade it will affect more than 300 million 
people worldwide. The incidence and severity of  compli-
cations depend mainly on metabolic control and time to 
disease progression. Therefore, an early and individual-
ized approach to achieve strict glycemic control is needed 
along with the management of  other cardiovascular risk 
factors. To achieve this aim, it is essential that patients 
with diabetes assume an active role in their care, and self-
monitoring of  blood glucose (SMBG) plays a significant 
role.

In the early 1990s, the first meter for self-monitoring 
capillary blood glucose was released. In many researchers’ 
opinion it was the greatest research after that on insulin. 
SMBG increases life expectancy and improves diabetic 
patients’ quality of  life. The Diabetes Control and Com-
plications Trial[1] showed that its use as an educational and 
therapeutic tool significantly reduced complications and 
delayed existing complications in type 1 diabetes mellitus 
(T1DM). To date, the intensive treatment of  diabetes 
consists of  multiple daily injections of  insulin, however, 
later this concept was extended to include multiple glu-
cose capillary determinations conducted by the patient 
in order to perform multiple self-treatment adjustments 
(including oral drugs and insulin). In T2DM, the results 
have been more controversial, especially in patients not 
treated with insulin. However, our group showed that the 
use of  SMBG in an educational program increased the 
regression rate in newly diagnosed type 2 diabetic patients 
and led to changes in lifestyle and weight loss[2].

The success of  this technique is due to the empow-
erment that SMBG provides to patients. SMBG shows 
variations throughout the day facilitating decision-making 
on changes in hypoglycemic treatment as well as lifestyle 
at particular time points. These features make SMBG not 
only a good tool for glycemic control, but also a good 
tool to prevent hypoglycemia, to improve the quality of  
life of  diabetic patients and for better management of  
economic resources. 

TARGETS OF GLYCEMIC CONTROL
Both patients and health care staff  need to jointly agree 
on the terms and use of  SMBG. This can change de-
pending on lifestyle and the pharmacological treatment 
provided. It is recommended that targets are set by indi-
vidual steps. The main objective is to achieve normal gly-
cemia values or very close to the normal standards with 

hemoglobin A1c (HbA1c) levels below 7%. These targets 
decrease micro-vascular complications as shown in dif-
ferent studies[2,3]. A stricter regime (i.e., level below 6.5%) 
can be considered for specific patients (as long as it does 
not result in adverse effects or severe hypoglycemia) with 
a high life expectancy rate and short disease evolution. A 
higher glycemic objective (below 8%) may be appropriate 
for patients with a limited life expectancy, comorbidities 
and complications, and for those with severe hypoglyce-
mic risk[4]. For this reason, it is necessary to individualize 
the treatment in line with the patient’s “biological” age[5]. 
We should bear in mind that the HbA1c parameter for 
glycemic exposure for the last three months might not 
be as relevant as is currently believed. Other parameters, 
such glycemic variability, are becoming a significant risk 
factor involved in the pathogenesis of  diabetes compli-
cations[6,7]. For example, patients with similar levels of  
HbA1c can show variability in cardiovascular risk, which 
indicates that there are unknown factors involved. For 
this reason, it should be common practice to carefully 
consider SBMG, as it shows real-time variability of  blood 
glucose.

With regard to glycemic objectives, the ADA and EA-
SD recommendations for glycemic targets[4,8] are shown in 
Table 1.

Our working group has assumed the same targets 
as those in the St Carlos study[9]. When objectives in at 
least 60% of  the registered capillary blood tests are not 
achieved, it is time to take action, either drug titration or 
introducing new drugs (this theme is further developed in 
the following section: glycemic assessment and then tak-
ing action).

SELF-MONITORING BLOOD GLUCOSE: 
WHAT IS IT?
This self-analysis is defined as the self-measurement of  
capillary blood glucose by the patient using an accurate 
device, digital or battery-operated, that measures capillary 
glucose in real time. The aim of  SMBG is to collect de-
tailed information on glucose levels at many time points 
during the day in order to implement various strategies 
to fit the patient’s lifestyle. It can be used to guide a new 
regimen, and it can help people day-to-day to adjust their 
food intake, physical activity, and their dose of  insulin to 
improve glycemic control. 

This useful tool represents the highest level of  patient 
participation. The best decision-making occurs when 
patients reach a higher level of  knowledge and skills to 

Ruiz Gracia T et al . SMBG’s role in T2DM management

472 August 15, 2014|Volume 5|Issue 4|WJD|www.wjgnet.com

Table 1  Targets of glycemic control

IDF AAEC ADA St Carlos study

HbA1c (%) < 6.5 ≤ 6.5 < 7.0 < 6.5%
Fasting/preprandial glycemia (mmol/L-mg/dL) < 6.0/< 110 < 6.0/70-110 3.9-7.2/70-130 < 6.0/< 110
2-h postprandial glycemia (mmol/L-mg/dL) < 7.8/< 140 < 7.8/< 140 < 10.0/< 180 < 7.9/< 145

IDF: International Diabetes Federation; AACE: American Association of Clinical Endocrinologists; ADA: American Diabetes Association.



adhere to changes in lifestyle; similarly, they make proper 
use of  hypoglycemic drugs. Thus, SMBG should be es-
tablished from the onset to guide initial treatment to en-
sure better glycemic control.

SMBG could complement HbA1c testing, however, 
the following factors should be considered: it distin-
guishes between fasting, before meals, and postprandial 
hyperglycemia. Glycemic excursions are detected early. It 
identifies hypoglycemia and its resolution by providing 
immediate feedback on food choices, activity and differ-
ent medications.

Methodology of SMBG
The test involves pricking a finger with a lancet device to 
obtain a tiny blood sample and apply this on a test strip. 
Subsequently, the blood glucose concentration is deter-
mined by inserting the strip into a reflectance photometer 
for automatic reading. Thus, subjects with diabetes are 
taught to learn from the results and make corrections by 
changing their intake of  carbohydrates, by changing their 
physical activity or by changing the dose of  medication.

Advantages of SMBG
To perform SMBG the patient does not require help and 
it can be carried out anywhere. SMBG provides immediate 
accurate data, which can help patients and their relatives in 
the daily management of  diabetes and can teach them to 
face new future events. The other important advantages 
of  SMBG should be highlighted. SMBG informs patients 
whether their treatment is working and guides the health 
care team on whether to continue with the same treatment 
regimen or if  another treatment is needed. The structured 
SMBG strategy may help patients in their daily routine to 
maintain a blood glucose level as normal as possible with 
proper food choices (with a low or high amount of  car-
bohydrates) and with proper life-style choices. It should 
also be pointed out, that SMBG improves recognition 
of  either severe hyperglycemia or hypoglycemia. This in-
creases the understanding of  hypoglycemia and helps re-
duce anxiety regarding hypoglycemia. Moreover, SMBG is 
important for the performance of  hazardous tasks which 
could be influenced by high or low glycemic levels, such 
as driving or operating machinery.

Disadvantages of SMBG
The disadvantages of  SMBG are mainly related to the 
patient who may have a lack of  motivation for testing 
or does not have enough education on how to interpret 
his own results or does not know when they should be 
performed. In this case, the following disadvantages may 
outweigh the potential benefits. SMBG may increase 
anxiety regarding glycemic control which is closely related 
to state of  health. Other negative aspects to bear in mind 
are as follows: the pain derived from finger prick and the 
cost of  testing supplies, whether they have to be self-
funded or not. 

Obviously, a single system of  SMBG does not meet 
the needs of  all people with T2DM, thus it must be 

adapted according to different patients’ characteristics. 
For instance, meters in elderly patients should be simple 
and manageable and in blind patients they should incor-
porate sound alarm systems.

FREQUENCY OF SMBG 
The frequency of  SMBG is a critical point in treatment 
efficiency, therefore, SMBG protocols should be indi-
vidualized according to patient characteristics, needs 
and changes in lifestyle and treatments. The frequency 
of  SMBG also depends on the availability and expertise 
of  the health care team. The program should intensify 
in frequency in cases of  suboptimal glycemic control 
and changes in lifestyle or treatment. When possible, the 
fewest determinations should be carried out to allow ap-
propriate adjustment of  treatment. In addition, it is im-
portant to emphasize that not only patients should collect 
and interpret the results, but the health care team should 
also interpret the glucose readings and act accordingly.

As mentioned previously, glycemic targets must be 
agreed by the patient and their physician. Ideally, patients 
should achieve goals of  glycemic control as close as pos-
sible to the value of  those without diabetes. Determina-
tions should be performed before each meal and 2 h after 
eating, and whenever there is risk of  hypoglycemia, espe-
cially at night (which is the time with the highest risk of  
hypoglycemia). Therefore, a complete profile will include 
the identification of  at least 6 points if  three meals a day 
are consumed. 

Based on the St Carlos study[9], in patients with newly 
diagnosed T2DM, the following strategy was proposed: 
The profile consisted of  six points if  three main meals 
were consumed daily. The frequency may vary depend-
ing on the stability of  the patient, as shown in Table 2. 
It is noteworthy that the strategy proposed by our group 
has also been adopted in several European consensus 
documents[10,11] which have subsequently been published. 
Therefore, the role of  the structured SMBG in the man-
agement of  diabetes has been confirmed.

At the onset of  disease, the frequency of  this strategy 
(six point profile) should be twice a week and evaluated 
every five complete profiles to adopt changes in treat-
ment. This frequency must be maintained to achieve 
stability. Stability is achieved when no changes in three 
consecutive visits are observed, thus, the frequency can 
be reduced to one profile once every two weeks in or-
der to maintain adherence to the treatment plan. When 
there is a risk of  suboptimal glycemic control, intercur-
rent diseases or changes in lifestyle, the frequency should 
increase and self-testing should be performed as many 
times as necessary. However, if  the patient is treated with 
continuous subcutaneous insulin infusion he will require 
at least a four point profile daily, although a seven point 
profile is recommended, based on the frequency of  food 
intake.

It is important to inform patients that these profiles, 
if  they are not carried out during their everyday lifestyle, 
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vention group. The study included a three-year follow-
up period, and indicated that the benefits of  a structured 
SMBG program are maintained long-term[2]. Results from 
the ROSSO[23] and the PRISMA studies[24] support our 
results. 

Therefore, SMBG is not a treatment, but a tool which 
provides data to adjust treatment. Changes in therapy can 
be made as soon as the values for SMBG are obtained 
and before they have an effect on HbA1c. Consequently 
this useful and efficient tool must be accessible in both 
primary care and diabetes care centers.

SMBG AS AN EDUCATIONAL TOOL
The active participation of  subjects with diabetes in the 
control and treatment of  their disease is an essential 
component of  diabetes care. To that purpose, it is neces-
sary that those with diabetes have an adequate level of  
knowledge and skills to make proper decisions on their 
treatment. Through an educational program, diabetics 
can gain the necessary knowledge, skills and motivation 
to modify, adopt and maintain healthy behaviors and 
positive attitudes toward self-management. 

Within this context, SMBG is a very handy tool which 
helps patients understand the disease. In particular, 
SMBG shows variations in blood glucose in a single day, 
for instance during exercise, meals, physical and emotion-
al stress. This tool encourages self-management of  dia-
betes[25], allowing patients to measure the impact of  their 
behavior (the effect of  eating reflected in postprandial 
glucose, etc.) thus promoting greater adherence to dietary 
and exercise advice in their daily lives.

In addition to its educational role, SMBG is a power-
ful motivating factor. It provides positive feedback on the 
success or failure after making self-adjustments. This can 
lead to increased confidence in patients to be more self-
sufficient, more responsible and can make them more 
involved in the disease.

However, the DiGEM study[26], did not observe ben-
efits from SMBG in patients with non-insulin-treated 
T2DM. There are several noteworthy aspects in this study 
which were crucial in obtaining these data. All treatment 
changes were performed by physicians, regardless of  the 

may not be as useful as they could be for the health team 
to make decisions on therapy. Thus, we do not recom-
mend SMBG during medical consultation, as this is 
probably not a usual day in the patient’s life. Recently, 
a structured program was proposed, which consists of  
three consecutive profiles prior to the medical visit to 
make decisions on treatment[12]. This strategy has proven 
to reduce absolute values of  Hb1AC by 1.2%. 

SMBG IS A THERAPEUTIC TOOL TO 
IMPROVE GLYCEMIC CONTROL
Although the benefits of  SMBG have been demonstrated 
in T1DM[1] and insulin-treated T2DM[13-15], findings from 
SMBG studies in non-insulin-treated T2DM[16-20] have 
been inconsistent. As a result of  this, the IDF has re-
cently published a guide for SMBG in non-insulin treated 
subjects with diabetes[21]. In this guide, the IDF recom-
mends that SMBG should be implemented only when 
patients and/or their physicians have the knowledge, 
skills and willingness to incorporate self-analysis into 
their routines in order to achieve the agreed objectives 
of  treatment. This emphasizes the need for collaboration 
between the patient and the treating medical team to act 
jointly. 

The study conducted by Evans et al[22] demonstrated 
a statistically significant correlation between the number 
of  daily SMBG tests performed and HbA1c levels. It was 
observed that patients who performed SMBG more than 
once per day showed a reduction in HbA1c of  0.7%. 
Furthermore, to reduce HbA1c levels below 7% it was 
necessary to carry out SMBG at least six times a day[22]. 
The results of  the St Carlos study were similar. Newly 
diagnosed T2DM patients were randomized to either 
a structured SMBG-based intervention (n = 130) or an 
HbA1c-based control group (n = 65) and were followed 
for 3 years. The primary endpoint was the regression 
rate of  T2DM. Diabetes regression was observed to be 
4.5 times more likely in the intervention group, and that 
this was associated with greater adherence to dietary and 
physical activity recommendations. Moreover, a greater 
weight loss of  4 kg was 3.6 times more likely in the inter-
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Table 2  Frequency of self-monitoring of blood glucose

Breakfast Lunch Dinner Night Periodicity

Before After 2 h Before After 2 h Before After 2 h
At the onset of T2DM a a a a a a 2-3 d/wk
Suboptimal control of T2DM a a a a a a 2-3 d/wk
T2DM targets in a a a a 1 d every 7-14 d
Insulin-treated T2DM in the 
adjustment phase 

a a a a a a Each 3 risk 
profiles

Daily

Insulin-treated T2DM in the 
education programs

a a a a a a Each 3 risk 
profiles

Daily

Insulin-treated a a a a a a Each 3 risk 
profiles

2-3 d/wk

T2DM targets in GDM a a a a a a Daily

aSpecific time of day in which self-monitoring of blood glucose should be performed. T2DM: Diabetes mellitus type 2; GDM: Gestational diabetes mellitus.
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team of  nurse educators. In addition, the patients had 
experienced more than 3 years of  diabetes progression 
when they entered the study, so they were less receptive 
to this educational tool due to apathy. Thus, we believe 
that this tool is very helpful from disease onset to provide 
a greater educational effect, and it is at this point that it is 
crucial to apply an integrated program based on SMBG. 
This may explain the conflicting results with our study.

GLYCEMIC ASSESSMENT AND THEN 
TAKING ACTION
Currently, only invasive procedures, such as subcutaneous 
continuous glucose monitoring and SMBG, can provide 
accurate information on the daily profile of  blood glu-
cose levels. 

The magnitude of  the variation in glucose has proved 
to be the most reliable factor associated with the in-
creased risk of  severe hypoglycemia[27] and has been asso-
ciated with subsequent microvascular and macrovascular 
complications[28-31]. Hence, the concept of  glycemic vari-
ability is very important as it is one of  the major features 
of  T2DM. SMBG is recorded in real time, but HbA1c 
is not. Thus, this tool provides information for both pa-
tients and doctors, and on lifestyle changes if  needed, in 
order to achieve better glycemic control. Furthermore, 
it also allows the physician to make adjustments to the 
different doses of  oral hypoglycemic drugs or insulin, 
depending on the levels registered, to avoid hypoglycemia 
and hyperglycemia. 

To take action, we should take into account that each 
determination of  capillary glucose is explained by previ-
ous events. Each determination assesses previous events, 
such as, the effect of  food ingested previously, exercise 
performed earlier and the dose of  drug administered 
previously. Glycemic variability is explained in more than 
90% of  cases by food intake. For this reason and in order 
to achieve targets, it would be advisable to wait at least 3 
out of  5 profiles performed in similar conditions to make 
changes to the diet, or to make changes in hypoglyce-
mic drugs if  needed. Therefore, therapeutic changes are 
required if  more than 60% of  blood glucose levels are 
off  target, both above and below. In addition, the patient 
should determine possible reasons for these values. It is 
recommended that these interpretations should be tran-
scribed into the book of  patients’ profiles and later dis-
cussed during the medical visit with the health care team, 
both the physician and diabetes educator. Therefore, we 
stress the importance of  correct collection of  self-analy-
sis, as data which are not transcribed cannot be evaluated 
in order to make changes.

Glycemic assessment conducted by the medical team: A 
proposal of changes in lifestyle and changes in therapy 
and dose of hypoglycemic drugs
After establishing the diagnosis of  T2DM, the physician 
and the patient must agree therapeutic targets as well as 
changes in the patient’s lifestyle. After 3-6 mo of  non-re-
sponse, pharmacological treatment should be initiated[4,8]. 
To achieve success, patients must be informed regarding 
a healthy lifestyle (Table 3). 

Interventions in lifestyle include: smoking cessation, 
dietary and exercise prescription and diabetes education 
to change negative attitudes and promote healthy life-
styles. All these recommendations are in order to reduce 
cardiovascular morbidity and mortality in patients with 
T2DM.

Before adjusting treatment the following factors 
should be determined: (1) If  in three out of  five profiles 
the fasting blood glucose or the postprandial blood glu-
cose values remain within target the patient should remain 
on the same treatment recommendations; (2) If  the target 
levels are above the objective levels in 60% of  cases (3 of  
5) the following are recommended: lifestyle recommenda-
tions should be intensified. The patient should assess his 
intake (focused on carbohydrates) and if  possible try to 
decrease the amount of  carbohydrates in order to con-
trol postprandial glycemia. Another option might be to 
recommend an increase in physical activity before meals 
as exercise increases insulin sensitivity; with regard to hy-
poglycemic drugs, these should be titrated or a new drug 
added. We first add insulin sensibilizator Should this be 
sensitizing drugs (metformin or pioglitazone) at the maxi-
mum tolerated doses. If  the targets are not reached we 
add drugs based on secretory insulin action (sulfonylurea, 
glinides, gliptins, glucagon-like peptide-1 agonists or insu-
lin); and (3) If  glucose levels are below 70 mg/dL, there 
are two options: ask the patient to adjust carbohydrate 
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Table 3  Nutrition and activity score

Score

+1 0 -1
Physical activity
   Walking daily (> 5 d/wk)    > 1 h At least 30 min < 30 min
   Climbing stairs (No. floors/d, 
   > 5 d/wk)

  > 16    4-16 < 4

   At least 30 min of more than
   moderate intensity

> 3 d/wk 2 or 3 d/wk < 2 d/wk

Servings per week
   Vegetables   > 12    6-12 < 6
   Fruits (pieces)   > 12   6-12 < 6
   Nuts > 3 1-3 < 1
   Olive oil Daily    > 3 d    < 3 d
   High-fat fish or Iberico ham > 3 1-3 < 1
   Bread and cereals
   (high fiber content)

> 6 3-6 < 3

   Legumes > 2 1-2 < 1
   Low-fat milk and cheeses > 6 3-6 < 3
   Red meat < 3 3-6 > 6
   Sauces (except mayonnaise) < 2 2-4 > 4
   Juices and sugar-sweetened
   beverages

< 2 2-4 > 4

   Cookies < 2 2-4 > 4
   Coffee      > 3/d < 3 > 4
   Alcoholic beverages 
   (No. servings⁄d)

1-4 0 or > 4 and < 6 > 6

   Water Exclusively In addition to 
other beverages

Never
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intake or reduce the dose or the number of  drugs pre-
scribed. Figures 1-4 show different algorithms for adjust-
ing diabetes treatment.

Glycemic assessment conducted by patients: Changes in 
lifestyle and adjustment of doses of hypoglycemic drugs
Due to the educational role of  SMBG, patients can be 
self-sufficient, adequately responding to glycemic fluctua-
tions under different situations, and achieving results very 
close to the agreed targets.

Fasting glucose assessment: Fasting glucose is the 
existing glycemia prior to breakfast or eight hours after 
fasting. This type of  glycemia shows minimal pharmaco-
logical and intake interference, and shows the effect of  
gluconeogenesis. 

The main causes of  fasting hyperglycemia are re-
lated to the following: (1) medical prescription errors: 
the prescribed medication dosage is too low, timing of  
administration may be inappropriate, or the medication 
does not effectively target fasting pre-prandial glycemia. 
Our recommendation is to increase the dose of  drugs if  

hyperglycemia persists for three consecutive days in the 
daily profile. For instance, if  basal insulin is administered 
during the afternoon or in the evening, patients should 
increase their usual dose of  basal insulin as recommend-
ed by their physician without waiting for medical consul-
tation. To do so, patients must be adequately trained; and 
(2) patient behavior: incorrect medication administration 
(dosage errors, inappropriate timing), failure to take med-
ication, etc. Frequently, we observe a wrong tendency in 
patients of  making changes based only on the registered 
glycemia (high or low). This is known as rescue therapy. 
This attitude would be valid only to correct an unfore-
seen specific situation and to avoid the consequences of  
sustained hyperglycemia or hypoglycemia. However, this 
attitude should not be allowed to continue, and an analy-
sis of  previous events should be carried out to make ap-
propriate changes if  needed. To improve a patient’s skills 
it is essential to have a good team of  diabetes educators 
in order to improve knowledge and glycemic control.

Pre-prandial glucose assessment: Pre-prandial gly-
cemia evaluates previous food intake, which means: 
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Diagnosis of type 2 diabetes

Lifestyle changes 
metformine

3 of 5 FBG > 110 mg/dL 3 of 5 FBG < 110 mg/dL

Titration metformin 
evaluate adding new drug: 

pioglitazone, GLP-1a

< 110 mg/dL > 110 mg/dL

< 6.5% > 6.5%

PostPBG

3 of 5 
< 145 mg/dL

3 of 5 
> 145 mg/dL

3 of 5 
> 160 mg/dL

Additional therapy: 
DPP41 or glinides

Additional therapy:
 sulphonylurea

3 of 5 
< 145 mg/dL

3 of 5 
> 145 mg/dL

3 of 5 
> 160 mg/dL

3 of 5 
< 160 mg/dL

3 of 5 
> 160 mg/dL

3 of 5 
< 160 mg/dL

Combination
therapy

No changes

No changes Prandial insulin

No changes

No changes

No changes

No changes

Basal insulin

FBG

Hb1Ac

PostPBG
PostPBG

PCG

Figure 1  Decision algorithms based on self-monitoring of blood glucose from the diagnosis of type 2 diabetes mellitus as proposed in the St Carlos study. 
FBG: Fasting blood glucose; GLP-1a: Glucagon-like peptide-1 agonists; PostPBG: Postprandial blood glucose; FBG: Fasting blood glucose; PCG: Titration sulphonyl-
urea.
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3 of 5 FBG > 120 mg/dL 3 of 5 FBG 70-120 mg/dL 3 of 5 FBG < 70 mg/dL

Consider
medical/surgical

treatment if
obesity

Fasting glycemia

≤ 70 mg/dL > 70 mg/dL

Hypoglycemia
management

Lower insulin
doses

Consider
physical exercise

< 120 mg/dL > 120 mg/dL

Advance
drug intake

Increase
basal
insulin
doses

Switch
insulin

Add
metformin

< 120 mg/dL > 120 mg/dL

CSII

Hypoglycemia
management

Lower basal 
insulin dose3 am glycemia

Glycemia Glycemia

No changesNo changes

No changes

Figure 2  Decision algorithms based on fasting self-monitoring of blood glucose in the evolution of type 2 diabetes mellitus as proposed in the St Carlos 
study. FBG: Fasting blood glucose; CSII: Continuous subcutaneous insulin infusion.

Figure 3  Decision algorithms based on preprandial self-monitoring of blood glucose in the evolution of type 2 diabetes mellitus as proposed in the St Car-
los study. PrePBG: Preprandial blood glucose.
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< 120 mg/dL > 120 mg/dL

No changes

Glycemia

Glycemia

< 120 mg/dL > 120 mg/dL

No changes

Glycemia

< 120 mg/dL > 120 mg/dL

No changes

Glycemia
Glycemia

< 120 mg/dL > 120 mg/dL

No changes

> 120 mg/dL < 120 mg/dL

No changes

Preprandial glycemia

3 of 5 PrePBG
70-120 mg/dL

3 of 5 PrePBG
> 120 mg/dL

Decrease
carbohydrate
intake

Adjust treatment in
previous meal

Oral antidiabetic
drugs

Add
metformin

Adjust metformin
sulfonylureas
metil linkles

Insulin

Adjust basal insulin Lenghten effect of
prandial insulin

3 of 5 PrePBG
< 70 mg/dL

Adjust
drugs doses

No changes Lower doses Adjust carbohydrate intake



mid-morning or afternoon snack, as well as any physi-
cal activity conducted before the analysis. A nutritional 
recommendation might be to decrease the intake of  meat 
(sausage, bologna, ham, salami, etc.), cheese, all types of  
manufactured products, French fries, etc. Our recommen-
dation is to substitute those snacks for a limited intake of  
nuts. Nuts such as almonds, walnuts and hazelnuts have a 
lower glycemic index and substantially reduce unhealthy 
fats and they provide mono and polyunsaturated fats (fatty 
acids oleic, linoleic and omega 3 fatty acids) with high 
benefits shown in previous reviews[32]. In addition, nuts 
satiate the appetite and improve microbiota. In addition, 
promoting physical activity at this point will improve in-
sulin sensitivity. 

Postprandial glucose assessment: We evaluate glucose 
two hours after breakfast, lunch and dinner: (1) in general 
terms, if  glycemia is above the target, we propose one of  
the following options: reduce the amount of  carbohy-
drate intake, substitute common foods for lower glycemic 
foods (i.e., white bread for wholewheat bread), modify 
antidiabetic treatment (i.e., increase prandial insulin) and 
perform physical activity after food intake; and (2) in 
those cases with hypoglycemia (< 70 mg/dL), patients are 
recommended to put into practice the protocol advised 
in order to resolve hypoglycemia. They will also have to 
analyze what triggered that specific glycemic level (i.e., 
insufficient intake of  carbohydrates, too much exercise or 
inadequate drug doses).

The following three questions may be useful in ana-
lyzing postprandial glycemia and in understanding the 
root of  the problem in order to act accordingly: (1) what 
did the patient eat? The patient must analyze what he ate 
two hours previously, identify foods with high glycemic 

index and avoid them or substitute them for other foods 
with a low glycemic index in the coming days; (2) when 
did the patient eat it and when was the self-analysis per-
formed? The patient should record when he carried out 
the self-analysis so that the results regarding glucose in-
take can be put into context. If  capillary glucose levels are 
low after two hours or more, two options are available: 
increase the intake of  slow-absorption carbohydrates or 
bring forward the next meal; and (3) how did the patient 
eat it? We know that the way food is cooked is the key 
to its absorption, for this reason it is important that the 
patient is informed regarding this. For instance, for the 
same amount of  potatoes, fried potatoes significantly in-
crease the glycemic index, whereas, boiled potatoes show 
a lower postprandial increase.

Postprandial glucose assessment after breakfast: 
Postprandial glycemia after breakfast provides informa-
tion on the foods which are rich in carbohydrates. In 
cases where glycemia is high we can choose any of  the 
options mentioned above. Recently it was shown that 
juices, even natural juices, have a high glycemic load, so 
they are not as healthy as expected. For this reason, we, 
as professionals, need to educate the diabetic population, 
that juice intake is inappropriate. Breakfast might also be 
a good time to evaluate the response to biscuits, including 
wholewheat biscuits, many of  which contain saturated 
fats. To ensure a healthy breakfast we recommend substi-
tuting juice for a piece of  fruit, wholewheat bread instead 
of  white bread, and the addition of  olive oil to bread in-
stead of  ham or butter.

Postprandial glucose assessment after meals: Post-
prandial glycemia after meals provides information on the 
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3 of 5 PostPG
< 70 mg/dL

3 of 5 PostPG
> 160 mg/dL

3 of 5 PostPG
70-160 mg/dL

Glycemia

> 160 mg/dL 70-160 mg/dL

No changes

No changes

Glycemia

Glycemia

> 160 mg/dL

70-160 mg/dL

> 160 mg/dL

70-160 mg/dL< 70 mg/dL

< 70 mg/dL

No changes

No changes

Postprandial glycemia

Injection
place

Decrease
carbohydrate

intake

Increase
antidiabetic
drug doses

Advance
drug
doses

Increase
preprandial insulin

doses

Adjust
carbohydrate

intake

Lower dose

Figure 4  Decision algorithms based on postprandial self-monitoring of blood glucose in the evolution of Type 2 diabetes mellitus as proposed in the St 
Carlos study. PostPG: Postprandial blood glucose.
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foods rich in carbohydrates and the way food has been 
cooked. Similar to breakfast time, in those cases where 
glycemia is high, we can choose any of  the options men-
tioned above to decrease the level of  glycemia (a). High 
levels of  glycemia are mostly associated with cereal intake, 
basically white bread and white rice and food containing 
potatoes (i.e., French fries, Spanish omelet). For this rea-
son, it is advisable to introduce salads and vegetables as 
starters, and a piece of  fruit for dessert. These are recom-
mended daily foods with limited glycemic load and they 
also lead to satiation. These foods are also recommended 
when body weight has become a significant issue.

Glycemic assessment during illness 
During the presence of  disease it is required that patients 
increase self-analysis, and adjust the treatment according 
to the results. For instance, during vomiting patients must 
consume sugar-containing fluids (juices, milk, isotonic 
drinks etc.) to avoid hypoglycemia. If  this is not con-
trolled, patients should look for assistance.

QUALITY OF LIFE AND SMBG
The St Carlos study[9] also assessed treatment satisfaction 
regarding interference with quality of  life (family, social 
and labor). Initially, patients in the intervention group 
showed greater interference and stated that it was an 
added challenge to correctly perform SMBG. However, 
after a year of  follow-up, they reported a greater degree 
of  independence in the three different areas (family, so-
cial and labor) and a greater degree of  satisfaction with 
the treatment plan compared to the control group. These 
data persisted after three years of  follow-up. 

The explanation for this appears to be simple. When 
SMBG is integrated into the treatment plan, it can tailor 
treatment to the patient’s lifestyle. In addition, patients 
who do not know about this tool have to change their 
lifestyle in order to adapt it to the treatment plan, signifi-
cantly reducing their index of  satisfaction. 

Not all patients attain self-sufficiency, including most 
elderly people with social, family or cultural constraints, 
and some T2DM patients on conventional treatment. 
Other studies suggest that this tool produces increased 
stress in the patient associated with the determination of  
glycemia and frustration over poor results, especially if  
the patient does not know how to respond. 

Therefore, SMBG when integrated into a comprehen-
sive educational program most likely improves the quality 
of  life of  patients by allowing them to self-sufficiently 
manage their daily lives.

COST IMPLICATIONS OF SMBG, PROS 
AND CONS
Due to the relatively high cost of  SMBG, particularly the 
use of  test strips, it would be remiss to ignore the eco-
nomic implications. Therefore, it is necessary to balance 
the benefits of  SMBG against its costs. 

The implementation of  this tool from the onset of  
disease has benefits for glycemic control that will lead to 
a decrease in chronic diabetes complications. SMBG is 
costly in the short-term, but may not be so costly in the 
long-term, as it helps to reduce the treatment costs of  
the chronic complications of  diabetes through improved 
glycemic control. Accordingly to a recently published 
Spanish study[33] conducted in the autonomous commu-
nity of  Madrid, the average cost of  T2DM complications 
per patient was estimated to be 4121.54 Euros (66% due 
to macrovascular complications), whereas the cost of  
the test strips only accounted for 2% of  the expenditure. 
Thus, SMBG it is an efficient tool in the treatment of  
diabetes. 

CONCLUSION
SMBG is an essential tool in insulin-treated T2DM, and 
as shown in this article, in non-insulin treated T2DM. 
SMBG should be an integral part of  the treatment in 
newly diagnosed T2DM patients. It enables patients 
to adapt their lifestyle more effectively to achieve bet-
ter glycemic control and provides insights into patients 
and clinicians concerning the effectiveness of  therapies 
in glycemic control. Despite this, none of  the current 
guidelines include SMBG in their algorithms, and it is 
necessary to change this point of  view. We advocate the 
implementation of  structured-SMBG in newly diagnosed 
T2DM, as SMBG is a key element for decision-making in 
hypoglycemic therapy (lifestyle changes and drugs).
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Abstract
Type 2 diabetes is characterized by a decreased ability 
of insulin to facilitate glucose uptake into insulin sensi-
tive tissue, i.e. , skeletal muscle. The mechanism behind 
this is at the moment unresolved. It has been suggest-
ed that increased amount of lipids inside the skeletal 
muscle (intramuscular triglyceride, diacylglycerol and 
ceramides) will impair insulin action in skeletal muscle, 
but data are not consistent in the human literature. It 
has also been hypothesized that the impaired insulin 
sensitivity is due to a dysfunction in the mitochondria 
resulting in an impaired ability to oxidize lipids, but the 
majority of the literature is not supporting this hypoth-
esis. Recently it has been suggested that the produc-
tion of reactive oxygen species play an essential role 
in skeletal muscle insulin sensitivity. It is well accepted 
that physical activity (endurance, strength and high 
intensity training) improves insulin sensitivity in healthy 
humans and in patients with type 2 diabetes. Whether 
patients with type 2 diabetes have the same beneficial 
effects (same improvement) as control subjects, when 
it comes to regular physical activity in regard to mito-
chondrial function, is not established in the literature. 

This review will focus only on the effect of physical 
activity on skeletal muscle (mitochondrial function) in 
patients with type 2 diabetes.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: It is well described that exercise interventions 
improves insulin sensitivity and maximal oxygen uptake 
in patients with type 2 diabetes as well as in control 
subjects. When it comes to adaptations in mitochondri-
al function after an exercise intervention the literature 
is more sparse especially in patients with type 2 diabe-
tes. Furthermore the medication that patients with type 
2 diabetes are using, are often not described well in 
the papers, and it is known that the different medica-
tion (statins and antihypertensive agents) have a major 
effect on mitochondrial function and insulin sensitivity. 

Larsen S, Skaaby S, Helge JW, Dela F. Effects of exercise train-
ing on mitochondrial function in patients with type 2 diabetes. 
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INTRODUCTION
The pathophysiology of  type 2 diabetes involves the se-
cretion and the action of  insulin. The prevailing view[1] 
is that an inability of  insulin to exert its action on the 
central target tissues, skeletal muscle (mediate glucose 
uptake initialized by the binding of  insulin to its recep-
tor), adipose tissue (mediate glucose uptake and inhibit li-
polysis) and hepatic tissue (inhibit glucose output), results 
in increasing concentrations of  glucose in the blood. In 
response, insulin secretion from the pancreatic beta-cells 
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is increased, and hyperinsulinemia prevails. Only in those 
patients in whom the enforced production of  insulin 
from the pancreas fails, hyperglycemia develops and overt 
type 2 diabetes becomes apparent. The mechanism for 
the failing pancreatic insulin production is not resolved, 
while the development of  impaired insulin action (insu-
lin resistance) is linked to the development of  obesity 
(in particular visceral fat) and a physical inactive lifestyle 
and the molecular mechanism is being unraveled these 
years[2]. Type 2 diabetes is also frequently seen in a cluster 
of  pathologies, including hypertension, endothelial dys-
function, and obesity. Complications to type 2 diabetes 
include macrovascular complications (atherosclerosis), 
but also microvascular complications such as neuropathy, 
nephropathy, retinopathy and angiopathy are known to 
occur in these patients.

In the past decade mitochondrial dysfunction in 
skeletal muscle has been linked to insulin resistance[3-7], 
but an agreement has not been reached and the major-
ity of  data does not support this notion[8-17]. It has been 
shown that patients with type 2 diabetes have 30% lower 
mitochondrial content in their skeletal muscle compared 
to healthy control subjects[12,18], and yet the intrinsic 
mitochondrial function (i.e., respiratory rates normal-
ized for mitochondrial content) is similar in these two 
groups[12-14]. As such the suggested scenario with insulin 
resistance being induced by mitochondrial dysfunction 
via accumulation of  lipids and lipid intermediates, inter-
fering with insulin signaling[19], is probably only partly 
correct. It is a consistent finding that lipids accumulate 
in insulin resistant muscle[3,20] and this is not a qualita-
tive phenomenon (impaired mitochondrial respiration), 
but rather a quantitative phenomenon (decreased mi-
tochondrial mass). The obvious question is therefore 
why the mitochondrial mass seems to be lower in the 
patients with type 2 diabetes? One explanation could be 
that the matching of  the subjects is not optimal in the 
studies[12,18,21] where a lower mitochondrial content was 
reported. If  the healthy control group and the patients 
with type 2 diabetes are carefully matched for physical 
activity level and maximal oxygen uptake, no differences 
exist in mitochondrial content, or intrinsic mitochon-
drial function[16]. Another question is the likelyhood of  a 
marked decrease in mitochondrial content in the skeletal 
muscle of  patients with type 2 diabetes. If  a 30% de-
creased mitochondrial mass was indeed present in type 2 
diabetes with a marked effect on respiratory capacity at 
rest (ex vivo), then one would expect that the in vivo ex-
ercise capacity would be severely impaired, because the 
mitochondrial respiratory rates increases more than ten-
fold with the transition from rest to exercise. Although 
there may be some exercise intolerance in patients with 
type 2 diabetes[22], most can be explained by altered oxy-
gen uptake kinetics[23,24] on the background of  impaired 
peripheral blood flow distribution/microvascular func-
tion. If  a reduction in the mitochondrial content in the 
exercising skeletal muscle was a major limitation, then 
one would expect that skeletal muscle arterio-venous 

oxygen extraction would be impaired in type 2 diabetes. 
This is not the case[25].

It is well known that physical exercise increases skeletal 
muscle insulin sensitivity in patients with type 2 diabetes[26]. 
Furthermore, it has been reported that improvements in 
insulin sensitivity is accompanied by improvements in 
in vivo mitochondrial function[27]. It has been suggested 
that insulin resistant people may have an attenuated re-
sponse to exercise training, compared with healthy con-
trol subjects[28]. Furthermore it has been reported that 
the response to an acute bout of  exercise is attenuated in 
insulin-resistant compared with lean control subjects[29], 
when investigating genes coding for mitochondrial bio-
genesis (PGC-1α mRNA and protein abundance), which 
could explain the lack of  a training effect in patients with 
type 2 diabetes in some studies[30-32]. It has been reported 
that different molecular signals in the skeletal muscle are 
responsible for the activation of  mitochondrial biogen-
esis after exercise. These signals include elevated levels of  
cytosolic Ca2+[33,34], AMP[33] and reactive oxygen species 
(ROS)[35]. All these studies are conducted in animals or 
cells, and have to our knowledge never been performed 
in patients with type 2 diabetes after an acute bout of  ex-
ercise. An increased ROS production has also been linked 
to type 2 diabetes, but few human studies have actually 
investigated this and with conflicting results[8,10,36,37]. It has 
been reported in bovine aortic endothelial cells that hy-
perglycemia (30 mmol/L) increases ROS production[38].

This review will focus on adaptations in skeletal 
muscle mitochondria in patients with type 2 diabetes 
and healthy control participants after different exercise 
modalities (endurance, strength, high intensity training or 
a combination). Furthermore, we will attempt to clarify 
if  the pharmacological treatment in patients with type 2 
diabetes may blunt the training adaptations seen in non-
diabetic people.

EFFECT OF MEDICATION ON EXERCISE 
ADAPTATIONS
Patients with type 2 diabetes are often treated with other 
medication to prevent high cholesterol and/or hyperten-
sion. In Denmark approximately 75% of  all patients with 
diabetes are treated for hypertension, and approximately 
64% are treated for hypercholesterolemia primarily with 
statins[39]. In Denmark approximately 90% of  patients 
with type 2 diabetes are treated with metformin[39].

Antidiabetic agents
If  a lifestyle intervention (diet and exercise) is not suf-
ficient, metformin is the first drug of  choice in the newly 
diagnosed patient with type 2 diabetes. Sulfonylurea may 
be added, and with poor glycemic control insulin treat-
ment may be initiated. The adaptations to exercise are 
inadequately investigated when combined with these dif-
ferent medications. The mechanisms behind the glucose 
lowering effect of  metformin is not known in detail, 
but a decrease in hepatic glucose production[40] and an 
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increase in glucose disposal in skeletal muscle via activa-
tion of  AMPK[41] contributes to this. Metformin does not 
stimulate insulin secretion. In contrast, the hypoglycaemic 
effect of  sulfonylureas is mediated via activation of  the 
insulin producing beta cells[42], and these drugs have no 
direct effect on liver or skeletal muscle.

It has been suggested that the glucose lowering effect 
of  metformin takes place via an inhibition of  complex Ⅰ 
in the electron transport chain in the mitochondria[43-45]. 
One study conducted in patients treated with metformin 
(2000 ± 200 mg/d) reported no effect on complex Ⅰ in 
the electron transport chain[15]. A therapeutic dose of  
metformin of  1000 mg in humans corresponds to a 
plasma metformin concentration of  approximately 0.1 
mmol/L[46,47], and the peak metformin concentration in 
skeletal muscle is much lower than in the plasma[48]. In 
the studies were an inhibition was seen on complex I 
after metformin treatment, the concentrations used were 
high and supraphysiological[43-45]. 

It has been investigated whether metformin has an 
effect of  exercise adaptations in young healthy subjects. 
One study measured maximal oxygen uptake in a double-
blinded, placebo-controlled, cross-over study in healthy 
men and women and found a 2.7% reduction in maximal 
oxygen uptake after 7-9 d of  treatment[49]. The authors 
suggest that this is unlikely to cause any individual impair-
ment in exercise tolerance. Whether the same reduction 
is seen in patients with type 2 diabetes needs to be inves-
tigated. Even though 2.7% is not a major reduction, it 
could be argued that patients with type 2 diabetes would 
suffer more from this, due to a potential lower starting 

point. However, this finding was not confirmed in a simi-
lar study, where solely males participated[50]. Rosiglitazone 
(thiazolidinedione) is another antiglycemic agents, which 
has been reported to increase maximal oxygen uptake 
after 4 mo of  treatment[51], the mechanisms behind the 
improvement is unknown. 

A large proportion of  patients diagnosed with type 
2 diabetes have other co-morbidities, such as obesity, 
hypertension and dyslipidemia, i.e., components of  the 
metabolic syndrome. The pharmacological treatment of  
these may interfere with skeletal muscle and mitochon-
drial adapation to exercise training, and the literature re-
garding this issue will briefly be reviewed.

Lipid-lowering agents (statins)
Is has recently been reported that statins impairs the ben-
eficial adaptations (increased maximal oxygen uptake and 
mitochondrial content) normally gained after a training 
intervention[52]. Different studies (longitudinal and cross-
sectional) have reported an impaired mitochondrial func-
tion after statin therapy[53,54], which may compromise the 
OXPHOS capacity of  the skeletal muscle. This would, in 
turn, further cause exercise intolerance. It has been sug-
gested[54] that the culprit behind the impaired mitochon-
drial function, maybe a reduced coenzyme Q10 content in 
the skeletal muscle (Figure 1). It must be mentioned that 
not all studies have found a negative effect of  statin ther-
apy in combination with exercise[55]. In the study by Meex 
et al[55] many different statins were used, which could in-
fluence the result, since it is known that statins differs in 
lipophilicity[56], and thereby the ability to cross cell mem-
branes. Is has also been reported that statins impaires 
complex Ⅰ respiration in the electron transport chain[57]. 
Another group reported that simvastatin increased ROS 
production in human skeletal myotubes in combination 
with an impaired mitochondrial respiratory capacity[58]. 
To make it even more complex, it has been demonstrated 
that statins have opposite effects on mitochondria from 
cardiac and skeletal muscle[59]. Furthermore, studies have 
reported that statins have an effect (impairment or im-
provement) on insulin sensitivity (for review see[60]). 

Antihypertensive agents
Diuretics, beta-blockers, calcium antagonists, ACE-in-
hibitors and angiotensin receptor blockers (ARBs) are all 
suitable for the initiation and maintenance of  antihyper-
tensive treatment, either as monotherapy or in combina-
tion therapy.

There are different kinds of  β-blockers known as 
selective or nonselective. The selective can either block 
β1 (cardiac) or β2 (skeletal muscle) receptors, the nonse-
lective ones blocks both receptors. The adaptations to 
exercise training can be influenced by using either kind[61]. 
Ades et al[62] investigated 10 wk of  endurance training (4 
times a week) in hypertensive patients, taking either meto-
prolol (β1 selective β-adrenergic blocker), propranolol 
(β1 nonselective β-adrenergic blocker) or placebo. They 
reported an improvement in maximal oxygen uptake 
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with type 2 diabetes are lacking a healthy matched con-
trol group, which makes it impossible to compare the 
response between patients and control participants. Fur-
thermore, the medication used is often not described in 
detail. In this review we primarily report the studies that 
have measured maximal oxygen uptake, mitochondrial 
function and insulin sensitivity (clamp, OGTT, HbA1c or 
fasting glucose and insulin concentrations).

Endurance training
Hey-Mogensen et al[8] investigated if  10 wk of  endur-
ance training affected mitochondrial function, maximal 
oxygen uptake and insulin sensitivity. The patients with 
type 2 diabetes in this study were treated with either met-
formin or sulfonylurea, other kinds of  medication were 
not mentioned in the manuscript. A similar improvement 
in VO2max was seen in patients (12%) and control partici-
pants (16%). Insulin sensitivity was significantly increased 
after training in both control participants (22%) and 
patients (13%). Mitochondrial OXPHOS capacity and 
intrinsic mitochondrial function was measured in isolated 
mitochondria, with no differences between patients and 
control subjects, except for the increased capacity to oxi-
dize long chain fatty acids after training in patients with 
type 2 diabetes which was not apparent in the control 
participants. This finding is in contrast to the hypoth-
esis about reduced ability to oxidize lipids in patients 
with type 2 diabetes[76,77], and therefore it indicates that 
impaired insulin sensitivity is not caused by a reduced 
mitochondrial capacity for lipid oxidation. Furthermore, 
CS activity also increased similarly in the groups. Interest-
ingly no differences were seen in PGC-1α (mRNA) after 
training in either patients or control participants. PGC-
1α is a major regulator for mitochondrial biogenesis[78]. 
Mitochondrial ROS production was similar in the two 
groups and did not change significantly with training. An 
increased UCP3 protein content was seen, but only in the 
control participants[8]. It has previously been suggested 
that UCP3 is acting as a protective mechanism against 
ROS production[79]. No difference was seen in intrinsic 
mitochondrial respiratory function between patients and 
control participants in this study (both before and after 
training)[8], this finding is contradictory to another study 
(cross-sectional) from the same group, where a lower in-
trinsic mitochondrial function was seen in patients with 
type 2 diabetes[4]. Another study investigated the effect 
of  a combination of  endurance and strength training (12 
wk)[17] and similar to the study by Hey-Mogensen et al[8] 
no information is available in the manuscript regarding 
other kinds of  medication except for the glucose lower-
ing agents (metformin or sulfonylurea). An increased 
VO2max was seen after training in the patients with type 2 
diabetes, where only a tendency was seen in the control 
participants. An increased mitochondrial content (mtD-
NA) was seen after training in both groups, accompanied 
by a similar intrinsic mitochondrial function before and 
after training in both groups[17], indicating that mitochon-
drial OXPHOS capacity was increased to a similar extent 

and an increase in mitochondrial content (succinyl de-
hydrogenase activity) in the placebo and the metoprolol 
group, whereas no improvements after training was seen 
with propranolol[62]. Another group investigated 6 wk of  
endurance training in healthy young subjects[63]. The sub-
jects were randomized to either a selective (atenolol) or 
nonselective (nadolol) β-adrenergic blocker or placebo. 
Subjects receiving placebo improved maximal oxygen 
uptake to a higher extent than the two groups receiving 
medication, but all groups improved maximal oxygen up-
take from baseline. Furthermore mitochondrial content 
increased in all three groups after training, but again the 
placebo-group improved to a higher extent[63]. Similar re-
sults were reported by Svedenhag et al[64] in young healthy 
subjects after 8 wk of  endurance training. 

Drexler et al[65] investigated the short- and long-term 
effect of  ACE inhibition on patients with congestive 
heart failure at rest and during exercise. They reported an 
improvement in oxygen extraction of  the working muscle 
after ACE inhibition, and they speculate that this could 
be due to an increased mitochondrial content, but unfor-
tunately muscle biopsies were not obtained to elucidate 
this[65]. In addition, studies have investigated the effect of  
ACE inhibitors on insulin sensitivity and found divergent 
results, with either no effect[66] or an improvement[67]. 

It has previously been reported that Angiotensin Ⅱ 
receptor blockers (ARBs) have a positive effect on reac-
tive oxygen species production and mitochondrial func-
tion in animals (for review see[68]). It has been reported 
that ARBs have different effects on glucose homeostasis 
in hypertensive patients with the metabolic syndrome[69]. 
Patients treated with telmisartan showed an improvement 
in HOMA-IR and HbA1c (surrogate measures of  insu-
lin sensitivity[70]), whereas patients treated with losartan 
showed no improvement[69]. Whether these improve-
ments can be explained by improvements in mitochon-
drial function is at the moment impossible to say.

These results highlight the importance of  controlling 
the medication when mitochondrial function and insulin 
sensitivity are measured before and after a training inter-
vention. Otherwise the results obtained will be hard to 
explain. Furthermore, the interaction between the differ-
ent drugs is also unknown, and would off  course also be 
a confounding factor when results are interpretated. 

MUSCULAR ADAPTATION TO DIFFERENT 
TRAINING MODALITIES IN PATIENTS 
WITH TYPE 2 DIABETES
It is well known that exercise interventions improve max-
imal oxygen uptake, mitochondrial content and insulin 
sensitivity in healthy subjects[71-75]. 

Different training modalities have been investigated 
in patients with type 2 diabetes and control subjects, to 
see if  the training adaptation is similar in patients com-
pared with control participants. Unfortunately many of  
the studies investigating the effect of  exercise in patients 
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in both groups (data not shown in the manuscript). It 
has recently been reported that mtDNA is not a good 
marker for mitochondrial content, at least not in healthy 
young subjects[80]. Phielix et al[5] has previously reported 
impaired intrinsic mitochondrial function in patients 
with type 2 diabetes, a finding that contradicts their own 
finding from 2010[17]. Meex et al[27] used the same training 
protocol as Phielix et al[17] with a combination of  endur-
ance and strength training for 12 wk. Again only glucose 
lowering medication is mentioned in the manuscript and 
thus not the pharmacological specification. Mitochondrial 
function was measured by magnetic resonance spectros-
copy, and a difference was seen before training between 
the two groups with no difference present after training. 
Mitochondrial content was measured as complex Ⅰ-Ⅴ 
protein content (average of  the complexes), both groups 
increased the average of  the five complexes, but the 
increase tended to be more pronounced in the patients 
with type 2 diabetes. Maximal oxygen uptake increased 
significantly with training in both groups, whereas only 
patients with type 2 diabetes improved insulin sensitiv-
ity (clamp) after training[27]. Mogensen et al[81] conducted 
another study in which the effect of  endurance train-
ing on skeletal muscle was studied. Again they showed 
a similar response in regard to maximal oxygen uptake, 
insulin sensitivity and mitochondrial content CS activity, 
where both groups improved in all parameters after train-
ing[81]. Nine months of  aerobic training (150 min/wk at 
50%-80% of  VO2peak) in patients with type 2 diabetes did 
surprisingly not improve either mitochondrial content, 
maximal oxygen uptake or insulin sensitivity, but an in-
creased lipid oxidation was present after training[31]. The 
patient’s medical records were not included in the manu-
script, and no healthy control group was included. So the 
lack of  improvement in mitochondrial content after 9 
mo of  aerobic training could be explained by the medica-
tion used (statins most likely). The study was an ancillary 
study to the HART-D study where the patients medical 
records are included, and a high percentage of  the pa-

tients were in statin therapy[82]. Shaw et al[83] investigated 
6 mo of  endurance exercise (corresponding to approxi-
mately 77% of  VO2peak), they found an increased maximal 
oxygen uptake and mitochondrial content (COX activ-
ity), but no difference in insulin sensitivity. They did not 
report the medication used, but states that medication 
was stopped three days prior to the test days, indicating 
that the patients were on medication during the training 
period, and in addition an appropriate control group was 
not investigated. Another group investigated lean, obese 
and patients with type 2 diabetes before and after 10 d 
of  60 min exercise at 70% of  VO2peak

[32]. No differences 
were seen in muscle oxidative capacity between groups 
before and after training, which is quite intriguing tak-
ing into consideration that the lean subjects had a higher 
maximal oxygen uptake (approximately 50%) compared 
with the two other groups. Insulin sensitivity was un-
fortunately not measured[32]. Mitochondrial volume (by 
TEM) was investigated after 10 wk of  endurance training 
(approximately 70% of  VO2max) and a similar increase in 
mitochondrial volume was seen in patients with type 2 di-
abetes and control participants, accompanied by improve-
ments in maximal oxygen uptake and insulin sensitivity 
(clamp)[84]. Table 1 gives an overview over the published 
literature in regard to endurance training.

High intensity training
The last five to ten years a renewed interest has been 
directed towards a different training method, where high 
intensity training is performed for shorter durations. It 
has been reported that high intensity training (HIT) leads 
to similar metabolic adaptations compared to regular en-
durance training when it comes to improvement in maxi-
mal oxygen uptake and increase in mitochondrial content 
in healthy human skeletal muscle[72,73]. This has not been 
investigated thoroughly in patients with type 2 diabetes.

Two weeks of  HIT has been reported to increase mi-
tochondrial content (CS activity) and improve 24 h blood 
glucose profile (measured 48-72 h after last training 
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Table 1  Effect of endurance training on maximal oxygen uptake, mitochondrial function and insulin sensitivity

Ref. Subjects Training Duration VO2max Mito IS

Mogensen et al[81] T2DM and CON ET 10 wk (2-3 times/wk)   ↑ T2DM   ↑ T2DM   ↑ T2DM
↑ CON ↑ CON ↑ CON

Hey-Mogensen et al[8] T2DM and CON ET 10 wk (4-5 times/wk)   ↑ T2DM   ↑ T2DM   ↑ T2DM
↑ CON ↑ CON ↑ CON

Phielix et al[17] T2DM and CON ET and ST 12 wk (3 times/wk)   ↑ T2DM   ↑ T2DM   ↑ T2DM
→ CON ↑ CON → CON

Meex et al[27] T2DM and CON ET and ST 12 wk (3 times/wk)   ↑ T2DM   ↑ T2DM   ↑ T2DM
↑ CON ↑ CON → CON

Shaw et al[83] T2DM ET 6 mo (3 times/wk)   ↑ T2DM   ↑ T2DM   → T2DM
Sparks et al[31] T2DM and ET 9 mo (150 min/wk)   → T2DM → T2DM   → T2DM
Bajpeyi et al[32] T2DM and CON (L and O) ET 10 d (every day) ND → T2DM ND

→ CON (L and O)
Nielsen et al[84] T2DM and CON ET 10 wk (4-5 times/wk)   ↑ T2DM   ↑ T2DM   ↑ T2DM

↑ CON ↑ CON ↑ CON

CON: Control participants; ET: Endurance training; IS: Insulin sensitivity [or surrogate measures of insulin sensitivity (HbA1c, HOMA)]; L: Lean; O: Obese; 
VO2max: Maximal oxygen uptake; Mito: Mitochondrial function (mitochondrial respiratory capacity, mitochondrial content); ND: Not determined; T2DM: 
Patients with type 2 diabetes.

Larsen S et al . Mitochondria and exercise in type 2 diabetes



bout)[85] in patients with type 2 diabetes. Unfortunately 
no control group was included by Little and colleagues[85], 
but in another study a similar improvement in CS activity 
was observed in overweight women using the same train-
ing protocol[86].

We have recently investigated mitochondrial substrate 
sensitivity in patients with type 2 diabetes and control 
participants after two weeks (eight training sessions) of  
one legged HIT [pilot study (type 2 diabetes; n = 5-7; 
control subjects; n = 3-5)]. Each training session consist-
ed of  ten one minute bouts of  high intense one-legged 
bicycle exercise interspersed with one minute recovery. 
The training load corresponded to minimum 60% of  the 
maximal workload obtained during a one-legged maximal 
oxygen uptake test. Due to the low number of  subjects 
investigated we did not perform any statistical analysis 
on the dataset. We used high resolution respirometry and 
measured the mitochondrial ability to use either octanoyl 
carnitine (medium chain fatty acid), palmitoyl coenzyme 

A (long chain fatty acid, using carnitine palmitoyltransfer
ase Ⅰ (CPT Ⅰ) to enter the mitochondrion) and palmitoyl 
carnitine (long chain fatty acid, using CPT Ⅱ to enter the 
mitochondrion). The results from the pilot study (respi-
rometric measurements) are provided in Figures 2-4. The 
method we used has been described previously[12,16]. No 
differences were seen in mitochondrial substrate sensitiv-
ity for octanoyl carnitine between the groups and both 
groups increased their sensitivity for octanoyl carnitine 
in the trained leg (Figure 2A). It has been reported previ-
ously that no differences are present in mitochondrial 
subtrate sensitivity with octanoyl carnitine between 
patients with type 2 diabetes and obese participants[16]. 
No effect was seen after training in regard to maximal 
mitochondrial oxidative capacity with octanoyl carnitine 
as a substrate, but is seems as the patients with type 2 
diabetes have a higher capacity to oxidize medium chain 
fatty acids (Figure 2B). Mitochondrial substrate sensitiv-
ity for palmitoyl coenzyme A (Figure 3A) and palmitoyl 
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Figure 2  Patients with type 2 diabetes (n = 5) and healthy control subjects 
(n = 5) performed eight sessions of one-legged high intensity training in 
two weeks. Each session consisted of ten one-minute exercise bouts at 60% 
of one-legged maximal oxygen uptake and > 80% of maximal heart rate, inter-
spersed by one min rest. After completion of the training muscle biopsies (vastus 
lateralis) were obtained from the untrained (black bars) and the trained (grey 
bars) leg. The measurement mitochondrial OXPHOS capacity and substrate 
sensitivity was performed with malate, ADP and octanoyl carnitine (titration: 
5-2000 μmol/L). A: Apparent Michaelis Menten constant Km for octanoyl carni-
tine; B: Maximal OXPHOS capacity with the mentioned substrates. T2DM: Type 
2 diabetes; CON: Control subjects; UT: Untrained; TR: Trained.
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Figure 3  Patients with type 2 diabetes (n = 5) and healthy control subjects 
(n = 3) performed eight sessions of one-legged high intensity training in 
two weeks. Each session consisted of ten one-minute exercise bouts at 60% 
of one-legged maximal oxygen uptake and > 80% of maximal heart rate, inter-
spersed by one min rest. After completion of the training muscle biopsies (vastus 
lateralis) were obtained from the untrained (black bars) and the trained (grey 
bars) leg. The measurement mitochondrial OXPHOS capacity and substrate 
sensitivity was performed with malate, ADP and palmitoyl coenzyme A (titration: 
5-100 μmol/L). A: Apparent Michaelis Menten constant Km for palmitoyl coen-
zyme A; B: Maximal OXPHOS capacity with the mentioned substrates. T2DM: 
Type 2 diabetes; CON: Control subjects; UT: Untrained; TR: Trained.
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carnitine (Figure 4A) showed the same tendency where 
patients with type 2 diabetes had a decreased (apparent 
Km increased) sensitivity for long chain fatty acid (palmi-
toyl coenzyme A and carnitine) and control participants 
an increased (apparent Km decreased) sensitivity after 
training. No major differences were seen in maximal mi-
tochondrial oxidative capacity with palmitoyl coenzyme 
A (Figure 3B) or palmitoyl carnitine (Figure 4B) between 
the groups and after the training intervention. From 

these pilot data, it seems as if  no differences are present 
between patients and control participants in regard to 
maximal mitochondrial oxidative capacity with fatty acids 
as substrate either at baseline or after the training inter-
vention. The improved sensitivity for CPT Ⅰ and CPT 
Ⅱ in the control participants, could be explained by an 
increased activity of  CPT Ⅰ (and maybe CPT Ⅱ) which 
have been reported previously[87]. Why patients with type 
2 diabetes show an opposite adaptation is difficult to 
explain, but it has been reported that CPT Ⅰ activity is 
reduced in skeletal muscle from obese compared to lean 
participants[88]. To our knowledge the effect of  training 
on CPT Ⅰ and Ⅱ activity has never been investigated in 
patients with type 2 diabetes, and it is thus impossible to 
say whether this can explain our results. Little et al[85] gives 
an overview over the published literature in regard to 
high intensity training.

Strength training
Is has been suggested previously that strength training 
represents an attractive training modality, due to the fact 
that many patients with type 2 diabetes are obese and 
have difficulties performing endurance exercise.

Few studies have been performed where adaptations 
in skeletal muscle have been investigated. Holten et al[30] 
investigated 6 wk (3 times per week) of  leg strength 
training (one leg, other leg served as control) and found 
improvement in the trained leg in both groups regard-
ing insulin sensitivity (clamp technique). Maximal oxygen 
uptake was not measured, but mitochondrial content (by 
CS activity) showed no difference between the legs in the 
patients but an increase was observed in the control par-
ticipants. Nine months of  resistance training increased 
mitochondrial content in patients with type 2 diabetes, 
but no difference was seen in maximal oxygen uptake and 
HbA1c[31]. This study contradicts the findings by Holten 
et al[30], and this may be due to a difference in duration 
and application of  different methods to evaluate insulin 
sensitivity. Table 2 gives an overview over the published 
literature in regard to strength training.

CONCLUSION
From the literature currently available it is difficult to rec-
ommend a training intervention to patients with type 2 
diabetes where success is well documented when it comes 
to improvement in mitochondrial function. The problem 
with many of  the studies available is that medicine usage 
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Figure 4  Patients with type 2 diabetes (n = 7) and healthy control subjects 
(n = 5) performed eight sessions of one-legged high intensity training in 
two weeks. Each session consisted of ten one-minute exercise bouts at 60% 
of one-legged maximal oxygen uptake and > 80% of maximal heart rate, inter-
spersed by one min rest. After completion of the training muscle biopsies (vastus 
lateralis) were obtained from the untrained (black bars) and the trained (grey 
bars) leg. The measurement of mitochondrial OXPHOS capacity and substrate 
sensitivity was performed with malate, ADP and palmitoyl carnitine (titration: 
5-200 μmol/L). A: Apparent Michaelis Menten constant Km for palmitoyl carni-
tine; B: Maximal OXPHOS capacity with the mentioned substrates. T2DM: Type 
2 diabetes; CON: Control subjects; UT: Untrained; TR: Trained.

Table 2  Effect of strength training on maximal oxygen uptake, mitochondrial function and insulin sensitivity

Ref. Subjects Training Duration VO2max Mito IS

Holten et al[30] ST (one leg) 6 wk (3 times/wk) ND → T2DM  ↑ T2DM
↑ CON ↑ CON

Sparks et al[31] T2DM ST 9 mo (3 times/wk) → T2DM   ↑ T2DM → T2DM

CON: Control participants; IS: Insulin sensitivity [or surrogate measures of insulin sensitivity (HbA1c, HOMA)]; VO2max: Maximal oxygen uptake; Mito: 
Mitochondrial function (mitochondrial respiratory capacity, mitochondrial content); ND: Not determined; ST: Strength training; T2DM: Patients with type 
2 diabetes.
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is not reported, and therefore potential significant medi-
cation effects on the outcome can not be excluded, when 
adaptations to physical activity are investigated. Further-
more, many of  the studies lack a real control group, mak-
ing it impossible to determine if  adaptations are the same 
in patients and control participants. 

The literature is at current lacking well conducted 
controlled longitudinal studies investigating the effect of  
exercise on mitochondrial function, where medication is 
controlled and an appropriate control group is included. 
These studies are difficult to conduct given the ethical 
problem in how you control the medication without 
compromising and disrupting the health of  the patients. 
One approach could be to recruite newly diagnosed pa-
tients, where medication is not started yet. A study like 
this needs to be conducted in the future where mitochon-
drial function is investigated.
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Abstract
Diabetes mellitus is a combined metabolic disorder 
which includes hyperglycemia, dyslipidemia, stroke and 
several other complications. Various groups all over the 
world are relentlessly working out the possible role of 
a vast number of genes associated with type 2 diabe-
tes (T2DM). Inflammation is an important outcome of 
any kind of imbalance in the body and is therefore an 
indicator of several diseases, including T2DM. Various 
ethnic populations around the world show different 
levels of variations in single nucleotide polymorphisms 
(SNPs). The present review was undertaken to explore 
the association of cytokine gene polymorphisms with 
T2DM in populations of different ethnicities. This will 
lead to the understanding of the role of cytokine genes 
in T2DM risk and development. Association studies of 
genotypes of SNPs present in cytokine genes will help 
to identify risk haplotype(s) for disease susceptibility 
by developing prognostic markers and alter treatment 
strategies for T2DM and related complications. This will 

enable individuals at risk to take prior precautionary 
measures and avoid or delay the onset of the disease. 
Future challenges will be to understand the genotypic 
interactions between SNPs in one cytokine gene or sev-
eral genes at different loci and study their association 
with T2DM. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Cytokines; Single nucleo-
tide polymorphisms; Disease susceptibility; Association 
studies

Core tip: Diabetes is the third most widespread disease 
after heart disease and cancer. Cytokines are mediators 
of inflammation, namely interleukins (IL)-1β, -1Ra, -18, 
-4, -6, -10, tumor necrosis factor-α and adiponectin, 
which cause immune responses in disease pathogene-
sis, including type 2 diabetes. In the present study, the 
association of cytokine gene polymorphisms in different 
ethnic populations is reviewed. Such single nucleotide 
polymorphism analyses and association studies in dif-
ferent populations will benefit individuals belonging to 
a particular group. 
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a group of  metabolic 
disorders characterized by high blood sugar levels, which 
results from defects in insulin secretion or action or both, 
leading to complications[1]. Diabetes mellitus has now 
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been associated with the development of  a long term 
organ disease. T2DM has changed from a mild disorder 
of  old age to a serious cause of  morbidity and mortality 
in young and middle-aged people. The Diabetes Atlas 
estimates have shown that 371 million people suffer from 
diabetes worldwide, with India alone having 63.0 million 
affected individuals and the number is expected to rise 
to 101.0 million by 2030[2-4]. This alarming figure has in-
stigated several workers worldwide to undertake genetic 
studies and contribute to the understanding and early de-
tection of  the disease. 

A predisposition to T2DM or “Adult Onset Diabe-
tes” is probably inherited as an autosomal recessive trait[5]. 
T2DM is treated initially by diet control, either alone or in 
combination with orally administered anti-diabetic drugs. 
It is described as a syndrome on the basis of  clustering of  
many abnormalities, like resistance to insulin-stimulated 
glucose uptake, hyperinsulinemia, hyperglycemia, increased 
very low density lipoprotein (VLDL), increased triglycer-
ides, decreased high density lipoproteins (HDL) cholester-
ol, high blood pressure, micro albuminuria, hyperuricemia, 
fibrinolytic and coagulation abnormalities, etc[3]. 

Evidence has shown that T2DM is associated with 
chronic inflammation that can be attributed to dysregu-
lation of  the innate immune system and this is a po-
tential link between metabolic syndrome, diabetes and 
atherosclerosis[6]. A large and diverse family of  small, 
low molecular weight cell signaling proteins mediating 
complex interaction are called “cytokines”, which include 
interleukins and interferons[7] secreted by white blood 
cells and various other cells in response to a number of  
stimuli. The cytokines and their receptors exhibit a very 
high affinity for each other. Another subgroup of  low 
molecular weight cytokines called chemokines affect leu-
kocyte behavior. Cytokines are of  two types, namely pro-
inflammatory [e.g., interleukins (IL)-1, -6, tumor necrosis 

factor (TNF)-α, transforming growth factor (TGF)-β] 
and anti-inflammatory (e.g., IL-1Ra, -4, -10, -13), which 
function opposite to each other. The release of  adipocy-
tokines by adipocytes, such as leptin, resistin, adiponectin 
and visfatin, as well as some of  the classical inflammatory 
cytokines like TNF-α, IL-6, MCP-1 (CCL-2) etc., help to 
achieve this. Studies have shown that it is the fat tissue 
that exerts the endocrine and immune functions. Mac-
rophages and T cells are found in abundance in adipose 
tissue which develops into an organized immune organ[8]. 
Inflammation resulting from an imbalance between pro- 
and anti-inflammatory cytokines leads to T2DM and its 
complications (Figure 1).

Mediators of  inflammation, such as IL-1β, -1Ra, 
-18, -4, -6, -10, TNF-α and adiponectin (ADIPOQ), 
have been proposed to be involved in causing T2DM. 
Elevated blood levels of  certain acute phase markers 
such as IL-6 can characterize the immune response[9], 

while IL-1 regulates the basic metabolic rate, blood glu-
cose levels, blood pressure, iron metabolism and bone 
remodeling. Adiponectin levels and its gene variants have 
also been confirmed to be associated with increased risk 
of  T2DM[10]. To date, more than 1240 gene loci are as-
sociated with diabetes in humans[3]. The susceptibility 
to complex forms of  T2DM is associated with frequent 
polymorphisms that influence the expression of  genes 
belonging to the same or different causal pathways[7]. 
It is important to understand the nature and actions of  
these adipocytokines in order to find their association 
with diseases like T2DM, atherosclerosis, other metabolic 
and vascular diseases (Figure 2). Studies have reported 
that Asian Indians are a unique population for carrying 
out genetic studies due to their greater susceptibility to 
T2DM and increased insulin resistance[11,12]. This review 
is an attempt to put together certain important cytokine 
gene polymorphisms and their association with T2DM in 
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Figure 1  A schematic diagram showing the involvement of various cytokines in diabetes[3]. IL: Interleukin; TNF: Tumor necrosis factor.
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different populations around the world. 

CYTOKINE GENE POLYMORPHISMS AND 
T2DM
Certain chemokines/cytokines, like IL-1β, -1Ra, -18, -4, 
-6, -10, TNF-α, etc., and some members of  the adipocy-
tokine family, namely adiponectin, leptin and resistin, are 
important mediators in inflammation/disease and glucose 
metabolism and may be involved in the pathogenesis of  
T2DM. They can be used as biological markers for dia-
betes and are related to obesity and hypertension. The 
single nucleotide polymorphisms (SNPs) present in the 
regulatory regions of  cytokine genes often have an im-
pact on their expression levels and can be disease modi-
fiers. The degree of  inflammation is controlled, thereby 
leading to the progression of  various immunological 
diseases, including T2DM[13-20]. The polymorphisms in 
cytokine genes lead to interindividual differences in their 
production, leading to variations in immune responses[21]. 

IL-1α, -1β and -Ra 
The IL-1 family consists of  two pro- and one anti- 
inflammatory cytokines, namely 1α, 1β and the IL-1 
receptor antagonist (IL-1Ra), respectively. While IL-1α 
and -1β enhance inflammation and host defense, IL-Ra 
counteracts their function. A variety of  cell types like 
monocytes/macrophages and keratinocytes are known to 
produce these cytokines. All three secreted glycoproteins 
bind to IL-1 receptors[22]. 

The IL-1 genes (IL-1α , -β  and -Ra) are located on 
chromosome 2q12-21. All IL-1 genes are polymorphic 
and several are associated with inflammation and dis-
ease conditions[7,23]. “Autocrine apoptosis” results from 
prolonged exposure of  human islets to high glucose 
which triggers IL-1β production, leading to activation of  
nuclear factors and upregulation of  Fas signaling[24]. IL-
1β and IL-1Ra play important roles in tissue remodeling, 
are potent mediators of  chronic inflammation[25] and are 
therefore implicated in the pathogenesis of  T2DM and 

associated complications[7]. The IL-1 gene variants stud-
ied in various groups are shown in Table 1. 

IL-18
IL-18, a unique IL-1 family cytokine is expressed in mac-
rophages, keratinocytes, osteoblasts, synovial fibroblasts, 
dendritic, Kupffer, adrenal cortex, intestinal epithelial and 
microglial cells[43-50]. IL-18 shares structural homology 
with IL-1β. It is produced as a 24-kDa inactive precursor, 
Pro-IL-18, which is cleaved by IL-1β-converting enzyme 
(ICE; caspase-1) to a mature 18-kDa molecule[51]. The 
extracellular binding of  IL-18 is mediated by IL-18R, a 
heterodimer complex containing α chain (IL-1Rrp) and β 
chain (AcPL)[52-54].

Insulin-producing islet β-cells secrete IL-18 and 
induce IFNγ in T cells[55]. IL-18 is highly expressed in 
atherosclerotic plaques with a role in plaque destabiliza-
tion[56]. Elevated levels of  plasma IL-18 were reported 
in T2DM patients and children[57-59]. However, obesity 
and insulin resistance showed no correlation with IL-18 
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Figure 2  A schematic diagram showing the metabolic defects and bio-
chemical effects of cytokines leading to type 2 diabetes. T2DM: Type 2 
diabetes; IL: Interleukin; TNF: Tumor necrosis factor.

Table 1  Variants of interleukin-1 gene cluster (interleukin-
1α, interleukin-1β, interleukin-1Ra, interleukin-18) and their 
association with type 2 diabetes in different populations

Gene Variants (SNPs) Population-Ethnic group Association Ref. 

IL-1α -889 NS [26]
IL-1β 3954
IL-1β -511
IL-1Ra VNTR
IL-1α 3'UTR Caucasians and African 

Americans
S [27]

IL-1 C-889T East Indian S [28]
IL-1β C-511T
IL-1β C3953T
IL-1α S [29]
IL-Ra VNTR
IL-1β C3954T S [30]
IL-1β -511 North Indian S [31]
IL-1Ra VNTR
IL-1β C-511T S [32]
IL-1Ra VNTR
IL-1β C-511T Korean S [33]
IL-1Ra VNTR
IL-1Ra VNTR NS [29]
IL-1Ra VNTR S [34]
IL-1Ra VNTR North Indian S [17]
IL-1Ra VNTR Caucasians NS [35]
IL-1Ra VNTR S [36]
IL-1RI PstI, HinfI, 

AluI (promoter 
region)

Dalmatian population of 
South Croatia

S [37]

PstI (exon 1B 
region)

IL-18 +183 A/G Norwegian S [38]
-137 G/C NS
-607 C/A NS
-607 C/A Chinese S [39]

BCO2 European S [40]
rs2250417 European NS [41]

5 SNPs European S [42]

UTR: Untranslated region; VNTR: Variable number of tandem repeats; S: 
Significant; NS: Nonsignificant; IL-1: Interleukin-1; SNPs: Single nucleo-
tide polymorphisms.

Inflamed adipocytes TNF-α, IL-6, IL-1β, adiponectin

Insulin resistance

High VLDL, high TG, low HDL

Endothelial dysfunction β-cell inflammation

Low insulin

T2DM

High glucose
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lates inflammatory responses of  pro-inflammatory 
cytokines[102]. The serum concentrations of  TC, LDL, 
TGL, glucose and HbA1c gradually decreases and HDL 
increases with an increase in IL-10 production. These 
observations implied that low IL-10 production was as-
sociated with hyperglycemia and T2DM[68,103]. IL-10 pro-
motes the proliferation and differentiation of  B-lympho-
cytes by stimulating antibody production[104]. The IL-10 
gene is located on chromosome 1q31-q32 and several 
variants have been identified in its promoter region[105-106]. 
The presence of  IL-10 is protective against T2DM and 

plasma level[60]. The IL-18 gene in humans is located on 
chromosome 11q22.2-22.3, where a diabetes susceptibil-
ity locus, Idd2, resides[61]. Studies reporting IL-18 gene 
polymorphisms are shown in Table 1. 

IL-4
One of  the hematopoietic cytokines, IL-4 regulates key 
events during Th2-dominated immune response and also 
stimulates T cells, leading to the production of  other 
cytokines. It causes β-cell isotype switching from IgM to 
IgE and stimulates IgE production in allergic sensitiza-
tion. IgE stimulation during allergic reactions and infec-
tions is the natural defense mechanism. It also plays a 
crucial role in the pathophysiology of  T2DM[62]. The het-
erodimerization of  high-affinity transmembrane recep-
tor α-chain (IL-4Rα) is mediated by IL-4 in a sequential 
cascade. Several candidate genes have been identified, 
including the gene for IL-4Ra which is situated on chro-
mosome 16p and is known to contain a number of  poly-
morphisms. IL-1Ra and IL-4 are major anti-inflammatory 
cytokines[63] and have been proposed to be involved in 
events causing T2DM. The IL-4Ra subunit forms part of  
the signalling complex for IL-4. In humans, the gene for 
IL-4 maps to chromosome 5q31. The polymorphisms in 
IL-4 gene and their relationship with T2DM have been 
studied by various groups (Table 2). 

IL-6
IL-6 is secreted by immune cells, adipose tissue and mus-
cles and is able to accelerate or inhibit the inflammatory 
processes[66,67]. The direct affect of  IL-6 may be on glu-
cose homeostasis and metabolism or it might act indirect-
ly by action on adipocytes, pancreatic β-cells, etc[68]. In hu-
mans, the gene for IL-6 maps to chromosome 7p15-p21. 
IL-6 mRNA expression and insulin resistance were found 
to have a significant correlation[69] and increased plasma 
IL-6 levels with higher risk of  T2DM[6,70,71], making it an 
appealing candidate gene. One of  the common polymor-
phisms in the IL-6 gene promoter (C-174G) was found 
to regulate transcription in response to inflammatory 
stimuli, such as lipopolysaccharides or IL-1[72-74]. IL-6 pro-
moter SNPs were considered as risk factors for T2DM 
development, as reported by other groups[75,76] (Table 3). 

IL-10
IL-10 is also a Th2 mediated cytokine that downregu-
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Table 2  Variants of interleukin-4 gene and their association 
with type 2 diabetes in different populations

Gene variants (SNPs) Disease Population- Association Ref. 

Ethnic groups
-590 C/T T2DM Iranian S [64]
-589 C/T T2DM Chinese S [65]
-34 C/T T2DM
VNTR T2DM North Indian S [17]

VNTR: Variable number of tandem repeats; S: Significant; T2DM: Type 2 
diabetes; SNPs: Single nucleotide polymorphisms.

Table 3  Variants of Interleukin-6 gene and their association 
with type 2 diabetes and related complications in different 
populations

Gene variants Diseases Population- Association Ref. 

(SNPs) Ethnic groups
 -174 G/C T2DM and OGTT Brazilian S [77]

T2DM and IR American S [78]
T2DM and obesity Polish S [79]
T2DM and obesity Mexican NS [80]

T2DM Indian S [81]
T2DM Finnish NS [82]

T2DM and Obesity Tunisian S [83]
T2DM Caucasian S [84]
T2DM German S [85]

DM, micro-, 
macrovascular 
complications

Australian NS [29]

-do- German NS [86]
T2DM and IR Italian S [87]

T2DM KORA Survey S [88]
T2DM Framingham 

Heart Study 
S [89]

T2DM KORA Survey S [90]
T2DM Taiwanese S [91]
T2DM Nutrition-

Potsdam cohort
S [92]

T2DM Finnish S [93]
T2DM Native 

Americans, 
Spanish, 

Caucasians

S [75]

T2DM and IR Spanish S [94]
T2DM and PAD Italian S [95]

T2DM KORA Survey S [76]
DM and 

Periodontitis 
Chinese S [96]

T2DM and 
Endothelial 
Dysfunction

Chinese S [97]

T2DM 21 studies S [71]
-174 G/C 
-597 A/G

T2DM Boston NS [98]

GWS 
(18 SNPs)

T2DM Canadian S with 
Fasting

[99]

PREDIAN 
study

DN Spanish S  [100]

Five tagging 
SNPs

T2DM and 
Impaired Renal 

Function

Singaporean S  [101]

S: Significant; NS: Non-significant; T2DM: Type 2 diabetes; PAD: Periph-
eral arterial disease; SNPs: Single nucleotide polymorphisms; OGTT: Oral 
glucose tolerance test; DM: Diabetes mellitus; IR: Insulin resistance; DN: 
Diabetic nephropathy.
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inflammation due to its humoral immunity responses 

and prevention of  pancreatic beta cell destruction[4,107]. 
The association of  IL-10 gene polymorphisms is shown 
in Table 4. 

TNF-α
TNF-α is released by monocytes/macrophages and has an 
initial role in β-cell damage of  the islets. It is reported that 
TNF-α is a possible mediator of  insulin resistance and 
diabetes since it decreases the tyrosine kinase activity[116]. 
Furthermore, TNF-α inhibits insulin signaling[117] and im-
pairs its secretion[118]. TNF-α interacts with IL-6, regulating 
its expression and downregulating itself[73]. In humans, the 
gene for TNF-α maps to chromosome 6p21. 3. One of  
the SNPs in TNF-α gene showed a two-fold increase in 
transcriptional activity[119,120]. Various groups showed an as-
sociation of  TNF-α SNPs with T2DM (Table 5). 

Adiponectin
An endocrine effect leading to the clinical expression of  
T2DM and cardiovascular disease was attributed to the 
cytokines secreted by adipocytes[135,136]. Since the role of  
classical cytokines and adipocytokines in metabolic syn-
drome and associated disease conditions came to light, 
several workers have shown the role of  activated innate 
immunity in the pathogenesis of  T2DM[70,137]. Adiponec-
tin levels in the plasma remain constant throughout the 
day and are not affected by food intake, unlike insulin and 
leptin. 

Adipocytes secrete a plethora of  cytokines, including 
adiponectin, resistin, leptin, IL-6, TNF-α, visfatin, RBP4, 
as well as free fatty acids, which alter insulin action and 
hepatic glucose production[138-140]. Adiponectin is a serum 
protein produced and secreted exclusively by adipose tis-
sues, also known as adipocytes complement-related pro-
tein of  30 KDa (147 amino acids) (Acrp30). It is involved 
in the homeostatic control of  circulating glucose and lip-
id levels[141]. Reduced adiponectin levels are documented 
in obese, insulin resistant and T2DM patients[116]. Adipo-
nectin regulates glucose/lipid homeostasis via phosphory-
lation and activation of  adenosine monophosphate acti-
vated protein kinase[142,143]. Another important function 
of  adiponectin is to prevent the atherosclerotic vascular 
damage by suppressing interaction of  monocytes/en-
dothelial cells and adhesion molecules[144,145]. Therefore, 
high adiponectin levels are associated with reduced risk 
of  T2DM[70]. In humans, the gene for ADIPOQ maps to 
chromosome 3q27. The SNPs in ADIPOQ studied by 
other researchers are shown in Table 6. 

CONCLUSION
The greater tendency to diabetes in Indians may result 
from some genetic factors in addition to environmental 
and dietary factors. It is reported that the severity of  
diabetes (T2DM) in patients, from chronic to newly diag-
nosed, is related to certain biochemical and pathological 
examinations. The risk factors include lipid metabolism 
abnormalities (VLDL, HDL, LDL, TGA etc.) and re-
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Table 4  Variants of interleukin-10 gene and their association 
with type 2 diabetes and related complications in different 
populations

Gene variants Diseases Population- Association Ref. 

(SNPs) Ethnic groups
-592 A/C T2DM Iranian NS [108]

T2DM Chinese NS [109]
T2DM North Indian S     [4]

-1082 G/A proliferative 
diabetic 

retinopathy

Indian S [110]

T2DM South Indian S [111]
-1082 G/A
-819 C/T
-592 C/A

T2DM Caucasian Italian S [112]

-1082 G/A T2DM Turkish NS [113]
-1082 G/A
-819 C/T
-592 C/A

T2DM Greek NS [106]

-592 A/C 
-819 C/T

T2DM Taiwanese NS [107]

-592 A/C T2DM Taiwanese S [114]
-1087 G/A 
-824 C/T
-597 C/A

T2DM Italian S [115]

-592 A/C T2DM Tunisian S   [18]

S: Significant; NS: Non-significant; T2DM: Type 2 diabetes; SNPs: Single 
nucleotide polymorphisms.

Table 5  Variants of tumor necrosis factor-α gene and their 
association with type 2 diabetes and related complications in 
different populations

Gene variation Diseases Population- Association Ref.

(SNPs) Ethnic groups
G-308A T2DM Tarragona S [120]

T2DM Taiwanese S [121]
T2DM Croatian 

Caucasians
S [122]

T2DM and 
peridontitis

Chinese S [123]

T2DM, MS and 
Obesity

Indian S [124]

T2DM Mexican S [125]
Glucose 

metabolism
Brazilian S [126]

T2DM Japanese NS [127]
T2DM Mexican NS [128]
T2DM Chinese NS [129]
T2DM Greek NS [130]

atherosclerotic 
diabetic

Hungarian S [131]

T2DM Indian S   [81]
T2DM United Kingdom/

Irish 
NS [132]

T2DM Finnish S   [82]
sTNFR1 and 
sTNFR2

Glucose 
metabolism

Hungarian NS [133]

C-857T IR and T2DM Japanese S [134]

S: Significant; NS: Non-significant; T2DM: Type 2 diabetes; SNPs: Single 
nucleotide polymorphisms; MS: Metabolic syndrome; TNFR1: Tumor ne-
crosis factor receptor 1.
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lationship to body mass index, WHR, food habits and 
family history. Different correlation with lipid profile 
and response to anti-diabetic drugs are additional indica-
tions of  a genetic predisposition. SNPs in specific genes 
which show considerable levels of  variation amongst 
ethnic groups around the world have been implicated in 
the pathogenesis of  diabetes. Therefore, identification 
of  polymorphic variants of  cytokine genes in differ-
ent populations and the genotypic associations between 
SNPs and gene-gene interactions will have clinical impor-
tance as indicators of  T2DM susceptibility. Association 
studies of  cytokine genes will help in the development 
of  prognostic markers to identify individuals at risk. The 
prognostic regimens arising from such genetic studies 
will alter and ease out treatment strategies for T2DM and 
related complications. Individuals at risk will be able to 
take prior precautionary measures and avoid or delay the 
onset of  the disease.
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Abstract
Ever since its first appearance among the multiple 
forms of diabetes, latent autoimmune diabetes in adults 
(LADA), has been the focus of endless discussions 
concerning mainly its existence as a special type of 
diabetes. In this mini-review, through browsing impor-
tant peer-reviewed publications, (original articles and 
reviews), we will attempt to refresh our knowledge re-
garding LADA hoping to enhance our understanding of 
this controversial diabetes entity. A unique combination 
of immunological, clinical and metabolic characteristics 
has been identified in this group of patients, namely 
persistent islet cell antibodies, high frequency of thy-
roid and gastric autoimmunity, DR3 and DR4 human 
leukocyte antigen haplotypes, progressive loss of beta 
cells, adult disease onset, normal weight, defective gly-
caemic control, and without tendency to ketoacidosis. 
Although anthropomorphic measurements are useful as 
a first line screening, the detection of C-peptide levels 
and the presence of glutamic acid decarboxylase (GAD) 
autoantibodies is undoubtedly the sine qua non condi-

tion for a confirmatory LADA diagnosis. In point of fact, 
GAD autoantibodies are far from being solely a bio-
marker and the specific role of these autoantibodies in 
disease pathogenesis is still to be thoroughly studied. 
Nevertheless, the lack of diagnostic criteria and guide-
lines still puzzle the physicians, who struggle between 
early diagnosis and correct timing for insulin treatment.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Latent autoimmune diabetes in adults; 
Type 1 diabetes mellitus; Type 2 diabetes mellitus; Au-
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Core tip: A unique combination of, immunological, clini-
cal and metabolic characteristics has been identified in 
latent autoimmune diabetes in adults (LADA) patients. 
Even so, the current definition of LADA fails to capture 
in one snapshot insulin resistance and autoimmunity, 
this very special pathognomonic characteristic of LADA. 
Addressing this dual facet of LADA would undoubtedly 
provide insight into disease pathogenesis and help in 
the immediate identification and prompt insulin therapy.

Pipi E, Marketou M, Tsirogianni A. Distinct clinical and labo-
ratory characteristics of latent autoimmune diabetes in adults 
in relation to type 1 and type 2 diabetes mellitus. World J Dia-
betes 2014; 5(4): 505-510  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i4/505.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i4.505

INTRODUCTION
As early as in the end-1970s, Irvine identified a group 
of  patients with diabetes who although treated with oral 
hypoglycaemic agents, they possessed islet cell antibodies 
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(ICA)[1]. Not only had these ICA-positive patients higher 
prevalence of  other organ specific autoantibodies, they 
showed a significant tendency to progress faster towards 
insulin deficiency as well. Interestingly, in these patients 
persistence of  ICA for more than five years from diabetes 
diagnosis was associated with coexistent of  organ specific 
autoimmune disease and with human leukocyte antigen 
(HLA)-B8, A1 1. The autoimmune signature in these pa-
tients lead to be classified as type 1 diabetes (T1D)[2,3].

Subsequently, a unique combination of  immunologi-
cal, clinical and metabolic characteristics has been identi-
fied for this group of  patients, namely persistent ICA, 
high frequency of  thyroid and gastric autoimmunity, 
HLA-DR3 and DR4, progressive loss of  beta cells, adult 
disease onset, normal weight, defective glycaemic control, 
lower initial levels of  C-peptide and impaired response 
after glucagon stimulation compared to T2D patients, 
and without tendency to ketoacidosis[4-8]. But, the idea of  
latent autoimmune diabetes mellitus in adults has been 
only recently introduced[9]. More specifically, in 1994 Paul 
Zimmet et al[10] and Tuomi et al[11] introduce the term la-
tent autoimmune diabetes in adults (LADA) for LADA 
and 5 years later the 3 criteria that define LADA are sug-
gested, which are (1) GABA-synthesizing enzyme, glu-
tamic acid decarboxylase (GAD) antibody positivity (> 5 
RU); (2) age of  diabetes onset > 35 years; and (3) insulin 
independence at diagnosis (at least 6 mo). However, the 
current definition of  LADA fails to capture in one snap-
shot insulin resistance and autoimmunity, this very special 
pathognomonic characteristic of  LADA[12].

On the other hand, the World Health Organisation 
diabetes classification does not differentiate LADA as a 
distinct entity[13]. In fact, the concept of  LADA is strongly 
debated since many researchers question whether LADA 
is a definite form of  diabetes and propose instead that 
LADA represents slowly evolving T1D which should be 
regarded as a continuum[14-16]. Even so, LADA can nicely 
describe patients with features of  both T1D and T2D 
and provide with a better understanding on the grey zone 
between these two types[17-19]. Addressing this dual facet 
of  their disease would undoubtedly facilitate treatment 
option and therefore benefit LADA patients. 

IMMUNOLOGICAL CHARACTERISTICS
Bottazzo was the first to describe the presence of  ICAs 
in T1D patients having also an endocrine disorder of  
autoimmune etiology. These antibodies were detected by 
indirect immunofluorescence on pancreatic cryosections 
and they were named as such because they targeted un-
known elements of  islet cells[20].

Nowadays, commercial available kits using pancreas 
of  primate origin are used at routine basis for the deter-
mination of  ICAs. To facilitate communication among 
different laboratories and give the possibility of  compa-
rable ICA assays, the results should be given in Juvenile 
Diabetes Foundation units. On the other hand, one 
should bear in mind that the limitations of  ICA assay are 

the demanding standardization and challenging interpre-
tation of  the results. Despite those restrictions, in the 4th 
International ICA Workshop it was reported that ICA 
diagnostic test has exceptional specificity and acceptable 
concordance among the different laboratories[21].

There is a bunch of  studies addressing the ICAs rel-
evance to T1D. It is now clear that more than 70% newly 
diagnosed T1D patients are ICA-seropositive[22]. With 
a specificity of  about 97%, their presence has been re-
ported in less than 4% of  healthy subjects[23]. It should be 
mentioned that in contrast to general population where 
ICAs higher than 20 JFD is not of  clinical relevance, in 
the first degree T1D relatives this finding is highly prog-
nostic of  T1D[24,25]. Finally, it is important for clinicians 
to closely follow up ICA-positive patients who are receiv-
ing oral hypoglycaemic agents, since their presence in this 
population is strongly predictive of  switching to insulin 
dependency[26]. 

Anti-insulin autoantibodies (IAAs) were the first 
specific ICAs to be identified and this was done in 1983 
by Palmer et al[27] who performed seminal studies in this 
area using serum from patients who have not been chal-
lenged by exogenous insulin at the time of  sample col-
lection. Subsequent research have addressed the insulin 
levels after glucose challenge and it was concluded that 
insulinopenia was more prevalent in subjects possessing 
both, ICAs and IAAs, compared to those being positive 
just for ICAs[28]. However, this marker has a relatively low 
sensitivity, being even less than 40%[29].

At the 4th International Workshop regarding standard-
ization of  IAAs assays it was suggested that RIA should 
be the method of  choice for IAAs determination[30]. 
However, in the routine laboratory practice their presence 
can be also assessed by the enzyme-linked immunosor-
bent assay (ELISA). A reasonable concern would be how 
the available assays can distinguish between endogenous 
and exogenous insulin, but this is feasible through dis-
tinct idiotypes[31].

Notably, IAAs prevalence is actively influenced by 
both, sex and age. In detail, in young patients there is an 
equal incidence of  IAAs in both sexes which is skewed at 
2 males: 1 female in ages greater than 15 years old[32]. Ad-
ditionally, these antibodies are inversely correlated with 
age and since their prevalence sharply drops with age, it 
is not surprising that they are of  low diagnostic value for 
LADA[33].

The second ICAs specific target to be identified was 
the GABA-synthesizing enzyme, GAD, a molecule with 
a size of  64.000 M(r)[34]. Two forms of  GAD exist in hu-
mans, each transcribed by different gene, termed accord-
ing to their molecular mass GAD65 and GAD67, and the 
former being the antigenic target for T1D[35]. Notewor-
thy, anti-GAD65 autoantibodies are the most typical and 
prevailing antibodies connected with ICA reactivity[23]. An 
interesting proposed aspect on anti-GAD65 autoantibod-
ies is that they are present in healthy individuals but they 
cannot be detected by conventional methods since they 
are masked by anti-idiotypic antibodies[36].
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Anti-GAD65 autoantibodies are detected by commer-
cial available RIAs as well as ELISAs and interestingly 
enough recent ELISAs offer comparable specificity with 
RIAs and even better sensitivity[37]. These autoantibod-
ies are positively correlated with age and in the female 
population are found in greater levels. Serum conversion 
for these antibodies, from negative to positive, peaks af-
ter T1D diagnosis and usually they can be detected even 
when ICAs becoming gradually undetectable[23]. Since 
GAD65 is an intracellular antigen, we speculate that dur-
ing disease progression islet cells could release GAD65, 
explaining partially the fact that they can be detected 
after disease onset. For the aforementioned reasons, anti-
GAD65 autoantibodies have major role in the manage-
ment of  diabetes in adults. In fact, their positive predic-
tive value in mid-aged population has been reported to 
be 50%[38].

As regard GAD65 autoantibodies in LADA, the 
Non-Insulin Requiring Autoimmune Diabetes (NIRAD) 
nationwide survey has shown that anti-GAD65 titres are 
useful to categorise patients with adult-onset autoimmune 
diabetes in two different distinct groups with character-
istic clinical picture, autoimmune features, and genetic 
signature. In detail, patients with higher anti-GAD65 ti-
tres can be described by a more profound autoimmunity, 
quite marked dependency on insulin, higher levels of  
serum A1C, and lower both body mass index (BMI) and 
metabolic syndrome prevalence and, regarding genetic 
traits, decreased frequency of  HLA-DRB1*0403 and 
HLA-DQB1*0602 and an increased for HLA-DRB1*03 
and HLA-DQB1*0201 characterises the patients with 
higher anti-GAD65 titres[39]. Furthermore, studies from 
the same nationwide survey revealed that in LADA, the 
variant PTPN22 1858T is strongly associated with high 
titres of  anti-GAD65 autoantibodies while the low levels 
are correlated to the T2D genetic variant of  susceptibil-
ity, TCF7L2[40,41]. It has also been suggested that the pres-
ence of  high anti-GAD65 titres and/or anti-GAD65 au-
toantibodies directed against the C-terminal and not the 
middle epitopes of  the protein can group a LADA sub-
phenotype with many similarities with classic T1D and a 
high probability to develop insulin deficiency[42].

On the other hand, other groups do not rely entirely 
on high anti-GAD65 titres, in order to predict the pro-
gression of  LADA. Instead, strong predictors are consid-
ered the co-existence of  positive autoantibodies and both 
HLA-DRB1 and HLA-DQB1, while, traits including fe-
male gender and low BMI and are highly likely to predict 
insulin requirement within 4 years post-diagnosis[43].

In mid-1990s, two independent groups will add an ad-
ditional T1D specific autoantigen to the ICAs reactivity 
panel, the insulinoma antigen 2 (IA-2), a transmembrane 
molecule belonging to the family of  protein tyrosine phos-
phatases[44-46]. IA-2 is a ubiquitous molecule expressed by 
neuroendocrine cells, including islet cells of  the pancreas, 
and is localised in the membranes of  secretory granules[47].

Within the framework of  T1D diagnostic approach, 
antibodies against IA-2 can be detected by RIA or ELISA 

commercial kits, with both methods giving comparable 
results[37]. As a T1D-specific biomarker, anti-IA-2 auto-
antibodies have a sensitivity of  about 60%, meaning that 
they are less sensitive compared to anti-GAD65 autoanti-
bodies, but when compared to IAA they have higher sen-
sitivity[29]. In contrast to IAA and ICA, anti-IA-2 AAbs 
show no variation with age and thus, when anti-GAD65 
autoantibodies are also evaluated, an autoimmune signa-
ture of  the diabetes can be defined[23].

Recently, antibodies against the IA-2 (256-760) frag-
ment were shown to be a reliable marker in LADA patients 
and they were positively correlated with higher frequency 
of  autoimmunity and susceptible HLA haplotypes[48].

Patients with autoimmune diabetes are likely to be 
presented with an additional autoimmune condition of  
endocrine (thyroid and adrenal glands) or non-endocrine 
organs (thyroid and adrenal glands)[23]. Regarding endo-
crine organ-specific autoimmune conditions, anti-TPO 
(thyroid peroxidase)/anti-thyroglobulin (anti-Tg) anti-
bodies, marker for autoimmune thyroid disease can be 
detected in about one fifth of  patients with T1D, while 
anti-adrenal autoantibodies, marker for Addison’s disease 
are rather less common in T1D, being found in less than 
2%[49,50]. Regarding non-endocrine organs, autoimmune 
gastritis, characterised by the presence of  anti-parietal-cell 
antibodies can be found in about one tenth of  patients 
with autoimmune diabetes, while celiac disease, character-
ised by an immunological signature of  anti-endomysial, 
anti-Tg and anti-gliadin antibodies, with a prevalence of  
11% is consider to be common in T1D[50,51].

Regarding organ specific autoantibodies in LADA, 
the recent NIRAD study 6 suggests a higher frequency 
of  organ-specific antibodies in subjects with high anti-
GAD65 titres[52]. They additionally recommend con-
sidering that the risk for the presence of  other specific 
antibodies in LADA depends on both, GAD65 titre and 
gender, and thus, knowledge of  the specific odd ratio can 
be helpful during screening[52].

CLINICAL AND METABOLIC 
CHARACTERISTICS
First and foremost, the mean age at onset is a highly 
important hand tool for the clinician, who has to decide 
upon the different type of  diabetes and consequently 
on the appropriate treatment for the patient as quickly 
as possible. According to study groups, the age of  older 
than 25 years at onset is a supportive finding towards 
LADA[19,53]. Furthermore, in comparison to T2D, stimu-
lated as well fasting C-peptide is lower in LADA[5]. Addi-
tionally, the level of  insulin secretion in LADA is believed 
to be intermediate between T1D and T2D 5. Important-
ly, a fast decline in both insulin secretion and stimulated 
C-peptide secretion occurs rather fast, namely within a 
few years after LADA diagnosis[54]. In patients over 35 
years old at diagnosis and duration of  diabetes less than 
5 years, the presence of  diabetes-specific antibodies is 
related to lower fasting C-peptide, less often neuropathy 
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20 Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell 
antibodies in diabetes mellitus with autoimmune polyendo-

and blood pressure closer to the normal values (56). On 
the other hand, only patients with more than 1 antibody 
have reduced residual beta-cell function, and only these 
patients tend to be leaner[55].

A review by Fourlanos et al[54] concludes that patients 
with LADA are indeed insulin resistant based on homeo-
stasis model assessment, while 50% of  insulin secretory 
failure occurs within the first 4 years. Furthermore, al-
though controversial, in agreement with our observation, 
LADA patients are presented with lower BMI, blood 
pressure and triglyceride levels compared to T2D[56].

Regarding treatment policy in LADA patients, time 
to insulin treatment is based on clinical judgement, with 
GAD autoantibodies being of  upmost importance[57]. 
Interestingly, Stenström et al[58] have suggested that insulin 
treatment in LADA patients should start as soon as pos-
sible. Factually, guidelines on LADA treatment do not 
exist and is controversial whether sulphonylurea, insulin, 
vitamin D or alternative therapies such as GAD65, can 
influence the beta-cell loss progression and metabolic 
control[59]. Since LADA patients are presented not only 
with gradually developing insulin deficiency, but also with 
insulin resistance, a unique treatment strategy should be 
designed, in order to treat hyperglycaemia and to preserve 
b-cell function[60].

CONCLUSION
There is adequate evidence that LADA constitutes a 
special form of  diabetes, with a unique immunological, 
metabolic and clinical signature, while its pathognomonic 
characteristic can be described as latent autoimmunity, 
combined with glucose resistance. The lack of  a consen-
sus amid diabetes experts hampers the uniformity of  the 
studies and perplexes results interpretation. The need 
of  a clear definition, fulfilling the metabolic and immu-
nologic characteristic of  the disease, is unambiguously 
required. Even better, diagnostic criteria and guidelines 
would facilitate disease management and pave the way for 
LADA understanding.
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Abstract
The Src homology 2B (SH2B) family members (SH2B1, 
SH2B2 and SH2B3) are adaptor signaling proteins con-
taining characteristic SH2 and PH domains. SH2B1 (also 
called SH2-B and PSM) and SH2B2 (also called APS) are 
able to form homo- or hetero-dimers via  their N-terminal 
dimerization domains. Their C-terminal SH2 domains 
bind to tyrosyl phosphorylated proteins, including Ja-
nus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like 
growth factor-1 receptors, insulin receptor substrate-1 
(IRS1), and IRS2. SH2B1 enhances leptin signaling by 
both stimulating JAK2 activity and assembling a JAK2/
IRS1/2 signaling complex. SH2B1 promotes insulin sig-
naling by both enhancing insulin receptor catalytic ac-
tivity and protecting against dephosphorylation of IRS 
proteins. Accordingly, genetic deletion of SH2B1 results 
in severe leptin resistance, insulin resistance, hyper-
phagia, obesity, and type 2 diabetes in mice. Neuron-
specific overexpression of SH2B1β transgenes protects 
against diet-induced obesity and insulin resistance. 
SH2B1 in pancreatic β cells promotes β cell expansion 
and insulin secretion to counteract insulin resistance in 
obesity. Moreover, numerous SH2B1 mutations are ge-
netically linked to leptin resistance, insulin resistance, 
obesity, and type 2 diabetes in humans. Unlike SH2B1, 

SH2B2 and SH2B3 are not required for the mainte-
nance of normal energy and glucose homeostasis. The 
metabolic function of the SH2B family is conserved 
from insects to humans.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Obesity; Type 2 diabetes; Leptin resistance; 
Insulin resistance; Glucose intolerance; Hypothalamus; 
Energy balance; Food intake; Hyperphagia; Nonalco-
holic fatty liver disease

Core tip: The Src homology 2B (SH2B) family mem-
bers mediate cell signaling in response to a variety of 
hormones, cytokines, and growth factors. In the brain, 
SH2B1 enhances leptin signaling and leptin’s anti-
obesity action. In peripheral tissues, SH2B1 cell-auton-
omously enhances insulin signaling. In pancreatic islets, 
SH2B1 is required for compensatory β cell expansion in 
response to insulin resistance and β cell stress. SH2B1-
deficiency results in severe leptin resistance, energy 
imbalance, obesity, and type 2 diabetes. SH2B1 muta-
tions are linked to leptin resistance, insulin resistance, 
obesity, and type 2 diabetes in humans. Thus, SH2B1 
is a critical metabolic regulator in mammals.
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INTRODUCTION
The Src homology 2B (SH2B) family contains three 
members (SH2B1, SH2B2 and SH2B3) in mammals. 
All members contain a characteristic pleckstrin homol-
ogy (PH) domain and SH2 domain. SH2B1 (also called 
SH2-B and PSM) was initially identified as a high affinity 
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immunoglobin E receptor (Fc RI) binding protein in the 
yeast tribrid screen in 1995[1]. SH2B2 (also called APS) 
was identified as a c-Kit-binding protein by the yeast two-
hybrid system in 1997[2]. SH2B3 (also called Lnk) was 
identified as a SH2 domain-containing, tyrosyl phosphor-
ylated protein in rat lymph node lymphocytes in 1995[3]. 
The SH2B family is evolutionarily conserved from insects 
through humans. Unlike mammals, insects have only one 
SH2B gene (also called Lnk)[4,5]. Deletion of  SH2B1, but 
not SH2B2 or SH2B3, results in obesity and metabolic 
diseases in mice, whereas deletion of  either SH2B2 or 
SH2B3, but not SH2B1, impairs immune function[6-11]. 
Therefore, individual SH2B1 family members have dis-
tinct function in mammals. In this review, I will mainly 
discuss mammalian SH2B1 and SH2B2.

METABOLIC FUNCTION OF SH2B1
Structure, subcellular localization, posttranslational 
modification, and tissue distribution of SH2B1
The SH2B1 gene generates four SH2B1 isoforms (α, β, γ, 
and δ) through mRNA alternative splicing[1,12-14]. All iso-
forms have an identical N-terminal region (amino acids 
1-632), but differ at their C-termini after the SH2 domain 
(Figure 1).

SH2B1 structure: All four isoforms have identical di-
merization (DD), PH, and SH2 domains (Figure 1). The 
DD domain mediates SH2B1 homodimerization or its 
heterodimerization with SH2B2[15-17]. The SH2 domain 
binds to the phospho-tyrosine motifs of  its binding part-
ners (e.g., JAK2 and insulin receptors)[12,18]. The function 
of  the central PH domain remains unclear.

SH2B1 subcellular localization: SH2B1 is located mainly 
in the cytoplasm, but a subset shuttles between the cyto-
plasm and the nucleus[19]. SH2B1 contains a nuclear local-
ization sequence (NLS) (KLK150KR) which is required for 
its nuclear translocation[20]. SH2B1 also contains a nuclear 
export sequence (NES) (GERWTHRFERL231RLSR) 
(Figure 1), and replacement of  the conserved Leu231 and 
Leu233 with Ala increases its nuclear localization[19]. SH2 
domain-defective SH2B1β(R555E) mutant is also ex-
cluded from the nucleus[20]. Therefore, the NLS, NES, and 
SH2 domain all are involved in the regulation of  SH2B1 

trafficking between the cytoplasmic and nuclear compart-
ments. SH2B1 is also translocated to the plasma mem-
brane[21]. A N-terminal polybasic region (S145KPKLKKRF), 
which overlaps the NLS, is required, but not sufficient, for 
SH2B1β translocation to the plasma membrane[22].

SH2B1 posttranslational modification: SH2B1α and 
SH2B1β contain nine Tyr residues, and SH2B1γ and 
SH2B1δ have eight (Figure 1). Tyr439 and Tyr494 are con-
served in all four isoforms, and are able to be phosphory-
lated by JAK1 and JAK2[23]. Src tyrosine kinases also 
phosphorylate all four isoforms[24]. Additionally, insulin, 
insulin-like growth factor (IGF-1), and nerve growth fac-
tor (NGF) also stimulate tyrosine phosphorylation of  
SH2B1 via their cognate receptor tyrosine kinases[14,18,25].

SH2B1 contains numerous Ser and Thr residues. NGF 
stimulates SH2B1 phosphorylation on multiple Ser/Thr 
residues[21]. Mitogen-activated protein kinase (MAPK) di-
rectly phosphorylates Ser96[21], and protein kinase C phos-
phorylates both Ser161 and Ser165 residues[22,26]. However, 
the physiological consequence of  SH2B1 phosphorylation 
remains unknown.

SH2B1 tissue distribution: SH2B1 is ubiquitously ex-
pressed in both peripheral tissues and the central ner-
vous system, including adipose tissue, skeletal muscle, 
liver, pancreas, heart, spleen, hypothalamus, and other 
brain areas[27]. SH2B1 expression is regulated by neuro-
nal, hormonal, and nutritional signals. The mRNA levels 
of  hypothalamic SH2B1 are 20-fold higher in fed mice 
than in fasted mice[28]. The expression of  hypothalamic 
SH2B1 in rats is downregulated by high fat diet (HFD) 
feeding[29]. Chronic overexpression of  bovine growth 
hormone (GH) increases the levels of  hepatic SH2B1 
protein in GH transgenic mice[30]. The molecular steps, 
which control the activity of  the SH2B1 promoter and 
the stability of  SH2B1 mRNA and protein, remain com-
pletely unknown.

SH2B1 regulates cell signaling in response to multiple 
hormones, growth factors, and cytokines 
In cultured cells, SH2B1 acts as an adaptor to couple up-
stream activators to downstream effectors, to assemble 
a multiple-protein signaling complex, and/or to enhance 
the catalytic activity of  its bound enzymes. 

SH2B1 mediates/modulates leptin signaling: Leptin 
is an adipose hormone identified by Friedman and his 
colleagues using positional cloning[31]. Leptin deficiency 
results in morbid obesity in ob/ob mice[31], and recombi-
nant leptin fully corrects obesity and metabolic disorders 
in ob/ob mice[32-34]. Leptin exerts its biological action by 
binding to and activating its long form receptors (called 
LEPRb)[35-38]. LEPRb binds to JAK2, a cytoplasmic tyro-
sine kinase which also mediates GH, prolactin, erythro-
poietin (EPO), and other cytokine signaling[39,40]. Leptin 
stimulates tyrosine phosphorylation and activation of  
JAK2 which activates multiple downstream signaling 
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Figure 1  A schematic representation of SH2B1 isoforms. DD: Dimerization 
domain; PH: PH domain; SH2: SH2 domain; Y: Tyrosine; Numbers: Amino acid 
numbers. 



pathways, including the signal transducer and activator 
of  transcription 3 (STAT3) and the PI 3-kinase path-
ways[39,40]. Both the STAT3 and the PI 3-kinase pathways 
are required for leptin’s anti-obesity action[39,40]. Impaired 
leptin signaling and action (leptin resistance) are believed 
to be the primary risk factor for obesity[39,40].

We reported that leptin stimulates activation of  JAK2 
which subsequently autophosphorylates on Tyr813[41]. 
SH2B1 binds via its SH2 domain to phospho-Tyr813[41]. 
This physical interaction markedly increases JAK2 cata-
lytic activity, thus enhancing activation of  leptin signal-
ing pathways downstream of  JAK2[41-43]. In agreement, 
leptin-stimulated activation of  hypothalamic JAK2 is dra-
matically attenuated in SH2B1 knockout mice[10]. Leptin 
sensitivity has been well documented to be negatively 
regulated by protein tyrosine phosphatase 1B (PTP1B) 
and SOCS3[39,40]. Overexpression of  SH2B1 reverses PT-
P1B-induced inhibition of  leptin stimulation of  tyrosine 
phosphorylation of  STAT3[10]. Therefore, cellular leptin 
sensitivity is likely to be determined, at least in part, by 
the ability of  endogenous SH2B1 to counteract negative 
regulators such as PTP1B and SOCS3.

Leptin stimulates tyrosine phosphorylation of  insulin 
receptor substrate-1 (IRS1) and IRS2, and IRS proteins 
subsequently bind to the p85 regulatory submit of  PI 
3-kinase and activate the PI 3-kinase pathway[39,40,44]. Ge-
netic deletion of  IRS2 in LEPR-expressing cells results 
in leptin resistance and obesity in mice[45]. SH2B1 directly 
binds to both IRS1 and IRS2 in addition to JAK2[46]. In 
response to leptin, SH2B1 recruits IRS proteins to JAK2, 
thus allowing JAK2 to phosphorylate IRS proteins on ty-
rosine residues[46]. Accordingly, in SH2B1 knockout mice, 
leptin is unable to stimulate tyrosine phosphorylation of  
hypothalamic IRS2[10]. SH2B1 is likely to mediate leptin 
stimulation of  the PI 3-kinase pathway by coupling JAK2 
to IRS proteins (Figure 2).

SH2B1 C-terminal SH2 domain binds to phospho-
Tyr813 in JAK2 as discussed above; in contrast, its N-ter-
minal region binds to different sites on JAK2 in a tyrosine 
phosphorylation-independent manner[43]. Similarly, SH2B1 
binds to phospho-tyrosine(s) of  IRS1 or IRS2 via its SH2 
domain, and binds to other sites on IRS proteins via its 
PH domain-containing regions in a tyrosine phosphoryla-
tion-independent fashion[46]. SH2B1 forms homodimers 
or oligomers via its N-terminal domains[15-17]. Each indi-
vidual SH2B1 molecule is able to bind to JAK2 and/or 
IRS proteins; therefore, SH2B1 dimers or oligomers are 
predicted to assemble a large signaling complex contain-
ing multiple copies of  JAK2 and IRS proteins (Figure 2). 
Physical proximity allows JAK2 to transphosphorylate 
and activate each other in this complex, contributing to 
SH2B1 stimulation of  JAK2 activation and leptin signal-
ing. Additionally, this highly-organized SH2B1/JAK2/IRS 
complex may also provide a permissive condition for 
JAK2 to efficiently phosphorylate IRS proteins and acti-
vate the PI 3-kinase pathway in response to leptin. 

SH2B1 enhances insulin and IGF-1 signaling: SH2B1 
was reported to bind to insulin receptors (IRs) via its SH2 
domain[18]. Insulin stimulates the binding of  SH2B1α 
to phospho-Tyr1158, Tyr1162 and/or Tyr1163 within the IR 
activation loop, and IRs subsequently tyrosyl phosphory-
late SH2B1α[13,47]. Overexpression of  SH2B1β mark-
edly enhances the ability of  insulin to stimulate tyro-
sine phosphorylation of  IRS1 and IRS2[9]. In contrast, 
SH2B1β(R555E), which has a defective SH2 domain, acts 
as a dominant negative mutant to inhibit insulin signal-
ing[9]. Moreover, deletion of  SH2B1 impairs insulin sig-
naling in the skeletal muscle, adipose tissue, and livers of  
SH2B1 knockout mice[9]. 

Mechanistically, SH2B1-IR interaction markedly 
increases IR catalytic activity and IR-mediated tyrosine 
phosphorylation of  IRS proteins[48]. Replacement of  
IR Tyr1158 with Phe disrupts IR binding to SH2B1, and 
completely blocks the ability of  SH2B1β to stimulate IR 
kinase activity[48]. SH2B1α similarly increases IR catalytic 
activity[49]. Additionally, SH2B1β directly binds to tyrosyl 
phosphorylated IRS1 and IRS2 and protects IRS proteins 
against dephosphoarylation, thus prolonging the ability 
of  IRS proteins to activate their downstream pathways[48]. 
Accordingly, overexpression of  SH2B1α delays dephos-
phorylation of  IRS proteins in cells[50]. SH2B1 homodi-
mers and oligomers are predicted to simultaneously bind 
to both IRs and IRS proteins and assemble a large, high-
ly-organized signaling complex, thereby increasing insulin 
signaling specificity and efficiency.

SH2B1 also binds via its SH2 domain to IGF-1 recep-
tors[14], and is predicted to promote IGF-1 signaling in a 
similar fashion.

SH2B1 enhances TrkA, TrkB and TrkC signaling: 
Amino acid sequence analysis reveals that like IRs, Trk 
family members (TrkA, TrkB and TrkC) contain potential 
SH2B1-binding site(s) within their activation loops. NGF 
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Figure 2 A model of Src homology 2B1 regulation of leptin signaling. 
The Src homology 2B1 (SH2B1) homodimers bind to JAK2, IRS1, and/or 
IRS2. SH2B1-JAK2 interaction increases JAK2 kinase activity, thus globally 
enhancing leptin signaling. JAK2 phosphorylates STAT3 which subsequently 
homodimerizes, translocates into the nucleus, and activates its target genes. 
SH2B1-IRS1/2 interaction allows JAK2 to phosphorylate IRS proteins which 
subsequently activate the PI 3-kinase pathway. Both the STAT3 and the PI 
3-kinase pathways are required for leptin to control energy balance and body 
weight. JAK2: Janus kinase 2; IRS1: Insulin receptor substrate-1; STAT3: Sig-
nal transducer and activator of transcription 3.
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signaling: SH2B1 binds via its SH2 domain to tyrosyl 
phosphorylated platelet-derived growth factor (PDGF) 
receptors in response to PDGF-BB stimulation[62]. PD-
GF-BB stimulates phosphorylation of  SH2B1 on Tyr/
Ser/Thr residues[62]. PDGF-BB is able to stimulate tyro-
sine phosphorylation of  all four isoforms of  SH2B1[14]. 
PDGF receptors directly phosphorylate SH2B1 on Tyr439 
residue[23].

Glial cell line-derived neurotrophic factor (GDNF) 
stimulates the binding of  SH2B1β to GDNF receptor 
RET through SH2B1β SH2 domain and RET phospho-
Tyr981 motifs[63,64]. This interaction increases RET kinase 
activity, RET autophosphorylation, and RET-mediated 
tyrosine phosphorylation of  STAT3[64].

SH2B1 directly interacts with fibroblast growth fac-
tor receptor 3 (FGFR3) and is tyrosyl phosphorylated by 
FGFR3[65]. The SH2 domain of  SH2B1 binds to phos-
pho-Tyr724 and phospho-Tyr760 of  FGFR3, and the inter-
action increases the ability of  FGFR3 to phosphorylate 
and activate STAT5[65].

SH2B1 regulates multiple cellular responses
In cultured cells, SH2B1 has been demonstrated to regu-
late multiple cellular processes, including migration, pro-
liferation, and differentiation.

SH2B1 regulates actin cytoskeletal reorganization 
and cell motility: SH2B1 is able to regulate cell mor-
phology, adhesion, and motility through modifying actin 
cytoskeletal reorganization in cultured cells. SH2B1β is 
detected in membrane ruffles, filopodia, and focal adhe-
sions[26,59], and is colocalizated with filamentous actin (F-
actin) in membrane ruffles[66]. SH2B1β binds via both 
its N-terminal (amino acids 150-200) and C-terminal 
regions (amino acids 615-670) to F-actin, and promotes 
actin filament cross-link[59]. SH2B1 directly binds via its 
amino acids 200-260 to the actin-binding protein fila-
min A[67]. Additionally, SH2B1 binds via its amino acids 
85-106 to Rac, a critical regulator of  actin cytoskeletal 
reorganization[68].

SH2B1 mediates GH regulation of  cell adhesion 
and migration. GH increases the cycling of  SH2B1 into 
and out of  focal adhesions[26], and promotes SH2B1 
colocalization with F-actin in membrane ruffles[66]. Over-
expression of  SH2B1β, but not SH2 domain-defective 
SH2B1β(R555E), enhances the ability of  GH to stimu-
late both membrane ruffles in 3T3-F442A fibroblasts[59,66] 
and macrophage migration[56]. In fact, SH2B1β(R555E) 
blocks GH-induced lamellipodia dynamics in 3T3-F442A 
cells[68]. Both the N-terminal region (amino acids 85-106) 
and the SH2 domain of  SH2B1β are required for GH 
stimulation of  cell motility[68]. Additionally, SH2B1β mu-
tants lacking Tyr439 and Tyr494 phosphorylation sites are 
unable to enhance GH-stimulated membrane ruffling in 
3T3-F442A fibroblasts[23] and GH-stimulated motility of  
RAW264.7 macrophages[56]. SH2B1-Rac interaction is 
involved in mediating GH-promoted actin cytoskeletal 
reorganization and cell motility[68].

stimulates both the binding of  SH2B1 to NGF receptor 
TrkA and phosphorylation of  SH2B1 on Tyr/Ser/Thr 
residues in PC12 cells[21,25]. NGF also stimulates the bind-
ing of  TrkA to both SH2B1 and SH2B2 in primary neu-
rons[51]. SH2B1-TrkA interaction is mediated by the SH2 
domain of  SH2B1 and phospho-Tyr679, -Tyr683 and/or 
-Tyr684 within TrkA activation loop[21,25,51]. Additionally, 
SH2B1α binds via its proline rich regions (amino acids 
394-504 between the PH and SH2 domains) to Grb2, 
contributing to NGF-stimulated activation of  the MAPK 
pathway[51]. Overexpression of  SH2B1β also enhances 
NGF-stimulated activation of  Akt in PC12 cells[52]. 

Brain-derived neurotrophic factor (BDNF) or neu-
rotrophin-3 (NT-3) similarly stimulates the binding of  
SH2B1 to TrkB or TrkC, respectively, and they also stim-
ulate tyrosine phosphorylation of  SH2B1[51,53,54]. Unlike 
JAK2 and IRs, TrkB kinase activity is not enhanced by 
SH2B1[53]. 

SH2B1 regulates GH, prolactin, and EPO signal-
ing: JAK2 binds to GH receptors and mediates GH 
signaling[55]. GH stimulates the binding of  SH2B1 to 
JAK2 and robust tyrosine phosphorylation of  SH2B1 by 
JAK2 in 3T3-F442A fibroblasts[12]. GH stimulates JAK2-
mediated phosphorylation of  SH2B1 on Tyr439 and Tyr494 
residues[56]. Like leptin, GH stimulates phosphorylation 
of  JAK2 on Tyr813 which binds to the SH2 domain of  
SH2B1[57]. SH2 domain-phospho-Tyr813 interaction mark-
edly increases JAK2 activity, thus enhancing GH signaling 
(e.g., phosphorylation and activation of  STAT5B)[42,43]. 

JAK2 also mediates prolactin signaling[58]. Like GH, pro-
lactin stimulates tyrosine phosphorylation of  SH2B1[59]. 
Overexpression of  SH2B1β enhances prolactin signaling, 
including tyrosine phosphorylation of  JAK2[59].

Unlike GH, EPO stimulates the binding of  SH2B1 to 
EPO receptors rather than to JAK2[60]. SH2B1 constitu-
tively binds to unphosphorylated EPO receptors under 
basal conditions, and EPO stimulates phosphorylation of  
EPO receptors on Tyr343 and Tyr401 which subsequently 
bind to the SH2 domain of  SH2B1[60]. EPO rapidly stim-
ulates phosphorylation of  SH2B1 on Ser/Thr residues[60]. 
Knockdown of  SH2B1 increases EPO-stimulated ty-
rosine phosphorylation of  EPO receptors, JAK2, and 
ERK1/2, raising the possibility that SH2B1 may nega-
tively regulate EPO signaling[60]. 

SH2B1 binds to JAK1, JAK2 and JAK3, but it only 
stimulates JAK2, but not JAK1 and JAK3, kinase activ-
ity[61]. Both JAK1 and JAK2 are able to phosphorylate 
SH2B1 on Tyr439 and Tyr494, but Tyr439/Tyr494 phosphory-
lation does not affect the ability of  SH2B1 to stimulate 
JAK2[23]. The JAK family members mediate cell signal-
ing and action in response to numerous hormones and 
cytokines in addition to GH, prolactin, and EPO, so it is 
conceivable that SH2B1 may mediate or modulate cel-
lular responses to these hormones and cytokines through 
interacting with JAK family members.

SH2B1 regulates additional receptor tyrosine kinase 
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Overexpression of  SH2B1β similarly enhances pro-
lactin-stimulated membrane ruffling[59]. SH2B1 directly 
binds to filamin A, which appears to mediate prolactin 
stimulation of  membrane ruffling and cell motility[67]. 

SH2B1 promotes neuronal survival and neuronal dif-
ferentiation: Overexpression of  SH2B1β markedly en-
hances the ability of  NGF to stimulate neurite outgrowth 
in PC12 cells[25], and both SH2B1α and SH2B2 are able to 
promote NGF/TrkA-induced neuronal differentiation[51]. 
In contrast, overexpression of  SH2 domain-defective 
SH2B1(R555E) blocks NGF-induced neuronal differen-
tiation of  PC12 cells[25]. SH2B1β mutants lacking either 
the NES or the NLS also are unable to enhance NGF-
induced neuronal differentiation[19,20]. Overexpression of  a 
N-terminal (amino acids 1-499) truncated SH2B1 mutant, 
which lacks both NES and NLS, induces axon degenera-
tion in NGF-treated primary sympathetic neurons[51]. 
Moreover, neutralization of  endogenous SH2B1 with an-
ti-SH2B1 antibody decreases the survival of  primary sym-
pathetic neurons[51]. These observations suggest that the 
SH2 domain, NES, and NLS all are required for SH2B1 
to mediate NGF stimulation of  neuronal differentiation 
and survival.

SH2B1β also enhances GDNF/RET-induced neuro-
nal differentiation of  PC12 cells[63,64]. However, the mo-
lecular mechanisms, by which SH2B1 promotes neuronal 
survival, differentiation, and neurite outgrowth, remain 
largely unknown.

SH2B1 promotes mitogenesis and transformation: 
All four SH2B1 isoforms are able to increase the mito-
genic response to epidermal growth factor, IGF-1, and 
PDGF-BB[14,69]. SH2B1 increases the ability of  RET to 
promote transformation of  NIH 3T3 cells[64]. SH2B1 
is abnormally expressed in non-small cell lung cancer 
(NSCLC) tissues and NSCLC cell lines[70]. SH2B1 overex-
pression is associated with increased tumor grade, tumor 
size, lymph node metastasis in NSCLC patients[70].

Neuronal SH2B1 regulates body weight and nutrient 
metabolism in mice 
We reported that genetic deletion of  SH2B1 results in 
severe obesity and type 2 diabetes in mice[9,10].

Central SH2B1 regulates energy balance and body 
weight: We disrupt the SH2B1 gene to generate SH2B1 
knockout (KO) mice by DNA homologous recombina-
tion[9]. Exons 1-6, which encode the N-terminal region 
of  all four isoforms of  SH2B1, are replaced by a neo cas-
sette[9]. SH2B1-null mice are hyperphagic and morbidly 
obese[10]. Both SH2B1 KO males and females gain more 
body weights than wild type (WT) littermates after 7 wk 
of  age[10,71]. White adipose tissue mass and fat content are 
much higher in SH2B1 KO mice in either C57BL/6 or 
129Sv/C57BL mixed congenic background, and the size 
of  individual white adipocytes is also larger in SH2B1 
KO mice[10].

SH2B1 KO mice are extremely hyperphagic, causing 
obesity[10]. Surprisingly, energy expenditure, as estimated 
by O2 consumption and CO2 production, is also higher in 
SH2B1 KO mice than in WT littermates[10]. Accordingly, 
in the pair-feeding paradigm in which each individually-
housed mouse is fed the identical amount of  food daily, 
SH2B1 KO mice gain less body weights and become 
leaner than WT littermates[10].

Food intake is controlled largely by the brain, par-
ticularly the hypothalamus[72], so we generate SH2B1 
transgenic (Tg) mice in which a rat SH2B1β transgene 
is expressed specifically in neurons under the control of  
neuron-specific enolase promoter[27]. SH2B1β Tg mice 
are crossed with SH2B1 KO mice to generate TgKO 
mice which lack endogenous SH2B1 in all cell types but 
express recombinant SH2B1β specifically in neurons[27]. 
Neuron-specific restoration of  SH2B1β into SH2B1 
KO mice fully rescues the hyperphagic and obese phe-
notypes in TgKO mice[27]. Energy expenditure, which 
is abnormally higher in SH2B1 KO mice, is normal in 
TgKO mice[27]. Furthermore, SH2B1β Tg mice, which 
contain homozygous SH2B1β transgenes and overex-
press recombinant SH2B1β in the brain, resist HFD-
induced obesity[27]. These observations indicate that 
central SH2B1 is a key regulator of  energy balance and 
body weight. Multiple brain areas and neural circuits are 
involved in the control of  energy metabolism and body 
weight[72]; however, SH2B1 target neural circuits remain 
unknown.

Surprisingly, Ohtsuka et al[11] reported that disruption 
of  SH2B1 did not cause obesity, insulin resistance, and 
glucose intolerance; however, their subsequent studies 
show that their SH2B1 KO mice indeed display insulin 
resistance and glucose intolerance as we observed in our 
SH2B1 KO mice[9,73]. Since SH2B1 KO mice have high 
energy expenditure[10], a slight disturbance of  food intake 
is expected to lead to reduction in body weight. Thus, 
variations in house conditions and other environmental 
factors may contribute to body weight discrepancy be-
tween these studies.

SH2B1 KO mice have relatively normal somatic 
growth, indicating that SH2B1 is not required for GH 
stimulation of  body growth[9,11,71]. Nonetheless, it is still 
possible that SH2B1 may modulate GH regulation of  me-
tabolism and/or other physiological processes. 

Central SH2B1 regulates glucose and lipid metabo-
lism: Obesity is the primary risk factor for insulin resis-
tance and type 2 diabetes[39]. As expected, obese SH2B1 
KO mice develop hyperglycemia, hyperinsulinemia, glu-
cose intolerance, and insulin resistance[9,71]. Insulin signal-
ing is impaired in the skeletal muscle, adipose tissue, and 
livers of  SH2B1 KO mice[9]. SH2B1 KO male mice dis-
play frank type 2 diabetes after 7 mo of  age[9]. Moreover, 
SH2B1 haploinsuffiency predisposes to HFD-induced 
insulin resistance[9]. SH2B1 KO mice develop the symp-
toms of  metabolic syndrome, including hyperlipidemia, 
hepatic steatosis, and lipid accumulation in skeletal mus-
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cle[10]. Moreover, neuron-specific restoration of  SH2B1β 
reveres obesity, type 2 diabetes, and metabolic syndrome 
in TgKO mice[27]. These observations indicate that cen-
tral SH2B1 is absolutely required for the maintenance of  
normal glucose and lipid homeostasis in mice.

Central insulin and leptin are able to regulate systemic 
glucose and lipid metabolism independently of  their ac-
tion on energy balance and body weight[39,40,74-77]. SH2B1 
positively regulates both leptin and insulin signaling, so 
central SH2B1 may regulate peripheral glucose and lipid 
metabolism independently of  its action on energy bal-
ance and body weight.

Central SH2B1 positively regulates hypothalamic 
leptin sensitivity: Central SH2B1 controls food intake 
and body weight at least in part by enhancing leptin 
sensitivity in the brain. SH2B1 cell-autonomously en-
hances leptin signaling by promoting JAK2 activity and 
activation of  pathways downstream of  JAK2[41]. SH2B1 
also mediates leptin-stimulated activation of  the PI 
3-kinase pathway by binding to IRS1/2 and recruiting 
IRS proteins to JAK2[46]. SH2B1 KO mice display se-
vere hyperleptinemia, a hallmark of  leptin resistance[10]. 
Hyperleptinemia develops prior to the onset of  obesity, 
suggesting that leptin resistance is a causal factor for 
obesity progression in SH2B1 KO mice[10]. In agreement, 
exogenous leptin is unable to suppress food intake and 
weight gain in SH2B1 KO mice, and has reduced abil-
ity to stimulate phosphorylation of  hypothalamic JAK2, 
STAT3 and IRS2 in these mice[10]. Furthermore, neuron-
specific expression of  recombinant SH2B1β in SH2B1-
null mice reverses hyperleptinemia, leptin resistance, 
hyperphagia, and obesity in TgKO mice[27]. However, 
neuron-specific expression of  SH2B1β(R555E) is unable 
to rescue leptin resistant, hyperphagic, and obese phe-
notypes in SH2B1-null mice[78], suggesting that the SH2 
domain of  SH2B1 is required for its anti-obesity action. 
Like SH2B1 KO mice, SH2B1β(R555E) transgenic mice 
develop obesity, insulin resistance, hyperglycemia, and 
glucose intolerance[78], suggesting that SH2B1β(R555E) 
blocks the action of  endogenous SH2B1 as a dominant 
negative mutant. 

Orexigenic agouti-related protein (AgRP) neurons 
and anorexigenic proopiomelanocortin (POMC) neurons 
in the arcuate nucleus are key leptin targets[39]. Leptin 
suppresses the expression of  AgRP and neuropeptide Y 
(NPY) but stimulates POMC expression[72]. The expres-
sion of  hypothalamic AgRP and NPY is higher in SH2B1 
KO mice[10], and neuron-specific expression of  SH2B1β 
in SH2B1 KO mice normalizes AgRP and NPY expres-
sion[27]. By contrast, the expression of  hypothalamic 
POMC is normal in SH2B1 KO mice[10]. Since SH2B1 
KO mice develop severe hyperleptinemia[10], leptin-
stimulated expression of  POMC may still be impaired in 
SH2B1-null mice. 

Leptin promotes energy expenditure[39]; therefore, 
increased energy expenditure in SH2B1 KO mice cannot 
be explained by leptin resistance. It is likely that central 

SH2B1 regulates energy metabolism by an additional 
leptin-independent mechanism. SH2B1 is able to mediate 
or modulate cell signaling in response to multiple factors 
as described above. These pathways may be involved in 
central regulation of  energy balance and body weight. 
For instance, SH2B1 enhances BDNF signaling[51,54]. Cen-
tral administration of  BDNF suppresses food intake and 
weight gain; conversely, haploinsufficiency of  BDNF or 
TrkB leads to hyperphagia and obesity in mice[79-83]. Muta-
tions in either BDNF or TrkB are associated with obesity 
in humans[82,84]. Therefore, neuronal SH2B1 may regulate 
energy metabolism and body weight by enhancing TrkB 
signaling in addition to LEPRb signaling in the brain. 

Peripheral SH2B1 regulates glucose and lipid 
metabolism in mice 
SH2B1 is expressed in both central and peripheral tis-
sues[27], and peripheral SH2B1 also regulates nutrient me-
tabolism.

Peripheral SH2B1 regulates insulin sensitivity and 
glucose metabolism: TgKO mice, which lack endog-
enous SH2B1 in all tissues but express SH2B1β trans-
genes in the brain, have relatively normal blood glucose, 
plasma insulin, and glucose tolerance[27]. These observa-
tions suggest that peripheral SH2B1 is not required for 
the maintenance of  insulin sensitivity and glucose me-
tabolism in mice fed a normal chow diet. We feed TgKO 
mice a HFD for 16 wk to induce metabolic stress. TgKO 
mice develop more severe HFD-induced hyperglycemia, 
hyperinsulinemia, insulin resistance, and glucose intoler-
ance, even though they have similar body weight and fat 
content as WT mice[48]. Insulin signaling in skeletal mus-
cle, adipose tissue, and the liver is impaired to a greater 
extent in HFD-fed TgKO mice[48], and these mice display 
more severe hepatic steatosis[85]. Thus, peripheral SH2B1 
promotes insulin signaling and glucose and lipid metabo-
lism under obesity conditions.

SH2B1 in pancreatic β cells promotes β cell expansion 
and insulin secretion: Pancreatic β cells express high lev-
els of  several SH2B1 isoforms[86]. To examine the role of  
β cell SH2B1, we generate pancreas-specific SH2B1 KO 
(PKO) mice, using the Pdx1-cre/loxp system[86]. PKO mice 
have normal body weight, blood glucose, insulin sensitiv-
ity, and glucose tolerance; however, they develop more 
severe HFD-induced glucose intolerance[86]. Pancreatic 
insulin content, β cell mass, and glucose-stimulated insu-
lin secretion are significantly lower in PKO than control 
mice fed a HFD, and PKO islets have more apoptotic 
cells and less mitotic cells[86]. These observations indicate 
that SH2B1 in β cells is required for HFD-induced com-
pensatory β cell expansion to counteract insulin resis-
tance in obesity. 

SH2B1 appears to directly promote β cell expansion 
by both promoting proliferation and inhibiting apop-
tosis[86]. In a rat INS-1 832/13 β cell line, silencing of  
SH2B1 decreases, whereas overexpression of  SH2B1β 
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increases, β cell toxin streptozotocin (STZ)-induced 
apoptosis[86]. In line with these findings, PKO mice are 
more susceptible to STZ-induced β cell destruction, insu-
lin deficiency, and glucose intolerance[86]. Mechanistically, 
SH2B1 directly enhances insulin and IGF-1 signaling in 
β cells[86], and both insulin and IGF-1 potently increase 
β cell survival and proliferation[87-91]. Therefore, β cell 
SH2B1 cell-autonomously promotes β cell survival, pro-
liferation, and expansion under stress conditions at least 
in part by enhancing insulin and IGF-1 signaling in β 
cells. 

Hepatic SH2B1 regulates liver triacylglycerol content 
and very low-density lipoprotein secretion: SH2B1 
is also highly expressed in the liver[27], so we generate 
hepatocyte-specific SH2B1 KO (HKO) mice using the 
albumin-cre/loxP system[85]. Surprisingly, somatic growth, 
body weight, insulin sensitivity, and glucose metabolism 
are similar between HKO and control mice fed either a 
normal chow diet or a HFD[85]. Adult-onset deletion of  
SH2B1 in the liver also does not alter insulin sensitivity 
and glucose metabolism in mice fed a HFD[85]. These 
data indicate that hepatic SH2B1 is dispensable for the 
maintenance of  systemic insulin sensitivity and glucose 
metabolism in mice. However, adult-onset deletion of  
liver SH2B1 decreases liver triacylglycerol content in mice 
fed a HFD[85], suggesting that hepatic SH2B1 regulates 
hepatocyte lipid metabolism. Liver-specific deletion of  
SH2B1 alone does not alter very low-density lipoprotein 
(VLDL) secretion; however, deletion of  liver SH2B1 
in SH2B2 knockout mice decreases VLDL secretion[85]. 
These observations suggest that liver SH2B1 and SH2B2 
act redundantly to promote VLDL secretion. 

SH2B1 regulates reproduction in mice
SH2B1 is highly expressed in testes and ovaries, and 
systemic deletion of  SH2B1 severely impairs fertility in 
both male and female mice[11]. Ovary size and follicle 
number are lower in SH2B1 KO females; similarly, testis 
size and sperm number are also lower in SH2B1 KO 
males[11]. SH2B1 deficiency impairs both follicle-stimu-
lating hormone and IGF-1 signal transduction in ovaries, 
which may contribute to impaired fertility in SH2B1 KO 
mice[11].

Metabolic function of SH2B1 in humans
SH2B1 rs7498665, the first human SH2B1 single nucleo-
tide polymorphism (SNP), was reported in 2007[92]. It is 
associated with hyperleptinemia, increased body weight, 
increased total fat, and increased waist circumference in a 
United Kingdom white female cohort[92].

Human SH2B1 is a candidate obesity gene: In 2009, 
two groups independently reported that SH2B1 rs7498665 
is genetically linked to human obesity in genome-wide 
association studies (GWAS) on large populations[93,94]. 
Since then, SH2B1 rs7498665 has been reported to be 
associated with human obesity in Swedish adults[95], Bel-

gian adults[96], children of  European ancestry[97], Chinese 
women[98], Hong Kong Chinese[99], Japanese adults[100], 
the MONIKA/KORA cohort[101], a Mexican cohort[102], 
and a African-American cohort[103]. SH2B1 rs7498665 
risk allele is associated with increased visceral adiposity in 
Japanese[104] and German[105]. SH2B1 rs7498665 is also as-
sociated with increased fat intake in Dutch females[106].

Several additional SH2B1 SNPs have been described 
since 2009. In GWAS, SH2B1 rs7359397 is associated 
with obesity in 249796 adult individuals of  European 
ancestry[107] and in Danish adults[108]. SH2B1 rs4788102 
is associated with obesity in Chinese girls[109] and in Japa-
nese populations[100]. SH2B1 rs4788099 is associated with 
increased body mass index (BMI) in individuals of  Euro-
pean ancestry[110], and is linked to more servings of  dairy 
products[111]. SH2B1 rs8055982 is associated with severe 
obesity in children of  European ancestry[97].

Aside from SH2B1 SNPs, chromosomal 16p11.2 
deletion is associated with severe obesity in European co-
horts[112-115]. The deleted region contains the SH2B1 gene. 
In contrast, chromosomal 16p11.2 duplication is associ-
ated with underweight in humans[116].

Several SH2B1 non-synonymous variants have been 
identified. SH2B1 rs7498665 risk allele encodes a non-
synonymous substitution of  Thr484Ala[92]. However, 
Thr484Ala substitution alone is not sufficient to cause 
obesity[117], raising the possibility that other unidentified 
SH2B1 mutations, which co-segregate with rs7498665, 
may increase risk for obesity. Several SH2B1 missense 
mutations (P90H, T175N, P322S and F344LfsX20) were 
reported to be genetically linked to obesity and insulin 
resistance in mixed European descents[118]. F344LfsX20A 
mutation causes a frameshift, resulting in production of  
a C-terminally-truncated SH2B1 variant lacking the entire 
SH2 domain[118]. A separate study reported that SH2B1 
g.9483(C/T) missense mutation, but not Thr175Asp 
non-synonymous variant (rs147094247), is linked to 
obesity[119]. SH2B1 g.9483(C/T) mutation results in 
generation of  non-synonymous SH2B1β(Thr656Ile) 
and SH2B1γ(Pro674Ser) variants[119]. Four additional 
rare non-synonymous variants (G131S, V209I, L293R, 
M465T, and W649G) have been identified in Chinese 
populations[120]. V209I and M465T variants are detected 
in obese children, whereas G131S, L293R and W649G 
variants are observed in lean children[120].

None of  the above human SH2B1 variants has been 
verified in animal models to be a causal factor for obesity 
or obesity-associated metabolic syndrome. We reported 
that neuron-specific expression of  SH2 domain-defec-
tive SH2B1β(R555E), which is functionally similar to 
F344LfsX20A variant, is sufficient to cause obesity and 
insulin resistance in mice[78]. These findings raise the pos-
sibility that F344LfsX20A non-synonymous variant may 
be a causal factor for obesity in humans. 

SH2B1 mutations increase risk for type 2 Diabetes in 
humans: Obesity is the primary risk factor for insulin 
resistance and type 2 diabetes[39], so SH2B1 risk alleles 

517 August 15, 2014|Volume 5|Issue 4|WJD|www.wjgnet.com

Rui L. Metabolic function of SH2B family members



are expected to be associated with type 2 diabetes in hu-
mans. SH2B1 rs7498665 is associated with type 2 diabetes 
in both United Kingdom[92] and French populations[121]. 
Heterozygous carriers of  a P90H, T175N, P322S, or 
F344LfsX20 non-synonymous variant develop severe 
early-onset obesity as well as insulin resistance and type 2 
diabetes[118].

We reported that peripheral SH2B1 regulates insulin 
sensitivity and glucose metabolism independently of  its 
action on body weight in mice[48]. SH2B1 in pancreatic β 
cells directly promotes β cell expansion and insulin secre-
tion in mice[86]. Hepatic SH2B1 regulates liver lipid levels 
and VLDL secretion[85]. In agreement, SH2B1 rs4788102 
is associated with type 2 diabetes after adjustment for 
BMI in Japanese[100]. SH2B1 rs7498665 is associated with 
increased risk for type 2 diabetes independently of  BMI 
in middle aged Danes[122]. SH2B1 rs7359397 is associated 
with insulin resistance after adjustment of  BMI in Swe-
den men at 71 years of  age[123]. Thus, SH2B1 also regu-
lates nutrient metabolism by a body weight-independent 
mechanism.

SH2B1 may regulate multiple physiological processes 
in humans: Chromosomal 16p11.2 deletion, which results 
in loss of  SH2B1, is associated with cognitive deficits, 
developmental delays[112-115], and autism[115]. Chromosomal 
16p11.2 deletion is also linked to abnormal renal and en-
teric development in humans[124]. SH2B1 rs4788102 (G/A) 
is associated with increased circulating triacylglycerol lev-
els in the Northern Swedish Population Health Study co-
hort[125], and is linked to myocardial infarction[126]. SH2B1 
rs7498665 G allele is linked to increased bone mineral 
density in Japanese women[127]. However, none of  these 
potential functions have been verified in animal models.

Metabolic function of SH2B1 is evolutionarily conserved 
We reported that insulin stimulates the binding of  Dro-
sophila SH2B (also called Lnk) to Chico, a homologue of  
mammalian IRS proteins[5]. Almudi et al[128] showed that 
Drosophila SH2B binds to both Chico and insulin recep-
tors in Drosophila cells. SH2B-deficient flies display de-
fects in insulin/IGF signaling, developmental delay, small 
size, and female sterility[4,5]. Like SH2B1 null mice, SH2B-
deficient flies accumulate abnormally-high levels of  lipids 
in their fat bodies[4,5,129].

Interestingly, loss of  SH2B increases resistance to 
oxidative stress as well as lifespan in flies, suggesting that 
SH2B may regulate aging and longevity[5,129]. However, 
SH2B1-null mice have a shorter lifespan compared with 
WT littermates[5]. Obesity and obesity-associated diseases 

may contribute to early death of  SH2B1-null mice. Thus, 
the role of  mammalian SH2B family members in aging 
remains unclear. 

METABOLIC FUNCTION OF SH2B2
SH2B2 was originally identified in 1997[2], and the amino 
acids of  its SH2 and PH domains are 78% and 63% iden-
tical to that of  SH2B1, respectively. 

SH2B2 structure
Crystal structure analysis reveals that the N-terminal 
region of  SH2B2 mediates its homodimerization via a 
Phe zipper[15]. The C-terminal SH2 domain is also able 
to form a dimer[130]. SH2B2 dimerization is predicted to 
induce and/or stabilize dimerization of  its binding pro-
teins, including JAK2, insulin receptors, or IGF-1 recep-
tors, thus promoting activation of  these kinases[15,130].

The SH2B2 gene also generates an additional C-ter-
minally-truncated isoform (named SH2B2β) through 
alternative mRNA splicing[131]. SH2B2β contains N-ter-
minal DD and PH domains but lacks C-terminal SH2 
domain (Figure 3). SH2B2β binds to both SH2B1 and 
SH2B2 via its DD domain and acts as an endogenous 
dominant negative variant to inhibit SH2B1 and SH2B2 
signaling[131].

SH2B2 regulates insulin signaling and glucose 
metabolism
Like SH2B1, SH2B2 binds via its SH2 domain to 
phospho-Tyr1158 in the activation loop of  insulin recep-
tors[130,132,133]. Insulin stimulates phosphorylation of  
SH2B2 on Tyr618 residue in adipocytes[132-134]. Insulin stim-
ulates tyrosine phosphorylation of  SH2B2 to a higher 
level than that of  SH2B1[50]. IGF-1 and IGF-Ⅱ also stim-
ulate tyrosine phosphorylation of  SH2B2[135]. Addition-
ally, insulin also stimulates Akt-mediated phosphorylation 
of  SH2B2 on Ser588 residue[136].

The role of  SH2B2 in insulin action is complex. 
SH2B2 overexpression prolongs insulin-stimulated ty-
rosine phosphorylation of  insulin receptors and IRS 
proteins[50]. Phospho-Tyr618 binds to the tyrosine kinase-
binding domain of  c-Cbl and promotes c-Cbl phos-
phorylation by insulin receptors[134,137,138]. Accordingly, 
knockdown of  SH2B2 inhibits insulin-stimulated tyrosine 
phosphorylation of  c-Cbl[139]. SH2B2 also enhances in-
sulin-stimulated phosphorylation of  Cbl-b on Tyr665 and 
Tyr709 residues[140]. SH2B2 directly binds to SHIP2 and 
increases SHIP2 activity, and SHIP2 in turn negatively 
regulates insulin-stimulated tyrosine phosphorylation of  
SH2B2 and its interaction with c-Cbl[141]. Furthermore, 
SH2B2 mediates insulin-stimulated plasma membrane 
translocation of  both c-Cbl and Cbl-b in adipocytes[140]. 
SH2B2 also binds to CAP[134,139] and mediates the activa-
tion of  the CAP/Cbl/Crk/C3G/TC10 pathway in adipo-
cytes[142]. The SH2B2/CAP/Cbl/Crk/C3G/TC10 path-
way is believed to be required for insulin stimulation of  
GLUT4 trafficking and glucose uptake in adipocytes[142]; 
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Figure 3  A schematic representation of SH2B2 isoforms. DD: Dimerization 
domain; PH: PH domain; SH2: SH2 domain; Y: Tyrosine.
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consistently, overexpression of  SH2B2(Y618F) inhib-
its insulin-stimulated GLUT4 trafficking[134]. However, 
SH2B2 also promotes c-Cbl-mediated ubiquitination and 
internalization of  insulin receptors, thus inhibiting insu-
lin signaling[138,143]. Additionally, SH2B2 binds to Asb6, a 
SOCS family member that may negatively regulate insulin 
signaling[144].

Deletion of  SH2B2 increases insulin sensitivity in 
mice[6]. We reported that deletion of  SH2B2 does not af-
fect HFD-induced insulin resistance and glucose intoler-
ance in SH2B2 KO mice in either 129Sv/C57BL mixed 
or C57BL congenic background[71]. Deletion of  SH2B2 
in SH2B1 KO mice also does not further exacerbate obe-
sity and insulin resistance in SH2B1 and SH2B2 double 
KO mice relative to SH2B1 KO mice[71]. The metabolic 
function of  SH2B2 remains unclear. 

SH2B2 regulates cytokine signaling and immune 
response 
Like SH2B1, SH2B2 binds via its SH2 domain to JAK1, 
JAK2 and JAK3, and is tyrosyl phosphorylated by these 
kinases[61,145]. SH2B2 binds via both its SH2 domain and 
non-SH2 domain regions to JAK2, and its SH2 domain 
binds to phospho-Tyr813 of  JAK2[16,146]. Unlike SH2B1, 
SH2B2 is unable to activate, or only slightly activates, 
JAK2[61,146]. Multiple cytokines, including interferon-γ, 
EPO, leukemia inhibitor factor, granulocyte-macrophage 
colony stimulating factor, interleukin-5 (IL-5) and IL-3, 
stimulate tyrosine phosphorylation of  SH2B2, presum-
ably through JAK family members[135,145,147]. Stem cell fac-
tor stimulates the binding of  SH2B2 via its SH2 domain 
to phospho-Tyr568 and -Tyr936 of  c-Kit and subsequent 
tyrosine phosphorylation of  SH2B2[2,148]. SH2B2 binds 
via its SH2 domain to phospho-Tyr343 of  EPO recep-
tors[145] , and it also binds via its phospho-Tyr618 motif  
to c-Cbl and recruits c-Cbl E3 ligase to EPO receptors, 
thereby inhibiting the JAK2/STAT5 pathway in hema-
topoietic cell lines[145]. SH2B2 is colocalized with B cell 
antigen receptors (BCRs) and negatively regulates BCR 
signaling, and it is tyrosyl phosphorylated in response to 
BCR activation[2,149,150]. 

SH2B1 and SH2B2 play different roles in regulat-
ing immune cell function. Deletion of  SH2B1 does 
not affect the development of  T and B lymphocytes 
and mast cells in mice[11]. In contrast, SH2B2-deficient 
mast cells display augmented degradulation after cross-
linking FcRI[151]. SH2B2 is expressed in B cells but not 
in T cells[150]. Overexpression of  SH2B2 in lymphocytes 
impairs BCR-induced B cell proliferation and reduces B-1 
and B-2 cell number in SH2B2 transgenic mice[150]. Con-
versely, SH2B2 KO mice have increased B-1 cell number, 
and SH2B2-deficient B cells display enhanced response 
to trinitrophenol-Ficoll, a thymus-independent type 2 
antigen[149]. SH2B2 appears to be a negative regulator of  a 
subset of  immune cells.

SH2B2 regulates multiple signaling pathways in cultured 
cells 
Like SH2B1, SH2B2 binds via its SH2 domain to phos-

pho-Tyr679, -Tyr683 and/or -Tyr684 of  TrkA in response 
to NGF[51]. BDNF and NT-3 also stimulate the bind-
ing of  SH2B2 to TrkB and TrkC, respectively[51]. NGF, 
BDNF and NT-3 stimulate tyrosine phosphoryation of  
SH2B2[51]. SH2B2 promotes NGF-induced neuronal dif-
ferentiation of  PC12 cells[51].

PDGF-BB stimulates the binding of  SH2B2 via its 
SH2 domain to phospho-Tyr1021 of  PDGFRβ, and SH2B2 
in turn inhibits PDGF-stimulated phosphorylation of  
PLC-γ by competing for phospho-Tyr1021 site with 
PLC-γ[135]. Additionally, PDGF-BB stimulates phosphor-
ylation of  SH2B2 on Tyr618 which binds to c-Cbl, which 
recruits c-Cbl E3 ligase to PDGFR complex to nega-
tively regulate PDGFR signaling and PDGFR-promoted 
mitogenesis[135].

FUTURE DIRECTION
Study of  the SH2B family is in its early stages, and many 
important questions remain unaddressed. Central SH2B1 
is required for the maintenance of  normal energy bal-
ance, body weight, and nutrient metabolism; however, 
SH2B1 target neurons and neural circuits are unknown. 
It is unclear whether and how central SH2B1 regulates 
nutrient mobilization, utilization, and metabolism by a 
body weight-independent mechanism, and whether and 
how SH2B1 regulates neuronal activity by a leptin- and 
insulin-independent mechanism. Numerous SH2B1 mu-
tations are associated with obesity and type 2 diabetes in 
humans; however, it is unclear whether these mutations 
are causal factors for the diseases. Does central SH2B1 
regulate higher brain function independently of  its action 
on body weight and metabolism? Do posttranslational 
modifications affect SH2B1 function? Do SH2B2 and 
SH2B3 play a role in nutrient metabolism? Can we treat 
obesity and type 2 diabetes by targeting SH2B family 
members?
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Abstract
Digestive diseases play major role in development and 
complications of other disorders including diabetes. For 
example, Crohn’s disease (CD) is an inflammatory bow-
el disease associated with Mycobacterium avium sub-
species paratuberculosis. The inflammation is a com-
plex process that involves the activity of both innate 
and adaptive immune responses. CD lesions are pri-
marily due to T cell response, however; innate immune 
response has a significant role in initiating its patho-
genesis. Toll-like receptors and NOD-like receptors pro-
mote the activity of nuclear factor (NF)-κB pathway for 
cytokines production. This results in the production of 
high levels of tumor necrosis factor-α, interleukin (IL)-
1β and IL-6. Moreover, intestinal inflammation of CD 
is related to increased activity of NMDA receptors and 
the release of substance P. Imbalanced magnesium 
homeostasis in CD is a frequent finding in CD, Diabetes 
and others. The loss of such a major mineral affects 
many physiological processes in the body including its 
role as an immunomodulator. This review aims to (1) 
describe the significance of hypomagnesemia in the re-
lease of pro-inflammatory mediators in CD; (2) demon-
strate effects of magnesium on pathways like NF-κB; (3) 

address the role of hypomagnesemia in the activity of 
CD; and (4) examine possible future research to estab-
lish a standard magnesium supplementation strategy; 
helping patients with CD or other disorders to maintain 
a sustained remission.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes; Crohn’s disease; Hypomagne-
semia; Inflammatory bowel disease; Mycobacterium 
paratuberculosis

Core tip: Magnesium is an essential trace mineral, 
which plays key role as an immunomodulator in many 
pathways leading to homeostasis. Hypomagnesemia 
is common in patients with Crohn’s disease (CD) and 
may be the cause of upregulation of pro-inflammatory 
factors leading to aggravating symptoms. Therefore, 
understanding the role of magnesium in maintaining 
a healthy immune response is important for effective 
treatment of patients with CD.
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INTRODUCTION
Inflammatory bowel disease (IBD) generally describes a 
group of  conditions sharing the characteristic of  chronic 
inflammation of  the gastrointestinal tract. The two most 
common conditions in this category are ulcerative colitis 
(UC) and Crohn’s disease (CD)[1]. In both conditions, the 
immune system is mistaken food particles and normal 
flora for foreign materials[2,3]. This will induce an im-
mune response attracting the leukocytes to infiltrate the 
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intestine. The result is destruction of  intestinal mucosal 
cells leading to a state of  chronic inflammation. Its dis-
tribution and involvement varies between UC and CD. 
UC is usually confined to the colon while CD can affect 
any site throughout the gastrointestinal tract from mouth 
to anus[4]. As both conditions progress, continuation of  
lesions in the colon becomes a characteristic for UC[5], 
whereas skipping some locations in the gastrointestinal 
tract or regional enteritis becomes a characteristic for 
CD[6]. Moreover, small bowels and the beginning of  the 
large bowels are commonly affected in CD[1]. This dif-
ference in lesion locations contributes to the variations 
in the clinical presentation of  UC and CD, as well as the 
severity of  complications. 

According to the Center for Disease Control and 
Prevention, both sexes are equally susceptible to IBD[7], 
with a majority of  the affected population in between 
their 10 to 30 years of  age[8]. Among the most susceptible 
are Caucasian and Ashkenazi Jewish origins[9]. As gold 
standard diagnosing criteria for IBD are lacking and the 
condition gets frequently misclassified, precise incidence 
and prevalence rates are limited. However, both condi-
tions are noted to be at its highest rate of  new diagnoses 
in industrialized North America and Europe for CD and 
UC, respectively[8]. In the United States, an estimated 1.4 
million individuals suffer from IBD[3,7], of  which 20.2 per 
100000, per person years suffer from CD[8]. Although the 
etiology for IBD has not been well established, genetic 
components[4,8], diet, and environmental factors such as 
smoking[3] are associated with an increased risk of  patho-
genesis. Nevertheless, the impact of  IBD in the United 
States creates a huge burden in the health care system, 
especially for CD with an estimated cost of  $2.29 billion 
annually[10]. 

In particular, the high cost in CD can be attributed 
to therapeutic management, physician visits, and hospital 
stays because of  the chronic nature and recurrence of  the 
disease[10]. A detailed review of  factors that can influence 

the persistence of  CD might lead to establishing thera-
peutic strategies that can maintain remission for relatively 
longer periods. One of  these factors includes nutritional 
deficiency due to malabsorption of  vitamins and miner-
als such as magnesium, a frequent finding in CD patients 
particularly during high activity of  the disease[11-15]. Mag-
nesium deficiency or hypomagnesemia is very understud-
ied and underestimated especially when it comes to its re-
lation to CD (Figure 1). This finding encourages further 
research about the role of  magnesium in inflammation 
and the possibility of  linking this to the breakouts of  the 
CD.

This review aims to (1) describe the significance of  
low magnesium levels in the release of  pro-inflammatory 
mediators like interleukin 1 (IL-1), IL-6, tumor necrosis 
factor (TNF)-α as CRP levels; (2) demonstrate effects 
of  magnesium on inflammatory response pathways like 
nuclear factor (NF)-κB; (3) address the role of  hypomag-
nesemia in the activity of  CD as one of  the associated 
nutritional deficiencies; and (4) examine possible future 
research to establish a standard magnesium supplementa-
tion strategy to CD patients maintaining remission for 
relatively longer periods.

INFLAMMATION IN CD: INNATE VS 
ADAPTIVE
CD is primarily a T cell autoimmune disorder[16,17], how-
ever; innate immune response has a significant role in its 
pathogenesis, as we will demonstrate in this paper (Table 
1). Traditionally, T helper 1 (Th1) cells were believed to 
be the main immune cells responsible for most of  the 
intestinal tissue damage in CD[17,18]. Th1-related cytokines 
like interferon (IFN)γ, which acts as the major inflamma-
tory mediator in CD[19], are released as a response to Th1 
stimulation by IL-12 from naïve T cells[19,20]. Therefore, 
it was plausible to think that it is possible to control CD 
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significantly if  antibodies against IL-12 and IFNγ (Fon-
tolizumab) are used as a potential therapeutic option[17]; 
however, this was eclipsed when the administration of  
these antibodies (anti-IL-12 and anti-IFNγ) showed a 
limited improvement in cases with active CD[20]. Recently, 
it was suggested that CD mucosal lesions are not caused 
only by Th1 cytokines, instead there is a possibility that 
other cells and mediators are also involved rather than 
Th1 cells alone as summarized in Table 1[17,20]. Examining 
mucosa of  a terminal ileum from a CD patient before the 
appearance of  lesions showed a large population of  Th1 
and macrophages releasing IFNγ and TNF-α, respec-
tively; while samples from well-formed lesions presented 
a relatively equal response from Th1 and another set of  
cells, Th17, with dominance of  their cytokines, IFNγ and 
IL-17A[17].

As shown in Table 2, this finding suggested a dif-
ferent set of  active cells and cytokines presented as the 
disease progresses from early to late stages. Active lesions 
in CD are produced after a cascade of  steps starting 
from the antigen presenting cells in the intestine. These 
cells get activated by luminal antigens triggering the dif-
ferentiation of  naïve T cells into either Th1 cells by IL-12 
release or Th-17 cells by IL-6, IL-23, and transforming 
growth factor beta[4,17,20]. IL-21 from Th-1 and IL-17 

from Th-17 will stimulate the release of  matrix-degrading 
proteases from stromal cells[17,20]. Also, IFNγ from Th-1 
will further activate macrophages that produce IL-1β 
and TNF-α, which will further trigger the release of  
more proteases[20]. Th17 are not stable cells, and as the 
inflammation continues to progress, they convert to Th-1 
releasing more IFNγ during formation of  late mucosal 
lesions[19]. This explains the persistence of  high IFNγ lev-
els towards late CD stages[20]. Therefore, it becomes clear 
that early stages of  CD are dominated by Th1 cells, while 
late stages are mixed in control between Th1 and Th17 
(Table 1)[17]. 

Furthermore, the effects of  the adaptive immune 
system extend to the enteric nervous system. Neuronal 
inflammation and damage is a well-documented problem 
in IBD generally and in CD specifically[21,22]. A suggested 
mechanism for this pathology is explained through high 
activity of  NMDA receptors in enteric neurons (Table 
2). Leading to elevated levels of  intracellular calcium, as 
a result, substance P (SP) will be released from these cells 
acting as a pro-inflammatory mediator increasing release 
of  other inflammatory mediators such as TNF-α, IL-1 
and IL-6 from macrophages and neutrophils, which adds 
to the overall exaggerated immune response in CD[21,22]. 

SP is a tachykinin peptide that has a high affinity for 
neurokinin-1 (NK-1) receptors on macrophages, neutro-
phils and mast cells, and the role of  SP as a pro-inflam-
matory agent was proved when a specific antagonist for 
NK-1 receptors blocked the release of  pro-inflammatory 
cytokines decreasing inflammation and severity of  DSS-
induced colitis in rats[22]. On the other hand, release of  
TNF-α and IL-1β has a role in the re-innervation of  
smooth muscle of  intestine damaged in CD; through 
activation of  NF-κB they were able to increase glial cell 
line derived neurotrophic factor expression in smooth 
muscles of  intestine, making these cytokines neurotroph-
ic and neurotoxic ones at the same time in a sense[21].

In contrast, the innate immune also plays a role in the 
pathogenesis of  CD. Most of  the commensal microbes 
we have in our bodies are located in the intestine, and this 
intestinal-microbial interface provides a large surface area 
for innate and adaptive immune response activities[23]. 
Cells like DC, M cells, and intestinal epithelial cells have 
the ability to detect and respond to these microbes[23]. 
This ability is provided by their surface expression of  
toll-like receptors (TLR), as well as intracellular NOD-
like receptors (NLR), which are molecules that sense 
microbes through recognition of  their PAMP[23-26]. PAMP 
that stimulates TLRs include bacterial lipoproteins, pep-
tidoglycans and most importantly lipopolysaccharides 
(LPS)[24]. As shown in several studies[24,26,27], overexpres-
sion of  TLRs (especially TLR2 and TLR4) is frequently 
observed in patients with IBD, which contributes to the 
dysfunction of  immune tolerance to gut normal flora.

TLR and NLR promote the activity of  NF-κB 
pathway, a major signaling pathway regulating the im-
mune response through cytokine production and cell 
survival[24,25,28]. NF-κB molecules are transcription factors 
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Table 1  Key immune effectors for Crohn’s disease infla
mmatory processes

Role Ref.

Toll-like receptors Their overexpression promotes NF-
κB pathway leading to immune 
intolerance to gut normal flora

[17,24,25,28]

IL-1
TNF-α

Stimulation of intestinal 
stromal cells to release matrix 
metalloproteinases leading to 

mucosal damage

[17,20]

Th1
Th17 cells

Secretion of IFNγ, IL-17 and IL-21 
activating macrophages (MØ) and 

stromal cells to release MMPs

[4,17]

NMDA receptors, SP Intestinal neuronal inflammation [21,22]

NF-κB: Nuclear factor-kappa B; IL-1: Interleukin 1; MMPs: Matrix metal-
loproteinases; TNF: Tumor necrosis factor; IFN: Interferon; Th1: T helper 1; 
NMDA: N-methyl-D-aspartic acid; SP: Substance P.

Table 2  Magnesium and inflammation

Role Ref.

NF-κB Pathway Inhibition of NF-κB p65 phosphoryla-
tion and stabilization of IκB protein

[29,39]

NMDA receptors, SP Low magnesium enhances calcium 
influx through NMDA receptors

[12,38]

Neutrophilic oxidative 
stress

Increased levels of superoxide anions 
and nitric oxide in magnesium 

deficiency

  [12]

Gut microbiota Low magnesium changes the composi-
tion and intestinal permeability

  [43]

NF-κB: Nuclear factor-kappa B; SP: Substance P; NMDA: N-methyl-D-
aspartic acid; IκB: Inhibitory kappa B.
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magnesium daily gets retrieved via passive and active 
transport mechanisms[12,32]. 

MAGNESIUM IS NO TRACE ELEMENT: IT 
IS AN ESSENTIAL GIANT MINERAL
Magnesium is an important mineral in the human body 
like calcium, potassium and sodium[34,35]. When it comes 
to physiology, it is truly a ‘‘chronic regulator’’ and a ‘‘for-
gotten electrolyte’’[34]. Magnesium is a cofactor for over 
300 enzymes catalyzing phosphorylation reactions; it cre-
ates the proper conformational changes on their active 
sites so they fit their specific substrates, which regulates 
about 30% of  total body proteins functions[34]. Regula-
tion of  cell cycle and apoptosis is achieved through many 
magnesium-dependent kinases, adding more weight 
on the significance of  this mineral[34]. Production of  
the most common second messengers like c-AMP and 
c-GMP for different signal transduction pathways have 
magnesium involved in their regulation as well[34]. It is 
involved in the transport of  many other electrolytes in-
cluding calcium, potassium and sodium through its role 
in sodium/potassium ATPase activity, which explains the 
‘’refractory’’ nature of  their disturbances to conventional 
treatment if  the level of  magnesium is low[34,36]. 

ROLE OF MAGNESIUM IN 
INFLAMMATION
Several studies have shown the importance of  magnesium 
in inflammation that linked its low levels to many medical 
conditions such as diabetes type 2[37] (Barbagallo, 2007 
#168), obesity, metabolic syndrome, osteoporosis, and 
cardiovascular diseases (Table 2)[12,38]. Levels of  many pro-
inflammatory cytokines varies depending on magnesium 
balance in the body, and among these cytokines, TNF-α 
IL-1 and IL-6 have the strongest relation[12,29,38]. Also, lev-
els of  CRP, a well-studied inflammatory indicator of  low-
grade and chronic inflammation synthesized by the liver, 
vary with magnesium status changes as well[12,38]. Effects 
of  magnesium on inflammatory responses and mediators 
are widely distributed; therefore, it will be discussed sepa-
rately as follows: (1) Magnesium as an anti-proinflamma-
tory cytokine. Inhibition of  NF-κB activity and increasing 
levels of  IκBα are the backbone for this function (Table 
2)[29]. NF-κB pathway is stimulated widely in the human 
body to regulate inflammation, cancer fighting, and cell 
survival[29]. Expression of  cytokines IL-6 and TNF-α is 
induced during inflammatory responses triggered by TLR 
and NLR, which stimulates a downstream pathway to 
translocate NF-κB into nucleus for pro-inflammatory cy-
tokines production[29,39]. IκBα is unstable due to its amino 
acids composition that is rich in proline, threonine and 
serine, explaining the constitutive breakdown rate affect-
ing it[29,40,41]. IκBα level in monocytes were tested before 
and after magnesium sulfate supplementation following 
stimulation of  TLR by LPS and it showed that level of  

stimulating a group of  genes responsible for immune, in-
flammatory and apoptosis processes[24-26]. NF-κB induces 
the expression of  its repressor IκB that binds to NF-
κB molecules preventing their nuclear translocation[25]. 
Once IκB is phosphorylated, NF-κB becomes free to 
translocate into nucleus inducing the expression of  pro-
inflammatory cytokines[25,29]. Significance of  this pathway 
in the inflammatory process of  CD was established by 
the use of  triptolide, a potent anti-inflammatory and im-
munosuppressant extracted from Chinese herb Tripteryg-
ium wilfordii Hook F[24]. The study showed that triptolide 
has down regulated TLR2 and TLR4 expression as well 
as NF-κB nuclear translocation, resulting in reduction in 
levels of  pro-inflammatory cytokines in CD[24]. This find-
ing suggested triptolide as a possible immunomodulator 
option for CD, and at the same time showed the strong 
link between TLR/NF-κB/pro-inflammatory cytokines 
in CD dysregulated immune response[24].

NUTRITIONAL LOSS IN CD
The inflammation caused by both innate and adaptive im-
mune system leads to progression of  CD, causing the loss 
of  a significant functional intestinal area due to villous 
atrophy, fistulae formation and bacterial overgrowth[30]. 
These changes in the intestinal structure lead to loss of  a 
variety of  proteins, lipids, sugars, as well as vitamins and 
minerals, which locates the body in a negative nutritional 
status[13,15]. Other factors contributing to this negative 
balance in CD include: anorexia, abdominal pain, fasting 
for different tests, and medications like sulfasalazine used 
to control the disease or surgeries leading to short bowel 
syndrome[14,31]. For the same mentioned reasons, magne-
sium loss is a frequent finding in patients with CD as a 
result of  the imbalanced magnesium homeostasis[13].

MAGNESIUM HOMEOSTASIS
This is maintained by the cooperation between three 
organs: intestine, kidneys and bones[32]. In the intestine, 
distal parts of  jejunum and ileum are the most com-
mon sites for magnesium uptake[12,32]. Approximately 
80%-90% of  dietary magnesium absorption is achieved 
via paracellular transport, which depends on the perme-
ability of  tight junctions[32]. In addition, low expression 
of  claudin 1, 3, 4, 5 and 8 proteins in the jejenum and 
ileum enables the passage of  magnesium ions[33]. This 
mechanism is passive, allowing a majority of  magne-
sium absorption without energy cost[12,32]. The rest of  
dietary magnesium is absorbed by the active transcel-
lular transport via TRPM6 and TRPM7[12,32]. The latter 
mechanism allows magnesium to be transported into the 
blood from intestine through cell membrane[12,32]. Once 
absorbed, magnesium is stored mainly in bone tissue but 
traces can be found in muscles, where it acts as a natural 
calcium antagonist to control muscle contraction[12,32]. 
Lastly, most of  the magnesium excreted from the body 
is processed by the kidneys, where 90%-95% of  filtered 
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IκBα is higher in presence of  higher intracellular magne-
sium[29]. The reason was not related to increased IκBα ex-
pression and protein synthesis, rather it was increased sta-
bility of  IκBα, as proved by the use of  protein synthesis 
inhibitor before and after TLR stimulation[29]. On the oth-
er hand, phosphorylation of  NF-κB p65 is essential for its 
translocation, as well as its transcriptional effect to induce 
cytokines production; it was shown to decreased following 
magnesium supplement in LPS-TLR stimulated mono-
cytes[29]. At the same time, expression of  IκBα was de-
creased in the presence of  increased intracellular magne-
sium sulfate supporting the finding of  decreased activation 
of  NF-κB in high levels of  cellular magnesium sulfate[29,39]. 
As a result of  inhibition of  NF-κB translocation and tran-
scriptional effect and the decreased phosphorylation of  
NF-κB, levels of  TNF-α and IL-6 were significantly lower 
in LPS-TLR stimulated cells in the presence of  high cellu-
lar magnesium levels[29,39]. Also, magnesium has preserved 
and stabilized more IκBα, which led to more suppression 
in NF-κB related cytokine production following LPS 
stimulation. In another study, it was shown that IL-8 ex-
pression is decreased following the same steps mentioned 
for LPS stimulation of  cytokine production[39]; (2) Oxida-
tive stress and magnesium. In an experiment conducted 
on magnesium deficient rats, there was a 40% increase in 
the level of  superoxide anions and nitric oxide levels (Ta-
ble 2)[12]. Also, there were increased levels of  neutrophilic 
basal superoxide anions, as well as prostacyclin, prosta-
glandin E2, and thromboxane A2[12]. Red blood cells glu-
tathione levels were decreased in the same experiment 
showing declining body antioxidant potentials in increased 
oxidative stress as a result of  low cellular magnesium lev-
els[12]; (3) Magnesium effect on NMDA receptors. Magne-
sium is a natural calcium antagonist and this was discussed 
in role of  magnesium in muscle contraction[32]. From an-
other perspective, NMDA receptors have a threshold of  
activation and it is lowered in states of  decreased extracel-
lular magnesium levels[38]. This will lead to an increase in 
calcium influx into the cell through NMDA receptors, re-
sulting in increased production of  pro-inflammatory pros-
taglandin E2, which was decreased upon blocking NMDA 
receptors[12,38]. Also, as calcium levels increases intracellu-
lar, the level of  SP increases as a result stimulating NK-1 
receptors leading to production of  inflammatory media-
tors from macrophages, monocytes and neutrophils[38]. It 
is noteworthy to mention that the increase in NK-1 and 
substance P are well-known findings in IBD[12]. In addi-
tion to that, magnesium binds to the regulatory gates of  
calcium channels limiting calcium influx into the cell, and 
low extracellular magnesium levels will enhance the calci-
um influx triggering a greater inflammatory response[38]; 
(4) Magnesium, gut microbiota and intestinal permeability. 
It has been established before that gut microbiota [mainly 
bifidobacteria; a gram positive, non-motile anaerobic bac-
teria (Table 2)[42]] are decreased in endotoxemia, high fat 
mass index and glucose utilization disturbances[43,44]. Simi-
larly, in another experiment, cecal content of  bifidobacte-
ria and lactobacilli were decreased in short-term (four 

days) magnesium deficient rats[43]. On the other hand, pro-
longed magnesium deficiency (21 d) has actually increased 
the cecal content of  the mentioned bacteria, suggesting an 
adaptive response by the bacteria and an established de-
mand for magnesium[43]. Bifidobacteria are microorgan-
isms known for their ability to lower intestinal LPS content 
and thus enhance the mucosal barrier performance[43,45]. As 
the drop of  magnesium levels decreases the cecal bacterial 
content, it also causes change in intestinal mucosal barrier, 
where mRNA of  two of  the junction proteins (ZO-1 and 
Occ) were noticed to decrease in ileum and proximal co-
lon resulting in increased intestinal permeability for bacte-
rial products and especially LPS to be increased systemi-
cally[43]. Accordingly, it was noticed that expression of  
CD14 receptors that bind LPS was elevated in gut in mag-
nesium deficient mice, as well as increased expression of  
CD68 supporting the infiltration of  monocytes in proxi-
mal colon[43]. The overall content of  mRNA of  TNF-α 
and IL-6 in proximal colon was increased in magnesium 
deficient mice[43]. These findings showed the effect of  
low magnesium on cellular inflammatory stress, which 
seemed to be limited to proximal colon rather than ile-
um[43]. Prolonged magnesium deficiency has an impact on 
the composition of  gut microbiota as more bifidobacteria 
and lactobacilli will be present, and less bacteroids in the 
intestine[43]; and (5) Magnesium and C-reactive protein. 
As several studies investigated effects of  dietary modifi-
cation on inflammatory processes, CRP was among the 
most common inflammation indicators used for evalua-
tion[46]. High levels of  CRP were linked to obesity, meta-
bolic syndrome, cardiovascular diseases and IBD[47]. They 
all share having an inflammatory component in their eti-
ology and CRP was the tested variable in many studies[12]. 
As levels of  IL-1β, IL-6 and TNF-α increase in the plas-
ma, liver will respond by increasing production of  
CRP[38]. More specifically, serum high sensitive CRP (hs-
CRP) has been used frequently due to its stability and 
easy detection, which has a normal level in plasma of  < 
3.0 mg/L[48]. Different conditions with low-grade or 
chronic inflammation states shared the sign of  having ele-
vated hs-CRP, indicating the strong inflammatory compo-
nent they have[46]. CD activity has been strongly correlated 
to hs-CRP level[49], which is considered to be one of  the 
main laboratory values that increase in relapses. Back to 
our mineral, magnesium is a significant immunomodula-
tor that affects many inflammatory responses, and there-
fore its homeostasis is crucial for the overall body homeo-
stasis. Low magnesium levels (< 1.2 mg/dL) were 
correlated to elevated levels of  TNF-α, IL-1β, IL-6 and 
hs-CRP in plasma[12,38,46]. A study conducted on 5007 chil-
dren (1999-2002) showed a significant increase in risk of  
having high CRP (1.94 times more) in children taking less 
than 50% of  magnesium RDI[38]. One of  the most inter-
esting findings about magnesium and hs-CRP is that it 
was developed at University of  South Carolina, showing 
that magnesium is the highest dietary factor in a 42-item 
dietary anti-inflammatory index they made for the 
study[46,48].
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MAGNESIUM LOSS IN CD
With more than 32% of  American people not meeting 
the daily requirement of  magnesium dietary intake (4.5 
mg/kg per day for adults), hypomagnesemia became a 
real concern for many practitioners[14]. Therefore, IBD 
adds a major cause for developing hypomagnesemia at 
different rates ranging from 13% to 88% of  patients[14]. 
This deficiency is caused by many factors in CD includ-
ing anorexia, food avoidance, intestinal surface loss due 
to diarrhea, fistulae or surgery as well as malabsorption[14]. 
Intestinal uptake of  magnesium is defected dramatically 
as inflammatory processes of  CD result in villus atrophy 
and fistulae formation, on top of  increased bowel move-
ment not allowing the time for magnesium absorption[32]. 
As the majority of  magnesium absorption occurs pas-
sively, there will be no sufficient concentration gradient 
for magnesium uptake in intestine, as well as destructed 
enterocytes, losing the active transport component of  
magnesium absorption[32]. 

Nutritional loss in patients with CD is variable based 
on the disease activity status. Usually during remission of  
the disease, the body demand for macronutrient is cov-
ered by diet. However, micronutrient loss is frequent and 
supplementation is usually required even during remis-
sion of  the disease[15]. Due to the chronic and extensive 
damage of  intestinal mucosal cells, oral magnesium sup-
plement is not recommended and parenteral forms are 
encouraged since the bioavailability will not be a concern 
in this case[13]. 

As CD result in malabsorption and loss of  many 
vitamins, vitamin D in particular has a direct influence 
on magnesium and its intestinal absorption[32]. Claudin 
proteins involved in paracellular mechanism of  magne-
sium absorption (the major mechanism) are regulated by 
active vitamin D, thus in CD, loss of  fat soluble vitamins 
including vitamin D will lead to decreased magnesium 
absorption and hypomagnesemia[32]. As 75% of  CD pa-
tients will require surgery at some point due to intestinal 
disease complications, short bowel syndrome will be a 
major cause of  malabsorption affecting the levels of  
many nutrients including magnesium as well[14].

Also, magnesium absorption in the intestine is sub-
jected to the amount of  protein in diet and this is de-
creased in CD due to anorexia produced by circulating 
cytokines and food avoidance by the patients because of  
abdominal pain[32]. For all of  those factors, magnesium 
will be in negative balance in CD patients (Figure 1).

EFFECTS OF MAGNESIUM ON CROHN’S 
PATHOGENESIS
By looking back at magnesium significance in the hu-
man body, it is obvious that the major effect magnesium 
can have on CD is from the immunity and inflammation 
point of  views. However, other fields for magnesium 
influence on CD can be calcium disturbances, intestinal 
nerve supply and gut microbiota composition. 

As established before in this paper, magnesium has 
the potential to be an effective cytokine antagonist. In 
different studies magnesium showed immunomodula-
tion capabilities through controlling expression of  pro-
inflammatory cytokines, oxidative stress and neuronal 
damage. Through its effect on NF-κB, intracellular mag-
nesium was able to limit NF-κB nuclear translocation as 
well as p65 phosphorylation activation step. On the other 
hand, intracellular magnesium preserved and stabilized 
IκBα limiting its degradation and applying more inhibi-
tory effect on NF-κB pathways. As CD progresses and 
intestinal lesions develop, exposure of  TLR and NLR to 
LPS will be more likely (Table 2). LPS is a potent TLR 
stimulator, which will activate NF-κB subsequently lead-
ing to production of  IL-1, IL-6 and TNF-α. Hypomag-
nesemia is a frequent finding in CD, which means that 
the inhibitory effect on NF-κB pathway will be absent 
allowing more production of  IL-6 and TNF-α that will 
trigger more mucosal damage via activation of  the release 
of  matrix-degrading proteases from intestinal stromal 
cells[20]. 

Among the structural changes that occur to intestinal 
mucosa due to CD, gut microbiota composition changes 
are also related to magnesium deprivation[43]. Short-term 
and long-term magnesium deficiency in mice showed 
significant changes in intestinal permeability and bacterial 
adaptation[43]. Low magnesium levels decreased bifido-
bacteria and increased risk of  LPS endotoxemia since 
bifidobacteria can lower intestinal content of  LPS[43]. 
Down-regulation of  junction proteins ZO-1 and Occ 
mRNA as a result of  magnesium deprivation caused an 
increase in intestinal permeability and this finding alone 
can describe the significant effect of  hypomagnesemia in 
CD patients[43]. Role of  magnesium in alleviating LPS im-
mune response is essential for immune tolerance to gut 
commensal bacteria.

Among the inflammatory mediators associated with 
CD, CRP is one of  the most sensitive markers of  CD 
activity and relapsing status[50]. Its short half-life made 
it superior to other markers like ESR and fibrinogen 
which have longer half-lives and interference with other 
agents[50]. As demonstrated in many studies[12,38], serum 
CRP levels are elevated in diabetes type 2, obesity, meta-
bolic syndrome, atherosclerosis, osteoporosis and alco-
holism indicating the inflammatory component that links 
them together in etiology. At the same time, all of  these 
conditions were also associated by hypomagnesemia sug-
gesting a strong relationship between magnesium and 
CRP and its possible application on CD where levels of  
magnesium are reduced[12,38].

Calcium influx into neurons is largely regulated by ex-
tracellular magnesium[12,38]. Low magnesium levels due to 
CD will lower NMDA receptors activation threshold al-
lowing more calcium entry into neurons[12,38]. Also, gated 
calcium channels will lose magnesium regulation over 
them and will allow more calcium influx, which adds to 
the overall free intracellular calcium[12,38]. Elevated levels 
of  intracellular calcium are able to increase the release of  
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inflammatory SP that trigger more production of  IL-1, 
IL-6 and TNF-α resulting in increase in the oxidative 
stress affecting intestinal sensory innervation causing 
symptoms like tenesmus (feeling of  incomplete defeca-
tion) and frequent bowel movements[12].

Hypocalcaemia in CD is characteristic and has more 
than one cause resulting loss of  many calcium functions 
throughout the body. First, as more vitamin D is lost in 
the frequent diarrhea associated with CD, calcium ab-
sorption at the intestine will be impaired[32]. On the other 
hand, low magnesium levels associated with CD results 
in increased calcium influx shifting most calcium into 
cells and causing calcium levels in plasma to drop even 
more[12,38]. 

Role of  magnesium in muscle contraction as a cal-
cium antagonist is essential for intestinal smooth muscle 
function in creating efficient peristalsis. It allows for pe-
riods of  relaxation following contraction cycles caused 
by calcium. Also, SP is a regulator of  smooth muscle 
contractility and hypomagnesemia elevates its levels lead-
ing to abnormal intestinal smooth muscle function. This 
function is essential to control bowel movement frequen-
cy in CD which is increased as a result of  magnesium 
deficiency[32].

As levels of  antioxidant vitamins like vitamin A, vita-
min C and vitamin E are decreased in CD due to intesti-
nal loss, oxidative stress effect on different cells increases 
including intestinal cells as well. Low magnesium levels 
showed an association with increased oxidative stress in 
individuals with no CD as levels of  lipid peroxidation 
increase and production of  free radicals like superoxide 
anion and nitric oxide is promoted[12]. These changes in 
CD with addition of  hypomagnesemia augment the load 
of  oxidative stress all over the body.

TARGETS FOR FUTURE DIRECTIONS
The integration of  magnesium functions throughout the 
body is enormous and fields of  future studies of  that are 
numerous. However, when it comes to CD association 
with hypomagnesemia, some targets are very promising 
for possible maintenance of  remission or even a cure of  
CD. 

Most of  drugs used to control CD have a long list 
of  side effects and a possible toxicity with chronic use. 
Magnesium has shown great potentials on affecting the 
same pathways involved in CD inflammation as many 
therapeutic agents. On the other hand, magnesium is 
not expected to be cytotoxic and this hypothesis is very 
promising if  magnesium is tested on specific regimens to 
block NF-κB signaling pathway in CD patients.

Role of  magnesium in controlling calcium entry in 
neurons is significant in intestinal sensory innervation[12]. 
Hypomagnesemia leads to more nerve damage following 
SP activation and this effect carries a potential of  modi-
fying intestinal smooth muscle function and innervation 
in CD if  magnesium supplement are tested for that.

Another area that is poorly understood is the role of  

magnesium in CD as a cofactor for most kinases and the 
possible changes of  this rule during the disease. It is un-
clear whether this function affects CD activity and if  so, 
in what way this is applied in cases of  hypomagnesemia 
associated with CD.

Possible changes in gut microbiota composition fol-
lowing magnesium level alterations represent a big op-
portunity to further explore the role of  normal flora in 
developing CD. Other minerals could play a similar role 
for the short term or long term changes in their levels. 
As data suggested, certain strains of  microbiota like bifi-
dobacteria turned out to have a role in lowering LPS and 
contributing to the intestinal mucosal barrier function 
and tolerance. Could other strains have different func-
tions involved in immune responses and tolerance? A hy-
pothesis can be based on the most common commensal 
strains and their possible role in local and systemic im-
mune responses and possible implications in autoimmune 
diseases. 

Magnesium supplementation for CD patients is 
strongly suggested by several research data. Maintaining 
magnesium homeostasis throughout the course of  the 
disease is expected to minimize the inflammatory damage 
of  CD improving the condition of  many patients. How-
ever, conventional magnesium supplementation itself  
causes diarrhea which is the main reason magnesium is 
lost in CD. A therapeutic strategy for magnesium admin-
istration is strongly recommended. 

CONCLUSION
CD is primarily an innate immunity dysfunction, and 
this disturbance develops to trigger an adaptive immune 
response resulting in mucosal intestinal surface damage. 
Among the numerous functions magnesium has through-
out the body, immunomodulation is by the far the most 
involved function in CD activity and development. 
Chronic diarrhea among other problems in CD results in 
long term loss of  magnesium, which makes hypomagne-
semia a frequent finding in most CD patients. As the data 
showed, restoration of  magnesium levels in CD patients 
can limit the activity of  NF-κB, which is responsible for 
production of  pro-inflammatory cytokines involved in 
CD inflammation. Additionally, many studies have sug-
gested the disturbances in gut normal flora composition 
following short and long term hypomagnesemia. These 
have resulted in loss of  immune tolerance to normal flora 
at the intestinal interface. Involvement of  hypomagnese-
mia in NMDA receptors and SP release creates a direct 
effect on neuronal function of  intestine and smooth 
muscle activity as well. 

This review highlights some of  the well-known func-
tions of  magnesium and their potential rule in shaping 
CD activity. It was strongly suggested by data that mag-
nesium could play a significant rule in controlling CD. 
This review demonstrates a possible mutual effect of  CD 
on magnesium level as well as hypomagnesemia on CD 
inflammatory processes. Future nutritional studies as well 
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as medical research are expected to focus more efforts to 
better understand effects of  magnesium and CD on each 
other. Knowledge of  these effects would create a strong 
basis for development of  a potential therapeutic strategy 
to modulate the vast inflammatory effects CD has on its 
patients. 
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Abstract
Type 2 diabetes mellitus (T2DM) and hypertension 
represent two common conditions worldwide. Their fre-
quent association with cardiovascular diseases makes 
management of hypertensive patients with T2DM an 
important clinical priority. Carvedilol and renal denerva-
tion are two promising choices to reduce plasma glu-
cose levels and blood pressure in hypertensive patients 
with T2DM to reduce future complications and improve 
clinical outcomes and prognosis. Pathophysiological 
mechanisms of both options are under investigation, 
but one of the most accepted is an attenuation in sym-
pathetic nervous system activity which lowers blood 
pressure and improves insulin sensitivity. Choice of 
these therapeutic approaches should be individualized 
based on specific characteristics of each patient. Fur-
ther investigations are needed to determine when to 
consider their use in clinical practice.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus; Carvedilol; Renal de-

nervation; Insulin resistance; Glucose; Hypertension; 
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Core tip: Type 2 diabetes mellitus and hypertension are 
two common conditions worldwide which increase the 
risk of cardiovascular disease with resulting disabilities 
and mortality. Carvedilol and renal denervation are two 
promising therapies to decrease insulin resistance and 
lower blood pressure by attenuating sympathetic ner-
vous system activity. This review examines the clinical 
reports of these novel approaches. 
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) and hypertension (HTN) 
represent two common conditions worldwide. They in-
crease the risk for the development of  cardiovascular dis-
eases with adverse clinical outcomes including disabilities 
and mortality[1]. The International Diabetes Federation 
reports that diabetes kills one person every six seconds 
and afflicts 382 million people worldwide. The federation 
estimates that the number of  people affected by the dis-
ease is expected to climb to 592 million by 2035[2].

DM is a group of  metabolic diseases characterized 
by impairment in glucose, lipid and protein metabolism, 
resulting from alterations in insulin secretion, insulin ac-
tion or both. While four types of  DM have been classi-
fied, T2DM is the most prevalent and accounts for 90% 
to 95% of  all diagnosed cases[3-6]. Its pathophysiology 
includes an increase in insulin resistance (IR) in tissues 
with subsequent relative insulin deficiency[7]. A great 
number of  T2DM patients suffer from associated car-
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diovascular diseases. One of  the most common is HTN. 
Over 60% of  patients with T2DM have HTN[8] with re-
sulting four-fold increased cardiovascular risk and death 
from complications[9,10].

Initial recommended treatment of  HTN in patients 
with T2DM is angiotensin- converting enzyme (ACE) in-
hibitors or angiotensin receptor blockers (ARBs). In the 
absence of  cardiac comorbidity, traditional beta-blockers 
which increase IR do not constitute an initial choice 
for the treatment of  HTN in patients with T2DM[4]. 
However, carvedilol which is a third-generation beta-
blocker in some studies has demonstrated efficacy to 
reduce plasma glucose levels and IR[11-13] in patients with 
and without T2DM. Also in recent investigations, renal 
denervation (RDN) by catheter using radiofrequency en-
ergy has been associated with a decrease in IR in T2DM 
patients with an improvement in glucose control[14,15]. 
With both therapies the fall of  plasma glucose concen-
trations and a reduction in blood pressure is likely due 
to an attenuation in sympathetic nervous system activity. 
Figure 1 reviews proposed antihypertensive mechanisms 
of  carvedilol and RDN. These observations could open 
new choices to manage hypertensive T2DM patients 
with the use of  one or both treatments. The benefit of  
improving patients’ blood pressure would be comple-
mented with an IR reduction, decreasing significantly the 
risk of  future complications.

In this article we will review studies which suggest 
that carvedilol and RDN improve glucose metabolism as 
well as lower blood pressure in hypertensive patients with 
T2DM.

STUDIES THAT OBSERVED THAT 
CARVEDILOL IMPROVED GLUCOSE 
CONTROL IN HYPERTENSIVE PATIENTS 
WITH T2DM
It is well recognized that traditional beta-blockers have 

negative effects on glucose and IR[16]. In contrast, studies 
have demonstrated that carvedilol stabilizes plasma glu-
cose levels and decreases IR, suggesting a novel therapeu-
tic option in hypertensive patients with T2DM. 

Carvedilol is a third-generation, nonselective beta-
blocker that also possesses alpha-1 adrenergic blocking, 
antioxidant and calcium antagonist properties. It is a 
racemic lipophilic aryloxypropanolamine that causes 
both precapillary vasodilatation and is devoid of  intrin-
sic sympathomimetic activity[17-20]. Carvedilol is absorbed 
rapidly after oral administration and it is cleared by 
aromatic-ring oxidation and glucuronidation in the liver. 
Compared with traditional beta-blockers, carvedilol has 
the same pharmacological actions of  reducing heart rate 
and blood pressure[21-23]. Due to these properties, carve-
dilol has been used in the treatment of  heart failure[24,25], 
angina pectoris[26,27], to improve cardiac function after 
myocardial infarction[28] and to reduce infarct size follow-
ing myocardial ischemia and reperfusion injury[29]. Carve-
dilol is indicated for treating patients with congestive 
heart failure and after myocardial infarction with ejection 
fractions less than 40 percent because it has been shown 
to decrease mortality. 

In general, traditional beta-blockers in hypertensive 
trials have been found to increase IR, facilitate weight 
gain and raise triglyceride levels. The metabolic benefits 
of  carvedilol administration on plasma glucose reduction 
in patients with and without DM have been studied over 
many years and the results are summarized in Table 1 and 
discussed below.

Ehmer et al[30] conducted a study in non-insulin-
dependent patients with DM with the aim to compare 
the antihypertensive effects and the influence on carbo-
hydrate metabolism of  carvedilol vs metoprolol tartrate. 
The results after eight weeks showed similar blood pres-
sure reduction and in both groups plasma glucose con-
centrations remained within normal limits and glycated 
hemoglobin was unchanged.

Giugliano et al[12] compared the metabolic and cardio-
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Figure 1 Antihypertensive mechanisms of carvedilol and renal denervation.



vascular effects of  carvedilol vs atenolol in non-insulin-
dependent T2DM hypertensive patients. Reduction in 
blood pressure was similar with carvedilol and atenolol, 
but the patients that received treatment with carvedilol 
had better metabolic responses. Over 24 wk, fasting 
plasma glucose, insulin and triglycerides levels decreased 
with carvedilol and increased with atenolol. In addition, 
an increase in high-density lipoprotein cholesterol level 
and decrease in lipid peroxidation was seen with carve-
dilol but not seen with atenolol. By improving glucose 
and lipid metabolism and reducing lipid peroxidation, the 
authors suggested that carvedilol may offer advantages in 
hypertensive patients with T2DM. The benefits of  lipid 
reduction in high cardiovascular risk patients with DM 
have been demonstrated. In patients with DM the use of  
simvastatin resulted in a reduction in total mortality (43%), 
major coronary heart disease events (55%) and all athero-
sclerotic events (37%) and these reductions were greater 
than in non-diabetic patients[31]. In most guidelines, tradi-
tional beta-blockers are not recommended in hyperten-
sive T2DM patients due to impairment in metabolic con-
trol and worsening lipid profile[4]. In contrast, carvedilol 
lowers blood pressure, improves glucose control and lipid 
profile, and, thus, is a unique choice in treating hyperten-
sive T2DM patients.

An advance in this field was when researchers pub-
lished the results of  the GEMINI Trial which compared 
the glycemic and metabolic effects of  carvedilol vs meto-
prolol tartrate in patients with HTN and T2DM already 
receiving renin-angiotensin system blockade[11]. This was 
a randomized, double-blind study, carried out in 1235 

participants. Patients were randomized to receive a 6.25 
to 25 mg dose of  carvedilol (n = 498) or 50 to 200 mg 
dose of  metoprolol tartrate (n = 737), each twice daily in 
addition to renin-angiotensin system blockers to achieve 
blood pressure goal of  130/80 mmHg. After a follow up 
of  35 wk, the mean of  glycosylated hemoglobin increased 
with metoprolol [0.15% (0.04%); P < 0.001] but not with 
carvedilol [0.02% (0.04%); P = 0.65]. Also an improve-
ment of  insulin sensitivity was seen with carvedilol (-9.1%; 
P = 0.004) but not with metoprolol tartrate (-2.0%; P = 
0.48). This study supports the previous benefits observed 
with the use of  carvedilol to improve glucose control 
in hypertensive patients with T2DM. Particularly in this 
work, carvedilol associated with simultaneous administra-
tion of  renin-angiotensin system blockers was superior to 
metoprolol tartrate to achieve this objective. In patients 
with diabetes, traditional beta-blockers have been shown 
to increase fasting glucose, increase hemoglobin A1C, fa-
cilitate weight gain and increase triglycerides by approxi-
mately thirteen per cent. In the GEMINI Trial, hyperten-
sive diabetic patients receiving renin-angiotensin system 
blockade and receiving carvedilol demonstrated stabiliza-
tion of  glycemic control, improvement of  IR, less effect 
on triglycerides and less development of  microalbumin-
uria. This study supports earlier investigations suggesting 
that carvedilol is uniquely different than traditional beta-
blockers.

More recently an extension of  the GEMINI inves-
tigation was published analyzing treatment differences 
in subgroups on glycemic control comparing carvedilol 
and metoprolol tartrate in diabetic hypertensive patients 

538 August 15, 2014|Volume 5|Issue 4|WJD|www.wjgnet.com

Table 1  Studies which observed glucose reduction carvedilol

Ref. Study design Participants Main results

Ehmer et al[30] Prospective randomized 
open parallel group trial

49 non-insulin-dependent diabetics 
with mild to moderate HTN 

(carvedilol n = 25, metoprolol n = 24)

Blood glucose concentrations were maintained within narrow 
limits. Glycated haemoglobin A1 remained unchanged. There 

was a reduction in blood pressure in both groups 
Giugliano et al[12] Prospective single-blind 

randomized trial
45 patients with non-insulin-

dependent DM and HTN (carvedilol 
n = 23, atenolol n = 22)

Patients treated with carvedilol had improved glucose and 
lipid metabolism and reduced lipid perioxidation compared to 

atenolol. Both reduced blood pressure
Bakris et al[11] Prospective double-blind  

randomized trial
GEMINI study, 1235 patients with 

HTN and T2DM (carvedilol n = 498, 
metoprolol tartrate n = 737)  

The mean glycosylated hemoglobin increased with metoprolol, 
but not with carvedilol. An improvement of insulin sensitivity 

was seen with carvedilol but not with metoprolol 
Phillips et al[32] Prospective double-blind  

randomized trial
GEMINI study 1235 patients with 

HTN and T2DM  (carvedilol n = 498, 
metoprolol tartrate n = 737)  

After and adjustment for age carvedilol was superior than 
metoprolol reducing baseline glycosylated hemoglobin and also 
in female patients. In black people carvedilol showed a reduc-

tion in IR  greater than metoprolol
Kveiborg et al[40] Prospective randomized 

open parallel group trial
19 patients with T2DM (metoprolol 
succinate n = 10, carvedilol n = 9) 

and 10 controls 

Treatment with carvedilol did not change insulin-stimulated 
endothelial function, whereas it deteriorated with metoprolol

Torp-Pedersen et al[46] Prospective double-blind 
randomized trial

3029 patients with chronic heart fail-
ure and T2DM (carvedilol n = 1511, 

metoprolol tartrate n = 1518) 

Fewer patients treated with carvedilol developed T2DM than 
with metoprolol 

Wai et al[47] Observational cohort trial 125 patients with T2DM and heart 
failure (carvedilol n = 80, bisoprolol 

n = 45) 

Carvedilol significantly improved glycemic control in subjects 
with heart failure and T2DM 

Basat et al[48] Prospective double-blind 
randomized trial

59 patients with ST-elevation myo-
cardial infarction (carvedilol n = 26, 

metoprolol n = 31) 

After myocardial infarction, carvedilol added to background 
therapy improved insulin resistance and lipid profile 

T2DM: Type 2 diabetes mellitus; HTN: Hypertension. 
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ditionally it had a neutral effect on lipid profile and albu-
minuria status, confirming earlier observations.

Basat et al[48] studied 59 patients after a myocardial in-
farction to compare the effects of  carvedilol vs metopro-
lol tartrate on IR and serum lipid. After 12 wk of  treat-
ment, carvedilol showed a significantly greater reduction 
in insulin, C-peptide, total cholesterol and triglyceride lev-
els than metoprolol. The authors concluded than carve-
dilol could constitute an option to improve IR and lipid 
profile in patients after myocardial infarction. In patients 
with coronary artery disease and specifically in those after 
myocardial infarction, both poor glycemic control and 
lipid profile are well-known risk factors which increase 
the number of  complications and impair the progno-
sis[49,50]. Choosing carvedilol in these high risk patients 
appears indicated because of  its unique metabolic advan-
tages compared to traditional beta- blockers. 

STUDIES THAT OBSERVED THAT RDN 
IMPROVED GLUCOSE CONTROL IN 
HYPERTENSIVE PATIENTS WITH T2DM
RDN has emerged as a promising treatment for HTN[51-55]. 
Symplicity HTN-1[56] and HTN-2[57] studies demonstrated 
the efficacy and safety of  RDN in patients with resistant 
HTN. State-transition modeling suggests that RDN is 
a cost-effective strategy for resistant HTN that can re-
duce the risk of  stroke, myocardial infarction, coronary 
heart disease, heart failure and end-stage renal disease[58]. 
Another study suggests that potential lifetime cost-effec-
tiveness ratios may be increased when RDN is performed 
earlier in patients with resistant HTN[59]. Follow-up of  
Symplicity patients demonstrate a durable blood pressure 
reduction out to 36 mo[60]. 

The principles of  catheter-based RDN are based on 
the influence of  afferent and efferent renal nerves in 
blood pressure physiopathology. As shown in Figure 1, 
after an ablation of  renal nerves there is a reduction in 
blood pressure, sympathetic nervous system activity and 
renin-angiotensin system activity and increase in water 
and salt excretion[61].

Based on these observations, some investigators have 
examined catheter-based RDN on glucose control. Table 
2 describes studies which observed glucose reduction 
after RDN. These studies were based on the knowledge 
that sympathetic overactivity can induce IR and hyper-
insulinemia. Mahfoud et al[14] designed an investigation 
which enrolled 50 patients with resistant HTN. The 
group study (n = 37) received bilateral catheter-based 
RDN and the control group (n = 13) was assigned to 
continue medical therapy. Three months after treatment 
fasting glucose was reduced in the RDN group from 118 
± 3.4 to 108 ± 3.8 mg/dL (P = 0.039). Insulin levels were 
decreased from 20.8 ± 3.0 to 9.3 ± 2.5 μIU/mL (P = 
0.006) and IR decreased from 6.0 ± 0.9 to 2.4 ± 0.8 (P = 
0.001). Mean 2-h glucose levels during oral glucose toler-
ance testing were also reduced significantly by 27 mg/dL 

on renin-angiotensin system blockers[32]. Data analyses 
revealed that both carvedilol and metoprolol patients had 
significant and similar reductions in blood pressure. After 
adjustment for age there was a significant treatment ben-
efit favoring carvedilol over metoprolol from change in 
baseline in glycosylated hemoglobin (0.022% vs 0.057%, 
P = 0.003) and IR (-9.09% vs -1.76%, P = 0.015). Female 
patients who received carvedilol were favored with a re-
duction in baseline glycosylated hemoglobin (-0.04% vs 
0.16%, P = 0.003). In regard to race, carvedilol showed 
better results than metoprolol in African Americans pa-
tients from baseline in HOMA IR levels (-17.0% vs 8.2%, 
P = 0.01). The fact that carvedilol showed good blood 
pressure reduction and reduced glycosylated hemoglobin 
and IR in African American patients has important clini-
cal implications. African Americans represent a special 
hypertensive group with a poor prognosis and with in-
creased risk to develop additional complications, which 
are associated with the existence of  frequent comorbidi-
ties and genetic predispositions[33-36]. African American 
T2DM hypertensive patients frequently have poor blood 
pressure responses to renin-angiotensin system block-
ers[37-39]. The GEMINI results suggest that carvedilol may 
be useful in the treatment of  hypertensive African Amer-
ican patients with T2DM. Carvedilol has the potential of  
achieving better metabolic control, reducing blood pres-
sure with few side effects, and improve clinical outcomes. 
This option needs further investigation, but this study 
should stimulate future work in these patients.

In further support for the unique properties of  carve-
dilol, Kveiborg et al[40] examined the effects of  carvedilol 
and metoprolol tartrate on insulin-stimulated endothelial 
function in patients with T2DM. These results also sup-
port the benefit of  carvedilol compared with metoprolol 
observed in earlier studies. Treatment with carvedilol 
did not change insulin-stimulated endothelial function, 
whereas it deteriorated with metoprolol. IR is recognized 
as a pathophysiological cause of  glucose disorders in 
patients with T2DM[7] and there are many reports about 
the relationship between this metabolic disorder and car-
diovascular diseases[41,42]. Since traditional beta-blockers 
confer negative metabolic effects, carvedilol should be 
considered in the long term treatment of  patients with 
cardiovascular disease[43-45].

Carvedilol also has been examined in the develop-
ment of  new onset of  T2DM in patients with congestive 
heart failure. A total of  3029 patients with chronic heart 
failure were randomly assigned treatment with carve-
dilol or metoprolol tartrate. Fewer patients who received 
carvedilol were diagnosed with T2DM (119/1151 or 
10.3%), compared to the metoprolol group (145/1147 or 
12.6%) (HR = 0.78, CI: 0.61 to 0.997; P = 0.048)[46]. The 
results suggest that T2DM and other metabolic disorders 
could be avoided or at least delayed with administration 
of  carvedilol in patients at risk.

Another study evaluated the use of  carvedilol in 
patients with systolic heart failure[47]. Carvedilol did not 
affect glycemic control in patients with T2DM and ad-
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(P = 0.012) while there were no significant changes in 
BP or any of  the metabolic markers in the control group. 
These excellent results in metabolic control were accom-
panied by a significant reduction in blood pressure. This 
was the first study proving the efficiency of  RDN to re-
duce IR and improve glycemic control. RDN represents 
one of  the most promising non pharmacological strate-
gies to treat HTN, thus, the possibility observed in this 
research to reduce blood pressure and concomitant IR 
may open new options for patients. 

Guidelines of  some societies recommend that patients 
who receive RDN continue antihypertensive medical ther-
apy after the procedure because the blood pressure often 
decreases slowly[62,63]. In this study it is suggested that the 
improvements seen in glucose control are due to a reduc-
tion in central sympathetic outflow after RDN. If  further 
studies support this concept in patients with T2DM other 
conditions with IR like obesity merit study[64].

There is further support for the concept than RDN 
may benefit glucose control. Other investigators have ex-
amined the effects of  RDN on blood pressure, sleep ap-
nea course, and glycemic control in patients with resistant 
HTN and sleep apnea. RDN decreased blood pressure, 
attenuated sleep apnea severity and decreased two hour 
post prandial plasma glucose and glycosylated hemoglo-
bin levels[65]. 

PROPOSED MECHANISMS TO EXPLAIN 
A PLASMA GLUCOSE REDUCTION FROM 
CARVEDILOL AND RDN
There are several mechanisms as shown in Figure 2 that 

may explain improved glycemic control with the use of  
carvedilol and RDN. 

Traditional beta-blockers cause an increase in periph-
eral vascular resistance due to unopposed alpha vasocon-
striction with resultant reduced glucose disposal to skele-
tal muscles and reduction in glucose uptake[66]. Carvedilol 
has alpha-1 blocker properties that causes vasodilatation 
and maintenance of  blood flow to skeletal muscles. This 
difference may explain in part carvedilol’s actions on glu-
cose control compared to traditional beta-blockers. 

Another mechanism by which carvedilol may improve 
glucose control is by reducing oxygen reactive species. 
T2DM is associated with endothelial dysfunction with in-
creased reactive oxygen species and decreased endothelial 
nitric oxide synthase activity[67]. This phenomenon causes 
a reduction in oxide nitric availability with resultant vaso-
constriction. Giugliano et al[12] found an increase in insu-
lin sensitivity with a concomitant reduction in oxidative 
stress in patients with T2DM treated with carvedilol. Be-
cause carvedilol has antioxidant properties it appears to 
decrease reactive oxygen species and improve endothelial 
function. Other investigators have also found that carve-
dilol significantly reduced oxidative stress and C-reactive 
protein levels in hypertensive patients[68] and increased 
activity of  antioxidant enzymes in diabetic rats[69]. 

On the other hand there are studies which have dem-
onstrated that IR is related to an increase in sympathetic 
nervous system activation. An increase in sympathetic 
nerve activity and HTN in Caucasians with IR has been 
observed[70]. T2DM and HTN are known to be closely 
linked with increased sympathetic nervous activity and 
IR[71,72]. Reflex sympathetic activation has been shown 
to induce acute IR in the human forearm[73]. Carvedilol 
causes a significant reduction in cardiac and systemic nor-
epinephrine spillover and this effect was not seen with 
other beta-blockers like metoprolol[74,75]. The relation-
ship between an increase in sympathetic nervous activity 
and the development of  IR, and the ability of  carvedilol 
to reduce systemic norepinephrine may in part explain 
the findings of  this drug reducing glucose levels. Simi-
lar results reducing norepinephrine spillover have been 
seen with the use of  catheter-based RDN[56]. Increased 
sympathetic nervous system activity in tissues can result 
in IR. There is evidence of  impaired ability of  the cells 
to transport glucose through their membranes due to 
a decrease in blood flow after a rise in noradrenaline 
concentration[73]. The mechanism could be related to an 
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Figure 2  Proposed mechanisms to explain decreased insulin resistance 
with carvedilol and renal denervation in type 2 diabetes mellitus patients 
with hypertension. 

Table 2  Studies which observed glucose reduction after renal denervation

Ref. Study design Participants Main results

Mahfoud et al[14] Prospective, controlled 
unblinded, randomized study 

50 patients with resistant HTN (37 patients 
underwent catheter-based RDN and 13 

patients in a control group 

RDN improved glucose metabolism and insulin 
sensitivity in addition to a significantly reducing 

blood pressure 
Witkowski et al[65] Prospective, nonrandomized, 

open-label study 
10 patients with refractory hypertension 

and sleep apnea (7 men and 3 women, who 
underwent RDN)

RDN reduced blood pressure and improved glucose 
metabolism 

HTN: Hypertension: RDN: Renal denervation.
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increased distance that insulin has to travel from intravas-
cular compartment to cell membranes due to a reduction 
of  number of  open capillaries as a consequence of  vaso-
constriction by sympathetic overactivity.

Another mechanism by which carvedilol may improve 
glucose control could be through the positive effects of  
carvedilol improving lipid profile. There appears to be a 
direct relationship between free fatty acids and IR. It is 
not fully understood why high plasma levels of  fatty acids 
can produce IR, but a proposed mechanism is that per-
manent increases in plasma free fatty acids results in an 
intracellular accumulation of  triglycerides and other com-
pounds involved in triglyceride synthesis. Some of  these 
compounds can activate a novel protein kinase C, and this 
protein is able to cause IR by decreasing tyrosine phos-
phorylation of  the insulin receptor substrates[76-78]. Thus, 
the improvement in lipid profile observed with carve-
dilol[11,12] may in part explain, its ability to increase insulin 
sensitivity and subsequently improve glucose control.

Both carvedilol and RDN appear to reduce glucose 
levels by a decrease in IR and this change is associated 
with a reduction in sympathetic nervous system activ-
ity. However, beyond this possible relationship there are 
other possible mechanisms to explain improved glucose 
control after administration of  carvedilol. Further investi-
gations are needed to understand the metabolic pathways 
resulting in improved glucose control with the use of  
carvedilol and RDN.

COMPARISON BETWEEN CARVEDILOL 
AND RDN TO REDUCE GLUCOSE LEVELS 
A comparison between carvedilol and RDN as options 
to reduce blood pressure and glucose levels in T2DM 
hypertensive patients is listed in Table 3. While carvedilol 
is administrated as an oral medication which requires 
patient’s adherence, RDN is an interventional procedure 
whose safety and durability is still under investigation. 
Clinical trial data from Symplicity radiofrequency catheter 

systems have created much interest in the role of  the re-
nal nerves in HTN and other conditions such as diabetes 
mellitus. Furthermore, the attenuation of  blood pressure 
observed has led to the rapid development of  alternative 
methods of  RDN by radiofrequency ablation as well as 
by ultrasound ablation and peri-vascular pharmacologic 
ablation. Many trials investigating these various innova-
tive approaches to achieve RDN are ongoing. The factors 
which should be examined when considering carvedilol 
and/or RDN are the efficacy, safety and cost. Also, phy-
sicians need to individualize the recommended treatment 
because depending on physiological characteristics pa-
tient responses (and benefits) will vary. 

PERSPECTIVE
Patients with HTN and T2DM require long term therapy. 
Thus, choice of  antihypertensive agents results in long 
term risks and benefits. Initial recommended treatment of  
HTN in patients with T2DM is ACE inhibitors or ARBs 
which have favorable effects on carbohydrate metabo-
lism and insulin resistance. Long-acting dihydropyridines 
have a neutral effect on glucose metabolism and insulin 
resistance. In contrast, thiazide-type diuretics can cause 
hyperglycemia and traditional beta-blockers can increase 
IR. Furthermore, hypertensive patients with increased 
cardiovascular risk may require 3-hydroxy-methylglutaryl 
coenzyme A reductase inhibitors, or statins, which appear 
(with the exception of  pravastatin) to increase the risk of  
patients developing T2DM. Carvedilol and RDN appear 
to improve insulin sensitivity and glucose metabolism as 
well as lower blood pressure. Some guidelines recognize 
carvedilol’s unique metabolic advantages compared to 
traditional beta-blockers and recommend its use in pa-
tients with HTN and T2DM if  blood pressure goals have 
not been achieved using ACE inhibitors or ARBs. Carve-
dilol has been shown to stabilize HbA1c, improve insulin 
resistance, and slow development of  microalbuminuria in 
the presence of  renin-angiotensin system blockade com-
pared with metoprolol tartrate[11].
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Table 3  Comparison between carvedilol and renal denervation as therapeutic choices to reduce blood pressure and glucose levels 
in hypertensive type 2 diabetes mellitus patients

Therapeutic Mechanism of action Medical indication Mechanisms which Contraindications Side effects

method explain glucose reduction
Carvedilol α1, non-selective 

β-blocker, antioxidant 
and calcium antagonist 

properties[17-20]

Treatment of 
hypertension[21] heart 

failure[25] and coronary 
artery disease[27]

An improvement in 
insulin sensitivity by a 

reduction in sympathetic 
nerve activity[74,75] and free 

radicals[68,69] 

Bronchial asthma, second-
third degree atrioventricular 
block, sick sinus syndrome, 
severe bradycardia, patients 

with severe cardiogenic shock 
and heart failure who use 

inotropic drugs and hepatic 
impairement[17-20] 

Frequent: edema, 
dizziness, bradycardia, 
hypotension, nausea, 
diarrhea and blurred 

vision
Rare: deterioration of renal 
and hepatic function[17-20]

RDN Ablation of afferent 
and efferent renal 

nerves[51-55]

Treatment of resistant 
hypertension[56,57]

An improvement in insulin 
sensitivity by reduction 

in sympathetic nerve 
activity[56,57]

Polar or accessory arteries, 
renal artery stenosis, prior 
renal revascularization and 

glomerular filtration rate < 45 
mL/min per 1.73 m2[56,57,62]

Renal artery dissection, 
postprocedural 

hypotension, femoral 
artery pseudoaneuryn, 

intraprocedural 
bradycardia[56,57]
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Use of  carvedilol should be individualized in pa-
tients with HTN and T2DM. In general, beta-blockers 
may mask some of  the manifestations of  hypoglycemia, 
particularly tachycardia. Nonselective beta-blockers may 
potentiate insulin-induced hypoglycemia and delay recov-
ery of  serum glucose levels. Patients subject to spontane-
ous hypoglycemia, or diabetic patients receiving insulin 
or oral hypoglycemic agents, should be cautioned about 
these possibilities. Furthermore, beta-blockers can pre-
cipitate or aggravate symptoms of  arterial insufficiency in 
patients with peripheral vascular disease. Caution should 
be exercised in such individuals.

Presently RDN should only be considered in patients 
with resistant hypertension after causes of  secondary hy-
pertension have been excluded, with fairly preserved renal 
function and eligible renal arterial anatomy. It is not rec-
ommended to perform RDN in patients with HTN and 
T2DM outside of  appropriately designed clinical trials.

CONCLUSION
Carvedilol and RDN improve glucose metabolism and 
insulin sensitivity in parallel with blood pressure reduc-
tion. These novel approaches may therefore provide 
benefit in patients with resistant HTN and T2DM who 
are at high cardiovascular risk and have not reached rec-
ommended goals to improve endothelial function and 
preserve renal function. An attenuation in sympathetic 
nervous system activity is the most likely mechanism to 
explain these actions. There have been no head-to-head 
comparisons, but RDN appears to have a greater effect 
on glucose metabolism than carvedilol. Further investiga-
tions and follow up are needed to determine the long-
term durability of  RDN, its efficacy in other diseases 
such as heart failure, stroke and kidney failure, and its use 
in stage 1 HTN. Currently, there are no clinical trial data 
available to indicate that RDN improves cardiovascular 
outcomes. If  further trials confirm blood pressure low-
ering and improved glucose metabolism with carvedilol 
and RDN, these approaches represent reasonable choices 
for the treatment of  patients with HTN and T2DM who 
have not reached guideline goals. These novel approaches 
could be used together to reach goals. Use of  these novel 
treatments should be individualized in patients taking 
into account efficacy, safety, and cost. 
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Abstract
Diabetic foot ulcers are the consequence of multiple 
factors including peripheral neuropathy, decreased 
blood supply, high plantar pressures, etc. , and pose a 
significant risk for morbidity, limb loss and mortality. 
The critical aspects of the wound healing mechanism 
and host physiological status in patients with diabetes 
necessitate the selection of an appropriate treatment 
strategy based on the complexity and type of wound. 
In addition to systemic antibiotics and surgical interven-
tion, wound care is considered to be an important com-
ponent of diabetic foot ulcer management. This article 
will focus on the use of different wound care materials 
in diabetic foot. From a clinical perspective, it is impor-
tant to decide on the wound care material depending 
on the type and grade of the ulcer. This article will also 

provide clinicians with a simple approach to the choice 
of wound care materials in diabetic foot ulcer.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes; Foot; Wound; Debridement; Top-
ical

Core tip: Diabetic foot ulcers are an important compli-
cation of diabetes. There is no conventional guideline 
regarding the selection of wound care materials in 
diabetic foot wounds. This article includes fundamental 
aspects of wound care and management with special 
emphasis on the selection of appropriate wound care 
materials depending on the type of wound tissue. Risk 
factors for foot ulceration, classification and grading of 
wounds, bacteriology, multidisciplinary team approach, 
types of debridement, importance of offloading, wound 
care and choice based on the complexity of the wound 
and properties of the dressing regime in each category 
based on clinical experience and practice are discussed.

Kavitha KV, Tiwari S, Purandare VB, Khedkar S, Bhosale SS, 
Unnikrishnan AG. Choice of wound care in diabetic foot ulcer: A 
practical approach. World J Diabetes 2014; 5(4): 546-556  Avail-
able from: URL: http://www.wjgnet.com/1948-9358/full/v5/
i4/546.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i4.546

INTRODUCTION 
The increasing prevalence of  diabetes has resulted in 
concomitant illness[1]. The critical effects of  hyperglyce-
mia include micro-vascular complications (nephropathy, 
neuropathy and retinopathy) and macro-vascular com-
plications (coronary artery disease, stroke and peripheral 
arterial disease). Diabetes is a leading cause of  non-
traumatic lower extremity amputation, which is often 
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preceded by a non-healing ulcer. The lifetime risk of  foot 
ulceration in people with diabetes is 15%-20%[2]. More 
than 15% of  foot ulcers result in amputation of  the foot 
or limb[3]. Several other population-based studies indi-
cate a 0.5%-3% annual collective incidence of  diabetic 
foot ulcers. The prevalence of  foot ulcers reported var-
ies from 2% to 10%[4]. Approximately 45%-60% of  all 
diabetic foot ulcerations are purely neuropathic, whereas 
45% have both neuropathic and ischemic components[5]. 
It has been estimated that around 15%-27% patients with 
diabetes require lower limb amputations predominantly 
(50%) due to infection[6].

DIABETIC FOOT
Definition
Infection, ulceration or destruction of  deep tissues as-
sociated with neurological abnormalities and various 
degrees of  peripheral vascular diseases in the lower limb 
(World Health Organization definition, 1995).

Risk factors
Diabetic foot ulcers are a consequence of  many factors 
including loss of  protective sensation due to peripheral 
neuropathy where the feet become numb and the injury 
goes unnoticed. Also, arterial insufficiency complicates 
the neuropathic ulcer which leads to poor wound heal-
ing. Foot deformity and calluses can result in high plantar 
pressure, which results in additional risk. Mechanical 
stress at the wound site is hypothesized to affect wound 
healing[7]. Many other factors contribute to the risk of  

foot ulceration and its subsequent infection in patients 
with diabetes. Uncontrolled hyperglycemia, duration of  
diabetes, trauma, improper footwear, callus, history of  
prior ulcers/amputations, older age, blindness/impaired 
vision, chronic renal disease and poor nutrition have also 
been demonstrated to play a role in the pathogenesis and 
progression of  diabetic foot ulceration. Infection further 
deteriorates the diabetic foot resulting in a non-healing 
chronic wound. Recently, vitamin D deficiency was pro-
posed as a risk factor for diabetic foot infection[8].

Classification 
Based on the Red-Yellow-Black[9] wound classification 
system by Marion Laboratories, wounds can be classified 
as follows[10]: (1) Necrotic tissue-either dry or infected 
and usually black or dark green in color as shown in 
Figure 1A; (2) Sloughy tissue-combination of  wound 
exudate and debris forming a glutinous yellow layer of  
tissue over the wound which is often mistaken for infec-
tion as shown in Figure 1B; (3) Granulating tissue-highly 
vascularized, red in color and sometimes highly exudat-
ing as shown in Figure 1C; and (4) Epithelializing tissue-
Epithelium grows over a wound formed by migration of  
keratinocytes from the wound margins, which looks pink 
in color as shown in Figure 1D.

Debridement of  necrotic tissue is an integral compo-
nent in the treatment of  chronic wounds as they do not 
heal in the presence of  unviable tissue, debris, or critical 
colonization[11,12] and may be contraindicated in arterial ul-
cers[13]. Excision of  necrotic tissue is necessary for wound 
healing. Calluses or thickened skin surrounding the ulcer 
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Figure 1  Wound classification based on the Red-Yellow-Black wound classification system by Marion Laboratories. A: Necrotic tissue; B:  Sloughy tissue; C: 
Granulating tissue; D: Epithelializing tissue.
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need to be excised. Necrotic tissue removed on a regular 
basis can expedite the rate at which a wound heals and 
has been shown to increase the probability of  attaining 
full secondary closure[14,15].

Grading
Grading can be done using Wagner’s or the Texas wound 
classification system[16]. The most common is the Uni-
versity of  Texas wound classification system, which 
describes the wound with regard to depth, presence or 
absence of  infection or ischemia or both. A description 
of  the wound is important for wound care choice and 
includes the location, stage, dimension in length, breadth 
and depth (length and breadth can be measured in cen-
timeters by tracing it on a sterile acetate sheet and depth 
can be taken by inserting a sterile swab gently into the 
deepest part of  the wound), wound edges (undermining), 
wound base description, drainage (heavy or low), color, 
odor, pain and progression, etc[17].

Microbiology 
Hyperglycemia, impaired immunologic responses, neu-
ropathy, and peripheral arterial disease are the major 
predisposing factors leading to limb-threatening diabetic 
foot infections[18-20]. The prevalence of  infection in India 
was 6%-11%, whereas the prevalence of  amputation was 
3% in patients with type 2 diabetes[21]. Both aerobic and 
anaerobic bacteria have been shown to infect diabetic 
foot wounds[22-25]. Fungal infections are also common in 
diabetic foot[26-28]. Polymicrobial etiology of  diabetic foot 
infections has been widely reported[22-25,29]. However it is 
not uncommon to have a predominance of  mono-micro-
bial infection in diabetic foot[30]. Researchers have shown 
the predominance of  both gram negative[30] and gram 
positive[26] bacteria in diabetic foot infections. Various 
studies have reported a high prevalence of  Pseudomonas[31], 
E. coli[30], and S. aureus[26,30] infections in diabetic foot. The 
pattern of  microbial infection in patients with diabetic 
foot infections is inconsistent and therefore evaluation of  
microbial characteristics and their antibiotic sensitivity is 
necessary for the selection of  appropriate antibiotics for 
management of  diabetic foot infection. 

MANAGEMENT TECHNIQUES
The foot is a complex structure, which acts as a founda-
tion for the whole body, and it is important to prevent 
progression of  diabetic foot problems. The integration 
of  knowledge and experience through a multidisciplinary 
team approach promotes more effective treatment, there-
by improving outcomes and limiting the risk of  lower 
extremity amputation[32,33]. Therefore the following spe-
cialists play an important role: (1) Endocrinologist/Dia-
betologist (optimize blood glucose control); (2) Podiatrist 
(focus on the foot including prevention and treatment of  
diabetic foot wounds); (3) Vascular surgeon (manage vas-
cular issues); (4) Microbiologist (look into microbiological 
etiology and antibiotic selection based on cultures); (5) 

Orthotist (ensures that therapeutic or custom made foot-
wear aids in minimizing pressure); and (6) Nutritionist 
(concentrates on diet which helps in the management of  
diabetes as well as wound healing).

Wound healing is a complex process involving highly 
regulated responses of  specified cell types, which harbor 
locally secreted growth factors that play a key role in 
wound healing[34]. Treating a diabetic foot infection re-
quires proper wound care and appropriate antibiotic ther-
apy[19]. The fundamentals of  good clinical care includes 
adequate frequent debridement, offloading, moist wound 
care, treatment of  infection, and revascularization of  
the ischemic limb[35]. In addition, wound healing can be 
enhanced by the appropriate choice of  a topical regime 
(mixed range of  standard and advanced topical thera-
pies), however, adequate training and significant clinical 
experience are essential for making this choice. Many fac-
tors including assessment of  the wound, its classification, 
and the need for debridement including sharp surgical, 
mechanical, chemical, etc., have to be taken into consider-
ation before proceeding with the appropriate selection of  
topical regimen. 

Debridement
Debridement involves removal of  dead, damaged, or 
infected tissue, which improves the healing potential of  
the remaining healthy tissues. Depending on the wound 
tissue type, different debridement techniques are recom-
mended[36,37]: (1) Surgical debridement or sharp debride-
ment-recommended for necrotic and infected wounds. 
The terms surgical debridement and sharp debridement 
are often used synonymously, some clinicians refer to 
surgical debridement as being performed in an operat-
ing room, whereas sharp debridement is performed in a 
clinic setting[38]. Sharp surgical debridement is the most 
effective and fastest method of  debridement; (2) Autolyt-
ic debridement-a selective process in which the necrotic 
tissue is liquefied. A wound covered with an occlusive 
dressing allows accumulation of  tissue fluids containing 
macrophages, neutrophils, and enzymes, which remove 
bacteria and digest necrotic tissues. This is achieved by 
a moist wound healing environment[36]. Autolytic de-
bridement is not advisable for the treatment of  infected 
pressure ulcers[39]; (3) Mechanical debridement-involves 
removal of  unhealthy tissue using a dressing, which is 
changed regularly by wound irrigation (pressure: 4-15 
psi), without damaging healthy/new tissues[40]. Scrubbing 
the wound aids in removal of  exudates and devitalized 
tissues, however this leads to bleeding as well as pain re-
sulting from wound trauma. This technique is used in the 
management of  surgical wounds and venous leg ulcers. 
The drawbacks of  the method is that it is time consum-
ing and expensive; (4) Enzymatic debridement-a method 
of  debriding devitalized tissue by topical enzymes such 
as collagenase, fibrinolysin, or papain. Recommended 
for sloughy, infected, necrotic wounds where surgical 
debridement is contraindicated[41]; and (5) Maggot de-
bridement-a technique in which maggots or fly larva that 
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and accessibility.
The ideal characteristics of  a wound dressing are 

as follows[50,51]: (1) Sterile, easy to use, cost effective; (2) 
Maintain a moist wound healing environment; (3) Absorb 
excess exudate; (4) Non-adherent/non-toxic, non-allergic; 
(5) Not contaminate the wound with foreign particles; (6) 
Protect the wound from microorganisms; (7) Allow gas-
eous exchange and control wound odor; and (8) Provide 
thermal insulation and mechanical protection.

Antibiotic selection
The principle of  antibiotic treatment is based on evi-
dence provided by reports on bacteriological culture and 
sensitivity from different centers worldwide[52,53]. 

Use of  anti-infectives/antibiotics must be guided by 
appropriate cultures. Inappropriate use of  antibiotics 
could lead to resistance and adverse effects.

Oral and parenteral antibiotics are prescribed for mild 
soft tissue infections and moderate to severe infections, 
respectively (Table 1)[54]. Evidence-based regimes should 
be followed for the management of  infection in diabetic 
foot. Appropriate dosage, optimal duration, identification 
and removal of  the infective focus and recognition of  
adverse effects should be critically evaluated in all outpa-
tients and inpatients with diabetic foot infections[54-56]. 

Every hospital should develop an institutional an-
tibiotic policy containing guidelines and protocols for 
antibiotic use. It is advisable to have different sections for 
treatment and prophylaxis including surgical procedures 
as well as how to treat different infections[57].

Three levels of  antibiotic prescribing are generally 
recommended: (1) First line of  choice - antibiotics pre-
scribed by all doctors; (2) Restricted antibiotic group - 
for resistant pathogens, polymicrobial infections, special 
conditions, and expensive antibiotics. When prescribing 
antibiotics from this group, the prescriber should discuss 
with the committee and head of  the department; and (3) 
Reserve antibiotics-for life-threatening infections, to be 
used after obtaining permission from the committee.

The institutional antibiotic committee should update 
their policy by collecting surveillance on antimicrobial 
resistance and data on antibiotic consumption, which 
will improve clinical and laboratory standards. The com-
mittee should monitor implementation of  the policy, 

are raised in a sterile environment are used. The most 
commonly used fly is Lucilia sericata, which is used for 
human wound treatment when conventional treatments 
fail[42]. Maggots are placed on the wound followed by 
wrapping with secondary dressing. The larvae feed on the 
necrotic (dead) tissue and bacteria present at the wound 
site and secrete antimicrobial enzymes, which help in the 
wound healing process.

Offloading
Completely or partially relieving pressure from the weight 
bearing area of  the foot by providing mechanical support 
with the intention of  giving rest to the wound area aids 
in healing. Repetitive trauma and high plantar pressure 
on the ulcer bed are two primary reasons for the persis-
tence of  ulcers once they have developed[43]. Offload-
ing is very important in diabetic wound healing. There 
are many types of  offloading techniques including total 
contact casts, removable cast footwear, wedge footwear, 
half  shoes, mobilization by wheelchair, etc. Total contact 
casts are considered to be the gold standard method of  
offloading and treating diabetic patients with neuropathic 
ulcers[32,44-46].

Wound care
Wound care plays a pivotal role in the management of  
diabetic foot ulcer, which comprises cleaning the wound 
with normal saline following aseptic techniques and the 
use of  modern wound care techniques that promote a 
moist wound healing environment[47,48]. Although topi-
cal treatment is an important aspect of  wound care, it 
is always considered secondary to surgical and systemic 
care[49]. There are numerous topical regimens and devices 
available for the management of  diabetic foot wounds 
including hydrogels, hydrocolloids, alginates, foam, silver 
impregnated dressings, growth factors, silicon impregnat-
ed atraumatic dressings, vacuum aided devices, hyperbaric 
oxygen therapy, etc. However, before choosing a regime 
one should consider factors such as the general health of  
the patient, the process of  tissue repair, assessment of  
the wound by means of  grading, description and classi-
fication of  the wound, local environment of  the wound, 
knowledge on specific properties of  the dressing materi-
als and devices as well as their availability, affordability, 
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Table 1  Antibiotic recommendation based on the severity of the infection

Site Severity or extent Route of administration Duration of therapy

Soft tissue only Mild Topical or oral 1-2 wk may extend up to 4 wk if slow to 
resolve (outpatient)

Moderate Oral (or initial parenteral) 1-3 wk (Outpatient/inpatient)
Severe Initial parenteral, switch to oral when possible 2-4 wk (Inpatient, then outpatient)

Bone or joint No residual infected tissue (e.g., post-
amputation)

Parenteral or oral 2-5 d

Residual infected soft tissue (but not 
bone)

Parenteral or oral 1-3 wk

Residual infected (but viable) bone Initial parenteral, then consider switching to oral 4-6 wk
No surgery, or residual dead bone 

post-operatively
Initial parenteral, then consider switching to oral ≥ 3 mo
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receive feedback information, assess the outcome, and 
discuss with various specialty doctors. The policy should 
be reviewed every year based on the experience of  pre-
scribers and the susceptibility reports of  microbiology 
and laboratory.

Revascularization 
With advances in both vascular and orthopedic recon-
structive surgeries, limb salvage has become an option for 
limbs that previously would have been amputated. Patients 
with both diabetes and peripheral arterial disease are more 
prone to ischemic ulceration than those without the dis-
ease[58,59]. Several endovascular options, including percuta-
neous transluminal angioplasty (PTA), balloon-expandable 
stents, self-expanding stents, and covered stents are now 
available. The success rate after stent implantation in the 
iliac arteries is greater than 95%[60]. Revascularization plays 
a crucial role in the treatment of  ischemic lower extrem-
ity wounds and should be performed before drainage or 
debridement[61]. Endovascular techniques such as cryo-
plasty, drug eluting stenting, plaque debulking lasers, etc., 
are being investigated and are potentially useful adjuncts 
to PTA. Subintimal angioplasty for arterial lesions below 
the ankle in diabetic patients could achieve a limb salvage 
rate of  94.6%[62]. Several retrospective studies report con-
siderably better results of  transmetatarsal amputations 
performed after a revascularization procedure[63,64].

CHOICE OF TOPICAL REGIME 
Choice of  wound care materials should be based on 

wound tissue type, complexity, and its properties (Tables 
2 and 3). 

Wet to dry dressing or simple saline
This dressing has a good debriding action and helps 
in wound bed preparation. Wet-to-dry dressings are 
described in the literature as a means of  mechanical de-
bridement[65]. It is very absorptive as well as adherent and 
one of  the cheapest dressings used throughout the world, 
but requires frequent dressing change (twice or thrice a 
day) based on wound severity. Dressings should be moist-
ened before removal to minimize any chance of  bleeding. 
A gentle cleanser (normal saline or neutral-pH cleanser) 
will minimize wound irritation and discomfort[66]. When 
treating a granulating or epithelizing wound one should 
soak the dressing thoroughly with normal saline for five 
minutes (based on our clinical experience) to prevent 
trauma and heavy bleeding.

Antibacterial agents
Used solo or in combination for each category except 
dry necrotic wounds. Topical antibiotics have broad-
spectrum antibacterial coverage which lasts for 12 h and 
are less toxic. Metronidazole gel [Ornidazole (IP-10 mg 
and water soluble gel base quantity sufficient)] has good 
anaerobic coverage and helps in maintaining a moist 
wound healing environment. By weight, gels are mostly 
liquid, yet they behave like solids due to a three-dimen-
sional cross-linked network within the liquid. It is the 
crosslinking within the fluid that gives a gel its structure 
(hardness) and contributes to its adhesion[67]. Both by 
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Table 2  Choice of wound care materials for necrotic and sloughy wounds

Wound classification Choice of wound care material Advantages Disadvantages

Necrotic wound Wet to dry Good debriding capacity and  inexpensive Frequent dressing change 
Painful if not soaked with saline prior to 

dressing change
Topical antibacterial such as 

metronidazole
Very good antibacterial coverage 

Maintains a moist wound healing environment 
by promoting autolysis and controls odor

Chance of maceration
Contraindicated in infected necrotic wounds

Hydrogel Hydrates the wound by promoting autolysis Chance of maceration 
Contraindicated in infected necrotic wounds 

and is  expensive
Hydrocolloid Maintains a moist wound healing environment, 

which helps in autolytic debridement
Expensive

Contraindicated in infected necrotic wounds
Sloughy wound Wet to dry Good debriding capacity 

Absorptive, adhesive and cheapest 
Frequent dressing change

Painful if not soaked with saline prior to 
dressing change

Topical enzymes such as 
collagenase, papain, fibrinolysis

Promotes autolytic debridement by 
desloughing

Can be used in combination with metronidazole 
or hydrogel 

Contraindicated in granulating or epithelizing 
wounds 

Topical antibiotics such as 
metronidazole

Very good antibacterial coverage 
Maintains moist wound healing environment 

by promoting autolysis and controls odor

Chance of maceration

Polyurethane Foam Very effective in desloughing
Maintains a moist wound healing environment 

by promoting granulation 

Sometimes painful if not soaked with saline 
prior to dressing change

Hydrogel Hydrates the wound by promoting autolysis Chance of maceration and is expensive
Hydrocolloid Maintains a moist wound environment, which 

helps in autolytic debridement
Chance of maceration and is expensive 
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weight and volume, gels are mostly fluid in composition 
and thus exhibit densities similar to those of  their con-
stituent liquids, such as hydrogels. Topical metronidazole 
gel (0.75%-0.80%) is frequently used directly on the 
wound once per day for five to seven days or more often 
as needed[68,69], and metronidazole tablets can be crushed 
and placed onto the ulcer bed[66,70]. There are numer-
ous other articles (case studies or anecdotal experience) 
reporting the reduction of  wound odor with topically 
applied metronidazole[71-73]. Antibiotics such as Neomy-
cin, Gentamycin, and Mupirocin have good antibacterial 
coverage when used topically. Silver containing dress-
ings come in different formulations and have very good 
antibacterial coverage. Silver dressings and polyherbal 
preparations have shown good results in healing diabetic 
foot wounds[74]. They are very effective in burn wounds 
and can also be used in infected or colonized wounds. 
Sisomycin (0.10%) and acetic acid at concentrations 
between 0.5% and 5% are effective against Pseudomonas, 
other gram-negative bacilli, and beta hemolytic strepto-
cocci wound infections. Povidone iodine solution dress-
ings are very effective in healing sutured wounds and 
hypergranulating wounds to suppress or hamper further 
granulation. Povidone iodine soaked gauze is a good 
dressing for dry gangrene which hastens the process of  
demarcation. Iodine has been found to be toxic to hu-
man cells as well as bacteria and fungi at high doses[75,76]. 
Also, it should not be used on granulating or epithelizing 

wounds because it slows down the healing process and is 
cytotoxic to keratinocytes and fibroblasts.

Tulle dressings
These are gauze dressings impregnated with paraffin, 
which lowers the dressing adherence, but this property is 
lost if  the dressing dries out. Tulle dressings are mainly 
indicated for superficial clean wounds and skin grafts. 
They can be used in granulating and epithelizing wounds. 
Tulle dressings not only prevent trauma to the new and 
delicate epithelium during dressing removal, but also 
provide a good moist environment, which is preferred 
for epithelial cell proliferation and migration[77]. This 
concept is well supported by evidence from many previ-
ous studies which showed faster re-epithelialization rates 
when moist environment dressings were compared with 
traditional dry dressings[77-79]. Evidence shows that gauze-
based dressings still have a place in wound care[80].

Polyurethane films
These films are coated with an adhesive (water-proof  
dressing) and are comfortable. The vapor-permeable 
films allow diffusion of  gases and water vapor which 
helps in maintaining a moist wound healing environment. 
Their transparency allows for wound monitoring without 
dressing removal, but there is a chance of  maceration of  
surrounding skin. They can be used for low exudating 
wounds.
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Table 3  Choice of wound care materials for healing/sinus or cavity wounds

Wound classification Choice of wound care materials Advantages Disadvantages

Granulating wounds Non adherent dressing Reduces trauma to the healing tissue 
Maintains a moist wound healing environment

Chance of shearing to new epithelium

Wet to dry dressing Promotes healing Chance of bleeding if not soaked with 
saline before dressing change

Polyurethane foam Maintains a moist wound healing environment 
Promotes healing process

Chance of bleeding if not soaked before 
dressing change

Topical antibacterial such as 
metronidazole, mupirocin, Tulle, 

Silver containing ointments, 
Acetic acid 0.5%-5% and 

povidone iodine

Maintains a moist wound healing environment, 
promotes epithelization and controls odor

 Effective against Gram positive cocci including 
MRSA. Silver sulfadiazine has broad antibacterial 
coverage, accelerates epithelization, and is very 
effective in burns. Acetic acid is very effective 
against Pseudomonas. Povidone iodine is very 
effective for gangrene as it hastens demarcation

Silver containing ointments cannot be 
used in Sulfa allergy patients

Povidone iodine is cytotoxic to 
fibroblasts and delays the healing 

process

Platelet derived growth factor Faster healing and very effective Expensive
Hydrogel Promotes healing Chance of maceration and is expensive

Hydrocolloid Promotes healing 
Reduces the interval of dressing change

Chance of maceration and is expensive

Epithelizing wounds Non adherent Reduces trauma to the healing tissue 
Maintains a moist wound healing environment

Chances of shearing

Wet to dry dressing Promotes faster healing Soaking of dressing is required prior to 
dressing change

Topical antibacterial As mentioned in granulating wounds As mentioned in granulating wounds
Epidermal growth factor Effective and faster healing  Expensive

Hydrogel Effective Chance of maceration and is expensive
Hydrocolloid Effective Chance of maceration and is expensive

Cavity/Sinus wounds Alginate Highly absorbent and non-adherent 
Maintains a moist wound healing environment

Needs adequate padding and is 
expensive

Hydrogel Effective in promoting granulation tissue Needs adequate padding  and is 
expensive
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Polyurethane foam
These dressings are extremely absorbent, non-adherent, 
and have a semi-permeable backing which allows mois-
ture to escape. Polyurethane foam dressings loosen 
slough by creating a moist wound environment, assisting 
in proper wound bed preparation, and promoting wound 
healing[81]. They maintain a moist wound environment 
which implies that they can be easily removed without 
pain. They are also used as outer dressings after appli-
cation of  topical antibiotics, such as metronidazole, or 
hydrogels. Polyurethane foam is widely used in diabetic 
foot wounds and is capable of  absorbing light to heavy 
amounts of  exudate, thereby preventing maceration, fa-
cilitating removal of  slough, and promoting the prolifera-
tive stage of  wound healing[82].

Hydrogel dressings
These dressings consist of  cross-linked insoluble starch 
or carboxymethylcellulose polymers and water (96%). 
The term hydrogel implies that the material is already 
swollen in water. Hydrogels donate fluid to dry necrotic 
and slough wounds and promote autolysis. They appar-
ently debride by rehydrating the wound. These dressings 
are the best choice for the treatment of  dry wounds with 
necrotic eschar, and the hydrogel reaches a 50% debride-
ment level more quickly than wet-to-dry dressings and 
are more cost-effective[83-85]. The hydrogel hydrates, cools 
the wound and provides an analgesic effect.

Hydrocolloid dressing
These dressings are a combination of  polymers such as 
gelatin, pectin and cellulose which form a waterproof  
adhesive dressing. Exudates produced by the wound are 
absorbed into the dressing and form a gel. Hydrocol-
loid dressings are capable of  absorbing low to moderate 
levels of  exudate and can be used to promote autolytic 
debridement of  dry, sloughy, or necrotic wounds[86]. They 
maintain a moist wound healing environment and pro-
mote autolytic debridement of  necrotic and sloughing 
tissues. They can be used as occlusive dressings and are 
very good at absorbing exudate. Hydrocolloid dressings 
should be avoided on plantar ulcers of  the foot, as the 
periwound skin is susceptible to maceration. Additionally, 
hydrocolloids have been shown to retain growth factors 
under the dressing as well as promote granulation and 
epithelialization[87]. The low pH created by the hydrocol-
loid is effective for the treatment of  wounds infected by 
Pseudomonas species[88].

Alginate dressings
Alginate dressings are highly absorbent and are avail-
able in two forms; calcium alginate and calcium sodium 
alginate. The use of  alginate dressings as hemostatic 
agents was reported both in vitro and in clinical studies. 
The selection of  an alginate dressing is usually to man-
age wound exudate, as it is claimed that they can absorb 
15-20 times their own weight in wound fluid[89]. The 
alginate forms a gel when it comes into contact with the 

wound surface. It can be used in granulating, epithelial-
izing, and cavity wounds. Cochrane reviews detail the role 
of  alginate dressings in the treatment of  diabetic foot 
ulcers[90,91].

Growth factors
Growth factors such as platelet-derived growth factor 
(PDGF), insulin-like growth factor, transforming growth 
factor (TGF)-β, TGF-α, epidermal growth factor (EGF), 
etc., are very effective in diabetic wound healing and have 
been reported to accelerate the formation of  various com-
ponents of  healing. Growth factors stimulate different 
functions including angiogenesis, enzyme production, cell 
migration, and cellular proliferation[92]. Diabetic wounds 
are enriched in proteases and supports the premise that 
impaired growth factor availability may act as a rate limit-
ing factor in diabetic wound healing[93]. PDGF regulates 
cell growth and division. It plays a significant role in blood 
vessel formation (angiogenesis). A recombinant human 
(rh)-PDGF dressing is an effective modality for facilitat-
ing wound healing in patients suffering from diabetes and 
can be used as an adjunct to the conventional mode of  
treatment for healing diabetic wounds[94]. It can be used in 
the granulating stage of  the wound. EGF stimulates the 
proliferation of  fibroblasts, keratinocytes, and vascular en-
dothelial cells, which contributes to scar tissue formation. 
Local injections of  rh-EGF offer a favorable risk-benefit 
balance in patients with advanced diabetic foot ulceration 
and was significantly enhanced by 75 μg EGF treatment 
in neuropathic vs ischemic ulceration[95].

Honey-impregnated dressings
Proposed to have antimicrobial and anti-inflammatory 
properties, these dressings can be used for acute or 
chronic wounds. The antimicrobial properties of  honey 
have been demonstrated in the laboratory, however, in 
vivo evidence is scant, particularly in comparison to the 
literature on silver antimicrobial dressings[96,97].

Topical enzymes
Collagenase, fibrinolysin, or papain containing ointments 
help in the enzymatic debridement of  sloughy tissues and 
thus promote granulation formation. Collagenase and pa-
pain/urea formulations have been demonstrated to have 
degrading effects on wound components, such as colla-
gen, fibrin, and elastin both in vitro and clinically. Papain-
urea and collagenase have proven efficacy in enzymatic 
wound debridement. Papain-urea (89.2%) is a better en-
zymatic debriding agent than collagenase (82.2%)[98].

Mechanical device
Vacuum-assisted closure generates a topical negative pres-
sure over the wound bed. Pressure of  125 mmHg is the 
ideal pressure. Vacuum-assisted closure is extremely effec-
tive in removing exudate and reducing edema, while leav-
ing the surface of  the wound moist. It is contraindicated 
in avascular wounds or exposed tendons or bones. Some 
of  the contraindications include untreated osteomyelitis, 
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non-enteric and unexplored fistula, presence of  necrotic 
tissue, exposed organs or blood vessels, and malignancy 
in the wound[99]. Vacuum-assisted closure is effective in 
promoting wound closure in patients with treated osteo-
myelitis or soft tissue infections[100,101]. Hyperbaric oxygen 
therapy (HBOT) is another treatment which is used as an 
adjunct to standard wound care in the treatment of  dia-
betic foot wounds. It has limited side effects, is relatively 
safe, and is widely used[102].

CONCLUSION
The successful management of  diabetic foot wounds 
requires the multidisciplinary teamwork of  specialists. 
The management of  diabetic foot wounds needs timely 
detection of  complications and frequent assessment of  
the wound. No wound should be treated as simple. It 
is important to take into account all the related causes, 
identify the problem, and treat it. There are various topi-
cal regimes available, but the choice depends only on the 
treating physicians, podiatrist, or clinical care nurse. While 
selecting wound care materials one should bear in mind 
the properties of  the ideal wound care dressing which 
should maintain a moist wound healing environment, ab-
sorb exudates, control infection/odor and be effective in 
treating diabetic foot wounds. In addition to these wound 
care techniques, antibiotic therapy and offloading plays a 
very important role.
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Abstract
AIM: To investigate the role of protein tyrosin phos-
phatase 22 (PTPN22), maternal age at conception and 
sex on susceptibility and age at onset of type 1 diabetes 
(T1D) in Continental Italy and Sardinian populations.

METHODS: Three hundred seventy six subjects ad-
mitted consecutively to the hospital for T1D and 1032 
healthy subjects as controls were studied in Continen-
tal Italy and 284 subjects admitted consecutively to 
the hospital for T1D and 5460 healthy newborns were 
studied in Sardinia. PTPN22 genotype was determined 
by DNA analysis. Maternal age at conception and age 

at onset of disease were obtained from clinical re-
cords. χ 2 test of independence, student t  test for dif-
ferences between means and odds ratio analysis were 
carried out by SPSS programs. Three way contingency 
table analysis was carried out according to Sokal and 
Rohlf.

RESULTS: The pattern of association between PTPN22 
and T1D is similar in Continental Italy and Sardinia: 
the proportion of *T allele carriers is 13.6% in T1D vs  
6.7% in controls in Continental Italy while in Sardinia 
is 7.3% in T1D vs  4.4% in controls. The association 
between T1D and maternal age at conception is much 
stronger in Sardinia than in Italy: the proportion of 
newborn from mother aging more than 32 years is 
89.3% in T1D vs  32.7% in consecutive newborn in 
Sardinia (P  < 10-6) while in Continental Italy is 32.2% 
in T1D vs  19.1% in consecutive newborns (P  = 0.005). 
This points to an important role of ethnicity. A slight 
prevalence of T1D males on T1D females is observed 
both in Continental Italy and Sardinia. PTPN22 geno-
type does not exert significant effect on the age at 
onset neither in Continental Italy nor and Sardinia. Ma-
ternal age does not influence significantly age at onset 
in Italy (8.2 years in T1D infants from mothers aging 
32 years or less vs  7.89 years in T1D infants from 
mothers aging more than 32 years: P  = 0.824) while 
in Sardinia a border line effect is observed (5.75 years 
in T1D infants from mothers aging 32 years or less vs  
7.54 years in T1D infants from mothers aging more 
than 32 years: P  = 0.062). No effect of sex on age at 
onset is observed in Continental Italy while in Sardinia 
female show a lower age at onset of T1D as compared 
to males (8.07 years in males vs  6.3 years in females: 
P  = 0.002).

CONCLUSION: The present data confirm the impor-
tance of ethnicity on susceptibility and on the age at 
onset of T1D. 
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Core tip: It is known that the incidence of type 1 dia-
betes (T1D) is greater in Sardinian than in Italian 
population. Among the factors considered in this review 
maternal age only has shown a significant difference 
between the two populations. Although in both Sardinia 
and Continental Italy the proportion of mothers aging 
more than 32 years is higher in children with T1D than 
in consecutive newborns from the same population, the 
risk of having a child with T1D in younger women is 
much greater in Sardinia than in Continental Italy (OR 
= 17.191 vs  2.018).

Gloria-Bottini F, Saccucci P, Meloni GF, Manca-Bitti ML, Cop-
peta L, Neri A, Magrini A, Egidio B. Study of factors influenc-
ing susceptibility and age at onset of type 1 diabetes: A review 
of data from Continental Italy and Sardinia. World J Diabetes 
2014; 5(4): 557-561  Available from: URL: http://www.wjg-
net.com/1948-9358/full/v5/i4/557.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i4.557

INTRODUCTION
Type 1 diabetes (T1D) is an autoimmune disorder with 
severe implications for the health of  the patients. In 
western population the prevalence of  T1D is increasing 
suggesting a role of  current changes of  cultural and envi-
ronmental factors[1,2].

The incidence of  the disease varies among popula-
tions, highest in Finland and Sardinia and lowest in Ven-
ezuela and China. This points to an important effect of  
genetic and environmental factors[3-7]. Positivity for islet 
antibodies precedes the onset of  disease for years and 
it has been observed that the rate of  positivity varies by 
ethnicity and age[1].

Among genetic factors HLA is the most important 
predictor, followed by protein tyrosin phosphatase 22 
(PTPN22) and by insulin gene. Other genes are involved 
in susceptibility to T1D and it is likely that genes at pres-
ent involved in autoimmunity, have been selected positive-
ly in the past being adaptive in particular environments[1].

A role of  non genetic factors is suggested by the low 
concordance rate of  T1D among monozygotic twins 
and by the increasing incidence of  the disease in younger 
children and in those with lower risk HLA genotype, 
pointing to an important role of  environment including 
dietary, viral and bacterial factors. Epigenetic regulation is 
emerging as an important factor also[1,8,9].

The role of  maternal age at conception is well estab-
lished[10-13]: the incidence of  T1D increases with maternal 
age at conception. It is well known the present tendency in 
Western populations to conceive in older age as compared 

to the past: this is an important non genetic cultural factor.
Compared to Continental Italy the population of  Sar-

dinia shows a higher incidence of  T1D[14]. This prompted 
us to review our data from Continental Italy and Sardinia 
concerning the factors that increase the risk of  T1D.

In this paper we have studied the role of  PTPN22, 
sex and maternal age on susceptibility to T1D and on age 
of  onset of  the disease in the population of  Continen-
tal Italy and in the population of  Sardinia. The survey 
includes data previous published[13,15,16] and unpublished 
observations from our data base.

PTPN22 codifies for Lyp, a protein tyrosine phospha-
tase involved in the regulation of  T cell receptor signal-
ing. The gene shows a single nucleotide polymorphism 
C/T at + 1858 resulting in W620 variant that is associ-
ated with autoimmune diseases. The variant is a gain of  
function of  the enzyme that more strong1y inhibit T-cell 
receptor-mediated signals, and it has been suggested that 
the increased susceptibility to autoimmune disorders is 
due to failure to delete autoreactive T cells during intra-
thymic selection[17]. The association of  PTPN22 poly-
morphism with T1D reported by Bottini et al[15] in 2004 
have been confirmed in many populations[18-20]. 

T1D shows a slight prevalence of  males over females 
whereas the opposite is observed for other autoimmune 
disorders[21].

MATERIALS AND METHODS
We have reviewed data on 376 subjects with T1D and 
1032 controls in Continental Italy and on 291 subjects 
with T1D and 5460 controls in Sardinia. PTPN22, ma-
ternal age at conception and age at onset of  disease were 
not determined in all subjects thus the number of  sub-
jects is not the same in all tables.

PTPN22 genotype was determined by DNA analysis 
as previously described[15]. χ 2 square test of  indepen-
dence, Student t test for differences between means and 
Odds ratio analysis were carried out by SPSS programs[22]. 
Three way contingency table analysis was carried out 
according to Sokal et al[23]. By this analysis is possible to 
study the effect of  the categories of  a third variable on 
the association between two variables: a statistically sig-
nificant interaction suggests that the third variable influ-
ences the association between the other two. 

The number of  subjects in the tables are different due 
to the fact that PTPN22 have not studied in all subjects 
and the role of  maternal age on the incidence of  T1D 
have been evaluated in different samples.

RESULTS
Table 1 shows the distribution of  PTPN22 genotypes in 
T1D and controls in Continental Italy and in Sardinia. 
The proportion of  *T allele carriers is slightly higher in 
Italy than in Sardinia; the positive association between 
T1D and this genotype is slightly stronger in Continental 
Italy (OR = 2.19) than in Sardinia (OR = 1.70).
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Table 2 shows the effect of  maternal age at birth on 
susceptibility to T1D. In both Sardinia and Continental It-
aly the proportion of  mothers aging more than 32 years is 
higher in children with T1D than in consecutive newborns 
from the same population. The association, however, is 
much stronger in Sardinia than in Continental Italy (OR 
= 17.191 vs 2.018). A three way contingency table analysis 
indicates that the relationship between maternal age and 
susceptibility to T1D is dependent on the population.

There is a not statistically significant prevalence of  
males both in Italy and in Sardinia (data not shown).

Table 3 shows the effect of  PTPN22 on the age of  
onset of  the disease. No effect is observed in Sardinia. In 
Continental Italy the mean age at onset is greater in *T 
carriers than in *C/*C genotype but the difference is not 
statistically significant.

The effect of  maternal age on the age at onset of  
disease is shown in Table 4. No significant effect is ob-
served in Continental Italy while in Sardinia a border line 
significant effect is observed with a lower age at onset in 
the mother aging 32 years or less.

The effect of  sex on the age at onset of  T1D is re-
ported in Table 5. No effect is observed in Continental 
Italy while in Sardinia females show a lower age at onset 
of  disease.

DISCUSSION
The most important result emerging from our analysis re-
gards the role of  maternal age at conception on suscepti-
bility to T1D and on the age of  onset of  the disease. The 
effect of  maternal age at conception on susceptibility and 
on age of  onset of  disease is more marked in Sardinian 
than in Italian population.

The effect of  maternal age at conception on the 
susceptibility to T1D has been observed in many popula-
tions[10-12] including Sardinia[13]. In Sardinia this effect is 
stronger compared to other populations and this may be 
connected with the high risk of  T1D observed in Sardin-
ian population[14,24,25]. Moreover in Sardinia a clear correla-
tion between maternal age at delivery and age at onset of  
diabetes has been also observed[13]. Changes of  hormonal 
pattern due to maternal aging may be involved in modifi-
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Table 1  Distribution of protein tyrosin phosphatase 22 
genotypes in type 1 diabetes and controls in Continental Italy 
and in Sardinia

% Proportion of *T allele carriers Total n

T1D
   Continental Italy 13.60%   376
   Controls    6.70% 1032
T1D  
   Sardinia   7.30%   248
   Controls   4.40%   205

T1D: Type 1 diabetes.

Three way contingency table analysis by a log linear model: x = T1D vs 
controls; y = maternal age (≤ 32 yr vs > 32 yr); z = Continental Italy vs 
Sardinia. x, y and z interaction: G = 45.703;  df = 1; P < 0.0001. T1D: Type 1 
diabetes.

Table 2  Maternal age at conception in consecutive newborns 
and in children with type 1 diabetes in Continental Italy and 
in Sardinia

Sardinia Continental Italy
Consecutive Children Consecutive Children 
newborns with T1D newborns with T1D

% proportion 
with maternal 
age > 32 yr

32.70% 89.30% 19.10% 32.20%

Total n 5460 187 792 90
χ 2 test of 
independence
χ 2 253.705 7.821
df          1         1
P < 10-6 0.005
OR analysis
OR 17.191 2.018
95%CI 10.569-24.396 1.234-3.331

Table 3  Effect of protein tyrosin phosphatase 22 genotype 
on age at onset of type 1 diabetes

Continental Italy Sardinia
Age at onset (yr)

mean ± SE mean ± SE
PTPN22 genotype
   *C/*C 8.56 ± 0.28 7.44 ± 0.32
   *T carriers 9.85 ± 1.03 7.43 ± 1.33  
Student t test for differences between means

P = 0.100 P = 0.540

PTPN22: Protein tyrosin phosphatase 22.

Table 4  Maternal age (year) at conception and age at onset 
of diabetes

Age at onset of t  test for differences 
diabetes (yr) between means

mean SE total n
Sardinia Maternal

 age ≤ 32
5.75 0.89   20

Maternal
age > 32

7.54 0.31 169 P = 0.062

Continental Italy Maternal 
age ≤ 32

8.02 0.51   61

Maternal 
age > 32

7.89 0.81   28 P = 0.894

Age at onset; Sardinia vs Continental Italy. t test for differences between 
means. Maternal age > 32, P = 0.720; Maternal age ≤ 32, P = 0.028.

Table 5  Effect of sex on the age at onset of type 1 diabetes

Continental Italy Sardinia
Age at onset (yr)

mean ± SE mean ± SE
Sex
   Males 8.50 ± 0.39 8.07 ± 0.40
   Females 8.93 ± 0.39 6.30 ± 0.40  
Student t test for differences between means

P = 0.433 P = 0.002
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T cell receptor signaling. The PTPN22 polymorphism (chromosome 1) has two 
alleles, *C1858 (encoding the R620 variant, here simply called *C) and *T1858 
(encoding the W620 variant, here simply called *T), and has three genotypes, 
*C/*C, *C/*T and *T/*T. The *T/*T genotype is very rare. The W620 variant is 
associated to autoimmune disorders.
Peer review
This manuscript describes the role of genetic and non-genetic factors in the 
development of Type 1 diabetes. It is well wtitten.
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From a practical point of  view from the present 
analysis emerges the advice to females of  Sardinia origin 
to conceive at young age to reduce the risk of  T1D in the 
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cose (mean).

RESULTS: At the admission, first fasting blood glucose, 
pharmacological treatments (insulin and/or anti-diabetic 
drugs) prior to entering the study and basal glycated 
hemoglobin (HbA1c) were observed in the two groups 
treated with subcutaneous or intravenous insulin infu-
sion, respectively. When compared with patients submit-
ted to standard therapy, insulin-infused patients showed 
both increased first 24-h (median 6.9 mmol/L vs  5.7 
mmol/L P  < 0.045) and overall hospitalization δ glucose 
(median 10.9 mmol/L vs  9.3 mmol/L, P  < 0.028), with a 
tendency to a significant increase in first 24-h glycaemic 
CV (23.1% vs 19.6%, P < 0.053). Severe hypoglycaemia 
was rare (14.3%), and it was observed only in 3 patients 
receiving insulin infusion therapy. HbA1c values mea-
sured during hospitalization and 3 mo after discharge did 
not differ in the two groups of treatment.

CONCLUSION: Our pilot data suggest that no real 
benefit in terms of GLUCV is observed when routinely 
managing blood glucose by insulin infusion therapy in 
type 2 diabetic ACS hospitalized patients in respect to 
conventional insulin treatment

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Abstract
AIM: To evaluate the impact on glucose variability 
(GLUCV) of an nurse-implemented insulin infusion pro-
tocol when compared with a conventional insulin treat-
ment during the day-to-day clinical activity.

METHODS: We enrolled 44 type 2 diabetic patients 
(n  = 32 males; n  = 12 females) with acute coronary 
syndrome (ACS) and randomy assigned to standard a 
subcutaneous insulin treatment (n = 23) or a nurse-im-
plemented continuous intravenous insulin infusion pro-
tocol (n  = 21). We utilized some parameters of GLUCV 
representing well-known surrogate markers of progno-
sis, i.e. , glucose standard deviation (SD), the mean daily 
δ glucose (mean of daily difference between maximum 
and minimum glucose), and the coefficient of variation 
(CV) of glucose, expressed as percent glucose (SD)/glu-

OBSERVATIONAL STUDY

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4239/wjd.v5.i4.562

World J Diabetes  2014 August 15; 5(4): 562-568
ISSN 1948-9358 (online) 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

562 August 15, 2014|Volume 5|Issue 4|WJD|www.wjgnet.com



acute coronary syndrome diabetic patients. World J Dia-
betes 2014; 5(4): 562-568  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i4/562.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i4.562

INTRODUCTION
It is well-known that type 2 diabetes and acute coronary 
syndromes (ACS) are strictly related. Also, patients with 
type 2 diabetes are more likely than non-diabetic subjects 
to experience silent or symptomatic myocardial ischaemia 
as the first presentation of  coronary artery disease[1].

The role of  admission and fasting glucose level as 
best indicator of  glucose metabolic state in predicting 
outcome in ACSs remains, however, uncertain[2-4]. Fasting 
glucose levels have been shown to represent a marker of  
adverse outcome after ST-segment elevation myocardial 
infarction (STEMI)[5,6] and elevated blood glucose level 
at admission for acute myocardial infarction (AMI) is as-
sociated with worse outcome in both non-diabetic and 
diabetic patients[4-7]. On the contrary, the role of  high 
fasting glucose levels in non-STEMI ACSs is less defined. 
On the other hand, an increased incidence of  cardiac 
events also in patients with a prediabetic state presenting 
with either STEMI or non-STEMI, compared with non-
diabetic patients has been already shown[8]. 

High coefficient of  variation (CV) of  blood glucose as 
an indicator of  glucose variability (GLUCV) predicts in-
creased risk of  death in intensive care unit (ICU) patients[9] 
and represents a better discriminator of  in-hospital mor-
tality than mean blood glucose in patients with ACS[10]. In 
this context, epidemiological studies have also shown that 
beside spontaneous hypoglycaemia, treatment-induced 
hypoglycemia was associated with higher mortality[11]. 

Over the last years, glycaemic management in critical 
care patients has dramatically changed. Emerging evidence 
seems to indicate that intensive blood glucose control 
by intravenous insulin infusion may significantly reduce 
morbidity and mortality in hyperglycaemic patients admit-
ted to ICU[1]. Furthermore, some evidence suggests that 
diabetic patients with ACS might benefit by intravenous 
insulin infusion[12,13]. For the above reasons, the European 
Society of  Cardiology/European Association for the 
Study of  Diabetes recommends blood glucose control by 
intensive insulin treatment (Class Ⅰ recommendation) in 
patients with AMI (Class Ⅱ, level of  evidence B)[14]. Some 
schemes of  insulin infusion therapy have been proposed 
for critically ill patients[15-22]; however, among the nurse-
implemented insulin infusion protocols available none was 
specifically tested in patients with ACS during the day-to-
day clinical activity of  a coronary care unit[21].

Aim of  the present pilot study was to compare the 
impact on GLUCV of  a nurse-implemented insulin infu-
sion therapy and conventional insulin treatment for man-
agement of  diabetic patients affected by ACS in a day-to-
day in-hospital clinical activity. In order to avoid potential 
bias in studied population we decided to enrol only type 

2 diabetic patients by considering that type 2 diabetes 
comprises 90% of  people with diabetes in Europe.

MATERIALS AND METHODS
Ethics
This work has been carried out in accordance with the 
Declaration of  Helsinki (2000) of  the World Medical 
Association. Informed consent was obtained from all 
patients and the study was approved by the institutional 
review board of  the Hospital. 

Patients
All type 2 diabetic patients admitted to the Heart Depart-
ment of  Fondazione CNR/Regione Toscana G. Monas-
terio from January 2013 to July 2013 with a diagnosis of  
ACS (i.e., STEMI, non-STEMI or unstable angina) and 
confirmed by electrocardiographic changes consistent 
with ACS, increased biochemical markers of  cardiac ne-
crosis and/or documented coronary artery disease were 
potentially eligible.

Additional inclusion criteria were: (1) age 18-80 years; 
(2) history of  diabetes; (3) admission glucose level > 180 
mg/dL (i.e., 10 mmol/L); and (4) glycated hemoglobin 
(HbA1c) > 6.2%.

 Exclusion criteria were: (1) stage of  chronic kidney 
disease >3; (2) severe chronic liver, autoimmune diseases; 
(3) active neoplastic disease; and (4) treatment with corti-
costeroids.

We enrolled 44 patients, 32 males, 12 females, rando-
my assigned to standard multidose subcutaneous insulin 
treatment (n = 23) or continuos insulin infusion protocol 
(see below) for the first one-three days followed by stan-
dard subcutaneous multidose insulin treatment.

Methods
We adopted the nurse-implemented continuous intrave-
nous insulin infusion protocol as proposed by Avanzini 
et al[21] developed also to drive the optimal transition to 
subsequent subcutaneous insulin therapy[22], with little 
modifications. In particular targeting glycemic values were 
120-180 mg/dL (i.e., 6.6-10 mmol/L) instead of  100-139 
mg/dL (i.e., 5.5-7.7 mmol/L), and infusion treatment was 
stopped in presence of  glycemic values below 120 mg/dL 
(i.e., 6.7 mmol/L) instead of  100 mg/dL (i.e., 5.5 mmol/L)

To facilitate acceptance, during year 2012 all nurses 
involved in the study were previously trained by a week-
long series of  1-h in-service training sessions and all 
experienced very good compliance with the infusion pro-
tocol at the time of  the study.

The frequency of  blood glucose determinations 
was guided by the infusion protocol as previously sug-
gested[21]; usually blood samples were withdrawn every 
2 h during day-time and every three hours during night-
time. Blood glucose was checked at fixed times (i.e., 07:00 
am; 10:00 am; 12:00 am; 04:00 am; 06:00 pm; 10:00 pm) 
in the case of  subcutaneous insulin treatment.

To contribute equally to statistical analysis, blood 
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glucose levels utilized to determine GLUCV parameters 
(see below) were based only on measurements obtained 
at the same timetables in the two mentioned protocols 
(i.e., 07:00 am; 10:00 am; 12:00 am; 04:00 am; 06:00 pm; 
10:00 pm)

Blood glucose levels were measured by a standard 
hospital glucose meter which was calibrated daily. 

Assessment of glucose variability
GLUCV was assessed according to Brunner et al[23] using 
three statistical indicators calculated for the three periods 
of  interest i.e.,: (1) during the first 24 h; (2) during the 
whole hospitalization; and (3) during the pre-discharge 
day. The first indicator was represented by standard devi-
ation (SD), the second by mean daily δ glucose, assessed 
as the mean of  daily difference between maximum and 
minimum glucose, and the third indicator was the CV of  
glucose, express as percent [glucose (SD)/glucose (mean) 
(%)].

Statistical analysis
Continuous variables were expressed as mean ± SD or 
median (25th; 75th percentiles) and categorical variables 
were expressed as percentage. Student Independent t-test 
or Wilcoxon test was used as appropriate to compare 
continuous and ordinal variable differences between pa-
tients. Due to the small number of  patients analyzed, the 
Wilcoxon test is preferred to the t-test for comparison 
of  the indices of  GLUCV between groups. Comparison 
between categorical variables was performed by χ 2 test 
or by Fisher exact test (if  an expected cell count was 5). 
All statistical tests were evaluated with the use of  2-tailed 
95%CI, and tests with P-value < 0.05 were considered 
significant. All analyses were performed using Stata, ver-
sion 10.2.

RESULTS
Baseline characteristics of  the 44 studied patients are 
reported in Table 1. Similar admission, first fasting blood 
glucose, pharmacological treatments (insulin and/or 
anti-diabetic drugs) prior to entering the study and basal 
HbA1c were observed in the two groups treated with 
subcutaneous or intravenous insulin infusion, respectively. 
Also, glycaemic control did not differ after three months 
from discharge between the two groups, as documented 
by superimposable HbA1c values (Table 1).

In patients submitted to intravenous infusion insulin 
therapy transition to subcutaneous insulin treatment was, 
on average, obtained after 3.5 ± 1.5 d. 

The effectiveness of  the two therapeutic protocols (i.e., 
infusion vs conventional insulin treatment) was assessed 
with regard to values of  several relevant parameters of  
GLUCV (Tables 2 and 3 and Figure 1). Notwithstanding 
increased staff ’s efforts and increased number of  glycae-
mic determinations, patients receiving insulin infusion 
therapy showed both first 24-h and overall hospitaliza-
tion increased GLUCV δ associated with a tendency to a 
significant increase in first 24-h glycaemic CV (P = 0.059). 
Importantly, severe hypoglycemia (i.e., with glycaemic 
values < 50 mg/dL) was extremely rare (14.3%), but it 
was observed only in patients receiving insulin infusion 
therapy (Table 2).

All data, taken as whole, suggest that no improvement 
is observed in glucose management in day-to-day clinical 
activity by intensive insulin infusion protocol in diabetic 
type 2 patients with ACS when compared to standard 
subcutaneous insulin treatment.

DISCUSSION
An alteration of  glucose metabolism which includes 
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Table 1  Main clinical characteristics of study population

Total Convenzional insulin treatment Infusion insulin treatment P  value

n  = 44 n  = 23 n  = 21
Gender (M) 72.7 69.6 76.2 0.622
Age (yr) 68.2 ± 11.5 69.6 ± 12.0 66.6 ± 11.0 0.397
BMI 29 (26; 31)o 28 (26; 32) 29 (26; 30) 0.867
Urea mg/dL 46.7 ± 20.7 46.3 ± 15.5 47.2 ± 25.6 0.880
Creatinine mg/dL 1.0 ± 0.3 1.0 ± 0.4 1.0 ± 0.2 0.341
Basal glycated haemoglobin (%) 8.3 ± 1.8 8.1 ± 1.8 8.5 ± 1.9 0.459
First fasting glycaemia (mmol/L)   9.1 (7.4; 12.1)    9.4 (8.3; 10.9)    8.8 (6.9; 12.3) 0.435
Admission glycaemia (mmol/L)   12.0 (10.3; 13.8)    11.4 (10.0; 13.2)    13.0 (10.8; 17.1) 0.205
Glycated haemoglobin after 3 mo from discharge (%) 8.1 ± 1.0 8.0 ± 1.1 8.3 ± 0.6 0.575
% Patients with new diagnosis of diabetes 13.6                           13 14.3 1.000
% Patients under insulin treatment before admittance 26.3 26.3 26.3 1.000
% Patients with previous AMI 18.8 17.7 20.0 1.000
Lenght of in-hospital stay (d)          8 (7; 10) 8 (7; 10) 9 (7; 12) 0.368
% Patients with STEMI 45.5 34.8 57.1 0.137
% Patients with non-STEMI 47.7 56.5 38.1 0.222
% oPatients with in-hospital major complications1 18.2   8.7 28.6 0.088
% Diabetic patients under dietetic treatment only 15.9   8.7 23.8 0.232
% Diabetic patients under oral antidiabetic drugs 45.5 52.2 38.1 0.382
% Patients under insulin treatment1 20.5 21.7 19.1 1.000

oInterquartile ranges (25th; 75th percentile) values reported in brackets; 1Major complications include re-infarction, malignant arrhythmias, death. M: Males; 
BMI: Body mass index; AMI: Acute myocardial infarction; STEMI: ST-segment elevation myocardial infarction.
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present for both diabetic and non-diabetic patients[4,26]. 
A large meta-analysis[27] clearly indicated that new 

hyperglycaemia per se in presence of  AMI represents 
a strong prognostic predictor of  short and long-term 
mortality and progression toward heart failure in both 
diabetic and non-diabetic patients.

a prediabetic state is frequently observed during acute 
cardiac events[2,5,8,11,22,24,25]. Furthermore, diabetic patients 
show an increased mortality and morbidity after both 
AMI and ACS in general when compared with non-
diabetic patients[8]. Also, the relationship of  high blood 
glucose with risk of  death or poor outcome after AMI is 
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Table 2  Hypo and hyperglycaemic states in patients treated with conventional insulin or insulin-infused protocol

Total Conventional insulin treatment Infusion insulin treatment P  value

n  = 44 n  = 23 n  = 21
% Patients with glycaemic values > 11.1 mmol/L 
(at least one determination)

100.0 100.0 100.0 -

% Patients with glycaemic values 
7.77-11.1 mmol/L (at least one determination)

100.0 100.0 100.0 -

% Patients with glycaemic values 
5.55-7.72 mmol/L (at least one determination)

  90.9   95.7   85.7       0.335

% Patients with glycaemic values < 5.55 mmol/L 
(at least one determination)

  45.5   39.1   52.4       0.378

% Patients with severe hypoglycaemia 
(i.e., glucose < 2.77 mmol/L) 

    6.8     0.0   14.3       0.100

% Patients with more than 5 glycaemic values > 13.88 mmol/L   22.7   21.7   23.8       0.870
% Patients with more than two glycaemic values > 16.66 mmol/L   13.6     8.7   19.1       0.403
Average number of glycaemic values evaluated 30.8 ± 12.5 23.4 ± 9.0 31.0 ± 10.8 P < 0.001
Number of glycaemic values evaluated 1356 (6; 56)o 538 (6; 38) 818 (12; 56)

oInterquartile ranges (25th; 75th percentile) values reported in brackets.

Table 3  Main glucose variability parameters measured in patients treated with conventional insulin or insulin-infused therapy

Total Conventional insulin Infusion insulin P  value
treatment treatment

n  = 44 n  = 23 n  = 21
Median of glycaemic values
   Glycaemic values (first 24 h) mmol/L   10.3 (9.0; 12.1)o       10.1 (8.6; 11.6)          10.3 (9.2; 12.1) 0.716
   Glycaemic values (overall hospitalization) mmol/L 10.2 (8.8; 11.5)         9.8 (8.7; 10.7)          10.6 (9.1; 11.5) 0.366
   Glycaemic values (pre-discharge) mmol/L   9.3 (8.6; 10.2)         9.1 (8.5; 9.9)            9.4 (8.6; 11.4) 0.331
Median of glycaemic values variability (δ)
   Variability of glycaemic values (first 24 h) 6.2 (4.5; 9.5)         5.7 (2.9; 7.5)            6.9 (5.5; 10.2) 0.045
   Variability of glycaemic values (overall hospitalization)   9.9 (8.1; 13.1)         9.3 (7.3; 10.9)          10.9 (9.2; 14.3) 0.028
   Variability of glycaemic values (pre-discharge) 5.2 (3.6; 6.1)         4.3 (2.9; 6.1)            5.3 (4.3; 6.8) 0.236
Median of glycaemic variability (Coefficient of Variation)
   Glycaemic Coefficient of Variation (first 24 h)      21.4% (15.7%; 31.2%) 19.6% (12.6%; 29.6%) 23.1% (20.7%; 33.1%) 0.059
   Glycaemic Coefficient of Variation (overall hospitalization)      25.3% (20.7%; 28.5%) 27.1% (20.7%; 30.1%) 24.9% (21.7%; 27.1%) 0.518
   Glycaemic Coefficient of Variation (pre-discharge)      23.1% (17.0%; 28.5%) 23.1% (14.8%; 26.4%) 23.4% (17.9%; 29.1%) 0.466

oInterquartile ranges (25th; 75th percentile) values reported in brackets.
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Figure 1  Standard deviation of glycaemic levels determined in patients treated with conventional insulin or insulin infused therapy.
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On the other hand, worse outcome in diabetic pa-
tients with ACS has not been improved by progressive 
diffusion of  new, more efficacious pharmacological car-
diac treatments and interventional procedures thus sug-
gesting the hyperglycemia and glucose toxicity playing a 
critical role on adverse prognosis in ACS. 

Serum GLUCV and in particular SD/CV of  gly-
cemic values measured during the first days after acute 
events including ACS has been demonstrated to repre-
sent a good prognostic biomarker of  increased death 
rate[28].

It has been also reported that the relationship between 
mean serum GLUCV and mortality is described by a “U-
shaped” curve, with lower and higher GLUCV values 
associated with higher death rate[9]. This suggests that 
preventing both hypo and hyperglycemic states may be 
an important therapeutical target to minimize changes in 
GLUCV.

Because hypoglycaemia, hyperglycaemia and high 
GLUCV are associated with an increased risk of  death, 
an intensive insulin treatment has been proposed as a 
better strategy than conventional treatment to ameliorate 
glycaemic control immediately after the acute cardiac 
event and, consequently patient’s prognosis[1]. Data so 
far reported are somewhat contrasting[1,29,30]; actually, al-
though the DIGAMI study[12] demonstrated the superior-
ity of  intravenous insulin infusion when compared with 
standard care in reducing early and long-term mortality 
in diabetic AMI patients, the later DIGAMI 2 study 
did not confirm previous results[31]. Also, a major risk 
of  intensive insulin treatment is the greater appearance 
of  hypoglycaemic episodes which are mainly related to 
diabetes life span, frequency of  previous hypoglycaemic 
attacks and pre-existing coronary artery disease[29,30] with 
worsening of  prognosis and prolongation of  in-hospital 
stay. Several insulin-infused operational protocols to be 
adopted in ICUs have been proposed so far[15-22] but no 
specific guidelines with validate protocols in day-to-day 
clinical practice and definite glycaemic target values have 
been provided. Furthermore, an additional concern is 
represented by a recurrence of  hyperglycaemic states 
during the transition from intravenous to subcutaneous 
treatment regimen.

With the above premises, in our pilot study we evalu-
ated the superiority of  an intensive, nurse-implemented 
insulin treatment for treating type 2 diabetic patients with 
ACS in a clinical practice setting. We utilized GLUCV 
parameters as well-established surrogate markers of  early 
and long-term outcome in ACS patients[30]. Our prelimi-
nary results indicate that GLUCV as represented by SD 
of  blood glucose levels and glucose δ variation does not 
improve by intensive iv insulin treatment when compared 
to conventional approach. A concurrent clear disadvan-
tage is represented by both higher personnel efforts and 
costs related to the significant increase in number of  
blood glucose determinations in the case of  an insulin-
infused protocol. 

We do not have definite explanations for our find-

ings. Among the possible causes we may recognize an in-
creased difficulty in: (1) managing the infusion protocol, 
also by well-trained and compliant nurses, when com-
pared with conventional insulin therapy, in a day-to-day 
clinical practice of  a cardiac ICU; (2) managing the infu-
sion protocol in feeding patients as in the case of  ACS; 
and (3) managing the transition to conventional insulin 
treatment.

In conclusion our pilot study suggests that no benefit 
in terms of  GLUCV is observed by early insulin infusion 
therapy in type 2 diabetic ACS in-patients in respect to 
conventional treatment in a day-to-day clinical practice. 
Further studies in larger populations and with a longer 
follow-up are, however, necessary to confirm these pre-
liminary results.
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Abstract
AIM: To evaluate metabolic control and health-related 
quality of life (HRQOL) in a type 1 diabetes mellitus 
(T1DM) population. 

METHODS: As part of a prospective cohort study, 283 
T1DM patients treated with various insulin treatment 
modalities including multiple daily injections (MDI) and 
continuous subcutaneous insulin infusion (CSII) were 
examined annually. HRQOL was measured using the 
SF-36 and EuroQol questionnaires. Data regarding 
HRQOL, glycaemic and metabolic control from base-
line and follow-up measures in 2002 and 2010 were 

analysed. Linear mixed models were used to calculate 
estimated values and differences between the three 
moments in time and the three treatment modalities.

RESULTS: Significant changes [mean Δ (95%CI)] in 
body mass index [2.4 kg/m2 (1.0, 3.8)], systolic blood 
pressure [-6.4 mmHg (-11.4, -1.3)] and EuroQol-VAS 
[-7.3 (-11.4, -3.3)] were observed over time. In 2010, 
168 patients were lost to follow-up. Regarding mode of 
therapy, 52 patients remained on MDI, 28 remained on 
CSII, and 33 patients switched from MDI to CSII during 
follow-up. Among patients on MDI, HRQOL decreased 
significantly over time: mental component summary 
[-9.8 (-16.3, -3.2)], physical component summary [-8.6 
(-15.3, -1.8)] and EuroQol-VAS [-8.1 (-14.0, -2.3)], P  < 
0.05 for all. For patients using CSII, the EuroQol-VAS 
decreased [-9.6 (-17.5, -1.7)]. None of the changes 
over time in HRQOL differed significantly with the 
changes over time within the other treatment groups.

CONCLUSION: No differences with respect to meta-
bolic and HRQOL parameters between the various insu-
lin treatment modalities were observed after 15 years 
of follow-up in T1DM patients.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The results of this study demonstrate that 
over a period of 15 years, general health-related qual-
ity of life is almost stable among patients with type 1 
diabetes mellitus. In addition, no differences with re-
spect to metabolic control and general health-related 
quality of life were observed among type 1 diabetes 
mellitus patients treated with different insulin regimens 
(multiple daily injections or continuous subcutaneous 
insulin infusion).
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INTRODUCTION
Patients with type 1 diabetes mellitus (T1DM) require 
lifelong daily insulin to compensate for an absolute en-
dogenous insulin shortage. In many patients, it is possible 
to achieve adequate or even tight glycaemic control and 
delay the onset and progression of  micro- and macrovas-
cular complications with intensive insulin therapy[1]. At 
present, multiple daily injections (MDI) and continuous 
subcutaneous insulin infusion (CSII) are the most com-
mon forms of  insulin administration in T1DM. 

It is likely that T1DM and its therapy impact health-
related quality of  life (HRQOL)[2]. Previous studies have 
underlined the importance of  this association by reveal-
ing a negative association between HRQOL and diabe-
tes prognosis[3-5]. In T1DM, a relevant deterioration of  
HRQOL and glycaemic control during the disease course 
has been reported[6,7]. In contrast, reports have also found 
no association between duration of  diabetes and scores 
on quality of  life scales[8,9]. In addition to diabetes dura-
tion and clinical and metabolic characteristics, such as 
body mass index (BMI), the presence of  macrovascular 
complications, hyperglycaemic complaints and personal 
characteristics influence HRQOL. In addition, insulin 
treatment with CSII is thought to have a positive effect 
on HRQOL compared with MDI[2,10,11].

The aim of  the present analysis was to assess long-
term metabolic control and HRQOL in T1DM patients 
treated with various therapy modes. Furthermore, we 
aimed to investigate whether mode of  therapy (MDI or 
CSII) influences long-term clinical and HRQOL param-
eters in T1DM patients. 

MATERIALS AND METHODS
Study design and population
The study was designed as a prospective, cohort study 
to investigate several disease factors, including oxidative 
stress and HRQOL, in T1DM. The full study design has 
been published in detail previously[12]. In brief, from Janu-
ary 1995 to January 1996, consecutive visiting T1DM 
patients treated at the diabetes outpatient clinic of  the 
Weezenlanden Hospital (currently Isala), Zwolle, The 
Netherlands, were invited to participate. T1DM was de-
fined as the initiation of  insulin therapy within 6 months 
after the first signs of  diabetes and before the age of  30 
years or the absence of  C-peptide secretion. In total, 293 
patients agreed to participate. The main scope was to as-
sess patients treated with MDI or CSII or patients switch-
ing from MDI to CSII during the study period. Patients 
who switched from CSII to MDI and back (n = 3) or 

from CSII to continuous intraperitoneal insulin infusion (n 
= 8) or underwent a pancreas and kidney transplantation 
(n = 1) were excluded from analysis. 

Measurement of clinical data and HRQOL
At baseline, a trained physician examined all patients 
according to a standardised protocol. Data concerning 
demographics, mode of  therapy, height, weight, blood 
pressure and several laboratory measurements were col-
lected. We adjusted the eGFR MDRD values for dif-
ferences using the conventional Jaffe creatinine method 
before 2007 and the isotope-dilution mass spectrometry-
traceable enzymatic creatinine method after 2007. 
HRQOL was assessed annually from 1995 to 2001, and 
these results were reported previously[12]. From 2001 on-
wards, HRQOL was assessed in 2002 and 2010. HRQOL 
was assessed using the SF-36 and EuroQoL. The SF-36 
is a widely used, self-administered generic questionnaire 
with 36 items involving 8 subscales: physical functioning, 
role limitations due to physical problems, bodily pain, 
general health perception, vitality, social functioning, 
role limitations due to emotional problems, and men-
tal health. Scale scores range from 0 to 100, and higher 
scores indicate better HRQOL. In addition, a physical 
and mental component summary (PCS and MCS) score 
can be determined[13]. The EuroQol is a generic measure 
developed by researchers from 5 European countries, 
including The Netherlands[14]. The questionnaire has 2 
parts. The first part consists of  5 items covering the areas 
of  mobility, self-care, usual activities, pain or discomfort 
and anxiety or depression (EQ-5D). Each item has 3 lev-
els: no problems, some problems, or extreme problems. 
EQ-5D scores were converted to a single index value 
(ranging from 0 for the worst health state to 1 for the 
best health state) using a value set specific for the Dutch 
population[15]. The second part consists of  a visual ana-
logue scale (VAS) from which a single overall score for 
self-rated health status can be elicited ranging from 0 to 
100 (EQ-VAS). 

Ethical considerations
The study was performed in accordance with the Decla-
ration of  Helsinki. Informed consent was obtained from 
all patients, and the protocol was approved by the local 
medical ethics committee.

Statistical analysis
All analyses were performed using SPSS version 18.0 
(SPSS, Inc., Chicago, Il, United States). A (two-sided) 
P-value of  less than 0.05 was considered statistically sig-
nificant. Q-Q plots were used to determine whether the 
tested variable had a normal distribution. Where appro-
priate, paired parametric and non-parametric tests were 
used to compare outcomes between baseline and follow-
up measurements. Linear mixed models with Bonferroni 
correction were used to calculate estimated values and 
test differences among the 3 moments in time (1995, 
2002 and 2010) and between the 3 treatment modalities 
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presented in Table 3. In total, BMI increased (mean 
difference: 2.4 kg/m2, 95%CI: 1.0-3.8; P < 0.00) and 
systolic blood pressure decreased [-6.4 mmHg, 95%CI: 
-11.4-(-1.3); P = 0.01] during the follow-up period. 

The BMI increased significantly in the group of  
patients who switched from MDI to CSII (2.7 kg/m2; 
95%CI: 0.2-5.2; P = 0.03), and systolic blood pressure 
decreased exclusively among MDI users [-9.2 mmHg; 
95%CI: -16.4-(-2.0); P = 0.01]. In 2010, no differences 
were observed between the various treatment categories 
(i.e., MDI, CSII and from MDI to CSII) concerning clini-
cal parameters at the end of  the follow-up.

Long term follow-up-HRQOL
The observed course of  the summary scores for the 
SF-36 and the EuroQol are presented in Table 2. The 
mean values and estimated changes in HRQOL are pre-
sented in Table 4. In total, no changes in both SF-36 
component scores were observed. At baseline, patients 
administered MDI displayed the highest MCS. The 
SF-36 subscales for physical functioning [-8.3, 95%CI: 
-14.9-(-1.7)], social functioning [-8.9, 95%CI: -16.3-(-1.6)], 
role limitations due to emotional problems [-15.0, 95%CI: 
-27.0-(-3.0)] and vitality [-10.0, 95%CI: -18.4-(-1.7)] de-
creased significantly over time among patients on MDI. 
In addition, the MCS and PCS for patients administered 
MDI were significantly lower in 2010 compared with 
1995, with a mean difference of  -9.8 [95%CI: -16.3-(-3.2)] 
and -8.6 [95%CI: -15.3-(-1.8)], respectively. The subscale 
vitality (Δ = 12.0, P = 0.03) displayed a more significant 

decrease over time among patients using MDI compared 
with patients who switched from MDI to CSII, and a 
greater decrease was observed with the subscale role limi-
tations due to emotional problems in patients adminis-
tered MDI compared with CSII (Δ = 22.1, P < 0.01) and 
switchers (Δ = 18.0, P = 0.02). MCS and PCS did not 
differ between the treatment groups. 

The EuroQol-VAS decreased among all patients [-7.3; 
95%CI: -11.4-(-3.3); P = 0.001]. For patients using CSII or 
MDI throughout the follow-up period, the EuroQol-VAS 
decreased throughout the follow-up period to -8.1 [95%CI: 
-14.0-(-2.3)] and -9.6 [95%CI: -17.5-(-1.7)], respectively.

None of  the HRQOL component scores differed 
from baseline among the patients who switched from 
MDI to CSII throughout the study. No differences con-
cerning HRQOL parameters were observed between the 
various treatment categories in 2010.

DISCUSSION
This is the first study to describe the long-term natural 
course of  HRQOL among patients with T1DM treated 
with different insulin treatment modalities. In general, no 
relevant HRQOL changes were observed after a follow-
up of  15 years. Between the treatment modalities, no dif-
ferences with respect to metabolic and HRQOL param-
eters were observed during follow-up.

The approximately stable HRQOL reported in the 
current study is somewhat surprising given the natural 
decrease in HRQOL in an unselected population after 5 
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Table 3  Estimated changes in clinical parameters during follow-up

Clinical characteristics 1995 (A) 2002 (B) Difference (B-A) P -value 2010 (C) Difference (C-A) P -value

BMI (kg/m2)
   All   24.9 (24.2, 25.5)   26.2 (25.4, 27.1)  1.4 (0.14, 2.6) 0.02   27.2 (26.3, 28.2)   2.4 (1.0, 3.8) 0.00
   MDI   25.1 (24.2, 25.9)   25.9 (24.8, 27.1) 0.9 (-0.9, 2.6) 0.72   27.0 (25.5, 28.4)    1.9 (-0.1, 4.0) 0.06
   CSII   24.9 (23.9, 26.0)   27.2 (25.5, 28.8)   2.3 (-0.16, 4.7) 0.08   27.4 (25.5, 29.1)    2.5 (-0.2, 5.3) 0.08
   From MDI to CSII   24.6 (23.5, 25.7)   25.6 (24.1, 27.1)      -1.0 (-1.2, 3.2) 0.82   27.3 (25.6, 29.1)   2.7 (0.2, 5.2) 0.03
Systolic BP (mmHg)
   All     137.0 (133.8, 140.3)     128.0 (124.7, 131.2)   -9.1 (-14.7, -3.5) 0.00     130.7 (128.1, 133.3)      -6.4 (-11.4, -1.3) 0.01
   MDI     140.8 (136.1, 145.4)     131.7 (127.2, 136.3)    -9.1 (- 17.0, -1.2) 0.02     131.6 (127.8, 135.3)      -9.2 (-16.4, -2.0) 0.01
   CSII     138.5 (132.2, 144.8)     125.9 (119.5, 132.3) -12.6 (-23.6, -1.7) 0.02     131.1 (126.1, 136.1)     -7.4 (-17.2, 2.4) 0.21
   From MDI to CSII     131.8 (126.0, 137.7)     126.3 (120.6, 132.1)  -5.5 (-15.5, 4.5) 0.55     129.4 (124.8, 134.0)     -2.5 (-11.5, 6.6) 1.00
HbA1c (mmol/mol)
   All 8.0 (7.6, 8.3) 7.6 (7.4, 7.8)  -0.37 (-0.85, 0.10) 0.19 7.5 (7.3, 7.6)     -0.47 (-0.93, 0.00) 0.05
   MDI 7.6 (7.1, 8.1) 7.6 (7.3, 7.9)   -0.02 (-0.70, -0.66) 1.00 7.4 (7.1, 7.6)     -0.25 (-0.91, 0.42) 1.00
   CSII 8.3 (7.7, 9.0) 7.6 (7.2, 7.9)  -0.78 (-1.71, 0.14) 0.13 7.6 (7.2, 7.9)     -0.79 (-1.70, 0.12) 0.11
   From MDI to CSII 8.0 (7.3, 8.6) 7.6 (7.3, 8.0)  -0.31 (-1.16, 0.54) 1.00 7.6 (7.3, 7.9)     -0.37 (-1.20, 0.47) 0.87
Total cholesterol (mmol/L)
   All 4.8 (4.7, 5.0) 4.5 (4.3, 4.7)   -0.32 (-0.62, -0.01) 0.04 4.9 (4.7, 5.0)      0.04 (-0.25, 0.32) 1.00
   MDI 4.9 (4.6, 5.2) 4.6 (4.4, 4.9)  -0.27 (-0.70, 0.15) 0.38 4.9 (3.1, 6.7) -0.01 (-0.4, 0.4) 1.00
   CSII 5.1 (4.8, 5.4) 4.7 (4.3, 5.0)  -0.42 (-1.00, 0.17) 0.26 4.8 (2.4, 7.2)   -0.31 (-0.9, 0.24) 1.00
   From MDI to CSII 4.5 (4.2, 4.8) 4.2 (3.9, 4.5)  -0.26 (-0.79, 0.29) 0.77 4.9 (4.6, 5.2)    0.42 (-0.1, 0.93) 0.15
eGFR (MDRD; mL/min per 1.73 m2)
   All   88.3 (85.3, 91.3)   83.3 (80.9, 85.8) -4.9 (-9.7, -0.2) 0.37   92.0 (87.9, 96.1)    -3.7 (-2.5, -9.9) 0.44
   MDI   90.4 (86.6, 94.7)   83.9 (80.4, 87.4)    -6.5 (-13.2, 0.27) 0.65   91.0 (85.3, 96.7)    0.6 (-8.0, 9.4) 1.00
   CSII   83.3 (77.5, 89.2)   80.6 (75.8, 85.4)  -2.7 (-11.9, 6.5) 1.00     92.8 (84.7, 100.8)      9.4 (-2.7, 21.6) 0.19
   From MDI to CSII   91.1 (85.7, 96.5)   85.5 (81.0, 89.9)  -5.7 (-14.1, 2.8) 0.32   92.2 (84.9, 99.5)      1.1 (-9.9, 12.1) 1.00

Data are the mean (95%CI). Mean differences and P-values are based on linear mixed models. BMI: Body mass index; BP: Blood pressure; MDI: Multiple 
daily injections; CSII: Continuous subcutaneous insulin infusion. 
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years of  follow-up and the occurrence of  macrovascu-
lar and microvascular complications, both of  which are 
known to decrease HRQOL[16-18]. However, this finding 
can be explained in part by improved clinical and/or 
metabolic parameters and/or the low number of  pa-
tients who completed follow-up until 2010[19]. Arguing 
against the latter explanation, no change in HRQOL was 
observed after 7 years of  follow-up, with 71.5% of  the 
study sample intact. 

Regarding the impact of  the therapy mode, a decrease 
in both component scores of  the SF-36 and EuroQol-
VAS was observed among patients using MDI. One 
potential explanation for this finding is the relatively high 
scores of  these HRQOL parameters at baseline com-
pared with patients on CSII. Although speculative, this 
observation can be attributed to a relative short diabetes 
duration[7]. 

In a recent Cochrane review, CSII was preferred over 
MDI with respect to HRQOL[11]. In accordance with our 
study, the only study among T1DM adults that used the 
SF-36 questionnaire demonstrated a significant improve-
ment of  the general health and mental health subscale in 
the CSII group compared with stable values in the MDI 
group after 32 wk of  follow-up[20]. The other SF-36 scales, 
including the component scales, remained unaltered. 

In our current study the HRQOL does not differ be-
tween modes of  therapy, but the patient can choose his 
or her mode of  choice in daily practice to a larger extent. 
This observation could partially explain the differences 
found in randomised trials (in favour of  the treatment 
mode under investigation, mainly CSII) and the absence 
of  differences in daily practice. 

Although in many cases inadequate metabolic control 
is the main indication to commence CSII, we did not 
observe any significant difference regarding HbA1c at 
the start of  therapy, HbA1c at final follow-up or changes 
in HbA1c over time between patients on MDI and those 
switching to CSII. Therefore, we conclude that the switch 
to CSII was initiated in some of  the patients for reasons 
other than poor metabolic control. 

Our findings also demonstrate that it is possible in 
daily practice to maintain moderate to good control 
of  clinical parameters in a T1DM population and even 
improve these parameters. The reasons for this improve-
ment remain open for discussion. Organisation of  care, 
stricter guidelines, more education, improved pump and 
pen systems and a more active role of  patients them-
selves may be involved. No definite conclusions can be 
drawn to explain this finding because not all these data 
were recorded in this study. 

Interpretations of  the findings from our study are 
limited by various factors, including the magnitude of  
loss to follow-up during the 15-year study period. There-
fore, the results of  our study should be interpreted with 
caution, and generalisability may be limited. This rate of  
loss to follow-up can be partly explained by the relatively 
young age of  our population and the accompanied high 
relocation rate, which is the reason for approximately half  
of  the loss to follow-up. In addition, 12 patients, mostly 
woman, moved to a hospital nearby after the departure 
of  one of  the diabetologists from our centre. Our results 
are also limited by the lack of  appropriate controls and 
the use of  questionnaires that measure general HRQOL.

In a conclusion, no differences with respect to meta-
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Table 4  Estimated changes in health-related quality of life during follow-up

HRQOL parameters 1995 (A) mean 2002 (B) mean Mean difference (B-A) P -value 2010 (C) mean Mean difference (C-A) P -value

SF-36
   MCS
      All 81.3 (78.9, 83.7) 78.3 (75.6, 81.0)         -3.0 (-7.4, 1.4) 0.31 77.1 (74.2, 80.0)         -4.2 (-8.7, 0.41) 0.09
      MDI  86.8 (83.4, 90.3)a 80.4 (76.5, 84.3)    -6.5 (-12.8, -0.14) 0.04 77.1 (72.9, 81.2) -9.8 (-16.3, -3.2) 0.01
      CSII 78.0 (73.4, 82.6) 77.0 (71.8, 82.3)       -1.00 (-9.5, 7.5) 1.00 76.5 (70.9, 82.1)         -1.6 (-10.4, 7.3) 1.00
      From MDI to CSII 79.0 (74.8, 83.3) 77.5 (72.7, 82.3)         -1.5 (-9.3, 6.3) 1.00 77.9 (72.7, 83.1)         -1.1 (-9.2, 7.0) 1.00
   PCS
      All 84.1 (81.6, 86.5) 81.1 (78.4, 83.8)         -3.0 (-7.5, 1.4) 0.31 79.5 (76.5, 82.4)         -4.6 (-9.3, 0.07) 0.06
      MDI 88.7 (85.1, 92.2) 84.3 (80.3, 88.2) -4.4 (-10.9, 2.0) 0.29 80.1 (75.9, 84.3) -8.6 (-15.3, -1.8) 0.01
      CSII 81.5 (76.7, 86.2) 79.3 (74.2, 84.5) -2.1 (-10.7, 6.5) 1.00 77.8 (72.0, 83.5)         -3.7 (-12.8, 5.4) 0.98
      From MDI to CSII 82.1 (77.7, 86.5) 79.6 (74.8, 84.4) -2.5 (-10.4, 5.4) 1.00 80.5 (75.2, 85.8)         -1.6 (-9.9, 6.8) 1.00
EuroQol
   EuroQol-5D
      All 0.94 (0.92, 0.95) 0.91 (0.89, 0.93) -0.03 (-0.06, 0.01) 0.12 0.94 (0.92, 0.95) 0.00 (0.03, -0.03) 1.00
      MDI 0.96 (0.93, 0.98) 0.92 (0.88, 0.95) -0.4 (-0.9, 0.01) 0.12 0.96 (0.93, 0.98) 0.00 (0.04, -0.04) 1.00
      CSII 0.93 (0.90, 0.97) 0.91 (0.87, 0.95)   0.3 (-0.9, 0.04) 0.98 0.93 (0.90, 0.97) 0.00 (0.06, -0.06) 1.00
      From MDI to CSII 0.92 (0.89, 0.95) 0.90 (0.86, 0.94)   0.02 (-0.08, 0.04) 1.00 0.92 (0.89, 0.95) 0.00 (0.05, -0.05) 1.00
   EuroQol-VAS
      All 83.6 (81.4, 85.9) 76.9 (74.4, 79.5) -6.7 (-10.9, 2.5) 0.01 76.3 (73.8, 78.8) -7.3 (-11.4, -3.3) 0.01
      MDI 86.4 (83.1, 89.7) 78.3 (74.6, 82.0)   -8.1 (-14.1, -2.1) 0.01 78.3 (74.8, 81.8) -8.1 (-14.0, -2.3) 0.01
      CSII 82.9 (78.5, 87.2) 76.4 (71.4, 81.3) -6.5 (-14.5, 1.6) 0.16 73.3 (68.5, 78.1) -9.6 (-17.5, -1.7) 0.01
      From MDI to CSII 81.6 (77.6, 85.6) 76.1 (71.5, 80.6) -5.5 (-12.9, 1.9) 0.22 77.3 (73.0, 81.6)         -4.3 (-11.5, 2.9) 0.45

Data are the mean (95%CI). HRQOL: Health-related quality of life; MDI: Multiple daily injections; CSII: Continuous subcutaneous insulin infusion; MCS: 
Mental component summary; PCS: Physical component summary. Mean differences and P-values are based on linear mixed models. aP < 0.05 at that mo-
ment in time vs the MDI and from MDI to CSII treatment groups.
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bolic and HRQOL parameters between the various treat-
ment modalities were observed after 15 years of  follow-
up between patients using MDI or CSII or patients 
switching from MDI to CSII in a setting in which pa-
tients, to a large extent, choose the mode of  therapy that 
best suits them. 
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Abstract
Peripheral arterial disease, manifested as intermittent 
claudication or critical ischaemia, or identified by an 
ankle/brachial index < 0.9, is present in at least one 
in every four patients with type 2 diabetes mellitus. 
Several reasons exist for peripheral arterial disease in 
diabetes. In addition to hyperglycaemia, smoking and 
hypertension, the dyslipidaemia that accompanies type 
2 diabetes and is characterised by increased triglyceride 
levels and reduced high-density lipoprotein cholesterol 
concentrations also seems to contribute to this associa-
tion. Recent years have witnessed an increased interest 
in postprandial lipidaemia, as a result of various pro-
spective studies showing that non-fasting triglycerides 
predict the onset of arteriosclerotic cardiovascular dis-
ease better than fasting measurements do. Additionally, 
the use of certain specific postprandial particle markers, 
such as apolipoprotein B-48, makes it easier and more 
simple to approach the postprandial phenomenon. De-
spite this, only a few studies have evaluated the role of 
postprandial triglycerides in the development of periph-
eral arterial disease and type 2 diabetes. The purpose 

of this review is to examine the epidemiology and risk 
factors of peripheral arterial disease in type 2 diabetes, 
focusing on the role of postprandial triglycerides and 
particles.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Peripheral arterial disease is highly prevalent 
in type 2 diabetes; traditional risk factors contribute 
to the disease. Interestingly, postprandial lipidaemia 
is increased in both conditions. However, one study 
showed that only subjects with both type 2 diabetes 
and peripheral arterial disease had elevation of post-
prandial lipids; subjects with type 2 diabetes and a 
normal ankle-brachial index had a normal postprandial 
response. Because most of the triglycerides of chylo-
microns are extracted in muscle and adipose cells in 
the legs, the authors speculate on whether arterioscle-
rosis in the legs may contribute to greater postprandial 
lipidaemia. 
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EPIDEMIOLOGY OF PERIPHERAL 
ARTERIAL DISEASE IN TYPE 2 DIABETES 
MELLITUS
Peripheral arterial disease (PAD) is produced by narrowing 
of  the calibre of  the medium-sized arteries and its widest 
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definition encompasses all extracoronary and extracere-
bral vascular disease. However, the term PAD is usually 
restricted to involvement of  the lower limbs, particularly 
in the iliac bifurcation, and the iliofemoral and popliteal 
arteries[1]. The main cause of  arterial stenosis in developed 
countries is atherosclerosis. 

The prevalence of  PAD in Europe and the United 
States is estimated to be 27 million persons[2]. The preva-
lence of  PAD increases progressively with age, with most 
cases starting after the age of  40 years. It is well known 
that only a very few PAD patients actually have symp-
toms, around 10%-20%[3]. The use of  a standardized 
questionnaire in the physician’s office can increase the 
detection of  claudicant patients[4,5]. Most patients with 
PAD are identified from non-invasive tests, such as the 
ankle-brachial index (ABI). Using this widely extended 
technique in Spain led to the identification of  PAD in 8% 
of  individuals aged 55-85 years[6]. In addition to age, the 
other cardiovascular risk factors also increase the likeli-
hood of  developing PAD. Thus, in persons with a low 
cardiovascular risk the prevalence of  PAD is almost in-
considerable[7], whereas it can reach 27% in persons with 
type 2 diabetes[8]. 

The prognosis for patients with PAD, both symp-
tomatic and asymptomatic, is poor[9]. Overall mortality is 
increased and the risk of  death is even greater than that 
in patients who have angina or acute myocardial infarc-
tion[10-13]. Data from Spain confirm these findings. An 
analysis of  the FRENA, REACH and AIRVAG registries 
showed that patients with PAD have a greater frequency 
of  symptomatic multivessel disease and a worse one-year 

prognosis than patients with single-vessel involvement or 
cerebrovascular disease[14]. 

Diabetes and PAD
Diabetes, together with smoking, is the main risk factor 
for PAD[15]. Of  patients who attended an angiology office 
in Spain due to intermittent claudication and who un-
derwent arterial surgery or had an ABI ≤ 0.9, 67% had 
diabetes mellitus[16]. Population-based studies in Spain, 
undertaken in either the general population or at vari-
ous levels of  care, showed that the presence of  diabetes 
mellitus doubled or even tripled the possibility of  having 
PAD (Table 1)[6,17-23]. The prevalence of  an ABI < 0.9 
in series of  Spanish patients with diabetes ranges from 
21% to 60% (Table 1)[8,24,25]. In the autonomous com-
munities of  Andalusia and the Canary Islands, 72% of  all 
lower-limb amputations between 1996 and 2006 involved 
patients with diabetes[23,26,27]. In patients with diabetes, 
for every 1% increase in haemoglobin A1c there is a cor-
responding 26% increased risk of  PAD[28]. The presence 
of  PAD also increases the risk of  death in patients with 
diabetes mellitus[29,30]. The prognosis for PAD is worse in 
patients with diabetes than those without diabetes[31].

Diagnosis of PAD in diabetes
The diagnosis of  PAD usually depends on the sum of  
the symptoms, particularly intermittent claudication, plus 
the physical examination, especially the lack of  pulses 
and the trophic disorders leading to critical limb isch-
aemia and distal necrosis[32]. However, patients, particu-
larly diabetic patients, commonly have other processes at 
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Table 1  Prevalence of peripheral arterial disease in Spanish cohorts

Study Number of subjects Age (yr) Study population ABI < 0.9 (%)

HERMEX[17] 2833 51 General All      3.7

Without diabetes      2.8
With Diabetes      6.2

ESTIME[6] 1324 68 General All   8
Without diabetes      6.6

With diabetes 19
MERITO[19] 1519 66 Internal medicine outpatient clinic SCORE ≥ 3 26.2

With Diabetes    26.1
VITAMIN[20]   493 68 Internal medicine outpatient clinic Without DM2 21

With DM2 38
ARPTER[18] 3171 63 General All      6.4

Without diabetes      5.4
With diabetes    12.6

REGICOR[21] 6262 56 General All      4.5
Without diabetes   4

With diabetes      8.4
FUENCARRAL Health Center[22] 1360 70 Primary health care centre Without diabetes     4.3

With diabetes    11.3
ALBACETE[23]   784 61 General All    10.5

Without diabetes   9
With diabetes 19

RONDA PRIM Health Center[25]   289 65 Primary health centres Diabetes    21.5
CIUDAD JARDIN Health Center[78]   456 61 Primary health centre Diabetes 27
PADiD Study[24] 1462 78 Internal medicine outpatient clinics Diabetes 60
MARINA BAIXA Hospital[89]   360 67 Internal medicine outpatient clinics Diabetes 27

ABI: Ankle-brachial index.



the same time that can alter the traditional symptoms of  
PAD, making them much less specific[33]. Accordingly, the 
measurement of  the ratio of  the systolic blood pressures 
in the ankle and the arm, the ABI, has been recommend-
ed as the screening method for asymptomatic PAD and 
as a form of  confirmation in symptomatic PAD[2,34,35]. A 
finding in one limb of  an ABI < 0.9 with the measure-
ment taken at rest under standard conditions is consid-
ered diagnostic of  PAD, with an ABI between 0.9 and 1.0 
considered borderline[36]. 

One limitation of  the ABI, especially relevant in pa-
tients with diabetes, is arterial media calcification, which 
can lead to non-compressible arteries (ABI > 1.4) or false 
normal values. A recent study showed that individuals 
with an ABI > 1.4 have a worse prognosis than those 
with a normal ABI and even those with an ABI < 0.9. 
The prevalence of  diabetes in the group with an ABI > 
1.4 was 58%, compared with 18% and 48% in those with 
a normal ABI or those with an ABI < 0.9[37]. It has long 
been known that the sensitivity of  the ABI to correctly 
diagnose PAD is considerably reduced in the presence 
of  arterial media calcification and that, clinically, this cal-
cification is associated with the presence of  peripheral 
neuropathy[38,39]. Accordingly, in the presence of  periph-
eral neuropathy it is recommended to use an alternative 
method, such as flow wave analysis using Doppler colour 
ultrasound[40,41]. In our experience this limitation is not 
negligible. In a series of  456 patients with type 2 diabetes, 
35 were found to have intermittent claudication (7.6%); 
only 22 of  these had an ABI < 0.9. Of  the other 13, 12 
underwent colour Doppler ultrasound and in 3 (25%) we 
obtained a monophasic wave, diagnostic of  PAD. Thus, a 
normal ABI does not rule out PAD in patients with type 
2 diabetes, and these patients should therefore undergo 
complementary tests if  they have symptoms suggestive 
of  PAD[8]. 

The resting ABI should be used as the diagnostic 
technique for PAD when lower limb arteriosclerosis is 
suspected. This should be done in persons with one or 
more of  the following: symptoms in the lower limbs after 
exercise, wounds with delayed healing, and individuals 
older than 65 years of  age or older than 50 years with a 
history of  smoking or diabetes[34]. Given the high preva-
lence of  PAD in patients with diabetes, the ADA recom-
mends screening with the ABI in patients with diabetes 
who are older than 50 years and who have another risk 
factor (smoking, hypertension, hyperlipidaemia, or diabe-
tes for more than 10 years)[42].

LIPIDS, POSTPRANDIAL LIPIDAEMIA 
AND PAD
Fasting lipids in PAD
Lipid abnormalities in PAD have received less attention 
than in other areas, as for example, in coronary anoma-
lies. Very few prospective studies have focused on the 
relation between triglycerides and peripheral vascular dis-
ease. The most common feature of  PAD is raised levels 

of  triglycerides and lower levels of  high-density lipopro-
tein (HDL) cholesterol as compared with age- and sex-
matched controls without vascular disease, with similar 
levels of  cholesterol and low-density lipoprotein (LDL) 
cholesterol[43-47]. The frequency of  a cluster of  lipid ab-
normalities of  the type of  raised triglycerides and small 
and dense LDL and reduced HDL was 20% in persons 
with PAD vs 0% in the control group[48]. Several studies 
have also shown that triglyceride levels are a predictive fac-
tor for PAD[49-51], though not all[52].

Postprandial lipidaemia: Atherogenic mechanism
Unlike the carbohydrates, which normally only show transi-
tory increases after a meal, the circulating triglycerides show 
a pronounced increase (postprandial lipidaemia) one hour 
after the intake of  a fat-rich meal (around 30-60 g), and 
can remain high for 5-8 h after the meal. As most per-
sons regularly consume fatty meals every 4-5 h, the usual 
state in humans insofar as their triglyceride metabolism is 
concerned is clearly a continuous postprandial lipidaemic 
state[53,54].

The large triglyceride-transporting particles, the chy-
lomicrons and the very low-density lipoprotein (VLDL), 
are too large to cross the endothelium and they therefore 
don’t contribute to the atherosclerosis, but the same 
does not occur with the chylomicron remnants and the 
intermediate-density lipoprotein (IDL), which are much 
smaller particles[55]. Evidence exists that the cholesterol 
in the postprandial particles, originating in the intestine, 
contribute to the phenomenon of  atherosclerosis, both 
in animals and in humans[56-59]. 

Postprandial lipidaemia and cardiovascular disease: 
Case-control vs prospective studies
Since the seminal work of  Zilversmit, many case-control 
studies have found an association between the magnitude 
of  the postprandial lipidaemia and the presence and sever-
ity of  coronary artery disease[60,61]; these studies have been 
reviewed by Lopez-Miranda et al[62]. Prospective studies, 
however, are few and controversial. Reyes-Soffer et al[63] 
followed 69 patients with type 2 diabetes who were free 
of  coronary disease for a mean of  8.7 years; 33 patients 
remained disease-free. No differences were found in the 
postprandial parameters at the initial visit between the 
groups, and the authors concluded that the postprandial 
triglycerides do not predict the onset of  coronary disease 
in individuals with diabetes. A more recent study involv-
ing 514 survivors of  an acute coronary syndrome found 
that the postprandial triglycerides after the oral intake of  
75 g of  fat predicted the appearance of  new events at 18 
mo. In the subgroup of  patients without diabetes or oral 
glucose intolerance the relative increase in postprandial 
triglycerides was an independent predictor of  events[64]. 

Non-fasting triglycerides
Interest in studying postprandial lipidaemia has increased 
over recent years as a result of  studies showing that serum 
triglyceride levels measured in a non-fasting state have 
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were more strongly associated with PAD in individuals 
with type 2 diabetes mellitus than were the fasting triglyc-
erides. A group of  119 patients with type 2 diabetes mel-
litus treated with just diet and/or oral glucose lowering 
agents, with no lipid-lowering treatment, were analyzed at 
fasting and 4 h after a mixed breakfast containing 50 g of  
fat and 40 g of  carbohydrates. Although the patients with 
cardiovascular disease, most of  them with asymptomatic 
PAD and identified by an ABI < 0.9, had lower fasting 
HDL cholesterol levels and higher triglyceride levels, only 
the triglycerides at 4 h post-breakfast were associated in 
the multivariate analysis with cardiovascular disease, to-
gether with the duration of  the disease and smoking[76]. 

The postprandial triglycerides include not only those 
contained in chylomicron particles and their remnants, but 
also those contained in VLDL and IDL. In an attempt to 
further understand the role of  postprandial fat in PAD, we 
undertook a second experiment to analyze the serum con-
centration of  apolipoprotein B48, a protein that is only 
associated with chylomicrons and their remnants and is 
not interchanged with any other circulating particle. This 
second study involved 101 patients with type 2 diabetes 
mellitus and 73 controls without diabetes, both groups 
with no known cardiovascular disease. Asymptomatic vas-
cular disease was identified from the ABI and as a marker 
of  postprandial particles we used the apolipoprotein B48, 
measured with a commercial enzyme-linked immunosor-
bent assay. Of  the patients with type 2 diabetes mellitus, 
21 had PAD as defined by an ABI < 0.9, though no con-
trol had PAD. The levels of  triglycerides and apolipopro-
tein B48, both fasting and postprandial, were significantly 
higher in the group of  diabetic patients with PAD than in 
those without PAD and the controls. Curiously, no differ-
ences were found between the controls and the patients 
with type 2 diabetes mellitus without PAD. Of  all the lipid 
and non-lipid parameters studied, only apolipoprotein B48 
and smoking were associated with the presence of  PAD 
in a binary logistic regression analysis. Likewise, the pres-
ence of  PAD was an independent predictor of  the levels 
of  apolipoprotein B48, both fasting and 4 h after a mixed 
breakfast[77].

As the patients with type 2 diabetes mellitus in the 
previous studies did not receive any insulin or lipid-
lowering therapy, we decided to confirm the findings in 
a larger population with type 2 diabetes mellitus without 
these exclusion criteria. Again, using an ABI < 0.9 as a 
marker of  PAD, we found in 456 patients with type 2 
diabetes mellitus that fasting apolipoprotein B48 was a 
marker of  PAD, independently of  the other lipid factors, 
statin treatment or insulin therapy[78]. Identical results 
have also been reported by another group[79]. 

May PAD delay postprandial lipid catabolism?
Taken together, these studies confirm an association be-
tween postprandial particles, measured as triglycerides 4 
h after breakfast or as fasting and postprandial apolipo-
protein B48, and PAD. In the above-mentioned studies, a 
diabetic status in itself  was not associated with a greater 

proved to be better predictors for the risk of  vascular 
disease than fasting triglyceride concentrations, i.e., when 
they are quantified after 8-10 h of  fasting[65-68]. Two meta-
analyses also support the association between fasting and 
postprandial triglycerides and the vascular risk[69,70]. One 
of  the problems encountered when introducing post-
prandial triglyceride measurements in the clinical setting 
is the absence of  specific recommendations in the clinical 
practice guidelines and thus the identification of  a thresh-
old level above which postprandial hypertriglyceridaemia 
is recognised. To date, only the American Association of  
Clinical Endocrinologists has considered the possibility 
of  evaluating the non-fasting triglyceride concentration[71]. 
Based on evidence from the above mentioned population-
based studies, an expert group estimated non-fasting tri-
glyceride levels < 180 mg/dL as desirable[72]. This means 
that 38% of  the men and 20% of  the women in the Co-
penhagen study who had figures above these levels have 
postprandial hypertriglyceridaemia[73].

Suggestion for the measurement of postprandial 
lipidaemia
The study of  postprandial (hyper)lipidaemia has several 
inconveniences. The most important at present is the 
poor clinical yield and the great complexity of  the fat 
test; its prolonged time is uncomfortable for both the 
patient and the medical personnel, not to mention the 
lack of  standardization for the test. A few years ago, us-
ing data from a meta-analysis of  113 studies in healthy 
subjects by Mihas et al[74], an expert group attempted to 
standardize the test and recommended a fat tolerance test 
meal consisting of  75 g fat, 25 g carbohydrates and 10 g 
protein. Furthermore, the fatty test meal should contain 
mixtures of  saturated and unsaturated fatty acids in a di-
gestible form and be easy to prepare. The candidates for 
the test should have fasting triglycerides of  90-180 mg/
dL and the test can be shortened with the measurement 
of  the serum triglycerides at 4 h, with no need to reach a 
complete postprandial curve of  8 or 12 h[72]. 

POSTPRANDIAL LIPIDAEMIA AND PAD 
IN TYPE 2 DIABETES
Little attention has been given to the study of  postpran-
dial lipidaemia in patients with PAD. Only the elegant 
paper by Lupattelli et al[75] showed that the magnitude of  
postprandial lipidaemia, expressed as “the area under the 
incremental curve for triglycerides,” was higher in 16 non-
diabetic normolipidaemic claudicant patients with PAD 
than in 10 normolipidaemic control subjects, suggesting 
the relevance of  postprandial lipoprotein metabolism in 
the pathogenesis of  peripheral atherosclerosis. However, 
although normolipidaemic, the patients in Lupattelli’s 
study had slightly higher fasting triglycerides than their 
controls.

In recent years our group has studied the relation 
between lipids and postprandial particles, PAD and type 
2 diabetes mellitus. Firstly, the postprandial triglycerides 
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concentration of  postprandial triglycerides or apolipo-
protein B48 if  there was no PAD. As mentioned earlier, 
the case-control studies show an association between 
postprandial lipidaemia and cardiovascular disease, par-
ticularly coronary disease. 

An explication for this association was provided by 
Lupattelli et al[75]. Somehow, and following the hypothesis 
of  Zilversmit[80], the exposure of  the endothelium to 
greater concentrations of  postprandial particles favours 
the appearance of  arteriosclerotic lesions, in our case in 
the lower limbs. Though this hypothesis is the most plau-
sible, no causality can be deduced from the association 
studies. Accordingly, it is worth speculating about wheth-
er arteriosclerotic disease in the legs could alter chylomi-
cron metabolism, slowing it. With this in mind, consider-
ation should be given to the study by Horton et al[81], who 
showed that men have higher triglyceride concentrations 
than women because women posses a greater extractive 
capacity of  triglycerides in adipose and muscle tissues in 
the lower limbs when they undergo a fatty breakfast. For 
some reason the catabolism of  the chylomicrons in the 
legs is not negligible and an alteration in the circulation in 
the legs may worsen or slow this metabolism. 

The kinetics of  lipoproteins are marked by (1) their 
intestinal production; (2) hydrolysis of  their triglycer-
ides by the action of  lipoprotein-lipase anchored in the 
endothelium (but synthesised in adipose and muscle tis-
sue cells); and (3) removal of  chylomicron remnants by 
hepatic receptors. These steps are all modulated by the 
levels and genetic variants of  the apolipoproteins like C-
Ⅱ, C-Ⅲ, E, A-5[82,83]. As persons with arteriosclerosis, 
particularly those with PAD, have a marked endothelial 
dysfunction[84], it is possible to speculate that the action 
of  an enzyme anchored to the endothelium, as is the case 
of  lipoprotein lipase (LPL), is reduced. Given the great 
extension of  the endothelial surface in the legs (in com-
parison with coronary arteriosclerosis), established PAD 
might affect postprandial lipidaemia more intensely than 
coronary disease. 

If  this hypothesis were true, what would its mecha-
nism of  production be? The consequence of  arterioscle-
rosis is tissue ischaemia. This is usually manifested as in-
termittent claudication, though the tissues may experience 

hypoxia in earlier stages. Tissue hypoxia leads to changes 
in the endothelial cells (where the LPL are anchored) or 
in the production of  LPL (or its associated proteins) by 
adipose or muscle cells[85]. Cells submitted to hypoxia 
upregulate the expression of  hypoxia-inducible factor 1, 
a transcription factor that induces changes in innumer-
able target genes that were reviewed some time ago[86]. 
Of  note among these changes is the raised expression 
of  angiopoietin-like 4 protein (Angptl4) and vascular 
endothelial growth factor (VEGF). VEGF intervenes in 
the processes of  angiogenesis, much related with chronic 
ischaemia of  the lower limbs and the formation of  col-
lateral vessels. Angptl4 is a potent inhibitor of  LPL, the 
enzyme that intervenes critically in the first step of  the 
catabolism of  triglyceride-rich particles[87]. A recent ex-
perimental animal study showed that mice submitted to 
cyclic hypoxia experienced inhibition of  the catabolism 
of  triglyceride-rich lipoproteins as a consequence of  a 
drastic reduction in adipose tissue LPL activity, coupled 
with a notable increase in Angptl4[88] (Figure 1).

Taken together, these data suggest that postprandial 
hyperlipidaemia, a recognised vascular risk factor as-
sociated with obesity, the metabolic syndrome and type 
2 diabetes, could be aggravated by PAD, further expos-
ing other arterial territories to greater concentrations of  
postprandial atherogenic particles. Finally, if  the hypoxia 
were an underlying mechanism, it could be improved by 
percutaneous or surgical revascularization. 

ACKNOWLEDGMENTS
Authors would like to thank to Ian Johnstone for the 
English edition of  the manuscript.

REFERENCES
1 Guijarro C, Mostaza JM, Hernández-Mijares A. [Lower 

limb arterial disease and renal artery stenosis]. Clin Investig 
Arterioscler 2013; 25: 218-223 [PMID: 24238748 DOI: 10.1016/
j.arteri.2013.10.002]

2 Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris 
KA, Fowkes FG. Inter-Society Consensus for the Manage-
ment of Peripheral Arterial Disease (TASC II). J Vasc Surg 
2007; 45 Suppl S: S5-67 [PMID: 17223489 DOI: 10.1016/j.
jvs.2006.12.037]

3 Weitz JI, Byrne J, Clagett GP, Farkouh ME, Porter JM, Sack-
ett DL, Strandness DE, Taylor LM. Diagnosis and treatment 
of chronic arterial insufficiency of the lower extremities: 
a critical review. Circulation 1996; 94: 3026-3049 [PMID: 
8941154]

4 Leng GC, Fowkes FG. The Edinburgh Claudication Ques-
tionnaire: an improved version of the WHO/Rose Ques-
tionnaire for use in epidemiological surveys. J Clin Epidemiol 
1992; 45: 1101-1109 [PMID: 1474406 DOI: 10.1016/0895-4356
(92)90150-L]

5 Fowkes FG, Housley E, Cawood EH, Macintyre CC, Ruck-
ley CV, Prescott RJ. Edinburgh Artery Study: prevalence of 
asymptomatic and symptomatic peripheral arterial disease 
in the general population. Int J Epidemiol 1991; 20: 384-392 
[PMID: 1917239 DOI: 10.1093/ije/20.2.384]

6 Blanes JI, Cairols MA, Marrugat J. Prevalence of peripheral 
artery disease and its associated risk factors in Spain: The 
ESTIME Study. Int Angiol 2009; 28: 20-25 [PMID: 19190551]

581 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Obesity
Metabolic syndrome

Diabetes

??
Hypoxia
↑ HIF-1
↑ Angptl4
↓ LPL

Coronary heart disease

Carotid disease

Peripheral arterial
disease

↓ HDL chol

↑ Fasting Tg

↑ Postprandial
lipaemia

Figure 1  Proposed mechanism linking peripheral arterial disease and wors-
ening postprandial lipaemia. HIF-1: Hypoxia-induced factor 1; Angptl4: Angio-
poietin-like protein 4; LPL: Lipoprotein Lipase; HDL: high density lipoproteins.

Valdivielso P et al . Peripheral arterial disease and diabetes



7 Alonso I, Valdivielso P, Josefa Zamudio M, Sánchez Chap-
arro MA, Pérez F, Ramos H, González Santos P. [Usefulness 
of the ankle-arm index for detection of peripheral arterial 
disease in a working population of Junta de Andalucía at 
Málaga]. Med Clin (Barc) 2009; 132: 7-11 [PMID: 19174058 
DOI: 10.1016/j.medcli.2008.02.002]

8 Mancera-Romero J, Rodríguez-Morata A, Angel Sánchez-
Chaparro M, Sánchez-Pérez M, Paniagua-Gómez F, Hidalgo-
Conde A, Valdivielso P. Role of an intermittent claudication 
questionnaire for the diagnosis of PAD in ambulatory pa-
tients with type 2 diabetes. Int Angiol 2013; 32: 512-517 [PMID: 
23903311]

9 Diehm C, Allenberg JR, Pittrow D, Mahn M, Tepohl G, 
Haberl RL, Darius H, Burghaus I, Trampisch HJ. Mortality 
and vascular morbidity in older adults with asymptomatic 
versus symptomatic peripheral artery disease. Circulation 
2009; 120: 2053-2061 [PMID: 19901192 DOI: 10.1161/circula-
tionaha.109.865600]

10 Kieback AG, Lorbeer R, Wallaschofski H, Ittermann T, Völ-
zke H, Felix S, Dörr M. Claudication, in contrast to angina 
pectoris, independently predicts mortality risk in the general 
population. Vasa 2012; 41: 105-113 [PMID: 22403128 DOI: 
10.1024/0301-1526/a000172]

11 Inglis SC, Lewsey JD, Lowe GD, Jhund P, Gillies M, Stewart 
S, Capewell S, Macintyre K, McMurray JJ. Angina and in-
termittent claudication in 7403 participants of the 2003 Scot-
tish Health Survey: impact on general and mental health, 
quality of life and five-year mortality. Int J Cardiol 2013; 167: 
2149-2155 [PMID: 22704868]

12 Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber 
MR, McCann TJ, Browner D. Mortality over a period of 10 
years in patients with peripheral arterial disease. N Engl J 
Med 1992; 326: 381-386 [PMID: 1729621 DOI: 10.1056/NEJM1
99202063260605]

13 Allison MA, Hiatt WR, Hirsch AT, Coll JR, Criqui MH. A 
high ankle-brachial index is associated with increased car-
diovascular disease morbidity and lower quality of life. J 
Am Coll Cardiol 2008; 51: 1292-1298 [PMID: 18371562 DOI: 
10.1016/j.jacc.2007.11.064]

14 Guijarro C. Enfermedad arterial oclusiva en los estudios 
REACH, FRENA y AIRVAG. Anales de Cirugía Vascular 2009; 
23: 21-27 [DOI: 10.1016/S1130-2542(09)70813-0]

15 Criqui MH. Peripheral arterial disease--epidemiological as-
pects. Vasc Med 2001; 6: 3-7 [PMID: 11789963 DOI: 10.1177/13
58836X0100600i102]

16 Puras-Mallagray E, Gutiérrez-Baz M, Cáncer-Pérez S, Al-
fayate-García JM, de Benito-Fernández L, Perera-Sabio M, 
Criado-Galán F, Hernández-Mijares A. Estudio de prevalencia 
de la enfermedad arterial periférica y diabetes en Espa-a. An-
giologia 2008; 60: 317-326

17 Félix-Redondo FJ, Fernández-Bergés D, Grau M, Baena-Diez 
JM, Mostaza JM, Vila J. Prevalence and clinical character-
istics of peripheral arterial disease in the study population 
Hermex. Rev Esp Cardiol (Engl Ed) 2012; 65: 726-733 [PMID: 
22727799 DOI: 10.1016/j.recesp.2012.03.008]

18 Baena-Díez JM, Alzamora MT, Forés R, Pera G, Torán P, 
Sorribes M. Ankle-brachial index improves the classification 
of cardiovascular risk: PERART/ARTPER Study. Rev Esp 
Cardiol 2011; 64: 186-192 [PMID: 21330032 DOI: 10.1016/j.
recesp.2010.10.024]

19 Manzano L, Mostaza JM, Suárez C, Cairols M, Redondo R, 
Valdivielso P, Monte R, Blázquez JC, Ferreira EM, Trouillhet 
I, González-Igual JJ, Sánchez-Zamorano MA. [Value of the 
ankle-brachial index in cardiovascular risk stratification of 
patients without known atherotrombotic disease. MERITO 
study]. Med Clin (Barc) 2007; 128: 241-246 [PMID: 17335735 
DOI: 10.1157/13099239]

20 Manzano L, García-Díaz Jde D, Gómez-Cerezo J, Mateos J, 
del Valle FJ, Medina-Asensio J, Viejo LF, Fernández-Ball-
esteros A, Solís J, Herrero Domingo A, Ferreira E, Sánchez-

Fuentes D, Barragán JM, González-Moraleja J, Vargas JA, 
López-Jiménez M, Zamora J. [Clinical value of the ankle-
brachial index in patients at risk of cardiovascular disease 
but without known atherothrombotic disease: VITAMIN 
study]. Rev Esp Cardiol 2006; 59: 662-670 [PMID: 16938208 
DOI: 10.1157/13091367]

21 Ramos R, Quesada M, Solanas P, Subirana I, Sala J, Vila J, 
Masia R, Cerezo C, Elosua R, Grau M, Cordon F, Juvinya 
D, Fito M, Isabel Covas M, Clara A, Angel Munoz M, Mar-
rugat J, Investigators obotR. Prevalence of Symptomatic and 
Asymptomatic Peripheral Arterial Disease and the Value 
of the Ankle-brachial Index to Stratify Cardiovascular Risk. 
Eur J Vasc Endovasc Surg 2009; 38: 305-311 [DOI: 10.1016/j.
ejvs.2009.04.013]

22 Vicente I, Lahoz C, Taboada M, Laguna F, García-Iglesias 
F, Mostaza Prieto JM. [Ankle-brachial index in patients with 
diabetes mellitus: prevalence and risk factors]. Rev Clin Esp 
2006; 206: 225-229 [PMID: 16750105 DOI: 10.1157/13088561]

23 Carbayo JA, Divisón JA, Escribano J, López-Abril J, López de 
Coca E, Artigao LM, Martínez E, Sanchis C, Massó J, Carrión 
L. Using ankle-brachial index to detect peripheral arterial 
disease: prevalence and associated risk factors in a random 
population sample. Nutr Metab Cardiovasc Dis 2007; 17: 41-49 
[PMID: 17174225 DOI: 10.1016/j.numecd.2005.08.009]

24 González-Clemente JM, Piniés JA, Calle-Pascual A, Saave-
dra A, Sánchez C, Bellido D, Martín-Folgueras T, Moraga I, 
Recasens A, Girbés J, Sánchez-Zamorano MA, Mauricio D. 
Cardiovascular risk factor management is poorer in diabetic 
patients with undiagnosed peripheral arterial disease than in 
those with known coronary heart disease or cerebrovascular 
disease. Results of a nationwide study in tertiary diabetes 
centres. Diabet Med 2008; 25: 427-434 [PMID: 18341592 DOI: 
10.1111/j.1464-5491.2008.02402.x]

25 Bundó M, Aubà J, Vallés R, Torner O, Pérez AM, Massons 
J. [Peripheral arteriopathy in type 2 diabetes mellitus]. Aten 
Primaria 1998; 22: 5-11 [PMID: 9741155]

26 Almaraz MC, González-Romero S, Bravo M, Caballero FF, 
Palomo MJ, Vallejo R, Esteva I, Calleja F, Soriguer F. Inci-
dence of lower limb amputations in individuals with and 
without diabetes mellitus in Andalusia (Spain) from 1998 
to 2006. Diabetes Res Clin Pract 2012; 95: 399-405 [PMID: 
22133651 DOI: 10.1016/j.diabres.2011.10.035]

27 Aragón-Sánchez J, García-Rojas A, Lázaro-Martínez JL, 
Quintana-Marrero Y, Maynar-Moliner M, Rabellino M, 
Hernández-Herrero MJ, Cabrera-Galván JJ. Epidemiology of 
diabetes-related lower extremity amputations in Gran Ca-
naria, Canary Islands (Spain). Diabetes Res Clin Pract 2009; 86: 
e6-e8 [PMID: 19604593 DOI: 10.1016/j.diabres.2009.06.015]

28 Selvin E, Wattanakit K, Steffes MW, Coresh J, Sharrett AR. 
HbA1c and peripheral arterial disease in diabetes: the Ath-
erosclerosis Risk in Communities study. Diabetes Care 2006; 
29: 877-882 [PMID: 16567831 DOI: 10.2337/diacare.29.04.06.
dc05-2018]

29 Leibson CL, Ransom JE, Olson W, Zimmerman BR, O’fallon 
WM, Palumbo PJ. Peripheral arterial disease, diabetes, and 
mortality. Diabetes Care 2004; 27: 2843-2849 [PMID: 15562195 
DOI: 10.2337/diacare.27.12.2843]

30 Norman PE, Davis WA, Bruce DG, Davis TM. Peripheral 
arterial disease and risk of cardiac death in type 2 diabetes: 
the Fremantle Diabetes Study. Diabetes Care 2006; 29: 575-580 
[PMID: 16505509 DOI: 10.2337/diacare.29.03.06.dc05-1567]

31 Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral 
arterial disease in diabetic and nondiabetic patients: a com-
parison of severity and outcome. Diabetes Care 2001; 24: 
1433-1437 [PMID: 11473082 DOI: 10.2337/diacare.24.8.1433]

32 Layden J, Michaels J, Bermingham S, Higgins B. Diagnosis 
and management of lower limb peripheral arterial disease: 
summary of NICE guidance. BMJ 2012; 345: e4947 [PMID: 
22875949 DOI: 10.1136/bmj.e4947]

33 McDermott MM, Greenland P, Liu K, Guralnik JM, Criqui 

582 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Valdivielso P et al . Peripheral arterial disease and diabetes



MH, Dolan NC, Chan C, Celic L, Pearce WH, Schneider JR, 
Sharma L, Clark E, Gibson D, Martin GJ. Leg symptoms in 
peripheral arterial disease: associated clinical characteris-
tics and functional impairment. JAMA 2001; 286: 1599-1606 
[PMID: 11585483 DOI: 10.1001/jama.286.13.1599]

34 Rooke TW, Hirsch AT, Misra S, Sidawy AN, Beckman JA, 
Findeiss LK, Golzarian J, Gornik HL, Halperin JL, Jaff MR, 
Moneta GL, Olin JW, Stanley JC, White CJ, White JV, Zierler 
RE. 2011 ACCF/AHA focused update of the guideline for 
the management of patients with peripheral artery disease 
(updating the 2005 guideline): a report of the American Col-
lege of Cardiology Foundation/American Heart Association 
Task Force on Practice Guidelines: developed in collabora-
tion with the Society for Cardiovascular Angiography and 
Interventions, Society of Interventional Radiology, Society 
for Vascular Medicine, and Society for Vascular Surgery. J 
Vasc Surg 2011; 54: e32-e58 [PMID: 21958560 DOI: 10.1016/
j.jvs.2011.09.001]

35 Tendera M, Aboyans V, Bartelink ML, Baumgartner I, 
Clément D, Collet JP, Cremonesi A, De Carlo M, Erbel R, 
Fowkes FG, Heras M, Kownator S, Minar E, Ostergren J, 
Poldermans D, Riambau V, Roffi M, Röther J, Sievert H, van 
Sambeek M, Zeller T. ESC Guidelines on the diagnosis and 
treatment of peripheral artery diseases: Document covering 
atherosclerotic disease of extracranial carotid and vertebral, 
mesenteric, renal, upper and lower extremity arteries: the 
Task Force on the Diagnosis and Treatment of Peripheral 
Artery Diseases of the European Society of Cardiology 
(ESC). Eur Heart J 2011; 32: 2851-2906 [PMID: 21873417 DOI: 
10.1093/eurheartj/ehr211]

36 Aboyans V, Criqui MH, Abraham P, Allison MA, Crea-
ger MA, Diehm C, Fowkes FG, Hiatt WR, Jönsson B, La-
croix P, Marin B, McDermott MM, Norgren L, Pande RL, 
Preux PM, Stoffers HE, Treat-Jacobson D. Measurement 
and interpretation of the ankle-brachial index: a scientific 
statement from the American Heart Association. Circula-
tion 2012; 126: 2890-2909 [PMID: 23159553 DOI: 10.1161/
CIR.0b013e318276fbcb]

37 Arain FA, Ye Z, Bailey KR, Chen Q, Liu G, Leibson CL, 
Kullo IJ. Survival in patients with poorly compressible leg 
arteries. J Am Coll Cardiol 2012; 59: 400-407 [PMID: 22261162 
DOI: 10.1016/j.jacc.2011.09.055]

38 Williams DT, Harding KG, Price P. An evaluation of the ef-
ficacy of methods used in screening for lower-limb arterial 
disease in diabetes. Diabetes Care 2005; 28: 2206-2210 [PMID: 
16123491 DOI: 10.2337/diacare.28.9.2206]

39 Potier L, Halbron M, Bouilloud F, Dadon M, Le Doeuff J, Ha 
Van G, Grimaldi A, Hartemann-Heurtier A. Ankle-to-bra-
chial ratio index underestimates the prevalence of peripheral 
occlusive disease in diabetic patients at high risk for arterial 
disease. Diabetes Care 2009; 32: e44 [PMID: 19336632 DOI: 
10.2337/dc08-2015]

40 Rodriguez-Morata A, Jiménez-Moleón J, Cuenca-Manteca 
J, Fernández-Quesada F, Ros-Vidal R, Gómez-Medialdea 
R, Ros-Díe E. Sensibilidad, especificidad y fiabilidad de la 
ecografía Doppler arterial en el diagnóstico de la isquemia 
crítica de los miembros inferiores con relación a la arterio-
grafía. Angiología 2007; 59: 121-127 [DOI: 10.1016/S0003-3170
(07)75035-6]

41 Potier L, Abi Khalil C, Mohammedi K, Roussel R. Use and 
utility of ankle brachial index in patients with diabetes. Eur 
J Vasc Endovasc Surg 2011; 41: 110-116 [PMID: 21095144 DOI: 
10.1016/j.ejvs.2010.09.020]

42 American Diabetes Association. Executive summary: Stan-
dards of medical care in diabetes--2012. Diabetes Care 2012; 
35 Suppl 1: S4-S10 [PMID: 22187471 DOI: 10.2337/dc12-s004]

43 O’Neal DN, Lewicki J, Ansari MZ, Matthews PG, Best JD. 
Lipid levels and peripheral vascular disease in diabetic and 
non-diabetic subjects. Atherosclerosis 1998; 136: 1-8 [PMID: 
9544725 DOI: 10.1016/s0021-9150(97)00175-5]

44 Seeger JM, Silverman SH, Flynn TC, Bailey JC, Klingman 
NV, Lawson GA, Borgeson MD, Barratt EJ. Lipid risk factors 
in patients requiring arterial reconstruction. J Vasc Surg 1989; 
10: 418-424 [PMID: 2795767 DOI: 10.1016/0741-5214(89)9041
6-3]

45 Wang T, Elam MB, Forbes WP, Zhong J, Nakajima K. Reduc-
tion of remnant lipoprotein cholesterol concentrations by 
cilostazol in patients with intermittent claudication. Athero-
sclerosis 2003; 171: 337-342 [PMID: 14644405 DOI: 10.1016/
j.atherosclerosis.2003.08.017]

46 Bainton D, Sweetnam P, Baker I, Elwood P. Peripheral vas-
cular disease: consequence for survival and association with 
risk factors in the Speedwell prospective heart disease study. 
Br Heart J 1994; 72: 128-132 [PMID: 7917683 DOI: 10.1136/
hrt.72.2.128]

47 Sentí M, Nogués X, Pedro-Botet J, Rubiés-Prat J, Vidal-
Barraquer F. Lipoprotein profile in men with peripheral vas-
cular disease. Role of intermediate density lipoproteins and 
apoprotein E phenotypes. Circulation 1992; 85: 30-36 [PMID: 
1728461 DOI: 10.1161/01.CIR.85.1.30]

48 Rizzo M, Pernice V, Frasheri A, Berneis K. Atherogenic lipo-
protein phenotype and LDL size and subclasses in patients 
with peripheral arterial disease. Atherosclerosis 2008; 197: 
237-241 [PMID: 17485096 DOI: 10.1016/j.atherosclerosis.2007.
03.034]

49 Price JF, Mowbray PI, Lee AJ, Rumley A, Lowe GD, Fowkes 
FG. Relationship between smoking and cardiovascular risk 
factors in the development of peripheral arterial disease and 
coronary artery disease: Edinburgh Artery Study. Eur Heart J 
1999; 20: 344-353 [PMID: 10206381]

50 Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, 
Pyörälä K. 5-year incidence of atherosclerotic vascular disease 
in relation to general risk factors, insulin level, and abnor-
malities in lipoprotein composition in non-insulin-dependent 
diabetic and nondiabetic subjects. Circulation 1990; 82: 27-36 
[PMID: 2194696 DOI: 10.1161/01.cir.82.1.27]

51 Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for 
systemic atherosclerosis: a comparison of C-reactive protein, 
fibrinogen, homocysteine, lipoprotein(a), and standard cho-
lesterol screening as predictors of peripheral arterial disease. 
JAMA 2001; 285: 2481-2485 [PMID: 11368701 DOI: 10.1001/ja
ma.285.19.2481]

52 Wattanakit K, Folsom AR, Selvin E, Weatherley BD, Pankow 
JS, Brancati FL, Hirsch AT. Risk factors for peripheral arterial 
disease incidence in persons with diabetes: the Atherosclero-
sis Risk in Communities (ARIC) Study. Atherosclerosis 2005; 
180: 389-397 [PMID: 15910867 DOI: 10.1016/j.atherosclerosis.
2004.11.024]

53 Roche HM, Gibney MJ. Postprandial triacylglycerolaemia-
-nutritional implications. Prog Lipid Res 1995; 34: 249-266 
[PMID: 8685241 DOI: 10.1016/0163-7827(95)00012-O]

54 Roche HM, Zampelas A, Jackson KG, Williams CM, Gib-
ney MJ. The effect of test meal monounsaturated fatty acid: 
saturated fatty acid ratio on postprandial lipid metabolism. 
Br J Nutr 1998; 79: 419-424 [PMID: 9682660 DOI: 10.1079/
BJN19980071]

55 Goldberg IJ, Eckel RH, McPherson R. Triglycerides and 
heart disease: still a hypothesis? Arterioscler Thromb Vasc 
Biol 2011; 31: 1716-1725 [PMID: 21527746 DOI: 10.1161/at-
vbaha.111.226100]

56 Fogelstrand P, Borén J. Retention of atherogenic lipoproteins 
in the artery wall and its role in atherogenesis. Nutr Metab 
Cardiovasc Dis 2012; 22: 1-7 [PMID: 22176921 DOI: 10.1016/
j.numecd.2011.09.007]

57 Stalenhoef AF, de Graaf J. Association of fasting and non-
fasting serum triglycerides with cardiovascular disease and 
the role of remnant-like lipoproteins and small dense LDL. 
Curr Opin Lipidol 2008; 19: 355-361 [PMID: 18607182 DOI: 
10.1097/MOL.0b013e328304b63c]

58 Proctor SD, Mamo JC. Intimal retention of cholesterol de-

583 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Valdivielso P et al . Peripheral arterial disease and diabetes



rived from apolipoprotein B100- and apolipoprotein B48-
containing lipoproteins in carotid arteries of Watanabe 
heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc 
Biol 2003; 23: 1595-1600 [PMID: 12842838 DOI: 10.1161/01.
ATV.0000084638.14534.0A]

59 Karpe F, de Faire U, Mercuri M, Bond MG, Hellénius ML, 
Hamsten A. Magnitude of alimentary lipemia is related to 
intima-media thickness of the common carotid artery in 
middle-aged men. Atherosclerosis 1998; 141: 307-314 [PMID: 
9862179 DOI: 10.1016/S0021-9150(98)00184-1]

60 Groot PH, van Stiphout WA, Krauss XH, Jansen H, van Tol 
A, van Ramshorst E, Chin-On S, Hofman A, Cresswell SR, 
Havekes L. Postprandial lipoprotein metabolism in normo-
lipidemic men with and without coronary artery disease. 
Arterioscler Thromb 1991; 11: 653-662 [PMID: 2029503 DOI: 
10.1161/01.ATV.11.3.653]

61 Patsch JR, Miesenböck G, Hopferwieser T, Mühlberger V, 
Knapp E, Dunn JK, Gotto AM, Patsch W. Relation of triglyc-
eride metabolism and coronary artery disease. Studies in the 
postprandial state. Arterioscler Thromb 1992; 12: 1336-1345 
[PMID: 1420093 DOI: 10.1161/01.ATV.12.11.1336]

62 Lopez-Miranda J, Williams C, Lairon D. Dietary, physiologi-
cal, genetic and pathological influences on postprandial lipid 
metabolism. Br J Nutr 2007; 98: 458-473 [PMID: 17705891 
DOI: 10.1017/S000711450774268X]

63 Reyes-Soffer G, Holleran S, Karmally W, Ngai CI, Chen NT, 
Torres M, Ramakrishnan R, Blaner WS, Berglund L, Gins-
berg HN, Tuck C. Measures of postprandial lipoproteins are 
not associated with coronary artery disease in patients with 
type 2 diabetes mellitus. J Lipid Res 2009; 50: 1901-1909 [PMID: 
19429886 DOI: 10.1194/jlr.M900092-JLR200]

64 Werner C, Filmer A, Fritshc M, Groenewald S, Gräber S, 
Böhm M, Laufs U. Prospective evaluation of post-prandial 
triglycerides and cardiovascular events in patients with cor-
onary artery disease. The Homburg Cream and Sugar Study 
(HCS), 2011

65 Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. 
Fasting compared with nonfasting triglycerides and risk of 
cardiovascular events in women. JAMA 2007; 298: 309-316 
[PMID: 17635891 DOI: 10.1001/jama.298.3.309]

66 Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen 
A. Nonfasting triglycerides and risk of myocardial infarc-
tion, ischemic heart disease, and death in men and women. 
JAMA 2007; 298: 299-308 [PMID: 17635890 DOI: 10.1001/
jama.298.3.299]

67 Eberly LE, Stamler J, Neaton JD. Relation of triglyceride 
levels, fasting and nonfasting, to fatal and nonfatal coronary 
heart disease. Arch Intern Med 2003; 163: 1077-1083 [PMID: 
12742806 DOI: 10.1001/archinte.163.9.1077]

68 Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks 
FM, Hennekens CH. A prospective study of triglyceride 
level, low-density lipoprotein particle diameter, and risk 
of myocardial infarction. JAMA 1996; 276: 882-888 [PMID: 
8782637 DOI: 10.1001/jama.1996.03540110036029]

69 Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Ware-
ham N, Bingham S, Boekholdt SM, Khaw KT, Gudnason V. 
Triglycerides and the risk of coronary heart disease: 10,158 
incident cases among 262,525 participants in 29 Western 
prospective studies. Circulation 2007; 115: 450-458 [PMID: 
17190864 DOI: 10.1161/CIRCULATIONAHA.106.637793]

70 Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, 
Thompson A, Wood AM, Lewington S, Sattar N, Packard 
CJ, Collins R, Thompson SG, Danesh J. Major lipids, apo-
lipoproteins, and risk of vascular disease. JAMA 2009; 302: 
1993-2000 [PMID: 19903920 DOI: 10.1001/jama.2009.1619]

71 Jellinger PS, Smith DA, Mehta AE, Ganda O, Handelsman 
Y, Rodbard HW, Shepherd MD, Seibel JA. American Asso-
ciation of Clinical Endocrinologists’ Guidelines for Manage-
ment of Dyslipidemia and Prevention of Atherosclerosis. 
Endocr Pract 2012; 18 Suppl 1: 1-78 [PMID: 22522068]

72 Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, Nordest-
gaard BG, Ooi TC, Perez-Martinez P, Bilianou H, Anag-
nostopoulou K, Panotopoulos G. Assessment and clinical 
relevance of non-fasting and postprandial triglycerides: an 
expert panel statement. Curr Vasc Pharmacol 2011; 9: 258-270 
[PMID: 21314632 DOI: 10.2174/157016111795495549]

73 Langsted A, Nordestgaard BG. Nonfasting lipids, lipopro-
teins, and apolipoproteins in individuals with and without 
diabetes: 58 434 individuals from the Copenhagen Gen-
eral Population Study. Clin Chem 2011; 57: 482-489 [PMID: 
21189274 DOI: 10.1373/clinchem.2010.157164]

74 Mihas C, Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, 
Nordestgaard BG, Ooi TC, Perez-Martinez P, Bilianou H, 
Anagnostopoulou K, Panotopoulos G. Diagnostic value 
of postprandial triglyceride testing in healthy subjects: a 
meta-analysis. Curr Vasc Pharmacol 2011; 9: 271-280 [PMID: 
21314631 DOI: 10.2174/157016111795495530]

75 Lupattelli G, Pasqualini L, Siepi D, Marchesi S, Pirro M, 
Vaudo G, Ciuffetti G, Mannarino E. Increased postprandial 
lipemia in patients with normolipemic peripheral arterial 
disease. Am Heart J 2002; 143: 733-738 [PMID: 11923813 DOI: 
10.1067/mhj.2002.120302]

76 Valdivielso P, Hidalgo A, Rioja J, Aguilar I, Ariza MJ, 
González-Alegre T, González-Santos P. Smoking and post-
prandial triglycerides are associated with vascular disease 
in patients with type 2 diabetes. Atherosclerosis 2007; 194: 
391-396 [PMID: 16996523]

77 Valdivielso P, Puerta S, Rioja J, Alonso I, Ariza MJ, Sánchez-
Chaparro MA, Palacios R, González-Santos P. Postprandial 
apolipoprotein B48 is associated with asymptomatic periph-
eral arterial disease: a study in patients with type 2 diabe-
tes and controls. Clin Chim Acta 2010; 411: 433-437 [PMID: 
20059992 DOI: 10.1016/j.cca.2009.12.022]

78 Mancera-Romero J, Sánchez-Chaparro MA, Rioja J, Ariza 
MJ, Olivecrona G, González-Santos P, Valdivielso P. Fasting 
apolipoprotein B48 is a marker for peripheral arterial disease 
in type 2 diabetes. Acta Diabetol 2013; 50: 383-389 [PMID: 
23053881 DOI: 10.1007/s00592-012-0434-x]

79 Lapice E, Cipriano P, Patti L, Romano G, Vaccaro O, Rivellese 
AA. Fasting apolipoprotein B48 is associated with asymp-
tomatic peripheral arterial disease in type 2 diabetic subjects: 
a case-control study. Atherosclerosis 2012; 223: 504-506 [PMID: 
22762727 DOI: 10.1016/j.atherosclerosis.2012.05.038]

80 Zilversmit DB. Atherogenesis: a postprandial phenomenon. 
Circulation 1979; 60: 473-485 [PMID: 222498 DOI: 10.1161/01.
CIR.60.3.473]

81 Horton TJ, Commerford SR, Pagliassotti MJ, Bessesen 
DH. Postprandial leg uptake of triglyceride is greater in 
women than in men. Am J Physiol Endocrinol Metab 2002; 283: 
E1192-E1202 [PMID: 12424104]

82 Ariza MJ, Sánchez-Chaparro MA, Barón FJ, Hornos AM, 
Calvo-Bonacho E, Rioja J, Valdivielso P, Gelpi JA, González-
Santos P. Additive effects of LPL, APOA5 and APOE variant 
combinations on triglyceride levels and hypertriglyceride-
mia: results of the ICARIA genetic sub-study. BMC Med Genet 
2010; 11: 66 [PMID: 20429872 DOI: 10.1186/1471-2350-11-66]

83 Coca-Prieto I, Kroupa O, Gonzalez-Santos P, Magne J, Ol-
ivecrona G, Ehrenborg E, Valdivielso P. Childhood-onset 
chylomicronaemia with reduced plasma lipoprotein lipase 
activity and mass: identification of a novel GPIHBP1 muta-
tion. J Intern Med 2011; 270: 224-228 [PMID: 21314738 DOI: 
10.1111/j.1365-2796.2011.02361.x]

84 Brevetti G, Schiano V, Chiariello M. Endothelial dysfunc-
tion: a key to the pathophysiology and natural history of pe-
ripheral arterial disease? Atherosclerosis 2008; 197: 1-11 [PMID: 
18076886]

85 Martorell L, Gentile M, Rius J, Rodríguez C, Crespo J, Badi-
mon L, Martínez-González J. The hypoxia-inducible factor 
1/NOR-1 axis regulates the survival response of endothelial 
cells to hypoxia. Mol Cell Biol 2009; 29: 5828-5842 [PMID: 

584 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Valdivielso P et al . Peripheral arterial disease and diabetes



19720740 DOI: 10.1128/mcb.00945-09]
86 Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye 

SQ, Garcia JG, Semenza GL. Transcriptional regulation of 
vascular endothelial cell responses to hypoxia by HIF-1. 
Blood 2005; 105: 659-669 [PMID: 15374877 DOI: 10.1182/bloo
d-2004-07-2958]

87 Lichtenstein L, Kersten S. Modulation of plasma TG lipolysis 
by Angiopoietin-like proteins and GPIHBP1. Biochim Biophys 
Acta 2010; 1801: 415-420 [PMID: 20056168 DOI: 10.1016/j.bb-
alip.2009.12.015]

88 Drager LF, Li J, Shin MK, Reinke C, Aggarwal NR, Jun 

JC, Bevans-Fonti S, Sztalryd C, O’Byrne SM, Kroupa O, 
Olivecrona G, Blaner WS, Polotsky VY. Intermittent hypoxia 
inhibits clearance of triglyceride-rich lipoproteins and inac-
tivates adipose lipoprotein lipase in a mouse model of sleep 
apnoea. Eur Heart J 2012; 33: 783-790 [PMID: 21478490 DOI: 
10.1093/eurheartj/ehr097]

89 Ena J, Argente CR, Molina M, Gonzalez-Sanchez V, Alva-
rez CE, Lozano T. Infradiagnóstico de enfermedad arterial 
periférica en pacientes con diabetes mellitus atendidos en 
consultas de segundo nivel. Avances en Diabetología 2013; 29: 
175-181 [DOI: 10.1016/j.avdiab.2013.08.002]

P- Reviewer: Barzilay JI, Neri V, Tarantino G    S- Editor: Wen LL    
L- Editor: A    E- Editor: Liu SQ  

585 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Valdivielso P et al . Peripheral arterial disease and diabetes



cytokines, chemokines, and other immune-mediated 
mechanisms. Few data have been reported on the as-
sociation of CHC and T1DM and reports on the poten-
tial association between T1DM and acute HCV infection 
are even rarer. A small number of studies indicate that 
interferon-α therapy can stimulate pancreatic autoim-
munity and in certain cases lead to the development 
of T1DM. Diabetes and CHC have important interac-
tions. Diabetic CHC patients have an increased risk 
of developing cirrhosis and hepatocellular carcinoma 
compared with non-diabetic CHC subjects. However, 
clinical trials on HCV-positive patients have reported 
improvements in glucose metabolism after antiviral 
treatment. Further studies are needed to improve pre-
vention policies and to foster adequate and cost-effec-
tive programmes for the surveillance and treatment of 
diabetic CHC patients.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Many studies have shown an association be-
tween type 2 diabetes mellitus (T2DM) and chronic 
hepatitis C (CHC) infection. The processes through 
which CHC is associated with T2DM seem to involve di-
rect viral effects, insulin resistance, proinflammatory cy-
tokines, and chemokines. Few data have been reported 
on the association of CHC and T1DM. A small number 
of studies indicate that interferon-α therapy can induce 
T1DM. Diabetic CHC patients have an increased risk of 
developing cirrhosis and hepatocellular carcinoma com-
pared with non-diabetics. Clinical trials on hepatitis C 
virus-positive patients have reported improvements in 
glucose metabolism after antiviral treatment. 
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Abstract 
Hepatitis C virus (HCV) infection and diabetes mel-
litus are two major public health problems that cause 
devastating health and financial burdens worldwide. 
Diabetes can be classified into two major types: type 
1 diabetes mellitus (T1DM) and T2DM. T2DM is a 
common endocrine disorder that encompasses mul-
tifactorial mechanisms, and T1DM is an immunologi-
cally mediated disease. Many epidemiological studies 
have shown an association between T2DM and chronic 
hepatitis C (CHC) infection. The processes through 
which CHC is associated with T2DM seem to involve 
direct viral effects, insulin resistance, proinflammatory 
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INTRODUCTION
Hepatitis C virus (HCV) infection and diabetes mellitus 
(DM) are two major public health problems that cause 
devastating health and financial burdens worldwide[1,2]. 
Diabetes can be classified into two major types: type 1 
(T1DM) and T2DM[3,4]. T2DM is a common endocrine 
disorder that encompasses multifactorial mechanisms. 
These mechanisms include resistance to the action of  in-
sulin, increased hepatic glucose production, and a defect 
in insulin secretion, all of  which contribute to the devel-
opment of  overt hyperglycaemia[5]. T1DM is an immuno-
logically mediated disease. Prevention and treatment of  
T1DM are hampered by the fact that the key immunolog-
ical mechanisms of  the pathogenesis of  the disease are 
still under debate[6,7]. However, a Th1 immune response 
is involved in β-cell destruction[8] and the importance of  
islet autoantibodies has been highlighted[9-11].

Chronic hepatitis C (CHC) infection has a global 
prevalence of  2%-3%. Approximately 170 million people 
are thought to be currently infected (approximately 3% 
of  the world’s population), and an additional 3-4 million 
are infected each year[12,13]. HCV is the main reason for 
liver transplantation in the developed world and the main 
cause of  liver-related morbidity and mortality in a num-
ber of  countries, including Italy. This virus is not only a 
frequent cause of  chronic liver diseases, including hepa-
titis, cirrhosis, and hepatocellular carcinoma (HCC), but 
it is also involved in the pathogenesis of  various autoim-
mune and rheumatic disorders (e.g., arthritis, vasculitis, 
sicca syndrome, porphyria cutanea tarda, lichen planus, 
nephropathies, and lung fibrosis) and in the development 
of  B-cell lymphoproliferative diseases[14,15]. 

CHC is a multifaceted disorder that is associated with 
extrahepatic manifestations, including endocrinological 
disorders, thyroid disorders and diabetes[16,17].

In this paper, we review the increasing evidence linking 
HCV infection and DM in multiple fields (epidemiology, 
pathogenesis, clinical aspects, prevention, and treatment).

RELATIONSHIP BETWEEN CHC AND THE 
DEVELOPMENT OF T2DM
Origins of the hypothesis and epidemiological data in 
the general population
The liver plays an important role in carbohydrate me-
tabolism, and liver diseases such as chronic hepatitis and 
cirrhosis are associated with a higher prevalence of  dis-

turbed glucose homeostasis, impaired glucose tolerance, 
and insulin resistance (IR)[18,19], which can eventually lead 
to DM[20-23]. Asymptomatic, moderate serum aminotrans-
ferase elevation has frequently been found in patients 
with DM, particularly in those with T2DM[24,25]. This phe-
nomenon has often been related to fatty infiltration of  
the liver without further investigation[26,27]. In particular, 
steatosis has been related to IR and T2DM, beyond intra-
cellular fat accumulation[28].

Liver fibrosis progression has also long been consid-
ered to be responsible for the development of  IR and 
T2DM in patients with chronic liver diseases[29]. However, 
diabetes often occurs in the early stages of  liver disease[30]. 

The aetiological factors that underlie the development 
of  glucose homeostasis alterations were initially thought 
to be exclusively related to general long-term hepatocyte 
damage. However, later studies showed that patients with 
hepatitis B virus infection have a lower prevalence of  
T2DM compared with HCV-infected patients[31,32]. Thus, 
the question is as follows: “Does HCV infection itself  
have diabetogenic action?”

Since the discovery of  HCV in 1989, attention has 
been paid to the association of  CHC with the develop-
ment of  DM. Additionally from 1994[33] until now, several 
epidemiological studies on the seroprevalence of  HCV 
have shown higher prevalences in diabetic patients than 
in controls (Figure 1). Moreover, analyses have shown a 
higher prevalence of  DM in patients who are seropositive 
for HCV than in controls without HCV infection. 

To analyse the epidemiological data, we searched 
for published studies in the PubMed database, covering 
the period from 1994 to December 2012. The literature 
search was performed using combinations of  the terms 
“diabetes”, “diabetes mellitus”, “type 2 diabetes mellitus”, 
“T2DM”, “type 2 DM”, “non-insulin dependent diabe-
tes”, or “NIDDM”; “hepatitis”, “hepatitis C”, “hepatitis 
C virus”, “HCV”, “HVC”, or “chronic hepatitis”; and 
“risk”, “risk factor”, “case-control”, “cohort”, “clinical 
trial”, “cross sectional”, “epidemiology”, “observational”, 
“meta-analysis”, “systematic review”, or “review”. For 
epidemiological studies, we only searched human studies 
and publications in English and Italian, the languages un-
derstood by the authors.

The data represent a very heterogeneous popula-
tion regarding gender, age, and ethnic group. Globally, 
approximately seventy studies are in agreement with an 
association[18,26,30-96], although not all of  them have shown 
significant data. However, some of  the non-significant 
data may be attributed to small sample sizes and other 
methodological factors (Figure 1).

Certain negative data that are not in agreement with 
an association between HCV infection and T2DM have 
also been reported[97-104]. However, the number of  pub-
lished epidemiological studies that are in agreement with 
the association between HCV infection and T2DM is 
higher than the number of  studies in disagreement with 
this hypothesis.
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HCV INFECTION AND T2DM 
ASSOCIATION: PATHOGENESIS
Direct effects of HCV and IR
HCV is hepatotropic and noncytopathic; nevertheless, 
its genome has been identified in a number of  tissues 
beyond the liver, including pancreatic acinar cells and epi-
thelial cells of  the pancreatic duct[105,106]. Although post-
mortem studies have revealed that HCV replicates in the 
pancreas[107] and animal models have suggested a direct 
effect of  HCV infection on IR in the liver[108], the evi-
dence is scanty. 

Of  interest are the roles of  structural and non-str-
uctural HCV proteins. HCV has an RNA genome of  9.6 
kb that encodes approximately 3010 amino acids and is 
translated into structural (core, E1, and E2) and non-
structural (NS3-NS5B) proteins. These proteins play a 
role in the development of  IR and oxidative stress via re-
active oxygen species at the cellular level[109-113]. The HCV 
core protein, alone or in combination with other viral 
proteins, increases phosphorylation of  insulin receptor 
substrate-1 (IRS-1), which is the basis of  IR[114-116]. Phos-
phorylated IRS-1 activates phosphatidylinositol 3-kinase 
(PI3K)[117,118], and the activation of  PI3K and one of  
its downstream targets, Akt, is essential for most of  the 
metabolic effects of  insulin[119-126]. Therefore, defects at 
the level of  the association of  PI3K with IRS-1 and a 
lack of  PI3K activation may contribute to IR and the in-
creased prevalence of  diabetes in HCV-infected patients. 
Indeed, this mechanism ultimately promotes glucose 
transporter-4 translocation to the plasma membrane to 
enhance glucose uptake[127,128]. Within the IR mechanism 
impairment of  the activation of  Akt/PKB is the key step 
that can inhibit glucose uptake[30,129,130].

The detailed molecular events leading to IR in HCV-
infected patients are, however, unclear. Recent evidence 
supports the existence of  a significant extrahepatic com-
ponent of  HCV-induced IR. Thus, the molecular patho-
genesis of  the glucose metabolism disturbances observed 
in hepatitis C is much more complex than expected[131]. 

Recently, Eslam et al[132] showed that polymorphisms 
in the IFNL3 (IL28B) region are associated with sponta-
neous and treatment-induced recovery from HCV infec-
tion. Furthermore, circumstantial evidence suggests a link 
between single-nucleotide polymorphisms in IFNL3 and 
lipid metabolism, steatosis, and IR in CHC. The emerging 
picture suggests that the responder genotypes of  IFNL3 
polymorphisms are associated with higher serum lipid 
levels and less frequent steatosis and IR[132]. 

HCV-induced immune responses; cytokines, 
chemokines-mediated effects 
Viral innate immune evasion strategies and human ge-
netic determinants underlie the transition of  acute HCV 
infection into viral persistence and chronic infection. 
Host genetic factors can influence both the outcome of  
the infection and the response to antiviral therapy. Recent 
insights into how HCV regulates immune signalling with-
in the liver reveal a complex interaction of  the patient’s 
genetic background with viral and host factors related to 
the innate immune triggering and control that dictate the 
outcome of  HCV infection and immunity[133]. 

Beyond the direct effects of  HCV on IRS-1/PI3K, 
the HCV core protein may induce IR indirectly via stimu-
lation of  the secretion of  proinflammatory cytokines[115]. 
In patients with CHC, most likely due to HCV-induced 
inflammation, there is hypersecretion of  insulin-resistant 
proinflammatory cytokines such as interleukin (IL)-6 and 
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Figure 1  Patients seropositive for hepatitis C virus show a higher prevalence of diabetes mellitus than healthy controls. Twelve representative epidemiologi-
cal studies demonstrated a relationship between HCV infection and the development of type 2 diabetes mellitus (T2DM). Analyses have shown a higher prevalence 
of diabetes mellitus in patients who are seropositive for HCV than in controls. bP < 0.001, T2DM in HCV+ pts vs T2DM  in control subjects. HCV+: Hepatitis C virus-
infected; pts: Patients.
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volvement of  a process of  molecular mimicry as a trigger 
of  HCV-related autoimmunity[154,155]. Indeed, glutamic acid 
decarboxylase (GAD) 65 shares amino acid sequence simi-
larities with antigenic regions of  the HCV polyprotein[156]. 
Of  interest, HCV/self-homologous autoantigenic regions 
are also mimicked by other microbial agents. Such mimics 
may give rise to β-cell autoimmunity through a multiple-hit 
mechanism of  molecular mimicry[154,155,157]. Cross-reactive 
immunity does not exclude the possible involvement of  
additional factors, such as proinflammatory cytokines, 
which may act in concert, leading to the development and/
or maintenance of  pancreatic autoimmunity during acute 
HCV infection[156]. Another possibility is the induction of  
antibody reactivity against GAD and the development of  
full-blown diabetes, mediated by IL-18 and other proin-
flammatory cytokines. In particular, IL-18 is presumed to 
play a pathogenetic role in T1DM, specifically because this 
cytokine appears to be involved in acceleration of  the de-
velopment of  overt disease[152,158-160]. IL-18 can induce both 
Th1 and Th2 responses, depending on the surrounding 
cytokines[161], and this cytokine plays a pathogenic role in 
several diseases[161], including acute hepatic injury[162]. Other 
proinflammatory cytokines, such as TNF-α and IL-1β, 
which are elevated in patients with acute hepatitis[163], can 
also induce autoimmune diabetes[164-167].

OTHER IMMUNE ASPECTS OF HCV 
ASSOCIATED WITH T1DM OR T2DM
Immune aspects have been reported in both T1DM and 
T2DM, and based on the immunology, it is clear that 
the lines separating T1DM from latent autoimmune 
diabetes in adults (LADA) and T2DM are not well delin-
eated[10,11,16,37,145,168-170].

The type of  diabetes manifested by patients with 
CHC is not classical T2DM, and the labelling of  HCV 
patients as having T2DM is purely conventional and pos-
sibly inaccurate. The lines separating T1DM from LADA 
and T2DM are fading away as new pathogenetic informa-
tion is obtained[170]. 

Three studies have reported[37,38,171] that HCV pa-
tients with T2DM are leaner than T2DM controls 
and show significantly lower low-density lipoprotein-
cholesterol levels and systolic and diastolic blood pres-
sures. Furthermore, patients with HCV-associated mixed 
cryoglobulinaemia (MC + HCV) and T2DM had non-
organ-specific autoantibodies more frequently (34% vs 
18%, respectively) than did non-diabetic MC + HCV 
patients[37]. An immune-mediated mechanism for MC 
+ HCV-associated diabetes has been postulated[37], and 
a similar pathogenesis might be involved in diabetes in 
HCV patients. This hypothesis is strengthened by the 
finding that autoimmune phenomena are more common 
in T2DM patients than previously thought[10]. However, 
as the prevalence of  classic β-cell autoimmune mark-
ers is not increased in HCV patients[70], other immune 
phenomena might be involved[168]. Chemokines could be 
important in this context. In fact, in children with newly 

tumour necrosis factor (TNF)-α[134-138]. Proinflammatory 
cytokines also upregulate suppressors of  cytokine signal-
ling proteins as part of  a negative feedback loop to at-
tenuate cytokine signalling[139,140]. This phenomenon may 
contribute to increased gluconeogenesis due to a lack of  
Akt-mediated inhibition of  phosphoenolpyruvate car-
boxykinase gene expression. In this context, it is interest-
ing to note that leptin can modulate the action of  insulin 
in liver cells by antagonising insulin-stimulated IRS-1 ty-
rosine phosphorylation, increasing phosphoenolpyruvate 
carboxykinase gene expression, and decreasing glucoki-
nase expression, which results in increased gluconeogen-
esis[141]. Together with the increase in gluconeogenesis, 
the enhanced production and accumulation of  lipids me-
diated by inhibition of  the AMP-activated protein kinase 
occur after HCV infection[142]. Additionally TNF-α plays 
a role in lipid metabolism. Indeed, the lipolysis-stimulat-
ing effect of  TNF-α leads to increased serum levels of  
free fatty acids, which reduces insulin sensitivity[143,144].

Cytokines are intercellular mediators involved in vi-
ral control and in the liver damage induced by infection 
with HCV. The complex cytokine network that operates 
during the initial infection allows the coordinated, effec-
tive development of  both the innate and the adaptive 
immune responses. However, HCV interferes with cyto-
kines at various levels and escapes the immune response 
by inducing a Th2/T cytotoxic 2 cytokine profile. The 
inability to control infection leads to the recruitment 
of  inflammatory infiltrates into the liver parenchyma 
by interferon (IFN)-γ-inducible CXC chemokine li-
gand (CXCL)9, CXCL10, and CXCL11, which result 
in sustained liver damage and eventually liver cirrhosis. 
The most important systemic HCV-related extrahepatic 
diseases (mixed cryoglobulinemia, lymphoproliferative 
disorders, thyroid autoimmune disorders, and T2DM) are 
associated with complex dysregulation of  the cytokine/
chemokine network, involving proinflammatory and Th1 
chemokines[145,146]. 

HCV-INFECTED PATIENTS WITH T1DM
Few data on this association have been reported, and 
published studies have shown only small proportions of  
CHC patients positive for one or more markers of  pan-
creatic autoimmunity[18,147-150].

Even rarer are reports on the potential association 
between autoimmune diabetes and acute HCV infection. 
Only two cases have been described in the literature[151,152]. 
Several mechanisms have been postulated to initiate the 
process. Even if  HCV can infect extrahepatic tissue in 
patients with hepatitis C[16,107,153], no direct involvement of  
HCV in the onset of  T1DM has been clarified yet. Never-
theless, the direct destruction of  β-cells by viral infection 
could be a good explanation. Beyond the undemonstrated 
direct mechanisms, HCV infection surely initiates an im-
mune reaction against β-cells or causes an acceleration of  
diabetes onset when an immune reaction against β-cells is 
already present. Some authors have also suggested the in-
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diagnosed T1DM, raised serum CXCL10 and normal 
chemokine (C-C motif) ligand 2 concentrations signal a 
predominantly Th1-driven autoimmune process, which 
shifts toward Th2 immunity 2 years after diagnosis[172]. 

Based on the abovementioned concepts, HCV infec-
tion of  β-cells[106] may act by upregulating CXCL10 gene 
expression and secretion (as previously shown in human 
hepatocytes[173]) and recruiting Th1 lymphocytes that 
secrete IFN-γ and TNF-α, which induce CXCL10 secre-
tion by β-cells and thus perpetuate the immune cascade. 
This cascade may lead to the appearance of  β-cell dys-
function in genetically predisposed subjects (Figure 2). 
Recently, certain studies have confirmed this hypothesis, 
demonstrating higher serum levels of  CXCL10 in HCV 
patients with T2DM than in those without[16,169].

T1DM AND T2DM IN HCV-INFECTED 
PATIENTS TREATED WITH IFN-α
An important research area concerns the relationship 
between diabetes and IFN-α therapy in HCV-infected 
patients. In particular, studies have shown a high preva-
lence of  markers of  pancreatic autoimmunity in HCV-
positive patients after or during IFN-α therapy, most 
likely due to the immunostimulatory effects of  this cyto-
kine. Indeed, IFN-α has antiviral, antiproliferative, and 
immunomodulatory activities[174]. Thus, in predisposed 
individuals, IFN-α can either induce a diabetogenic pro-
cess or accelerate a diabetogenic process that is already 
underway[18,175,176]. For this reason, islet cell autoantibodies 
and GADAb should be investigated before and during 
IFN treatment to identify subjects who are at high risk 
of  developing T1DM[177-180]. A small number of  patients 
can develop de novo pancreatic autoimmunity and fall into 
a group of  patients at risk of  developing DM. In general, 
patients who are initially positive for organ-specific auto-

antibodies (in particular, thyroid- and pancreas-specific 
autoantibodies) and those who seroconvert seem to be at 
high risk of  developing clinical autoimmune disease after 
treatment with IFN-α[181]. Timely suspension of  IFN-α 
therapy is rarely accompanied by regression of  clinical 
DM. No correlation has been documented between the 
response to antiviral therapy and the development of  
DM.

IFN-α increases HLA class Ⅰ antigen expression and 
natural killer cell and T cell activities, and this cytokine 
may be an important cofactor in the development of  a 
Th1 immune reaction. This reaction can contribute to 
the development of  autoimmune disease by the activa-
tion of  CD4+ lymphocytes that secrete IL-2, IFN-γ and 
TNF-β. These cytokines help in the generation of  CD8+ 
cytotoxic T cells[182]. In addition to its immunomodula-
tory properties, IFN-α can also increase IR and induce 
hyperglycaemia[183-188]. Fabris et al[189] documented the 
first case of  T1DM development during IFN-α therapy. 
Other studies suggest that IFN-α therapy can stimulate 
pancreatic autoimmunity and, in certain cases, lead to the 
development of  T1DM[150,175,177,180,181,190-223].

The relationship with T1DM does not account for 
all of  the effects of  IFN-α therapy on diabetes. Indeed, 
from a completely different perspective, antiviral therapy 
with IFN should also be considered in HCV-positive pa-
tients because of  its potential role in limiting the progres-
sion of  this metabolic disturbance (see later discussion).

OUTCOME IN DIABETIC HCV-POSITIVE 
PATIENTS
CHC is an insidiously progressive form of  liver disease 
that leads to cirrhosis[224-226] and HCC[227-231]. Diabetic 
HCV-positive patients have increased risk compared with 
non-diabetic subjects, and DM itself  seems to have a se-
lective impact on HCC development[232-251]. 

The main characteristic of  diabetic patients is IR, 
which plays a crucial role in fibrosis progression and has a 
negative impact on treatment responses to antiviral thera-
py in patients with CHC[52,252,253]. Reduced insulin sensitiv-
ity is at the basis of  compensatory hyperinsulinemia and 
elevated levels of  insulin-like growth factor 1 (IGF-1), 
which stimulates cell proliferation and inhibits apoptosis. 
Additionally, this phenomenon has strong mitogenic ef-
fects on a wide variety of  cancer cell lines[254-256]. At the 
same time, insulin activates the IGF-1 receptor, which 
has a growth-promoting effect that includes modulating 
cell cycle progression. Excess insulin may also indirectly 
affect the development of  cancer by downregulating the 
level of  IGF-binding protein 1, which increases the level 
and bioavailability of  total circulating IGF-1. Additional 
factors, such as obesity and physical inactivity, also cause 
hyperinsulinemia and are thus also ultimately associated 
with accelerated cancer progression[255-258]. 

Genotype differences in terms of  liver disturbance 
progression have been described as well. Genotype 3a 
is more strongly correlated with steatosis than other 
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Figure 2  Potential regulation of the endocrine manifestations of hepatitis 
C virus infection in islet β-cells. Hepatitis C virus (HCV) infection may act by 
upregulating CXC chemokine ligand (CXCL) 10 gene expression and the sub-
sequent secretion of this chemokine by islet β-cells. These events lead to the 
recruitment of Th1 lymphocytes that secrete interferon (IFN)-γ and tumour ne-
crosis factor (TNF)-α, which induce chemokine secretion by islet β-cells, thus 
perpetuating the immune cascade. This cascade may lead to the appearance 
of autoimmune thyroid disorders in genetically predisposed subjects.
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genotypes[259,260], and the HCV genotype 3 may have a cy-
topathic effect[261]. Steatosis in genotype 1 infection is in-
stead thought to be an expression of  metabolic syndrome 
caused by the activation of  proinflammatory mechanisms 
as well as underlying obesity and IR[262]. The degree of  
steatosis in this genotype is independent of  the HCV 
viral load, and antiviral therapy does not improve steato-
sis in these patients. Similar data have been obtained for 
genotype 4 infection, whereas few data are available for 
genotype 2[263].

The presence of  HCV infection in patients with DM 
may also increase the proportion of  DM-related chronic 
nephrologic complications[86,264].

PREVENTION AND TREATMENT
CHC is a complex disease with systemic effects that re-
quire a multidisciplinary treatment approach[265]. 

The potential relationship between HCV infection 
and the development of  DM increases the need for the 
implementation of  prevention measures. Prevention 
must be directed toward lifestyle changes that can reduce 
the risk of  HCV infection and/or diabetes develop-
ment[266]; regular diabetes screening for anti-HCV-positive 
people; and the analysis of  other risk factors that can ac-
celerate the progression of  both CHC and DM, such as 
obesity, dyslipidaemia, and alcohol consumption. In these 
high-risk patients, comprehensive treatment, including 
lifestyle modifications, must be recommended. Animal 
models also provide clues regarding the prevention and 
clinical management of  diabetes in the setting of  HCV 
infection[108]. Indeed, identifying patients who are at risk 
of  developing diabetes, and have CHC, reduces liver 
disturbance progression[267,268], the incidence of  HCC 
and transplant-related morbidity and mortality. Addition-
ally, this identification improves the response to antivi-
ral therapy[269-271], even reducing the side effects of  the 
treatment[270] by encouraging the pretreatment of  IR and 
DM[265].

Moreover, clinical trials on HCV-positive patients 
have reported improvement in glucose metabolism after 
antiviral treatment[187]. As discussed earlier, many factors 
may surely affect the antiviral response that modulates 
the IFN signalling pathway. Among these factors, the 
HCV genotype, genetic host factors, and comorbidities 
have been taken into account. In particular, recent studies 
have reported obesity[272] and hypercholesterolaemia[273] 
as potential factors that interfere with a sustained viral 
response. These observations suggest additional thera-
peutic options for HCV infection, including dietary 
changes, anti-diabetic drugs, and statins. Concerning anti-
diabetic drugs, it is not currently clear whether the best 
approach is to use a peroxisome proliferator-activated 
receptor agonist or a biguanide, such as metformin[274-276]. 
Concerning statins, these drugs are capable of  inhibiting 
HCV replication in vitro[277-279] but not in vivo[280]. 

Further studies are needed to improve prevention 
policies and to foster adequate and cost-effective pro-

grammes for the surveillance and treatment of  diabetic 
CHC patients. The final goal must be to cure two diseas-
es, diabetes and CHC, with one multifaceted treatment. 

CONCLUSION
Many epidemiological studies have shown an associa-
tion between T2DM and CHC. The processes through 
which HCV is associated with DM seem to involve direct 
viral effects, IR, proinflammatory cytokines, chemokines, 
suppressors of  cytokine signalling, and other immune-
mediated mechanisms. Other factors, such as metabolic 
syndrome and a family history of  diabetes, also seem to 
be important risk factors for the development of  diabe-
tes. Few data on the association of  CHC and T1DM have 
been reported, and reports on the potential association 
between T1DM and acute HCV infection are even rarer. 
A small number of  studies have indicated that IFN-α 
therapy can stimulate pancreatic autoimmunity and, in 
certain cases, lead to the development of  T1DM. Diabe-
tes and CHC have important interactions. Diabetic CHC 
patients have an increased risk of  developing cirrhosis 
and HCC compared with non-diabetic CHC subjects. 
Additionally, clinical trials on HCV-positive patients have 
reported improvement in glucose metabolism after an-
tiviral treatment. Further studies are needed to improve 
prevention policies and to foster adequate and cost-
effective programmes for the surveillance and treatment 
of  diabetic CHC patients.

REFERENCES
1 Lauer GM, Walker BD. Hepatitis C virus infection. N Engl J 

Med 2001; 345: 41-52 [PMID: 11439948]
2 Zimmet P, Alberti KG, Shaw J. Global and societal implica-

tions of the diabetes epidemic. Nature 2001; 414: 782-787 
[PMID: 11742409 DOI: 10.1038/414782a]

3 Alberti KG, Zimmet PZ. Definition, diagnosis and clas-
sification of diabetes mellitus and its complications. Part 1: 
diagnosis and classification of diabetes mellitus provisional 
report of a WHO consultation. Diabet Med 1998; 15: 539-553 
[PMID: 9686693]

4 Report of the Expert Committee on the Diagnosis and Classi-
fication of Diabetes Mellitus. Diabetes Care 1997; 20: 1183-1197 
[PMID: 9203460]

5 Ferrannini E. Physiology of glucose homeostasis and insulin 
therapy in type 1 and type 2 diabetes. Endocrinol Metab Clin 
North Am 2012; 41: 25-39 [PMID: 22575405 DOI: 10.1016/
j.ecl.2012.01.003]

6 Barbeau WE. What is the key environmental trigger in type 
1 diabetes--is it viruses, or wheat gluten, or both? Autoim-
mun Rev 2012; 12: 295-299 [PMID: 22633932 DOI: 10.1016/
j.autrev.2012.05.003]

7 Askenasy EM, Askenasy N. Is autoimmune diabetes caused 
by aberrant immune activity or defective suppression of 
physiological self-reactivity? Autoimmun Rev 2013; 12: 
633-637 [PMID: 23277162 DOI: 10.1016/j.autrev.2012.12.004]

8 Lo J, Clare-Salzler MJ. Dendritic cell subsets and type I dia-
betes: focus upon DC-based therapy. Autoimmun Rev 2006; 5: 
419-423 [PMID: 16890897 DOI: 10.1016/j.autrev.2005.12.001]

9 Lernmark A, Larsson HE. Immune therapy in type 1 dia-
betes mellitus. Nat Rev Endocrinol 2013; 9: 92-103 [PMID: 
23296174 DOI: 10.1038/nrendo.2012.237]

10 Antonelli A, Tuomi T, Nannipieri M, Fallahi P, Nesti C, 

591 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



Okamoto H, Groop L, Ferrannini E. Autoimmunity to CD38 
and GAD in Type I and Type II diabetes: CD38 and HLA 
genotypes and clinical phenotypes. Diabetologia 2002; 45: 
1298-1306 [PMID: 12242463]

11 Antonelli A, Baj G, Marchetti P, Fallahi P, Surico N, Pupilli 
C, Malavasi F, Ferrannini E. Human anti-CD38 autoantibod-
ies raise intracellular calcium and stimulate insulin release 
in human pancreatic islets. Diabetes 2001; 50: 985-991 [PMID: 
11334442 DOI: 10.2337/diabetes.50.5.985]

12 Alter MJ. Epidemiology of hepatitis C virus infection. World 
J Gastroenterol 2007; 13: 2436-2441 [PMID: 17552026]

13 Hepatitis C--global prevalence (update). Wkly Epidemiol Rec 
1999; 74: 425-427 [PMID: 10645164]

14 Antonelli A, Ferri C, Galeazzi M, Giannitti C, Manno D, 
Mieli-Vergani G, Menegatti E, Olivieri I, Puoti M, Palazzi 
C, Roccatello D, Vergani D, Sarzi-Puttini P, Atzeni F. HCV 
infection: pathogenesis, clinical manifestations and therapy. 
Clin Exp Rheumatol 2008; 26: S39-S47 [PMID: 18570753]

15 Ferri C, Antonelli A, Mascia MT, Sebastiani M, Fallahi P, 
Ferrari D, Pileri SA, Zignego AL. HCV-related autoimmune 
and neoplastic disorders: the HCV syndrome. Dig Liver Dis 
2007; 39 Suppl 1: S13-S21 [PMID: 17936215 DOI: 10.1016/
S1590-8658(07)80005-3]

16 Antonelli A, Ferri C, Ferrari SM, Colaci M, Fallahi P. Im-
munopathogenesis of HCV-related endocrine manifestations 
in chronic hepatitis and mixed cryoglobulinemia. Autoim-
mun Rev 2008; 8: 18-23 [PMID: 18708169 DOI: 10.1016/
j.autrev.2008.07.017]

17 Ferri C, Antonelli A, Mascia MT, Sebastiani M, Fallahi P, Fer-
rari D, Giunti M, Pileri SA, Zignego AL. B-cells and mixed 
cryoglobulinemia. Autoimmun Rev 2007; 7: 114-120 [PMID: 
18035320 DOI: 10.1016/j.autrev.2007.02.019]

18 Mason AL, Lau JY, Hoang N, Qian K, Alexander GJ, Xu 
L, Guo L, Jacob S, Regenstein FG, Zimmerman R, Everhart 
JE, Wasserfall C, Maclaren NK, Perrillo RP. Association of 
diabetes mellitus and chronic hepatitis C virus infection. 
Hepatology 1999; 29: 328-333 [PMID: 9918906 DOI: 10.1002/
hep.510290235]

19 Weinman SA, Belalcazar LM. Hepatitis C: a metabolic liver 
disease. Gastroenterology 2004; 126: 917-919 [PMID: 14988846 
DOI: 10.1053/j.gastro.2003.01.001]

20 Bugianesi E, McCullough AJ, Marchesini G. Insulin resis-
tance: a metabolic pathway to chronic liver disease. Hepa-
tology 2005; 42: 987-1000 [PMID: 16250043 DOI: 10.1002/
hep.20920]

21 Cruezfeldt W, Frerichs H, Sickinger K. Liver diseases and 
diabetes mellitus. In: Popper H Schaffner F. Progress in Liver 
Disease. New York: Grune and Stratton, 1970: 371-407

22 Felig P, Sherin R. Carbohydrate homeostasis, liver and dia-
betes. In: Popper H, Schaffner F. Progress in Liver Disease. 
New York: Grune and Stratton, 1976: 149-171

23 Kruszynska YT, McIntyre N. Carbohydrate metabolism. 
In: McIntyre N, Benhamou J-P, Bircher J, Rizzetto M, Rodes 
J. Offord Textbook of Clinical Hepatology. Oxford: Oxford 
University Press, 1991: 129-143

24 Nagore N, Scheuer PJ. The pathology of diabetic hepatitis. 
J Pathol 1988; 156: 155-160 [PMID: 3199264 DOI: 10.1002/
path.1711560210]

25 Morgan C, Hyland C, Young IF. Hepatitis C antibody and 
transaminase activities in blood donors. Lancet 1990; 335: 921 
[PMID: 1970011 DOI: 10.1016/0140-6736(90)90523-8]

26 Gray H, Wreghitt T, Stratton IM, Alexander GJ, Turner RC, 
O’Rahilly S. High prevalence of hepatitis C infection in Afro-
Caribbean patients with type 2 diabetes and abnormal liver 
function tests. Diabet Med 1995; 12: 244-249 [PMID: 7538925 
DOI: 10.1111/j.1464-5491.1995.tb00466.x]

27 Salmela PI, Sotaniemi EA, Niemi M, Mäentausta O. Liver 
function tests in diabetic patients. Diabetes Care 1984; 7: 
248-254 [PMID: 6734394 DOI: 10.2337/diacare.7.3.248]

28 Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, 

Bogardus C, Tataranni PA. High alanine aminotransferase is 
associated with decreased hepatic insulin sensitivity and pre-
dicts the development of type 2 diabetes. Diabetes 2002; 51: 
1889-1895 [PMID: 12031978 DOI: 10.2337/diabetes.51.6.1889]

29 Romero-Gómez M. Insulin resistance and hepatitis C. World 
J Gastroenterol 2006; 12: 7075-7080 [PMID: 17131467 DOI: 
10.1111/j.1478-3231.2010.02365.x]

30 Petit JM, Bour JB, Galland-Jos C, Minello A, Verges B, 
Guiguet M, Brun JM, Hillon P. Risk factors for diabetes mel-
litus and early insulin resistance in chronic hepatitis C. J 
Hepatol 2001; 35: 279-283 [PMID: 11580152 DOI: 10.1016/S01
68-8278(01)00143-X]

31 Mehta SH, Brancati FL, Strathdee SA, Pankow JS, Netski 
D, Coresh J, Szklo M, Thomas DL. Hepatitis C virus infec-
tion and incident type 2 diabetes. Hepatology 2003; 38: 50-56 
[PMID: 12829986 DOI: 10.1053/jhep.2003.50291]

32 Huang JF, Dai CY, Hwang SJ, Ho CK, Hsiao PJ, Hsieh MY, 
Lee LP, Lin ZY, Chen SC, Hsieh MY, Wang LY, Shin SJ, 
Chang WY, Chuang WL, Yu ML. Hepatitis C viremia in-
creases the association with type 2 diabetes mellitus in a hep-
atitis B and C endemic area: an epidemiological link with vi-
rological implication. Am J Gastroenterol 2007; 102: 1237-1243 
[PMID: 17531012 DOI: 10.1111/j.1572-0241.2007.01181.x]

33 Allison ME, Wreghitt T, Palmer CR, Alexander GJ. Evi-
dence for a link between hepatitis C virus infection and 
diabetes mellitus in a cirrhotic population. J Hepatol 1994; 21: 
1135-1139 [PMID: 7699240 DOI: 10.1016/S0168-8278(05)8063
1-2]

34 Akbar DH, Siddique AM, Ahmed MM. Prevalence of Type-2 
diabetes in patients with hepatitis C and B virus infection in 
Jeddah, Saudi Arabia. Med Princ Pract 2002; 11: 82-85 [PMID: 
12123108 DOI: 10.1159/000058012]

35 Alexander GJ. An association between hepatitis C virus in-
fection and type 2 diabetes mellitus: what is the connection? 
Ann Intern Med 2000; 133: 650-652 [PMID: 11033595]

36 AlDosary AA, Ramji AS, Elliott TG, Sirrs SM, Thompson 
DM, Erb SR, Steinbrecher UP, Yoshida EM. Post-liver trans-
plantation diabetes mellitus: an association with hepatitis C. 
Liver Transpl 2002; 8: 356-361 [PMID: 11965580 DOI: 10.1053/
jlts.2002.31745]

37 Antonelli A, Ferri C, Fallahi P, Sebastiani M, Nesti C, Barani 
L, Barale R, Ferrannini E. Type 2 diabetes in hepatitis C-relat-
ed mixed cryoglobulinaemia patients. Rheumatology (Oxford) 
2004; 43: 238-240 [PMID: 13130149 DOI: 10.1093/rheumatol-
ogy/keh011]

38 Antonelli A, Ferri C, Fallahi P, Pampana A, Ferrari SM, 
Goglia F, Ferrannini E. Hepatitis C virus infection: evidence 
for an association with type 2 diabetes. Diabetes Care 2005; 28: 
2548-2550 [PMID: 16186298 DOI: 10.2337/diacare.28.10.2548]

39 Arao M, Murase K, Kusakabe A, Yoshioka K, Fukuzawa Y, 
Ishikawa T, Tagaya T, Yamanouchi K, Ichimiya H, Sameshi-
ma Y, Kakumu S. Prevalence of diabetes mellitus in Japanese 
patients infected chronically with hepatitis C virus. J Gas-
troenterol 2003; 38: 355-360 [PMID: 12743775 DOI: 10.1007/
s005350300063]

40 Bernsmeier C, Heim MH. Insulin resistance in chronic hepa-
titis C: mechanisms and clinical relevance. Swiss Med Wkly 
2009; 139: 678-684 [PMID: 20047129]

41 Boschi-Pinto C, Stuver S, Okayama A, Trichopoulos D, Orav 
EJ, Tsubouchi H, Mueller N. A follow-up study of morbidity 
and mortality associated with hepatitis C virus infection and 
its interaction with human T lymphotropic virus type I in 
Miyazaki, Japan. J Infect Dis 2000; 181: 35-41 [PMID: 10608748 
DOI: 10.1086/315177]

42 Caronia S, Taylor K, Pagliaro L, Carr C, Palazzo U, Petrik J, O’
Rahilly S, Shore S, Tom BD, Alexander GJ. Further evidence 
for an association between non-insulin-dependent diabetes 
mellitus and chronic hepatitis C virus infection. Hepatol-
ogy 1999; 30: 1059-1063 [PMID: 10498660 DOI: 10.1002/
hep.510300416]

592 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



43 Chehadeh W, Abdella N, Ben-Nakhi A, Al-Arouj M, Al-
Nakib W. Risk factors for the development of diabetes 
mellitus in chronic hepatitis C virus genotype 4 infection. J 
Gastroenterol Hepatol 2009; 24: 42-48 [PMID: 18717762 DOI: 
10.1111/j.1440-1746.2008.05503.x]

44 Chen HF, Li CY, Chen P, See TT, Lee HY. Seroprevalence of 
hepatitis B and C in type 2 diabetic patients. J Chin Med Assoc 
2006; 69: 146-152 [PMID: 16689194 DOI: 10.1016/S1726-4901(0
9)70195-9]

45 el-Zayadi AR, Selim OE, Hamdy H, Dabbous H, Ahdy A, 
Moniem SA. Association of chronic hepatitis C infection and 
diabetes mellitus. Trop Gastroenterol 1998; 19: 141-144 [PMID: 
10228436]

46 Everhart J. A confluence of epidemics: does hepatitis C 
cause type 2 diabetes? Hepatology 2001; 33: 762-763 [PMID: 
11230760 DOI: 10.1002/hep.510330336]

47 Fraser GM, Harman I, Meller N, Niv Y, Porath A. Diabetes 
mellitus is associated with chronic hepatitis C but not chron-
ic hepatitis B infection. Isr J Med Sci 1996; 32: 526-530 [PMID: 
8756978]

48 Fukui M, Kitagawa Y, Nakamura N, Yoshikawa T. Hepatitis 
C virus and atherosclerosis in patients with type 2 diabetes. 
JAMA 2003; 289: 1245-1246 [PMID: 12633185 DOI: 10.1001/
jama.289.10.1245-b]

49 Gulcan A, Gulcan E, Toker A, Bulut I, Akcan Y. Evaluation of 
risk factors and seroprevalence of hepatitis B and C in diabetic 
patients in Kutahya, Turkey. J Investig Med 2008; 56: 858-863 
[PMID: 18667903 DOI: 10.231/JIM.0b013e3181788d28]

50 Grimbert S, Valensi P, Lévy-Marchal C, Perret G, Richardet 
JP, Raffoux C, Trinchet JC, Beaugrand M. High prevalence of 
diabetes mellitus in patients with chronic hepatitis C. A case-
control study. Gastroenterol Clin Biol 1996; 20: 544-548 [PMID: 
8881566]

51 Howard AA, Klein RS, Schoenbaum EE. Association of hep-
atitis C infection and antiretroviral use with diabetes mel-
litus in drug users. Clin Infect Dis 2003; 36: 1318-1323 [PMID: 
12746779 DOI: 10.1086/374838]

52 Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, 
McCaughan GW, George J. Insulin resistance is associated 
with chronic hepatitis C virus infection and fibrosis progres-
sion [corrected]. Gastroenterology 2003; 125: 1695-1704 [PMID: 
14724822 DOI: 10.1053/j.gastro.2003.08.032]

53 Imazeki F, Yokosuka O, Fukai K, Kanda T, Kojima H, Saisho 
H. Prevalence of diabetes mellitus and insulin resistance in 
patients with chronic hepatitis C: comparison with hepati-
tis B virus-infected and hepatitis C virus-cleared patients. 
Liver Int 2008; 28: 355-362 [PMID: 18290778 DOI: 10.1111/
j.1478-3231.2007.01630.x]

54 Jadoon NA, Shahzad MA, Yaqoob R, Hussain M, Ali N. Se-
roprevalence of hepatitis C in type 2 diabetes: evidence for 
a positive association. Virol J 2010; 7: 304 [PMID: 21054842 
DOI: 10.1186/1743-422X-7-304]

55 Kaabia N, Ben Jazia E, Slim I, Fodha I, Hachfi W, Gaha R, 
Khalifa M, Hadj Kilani A, Trabelsi H, Abdelaziz A, Bahri 
F, Letaief A. Association of hepatitis C virus infection and 
diabetes in central Tunisia. World J Gastroenterol 2009; 15: 
2778-2781 [PMID: 19522029 DOI: 10.3748/wjg.15.2778]

56 Knobler H, Schattner A. Association of hepatitis C and dia-
betes mellitus. Ann Intern Med 2001; 135: 141; author reply 
142 [PMID: 11453715 DOI: 10.7326/0003-4819-135-2-2001071
70-00016]

57 Knobler H, Schihmanter R, Zifroni A, Fenakel G, Schattner 
A. Increased risk of type 2 diabetes in noncirrhotic patients 
with chronic hepatitis C virus infection. Mayo Clin Proc 2000; 
75: 355-359 [PMID: 10761489 DOI: 10.4065/75.4.355]

58 Labropoulou-Karatza C, Goritsas C, Fragopanagou H, Re-
pandi M, Matsouka P, Alexandrides T. High prevalence of 
diabetes mellitus among adult beta-thalassaemic patients 
with chronic hepatitis C. Eur J Gastroenterol Hepatol 1999; 11: 
1033-1036 [PMID: 10503842 DOI: 10.1097/00042737-19990900

0-00014]
59 Lecube A, Hernández C, Genescà J, Esteban JI, Jardí R, Simó 

R. High prevalence of glucose abnormalities in patients with 
hepatitis C virus infection: a multivariate analysis consider-
ing the liver injury. Diabetes Care 2004; 27: 1171-1175 [PMID: 
15111540 DOI: 10.2337/diacare.27.5.1171]

60 Lonardo A, Adinolfi LE, Petta S, Craxì A, Loria P. Hepatitis 
C and diabetes: the inevitable coincidence? Expert Rev Anti 
Infect Ther 2009; 7: 293-308 [PMID: 19344243 DOI: 10.1586/
eri.09.3]

61 Marzouk D, Sass J, Bakr I, El Hosseiny M, Abdel-Hamid M, 
Rekacewicz C, Chaturvedi N, Mohamed MK, Fontanet A. 
Metabolic and cardiovascular risk profiles and hepatitis C 
virus infection in rural Egypt. Gut 2007; 56: 1105-1110 [PMID: 
16956918 DOI: 10.1136/gut.2006.091983]

62 Mason A, Nair S. Is type II diabetes another extrahepatic 
manifestation of HCV infection? Am J Gastroenterol 2003; 98: 
243-246 [PMID: 12591036]

63 Mayo MJ. Extrahepatic manifestations of hepatitis C infec-
tion. Am J Med Sci 2003; 325: 135-148 [PMID: 12640289 DOI: 
10.1097/00000441-200303000-00006]

64 Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Sz-
klo M, Thomas DL. Prevalence of type 2 diabetes mellitus 
among persons with hepatitis C virus infection in the United 
States. Ann Intern Med 2000; 133: 592-599 [PMID: 11033586]

65 Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Sz-
klo M, Thomas DL. Prevalence of type 2 diabetes mellitus 
among persons with hepatitis C virus infection in the United 
States. Hepatology 2001; 33: 1554 [PMID: 11391549]

66 Mehta SH, Strathdee SA, Thomas DL. Association between 
hepatitis C virus infection and diabetes mellitus. Epidemiol 
Rev 2001; 23: 302-312 [PMID: 12192739 DOI: 10.1093/oxford-
journals.epirev.a000808]

67 Negro F, Alaei M. Hepatitis C virus and type 2 diabetes. 
World J Gastroenterol 2009; 15: 1537-1547 [PMID: 19340895 
DOI: 10.3748/wjg.15.1537]

68 Ndako JA, Echeonwu GO, Shidali NN, Bichi IA, Paul GA, 
Onovoh E, Okeke LA. Occurrence of hepatitis C virus in-
fection in type 2 diabetic patients attending Plateau state 
specialist hospital Jos Nigeria. Virol J 2009; 6: 98 [PMID: 
19586535 DOI: 10.1186/1743-422X-6-98]

69 Zein NN. Hepatitis C and diabetes mellitus: an ongoing 
controversy. Am J Gastroenterol 1998; 93: 2320-2322 [PMID: 
9860386 DOI: 10.1111/j.1572-0241.1998.02320.x]

70 Noto H, Raskin P. Hepatitis C infection and diabetes. J Dia-
betes Complications 2006; 20: 113-120 [PMID: 16504840 DOI: 
10.1016/j.jdiacomp.2006.01.001]

71 Nwokediuko SC, Oli JM. Hepatitis C virus infection in Ni-
gerians with diabetes mellitus. Niger J Clin Pract 2008; 11: 
94-99 [PMID: 18817046]

72 Olokoba AB, Badung LH, Abdulrahman MB, Salawu FK, 
Danburam A, Aderibigbe S, Midala J, Tidi SK. Hepatitis C 
virus infection in Nigerians with diabetes mellitus. Am J Sci 
Ind Res 2010; 1: 135-138 [DOI: 10.5251/ajsir.2010.1.2.135.138]

73 Okan V, Araz M, Aktaran S, Karsligil T, Meram I, Bayrak-
taroglu Z, Demirci F. Increased frequency of HCV but not 
HBV infection in type 2 diabetic patients in Turkey. Int J Clin 
Pract 2002; 56: 175-177 [PMID: 12018820]

74 Ozyilkan E, Erbaş T, Simşek H, Telatar F, Kayhan B, Telatar 
H. Increased prevalence of hepatitis C virus antibodies in pa-
tients with diabetes mellitus. J Intern Med 1994; 235: 283-284 
[PMID: 8120528 DOI: 10.1111/j.1365-2796.1994.tb01075.x]

75 Papatheodoridis GV, Chrysanthos N, Savvas S, Sevastia-
nos V, Kafiri G, Petraki K, Manesis EK. Diabetes mellitus in 
chronic hepatitis B and C: prevalence and potential associa-
tion with the extent of liver fibrosis. J Viral Hepat 2006; 13: 
303-310 [PMID: 16637860 DOI: 10.1111/j.1365-2893.2005.0067
7.x]

76 Parolin MB, Réa R, Vargas RM, de Almeida AC, Baldanzi 
GR, Lopes RW. [Prevalence of hepatitis C infection in pa-

593 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



tients with type 2 diabetes mellitus]. Arq Gastroenterol 2006; 
43: 77-80 [PMID: 17119658]

77 Picerno I, Di Pietro A, Spataro P, Di Benedetto A, Romano G, 
Scoglio ME. Is diabetes mellitus a risk factor for HCV infec-
tion? Ann Ig 2002; 14: 473-477 [PMID: 12638350]

78 Qureshi H, Ahsan T, Mujeeb SA, Jawad F, Mehdi I, Ahmed 
W, Alam SE. Diabetes mellitus is equally frequent in chronic 
HCV and HBV infection. J Pak Med Assoc 2002; 52: 280-283 
[PMID: 12481656]

79 Roaeid RBM, Ciasuddin ASM, Shakmak AA. Hepatitis C vi-
rus: seropositivity and diabetes in Benghazi, Libya. Diabetes 
Int 2002; 12: 28-29

80 Ratziu V, Heurtier A, Bonyhay L, Poynard T, Giral P. Re-
view article: an unexpected virus-host interaction--the hepa-
titis C virus-diabetes link. Aliment Pharmacol Ther 2005; 22 
Suppl 2: 56-60 [PMID: 16225475 DOI: 10.1111/j.1365-2036.20
05.02598.x]

81 Rouabhia S, Malek R, Bounecer H, Dekaken A, Bendali 
Amor F, Sadelaoud M, Benouar A. Prevalence of type 2 dia-
betes in Algerian patients with hepatitis C virus infection. 
World J Gastroenterol 2010; 16: 3427-3431 [PMID: 20632447 
DOI: 10.3748/wjg.v16.i27.3427]

82 Ryu JK, Lee SB, Hong SJ, Lee S. Association of chronic hepa-
titis C virus infection and diabetes mellitus in Korean pa-
tients. Korean J Intern Med 2001; 16: 18-23 [PMID: 11417300]

83 Sangiorgio L, Attardo T, Gangemi R, Rubino C, Barone M, 
Lunetta M. Increased frequency of HCV and HBV infection 
in type 2 diabetic patients. Diabetes Res Clin Pract 2000; 48: 
147-151 [PMID: 10802152 DOI: 10.1016/S0168-8227(99)00135
-7]

84 Simó R, Hernández C, Genescà J, Jardí R, Mesa J. High 
prevalence of hepatitis C virus infection in diabetic pa-
tients. Diabetes Care 1996; 19: 998-1000 [PMID: 8875096 DOI: 
10.2337/diacare.19.9.998]

85 Singal AK, Ayoola AE. Prevalence and factors affecting oc-
currence of type 2 diabetes mellitus in Saudi patients with 
chronic liver disease. Saudi J Gastroenterol 2008; 14: 118-121 
[PMID: 19568519 DOI: 10.4103/1319-3767.41729]

86 Soma J, Saito T, Taguma Y, Chiba S, Sato H, Sugimura K, 
Ogawa S, Ito S. High prevalence and adverse effect of hepa-
titis C virus infection in type II diabetic-related nephropathy. 
J Am Soc Nephrol 2000; 11: 690-699 [PMID: 10752528]

87 Thuluvath PJ, John PR. Association between hepatitis C, 
diabetes mellitus, and race. a case-control study. Am J Gastro-
enterol 2003; 98: 438-441 [PMID: 12591065]

88 Wang CS, Wang ST, Yao WJ, Chang TT, Chou P. Communi-
ty-based study of hepatitis C virus infection and type 2 dia-
betes: an association affected by age and hepatitis severity 
status. Am J Epidemiol 2003; 158: 1154-1160 [PMID: 14652300 
DOI: 10.1093/aje/kwg259]

89 Wang CS, Wang ST, Yao WJ, Chang TT, Chou P. Hepatitis 
C virus infection and the development of type 2 diabetes in 
a community-based longitudinal study. Am J Epidemiol 2007; 
166: 196-203 [PMID: 17496314 DOI: 10.1093/aje/kwm061]

90 Wang LF, Wu CH, Shan Y, Fan XH, Huo N, Lu HY, Xu XY. 
Prevalence of abnormal glycometabolism in patients with 
chronic hepatitis C and related risk factors in China. Chin 
Med J (Engl) 2011; 124: 183-188 [PMID: 21362362]

91 White DL, Ratziu V, El-Serag HB. Hepatitis C infection and 
risk of diabetes: a systematic review and meta-analysis. J 
Hepatol 2008; 49: 831-844 [PMID: 18814931 DOI: 10.1016/
j.jhep.2008.08.006]

92 Wilson C. Hepatitis C infection and type 2 diabetes in Amer-
ican-Indian women. Diabetes Care 2004; 27: 2116-2119 [PMID: 
15333471 DOI: 10.2337/diacare.27.9.2116]

93 Yang SQ, Chen HS, Jiang D, Wei L, Ji LN, Wang Y. [Rela-
tionship between chronic hepatitis C and type II diabetes 
mellitus]. Zhonghua Shiyan He Linchuang Bingduxue Zazhi 
2003; 17: 46-49 [PMID: 12870018]

94 Zein NN, Abdulkarim AS, Wiesner RH, Egan KS, Persing 

DH. Prevalence of diabetes mellitus in patients with end-
stage liver cirrhosis due to hepatitis C, alcohol, or cholestatic 
disease. J Hepatol 2000; 32: 209-217 [PMID: 10707860 DOI: 
10.1016/S0168-8278(00)80065-3]

95 Zein CO, Levy C, Basu A, Zein NN. Chronic hepatitis C and 
type II diabetes mellitus: a prospective cross-sectional study. 
Am J Gastroenterol 2005; 100: 48-55 [PMID: 15654780 DOI: 
10.1111/j.1572-0241.2005.40429.x]

96 Zhao P, Wang JB, Jiao J. [Investigation on the incidence of 
diabetes in chronic hepatitis C patients and their HCV geno-
types]. Zhonghua Ganzangbing Zazhi 2006; 14: 86-88 [PMID: 
16494773]

97 Adegoke OA, Kolawole BA, Ikem RT, Adediran A, Aboderin 
AO, Salawu A. Seroprevalence of hepatitis C virus infection 
in Nigerians with type 2 diabetes mellitus. Niger J Clin Pract 
2008; 11: 199-201 [PMID: 19140353]

98 Balogun WO, Adeleye JO, Akinlade KS, Kuti M, Otegbayo 
JA. Low prevalence of hepatitis-C viral seropositivity among 
patients with type-2 diabetes mellitus in a tertiary hospital. J 
Natl Med Assoc 2006; 98: 1805-1808 [PMID: 17128691]

99 Costa LM, Mussi AD, Brianeze MR, Souto FJ. Hepatitis C as 
a risk factor for diabetes type 2: lack of evidence in a hospital 
in central-west Brazil. Braz J Infect Dis 2008; 12: 24-26 [PMID: 
18553010 DOI: 10.1590/S1413-86702008000100007]

100 Mangia A, Schiavone G, Lezzi G, Marmo R, Bruno F, Villani 
MR, Cascavilla I, Fantasia L, Andriulli A. HCV and diabetes 
mellitus: evidence for a negative association. Am J Gastroen-
terol 1998; 93: 2363-2367 [PMID: 9860393]

101 Sotiropoulos A, Peppas TA, Skliros E, Apostolou O, Kotsini 
V, Pappas SI. Low prevalence of hepatitis C virus infection in 
Greek diabetic patients. Diabet Med 1999; 16: 250-252 [PMID: 
10227572 DOI: 10.1046/j.1464-5491.1999.00009.x]

102 Perret JL, Moussavou-Kombila JB, Delaporte E, Pemba LF, 
Larouze B. [Lack of association between hepatitis C virus 
infection and diabetes mellitus in Gabon]. Gastroenterol Clin 
Biol 2000; 24: 135-136 [PMID: 10755864]

103 Vírseda I, Jaqueti J, Nicolás MD, Prieto RI, Somoza MA, 
Navarro F. [Hepatitis C virus and type-2 diabetes mellitus. 
Is there a connection?]. Enferm Infecc Microbiol Clin 2002; 20: 
96-97 [PMID: 11886686]

104 Wolff C, Moñoz S, Raddatz V. [Is there is association be-
tween hepatitis C virus and diabetes?]. Medicina (B Aires) 
1999; 59: 315-316 [PMID: 10451579]

105 Gowans EJ, Jones KL, Bharadwaj M, Jackson DC. Prospects 
for dendritic cell vaccination in persistent infection with hep-
atitis C virus. J Clin Virol 2004; 30: 283-290 [PMID: 15163415]

106 Masini M, Campani D, Boggi U, Menicagli M, Funel N, Poll-
era M, Lupi R, Del Guerra S, Bugliani M, Torri S, Del Prato S, 
Mosca F, Filipponi F, Marchetti P. Hepatitis C virus infection 
and human pancreatic beta-cell dysfunction. Diabetes Care 
2005; 28: 940-941 [PMID: 15793203]

107 Laskus T, Radkowski M, Wang LF, Vargas H, Rakela J. 
Search for hepatitis C virus extrahepatic replication sites in 
patients with acquired immunodeficiency syndrome: specific 
detection of negative-strand viral RNA in various tissues. 
Hepatology 1998; 28: 1398-1401 [PMID: 9794927 DOI: 10.1002/
hep.510280531]

108 Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, 
Kimura S, Moriya K, Koike K. Hepatitis C virus infection 
and diabetes: direct involvement of the virus in the develop-
ment of insulin resistance. Gastroenterology 2004; 126: 840-848 
[PMID: 14988838 DOI: 10.1053/j.gastro.2003.11.056]

109 Bureau C, Bernad J, Chaouche N, Orfila C, Béraud M, 
Gonindard C, Alric L, Vinel JP, Pipy B. Nonstructural 3 pro-
tein of hepatitis C virus triggers an oxidative burst in human 
monocytes via activation of NADPH oxidase. J Biol Chem 
2001; 276: 23077-23083 [PMID: 11304537 DOI: 10.1074/jbc.
M100698200]

110 Gale M, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, 
Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Con-

594 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



trol of PKR protein kinase by hepatitis C virus nonstructural 
5A protein: molecular mechanisms of kinase regulation. Mol 
Cell Biol 1998; 18: 5208-5218 [PMID: 9710605]

111 Mitsuyoshi H, Itoh Y, Sumida Y, Minami M, Yasui K, Na-
kashima T, Okanoue T. Evidence of oxidative stress as a 
cofactor in the development of insulin resistance in patients 
with chronic hepatitis C. Hepatol Res 2008; 38: 348-353 [PMID: 
18021228 DOI: 10.1111/j.1872-034X.2007.00280.x]

112 Miyamoto H, Moriishi K, Moriya K, Murata S, Tanaka K, 
Suzuki T, Miyamura T, Koike K, Matsuura Y. Involvement 
of the PA28gamma-dependent pathway in insulin resistance 
induced by hepatitis C virus core protein. J Virol 2007; 81: 
1727-1735 [PMID: 17135326]

113 Sheikh MY, Choi J, Qadri I, Friedman JE, Sanyal AJ. Hepa-
titis C virus infection: molecular pathways to metabolic syn-
drome. Hepatology 2008; 47: 2127-2133 [PMID: 18446789 DOI: 
10.1002/hep.22269]

114 Banerjee S, Saito K, Ait-Goughoulte M, Meyer K, Ray RB, 
Ray R. Hepatitis C virus core protein upregulates serine 
phosphorylation of insulin receptor substrate-1 and impairs 
the downstream akt/protein kinase B signaling pathway 
for insulin resistance. J Virol 2008; 82: 2606-2612 [PMID: 
18160431 DOI: 10.1128/JVI.01672-07]

115 Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, 
Ide T, Taniguchi E, Kumemura H, Hanada S, Maeyama M, 
Baba S, Koga H, Kumashiro R, Ueno T, Ogata H, Yoshimura 
A, Sata M. Hepatitis C virus down-regulates insulin receptor 
substrates 1 and 2 through up-regulation of suppressor of 
cytokine signaling 3. Am J Pathol 2004; 165: 1499-1508 [PMID: 
15509521]

116 Pazienza V, Clément S, Pugnale P, Conzelman S, Foti M, 
Mangia A, Negro F. The hepatitis C virus core protein of gen-
otypes 3a and 1b downregulates insulin receptor substrate 1 
through genotype-specific mechanisms. Hepatology 2007; 45: 
1164-1171 [PMID: 17465001 DOI: 10.1002/hep.21634]

117 Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, 
Cohen P, Hemmings BA. Mechanism of activation of protein 
kinase B by insulin and IGF-1. EMBO J 1996; 15: 6541-6551 
[PMID: 8978681]

118 Manning BD, Cantley LC. AKT/PKB signaling: navigating 
downstream. Cell 2007; 129: 1261-1274 [PMID: 17604717 DOI: 
10.1016/j.cell.2007.06.009]

119 Burén J, Liu HX, Jensen J, Eriksson JW. Dexamethasone im-
pairs insulin signalling and glucose transport by depletion 
of insulin receptor substrate-1, phosphatidylinositol 3-kinase 
and protein kinase B in primary cultured rat adipocytes. 
Eur J Endocrinol 2002; 146: 419-429 [PMID: 11888850 DOI: 
10.1530/eje.0.1460419]

120 Cantley LC. The phosphoinositide 3-kinase pathway. Sci-
ence 2002; 296: 1655-1657 [PMID: 12040186 DOI: 10.1126/sci-
ence.296.5573.1655]

121 Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D. 
Increased insulin sensitivity and upregulation of insulin 
receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver 
of Ames dwarf mice. J Endocrinol 2002; 173: 81-94 [PMID: 
11927387 DOI: 10.1677/joe.0.1730081]

122 Jiang G, Zhang BB. Pi 3-kinase and its up- and down-stream 
modulators as potential targets for the treatment of type II 
diabetes. Front Biosci 2002; 7: d903-d907 [PMID: 11897556]

123 Kaburagi Y, Yamauchi T, Yamamoto-Honda R, Ueki K, Tobe 
K, Akanuma Y, Yazaki Y, Kadowaki T. The mechanism of 
insulin-induced signal transduction mediated by the insulin 
receptor substrate family. Endocr J 1999; 46 Suppl: S25-S34 
[PMID: 12054114 DOI: 10.1507/endocrj.46.Suppl_S25]

124 Matsumoto M, Ogawa W, Teshigawara K, Inoue H, Miyake 
K, Sakaue H, Kasuga M. Role of the insulin receptor sub-
strate 1 and phosphatidylinositol 3-kinase signaling pathway 
in insulin-induced expression of sterol regulatory element 
binding protein 1c and glucokinase genes in rat hepatocytes. 
Diabetes 2002; 51: 1672-1680 [PMID: 12031952 DOI: 10.2337/

diabetes.51.6.1672]
125 Sun Y, Liu S, Ferguson S, Wang L, Klepcyk P, Yun JS, Fried-

man JE. Phosphoenolpyruvate carboxykinase overexpres-
sion selectively attenuates insulin signaling and hepatic 
insulin sensitivity in transgenic mice. J Biol Chem 2002; 277: 
23301-23307 [PMID: 11964395 DOI: 10.1074/jbc.M200964200]

126 Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley 
LC, Kahn CR. Molecular balance between the regulatory and 
catalytic subunits of phosphoinositide 3-kinase regulates cell 
signaling and survival. Mol Cell Biol 2002; 22: 965-977 [PMID: 
11784871]

127 Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in 
signalling pathways: insights into insulin action. Nat Rev 
Mol Cell Biol 2006; 7: 85-96 [PMID: 16493415 DOI: 10.1038/
nrm1837]

128 Thirone AC, Huang C, Klip A. Tissue-specific roles of IRS 
proteins in insulin signaling and glucose transport. Trends 
Endocrinol Metab 2006; 17: 72-78 [PMID: 16458527 DOI: 
10.1016/j.tem.2006.01.005]

129 Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. Im-
paired IRS-1/PI3-kinase signaling in patients with HCV: 
a mechanism for increased prevalence of type 2 diabetes. 
Hepatology 2003; 38: 1384-1392 [PMID: 14647049]

130 Bernsmeier C, Duong FH, Christen V, Pugnale P, Negro F, 
Terracciano L, Heim MH. Virus-induced over-expression of 
protein phosphatase 2A inhibits insulin signalling in chronic 
hepatitis C. J Hepatol 2008; 49: 429-440 [PMID: 18486982 DOI: 
10.1016/j.jhep.2008.04.007]

131 Negro F. Mechanisms of hepatitis C virus-related insulin 
resistance. Clin Res Hepatol Gastroenterol 2011; 35: 358-363 
[PMID: 21354385 DOI: 10.1016/j.clinre.2011.01.011]

132 Eslam M, Booth DR, George J, Ahlenstiel G. Interaction of 
IFNL3 with insulin resistance, steatosis and lipid metabolism 
in chronic hepatitis C virus infection. World J Gastroenterol 
2013; 19: 7055-7061 [PMID: 24222948 DOI: 10.3748/wjg.v19.
i41.7055]

133 Horner SM, Gale M. Regulation of hepatic innate immu-
nity by hepatitis C virus. Nat Med 2013; 19: 879-888 [PMID: 
23836238 DOI: 10.1038/nm.3253]

134 Bastard JP, Maachi M, Van Nhieu JT, Jardel C, Bruckert E, 
Grimaldi A, Robert JJ, Capeau J, Hainque B. Adipose tissue 
IL-6 content correlates with resistance to insulin activation 
of glucose uptake both in vivo and in vitro. J Clin Endocrinol 
Metab 2002; 87: 2084-2089 [PMID: 11994345 DOI: 10.1210/
jc.87.5.2084]

135 Hotamisligil GS. The role of TNFalpha and TNF receptors in 
obesity and insulin resistance. J Intern Med 1999; 245: 621-625 
[PMID: 10395191 DOI: 10.1046/j.1365-2796.1999.00490.x]

136 Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. 
Adipose tissue tumor necrosis factor and interleukin-6 ex-
pression in human obesity and insulin resistance. Am J Physi-
ol Endocrinol Metab 2001; 280: E745-E751 [PMID: 11287357]

137 Malaguarnera M, Di Fazio I, Romeo MA, Restuccia S, Lauri-
no A, Trovato BA. Elevation of interleukin 6 levels in patients 
with chronic hepatitis due to hepatitis C virus. J Gastroenterol 
1997; 32: 211-215 [PMID: 9085170 DOI: 10.1007/BF02936370]

138 Nelson DR, Lim HL, Marousis CG, Fang JW, Davis GL, 
Shen L, Urdea MS, Kolberg JA, Lau JY. Activation of tumor 
necrosis factor-alpha system in chronic hepatitis C virus in-
fection. Dig Dis Sci 1997; 42: 2487-2494 [PMID: 9440625]

139 Krebs DL, Hilton DJ. SOCS proteins: negative regulators 
of cytokine signaling. Stem Cells 2001; 19: 378-387 [PMID: 
11553846 DOI: 10.1634/stemcells.19-5-378]

140 Naka T, Tsutsui H, Fujimoto M, Kawazoe Y, Kohzaki H, 
Morita Y, Nakagawa R, Narazaki M, Adachi K, Yoshimoto T, 
Nakanishi K, Kishimoto T. SOCS-1/SSI-1-deficient NKT cells 
participate in severe hepatitis through dysregulated cross-
talk inhibition of IFN-gamma and IL-4 signaling in vivo. Im-
munity 2001; 14: 535-545 [PMID: 11371356]

141 Oncül O, Top C, Cavuplu T. Correlation of serum leptin 

595 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



levels with insulin sensitivity in patients with chronic hepa-
titis-C infection. Diabetes Care 2002; 25: 937 [PMID: 11978698 
DOI: 10.2337/diacare.25.5.937]

142 Mankouri J, Tedbury PR, Gretton S, Hughes ME, Griffin 
SD, Dallas ML, Green KA, Hardie DG, Peers C, Harris M. 
Enhanced hepatitis C virus genome replication and lipid ac-
cumulation mediated by inhibition of AMP-activated protein 
kinase. Proc Natl Acad Sci USA 2010; 107: 11549-11554 [PMID: 
20534540 DOI: 10.1073/pnas.0912426107]

143 Cheung AT, Wang J, Ree D, Kolls JK, Bryer-Ash M. Tumor 
necrosis factor-alpha induces hepatic insulin resistance in 
obese Zucker (fa/fa) rats via interaction of leukocyte anti-
gen-related tyrosine phosphatase with focal adhesion kinase. 
Diabetes 2000; 49: 810-819 [PMID: 10905491 DOI: 10.2337/
diabetes.49.5.810]

144 Ruan H, Lodish HF. Insulin resistance in adipose tissue: 
direct and indirect effects of tumor necrosis factor-alpha. 
Cytokine Growth Factor Rev 2003; 14: 447-455 [PMID: 12948526 
DOI: 10.1016/S1359-6101(03)00052-2]

145 Fallahi P, Ferri C, Ferrari SM, Corrado A, Sansonno D, An-
tonelli A. Cytokines and HCV-related disorders. Clin Dev 
Immunol 2012; 2012: 468107 [PMID: 22611419]

146 Antonelli A, Ferri C, Fallahi P, Ferrari SM, Sebastiani M, Fer-
rari D, Giunti M, Frascerra S, Tolari S, Franzoni F, Galetta F, 
Marchi S, Ferrannini E. High values of CXCL10 serum levels 
in mixed cryoglobulinemia associated with hepatitis C infec-
tion. Am J Gastroenterol 2008; 103: 2488-2494 [PMID: 18775023 
DOI: 10.1111/j.1572-0241.2008.02040.x]

147 Ando H, Nagai Y, Yokoyama M, Takamura T, Kobayashi K. 
Antibodies to GAD in diabetic patients with chronic hepati-
tis C. Diabet Med 1998; 15: 797 [PMID: 9737812]

148 Betterle C, Zanette F, Pedini B, Presotto F, Rapp LB, Mon-
ciotti CM, Rigon F. Clinical and subclinical organ-specific 
autoimmune manifestations in type 1 (insulin-dependent) 
diabetic patients and their first-degree relatives. Diabetologia 
1984; 26: 431-436 [PMID: 6381190]

149 Hiéronimus S, Fredenrich A, Tran A, Benzaken S, Fénichel P. 
Antibodies to GAD in chronic hepatitis C patients. Diabetes 
Care 1997; 20: 1044 [PMID: 9167125]

150 Piquer S, Hernández C, Enriquez J, Ross A, Esteban JI, 
Genescà J, Bonifacio E, Puig-Domingo M, Simó R. Islet cell 
and thyroid antibody prevalence in patients with hepatitis 
C virus infection: effect of treatment with interferon. J Lab 
Clin Med 2001; 137: 38-42 [PMID: 11150022 DOI: 10.1067/
mlc.2001.111515]

151 Chen LK, Chou YC, Tsai ST, Hwang SJ, Lee SD. Hepatitis C 
virus infection-related Type 1 diabetes mellitus. Diabet Med 
2005; 22: 340-343 [PMID: 15717885 DOI: 10.1111/j.1464-5491.
2005.01412.x]

152 Masuda H, Atsumi T, Fujisaku A, Shimizu C, Yoshioka 
N, Koike T. Acute onset of type 1 diabetes accompanied 
by acute hepatitis C: the potential role of proinflammatory 
cytokine in the pathogenesis of autoimmune diabetes. Dia-
betes Res Clin Pract 2007; 75: 357-361 [PMID: 16968656 DOI: 
10.1016/j.diabres.2006.07.016]

153 Yan FM, Chen AS, Hao F, Zhao XP, Gu CH, Zhao LB, Yang 
DL, Hao LJ. Hepatitis C virus may infect extrahepatic tissues 
in patients with hepatitis C. World J Gastroenterol 2000; 6: 
805-811 [PMID: 11819700]

154 Bogdanos DP, Mieli-Vergani G, Vergani D. Virus, liver 
and autoimmunity. Dig Liver Dis 2002; 32: 440-446 [PMID: 
11030191 DOI: 10.1016/S1590-8658(00)80266-2]

155 Bogdanos DP, Choudhuri K, Vergani D. Molecular mimicry 
and autoimmune liver disease: virtuous intentions, malign 
consequences. Liver 2001; 21: 225-232 [PMID: 11454184 DOI: 
10.1034/j.1600-0676.2001.021004225.x]

156 Bogdanos DP, Rigopoulou EI. Viral/self-mimicry and immu-
nological cross-reactivity as a trigger of hepatic C virus asso-
ciated autoimmune diabetes. Diabetes Res Clin Pract 2007; 77: 
155-156 [PMID: 17118481 DOI: 10.1016/j.diabres.2006.10.012]

157 Bogdanos DP, Lenzi M, Okamoto M, Rigopoulou EI, Mu-
ratori P, Ma Y, Muratori L, Tsantoulas D, Mieli- Vergani G, 
Bianchi FB, Vergani D. Multiple viral/self immunological 
cross-reactivity in liver kidney microsomal antibody positive 
hepatitis C virus infected patients is associated with the pos-
session of HLA B51. Int J Immunopathol Pharmacol 2004; 17: 
83-92 [PMID: 15000871]

158 Hanifi-Moghaddam P, Schloot NC, Kappler S, Seissler J, 
Kolb H. An association of autoantibody status and serum cy-
tokine levels in type 1 diabetes. Diabetes 2003; 52: 1137-1142 
[PMID: 12716743 DOI: 10.2337/diabetes.52.5.1137]

159 Nicoletti F, Conget I, Di Marco R, Speciale AM, Morìnigo R, 
Bendtzen K, Gomis R. Serum levels of the interferon-gamma-
inducing cytokine interleukin-18 are increased in individuals 
at high risk of developing type I diabetes. Diabetologia 2001; 
44: 309-311 [PMID: 11317661]

160 Oikawa Y, Shimada A, Kasuga A, Morimoto J, Osaki T, 
Tahara H, Miyazaki T, Tashiro F, Yamato E, Miyazaki J, Sa-
ruta T. Systemic administration of IL-18 promotes diabetes 
development in young nonobese diabetic mice. J Immunol 
2003; 171: 5865-5875 [PMID: 14634096]

161 Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleu-
kin-18 is a unique cytokine that stimulates both Th1 and Th2 
responses depending on its cytokine milieu. Cytokine Growth 
Factor Rev 2001; 12: 53-72 [PMID: 11312119]

162 Yumoto E, Higashi T, Nouso K, Nakatsukasa H, Fujiwara K, 
Hanafusa T, Yumoto Y, Tanimoto T, Kurimoto M, Tanaka 
N, Tsuji T. Serum gamma-interferon-inducing factor (IL-18) 
and IL-10 levels in patients with acute hepatitis and fulmi-
nant hepatic failure. J Gastroenterol Hepatol 2002; 17: 285-294 
[PMID: 11982699 DOI: 10.1046/j.1440-1746.2002.02690.x]

163 Torre D, Zeroli C, Giola M, Ferrario G, Fiori GP, Bonetta G, 
Tambini R. Serum levels of interleukin-1 alpha, interleukin-1 
beta, interleukin-6, and tumor necrosis factor in patients 
with acute viral hepatitis. Clin Infect Dis 1994; 18: 194-198 
[PMID: 8161626]

164 Yang XD, Tisch R, Singer SM, Cao ZA, Liblau RS, Schreiber 
RD, McDevitt HO. Effect of tumor necrosis factor alpha on 
insulin-dependent diabetes mellitus in NOD mice. I. The 
early development of autoimmunity and the diabetogenic 
process. J Exp Med 1994; 180: 995-1004 [PMID: 8064245 DOI: 
10.1084/jem.180.3.995]

165 Eizirik DL, Mandrup-Poulsen T. A choice of death--the 
signal-transduction of immune-mediated beta-cell apopto-
sis. Diabetologia 2001; 44: 2115-2133 [PMID: 11793013 DOI: 
10.1007/s001250100021]

166 Thomas HE, Irawaty W, Darwiche R, Brodnicki TC, Sant-
amaria P, Allison J, Kay TW. IL-1 receptor deficiency slows 
progression to diabetes in the NOD mouse. Diabetes 2004; 53: 
113-121 [PMID: 14693705 DOI: 10.2337/diabetes.53.1.113]

167 Lee LF, Xu B, Michie SA, Beilhack GF, Warganich T, Turley S, 
McDevitt HO. The role of TNF-alpha in the pathogenesis of 
type 1 diabetes in the nonobese diabetic mouse: analysis of 
dendritic cell maturation. Proc Natl Acad Sci USA 2005; 102: 
15995-16000 [PMID: 16247001]

168 Antonelli A, Ferri C, Fallahi P, Ferrari SM, Goglia F, Ferran-
nini E. Hepatitis C virus infection: evidence for an associa-
tion with type 2 diabetes (Response to Skowronski et al). 
Diabetes Care 2006; 29: 751 [DOI: 10.2337/diacare.29.03.06.
dc05-2420]

169 Antonelli A, Ferri C, Ferrari SM, Colaci M, Sansonno D, Fal-
lahi P. Endocrine manifestations of hepatitis C virus infec-
tion. Nat Clin Pract Endocrinol Metab 2009; 5: 26-34 [PMID: 
19079271 DOI: 10.1038/ncpendmet1027]

170 Gale EA. Latent autoimmune diabetes in adults: a guide 
for the perplexed. Diabetologia 2005; 48: 2195-2199 [PMID: 
16193287 DOI: 10.1007/s00125-005-1954-5]

171 Skowroński M, Zozulińska D, Juszczyk J, Wierusz-Wysocka 
B. Hepatitis C virus infection: evidence for an association 
with type 2 diabetes. Diabetes Care 2006; 29: 750; author 

596 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



reply 751 [PMID: 16526125 DOI: 10.2337/diacare.29.03.06.
dc05-2263]

172 Antonelli A, Fallahi P, Ferrari SM, Pupilli C, d’Annunzio 
G, Lorini R, Vanelli M, Ferrannini E. Serum Th1 (CXCL10) 
and Th2 (CCL2) chemokine levels in children with newly 
diagnosed Type 1 diabetes: a longitudinal study. Diabet Med 
2008; 25: 1349-1353 [PMID: 19046227 DOI: 10.1111/j.1464-549
1.2008.02577.x]

173 Apolinario A, Majano PL, Lorente R, Núñez O, Clemente G, 
García-Monzón C. Gene expression profile of T-cell-specific 
chemokines in human hepatocyte-derived cells: evidence for 
a synergistic inducer effect of cytokines and hepatitis C virus 
proteins. J Viral Hepat 2005; 12: 27-37 [PMID: 15655045 DOI: 
10.1111/j.1365-2893.2005.00540.x]

174 Vial T, Descotes J. Clinical toxicity of the interferons. Drug 
Saf 1994; 10: 115-150 [PMID: 7516663 DOI: 10.2165/00002018
-199410020-00003]

175 Fabris P, Betterle C, Greggio NA, Zanchetta R, Bosi E, Biasin 
MR, de Lalla F. Insulin-dependent diabetes mellitus during 
alpha-interferon therapy for chronic viral hepatitis. J Hepatol 
1998; 28: 514-517 [PMID: 9551692]

176 Hadziyannis SJ. The spectrum of extrahepatic manifesta-
tions in hepatitis C virus infection. J Viral Hepat 1997; 4: 9-28 
[PMID: 9031061 DOI: 10.1046/j.1365-2893.1997.00120.x]

177 di Cesare E, Previti M, Russo F, Brancatelli S, Ingemi MC, 
Scoglio R, Mazzù N, Cucinotta D, Raimondo G. Interferon-
alpha therapy may induce insulin autoantibody develop-
ment in patients with chronic viral hepatitis. Dig Dis Sci 1996; 
41: 1672-1677 [PMID: 8769300 DOI: 10.1007/BF02087923]

178 Jasonek J, Kacprzak-Bergman I, Zaleska I. [The treatment 
of HCV infection with interferon alpha and ribavirin in a 
child with diabetes I type]. Przegl Epidemiol 2006; 60: 259-263 
[PMID: 16964677]

179 Schories M, Peters T, Rasenack J, Reincke M. [Autoantibodies 
against islet cell antigens and type 1 diabetes after treatment 
with interferon-alpha]. Dtsch Med Wochenschr 2004; 129: 
1120-1124 [PMID: 15143453]

180 Schreuder TC, Gelderblom HC, Weegink CJ, Hamann D, 
Reesink HW, Devries JH, Hoekstra JB, Jansen PL. High 
incidence of type 1 diabetes mellitus during or shortly af-
ter treatment with pegylated interferon alpha for chronic 
hepatitis C virus infection. Liver Int 2008; 28: 39-46 [PMID: 
18031478 DOI: 10.1111/j.1478-3231.2007.01610.x]

181 Betterle C, Fabris P, Zanchetta R, Pedini B, Tositti G, Bosi 
E, de Lalla F. Autoimmunity against pancreatic islets and 
other tissues before and after interferon-alpha therapy in 
patients with hepatitis C virus chronic infection. Diabetes 
Care 2000; 23: 1177-1181 [PMID: 10937518 DOI: 10.2337/dia-
care.23.8.1177]

182 Chakrabarti D, Hultgren B, Stewart TA. IFN-alpha induces 
autoimmune T cells through the induction of intracellular 
adhesion molecule-1 and B7.2. J Immunol 1996; 157: 522-528 
[PMID: 8752897]

183 Frankart L, Lejeune D, Donckier J. Diabetes mellitus and in-
terferon therapy. Diabet Med 1997; 14: 405 [PMID: 9171259]

184 Hayakawa M, Gando S, Morimoto Y, Kemmotsu O. De-
velopment of severe diabetic keto-acidosis with shock 
after changing interferon-beta into interferon-alpha for 
chronic hepatitis C. Intensive Care Med 2000; 26: 1008 [PMID: 
10990121]

185 Imano E, Kanda T, Ishigami Y, Kubota M, Ikeda M, Mat-
suhisa M, Kawamori R, Yamasaki Y. Interferon induces 
insulin resistance in patients with chronic active hepatitis C. 
J Hepatol 1998; 28: 189-193 [PMID: 9514530 DOI: 10.1016/016
8-8278(88)80004-7]

186 Koivisto VA, Pelkonen R, Cantell K. Effect of interferon on 
glucose tolerance and insulin sensitivity. Diabetes 1989; 38: 
641-647 [PMID: 2653935 DOI: 10.2337/diabetes.38.5.641]

187 Konrad T, Zeuzem S, Vicini P, Toffolo G, Briem D, Lormann 
J, Herrmann G, Berger A, Kusterer K, Teuber G, Cobelli 

C, Usadel KH. Evaluation of factors controlling glucose 
tolerance in patients with HCV infection before and after 4 
months therapy with interferon-alpha. Eur J Clin Invest 2000; 
30: 111-121 [PMID: 10651835 DOI: 10.1046/j.1365-2362.2000.0
0608.x]

188 Nemesánszky E, Pusztay M, Csepregi A. Effects of inter-
feron treatment on the glucose metabolism of patients with 
chronic hepatitis C. Eur J Intern Med 2000; 11: 151-155 [PMID: 
10854821 DOI: 10.1016/S0953-6205(00)00080-7]

189 Fabris P, Betterle C, Floreani A, Greggio NA, de Lazzari F, 
Naccarato R, Chiaramonte M. Development of type 1 diabe-
tes mellitus during interferon alfa therapy for chronic HCV 
hepatitis. Lancet 1992; 340: 548 [PMID: 1354296 DOI: 10.1016
/0140-6736(92)91744-S]

190 Bhatti A, McGarrity TJ, Gabbay R. Diabetic ketoacidosis 
induced by alpha interferon and ribavirin treatment in a 
patient with hepatitis C. Am J Gastroenterol 2001; 96: 604-605 
[PMID: 11232722 DOI: 10.1016/S0002-9270(00)02364-9]

191 Bosi E, Minelli R, Bazzigaluppi E, Salvi M. Fulminant auto-
immune Type 1 diabetes during interferon-alpha therapy: a 
case of Th1-mediated disease? Diabet Med 2001; 18: 329-332 
[PMID: 11437866 DOI: 10.1046/j.1464-5491.2001.00492.x]

192 Cozzolongo R, Betterle C, Fabris P, Paola Albergoni M, 
Lanzilotta E, Manghisi OG. Onset of type 1 diabetes mel-
litus during peginterferon alpha-2b plus ribavirin treatment 
for chronic hepatitis C. Eur J Gastroenterol Hepatol 2006; 18: 
689-692 [PMID: 16702861]

193 Eibl N, Gschwantler M, Ferenci P, Eibl MM, Weiss W, 
Schernthaner G. Development of insulin-dependent diabetes 
mellitus in a patient with chronic hepatitis C during therapy 
with interferon-alpha. Eur J Gastroenterol Hepatol 2001; 13: 
295-298 [PMID: 11293453]

194 Fattovich G, Giustina G, Favarato S, Ruol A. A survey of 
adverse events in 11,241 patients with chronic viral hepatitis 
treated with alfa interferon. J Hepatol 1996; 24: 38-47 [PMID: 
8834023]

195 Figge E, Reiser M, Schmiegel W, Nauck MA. Manifestation 
eines Typ-1-Diabetes bei einem patienten mit hepatitis C 
wahrend einer therapie mit interferon-a and ribavirin. Diabe-
tes Stoffwechsel 2001; 10: 133-138

196 Floreani A, Chiaramonte M, Greggio NA, Fabris P, De Laz-
zari F, Naccarato R, Betterle C. Organ-specific autoimmunity 
and genetic predisposition in interferon-treated HCV-related 
chronic hepatitis patients. Ital J Gastroenterol Hepatol 1998; 30: 
71-76 [PMID: 9615270]

197 Fujioka T, Honda M, Yoshizaki T, Ogawa M, Matsuno 
H, Shimokawa K, Koyama K. A case of type 1 diabetes 
onset and recurrence of Graves’ disease during pegylated 
interferon-α plus ribavirin treatment for chronic hepatitis 
C. Intern Med 2010; 49: 1987-1990 [PMID: 20847504 DOI: 
10.2169/internalmedicine.49.3831]

198 Giuntoli P, Mariani S, Avoli D, Giammarco V. Diabete mel-
lito insulino-dipendente indotto da interferon-alfa. Minerva 
Endocrinol 1995; 20: 243-245

199 Hayashi M, Kataoka Y, Tachikawa K, Koguchi H, Tanaka H. 
Dual onset of type 1 diabetes mellitus and Graves’ disease 
during treatment with pegylated interferon alpha-2b and rib-
avirin for chronic hepatitis C. Diabetes Res Clin Pract 2009; 86: 
e19-e21 [PMID: 19744739 DOI: 10.1016/j.diabres.2009.08.009]

200 Huang X, Yuang J, Goddard A, Foulis A, James RF, Lern-
mark A, Pujol-Borrell R, Rabinovitch A, Somoza N, Stewart 
TA. Interferon expression in the pancreases of patients with 
type I diabetes. Diabetes 1995; 44: 658-664 [PMID: 7540571 
DOI: 10.2337/diabetes.44.6.658]

201 Imagawa A, Itoh N, Hanafusa T, Oda Y, Waguri M, Miyaga-
wa J, Kono N, Kuwajima M, Matsuzawa Y. Autoimmune en-
docrine disease induced by recombinant interferon-alpha ther-
apy for chronic active type C hepatitis. J Clin Endocrinol Metab 
1995; 80: 922-926 [PMID: 7883851 DOI: 10.1210/jc.80.3.922]

202 Kado S, Miyamoto J, Komatsu N, Iwaki Y, Ozaki H, Taguchi 

597 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



H, Kure M, Sarashina G, Watanabe T, Katsura Y, Nemoto Y, 
Noritake M, Matsuoka T. Type 1 diabetes mellitus caused by 
treatment with interferon-beta. Intern Med 2000; 39: 146-149 
[PMID: 10732833 DOI: 10.2169/internalmedicine.39.146]

203 Mathieu E, Fain O, Sitbon M, Thomas M. [Autoimmune dia-
betes after treatment with interferon-alpha]. Presse Med 1995; 
24: 238 [PMID: 7899374]

204 Mofredj A, Howaizi M, Grasset D, Licht H, Loison S, Dever-
gie B, Demontis R, Cadranel JF. Diabetes mellitus during in-
terferon therapy for chronic viral hepatitis. Dig Dis Sci 2002; 
47: 1649-1654 [PMID: 12141831]

205 Nakamura K, Kawasaki E, Abiru N, Jo O, Fukushima K, 
Satoh T, Kuriya G, Kobayashi M, Kuwahara H, Yamasaki 
H, Ide T, Eguchi K. Trajectories of anti-islet autoantibodies 
before development of type 1 diabetes in interferon-treated 
hepatitis C patients. Case reports and a literature review. 
Endocr J 2010; 57: 947-951 [PMID: 20805634 DOI: 10.1507/en-
docrj.K10E-207]

206 Ogihara T, Katagiri H, Yamada T, Kudo H, Imai J, Ishigaki 
Y, Hinokio Y, Yamagiwa Y, Ueno Y, Shimosegawa T, Oka Y. 
Peginterferon (PEG-IFN) plus ribavirin combination thera-
py, but neither interferon nor PGE-IFN alone, induced type 
1 diabetes in a patient with chronic hepatitis C. Intern Med 
2009; 48: 1387-1390 [PMID: 19687584 DOI: 10.2169/internal-
medicine.48.2220]

207 Oka R, Hiroi N, Shigemitsu R, Sue M, Oshima Y, Yoshida-
Hiroi M. Type 1 Diabetes Mellitus Associated with Pegylated 
Interferon-α Plus Ribavirin Treatment for Chronic Hepatitis 
C: Case Report and Literature Review. Clin Med Insights 
Endocrinol Diabetes 2011; 4: 39-45 [PMID: 22879793 DOI: 
10.4137/CMED.S7815]

208 Okada K, Kikuoka H, Kokawa M, Ihozaki M, Takeuchi K, 
Okamura T, Nakao T, Hoso T, Kondo M. A case of insulin-
dependent diabetes mellitus (IDDM) following interferon 
alpha therapy for type C chronic hepatitis. J Japan Diab Soc 
1995; 38: 625-630

209 Okanoue T, Sakamoto S, Itoh Y, Minami M, Yasui K, Saka-
moto M, Nishioji K, Katagishi T, Nakagawa Y, Tada H, Sawa 
Y, Mizuno M, Kagawa K, Kashima K. Side effects of high-
dose interferon therapy for chronic hepatitis C. J Hepatol 
1996; 25: 283-291 [PMID: 8895006 DOI: 10.1016/S0168-8278(9
6)80113-9]

210 Recasens M, Aguilera E, Ampurdanés S, Sánchez Tapias JM, 
Simó O, Casamitjana R, Conget I. Abrupt onset of diabetes 
during interferon-alpha therapy in patients with chronic 
hepatitis C. Diabet Med 2001; 18: 764-767 [PMID: 11606177 
DOI: 10.1046/j.1464-5491.2001.00562.x]

211 Rostaing L, Oksman F, Izopet J, Baron E, Cisterne JM, Hoff 
M, Abbal M, Durand D. Serological markers of autoim-
munity in renal transplant patients before and after alpha-
interferon therapy for chronic hepatitis C. Am J Nephrol 1996; 
16: 478-483 [PMID: 8955758 DOI: 10.1159/000169047]

212 Seifarth C, Benninger J, Böhm BO, Wiest-Ladenburger U, 
Hahn EG, Hensen J. [Augmentation of the immune response 
to islet cell antigens with development of diabetes mellitus 
caused by interferon-alpha therapy in chronic hepatitis C]. Z 
Gastroenterol 1999; 37: 235-239 [PMID: 10234796]

213 Shiba T, Morino Y, Tagawa K, Fujino H, Unuma T. Onset of 
diabetes with high titer anti-GAD antibody after IFN therapy 
for chronic hepatitis. Diabetes Res Clin Pract 1995; 30: 237-241 
[PMID: 8861464 DOI: 10.1016/0168-8227(95)01188-9]

214 Hiltunen Y, Ala-Korpela M, Jokisaari J, Eskelinen S, Kivi-
niitty K, Savolainen M, Kesäniemi YA. A lineshape fitting 
model for 1H NMR spectra of human blood plasma. Magn 
Reson Med 1991; 21: 222-232 [PMID: 1745121]

215 Tanaka J, Sugimoto K, Shiraki K, Beppu T, Yoneda K, Fuke 
H, Yamamoto N, Ito K, Takei Y. Type 1 diabetes mellitus 
provoked by peginterferon alpha-2b plus ribavirin treatment 
for chronic hepatitis C. Intern Med 2008; 47: 747-749 [PMID: 
18421192 DOI: 10.2169/internalmedicine.47.0653]

216 Tohda G, Oida K, Higashi S, Hayashi T, Miyamori I. In-
terferon-alpha and development of type 1 diabetes: a case 
without insulin resistance. Diabetes Care 1998; 21: 1774 [PMID: 
9773746 DOI: 10.2337/diacare.21.10.1774b]

217 Tosone G, Borgia G, Gentile I, Cerini R, Conte MC, Orlando 
R, Piazza M. A case of pegylated interferon alpha-related 
diabetic ketoacidosis: can this complication be avoided? Acta 
Diabetol 2007; 44: 167-169 [PMID: 17721757 DOI: 10.1007/
s00592-007-0259-1]

218 Uto H, Matsuoka H, Murata M, Okamoto T, Miyata Y, Hori T, 
Ido A, Hirono S, Hayashi K, Tsubouchi H. A case of chronic 
hepatitis C developing insulin-dependent diabetes mellitus 
associated with various autoantibodies during interferon 
therapy. Diabetes Res Clin Pract 2000; 49: 101-106 [PMID: 
10963820 DOI: 10.1016/S0168-8227(00)00143-1]

219 Wasmuth HE, Stolte C, Geier A, Gartung C, Matern S. 
Induction of multiple autoantibodies to islet cell antigens 
during treatment with interferon alpha for chronic hepatitis 
C. Gut 2001; 49: 596-597 [PMID: 11589192 DOI: 10.1136/
gut.49.4.596a]

220 Waguri M, Hanafusa T, Itoh N, Imagawa A, Miyagawa J, 
Kawata S, Kono N, Kuwajima M, Matsuzawa Y. Occurrence 
of IDDM during interferon therapy for chronic viral hepa-
titis. Diabetes Res Clin Pract 1994; 23: 33-36 [PMID: 8013261 
DOI: 10.1016/0168-8227(94)90124-4]

221 Wesche B, Jaeckel E, Trautwein C, Wedemeyer H, Falorni A, 
Frank H, von zur Mühlen A, Manns MP, Brabant G. Induction 
of autoantibodies to the adrenal cortex and pancreatic islet 
cells by interferon alpha therapy for chronic hepatitis C. Gut 
2001; 48: 378-383 [PMID: 11171829 DOI: 10.1136/gut.48.3.378]

222 Yamazaki M, Sato A, Takeda T, Komatsu M. Distinct clinical 
courses in type 1 diabetes mellitus induced by peg-interfer-
on-alpha treatment for chronic hepatitis C. Intern Med 2010; 
49: 403-407 [PMID: 20190473 DOI: 10.2169/internalmedi-
cine.49.2656]

223 Yanagisawa K, Amemiya T, Morita Y, Kuroki H, Sanaka M, 
Uchigata Y, Omori Y, Hashimoto E, Hayashi N. A case of 
insulindependent diabetes mellitus developing during in-
terferon therapy for chronic hepatitis type C. J Japan Diab Soc 
1995; 38: 283-288

224 Alter MJ, Margolis HS, Krawczynski K, Judson FN, Mares A, 
Alexander WJ, Hu PY, Miller JK, Gerber MA, Sampliner RE. 
The natural history of community-acquired hepatitis C in the 
United States. The Sentinel Counties Chronic non-A, non-B 
Hepatitis Study Team. N Engl J Med 1992; 327: 1899-1905 
[PMID: 1280771 DOI: 10.1056/NEJM199212313272702]

225 Kiyosawa K, Furuta S. Review of hepatitis C in Japan. J 
Gastroenterol Hepatol 1991; 6: 383-391 [PMID: 1717034 DOI: 
10.1111/j.1440-1746.1991.tb00876.x]

226 van Rossum TG, Vulto AG, de Man RA, Brouwer JT, Schalm 
SW. Review article: glycyrrhizin as a potential treatment for 
chronic hepatitis C. Aliment Pharmacol Ther 1998; 12: 199-205 
[PMID: 9570253]

227 Colombo M, Kuo G, Choo QL, Donato MF, Del Ninno E, 
Tommasini MA, Dioguardi N, Houghton M. Prevalence 
of antibodies to hepatitis C virus in Italian patients with 
hepatocellular carcinoma. Lancet 1989; 2: 1006-1008 [PMID: 
2572740 DOI: 10.1016/S0140-6736(89)91016-7]

228 Hasan F, Jeffers LJ, De Medina M, Reddy KR, Parker T, 
Schiff ER, Houghton M, Choo QL, Kuo G. Hepatitis C-asso-
ciated hepatocellular carcinoma. Hepatology 1990; 12: 589-591 
[PMID: 2169456 DOI: 10.1002/hep.1840120323]

229 Ikeda K, Saitoh S, Koida I, Arase Y, Tsubota A, Chayama 
K, Kumada H, Kawanishi M. A multivariate analysis of risk 
factors for hepatocellular carcinogenesis: a prospective ob-
servation of 795 patients with viral and alcoholic cirrhosis. 
Hepatology 1993; 18: 47-53 [PMID: 7686879 DOI: 10.1016/0270
-9139(93)90505-H]

230 Kew MC, Houghton M, Choo QL, Kuo G. Hepatitis C virus 
antibodies in southern African blacks with hepatocellular 

598 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



carcinoma. Lancet 1990; 335: 873-874 [PMID: 1691422 DOI: 
10.1016/0140-6736(90)90474-J]

231 Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, 
Kitamura T, Nakanishi K, Fujimoto I, Inoue A, Yamazaki H. 
Risk factors for hepatocellular carcinoma among patients 
with chronic liver disease. N Engl J Med 1993; 328: 1797-1801 
[PMID: 7684822 DOI: 10.1056/NEJM199306243282501]

232 Adami HO, Chow WH, Nyrén O, Berne C, Linet MS, Ek-
bom A, Wolk A, McLaughlin JK, Fraumeni JF. Excess risk 
of primary liver cancer in patients with diabetes mellitus. 
J Natl Cancer Inst 1996; 88: 1472-1477 [PMID: 8841022 DOI: 
10.1093/jnci/88.20.1472]

233 Chen CL, Yang HI, Yang WS, Liu CJ, Chen PJ, You SL, 
Wang LY, Sun CA, Lu SN, Chen DS, Chen CJ. Metabolic 
factors and risk of hepatocellular carcinoma by chronic 
hepatitis B/C infection: a follow-up study in Taiwan. Gastro-
enterology 2008; 135: 111-121 [PMID: 18505690 DOI: 10.1053/
j.gastro.2008.03.073]

234 Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. 
Diabetes increases the risk of hepatocellular carcinoma in the 
United States: a population based case control study. Gut 2005; 
54: 533-539 [PMID: 15753540 DOI: 10.1136/gut.2004.052167]

235 El-Serag HB, Richardson PA, Everhart JE. The role of diabe-
tes in hepatocellular carcinoma: a case-control study among 
United States Veterans. Am J Gastroenterol 2001; 96: 2462-2467 
[PMID: 11513191 DOI: 10.1016/S0002-9270(01)02617-X]

236 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epi-
demiology and molecular carcinogenesis. Gastroenterology 
2007; 132: 2557-2576 [PMID: 17570226 DOI: 10.1053/j.gas-
tro.2007.04.061]

237 Gao C, Yao SK. Diabetes mellitus: a “true” independent risk 
factor for hepatocellular carcinoma? Hepatobiliary Pancreat 
Dis Int 2009; 8: 465-473 [PMID: 19822488]

238 Hung CH, Lee CM, Wang JH, Hu TH, Chen CH, Lin CY, Lu 
SN. Impact of diabetes mellitus on incidence of hepatocel-
lular carcinoma in chronic hepatitis C patients treated with 
interferon-based antiviral therapy. Int J Cancer 2011; 128: 
2344-2352 [PMID: 20669224 DOI: 10.1002/ijc.25585]

239 Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsu-
gane S. Diabetes mellitus and the risk of cancer: results 
from a large-scale population-based cohort study in Japan. 
Arch Intern Med 2006; 166: 1871-1877 [PMID: 17000944 DOI: 
10.1001/archinte.166.17.1871]

240 Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, Samet JM. Fasting 
serum glucose level and cancer risk in Korean men and 
women. JAMA 2005; 293: 194-202 [PMID: 15644546 DOI: 
10.1001/jama.293.2.194]

241 Lagiou P, Kuper H, Stuver SO, Tzonou A, Trichopoulos D, 
Adami HO. Role of diabetes mellitus in the etiology of he-
patocellular carcinoma. J Natl Cancer Inst 2000; 92: 1096-1099 
[PMID: 10880555 DOI: 10.1093/jnci/92.13.1096]

242 Lai MS, Hsieh MS, Chiu YH, Chen TH. Type 2 diabetes and 
hepatocellular carcinoma: A cohort study in high preva-
lence area of hepatitis virus infection. Hepatology 2006; 43: 
1295-1302 [PMID: 16729295 DOI: 10.1002/hep.21208]

243 La Vecchia C, Negri E, Franceschi S, D’Avanzo B, Boyle P. A 
case-control study of diabetes mellitus and cancer risk. Br J Can-
cer 1994; 70: 950-953 [PMID: 7947103 DOI: 10.1038/bjc.1994.427]

244 Lawson DH, Gray JM, McKillop C, Clarke J, Lee FD, Patrick 
RS. Diabetes mellitus and primary hepatocellular carcinoma. 
Q J Med 1986; 61: 945-955 [PMID: 2819932]

245 N’Kontchou G, Paries J, Htar MT, Ganne-Carrie N, Costen-
tin L, Grando-Lemaire V, Trinchet JC, Beaugrand M. Risk 
factors for hepatocellular carcinoma in patients with alco-
holic or viral C cirrhosis. Clin Gastroenterol Hepatol 2006; 4: 
1062-1068 [PMID: 16844421 DOI: 10.1016/j.cgh.2006.05.013]

246 Taura N, Ichikawa T, Miyaaki H, Yatsuhashi H, Ishibashi H, 
Nakao K. Prevalence of type 2 diabetes mellitus in Japanese 
patients with hepatocellular carcinoma. Exp Ther Med 2011; 2: 
81-84 [PMID: 22977473 DOI: 10.3892/etm.2010.167]

247 Tazawa J, Maeda M, Nakagawa M, Ohbayashi H, Kusano F, 
Yamane M, Sakai Y, Suzuki K. Diabetes mellitus may be as-
sociated with hepatocarcinogenesis in patients with chronic 
hepatitis C. Dig Dis Sci 2002; 47: 710-715 [PMID: 11991597]

248 Veldt BJ, Chen W, Heathcote EJ, Wedemeyer H, Reichen J, 
Hofmann WP, de Knegt RJ, Zeuzem S, Manns MP, Hansen 
BE, Schalm SW, Janssen HL. Increased risk of hepatocel-
lular carcinoma among patients with hepatitis C cirrhosis 
and diabetes mellitus. Hepatology 2008; 47: 1856-1862 [PMID: 
18506898 DOI: 10.1002/hep.22251]

249 Yu MC, Tong MJ, Govindarajan S, Henderson BE. Nonviral 
risk factors for hepatocellular carcinoma in a low-risk popu-
lation, the non-Asians of Los Angeles County, California. 
J Natl Cancer Inst 1991; 83: 1820-1826 [PMID: 1660542 DOI: 
10.1093/jnci/83.24.1820]

250 Yuan JM, Govindarajan S, Arakawa K, Yu MC. Synergism of 
alcohol, diabetes, and viral hepatitis on the risk of hepatocel-
lular carcinoma in blacks and whites in the U.S. Cancer 2004; 
101: 1009-1017 [PMID: 15329910 DOI: 10.1002/cncr.20427]

251 Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet 
M, Keehn S, Borch-Johnsen K, Olsen JH. Cancer incidence 
in a population-based cohort of patients hospitalized with 
diabetes mellitus in Denmark. J Natl Cancer Inst 1997; 89: 
1360-1365 [PMID: 9308706 DOI: 10.1093/jnci/89.18.1360]

252 D’Souza R, Sabin CA, Foster GR. Insulin resistance plays 
a significant role in liver fibrosis in chronic hepatitis C and 
in the response to antiviral therapy. Am J Gastroenterol 2005; 
100: 1509-1515 [PMID: 15984973 DOI: 10.1111/j.1572-0241.20
05.41403.x]

253 Romero-Gómez M, Del Mar Viloria M, Andrade RJ, Salm-
erón J, Diago M, Fernández-Rodríguez CM, Corpas R, 
Cruz M, Grande L, Vázquez L, Muñoz-De-Rueda P, López-
Serrano P, Gila A, Gutiérrez ML, Pérez C, Ruiz-Extremera 
A, Suárez E, Castillo J. Insulin resistance impairs sustained 
response rate to peginterferon plus ribavirin in chronic hepa-
titis C patients. Gastroenterology 2005; 128: 636-641 [PMID: 
15765399 DOI: 10.1053/j.gastro.2004.12.049]

254 Alexia C, Fallot G, Lasfer M, Schweizer-Groyer G, Groyer A. 
An evaluation of the role of insulin-like growth factors (IGF) 
and of type-I IGF receptor signalling in hepatocarcinogenesis 
and in the resistance of hepatocarcinoma cells against drug-
induced apoptosis. Biochem Pharmacol 2004; 68: 1003-1015 
[PMID: 15313394]

255 Stuver SO, Kuper H, Tzonou A, Lagiou P, Spanos E, Hsieh 
CC, Mantzoros C, Trichopoulos D. Insulin-like growth factor 
1 in hepatocellular carcinoma and metastatic liver cancer in 
men. Int J Cancer 2000; 87: 118-121 [PMID: 10861461]

256 Su TS, Liu WY, Han SH, Jansen M, Yang-Fen TL, P’eng FK, 
Chou CK. Transcripts of the insulin-like growth factors I and 
II in human hepatoma. Cancer Res 1989; 49: 1773-1777 [PMID: 
2466561]

257 Le Roith D. Seminars in medicine of the Beth Israel Deacon-
ess Medical Center. Insulin-like growth factors. N Engl J Med 
1997; 336: 633-640 [PMID: 9032050]

258 Macaulay VM. Insulin-like growth factors and cancer. Br J Can-
cer 1992; 65: 311-320 [PMID: 1313689 DOI: 10.1038/bjc.1992.65]

259 Ellidokuz E, Cömlekçi A, Ellidokuz H, Akpinar H, Gökçe 
C, Tankurt E, Sagol O, Simsek I, Gönen O. The role of serum 
leptin levels in chronic hepatitis C with steatosis. Hepatogas-
troenterology 2003; 50 Suppl 2: cclxix-cclxxii [PMID: 15244198]

260 Rubbia-Brandt L, Quadri R, Abid K, Giostra E, Malé PJ, 
Mentha G, Spahr L, Zarski JP, Borisch B, Hadengue A, Negro 
F. Hepatocyte steatosis is a cytopathic effect of hepatitis C 
virus genotype 3. J Hepatol 2000; 33: 106-115 [PMID: 10905593 
DOI: 10.1016/S0168-8278(00)80166-X]

261 Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Utili 
R, Ruggiero G. Steatosis accelerates the progression of liver 
damage of chronic hepatitis C patients and correlates with 
specific HCV genotype and visceral obesity. Hepatology 2001; 
33: 1358-1364 [PMID: 11391523 DOI: 10.1053/jhep.2001.24432]

599 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



262 Ratziu V, Trabut JB, Poynard T. Fat, diabetes, and liver inju-
ry in chronic hepatitis C. Curr Gastroenterol Rep 2004; 6: 22-29 
[PMID: 14720450 DOI: 10.1007/s11894-004-0022-5]

263 Tsochatzis E, Papatheodoridis GV, Manesis EK, Chrysanthos 
N, Kafiri G, Petraki K, Hadziyannis E, Pandelidaki H, Zafi-
ropoulou R, Savvas S, Koskinas J, Archimandritis AJ. Hepatic 
steatosis in genotype 4 chronic hepatitis C is mainly because 
of metabolic factors. Am J Gastroenterol 2007; 102: 634-641 
[PMID: 17222326 DOI: 10.1111/j.1572-0241.2006.01025.x]

264 Crook ED, Penumalee S, Gavini B, Filippova K. Hepatitis C 
is a predictor of poorer renal survival in diabetic patients. 
Diabetes Care 2005; 28: 2187-2191 [PMID: 16123488 DOI: 
10.2337/diacare.28.9.2187]

265 Pattullo V, Heathcote J. Hepatitis C and diabetes: one treat-
ment for two diseases? Liver Int 2010; 30: 356-364 [PMID: 
20040049 DOI: 10.1111/j.1478-3231.2009.02185.x]

266 Wang CS, Yao WJ, Chang TT, Wang ST, Chou P. The impact 
of type 2 diabetes on the development of hepatocellular car-
cinoma in different viral hepatitis statuses. Cancer Epidemiol 
Biomarkers Prev 2009; 18: 2054-2060 [PMID: 19549812 DOI: 
10.1158/1055-9965.EPI-08-1131]

267 Kita Y, Mizukoshi E, Takamura T, Sakurai M, Takata Y, Arai 
K, Yamashita T, Nakamoto Y, Kaneko S. Impact of diabetes 
mellitus on prognosis of patients infected with hepatitis C 
virus. Metabolism 2007; 56: 1682-1688 [PMID: 17998021 DOI: 
10.1016/j.metabol.2007.07.011]

268 Petta S, Cammà C, Di Marco V, Alessi N, Cabibi D, Caldarel-
la R, Licata A, Massenti F, Tarantino G, Marchesini G, Craxì 
A. Insulin resistance and diabetes increase fibrosis in the liver 
of patients with genotype 1 HCV infection. Am J Gastroenterol 
2008; 103: 1136-1144 [PMID: 18477344 DOI: 10.1111/j.1572-02
41.2008.01813.x]

269 Bressler BL, Guindi M, Tomlinson G, Heathcote J. High body 
mass index is an independent risk factor for nonresponse to 
antiviral treatment in chronic hepatitis C. Hepatology 2003; 38: 
639-644 [PMID: 12939590 DOI: 10.1053/jhep.2003.50350]

270 Elgouhari HM, Zein CO, Hanouneh I, Feldstein AE, Zein 
NN. Diabetes mellitus is associated with impaired response 
to antiviral therapy in chronic hepatitis C infection. Dig 
Dis Sci 2009; 54: 2699-2705 [PMID: 19148751 DOI: 10.1007/
s10620-008-0683-2]

271 Konishi I, Horiike N, Hiasa Y, Tokumoto Y, Mashiba T, 
Michitaka K, Miyake Y, Nonaka S, Joukou K, Matsuura B, 
Onji M. Diabetes mellitus reduces the therapeutic effective-

ness of interferon-alpha2b plus ribavirin therapy in patients 
with chronic hepatitis C. Hepatol Res 2007; 37: 331-336 [PMID: 
17441805]

272 Walsh MJ, Jonsson JR, Richardson MM, Lipka GM, Purdie 
DM, Clouston AD, Powell EE. Non-response to antiviral 
therapy is associated with obesity and increased hepatic ex-
pression of suppressor of cytokine signalling 3 (SOCS-3) in 
patients with chronic hepatitis C, viral genotype 1. Gut 2006; 
55: 529-535 [PMID: 16299039 DOI: 10.1136/gut.2005.069674]

273 Sanyal AJ. Role of insulin resistance and hepatic steatosis 
in the progression of fibrosis and response to treatment in 
hepatitis C. Liver Int 2011; 31 Suppl 1: 23-28 [PMID: 21205134 
DOI: 10.1111/j.1478-3231.2010.02397.x]

274 Gunton JE, Delhanty PJ, Takahashi S, Baxter RC. Metformin 
rapidly increases insulin receptor activation in human liver 
and signals preferentially through insulin-receptor sub-
strate-2. J Clin Endocrinol Metab 2003; 88: 1323-1332 [PMID: 
12629126 DOI: 10.1210/jc.2002-021394]

275 Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, 
Lachin JM, Walker EA, Nathan DM. Reduction in the inci-
dence of type 2 diabetes with lifestyle intervention or met-
formin. N Engl J Med 2002; 346: 393-403 [PMID: 11832527]

276 Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, 
Depinho RA, Montminy M, Cantley LC. The kinase LKB1 
mediates glucose homeostasis in liver and therapeutic effects 
of metformin. Science 2005; 310: 1642-1646 [PMID: 16308421 
DOI: 10.1126/science.1120781]

277 Ikeda M, Abe K, Yamada M, Dansako H, Naka K, Kato N. 
Different anti-HCV profiles of statins and their potential for 
combination therapy with interferon. Hepatology 2006; 44: 
117-125 [PMID: 16799963 DOI: 10.1002/hep.21232]

278 Kapadia SB, Chisari FV. Hepatitis C virus RNA replication 
is regulated by host geranylgeranylation and fatty acids. 
Proc Natl Acad Sci USA 2005; 102: 2561-2566 [PMID: 15699349 
DOI: 10.1073/pnas.0409834102]

279 Ye J, Wang C, Sumpter R, Brown MS, Goldstein JL, Gale M. 
Disruption of hepatitis C virus RNA replication through 
inhibition of host protein geranylgeranylation. Proc Natl 
Acad Sci USA 2003; 100: 15865-15870 [PMID: 14668447 DOI: 
10.1073/pnas.2237238100]

280 O’Leary JG, Chan JL, McMahon CM, Chung RT. Atorv-
astatin does not exhibit antiviral activity against HCV at 
conventional doses: a pilot clinical trial. Hepatology 2007; 45: 
895-898 [PMID: 17393518]

P- Reviewer: Dashora U    S- Editor: Ji FF    
L- Editor: A    E- Editor: Liu SQ  

600 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Antonelli A et al . Hepatitis C, types 1 and 2 diabetes



Ana Marice Ladeia, Raphael Ribeiro Sampaio, Maiara Costa Hita, Luis F Adan

Ana Marice Ladeia, Raphael Ribeiro Sampaio, Maiara Costa 
Hita, Bahiana School of Medicine and Public Health, Bahia 
Foundation for the Development of Sciences, FBDC, Salvador, 
Bahia 40.285-001, Brazil
Luis F Adan, Department of Pediatrics, Federal University of 
Bahia School of Medicine, Salvador, Bahia 40.026-010, Brazil
Author contributions: Ladeia AM conceived the manuscript, 
acquired and interpreted the data and drafted the article; Sampaio 
RR and Hita MC participated in the acquisition and interpretation 
of data; Adan LF made the final critical review of the manuscript.
Correspondence to: Ana Marice Ladeia, MD, PhD, Bahiana 
School of Medicine and Public Health, Bahia Foundation for the 
Development of Sciences, FBDC, Avenida D. João VI 275, Sal-
vador, Bahia 40.285-001, Brazil. anamarice@bahiana.edu.br 
Telephone: +55-71-32768265
Received: June 3, 2014  Revised: June 30, 2014
Accepted: July 18, 2014
Published online: October 15, 2014

Abstract
Patients with diabetes mellitus are at high risk of devel-
oping atherosclerosis, associated with higher rates of 
micro and macro vascular involvement such as coronary 
artery disease and renal disease. The role of hypergly-
cemia to induce synthesis of reactive oxygen species 
by the oxidation of glucose, leading to an increased 
production of advanced glycosylation end products, as 
well as inflammation and oxidative stress has been pro-
posed as a possible mechanism in the pathogenesis of 
endothelial dysfunction (ED). The interaction between 
C-peptide - the connecting segment of pro-insulin-and 
nitric oxide in vasodilation is also discussed. There-
fore, endothelial dysfunction has been identified as an 
early marker of vascular disorder in type 1 and type 
2 diabetes mellitus. In some other diseases, ED has 
been considered an independent predictor of vascular 
disease, regardless of the method used. Studies have 
demonstrated the importance of endothelial dysfunc-
tion as an useful tool for identifying the risk of vascular 

complications in patients with type 1 diabetes mellitus, 
particularly as regards to renal impairment. The aim of 
this review is to clarify the prognostic value of endothe-
lial dysfunction as a marker of vascular disease in these 
subjects.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Endothelial dysfunction; Type1 diabetes; 
Prognostic; Cardiovascular disease; Pathogenesis

Core tip: This review is divided into two parts: first we 
discuss aspects related to the pathogenesis of endo-
thelial dysfunction in type 1 diabetes mellitus. In the 
second, are pointed out and critically discussed the sci-
entific evidence about the important role of endothelial 
dysfunction, independent of the method used for its di-
agnosis, as an early marker of cardiovascular and renal 
complications in this population.

Ladeia AM, Sampaio RR, Hita MC, Adan LF. Prognostic value 
of endothelial dysfunction in type 1 diabetes mellitus. World J 
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wjgnet.com/1948-9358/full/v5/i5/601.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i5.601

INTRODUCTION
Diabetes mellitus patients have a high risk to develop 
atherosclerotic disease[1]. The macro- and microvascular 
complications are the main cause of  morbidity and mor-
tality, especially in those with more than five years of  dis-
ease[2-4]. Endothelial dysfunction (ED) has been identified 
as an early marker of  vascular disease in type 1 diabetes 
mellitus (T1DM)[5]. In some other conditions, ED has 
been an independent predictor of  cardiovascular risk[6].

This review aims to evaluate the endothelial dysfunc-
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tion role as a prognostic factor of  vascular complication 
in patients with T1DM. 

PATHOGENESIS OF ENDOTHELIAL 
DYSFUNCTION IN T1DM
The role of  vascular endothelium on the pathogenesis 
of  vascular disease has been better known in the last 30 
years. Adequate endothelial function depends on the 
healthy balance between vasoconstrictor and vasodilator 
substances that interact in the endovascular environ-
ment[7,8]. Nitric oxide (NO), identified by Furchgott et al[9], 
is synthetized from L-arginine by nitric oxide synthase 
(eNOS) in the presence of  oxygen, nicotinamide adenine 
dinucleotide phosphate and BH4 (tetrahydrobiopterin). 
This substance produced on endothelial cells diffuses 
itself  into smooth muscle cells and platelets, where it 
stimulates the activity of  the soluble guanylate cyclase 
and hence production of  cyclic GMP promoting, in turn, 
relaxation of  the muscle layer of  the vessel and reduces 
platelet aggregation. On the other hand, NO reduction 
is associated with increased vascular injury, because it 
enhances platelet aggregation and increases monocyte 
adhesion to vascular endothelium; as well it stimulates 
proliferation of  smooth muscle cells[10]. 

In pathologic situations, as diabetes, numerous mech-
anisms as: (1) decreased synthesis or inactivation of  NO; 
and (2) increased production and release of  vasoconstric-
tor substances have been proposed to explain the ED. In 
addition, metabolic changes favoring increased produc-
tion of  free radicals as well as advanced glycosylation end 
products (AGEs) are able to accelerate the nitric oxide 
inactivation[10].

Considering that the major metabolic disturbance 
in diabetes is hyperglycemia, it has been suggested that 
it may induce the synthesis of  reactive oxigen species, 
by the oxidation of  glucose[11], leading to an increased 
production of  AGEs[12], among other mechanisms. On 
the other hand, a recent study demonstrates that hypo-
glycemia is also associated with ED, oxidative stress and 
inflammation. Moreover, worsening of  endothelial func-
tion was greater in those who went from hypoglycemia 
to hyperglycemia than those recovered to a state of  nor-
moglycemia[13].

Other substances involved in the pathogenesis of  en-
dothelial dysfunction in T1DM are insulin and C-peptide. 
Several studies have shown that the vasodilator effects of  
insulin depends on the synthesis of  nitric oxide, since the 
use of  substances that block eNOS, inhibits the increase 
of  blood flow mediated through the action of  insulin[14-16]. 
Moreover, acute administration of  C-peptide-a connect-
ing segment of  pro-insulin-is able to increase blood flow 
in subjects with T1DM after exercise or at rest, but not 
in normal subjects[17,18]. As well, a prolonged infusion of  
C-peptide in type 1 diabetic subjects improves kidney 
function[19] by a mechanism that involves the interaction 
between nitric oxide activity, and Na+K+ATPase[20,21]. So, 
it is important to understand that the pathogenesis of  

endothelial dysfunction in T1DM is complex and involves 
metabolic and hormonal changes; in particular, the role of  
insulin deficiency that leads to a decreased production of  
nitric oxide, increased oxidative stress in the vascular mi-
lieu with consequent decreased in the ability to promote 
vessels dilation. Furthermore, it is suggested that a better 
control of  metabolic changes by insulin replacement can 
decrease the aggression of  endothelial cells.

Other aspects of  the pathogenesis of  vascular abnor-
malities in diabetic subjects deserve attention. T1DM and 
T2DM are associated with a reduction in the number of  
endothelial progenitor cells (EPCs)[22-24]. It is interesting 
to note that this reduction is related to the severity of  pe-
ripheral vascular disease which reinforces the importance 
of  EPCs as a marker of  vasculopathy in diabetic pa-
tients[25]. Moreover, potent vasoconstrictor such as angio-
tensin II and endothelin promote endothelial dysfunction 
in the metabolically altered environment of  diabetes[26]. 
This knowledge is relevant since it may allow the emer-
gence of  new therapeutic perspectives. It is noteworthy 
that it has already been demonstrated that oral treatment 
with bosentan, endothelin receptor antagonist, for 4 wk, 
improves endothelial function in T2DM[27].

PROGNOSTIC VALUE OF ENDOTHELIAL 
DYSFUNCTION
The literature clearly suggests that metabolic and hor-
monal disorders present in T1DM injure the endothelial 
cells favoring endothelial dysfunction and initiation of  
the atherogenic process. A longitudinal study published 
recently suggests that flow-mediated vasodilation is an 
useful tool to stratify T1DM children according to car-
diovascular risk, as well as for the long term follow-up[28]. 
However, the prognostic value of  endothelial dysfunction 
as a marker of  vascular complications should be further 
analyzed.

A 10-year follow-up prospective cohort study involv-
ing young T1DM adults with a mean disease duration 
of  19 years, evaluated the ability of  adhesion molecules 
in predicting coronary artery disease (CAD) defined by 
angina, confirmed myocardial infarction, stenosis > 50%, 
ischemic electrocardiogram, or revascularization. With this 
purpose, a nested case-control study involving 60 patients 
who developed CAD and 72 patients without the disease 
was performed. Dosages of  vascular cell adhesion mol-
ecule 1 (VCAM-1), intercellular adhesion molecule 1 and 
E-selectin were performed from stored samples prior to 
the cardiovascular event. Although there was a correlation 
between adhesion molecules and lipid variables, consid-
ered an unquestionable cardiovascular risk factor in type 1 
diabetes, only E-selectin was an independent predictor of  
CAD (HR = 1.07, 95%CI: 1.01-1.15, P < 0.03)[29].

Another cross-sectional study that included patients 
with T1DM without cardiovascular disease and a com-
parison group of  healthy subjects, sought to identify as-
sociation between endothelial dysfunction [flow-mediated 
vasodilation (FMD)] and subclinical cardiovascular dis-
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ease. It was then observed a strong inverse correlation 
between FMD and systolic dysfunction (r = -0.70, P < 
0.0001), diastolic dysfunction (r = -0.77) and duration of  
T1DM (r = -0.61,) P < 0.0001 for the three variables[30]. 
The association between ED and other markers of  sub-
clinical CAD, as the carotid intima-media thickness (IMT), 
was evaluated in a study that included T1DM patients and 
non-diabetic children-without significant differences in 
weight, age, blood pressure and gender. This study dem-
onstrated that the T1DM group had lower peaks of  FMD 
response and higher IMT when compared to controls 
(P < 0.001). Moreover, in the multivariate analysis, there 
was a strong association between increased IMT and de-
creased FMD in the group of  children with diabetes (P < 
0.03). However, the data in the literature are still conflict-
ing. A study involving patients with T1DM and healthy 
subjects showed no difference between the IMT of  the 
two groups, although endothelial function had been worse 
in T1DM group and correlated with glycemic control[31].

On the other hand, a recent study that evaluated en-
dothelial function, IMT and ventricular function in 30 
children and adolescents with T1DM compared with 30 
healthy subjects matched by gender, age, and body mass 
index, found a lower FMD response, increased IMT and 
impaired diastolic function with lower early peak flow 
velocity, decreased E/A ratio, increased early filling de-
celeration time in T1DM patients. Furthermore, these 
changes were more evident in patients with poor glyce-
mic control[32].

Several studies have shown the importance of  endo-
thelial dysfunction as a marker of  renal impairment. In 
2005, we demonstrated that FMD had an inverse cor-
relation with microalbuminuria (r = -0.50, P = 0.049) in 
children and adolescents with a short duration diabetes 
(2.9 + 1.2 years) calling attention to the value of  the en-
dothelial dysfunction as a very early marker of  vascular 
complications[4]. This association was also demonstrated 
in patients with disease duration > 10 years, with the fol-
lowing features: individuals with proteinuria and chronic 
renal failure (CRF) had FMD 7% and 4% respectively, 
while those with normal albumin excretion or microal-
buminuria showed FMD > 8%, considered the lower 
limit of  normality for flow-mediated vasodilation in 
adults[33]. In this study, there was a continuous, progres-
sive and significant increase in the levels of  endothe-
lin-1 and C-reactive protein in individuals (1) without 
microalbuminuria; (2) with microalbuminuria; (3) with 
proteinuria; and (4) CRF. In addition, the sensitivity co-
efficient to shear stress endothelium was inversely cor-
related with glomerular filtration rate (GFR) (r = -0.48, 
P = 0.03). This aspect can be somewhat reinforced by 
another recent study that demonstrated that pulse pres-
sure was associated with a decline in estimated GFR (r 
= 0.26, P = 0.003, adjusted), as well as the higher pres-
sure pulse predicted an increased risk to develop end-
stage renal disease: adjusted HR of  1.2 (95%CI: 1.1-1.4, 
P = 0.011)[34]. In addition, a cohort study of  18 T1DM 
patients followed for 8 years has shown an association 

between the expansion of  the cortical interstitial volume 
fraction and PA1-activity and VCAM levels[35]. 

It is worth noting that changes in endothelial function 
can be identified regardless of  the method used. A sus-
tained hyperaemic stimulation induced by the hand skin 
heating method, as well as FMD vasodilation, were used 
to evaluate endothelial dysfunction in T1DM patients 
with and without microangiopathy and also in healthy 
controls matched for gender, age and body mass index. It 
was observed that FMD was lower in the diabetes group 
compared to controls. Furthermore, the presence of  clin-
ical complications was significantly associated with lower 
FMD and creatinine levels were also negatively correlated 
with the magnitude of  FMD. With regard to the hand 
skin heating method, it was shown that the radial flow 
shear stress increased vascular diameter in all groups, 
however, the amplitude of  FMD in diabetic patients were 
significantly lower than in the control group[36]. This data-
set demonstrate the importance of  endothelial aggression 
factors as potential markers of  vascular injury.

More recently, longitudinal studies have sought to 
identify markers of  endothelial dysfunction as predic-
tors of  long-term cardiovascular events. In a prospective 
study, T1DM patients with persistent normoalbuminuria 
and nephropathy, without previous cardiovascular events, 
were followed for a mean period of  12.3 years. The plas-
ma levels of  soluble receptor for advanced glycation end 
products (sRAGE) and other biomarkers were measured 
at baseline. High levels of  sRAGE as a reflection of  
RAGE expression, was associated with greater incidence 
of  fatal or nonfatal cardiovascular disease, as well as all-
cause mortality. Furthermore, there was a significant as-
sociation between levels of  sRAGE and GRF in patients 
with nephropathy[37]. These authors, in a prospective 
study with a similar sample, showed that higher plasma 
levels of  the pro-inflammatory cytokine high -mobility 
group box 1 was an independent predictor of  fatal and 
non-fatal cardiovascular events and also a high-risk mark-
er for all causes of  mortality[38].

According to a recently published review, the mecha-
nisms of  endothelial dysfunction and ischemic response 
in diabetes mellitus is complex, involving inflammation, 
intercellular signaling peptides and proteins, cell angio-
genic potential, among others[39]. It is noteworthy that a 
prospective study demonstrated a decrease of  EPCs in 
children with T1DM, as well as the association between 
better glycemic control and increased EPCs after an one-
year follow-up, suggesting that knowledge of  this mecha-
nism may be a way of  mediating the high cardiovascular 
risk in these patients[40]. Therefore, more knowledge on 
the balance between vascular homeostasis and cardiomet-
abolic risk factors will certainly improve the monitoring 
of  diabetic patients and reduce vascular complications 
and consequently morbidity.

CONCLUSION
In summary, the pathogenesis of  endothelial dysfunction 
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in T1DM is complex and involves several mechanisms 
such as inflammation, oxidative stress, interaction be-
tween insulin and C peptide, decreased number of  en-
dothelial progenitor cells among others. The prognostic 
value of  assessing endothelial function as a marker of  
cardiovascular morbidity and risk has been demonstrated 
by cross-sectional and prospective studies with long 
follow-up, using various methods to identify subclinical 
atherosclerosis and endothelial dysfunction. The dataset 
demonstrate that regardless of  the method used, impair-
ment of  endothelial function is a predictor of  risk for 
cardiovascular disease and nephropathy. This knowledge 
suggests that new preventive and therapeutic interven-
tions should be recommended early in order to decrease 
morbidity in this high-risk population.
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Abstract
A re-examination of the mechanism controlling eat-
ing, locomotion, and metabolism prompts formulation 
of a new explanatory model containing five features: 
a coordinating joint role of the (1) autonomic nervous 
system (ANS); (2) the suprachiasmatic (SCN) master 
clock in counterbalancing parasympathetic digestive 
and absorptive functions and feeding with sympathetic 
locomotor and thermogenic energy expenditure within 
a circadian framework; (3) interaction of the ANS/SCN 
command with brain substrates of reward encompass-
ing dopaminergic projections to ventral striatum and 
limbic and cortical forebrain. These drive the nonho-
meostatic feeding and locomotor motivated behaviors 
in interaction with circulating ghrelin and lateral hypo-
thalamic neurons signaling through melanin concentrat-
ing hormone and orexin-hypocretin peptides; (4) coun-
terregulation of insulin by leptin of both gastric and 
adipose tissue origin through: potentiation by leptin of 
cholecystokinin-mediated satiation, inhibition of insulin 
secretion, suppression of insulin lipogenesis by leptin 
lipolysis, and modulation of peripheral tissue and brain 
sensitivity to insulin action. Thus weight-loss induced 
hypoleptimia raises insulin sensitivity and promotes its 
parasympathetic anabolic actions while obesity-induced 
hyperleptinemia supresses insulin lipogenic action; and 
(5) inhibition by leptin of bone mineral accrual suggest-
ing that leptin may contribute to the maintenance of 

stability of skeletal, lean-body, as well as adipose tissue 
masses.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Insulin; Leptin; Weight regulation; Auto-
nomic; Circadian

Core tip: The novel proposal for the mechanism of body 
weight regulation deals with all three components of 
body mass: bone, lean tissue, and fat depots. It attri-
butes the central control of counterbalancing energy ex-
penditure and intake to an autonomic nervous system-
circadian clock command center that encompases brain 
reward substrates, lateral hypothalamic peptidergic 
circuits and areas of the cortex. The nonhomeostatic 
character of feeding and locomotion is driven and con-
trolled by the reward circuits and modulated by shifts in 
insulin sensitivity induced by counterregulation by leptin 
of insulin as weight deviates between underweight and 
overweight and alters basal leptin concentrations. 
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INTRODUCTION
Finding and ingesting food and drink are intermittent 
behaviors essential for individual and species survival 
against continuous energy cost of  staying alive. Our 
complex physiological design insures that opportunities 
to ingest food are not missed and that drive to seek food 
increases and compensatory processes are deployed to 
counteract substantial losses of  body mass. That this be-
havior supports both growth of  body mass as well as its 
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maintenance when statural growth has ceased only adds 
to its complexity and challenges our ability to understand 
its mechanism. Therefore, the transformation from a 
system in which food abundance drives the acquisition 
of  body mass during statural growth to a system where 
energy intake is matched to each finite adult physique 
requires an explanation that integrates both phenomena. 
In addition, feeding behavior is coupled to spontaneous 
variations in movement and locomotion in ways that 
are imperfectly understood, and the two behaviors and 
control of  metabolic heat production also contribute to 
regulation of  body mass. A satisfactory model for the 
regulation of  stable adult body mass must integrate cen-
tral neural, autonomic, and endocrine controls of  feeding, 
locomotion, and metabolic heat production. But it also 
needs to account for the prospect that some humans[1,2] 
and animals[3] can deviate from body mass stability and 
predictably become obese[1,2] under conditions providing 
abundant foods of  high energy density and palatability 
along with limited opportunities and incentives for physi-
cal activity. 

The quest for understanding what guides intermit-
tent meal-to-meal eating and body mass maintainance 
as well as increased hunger and food intake responding 
to substantial losses of  body mass, has a long history 
but no satisfactory closure or consensus. Because of  its 
complexity, and relevance to professionals in discon-
nected fields of  psychology, nutrition, gastrointestinal 
physiology, endocrinology, exercise science, neuroscience, 
and physiology among others, the wealth of  information 
about the neural, autonomic, and hormonal mechanism 
of  feeding, physical activity, and thermogenesis in body 
mass regulation has not been satisfactorily integrated. 
A prevailing preference for a unitary deductive model 
of  body mass regulation has placed emphasis on the 
presumed metering and matching of  energy consumed 
to energy expended and to the energy content of  body 
fat mass under both ad libitum and underweight condi-
tions[4-9]. The core feature of  this model is operation of  
a negative feedback exerted by adipokine leptin (and in 
some variations of  the hypothesis, also by insulin) over 
feeding behavior and energy expenditure in response to 
changes in body fat mass. This widely accepted hypoth-
esis is not supported by the empirical data under condi-
tions of  intact neuroendocrine system, environmental 
abundance of  food, reduced opportunities for physical 
exertion, and rising levels of  body fat. Obesity coex-
ists with high basal concentrations of  leptin and insulin. 
Further, administration of  leptin to obese humans is 
ineffective in suppressing feeding and reducing the body 
or fat mass[10]. On the other hand, two robust findings 
regarding leptin actions on feeding and body energy sta-
tus need to be reconciled with its inability to reduce body 
fat mass in a negative feedback fashion in neurologically 
normal obese individuals under the ad-libitum feeding 
conditions. The first finding is a consistent proportional 
relationship between distributed body fat mass and basal 
leptin (and insulin) concentrations in humans and animals 

first clearly demonstrated in humans by Considine[11] and 
postulated to exert sustained inhibition over feeding and 
facilitation of  energy expenditure[4-9]. The second finding 
is capacity of  leptin to inhibit pronounced and consis-
tently high hunger and suppress high fat mass in freely 
feeding humans and animals that lack leptin signaling ca-
pacity. This was first reported in humans by Farooqi[12,13] 
and in animals by Pelleymounter[14].

A unitary mechanism of  weight regulation that can 
account for eating and weight changes leading to obesity 
and in non-deprivation as well as weight-loss conditions 
needs to account for (1) central neural coordination of  
this process; (2) interactions of  this mechanism with the 
biological clock in structuring ultradian and nycthemeral 
rhythms of  intermittent hunger and feeding; (3) opportu-
nistic as opposed to homeostatic control of  food intake 
and locomotion; (4) counterregulation by leptin of  in-
sulin secretion and actions to fluctuations of  short-term 
energy availability and deviations in body fat mass; and (5) 
inclusion of  skeletal and lean body masses along with the 
fat mass in the energy regulatory process. The proposed 
mechanism accounts for these processes in a novel way 
that differs from the currently prevailing view[4-9]. Its main 
propositions are that : (1) the autonomic brain centers ac-
tivate hunger drive in; (2) a circadian pattern suppressed 
by intermittent inhibition from gastrointestinal (GI) fill-
ing and food processing that coordinate anabolic and cat-
abolic processes to produce weight stability; (3) meal-to-
meal eating and spontaneous physical activity represent 
non-homeostatic behaviors motivated through activation 
of  a common brain substrates of  reward that are con-
nected to, and controlled by, the autonomic centers and 
circadian clock and responsive to short-term variations 
in the filling of  the GI tract with food and fluctuations in 
body fat reserves and body mass; (4) autonomic nervous 
system (ANS) controls counterregulation by leptin of  
insulin secretion and tissue sensitivity to insulin actions 
to yoke leptin’s thermogenesis and catabolic metabolism 
to insulin’s anabolic actions; gastric leptin participates in 
GI processing of  ingested nutrients and thus contributes 
to defining meal size through both anabolic digestive 
and restrictive satiating effects. It does so in conjunction 
with leptin of  adipose tissue origin to regulate peripheral 
tissue and ANS/circadian command center sensitivity 
in response to body fat and body mass deviations from 
the adult setpoint; and (5) brain defends skeletal and lean 
body masses along with body fat mass against losses 
demonstrating that these body components should be in-
tegrated along with the adipose tissue in the regulation of  
adult mammalian body weight. The proposed postulates 
of  this novel formulation of  weight regulatory mecha-
nism reconcile the conundrum of  central and peripheral 
resistance to actions of  insulin and leptin in obesity that 
is inherent in the homeostatic negative feedback view 
and the dichotomy of  absence-of-protection model of  
energy regulation in non-deprivation eating with the 
central-resistance model of  homeostatic leptin negative 
feedback[15]. 
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CENTRAL COORDINATING ROLE OF THE 
ANS IN THE CONTROL OF FEEDING
Coordination of  parasympathetic functions of  nutrient 
intake, digestion, absorption, storage, and behavioral 
quiescence with sympathetic control of  behavioral and 
metabolic energy expenditure has been recognized for 
over half  a century. In 1947, Adolph[16] reported that 
body weight in rats stabilizes and is defended at a given 
plateau at the end of  the growth period when mature rats 
with unrestricted access to food eat daily an amount of  
standard lab chow sufficient to maintain a stable weight 
plateau. Application of  various methods of  localized 
brain damage[17] and transsections of  neural pathways[18,19] 
has revealed that ventromedial (VMH) and arcuate (ARC) 
hypothalamic lesions result in transient hyperphagia and 
hyperinsulinemia, permanent hypoactivity, and defec-
tive postprandial and cold-exposure thermogenesis. This 
has been interpreted by some to reflect an imbalanced 
parasympathetic overactivation because insulin oversecre-
tion[20], hyperphagia, deficient thermogenesis[21,22], and 
spontaneous hypoactivity[23] were preventable by subdia-
phragmatic vagotomy. In support of  this interpretation, 
electrical stimulation of  ventromedial hypothalamus[24-27] 
or administration of  sympathomimetics[28,29] to neurologi-
cally intact animals elicited fuel mobilization and energy 
expenditure. After the weight in lesioned animals stabiliz-
es, the same amount of  food per unit weight is consumed 
as in intact rats, and the new weight plateau is defended 
against weight loss[30] indicating that regulation of  stable 
weight is a consequence of  balance between parasympa-
thetic and sympathetic actions that is only reset by lesions 
to a new plateau by damage to the sympathetic controls 
or pathways. Although the relatively crude methods of  
brain lesions and neural tract transection initially singled 
out the VMH in the medial basal hypothalamus as the 
source of  sympathetic actions[31], other lines of  evidence 
identified the paraventricular hypothalamic nucleus (PVN) 
as the control center of  sympathetic outflow and, by in-
ference, dorsal motor nucleus of  the vagus as the site of  
parasympathetic control of  visceral actions other than 
cardiac function. Interest in the role of  parasympathetic 
nervous system in the control of  feeding has taken a back 
seat compared to the focus on leptin actions in the ARC 
and VMH nuclei. Nevertheless, pharmacological and 
denervation approaches have shown that suppression of  
sympathetic tone reduces thermogenesis[32] and increases 
parasympathetic functions of  white adipose tissue (WAT) 
cell proliferation and body fat accumulation[33]. 

THE CENTRAL CLOCK COORDINATES 
ANS CONTROL OF FEEDING
One of  the missing pieces in our understanding of  en-
ergy regulation is the causative stimulus of  hunger and 
meal initiation. The proposition that ghrelin is the key ini-
tiator of  hunger and feeding[34-37] is challenged by normal 

food intake and weight maintenance in animals with defi-
cient ghrelin signaling[38] and by a correlational and tran-
sient changes in ghrelin concentration and hunger sensa-
tions in the course of  a meal[34,39]. On the other hand, the 
proposition that an autonomic controller coordinated by 
the circadian master clock regulates meal taking, locomo-
tion, and thermogenesis is supported by a wealth of  both 
behavioral, lesioning, and anatomical evidence.

Meal eating is intermittent in contrast to continu-
ous behavioral and metabolic energy expenditure. Its 
ultradian and circadian patterning is a universal feature 
of  mammalian feeding behavior. Rodents take meals at 
ultradian intervals of  3 to 4 h with a circadian segrega-
tion of  eating to only the waking portion of  the day[40]. 
Humans also eat during their nycthemeral wakeful period 
at 3-h intervals if  snacks are included and at about 6-h 
intervals if  more substantive main meals are considered. 
Circadian control of  feeding in mammals is supported 
by extensive neuroanatomical evidence. Suprachiasmatic 
nucleus (SCN), the master circadian clock, has multiple 
ANS interconnections with structures that are implicated 
in weight regulation. Neural pathways through which the 
photo-entrainable SCN controls behavioral, endocrine, 
and metabolic rhythms related to energy balance include 
direct projections to subparaventricular zone (SPZ), an 
anterior hypothalamic region that receives innervation 
from both the PVN and SCN and is therefore thought 
to integrate circadian and metabolic information[41]. Ad-
ditional areas receiving SCN innervation include medial 
preoptic area and dorsomedial hypothalamic nucleus 
(DMN)[42,43]. DMN, which is innervated both by the SCN 
and the SPZ, also controls circadian pattern of  feed-
ing, sleep-wakefulness, and locomotor activity. SCN also 
influences the circadian control of  food intake, locomo-
tion, and metabolic energy expenditure through its fibers 
projecting to the ARC, the VMH, and the ventral part of  
the lateral hypothalamus (LH), all areas implicated in the 
control of  feeding and energy regulation. Interneurons 
from the SCN inhibit the PVN through γ-aminobutyric 
acid neurotransmission to facilitate parasympathetic func-
tions. Consequently, most viscera receive SCN-dependent 
circadian time cues via their parasympathetic and/or sym-
pathetic innervations that reflect metabolic and digestive 
events at peripheral sites[43]. Besides the obligatory peri-
odicity of  meal eating, nycthemeral patterning of  feeding 
is necessary for the maintenance of  stable body and fat 
masses. When the nocturnal part of  the circadian sleep-
wake cycle in humans is truncated, inappropriate overeat-
ing during extended wakeful periods ensues contributing 
to obesity and associated health risk factors[44,45]. Similarly, 
a seasonal change in the length of  circadian exposure to 
light produces changes in feeding and body fat accumula-
tion in some mammals[46].

Additional evidence for a functional interaction be-
tween the circadian clock and the ANS energy regulatory 
circuits involves loss of  feeding, locomotor, and thermo-
genic periodicities when either the ANS or SCN circuits 
are disrupted. Destruction of  SCN results in the loss of  
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diets elicits a greater DIT than does eating diets of  lesser 
olfactory and gustatory appeal[67]. Olfactory responsive-
ness[68] and hedonic responses to food and associated 
increases in DIT[67] show a diurnal rhythm with an acro-
phase during the active portion of  the circadian period. 
The rhythm and the magnitude of  thermogenic response 
are abolished by SCN lesion, sympathetic denervation of  
BAT[66], or deletion of  β1 receptors in BAT[60]. Endocan-
nabinoid blockade of  DIT thermogenesis is more effec-
tive during the active that during the inactive phase of  the 
circadian cycle[66].

Circadian influence in human meal eating is evident 
by comparing the effect of  energy expenditure during 
long nocturnal inter-meal interval (IMI) on morning 
hunger[69]. We determined that the nocturnal IMI gener-
ated expenditure of  between 710 and 750 Kcal in healthy 
postmenopausal women as compared to 340 to 450 Kcal 
expended during diurnal sedentary 6-h IMIs. Yet hunger 
rating at the end of  11 to 12-h long nocturnal IMI was 
only half  as large as the hunger rating recorded at the 
end of  individual diurnal IMIs and approximately as low 
as the evening hunger rating. Even more remarkably, 
the quantity of  food consumed at the end of  two mid-
diurnal IMIs bore no relationship to the magnitude of  
preceding energy expenditure (Figure 1). These data sup-
port the operation of  a circadian control of  hunger with 
an acrophase at mid-day, a presumed nadir in the middle 
of  sleep period, and transitional effects at dawn and 
dusk. They also indicate that the quantity of  food eaten 
at a meal bears no homeostatic relationship to preceding 
energy balance but is influenced by time of  day.

The universal circadian and ultradian patterning of  
mammalian feeding behavior suggests the operation 
of  a central circadian meal- and hunger-timing mecha-
nism where the signals related to meal digestion may be 
entrained to an ultradian gastric-contraction oscillator. 
The circadian clock restricts the predisposition to seek 

all bioenergetic circadian responses including circadian 
pattern of  drinking and locomotor activity[47,48]. Destruc-
tion of  VMH and ARC nuclei within the medial basal 
hypothalamus disrupts circadian alternation between ac-
tive and inactive periods of  food seeking and eating and 
results in protracted 24-h extension of  meal taking and 
obesity[49,50]. Postprandial[51] and general thermogenesis 
also display circadian[52,53] and ultradian[54] rhythms of  ac-
tivation that have an acrophase during the active portion 
of  the day and a nadir during the inactive phase. Meta-
bolic and thermogenic gene expression in brown adipose 
tissue (BAT) and WAT also follows circadian periodic-
ity[55]. The activation is attributable to stimulation of  BAT 
by sympathetic nerves that originate in PVN, SCN, and 
DMN[31]. And thermogenesis can be elicited by electrical 
stimulation of  sympathetic nerves to BAT[56], application 
of  sympathomimetics[28,29,57,58] and activation by leptin of  
sympathetic nerves to BAT[28,29,31,59] when the hormone is 
applied to DMN, one of  key sites involved in circadian 
components of  energy regulation[59]. Leptin itself  exhib-
its a prominent circadian pattern of  secretion in humans 
with an acrophase around midnight and a nadir during 
mid-day[60-62]. This diurnal pattern is entrained to meal 
taking and phase shifts by the same number of  hours 
with temporal displacement of  meals[62]. In addition to 
its circadian pattern, leptin secretion is pulsatile with 32 
pulses over 24 h, and a mean pulse duration of  33 min[63]. 
Circadian control of  several aspects of  energy regulation 
is seen in circadian changes in postprandial BAT thermo-
genesis in response to olfactory and gustatory stimulation 
by hedonic properties of  palatable diets. The importance 
of  stimulation of  olfactory and gustatory receptors in 
eliciting postprandial BAT thermogenesis is demon-
strated by diet-induced thermogenesis (DIT) attenuation 
when oral route of  food administration is bypassed by 
tube feeding[64], or by administration of  endocannabinoid 
blocker rimonabant[65,66]. Similarly, overeating palatable 
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Figure 1  Correlation between energy expenditure and peak hunger in two studies in which exercise energy expenditure of between 2300 and 2500 KJ was 
inserted between the morning and midday meal (A) or between both morning and midday, and midday and afternoon, meals (B). Correlation coefficient be-
tween energy expenditure during overnight fast before the morning meal, and during morning intermeal interval that included exercise on one hand and peak hunger 
at the next meal was 0.06 in A. In B, the correlation coefficient between intermeal intervals that included exercise and peak hunger at the subsequent meal was 0.0002. 
Data from Ref. [69].
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and take food to the active portion of  the day when it is 
interrupted only by the GI signals of  fullness and sup-
presses it during the inactive phase. The uniformity and 
regularity in the postprandial rise in hunger and attain-
ment of  peak hunger regardless of  the pre-meal energy 
balance is consistent with suppression by the GI stimuli 
of  the influence of  a central food-seeking command. 
Energy content of  orally taken food appears responsible 
for partial suppression of  hunger when the stomach is 
incompletely filled (Figure 2A and B). Here, GI nutrient 
sensing and the rate of  stomach emptying according to 
the energy content of  the meal may affect the predispo-
sition for supplementary food intake. Circadian control 
of  hunger and initiation of  eating is inferred from low 
morning and evening hunger and a hunger acrophase 
between 10 and 19 h[69] that are independent of  variations 
in pre-meal energy availability[39] (Figure 1). An empty 
stomach and completed GI transit of  food generate peak 
pre-meal hunger during wakeful portion of  diurnal cycle 
(Figure 2A and B) and could do so through removal of  

gastrointestinal inhibition over the central circadian com-
mand guiding the predisposition to eat. 

OPPORTUNISTIC AND HEDONISTIC 
CONTROL OF MEAL-TO-MEAL FEEDING: 
THE ROLES OF TASTE, OLFACTION, 
GI NUTRIENT SENSING, AND SOCIAL 
FACILITATION
In contrast to much of  our physiology that operates auto-
matically, we have an innate capacity to consciously detect 
and prefer foods with sweet and savory taste[70] that leads 
to predisposition for acceptance and intake of  palatable 
food. Sweet and savory nutrients elicit swallowing even at 
a fetal stage of  development[71], positive facial expressions 
and sucking in newborn infants[72], and acceptance of  pal-
atable foods by children[73]. Sampled nutrients bind to five 
different populations of  taste receptors in the mouth. 
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Figure 2  The effects of variable meal size (A) and energy availability (B) on the psychophysical ratings of hunger (A and B) and fullness (C and D) in 10 
postmenopausal women subjected to a sedentary trial with a large morning meal (SED-AL), or a small morning meal SED-R, 2 h of moderate intensity ex-
ercise after a large morning meal (EX), and iv nutrient infusion (TPN) as a replacement of energy withheld from a morning meal (SED-R-TPN) or expended 
through exercise (EX-TPN). Meal size had a negative effect on hunger (Fdf4,36 = 39.3, P < 0.0001) and a positive effect on fullness (Fdf4,36 = 115.3, P < 0.0001). Exer-
cise energy expenditure had a negative effect on hunger (Fdf4,36 = 25.5, P < 0.0001), and a positive effect on fullness (Fdf4,36 = 42.8; P < 0.0001). TPN had no effect on 
psychophysical ratings. Data from Ref. [39].
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Their gustatory properties are signaled in the afferents 
of  facial (Ⅶth), glossopharyngeal (Ⅸth), and vagus (Ⅹ
th) nerves and are relayed to the rostral two thirds of  
the nucleus of  the solitary tract (NTS) in medulla oblon-
gata[74]. Gustatory information also reaches parabrachial 
nucleus in the pons[75], ventral tegmental area[76], and sev-
eral regions of  the cortex to elicit hedonic appreciation 
of  the properties of  the food. The amygdala and medial 
and mid-anterior edge of  orbitofrontal cortex, and ante-
rior cingulate and insular cortex contribute the emotional 
component of  hedonic responses. The nucleus accum-
bens (NA) in ventral pallidum contributes to hedonic 
reinforcement of  intake of  palatable food through the 
release of  endocannabinoids[76-78]. These innate properties 
justify the hypothesis that non-homeostatic olfactory and 
gustatory stimuli provide incentives for non-homeostatic 
intake of  food.

Olfactory and gustatory stimuli complement sensing 
by the GI tract of  food properties and eliciting diges-
tive and absorptive endocrine reflexes[79]. Chemosensory 
receptors for sugars, amino acids, and fatty acids are 
located in the neuroendocrine epithelium of  the stom-
ach, duodenum, and small intestine. By sensing ingested 
nutrients, chemosensory neuroendocrine cells in the 
stomach secrete gastrin from G cells. In the intestine, 
ghrelin is released from P or X/A cells, somatostatin 
from D cells, cholecystokinin (CCK) from I cells, sero-
tonin from enterochromaffin cells, glucose-dependent 
insulinotropic peptide (GIP) from K cells in the proxi-
mal small intestine, while glucagon-like peptides (GLPs) 
and peptide tyrosine tyrosine (PYY) are released from 
L cells in the distal small intestine. These GI hormones 
bind to receptors on the afferent vagal fibers that are 
located in the lamina propria[80]. Stoichiometric GI endo-
crine responses to energy content of  ingested nutrients 
affect the rate and duration of  nutrient digestion and ab-
sorption. Some digestive hormones also elicit conscious 
sensation. Ghrelin increases olfactory salience of  food 
stimuli, decreases olfactory detection threshold, and 
elicits sniffing[81] as its secretion rises in parallel with pre-
meal appetite and declines with meal completion. This 
action is its most probable contribution to facilitation of  
the pre-meal appetite[34,35]. Besides their digestive roles 
in promoting enzyme release and slowing the rate of  
stomach emptying, CCK[82-85], GLP-1[86-88], and PYY[89], 
also contribute to the conscious detection of  stomach 
fullness and therefore participate in short-term meal-
associated control of  post-meal satiation.

Opportunistic characteristic of  feeding also is revealed 
in its responsiveness to the abundance of  food and com-
munal food setting. More fluid is consumed if  presented 
in tall, rather than short, glasses[90]. Savory food is con-
sumed in greater amounts from larger platters than from 
small ones[91]. More food is eaten in company of  oth-
ers[92-96], a social facilitation phenomenon widely shared by 
mammals[97-99] and even birds[100]. Further, increasing the 
number of  palatable food choices in all-you-can-eat set-
tings leads to overeating in animals[3] and humans[101-103]. In 

effect, that represents the basis for producing experimen-
tal obesity by providing animals fat-enriched, in addition 
to standard laboratory, diet[3].

A direct test of  the homeostatic metering of  energy 
during feeding requires either changing the caloric density 
of  food or the magnitude of  pre-meal energy expenditure 
(EE). Studies manipulating the energy content of  food 
and the meal size indicate that sensations of  fullness after 
the meal and the amount eaten in the subsequent meal are 
guided by the volume of  food eaten rather than its energy 
content[104-106]. That such non-homeostatic eating bears 
no direct relationship to the energy content of  ingested 
food also during a longer time frame was suggested by 
an 11-wk study in which 13 females were provided with 
either low-fat (20%-25% of  energy as fat), or a higher fat, 
diet (35%-40% fat)[107]. The volume or weight of  food 
eaten daily was comparable on the two diets resulting in a 
daily energy intake error of  1.22 KJ. Only 35% of  this ca-
loric error on a low-fat diet was compensated by the end 
of  11 wk resulting in a weight loss of  2.5 kg, twice the 
amount of  weight lost on a higher-fat diet.

A more rigorous test of  human ability to homeostati-
cally sense energy availability in non-deprived state re-
quires that hunger and food consumption show evidence 
of  caloric compensation when oral, olfactory, and GI 
sensing is bypassed. Three circumstances that meet that 
criterion include already mentioned prolonged nocturnal 
period without food, exercise energy expenditure (EEE), 
and intravenous supplementation of  withheld or ex-
pended calories in the form of  total parenteral nutrition 
(TPN). Examination of  the effects of  between 2300 to 
2500 KJ of  EEE inserted during morning and afternoon 
IMIs reveals that this increase in energy expenditure 
does not influence peak hunger ratings at the onset of  
the next meal[69] (Figure 1). A similar lack of  a relation-
ship between pre-meal energy expenditure and the size 
of  spontaneous meal was previously described in rats[40]. 
In another study, the search for compensatory changes 
in food intake was extended to manipulations of  EEE, 
intravenous TPN supplementation for energy withheld in 
a small meal or for EEE, and the size of  meals taken by 
oral and intragastric route. In this crossover study[39], ten 
overweight postmenopausal women were provided with 
a large breakfast containing 2100 KJ in three trials and 
a small one containing 420 KJ in two trials. The energy 
supply in the large breakfast in one trial was cancelled by 
2270 KJ EEE in another, and EEE was largely replaced 
by intravenous infusion of  1530 KJ of  TPN in the third 
trial. The low energy content in the small 420 KJ break-
fast in the fourth trial, was supplemented with the intra-
venous infusion of  1530 KJ of  TPN in the fifth. The re-
sults showed unequivocally that changes in the sensations 
of  hunger (Figure 2A and B) and fullness (Figure 2C and 
D) were only elicited by the size of  the meals taken by 
oral, and processed by GI, route but not by energy lost 
exercising or supplemented intravenously. Moreover, the 
quantity of  food eaten, and peak hunger rating at the 
onset of  the next ad-libitum meal is indistinguishable 
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among the five conditions, two of  which generated sub-
stantial negative energy balance (Figure 3). Furthermore, 
hormones insulin and leptin tracked accurately changes 
in energy balance that resulted from unequal meal size, 
energy lost exercising, and energy supplemented intrave-
nously (Figure 4), but the changes in their plasma con-
centrations bore no apparent relationship to conscious 
sensations of  hunger and fullness (Figure 2). 

Collectively, the above studies support the hypothesis 
that intermittent meal-to-meal eating under unrestricted 
access to food is guided by cues provided by oral and 
GI processing of  food. Hunger and fullness ratings, the 
conscious guides for food intake and meal termination, 

are affected by the size of  the orally ingested nutrients 
(Figure 2) but not by fluctuation in short-term energy 
availability caused by intravenous nutrient infusion or 
by EEE, or by changes in the plasma concentrations of  
insulin and leptin[39]. Moreover, the peak hunger rating at 
the onset of  the next meal, and the amount eaten during 
that meal are not responsive to preceding energy imbal-
ance[39,69,104-107]. Stomach filling as a guide to meal size held 
true in the 11-wk study in which the subjects were largely 
unresponsive to the energy content of  the food[107].

Additional supportive evidence for the role of  GI 
signaling rather than for homeostatic metering of  pre-
meal caloric deficit in the control of  ad-libitum meal-to-
meal eating is available in the singular success of  various 
forms of  bariatric surgery in curbing hunger and reduc-
ing food intake. A common feature of  several variants of  
bariatric surgery is reduction in stomach capacity to hold 
food and associated suppression of  appetite and hun-
ger[108] or increased nausea and vomiting[109]. The efficacy 
of  stomach fullness as a deterrent for hunger and food 
intake is also evident in successful application of  inflat-
able balloons to induce weight loss[110,111]. A century ago, 
Cannon and Washburn[112] demonstrated a striking con-
cordance between episodic bursts of  gastric contractions 
and intermittent sensations of  hunger using intragastric 
balloons as pressure gauges. In addition to Cannon’
s classic demonstration of  the correlation between the 
ultradian periodicity of  empty stomach contractions and 
hunger, connections of  mechanosensitive elements in the 
smooth muscle of  the stomach with the afferent vagus 
also have been documented more recently[113-115]. Further, 
these GI smooth muscle mechanoreceptors inhibit eat-
ing in response to volume of  food introduced into the 
stomach without regard to its nutritional properties[116,117]. 
On the other hand, nutrient quality and energy content 
are sensed by vagal receptors in the intestine and lead to 
secretion of  digestive hormones such as CCK/gastric 
leptin, GLP-1 and PYY[117]. More recently, pooled data 
from 8 studies on 67 healthy humans confirmed Cannon 
and Washburn observation by identifying pyloric pressure 
waves and peak CCK concentrations as predictors of  
food intake while finding intravenous nutrient infusions 
ineffective[118].

In its basic outline, the blueprint of  human non-de-
privation meal-to-meal eating bears a striking resemblance 
to the feeding mechanism of  a blowfly[119,120]. The insect 
whose adult body mass is confined within a rigid exoskel-
eton, accepts sapid solutions whenever its crop is empty. 
Similar to ad-libitum feeding humans in whom termina-
tion of  growth imposes a finite body mass, blowfly’s food 
acceptance operates on an opportunistic and hedonic 
principle, and feeding termination on a GI negative feed-
back. The fly will ingest to capacity higher concentrations 
of  sweet solutions rather than larger quantities of  more 
dilute solutions. It stops feeding when its full crop inhib-
its a brain mechanism responsible for predisposition to 
seek and ingest nutrients whenever the crop is empty. If  
the recurrent nerve that provides the negative feedback 
from the crop to the brain is severed, the animal overeats, 
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(Fdf4,45 = 77.2; P < 0.0001), which remained uncorrected after the meal (Fdf4,45 = 
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and with sufficiently high sugar concentrations, will rup-
ture its crop. Presented evidence supports the conclusion 
that a similar system of  nonhomeostatic meal-to-meal 
eating operates in humans. However, these considerations 
still leave unanswered the question regarding the signal 

initiating hunger and food intake. The present reinterpre-
tation of  energy regulation proposes that a central ANS 
command mechanism, given temporal structure by the 
SCN master circadian clock is responsible for sustained 
food seeking and meal intake interrupted intermittently 
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by the inhibition from the signaling of  gastric distension 
as sensations of  satiation and fullness associated with GI 
processing of  food. This proposition is consistent with 
close anatomical connections between SCN and the ANS 
energy regulatory circuits, circadian and ultradian pat-
tern of  meal eating and sympathetic activation of  BAT 
thermogenesis, and disruption of  both feeding pattern 
and thermogenesis and DIT in particular with lesions 
of  either the master clock or the ANS energy regulatory 
substrates.

COUNTERREGULATION BY LEPTIN OF 
INSULIN SECRETION, ACTION, AND 
SENSITIVITY 
The key feature of  the proposed novel view of  body 
weight regulation is the counterregulation of  insulin by 
leptin under the control of  the ANS-circadian command 
mechanism. Leptin counterregulates insulin in four ways, 
by (1) acting as a gut peptide signaling satiating fullness 
and contributing to termination of  meals; (2) suppress-
ing insulin secretion; (3) counteracting insulin anabolic 
actions; and (4) regulating ANS and peripheral tissue 
sensitivity to insulin in response to downward or upward 
deflections in the components of  body mass. Through 
these counterregulatory interactions with insulin, leptin 
matches its sympathetic energy expending actions to the 
parasympathetic energy conserving actions of  insulin.

The sustained stoichiometric relationship between the 
body fat mass and basal leptin secretion[11] has strongly 
influenced formulation of  a homeostatic lipostatic hy-
pothesis of  body fat regulation featuring leptin negative- 
feedback from WAT to the brain. Integration of  short-
term secretory responsiveness of  leptin to fasting[121-124], 
meal intake[123,125,126], glucose[127-129], pyruvate[128], insulin 
secretion[121,130], and insulin-stimulated carbohydrate 
metabolism[39,127,131-133] with the long-term parallel shifts 
in plasma leptin concentration and body fat mass has 
largely escaped scrutiny. To update the understanding 
about leptin physiology, it should be pointed out that, 
besides the WAT[134], the hormone also is secreted from 
the stomach[135-143], placenta[144], and lactating mammary 
glands[145]. Since leptin of  gastric origin is likely to react 
more rapidly to short-term fluctuations in prandial state 
than leptin of  WAT origin, and both may contribute to 
short-term changes in circulating leptin concentration, 
it is useful to briefly review how gastric leptin secretion 
and appearance in circulation differs from that arising in 
WAT.

Gastric leptin is rapidly mobilized by cholinergic 
neurotransmission, nutrient entry into the stomach[139], 
and release of  CCK[135]. Its release is distinctly regulated 
by these stimuli in contrast to the leptin release from the 
WAT which is predominantly released in a constitutive 
fashion[128,134,140,146,147]. Leptin is released into the stomach 
lumen in exocrine fashion from the chief  cells in gastric 
mucosa. Complexing of  gastric leptin with its soluble re-

ceptor (LepR) prior to being released from the Golgi ap-
paratus protects it from denaturation by gastric acid[141]. It 
then is transported to the duodenum where it binds with 
LepR on the luminal membrane and is transcytozed into 
the Golgi apparatus of  the duodenal enterocyte. There it 
again binds with LepR and leaves the intestinal mucosa 
for systemic circulation[139-141].

The first counterregulation of  insulin by leptin is 
clearly of  gastric origin and consists of  its counteracting 
the absorptive actions of  insulin during a meal. Gastric 
leptin, mobilized by ingested nutrients and CCK, potenti-
ates the satiating effects of  CCK[148,149] and GLP-1[150,151], 
actions that the two hormones exert in part by slowing 
the rate of  gastric emptying[82-85,88,151], trigerring a sensa-
tion of  fullness and thus contributing to the termina-
tion of  a meal. The potentiation by leptin of  satiating 
properties of  CCK is mediated by vagal primary afferent 
neurons selectively responsive to both hormones and to 
gastric distension and transmitting gastric stretch infor-
mation to NTS[152] via vagal sensory nodose ganglion[153]. 
Activation of  gastric smooth muscle mechanoreceptors 
is sensitive only to volume of  food introduced into the 
stomach without regard to its nutritional properties[116] 
while vagal intestinal receptors sense directly the nutrient 
quality and energy content of  ingested food[117]. The po-
tentiation by leptin of  CCK satiating effect is activated by 
nutrient intake while fasting and obesity attenuate vagal 
afferent stretch signaling[154]. Repeated gastric overstretch-
ing, common in overeating and some eating disorders, 
delays onset of  feeding, suppresses leptin concentration 
and reduces neuropeptide Y levels in ARC and NTS after 
meal intake as compared to no stomach overstretching[155]. 
The indirect involvement of  leptin in the control of  
postprandial insulin response and the meal size explains 
the lack of  a relationship between its postprandial con-
centration (Figure 4C and D) and sensation of  fullness 
(Figure 2C and D). The role of  gastric leptin in curtailing 
postprandial insulin actions may contribute to increased 
food consumption in free feeding individuals[12,13] and ani-
mals[14] who have an inability to produce leptin or leptin 
receptors. In line with the parasympathetic source of  
gastric leptin elicitation, the sympathetic actions of  leptin 
suppress cardiac rate by acting on the rostral ventrolateral 
medullary heart pacer[156,157].

Since leptin of  both gastric and WAT origin reaches 
systemic circulation, it is difficult to distinguish their 
relative role in the remaining three counterregulations of  
insulin by leptin. Similar to the responsiveness of  gastric 
leptin to meal ingestion, secretion of  leptin from WAT 
adipocytes also is responsive to short-term fluctuations 
in prandial state and a number of  hormones[160,161]. Feed-
ing increases leptin secretion from WAT cells[134,140,147] 
and fasting decreases both[147]. Endocrine secretagogues 
are insulin[128,158,159] and cortisol[158-160], and inhibitors 
are β-adrenergic stimulation, adrenocorticotropic hor-
mone (ACTH), alpha melanocyte stimulating hormone 
(αMSH)[161] and testosterone[161,162]. Furthermore, car-
bohydrate metabolism has to be present for insulin to 
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increase leptin secretion[129,133], linking the WAT cell 
responses to short-term metabolic changes. The uncer-
tainty as to the origin of  circulating leptin particularly 
arises when the hormone is being stimulated by systemic 
administration of  insulin in hyperinsulinemic euglycemia. 
This stimulus applied for longer than 3 to 4 h increases 
leptin concentration in the plasma[130,163,164] but not if  the 
duration of  the clamp[165-170] or of  the postprandial peri-
od[170,171] is shorter or if  hyperinsulinemia is accompanied 
by hypoglycemia[124]. 

The second way that leptin counterregulates insulin 
is by suppressing its secretion in pancreatic β cells[172-176] 
as shown by insulin oversecretion after deletion of  leptin 
receptors in these cells[176] (Figure 5, circle). Thus, after 
leptin gene deletion or pharmacological antagonism of  
leptin action, insulin secretion is supranormal, and leptin 
administration in ob/ob mice that are unable to produce 
leptin suppresses it[172-177]. Insulin oversecretion results 
from leptin counterregulation of  insulin secretion and 
not from obesity because it occurs before any significant 
tissue fat accumulation takes place[176].

The third way that leptin counterregulates insulin is 
by suppressing its lipogenic and other anabolic actions. 
While the catecholamines and growth hormone facilitate 
lipolysis and lipid utilization to systemic signals of  energy 
deficit[178,179] and actually decrease leptin gene expression 
in WAT[180-182] and its circulating concentration[183-187], 
leptin binds to adipocytes to selectively counteract insu-
lin-stimulated lipogenesis and activate lipolysis and lipid 
utilization in WAT[188], especially in its visceral conpart-
ment[189]. It similarly counterregulates insulin lipogenesis 

in other tissues and thus reduces triglyceride (TG) con-
tent in pancreas[190], liver[189-193], and the muscle[190,194-198]. In 
the liver[192,199], the skeletal muscle[197,200], the BAT[201] and 
WAT[202], leptin shifts the metabolism from insulin-me-
diated carbohydrate utilization and TG synthesis toward 
free fatty acid (FFA) uptake and increased lipid utiliza-
tion. In the skeletal muscle, leptin activates the enzyme 
5’-AMP-activated protein kinase (AMPK) that is capable 
of  sensing metabolic energy depletion[190,194,195]. AMPK 
in turn inhibits fat synthesis and facilitates FFA entry 
into the mitochondria for fat oxidation[195-198,203,204]. While 
some of  these metabolic leptin actions result from the 
hormone binding directly to its receptors in peripheral 
target organs such as the pancreas[190] the WAT[188,189], the 
liver[205,206], and the muscle[198,207], the same actions also can 
be achieved by leptin binding to its receptors in the brain. 
Suppression by leptin of  lipogenic actions of  insulin in 
the WAT[205,208-211] and liver[205,206] is controlled both by the 
brain, particularly the VMH[208-211] and also is effected at 
the tissue level[205], particularly in the liver[206].

Leptin counteracts insulin’s postprandial anabolic ef-
fects by stimulating DIT. It does so by upregulating the 
thermogenic uncoupling protein UCP1 in BAT by in-
creasing sympathetic nerve activity[123,124,212,213] and norepi-
nephrine turnover in BAT[214]. It also upregulates UCP2 
in WAT[215,216], and UCP3 in skeletal muscle[217]. Leptin 
increases muscle thermogenesis by stimulating substrate 
cycling[218,219], both lipid and carbohydrate oxidation[200], 
and expression of  genes for anaerobic glycolysis, a meta-
bolic pathway that is bioenergetically less efficient than 
lipid oxidation[203,204]. While insulin increases postprandial 
metabolism and thermogenesis through its stimulation of  
carbohydrate oxidation and sympathetic activation of  fat 
oxidation in BAT[220-222], thermogenic actions of  leptin are 
yoked to postprandial insulin release.

The fourth way that leptin counterregulates insulin 
action is by controlling the sensitivity of  peripheral tis-
sues and the brain to insulin actions as body fat and body 
masses deviate from the adult plateau. Considering first 
the peripheral tissues, it is well established that insulin 
sensitivity increases with body fat and body mass losses, 
and insulin resistance increases with body fat and body 
mass gains. Tissues such as the liver, muscle and the 
WAT display direct autoregulatory increases in numbers 
of  spare receptors, hormone-receptor binding[223], and 
enzyme sensitivity to nutrients as they are depleted of  
storage molecules and structural proteins. After glycogen-
depleting exercise, activity of  glycogen synthase increases 
in proportion to the magnitude of  glycogen depletion 
which leads to a faster rate of  glycogen resynthesis dur-
ing recovery from exercise[224,225]. As they are depleted 
of  storage nutrients, liver, muscle, and WAT develop 
direct and autoregulatory increases in sensitivities to the 
anabolic actions of  insulin[191,223,225-227] and catabolic ac-
tions of  catecholamines[228] some of  which are induced 
by counterregulatory actions of  leptin[190-193]. Changes in 
hormone sensitivities and responses are greater to more 
rapid rather than to gradual or prolonged reductions in 
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Figure 5  The conceptual model of the autonomic regulation of body 
weight. Autonomic nervous system regulates the energy flux through the 
energy conserving actions of insulin that are counterbalanced by the energy 
expending actions of leptin to match energy intake (EI) and expenditure (EE) 
and maintain stable body weight (center circle). The counterbalancing is 
achieved by the upregulation of leptin by the glycolytic energy flux in the WAT 
stimulated by insulin. Leptin, in turn, inhibits insulin secretion and actions in 
several organs. If dieting or food scarcity cause weight loss (left arrow), energy 
conservation is achieved, in part, by reduced Symp activity and EE (EEm). 
Predominance of Parasymp actions are manifested in reduced fasting insulin 
and leptin concentrations, increased tissue sensitivities to insulin (Si) and leptin 
(Sl) along with increased sensitivity in enzymatic nutrient sensing (Se) of en-
ergy depletion. In addition, energy is conserved through reduced S activation 
of metabolism. When overeating and reduced physical activity result in obesity 
(right arrow), there is a reverse change in fasting insulin and leptin concentra-
tions, tissues become resistant to both hormones as well as to S elicitation of 
metabolic EE. Due to insulin and leptin resistance, the ineffective compensatory 
increase in S activity to counteract further body fat, lean body mass, and bone 
accretion, mainly causes vasoconstriction and hypertension.
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energy availability. Insulin sensitivity (IS) increases more 
during the initial weight loss than during maintenance of  
reduced body weight[229]. Declines in leptin concentration 
are greater during faster weight loss over a two-day food 
restriction[230] than to a slower but cumulatively larger en-
ergy deficit extended over a 4-[231] or 7-d period[122]. Dur-
ing weight loss, sympathetic activation of  metabolic EE 
is suppressed and only the release of  adrenal epineph-
rine[232] regulates the metabolic shift to predominant lipid 
utilization[222].

The insulin sensitizing effect of  leptin in peripheral 
tissues becomes manifest as body mass index (BMI) 
declines below 25 kg/m2 and fasting plasma leptin con-
centration drops below 15 ng/dL[233,234]. At its low plasma 
concentrations, leptin contributes to insulin’s parasympa-
thetic actions by increasing muscle glucose uptake[201,235,236] 
achieved in part by inhibiting the expression of  nega-
tive regulators of  glucose transporter type 4 (GLUT4) 
translocation to the membrane[237]. By restraining visceral 
fat accumulation and insulin oversecretion[191-226], leptin 
preserves insulin sensitivity in the liver[191,226,238] implicat-
ing hyperinsulinemia in resistance to insulin action. When 
the visceral fat is surgically removed[226], reduced glycoge-
nolysis and hepatic glucose production, increased glucose 
uptake, and reduced insulin requirements to maintain 
euglycemia are all markers of  increased IS. In addition, 
metabolic gene expression in favor of  reduced WAT fat 
synthesis also results from visceral fat removal[226]. In the 
oxidative skeletal muscle, leptin counteracts insulin facili-
tation of  intramyocellular triglyceride synthesis and stor-
age by activating AMPK[200]. Through this action, leptin 
preserves the sensitivity of  muscle to insulin leading to 
increased glucose uptake and glycogen synthesis[175,225]. 
In addition to being able to exert some of  these actions 
directly in respective tissues studied in vitro[175,209], most of  
leptin actions are contingent on its systemic counterac-
tion of  insulin secretion and actions. 

The physiological significance of  insulin sensitizing 
actions of  low leptin concentrations in weight-reduced 
state is that it contributes to increased metabolic effi-
ciency that facilitates weight regain and a shift in the ANS 
balance in favor of  the parasympathetic activation[239] 
(Figure 5, left arrow). A rebound increase in carbohydrate 
utilization and insulin oversecretion in insulin-sensitive 
state during post-deprivation overeating in the rats[240,241] 
is comparable to the postlesion insulin oversecretion after 
VMH-ARC damage that is prevented by subdiaphrag-
matic vagotomy[20].

With weight gain at body mass indices above 25 to 27 
kg/m2[233,234] caused by the oportunistic and hedonic de-
sign of  human meal-to-meal eating where energy intake 
and expenditure are loosely coupled[242-245], rising basal 
plasma concentrations of  insulin and leptin lead to pe-
ripheral tissue resistance to the two hormones[233,234,246,247]. 
Although adult human adipose tissue retains some 
capacity to expand both through hyperplasia and hy-
pertrophy[248-250] and is refractory to reductions in adipo-
cyte numbers[251], the parallel rises in obesity and tissue 

resistance to high plasma leptin and insulin concentra-
tions limit additional body fat and mass accumulation. 
Resistance to both hormones[246,252] has several causes. An 
enzymatic resistance to anabolic actions of  insulin and 
counterregulatory actions of  leptin[198,207,253] develops in 
part due to downregulation of  respective receptors ex-
posed to prolonged high insulin[173] and leptin[179,181] con-
centrations. Insulin resistance (IR) also develops due to 
impaired hormone signaling that results from the action 
of  intermediates of  fat biosynthesis driven by high circu-
lating lipid concentrations[253] and accumulation of  TG in 
peripheral organs[200,209,252,253]. Although IR and leptin re-
sistance (LR) increase in parallel with the rise in adiposity, 
they differ in the timing of  their development and their 
relationship to WAT mass[163,254,255]. Hyperinsulinemia 
causes hyperleptinemia[163] and both lead to IR and LR. A 
decline in insulin signaling and IS is a consequence of  hy-
perinsulinemia rather than of  IR, since its correction with 
insulin-lowering diazoxide restores IS and prevents devel-
opment of  obesity while treatment of  IR with metformin 
does not[173]. IR has received a lot of  medical attention as 
a gateway to type 2 diabetes. However, development of  
IR and LR can also be viewed as an important compen-
satory processes in autonomic regulation of  energy flux 
in the form of  both enzymatic[15,256,257] and sympathetic 
resistance against additional accretion of  body fat. The 
autonomic resistance to accretion of  additional energy 
storage involves an increase in sympathetic activation of  
thermogenesis[258] (Figure 5, right arrow), the action of  
which is rendered ineffective by resistance of  enlarged 
adipocytes to actions of  catecholamines[193,228]. The dele-
terious health consequence of  sympathetic overactivation 
and tissue resistance to hormones in obesity are increased 
vasoconstriction and hypertension[259-262]. Finally, periph-
eral LR is possibly dissociable from the resistance of  the 
brain and ANS to leptin actions because of  its origin 
from two different sources, stomach and the WAT, and 
different routes of  accessing the brain, vagal transmission 
of  gastric leptin signals to the NTS, and endocrine signal-
ing of  both gastric and WAT leptin to the hypothalamus. 
This dissociation is suggested by continued effectiveness 
of  leptin when administered intracerebroventricularly at 
the time dietary obesity has rendered leptin applied intra-
peritoneally ineffective[263].

Remarkably and importantly leptin controls insulin 
sensitivity of  the ANS energy regulatory command cen-
ter as body fat and body masses deviate from the norm. 
The brain substrate that is responsive to changes in body 
fat and body mass is midbrain ventral tegmental (VTA) 
dopaminergic and opioidergic projection to the NA in 
the ventral striatum[76,77] that has rich interconnections 
with hypothalamic and cortical circuits responsible for 
activation and inhibition of  feeding, voluntary activity, 
and thermogenesis. The key neurotransmitter mediat-
ing behavioral reinforcements is dopamine (DA)[264,265], 
originating in medial VTA and projecting to ventrome-
dial striatum including medial olfactory tubercle and 
medial shell of  the NA[265]. Activation of  these midbrain 
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DA neural projections to ventral striatum supports 
nonhomeostatic motivating, rewarding, and incentive 
properties of  food and drives locomotor and eating be-
haviors[76,77,266-268]. Functional connections between the 
hypothalamus and this motivational circuitry is illustrated 
by the LH being the key effective site for behavioral self  
stimulation with mild electric current[269,270]. LH area also 
is responsible for arousal and incentive activation of  lo-
comotion probably linked to search for food through its 
component ghrelin[271], melanin concentrating hormone 
(MCH), and orexin/hypocretin[272-274] neural circuits. LH 
ghrelin is involved in anticipatory meal-associated in-
crease in locomotion[271] and increases in olfactory stimu-
lus salience during intermeal intervals[81]. MCH neurons 
regulate olfactory locomotor food-seeking behaviors[272]. 
In addition to motivating feeding[273], MCH neurons 
affect energy metabolism[274-277], and their secretion is 
regulated by gut peptide GLP-1[276], leptin[277], and β3 
adrenergic stimulation[278]. Distinct presympathetic-pre-
motor neurons in LH express both orexin and MCH[279]. 
Orexin-hypocretin neurotransmission elicits circadian 
periodicity of  locomotion[280], locomotor food seeking, 
and sequencing of  postprandial behavioral satiety and 
grooming[281,282]. Activation of  LH orexin-hypocretin 
neurons is functionally connected to DA reward cir-
cuit[282]. Further, the hyperactivity in anorexia nervosa is 
hypothesized to be driven in part by increased ghrelin 
signaling to DA neurons in ventral tegmental area during 
underweight and hypoleptinemia[283]. 

At this point, the attention should be brought to the 
fact that spontaneous locomotion and physical activity 
levels are, like meal-to-meal eating, under nonhomeostatic 
control although their interaction brings about the stabil-
ity of  adult body weight[284]. Cross-sectional human data 
show that total non-basal energy expenditure normalized 
for body mass is inversely related to body fat[285,286], and 
that morbidly obese individuals are almost completely 
inactive[287]. On the other extreme, underweight subjects 
with anorexia nervosa are known for compulsive running, 
“drive for activity”, and “restlessness”[288,289]. This paradox 
where overweight and obese subjects reduce locomo-
tor energy expenditure while the underweight ones are 
hyperactive, defies the homeostatic expectations. Several 
lines of  experimental animal research confirm the inverse 
relationship between spontaneous physical activity and 
body fatness. Obesity induced by either VMH lesions in 
rats[23], rostromedial septal lesions[290] and hippocampal[291] 
or septo-hypothalamic transections[292] in hamsters, or 
cafeteria and high-fat diets in neurologically intact ani-
mals[3,293,294] reduce spontaneous running activity. On the 
other hand, severe dietary restriction consisting of  only 
2-h access to food, leads to weight loss in rats and up to 
300% to 500% increase in spontaneous running activity 
to the point of  emaciation[295]. Spontaneous running by 
rodents in wheels is a motivated behavior amplified by 
the device challenges[296] and mediated in part by μ opi-
oids[297]. The inverse relationship between body fat and 
activity levels is associated with neurochemical changes 

in brain areas where damage produces obesity and hy-
poactivity[293]. Obesity-inducing brain lesions in hamsters 
abolish the inverse relationship to body fat[292]. This then 
indicates a neurochemical link between the nonhomeo-
static physical activity and body fat and body mass.

 The motivational basis of  spontaneous activity can 
be demonstrated by placing obese and hypoactive le-
sioned animals on a motor-driven treadmill. Mild electri-
cal shock at the base of  treadmill provides external moti-
vation for animals to keep running on the moving track. 
Compared to neurologically intact animals, obese hypoac-
tive animals can be compelled by such external negative 
incentive to run on a treadmill as long and as fast as the 
intact controls[298]. In a similar vein, rats displaying hy-
perphagia during ad libitum access to food following a 
weight loss, display reduced willingness to run and need 
external incentives to increase their activity[241].

So how then do non-homeostatic feeding and non-
homeostatic spontaneous physical activity add up to 
maintenance of  stable adult body mass and composition? 
The evidence presented so far permits a conclusion that 
the intermittent feeding and locomotor and other physical 
activities are loosely coupled with continuous body energy 
drain[244-246,248]. The way they result in stable body mass 
setpoint is by sharing the same neural substrate which 
provides variable reward for these behaviors based on the 
changes in the brain substrate’s sensitivity to circulating 
concentrations of  insulin and leptin. The brain substrate 
that supports motivations to locomote and search and 
ingest food is richly populated by insulin[299] and leptin[300] 
receptors and consists of  dopaminergic projections from 
VTA to NA in the ventral striatum, to limbic forebrain 
structures and to orbitofrontal cortex[265-267]. Endogenous 
opiates and cannabinoids[301,302] also are components of  this 
DA reward circuitry, with most of  NA, but also some of  
its parts in particular, showing increased hedonic respond-
ing to sweets after stimulation of  μ opioid receptors[303]. 
Mu opioids are also implicated in the motivation for spon-
taneous running[297]. LH circuits responsive to circulating 
ghrelin and signaling through MCH and orexin-hypocretin 
neurons[304] also are associated with DA reward sys-
tem[273,282,283] in supporting behavioral activation and search 
for food. The basis of  changes in incentive value for loco-
motor search and ingestion of  food[76,77,264-268,302] is vested in 
changes in the brain substrate’s sensitivity to changes in the 
concentrations of  the two hormones as body mass under-
goes deviations from the adult norm. Withdrawal of  leptin 
during weight loss reduces its counterregulation of  insulin 
actions, increases the sensitivity of  the brain reward sub-
strates to locomotor, olfactory, and gustatory rewards and 
increases the efficiency of  insulin actions leading to lipo-
genesis and recovery of  depleted body energy reservoirs. 
Leptin administration to underweight humans and animals 
suppresses the motivation to eat[305], insulin metabolic ef-
ficiency[203,204,305], and motivation for spontaneous locomo-
tion[306-309]. With body mass loss and declines in leptin and 
insulin concentration, increased parasympathetic activa-
tion and sensitivities of  tissues to insulin and leptin action 
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facilitate efficient energy storage. Insulin actions are en-
hanced by reduced leptin counterregulation of  its secretion 
and actions (Figure 5). The parasympathetic dominance in 
underweight state is reflected in hyperphagia, insulin over-
secretion to food intake, and increased efficiency of  energy 
storage that prevail as long as peripheral and central insulin 
and leptin concentrations remain low and tissue and ANS 
sensitivity to their actions high.

As increased hunger and metabolic efficiency drive 
restoration of  body fat and body stores to pre-depriva-
tion plateau, the sensitivity of  the brain reward circuit 
declines. The transport of  both hormones into the brain 
also declines[310,311], a process that most likely signals 
that predeprivation body weight setpoint has been at-
tained. Accrual of  excess body fat and body mass along 
with increases in basal insulin and leptin concentrations 
leads to reduced motivation to locomote, while feeding 
is supported in part by palatability of  food rather than 
responsiveness to hunger[76,77]. When excess fat is gained, 
increased basal concentrations of  both insulin and leptin 
lead to reduced peripheral tissue sensitivity to their ac-
tions, and increased activation of  sympathetic tone de-
velops as a countermeasure against further body fat and 
body mass accretion (Figure 5). Thus the brain reward 
circuit is a component of  the autonomic-circadian com-
mand center responsible for balancing of  sympathetic 
and parasympathetic processes in part by controlling the 

secretion of  insulin and leptin.
Alternating cycles of  famine and feast very likely 

produced the evolutionary pressure toward coupling of  
nonhomeostatic search for food opportunities with vari-
able incentive rewards associated with these behaviors[312]. 
Meal taking and meal processing represent shorter cycles 
of  intermittent refueling of  the body that expends energy 
continuously (Figure 6). Pre-meal behavioral arousal and 
increased nonhomeostatic locomotion may reflect the 
activation by the central ANS/circadian command center 
of  lateral hypothalamic neurons responsive to ghrelin, 
and signaling through MCH and orexin/hypocretin neu-
rons as well as ultradian contractile activity of  the empty 
stomach. The activation of  these processes increases lo-
comotor behavior and responsiveness to olfactory gusta-
tory and other signals of  food availability. Meal eating in-
hibits the ANS/circadian command center by GI signals 
of  fullness and satiation. Post-meal grooming in animals 
and somnolence is induced in part by postprandial insulin 
secretion[313] and activation of  orexin-hypocretin circuits 
in the LH[280]. The inhibition of  the ANS/circadian com-
mand center by volumetric and hormonal signals of  GI 
repletion declines progressively as the GI processing of  
food is completed allowing the sensation of  hunger to 
progressively rise (Figure 2).

REGULATION OF SKELETAL, LEAN AND 
FAT BODY MASS 
Body weight losses or gains along with accumulation of  
excess fat by either damage to the sympathetic and cir-
cadian components of  the ANS or cafeteria or high-fat 
food are viewed by some as a pathological dysfunction 
of  brain substrates where leptin and insulin fail to exert a 
negative feedback over feeding due to neural inflamma-
tion[9]. What this formulation fails to take into account is 
that weight regulatory mechanism is in full operation at 
either starvation or obesity extreme of  energy balance. 
Animals rendered obese by medial basal (or in the case 
of  hamsters, septal) lesions or by cafeteria and fat diets 
defend their new elevated body weight plateau after it has 
been attained against downward deflections[3,314,315]. The 
lesions and hedonic nonhomeostatic overeating therefore 
only raise the plateau at which WAT mass is defended 
and do not interfere with the body mass regulatory mech-
anism per se. The clearest demonstration of  the integrity 
of  the body mass regulatory defenses after VMH lesions 
is absence of  hyperphagia and hyperinsulinemia (or even 
presence of  hypophagia) if  animals are rendered obese 
by prolonged insulin injections prior to VMH lesion. The 
change in their feeding behavior lasts until they attain the 
usual obese body mass plateau characteristic of  lesioned 
animals and thus demonstrate its regulatory defense[316].

The origin of  the signal for body mass recovery can 
therefore not reside exclusively in the size of  WAT or 
adipocyte fat content but requires consideration of  the 
role of  the other two body components, the bone and 
lean tissues. The bone is the probable source of  such sig-
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operation of behavioral arousal, nonhomeostatic increase in locomotion in quest 
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control of food digestion and absorption and behavioral quiescence. It is prob-
able that weight loss increases postprandial events linked by the left arrow, and 
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es in bone mineralization and size. The effect requires β 
adrenergic receptors on the osteoblasts in the absence 
of  which a high-bone, obese, and hypoactive phenotype 
is observed similar to that of  VMH lesioned animals 
or mice with deficient leptin signaling (ob/ob and db/db 
mice). These findings help explain why with each kg of  
body fat lost, 16.5 g of  bone mineral is lost, and then 
gained back with body fat regain[317]. Acknowledgment 
that all three compartments of  body mass are regulated 
extends our understanding of  the scope of  the roles of  
leptin and ANS both in short-term nonhomeostatic be-
haviors and in maintenance of  adult weight stability.

The proposed re-interpretation of  body weight regu-
lation presents it as a counterpoint between the sympa-
thetic and parasympathetic actions of  the ANS/circadian 
command center in which counterregulation by leptin of  
insulin secretion and actions and change in tissue sensi-
tivities to the two hormones influence nonhomeostatric 
locomotor and ingestive behaviors as body fat and body 
mass are displaced from the stable adult norm. This nov-
el integration offers an opportunity to revise the prevail-
ing homeostatic view of  energy regulation and to refocus 
weight regulation research. The inclusion of  body com-
ponents other than fat stores in body weight regulation 
expands the scope of  study of  this mechanism. The pro-
posal that the role of  leptin is to counterbalance energy 
storage associated with insulin secretion as well as help 
guide lost body mass to pre-deprivation setpoint prompts 
new hypotheses and research about its possible role in 
termination of  growth and initiation of  the maintenance 
of  a stable adult body mass. 
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Abstract
Diabetes mellitus is a complex condition with far 
reaching physical, psychological and psychosocial ef-
fects. These outcomes can be significant when consid-
ering the care of a youth transferring from paediatric 
through to adult diabetes services. The art of master-
ing a smooth care transfer is crucial if not pivotal to 
optimising overall diabetic control. Quite often the 
nature of consultation varies between the two service 
providers and the objectives and outcomes will mir-
ror this. The purpose of this review is to analyse the 
particular challenges and barriers one might expect to 
encounter when transferring these services over to an 
adult care provider. Particular emphasis is paid towards 
the psychological aspects of this delicate period, which 
needs to be recognised and appreciated appropriately 
in order to understand the particular plights a young 
diabetic child will be challenged with. We explore the 
approaches that can be positively adopted in order 

to improve the experience for child, parents and also 
the multi- disciplinary team concerned with the overall 
delivery of this care. Finally we will close with reflec-
tion on the potential areas for future development that 
will ultimately aim to improve long-term outcomes and 
experiences of the young adolescent confronted with 
diabetes as well as the burden of disease and burden 
of cost of disease.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: This manuscript is a comprehensive review of 
the challenges encountered during the transition of dia-
betes care from paediatric to adult diabetes services. 
Further we explore the structured transitional programs 
that could help in the smooth transition of diabetes 
care from the youth to early adulthood. 
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INTRODUCTION
Adolescence is a term derived from the Latin word, “to 
grow up”[1]. Not only does it denote a transitional phase 
of  physical change and maturation, but also an immense 
modification of  patient psychology. The presence of  
chronic long term illnesses such as type 1 diabetes may 
make this vulnerable group even more prone to fall out 
of  the healthcare system and be prone for development 
of  acute or chronic complications. 

Diabetes is a complex condition that patients of  all 
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ages often struggle to manage, as it requires many adap-
tations and modifications to lifestyle. It is often a great 
challenge when we take into consideration the physical, 
social and psychological interactions that a young ado-
lescent is often faced with[2]. The scope for development 
in this area remains vast and the need for a structured 
framework paramount[3]. The diabetic consultation also 
changes in a way, from being initially a complex, dynamic 
parent-led interaction to being a physician-led shortened 
purpose driven appointment. The lack of  this assumed 
comfortable niche may often leave the adolescent with 
diabetes feeling abandoned and thus susceptible to poor 
diabetic control and its complications. The purpose of  
this article is to highlight the importance of  a structured 
transitional program that could help to alleviate some 
of  the challenges of  this turbulent process and help to 
enable a swift transition from early youth to emerging 
adulthood.

The key aspects to focus in this review are assessing 
risks of  developing poor glycaemic control during this 
period, risk of  potential complications, acute vs chronic as 
well as possible ways of  engaging this at-risk vulnerable 
cohort of  patients. We explore the potential implications 
of  transition from paediatric to adult services and the 
potential processes that could be considered for service 
development and also to enhance the patient journey.

THE SCOPE OF THE PROBLEM
The proportion of  young adults under the age of  20 
years affected by diabetes in 2010 was 0.26%[4]. The 
“search for diabetes in Youth” study estimated that on 
average approximately 15000 youth are diagnosed with 
type 1 diabetes and 3700 with type 2 diabetes annually in 
the United States[5]. Given the changes in demographics 
and society, these numbers are projected to increase year 
on year and henceforth highlighting the need to be vigi-
lant of  the problems young teens face and being able to 
provide a framework to forward the development of  this 
specific aspect of  adolescent care[6,7].

The other key feature to be alerted to when account-
ing for this cohort of  patients is the projected increase 
in the childhood onset of  type 2 diabetes[8]. As sedentary 
lifestyles become more common and fast food more 
readily available thereby propelling obesity incidence, 
the emerging numbers of  type 2 diabetics is ever more 
a problem we will encounter in clinical practice[9]. This 
would therefore cascade down to increasing numbers of  
adolescents with diabetes who will eventually transition 
from paediatric to adult care ultimately. The important 
aspect to be aware of  in provision of  care for this cohort 
of  patients is to be alert to the changes they will be fac-
ing. Thus as any other adolescent will be assuming new 
roles and changing identities, this is no less apparent in 
adolescents with diabetes mellitus. The transition services 
therefore needs to be adapted accordingly and the clini-
cian needs an appreciation of  the complexities the youth 

will be challenged with in general, but more so particu-
larly in the setting of  diabetes mellitus.

MODELS OF DEVELOPMENT
There are various psychological models of  development 
that have been put forward to explain the key stages in a 
young adolescent’s life[10]. It is pertinent to be aware of  
these theories in order to tailor our approach and modify 
these according to the stages of  development. Ignorance 
of  these changes of  roles may lead to the provision of  
sub-optimal care and hence ultimately compromise dia-
betic control and leave the youth prone to complications, 
both in the immediate and longer term.

A model of  impact of  personal change that reflects 
the changes the young adolescent individual experiences 
has been previously proposed[10]. The model has a use-
ful analogy to the changes a young adolescent would 
experience when transitioning of  their diabetic care[11]. 
There is an initial excitement and almost “honeymoon” 
phase where the young youth is coming of  adulthood 
and excited to be leaving paediatric services, only to gain 
autonomy of  their own care. However this is later fol-
lowed by a sense of  confusion and lack of  confidence 
and almost a crisis stage. Alongside understanding theo-
ries of  development and change it is also critical to ap-
preciate and understand the corresponding psychosocial 
changes the youth will be greeted with. This period of  
emerging adulthood is often the period of  most change 
where young children are assuming new roles of  educa-
tion, moving out of  the parental home and progressing 
towards seeking employment and independence. It is of  
paramount importance to understand this psychological 
metamorphosis of  a teenager, as it is during this process 
that the adolescents are most susceptible to run into 
problems and lack of  understanding of  this process by 
the adult care providers acts as a confounding barrier to 
effective care provision[12]. Care providers and service 
managers need to acknowledge this and incorporate nec-
essary amendments in their model of  care delivery, with-
out which the care could be disruptive, disjointed and not 
tailored leading to high fall-out rates[13].

In many countries, suboptimal outcomes in the man-
agement of  diabetes in young adults have lead to central-
ization of  diabetes care. With this the optimization of  
treatment and outcomes is concentrated in such regional 
centres and centres of  excellence, and subsequently 
used to reach out to comprehensively improve care in all 
regions. The need for a multi-disciplinary team, the cen-
tral role of  education and the overlying need for better 
metabolic control depend on such centres. In developing 
countries, such centres may develop spontaneously based 
on perceived need for centralized policies and action. In 
more comprehensive care systems such as in Europe, 
marginal outcome data force health care providers to re-
design diabetes care, which in some countries is resulting 
in an orchestrated centre development. 
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CHALLENGES AND BARRIERS IN THE 
TRANSITION PROCESS
Delivery of care
Perhaps the biggest change in transition of  care is mode 
of  delivery[14]. Initially the child will encounter an aspect 
of  their diabetes care being provided in a very family 
centered manner, in converse to adult care which is very 
much assumed and based on the young adult gaining 
autonomy and identity of  their own care, without the pa-
rental guidance and support. Different roles and methods 
have been adopted in the clinical setting to help face and 
tackle these challenging times[15]. 

Emerging evidence is gaining credibility that by pro-
viding transitional care based on gradual transition is far 
more successful and advantageous in terms of  outcomes, 
as opposed to offering a simple transfer to care to servic-
es[16]. This allows the individual to experience a smooth 
healthcare experience that is free of  plentiful turmoil 
and change. Certain centers have set up a joint transition 
clinic whereby paediatricians, adult clinicians and special-
ist diabetic nurses (DSN) from Paediatric and Adolescent 
services are directly involved in the delivery of  care in 
this potentially vulnerable period.

We report the model of  transition diabetes care in 
our regional tertiary center where the transition process 
pans out over 6-8 clinic appointments over a typical 24 
mo period, staged through Joint Transition clinic and 
Young adult clinic. Children with diabetes ready for tran-
sition are identified by the paediatric diabetes team and 
reviewed in the Joint Transition clinics. Majority of  these 
children are between 16 and 18 years of  age. During the 
first two reviews the clinic is led by the paediatric team 
with the adult diabetes Consultant and a DSN from the 
adult diabetes team sitting in the joint clinics. The adult 
team leads the clinic in the subsequent 2 visits after which 
the care is transferred to a young adult diabetes clinic. 
Young Adult diabetes clinics are run by the same adult 

diabetes consultant and adult DSN, provide longer dura-
tion of  consultation for each appointment, and provide 
open access to diabetes services through the same named 
DSN. A telephone reminder service is provided through 
secretarial staff, to improve attendance rates at these clin-
ics. Each young adult is reviewed 2 to 4 times a year in 
the Young Adult clinic, for up to 3 years based on clinical 
needs, before being provisionally transferred to general 
adult diabetes clinic.

By delivering such a model for transition of  care there 
was an overall significant improvement in attendance 
rates: 72% attendance rates (of  266 appointments) in the 
joint transition clinics and 75% attendance rates (of  254 
patients appointments) in the young adult diabetes clinic 
compared to the 45% attendance rate prior to the intro-
duction of  this robust pathway.

HbA1c and glycaemic control
The success of  a holistic diabetes care can be objectively 
measured and monitored using glycaemic control as a 
service indicator. Achievement of  target glycaemia in the 
young adolescent group can be challenging with large 
studies reporting less than one-third achieving the recom-
mended glycaemic targets[17]. 

The glycaemic control in the two clinical settings was 
assessed as part of  an internal audit done at our centre. 
Table 1 shows the changes in the glycaemia as assessed 
by the HbA1c with the implementation of  the transition 
model at our centre. The HbA1c improved in half  of  the 
cohort in the transition model with an significant portion 
achieving the glycaemic targets of  HbA1c < 7.5%.

Loss to follow up
The competing interest of  adolescent life along with it 
inherent psychological changes lead to non-adherence to 
the service, which can be easily assessed by non-atten-
dance rates to the clinics. There are inevitably adverse 
short and long term outcomes of  patients that are lost 
to follow up of  care[18,19], such as increased risk of  acute 
glycaemia related complications like DKA and severe 
hypoglycaemia, long term damage to end organs by way 
of  diabetic retinopathy, nephropathy and longer term 
cardiovascular damage[20]. Patients who are lost to follow 
up have higher risk of  hospitalisation with its huge health 
care cost implications and increased risk of  all-cause 
mortality[21,22]. Henceforth, various strategies of  improv-
ing attendance need to be put forward and implemented 
to improve adherence to the service.

Various centers have devised methods to tackle and 
approach the above obstacle and have found that use of  
a simple text reminder service to remind patients of  clinic 
appointments will help them engage with services better 
thereby helping with improving long term outcomes[23]. 

At our centre, introduction of  a simple telephone 
service made a significant impact on attendance rates at 
these clinics. A non-medical staff  member of  the team 
(medical secretary) made a phone call 2-3 d prior to the 
appointment, with the sole purpose of  establishing con-
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Table 1  Changes in the HbA1c during the transition through 
the joint transition clinics and the young adult clinics (n  = 
65)

Joint transition clinic Young adult clinic

Mean entry age (yr) 17.1 18.5
Number of patients 
per clinic 

  2.9   2.7

Mean change HbA1c 
(DCCT HbA1c %)

  0.1   0.2

Mean HbA1c entry 
(DCCT HbA1c %)

  9.8   9.7

Mean HbA1c exit 
(DCCT HbA1c %)

  9.7   9.8

Proportion with > 1% 
HbA1C (DCCT) 
improvement

 25%  19%

Proportion with 
improvement in HbA1c 

 49%  50%

DCCT: Diabetes control and complications trial. 
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caemic control[26]. Up to 33% of  adolescent’s aged 18-30 
years will report depressive symptoms[27]. It is also im-
portant to be vigilant of  the high risk of  eating disorders 
and substance misuse and insulin misuse, with the risk of  
misusing insulin for unhealthy weight control measures 
being quoted to be as high as 57%[28,29]. 

In our transition clinic setting all patients have access 
to psychological support from the clinical psycholo-
gist embedded in the diabetes team. Some patients are 
specifically referred to psychology if  the teams have any 
concerns. Authors believe such a model is efficient way 
of  utilization of  resources and can be easily replicated 
across the globe.

Sexual and reproductive health 
Unplanned pregnancy remains a major problem in teen-
agers with co-existing diabetes. The use of  contracep-
tion has been found to be lower in patients with diabetes 
(39%) as compared to those without (27%)[30]. Issues 
around contraception need to be proactively addressed 
at the young adult diabetes clinics, with emphasis on 
pre-conception counseling and optimising diabetes care 
to improve fetal and maternal outcomes[31]. This again 
highlights the multitude of  dimensions that the consulta-
tion at the young adult clinic needs to take and address 
numerous additional challenging issues that young teens 
will now face.

RECOMMENDATIONS TO IMPROVE 
MODELS OF CARE
It is therefore prudent that the transition care for chil-
dren with diabetes should be structured, coordinated 
with a multi-disciplinary approach with collaboration and 
communication between the paediatric and adult diabetes 
teams and making sure the young adult’s care is effec-
tively taken over by the adult diabetes team with prior 
engagement in conjunction with the paediatric team. De-
spite the clear need for such systematic transition there 
appears to be lack of  a structured approach to this provi-
sion and delivery of  successful care to provide a service 

tact and providing a reminder of  the forthcoming ap-
pointment. The non-attendance rates were reviewed in 
23 clinics-6 clinics pre introduction of  telephone service 
and 17 clinics post introduction of  the service of  which 
in 2 clinics the service was not used (due to leave of  the 
staff  involved and this was effectively a reality check per 
se). There was a significant reduction in non-attendance 
rate with the introduction of  the telephone reminder, 
both for new and follow-up patients (Table 2). The two 
of  the 17 clinics which did not have this service since the 
introduction of  the process, showed significantly higher 
non-attendance rates (50% and 38%) thereby internally 
proving the value of  the appointment reminder service 
and emphasizing how prudent it can be in enhancing 
attendance to the young adult diabetes clinic (Figure 1). 
The introduction of  a simple telephone service to remind 
patients of  their clinic appointments therefore proved to 
be a simple addition to improve efficient utilisation of  
clinic time and in the longer run could demonstrate to be 
significantly cost effective.

Psychosocial stressors as barriers
Young adults with diabetes are also more likely to face 
psychological issues hindering their care and manage-
ment, as evidenced by any patients challenging chronic 
long-term conditions[24,25]. Thus efficient delivery of  care 
is crucial to allow for this vulnerable patient group in a 
susceptible period where their lives are simultaneously 
changing. 

Depression in diabetes is a recognised co-morbid fac-
tor and will increases mortality and leads to poorer gly-
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Table 2  Impact of the telephonic service on the non-at-
tendance rates in the young adult diabetes clinics

Non-attendance rates Before telephonic  With telephonic 

intervention (6 clinics) intervention (15 clinics)
Overall non-attendance 
rate (%)

41 15

   New patient (%) 47   8
   Follow up patients (%) 30 19
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Figure 1  Attendance and non-attendance rates before and after introduction of the telephone service in the young adult clinics[1]. The telephone reminder 
was 2 d prior to the appointment (clinic 7 onwards, except clinic 16 and 19) significantly improved attendance rates compared to clinics without it.
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that is multifaceted and enables the interactions to occur 
in a step wise fashion allowing the gentle introduction of  
adult services and gradually stepping away from paediat-
ric input.

Young adults with diabetes, as with any teenage child 
facing a chronic long term condition, are more vulner-
able to the changes of  adaptation in care and hence there 
is greater risk of  this care being compromised at a time 
where they need it most and at a time where the longer 
term complications (as well as acute) need to be screened 
and monitored for[32]. One key obstacle identified here is 
the loss to follow up of  these patients. There is evidence 
to support the use of  a simple telephonic calling system 
in order to aid compliance and concordance with the 
adult services and ultimately improve outcomes, reduce 
long-term complications and reduction of  end point 
mortality.

There is evidence that structured transition processes 
improve health outcomes and quality of  life. Interna-
tional organizations including American Diabetes Asso-
ciation, International society for pediatric and adolescent 
diabetes, Diabetes United Kingdom recommend a struc-
tured framework of  goals to be outlined and met when 
transition care of  young diabetics to adult services[33-35]. 
There are no proven uniform strategies to achieve all 
these goals, although programs that particularly target the 
young adult with diabetes through education, skills train-
ing, specialty transition clinics, or addition of  transition 
coordinators may help towards achieving such goals, for 
this rising global challenge[36]. It is therefore pivotal that 
every effort is made to encompass all aspects of  their 
care which will be instrumental in designing and develop-
ing a joint care pathway for young adults emerging into 
adulthood for a well-recognized but less commonly per-
ceived problem in routine clinical practice in the world of  
diabetes.
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Core tip: Treatment of diabetes is difficult. Initial suc-
cess in achieving treatment goals is followed by dete-
rioration and the necessity for additional treatments. 
Exciting new drugs with new modes of action, have 
stimulated diabetologists to strive for improved control 
in the knowledge that complications will be reduced 
or prevented. Obese patients, who loose weight on 
glucagon-like peptide-1 agonists are usually delighted 
with these drugs but for those who fail to loose weight 
changing to oral dipeptidyl peptidase-4 inhibitors would 
seem a good choice. sodium-glucose transporter-2 in-
hibitors have the added benefit of being effective even 
if blood sugar is near to target but uro-genital infection 
is a concern. 
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INTRODUCTION
Readers interested in diabetes must be sick and tired read-
ing that diabetes is a global problem of  immense size and 
getting worse by the day with predictions that we will all 
have the disease one day! I exaggerate of  course but it is 
sad to realise that although we know so much more about 
the condition we have made little progress in reducing or 
conquering the disease. A recent history of  diabetes in 
the past 200 years by Polonsky[1] gives an excellent review 
of  the history of  discovery of  so many mechanisms that 
are faulty in diabetes and the number of  Nobel prize 
winners who have contributed to such wonderful success, 
yet more and more people are being diagnosed with the 
condition/disease and the consequences are immense 
in terms of  suffering and financial cost. One should not 
forget that before the discovery of  insulin 90 years ago 
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Abstract
In recent years the treatment focus for type 2 diabe-
tes has shifted to prevention by lifestyle change and 
to more aggressive reduction of blood sugars during 
the early stage of treatment. Weight reduction is an 
important goal for many people with type 2 diabetes. 
Bariatric surgery is no longer considered a last resort 
treatment. Glucagon-like peptide-1 agonists given by 
injection are emerging as a useful treatment since they 
not only lower blood sugar but are associated with a 
modest weight reduction. The role of the oral dipep-
tidyl peptidase 4 inhibitors is emerging as second line 
treatment ahead of sulphonylureas due to a possible 
beneficial effect on the beta cell and weight neutrality. 
Drugs which inhibit glucose re-absorption in the kidney, 
sodium/glucose co-transport 2 inhibitors, may have a 
role in the treatment of diabetes. Insulin treatment still 
remains the cornerstone of treatment in many patients 
with type 2 diabetes.
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diabetes was a rapidly fatal disease and there was little 
interest in what we now term type 2 diabetes. Type 2 
diabetes now makes up 90% of  all diabetes. Insulin resis-
tance rather than insulin deficiency is the major player in 
the vast majority of  type 2 diabetes and type 2 diabetes 
can be reversed, at least in many patients, with exercise 
and weight reduction. This is not new information but 
was highlighted by Taylor’s group in Newcastle in 2011[2] 
when they did a very simple experiment on patients who 
had diabetes, were obese and managed with tablets. They 
got 13 patients to do what was common practice and 
fashionable 40 years ago. They put the patients on an 800 
kcal diet, a diet that has been proven beyond doubt to 
cause weight loss. Indeed there has never been a report 
of  anyone who can maintain their weight on an 800 kcal 
diet. Compliance was checked by urinary ketones and 
weight loss. Eleven of  the patients succeeded in finishing 
the eight week diet and lost as much weight as would be 
expected from bariatric surgery. Just like what happens 
following bariatric surgery in patients with type 2 dia-
betes, the diabetes disappeared and blood pressure and 
lipids improved. Nothing spectacular so far and the study 
would not have been worthy of  reporting since all this 
is well known and has been done many times before, as 
Professor Yki-Jarvinen in her leading article in Diabeto-
logia[3] wrote “the only problem is that in medical school 
and when I was training as an endocrinologist nobody 
told me how to get patients to follow such a diet”. Only 
10% of  patients are able to follow dietary restriction 
advice and only the minority take the exercise treatment. 
Worse, of  those who do succeed 90% relapse. Indeed this 
is why low calorie diets became unfashionable and large 
type 2 diabetic trials such as the Steino Hospital trial[4] 
did not include weight reduction as part of  their proto-
col. The Newcastle group[2] converted an unoriginal and 
mundane study into a really exciting study by demonstrat-
ing that liver fat almost disappeared completely within a 
week and this was associated with a very large improve-
ment in blood sugar and insulin resistance. The rapidity 
of  improvement was interesting and the significance of  
the reduction of  fat around the beta cell, a new finding 
of  uncertain importance. However a plausible theory is 
that fat in the vicinity of  the beta cell and in particular 
cholesterol, may be easily oxidised and the release of  free 
radicals contributes to damage to the beta cell. In this re-
gard a gene variant Ckal1, a gene associated with protein 
translation, has been shown to be very sensitive to oxida-
tion and it is associated with a feeble insulin response[5]. 
Beta cells have the ability to regenerate and early and 
intensive reduction in blood sugar has been shown to im-
prove beta cell function. Hyperglycaemia creates a vicious 
circle-the higher the blood sugar the greater the damage 
to the beta cell and the greater the damage to the beta 
cell the higher goes the sugar. Hence the drive to prevent 
hyperglycaemia by intervention in the pre-diabetes phase 
and to normalise blood sugar in the early stages of  dia-
betes. The final result of  the Newcastle group study that 
made me and many others sit up and take notice was the 

demonstration that the beta cell recovered, not partially 
but completely, and even the first phase insulin release 
returned to normal so the patients really did reverse their 
diabetes. This article was of  such interest that it made 
headlines in daily newspapers around the world. Patients 
and their relatives, perhaps for the first time, really un-
derstood the damage diabetes does and gained new hope 
seeing a goal of  reversal of  diabetes and the possibility 
of  discontinuation of  diabetes medications. Beta trophin 
has been discovered-a hormone expressed mostly in liver 
and fat that stimulates beta cell proliferation, expands 
beta cell mass and improves glucose tolerance in a mouse 
model[6]. Perhaps an exciting new way to help to reverse 
diabetes in the future?

The July 2012 edition of  the Lancet[7] carried on its 
cover “Physical inactivity: Worldwide”, we estimated that 
physical inactivity causes 6%-10% of  the major non-
communicable diseases. Physical inactivity seems to have 
an effect similar to that of  smoking or obesity. Min Lee et 
al[8] examined how much disease could be averted if  inac-
tivity were eliminated. Diabetes, as expected, is one of  the 
major diseases the authors looked at. They concluded that 
not only did physical inactivity account for 6%-10% of  
the major non communicable diseases but this unhealthy 
behaviour causes 9% of  premature mortality. There is 
good evidence to demonstrate that overweight or obese 
children who become obese as adults are at increased risk 
of  diabetes whereas overweight or obese children who be-
came non-obese by adulthood are not[9]. More importantly 
many studies have shown that educational interventions in 
physical activity have actually been successful and indeed 
more successful than interventions for obesity. Heath et 
al[10] in the same issue of  the Lancet, examined interven-
tions from around the world and demonstrate that the 
literature is convincing in demonstrating that behavioural 
and social approaches are effective. The improvements are 
seen among people of  various ages and from different so-
cial groups, countries and communities. The authors make 
the point that although individuals need to be informed 
and motivated to adopt physical activity, the public health 
priority should be to ensure that environments are safe 
and supportive of  health and wellbeing. 

Since we know so much about the risk of  developing 
diabetes, it should be possible to have treatment to pre-
vent diabetes in many patients. The diabetes prevention 
program outcome study[11] has been recently published. 
This ongoing study demonstrated a clear reduction in 
diabetes incidence in participants randomly assigned to 
a lifestyle intervention or metformin during the inter-
vention period. The authors end by stating that their 
data “support early and aggressive measures for long 
term prevention of  diabetes in people at risk”. Inten-
sive lifestyle intervention has been shown to slow the 
decline in mobility in overweight adults with diabetes[12]. 
A disappointing result has recently come from the Look 
AHEAD study[13]. The study was designed to test the 
hypothesis that an intensive life style intervention for 
weight loss would decrease cardiovascular morbidity and 
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mortality in over weight patients with type 2 diabetes. 
More than 5000 patients took part in the study and the 
median follow-up of  the study was for 9.5 years, weight 
loss was modest in the intervention group (6% vs 3.5% at 
the end of  the study). Alas there was no reduction in the 
rate of  cardiovascular events. The study results are per-
haps not surprising in that significant weight reduction is 
unachievable in most patients but does suggest that we as 
physicians should accept that most patients are unable to 
loose weight and should not be made to feel guilty about 
this. On the other hand to continue to engage the patient 
in meticulous control of  blood pressure, lipids and blood 
sugar, together with cessation of  cigarette smoking, a 
healthy diet and exercise, are of  proven benefit.

Casazza et al[14] have written an excellent article enti-
tled “myths, presumptions and facts about obesity”. The 
definition of  a presumption was a belief  in the absence 
of  supporting scientific evidence; a Myth was defined as 
a belief  persisting despite contradictory evidence. Facts 
were suppositions backed by sufficient evidence to con-
sider them proven for practical purposes. The authors 
note that sometimes action is taken by policy makers in 
the absence of  strong scientific evidence “This principle 
of  action should not be mistaken as justification for 
drawing conclusions”. The myths examined were: (1) that 
small sustained changes in energy intake or expenditure 
will produce large long term weight changes; (2) Setting 
realistic goals for weight loss is important otherwise pa-
tients will become frustrated and loose less weight; (3) 
Large rapid weight loss is associated with poor long term 
weight outcomes as compared with slow gradual weight 
loss; (4) It is important to assess the stage of  diet readi-
ness in order to help patients who request weight loss 
treatment; (5) Physical education courses in their present 
form play a part in reducing childhood obesity; (6) Breast 
feeding is protective against obesity; and (7) A bout of  
sexual activity burns 100-300 cal for each participant. 

A stepwise approach to the management of  diabetes 
has become a fashionable concept in recent years with 
many published paradigms of  the steps which are vari-
able and often contradictory or display so many different 
stairways that they become very confusing. The first step 
depends on getting the patient at the very beginning of  
their path, that is in the pre-diabetes stage but even then 
they may have already suffered from macrovascular and 
microvascular damage[15-18]. There is little dissention in 
advising the lifestyle changes but, should metformin also 
be used or should one wait and see the effect first of  the 
lifestyle changes? Information on this point is available, 
for example in the trial by Snehalatha et al[19] 2009. There 
seemed to be no advantage to add metformin to life 
style changes so perhaps metformin should be reserved 
for those patients who are unable to adhere to life style 
changes? 

Once diabetes has been diagnosed can one wait and 
see the result of  life style changes or should one aggres-
sively control blood sugar? High glucose is toxic to the 
beta cell. Exciting new information suggests that the 

beta cell may dedifferentiate under high glucose attack by 
causing reduction in a key transcription factor, Fox 01. 
This dedifferentiation results in the production of  inac-
tive proinsulin and an increase in glucagon[20]. Intensive 
insulin therapy at diagnosis of  type 2 diabetes has been 
shown to reverse diabetes. Weng et al[21] studied 382 pa-
tients and had divided them into 3 groups. Continuous 
insulin infusion, multiple injections or oral agents were 
used to achieve rapid normalisation of  hyperglycaemia. 
Treatment was stopped after normoglycemia was main-
tained for two weeks. After a year 51% and 44% of  the 
insulin treated patients were in remission where as only 
26% of  the patients in the oral agent group had gone 
into remission. The evidence to support early and aggres-
sive treatment for type 2 diabetes has not been widely 
accepted. The reasons are probably due to a shortage of  
personnel to manage patients. In my country there is a 
long waiting list to be seen in a diabetic clinic and general 
practitioners are usually unhappy about starting insulin. 
The better understanding of  the beta cell pathology of  
diabetes should persuade physicians to adopt a more 
urgent approach to diabetes management in the future. 
A systematic review and meta-analysis on short term 
intensive insulin therapy in type 2 diabetes gives further 
support for the ability of  this treatment to modify disease 
progression[22]. 

BARIATRIC SURGERY
Bariatric surgery for obese type 2 diabetes has been re-
fined over the last few years. Laparoscopic surgery has 
made operation on morbidly obese patients who have 
diabetes, and indeed those who do not have diabetes, 
much safer and very often will reverse the diabetes. The 
operation has been shown to reduce cardiovascular risk. 
As with all operations the experience of  the surgeon and 
indeed the surgical unit plays a very important part in 
outcome. A Cochrane review[23] in 2009 concluded that 
bariatric surgery is more effective than conventional treat-
ment in achieving and in sustaining weight loss in people 
with obesity. Improvements in health related quality of  
life and obesity related co morbidities including type 2 
diabetes, dyslipidaemia and sleep apnoea are further ben-
efits. A very good review of  the subject has recently been 
written by Dixon et al[24]. 

Mingrone et al[25] in 2012 published a single centre 
non-blinded randomised controlled trial to examine the 
difference in outcome between surgery as compared 
to usual medical therapy. Surgery was either gastric by-
pass or bilio-pancreatic diversion. At the end of  2 years 
HbA1c was 6.35% in the gastric bypass group and 4.95% 
in the bilio-pancreatic-diversion group as compared to 
7.69% in the medically treated group. Diabetes remission 
had occurred in 75% of  the gastric bypass group and 
95% in the bilio-pancreatic diversion group. No patient 
in the medical group had reversed their diabetes. There 
were no deaths and almost no complications in the surgi-
cal group[25].
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groups in HbA1c. Overall hypoglycaemia was a little less 
in the insulin degludec group and nocturnal hypoglycae-
mia was also a little lower (1.4 vs 1.8 episodes per patient-
year exposure). The authors conclude that the newer 
basal insulins with lower hypoglycaemia events may allow 
more intensive blood sugar lowering treatment. From the 
results presented in their paper, insulin degludec does not 
seem to be the answer. An editorial by Tahrani et al[33] in 
the same edition, ends by saying that insulin degludec is 
not a revolution but an evolution of  insulin therapy for 
patients with both type 1 and type 2 diabetes. 

SODIUM GLUCOSE CO-TRANSPORT-2 
INHIBITORS
Glycosuria occurs when the blood glucose reaches a 
threshold of  about 10 mmol/L. However some people 
will excrete glucose at much lower levels of  blood glu-
cose (renal glycosuria). The discovery that glucose is 
transported across the proximal tubule membrane by 
sodium/glucose co-transport 2 (SGLT2) and that a 
naturally occurring polymorphism of  the gene causes 
renal glycosuria, paved the way for the development of  
SGLT2 receptor inhibitors as a way of  promoting renal 
glucose excretion and therefore calorie loss and reduc-
tion of  blood sugar. Two drugs have undergone clinical 
trials dapaglifozin and canaglifozin and have been the 
subject of  a meta analysis by Clar et al[34]. The drugs both 
result in blood glucose reduction of  about 0.5%-1% with 
some weight loss. Urinary and genital infections were 
more common. Hypoglycaemia did not occur any more 
frequently that placebo. The results of  the Cantata-SU 
trial have recently been published[35]. The trial was a 52 
wk study in type 2 diabetes with patients who were inad-
equately controlled with metformin. Canagliflozin was 
compared to Glimepiride. 1452 patients were randomised 
in a phase 3 non-inferiority, double blind, randomised 
trial. Three hundred mg of  Canagliflozin reduced HbA1c 
from a mean of  7.8% to 6.9% (mmol/L) a reduction of  
0.9%. Hypoglycaemia was less common on Canagliflozin 
and there was a 4 kg reduction in weight with a small 
reduction in blood pressure. There was a 0.25 increase in 
LDL cholesterol but also a slight, 0.1% increase in HDL 
cholesterol and a very slight reduction in triglycerides also 
of  0.1%. Genital mycotic infections occurred in 8% in 
men and 14% in women on the 300 mg dose. The study 
suggests that the benefit of  the drug is a useful reduction 
in HbA1c and weight reduction. The blood pressure re-
duction is also of  benefit but the rise in LDL might be a 
worry and the mycotic genital infections and urinary tract 
infections might make the drug unacceptable to many 
patients who may have presented with these problems 
when first diagnosed. An editorial in the Lancet where 
the results were published is entitled “SGLT2 inhibitors 
for diabetes: turning symptoms into therapy” and makes 
the point that the place of  this class of  drugs in the treat-
ment of  type diabetes is still to be decided[36]. There has 
been concern about breast and bladder cancer as well 

In the same edition of  the journal Schauer et al[26] 

evaluated the efficacy of  intensive medical therapy as 
compared to medical therapy plus Roux en Y gastric by-
pass or sleeve gastrectomy in 150 obese patients with un-
controlled type 2 diabetes. The primary end point was the 
proportion of  patients with a glycated haemoglobin level 
of  6.0% or less, 12 mo after treatment. Twelve percent of  
the medical group, 42% in the gastric bypass group and 
37% in the sleeve gastrectomy group achieved the pri-
mary end point. HbA1c was 7.5% in the medical group 
6.4% in the gastric bypass group and 6.6% in the sleeve 
gastrectomy group. No deaths or life threatening com-
plications occurred[26]. An editorial in the same edition by 
Zimmet et al[27] suggests that the bariatric surgery should 
not be seen as a last resort. More recently Arterburn et 
al[28] did a retrospective analysis to compare rates of  dia-
betes remission, relapse and all cause mortality amongst 
severely obese adults with diabetes who underwent 
bariatric surgery vs non-surgical treated individuals. At 2 
years the surgery subjects had significantly higher diabe-
tes remission rates 73.7% compared to non surgical sub-
jects with 6.9%. The surgical subjects also experienced 
lower relapse rates with no higher risk of  death[28]. 

NEW INSULINS FOR TREATMENT OF 
TYPE 2 DIABETES
Many different regimes have been proposed and indeed 
are in use for the treatment of  type 2 diabetes when life 
style and metformin have failed to control hyperglycae-
mia. A three year efficacy of  complex insulins in type 
2 diabetes demonstrated that the addition of  a basal or 
prandial insulin based regimen to oral therapy had better 
diabetic control than those who added a biphasic insulin 
regimen[29]. My own feeling is that, as so many patients 
with type 2 diabetes don’t increase their blood sugars 
overnight, attention should be paid to controlling the 
post evening meal rise in blood sugar so that the patient 
goes to bed with a normal blood sugar, long acting in-
sulins being reserved for those patients in whom blood 
sugars rise overnight. To me it doesn’t make sense to give 
a basal dose of  a long acting insulin pre bed with the risk 
of  overnight hypoglycaemia to a patient whose blood 
sugar has not been shown to rise overnight. Insulin de-
gludec is almost identical to human insulin but with the 
last amino acid deleted from the B chain and addition 
of  a glutamyl link from LysB29 to a hexadecanoic fatty 
acid[30]. Two phase 3 studies were reported recently[31,32]. 
In the first study type 1 diabetic patients (472 subjects) 
were subjected to insulin degludec and 157 to glargine 
insulin[31]. Although there was no difference in HbA1c 
at the end of  the study and no difference in overall, 
confirmed hypoglycaemia; overnight hypoglycaemia was 
25% less in the insulin degludec and of  course noctur-
nal hypoglycaemia is what many patients fear most. The 
second study Garber et al[32] reported the effect of  the 
new insulin in type 2 diabetic patients vs insulin glargine. 
Again after 1 year there was no difference between the 2 
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as long-term cardiovascular adverse effects also making 
surveillance mandatory. Another recently published study 
comparing canagliflozin with placebo and sitagliptin pro-
duced similar results[37]. A randomised, blinded, prospec-
tive Phase 111 study on dapagliflozin as monotherapy in 
drug naive Asian patients with type 2 diabetes found that 
with the 10 mg dose HbA1c had fallen from a mean of  
8.26% to 7.15% as compared to a fall of  only 0.29% for 
placebo(a difference of  0.82%) Genital infections oc-
curred in 4.5% of  patients and Urinary tract infections in 
5.3%[38].

The role of  these drugs in the treatment of  type 2 di-
abetes is not clear at present but the lack of  risk of  hypo-
glycaemia and the weight reduction suggest that there is 
a place for them in certain patients who are inadequately 
controlled and in whom an extra 0.5% or more reduction 
in blood sugar would be of  benefit in bringing the patient 
into the acceptable blood sugar range.

METFORMIN
The reason for metformin as first line pharmacological 
treatment is based on many studies suggesting that met-
formin is weight neutral or associated with very modest 
weight loss as compared with sulphonylureas which cause 
slight weight gain initially. Also, in experimental condi-
tions reperfusion after myocardial infarction is reduced 
by sulphonylureas. As long ago as 1971 the University 
Group Diabetes Program[39] showed that tolbutamide, 
a first generation sulphonylurea, was associated with an 
increased cardiovascular risk in diabetes. The UKPDS 
trial[40] suggested that metformin has a protective effect 
on mortality. Roumie et al[41] examined the comparative 
effectiveness of  sulphonylurea and metformin mono-
therapy on cardiovascular events in type 2 diabetes mel-
litius. This was a very large retrospective cohort study 
examining cardiovascular outcomes. The crude rates of  
composite outcome were 18.2 per 1000 person years in 
the sulphonylurea users and 10.4 per 1000 person years 
in the metformin group. A wonderful editorial in the 
same edition of  the Annals of  Internal Medicine by Nis-
sen[42] entitled “Cardiovascular effects of  Diabetes Drugs; 
Emerging from the dark ages”, likens the dark ages after 
the fall of  the Roman Empire to the time between the 
University Group Diabetes Program in 1972[39] which 
showed that treatment for diabetes with phenformin or 
tolbutamide was associated with increased cardiovascu-
lar risk, and 2012. The article explains why there is still 
uncertainty about the effect of  sulphonylureas and car-
diovascular events. Nissen[42] suggests that the study is 
hypothesis generating rather than definitive and that high 
quality evidence is still missing “Continued darkness is 
not an acceptable option” he concludes.

INCRETINS
It has been known for many years that intravenous 
glucose will not stimulate insulin secretion to the same 

extent as a similar glucose load given orally. It was dis-
covered that hormones secreted from the intestine in re-
sponse to a glucose load had the ability to release glucose 
from the pancreas. These hormones were called incretins 
and they are responsible for at least 50% of  insulin se-
cretion following a meal. In 1971 a peptide was isolated 
from the intestine which had the ability to inhibit gastric 
acid secretion and was therefore called gastric inhibitory 
polypeptide (GIP)[43]. GIP was later found to stimulate 
insulin secretion. What was very interesting was that GIP 
would only stimulate insulin secretion in the presence of  
high blood sugar. This finding has implications in treat-
ment terms since drug that only works with high blood 
sugar would be much less likely to cause hypoglycaemia. 
Patients, their families and of  course doctors and other 
health care professionals all fear hypoglycaemia. Garber[44] 
refers to the many hospital visits caused by hypoglycae-
mia and suggests that minimisation of  hypoglycaemia 
should be a goal for treatment of  type 2 diabetes. I would 
certainly agree. In a survey insulin accounted for 13.9% 
of  overall admissions to hospital from adverse drug reac-
tions and oral anti-diabetic drugs 10.7%[45]. 

Another incretin was discovered in 1985 and called 
glucagon-like peptide-1 (GLP-1)[46]. This hormone was 
also dependent on high blood sugar level for full action. 
Both GIP and GLP-1 act by binding to specific recep-
tors and so release insulin. GLP-1 has another action, 
it inhibits gastric emptying and this has been of  benefit 
in the treatment of  diabetic patients because the feeling 
of  satiety leads to weight reduction. Another beneficial 
effect of  the reduction in rate of  gastric emptying is to 
delay absorption of  food, a mechanism which improves 
blood sugar excursion. GLP-1 also regulates appetite and 
food intake through its effect the hypothalamus. A recent 
review of  the effects of  GLP1 on appetite and body 
weight with a focus on the central nervous system has 
been published[47]. 

GLP-1 agonists have been shown to stimulate B cell 
growth in animals and cell cultures. In humans it is less 
clear if  these drugs can improve insulin output by regen-
erating the B cell. It seems less likely that the dipeptidyl 
peptidase (DPP)-4 inhibitors could also have an effect on 
B-cell re-growth. However an abstract presented at the 
Annual American Diabetes Association meeting in 2010 
suggested that linagliptin was able to restore beta cell 
function in human isolated islets[48]. Vildagliptin has also 
been shown to improve beta cell function and glucose 
tolerance but also to improve the extensive peri-insulitis 
found in the mouse model examined[49]. 

A very interesting effect of  GLP-1 analogue therapy 
has been described in obese type 2 diabetic patients. The 
investigators found a reduction in inflammatory mac-
rophages and a reduction in inflammatory cytokines to-
gether with an increase in the adipokine adiponectin. The 
researchers had previously described a case of  psoriasis 
that was greatly improved by GLP-1 agonist therapy[50]. 
The new study does suggest an important beneficial ef-
fect of  GLP-1 analogue therapy that needs further inves-
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tigation[51]. A good review on the extrahepatic effects of  
GLP-1 receptor Agonists has just been published[52]. 

DEVELOPMENT OF GLP-1 FOR THE 
TREATMENT OF DIABETES
Exenatide is a GLP-1 receptor agonist. It is a 39 amino 
acid peptide produced in the saliva glands of  the Gila 
monster lizard[53] it has 53% amino acid homology to 
full length GLP-1 and it binds with greater affinity than 
GLP-1 to the GLP-I receptor in GLP-1 receptor express-
ing cells[54]. DPP-4 cleaves peptides and is responsible for 
the rapid breakdown of  GLP-1. DPP-4 does not denature 
exenatide because of  the slight amino acid differences and 
in human studies the half  life ranges from 3.3 to 4 h[55]. 
Exenatide (Eli Lilly) is now in clinical use in many coun-
tries for the treatment of  diabetes. It must be given an 
hour before meals on a twice a day basis. Many trials have 
reported that the drugs cause about a 1% reduction in 
HbA1c and reduction in body weight of  5.3 kg at the end 
of  3 years of  treatment[56]. The dropout rate is about 20%, 
many patients refusing treatment because of  nausea.

EXENITIDE
Attempts have been made to prolong the action of  exena-
tide using a polylactide glycolide microsphere suspension 
so that the drug can be given weekly. Kim et al[57], in a ran-
domised placebo-controlled phase 2 study examined the 
effect of  exenatide long acting release, a long acting re-
lease exenatide formulation, found that a weekly dose for 
15 wk in patients with type Ⅱ diabetes resulted in a 1.4% 
reduction in HbA1c, suggesting that once a week formu-
lation may be as good as, if  not better than, twice daily in-
jections of  exenatide. In particular there were no dropouts 
in the trial due to adverse events. Liraglutide is a long act-
ing GLP-1 analogue with attachment of  a C-16 free fatty 
acid derivative. The free fatty acid derivative promotes 
non-covalent binding of  liraglutide to albumen thereby 
increasing plasma half  life. A recent study comparing li-
raglutide once a day with exenatide twice a day found that 
liraglutide improved HbA1c significantly more (-1.12% viz 
-0.79%) and was generally better tolerated[58]. The study 
has demonstrated that glycaemic improvement and weight 
reduction are independent of  each other. This fits in with 
other studies which suggest that the weight loss is not, in 
itself, the cause of  the improved blood sugar control[59].

In a recent paper Derosa et al[60] examined the effect 
of  exenatide on beta cell function. The authors used the 
homeostasis model assessment beta cell function index 
as well as assessing pro-insulin and insulin with arginine 
stimulation under clamp conditions. The results sug-
gested that beta cell function was improved by exenatide. 
However a caveat, HbA1c was significantly better after 
the 12 mo of  exenatide as compared to placebo. It is 
well known that hyperglycaemia is toxic to the beta cell 
hence the improved glucose might have been responsible 
for the beta cell improvement rather than the drug itself. 

Bunck et al[61] showed similar results compared to glargine. 
In their study combined glucose and arginine stimulated 
C peptide secretion was 2.46 fold greater after 52 wk of  
exenatide treatment compared with insulin glargine treat-
ment with a non significant (P = 0.55) 0.8% reduction in 
HbA1c as compared to a -0.7% reduction in the glargine 
group. Four weeks after cessation, the beta cell function 
returned to pre treatment levels.

Exenatide, was compared to glimepiride in patients 
who were not controlled on metformin alone[62]. About 
1000 patients were divided into 2 groups and studied on 
average for 2 years although some went on for 42 mo. At 
the end of  3 mo both groups had decreased HbA1c from 
around 7.4% to 6.8% but by 36 mo the glimperamide 
group had gone back to a HbA1c of  more than 7.3% 
whereas the exenatide group, although increasing their 
HbA1c slowly over the 3 years, was significantly lower at 
a level of  just over 7.2%. Body weight fell in the exena-
tide group by 3.32 kg and rose in the glimperamide group 
by 1.15 kg. Systolic blood pressure (BP) decreased in the 
exenatide group by 1.9 mmHg with no change in the 
Glimpereride group. Less patients in the exenatide group 
experienced a hypoglycaemic episode. In the first 6 mo 
49 patients in the exenatide group discontinued mostly 
due to gastrointestinal side effects as compared to 17 in 
the glimepiride group (P = 0.001) Buse et al[63] examined 
whether twice daily exenatide injections reduced HbA1c 
levels more than placebo in patients receiving Glargine 
insulin. HbA1c decreased by 1.74% in the exenatide 
group as compared to 1.04% in the placebo group over a 
30 wk period. Hypoglycaemia was similar in the 2 groups 
and 13 treatment patients and 1 placebo recipient discon-
tinued the study because of  adverse events, nausea and 
vomiting being the main problems. 

LIRAGLUTIDE 
At the beginning of  2012 the FDA approved the market-
ing of  extended release exenatide (Bydurion). The drug is 
given weekly by injection. Liraglutide is a human GLP-1 
analog given by once daily injection with a good safety 
record and HbA1 lowering effect similar to the other 
GLP-1 agonists. A 2-year report on safety, tolerability and 
sustained weight loss over 5.2 years with once daily liraglu-
tide has been published[64]. Two hundred and sixty eight 
of  398 people who entered the extension of  the original 
20 wk trial completed 2 years. Weight loss was 7.8 kg 
from screening and was maintained. There were improve-
ments in BP and lipids. Patients with diabetes however 
were excluded from taking part in this trial. The Duration 
Trial 6[65] reported on a study comparing daily liraglutide 
to weekly extended release exenatide. This was a 26 wk 
trial with more than 400 patients in either arm. Liraglutide 
was associated with a greater change in HbA1c (-0.48% 
viz 1.28%). Nausea was more common in the liraglutide 
group (21% viz 9%) and also vomiting (11% viz 4%) 5% 
of  patients allocated to liraglutide discontinued the treat-
ment as compared to 3% allocated to exenatide because 
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of  adverse events. The results suggest that the patient 
might be allowed to choose whether to have a drug which 
is injected daily but with no diluting procedure before the 
injection or a weekly injection with less blood sugar lower-
ing effect but less side effects. Non-alcoholic steatosis has 
become a problem in type 2 diabetes. The LEAN study is 
currently examining whether liraglutide will improve non-
alcoholic steatohepatitis outcome[66].

LIXISENATIDE 
Lixinitide is another potent, selective, once daily GLP-1 
agonist. A randomised placebo controlled double blind 
trial examined lixisentide daily injection in Asian patients 
with type 2 diabetes insufficiently controlled on basal 
insulin with or without sulphonylureas[67]. This was a 24 
wk study. These patients were not obese body Mass In-
dex 25.3 kg/m2. Eighty-two percent of  patients reached 
and stayed on the maintenance dose of  lixisenatide (20 
μg once a day). There was a significant reduction in 
HbA1c compared to controls. The difference at the end 
of  the trial was 0.88%. There was no significant change 
in weight compared to controls. The incidence of  serious 
side effects were similar in both groups. Two patients in 
the lixisenatide group experienced cerebrovascular infarc-
tion. Forty-two percent of  study drug patients experi-
enced hypoglycaemia as compared to 24% on placebo. 
Fonseca et al[68] examined efficacy and safety of  once 
daily lixisenatide at different doses. HbA1c was reduced 
by 0.66% compared to placebo. Postprandial and fasting 
blood sugars were significantly lower in the treatment 
group. In a study by Kapitza et al[69] lixisenatide once daily 
was compared to liraglutide once daily in patients with 
type 2 diabetes insufficiently controlled on metformin. 
This was only a 28 d study but the results showed that 
liraglutide controlled fasting blood glucose better than 
lixisenatide but postprandial blood sugar was better con-
trolled by lixisenatide. A review discussing the place of  
this GLP-1 agonist as an add on therapy to basal insulin 
has recently been published[70].

TASPOGLUTIDE
Ipsen Roche had another GLP-1 analogue under review 
called taspoglutide. This is a GLP-1 analogue which has 
a prolonged action and is in phase Ⅱ trials. The drug 
has been shown to improve diabetes control and lowers 
body weight in subjects with diabetes. In a study involving 
once a week injections in 306 type 2 diabetic subjects who 
were already on Metformin, 8 wk treatment was associ-
ated with a reduction in HbA1c. The highest dose gave 
an HbA1c reduction of  0.9% and a weight reduction of  
1.9 kg as compared to placebo. Nauck et al[71] report on 
a 24 wk study using a 10 mg or a 20 mg dose of  Taspo-
glutide, comparing once a week dosing to daily glargine 
insulin. One thousand and forty-nine patients were ran-
domised into 3 groups. Withdrawal rates were 21% for 
each of  the Taspoglutide groups and 9% for the glargine 

group. HbA1c of  < 53% was achieved in 39.47% and 
32% receiving Taspoglutide 10 mg, 20 mg and HbA1c < 
48 in 18%, 24%, and 14% of  patients or glargine insulin 
respectively. Lower fasting blood sugars were achieved 
by glargine insulin. Serious hypersensitivity reactions oc-
curred in 2 patients on Taspoglutide. However confirmed 
hypoglycaemia was less with the study drug (0.3%, 0.9% 
viz 3.1%) and weight loss was greater on Taspoglutide (-3.3 
and -4.1 kg). Withdrawals due to adverse effects occurred 
in 9%, 13% on Taspoglutide and in 1% on the glargine 
insulin. An addendum to the paper states that Roche 
has now stopped the development of  the drug. Ibsen is 
currently pursuing further investigations. Rosenstock et 
al[72] examined the fate of  Taspoglutide once a week vs 
Exenatide for type 2 diabetes. The doses used were again 
10 mg or 20 mg as compared to twice daily exenatide 10 
μg. Reduction in HbA1c was -1.24 with 10 mg and -1.31 
with the 20 mg as compared to exenatide from a starting 
HbA1c of  8.1%. Withdrawals were higher in the study 
drug patients and the authors conclude that even though 
Taspoglutide caused lower blood sugars the level of  side 
effects was unacceptable.

Albiglutide is a long acting subcutaneous albumen-
based fusion of  GLP-1[73]. In February 2009 Glaxo 
SmithKline (GSK) began phase 3 studies in type Ⅱ 
diabetes. Albiglutide is a GLP-1 mimetic generated by ge-
netic fusion of  a DPP-4-resistant GLP-1 dimer to human 
albumin[74]. The formulation was originally developed 
by Human Genome Sciences (HGS) and named Albu-
gon, GSK having bought the drug in 2004 for all human 
therapeutic and prophylactic applications of  Albiglutide. 
In 1999 Centeon (now Aventis Berring) granted Principia 
(now HGS) world wide rights to its recombinant fusion 
proteins and its related yeast technologies[75].

ANTIBODIES TO GLP-1 AGONISTS
Therapeutic proteins/peptides with structural similarity 
to endogenous proteins/peptides often have unwanted 
immunogenicity. Antibodies to the GLP-1 agonists have 
been described and may inhibit the action of  the agonist. 
The role of  antibody formation to the various agonists 
on the market at present are uncertain. A study by Buse 
et al[76] in 2011 suggested that antibodies to liraglutide did 
not inhibit efficacy however antibodies to exenitide, if  
they were high, was associated with a smaller HbA1c re-
duction. Antialbiglutide antibodies developed in 2.5% of  
patients in an 8 wk trial.

GLP-1 AND THE CARDIOVASCULAR 
SYSTEM
Endothelial dysfunction is a common finding in diabetes 
and an early marker of  atherosclerosis. GLP-1 has been 
shown to improve endothelial dysfunction[77,78]. GLP-1 
exerts a cardio-protective effect against ischaemic dam-
age and heart failure. Diabetes is associated with an in-
creased risk of  atherosclerosis and myocardial infarction. 
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Ischaemic preconditioning is a protective mechanism 
by which the heart may protect itself  from prolonged 
ischaemia. The University Group Diabetes Programme 
report[39], more than 40 years ago, suggested that tolbu-
tamide might increase myocardial infarction and mortal-
ity. Glibenclamide has been shown to affect ischaemic 
preconditioning but trials have not shown beyond doubt 
that it is associated with increased myocardial infarction. 
However drugs that inhibit the K ATP channel opening, 
such as glibenclamide, are related to loss of  ischaemic 
preconditioning[79-81]. GLP-1 receptors are found in the 
heart. Increased glucose uptake by the cardiac myocyte 
is beneficial in protecting the heart from ischaemia 
changes[82]. Studies in situ and ex-vivo suggest a beneficial 
effect on the heart muscle when under ischaemic stress. 
Bao et al[83] examined the effect of  albiglutide in rats after 
myocardial ischaemia reperfusion injury. They measured 
cardiac glucose uptake and cardiac metabolic flux. They 
found enhanced glucose uptake and reduced myocardial 
infarct size and improved cardiac function. It has yet 
to be shown if  this effect also occurs in humans and if  
myocardial infarct size and mortality will be reduced by 
GLP-1 agonists. DPP-4 inhibitors have been less well 
studied in cardiac ischaemic preconditioning. In a study 
by Rahmi et al[84] rapaglinide, a sulphonylurea like drug, 
inhibited ischaemic preconditioning as measured by 
stress testing in patients with type 2 diabetes who already 
had evidence of  coronary atherosclerosis. Vildagliptin, 
a DPP-4 inhibitor, did not alter preconditioning in 72% 
of  patients whereas 83% of  the repaglinide patients had 
ischaemia earlier in their stress test.

GLP-1 AND THE PANCREAS 
Pancreatitis has been described in patients using GLP-1 
agonists. A report in 2010 stated that 8 cases during 
clinical development and 36 post marketing reports are 
available[85]. A recent report[86] examined a large United 
States health insurance claims database and could find 
no increased risk of  acute pancreatitis using twice daily 
exenatide. However there were several limitations to the 
study and it was a pity that other GLP-1 agonists were 
not investigated at the same time but the study was fund-
ed by Amylin and Eli Lilly. Stimulation of  GLP-1 recep-
tors that are found in the exocrine pancreas might lead to 
overgrowth of  the epithelial cells in the small ducts caus-
ing pancreatitis through obstruction. A worry has been 
raised that GLP-1 agonists may induce metaplasia and 
premalignant changes[87,88]. 

GLP1 AND THE THYROID
The thyroid contains GLP1 receptors and Gier et al[89] 
also found coincident immunoreactivity for calcitonin and 
GLP-1 receptors in both medullary thyroid carcinoma 
and C cell hyperplasia. C cell carcinoma of  the thyroid 
has been seen in animals dosed with GLP-1 agonists and 
can be explained by the finding of  GLP-1 receptors in 
the thyroid[89]. GLP-1 receptor immuno-reactivity was also 

found in 18% of  papillary thyroid carcinoma. The authors 
speculate on the consequences of  long term stimulation 
of  these GLP-1 receptors. They suggest that prospective 
studies need to be done to exclude an increase in papillary 
and medullary carcinoma in the thyroid.

DPP-4 INHIBITORS
These drugs act by inhibiting the enzyme that breaks 
down GLP-1, thus increasing the level of  GLP-1 in the 
blood stream. They are however not able to raise the 
GLP-1 levels to levels found after injection of  GLP-1 
agonists and therefore their hypoglycaemic efficacy is 
less than that of  GLP-1 agonists. Sitagliptin, vildagliptin, 
saxagliptin and linagliptin have already been approved in 
the United States and in Europe. An excellent systematic 
review and meta-analysis has been published in the British 
Medical Journal in 2012[90]. Compared with metformin, 
DPP-4 inhibitors were associated with a smaller decline in 
HbA1c and a lower chance of  attaining a HbA1c goal of  
less than 7%. As a second line treatment DPP-4 inhibi-
tors achieved a smaller decline in HbA1c than the other 
hypoglycaemic drugs. There was however, no significant 
difference in attaining an HbA1c of  less than 7% when 
compared to sulphonylureas. They were less effective 
in lowering body weight when compared to metformin. 
When added to metformin they had a favourable weight 
profile compared to metformin and sulphonylureas or 
pioglitazone but not when compared to GLP-1 agonists. 
Hypoglycaemia was less common when a DPP-4 inhibitor 
was added to metformin as compared to a sulphonylurea 
added to metformin. There is evidence to suggest that the 
DPP-4 inhibitors are more effective in lowering glucose 
in Asians than non Asians[91]. A one year follow up of  
DPP-4 inhibitors vs sulfonylureas on top of  metformin 
has been published recently[92]. Patients with prior metfor-
min therapy received a dual combination of  metformin 
with either DPP-4 inhibitor or sulfonylureas. There was 
no significant difference in either body weight or HbA1c. 
Hypoglycaemia was significantly less in the patients tak-
ing DPP-4 inhibitors. These patients had significantly less 
transitory cerebral ischaemic attacks whereas other cardio-
vascular events were of  borderline significance. 

There are 6 DPP-4 inhibitors (e.g., Sitigliptin, Lina-
gliptin, Vildagliptin, Alogliptin, Saxagliptin, Teneligliptin) 
on the market minor variation in their chemical com-
position have not been translated to particular benefit 
although it should be noted that linagliptin is mostly ex-
creted in pathways other than the kidney and hence dos-
age does not have to be reduced in moderate renal failure. 

Vildagliptin, a DPP-4 inhibitor which increases cir-
culating GLP-1 levels, has been shown to ameliorate the 
deposition of  amyloid beta and tau phosphorylation in 
a streptozotosin induced animal model of  diabetes[93]. A 
study by Omar et al[94] using a high fat diet induced obesi-
ty model in mice of  advanced age has demonstrated that 
Vildagliptin confirms other rodent models of  diabetes in 
preserving beta cell mass mainly through inducing beta 
cell proliferation and reducing beta cell apoptosis[94-96]. 
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Omar et al[94] found that Vildagliptin improved glucose 
secretion in response to oral glucose. Beta cell area was 
not significantly altered by Vildagliptin treatment in these 
mice but peri insulitis was prevented by Vildagliptin. Si-
tagliptin has also been shown to protect against amyloid 
associated beta cell loss but its effect was not different to 
that of  Metformin[97]. 

The binding modes of  these drugs has recently been 
investigated[98]. Based on their binding sites the authors 
divided the drugs into 3 categorise, Vildagliptin and 
Saxagliptin, Alogliptin and Linagliptin, Sitagliptin and 
teneligliptin. It is not clear whether these different bind-
ing modes have clinical relevance but may help in the 
development of  better inhibitors in the future. Unlike 
GLP-1 agonists the DPP-4 inhibitors do not pass the 
blood brain barrier and have no effect on satiety, nor 
do they effect gastric emptying. Although the differ-
ent DPP-4 inhibitors have some differences including 
potency, half  lives and metabolism there does not seem 
to be any meaningful difference in their ability to lower 
blood sugar and this is probably why there are virtually 
no head to head studies (one head to head study showed 
no difference between saxagliptin and sitagliptin when 
combined with metformin[99]. A good review of  the dif-
ferences has been written by Capuano et al[100]. Most of  
the DPP-4 inhibitors can be administered once daily but 
Vildagliptin needs to be given twice daily. Saxagliptin is 
mainly metabolised by CYP3A4/5 isoforms to a major 
active metabolite 5-saxahydroxygliptin. It is suggested 
that the dosage of  saxagliptin be modified if  co admin-
istration with CYP3A4/5 inducers such as rifampicin or 
inhibitors such as ketoconazole.

SITAGLIPTIN
Insulin glargine vs sitagliptin another DPP-4 inhibitor was 
studied by Aschner et al[101]. About 250 patients in each 
group were studied for more than 6 mo. At the start pa-
tients were already on metformin which was continued 
during the study. HbA1c was significantly lower in the 
glargine group. There were more hypoglycaemic episodes 
and slight weight gain in the glargine group where as 
there was slight weight loss in the Sitagliptin group. A 
recent study compared the effect of  sitagliptin or glib-
enclamide in addition to metformin and pioglitazone on 
glycaemic control and beta cell function[102]. Body weight 
reached was lower with sitagliptin. Fasting plasma insulin 
and homeostasis model assessment of  insulin resistance 
with glibenclamide were significantly increased with glib-
enclamide and decreased with sitagliptin. Sitagliptin did 
not change the homeostasis model assessment of  beta 
cell function but the value was significantly increased 
by glibenclamide. Both glibenclamide and sitagliptin in-
creased C-peptide.

VILDAGLIPTIN 
A 24 wk study in elderly patients was recently publis-
hed[103]. The study investigated the feasibility of  setting 

and achieving individualised targets over 24 wk for el-
derly patients (over 70 years of  age with type 2 diabetes). 
The patients who were treated with vildagliptin achieved 
a 0.6% reduction in HbA1c from a baseline of  7.9% as 
compared with placebo. There were no tolerability issues 
as compared to placebo, hypoglycaemic events were 2.2% 
in the vildagliptin arm and 0.7% in the placebo arm. In-
dividualising goal HbA1c is thought to be appropriate 
particularly in the frail elderly[104]. The benefit of  reducing 
HbA1c by less than 1% in this age group is uncertain. 
There seems no doubt that in the frail elderly hypoglycae-
mia is a very serious threat to health[105,106]. Macrovascular 
disease/events seem to respond better to blood pressure 
and lipid interventions than to blood sugar lowering at 
least in the short term[107] but microvascular damage and 
retinopathy prevention, particularly in patients who al-
ready have significant damage, should make the Physician 
consider carefully the probable benefit of  tighter blood 
sugar control. Under these circumstances one might not 
choose a DPP-4 inhibitor since they work better in the 
higher blood sugar range and are less likely to result in 
the achievement of  a HbA1c of  6.5% (48 mmol/L). The 
efficacy and safety of  vildagliptin in patients with type 2 
diabetes inadequately controlled on Metformin and sul-
phonylurea suggests that a mean HbA1c of  8.75% can 
be improved by about 0.75% as compared to placebo[108]. 
It is such a pity that the GLP-1 agonists work best at 
high HbA1c levels and are less effective in reduction of  
HbA1c as the HbA1c gets near to target. However in this 
trial 25% more patients reached a target of  7% as com-
pared to controls(38.6% viz 13.9%).

SAXAGLIPTIN
The 4-year safety of  saxagliptin has recently been pub-
lished[109]. No new safety issue findings appeared during 
the 4 years of  treatment alone or with metformin and hy-
poglycaemia did not increase the risk of  hypoglycaemia. 
The cardiovascular safety of  diabetic drugs continues to 
raise concern[109]. Saxagliptin was examined by Scirica et 
al[110]. They randomised 16492 patients with type 2 diabe-
tes who had a history of  or who were at risk for cardio-
vascular events, to receive Saxagliptin or placebo and fol-
lowed them for a median of  2.1 years. The HbA1c at the 
beginning of  the study was 8.0% and at the end of  the 
study the HbA1c in the Saxagliptin arm had decreased to 
7.5% and the placebo arm to 7.8%. A surprising finding 
was that more patients in the Saxagliptin group were hos-
pitalised for heart failure but otherwise the cardiovascular 
end point results were similar between the two groups. 
Hospitalisation for hypoglycaemia occurred infrequently 
and was similar in the two groups but significantly more 
patients in the saxagliptin group reported at least one 
hypoglycaemic event. Thus this 2-year study gives little 
support for the use of  saxagliptin in these patients. 

LINAGLIPTIN
Linagliptin is a once a day oral DPP-4 inhibitor. It is an 
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orally active small molecule which was licensed in United 
States in 2011. It is mostly excreted in the faeces and 
there are no clinically relevant alterations in linagliptin 
pharmokinetics resulting from renal or liver impair-
ment[111]. A recent study has confirmed that renal impair-
ment has no clinically relevant effect on the long term 
exposure of  linagliptin in patients with type 2 diabetes[112]. 

A 2-year efficacy and safety study of  linagliptin com-
pared to glimepiride in patients inadequately controlled 
on metformin was reported recently[113]. More than 1400 
patients were divided into two groups. HbA1c at the 
end of  the study was similar in the two groups but there 
was less hypoglycaemia and there were significantly less 
cardiovascular events (1 vs 2). Hypoglycaemia is not usu-
ally a problem in the treatment of  type 2 diabetes but 
recently has been suggested to be a therapeutic concern. 
The efficacy and safety of  Linagliptin in subjects with 
type 2 diabetes was analysed by Del Prato et al[114]. Pooled 
analysis of  data from 2258 subjects in 324 wk phase 3 
studies. Oral linagliptin or placebo as monotherapy added 
on to metformin or added on to metformin plus a sul-
phonylurea were the treatments investigated. Although 
linagliptin was effective the patients had a mean HbA1c 
of  9.0% and the level of  HbA1c only dropped to 8.3% 
still unacceptably high for many patients. DPP-4 inhibi-
tors unfortunately work less well the lower the starting 
HbA1c[102]. A study of  linagliptin in patients aged over 70 
years found that HbA1c was lowered by 0.64% from 7.8% 
to 7.2% with a safety profile similar to placebo. Whether 
long term studies in this age group will show benefit in 
measurable outcome is speculative at this time.
 
ALOGLIPTIN
Alogliptin seems to have much the same characteristics 
as the other DPP-4 inhibitors on the market, A useful 
review has recently been published[115]. Another large 
study specifically looking at cardiovascular disease in 
type 2 diabetic patients has been reported[116]. More than 
5000 patients who had type 2 diabetes and either an 
acute myocardial infarction or unstable angina requiring 
hospitalisation within the previous 15 to 90 d received 
allogliptin or placebo in addition to existing antidiabetic 
and cardiovascular drug treatment. HbA1c at the start of  
the trial was 8.0% and at the end of  the study had come 
down to 7.7% as compared to 7.97% in the placebo 
group. Hypoglycaemia was similar in the two groups. 
Again this large study makes one question the value of  
the addition of  the DPP-4 inhibitor which was associ-
ated with such a modest drop in HbA1c.

TENELIGLIPTIN
Teneligliptin is another DPP-4 inhibitor which has been 
recently reviewed[117]. 

DPP-4 INHIBITORS AND THE HEART
GLP-1 receptors, which are found in the heart increase 

glucose uptake by the cardiac myocyte is beneficial in pro-
tecting the heart from ischaemia changes[118]. Matsubara 
et al[119] examined 44 patients with coronary artery disease 
and uncontrolled diabetes (HbA1c > 7.4%). Sitagliptin 
or aggressive conventional treatment was compared after 
6 mo. Endothelial function was significantly improved in 
the sitagliptin group with no difference in fasting blood 
sugar at the end of  the trial but a reduction in HbA1c of  
0.6% in each group. C-reactive protein (CRP) reduced 
significantly in the sitagliptin group with a significant cor-
relation between the CRP and the vascular reactivity but 
not with HbA1c. 

DPP-4 INHIBITORS AND THE PANCREAS
Butler et al[120] examined the pancreata of  7 individuals 
treated with sitagliptin and 1 with exenatide compared 
with 12 individuals with type 2 diabetes treated with other 
agents, and 14 non-diabetics. There was an increase in the 
number of  pre-malignant lesions and marked alpha cell 
hyperplasia with glucagon expressing micro adenomas 
and a glucagon expressing neuroendocrine tumour in one 
of  the eight. Because the number of  diabetics who were 
not on treatment with DPP-4 based therapy were so few 
the evidence is insufficient for alarm but the evidence for 
caution and vigilance in the next number of  years is clear 
and persuasive.

Sero negative polyarthropathy has been recorded 
with the use of  DPP-4 inhibitors. Three patients were 
described by Crickx et al[121] and one case by Ambrosio et 
al[122]. The acute arthritis is not perhaps surprising since 
DPP-4, also named CD 26 is expressed on many cells in-
volved in the immune process.

CONCLUSION
New treatments for diabetes are coming on line but 
prevention and treatment of  obesity through increased 
exercise and reduced calorie intake still seems the best 
option in most patients with type 2 diabetes. Those with 
insulin deficiency have new options which are exciting as 
they demonstrate new approaches to treatment but their 
glucose lowering effects are modest and mostly most ef-
fective when blood sugars are high thus of  less use when 
blood sugars are near to, but not at, target in spite of  a 
combination treatment.
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Abstract
Diabetes is the most important risk factors for chronic 
kidney disease (CKD). The risk of CKD attributable to 
diabetes continues to rise worldwide. Diabetic patients 
with CKD need complicated treatment for their meta-
bolic disorders as well as for related comorbidities. 
They have to treat, often intensively, hypertension, 
dyslipidaemia, bone disease, anaemia, and frequently 
established cardiovascular disease. The treatment of 
hypoglycaemia in diabetic persons with CKD must tie 
their individual goals of glycaemia (usually less tight 
glycaemic control) and knowledge on the pharmacoki-
netics and pharmacodynamics of drugs available to a 
person with kidney disease. The problem is complicated 
from the fact that in many efficacy studies patients with 
CKD are excluded so data of safety and efficacy for 
these patients are missing. This results in fear of use by 
lack of evidence. Metformin is globally accepted as the 
first choice in practically all therapeutic algorithms for 
diabetic subjects. The advantages of metformin are low 
risk of hypoglycaemia, modest weight loss, effective-
ness and low cost. Data of UKPDS indicate that treat-
ment based on metformin results in less total as well 
cardiovascular mortality. Metformin remains the drug 
of choice for patients with diabetes and CKD provided 
that their estimate Glomerular Filtration Rate (eGFR) re-
mains above 30 mL/min per square meter. For diabetic 
patients with eGFR between 30-60 mL/min per square 

meter more frequent monitoring of renal function and 
dose reduction of metformin is needed. The use of sul-
fonylureas, glinides and insulin carry a higher risk of hy-
poglycemia in these patients and must be very careful. 
Lower doses and slower titration of the dose is needed. 
Is better to avoid sulfonylureas with active hepatic me-
tabolites, which are renally excreted. Very useful drugs 
for this group of patients emerge dipeptidyl peptidase 4 
inhibitors. These drugs do not cause hypoglycemia and 
most of them (linagliptin is an exception) require dose 
reduction in various stages of renal disease. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Chronic kidney disease (CKD) is very often 
among diabetic persons. In every day clinical practice 
doctors worldwide have to deal with these patients and 
help them to achieve their metabolic goals. Despite 
this, many studies of antidiabetic drugs have excluded 
people with CKD. So, we lack solid evidence on the ef-
fectiveness and safety of these drugs. In this review 
I propose therapeutic algorithms for diabetic patients 
in different stages of CKD and clarify some questions 
about the use of popular antidiabetic drugs as metfor-
min and sulfonylureas.
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worldwide. CKD is becoming a major problem for public 
health as it leads to increased morbidity and mortality. 
Patients with end stage chronic kidney disease often need 
kidney transplantation[1].

The prevalence of  chronic kidney disease to the es-
timated 11% of  the United States population. Patients 
with chronic kidney disease have an increased risk of  
cardiovascular disease and progression of  renal disease 
in end-stage renal failure. End stage renal failure leads to 
dialysis or transplantation[2,3]. 

Diabetes is the most important risk factors for CKD. 
The risk of  CKD attributable to diabetes continues to 
rise worldwide.

The National Kidney Foundation and the American 
Heart Association have recently issued guidelines for the 
management of  cardiovascular risk in people with kidney 
disease by stating emphatically that these individuals are 
at very high cardiovascular risk.

For diabetic patients with chronic kidney disease, the 
risk of  cardiovascular disease is even higher classifying 
these individuals in the highest risk group for cardiovas-
cular disease. Diabetic subjects with microalbuminuria 
have increased risk (2x) of  cardiovascular disease than 
those with normoalbuminuria. Proteinuria and decreased 
Glomerular Filtration Rate (GFR) contribute syner-
gistically to increase cardiovascular risk. Most diabetic 
patients with CKD stage 3 will suffer a serious cardio-
vascular event, possibly fatal before their chronic kidney 
disease progress to end stage kidney failure.

Diabetic patients need complicated treatment for their 
metabolic problems as well as for related comorbidities. 
They have to treat, often intensively, hypertension, dys-
lipidaemia, bone disease, anaemia, and frequently estab-
lished cardiovascular disease (CVD). Thus, the problem 
for the appropriate selection of  antidiabetic treatment 
for patients with diabetes and CKD is usual in every day 
clinical practice[4,5]. 

DIABETES TREATMENT: DIFFERENT 
GOALS AND DIFFERENT DRUGS
Recent guidelines for the treatment of  diabetes (ADA, 
EASD 2012) propose personalization of  glycaemic goals. 
For the majority of  diabetic patients the appropriate goal 
is a haemoglobin A1c (HbA1c) < 7% but for patients 
with severe comorbidities a goal between 7% and 8% is 
acceptable. Diabetic subjects with CKD usually belong to 
this group.

The glycated HbA1c is the most popular and well-
accepted biological marker for the assessment of  long-
term glycaemic control. This also applies to patients with 
diabetes and renal disease. However, the method has 
significant limitations in these patients. The measurement 
is influenced by both renal function and complications of  
chronic kidney disease such as haemolysis, iron deficiency 
and metabolic acidosis.

In most cases diabetic subjects with chronic kidney 
disease must rely more on self-monitoring of  blood glu-

cose with usual glucose meters. Patients with diabetes and 
CKD have usually already established CVD. These pa-
tients are also in greater risk of  hypoglycaemia. We know 
from physiology that normal renal function conveys a 
30% of  neoglycogenesis, which is necessary to avoid hy-
poglycaemia especially in prolonged fasting periods[6].

Many diabetics with uraemia have also nutritional 
problems and some times cachexia. The use of  insulin as 
well as of  sulfonylureas or glinides (short acting secreta-
gogues) leads to increased rate of  hypoglycaemia in this 
group of  patients[7,8]. 

On the other hand, many drugs have renal metabolism 
and their metabolites are usually active prolonging their 
time of  action. The use of  antidiabetic drugs, especially 
the new classes, is conflicted. The major problem is that in 
many efficacy studies patients with CKD are excluded so 
data of  safety and efficacy for these patients are missing. 
This results in fear of  use by lack of  evidence[9].

Nevertheless, pharmacokinetics and pharmacody-
namics data for many new drugs help us to understand 
the potential risks and benefits for these subjects. Even if  
these basic data are reassuring the clinical point remains 
critical: We cannot use new drugs based only on these 
evidence! We need results form efficacy studies and then 
approval from FDA and EMEA[10]. 

Finally, the use of  antidiabetic drugs is more compli-
cated in these patients because many people with kidney 
disease are often elderly, and have long lasting disease and 
significant co-morbidities. These people take many drugs 
and they have high risk of  drug interactions. 

ESTIMATION OF RENAL FUNCTION IN 
DIABETIC PATIENTS
For all diabetic subjects we have to estimate their renal 
function. 1st step: Serum creatinine/annually (or every 3-4 
mo in selected patients); 2nd step: Based on serum cre-
atinine we estimate GFR (eGFR). eGFR is usually based 
on patient characteristics (as age, sex and race) as well as 
serum creatinine levels. The most popular method of  as-
sessment of  renal
         MDRD: GFR = 175 × SerumCr-1.154 × age-0.203 
         [× 1.212 (if  patient is black) × 0.742 (if  female)]
function with the greater precision is the Modification of  
Diet in Renal Disease (MDRD) equation. This equation 
is based on data of  MDRD Study. This equation (MDRD) 
is especially accurate in GFR < 60 mL/min.

For higher GFR another equation can also be used: 
Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) method based on data of  CKD-EPI.
          CKD-EPI: GFR = 141 × min (Scr/κ, 1)α × 
            max (Scr/κ, 1) - 1.209 × 0.993Age × 1.018 
                     (if  female) × 1.159 (if  black)

Where Scr is serum creatinine (mg/dL), κ is 0.7 for 
females and 0.9 for males, α is -0.329 for females and 
-0.411 for males, min indicates the minimum of  Scr/κ or 
1, and max indicates the maximum of  Scr/κ or 1.

Usually we use friendly calculators to estimate GFR. 
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Many programs are also free available for smartphones.
The classical formula of  Cockcroft-Gault is not used 

anymore because it overestimates GFR. (Body weight in 
the formula must be lean weight and not total weight).

METFORMIN
Metformin is globally accepted as the first choice in prac-
tically all therapeutic algorithms for diabetic subjects. The 
advantages of  metformin are low risk of  hypoglycaemia, 
modest weight loss, effectiveness and low cost. Data of  
UKPDS indicate that treatment based on metformin re-
sults in less total as well cardiovascular mortality.

Many diabetologists as well as practitioners are fear 
to use metformin in patients with renal problems even 
if  they have only albuminuria. There is a lot of  confu-
sion about the real restriction of  its use in patients with 
CKD[11]. 

Metformin is slowly absorbed when administered 
orally. The bioavailability of  the drug is low (50%-60%). 

Metformin achieves a maximum plasma concentration 
one to three hours after ingestion, if  taken in the form of  
immediate release or in 4-8 h with the extended release 
form. Metformin is not connected with albumin or any 
other protein in plasma. This results in a high volume of  
distribution up to 1000 even after the first dose[12]. 

In patients with moderate and severe CKD Cmax is 
increased 173% and 390%, respectively, compared with 
patients with normal renal function.

In normal pH metformin remains as hydrophilic cat-
ion. Less than 0.01% of  the drug is unionized in blood. 
Lipid solubility of  metformin is low. So, metformin 
can not diffuses through cell membranes. Phenformin, 
another member of  antidiabetic drug class biguanides, 
which is no longer in the market, is more lipophilic than 
metformin due to different side chain. Metformin is not 
metabolized in the liver. Metformin is actively excreted by 
the urinary tube and found unchanged in the urine. After 
24 h, if  renal function is normal, metformin is not de-
tected in the blood after administration of  a single dose. 
The half-life of  metformin is plasma is about 6 h[13].

The absorption of  metformin in the intestine is medi-
ated by a transporter known as plasma membrane mono-
amine transporter. Several metformin transporters are 
implicated in its intestinal absorption as well as in its he-
patic uptake and renal excretion. These transporters are 
either Organic Cation Transporters (OCTs) or multidrug 
and toxin extrusion proteins (MATEs). 

The kidneys also actively excrete metformin. Metfor-
min enters renal cells of  the renal tubule from circulation. 
This procedure takes place on the basolateral membrane 
of  the cells and is mediated by OCT2. 

Then, metformin is excreted into the lumen. This ex-
cretion is facilitated by MATE (1 and 2-K). These extru-
sion proteins are located in the apical membrane of  renal 
proximal tubule cells.

Metformin is also reabsorbed in renal tubules and 
this action is mediated by OCT1, which is located also in 

proximal and distal tubules.
The molecular mechanisms underlying metformin 

action appear to be complex. Metformin entries into the 
hepatic cell and facilitate phosphorylation and activation 
of  AMP-activated protein kinase (AMPK). Activation of  
this key-kinase (energy status sensor) lead to many effects 
related to metabolism of  glucose and lipids. Metformin 
inhibits hepatic neoglycogenesis also in a direct manner. 
Metformin inhibits complex Ⅰ of  the mitochondrial re-
spiratory chain. This inhibition, leads to an incretion of  
AMP:ATP ratio, which activate AMPK. This inhibition 
leads also to increased anaerobic metabolism of  glucose 
in cytoplasm and the production of  lactic acid. Thus, 
metformin is related with increased risk of  lactic acidosis 
when renal elimination of  lactic acid is decreased (renal 
disease, reduced GFR) or hepatic function is severely 
damaged (lactic acid is used in hepatocytes to produce 
glucose-neoglycogenesis-). The risk of  lactic acidosis 
is also increased in patients with tissue hypoxia (shock, 
severe heart failure, sepsis, surgery related hypotension, 
etc.)[14].

Risk of  lactic acidosis was greater with phenformin 
because it’s a more potent inhibitor of  mitochondrial 
respiration. Phenformin has hepatic metabolism with an 
inactive metabolite. The enzyme CYP2D6 metabolizes 
phenformin into an inactive metabolite. A small ratio of  
patients (about 2.8%) has a polymorphism of  the enzyme 
that makes them poor metabolizers. In these patients the 
risk of  lactic acid is even greater (due to higher levels of  
phenformin).

Nevertheless, analysis of  data from may trials (347 
comparative trials and cohort studies) from Cochrane 
Database systematic review in 2010, showed no cases of  
lactic acidosis in 70490 patient-years of  metformin. 

Statistical analysis of  these data suggested that the up-
per limit for the incidence of  lactic acidosis per 100000 
patient-years was 4.3 cases (lower than 5.4 cases in the 
non-metformin group). 

In this analysis also, levels of  lactic acid seems to be 
no different in the two groups.

In most studies however lactic acidosis was not a pre 
specified end point and there were no data about lactic 
acid levels.

In the Table 1 we summarize the current recommen-
dations about the use of  metformin in CKD.

All diabetic subjects at risk of  acute renal failure must 
discontinue at least temporally metformin. Clinical situ-
ations related to increase of  acute renal failure includes 
hepatic insufficiency and use of  radiocontrast agents and 
antimicrobial drugs. Fluid substitution as well as support 
of  cardiac output is useful in certain clinical conditions. 
Monitoring of  urine output and serum creatinine lack 
sensitivity and specificity in acute renal failure, they re-
main the most used parameters in clinical practice. 

At last, when we change the dose of  drugs affecting 
blood pressure and potentially renal perfusion we have 
to monitor renal function closely and to reduce the dose 
of  metformin (use of  diuretics or increase of  their dose, 
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with a reduced dose of  up to 30 mL/min. In CKD stage 
4 or 5 the use of  glimepiride is dangerous[18].

Gliclazide
Gliclazide is metabolized by the liver to inactive me-
tabolites that are eliminated in the urine. Thus, gliclazide 
causes less hypoglycemia than other sulfonylureas. In 
CKD sage 1, 2, 3 (eGFR > 30 mL/min) gliclazide can be 
used. There are no data in patients with severe CKD but 
according to its metabolism the use (in reduced dose) of  
gliclazide is also permitted in these subjects[19].

Glipizide
Glipizide also does not need dose adjustment in severe 
and moderate renal disease and can be used safely. (The 
only caution remains the risk of  hypoglycemia).

GLINIDES
Glinides, repaglinide and nateglinide, are short acting 
secretagogues. The short duration of  their action means 
reduced risk of  hypoglycemia compared to sulfonylureas. 
This is an advantage for diabetic subjects with CKD 
because they belong in the high risk for hypoglycemia 
group as already mentioned.

Repaglinide is absorbed from the gastrointestinal 
tract and metabolized in the liver by oxidation and con-
jugation with glucuronic acid. The major metabolites of  
repaglinide are M1, M2 and M4. These metabolites are 
excreted via the bile into the feces and have no hypogly-
cemic activity[20]. 

Repaglinide can be used even in CKD stages 4 and 5 
without dose reduction.

Nateglinide is also rapidly absorbed from the gastro-
intestinal tract and metabolized in liver to 9 main me-
tabolites (M1-M9). These metabolites have much weaker 
hypoglycemic activity than the parent compound. The 
only metabolite that retains high activity is the metabolite 
M7. The concentration of  this metabolite however is low 
(< 7%), resulting in a hypoglycemic effect, which is at-
tributed mainly to intact nateglinide. The excretion of  the 
drug in urine is unchanged form at 16% and by 84% in 
the form of  metabolites.

In CKD stage 5 we avoid nateglinide, and in stage 4 
we adjust the dose (60 mg × 3)[21]. 

GLIPTINES (DIPEPTIDYL PEPTIDASE 4 
INHIBITORS)
Dipeptidyl peptidase 4 (DPP-4) inhibitors (gliptins) consti-
tute a new class of  antidiabetic drugs with a very favorable 
profile: safety, efficacy, and low risk of  hypoglycemia and 
weight neutrality[22].

Gliptins are inhibitors of  the enzyme DPP-4. This 
enzyme degrades and inactivates many active peptides. 
Among them are incretin hormones. These hormones, 
namely glucagon like peptide 1 (GLP-1) and glucose 
dependent insulinotropic polypeptide stimulates glucose 

start of  use of  ACEIs and ARBs, unstable heart failure 
with frequent hospitalizations, etc.).

PIOGLITAZONE
Pioglitazone has only and exclusively hepatic metabolism. 
It does not cause hypoglycemia and it can be given theo-
retically without dose adjustment at all stages of  CKD. 
Pioglitazone is related with fluid retention, anemia and 
osteoporosis. These side effects complicate the existing 
problems with anemia and bone disease in subjects with 
diabetes and CKD[15,16].

The use of  pioglitazone is generally limited in these 
patients and in decreased dose (usually 15 mg once daily).

SULFONYLUREAS
Sulfonylureas are old drugs widely used worldwide. These 
drugs ease the secretion of  insulin and are related with 
increased risk of  hypoglycemia, which is a major issue for 
CKD patients. 

Glibenclamide
Glibenclamide (glyburide) is metabolized in the liver and 
excreted by the kidneys equally and intestine. Some me-
tabolites are active and can accumulate in CKD despite 
the fact that biliary removal partially counteracts the lim-
ited renal excretion.

Hypoglycemia may be serious and lasting more than 
24 h in CKD. 

The use of  glibenclamide in subjects with moderate 
CKD (eGFR 60-90 mL/min) should be limited (reduced 
dose, frequent monitoring due to increased risk of  hypo-
glycemia). The drug and is contraindicated in stage ≥ 3 
CKD (eGFR < 60 mL/min)[17]. 

Glimepiride
Glimepiride is metabolized by the liver to two major me-
tabolites each of  which has hypoglycemic activity. In renal 
disease these metabolites summed. Although the half-life 
is 5-7 h, the drug can cause severe hypoglycemia that lasts 
more than 24 h. Its use is safe in GFR > 60 mL/min and 
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Table 1  Use of metformin in chronic kidney disease

eGFR (mL/min per 1.73 m2) Use of metformin

> 60 (CKD 1 and 2) No contraindication
Check of renal function annually

45-60 (CKD 3a) Use of metformin-reduce dose 
(no more than 1.5-2 g daily)

Frequent check of renal function 
(every 3-6 mo)

30-45 (CKD 3b) Reduce dose 
(no more than 1-1.5 g daily)

No new cases 
Frequent check of renal function 

(every 3-6 mo)
< 30 (CKD 4 and 5) Stop metformin

CKD: Chronic kidney disease; eGFR: Estimate Glomerular Filtration Rate.
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dependent insulin secretion by b cells in pancreatic islets. 
At the same time they suppress glucagon production by 
a cells in the same islets. Their role in glucose homeosta-
sis seems to be important. These hormones are secreted 
in low levels when we are fasting but their secretion is 
rapidly increased after meal consumption. Their action 
results also in reduced glucagon secretion, which in turns 
reduces hepatic glucose production. 

Vildagliptin, Sitagliptin, Saxagliptin, Linagliptin and 
Alogliptin belong to this class and are already available 
in the market. Their place in algorithms for patients with 
diabetes and CKD is important. We can use them all in 
CKD but with dose adjustment for the majority of  the 
members of  this class. (Only linagliptin does not need 
dose adjustment in any stage of  CKD)[23].

In Table 2 we summarize the dose adjustments for all 
gliptins in diabetic subjects with CKD.

Sitagliptin
Sitagliptin does not undergo extensive metabolism. In the 
liver sitagliptin partially metabolized by oxidation in a lim-
ited rate by the enzyme CYP3A4. Nevertheless, most of  
the drug is excreted in the intact form in the urine (more 
than 80%). Sitagliptin is filtered in renal glomerulus but 
also is actively excreted by active tubular secretion[24]. 

Six metabolites are detected in amounts of  < 1% to 
7%. These metabolites M1 to M6 are products of  hepatic 
metabolism.

Chemically the changes in these metabolites are: Μ1: 
N-sulfation, M4: N-carbamyl glucuronidation, M6: hy-
droxylation followed by either glucuronidation (M3), and 
oxidative desaturation followed by cyclization (M2 and 
M5). These metabolites are practically inactive.

In renal disease the elimination of  the drug is reduced 
resulting in 2- or 4-fold increase of  the concentration of  
the drug (for CIcr 30-50 mL/min and < 30 mL/min respec-
tively). The dose adjustment is based on these properties. 

In Phase Ⅰ studies of  sitagliptin dosing up to 600 mg 
daily doe not results to dose-related side effects, at least 
in the short term (up to 28 d). These data indicates that 
if  we don’t adjust the dose in CKD practically it might be 
safe at least for a short period[25,26].

Vildagliptin
Vildagliptin is absorbed quickly (85.4% of  the drug). The 
maximum plasma level is detected at 1.1-h post dose. 

Plasma radioactivity (after the administration of  ra-

dioactive labeled drug) due to vildagliptin is 25.7% and 
to its major metabolite M20.7 is 55%. The half- life of  
vildagliptin is 2.8 h. Eighty-five percent of  the drug is 
excreted in the urine (22.6% as vildagliptin the rest as in-
active metabolites) and the remaining 15% in feces (4.54% 
as vildagliptin). In humans, the main pathway of  metabo-
lism of  the drug is carboxylation, which results in the 
form of  the active metabolite M20.7. DPP-4 contributes 
to formation of  this metabolite. Other minor metabo-
lites are: M15.3, which results from hydrolysis of  amide 
bonds, M20.2 from glucuronidation of  the pyrrolidine 
ring and M20.9, M21.6 from oxidation of  the pyrrolidine 
ring. All these metabolites are inactive[27]. 

Hydrolysis takes place in multiple tissues or organs. 
Exposure to vildagliptin in subjects with type 2 diabetes 
and renal disease of  various stages cannot be accurately 
predicted because the kidneys play a small role in the re-
moval of  the drug while participating in metabolism via 
hydrolysis[28]. 

In diabetic subjects with chronic kidney disease stage 
1 or 2 (eGFR > 50 mL/min per 1.73 m2), dose adjust-
ment of  vildagliptin is not required. 

In patients with chronic kidney disease stage ≥ 3, 
both vildagliptin and its active metabolite M20.7 are less 
excreted via the kidneys. In these patients a dose adjust-
ment is required. (When eGFR is < 50 mg/mL per 1.73 
m2 the dose is 50 mg × 1).

Saxagliptin
Saxagliptin is primarily hepatic metabolized by the cyto-
chrome P450 3A4/5 (CYP3A4/5). The major metabolite 
of  this drug is also active as also a DPP-4 inhibitor, and 
retains half  of  the potency of  parent drug.

All the drugs, which are also metabolized in this cyto-
chrome CYP3A4/5, may alter the pharmacokinetics of  
the drug and its active metabolite. Twenty-four percent 
of  the drug is excreted in the urine as saxagliptin and 
36% as its active metabolite. There is also some active 
renal excretion of  the drug. A significant part (more than 
20%) can be found in the feces as a sum of  excreted in 
bile drug and unabsorbed drug[29].

In diabetic patients with chronic kidney disease stages 
1 and 2 increased concentration of  saxagliptin and its ac-
tive metabolite remains clinically irrelevant and no dose 
adjustment is needed. 

In diabetic subjects with chronic kidney disease stages 
≥ 3 half  dose is recommended (2.5 mg × 1 daily) to 
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Table 2  Dose adjustment of dipeptidyl peptidase 4 inhibitors in chronic kidney disease

CKD

CKD 1, 2 and 3a (Clcr > 50 mL/min) CKD 3b (Clcr 30-50 mL/min) CKD stage 4 (Clcr 15-30 mL/min) CKD stage 5 (ESRD)
Sitagliptin (Januvia)    √ (100 mg × 1) 1/2 dose (50 mg × 1) 1/4 dose (25 mg × 1) 1/4 dose (25 mg × 1)
Vildagliptin (Galvus)  √ (50 mg × 2) 50 mg × 1 50 mg (no experience)
Saxagliptin (Onglyza) √ (5 mg × 1) 1/2 dose (2.5 mg × 1) 1/2 dose (2.5 mg × 1) 1/2 dose (2.5 mg × 1)
Linagliptin (Trajenta) √ (5 mg × 1) √ (5 mg × 1) √ (5 mg × 1) P (5 mg × 1)
Alogliptin (Nesina)   √ (25 mg × 1) 1/2 dose (12.5 mg × 1) 1/4 dose (6.25 mg × 1) 1/4 dose (6.25 mg × 1)

CKD: Chronic kidney disease; ESRD: End stage renal disease.
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achieve the same plasma concentrations compared to 
subjects with normal renal function. The same dose is 
recommended in patients with end-stage renal disease 
(requiring hemodialysis). 

Alogliptin
This DPP-4 inhibitor is not practically metabolized and is 
excreted unchanged in the urine. (More than 70% of  the 
parent drug). One minor metabolite named M1 is active 
but its concentration remains quite low (< 1%)[30]. Alo-
gliptin is excreted by glomerulus filtration as well as by 
active tubular secretion.

In patients with CKD stage 1 and 2 no dose adjust-
ment is needed (25 mg × 1 daily). In patients with CKD 
stage 3 (CrCl ≥ 30 to < 60 mL/min), the recommended 
dose is 12.5 mg once daily and in patients with CKD 
stage ≥ 4 the recommended dose is 6.25 mg once daily. 
The same dose is required in patients with end-stage re-
nal disease requiring dialysis.

Linagliptin
Linagliptin is primarily nonrenally excreted: 80% of  the 
drug is eliminated via the bile and gut and only 5% is 
eliminated via the kidney[31]. The drug is not practically 
metabolized and is excreted unchanged. There is no need 
of  dose adjustment in any stage of  CKD (5 mg × 1 for 
all diabetic subjects).

GLP-1 RA (RECEPTORS AGONISTS)
These drugs are injectable and are potent without risk 
of  hypoglycemia. They have to be used with caution in 
patients with CKD because their gastrointestinal side ef-
fects can induce deterioration of  renal disease. (Dehydra-
tion due to vomiting or diarrhea).

Exenatide
Exenatide is excreted only by the kidneys and undergoes 
fragmentation in the renal tubule. It does not metabolized 
by DPP-4 nor the neutral endopeptidase (NEP). There is 
no hepatic metabolism of  exenatide[32]. 

In CKD stage 3 dose reduction is needed (5 μg × 2 
and close monitoring). In CKD stage 4 and 5 (clearance 
< 30 mL/min) is not allowed.

Liraglutide
Liraglutide is cleaved in vivo by the enzyme DPP-4 that elic-
its two amino acids at the N terminus of  the peptide. NEP 
also metabolizes liraglutide into several metabolites[33].

Of  the administered drug (radioactive labeled) only 
26.3% appears in the urine and feces, while breathing 
excretes 15%. Twenty point one percent of  radioactivity 
is excreted in the urine mainly as water and only 6.3% in 
substances other than water.

Liraglutide is degraded entirely in the body and is not 
excreted in urine and feces. These characteristics indicate 
that we can use in all stages of  CKD. Nevertheless we 
have not yet clinical studies in patients with eGFR < 60 
mL/min[34] (there is ongoing studies with preliminary, not 
yet published, positive results of  safety and effectiveness 
in patients with CKD stage ≥ 3).

INSULIN
The kidneys carry out one third of  exogenous insulin 
degradation. It is filtered at the glomerulus and is ab-
sorbed by the proximal tubule. Sixty percent of  the renal 
clearance is due to glomerular filtration and 40% in the 
secretion by uptake from peritubular vessels. Reduction 
in renal filtration is partially counterbalanced by secre-
tion[35]. The dose of  exogenous insulin is reduced 25% 
when eGFR is 10-50 mL/min and 50% when eGFR is < 
10 mL/min[36].

CONCLUSION
The landscape is not clear enough in diabetes treatment 
in CKD. The risk of  hypoglycaemia, which is higher in 
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eGFR 30-60 mL/min

Metformin (reduced dose 500-1500 mg)

3 mo re-evaluation 

If HbA1c >7.0%-7.5%

No symptoms Symptoms

Add
DPP-4 inhibitor
Repaglinide
Pioglitazone
Gliclazide, Glipizide

Add insulin

HbA1c >7.5% HbA1c >7.5%-8%

Intensive 
insulin 
therapy

DPP-4 inhibitor (vildagliptin 50 mg × 1, Linagliptin 5 mg × 1 etc. )
Repaglinide 0.5-2 mg × 3

eGFR < 30 mL/min

3 mo re-evaluation 

If HbA1c >7.0%-7.5%

No symptoms Symptoms

Add
   Pioglitazone
   Low dose of 
   gliclazide 
   or glipizide

Add insulin

Intensive 
insulin 
therapy

HbA1c >7.5% HbA1c >7.5%-8%

A

B

Figure 1  Therapeutic algorithm (A and B). eGFR: Estimate Glomerular Fil-
tration Rate; HbA1c: Haemoglobin A1c; DPP-4: Dipeptidyl peptidase 4.
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subjects with both diabetes and CKD, leads to selection 
of  appropriate drugs with low risk of  hypoglycaemia 
such as metformin (reduced dose) and DPP-4 inhibitors. 
When insulin treatment is appropriate, dose adjustment 
is usually required especially in CKD stages 4 and 5. Fi-
nally, many people with diabetes have a less strict target 
of  glycaemia.
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Abstract
The literature has shown the efficiency of exercise in 
the control of type 2 diabetes (T2D), being suggested 
as one of the best kinds of non-pharmacological treat-
ments for its population. Thus, the scientific production 
related to this phenomenon has growing exponentially. 
However, despite its advances, still there is a lack of 
studies that have carried out a review on the acute ef-
fects of physical exercise on metabolic and hemodynam-
ic markers and possible control mechanisms of these in-

dicators in individuals with T2D, not to mention that in a 
related way, these themes have been very little studied 
today. Therefore, the aim of this study was to organize 
and analyze the current scientific production about the 
acute effects of physical exercise on metabolic and he-
modynamic markers and possible control mechanisms of 
these indicators in T2D individuals. For such, a research 
with the following keywords was performed: -exercise; 
diabetes and post-exercise hypotension; diabetes and 
excess post-exercise oxygen consumption; diabetes 
and acute effects in PUBMED, SCIELO and HIGHWIRE 
databases. From the analyzed studies, it is possible to 
conclude that, a single exercise session can promote an 
increase in the bioavailability of nitric oxide and elicit 
decreases in postexercise blood pressure. Furthermore, 
the metabolic stress from physical exercise can increase 
the oxidation of carbohydrate during the exercise and 
keep it, in high levels, the post exercise consumption of 
O², this phenomenon increases the rate of fat oxidation 
during recovery periods after exercise, improves glucose 
tolerance and insulin sensitivity and reduces glycemia 
between 2-72 h, which seems to be dependent on the 
exercise intensity and duration of the effort.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Metabolic diseases; Hypertension; Nitric ox-
ide; Blood glucose; Oxygen consumption

Core tip: Physical exercise is one of the best kinds of 
non-pharmacological treatments to prevent and control 
type 2 diabetes (T2D), being recommended by impor-
tant medical associations, such as American College of 
Sports Medicine and the American Diabetes Association. 
In the literature, studies about the effects of a single 
exercise session on the population, its changes in blood 
pressure, glycemia, carbohydrate oxidation, fat oxida-
tion, increase in nitric oxide and others are increasing 
exponentially. In this review, we report the most recent 
and important findings in the literature about the ef-
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fects of acute exercise in T2D.
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INTRODUCTION
Physical exercise, along with a proper diet are central fac-
tors in the prevention and control of  diabetes mellitus 
(DM), since their effects include appropriate values of  
blood pressure, glycemia and lipidemia[1]. Several studies 
have shown the efficiency of  exercise programs in the 
control of  DM, being suggested as one of  the best types 
of  non-pharmacological treatments to the population 
in question[2-5]. Aerobic, resistance or combined exercise 
programs can help in the control of  glycemia of  diabe-
tes mellitus type 2 (T2D), mainly by the increase of  the 
need of  glucose consumption by skeletal muscle in activ-
ity and the hypoglycaemic effect after exercise has been 
performed[1,6-9].

Currently, the guidelines to physical exercise prescrip-
tion by the American College of  Sports Medicine and 
American Diabetes Association to T2D provide general 
information, such as exercise daily, accumulate 150 min 
of  exercise in a moderate intensity or 75 min of  high 
intensity exercise per week; resistance exercises should be 
included at least 2-3 times per week[1]. On the other hand, 
despite the advances made in discovering the effects of  
exercise in the treatment and control of  T2D and associ-
ated diseases, still there is a lack of  studies that have car-
ried out a review on the acute effects of  physical exercise 
on metabolic and hemodynamic markers and possible 
control mechanisms of  these indicators in individuals 
with type 2 diabetes, not to mention that in a related way, 
these themes have been very little studied today. Mainly 
concerning the magnitude of  different intensities and du-
rations of  exercise on glucose uptake, oxidation of  mac-
ronutrients and blood pressure response after performing 
only one session of  exercise (acute exercise) and bio-
molecular mechanisms involved in this phenomenon[1]. 
Hence, the aim of  this study was to synthetize the cur-
rent knowledge pertaining the acute effects of  physical 
exercises in T2D; analyze the implications of  exercise and 
determinate trends to future researches about this topic.

The method used in the present study was a review of  
the literature. As inclusion criteria and search of  scientific 
articles, the following keywords were used: diabetes and 
exercise; diabetes and postexercise hypotension; diabetes 
and excess postexercise oxygen consumption; diabetes 
and acute effect of  physical exercise, in the databases 
PubMed, Scielo and HIGHWIRE. The studies that have 
not addressed the acute effects of  physical exercise on 

type 2 diabetes and did not show relevant results on the 
subject were excluded from the analysis. 

ACUTE EFFECTS OF PHYSICAL EXERCISE 
ON GLYCEMIA AND INSULINEMIA
The control of  glycemia is dependent of  the activities 
of  the neuroendocrine system. In resting conditions, the 
glucose uptake by the cells is mainly insulin dependent, 
where the glucose transporter 4 (GLUT-4) is translocated 
to the cell membrane, facilitating glucose entrance in 
the cell cytoplasm[10]. During exercise, an increase in the 
uptake and utilization of  glucose occurs, and it seems to 
be dependent on the intensity and duration of  the effort. 
The more intense the effort is, more carbohydrate will be 
metabolized[11,12]. Therewith, exercise promotes a reduc-
tion in glycemia, which is initially controlled by glucagon, 
epinephrine and norepinephrine. Afterwards, with the 
assistance of  growth hormone and glucagon, production 
and release of  glucose by the liver in the bloodstream is 
increased, thus, regulating again the glycemia[13].

This acute effect of  exercise is benefic in euglycemic 
and T2D individuals. Exercise increases the concentra-
tion of  GLUT-4 in the cell membrane, which leads to the 
increase in glucose uptake, even with low insulin levels[14]. 
On the other hand, the mechanisms surrounding this 
phenomenon are still inconclusive. Higher expression of  
key-proteins related to the insulin pathway, such as insu-
lin receptor substrate 1 and phosphatidylinositide 3-ki-
nases, and insulin independent mechanisms, such as the 
increase in the activity of  AMP-activated protein kinase, 
the activation of  the calcium-calmodulim pathway, and 
the kallikreins-kinins components can be involved in this 
process[10,15-20] .

Furthermore, both exercise models, aerobic and re-
sistance, promote improvements in glucose tolerance, 
insulin sensitivity and reduction in glycemia between 2-72 
h, which seems to be dependent on the intensity and du-
ration of  the effort[1,21,22].

Although, there is some knowledge about the ben-
efits of  acute exercise in T2D, more studies are still made 
necessary to elucidate some questions, such as the effects 
of  intense exercise in general population, since the most 
studies and exercise prescription to this population are of  
moderate intensity[1].

CARBOHYDRATE AND FAT OXIDATION 
DURING AND POST EXERCISE IN T2D
Insulin resistance, along with elevated oxidative stress, 
impairs energy metabolism at rest, as well as during and 
after exercising in T2D. At rest, the lowest availability 
of  glucose and muscular glycogen in T2D increases the 
predominance of  fat oxidation when compared to eugly-
cemic individuals[1].

Although glucose uptake by insulin dependent path-
ways are impaired in T2D, exercise increases carbohydrate 
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oxidation, and this capacity seems to be preserved in T2D, 
since the glucose uptake during the effort occurs mainly 
by insulin independent pathways[23]. Nevertheless, T2D 
demonstrates lower capacity to utilize carbohydrate during 
exercise when compared to euglycemic individuals[24].

Other peculiarities occur during exercise in T2D, such 
as the decrease in rate of  fatty acids oxidation when com-
pared to euglycemic[25]. However, the effects of  different 
lactate threshold intensities, during and after aerobic ex-
ercises, have been little studied and are yet inconclusive.

Ghanassia et al[25] observed that the predominance of  
carbohydrate oxidation in T2D during exercise seems to 
be independent of  the intensity of  effort. Nevertheless, 
the use of  carbohydrate as substrate seems to be depen-
dent of  intensity, since it is available in the muscle (glyco-
gen) and in the blood (glucose)[1].

Lima et al[26] observed an increase in fat oxidation after 
a cycle ergometer session, when compared to resting val-
ues in T2D. Furthermore, high exercise intensities extend 
this increase, and fat oxidation after exercise was higher 
in T2D in comparison to euglycemic.

The increase in carbohydrate oxidation during ex-
ercise, as well as fat oxidation during the post exercise 
recovery period can contribute to augment insulin sen-
sitivity, and collaborate to reduce body fat percentage. 
It is noteworthy that the accumulation of  intramuscular 
fat has a direct relation on insulin resistance, and conse-
quently the appearance of  T2D[27,28].

POST-EXERCISE HYPOTENSION IN T2D
Individuals with T2D present other impairments, such 
as endothelial dysfunction[3,29], increased sympathetic 
tonus and other cardiovascular diseases, including hyper-
tension[30], which lead to the increase in morbidity and 
mortality.

One session of  aerobic or resistance exercise can 
promote postexercise hypotension (PEH). The exercise-
induced mechanical stress on the wall of  the arteries, 
can increase the release of  vasodilating substances by 
the endothelium (e.g., nitric oxide, bradykinin), augments 
baroreflex sensitivity, and decreased sympathetic nervous 
activity in the solitary tract nucleus caused by the release 
of  substance P by skeletal muscles[31-34]. This adaptation 
can bring benefits to health, because it helps to keep low 
levels of  blood pressure, avoiding and controlling blood 
pressure increase at rest. However, the magnitude of  this 
effect seems to be diminished in T2D individuals, since 
this population presents endothelial dysfunction, which 
collaborates to a decrease in the capacity of  nitric oxide 
(NO) release when compared with euglycemic individu-
als[35-37]. Increased sympathetic tonus and other cardiovas-
cular diseases are also observed in T2D[30]. 

Studies have demonstrated that the occurrence of  
PEH in T2D can be intense depending on the effort. 
Lima et al[4] demonstrated that T2D individuals seem to 
be more responsive to high intensity exercise sessions, 
since exercise above lactate threshold (LT) (110% of  the 

LT) resulted in a significant decrease in systolic blood 
pressure (SBP) values up to 90 min after the session, 
whereas exercise performed below lactate threshold (90% 
of  the LT) only reduced SBP during 45 min post exercise. 

Simões et al[38] comparing two resistance training ex-
ercise intensities (23% and 43% of  1RM), observed that 
only the higher session (43%) promoted PEH. Similar 
results were found by Motta et al[29], when studying the ef-
fects of  a 20 min high intensity cycle ergometer (90% of  
lactate threshold) in individuals with and without T2D. 
Both studies only observed significant blood pressure de-
creases in non T2D individuals. 

Although the physiological mechanism responsible 
by this process still remains inconclusive, it is known that 
high intensity exercise promotes increases the activity of  
the kallikrein-kinin system, and consequently, augments 
the synthesis and release of  nitric oxide[29]. However, 
more studies are still made necessary to elucidate this 
question.

EXCESS POSTEXERCISE OXYGEN 
CONSUMPTION IN T2D
Exercise increases oxygen consumption after exercising 
and during rest, this phenomenon is known as excess 
postexercise oxygen consumption (EPOC), which has a 
fast component (2-3 min), and a slow component which 
can persist for more than 30 min. The duration and mag-
nitude of  EPOC depends on the intensity and duration 
of  the effort[39-42].

The need to resynthesize creatine phosphate, restore 
intramuscular oxygen, body temperature and muscular 
glycogen, increased activity of  the sodium-potassium 
pump, clearance of  lactate, high levels of  epinephrine and 
norepinephrine are factors that can lead to EPOC[40,41]. 

However, T2D individuals present metabolic impair-
ments, such as lower capacity to utilize carbohydrate, due 
to lower enzymatic regulation and intracellular signalling 
and gene transcription[43]. Thus, these modifications can 
change the pattern of  metabolic and respiratory altera-
tions elicited during and after exercise[4]. Therefore, it 
decreased the benefits of  EPOC when compared to eug-
lycemic individuals.

Studies about EPOC in T2D are scarce. Therefore, 
determining which intensity and duration could be more 
beneficial to promote this event in T2D is important to 
increase post-exercise fat oxidation, once the accumula-
tion of  intramuscular fat has been associated to the de-
velopment of  T2D[43].

NITRIC OXIDE AND EXERCISE IN TYPE 2 
DIABETES
NO is a gaseous, inorganic and colorless free radical, 
which has seven electrons of  nitrogen and eight of  oxy-
gen, having an unpaired electron[44]. NO is synthetized 
from oxidation one of  the two guanidine nitrogens of  
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lium independent relaxation (adenosine) and increased 
the coronary endothelium-dependent relaxation through 
the action of  bradykinin, that is a mediator of  NO pro-
duction, and decreased the developing of  atheromatous 
plaques in the aerobic trained pigs.

In the venous system, Chies et al[55] evaluated the ef-
fects of  angiotensin Ⅱ in the portal vein and vena cava 
of  trained rats. The exposition of  trained animals to 
consecutive sessions of  acute aerobic exercise in a tread-
mill improved the portal vein response in the presence 
of  angiotensin Ⅱ. This upgrading seems to be specific 
in portal vein, once the researches didn’t observe this 
phenomenon in vena cava. The authors concluded that 
these adaptations are influenced by NO, endothelin and 
prostanoids.

Regarding vascular damage, Cubbon et al[56] studied 
the association of  NO induced by exercise in the prolif-
eration and mobilization of  circulating progenitor cells 
(CPC), which are potential mediators of  cell repair. The 
mobilization of  CPC is critically dependent of  NO, and 
south Asians are associated with low CPC levels. The 
mobilization of  CPC was measured during a moderate-
intensity exercise session. Mediators of  vasodilatation and 
CPC were lower in the Asian group than in Europeans. 
During the exercise, the CPC also was lower in Asians. 
A decrease in the release of  NO can contribute to inap-
propriate balance between vascular damage and muscular 
repair in the population.

The acute effects of  exercise in NO have also been 
studied in other tissues. In the skeletal muscle, Lee-Young 
et al[57] observed that in mice without eNOS, ATP is re-
duced (40%), in sedentary conditions exercise tolerance is 
markedly impaired during a 30 min session. The research-
ers observed that a partial reduction of  eNOS expression 
is enough to induce physiological changes in ATP and 
NO production, and consequently, reducing the tolerance 
to the effort.

Besides exercise, diet also seems to influence the 
availability of  NO. Bailey et al[58] administrated oral L-ar-
ginine in nine healthy individuals and performed “step’’ 
exercise in two intensities (moderate and high) one hour 
after ingestion. Plasma nitrite was significantly higher in 
the group that consumed L-arginine, resulting in a de-
crease in SBP. Submaximal VO2max was 7% lower in the 
moderate intensity exercise, while in the high intensity 
exercise the slow component was reduced and the time 
to exhaustion delayed with L-arginine supplementation. 
As a conclusion, the authors stated that diet with L-ar-
ginine showed similar results with nitrite, increasing the 
bioavailability of  NO, and reducing the cost of  O2 in the 
moderate exercise and time to exhaustion in the maximal 
exercise.

One exercise session seems to increase the bioavail-
ability of  NO, collaborating with the regulation of  vascu-
lar tonus, balance between damage and muscle repair and 
preventing diseases such as atherosclerosis and hyperten-
sion[59]. Studies related to the bioavailability of  NO in dif-
ferent exercise intensities are inexistent. The production 

L-arginine, which is converted to L-citrulline[45].
NO produced by endothelial cells has an essential 

function in the process of  relaxing of  blood vessels. In 
physiological conditions, vascular relaxing occurs when 
the membrane receptors of  endothelial cells are activated 
by soluble stimulus, which include: acetylcholine, brady-
kinin, adenosine diphosphate, substance P, serotonin and 
others, or when there is an increase of  friction exerted 
by circulating cells in the endothelial layer (shear stress), 
generating the activation of  endothelial NO synthases 
(eNOS) present in these cells, causing an increase of  syn-
thesis and release of  NO[46].

NO produced by eNOS in endothelial cells spreads 
out to smooth muscle cells and vascular lumen. In the 
smooth muscle, NO interacts with the iron from heme 
group of  enzyme guanylate cyclase (GC), causing an 
alteration in the structure of  this enzyme, becoming ac-
tivated (GCa). GCa catalyzes the departure of  two phos-
phate groups from the molecule guanosine triphosphate, 
similar to the adenosine triphosphate (ATP), forming the 
cyclic guanosine monophosphate (cGMP). An increase 
in the levels of  cGMP occurs when NO activates GC in-
side the cells[47], resulting in: (1) maintenance of  vascular 
tonus; (2) blood pressure regulation; (3) prevention of  
platelet aggregation (by increase of  cGMP and decrease 
in Ca2+); (4) inhibition in adhesion of  monocytes and 
neutrophils in the vascular endothelium; (5) anti-prolif-
erative effect; and (6) anti-oxidant effect decreasing the 
production of  peroxynitrite anion (ONOO-)[36]. Recent 
studies have shown that having a physically active lifestyle 
can contribute to maintain the functional capacity of  the 
vascular endothelium, measured by the preservation of  
ability to produce NO[48-50].

The acute effects of  exercise in the bioavailability of  
NO in physical performance and health, mainly in endo-
thelial function, have been previously studied. Studies have 
demonstrated that exercise promotes an increase in NO 
levels after a single session. This acute effect of  exercise in 
NO can induce positive adaptations in the cardiovascular, 
hepatic, esqueleto muscle systems and others[35,51].

This effect can influence health parameters, such as 
the control of  blood pressure (BP). Faria et al[52] induced 
spontaneously hypertensive rats to one session of  exer-
cise (squat), using vests as load. They observed a decrease 
in BP, lower vascular reactivity, and endothelium-depen-
dent vasodilatation mediated by the NO after exercising.

Augeri et al[53] examined the influence of  the T786C 
gene of  eNOS in post-exercise hypotension (PEH) and 
NO after a low (40% VO2max) and moderate intensity 
exercise (60% VO2max) in the cycle ergometer in pre-
hypertensive individuals. The individuals, who carried the 
TT genotype, demonstrated less PEH than heterozygous 
individuals 9 h after exercising.

On the other hand, Long et al[54] determined the pre-
ventive effects of  exercise in the coronary blood flow and 
macrovascular atherosclerosis in aerobic trained Yucatan 
pigs, which passed by a high cholesterol and fat concen-
trated diet. The short aerobic training kept the endothe-
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of  knowledge about this important topic is essential to 
define better exercise strategies to increase the bioavail-
ability of  NO in individuals with T2D after one exercise 
session. 

A summary of  acute effects of  physical exercise in 
T2D, along with the reference, number of  volunteers and 
the kind of  intervention, can be observed in Table 1. 

CONCLUSION
A single session of  exercise can promote beneficial ef-
fects regarding blood pressure control, glycemia, carbo-
hydrate oxidation during exercise and fat oxidation after 
exercise. Evidence has shown that exercise, especially at 
intense domains, can increase the bioavailability of  nitric 
oxide, promoting a decrease in blood pressure after exer-
cising. Furthermore, metabolic stress from exercising is 
able to increase the oxidation of  carbohydrates during ex-
ercise, keeping an elevated O2 consumption after exercis-
ing. This, in consequence, increases fat oxidation during 
at rest and improves glucose tolerance, insulin sensibility 
and can reduce glucose levels between 2 to 72 h depend-
ing of  intensity and duration of  the effort.

These acute effects of  physical exercise are important 
to T2D, because they help  to improve conditions such as 
high blood pressure, hyperglycaemia and lipidemia.
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Abstract
The interplay between glucose metabolism and that 
of the two other primary nutrient classes, amino acids 
and fatty acids is critical for regulated insulin secretion. 
Mitochondrial metabolism of glucose, amino acid and 
fatty acids generates metabolic coupling factors (such 
as ATP, NADPH, glutamate, long chain acyl-CoA and 
diacylglycerol) which trigger insulin secretion. The ob-
servation of protein induced hypoglycaemia in patients 
with mutations in GLUD1 gene, encoding the enzyme 
glutamate dehydrogenase (GDH) and HADH gene, en-

coding for the enzyme short-chain 3-hydroxyacyl-CoA 
dehydrogenase has provided new mechanistic insights 
into the regulation of insulin secretion by amino acid 
and fatty acid metabolism. Metabolic signals arising 
from amino acid and fatty acid metabolism converge 
on the enzyme GDH which integrates both signals from 
both pathways and controls insulin secretion. Hence 
GDH seems to play a pivotal role in regulating both 
amino acid and fatty acid metabolism. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
 
Key words: Hyperinsulinaemic hypoglycaemia; KATP ch-
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Core tip: The interplay between glucose, amino acid 
and fatty acid metabolism is critical for regulated insulin 
secretion. Mitochondrial metabolism of glucose, amino 
acid and fatty acids generates metabolic coupling fac-
tors (such as ATP, NADPH, glutamate, long chain acyl-
CoA and diacylglycerol) which trigger insulin secretion. 
The observation of protein induced hypoglycaemia in 
patients with mutations in GLUD1  [encoding for the 
enzyme glutamate dehydrogenase (GDH)] and HADH 
genes, has provided novel mechanistic insights into the 
regulation of insulin secretion by amino acid and fatty 
acid metabolism. Metabolic signals arising from amino 
acid and fatty acid metabolism converge on the enzyme 
GDH which integrates both signals from both pathways 
and controls insulin secretion. Hence GDH seems to 
play a pivotal role in regulating both amino acid and 
fatty acid metabolism.
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INTRODUCTION 
Glucose, amino acids and fatty acids are the substrates 
available for metabolic homeostasis and play important 
roles in insulin secretion. Pancreatic β-cells synthesise 
and secrete insulin in response to signals generated from 
glucose, amino acid and fatty acid metabolism but glu-
cose is the prime stimulus for insulin secretion. Regulated 
insulin release requires tight coupling in the β-cell be-
tween glucose metabolism and insulin secretory response. 
As β-cells are continually exposed to a complex milieu of  
nutrients and other circulating factors (like incretins), it 
is important to understand the interplay between glucose 
metabolism and that of  the two other primary nutrient 
classes, the amino acids and fatty acids. Specific amino 
acids are now known to acutely and chronically regulate 
insulin secretion from pancreatic β-cells in vivo and in vitro 
and lipid metabolism in the β-cell is critical for the regu-
lation of  insulin secretion[1]. 

The metabolism of  glucose, amino acids and fatty 
acids results in the generation of  metabolic coupling 
factors involved in regulating insulin exocytosis. These 
metabolic coupling factors generated from the metabo-
lism of  glucose, amino acids and fatty acids in the β-cell 
include ATP, NADPH, glutamate, long chain acyl-CoA 
and diacylglycerol[2]. Each of  these coupling factors plays 
a key role in regulating insulin secretion. The exocytotic 
process is closely controlled by signals generated from 
nutrient metabolism as well as by neurotransmitters and 
circulating hormones. 

Under normal physiological conditions the metabo-
lism of  glucose, amino acids and fatty acids is intricately 
controlled and will result in the regulated secretion of  
insulin. The secretion of  insulin is precisely regulated to 
keep fasting blood glucose concentrations between 3.5-5.9 
mmol/L. In some pathological states the signals gener-
ated from glucose, amino acid and fatty acid metabolism 
cause insulin hyper-secretion or dysregulation of  insulin 
secretion. In these states insulin secretion becomes inap-
propriate for the level of  blood glucose causing hyperin-
sulinaemic hypoglycaemia (HH). 

HH is a major cause of  persistent hypoglycaemia 
in the childhood period[3]. In the newborn and infancy 
periods HH can be either congenital or secondary to 
certain risk factors (such as intrauterine growth retarda-
tion). Congenital forms of  HH are due to defects in 
key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, 
HNF4/HNF1A, SLC23A and UCP2) involved in regu-
lating insulin secretion[4]. Loss of  function mutations in 
the genes ABCC8 and KCNJ11 (which encode for the 
SUR 1 and KIR6.2, components of  the β-cell potassium 
(KATP) channel subunits respectively) lead to the most 
severe forms of  HH, which is usually medically unre-
sponsive[5]. Clinically HH presents with fasting hypogly-
caemia but in some patients the HH is typically triggered 
by the ingestion of  protein (amino acids). Protein in-
duced HH is observed in patients with gain of  function 
mutations of  GLUD1[6], loss-of-function mutations of  
ABCC8/KCJN11[7] and loss of  function mutations in the 

HADH[8].
This state of  the art review article will firstly discuss 

the molecular mechanisms of  glucose, amino acid and 
fatty acid regulated insulin secretion and then focus on 
the current understanding of  the molecular mechanisms 
involved in protein induced HH. 

GLUCOSE MEDIATED INSULIN 
SECRETION BY THE PANCREATIC β-CELL 
Glucose mediated secretion of  insulin is initiated by 
the uptake of  glucose by the β-cells via the glucose 
transporter. Glucose is then phosphorylated to glucose-
6-phosphate by islet-specific glucokinase. Further me-
tabolism of  glucose increases the cellular ATP: ADP 
ratio, which closes ATP-dependent KATP channels in 
the β-cell membrane, causing membrane depolarization 
and influx of  calcium. Intracellular free calcium then 
promotes margination of  secretory granules, which fuse 
with the cell membrane before releasing their contents 
into the extracellular space by exocytosis (Figure 1)[9]. 
The functional integrity of  both SUR 1 and KIR 6.2 
proteins is necessary for KATP channel function and the 
genes encoding for these two proteins are localized very 
closely to each other on the short arm of  chromosome 
11 (11p14-15.1). 

Although KATP channels have an essential role in link-
ing the metabolism of  glucose to the secretion of  insulin, 
there is now evidence that there may well be other mech-
anisms of  insulin secretion, the so-called KATP channel 
independent pathways of  insulin secretion[10]. This path-
way leads to augmented insulin release in the presence of  
raised cytosolic calcium (Ca2+) concentrations. Increases 
in the intracellular Ca2+ concentration in the pancreatic 
β-cell cause modest increases in insulin secretion, which 
can be dramatically increased by modulators of  protein 
kinases and phosphatases. This suggests that steps distal 
to the elevation of  cytosolic Ca2+ are of  greater quantita-
tive importance in controlling insulin secretion. It has 
also been shown that glucose can cause pronounced in-
sulin secretion in Ca2+ depleted islets in the presence of  
activators of  protein kinases A and C[11].

Given the key role of  pancreatic β-cell KATP channels 
in regulating insulin secretion it is no surprise that genetic 
defects in the genes regulating the function of  these 
channels lead to severe forms of  HH. Recessive inacti-
vating mutations in KATP channel subunits are the most 
common cause of  HH[5,12]. So far, over 150 mutations 
have been identified in the ABCC8 and 25 in KCNJ11[13]. 
These include missense, frame shift, nonsense, inser-
tions/deletions, splice site and regulatory mutations, ei-
ther present in homozygous or compound heterozygous 
state. In the Ashkenazi Jewish population, two common 
(F1388del and c.3992-9G4A) mutations account for 90% 
of  all cases of  congenital HH[4].

The molecular basis of  recessive inactivating ABCC8 
and KCNJ11 mutations involves multiple defects in KATP 
channel biogenesis and turnover, in channel trafficking 
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from the endoplasmic reticulum and Golgi apparatus 
to the plasma membrane and alterations of  channels in 
response to both nucleotide regulation and open state 
frequency. 

AMINO ACID MEDIATED INSULIN 
SECRETION 
The observations that plasma levels of  insulin increase 
consistently and significantly when healthy subjects ingest 
protein meals[14] or when intravenous mixtures of  amino 
acids are administered[15], provide fundamental scientific 
evidence of  the relationship between protein metabolism, 
amino acids and insulin secretion. 

Protein metabolism begins when dietary proteins are 
broken down to amino acids by intestinal enzymes[16]. 
Large differences in capacity of  individual amino acids to 
stimulate insulin release are noted in both animal and hu-
man studies[15,17]. For example, when 30 g each of  10 ami-
no acids in a mixture was administered individually, argi-
nine proved the most effective and histidine the least in 
stimulating insulin release[15]. Although leucine itself  can 
stimulate insulin secretion, the phenomenon of  protein 
meal or amino acid stimulated insulin secretion does not 
solely or largely depend on the presence of  leucine[14,15]. 

Amino acids, alone[18] or in combination[19], act syner-
gistically with glucose to potentiate the release of  insulin. 
Synergism was also observed between amino acid pairs, 
where the synergistic effect was significantly greater with 
arginine-leucine than with arginine-phenylalanine and 
their combined effects greater than when amino acids 
were administered alone[20]. Indeed, the oral ingestion of  
amino acid mixtures in combination with carbohydrates 
produce stronger insulinotropic effects compared with 

carbohydrate-only preparations[21], a phenomenon medi-
ated by the incretin hormones gastric inhibitory polypep-
tide and glucagon-like peptide-1 (GLP-1)[22]. Amino acids 
shown to have the highest insulinotropic effect include 
leucine, valine, lysine, and isoleucine[23]. Metabolism of  
amino acids can occur either by transamination or by oxi-
dative deamination. 

Transamination is an early step in the degradation of  
most amino acids and involves a chemical reaction between 
two molecules, an amino acid (with an amine NH2 group) 
and a keto acid (with a keto = O group), catalysed by a 
family of  enzymes known as aminotransferases. Different 
aminotransferases are each specific for an amino acid or 
a group of  chemically similar ones such as branch chain 
amino acids (BCAA). The keto acid that accepts the amino 
group is always alpha-ketoglutarate (α-KG), a metaboli-
cally important biological compound and key intermediate 
in the citric acid cycle. For example, alanine transaminase 
catalyses the transfer of  an amino group from alanine to 
α-KG giving rise to pyruvate and glutamate. 

On the other hand, oxidative deamination involves 
conversion of  an amino acid into the corresponding keto 
acid by removing the amine group as ammonia, which 
goes into the urea cycle. As glutamate is the end product 
of  many transamination reactions, oxidative deamination 
occurs primarily on glutamate, generating α-KG[16,24]. The 
main enzyme involved in oxidative deamination is gluta-
mate dehydrogenase (GDH).

Glutamine and alanine are the most abundant amino 
acids in the blood and extracellular fluids. Whereas glu-
tamine and alanine require the presence of  glucose for 
insulin secretion, leucine is able to stimulate insulin secre-
tion independently through the allosteric activation of  
GDH[25-28], generating α-KG. The further metabolism of  
α-KG is then involved in insulin production in two ways. 
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cumstances it acts to provide glutamate, which promotes a 
wider array of  metabolic functions compared to glutamine. 
By oxidative deamination of  glutamate, GDH liberates 
free ammonia and the α-KG is then oxidized in the tricar-
boxylic acid cycle (TCA) cycle, raising ATP levels that close 
KATP channels and depolarize the cell membrane to release 
insulin. Ammonia is added to glutamate by glutamine syn-
thetase to form glutamine, the major inert-organ carrier for 
ammonia. 

Glutamine can be cleaved by glutaminase to yield 
glutamate and NH3. The mitochondrial carbamoyl phos-
phate synthetase (CPS 1) then can catalyze the conver-
sion of  ammonia to carbamoyl phosphate. The CPS 1 
enzyme is allosterically activated by N-Acetyl glutamate 
(NAG) produced from glutamate by NAG synthase and 
may thus be indirectly regulated by glutamate concentra-
tion. Carbamoyl phosphate thus formed combines with 
ornithine in the urea cycle. Thus glutamate also aids in 
ammonia detoxification and promotion of  urea synthesis 
in the liver (Figure 2)[40,41]. However, the exact mechanism 
of  glutamine linked hyperinsulinemia remains less well 
understood. Glutamine can also potentiate insulin secre-
tion by stimulating enteroendocrine L-cells to synthesise 
and secrete the incretin GLP-1. This effect is attributable 
to a triggering pathway that elevates intracellular Ca2+ and 
an amplifying pathway mediated by elevated cAMP[42]. 

ALANINE 
The mechanism of  action of  alanine as an insulin secre-
tagogue is still unclear. Upon entry into the β-cell cytosol, 
alanine is deaminated and takes part in the TCA cycle 
through pyruvate and acetyl-CoA. This results in increase 
of  the cellular content of  ATP, closure of  the KATP chan-
nel, depolarization of  the plasma membrane, activation 
of  voltage-gated calcium channel, increase in calcium 
influx and insulin exocytosis (Figure 3)[43]. Insulinotropic 
property of  alanine has been reported by Dunne et al[44] 
and McClenaghan et al[45] to be the result of  co-transport 
with Na+, leading to β-cell membrane depolarization and 
increase in cellular calcium. Current evidence suggests 
that the mode of  action of  alanine as an insulin secreta-
gogue involves a combination of  increased ATP genera-
tion, co-transport with Na+ and signal transduction[26,46].

ARGININE 
The mechanism of  insulin release by arginine involves the 
mCAT2A amino acid transporter which electrogenically 
transports arginine into the β-cell, leading to increased 
intracellular calcium[47]. Accumulation of  intracellular 
arginine leads to membrane depolarization, a further rise 
in intracellular calcium through opening of  voltage-gated 
calcium channels, and insulin secretion[48]. Arginine can 
also influence insulin secretion by its conversion to gluta-
mate, which allows the generation of  metabolic coupling 
factors[49], however the detailed metabolism of  arginine in 
the β-cell remains to be investigated. 

First, by entering the TCA cycle, the ATP:ADP ratio is 
raised causing closure of  the KATP channel and depo-
larisation of  the β-cell. The voltage dependant calcium 
channel opens leading to an increase in cellular calcium 
concentration, triggering the release of  insulin from 
storage granules (Figure 1)[29]. Second, α-KG inhibits 
isocitrate dehydrogenase resulting in increased cytosolic 
citrate needed for the synthesis of  short and long chain 
acyl-CoA, which are coupling factors closely involved in 
insulin secretion[30]. 

LEUCINE 
Leucine is one of  the most potent insulin secretagogues 
among the BCAA that facilitates glucose-induced insulin 
release from pancreatic β-cells[31]. It does so via several 
mechanisms. First, in pancreatic β-cells, leucine and 
its non-metabolizable analogue 2-aminobicyclo (2.2.1) 
heptane-2-carboxylic acid, stimulate the secretion of  
insulin by acting indirectly as a positive allosteric activa-
tor of  GDH to enhance glutaminolysis. Activated GDH 
facilitates the oxidation of  glutamate to α-KG, which 
raises the ATP:ADP ratio resulting in closure of  KATP 
channel, cellular depolarization, influx of  calcium and 
exocytosis of  insulin from the storage granules (Figure 
1)[32]. Second, the transaminated product of  leucine, 
α-ketoisocaproate (KIC) can cause insulin secretion 
through direct inhibition of  the KATP channel[33]. Glucose 
completely blocks the effects of  leucine but not of  KIC 
on stimulation of  insulin secretion by β-cells[34]. Third, 
leucine plays an important role in the regulation of  the 
mammalian target of  Rapamycin (mTOR) pathway, 
which was recently recognized as a critical regulator of  
metabolic response to nutrients and growth factors[35]. 
Recent data strongly suggest that leucine down-regulates 
the surface expression of  α2 adrenergic receptors in 
pancreatic islets through activation of  mTOR, leading to 
insulin secretion[36]. 

GLUTAMINE 
As the most abundant amino acid found in the blood, 
glutamine has both nutritive and non-nutritive effects[37]. 
Glutamine is physiologically important for maintaining 
cellular function in tissues of  the intestine, kidney, brain 
and liver[38]. It is an important precursor substrate for the 
synthesis of  peptides, proteins and nucleotides[39], in par-
ticular ATP which is central in the β-cell signalling path-
way. In SUR 1 knockout (KO) β-cells models, isolated 
pancreatic islets respond briskly to a physiological mix-
ture of  20 amino acids even though these islets cannot 
be stimulated by glucose or by leucine. Glutamine played 
an important role in mediating amino acid stimulation of  
insulin release as 60% of  the insulin response was attrib-
utable to glutamine even though it comprised 16% of  the 
amino acid load[7]. 

Although glutamine itself  functions as a key precursor 
for nucleic acids and nucleotides, in many physiological cir-
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FATTY ACID β-OXIDATION PATHWAY 
During the fasting state fatty acids (FA) are the most im-
portant substrates for ketogenesis to provide the brain 
with an “alternative fuel” source. Triglycerides are bro-
ken down to FA and glycerol in the process of  lipolysis. 
β-oxidation of  FA occurs in the peroxisomes and mito-
chondria. Short and medium chain FA can diffuse direct-
ly into the mitochondria and are then activated by acyl-
CoA synthetase to acyl-CoA in the mitochondrial matrix, 
whereas long and very long chains FA are activated by ac-
yl-CoA synthetase on the mitochondrial outer membrane. 
The “carnitine shuttle” allows acyl-CoA to penetrate the 
outer and inner mitochondrial membranes, catalysed by 
carnitine palmitoyltransferase-Ⅰ and Ⅱ (CPT- Ⅰ and Ⅱ) 

respectively, facilitated by the inner membrane exchange 
transporter, carnitine-acylcarnitine translocase[50]. 

In the mitochondrial matrix, acetyl-coA is generated 
by β-oxidation of  acyl-CoA via a 4-step process involv-
ing dehydrogenation, hydration, oxidation and thiolysis 
(Figure 4)[50]. Acetyl-CoA finally enters the Krebs cycle. 
The short-chain 3-hydroxyacyl-CoA dehydrogenase 
(SCHAD), an intramitochondrial homodimer enzyme is 
essential for catalysing the penultimate reaction of  3-hy-
droxyacyl CoA to 3-ketoacyl-CoA. Possible molecular 
mechanisms involved in the pathogenesis of  HH due to 
deficiency of  SCHAD have been reported recently[8,51].

PROTEIN INDUCED INSULIN SECRETION-
HISTORICAL PERSPECTIVE
The history of  protein induced hypoglycaemia dates back 
to 1956 when Cochrane described three children with 
severe hypoglycaemia while on low carbohydrate and high 
protein diet. Even though amino acid-stimulated insulin 
secretion by pancreatic β-cells was known for long[52], 
the molecular mechanisms involved in the dysregulated 
islet cell function leading to HH due to genetic mutations 
remain poorly understood. In 1970 researchers reported 
that amino acids could induce insulin secretion only in 
the presence of  glucose except in case of  leucine where 
the insulin-stimulatory effect is abolished in presence of  
glucose[53]. Animal studies have suggested that amino acid 
oxidation and signalling effects are two vital steps in which 
the amino acid amplifies insulin release from the stored 
vesicles following β-cell depolarisation and influx of  cal-
cium. By early 80’s leucine’s property to induce insulin se-
cretion by allosterically stimulating GDH was identified[29].

670 October 15, 2014|Volume 5|Issue 5|WJD|www.wjgnet.com

Glutamine

NH3

NH3

Glutamate

NAG

α-ketoglutarate

NH3

Carbamoyl 
phosphate

Glutamine

Pancreas β-cell

GDH

TCA cycle

+

NAG synthase

(+)      CPS 1
+HCO3 +PO4

Liver

Citrulline

Urea-cy
cle

L-ornithine 

Figure 2  Glutamate metabolism. Oxidation of glutamate by glutamate dehydrogenase liberates free ammonia (NH3) and alpha ketoglutarate, which enters 
tricarboxylic acid cycle cycle and generates ATP. In the liver glutamate also generates N-acetylglutamate (NAG), which in turn allosterically activates carbomyl 
phosphate synthetase (CPS) to regulate ammonia detoxification into urea. Glutamine provides a substrate for ammonia buffering, by adding ammonia to glutamate to 
form glutamine. TCA: Tricarboxylic acid cycle; GDH: Glutamate dehydrogenase.

Glutamate

GDH
Leucine, ADP
GTP

α-KG

TCA cycle

ATP

Citrate

OAA 
Acetyl-CoA

PDH
Pyruvate AlanineInsulin release

SCHAD -
+
-

Figure 3  Glutamate and alanine as insulin secretagogues. Protein induced 
hyperinsulinaemic hypoglycaemia due to loss of function mutation in HADH 
gene (SCHAD). Alanine is deaminated to pyruvate and pyruvate dehydroge-
nase (PDH) converts it to acetyl CoA, which can enter TCA cycle to generate 
ATP for closing KATP channel. TCA: Tricarboxylic acid cycle; α-KG: Alpha 
ketoglutarate; GDH: Glutamate dehydrogenase; OAA: Oxaloacetic acid.

Chandran S et al . Protein induced hypoglycaemia



MOLECULAR MECHANISMS OF AMINO 
ACID INDUCED HYPERINSULINAEMIC 
HYPOGLYCAEMIA
Amino acids are known to enhance insulin secretion 
from primary islet β-cell lines under appropriate condi-
tions. Leucine can stimulate insulin release on its own by 
allosterically activating GDH. In the β-cell mitochondria, 
GDH can stimulate insulin secretion by oxidative deami-
nation of  glutamate by raising α-KG, NADH/NAD and 
NADPH/NADP ratios. Protein sensitive hyperinsulinae-
mic hypoglycaemia occurs in three forms; gain-of-func-
tion mutations of  GLUD1[6], loss of  function mutations 
of  ABCC8/KCNJ11[7] and loss of  function mutations in 
HADH[8].

HYPERINSULINISM/
HYPERAMMONAEMIA SYNDROME
Hyperinsulinism/hyperammonaemia syndrome (HI/ 
HA) syndrome is the second most common cause of  
congenital hyperinsulinism-(CHI), characterized by both 
fasting and protein sensitive hypoglycaemia together with 
persistently elevated plasma ammonia levels[6]. HI/HA 
is likely the disorder described by Cochrane et al[52] in 
1955, with leucine sensitive hypoglycaemia in a child and 
her father. Zammarchi et al[54] first reported a case of  
hyperammonaemia with leucine sensitive hypoglycaemia. 
Activating mutations in the GLUD1 gene were reported 
to be the cause of  HI/HA syndrome by Stanley et al[6,32] 
in 1998. Children usually present with recurrent symp-
tomatic hypoglycaemic episodes (leucine sensitive) and 
persistent hyperammonaemia. 

Molecular basis of HI/HA
The enzyme, GDH has a complex allosteric regulatory 
mechanism and is highly expressed in the pancreas, liver, 
kidney and brain. GDH catalyses the reversible oxidative 
deamination of  glutamate to α-KG and ammonia, using 
NAD or NADP as co-factors. GDH is allosterically in-
hibited by GTP and activated by ADP and leucine[55]. 

In patients with HI/HA syndrome there is impair-
ment of  allosteric inhibition of  GDH by GTP leading 
to gain-of  GDH function. This causes increased leucine 
induced glutamate oxidation to α-KG, which explains the 
leucine sensitivity following a protein meal and postpran-
dial hypoglycaemia. These patients on fasting develop 
hypoglycaemia following release of  alanine and glutamine 
from skeletal muscle, which can stimulate insulin release 
mediated through GDH[56]. The mechanism of  hyperam-
monaemia in HI/HA syndrome is still unclear. In liver, 
increased GDH activity may lead to hyperammonaemia 
through 2 possible mechanisms: elevated activity of  
GDH causing increased levels of  ammonia from gluta-
mate and excessive depletion of  glutamate pool, reducing 
the availability of  N-acetyl glutamate (NAG) via NAG 
synthase reaction. NAG is an allosteric activator of  CPS 
1 and deficiency of  this can impair urea synthesis[32,57]. An 
alternative hypothesis for hyperammonaemia in HI/HA 
syndrome is that the excessive ammonia is due to abnor-
mal muscle catabolism[58]. More recently the source of  the 
hyperammonaemia in the HI/HA syndrome is thought 
to be the kidney[59]. 

Sirtuins and insulin secretion
Sirtuins are a family of  NAD+ dependant enzymes having 
a critical role in metabolic adaptation to stress. Sirtuin4 
(SIRT4), an intramitochondrial enzyme highly expressed 
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in pancreatic β-cells, also regulates GDH. SIRT4 repress 
the activity of  GDH by ADP-ribosylation in pancreatic 
β-cell mitochondria, down regulating insulin secretion 
mediated through amino acids. In normal glucose states, 
SIRT4 blunts amino acid-induced insulin secretion by 
repressing the activity of  GDH[60,61]. In contrary GDH is 
released from the SIRT4-mediated inhibition via an unde-
fined mechanism during fasting, thereby enhancing ami-
no acid-induced insulin secretion[61]. In SIRT4 knockout 
mice, GDH activity is enhanced in β-cells, leading to the 
enhancement of  glucose and amino acid-stimulated in-
sulin secretion[61]. So loss of  function mutation of  SIRT4 
can present with a phenotype similar to gain of  function 
mutation of  GLUD1. However no humans have yet been 
described with protein induced hyperinsulinism due to 
SIRT4 mutations[62]. 

Clinical presentation of HI/HA
The infants with HI/HA syndrome are usually born at 
term and not macrosomic. The major clinical feature is 
recurrent episodes of  symptomatic HH after first few 
months of  life. These may occur with fasting or can be 
provoked by protein feeding. Hypoglycaemia in HI/HA 
syndrome is not as severe as seen in HH due to KATP 
channel mutations. Hyperammonaemia, a characteristic 
biochemical marker of  HI/HA syndrome, is typically mild 
to moderate (up to 3-5 times the upper limit of  normal) 
and is not associated with lethargy, irritability, or coma. 
The plasma amino acid profile remains normal in HI/HA 
syndrome in contrast to abnormal profile observed in the 
other causes of  hyperammonaemia[62,63]. 

Protein diet or blood glucose levels do not affect the 
plasma ammonia levels in patients with HI/HA syn-
drome[54,64]. Kapoor et al[62] reported some patients who 
have mutations in GLUD1 with HH but with normal 
serum ammonia levels and the authors proposed that this 
could be due to mosaicism for the mutation in the liver, 
where the mutation is absent or seen in < 50% in hepa-
tocytes. Hyperammonaemia is resistant to detoxification 
compounds (sodium benzoate and N-carbamylglutamate) 
or protein-restricted diet[65]. 

Kapoor et al[62] have published the clinical character-
istics of  patients with HI/HA due to GLUD mutations. 
Of  the twenty patients most of  them were appropri-
ate for the gestational age and presented at a mean age 
of  23.4 wk. Nineteen of  them had hyperammonaemia. 
Thirteen of  the 17-screened probands had 7 different 
heterozygous mutations and three novel mutations were 
identified (N410D, D451V, P436L). More than 90% cases 
responded to diazoxide. Seizure was the most common 
(94%) symptom, 43% of  them developed generalized 
epilepsy with a higher preponderance in cases with muta-
tions in exons 6 and 7 of  GLUD1 gene[62,66]. 

Earlier in 2004, Stanley et al[32,57] has reported that 
over activity of  GDH in the brain decreases the levels of  
glutamate and glutamine, protecting the central nervous 
system from the neurotoxicity of  its accumulation. 

GDH transgenic mice harbouring the human GDH-

HI H454Y mutation develop a hypoglycaemia pheno-
type[67] and insulin secretion studies in these mice are 
associated with increased oxidative deamination of  gluta-
mate via GDH, this confirming the key role of  GDH in 
amino acid stimulated insulin secretion.

Using a β-cell-specific GDH KO mouse model 
[βGlud1 (-/-)] islets isolated from these mice showed di-
minished of  insulin release when stimulated by glutamine 
combined with 2-aminobicyclo (2.2.1) heptane-2-car-
boxylic acid or l-leucine[68]. Further studies in these mice 
showed that permissive levels of  glutamate were required 
for the full development of  glucose-stimulated insulin se-
cretion and that GDH plays an indispensable role in this 
process.

Management of HI/HA
Treatment of  HI/HA is aimed at correction of  fasting 
and protein induced hypoglycaemia. Diazoxide remains 
the main stay of  treatment and affected patients are well 
controlled with a dose of  5-15 mg/kg per day[69]. Being 
a KATP channel agonist, diazoxide prevents β-cell mem-
brane depolarization and inhibits insulin secretion by 
keeping KATP channels open. Diazoxide is usually com-
bined with hydrochlorothiazide in neonates to counteract 
its fluid retention side effects. Hypertrichosis seen in in-
fants on diazoxide usually resolves on discontinuation[70]. 

Recent reports of  large symptomatic pericardial effusion 
in infants on diazoxide, warrants meticulous cardiovascu-
lar monitoring while on treatment[71].

Green tea flavonoids and HI/HA
Naturally occurring compounds from green tea, discov-
ered by the Chinese Emperor Shen-Nung in 2737 B.C. 
has been used as a remedy to treat a number of  ailments, 
including diabetes mellitus[72]. Green tea is a significant 
source of  a type of  flavonoid called catechin, which in-
cludes epigallocatechin gallate (EGCG), epigallocatechin, 
epicatechin gallate (ECG) and epicatechin, of  which 
EGCG and ECG have a strong inhibitory effect on GDH 
function[72,73]. 

Animal studies have shown that ECG binds to the 
same site as the allosteric regulator ADP and hijacks the 
ADP activation site. In pancreatic islet cells of  transgenic 
mice expressing a human HI/HA form of  GDH, a hy-
per-response to glutamine caused by dysregulated GDH 
is blocked by the addition of  EGCG[73]. Above all EGCG 
has the property to inhibit GTP-insensitive GDH muta-
tions, opening the window of  therapeutic potential to 
treat GDH hyperinsulinism. EGCG also has been shown 
to block glutamine stimulated calcium influx and insulin 
secretion in GDH transgenic mice islets[74]. 

Several novel GDH inhibitors are identified and are 
under trial[75]. Current evidence support the pathological 
basis of  hyperammonaemia to be due to gain in GDH 
activity and excessive oxidation of  glutamate, reducing 
the level needed for the synthesis of  NAG and thereby 
slowing the clearance of  ammonia (Figure 2). In this con-
text N-carbamylglutamate (Carglumic acid), a carbamoyl 
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phosphate synthetase activator has a potential role in 
the treatment of  hyperammonaemia in HI/HA syn-
drome[69,76,77]. De novo mutations in GLUD1 have been 
reported in 70% of  GDH-HI cases with the remainder 
inherited in an autosomal dominant pattern[69]. 

PROTEIN INDUCED HYPOGLYCAEMIA 
DUE TO DEFECTS IN KATP CHANNEL 
GENES 
Mutations in the ABCC8/KCNJ11 genes are the most 
common cause of  CHI[5]. The observation that patients 
with KATP channel null mutations can develop HH follow-
ing high protein meal in the absence of  leucine sensitiv-
ity[78], demonstrates that amino acids can induce HH via 
GDH and KATP channel independent pathways. Patient 
with GLUD1 mutations show leucine sensitive hypogly-
caemia whereas those with ABCC8/KCNJ11 mutations 
are not leucine sensitive. Thus, protein-induced HH is 
not necessarily synonymous with leucine-sensitive HH. 
The GDH and KATP channel independent mechanism of  
protein induced HH can be explained through the direct 
induction of  insulin release by glutamine, formed by the 
ATP-dependent condensation of  glutamate with ammo-
nia, catalysed by glutamine synthetase (Figure 5). 

Role of glutamine in insulin secretion in patients with 
KATP channel defects
Glutamine plays a pivotal role in glucose and amino 
acid stimulated insulin secretion as a signalling molecule, 
which is followed by β-cell depolarization and influx of  
calcium and insulin release. Prerequisites for glutamine 
to function in β-cell include elevated ATP levels and in-
creased cytosolic calcium[7]. Role of  glutamine in stimula-
tion of  insulin release has been shown in patients with 
mutations of  SUR 1[78]. Animal studies have shown that 
β-cells of  SUR 1-/- mice are markedly sensitive to gluta-

mine stimulation[7,67]. Li et al[7,67] has shown that β-cells 
lacking SUR 1 protein were hyper-responsive to gluta-
mine and amino acid mixture but were refractory to glu-
cose stimulation. This amino acid response was reduced 
by 60% when glutamine was omitted from the amino 
acid mixture[7]. Two possible mechanisms are considered 
but still remain unsettled: Metabolism of  amino acids is 
enhanced while glucose is impaired in SUR 1 lacking β-cell 
which could be the result of  persistent elevation of  cyto-
solic calcium and secondly glutamine may be triggering 
insulin release by a hypothetical novel mechanisms like 
activation of  protein kinase pathways[11,78,79].

PROTEIN INDUCED HYPERINSULINAEMIC 
HYPOGLYCAEMIA DUE TO LOSS OF 
FUNCTION MUTATION IN HADH GENE 
Mutations causing genetic defects have been described in 
many of  the enzymes involved in mitochondrial fatty acid 
oxidation. Recently, mutations in the penultimate enzyme 
in the fatty acid oxidation chain have been described that 
result in quite different symptoms from those normally 
seen. Patients with the mutations in HADH present with 
protein (leucine)-induced HH, suggesting a link between 
fatty acid oxidation, amino acid metabolism and insulin 
secretion[80].

Short-chain-3-hydroxyacyl-CoA dehydrogenase cat-
alyses the penultimate reaction of  the β-oxidation cycle 
for medium and short chain 3-hydroxy fatty-acyl-CoA’s. 
SCHAD deficiency impairs short chain fatty acid oxida-
tion. First insights into the molecular mechanism involved 
in SCHAD deficiency came with the observation of  
Clayton et al[8] (2001) that fatty acid beta oxidation defect 
is associated with HH, supporting the concept of  lipid 
signalling pathway in the control of  insulin secretion[81].

Clinical aspects of patients with HADH mutations
Affected children with SCHAD deficiency on fasting as 
well as following a protein meal, either present with mild 
late onset hypoglycaemia or severe neonatal hypoglycae-
mia with raised levels of  fatty acid metabolites including 
plasma hydroxybutyrylcarnitine and urinary 3-hydroxy-
glutaric acid[82,83]. Most often they present with hypogly-
caemic seizures. Kapoor et al[84] in 2009 reported for the 
first time that human mutations of  HADH gene cause 
severe dietary protein sensitivity leading to HH and they 
may have normal acylcarnitine and urinary organic acid 
profiles. These cases had novel HADH gene mutations. 
The enzymes GDH and SCHAD have a direct protein-
protein interaction, which is lost in patients with HADH 
mutations causing leucine induced HH. Leucine sensitiv-
ity is evident in patients with HADH gene mutations 
(Figure 3). There is no associated loss of  inhibitory effect 
of  GTP on GDH, as seen with GLUD1 mutations[85].

The interaction between SCHAD and GLUD1
SCHAD has a vital role in insulin secretion, suggested by 
the high degree of  expression of  HADH gene in β-cells 
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Figure 5  Protein Induced Hypoglycaemia due to defects in KATP channel 
genes. GDH: Glutamate dehydrogenase; GK: Glucokinase.
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of  pancreas[86]. Hardy et al[87], using RNA interference, iden-
tified HADH gene as one of  the 4 essential genes required 
for normal insulin secretion. FOXA2, a transcription fac-
tor encoded by the gene FOXA2, is essential for β-cell 
differentiation and its function has been shown to regulate 
HADH expression[88]. Additionally, severe hyperinsulinism 
after leucine tolerance testing was reported in all patients 
having HADH gene mutations[85]. Further reports on the 
loss of  protein-protein interaction in human cases between 
SCHAD and GDH were published[51,83,89]. Heslegrave et 
al[85] made a similar observation of  the loss of  interaction 
between SCHAD and GDH in lymphoblasts. 

Sund et al[90] showed severe HH in FOXA2 β-cell KO 
mice. Islets from these mice were shown to have reduced 
expression of  both SCHAD and Kir6.2 and had severe 
HH. Li et al[51] showed that HADH KO mice developed a 
hyperinsulinaemic response following leucine loading and 
an exacerbation of  the same on addition of  glutamine and 
alanine. When glutamine and leucine were removed from 
the amino acid mixture, KO mice islets failed to induce 
HH, suggesting the role of  GDH activation for abnormal 
insulin secretion. 

Recent studies on HADH KO mice showed an in-
creased sensitivity to amino acid stimulated insulin secre-
tion indicating activation of  the glutaminolysis pathway 
via GDH to increase ATP production and thereby 
insulin. Binding of  SCHAD to GDH was also shown 
in immunoprecipitation experiments. These research 
works indicate that hyperinsulinism in SCHAD-deficient 
states is caused by loss of  “moonlighting function” (a 
protein having additional functions in other pathways) 
of  SCHAD protein, which otherwise provides a direct 
inhibitory regulation of  GDH in β-cells[51,91]. So in pan-
creatic β-cells, mutations resulting in the absence of  
SCHAD protein leads to abnormal activation of  GDH, 
causing hyperinsulinism. 

The activation of  GDH in HADH gene mutant pa-
tients or mouse KO models is limited to pancreatic β-cells 
and hence deficiency of  SCHAD enzyme does not lead 
to hyperammonemia unlike in HI/HA syndrome[51,92]. 
Further evidence for protein-protein interaction between 
enzymes came from Zhang et al[93]. They showed the co-
precipitation of  GDH with SCHAD when anti-SCHAD 
antibody was used as bait in wild type mouse liver mito-
chondria, confirming the previous observation that GDH 
activation in SCHAD deficiency is due to loss of  protein-
protein interaction. 

Diazoxide remains the treatment of  choice in HH 
due to HADH gene mutations. This also confirms the 
intactness of  KATP channel in patients with SCHAD defi-
ciency[8,82,84,92].

CONCLUSION
The interplay between glucose metabolism and that of  
the two other primary nutrient classes, amino acids and 
fatty acids is critical for regulated insulin secretion. Pro-
tein induced HH is observed in patients with mutations 

in GLUD1, HADH and ABCC8/KCNJ11. GDH and 
SCHAD play important roles in integrating amino acid 
and fatty acid signals for insulin secretion.
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Abstract
Atherosclerotic involvements are an essential causal 
element of prospect in diabetes mellitus (DM), with ca-
rotid atherosclerosis (CA) being a common risk-factor 
for prospective crisis of coronary artery diseases (CAD) 
and/or cerebral infarction (CI) in DM subjects. From an-
other point of view, several reports have supplied aug-
menting proof that hepatocyte growth factor (HGF) has 
a physiopathological part in DM involvements. HGF has 
been a mesenchymal-derived polyphenic factor which 
modulates development, motion, and morphosis of di-
verse cells, and has been regarded as a humor interme-
diator of epithelial-mesenchymal interplays. The serum 
concentrations of HGF have been elevated in subjects 
with CAD and CI, especially during the acute phase of 

both disturbances. In our study with 89 type 2 DM pa-
tients, the association between serum concentrations 
of HGF and risk-factors for macrovascular complications 
inclusive of CA were examined. The average of serum 
HGF levels in the subjects was more elevated than the 
reference interval. The serum HGF concentrations asso-
ciated positively with both intimal-media thickness (IMT) 
(r  = 0.24, P  = 0.0248) and plaque score (r  = 0.27, P  = 
0.0126), indicating a relationship between the elevated 
HGF concentrations and advancement of CA involve-
ments. Multivariate statistical analysis accentuated that 
serum concentrations of HGF would be associated inde-
pendently with IMT (standardized = 0.28, P  = 0.0499). 
The review indicates what is presently known regarding 
serum HGF might be a new and meaningful biomarker 
of macroangiopathy in DM subjects.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Hepatocyte growth factor (HGF) has been a 
mesenchymal-derived polyphenic factor which modu-
lates development, motion, and morphosis of diverse 
cells, and has been regarded as a humor intermedia-
tor of epithelial-mesenchymal interplays. The serum 
levels of HGF in diabetes mellitus (DM) subjects might 
be assayed by balancing of stimulators (hypertension, 
atheromatous arteriosclerosis, etc .) and suppressors 
(hyperglycemia, transforming growth factor-, angio-
tensin Ⅱ, etc .). The elevated serum level of HGF might 
have been regarded as an indicator of the DM involve-
ments seriousness. Accordingly, the concentration of 
serum HGF might be a new and meaningful biomarker 
of macroangiopathy in DM subjects.
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INTRODUCTION 
Diabetes mellitus (DM) is a complex metabolic distur-
bance and one of  the principal chronic diseases interna-
tionally. The planetary number of  diabetic (DM) patients 
is approximated at 382 million (mill) in 2013, and it is 
anticipated to be over 592 mill by the year 2035[1]. Close 
to 5.1 mill the dead in the 20-79 years aged group might 
be due to DM in 2013, elucidating 8.4% of  the global 
all-cause deathrate[2]. In addition to the effect on the 
subjects’ life quality, the microvascular [diabetic retinopa-
thy (DR), diabetic nephropathy (DN), neuropathy] and 
macrovascular complicating diseases (coronary heart dis-
eases, peripheral artery diseases, and stroke) of  DM also 
increase the internal healthcare spendings. Approximated 
planetary healthcare expendings to care and preclude DM 
and its complicating diseases are anticipated to total least-
wise 548 billion USD in 2013. By 2035, this number is 
proposed to surpass some 627 billion USD[3]. Worldwide, 
DM is probable to be the fifth leading killer[4]. 

DM individuals, both type 1 DM (T1DM) likewise 
T2DM, have an elevated hazard of  growing endorgan 
dysfunction. In a clinical manner, the conception of  
DM cardiac myopathy is determined as cardiac ventricle 
damage that arises irrespective of  hypertension (HTN) 
and coronary artery disease (CAD), namely as a discrete 
primitive disorder course that generates secondarily to a 
damage of  metabolism and leads to morphological and 
functioning anomalies of  the myocardia guiding to heart 
failure (HF). Human DM cardiac myopathy has been 
chiefly demonstrated by the damage of  diastole, that 
might introduce the the damage of  systole growing[5]. In-
triguingly, solely roughly 30% of  T2DM and T1DM sub-
jects make grow DN, in contradistinction to DM cardiac 
myopathy that is existed in half  of  T2DM subjects and 
DR investigated in over 90% of  T1DM individuals[6,7]. It 
suggests a distinct timecourse of  DM endorgan disorder. 
Therefore, in a differential manner, respective cell types 
would be exact to hyperglycemia-caused disturbance pos-
sibly for sake of  distinct expression or activeness of  mo-
lecular factors would be in charge of  damage activating 
and progression[8]. 

Atherosclerotic complicating diseases are an essen-
tial causal element of  prognosis in T2DM, with carotid 
atherosclerosis (CA) being a common risk-factor for 
prospective crisis of  CAD and/or cerebral infarction 
(CI)[9,10]. Some molecules, such as high-sensitivity C-re-
active protein (hs-CRP) and interleukin-18, would have 
been presented to be atherosclerotic biomarkers[11,12]. 
Preclusion of  DM and its involvements, early invention 
of  disease stages, and interventions that would act in the 
presence of  hyperglycemia to avoid, retard or inverse the 

involvements are the principal concerns. Biomarkers have 
been investigated for understanding the structures of  
the evolution and progress of  DM involvements[13]. This 
review presents what is currently known regarding serum 
hepatocyte growth factor (HGF) level might be a new 
and meaningful biomarker of  DM macroangiopathy.

PLEIOTROPHIC EFFECTS OF HGF
HGF has been a mesenchymal-derived polyphenic factor 
which modulates diverse cells development, motion, and 
morphosis and it is thought that HGF would be a body 
fluid intermediator of  epithelial-mesenchymal interplays. 
HGF has been distinguished as a new element of  the fam-
ily of  endothelium-specific growth factors and a topical 
HGF system, configured HGF and its particular receptor 
mesenchymal epithelial transition factor (c-MET, MET), 
would have been presented in blood vessel cells both in 
vivo and in vitro[14-17]. Additionally, there is the proof  that 
HGF induces the security and/or restoration of  vascular 
endothelical cells hurt by HTN, with elevated serum HGF 
concentrations happening dependent on endothelial cell 
dysfunction[18,19]. HGF has been a polyphenic cytokine 
related to tissue security and restoration of  the vascular 
endothelia[13-18]. Furthermore, it has been demonstrated 
that HGF would have in vitro mitogenic action in culti-
vation systems, and is deemed to be a new angiogenetic 
growth factor[20] (Figure 1). Some of  investigations have 
demonstrated that HGF/scatter factor (SF) is represented 
by smooth muscle cells (SMCs) but works on vascular en-
dothelical cells, not SMCs in the artery wall[17]. Neverthe-
less, different investigations have suggested that SMCs can 
react to HGF/SF[15,16]. McKinnon et al[21] have restudied 
expression and action of  HGF/SF and its receptor MET 
in artery SMC and vascular endothelical cell cultivations 
and in total arteries after superficial or deep damage or 
atherogenicity. High-density cultivations of  SMCs brought 
about HGF/SF but did not express MET, meanwhile 
SMCs, at the leading-edge of  damaged cultivations, ex-
pressed both ligand and receptor and displayed a con-
spicuous motion and development reaction to HGF/SF. 
In accordance with these outcomes, HGF/SF and MET 
expression was indiscernible in the media of  undamaged 
carotid arteries but was caused after deep artery damage 
in areas of  SMC migration in the neointima. In addition, 
strong MET expression was found in the SMCs of  the 
atheromatous arteriosclerotic focuses of  homozygous 
apoE(-/-) mice, meanwhile HGF/SF was expressed by 
macrophage-derived foam cells. These results showed that 
MET was caused in migrating and proliferating SMCs and 
that HGF/SF and MET were key agents of  the SMC re-
action in atherogenicity[21].

ANTI-APOPTOTIC ACTION OF HGF IN 
ENDOTHELIAL CELLS
It was focalized that the character of  HGF would be 
a new, element of  the angiogenetic proliferators[15,18]. 
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Regional vascular HGF output was reduced by elevated 
glucose via the transforming growth factor-β (TGF-β) 
activating[22]. It was crucial that genetically modified HGF 
elevated bcl-2 protein without impacting bax protein and 
weakened the elevated glucose-caused caspase 3 and 9 ac-
tivating[23]. The anti-apoptotic effect of  HGF by bcl-2 ini-
tiation was possibly efficient against not merely elevated 
glucose conditions, but other stimulus related to activat-
ing of  the mitochondrial-mediated apoptotic pathway, 
because HGF weakened caspase 3 activating stimulated 
by tumor necrosis factor-alpha by the phosphatidylino-
sitol 3-kinase pathway, that was related to Akt activat-
ing[24]. These anti-apoptotic effects of  HGF are not only 
unequaled as vascular endothelial growth factor (VEGF) 

and fibroblast growth factor but also demonstrated such 
effects. In addition, expression of  VEGF and its recep-
tor were reduced in the DM rats myocardia[25], as well 
as HGF[26]. Nonetheless, an unequalled latent mode of  
HGF is the capacity of  immediate relationship between 
bcl-2 and MET due to bag-1 protein. The bag-1 protein 
has been accounted to interplay with the bcl-2 protein 
and to collaborate with the bcl-2 protein to inhibit apop-
tosis[27]. Of  consequence, the bag-1 protein seems to 
reduce apoptosis by binding to bcl-2, the raf-1 protein 
kinase, and MET[28]. Besides, the conjunctive activating 
of  these bcl-2-related genes might take part the apoptosis 
inhibition by HGF. It has been shown that bcl-2 affects 
antiapoptotic action by two modes: segregation of  the 
executes of  two major caspases-pro-caspase 9 and pro-
caspase 8-and suppression of  apoptogenic mitochondrial 
alterations, inclusive of  cytochrome c secrete and loss, 
leading to apoptosis inductive factor secrete from isolated 
mitochondria[29,30]. In addition, it has been described that 
HGF could prevent against cell death by the phosphory-
lation of  bad via phosphatidylinositol 3-kinase and aug-
ment bcl-xL[31], and bax translocation can be modulated 
by a configurational alteration leading to the exposition 
of  its BH3 domain, and phosphatidylinositol 3-kinase 
precludes apoptosis by the depression of  configurational 
alteration of  the bax BH3 epitope[32]. These findings sug-
gested that vascular endothelical cell death, particularly 
apoptosis, in hyperglycemia could be weakened by ad-
dition of  growth factors, which would be potent anti-
apoptotic factors (Figure 2)[33].

SERUM HGF CONCENTRATION IN T2DM 
PATIENTS
The previous studies showed that hyperglycemia reduced 
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of  PDR in T2DM subjects. Afterwards, they reported 
that individuals with advanced grades of  arteriosclerotic 
changes had higher serum HGF levels[38]. By contrast, 
they did not show a positive relationship between HTN 
and the level of  serum HGF. As they included patients 
treated with antihypertensive drugs, it would be useful to 
assess the correlation between the level of  serum HGF 
and BP of  patients not treated with such drugs. It has 
also been reported that serum HGF was increased within 
3 h after the beginning of  pectoralgia in acute myocardial 
infarction (MI) subjects[39]. Attractively, increased HGF 
concentrations were conspicuously more common than 
those of  creatine kinase (CK) within 3 h, and the in-
creased level associated well with that of  serum CK at 6-9 
h after the beginning of  acute MI. Therefore, HGF assay 
is a precise early checkup approach of  the presence of  
arteriosclerotic lesions and acute MI. Serum HGF con-
centration may be a beneficial biomarker for investigating 
the cardiovascular disease development. 

HGF is a member of  the kringle proteins family, dis-
tinguished by a triple disulfide loop configuration (kring-
les) that communicates protein/protein and protein/cell 
interplay[40]. Consequently, HGF might serve a function 
in the modulation of  thrombi and atheromatous arterio-
sclerosis. The kringle family to which HGF belongs con-
tains tissue-plasminogen activator (t-PA), plasminogen, 
apolipoprotein (a) [Lp (a)] and urokinase. The effect of  
other factors associated with thrombi and atheromatous 
arteriosclerosis on the serum concentration of  HGF 
was also evaluated, with the outcome that there was no 
remarkable relationship between the serum concentra-
tions of  HGF and total cholesterol. Likewise, the levels 
of  t-PA, plasminogen activator inhibitor 1 and Lp (a) did 
not demonstrate any relationship with the concentration 
of  serum HGF.

SERUM HGF CONCENTRATION IN T1DM 
PATIENTS
Nowak et al[41] hypothesized that the high level of  HGF 
determined in T1DM subjects might be a significant 
DR progression biomarker and that the concentration 
of  HGF might be a PDR risk indicator. Average levels 
of  serum HGF in the control subjects were remarkably 
lower than in the T1DM subjects. They determined a 
meaning increment in the concentrations of  serum HGF 
in T1DM subjects with PDR in comparison with the 
control subjects. Average concentrations of  serum HGF 
were conspicuously higher in T1DM subjects with PDR 
than in T1DM subjects without DR. The concentration 
of  HGF might be elevated in T1DM subjects with PDR, 
and levels increment with the DR progression, indicat-
ing that HGF takes on a role in the etiology of  PDR in 
T1DM patients[41].

HGF AND CI AND CAD 
The concentrations of  serum HGF are elevated in sub-

regional HGF output in blood vessel unstriped muscle 
cells and vascular endothelical cells[22,34], Morishita et al[22] 
postulated that hyperglycemia influences HGF output in 
diverse apparatuses, such as the renal. If  so, the serum 
level of  HGF might be suppressed in DM. In a KKAy 
mice model of  T2DM, the concentration of  serum HGF 
was conspicuously decreased as compared to that in 14 
wk of  aged control mice[35], while renal and cardiac HGF 
concentration were remarkably decreased in KKAy mice 
as compared to those in C57BL mice. In this way, they 
moreover evaluated their hypothesis in human subjects 
in order to explore the association between the level of  
serum HGF and the severeness of  T2DM. As supposed, 
the concentration of  serum HGF was remarkably in-
versely correlated with HbA1c level[35]. In an interesting 
manner, the concentration of  serum HGF in T2DM sub-
jects was remarkably lower than that in non-DM subjects. 
There was no meaningful divergence in the serum HGF 
concentration between male and female subjects in either 
group. It is remarkable that there is a divergence between 
increased serum HGF in hypertensive (HTN) and de-
creased serum HGF in T2DM, whereas the tissue HGF 
levels are decreased in both diseases. The liver, lung and 
kidney are supposed to be major sources of  serum HGF. 
High blood pressure (BP) in HTN patients does not 
cause injury to the liver or lung, while high blood glucose 
is known to influence the liver of  such patients. Indeed, 
activation of  serum TGF-β, a strong negative regula-
tor of  HGF, has been shown to be increased in T2DM 
patients[36]. In HTN, on the other hand, because the liver 
and lung are not injured by high BP, they can secrete 
HGF into serum in response to HTN damage. It is likely 
that this difference in the changes of  serum HGF level 
between HTN and T2DM is due to the different influ-
ences exerted by high BP and high blood glucose on the 
major source of  circulating HGF. In a contrasting man-
ner, the concentration of  serum HGF in T2DM subjects 
with HTN was markedly more elevated than that in the 
normal control subjects or that in T2DM subjects with 
no HTN.

Additionally, the concentration of  serum HGF in 
all T2DM subjects was conspicuously correlated with 
systolic, but not with diastolic, BP. The concentration of  
serum HGF in T2DM subjects without HTN complica-
tions was markedly more elevated than that in the normal 
control subjects. The concentration of  serum HGF in 
T2DM subjects with HTN involvements was higher than 
that in the other subjects. Nishimura et al[37] examined 
the association between the level of  serum HGF and 
proliferative DM retinopathy (PDR), which is character-
ized by the major characteristic of  retinal neovasculariza-
tion. They found that the serum HGF concentration in 
T2DM individuals with no DR was more reduced than 
that in non DM individuals. Serum HGF concentra-
tion was elevated in PDR subjects who had not received 
photocoagulation, but not in those who had received 
photocoagulation. They concluded that the measurement 
of  serum HGF may be helpful in predicting the presence 
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jects with CI and CAD, especially in the acute stage of  
both damages[39,42]. Besides, Nakamura et al[35] have shown 
that the concentrations of  HGF were elevated in T2DM 
subjects who had HTN involvements such as arterioscle-
rosis. In addition, it has been described that the serum 
levels of  HGF would be elevated in subjects during the 
beginning of  acute MI and ischemic apoplexy[39,42]. 

Rajpathak et al[43] carried out a nested case-control 
study to constructively assessed the relationship between 
plasma HGF and ischemic apoplexy risk within the 
Women’s Health Initiative Observational Study, a cohort 
of  50 to 79 years aged postmenopausal women. Base line 
plasma HGF concentrations were associated positively 
with body mass index (BMI), systolic BP, low-density li-
poprotein cholesterol, insulin resistance, and inflammato-
ry markers, such as CRP, and negatively with high-density 
lipoprotein cholesterol (HDL-C) (all P < 0.05). Base line 
plasma HGF concentrations were more elevated among 
cases than control subjects (geometric means, 601.8 vs 
523.2 pg/mL; P = 0.003). Circulating plasma HGF levels 
are correlated with an elevated incidental ischemic apo-
plexy risk, extraneous to obesity and other cardiovascular 
disease risk-factors, amongst the 50 to 79 year aged post-
menopausal women[43]. The white matter lesions (WML) 
existence is an essential predictive factor for the apoplexy 
onset. Increased levels of  HGF are correlated with a high 
T2DM subjects death rate. The BMI was more elevated 
in the WML-positive subjects than that in the WML-neg-
ative subjects. Plasma concentrations of  triglycerides were 
higher while HDL-C was more reduced in the WML-pos-
itive subjects than in the WML-negative subjects. Fasting 
plasma glucose (P < 0.0001), insulin levels (P < 0.0001), 
HOMA index (P < 0.0001) and HGF (P < 0.0001) levels 
were more elevated in the WML-positive subjects than in 
the WML-negative subjects. Multiple regression analysis 
showed that WML was independently prognosticated by 
the elevated HGF and insulin resistance (P < 0.0001 and 
P < 0.0001 respectively). The auxiliary investigation dem-
onstrate that the WML existence was correlated with the 
increased HGF and insulin resistance in Japanese T2DM 

subjects[44].
Presently, the utilization of  HGF as a biomarker of  

circulatory system disorder has been in the potent contro-
versy as some reports showed elevated serum HGF level 
in HF subjects. Lamblin et al[45] studied the predictive val-
ue of  2 cytokines, HGF and, VEGF in subjects assessed 
for a decreased left ventricular ejection fraction (LVEF). 
Nevertheless, elevated concentrations of  HGF were 
powerfully correlated with biomarkers of  congestive HF 
severeness for example more elevated New York Heart 
Association class and more reduced LVEF, likewise clini-
cal results inclusive of  both cardiac and total deathrate 
(Figure 3). The relationship of  HGF with harmful results 
continued multivariate statistical analysis that integrated 
latest style of  risk-factors for example brain natriuretic 
peptide (BNP) and peak oxygen consume, a significant 
stage when evaluating the novel biomarker. Thoroughly, 
the concentrations of  HGF would be more elevated in 
subjects with a heart trouble [1001 (741-1327) pg/mL] 
than in the subjects without it [773 (610-1045) pg/mL, 
P < 0.000]. Comparable outcomes would be determined 
when total deathrate was conceived. The concentrations 
of  HGF would be more elevated in the subjects that 
deceased of  any cause [940 (748-1306) pg/mL] than in 
subjects that would not. In an important way, the levels 
of  HGF were intensely correlated with age, DM, and all 
biomarkers of  congestive HF severeness. Accordingly, 
the survival curves suggested a worsened result for sub-
jects with high HGF concentrations. In addition, Lamblin 
et al[46] investigated a first anterior Q-wave MI subjects. It 
was found that the plasma concentrations of  HGF would 
be positively correlated with left ventricular (LV) vol-
umes, wall motion systolic index, early transmitral veloc-
ity to mitral annular early diastolic velocity ratio, and BNP 
concentrations. Elevated concentrations of  HGF would 
be correlated with more elevated CRP concentrations. 
Meanwhile, the concentrations of  HGF were inversely 
correlated with LVEF. Multiple regression analysis dem-
onstrated that both CRP and BNP were independently 
correlated with the concentrations of  HGF at 3 and 12 
mo. Subjects that deceased or were rehospitalised for HF 
during follow-up had more elevated concentrations of  
HGF at 1 mo, 3 mo, and 1 year after MI. Therefore, the 
circulating concentrations of  HGF associated with all 
markers of  LV remodeling after MI and would be corre-
lated with rehospitalization for HF[46].

Susen et al[47] investigated the correlation between base 
line concentrations of  the serum angiogenic growth fac-
tors, VEGF and HGF, and clinical result in 488 consecu-
tive subjects related to elective percutaneous coronary 
revascularization (PCR) with no heparin pre-treatment. 
This primary endpoint, a complex of  decease and MI, 
happened in 44 subjects at a median follow-up of  14.9 
mo. At base line, the concentrations of  HGF were in 
relation to CRP concentrations, DM, and late clinical 
unstability. HGF had a notable positive correlation (P = 
0.003) with the primary endpoint in the univariate analysis. 
A same trend was found for VEGF (P = 0.11). The only 
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three variables remarkably correlated with the primary 
endpoint were HGF (P = 0.004), CRP (P = 0.007), and 
DM (P = 0.04) in the multivariate Cox model. It is dem-
onstrated that an elevated serum HGF concentration is an 
independent predictive factor of  clinical outcomes during 
follow-up and is associated with other surrogate markers 
of  the atheromatous arteriosclerosis activeness in subjects, 
without heparin pre-treatment, related to PCR[47]. 

HGF would be a magnetic biochemical marker in 
congested HF subjects therefore it is augmented in the 
circumstance of  cardiac muscle cell apoptosis and active 
tissue repair, whereby ascertaining patients that are at 
elevated hazard of  harmful clinical results. Nevertheless, 
based off  of  obtainable proof, the the heart disorder 
pathogenesis should be assumed before utilizing HGF as 
a biochemical marker[48].

HGF AND DM CARDIAC MYOPATHY
The part of  HGF/MET signalling in tissue of  heart is 
chiefly attached to ischemic injury and little is recognized 
about its part in DM cardiac myopathy. Thus HGF brings 
about the vascular endothelical cells preservation or repa-
ration and reduced serum and tissue concentrations of  
HGF would be referred for the advance of  vascular en-
dothelical cell injury caused by DM[49], the similar would 
be real for tissue of  heart. Generally, elevated HGF 
would be supposed to be an involvements biomarker. 
Nevertheless, regional HGF output in blood vessel cells 
would be presented to be remarkably depressed by elevat-
ed D-glucose[50] that indicates reduced regional HGF gen-
eration might promote the atheromatous arteriosclerotic 
blood vessel alterations advance likewise cardiomyocytes 
damage in DM. Successively, an adaptative increment of  
HGF in progressed DM might promote the supposition 
that the levels of  serum HGF are increased dependent 
on diverse apparatus damages. 

Nakamura et al[49] discovered a serum level of  HGF 
decrement in DM subjects with no HTN but an incre-
ment in subjects concerned about both DM likewise arte-
rial HTN. In the latter group, the level of  HGF succes-
sively elevated with the degree of  HTN and it positively 
associated with systole BP in DM subjects. Furthermore, 
both clinical and animal experimental result indicated that 
the serum level of  HGF was inversely associated with 
HbA1c in patients with no involvements, demonstrating 
that the damage of  this vascular endothelical security in 
line with the DM seriousness. General HGF might affect 
in anagenesis as a humor intermediator, nevertheless it 
might be deficient to accelerate anagenesis, due to a dec-
rement in regional HGF generation. Finally, the HGF/
MET signalling would play an essential part in heart 
injury for example DM cardiac myopathy and precise 
discrimination of  this part might ask for a new directions 
for agent exploitation and to assist better prospective 
DM care[8].

HGF AND THERAPEUTIC DRUG
Recently, HGF has been shown to be a downstream ef-

fector of  peroxisome proliferator-activated receptor 
(PPAR)γ agonists[51]. Sanada et al[52,53] demonstrated that 
HGF exhibited anti-inflammatory and antioxidant ef-
fects using HGF transgenic mice. In particular, the fact 
that HGF has potent antifibrotic effects in both the heart 
and kidney through blockade of  the profibrotic actions 
induced by angiotensin Ⅱ (Ang Ⅱ) and TGF-β1, and 
stimulation of  degradation of  fibrosis via matrix metal-
loproteinase activation is the center of  interest[54-56]. In 
an interesting manner, amongst the accepted angiotensin 
receptor blockers (ARBs), irbesartan and telmisartan, so-
called “metabosartans” [57], were presented to comprise 
a singular fraction of  ARBs that can also be actuating 
PPARγ[58,59]. Indeed, telmisartan, reduced renal fibrosis 
and inflammation through the PPARγ-HGF pathway, 
independently of  Ang Ⅱ type 1A receptor (AT1aR) 
blocking, in a unilateral ureteral obstruction model using 
AT1aR knockout (AT1aR-KO) mice[60]. 

Kusunoki et al[60] further investigated whether irbesar-
tan has specific-organ protective effects via the PPARγ-
HGF pathway independent of  AT1aR blockade in a 
mouse fibrosis model, because, in large clinical trials such 
as the Irbesartan Microalbuminuria Type 2 Diabetes in 
Hypertensive Patients study and the Irbesartan Type Ⅱ 
Diabetic Nephropathy Trial, irbesartan demonstrated po-
tent renoprotective effects irrespective of  its hypotensive 
action[61,62]. 

“Aldosterone breakthrough” found in subjects accept-
ing longterm care with angiotensin blocking is intensely 
correlated with elevated risk of  LV hypertrophy, poor 
exercise capacity, refractory proteinuria, and decreasing 
glomerular filtration rate via the profibrotic effects of  al-
dosterone. They used salt-sensitive HTN mediated by al-
dosterone and 1% NaCl infusion in AT1aR-KO mice, as 
this has been shown to induce severe cardiac fibrosis[63,64]. 
They demonstrated that irbesartan, which has not merely 
AT1aR- blockade actions, but PPARγ agonistic actions 
attended by HGF expression, suppressed organ injury 
by aldosterone and salt treatment[65]. Second-generation 
ARBs such as irbesartan, which has the double effects of  
AT1aR blocking and PPARγ activating, may have clini-
cal merit for the care of  HTN subjects with aldosterone 
breakthrough. 

Calcium channel blockers are accounted to have 
protecting actions on the vascular endothelia in vivo and 
in vitro. Notably, nifedipine, amongst numerous calcium 
channel blockers, was demonstrated to ameliorate vas-
cular endothelical damage in HTN subjects. Yamasaki 
et al[66] investigated the immediate actions of  nifedipine 
on smoke-caused vascular endothelical damage, because 
tobacco use per se is a principal factor in vascular endo-
thelical cells dysfunction, likewise HTN. They studied 
whether nifedipine would ameliorate endothelial action 
in 10 normotensive tobacco users with no atheromatous 
arteriosclerotic risk-factors. Nifedipine did not influence 
BP and cardiac rate of  normotensive tobacco users. They 
determined forearm blood flow (FBF) by strain-gauge 
plethysmography after 2 and 4 wk of  therapy. Alterations 
in vasorelaxant reaction to responsive hyperemia were 
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conspicuously ameliorated in nifedipine-treated patients 
(P < 0.05), meanwhile there was no remarkable alteration 
in FBF reaction in controls. Furthermore, to investigate 
the machinery of  the immediate actions of  nifedipine 
on the endothelium, they focalized HGF, that is a new 
angiogenic growth factor with an antiapoptotic effect on 
vascular endothelical cells. Intriguingly, the serum level of  
HGF in tobacco users cured with nifedipine was mark-
edly increased both at 2 and 4 wk (P < 0.05). Generally, 
these consequences indicated immediate actions of  nife-
dipine in the endothelial damage amelioration in normo-
tensive tobacco users. The increment in the serum level 
of  HGF by nifedipine might bring about the vascular 
endothelical damage amelioration[66].

Makino et al[67] examined the action of  calcium an-
tagonist, benidipine, on endothelial mechanism in the es-
sential HTN subjects, which induces endothelial damage. 
BP was decreased markedly. Endothelial mechanism was 
investigated applying FBF by strain-gauge plethysmogra-
phy after 8 wk of  therapy. Alterations in vasodilator reac-
tion to responsive engorgement were notably ameliorated 
(P < 0.01), meanwhile the reaction to nitroglycerin was 
not altered, presenting the amelioration of  endothelial 
mechanism. The level of  serum HGF in patients cured 

with benidipine was grossly increased at 8 wk (P < 0.05). 
Intriguingly, an increment in the level of  serum HGF by 
benidipine might bring about the amelioration of  endo-
thelial damage[67]. 

Takahashi et al[68] investigated whether lipid-lowering 
therapy (LLT) with statins would influence the leptin 
and angiogenic factors concentrations in CAD subjects. 
CAD subjects were randomised to 6 mo of  intensive 
LLT with atorvastatin or moderate LLT with pravastatin. 
The plasma concentrations of  leptin, Ang Ⅱ, HGF and 
VEGF were determined before statin treatment (baseline) 
and after 6 mo. Base line concentrations of  leptin, Ang 
Ⅱ, HGF and VEGF were more elevated in the CAD 
subjects than in the non-CAD subjects (all P < 0.05). In-
tensive LLT reduced the concentrations of  leptin, Ang Ⅱ, 
HGF and VEGF, while moderate LLT did not alter these 
concentrations. Their result displayed that LLT with ator-
vastatin reduces the leptin and angiogenic factors (HGF, 
VEGF) concentrations in CAD subjects, conceivably 
bringing about the favorable actions of  LLT with atorv-
astatin in CAD[68].

HGF AND CA IN PATIENTS WITH T2DM
We conducted a clinical research to investigate the cor-
relation between the serum HGF concentrations and the 
stage of  CA in T2DM subjects[69]. The average level of  
serum HGF of  T2DM patients in this clinical research 
was 895 +/- 408 pg/mL, a level notably more elevated 
than the reference values. The serum concentrations of  
HGF associated positively with both intimal-media thick-
ness (IMT) (r = 0.24, P = 0.0248) and plaque score (PS) 
(r = 0.27, P = 0.0126) (Figures 4 and 5), indicating a cor-
relation between the elevated HGF concentrations and 
development of  atherosclerotic involvements. 

Indeed, this was the first report presenting a notable 
relationship between the serum HGF concentrations 
and IMT and PS in T2DM subjects. Nevertheless, we 
failed to demonstrate a marked association between the 
concentrations of  serum HGF and HbA1c. The clini-
cal study outcome means the serum concentrations of  
HGF would be a beneficial biomarker of  CA in T2DM 
subjects that is extraneous to entire glycemic control. 
Morishita et al[22] showed the elevated concentrations of  
glucose decreased the generation of  HGF by vascular 
endothelical cells, conceivably as an outcome of  apop-
tosis, in an in vitro study. In addition, these authors have 
indicated a inverse association between HGF and HbA1c 
in DM subjects without involvements[35]. Furthermore, 
the DECODE study presented that hyperglycemia after 
meal had an atherosclerotic action in T2DM subjects and 
impaired glucose tolerance subjects[70]. Collectively, these 
outcomes indicate additional investigations are certified 
to reveal the immediate or nonimmediate actions of  
control the level of  blood glucose on both serum con-
centrations of  HGF and the atherosclerotic involvements 
correlated with T2DM. It is indicated that these investi-
gations should introduce supplemental scales like 1,5-an-
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Figure 5  Relationship between serum hepatocyte growth factor and 
plaque score in type 2 diabetes mellitus subjects (r = 0.27, P = 0.0126)[69]. 
HGF: Hepatocyte growth factor.
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hydroglucitol and glucose level after meal. Nevertheless, 
using multivariate statistical analyses, we indicated that a 
positive relationship between the serum concentrations 
of  HGF and IMT (standardized β = 0.28, P = 0.0499), 
we could not demonstrate any correlation between the 
serum concentrations of  HGF and PS. The PS in the 
common carotid arteries (CCA) is considered as an indi-
cation of  regional proliferating damages in large arteries, 
for instance atheromatic plaques. Since IMT and PS have 
discrete pathologic importance, we showed that serum 
HGF is a precise and characteristic biomarker for general 
endothelial cells proliferation. Although elevated serum 
concentrations of  HGF would have been accounted in 
HTN subjects with DM[19], we could not show that the 
relationship was discovered between HGF and systolic 
BP. Contrarily, both IMT and PS associated positively 
with systolic BP. These outcomes would show that the 
concentrations of  serum HGF might not be influenced 
by HTN intrinsically but might elevate as a secondary re-
action to endothelial dysfunction that could occur during 
atherosclerotic progress. Hyperlipidemia, hyperglycemia 
and tobacco use are authenticated carotid atherosclerotic 
risk factors. In spite of  these intense relationships, we 
could not show a correlation between the serum HGF 
concentrations and these three factors. It is potential 
that no correlation between serum HGF concentrations 
and hyperlipidemia and tobacco use was this result of  
the subject group not being classified in line with  medi-
cal care with oral dyslipidemia therapeutic drugs, such as 
statin or tobacco use habit disturbance[71]. Many investi-
gations have shown that the atherosclerotic progress in 
the CCA is a risk-factor for CI or MI[72,73]. IMT in those 
lacunar stroke subjects was not notably higher than in the 
no lacunar stroke subjects in our study. Contrastingly, PS 
in the lacunar stroke subject group was notably higher 
than in the no lacunar stroke group. It is demonstrated 
that PS is relevant to the lacunar stroke count[72], with 
Matsumori et al[42] also indicating the serum concentra-
tions of  HGF are elevated in CI subjects, especially in the 
preterm ischemic attack. It was discovered that both PS 
and IMT in ischemic heart disease (IHD) subjects would 
be notably more elevated than in those with no IHD. The 
relationship between CA and IHD has been accounted 
formerly[73] and moreover, it has been demonstrated that 
the serum levels of  HGF would be elevated in acute MI 
subjects[39]. Our study of  T2DM patients has indicated 
a positive relationship between the serum level of  HGF 

and IMT and PS of  the CCA. Additionally, IMT and PS 
would be ascertained as risk-factors for general athero-
matous arteriosclerosis in both CI and CAD[69].

CONCLUSION 
Actually, the serum level of  HGF in DM subjects might 
be specified by balancing of  stimulators (HTN, athero-
matous arteriosclerosis, etc.) and suppressor (hyperglyce-
mia, TGF-, Ang Ⅱ, etc.) (Figure 6)[8,19]. Accordingly, the 
increase of  the serum HGF level might be regarded as an 
indicator of  the DM involvements severeness. Therefore, 
serum concentration of  HGF might be a beneficial bio-
marker of  macroangiopathy in DM subjects.
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Abstract
Treatment of type 1 diabetes mellitus has always posed 
a challenge to balance hyperglycemia control with hy-
poglycemia episodes. The quest for newer therapies is 
continuing and this review attempts to outline the re-
cent developments. The insulin molecule itself has got 
moulded into different analogues by minor changes in 
its structure to ensure well controlled delivery, stable 
half-lives and lesser side effects. Insulin delivery sys-
tems have also consistently undergone advances from 
subcutaneous injections to continuous infusion to trials 
of inhalational delivery. Continuous glucose monitor-
ing systems are also becoming more accurate and 
user friendly. Smartphones have also made their entry 
into therapy of diabetes by integrating blood glucose 
levels and food intake with calculated adequate insulin 
required. Artificial pancreas has enabled to a certain 
extent to close the loop between blood glucose level 
and insulin delivery with devices armed with meal and 
exercise announcements, dual hormone delivery and 
pramlintide infusion. Islet, pancreas-kidney and stem 
cells transplants are also being attempted though com-
plete success is still a far way off. Incorporating insulin 
gene and secretary apparatus is another ambitious leap 
to achieve insulin independence though the search for 
the ideal vector and target cell is still continuing. Finally 
to stand up to the statement, prevention is better than 

cure, immunological methods are being investigated 
to be used as vaccine to prevent the onset of diabetes 
mellitus.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 1 diabetes advances; Insulin ana-
logues; Closed loop system; Continuous glucose moni-
tors; Insulin gene therapy

Core tip: As therapy of type 1 diabetes poses impo-
rtant challenges because of life long insulin dep-
endence,multiple injections, excursions in glucose 
values and inability to simulate the pancreas, newer 
modalities of therapy are emerging. Hence, this is the 
right time to review developments in this front. This 
review conjures up recent advances in continuous glu-
cose monitors, closed loop systems, insulin analogues, 
insulin gene therapy, transplantation and immunologi-
cal vaccination.
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INTRODUCTION
The year 1923 is a watershed in the history of  diabetes 
mellitus when insulin was discovered by Banting and 
Best[1]. Today the world has come a long way from that, 
but living with type 1 diabetes still remains akin to a tight 
rope walk, balancing between hyperglycemia and hypogly-
cemic episodes. Multiple injections, strict control on food 
and exercise are herculean tasks to deal with, especially 
in children. Hence, the need for better therapies is war-
ranted and they have thus evolved from nascent stages to 
actual usage. 

The incidence of  type 1 diabetes varies among differ-
ent countries, which reflects the roles played by genetic 
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and environmental factors in the ultimate expression of  
the disease. It varies from 57.4 cases/100000 per year in 
Finland to 0.6 cases/100000 per year in India[2]. The fact 
that there is a rising trend in the number of  children diag-
nosed to have type 1 diabetes is supported by a number 
of  studies. Whether this can be attributed to an absolute 
increase in the incidence of  the disease is still under spec-
ulation because the proportion of  children with highest 
risk human leukocyte antigen haplotypes have decreased 
and hence, the changing environmental patterns may 
rather be uncovering the latent genetic factors to cause 
earlier expression of  the disease[3]. The changing epide-
miology is bringing more and more children to us to care 
for. Thus, unveiling newer and better therapies becomes 
an onus on us.

In this chapter, we shall be presenting a brief  over-
view of  the recent advances in the management of  type 1 
diabetes, including newer insulins, newer insulin delivery 
options, hypoglycemia prevention through use of  tech-
nology and lastly, advances in the field of  “curing” diabe-
tes through transplant and gene therapy.

ADVANCES IN INSULIN 
The quest for the ideal insulin has led to the discovery of  
a variety of  analogues to match the mighty pancreas and 
yet, many lacunae are left to be filled. The timeline of  
important events in the history of  insulin is presented in 
Figure 1. 

Insulin analogues were designed to overcome the 
problems of  poor stability and erratic absorption profile 
of  the preceding generations of  insulin. 

Short acting insulin
Insulin lispro: Short acting insulin is necessary to deal 
with meal time hyperglycemia. Insulin Lispro which was 
approved in 1996 has rapid onset of  action and shorter 
duration so that post prandial hypoglycaemia can be 
prevented. The inversion of  proline at position 28 with 
lysine at position 29 allowed insulin to exist more in the 
monomeric form that is easily absorbed which could 
counteract meal time hyperglycemia without causing pro-
longed hypoglycaemia. The modification in the amino 
acid sequence did not alter the receptor binding and 
hence, is as effective as regular insulin[4].

Insulin aspart: Substituting proline at position 28 with 
aspartic acid formed insulin aspart which is also short 
acting due to absence of  hexamer formation. Immuno-
genicity and teratogenicity profile was similar to regular 
insulin[5].

Insulin glulisine: This is the newest addition to the list 
of  short acting insulin produced by substituting aspara-
gine at position B3 by lysine and lysine at position B29 by 
glutamine. It is unique in action by causing phosphoryla-
tion of  Insulin Receptor Substrate 2. Increased bind-
ing to insulin like growth factor (IGF) 1 receptor and 
mitogenic activity has however, raised concerns over its 
tumorigenic potential which needs further evaluation[6]. 
Food and drug administration (FDA) approval has been 
obtained for use of  glulisine in children > 4 years.

Long acting insulin
Isophane, Lente and Ultralente failed to ensure long time 
control of  glucose with minimum variations and hence, 
they made way for newer long acting insulins. 

Insulin glargine: Amino acid alterations brought about 
a change in pH from 5.4 to 6.7 that made glargine poorly 
soluble at physiological pH. The stability of  its hexameric 
structure prevents rapid absorption from subcutane-
ous tissue and its activity is maintained for 11 to 24 h. 
Glargine also has affinity to the IGF 1 receptor making it 
mitogenic, but the clinical significance of  this finding is 
still questionable[7]. Safety in the pediatric age group has 
been established but due to the acidic pH burning sensa-
tion has been reported in some children.

Insulin detemir: Detemir binds reversibly to albumin 
and undergoes a slow release process as only free detemir 
is biologically active. Onset of  action is within 1 to 2 h and 
lasts for 24 h. Peakless activity ensures stability[8]. Detemir 
shows more reproducible pharmacokinetics in children 
than glargine[9]. The United States FDA has approved the 
use of  Detemir and Glargine only in children > 6 years.

Insulin albulin: As the name suggests, insulin albulin 
has been developed by directly fusing single human insu-
lin gene to human albumin gene that makes this analogue 
long acting. The peakless effect makes albulin a potential 
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Figure 1  Time line of Insulin and its analogues. NPH: Neutral protamine hagedorn.



agent for long term glycemic control. The affinity of  
albulin to IGF 1 receptors is less compared to other ana-
logues which makes albulin less likely to trigger mitogen-
esis[10]. Insulin albulin still has to evolve to enter clinical 
application. 

Insulin degludec: Approved in 2012, Insulin degludec 
shows a flat profile upon injection with a half-life of  25 h, 
enabling once in 3 d injection. The dihexamers associate 
with each other to form multi hexamers that slowly form 
monomers and enter the bloodstream. When compared 
to other long acting insulins, degludec shows much lower 
variability in day to day glucose levels. Trials investigat-
ing degludec have also included children and adolescents. 
Nocturnal Hypoglycemia, which is the bottle neck in 
intensive glucose lowering, is reported to be up to 25% 
lower with degludec[11]. Increase in adverse cardiovascular 
events is a concern with degludec and use in pediatric age 
group is not yet approved. 

Inhaled insulin
The search for alternative routes of  delivery of  insulin 
paved way to the discovery of  inhaled insulin Exubera 
that was approved in 2006, but withdrawn from the 
market a year later due to poor sales. It was thought that 
the large surface area of  the lungs would facilitate better 
absorption. However, bioavailability was found to be only 
10% and so higher doses were required. Unpredictable 
absorption patterns that varied with age, respiratory tract 
infection and smoking form important hurdles for lungs 
to be the route of  choice[12].

Despite the initial enthusiasm with oral insulin which 
was considered as the “holy grail” for treating diabetes, 
it remains an enigmatic target due to enzymatic digestion 
of  insulin and inadequate intestinal absorption.

Buccal and skin patches are also candidate routes for 
delivering insulin that await further research. 

INSULIN PUMPS
Parallel to the advancements in insulin, the modes of  
delivery also underwent considerable changes in the last 
50 years. The first pump designed by Dr. Arnold Kadish 
in 1963 was bulky and had to be worn like a backpack as 
in Figure 2. It was replaced by the “big blue brick” model 
which again became obsolete due to inaccuracies. All the 
early models could only provide a single basal delivery 
rate and had to be programmed frequently. The techno-
logical boom that accompanied the dawn of  the 20th cen-
tury brought about further developments and today we 
have insulin pumps that are convenient, small, accurate 
and adjustable. 

CONTINUOUS GLUCOSE MONITORS 
Fear of  hypoglycemia is recognised as the most impor-
tant road block in the path to achieving good glycemic 
control. Continuous blood glucose monitoring system is 
an important aid in the management of  type 1 diabetes 
and an essential prerequisite for closed loop systems. The 
superiority of  Continuous glucose monitors (CGMs) 
over self-monitoring of  glucose in reducing the time 
spent in hypoglycemia has been proven beyond doubt[13].

The basic structure of  a CGM consists of  a sensor, 
wireless transmitter and a receiver as in Figure 3. 

Sensor provides real time blood glucose levels and 
typically consists of  a membrane layer, electrode and 
enzyme matrix. It works on the same principle as the 
conventional glucose monitors using the glucose oxidase 
catalysed oxidation of  glucose to produce hydrogen per-
oxide that generates an electric current at the electrode[14]. 
The membrane layer forms a barrier between the elec-
trode and the surrounding tissues, which mandates ad-
equate permeability to glucose and oxygen. Sensors are 
inserted subcutaneously and detect glucose concentration 
in the interstitial compartment. In the earlier versions, 
blood glucose values were stored and had to be down-
loaded to view the level of  control retrospectively. The 
present CGMs have sensors that display the glucose val-
ues in real time which enables the user to take appropri-
ate steps in case of  skewed values. The CGMs are also 
equipped with systems that would alert the user when 
values are above or below the set thresholds. The receiver 
may either be a display device to be worn like a pager or 
may be connected to an insulin pump.

A drawback that has emerged with CGMs is bioin-
stability. Sensors become unstable secondary to inflam-
matory reaction, granuloma formation, blood clots, etc[15]. 
This brings about drifts in glucose values and a need for 
intermittent calibration with conventional blood glucose 
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Figure 2  Dr. Arnold Kadish with the first insulin pump. (Courtesy: www.
medscape.com).
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Figure 3  Schematic representation of continuous glucose monitors.
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a small photometer implanted in the interstitial fluid un-
der the conjunctiva[21].

CLOSED LOOP SYSTEMS
The idea of  closed loop systems came into vogue as the 
repeated discrete subcutaneous doses caused fluctuating 
insulin and in turn glucose levels. Blood glucose concen-
tration stands on a delicate balance between caloric intake 
and expenditure which is modified by the insulin doses 
that necessarily do not mimic the original pancreatic 
secretion. As the CGMs started providing real time feed-
back of  the glucose levels, the extreme variations were 
uncovered. The concept of  artificial pancreas surfaced 
when CGMs were linked to insulin pumps as Continuous 
Subcutaneous Insulin Infusion gained acceptance from 
the 1990s[22]. The principle of  closed loop systems is 
simple as shown in Figure 4. 

In contrast to the pre-programmed insulin pumps, 
closed loop systems modulate insulin delivery at intervals 
of  1 to 15 min. 

The characteristics that are desired in an ideal closed 
loop system would be the following[23]: (1) Response 
to glucose levels in a highly specific way; (2) Response 
within a timescale of  minutes; (3) Monitoring within the 
visceral region; (4) Pulsatile output to avoid desensitiza-
tion of  insulin receptors; and (5) No chemical modifica-
tion of  insulin.

The backbone of  the closed loop system is the con-
trol algorithm. Control algorithms direct insulin delivery 
as per glucose levels and account for measurement errors 
and kinetic delays. 

There are two categories of  control algorithms: (1) 
Proportional Integral Derivative (PID); and (2) Model 
Predictive Control (MPC).

PID
The schema of  PID is given in Figure 5. The PID was 
one of  the most initial algorithms developed for artificial 
pancreas. The proportional component detects devia-
tions from target glucose, integral component measures 
the area under the curve between the measured and tar-
get levels and the derivative component assesses the rate 
of  change of  measured glucose levels. However, PID 
is rather a reactive algorithm which implies that skewed 
values of  glucose cannot be prevented but can only be 
shortened in duration because the PID responds to ob-
served glucose levels. Adding announced meals to the al-
gorithm or patient directed insulin boluses can overcome 
hyperglycemia but hypoglycemic episodes may not be 
prevented. 

MPC
This is a proactive algorithm because it can forecast the 
blood glucose values from the current concentration and 
is designed in such a way that it brings the forecasted glu-
cose closer to the target glucose values. Based on the cur-
rent glucose levels further insulin delivery is planned but 
after the first step is executed the system is reassessed and 

measurements. Coating of  the membrane layer with sili-
con oxide nanoparticles containing Polyethylene Glycol 
has been found to prevent bioinstability of  sensors[16]. 
Further research is ongoing to discover the most appro-
priate material to coat the sensors. Another innovation 
that has been successful is replacement of  electrochemi-
cal sensors with fluorescent sensors. When glucose binds 
to the receptors, the fluorophore fluoresces brightly. 
These sensors are highly accurate even with extreme 
values of  glucose[17]. Despite these refinements, there are 
two important shortcomings with the CGMs. First, the 
interstitial glucose measurement does not exactly reflect 
the blood glucose concentration. Second is the time lag 
due to glucose transport to the interstitium and sensor 
processing. The CGMs lag behind blood glucose by an 
average of  4 to 10 min[18].

Another method of  blood glucose monitoring that 
had emerged in 1999 was the Glucowatch Biographer. 
This device was worn like a wristwatch. It used the pro-
cess of  reverse iontophoresis to stimulate the secretion 
of  subcutaneous fluid, and glucose content was measured 
using a biosensor unit. There was good correlation with 
the blood glucose monitoring devices[19]. However, skin 
irritation and false alarms were obstacles to the wide-
spread clinical use of  this device.

A recently developed non-invasive CGM device named 
HG1c uses the principle of  Raman spectroscopy where 
a painless pulse of  monochromatic light is transmitted 
into the skin, and the scattered light is detected for the 
determination of  glucose levels. This device can be worn 
on the abdomen like a band and measures blood glucose 
levels every five minutes. The sensor transmits data to a 
smartphone which is also enabled with alarms during pe-
riods of  glucose excursion[20]. A similar iPhone operating 
system-enabled smartphone-based Wireless Smart Gluco-
Monitoring system has also been developed[21].

Many smartphone based glucose monitors and appli-
cations are helping to make the life of  a diabetic patient 
easier. These allow the user to enter diabetes related data 
like carbohydrates and water consumed, insulin dose 
taken, duration of  exercise, etc. Based on the information 
given these apps can also calculate the amount of  insulin 
required. A device named Eyesense is under development 
which will be able to determine blood glucose level using 
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further delivery is planned. This enables a step by step as-
sessment and reaction, yet in a proactive manner. In this 
way MPC can prevent hypoglycemic episodes and reduce 
the time spent in hyperglycemia. MPC can efficiently deal 
with meals and exercise without any additional inputs[24]. 
MPC also has capabilities to learn the patient’s routine to 
adjust the insulin delivery based on this information us-
ing the run to run control algorithms and also optimize 
according to circadian fluctuations[25].

Innovations in closed loop system
The inherent disadvantages of  interstitial insulin infu-

sion account for the delay in responding to post prandial 
hyperglycemia. Hence, systems have been developed for 
adding meal announcements to cause priming. 

Intensification of  insulin delivery saw hypoglycemia 
as the major barrier which induced development of  dual 
hormonal pumps employing glucagon along with insulin. 
Glucagon has been the choice as it is a fast acting counter 
regulatory hormone to insulin and is found to be defi-
cient in type 1 diabetes patients. Glucagon has enabled to 
close the glucose-insulin loop in the initial studies[26].

Intraportal or intraperitoneal insulin infusion to mim-
ic the natural secretory pathway is another gate that has 
been opened for better control of  blood sugar. However, 
the invasive procedure involved in placing the device and 
risks of  infection are the hurdles to its more widespread 
usage[27].

“Low Glucose Suspend” is another feature to combat 
hypoglycemia as the pump would automatically stop insu-
lin infusion for up to 2 h when hypoglycemia is detected 
which is of  benefit especially during nocturnal hypogly-
cemic episodes[28].

Pramlintide is an amylin analogue that delays gastric 
emptying and reduces glucagon secretion. Pramlintide in-
fusion along with insulin is found to enhance peripheral 
tissue sensitivity to insulin[29].

INSULIN GENE THERAPY
Gene therapy is the fancy word for most diseases without 
a cure and so it is for diabetes also. Insulin gene therapy 
envisages introduction of  insulin secretory machinery 
into non beta cells. The requirements for insulin gene 
transfer are schematically represented in Figure 6. 

Gene transfer system
Gene transfer can be achieved by viral or non viral vec-
tors. Among non viral vectors direct injection of  DNA, 
electroporation and gene gun methods were tried but 
gene expression was transient. Retro virus, adeno virus 
and adeno associated virus have been looked upon as the 
living carriers of  the insulin gene (Figure 7). Problems are 
galore even with these viral vectors. Retro viral vectors 
integrate at random sites, have limited insertion capac-
ity and infect only proliferating cells. Adenoviral vectors 
remain as extra- chromosomal DNA and sometimes acti-
vate cellular immune response to viral proteins.

Glucose responsive insulin production
Under normal circumstances insulin biosynthesis is 
regulated at the translational level which is rapid enough 
to react to physiological changes. Transcriptional con-
trol supplements the translational regulation. To ensure 
glucose responsiveness, glucose responsive promoters 
are linked to the insulin producing gene. However, intro-
ducing promoters alone may not be sufficient as trans-
lational regulation is difficult to be mimicked in a non-
beta cell[30]; and since insulin release is controlled at the 
transcriptional level the rapidity of  the response would 
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be compromised. 

Biochemical machinery for processing
Proinsulin is converted to insulin by endoproteases PC1, 
PC2 and an exopeptidase, carboxypeptidase H which is 
another example of  translational control[31]. In non beta 
cells the generic proprotein convertase Furin can cleave 
pro-insulin if  appropriate cleavage sites are introduced by 
mutation but mutated pro- insulin may induce immune 
attack[32].

Appropriate target cell
An ideal target cell ought to have all beta cell character-
istics but has to be free from immune attack. This state-
ment seems utopian as the sophisticated machinery in the 
beta cell for insulin synthesis and release according to the 
metabolic needs is not to be easily found in any other cell 
type. Hepatocyte stood out as a good option as it is en-
abled with glucose sensing system and glucose regulated 
promoter. Unfortunately there are no processing enzymes 
and exocytosis system[33]. The pituitary cell on the other 
hand, has processing enzymes and exocytosis system but 
lacks glucose sensing system. Myocytes are also among 
candidate target cells. K cells, endocrine cells in the gut 
that secrete incretins, are endowed with glucose sensing 
system, glucose regulated promoter, exocytosis system 
and processing enzymes. Genetically engineered K cells 
have been shown to produce enough insulin in a glucose 
regulated manner in murine models though tumor cell 
lines were used. Though the ideal target non beta cell still 
remains elusive, the K cells form a promising option[34,35].

TRANSPLANTATION
Whole pancreas transplant
Despite developments in closed loop systems and en-
couraging results from insulin gene therapy, completely 
mimicking the beta cells still remained a distant dream. 
Thus, pancreas transplant was considered as a viable op-
tion. Whole pancreas transplant was tried initially in pa-
tients requiring kidney transplant but complications were 
galore like pseudocyst, fistula, thrombosis and pancreati-
tis. Moreover, transplanting the whole pancreas when the 
patients were only in need of  the islets of  Langerhans 
which constitute a meagre 2% of  the pancreatic mass was 
like losing the battle for want of  a horse shoe nail[36].

Islet cell transplant
In addition to transplanting only the endocrine compo-
nent, islet cell transplantation is minimally invasive and is 
associated with lower morbidity. After pancreas retrieval, 
the islets are isolated and cultured which is the most 
formidable step in the whole procedure. The most com-
monly used anatomical site for islet transplant is the liver 
due to the convenience of  access and good entrapment 
and engraftment in the sinusoids though spleen, renal 
capsule and the gonads have been tried[37]. Islet cell trans-
plantation done in animals resulted in universal reversal 

of  diabetes but reproduction of  these results in human 
beings was a Himalayan task in the 1990s as only 11% 
achieved insulin independence. However, in 2009, the 
Collaborative Islet Transplant Registry reported that the 
overall incidence of  sustained graft function was 77% af-
ter first 6 mo, 66% after 1 and 45% at 3 years[38]. Though 
independence from exogenous insulin can be achieved, 
extrapolation of  results from studies done in adults to 
children with type 1 diabetes mellitus (T1DM) would be 
a precocious decision and awaits more research.

Stem cell therapy
The interest stem cell therapy created in almost all chron-
ic diseases is also reverberating in type 1 diabetes. Gen-
eration of  sufficient mass of  beta cells, releasing insulin 
in response to physiological signals and protection from 
autoimmunity are the most important challenges. Stem 
cells can be converted to beta cells by sequential transient 
activation of  specific transcription factors like Pa x 4, Nk 
x 6.1 and Nk x 2.2[39]. The possibility of  teratogenicity 
with embryonal stem cells makes mesenchyme derived 
stem cells a better option. An alternative approach is by 
neogenesis of  beta cells from mature beta cells with the 
use of  GLP analogue (Exendin), Epidermal Growth 
Factor and gastrin. The common endodermal origin of  
pancreas, liver and small intestine allows trans-differen-
tiation of  any of  these cell types to beta cells[40]. Trans- 
differentiation involves reprogramming mature cells by 
certain transcription factors into alternate developmental 
lineages. 

IMMUNOLOGIC VACCINATION
The principle behind this model is to induce lymphocytes 
against a specific antigen in such a way that on encounter-
ing that particular epitope the lymphocytes would induce 
cytokines that suppress autoimmunity like interleukin 4 
that are produced by Th1 cells. Insulin given orally and 
subcutaneously in mice models prevented T1DM[41]. Rep-
licating these findings in humans will take time but these 
provide some light at the end of  the tunnel. 

CONCLUSION
Novel therapies are continuing to emerge for the ultimate 
cure of  type 1 diabetes, but emulating the intricate con-
trol system of  the beta cell that is tailor made for minute 
to minute control of  blood sugar is a difficult goal to 
attain. We hope that sustained efforts toward this distant 
goal will provide the elixir for millions of  children with 
T1DM. 

Continuous glucose monitors have evolved from 
retrospective display to real time monitors enabled with 
alarms connected to smartphones and to more non-inva-
sive methods. Closed loop systems have been undergoing 
developments to simulate the pancreas by incorporating 
better sensors, feedback, control algorithms and response. 
Newer insulin analogues have more predictable half-life 
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and activity. Inhalational, buccal and transdermal delivery 
routes are awaited for clinical application. Insulin inde-
pendence is aimed at by incorporating insulin gene into 
non beta cells with reliable glucose response apparatus. 
Islet cell transplantation is also continually transforming 
to reach the point of  complete cure. Immunological vac-
cination is in its nascent stages to prevent the occurrence 
of  type 1 diabetes. 
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Abstract 
Inflammation has been recognised to both decrease 
beta cell insulin secretion and increase insulin resis-
tance. Circulating cytokines can affect beta cell function 
directly leading to secretory dysfunction and increased 
apoptosis. These cytokines can also indirectly affect 
beta cell function by increasing adipocyte inflamma-
tion.The resulting glucotoxicity and lipotoxicity further 
enhance the inflammatory process resulting in a vicious 
cycle. Weight reduction and drugs such as metformin 
have been shown to decrease the levels of C-Reactive 
Protein by 31% and 13%, respectively. Pioglitazone, 
insulin and statins have anti-inflammatory effects. In-
terleukin 1 and tumor necrosis factor-α antagonists are 
in trials and NSAIDs such as salsalate have shown an 
improvement in insulin sensitivity. Inhibition of 12-lipo-
oxygenase, histone de-acetylases, and activation of 
sirtuin-1 are upcoming molecular targets to reduce in-
flammation. These therapies have also been shown to 
decrease the conversion of pre-diabetes state to diabe-
tes. Drugs like glicazide, troglitazone, N-acetylcysteine 

and selective COX-2 inhibitors have shown benefit in 
diabetic neuropathy by decreasing inflammatory mark-
ers. Retinopathy drugs are used to target vascular en-
dothelial growth factor, angiopoietin-2, various protein-
ases and chemokines. Drugs targeting the proteinases 
and various chemokines are pentoxifylline, inhibitors of 
nuclear factor-kappa B and mammalian target of rapa-
mycin and are in clinical trials for diabetic nephropathy. 
Commonly used drugs such as insulin, metformin, per-
oxisome proliferator-activated receptors, glucagon like 
peptide-1 agonists and dipeptidyl peptidase-4 inhibitors 
also decrease inflammation. Anti-inflammatory thera-
pies represent a potential approach for the therapy of 
diabetes and its complications.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The burden of diabetes and its complications 
is increasing worldwide. To control this pandemic, 
drugs targeting different areas of the pathogenesis of 
diabetes and its complications are needed. Inflamma-
tion plays a key role in the natural history of diabetes 
during the progression from pre-diabetes to diabetes, 
including decreased beta cell secretory capacity and 
insulin resistance. Insulin resistance is an important 
part of the metabolic syndrome and plays a role in the 
pathogenesis of various macrovascular complications. 
Drugs targeting inflammatory pathways represent a 
fresh approach in the treatment of diabetes and its 
complications.
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INTRODUCTION
The incidence of  both diabetes and obesity is increas-
ing worldwide and approaching epidemic proportions. 
Inflammation has been recognised as a common mecha-
nism in the pathophysiology of  both these conditions. 
Inflammation increases insulin resistance and islet cell 
inflammation, which leads to defects in beta cell se-
cretion both of  which lead to diabetes. Inflammation 
may also be the underlying mechanism in the increased 
risk of  cardiovascular disease in subjects with diabetes 
and/or obesity. Hence, targeting inflammation may be 
a new therapy in the already expanding options for the 
management of  diabetes mellitus and its complications. 
There is concern over many drugs used for diabetes 
which increase cardiovascular morbidity and/or mortal-
ity. Targeting inflammation in diabetes will theoretically 
lead to better glycemic control, and decrease both micro- 
and macrovascular complications including cardiovas-
cular complications. Most therapies for type 2 diabetes 
mellitus (T2DM) target insulin resistance and drugs 
targeting inflammation may be a paradigm shift, wherein 
earlier recognition of  the inflammatory status of  the 
predisposed individual with type 2 diabetes, or at risk for 
the development of  type 2 diabetes, would be evaluated 
and appropriate therapy initiated.The aim of  this review 
is to elaborate on the drugs targeting inflammation in 
diabetes and its complications. Both previous studies and 
upcoming targets including their molecular mechanisms 
will be discussed in the review.

Inflammation in diabetes
A number of  studies have demonstrated that markers 
of  inflammation correlate with incident diabetes. Total 
leucocyte count which is a surrogate marker of  inflam-
mation, and more specifically the neutrophil count in 
the higher quartiles of  the normal range, correlates with 
worsening of  insulin sensitivity, and incident diabetes[1] 
and cardiovascular disease[2]. This suggests that a simple 
surrogate marker such as total leucocyte count may be a 
marker of  insulin resistance.

Insulin resistance has been defined as a state of  in-
flammation involving both innate and adaptive immuni-
ty[3]. Islet cell inflammation as a result of  an autoimmune 
phenomenon has already been recognised in T1DM and 
has been increasingly implicated in the pathogenesis of  
T2DM. In fact, obesity has also been seen to modify the 
development of  T1DM. Small human studies have dem-
onstrated that anti-inflammatory therapy has improved 
glycemia and beta cell function in T2DM[4,5]. Thus, in-
flammation is recognised as one of  the important path-
ways in the pathogenesis of  T2DM and its complications.

The major cell involved in inflammation and insulin 
resistance in T2DM is the adipocyte. Insulin regulates 
glucose uptake and triglyceride storage by adipocytes. 
The adipocytokines in turn also affect insulin secretion 
and insulin resistance[6,7]. The various adipocytokines, 
especially leptin, adiponectin, omentin, resistin, and visfa-

tin may contribute to beta cell dysfunction by increasing 
insulin resistance. Adipose tissue also secretes dipeptidyl 
peptidase-4 (DPP-4) which enhances the degradation of  
glucagon like peptide-1 (GLP-1) and has an insulinotro-
pic effect on beta cells[8].

Circulating cytokines can affect beta cell function 
directly and indirectly by increasing adipocyte inflamma-
tion. Cytokines including tumour necrosis factor-alpha 
(TNF-α), interleukin beta (IL-1β), and interferon-gamma 
(IFN-γ) disrupt the regulation of  intracellular calcium 
in the beta cells and hence insulin release. In addition, 
TNF-α increases the expression of  islet amyloid poly-
peptide (IAPP, amylin) in beta cells leading to their accel-
erated death[9]. IAPP expression and deposition induces 
and increases beta cell inflammation[10,11]. Glucotoxicity 
and especially lipotoxicity increase the local level of  free 
fatty acids (FFA) in the islets, and long chain fatty acids, 
particularly palmitic acid, cause oxidative stress and jun 
N-terminal kinase (JNK) activation[12]. This further leads 
to increased IL-1β, TNF-α, chemokine (C-C motif) li-
gand 2 (CCL2), IL-6, chemokine (C-X-C motif) ligand 
1 (CXCL1), and IL-8 production, and activated nuclear 
factor-kappa B (NF-κB) in human islets leading to islet 
cell dysfunction[13]. Overall, this leads to a vicious cycle of  
inflammation-induced beta cell dysfunction which in turn 
again increases inflammation.

Oxidative stress is another pathway that leads to in-
flammation through activation of  JNK, NF-κB, and p38 
mitogen-activated protein kinase (p38MAPK)[14]. Palmitic 
acid causes endoplasmic reticulum (ER) stress, oxidative 
stress, ceramide production, and JNK activation, all of  
which provoke inflammatory responses. Pancreatic islets 
have low antioxidant defence and are hence vulnerable to 
oxidative stress. There is differential regulation of  oxida-
tive stress genes in T2DM donors compared with control 
subjects, implicating oxidative stress in islet dysfunc-
tion[15]. Divalent metal transporter 1 is another factor that 
increases IL-1β-induced insulin resistance[16]. These find-
ings suggest that oxidative stress is an important factor in 
the pathogenesis of  T2DM.

Endoplasmic reticulum stress also leads to increased 
cytokine expression and NF-κB activation causing dys-
function of  beta cells[17]. Infact, cyclopiazonic acid-
induced ER stress has been shown to cause beta cell dys-
function through increased levels of  cytokines and NF-
κB expression[18]. The levels of  thioredoxin-interacting 
protein (TXNIP) increase rapidly in islets during ER stress 
provoked by thapsigargin (depletes calcium stores in the 
ER). Up-regulation of  TXNIP results in IL-1β and IL-6 
production through initiation of  the inflammasome[19,20]. 
TXNIP also leads to induction of  oxidative stress through 
its interaction with thioredoxin, which is a critical redox 
protein in cells. TXNIP expression is regulated by glucose 
in human islets and plays a role in glucose-induced β cell 
death.Therefore, TXNIP may well be a key transducer of  
glucotoxicity, oxidative stress, and ER stress, feeding into 
various inflammatory pathways in islets.

The gut may also be involved in the development of  
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diabetes mellitus. Increased lipopolysaccharide absorption 
from the gut causes activation of  toll like receptor 4 and 
NF-κB leading to decreased insulin gene expression and 
insulin secretion in rat and human islets[21]. There is data 
to suggest that colonization of  the gut by specific bacterial 
species alters the development of  autoimmunity in NOD 
mice and can modify the cytokine and chemokine profile 
leading to islet cell inflammation[22].

With all this in mind, the search for anti-inflammato-
ry therapies for diabetes was started. Lifestyle modifica-
tion and drugs already in use for the management of  di-
abetes also have additional anti-inflammatory effects. In 
the Diabetes Prevention Program (DPP), weight reduc-
tion decreased the levels of  C-Reactive Protein (CRP) by 
31%, whereas metformin decreased CRP by only 13%[23]. 
Similar results have been observed with surgical weight 
loss procedures[24]. This implies that lifestyle interven-
tions, even without drug therapy, can decrease insulin 
resistance; and decrease the progression of  pre-diabetes 
states to T2DM and can decrease the progression of  
diabetes mellitus (DM) and its complications by decreas-
ing inflammation. Drugs like thiazolidinedione for the 
same degree of  glucose reduction have been shown 
to reduce markers of  inflammation to a greater extent 
compared to other therapies[25]. This may be the result 
of  peroxisome proliferator-activated receptor-γ (PPAR-γ) 
transrepression of  inflammatory-response genes[26]. This 
demonstrates that a reduction in inflammation adds to 
the beneficial effects of  these drugs, which are indepen-
dent of  the effect on glucose levels and thus is a direct 
effect.

Insulin therapy by itself  over the short-term has been 
associated with a decrease in inflammation. This effect 
is mediated by the decreased activity of  NF-κB which is 
the master transcriptional regulator of  the inflammatory 
response[27]. However, this effect of  insulin is temporary 
and/or requires higher doses of  intravenous insulin[28]. 
This may be one of  the additional advantages of  adding 
insulin early in the course of  T2DM and may delay the 
progression of  DM and its complications.

One class of  drugs used widely in diabetes melli-
tus that also have anti-inflammatory effects are statins. 
Statins inhibit hydroxymethylglutaryl-CoA reductase, 
and hence, cause a reduction in cholesterol levels. In 
addition, statins have also been shown to reduce the lev-
els of  CRP by 25%-30%[29]. This is a class effect of  all 
statins and is not dose-dependent. The decrease in CRP 
levels does not correlate with the decrease in lipid levels, 
which implies that this effect is a direct effect of  statins. 
CRP is an independent predictor of  cardiovascular 
events. The Justification for the Use of  Statins in Pre-
vention: an Intervention Trial Evaluating Rosuvastatin 
trial assessed the effect of  rosuvastatin on the rates of  
primary cardiovascular events in subjects with high CRP 
concentrations, but without hyperlipidemia (CRP > 2 
mg/L; low density lipoprotein (LDL) < 130 mg/dL)[30]. 
The CRP concentration was reduced by 37%, however, 
the LDL concentration was reduced by 50%, therefore, 

it is uncertain whether the effects of  statins are truly 
mediated via the anti-inflammatory process or are the 
result of  its lipid-lowering effect. In addition, incident 
T2DM increased in the statin-treated patients, an effect 
seen with other agents in the statin class[31]. This finding 
demonstrated a divide in the association between inflam-
mation, diabetes, and cardiovascular disease, which may 
be explained by the potent effects of  statins on lipids. 
Apart from CRP, statins do not have any effect on any 
other markers of  inflammation such as fibrinogen.

NEWER THERAPEUTIC TARGETS
The following drugs are in trials for targeting inflamma-
tion and are not yet available as prescription drugs for 
diabetes.

Etanercept
Etanercept (934 amino acids, 150 kilo Dalton) is a di-
meric fusion protein with an extracellular ligand binding 
domain of  the Human Tumor Necrosis Factor Receptor 
(TNFR) linked to the Fc component of  human IgG1. It 
is produced by a recombinant DNA technique in Chinese 
Hamster Ovary cells.

Blockade of  TNF-α receptor has been shown to de-
crease insulin resistance in obese rats[32]. A trial of  etaner-
cept failed to improve insulin sensitivity in subjects with 
the metabolic syndrome despite lowering CRP[33]. This 
may have been due to the fact that the concentration of  
TNF-α intracellularly is almost twice that in the extracel-
lular space, and it is the intracellular TNF-α that is re-
sponsible for insulin resistance via paracrine effects which 
were not blocked by etanercept.

Anakinra
Anakinra (153 amino acids, 17.3 kilo Dalton) is a non gly-
cosylated form of  the Human IL-1 Receptor antagonist 
(IL-1Ra) from which it differs only by the addition of  
a single methionine residue at the amino terminus. It is 
produced by a recombinant DNA technique in E. coli.

IL-1 contributes to impaired insulin secretion, de-
creased cell proliferation, and apoptosis of  pancreatic 
β cells. The IL-1Ra is endogenously produced, and its 
concentrations are reduced in the pancreatic islets of  
patients with T2DM. Anakinra was studied in T2DM 
and showed promise in increasing beta cell secretory 
function, and reducing glycemia and markers of  systemic 
inflammation[34]. Definitive conclusions on the possible 
clinical utility of  IL-1Ra in the prevention of  diabetes 
are awaited from the large ongoing Canakinumab Anti-
inflammatory Thrombosis Outcomes Study phase Ⅲ 
clinical trial[35]. The study is being conducted in more than 
40 countries around the world and is specifically testing 
whether blocking the pro-inflammatory cytokine IL-1β 
with canakinumab, as compared to placebo, can reduce 
rates of  recurrent myocardial infarction, stroke, and car-
diovascular death among patients with a history of  myo-
cardial infarction who remain at high risk due to a persis-
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als, or effects on selected markers in a few other trials[40]. 
Similarly, available trials have shown no convincing bene-
fits of  vitamin D supplementation on plasma glucose lev-
els and insulin resistance[41,42]. This systematic review and 
meta-analysis showed that vitamin D supplementation 
resulted in a small improvement in fasting glucose and 
insulin resistance in subjects with diabetes or impaired 
glucose tolerance, but no effect on glycated haemoglobin 
among those with diabetes. Hence, the role of  vitamin D 
supplementation requires further well planned trials. 

Chloroquine
Chloroquine is a weak base and carries a positive charge 
at acidic pH. It is this property of  the drug that makes 
it selectively accumulate in lysosomes and generate a 
concentration gradient of  a high order. This lysosomato-
trophic action is responsible for the hepatic retention of  
insulin. Another action of  the drug is decreased degrada-
tion of  insulin in the muscle tissue.

A retrospective study suggested that the use of  chlo-
roquine to treat rheumatoid arthritis is associated with a 
lower incidence of  T2DM[43]. However, this study includ-
ed a specific group of  patients who required the drug for 
another indication. Prospective studies of  chloroquine 
are ongoing and the results are awaited.

Diacerin
Diacerin is a semi-synthetic anthraquinone derivative 
which directly inhibits IL-1 synthesis and release in vitro 
and downregulates IL-1 induced activities. It has been 
shown to possess a disease modifying effect in osteoar-
thritis.

In a randomized double-blind, placebo-controlled 
trial, 2-mo treatment of  drug-naive T2DM patients with 
diacerin increased insulin secretion without changes in in-
sulin sensitivity[44]. This implies a direct effect of  the drug 
on beta cell function.

Other emerging therapies
Inhibition of  12-Lipo oxygenase: Twelve-Lipo oxy-
genase (12-LO) produces pro-inflammatory arachidonic 
acid products and is upregulated in islets of  both T1DM 
and T2DM patients[45] leading to insulin resistance and 
islet cell dysfunction. Hyperglycemia and inflammatory 
cytokines increase the expression of  12-LO[45,46]. The 
activation of  12-LO has also been implicated in causing 
adipose tissue inflammation and insulin resistance. In 
NOD mice (T1DM model), Zucker diabetic fatty rats 
(T2DM model), and diet-induced obese mice (T2DM 
model) gene deletion and pharmacological suppression 
of  12-LO prevented the development of  diabetes[47,48]. 
These findings point towards inhibition of  12-LO being 
a promising target in both T1DM and T2DM for de-
creasing insulin resistance, β cell dysfunction and cardio-
vascular complications.

Histone de-acetylases inhibition:Histone de-acetylases 
(HDAC) Ⅰ, ⅡA, ⅡB, Ⅲ and Ⅳ are involved in inflam-

tent elevation of  the inflammatory biomarker hsCRP (≥ 
2 mg/L) despite best medical care.

Salsalates
Salsalates belong to the class of  Nonsteroidal Anti-
Inflammatory Drugs (NSAIDs) which exert their anti-
inflammatory effect through inhibition of  prostaglandin 
G/H synthase, or cyclooxygenase.These enzymes catalyse 
the transformation of  arachidonic acid to prostaglandins 
and thromboxanes. NSAIDs also inhibit the expression 
of  cell adhesion molecules, which play a role in targeting 
circulating cells to inflammatory sites and directly inhibit 
activation and function of  neutrophils.

Trials with high dose salsalates in rodents[36] and in 
subjects with diabetes[37] have shown that salsalate by 
inhibiting the inhibitor of  nuclear factor kappa-B kinase 
subunit beta decreases glucose intolerance and increases 
insulin sensitivity. In an open label study, salsalate, a 
prodrug form of  salicylate, reduced fasting and post-
challenge glucose levels and increased glucose utilization 
in euglycemic, hyperinsulinemic clamp studies[37]. Circu-
lating FFAs were reduced and adiponectin levels were 
increased. In another study, salsalate, when compared 
with placebo, reduced fasting glucose by 13% (P < 0.002), 
glycemic response after an oral glucose challenge by 20% 
(P = 0.004), and glycated albumin by 17% (P < 0.0003). 
Although insulin levels were unchanged, fasting and oral 
glucose tolerance test and C-peptide levels decreased in 
the salsalate-treated subjects compared with placebo (P 
< 0.03), consistent with improved insulin sensitivity and 
a known effect of  salicylates to inhibit insulin clearance. 
Adiponectin increased by 57% after salsalate treatment 
compared with placebo (P < 0.003). Additionally,within 
the group of  salsalate-treated subjects, circulating lev-
els of  CRP were reduced by 34% (P < 0.05)[38]. These 
findings prove that salsalate reduces glycemia and may 
improve inflammatory cardiovascular risk indices in over-
weight individuals. These data support the hypothesis 
that sub-acute to chronic inflammation contributes to the 
pathogenesis of  obesity-related dysglycemia and that tar-
geting inflammation may provide a therapeutic option for 
diabetes prevention. However, the effects of  salsalate on 
inflammation are controversial as shown by another study 
in which salsalate did not change flow mediated dilatation 
in peripheral conduit arteries in patients with T2DM de-
spite lowering HbA1c. This finding suggests that salsalate 
does not have an effect on vascular inflammation[39].

Vitamin D
Calcitriol exerts regulatory effects on molecular pathways 
involved in inflammation, such as inhibition of  PG syn-
thesis and actions, inhibition of  stress-activated kinase 
signaling and the resultant production of  inflammatory 
cytokines,such as inhibition of  NF-κB signaling and the 
production of  pro-angiogenic factors. Clinical trials in-
vestigating the effects of  vitamin D supplementation on 
serum levels of  inflammatory markers have provided in-
consistent results, with no evidence of  effects in most tri-
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matory responses in a variety of  conditions including 
diabetes. HDAC inhibitors cause acetylation of  the p65 
subunit of  NF-κB leading to its inhibition and hence a 
decrease in the inflammatory response. To date, there are 
no human data, however, animal data support the role of  
HDAC inhibition in β cell preservation. Linkage analysis 
has also revealed that a locus in 6q21, associated with 
both T1DM and T2DM, lies near HDAC2. Beta cell mass 
expansion has been observed with HDAC ⅡA inhibitors. 
In streptozotocin (STZ)-induced diabetes, ITF2357 an 
orally active inhibitor against class Ⅰ and Ⅱ HDAC, leads 
to the prevention of  diabetes[49].

Sirtuin 1: Sirtuin 1 (Sirt1) is a NAD+-dependent HDAC 
class Ⅲ deacetylase. Some of  the SIRT1 deacetylation 
substrates (PGc1a, FoXo, p53, and the p65 subunit of  
NF-κB (10,41-43 proteins) are central regulators of  cel-
lular metabolism, energy expenditure, inflammation and 
stress response pathways in the cell. These may be an 
additional target in reducing inflammation. Activation of  
Sirt1 may have an antiinflammatory role to play in the 
islets. Sirt1 overexpression prevents NF-κB mediated cy-
tokine-induced β cell damage and its expression has been 
shown to be reduced in pancreatic islets after cytokine 
exposure[50]. Nicotinamide mononucleotide, a metabolite 
that augments sirtuin action, rescues islets from reduced 
insulin secretion after IL-1β and TNF-α exposure[51].

Identification of  the targets of  each class of  HDAC in 
human islets under inflammatory conditions will aid in the 
therapeutic application of  this emerging class of  agents.

FAT-1 transgene: Long-chain n-3 PUFAs act directly by 
replacing arachidonic acid as an eicosanoid substrate and 
inhibiting arachidonic acid metabolism indirectly by alter-
ing the expression of  inflammatory genes through ef-
fects on transcription factor activation. In addition, they 
increase anti-inflammatory mediators such as resolvins. 
Thus, n-3 PUFAs are potent anti-inflammatory agents. 
The FAT-1 transgenic mouse, which expresses the Cae-
norhabditis elegans FAT-1 gene encoding an n-3 fatty 
acid desaturase that converts n-6 to n-3 fatty acids (which 
is absent in mammals) showed augmented production of  
n-3 polyunsaturated fatty acids. This has been shown to 
be protective against the development of  diabetes after 
multiple low dose STZ injections, and displays lower lev-
els of  IL-1β, TNF-α, NF-κB and 12-HETE[52]. This may 
be an additional target for inflammation in T2DM.

Recent studies have indicated that ELF5A-1, an an-
cient and poorly understood protein, is an important 
regulator of  cytokine release and signalling. This protein 
is the only protein which contains the unique amino acid, 
hypusine,which is a modified amino acid lysine residue. 
Hypusine modification by the inhibitory enzymes, de-
oxyhypusine synthase and deoxyhypusine hydroxylase, 
is required for ELF5A-1 action in cytokine signalling. 
Therefore, this modification may well be a new therapeu-
tic target for preventing beta cell decline in the setting of  
diabetes inflammation[53]. Anti-inflammatory therapeutic 

targets have been used to decrease the conversion from 
prediabetes to diabetes and the progression of  T2DM. 
Anti-inflammatory therapies have also been used as treat-
ment modalities for the complications of  T2DM and are 
detailed as follows.

Therapeutic treatments targeting inflammatory 
mediators in diabetic neuropathy
The various proposed mechanisms of  diabetic neu-
ropathy include increased reactive oxygen species pro-
duction, increased protein glycosylation, neurovascular 
disturbances, and decreased neurotrophic support.Mouse 
models have shown that NF-κB activation is associated 
with diabetic neuropathy. Toll-like receptors can also 
activate NF-κB and lead to increased expression of  cy-
tokines and chemokines. The levels of  pro-inflammatory 
cytokines, chemokines and TNF-α have been shown to 
be increased in mouse and human models, although the 
pathogenesis is not yet clear. Rodent studies revealed 
that increased COX-2 expression leads to a decrease in 
sensory and motor nerve conduction velocities (NCV), 
endoneurial blood flow, and intraepidermal nerve fiber 
density in diabetic mice compared to non-diabetic mice. 
This led to trials of  COX-2 inhibitors and other anti-
inflammatory drugs in diabetic neuropathy.

Monocytes from T2DM patients demonstrated in-
creased expression of  TNF-α, IL-1, IL-6, and IL-8 as 
compared to healthy controls and T1DM patients; treat-
ment of  these monocytes with 1,25-dihydroxyvitamin 
D3 downregulated the mRNAs of  these cytokines[54]. 
The natural flavonoid, curcumin, led to a dose-dependent 
decrease in serum TNF-α levels and attenuated thermal 
hyperalgesia in STZ-treated mice[55,56]. The beneficial ef-
fect of  this treatment was further enhanced by the use of  
insulin[57]. Other agents capable of  preventing inflamma-
tory-mediated events in rodent models include glicazide 
and troglitazone both of  which attenuate TNF-α levels. 
Both of  these treatments also prevented decreases in 
myelinated fiber area, fiber density, and the axon/myelin 
ratio in the tibial nerve of  diabetic rats[58,59].

The anti-oxidant, N-acetylcysteine, dose-dependently 
decreased TNF-α levels[60] which translated into a de-
creased incidence or severity of  neuropathy.

The expression of  COX-2 is increased in the periph-
eral tissues of  diabetic neuropathy models. Piroxicam 
statistically improved STZ-induced decreases in sensory 
neuron action potential amplitude[61]. The non-selective 
inhibitors, sulindac and indomethacin, decreased losses 
in sural and caudal sensory nerve conduction velocity of  
diabetic rodents compared to control mice[62,63]. Some 
non-selective COX inhibitors are effective treatment 
options, and flurbiprofen alone decreased motor NCV 
(MNCV). In fact, flurbiprofen treatment mimicked 
STZ-induced changes and did not reverse/alter STZ-
induced changes on MNCV[64]. These findings indicate 
that COX-1 maintains neural function in rodents. Fol-
lowing this observation, studies were planned to assess 
the efficacy of  COX-2 inhibitors. It was found that 
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celecoxib treatment prevented the decrease in MNCV 
and sensory nerve conduction velocity (slowing)[65], and 
meloxicam was shown to protect against MNCV slowing 
and endoneurial blood flow deficits in diabetic rodents. 
Intrathecal administration of  COX-2 inhibitors led to a 
dose-dependent attenuation of  mechanical behaviour[66]. 
Selective inhibition of  COX-2 via pharmacological or 
gene inactivation played a preventive role in the in-
creased TNF-α expression in the sciatic nerve of  STZ-
induced diabetic rodents[67]. However, clinical studies 
with these drugs are lacking. Only one study evaluating 
NSAID treatment in diabetic patients has been carried 
out, which demonstrated an improvement in the neu-
ropathy score with ibruprofen and sulindac treatment 
compared to placebo[68]. However, these results should 
be interpreted with caution as no healthy age-matched 
controls were included. The study only compared re-
sponders with non-responders. NSAIDS are a double-
edged sword in that their long-term use requires caution 
due to their well-known side effects. Although selec-
tive COX-2 inhibitors do not result in gastrointestinal 
side effects, cardiovascular side effects are a concern, 
especially in patients with a high risk for cardiovascular 
disease, of  which subjects with DM form a part. How-
ever, it is clear that the agents targeting inflammation in 
diabetic neuropathy are effective only if  targeted very 
early in the course of  neuropathy. Evidence demonstrat-
ing their effectiveness after the development of  diabetic 
neuropathy in reversing symptoms such as reductions in 
nerve conduction velocities or nociceptive behaviour is 
lacking. Larger studies investigating the time course of  
anti-inflammatory therapeutics should be planned. Cur-
rent studies have demonstrated no reversal of  diabetic 
neuropathy and the benefits observed only occur after 
a treatment period of  at least 12 wk[69,70]. Overall, more 
studies are needed to validate these findings.

Therapeutic treatments targeting inflammatory 
mediators in diabetic retinopathy
Hyperglycemia increases advanced glycation endproduct 
(AGE) formation, reactive oxygen species and leads to 
nitric oxide synthatase dysregulation resulting in activa-
tion of  NF-κB followed by an increase in cytokines (IL-1, 
IL-6, TNF-α), chemokines such as CCL-2, 58, 10, 12 
and adhesion molecules like intercellular adhesion mol-
ecule-1 (ICAM-1) and vascular cell adhesion molecule-1 
(VCAM-1). This leads to activation of  endothelial cells, 
recruitment of  inflammatory cells, increased levels of  
vascular endothelial growth factor (VEGF) and Angio-
poietin 2. These factors are involved in the pathogenesis 
of  increased capillary permeability, capillary dropout and 
neo-vascularization.

The various therapies used as anti inflammatory thera-
pies in diabetic retinopathy hence target VEGF, Angio-
poietin 2, various proteinases and chemokines.

The most important factor, which has been extensive-
ly investigated in the alteration of  the blood retinal bar-
rier (BRB), is VEGF. Levels of  VEGF are significantly 

elevated in patients with diabetic macular edema (DME) 
as compared to non-diabetic eye diseases[71,72]. VEGF is a 
potent vasoactive cytokine which increases vascular per-
meability. The major effect of  VEGF is on endothelial 
tight junction proteins, leading to extravasation of  fluid 
and hence retinal edema. It also induces the phosphoryla-
tion of  VE-cadherin, occludin, and ZO-1, causing dis-
ruption of  the barrier[73].

In addition, it also stimulates increased leukostasis in 
the microvasculature of  the retina, which also leads to 
breakdown of  the BRB[74,75].

Therefore, most of  the clinical trials on retinopathy 
have targeted VEGF. Direct VEGF inhibitors include 
the anti-VEGF aptamer, pegaptanib, the monoclonal 
antibody fragment, ranibizumab, and the full length anti-
body bevacizumab. Other drugs include soluble VEGF 
receptor analogs, VEGF-Trap, small interfering RNAs 
(siRNAs) bevasiranib, and rapamycin (sirolimus). Some 
studies have shown that after two years, the mean change 
in the visual acuity letter score from baseline was 3.7 let-
ters greater in the ranibizumab and prompt laser group, 
5.8 letters greater in the ranibizumab and deferred laser 
group, and 1.5 letters worse in the triamcinolone and 
prompt laser group[76]. However, it is important that re-
sponse to the anti-VEGF treatments in DME is variable, 
and is not as robust as in proliferative diabetic retinopa-
thy or neovascular glaucoma. This implies that the patho-
genesis of  DME is multifactorial and anti-VEGF therapy 
is only one player in the overall pathogenesis.

Angiopoietins are another class of  inflammatory 
growth factors that are important modulators of  an-
giogenesis. The levels of  angiopoietin-2 (Ang-2) are 
significantly elevated in patients with clinically significant 
macular edema[77], indicating that it alters the BRB. In 
another study increased expression of  Ang-2 mRNA and 
protein has been demonstrated in the retina of  diabetic 
animals[78]. Even in non-diabetic rats, intra-vitreal injec-
tion of  Ang-2 led to a three-fold increase in retinal vas-
cular permeability. Ang-2 also induces phosphorylation 
and loss of  VE-cadherin[78]. Recent data have suggested 
that Ang-2 sensitizes endothelial cells to TNF-α-induced 
ICAM-1 expression and hence monocyte adhesion. This 
implies that Ang-2 is an autocrine regulator of  endothe-
lial cell inflammatory responses. Therefore, Ang-2 plays a 
permissive role in the augmentation of  pro-inflammatory 
cytokines[79]. This molecule maybe an important thera-
peutic target in DME. Ang-2 inhibitors in various tumor 
models have been found to be effective in preventing 
tumor growth through the modulation of  monocyte in-
filtration and angiogenesis[80]. Matrix metalloproteinases 
(MMPs) are major regulators of  innate and acquired 
immunity[81]. Knockout mouse models have shown that 
these molecules play an important role in both acute 
and chronic inflammation[82]. It has also been shown 
that MMPs are important for the proteolytic alteration 
and hence activation of  chemokines. They cleave many 
members of  the CCL/monocyte chemoattractant protein 
(MCP) family of  chemokines rendering them proactive, 
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which amplifies the inflammatory response. Furthermore, 
MMPs organise the recruitment of  leukocytes as an es-
sential component of  tumor-associated inflammation[83]. 
It is now evident that MMPs also play an important role 
in the pathogenesis of  diabetic retinopathy (DR). The 
vitreous level of  proteinases, such as MMP9, are higher 
in diabetic subjects with DR than without DR[84]. Both 
MMP2 and MMP9 are elevated in the retina of  animal 
models with early DR[85]. The retinal vascular permeabil-
ity in diabetic animals is significantly increased which is a 
result of  a decrease in cell-cell junctional protein and VE-
cadherin. MMP inhibitors can decrease this vascular per-
meability[86]. This implies that the proteolytic degradation 
of  VE-cadherin contributes to the BRB breakdown. This 
is evidence for the role of  extracellular proteinases in the 
alteration of  the BRB seen in DR[87]. Hyperglycemia can 
activate many soluble mediators such as AGE, reactive 
oxygen species (ROS), and inflammatory cytokines, which 
can increase MMP levels and activity in the diabetic state. 
Retinal inflammation leads to increased leukocyte infiltra-
tion in the retina, which by binding to endothelial cells 
activates cellular proteinases such as elastase, followed by 
removal of  VE-cadherin and its associated protein from 
the cell surface, resulting in alterations in the endothelial 
monolayer[88]. These studies indicate an important role 
for these proteinases in DR.

The levels of  many chemokines have been shown to 
be elevated in various studies.The most common che-
mokine found to be elevated in serum and vitreous is 
CCL2[89,90]. CCL2, also known as MCP-1, plays an impor-
tant role in vascular inflammation by inducing leukocyte 
recruitment and activation. Hyperglycemia increases 
CCL2/MCP-1 generation in retinal vascular endothelial 
cells, pigmented epithelial cells and Muller’s glial cells[91]. 
Furthermore, the gene polymorphism of  CCL2 has been 
indicated as a potential risk factor for DR[92].

Studies have shown that genetic knockout of  the 
CCL2 gene in diabetic mice plays a preventive role in 
alteration of  the BRB[93], and that selective inhibition of  
the CCL2 gene can prevent alteration of  the BRB in dia-
betes. Further studies using selective inhibitors of  CCL2 
and CCR2 are in progress. 

Genistein, a tyrosine kinase inhibitor, has been shown 
to be effective in reducing diabetes-induced retinal in-
flammation by interfering with inflammatory signaling 
(ERK and P38 MAPKs) in activated microglia. This ben-
eficial effect of  genistein may represent a new interven-
tion therapy for modulating early pathological pathways 
long before the occurrence of  vision loss in diabetics[94].

Therapeutic treatments targeting inflammatory 
mediators in diabetic nephropathy
Inflammation activated by the metabolic, biochemical 
and haemodynamic derangements may play a key role in 
the development and progression of  diabetic nephropa-
thy. Cytokines such as IL-1, IL-6 and TNF-α stimulate 
the expression of  cell adhesion molecules and profibrotic 
growth factors, increase endothelial permeability, pro-
mote mesangial proliferation, glomerular hypertrophy 

and the production of  ROS. Chemokines like Protein ki-
nase C (PKC)-dependent ICAM-1, VCAM-1 and MCP-1 
facilitate leukocyte-endothelial adhesion and infiltration 
into diabetic kidneys. Adiponectin is protective in that 
it reduces oxidative stress, the production of  TNF-α, 
and leukocyte-endothelial adhesion. Adiponectin has 
also been shown to interfere with receptor activation of  
platelet-derived growth factor (PDGF), fibroblast growth 
factor (FGF), and epidermal growth factor (EGF). In-
creased mammalian target of  rapamycin (mTOR) activity 
has been shown to cause glomerular hypertrophy and 
hyperfiltration in diabetic subjects.

Adenosine is a potent autocrine anti-inflammatory and 
immunosuppressive molecule that is released from cells 
into the extracellular space at sites of  inflammation and 
tissue injury. The levels of  adenosine, an endogenous pu-
rine nucleoside, released from various tissues and organs 
are decreased in diabetic nephropathy (DN)[95]. DN was 
more severe in A2A receptor knockout mice than in wild-
type mice, which suggests that endogenous adenosine 
may contribute to kidney protection due to diabetes in 
a similar manner to that in kidney ischemia-reperfusion 
injury[96]. MCP-1/CCL2 inhibition by propagermanium 
ameliorated diabetic glomerulosclerosis and is another tar-
get for DN[97]. However, clinical inhibitors of  CCL2 have 
shown only partial effects[98]. Even with CCL2 knockout, 
only a reduction in albuminuria was observed[99].

Pentoxifylline inhibits the expression of  TNF-α mR-
NA levels[100]. In combination with angiotensin-converting 
enzyme inhibitors and AT1 receptor blockers (ARB), pent-
oxifylline decreased albuminuria in DN[101,102].

In a prospective, randomized, double-blind, placebo-
controlled study, pentoxifylline (1200 mg daily) for 12 
mo, in 34 patients with incipient or established DN had a 
reno-protective effect determined by a significant reduc-
tion in urinary albumin excretion in both incipient and 
established (P < 0.01) DN patients. This effect was at-
tributed to a reduction in CRP, IL-6, TNF-α and serum 
leptin levels (P < 0.01)[103].

The results from 7 animal studies and 13 randomized 
controlled trials on diabetic kidney disease consistently 
demonstrated that short-term use of  pentoxifylline pro-
duced a significant reduction in proteinuria and micro-
albuminuria in patients with diabetic and non-diabetic 
kidney diseases. The reports on long-term studies also 
showed that urinary protein excretion was considerably 
reduced in patients treated with pentoxifylline; however, 
as these results were mostly based on small clinical trials it 
is not clear whether the additive anti-proteinuric effect of  
pentoxifylline is sustained over time. Large scale clinical 
trials are needed to establish the long-term use of  pent-
oxifylline as a pharmacological alternative for delaying or 
preventing the development of  end-stage renal disease.

Adiponectin has been shown to suppress inflamma-
tory markers including TNF-α, and receptor activation 
for PDGF, EGF and FGF. Adiponectin has also been 
shown to preserve nephrin, decrease the expression levels 
of  TGF-β, and reduce albuminuria.

Inhibition of  NF-κB in kidney using PPAR-γ[104], 
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ARB[105], or pentosan polysulfate[106] has been shown to 
ameliorate DN in animal models. However,the efficacy 
of  inhibition of  NF-κB in delaying progression of  DN 
has not been reported.

HMG-CoA reductase inhibitors (statins) have a con-
troversial role in DN. In a subanalysis of  the Treating 
to New Targets study, treatment with 10 mg and 80 mg 
atorvastatin was found to increase estimated glomerular 
filtration rate (eGFR)[107], while in the Prevention of  Re-
nal and Vascular End-Stage Disease Intervention Trial, 
treatment with 40 mg pravastatin did not result in an in-
crease in eGFR[108].

The mTOR is a serine/threonine kinase that mediates 
cell proliferation, survival, size, and mass[109]. Rapamycin 
decreases hyperglycemia-induced increase in mTOR activ-
ity and thus decreases renal changes in DN, including me-
sangial expansion and glomerular basement thickness[110]. 
Rapamycin also significantly reduces the influx of  mono-
cytes and macrophages associated with the progression of  
DN[111,112]. It has also been shown to decrease the release 
of  pro-inflammatory cytokines or chemokines including 
MCP-1, regulate normal T cell expression and secreted, 
IL-8, and fractalkine[111,112]. Thus, rapamycin represents a 
new and valuable anti-inflammatory target in DN.

A recent study showed that aspirin decreased albu-
minuria in patients with DN[113]. In combination with 
AT1 receptor blockers (ARB) it led to a further decrease 
in the progression of  DN and inflammatory markers 
compared to when used alone[114]. This effect of  COX-2 
inhibitors is postulated to occur as a result of  the effects 
on renal hemodynamics and decrease in profibrotic cyto-
kines[115]. However, in another study, treatment with 200 
mg/d COX-2 inhibitor for six weeks did not decrease 
DN[116]. Thus, the overall data for COX-2 inhibitors in 
DN remains controversial. 

PKC is induced by hyperglycemia and insulin re-
sistance. This PKC activation then alters cell signaling 
molecules including inflammatory cytokines such as NF-
κB, IL-6, TNF-α, and plasminogen activator-1 (PAI-1) in 
endothelial and mesangial cells[117-119]. Ruboxistaurin (RBX), 
a PKCβ isoform selective inhibitor, has been shown to 
prevent DN in rodent DN models by inhibiting media-
tors of  extracellular matrix accumulation, TGF-β and 
amelioration of  insulin signalling[120]. Diabetic PKCβ null 
mice showed decreased albuminuria and mesangial expan-
sion[121]. A phase Ⅱ clinical trial with RBX significantly de-
creased albuminuria and maintained a stable eGFR[122]. Re-
cently, it was shown that hyperglycemia itself  can activate 
PKCβ isoforms, which increased the detrimental effects 
of  Ang-2 on glomerular endothelial cells and decreased 
the glucagon-like peptide-1 (GLP-1) receptor, leading to 
resistance to GLP-1 treatment in DN[123]. Recent find-
ings suggest that hyperglycemia also activates PKCβ and 
p38 mitogen-activated protein (MAPK) to increase Src 
homology-2 domain-containing phosphatase-1 and causes 
VEGF resistance and independent NF-κB activation to 
induce podocyte apoptosis in DN[124] which may be new 
targets of  treatment. 

Exogenous insulin has been shown to inhibit the acti-
vation of  TNF-α in animal models[125]. Furthermore,insulin 
inhibits MCP-1 expression and activation of  NF-κB in 
endothelial cells[126]. Recent studies in patients with T2DM 
have shown that insulin treatment decreases the expres-
sion of  inflammatory cytokines, such as MCP-1, ICAM-1, 
soluble VCAM-1 (sVCAM-1), TNF-α, and IL-6[127,128].

Insulin can increase endothelial nitric oxide (NO) pro-
duction by rapid post-translational mechanisms, mediated 
by the PI3K/Akt signaling pathway, leading to vasodila-
tation, an antithrombotic effect, and anti-inflammatory 
actions[129-131]. Insulin not only stimulates NO produc-
tion, but also increases the expression of  endothelial NO 
synthase (eNOS)[132]. Recent data indicate that vascular 
endothelial cell specific insulin receptor knockout mice 
had decreased eNOS expression in the aorta[133]. Thus, 
insulin resistance in vascular tissue could contribute to 
DN. However, to date, the efficacy of  exogenous NO 
donor remains unclear. Insulin and metformin were stud-
ied in a trial for 14 wk. Despite substantially improving 
glucose control, neither insulin nor metformin reduced 
inflammatory biomarker levels including hsCRP, IL-6, and 
sTNFR2, which were the main effects evaluated in com-
parisons between the individual treatment groups (placebo 
metformin only; placebo metformin and insulin; active 
metformin only; or active metformin and insulin)[28].

PPARs regulate insulin sensitivity, lipid metabolism, ad-
ipogenesis and cell growth[134-137]. Recent studies indicated 
that a PPAR-γ agonist decreased the expression of  inflam-
matory markers such as PAI-1, ICAM-1, and NF-κB in the 
kidney in DN and ameliorated renal function[138].

Analysis of  the GLP-1 receptor (GLP-1R) has re-
vealed its expression in endothelial cells and kidney[139,140].
In endothelial cells, GLP-1 inhibits the expression of  
TNF-α and VCAM-1[141]. GLP-1 acts on the glomerular 
endothelial cells and decreases the signaling pathway of  
Ang-2 at phospho-c-Raf  (Ser338)/phospho-Erk1/2 via 
phospho-c-Raf  (Ser259) activated by the cAMP/PKA 
pathway. Administration of  GLP-1 in DN decreases 
inflammatory markers including PAI-1, CD68, IL-6, 
TNF-α, NF-κB, and CXCL2 in the kidney[117].

DPP-4 inhibitors provide vascular protection by in-
creasing the bioavailability of  GLP-1and its action. They 
have also been reported to decrease the levels of  MCP-1. 
In addition, they have vasotropic actions and a pos-
sible reduction in DN[142]. A recent large phase Ⅲ study 
showed that linagliptin significantly reduced albuminuria 
in DN by 30%[143]. However, the role of  DPP-4 inhibi-
tors in the regulation of  inflammatory cytokines and va-
sotropic actions remains largely unexplored and open to 
further trials.

DIABETES, THE METABOLIC SYNDROME 
AND NON-ALCOHOLIC FATTY LIVER 
DISEASE
Type 2 diabetes mellitus is part of  the metabolic syn-
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drome and non-alcoholic fatty liver disease (NAFLD) 
shares insulin resistance as a common pathophysiology 
with T2DM. More recently, NAFLD has been pro-
posed, but not yet accepted, as a criterion for defining 
the metabolic syndrome[144]. Hepatic insulin resistance 
has a key role to play in the pathogenesis of  NAFLD 
and adiponectin, an abundant adipocytokine, decreases 
both hepatic and systemic insulin resistance by decreas-
ing inflammation[145]. Hence, adiponectin and its agonists 
may be promising targets to reduce both hepatic and 
systemic insulin resistance[146,147]. Exercise, in addition to 
its benefits in reducing weight and insulin resistance also 
reduces the levels of  inflammatory cytokines implicated 
in diabetes-associated NAFLD[148]. Omega-3 polyunsatu-
rated fatty acids (n-3 PUFAs) have been used in NAFLD 
and lead to a significant reduction in the expression of  
pro-inflammatory molecules (TNF-α and IL-6) and of  
reactive oxygen species[149]. Inhibition of  Bcl-2 (B-cell 
lymphoma 2), the first member of  the Bcl-2 family of  
apoptosis regulatory proteins encoded by the Bcl-2 gene, 
leads to intensification of  inflammation in NAFLD[150].
Serum Bcl-2 concentrations in overweight-obese subjects 
with NAFLD have been shown to be reduced and may 
represent an additional target for therapy[151]. JNK, insu-
lin resistance and inflammation represent possible links 
between NAFLD and coronary artery disease. There are 
few studies on anti-inflammatory drugs such as aspirin, 
anti-IL-6 receptors, immune-modulators (calcineurin 
inhibitors), substances which enhance the expression 
of  heat shock proteins (which protect cells from endo-
plasmic reticulum stress-induced apoptosis), and anti-c-
Jun amino-terminal kinases in NAFLD and these require 
further study[152]. Thus, NAFLD is a chronic low grade 
inflammation that leads to insulin resistance due to the 
increased levels of  cytokines[153,154], and anti-inflammatory 
therapies may help decrease the burden of  NAFLD and 
T2DM.

Thus, inflammation has a role to play both in the 
pathogenesis of  diabetes and its complications and it rep-
resents a potential target for treatment in both diabetes 
and its complications.
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Abstract
AIM: To investigate whether the presence of human 
leukocyte antigen (HLA) marker could add new informa-
tion to discriminated atypical diabetic type 2 patients.

METHODS: We analyzed 199 patients initially diag-
nosed as type 2 diabetes who are treated in special 
care diabetes clinics (3rd level). This population was 
classified in “atypical” (sample A) and “classic” (sample 
B) according to HLA typing. We consider “classic pa-
tient” when has absence of type 1 diabetes associated 
HLA alleles and no difficulties in their diagnosis and 
treatments. By the other hand, we considered “atypical 
patient” when show type 1 diabetes associated HLA al-
leles and difficulties in their diagnosis and treatments. 
The standard protocol Asociacion Latinoamericana de 
Diabetes 2006 was used for patients follow up. To ana-

lyze differences between both populations in paraclini-
cal parameters we used unpaired t  tests and contin-
gence tables. Bivariate and multivariate analyses were 
carried out using the SPSS software program. In all 
studies we assume differences statistically significant, 
with a P -value < 0.05 corrected and 95%CI.

RESULTS: The typing HLA in the “atypical” populations 
show that 92.47% patients presented at list one type 1 
diabetes associated HLA alleles (DQB1*0201-0302 and 
DR 3-4) and 7.53% had two of its. The results showed 
for categorical variables (family history, presence or 
absence of hypertension and/or dyslipidemia, reason 
for initial consultation) the only difference found was 
at dyslipidemia (OR = 0.45, 0.243 < OD < 0.822 (P  < 
0.001). In relation to continuous variables we found 
significant differences between atypical vs  classic only 
in cholesterol (5.07 ± 1.1 vs  5.56 ± 1.5, P  < 0.05), 
high density lipoproteins (1.23 ± 0.3 vs  1.33 ± 0.3, P  < 
0.05) and low density lipoproteins (2.86 ± 0.9 vs  3.38 
± 1.7, P  < 0.01). None of the variables had discrimi-
nating power when logistic regression was done.

CONCLUSION: We propose an algorithm including 
HLA genotyping as a tool to discriminate atypical pa-
tients, complementing international treatment guide-
lines for complex patients.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Atypical diabetes; Clinical algorithm; Immu-
nity molecular marker

Core tip: There are evidences that exists a lot of pa-
tients who were diagnosed as type 2 diabetics but pres-
ent difficult management, don’t have good responses 
to treatment and don’t achieve the metabolic goals. We 
include the study of human leukocyte antigen markers 
typically associated whit type 1 diabetes to characterize 
these patients. This paper provides information about 
the possibility of incorporate a standardized molecular 
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diagnosis in the clinical practice to identify complex or 
atypical type 2 diabetic patient.

Fernández M, Fabregat M, Javiel G, Mimbacas A. HLA alleles 
may serve as a tool to discriminate atypical type 2 diabetic pa-
tients. World J Diabetes 2014; 5(5): 711-716  Available from: 
URL: http://www.wjgnet.com/1948-9358/full/v5/i5/711.htm  
DOI: http://dx.doi.org/10.4239/wjd.v5.i5.711

INTRODUCTION
Diabetes mellitus is a chronic disease that requires on-
going medical care to prevent acute complications and 
reduce the risk of  long-term complications. While recog-
nizing two major groups of  diabetic patients, type 1 and 
2, the clinical presentation and disease progression vary 
considerably in both types of  diabetes. However, ADA 
Position Statement establishes that there are patients 
who cannot be classified as type 1 or type 2[1]. The true 
diagnosis may be more obvious only over time. There is 
growing evidence that emphasize the existence of  a sig-
nificant overlap between diabetes type 1 and 2[2-12]. 

Despite the increasing incidence of  the disease and 
the efforts made to establish diagnostic guidelines some 
patients do not qualify strictly into the given definitions. 

Such patients which can be simultaneously classified 
in more than one group significantly complicate the med-
ical treatment. They generally require the assistance of  a 
multidisciplinary team in second or third level centers. It 
is in these patients considered “atypical”, where it is nec-
essary to deepen the diagnosis with other complementary 
examinations with additional technologies. In these cases 
the classical diagnostic markers and risk factors analysis 
for various chronic complications, are not sufficient by 
themselves for a clinical differentiation. In a previous 
paper we found a high proportion of  type 2 diabetes pa-
tients who presented HLA susceptibility alleles for type 
1 diabetes[13]. Therefore, we propose to add the usage of  
a molecular marker (HLA) to the international standard 
criteria 

According to the ADA type 1 diabetes is strongly 
associated with specific HLA groups while in type 2 dia-
betes does not exist this association[14]. Of  all of  the type 
1 diabetes associated genes and regions revealed by dif-
ferent studies, the HLA association remains the strongest 
by far, with reported ORs ranging from 0.02 to .11 for 
specific DR-DQ haplotypes[15,16].

The presence of  these genetic variants in patients di-
agnosed as type 2 let us assign them the “atypical” label. 
We propose this clinical, biochemical and molecular study 
to keep deepening in the characterization of  HLA as a 
tool for their differentiation.

In this paper we pretend to provide the Clinicians 
with a tool to identify those patients at atypical presenta-
tion in whom the algorithms have not been useful. We 
present the basis for a possible new algorithm that can 

contribute to the early identification of  these problematic 
patients.

MATERIALS AND METHODS
Population design
We analyzed a population of  199 patients seen in 3rd level 
Clinics for Diabetes from two centers: public (Pasteur 
Hospital) and private initially diagnosed with type 2 dia-
betes[14]. For the preparation of  this study were consid-
ered only those patients receiving comprehensive care of  
their diabetes, following a nutritional plan and presenting 
a good adherence to physical activity according to their 
functional ability within the recommendations of  Aso-
ciacion Latinoamericana de Diabetes (ALAD)/ADA and 
medicated with one or more oral antidiabetic drugs. In 
turn, this population was classified based on the presence 
or absence of  type 1 diabetes HLA susceptibility alleles 
described in the Uruguayan population[13].

Sample A: 93 “atypical” patients that met the follow-
ing inclusion criteria: (1) Patients who had good adher-
ence to the treatment; (2) They fulfilled the objectives 
of  education and nutrition plans according to interna-
tional guidelines; (3) Present doubts on classification 
of  diabetic type and/or no good therapeutic response 
(two consecutive measurements of  glicated hemoglobin 
within three months not reduced in 1.5%[17]) to ADA, 
ALAD algorithms; and (4) Patients with susceptibility 
HLA alleles for autoimmune disease. We considered 
DQB1*0201-0302 and DR 3-4 as susceptible ones in the 
Uruguayan population[18].

Sample B: 106 “classic” patients fulfilling the same 
requirements a, b of  sample A but which do not have 
diagnostic doubts, responded to treatment and do not 
present HLA alleles associated with autoimmune disease.

Patient of  both samples who had other endocrine 
disorders or tumors were excluded.

All subjects were interviewed by medical doctors fol-
lowing ALAD guidelines on diagnosis treatment and con-
trol of  type 2 diabetes with evidence-based medicine[19].

All patients were assessed for the following items: 
(1) Family history of  diabetes; (2) Personal history: 
chronological age, age at diagnosis, time of  evolution; (3) 
Motive of  initial consultation: patients were categorized 
into five groups: incidental finding by fasting glucose, 
oral glucose tolerance test, presence of  typical symp-
toms, acute debut with ketoacidosis without precipitat-
ing cause, and patients referred by other specialists for 
the presence of  complications; (4) Presence or absence 
of  classical risk factors associated with type 2 diabetes 
(hypertension and/or dyslipidemia); (5) Body mass in-
dex (BMI) was calculated and categorized according to 
the World Health Organization[20]: overweight (25-29.9 
kg/m2) and obesity (≥ 30 kg/m2); and (6) Clinical evalu-
ation and metabolic parameters: glicated hemoglobin, 
cholesterol, low density lipoproteins (LDL), high density 
lipoproteins (HDL), triglycerides (TG), TG/HDL ratio 
as insulin-resistance index (> 3)[21,22]. To analyze levels of  
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dyslipidemia, both samples were stratified according to 
the 2° Dyslipidemia Consensus in Uruguay (Table 1)[23]. 
We analyzed the phenotypic classification of  dyslipid-
emia respect to Table 2[24].

Molecular analysis 
DNA was obtained from peripheral blood using standard 

(phenol/chloroform) technique. The HLA typing was 
performed by reverse ASO technique (Innogenetics Ltd, 
Belgium, UE).

All patients gave written informed consent and the 
study protocol was approved by the Ethical Commit-
tee of  Ministry of  Public Health and the corresponding 
Ethical Committee of  each participant Institution. 

Statistical analysis
Continuous variables were expressed as the means and 
standard deviations. Differences between groups were 
determined by unpaired t tests after checking the normal 
distribution or converted to normalize of  the data. Cat-
egorical variables were described using proportion and 2 
× 2 contingence table. Bivariate and multivariate analy-
ses were based on dependent variables (two categories 
sample A, sample B). Logistic regression with all variables 
was done. All tests were carried out using the SPSS soft-
ware program. In all studies we assume differences sta-
tistically significant, with a P-value < 0.05 corrected and 
95%CI.

RESULTS
Population characterizes
The total population consisted of  94 women (47.24%) 
and 105 men (52.76%). The gender distribution was simi-
lar in samples A and B. In the statistical analysis of  cat-
egorical variables (family history, presence or absence of  
hypertension and/or dyslipidemia, reason for initial con-
sultation) the only difference found was at dyslipidemia 
(ODDs 0.45, CI: 0.243-0.822 (P < 0.001)). In relation to 
values of  cholesterol, HDL, LDL and TG, only the last 
parameter not showed statistical differences (Table 3). 
Subsequently each of  these variables was analyzed, sepa-
rating into classes in accordance to the Uruguayan Dys-
lipidemia Consensus. Sample A showed a higher propor-
tion of  normal values for cholesterol and LDL (55.9% vs 
37.7%, 70.7% vs 54.8%, respectively). In relation to dys-
lipidemia phenotypic classification, hypercholesterolemia 
was the only parameters statistically significant: 12.3% 
atypical patients vs 2.2%, classic patients with ODDs 0.07 
(CI: 0.009-0.54).

Furthermore, we found that only part of  the patients 
from the sample A (atypical) presented classical risk fac-
tors associated with type 2 diabetes (hypertension and/or 
dyslipidemia).

Analyzing the qualitative variables (Table 4) the only 
difference found was also in the lipid profile. In relation 
to BMI no difference between both samples were ob-
served. It is important to point out those only 4 individu-
als in sample A had a normal weight in spite of  having 
HLA alleles associated with type 1 diabetes.

None of  the variables had discriminating power when 
logistic regression was done. The P value of  the χ 2 test 
was > 0.05.

HLA marker
The typing HLA in the “atypical” populations show that 
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Table 1  Reference values (mmol/L) of parameters stratified

Dyslipidemia parameters Desirable Limit Abnormal

Total cholesterol < 5.2   5.2-6.19 > 6.2
HDL > 1.2 1.2-0.9 < 0.9
LDL < 3.4 3.4-4.0 > 4.1
Triglycerides    2.3   2.3-2.99 > 3.0

HDL: High density lipoproteins; LDL: Low density lipoproteins.

Table 2  Phenotypic classification of dyslipidemia

Total Cholesterol LDL Triglycerides HDL

Hypercholesterolemia ≥ 6.2  ≥ 4.1  < 2.3
Combined 
hyperlipidemia

 ≥ 4.1 ≥ 2.3

Hipo alfa 
lipoproteinemia

> 4  < 2.3 < 1

Reference values (mmol/L). HDL: High density lipoproteins; LDL: Low 
density lipoproteins.

Table 3  Clinical characteristics expressed by media and 
standard deviation

Sample A n  = 93 Sample B n  = 106 P value

Age (yr)   62.01 ± 11.65 66.02 ± 9.55 0.060
Age onset (yr)   47.18 ± 12.61   49.54 ± 10.13 0.131
Years of evolution 16.41 ± 9.72 15.45 ± 9.22 0.528
BMI (kg/mts2) 32.07 ± 5.26 31.45 ± 5.95 0.430
HbA1c (%)1   8.31 ± 1.87   8.16 ± 1.65 0.545
Total cholesterol 
(nmol/L)

5.07 ± 1.1  5.56± 1.5  0.010a

HDL (nmol/L) 1.23 ± 0.3 1.33 ± 0.3  0.010a

LDL (nmol/L) 2.86 ± 0.9 3.38 ± 1.7  0.009b

Triglycerides 
(nmol/L)

2.29 ± 1.4 2.81 ± 0.9 0.864

TG/HDL 2.10 ± 1.5 1.96 ± 2.0 0.572

1At beginning of the study. Sample A vs Sample B: aP < 0.05, bP < 0.01 for 
all parameters. BMI: Body mass index; LDL: Low-density lipoprotein-
cholesterol; HDL: High-density lipoprotein-cholesterol; TG/HDL: Insulin 
resistance index; HbA1c (%): Glycated hemoglobin percentage.

Table 4  χ 2 analysis

OR 95%CI P  value

Dyslipidemia 0.45 0.24-0.82 < 0.01
Total cholesterol 0.48 0.27-0.84 < 0.01
HDL 1.84 1.04-3.23 < 0.05
LDL 0.50 0.28-0.91 < 0.05

LDL: Low-density lipoprotein-cholesterol; HDL: High-density lipoprotein-
cholesterol.
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until present no one has fulfill the expectations to pre-
vent or improve the treatment of  diabetes. The addition 
of  the genotypic variants risk score to clinical predic-
tion models, only moderately (minimally) improve the 
statistical results[25,26]. In a previous paper analyzing the 
genotype-phenotype relation, observed the existence of  
a high proportion of  patients that despite being classified 
as type 2 diabetes according to the diagnostic guidelines, 
they presented HLA alleles strongly associated with type 
1 diabetes[27]. 

The observed statically differences in the lipid profiles 
of  atypical patients are insufficient to define changes 
in classification, treatment and/or monitoring. In these 
complex patients usual clinical markers used for diagnosis 
and for the risk factors analysis for various complications 
were not sufficient by themselves to differentiate classic 
type 2 diabetics.

BMI is usually considered as an important marker to 
differentiate between types of  diabetes but, no differ-
ences were observed between classical and atypical pa-
tients. As in these patients a fast increment of  the obesity 
rate has been observed, the presence of  this factor has 
been considered as an important factor in reducing the 
described differences between type 1 and 2 diabetes[12]. 
The presences of  overweight or obesity would induce the 
Clinician not to look for the presence of  HLA suscep-
tibility to autoimmune disease. In fact, in the sample of  
atypical patients only 4 of  them had normal weight de-
spite having HLA alleles associated with type 1 diabetes. 
This finding is not consistent with international classifica-
tions where, although there may be exceptions, defines 
the patient with type 2 diabetes as overweight or with 
abdominal fat distribution without autoimmunity, while 
rarely type 1 diabetics are obese[1].

Based on these data, we believe that this molecular 
marker analysis provide valuable data to clarify these 
patients. It is also clear that the mere presence of  mo-
lecular marker is not indicative of  the evolution of  each 
patient’s disease or how pancreatic reserve presents in 
each individual.

From the results, we consider that the study should 
be complemented with the search for other clinical or 
evolution markers to enable an accurate differentiation. 
Dosage of  peptide C could be a very good parameter to 
evaluate the stage of  beta cell. This factor was not includ-
ed in this study because it is not standardized in Uruguay.

At present, we have not enough evidence to answer a 
crucial question on these atypical patients, at what point 
the genetic study should be done? (1) to debut; (2) after 
adopt changes in lifestyle and no achieve control objec-
tives were observed; (3) after 6 mo of  no response to 
treatment plan indicated by international guidelines; and 
(4) at any time of  evolution. We think that is important 
know the genotype of  the patient when, after adjusting 
nutritional plan and changes in lifestyle, no clinical im-
provements were observed. This question should be an-
swered with new evidence that address the issues raised 
in this work.

92.47% patients presented at list one type 1 diabetes as-
sociated HLA alleles (DQB1*0201-0302 and DR 3-4) 
and 7.53% had two of  its.

DISCUSSION
The usual elements that are taken into consideration in 
the diagnosis and treatment of  atypical diabetic patients 
are not sufficient for identify individuals considered 
“atypical” for presentation, evolution and/or poor thera-
peutic response according to international guidelines. For 
this reason, we investigate whether the inclusion of  an 
immunity molecular marker would provide conclusive 
information that helps the Clinician with an appropriate 
individualized therapeutic classification in this group of  
patients.

According to the consensus this marker differentiates 
two major types of  diabetes. Type 1 diabetes is strongly 
associated with HLA while type 2 diabetes is not[14]. Our 
study demonstrated that the clinical, biochemical and 
molecular-genetic characterization of  atypical patient 
population and their comparison with classic type 2 dia-
betes patients showed that although a few differences 
were found to be statistically significant, they are not indi-
vidually sufficient to clarify the situation of  each patient. 
We propose here to add the usage of  HLA typing to the 
international standard criteria. 

Despite the enormous efforts that have been made 
to identify gene variants associated with type 2 diabetes, 
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Diabetes clinical complex patients

Multidisciplinary team refer 

Poor metabolic control according to guidelines

HLA DQB*/DR typing

NegativePositive

Peptide C evaluation Evaluate other parameters

NormalLow

Evaluate insulin indication Controlling a year

Evaluating control using HbA1c at 3 mo

Figure 1  Algorithm for complex diabetes patients with difficulties in 
diagnosis, evolution, poor therapeutic response where international algo-
rithms have been fulfilled. HbA1c: Glycated hemoglobin.
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Here, we simply propose a new tool for the Clinician. 
We are aware that the genetic typing of  HLA is a costly 
analysis but, the information presented here justifies 
its implementation in a very specific group of  patients. 
From our point of  view, the addition of  such study to 
the actually used algorithm would clearly help to Clini-
cians in making a different evaluation of  atypical patients 
(Figure 1).

All authors are requested to disclose any actual or po-
tential conflict of  interest including any financial, person-
al or other relationships with other people or organiza-
tions within three years of  beginning the submitted work 
that could inappropriately influence, or be perceived to 
influence, their work.
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Abstract
AIM: We investigated the relationship between taste 
sensitivity, nutritional status and metabolic syndrome 
and possible implications on weight loss dietary program. 

METHODS: Sensitivity for bitter, sweet, salty and sour 
tastes was assessed by the three-Alternative-Forced-
Choice method in 41 overweight (OW), 52 obese (OB) 
patients and 56 normal-weight matched controls. OW 
and OB were assessed also for body composition (by 
impedence), resting energy expenditure (by indirect 
calorimetry) and presence of metabolic syndrome 
(MetS) and were prescribed a weight loss diet. Compli-

ance to the weight loss dietary program was defined 
as adherence to control visits and weight loss ≥ 5% in 
3 mo. 

RESULTS: Sex and age-adjusted multiple regression 
models revealed a significant association between body 
mass index (BMI) and both sour taste (P  < 0.05) and 
global taste acuity score (GTAS) (P  < 0.05), with lower 
sensitivity with increasing BMI. This trend in sensitivity 
for sour taste was also confirmed by the model refit-
ted on the OW/OB group while the association with 
GTAS was marginally significant (P  = 0.06). MetS+ 
subjects presented higher thresholds for salty taste 
when compared to MetS- patients while no significant 
difference was detected for the other tastes and GTAS. 
As assessed by multiple regression model, the asso-
ciation between salty taste and MetS appeared to be 
independent of sex, age and BMI. Patients continuing 
the program (n  = 37) did not show any difference in 
baseline taste sensitivity when compared to drop-outs (n  
= 29). Similarly, no significant difference was detected 
between patients reporting and not reporting a weight 
loss ≥ 5% of the initial body weight. No significant dif-
ference in taste sensitivity was detected even after di-
viding patients on the basis of nutritional (OW and OB) 
or metabolic status (MetS+ and MetS-). 

CONCLUSION: There is no cause-effect relationship 
between overweight and metabolic derangements. 
Taste thresholds assessment is not useful in predicting 
the outcome of a diet-induced weight loss program. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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metabolic syndrome parameters and its effects on the 
success of weight loss dietary program. We found that 
taste sensitivity appears related to weight excess and 
to metabolic syndrome only in the case of salty taste, 
while there is no implication related to a weight loss 
program.

Bertoli S, Laureati M, Battezzati A, Bergamaschi V, Cereda E, 
Spadafranca A, Vignati L, Pagliarini E. Taste sensitivity, nu-
tritional status and metabolic syndrome: Implication in weight 
loss dietary interventions. World J Diabetes 2014; 5(5): 717-723  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
v5/i5/717.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i5.717

INTRODUCTION
The prevalence of  obesity has grown in parallel with the 
worldwide rise in metabolic syndrome and diabetes be-
coming a global public health problem that threatens the 
economies of  all nations. Obesity is fuelled by individual 
factors, nutrition transition and increasingly sedentary 
lifestyles that lead to excess caloric intake[1]. Among 
individual factors, taste sensitivity plays an important 
role in food preferences, choices, and thus consump-
tion[2]. Taste sensitivity can be defined as the minimum 
concentration at which the subject is able to perceive a 
specific taste quality, such as sweet, sour, salty and bit-
ter[2]. A growing literature suggested that the ability to 
taste phenylthiocarbamide/6-n-propylthiouracil (PROP), 
synthetic compounds identified as major ligands for 
bitter-taste-receptor genes (TAS2R38), influences dietary 
behaviour[3,4]. In particular variation in taste sensitivity 
to bitter has been associated with differences in prefer-
ences for and selection of  bitter fruits and vegetables, as 
well as sweet foods, added fats, spicy foods, and alcoholic 
beverages[5-7]. Past studies failed to show any association 
between sweet thresholds and nutritional status[8-10], while 
more recent studies described a difference between over-
weight and normal-weight subjects[11,12]. In particular, it 
has been shown that PROP phenotype is related to body 
mass index (BMI) in females and that sweet (sucrose) as 
well as salty (sodium chloride) taste sensitivity are lower 
in young overweight/obese individuals compared with 
normal weight controls[13]. This suggests that overweight 
and obese subjects may have a reduced or distorted sen-
sory sensitivity that might increase the desire and inges-
tion of  food, thus leading to excessive energy intake and 
weight gain[14]. A recent neuroimaging study seems to 
support this hypothesis showing that gustatory stimula-
tion induced differential fMRI brain activation patterns 
in obese patients compared to healthy control subjects[15]. 
Moreover, a possible interaction between tasting profile 
such as sweet liking or supertasting status with metabolic 
syndrome has been suggested in adolescence[16] and more 
recently in the adults[17]. Finally, other investigators have 
reported that taste sensitivity may be affected by short-

term caloric deprivation in both overweight and lean sub-
jects, with lower thresholds of  perception in fasted state 
than in satiated state[18,19]. Thus, it could be suggested 
an implication for taste sensitivity also in diet-induced 
weight loss program. However, evidence in regard to this 
issue is still in lack.

The purposes of  the current study were to investi-
gate: (1) the relationship between nutritional status and 
taste sensitivity; (2) the relationship between metabolic 
syndrome parameters and taste sensitivity; and (3) to in-
vestigate if  sensory acuity could predict the outcome of  a 
diet-induced weight loss program.

MATERIALS AND METHODS
The present study was performed in adherence to the 
principles established by the Declaration of  Helsinki, 
after the protocol was approved by the local Institutional 
Ethics Committee. Every patient was asked for informed 
consent before all the assessments were made. 

Forty-one overweight (OW; F:M, 34:7) and 52 obese 
(OB; F:M, 32:20) patients, admitted to the International 
Center for the Assessment of  Nutritional Status (Univer-
sità degli Studi di Milano, Italy) only for weight and di-
etetic concern, and 56 healthy normal-weight (F:M, 36:20) 
volunteers were recruited. Major study inclusion criteria 
were age < 65 years (range: 18-64), euthyroidism, no dia-
betes, no alcohol drinking, no diet to lose weight in the 
last 6 mo, no restrained eating behaviour and absence of  
well-established dysgeusia. Binge eating disorder was also 
excluded according to current diagnostic criteria[20]. On 
the same day, all the patients underwent a full nutritional 
assessment and taste sensitivity analysis in fasting state. 

Nutritional assessment and presence of metabolic 
syndrome
Nutritional assessment was performed after 8-12 h of  
fasting and included: (1) Medical history and physical 
examination, including blood pressure measurement; (2) 
Anthropometric evaluation by collecting body weight (to 
the nearest 0.1 kg) and standing height (to the nearest 
0.1 cm) through the same calibrated scale provided of  
a telescopic vertical steel stadiometer (SECA 220; Ger-
many) and kept the patient dressing only underwear. BMI 
was derived accordingly [weight (kg)/height (m2)]. Waist 
circumference was also measured (to the nearest 0.5 cm) 
at the midpoint between the iliac crest and the last rib[21]; 
(3) Body composition by a four-polar impedence meter 
(BIA; Human IM Scan, DS-Medigroup, Milan, Italy). 
Whole-body resistance was measured on the left side of  
the body at frequency of  50 kHz (R50) following interna-
tional guidelines and fat free mass was calculated using 
the formula for healthy adults proposed by Deurenberg 
et al[22]. Percentage of  body fat mass (BF%) was derived 
accordingly; (4) Resting energy expenditure (REE) as-
sessment by indirect calorimetry (Sensor Medics Vmax-
29N; Anaheim, CA). Concentrations of  carbon dioxide 
and oxygen were measured with the ventilated-hood 
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technique. Therefore, gas concentrations were used to 
determine REE with the Weir equation[23]; (5) Venous 
blood sampling in fasted state for the evaluation of  glu-
cose, high density lipoproteins (HDL) and triglycerides; 
and (6) Dietary recall by the same well trained dietician to 
evaluate eating behaviour, eating habits and food prefer-
ences which were almost taken into account during diet 
preparation.

Weight loss program was based on hypocaloric bal-
anced diet providing at least the 90% of  measured REE. 
Energy intake was provided for the 55.3% ± 0.6% by 
carbohydrates (simple carbohydrates < 15%), 23.8% ± 
1.7% by lipids (satured fat < 7%) and 20.9% ± 1.7% by 
protein. Three-five servings of  fruit and vegetables were 
daily advised; the source of  protein intake was dependent 
on the frequencies of  consumption of  meat (2 times/
wk), fish (4 times/wk), legumes (4 times/wk), eggs (1 
time/wk), low-fat cheese (1-2 time/wk), low-fat ham (1-2 
time/wk). Olive oil is indicated as the main culinary lipid. 
Dietary cholesterol was lower than 200 mg/die and fibre 
intake was about 30 g. Follow-up evaluations to check 
for compliance and weight loss were set after one and 
three months since the inception of  the dietary program. 
During control visits an expert dietician measured body 
weight, fat mass and carried out a careful interview fo-
cused on the adherence to prescribed diet. 

The updated criteria from the International Diabetes 
Federation[24] were used to define metabolic syndrome 
(MetS+). That is to say, subjects had to have ≥ 3 of  the 
following: (1) waist circumference > 94 cm in men and 
>88 cm in women; (2) serum triglyceride ≥ 150 mg/
dL; (3) HDL-cholesterol < 40 mg/dL in men and < 50 
mg/dL in women; (4) blood pressure ≥ 130/85 mmHg; 
and (5) fasting plasma glucose level ≥ 100 mg/dL. Par-
ticipants treated with antihypertensive or triglyceride-
lowering medications were considered as hypertensive or 
hypertriglyceridemic, respectively.

Subjects in the control group were not evaluated for 
waist circumference, body composition and REE. 

Taste sensitivity analysis
Taste sensitivity determination was performed at the 
sensory laboratory of  the Department of  Food, Envi-
ronmental and Nutritional Sciences (DeFENS- Univer-
sità degli Studi di Milano) designed according to ISO 
guidelines[25]. Participants were asked not to smoke, eat or 
drink anything except water before the test. 

Recognition taste thresholds were evaluated by means 
of  the three-alternative-forced-choice method[26]. Sucrose, 

caffeine, sodium chloride and citric acid were used to 
elicit sweet, bitter, salty and sour tastes, respectively. For 
each compound, five concentrations were prepared in 
mineral water. Concentration range of  each taste stimulus 
was chosen on the basis of  threshold values reported in 
the literature[27,28]. Concentration ranges were established 
in order that the lowest concentration was clearly below 
and the highest concentration clearly above the level at 
which subjects are able to detect or recognize the stimu-
lus. A preliminary test was carried out to adjust concen-
tration ranges since in some cases subjects occasionally 
recognized the lowest concentration or did not recognize 
the highest concentration of  the stimuli. The final ranges 
of  concentration (expressed in g/L) and dilution factors 
used to elicit the four basic tastes are reported in Table 1. 
The solutions were prepared the same day of  the session 
and tested at room temperature. For each basic taste par-
ticipants were presented with 5 triads of  samples marked 
with three-digit numbers. Each triad consisted of  one cup 
containing the stimulus and two cups containing an equal 
volume of  blank (mineral water). The 5 triads proceeded 
from weaker to progressively stronger concentration, 
with the position of  the cup containing the stimulus ran-
domized over trials and assessors. For each triad, partici-
pants were instructed to indicate which sample was dif-
ferent from the other two[26]. If  assessors were uncertain, 
they were instructed to guess (forced choice procedure). 
At the beginning of  each session, and before each triad, 
the assessors were instructed to rinse their mouth with 
mineral water. Data were self-recorded by the subjects on 
paper sheets. 

The individual threshold for each sensory stimulus 
was calculated as the geometric mean of  the concentra-
tion at which the last miss occurred and the next higher 
concentration that was correctly recognized[26]. In addi-
tion, from the above mentioned threshold values, an indi-
vidual global taste acuity score (GTAS) was determined, 
as recently reported by Monneuse et al[12]. For every basic 
taste we divided patients into tertiles according to taste 
sensitivity threshold data. We attributed the score 3, 2 
and 1 to increasing threshold values and the sum of  
these scores defined the GTAS. Therefore, the higher the 
GTAS the higher the acuity. 

Weight loss program outcomes
Compliance to the program was defined as adherence to 
control visits and weight loss ≥ 5% in 3 mo. 

Statistical analysis
Variables were presented as frequencies or percentages if  
categorical (sex, smoking and menopause status, metabol-
ic syndrome) and as mean ± SD if  continuous (age, BMI, 
body fat mass, waist, taste thresholds). As preliminary re-
sults indicated that data on tastes sensitivity were not nor-
mally distributed, values were log-transformed to achieve 
a near-Gaussian distribution. Categorical variables were 
compared by χ 2 test and comparison between groups 
for continuous variables was performed by Student t-test 
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Table 1  Compounds used to elicit the 4 basic tastes with 
relevant dilution step and concentration range

Taste Compound Dilution step Concentration range (g/L) 

Sweet Sucrose 3     1.23-100.00
Bitter Caffeine          0.2 log 0.16-1.00
Salty Sodium cloride    3.5   0.50-75.00 
Sour Citric acid    3.5   0.33-50.00
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in Table 2. Normal-weight controls, OW and OB patients 
were matched for age, gender and smoking and hor-
monal status. A higher prevalence of  MetS characterized 
obese patients when compared to those overweight de-
spite similar BF%. At baseline, no significant difference 
was detected neither in any of  the taste sensitivity nor in 
GTAS. However, sex and age-adjusted multiple regres-
sion models revealed (Table 3) a significant association 
between BMI and both sour taste and GTAS, with lower 
sensitivity with increasing BMI. This trend in sensitivity 
for sour taste was also confirmed by the model refitted 
on the OW/OB group while the association with GTAS 
was marginally significant (P = 0.06).

MetS+ subjects presented higher thresholds for salty 
when compared to MetS- patients while no significant 
difference was detected for the other tastes and GTAS 
(unpaired Student t-test; Table 4). As assessed by multiple 
regression model, the association between salty taste and 
MetS appeared to be independent of  sex, age and BMI. 

Interestingly, similar differences in thresholds where 
found between MetS+ subjects and lean controls (for 
salty taste, P < 0.05), while sensitivity among lean con-
trols and MetS- patients was almost comparable (data not 
reported in tables). 

Taste sensitivity and outcome 
The features of  OW/OB group according to outcomes 
are presented in Table 5. During the follow-up 29 pa-
tients (31.2%) did not attend the second visit. However, 
among the others (n = 64) continuing the program and 
reaching the end of  the study follow-up, only 37 ob-
tained a successful weight loss (≥ 5%). These three out-
come groups appeared well matched for all demographic 
parameters, prevalence of  MetS and nutritional features 
(P > 0.05) with exception of  weight loss (P < 0.001). Pa-
tients continuing the program did not show any differ-
ence in baseline taste sensitivity and GTAS when com-
pared to drop-outs. Similarly, no significant difference 
was detected between patients reporting and not report-
ing a weight loss ≥ 5% of  the initial body weight. Then, 
we sought to evaluate whether an effect of  BMI and 
MetS was present in regard with outcome. No difference 
(P > 0.05 for all multiple group comparisons) was de-
tected between controls and outcome groups, even after 
dividing patients on the basis of  nutritional (OW and 
OB) or metabolic status (MetS+ and MetS-). Finally, sex, 
age and BMI-adjusted linear regression models, includ-
ing program discontinuation or successful weight loss 
as alternative dependent variables, confirmed that taste 
thresholds or global taste acuity (alternative independent 
variables) are not able to predict the outcome of  a diet-
induced weight loss program.

DISCUSSION
Taste sensitivity may be involved both in the pathogenesis 
of  weight excess, through food choice and energy intake, 
and in the lack of  compliance to a diet-induced weight 
loss program. These were the issues we investigated in 

(two-group comparisons) or ANOVA analysis (multiple-
group comparisons) followed by post-hoc comparison of  
means by Tukey’s test. 

A linear regression model adjusted for sex and age 
was built to test the independent relationship between: 
(1) taste sensitivity (dependent variable) and both BMI 
and MetS (independent variables); and (2) outcomes, 
namely dropout and successful weight loss (as dependent 
variables), and taste sensitivity (each taste as independent 
variable). 

Statistical analyses were performed by the SPSS 20.0 
statistical package (SPSS for Windows; SPSS Inc., Chica-
go). Level of  significance was established in a two-sided 
P value < 0.05.

RESULTS
Taste sensitivity according to nutritional status and 
metabolic syndrome
The features of  the population investigated are presented 
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Table 2  Features of the population according to weight 
status

Controls Overweight Obese P
(n = 56) (n = 41) (n = 52)

Sex (M:F) 20:36 7:34 20:32  0.061
Age (yr)   41.6 ± 12.3   46.9 ± 11.5   45.8 ± 11.6  0.060
Range 24-66 20-64 19-64
Current smoking (n) 30 (53.6) 22 (53.7) 33 (63.4)  0.511
Menopause (n) 15 (41.7) 16 (47.0) 15 (46.9)  0.404
BMI (kg/m2) 22.1 ± 1.7 27.9 ± 1.6 34.8 ± 4.6 <0.001
Body fat mass (%) - 45.6 ± 5.2 47.6 ± 5.1  0.054
Waist (cm) - 91.5 ± 7.5 106.2 ± 18.2 <0.001
Metabolic syndrome (n) 0 (0) 8 (19.5) 25 (48.1)  0.004
Taste thresholds
Sweet (log g/L)   0.74 ± 0.44   0.78 ± 0.40   0.85 ± 0.48  0.418
Salty (log g/L)   0.23 ± 0.54   0.13 ± 0.48   0.36 ± 0.58  0.099
Sour (log g/L)  -0.21 ± 0.54 -0.34 ± 0.40 -0.05 ± 0.67  0.105
Bitter (log g/L)  -0.34 ± 0.35 -0.21 ± 0.29 -0.24 ± 0.30  0.151
GTAS   8.0 ± 1.9   8.0 ± 1.6   7.3 ± 2.1  0.132

Data are reported as mean ± SD or counts (%). P values according to χ 2 

or parametric tests (ANOVA analysis), where appropriate. GTAS: Global 
Taste Acuity Score; BMI: Body mass index; M:F: Male:Female.

Table 3  Multiple regression model between taste sentitivity 
and nutri-metabolic parameters

Sour Bitter Salty BMI BF%1 Waist1 MetS1 MetS criteria1

Sour - - -  0.20a  0.05   0.27c   0.21a   0.21a

Bitter 0.34f - - 0.14 -0.09 -0.13  0.02  0.03
Salty 0.26c 0.23b - 0.10 -0.08 -0.11   0.23a  0.19
Sweet 0.24d 0.33f 0.26c 0.15 -0.15  0.10  0.08 -0.01
GTAS - - - -0.13a -0.15 -0.05 -0.08 -0.11

1For BF%, waist circumference, presence of metabolic MetS and the num-
ber of MetS criteria correlations refer to overweight/obese patients (n = 
93). Values are standardized coefficients adjusted for age and sex, aP < 
0.05; bP < 0.01; cP <0.002; dP < 0.005; fP < 0.001, between BMI and both sour 
taste and GTAS, with lower sensitivity with increasing BMI. BMI: Body 
mass index; BF%: Percentage of body fat mass; MetS: Metabolic syndrome; 
GTAS: Global Taste Acuity Score. 
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the present study. 
In the present study, we observed that taste thresh-

olds appear related to metabolic disturbances (e.g., MetS) 
only in the case of  salty taste, MetS+ patients having 
higher threshold values than MetS- patients. Nonetheless, 
this association appeared independent of  overall BMI. 
This result seems in conflict with the recent findings by 
Pasquet et al[16] who found a female-specific but positive 
association between taste sensitivity for sweet and salty 
tastes and the number of  obesity-related metabolic disor-
ders in a group of  adolescents. This inconsistency may be 
ascribed to the different approach used to measure taste 
thresholds and to the fact that, contrary to Pasquet et al[16] 
study, adolescents were not considered in the present ex-
periment. The positive association found between higher 
threshold for salty taste and Mets probably is dependent, 
at least partially, on association between higher threshold 
for salty taste and hypertension as suggested by Rabin et 
al[29]. Indeed, hypertension is a major component of  the 

metabolic syndrome[24]. It should be pointed out that the 
association between metabolic syndrome and taste acuity 
still needs to be clarified, especially in adults, as several 
changes in perception could occur throughout life for ex-
ample in reason of  hormonal and psychological factors. 

Concerning the relationship between taste sensitivity 
and nutritional status (BMI), the present study evidenced 
an independent effect of  BMI on taste sensitivity for 
sour and global taste acuity. Moreover, obese individuals 
showed in general a tendency to higher taste thresholds 
than lean subjects.

Although the association between BMI and taste 
has been largely investigated, very few data are available 
on the relation between taste thresholds and body mass 
index and our findings appear partially in contrast with 
those already provided. Pasquet et al[16] observed that mas-
sively obese adolescents have lower thresholds for taste 
recognition than normal-weight controls. Obrebowski et 
al[30] found that children and adolescents with simple obe-
sity have lowered electrogustometric thresholds. The au-
thors attributed this behavior to obesity-related metabolic 
disturbances rather than to body mass per se. Similarly to 
our study, Simchen et al[11] have recently investigated the 
association between taste qualities (sweet, sour, bitter and 
salty) and BMI in a group of  adults. They observed an 
age dependent relationship with respectively lower and 
higher sensory capabilities in overweight subjects aged < 
65 years and ≥ 65 years for sour and bitter tastes. How-
ever, despite the investigation by Simchen et al[11] has been 
performed in a larger cohort, the authors have recognized 
not to have controlled for an important potential con-
founder such as restrained eating behaviour, a factor that 
has been considered by us during recruitment. Besides, 
body composition and fat distribution assessments were 
helpful to better characterize our subjects nutritional sta-
tus, as the pathophysiology of  metabolic complications is 
substantially related to overall and compartmental body 
fatness[24]. Indeed, a prospective study would be the best 
way to assess their relationship of  taste acuity with future 
overweight/obesity. 

It is also interesting to know if  partial or total failure 
to comply with diet is related to sensory capabilities. We 
reported that, regardless of  the presence of  obesity-re-
lated metabolic derangements, namely MetS, no apparent 
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Table 4  Taste sensitivity in overweight and obese patients according to metabolic syndrome and gender

Overall Women Men

MetS+ (n  = 33) MetS- (n = 60) P 1 MetS+ (n = 21) MetS- (n = 45) P 1 MetS+ (n = 12) MetS- (n = 15) P 1

BMI (kg/m2) 33.7 ± 5.2 30.7 ± 4.2 0.002 33.5 ± 4.8 30.0 ± 3.9 0.002 34.1 ± 6.1 32.7 ± 4.4 0.485
BF% 47.7 ± 6.0 46.4 ± 4.7 0.281 50.3 ± 4.4 47.2 ± 4.5 0.013 43.1 ± 5.8 43.8 ± 4.2 0.744
Waist (cm) 106.2 ± 14.2   96.1 ± 16.3 0.004 101.9 ± 11.2 94.1 ± 9.4 0.005 113.9 ± 16.0 102.2 ± 28.0 0.288
Sweet (log g/L)   0.87 ± 0.41   0.80 ± 0.47 0.396   0.81 ± 0.45   0.72 ± 0.43 0.458   0.97 ± 0.31   1.02 ± 0.51 0.730
Salty (log g/L)   0.43 ± 0.56   0.16 ± 0.52 0.029   0.31 ± 0.50   0.10 ± 0.45 0.121   0.65 ± 0.62   0.33 ± 0.67 0.244
Sour (log g/L)  -0.01 ± 0.69  -0.27 ± 0.49 0.069  -0.08 ± 0.59  -0.39 ± 0.39 0.022   0.11 ± 0.85   0.08 ± 0.61 0.859
Bitter (log g/L)  -0.22 ± 0.28  -0.23 ± 0.31 0.956  -0.24 ± 0.27  -0.23 ± 0.29 0.846  -0.18 ± 0.30  -0.23 ± 0.37 0.757
GTAS   7.4 ± 2.0   7.7 ± 1.9 0.440   7.8 ± 2.0   7.8 ± 1.7 0.936   6.8 ± 1.9   7.5 ± 2.4 0.414

P values according to unpaired Student t-test or Wilcoxon-Mann-Whitney test. 1MetS+ vs MetS- within the same group (overall or women or men). BMI: 
Body mass index; BF%: Percentage of body fat mass; MetS: Metabolic syndrome (+, presence; -, absence); GTAS: Global Taste Acuity Score. 

Table 5  Features of overweight and obese patients according 
to the outcome

Drop-out Continuing the program
Overall WL < 5% WL ≥ 5%

(n  = 29) (n  = 64) (n  = 27) (n  = 37)
Sex (M:F) 8:21 19:45 6:21 13:24
Age (yr)   45.3 ± 11.4   46.7 ± 11.7   48.1 ± 12.1   45.7 ± 11.4
Current smoking 
(n)

15 (51.7) 40 (62.4) 14 (51.6) 26 (70.2)

Menopause (n)   9 (42.9) 22 (48.9) 11 (52.4) 11 (45.8)
BMI (kg/m2) 31.0 ± 4.3 32.1 ± 5.0 32.8 ± 4.8 31.6 ± 5.2
Body fat mass (%) 46.6 ± 4.9 46.9 ± 5.3 47.8 ± 5.3 46.3 ± 5.4
Waist (cm)   99.3 ± 13.2   99.9 ± 17.5 112.7 ± 12.3   99.7 ± 20.5
Metabolic 
syndrome (n)

10 (34.5) 23 (35.9) 10 (37.0) 13 (35.1)

Weight loss (%) -  -5.6 ± 3.5  -2.5 ± 1.7  -7.8 ± 2.5
Taste thresholds
Sweet (log g/L)   0.87 ± 0.35   0.80 ± 0.48   0.79 ± 0.52   0.81 ± 0.46
Salty (log g/L)   0.27 ± 0.49   0.25 ± 0.57   0.23 ± 0.53   0.26 ± 0.61
Sour (log g/L)  -0.25 ± 0.48  -0.15 ± 0.62  -0.24 ± 0.52  -0.08 ± 0.68
Bitter (log g/L)  -0.27 ± 0.31  -0.21 ± 0.29  -0.26 ± 0.28  -0.16 ± 0.29
GTAS   7.6 ± 2.0   7.6 ± 1.9   7.8 ± 1.7   7.4 ± 2.1

Data are reported as mean ± SD or counts (%). No significant differences 
were detected in ANOVA comparison among drop out, WL < 5% and WL 
> 5%. GTAS: Global Taste Acuity Score; BMI: Body mass index; M:F: Male:
Female; WL: Weight loss.
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effect of  taste sensitivity on the adherence to a diet-based 
weight loss program seems to exist. Accordingly, the as-
sessment of  taste sensitivity may not assist in predicting 
the outcome of  dieting and may not be useful to the 
improvement of  clinical practice. A possible explanation 
of  our findings is that a 3-mo follow-up is probably a too 
short period of  time to observe differences. One would 
argue that other factors (e.g., portions size, psychosocial 
factors) may be involved in the short-term adherence to a 
weight loss program[31]. We recognize the lack of  sensory 
capabilities reassessment at the end of  the follow-up as a 
study limitation as we cannot exclude a modification of  
taste acuity during the program itself. Despite conflict-
ing reports are available on this issue[32], it seems likely 
that acute fasting (14-16-h-long) results in lower sensory 
thresholds[18,19]. It should be noted that we performed our 
study postabsorptively (14-16 h after last meal), in physi-
ologic state. Accordingly, it is reasonable to sustain a lack 
of  involvement of  taste perception in dietary compli-
ance. However, motivation to comply is generally high in 
the initial phases and the long-term effect of  diet-related 
restrained eating behaviour on gustatory sensitivity has 
never been explored. We know only a study by Tepper 
and Ullrich[33] in which it is reported that in non-dieting 
subjects the relationship between body weight and sen-
sory capabilities may be masked by dietary restraint.

The relationship between putative changes in taste 
sensitivity and drop-out is more difficult to explain but 
we cannot exclude those patients not attending the sec-
ond visit did so also for organizing reasons. Finally, we 
cannot exclude a “pathological” regulation of  sensory 
capabilities in satiated state. It would be probably useful 
to assess taste sensitivities also in this condition. 

With this background, it is clear that the relationship 
between nutritional status and taste sensitivity deserves 
further investigation also in view of  the fact that present 
data generalizability is limited in view of  the method used 
and the study sample size.

In conclusion, taste sensitivity (sour and global taste 
acuity) appears related to weight excess with lower sen-
sitivity with increasing BMI and to metabolic syndrome 
only in the case of  salty taste. However, no implication 
seems to exist in the compliance to a weight loss program. 
Further studies still needs to be done to clarify the cause-
effect association between taste perception and BMI.
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was 45 years (range, 21-85 years). Surgical time had 
a mean of 55 min (Range, 25-85 min). Mean follow up 
of this group of patients was 24 mo (range, 12-32 mo). 
Main outcome measures included best-corrected visual 
acuity (BCVA), retinal reattachment, and complications.

RESULTS: Anatomic success occurred in 100% (114/114) 
of eyes. Significant visual improvement [≥ 2 Early 
Treatment Diabetic Retinopathy Study (ETDRS) lines] 
was obtained in 69.2% (79/114), in 26 eyes (22.8%) 
BCVA remained stable, and in 8 eyes (7%) BCVA de-
creased (≥ 2 ETDRS lines). Final BCVA was 20/50 or 
better in 24% of eyes, between 20/60 and 20/400 in 
46% of eyes, and worse than 20/400 in 30% of eyes. 
Complications included cataract in 32 (28%) eyes, iat-
rogenic retinal breaks in 9 (7.8%) eyes, vitreous hem-
orrhage requiring another procedure in 7 (6.1%) eyes, 
and phthisis bulbi in 1 (0.9%) eye.

CONCLUSION: This study demonstrates the usefulne-
ss of using preoperative intravitreal bevacizumab and 
EBPD during small-gauge vitreoretinal surgery in eyes 
with TRD in PDR.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: En bloc  perfluorodissection and preoperative 
intravitreal bevacizumab use for small-gauge vitrec-
tomy in patients with proliferative diabetic retinopathy 
and tractional retinal detachment are very useful, the 
combination reduces complications and operative time. 
En bloc  perfluorodissection and preoperative intravit-
real bevacizumab use seems to have many advantages 
including that the retina remains stable during vitrec-
tomy, better visibility of the ocular structures in the 
vitreous cavity, immediate reattachment of the retina, 

Perfluorocarbon in vitreoretinal surgery and preoperative 
bevacizumab in diabetic tractional retinal detachment

J Fernando Arevalo, Martin A Serrano, Juan D Arias

J Fernando Arevalo, From the Retina Division, Wilmer Eye In-
stitute, Johns Hopkins University School of Medicine, Baltimore, 
MD 21287, United States
J Fernando Arevalo, the Vitreoretinal Division, King Khaled 
Eye Specialist Hospital, Riyadh 11462, Saudi Arabia
J Fernando Arevalo, Division of Ophthalmology, Faculty of 
Medicine and Health Sciences, University of Stellenbosch, Stel-
lenbosch 7600, South Africa
Martin A Serrano, Juan D Arias, the Retina and Vitreous Service, 
Clinica Oftalmologica Centro Caracas, Caracas 1010, Venezuela
Author contributions: Arevalo JF performed all surgeries, de-
signed the study and wrote the manuscript; and Serrano MA and 
Arias JD assisted during all surgeries and collected data; Serrano 
MA and Arias JD were also involved in editing the manuscript.
Supported by The Arevalo-Coutinho Foundation for Research 
in Ophthalmology, Caracas, Venezuela
Correspondence to: J Fernando Arevalo, MD, FACS, Chief 
of the Vitreoretinal Division, King Khaled Eye Specialist Hospi-
tal, Al-Oruba Street, PO Box 7191, Riyadh 11462, 
Saudi Arabia. arevalojf@jhmi.edu
Telephone: +966-11-48212343860  Fax: +966-1-48212343727
Received: November 28, 2013          Revised: June 26, 2014
Accepted: July 15, 2014
Published online: October 15, 2014

Abstract
AIM: To describe the en bloc perfluorodissection 
(EBPD) technique and to demonstrate the applicability 
of using preoperative intravitreal bevacizumab during 
small-gauge vitreoretinal surgery (23-gauge transcon-
junctival sutureless vitrectomy) in eyes with advanced 
proliferative diabetic retinopathy (PDR) with tractional 
retinal detachment (TRD).

METHODS: This is a prospective, interventional case 
series. Participants included 114 (eyes) with advanced 
proliferative diabetic retinopathy and TRD. EBPD was 
performed in 114 eyes (consecutive patients) during 
23-gauge vitrectomy with the utilization of preoperative 
bevacizumab (1.25 mg/0.05 mL). Patients mean age 
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bleeding control, subretinal fluid reabsorbsion and 
drainage, bleeding sites’ tamponade, and easier dissec-
tion of epiretinal tissues.

Arevalo JF, Serrano MA, Arias JD. Perfluorocarbon in vitreoreti-
nal surgery and preoperative bevacizumab in diabetic tractional 
retinal detachment. World J Diabetes 2014; 5(5): 724-729  Avail-
able from: URL: http://www.wjgnet.com/1948-9358/full/v5/
i5/724.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i5.724

INTRODUCTION
Pars plana vitrectomy is a successful surgical technique 
for the complications of  proliferative diabetic retinopathy 
(PDR)[1,2]. It is usually necessary within one year in up to 
10% of  patients presenting with PDR[3]. The commonest 
indication for surgery is non-clearing vitreous hemor-
rhage. Unfortunately[1,2], postoperative vitreous hemor-
rhage is a significant complication occurring in about 
20% to 30% of  cases[4-10].

Some advances in surgical techniques and instrumen-
tation, such as; en bloc dissection, delamination, segmen-
tation, and bimanual surgical techniques, have allowed 
better results in the treatment of  severe PDR[11-13]. Vis-
codissection, described by Stenkula and Tornquist[12], and 
the use of  perfluorocarbon liquids (PFCL), introduced as 
a surgical adjuvant in vitrectomy in 1987 by Chang et al[14], 

facilitate removal of  epiretinal membranes, the manage-
ment of  proliferative vitreoretinopathy (PVR) with retinal 
detachment, tractional retinal detachments in diabetics, 
and control of  intraoperative hemorrhage.

Quiroz-Mercado et al[15,16] published a technique called 
perfluorocarbon-perfused vitrectomy (PCPV). In their 
technique, PFCL is used in the infusion in a continuous 
way during vitrectomy. In selected cases PFCL may offer 
several advantages over saline solution, because of  their 
properties including gravitational forces, immiscibility 
with fluids, and ability to transport oxygen[15,16]. Regard-
less of  PFCL’s advantages, the use of  PCPV has not 
extended worldwide. In addition, PCPV utilizes a consid-
erable amount of  PFCL, and membranes may be pushed 
against the retina during PCPV.

We have previously described “En bloc perfluorodis-
section” (EBPD), which combines the advantages of  
viscodissection and PCPV. EBPD helps the surgeon 
during removal of  membranes over the retina and to cre-
ate a posterior vitreous detachment by injecting PFCL 
between the retina and the posterior hyaloid separating 
tissues over the retina[17,18]. In addition, identification 
and removal of  all posterior vitreoretinal traction is very 
important. Furthermore, vitreoschisis can also occur in 
patients with PDR, it is important to identify this feature 
and to perform dissection in the true vitreoretinal plane, 
to avoid recurrent traction and postoperative bleeding 
from retinal neovascularization[19].

Postoperative vitreous cavity hemorrhage is a signifi-
cant complication following vitrectomy for the treatment 

of  PDR. It has two main forms, “early” when hemor-
rhage (bleeding) is present in the first few postoperative 
days and “late”, when hemorrhage occurs a number of  
months after surgery. The presence of  postoperative 
vitreous hemorrhage delays visual recovery can lead to 
elevated pressure within the eye and can make further 
treatment for diabetic retinopathy difficult. Revision 
surgery is required in 10% of  patients, which has signifi-
cant implications for resources, time and cost. The use 
of  anti-vascular endothelial growth factor (anti-VEGF) 
before surgery (preoperatively) has been proposed as an 
intervention to reduce the incidence of  postoperative vit-
reous hemorrhage[20]. 

Recently, it has been reported that intravitreal beva-
cizumab in patients with vitreous hemorrhage and PDR 
resulted in regression of  retinal neovascularization and 
resolution of  vitreous hemorrhage[21]. Chen et al[22] and 
Avery et al[23], have reported that preoperative intravitreal 
bevacizumab (Avastin®, Genentech Inc., San Francisco, 
CA) reduce the risk of  bleeding during vitrectomy facili-
tating the removal of  fibrovascular tissues.

The aim of  this article is to describe the surgical tech-
nique and demonstrate the usefulness of  combining en 
bloc perfluorodissection and preoperative intravitreal be-
vacizumab use for membrane peeling in tractional retinal 
detachment in advanced diabetic retinopathy with small-
gauge vitreoretinal surgery (23-gauge transconjunctival 
sutureless vitrectomy).

MATERIALS AND METHODS
This is a prospective, interventional case series. One hun-
dred fourteen (eyes) with tractional retinal detachment 
(TRD) in PDR participated. The authors performed 
EBPD in 114 eyes (consecutive patients) during 23-gauge 
transconjunctival sutureless vitrectomy for tractional 
retinal detachment in severe PDR with the utilization of  
preoperative bevacizumab (1.25 mg/0.05 mL). Main out-
come measures were best-corrected visual acuity (BCVA), 
retinal status, and complications. This study has been 
performed in accordance with the ethical standards laid 
down in the 1964 declaration of  Helsinki and it was ap-
proved by the Institution’s Ethics Committee. 

An aliquot of  commercially available bevacizumab 
was prepared for each patient and placed in a tuberculin 
syringe using aseptic techniques. Four days before vitrec-
tomy, after preparation of  the eye using 5% povidone/
iodine, an eyelid speculum was used to open the eyelids, 
and the injection of  1.25 mg (0.05 mL) of  bevacizumab 
was performed 4 mm posterior to the limbus, through 
the superotemporal or inferotemporal pars plana with a 
30-gauge needle under topical anesthesia. After the injec-
tion, retinal artery perfusion was checked with the indi-
rect ophthalmoscope. In none of  our cases an anterior 
chamber paracenthesis was necessary. No topical antibi-
otics were administered preoperatively.

A 23-gauge transconjunctival sutureless vitrectomy 
was performed in all cases. A core vitrectomy is done first 
to clear any vitreous hemorrhage present. A hole is then 
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made in the mid-peripheral posterior hyaloid (Figures 1A 
and 2A) to inject the perfluorocarbon liquid (PFCL) [Per-

fluorooctane (C8F18)] and mechanically detach the poste-
rior hyaloid from the retina (Figures 1B, 1C and 2B). We 
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Figure 1  Artist's representation of surgical technique. A: An opening is made with the vitrector in the mid-periphery of the posterior hyaloid; B and C: Perfluorocar-
bon liquid (PFCL) is injected to separate the posterior hyaloid from the retina. A dual bore cannula (for 23-gauge cases) attached to a 5 cc syringe filled with PFCL is 
used to separate membranes and posterior hyaloid from the underlying retina; D: Once all the tissues have been separated from the retina, vitrectomy can be contin-
ued up to the periphery; E: Endolaser is applied under PFCL; F: An air-fluid and an air-gas (C3F8) exchange exchange are performed to end the case.

Figure 2  En bloc perfluorodissection performed in a case of tractional retinal detachment in proliferative diabetic retinopathy. A: An opening is made with 
the vitrector in the mid-periphery of the posterior hyaloid; B: Perfluorocarbon liquid (PFCL) is injected to separate the posterior hyaloid from the retina (arrows). A dual 
bore cannula (for 23-gauge cases) attached to a 5 cc syringe filled with PFCL is used to separate membranes and posterior hyaloid from the underlying retina; C: 
Once all the tissues have been separated from the retina, vitrectomy can be continued up to the periphery; D: Endolaser is applied under PFCL (shown). An air-fluid 
and an air-gas (C3F8) exchange are performed to end the case (not shown).
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tomy in eyes with TRD in PDR and preoperative use of  
intravitreal bevacizumab, we can obtained an anatomic 
(100%) and functional success (69.2%). Other benefits 
of  this technique include that the retina remains stable 
during vitrectomy, less blood in the vitreous cavity, rapid 
retinal reattachment, better visualization of  vitreous and 
intraocular structures, blood confinement, and easier dis-
section of  epiretinal membranes.

In our study, the authors have not seen any difficul-
ties with the technique. However, in one case PFCL was 
injected within a vitreous schisis. After a short amount of  
instillation (1 mL) that situation was apparent, and PFCL 
was aspirated and a new hole in the posterior hyaloid was 
made at another location making sure that the proper 
plane was found between the posterior hyaloid and the 
retina this time. No complications rose from this event. 
In addition, there were 2 eyes (1.7%) with subretinal PCL 
that were solved with a peripheral retinotomy, aspiration 
with an extrusion cannulae, and the injection of  addition-
al PCL in the posterior pole. In our study the prevalence 
of  postoperative vitreous hemorrhage was lower (6.1%) 
than that reported in other studies (20% to 30%)[4-10] 
which can be explained by the use of  intravitreal bevaci-
zumab 4 d preoperatively.

Surgeons with extensive experience can manage com-
plex retinal detachments in patients with TRD using ei-
ther viscodissection or conventional techniques with pick 
and scissors. Thus, surgeons should deal with these cases 
selectively according to their level of  experience. An ideal 
case for EBPD might be one in which there is a TRD 
with no tears, with limited posterior vitreous detachment, 
and relatively loose attachment of  the posterior hyaloid 
to the retina. We use a combination of  several techniques 
in our cases including EBPFD, and the use of  picks and 
forceps with bimanual surgery. Currently, the use of  
small-gauge vitreoretinal surgery (23-gauge transconjunc-
tival sutureless vitrectomy) and preoperative intravitreal 
bevacizumab for TRD in diabetics have improved our 
surgical time and results.

In the future, MIVS with 23-gauge transconjunctival 
sutureless vitrectomy techniques will be increasingly per-
formed in diabetic patients due to the increased incidence 
of  diabetes and its complications. In the coming years we 
will use techniques that are less invasive in vitreoretinal 
surgery such as 25+, and 27-gauge. We will have available 
other anti-VEGF antibodies capable of  blocking all types 
of  VEGF isoforms before and after surgery, reducing in-
traoperative bleeding, and postoperative inflammation. It 
is likely that the use of  preoperative agents that promote 
the detachment of  the posterior hyaloid and facilitate 
the removal of  membranes will become routine. They 
will facilitate surgery of  complex cases such as PDR 
cases. Optical coherence tomography equipment will be 
available in the operating room and that will facilitate in-
traoperative tissue differentiation, and help us get better 
functional results. The advent of  new lasers will permit 
us faster retinal photocoagulation, and will minimize col-
lateral damage of  the retina.

use a 23-gauge Dual Bore cannula (Dual Bore cannula 0.6 
mm, MedOne, Sarasota, FL) attached to a 5 cc syringe 
filled with PFCL to separate the posterior hyaloid and 
membranes from the retina. After all the membranes and 
posterior hyaloid have been separated from the retina, 
vitrectomy is completed up to the periphery (Figures 1D 
and 2C), endolaser is applied (Figures 1E and 2D), an air-
fluid and air-gas [Perfluoropropane (C3F8), Escalon Medi-
cal Corporation, New Berlin, WI] exchange is performed 
to finish the case (Figure 1F).

Non-illuminated instrumentation was usually used 
in our cases[7] combined with a non-contact wide-angle 
viewing system (BIOM, Oculus, Wetzlar, Germany). An 
illuminated cannula was utilized (25ga, Awh chandelier, 
Synergetics Inc., O’Fallon, MO) in some cases for biman-
ual surgery.

RESULTS
Patients were prospectively enrolled from January 2006 
to January 2010 at Clinica Oftalmologica Centro Caracas 
in Caracas, Venezuela. Inclusion criteria included patients 
with TRD in advanced PDR and macular involvement or 
impending macular involvement with or without vitreous 
hemorrhage. EBPD was performed in 114 consecutive 
eyes (patients) during small-gauge vitrectomy for severe 
PDR with TRD. The mean age of  the patients was 45 
years (range, 21-85 years). Surgical time had a mean of  55 
min (Range, 25-85 min). Mean follow up of  our patients 
was 24 mo (range: 12-32 mo). 

Each patient underwent BCVA measurement with 
ETDRS. Patients were followed postoperatively on day 1, 
at one week, at three weeks, at 7 wk, and every 3 mo with 
complete eye examination at each visit, including BCVA, 
anterior segment examination, IOP determination, and 
fundus biomicroscopy. Patients were included only with 
a minimum 12 mo of  follow-up. An increase or decrease 
in BCVA was considered to have occurred if  there was a 
change of  two or more Early Treatment Diabetic Reti-
nopathy Study (ETDRS) lines. Main outcome measures 
were changes in BCVA, and retinal reattachment.

En bloc perfluorodissection was performed using a 
mean volume of  PFCL of  4 mL (range: 3 to 8 mL). No 
patients in our series have shown ocular hypertension 
or inflammation. Anatomic success occurred in 100% 
(114/114) of  eyes. Significant visual improvement (≥ 
2 ETDRS lines) was seen in 69.2% (79/114), in 26 eyes 
(22.8%) BCVA remained stable, and in 8 eyes (7%) BCVA 
decreased (≥ 2 ETDRS lines). Final BCVA was 20/50 or 
better in 24%, between 20/60 and 20/400 in 46%, and 
worse than 20/400 in 30%. Complications included cata-
ract in 32 (28%) eyes, iatrogenic retinal breaks in 9 (7.8%) 
eyes, vitreous hemorrhage requiring another procedure in 
7 (6.1%) eyes, and phthisis bulbi in 1 (0.9%) eye.

DISCUSSION
In selected cases en bloc perfluorodissection during vitrec-
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In summary, EBPD and preoperative intravitreal beva-
cizumab use for vitrectomy in eyes with TRD in PDR it is 
very useful. En bloc perfluorodissection and preoperative 
intravitreal bevacizumab use seems to have many advan-
tages including that the retina remains stable during vitrec-
tomy, better visibility of  intraocular structures, immediate 
reattachment of  the retina, bleeding control, reabsorbsion 
and drainage of  subretinal fluid, bleeding sites’ tampon-
ade, and easier dissection of  epiretinal tissues.
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“En bloc perfluorodissection” (EBPD), which combines the advantages of vis-
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during removal of epiretinal membranes and to detach the posterior hyaloid by 
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Applications
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vitrectomy in eyes with tractional retinal detachment in advanced proliferative 
diabetic retinopathy it is very useful technique, reduces complication and opera-
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Abstract
Saliva has been progressively studied as a non-invasive 
and relatively stress-free diagnostic alternative to 
blood. Currently, saliva testing is used for clinical as-
sessment of hormonal perturbations, detection of HIV 
antibodies, DNA analysis, alcohol screening, and drug 
testing. Recently, there has been increasing inter-
est in evaluating the diagnostic potential of saliva in 
obesity, inflammation, and insulin-resistance. Current 
literature has demonstrated elevated levels of inflam-
matory biomarkers including C-reactive protein, tumor 
necrosis factor-α, interleukin-6, and interferon-γ in sa-
liva of obese/overweight children and adults. Salivary 
antioxidant status has also been studied as a measure 
of oxidative stress in individuals with type 2 diabetes. 
Further, several studies have demonstrated correla-
tions of salivary markers of stress and insulin resistance 
including cortisol, insulin, adiponectin, and resistin with 
serum concentrations. These findings suggest the po-
tential diagnostic value of saliva in health screening and 
risk stratification studies, particularly in the pediatric 
population, with implications for inflammatory, meta-
bolic and cardiovascular conditions. However, additional 

studies are required to standardize saliva collection and 
storage procedures, validate analytical techniques for 
biomarker detection, and establish reference ranges 
for routine clinical use. The purpose of this review is to 
summarize and evaluate recent advancements in using 
saliva as a diagnostic tool for inflammation and insulin-
resistance.
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Core tip: Recent studies have shown that salivary con-
centrations of several inflammatory cytokines and insu-
lin resistance indices (which may be lower than serum 
concentrations) may mirror alterations in systemic con-
centrations of such biomarkers. Saliva offers a promis-
ing diagnostic alternative, compared to blood sampling, 
for screening for inflammatory, metabolic, and cardio-
vascular risk factors particularly among pediatric and 
geriatric populations where blood sampling may be dif-
ficult. Additional research is needed to validate salivary 
biomarkers and establish reference ranges and charac-
terize the influence of diet, physical activity, and drug 
treatment.
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SALIVA AS A DIAGNOSTIC TOOL: 
CURRENT KNOWLEDGE 
Saliva, an exocrine secretion of  the salivary glands, con-
taining water (99%), electrolytes, proteins, and enzymes, 
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provides sensory perception of  food, and aids chewing, 
swallowing, and digestion of  food[1]. Saliva protects tis-
sues against desiccation, penetration, ulceration, potential 
carcinogens, and assists in wound healing[2]. Whole saliva 
comprises of  a mixture of  fluids, secreted from the sali-
vary glands (submandibular, sublingual, and parotid, and 
the minor gland), gingival fold, oral mucosa transudate, 
and, mucous from the nasal cavity and pharynx, that vary 
in rheological properties and the composition of  their se-
cretions[3-6]. The parotid gland secretions are largely com-
posed of  water and electrolytes, while the submandibular 
and sublingual glands produce both serous and mucous 
secretions, with mucin being the most abundant protein 
in saliva[7]. Saliva also contains cystatins, proline-rich 
peptides, and other molecules that are found in blood[4,8]. 
Saliva is hypotonic to plasma and is actively involved in 
exchange of  sodium (Na+), chloride (Cl-), potassium (K+) 
and bicarbonate (HCO3-) ions with plasma[7]. Proteins 
and other substances from blood have been shown to 
enter saliva intracellularly through passive diffusion or ac-
tive transport, and paracellularly through ultrafiltration at 
tight junctions between cells[9]. Saliva can be collected by 
passive drool technique or by using oral swabs. In healthy 
individuals, depending on age and gender, the unstimu-
lated salivary flow rate is between 0.1-2 mL/min[10]. Ad-
ditional factors influencing unstimulated salivary flow and 
composition include individual hydration, body posture, 
lighting, smoking, circadian and circannual rhythms, and 
medications[1]. 

The use of  saliva as an alternative diagnostic tool to 
blood offers certain advantages. Salivary composition 
has been observed to be influenced by systemic changes 
allowing identification of  biomarkers for disease condi-
tions. Since saliva collection is non-invasive and relatively 
stress-free, saliva can serve as a potential alternative diag-
nostic fluid in infants, toddlers, youth and adults. How-
ever, despite its diagnostic potential, saliva has not yet 
been established as an analytical tool due to insufficient 
information regarding salivary biochemical composition 
and its correlation with plasma levels. Salivary Na, K, 
total protein, IgA and amylase activity has been shown to 
increase linearly with age. For example, salivary amylase 
activity has been shown to be variable and significantly 
different between infants and toddlers[11]. However, in 
healthy adults (mean age 22 years), no significant dif-
ferences were observed in salivary concentrations of  
glucose, inorganic phosphate, total protein, Mg2+, Cl- and 
Ca2+ between men and women participants[12]. Interest-
ingly, recent studies demonstrate the diagnostic utility of  
saliva with implications for cardiovascular disease, sys-
temic and local inflammation, hepatic damage and insulin 
resistance[8,13,14]. 

Currently, saliva testing is used in areas of  toxicol-
ogy, endocrinology, infectious diseases, and forensics, 
with established diagnostic tests available for alcohol 
detection, HIV infections, hormonal analyses, and drug 
testing[15,16]. Several studies have demonstrated the use 
of  saliva for detection of  antibodies against HIV-1 and 

HIV-2 under non-laboratory settings[17,18]. The United 
States Food and Drug Administration (FDA) has recently 
approved OraQuick, the first over-the-counter, in-home 
self-testing HIV kit, which uses an oral sample for rapid 
detection of  antibodies against HIV[19]. The assessment 
of  hormones in saliva has been widely studied for routine 
clinical use[20-22]. The FDA has recently approved the use 
of  enzyme immunoassay technique for in vitro diagnostic 
assay of  salivary cortisol for adrenal cortical function and 
screening for Cushing’s and Addison’s disease[23]. In this 
review, we explore the potential of  using saliva as a non-
invasive diagnostic tool for the measurement of  biomark-
ers of  insulin-resistance and inflammation.

GLUCOSE IN SALIVA
Salivary glucose has been shown to significantly corre-
late (r = 0.5216, P < 0.05) with serum glucose in healthy 
subjects (n = 15). In individuals with newly diagnosed 
type 2 diabetes (n = 106), salivary glucose demonstrated 
strong correlation with serum glucose (r = 0.7686, P < 
0.01) and serum HbA1c (r = 0.5662, P < 0.01). Type 2 
diabetic patients had significantly higher (P < 0.01) mean 
salivary glucose values (4.22 ± 3.59 mg/mL) compared to 
healthy controls (1.23 ± 0.52 mg/mL)[24]. Pendyala et al[25] 
have also evaluated serum and salivary glucose in diabetic 
(men = 26, women = 14) and non-diabetic (men = 28, 
women = 12) individuals[25]. These authors observed sig-
nificant correlation between fasting salivary and plasma 
glucose in both diabetic (r = 0.40) and non-diabetic (r 
= 0.58) groups. Further, they reported a significant dif-
ference in fasting salivary glucose (P < 0.001) between 
diabetic (10.93 ± 1.93 mg/mL) and non-diabetic controls 
(6.08 ± 1.16 mg/mL). Further, a recent systematic re-
view reported a meaningful increase in salivary glucose 
concentration in type 2 diabetes that was associated with 
HbA1c values, suggesting that salivary glucose levels may 
be a potential biomarker for type 2 diabetes mellitus[26]. 
Ongoing research is focused on the development of  
nanotechnology-based biochip sensors for salivary glu-
cose measurements. Such a novel biochemical sensor that 
provides a compact, high-throughput device for real-time 
glucose measurements may have implications in point-of-
care clinical settings[27].

INSULIN IN SALIVA
Salivary insulin, assayed in normal and type 1 diabetic 
subjects by Pasic and Pickup demonstrated significant 
correlation between mean serum insulin and salivary in-
sulin (r = 0.81, P < 0.01 in non-diabetics and r = 0.91, P 
< 0.001 in type 1 diabetics)[28]. However, because several 
individual profiles showed marked discrepancies between 
the timing and magnitude of  insulin changes, these au-
thors did not recommend salivary insulin concentrations 
as a reliable index of  insulinemia. More recently, stud-
ies by Fabre et al[29] demonstrated that salivary insulin 
concentrations were approximately 10 times lower than 
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serum insulin concentrations[29]. These authors showed 
a significant correlation (r = 0.92, P < 0.001) between 
salivary and serum insulin concentrations in 130 boys 
and 147 girls, aged 6-14 years, suggesting that salivary 
insulin measurements may be a feasible approach, but 
suggest the need for additional studies to validate these 
findings. However, there were no reports that assessed 
surrogate measures of  insulin resistance, including the 
Homeostasis Assessment Model-estimated insulin resis-
tance (HOMA-IR) or the Quantitative Insulin Sensitivity 
Check Index[30,31].

CORTISOL IN SALIVA
One of  the most widely studied salivary biomarker of  
stress is the glucocorticoid hormone, cortisol[32,33]. Elevat-
ed cortisol production can lead to hypertension, central 
obesity, insulin resistance and glucose intolerance[34]. In a 
study of  overweight Latino youth (n = 211, boys = 119, 
girls = 92, age between 8 and 13 years) at risk for type 2 
diabetes, cortisol was shown to negatively influence in-
sulin sensitivity, and was inversely correlated with fasting 
glucose (r = 0.23, P < 0.01), β-cell function (r = -0.24, P 
< 0.05), and acute insulin response to glucose (r = -0.27, 
P < 0.05)[35]. HPA-axis dysfunction has been associated 
with various psychological and pathophysiological condi-
tions, and hyperactivity of  hypothalamic-pituitary-adrenal 
(HPA) axis has been observed in individuals with type 2 
diabetes[36,37]. 

Saliva contains free, biologically active cortisol as op-
posed to total cortisol present in serum or plasma. Fur-
ther, the concentration of  cortisol in saliva is independent 
of  the salivary flow rate and is strongly correlated with 
circulating cortisol concentrations[33,36]. Cortisol follows a 
diurnal pattern and any disruption in the rhythm would 
also be indicative of  an HPA dysfunction. The average 
salivary cortisol concentrations in healthy subjects were 
reported to be higher in the morning (0.20-1.41 μg/mL) 
compared to afternoon values (0.04-0.41 μg/mL)[33]. 
Björntorp et al[36] have reported the use of  salivary corti-
sol measurements to monitor the activity of  HPA axis. In 
their study, circulatory perturbations in cortisol expres-
sion, which are indicative of  increased risk of  endocrine 
abnormalities, insulin resistance, central obesity, dyslipid-
emia, hypertension and type 2 diabetes, were reflected in 
the salivary cortisol levels[36].

Data from the Multi-Ethnic Study of  Atherosclerosis 
has demonstrated associations between salivary cortisol 
and markers of  inflammation including interleukin (IL)-6, 
IL-10 and tumor necrosis factor (TNF)-α in plasma[38]. In 
this study, IL-6 was found to be most consistently related 
to cortisol profiles, and higher IL-6 levels were inversely 
associated with lower cortisol awakening response. In 
obese individuals (men, n = 91; women, n = 103) between 
the ages 19 to 35 years, significant associations were ob-
served between cortisol levels and body fat distribution[39].

Salivary cortisol concentrations are known to increase 
within 5 min of  increases in plasma cortisol, and are 

generally well correlated with plasma values[40]. There are 
several salivary cortisol kits available commercially, which 
commonly use immunoassay techniques or the more 
recent liquid chromatography-tandem mass spectropho-
tometry technique. In clinical settings, salivary cortisol is 
frequently used in the diagnosis of  Cushing’s syndrome 
with reported sensitivities and specificities of  90%[41,42]. 
Saiyudthong et al[43] have conducted a study to compare 
salivary cortisol levels in healthy individuals (n = 83, aged 
18-25 years), measured by enzyme-linked immunosor-
bent assay (ELISA) and electrochemiluminescence (ECL). 
Salivary cortisol showed a positive correlation with serum 
values (r = 0.84, P < 0.001) measured using ECL. Fur-
ther, there was no significant difference between salivary 
cortisol measured by ELISA and ECL, suggesting ECL 
as an alternative detection technique for salivary cortisol 
measurement[43]. 

ADIPOKINES IN SALIVA
Adipose tissue produces several pro-inflammatory and 
anti-inflammatory factors, including the adipokines leptin, 
adiponectin, resistin, and visfatin, as well as cytokines 
such as TNF-α, IL-6, and chemokines such as monocyte 
chemoattractant protein-1 (MCP-1). These have been 
shown to participate in the pathogenesis of  insulin resis-
tance, adipogenesis and inflammation[44-48].

Recent studies have shown that resistin, visfatin, 
and adiponectin concentrations can be measured using 
saliva (Figure 1)[45,46,49]. Mamali et al[45] have examined as-
sociations between serum and salivary concentrations of  
adiponectin, resistin and visfatin in healthy individuals 
(men, n = 17; women, n = 33) with a mean age of  34 ± 
14 years, body mass index (BMI) 22.4 ± 3.6 and body fat 
percentage 22.4 ± 8.4. In this study, mean salivary (10.92 
ng/mL) and serum (12.27 μg/mL) adiponectin levels were 
shown to be marginally correlated (r = 0.347, P = 0.019). 
There was a significant positive correlation (r = 0.441, P 
< 0.01) between salivary (1.69 ng/mL) and serum (7.78 
ng/mL) resistin values, and no statistical correlation be-
tween salivary (9.51 ng/mL) and serum (21.41 ng/mL) 
visfatin values[45]. Further, the study reported that the dif-
ferences were not significant between men and women. 
Similarly, Toda et al[50] have demonstrated significant cor-
relation (P < 0.05) between plasma and salivary adipo-
nectin values in healthy female participants (n = 30, age 
> 43 years)[50]. In this study, the authors have compared 
plasma adiponectin (11.7 μg/mL) concentrations with 
salivary adiponection in saliva samples collected directly 
in a test tube (0.89 ng/mL), and with cotton wads using 
the Salivette system (0.82 ng/mL). There was a significant 
correlation (P < 0.05) between plasma and test-tube sa-
liva samples, and not with the Salivette samples. Salivary 
detection of  proteins such as adiponectin depends largely 
on salivary processing methods, and the recovery of  pro-
teins from saliva. Thanakun et al[51] have demonstrated 
filtration as an alternative saliva processing technique, to 
the commonly used centrifugation method. In this study, 
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rapid, non-invasive and easy-to-use strategies for disease 
diagnosis, there has been growing interest in evaluating 
the potential of  saliva for inflammatory marker profiling. 

Studies have indicated that the most commonly ex-
plored biomarkers of  inflammation include antioxidant 
status and C-reactive protein (CRP) concentrations[53,56-58]. 
Spectrophotometric assays quantifying levels of  thio-
barbituric acid reacting substances (TBARS) are used to 
evaluate salivary antioxidant status, while CRP concentra-
tions are measured using ELISA kits or high-sensitivity 
immunoturbidimetric assays[53,56-59]. However, these tests 
lack the sensitivity for detection of  CRP in saliva. To ad-
dress the issue of  sensitivity, researchers have developed 
a “lab-on-the-chip” technique for salivary CRP measure-
ments. This novel technique utilizes a microchip assay 
system that offers the advantages of  increased sensitivity 
(10 pg/mL of  CRP) with lower noise-to-signal ratio. The 
lab-on-the-chip system captures optical signals generated 
by chemical and immunological reactions performed on 
microspheres (280 microns in diameter) implanted in 
silicon microchip wells[60]. Saliva collection techniques re-
ported in clinical studies include the use of  unstimulated 
passive drool or the filter paper method[59,61]. However, 
it has been observed that correlations between salivary 
biomarkers were not strong enough to support one col-
lection method over another[61]. 

Williamson et al[61] have reported the presence of  
27 cytokine biomarkers including IL-1β, IL-1 receptor 
agonist, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, 
IL-12, IL-13, IL-17, eotaxin, basic fibroblast growth 
hormone, growth-colony stimulating factor, granulocyte-
macrophage colony-stimulating factor (GM-CSF), inter-
feron (IFN)-γ, interferon-inducible protein 10, MCP-1, 
macrophage inflammatory proteins (MIPs)-1α, MIP-1β, 
platelet-derived growth factors BB, TNF-α, and vascular 
endothelial growth factor in the saliva of  healthy adults. 
These cytokines were measured using a commercially 
available cytokine multiplex assay kit that combines the 
use of  fluorescent flow cytometry and ELISA technol-
ogy. These authors observed that out of  the 27 cytokines 
tested, only 3 cytokines including IL-6, IFN-γ and MIP-
1β, found in saliva samples collected by passive drool, 
showed significant correlation (P < 0.05) with plasma 
levels[61]. 

Recently, a novel clinical approach termed, salivary 
transcriptome diagnostics, has been evaluated to provide 
a robust, high-throughput and reproducible tool for sali-
vary biomarker detection. Using microarray analysis and 
quantitative polymerase chain reaction, this method has 
demonstrated high sensitivity (91%) and specificity (91%) 
for inflammatory biomarkers including IL-8 and IL-
1β[62]. Another emerging technique called the oral fluid 
nanosensor test (OFNASET), offers a rapid and simul-
taneous detection of  multiple salivary proteins, including 
IL-8 and IL-1β, for point-of-care disease screening and 
detection. OFNASET involves the use of  advanced elec-
trochemical-based molecular analysis platforms including 
self-assembled monolayers, bionanotechnology, cyclic 

adiponectin levels, following filtration, were comparable 
to those after centrifugation[51]. In another study, these au-
thors have demonstrated significant association (r = 0.211, 
P = 0.018) between salivary and plasma adiponection, 
using ELISA technique, in both healthy individuals (n = 
46) and patients with metabolic syndrome (n = 82). The 
authors, however, did not observe significant difference 
in salivary adiponectin between the 2 study groups[52].

In a second study, Yin et al[46] have reported signifi-
cantly higher salivary resistin concentrations (P > 0.05) in 
individuals with newly diagnosed type 2 diabetes (men, n 
= 18; women, n = 20) compared to non-diabetic subjects. 
Salivary resistin was significantly correlated with serum 
resistin concentrations at different time points of  oral 
glucose tolerance test, and was not affected by an oral 
glucose load. Further, there was a positive correlation of  
serum and salivary resistin concentrations with BMI and 
HOMA-IR in both control and diabetic groups[46]. The 
studies together indicate that while assay validation and 
the method of  saliva sample collection can play a key role 
in biomarker quantification and standardization, saliva 
has the potential to be further explored as a diagnostic 
tool for adipokine analyses. More research needs to be 
directed towards developing saliva processing techniques, 
which can substantially increase the recovery of  proteins. 
Higher protein yields can positively contribute towards 
improving outcomes of  studies determining correlations 
between saliva and serum concentrations of  adipokines.

INFLAMMATORY BIOMARKERS IN 
SALIVA
Inflammation can be caused by a variety of  conditions 
including oxidative stress, overweight/obesity, improper 
oral hygiene and nutritional deficiencies[1,13,53]. Chronic 
low-grade inflammation has been associated with sys-
temic diseases, insulin resistance and development of  
type 2 diabetes[54,55]. Focusing on the need to establish 
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Figure 1  Salivary biomarkers of inflammation and insulin resistance. TAC: 
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oxide dismutase; GSH: Glutathione reductase; CRP: C-reactive protein; TNF-α: 
Tumor necrosis factor-alpha; IL-6: Interleukin-6; IFN-γ: Interferon gamma; MIP-
1β: Macrophage inflammatory protein-1 beta. 
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enzymatic amplification, microfluids, hybridization-based 
detection, and molecular purification[63].

A recent study in healthy adolescent girls (11-17 
years), observed that cytokines including GM-CSF, IL-
1β, IL-2, IL-6, IL-8, IL-12p70, TNF-α, adiponectin, and 
cotinine were detectable in saliva. However, the cytokine 
concentrations, except IL-8 and IL-1β, were lower than 
serum values and variable at baseline. Further, there were 
no serum-saliva associations in the levels of  cytokines 
tested[64]. It has been suggested that lack of  correlation 
between salivary and plasma cytokine biomarkers may be 
due to the impact of  oral environment, and the influence 
of  local immunity. It has also been indicated that the vari-
ability in cytokine levels may be due to distinct diurnal 
patterns, reflecting the time of  saliva collection[65]. 

Salivary concentrations of  TNF-α and IL-6 have 
been shown to be elevated in individuals with type 2 
diabetes and periodontal disease (n = 20, mean age = 57 
± 4 years), compared to healthy subjects (n = 21) with 
periodontal disease[66]. In this study, salivary TNF-α and 
IL-6 were assayed with ELISA-sandwich technique using 
commercially available immunoassay kits. In type 2 dia-
betic patients with periodontal disease, both salivary and 
serum TNF-α and IL-6 concentrations were significantly 
higher compared to healthy individuals with periodontal 
disease. Further, there was a significant correlation (r = 
0.500, P = 0.057) between salivary and serum IL-6 con-
centrations, and between salivary IL-6 and parameters 
including age, BMI, blood glucose and HbA1c. Salivary 
TNF-α also showed a significant positive correlation (r = 
0.674, P = 0.0006) with serum concentrations in diabetics 
with periodontal disease. However, salivary TNF-α was 
not correlated with age, BMI, blood glucose and HbA1c.

In overweight and obese children (mean age 14.5 
years), BMI adjusted for age and gender was shown to be 
significantly associated with reduced flow rate of  stimu-
lated whole saliva (1.2 mL/min), compared to the salivary 
flow rate (2.0 mL/min) in normal-weight children. This 
suggested that childhood obesity may cause stimulated 
whole saliva flow rate to fall below the median value of  1.5 
mL/min, which can negatively impact oral health in chil-
dren[67]. Further, overweight and obese children, between 
7 and 10 years of  age, have demonstrated a significant de-
crease in salivary concentrations of  phosphate (P < 0.001) 
and peroxidase activity (P < 0.001), and an increase in free 
sialic acid (P = 0.004) and protein (P = 0.003) levels com-
pared to normal weight control group suggesting the influ-
ence of  BMI on stimulated whole saliva composition[68].

CRP IN SALIVA
CRP is a sensitive marker of  systemic inflammation and 
an independent risk factor for cardiovascular diseases 
in both adults and children[69,70]. In a study of  170 black 
South African children (age 10 ± 2 years; boys, n = 70; 
girls, n = 100) salivary CRP concentrations, determined 
using a commercially available CRP ELISA kit, showed 
that obese children (n = 53, boys = 24, girls = 29, mean 

BMI = 26.2 ± 5 kg/m2) had significantly higher (P < 0.05) 
salivary CRP concentration (7.31 ± 0.93 pg/mL) com-
pared to normal-weight control group (6.77 ± 0.92 pg/
mL)[57]. Further, obese children were also shown to have 
significantly higher (P < 0.05) salivary CRP secretion rate 
(7.25 ± 0.99 pg/min) compared to normal weight chil-
dren (6.68 ± 0.98 pg/min).

In healthy individuals (men, n = 13; women, n = 12) 
between 20 to 35 years age, salivary CRP concentrations 
have been shown to be in the range of  35-217 pg/mL 
for saliva collected using the passive drool method. Use 
of  acid-stimulation for saliva collection have shown lower 
salivary CRP concentrations (38-171 pg/mL) compared 
to saliva collected using mechanical stimulation (32-213 
pg/mL)[71]. In this study, a commercially available ELISA 
kit (AlphaLISA, PerkinElmer, MA, United States) was 
used for quantification of  salivary CRP. Another study 
has reported salivary CRP concentrations in the range 
of  118 to 24156 pg/mL in healthy participants (n = 61) 
between 20 and 54 years of  age[72]. In this study, saliva 
samples were collected using the unstimulated passive 
drool method and salivary CRP was measured with a 
commercial ELISA kit (Salimetrics LLC, Carlsbad, CA). 
The observed differences in salivary CRP range among 
healthy individuals may be explained by differences in 
pre-processing techniques, and the use of  different assay 
kits. Further, these authors have shown that salivary and 
serum CRP concentrations were correlated (r = 0.72). 
Further, it was shown that salivary CRP concentrations 
could predict serum CRP concentrations with 89% accu-
racy at higher mean serum values. 

However, Qvarnstrom et al[58] have reported that sali-
vary CRP was not significantly associated with metabolic 
syndrome in patients with or without coronary artery 
disease[58]. In this study, out of  250 participants with 
coronary artery disease, 81 had metabolic syndrome, and 
salivary lysozyme was shown to be significantly associ-
ated with metabolic syndrome (P = 0.02), independent 
of  CRP concentrations. While comparing saliva and 
plasma CRP concentrations, Dillon et al[59] have reported 
that CRP concentrations in saliva of  healthy adults (n = 
69) ranged between 0.05 to 64.3 μg/L, which were sig-
nificantly lower compared to plasma CRP concentrations 
(0.14 to 31.1 mg/L). Further, regression analysis showed 
no correlation between CRP concentrations in saliva and 
plasma (R2 = 0.001)[59]. In this study, unstimulated whole 
saliva samples were obtained by the passive drool method 
and salivary CRP concentrations were measured using a 
commercial kit (Salimetrics). Interestingly, salivary CRP 
concentrations have been shown to be positively corre-
lated with serum concentrations in patients (n = 56) with 
acute myocardial infarction[73]. In this study, CRP showed 
the highest median concentration, for diseased over 
control subjects, in both serum (4.29) and saliva (72.25) 
followed by matrix metalloproteinase-9, IL-1β, soluble 
intercellular adhesion molecule 1, myeloperoxidase, adi-
ponectin and MCP-1. Receiver-operating characteristic 
curve analysis showed that CRP had a significantly higher 
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area under the curve for saliva (area under the curve = 
0.78, P < 0.05). The current developments in identify-
ing and standardizing potential inflammatory biomarkers 
in saliva suggest that substantial research is required to 
standardize and validate the use of  clinically relevant bio-
markers in disease diagnosis[74].

ANTIOXIDANT STATUS IN SALIVA
Oxidative stress is another major cause of  obesity-
induced inflammation resulting from increased produc-
tion of  free radicals and/or low antioxidant status. Oral 
inflammation is associated with elevated systemic inflam-
mation, and has been linked with increased risk of  insulin 
resistance and diabetes[24]. In a study by Al-Rawi[56], the 
oxidative status of  type 2 diabetic patients was evaluated 
by measuring salivary and serum levels of  malondialde-
hyde (MDA), uric acid (UA), superoxide dismutase and 
reduced glutathione (GSH). Salivary concentrations of  
MDA were lower (between 0.29-0.98 μmol/L) compared 
to serum MDA values (0.85-4.31 μmol/L) in all the study 
groups. However, salivary MDA was significantly higher 
in participants with type 2 diabetes compared to control 
subjects. Further, UA and GSH concentrations were 
significantly elevated (P < 0.001) in saliva of  diabetic pa-
tients, while salivary GSH showed no significant change 
compared to the control group[56].

Type 2 diabetes has also been associated with de-
creased total antioxidant capacity (TAC) evaluated by 
spectrophotometric measurement of  TBARS[25]. In this 
study, salivary TAC content (1.24 ± 0.18) was signifi-
cantly lower in diabetes group (n = 30, 13 men and 17 
women) compared to healthy controls (n = 30, 4.6 ± 0.31). 
Further, there was a significant decrease (P < 0.01) in the 
salivary flow rates in subjects with diabetes (0.38 ± 0.16) 
compared to the healthy individuals (0.65 ± 0.10). A re-
cent study has demonstrated increased concentrations of  
pro-inflammatory cytokines in unstimulated whole saliva 
samples collected from pregnant women with diabetes (n 
= 63). The findings of  this study suggested that changes 
in saliva properties were more pronounced in long-term 
cases of  diabetes and partly correlated with HbA1c[75].

SALIVA RESEARCH: EMERGING STUDIES
Currently, there has been an increasing focus on pro-
teomic analysis of  saliva. Research is directed to identify 
and catalog human salivary proteins. Recently, a NIDCR-
supported research consortium has compiled an exten-
sive list of  whole saliva proteins, using mass spectropho-
tometric techniques. This research group has identified 
597 salivary proteins that are also found in the plasma[76].

Studies are being conducted to develop sensitive and 
reliable saliva-based diagnostic assays with the potential 
to be used in a clinical setting. Researchers have evaluated 
the use of  a Luciferase Immunoprecipitation System for 
detection of  autoantibodies in salivary and lacrimal gland 
secretions of  patients with Sjogren’s Syndrome (SjS)[27]. 

This assay has been reported to detect autoantibodies in 
67% of  SjS patients with 100% specificity suggesting its 
potential use as an alternative to serum.

Interestingly, approximately 50 microRNAs have 
been identified in whole saliva, which currently are being 
studied for their potential to serve as biomarkers of  oral 
cancer[77]. Scientists have also developed a surface im-
mobilized optical protein sensor to detect IL-8 with im-
plications for use in cancer detection. To overcome the 
challenge of  detecting low concentrations of  biomarkers 
in saliva, the authors propose use of  confocal optical 
sensors[78].

CONCLUSION
While low-grade inflammation, a hallmark of  obesity, 
may be a pivotal mechanism linking obesity to its numer-
ous systemic complications, these require invasive proce-
dures, such as blood drawing. Recently, interest in the use 
of  saliva as a diagnostic fluid has increased exponentially 
because of  its non-invasive nature and potential to be 
used in population-based screening programs, confirma-
tory diagnosis, risk stratification, prognosis determina-
tion, and therapy response. Salivary cortisol is becoming 
widely used as a screening test for the diagnosis of  hyper-
cortisolism and as a biomarker of  psychological stress. 
Current literature for diagnostic potential of  salivary 
biomarkers suggests that salivary CRP, TNF-α, IL-6, and 
IFN-γ are elevated in overweight/obesity and inflamma-
tory conditions in children, and adults. These salivary bio-
markers demonstrate moderate-to-strong correlation with 
serum biomarkers, in healthy as well as obese and diabetic 
individuals. Salivary markers of  antioxidant status, includ-
ing malondialdehyde and uric acid, show promise but will 
need to be explored further. While some studies show 
that salivary resistin and adiponectin concentrations are 
significantly correlated with serum values, and are known 
to be been elevated in obesity and diabetes, additional 
studies are needed to characterize such biomolecules in 
saliva and their relevance to inflammatory, metabolic, and 
cardiovascular conditions. 

In conclusion, while saliva has the potential to be-
come a premier diagnostic sample, substantial future 
research is required to standardize saliva collection tech-
niques, validate salivary biomarkers of  inflammation and 
insulin-resistance, across various life-stages and condi-
tions, and establish reference ranges, before it can be used 
as a diagnostic fluid for cardiometabolic risk assessment. 
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Abstract
Auto- and alloreactive T cells are major culprits that 
damage β-cells in type 1 diabetes (T1D) and islet 
transplantation. Current immunosuppressive drugs 
can alleviate immune-mediated attacks on islets. T cell 
co-stimulation blockade has shown great promise in 
autoimmunity and transplantation as it solely targets 
activated T cells, and therefore avoids toxicity of cur-
rent immunosuppressive drugs. An attractive approach 
is offered by the newly-identified negative T cell co-
signaling molecule B7-H4 which is expressed in nor-
mal human islets, and its expression co-localizes with 
insulin. A concomitant decrease in B7-H4/insulin co-
localization is observed in human type 1 diabetic islets. 
B7-H4 may play protective roles in the pancreatic islets, 
preserving their function and survival. In this review we 
outline the protective effect of B7-H4 in the contexts 
of T1D, islet cell transplantation, and potentially type 
2 diabetes. Current evidence offers encouraging data 
regarding the role of B7-H4 in reversal of autoimmune 
diabetes and donor-specific islet allograft tolerance. Ad-
ditionally, unique expression of B7-H4 may serve as a 
potential biomarker for the development of T1D. Future 

studies should continue to focus on the islet-specific ef-
fects of B7-H4 with emphasis on mechanistic pathways 
in order to promote B7-H4 as a potential therapy and 
cure for T1D. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Onset of type 1 diabetes is driven by defects 
in immune regulation, resulting in β-cell autoimmunity. 
However, there may be mechanisms inherent to the 
β-cell that may prevent or slow development of autoim-
munity and progression of disease. One such factor is 
B7-H4, which acts at the islet-immune interface to de-
fend β-cells from autoimmune diabetes and to protect 
transplanted islet allografts. 

Sun AC, Ou D, Luciani DS, Warnock GL. B7-H4 as a pro-
tective shield for pancreatic islet beta cells. World J Diabe-
tes 2014; 5(6): 739-746  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/739.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.739

INTRODUCTION
Pathophysiology of diabetes, current therapies and their 
limitations
Diabetes mellitus affects 382 million people world-wide 
today, and this number is expected to increase by 55% 
by 2035[1]. Diabetes is a chronic metabolic disease which 
stems from insufficient production of  insulin by pan-
creatic β-cells and/or inability of  the body to respond 
to insulin. There are two major forms of  diabetes-type 
1 diabetes (T1D), and type 2 diabetes (T2D). While dif-
fering in their pathogenesis, both types of  diabetes result 
from failure and/or loss of  insulin-producing β-cells 
that eventually translate to a state of  chronic hypergly-
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cemia[2-4]. Persistently high blood glucose concentrations 
are associated with this disease, which result in both 
acute metabolic conditions such as diabetes ketoacidosis 
and long-term vascular complications such as diabetic 
retinopathy, nephropathy, and neuropathy[2,4,5]. These dev-
astating complications lead to enormous socioeconomic 
burdens, mandating a pressing need to find a cure. 

There are both differences and similarities in mecha-
nisms by which β-cell injuries occur in T1D and T2D. 
T1D has been identified as an autoimmune disease in 
which insulin-producing β-cells are destroyed by targeted 
immune attack in genetically susceptible individuals. It 
is believed that environmental events initially trigger the 
recruitment of  CD4+ and CD8+ T cells to the islets of  
Langerhans and mount continuous attacks against auto-
antigens on β-cells, resulting in β-cell death[4,5]. T2D, 
closely linked to aging and obesity as well as a certain 
level of  genetic susceptibility, is characterized by insulin 
insensitivity due to insulin resistance in peripheral tissues, 
which leads to β-cell stress[4,6,7]. T1D and T2D overlap 
in β-cell stress and death pathways despite differences 
in initiating triggers[3]. One such common pathway is 
endoplasmic reticulum (ER) stress, which can activate 
downstream signaling cascades collectively known as the 
unfolded protein response (UPR)[3]. Various conditions 
such as nutrient deprivation, inflammation, alterations in 
oxidation-reduction balance and elevated levels of  glu-
cose and lipids can all lead to accumulation of  unfolded 
proteins in the ER lumen. In response to this ER stress, 
the UPR serves as a compensatory mechanism to re-
store ER homeostasis by increasing the protein folding 
capacity of  the ER and muting protein translation[8-10]. 
However, chronic ER stress can shift the UPR towards 
a pro-apoptotic state[8,9]. In T2D, increased demand on 
insulin production due to progressive insulin resistance, 
combined with exposure to increased levels of  glucose 
and fatty acids, induces prolonged β-cell ER stress, thus 
triggering cell death via apoptotic pathways[6,7,11]. Growing 
evidence also implicates ER stress as one of  the factors 
that contribute to T1D[8,12,13]. Pro-inflammatory cytokines 
secreted by infiltrating immune cells in the islets of  T1D 
patients could induce apoptosis via signal transducers 
such as STAT-1 and nuclear factor-kappa B[3,14,15], and 
cytokines could also negatively impact ER homeostasis 
and cause UPR dysregulation, which contributes to β-cell 
demise[3,16,17]. Knowledge of  overlapping β-cell injury 
mechanisms between T1D and T2D can provide valuable 
insight into pathogenesis of  diabetes, guiding rational de-
velopment of  therapeutics that target instigators of  both 
T1D and T2D. 

Treatments for diabetes have been designed to ad-
dress glycemic control and alleviate diabetic complica-
tions. Depending on the severity of  insulin resistance, 
management of  T2D can be achieved through lifestyle 
and diet modifications. Commonly used pharmacological 
agents for T2D include insulin sensitizers, insulin secreta-
gogues, incretin-based therapies, and insulin analogues[11]. 
Most T1D patients still rely on exogenous insulin injec-

tion to maintain euglycemia. However, stringent monitor-
ing of  blood glucose level is needed and the use of  exog-
enous insulin carries the risk of  hypoglycemic episodes 
that can be life-threatening. 

In search of  the elusive “cure” of  diabetes, it would 
be desirable to halt the autoimmune attacks on β-cells, or 
to prevent it altogether. Current on-going clinical trials 
for T1D are focusing on using immunomodulation strat-
egies to delay disease onset and preserve β-cell function 
in full blown diabetes. Examples of  these drugs include 
anti-CD3 (teplizumab) and anti-CD28 (rituximab), anti-
bodies to inhibit autoreactive T cells and B cells. CTLA4-
Ig (abatacept), an inhibitory molecule for T cells, also 
showed promise in previous clinical trials to prolong 
insulin production in newly-diagnosed T1D patients[18]. 

Transplantation of  insulin-producing tissue also pro-
vides a therapeutic option for diabetes. Whole pancreas 
transplantation yields better glycemic control compared 
with insulin injections, but subjects patients to major 
surgery with associated risks, and is therefore only of-
fered to patients with severe diabetic complications. Islet 
cell transplantation is a relatively safe and fast alterna-
tive, in which islets isolated from cadaveric donors are 
infused into the liver via the hepatic portal vein[19,20]. With 
the development of  the Edmonton Protocol, islet cell 
transplantation has become a reproducible, standard-
ized procedure in multiple medical centers around the 
world which improves glycemic control[19,21]. Patients who 
received islet cell transplantation also showed markedly 
reduced diabetic retinopathy and nephropathy compared 
with patients who were treated with conventional medi-
cal therapy[20,21]. Even though insulin independence de-
clined during prolonged follow up, partial graft function 
was maintained in 80% of  the patients, as measured by 
C-peptide secretion[21]. Despite ongoing improvements in 
islet transplantation, eventual graft dysfunction, failure, 
and rejection remain a challenge[19,20].

The limited success of  β-cell protection in various 
studies has attracted interest to novel β-cell immunopro-
tective strategies. In the following we review recent find-
ings that suggest the negative co-stimulatory molecule 
B7-H4 has unique functions in the pancreatic islets that 
carries the potential to act as not only as a natural but also 
a therapeutic “shield” for β-cells during the development 
of  diabetes and following pancreatic islet transplantation, 
as well its prospective role as a novel biomarker for T1D. 

B7-H4: A NOVEL IMMUNE-REGULATORY 
MOLECULE
B7-H4, also known as B7x, was identified in 2003, and 
belongs to the B7 family of  immunoglobulins[22-24]. Ge-
nomic B7-H4 is encoded on the VTCN1 gene, which is 
located on chromosome 1 and 3 in human and mouse, 
respectively[24]. Given that mouse and human share 87% 
amino acid identity, B7-H4 is a highly evolutionarily con-
served molecule. Mature B7-H4 is a 50-80 kDa trans-
membrane protein consisting of  one IgV and one IgC 
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region, which are encoded on exons Ⅲ, Ⅳ, and part of  
Ⅴ[22-24]. Like other members of  the B7 family, it is up-
regulated on the cell membrane of  activated antigen 
presenting cells, and acts to modulate the immune re-
sponse[22-24]. Upon binding to a putative yet unidentified 
counter-receptor on T cells, B7-H4 acts as a negative co-
signaling molecule to inhibit T cell proliferation and cyto-
kine production. One proposed mechanism of  action is 
that B7-H4 arrests cell cycle progression of  T cells at the 
G0/G1 phase[23]. Since T cell activation is dependent on 
the presence of  co-stimulatory signals, the suppressive 
nature of  B7-H4 highlights its therapeutic potential in 
autoimmune diseases. 

Interestingly, B7-H4 exhibits a unique mRNA profile. 
Unlike other B7 molecules, B7-H4 mRNA is expressed in 
multiple peripheral tissues such as the spleen, lung, liver, 
and pancreas[23]. Protein expression of  B7-H4 in periph-
eral tissues is minimal, and its role is subject of  much de-
bate[23,25,26]. It is possible that B7-H4 undergoes tight post-
transcriptional or post-translational regulation that limits 
its protein expression in those tissues. It remains unclear 
what roles B7-H4 play in the periphery, and whether it has 
functions that are independent of  its effect on T cells. We 
and others have shown that the pancreas expresses mod-
erate level of  B7-H4, especially in the endocrine cells[25,27]. 
This raises the question of  what the specific functions of  
B7-H4 are in pancreatic islets, and suggests the intrigu-
ing possibility that activity of  B7-H4 is not limited to 
immune-modulation. For the purpose of  this review, we 
will focus on the existing evidence which indicates that 
B7-H4 plays an essential role in islet autoimmunity and is-
let allotransplantation, and report data from cancer studies 
which alludes to other non-immune functions of  B7-H4. 
All of  the roles, known and potential, are shown in Table 1, 
which are classified as autoimmunity modulator, allograft 
protection, UPR modulation, and biomarker of  β-cell im-
munity. This manuscript extends beyond previous reviews 
of  B7-H4 by highlighting the importance of  endogenous 
B7-H4 expression in β-cells, suggesting that the B7-H4 
pathway for treating T1D may be more advantageous than 
other co-stimulatory molecules. 

B7-H4 AS A PROTECTIVE SHIELD FOR 
β-CELLS IN T1D
Regulation of  autoreactive T cells in autoimmune diseases 
can be achieved through various methods, such as regu-
latory T cell (Treg) therapy, interleukin (IL)-2 pathway 
manipulation, tolerance induction with antigen adminis-
tration, and co-stimulation blockade[28]. As a negative co-
signaling molecule, B7-H4 has the potential to down-
regulate autoreactivity in autoimmune diseases such as 
T1D. While B7-H4 deficiency itself  does not cause auto-
immune diseases, various studies showed that B7-H4 plays 
an important role in inhibition of  auto-reactive T cells in 
diseases such as experimental autoimmune encephalomy-
elitis, and rheumatoid arthritis[22,27]. Genome-wide associa-
tion studies have also uncovered certain Single Nucleotide 

Polymorphisms within the B7-H4-encoding VTCN1 gene 
as disease-causing in the context of  diabetes, further im-
plicating B7-H4 as a potential regulator of  T1D[29]. 

Immunosuppressive functions of  B7-H4 was con-
firmed in experimental T1D models using B7-H4-immu-
noglobulin (B7-H4 Ig), a recombinant protein derived 
from fusion of  the immunoglobulin constant region to 
the extracellular domain of  B7-H4[30,31]. Both intraperi-
toneal injections of  B7-H4 Ig and cell-associated B7-H4 
inhibited proliferation and cytotoxicity of  CD4+ and 
CD8+ T cells in vitro[22-24,32]. Juvenile NOD mice treated 
with B7-H4 Ig exhibited significantly later onset as well as 
reduced incidence of  diabetes[31]. This coincided with a re-
duction in proliferation and activation of  both CD4+ and 
CD8+ subsets of  T cells in the islet infiltrates[31]. In sup-
port of  this, our preliminary findings suggested that β-cell 
specific over-expression of  B7-H4 in transgenic NOD 
mice significantly decreased T1D incidence compared 
with wild type NOD mice (unpublished data). In conjunc-
tion with its preventive role in the onset of  autoimmune 
diabetes, B7-H4 reversed incidence of  established T1D. 
Return of  glycemic control was observed in newly-onset 
diabetic NOD mice following B7-H4 Ig injections[33]. 
Conversely, adoptive transfer of  diabetogenic T cells into 
B7-H4 deficient mice resulted in more exacerbated disease 
than wild-type controls[27]. It was hypothesized that B7-H4 
did not have an effect on recruitment of  immune infil-
trates during the pre-diabetic stage, but rather, it prevented 
the progression of  insulitis to overt diabetes by arresting 
severe insulitis at 12 wk of  age in NOD mice[27,31]. This 
modulation of  immune status at later stage of  disease 
may be associated with down-regulation of  the Th1 cells, 
which are widely accepted as key mediators of  autoim-
mune diseases[31]. 

Mechanistic studies examining the role of  B7-H4 
showed that it was able to limit autoreactive CTLs, and 
suppressed secretion of  inflammatory cytokines in the 
periphery[33]. For instance, levels of  Th17-associated cy-
tokines, IL-6, and IL-23, were reduced in B7-H4 treated 
animals[33]. This reduction was concomitant with a de-
crease in Th17 cells, a subpopulation of  CD4+ T cells that 
produce IL-17, IL-17F, IL-21, and IL-22, and have been 
implicated in various autoimmune conditions[34,35]. IL-17 is 
an inflammatory cytokine that may stimulate the produc-
tion of  other inflammatory cytokines, and is present at 
high levels in autoimmune diseases such as rheumatoid 
arthritis, inflammatory bowel disease, and multiple scle-
rosis[36-38]. Importantly, elevated Th17 cells were found in 
NOD mice as well as T1D patients, and were suggested 
to be a contributing factor to the pathogenesis of  auto-
immune diabetes[39-41]. One mechanism by which Th17 
cells were proposed to act in T1D patients was to cause 
a disturbance in the ratio of  T effective cell (Teff)/Treg 
cells, which shifted the adaptive immune response to al-
low development of  T1D[42]. Additionally, Th17 cells 
were able to convert to a Th1 phenotype and stimulated 
cytotoxic T lymphocytes (CTL) to further contribute to 
autoimmunity[39]. Consistent with roles of  B7-H4 in islet 
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graft function and survival, ranging from mechanical 
stress during isolation procedures to adverse effects of  
immunosuppressive drugs post-transplantation. During 
islet isolation and transplantation, conditions of  hypoxia 
and nutrient deprivation collectively induce oxidative 
stress, ER stress and apoptosis, resulting in a decline in 
functional β-cell mass[47]. In the case of  T1D patients, 
islet grafts not only encounter autoimmune surveillance, 
but also experience rejection mediated by alloreactive T 
cells. This process occurs due to priming of  CD4+ T cells 
by alloantigens presented by MHC molecules on antigen 
presenting cells. Activated CD4+ T cells then promote 
the differentiation and proliferation of  CD8+ T cells, 
which attack the donor tissue. Current immunosuppres-
sive regimens for islet transplant recipients consist mostly 
of  tacrolimus (FK506), sirolimus (rapamycin), and myco-
phenolate mofetil (MMF)[20,21,48]. Generalized side effects 
of  these drugs include increased risks for infection and 
malignancy, hypertension, lung toxicity, and cardiac dam-
age. Tacrolimus has been linked to nephrotoxicity, which 
can be especially damaging to recipients who are at risk 
for diabetic nephropathy[19]. Importantly, studies have 
demonstrated that these drugs induced islet cell apoptosis 
and impaired islet function based on their mechanisms of  
action[19,49]. For instance, tacrolimus and sirolimus inhibit 
calcineurin and mammalian target of  rapamycin, both of  
which are involved in insulin signaling and secretion[49,50]. 
It is therefore critical to identify novel therapeutics that 
offers immune-protection with minimal level of  toxicity 
and side effects. B7-H4 is a molecule which can suppress 
autoimmunity as well as modulating alloreactivity, which 
makes it a perfect candidate for islet cell transplantation 
especially in T1D patients[45]. 

Initial investigation into the role of  B7-H4 on al-
lograft rejection demonstrated that B7-H4 protected NIT 
cells, a functional NOD-derived β-cell line, from injury[44]. 
Survival of  NIT cells allotransplanted into diabetic mice 
was prolonged by B7-H4 transfection[44]. This was associ-
ated with reduced proliferation of  recipient splenocytes, 

autoimmunity, pancreata of  B7-H4 deficient mice ex-
pressed significantly enhanced production of  IL-17 and 
interferon (IFN)-γ, while islet-specific over-expression of  
B7-H4 led to a dramatic reduction in IL-17 and IFN-γ[27]. 
In vitro studies showed that cultured splenocytes displayed 
less affinity toward a Th17 phenotype when incubated 
with B7-H4 Ig, and sequestering of  B7-H4 restored Th17 
polarization[33]. This effect was dependent on increased 
IFN-γ production by the splenocytes, suggesting that 
inhibitory effect of  B7-H4 on Th17 cell differentiation 
was due to stimulation of  IFN-γ release[27,33]. However, it 
seemed that inhibition of  Th17 cells by B7-H4 did not 
shift the Teff/Treg ratio towards Teff  cells, neither did it 
act to expand the Th2 cell population, which is classically 
known as the anti-inflammatory T cell phenotype[27]. It is 
possible that the reduction in Th17 cells may potentially 
reduce the pathogenic Th1 phenotype that contributes to 
autoimmunity.

In summary, B7-H4 has been demonstrated to have 
functionality in both arresting and reversing newly-onset 
T1D in rodent models, and thus shows great promise as 
a preventative measure and a potential treatment for the 
disease. Current evidence suggests that B7-H4 prevents 
progression of  severe insulitis to overt diabetes, in part, 
by suppressing mediators of  autoimmunity such as Th1 
and Th17 cells. Further research will help clarify the up-
stream signaling events leading to the observed beneficial 
effects and may significantly advance our ability to har-
ness the potential of  B7-H4 as a therapeutic for T1D. 

B7-H4 INDUCES DONOR 
SPECIFIC TOLERANCE IN ISLET 
TRANSPLANTATION
B7-H4 also promotes the viability of  islet grafts, and thus 
has significant potential for improving clinical islet trans-
plantation as a treatment for diabetes[43-46]. Transplanted 
islets face many overlapping forces that conspire to limit 
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Table 1  Evidence for immune regulatory and β-cell autonomous roles of B7-H4 in experimental/human diabetes

Role Model Summary of findings Application Ref.

Autoimmune modulator NOD mouse B7-H4 Ig inhibits development of, and reverses newly-onset 
autoimmune diabetes

Prevents/ [31,33]
reverses T1D

Allograft protection NIT cell line B7-H4 transfected NIT cells promote β-cell allograft survival Suppresses islet 
graft rejection

[44]
Mouse Adenoviral-transduced B7-H4 donor islets enhanced islet 

allograft survival, and promotes donor-specific tolerance
[43,46]

Mouse B7-H4 transgenic islets improve islet allograft survival Preserves β-cell 
mass in T1D/T2D

[51]
Non-immune dependent 
UPR and cell survival 

Pancreatic carcinoma-
derived cell lines

B7-H4 knock-down increases cell apoptosis [56]

regulator Renal carcinoma tissues 
and cancer cell lines

Human intracellular B7-H4 is identified as a cytoplasmic-nuclear 
shuttling protein that contains a NLS

[57]

Mouse B7-H4 modulates UPR in isolated pancreatic β-cells Unpublished
Biomarkers of β-cell 
immunity

Mouse B7-H4 RSS0.2 mRNA splice form is correlated with different 
stages of T1D

Detects β-cell 
autoimmunity

Unpublished

Human Reduced B7-H4 expression and B7-H4/insulin colocalization is 
detected in pancreata of T1D patients

[25]

Human Elevated sB7-H4 is present in RA and newly-onset T1D patients [61,62] 
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T1D: Type 1 diabetes; NOD: Non-obese diabetic; UPR: Unfolded protein response; NLS: Nuclear localization signal.



decreased production of  IFN-γ, and increased Tregs in 
the spleen[44]. The protective effect of  B7-H4 in allotrans-
plantation was further observed in B7-H4 adenoviral-
transduced islets and B7-H4 transgenic islets. Local over-
expression of  recombinant B7-H4 adenovirus (Ad)-
B7-H4 in intact mouse islets preserved original β-cell 
function and endogenous glucose responsiveness at both 
basal and high glucose conditions[43]. Furthermore, mice 
who received islets transduced with (Ad)-B7-H4 demon-
strated longer allograft survival with significantly reduced 
infiltrates compared with control recipients[43]. Elevated 
Tregs and reduced cytotoxic T cells were observed in 
transduced islet grafts, further suggesting that B7-H4 
may alter the immune environment at the graft site to 
induce tolerance[43]. Similarly, B7-H4 transgenic islets pro-
moted islet allograft survival, concurrent with migration 
of  Tregs to the graft site[51]. Tregs are known to secrete 
IL-10, an anti-inflammatory cytokine, and can also induce 
IL-10 secretion in APCs[52]. IL-10 suppresses Th1 phe-
notype, thus inhibiting Th1 effector cells such as CD8+ T 
cells. In addition, Tregs also stimulated B7-H4 expression 
on monocytes and other APCS[52], which may act as nega-
tive co-signals to restrain T cell reactivity against donor 
antigens. These studies demonstrated that allotransplan-
tation outcomes can be largely influenced by T cell co-
signaling molecules, where Tregs played an important 
role in B7-H4 induced tolerance. 

Interestingly, B7-H4 is able to achieve donor-specific 
tolerance rather than general unresponsiveness towards 
foreign antigens. When the primary B7-H4-transduced 
islet graft was removed and replaced with a secondary 
graft from the same donor mouse strain, graft survival 
was higher compared with a secondary graft from a 
third-party donor strain[46]. Isolated splenic leukocytes 
from recipient mice showed decreased IL-2 levels due to 
reduced number of  IL-2 secreting cells[46]. However, no 
differences were observed in Tregs between mice that 
received same donor strain islets compared with those 
transplanted with third party strain islets[46]. It is possible 
that while Tregs are central to establishment of  allograft 
tolerance, they may not be the main contributors to the 
maintenance of  the secondary graft. Conceivably, B7-H4 
can act on other pathways to affect IL-2 secretion and in-
duction of  donor-specific tolerance, however, this avenue 
of  research is yet to be explored. 

B7-H4 AS A DIRECT MODULATOR OF 
THE UNFOLDED PROTEIN RESPONSE 
AND CELL DEATH
The ubiquitous expression of  B7-H4 in peripheral tissues 
has led to speculations regarding its role independent of  
the immune system. In support of  this, studies on cancer 
cells reported elevated expression of  B7-H4 in the cyto-
plasm and cell membranes from breast, uterus, and pan-
creas cancer cells[53-55], and its expression was correlated 
with tumor progression. It has been speculated that up-
regulation of  B7-H4 may help cancer cells evade immu-

nosurveillance as well as being a direct tumorigenic factor 
independent of  the immune system[56,57]. Consistent with 
these hypotheses, Zhang et al[57] demonstrated that hu-
man B7-H4 contains a nuclear localization sequence that 
allows B7-H4 to shuttle between the cytoplasm and the 
nucleus, and may regulate transcription of  genes involved 
in cell apoptosis. Qian et al[56] also showed in vitro B7-H4 
gene silencing in pancreatic cancer cells led to reduced 
proliferation rate and an increase in cell apoptosis that 
correlated with increased expression of  the pro-apoptotic 
Bax protein and caspase activation. B7-H4 may thus play 
a central role in survival and apoptosis, but the exact 
mechanisms by which it facilitates disease progression 
remain an area of  active investigation. 

Specifically in the β-cells, endogenous B7-H4 may reg-
ulate stress via other cell-autonomous signaling pathways. 
Data from our lab suggested that in vivo administration 
of  B7-H4 Ig affected the age-dependent expression of  
key UPR genes in the islets of  NOD mice (unpublished). 
Notably, additional in vitro experiments on islets from 
transgenic islets with β-cell specific B7-H4 expression 
suggested that B7-H4 can modulate β-cell UPR signaling 
and may thus affect the ability of  pancreatic islets to adapt 
to ER stress (unpublished data). In conjunction with the 
evidence from tumor cells, these findings support the 
intriguing possibility that B7-H4 also has non-immune-
mediated roles in maintaining β-cell function and survival, 
and highlight promising new avenues for future research. 

SPECIFIC EXPRESSION OF B7-H4 AS A 
POTENTIAL NOVEL BIOMARKER FOR 
T1D
While the end result of  T1D is significant loss of  islet 
β-cells that warrants the need for life-long insulin replace-
ment, progression to end-stage diabetes occurs in several 
stages[58,59]. The initial step is development of  islet auto-
immunity, which manifests as presentation of  autoanti-
bodies to putative antigens such as GAD, ZnT8, IA-2, 
and insulin. Measurements of  these autoantibodies have 
proven useful for predicting diabetes. However, after the 
initiation of  islet autoimmunity, they are no longer able to 
offer consistent information regarding disease progres-
sion. From the time of  autoimmunity onset to clinical 
diabetes there is a relatively long pre-diabetic stage. This 
is a critical time for therapeutic intervention, as there is 
theoretically still adequate functional β-cell mass at this 
stage of  dysglycemia to preserve sufficient endogenous 
insulin secretion that obviates full blown T1D[60]. It is 
therefore vital to develop reliable markers for monitoring 
β-cell loss and characterizing each stage of  T1D in order 
to determine the efficacy of  therapeutic interventions as-
sociated with each stage. 

In the prediction of  autoimmunity, B7-H4 has been 
proposed to serve as a candidate biomarker for rheu-
matoid arthritis (RA)[55,61]. Serum samples indicated that 
levels of  soluble B7-H4 protein (sB7-H4) in patients di-
agnosed with RA were significantly higher than those in 
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healthy donors[61]. In addition, elevated levels of  sB7-H4 
were associated with increased disease severity[61]. Our 
results showed a trend of  higher sB7-H4 in diabetic chil-
dren, though not statistically significant. This data agreed 
with a more recent study, which confirmed that sB7-H4 
were elevated in newly-onset T1D patients[62]. Previous 
characterization of  the B7-H4 gene using human multiple 
cDNA panels demonstrated that there are two major ver-
sions of  B7-H4 transcripts from the pancreas tissue: A 
full-length (2.0 kb) transcript which is shared with other 
organs, and a shorter (1.2 kb) transcript version which is 
specific for pancreas[23,24]. We have also detected the pres-
ence of  an additional 0.2 kb B7-H4 mRNA splicing spe-
cies (RSS0.2) in the serum of  T1D patients (unpublished 
data). Moreover, preliminary studies showed that high 
levels of  circulating B7-H4 RSS0.2 were correlated with 
newly-onset T1D (< 1 year), while intermediate levels of  
this mRNA splice form were observed in patients with 
longer-term disease (1 year), and the lowest levels were 
found in patients with late stage T1D (2-5 years). This 
suggests that sB7-H4 and unique B7-H4 splice forms 
may serve as a novel biomarker for determining various 
stages of  T1D. 

In the human pancreas B7-H4 is more abundantly 
expressed in the islets than the exocrine tissue at both 
mRNA and protein level[25,27]. Recently, Cheung et al[25] 

showed that altered B7-H4 expression occurred in T1D 
and insulinoma. Multi-fluorescence immunohistochemical 
analyses revealed moderate expression of  B7-H4 in non-
diabetic pancreatic islets, significantly reduced protein ex-
pression in T1D islets, and high expression in insulinoma 
tumor cells[25]. Furthermore, correlation analyses demon-
strated B7-H4 co-localization with insulin in both human 
and mouse islet[25,27]. Interestingly, the B7-H4/insulin co-
localization was dramatically reduced in both T1D islets 
and insulinomas compared with non-diabetic islets[25]. It is 
possible that the reduced association between B7-H4 and 
insulin may reflect diseased islet states, agreeing with the 
observation that B7-H4 protein and mRNA expressions 
in islet β-cells and in sera may be useful as indicators of  
islet dysfunction and β-cell death/loss in the progression 
of  T1D. 

CONCLUSION
B7-H4 is the newly-identified member of  the B7 im-
munoglobulin family commonly associated with co-
stimulatory or inhibitory signals for T cells. Even though 
the putative receptor for B7-H4 on activated T cell is yet 
to be identified, its marked ability to suppress and reverse 
autoimmune diabetes has been demonstrated in various 
cellular and animal models. Furthermore, B7-H4 can 
induce donor-specific tolerance in islet allografts, which 
holds great promise as an adjunct for modern paradigms 
of  immunosuppression. In the pancreas a relative abun-
dance of  B7-H4 in β-cells alludes to novel functions in 
the pancreatic islets, and ongoing work hints at important 
roles of  endogenous B7-H4 for β-cell health and func-

tion. Of  note, B7-H4 also displays a unique expression 
profile unlike that of  other B7 family members, and vari-
ations in its protein and mRNA splicing species may act 
as potential biomarkers for T1D. Further research into 
both the immune-regulatory and β-cell-autonomous roles 
of  B7-H4 promises to elucidate its contributions to β-cell 
health and survival, thus identifying it as a novel β-cell 
protective shield for patients suffering from diabetes. 
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markers for myocardial infarction. We propose that the 
current cut-points accepted by the WHO need to be re-
valuated in populations such as Latin America and that 
there should be lower cut points for glycaemia in this 
population, to reduce the prevalence of cardiovascular 
complications associated with DM2.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: We propose that the current cut-points to 
define type 2 diabetes accepted by the World Health 
Organization need to be revaluated in populations such 
as the Latin America and that there should be lower cut 
points for glycaemia in this population, to reduce the 
prevalence of cardiovascular complications associated 
with diabetes mellitus type 2.

López-Jaramillo P, Velandia-Carrillo C, Gómez-Arbeláez D, 
Aldana-Campos M. Is the present cut-point to define type 2 
diabetes appropriate in Latin-Americans? World J Diabetes 
2014; 5(6): 747-755  Available from: URL: http://www.wjg-
net.com/1948-9358/full/v5/i6/747.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.747

INTRODUCTION 
The World Health Organization (WHO) issued technical 
reports relating to diabetes in the years 1965[1], 1980[2], 
1985[3], and 1999[4]. Over this period, there have been 
significant changes in the diagnostic criteria and for the 
classification of  diabetes mellitus (DM) and intermediate 
hyperglycemia[5], also known as dysglycemia or prediabe-
tes. In the first report in 1965, the WHO set a DM cut-
off  of  ≥ 130 mg/dL according to the patient’s response 
to a two hour oral glucose tolerance test (OGTT) and 
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Abstract
The diagnosis of diabetes mellitus type 2 (DM2) is 
based either on increased plasma glucose or Glycated 
hemoglobin levels. Since these measures are the only 
means for diagnosis of DM2, they must be well adapted 
to each population according to their metabolic charac-
teristics, given that these may vary in each population. 
The World Health Organization (WHO) determined the 
cut-points of plasma glucose levels for the diagnosis 
of DM2 by associating hyperglycemia with the risk of 
a specific microvascular complication-retinopathy. Car-
diovascular diseases are however the principal causes 
of mortality in patients with DM2 and we reported that 
in the Colombo-Ecuadorian population impaired fasting 
glucose and impaired glucose tolerance are both risk 
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their clinical manifestations[1]. Then in 1980, specific cri-
teria were introduced, such as retinopathy or the presence 
of  glucose in urine, or a random plasma glucose tests of  
≥ 200 mg/dL, and values for Fasting Plasma Glucose 
(FPG) of  ≥ 145 mg/dL or glucose in venous plasma 2-h 
after glucose load (75 g) ≥ 200 mg/dL for the diagno-
sis of  DM[2]. In 1985, the cut-off  points for FPG were 
decreased to ≥ 140 mg/dL while the OGTT of  ≥ 200 
mg/dL was maintained[3].

In 1997, The Expert Committee of  the American Di-
abetes Association (ADA) released their new recommen-
dations for the classification and diagnosis of  diabetes. 
The stage impaired glucose tolerance (IGT) was retained 
but there were several major changes including: (1) the 
preferred use of  the terms “type 1” and “type 2” instead 
of  “insulin-dependent” and “non-insulin-dependent” to 
designate the two major types of  DM; (2) The analogous 
intermediate stage of  fasting glucose was named “im-
paired fasting glucose (IFG)”; and (3) a lower cutoff  for 
FPG from ≥ 140 mg/dL to ≥ 126 mg/dL to diagnose 
diabetes was established (this level of  FPG having been 
found equivalent to the 200 mg/dL value in the oral glu-
cose tolerance diagnostic test)[5]. 

In 1999, the WHO then amended the cut-off  points 
to ≥ 126 mg/dL in fasting glucose and maintained the 
≥ 200 mg/dL for OGTT, which was established in 1980. 
The new fasting criterion was chosen to represent a value 
at the upper end of  the range, which in many patients 
corresponds to the diagnostic significance of  the 2-h 
post-load concentration, which was not modified[4].

The criteria currently used for the diagnosis of  dia-
betes and intermediate hyperglycemia have been in place 
globally for almost a decade, and are widely accepted by 
the ADA[6] and the WHO[7,8] using the four following cri-
teria: Symptoms of  hyperglycemia such as polyuria, poly-
dipsia, and unexplained weight loss, and a casual plasma 
glucose ≥ 200 mg/dL; casual-defined as a result obtained 
at any time of  the day; (2) A 2-h plasma glucose ≥ 200 
mg/dL during an OGTT. This test should be performed 
as described by the WHO, using a glucose load contain-
ing the equivalent of  75 g of  anhydrous glucose dissolved 
in water; (3) Fasting glycemia levels ≥ 126 mg/dL; and 
(4) Glycated Hemoglobin (HbA1c) ≥ 6.5%. Both the 
ADA and the WHO believe that sufficiently stringent 
quality assurance tests are in place and that assays are 
standardized to criteria aligned to the international refer-
ence values, so that there are no conditions present which 
preclude an accurate measurement of  HbA1c.

HOW WERE THE CUT-OFF POINTS FOR 
DM DETERMINED?
While plasma glucose and HbA1c represent the basic 
criterion measures to define DM, the universally utility of  
these determinations has been questioned[9]. The diagnos-
tic cut-off  points for diabetes were based on two sets of  
evidence: (1) Plasma glucose levels associated with an in-
creased risk of  specific microvascular complications, par-

ticularly retinopathy; and (2) The distribution of  plasma 
glucose in the general population[9-11].

However, there are a number of  methodological 
weaknesses of  the studies that have reported the cut-
points for increased risk of  retinopathy including inad-
equate statistical power for this type of  analysis[10]. More-
over, these studies used different methods to diagnose 
retinopathy and some used patients already identified 
as diabetic, while others used non-diabetic patients[10,11]. 
In addition, some reports included people with diag-
nosed DM who were receiving blood glucose lowering 
treatment introducing a bias associated with treatment-
induced effects on plasma glucose. Excluding people with 
treated diabetes from analyses eliminates the bias related 
to the treatment effect, but changes the characteristics of  
the diabetic population[12]. 

One of  the most important studies to support the 
cut-points was conducted by Ito et al[11], which included 
12.208 people and began in 1965 and lasted until 1997. 
The authors reported a significantly increased prevalence 
of  retinopathy at a baseline FPG cut-point of  125 mg/dL 
and 198 mg/dL in 2-h post-glucose load. 

Other microvascular complications are more weakly 
associated with plasma glucose levels than retinopathy[13]. 
Studies which have examined the relationship between 
plasma glucose and proteinuria, reported a significant 
association but weaker than with retinopathy[13]. For 
instance, among patients with DM, only 20%-40% of  
patients with microalbuminuria will progress to overt 
nephropathy, and only 20% will go on to end-stage renal 
disease within the next 20 years[14]. Moreover, the data 
showing a relationship between plasma glucose and biop-
sy confirmed diabetic renal disease is not totally convinc-
ing, since the prevalence of  non-diabetic nephropathy in 
the patients with DM who underwent renal biopsy varies 
from 10% to 85% in different reports[15]. Furthermore, 
FPG and HbA1c values associated with the presence of  
diabetic nephropathy were exceptionally high: 183 ± 61.9 
mg/dL and 8.6% ± 2.4%, respectively[16]. 

The distribution of  plasma glucose in the general 
population was another source of  data used to define 
cut-points. In 2006, the WHO reported that the distribu-
tion of  plasma glucose among the population was either 
unimodal, in which the entire population is represented 
by a single curve, or bimodal, represented by two over-
lapping curves[7]. However, an analysis of  DETECT-2, 
representing plasma glucose data measured during an 
OGTT in 26 different countries, found a wide variation 
in cut-points[9]. Cut-points for FPG in different countries 
ranged from 103 to 153 mg/dL (median 128.5 mg/dL), 
and for 2-h plasma glucose from 164.7 to 323.9 mg/dL 
(median 224.4 mg/dL). Moreover, when known diabetes 
was removed from the analysis, the distributions of  plas-
ma glucose do not generally give rise to a bimodal struc-
ture that is useful for deriving a cut point for diabetes. 
Thus, bimodality seems not to be a suitable method for 
defining diagnostic cut points for diabetes in population 
studies which include people of  different origin[9]. 

Bimodal distribution has also been reported in a 
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number of  populations with a high prevalence of  dia-
betes, including the American Pima Indian, Micronesian 
of  Nauru, Egyptian, Mexican, Papua New Guinea, and 
South African populations[9,17]; while few studies on bi-
modality have been conducted in populations with a low 
prevalence of  diabetes[18]. 

Recently, and in support of  the use of  HbA1c as a di-
agnostic criterion, several studies have noted that HbA1c 
reflects average plasma glucose and does not require any 
special preparation such as fasting. These features led to it 
becoming the gold standard for assessing glycemic control 
in people with diabetes, and it has also become a means to 
assess glucose tolerance in those with undiagnosed diabe-
tes[12]. The relationship between HbA1c and the presence 
of  retinopathy is similar to that of  plasma glucose, making 
it at least as accurate in defining the level of  hyperglyce-
mia at which retinopathy prevalence increases[19]. 

Moreover, HbA1c has appreciable superior techni-
cal attributes, including less pre analytic instability and 
biological variability, and is a more clinically convenient 
measure. HbA1c has been demonstrated to be more reli-
able than FPG, with a day to day coefficient of  variation 
of  less than 2% compared to 16% for FPG[20]. 

Studies have now established an HbA1c level as-
sociated with an increase in the prevalence of  moderate 
retinopathy, providing strong justification for assigning 
an HbA1c cut-off  point of  ≥ 6.5% for the diagnosis of  
diabetes[8]. Although this cut-off  point must not be used 
as an absolute dividing line between normal glycemia and 
diabetes, this value is sufficiently sensitive and specific to 
identify individuals who are at risk of  developing retinopa-
thy and who therefore, should be diagnosed as diabetic[20]. 

HbA1c however does have some limitations which 
should be considered when using it as criteria for the 
diagnoses of  DM. First, the cost of  the test precludes its 
routine use. Second, there are some specific conditions 
that can influence and therefore preclude HbA1c testing, 
including the following hemoglobin traits: HbS, HbC, 
HbF, and HbE, as well as various types of  anemias, preg-
nancy, uremia and blood transfusions[21]. Some of  these 
factors may represent an additional problem in under-
resourced countries, due to their higher prevalence of  
anemia and hemoglobinopathies[21]. Moreover, it should 
be noted that there are normal age-related increases in 
HbA1c[22].

PROPOSED MECHANISMS TO 
EXPLAIN THE NEGATIVE EFFECTS OF 
HYPERGLYCEMIA ON THE VASCULAR 
WALL
Blood glucose level can also be a risk marker for cardio-
vascular diseases (CVD) among apparently healthy non-
diabetic individuals[23-26]. The effects of  elevated glycemia 
levels include non-enzymatic glycosylation of  proteins, 
increased metabolism of  glucose through the polyol and 
glucosamine pathways and the generation of  free radi-

cals[27-32]. Glycosylation of  low-density lipoprotein makes 
it more susceptible to oxidization and therefore more 
atherogenic[27]. Advanced glycosylation end products 
(AGEs) can cross-link proteins, particularly in the extra-
cellular matrix of  the vascular wall[31,32]. Metabolism of  
excess glucose by secondary pathways can also alter cell 
function by modifying signal transduction and changing 
the oxidative potential of  cells[30]. This may contribute to 
general cell damage and dysfunction[28]. These pathways 
can also activate tissue-specific protein kinase C[29] and 
increase in the activity of  which decreases fibrinolysis 
and nitric oxide (NO) levels and increases cell prolifera-
tion and coagulation, contributing to the progression of  
CVD[28-30].

The association between intermediate hyperglycemia 
and coronary heart disease has been explained by the 
predisposition of  these subjects to subsequently present 
DM2, a condition that as noted above, is directly related 
to the development of  CVD[27]. However, hyperglycemia 
per se may also be directly involved in the development 
of  atherosclerosis by promoting metabolic and structural 
changes in the endothelium that eventually produce irre-
versible damage. Therefore, the association between hy-
perglycemia and cardiovascular risk should be considered 
as a continuum, rather than one that depends only on 
reaching a specific cut point.

Experimental studies suggest that hyperglycemia 
reduces the activity of  NO at the vascular endothelial 
level[28]. Hyperglycemia induces a series of  cellular events 
that increase the production of  reactive oxygen species 
that inactivate NO and lead to the formation of  per-
oxynitrite[29,30]. In addition, mitochondrial production of  
reactive oxygen species increases the intracellular forma-
tion of  AGEs[30], which affect endothelial function and 
activate the receptors for AGEs causing apoptosis and 
altered vascular structure[31-33]. In non-diabetic subjects, 
altered levels of  post-load glucose have been associated 
with the presence of  structural alterations at the level 
of  the carotid arteries, manifested by increased carotid 
intima-media thickness[34-36]. Moreover, chronic hypergly-
cemia can also cause cellular structural changes, which 
would explain the known point of  no return for the 
micro and macrovascular complications observed in dia-
betic patients[37-39]. Recent experimental studies with rats 
in which diabetes was induced using streptozotocin, dem-
onstrated a loss of  nitric oxide synthase function (NOS) 
in nitrergic neurons. This effect was mediated by an in-
creased production of  AGEs, oxidative stress and neuro-
nal apoptosis, which was reversible only when treatment 
with insulin was introduced in early stages. After 12 wk 
of  streptozotocin-induced diabetes, insulin therapy was 
not able to recover the function of  the nitrergic neurons, 
which had suffered an increased apoptosis[37,38]. These ex-
periments suggest that chronic hyperglycemia over time 
leads not only to an alteration of  NOS function, but also 
in later stages to irreversible structural changes in differ-
ent tissues. Since streptozotocin-induced DM is more 
similar to type 1 DM, it is therefore possible that the 
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The Whitehall Study[51] lasted 33 years and followed 
17.869 male civil servants aged 40-64 years, of  which 
3.561 died of  coronary diseases. In this study, the hazard 
of  coronary mortality rose when 2-h blood glucose level 
reached 83 mg/dL (95%CI: 76-96). Between this level 
and 200 mg/dL, the age-adjusted hazard ratio was 3.62 
(95%CI: 2.3-5.6). Although the data was applied at base-
line in these male civil servants, this report has a limita-
tion in that the findings are based on a 50 g OGTT, and 
a slightly differing dose-response relationship might be 
obtained with a 75 g glucose load. 

The DECODE study[45] was a prospective European 
analysis of  22 cohorts with baseline glucose measure-
ments for 29.714 subjects aged 30-89 who were followed-
up for 11 years. After adjusting for other cardiovascular 
risk factors, the study reported an association between 
risk of  death and both high glucose concentrations and 
very low glucose levels. Compared with a fasting plasma 
glucose of  81-110 mg/dL, the multivariate adjusted HR 
(95%CI:) for FPG < 81 mg/dL was 1.2 (1.0-1.4) for all 
causes, 1.3 (1.0-1.8) for CVD, and 1.1 (0.9-1.4) for non-
cardiovascular mortality. For 2-h plasma glucose of  
54.4-81 mg/dL, as compared with 2-h plasma glucose of  
81.6-100 mg/dL the HRs were 1.1 (1.0-1.2) for all causes 
mortality, 1.1 (0.9-1.3) for cardiovascular mortality, and 1.1 
(1.0-1.3) for non-cardiovascular mortality, respectively.

In the Asian Pacific Region, blood glucose data from 
237.468 participants of  17 cohort studies are available[52]. 
Continuous positive associations were demonstrated be-
tween usual fasting glucose and the risks of  cardiovascu-
lar diseases down to at least 88.6 mg/dL. Overall, each 18 
mg/dL lower than usual fasting glucose was associated 
with a 21% (95%CI: 18%-24%) lower risk of  total stroke, 
and 23% (95%CI: 19%-27%) lower risk of  total ischemic 
heart disease. The associations were similar in men and 
women, across age-groups, and in Asian compared with 
Australasian (Australia and New Zealand) populations.

The China Heart Survey[53], a multicenter study, re-
cruited 3.513 patients hospitalized for Coronary Artery 
Diseases (CAD), of  whom 35.1% were admitted for 
acute CAD and 64.9% were elective admissions for CAD. 
At entry, 1.153 patients (32.8%) had known DM and 97 
(2.7%) had newly diagnosed DM. Furthermore, 32.6% 
had IGT, and 4.7% had IFG. The proportion of  patients 
with diagnosed DM increased from 32.8% at baseline to 
52.9% post-OGTT analysis.

The GAMI study[54] of  181 patients admitted to two 
Swedish hospitals with acute myocardial infarction (AMI) 
and no history of  DM, found a prevalence of  34% for 
prediabetes and 33% for de novo DM, leaving only 33% 
with no alteration in glucose metabolism. This distribution 
was similar when measurements were repeated at 3 and 12 
mo. These findings were later confirmed by another study 
that included 4.961 patients with coronary disease en-
rolled in 110 centers throughout Europe[55]. In this study 
the prevalence of  pre diabetes was 32% in those patients 
admitted with acute coronary syndrome and only 29% of  
enrolled patients had a normal carbohydrate metabolism.

underlying mechanism of  vascular damage in type 2 DM 
is different to that described above. Nonetheless, this 
mechanism could be responsible for the development 
of  atherosclerosis in the vascular wall of  hyperglycemic 
patients. Thus, it is attractive to postulate that in the early 
stages of  hyperglycemia, the use of  hypoglycemic treat-
ments could decrease the formation of  AGEs, reversing 
endothelial dysfunction and preventing both structural 
disorder and the progression to CVD[39]. 

WHY SHOULD CUT POINTS OF PLASMA 
GLUCOSE TO DIAGNOSE DIABETES 
MELLITUS BE RE-EVALUATED?
We propose that CVD prevention depends on an early 
and aggressive intervention to control glycemia levels, 
probably at the prediabetes stage, to avoid reaching a 
“point of  no return” with respect to structural altera-
tions of  the arterial walls. This proposal is supported by 
important clinical trials[40-44] such as the United Kingdom 
Prospective Diabetes Study which demonstrated that if  
an intensive treatment of  hyperglycemia is started when 
DM2 is first diagnosed, there is a significant decrease in 
the number of  cardiovascular events[41], maintained until 
10 years after end of  the study[40]. However, as recently 
demonstrated in clinical trials, if  the intensive treatment is 
started after 8[42], 10[43], or 12[44] years of  diagnosed DM2 
the impact of  the intensive treatment does not produce a 
decrease in the number of  cardiovascular events (Table 1). 
These results highlight the importance of  starting the hy-
poglycemic intervention earlier than is common practice 
currently. 

The magnitude of  the glycemia association with 
CVD risk has been reported in many studies[25,45], and 
although post-load blood glucose level has a linear re-
lationship with CVD risk in the non-diabetic range, a 
possible threshold effect for FPG level appears to exist 
around 100 mg/dL[27]. There is an important body of  in-
formation indicating that the cardiovascular risk starts at 
levels well below the cutoff  point currently used for the 
diagnosis of  DM2 and increases continuously[25,46]. Many 
studies show that non-diabetic patients with hypergly-
cemia have an increased risk of  cardiovascular morbid-
ity and mortality[46-51]. The meta-analysis of  prospective 
studies conducted by Levitan et al[23] shows that the group 
with the highest post-load blood glucose level (midpoint 
range, 150-194 mg/dL) had a 27% greater relative risk 
(RR) for CVD compared with the group with the low-
est level (midpoint range, 69-107 mg/dL) (RR = 1.27, 
95%CI: 1.09-1.48).

Moreover, in a meta-analysis of  studies that included a 
total of  95.783 people, Coutinho et al[25] found a linear re-
lationship between glucose levels and subsequent cardio-
vascular events over a period of  12 years, reporting a RR 
= 1.33 (95%CI: 1.06-1.67) for those with FPG levels of  
110 mg/dL and an RR of  1.58 (95%CI: 1.19-2.10) for pa-
tients with post-load blood glucose levels > 140 mg/dL. 
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In Latin America, the ongoing multicenter Colombi-
an-Ecuadorian study which includes until now 439 sub-
jects distributed in 8 hospitals of  Colombia and Ecuador 
to determine the prevalence of  pre diabetes in patients 
with a first AMI shows that the combined prevalence of  
DM2 and prediabetes is 69.47%. Ninety subjects (20.50%) 
presented with antecedents of  DM2; another 85 (19.36%) 
were diagnosed with DM2 while hospitalized; and 130 
(29.61%) presented with prediabetes. Only 134 subjects 
(30.53%) were normoglycemic[56].

The existence of  a strong association between car-
diovascular risk factors and IFG has also been reported 
in Colombia, with an even greater association with the 
presence of  abnormal plasma glucose levels after an oral 
glucose load[57]. Additionally, in our population there is 
evidence indicating that hyperglycemia is common in pa-
tients with already established coronary disease[58].

Furthermore, a Colombian population study found 
that an IFG > 100 mg/dL was the risk factor with the 
highest degree of  association with the presence of  CAD 
in patients with stable angina pectoris, independent of  
the presence of  other traditional cardiovascular risk fac-
tors[58]. Moreover, in this population fasting hyperinsu-
linemia and the socio-economic status of  individuals with 
a first myocardial infarction were the only factors that 
remained significant predictors of  a new cardiovascular 
event after a multivariate analysis[59]. We have previously 
shown that Colombian people present a higher vulner-
ability to present with insulin resistance at lower levels of  
abdominal obesity in youth adults[60,61], in pregnancy[62], 
and in children[63]. 

Many years ago Hales and Barker demonstrated that 

low birth weight is associated with an increased risk of  
developing obesity, metabolic syndrome and DM2[64-66]. 
Based on the results of  their pioneering work and subse-
quent confirmatory studies, we have proposed[67-69] that 
the fetal programming during pregnancy of  women that 
have deficient nutrition and/or an increased frequency of  
subclinical infection and preeclampsia, have an increased 
risk of  giving birth to a low birth weight child with a 
higher risk of  subsequently developing insulin resistance 
(IR) and low degree inflammation. It is well established 
that children with low birth weight have a decreased 
mass of  beta cells, nephrons, hepatocytes, and fewer 
muscle fibres. We recently demonstrated, in children and 
adolescents that low muscle strength is associated with 
increased adiposity, C-reactive protein, HOMA index 
and metabolic risk factors, and that this association was 
stronger in with low birth weight[70]. Moreover, in a sub 
analysis of  the ORIGIN study[71] we demonstrated that 
low handgrip strength is an important factor associated 
to an increased risk of  cardiovascular mortality in predia-
betic and diabetic patients[71]. To explain these results we 
have proposed that the dramatic increase of  overweight 
and obesity, especially abdominal adiposity, in low and 
medium income countries[72], is promoting epigenetic 
adaptations which may alter the leptin/adiponectin (L/A) 
ratio. This L/A disturbance is in turn the determinant, 
in populations of  low and medium income countries, 
of  their increased vulnerability to the development of  
IR and an increased risk of  cardiovascular events at lev-
els of  glycemia that are lower than those used to define 
DM2[73-76]. Moreover, there are possible regional differ-
ences in the risk of  developing IR, DM2 and CVD as-
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Table 1  Differences in cardiovascular outcomes according to the time of disease (diabetes mellitus type 2) before the start of an 
intensive hypoglycemic intervention

Study Time since diagnosis Treatment Mean outcomes

UKPDS 34 and 80[40,41] Newly diagnosed Metformin added to an experimental 
group, median glycated hemoglobin was 
7.4% in the metformin group compared 

with 8.0% in the conventional group

↓ 32% for any diabetes-related endpoint
↓ 42% for diabetes-related death

↓ 36% for all-cause mortality 
A continued reduction in microvascular risk 
and risk reductions for myocardial infarction 

and death from any cause were observed 
during 10 yr of post-trial follow-up

The Action in Diabetes and Vascular 
Disease: Preterax and Diamicron 
Modified Release Controlled 
Evaluation trial[42]

  7.9 yr Gliclazide (modified release) plus other 
drugs as required to achieve a glycated 
hemoglobin value of 6.5% or less and 

Perindopril + Indapamide

No significant effects on major 
macrovascular events, death from 

cardiovascular causes, or death 
from any cause

The Action to Control Cardiovascular 
Risk in Diabetes trial[43]

   10 yr Individualized intensive therapy of  a 
combination of any hypoglycemic drug 
targeting a glycated hemoglobin level 

below 6.0% or standard therapy 
targeting a level of 7% to 7.9%

The intensive-therapy group did not differ 
significantly from the standard-therapy 

group in the rate of the primary outcome (a 
composite of nonfatal myocardial infarction, 
nonfatal stroke, or death from cardiovascular 
causes)  but had more deaths from any cause 

(primarily cardiovascular)
The Veterans Affairs Diabetes Trial[44] 11.5 yr Intensive-therapy group goal was an 

absolute reduction of 1.5% in the glycated 
hemoglobin level, as compared with the 
standard-therapy group, metformin plus 

Glimepiride or Rosiglitazone

No significant effect on the rates of major 
cardiovascular events, death, or 

microvascular complications

UKPDS: United Kingdom Prospective Diabetes Study.
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sociated with prediabetes and DM2, as we have recently 
demonstrated in relation to lung function[77].

PERSPECTIVES TO MODIFY THE CUT-
OFF POINTS OF DM RELATED WITH 
THE RISK OF MACROVASCULAR 
COMPLICATIONS  
The term diagnosis has typically been reserved to char-
acterize or identify individuals with a specific disease. 
Because the term implies a condition that causes symp-
toms, tests are often required to confirm the diagnosis. In 
this order of  ideas, when selecting the threshold glucose 
values, the National Diabetes Data Group[78] acknowl-
edged that “there is no clear division between diabetics 
and non-diabetics in the FPG concentration or in their 
response to an oral glucose load” and consequently val-
ues were established for each method to identify diabetic 
patients based on retinopathy and the distribution of  
plasma glucose population.

Epidemiological studies[10-12] that included an Egyptian 
population, Pima Indians and the US National Health 
and Nutrition Examination Survey, all identified retinopa-
thy using fundus photography or direct ophthalmoscopy 
and by measuring glycemia using FPG, 2-h post-glucose 
load, and HbA1c, demonstrated that glucose level is a 
continuous risk factor for retinopathy: the higher levels 
the higher risk.  

Deriving cut points for normal glycemia level from 
distributions of  FPG and 2-h post-glucose load might 
not be suitable to define cut points for DM because met-
abolic regulation could varies from population to popu-
lation. It might be more relevant to base the diagnostic 
criteria on thresholds for diabetes-specific macrovascular 
complications, which are probably lower than those for 
microvascular complications such as retinopathy. Data 
from the DECODE study[45] which was carried out on 
behalf  of  the European Diabetes Epidemiology Group 
showed that the number of  patients diagnosed with 
DM was one third higher for men and 44% higher for 
women when using 2-h post-glucose load measurement 
than when using the FPG, confirming that the 2-h post-
glucose load criterion is more accurate than FPG criteria 
to identify DM. HbA1c is recommended and used in 
many countries to diagnose DM[12,20]. However the high 
prevalence of  anemia and hemoglobinopathies in under-
resourced countries such as ours, together with its high 
cost, limits its use and from our point of  view should not 
be for now, recommended as a diagnostic test. 

The data of  the previously mentioned Latin American 
studies indicate the presence of  macrovascular diseases at 
glycemia levels lower than the internationally established 
cut points for DM2. These data suggest that the present 
cut-off  points accepted for our population might not be 
accurate and might have to be reconsidered. Recent stud-
ies have shown that the association between dysglycemia 
and CVD has a considerable increase at levels as low 

as 100 mg/dL[25,27,45], and therefore, we consider the re-
defined cut-points to diagnose DM2 should be around 
this value. Nevertheless, it is noteworthy that these stud-
ies have not been designed for this specific purpose and 
have not been conducted in Latin America. Thus, as with 
the risk of  microvascular complications, several limita-
tions will be found if  we try to re-define the cut-points 
for DM2 on this basis.  

Moreover, as lowering the cut-off  points will sub-
stantially increase the prevalence of  DM2, several public 
health consequences should be considered before this 
adjustment. Certainly, diabetic patients require more 
health care, leading to greater use of  resources. In this 
context, an increased prevalence of  DM2 could cause 
an initial financial challenge of  the health systems and 
household economies in Latin American countries[79]. 
Nevertheless, indirect economic costs and social conse-
quences attributable to premature mortality and tempo-
rary and permanent disability generated as complications 
of  DM should be also considered. Indeed, the direct 
annual cost associated with diabetes for the year 2000 in 
Latin America and the Caribbean was estimated as 10721 
million US dollars; whereas, the total indirect cost was 
estimated at almost 54496 million US dollars (mortality, 
permanent disability and temporary disability accounted 
for 6%, 92% and 2% of  this amount, respectively)[80]. 
These results suggest a long-term positive cost-effective 
ratio of  an early intervention.

Furthermore, health systems in Latin American coun-
tries are based on a model of  care with a biomedical 
curative approach[81], and this has not been favorable in 
controlling the epidemic of  DM2. Thus, health systems 
should move from an approach of  treating DM2 to one 
of  preventing DM2 and its complications. In this way, 
various socio-medical models are currently being evaluat-
ed in Latin-America, such as the ongoing HOPE-4 study 
in Colombia, in which we are inviting community leaders 
and non-professional health care workers to form part 
of  the health team to implement new strategies for the 
detection, prevention and control of  non-communicable 
chronic diseases.  

In conclusion, the present challenge for Latin Ameri-
can countries is to conduct population studies in accord 
with our specific socio-economic conditions, which will 
permit to establish the cut-point after which lifestyle 
and/or pharmaceutical interventions must be initiated 
with the objective of  preventing macrovascular complica-
tions, associated with hyperglycemia. Further research to 
assess the economic, public health, and social perspec-
tives is also warranted.
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Abstract
Generally, wounds are of two categories, such as chr
onic and acute. Chronic wounds takes time to heal 
when compared to the acute wounds. Chronic wounds 
include vasculitis, non healing ulcer, pyoderma gan
grenosum, and diseases that cause ischemia. Chronic 
wounds are rapidly increasing among the elderly popu
lation with dysfunctional valves in their lower extremity 
deep veins, ulcer, neuropathic foot and pressure ulcers. 
The process of the healing of wounds has several steps 
with the involvement of immune cells and several other 
cell types. There are many evidences supporting the 
hypothesis that apoptosis of immune cells is involved 
in the wound healing process by ending inflammatory 
condition. It is also involved in the resolution of vari
ous phases of tissue repair. During final steps of wound 
healing most of the endothelial cells, macrophages 

and myofibroblasts undergo apoptosis or exit from the 
wound, leaving a mass that contains few cells and con
sists mostly of collagen and other extracellular matrix 
proteins to provide strength to the healing tissue. This 
review discusses the various phases of wound healing 
both in the chronic and acute wounds especially during 
diabetes mellitus and thus support the hypothesis that 
the oxidative stress, apoptosis, connexins and other 
molecules involved in the regulation of chronic wound 
healing in diabetes mellitus and gives proper under
standing of the mechanisms controlling apoptosis and 
tissue repair during diabetes and may eventually devel
op therapeutic modalities to fasten the healing process 
in diabetic patients.
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Core tip: Uncontrolled diabetes mellitus lead to the 
chronic non healing wound which further can escort 
to the Ischemia and coronary artery disease. Reports 
suggested that the involvement of various mechanisms 
in the development of chronic non healing wound in 
patients with diabetes mellitus, among which the oxida
tive stress plays a pivotal role which then leading to the 
enhanced apoptosis of lymphocytes, may be playing a 
critical role in the delay of wound healing. Connexins 
are gap junction protein and their upregulation during 
diabetes might be leads to improper gap junction for
mation attributing to the passage of various, apoptotic 
and inflammatory signals thereby resulting in delayed 
healing of chronic diabetic ulcers.
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INTRODUCTION
Diabetes mellitus (DM) is a complex, chronic metabolic 
disorder; affects almost all age group of  patients which 
requires continuous medical care with multifactorial risk 
reduction strategies beyond glycemic control[1]. Prolonged 
and uncontrolled DM may leads various complications 
which is broadly divided into microvascular complica-
tions (due to damage to small blood vessels) and mac-
rovascular complications (due to damage to the arteries) 
affecting several organs, including muscle, skin, heart, 
brain, and kidneys. 

It is reported that patients with DM are increasing 
rapidly worldwide and it is now recognized that the de-
veloping countries like India and China presently face 
the greatest burden of  diabetes. It is the fourth or fifth 
leading cause of  death in most high income countries 
caused 5.1 million deaths in 2013 and every six seconds a 
person dies due to diabetes[2]. According to International 
Diabetes Federation 382 million peoples were diagnosed 
with diabetes in 2013 which can reach up to 592 million 
in 2035. Among the countries China and India are having 
98.4 and 65.1 million DM patients respectively in 2013 
and which could be reach up to 142.7 million in china 
and 109.0 million in India[2]. Patients with poorly con-
trolled diabetes may be subject to acute complications of  
diabetes, such as dehydration, poor wound healing, and 
hyperglycemic hyperosmolar coma.  

Patients with DM have 15% higher risk for amputa-
tion than the general population due to chronic ulcers. It 
leads to diabetic neuropathy, which inhibits nociception 
and the perception of  pain[3]. Due to loss of  sensation in 
the feet of  DM patients they become unaware of  small 
wounds in the legs and feet, and may consequently fail to 
prevent infection or repeated injury on time[4]. Further, 
DM causes immune suppression and damage to small 
blood vessels, preventing adequate oxygenation of  tissue, 
which can cause chronic wounds[4]. Immune deficiency 
also takes place in patients with type 2 DM (T2DM) due 
to the increased apoptosis of  lymphocytes[5] and also the 
increased generation of  reactive oxygen species (ROS) in 
patients with T2DM, might be another factor, which then 
stimulates downstream apoptotic signalling pathways[6].

In this connection, Desmoulière et al[7] reported 
that the decrease cellularity in wound repair process is 
achieved by apoptosis of  different cell types. It is report-
ed that the reduced rate of  apoptosis is correlated with 
reduced expression of  early growth response protein 1 
(EGR1) in the 13 d old wound of  epidermis of  transgen-
ic animal and the EGR1 mediate the proapaptotic signal 
via p53[8] and it clearly vindicated that the induced Egr1 
expression plays a critical role in the resolution phase of  
wound repair by inducing apoptosis in keratinocytes. Fur-
ther, it is suggested that the Egr1 expression is induced 
by various proteins among which transforming growth 

factor beta (TGF-β) is well known[9].

BASIC MECHANISM OF APOPTOSIS
The term “apoptosis” was coined by Kerr et al[10] for 
a morphologically distinct mode of  cell death and the 
other type of  cell death is known as necrosis. The key 
mechanism of  apoptosis is endonuclease activation 
leading to internucleosomal double-stranded chromatin 
(DNA) fragmentation which occurs in most physiologi-
cal cell death whereas cell membrane damage takes place 
in necrosis. Apoptosis is essential, as defects in apoptotic 
cell death regulation contribute to many diseases includ-
ing disorders where deregulated cell proliferation occurs 
(cancer, restenosis) or where cell loss ensues (stroke, 
heart failure, neurodegeneration, Acquired Immune Defi-
ciency Syndrome)[11]. In wound-healing process apoptosis 
is responsible for the removal of  inflammatory cells and 
the evolution of  granulation tissue into scar tissue[7]. In 
DM patients delayed wound healing is one of  the major 
problems which are supposed to be takes place due to 
uncontrolled blood sugar level; it affects apoptosis during 
the wound healing process[12].

Apoptosis is also known as programmed cell death 
that may occur in multicellular organisms; leads to 
characteristic cell changes like blebbing, cell shrinkage, 
nuclear fragmentation, chromatin condensation, and 
chromosomal DNA fragmentation[13]. It is a complex 
process which initiates intracellular apoptotic signalling 
in response to a stress, which may bring about cell sui-
cide. Cell suicide takes place in four separable but over-
lapping steps; induction, detection, effectors, and remov-
al[14]. The dying cell remnants are removed by phagocytic 
cells of  the macrophage/monocyte lineage. Interestingly, 
apoptotic bodies may also be engulfed by cells not spe-
cialized in phagocytosis (e.g., vascular smooth muscle 
cells) (Figure 1)[15].

T2DM is associated with elevated level of  oxida-
tive stress, which is one of  the most important factors 
responsible for the development of  chronic complica-
tions of  this disease. Antioxidants like reduced glutathi-
one (GSH), superoxide dismutase (SOD) and catalase 
protects cells against oxidative damages. In our own 
publication we have shown that oxidative stress is higher 
in T2DM patients. In T2DM patients with chronic non 
healing wound, lymphocyte apoptosis is initiated by the 
augmentation of  reactive oxygen species which leads to 
the increased expression of  proapoptotic proteins like 
Caspases, FAS, BAX and decreased expression of  anti-
apoptotic proteins like B-cell lymphoma 2 genes (Bcl-2) 
(Figure 2)[6].

In streptozotocin-induced diabetic rats, the elevated 
blood sugar level increases cellular apoptosis and the least 
expression of  Bcl-2 protein causes deregulation of  the 
wound healing processes (Tables 1 and 2)[16].

The mechanism of  apoptosis has been linked with 
several proteins but two of  them are extensively recog-
nised for their regulation in the pathways (Figure 3)[17]: 
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(1) targeting mitochondria functionality, or directly trans-
ducing the signal via adaptor proteins, known as intrinsic 
pathway; and (2) extrinsic pathway of  initiation as identi-
fied in several toxin studies is an increase in calcium con-

centration within a cell caused by drug activity, which can 
also cause apoptosis via calcium binding protease calpain.

In the wound healing process various expression 
patterns of  apoptosis key regulators have been studied 

758 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Ce
lls

 u
nd

er
go

in
g 

ea
rly

ap
op

to
si

s 
(%

)

35

30

25

20

15

10

5

0

b

a,b

Group A           Group B         Group C 

Ce
lls

 w
ith

 f
ra

gm
en

te
d 

D
N

A 
(%

)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

b

a,b

Group A           Group B         Group C 

A B

Figure 1  Percentage of apoptotic and dead cells in healthy (Group A), type 2 diabetes mellitus (Group B) and type 2 diabetes mellitus patients with chronic 
non healing wound (Group C) (A and B). bP < 0.01 vs healthy; aP < 0.05 vs uncontrolled diabetes without complication and uncontrolled diabetes with chronic non 
healing wound. First, second, and third bar in each panel represents healthy, uncontrolled diabetic and uncontrolled diabetic with chronic non healing wound, respec-
tively.
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Figure 2  Concentration of superoxide dismutase (A), reduced glutathione (B), catalase (C) and malondialdehyde (D) in healthy (H), type 2 diabetes mellitus 
(D) and type 2 diabetes mellitus patients with chronic non healing (DC) groups. bP < 0.01 vs healthy; dP < 0.01 and aP < 0.05 vs uncontrolled diabetes without 
complication and uncontrolled diabetes with chronic non healing wound. First, second, and third bar in each panel represents healthy, uncontrolled diabetic and un-
controlled diabetic with chronic non healing wound, respectively. SOD: Superoxide dismutase; GSH: Reduced glutathione; MDA: Malondialdehyde.

Table 1  Mean blood glucose level, apoptotic index and DNA fragmentation in control rats 
(P  value < 0.01)

5th day 10th day 20th day 30th day

Control (n =10) blood glucose (mg/dL) 75.62 ± 6.41   80.79 ± 11.45 92.05 ± 9.56 90.77 ± 9.7
Apoptotic index (mean ± SD)   1.50 ± 0.60   1.60 ± 0.99   1.64 ± 0.86     1.69 ± 1.12
DNA fragmentation (%) (mean ± SD) 42.25 ± 3.95 44.15 ± 5.61 45.45 ± 5.88   46.58 ± 5.95
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The release of  cytochrome c into the cytoplasm ap-
pears to be a crucial step for the activation of  caspase. 
Once cytochrome c is released it binds with Apoptotic 
protease activating factor-1 and ATP, which then tie up 
to pro-caspase-9 to create a protein complex known as 
apoptosome. The apoptosome cleaves the pro-caspase 
to its active form of  caspase-9, which in turn activates 
the effector caspase-3. Smac/DIABLO and HtrA2/Omi 
promote apoptosis by inhibiting inhibitors of  apoptosis 
proteins activity[20].

In addition to the release of  cytochrome c; apoptosis-
inducing factor (AIF), endonuclease G and Caspase Ac-
tivated DNAse (CAD), discharge from the mitochondria 
during apoptosis. AIF translocates to the nucleus and 
causes DNA fragmentation into about 50-300 kb pieces 
and condensation of  peripheral nuclear chromatin[21] 
whereas Endonuclease G translocates to the nucleus 
where it cleaves nuclear chromatin to produce oligo-
nucleosomal DNA fragments[22]. CAD is subsequently 
discharged from the mitochondria and translocates to 
the nucleus where after cleavage by caspase-3, it leads to 
oligonucleosomal DNA fragmentation and chromatin 
condensation[23]. The control and regulation of  these 
apoptotic mitochondrial events occur through members 
of  the Bcl-2 family of  proteins[24]. Bcl-2 proteins are 
able to promote or inhibit apoptosis by direct action on 
MAC/MOMPP. Bax and/or Bak form the pore, while 
Bcl-2, Bcl-xL or Mcl-1 inhibits its formation. 

EXTRINSIC PATHWAY
The extrinsic signaling pathways involve death receptors 
that are members of  the tumor necrosis factor (TNF) re-
ceptor gene superfamily[25]. Members of  the TNF recep-
tor family share similar cysteine-rich extracellular domains 
and have a cytoplasmic domain of  about 80 amino acids 
called the “death domain”[26]. This death domain plays a 
critical role in transmitting the death signal from the cell 
surface to the intracellular signaling pathways. 

TNF-α signaling is linked to the Fas signaling path-
way through the interaction of  TNF receptor-associated 
death domain protein with Fas-associated death domain 
protein and their activation is critically depends upon the 
activation of  caspase[27]. Once caspase-8 is activated, the 
execution phase of  apoptosis is triggered. The binding of  
three Fas molecules to a Fas ligand (FasL) homotrimer 
leads to the subsequent binding of  Fas-associated death 
domain and procaspase-8 which finally triggers a cascade 
of  caspase activation, including caspase-3, leading to cell 
death[28]. Diabetes-enhanced and prolonged expression of  

which shows that the healing in mucosa takes place pre-
dominantly through the intrinsic pathway whereas skin 
healing is predominantly through the extrinsic pathway. 
The identification of  differences in the apoptotic path-
ways involved in wound healing of  various organs may 
allow the development of  therapeutics to improve wound 
healing[18].

INTRINSIC PATHWAY
The intrinsic signalling pathways involve various arrays 
of  non-receptor-mediated stimuli that produce intra-
cellular signals to work immediately on objects within 
the cell and are mitochondrial-initiated events. Intrinsic 
pathway acts both as proapoptotic or antiapoptotic fash-
ion and depends upon the intracellular signals. Nega-
tive signals involve the lack of  certain growth factors, 
hormones and cytokines that can escort to collapse of  
death programs inhibition, thereby triggering apoptosis. 
Other stimuli that act in encouraging fashion of  apopto-
sis include radiation, toxins, hypoxia, hyperthermia, viral 
infections, and free radicals, etc.

Stimulus of  apoptotic proteins targeting inner mem-
brane of  mitochondria may cause mitochondrial swelling 
through the formation of  mitochondrial permeability 
transition (MPT) pore, or they may increase the per-
meability of  the mitochondrial membrane and cause 
apoptotic effectors to leak out[19]. Formation of  MPT is 
achieved by the group of  proteins consist of  cytochrome 
c, Smac/DIABLO, and the serine protease HtrA2/Omi. 
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Figure 3  Basic outline of apoptosis mechanism. Bcl-2: B-cell lymphoma 2; 
TNF: Tumor necrosis factor; AIF: Apoptosis-inducing factor; Apaf-1: Apoptotic 
protease activating factor-1; TNFR1: Tumor necrosis factor receptor 1.

Table 2  Mean blood glucose level, apoptotic index, and DNA fragmentation in rats with diabetes 
(P  value < 0.01)

5th day 10th day 20th day 30th day

With diabetes (n = 10) blood glucose (mg/dL) 467.25 ± 48.2 506.33 ± 35.89 474.99 ± 39.76 488.15 ± 34.36
Apoptotic index (mean ± SD)     3.50 ± 2.60   4.20 ± 2.99   3.60 ± 3.56   3.69 ± 2.75
DNA fragmentation (mean ± SD)   62.80 ± 9.56   74.95 ± 10.45 66.55 ± 8.67 70.48 ± 6.21
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TNF-α and contributes in the direction of  impaired heal-
ing[29]. TNF-α is found threefold higher in diabetic mouse 
wounds than wounds in normal mice[30] and threefold 
higher found in wound fluid from nonhealing venous leg 
ulcers than in healing ulcers[31].

EXECUTION PATHWAY OF APOPTOSIS
Execution pathways start from the end point of  intrinsic 
and extrinsic pathways of  apoptosis. In this phase execu-
tion caspase activates to start organized degradation of  
cellular organelles. Caspase-3 is considered to be the most 
important of  the executioner caspases and is activated 
by any of  the initiator caspases (caspase-8, caspase-9, or 
caspase-10)[23]. Phagocytic uptake of  apoptotic cells is the 
last component of  apoptosis. Mice lacking either of  these 
caspases were deficient in skin wound healing and in liver 
regeneration[32].

Phospholipid asymmetry and externalization of  phos-
phatidylserine on the surface of  apoptotic cells and their 
fragments is the characteristic feature of  cell death which 
can be measured by fluorescent activated cell sorter using 
annexin V tagged with fluorescent molecule[5].

DIABETIC WOUND HEALING AND 
APOPTOSIS
Usually wound healing process can be split into 4 tem-
porarily and spatially overlapping phases: coagulation, 
inflammation, tissue formation (proliferative phase) and 
tissue remodelling or scar formation phase. 

COAGULATION PHASE
Coagulation phase takes place immediately after injury 
to stop excessive blood flow from wound and provides 
provisional protection for the wounded area. Hemostatic 
reaction started with the adherence of  platelets to dam-
aged blood vessels giving rise to a blood-clotting cascade. 
To facilitate aggregation platelates express sticky glyco-
proteins on their cell membrane[33]. Platelets also released 
cytokines and growth factors which are a potent chemo-
tactic agent; stimulates the deposition of  extracellular 
membrane to the wound site[34]. In addition, platelets re-
lease proinflammatory factors like serotonin, bradykinin, 
prostaglandins, prostacyclins, thromboxane, and hista-
mine to dilate blood vessel and increase cell proliferation 
and migration to the wound area[35].

INFLAMMATORY PHASE
Inflammatory phase starts with the release of  platelet-
derived growth factor and TGF-A1 and TGF-2 from 
platelet which attract inflammatory cells, such as leuko-
cytes, neutrophils, and macrophages[36]. Leukocytes re-
lease ROS that are antimicrobial and proteases that clear 
the wound of  foreign bodies and bacteria. T lymphocytes 
playing central role in the wound healing[37] and its in-

creased apoptosis leading to delayed wound healing in 
diabetic patients[17]. Neutrophils are important in wound 
healing as they serve to control infection by eliminating 
microorganisms. With the control of  infections neutro-
phils also release harmful enzymes which damage healthy 
tissues surrounding the wound site. To prevent further 
inflammation neutrophils are engulfed by macrophages 
during the process of  apoptosis[38]. Macrophages are the 
key scavengers for resolving inflammation and facilitating 
tissue regrowth[39]. These findings show that apoptosis of  
immune cells could be the major key to end inflammation 
and initiate healing[40].

Diabetes impaired wound healing by reducing macro-
phage number and activation which results in the reduced 
lymphatic vessel formation[41]. The anti proliferative 
protein p53 involved in apoptosis of  inflammatory cells 
during the healing process and its expression during the 
healing of  cutaneous wounds in swine has been reported 
by Antoniades et al[42]. 

PROLIFERATIVE PHASE
Proliferative phase of  repair begins with the settling 
down of  inflammatory phase and formation of  granula-
tion tissue. Granulation tissue formation takes place by 
growth factors which are released by basal keratinocytes, 
remaining inflammatory cells and migrating epidermal 
and dermal cells to support the epithelialization pro-
cess of  wound healing[36]. Diabetes mellitus affects re-
epithelialization by affecting multiple proteins and genes 
including angiopoietin-4[43]. ANGPTL4 shows a potential 
effect on lipid homeostasis, glucose metabolism, re-epi-
thelialization, inflammation, and potential effect on ener-
gy homoeostasis, which is required for wound healing. In 
corneal wound healing; apoptosis of  stromal keratinocyte 
is well characterised. It triggers subsequent cellular pro-
cesses that include bone marrow-derived cell infiltration, 
proliferation, and migration of  residual keratinocyte cells 
and in some circumstances, generation of  myofibroblast 
cells[44].

Diabetes mellitus affects signalling intermediates 
responsible for coordinating/regulating wound healing 
angiogenesis and vasculogenesis[45]. Due to the deficien-
cies in either endothelial progenitor cell or peripheral 
tissue homing and engraftment of  bone marrow, dia-
betic patients are prone to the development of  chronic 
wounds[46].

TISSUE REMODELING
Tissue remodeling is the process of  reformation or resto-
ration of  existing tissues. Restoration of  a normal blood 
supply offers an encouraging microenvironment for 
epidermal and dermal cell migration and proliferation. 
Fibroblasts proliferate within the wound and synthesize 
extra-cellular matrix (ECM) forming granulation tissue 
perfused with newly formed blood vessels. 

Wound contraction and matrix remodeling occurs 
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after the substitution of  ECM from collagen Ⅲ, fibrin, 
fibronectin, and hyaluronic acid[36]. Collagen homeostasis 
is aberrant in the wound of  uncontrolled DM patients 
who suppose to be mediated by Hsp47; leading to the 
dysfunction of  fibroblast cells. Such impairments could 
contribute to delayed wound healing[47]. With wound mat-
uration, different cell populations need to be eliminated. 
Apoptosis of  fibroblastic cells occurs, leading to the for-
mation of  a relatively acellular scar tissue whose tensile 
strength is equivalent with unwounded skin. Early studies 
suggest that endothelial cells undergo apoptosis followed 
by the removal of  myofibroblasts[48]. 

The passage of  various apoptotic and inflammatory 
signals via gap junctions play an important role in tissue 
remodelling during diabetic wound healing. Connexins 
(Cx), the gap junction proteins, form channels between 
two adjacent cells and their expression is highly regulated 
after wound formation at the transcriptional, translational 
and post translational levels[49]. In diabetic wounds signifi-
cant increase in the levels of  Cx26, Cx30.3, Cx31, Cx31.1, 
and Cx43 were observed as compared to non-diabetic 
wounds[50]. An up regulated connexin expression might 
lead to the improper gap junction formation attributing 
to the passage of  various, apoptotic and inflammatory 
signals thereby resulting in delayed healing of  chronic 
diabetic ulcers.

CONCLUSION
Diabetes mellitus delayed normal wound healing by vari-
ous ways like narrowing of  the blood vessels due to arte-
riosclerosis or leading decreased blood flow and oxygen 
to a wound, loss of  sensation in feet and lowering down 
the efficiency of  the immune system. DM is leading vari-
ous complications like macroangiopathy and microan-
giopathy among which Chronic wounds such as venous 
ulcers are rapidly increasing. In chronic non healing DM 
patients various cytokines and chemokines are interact-
ing together to lead various complications, e.g., strong 
positive association between interleukin-7 and monocyte 
chemoattractant protein 1 may be a possible cause of  de-
veloping coronary artery disease in these patients[51]. Dys-
regulation of  apoptosis in response to hyperglycemia is 
universal, leading to impaired wound healing along with 
the involvement of  other target organs. Contrary to the 
accepted view that diabetic foot is caused by neuropathy 
and peripheral vascular disease, it now appears that dys-
regulated apoptosis is emerging as a major cause of  the 
diabetic foot wound. Recent advances in management 
of  DM and understanding of  the molecular and cellular 
components of  apoptosis involved during the wound 
healing phases may enable personalized diagnosis and 
therapy tailored to a particular patient’s needs and there-
fore lead to better therapeutic outcomes.
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Core tip: Microalbuminuria (MA) is the earliest and most 
commonly used clinical index of diabetic nephropathy 
(DN), however its sensitivity and specificity for early 
disease detection are limited. Not all patients with MA 
progress to overt DN, nonalbuminuric DN is common 
and risk associated with MA is elevated even at levels 
below currently accepted diagnostic thresholds. There 
is therefore a need for alternative biomarkers allowing 
early identification of “at risk” individuals. This review 
focusses on biomarkers of glomerular and tubular dys-
function, oxidative stress and inflammation that have 
attracted interest. In addition we review more novel 
strategies including proteomic, metabolomic and ge-
nomic approaches.
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INTRODUCTION
The global incidence of  type 2 diabetes continues to 
rise due to the increase in obesity and the aging popula-
tion. In 2000 the prevalence of  diabetes was estimated 
to be 171 million (2.8%) worldwide. It is projected that 
by 2030, 366 million (4.4%) people worldwide will have 
diabetes[1,2]. Diabetic nephropathy (DN), defined as albu-
minuria (albumin excretion rate > 300 mg/24 h) and de-
clining renal function in a patient with known diabetes in 
the absence of  urinary tract infection or any other renal 
disease[3], is the leading cause of  end stage renal disease 
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Abstract
Diabetic nephropathy (DN) is the leading cause of end 
stage renal disease in the Western world. Microalbu-
minuria (MA) is the earliest and most commonly used 
clinical index of DN and is independently associated 
with cardiovascular risk in diabetic patients. Although 
MA remains an essential tool for risk stratification and 
monitoring disease progression in DN, a number of 
factors have called into question its predictive power. 
Originally thought to be predictive of future overt DN 
in 80% of patients, we now know that only around 
30% of microalbuminuric patients progress to overt 
nephropathy after 10 years of follow up. In addition, 
advanced structural alterations in the glomerular base-
ment membrane may already have occurred by the 
time MA is clinically detectable.Evidence in recent years 
suggests that a significant proportion of patients with 
MA can revert to normoalbuminuria and the concept of 
nonalbuminuric DN is well-documented, reflecting the 
fact that patients with diabetes can demonstrate a re-
duction in glomerular filtration rate without progressing 
from normo-to MA. There is an unmet clinical need to 
identify biomarkers with potential for earlier diagnosis 
and risk stratification in DN and recent developments in 
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in the Western world. In the 1960s the development of  
assays for detection of  microalbuminuria (MA) revolu-
tionised diabetes management[4]. MA, defined as urinary 
albumin excretion rate (UAE) 30-300 mg/d, is the earli-
est and most commonly used clinical index of  DN. MA 
is independently associated with cardiovascular risk in 
diabetic patients[5-8], due in part to its role as an indicator 
of  widespread microvascular disease and of  underlying 
renal disease, and studies have since indicated that a re-
duction of  UAE in type 2 diabetic patients reflects renal 
and cardiovascular risk reduction[9]. Consequently, UAE 
has become a key therapeutic target in the management 
of  patients with diabetes. Evidence from the Diabetes 
Control and Complications Trial and United Kingdom 
Prospective Diabetes Study Group proved that tight gly-
caemic and blood pressure control can reduce risk of  mi-
crovascular complications of  diabetes including DN[10-12] 
for patients with type 1 or type 2 diabetes respectively 
and this strategy forms the basis of  current management 
guidelines for microalbuminuric patients. 

Although UAE remains an essential tool for risk 
stratification and monitoring disease progression a num-
ber of  factors have called into question its sensitivity and 
specificity. The presence of  MA was originally thought 
to be predictive of  future overt DN in 80% of  patients. 
However more recent evidence suggests that only around 
30% of  microalbuminuric patients progress to overt ne-
phropathy after 10 years of  follow up[13]. It has also been 
shown that advanced structural alterations in the glomer-
ular basement membrane may already have occurred by 
the time MA becomes clinically evident[14,15]. In addition, 
there is evidence that a significant proportion of  patients 
with MA can revert to normoalbuminuria[16] and the con-
cept of  nonalbuminuric DN is well-documented, reflect-
ing the fact that patients with diabetes can demonstrate a 
reduction in glomerular filtration rate without progress-
ing from normo-to MA[14,17]. Taken together, these results 
suggest that MA is perhaps more a diagnostic marker 
than a tool to predict DN. Therefore, there is a need to 
identify and investigate alternative biomarkers for the ear-
lier prediction of  DN and these are subject to this review.

GLOMERULAR FILTRATION
Glomerular filtration rate (GFR) is the best marker of  
renal excretory function. The current gold standard 
methods for determining GFR in the research setting are 
inulin and 51Cr-EDTA plasma clearance. The time-con-
suming and labour intensive nature of  these techniques, 
as well as requirement of  experienced personnel, how-
ever, mean that they are not routinely available in clinical 
practice. Here the most commonly used index for assess-
ment of  GFR is serum creatinine, although its sensitivity 
is poor in the early stages of  renal impairment, as by the 
time an increase in serum level is detectable, a significant 
decline in GFR has already taken place[18]. Formulae us-
ing serum creatinine to estimate GFR (eGFR) such as the 
Modification of  Diet in Renal Disease equation are not 

reliable at GRF > 60 mL/min per 1.73 m2. The recently 
developed Chronic Kidney Disease Epidemiology Col-
laboration (CKD-EPI) formula appears to be more ac-
curate in patients whose GFR is > 90 mL/min per 1.73 
m2[19-21] however a marked underestimation of  GFR in 
diabetic patients continues to be evident using this equa-
tion when compared to its performance in healthy indi-
viduals[22]. The current Kidney Disease Improving Global 
Outcomes guidelines staging system classifies chronic 
kidney disease stages 1 and 2 using GFR cut-offs of  > 90 
mL/min and 60-89 mL/min respectively[23]. Routine clini-
cal tests therefore do not measure this degree of  GFR 
decline accurately, meaning that this potentially critical 
early stage of  renal dysfunction remains undetected[24].

Cystatin C (CysC) based assays in estimating GFR 
for clinical trials in DN offer an alternative approach due 
to the complexity and time-consuming nature of  other 
reference test methods. This 13.3 kDa plasma protein 
is freely filtered through the glomerulus and reabsorbed 
and catabolised by tubular cells to such a degree that it 
does not return to the blood in an intact form[25]. Nu-
merous studies have validated CysC as a marker of  renal 
function[26-28]. Its levels are well correlated with GFR and 
unlike serum creatinine, are unaffected by muscle mass. 
In addition CysC levels not only correlate with progres-
sion of  nephropathy, but also show a more sensitive 
marker of  early DN when eGFR remains > 60mL/
min[29-31]. These benefits should, however, be taken into 
consideration alongside the higher cost of  the immuno-
assay and the greater intraindividual variability[28] com-
pared to serum creatinine Formulae for estimating GFR 
including both creatinine and CysC have been proposed 
but to date have not been proven to enhance precision 
in identifying and monitoring early stages of  GFR de-
cline in diabetes[32].

MARKERS OF GLOMERULAR 
DYSFUNCTION
Glomerular damage increases permeability to plasma 
proteins resulting in their excretion in the urine. In addi-
tion, abnormalities of  extracellular matrix synthesis and 
degradation in kidney disease can lead to increased uri-
nary excretion of  matrix proteins, reflecting glomerular 
injury. Although albumin excretion remains the current 
gold standard marker of  glomerular damage in the clini-
cal setting, a number of  other proteins have been pro-
posed as useful indicators of  early glomerular damage.

Transferrin is a plasma protein with a slightly greater 
molecular weight (76.5 kDa) than albumin[33]. It is also 
less ionic than glycosylated albumin and thus less easily 
repelled by glomerular basement membrane polyanion[34]. 
Elevated urinary transferrin excretion has been demon-
strated in patients with diabetes compared with healthy 
controls, even in in the absence of  albuminuria[35]. Trans-
ferrinuria has been shown to correlate with UAE and to 
increase in parallel with it[36]. In a 24 mo follow up study it 
has been demonstrated that increased urinary transferrin 
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excretion predicted development of  MA in a cohort of  
normoalbuminuric type 2 diabetic patients independent 
of  age, diabetes duration, blood pressure, HbA1c and 
baseline lipid levels[33]. Elsewhere it has also been shown 
that transferrinuria predicted development of  MA at 5 
years follow up[36]. Transferrin has also been proposed as 
a mediator of  tubular toxicity, as its reabsorption results 
in release of  reactive iron in proximal tubular cells pro-
moting formation of  hydroxyl radicals[37,38]. Studies have 
reported correlations between urinary transferrin excre-
tion and other microvascular diabetic complications such 
as retinopathy[38]. Taken together, the above data suggest 
that transferrinuria may serve as a sensitive indicator of  
early proteinuria and increased vascular permeability. 

Accumulation and altered distribution of  basement 
membrane components is one of  the structural hallmarks 
of  DN and these changes precede the development of  
MA[39]. Type Ⅳ collagen is a normal constituent of  me-
sangial matrix as well as tubular and glomerular basement 
membranes, with molecular weight of  540 kDa. Both 
serum and urine levels have been shown to be elevated in 
patients with diabetes[40]. Urinary type Ⅳ collagen excre-
tion has been shown to correlate closely with degree of  
UAE, as well as diabetes duration, blood pressure and 
serum creatinine[41,42]. Significantly higher excretion of  
type Ⅳ collagen has been found even in normoalbumin-
uric diabetic patients as well as patients with impaired 
glucose tolerance, suggesting that this may serve as an 
early indicator of  DN, preceding the onset of  MA[42,43]. 
In addition, type Ⅳ collagen excretion has been found 
to decrease with improved glycaemic control, suggesting 
that this marker is also reversible in early disease[44]. Type 
Ⅳ collagen may also play a role in differentiating DN 
from other non-diabetic kidney diseases, as the ratio of  
type IV collagen to albumin has been found to be sig-
nificantly higher in DN in comparison to other glomeru-
lopathies[40]. 

Ceruloplasmin is a 132 kDa acute phase protein with 
well characterised functions in the metabolism of  cop-
per and iron[36]. It has been suggested that ceruloplasmin 
may leak through glomerular capillary walls in DN and 
evidence confirms increased excretion in both impaired 
glucose tolerance and diabetes compared with healthy 
controls[36,45]. Increased urinary ceruloplasmin excretion 
has also been demonstrated in normoalbuminuric pa-
tients with diabetes[45]. In addition, urinary ceruloplasmin 
excretion appears to parallel UAE[31,46]. In a 5 year follow 
up study, it was demonstrated that increased urinary ce-
ruloplasmin excretion predicted development of  MA in 
normoalbuminuric type 2 diabetic patients[36]. Improved 
glycaemic control appears to reverse this increase[46].

Fibronectin is a high molecular weight (440 kDa) 
plasma glycoprotein mainly produced by endothelial 
cells and fibroblasts which plays a role in cell adhesion 
to vascular endothelium[35]. Fibronectin biosynthesis is 
increased in patients with diabetes and studies have sug-
gested that plasma levels correlate with retinopathy and 
MA[47]. Increased urinary levels of  fibronectin have been 

found in type 2 diabetic patients in comparison with 
healthy controls, as well as in subjects with MA compared 
to normoalbuminuric subjects[47]. However, there is only a 
weak positive correlation between plasma fibronectin and 
urinary albumin levels perhaps limiting its potential use-
fulness as an early marker of  DN[47], and there is no pub-
lished evidence comparing urinary fibronectin with UAE 
in terms of  predictive value for diabetic nephropathy.

MARKERS OF TUBULAR DYSFUNCTION
Plasma proteins of  low molecular weight are excreted in 
increased quantities in the urine due to deficient tubular 
reabsorption or increased secretion by tubular epithelial 
cells. Similarly, urinary enzymes are thought to be sensi-
tive markers of  tubular damage as they are not filtered at 
the glomerulus due to their high molecular weight[31,36].

Neutrophil Gelatinase-Associated Lipocalin (NGAL) 
is a small molecule of  25 kDa belonging to the lipocalin 
superfamily. These proteins play a role in binding and 
transporting small hydrophobic molecules, apoptosis 
and immune regulation. NGAL is stored mainly in the 
specific granules of  neutrophils and also expressed at 
low levels in several other human tissues[48,49]. NGAL 
shows significant promise in the diagnostic and clini-
cal setting as a marker of  acute kidney injury[48] and is 
thought to also play a renoprotective role as a mediator 
of  tubular cell proliferation[49]. Studies have confirmed 
an association between NGAL and obesity, insulin resis-
tance and hyperglycaemia in human subjects[49]. Urinary 
NGAL concentration has been found to be increased in 
diabetic subjects compared with healthy controls[50] and 
to correlate negatively with eGFR, and positively with 
CysC, serum creatinine and urea in patients with type 2 
diabetes[48]. Significant increases in urinary NGAL con-
centration have been demonstrated from normo- to mi-
cro- to macroalbuminuric groups of  patients with type 1 
diabetes[51]. Similar results have been published in a study 
of  type 2 diabetic patients[52]. Urinary NGAL correlates 
positively with glomerular hyperfiltration early in the 
clinical course of  diabetes[53] and higher values have been 
found to be associated with enhanced decline in eGFR 
in type 2 diabetes patients with proteinuria, although this 
correlation was no longer statistically significant after 
adjustment for factors including systolic blood pres-
sure, HbA1c and diabetes duration[53]. However, other 
prospective studies have not confirmed these associa-
tions[54,55] and further investigation of  the role of  urinary 
NGAL in DN is required.

Kidney injury molecule 1 (KIM1) has been shown to 
be a marker of  tubular damage in various chronic kidney 
diseases[56,57]. This type 1 cell membrane glycoprotein is 
expressed on the apical membrane of  proximal tubule 
cells and is involved in the phagocytosis of  damaged 
cells in the proximal tubules[52]. Expression is undetect-
able in normal healthy kidneys but mRNA and protein 
are markedly upregulated in acute kidney injury[58]. In a 
cross-sectional study urinary KIM1 excretion has been 

765 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Currie G et al . Biomarkers in diabetic nephropathy



at the glomerulus and some have been used as mark-
ers of  tubular damage in various renal diseases[36]. β2-
microglobulin (β2MG) is a 11.8 kDa protein produced by 
cells expressing major histocompatibility class 1. Urinary 
β2MG excretion is known to be elevated in patients 
with reduced GFR and some evidence links β2MG with 
tubular injury[69]. β2MG has also been associated with 
macrovascular complications in type 2 diabetes[63]. How-
ever, its diagnostic utility is limited by its poor stability at 
acidic pH[70]. The stable microprotein α-1-microglobulin 
(A1M) may offer an alternative means of  evaluating tu-
bular function. This 26 kDa glycoprotein is freely filtered 
at the glomerulus and almost completely reabsorbed in 
the proximal tubules, thus even minor degrees of  proxi-
mal tubular dysfunction lead to increased urinary A1M 
excretion[71,72]. Urinary A1M excretion has been shown 
to be greater in patients with type 2 diabetes compared 
to healthy controls[33,42]. A1M levels have also been found 
to correlate with diabetes duration and degree of  dia-
betes control[63,71]. There is evidence that urinary A1M 
excretion significantly increases with degree of  MA in 
type 2 diabetes[71-73]. However, Hong et al[72] found in a 
cross-sectional study that although UAE and A1M were 
directly related, in some patients one could be present in 
the absence of  the other, suggesting that urinary A1M (as 
a measure of  tubular function) may be complementary to 
MA (as a measure of  glomerular function) in assessment 
of  early DN. Retinol binding protein (RBP) is another 
low molecular weight protein (21 kDa) which is freely 
filtered at the glomerulus and almost completely reab-
sorbed in the proximal tubule; as such its presence in the 
urine is indicative of  even very minor degrees of  tubular 
dysfunction[33]. Increased urinary RBP excretion has been 
described in diabetic patients compared to controls, even 
in patients with normal UAE[16,70,73]. RBP levels have also 
been found to correlate with both micro- and macrovas-
cular complications in type 2 diabetic patients[64,74]. RBP, 
therefore, may also have a complementary role in early 
detection of  DN together with biomarkers of  glomerular 
damage such as UAE or transferrin. Immunoglobulin 
free light chains (FLCs) kappa and lambda undergo 
similar glomerular filtration and near complete tubular 
reabsorption[36]; consequently their presence in the urine 
can also be indicative of  proximal tubular dysfunction[75]. 
Abnormal urinary FLCs/creatinine ratio in type 2 dia-
betes patients, both with normal and elevated UAE, and 
FLC excretion appears to be increased before overt renal 
disease occurs[76]. However, as yet there is little further 
published evidence regarding use of  FLCs as a predictive 
tool for early detection of  DN.

MARKERS OF OXIDATIVE STRESS AND 
INFLAMMATION
Oxidative stress is thought to be one of  the key media-
tors of  vascular complications of  diabetes. Generation 
of  reactive oxygen species (ROS) as a result of  hyper-
glycaemia contributes to development of  diabetes com-

found to be increased in diabetic patients compared 
to healthy controls. A weak but significant increase of  
urinary KIM1 concentration was noted with increasing 
degree of  UAE[50]. Increased urinary KIM1 excretion 
has also been shown in type 2 diabetics with glomerular 
hyperfiltration[52]. In a 3 year prospective interventional 
study, high baseline levels of  urinary KIM1 were found 
to be associated with faster decline in GFR in type 1 dia-
betes with DN; an association no longer significant after 
adjustment for traditional risk markers including blood 
pressure and glycaemic control[58]. Similar findings have 
been described in type 2 diabetes populations[55]. Studies 
have shown that treatment with renin angiotensin system 
(RAAS) blocking agents reduced urinary KIM1 excretion 
in parallel to reductions in blood pressure and UAE[59]. In 
addition, low baseline urinary KIM1 excretion is strongly 
associated with regression of  MA during a 2 year follow 
up period, independent of  clinical characteristics[57]. This 
supports the hypothesis that KIM1 is a good marker of  
active tubular damage, rather than pre-existing scarring[58].

N-acetyl-b-d-glucosaminidase (NAG) is a lysosomal 
enzyme which is predominantly located in the renal tu-
bules. It cannot be filtered from blood through an intact 
glomerular membrane due to its high molecular weight 
(140 kDa), thus its activity detected in urine reflects tu-
bular dysfunction. Urinary NAG activity is increased in a 
variety of  tubulointerstitial diseases. It is elevated in pop-
ulations with diabetes compared to controls, even in nor-
moalbuminuric patients[33,53]. It correlates with the degree 
of  UAE and excretion of  transferrin and creatinine[60-62]. 
Although no significant association has been found be-
tween urinary NAG and glomerular hyperfiltration[52], 
prospective follow up studies have shown that higher 
levels of  NAG at baseline are predictive of  subsequent 
DN[63]. In addition, lower baseline NAG levels are signifi-
cantly associated with regression of  MA at follow up[57]. 
Finally, significant increases in NAG excretion have been 
reported in type 2 diabetic patients with both micro- and 
macrovascular complications[63-65] and in fact NAG levels 
have been attributed comparable diagnostic value to UAE 
in this regard[65].

Liver-type fatty acid binding protein (L-FABP) is a 
low molecular weight (15 kDa) intracellular carrier pro-
tein that is expressed in the proximal tubule and liver[66,67]. 
It is produced in response to tubulointerstitial compro-
mise, and thus has potential as a marker of  structural and 
functional renal tubular damage[67]. In a cross sectional 
study of  patients with type 1 diabetes and varying degrees 
of  UAE, urinary L-FABP levels were significantly higher 
compared to healthy controls. The levels increased with 
increasing degree of  albumin excretion. Intervention with 
Lisinopril was associated with significant reductions in 
UAE and urinary L-FABP excretion in those with diabe-
tes[68]. However, there is no correlation between L-FABP 
and rate of  change of  eGFR in patients with type 2 dia-
betes[54]; therefore further studies are needed to elicudate 
its value as a predictive marker for DN.

Low molecular weight proteins are freely filtered 
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plications through sorbitol accumulation, formation of  
advanced glycation end products (AGE) and activation 
of  protein kinase C[77,78].

8-oxo-7,8-dihydro-2’-deoxyguanosine (8-OHdG) 
is a product of  oxidative DNA damage resulting from 
specific enzymatic cleavage after ROS-induced 8-hydrox-
ylation of  the guanine base in nuclear and mitochondrial 
DNA[78]. Since it is excreted into urine without being 
further metabolised its urinary concentration serves as an 
index of  oxidative stress[79]. Increased concentrations of  
8-OHdG have been described in both urine and mono-
nuclear cells of  diabetic patients[80], and urinary excretion 
appears to correlate closely with the severity of  DN and 
retinopathy as well as HbA1c[81]. In a prospective longi-
tudinal study of  532 Japanese diabetic patients, urinary 
8-OHdG excretion at baseline was associated with later 
development of  DN after 5 years of  follow up[81], indi-
cating its potential as a clinical predictive marker. 

AGE have been associated with the pathogenesis of  
diabetes complications[82]. AGE-modified proteins gener-
ally undergo glomerular filtration and subsequent catabo-
lism at the proximal tubule, thus it seems intuitive that the 
presence of  AGE-modified protein fragments in urine 
may also herald early tubular dysfunction. Pentosidine is 
one of  the major molecular structural components of  
AGEs and acts as a marker of  their formation and ac-
cumulation[83]. Urinary excretion of  Pentosidine has been 
shown to be higher in patients with diabetes compared 
to healthy controls[84]. Increased urinary and plasma 
Pentosidine levels have been demonstrated in patients 
with DN[85]. More recently its potential as a marker of  
microvascular complications of  diabetes has been shown 
with associations between serum Pentosidine levels and 
diabetic retinopathy, hypertension and hyperlipidaemia 
in addition to DN[86]. Although initially no correlation 
between Pentosidine levels and UAE were reported[84], re-
cent publications have challenged this finding; one study 
reported significantly increased serum Pentosidine levels 
in diabetes patients with MA compared to normoalbu-
minuric controls[87] and another study found increased 
median urinary Pentosidine excretion in diabetes patients 
with macroalbuminuria compared to controls[62]. In addi-
tion, this study demonstrated that baseline urinary Pen-
tosidine excretion predicted later macroalbuminuria, with 
risk increasing almost 7-fold for every 50% increase in 
urinary Pentosidine[62].

Evidence is accumulating that immune and inflamma-
tory mechanisms also play a role in the pathogenesis of  
DN[88], as cause rather than consequence of  disease[89]. In-
dividuals who progress to DN appear to display features 
of  low grade inflammation for years before clinically 
detectable disease[90,91]. As a result, cytokines and other 
components involved in the process of  inflammation and 
endothelial damage have attracted attention as potential 
markers of  DN.

Orosomucoid, or α-1-acid glycoprotein (AGA) is a 
single chain polypeptide produced mainly by the liver. 
It is released in response to inflammation under the 

stimulation of  cytokines such as interleukin-6 (IL-6) and 
tumour necrosis factor-α (TNF-α)[92]. AGA levels have 
been found to be associated with ischaemic heart disease, 
lung cancers and diabetes[92,93]. It has been suggested that 
high AGA levels may predict the development of  type 2 
diabetes[94]. In a cross sectional study of  outpatients with 
type 2 diabetes and no known cardiovascular disease, 
serum AGA levels were found to correlate significantly 
with UAE[95]. In addition, proteomic work has identified 
urinary AGA as an independent risk factor for DN[96,97]. 
Urinary AGA excretion appears to increase in parallel 
with UAE and data indicate that urinary AGA is elevated 
in the early stages of  DN[95]. The potential predictive 
value of  urinary AGA in DN has been shown[98] but fur-
ther work is needed to determine whether AGA could be 
used as a biomarker of  disease development and treat-
ment response. 

TNF-α and IL-6 are two major pro-inflammatory 
cytokines that stimulate the acute phase response by 
triggering production of  other proteins such as CRP 
and AGA[89,93]. Patients with DN have higher serum and 
urinary concentrations of  TNF-α than healthy controls 
or normoalbuminuric subjects[99,100]. Urinary TNF-α ex-
cretion also appears to be increased in diabetes patients 
with micro- or macroalbuminuria compared to normo-
albuminuric patients[100,101], with one study reporting an 
increase of  90% between normo- and microalbuminuric 
patients[100]. Urinary TNF-α excretion has also been 
shown to correlate with NAG excretion, a marker of  se-
verity of  tubular damage[99]. TNF-α mediates its effects 
via two distinct receptors, TNF receptor 1 (TNFR1) and 
TNFR2, which are both membrane bound and also can 
be found in serum in soluble form[102]. Serum levels of  
both these receptors have been shown to correlate with 
GFR in diabetic patients independently of  albuminuria 
status[102]. More recent data suggest that serum concentra-
tions of  TNFR1 and TNFR2 have potential as predictors 
of  progressive renal disease in diabetes[103,104]. Patients 
with TNFR levels in the highest quartile show signifi-
cantly elevated cumulative incidence of  reaching stage 3-5 
CKD over 12 years of  follow up compared with those 
in the lower quartiles. This has been shown in both type 
1 and type 2 diabetes, in the presence or absence of  pro-
teinuria[103,104]. 

Serum IL-6 has been shown to be elevated in patients 
with diabetes compared to control subjects, as well as be-
tween normo-, macroalbuminuric and overtly proteinuric 
patient groups[105,106]. In addition, IL-6 has been linked to 
glomerular basement membrane thickening[106]. Further-
more, association has been demonstrated between cir-
culating levels of  both TNF-α and IL-6 and micro- and 
macrovascular complications of  diabetes[107]. 

Vascular endothelial growth factor (VEGF) is a po-
tent cytokine that induces angiogenesis and increases 
endothelial permeability[108]. It adversely affects the glo-
merular filtration barrier by enhancing its permeability to 
macromolecules and exacerbating proteinuria[109]. Urinary 
VEGF excretion appears to be elevated in patients with 
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diabetes, even at the normoalbuminuric stage[109,110]. A 
significant increased urinary excretion of  VEGF in mi-
cro- and macroalbuminuric type 1 diabetic patients has 
been demonstrated[110]. Work in type 2 diabetes demon-
strated that urinary VEGF concentration increases with 
DN stage. This has not been demonstrated in plasma[109]. 
However, baseline serum VEGF level did appear to be 
predictive of  subsequent DN in a follow up study of  
children with type 1 diabetes[111]. In addition, both serum 
and urinary VEGF levels have been shown to be elevated 
in patients with diabetic retinopathy, although the sensi-
tivity of  urinary detection was poor[112]. Taken together, 
these findings led to the proposal that plasma VEGF is 
a reliable marker of  generalised vascular dysfunction and 
retinopathy, whereas urinary concentration may serve as a 
sensitive predictor of  risk of  subsequent MA[109] (Table 1).

GENETIC FACTORS
In 1989 Seaquist et al[113] demonstrated strong familial 
clustering of  DN, triggering a search for associated ge-
netic variants. However, identifying gene variants that 
predispose to DN is complex as susceptibility is likely to 
be determined by a large number of  common allelic vari-
ants, each of  which may confer a modest increase in rela-
tive risk. In addition, overall risk of  developing DN is a 
result of  a combination of  both genetic and environmen-
tal influences. Advances in genotyping technology have 
led to use of  genome wide association scans (GWAS) for 
studying disease susceptibility across the entire genome. 
In relation to DN the creation of  groups such as Family 
Investigation of  Nephropathy and Diabetes (FIND) and 

Genetics of  Kidneys in Diabetes (GoKinD) have facili-
tated such research. 

The FIND group is a large multicentre consortium 
making use of  family based linkage analyses in multi-
ethnic groups to identify genes with significance in type 
2 DN[114]. Results of  the group’s preliminary genome 
scan observed evidence linking chromosome loci 7q21.3, 
10p15, 14q23.1 and 18q22.3 with DN[115]. Further publi-
cations by the group have shown a significant contribu-
tion of  chromosomes 1q43, 8q13.3 and 18q23.3 to eGFR 
phenotype[116], and suggested contribution of  chromo-
somes 3p, 7q, 16q and 22q to UAE status in African-
American and European-American populations[117]. 

GoKinD group have accumulated a collection of  
DNA for genetic association studies of  DN in the con-
text of  type 1 diabetes[118]. This group have identified 
genetic associations for DN susceptibility at candidate 
loci near the FRMD3 and CARS genes[119]. In addition, 
variants in the ELMO1 gene on chromosome 7p have 
previously been linked with DN in Japanese and African-
American populations with type 2 diabetes[120]. GWAS 
data from the GoKinD collection confirmed this associa-
tion in a Caucasian population[121]. 

A genome wide linkage scan in Diabetes Heart Study 
families detected significant evidence for linkage with 
eGFR on chromosomes 2p16, 7q21 and 13q13. Evidence 
for linkage to UAE however was far weaker[122]. In addi-
tion, genome wide DNA methylation analysis in a case 
control study of  192 Irish patients with type 1 diabetes 
identified 19 prospective CpG sites associated with risk 
of  DN[123]. In 2012 the Genetics of  Nephropathy: an In-
ternational Effort consortium undertook a meta-analysis 
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Table 1  Summary of biomarkers with potential utility in diagnosis of diabetic nephropathy

Biomarker Serum/plasma or urine Type of marker Status in DN Potential for additional information beyond UAE Ref.

Transferrin Urine Glomerular Elevated Predicts MA [30-35]
Type Ⅳ collagen Urine Glomerular Elevated Rises in parallel with UAE, even in 

nonalbuminuric stage
[36-41]

Ceruloplasmin Urine Glomerular Elevated Predicts MA [33,42-44]
Fibronectin Plasma/urine Glomerular Both elevated No [32,45]
NGAL Urine Tubular Elevated Marker of glomerular hyperfiltration [46-53]
KIM1 Urine Tubular Elevated Marker of glomerular hyperfiltration [49,50,53-57]
NAG Urine Tubular Elevated Comparable to UAE [30,58-64]
L-FABP Urine Tubular Elevated No [52,65-66]
A1M Urine Tubular Elevated No [30,39,63,69-74]
RBP Urine Tubular Elevated No [17,30,69,72-75] 
FLCs Urine Tubular Elevated No [17,63,69,72-75]
8-OHdG Urine Oxidative stress Elevated Predicts DN but value in comparison to MA 

remains unclear
[77-80]

Pentosidine Urine/serum Oxidative stress Both elevated No [61,81-86]
AGA Urine Oxidative stress Elevated Urinary excretion predicts MA [91-97]
TNF-α Urine/serum Inflammatory Both elevated No [88,92,98-100]
TNFR 1/2 Serum Inflammatory Elevated Predictive of onset of stage 3-5 CKD independent 

of albuminuria status
[99-101]

IL-6 Urine/serum Inflammatory Serum levels elevated No [99,101-103]
VEGF Urine/serum Inflammatory Urinary levels elevated No [104-108]

DN: Diabetic nephropathy; NGAL: Neutrophil gelatinase associated lipocalin; KIM1: Kidney injury molecule 1; NAG: N-acetyl-b-d-glucosaminidase; AIM: 
α-1-microglobulin; L-FABP: Liver type fatty acid binding protein; RBP: Retinol binding protein; FLCs: Free light chains; 8-OHdG: 8-oxo-7,8-dihydro-2’-
deoxyguanosine; AGA: α-1-acid glycoprotein; TNF-α: Tumour necrosis factor α; TNFR 1/2: Tumour necrosis factor α receptors 1 and 2; IL-6: Interleukin-6; 
VEGF: Vascular endothelial growth factor; CKD: Chronic kidney disease; UAE: Urinary albumin excretion; MA: Microalbuminuria.
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of  GWAS of  DN in type 1 diabetes. They identified 
signals in an intron in the AFF3 gene on chromosome 
15 and linked this to DN mechanistically by providing 
evidence that AFF3 expression is linked to transforming 
growth factor beta-driven fibrosis in cultured epithelial 
cells[124,125]. Although this locus technically did not repli-
cate, the potential for misclassification through identify-
ing cases using clinical rather than histological criteria 
may have led to reduced statistical power[124].

PROTEOMICS
Proteomics is the study of  the proteome, reflecting the 
protein content of  the genome, and is defined as “the 
knowledge of  the structure, function and expression of  
all proteins in the biochemical or biological context of  
organisms”[126]. These methods have attracted attention 
in recent years as a potentially important tool for early, 
pre-clinical disease detection as they allow simultane-
ous examination of  the patterns of  multiple urinary and 
plasma proteins. In view of  the complex pathogenesis 
of  type 2 diabetes, it is perhaps simplistic to expect that 
a single biomarker will provide sufficient sensitivity and 
specificity for disease prediction, detection and treatment 
monitoring, and therefore such multimarker approaches 
are appealing. Both urinary and plasma proteome analysis 
have identified a number of  biomarkers which are signifi-
cantly associated with DN, such as specific collagen frag-
ments[127,128], cytokines[128,129] and RBP[130].

A panel of  65 urinary biomarkers (DN65) have 
been identified which distinguished normoalbuminuric 
patients with diabetes from those with DN. This panel 
proved sensitive and specific for distinguishing DN from 
other causes of  CKD in both single and multicentre set-
tings[127,131]. CKD273 is a panel of  273 urinary peptides 
which shows promise as a tool for early detection of  DN. 
First described in 2010, the panel was initially shown to 
distinguish between CKD of  any aetiology and healthy 
controls with 85.5% sensitivity and 100% specificity[132]. 
It has also recently been shown to predict adverse out-
comes including death or end-stage renal disease in CKD 
patients[133]. Two further studies have demonstrated the 
predictive power of  CKD273 in identifying diabetic 
patients at risk of  progression to overt DN. In longitudi-
nal samples from a small cohort of  35 diabetic patients 
Zürbig et al[134] showed that application of  the classifier to 
samples from normoalbuminuric subjects up to 5 years 
prior to detection of  macroalbuminuria enabled early 
identification of  those at risk of  progression (area under 
the curve 0.93, compared to 0.67 for urinary albumin). 
Similarly, Roscioni et al[135] applied the classifier to samples 
from the Prevention of  REnal and Vascular ENd-stage 
Disease (PREVEND) cohort. They compared samples 
at baseline and 3 years for 44 “progressors” who transi-
tioned from normo-to MA or from micro- to macroal-
buminuria to matched controls who did not transition in 
albuminuria status. Results showed that classifier score at 
baseline was independently associated with progression 
of  albuminuria[135]. Further to this CKD273 has recently 

been validated in a multicentre setting. In 165 urine 
samples obtained from 87 cases of  DN and 78 controls 
at 9 centres worldwide the classifier distinguished cases 
from controls with high consistency across all centres 
(areas under the curve ranging from 0.95 to 1.00)[131]. A 
classification factor cut-off  of  0.343 was established in 
the biomarker discovery cohort to highlight individuals 
“at risk” of  later DN[132] and this has been confirmed by 
other studies[134,135].

METABOLOMICS
Metabolomics involves the measurement of  low molecu-
lar weight intermediate and end-products of  cellular func-
tions in a biological sample, and has recently emerged as 
a tool with potential in novel biomarker discovery. The 
metabolome combines biological information from the 
genome, transcriptome and proteome, allowing identifi-
cation of  physiological and pathological changes in re-
sponse to disease processes.As with proteomics, a variety 
of  sample types including serum, plasma, tissue and urine 
can be analysed in this way[136].

A number of  studies have explored the application 
of  metabolomics approaches in kidney disease[136]. For 
example, in a cross sectional analysis of  plasma metabo-
lites using samples from 30 non-diabetic male subjects 
with CKD stage 2-4, major differences were identified 
in arginine metabolism, carboxylate anion transport and 
coagulation pathways with increasing CKD stage[137]. 
However, this study did not include patients with diabetes 
and in fact there are a limited number of  such studies fo-
cussing on diabetic kidney disease. In serum samples from 
78 type 2 diabetic participants, a panel of  19 metabolites 
was identified which could differentiate DN from nor-
moalbuminuria, all of  which correlated significantly with 
albumin creatinine ratio. A model comprising the five 
best performing markers (including γ-butyrobetaine and 
symmetric dimethylarginine) resulted in AUC value of  
0.927 for diagnosis of  DN[138]. Another study using serum 
samples from patients with DN, normoalbuminuric dia-
betic patients and healthy volunteers showed significant 
changes in amino acid and phospholipid metabolism 
between study categories, as evidenced by alterations in 
leucine, as well as the sphingolipids dihydrosphingosine 
and phytosphingosine[139]. Additionally, the application 
of  metabolomics methods to renal cortex samples from 
streptozocin induced diabetic rats identified an increase in 
intrarenal organic toxins, including glucuronides, uraemic 
toxins and others associated with glucotoxicity, which 
were significantly correlated with 24 h urinary protein 
levels.Furthermore, treatment with the ACE-inhibitor Fo-
sinopril appeared to block the accumulation of  these tox-
ins[140]. There is little published evidence from longitudinal 
studies to determine the predictive power of  these meth-
ods for detection of  individuals at risk of  DN. One such 
paper published earlier this year described the application 
of  metabolomics methods to urine and plasma samples 
from the PREVEND study over a median follow up peri-
od of  2.9 years. Differences were seen in plasma histidine 
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and butenoylcarnitine, as well as urine hexose, glutamine 
and tyrosine between individuals who transitioned in al-
buminuria stage compared to control sample who did not. 
Adding these metabolites to a predictive model including 
baseline albuminuria and eGFR appeared to improve risk 
estimation for transition to macroalbuminuria[141]. How-
ever, the complexity of  the human metabolome remains 
perhaps the biggest challenge in translating these tech-
niques into everyday clinical practice (Figure 1).

DISCUSSION AND CONCLUSIONS
DN is a leading cause of  end stage renal disease and in 
combination with the increasing worldwide prevalence 
of  diabetes poses an enormous burden to healthcare 
systems. UAE is currently the gold standard for detection 
and monitoring of  nephropathy and cardiovascular risk 
in diabetes; however its predictive powers have limitations 
and research is focussing on biomarkers which may offer 
greater sensitivity and earlier detection to facilitate earlier 
intervention. A degree of  caution should, however, be 
exercised in relation to aggressive early intervention as to 
date there is little evidence of  benefit from these strate-
gies and more intensive RAAS blockade can result in a 
high incidence of  unwanted adverse effects[142,143]. The 
Randomised Olmesartan and Diabetes MA Prevention 
study confirmed a significant delay in onset of  MA with 
olmesartan therapy in normoalbuminuric type 2 diabetes 
patients, but caused controversy regarding increased fatal 
cardiovascular events in the treatment group[144]. It could 
be argued that perhaps these studies have not targeted 
recruitment towards a population at particularly high risk 
of  developing DN and focussing efforts in the direction 

of  these individuals may yield more positive results. Iden-
tification of  biomarkers to stratify patients according to 
DN risk may allow randomised controlled trials to focus 
on the population most likely to derive benefit from early, 
aggressive intervention. 

Markers of  glomerular damage show some promise 
for this purpose. In particular transferrin and type Ⅳ 
collagen appear to detect glomerular dysfunction at the 
normoalbuminuric stage although head to head compara-
tive data are lacking. Similarly, given that tubular damage 
can precede glomerular pathology, markers such as NAG, 
KIM1 and NGAL are interesting. Evidence also points 
towards the role of  oxidative stress in the pathogenesis 
of  DN, meaning markers such as 8-OHdG and pentosi-
dine merit further investigation. Low grade inflammation 
and endothelial damage is detectable in the pre-clinical 
stages of  DN, leading to heightened interest in mark-
ers such as cytokines and AGA. These too appear to be 
potentially useful tools in the earlier detection of  DN, al-
though again comparative work in relation to UAE would 
strengthen the case for their use. 

The development of  new technologies has led to ex-
citing possibilities in the search for ideal biomarkers for 
DN but, despite the vast number that have been studied, 
none has so far demonstrated superiority to albuminuria. 
While biomarker research in the preclinical setting is ad-
vancing, none of  those biomarkers described above have 
been validated or are available commercially for clinical 
use. In addition, none have been described in relation to 
nonalbuminuric DN, which may reflect a separate disease 
process. All such potentially interesting markers require 
further large scale validation in prospective clinical stud-
ies to determine whether they can make the transition 
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Figure 1  Biomarkers for diabetic nephropathy. NGAL: Neutrophil gelatinase associated lipocalin; KIM1: Kidney injury molecule 1; NAG: N-acetyl-b-d-glucosamini-
dase; L-FABP: Liver-type fatty acid binding protein; RBP: Retinol binding protein; 8-OHdG: 8-oxo-7,8-dihydro-2’-deoxyguanosine; AGA: α-1-acid glycoprotein; TNFAR 
1/2: Tumor necrosis factors-α receptors 1 and 2; IL-6: Interleukin-6; VEGF: Vascular endothelial growth factor.
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from bench to bedside. Projects such as the EU-funded 
Proteomic prediction and Renin angiotensin aldosterone 
system Inhibition prevention Of  early diabetic nephropa-
thy In type 2 diabetic patients with normoalbuminuria 
(www.eu-priority.org) study which is currently recruiting, 
may help to redress this balance. 

 As the complexities of  the biochemical mechanisms 
underpinning DN continue to be unravelled it is perhaps 
simplistic to expect that a single biomarker will be suffi-
cient for risk stratification as we move towards predictive 
and personalised medicine, and as such the shift towards 
systems biology integrating different technologies into 
multimarker strategies might provide greater sensitivity 
and specificity.

PERSPECTIVES
A number of  biomarkers show promise as tools for early 
detection of  DN, yet to date none have out-performed 
microalbumin in larger scale, prospective longitudinal 
studies. Multimarker approaches such as metabolomic or 
proteomic methods are particularly appealing as they also 
offer an insight into the multiple complex pathophysi-
ological processes underlying DN. In order to advance 
these efforts, cross-omics profiling, large scale biobank-
ing and extended clinical phenotyping will be necessary 
to derive disease-stage specific models. It should be 
borne in mind that nonalbuminuric DN is not uncom-
mon and may reflect an alternative underlying disease 
process, therefore longitudinal studies investigating the 
performance of  biomarkers to identify these individuals 
early may also be of  interest.
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Abstract
Diabetes mellitus (DM) is the most prevailing disease 
with progressive incidence worldwide. Despite contem-
porary treatment type one DM and type two DM are 
frequently associated with long-term major microvascu-
lar and macrovascular complications. Currently restora-
tion of failing β-cell function, regulation of metabolic 
processes with stem cell transplantation is discussed as 
complements to contemporary DM therapy regimens. 
The present review is considered paradigm of the re-
generative care and the possibly effects of cell therapy 
in DM. Reprogramming stem cells, bone marrow-
derived mononuclear cells; lineage-specified progenitor 
cells are considered for regenerative strategy in DM. Fi-
nally, perspective component of stem cell replacement 
in DM is discussed.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus; Regenerative medicine; 
Stem cells; Cellular reprogramming; Transplantation

Core tip: Modern approaches to stem cell therapy are 
discussed a promising component of treatment pro-
gram in diabetes mellitus. It is important to emphasize 
that the new technology that is associated with re-

programming of stem cells has a couple of disputes in 
accordance with the ethical considerations and practi-
cal issues. However, the extremely high cost of novel 
methods toward preventing immune rejection of graft 
tissue and the high risk of oncogenesis retain their 
value as major constraints to the implementation into 
routine clinical practice. The purpose of the review was 
to summarize and analyze data for existing knowledge 
and prospects for future researches in the field of re-
generative therapy in patients with diabetes mellitus.

Berezin AE. Diabetes mellitus and cellular replacement therapy: 
Expected clinical potential and perspectives. World J Diabe-
tes 2014; 5(6): 777-786  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/777.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.777

INTRODUCTION
Diabetes mellitus (DM) is the most common endocrine 
disease, which is considered one of  the most important 
causes of  morbidity and mortality worldwide[1]. Type I 
DM (T1DM) and type 2 DM (T2DM) have different ori-
gins, which significantly impact on the ability to achieve 
adequate glycemic control. T1DM is an autoimmune 
disease, which is based on absolute deficiency of  insu-
lin secretion due to inflammation, necrosis or apoptosis 
of  β cells[2]. In opposite to T1DM, T2DM is defined as 
predominantly age-related metabolic disease associated 
with insulin resistance and forming β cell dysfunction 
that leads to glycemia and different types of  metabolic 
disorders[3]. Although modern treatment of  DM1 and 
DM2 are usually effective and may sufficiently improve 
clinical status in short-term perspective, it often associates 
with vascular complications in the long term period that 
is discussed as a main cause of  ischemic lesions of  tissues 
and target-organs damages. All these mediate manifesta-
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tion of  endothelial dysfunction, retinopathy, nephropathy 
and cardiomyopathy[4]. The molecular mechanisms that 
are turned up in resulting of  ischemic tissue injury and 
restoration of  tissue perfusion lead to onset and progres-
sion of  the atherosclerotic damage[5]. As a consequence, 
atherothrombosis and the exaggerated ischemic tissue 
injury leading to cardiovascular remodeling mediate in-
creased morbidity and mortality. Overall, DM increases 
age-related mortality and atherothrombotic related death 
in two-fold time[6]. It is needed to take into consideration 
that not all complications of  DM appear to be resulting 
of  ischemic causes. As known there are several none-
vascular factors associated with an increased risk of  man-
ifestation of  DM complications, such as not adequate 
control for hyperglycemia, drug-induced and none-drug-
induced hypoglycemia, as well as age-related metabolic 
comorbidity. It is well known, all they may contribute 
malignant evolution of  DM and negatively relate with 
poor prognosis and tendency to low effectiveness of  
therapies. Currently guidelines for diabetic patient treat-
ment focus an opinion of  physicians on molecular targets 
that affects insulin secretion, glucose regulator peptides, 
hormone regulators, enzymes and transporters. However, 
it is predisposed that treatment approaches would also 
mediate improving of  hypoglycemia associated with sup-
pression of  advanced glycation end products accumula-
tion, decreasing of  reactive oxygen species overproduc-
tion, improving dyslipidemia and endothelial dysfunction, 
prevention of  atherosclerosis, modification of  coexisting 
cardiovascular risk factors and achieving of  adequate 
control for metabolic comorbidities[7]. 

Therefore, taking into consideration of  particularities 
of  pathogenesis of  DM, there are several alternative ap-
proaches toward improving of  efficacy of  contemporary 
therapy. They are directed to reparation and restoration 
of  β-cell function, improving of  metabolic processes by 
specific way, such as stem cell transplantation[8]. Indeed, 
therapeutic potency of  pluripotent stem cells (PSCs), in-
cluding embryonic stem cells (ESCs) and induced PCSs 
in diabetes cure is very promised[9,10]. According novel 
investigations, several ESCs and induced PSCs lines have 
to be great differential capacities for DM patients. As 
expected, they are able to translate into all cell types that 
have a high ability to differentiate into insulin-secreting β 
cells with low risk of  rejection[10]. However, the data on 
regenerative DM care obtained several investigators are 
controversial[11]. Currently we have profound discrepan-
cies in this field between results obtained in animal studies 
and clinical investigations. On the one hand, unexpected 
inconsistencies might be related with several strategies 
of  recruitment and maturation of  stem cells and using 
of  different types of  stem cells. On the other hand, DM 
patient populations are not uniform that negatively as-
sociates with results of  stem cells transplantation[12,13]. The 
purpose of  the review was to summarize and analyse data 
for knowledge and prospects for future researches in the 
field of  regenerative therapy in DM patients.

PARADIGM OF THE REGENERATIVE 
CARE
The main paradigm of  regenerative care bases on new 
knowledge in DM pathogenesis and several molecular 
repair mechanisms[14]. Conceived to halt or reverse disease 
progression, stem cell therapies are applied essentially as 
adjuvants to standard of  care with the goal of  furthering 
an otherwise limited self-renewal capacity of  the disease[15].

EFFECTS OF CELL THERAPY
The possibly effects of  regenerative therapy might have a 
many faces and they affect different sides of  pathophysi-
ological mechanisms of  DM evolution (Figure 1). 

The possible approaches for care are: (1) Regenera-
tion of  β cell mass and restoring of  functional properties 
of  β cell with human stem cells; (2) Stimulation of  the 
endogenous repair mechanisms; and (3) Modulation of  
metabolic processes in stem cells transplanted through 
use of  appropriate cytokines and growth factors that 
might be induced direction for further differentiation of  
stem cells.

However, the innate intimae molecular mechanisms 
leaded to realize the favorable effects of  stem cell trans-
plantation are different (Figure 2).

Regeneration of β  cell mass and restoring of functional 
properties of β  cell with human stem cells
The progressive loss of  functional pancreatic β cells and 
insufficient insulin secretion by β cells due to endogenous 
stimuli are suitable for all forms of  DM[8]. As a variant of  
achieving of  increased desired pancreatic β cell mass is 
allogenic pancreatic islet transplantation. This method is 
currently considered a most efficient approach for DM 
treatment in routine clinical practice[16]. However, there are 
many distinguished strategies to be restoring desired β cell 
mass from stem cell pools. One of  it is strategies is direct-
ed to increasing of  islet precursor cells from embryonic 
stem cells under influence of  relevant transcription factors 
(Pdx1, Ngn3, Isl-1, etc.), as well as with the use of  several 
extracellular factors. Once a high enough proportion of  
islet precursors have been obtained there is a need for cell-
lineage selection in order to purify the desired cell pools[17]. 
More detail cellular mechanisms for stem cell reprogram-
ming aimed regeneration of  pancreatic β-cell mass are de-
scribed in excellent review represented by Pandian et al[18]. 
It has emphasis that there is transplantation of  exogenous 
pancreas/islets or artificial islets, enhanced proliferation 
and maturation of  endogenous β cells, prevention of  β-cell 
loss, or fortified renewal of  β-like-cell populations from 
stem cell pools and non-β-cell sources[19,20]. Results of  
recently performed investigations have been revealed that 
there are serious limitations regarding efficacy and safety 
of  various types of  cell replacement therapies aimed res-
toration of  functional β-cell sources[21]. However, when 
several strategies were compared each other the restoring 
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of  functional β cell mass from human stem cells for cure 
in T1DM appears to be most promising approach[22]. One 
of  explanation of  this phenomenon was use of  specific 
methods and techniques for generating of  stem cells from 
different source[23].

As known there are at least two practically important 
sources for human pluripotent stem cells: (1) Deriving of  
ESCs from blastocysts that were created in vitro; and (2) 
Induced PSCs generated from different cell lineages of  
somatic cells using reprogram methods[17-19]. 

As we can see, ESC deriving is an attractive area of  
scrutinizes. Now there are at least two clinical trials that 
were recently finished and the results obtained have let 
to approve the performing technique for further clinical 
practice. However, the closely discussion with various 

specialists are required to be understand whether will the 
results have serious clinical value or not[24]. Overall, it is 
not exactly known whether will different cell lineages of  
embryonic or adult stem cells have high potency to dif-
ferentiation into β-like cells or not. Moreover, we cannot 
say that only isolated restoring of  the original insulin 
secretory activity of  the transferred cells is expected. It is 
needed to take also into consideration that immunomod-
ulatory effect of  cells transferred affected other tissue 
cells may be possible and that this phenomenon may lead 
to autoimmune destruction of  previously transplanted 
cells and other tissue cells[21]. 

Because human induced PSCs appear to be highly 
similar to human ESCs, novel technology based on re-
programming of  various originated PSCs is discussed 
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Regeneration of functional β cell 
mass from human stem cells

Embryonic stem cells induced 
human pluripotent

Reprogramming to be increase 
islet precursor cells from 
embryonic stems cells or of 
somatic cells differenced origin

Increase of functional β cell mass

Stimulation of the endogenous 
reparation processes

Exposure circulating precursor 
cells and endothelial progenitor 
(precursor) cells with high 
regenerative capacity to be increase
functional  mass of β cells

Regulation of metabolic processes through cytokine and 
growth factor inducing as result in stem cell transplantation

Replacing b-cells aimed:
to enhance the replication of existing β-cells
to stimulate neogenesis
to induce reprogramming of pancreatic exocrine cells 
to insulin-producing cells

Figure 1  The possible approaches of cell therapy in diabetes patients.

Restore endogenous insulin production

Prevention of β-cell loss

Enhanced proliferation and 
maturation of endogenous β cell

Renewal of β-like-cell populations

Restore functional capacity of 
β-cell populations

Induce reparative potent of endogenous 
progenitor cells aimed neovascularization, 
prevention of pancreatic lesion

Wide spectrum of replacing cells (allogenic β-cell islets, embryonic stem cells, 
induced pluripotent stem cells with different origin, progenitor cells)

Figure 2  The potent molecular mechanisms that lead to realize an effect of cell therapy in diabetes.
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functionally capacity of  β-cell and also probably islet-like 
clusters that leads to β-cell mass increasing[20]. It is ex-
pected that microenvironmental of  hBM-MSCs may im-
prove trans- differentiation this type of  cell into insulin-
produced β-cells. There are data that platelet-rich plasma 
might be useful for increasing of  differentiation capacity 
of  the hBM-MSCs[34]. Moreover, it has been postulated 
that hBM-MSCs probably would be considered more op-
timal candidates for further clinical implementation when 
compared with induced PSC, while this predisposition is 
required strong and continuous investigations.

Stimulation of the endogenous reparation processes
There are evidences that circulating precursor cells and 
endothelial progenitor (also known as precursor) cells 
(EPC) are reduced in DM with advanced complications 
such as critical limb ischemia, peripheral neuropathy and 
neuropathic diabetic foot. It is expected that EPC labeled 
CD34+KDR+ and CD31+CD133+ could have not only 
a sufficient prognostic value, but and therapeutic sig-
nificance in DM patients with neuropathic and ischemic 
lesions[35]. The expected effect of  EPC associates with 
stimulation of  the endogenous repair process in the field 
of  the endothelium that may lead to improving of  clini-
cal evolution of  DM. It is needed to emphases the signal-
ing pathways that lets EPC to differentiate into functional 
β-cells and mature endothelial cells are still poorly un-
derstood and their clinically potency is being be currently 
unresolved[36].

The strategy of regulation of metabolic processes with 
stem cells
Some alternative approaches for replacing β-cells include 
follow principal ways toward to enhance the replication 
of  β-cells, stimulation of  neogenesis of  the tissues af-
fected DM-related injury, and reprogramming of  auto-
logic pancreatic exocrine cells to patient-specific insulin-
producing cells. The contemporary approaches based on 
various type stem-cell deriving might also be useful for 
effective modulation of  the immune system response in 
T1DM patients. It is also possible the problems of  obe-
sity and insulin resistance appearance in T2DM could re-
solve with immune system response modulation through 

patient-specific insulin-producing cells transfer[19]. It is 
predisposed that such approaches may lead to increased 
efficacy regeneration of  pancreatic β-cell mass and func-
tional activity of  restoring β-cells[17,18]. Another potential 
factor could be mediated the effects of  stem cells are cy-
tokine and growth factor, but their clinically importance 
in DM patients is not still understood. 

RESULTS OF PRE-CLINICAL STUDIES OF 
STEM CELL-BASED THERAPY 
Early experience in the treatment of  diabetes employs 
stem cells in their native state, as well as unfractionated 
or enriched in progenitor subpopulation cells, but next 
generation of  cell delivery such as reprogramming stem 

as one of  the most promising technique[25]. Now it is 
known that PSCs may be successfully derived from vari-
ous human somatic cells, such as dermal fibroblasts and 
keratinocytes[26]. Therefore, autologous pancreatic islets 
may be differentiated from induced PSCs that derived 
from DM subjects using integrating retroviral vectors 
that integrate into the host genome and after then it may 
replace to donor[27-29]. Importantly, that use embryonic 
cells in this case is not required. Based on the results of  
the contemporary investigations, it is possibility empha-
ses that induced PSCs that have been derived from DM 
subjects with helping of  various trans-differentiation 
techniques are not similar on their biological safety[27-30]. 
There are needing for continuously investigations of  
more representative technologies that may let us suffi-
ciently improve of  biological hazardless around strategy 
based on induced PSC transfer. However, before clinical 
implementation of  induced PSCs transplantation there is 
required to perform fundamental investigations related 
the specificity, efficiency, kinetics, and biological safety 
of  novel methods of  cell reprogramming. Despite results 
of  controlled studies in this field are limited, novel ap-
proaches regarding improve and change the induced PSC 
process promise to be more successful than previous[31]. 
Currently there are some transcription factors (molecu-
lar factors, vectors, various small molecules) that might 
be useful for improving functionality of  induced PSCs 
before replacement. All these may increase an attractive 
of  trans-differentiation technique to derive one somatic 
cell type to another patient-specific cell through step as-
sociated with induced PSCs obtained[29]. Results of  the 
recently studies have been found that using transcription 
factors for trans-differentiation of  induced PSC into 
patient-specific cells may open a new era of  regenera-
tive medicine. The use of  different types of  somatic cells 
with trans-differentiation technology is consider an im-
portant approach for improving plastic of  induced PSC 
reprogramming and as serious extend of  possibilities for 
increasing efficacy and biological safety of  regenerative 
medicine[29,31]. Finally, irrespective several limitation of  
clinically-based evidences of  implementation of  trans-
differentiation on routine clinical practice, it is required 
to accumulate efforts toward summarize of  knowledge 
about novel method of  induced PSC transcription.

The contemporary investigations regarding clinical 
using of  insulin-producing surrogate cells derived from 
ESCs have been revealed controversial results. This 
would be related with uniformness in transcription fac-
tors use and in the sufficiently differentiation affected 
techniques of  ESC deriving. However, there is no con-
sensus on common standard protocols regarding clinical 
approaches mentioned above[32,33]. Despite the contempo-
rary statements are required improvement, they present 
requirement about uniform technology regarding differ-
entiation methods of  deriving pancreatic progenitor cells 
from pluripotent cells[25]. Therefore, another source of  
deriving of  autologic insulin-producing β-cells is tested. 
Indeed, human bone marrow mesenchymal stem cells 
(hBM-MSCs) might be considered a source for restoring 
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cells, bone marrow-derived mononuclear cells; lineage-
specified progenitor cells are considered more perspec-
tive (Table 1).

Reprogramming stem cells
A new era in reprogramming of  stem cells is related with 
techniques of  therapeutic cloning. Recently it has been 
reported to have a high potency in DM treatment[37]. 
Now there are essential requirements of  a material de-
signed as stem cells differenced origin recruited for fur-
ther reprogramming process[38]. These include ESCs and 
multipotent adult stem/progenitor cells derived from 
a wide range of  tissues (pancreas, intestine, liver, bone 
marrow, brain, etc.)[39]. There are various evidence for us-
ing of  recombinant proteins or pharmacologic drugs to 
induce and mediate the reprogramming process[40,41]. The 
strategic approaches include follow important direction 
affected development of  generating methods and tech-
nologies that associates with non-integrating, non-viral, 
and non-genetic techniques toward induced PSCs deriv-
ing[41]. There are some basic conditions for pluripotency 
determination that have been identified in vitro, and aimed 
at specific types of  somatic cells[42]. The high quality 
review presented by Hindley et al[43] that is devoted cur-
rent understanding of  possible interrelationship between 
the core cell cycle machinery and the maintenance of  
pluripotency in ESCs and induced PSCs. However, there 
are advantages of  therapeutic cloning affected the poten-
tial of  cells originated from non-β-cell and related with 
avoiding of  the autoimmune response after transplanta-
tion[44]. Despite there is a high similarity of  different types 
of  ESCs, effectiveness of  reprogramming methods is 
low and successful result of  stem cell culturing appears in 
0.01%-0.1% cases[26]. These facts are considered a cause 
for design of  stem cell bank in short-term perspective[45]. 

Although tremendous clinical effects of  stem cell transfer 
are related with induced PSC transplantation, majority 
experts have been believed that differentiation of  self-
renew autologic somatic cells into specific patient-related 
cells are more desirable approach then ESCs and induced 
PSC transplantation[46]. However, fully pluripotency is 
remained available capacity for various lines of  human 
induced PSC[37]. Little known whether these advances 
for new treatment care in DM patients will preserve[47,48]. 
Currently new lines of  PSC might be powerful for media-
tion of  the molecular mechanism regulation affected the 
reprogramming process of  stem cells different origin[49].

Bone marrow derived mesenchymal stem cells 
transplantation
Although there is significant progress in the development 
of  safety in turn of  clinical implementation of  the first 
derivation of  ESCs and induced PSCs, transgene-free 
induced PSC methods of  reprogramming technology 
have to be attractive as the best technique for culturing 
of  pluripotent stem cells[50]. Cell therapy based on mes-
enchymal stem cell (MSC) transplantation is considered 
an effective in the treatment of  DM with higher level of  
safety and tolerability when compared with ESCs. Bone 
marrow mesenchymal stem cells (BMSCs) have individual 
particularities that appear to be self-renewing capacity. 
Therefore, BMSCs represent multipotent activity and 
may migrate to appropriate pathological sites for realizing 
their therapeutic potency. The successful BMSC trans-
plantation was presented in animal model of  T2DM and 
it was associated with significantly improving of  the fast-
ing glucose and decreased atherogenic circulating lipids 
in blood. Other biological markers of  cardiovascular and 
metabolic risk were modulated also after transfer of  BM-
SCs. Indeed, circulating C-peptide levels were significant-
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Table 1  Summary preclinical data among stem cell transplantation in diabetic animals

Type of cell replaced Positive effect expected Negative effect expected

Embryonic stem cells Direct effect:
Differentiation into functional insulin-producing cells
Indirect effect:
Improving of the fasting blood glucose due to restore 
the function of islet β cells
Decreasing of blood lipid levels
Increasing of serum C-peptide level
Prevention of free-radical induced oxidative stress 
injury of beta-cells
Improving of pancreatic microcirculation

Ethical problems
Rejection
High frequency of autoimmune-mediated destruction of the β cells 
and other autoimmune reactions
High immunogenency
Malignancy
Potential tumor mediated effect

Pluripotent stem cells Direct and indirect effects:
See mentioned above

High frequency of rejection
High immunogenency 
Low frequency of autoimmune-mediated destruction of the β cells and 
other autoimmune reactions
Potential tumor mediated effect

Bone marrow derived 
mesenchymal stem cells

Direct and indirect effects:
See mentioned above

Low frequency of autoimmune-mediated destruction of the β cells
Moderate immunogenency
Potential tumor mediated effect
Low frequency of rejection

Adipose-derived stem 
cells

Direct and indirect effects:
See mentioned above

Extremely low incidences in comparison with bone marrow derived 
mesenchymal stem cells of rejection, potential tumor mediated effect 
and autoimmune-mediated destruction of the β cells
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ly increased in resulting of  BMSCs transplantation[51]. El-
Tantawy et al[52] reported that autologous BMSCs appear 
a significantly potency to prevention of  tissue alterations 
in animals with DM. This effect was probably associated 
with attenuation of  the alloxan-induced oxidative stress. 
Authors have believed that BMSCs demonstrate rigorous 
ability for differentiation into functional insulin-produc-
ing β-cells and that therapeutic effect of  BMSCs may 
allow achieving an adequate control for hyperglycemia, 
improve hyperlipidemia, and suppress oxidative stress. All 
these mentioned above may be helpful in the global strat-
egy toward prevention of  DM-related complications. 

Tang et al[53] investigated the effect of  transplantation 
of  autologous BMSCs in streptozotocin-induced DM 
pigs. The results obtained in the animal model have been 
showed that transplantation of  autologous BMSCs may 
help to reverse a streptozotocin-induced DM. Moreover, 
after transplantation the autologous BMSCs leaded to re-
storing of  blood glucose levels, improving of  glucose tol-
erance test and pancreatic microcirculation, increasing of  
circulating insulin and C-peptide, as well as the number 
of  islets was significantly increased. Obviously these data 
suggested that autologous BMSCs implantation might be 
useful as alternative strategy of  DM. Overall, majority in-
vestigators have been concluded that the transplantation 
of  BMSCs aimed alternative treatment of  DM added to 
conventional strategy is safe and effective[52,53].

Limitation of the cell therapy in DM
There is wide spectrum of  serious limitations for trans-
plantation of  the stem cell. The main obstacles affected 
success of  the strategy in T1DM is autoimmune-mediat-
ed destruction of  the transplanted β-cells and pancreatic 
islets[54]. One of  the possible causes leaded to low efficacy 
of  stem cell transplantation is cellular damage during the 
isolation process and donor shortages[55]. All these stimu-
late efforts for creating of  novel techniques for increase 
transplantation efficacy by co-culturing single primary is-
let cells with adipose-derived stem cells (ADSCs). Now it 
has suggested that ADSCs may have a sufficient potency 
to islet cell protection from damage during culturing. 
Despite this expectation, no significant evidences that 
the ADSC use improve survival of  islet cells and their 
functionality prior to transplantation procedure. In this 
context many investigators point that culturing technique 
is crucial for efficacy of  xenotransplantation procedure. 
Indeed, in vivo experiments with involving xenotransplan-
tation of  microfiber-encapsulated spheroids into a mouse 
model of  DM have found that co-culture-transplanted 
mice lead to higher glucose metabolism modulation when 
compared with mono-culture-transplanted mice. The 
novel method for culturing islet spheroids were tested by 
Jun et al[55]. Investigators concluded that new technique 
is potentially over helmed the traditional technologies in 
turn of  cell shortages. Moreover, islet spheroids cultur-
ing may probably consider a biological artificial pancreas. 
Currently, both cell source, ESC and induced PSC, allow 
achieving a high levels of  insulin-produced β-cell dif-
ferentiation, but due to ethical issues and the potential 

malignancy risk after transplantation clinical use of  these 
approaches are limited Next alternative strategy to be 
overcome the such seriously obstacles mentioned above 
is attempts to use pancreatic epithelial cells that may also 
represent capacities for differentiation into patient-spe-
cific insulin-produced β-cells. However, there are major 
reasons for limitation in clinical implementation of  pan-
creatic epithelial cells due to their high immunogenency. 
Finally, induced PSCs, ADSCs, and BMSCs are currently 
discussed the great promise for regenerative medicine in 
DM field. 

EXPECTANCIES OF STEM CELL-BASED 
THERAPY IN DIABETIC PATIENT 
POPULATIONS
The expectations that cell therapy may appear new 
strategy approach for restoring of  β-cell mass and their 
functionality is based on the results of  recent investiga-
tions. They have been indicated that full glycemic control 
may be achieve after replacement of  autological β-cells 
and induced PSCs[56]. The pre-clinical studies in support 
of  regenerative paradigms in DM have been tested in 
different clinical settings with using of  various stem cell 
culturing[57]. It is traditional techniques for human ESCs 
culturing are incompatible with the generation of  geneti-
cally diverse, patient- or disease-specific stem cells[58]. 
The basic data among stem cell-based therapy in diabetic 
patient population are presented in Table 2. However, 
the overall efficiency of  the conversional nuclear transfer 
is very low and the safety issue remains a major concern 
for induced PSCs implementation in various DM patient 
populations[59]. Overall, the results of  the recent stud-
ies are controversial due to lack uniformity of  design 
and protocols related techniques of  the cell isolation 
and delivery methods[33]. Moreover, accordingly opinion 
Soejitno et al[26], the implementation of  the stem cell in 
the routine clinical setting is limited due to risk of  malig-
nancy, autoimmune response and rejection of  the trans-
planted cells. Indeed, the allogeneic immune rejection of  
human ESC-derived cells is considered the main cause of  
efficacy limitation in recipients[23]. This important prob-
lem might be attenuate by implementation of  the novel 
technology affected nuclear reprogramming of  induced 
PSCs in DM patients. However, despite many significant 
advances novel technological approaches recent clinical 
studies did not shown superiority new treatment when 
compared with traditionally methods based on induced 
PSCs therapy[23]. Finally it is required novel clinical inves-
tigations with greater statistical power to be resolving of  
the situation around efficacy of  various methods of  the 
cell therapy in DM[60]. 

FUTURE PERSPECTIVES OF 
REGENERATIVE THERAPY
The ability to interconvert terminally differentiated cells 
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Abstract
Hyperuricemia have been thought to be caused by the 
ingestion of large amounts of purines, and prevention 
or treatment of hyperuricemia has intended to prevent 
gout. Xanthine dehydrogenase/xanthine oxidase (XDH/
XO) is rate-limiting enzyme of uric acid generation, and 
allopurinol was developed as a uric acid (UA) genera-
tion inhibitor in the 1950s and has been routinely used 
for gout prevention since then. Serum UA levels are an 
important risk factor of disease progression for various 
diseases, including those related to lifestyle. Recently, 
other UA generation inhibitors such as febuxostat and 
topiroxostat were launched. The emergence of these 
novel medications has promoted new research in the 
field. Lifestyle-related diseases, such as metabolic syn-
drome or type 2 diabetes mellitus, often have a com-
mon pathological foundation. As such, hyperuricemia 
is often present among these patients. Many in vitro 
and animal studies have implicated inflammation and 
oxidative stress in UA metabolism and vascular injury 
because XDH/XO act as one of the major source of 
reactive oxygen species Many studies on UA levels 
and associated diseases implicate involvement of UA 
generation in disease onset and/or progression. Inter-
ventional studies for UA generation, not UA excretion 
revealed XDH/XO can be the therapeutic target for 

vascular injury and renal dysfunction. In this review, 
the relationship between UA metabolism and diabetic 
complications is highlighted.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Uric acid (UA) is derived from essential me-
tabolism, and UA metabolism is becoming a novel risk 
and interventional factor of lifestyle-related diseases 
in this obesity-prone era. The relationship between UA 
metabolism and diabetic complications is highlighted in 
this review and supposed molecular mechanisms are 
mentioned.

Kushiyama A, Tanaka K, Hara S, Kawazu S. Linking uric 
acid metabolism to diabetic complications. World J Diabe-
tes 2014; 5(6): 787-795  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/787.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.787

URIC ACID METABOLISM
Gout, which is caused by increased serum uric acid (SUA) 
levels, is becoming one of  the most prevalent lifestyle-
related diseases. According to the National Livelihood 
Survey in Japan, 874000 people go to hospital for gout 
in 2004. This constitutes an increase of  3.4 times com-
pared with 1986. Higher prevalence of  metabolic syn-
drome (MetS) is one possible cause for this increase in 
gout cases, as both the reduced excretion and increased 
production of  UA have been suggested to be associated 
with MetS. Increased visceral adiposity also causes MetS. 
In mice, evidence exists that UA is secreted from bloated 
adipocytes[1]. No studies in humans have confirmed this 
finding yet.

REVIEW

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4239/wjd.v5.i6.787

World J Diabetes  2014 December 15; 5(6): 787-795
ISSN 1948-9358 (online) 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

787 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com



Uric acid (UA) (2,6,8-trihydroxypurine, C5H4N4O3) 
is a purine derivative. UA metabolism is a type of  nucleic 
acid metabolism metabolizing purine and its derivatives 
(adenine, and guanine). Phosphorus oxidation of  ad-
enine and guanine (resulting in ATP and GTP) and UA 
production are essential for many physiological func-
tions. For example, high fructose consumption cause 
hyperuricemia.

FACTORS THAT DEFINE SERUM URIC 
ACID LEVELS
SUA levels are determined by a balance between UA 
production and excretion. At present, no method for 
detecting the UA production rate is available in humans. 
Instead, UA production are indirectly speculated through 
SUA level and urine excretion. The rate-limiting step of  
UA production is an enzymatic reaction of  the xanthine 
dehydrogenase/xanthine oxidase (XDH/XO) enzyme 
that oxidizes hypoxanthine-xanthine into UA. Human 
XDH/XO was cloned in 1993 by Richard[2]. It is ex-
pressed in the liver and small intestine of  XDH/XO-rich 
parenchyma cells[3] and is thought to be the major source 
for SUA. The enzyme is also expressed in adipose tissue, 
the vascular endothelium, and macrophages, all of  which 
are implicated in lifestyle-related diseases[4]. The UA pro-
duction rate is based on the amount of  substrate and/or 
XO activity. Since the generation of  reactive oxygen spe-
cies (ROS) depends on XO activity, XO is one of  the 
major sources of  oxidative stress in cells along with nico-
tinamide adenine dinucleotide phosphate oxidase, myelo-
peroxidase, lipoxygenase, and nitric oxide synthase[5]. 

The kidney is an important regulator of  circulating 
UA levels and is responsible for 60%-70% of  total body 
UA excretion[6]. The remaining UA is secreted into the in-
testine, followed by bacterial uricolysis[6]. UA excretion in 
the kidney consists of  urate secretion and reabsorption, 
and earlier research suggests the involvement of  hyper-
filtration[7]. UA apical transporters [uric acid transporter 
1, organic anion transporter 4 (OAT4), OAT10, sodium-
coupled monocarboxylate transporters 1/2, and Na+-di-
carboxylate cotransporter (NaDC1)], which are expressed 
in the nephron lumen are implicated in the reabsorption 
process. The role of  basolateral transporters in proximal 
tubular cell is not clarified except for glucose transporter 
type 9 (GLUT9). During the secretion process, UA is 
transported into proximal tubular cells via OAT1/3 
and/or NaDC3 and then secreted by human uric acid 
transporter, Na+-phosphate cotransporter (NPT), ATP-
binding cassette sub-family G member 2 (ABCG2), and/
or ATP-binding cassette sub-family C member 4. Ninety 
percent of  UA filtered by the kidney is reabsorbed[6]. In 
the intestine, ABCG2 is responsible for about 50% of  
UA efflux[8-10].

There are many studies about genetic variations ex-
hibiting hyperuricemia. Among genes introduced above, 
variants of  GLUT9 (SLC2A9)[11,12], NPT (SLC17A1)[13], 

ABCG2 (BCRP) variant[14], are well established and 
proved to be important in hyperuricemia as a result of  
decreased extra-renal urate excretion. Genome-wide asso-
ciation study is applied for detecting loci affecting serum 
UA level. Recent report identified 18 new loci (18 new re-
gions in or near TRIM46, INHBB, SFMBT1, TMEM171, 
VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, 
ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, 
ACVR1B-ACVRL1 and B3GNT4) associated UA con-
centrations[15]. Not only transporters, but also transcrip-
tional factors, signaling receptors, enzymes are involved 
in serum UA level.

UA LEVELS IN TYPE 2 DIABETES 
MELLITUS AND METS
Table 1 shows association between life-style related dis-
eases and UA metabolism[16-24]. Distinguishing cause and 
effect is difficult; some diseases raise SUA level, but UA 
affect disease onset or progression.

In patients with diabetes, the SUA level is low due to 
increased urate clearance[20,25]. In these patients, hypouri-
cemia is associated with glycosuria[26], decreased metabolic 
control, hyperfiltration, and a late onset of  disease, while 
elevated SUA is a feature of  hyperinsulinemia or insulin 
resistance[7]. Type 2 diabetes mellitus (T2DM) is a risk fac-
tor for nephrolithiasis and has been associated with UA 
stones[27]. It has been suggested that patients with UA 
stones, especially if  overweight, should be screened for 
T2DM or MetS[28]. The rate of  obesity is increasing in Asia 
as well as in Western countries[29], and hyperuricemia will 
increase in patients with T2DM. Novel class of  anti-diabet-
ic agent, sodium glucose cotransporter 2 inhibitor lowers 
serum uric acid through alteration of  uric acid transport 
activity in renal tubule by increased glycosuria[21,30].

T2DM ONSET AND UA LEVELS
Besides age, race, family history of  diabetes, body mass 
index (BMI), glucose intolerance, and MetS, SUA levels 
have been suggested to be associated with T2DM risk[31]. 
If  elevated SUA levels play a causal role in T2DM, SUA 
might also indirectly affect the prevalence of  diabetic 
complications. The diabetogenic action of  UA was re-
ported in 1950[32]; however, its physiological mechanism 
is not yet known. SUA levels affect insulin resistance[19] 
and show a significant correlation with risk factors for 
MetS (high BMI, blood pressure, fasting plasma glucose, 
and triglyceride levels) and low HDL cholesterol val-
ues[19,31,33,34]. Moreover, high SUA levels were shown to 
predict MetS in a Japanese cohort[35]. We previously re-
ported an association between inflammation, macrophage 
activation, and SUA production via XDH/XO activation 
in an animal model[36]. In summary, a link between SUA 
and insulin resistance has repeatedly been shown, and UA 
itself  reportedly plays an important role in the exacerba-
tion of  insulin resistance[37]. 
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DIABETIC COMPLICATIONS AND UA 
LEVELS
SUA independently predicted the development of  vas-
cular complications, both retinopathy and nephropahy 
and coronary artery calcification in type 1 diabetes study 
by Bjornstad et al[38]. The following section discusses the 
relationship between SUA levels and each diabetic com-
plication.

Neuropathy
Diabetic neuropathy is occasionally the initial manifesta-
tion of  disease in T2DM patients[39]. It leads to chronic 
pain, numbness, and substantial loss of  quality of  life. 
The prevalence of  diabetic peripheral neuropathy shows 
a significant correlation with increased UA levels[40]. 
Several studies demonstrated that, when controlled for 
confounding factors such as age, gender, BMI, renal 
function, and/or diabetic duration, SUA levels were high 
in patients with diabetic polyneuropathy and sudomotor 
dysfunction[41-43]. 

The pathophysiology of  diabetic neuropathy is not 
completely understood, and multiple metabolic imbal-
ances underlie the development of  diabetic neuropa-
thy[44]. Hyperglycemia, dyslipidemia, and cardiovascular 
dysfunction are all independent risk factors for neuropa-
thy. Probable etiologic factors include the polyol pathway, 
non-enzymatic glycation, free radicals, oxidative stress, 
and inflammation. Oxidative stress and inflammation are 
involved in XDH/XO activity. It is therefore speculated 
that UA generation by XDH/XO plays a role in diabetic 
neuropathy.

Diabetic retinopathy
The presence of  diabetic retinopathy (DR) is associated 
with visceral fat accumulation and insulin resistance in 
T2DM patients[45]. An earlier report found no significant 
difference in UA levels between patients with or without 
retinopathy[46], but several recent studies showed a sig-
nificant increase of  UA-related metabolites levels in DR 

compared to T2DM[47]. SUA concentration was shown 
to be associated with an increased severity of  DR over a 
three-year period in patients with T2DM. Cox regression 
analysis showed that patients with SUA levels in the third 
(5.9-6.9 mg/dL) and fourth (≥ 7.0 mg/dL) quartiles 
had increased hazard ratios for DR when compared with 
patients with SUA in the first quartile (< 4.9 mg/dL)[48]. 
Furthermore, vitreous UA and glucose concentrations 
were higher in proliferative than in non-proliferative DR. 
Focal UA production in the vitreous is thought to be in-
volved in the pathogenesis and progression of  DR[49]. 

Nephropathy
Shichiri et al[50] showed that glomerular hyperfiltration also 
occurs in non-insulin-dependent diabetes mellitus (NI-
DDM) and that it lowers SUA levels by increasing the re-
nal clearance of  urate during the hyperfiltration phase[50]. 
They suggested that hypouricemia can predict the future 
progression of  incipient nephropathy in NIDDM[50]. 
However, other reports have implied that high (and not 
low) SUA levels define the prognosis of  chronic kidney 
disease (CKD)[51]. SUA is also associated with known risk 
factors for kidney disease progression[52], including hyper-
tension[53], cardiovascular disease[54-56], and atherosclero-
sis[55]. SUA is an independent risk factor for CKD, even 
without diabetes[57].

SUA is known to be associated with disease pro-
gression in the early stage of  diabetic nephropathy[17,58]. 
We found that the progression of  renal dysfunction in 
patients with type 2 diabetic overt nephropathy with 
an SUA concentration of  ≥ 6.3 mg/dL carries a poor 
prognosis, even though their SUA range is considered 
high-normal[59]. Our data shows the association between 
UA and disease progression is independent of  diabetic 
control in multivariate analysis. Another report provided 
evidence for a clear dose-response relationship between 
SUA levels and early glomerular filtration rate (GFR) 
loss in patients with T1DM. The progression and regres-
sion of  urinary albumin excretion were not associated 
with UA levels[60]. These studies show that UA is an in-
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Table 1  Association between life-style related diseases and uric acid metabolism

Diseases/status SUA level UA production Focus 1 UA excresion Focus 2

T2DM High/low
   Glucosuria Low Up Glomerulus
   Insulin resistance High Down Proximal tubule cell
   Use of SGLT2 inhibitor Low Up
  Retinopathy Up Vitreus
MetS High Up Adipocyte/liver? Down Proximal tubule cell
CKD High Up Vascular endothelial cell/inflammatory cell Down/up Kidney/intestine
Hypertension High Up
Atherosclerosis Up Vascular endothelial cell/inflammatory cell
Reperfusion injury Up Vascular endothelial cell
Heart failure Up Inflammatory cell
Fructose intake High Up Liver Down
Sodium intake High Down
Thiazide administration High Down Proximal tubule cell

UA: Uric acid; SUA: Serum uric acid; T2DML: Type 2 diabetes mellitus; CKD: Chronic kidney disease; MetS: Metabolic syndrome.
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(especially exercise time until ST depression) when a high 
dose of  600 mg/d of  allopurinol was administered to pa-
tients with chronic stable angina[76]. Allopurinol treatment 
also protects the heart from ischemic reperfusion[77], and 
oxypurinol, an allopurinol derivative, improves the left 
ventricular ejection fraction (LVEF) in congestive heart 
failure patients with low LVEF[22]. Despite the numerous 
aforementioned studies, several studies have indicated 
that no association between UA and ischemic stroke[78] or 
heart disease[79] exists.

OXIDATIVE STRESS, ISCHEMIA/
REPERFUSION, AND VASCULAR 
ENDOTHELIAL XDH/XO
UA itself  reportedly functions as an anti-oxidant[80]. For 
example, XDH-null mutant Drosophila melanogaster 
have increased vulnerability to oxidative stress[81]. Uric 
acid administration improved endothelial function in the 
forearm vascular bed of  patients with type 1 diabetes and 
smokers[82]. However, UA synthesis is accompanied by 
the generation of  ROS.

XDH/XO in the vascular endothelium is associated 
with ischemia reperfusion injury. It has also been suggest-
ed that XO inhibitors improve endothelium-dependent 
vascular relaxation in blood vessels of  hyperlipidemic 
rabbits[83]. XO as the source of  ROS in ischemia/reper-
fusion injury has been discovered 30 years ago[84,85], and 
this injury is preventable with XO inhibitors[86]. XOR in-
hibition reverses endothelial dysfunction in heavy smok-
ers[87,88]. XO inhibitors have the potential to act as free 
radical scavengers. Febuxostat, however, does not have 
this activity but can improve organ changes induced by 
ischemia/reperfusion[23].

FAT DIFFERENTIATION, INSULIN 
RESISTANCE, AND XDH/XO IN FAT 
CELLS
Adipose tissue has a high xanthine oxidoreductase activ-
ity in mice[1], and UA is secreted from adipocytes. XDH/
XO is a novel regulator of  adipogenesis and peroxisome 
proliferator-activated receptor gamma (PPARγ) activity 
and is essential for the regulation of  fat accretion[89]. In 
addition, UA and adipose tissue XOR mRNAs are in-
creased in ob/ob mice, and fat mass is reduced by 50% 
in XOR-/- mice.

ATHEROSCLEROSIS AND XDH/XO IN 
MONOCYTES/MACROPHAGES
XDH/XO is localized to CD68 positive macrophages in 
the pathological state[36,90]. Inhibition of  XDH/XO in in-
flammatory mononuclear phagocytes inhibits the migra-
tion of  neutrophils during acute lung injury[91]. Through 
inhibition of  XDH/XO activity, cytokine-induced neu-

dependent risk factor for renal dysfunction, even after 
adjustments for confounding factors. Furthermore, even 
high-normal SUA levels accelerated renal dysfunction in 
T2DM patients[17,59-62].

UA is lowered in diabetes mellitus (DM) due to 
hyperfiltration[50], but decreased UA excretion during 
renal dysfunction raises SUA levels. Our previous study 
showed that UA levels in the patients who doubled Cr in 
the observation period (Cr doubling group) were higher 
than in the non-doubling group at the same estimated 
GFR (eGFR) level, suggesting that UA production was 
increased in the Cr doubling group[59]. These data suggest 
that higher levels of  UA production are involved in the 
pathophysiology of  nephropathy progression.

Several recent studies have been investigating ther-
apeutic interventions to delay nephropathy progres-
sion[63-65]. Allopurinol therapy significantly decreases SUA 
levels in hyperuricemic patients with mild to moderate 
CKD. Its use is safe and has been shown to help preserve 
kidney function when used for a duration of  12 mo[63]. 
Febuxostat has a higher renoprotective effect than al-
lopurinol, inhibits oxidative stress, has anti-atherogenic 
activity, reduces blood pressure, and decreases pulse wave 
velocity and left ventricular mass index, most likely due 
to a strong SUA lowering effect[65]. In an animal diabetic 
nephropathy model, allopurinol attenuated transforming 
growth factor-beta1-induced Smad pathway activation in 
tubular cells[66].

Diabetic foot
There are a few reports regarding the relationship be-
tween diabetic foot and UA levels. One study states that 
elevated UA levels are a significant and independent risk 
factor for diabetic foot ulcer in female Chinese patients 
with T2DM[67].

Macrovascular complication
A relationship between SUA levels and the development 
of  atherosclerotic disease has been suggested[68-70]. More-
over, there is epidemiological evidence of  an association 
between hyperuricemia and mortality in patients under-
going percutaneous coronary intervention or presenting 
with acute myocardial infarction[71-73]. Our study showed 
that SUA is an independent risk factor for vascular com-
plications, even when adjusted for several confounders, 
including eGFR[56].

Macroangiopathy includes stroke, peripheral artery 
disease, and ischemic heart disease. In stroke, SUA lev-
els are higher in patients with cardiac syndrome X, and 
elevated SUA levels are associated with carotid athero-
sclerosis[74]. A U-shaped relationship was shown for this 
correlation, as both the upper and bottom quintiles of  
SUA were associated with a higher risk of  fatal stroke[75]. 
Besides, our study, a link between peripheral artery dis-
ease and UA has been rarely reported[56]. 

Several interventional studies have proven the efficacy 
of  hyperuricemia treatments. A randomized controlled 
study showed that allopurinol prolongs exercise capacity 
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trophil chemoattractant secretion from mononuclear 
phagocytes is reduced, and small ubiquitin-like modifier 
of  PPARγ and hypoxia-inducible factor 1α levels are 
increased[92]. Febuxostat activates mitogen-activated pro-
tein kinase phosphatase-1 and inhibits inflammation by 
lipopolysaccharide stimulation through the inhibition of  
ROS generation[93]. Tungsten, acting as a xanthine oxidase 
inhibitor, prevents the development of  atherosclerosis in 
ApoE knockout mice fed a Western-type diet[94].

XDH/XO activity is also important for lipid accumu-
lation[36]. XDH/XO knockdown or allopurinol admin-
istration inhibited foam cell formation in macrophage 
J774.1 cells. The production of  inflammatory cytokines 
associated with foam cell formation was reduced by al-
lopurinol and febuxostat, and these medications also sig-
nificantly improved calcification and lipid accumulation 
in the aortic plaque of  ApoE-KO mice[36,95]. It should be 
noted that the expression of  XDH/XO and the deposi-
tion of  UA are seen in macrophages in arteriosclerotic 
lesions[96]. In vitro, febuxostat inhibited cholesterol crystal-
induced ROS formation[95].

Some reports describe XDH/XO as an endogenous 
regulator of  cyclooxygenase (Cox)-2[97] in the inflamma-
tory system, and XDH/XO is central to innate immune 
function[98]. XDH/XO is thought to be upstream of  
PPARγ in lipid retention[89] and also induces Cox-2 to 
induce inflammation, forming a potential feedback loop. 
In our study, administration of  allopurinol to J774.1 cells 
inhibited secretion of  inflammatory cytokines such as 
tumor necrosis factor α, interleukin (IL)-1β, and IL-6[36]. 
Gout-associated uric acid crystals activate the NALP3 
inflammasome[99]. UA crystals can injure organelle such as 
lysosomes, and damaged organelle selectively sequestered 
by autophagy[100]. If  mitochondria is damaged, autopha-
gosome is driven via microtubule to NLRP3 inflamma-
some[101]. Colchine treatment expresses the anti-inflam-
matory effect for gout by inhibiting microtubule-driven 
spatial arrangement, not by inhibiting UA crystallization. 
Therefore uric acid crystal in inflammatory cells of  ath-
erosclerosis lesion might activate inflammation, while 
solvent uric acid acts as antioxidant. Microtubule-driven 
spatial arrangement might be a possible target for dia-
betic complication derived from UA crystals. 

SIGNIFICANCE OF FUTURE UA 
METABOLISM RESEARCH FOR THE 
TREATMENT OF PATIENTS WITH 
DIABETES
XDH/XO has been studied for more than a century, 
and allopurinol has been used before enzyme inhibition 
therapy was established. In recent years, the various roles 
of  XDH/XO in diverse pathological conditions have 
been revealed using a wide variety of  research techniques, 
particularly in the field of  molecular biology. This prog-
ress in research is related to the global demand to target 
lifestyle-related diseases such as T2DM, coronary artery 

disease, CKD, and MetS. Novel research has also led to 
the development of  new powerful and safe UA lowering 
agent.

Obesity rates are increasing rapidly, and consequently, 
the pathophysiology of  T2DM will be increasingly cor-
related with fat accumulation, chronic inflammation, and 
oxidative stress. UA metabolism (involving XDH/XO) 
is thought to play a central role in the pathogenesis of  
these conditions. Hence, the need for novel research will 
increase in the future.

CONCLUSION
The incidence of  hyperuricemia has been on the increase 
since decades. The condition seems to be associated with 
increased insulin resistance and onset and progression of  
diabetic complications. UA might thus be suitable marker 
for both risk evaluation and intervention.
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Abstract
Patients with diabetes mellitus (DM) need psychologi-
cal support throughout their life span from the time of 
diagnosis. The psychological make-up of the patients 
with DM play a central role in self-management behav-
iors. Without patient’s adherence to the effective thera-
pies, there would be persistent sub-optimal control 
of diseases, increase diabetes-related complications, 
causing deterioration in quality of life, resulting in in-
creased healthcare utilization and burden on healthcare 
systems. However, provision of psychosocial support is 
generally inadequate due to its challenging nature of 
needs and demands on the healthcare systems. This 
review article examines patient’s psychological aspects 
in general, elaborates in particular about emotion ef-
fects on health, and emotion in relation to other psy-
chological domains such as cognition, self-regulation, 
self-efficacy and behavior. Some descriptions are also 
provided on willpower, resilience, illness perception and 
proactive coping in relating execution of new behaviors, 
coping with future-oriented thinking and influences of 
illness perception on health-related behaviors. These 
psychological aspects are further discussed in relation 

to DM and interventions for patients with DM. Equipped 
with the understanding of the pertinent nature of psy-
chology in patients with DM; and knowing the links 
between the psychological disorders, inflammation and 
cardiovascular outcomes would hopefully encourages 
healthcare professionals in giving due attention to the 
psychological needs of patients with DM. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Psychology; Psychosocial aspects; Emo-
tions; Cognition; Distress; Depression; Psychological 
resilience; Self-care; Coping behaviors; Quality of life; 
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Core tip: Positive psychological health may sustain 
long-term coping efforts and protect patients from the 
negative consequences of prolonged emotional disor-
ders, illness perception and thus facilitating diabetes 
self-management behaviors and better physical health. 
Having patients acquire valued personal beliefs and 
achievable standards of performance could strengthen 
self-regulation and self-efficacy leading to more posi-
tive experience and healthy behaviors. Furthermore, 
improved personal resources such as resilience would 
lead to better functioning of cognition and stronger will 
power, quality of life and disease control in patients 
with diabetes mellitus.
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INTRODUCTION
It is widely known that patients with diabetes mellitus 
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(DM) are at high risk of  decreased psychological well-
being[1-6] which is already presence in about half  of  the 
patients at the time of  diagnosis[7]. This is due to strained 
coping with changed life routine (such as relationships, 
work-related and financial issues)[6] right from the time of  
diagnosis of  DM[7]. An international survey, the Diabetes 
Attitudes, Wishes and Needs second study (DAWN2), 
included over 16000 individuals (comprising patients, 
family members and healthcare providers) in 17 countries 
across four continents, reported that the proportion of  
the people with DM who were likely to have depres-
sion and diabetes-related distress (DRD) was 13.8% and 
44.6%, respectively, with overall poor quality of  life at 
12.2%[8]. 

DM had a negative impact on many aspects of  life, 
ranging from 20.5% on relationship with family or friends 
to 62.2% on physical health. About 40% (18.6%-64.9%) 
of  these patients reported their medication interfered 
with their ability to live a normal life[8]. Furthermore, 
these patients often use negative coping strategies and 
more frequently perceive that diabetes would negatively 
affect their future[4,7]. Untreated psychosocial disorders in 
DM, may lead to more physical symptoms[9], cardiovas-
cular complications[10] and depression[11,12]. Depression 
may lead to cognitive decline and further aggravate the 
vicious cycles of  self-care ability[13]. Many previous stud-
ies have largely been on the relationship between depres-
sion and diabetes[14,15], with the focus on major depressive 
disorder. However, sub-syndromal depressive and milder 
emotional conditions, such as dysthymia, anxiety, stress 
and distress[16], are far more prevalent than major depres-
sive disorder especially at the primary or community 
care levels[17,18]. Furthermore, these emotional disorders 
are linked to increased disability, risk of  health decline, 
healthcare use and premature mortality[17,19,20]. Despite the 
widespread prevalence of  psychological problems and 
their negative consequences, the availability of  person-
centered chronic illness care and psychological support 
was low for patients with DM. Only 48.8% had received 
psychological treatment or educational activities to help 
manage their diabetes[8]. This review discusses patients’ 
psychological aspects in general with a focus on emotion 
effects on health, and emotion in relation to other psy-
chological domains such as cognition, resilience, willpow-
er, self-efficacy and behavior. Furthermore, this review 
reports recent findings on the links between psychologi-
cal disorders, inflammation and cardiovascular outcomes 
in patients with DM. 

Equipped with the understanding of  the pertinent 
nature and impacts of  psychology in patients with DM, 
it is hoped that this review would encourage healthcare 
professionals in giving due attention to the psychological 
needs of  patients with DM. 

RESEARCH
We conducted searches of  multiple databases [MED-
LINE® via PubMed®, Embase®, Cochrane Register of  

Controlled trials, CINAHL (EBSCO), PsycINFO] using 
terms for emotion, cognition, human behavior, psychoso-
cial and psychological aspects in diabetes care, including 
but not limited to MeSH terms for emotional disorders, 
depression, anxiety, stress, distress, diabetes mellitus and 
psychological interventions. We obtained additional ar-
ticles from systematic reviews; reference lists of  pertinent 
studies and editorials. We compiled a narrative synthesis 
of  findings, highlighting underlying theories, mechanisms 
and interactions of  the different and essential psycho-
logical aspects of  patients that might influence self-care 
behaviors and clinical outcomes. 

HEALTH EFFECTS OF EMOTIONS?
Under-expression or over-regulation of  emotions with 
all the other dysfunctional control of  emotions could be 
both the causes for and results of  inappropriate emotion-
al responses, personality or even psychiatric disorders[21,22]. 
These have been inevitably shown to be associated with 
physical health[11,23,24] and DM[25].

Conversely but in parallel to previous observations, 
Pressman and Cohen proposed links between positive 
affect or emotions and health[26]. They suggest that emo-
tion has a direct effect on both behavior and physiology. 
More specifically, they hypothesized that positive emo-
tions, such as happiness, excitement and contentment re-
sult in better health behaviors and improved adherence to 
treatment regimens. Direct physiological effects include 
autonomic nervous system activation, hypothalamic-pitu-
itary-adrenal axis activation (decreased cortisol), and on 
immune functioning through the primary (bone marrow 
and thymus) and secondary (spleen and lymph nodes) 
lymphoid tissues[27,28]. Indeed, some evidence exists for a 
moderating effect of  emotions on natural killer cell activ-
ity[29]. In a 20-year follow-up study[30], baseline feeling of  
vigorous at work among the healthy employees had lower 
risk of  mortality (HR = 0.74, 95%CI: 0.58-0.95) and in-
cidence of  diabetes (HR = 0.83, 95%CI: 0.68-0.98) after 
adjusting for the total cholesterol, glucose, body mass in-
dex, smoking, alcohol intake, physical activity, depressive 
and anxiety symptoms. Healthy behavior such as physical 
activity causes endorphin excretion leading to a sense of  
elation[31], which further reinforces the behavior through 
operant conditioning. It appears then that as if  there is 
a “spiraling up” of  positive effects from physical and 
psychological being within a person in contrast to the op-
posite “vicious cycle” of  negative emotions.

The pathways between negative and positive emo-
tions and health outcomes interact through behavioral 
and/or biological mediators, both of  which have rel-
evance for DM, an illness characterized by underlying 
inflammatory changes[32,33]. Negative emotions can inten-
sify a variety of  health threats. Stress, anxiety and depres-
sion are related to impaired immune, pro-inflammatory 
cytokines and inflammation responses that have been 
linked to a spectrum of  conditions associated with aging, 
including cardiovascular diseases, osteoporosis, arthritis, 
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Alzheimer’s disease, frailty and functional decline, DM, 
certain cancers and periodontal diseases[24,34]. Addition-
ally, negative emotions could contribute to prolonged in-
fections and delayed wound healing, conditions that fur-
ther enhance pro-inflammatory cytokine production[24]. 
Accordingly, distress-related immune dysregulation may 
be the underlying mechanism of  a larger and diverse 
set of  health risks associated with negative emotions. 
Thus, the relationship between emotional disorders and 
inflammatory responses is likely to be synergistic and bi-
directional- the vicious cycle effect[34]. 

WHAT IS EMOTION?
An overarching aspect of  theoretical perspectives rep-
resented in the past three decades of  research is that 
emotion and cognition, though often perceived as hav-
ing separate functional features and influences[35,36], are 
indeed highly interactive and integrated in the brain[37-39]. 
This notion is consistent with the high degree of  con-
nectivity within the brain’s neural structures and systems. 
Therefore, emotion is hypothesized to have substantial 
and measurable effects on cognition and action (behavior) 
when the stimulus or situation is personally or socially 
significant to the person involved[37,40]. The key principle 
of  differential emotions theory states that emotions play 
central role in consciousness and awareness, having dy-
namic neurobiological and neuropsychological activities 
that lead to continuous emotions-cognitions interaction 
in influencing adaptive thoughts and actions as manifest-
ed in decision making and behavior[40]. 

Physiologically, emotion constitutes brain responses 
and body expressions[41]. Although there is no consensus 
on a general definition of  the term “emotion”[42], many 
experts do agree that emotions have a limited set of  com-
ponents and characteristics. In addition, emotions have 
an infrastructure that includes neural systems dedicated 
in parts to emotion processes and recruit response sys-
tems when emotions motivate cognition and action. The 
autonomic nervous system modulates the intensity of  the 
emotions but does not change its quality or valence. Feel-
ing is a component of  emotion that is always experienced 
or felt, though not necessarily labeled or articulated or 
present in access consciousness (a level of  conscious-
ness that has reportable content). It is considered to be 
a phase (not a consequence) of  neurobiological activity 
that is sensed by the organism[40] and was reported to be 
present and expressed even in children without a cerebral 
cortex[43]. Current evidence suggests that in goal-oriented 
behaviors, the feeling component of  emotions contribute 
its effect to the evolution of  consciousness, cognition 
and action processes resulting in the behaviors[40].

There is a consensus that emotions exist in different 
forms: (1) basic emotions, those that are probably uni-
versal and involve less cognitive complexity for example 
anger and fearfulness, appear primarily in evolution and 
biology; and (2) emotion schemas, that include cognitive 
components differ across individuals and cultures[44,45]. 

Basic emotions usually occur in acute situations and easily 
bypassing cognitive process in favor of  a quick reaction 
to the situations. Emotion schemas are emotions that 
have been interpreted by the cognition.

Past experience and emotion
Experience is emotional historical facts, similar perhaps 
to a textbook of  history that is none other than a com-
pilation of  factual events. Without emotions, every life 
experience would be reduced to none others but a talk-
ing history textbook. There are no memories without 
emotions just as there are no persons without experi-
ence. Past experience becomes memory because of  the 
emotional content it carries. Accumulated past experi-
ence influences personality and personal belief  systems 
in an individual[46], and shapes the cultural behaviors in 
the family and community[47]. The flavor of  these memo-
ries depends on personal interpretation of  the meanings 
of  the experience. Although the objective events would 
arouse universally similar emotions, its unique interpreta-
tion will lead to different meanings for the person expe-
riencing them. This is where the effect and influence of  
cognition comes in. Thus, emotions serve like a reposi-
tory for learned influences, possessing certain invariant 
features and show considerable variation across individu-
als, groups, and cultures[48].

These past experiences, crystalized as emotions, fa-
cilitates learning and motivates preparedness for future 
interactions with people, events, and situations. Evidence 
indicates that experimentally facilitated formation of  
emotion-cognition interaction i.e. schemas (such as sim-
ply learning to label and communicate about feelings) 
generates adaptive advantages[49,50]. The dynamic interplay 
of  emotion and cognition determines many human be-
haviors, for example connecting appropriate cognition 
to feelings increases the individual’s capacity for emotion 
modulation and self-regulation[49]. The first step towards 
initiation of  action is by improving the perception of  
emotions that entails the registration of  emotions in the 
consciousness. This is made possible by the ability to 
symbolize feelings and put them into words thus provid-
ing an empowerment for emotion regulation, influencing 
emotion-cognition relations and developing high-level so-
cial skills. Without this, the unlabeled, unarticulated, and 
linguistically inaccessible emotional feelings would be in 
the phenomenal consciousness or some other cognitively 
inaccessible level of  consciousness although it can still be 
felt and functions as a mediator of  behavior, retaining its 
motivational and informational qualities[49].

EMOTION AND COGNITION
Emotion alone could never be the sole mediator of  per-
sonally or socially significant behaviors. Other persons 
and contextual variables do also contribute to the causal 
processes of  certain behaviors. However, it is proposed 
that emotion is always one of  the mediators of  a behav-
ioral action in response to basic emotion and a mediator 
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efficient adaptations to the demands of  the changing 
environments. Psychologically, emotions activate relevant 
associative networks in memory, which alter attention and 
shift certain behaviors upward in the response hierarchies. 
Physiologically, emotions rapidly excite and orchestrate 
the responses of  various biological systems, including the 
autonomic nervous system activity and endocrine activ-
ity, to produce a bodily milieu that is optimal for effective 
response. The manifestations include facial expression, 
somatic muscular tonus and voice tone. Therefore, over 
longer periods of  time, with many of  these emotional 
encounters, people mature through the ages[62], emotion-
enriched experiences serve to establish our position in 
our environment, drawing us toward certain people, situ-
ations, objects, actions and ideas, and pushing us away 
from the others. 

Because emotions are viewed as motivational states, 
their intensity should be effected by factors similar to 
those influencing the intensity of  regular motivational 
states[61]. Events that interfere with the experience of  an 
emotion can influence the intensity of  that emotion. Past 
work has shown that emotional intensity was similar to 
motivational arousal, which could be jointly influenced by 
the importance of  a goal and the difficulty of  achieving 
it[61]. In the case of  anger, events that interfere with feel-
ing or expressing anger can affect its intensity. 

The interaction between emotions and cognition in 
decision-makings has also been reported where emotion, 
in particular worry, has been shown to cause more short-
term decision (cognition domain) over long-term choices 
that may have significant consequences to health[63]. 
Emotional regulation via cognition such as cognitive re-
appraisal and expressive suppression are shown to lead to 
better social adjustment, mental health and overall well-
being[64]. Furthermore, cognitive training in patients with 
psychiatric disorders (schizophrenia, attention deficit 
hyperactivity disorder, mood disorders and substance use 
disorders) could improve emotional regulation, clinical 
symptoms, and adaptive community functioning[65]. This 
concept of  emotional regulation as related to willpower 
elaborated below is invariably associated with physical 
health too.

Self-regulation
Self-regulation has its major explanatory mechanism in 
social cognitive theory[66]. Self-regulation that is effective 
results in execution of  a behavior and suppression of  
another competing but undesirable behavior. It begins 
from having a valued personal standard on certain ac-
tions or behaviors, which would then generate height-
ened motivation in realizing the action-behavior. Execu-
tion of  certain actions or new behaviors is sometime 
aided by proactive consideration of  the possible effect or 
consequence of  the current actions-behaviors in the fu-
ture, or evaluative reactions of  others towards one’s be-
havior. Self-monitoring of  performance would compare 
the outcomes of  the performance to social or personal 
past referential achievement[66]. Without comparison to 

of  thought and action in response to emotion schemas[40]. 
Therefore, the specific impact of  emotions in generating 
and altering behavior depends on the type of  emotion 
involved in the causal process. In basic emotions, feelings 
affect action but not higher-order cognition, which has 
little influences in the basic emotion processes. In con-
trast, feeling in emotion schemas may frequently effect 
action through its effect on the cognition. Hence, think-
ing becomes a key agent in regulating and guiding behav-
ior that arises from the emotion schemas[51].

A cognitive appreciation of  emotions in relation to 
the issue or event at hand turns out to be the actual initia-
tor of  decision-making. In other words, a person agrees 
to do an action because he or she feels right and happy 
about the intended action, and apply controlling power 
over or drawing its motivation from the emotions. The 
direction of  this decision could be at its best instinctive 
(without cognitive appreciation-the basic emotions[44]) 
and primitive (the emotion schema)[44]. if  it is not based 
on and guided by higher moral value. This higher value 
system is closely related to the concept of  purpose in life 
in many resilience studies[52-54]. This higher value could 
arise from the self-generated value system (close-system) 
or be imparted from the supreme beings or religion-
based value system (open-system)[55]. These three tiers 
of  the action-sources in the interplay of  the emotion-
cognition-higher value system could distinguish between 
hot (impulsive), cold (ordinary) and extra-ordinary men, 
respectively.

EMOTION, COGNITION AND BEHAVIOR
The current perception is that emotion remains primarily 
about motivation[56], while cognition (particularly about 
goal concepts that typically have an emotive component) 
remains primarily about knowledge. The presence of  
both is almost always the case in any normal human be-
ing for his or her normal social functioning[57]. However, 
they could differ in sequence of  activation and intensity 
depending on the stage of  life and situations the person 
is in[57,58]. The presence of  both the emotion and cogni-
tion is invariably necessary for adoption of  new life skills 
and adaptation to new environments[59]. 

Emotional intensity theory suggests that emotions 
have motivational properties because they furnish energy 
and direction for the execution of  appropriate instru-
mental behaviors[60,61]. Specifically, emotions promote fast 
adaptation to situational demands by helping individuals 
to identify relevant and important events and by urging, 
guiding, and maintaining the behaviors necessary for 
dealing with these events[48,60]. For instance, if  someone 
is insulted and experiences anger, all biological systems 
and resources are coordinated so that the person can 
deal efficiently with the situation while ignoring all other 
signals and events. Thus, affective systems are designed 
to conserve energy and mobilize resources to achieve a 
short-term goal. These emotions are typically short-lived 
psychological-physiological phenomena that represent 
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the valued extrinsic outcomes, there would be absence 
of  meaningful feedback that could in turn activate self-
evaluative motivators.

Psychological functions described by self-regulation 
include components of  self-discipline, self-reactive in-
fluences and self-gratification[66]. It is presumed that the 
common values or motives within every individual are 
beneficial, self-constructive, pro-social and respectable. 
There are no objective universal referent standards that 
every individual could subscribe to besides those that are 
subjective and internal within that individual, and those 
that are external on the society or significant others at 
large. This socio-cognitive functioning of  self-regulation 
in decision making for or against certain action learn from 
past experience of  exercising control over the dynamic 
environment. Through this repeated process, conceptual 
skills become acquired skills and self-efficacious[66].

Overt self-centeredness of  this theory predisposes 
to self-love at best and despondency or depression at 
worst from dysfunctional self-regulation as a result from 
misperception on performance standards and misjudg-
ments on achievement of  self[66,67]. It is a closed system 
that could suffer from inconsistency of  the internal 
standards as compared to the more universal moral stan-
dards[68]. As a result, it would also suffer from a sense of  
helplessness and hopelessness[69] from devoid of  the ul-
timate source (supreme beings or God in the open-value 
system) of  help and hope in the face of  weakened cop-
ing efficacy and beliefs which is highly possible in many 
chronic diseases self-care failures such as in patients with 
DM. This external source of  the internal reserve may en-
able a self-renewal for a new beginning of  coping with 
life challenges. Hence, it is not impossible that religiosity 
and spirituality could affect glycemic control[70].

Self-efficacy 
Self-efficacy is embedded within the theory of  self-regu-
lation[66]. It operates as one of  the main proximal deter-
minants of  self-regulation though self-monitoring, goal 
setting and valuation of  activity sub-functions. Self-effi-
cacy is self-confidence or self-believe in one’s own ability 
to carry out or overcome difficulties inherent in specific 
tasks[71]. Hence, beliefs of  one’s own efficacy cause people 
to make choices, aspire and persevere in things that they 
have the confidence in achieving. This theory suggests 
that people with higher self-efficacy would keep improv-
ing in life due to their positive self-feedback and setting 
higher new targets to achieve in progressive efforts.

This confidence stems from learned capability gained 
through past experiences when efforts were expended 
for the behaviors[72]. In this theory, differential experi-
ence and cognitive processing of  efficacy information 
lead to different degree of  self-efficacy attainments. The 
intervening link between the efficacy expectation and the 
actualization of  efficacy in action could be self-aiding 
thoughts, the emotion-motivation fortified resilience 
that is powered by the activated personal value or belief  
system. However, similar to its parent theory of  self-

regulation, self-efficacy theory relies too heavily on self-
centeredness, autonomous judgments and could result 
in both extreme ends of  self-destruction, i.e., over-confi-
dence and self-despair.

Willpower
Willpower functions like an “actualizer” of  the formed 
intentions into real behaviors[73]. It employs conscious 
and effortful self-control when faced with life choices or 
temptation and manifests as an ability to resist short-term 
gratification for long-term return[74]. With willpower, 
people overcome “hot” emotional pushes with the “cool” 
cognitive capacity[73]. Thus, willpower is an educated spirit 
that grows on understanding and has the ability to con-
trol emotions. Willpower is likened to a trait as evidenced 
by studies demonstrating that the similar quality of  the 
willpower that appeared in the preschoolers persisted into 
adulthood[75,76]. Past studies show that willpower was posi-
tively correlated with many aspects of  life such as better 
academic achievement in schools, higher self-esteem, 
lower substance abuse rates, greater financial security and 
improved physical and mental health[75,77].

The effects of  willpower could however deplete if  
it is repeatedly exerted within a short span of  time and 
thus is predisposed to failure of  self-control in an im-
mediate next challenge[78]. Thus, willpower depletion is 
best avoided by focusing on one task at a time as it has 
been observed that willpower fares optimally when it is 
applied on one valued goal after another instead of  mul-
tiple resolutions at once[79]. This will negate the impact of  
willpower failure on a range of  potential challenging be-
haviors such as food intake, substance use and abuse and 
purchasing behavior[80-82]. Elsewhere it has been shown 
that people with positive moods, motivation, beliefs 
and attitudes or vitality were found to be more able to 
mitigate this depletion and to persevere even when their 
willpower strength has been depleted[83-85]. Thus, positive 
emotions bolster willpower when it is weak but nega-
tive emotions, on the other hand, could be suppressed 
by the willpower when it is cognizant in according to the 
situations. Interestingly, it was noted that willpower re-
sembled resilience in that regular exertion of  self-control 
improved willpower strength over time[86]. 

Resilience
Resilience is defined as an individual’s capacity to main-
tain psychological and physical well-being when faced 
with adverse life events by drawing on self-esteem, self-
efficacy, self-mastery and optimism as resources[52-54]. 
Other qualities of  resilience include internal locus of  con-
trol, social support and purpose in life[87]. These personal 
qualities vary among different individuals depending on 
whether the events are perceived as stressful, a threat or 
a challenge[88]. Resilience has been shown to contribute to 
relatively successful social functioning in the elderly with 
DM, with an effect that was stronger than social support 
and material resources[89].

It has often been a phenomenon that adversity breeds 
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resilience as in the analogy of  a well rooted strong tree 
growing up in the wilderness. In man, brief  and graded 
exposures to stressors in turn would allow cumulative 
experience, learning and strengthening of  a person (the 
steeling effect)[90-92]. Thus, there is no true resilience in 
the absence of  true adversity[90]. External adversity makes 
assessment of  resilience comparable across individuals. 
Hence, subjective interpretation of  internal adversity 
(such as in sickness) is acceptable as the adversity is being 
faced by an individual with his or her own unique socio-
biology milieu. 

Behaving resiliently is only possible if  there are re-
serves and resources to draw from. Reserves are internal 
strength of  the person which when tested in the face of  
adversities, could either manifests in positive emotions 
(hope, optimism, happiness and vitality) or in negative 
emotions (apathetic, feel guilty, overwhelmed, disgruntled 
and depressed). Resources are external supports of  all 
possible forms from every potential party. Between these 
two, reserves would be a closer and stronger resilient 
factor for simply being a more personal characteristic in 
the face of  almost all adversity because no adversity is an 
adversity if  it does not affect at the personal level and de-
mand a personal response. This internal reserve depends 
largely on the personal value and belief  system that could 
result from the past experience (emotional learning), 
educated cognition (knowledge) or relationship with a su-
preme being(s)[55,87,88]. The inter-play and effectiveness of  
each of  these factors would have manifestations that mir-
ror the three tiers of  human-action or behaviors namely; 
the beast-like reflex action, the ordinary but superficial 
culture and politeness; and extra-ordinary self-sacrificial 
altruism. The great divide between these factors would be 
the self-dependency in the former two and depending on 
the supreme-value or being God-dependent in the last. 
This divide is not necessarily mutually -exclusive but per-
haps reflective of  a responsible, balanced and appropriate 
execution of  dependency on self  and supreme beings or 
God. The greatest danger of  self-dependency is probably 
self-deception resulting from misperceptions and self-
isolation; while supreme-value or God-dependency could 
be far reaching for the majority, as the supreme beings/
God are/is too abstract to be real as in the demand of  
religious faith[55]. 

Illness perception
Illness perceptions involve beliefs, cognitive and emo-
tional representations or understandings that patients 
have about their illness[93]. These perceptions have been 
found to be associated with health behaviors and clinical 
outcomes, such as treatment adherence and functional 
recovery[94]. Illness perceptions constitute beliefs on the 
chronicity of  the illness, locus of  control of  the illness 
and efficacy of  treatments; it includes an assessment on 
the perception of  understanding the patient has of  the 
illness; illness perception evaluates the emotional impact 
of  the illness directly and indirectly from the aspects of  
symptoms experience and concern for the illness’s conse-

quences.
Some of  these illness perception dimensions had 

small significant associations with HbA1c[95]. Tentative 
evidence indicate that illness perceptions can be positive-
ly changed through targeted intervention and that could 
have an impact on glycemic control[95]. Patients’ percep-
tion of  their illnesses and related symptoms and their 
beliefs about the possible consequences of  the disease 
had also been shown to be associated with their satisfac-
tion with medical consultation and healthcare utilization, 
respectively[96]. Misperception could complicate reassur-
ance[96] from healthcare professionals and impede self-
coping on patient’s part[94].

Proactive coping
Future-oriented thinking or the proactive coping concept 
goes a step further in explaining how people could main-
tain an acquired behavior[97]. In this model, a person who 
practices proactive coping is said to be in continual antici-
pation of  the potential barriers and threats to the lapses 
of  the desired behavior; have the ability to develop and 
realize the strategy to offset the threats. In addition to the 
effective use of  resources, the person who is successful 
in maintaining his or her behavior would also use effec-
tive feedback on self-strategy to keep the goals viable. In 
a study of  newly-diagnosed DM patients, proactive cop-
ing was shown to be a better predictor of  long-term (at 
12 mo) self-management (diet and physical activity and 
weight loss) than either intentions or self-efficacy[98].

However, it is proactive coping rather than future-
oriented thinking that seems to be more feasible and in 
line with other health behavior concepts. Knowing the 
immense possibilities of  the distant future and demands 
of  the present in self-management coping for DM might 
overwhelm the emotion and crumble the present func-
tioning of  a person. Applying proactive coping even for 
near proximal outcomes may require high degree of  sup-
port, emotional and cognitive agility to succeed[99]. Hence, 
patients with adequate cognitive and emotional resource 
and reserve would likely to cope proactively[100]. Issues 
remain in individualization of  such behavior, matching its 
intensity to the patient’s characteristics and valued goals 
in life in order to preserve acceptable level of  quality of  
life. Therefore, patients who can behave and cope proac-
tively are those who have a right illness perception (right 
understanding about DM), perceive its importance in 
their life, have self-efficacy and able to self-regulate.

NEGATIVE PSYCHOLOGICAL EFFECTS 
ON DIABETES MELLITUS
In adults, children and adolescents with DM, depression 
was related to poorer glycemic control, a range of  diabe-
tes complications, increased health care costs, worsened 
functional disability, re-hospitalization and early mor-
tality[101]. Those with psychological distress at the time 
of  diagnosis had a higher risk of  cardiovascular events 
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(1.7-fold) and death (1.8-fold) than those without psycho-
logical distress[102].

Emotions and the brain in DM
Current research suggest biological changes in the brain 
of  patients with DM. Structural, functional, and neuro-
chemical changes in the brain regions responsible for af-
fect and cognition may have increased the risk of  depres-
sion in both type 1 and type 2 DM[103]. Animal models 
have shown that hyperglycemia negatively affect hippo-
campal integrity and neurogenesis, reducing neuroplastic-
ity and contributing to mood symptoms[104]. In humans, 
hippocampal neurogenesis and hippocampal atrophy has 
been observed in people with DM, which will lead to dif-
ficulty in learning, maintaining memory and governing 
emotional expression[104].

Emotions and systemic inflammation in DM
In a recent published study in United Kingdom[10], de-
pressive symptoms in adults with newly diagnosed type 2 
DM, after adjusting for covariates, were associated with 
systemic inflammatory markers: C-reactive protein (B = 
0.13, P < 0.001), interleukin-1β (B = 0.06, P = 0.047), 
interleukin-1RA (B = 0.13, P < 0.001), monocyte chemo-
tactic protein-1 (B = 0.11, P = 0.001), white blood cell 
count (B = 0.13, P < 0.001), and triglyceride (B = 0.10, P 
< 0.001).

The effect of  negative affect and moods on the in-
flammatory markers, immune systems and endothelial 
functions are further compounded in patients with 
DM[105]. This is because hyperglycemia in diabetes has 
already deleterious effect on the endothelium[106,107]. The 
“glucose tetrad” of  HbA1c, glycemic variability, fasting 
and postprandial plasma glucose activate oxidative stress 
causing vascular complications through endothelial dys-
function and damage[108]. Chronic glycation of  mitochon-
drial respiratory proteins leads to mitochondrial DNA 
damage and functional decline causing over-production 
of  intracellular free radicals and perpetual cellular in-
jury[109]. Non-enzymatic glycosylation of  other proteins 
and lipids by disrupting their molecular conformation 
alter many enzymatic activities, reduce degradative ca-
pacity and interfere with receptors recognition[110]. The 
presence of  hypertension and hyperlipidemia in patients 
with diabetes impose added detrimental effect on the 
micro- and macrovasculature. These include cholesterol 
oxidation and glycosylation contribute to the progression 
of  atherosclerosis by promoting vascular smooth muscle 
cells migration and proliferation[111]. In the hypertensive 
diabetes patients, impaired auto-regulation in the micro-
circulation with non-dipping of  nocturnal blood pressure 
leading increased pulse-wave velocity, ventricular-vascular 
mis-coupling and premature stiffening of  the abdominal 
aorta owing to autonomic dysfunction and elastic fibres 
glycation[112].

Emotion lability and biomarkers variability
It is widely observed that emotions are relatively stable 

over time, constitute the person general outlook and 
represent personality. However, it is possible that affects 
change from time to time. It was reported that changes 
in affects and emotions over a short period of  time were 
detrimental to health, especially in the cardiovascular or-
gan systems through the sudden or unpredictable surge 
in pulse rate and blood pressure[22,113]. Dysregulation of  
emotions can impact on physical health through the auto-
nomic nervous system activation and hypothalamic-pitu-
itary-adrenal axis activation that affect the metabolic and 
immune functioning of  a person[11,23,24,27,28]. Therefore, it 
is hypothesized that unregulated emotional fluctuation 
could lead to variability in blood pressure and glycemic 
control biomarkers. In the reverse direction, Penckofer[114] 
had reported that glycemic variability measures were as-
sociated with mood (depression, trait anxiety and anger) 
and quality of  life. The 24-h SD of  the glucose readings 
and the continuous overall net glycemic action measures 
were significantly associated with health-related quality 
of  life (HRQOL) after adjusting for age and weight; and 
subjects with higher trait anxiety tended to have steeper 
glucose excursions.

In patients with DM, a recent Action in Diabetes and 
Vascular Disease: Preterax and Diamicron MR Controlled 
Evaluation trial had reported clear associations between 
visit-to-visit variability (VVV) of  HbA1c and the risk of  
macrovascular events (P = 0.02 for trend), whereas fast-
ing glucose variability was associated with both macro- 
and microvascular events (P = 0.005 and P < 0.001 for 
trend, respectively)[115]. In an earlier study it has been 
shown that HbA1c variability affects nephropathy more 
than average HbA1c, whereas only the latter parameter 
affects retinopathy[116]. On the other hand, glucose vari-
ability as characterized by extreme glucose excursions, 
independent of  HbA1c levels, could be a predictor of  
diabetic complications (development or progression of  
diabetic retinopathy and cardiovascular events) and mor-
tality in patients with DM[117]. The mounting evidence on 
these associations suggest that increased frequency and 
magnitude of  glycemic variability generates more reactive 
oxygen species that triggers the various metabolic path-
ways of  glucose-mediated vascular damage which result 
in an increased risk for the development of  long-term 
diabetic complications[118,119].

Similarly, VVV in systolic blood pressure (SBP) and 
maximum SBP are strong predictors of  stroke, indepen-
dent of  mean SBP[120]. Increased residual variability in 
SBP in patients with treated hypertension was associated 
with a high risk of  vascular events[120]. In each TIA co-
hort, VVV in SBP was a strong predictor of  subsequent 
stroke (top-decile hazard ratio over seven visits: 6.22, 
95%CI: 4.16-9.29, P < 0.0001). In ASCOT-BPLA[121], 
residual VVV in SBP on treatment was also a strong pre-
dictor of  stroke and coronary events (top-decile HR for 
stroke: 3.25, 2.32-4.54, P < 0.0001), independent of  mean 
SBP in clinic or on ambulatory blood pressure monitor-
ing (ABPM). Variability on ABPM was a weaker predic-
tor, but all measures of  variability were most predictive in 
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younger patients and at lower (< median 142.8 mmHg) 
values of  mean SBP in every cohort[120]. However, there 
is no evidence to date that suggest similar detrimental ef-
fects of  cholesterol variability in adult patients with DM.

PSYCHOLOGICAL INTERVENTION IN 
DIABETES CARE
Despite evidence that psychosocial support was instru-
mental to adaptive self-care as indicated by patients in the 
DAWN2[6], psychosocial and pharmacologic interven-
tions have not been widely used to target psychological 
co-morbidities such as depression and DRD[122]. The 
psychosocial supports through caring and compassionate 
family, friends, health care professionals, and even other 
patients with DM could instill a positive outlook, sense 
of  resilience and wellbeing in patients with DM. Screen-
ing, evaluation and management of  psychological disor-
ders such as depression and DRD in people with DM in 
primary care are feasible[123].

Indeed, positive psychosocial factors are important 
mediators or independent predictors of  clinical outcomes 
in chronic diabetes care and positively related to self-care 
behaviors[124]; exerting a direct impact on HRQOL and 
subjective health. A recent review[125] and study[126] re-
ported that positive emotional health (well-being, positive 
affect, resilience and gratitude) were linked to self-man-
agement (exercise, treatment adherence and frequency 
of  blood glucose monitoring), health-related outcomes 
(HbA1c, health status and HRQOL) and lower risk of  
all-cause mortality in patients with DM[3,125]. However, 
few quality studies have investigated the effects of  posi-
tive aspects of  emotional health (resilience, positive af-
fect, well-being) on patient outcomes; even lesser empiri-
cal studies showed strong evidence of  the actual effect 
of  positive and negative affect on glycemic control[127,128]. 
Although the interaction between emotional health and 
diabetes physiology and patient’s self-care practices that 
in turn further influence health outcomes are becoming 
clearer, there is still a paucity of  health programs that in-
corporate human psychology wholesomely and intervene 
effectively in patients with DM for improved self-care be-
haviors and clinical outcomes[129,130]. Some recent studies 
that examined depressive symptoms and DRD and their 
management has found cross-sectional, prospective and 
time-concordant relationships with HbA1c[131,132]. Never-
theless, a causative relationship between the two requires 
more significant prospective linkages between DRD and 
HbA1c[132]. From the discussion above, it is possible that 
emotional disorders can affects HbA1c in a bidirectional 
pattern[133]; from distress or depression to DM via life-
style factors and due to therapeutic demands in the re-
verse direction[133].

Notwithstanding, interesting questions emerge wheth-
er interventions involving psychological, intra- and inter-
personal resources may be possible to buffer the negative 
inflammatory effects of  emotional disorders in patients 
with increased risks of  cardiovascular diseases such as in 

patients with DM. Improving cognitive appreciation in 
education, increasing positive affect and motivation to 
initiate positive lifestyles could in turn lead to better self-
care behavior and quality of  life. Therefore, interventions 
that focus on positive emotional health to diminish nega-
tive emotions could enhance health in part through their 
positive impact on immune and endocrine regulation, re-
silience, self-efficacy, positive behaviors and HRQOL[34]. 

The immediate next questions would be: (1) How 
much of  these effects could be achieved in patients and 
within their family members? (2) How personalized 
should the interventions be? and (3) How much do the 
existing health systems need or able to transform in order 
to implement the interventions? These questions con-
sider other potential social determinants of  DM that may 
influence effectiveness in diabetes care provision[134]. The 
first question involves the essential issue of  the charac-
teristics of  patients in participating the interventions for 
example their pre-intervention health beliefs and barriers 
to change assuming the interventions that follow would 
help them to put right most if  not all health beliefs and 
behaviors. The second question involves having cost- 
and content-effective interventions[135,136] that may need 
to be separately prepared for patients at different stages 
of  diseases for example newly diagnosed DM, persistent 
poor control of  disease, impending or newly diagnosed 
complication/comorbid; or going into different life 
stages such as young working adults, family planning or 
pregnancy, retirement and above 60-year-old[137]. The per-
sonnel to deliver the interventions will need training that 
would enable them to conduct a flexible, dynamic and 
culturally appropriate interventions[136,138,139]. The third 
question implies staff  and health system readjustment 
and investment to begin the intervention[140,141], to main-
tain and even to continuously update the interventions 
in accordance with the contemporary evidence of  medi-
cine[142]. The ultimate aims would be to help individual 
patient to develop own strategies for the long-term man-
agement of  their diabetes, and that at the same time lead-
ing a productive life resulting from a quality of  life that is 
resilient to adversities and challenges.

CONCLUSION
Understanding the nature of  the psychological aspects 
that are pertinent in patients with DM, and the links be-
tween the emotional disorders (stress, distress, anxiety, 
DRD and depression) and inflammation has provided a 
mechanistic insight into the relationships between psy-
chological domains and poor physical health[34]. Positive 
emotional health may sustain long-term coping efforts 
and protect patients from the negative consequences of  
prolonged emotional disorders[143], illness perception and 
thus facilitating diabetes self-management behaviors and 
better physical health. Having patients acquire valued 
personal beliefs and achievable standards of  performance 
could strengthen self-regulation and self-efficacy and 
lead to more positive experience and healthy behaviors. 
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Furthermore, improved personal resources such as resil-
ience would lead to better functioning of  cognition and 
stronger willpower, quality of  life and disease control in 
patients with DM. More research is needed to understand 
what factors contribute to individual DM differences in 
vulnerability, treatment response and resilience to psycho-
logical disorders and cardio-metabolic risk factors control 
across the life course. More international collaboration is 
helpful to examine how best to provide care for people 
with DM and emotional disorders in different health 
care and cultural settings. Psychological training pro-
grams grounded on sound theoretical framework such as 
that draw on the fundamental value system or personal 
purpose in life could effect powerful involvement of  
emotion and cognition leading to meaningful and lasting 
behavioral change. Lastly, a cross-disciplinary workforce 
is necessary and the program should be culturally flexible 
for it to work in different models of  healthcare system 
and for patients with DM of  different backgrounds[101].
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Core tip: Diabetic nephropathy is actually the most com-
mon cause of kidney failure. It is now a scientifically 
proven fact that there is a strong association between 
an individual’s genetic makeup in his predisposition 
to diabetic nephropathy. Multiple genes are involved 
in pathogenesis of diabetic nephropathy, with several 
allelic polymorphisms having demonstrable effects in 
the development and progression of the disease thus 
contributing to the overall risk. These gene polymor-
phism studies are thus conducted to identify at-risk pa-
tients and design therapeutic strategies to prevent the 
outcome of such complication in his later future. This 
review discusses about the various gene variants found 
till date to be associated with diabetic nephropathy.

Rizvi S, Raza ST, Mahdi F. Association of genetic variants with 
diabetic nephropathy. World J Diabetes 2014; 5(6): 809-816  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
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INTRODUCTION
Diabetes mellitus is a complex syndrome leading to vari-
ous metabolic dysfunctions. These metabolic dysfunc-
tions manifest characteristic long-term complications in 
the form of  various microvascular diseases, including 
diabetic nephropathy, retinopathy, and neuropathy. Dia-
betic nephropathy is one of  the major secondary com-
plications of  diabetes mellitus affecting almost 40% of  
the diabetic patients. Diabetic nephropathy is clinically 
characterized by proteinuria, declining glomerular filtra-
tion rate, hypertension eventually leading to renal failure, 
requiring dialysis or transplantation. Various risk factors 
like, hyperglycemia, increased blood pressure, and genetic 
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Abstract
Diabetic nephropathy accounts for the most serious 
microvascular complication of diabetes mellitus. It is 
suggested that the prevalence of diabetic nephropathy 
will continue to increase in future posing a major chal-
lenge to the healthcare system resulting in increased 
morbidity and mortality. It occurs as a result of interac-
tion between both genetic and environmental factors 
in individuals with both type 1 and type 2 diabetes. Ge-
netic susceptibility has been proposed as an important 
factor for the development and progression of diabetic 
nephropathy, and various research efforts are being ex-
ecuted worldwide to identify the susceptibility gene for 
diabetic nephropathy. Numerous single nucleotide poly-
morphisms have been found in various genes giving 
rise to various gene variants which have been found to 
play a major role in genetic susceptibility to diabetic ne-
phropathy. The risk of developing diabetic nephropathy 
is increased several times by inheriting risk alleles at 
susceptibility loci of various genes like ACE, IL , TNF-α , 
COL4A1, eNOS, SOD2, APOE, GLUT, etc . The identifica-
tion of these genetic variants at a biomarker level could 
thus, allow the detection of those individuals at high 
risk for diabetic nephropathy which could thus help in 
the treatment, diagnosis and early prevention of the 
disease. The present review discusses about the vari-
ous gene variants found till date to be associated with 
diabetic nephropathy. 
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alterations may predispose an individual to diabetic ne-
phropathy in the near future[1]. It is now a scientifically 
proven fact that apart from the above risk factors, there 
is a strong association between an individual’s genetic 
make-up in his predisposition to diabetic nephropathy. 
In this context, Andersen et al[2] have shown that 35% of  
the patients with diabetes develop nephropathy, irrespec-
tive of  glycemic control. Identification of  genetic com-
ponents of  diabetic nephropathy is the most important 
area of  diabetes research because elucidation of  genes 
(alleles) associated with diabetic nephropathy will influ-
ence all efforts toward an understanding of  the disease 
at molecular and mechanistic levels, its related complica-
tions, cure, treatment and prevention. Association studies 
of  candidate genes for diabetic nephropathy are being 
conducted all around the globe to identify the biomarkers 
genes which may predispose a diabetic individual to the 
risk of  diabetic nephropathy. Among the genetic factors 
involved, single nucleotide polymorphisms in the genes 
associated with diabetic nephropathy was found to have 
a major impact on the disease outcome. These gene poly-
morphism studies are thus conducted to identify at-risk 
patients and design therapeutic strategies to prevent the 
outcome of  such complication in his later future. 

GENE VARIANTS ASSOCIATED WITH 
DIABETIC NEPHROPATHY
It is now a scientifically proven fact that genes are 
amongst the major contributors to diabetic nephropathy 
apart from the environmental factors involved. In this 
context, a wide range of  genes have been assessed to see 
their association with diabetic nephropathy along with a 
number of  single-nucleotide polymorphisms in diabetic 
nephropathy susceptibility genes[3]. It is seen that differ-
ent ethnic groups may have variable risk associated with 
a specific gene in individuals suffering from a particular 
disease like diabetic nephropathy. Given below is a dis-
cussion of  few genes involved with diabetic nephropathy.

Inflammatory cytokines gene variants
Inflammatory cytokines are involved in pathogenesis of  
diabetic nephropathy and the genetic variability in the 
genes encoding these cytokines may predispose a person 
to diabetic nephropathy. Some of  the cytokine gene vari-
ants found to be associated with diabetic nephropathy are 
as below.

Interleukins: There is a significant association between 
carriage of  interleukins (IL)-1β allele 2 (-511 C/T poly-
morphism) and IL-1RN (IL-1 receptor Antagonist gene) 
allele 2 (2 copies of  the repeat sequence) with diabetic 
nephropathy. In case of IL-6 gene, C/G polymorphism at 
position 634 in the promoter region of  the IL-6 gene is 
a susceptibility factor for the progression of  diabetic ne-
phropathy where G/G homozygote showed a significant 
positive association with macroalbuminuria in type 2 dia-
betic patients from Japan[4]. In another study, Wang et al[5] 

identified a new amino acid change (V385I) that is associ-
ated with type 2 diabetic nephropathy. In case of  IL-10, 
polymorphism (-592) in promoter region influence IL-10 
and MCP-1 production, which may be an indicator of  
type 2 diabetic nephropathy risk in Taiwanese patients[6]. 

Tumour necrosis factor: Gene for tumour necrosis 
factor (TNF)-α  is highly polymorphic and is located on 
chromosome 6p. TNF-α -308G/A polymorphism has 
been implicated in susceptibility to diabetic nephropa-
thy but the results have been contradictory. Studies 
have shown that polymorphism of  the TNF-α gene at 
the -308 position is significantly related to an increased 
risk of  kidney failure in patients with type 2 diabetes 
(T2DM)[7,8]. In contrast to this, Lindholm et al[9], dem-
onstrated that the allele frequencies of  TNF -308 G→
A and LTA T60N polymorphisms were similar in type 1 
diabetic patients with and without diabetic nephropathy 
and no differences were observed between type 2 diabetic 
patients with and without diabetic nephropathy in allele 
or haplotype frequencies of  the studied polymorphisms. 
In a recent meta analysis it was demonstrated that A allele 
of  TNF-α -308G/A polymorphism might be protective 
against diabetic nephropathy but with ethnic selectivity[10]. 

Genetic variants of extracellular matrix components
Collagen, type Ⅳ, alpha 1: The Collagen, type Ⅳ, alpha 
1 (COL4A1) provides instructions for making one com-
ponent of  type Ⅳ collagen, which is a flexible protein 
important in the structure of  many tissues throughout 
the body. Two single nucleotide polymorphism’s in intron 
1 (rs614282 and rs679062) showed significant association 
with diabetic nephropathy[3]. Other studies on genetic 
variants of  COL4A1 gene have shown contradictory re-
sults where Krolewski et al[11] showed that a polymorphic 
HindⅢ restriction site was associated with increased risk 
for progression to diabetic nephropathy and contradic-
tory to it, Chen et al[12] found no association in larger 
sample size. 

Laminins: Laminins (LAM) are extracellular matrix gly-
coproteins which are the major noncollagenous constitu-
ent of  basement membranes. They are involved in vari-
ous biological processes like cell adhesion, differentiation, 
migration, signaling, neurite outgrowth and metastasis. 
Ewens et al[3] found a gene variant (rs3734287) located in 
LAMA4 gene’s intronic region and Asn837Asn variant 
(rs20557) in LAMC1 gene, to be significantly associated 
with diabetic nephropathy. 

Matrix metalloproteinase 9: Two studies conducted by 
Maeda et al[13] and Hirakawa et al[14] had found evidence 
for association between diabetic nephropathy and Short 
Tandem-Repeat Polymorphism in the promoter micro-
satellite locus (D20S838) of  Matrix metalloproteinase 9 
(MMP9) in Japanese and Caucasian type 2 diabetic pa-
tients, respectively. In contrast, Ewens et al[3], found no 
evidence of  association between any D20S838 allele with 
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diabetic nephropathy. However, significant association 
was seen between diabetic nephropathy and rs11697325, 
an SNP located 8.2 kb 5’ of  MMP9[13,14]. 

Gene variants of renal function components
Angiotensin Ⅰ-converting enzyme: Angiotensin-con-
verting enzyme is a potent vaso-constrictor and increases 
blood pressure. Polymorphisms in this gene are clearly 
associated with circulating angiotensin Ⅰ-converting 
enzyme (ACE) levels and studies have shown positive as-
sociation between the ACE DD allele and type 1 diabetic 
nephropathy[15-17]. This study is in confirmation to a meta 
analysis where subjects with the Ⅱ genotype had a 22% 
lower risk of  diabetic nephropathy than carriers of  the D 
allele suggesting a genetic association of  the ACE Ⅰ/D 
polymorphism with diabetic nephropathy in type I[18] and 
type Ⅱ patients[19]. Although a large meta-analysis failed 
to confirm the diabetic nephropathy association in white 
individuals[20] but another report from the European Ra-
tional Approach for the Genetics of  Diabetic Complica-
tions (EURAGEDIC) Study Group detected evidence 
for association of  several ACE polymorphisms (including 
the “D” deletion allele) in a large case-control study, with 
somewhat consistent findings in a family-based transmis-
sion disequilibrium testing analysis[15]. A study on Iranian 
population also showed similar results where neither the 
DD genotype nor the D allele was associated with dia-
betic nephropathy[21]. 

Angiotensinogen and angiotensin Ⅱ receptor type 
1 and 2 (AGT and AGTR1, AT2R): A meta-analysis 
conducted by Mooyaart et al[22], found no association be-
tween gene variants in the renin-angiotensin system, such 
as the rs699 variant of  angiotensinogen (AGT) and the 
rs5186 polymorphism of  angiotensin Ⅱ receptor type 1 
(AGTR1), with diabetic nephropathy. In contrast, a re-
cent study on angiotensin type 2 receptor (AT2R) found 
an association between the AT2R -1332 G:A polymor-
phism and the risk of  diabetic nephropathy in females[23].

Gene variants of endothelial function and oxidative 
stress
Nitric oxide synthase 3 (NOS): It is considered as a 
potential candidate gene for diabetic nephropathy sus-
ceptibility[24,25]. Three polymorphisms in this gene G894T 
missense mutation (rs1799983), a 27-bp repeat in intron 4, 
and the T786C single nucleotide polymorphism (SNP) in 
the promoter (rs2070744) have been found to be associ-
ated with diabetic nephropathy susceptibility[26-30]. 

The G894T variant was found to increase the risk 
of  macroalbuminuria and progression from microalbu-
minuria to macroalbuminuria, with declining glomerular 
filtration rate as serum creatinine value rises progressively, 
culminating in nephropathy[31,32] However, these results 
have been contradictory and not all studies support this 
association[33-35]. Recent studies on different gene variants 
observed that there was an association between eNOS-
4b/a polymorphism and the risk of  type 2 diabetic ne-

phropathy[36,37] while others suggested that there was no 
significant association[38]. Recently, a report from Arab 
population also failed to find an association between 
eNOS gene G894T polymorphism with the risk of  type 2 
diabetic nephropathy[39]. 

Catalase: This enzyme protects the cell from oxidative 
damage by reactive oxygen species (ROS) by breaking 
down hydrogen peroxide to water and oxygen. Two vari-
ants of  catalase (CAT) gene one located in the 5’-un-
translated region (rs1049982) and other located in intron 
1 (rs560807) were found to be involved with the risk of  
type 1 diabetic nephropathy[3]. 

Superoxide dismutase 2 (MnSOD/SOD2): Manga-
nese superoxide dismutase (MnSOD) protects the cells 
from oxidative damage by scavenging free radicals. The 
study on valine/alanine polymorphism in MnSOD gene 
(V16A, rs4880) revealed that, the subjects with Val allele 
were associated with increased risk of  type 1 diabetic 
nephropathy[40]. The result of  this study is in agreement 
with results by other studies[41,42], who found lower fre-
quency of  the Ala allele in Japanese and Korean type 2 
diabetic patients with diabetic nephropathy as compared 
to controls. This Val allele was more common in the Japa-
nese and Korean populations (85%-90%) than the north-
ern Caucasian population (50%) and is strongly associ-
ated with diabetic nephropathy. A recent study showed 
that SOD2 Val16Ala polymorphism was significantly as-
sociated with macroalbuminuria in a sample of  Mexican 
type 2 diabetes patients where the frequency of  the TT 
genotype was 6.7% higher in participants with macroal-
buminuria than in the normoalbuminuria group[43]. 

Gene variants of glucose and lipid metabolism
Adiponectin (ADIPO): It is a adipocytokine encoded 
by adiponectin gene with substantial anti-inflammatory 
properties and is a major modulator of  insulin resis-
tance and dyslipidemia. The minor allele (A) in intron 1 
(rs182052) of  adiponectin gene was found to be associ-
ated with diabetic nephropathy in an African American 
population[44]. Another study showed the strongest asso-
ciation between a polymorphism in the promoter region 
of  adiponectin gene, rs17300539 (ADIPOQ_prom2/
rs17300539 G > A) and diabetic nephropathy where the 
A-allele was found to increase the risk for nephropathy 
while the G-allele was found to be protective against the 
same. This association was found to be significant in 
Denmark and marginal in France but was not significant 
in Finland[45]. However, in a study conducted by Mooyaart 
et al[22], found no link between rs17300539 of  adiponectin 
gene with diabetic nephropathy. 

Apolipoprotein E: The apolipoprotein gene has been 
found to be associated with increased susceptibility to 
diabetic nephropathy[46]. It is a triallelic gene consisting of  
ε2, ε3, and ε4 alleles which are defined by a single amino 
acid substitution at two sites[47]. Amongst these alleles, E2 
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5’ promoter region (rs710218) was associated with ne-
phropathy[59]. Moreover, the patients with the AG hap-
lotype (rs841847-rs841853) have an increased risk of  
diabetic nephropathy and the TT haplotype (rs710218- 
rs841853) was more frequent in nephropathic patients. 
These findings showed that two haplotypes (composed 
of  rs1385129-rs841847-rs841848) are associated with a 
4.4 and 2.6-fold increased risk of  nephropathy in the Tu-
nisian T2DM patients[60].

However, the results of  various case-control studies 
on GLUT1 gene variants and their association with dia-
betic nephropathy have been inconsistent showing hetero-
geneity between studies[57,61-63]. 

Peroxisome proliferator-activated receptor gamma 
2: Peroxisome proliferator-activated receptor gamma 2 
(PPARG2) is a receptor expressed selectively in the adi-
pose tissue where it modulates the expression of  genes 
involved in adipocyte differentiation and glucose homeo-
stasis. The Pro12Ala gene variant was associated with 
lower albumin excretion rates among Ala12 carriers with 
type 2 diabetic nephropathy. Thus it could be suggested 
that Pro12Ala polymorphism may be protective against 
the disease since microalbuminuria is considered to be 
a risk factor for diabetic nephropathy[64]. This study was 
confirmed by Pollex et al[65] who showed that the Ala12 
allele carriers have 1.5-fold reduction of  the albumin/
creatinine ratio and thus reduced occurrence of  microal-
buminuria. A recent meta-analysis showed that Pro12Ala 
polymorphism in PPARγ2 gene is not a risk factor for 
diabetic nephropathy in type 2 diabetes[66].

Other gene variants involved
Apart from the above mentioned genes and their variants, 
there are various other gene variants for various genes 
like genes coding for growth factor, inflammatory factors, 
transcription factors, cytoskeletal proteins, components 
of  immune system etc which have also been implicated 
in predisposing an individual to the risk of  developing 
diabetic nephropathy. Some of  these gene variants are 
discussed in Table 1.

CONCLUSION
Diabetic nephropathy is progressively becoming a ma-
jor challenge for the health care system, since it is as 
yet poorly understood in many aspects. It is the lead-
ing cause of  premature death in young diabetic patients 
(between 50 and 70 years old). It is a heterogenous and 
a multifactorial disease with several genes, proteins and 
environmental factors contributing to its risk. Due to 
the growing burden of  the disease in diabetic patients, 
it is important to identify diabetic nephropathy predic-
tors, for the proper management of  this disease. Genetic 
susceptibility has been proposed as an important factor 
for diabetic nephropathy. Multiple genes are involved in 
pathogenesis of  diabetic nephropathy, with several allelic 
polymorphisms having demonstrable effects in the devel-

and the E4 allele of  apolipoprotein E (APOE) gene were 
found to be associated with diabetic nephropathy in a 
meta-analysis[22] where, E2 allele lead to an increased risk 
of  diabetic nephropathy and the E4 allele was found to 
have a protective effect. However, the influence of  three-
allelic variations in the APOE gene for the development 
of  diabetic nephropathy may be weak or moderate, but 
not strong[48]. 

Aldose reductase: This enzyme catalyzes the reduction 
of  glucose to sorbitol in the first step in polyol pathway 
of  glucose metabolism. Ko et al[49] first identified seven 
alleles at the locus of  the (AC)n dinucleotide repeat se-
quence upstream of  Aldose reductase gene (AKR1B1). 
Several studies have demonstrated a correlation between 
the Z-2 allele (23 AC repeats) and susceptibility to an 
increased risk of  diabetic nephropathy in both type1 and 
type 2 diabetes mellitus[50,51]. Heesom et al[52] also showed 
that individuals with the Z+2 allele are more than seven 
times less likely to develop diabetic nephropathy than 
those without this gene variant. A meta-analysis found a 
correlation between the (AC)n dinucleotide repeat poly-
morphism and the occurrence of  diabetic nephropathy 
in Caucasian type 1 diabetic subjects in contrast to type 2 
diabetic subject population in which neither the risk ZK2 
allele nor the protective ZC2 allele in type 1 diabetic sub-
jects appeared to have an effect on nephropathy in type 
2 diabetic subjects[53]. A second polymorphism in this 
gene has been observed at position-106 of  its promoter 
region. This polymorphism in aldose reductase gene was 
also found to be associated with nephropathy in type 1 
and type 2 diabetic patients[54]. This polymorphism was 
also found to be involved in the early development of  
microalbuminuria in Finnish T2DM patients and was 
proposed as a risk factor for development of  nephropa-
thy in T2DM patients with poor glycaemic control[55]. 

Glucose transporter 1: Glucose transporter 1 (GLUT1 
or SLC2A1) is the major facilitative glucose transporter in 
glomerular mesangial cells. Experimental evidence sug-
gests that GLUT1 may be associated with hypertensive 
glomerulopathy[56]. Ng et al[57], showed that SNPs at the 
GLUT1 (XbaI -intron 2 and HaeIII SNPs-exon 2) were 
associated with susceptibility to diabetic nephropathy in 
type 1 diabetes. A meta-analysis on the other hand dem-
onstrated a significant association between the another 
polymorphic site SLC2A1 XbaI in GLUT1 gene with 
Diabetic nephropathy[58]. 

A study of  those with type 1 diabetes examined six 
GLUT1 SNPs and found homozygosity for the XBAI 
A allele and for minor allele(C-to-T) of  the enhancer-2 
SNP1 (ENH2 SNP) was associated with diabetic ne-
phropathy in type 1 diabetes[57] whereas, no statistically 
significant association was found between XbaⅠ gene 
variants and type 2 diabetic nephropathy[57]. Among the 
gene variants identified in the GLUT1 putative enhancer 
elements, the AA genotype of  enhancer-2 SNP1 (rs841847) 
is a “risk genotype”[57] and that the TT genotype of  the 
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opment and progression of  the disease thus contributing 
to the overall risk. These polymorphisms in several genes 
distributed widely across the human genome, each with a 
modest effect size, may be causal or protective factors in 
the development and progression of  diabetic nephropa-
thy. The combining of  the various gene polymorphism 
studies in diabetic nephropathy related genes with recent 
researches/developments in the fields of  human genom-
ics, proteomics and bioinformatics would help in early 
diagnosis, treatment and prevention by giving us a better 
understanding of  the pathogenesis of  diabetic nephropa-
thy. Identification of  genes associated with diabetic ne-
phropathy could provide a powerful tool for identifying 
patients at risk of  developing diabetic nephropathy in 
the late future. In this context research efforts have been 
invested worldwide to identify the susceptibility gene 
for diabetic nephropathy. Epidemiologic studies and 
candidate-gene-based association studies are the most 
common approaches employed to identify susceptibility 
genes for diabetic nephropathy. Many genes were found 
to be associated with the disease but the results had been 
inconsistent and most of  the candidate genes for diabetic 
nephropathy remain still to be identified. The inclusion 
of  genetic studies in design and analysis of  drug trials 
could lead to development of  genetic biomarkers that 
predict treatment response. Thus, collaborative efforts 
are needed to achieve substantial findings in the study of  
genetics of  diabetic nephropathy which could give us a 
better prospective of  biochemical and molecular mecha-
nism of  disease on the whole. Early identification of  at 
risk patients will facilitate earlier intervention; ultimately 
delaying and reducing the impact of  nephropathy remain 
still to be identified. Thus, collaborative efforts are need-
ed to achieve substantial.
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Abstract
The prevalence of type 2 diabetes (T2D) is evolving 
globally at an alarming rate. Prediabetes is an interme-
diate state of glucose metabolism that exists between 
normal glucose tolerance (NGT) and the clinical entity 
of T2D. Relentless β-cell decline and failure is respon-
sible for the progression from NGT to prediabetes and 
eventually T2D. The huge burden resulting from the 
complications of T2D created the need of therapeutic 
strategies in an effort to prevent or delay its develop-
ment. The beneficial effects of incretin-based therapies, 
dipeptidyl peptidase-4 inhibitors and glucagon-like 
peptide-1 (GLP-1) receptor agonists, on β-cell func-
tion in patients with T2D, together with their strictly 
glucose-depended mechanism of action, suggested 
their possible use in individuals with prediabetes when 
greater β-cell mass and function are preserved and 
the possibility of β-cell salvage is higher. The pres-
ent paper summarizes the main molecular intracellular 
mechanisms through which GLP-1 exerts its activity on 
β-cells. It also explores the current evidence of incretin 
based therapies when administered in a prediabetic 
state, both in animal models and in humans. Finally it 
discusses the safety of incretin-based therapies as well 
as their possible role in order to delay or prevent T2D.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Prediabetes; Impaired 
fasting glucose; Impaired glucose tolerance; Glucagon-
like peptide-1; Dipeptidyl peptidase-4 inhibitors; Gluca-
gon-like peptide-1 receptor agonists

Core tip: The beneficial effects of incretin-based thera-
pies on β-cell function in patients with type 2 diabetes 
(T2D) suggested their possible use in individuals with 
prediabetes, when greater β-cell mass and function 
are preserved. Both dipeptidyl peptidase-4 inhibitors 
and glucagon-like peptide-1 receptor agonists have 
demonstrated improvements on β-cell function both in 
preclinical studies and short-term clinical studies. Until 
future date for their safety are available, large, long 
term, prevention trials will be required in order to de-
termine whether they can stabilize or reverse β-cell 
loss and promote a sustained reduction in the devel-
opment of T2D in this population.
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INTRODUCTION
The prevalence of  type 2 diabetes (T2D) is evolving 
globally at an alarming rate[1]. It is estimated that by the 
year 2030 approximately 366 million people will have dia-
betes and more than 90% of  them T2D[1,2]. Prediabetes 
is an intermediate state of  glucose metabolism that exists 
between normal glucose tolerance (NGT) and the clinical 
entity of  T2D[3]. It encompasses both impaired fasting 
glucose (IFG) and impaired glucose tolerance (IGT). IFG 
is defined by a fasting plasma glucose of  100 mg/dL to 
125 mg/dL, while IGT is defined by a 2 h plasma glucose 
concentration of  140 mg/dL to 199 mg/dL after a 75 g 
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oral glucose tolerance test (OGTT)[3,4]. Furthermore, the 
American Diabetes Association suggested that glycated 
hemoglobulin (A1C) between 5.7% and 6.4% can also be 
used for the diagnosis of  prediabetes, considering that 
A1C test must be performed by a method that is certi-
fied by the National Glycohemoglobin Standardization 
Program and standardized or traceable to the Diabetes 
Control and Complications Trial reference assay[4]. Ap-
proximately 471 million people worldwide (8% of  the 
world’s adult population) are estimated to have IGT by 
the year 2035[1].

Individuals with IGT have moderate to severe muscle 
insulin resistance and normal to slightly decreased he-
patic insulin sensitivity. They are characterized by defects 
in both early (0-30 min) and late-phase (60-120 min) of  
insulin secretion to an oral glucose load[5]. Individuals 
with IFG have moderate hepatic insulin resistance with 
normal muscle insulin sensitivity and decreased basal and 
early phase of  insulin secretion[5]. The Veterans Adminis-
tration Genetic Epidemiology Study and the San Antonio 
Metabolism (SAM) study have shown a progressive de-
cline in pancreatic β-cell function in individuals with pre-
diabetes[6,7]. The SAM study has demonstrated that when 
the 2 h plasma glucose during an OGTT was 180-190 
mg/dL, β-cell function had already declined by 75% to 
80%[6]. Eventually, approximately 20%-34% of  the indi-
viduals with IFG or IGT progress to T2D over five to 
six years, while those with combined IFG and IGT have 
a cumulative incidence of  38%-65%, especially if  they 
have low insulin secretion and severe insulin resistance[8,9]. 
Relentless β-cell decline and failure is responsible for the 
progression from NGT to IGT and eventually T2D.

A two to three fold greater increase in plasma insulin 
response is observed after glucose ingestion compared 
to a parenteral isoglycemic glucose infusion. This phe-
nomenon was defined as the incretin effect; it accounts 
for approximately 70%-80% of  total insulin release after 
oral glucose administration[10,11]. Glucagon-like peptide-1 
(GLP-1) and glucose-dependent insulinotropic polypep-
tide (GIP) are the two major incretins described; they 
account for approximately 90% of  the incretin activity[12]. 
GLP-1 contributes in the overall maintenance of  glucose 
homeostasis through the reduction of  glucagon secretion, 
slowing of  gastric emptying and control of  body weight, 
by its appetite suppressant effect[10,11]. GLP-1 levels are 
significantly decreased in T2D (approximately 50% com-
pared to healthy individuals)[10,13,14]. GIP levels are found to 
be elevated in patients with T2D as a result of  resistance 
to its biological effects. Sensitivity of  β-cells can be re-
sorted after normoglycemia is established, suggesting that 
resistance to GIP is a manifestation of  glucotoxicity[15].

Impairment in incretin hormone secretion/activity in 
individuals with prediabetes has been reported, although 
data are not consistent[16-22]. However, reduced GLP-1 
levels were reported in the majority of  these studies and 
mainly in subjects with isolated IGT or combined IFG 
and IGT; early phase GLP-1 response was found to be 
severely diminished[17-22]. Interestingly, Toft-Nielsen et al[22] 

have shown that during the progression from NGT to 
IGT and eventually T2D, there is a progressive decline 
in GLP-1 levels. Early GLP-1 therapy was suggested to 
preserve β-cell function in subjects with IGT or mild 
T2D[23]. 

Native GLP-1 is rapidly inactivated (halfe-life of  1-2 
min) by the ubiquitously expressed proteolytic enzyme 
dipeptidyl peptidase-4 (DPP-4)[10]. The DPP-4 inhibi-
tors are a class of  oral antidiabetic agents that improve 
glycemic control, in patients with T2D, by increasing 
both GLP-1 and GIP concentrations[24]. GLP-1 receptor 
(GLP-1R) agonists mimic the actions of  GLP-1 and are 
resistant to DPP-4 degradation; they have achieved signif-
icantly lower A1C values in patients with T2D that were 
associated with significant weight reduction[25]. Studies in 
cell cultures and animal models demonstrated that both 
DPP-4 inhibitors and GLP-1R agonists have trophic ef-
fects on pancreatic β-cells. Specifically they enhance β-cell 
proliferation, regeneration and differentiation; thus they 
increase β-cell mass. They also inhibit β-cell apoptosis, in-
cluding human β-cells, through inhibition of  the caspase 
pathway[24-26]. The identification of  their antiapoptotic 
properties, combined with observations of  β-cell func-
tion preservation and sustained glycemic control during 
their administration, suggested their possible use as early 
in the clinical course of  T2D as possible or even earlier 
in order to prevent the onset of  this disease[27]. The pres-
ent paper summarizes the main molecular intracellular 
mechanisms through which GLP-1 exerts its activity on 
β-cells. It also explores the current evidence of  incretin-
based therapies, DPP-4 inhibitors and GLP-1R agonists, 
when administered in a prediabetic state both in animal 
models and in humans. Finally it discusses the safety of  
incretin-based therapies, as well as their possible role in 
order to delay or prevent T2D.

MAIN MOLECULAR INTRACELLULAR 
MECHANISMS OF GLP-1 ACTIVITY ON 
THE PANCREATIC β-CELL
Increased glucose levels are first transported into the 
β-cell by the type 2 facillitative glucose transporter 
(GLUT-2) and are phosphorylated by glucokinase to 
glucose-6-phosphate, promoting an increased rate of  
aerobic glycolysis; this in turn generates substrates (mainly 
pyruvate) for mitochondrial oxidative metabolism. Glyco-
lytic and mitochondrial respiration promotes an increased 
cytosolic adenosine triphosphate (ATP)/adenosine di-
phosphate (ADP) concentration[28]. This major cellular 
metabolic signal provides the link between glucose stimu-
lus and insulin secretion. The increase of  ATP/ADP 
ratio promotes the closure of  ATP-sensitive K+ channels 
(KATP), thereby initiating plasma membrane depolariza-
tion, activation of  voltage-dependent Ca2+ channels 
(VDCCs), Ca2+ influx and an increase in the intracellular 
Ca2+ concentration. This in turn stimulates the granules 
that contain insulin and promotes their release into the 
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blood compartment. Repolarization of  β-cells is mainly 
mediated by Ca2+-sensitive voltage-depended K+ (KCa) 
channels and voltage-dependent K+ (Kv) channels. These 
channels open after glucose-induced membrane depolar-
ization so as to restore the outward flux of  K+[29]. 

GLP-1 is a 30-amino acid peptide produced in the 
intestinal epithelial L-cells of  the distal ileum and colon 
by differential processing of  the proglucagon gene from 
the prohormone convertase PC1/3[30]. GLP-1 binds to 
GLP-1R, a class 2 G protein-coupled receptor, in the cell 
membrane of  the pancreatic islets[31]. Through this re-
ceptor it mainly exerts its insulinotropic activity, which is 
strictly glucose-depended. Specifically, it stimulates adenyl-
ate cyclase resulting in the production of  cyclic adenosine 
3’,5’-monophosphate (cAMP). Downstream effectors of  
cAMP include protein kinase A and the cAMP-regulated 
guanine nucleotide exchange factor Ⅱ. Through the ac-
tivation of  these two important cellular pathways GLP-1 
enhances and amplifies insulin secretion via its effects on 
ATP/ADP concentration ratio, KATP channels, Kv and 
KCa channels, VDCCs, Ca2+ influx and intracellular con-
centrations and insulin granule exocytosis or priming[32,33]. 
In this way GLP-1 restores glucose-depended insulin se-
cretion in metabolically compromised β-cells; it promotes 
the induction of  glucose competence (Figure 1)[34,35]. 

In addition to its insulinotropic effects, GLP-1 acts as 
β-cell growth factor. After binding to its receptor, GLP-1 
induces the transactivation of  the epidermal growth 
factor receptor, which activates phosphatidylinositol-3 
kinase (PI3-K) and its downstream targets protein kinase 
B (PKB/Akt), extracellular signal-related kinase, p38 
mitogen-activated protein kinase (MAPK) and protein 
kinase Cζ [36,37]. Through these pathways GLP-1 exerts 
its action on β-cell proliferation and survival. Moreover 
GLP-1 promotes an increased expression and activity of  
the pancreatic and duodenal homeobox-1 (PDX-1) gene; 
hence it increases total PDX-1 levels and promotes its 
translocation to the nucleus[38]. PDX-1 is of  major sig-
nificance for most of  the proliferative, glucoregulatory 
and cytoprotective actions of  GLP-1. It regulates the 
expression of  genes important for β-cell function such as 
insulin, GLUT-2 and glucokinase. It also replenish β-cell 
insulin stores and in a long term basis it prevents β-cell 
exhaustion[38-42]. Moreover, GLP-1 stimulates β-cell pro-
liferation through CREB-mediated Irs2 gene expression, 
leading to activation of  PI3-K/PKB signaling pathway[43]. 
Its proliferative activity was also related to insulin growth 
factor (IGF)-1 expression and autocrine IGF-2 secre-
tion by the β-cell[44]. Furthermore, GLP-1 prevents β-cell 
apoptosis, induced by a variety of  cytotoxic stimuli, and 
enhances β-cell survival[26,45,46]. 

DPP-4 INHIBITORS IN A PREDIABETIC 
STATE 
Vildagliptin
Studies organized in animal models: Vildagliptin 
(LAF237) is an oral agent that inhibits DPP-4 and in-

creases both active GLP-1 and GIP levels; it achieved 
improved glycemic control in patients with T2D[47]. Five-
week-old female C57BL/6J mice were fed with a high-fat 
diet, as a model of  IGT and T2D, or a normal diet for 8 
wk[48]. After 4 wk, the mice were treated with vildagliptin 
in their drinking water (approximately 3 μmol per day per 
mouse). Controls were given only water. All mice were 
subjected to an OGTT after 4 wk of  treatment. In both 
high-fat diet-fed mice and the normal diet-fed mice, ad-
ministration of  vildagliptin improved glucose tolerance in 
association with markedly augmented insulin secretion. 

Vildagliptin was also administered in anesthetized 
obese insulin resistant cynomolgus monkeys in a dose of  
1 μmol/kg[49]. Each animal received two OGTTs 45 min 
after oral administration of  vildagliptin or vehicle, 3 wk 
apart. Plasma DPP-4 activity was inhibited by 82% with 
vildagliptin therapy (P < 0.001) and remained suppressed 
throughout the duration of  the OGTT. Peak plasma 
GLP-1 levels in the vildagliptin group were significantly 
higher than those in the vehicle-treated animals, after 
the glucose load was given (P < 0.001). Vildagliptin re-
duced glucose excursions during OGTTs compared to 
the vehicle (P < 0.05). There was also a trend towards an 
enhanced insulinogenic response to glucose after vilda-
gliptin therapy.

Clinical studies: Although incretins are stimulated dur-
ing an oral challenge, it was postulated that due to the 
long half-life of  DPP-4 inhibitors, basal levels of  active 
GIP and GLP-1 could play a role in the improvement 
of  β-cell function in individuals with IFG. Vildagliptin 
was investigated in a single-blind, single-treatment design 
study, in which 22 individuals with IFG were enrolled. 
The drug was administered in a dose of  100 mg daily 
for 6 wk. Two weeks of  placebo treatment before (run-
ning period) and after (washout period) the 6 wk were 
also studied[50]. Treatment with vildagliptin resulted in a 
slight increase in fasting GIP but not GLP-1 levels, while 
marked increases of  both intact GLP-1 and GIP levels 
during a meal tolerance test were reported. Fasting plas-
ma glucose (FPG) levels were not significantly reduced. 
Incremental area under the curve (AUC) of  glucose and 
2 h glucose decreased after a meal tolerance test. Al-
though AUC of  C-peptide and insulin responses did not 
change significantly, when the decrease in glucose levels 
was taken into consideration, both markers were im-
proved. Since a formal OGTT was not performed in the 
population enrolled, the possibility that some individuals 
had combined IFG and IGT could not be excluded. The 
disposition index (DI) was increased by 69% and insulin 
sensitivity by 25% after an intravenous glucose tolerance 
test (IVGTT), suggesting an improvement of  β-cell func-
tion when no dynamic change in incretin release would 
be expected to occur. However, after the 2-wk washout 
period, all the beneficial effects observed returned to 
baseline levels.

In a multicenter 12-wk double-blind study 179 in-
dividuals with IGT were randomized to receive either 
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therapy between the three groups. Baseline A1C was low-
est in the vildagliptin group and higher in the pioglitazone 
group (P = 0.01). A1C reduction was statistically signifi-
cant between treatment groups and placebo (placebo vs 
pioglitazone: -0.17% ± 0.33% vs +0.09% ± 0.26%; P = 
0.013; placebo vs vildagliptin: -0.11% ± 0.25% vs +0.09% 
± 0.26%; P = 0.049). Vildagliptin and pioglitazone re-
duced the 2 h plasma glucose at three months compared 
with baseline (vildagliptin: -20 ± 24 mg/dL; P = 0.002 
and pioglitazone: -23 ± 29 mg/dL; P = 0.004), while only 
pioglitazone slightly reduced FPG. 

Sitagliptin 
Studies organized in animal models: Sitagliptin is the 
first DPP-4 inhibitor introduced in clinical practice[53]. 
Sitagliptin and glyburide were administered in obese pre-
diabetic spontaneously hypertensive rat-obese (SHROB) 
in order to investigate whether it could reverse the meta-
bolic abnormalities in the secretion of  both insulin and 
glucagon[54]. Sitagliptin was found to normalize glucose 
tolerance following an OGTT, at least as effective as 
glyburide, in this rat model of  metabolic syndrome and 
prediabetes. Sitagliptin also restored the first phase of  
insulin secretion after an OGTT more effectively than 
glyburide. Fasting glucagon levels, which were elevated 

vildagliptin 50 mg/daily (n = 90) or placebo (n = 89)[51]. 
Approximately 80% of  the patients were IFG and IGT. 
In individuals receiving vildagliptin there was a marked 
and sustained increase in active GLP-1 and GIP levels 
compared to the placebo group (5-fold and almost 2-fold 
increases in the incremental AUCs for GLP-1 and GIP, 
respectively). These effects were associated with signifi-
cant improvements in β-cell function, as estimated by 
insulin secretion relative to that of  glucose (insulin secre-
tory rate AUC0-2 h/glucose AUC0-2 h, mean change 
between groups 6.1 ± 2.0 pmol/min per meter per mil-
limoles per liter, P = 0.002). Improvements were also 
reported in α-cell function [glucagon ΔAUC0-2 h, mean 
change between groups (-3.0 ± 2.0 pmol/L per hour, P 
= 0.003)]. These beneficial effects contributed approxi-
mately to 30% reduction of  ΔAUC for glucose. Vilda-
gliptin was well tolerated with a good safety profile and 
no hypoglycemia was documented.

A three month, double-blind, placebo-controlled study 
was organized in a population of  48 stable renal transplant 
recipients, at least six months after transplantation, with 
newly diagnosed IGT[52]. Participants were randomized 
to receive 50 mg of  vildagliptin, 30 mg of  pioglitazone 
or placebo in a 1:1:1 ratio (16 individuals in each group). 
There was not any significant difference in corticosteroid 
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Figure 1  Glucagon-like peptide-1 and the β-cell: Amplification of the glucose-stimulated insulin secretion. Increased glucose levels are transported into the 
β-cell by GLUT-2. They are phosphorylated by GK to glucose-6-P, promoting an increased rate of aerobic glycolysis. Pyruvate is the main substrate for mitochondrial 
oxidative metabolism. Increased cytosolic ATP/ADP concentration is the major cellular metabolic signal between the glucose stimulus and insulin secretion. It pro-
motes the closure of KATP channels, thereby initiating plasma membrane depolarization, activation of VDCCs, Ca2+ influx and an increase in the intracellular Ca2+ con-
centration. This in turn stimulates the granules that contain insulin and promotes their release into the blood compartment. Repolarization of β-cells is mainly mediated 
by KCa and Kv channels. GLP-1 binds to GLP-1R, a class 2 G protein-coupled receptor, in the cell membrane of the pancreatic cells. Through this receptor it mainly 
exerts its insulinotropic activity. It promotes increased levels of cAMP through stimulation of adenylate cyclase. Downstream effectors of cAMP are PKA and Epac. 
Through the activation of these two important cellular pathways GLP-1 amplifies insulin secretion via its effects on ATP/ADP concentration ratio, KATP channels, Kv 
and KCa channels, VDCCs, Ca2+ influx and insulin granule exocytosis. GLU: Glucose; GLUT-2: Type 2 facillitative glucose transporter; GK: Glucokinase; Glucose-6-P: 
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in the SHROB model, were normalized after 5 wk of  si-
tagliptin therapy. Fasting insulin and liver glucogen levels 
were not affected by both drugs. It was suggested that if  
sitagliptin actions could extend to human prediabetics, 
then sitagliptin might delay the onset of  diabetes[54]. 

Sitagliptin was also administered in a mouse model of  
diet-induced obesity with increased FPG and postpran-
dial hyperinsulinemia[55]. It was reported that 12-wk of  
sitagliptin therapy improved glucose tolerance, reduced 
FPG, and lowered plasma insulin in randomly fed mice 
compared with untreated insulin-resistant obese mice. 
A significant reduction in glucose excursions during an 
intraperitoneal glucose tolerance test was found. Sita-
gliptin was also shown to induce a change in the islet size 
distribution. Specifically, a significantly higher percentage 
of  small islets and a reduced relative percentage of  very 
large islets (due to the very high-fat diet) was demonstrat-
ed. This result may explain the better insulin secretory 
response observed after sitagliptin therapy in response to 
an in vitro glucose challenge.

An animal model with clinical and metabolic char-
acteristics similar to those of  individuals with IGT was 
recently studied[56]. Fructose administration to normal 
rats for 21 d induced insulin resistance, IGT, hypertriglyc-
eridemia and decreased β-cell mass, due to an increased 
percentage of  apoptosis. The control group was con-
sistent of  rats that were fed with a standard commercial 
diet. Homeostasis model assessment for insulin resistance 
(HOMA-IR) and for β-cell function (HOMA-β) de-
creased to almost control values after sitagliptin therapy. 
Sitagliptin significantly increased β-cell mass by 68%, 
attaining values close to those measured in standard 
commercial diet fed rats; inhibition of  β-cell apoptosis 
was the main cellular mechanism for this effect. These 
changes were associated with normalization of  IGT and 
liver triacylglycerol content.

Clinical studies: In a double blind placebo-controlled 
trial 22 individuals with IFG, after a baseline meal study, 
received sitagliptin 100 mg daily (n = 11) or placebo (n 
= 11) over an 8-wk treatment period[57]. They underwent 
a second meal study at the end of  the treatment period. 
Sitagliptin did not alter fasting but increased postprandial 
intact GLP-1 concentrations, while total postprandial 
GLP-1 concentrations were reduced. Both fasting and 
postprandial glucose values were unchanged with sita-
gliptin therapy. Although sitagliptin resulted in a slight 
improvement in β-cell function (a slightly increased DI 
was found), this was not sufficient to alter glucose uptake 
and production and overcome the defect on insulin ac-
tion. It was speculated that the limited ability of  DPP-4 
inhibitors to increase insulin secretion in IFG could be 
due to their glucose depended mechanism, since glucose 
concentrations are only modestly elevated in IFG. This 
speculation can also explain the differing effectiveness of  
sitagliptin on postprandial concentrations in this study 
compared to other studies in individuals with IGT, with 
higher postprandial glucose concentrations. 

A four week open-label, parallel group study inves-
tigated the effects of  sitagliptin on insulin secretion and 
endogenous glucose production in individuals with IFG 
and no history of  prior antidiabetic therapy[58]. Twenty-
three individuals with either IFG (n = 10) or NGT (n = 
13) were studied by a fasting glucose test and OGTT. All 
participants received open-label sitagliptin 100mg once 
daily for 4 wk. Treatment with sitagliptin resulted in a 
small but significant decrease in FPG compared to base-
line in both groups (P < 0.05). Endogenous glucose pro-
duction was unchanged after 4 wk of  sitagliptin therapy. 
Administration of  sitagliptin did not altered insulin or 
glucose excursions in the post-intervention OGTT, but 
did increase AUC for active GLP-1 and C-peptide com-
pared to baseline levels (P < 0.01 for both). Insulin sen-
sitivity and β-cell response indices remained unchanged 
after administration of  sitagliptin.

Beta-cell function in Glucose abnormalities and Acute 
Myocardial Infarction was a 12-wk multicentre, double-
blind, randomized, parallel group study that investigated 
the effects of  sitagliptin 100 mg daily (n = 34) compared 
to placebo (n = 37) in 71 patients with acute coronary 
syndrome having IGT or T2D[59]. Investigation of  β-cell 
function was achieved using the insulinogenic index (IGI) 
derived from an OGTT and acute insulin response to 
glucose (AIRg) after a frequently sampled IVGTT. At 
the time of  randomization 71% and 62% of  the indi-
viduals in the sitagliptin and the placebo group had IGT, 
while 29% and 38% had T2D, respectively. IGI increased 
significantly, from baseline to 12 wk (9.9 pmol/mmol 
to 85.0 pmol/mmol) in the sitagliptin group compared 
to the placebo group (66.4 pmol mmol-1 to 58.1 pmol/
mmol, P = 0.013). The AIRg increased significantly in 
the sitagliptin group compared to the placebo group: 
1909 pmol L-1 per minute vs 1043 pmol/L per minute (P 
< 0.0001). During the OGTT and the frequently sampled 
IVGTT, glucose levels were significantly lower in the 
sitagliptin arm compared to the placebo arm. Immediate 
insulin response was higher after sitagliptin therapy, while 
it remained unchanged after placebo. By 12 wk, 76%, 
18% and 6% of  the participants in the sitagliptin group 
had NGT, IGT and T2D respectively. In the placebo arm 
41%, 35% and 24% of  the participants had NGT, IGT 
and T2D respectively.

Other DPP-4 inhibitors
Alogliptin is the newest DPP-4 inhibitor approved for 
T2D therapy, either alone or in combination with other 
antidiabetic agents[60]. It was administered alone or in 
combination with voglibose in prediabetic db/db mice[61]. 
Specifically, 6 wk old prediabetic db/db mice were fed 
with a powder CE-2 diet containing 0.001% voglibose 
alone (equivalent to 1.8 mg/kg per day), 0.03% aloglitpin 
alone (equivalent to 72.8 mg/kg per day), or combination 
of  both agents (equivalent to alogliptin: 53.8 mg/kg per 
day + voglibose: 1.8 mg/kg per day) for 27 d. Control 
db/db and non-diabetic db/+ mice were fed by a drug-
free powder CE-2 diet (vehicle). Plasma DPP-4 activity 
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was reduced significantly by 18%, 72% and 80% and 
plasma active GLP-1 levels were increased significantly by 
1.8, 4.5 and 9.1-fold in voglibose, alogliptin and combina-
tion treated db/db mice, compared with vehicle treated 
db/db mice, respectively. Pancreatic insulin content was 
increased significantly by 3.4, 1.8 and 8.5-fold and A1C 
was reduced significantly by 1.6%, 0.5% and 2.1% in vo-
glibose, alogliptin and combination treated  db/db mice, 
compared with vehicle treated db/db mice, respectively. 
Although quantitative analysis was not preformed, com-
bination treatment resulted in an increased pancreatic 
insulin staining, PDX-1 staining and GLUT2 membrane 
localization in β-cells. It also maintained normal distri-
bution of  β/α-cells in islets; it was suggested that this 
combination could preserve pancreatic β-cells in db/db 
mice[61]. The combination of  alogliptin and pioglitazone 
was also found to improve glycemic control and increase 
pancreatic insulin content in ob/ob mice; however the ad-
dition of  alogliptin to pioglitazone therapy did not con-
tributed to the prevention or the delay of  T2D onset in 
UCD-T2DM rats[62,63].

The effects of  chronic administration of  the DPP-4 
inhibitor FE 999011 were investigated in both obese and 
insulin resistant fatty Zucker rats and Zucker diabetic 
fatty (ZDF) rats[64]. Fatty Zucker rats experience mild glu-
cose intolerance, while ZDF become overtly diabetic af-
ter 8 wk of  age, if  they are fed with a diet containing 6.5% 
of  fat. When administered in the fatty Zucker rats, FE 
999011 produced a dose-depended reduction in plasma 
glucose excursion during the OGTT. During an intra-
duodenal glucose tolerance test it increased GLP-1 levels, 
while glucose excursions were indistinguishable from 
that of  lean controls. Chronic treatment with FE 999011 
in the fatty Zucker rats significantly improved glucose 
tolerance, as suggested by the decrease in the insulin-to-
glucose ratio. Chronic treatment with FE 999011 twice 
daily in ZDF rats maintained euglycemia for at least 21 d 
and delayed the onset of  diabetes. Lower basal insulin se-
cretion due to improved insulin sensitivity was reported. 
It also increased basal GLP-1 levels, stabilized food and 
water intake to prediabetic levels, reduced hypertriglyceri-
demia and prevented the rise of  circulating non-esterified 
fatty acids (NEFAs). Up-regulation of  pancreatic GLP-1 
receptor gene expression was also induced by FE 999011.

The DDP-4 inhibitor isoleucine thiazolidine (P32/98) 
was orally administered for 3 wk to fatty Zucker rats 
with incipient IGT (iIGT) and 6 wk in rats with mani-
fest IGT (mIGT) in a dose of  21.61 mg/kg (n = 10 per 
group)[65]. Control rats received the same amount of  
placebo. Blood glucose day-night profile was significantly 
reduced in iIGT Zucker rats achieving values near nor-
malization; it was also improved in mIGT rats. P32/98 
tended to reduce food intake and body weight gain, as 
well as non-fasting plasma insulin levels, only in Zucker 
rats with iIGT. P32/98 bolus before OGTT increased 
insulin secretion and reduced glucose load both in iIGT 
and mIGT Zucker rats, suggesting a broad therapeutic 
efficacy in animal models of  IGT. Treatment of  isolated 

pancreatic islets of  mIGT Zucker rats with this agent de-
creased pancreatic insulin content and increased glucose 
responsiveness, while the β-cell volume density was not 
improved. 

The DPP-4 inhibitor PFK 275-055, a vildaglitpin 
analogue, was investigated in obese, insulin resistant pre-
diabetic rats for 4 wk in a dose of  10 mg/kg per day[66]. 
GLP-1 levels increased after PFK 275-055 therapy. In-
sulin levels were decreased after therapy with this agent, 
while glucose levels were not affected; an increased β-cell/
α-cell ratio was observed. The DPP-4 inhibitor DA-1229 
improved pancreatic insulin content, β-cell function and 
delayed the onset of  diabetes in young db/db mice[67]. 
Currently, several studies have been launched and are re-
cruiting individuals in order to explore the possible role 
of  alogliptin and saxagliptin in a prediabetic state[68]. 

GLP-1R AGONISTS IN A PREDIABETIC 
STATE
Exenatide
Studies organized in animal models: Exenatide is the 
synthetic form of  the naturally occurring exendin-4, a 
39-amino-acid peptide hormone secreted by the salivary 
glands of  the venomous lizard Heloderma suspectum, 
otherwise known as the Gila monster[69]. It shares 53% 
structural homology with human GLP-1 and resists 
inactivation by the DPP-4. In an animal model of  pro-
found insulin resistance, IGT, hypertriglyceridemia and 
decreased β-cell mass, exendine-4 significantly increased 
β-cell mass by 201%[56]. This effect was achieved after a 
significant decrease in β-cell apoptosis, although the mo-
lecular effect for this activity was not studied. HOMA-
IR and HOMA-β indexes remained within normal rage. 
Normalization of  IGT and liver triacylglycerol content 
was also achieved.

In another well-organized study, exendin-4 was ad-
ministered to obese prediabetic db/db mice at 6 wk of  
age for 16 d[70]. By the age of  8 wk, vehicle treated mice 
developed T2D, while mice treated with exendin-4 main-
tained FPG in the normal range, indicating that this agent 
delayed the onset of  T2D. Improvement in glucose toler-
ance was also observed with exendin-4. No significant 
differences were observed between the two groups as far 
as insulin sensitivity is concerned. Glucose alone induced 
a two to five-fold increase in insulin secretion in the ex-
endin-4 group, while the pancreas of  vehicle-treated mice 
was unresponsive to the same dose of  glucose. A 1.4-fold 
increase in β-cell mass was observed in exendin-4 mice, 
which was the result of  both increased β-cell prolifera-
tion and decreased β-cell apoptosis; these changes were 
related to higher expression of  the protein kinases Akt1 
and MAPK.

The ability of  exendin-4 to promote β-cell prolifera-
tion in young Goto-Kakizaki (GK) rats during the pre-
diabetic state, and therefore prevent the development of  
T2D when animals become adults, was also explored[71]. 
Four groups of  rats were investigated: two control 
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groups (control GK and control non-diabetic Wistar rats) 
and two experimental groups. In the two experimental 
groups, GK rats received either a subcutaneous daily 
injection of  GLP-1 (400 μg/kg of  body weight) or exen-
din-4 (3 μg/kg of  body weight) for five days (day’s two 
to six) after their birth. Animals were killed seven days or 
two months after birth. Seven days after their birth GK 
rats showed significantly higher pancreatic insulin content 
and doubling of  β-cell mass compared to the untreated 
GK group; this effect resulted from both differentiation 
(neogenesis) and proliferation enhancement of  β-cells. 
Follow up from day seven to the adult age (two months) 
showed that both treatments decreased postabsorptive 
basal plasma glucose levels and increased pancreatic insu-
lin content compared to the untreated GK arm. In GK/
GLP-1 and GK/exendin-4 groups, β-cell mass was sig-
nificantly increased and represented 71% and 63% of  the 
β-cell mass of  the Wistar group, respectively. Glucose-
stimulated insulin release, as evaluated during an IVGTT, 
was significantly improved in both treated groups. It was 
concluded that GLP-1 or exendin-4 treatment limited the 
prediabetic period and delayed the development of  T2D 
in this animal model of  prediabetes.

Exendin-4 activity was explored in a rat model of  
uteroplacental insufficiency[72]. Intrauterine growth retard-
ed (IUGR) rats experience a progressive decline in β-cell 
mass weeks before the onset of  T2D; hence there is a 
prediabetic neonatal period, which was investigated. At 
two weeks, exendin-4 significantly decreased body weight 
in both IUGR and control pups and this effect persisted 
into adulthood. It also improved glucose tolerance, which 
was maintained at 7 wk of  age. Interestingly, at three 
months of  age, vehicle-treated IUGR rats developed 
T2D (their β-cell mass declined by almost 80%) whereas 
exendin-4 treated IUGR rats had NGT and normal β-cell 
mass. At 18 months of  age, exendin-4 treated IUGR rats 
were normoglycemic, while all vehicle treated IUGR rats 
had died. Exendin-4 therapy in IUGR rats at 14 d re-
stored PDX-1 mRNA levels, in concentrations similar to 
controls; this effect persisted for three months.

Clinical studies: One hundred fifty two obese [average 
body mass index (BMI): 39.6 ± 7.0 kg/m2] individuals 
with NGT or IGT or IFG were randomized to receive 
either exenatide (n = 73) (10 μg with a 4-wk 5 μg dose 
titration period) or placebo (n = 79), along with lifestyle 
modification for 24 wk[73]. Thirty eight individuals (25%) 
had IFG or IGT. Exenatide-treated individuals lost 5.1 ± 
0.5 kg from baseline vs 1.6 ± 0.5 kg in the placebo group 
(treatment difference: -3.3%, P < 0.001). An important 
percentage of  individuals with prediabetes returned to 
NGT after the end of  the period (77% compared to 56% 
in the placebo group). No significant baseline to end 
point changes was shown for FPG, A1C and OGTT. Di-
arrhea was reported by 14% and 3% and nausea by 25% 
and 4% of  the exenatide and placebo groups, respec-
tively. Adverse effects were mild or moderate in severity 
in most cases. It was concluded that exenatide therapy in 

addition to lifestyle modification is a promising therapeu-
tic approach for obese prediabetic individuals.

In another non randomized study, 105 individuals 
with IGT and/or IFG were treated with: (1) Lifestyle 
modification only (n = 18). Participants were advised to 
achieve 7% body weight loss over three months and to 
walk 30 min daily, seven days per week; (2) Pioglitazone 
15mg daily and metformin 850mg daily (n = 40); and (3) 
A triple combination of  pioglitazone 15mg daily, met-
formin 850 mg daily and exenatide 10 mcg twice daily (n 
= 47)[74]. All individuals who received drug therapy had 
the same advice on lifestyle intervention. Mean follow-
up period was 8.9, 6.9, and 5.5 mo in the three groups 
respectively. Individuals in the lifestyle intervention group 
achieved only a slight reduction of  body weight (82.3 kg 
to 80.9 kg). No significant change on insulin sensitivity 
and β-cell function was observed. In the pioglitazone and 
metformin group FPG was decreased from 109 mg/dL 
to 102 mg/dL and mean glucose AUC during OGTT 
was reduced by 12% (P < 0.001). Insulin sensitivity and 
β-cell function improved by 42% and 50% respectively, 
while 14% of  the individuals with IGT and 36% of  the 
individuals with IFG reverted to NGT. Interestingly, in 
the triple therapy group, a robust 109% improvement in 
β-cell function and a 52% increased in insulin sensitivity 
was observed, while 59% of  the individuals with IGT 
and 56% of  the individuals with IFG reverted to NGT. 
No patient in both double and triple therapy groups de-
veloped T2D.

A 24-wk prospective randomized outpatient clinical 
trial explored the possible role of  exenatide (10 μg twice 
daily) and metformin (1000 mg twice daily), alone or in 
combination, on menstrual cyclicity and metabolic and 
endocrinological parameters in 60 overweight/obese 
women with polycystic ovary syndrome (PCOS)[75]. Forty 
two participants (70%), 14 in each arm completed the 
study protocol. Weight loss was more profound in the 
exenatide arms compared to metformin (P = 0.003). 
Combination treatment promoted a dramatic improve-
ment in central adiposity. At the end of  the study, the 
combination arm experienced weight loss of  6 ± 0.5 kg, 
the exenatide arm 3.2 ± 0.1 kg, and the metformin arm 1.6 
± 0.2 kg. Eighteen women with PCOS had glucose intol-
erance and 11 of  them completed the study. Seven (64%) 
of  them had NGT at the end of  the trial (three of  three 
in the combination arm, three of  five on the metformin 
arm and one of  three on the exenatide arm). Insulin sen-
sitivity and HOMA-IR were significantly improved in all 
treatment groups. Insulin secretion, as measured by the 
corrected insulin response at glucose peak, was signifi-
cantly reduced in the exenatide and combination arms (P 
< 0.016). The insulin secretion-sensitivity index increased 
progressively from metformin arm (232 ± 116) to the ex-
enatide arm (395 ± 112) and the combination arm (516 ± 
117) (P < 0.005), suggesting an improved β-cell function 
with enhanced insulin sensitivity.

The role of  exenatide in order to improve postpran-
dial endothelial function in individuals with IGT (n = 
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16) and patients with recent T2D with optimal glycemic 
control (n = 12) was investigated in a double-blinded ran-
domized crossover study[76]. Endothelial function was es-
timated by reactive hyperemia peripheral arterial tonom-
etry (PAT). In individuals with IGT, PAT index tended 
to increase after exenatide and was higher compared 
to the placebo period. Exenatide reduced postprandial 
rises in insulin, glucose and triglycerides concentrations. 
Postprandial PAT index was inversely correlated only 
with mean postprandial concentrations of  triglycerides, 
possibly due to the high fat content of  the meal adminis-
tered. Change in postprandial triglycerides after exenatide 
accounted for 64% of  the estimated effect of  exenatide 
on postprandial endothelial function. Exenatide also 
reduced the postprandial elevation of  triglycerides, apoli-
poprotein B-48, apolipoprotein CⅢ, remnant lipoprotein 
cholesterol and remnant lipoprotein triglyceride in indi-
viduals with IGT (n = 20) and patients with recent onset 
T2D (n = 15)[77]. These effects were not affected either 
with statin therapy or by glucose tolerance status. Both 
studies suggested an additional cardiovascular benefit of  
this agent beyond the improved glycemic control in this 
population[76,77]. Another randomized 3-wk head-to-head 
study examined the effects of  exenatide vs metformin on 
microvascular endothelial function in 50 individuals with 
abdominal obesity and prediabetes[78]. Similar effects of  
both agents were shown on microvascular endothelial 
function, vascular activation, oxidative stress and markers 
inflammation. Exenatide did not demonstrate any ben-
eficial effect on postprandial function in individuals with 
IGT. It was suggested that the reason for this observation 
was the administration of  a glucose-only meal instead 
of  a high fat meal, which would be expected to increase 
postprandial triglycerides[76,78].

Liraglutide
Studies organized in animal models: Liraglutide is 
a long acting analog with 97% homology to human 
GLP-1. It has an additional 16-carbon fatty acid and a 
small amino acid-spacer that promotes reversible binding 
to albumin and enhances resistance to DPP-Ⅳ degrada-
tion, providing a half-life of  approximately 13 h[79]. The 
possible role of  chronic liraglutide therapy in prediabetic 
UCD-T2D rats, in order to prevent or delay T2D, was in-
vestigated in a well organized study[80]. The UCD-T2D rat 
model develops polygenic adult-onset obesity and insulin 
resistance, followed by inadequate β-cell compensation 
and eventually T2D. UCD-T2D rats develop diabetes in 
a later age than other animal models of  T2D; thus they 
are highly suitable for diabetes prevention studies[81]. At 
two months of  age male sibling rats were divided in three 
groups (n = 32 per group): a control group (higher en-
ergy intake, body weight and adiposity compared to the 
other groups), a food-restricted group and a liraglutide 
group (0.2 mg/kg sc for 15 mo). Restricted rats were 
food restricted to 9% less energy per kg of  body weight 
compared to the liraglutide group, in order to equalize 
body weights between these two groups. Half  of  the ani-

mals in each group were killed at 6.5 mo for tissue collec-
tion, while the remaining half  continued treatment until 
T2D onset. FPG and A1C were lower in the liraglutide 
and food-restricted groups. Liraglutide treatment delayed 
T2D onset by 4.1 ± 0.8 mo compared to controls (P 
< 0.0001) and by 1.3 ± 0.8 mo compared to restricted 
animals (P < 0.05). Liraglutide-treated animals had lower 
fasting plasma triglycerides, glucagon and leptin levels, as 
well as body fat (despite similar body weight), compared 
to both groups. Decreased body fat could be the result of  
an increased lipid oxidation. Rats in the liraglutide group 
had significantly lower fasting plasma insulin compared 
to the other groups (P < 0.001), starting from one month 
and lasting throughout the 6 mo period, suggesting that 
this effect was not solely related to reduced body weight. 
Liraglutide treatment and energy restriction equally pre-
served pancreatic insulin content and islet morphology, 
possibly due to the lower weight gain and delayed hyper-
glycemia. Pancreatic insulin content in the control group 
was approximately one-third of  that of  the two other 
groups. 

In another study, 12-wk old Otsuka-Long-Evans-
Tokushima fatty (OLETF) rats (n = 8) were treated with 
three doses of  liraglutide (50, 100, and 200 μg/kg twice 
a day) or 0.9% saline intraperitoneally (n = 8), twice daily 
for 12 wk. Eight Long-Evans-Tokushima-Otsuka rats 
with saline injection served as normal controls[82]. At the 
end of  the 12 wk of  treatment, all rats were euthanized 
and pancreatic tissues were used for histopathological and 
immunohistochemical analysis; only in the liraglutide 100 
μg/kg group an analysis was performed, since this dose 
can be converted to a human equivalent dose. OLETF 
rats experienced obesity, IFG, hyperinsulinemia, insulin 
resistance, increased cholesterol levels, and a high inflam-
matory state. Although liraglutide treatment had only an 
acute effect on food intake, its beneficial effect on weight 
loss was sustained independently of  feeding. All three 
doses of  liraglutide suppressed IFG, IGT and insulin 
resistance. At the end of  the 12-wk intervention period, 
87.5% of  the vehicle-treated OLETF progressed to T2D. 
On the contrary, 42.9% of  IFG rats were reversed to 
NGT, while none of  the liraglutide-treated OLETF rats 
progressed to T2D compared to vehicle-treated animals 
(P < 0.0001). Liraglutide improved both triglyceridemia 
and the inflammatory state observed. It also preserved 
islet morphology. Up-regulation of  the anti-apoptotic 
Bcl-2 protein and down-regulation of  the pro-apoptotic 
Bax factor were reported, which may contribute to the 
improvement of  pancreatic islet function and structure.

When liraglutide was administered in a dose of  150 
mg/kg twice daily for 6 wk in prediabetic rats, it strongly 
attenuated T2D development[83]. Approximately 53% 
of  the antihyperglycemic effect observed was mediated 
by a reduction in food intake. In the experiments with 
60% pancreatectomized rats, liraglutide significantly re-
duced glucose excursions after an OGTT. Furthermore, 
when NGT status was established, no increase in β-cell 
proliferation and mass was observed in both models of  
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β-cell deficiencies. It was suggested that the influence 
of  GLP-1 agonism on β-cell mass dynamics in vivo was 
strongly related to the glycemic state observed.

Clinical studies: In a 20-wk prospective multicentre 
study, 564 nondiabetic obese individuals (31% of  whom 
had prediabetes) were randomized to receive either one 
of  four doses of  liraglutide (1.2 mg, 1.8 mg, 2.4 mg, or 
3.0 mg, n: 95, 90, 93 and 93, respectively) or placebo (n = 
98) administered once daily subcutaneously or open label 
orlistat 120 mg three times daily (n = 95)[84]. All individu-
als increased their physical activity using pedometers and 
were advised to adhere a low fat diet with about to 500 
kcal per day deficit. Sixty-one percent of  the individuals 
in the liraglutide groups lost at least 5% of  body weight 
from baseline, which was significantly more than the 
placebo arm. The proportion of  individuals who lost 
more than 10% of  baseline weight was dose depended 
and was greater in the 3 mg liraglutide arm than in the 
placebo arm (28% vs 2%). Systolic/diastolic blood pres-
sure was reduced by 5.7/3.7 mmHg. The incidence of  
metabolic syndrome was reduced by more than 60% in 
those treated with liraglutide 2.4 mg and 3.0 mg. The 
prevalence of  prediabetes was decreased by 84-96% with 
liraglutide 1.8 mg, 2.4 mg and 3 mg. Mean FPG was de-
creased by 7%-8% in the liraglutide arm, while no visible 
effect was described in the two other arms. Mean A1C 
was slightly reduced in a dose depended fashion in indi-
viduals treated with liraglutide compared to that in the 
two other groups. Mean change in plasma glucose during 
OGTT was reduced in all liraglutide groups compared 
to that of  orlistat and placebo. Liraglutide therapy did 
not have any effect on insulin resistance as estimated by 
HOMA. However, median β-cell function was decreased 
with orlistat and placebo by 21% and 17% respectively, 
but increased in the liraglutide arm by 5%-24%. Fasting 
insulin levels initially increased, but as body weight and 
glucose concentrations gradually decreased, insulin levels 
were reduced, suggesting the glucose-depended activity 
of  liraglutide on insulin secretion.

The two-year results from the extension of  this 
20-wk trial were recently reported[85]. Three hundred 
ninety eight individuals entered the extension and 268 
(67%) completed the two-year trial. All participants con-
tinued on randomization treatment for one year, after 
which liraglutide or placebo individuals switched initially 
to liraglutide 2.4 mg and then 3 mg (based on 20-wk and 
one-year results, respectively). After two years, individu-
als on liraglutide 2.4/3.0 mg lost 3.0 kg (1.3-4.7 kg) more 
weight than those on orlistat (P < 0.001). Approximately 
70% of  the individuals on liraglutide 2.4/3.0 mg main-
tained weight loss more than 5% of  screening weight 
after two years, 43% maintained more than 10% loss and 
25% maintained more than 15% loss. Estimated weight 
loss of  7.8 kg and mean systolic blood pressure reduc-
tion of  12.5 mmHg was sustained with liraglutide 2.4/3.0 
mg in completers from screening. Between 52%-62% of  
liraglutide-treated individuals with prediabetes at random-

ization achieved NGT after two years compared to 26% 
in the orlistat arm. Mean FPG and A1C concentrations 
were also reduced. The two year prevalence of  prediabe-
tes and metabolic syndrome in the liraglutide 2.4/3.0 mg 
group was decreased by 52% and 59% respectively. The 
most frequent liraglutide-associated adverse effects were 
gastrointestinal, mainly nausea and vomiting, as expected 
from T2D trials. However, most nausea/vomiting epi-
sodes were transient; more than 90% were mild or mod-
erate in intensity.

Recently, a 14-wk double blind, randomized placebo-
controlled study was launched in order to investigate the 
possible role of  liraglutide 1.8 mg treatment in 68 older 
(mean age: 58 ± 8 years) overweight/obese (mean BMI: 
31.9 kg/m2) individuals with prediabetes (IFG and/or 
IGT)[86]. Participants were also advised to eat a moderate 
carbohydrate diet and decrease total caloric intake by 500 
kcal/d. Twenty four (68%) individuals randomized in the 
liraglutide group and 27 (82%) individuals in the placebo 
group completed testing at the end of  the trial. Partici-
pants randomized to liraglutide arm lost twice as much 
weight as those assigned to placebo (6.8 kg vs 3.3 kg; P < 
0.001). More individuals in the liraglutide arm finally lost 
7% of  baseline weight compared to the placebo arm (54% 
vs 4%); 10% weight loss was only observed in the liraglu-
tide arm (17%). Weight loss after liraglutide therapy was 
associated with significant reduction of  insulin resistance. 
Steady state plasma glucose concentrations were reduced 
by 29% in the liraglutide arm compared with no change 
in the placebo arm; FPG (-0.5 mmol/L vs 0 mmol/L), 
systolic blood pressure (-8.1 mmHg vs -2.6 mmHg), and 
triglyceride levels (-0.4 mmol/L vs -0.1 mmol/L) were 
also significantly decreased in the liraglutide arm com-
pared to the placebo arm respectively (P ≤ 0.04). In 
addition, 75% of  the participants in the liraglutide arm 
achieved normal FPG. The most common adverse ef-
fect in the liraglutide arm was nausea (67% vs 26% in the 
placebo arm). It was suggested that the improvement of  
glycemia in the liraglutide group appeared to be better 
than reported with weight loss alone in this population. 

Indeed, the effects of  GLP-1R agonists on insulin se-
cretion are not a simple phenomenon. These medications 
can increase glucose secretion in a glucose-depended 
manner after acting directly on the β-cell; they can also 
decrease insulin secretion secondary to weight loss and 
enhancement of  insulin sensitivity. In this view, it is 
unclear what the net effect would be when they are ad-
ministered in individuals with prediabetes. In order to in-
vestigate this observation, a parallel study was organized 
in order to evaluate the relative impact of  the indirect 
effect of  weight loss and increase insulin sensitivity com-
pared to the direct effect of  GLP-1R agonists on β-cell 
function[86,87]. In this recent double-blind, randomized, 
placebo-controlled, parallel-group study 49 individu-
als (mean age: 58 years, mean BMI: 32.9 kg/m2) with 
prediabetes (isolated IFG, isolated IGT and combined 
IFG/IGT) received either liraglutide 1.8 mg daily (n = 
24) or placebo (n = 25). All participants were instructed 
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to decrease total energy intake by 500 kcal per day and to 
continue their baseline physical activity[87]. There was a lit-
tle overlap in the degree of  weight loss between the two 
arms since 88% of  the individuals in the liraglutide arm 
lost more than 5% of  baseline body weight compared to 
22% in the placebo arm. Weight loss promoted a signifi-
cant improvement on insulin resistance in the liraglutide 
arm compared to the placebo arm (-7.7% vs -3.9%, P < 
0.001). Insulin response, after intravenous glucose infu-
sion, was decreased by 7% in the placebo arm whereas it 
increased by 34% in the liraglutide arm. C-peptide AUC 
was increased by 29% in individuals receiving liraglutide 
and NEFAs concentration was reduced. Placebo treat-
ment had no effect on these two parameters. Regression 
analyses suggested that weight loss was not associated 
with any changes in pancreatic β-cell function. Despite 
weight loss and reduction of  insulin resistance in the lira-
glutide arm, the insulin secretion rate was significantly in-
creased and there was no association between weight loss 
and changes on insulin secretion. It was concluded that 
changes following liraglutide treatment in patients with 
prediabetes are not those that are described after weight 
loss and improved insulin sensitivity, but rather similar ef-
fects after an acute GLP-1 infusion[87,88].

SAFETY OF INCRETIN-BASED THERAPIES 
An acceptable safety profile is of  major importance for 
every intervention administered in order to prevent or 
delay T2D. As far as GLP-1R agonists are concerned, the 
most common adverse effects are gastrointestinal, includ-
ing nausea, vomiting and diarrhea[89]. However, they occur 
early on during treatment and tend to be transient. For 
DPP-4 inhibitors, adverse effects resemble that of  pla-
cebo, with nasopharyngitis and headache being the most 
common described[90]. Moreover, discontinuation of  
therapy because of  side effects was similar to placebo[91]. 

Small preclinical studies, as well as some post-
marketing reports, raised the possibility of  an increased 
risk of  pancreatitis with incretin based therapies[92-96]. 
In a study that data were collected from the Food and 
Drug Administration (FDA) adverse event reporting 
system database, GLP-1 based therapies were associated 
with pancreatitis and pancreatic cancer[97]. Another case-
control study reported an increased risk for hospitaliza-
tion for acute pancreatitis with GLP-1 based therapies 
(after combining exenatide and sitaglitpin treatments) 
and adjusting for potential confounders[98]. Concerns 
were also raised after the results of  a study organized in 
organ donors with T2D, who received either sitagliptin 
or exenatide. A possible expansion of  endocrine and 
exocrine pancreatic compartments after incretin-based 
therapy, the former being associated by α-cell hyper-
plasia with the potential progression to neuroendocrine 
tumors and the latter with an enhanced proliferation and 
dysplasia, was described[99]. Furthermore, a recent case-
control analysis, based on the French pharmacovigilance 
database, suggested an association of  all incretin-based 

therapies with pancreatitis[100]. A trend towards a slightly 
elevated risk of  pancreatitis, only with GLP-1R agonists, 
was also shown in a recent pooled analysis of  phase Ⅲ 
trials, although the number of  cases was very small and 
the statistical power was limited[101]. 

However larger preclinical studies did not established 
an association of  incretin-based therapies with pancreati-
tis[102-109]. Interestingly in three of  these studies, GLP-1R 
activation or DPP-4 inhibition had a beneficial effect on 
exocrine pancreatic function and structure[103,104]. A recent 
study also suggested that pancreatic findings attributed 
to incretin-based therapies in rodents are commonly ob-
served background findings, without any drug treatment 
and independent of  diet or glycemic status[110]. Moreover 
large retrospective population studies and recent meta-
analysis suggested a negative association of  incretin-
based therapies with either pancreatitis or pancreatic 
cancer[111-120]. Recently the FDA reevaluated more than 
250 toxicology studies, organized in nearly 18000 healthy 
animals, and found no association with pancreatitis or 
any pancreatic toxicity. The European Medicines Agency 
conducted a same review and reported no pancreatic tu-
mors in mice and rats treated with incretin-based drugs, 
even at doses that greatly exceed the level of  human clini-
cal exposure[121]. 

A higher expression of  GLP-1Rs in rodent calcito-
nin-producing thyroid C cells, (mainly in rats and mice) 
combined with sustained GLP-1R activation can result in 
stimulation of  calcitonin secretion, hyperplasia, adenoma 
and eventually medullary thyroid cancer[122,123]. Indeed, 
both liraglutide and exenatide were shown to promote 
the development of  thyroid C cell cancer after chronic 
therapy in rodents[122]. An elevated risk for thyroid car-
cinoma was described in one study[97]. However, thyroid 
C cells in humans and monkeys express lower levels of  
GLP-1Rs[124]. Long-term treatment with high doses lira-
glutide did not produced thyroid C cell proliferation in 
monkeys, while no association between calcitonin levels 
and liraglutide, up to 3 mg daily, was established in large 
numbers of  patients with T2D[125].

Retrospective analysis of  phase Ⅲ clinical trials, in 
which major cardiovascular events were reported as 
adverse events, have been published for exenatide, lira-
glutide, vildagliptin, sitagliptin, alogliptin, saxagliptin, and 
linagliptin[126]. In all of  these studies the relative risk for a 
major cardiovascular event (acute myocardial infarction, 
stroke and cardiovascular death) was reduced relative to 
placebo or a comparator therapy to a value below one. 
However, the 95%CI was more than one in most of  
these studies, thus the number of  events was too small 
so as to extract definite conclusions. Both the Saxagliptin 
Assessment of  Vascular Outcomes Recorded (SAVOR)-
Thrombolysis in Myocardial Infarction (TIMI) 53 (SA-
VOR-TIMI 53) and the Examination of  Cardiovascular 
Outcomes with Alogliptin vs Standard of  Care (EXAM-
INE) trials met the FDA criteria for non inferiority of  
saxagliptin and alogliptin over placebo respectively, but 
unfortunately they did not demonstrated any positive evi-
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dence on cardiovascular risk reduction[127,128]. Two recent 
meta-analysis suggested that DPP-4 inhibitors may have a 
neutral effect or reduce the risk of  cardiovascular events 
and all-cause mortality in patients with T2D[129,130]. As far 
as GLP-1R agonists are concerned two recent meta-anal-
ysis reported that these agents do not appear to increase 
cardiovascular morbidity in comparison with placebo or 
other active drugs[131,132]. 

Hospitalization for heart failure among T2D who re-
ceived saxagliptin in the SAVOR-TIMI 53 was increased 
by 27% compared to the placebo group (3.5% vs 2.8%; 
HR = 1.27; 95%CI: 1.07-1.51; P = 0.007), while no as-
sociation of  alogliptin with heart failure was found in the 
EXAMINE study[133]. Two recent meta-analysis suggested 
a possible increased risk of  developing heart failure after 
DPP-4 therapy[134,135]. Currently, a large number of  long-
term cardiovascular outcome trials in patients with T2D 
are being performed in order to clarify the cardiovascular 
safety and efficacy of  incretin-based therapies[136]. 

In addition to safety and efficacy of  incretin-based 
therapies, cost is another significant issue that must be 
taken into consideration. Although the cost of  incretin-
based therapies is greater compared to other glucose-
lowering therapies, long term effectiveness of  these 
agents can be associated with a decreased in the cost of  
management of  T2D and its complications compared to 
other therapies[137]. 

CONCLUSIONS-PERSPECTIVES
During the last two decades there has been an immense 

investigation in order to understand the pathophysiol-
ogy of  the early stages of  hyperglycemia, which very 
often progress to overt T2D within a few years, as β-cell 
decline and failure progresses. The huge burden result-
ing from the complications of  T2D created the need 
of  novel therapeutic strategies in an effort to prevent 
its development[8]. The beneficial effects of  incretin-
based therapies on β-cell function in patients with T2D, 
together with their strictly glucose-depended mechanism 
of  action, suggested their possible use in individuals 
with prediabetes, when greater β-cell mass and func-
tion are preserved and the possibility of  β-cell salvage is 
higher[138]. The main results of  the most important clini-
cal studies of  incretin-based therapies in individuals with 
prediabetes are shown in Tables 1 and 2.

DPP-4 inhibitors have shown beneficial effects on 
β-cell mass and function in preclinical models of  predia-
betes. However short-term clinical studies (maximum du-
ration of  12 wk) have only demonstrated a modest effect 
on glucose homeostasis, which was lost after treatment 
discontinuation[50]. Whether longer periods of  DPP-4 
inhibition in individuals with prediabetes can measurably 
alter β-cell function, in a way that is sustained even after 
treatment discontinuation, remains unproven. One year 
treatment with vildagliptin in drug-naïve patients with 
T2D and mild hyperglycemia initially increased β-cell se-
cretory capacity, but this effect was not maintained after 
the washout period[139]. However, when vildagliptin was 
administered in drug-naïve patients with T2D and mild 
hyperglycemia (A1C: 6.2%-7.2%) for two years, β-cell 
function tended to be greater after two years than after 
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Table 1  Main clinical studies of dipeptidyl peptidase-4 inhibitors in a prediabetic state

Ref. Study population Study design Main results

Utzschneider et al[50] 22 individuals with IFG VILDA was administered in a dose of 100 
mg daily for 6 wk. Two weeks of placebo 

treatment before (running period) and after 
(washout period) 6 wk was studied

FPG levels were not significantly reduced. AUC GLU 
and 2-h GLU decreased after a MTT. DI was increased 
by 69% and insulin sensitivity by 25% after an IVGTT 

These effects were not sustained in the washout period
Rosenstock et al[51] 179 individuals with IGT 

(80%: IFG + IGT)
Multicenter 12-wk double-blind study

90 participants received VILDA 50 mg/daily 
and 89 received placebo therapy

Improvements in β-cell function as estimated by insulin 
secretion relative to that of GLU. Improvements were 

also reported in α-cell function. These beneficial effects 
contributed to approximately 30% reduction in prandial 

GLU excursions
Werzowa et al[52] 48 IGT renal transplant 

recipients
3-mo, double-blind, placebo-controlled study. 

Participants were randomized to receive 50 
mg of VILDA, 30 mg of PIO or placebo in a 1:1:1 

ratio (n = 16 in each arm)

A1C reduction was statistically significant between 
treatment groups and placebo. VILDA and PIO reduced 

the 2 h plasma GLU at three months compared with 
baseline, while only PIO reduced FPG

Bock et al[57] 22 individuals with IFG 8-wk double blind placebo-controlled study
Participants received SITA 100 mg daily (n = 

11) or placebo (n = 11)

SITA increased postprandial intact GLP-1 
concentrations. Both fasting and postprandial GLU 

values were unchanged with SITA therapy. A slightly 
increased DI was reported

Perreault et al[58] 23 individuals with either 
IFG (n = 10) or NGT 

(n = 13)

4-wk open-label, parallel group study. All 
participants received SITA 100 mg once daily

SITA resulted in a small, but significant decrease in 
FPG compared to baseline in both groups (P < 0.05) 

Administration of SITA did not altered insulin or GLU 
excursions in the post-intervention OGTT, but did 

increase AUC for active GLP-1 and C-peptide compared 
to baseline levels (P < 0.01 for both)

GLP-1: Glucagon-like peptide 1; IFG: Impaired fasting glucose; IGT: Impaired glucose tolerance; NGT: Normal glucose tolerance; FPG: Fasting plasma glu-
cose; AUC: Area under the curve; DI: Disposition index; IVGTT: Intravenous glucose tolerance test; MTT: Meal tolerance test; A1C: Glycated hemoglobulin; 
VILDA: Vildagliptin; SITA: Sitagliptin; PIO: Pioglitazone; GLU: Glucose; OGTT: Oral glucose tolerance test.
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one year of  treatment[140].
GLP-1R agonists have also shown significant improve-

ments on β-cell mass and function in preclinical studies. 
Important improvements on β-cell function and insulin 
sensitivity were also reported in short term clinical stud-
ies, in which an important percentage of  individuals with 
prediabetes returned to NGT. Weigh reduction in over-
weight and obese individuals with prediabetes was also 
shown, as well as improvements of  endothelial function 
and lipid profile. Whether GLP-1R agonists can prevent 
or delay the transition to T2D needs further investigation 
in well-designed long term studies. The Restoring Insulin 
Secretion consortium will examine whether medication, 
including liraglutide, or surgical intervention strategies can 
reduce the progressive β-cell dysfunction in adults and 
youth with prediabetes or early T2D[141]. The duration of  
GLP-1R agonists therapy in order to promote sustained 
β-cell improvements is also an issue of  investigation. In-
terestingly, when exenatide was administered in patients 
with T2D for one year, the treatment related improve-
ment of  β-cell function was lost after a four-week drug 
cessation[142]. However, the three-year data of  exenatide 
treatment suggested a small but statistically significant ef-
fect on DI following a four-week off  therapy period[143].

Recent evidence also demonstrates the presence of  

genetically induced GLP-1 resistance both in prediabetic 
and diabetic states. Whether pharmacogenomic stud-
ies are needed in order to identify responders and non-
responders to incretin based therapies regarding glucose 
metabolism, is an issue of  future research[144].

The safety of  incretin-based therapies remains a topic 
of  scientific discussion and exploration[126,145,146]. Cur-
rently, precise estimates for the risk of  possible serious 
adverse effects associated with incretin-based therapies 
cannot be estimated. Future data from cardiovascular 
outcome studies and ongoing clinical studies, which will 
improve the statistical power of  prospective studies and 
facilitate larger meta-analyses, are crucially anticipated in 
order to clarify their long-term safety. Until these data 
are available, large, long term, well designed future dia-
betes prevention trials of  incretin-based therapies will be 
required in order to determine whether they can stabilize or 
reverse β-cell loss and promote a sustained reduction in the 
development of  T2D in this population.
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Abstract
Progressive rising population of diabetes and related ne-
phropathy, namely, diabetic kidney disease and associ-
ated end stage renal disease has become a major global 
public health issue. Results of observational studies indi-
cate that most diabetic kidney disease progresses over 
decades; however, certain diabetes patients display a 
rapid decline in renal function, which may lead to renal 
failure within months. Although the definition of rapid 
renal function decline remained speculative, in general, 
it is defined by the decrease of estimated glomerular 
filtration rate (eGFR) in absolute rate of loss or percent 
change. Based on the Kidney Disease: Improving Global 
Outcomes 2012 clinical practice guidelines, a rapid de-
cline in renal function is defined as a sustained decline 

in eGFR of > 5 mL/min per 1.73 m2 per year. It has 
been reported that potential factors contributing to a 
rapid decline in renal function include ethnic/genetic and 
demographic causes, smoking habits, increased glycat-
ed hemoglobin levels, obesity, albuminuria, anemia, low 
serum magnesium levels, high serum phosphate levels, 
vitamin D deficiency, elevated systolic blood pressure, 
pulse pressure, brachial-ankle pulse wave velocity val-
ues, retinopathy, and cardiac autonomic neuropathy. 
This article reviews current literatures in this area and 
provides insight on the early detection of diabetic sub-
jects who are at risk of a rapid decline in renal function 
in order to develop a more aggressive approach to renal 
and cardiovascular protection.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Diabetic kidney disease; 
Rapid decline; Estimated glomerular filtration rate; Al-
buminuria

Core tip: The progression rate of diabetic kidney dis-
ease is highly variable, a rapid decline of renal function 
can lead to renal failure within months. Risk factors 
account for rapid decline renal function in patients with 
type 2 diabetes include ethnic/genetic and demograph-
ic factors, lifestyle and health behaviors, advanced 
albuminuria, poor glycemic control, dyslipidemia and 
some biochemical abnormalities. Diabetic patients with 
retinopathy or cardiac autonomic neuropathy are at in-
creased risk of a rapid decline in estimated glomerular 
filtration rate. Early detection of high-risk groups with 
a more aggressive multifactorial approach to renal and 
cardiovascular protection is important. 
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INTRODUCTION
Type 2 diabetes is one of  the leading causes of  chronic 
kidney disease (CKD) worldwide, and diabetic kidney 
disease has become a major global public health issue[1]. 
Early detection and intervention in diabetic kidney dis-
ease can help to slow renal function decline, prevent 
complications, and decrease cardiovascular events, there-
by improving survival and quality of  life in type 2 diabet-
ics[2]. However, potential causes accounting for variation 
in diabetic kidney disease and its rate of  progression are 
still largely unexplored. In most cases, disease progresses 
over decades; however, a rapid decline in renal function 
can lead to renal failure within months[3]. Thus, in type 2 
diabetics, defining high-risk groups and preventing or re-
tarding disease progression is an emerging challenge. This 
review targets the potential risk factors of  a rapid decline 
in renal function in patients with type 2 diabetes.

EPIDEMIOLOGY OF DIABETIC KIDNEY 
DISEASE
Diabetic kidney disease is identified clinically through 
the presence of  albuminuria, impaired glomerular filtra-
tion rate (GFR), or both[4], and these two biomarkers 
have been used for the diagnosis, severity classification, 
and outcome prediction of  CKD[5-8]. The categories of  
albuminuria are defined as microalbuminuria or macro-
albuminuria based on a urinary albumin-to-creatinine 
ratio (UACR) of  30-300 mg/g, or > 300 mg/g, re-
spectively[9,10], and impaired renal function is defined 
as an estimated glomerular filtration rate (eGFR) < 60 
mL/min per 1.73 m2[1,4,10]. International consensus on 
the incidence of  CKD in patients with type 2 diabetes is 
lacking[11]. Although the prevalence of  diabetic CKD is 
increasing worldwide, there are large differences between 
regions and ethnicities (Table 1). A report from the UK 
Prospective Diabetes Study (UKPDS), states that 1544 
(38%) of  4031 patients developed albuminuria (micro-
albuminuria or macroalbuminuria), and 1449 (29%) of  
5,032 patients developed renal impairment (based on the 
Cockroft-Gault formula of  eGFR < 60 mL/min per 1.73 
m2) over a 15-year period[12]. Meanwhile, the Developing 
Education on Microalbuminuria for Awareness of  renal 
and cardiovascular risk in Diabetes (DEMAND) study, 
in which data from 32208 type 2 diabetics from 33 coun-
tries were collected, reported that overall global preva-
lence of  microalbuminuria and macroalbuminuria was 
39% and 10% respectively, while eGFR below 60 mL/
min per 1.73 m2 occurred in 22% of  the 11573 patients 
with available data[13]. According to the US Renal Data 
System (USRDS) 2013 report, 3 out of  5 new end stage 
renal disease (ESRD) patients came from diabetes in Ma-
laysia, Mexico, and Singapore; furthermore in the United 
States, the odds ratios of  diabetes in albuminuria (UACR 
more than 30 mg/g) and CKD (defined as eGFR below 
60 mL/min per 1.73 m2) were 3.9 and 2.1 respectively[14]. 
It was recently reported that 30% of  CKD in 5584 

Chinese patients aged 20-79 years, was associated with 
dysglycemia (diabetes and prediabetes), independent of  
age, sex, and hypertension status[15]. It should be noted 
that some limitations and pitfalls were identified in these 
epidemiological data, for example, demographic distri-
bution[11], socioeconomic status[16], dynamic changes in 
the incidence of  diabetes, changes in the use of  medica-
tion (including anti-diabetic drugs and anti-hypertensive 
drugs), and the improvement of  survival rates in diabetic 
and ESRD patients[11]. 

DEFINING A RAPID DECLINE IN RENAL 
FUNCTION 
Annual decline in GFR in an individual varies widely de-
pending on race, age, the presence of  underlying condi-
tions, the etiology of  CKD, and the presence of  comor-
bidities. A previous study reported that age-related eGFR 
decline is about 0.75-1 mL/min per 1.73 m2 per year over 
40 years of  age[17]. Among the healthy population, eGFR 
decline is approximately 0.36-1.21 mL/min per 1.73 m2 
per year[5,18-21]. A community-based cohort study reported 
a decline in eGFR of  2.1 and 2.7 mL/min per 1.73 m2 
per year respectively for women and men with diabetes, 
whereas the rate of  decline was 0.8 and 1.4 mL/min per 
1.73 m2 per year respectively for women and men without 
diabetes[18,22]. In subjects with CKD, a more rapid decline 
in renal function (ranging 1.03-4.3 mL/min per 1.73 m2 
per year) was noted[10,23-26] (Table 2). Some studies define 
rapid decline of  eGFR in terms of  absolute rate of  loss, 
while others define it as percent change (Table 3)[3,27-30]. 
According to the Kidney Disease: Improving Global 
Outcomes (KDIGO) 2012 clinical practice guidelines for 
the evaluation and management of  CKD, developed by 
the National Kidney Foundation, a rapid decline in renal 
function is defined as a sustained decline in eGFR of  > 
5 mL/min per 1.73 m2 per year (as estimated using the 
2009 CKD-EPI creatinine equation)[31]. It is generally be-
lieved that at present, there are a lack of  well-controlled 
studies, which include frequent measurements and a long 
follow-up period, from which to establish an optimal 
definition of  a rapid decline in renal function[18].

RISK FACTORS OF A RAPID DECLINE IN 
RENAL FUNCTION
An emerging challenge is the identification of  potential 
factors associated with rapid renal function decline, which 
would form the basis for the development of  strategies 
to prevent or retard disease progression, and reduce com-
plications, thereby improving disease outcomes and qual-
ity of  life in type 2 diabetics. Potential risk factors include 
ethnic/genetic and demographic factors, lifestyle and 
health behaviors, metabolic and biochemical abnormali-
ties, cardiovascular functional factors, and some clinical 
symptoms of  type 2 diabetes (Figure 1).
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Ethnic, genetic, and demographic factors
Ethnicity is a one of  major factors affecting the pro-
gression of  CKD in diabetic patients. In the United 
Kingdom, residents of  South Asian origin had a higher 
prevalence of  overt proteinuria and a lower prevalence 
of  microalbuminuria compared to those with White 
European ethnicity[1,32]. In a 5-year retrospective, com-
munity-based cohort study of  135 general practices in 
East London, in which 3855 diabetic patients with an 
eGFR of  < 60 mL/min per 1.73 m2 were enrolled, renal 
function decline occurred at a significantly higher rate 
in South Asians as compared to other ethnicities[33]. Ac-
cording to the USRDS 2012 annual data report[34], ESRD 
caused by diabetes has increased in African-American, 
Native American, and Hispanic populations over the past 
decade[1,2,34]. USRDS 2013 also reported that the contri-

bution of  diabetes to ESRD was 59%-61% in Malaysia, 
Mexico, and Singapore in 2011, and above 40% in Israel, 
the Republic of  Korea, Hong Kong, Taiwan, the Philip-
pines, Japan, the United States, and New Zealand[14]. In 
summary, diabetic patients of  Hispanic, black, Asian, and 
Maori ethnicity are at a higher risk of  a rapid decline in 
renal function compared to white populations. 

Ethnic differences in the presentation of  diabetic 
kidney disease may reflect either genetic predisposition 
or differences in public health care policy[1], and thus, ge-
netic studies need to exclude non-genetic confounders. 
Evidence of  genes associated with diabetic nephropa-
thy in type 2 diabetics comes mainly from family-based 
genome-wide linkage studies[35,36]. Findings from such 
studies include reports that 7p14.1 [engulfment and cell 
motility 1 (ELMO1)][37,38], 7q21.1/7q21.3[39] and 18q22.3 
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Table 1  Prevalence of albuminuria and impaired glomerular filtration rate in diabetic patients

Ref. Population (Nationality) Albuminuria prevalence Impaired GFR prevalence

Parving et al[13] International
DEMAND study of 33 countries 2006
32208 type 2 diabetic patients

Microalbuminuria: 39%
Macroalbuminuria: 10%

22%

Bos et al[108]

 data from:
Herman et al[109]

Hamed et al[111]

Northern Africa 
Systematic review of 
PubMed 1990-2012 
> 18 years old diabetic patients 

Egypt 1998:
Albuminuria: 21%[109]

Sudan 2008 (insulin 
treated diabetic patients):
Albuminuria: 22%[110] 

Egypt 1998-Outpatient 
clinics: 6.7%[109]

Egypt 1995-Hospital 
inpatients: 46.3%[111]

Icks A and Koch M
Epidemiology of chronic kidney disease in diseases. In: 
Wolf G. Diabetes and Kidney Disease[11], data from:
Chadban et al[112]

Australia
AusDiab study: a national population-based 
cross-sectional survey
> 25 years old diabetic patients

8.70%
proteinuria-spot urine 
protein to creatinine ratio
(abnormal: > 0.20 mg/mg)

27.60%

Unnikrishnan et al[113] Southern India 
CURES 45 study 
17, 16 type 2 diabetic patients

Microalbuminuria: 36.9%
Macroalbuminuria: 2.2%

-

Icks A and Koch M
Epidemiology of chronic kidney disease in diseases. In: 
Wolf G. Diabetes and Kidney Disease[11], data from:
Lin et al[114]

Taiwan
Community-based screening 1999–2001
> 30 years old type 2 diabetic patients

29.40%
proteinuria-spot urine 
protein to creatinine ratio
(abnormal: > 0.20 mg/mg)

15.10%

Yang et al[115] China
A nationally representative sample from 14 
provinces and municipalities 
> 20 years old diabetic patients

17.30% 19.10%

Lou Arnal et al[116] Spain
A survey of 16 Health Centers of the 
Alcañiz Health Sector 2008
> 18 years old, 3466 type 2 diabetic patients

31.70% 25.20%

Detournay et al[117] France
ENTRED data 2007
A survey of the national public prescription 
claims database
Type 2 diabetic patients

- 22%

Collins et al[14] United Status 
NHANES study 2005-2010
Adult diabetic patients

29.90% 19.30%

Al-Rubeaan et al[54] Saudi Arabia
SNDR data 
> 25 yr, 54670 type 2 diabetic patients

Microalbuminuria: 1.2%
Macroalbuminuria: 8.1%

GFR < 30 mL/min 
per 1.73 m2:
1.50%

Albuminuria: Albumin-to-creatinine ratio (UACR) > 30 mg/g; Microalbuminuria: UACR 30-300 mg/g; Macroalbuminuria: UACR > 300 mg/g; Impaired 
glomerular filtration rate (GFR): Estimated GFR < 60 mL/min per 1.73 m2; DEMAND: Developing Education on Microalbuminuria for Awareness of renal 
and cardiovascular risk in Diabetes study; AusDiab: The Australian Diabetes, Obesity and Lifestyle Study; CURES: Chennai Urban Rural Epidemiology 
Study; ENTRED: Échantillon national témoin représentatif des personnes diabétiques (National Representative Sample of Diabetic Patients); NHANES: Na-
tional Health and Nutrition Examination Survey; SNDR: Saudi National Diabetes Registry.
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development and rapid progression of  diabetic kidney 
disease[12,54,57-59]. Also, some studies suggest an association 
between diet and renal function decline in diabetics, for 
example in those with high alcohol consumption[58] or a 
high-protein diet[59]. It has been demonstrated that a high 
dietary acid load (e.g., in diets high in rice and meat) is as-
sociated with rapid progression of  diabetic nephropathy 
to ESRD in Westernized South Asian people[60]. Lack of  
physical activity is also considered to be a risk factor in 
diabetic nephropathy[58], with a previous study reporting 
that high physical activity in women was associated with 
an improvement in eGFR[21].

Metabolic and biochemical factors
A number of  metabolic conditions, such as hyperglyce-
mia[61,62], dyslipidemia[63-65], or being overweight/obese[31,49,66], 
are widely recognized as being associated with the de-
velopment of  diabetic nephropathy, and are established 
factors in identifying subjects at a greater risk of  disease 
progression[57]. Previous studies indicate that obesity, 
hyperglycemia, and dyslipidemia are significant predic-
tors of  progressive albuminuria[49-53,67,68]. A recent cross-
sectional study reported UACR significantly correlated 
with metabolic syndrome and its components, including 
hyperglycemia, central obesity, and high triglyceride lev-

[carnosine dipeptidase 1 (CNDP1)][40,41] are associated with 
the development of  proteinuria and ESRD in African-
Americans; 18q22.3 (CNDP1) is associated with protein-
uria and ESRD in American-Indians[4]; and 17p14.1[37], 
12q24.11 [acetyl-CoA carboxylase alpha (ACACB)][42], 
13q34(rs1411766)[43], and 16q13 [solute-carrier group 
(SLC12A3)][44] may be associated with proteinuria and 
ESRD in Japanese[36]. Furthermore, haptoglobin (Hp) is 
a hemoglobin-binding protein that has a major role in 
protecting against heme-driven oxidative stress. Previous 
studies have shown the importance of  the Hp genotype in 
the progression of  diabetic nephropathy[45,46]. Moreover, 
diabetic patients with Hp 2-2 are more likely to develop 
nephropathy than those with Hp2-1 or Hp1-1[47,48].

Demographic factors may also influence the progres-
sion of  diabetic kidney disease. Previous studies indicate 
that age is a significant predictor of  progressive albu-
minuria and renal dysfunction in diabetics[49-54], and most 
studies reported that male sex is an important indepen-
dent factor associated with renal function decline in type 
2 diabetics[12,50,54,55]; however, some studies have shown an 
association with female sex[56].

Lifestyle and health behaviors 
Smoking is an established factor for increased risk of  
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Table 2  Decline of estimated glomerular filtration rate in different populations

Population eGFR decline  (mL/min per 1.73 m2 per year) Ref. 

Healthy
PREVEND study 6894 subjects   0.55 Halbesma et al[5]

Estimated using MDRD formula
Annual health exam, Japan   0.36 Imai et al[19]

120727 subjects Estimated using MDRD formula
modified by a Japanese coefficient

ARIC study   0.47 Matsushita et al[20]

13029 subjects Estimated using MDRD formula
Tromso Study, Norway 1.21 (men) Kronborg et al[21]

2249 men and 2192 women 1.19 (women)
Estimated using MDRD formula

Aged without diabetes
2475 men > 65 years old 1.4 Hemmelgarn et al[22]

3163 women > 65 years old 0.8 Hemmelgarn et al[22]

Aged with diabetes
490 men > 65 years old 2.7 Hemmelgarn et al[22]

445 women > 65 years old 2.1 Hemmelgarn et al[22]

CKD
MDRD study group 3.7 MDRD study group
eGFR 25-80 mL/min per 1.73 m2, n = 28 Levey et al[23]

eGFR 7.5-24 mL/min per 1.73 m2, n = 63 4.3
African Americans with hypertension
eGFR 20-65 mL/min per 1.73 m2

low mean arterial pressure, n = 380

  2.21 Wright et al[24]

normal mean arterial pressure, n = 374   1.95
Tromso Study, Norway   1.03 Eriksen et al[25]

eGFR 30-59 mL/min per 1.73 m2

3047 subjects 
eGFR < 60 mL/min per 1.73 m2

4231 subjects
  2.65 Levin et al[26]

Data from Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group[18]; eGFR: Estimated glomerular filtration rate; CKD: Chronic kidney 
disease; PREVEND: Prevention of Renal and Vascular End-Stage Disease; ARIC: Atherosclerosis Risk in Communities; MDRD: Modification of Diet in Re-
nal Disease Study.
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els[65,69]. Factors associated with eGFR decline and pro-
gressive albuminuria might overlap. During a 10-year fol-
low-up, an observational study of  1682 type 2 diabetics 
with baseline eGFR ≥ 60 mL/min per 1.73 m2 reported 
that obese patients had a significantly faster age-adjusted 
annual eGFR decline[70]. A positive association between 
glycated hemoglobin (HbA1c) and CKD has also been 
observed in type 2 diabetics, even in the absence of  al-
buminuria and retinopathy[52]. An association between 
blood glucose, low-density lipoprotein abnormalities, and 
the progression of  renal damage in diabetes has been re-
ported[71]. HbA1c was found to be independently associ-
ated with rapid renal function decline in a group of  type 
2 diabetics without symptomatic cardiovascular disease[72]. 

Albuminuria and eGFR are not only biomarkers for 
the diagnosis and categorization of  CKD[4], but are also 
well-known predictors of  renal function decline, ESRD, 
and death in type 2 diabetics[8,73]. Proteinuria is associated 

with rapid decline in renal function[49-53], and a previous 
study suggests that dipstick proteinuria measurement 
could be used as a screening tool for rapid renal function 
decline[74].

Abnormalities in cardiovascular function
CKD shares many risk factors with cardiovascular dis-
ease[72,75], and dysfunction in one system can often lead to 
dysfunction in the other[49]. In patients with concomitant 
hypertension and type 2 diabetes, the risk of  progression 
to ESRD is 7 fold that for age-matched control sub-
jects[49,76]. Hypertension is a significant risk factor for in-
sufficient renal function, cardiovascular events, and death 
in patients both with and without type 2 diabetes[49,61,77-79]. 
Previous studies show that systolic blood pressure (SBP) 
and pulse pressure are stronger predictors than diastolic 
blood pressure of  renal outcomes, and are independent 
risk factors in the rapid decline of  eGFR in type 2 diabet-
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Table 3  Definitions of rapid renal function decline

Population (Nationality) Rapid renal function decline Ref.

Study
United States
4380 patients from the community-based CHS 
≥ 65 years old
Follow-up: 7 yr
14% with diabetes

> 3 mL/min per 1.73 m2 per 
year

Reviewed by KDIGO CKD Work 
Group[18]:

Shlipak et al[28]

 
Rifkin et al[30]

Taiwan
577 type 2 diabetes patients from an outpatient department in a 
hospital-based study
63 years old (mean age)
Follow-up: 1 yr

> 3 mL/min per 1.73 m2 per 
year

Sheen et al[72]

472 CKD 4-5 patients from an outpatient department in a hospital-
based study
65 years old (mean age)
35.4% with diabetes
Follow-up: 1.5 yr (17.3 mo)

Tsai et al[118]

Canada
4231 patients with eGFR < 30 mL/min per 1.73 m2 from a cohort 
derived from all patients registered in a provincial database
Follow-up: 2.5 yr (31 mo)

> 4 mL/min per 1.73 m2 per 
year

Levin et al[26]

Italy
1682 type 2 diabetes patients with eGFR ≥ 60 mL/min per 1.73 m2 
from an outpatient department in a hospital based study
Follow-up: 10 yr 

> 4% per year Zoppini et al[70]

Canada
3154 patients with eGFR ≥ 60 mL/min per 1.73 m2, from the 
community based Walkerton Health Study (2002 to 2008)
Follow-up: 7 yr

> 5% per year Clark et al[74,119]

Taiwan
7968 civil servants and teachers
≥ 50 years old (mean age: 57 years old)
Follow-up: 15 yr

> 20% per year Reviewed by KDIGO CKD Work 
Group[18]:

Cheng et al[29]

Taiwan
167 patients in a hospital based study

> 25% per year Chen et al[85]

Review Chronic kidney disease 
Lancet 

> 4 mL/min per 1.73 m2 per 
year

Levey et al[3]

Guideline KDIGO 2012 clinical practice guideline for the evaluation and 
management of chronic kidney disease
KDIGO CKD Work Group

> 5 mL/min per 1.73 m2 per 
year

Inker et al[10]

KDIGO CKD Work Group[18]

CHS: Cardiovascular Health Study; KDIGO: Kidney Disease: Improving Global Outcomes; eGFR: Estimated glomerular filtration rate; CKD: Chronic kid-
ney disease.
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ics[72,80], while another study suggests that both SBP and 
variability in SBP are risk factors in the development and 
progression of  diabetic nephropathy[81]. 

In addition to blood pressure, peripheral arterial func-
tional markers are also associated with renal function in 
type 2 diabetics[82]. A low ankle-brachial index was found 

to be significantly associated with a low eGFR[83]. Also, 
arterial stiffness is associated with incident albuminuria 
and decreased eGFR[72,84], and brachial-ankle pulse-wave 
velocity (ba-PWV) values are independently associated 
with rapid renal function decline in type 2 diabetics with-
out symptomatic cardiovascular disease[72]. One study 
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Exposure Factors affecting renal function decline Risk factors for rapid renal function decline Effects/presentation

Ethnic factors[1,2,14,33,34] Proteinuria: South Asian[1,32]

CKD: South Asian and Black[33]

ESRD: Hispanic, Black, Asian and 
Maori[1,2,14,34]

Comparison of Hispanic, Black, Asian 
and Maori with White ethnicity[1,2,14,34]

Genetic factors[11,37-44] Genetics
Environmental risks
Inflammation
Oxidative stress

Demographic 
factors[12,49-55]

Aged[49-54], Male gender[12,50,54,55]

Lifestyle/
Health behaviors[12,54,57-60]

Metabolic abnormalities:
Poor glycemic control (high HbA1c)
Hyperlipidemia (low-density 
lipoprotein)[31,49-53,57,69,71,72]

Smoking[12,54,57-59] 
Dietary acid load[60] 

Metabolic factors[31,49-53,57,

69-72]

Smoking[12,54,57-59]

Alcohol consumption[58]

High-protein diet[59]

Dietary acid load (e.g. , diets high in rice 
and meat)[60]

Lack of physical activity[58]

Elevated HbA1c[72]

Obesity[70]

Lower eGFR values, albuminuria[8,49-53,73,74]

Low serum hemoglobin levels[26,58,70]

Low serum magnesium[120] 
High phosphorus and parathyroid 
hormone levels[26]

Vitamin D deficiency[86,87]

Biochemical factors[8,26,49-

53,58,70,73,74,86,87,120]
Obesity[70]

Proteinuria[49-53,74]

Anemia[26,58,70]

Low serum magnesium[120]

High phosphate[26]

Vitamin D deficiency[86,87]

Subclinical status

Hypertension: higher SBP and variability in 
SBP, PP[49,72,79-81]

Peripheral arterial function abnormalities: 
low ABI values[83]

High ba-PWV[72,82,84] 
Impaired left ventricular systolic function[85]

Cardiovascular functional 
abnormalities[49,72,79-85]

SBP, PP[72,80]

Ba-PWV[72,84]

Intermediate kidney 
phenotypes
(Albuminuria,
GFR progression)

Retinopathy[88,89]

CAN assessed by heart rate variability[90]

Glomerular hyperfiltration status[49,91-93]

Special clinical 
conditions[49,88-93]

Retinopathy[88,89]

CAN[90]

eGFR > 120 mL/min per 1.73 m2 
with elevated serum cystatin C 
levels[49,91-93]

Overt Kidney disease
CKD ESRD

Ethnicity Potential 

phenotype

Locus Ref.

African-

Americans

Proteinuria/

ESRD

7p14.1 (ELMO1) [37,38]
7q21.1/7q21.3 [39]
18q22.3 (CNDP1) [40,41]

American-

Indians

Proteinuria/

ESRD

18q22.3 (CNDP1) [4]

Japanese Proteinuria/

ESRD

17p14.1 [37]
12q24.11 (ACACB) [42]
13q34 (rs1411766) [43]
16q13 (SLC12A3) [44]

Figure 1  Conceptual model for diabetic kidney disease and potential risk factors of rapid renal function decline. CKD: Chronic kidney disease; HbA1c: Gly-
cated hemoglobin; ESRD: End stage renal disease; eGFR: Estimated glomerular filtration rate; SBP: Systolic blood pressure; ba-PWV: Brachial-ankle pulse-wave 
velocity; PP: Pulse pressure; CAN: Cardiac autonomic neuropathy; ELMO1: Engulfment and cell motility 1; CNDP1: Carnosine dipeptidase 1; ACACA: Acetyl-CoA 
carboxylase alpha; rs: RefSNP (Single Nucleotide Polymorphism) numbers; SLC: Solute-carrier group.
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reports that impaired left ventricular systolic function and 
increased ba-PWV are independently associated with a 
rapid decline in renal function[85].

Miscellaneous
Some other factors, such as low hemoglobin levels and 
electrolyte imbalance, may cause a rapid progression in 
diabetic kidney disease. Conditions including anemia, 
low serum magnesium levels, and high phosphorous and 
parathyroid hormone levels, are associated with rapid 
renal function decline in type 2 diabetics[26,58,70]. Further-
more, vitamin D deficiency associated with albuminuria 
was an independent risk factor in diabetic nephropathy 
after adjusting for demographic factors, hypertension, 
dyslipidemia, smoking status, and medication use[86,87]. 

Type 2 diabetic patients with additional microvascular 
complications, such as retinopathy or neuropathy, may 
also experience a rapid decline in renal function. Several 
studies have demonstrated that the rate of  renal disease 
progression in type 2 diabetics with retinopathy is faster 
than that observed in those without retinopathy[88,89]; thus, 
screening for retinopathy may be helpful in identifying 
high-risk patients. Another study on cardiac autonomic 
neuropathy that assessed heart rate variability suggests 
that this is also an independent predictor of  eGFR de-
cline and could also be used as an identifying factor[90].

Special issues
Glomerular hyperfiltration and rapid renal function 
decline in type 2 diabetes: A longitudinal study of  600 
type 2 diabetics with albuminuria < 200 μg/min, found 
that those with an eGFR > 120 mL/min per 1.73 m2 had 
a higher risk of  albuminuria progression (hazard ratio: 
2.16) compared with those without baseline hyperfiltra-
tion; over a 4-year follow-up, renal function decline was 
relatively rapid, at an annual rate of  up to 3.37 mL/min 
per 1.73 m2[91]. Another study evaluated type 2 diabetic 
Pima Indians selected from participants in the Diabetic 
Renal Disease Study, with a baseline iothalamate clear-
ance above the median for the entire study cohort (120 
mL/min per 1.73 m2) to give a study group with a normal 
or elevated GFR[92]. After a mean follow-up of  3.8 years, 
it was shown that directly measured GFR declined at 4.4% 
per year, and supposed that an increase in serum cys-
tatin C provide means for detecting early renal function 
decline in diabetes[92]. Measurement of  serum cystatin C 
may help to identify groups at high risk of  renal function 
decline based on hyperfiltration status[49,93].

Non-albuminuric diabetic kidney disease: Renal in-
sufficiency in the absence of  albuminuria in patients with 
type 2 diabetes is another issue that should be noted. 
In a 1977 study of  type 2 diabetic adults, 13% had an 
eGFR < 60 mL/min per 1.73 m2, and 30% had neither 
albuminuria nor retinopathy[94]. Furthermore, data from 
UKPDS[12], DEMAND[13], and Atherosclerosis risk in 
Communities (ARIC)[52] studies suggests that the occur-
rence of  renal impairment in type 2 diabetics without 

albuminuria is not unusual[49]. Microalbuminuria and re-
duced eGFR have been suggested as markers of  different 
pathologic processes, with microalbuminuria associated 
with endothelial dysfunction and reduced eGFR being 
a renal manifestation of  systemic atherosclerosis[49,95]. 
These patients are at higher risk of  CKD progression, as 
the absence of  proteinuria may lead to delays in the diag-
nosis and treatment of  diabetic nephropathy[1,49]. 

POSSIBLE MANAGEMENT STRATEGIES
A number of  therapeutic interventions for diabetic 
kidney disease have been developed over the past few 
decades[96]. Several studies have demonstrated increased 
activity in the renin-angiotensin-aldosterone system in 
diabetic patients with nephropathy[97,98]. Angiotensin-
converting enzyme inhibitor (ACEI) and angiotensin 
receptor blocker (ARB) treatment for diabetics with 
hypertension can reduce renal damage and may reduce 
cardiovascular complications[97-99]; thus, ACEI or ARB are 
recommended as a first-line treatment for diabetics with 
hypertension[2,10,98,100,101]. However, based on the ONTAR-
GET trial, acute dialysis, hyperkalemia, and hypotension 
tended to be more frequent with the use of  both ACEI 
and ARB; thus, dual inhibition of  the renin-angiotensin 
system is not recommended[102]. Primary multifactorial 
interventions aimed at slowing progression of  diabetic 
nephropathy include combination therapy targeting hy-
perglycemia, hypertension, microalbuminuria, and dyslip-
idemia[59]. The Steno-2 study, of  151 type 2 diabetics with 
baseline microalbuminuria who underwent multifactorial 
treatment, reported that at a 7.8-year follow-up 46 pa-
tients showed remission to normoalbuminuria, improved 
hypertensive and glycaemic control were independent 
predictors for remission, and that kidney function may 
have been preserved through a slower rate of  eGFR de-
cline[103]. Other studies provide evidence that intensive 
multifactorial management is more effective than con-
ventional treatment[104-107]. In addition to blood pressure, 
glycemic and lipid control, lifestyle modifications such as 
cessation of  smoking, protein restriction in diets, weight 
reduction[2,59], light to moderate exercise[4], and vitamin 
C[104,105] and vitamin D supplementation[26], may be help-
ful in preventing or slowing the progression of  diabetic 
kidney disease[2,26,59].

CONCLUSION
The progression of  diabetic kidney disease is highly vari-
able. According to the KDIGO 2012 clinical practice 
guidelines for the evaluation and management of  CKD, a 
rapid decline in renal function was defined as a sustained 
decline in eGFR of  > 5 mL/min per 1.73 m2 per year. 
Associated risk factors in patients with type 2 diabetes 
include ethnic/genetic and demographic factors, lifestyle 
and health behaviors, advanced albuminuria, poor gly-
cemic control, dyslipidemia, and some biochemical ab-
normalities. Diabetic patients with retinopathy or cardiac 
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autonomic neuropathy are at increased risk of  a rapid 
decline in eGFR. Furthermore, those with glomerular 
hyperfiltration and elevated serum cystatin C may also 
be at increased risk of  a rapid decline in renal function. 
Early detection of  high-risk groups with a more aggres-
sive multifactorial approach to renal and cardiovascular 
protection is important. 
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Abstract
Pancreatic insulin-secreting β-cells are essential regu-
lators of glucose metabolism. New strategies are cur-

rently being investigated to create insulin-producing β 
cells to replace deficient β cells, including the differen-
tiation of either stem or progenitor cells, and the newly 
uncovered transdifferentiation of mature non-β islet cell 
types. However, in order to correctly drive any cell to 
adopt a new β-cell fate, a better understanding of the 
in vivo  mechanisms involved in the plasticity and biol-
ogy of islet cells is urgently required. Here, we review 
the recent studies reporting the phenomenon of trans-
differentiation of α cells into β cells by focusing on the 
major candidates and contexts revealed to be involved 
in adult β-cell regeneration through this process. The 
possible underlying mechanisms of transdifferentia-
tion and the interactions between several key factors 
involved in the process are also addressed. We propose 
that it is of importance to further study the molecular 
and cellular mechanisms underlying α- to β-cell trans-
differentiation, in order to make β-cell regeneration 
from α cells a relevant and realizable strategy for de-
veloping cell-replacement therapy.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: α-cell; β-cell; Transdifferentiation; Diabetes 
mellitus; Cell-replacement therapy

Core tip: Recent works highlighted the phenomenon 
of transdifferentiation of pancreatic α cells into β cells, 
which has drawn much attention in the field. Consider-
ing that α-cell transdifferentiation could be used as a 
new strategy of cell replacement therapy for the treat-
ment of diabetes, because of the presence of α cells in 
the pancreas of both type 1 and 2 diabetics, we believe 
that it is relevant to elucidate the cellular and molecular 
events in α- to β-cell conversion. Our review focuses 
on the recent experimental α-cell transdifferentiation 
models, highlighting the insight provided by these 
works into the candidates and contexts revealed to be 
involved in this process.
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INTRODUCTION 
Pancreatic β cells are vital for glucose homeostasis. They 
are capable of  producing and secreting insulin, a peptide 
hormone, in respond to high blood glucose levels. Insulin 
acts on diverse tissues to stimulate the metabolism of  glu-
cose[1,2]. Diabetes mellitus, becoming an epidemic in differ-
ent parts of  the world and a major public health challenge, 
is a carbohydrate metabolic disorder arising from failure 
of  glucose homeostasis, with consequent hyperglycemia, 
resulting in severe complications affecting numerous tis-
sues. The International Diabetes Federation estimated that 
336 million individuals worldwide had diabetes in 2010. 
By 2030, this will have risen to 552 million[3]. The disease 
is characterized by either defective β-cell function as seen 
in Type 1 diabetes patients who have insufficient or even 
no β cells, or increased insulin resistance as observed in 
Type 2 diabetics who fail to maintain glycemic control 
because of, at least partially, insufficiency in β-cell mass or 
function. Consequently, there is an urgent need to search 
for efficient strategies to generate functional β-cells for 
cell replacement therapy.

The current strategies of  generating new β cells can 
be outlined mainly in the following three ways[2,4]: (1) plu-
ripotent stem cell differentiation: with the combined use 
of  different factors, a pluripotent stem cell can be direct-
ed to differentiate into the cells with insulin-producing 
capability. Although such a directed differentiation seems 
to mimic normal pancreatic development, functional 
β cells can currently only be differentiated through a 
lengthy transplantation step; (2) inducing cell replication 
in existing β cells: this may be conducted either in vitro 
or in vivo using different agents or factors, but caution 
should be taken to avoid neoplastic transformation; and 
(3) reprogramming a differentiated cell by using genetic 
factors to induce a pluripotent state and factors driving 
a specific differentiation program. Reprogramming of  
acinar cells to generate β cells has proved to be success-
ful in vivo[5]. More recently, a new strategy, the transdif-
ferentiation of  fully differentiated α cells into β cells, has 
emerged. 

Transdifferentiation was originally defined as the 
change in a given adult cell from its initial differentiated 
state into another[2]. The most well known cell transdif-
ferentiation phenomenon comes from the regenerative 
ability seen in urodele amphibians, which can regenerate 
their limbs, jaws, lens and large sections of  their hearts. It 
is generally thought that transdifferentiating cells may go 
firstly through dedifferentiation, then proliferation and 
finally redifferentiation stages. Transdifferentiation can be 
distinguished from the above-mentioned directed stem 

cell differentiation by the fact that the initial cells are not 
“undifferentiated”. Consequently, transdifferentiated cells 
are not systematically clonogenic. Although different ex-
amples of  transdifferentiation were cited[2], it remains un-
certain whether “natural” transdifferentiation can actually 
occur in mammals. More interestingly, recent studies have 
reported several experimental transdifferentiation models 
triggered either by drastically changing cellular and/or 
tissue contexts, or by directly altering molecular programs 
governing the cellular differentiation state (often referred 
to as cell conversion). Most notably, it is known that aci-
no-ductal transdifferentiation can be seen in the case of  
severe tissue injury in the pancreas[6,7]. The treatment of  
rats with a copper-deficient diet resulted in the appear-
ance of  hepatocytes in the pancreas, whereas a reversed 
transdifferentiation was observed in the treatment of  rats 
with polychlorinated biphenyls[8]. Experimental works 
have shown that either the pancreatic acinar tumor cell 
line AR42-J[9], or freshly isolated adult acinar cells[10] can 
transdifferentiate into hepatocytes in vitro. It was also re-
ported that, under certain cell culture conditions, AR42-J 
cells were seen to display endocrine cell features[11,12]. 
Similarly, with the use of  epidermal growth factor- and 
leukemia inhibitory factor-supplemented cell culture me-
dium, it was reported that pancreatic exocrine cells were 
transdifferentiated into insulin-producing cells[13]. The 
phenomenon may also occur in vivo, the cells coexpress-
ing transiently exocrine and endocrine markers being ob-
served in rats that were subject to duct ligation[14-16], and 
in mice treated with alloxan[17]. Considering the particular 
role of  Ngn3, its ectopic expression has been explored 
to trigger transdifferentiation of  adult human duct cells 
into endocrine cells[18]. Finally, it is also speculated that 
β-cell mass increase seen in rats chronically infused with 
glucose may imply transdifferentiation as mechanisms of  
adaptation[19,20].

More interestingly, several laboratories have reported 
the phenomenon of  transdifferentiation of  pancreatic α 
cells into insulin-secreting cells (Table 1), which has been 
observed in different experimental settings[21-36]. Because 
of  the close developmental and physiological relationship 
between these two cell lineages, and the presence of  α 
cells in the pancreas of  Type 1 and 2 diabetes patients, 
α-cell transdifferentiation draws much attention in the 
field of  β-cell regeneration. Here, we review in detail 
these different models.

EXPERIMENTAL MODELS DISPLAYING 
β-CELL TRANSDIFFERENTIATION
Altered cross-regulatory circuit between Arx and Pax4
A number of  studies have demonstrated that, during de-
velopment, the influence of  several transcription factors 
successively directs progenitor cells toward pancreatic, 
and ultimately islet endocrine cell fates. A complex net-
work of  transcription factors, including Arx and Pax4, 
progressively and differentially promotes particular 
endocrine fates[21,22]. In mice lacking Arx, β- and δ-cell 
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fates were found to be favored at the expense of  α-cell 
genesis, while the total endocrine cell content remained 
normal[21]. Conversely, in the absence of  Pax4, β-cell loss 
was observed accompanied by an increase in α-cell num-
ber[22], indicating an inhibitory, cross-regulatory circuit 
between Arx and Pax4[23].

Interestingly, Collombat et al[24] demonstrated that 
ectopically expressed Pax4 in endocrine precursor cells 
and α cells in the mouse resulted in the conversion of  
these cells into insulin-producing cells. As early as 1 wk 
postpartum, a 50% enlargement in islet size was outlined, 
with the islets containing increased numbers of  insulin- 
and Pax4-positive cells compared with controls, and the 
number of  glucagon-producing cells reduced by 77%. 
An age-dependent increase in islet size and the number 
of  insulin-producing cells was observed. The latter ex-
hibited most β-cell features, suggesting that, upon Pax4 
ectopic expression, adult glucagon-expressing cells were 
continuously converted into cells exhibiting a β-cell phe-
notype. The lack of  glucagon-producing cells resulted in 
an apparent adaptive neogenesis of  α cells. The authors 
provided evidence suggesting that such a conversion trig-
gered by Pax4 ectopic expression in α cells was sufficient 
to alleviate the diabetic condition resulting from massive 
β-cell destruction in the mouse. 

More recently, Wilcox et al[25] showed that ablation of  
Arx in neonatal α-cells resulted in an α-to-β-like conver-
sion through an intermediate bihormonal state, while 
short-term ablation of  Arx in adult mice did not. How-
ever, Courtney et al[26] showed that selective Arx disrup-
tion in α cells at any age could elicit the conversion. It is 
important to note that such a conversion induced duct-
lining precursor cells to differentiate to endocrine cells. 
The α cells thus generated were subsequently converted 

into β-like cells because of  Arx inactivation. Using con-
ditional Arx and Pax4 double mutants, Courtney et al[26] 

provided evidence showing that Pax4 was dispensable 
for this regeneration process, suggesting that Arx could 
be the main trigger of  α-cell conversion into β-like cells. 
Importantly, Arx disruption in α cells was able to reverse 
mouse diabetes resulting from β-cell depletion.

α  to β  cell reprogramming by forced PDX1 expression 
Vuguin et al[27] performed ectopic Pdx1 expression from 
Ngn3-positive endocrine progenitors (Neurog3Cre-Pdx1OE 
mice). They detected a slight increase in β-cell number 
accompanied by a reduced α-cell number during the em-
bryonic period[28]. At each stage, the combined number 
of  α and β cells in Neurog3Cre-Pdx1OE mice was similar 
to that in controls, despite a significant difference in the 
α- to β-cell ratio, strongly suggesting a scenario of  lin-
eage diversion, where one cell population expands at the 
expense of  the other under a constant total cell number. 
Two phases of  lineage conversion were identified, con-
tributing to a complete α-cell loss by the early adult stage. 
First, a significant decrease in glucagon-positive cell num-
ber (47% in the control reduced to 35% in mutant mice) 
and accompanying increase in insulin-positive cells was 
detected in the E16.5 Neurog3Cre-Pdx1OE pancreas, shortly 
after the peak of  Neurog3 expression at approximately 
E15. Second, a major progressive loss of  glucagon-
positive cells in parallel with increased insulin-positive cell 
numbers was detected at P1-P12. Coexpression of  insulin 
and α-cell-specific factors such as Arx, suggesting an ear-
ly movement toward β-cell-directed transdifferentiation, 
was not detected at the first stage. Importantly, numerous 
mantle-located glucagon- and insulin-positive cells were 
detected in the second stage, representing intermediate 
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Table 1  List of some experimental models of α-cell transdifferentiation

Experimental model Phenotype Intermediate cells α-cell proliferation Ref.

Pax4 overexpression Converts progenitor cells into α and subsequently β cells Very few - [24]
Arx inactivation α- to β-like conversion + - [25]
Arx inactivation; Pdx1;Arx 
double mutant

α- to β-like conversion + - [26]

Pdx1 overexpression α- to normal β cell conversion Numerous mantle-
located Gcg + Ins + cells 
were detected in P1-P12

- [28]

PDL + alloxan A large number of new β cells arising from adult α cells 
within 14 d

58% of Ins+ cells 
coexpressed glucagon

- [30]

Extreme β-cell loss α- to β-cell transdifferentiation + - [29]
Treatment with histone 
methyltransferase inhibitor

α- to β-cell conversion Colocalization of both 
glucagon and insulin in 
human and mouse islets

- [36]

Ablation of glucagon gene Normoglycemia and hyperplasia of pancreatic α cells + + [31]
Ablation of glucagon receptor 
(Gcgr-/-)

Lower blood glucose, hyperglucagonemia, and pancreatic 
α-cell hyperplasia

Few scattered Gcg + Ins 
+ cells or not mentioned

+ [27,32-34] 

Impaired glucagon synthesis 
(SPC2-/-)

Normoglycemia, hyperplasia of pancreatic α and δ cells Not mentioned + [37]

Disturbed glucagon pathway 
[Liver-specific G(s)alpha 
deficiency]

Hypoglycaemia, hypoinsulinemia, pancreatic α-cell 
hyperplasia

+ [38]

Men1 inactivation α-cell transdifferentiation, α-cell hyperplasia and 
development of glucagonoma and insulinoma

+ + [39]
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in particular, α-cell hyperplasia and even tumorigenesis[33], 
accompanied by hyperglucagonemia and, in some of  
these models, scattered intermediate cells coexpressing 
insulin and glucagon. However, full transdifferentiation 
of  α cells into β cells has never been demonstrated in 
the above models. Most probably, the fact that islets were 
often clustered near ductal tissue, and glucagon staining 
was seen along and budding from ductal epithelium or 
within exocrine tissue, suggests that the islet neogenesis 
could be the cause of  increased α-cell mass. 

Transdifferentiation from α  cells to insulin-expressing 
cells triggered by Men1 disruption 
In our previous study, we demonstrated the phenomenon 
of  transdifferentiation in a mouse model where the Men1 
gene, a tumor suppressor in many types of  endocrine cells, 
is specifically disrupted in pancreatic α cells[39]. Our analy-
ses of  pancreata from aging mutant mice showed that, 
in spite of  the α-cell specificity of  the GluCre transgene, 
both glucagonomas and insulinomas, as well as mixed islet 
tumors, were observed in mutant mice older than 6 mo 
of  age. More interestingly, starting from as early as 2 mo 
of  age well before tumor onset, cells sharing characteris-
tics of  both α and β cells, and coexpressing insulin and 
glucagon could be identified. Importantly, using a cell lin-
eage tracing approach, we showed that these intermediate 
cells and insulinoma cells were both derived from Men1-
deficient α cells. Furthermore, our data suggest that Pdx1, 
MafA and Ngn3 expression did not seem to be involved 
in the initiation of  this transdifferentiation[39]. Intriguingly, 
although many Men1-deficient α cells transdifferentiated 
into insulin-secreting cells, some maintained their α-cell 
identity. This may indicate that Men1-disruption per se does 
not systematically lead to α-cell transdifferentiation, but 
rather affords the pathophysiological conditions to allow 
the transdifferentiation to occur. Other factors, indepen-
dent of  Men1 disruption, may, therefore, play a crucial 
role in the initiation of  the transdifferentiation. Using 
this model, where transdifferentiating cells are numerous 
before the development of  tumors, to search for these 
factors would be of  help in further deciphering the cel-
lular and molecular basis of  α-cell transdifferentiation.  
The identification of  such factors would be crucial to 
determine the conditions favorable for α-cell transdiffer-
entiation, while avoiding the known tumorigenic effect of  
Men1 inactivation in islet cells. 

CLUES TO OTHER FACTORS AND 
UNDERLYING MECHANISMS IMPORTANT 
FOR TRANSDIFFERENTIATION 
The data from the above mouse models displaying exper-
imental transdifferentiation of  α cells into β cells suggest 
that α cells could possess intrinsic abilities to allow their 
conversion under certain circumstances, giving rise to an 
adaptive response to β-cell loss or deficiency. While these 

state α cells undergoing conversion, suggesting that the 
suppression of  glucagon and the induction of  insulin oc-
curred concurrently. Intriguingly, when activating Pdx1 in 
the differentiated or mature glucagon-expressing α cell, 
the efficiency of  the occurrence of  α-to-β conversion 
was very much impaired, even absent. The work suggests 
that Pdx1 alone may play a strong role in regulating the 
cell differentiation program of  islet-cells.

Near complete β -cell ablation
Thorel et al[29] have generated an elegant mouse model 
which allows nearly total β-cell ablation using the diph-
theria toxin receptor system. The massive β-cell de-
struction thus obtained resulted in heterologous β-cell 
formation. Surprisingly, the majority of  newly formed β 
cells originated from former glucagon-producing cells. 
By using cell lineage tracing, they demonstrated that, 
upon near total loss of  β cells, genetically marked α cells 
rapidly began firstly to coexpress Nkx6.1, then coexpress 
insulin and the adult β-cell markers Pdx1, Nkx6.1 and 
Glut2, subsequently forming the majority of  the regen-
erated β cells. Importantly, when α cells were ablated 
together with β cells, bihormonal cells expressing both 
glucagon and insulin were no longer observed. The work 
may also suggest that, in this particular experimental set-
ting, a complete lack of  local insulin signaling would elicit 
the interconversion between α- and β-cells. It would be 
interesting and challenging to use this model to further 
study the process and the mechanisms of  α-cell transdif-
ferentiation. 

Pancreatic duct ligation + alloxan treatment
Chung et al[30] generated another pancreas and β-cell-
deficient mouse model to study the origin and extent of  
adult β-cell regeneration. To this end, they used the β-cell 
specific toxin alloxan to ablate β cells, and, subsequently, 
carried out pancreatic duct ligation (PDL) to stimulate 
β-cell neogenesis. They reported that more than half  
(58%) of  insulin-positive cells coexpressed glucagon one 
week after PDL and alloxan treatment. Moreover, they 
found that some glucagon-positive cells coexpressed 
β-cell-specific transcription factors, such as Pdx1 and 
Nkx6.1, suggesting a transitional stage during the conver-
sion. Later, cells coexpressing insulin and glucagon were 
found. Interestingly, these insulin-positive cells expressed 
MafB, but afterward switched from MafB to MafA ex-
pression, suggesting that they were initially immature, and 
became mature over time. Unfortunately, cell lineage trac-
ing was not performed in this model. 

Glucagon pathway deficiency models
Mice with glucagon signaling deficiency, due to the in-
activation of  either the Glucagon gene[31] or its receptor 
(GCGR)[27,32-34], impaired glucagon synthesis[37], or a dis-
turbed glucagon pathway[38], display common features. 
These include lower blood glucose levels, improved glu-
cose tolerance with relatively normal insulin levels, and, 
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models highlighted the genetic factors directly involved 
in such a process, they also provided clues as to other 
factors that may or may not participate in α-cell transdif-
ferentiation. 

Cell dedifferentiation
It is generally considered that natural transdifferentiation 
occurs in two steps: the dedifferentiation of  the cell, fol-
lowed by the differentiation of  the dedifferentiated cell 
into the new lineage[40]. Although it is still unclear whether 
experimental transdifferentiation follows a similar course, 
the fact that no completely dedifferentiated α cells have 
been reported in the above experimental models seems 
to indicate that this may not be the case. Instead, it may 
be possible to directly convert one cell type into another. 
In this case, there could be a simultaneous switch from 
the inactivation of  an old cell differentiation program 
into the activation of  a new program. The existence of  
“intermediate cells” expressing both glucagon and insulin 
documented in several of  these models even suggests 
that the initial activation of  the new program may pre-
cede the complete inactivation of  the old one. However, 
detailed cellular and molecular analyses are still required 
to allow a full understanding of  the transdifferentiation 
procedure. 

Epigenetic factors 
Epigenetic mechanisms are known to play an important 
role in establishing and maintaining cell differentiation 
programs. Interestingly, a recent study demonstrated that 
α cells harbor bivalent chromatin signatures, contain-
ing both active and repressive histone markers, at genes 
that are active in β cells, such as Pdx1 and MafA[36]. The 
finding of  α-cell plasticity may be supported by the fact 
that β-cell specific genes are likely ready to be activated. 
Moreover, they found that the repressed Pdx1 and insulin 
expression in α cells could be reactivated by treating islets 
with an inhibitor of  histone methyltransferase. The work 
provides interesting clues into eventual cell reprogram-
ming through epigenetic modifications[36].

Along with the above data, two other studies have 
demonstrated that changing histone methylation marks 
by deleting the Dnmt1/3a gene resulted in the transdif-
ferentiation of  β cells into α cells[41,42]. Indeed, detailed 
analyses showed that these two genes, together with other 
epigenetic factors, such as PRMT6, MeCP2 and HDAC1, 
play a crucial role in inhibiting the expression of  tran-
scriptional factors that may give rise to the activation of  
a cell differentiation program of  other cell lineages, such 
as ARX in β cells. The loss of  DNA methylation, there-
fore, results in the de-repression of  these transcription 
factors, and the activation of  the transcriptional program 
of  other cell lineages. Thus, it would be interesting to in-
vestigate whether similar mechanisms could control α-cell 
identity. 

Islet hormones and α -cell proliferation 
Glucagon, insulin and GLP1: Glucagon was found to 

inhibit the formation of  β cells converted from α cells 
upon Pax4 overexpression[24]. However, the phenomenon 
may be more directly related to the expansion of  Ngn3 
progenitors rather than the reprogramming itself, since 
virtually all α cells were converted to insulin-expressing 
cells by ectopic Pax4 expression, and mutant mice dis-
played hypoglucagonemia. Furthermore, in the Men1 
disruption-mediated transdifferentiation model, the very 
high levels of  glucagon did not prevent α-cell transdif-
ferentiation[39]. As for the potential inhibitory role of  in-
sulin deduced from the work by Thorel et al[29], the quasi 
absence of  insulin does not seem to be a prerequisite 
for the occurrence of  α-cell transdifferentiation, since 
the majority of  experimental transdifferentiation models 
mentioned above display substantial levels of  insulin. The 
existence of  intra-islet GLP1 in many of  the experimen-
tal transdifferentiation models makes it a plausible candi-
date involved in α-cell transdifferentiation. However, in 
aged GCGR knockout mice with extremely high levels 
of  GLP1, only α-cell expansion, likely due to neogenesis, 
but not transdifferentiation was observed[34]. Altogether, 
the above data from different experimental transdiffer-
entiation models indicate that islet hormones themselves, 
including glucagon, insulin and GLP1, may not be suf-
ficient to be critically involved in the process. 

α-cell proliferation: α-cell proliferation and hyperplasia, 
even neoplastic changes in some circumstances, were 
frequently found in various glucagon-deficient models. 
This raises the possibility that it may be required for, or 
even trigger, transdifferentiation. However, in the case 
of  GCGR knockout mice, massive α-cell proliferation 
and neoplastic alteration did not lead to α-cell transdif-
ferentiation. Importantly, a patient with a homozygote 
germline mutation of  the GCGR gene displayed micro-
glucagonoma and non-functional islet-tumor develop-
ment, but no sign of  α-cell transdifferentiation[43]. The 
data suggest that α-cell proliferation may be favorable 
for, but not systematically result in, the occurrence of  
transdifferentiation. At the same time, this highlights the 
potential deleterious effects of  α-cell proliferation due to 
drastic glucagon pathway deficiency and/or massive α-cell 
loss.  

Timing 
In a recent work reported by Wilcox et al[25], the authors 
observed that embryonic α cells and adult α cells may re-
act differently towards Arx disruption. Whereas the for-
mer were driven to convert to β cells, the latter seemed 
completely nonresponsive to the lack of  ARX. However, 
similar work by Courtney et al[26] did not confirm this 
observation. The reason for the discrepancy remains un-
clear. Interestingly, another study, using ectopic Pdx1 ex-
pression in either pancreatic progenitors or in embryonic 
and mature α cells to reprogram the cells into β cells, 
also demonstrated that the efficiency of  the reprogram-
ming decreased when forced Pdx1 expression occurred 
later in embryonic development or in adult mice[28]. Col-
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lectively, these studies highlighted the importance of  tim-
ing in α-cell plasticity that should be taken into account 
for possible future clinical applications based on α-cell 
transdifferentiation.

CONCLUSION
Taken together, the above-mentioned recent studies high-
lighted the importance of  both transcriptional factors 
and/or cofactors in maintaining cell differentiation status 
and in the physiological mechanisms involved in α-cell 
transdifferentiation. It would be vital and challenging for 
future studies to pinpoint the decisive factors from these 
two axes, and to provide insight into detailed mechanisms 
responsible for α-cell transdifferentiation. At the same 
time, past experience seems to indicate that some of  the 
above-mentioned experimental conditions, such as PLD 
and glucagon pathway deficiency, may be more favorable 
for eliciting neogenesis, rather than α-cell transdifferen-
tiation. 

Because of  their close ontogenic relation with β cells 
and unusual plasticity in responding to internal and exter-
nal alterations, pancreatic α cells elicit much curiosity and 
clinical promise. In particular, the capacity for their trans-
differentiation into insulin-secreting cells documented by 
several distinct models renders them a potentially relevant 
cellular basis for new strategies of  β-cell regeneration. De-
ciphering detailed cellular and molecular mechanisms of  
the α-cell transdifferentiation process will be challenging 
for the field and crucial for future clinical applications.
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Abstract
Inhibitors of sodium-glucose co-transporter type 2 
(SGLT2), such as canagliflozin and dapagliflozin, are re-
cently approved for treatment of type 2 diabetes. These 
agents lower blood glucose mainly by increasing uri-
nary glucose excretion. Compared with placebo, SGLT2 
inhibitors reduce hemoglobin A1c (HbA1c) levels by an 
average of 0.5%-0.8% when used as monotherapy or 
add-on therapy. Advantages of this drug class include 
modest weight loss of approximately 2 kg, low risk of 
hypoglycemia, and decrease blood pressure of approxi-
mately 4 mmHg systolic and 2 mmHg diastolic. These 
characteristics make these agents potential add-on 
therapy in patients with HbA1c levels close to 7%-8.0%, 
particularly if these patients are obese, hypertensive, 
and/or prone for hypoglycemia. Meanwhile, these 
drugs are limited by high frequency of genital mycotic 
infections. Less common adverse effects include urinary 
tract infections, hypotension, dizziness, and worsening 
renal function. SGLT2 inhibitors should be used with 
caution in the elderly because of increased adverse ef-
fects, and should not be used in chronic kidney disease 
due to decreased or lack of efficacy and nephrotoxicity. 
Overall, SGLT2 inhibitors are useful addition for treat-
ment of select groups of patients with type 2 diabetes, 

but their efficacy and safety need to be established in 
long-term clinical trials.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Sodium-glucose co-transporter type 2 inhibi-
tors are recently approved drugs for type 2 diabetes 
with unique mechanism of action. In this minireview, 
the author provides a practical approach on how to se-
lect the best candidates for these drugs.

Mikhail N. Place of sodium-glucose co-transporter type 2 
inhibitors for treatment of type 2 diabetes. World J Diabe-
tes 2014; 5(6): 854-859  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/854.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.854

INTRODUCTION
In healthy individuals, almost all glucose filtered by the 
kidneys is reabsorbed into the circulation, and less than 
0.5 g of  glucose per day is lost in urine[1]. Ninety per cent 
of  glucose reabsorption from glomerular filtrate is medi-
ated by sodium-glucose co-transporter type 2 (SGLT2) 
located in early segments (called S1 and S2) of  proximal 
renal tubules[2,3]. The remaining 10% of  filtered glucose is 
reabsorbed by means of  SGLT1 located in late segment 
(S3) of  proximal tubule[3]. SGLT2 inhibitors decrease hy-
perglycemia independently of  insulin by lowering the re-
nal threshold for glucose and therefore increasing urinary 
excretion of  glucose[2]. Canagliflozin (Invokana) is the first 
SGLT2 inhibitor approved in the United States in March 
2013 for treatment of  type 2 diabetes[4]. Dapagliflozin 
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(Forxiga) was approved by the European Medicines 
Agency in November 2012, and by the Federal Drug Ad-
ministration (FDA) in the United States in January 2014[5]. 
While head to head trials are lacking, some important 
differences exist between canagliflozin and dapagliflozin 
(Table 1). Many SGLT2 inhibitors such as empagliflozin, 
ipragliflozin, luseogliflozin are pending approval or still 
under development[2,6]. The main purpose of  this review 
is to identify the optimum place of  SGLT2 inhibitors in 
management of  patients with type 2 diabetes based on 
both patients’ characteristics and drug profile of  SGLT2 
inhibitors. More emphasis will be placed on the 2 ap-
proved SGLT2 inhibitors: canagliflozin and dapagliflozin.

SEARCH METHODOLOGY
PubMed search was conducted until July 2014 to identify 
all humans studies related to efficacy and safety of  all 
SGLT2 inhibitors published in the English, Spanish and 
French literature. The search included all clinical trials of  
various SGLT2 inhibitors, pertinent guidelines of  experts, 
review articles, prescribing information of  canagliflozin 
and dapagliflozin are also reviewed. Search terms includ-
ed “sodium glucose co-transporters”, “diabetes mellitus”, 
“canagliflozin”, “dapagliflozin”, “empagliflozin”, “effica-
cy”, “safety”, “adverse effects”, “cardiovascular effects”, 
“mortality”, “glycosuria”. 

Potential candidates for SGLT2 inhibitors
As add-on to other oral agents in patients with hemo-
globin A1c levels of  7%-8.0%: In general, the efficacy 
of  SGLT2 inhibitors is similar to metformin, sulfonylurea, 
pioglitazone, but canagliflozin may be slightly superior 
to sitagliptin [difference in hemoglobin A1c (HbA1c) 

0.37%][7,8]. As result of  their unique mechanism of  action, 
SGLT2 inhibitors can be virtually combined with any oth-
er anti-diabetic therapy. A recent meta-analysis of  58 stud-
ies that included 8 different SGLT2 inhibitors showed that 
these agents reduced mean HbA1c levels by 0.79% when 
used as monotherapy and 0.61% when used as add-on 
treatment compared with placebo[7]. Because of  universal 
agreement that metformin is the initial drug of  choice for 
treatment of  type 2 diabetes, the use of  SGLT2 inhibitors 
as monotherapy is not justified except in selected patients 
who cannot tolerate metformin[9]. The place of  SGLT2 
inhibitors therefore is more appropriate as add-on therapy. 
For instance, after the addition of  canagliflozin, dapa-
gliflozin, and empagliflozin to patients with mean baseline 
HbA1c of  approximately 8.0%, proportions of  subjects 
who achieved HbA1c concentrations less than 7% were: 
64% (vs 32% with placebo), 41% (vs 26% with placebo), 
and 32% (vs 9% with placebo), respectively[6,10,11]. In the 
previous 3 trials, background diabetes treatment consisted 
of  metformin + pioglitazone, metformin alone, and met-
formin + sulfonylurea, respectively[6,10,11]. Clearly, in these 
studies, not all subjects achieved the HbA1c target of  less 
than 7%. Hence, as baseline HbA1c levels become higher 
than 8.0% (e.g., 8.5%-9%), the addition of  a SGLT2 in-
hibitor may only improve, but unlikely optimize, glycemic 
control. In the latter setting, initiation of  insulin is the 
most appropriate step.

Obese patients or patients concerned about weight 
gain: The use of  SGLT2 inhibitors is consistently associ-
ated with mild weight loss of  approximately 2 kg com-
pared with placebo irrespective of  presence or type of  
concomitant anti-diabetes therapy[7]. Weight loss becomes 
evident after 6 wk then usually reaches a plateau or slight-

Mikhail N. Place of SGLT2 inhibitors for treatment of type 2 diabetes

855 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Table 1  Differences between canagliflozin and dapagliflozin

Canagliflozin (Invokana)[4] Dapagliflozin (Forxiga)[5]

Approved doses Starting dose 100 mg tablet qd, taken before 
breakfast. If tolerated, dose can be increased to 
300 mg tablet qd

Starting dose 5 mg tablet qd taken in the morning with or 
without food. If tolerated, dose can be increased to 10 mg 
tablet qd 

Use in CKD Contraindicated with eGFR < 45 mL/min per 
1.73 m2. Dose limited to 100 mg/d with eGFR 
of 45-59 mL/min per 1.73 m2

Not recommended with eGFR < 60 mL/min per 1.73 m2. No 
dose adjustment is needed with milder CKD 

Hepatic impairment (Child-Pugh 
classification: A: mild, B: moderate, C: 
severe)

No dosage adjustment is needed with 
mild or moderate hepatic impairment. Not 
recommended with severe hepatic impairment

No dosage adjustment is needed with mild or moderate 
hepatic impairment. Start with smaller dose (5 mg/d) in severe 
hepatic impairment then the high-dose 10 mg/d if tolerated

Drug interactions Use higher dose (300 mg/d) with UGT enzyme 
inducers (e.g., rifampin)

No dose adjustment is needed when used with UGT enzyme 
inducers

↑ C max of digoxin by 36%. Use low starting 
digoxin doses, and monitor serum digoxin 
levels closely

No interaction with digoxin

Effect on LDL-C levels (mean 
percentage change vs placebo)

↑ 4.5%-8% ↑ 3.9% 

Possible increase in cardiovascular 
events 

A trend toward increase in non fatal stroke and 
cardiovascular events (see text) 

Not observed

Possible increase in cancer Not observed Possible increase in bladder cancer (0.17% vs 0.03% with 
placebo)

eGFR: Estimated glomerular filtration rate; Cmax: Maximum plasma concentration; CKD: Chronic kidney disease.



ly rebounds after 26-32 wk until the end of  follow-up 
at 104 wk[12]. The main cause of  weight loss is increased 
urinary glucose loss, estimated to be approximately 100 
g of  glucose per 24 h[13]. Since each gram of  glucose 
excreted in urine translates into a loss of  4 kcal, a loss 
of  approximately 400 kcal/d is expected with SGLT 2 
inhibitors[14]. Two studies using dual-energy X-ray absorp-
tiometry show that approximately two-thirds of  the re-
duction in body weight associated with administration of  
dapagliflozin and canagliflozin originates from fat mass, 
whereas the remaining one third is derived from lean 
body mass[15,16]. Another contributing factor to weight 
reduction may be fluid loss as result of  the diuretic action 
of  SGLT2 inhibitors, particularly during the initial rapid 
decline in body weight[15]. Since weight gain is a major 
unwanted effect of  insulin therapy, addition of  a SGLT2 
inhibitor was evaluated in obese patients receiving high 
insulin doses (77 units/d)[12]. Thus, patients randomized 
to dapagliflozin lost an average weight of  1.4 kg with-
out changing insulin requirements. Conversely, subjects 
randomized to placebo gained 1.8 kg, and their insulin 
requirements increased by 18 units/d[12]. Moreover, the 
HbA1c levels were 0.4% lower among dapagliflozin-treat-
ed group vs the placebo group[12]. Therefore, in insulin-
treated patients concerned about weight gain, addition of  
a SGLT2 inhibitor may be a viable option. 

Patients prone for hypoglycemia: The use of  SGLT2 
inhibitors is associated with low risk for hypoglycemia 
that is generally similar or slightly greater than placebo[11], 
similar to metformin[17], but 7-11 times less common than 
sulfonylurea (SU)[16,18]. Thus, in one trial, hypoglycemia 
occurred in 5% of  patients randomized to canagliflozin 
300 mg/d vs 34% of  patients randomized to glimepiride 
(mean maximum dose 5.6 mg/d)[16]. SGLT2 inhibitors 
can be therefore a reasonable alternative to SU in patients 
with frequent hypoglycemia. The low hypoglycemic risk 
of  SGLT2 inhibitors is attributed to the fact that these 
agents reduce renal glucose threshold to a range close 
to 76-90 mg/dL, i.e., level that is above the plasma glu-
cose concentration at which hypoglycemic symptoms 
occur[13,14]. Meanwhile, the incidence of  hypoglycemia 
associated with SGLT2 inhibitors may increase in 3 con-
ditions namely concomitant therapy with insulin and/or 
SU, in chronic kidney disease (CKD), and in the elderly. 
Thus, when dapagliflozin 10 mg/d was added to a back-
ground of  insulin therapy, frequency of  hypoglycemia 
was numerically greater among patients randomized to 
dapagliflozin than placebo, 57% and 52%, respectively[19]. 
With respect to CKD, in one study of  patients with esti-
mated glomerular filtration rate (eGFR) between 30 and 
49 mL/min per 1.73 m2, the proportions of  subjects with 
documented hypoglycemia were higher with both doses 
of  canagliflozin being 52% vs 36% with placebo[20]. Of  
note, the vast majority (96%) of  the previous study popu-
lation was also taking insulin or SU[20]. Finally, regarding 
advanced age, in a study of  older patients (mean age 64 
years), the incidence of  hypoglycemia was 36% and 28% 

with canagliflozin 300 mg/d, and placebo, respectively[21].

Patients with uncontrolled hypertension: In one meta-
analysis of  27 randomized trials, the use of  various SGLT2 
inhibitors was associated with mean reduction of  systolic 
and diastolic blood pressure of  4.0 mmHg and 1.6 mmHg, 
respectively compared with baseline[22]. Only canagliflozin 
showed dose-response relationship with systolic blood pres-
sure[22]. The decrease in blood pressure is most likely due to 
osmotic diuresis, but mild weight loss may be another con-
tributing factor[13]. It is reassuring that the decrease in blood 
pressure was not associated by an increase in heart rate[8,23].

Patients in whom SGLT2 inhibitors may be used with 
caution
Women with history of  mycotic genital infections 
and uncircumcised men: Increased vaginal fungal in-
fection is the most common adverse effect of  SGLT2 in-
hibitors reported by 11%-14% of  patients who received 
canagliflozin or dapagliflozin compared with 2%-4% in 
subjects randomized to placebo or a comparator agent 
such as glimepiride or sitagliptin[8,16]. The increased ge-
netic mycotic infection is most likely related to the in-
crease in urinary glucose excretion induced by SGLT2 
inhibitors. The median time of  diagnosis was 19 d after 
the initiation of  canagliflozin, and the most frequently 
isolated Candida species were Candida albicans (51%) 
and Candida glabrata (37%)[24]. Infection is frequently 
recurrent, and patients with previous history of  genital 
mycotic infections are more prone to develop this type 
of  infection[4,19,25].

Increased frequency of  genetic mycotic infections 
also occurs in men exposed to SGLT2 inhibitors, al-
beit to a lesser extent than in women[25]. These include 
balanitis or balanoposthitis. In the trial of  Cefalu et al[16], 
frequency of  genetic mycotic infections in men exposed 
to canagliflozin 100 mg/d, canagliflozin 300 mg/d, and 
glimepiride was 7%, 8%, and 1%, respectively. Rates of  
infection are relatively higher in uncircumcised men and 
those with history of  balanitis[4,25]. In general, genital 
mycotic events in both genders were considered mild 
to moderate in severity, were treated with topical or oral 
anti-fungal agents without interruption of  the drug, and 
uncommonly led to withdrawals[8]. The frequency of  
UTI is also increased with the use of  SGLT2 inhibitors, 
being 7.2%, 5.1%, and 4.2% among patients random-
ized to canagliflozin 100 mg/d, 300 mg/d, and placebo, 
respectively[23]. Candida spp. was cultured from the urine 
specimens of  4.4% of  canagliflozin-treated patients com-
pared with 1.1% of  control subjects[26]. This increased 
frequency of  candiduria may reflect contamination from 
vaginal colonization[26]. 

Elderly patients: Two main reasons make the use of  
SGLT2 inhibitors in the elderly not an attractive option: 
diminished efficacy and increased frequency of  some ad-
verse effects. Thus, mean reduction of  HbA1c with the 
highest dose of  canagliflozin (300 mg/d) vs placebo was 
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to placebo[30]. The reasons of  excess fractures in patients 
exposed to canagliflozin and dapagliflozin are unclear. 
No notable changes in serum or urine calcium, 1.25 
dihydroxy vitamin D, or parathyroid hormone were re-
ported[19]. However, in 2 canagliflozin studies, there was 
a modest increase in one marker of  bone resorption, se-
rum collagen type 1 β-carboxy-terminal telopeptide[14,21]. 
Nevertheless, until further data become available, SGLT2 
inhibitors should be used with caution in patients having 
history of  osteoporosis or fractures.

Patients in whom SGLT2 inhibitors should be avoided
Patients with chronic kidney disease: As mentioned 
earlier, the risk of  hypoglycemia associated with the 
use of  SGLT2 inhibitors in patients with CKD is in-
creased[20]. Other reasons to avoid the use of  these drugs 
in CKD are decreased or lack of  efficacy and worsening 
renal function. Thus, in patients with stage 3 CKD, de-
fined as eGFR between 30 and 49 mL/min per 1.73 m2, 
the efficacy of  canagliflozin was only modest with mean 
HbA1c reduction of  0.4% as compared with placebo[20]. 
Furthermore, in another trial of  patients with eGFR of  
30 to 59 mL/min per 1.73 m2, dapagliflozin did not have 
any significant effect on HbA1c levels compared with 
placebo[30]. This decreased or absent efficacy of  SGLT2 
inhibitors in CKD is most likely the result of  reduction 
of  renal glucose clearance as eGFR declines[21,31]. Patients 
with CKD are particularly susceptible to the nephrotoxic 
effects of  SGLT2 inhibitors. Indeed, increase in serum 
creatinine, and decrease in eGFR were demonstrated af-
ter 1-3 wk of  exposure to dapagliflozin and canagliflozin, 
respectively[20,30]. Therefore, the use of  dapagliflozin and 
canagliflozin is contraindicated in patients with eGFR < 
60 mL/min per 1.73 m2, and 45 mL/min per 1.73 m2, 
respectively[4,5]. 

Patients with high low density lipoprotein-cholesterol 
(LDL-C) concentrations: For unclear reason, cana-
gliflozin was found to increase plasma levels of  LDL-C 
in a dose-related fashion. In pooled data from 4 placebo-
controlled trials, mean percentage increases over base-
line values were 4.5% and 8% with 100 mg/d and 300 
mg/d, respectively relative to placebo[4]. In one study of  
26 wk-duration, slight increases in plasma levels of  apo-
lipoprotein B of  1.2% and 3.5% were reported among 
patients randomized to canagliflozin 100 mg/d, and 300 
mg/d, respectively compared with 0.9% increase with 
placebo[23]. Canagliflozin also increased levels of  high 
density lipoprotein-cholesterol, with mean percentage 
increase of  6.1%-6.8% relative to placebo[23], and 8%-9% 
relative to glimepiride[16]. Clearly, the increase in plasma 
levels of  LDL-C and apolipoprotein B is concerning, and 
its impact on cardiovascular events needs to be carefully 
examined. The effect of  dapagliflozin on LDL-C levels is 
inconsistent. In pooled data from 13 placebo-controlled 
trials, mean percentage increase in LDL-C levels was 2.9% 
in dapagliflozin groups vs -1% in placebo groups after 24 
wk[5]. Yet, in one trial lasting 2 years, no change in LDL-C 

0.8% and 0.5% after 26 wk among patients younger than 
65 years and those who were older than 65 years, respec-
tively[21]. This decreased efficacy was also demonstrated in 
a pooled analysis of  4 other canagliflozin studies[27]. Like-
wise, in one trial of  dapagliflozin, reduction in HbA1c 
levels in patients younger than 65 (mean age 58 years) 
and older than 65 (mean age 70 years) was 0.4% and 0.3%, 
respectively after 24 wk compared with baseline[28]. Since 
the anti-hyperglycemic action of  SGLT2 inhibitors rely 
on enhancing urinary glucose excretion, the decreased 
efficacy of  the agents with old age is in large part attrib-
uted to the reduction in eGFR that normally occurs with 
aging[21]. Besides decreased efficacy, available data suggest 
that several adverse effects of  SGLT2 inhibitors may in-
crease with advanced age. First, elderly patients exposed 
to SGLT-2 inhibitors are more prone for worsening renal 
function than younger patients. Thus, in patients aged 65 
and older, renal impairment and renal failure occurred 
among 14.8% of  patients randomized to dapagliflozin 
vs 8.0% with placebo, whereas corresponding propor-
tions in patients younger than 65 were 4.7% and 0.4%[28]. 
Second, elderly patients receiving canagliflozin and 
dapagliflozin may be more prone for volume-depletion 
adverse effects such as hypotension, dizziness, and syn-
copy[4,5,27]. Third, as mentioned earlier, elderly patients 
may be more susceptible to hypoglycemia associated with 
SGLT2 inhibitors[21]. 

Patients with significant history of  vascular disease: 
The Canagliflozin Cardiovascular Assessment Study 
(CANVAS) is an ongoing large randomized trial that pri-
marily examines the effects of  canagliflozin on cardiovas-
cular events and mortality in patients with long-standing 
type 2 diabetes and elevated cardiovascular risk[29]. An 
imbalance in the incidence of  cardiovascular events was 
recorded during the first 30 d of  CANVAS. Thus, 13 
of  2889 patients had an event in the canagliflozin group 
compared with 1 of  1441 patients in the placebo group 
yielding a hazard ratio of  6.5 (95%CI: 0.85-49.6). This 
imbalance was not evident after 30 d[7]. In addition, the 
FDA reported a trend toward an increase in nonfatal 
stroke in patients who received canagliflozin [HR = 1.46 
(95%CI: 0.83-2.58)][7]. Regarding dapagliflozin, the lim-
ited available data is somewhat reassuring. Thus, one trial 
of  older patients (mean age 64 years) with advanced type 
2 diabetes and history of  cardiovascular disease did not 
show difference in cardiovascular events or mortality be-
tween patients randomized to dapagliflozin compared to 
placebo after 52 wk of  intervention[28]. 

Patients with osteoporosis: Incidence rate of  bone 
fractures derived from pooled data of  8 trials were 18.7, 
17.6, and 14.2 per 1000 patient years of  exposure to 
canagliflozin 100 mg/d, 300 mg/d, and comparator, 
respectively[4]. In one study of  patients with moderate 
renal impairment (mean age 67 years), 13 of  85 (7.7%) 
patients randomized to dapagliflozin experienced frac-
ture compared to none of  the 84 subjects randomized 

857 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Mikhail N. Place of SGLT2 inhibitors for treatment of type 2 diabetes



levels was recorded in dapagliflozin-treated subjects[12].

Patients with history of  bladder cancer: Possible 
increased risk of  bladder cancer was observed in dapa-
gliflozin trials[5]. Accordingly, dapagliflozin should not be 
used in patients with history of  bladder cancer until fur-
ther data become available[5]. 

OTHER LIMITATIONS OF SGLT2 
INHIBITORS
Although almost all clinical trials of  SGLT2 inhibitors are 
randomized and double-blind, they are sponsored by cor-
responding manufacturers, and therefore open to various 
bias, e.g., using comparator drug in submaximal doses, or 
not mentioning its actual doses[16,18]. Moreover, the meta-
analysis of  Vasilakou et al[7] revealed that reduction in 
HbA1c levels by these agents may be overstated because 
of  high discontinuation rates and handling missing data 
by the use of  “last observation carried forward”. Indeed, 
the latter method is considered inappropriate and can 
potentially inflate drug efficacy[32]. The high cost, and ab-
sence of  long-term data (e.g., 5 years or more) are further 
limitations of  this new class of  drugs. 

CONCLUSION
Owing to their unique mechanism of  action and accept-
able efficacy, SGLT2 inhibitors represent a useful add-
on therapy in patients with uncontrolled type 2 diabetes. 
Patient subgroups that would potentially benefit the most 
from this class are those with HbA1c levels in the range 
of  7%-8%, subjects concerned about weight gain, pa-
tients prone for hypoglycemia, or those with uncontrolled 
hypertension. On the other hand, these agents are not 
recommended in CKD, and should be used with caution 
in the elderly. It may be wise not to use canagliflozin in 
patients with established cardiovascular disease and high 
LDL-C levels until further data become available. The re-
sults of  the ongoing large randomized trials should clarify 
the long-term safety of  different members of  SGLT2 
inhibitors with respect to cardiovascular morbidity and 
mortality, incidence of  cancer and fractures[29,33].

ACKNOWLEDGMENTS
The author thanks the librarian Irene Lovas, MLS, for her 
expert help with the literature review.

REFERENCES
1 Wright EM, Loo DD, Hirayama BA. Biology of human sodi-

um glucose transporters. Physiol Rev 2011; 91: 733-794 [PMID: 
21527736 DOI: 10.1152/physrev.00055.2009]

2 Riser Taylor S, Harris KB. The clinical efficacy and safety 
of sodium glucose cotransporter-2 inhibitors in adults with 
type 2 diabetes mellitus. Pharmacotherapy 2013; 33: 984-999 
[PMID: 23744749 DOI: 10.1002/phar.1303]

3 Gerich JE. Role of the kidney in normal glucose homeostasis 

and in the hyperglycaemia of diabetes mellitus: therapeutic 
implications. Diabet Med 2010; 27: 136-142 [PMID: 20546255 
DOI: 10.1111/j.1464-5491.2009.02894.x]

4 Invokana (canagliflozin). Prescribing information. Janssen 
Ortho, LLC. Gurabo, PR 00778, 2013

5 Farxiga (Dapagliflozin). Prescribing information. Bristol-
Myers Squibb Company. Princeton, NJ, USA, 2014

6 Häring HU, Merker L, Seewaldt-Becker E, Weimer M, 
Meinicke T, Woerle HJ, Broedl UC. Empagliflozin as add-
on to metformin plus sulfonylurea in patients with type 2 
diabetes: a 24-week, randomized, double-blind, placebo-
controlled trial. Diabetes Care 2013; 36: 3396-3404 [PMID: 
23963895 DOI: 10.2337/dc12-2673]

7 Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, 
Liakos A, Bekiari E, Sarigianni M, Matthews DR, Tsapas A. 
Sodium-glucose cotransporter 2 inhibitors for type 2 diabe-
tes: a systematic review and meta-analysis. Ann Intern Med 
2013; 159: 262-274 [PMID: 24026259 DOI: 10.7326/0003-4819
-159-4-201308200-00007]

8 Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, 
Yee J, Kawaguchi M, Canovatchel W, Meininger G. Cana-
gliflozin compared with sitagliptin for patients with type 2 
diabetes who do not have adequate glycemic control with 
metformin plus sulfonylurea: a 52-week randomized trial. 
Diabetes Care 2013; 36: 2508-2515 [PMID: 23564919 DOI: 
10.2337/dc12-2491]

9 Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferran-
nini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews 
DR. Management of hyperglycemia in type 2 diabetes: a 
patient-centered approach: position statement of the Ameri-
can Diabetes Association (ADA) and the European Associa-
tion for the Study of Diabetes (EASD). Diabetes Care 2012; 35: 
1364-1379 [PMID: 22517736 DOI: 10.2337/dc12-0413]

10 Forst T, Guthrie R, Goldenberg R, Yee J, Vijapurkar U, 
Meininger G, Stein P. Efficacy and safety of canagliflozin 
over 52 weeks in patients with type 2 diabetes on back-
ground metformin and pioglitazone. Diabetes Obes Metab 
2014; 16: 467-477 [PMID: 24528605 DOI: 10.1111/dom.12273]

11 Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of 
dapagliflozin in patients with type 2 diabetes who have in-
adequate glycaemic control with metformin: a randomised, 
double-blind, placebo-controlled trial. Lancet 2010; 375: 
2223-2233 [PMID: 20609968 DOI: 10.1016/S0140-6736(10)604
07-2]

12 Wilding JP, Woo V, Rohwedder K, Sugg J, Parikh S. Dapa-
gliflozin in patients with type 2 diabetes receiving high 
doses of insulin: efficacy and safety over 2 years. Diabetes 
Obes Metab 2014; 16: 124-136 [PMID: 23911013 DOI: 10.1111/
dom.12187]

13 Devineni D, Curtin CR, Polidori D, Gutierrez MJ, Murphy J, 
Rusch S, Rothenberg PL. Pharmacokinetics and pharmaco-
dynamics of canagliflozin, a sodium glucose co-transporter 
2 inhibitor, in subjects with type 2 diabetes mellitus. J Clin 
Pharmacol 2013; 53: 601-610 [PMID: 23670707 DOI: 10.1002/
jcph.88]

14 Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, 
Usiskin K, Capuano G, Canovatchel W. Dose-ranging ef-
fects of canagliflozin, a sodium-glucose cotransporter 2 
inhibitor, as add-on to metformin in subjects with type 2 
diabetes. Diabetes Care 2012; 35: 1232-1238 [PMID: 22492586 
DOI: 10.2337/dc11-1926]

15 Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding 
J, Langkilde AM, Sugg J, Parikh S. Effects of dapagliflozin 
on body weight, total fat mass, and regional adipose tissue 
distribution in patients with type 2 diabetes mellitus with 
inadequate glycemic control on metformin. J Clin Endocrinol 
Metab 2012; 97: 1020-1031 [PMID: 22238392 DOI: 10.1210/
jc.2011-2260]

16 Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, 
Balis DA, Canovatchel W, Meininger G. Efficacy and safety 

858 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Mikhail N. Place of SGLT2 inhibitors for treatment of type 2 diabetes



of canagliflozin versus glimepiride in patients with type 2 
diabetes inadequately controlled with metformin (CANTA-
TA-SU): 52 week results from a randomised, double-blind, 
phase 3 non-inferiority trial. Lancet 2013; 382: 941-950 [PMID: 
23850055 DOI: 10.1016/S0140-6736(13)60683-2]

17 Henry RR, Murray AV, Marmolejo MH, Hennicken D, 
Ptaszynska A, List JF. Dapagliflozin, metformin XR, or both: 
initial pharmacotherapy for type 2 diabetes, a randomised 
controlled trial. Int J Clin Pract 2012; 66: 446-456 [PMID: 
22413962 DOI: 10.1111/j.1742-1241.2012.02911.x]

18 Nauck MA, Del Prato S, Meier JJ, Durán-García S, Rohwed-
der K, Elze M, Parikh SJ. Dapagliflozin versus glipizide as 
add-on therapy in patients with type 2 diabetes who have 
inadequate glycemic control with metformin: a randomized, 
52-week, double-blind, active-controlled noninferiority trial. 
Diabetes Care 2011; 34: 2015-2022 [PMID: 21816980 DOI: 
10.2337/dc11-0606]

19 Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder 
K, Parikh S. Long-term efficacy of dapagliflozin in patients 
with type 2 diabetes mellitus receiving high doses of insulin: 
a randomized trial. Ann Intern Med 2012; 156: 405-415 [PMID: 
22431673 DOI: 10.7326/0003-4819-156-6-201203200-00003]

20 Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, 
Figueroa K, Wajs E, Usiskin K, Meininger G. Efficacy and 
safety of canagliflozin in subjects with type 2 diabetes and 
chronic kidney disease. Diabetes Obes Metab 2013; 15: 463-473 
[PMID: 23464594 DOI: 10.1111/dom.12090]

21 Bode B, Stenlöf K, Sullivan D, Fung A, Usiskin K. Efficacy and 
safety of canagliflozin treatment in older subjects with type 2 
diabetes mellitus: a randomized trial. Hosp Pract (1995) 2013; 
41: 72-84 [PMID: 23680739 DOI: 10.3810/hp.2013.04.1020]

22 Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin 
KW, White WB. Effects of sodium-glucose co-transporter 
2 inhibitors on blood pressure: a systematic review and 
meta-analysis. J Am Soc Hypertens 2014; 8: 262-75.e9 [PMID: 
24602971 DOI: 10.1016/j.jash.2014.01.007]

23 Stenlöf K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, 
Canovatchel W, Meininger G. Efficacy and safety of cana-
gliflozin monotherapy in subjects with type 2 diabetes mel-
litus inadequately controlled with diet and exercise. Diabetes 
Obes Metab 2013; 15: 372-382 [PMID: 23279307 DOI: 10.1111/
dom.12054]

24 Nyirjesy P, Zhao Y, Ways K, Usiskin K. Evaluation of vul-
vovaginal symptoms and Candida colonization in women 
with type 2 diabetes mellitus treated with canagliflozin, a 
sodium glucose co-transporter 2 inhibitor. Curr Med Res 
Opin 2012; 28: 1173-1178 [PMID: 22632452 DOI: 10.1185/030
07995.2012.697053]

25 Nyirjesy P, Sobel JD, Fung A, Mayer C, Capuano G, Ways 
K, Usiskin K. Genital mycotic infections with canagliflozin, 
a sodium glucose co-transporter 2 inhibitor, in patients with 
type 2 diabetes mellitus: a pooled analysis of clinical stud-

ies. Curr Med Res Opin 2014; 30: 1109-1119 [PMID: 24517339 
DOI: 10.1185/03007995.2014.890925]

26 Nicolle LE, Capuano G, Ways K, Usiskin K. Effect of cana-
gliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibi-
tor, on bacteriuria and urinary tract infection in subjects 
with type 2 diabetes enrolled in a 12-week, phase 2 study. 
Curr Med Res Opin 2012; 28: 1167-1171 [PMID: 22548646 
DOI: 10.1185/03007995.2012.689956]

27 Sinclair A, Bode B, Harris S, Vijapurkar U, Mayer C, Fung 
A, Shaw W, Usiskin K, Desai M, Meininger G. Efficacy 
and safety of canagliflozin compared with placebo in older 
patients with type 2 diabetes mellitus: a pooled analysis 
of clinical studies. BMC Endocr Disord 2014; 14: 37 [PMID: 
24742013 DOI: 10.1186/1472-6823-14-37]

28 Leiter LA, Cefalu WT, de Bruin TW, Gause-Nilsson I, Sugg J, 
Parikh SJ. Dapagliflozin added to usual care in individuals 
with type 2 diabetes mellitus with preexisting cardiovas-
cular disease: a 24-week, multicenter, randomized, double-
blind, placebo-controlled study with a 28-week extension. 
J Am Geriatr Soc 2014; 62: 1252-1262 [PMID: 24890683 DOI: 
10.1111/jgs.12881]

29 Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, 
Stein P, Desai M, Shaw W, Jiang J, Vercruysse F, Meininger 
G, Matthews D. Rationale, design, and baseline charac-
teristics of the Canagliflozin Cardiovascular Assessment 
Study (CANVAS)--a randomized placebo-controlled trial. 
Am Heart J 2013; 166: 217-223.e11 [PMID: 23895803 DOI: 
10.1016/j.ahj.2013.05.007]

30 Kohan DE, Fioretto P, Tang W, List JF. Long-term study of 
patients with type 2 diabetes and moderate renal impair-
ment shows that dapagliflozin reduces weight and blood 
pressure but does not improve glycemic control. Kidney Int 
2014; 85: 962-971 [PMID: 24067431 DOI: 10.1038/ki.2013.356]

31 Kasichayanula S, Liu X, Pe Benito M, Yao M, Pfister M, 
LaCreta FP, Humphreys WG, Boulton DW. The influence of 
kidney function on dapagliflozin exposure, metabolism and 
pharmacodynamics in healthy subjects and in patients with 
type 2 diabetes mellitus. Br J Clin Pharmacol 2013; 76: 432-444 
[PMID: 23210765 DOI: 10.1111/bcp.12056]

32 Stack CB, Localio AR, Griswold ME, Goodman SN, Mul-
row CD. Handling of rescue and missing data affects syn-
thesis and interpretation of evidence: the sodium-glucose 
cotransporter 2 inhibitor example. Ann Intern Med 2013; 159: 
285-288 [PMID: 24026261 DOI: 10.7326/0003-4819-159-4-201
308200-00009]

33 Zinman B, Inzucchi SE, Lachin JM, Wanner C, Ferrari R, 
Fitchett D, Bluhmki E, Hantel S, Kempthorne-Rawson J, 
Newman J, Johansen OE, Woerle HJ, Broedl UC. Rationale, 
design, and baseline characteristics of a randomized, place-
bo-controlled cardiovascular outcome trial of empagliflozin 
(EMPA-REG OUTCOME™). Cardiovasc Diabetol 2014; 13: 
102 [PMID: 24943000 DOI: 10.1186/1475-2840-13-102]

P- Reviewer: Kawalec P, Ozdemir S    S- Editor: Song XX    
L- Editor: A    E- Editor: Lu YJ

859 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Mikhail N. Place of SGLT2 inhibitors for treatment of type 2 diabetes



discuss one of the major fibrotic signaling pathways, 
the AGE/RAGE signaling cascade, as well as propose an 
alternate pathway via  Rap1a that may offer insight into 
cardiovascular ECM remodeling in T2DM. In a series of 
studies, we demonstrate a role for Rap1a in the regula-
tion of fibrosis and myofibroblast differentiation in iso-
lated diabetic and non-diabetic fibroblasts. While these 
studies are still in a preliminary stage, inhibiting Rap1a 
protein expression appears to down-regulate the mo-
lecular switch used to activate the ζ isotype of protein 
kinase C thereby promote AGE/RAGE-mediated fibrosis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Chronic hyperglycemia is a characteristic of 
diabetes and one of the major causal factors of diabetic 
complications. In type 2 diabetes mellitus, mechanical 
and biochemical stimuli activated profibrotic signal-
ing cascades resulting in myocardial fibrosis, impaired 
cardiac performance, and ventricular stiffness. Glucose 
nonenzymatically reacts with extracellular matrix (ECM) 
proteins forming advanced glycation end products 
(AGEs). AGE-modified collagen increases matrix ac-
cumulation and stiffness by engaging the receptor for 
AGE (RAGE), the receptor for AGE. To date, our under-
standing of the AGE/RAGE cascade remains imprecise. 
This review discusses the AGE/RAGE signaling cascade 
and proposes an alternate role for Rap1a in diabetic 
cardiovascular ECM remodeling. 
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Abstract
Chronic hyperglycemia is one of the main characteris-
tics of diabetes. Persistent exposure to elevated glu-
cose levels has been recognized as one of the major 
causal factors of diabetic complications. In pathologies, 
like type 2 diabetes mellitus (T2DM), mechanical and 
biochemical stimuli activate profibrotic signaling cas-
cades resulting in myocardial fibrosis and subsequent 
impaired cardiac performance due to ventricular stiff-
ness. High levels of glucose nonenzymatically react with 
long-lived proteins, such as collagen, to form advanced 
glycation end products (AGEs). AGE-modified collagen 
increase matrix stiffness making it resistant to hydro-
lytic turnover, resulting in an accumulation of extracel-
lular matrix (ECM) proteins. AGEs account for many 
of the diabetic cardiovascular complications through 
their engagement of the receptor for AGE (RAGE). 
AGE/RAGE activation stimulates the secretion of nu-
merous profibrotic growth factors, promotes increased 
collagen deposition leading to tissue fibrosis, as well 
as increased RAGE expression. To date, the AGE/RAGE 
cascade is not fully understood. In this review, we will 
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INTRODUCTION
Chronic hyperglycemia is one of  the main characteristics 
of  diabetes mellitus. There are two forms of  the disease, 
which are classified based upon insulin dependence: type 
1 diabetes mellitus (T1DM) or T2DM. T1DM is consid-
ered a progressive autoimmune disorder of  the pancreas 
causing the destruction of  islet β-cells and resulting in 
diminished insulin production. The subsequent insulin 
deficiency results in elevated blood glucose levels. T2DM 
is generally coupled with metabolic syndrome, which in-
cludes increased insulin resistance, hyperglycemia, obesity, 
dyslipidemia and hypertension. Persistent exposure to 
elevated glucose levels has been recognized as one of  the 
major causal factors of  diabetic complications resulting in 
pathologies, such as atherogenesis, myocardial infraction, 
stroke and diabetic cardiomyopathy[1]. In this review, we 
will discuss one of  the major fibrotic signaling pathways, 
the advanced glycation end product (AGE)/the receptor 
for AGE (RAGE) signaling cascade driven by chronic 
hyperglycemia in T2DM, as well as propose an alternate 
pathway that may offer insight into cardiovascular extra-
cellular matrix (ECM) remodeling.

FIBROBLAST MEDIATED ECM 
REMODELING
In the heart 70%-80% of  the cellular mass is composed 
of  myocytes, and the remaining 20%-30% the total cell 
number includes fibroblasts, vascular smooth muscle 
cells, and endothelial cells[2,3]. Fibroblasts are the most 
abundant cardiac cell types of  the latter group, and 
these cells are accountable for homeostatic upkeep and 
pathological ECM alterations observed in the heart[2,3]. 
Fibroblasts also function as sensory cells recognizing 
mechanical and chemical changes within the cell’s micro-
environment[4]. Fibroblasts communicate with the sur-
rounding ECM to maintain the structural arrangements 
of  the heart as well as sustain vital cellular tasks, such as 
viability, proliferation, and motility[5]. 

In pathologies, like T2DM, where biochemical and 
mechanical stimuli alter the communication between the 
ECM and fibroblasts, profibrotic signaling cascades are 
subsequently activated to elevate fibrotic accumulation 
and subsequently increased heart stiffness[4,6,7]. Increased 
ECM deposition and accumulation may result from ei-
ther enhanced matrix protein synthesis and/or decreased 
structural degradation. With elevated matrix production 
and accumulation structural ECM rearrangements would 
cause alterations in fibroblast-matrix interactions. These 
changes often result in transformations in fibroblast 
phenotype. Fibroblast isolates from hypertensive animals 
as well as from infarcted regions of  the heart exhibit in-
creased matrix production and accumulation, reduced cell 
migration, and greater contractility[8-10]. In these instances, 
changes in fibroblast phenotype correspond to increases 
in fibroblast to myofibroblast differentiation. Myofibro-
blasts are defined as a “stressed” fibroblast having in-

creased matrix production as well as enhanced contractile 
properties[11-13]. 

This cell type is not commonly found in healthy 
myocardium, however upon pathological cardiac injury, 
myofibroblast populations will increase in the myocar-
dium from differentiated interstitial and adventitial fibro-
blasts[13]. While initially beneficial in pathologies requiring 
enhanced scar formation to maintain organ integrity (e.g., 
myocardial infarction), myofibroblasts become detrimen-
tal to organ function if  an increased population of  myo-
fibroblasts persists. Due to the high glucose levels seen in 
diabetic patients, studies have demonstrated an elevated 
synthesis and accumulation of  the ECM, otherwise 
known as fibrosis, to increase ventricular stiffness to neg-
atively impact heart function[14,15]. Ultimately, myofibro-
blasts are detrimental due to their critical role in cardiac 
pathology and remodeling, and in certain environments, 
such as diabetes mellitus, improper regulation of  myofi-
broblasts leads to maladaptive tissue remodeling[13,16].

HYPERGLYCEMIA AND AGE
Numerous reports have documented chronic hypergly-
cemia is the causative agent responsible nonenzymatic 
formation of  AGEs on substrates resistant to turnover, 
such as collagen[13]. These modifications will not only 
reinforce the ECM by adding surplus collagen structural 
crosslinks but also as a RAGE agonist. Chronic hyper-
glycemia, as observed in T2DM patients, increases the 
generation of  AGEs. High levels of  glucose nonenzy-
matically react with long-lived proteins forming revers-
ible Schiff  base intermediates and eventually, Amadori 
compounds[17]. Amadori products will undergo additional 
chemical alterations to be converted to nonreversible 
crosslinked AGES[17]. AGEs are also found to accumulate 
in normoglycemic patients as a result of  longevity. Under 
high glucose settings observed in diabetics, AGE forma-
tion is accelerated, resulting in cardiac dysfunction as well 
as interstitial fibrosis[17-20]. AGE-modified collagen causes 
an increase in matrix stiffness causing it be resistance 
to hydrolytic turnover, resulting in an accumulation of  
ECM[17,21]. 

In vivo and in vitro studies demonstrate that AGEs ac-
count for many of  the diabetic cardiovascular complica-
tions through their engagement of  RAGE[22]. RAGE is 
capable of  binding to multiple ligands. Under normogly-
cemic conditions the receptor is ordinarily expressed at 
reduced basal levels, however due to aging and to chronic 
hyperglycemia, RAGE expression is increased[17,20]. AGE/
RAGE cascade activation promotes fibrosis growth fac-
tor secretion, increased matrix deposition progressing to 
multi-organ fibrosis, as well as increased RAGE expres-
sion[21,23-25]. Increased AGE crosslinks, AGE/RAGE cas-
cade activation, and increased matrix accumulation have 
been correlated with the development of  cardiovascular 
complications by increasing diastolic left ventricular stiff-
ness[21,25,26]. AGEs have been demonstrated to increase 
expression of  multiple collagen types, decrease proteo-
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glycans synthesis, as well as generate ECM crosslinking. 
Interestingly, AGEs can be bound to other macromol-
ecules to compound their negative impacts on a number 
tissues[15,27,28]. Also, they have been shown to perturb 
cell-matrix interactions, alter cell adhesion, and vascular 
permeability. Many of  the maladaptive ECM alterations 
have been shown to be relatively corrected by disrupt-
ing the AGE/RAGE signaling cascade[29]. Therefore, the 
AGE/RAGE cascade provides a hypothetical focus for 
the management of  diabetes-mediated ECM related car-
diovascular diseases.

AGE/RAGE SIGNALING PATHWAY
Increased AGE/RAGE signaling has been demonstrated 
to promote key pathways that upregulate ECM protein 
expression and accumulation. In addition, activation of  
downstream signaling kinases such as p38, extracellular 
signal-regulated kinase 1/2 (ERK 1/2), nuclear factor-
kappaB (NF-κB), and c-Jun N-terminal kinase (JNK), 
have been shown to mobilize multiple transcription fac-
tors to stimulate expression of  growth factors and ECM 
protein accumulation[30-33]. Numerous studies have sug-
gested that AGE/RAGE signaling pathways are ligand- 
and cell type dependent. For example, in endothelial 
progenitor cells, AGE/RAGE cascade activation inhib-
ited migration while promoting apoptosis to further ath-
erosclerosis in diabetic patients[34,35]. Upon treatment with 
anti-RAGE peptide antibodies, AGE/RAGE signaling 
pathway was down regulated and diabetic atherosclerotic 
lesions and vascular injury was significantly attenuated[34]. 
It also has been reported that AGE/RAGE is implicated 
in diabetic related macrovascular complications, arterial 
injury, as well as the progression of  diabetic nephropathy 
and retinopathy[36]. In a T2DM leptin receptor deficient 
(db/db) mouse model, using RAGE blocking antibody, 
left ventricular diastolic chamber stiffness and the car-
diac systolic function was attenuated in conjunction 
with reduced fibrosis. It has been proposed the multiple 
outcomes of  AGE/RAGE signaling operate through 
protein kinase C (PKC). Utilizing cell culture experiments 
to model T1DM and T2DM hyperglycemic growth con-
ditions in vitro, PKC activity was increased and followed 
by subsequent activation of  various prostaglandins, cyto-
kines, and increased ECM protein expression[22]. Immu-
noblotting experiments using of  cellular lysates revealed 
PKC-α, -βⅠ, -βⅡ, -δ, -ε, and -ζ isoform activity was 
increased in endothelial cells[37].

The PKC kinase family is defined based upon their 
second messenger requirements. The conventional PKC 
family, which includes PKC-α, -βⅠ, -βⅡ, and -γ, is 
stimulated by calcium, phosphatidylserine, diacylglycerol, 
or phorbol-12-myristate-13-acetate. Members of  the 
novel PKC group, which includes -δ, -ε, -θ and -η are 
also activated by the above ligands with the exception of  
calcium. The atypical PKC family, which includes -ζ and 
-ι/λ, cannot be activated by any of  the above second 
messengers[38]. To date, PKC isoform activation has been 

associated with vascular alterations, including increased 
permeability, contractility, ECM synthesis, cell growth, 
and apoptosis[37], and these perturbations in vascular cell 
homeostasis have been shown to be mediated by differing 
PKC isoforms[37]. Of  these isoforms, PKC-β and PKC-ζ 
emerged as a preferred substrate in the aortic and cardiac 
tissue of  diabetic mice[39,40]. Additional examination of  
multiple PKC isoforms has identified of  PKC-ζ as the 
most plausible target for RAGE phosphorylation[41].

PKC-ζ is involved in propagating a multiple of  cas-
cade pathways that lead to mitogen-activated protein 
kinase (MAPK) activation. The MAPK family plays a 
pivotal role in numerous cellular processes, including de-
velopment, phenotype differentiation, and ECM protein 
synthesis. In a study by Koya et al[37], ERKs were dem-
onstrated to be activated in a PKC-dependent manner. 
ERKs are a subfamily of  MAPKs involved in signaling 
cascades responsible for multiple cellular functions, such 
as differentiation and proliferation. Stimulation of  ERK 
signaling cascades involve activation of  a molecular 
switch, Raf, to trigger a stepwise serine kinase cascade 
through activation of  Raf, MAPK kinase kinase, MAPK 
kinase, MAPK, and ERK[42]. Activated ERK will translo-
cate into the nucleus to activate transcription factors to 
initiate cellular proliferation, differentiation, and matrix 
accumulation[43-45]. 

AGE/RAGE and PKC-ζ signaling cascades have 
been demonstrated to increase ERK activation, both 
independently as well as synergistically; thereby PKC-ζ 
serves as a common molecular mediator between these 
two different cascades[46,47]. Phosphorylation of  RAGE at 
Ser391 is a ligand-dependent mechanism that is required 
to perpetuate AGE/RAGE signaling[41]. PKC-ζ has been 
demonstrated to phosphorylate Ser391 of  the intracel-
lular RAGE domain. However in order for this to occur, 
PKC-ζ must be activated by Ras, a small GTPase, to 
initiate the cascade[41]. Recently, our lab and others have 
found that Rap1a, a small Ras-like GTPase, may also play 
a role in AGE/RAGE signaling in diabetes.

RAP1A: A MOLECULAR SWITCH
Rap1a, member of  the Ras superfamily, operates as a 
binary molecular switch. This relay system is capable 
of  transmitting a number of  diverse signals from mem-
bers of  the Ras superfamily to effect changes in nuclear 
transcription, thus coupling extracellular stimulation to 
intracellular signaling cascades. In fact, Rap1a has been 
demonstrated to participate in hypertrophic pathways, 
integrin-mediated adhesion, cell attachment, migration, 
and cell junction formation. Studies have shown that 
Rap1a induced-ERK1/2 activation contributes to vascu-
lar pathologies as well as plays a role in the cardiovascular 
ion channels responsible for rhythmic heart function[48].

Rap1a utilizes a guanine nucleotide exchange factors 
(GEFs), that causes the dissociation of  a bound GDP 
allowing for a new GTP molecule to bind. GTPase-
activating proteins (GAPs) will then hydrolyze the newly 
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specifically Epac (Exchange Protein directly Activated 
by cAMP). Epac proteins have been demonstrated to 
bind cAMP and activate Rap1a GTPases[50]. Conversely, 
Rap1a-GAP will hydrolyze GTP at the asparagine side 
chain, thereby rendering Rap1a inactive.

The dynamic control of  Rap1a activation has been 
shown to be facilitated by protein kinase A (PKA) and 
Epac through cAMP-dependent cascades[51]. Both PKA 
and Epac proteins contain a cAMP binding domain and 
are sensitive to fluctuations to mediate Rap1a activa-
tion[48]. While PKA can phosphorylate the C-terminus 
of  Rap1a, PKA-mediated activation is not necessary 
for cAMP stimulation of  Rap1 by Epac. In fact, there 
have been extensive studies that have established Epac’s 
involvement in various cAMP-related cellular functions, 
such as cellular adhesion, that were previously attributed 
to PKA[52,53]. These cAMP sensitive proteins may act in-
dependently, synergistically, or possible antagonistically 
depending upon cellular distribution, concentration, and 
location to regulate Rap1a-mediated cellular functions. 
Our understanding of  the Rap1a pathway is centered 
on the biological responses elicited by PKA-dependent 
pathways triggering downstream ERK1/2 activation[30]. 
However, recent studies have suggested a PKA-indepen-
dent pathway for Epac-Rap1a activation of  downstream 
signaling effectors[54]. Precise investigation of  the discrete 
role and involvement of  Rap1a is necessary within a 
number of  signaling model systems. 

AGE/RAGE and Rap1a-induced ECM accumulation in 
diabetes 
To date, there is paucity in the literature describing the 
interactions between Rap1a and the AGE/RAGE signal 
pathway in T2DM. Early studies described Rap as being 
up-regulated in multiple organs of  diabetic rats[55]. Of  
note, these studies also demonstrated that diacylglycerol 
can activate a Rap/Raf/MAPK-mediated signal cascade 
through PKC, however no specific PKC isoform was 
identified[55]. Furthermore, in a study by Panchatcharam et 
al[56], increased Rap1 expression was reported in smooth 
muscle cells under hyperglycemic conditions, yet no dis-
tinction between Rap1a or Rap1b subtypes was made. 
Taken together, there is evidence that Rap1a under hy-
perglycemic conditions will increase downstream kinase 
activity via ERK1/2 activation, and these events would 
ultimately influence other signaling pathways, including 
the AGE/RAGE cascade, to promote ECM accumula-
tion to contribute to cardiac complications in diabetic 
patients. 

Both the AGE/RAGE signaling cascade and Rap1a 
utilize and activate similar signaling pathways, such as 
ERK1/2 MAPK, NF-κB and JNK, which are involved in 
cell growth, ECM synthesis and myofibroblasts differen-
tiation. It has been demonstrated that fibroblasts treated 
with transforming growth factor-β, a known fibrosis me-
diator, myofibroblasts differentiation and ECM deposi-
tion is increased[17,57]. Furthermore, studies by Yan et al[57], 
showed that major molecular mediators, like ERK1/2 

bound GTP to GDP forcing the cycle to run in one 
direction. In this capacity, Rap1a rotates between the in-
active GDP-bound and the active GTP-bound substrate. 
In addition, Rap1a has been demonstrated to be activated 
by at three second messengers, specifically cyclic AMP 
(cAMP), calcium, and diacylglycerol[49]. It is now recog-
nized that a number of  GEFs can be directly activated by 
cAMP whereby cAMP binding causes a conformational 
change in the GEF permitting nucleotide exchange. Of  
particular interest are the GEFs known to activate Rap1a. 
These are commonly referred to as cAMP-GEF or more 
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MAPK, involved in fibroblast growth factor-2 mediated 
angiogenesis were down regulated when Rap1a was de-
pleted. Lastly, Jeyaraj et al[48] implicated Rap1a in roles that 
were intimately associated with the ECM remodeling pro-
cess. Taken together, Rap1a and AGE/RAGE have been 
demonstrated to associate with increased myofibroblast 
formation and interstitial fibrosis independently. Figure 1 
illustrates Rap1a’s potential role in mediating the AGE/
RAGE signaling pathway as discussed in the context of  
this review. While there is some evidence of  a functional 
interplay between AGE/RAGE and Rap1a, the exact 
molecular interactions have not been fully characterized.

A series of  studies by our laboratory suggest that 
Rap1a plays a role in fibrosis and myofibroblast differen-
tiation in isolated diabetic and non-diabetic fibroblasts. 
Silencing Rap1a mRNA in diabetic fibroblasts returned 
profibrotic markers to nondiabetic levels. Isolated cardiac 
fibroblasts from 16 wk-old non-diabetic (heterozygous, 

wt/db) and diabetic (homozygous, db/db) mice were 
treated with siRNA targeted to Rap1a and a negative 
control of  scrambled siRNA (data not shown) was used. 
48-h post siRNA treatment, noticeable decreases were 
measured, not only in Rap1a expression, but also RAGE, 
collagen Ⅰ, phospho-PKC-ζ, and α-smooth muscle actin 
protein expression (Figure 2). Inhibiting Rap1a protein ex-
pression down-regulated the molecular switch used to ac-
tivate PKC-ζ to promote AGE/RAGE-mediated fibrosis. 
While these studies are still in a preliminary stage, we are 
working to expand our understanding of  the significance 
of  these alterations using not only siRNA technology, but 
also generating a double knockout mouse model to ascer-
tain the role Rap1a plays in diabetic cardiomyopathy.

CONCLUSION
From the evidence that is presented, a cellular and mo-
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lecular mechanism for Rap1a-mediated activation of  
AGE/RAGE-dependent myocardial remodeling exists. 
This review is the first of  its kind to provide Rap1a as a 
unique target for therapeutic strategies aimed at reducing 
chronic hyperglycemia-mediated ECM production and 
accumulation in diabetic patients. While much still needs 
to be performed to increase our understanding of  this 
causal relationship, our laboratory is working towards 
defining the signaling cascade involving Rap1a and PKA 
in the AGE/RAGE signaling cascade which ultimately 
mediates fibroblast myocardial remodeling. These studies 
provide insight into the inter-signaling components of  
this cascade that could ultimately help in reducing ECM 
production and accumulation during hyperglycemia in 
T2DM patients. 
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Abstract
Type-2 diabetes mellitus (T2DM) plays a central role 
in the development of cardiovascular disease (CVD). 
However, its relationship to epicardial adipose tissue 
(EAT) and pericardial adipose tissue (PAT) in particular 
is important in the pathophysiology of coronary artery 
disease. Owing to its close proximity to the heart and 
coronary vasculature, EAT exerts a direct metabolic im-
pact by secreting proinflammatory adipokines and free 
fatty acids, which promote CVD locally. In this review, 
we have discussed the relationship between T2DM and 
cardiac fat deposits, particularly EAT and PAT, which to-
gether exert a big impact on the cardiovascular health.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Epicardial adipose tissue; Pericardial adi-
pose tissue; Type 2 diabetes; Cardiovascular disease 

Core tip: Diabetes, a cardiovascular disease equivalent, 
has considerable effects on the cardiovascular system. 
Its impact works systemically, but may have more as-
sociation with epicardial and pericardial adipose tissue 

locally at the level of the heart. These cardiac tissues 
have great interplay with diabetic patients and have 
potential to influence cardiovascular disease.

Noyes AM, Dua K, Devadoss R, Chhabra L. Cardiac adipose 
tissue and its relationship to diabetes mellitus and cardiovascular 
disease. World J Diabetes 2014; 5(6): 868-876  Available from: 
URL: http://www.wjgnet.com/1948-9358/full/v5/i6/868.htm  
DOI: http://dx.doi.org/10.4239/wjd.v5.i6.868

INTRODUCTION
More than 25 million United States adults have type-2 
diabetes mellitus (T2DM) and this figure will likely reach 
50 million by 2050[1,2]. The relationship between meta-
bolic diseases such as T2DM and regional fat deposits, 
particularly epicardial adipose tissue (EAT) and pericar-
dial adipose tissue (PAT), play an important role in the 
development of  cardiovascular diseases (CVD). Both 
EAT and PAT are a subset of  visceral adipose tissue 
(VAT) associated with T2DM. They are metabolically ac-
tive visceral fat deposits found around the heart[3], that 
are strongly associated with CVD including coronary 
artery disease (CAD) and the development of  cardiac 
arrhythmias, predominantly due to the secretion of  pro-
inflammatory mediators and cytokines[4]. In this paper, 
we review the emerging evidence of  impact of  T2DM 
on VAT and the specific role of  EAT and PAT both as 
a cardiac risk marker and as a potentially active player in 
the development of  cardiovascular pathology.

RESEARCH
We searched MEDLINE and PubMed for original ar-
ticles published between 1984 and 2014, focusing on 
epicardial adipose tissue and type 2 diabetes mellitus. 
The search terms we used, alone or in combination, were 
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“epicardial fat”, “epicardial adipose tissue”, “pericardial 
fat”, “pericardial adipose tissue”, “insulin resistance”, 
“type 2 diabetes mellitus”, “metabolic syndrome”, “car-
diovascular disease”, “coronary artery disease”, “conges-
tive heart failure”, and “atrial fibrillation”, which yielded 
121 articles. All articles identified were English-language, 
full-text papers and abstracts. We finally selected 87 ar-
ticles, which were relevant to our current discussion. 

T2DM AND CARDIAC VISCERAL FAT
Cardiac disease is the leading cause of  death in T2DM, 
and many have sought to determine the mechanism of  
development of  cardiac dysfunction[5]. Interestingly, dia-
betic patients with no evidence of  CAD or hypertension 
have also been found with cardiac abnormalities, even 
when they are asymptomatic. Studies have shown that the 
metabolic derangements in T2DM primarily contribute to 
the cardiac problems[6], which, in part, are due to increase 
in visceral fat deposits and being frequently accompanied 
by disorders of  glucose metabolism[7]. Obesity, specifi-
cally abdominal VAT, is an independent risk factor for 
CVD[8], and is prominent in patients with T2DM[7]. 
Moreover, studies have shown the correlation between 
excessive adipose tissue deposition and development of  
diabetes[9]. Central and VAT is associated with endocrine 
disorders due to the release of  substances such as free 
fatty acids (FFA), leptin, adiponectin, pro-inflammatory 
agents, and decreased anti-inflammatory factors. As a 
result, it often results in unfavorable glucose metabolism 
and T2DM[10,11]. It has also been well demonstrated that 
pre-diabetic and diabetic patients are associated with 
significantly higher PAT burden compared to normogly-
cemic patients[12]. In a cross sectional study, the impact 
of  obesity and T2DM on adipocytokines (adiponectin, 
leptin and resistin), inflammatory markers [tumor necro-
sis factor-α (TNF-α), Interleukin (IL)-6 and high sensi-
tive C-reactive protein (HsCRP)] were evaluated[13]. Obe-
sity was found to significantly lower adiponectin levels, 
while increasing leptin and IL-6 levels along with HsCRP. 
There is also a strong association between the increased 
expression of  resistin, another adipocyte-secreted factor, 
and insulin resistance[14], with the burden of  EAT volume 
being greater in individuals with metabolic syndrome, in-
creased insulin resistance and diabetes mellitus[15,16], and is 
significantly higher in patients with T2DM than in non-
diabetic subjects[4]. The serum profile of  coronary artery 
bypass grafting patients showed significantly higher levels 
of  HsCRP and lower levels of  adiponectin compared to 
body mass index (BMI)-matched controls, supporting the 
role of  VAT in causation of  systemic inflammation[17]. 
Adiponectin has been shown to have a protective role 
with anti-inflammatory properties suppressing TNF-α 
and IL-6[13,18]. Hypoadiponectin levels in obesity along 
with elevated TNF-α, HsCRP and IL-6 were shown to 
correlate with insulin resistance seen in this population[13]. 
Interestingly leptin and resistin levels were not shown to 
consistently correlate with insulin resistance. 

EAT and omental fat were shown to have broadly 
comparable pathogenic mRNA profile[17]. EAT and PAT 
are both forms of  VAT, which store lipids and have dem-
onstrated increased expression of  the above mentioned 
hormones, chemokines and cytokines, with the addition 
of  monocyte chemotactic protein-1 and IL-1β[19]. These 
adipokines also impair insulin-signaling pathways leading 
to insulin resistance and reduced nitric oxide (NO) syn-
thesis, causing unopposed vasoconstriction[20]. Thus, the 
endocrine function of  EAT and PAT play a significant 
role in patients with metabolic syndrome. In fact, the 
examination of  EAT and PAT found that PAT is associ-
ated with VAT and metabolic syndrome features such as 
T2DM, than that of  EAT[21]. On the other hand, EAT 
thickness showed independent positive correlation with 
metabolic parameters including postprandial glucose (P = 
0.049), HbA1c level (P < 0.001), and homeostasis model 
assess of  insulin resistance (P = 0.047)[22]. EAT accumula-
tion was seen to strongly correlate with serum fibroblast 
growth factor 21, which is known to improve insulin sen-
sitivity despite an increment in its serum levels in T2DM 
patients. Thus, excessive EAT in T2DM patients may ex-
ert bivalent, unfavorable and adaptive effects on progres-
sion of  cardiovascular diseases[23]. 

In obese patients with T2DM, adipocytes from epi-
cardial fat infiltrate the myocardium, which refers to a 
strong association of  intra-myocardial fat content to 
the echocardiographic epicardial fat thickness. Similarly, 
EAT has been found to be significantly related to intra-
abdominal visceral fat, suggested by echocardiographic 
studies[24,25], and PAT may increase up to 400 g in T2DM 
patients (with 100 g in healthy lean people)[26]. Yang et al[12] 
demonstrated the burden of  PAT in diabetic and pre-
diabetic subjects, revealing that PAT volume was much 
higher in pre-diabetics and diabetics as compared to nor-
moglycemic subjects. 

However, it is important to distinguish EAT and 
PAT from obesity-specific lipotoxic cardiomyopathy, in 
which excessive fat proliferates inside cardiac muscle 
causing left ventricular remodeling and eventually car-
diomyopathy. This develops after subcutaneous adipose 
tissues and VAT are unable to accommodate the excess 
fat in the obese patients leading to intracellular accumu-
lation of  lipids and FFA, eventually forming myocardial 
steatosis[27].

ANATOMICAL, METABOLIC AND 
FUNCTIONAL DIFFERENCES BETWEEN 
EAT AND PAT
Epicardial and pericardial adipose tissue are close, how-
ever anatomically clearly different. EAT is not symmetri-
cally distributed around the heart (Figure 1). EAT volume 
and thickness varies depending on the location (Figure 2). 
PAT (Figure 3) has a different embryonic origin than that 
of  EAT as it originates from the embryonic primitive 
thoracic mesenchyme[24], and clinically are different. In 
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the existing literature, the terminologies have often been 
erroneously overlapped without clear differentiation be-
tween these two entities. Some suggest the use of  a ter-
minology, which encompasses three types of  fat around 
the heart: epicardial, pericardial and paracardial fats. In 
this terminology, paracardial fat often refers to the fat lo-
cated on the external surface of  the parietal pericardium, 
while the term pericardial fat is used to represent EAT 
plus paracardial fat. It is important to be familiar with 
these terms to avoid confusion. In our opinion, it is rath-
er more important to differentiate the “true pericardial 
fat” from “paracardial fat” as these two have different 
endocrine and metabolic properties. The true pericardial 
fat (epi-pericardial fat) should encompass the epicardial 
and pericardial fat (i.e., fat located above the myocardium 
and up to the parietal pericardium; epicardial fat being lo-
cated between the outer wall of  the myocardium and the 
visceral layer of  pericardium and pericardial fat being lo-
cated between the visceral and the parietal pericardium), 
while paracardial fat should clearly be considered as the 
fat located outside the parietal pericardium.

EAT is a metabolically active visceral fat deposit 
found around the heart, between the pericardium and 

myocardium[3]. EAT can be found in highest concentra-
tion in the atrioventricular and interventricular grooves 
and alongside the coronary arteries, and lesser so around 
the atria, over the free wall of  the right ventricle and 
over the apex of  the left ventricle. PAT may be defined 
as EAT plus paracardial fat, whereas paracardial fat is 
located on the external surface of  the parietal pericar-
dium within the mediastinum[28]. EAT varies from PAT 
and other local fat depots in the size of  its adipocytes, 
where as epicardial adipocytes are smaller in size and high 
in number (high number of  pre-adipocytes). The best 
imaging tool for quantification of  both EAT and PAT 
remains uncertain. Their thicknesses and volumes can be 
evaluated by echocardiography, computed tomography 
(CT) or magnetic resonance imaging (MRI)[24,29]. Due to 
distinct attenuation values of  fat on chest or cardiac CT 
and MRI, EAT and PAT are both readily identified with 
ability to calculate the tissue volume and thickness. Fur-
thermore, MRI accurately correlates with EAT and PAT 
seen on echocardiography imaging[30]. 

Biochemically, EAT and PAT are different. Investiga-
tion into EAT and PAT suggests that these two tissues 
have different metabolic and physiologic properties[31]. 
Under physiological situations, EAT is cardioprotective 
which can be explained by its anti-atherogenic/anti-in-
flammatory properties, high FFA release and uptake and 
low glucose requirements, serving as a major source of  
energy to the heart and thermoregulatory properties[32]. 
It is also known to provide mechanical support to the 
coronary arteries as well as anti-toxic effects by protect-
ing heart from high levels of  FFA. In diabetics, lack of  
insulin impairs cardiac glucose transport and oxidation, 
resulting in FFA becoming the preferred means of  ener-
gy supply[33]. To make available this increased requirement 

870 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Anatomical locations of EAT
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Atrioventricular EAT
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Figure 1  Anatomical locations of epicardial adipose tissue. RV: Right ven-
tricle; RA: Right atrium; LA: Left atrium; EAT: Epicardial adipose tissue (yellow 
color refers to EAT).
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Figure 2  Periatrial epicardial adipose tissue around left atrium (heart in 
lateral axis view). LA-PA: Epicardial adipose tissue (EAT) between left atrium 
and pulmonary artery; LA-TA: EAT between left atrium and thoracic aorta; LA-
ESO: EAT between left atrium and esophagus.
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Figure 3  Pericardium/Pericardial layers.
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pose tissue and myocardial layers[3]. Because of  the highly 
metabolic paracrine and endocrine functions of  EAT, it 
has been proposed to play a role in the pathogenesis of  
CVD by contributing to increased carotid intima media 
thickness (CIMT) in those with metabolic syndrome[47], 
CAD[37-41], increased left ventricle (LV) mass[48] and dia-
stolic dysfunction[49,50]. The release of  pro-inflammatory 
and pro-atherogenic factors into the circulation advanc-
ing CVD is more significantly linked to VAT accumula-
tion, metabolic syndrome and other situations related 
to oxidative stress[32]. Pathophysiological effects of  ab-
normal EAT may be explained by the expression of  an 
enzyme-sPLA2-IIA which is generally found in human 
atherosclerotic lesions[32]. In patients with CAD, catalase 
levels in EAT are lower than in subcutaneous fat result-
ing in higher oxidative stress, which further contributes 
to atherosclerosis. 

It is the close anatomical relationship between EAT 
and the coronary arteries, combined with its biologically 
active properties that participates in the pathogenesis of  
diabetic coronary atherosclerosis[4,51]. Iacobellis et al[52] 
demonstrated that the expression of  anti-inflammatory 
and antiatherogenic properties of  adiponectin was ap-
proximately 40% lower in the EAT of  patients with CAD 
than in that of  normal controls. 

Apart from above, EAT was also shown to play an 
important role in the prediction of  no-reflow phenom-
enon in ST elevation myocardial infarction treated with 
primary percutaneous intervention (PCI)[53]. The no-
reflow was defined as < 70% ST-segment resolution 
following primary PCI. EAT has also been shown to be 
one of  the independent factors associated with restenosis 
post-stenting warranting target vessel revascularization[54]. 
Smooth muscle proliferation, secondary to the local 
inflammatory mediators, have been postulated as mecha-
nism of  restenosis in this population[54].

EAT volume also has a significant role in promoting 
CVD and was shown to be positively and independently 
related to coronary atherosclerotic burden[55], and was 
significantly increased in patients with acute coronary 
syndrome[14]. Multivariate logistic regression analysis 
indicated that EAT thickness was an independent indica-
tor for significant coronary artery stenosis after adjusting 
for traditional risk factors (OR = 1.403, P = 0.026)[22] 

of  the heart for FFA, the diabetic heart upregulates its lu-
minal lipoprotein lipase (LPL) activity, which can result in 
abnormal FFA supply and utilization by the heart tissue, 
potentially initiating cardiac dysfunction[33]. Importantly, 
EAT has low levels of  LPL and acetyl-CoA as compared 
to subcutaneous fat[34], though the cardio-protective role 
of  PAT is not clear[31]. Despite these protective qualities, 
EAT in excess can become cardio-toxic resulting in local 
inflammatory changes and cardiac dysfunction[32,35]. In 
non-diabetic patients with excessive EAT, the presence 
of  fatty acid binding protein-4 in epicardial adipocytes, 
and its increased expression, promotes the development 
of  metabolic syndrome[32] and T2DM.

CARDIAC ADIPOSITY, DIABETES 
MELLITUS AND CAD
PAT and EAT have firmly been recognized as a contribu-
tor to the development of  CAD[36-41], and several cross 
sectional studies (Table 1) have shown similar results. 
PAT is emerging as a novel risk factor for CVD develop-
ment[42] and progression[43], as CAD has been shown to 
correlate with PAT more consistently than other general 
measures of  adiposity like body mass index or waist 
circumference[42]. PAT volume has been a predictor of  
increased death and disability for CVD[44], and indepen-
dently linked with coronary artery calcification (CAC)[45]. 
EAT has also been shown to correlate with CAC[43] and 
has a statistically significant correlation between EAT and 
CAC in both diabetic and non-diabetic patients (P = 0.01, 
r = 0.60; P = 0.02, r = 0.38, respectively)[46]. The Multi-
Ethnic Study of  Atherosclerosis study showed a stronger 
correlation between PAT and the incidence of  future 
coronary heart events in a group of  patients without his-
tory of  CAD, than that of  other cardiac risk factors such 
as BMI or waist circumference[42]. 

EAT has been studied more extensively than PAT. 
EAT differs from PAT, not only in its location, but also 
by its blood supply. EAT derives its blood supply from 
coronary circulation, whereas PAT is supplied by non-
coronary sources[32]. There is a functional and anatomic 
relationship between EAT and muscular components of  
the heart as these components share the same coronary 
blood supply, due to the lack of  fascia separating the adi-
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Table 1  Studies showing the relationship between pericardial adipose tissue and epicardial adipose tissue and the development of 
coronary artery disease

Ref. Year Diagnostic modality Results

Taguchi et al[86] 2001 Computerized tomogram Pericardial fat was the strongest independent variable for severity of CAD, determined by 
coronary angiogram

Jeong et al[41] 2007 Echocardiogram Epicardial fat thickness significantly correlated with the severity of CAD in patients with 
known CAD

Ahn et al[38] 2008 Echocardiogram Epicardial adipose tissue was an independent predictor of CAD
Greif et al[36] 2009 Computerized tomogram Patient with any coronary plaque showed a significantly higher pericardial adipose tissue 

volume compared to patients without coronary plaques
Shemirani et al[40] 2012 Echocardiogram Confirms the presence of association between epicardial fat thickness and severity of CAD

CAD: Coronary artery disease.
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assessed by cardiovascular magnetic resonance imaging 
in asymptomatic T2DM patients. Echocardiographic 
measurement of  EAT thickness ≥ 7 mm was shown to 
identify individuals with higher probability of  coronary 
atherosclerosis[56]. Furthermore, EAT thickness ≥ 5 mm 
in general population may identify individuals with high-
er likelihood of  detectable carotid atherosclerosis, but 
did not have any significant association with CIMT[57]. 
However, EAT thickness in patients with metabolic 
syndrome showed a linear positive correlation with 
CIMT[47]. Similar association was also found in human 
immunodeficiency virus receiving highly active antiret-
roviral therapy[58]. These studies establish that the cor-
relation between EAT and CIMT is stronger in high-risk 
individuals prone to atherosclerosis than in the general 
population. It also demonstrates the existence of  inde-
pendent paracrine effects in addition to the endocrine 
effect, to account for the consistent association of  EAT 
and coronary atherosclerosis[59].

CARDIAC ADIPOSITY AND 
VENTRICULAR FUNCTION
EAT and associated inflammatory cytokines, particularly 
hypoadiponectin levels and reduced NO synthesis, may 
have direct effect on myocardium causing dysfunction 
independent of  ischemic pathophysiology[60]. PAT was 
shown to be significantly associated with LV diastolic 
dysfunction in people with CAD and normal ejection 
fraction independent of  other risk factors including 
diabetes and hypertension[61]. Variation in regional fat 
distribution has been reported in patients on peritoneal 
dialysis[62]. Increased EAT thickness determined by echo-
cardiogram in such patients was shown to be the most 
powerful determinant of  LV diastolic dysfunction among 
other variables[63]. In addition to the paracrine metabolic 
effect as discussed earlier, mechanical effect of  increased 
PAT has also been shown to contribute to the pathophys-
iology of  diastolic dysfunction[63]. Additionally, patients 
with LV diastolic dysfunction had significantly increased 
EAT volumes[64]. 

On contrary, in patients with congestive heart failure 
(CHF) and severely reduced left ventricular ejection frac-
tion (LVEF), EAT has been found to be significantly 
reduced[65]. LV function in such patients correlated best 
with EAT/Left Ventricular Remodeling Index ratio[65], 
raising a possible protective role of  EAT to remodeling 
myocardium. Khawaja et al[66] demonstrated similar results 
with a stepwise decrease in EAT volume from controls 
to patients with moderate CHF (LVEF 35%-55%) and 
severe heart failure (LVEF < 35%). Though the para-
crine metabolic effects and possible role as source of  
FFA to myocardium in demand has been postulated as 
mechanism for this correlation[65], the exact pathophysiol-
ogy remains elusive. Further study is needed to access the 
possible confounding role of  lipid lowering therapies to 
this finding in such patients. 

CARDIAC ADIPOSITY, DIABETES 
MELLITUS AND ARRHYTHMOGENICITY
Obesity is a well-established risk factor for atrial fibril-
lation (AF), as altered atrial electrical function is consid-
ered an important mechanism for the relation of  obesity 
and increased AF risk. Atrial tissue in diabetic subjects 
demonstrates persistent oxidative stress compared with 
nondiabetics; which can potentially play a role in the de-
velopment of  interatrial conduction delay[67]. Evidence 
on the impact of  EAT thickness, particularly in the area 
of  posterior left atrium, is associated with persistent 
AF[68,69]. PAT is also associated with a higher incidence of  
AF, both paroxysmal (OR = 1.11, 95%CI: 1.01-1.23, P = 
0.04) and persistent (OR = 1.18, 95%CI: 1.05-1.33, P = 
0.004), independent of  other risk factors[69]. PAT’s unique 
anatomic proximity to the myocardium and atrial con-
duction system may modify atrial electrophysiology and 
promote subsequent risk for arrhythmogenesis[70]. Based 
on PAT’s influence on altered P-wave indices (PWI), po-
tential mechanisms by which increases in PAT may lead 
to changes in atrial conduction include prolonged atrial 
depolarization, diminished voltage, and heterogeneous 
atrial activation related to fibrosis, hypertrophy, and fatty 
myocardial infiltration[70].

Two independent studies reported significant associa-
tion of  pericardial fat volume with AF both paroxysmal 
and persistent even after adjustment for traditional risk 
factors[69,71]. The possible mechanisms speculated were 
secondary to increase in left atrial size associated with 
pericardial fat[72,73] and local inflammatory effects induced 
by pericardial adipose tissue as discussed earlier via para-
crine and endocrine route. This speculation was based on 
the evidence that systemic inflammation marked by CRP 
was associated with presence of  AF and also predicted 
the patients at risk for future development of  AF[74].

PWI and PAT were found to be associated indepen-
dent of  ectopic visceral and intra-thoracic fat depots[70], 
supporting the role of  PAT in atrial conduction. Volt-
age-dependent PWI (P-Wave amplitude, P wave area and 
P wave terminal force) may be enhanced by hypertrophy 
of  left atrium seen with pericardial fat. At the same time 
it may also be decreased due to fibrosis and effects on 
summation vector secondary to insulation effect[70]. The 
insulation effect does not affect the voltage-independent 
PWI (P wave duration and PR interval), however hy-
pertrophy and fibrosis may still affect the conduction 
time[70]. P-wave terminal force is more closely associated 
with pericardial fat than other voltage-dependent PWI[70]. 
This is due to the fact that blocked posterior inter-atrial 
bundles seen with PAT causes anterior to posterior ac-
tivation of  left atrium resulting in a terminal negative 
deflection on the electrocardiogram in lead V1. PAT has 
been questioned to contribute to the P wave dispersion 
seen in obese individuals[71].

With further advancements in imaging, thickness 
of  the posterior peri-atrial fat pad between left atrium 
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and the esophagus was found to correlate with the AF 
burden[68]. Their proximity to the pulmonary vein ostia 
would explain the correlation, as triggers for AF initia-
tion are located in the pulmonary vein ostia[75]. EAT total 
and inter-atrial septal thickness was shown to be related 
to left atrial volume independently even after adjustment 
for other confounding factors[76]. PAT has also been as-
sociated with increased risk of  AF recurrence after abla-
tion[77]. PAT volume has also been identified as a novel 
risk factor for post-operative AF after coronary artery 
bypass grafting[78].

MANAGEMENT OF EAT AND PAT
As excessive cardiac adipose tissue have correlations 
with poor cardiovascular outcomes, research into pos-
sible reversal of  the tissue has been studied. Weight 
loss through bariatric surgery and calorie restriction has 
shown a corresponding decrease in EAT volume and 
thickness. EAT thickness decreased in obese subjects 
who underwent an aggressive 6-mo long weight loss 
program (mean 20 kg) by adhering to a very low-calorie 
diet (900 kcal/d)[79]. Similarly, weight loss after bariatric 
surgery (average weight loss of  40 kg) was associated 
with a decrease in EAT thickness[80]. Conversely, the 
compared effects of  pioglitazone and metformin treat-
ment in T2DM patients demonstrated an increase in PAT 
volume in pioglitazone-treated patients after 24 wk[81]. 
Nonetheless, the correlation between increased cardiac 
adipose tissue has been associated with several features 
of  metabolic syndrome, including fasting insulin[82]. Fur-
ther studies are needed to show the effects of  control-
ling these measures with changes in size of  the cardiac 
adipose tissues.

CONCLUSION
Cardiac adipose tissue is metabolically active and associ-
ated with various metabolic derangements in the body 
leading to insulin resistance, atherosclerosis, metabolic 
syndrome and CVD. It has become clear that the adipose 
tissue around the heart is a critical indicator of  CVD bur-
den. Lifestyle and medical improvements may reduce this 
impact, as the evidence through the use of  ultrasound 
has documented that weight loss is associated with a de-
crease in pericardial fat stores in both non-diabetic[79,83,84] 
and diabetic[85] subjects. In diabetics, metabolic derange-
ments are significantly linked with cardiac adiposity, thus 
it should be considered screening for EAT or PAT as 
CVD risk factors in diabetic patients. Many aspects be-
tween EAT and PAT overlap. Clinicians and researchers 
must have a clear understanding of  their physiological 
and pathological differences to expand on screening, 
managing and reducing the impact that EAT and PAT 
have on CVD.
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Abstract
Diabetes control in children remains poor in spite of 
advances in treatment for last 10 years. The aim of this 
review was to look at various aspects of intensive ther-
apy in the management of type 1 diabetes such as in-
sulin regimes, role of target setting, psycho-educational 
approaches and self-management. To achieve good 
metabolic control, clear goal setting with adequate sup-
port for self-management are essential. Psycho-educa-
tional and behavioural interventions aimed at specific 
areas of management have shown significant improve-
ment in quality of life and diabetes control.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 1 diabetes; Children; Metabolic con-
trol; Intensive; Management; Goal setting

Core tip: The aim of diabetes treatment is to maintain 
normoglycaemia in order to prevent long term compli-
cations. Insulin is the mainstay of diabetes treatment 
and is delivered by various regimens. Superiority of 

one regimen over the other is not established. Newer 
techniques with sensor augmented pumps have shown 
improvement in the diabetes control. Other aspects 
of intensive treatment are goal setting and adequate 
multidisciplinary support for self-management. Self-
management is necessary to achieve the goals of dia-
betes treatment. Interventions based on clear psycho-
educational principles are shown to be effective in 
improving outcomes. 

Soni A, Ng SM. Intensive diabetes management and goal setting 
are key aspects of improving metabolic control in children and 
young people with type 1 diabetes mellitus. World J Diabetes 
2014; 5(6): 877-881  Available from: URL: http://www.wjg-
net.com/1948-9358/full/v5/i6/877.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.877

INTRODUCTION
Type 1 diabetes is characterised by autoimmune destruc-
tion of  the β cells leading to insulin deficiency. It ac-
counts for 90% of  childhood diabetes in the western 
world. The incidence has been increasing over past 2 
decades and poses a global challenge[1]. The aim of  dia-
betes management in children is to achieve near normo-
glycaemia without major hypoglycaemic episodes and to 
prevent long term complications associated with hyper-
glycaemia[2].

Early normalisation of  blood sugars with intensive 
insulin therapy might lead to improved long term control 
and higher endogenous insulin production 1 year after 
the diagnosis[3]. Good glycaemic control in patients with 
Insulin Dependent Diabetes mellitus delays the onset and 
slows the progression of  long term complications. Sev-
eral approaches are taken when aiming for low glucose 
targets. The Diabetes Control and Complication trial 
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(DCCT) clearly showed that intensive therapy aiming for 
lower target blood sugars measured by lower mean gly-
cosylated haemoglobin A1c (HbA1c) reduced the risk for 
onset and progression of  diabetes complications[4]. How-
ever, intensive treatment does not just include intensive 
insulin regimes but patient education, counselling and 
effective diabetes self-management[5]. It can best be pro-
vided with well-sourced multidisciplinary team with focus 
on treatment goals and regimes, self-management, patient 
education and frequent clinic visits[6]. There is consider-
able diversity in delivery of  these interventions and it has 
been a challenge to find practical, clinic based interven-
tions that can provide improvement in HbA1c similar 
to those achieved in DCCT. Hvidoere study group have 
demonstrated that the clinical and metabolic goals or 
targets are more important in determining the outcomes 
than the therapeutic regimen on its own. Self  manage-
ment, structured education for the patient and family, and 
close telephone contact with the diabetes team are also 
associated with reduced hospitalisations and emergency 
room visits[7].

The purpose of  this review is to examine the key 
aspects of  improving metabolic control in children and 
young people with diabetes who have characteristics and 
needs that dictate different standards of  care. We will 
look specifically at the impact insulin delivery and regime, 
self-management of  diabetes which includes psychologi-
cal intervention, self-education programmes and goal set-
ting in improving outcomes.

INSULIN DELIVERY AND REGIME
Treatment with insulin is the mainstay of  therapy in type 
1 diabetes mellitus. Many formulations are available but 
with the advent of  newer analogues, they are mainly 
used in treatment in children. There is no data on the 
long term benefits of  these analogues but they provide 
more flexibility and some improvement in the care of  
diabetes[8,9]. 

The choice of  insulin regime depends on the indi-

viduals The basal bolus therapy or multiple daily insulin 
(MDI) regimes consists of  long or intermediate acting 
insulin is given once or twice a day with boluses of  rapid 
acting insulin analogue with meals. Insulin pump or 
continuous subcutaneous insulin infusion (CSII) works 
on similar principles but delivers short acting analogue 
continuously with boluses at meal times. After DCCT 
trial, these modalities have become the norm of  diabetes 
treatment. Other methods include use of  pre-mixed insu-
lin which contain fixed ratio mixtures of  short and inter-
mediate acting insulins. They are given as two injections a 
day. Currently, there is no clear evidence that one insulin 
regime is superior to other on its own[10]. 

There are various cross-sectional studies looking at 
different insulin regimes (Table 1) but none of  them have 
found any clear evidence that one is superior over the 
others.

Insulin pumps
There are several systemic reviews and meta-analysis in-
cluding a Cochrane review comparing CSII to MDI[16]. 
Most of  them have favoured CSII for better control but 
recent meta-analysis comparing CSII to MDI showed no 
significant change in HbA1c from baseline level after 16 
wk or more of  follow up in children. Overall CSII has 
been found to yield better quality of  life compared to 
MDI, however benefit to glycaemic control is variable[16,17].

Sensor augmented pump therapy (SAP) which in-
tegrated CSII with a continuous glucose sensor. In a 
comparative meta-analysis sensor-augmented insulin 
pump use resulted in a statistically and clinically signifi-
cant greater reduction in HbA1C levels than with MDI 
or self-monitoring of  blood glucose (SMBG) in persons 
with type 1 diabetes mellitus[17]. Sensor-Augmented Pump 
Therapy for A1C reduction. STAR 3 study has shown 
that compared to MDI, SAP offers rapid glycemic ad-
vantage in children and adolescents which lasted for the 
entire year of  study phase[18,19].

SMBG is the key to achieving main goals of  insulin 
therapy. Several studies have established that frequency 
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Table 1  Review of studies comparing different insulin regimens

Ref. Method/population Outcome

de Beaufort et al[10] Observational cross-sectional international 
study/2036 patients(11-18 yr)

No improvement in glycaemic control over a decade
Those on twice daily free mix had significantly better control and the ones on 
twice daily injections had the worst HbA1c

Holl et al[11] Multicentre Observational study/872 patients 
(11-18 yr)

Deterioration in metabolic control in all three groups over 3 yr period
One group had moved from twice daily to multiple injections

Haller et al[12] Observational Study (enrolled patients were on 
preferred regimes from 12 paediatric 
endocrinologists)/229 patients (9-15 yr)

Increased number of  insulin types correlated with increased HbA1c

Nordly et al[13] Multicentre cross sectional sudy/874 (< 16 yr) Children with 2 injections a day had significantly better control than children 
on 3 or four injections a day

Paris et al[14] Multicentre cross-sectional study/2743 patients
(< 20 yr)

Insulin pump users had better control. No difference between MDI or 2-3 
injections a day

Jakisch et al[15] Multicentre matched pair cohort analysis, 
comparing CSII to MDI/434 matched pairs

Significantly better HbA1c in CSII group after 1 yr but subsequently no differ-
ence at 3 yr

MDI: Multiple daily insulin; CSII: Continuous subcutaneous insulin infusion; HbA1c: Hemoglobin A1c. 



of  SMBG is directly proportional to improved HbA1c 
levels[12,20].

More recently continuous glucose monitoring (CGM) 
has been used and can provide information on trends 
of  blood glucose levels. It is considered to be useful for 
children with poorly controlled diabetes. Recent Co-
chrane review has shown that there is limited evidence 
of  improved glycaemic control in patients with poorly 
controlled diabetes. But the review found larger decline 
which was statistically significant in HbA1c for real-time 
CGM users starting on insulin pump therapy(sensor 
augmented pumps) compared to patients using MDI and 
SMBG (conventional therapy)[21].

GOAL SETTING AND PSYCHOLOGICAL 
INTERVENTIONS TOWARDS SELF 
MANAGEMENT
Specific goal setting is an encouraging way of  improving 
adherence to diabetes management in young people[22]. 
As parental support and involvement is associated with 
better management of  diabetes in children and adoles-
cents, their perception of  goals for optimal management 
of  diabetes is associated with actual control achieved 
in children[23]. Hvidoere study group has documented 
persistent inter-centre differences in the mean HbA1c 
over 10-year period in spite of  changes to the insulin 
regimes[10]. They concluded that target setting might me 
the most influential factor in lowering the HbA1c[24]. Key 
findings from their work suggests that best metabolic 
results are obtained by physicians who target driven and 
teams and families have unanimity of  purpose[7].

It is important to have necessary self-management 
skills in order to achieve goals of  diabetes therapy. Diabe-
tes self-management is the process of  providing the per-
son with diabetes education, knowledge and skills needed 
to successfully manage diabetes[25]. It is multi-dimensional 
and refers to the young persons or/and parents sharing 
responsibility and decision making for achieving optimal 
control[26]. Goals for self  management varies consider-
ably by age, development, family characteristics, dura-
tion of  diabetes and lifestyle[27,28]. Adolescence could be 
a challenging time in control of  diabetes. It has been 
recognised that diabetes control tend to decline during 
this period[29]. As young people strive for autonomy, so-
cial influence and peer pressure with desire to fit in can 
be higher priority than diabetes management for some 
young people[30,31]. Various psychological and educational 
interventions are used to empower the young person with 
necessary self-management skills but efficacy of  one over 
another is not established. Wysocki et al[32] found that 
youths with suboptimal pre-treatment status with high 
autonomy to maturity (AMR) did better with intensive 
treatment over 18 mo period compared to the ones who 
had low AMR and better HbA1c. An integrated review 
in 2011 demonstrated that there is a clear relationship be-
tween self-management and metabolic control but there 

is multitude of  factors playing part[28].
Research has also shown that there is an association 

between psychosocial factors and metabolic control in 
a large international cohort of  adolescents with type 1 
diabetes mellitus[33] Good metabolic control is associated 
with better quality of  life in adolescents[34,35]. It is also as-
sociated with families of  children with better control re-
porting lower disease burden. Behavioural interventions 
for young people with diabetes and their parents have 
demonstrated improvement in adherence of  treatment[36]. 
Interventions based on clear psycho-educational prin-
ciples are most effective[37]. In a systematic review of  psy-
chological interventions for improving diabetes control, 
psychological therapies led to significant improvement in 
glycaemic control in children and adolescent compared to 
adults[38]. A case study of  9 adolescents with consistently 
poor control previously has shown has shown marked 
improvement with coaching[39]. These findings show that 
assessment of  psychosocial factors should be an integral 
part of  the paediatric diabetes care in this population[33,40].

There are various structural education programmes 
for adults with type 1diabetes which have shown im-
provement in their control as well as quality of  life[41,42]. 
However, there is need for practical, clinic based educa-
tional interventions for children and adolescents. Various 
trials have reported disappointing outcomes in improving 
control when applied to families and children in a real life 
setting[43,44]. The Kids in control of  food is a structured 
education course based on Dose Adjustment for Normal 
Eating course which is a current adult education pro-
gramme. The pilot showed significant improvement in 
quality of  life and self-efficacy at 3 and 6 mo. There was 
no change in glycaemic control overall but improvement 
trend in those with poorest control[45]. Results of  the 
randomised trial will hopefully give us more information 
on the effect of  highly structured group education on a 
population with wide range of  glycemic control[46].

In a systematic review by Hampson et al[37], it was con-
cluded that educational and psychological interventions 
are most likely to be effective if  demonstrate an inter-
relatedness of  various aspects of  diabetes management. 
There is a gap in evidence as no complete understanding 
of  where these interventions to be targeted.

CONCLUSION
Good metabolic control is needed to prevent long term 
complications of  diabetes. It is challenging in the paedi-
atric population to achieve optimal control due to various 
developmental and psychological factors[47]. Psycho-edu-
cational and behavioural interventions play an important 
role in the diabetes management. However, there is need 
for practical, cost effective interventions which could be 
applied to the diabetes population in a clinic setting such 
as goal setting and psychosocial interventions. Svensson 
et al[48] have reported significant improvement in diabetes 
control independent of  number of  injections per day or 
insulin regimens but thought to be due to increased focus 
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review concludes that clear goal setting with good mul-
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Abstract
Hepatic glycogenosis (HG) in type 1 diabetes is a un-
derrecognized complication. Mauriac firstly described 
the syndrome characterized by hepatomegaly with 
altered liver enzymes, growth impairment, delay pu-
berty and Cushingoid features, during childhood. HG in 
adulthood is characterized by the liver disorder (with 
circulating aminotransferase increase) in the presence 
of poor glycemic control (elevation of glycated hemo-
globin, HbA1c levels). The advances in the comprehen-
sion of the metabolic pathways driving to the hepatic 
glycogen deposition point out the role of glucose trans-
porters and insulin mediated activations of glucokinase 
and glycogen synthase, with inhibition of glucose-
6-phosphatase. The differential diagnosis of HG con-
sists in the exclusion of causes of liver damage (infec-
tious, metabolic, obstructive and autoimmune disease). 
The imaging study (ultrasonography and/or radiological 
examinations) gives information about the liver altera-
tions (hepatomegaly), but the diagnosis needs to be 
confirmed by the liver biopsy. The main treatment of 
HG is the amelioration of glycemic control that is usu-

ally accompanied by the reversal of the liver disorder. 
In selected cases, more aggressive treatment options 
(transplantation) have been successfully reported. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Hepatic glycogenosis; Type 1 diabetes mel-
litus; Hepatomegaly; Glycogen; Glucose transporters; 
Insulin; Glucokinase; Glycogen synthase; Glucose-
6-phosphatase

Core tip: This review contain an extensive revision of 
the case reports described in literature; in particular 
glycemic control (elevation of glycated hemoglobin, 
HbA1c levels, presence of ketoacidosis and insulin 
dosage), imaging studies and bioptic findings are 
summarized and discussed. The pathophysiological 
mechanisms behind the accumulation of glycogen in 
hepatocytes in patient with poorly controlled type 1 
diabetes mellitus are described in detail.  
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Devito A, Risicato MG, Ruco L, Falaschi P. Diagnosis of hepatic 
glycogenosis in poorly controlled type 1 diabetes mellitus. World 
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dx.doi.org/10.4239/wjd.v5.i6.882

INTRODUCTION
Primary glycogenosis or glycogen storage disease is a 
well known hereditary disease affecting liver and muscles, 
characterized by the presence of  hepatomegaly, hypogly-
cemia, muscle weakness and growth delay. On the con-
trary, secondary glycogenosis [hepatic glycogenosis (HG)] 
is less described in the literature, but it may be frequently 
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observed and underrecognized in type 1 diabetes (T1D)[1]. 
Mauriac[2] firstly described the syndrome in 1930. The 
main features in prepuberal children are hepatomegaly 
with increased liver enzymes, growth impairment, delay 
puberty and Cushingoid features in poorly controlled 
T1D[3]. In young adults with T1D the syndrome is un-
complete, and, in fact, only hepatomegaly with increased 
liver enzymes are present. The latter alterations are often 
underrecognized or confused with fatty liver disease or 
non-alcoholic steatohepatitis (NASH), that is common in 
T2D[4]. In rare cases, glycogen storage hepatomegaly has 
been described also in T2D[5]. 

PATHOPHYSIOLOGY
As pointed out by Wasserman[6], 4 grams of  glucose cir-
culates in the blood (a small fraction of  the body mass) 
and 100 grams of  glycogen are present in the liver. In 
glucose homeostasis, the liver plays a significant role for 
synthesis, storage and redistribution of  carbohydrates, 
with opposite effects during hyperglycemic (glucose 
uptake and glycogen synthesis) and hypoglycemic condi-
tions (glycogenolysis and gluconeogenesis)[7].

The glucose transport into cells is mediated by four-
teen members of  membrane glucose transporter (GLUT) 
molecules, divided into three families (Classes 1 to 3). 
The expression of  the GLUTs varies between different 
cellular subtypes in liver (hepatocytes, endothelial cells, 
Kupffer cells and cholangiocytes)[8].

The liver is not considered as an insulin-sensitive tis-
sues, such as skeletal and cardiac muscle, brown and white 
adipose tissue and endothelial cells. In fact, the transport 
of  glucose into the hepatocytes is mainly mediated by the 
GLUT2 (insulin-independent, low-affinity, high-capacity 
with a Km of  10-20 mmol/L), but hepatocytes also ex-
press lower levels of  GLUT1, GLUT3, GLUT4 (insulin-
dependent), GLUT8, GLUT9, GLUT10[9-16] (Figure 1).

After the entrance, glucose is available for the intra-
cellular metabolism. Glucokinase is a phosphorylating 
enzyme, acting with not stringent substrate specificity for 
glucose (it is able to phosphorylate hexoses like mannose 
or fructose in addition to glucose), to produce glucose-
6-phosphate (G6P)[17]. There are four mammalian isoen-
zymes (hexokinases Ⅰ-Ⅳ or A-D), displaying extensive 
sequence identities[18]. Glucokinase (GCK, or hexokinase 
Ⅳ or D) has a low affinity for glucose (S0.5 approximately 
equal to 6 mmol/L) and a rate of  reaction with sigmoid 
dependence on intracellular glucose concentration (co-
operativity), operating as an ultrasensitive physiological 
glucose sensor in hepatocytes with non-limiting glucose 
transport. If  blood glucose is below 5 mmol/L (90 
mg/dL) there is no significant effect of  GCK on G6P 
production and subsequent steps, ensuring that hepatic 
glycogen synthesis is only engaged when blood glucose 
levels are high.

In the human liver, expression of  GCK is strictly 
dependent on the presence of  insulin, and the sterol 
regulatory element binding protein (SREBP1c), a master 

regulator of  lipogenic enzymes, has been proposed to be 
a mediator of  insulin induction of  GCK[19].

Moreover, the GCK activity is modulated by the 
GCK regulatory protein (GCKRP) that binds and inhib-
its GCK, competitively with respect to glucose[20]. GCK 
is localized to the nucleus of  the hepatocyte, where it is 
retained by GCKRP, but moves into the cytosol when 
glucose levels increase.

The hydrolysis of  G6P to glucose (the inverse reac-
tion of  GCK) is mediated by the enzyme glucose-6-phos-
phatase (G6Pase), and its deficiency causes the impaired 
glycogenolysis of  one type of  the genetic accumulation 
of  glycogen in hepatocytes, previously described by Von 
Gierke [glycogen storage disease type Ⅰ (GSD1a)][21,22]. 
GSD1a has typical hypoglycemic events after a four to 
six hour fast (differentiating GDS1a from T1D), lactic 
acidosis, hypertriglyceridemia, and hyperuricemia[23]. 

The G6P is successively converted into G1P by phos-
phoglucomutase. Then, uridine diphosphate (UDP)-
glucose pyrophosphorylase transforms G1P into UDP-
glucose in the presence of  uridine triphosphate, releasing 
inorganic pyrophosphate.

The G6P, after the phosphorylation by GCK, func-
tions as an allosteric activator of  the phosphorylated 
glycogen synthase (GS) for the glycogen synthesis[24]. 
Insulin significantly stimulates the glycogen synthesis in 
hepatocytes. Insulin binds the α-subunit of  insulin recep-
tor (IR) on the cellular surface of  hepatocytes, inducing 
the dimerization of  the α2β2 complex and the tyrosine 
kinase activity of  the β-subunits. Then, the IR is auto-
phosphorylated and the IR activation recruits and phos-
phorylates several substrates, including insulin receptor 
substrate 1-4. The downstream signaling proteins acti-
vates phosphotidylinositide-3-kinase (PI3K) to protein 
kinase B (PKB, also known as Akt signaling cascade), a 
pathway controlled via a multistep process[25]. In particu-
lar, the activation of  PI3K converts phosphatidylinositol 
(3,4)-bisphosphate to phosphatidylinositol (3,4,5)-trispho-
sphate (PIP3). The 3-phosphoinositide-dependent protein 
kinase 1 and 2 (PDK1 and PKD2) phosphorylate and 
activate PKB/Akt, allowing to bindPIP3 at the plasma 
membrane. The activation of  PKB/Akt phosphorylates 
and inhibits glycogen synthase kinase 3 (GSK3). GSK3 
is a negative regulator of  GS, through the phosphoryla-
tion at COOH-terminal residues. The result of  insulin 
signal transduction is the GS dephosphorylation that ac-
tivates the enzyme and the glycogen production. The GS 
is the rate-limiting enzyme for glycogen synthesis and it 
catalyzes the addition of  α-1,4-linked glucose units from 
UDP-glucose to a nascent glycogen chain[26]. The UDP-
glucose is the glycosyl donor in the reaction catalyzed by 
GS. There are two GS isoforms: the muscle GS (encoded 
by GYS1 gene), and the liver isoform (encoded by GYS2 
gene)[27].

Glycogen is a branched polymer of  glucose residues 
connected by α-1,4-glycosidic linkages formed by the 
enzyme GS and branchpoints formed via α-1,6-glycosidic 
linkages, introduced by the branching enzyme, occurring 
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every 8-12 glucose units.
New glycogen synthesis begin near the plasma mem-

brane, at the periphery of  the hepatocyte. Then, glycogen 
deposits grow from the periphery towards the interior of  
the cell. Through this way of  glycogen deposition, hepa-
tocytes may store large amounts of  glycogen.

Glycogen degradation takes place in the reverse or-
der. Glycogen phosphorylase (GP) is the key enzyme in 
glycogenolysis, yielding G1P[28]. When hepatocytes are 
depleted of  glucose, the GP-mediated phosphorolysis of  
glycogen proceed from the interior to the exterior of  the 
hepatocyte[29]. Phosphorylase kinase stimulates GP and 
protein phosphatase 1 inhibits phosphorylase kinase and 
GP.

Besides stimulating the glycogen synthesis, insulin 
severely inhibits hepatic glucose output, suppressing glu-
coneogenesis and glycogenolysis, by inhibiting expression 

and activity of  the key enzymes phosphoenolpyruvate 
carboxykinase (PEPCK) and G6Pase[30].

The inhibition of  gluconeogenesis and glycogenolysis 
are IR-mediated PI3K and Akt dependent effects. Akt 
translocates into the nucleus, where it phosphorylates 
FOXO1 (a member of  the O-class of  forkhead/winged 
helix transcription factors), inhibiting PEPCK and G6Pase 
gene transcription[31]. Moreover, Akt phosphorylates and 
inhibits CRTC2, cAMP response element binding pro-
tein-regulated transcription coactivator-2, also reducing 
hepatic gluoconeogenesis[32]. 

Adolescent diabetic patients with their metabolic 
activity, dietary intake, and disease state (high frequency 
of  ketoacidosis and increase in exogenous insulin) rep-
resents a high-risk subjects, with diabetes control often 
deteriorating[33].

In T1D patients with poor glycemic control, two 

884 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Glucose

GLUT4

Insulin

IR

? PIP2 PIP3

Glucose

GLUT2

GCK gene

PEPCK gene
Gluconcogenesis

G6Pase  gene
Glucose outflow
Glycogenolysis

Glycogen

UDP UDP

UTP

PPi

P P

PGM

P P

ADP

ATP

GCK G6Pase

6 6

1 1

UDPGPP GP

GS

BE DBE

GP

GSK3

PKB/Akt PKB/Akt PKB/Akt

PKB/AktPDK1/2

IRS1/2 PI3K

Figure 1  The metabolic pathways of glycogen synthesis in hepatocytes. GLUT: Glucose transporter; IR: Insulin receptor; PIP2: Phosphatidylinositol (3,4)-bispho-
sphate; PIP3: Phosphatidylinositol (3,4,5)-trisphosphate; IRS: Insulin receptor substrate; PI3K: Phosphotidylinositide-3-kinase; PDK1/2: 3-phosphoinositide-dependent 
protein kinase 1 and 2; PKB/Akt: Protein kinase B; GCK: Glucokinase; G6Pase: Glucosio-6-phosphatase; PGM: Phosphoglucomutase; UDPGPP: UDP-glucosepy-
rophosphorylase; GP: Glycogen phosphorylase; GSK3: Glycogen synthase kinase 3; GS: Glycogen synthase; PEPCK: Phosphoenolpyruvate carboxykinase; BE: 
Branching enzyme; DBE: Debranching enzyme; UTP: Uridine triphosphate; PPi: Pyrophosphate.

Giordano S et al . Hepatic glycogenosis in type 1 diabetes mellitus



(in the presence of  high glucose blood concentrations).

DIAGNOSIS
Nowadays Mauriac syndrome during childhood is un-
common especially with the advent of  new insulin ana-
logues and intensive insulin regimens. More frequently, 
patients affected are teenager or young adults and the 
diagnosis may be difficult[3]. During adulthood, the key 
symptoms are hepatomegaly, abdominal pain, and other 
symptoms such as nausea and vomiting. Laboratory 
findings are high levels of  glucose, glycated hemoglo-
bin (HbA1c, demonstrating a poor long-term glycemic 
control) and aminotransferases [aspartate and alanine, 
Aspartate-aminotransferase (AST) and Alanine-amino-
transferase (ALT), respectively, suggesting liver dam-
age][35]. The range of  AST/ALT values is from 47/48 
UI/L to 4000/1900 UI/L (Table 1). The investigations 
about hepatomegaly and elevated aminotransferases 
include investigations for infectious diseases, metabolic 
(such as Wilson disease), obstructive or oncologic causes 
and autoimmune liver tests to exclude all these possible 

combined events are usually present, promoting hepatic 
glycogen deposition: hyperglycemia (as pointed out by 
increased blood glucose level and glycated hemoglobin, 
HbA1c) and consequent large amount of  insulin (as 
demonstrated by elevated insulin dose as UI/kg of  body 
weight/day). In hyperglycemia, glucose passively enters 
the hepatocytes by insulin-independent GLUT2, and it 
is rapidly phosphorylated, with inhibition of  its release 
from hepatocytes[34]. The GCK convert the glucose into 
the G6P, with subsequent trapping in the hepatocyte. 
Then, an increased insulin administration promotes the 
polymerization of  G6P in glycogen by GS, driving the 
large amount of  glycogen synthesis in the presence of  
high cytoplasmic glucose concentrations[29]. Therefore, 
glycogen is trapped within the hepatocytes as a result of  
a combination of  both hyperglycemia and insulin treat-
ment. The consequent liver damage become evident with 
the blood release of  aminotransferases.

Repeated ketoacidosis episodes in T1D increase the 
risk for hepatic glycogen overload, since diabetic ketoaci-
dosis (a fatal complication of  poor controlled diabetes) is 
usually treated with sustained levels of  intravenous insulin 
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Ref. Sex Age (yr) BMI AST (U/L) ALT (U/L) HbA1c (%) Insulin (U/kg) Glucose (mg/dL) US exam CT scan Biopsy

[51] M 16     20     66     58 11.1   0.98 198 X X
[52] F 17   138   164          12 X X
[54] M 19   262   519  12.7a X X
[55] F 19     27     98     49  7.9 X X X

M 37   769   844          16 X X X
[56] F 19     23   800  12.2a X X
[57] F   3   300   350    9.5a 1.5 522 X No

M 16   100   200 1.3 810 X No
[33] M 14   290   127 13.4 1.6 X X X

F 17   102   147  13.3a 1.8 X
F 16   567   316  12.2a X No

[1] F 17 21.4 1620   629          13 0.9 X X
[58] M 16 21.1   578   526  11.0a X
[59] F 22 18.6 1028   365 13.8 X X

F 26 23.6   914   307 12.9 X X
F 20     21 1310   346 13.6 X X

[53] F 29 4000 1900  15.3a X X
[60] M 13 1000          13 1.2 X X X
[36] F 20   249   383  13.3a X X
[61] F 13   113    8.8a 890 X X
[35] F 19     83     97 a 520 X

M 12     47     49  13.5a 635 X
F 22     77     48 183 X
M   8     H     H X
F 15     N     N X
M 22   360 1100  16.0a 404 X
M 25 1128 1629 10.8 X
M 16     H     H a X
M 20   120     N   9.9 288 X
F 18    57     N 10.8 137 X
M 28 1544 1099 H X
M 34          10 259 X
M 16 1354 1413 365 X
F 23   224   255 X

[41] F 19   199  14.6a b X

Table 1  Summary of hepatic glycogenosis in type 1 diabetes patients

aRecent ketoacidosis; bMagnetic resonance imaging. H: High level; N: Normal levels; M: Male; F: Female; BMI: Body mass index; AST: Aspartate-amino-
transferase; ALT: Alanine-aminotransferase; HbA1c: Glycated hemoglobin; US: Ultrasound; CT: Computed tomography.
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causes and make the differential diagnosis[33]. The ultra-
sonographic examination of  the liver is a simple and use-
ful procedure to have information about the dimension 
and the characteristics of  the liver tissue[34]. In few cases, 
T1D patients were submitted to an abdomen computed 
tomography scan. Unfortunately, HG cannot be clinically 
distinguished from non-alcoholic fatty liver disease or 
non-alcoholic steatohepatitis (NASH) by history, physical 
examination or ultrasound: the gold standard examina-
tion is the liver biopsy[36]. The preparation of  the tissue 
is very important for the identification of  the glycogen 
in tissue sections. The Carnoy’s solution is rapid acting, 
gives good nuclear preservation, retains glycogen and dis-
solves lipids[37]. The cytoplasmic swelling due to glycogen 
can be quickly demonstrated by the staining with Best’s 
carmine or periodic acid-Schiff  (PAS) with and without 
diastase since the slides treated with diastase, that digest 
the glycogen, lack the PAS positive staining[34]. The main 
histological features of  HG are marked glycogen accu-
mulation leading to pale swollen hepatocyte, no or mild 
fatty change, no or minimal inflammation, no or minimal 
spotty lobular necrosis, and intact architecture with no 
significant fibrosis[35]. Best’s carmine is another common 
used stain for glycogen, that appears bright red in sec-
tions. On the contrary, in hematoxylin & eosin sections, 
pale hepatocytes loose their glycogen during tissue prepa-
ration and may give a hint to hepatic glycogenosis (Figure 
2)[37] . 

Navigator-gated and gradient-echo shimmed point-
resolved spectroscopy with proton hydrogen1 (1H) 
magnetic resonance (MR) has been recently proposed 
to quantify liver glycogen concentrations in vivo, even 
if  this measurement is more challenging than just lipid 
quantification[38]. In previous studies, an MR technique 
was used with (1-13C) glucose to measure changes in net 
hepatic glycogen concentration in normal and diabetic 
subjects[39,40].

To our best knowledge, in only one study the authors 
investigated the liver by the means of  the MR imaging, 
with anatomical purposes[41].

Whereas it is well known that glycogen storage dis-

eases, particularly type Ⅰ, develop hepatic adenoma that 
potentially progress into hepatocellular carcinoma (HCC), 
to our best knowledge no data have been published about 
the association of  diabetic glycogenosis and the progres-
sion of  carcinogenesis to HCC[42-47].

TREATMENT
The more the T1D patients (and their caregivers) obtain 
a good glycemic control, the more HG is expected to be 
minimal.

The Diabetes Control and Complication Trial (DCCT) 
is a well-known multicenter randomized trial that com-
pared intensive with conventional therapy in insulin-de-
pendent diabetes mellitus, demonstrating a prevention of  
diabetic complications[48]. The percentage of  adolescent 
(13-18 years old) was 9%-19% of  1441 patients, with a 
2.6-8.9 years of  disease duration, a starting insulin dose of  
0.62-0.72 U/kg of  body weight/day and an insulin dose 
after 5 year of  0.46-1.10 U/kg of  body weight/day[48,49].

As it has been described in the literature, the mean 
insulin dose in T1D patients with HG was significantly 
higher than in DCCT trial (1.33 U/kg), having been 
treated with supra-physiologic doses of  insulin (Table 1).

Repeated ketoacidosis episodes in T1D significantly 
increase the risk for hepatic glycogen overload, since 
diabetic ketoacidosis (a fatal complication of  poor con-
trolled diabetes) is usually treated with sustained levels 
of  intravenous insulin (in the presence of  high glucose 
blood concentrations). As matter of  fact, a high percent-
age of  the HG cases described in the literature presented 
diabetic ketoacidosis, with a frequency of  about 40% 
(14/35 cases), confirming the association of  sustained 
insulin treatment and the development of  HG.

With a significant difference from NASH, HG is com-
pletely reversible with a good metabolic control[50,51]. Ade-
quate management of  glucose and insulin levels can result 
in complete remission of  clinical, laboratory and histo-
logical abnormalities[52]. Continuous subcutaneous insulin 
infusion should be considered as an option because the 
insulin requirements usually come down with improved 
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glycemic control[41]. In severe and rare cases, pancreatic 
transplantation has been reported to be effective[53]. 
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Abstract
Epidemiological and biological evidences support a 
link between type 2 diabetes mellitus (DM2) and Al-
zheimer’s disease (AD). Persons with diabetes have a 
higher incidence of cognitive decline and an increased 
risk of developing all types of dementia. Cognitive 
deficits in persons with diabetes mainly affect the ar-
eas of psychomotor efficiency, attention, learning and 
memory, mental flexibility and speed, and executive 
function. The strong epidemiological association has 
suggested the existence of a physiopathological link. 
The determinants of the accelerated cognitive decline 
in DM2, however, are less clear. Increased cortical and 
subcortical atrophy have been evidenced after con-
trolling for diabetic vascular disease and inadequate 
cerebral circulation. Most recent studies have focused 
on the role of insulin and insulin resistance as possible 
links between diabetes and AD. Disturbances in brain 
insulin signaling mechanisms may contribute to the 
molecular, biochemical, and histopathological lesions 
in AD. Hyperglycemia itself is a risk factor for cogni-
tive dysfunction and dementia. Hypoglycemia may also 
have deleterious effects on cognitive function. Recur-
rent symptomatic and asymptomatic hypoglycemic epi-
sodes have been suggested to cause sub-clinical brain 
damage, and permanent cognitive impairment. Future 

trials are required to clarify the mechanistic link, to ad-
dress the question whether cognitive decline may be 
prevented by an adequate metabolic control, and to 
elucidate the role of drugs that may cause hypoglyce-
mic episodes.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Epidemiological and biological evidences 
support a link between type 2 diabetes (DM2) and 
Alzheimer’s disease (AD). Persons with diabetes have 
increased incidence of cognitive decline and AD. In-
creased cortical and subcortical atrophy is present after 
controlling for vascular disease and inadequate cerebral 
circulation. Recent studies confirmed the role of insulin 
as possible link between DM2 and AD. Altered insulin 
signaling may contribute to AD biochemical and histo-
pathological lesions. Hyperglycemia and hypoglycemia 
also have deleterious effects on cognitive function. 
Future trials would clarify the mechanistic link, and if 
cognitive decline may be prevented by an adequate 
metabolic control, and avoiding hypoglycemia.

Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and Al-
zheimer’s disease. World J Diabetes 2014; 5(6): 889-893  Avail-
able from: URL: http://www.wjgnet.com/1948-9358/full/v5/
i6/889.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i6.889

INTRODUCTION
Type 2 diabetes mellitus (DM2) and Alzheimer’s disease 
(AD) are age-related conditions, both characterized by 
increased incidence and prevalence with aging[1,2]. 

DM2 is one of  the fastest growing epidemics at pres-
ent, which is frequently associated with aging. Characteristic 
features of  DM2 include impairments in insulin actions 
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and signaling. Insulin resistance in peripheral tissues results 
in hyperglycemia and hyperinsulinemia. AD is the most 
common neurodegenerative disorder, and its incidence 
increases with age[3]. AD is characterized by the presence 
of  several pathological hallmarks including neuronal loss, 
formation of  senile plaques composed by extracellular 
deposits of  amyloid beta, intracellular neurofibrillary 
tangles composed of  aggregated hyperphosphorylated 
tau proteins in brain, proliferation of  astrocytes, and 
activation of  microglia. These features are accompanied 
by mitochondrial dysfunction and alterations in neuro-
nal synapses[3]. The molecular and pathophysiological 
mechanisms that underlie AD still have many dark sides. 
Although etiology and the exact mechanism that trigger 
the pathological alterations of  AD are still not clear, most 
studies have suggested that the deposit of  the toxic am-
yloid-beta peptide caused by an abnormal processing of  
amyloid-beta precursor protein (amyloid cascade hypoth-
esis), may initiate and/or contribute to the pathogenesis 
of  AD.

EPIDEMIOLOGICAL EVIDENCES
Mounting epidemiological and biological evidences sup-
port a link between these two aging related diseases. First 
and foremost, diabetes mellitus is associated with changes 
in cognition, and cognitive dysfunction. 

Persons with diabetes have been reported to hold 
a higher incidence of  cognitive decline and AD; DM2 
has been strongly associated with an increased risk of  
developing all types of  dementia, including AD[2,4-6]. A 
systematic review including fourteen eligible longitudi-
nal population-based studies of  variable methodological 
quality found that in most studies the incidence of  “any 
dementia” was higher in persons with diabetes than in 
those without diabetes[7]. Although, in some studies there 
are methodological limitations, the association remains 
strong. Some studies have relied on self-reported diag-
nosis of  diabetes, and in the elderly population many 
patients with diabetes may remain undiagnosed. For the 
same reason, the duration of  diabetes is also difficult to 
ascertain in older adults[8].

In a longitudinal cohort study, lasting up to 9 years, 
the risk of  developing Alzheimer’s disease was 65% 
higher in persons with diabetes than in non-diabetic 
controls[9]. In a community-based controlled study (Mayo 
Clinic Alzheimer Disease Patient Registry) the preva-
lence of  diabetes and glucose intolerance was examined 
in patients with AD vs control participants without AD. 
The study suggested that frank diabetes (35%) or glucose 
intolerance (46%) might be present in up to 80% of  pa-
tients with AD[10].

Even with the limitations discussed above, several 
studies have suggested that longer diabetes duration is 
generally associated with a higher risk for developing 
dementia[6,11,12]. In random effects models, DM2 was as-
sociated with lower levels of  global cognition, episodic, 
semantic and working memory, and visuospatial ability 

at baseline[9]. Cognitive deficits in DM2 mainly affected 
the areas of  psychomotor efficiency, attention, learning 
and memory, mental flexibility, and speed and executive 
function[13,14]. 

Recent studies have also shown a positive association 
between DM2 and mild cognitive impairment (MCI), 
and an accelerated progression from MCI to dementia in 
DM2[15]. A retrospective case-notes review of  people with 
known diabetes who were resident in nursing homes in 
England showed very significant levels of  disability and 
comorbidity, and in this setting, dementia was the most 
common comorbidity[16]. 

PHYSIOPATHOLOGICAL LINK
The strong epidemiological association has suggested 
the existence of  a physiopathological link. However, 
the determinants of  the accelerated cognitive decline in 
DM2 are less clear. The most studied hypothesis pro-
poses that the primary cause of  the association may be 
linked to the diabetic vascular disease and inadequate 
cerebral circulation, with subsequent silent ischemic 
damage induced by diabetes. However, even after con-
trolling for cardiovascular risk factors, several studies 
on the cerebral structure of  patients with diabetes have 
evidenced increased cortical and subcortical atrophy, be-
sides increased leukoaraiosis, which were associated with 
impaired cognitive performance[17,18]. 

Most recent studies have focused on the possible role 
of  insulin, and insulin action. Insulin resistance has been 
strongly implicated as a possible link between DM2 and 
AD. A condition of  hyperinsulinemia, regardless of  the 
presence of  DM2, appears to be associated with a worse 
cognitive performance. There is a rapid growth in the 
literature pointing toward insulin deficiency and insulin 
resistance as mediators of  AD-type neurodegeneration. 
De la Monte has even suggested that AD may be termed 
as “type 3 diabetes”, indicating that AD may represent a 
form of  diabetes that selectively involves the brain with 
molecular and biochemical features that overlap with dia-
betes mellitus[19].

The importance of  the role of  insulin in brain ag-
ing has long been known. Insulin has significant neu-
rothrophic properties in the brain. The hormone is 
rapidly transported to the level of  the central nervous 
system through the blood-brain barrier by a transport 
mechanism mediated by insulin receptors. It is interest-
ing to note that these receptors are mainly localized at 
the level of  the hippocampus, entorhinal cortex and 
frontal areas known to be involved in functions such 
as memory and learning. Insulin is also involved in the 
production of  important neurotransmitters such as 
acetylcholine and norepinephrine. It is known that an 
acute increase in circulating levels of  insulin, as it occurs 
in the post-prandial period, determines a physiological 
parallel increase of  the concentrations of  the hormone 
in the brain. A state of  chronic hyperinsulinemia, as it 
occurs in insulin-resistance conditions and in DM2 may 
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determine a down-regulation of  the insulin receptors at 
the blood-brain barrier, thus reducing the transport of  
insulin in the brain. Evidence is growing to link an al-
teration of  metabolism and the deposition of  precursors 
of  amyloid in the brain that may occur in persons with 
diabetes, which is suggested as the pathogenesis of  AD 
in DM2. The amyloid precursor protein is a transmem-
brane protein consisting of  770 amino acids; it is known 
to be the precursor of  the amyloid beta involved in the 
etiopathogenesis of  AD. Although the role of  amyloid 
beta and its isoforms has yet to be elucidated, it seems to 
take part in numerous physiological processes. How can 
clinical hyperinsulinemia be a risk factor for AD even 
if  insulin is an important neurothrophic factor? These 
two apparent paradoxal findings may be reconciled by 
the notion of  insulin resistance. Whereas insulin is a 
neurothrophic factor at moderate concentrations, hy-
perinsulinemia with elevated concentrations of  insulin 
in the brain may be associated with reduced amyloid-
beta clearance due to competition for their common and 
main degrading mechanism-the “Insulin-Degrading En-
zyme” (IDE). Insulin modulates metabolism of  amyloid 
precursor protein decreasing intracellular accumulation. 
Insulin is degraded by the IDE, which is also involved in 
the metabolism and degradation of  amyloid beta. This 
multifunctional enzyme degrades insulin and amylin, 
peptides related to the pathology of  DM2, together with 
amyloid-beta peptide in the AD brain. Hyperinsulinemia 
may elevate amyloid beta through insulin’s competition 
with amyloid beta for IDE[20]. Therefore, it has been 
suggested that the link between hyperinsulinemia and 
AD may be the IDE. Since IDE is much more selective 
for insulin than for amyloid beta, brain hyperinsulinemia 
may deprive amyloid beta of  its main clearance mecha-
nism, favoring its accumulation in the brain, and its con-
sequent neurotoxic effects[21].  

Disturbances in brain insulin signaling mechanisms 
represent early and progressive abnormalities and could 
account for the majority of  molecular, biochemical, 
and histopathological lesions in AD. Increasing insulin 
resistance and hyperinsulinemia were associated with 
more hippocampal and amygdalar atrophy on magnetic 
resonance imaging (MRI) in persons with DM2 when 
compared to matched non-diabetic controls, regardless 
of  vascular pathology[13,17]. Given these links, it has been 
suggested that may be a common underlying mechanism 
predisposes to amyloid deposition in the brain and in the 
pancreatic islet[10]. 

Glucose levels itself  are a risk factor for cognitive 
dysfunction and dementia. In a prospective, community-
based cohort study, higher plasma glucose concentrations 
were associated with an increased risk of  dementia in 
populations with and without diabetes, suggesting that 
higher levels of  glucose may have deleterious effects on 
the aging brain[22]. 

Although there is still limited knowledge concerning 
the association between impaired fasting glucose and/or 
impaired glucose tolerance and cognitive impairment, 

there is increasing evidence that these prediabetic con-
ditions may increase the risk of  AD in elderly patients. 
The risk of  incident dementia increased in diabetic and 
in non-diabetic persons according to the average glucose 
concentrations during the preceding 5 years[22]. Hypergly-
cemia and hyperinsulinemia may accelerate brain aging 
also by inducing tau hyperphosphorylation and amyloid 
oligomerization, as well as by leading to widespread brain 
microangiopathy. Persons with diabetes are more prone 
to develop accelerated leukoaraiosis (white matter high-
intensity lesions)[23].

GLYCEMIC CONTROL AND THE ROLE OF 
HYPOGLYCEMIA
The effect of  diabetes treatment and glycemic control 
on dementia risk are less clear. It has been suggested that 
glycemic control may have a role in preserving cognitive 
performance among patients with DM2. Using baseline 
cognitive measures collected in the Memory in Diabetes, 
sub-study of  the Action to Control Cardiovascular Risk 
in Diabetes trial, the authors found that a 1% higher gly-
cated hemoglobin A (HbA1c) value was associated with a 
significant lower test performance and memory score in 
patients with diabetes[24]. 

HbA1c was also identified as an additional risk fac-
tor for a greater rate of  brain atrophy. Enzinger et al[25], 
measuring the annual brain volume changes over 6 years 
with MRI in 201 participants in the Austrian Stroke 
Prevention Study, found significant differences in brain 
atrophy rates by quartiles of  HbA1c levels[25]. Cluster-
ing of  factors associated with the so-called metabolic 
syndrome in persons with high HbA1c suggests a link 
between this syndrome, which is associated with insulin 
resistance and hyperinsulinemia, with late-life brain tis-
sue loss[25]. In diabetic patients, an inverse relationship 
was found between serum HbA1c and working memory, 
executive functioning, learning, and complex psychomo-
tor performance, supporting the hypothesis that an inad-
equate glucose control may be associated with worsening 
cognitive function[26,27].

However, an excessively tight glycemic control in 
older persons with DM2, and its related increased risk of  
hypoglycemia, may also have deleterious effects on cogni-
tive function[28]. In the presence of  hypoglycemia, several 
responses occur within the brain, including activation of  
the central sympathetic nervous system; hypoglycemic 
symptoms include alterations of  cognitive function, such 
as difficulty in concentrating and drowsiness, among oth-
ers. Recurrent symptomatic and asymptomatic hypogly-
cemic episodes have been suggested to cause sub-clinical 
brain damage, and permanent cognitive impairment[29]. In 
addition, hypoglycemic states may increase the action of  
the receptors through an arteriolar vasodilatation. Since 
chronic hyperglycemia in DM2 is associated with endo-
thelial alterations[30], this may cause in case of  hypoglyce-
mia a reduced vasodilating effect at the level of  the blood-
brain barrier, with a possible amplification of  the brain 
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sulin resistance, altered amyloid metabolism, chronic hy-
perglycemia, and recurrent hypoglycemic episodes seem 
to play a major role. Future trials are required to clarify 
the mechanistic link and to address the question whether 
cognitive decline may be prevented by an adequate 
metabolic control, and to better define the role of  drugs 
that may cause hypoglycemic episodes. Clinicians treat-
ing older persons with diabetes should start to routinely 
search for cognitive impairment as well as they search for 
cardiovascular, renal, or other common complications 
of  diabetic disease. There is sufficient evidence to sup-
port the view that time is probably arrived to incorporate 
cognitive evaluation in future national and international 
diabetic guidelines.
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Abstract
Diabetes mellitus (DM) is a systemic and complex dis-
ease with micro and macrovascular complications that 
result from impaired metabolic pathways and genetic 
susceptibilities. DM has been accepted as an epidemic 
worldwide during the last two decades. A substantial 
gap in our knowledge exists regarding the pathophysi-
ology of this metabolic disorder despite the improved 
diagnostic tools and therapeutic approaches. Sirtuins 
are a group of NAD+ dependent enzymes that are in-
volved in cellular homeostasis due to their deacetylat-
ing activity. In the present review, we aimed to discuss 
the role of associated sirtuins in the pathogenesis and 
treatment of diabetes mellitus.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus; Sirtuins; Hyperglycemia; 
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Core tip: Diabetes mellitus has been accepted as an ep-
idemic worldwide during the last two decades. Despite 

the diagnostic tools and therapeutic approaches, the 
pathophysiology of this metabolic disorder and cellular 
defensive mechanisms are unknown. The maintenance 
of cellular homeostasis requires a well-organized net-
work between glucose, amino acid and lipid metabo-
lism. Sirtuins are a group of NAD+ dependent proteins 
that are involved in cellular homeostasis due to their 
deacetylating activity. Of these, sirtuin 1, -3 and -4 
have been the most extensively investigated. In the 
present review, we aimed to discuss the role of associ-
ated sirtuins in glucose and lipid metabolism and in the 
pathogenesis and treatment of diabetes mellitus.

Turkmen K, Karagoz A, Kucuk A. Sirtuins as novel play-
ers in the pathogenesis of diabetes mellitus. World J Diabe-
tes 2014; 5(6): 894-900  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/894.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.894

INTRODUCTION
Diabetes mellitus is one of  the leading causes of  cardio-
vascular morbidity and mortality despite the emergence 
of  new diagnostic tools and therapeutic applications 
in clinical practice[1]. According to American Diabe-
tes Association data, there are 17.5 million diagnosed 
and 6.6 million undiagnosed diabetics in the United 
States[2]. Hence, diabetes and its complications represent 
a significant economic burden. Hyperglycemia, insulin 
resistance, advanced glycation end products, polyol, 
hexosamine and protein kinase C pathways collectively 
contribute to the classical pathogenesis of  diabetes com-
plications. However, to date, we know that only serum 
glucose control is not sufficient to overcome the major 
cardiovascular (CV) events[3,4]. In this regard, novel risk 
factors including adipokines such as adiponectin, apelin, 
obestatin, leptin and resistin, chronic inflammation, and 
the renin-angiotensin-aldosterone system were found 
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to be involved in the pathogenesis of  diabetes and its 
chronic complications[5]. It would be wise to search the 
main mechanisms of  these undesirable pathophysiologic 
events responsible for increased CV morbidity and mor-
tality in diabetic patients. In addition, treatment of  these 
various entities separately is illogical. Therefore, the 
main pathogenetic mechanisms should be determined 
and new therapeutic agents should be identified to treat 
diabetes. 

Mammalian sirtuins are a group of  proteins that in-
clude seven NAD+ dependent enzymes with homology 
to the silent information regulator 2 (Sir2) family of  Sac-
charomyces cerevisae[6]. Activation or deactivation of  the en-
zymes occur as a consequence of  this deacetylation. Since 
both carbohydrate and lipid metabolism are affected in 
diabetes, it would be wise to consider that sirtuins may be 
the responsible key proteins that fight against the detri-
mental effects of  these disorders. With this background, 
in this review, we sought to highlight the role of  sirtuins 
as novel players in the pathogenesis of  diabetes mellitus.

GENERAL FUNCTIONS OF SIRTUİNS IN 
CELLS
The main function of  sirtuins is to deacetylate the im-
portant proteins for cellular homeostasis that regulate a 
wide variety of  processes regarding protein, carbohydrate 
and lipid metabolism, mitochondrial homeostasis and 
programmed cell death mechanisms such as apoptosis 
and autophagy[7]. Sirtuins remove the acetyl groups from 
lysine residues of  transcription factors, histones, specific 
enzymes including manganese superoxide dismutase and 
peroxisome proliferator activated receptor-γ coactivator-
1α (PGC-1α) and other miscellaneous proteins that have 
important roles in cellular homeostasis[8]. As a conse-
quence of  the deacetylation, nicotinamide and 2’-0-acetyl-
adenosine di phosphate (ADP) ribose are generated[9].

Experimental data showed the beneficial effects of  
decreasing food intake by 30% without malnutrition, also 
named calorie restriction (CR), on aging that could be 
mediated by sirtuin overexpression and this effect leads to 
increasing lifespan[10]. Increased intracellular NAD+ con-
centrations and CR are the main effectors that can stimu-
late sirtuin activation. In energy rich conditions, NAD+ is 

reduced to nicotine-amide adenine di nucleotide (NADH) 
and the proportion of  NAD+ to NADH is reduced dur-
ing glycolysis, cyclic acid cycling, lipid β-oxidation and 
protein catabolism[11]. Two main sources of  NAD+ are 
the salvage pathway of  nicotinamide catalyzed by the 
enzyme, nicotinamide phosphoribosyltransferase, and de 
novo synthesis from tryptophan metabolism[12]. 

Recent experimental studies showed that sirtuins can 
be found and activated in kidney, liver, spleen, lung, heart, 
muscle, brain, testis, ovary, thymus, pancreas, white and 
brown adipose tissue[13]. The localization of  Sirtuin (SIRT) 
proteins differ and matter in the cell, hence, the different 
localizations develop various physiologic and possibly 
pathologic metabolic effects under certain stress condi-
tions. SIRT1 resides both in the nucleus and cytoplasm 
and SIRT2 is primarily found in the cytoplasm, however, 
it can be transferred into the nucleus in a cell cycle-de-
pendent manner. SIRT3, -4 and-5 exist in the mitochon-
drion. The last two members of  the SIRT protein family, 
SIRT6 and-7 are found in the nucleus and the nucleolus 
of  the cell, respectively[14]. Table 1 summarizes the char-
acteristic features of  sirtuins.

SIRT1 is the most studied member of  the sirtuins, 
probably because of  its generalized effects on the cell 
cycle, mitochondria metabolism, energy homeostasis, in-
flammation, oxidative stress and apoptosis[15]. SIRT1 can 
directly deacetylate nuclear histone proteins that results 
in repression of  gene transcription[16]. On the other hand, 
the metabolic effects of  SIRT1 depend on the deacety-
lation of  non-histone proteins such as insulin receptor 
substrate 2, PGC-1α, peroxisome-proliferator-activated 
receptor (PPAR)-α, PPAR-γ, mitochondrial uncoupling 
protein 2 (UCP-2), liver X receptor, farnesoid X receptor 
and sterol-regulatory-element binding protein[17-21]. Due 
to its deacetylation activity, SIRT1 regulates insulin secre-
tion, adipogenesis and myogenesis. 

In contrast to other sirtuins, SIRT4 has an additional 
ADP-ribosyltransferase activity that is also involved in telo-
mere maintenance, genomic stability and longevity[22,23]. 

SIRT5 is a mitochondrial sirtuin. The main activity of  
SIRT5 is translocating SIRT3 to the nucleus[24].

SIRT6 has auto-ADP-ribosyltransferase activity[25] 
and its main function includes genomic stability of  cells 
in terms of  DNA repair and modulating telomere main-
tenance[26].

THE ROLES OF ASSOCIATED SIRTUINS 
IN GLUCOSE METABOLISM AND 
DIABETES MELLITUS
Sirtuins, especially SIRT1, influence many steps of  glu-
cose metabolism in liver, pancreas, muscle and adipose 
tissue (Figure 1). The main regulator of  these reactions 
is the deactylated form of  PGC-1α in SIRT1 activated 
states[27]. 

Forkhead box group O (FOXO), a group of  tran-
scriptional factors, can sense nutrient deprivation and 
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Table 1  The characteristic features of sirtuins

Sirtuin group Enzyme localization Enzyme activity

SIRT1 Cytoplasm and nucleus Deacetylase
SIRT2 Cytoplasm and nucleus Deacetylase
SIRT3 Cytoplasm, mitochondrion 

and nucleus
Deacetylase

SIRT4 Mitochondrion ADP-Ribosyl transferase
SIRT5 Mitochondrion Deacetylase
SIRT6 Nucleus Deacetylase and 

ADP-Ribosyl transferase
SIRT7 Nucleus Deacetylase

SIRT1: Sirtuin 1.



promote cellular homeostasis[28]. FOXO1 regulates glu-
cose metabolism[29] and feeding behaviors[30]. During the 
fasting state, the balance between insulin and glucagon 
(decreased insulin vs increased glucagon) stimulates gluco-
neogenesis via cAMP response element-binding protein 
regulated transcription coactivator 2 and FOXO1[31,32]. 

The link between FOXO proteins, Signal transducer 
and activator of  transcription 3 (STAT3) and SIRT1 
regarding hepatic glucose metabolism has been identi-
fied. FOXO1,-3a,-4 were found to be closely associated 
with increased expression of  gluconeogenesis genes and 
decreased expression of  glucokinase[33,34]. SIRT1 also 
regulates gluconeogenesis via deacetylation and thereby 
deactivates STAT3 which can inhibit the transcription of  
gluconeogenic genes in normal conditions[35]. 

The role of  sirtuins in the pancreas has been dem-
onstrated. Experimental data of  SIRT1 overexpression 
suggested that serum insulin and cholesterol were dimin-
ished along with a reduction in adipose tissue volume 
and decreased obesity-induced insulin resistance[36,37]. 
Recently, beside experimental data, Song et al[38] also ob-
served that adipose tissue SIRT1 may play a key role in 
the regulation of  whole body metabolic homeostasis, and 
downregulation of  SIRT1 in visceral adipose tissue may 
contribute to the metabolic abnormalities that are associ-
ated with visceral obesity in diabetic and obese women. 
SIRT1 deficient mice also exhibit low levels of  serum 
glucose and insulin[39]. Despite the repetitive results of  
the studies regarding the CR induced SIRT1 expression, 
Moynihan et al[21] demonstrated that increased dosage 
of  mammalian Sir2 in pancreatic beta cells enhanced 
glucose-stimulated insulin secretion in mice. Bordone et 
al[39] also pointed out that insulin secretion was reduced 
in SIRT1 knock-out mice and in pancreatic β islet cell 
lines in which SIRT1 had been knocked down by RNA 
interference. This effect partially depends on the SIRT1-
mediated inhibition of  UCP-2 in pancreatic islet β-cells[21]. 
UCP-2 is a mitochondrial inner membrane protein that 
regulates mitochondrial ATP synthesis. SIRT1 knock-out 

mice exhibit increased UCP-2 in β-cells along with low 
levels of  serum insulin[39]. Increased pancreatic secretion 
of  insulin and ATP were also demonstrated in UCP-2 
knock-out mice[40]. In light of  these studies, SIRT1 might 
be a positive regulator rather than a supressor of  insulin 
in the postprandial fed state. 

Insulin sensitivity is considered to be an important 
part of  glucose metabolism. Protein tyrosine phos-
phatase 1B (PTP1B) is involved in glucose metabolism 
and diet-induced obesity[41]. PTP1B which is a tyrosine 
phosphatase for the insulin receptor, can be repressed via 
deacetylation. In accordance, resveratrol, an activator of  
SIRT1 may also inhibit PTP1B. Thus, SIRT1 might im-
prove insulin sensitivity in insulin-resistant conditions by 
reducing PTP1B activity[42]. 

SIRT2 is a cytosolic deacetylase which was originally 
identified as a tubulin deacetylase. It was subsequently 
demonstrated that SIRT2 can also transiently shuttle 
into the nucleus in a cell cycle-dependent manner[43]. It is 
possible that besides their tubulin deacetylating function, 
nuclear proteins may be another target of  SIRT2. In ad-
dition, researchers showed that SIRT2 was prominently 
expressed in adipocytes[44]. Krishnan et al[45] also found 
that SIRT2 was predominantly localized to the nucleus 
in adipocytes. PGC-1α has been strongly associated 
with energy expenditure[46]. The acetylation of  PGC-1α 
has been reported to be critical in regulating its activity. 
In this regard, SIRT2 was found to deacetylate PGC-
1α. The identification of  PGC-1α as a SIRT2 substrate 
suggests that SIRT2 regulates adipocyte mitochondrial 
activity. Additionally, SIRT2 can deacetylate FOXO1 and 
FOXO3. Hence, SIRT2 was found to be closely associ-
ated with DNA repair, cell cycle, metabolism, apoptosis, 
and aging[47]. It has also been demonstrated that SIRT2 
may increase the expression of  the antioxidant mitochon-
drial superoxide dismutase due to its ability to deacety-
late FOXO3 and consequently increase FOXO3 DNA-
binding activity[48]. 

SIRT3 has beneficial effects on glucose metabolism 
by increasing insulin sensitivity and decreasing serum 
glucose. Hirschey et al[49] showed that high-fat diet feeding 
induces hepatic mitochondrial protein hyperacetylation 
in mice and downregulation of  the major mitochondrial 
protein deacetylase SIRT3. They concluded that increased 
obesity, insulin resistance, hyperlipidemia, and steato-
hepatitis were prominent in mice lacking SIRT3 com-
pared to wild-type mice. The same group also identified 
a single nucleotide polymorphism which encoded a point 
mutation in the SIRT3 protein. In this regard, impaired 
mitochondrial protein acetylation and polymorphism of  
SIRT3 have been shown to be closely associated with the 
metabolic syndrome[49]. 

Another important sirtuin involved in glucose me-
tabolism is SIRT4. One of  the target enzymes of  SIRT4 
is glutamate dehydrogenase (GDH) which converts glu-
tamate to α-ketoglutarate in the mitochondrion[50]. SIRT4 
inhibits amino-acid induced insulin secretion by repress-
ing GDH[51]. During the fasting state, SIRT4 is inhibited 
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Metabolic effects of SIRT1 
in peripheral organs

Liver

Increased gluconeogenesis
Decreased glycolysis Increased lipolysis

Pancreas

Increased insulin secretion                    β islet cell protection

Adipose tissue

Increased lipolysis
Decreased adipogenesis

Increased adipose 
triglyceride lipase

Figure 1  Metabolic effects of sirtuin 1 in peripheral organs. 
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metabolism. SIRT1 activators might induce insulin secre-
tion and sensitivity, reduce adipogenesis, but also induce 
gluconeogenesis in the liver which may worsen hyper-
glycemia in diabetes mellitus. Recently, Yamazaki et al[61] 
showed that treatment of  mice with nonalcoholic fatty 
liver disease with a synthetic SIRT1 activator, SRT1720, 
might decrease the serum lipid levels, oxidative stress and 
inflammation. In addition, Feige et al[62] suggested that 
activation of  SIRT1 via SRT1720 protected the organ-
ism from diet-induced obesity and insulin resistance by 
increasing oxidation of  fatty acids in liver, adipose tissue 
and skeletal muscle. 

Nicotinamide mononucleotide (NMN), a NAD+ 
intermediate, is another molecule that has been demon-
strated to have beneficial effects and improved glucose 
and lipid levels in aging-induced diabetes[63]. The role of  
NMN regarding diabetic nephropathy has also been stud-
ied. Recent studies showed that SIRT1 in proximal tubule 
cells protects against albuminuria in diabetes by maintain-
ing NMN concentrations around glomeruli and control-
ling podocyte function[64,65]. In addition, SIRT1 was found 
to be closely associated with the survival of  cells in an 
affected kidney by modulating their responses to vari-
ous stress stimuli, SIRT1 also takes part in arterial blood 
pressure control, protects against cellular apoptosis in 
renal tubules by inducing catalase and triggers autophagy. 
Hence, activation of  SIRT1 may become a novel target in 
the treatment of  diabetic nephropathy[66]. 

Niacin (vitamin B3), is also an important intermediate 
for the biosynthesis of  NAD+ that can used for the acti-
vation of  SIRT1[67]. 

Metformin, a commonly used anti-diabetic drug, de-
creases insulin resistance and hyperglycemia by inhibiting 
gluconeogenesis and hepatic glucose output, and activa-
tion of  free fatty acid oxidation in skeletal muscle[68]. 
Some of  these beneficial effects of  metformin were at-
tributed to SIRT1 activation via the AMPK pathway[69]. 

Calorie restriction results in a desirable metabolic 
profile and improvement in mitochondrial function in 
humans by activating several genes including SIRT1[70]. In 
this regard, CR with increased physical activity should be 
encouraged especially in obese diabetic patients. 

In contrast to the above-mentioned data regarding 
the beneficial effects of  SIRT1 activation, Marampon 
et al[71] recently demonstrated that an angiotensin con-
verting enzyme inhibitor, zofenoprilat, triggered SIRT1 
downregulation via p38 activation. They concluded that 
zofenoprilat negatively controlled angiotensin Ⅰ receptor 
protein expression through SIRT1 and this would be 
associated with improved cardiovascular morbidity and 
mortality especially in hypertensive and diabetic patients. 
Hence, further research is needed to clarify the exact role 
of  the SIRT1-related pathways in the pathogenesis of  
diabetes and hypertension.

In summary, SIRT1 may represent a new therapeutic 
target for the prevention of  insulin resistance, obesity, di-
abetes mellitus and its chronic complications[72]. However, 
to date, among the treatment options mentioned above, 
using metformin along with CR may the optimal choices 

in liver. This induces gluconeogenesis from amino acids 
and fats and the inhibition of  SIRT4 allows insulin secre-
tion from β-cells. However, SIRT4 is activated and the 
reactions mentioned above are reversed in the fed state[50].

In the early stages of  type 2 diabetes mellitus, insulin 
resistance is the dominant feature and as a result hyperin-
sulinemia occurs. Impaired glucose uptake and utilization 
follow this stage and hyperglycemia and hyperinsulinemia 
contribute to pancreatic β islet cell destruction in the 
following stages of  diabetes[52]. SIRT1 induces gluco-
neogenesis and inhibits glycolysis in liver during fasting 
by deacetylating FOXO1 and PGC1α. One of  the most 
important questions is what are the changes in gluco-
neogenesis and glycolysis in diabetes mellitus? Rodgers 
et al[53] showed that hepatic PGC-1α is upregulated and 
gluconeogenesis is increased which can further aggravate 
hyperglycemia in diabetic mice. Yechoor et al[54] demon-
strated that SIRT3 mRNA is down-regulated in muscle 
insulin receptor knock-out mice. Hallows et al[55] showed 
that SIRT3 induces ketogenesis by activating acetylCo-A 
synthetase in mammalian cells. Hence, one might expect 
that SIRT3 may play an important role in the increased 
ketogenesis observed during diabetes mellitus. 

SIRT1, -3 and -4 play an important role in the patho-
genesis of  hepatosteatosis which is commonly seen in 
diabetic patients[56]. When taken together, inhibition of  
SIRT1 and 3 and/or activation of  SIRT4 might be at-
tributed to this heightened risk of  hepatosteatosis in the 
progression of  diabetes mellitus. 

Dong et al[57] reported that there was an association 
between the SIRT5 and SIRT6 gene variants with athero-
sclerosis. Several important relationships were found be-
tween gender and risk factors including smoking (for the 
associations with SIRT5 and UCP-4), hypertension (for 
the associations with SIRT3, SIRT5, and UCP-5), and 
diabetes (for the associations with SIRT5 and UCP-5). 
These results suggest that genetic variants in sirtuins may 
have an influence on the development of  vascular aging 
phenotypes, independent of  common risk factors.

NOVEL THERAPEUTIC AGENTS OF SIRT1 
REGULATORS IN THE TREATMENT OF 
DIABETES MELLITUS 
A plant polyphenol, resveratrol, was found to be the first 
drug to activate SIRT1[58]. Recent research demonstrated 
that the positive effects of  resveratrol on glucose metab-
olism and insulin sensitivity were closely associated with 
AMPK subunit α activation of  this agent rather than 
the stimulatory effect on SIRT1. Um et al[59] showed that 
resveratrol did not improve glucose tolerance and insulin 
sensitivity in AMPK α knock-out mice. On the other 
hand, Timmers et al[60] recently demonstrated the benefi-
cial effects of  resveratrol in obese patients in terms of  
lowering systolic blood pressure, serum lipid and glucose 
levels and inflammation parameters. 

There are conflicting results about the effects of  
novel synthetic SIRT1 activators on glucose and lipid 
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in obese type 2 diabetic patients. 

CONCLUSION 
Calorie restriction, oxidative stress, and various endog-
enous proteins might decrease nicotinamide and increase 
the NAD/NADH ratio that trigger sirtuins. In the fasting 
state, sirtuins inhibit insulin release in the pancreas and 
prevent β-cell degeneration, promote gluconeogenesis 
and insulin signaling, inhibit glycolysis and adipose tissue 
differentiation, and prevent ketogenesis, especially in dia-
betes mellitus. Activation of  sirtuins may result in various 
beneficial metabolic effects which makes these proteins 
target new drugs, especially for the future treatment of  
metabolic disorders including diabetes and obesity. How-
ever, there are many missing pieces in the puzzle. Hence, 
further experimental and clinical studies are needed to 
highlight the exact roles of  sirtuins in diabetes mellitus.
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Abstract
Clinicians should be cognizant of the close relationship 
that exists between two of the most common endocrine 
disorders, primary hypothyroidism and diabetes mel-
litus. This applies to patients with both type 1 and type 
2 diabetes mellitus (T1DM and T2DM respectively). 
However, the association is greater in T1DM, probably 
because of the shared autoimmune predisposition. 
In patients with T2DM, the relationship is somewhat 
weaker and the explanation less clear-cut. Factors such 
as dietary iodine deficiency, metformin-induced thyroid 
stimulating hormone suppression and poor glycemic 
control may all be implicated. Further translational re-
search is required for greater clarification. Biochemical 
screening for abnormal thyroid function in individuals 
who have diabetes is warranted, particularly in females 
with T1DM, and therapy with L-thyroxine appropriately 
instituted if hypothyroidism is confirmed. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 1 diabetes; Type 2 diabetes; Pri-
mary hypothyroidism; Autoimmune disorders; Thyroid 
screening; Thyroid treatment

Core tip: Clinicians should be cognisant of the close 
relationship that exists between two of the common-
est endocrine disorders, primary hypothyroidism and 
diabetes mellitus. This applies to both type 1 and type 
2 diabetes. However the association is greater in type 
1 diabetes, probably due to shared autoimmune pre-
disposition. In type 2 diabetes, the connection is more 
complex. Biochemical screening for thyroid dysfunction 
in patients with diabetes is advised.

Joffe BI, Distiller LA. Diabetes mellitus and hypothyroidism: 
Strange bedfellows or mutual companions? World J Diabe-
tes 2014; 5(6): 901-904  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/901.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.901

INTRODUCTION 
Two of  the main clinical disorders encountered in en-
docrine clinics are diabetes mellitus and primary hypo-
thyroidism. Diabetes can be divided into type 1 diabetes 
mellitus (T1DM), frequently the result of  autoimmune 
islet-cell destruction, and T2DM, whose pathogenesis 
embraces both environmental and genetic compo-
nents[1,2]. Primary hypothyroidism, on the other hand, 
usually follows autoimmune damage to thyroid tissue 
by circulating antibodies[3]. The concurrence of  these 
two frequently encountered endocrine conditions in a 
particular patient has aroused much debate[4]. T1DM and 
primary hypothyroidism both share an autoimmune pre-
disposition, while T2DM and hypothyroidism could be 
connected by the concurrence of  two frequently occur-
ring endocrine disorders.

The purpose of  this review was to evaluate the evi-
dence for an association of  both T1DM and T2DM with 
hypothyroidism. The comparative frequencies of  hypo-
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thyroidism in T1DM and T2DM were also assessed. 

TYPE 1 DIABETES AND 
HYPOTHYROIDISM
Autoimmune thyroid disease is the commonest autoim-
mune disorder associated with T1DM[5]. This should 
not be surprising as T1DM and autoimmune thyroid 
disease share an autoimmune disposition, and recent 
studies have shown a shared genetic susceptibility to 
both conditions[6,7]. Regarding the shared genes involved 
in this immune predisposition, the CTLA-4, HLA class 
11 and FOXP3 genes have been implicated. Like T1DM, 
autoimmune thyroid disease is due to organ-specific 
autoimmunity. There is infiltration of  the thyroid gland 
with T-lymphocytes and the formation of  autoreactive 
antibodies, particularly against thyroglobulin and thyroid 
peroxidase (TPOAb). These antibodies are commonly 
found in patients with T1DM and may be present in up 
to 25% of  patients with T1DM at the time of  diagnosis 
of  the diabetes[8]. The presence of  thyroid antibodies 
is predictive of  the later development of  autoimmune 
thyroid dysfunction, usually hypothyroidism but also, less 
commonly, hyperthyroidism[9]. Umpierrez et al[10] reported 
that in patients with type 1 diabetes who had been fol-
lowed for 18 years, those who were TPOAb-positive were 
much more likely to become hypothyroid than patients 
who showed negative antibodies at the outset.

Should hypothyroidism occur, even in a subclinical 
form, it may be associated with increased risk of  hypogly-
cemia, by reduced hepatic glucose output and especially 
from impaired gluconeogenesis[11]. There may also be 
reduced linear growth in children and adolescents[12].

The prevalence of  hypothyroidism in patients with 
T1DM has been estimated to be between 17% and 
30%[5]. In our own recently published survey of  T1DM 
at a private diabetes clinic in Johannesburg, South Af-
rica[13], we found a 20.2% prevalence of  hypothyroidism 
in 504 patients with established T1DM. Females showed 
a significantly higher prevalence than did males (30.9% 
vs 10.1%, P < 0.001) (Table 1). Our prevalence rate was 
slightly higher than that in a study by González et al[14], 
which involved smaller patient numbers. That report 
again emphasized that the presence of  thyroperoxidase 
autoantibodies at T1DM onset was highly predictive for 
the development of  subsequent thyroid dysfunction. In 
our survey, we also noted an increased prevalence of  

other organ specific autoimmune diseases such as Addi-
son’s disease, celiac disease and pernicious anemia, but at 
a much lower frequency. 

TYPE 2 DIABETES AND 
HYPOTHYROIDISM 
In T2DM, the association with hypothyroidism is more 
complex. It is unlikely to be a coincidence of  two com-
mon endocrine disorders, since the prevalence of  hypo-
thyroidism is higher than in the general population. This 
has been demonstrated in a number of  epidemiological 
studies including our own[15-18], with the prevalence of  hy-
pothyroidism varying between 11% and over 30% across 
different ethnic groups, as opposed to 4% reported in 
the general population[3-19]. The presence of  undiagnosed 
hypothyroidism may increase cardiovascular risk by ag-
gravating dyslipidemia, insulin resistance, obesity and 
vascular endothelial dysfunction[20,21]. Factors that could 
be implicated in this association are rather ill defined 
and may be complex. Insufficient iodine intake in the 
diet is one possibility, since a recent study highlighted 
reduced iodine consumption in 3 major American weight 
reducing programmes[22]. A report documenting a TSH-
lowering effect of  metformin in T2DM[23] may also be 
relevant, although the relationship between metformin 
and hypothyroidism is likely to be a complex one. Our 
study suggested that metformin usage might actually be 
protective against hypothyroidism in patients with T2DM 
or perhaps that suppressed thyroid-stimulating hormone 
caused by metformin may lead to physicians missing the 
diagnosis when thyroid-stimulating hormone measure-
ment is the only screening method employed[16]. Ad-
ditionally, poorly-controlled diabetes may induce altera-
tions in thyroid function tests similar to that occurring in 
systemic illnesses i.e. lower levels of  all thyroid hormone 
measurements[24]. Finally the possibility of  alterations in 
the gut microflora being detected in both T2DM and thy-
roid dysfunction warrants attention. Further studies are 
clearly required to clarify the causal relationships between 
these two major endocrine disorders.
 
COMPARATIVE FREQUENCIES OF 
HYPOTHYROIDISM IN TYPE 1 AND TYPE 
2 DIABETES 
From our own large database of  patients with diabetes in 
Johannesburg, we were able to establish that the overall 
frequency of  diagnosed hypothyroidism in T1DM was 
almost double that seen in T2DM (Table 2). This applied 
to both female and male subjects. The closer association 
of  hypothyroidism with T1DM probably reflects their 
well-established autoimmune predisposition and confirms 
the clinical observation that patients with one organ-
specific autoimmune condition are at risk of  developing 
other autoimmune diseases[25]. 
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Table 1  Prevalence of hypothyroidism in patients with type 
1 diabetes  n  (%)

Gender Number of subjects Prevalence of hypothyroidism

Female 246    76 (30.9)b

Male 258   26 (10.1)
Total 504 102 (20.2)

bP < 0.001 vs males.



RECOMMENDATIONS FOR THYROID 
SCREENING AND THERAPY
Hypothyroidism can be clinically silent or aspects of  poor 
diabetes metabolic control may mask its clinical features. 
In view of  the extremely high prevalence of  hypothyroid-
ism in those with T1DM, screening for thyroid disease 
should be done in a systematic fashion. Regular screen-
ing will unmask a substantial number of  individuals with 
asymptomatic thyroid dysfunction. Current guidelines 
advise screening type 1 diabetic subjects at the time of  
diagnosis or initial contact[26,27]. 

Thereafter, it is recommended that the TSH is mea-
sured annually or two-yearly, but more frequently in 
antibody-positive patients or individuals who develop a 
goiter[28]. In the event of  pregnancy, this becomes a ne-
cessity to prevent damage to fetal mental development 
secondary to undiagnosed maternal hypothyroidism[29].

For patients with T2DM, the recommendations for 
biochemical screening are less obvious and depend on 
factors such as sex, ethnic origin and age. Advice regard-
ing routine testing is either vague[27] or firmly against 
routine yearly screening of  type 2 diabetic patients[28]. 
Gopinath et al[30] reported no difference in the 5-year inci-
dence of  thyroid dysfunction in elderly patients with and 
without diabetes and another study by Chubb et al[31] also 
reported no development of  frank hypothyroidism in fe-
male type 2 diabetes who manifested subclinical disease. 
This is in contrast to the data presented in this review, 
which highlights the increased prevalence of  hypothy-
roidism in patients with T2DM. Selective periodic testing 
of  patients with T2DM is probably warranted. Thyroid 
antibodies and serum thyroid stimulating hormone (TSH) 
levels are a useful means of  identifying patients with dia-
betes who are at the greatest risk of  thyroid dysfunction. 
Serum TSH concentrations in the upper range of  normal 
appear to predict the development of  future hypothyroid-
ism. In one study involving subjects with both T1DM 
and T2DM, a TSH concentration above 1.53 mU/L pre-
dicted later hypothyroidism[32]. Therefore those with TSH 
concentrations in the upper normal range probably war-
rant more frequent, perhaps annual, re-testing. Regarding 
therapy in patients with diabetes, L-thyroxine should be 
instituted after confirmed biochemical diagnosis. Since 
patients with T2DM frequently have underlying ischemic 
heart disease, therapy in these patients should be started 
at low dosage (e.g., 25 μg daily). This should be gradu-
ally increased over time, using the serum TSH level as a 

marker of  adequate replacement. A serum TSH between 
0.5 and 2.0 mU/L is generally considered the optimal tar-
get range to aim at[33]. 

CONCLUSION 
Diabetes and hypothyroidism are indeed mutual compan-
ions based on the clinical studies that we have reviewed. 
This applies both to patients with T1DM and T2DM, al-
though patients with T1DM are most predisposed. How-
ever, in both subtypes of  diabetes, females are more vul-
nerable to develop hypothyroidism. Clinicians should be 
alerted to the close relationship that exists between these 
two common endocrine disorders and the importance of  
biochemical screening for hypothyroidism as indicated 
above. Appropriate thyroid replacement therapy can be 
introduced at an early opportunity, when required. 
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Abstract
Diabetes mellitus (DM) is a diverse group of metabolic 
disorders that is often associated with a high disease 
burden in developing countries such as Nigeria. In the 
early nineties, not much was known about DM in Ni-
geria and traditionally, people related DM to “curses” 
or “hexes” and diagnosis was made based on blood or 
urinary tests for glucose. Currently, oral hypoglycae-
mic agents but not insulin are readily accessible and 
acceptable to persons with DM. The cost of diabetes 
care is borne in most instances by individuals and of-
ten payment is “out of pocket”-this being a sequel of a 
poorly functional national health insurance scheme. An 
insulin requiring individual on a minimum wage would 
spend 29% of his monthly income on insulin. Comple-
mentary and alternative medicines are widely used by 
persons with DM and form an integral component of 
DM care. Towards reducing the burden of DM in Ni-
geria, we suggest that there be concerted efforts by 
healthcare professionals and stakeholders in the health 
industry to put in place preventative measures, a bet-
ter functioning health insurance scheme and a struc-
tured DM program. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: This manuscript at best is a critical appraisal 
of earlier knowledge and data on diabetes mellitus (DM) 
in Nigeria. It also highlights the changes that have 
occurred in terms of prevalence and also in terms of 
diagnosis and management techniques. Challenges in 
provision of DM care and the roadmap for the future of 
DM care are documented in this manuscript.
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INTRODUCTION
Diabetes mellitus (DM) is a chronic disorder that is not 
only assuming pandemic proportions worldwide but also 
poised to affect the developing countries of  the world 
much more than their developed counterparts. As far 
back as the beginning of  the twentieth century, DM was 
described by Dr. Cook as being an uncommon disorder 
in the African. There is however, compelling data to 
show an increasing incidence and prevalence of  DM in 
the continent[1]. The estimated prevalence of  diabetes in 
Africa is 1% in rural areas, and ranges from 5% to 7% in 
urban sub-Saharan Africa[1]. 

Nigeria, with a population of  158 million people, is 
the most populous country in Africa and accounts for 
one sixth of  Africa’s population. Approximately 50% 
of  Nigerians are urban dwellers and the country has a 
cultural diversity and 398 documented ethnic groups[2]. 
Health care delivery as in most developing countries of  
the world is at best sub-optimal and this may be respon-
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sible for the dismal health indicator statistics such as 
reduced life expectancy at birth and increased maternal 
mortality. Health care provision in Nigeria is a concurrent 
responsibility of  the three tiers of  government with pri-
vate providers of  health care also playing a notable role 
in in health care delivery. Health insurance is still taking 
tottering steps despite having being inaugurated about 
two decades ago and healthcare payment is largely “out 
of  pocket”. 

In this review, we attempt to document the pres-
ent and past data on DM in Nigeria, and highlight the 
challenges of  DM care. This article aims to appraise the 
present status of  DM in Nigeria and the roadmap for the 
provision of  DM care for the future. 

Methods
We searched MEDLINE and reference lists of  literature 
on diabetes in Nigeria from all available years and the 
keys words “diabetes”, “prevalence” and “Nigeria” were 
used. For an extended search we introduced key words 
like complications. The combination of  key words like 
“heart failure”, “cardiovascular disease”, “stroke”, and 
“sexual dysfunction” nephropathy, and retinopathy. We 
also used search engines such as Google and Google 
scholar. The pattern of  articles obtained included mainly 
retrospective and a few prospective studies and were 
largely hospital based with a few community based re-
ports all drawn from urban and rural communities.

THE PAST
Studies that were conducted over the four decades from 
1960 to 2000 showed generally low prevalence rates for 
diabetes in Nigeria[3-7]. Two studies[3,4] that were con-
ducted in 1963 and 1971 reported prevalence of  less than 
1% for diabetes in Nigeria. The prevalence was still low 
at 0.8% to 2.8% in several studies[5-8] that were conducted 
from 1988 to 1998 with most patients having non-insulin 
dependent (type 2) diabetes. These studies[5-7] were limited 
to particular population groups in Nigeria except one[8] 
which was part of  a national survey that assessed the 
prevalence of  non-communicable diseases in the entire 
Nigerian population. In the past, diabetes was largely cat-
egorized as juvenile onset (insulin dependent) and matu-
rity onset (non-insulin dependent) diabetes with juvenile 
onset diabetes being rarely reported in the Nigerian. The 
rarity of  juvenile onset (type 1) diabetes is underscored 
by a study[9] that was done in 1990 where only 6% of  756 
registered diabetes patients were aged 15 to 30 years at 
diagnosis. There used to be a class of  diabetes referred 
to as malnutrition related diabetes, and this comprised of  
two subsets: fibrocalculous pancreatic diabetes and pro-
tein deficient diabetes[10]. Two Nigerian studies reported 
prevalence rates for Malnutrition related DM of  6%[10] 
and 8.6%[4]. Malnutrition related diabetes which was typi-
cally diagnosed in nutritionally deprived populations was 
however, removed as a separate class of  diabetes in 1997 
and rather considered as one of  “other specific causes of  

diabetes”[11].  
As far back as 1963 temporary diabetes had been 

described in adult Nigerians with the phenotypic char-
acteristics of  type 2 diabetes[12]. The term remittent DM 
was employed for the same phenomenon in 1978[13]. The 
more recent terminologies for this phenomenon where 
persons with phenotypic characteristics of  type 2 diabe-
tes present with unprovoked hyperglycaemic ketoacidosis 
as the initial manifestation of  diabetes as expected with 
type 1 diabetes but subsequently run a course similar to 
Type 2 diabetes where they are insulin independent for 
several years has being described as Ketosis prone type 2 
diabetes[14]. 

The earliest studies on the genetic contributions to 
the aetiology of  DM in Nigeria found gene associations 
that are different from those reported in Caucasian popu-
lations[15,16]. While HLA-B8 is strongly associated with in-
sulin dependent diabetes in Caucasians, the contrary was 
the case in Nigerians[15]. Another study[16] reported a low 
prevalence of  DR4 in Nigerians with type 1 diabetes.

A study[17] that assessed patients’ knowledge and self  
care practices of  diabetes found that 78% of  the Study 
population ascribed diabetes to poisoning and that about 
70% of  patients checked glycaemic control by tasting 
urine or passing urine on the ground and observing for 
ants. 

Treatment of  DM in Nigeria has always included the 
administration of  insulin and oral hypoglycaemic agents 
in conjunction with dietary counselling and life style 
modification. Bovine and porcine insulin were the pre-
dominant forms of  insulin used in the past. The animal 
insulins and particularly porcine insulin had the problems 
of  immunogenicity which mitigated against their effec-
tiveness[18]. Insulin treatment in the past was also compli-
cated by the presence of  various insulin concentrations 
and various sizes of  insulin syringes namely the U40 for 
40 units per milliliter vial and syringe and the U80 for the 
80 units per milliliter vial as there was no proper regula-
tion of  the insulin market. There were often cases of  pa-
tients getting discordant insulin vials and syringes leading 
to either hyperglycemia or hypoglycemia. 

THE PRESENT 
The current prevalence of  DM in Nigeria is not known 
but guestimates may likely be in the region of  8%-10%. 
Of  the four classes of  DM, three types are frequently 
recognized in our setting and these are type 1 DM 
(T1DM), T2DM and gestational diabetes. Of  the three 
types of  DM, T2DM is the commonly documented form 
of  DM and in most endocrine clinics, it accounts for 
about 90%-95% of  all cases of  DM. The prevalence of  
T1DM is not known but there are sketchy reports from 
various endocrine centres and documented prevalence 
rates which are all hospital based range from 0.1/1000 to 
3.1/1000[19,20]. It is pertinent to note that in our setting, 
clinical criteria are often used to classify patients with 
DM into type 1 and T2DM. These criteria include a cut 
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off  age of  thirty years and insulin requirements or usage 
since diagnosis. For T2DM additional clinical criteria for 
diagnosis include history of  usage of  oral hypoglycaemic 
agents or usage of  combination of  insulin and the oral 
hypoglycaemic agents. 

Gestational diabetes refers to any degree of  glucose 
intolerance first detected in pregnancy. Patients diagnosed 
with diabetes in the first trimester of  pregnancy are how-
ever more likely to have pre-gestational diabetes. One Ni-
gerian study[21] found that gestational diabetes to occur in 
2.98 per 1000 pregnancies, while another study[22], showed 
that the prevalence increased with maternal age; 3.3% in 
the age group of  15 to 24 years, 4.2% in those aged 25 to 
34 years with a spike to 17.6% in the age group of  34 to 
44 years and an average prevalence of  4.2%.

Gestational diabetes is usually first tested for in per-
sons at risk between 24 and 28 wk gestational age. Ges-
tational diabetes can be diagnosed using fasting plasma 
glucose, 75 gram oral glucose tolerance test (OGTT) or 
100 g OGTT. Gestational diabetes is diagnosed based on 
the finding of  fasting blood glucose ≥ 5.1 mmol/L-6.9 
mmol/L (92-125 mg/dL) or plasma glucose 2 h post 
75 g OGTT of  ≥ 7.8 mmol/L[23]. Where 100 g OGTT 
is performed, gestational diabetes is diagnosed when at 
least 2 results of  blood samples taken at fasting, 1, 2 or 
3 h post OGTT meets the following threshold values; 
fasting plasma glucose ≥ 5.3 mmol/L, 1 h post OGTT 
≥ 10 mmol/L, 2 h post OGTT ≥ 8.6 mmol/L and 3 h 
post OGTT ≥ 7.8 mmol/L[23].

The Diabetes Association of  Nigeria recommends 
the performance of  the 75 g OGTT in pregnant work 
with risk factors for gestational diabetes. These risk 
factors are a previous history of  gestational diabetes, 
family history of  type 2 diabetes, pre-pregnancy body 
mass index ≥ 25 kg/m2, birth of  baby > 4 kg, recurrent 
miscarriage, still birth, neonatal death, grand multipar-
ity, polycystic ovarian syndrome, systemic hypertension 
and glycosuria in index pregnancy. Patients diagnosed 
with gestational diabetes during pregnancy will need to 
be re-assessed about 6-12 wk post-delivery using fast-
ing plasma glucose and or plasma glucose at 2 h post 75 
g OGTT interpreted using criteria applicable to non-
pregnant adults[24].

For the diagnosis of  DM the World Health Organi-
zation (WHO) 1999 criteria apply[25] and the commonly 
used test is the fasting plasma glucose which is more 
pragmatically poised in the diagnosis of  DM than the 
oral glucose tolerance test that is not readily reproducible. 
The use of  glycosylated haemoglobin test in the diag-
nosis of  DM was recommended by the WHO in 2011 
and a level of  ≥ 6.5% (≥ 48 mmol/mol) was taken as 
a cut-off  for diagnosing type 2 diabetes in non-pregnant 
adults[26]. Using HbA1c for diagnosis requires the Inter-
national Federation of  Clinical Chemistry standardised 
assays for its measurement to ensure the results produced 
using different assays are equivalent and reliable[27]. In 
Nigeria, glycated haemoglobin levels are more often than 
not determined by point-of-care tests which are not stan-

dardized for use in diagnosing diabetes.
Management of  persons with DM is composed of  

non-pharmacological and pharmacological components. 
We routinely offer both components of  care to persons 
with DM even though most centres tend to underem-
phasize the non-pharmacological aspect paying attention 
mainly to the dietary aspect. 

A component of  comprehensive DM care as recom-
mended by the American Diabetes Association includes a 
yearly laboratory evaluation for lipid profile, liver function 
test, serum creatinine and calculated glomerular filtration 
rate, test for spot albumin excretion and thyroid stimulat-
ing hormone in persons with T1DM, dyslipidaemia and 
women over 50 years of  age[24].

Dietary management is a key cornerstone modality in 
the attainment of  good glycaemic control in DM. Dietary 
management of  DM is targeted at improving the overall 
health by achieving and maintaining optimal nutritional 
status, attaining good glycaemic control and prevention 
of  acute and long term complications of  DM. There is 
no standardized diet for people with DM and the dietary 
requirements for people living with DM often are in-
fluenced by, socio economic status, religious beliefs and 
cultural beliefs. The current general recommendation is 
that carbohydrates should provide between 45%-65% of  
the daily caloric intake, fat should be 25%-35% of  total 
daily calories and protein 15%-20% should be of  total 
daily calories[28]. In Nigeria there is the erroneous beliefs 
amongst many people that DM results from eating car-
bohydrates hence the popular view that people with DM 
should either completely avoid carbohydrates or at best 
take minimal quantities. The resultant sequelae of  these 
wrong notions include the intake of  monotonous meals 
which are deemed “safe” for people with DM. One 
of  such meals that are commonly prescribed by well-
meaning non healthcare professionals and uninformed 
medical personnel include unripe plantain and beans. In a 
report by Abioye-Kuteyi et al[29] on dietary knowledge and 
practices in persons with T2DM, about half  of  the Study 
subjects ate a monotonous diet of  mainly plantain and 
did not necessarily attain good glycaemic control.

These erroneous beliefs concerning dietary require-
ments in DM also affect the stance of  patients when 
faced with the occurrence of  iatrogenic hypoglycaemia. 
Some patients with DM have been noted to absolutely 
refuse simple sugars in the management of  this life 
threatening acute complication of  DM. There are varying 
Nigerian reports[29,30] that note that adherence to dietary 
advice is often poor amongst people with DM. Dietary 
management as an aspect of  DM care is seen as the turf  
of  the nutritionists and as a result, quite a number of  
physicians have a poor know how on dietary counselling. 
Exercise is known not only to impart glycaemic control 
positively but also to reduce the risk of  developing car-
diovascular disease in DM. 

DM is a diverse group of  metabolic disorders that is 
often associated with a high disease burden in developing 
countries such as Nigeria. In the early nineties, not much 
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the more industrialized parts of  the Nigeria the practice 
of  urine testing for glucose is obsolete[34,35]. Beyond, fi-
nancial constraints, psychosocial factors have been noted 
to largely influence glucose monitoring in our setting[35].

Pharmacological treatment of  DM is composed of  
both insulin and oral glucose lowering drugs and in some 
instances complementary and alternative medicine. Ef-
fective usage of  insulin in the management of  glycaemia 
remains a challenge in developing countries like Nigeria 
and about a fifth of  persons with T2DM are on insu-
lin therapy solely or in combination with oral glucose 
agents[36]. 

Currently available human insulins are the short act-
ing or meal time insulins, premixed insulin and the long 
acting insulins. The insulin analogues were introduced 
into the Nigerian market about three years ago and are 
still not readily accessible in terms of  availability and af-
fordability. Premixed analogues are the types of  insulin 
analogues that are predominant and only one long acting 
analogue (glargine) is available in the country till date. In-
sulin administration devices such as the syringes and pre-
filled pens are readily available but insulin syringes are the 
dominant forms of  devices in use. Unfortunately there 
is no uniformity or standardization of  insulin syringes in 
use and this is because of  parallel importation of  drugs 
and an absence of  gazetted policies on DM management. 
The barriers to insulin usage include patient factors such 
as needle phobias, fear of  hypoglycaemia, weight gain 
and costs. Healthcare provider factors include inertia on 
commencing insulin and this may be presumably a result 
of  ignorance on when to start insulin and sometimes 
misguided attempts to “empathise” with the patients. In a 
report by Ogbera et al[36], well over half  of  persons on in-
sulin paid for their insulin themselves and the mean costs 
of  procuring insulin per month was determined to be 
about 37 dollars per month. The Report also noted that 
persons on minimum wage spent 29% of  their monthly 
salaries in the procurement of  insulin.

Oral hypoglycaemic agents (OHAs) are readily available 
and commonly used OHAs are metformin, glimepiride 
and glibenclamide. Other available therapies, viz., thia-
zolidininediones, alpha glucosidase inhibitors and the 
dipeptidyl peptidase 4 inhibitors are prescribed mainly by 
endocrinologists. Although OHAs are clearly not indi-
cated for use in persons with T1DM, there are few cases 
of  persons with clinical features of  T1DM being placed 
on OHAs by general practitioners. A summary of  glu-
cose lowering agents used in the management of  DM in 
Nigeria is shown in Table 1.

Complementary and alternative medicine (CAM) us-
age is an important facet of  management of  DM and a 
Nigerian Report noted that 46% of  persons with DM 
used CAM with biological based therapies being the 
prevalent forms of  CAM utilized[37]. 

A commonly used CAM therapy for the DM and hy-
pertension is vernonia amygdalina which in local parlance 
is known as “bitter leaf ”, the widely held belief  is that 
the bitter taste of  this therapy counteracts the “sweetness” 
in the blood. This view although appears simplistic, may 

was known about DM in Nigeria and traditionally, people 
related DM to “curses” or “hexes” and diagnosis was 
made based on blood tests or urinary tests for glucose. 
Currently, oral hypoglycaemic agents but not insulin are 
readily accessible and acceptable to persons with DM. 
The cost of  diabetes care is borne in most instances by 
individuals and often payment is “out of  pocket”-this 
being a sequel of  a poorly functional national health 
insurance scheme. An insulin requiring individual on a 
minimum wage would spend 29% of  his monthly income 
on insulin. Complementary and alternative medicine are 
widely used by persons with DM and forms an integral 
component of  DM care. 

Towards reducing the burden of  DM in Nigeria, we 
suggest that there be concerted efforts by healthcare 
professionals and stakeholders in the health industry to 
put in place preventative measures, a better functioning 
health insurance scheme and a structured DM program. 

The American Diabetes Association recommends 
that individuals with T2DM perform at least 150 min 
of  moderate-intensity aerobic exercise and/or at least 
90 min of  vigorous aero-bic exercise per week[27]. The 
erroneous impression amongst lay people that exercise 
should be performed with an intention to lose weight is 
all too pervasive in our practice. Exercise prescription 
is hardly done and when offered some physicians of-
fer generic advice on exercise. In the Diabcare Study in 
Nigeria, only a third of  persons with DM admitted to 
exercise adherence[31]. 

The importance of  self-glucose monitoring is known 
to the majority of  persons living with DM even though 
this knowledge does not necessarily translate into imple-
mentation. The practice of  self-glucose monitoring in 
DM ranges from 3.4% amongst patients with DM in 
rural settings to 73% in urban settings[32-34]. Despite the 
limitation of  urine testing, some patients still employ this 
technique for self-monitoring of  glycaemic control. A 
Nigerian Report have noted that some patients with DM 
monitored glycaemia using urine tests with the aid of  
Clinitest tablets, urine dipsticks and in some rare instanc-
es, tasting the urine for sweetness[33]. In some centres in 
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Table 1  Drugs that are currently employed in the man
agement of diabetes mellitus in Nigeria

Oral glucose lowering agents
   Biguanides
   Sulphonylureas
   Alpha-Glucosidase inhibitors
   DPP-4 inhibitors
Parenteral glucose lowering agents
   Human insulin
      NPH insulin
      Insulatard
      Premixed (30/70)
   Insulin analogues
      Insulin glargine
      Insulin lispro
      Premixed: Novomix, Humalog (25/75)

DPP-4: Dipeptidyl peptidase 4.
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have some scientific basis as Nigerian researchers have 
reported a lowering of  blood glucose in diabetic rats and 
this lowering of  glucose was comparable to that recorded 
in diabetic rats who had oral glucose lowering agents ad-
ministered to them[38,39]. 

The burden of  DM is attributable to complications 
which may be acute or chronic. Hyperglycaemic emer-
gencies remain a major cause of  concern in Nigerians 
with DM, accounting for 40% of  all DM admissions with 
documented determinants of  fatal outcomes being DM 
foot ulcers, hypokalaemia and sepsis[40,41]. Of  all DM ad-
missions hyperglycaemic emergencies are listed as one of  
three complications of  DM associated with high case fa-
tality rates[42]. Foot ulceration is one complication of  DM 
that is widely reported on with a prevalence rate of  about 
9.5%[43]. Foot ulceration is reported to occur in 25%[44] of  
all new cases of  DM and associated with an in-hospital 
mortality rate of  43%[45]. A major risk factor for DM foot 
ulceration is neuropathy (and this is eminently prevent-
able. However in terms of  treating the diabetic foot, not 
much progress has been made but preventative strategies 
with a focus on patient education have greatly improved. 

Diabetic nephropathy is assuming an increasing role 
as a cause of  chronic kidney disease in Nigeria and it is 
one of  the leading cause of  chronic kidney disease in pa-
tients starting renal replacement therapy. DM nephropa-
thy is associated with increased cardiovascular risk. 
Cardiovascular complications of  DM such as Stroke, 
and peripheral disease have been reported in 11%[46] 
and 37%[47] of  persons with DM respectively in hospital 
settings in Nigeria. DM has also been noted to account 
for 2.1% of  cases of  heart failure[48]. Conventional car-
diovascular risk factors such as hypertension, metabolic 
syndrome and dyslipidaemia are now routinely screened 
for in persons with DM and the use of  statins and anti-
platelet drugs are on the increase more than ever before 
in DM clinics. Novel cardiovascular risk factors such 
as elevated C reactive protein, and lipoprotein are not 
screened for routinely and remain issues of  research 
concerns. 

Diabetic retinopathy is a leading cause of  blindness 
in people with DM and accounts for 16.2% to 42.1%[49,50] 
of  retinal diseases. Unfortunately investigative techniques 
such as fluorescein angiography, and interventions such 
as laser treatment are not readily available for the detec-
tion and management of  some of  these eye complica-
tions of  DM.

Erectile dysfunction is a prominent clinical feature of  
hypogonadism and usually associated with low testoster-
one levels. A third of  all males with DM present with the 
testicular deficiency syndrome but less than half  of  these 
patients discuss this problem with their care givers[51]. A 
lot of  unlicensed therapies are in the Nigeria market for 
treating erectile dysfunction but medical therapies avail-
able include the PDE 5 inhibitors, testosterone injections 
and the vacuum device which was introduced this year-
2014-but is yet to gain wide acceptance. Sexual dysfunc-
tion in women with DM is an understudied aspect of  

DM complications and often there are no interventions 
offered in our locale. Whilst the occurrence of  sexual 
dysfunction in women with DM is comparable to that of  
women without DM, psychological morbidity appears to 
be a contributory factor in women with DM[52]. 

Managing diabetes involves stakeholders of  which 
national bodies on DM play a vital role. There are two 
umbrella bodies that serve the interest of  DM in Nigeria 
and these are Diabetes association of  Nigeria and the 
Endocrine and metabolic society of  Nigeria. The afore 
stated bodies are charged with articulating guidelines 
on DM and also collaborating with policy makers and 
non-governmental bodies in order to reduce the burden 
of  DM. At present, there is a National Guideline docu-
ment on DM and a Lagos State Guideline-sponsored by 
Structured Healthcare Initiatives, an non governmental 
organization run by the primary author. The importance 
of  having a clinical practice guideline document on DM 
cannot be overemphasized. A guideline document creates 
opportunity for assessment and standardisation of  care, 
raising awareness on DM and empowering healthcare 
professionals at all levels of  healthcare delivery at all loca-
tions (rural as well as urban areas) to detect and manage 
DM.

THE FUTURE
The keys issues with regards to diabetes in the future 
relate to the increasing population of  Nigerians, increas-
ing life expectancy of  Nigerians, projected increase in 
the incidence and prevalence of  diabetes, low per capita 
income of  most Nigerians, poorly developed health care 
infrastructure and the current situation where the pre-
dominant means of  procuring health services is “out of  
pocket” payment. 

The aforementioned factors will result in increased 
numbers of  persons with the complications of  diabetes 
particularly against the backdrop of  constrained health 
budget by various tiers of  governments. Indeed the bud-
getary allocation to health for the 2014 fiscal year by the 
federal government of  Nigeria at 6% remains less than 
15% recommended by the WHO[53]. This is ironic as Ni-
geria was one of  the African countries which participated 
in the 2001 Abuja[53]. There is need for government to 
increase the budgetary allocation for health as recom-
mended by the WHO.

The prevention and improved management of  diabe-
tes will require cooperation between the government and 
the health sector. There is need for preventive programs 
such as enlightenment campaigns on the risk factors of  
diabetes. Government at all levels will need to improve 
health care funding. 

The Health insurance scheme in Nigeria is poorly 
developed and currently, the majority of  health insurance 
facilities do not provide coverage that allows for provi-
sion of  optimum standard of  care for persons living 
with DM. Out of  pocket expenditure remains the major 
means of  funding health care for the vast majority of  Ni-
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gerians now and in the foreseeable future. 
The use of  HbA1c for the diagnosis of  diabetes re-

mains limited by high cost. In one medical facility[54], it 
cost the equivalent of  19 USD to perform an HbA1c 
test. The relatively high prevalence of  the sickle cell gene 
in Nigeria may impact on the assay for HbA1c. 

Although several new agents have emerged for the 
treatment of  diabetes such as insulin analogues, glucagon 
like peptide 1 analogues, amylinomimetics, inhaled insulin 
and insulin pumps, the country is probably better served 
by the regular availability of  a few cheap diabetes medica-
tions with well-established safety profiles such as metfor-
min, glibenclamide and gliclazide. Although lactic acidosis 
is a stated complication of  metformin, the reality is that it 
is exceedingly rare even in patients with significant renal 
impairment and it has shown proven safety profile over 
decades of  use. 

There is the need for collaboration between health-
care providers, the pharmaceutical industries, policy 
makers and National agency for food and drug adminis-
tration and control to ensure adequate regulation of  the 
importation, local manufacture and use of  anti-diabetic 
medications in Nigeria. Whilst the provision of  continu-
ous blood glucose monitoring systems are expensive for 
our economy, the use of  standardized glucometers and 
test strips particularly for persons on multiple insulin 
injections needs to be encouraged. Some other areas of  
unmet needs include the availability of  DM educators 
and podiatry specialists. 

CONCLUSION
The status of  provision of  DM care has greatly improved 
in Nigeria but areas of  concerns remain and some of  
these include financing and suboptimal patient education. 
Concerted effort should be put in plac by healthcare pro-
fessionals and all stakeholders in ensuring that optimal 
care for persons with DM is attainable in Nigeria. 
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Abstract
(Pro)renin receptor [(P)RR], a receptor for renin and 
prorenin, was first cloned in 2002. Since then, the 
pathophysiological roles of (P)RR have been growing 
concerns. (P)RR binds renin and prorenin, with two 
important consequences, nonproteolytic activation of 
prorenin, leading to the tissue renin-angiotensin system 
activation and the intracellular signalings. It is now also 
known to play an important role as vacuolar H+-ATPase 
associated protein, involving in Wnt signaling, main 
component of embryonic development. Extracellular 
domain of full-length (P)RR is cleaved in golgi-complex 
forming soluble (P)RR [s(P)RR]. The s(P)RR is now 
possible to be measured in human blood and urine. It 
is now measured in different pathophysiological states, 
and recent study showed that elevated plasma s(P)RR 
levels in the early stage of pregnancies are associated 
with higher incidence of gestational diabetes mel-
litus later in the pregnancies. Plasma s(P)RR levels of 
neonates are known to be higher than that of adults. 
It was also shown that, increased s(P)RR concentra-
tions in cord blood, associated with a lower small for 
gestational age birth likelihood. These data suggests 
the involvement of (P)RR in embryo’s growth. In this 

review article, we attempt to figure out the possible 
pathophysiological roles of the (P)RR in maternal glu-
cose intolerance and embryo’s growth, through review-
ing previous studies.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: (Pro)renin receptor; Gestational diabetes 
mellitus; Embryonic growth; Renin-angiotensin system; 
Vacuolar H+-ATPase; Wnt signaling 

Core tip: Prorenin receptor [(P)RR] binds (pro)renin, 
and leads to the activation of tissue renin-angiotensin 
system and intracellular signalings. It also plays an im-
portant role as vacuolar H+-ATPase associated protein, 
involving in Wnt signaling. Elevated plasma soluble 
(P)RR [s(P)RR] levels in the early stage of pregnancies 
are associated with higher incidence of gestational dia-
betes mellitus (GDM) during the third trimester. Also, 
elevated s(P)RR levels in cord blood, associated with 
a lower small for gestational age birth likelihood, sug-
gesting the involvement of (P)RR in embryo’s growth. 
Here we attempt to elucidate the possible pathophysi-
ological roles of the (P)RR in GDM. 

Bokuda K, Ichihara A. Possible contribution of (pro)renin re-
ceptor to development of gestational diabetes mellitus. World J 
Diabetes 2014; 5(6): 912-916  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/912.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.912

INTRODUCTION
(Pro)renin receptor [(P)RR], a receptor for (pro)renin, 
was first identified in 2002[1]. The C-terminal domain of  
this receptor had been previously described as ATP6AP2 
protein, which associated with a vacuolar H+-ATPase (V-
ATPase)[2], a proton pump essential for acidification of  
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intracellular compartments. (P)RR consists of  350-amino 
acid with a single transmembrane domain and is known 
to exist in different molecular forms. Some exist as a full-
length integral transmembrane protein, some as soluble 
(P)RR [s(P)RR] composed of  extracellular domain, and 
other as truncated form composed of  the transmem-
brane and cytoplasmic domains[3] (Figure 1). 

When prorenin binds to (P)RR, a conformational 
change occurs in the prorenin molecule and gains full 
enzymatic activity without passing through proteolytic 
cleavage to renin[4]. Of  different molecular forms of  
(P)RR, full-length and s(P)RR have a capacity of  binding 
renin and prorenin. Thus, prorenin which is bound to ei-
ther forms of  (P)RR activates the tissue renin-angiotensin 
system (RAS) and for s(P)RR-bound prorenin, may also 
activate the circulating RAS. Also, when renin/prorenin 
binds to (P)RR, intracellular signaling pathways are trig-
gered. In vitro experiments showed that the cell signal-
ings are caused by both renin and prorenin in a manner 
independent of  angiotensin[5-12] (Figure 2). Full-length 
and truncated (P)RR are capable of  binding V-ATPase 
and are essential for V-ATPase assembly and function[13]. 
Extracellular domain of  (P)RR binds Wnt receptor and 
serves as an adaptor for Wnt receptor and V-ATPase, and 
is now known to play important role in Wnt signaling, a 
key component of  embryonic development[14-16]. 

Full-length (P)RR is known to be cleaved in the secre-
tory pathway by proteases such as furin[3] and a disinte-
grin and metalloproteinase 19[17] to release s(P)RR into 
the circulation. Of  the three different molecular forms, 
s(P)RR is the only molecule which is possible to be mea-
sured in human blood and urine samples. We have de-
veloped an s(P)RR enzyme-linked immunosorbent assay 
kit which allows quantification of  s(P)RR in clinical set-
tings[18]. The s(P)RR is now being measured in different 
pathological states. Recent study showed that increased 
plasma s(P)RR levels in pregnant women during the first 
trimester may predict the development of  gestational 
diabetes mellitus (GDM) during the third trimester[19]. 
Plasma s(P)RR concentrations of  neonates are higher 
than that of  adults and the association between cord 
blood s(P)RR levels and small for gestational age (SGA) 
birth was shown[20], suggesting the involvement of  (P)RR 
in embryo’s growth.

In this review article, we make an attempt to figure 
out the possible pathophysiological roles of  the (P)RR in 
pathogenesis of  GDM and on embryo’s growth. 

(P)RR AND GLUCOSE INTORELANCE
Some data had shown the involvement of  (P)RR on the 
pathogenesis of  diabetes through angiotensin Ⅱ (AngⅡ) 
production. The activation of  prorenin, without under-
going cleavage to renin was observed and AngⅡ contents 
increased in skeletal muscle tissues of  fructose-induced 
rat models of  insulin resistance[21]. Treatment with handle 
region peptide, inhibitory tool against prorenin binding 
(P)RR, markedly improved glucose tolerance, and this 
was associated with inhibition of  nonproteolytic activa-
tion of  prorenin by (P)RR and inhibition of  increase 
in AngⅡ contents. Insulin resistance observed in obese 
Otsuka Long-Evans Tokushima Fatty rats was also as-
sociated with nonproteolytic activation of  prorenin and 
increase in AngⅡ contents in the skeletal muscle and 
adipose tissues[22]. It has also been known that tissue RAS 
also exists in human pancreas and that it may directly af-
fect β-cell function[23]. These findings indicate that (P)RR-
bound prorenin may participate in the development of  
insulin resistance and β-cell function through tissue RAS 
activation. 

Binding of  (pro)renin to (P)RR also mediates Ang
Ⅱ-independent signaling cascades. In vitro experiments 
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using the cells expressing the (P)RR showed the cell 
signaling caused by (pro)renin in an AngⅡ-independent 
manner. In the presence of  angiotensin receptor antago-
nists, angiotensin converting enzyme inhibitors and/or 
renin inhibitors, the administration of  prorenin/renin 
induced the activation of  mitogen-activated protein ki-
nases (MAPK), extracellular signal-regulated kinase 1/2, 
leading to upregulation of  transforming growth factor 
β1, independent of  AngⅡ generation[6,10,11]. (P)RR also 
activates the MAPK p38 and subsequent phosphoryla-
tion of  heat shock protein[5,9], and the phosphatidylino-
sitol-3 kinase-p85 pathway[24]. Since activation of  MAPK 
and transforming growth factor-β1-dependent pathways 
induced by insulin are known to contribute to the patho-
genesis of  insulin resistance[25,26] and MAPK p38 cascade 
is considered to regulate β-cell function[27-29], (P)RR-in-
duced activation of  these intracellular pathways may also 
contribute to the pathogenesis of  glucose intolerance. 

(P)RR also plays important role as V-ATPase associ-
ated protein[13]. It has been reported that a3 isoform of  
V-ATPase regulates the exocytosis of  insulin from pan-
creatic β-cells[30]. It has been also shown that V-ATPase 
is involved in insulin-stimulated glucose transport in 
3T3-F442A adipocytes[31]. From these data, we may can 
hypothesize that (P)RR contributes to development of  
diabetes also through V-ATPase-linked functions. 

MATERNAL (P)RR
Human RAS physiologically undergoes drastic changes 
during pregnancy. Since ovary and maternal decidua pro-
duces renin, early increase in plasma renin activity is seen 
during pregnancy. Circulating estrogen released from the 
growing placenta increases angiotensinogen synthesis by 
the liver, leading to increase in serum AngⅡ and aldoste-
rone levels. Previous study has demonstrated that fasting 
blood glucose (FBG) in pregnant women is inversely 
correlated with the plasma renin activity, whereas plasma 
aldosterone concentration showed a significant positive 
correlation with FBG during pregnancy. Moreover, PAC 
is significantly higher in pregnant women with GDM as 
compared to those with normal glucose tolerance dur-
ing pregnancy[32]. These data support an idea that the 
RAS during pregnancy is involved in the pathogenesis of  
GDM.

Plasma prorenin/renin ratio differs in each patho-
physiological state. In the plasma, prorenin levels mark 
approximately 10-fold higher than renin levels in normal 
physiological condition[33]. In the diabetic patients and in 
pregnant women, plasma prorenin levels increase up to 
50 to 100-fold higher than that of  renin[34]. Particularly, 
plasma prorenin concentrations can be used as an early 
predictor of  microvascular complications in the diabetic 
patients[35]. High levels of  prorenin are also observed in 
infants. In these states in which plasma prorenin/renin 
ratio increases, (P)RR may play the main role in their 
pathophysiology. 

(P)RR is abundantly expressed in placenta[1]. As men-
tioned above, higher levels of  plasma s(P)RR in an early 

stage of  pregnancy were significantly associated with a 
higher possibility of  developing GDM in a later stage in 
pregnacy[19]. Women in the highest plasma s(P)RR level 
quartile were 2.90-fold more likely to develop GDM than 
women in the lowest quartile. This data also supports the 
theory that (P)RR may be involved in the pathogenesis 
of  GDM. 

FETAL (P)RR
S(P)RR levels in umbilical cord blood were significantly 
higher than that of  normal adult[18]. In addition, high 
plasma s(P)RR level in cord blood is associated with a 
lower SGA birth likelihood[20]. Developmental studies in 
Xenopus and Drosophila have revealed an essential role 
of  (P)RR to promote the canonical and non-canonical 
Wnt signaling pathways[16]. Wnt proteins form a family 
of  highly conserved secreted signaling molecules that 
regulate cell-to-cell interactions during embryogenesis. 
Now that it is indicated that (P)RR plays key role in Wnt 
signaling, these data indicate that (P)RR may be essential 
for embryo’s growth. 

(P)RR POSSIBLY CAUSES GDM AS A 
RESULT OF STIMULATING AN EMBRYO’S 
GROWTH
Fetuses of  mothers who have diabetes are more likely to 
be large for gestational age (LGA) than fetuses of  non-
diabetic women. From the data that high s(P)RR level 
in cord blood associates with a lower SGA birth likeli-
hood[20], it can be speculated that plasma s(P)RR levels 
are also high in LGA fetuses. If  the inappropriate growth 
stimulation of  embryo precede the onset of  maternal 
glucose intolerance, fetal s(P)RR may be a factor which 
triggers the onset of  GDM. As full-length (P)RR does, 
s(P)RR also activates prorenin[36], thereby leading to the 
activation of  RAS, resulting in development of  GDM. 
However, there are some limitations to this hypothesis 
(Figure 3). 

First, the mechanism of  placental transfer of  s(P)RR 
is unclear. It has been known that molecules larger than 
1000 molecular weight is incapable of  passing from fetal 
circulation to maternal circulation[37]. The s(P)RR may 
be too large to pass through placenta, since its molecu-
lar weight is 28000[38]. However, upstream factors which 
regulates the expression of  (P)RR may pass through pla-
centa from fetus, leading to the augmentation of  (P)RR 
also in maternal tissues. 

Second, it is now considered, regarding mechanism 
of  LGA birth in GDM, that maternal glucose passes 
through placenta and induces fetal hyperglycemia lead-
ing to increase in plasma insulin levels[39]. This theory 
conflicts with our hypothesis that stimulation of  embryo’
s growth precedes the development of  GDM. However, 
increase in fetal (P)RR expression, as a result of  hyper-
insulinemia, may affect maternal pathological condition, 
creating a vicious cycle and at least in part explain the 
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pathogenesis of  GDM. 
In conclusion, contribution of  (P)RR to the patho-

genesis of  glucose intolerance has been speculated from 
previous studies. Although there is a lack of  direct evi-
dence, we highlighted the possibility of  (P)RR-mediated 
fetal-maternal interaction as a pathogenesis of  GDM. 
Measurement of  maternal and cord blood s(P)RR levels 
in GDM patients at delivery will be needed to consolidate 
the theory. Also, time-course analysis of  maternal and fe-
tal s(P)RR in animal GDM model may provide evidences 
which may support pathogenetic role of  (P)RR-mediated 
fetal-maternal interaction. Further investigations are 
needed, but this novel hypothesis may lead us to new di-
agnostic and therapeutic strategies for GDM. 
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Abstract
Various pathological conditions can cause fatty liver in 
children. Nonalcoholic steatohepatitis (NASH) in chil-
dren has been known since 1983. However, NASH diag-
nosed in childhood does not have a favorable outcome. 
The pathological characteristics of NASH are signifi-
cantly different between children and adults. Nonalco-
holic fatty liver disease (NAFLD)/NASH is accompanied 
by insulin resistance, which plays a pivotal role in its 
pathophysiology in both children and adults. In NASH, 
a “two-hit” model involving triglyceride accumulation 
(first hit) and liver damage (second hit) has been ac-
cepted. Insulin resistance was found to correlate with 
changes in fat levels; however, it did not correlate with 
fibrosis or NAFLD activity score in children. Therefore, 
insulin resistance may be important in the first hit. 
Because there is obvious familial clustering in NASH, 
genetic predisposition as well as environmental factors 
including diet might be the second hit of NAFLD/NASH.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Nonalcoholic fatty liver disease; Nonalcoholic 

steatohepatitis; Insulin resistance; Homeostasis model 
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Core tip: The pathological characteristics of nonalcohol-
ic steatohepatitis (NASH) are significantly different be-
tween children and adults. Nonalcoholic fatty liver dis-
ease is accompanied by insulin resistance, which plays 
a pivotal role in its pathophysiology in both adults and 
children. In NASH, a “two-hit” model involving triglyc-
eride accumulation (first hit) and liver damage (second 
hit) has been accepted. Insulin resistance was found 
to correlate with changes in fat levels; however, it did 
not correlate with fibrosis in children. Insulin resistance 
may be important in the first hit. Genetic predisposition 
as well as environmental factors might be the second 
hit in children.

Arata M, Nakajima J, Nishimata S, Nagata T, Kawashima H. 
Nonalcoholic steatohepatitis and insulin resistance in children. 
World J Diabetes 2014; 5(6): 917-923  Available from: URL: 
http://www.wjgnet.com/1948-9358/full/v5/i6/917.htm  DOI: 
http://dx.doi.org/10.4239/wjd.v5.i6.917

INTRODUCTION
Fatty liver disease (fatty liver) is a general term for dis-
eases caused by an accumulation of  triglyceride (TG) in 
liver cells. Various pathological conditions such as Turner 
syndrome, abnormal mitochondrial and fatty acid metab-
olism, nephrotic syndrome, Down syndrome, and hor-
monal therapy can cause fatty liver in children. In adults, 
nonalcoholic fatty liver disease (NAFLD) is defined by 
fatty liver without obvious causes such as autoimmune 
hepatitis, viral hepatitis, or drinking history. Histologically, 
NAFLD is divided into 2 categories: that without (simple 
steatosis) and that with fibrosis, necrosis, and inflam-
mation [nonalcoholic steatohepatitis (NASH)]. NASH 
is regarded as a severe form of  NAFLD. According to 

MINIREVIEWS

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4239/wjd.v5.i6.917

World J Diabetes  2014 December 15; 5(6): 917-923
ISSN 1948-9358 (online) 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

917 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com



a population-based study, 4.8% of  adults with NAFLD 
have been reported to develop liver cirrhosis within a 
mean observation period of  7.6 years[1]. NASH/NAFLD 
in childhood has been known since 1983[2]. In this review, 
we introduce the recent findings of  pediatric NASH and 
insulin resistance.

ETIOLOGY
In Japan, 10% of  the general population is estimated 
to have NAFLD, and 1% to have NASH. In adults 
with obesity and type 2 diabetes insipidus, the rates are 
higher[3]. A life-table analysis showed a reduction of  life 
expectancy of  up to 7 years in adults with obesity[4]. In 
children, the prevalence of  NAFLD/NASH is estimated 
to be as high as 2.6%-9.6% in the United States and 
Asian countries, despite significant differences in race 
and ethnicity[5-7]. Insulin resistance is often accompanied 
by NAFLD/NASH, and plays a pivotal role in its patho-
physiology[8,9]. The prevalence of  insulin resistance in 
obese children foreshadows a worrisome trend for type 
2 diabetes. It is estimated that 170 million children under 
18 years worldwide are overweight or obese, which is 
more than 20% of  all children in many countries[10]. Ac-
cording to the SERCH for Diabetes in Youth study, more 
than 20000 individuals below 20 years of  age had type 2 
diabetes[11]. According to the follow-up study by Feldstein 
et al[12], 4 out of  66 children with NAFLD developed type 
2 diabetes 4-11 years after diagnosis. Moreover, during a 
20-year follow-up study, 2 children died and 2 underwent 
liver transplantation for cirrhosis[12].

CLINICAL DIAGNOSIS
There are no specific symptoms associated with NAFLD 
and NASH in children. However, there is strong fatiga-
bility. Furthermore, obesity, sleep apnea, hypertension, 
hyperinsulinemia, and acanthosis nigricans are often 
observed. Visceral obesity is a risk factor. Obesity (body 
mass index of  greater than + 2SD) or an increase in 
weight of  10% or more per year is likely to be present.

Diagnosis of  NAFLD and NASH by conventional 
blood biochemical examination is difficult. Liver biopsy 
is required for a definitive diagnosis of  NAFLD.

For diagnosis, children should be screened for the 
presence of  HBs antigens, HCV antibodies, anti-mito-
chondrial antibodies, anti-nuclear antibodies, ceruloplas-
min, α-antitrypsin, transferrin, etc. Approximately 20% of  
adults with NASH showed positivity for antinuclear anti-
bodies (greater than 160 X)[13]. Similar findings that 7 out 
of  14 children with NAFLD were positive for antinuclear 
antibodies or anti-smooth muscle antibodies have been 
reported by others[14].

In NAFLD, the levels of  alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) are usu-
ally mildly increased (2-4 times), and the level of  ALT is 
higher than AST[15]. In NAFLD, levels of  alkaline phos-
phatase and γ-glutamyl transferase are occasionally mildly 
increased. Levels of  ALT and AST are higher in NASH 

than in NAFLD. Patients with cirrhosis show ALT/AST 
ratios of  less than 1.

To differentiate between simple fatty liver and NASH, 
information on high-sensitivity C-reactive protein levels 
and insulin resistance [homeostasis model assessment as 
an index of  insulin resistance (HOMA-R) (fasting blood 
glucose × immunoreactive insulin/405), adipocytokines 
[tumor necrosis factor (TNF)-α, adiponectin, and leptin], 
and oxidative stress markers] can be useful[16]. Other 
markers for NASH such as high levels of  serum iron and 
ferritin, low platelet count, and KICG (same indocyanine 
green elimination rate constant) and fibrosis markers 
(hyaluronic acid, type Ⅳ collagen, and procollagen Ⅲ 
polypeptide) are also used. The NAFIC (NASH, ferritin, 
insulin, type Ⅳ collagen 7S) score for adults, pediatric 
NAFLD fibrosis index for children, and enhanced liver 
fibrosis test are useful to diagnose fibrosis[17].

Matteoni et al[18] classified NAFLD into 4 types from 
pathological findings. Type 1 is simple fatty liver (only 
fatty liver), type 2 demonstrates steatohepatitis (fatty liver 
and lobular inflammation), type 3 demonstrates steatone-
crosis and ballooning and swelling of  hepatocytes, and 
type 4 demonstrates steatonecrosis and Mallory bodies 
(liver cell ballooning degeneration) or fibrosis. He also 
reported the prognosis of  each type upon long-term 
follow-up. Progression to liver cirrhosis or liver-related 
death were observed in patients with type 3 or 4 NAFLD. 
There were no cases that progressed to cirrhosis from 
types 1 and 2. Therefore, types 3 and 4 NAFLD are 
defined as NASH pathologically[18]. The grading system 
of  necrosis and inflammation and the staging system of  
fibrosis that was defined by Brunt et al[19] are commonly 
used. On the other hand, NAFLD/NASH demonstrate 
different characteristics in adults and in children (Table 
1)[20]. Figure 1 shows representative liver pathology of  
adult type and pediatric type NASH.

NAFLD/NASH in most children mainly have the 
characteristics of  fatty changes, inflammation and fibrosis 
of  the portal area, and absence of  perisinusoidal fibrosis 
and hepatocyte ballooning. Patients with strong fibrosis 
are classified as having type 2 NAFLD/NASH. Schwim-
mer et al[21] classified pediatric NAFLD into 2 types. Ac-
cording to Brunt’s pathological classification, the grading 
of  necrosis and inflammation will be very low and stag-
ing of  fibrosis will be very high in many children. NASH 
in children requires careful long-term observation.

BASIC PATHOLOGY
The phenotype of  NAFLD is metabolic syndrome of  
the liver, which in general is accompanied by obesity, 
diabetes mellitus, hyperinsulinemia, and hyperlipidemia. 
In the onset and progression of  insulin resistance and 
associated obesity, increased free fatty acid (FFA) levels 
and abnormal adipocytokine secretion are important 
factors. In NASH, a “two-hit” model involving TG ac-
cumulation (first hit) and liver damage (second hit) has 
been proposed[22].

Deposition of  TG in liver cells is determined by the 
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balance of  TG-increasing factors (synthesis and influx 
of  TG in liver cells) and TG-decreasing factors (efflux 
and consumption of  TG in liver cells). TG is a molecule 
composed of  3 fatty acids esterified to a glycerol. Four 
mechanisms are assumed to affect the level of  TGs in 
the liver cells. The first is increased uptake of  FFA from 
food (15% of  TGs in liver) and fatty tissue that supplies 
the FFA pool in the blood. TG from food is hydrolyzed 
to FFA by lipoprotein lipase. Non-hydrolyzed TG is 
supplied to liver cells directly. FFA from fatty tissue in 
the blood is absorbed by liver cells. Secretion of  FFA 
from adipose tissue is increased when there is insulin 
resistance. The second is increased FFA synthesis in liver 
cells (de novo synthesis) or reduction of  the suppression 
of  FFA synthesis. Fatty acids derived from adipose tissue 
account for the majority (60%) of  hepatic TG accumula-
tion in NAFLD[23]. Nutrients such as carbohydrates, pro-
teins, and lipids are converted to acetyl-CoA and serve as 
substrates for fatty acid synthesis. The third mechanism 
is decreased catabolism of  FFA in liver cells (consump-
tion by peroxisomes and mitochondrial β-oxidation). The 
fourth mechanism is decreased release of  TG from liver 
cells (very-low-density lipoprotein is released into the 

blood by microsomal triglyceride protein)[24]. In children, 
total parenteral nutrition management, steroid adminis-
tration, and fatty acid metabolism disorders are represen-
tative causes[25]. Oxidative stress, endotoxins, adipocyto-
kines (TNF-α, adiponectin, and leptin) are considered as 
hepatocyte-damaging factors of  the second hit. Hypoxia 
caused by sleep apnea also has a negative effect.

INSULIN RESISTANCE IN CHILDREN 
WITH NASH
The effects of  steatohepatitis on insulin resistance in 
children have been elucidated recently. Cali et al[26] re-
ported that in children with NASH, there was a signifi-
cant decrease in insulin sensitivity and impairment in 
beta-cell function, as indicated by the fall in the disposi-
tion index paralleling the severity of  hepatic steatosis[26]. 
Other reports also indicated that the deleterious effects 
of  fat accumulation in the liver affect insulin sensitivity 
at a multi-organ level[11,27,28]. Consequently, insulin secre-
tion becomes insufficient to maintain glucose levels and 
some obese children develop beta-cell impairment in 
the long run. In obese children, beta-cell function has 
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Table 1  Differences in characteristics of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis between adults and children

Pediatric-type NASH Adult-type NASH

Classification by Schwimmer et al[21] Type 2 Type 1
Incidence Frequent Rare
Steatosis Strong Weak

Starting in periportal zone (acinar zone 1) Starting in perivenular zone (acinar zone 3)
Inflammatory cell infiltration Portal area Centrolobular area
Hepatocyte ballooning None Prevalent
Fibrosis None or only in periportal zone (acinar zone 1) Prevalent in perisinusoidal or perivenular zone 

(acinar zone 3)
Liver cirrhosis Present Present
Epidemiology More common in overweight, colored race 

(Hispanic: 73%; Asian: 12%), boys > girls
Hispanic: 41%, White, non-Hispanic: 53%, 

girls > boys
Ratio in pediatric NAFLD (overlap 16%) 
by Schwimmer et al[21]

51% 17%

Ratio in pediatric NAFLD (overlap 50%) 
by Takahashi et al[20]

21% Not reported

NASH: Nonalcoholic steatohepatitis; NAFLD: Nonalcoholic fatty liver disease.

Figure 1  Representative photographs of liver sections of nonalcoholic steatohepatitis/nonalcoholic fatty liver disease patients. A: Pediatric type (type 1) 
showing severe fibrosis; B: Adult type (type 2) showing mild fibrosis and hepatocyte ballooning.

A B
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6-16 years old. Their ALT levels were generally high at 
16-212 IU/L (normal range < 35 IU/L). Mean values of  
insulin and HOMA-R values were 23.5 (range: 11.7-272.2 
μU/mL and 5.36 (range: 2.07-67.7), respectively. All cases 
were diagnosed by liver biopsy. All except 1 patient were 
compatible with type 4 NASH using Matteoni’s criteria. 
The remaining case was type 3. The median NAS was 6 
(range: 3-8). The median Brunt’s inflammatory grade was 
2 (range: 1-3). The median Brunt’s fibrosis stage was 3 
(range: 1-3). Five cases out of  12 were classified as grade 1, 
2 cases were classified as grade 2, and 5 cases were clas-
sified as grade 3. The HOMA-R values did not correlate 
with NAS or Brunt grading.

GENETIC BASIS OF NAFLD/NASH
Familial clustering of  NAFLD/NASH is obvious. Ge-
netic predisposition as well as environmental factors 
including diet have been reported in NAFLD/NASH. 
Polymorphisms in the genes encoding PNPLA3, UCP3, 
SLC2A1, Lipin1, the COX-2 promoter, and the UCP1 
(AG + GG) genotypes have been reported to be associ-
ated with the development of  NAFLD. On the other 
hand, a genome-wide association study (GWAS) using 
liver mRNA from NAFLD patients showed that a com-
bination of  increased expression of  lymphocyte cytosolic 
protein-1 (LCP1) and decreased expression of  group-
specific component (GC) is significantly associated with 
susceptibility to NAFLD/NASH. GC gene polymor-

been reported to decrease at a rate of  15% per year[29]. 
Significant correlations between insulin resistance and 
NAFLD activity scores (NAS), which were calculated 
by summing the scores for steatosis, lobular inflamma-
tion, and ballooning degeneration, were found in 177 
children with NAFLD/NASH[30]. Adipose tissue insulin 
resistance is also present in the majority of  adults with 
NAFLD, whether the patients are obese or not[31]. Re-
ports in the literature on insulin resistance in pediatric 
NAFLD/NASH are summarized in Table 2[32-40]. These 
reports demonstrated that insulin resistance is associated 
with fatty changes using magnetic resonance imaging 
and ultrasound[32,40]. However, insulin resistance was not 
associated with fibrosis or NAS[32-40]. Therefore, these 
findings suggest that insulin resistance is important for 
the first hit in the two-hit model of  NASH. In adults, in-
sulin resistance did not correlate with NAS but correlated 
with fibrosis[41,42]. NASH in children is mainly character-
ized by fatty changes and fibrosis in the portal area (type 
2 NASH), which is different to the characteristics of  
NASH in adults. Therefore, larger scale follow-up stud-
ies are required to understand the progression of  NASH 
from children to adults.

CASES OF PEDIATRIC NAFLD/NASH 
ENCOUNTERED IN OUR DEPARTMENT
Table 3 summarizes the children with NAFLD/NASH 
that were treated in our department. The patients were 
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Table 2  Reports in the literature regarding insulin resistance in pediatric nonalcoholic steatohepatitis /nonalcoholic fatty liver disease

Ref. Study population and sample size Age (yr) Method of diagnosis Insulin resistance

Santoro et al[32] 229 obese children, including 12 cases 
of liver biopsy-proven NASH

12.8 ± 2.9 MRI and liver biopsy No significant correlation between MRI-
measured steatosis and whole body insulin 

sensitivity index
Fitzpatrick et al[33] 40 liver biopsy-proven NAFLD  10-16 Liver biopsy 68% showed insulin resistance. HOMA-R 

values did not correlate with NAS
Nobili et al[34] 30 NAFLD patients (11:19; without:

with steatohepatitis)
   8-14 Liver biopsy HOMA-R values and insulin sensitivity 

indices did not correlate with steatohepatitis
El-Koofy et al[35] 18 patients with normal histology, 8 

simple steatosis patients, and 7 NASH 
patients

   2-15 Liver biopsy HOMA-R values significantly differed 
between patients with normal histology and 

those with steatosis/NASH, and significantly 
correlated with grading based on US

Patton et al[36] 88 NAFLD patients    6-17 Liver biopsy NASH vs not NASH: HOMA-R OR = 1.283 
(P-value = 0.004) and QUICKI OR = 0.786 

(P-value < 0.001)
Ko et al[37] 80 NAFLD patients (18 simple 

steatosis, 27 type 1 NASH, and 35 
type 2 NASH)

10.4 ± 3.9, 12.6 
± 2.4, 12.3 ± 2.3, 

respectively

Liver biopsy No differences in HOMA-R values between 
type 1 and type 2 NASH; HOMA-R values did 

not correlate with NAS
Manco et al[38] 82 NAFLD patients    3-18 Liver biopsy HOMA-R and QUICKI values, and HOMA-

beta secretion did not correlate with NAS 
Nobili et al[39] 72 NAFLD patients    9-18 Liver biopsy HOMA-R values did not correlate with NAS, 

steatosis, inflammation, ballooning, or fibrosis
Chan et al[40]  65 fatty liver patients 9.5-14 Liver biopsy and US HOMA-R and QUICKI values correlated with 

severity of fatty liver evaluated by US. Higher 
insulin resistance significantly correlated with 
fatty liver severity only in male subjects with 

NASH

NAS: NAFLD activity score; US: Ultrasound; QUICKI: Quantitative insulin sensitivity check index; HOMA-R: Homeostasis model assessment as an index 
of insulin resistance; NASH: Nonalcoholic steatohepatitis; NAFLD: Nonalcoholic fatty liver disease; MRI: Magnetic resonance imaging.
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phisms and LCP1 levels are correlated with vitamin D 
levels and hyperlipidemia, respectively[43].

Genomic studies on patients with type 2 diabetes 
revealed some positive correlations of  polymorphisms 
using GWAS. The correlation between gene single nucle-
otide polymorphisms (SNPs) in PPAR-gamma, TCF7L2, 
G6PC2, MTNR1B, etc., have been reported in adoles-
cents as well as in adults[44,45]. In particular, gene SNPs 
in TCF7L2, IGF2BP2, CDKAL1, HHEX, and HNF1A 
might be associated with a higher risk of  type 2 diabetes 
in obese children and adolescents[46]. These genes are in-
volved in the release of  insulin granules from beta cells.

MANAGEMENT OF PEDIATRIC NASH 
AND NAFLD
NAFLD is often associated with obesity, diabetes, hy-
perlipidemia, and hypertension, and is considered to be a 
type of  metabolic syndrome.

Because NASH is considered to progress from fatty 
liver, the management of  fatty liver is important. Pro-
gressive increases in intrahepatic TG levels are associated 
with progressive impairment of  insulin action in skeletal 
muscle and adipose tissue, in addition to the liver[30]. The 

principles of  treatment are to make improvements in 
lifestyle, such as diet and exercise. In adults, treatments to 
improve insulin resistance and oxidative stress have been 
attempted. The efficacy of  insulin sensitizers and antioxi-
dants has also been reported, but there are no established 
treatments to date.

Quick weight loss can also worsen liver fibrosis. Chil-
dren with NAFLD often become treatment dropouts, 
and a relapse is observed in more than 90% of  these chil-
dren. The efficacy of  drugs from reports in the literature 
is shown in Table 4. However, these reports are limited 
to children[47,48]. In many cases, transaminase levels can be 
normalized by weight loss of  approximately 5%.

The prognosis of  NASH in adults is still obscure. 
Previous studies reported that 5%-20% of  patients devel-
op liver cirrhosis within 5-10 follow-up years. Liver re-bi-
opsy within 3-6 years revealed that 40%-50% of  patients 
showed no change, 30%-50% worsened, and 20%-30% 
improved[49]. AST and ALT levels and disease progression 
sometimes do not correlate, particularly if  there are no 
subjective symptoms. 10%-20% of  the patients showed 
liver cirrhosis.

A long history of  lifestyle-related diseases, severe 
obesity, type 2 diabetes, low platelet count, rise in fibrosis 
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Table 3  Pathology and homeostasis model assessment as an index of insulin resistance values of 
pediatric nonalcoholic steatohepatitis patients treated in our department

Patient number Age (yr) Matteoni’s criteria NAS Brunt’s grading Brunt’s staging HOMA-R

1   6 4 7 3 2 40.6
2   9 4 4 2 2 2.72
3 11 4 6 2 3 4.60
4 11 4 6 2 3 5.83
5 12 4 7 3 3 3.65
6 13 4 5 2 3 58.5
7 14 4 5 2 2 20.0
8 14 4 7 2 2 3.36
9 14 4 8 2 3 3.95
10 14 4 3 1 3 67.7
11 15 4 6 2 2 4.89
12 15 4 7 2 3 17.3
13 16 3 7 2 1 19.4

NAS: Nonalcoholic fatty liver disease activity score; HOMA-R: Homeostasis model assessment as an index of insu-
lin resistance.

Table 4  Efficacy of main drugs against nonalcoholic steatohepatitis/nonalcoholic fatty liver disease symptoms

Drug Efficacy

Insulin-sensitizing agent 1Metformin[47] Controversial (effective but no more effective than improvement of lifestyle)
Antioxidants 1Vitamin E[47] Significant improvements in NASH and NAFLD activity scores

Vitamin C No changes in ALT levels or liver inflammation; fibrosis was controlled intentionally
Liver-supporting drugs Ursodeoxycholic acid No improvements in serum transaminase and fat levels evaluated by US

Phosphatidylcholine No improvement in serum ALT level; improvements in liver echo intensity 
and insulin resistance

1Taurine[48] Decreased serum ALT levels and increased liver CT values in 7 children
Cholesterol-lowering agents HMG-CoA reductase inhibitor 

(atorvastatin)
Decrease in serum ALT levels and improvement in liver pathology

Probucol Decrease in serum ALT levels

1Indicate drugs reported for children. US: Ultrasound; NASH: Nonalcoholic steatohepatitis; NAFLD: Nonalcoholic fatty liver disease; CT: Computed to-
mography; HMG-CoA: 3-hydroxy-3-methylglutaryl-coenzyme A; ALT: Alanine aminotransferase.
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markers (hyaluronic acid and type Ⅳ collagen 7S), and 
liver dysfunction are assumed to affect NASH-associated 
liver cirrhosis. There are no large-scale studies on child-
hood NASH, and the prognosis is unknown. Therefore, 
careful evaluation of  fibrosis should be performed during 
their follow-up.
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Core tip: Several adipokines could serves as the moni-
toring molecules that reflect overall and oral disease 
conditions include periodontitis. Because they are 
rapidly change upon the change in body and oral con-
ditions. The treatment response and disease activity 
progression may also predicted using these kinds of 
molecules. Moreover, the method to collect and anal-
yse adipokines is relatively simple because they can be 
detected in gingival crevicular fluid and analysed using 
general enzyme-linked immunosorbent assay technol-
ogy. Collectively, clinicians include medical doctors and 
periodontists should take the concern regarding adipo-
kines into their routine periodontal treatment plan and 
management.

Ogawa H, Damrongrungruang T, Hori S, Nouno K, Minagawa 
K, Sato M, Miyazaki H. Effect of periodontal treatment on adi-
pokines in type 2 diabetes. World J Diabetes 2014; 5(6): 924-931  
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OVERVIEW OF PERIODONTITIS AND 
INFLAMMATION IN TYPE 2 DIABETES
Periodontal disease refers to the processes of  destruc-
tion of  the peri-tooth structures that support the teeth. 
These comprise the gingiva, the periodontal ligament, the 
cementum and the alveolar bone. The chronic destruc-
tion of  these supporting tissues leads to the eventual loss 
of  teeth. Epidemiological studies have revealed that more 
than two-thirds of  the world’s population suffers from 
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Abstract
The association between adipokines and inflamma-
tory periodontal diseases has been studied over the 
last two decades. This review was intended to explore 
the observation that periodontal therapy may lead to 
an improvement of adipokines in diabetic patients. In 
summary, substantial evidence suggests that diabetes 
is associated with increased prevalence, extent and 
severity of periodontitis. Numerous mechanisms have 
been elucidated to explain the impact of diabetes on 
the periodontium. However, current knowledge con-
cerning the role of major adipokines indicates only 
some of their associations with the pathogenesis of 
periodontitis in type 2 diabetes. Conversely, treatment 
of periodontal disease and reduction of oral inflamma-
tion may have positive effects on the diabetic condi-
tion, although evidence for this remains somewhat 
equivocal.
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one of  the chronic forms of  periodontal disease[1]. 
Periodontal destruction is host-mediated by locally 

produced pro-inflammatory cytokines in response to the 
bacterial flora and its products[2]. It is possible that the 
production of  local cytokines[3] and or low-level asymp-
tomatic bacteremia or endotoxemia[4] affects the plasma 
concentration of  pro-inflammatory biomarkers. 

Significant differences in the plasma concentrations of  
such biomarkers have been described[5-8]. Periodontitis may 
have an even greater influence on the systemic inflam-
matory condition in individuals with diabetes. Elevated 
circulating levels of  interleukin-6 (IL-6), tumor necrosis 
factor-α (TNF-α) and high-sensitivity C-reactive protein, 
which can worsen insulin resistance and thereby impair 
glycemic control, have been shown in several studies[9,10]. 
Thus, periodontal disease may have a significant impact 
on the metabolic state in diabetes[11]. TNF-α has been 
reported to play a key role in the pathogenesis of  type 2 
diabetes, and the correlation of  this cytokine with insulin 
resistance has also been shown in metabolic syndrome[12].

Several studies have reported the effects of  periodon-
tal treatment on glycemic control as well as systemic 
inflammatory mediator levels in patients with type 2 dia-
betes. In some cases, positive effects such as improving 
HbA1c or serum level of  adiponectin have been indi-
cated[13,14]; however, such phenomena regarding adipo-
kines are still unclear due to several confounding factors. 
Adipokines are molecules mainly produced and exocy-
tosed from adipocytes. These molecules are a large family 
composed of  members such as leptin, adiponectin, resis-
tin, visfatin, adipsin, interleukin, monocyte chemotactic 
protein-I and retinol-binding protein. 

Accordingly, this review focuses on providing a con-
cise summary and dealing with recent advances regarding 
the potential of  selected adipokines as therapeutic tools 
or targets of  periodontal treatment (Figure 1).

ADIPOKINE MOLECULES AND 
PERIODONTAL TREATMENT 
Leptin 
Leptin, a molecule that acts as an obesity-regulatory hor-

mone, has the cytogenetic location of  7q32.1[15]. The gene 
encoding leptin is named the LEP gene or the obese 
gene, which produces a 16-kDa protein secreted by white 
adipose tissue. By interaction with leptin receptor[16], it 
leads to appetite regulation, control of  body energy ex-
penditure and maintenance of  bone mass. The actions of  
leptin mainly occur in the hypothalamus[17]; however, the 
production of  leptin has also been found in bone mar-
row, placenta, skeletal muscle and stomach[17-20]. Recently, 
it has been found that leptin could reduce adipose tissue 
inflammation via activation of  the macrophage histone 
deacetylase HDAC4[21]. In an animal model, namely, mice 
without the LEP gene, which are dramatically obese, 
leptin injection led to weight loss due to food intake re-
duction and increased energy expenditure[16,22]. 

The relationship between leptin and insulin is still not 
well established. At present, it has been demonstrated 
that leptin suppresses insulin production via a negative 
feedback loop, but insulin stimulates the production of  
leptin[23,24]. These interplays occur in an axis named the 
adipo-insular axis, and progression of  insulin resistance 
was shown to be correlated with dysregulation of  this 
axis[25]. Recent evidence in an in vitro model has demon-
strated that leptin influenced insulin by regulation of  
insulin-like growth factor-binding protein 2[26], and this 
regulation occurred through signal transducers and ac-
tivators of  transcription (STATs), especially STAT-3, as 
well as phosphatidylinositol-3-kinase and the Akt signal-
ing pathway[26,27]. 

Leptin and periodontal treatment
Inflammation of  periodontal tissue results in an increased 
serum leptin level, but leptin significantly decreased (P < 
0.05) during a 3-mo follow-up period in type 2 diabetic 
patients who received non-surgical periodontal treat-
ment[28]. Even though this study and a study by Teres et 
al[29] found that leptin correlates with inflammatory con-
dition because they found a positive relationship between 
IL-6 and leptin but a negative relationship between vita-
min D and IL-6, the latter study failed to show that peri-
odontal therapy could change the level of  leptin as well 
as those of  other adipokines in serum. Recent evidence 
has also suggested that the combination of  periodontal 
treatment with periodontal antibiotic treatment could im-
prove the periodontal status of  Japanese type 2 diabetic 
patients without dramatically affecting the serum leptin 
level[30]. From all of  the above studies, it seems that leptin 
is not a sensitive marker for periodontal tissue change or 
improvement. This molecule may reflect the systemic in-
flammatory conditions rather than local ones.

Adiponectin
Adiponectin (also known as Acrp30, apM1 or GBP28) is 
a 3-kDa adipokine secreted mainly by adipocytes, which 
plays important roles in the homeostasis control of  glu-
cose, energy and lipid metabolism. The adiponectin gene 
(Adipoq) is located on chromosome 3 at 3q27[31]. Although 
this protein is secreted mainly by adipocytes, it is also 
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secreted by other cell types include cardiomyocytes[32,33]. 
Unlike other adipokines, adiponectin exerts anti-inflam-
matory, anti-diabetic as well as anti-arthrogenic activi-
ties[34-36]. Attempts have been made to utilize this molecule 
as a therapeutic agent or for obese patients. Adiponectin 
exerts its activity via two types of  receptor, namely, adi-
ponectin receptor 1 (ADIPOR1) and ADIPOR2[37]. Both 
of  these are widely expressed in diverse cell types, include 
cardiovascular and immune cells. ADIPOR1 is expressed 
markedly in skeletal muscle cells, whereas ADIPOR2 is 
expressed mainly in liver cells[37,38]. When adiponectin 
binds to its receptor, the signaling pathway via activation 
of  peroxisome-proliferator-activated receptor-γ, AMP-ac-
tivated protein kinase (AMPK) or p38 mitogen-activated 
protein kinase (MAPK) has been shown to be active[27]. 
Among these, AMPK acts as a major downstream mol-
ecule of  the adiponectin signaling pathway[39]. 

Chronic low-grade inflammation and oxidative stress 
in obesity have been shown to downregulate Adipoq gene 
and protein expression[40]. TNF-α and IL-6, two main 
inflammatory molecules, are capable of  downregulation 
of  adiponectin via protein kinase C[41] and MAPK signal-
ing[42], respectively. Moreover, adiponectin inhibits mono-
cyte adhesion to endothelial cells as well as inhibiting 
macrophage function, collectively contributing to inflam-
matory cascade regulation[43]. In addition, adiponectin 
was shown to significantly induce anti-inflammatory cy-
tokines (P < 0.05), for instance, IL-10 and IL-1 receptor 
antagonist, in human monocytes and macrophages[44]. 
Recently, it was also found that adiponectin could induce 
the pro-inflammatory function of  isolated CD4+ T cells 
and macrophages by enhancing T-cell differentiation and 
the induction of  interferon gamma production[45]. This 
suggests a new role of  adiponectin in the induction of  
selected inflammatory stimulation for desensitizing these 
cells to further stimuli.

In liver, adiponectin reduces gluconeogenesis in con-
cert with insulin and improves insulin sensitivity[46,47]. The 
plasma level of  adiponectin in isolated human subjects 
is also inversely related to fasting insulin level (r = -0.63) 
and insulin resistance (r = -0.38)[48]. From these lines of  
evidence, adiponectin has been studied for the possibility 
of  using it as a target for diabetic drugs, especially in type 
2 diabetes, and also in cardiovascular diseases.

Adiponectin and periodontal treatment
In elderly patients with chronic periodontitis, serum adi-
ponectin level is similar to that in periodontally healthy 
subjects, but females have a higher serum adiponectin 
level than males[49]. In addition, non-surgical periodontal 
treatment given to adult patients with mild to moderate 
periodontitis did not affect the serum adiponectin lev-
el[29]. This may be explained by the fact that adiponectin 
has different isoforms (low, middle and high molecular 
weight)[50] with different functions. In addition, it was 
suggested that only the ratio of  high-molecular-weight 
adiponectin to total adiponectin was significantly lower 
in subjects with periodontitis[51]. Furthermore, diabetic 

patients with periodontitis who received periodontal 
treatment without or with topical antibiotics showed sig-
nificant elevation of  serum adiponectin compared with 
an untreated group (P < 0.05)[28,30]. Effective control of  
inflammation by periodontal treatment with local antibio-
tics may contribute to increase systemic anti-inflammato-
ry markers such as adiponectin and hence improve over-
all health status[14].

Resistin
Resistin [also known as adipocyte-specific secretory factor 
and found in inflammatory zone (FIZZ)] is a 12.5-kDa 
protein said to play a role as a mediator of  insulin resis-
tance[52]. The name resistin comes from the finding that 
this molecule provides resistance to insulin. The gene that 
encodes this molecule, named Retn, is located on chromo-
some 19 at p13.3[53]. Interestingly, in humans, resistin is 
predominantly secreted by macrophages, rather than adi-
pocytes[54]. Bone marrow, peripheral mononuclear cells, 
lung[55], placenta tissue[56] and pancreatic β-cells[57] can also 
express this molecule. Murine adipocytes, when cultured 
in the presence of  insulin-sensitizing drugs, for example, 
thiazolidinediones, appeared to exhibit suppressed resis-
tin secretion[53]. Circulating resistin was shown to decrease 
upon the administration of  anti-diabetic drugs such as 
rosiglitazone, and to be increased in diet-induced and 
genetic forms of  obesity. From these lines of  evidence, 
it has been postulated that resistin may function as a link 
between obesity and diabetes, especially type 2 diabetes. 
However, one study did not find any relationship between 
resistin and obesity or insulin resistance[54]. This contro-
versial finding may be explained in part by the fact that 
resistin has at least 2 isoforms: a high-molecular-weight 
hexamer form and a more bioactive but less prevalent 
low-molecular-weight trimer form, which exerts a dif-
ferent biological function[27,58]. Numerous clinical studies 
have demonstrated a possible relationship of  resistin and 
insulin resistance in obese people with or without diabe-
tes. The possible contributing factor that links resistin to 
insulin resistance may be hyperresistinemia. In addition, 
recent clinical studies have shown that individuals with a 
high serum resistin level have a significantly increased risk 
of  developing type 2 diabetes[59,60]. 

Resistin may play a pivotal role in monocyte-macro-
phage function and inflammation due to the finding that 
the expression of  resistin was increased in concert with 
the maturation of  monocytes into macrophages[55]. At 
present, the concrete mechanism of  resistin-mediated in-
flammation has not yet been established due to the resistin 
receptor not being identified yet, but an isoform of  deco-
rin and tyrosine kinase-like orphan receptor 1 were pro-
posed as functional resistin receptors that may modulate 
glucose homeostasis or regulate enlargement of  white adi-
pose tissue in rodents[61,62]. Many pro-inflammatory stimuli 
and cytokines including lipopolysaccharide, TNF-α, IL-6 
and IL-1β are capable of  inducing resistin expression and 
function[63-65]. One line of  evidence suggested that resistin 
could also induce the secretion of  pro-inflammatory cyto-
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chronic kidney disease. Additionally, the visfatin level in 
this type of  patient was found to be enhanced, which 
positively correlated with increased homocysteine, an en-
dothelial dysfunction marker[74]. It seems that visfatin lev-
els are positively associated with a series of  inflammatory 
conditions, independently of  other potential metabolic 
implications[75]. 

Research has mainly focused on the role of  visfatin 
in cardiovascular diseases. As mentioned earlier, it was 
shown to induce inflammation of  endothelial cells and 
vascular smooth muscle cells. It also induced TNF-α and 
IL-8 production from peripheral mononuclear cells[76]. 
Additionally, macrophage survival was promoted by visfa-
tin[77]. Exogenous visfatin could stimulate inducible nitric 
oxide synthase, which is a pro-inflammatory cytokine that 
contributes to endothelial dysfunction and vascular injury 
in diabetes-related vascular complications[78,79]. 

Visfatin and periodontal treatment
Because visfatin exerts pro-inflammatory functions in 
several organs, this molecule also correlates with chronic 
inflammation of  periodontal tissue. In periodontitis, it 
was reported that visfatin concentration was increased 
in such patients and the more severe the periodontitis, 
the higher the level of  visfatin observed in serum and 
gingival crevicular fluid (GCF)[80]. Another study was 
performed on an observational basis in healthy subjects, 
those with periodontitis without diabetes and those with 
periodontitis with diabetes; it was found that the mean 
visfatin in both serum and GCF was markedly increased 
in diabetic patients concurrently burdened by periodon-
titis[81]. The periodontal ligament cells could produce 
visfatin and Fusobacterium nucleatum, one of  the periodon-
topathic bacteria, enhanced the level of  visfatin, which 
supports the assertion that bacteria exert an inflamma-
tory bioburden on periodontal tissue. This effect could 
be reversed by biomechanical loading[82]. The effect of  
non-surgical periodontal treatment on serum and GCF 
visfatin level in periodontitis patients was reported by 
Raghavendra et al[83], who found that periodontal treat-
ment given to periodontitis patients could decrease a high 
visfatin level in the active disease stage to a nearly normal 
level, as in periodontally healthy individuals both GCF (P 
< 0.001) and serum (P = 0.008). Although no study has 
yet been conducted on the effect of  non-surgical peri-
odontal treatment on the level of  visfatin in periodontitis 
patient with diabetes, it seems that this molecule is as-
sociated with inflammatory conditions and can be used 
as an inflammatory marker or periodontal disease activity 
marker at both local and systemic levels. 

Adipsin
Adipsin, also known as complement factor D, factor D 
and adipocyte trypsin, is one of  the adipokines secreted 
by adipocytes into the bloodstream. The adipsin gene in 
humans is located at p13.3 on chromosome 19[84]. Adip-
sin belongs to the serine protease family and functions 
in cleavage of  the bond between complement factor 3 

kines, for instance, TNF-α, IL-6, IL-12 or monocyte che-
moattractant protein-1 in peripheral blood mononuclear 
cells and macrophages[65,66]. Collectively, these findings 
show that resistin is a molecule that is closely related to 
systemic inflammation.

Resistin and periodontal treatment
The relationship between serum resistin and periodon-
tal condition was investigated by Furugen et al[49], who 
found that serum resistin and total leukocyte count in 
subjects with periodontitis were higher than those in 
subjects without 6-mm pocket depth or without bleeding 
on probing, with an odds ratio of  2.0 or more. Saito et 
al[67] also found an association between increased severity 
of  periodontitis and increased serum resistin level both 
in bivariate (OR = 3.0; 95%CI: 1.2-7.6) and multivariate 
analyses (adjusted OR = 3.1; 95%CI: 1.1-8.6) analyses, 
and concluded that the increased levels of  serum resistin 
in middle-aged women might affect their systemic health. 
After non-surgical periodontal treatment, the serum resis-
tin level in periodontitis patients who have no underlying 
disease decreased to some extent[68]. Recently, periodontal 
treatment with antibiotics in type 2 diabetic patients was 
shown to result in no difference of  serum resistin level 
compared to that of  healthy counterparts[30]. However, 
this study was performed in only a small number of  sub-
jects (21 subjects) and all subjects were categorized into 
mild periodontitis. The effect of  periodontal treatment 
on serum resistin needs to be more clearly elucidated in a 
larger sample. 

Visfatin
Visfatin, a 52-kDa protein, is another adipokine secreted 
by adipocytes and mimics the effect of  insulin[69]. This 
molecule was found to be enriched in visceral adipose tis-
sue, which is the reason for its name. It was also known 
as pre-B-cell colony-enhancing factor (PBEF)[27] or nico-
tinamide phosphoribosyltransferase (Nampt)[70] PBEF 
or Nampt, with the gene located on chromosome 7 at 
q22.3[71]. Visfatin is essential for nicotinamide adenine 
dinucleotide biosynthesis and hence is related to cell me-
tabolism. In humans, visfatin is mainly expressed in bone 
marrow (highest expression in leukocytes), liver and mus-
cle cells. It is also expressed in various tissues, including 
heart, lung, kidney and placenta. Visfatin has 2 isoforms: 
intracellular and extracellular ones. The intracellular 
isoform mainly functions in energy production in cells, 
while the extracellular isoform is related to increased 
inflammatory cytokines, such as TNF-α, IL-1β, IL-16 
and transforming growth factor-β1, and the chemokine 
receptor C-C chemokine receptor type 3[72].

Visfatin has insulin-mimicking effects, for example, 
increasing glucose uptake and enhancing triglyceride 
biosynthesis, because it binds to the insulin receptor, 
although at a different site from insulin[69]. In type 2 
diabetic individuals, it was demonstrated that visfatin im-
paired vascular endothelial function as well as creatinine 
clearance[73], which probably leads to atherosclerosis and 
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and factor B[85]. Human adipsin is a 24-kDa molecule 
that stimulates acylation-stimulating protein and is then 
involved in the stimulation of  glucose transport, en-
hancement of  fatty acid re-esterification and facilitation 
of  lipid lipolysis[86]. In humans, plasma levels of  adipsin 
are not different or slightly increased in the obese popu-
lation compared with the non-obese one[87,88], but this re-
mains controversial. Recently, it has been demonstrated 
in vitro that high glucose promoted adipocyte-derived 
molecules including adipsin and resistin, but inhibited 
osteogenic differentiation in osteosarcoma (MG-63) 
cells[89]. Recently, adipsin level was increased and posi-
tively correlated with lung fibrosis (r = 0.412, P < 0.001) 
and pleural plaque (r = 0.245, P = 0.043), in asbestos-
exposed workers[90]. This suggested the role of  adipsin in 
inflammation enhancement. 

Adipsin and periodontal treatment
Concerning the role of  adipsin in periodontitis, it was 
suggested that it exerted the same activity as P. gingivalis, 
resulting in the breakdown of  periodontium[91]. The ef-
fect of  periodontal treatment on the change of  adipsin 
in human subjects has not been reported yet, but we hy-
pothesize that this molecule might be decreased as a re-
sult of  inflammatory reduction after periodontal therapy.

PERSPECTIVES
Adipokines are much more complex and involved in 
many systems, include immune and endocrine systems, 
and these molecules influence the pathogenesis of  
obesity-related diseases, particularly type 2 diabetes and 
cardiovascular diseases, as well as inflammatory diseases, 
especially periodontitis. A growing number of  molecules 
have been identified to be secreted from adipocytes and 
more are yet to be discovered. Unravelling their orches-
trated roles in controlling obesity, inflammation and 
periodontal health may lead to successful management of  
pathological conditions. Some markers, especially visfatin, 
are molecules that are closely related to inflammation, 
diabetic condition and periodontitis. With the recent de-
velopment of  sophisticated means to study molecules, we 
now aim to detect, analyze and make use of  a number of  
molecules simultaneously to screen, explain and monitor 
the therapeutic outcome of  disease conditions. This is 
due to no single molecule being able to reflect the nature 
of  complex multifactorial diseases such as periodontitis 
and diabetes. Thus, the disease profile should be set as 
a template from several integrated adipokines, not only 
quantitatively for each molecule but also qualitatively. 
Here, single-nucleotide polymorphisms of  each gene 
controlling these adipokines should be taken into account 
for periodontitis staging in diabetic patients and evaluat-
ing the disease response.

Not only data from serum but also data from non-
invasive methods, for instance, analyses of  gingival 
crevicular fluid and saliva, should be utilized as robust 
confirmation of  local periodontal health. An ideal marker 
for periodontitis will not only demonstrate a clear re-

lationship with periodontitis, but also be linked to sys-
temic conditions that are influenced by periodontitis. To 
develop an adipokine candidate to use as a periodontal 
disease-specific biomarker or therapeutic compound, we 
also need to perform experiments mainly in human sub-
jects to complete our understanding of  the mechanism 
of  such substances.

Robotic science has emerged as an important field in 
medicine. In the next century, in vitro robot-assisted syn-
thesis of  therapeutic molecules that combines the advan-
tages of  each adipokine will probably be launched on the 
market and make a major contribution to the treatment 
of  severe periodontal breakdown, more effectively than 
contemporary therapeutic modalities. At that time, peri-
odontitis in diabetic patients may no longer be a major 
oral health problem.

CONCLUSION
Current knowledge concerning the roles of  major adi-
pokines provides only a partial understanding of  their 
associations with the pathogenesis of  periodontitis in 
type 2 diabetes. This is probably due in part to the limited 
number of  studies conducted on an acceptable number 
of  human subjects. More studies regarding the effect of  
periodontal therapy on several adipokines should be per-
formed. Nevertheless, we saw potential to develop visfa-
tin as a tool for drug discovery and to generate more spe-
cific therapeutic targets. A novel cocktail of  adipokine-
related therapeutic strategies may offer opportunities for 
the successful management of  periodontitis concomitant 
with diabetes.
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Abstract
Diabetic keto acidosis (DKA) is the major cause for 
mortality in children with Diabetes mellitus (DM). With 
increasing incidence of type 1 DM worldwide, there is 
an absolute increase of DM among children between 
0-14 year age group and overall incidence among less 
than 30 years remain the same. This shift towards 
younger age group is more of concern especially in 
developing countries where mortality in DKA is alarm-
ingly high. Prior to the era of insulin, DKA was associ-
ated with 100% mortality and subsequently mortality 
rates have come down and is now, 0.15%-0.31% in 
developed countries. However the scenario in develop-
ing countries like India, Pakistan, and Bangladesh are 
very different and mortality is still high in children with 
DKA. Prospective studies on DKA in children are lack-
ing in developing countries. Literature on DKA related 
mortality are based on retrospective studies and are 
very recent from countries like India, Pakistan and Ban-
gladesh. There exists an urgent need to understand 
the differences between developed and developing 
countries with respect to mortality rates and factors as-
sociated with increased mortality in children with DKA. 
Higher mortality rates, increased incidence of cerebral 
edema, sepsis, shock and renal failure have been iden-
tified among DKA in children from developing countries. 

Root cause for all these complications and increased 
mortality in DKA could be delayed diagnosis in children 
from developing countries. This necessitates creating 
awareness among parents, public and physicians by 
health education to identify symptoms of DM/DKA in 
children, in order to decrease mortality in DKA. Based 
on past experience in Parma, Italy it is possible to pre-
vent occurrence of DKA both in new onset DM and in 
children with established DM, by simple interventions 
to increase awareness among public and physicians.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetic keto acidosis; Mortality; Cerebral 
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Core tip: Mortality in Diabetic keto acidosis (DKA) 
among children from developed countries is due to cere-
bral edema and is very low. The mortality in DKA among 
children from developing countries is due to higher in-
cidence of cerebral edema, sepsis, shock and renal fail-
ure. Delayed diagnosis is the root cause for high mortal-
ity in children with DKA from developed countries. There 
is an urgent need to increase the awareness about dia-
betes among the public and physicians.

Poovazhagi V. Risk factors for mortality in children with dia-
betic keto acidosis from developing countries. World J Dia-
betes 2014; 5(6): 932-938  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/932.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.932

INTRODUCTION
Diabetes mellitus in children is on the rise for past few 
decades. On an average 78000 children are diagnosed 
with diabetes every year[1]. One among every five children 
with newly diagnosed type 1 diabetes mellitus (DM) is 
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found to be an Indian[1]. In this world pandemic of  dia-
betes with efforts to control type 2 DM it is easy that the 
needs of  type 1 DM who are only 10% of  people with 
diabetes is forgotten. Occurrence of  type 1 DM is on 
the rise among children between 0 and 14 years of  age. 
Majority of  children present with diabetic keto acidosis 
(DKA) at onset and this rate is inversely proportional to 
prevalence of  DM in the population[2]. Death in DM is 
predominantly due to DKA. Mortality rates in developed 
countries and developing countries show much variation. 
Similarly the cause for mortality in DKA varies between 
developed countries and developing countries. Cerebral 
edema is the predominant cause for mortality in children 
with DKA from developed countries, while recent data 
from developing countries has shown higher incidence 
of  cerebral edema, sepsis, shock and renal failure as the 
cause for death in DKA[3]. Delayed diagnosis has been 
identified as a major risk factor associated with mortality 
in children from Chennai-India[3].

Overall mortality in children with DKA varies from 
0.15% to 0.35% in developed countries like Canada, 
United States and United Kingdom[4-7] and from 3.4% to 
13.4% in developing countries like India, Pakistan and 
Bangladesh[8-14]. Cerebral edema is the major cause for 
mortality in DKA[15,16]. Occurrence of  cerebral edema 
varies from 0% to 5.5% in developed countries[17-19] and 
is reported to vary from 24%-26% in developing coun-
tries[10]. Literature on reasons for such high mortality 
and associated factors for death in children with DKA 
in developing countries are very recent and majority of  
these are based on retrospective studies. Whether factors 
associated with mortality are pre hospital in nature or 
treatment related needs to be understood. In the editorial 
published in Indian Pediatrics during the year 2004, titled 
“What determines the outcome of  DKA in children 
from a developing country?” author has raised issues 
regarding fluid therapy in DKA[20]. The role of  amount 
and rate of  fluid administration in the management of  
DKA associated cerebral edema is still controversial. Tra-
ditionally cerebral edema has been linked to fluid therapy 
in DKA. A recent article titled ‘Warning from India’ has 
addressed the issue of  high mortality and high incidence 
of  sepsis and cerebral edema in children with DKA from 
a developing country[21]. Association of  sepsis may have a 
great impact on fluid therapy in DKA.

DKA RELATED CEREBRAL EDEMA 
Cerebral edema has been the major risk factor for mortal-
ity in children with DKA world over. Despite decades of  
management of  DKA the exact cause for cerebral edema 
in DKA is yet to be understood. Whether hypo perfusion 
related ischemia leading to cytotoxic edema or reperfu-
sion induced vasogenic edema, is the cause for cerebral 
edema is controversial. However initial cytotoxic edema 
followed by subsequent vasogenic edema can very well 
contribute to development of  cerebral edema in DKA. 
Also the role of  inflammatory mediator release, glucotox-

icity, uremia or acidosis in causing cerebral edema, is not 
clearly understood. Occurrence of  cerebral edema can be 
at the time of  presentation or during therapy up to initial 
24 h. Predisposing factors for cerebral edema in children 
with DKA have been identified in various studies in de-
veloped countries. Identified factors are disease related 
or treatment related or both. Identified factors vary from 
young age at presentation, new onset disease, rate and 
amount of  fluids used for resuscitation, blood urea nitro-
gen, body mass index, initial osmolality, rapid fall in os-
molality, failure of  sodium to rise with treatment, use of  
bicarbonate for correction of  acidosis, insulin infusion in 
the first hour of  therapy of  DKA or bolus insulin ther-
apy in DKA[22-30]. There has been no consistency among 
the factors identified for occurrence of  cerebral edema in 
various studies published till date. 

Occurrence of  cerebral edema from developing 
countries has been found to be as high as 26% among 
a cohort of  children admitted at a pediatric intensive 
care unit in north India[11]. Literature on reasons for 
such high incidence of  cerebral edema from developing 
countries is very scarce. Studies by Tiwari et al[11] from 
Chandigarh-India have identified fluid refractory shock, 
higher volume of  fluids at admission and respiratory fail-
ure requiring ventilation to be significant risk factors for 
cerebral edema in DKA. However only fluid refractory 
shock, azotemia and younger age were identified to be 
significant risk factors for cerebral edema in multivariate 
analysis[11]. Literature from Chennai-India has revealed 
cerebral edema in 24% of  study group[3]. In this prospec-
tive study of  118 children with DKA, specific risk factor 
related mortality for cerebral edema was 43%. A higher 
fluid bolus at the emergency room for resuscitation was 
a significant therapy related factor for cerebral edema 
by univariate analysis. Cerebral edema was significantly 
associated with altered sensorium, lower PaCO2 at admis-
sion, delayed diagnosis and failure of  sodium to rise with 
therapy by multivariate analysis. Both the studies from 
India have identified higher fluids as risk factors for cere-
bral edema in univariate analysis but were not significant 
in multivariate analysis[3,11]. This may be an important ob-
servation in developing countries where sepsis has been 
an important factor associated with increased mortality 
in children with DKA. Too much of  fluid for resuscita-
tion resulting in cerebral edema is still controversial in 
DKA. Similarly less fluid in a child with DKA and shock 
may also worsen risk of  cerebral edema and renal failure. 
Sepsis by itself  will demand large volumes of  fluid bo-
luses in a child. Hence recommendations regarding fluid 
therapy based on guidelines from developed countries 
where sepsis and shock are not major factors in children 
with DKA needs to be addressed for future guidelines 
when applied to developing countries. Whether there is a 
need for more liberal fluid therapy in DKA in developing 
countries where sepsis, shock and renal failure have been 
identified to be risk factors for mortality needs to be ad-
dressed by multicentric trials. 
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SEPSIS IN DKA
Sepsis in DKA as a risk factor for increased mortality has 
been identified in studies form developing countries like 
India, Pakistan and Bangladesh[8-12,14]. Majority of  these 
studies were based on retrospective data. Still they have 
identified sepsis as a definite risk factor for mortality in 
children with DKA. Though infections have not been 
identified to be a major comorbid state in children with 
type 1 diabetes from developed countries, studies from 
Chennai-India has shown that infections are much more 
common in children with diabetes in comparison to chil-
dren without diabetes[31]. In this context infections do 
play a major role in children with DKA. Sepsis not only 
precipitates DKA, also complicates fluid therapy, pre-
disposes to renal failure and is associated with increased 
mortality in DKA based on data from developing coun-
tries. Jayashree et al[10] in 2004 from India published their 
retrospective study in DKA. They reported that among 
64 children with DKA 30 children had foci of  infection. 
Respiratory infection in 10, soft tissue infection in 10, 
meningitis in 3, hepatitis in 2, peritonitis, chronic suppu-
rative otitis media, tonsillitis, ethmoiditis and oral and vul-
val candidiasis in one each. Cerebral edema and compli-
cating sepsis were reported to result in poor outcome in 
children with DKA. In their series, sepsis was the trigger-
ing factor in one third of  cases. In study from Chennai-
India, infections were encountered in 61 children among 
the study group of  118 children[3]. Of  these 49 had iden-
tified focus of  infection (41.5%). Culture positive sepsis 
was seen in 12% of  children with DKA and is associated 
with specific risk related mortality of  57%. Other infec-
tions encountered were pneumonia, urinary tract infec-
tions, skin and soft tissue infections, mucormycosis, acute 
suppurative otitis media, enteric fever and peritonitis. 
Kanwal et al[12] from Delhi India has identified 32.7% of  
study group (18 of  the 55 children) to have sepsis. Docu-
mented infection were reported to be 16.3%. Urinary 
tract infection, pneumonia, diaorrhea and culture positive 
sepsis were the identified infections. Study by Tiwari et 
al[11] published in 2012 had revealed 58% of  study popu-
lation as sepsis as per standard definition. However only 
1/5th of  this group had a focus of  infection identified. 
Respiratory tract was the focus in 6, gastrointestinal in 4, 
sinonasal mucormycosis, urinary tract infection (UTI), 
acute otitis media, peritonitis, tonsillitis and cellulitis one 
each. Infections have been reported in 48% of  children 
with DKA by Zabeen et al[14] from Bangladesh. Mortality 
in their study group were attributed to cerebral edema 
and sepsis. Respiratory infections were commonest fol-
lowed by urinary tract infections, sepsis and pneumonia. 

Studies from Iran by Asl et al[32] reported that among 
63 children with DKA 13 of  them had infections. This 
was inclusive of  pneumonia, tuberculosis, diarrhea and 
upper respiratory infections. The study documented 
acute renal failure in 4.7%. Clinical diagnosis of  sepsis 
as well as shock may be over diagnosed in children with 
DKA. Presence of  fever in DKA signifies infection and 

the focus need to be identified. The criteria for systemic 
inflammatory response (SIRS), when applied to children 
with DKA may lead to over diagnosis of  sepsis. Tachy-
cardia and tachypnea as criteria can be explained by de-
hydration and keto acidosis rather than sepsis and lactic 
acidosis. Lactic acidosis in DKA could be due to sepsis, 
hypovolemia or due to disturbed carbohydrate metabo-
lism perse. Similarly DKA is known to be associated with 
leucocytosis and this is not specific for sepsis in DKA[33]. 
Leukocytosis is a part of  stress response in DKA and 
may be seen in up to 50%-60% of  children with DKA[34]. 
One needs to be very cautious about diagnosing sepsis 
based on the criteria for SIRS in DKA. Any child with 
fever or a focus of  infection along with any of  the above 
criteria can be taken as sepsis complicating DKA. Cur-
rent guidelines from developed countries where sepsis 
is not a major factor, do not recommend antibiotics in 
DKA. Based on literature evidence from developing 
countries, sepsis is more common and sepsis complicat-
ing DKA has increased mortality. Hence antibiotics may 
be empirically considered in children with fever or refrac-
tory shock despite the absence of  obvious focus of  sep-
sis, until infections have been ruled out in DKA among 
children from developing countries.

SHOCK IN DKA
Shock as a presentation in DKA is rare in literature 
from developing countries[35]. International Society for 
Pediatric and Adolescent Diabetes clinical practice con-
sensus guidelines 2009 compendium states the follow-
ing “Despite of  their dehydration, patients continue to 
maintain normal blood pressure and have considerable 
urine output until extreme volume depletion and shock 
occurs, leading to a critical decrease in renal blood flow 
and glomerular filtration”[36]. However it is uniformly re-
ported in literature from developing countries that shock 
at presentation in children with DKA is fairly common. 
Studies from Pakistan[8] have revealed incidence of  shock 
to be 19.3% in their study and overall mortality was 3.4%. 
Tiwari et al[11] from Chandigarh, India documented in 
their study that 48% of  study population with DKA at 
the pediatric intensive care unit had hypotensive shock at 
presentation and of  them 30% needed inotropes. Kanwal 
et al[12] from India have documented in their study on 55 
DKA children, incidence of  shock to be 18.1%, 10.9% 
were due to hypovolemia and 7.25% were due to septic 
shock. Study from Chennai[3] has shown occurrence of  
shock at presentation in DKA to be 12% and specific 
risk factor related mortality in DKA to be 53%. Accord-
ing to another study from Chennai, India among the 23 
children with DKA 10 presented with shock[37]. However 
criteria used to assess shock in those children and sever-
ity of  shock had not been discussed. Shock in DKA is a 
combination of  hypovolemia and sepsis. To differenti-
ate between the two is difficult and most of  the time it 
may be a combination of  hypovolemia and sepsis. The 
clinical evidence for hypovolemia in DKA is not reliable 
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estimation is likely to be associated with spurious eleva-
tion due to interference by ketones. Fluid restriction in a 
child with sepsis and shock (hypovolemic or septic) for 
fear of  cerebral edema during management of  DKA may 
predispose to renal failure. Child with severe dehydration 
with delay in diagnosis may present with acute tubular 
necrosis leading to renal failure in DKA. Management of  
renal failure in DKA poses great difficulty for the treating 
physicians. Following needs to be considered in renal fail-
ure in DKA-modification of  amount and type of  fluids 
for therapy, consideration of  using bicarbonate, varied 
metabolism and sensitivity of  insulin. Peritoneal dialysis 
in such children also leads to severe fluctuations of  blood 
glucose levels. Presently there are no standard guidelines 
for management of  renal failure in DKA among children. 
There is an urgent need for such guidelines based on the 
existing evidence from developing countries.

DELAYED DIAGNOSIS OF DKA
What predisposes children with DKA to such compli-
cations in developing countries needs to be addressed 
urgently. Delayed diagnosis in DKA has been identified 
to be one of  the factors for mortality in DKA in studies 
from Chennai-India[3] and also recently has been pre-
sented as an e poster at a conference, from Chandigarh-
India[41]. Children with diabetes presenting with DKA 
at the onset has been attributed to delay in diagnosis in 
developed countries. Missed diagnosis of  DKA predis-
posing the child to DKA is common in literature. How-
ever delay in diagnosis as a significant risk factor for 
mortality in DKA has been identified only from India[3]. 
This study reported that children with DKA had 1-5 
physician visits prior to diagnosis of  DKA. Children 
with DKA were more likely to have consulted a physi-
cian prior to diagnosis of  DKA as reported in literature 
from developed countries. Rosenbloom[39] from US had 
mentioned that children with new onset DKA has been 
seen in physician’s office prior to diagnosis without 
adequate history and laboratory evaluation. In infants 
and young children symptoms may be nonspecific and 
this needs a high index of  suspicion to diagnose DKA. 
Literature reports that DKA has been misdiagnosed as 
surgical emergencies with acute abdomen[42]. Bui et al[43] 
from Canada published that among 285 children with 
DKA, 38.8% and 1104 children with diabetes with no 
DKA, 34.4% had at least one medical visit during the 
week before diagnosis (p-026). Ali et al[44] had published 
in 2011 that 30% of  newly diagnosed children have 
had at least one related medical visit prior to diagnosis, 
suggesting the condition is being missed by doctors. 
Majaliwa et al[45] from Africa mention in their article that 
DKA can easily be misdiagnosed as cerebral malaria or 
meningitis in busy emergency reception areas of  most 
hospitals in Africa. Literature reveals similar studies 
from Tunisia and Tanzania[46,47]. However none of  these 
studies have identified delayed diagnosis as a risk factor 
for mortality in children with DKA. Study from Chen-

as published in literature. Intra cellular dehydration in 
DKA may not be clinically evident and hence degree of  
dehydration may be under diagnosed. Capillary refill time 
in DKA cannot be relied as a sign of  shock in DKA[38]. 
Tachycardia could be a physiological response to dehy-
dration in DKA and this needs caution while interpreting 
it as a sign of  shock. Tachypnea for similar reasons is due 
to acidosis which is predominantly keto acids and can-
not be interpreted as a sole evidence of  hypo perfusion 
and lactic acidosis. Altered sensorium in DKA can be 
explained by cerebral edema, severe acidosis or shock in 
DKA. This feature cannot be relied as a sign of  poor end 
organ perfusion of  shock. In developing countries where 
cerebral edema, shock, sepsis and renal failure are report-
ed to be common in DKA, diagnosis based on clinical 
features alone may be challenging for the pediatrician at 
the emergency department. Hence the criteria for septic 
shock or hypovolemic shock may need to be applied with 
clinical judgment in children with DKA. Presence of  
fever, hypotension, wide pulse pressure in septic shock, 
clinical evidence of  dehydration in hypovolemia may be 
better indicators of  type of  shock in DKA. Similarly is 
the assessment of  dehydration in shock. Clinical signs of  
dehydration may not be evident in DKA. Since initial de-
hydration is predominantly intra cellular there may not be 
obvious clinical evidence of  dehydration at presentation 
in a child with DKA. This might lead to underestimation 
of  degree of  dehydration in DKA. With recent literature 
from developing countries regarding shock and sepsis 
in DKA, we need to reappraise the existing guidelines 
from developed countries for fluid therapy in children 
with DKA. Whether less fluid is harmful or more fluid is 
harmful needs to be answered by well planned fluid trials 
for children with DKA from developing countries. 

RENAL FAILURE IN DKA
Renal failure in children with DKA is a complication 
unheard of  in literature from developed countries[39]. 
Children from developing countries presenting with renal 
failure in DKA is not uncommon. Studies from Iran by 
Asl et al[32] reports that 4.7% of  children with DKA had 
acute renal failure. Studies from Bangladesh by Zabeen 
et al[14] have shown the incidence of  renal failure to be 
3.7% in DKA. Published literature from Chennai, In-
dia[40] revealed acute renal failure in DKA to be 11.5%. 
Mortality among children with DKA and acute renal 
failure was documented to be 40%-72%. Sepsis, shock 
and rhabdomyolysis causing acute renal failure have been 
reported in the series. Renal failure leads to difficulty in 
diagnosis as well as management of  DKA. Oliguria and 
anuria as criteria for renal failure is not reliable in DKA 
due to osmotic diuresis of  hyperglycemia. Similarly, 
urea and creatinine values may be elevated in DKA due 
to prerenal causes like dehydration which declines with 
adequate fluids. Subsequent elevation in creatinine can-
not be taken as a definite criterion for renal failure as 
the commonly used calorimetric method of  creatinine 
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nai[3] has identified delayed diagnosis in DKA in 64.8% 
of  children with new onset DKA. Eighty-four point 
seven percent of  infants and 58% of  school children 
with DKA had delayed diagnosis. Delayed diagnosis 
was encountered in 12 of  13 children who died of  
DKA in their study. Specific risk factor related mortal-
ity for delayed diagnosis was 21% in the study[3]. Fac-
tors identified for the delayed diagnosis in their study 
is summarized in Table 1. Tachypnea in DKA has been 
universally misdiagnosed as bronchopneumonia, bron-
chiolitis or acute severe asthma in children. Polyuria and 
polydipsia have been misinterpreted as UTI in most of  
the children. Abdominal pain is misinterpreted as worm 
infestation and acute gastritis. Dehydration in the pres-
ence of  vomiting is usually treated as acute gastroenteri-
tis. Recent onset bed wetting is seen as a sign of  stress 
in school children. Literature reveals up to 15%-86% of  
children with DKA not been diagnosed as diabetic at 
the first physician consultation[43,44,48,49]. 

Delay due to missed diagnosis is universal in DKA 
among children from developed and developing coun-
tries. Literature also reveals that, simple estimation of  
blood glucose by capillary method using finger prick has 
been used very rarely in physician consultation room[3]. A 
simple investigation in the physician’s consultation room 
could have led to the diagnosis in children who had their 
diagnosis missed prior to DKA. Similarly, laboratories did 
not alert the treating physician or the parent when they 
measured high blood glucose or documented glycosuria 
in children[3]. Inappropriate referral was again reason for 
delay in specific management as the facilities for man-
agement of  DKA by a structured diabetic care team or 
intensive care pediatrician is not universally available in 
developing countries. All treating physicians should have 
access to the standard treatment protocols for manage-
ment of  children with DKA or should have an access to 
help through hot line facilities at times of  need. These 
factors coupled with lack of  knowledge about emergency 
free public transport facilities, economic constraints and 
unhealthy cultural practices lead to delay in management 
of  DKA in children from developing countries. 

CONCLUSION
Analyzing the magnitude of  problems in DKA in chil-

dren from developing countries it is obviously evident 
that the mortality rates and reasons for such high mortal-
ity in DKA to be very different from developed coun-
tries. However majority of  standard treatment protocols 
followed in developing countries are based on recom-
mendation from developed countries. Root cause for ma-
jority of  these complications could be delayed diagnosis 
of  DKA. There is an urgent need for modified protocols 
for children with DKA and shock or renal failure. Fluid 
trials in such children is an urgent need of  the hour. 
There exists difficulty in recognizing the symptoms of  
diabetes among parents and physicians[50]. With regard to 
delay in diagnosis there is a need for creating awareness 
among parents and physicians regarding clinical features 
of  DM and DKA. The best strategy would be to identify 
DKA early and refer them to appropriate centers for 
management immediately. The laboratories should raise 
high risk alert immediately to the parent or the physician 
when they encounter a child’s report with hyperglycemia 
and/or glycosuria.

As majority of  the risk factors identified for mortal-
ity in DKA among children from developing countries 
are pretreatment factors, the ultimate aim of  future pro-
grammes should be to prevent DKA in children. DKA 
occurring in new onset DM or in a known diabetic child 
is considered as a preventable health care failure. Vanelli 
et al[51,52] in Parma, Italy have proved that simple aware-
ness programmes in schools and physicians office in the 
form of  posters depicting signs of  diabetes have helped 
over 5 years to reduce occurrence of  DKA to zero. This 
has been proved to be successful even years after the pro-
gramme was stopped. Studies from Australia have shown 
reduction in the rate of  DKA at initial diagnosis of  dia-
betes, during awareness campaigns[53]. Similar models with 
modification to local needs can help prevent delay in di-
agnosis of  DKA among children from developing coun-
tries. Initiatives and awareness programmes need to be 
implemented in countries like India where the magnitude 
of  the problem is likely to increase over years. It is time 
that emergency interventions are undertaken to minimize 
deaths in DKA in developing countries. Increased aware-
ness among parents, school teachers and physicians is 
urgently warranted for early diagnosis and prevention of  
mortality in DKA. Creating awareness through nation-
wide diabetic awareness day can help an earlier diagnosis 
of  DKA among children. 
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Abstract
AIM: To assess whether ischemic stroke severity and 
outcome is more adverse in patients with type 2 diabe-
tes mellitus (T2DM). 

METHODS: Consecutive patients hospitalized for 
acute ischemic stroke between September 2010 and 
June 2013 were studied prospectively (n  = 482; 40.2% 
males, age 78.8 ± 6.7 years). T2DM was defined as 
self-reported T2DM or antidiabetic treatment. Stroke 
severity was evaluated with the National Institutes of 
Health Stroke Scale (NIHSS) score at admission. The 
outcome was assessed with the modified Rankin scale 
(mRS) score at discharge and with in-hospital mortal-
ity. Adverse outcome was defined as mRS score at 
discharge ≥ 2 or in-hospital death. The length of hos-
pitalization was also recorded. 

RESULTS: T2DM was present in 32.2% of the study 
population. Patients with T2DM had a larger waist 
circumference, higher serum triglyceride and glucose 
levels and lower serum high-density lipoprotein cho-
lesterol levels as well as higher prevalence of hyper-
tension, coronary heart disease and congestive heart 
failure than patients without T2DM. On the other hand, 
diabetic patients had lower low-density lipoprotein 
cholesterol levels and reported smaller consumption of 
alcohol than non-diabetic patients. At admission, the 
NIHSS score did not differ between patients with and 
without T2DM (8.7 ± 8.8 and 8.6 ± 9.2, respectively; P  
= NS). At discharge, the mRS score also did not differ 
between the two groups (2.7 ± 2.1 and 2.7 ± 2.2 in 
patients with and without T2DM, respectively; P  = NS). 
Rates of adverse outcome were also similar in patients 
with and without T2DM (62.3% and 58.5%, respective-
ly; P  = NS). However, when we adjusted for the differ-
ences between patients with T2DM and those without 
T2DM in cardiovascular risk factors, T2DM was inde-
pendently associated with adverse outcome [relative 
risk (RR) = 2.39; 95%CI: 1.21-4.72, P  = 0.012]. In-
hospital mortality rates did not differ between patients 
with T2DM and those without T2DM (9.0% and 9.8%, 
respectively; P  = NS). In multivariate analysis adjusting 
for the difference in cardiovascular risk factors between 
the two groups, T2DM was again not associated with 
in-hospital death. 

CONCLUSION: T2DM does not appear to affect isch-
emic stroke severity but is independently associated 
with a worse functional outcome at discharge.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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sion, atrial fibrillation, smoking, alcohol consumption, 
family history of  CVD, chronic kidney disease], history of  
concomitant CVD [coronary heart disease (CHD), previ-
ous stroke, congestive heart failure] and pharmacological 
treatment were recorded. T2DM was defined as self-re-
ported T2DM or antidiabetic treatment. Anthropometric 
parameters (weight, height, waist and hip circumference, 
waist to hip ratio) and systolic and diastolic blood pressure 
were also measured. The severity of  stroke was assessed 
at admission with the National Institutes of  Health Stroke 
Scale (NIHSS) score.

Routine laboratory investigations were performed af-
ter overnight fasting on the first day after admission and 
included serum levels of  glucose, total cholesterol, high-
density lipoprotein cholesterol (HDL-C), triglycerides 
(TG), creatinine, uric acid and HbA1c. Low-density lipo-
protein cholesterol (LDL-C) levels were calculated using 
Friedewald’s formula[8]. Glomerular filtration rate (GFR) 
was estimated using the Modification of  Diet in Renal 
Disease equation[9]. Chronic kidney disease was defined 
as estimated GFR < 60 mL/min per 1.73 m2.

All patients underwent brain computed tomography 
at admission and a second brain computed tomography 
was performed if  clinically indicated.

All patients without atrial fibrillation were treated 
with aspirin; clopidogrel was given to patients intolerant 
to aspirin. Patients who were on aspirin prior to stroke 
were switched to clopidogrel and vice versa. Patients with 
atrial fibrillation were treated with low-molecular weight 
heparin. All patients were given a statin. Antihyperten-
sive agents were discontinued during the acute phase of  
stroke except beta-blockers. Most patients with T2DM 
were treated with insulin during the acute phase of  
stroke. No patient underwent thrombolysis.

The outcome was assessed with the modified Rankin 
scale (mRS) score at discharge and with in-hospital mor-
tality. Adverse outcome was defined as mRS score at 
discharge ≥ 2 or in-hospital death. The length of  hospi-
talization was also recorded.

Statistical analysis
All data were analyzed with the statistical package SPSS 
(version 17.0; SPSS, Chicago, IL, United States). Data are 
presented as percentages for categorical variables and as 
mean and standard deviation for continuous variables. 
Differences in categorical and continuous variables be-
tween groups were assessed with the χ 2 test and one-way 
analysis of  variance, respectively. Binary logistic regres-
sion analysis was performed to evaluate the independent 
association between T2DM and adverse outcome or in-
hospital mortality after adjusting for the differences in 
CVD risk factors between patients with and without 
T2DM. In all cases, a two-tailed P < 0.05 was considered 
significant.

RESULTS
T2DM was present in 32.2% of  the study population. 
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Core tip: Even though type 2 diabetes mellitus (T2DM) 
is a major independent risk factor for ischemic stroke, 
it is unclear whether stroke severity and functional 
outcome differs between diabetic and non-diabetic pa-
tients. In the present study, T2DM was associated with 
worse functional outcome at discharge despite similar 
stroke severity at admission. The detrimental effect of 
T2DM on functional outcome was independent of the 
increased prevalence of cardiovascular risk factors in 
diabetic patients.

Tziomalos K, Spanou M, Bouziana SD, Papadopoulou M, 
Giampatzis V, Kostaki S, Dourliou V, Tsopozidi M, Savo-
poulos C, Hatzitolios AI. Type 2 diabetes is associated with 
a worse functional outcome of ischemic stroke. World J Dia-
betes 2014; 5(6): 939-944  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i6/939.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i6.939

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a major independent 
risk factor for cardiovascular disease (CVD), including 
stroke[1]. In a meta-analysis of  102 prospective studies (n 
= 698782), patients with T2DM had 2.27 times higher 
risk for ischemic stroke[1]. Moreover, in the INTER-
STROKE study, a case-control study in 22 countries 
worldwide, T2DM accounted for 5% of  the population-
attributable risk for stroke[2]. Given the rising prevalence 
of  T2DM due to the epidemic of  obesity, the number 
of  patients suffering stroke due to T2DM is expected to 
further increase[3,4].

In contrast to the unequivocal association between 
T2DM and the increased risk for ischemic stroke, it is 
unclear whether patients with T2DM suffer more severe 
strokes or have worse outcome following stroke com-
pared with subjects without T2DM[5-7]. Moreover, it is 
uncertain whether T2DM is independently associated 
with more severe stroke and with worse stroke outcome 
or if  this relationship is due to the higher prevalence of  
other CVD risk factors in patients with T2DM, including 
hypertension, dyslipidemia and obesity[5-7].

The aim of  the present study was to evaluate the 
association between T2DM and acute ischemic stroke 
severity and in-hospital outcome. Furthermore, we aimed 
to examine whether T2DM affects stroke severity and 
outcome independently from other CVD risk factors.

MATERIALS AND METHODS
We prospectively studied all patients who were admitted 
to our department with acute ischemic stroke between 
September 2010 and June 2013 (n = 482; 40.2% males, 
age 78.8 ± 6.7 years).

At admission, demographic data (age, sex), history of  
T2DM and other cardiovascular risk factors [hyperten-



The mean duration of  T2DM was 11.1 ± 8.2 years and 
the mean HbA1c in patients with T2DM was 7.6 ± 1.5. 
Clinical characteristics of  patients with T2DM and pa-
tients without T2DM are shown in Table 1. Patients 
with T2DM had larger waist circumference and higher 
prevalence of  hypertension, CHD and congestive heart 
failure than patients without T2DM but reported a lower 
consumption of  alcohol than the latter. Laboratory char-
acteristics of  patients with T2DM and patients without 
T2DM are shown in Table 2. Patients with T2DM had 
higher serum TG levels and lower serum HDL-C levels 
than patients without T2DM but had lower LDL-C levels 
than the latter (P < 0.01 for all comparisons). Serum glu-
cose levels were also higher in the former.

At admission, the NIHSS score did not differ between 
patients with and without T2DM (8.7 ± 8.8 and 8.6 ± 
9.2, respectively; P = NS). The outcome of  the 2 groups 
is shown in Table 3. The duration of  hospitalization was 
comparable in patients with and without T2DM (6.9 ± 4.6 
d and 6.7 ± 4.1 d, respectively; P = NS). The mRS score 
at discharge also did not differ between the two groups 
(2.7 ± 2.1 and 2.7 ± 2.2 in patients with and without 
T2DM, respectively; P = NS). The NIHSS score at dis-
charge was also comparable in patients with and without 
T2DM (6.2 ± 6.4 and 6.0 ± 6.2, respectively; P = NS). 
Rates of  adverse outcome were also similar in patients 
with and without T2DM (62.3% and 58.5%, respectively; 
P = NS). However, when we adjusted for the differences 
between patients with T2DM and those without T2DM 
in cardiovascular risk factors (weight, consumption of  al-
cohol, prevalence of  hypertension, CHD and congestive 
heart failure, and serum LDL-C, TG and HDL-C levels), 
T2DM was independently associated with adverse out-
come [relative risk (RR) = 2.39; 95%CI: 1.21-4.72, P = 
0.012]. In-hospital mortality rates did not differ between 
patients with T2DM and those without T2DM (9.0% 

and 9.8%, respectively; P = NS). In multivariate analysis 
adjusting for the difference in cardiovascular risk factors 
between the two groups, T2DM was again not associated 
with in-hospital death.

We also evaluated whether T2DM duration and gly-
cemic control were associated with stroke severity and 
outcome. At admission, the NIHSS score did not differ 
between patients with T2DM duration > 10 years (n = 
64, 41.3% of  patients with T2DM), patients with T2DM 
duration ≤ 10 years and patients without T2DM (8.8 
± 9.0, 7.7 ± 8.2 and 8.6 ± 9.2, respectively; P = NS) or 
between patients with T2DM and HbA1c > 9% (n = 28, 
18.1% of  patients with T2DM), patients with T2DM 
and HbA1c ≤ 9% and patients without T2DM (8.4 ± 
9.8, 10.6 ± 9.5 and 8.6 ± 9.2, respectively; P = NS). In 
univariate analysis, the duration of  hospitalization, the 
mRS score at discharge and the rates of  adverse outcome 
at discharge did not differ between patients with T2DM 
duration > 10 years, patients with T2DM duration ≤ 10 
years and patients without T2DM. In multivariate analy-
sis, both patients with T2DM duration > 10 years and 
patients with T2DM duration ≤ 10 years had higher risk 
for adverse outcome than patients without T2DM (RR = 
2.66; 95%CI: 1.17-6.08 and RR = 2.60; 95%CI: 1.05-7.49, 
respectively; P = 0.030). The risk for adverse outcome 
did not differ between patients with T2DM duration > 
10 years and patients with T2DM duration ≤ 10 years. In 
contrast, in-hospital mortality rates did not differ between 
patients with T2DM duration > 10 years, patients with 
T2DM duration ≤ 10 years and patients without T2DM 
in either univariate or multivariate analysis. The duration 
of  hospitalization, the mRS score at discharge and the 
rates of  adverse outcome at discharge and in-hospital 
mortality also did not differ between patients with T2DM 
and HbA1c > 9%, patients with T2DM and HbA1c ≤ 9% 
and patients without T2DM in either univariate or multi-

Table 1  Clinical characteristics of patients with type 2 diabetes mellitus and those without
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Patients with T2DM (n  = 155) Patients without T2DM (n  = 327) P

Age (yr)   78.3 ± 6.3 79.1 ± 6.9 NS
Males (%) 38.7 41.0 NS
Systolic blood pressure (mmHg)   150 ± 24 146 ± 25 NS
Diastolic blood pressure (mmHg)     81 ± 10   81 ± 14 NS
Hypertension (%) 88.4 78.6 0.013
Smoking (current/past, %) 12.9/22.6 11.6/20.5 NS
Package-years     17 ± 39   14 ± 33 NS
Atrial fibrillation (%) 38.7 34.6 NS
Alcohol consumption (units/wk)     0.7 ± 2.4     2.1 ± 11.7 0.045
Weight (kg)     77.0 ± 13.0   73.7 ± 13.8 0.04
Body mass index (kg/m2)   28.1 ± 5.2 27.2 ± 5.1 NS
Waist (cm) 110 ± 9 101 ± 13 < 0.001
Waist/hip     1.00 ± 0.06   0.97 ± 0.08 NS
Overweight/obese (%) 44.1/26.9 38.5/25.0 NS
Family history of cardiovascular disease (%) 14.8 15.0 NS
Coronary heart disease (%) 35.5 23.9 0.01
Previous ischemic stroke (%) 44.5 37.9 NS
Chronic kidney disease (%) 36.9 33.5 NS
Chronic heart failure (%) 26.5 16.5 0.015

T2DM: Type 2 diabetes mellitus; NS: Not significant.
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charge did not differ between diabetic and non-diabetic 
patients in unadjusted analyses in our study, binary logistic 
regression analysis adjusting for differences in CVD risk 
factors between the 2 groups identified an independent 
association between T2DM and adverse outcome (RR = 
2.39). Therefore, our findings suggest that T2DM has a 
detrimental effect on ischemic stroke and that this asso-
ciation is not fully explained by the increased prevalence 
of  other CVD risk factors in diabetic patients. Indeed, 
several studies suggested that hyperglycemia per se pre-
dicts worse outcomes in patients with ischemic stroke[15]. 
On the other hand, administration of  insulin to main-
tain normoglycemia in these patients does not appear 
to improve functional outcome or to reduce in-hospital 
mortality[16,17]. Moreover, there is a paucity of  studies that 
assessed the relationship between T2DM and functional 
outcome at discharge in acute ischemic stroke[13,18-20]. Both 
studies that adjusted for confounding variables reported 
a worse outcome in diabetic patients[18,19], whereas both 
studies that reported only unadjusted analyses did not 
identify any difference in functional outcome between 
patients with T2DM and patients without T2DM[13,20]. 
Accordingly, more studies are needed to evaluate whether 
T2DM affects functional outcome and to clarify the 
pathogenetic mechanisms underpinning this association.

In-hospital mortality rates did not differ between dia-
betic and non-diabetic patients in our study. This lack of  
difference was observed both in unadjusted analyses and 
when we adjusted for confounding variables. Some previ-
ous studies with only unadjusted analyses reported similar 
findings[13,20], whereas in-hospital mortality was higher in 
diabetic patients in a recent large study when multivari-
ate analysis was performed[19]. Notably, in the latter study, 
mortality rates were identical in patients with and without 
T2DM in univariate analyses. Therefore, it is possible that 

variate analysis.

DISCUSSION
The main findings of  the present study are that the se-
verity of  ischemic stroke does not appear to differ be-
tween patients with T2DM and those without T2DM. In 
contrast, T2DM independently portends a more adverse 
functional outcome at discharge in this population.

The neurological deficit at admission, evaluated with 
the NIHSS, was almost identical in diabetic and non-
diabetic patients in our study (8.7 ± 8.8 and 8.6 ± 9.2, 
respectively; P = NS). A few studies have compared 
stroke severity between patients with T2DM and without 
T2DM, yielding conflicting results[10-13]. The two largest 
studies (n = 233 and 611 patients with T2DM) reported 
no association between T2DM and stroke severity, in ac-
cordance with our findings[10,11]. In contrast, an early small 
study (n = 50 diabetic patients) suggested that stroke is 
more severe in patients with T2DM; however, stroke 
severity was evaluated with a non-validated neurological 
index[12]. Finally, in a more recent report (n = 102 diabetic 
patients), patients with T2DM had a less severe stroke at 
admission[13]. The latter study included younger patients 
and a higher percentage of  males than the present study; 
it is possible that this might have contributed to the 
less severe stroke presentation in diabetic patients since 
T2DM appears to increase CVD risk more in women and 
in older subjects[1]. Indeed, among patients with T2DM 
who suffer an ischemic stroke, women have a less favor-
able prognosis than men[14]. Nevertheless, the discordant 
findings regarding the association between T2DM and 
ischemic stroke severity stress the need for larger studies 
to resolve these discrepancies.

Even though the rates of  adverse outcome at dis-
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Table 2  Laboratory characteristics of patients with type 2 diabetes mellitus and those without

Patients with T2DM (n  = 155) Patients without T2DM (n  = 327) P

Glucose (mg/dL) 145 ± 64   99 ± 27 < 0.001
LDL-C (mg/dL) 103 ± 43 116 ± 38    0.007
HDL-C (mg/dL)   43 ± 14   48 ± 15    0.002
Triglycerides (mg/dL) 136 ± 63 112 ± 44    0.001
Uric acid (mg/dL)   5.8 ± 1.8   5.7 ± 1.9 NS
eGFR (mL/min per 1.73 m2)   67 ± 22   70 ± 23 NS

T2DM: Type 2 diabetes mellitus; NS: Not significant; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipo-
protein cholesterol; eGFR: Estimated glomerular filtration rate.

Table 3  Severity of stroke and outcome of patients with type 2 diabetes mellitus and those without

Patients with T2DM (n  = 155) Patients without T2DM (n  = 327) P

National Institutes of Health Stroke Scale score at admission 8.7 ± 8.8 8.6 ± 9.2 NS
Duration of hospitalization (d) 6.9 ± 4.6 6.7 ± 4.1 NS
Modified Rankin scale score at discharge 2.7 ± 2.1 2.7 ± 2.2 NS
Adverse outcome (%) 62.3 58.5 NS
In-hospital mortality (%) 9   9.8 NS

T2DM: Type 2 diabetes mellitus; NS: Not significant.
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our study lacked the statistical power to detect a differ-
ence in mortality rates between diabetic and non-diabetic 
patients because of  the low case-fatality rate.

Our study has some limitations. Although diabetic pa-
tients had poorer short-term functional prognosis in our 
population, previous studies showed that the subgroup 
of  diabetic patients with lacunar infarction shows a bet-
ter outcome[21,22]. However, magnetic resonance imaging 
is not available in our institution and imaging of  the in-
tra- or extracranial arteries was also not performed in all 
patients. Therefore, we cannot determine the frequency 
of  the different stroke subtypes in our population. More-
over, the location of  stroke, which may influence the 
functional outcome, was not systematically recorded. Fi-
nally, since we did not evaluate urinary albumin excretion 
in all patients, we were not able to evaluate the effects of  
albuminuria on stroke severity or outcome.

In conclusion, T2DM does not appear to affect 
ischemic stroke severity but is associated with worse 
functional outcome at discharge. This detrimental effect 
of  T2DM on short-term stroke outcome appears to be 
independent of  the increased prevalence of  CVD risk 
factors in diabetic patients. Accordingly, management of  
hyperglycemia might have beneficial effects in patients 
with acute ischemic stroke but this remains to be estab-
lished in prospective controlled trials.
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Abstract
AIM: To assess the risk factors for cost-related medica-
tion non-adherence (CRN) among older patients with 
diabetes in the United States. 

METHODS: We used data from the 2010 Health and 
Retirement Study to assess risk factors for CRN in-
cluding age, drug insurance coverage, nursing home 
residence, functional limitations, and frequency of hos-
pitalization. CRN was self-reported. We conducted mul-
tivariate regression analysis to assess the effect of each 
risk factor. 

RESULTS: Eight hundred and seventy-five (18%) of 
4880 diabetes patients reported CRN. Age less than 65 
years, lack of drug insurance coverage, and frequent 
hospitalization significantly increased risk for CRN. Limi-
tation in both activities of daily living and instrumental 
activities of daily living were also generally associated 
with increased risk of CRN. Residence in a nursing 
home and Medicaid coverage significantly reduced risk.

CONCLUSION: These results suggest that expanding 

prescription coverage to uninsured, sicker, and commu-
nity-dwelling individuals is likely to produce the largest 
decreases in CRN. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Cost; Medication; Non-adherence; Risk fac-
tors 

Core tip: Using a nationally representative date set, 
this study explores a wide range of risk factors influ-
encing cost-related medication non-adherence (CRN), 
which receives increasing recognition of importance 
in diabetes. The authors found that age less than 65, 
lack of prescription drug insurance coverage, increased 
numbers of hospitalizations, and greater functional limi-
tations were associated with higher likelihood of CRN 
among diabetic patients, while nursing home residence 
decreased risk. Together, these results suggest that ex-
panding prescription coverage to uninsured, sicker, and 
community-dwelling individuals is likely to produce the 
largest decreases in CRN.

Zhang JX, Lee JU, Meltzer DO. Risk factors for cost-related 
medication non-adherence among older patients with diabetes. 
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INTRODUCTION 
Up to a third of  older patients report cost-related medi-
cation non-adherence (CRN)[1]. Lower income and high 
out-of-pocket costs for medications, poorer health sta-
tus including lower self-perceived general health, more 
comorbidities, and poorer mental health, are strong risk 
factors for CRN, while having any, or more generous, pre-
scription drug coverage significantly reduces the risk of  
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CRN[2-6]. Increased costs of  prescription drugs are associ-
ated with lower rates of  medication use, poor health out-
comes, more hospitalizations, and increased use of  medi-
cal services, including emergency department visits[7-9]. 

There is an increasing recognition of  the importance 
of  CRN in diabetes. Diabetic patients often require a 
large number of  prescription drugs and incur high out-
of-pocket costs for medications and medical expens-
es[10,11]. There is an emerging body of  studies examining 
CRN for diabetes patients, reporting CRN rates ranging 
from 14% to 30% depending on the study sample[12-17]. 
However, little is known about the factors associated 
with CRN in diabetes patients, particularly those who 
have not yet reached 65 years of  age (when they typi-
cally become eligible for Medicare), reside in a nursing 
home, have had multiple hospitalizations, or who have 
functional limitations. In these patients, medication non-
adherence can significantly reduce the effectiveness of  
care, place them at an increased risk of  declining health, 
and incur significant downstream costs. In addition, 
several of  these risk factors can be potentially modified 
through social policy and clinical practice. Our aim was 
to assess variation in CRN with a broad set of  risk fac-
tors for diabetes patients over the age of  50 using a na-
tionally representative dataset. 

MATERIALS AND METHODS 
Study population 
We utilized the 2010 data from the Health and Retire-
ment Study (HRS). The HRS is an ongoing longitudinal 
cross-sectional study that surveys a nationally representa-
tive sample of  Americans over the age of  50 about their 
income, employment, health insurance, physical health, 
cognitive functioning, and health care expenditures[18]. 
Data for the survey is collected primarily by telephone 
interview every 2 years. The analysis in this study was re-
stricted to survey respondents who reported that a physi-
cian had told them that they had diabetes. 

CRN 
CRN was measured by asking participants, “Sometimes 
people delay taking medication or filling prescriptions be-
cause of  the cost. At any time since the last interview or 
in the last two years have you ended up taking less medi-
cation than was prescribed for you because of  the cost?” 
Participants answered either yes or no, although they had 
the option to refuse to answer or say that they did not 
know.

Demographic and socio-economic characteristics 
The HRS includes questions about demographics and 
socio-economic characteristics, including age, place of  
birth, education level, ethnicity, employment, and place 
of  residence. We categorized patients into age groups of  
50-64 years, 65-74 years, 75-84 years, and 85 years and 
older. We hypothesized that patients in the age group of  
50-64 years old might be at elevated risk of  CRN because 

they may not have had adequate protection from employ-
er-sponsored health insurance and were too young to be 
eligible for Medicare which could provide low-cost out-
patient drug insurance benefits. In addition, depending 
on the patient’s current health status, it may have been 
difficult to purchase individual health insurance due to 
pre-existing conditions. 

We included a variable indicating residence in a nurs-
ing home. We hypothesized that living in a nursing home 
and administration of  medications by the nursing staff  
would decrease the risk of  CRN. In addition, nursing 
home patients were more likely to qualify for Medicaid 
due to low income, and thus out-of-pocket payments for 
medications should also be reduced, subsequently de-
creasing the risk of  CRN further. 

We also included a variable indicating whether the 
costs of  prescription medications were covered at all by 
health insurance, which may be especially important for 
low-income persons. We also included a variable indicat-
ing patients’ insurance coverage by Medicaid, as Medicaid 
coverage for the poor may enable their ability to purchase 
needed drugs. 

To describe the resultant burden of  out-of-pocket 
payments for medications with or without medication in-
surance coverage, we calculated average monthly out-of-
pocket expenses for medications, based upon responses 
to the HRS survey question, “On average, about how 
much have you paid out-of-pocket per month for these 
prescriptions since last interview/in the last 2 years?” If  
they did not know, the interviewer would ask whether it 
amounted to less or more than a certain dollar amount. 

Functional status and number of hospitalizations
HRS asks participants about functional status through 
questions on limitations in activities of  daily living 
(ADLs)[19] and instrumental activities of  daily living 
(IADLs)[20], with higher numbers of  limitations indicating 
worse functional status. Functional limitations may reflect 
the effects of  underlying diseases such as advanced dia-
betes or other chronic diseases, and can act as barriers to 
purchasing and administering medications as prescribed. 

The HRS also collects information about healthcare 
utilization, including hospitalizations and physician visits. 
Participants were asked the number of  different times 
they were hospitalized overnight in the past two years, as 
well as how many nights they stayed. We hypothesized 
that while hospitalizations result in out-of-pocket pay-
ments that could affect patients’ ability to pay for medica-
tions, such effects on CRN might be small given Medi-
care’s generous coverage for hospitalizations. 

We also included an indicator variable for the class of  
prescription medications each respondent reported tak-
ing, including medications for cholesterol, joint or muscle 
pain, asthma or allergies, stomach problems, insomnia, 
and anxiety or depression. 

Statistical analysis
We first performed bivariate analyses of  the association 
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between CRN and socio-demographic variables, limita-
tions in ADLs and IADLs, number of  hospitalizations, 
medication insurance coverage, and self-reported month-
ly out-of-pocket (OOP) payments of  prescription drugs. 
We examined differences in CRN for varying levels of  
limitations in ADLs and IADLs, medication insurance 
coverage and socio-demographic variables by utilizing 
χ2 statistics. To evaluate differences in OOP payments 
for prescription drugs for those with and without CRN, 
we performed t-tests. We then analyzed the association 
between the number of  hospitalizations and CRN by us-
ing a general linear regression model, using those without 
any hospitalizations as the reference group.

We further conducted multivariate regression analysis 
to assess the net effect of  the aforementioned risk factors 
on CRN. In this case, a logit model was used to assess 
the independent risk factors including age, nursing home 
residence, medication insurance coverage, varying level 
of  limitations in ADLs and IADLs, hospitalizations, and 
medication use for common conditions. 

RESULTS
Among 22042 respondents in the 2010 HRS, 5037 (23%) 
reported that they were told by a physician that they had 
diabetes. The mean age of  the 5037 diabetes patients was 
67 years (s.d. 11). One-hundred fifty-seven patients (3.1%) 
were younger than 50 years old and were subsequently 
excluded from the analysis, resulting in a final sample of  
4880 adults. Among the 4880 diabetes patients in the fi-
nal sample, 875 patients, or 18.3%, reported CRN in the 
past 2 years. 

Of  the 875 patients who reported CRN, 573 (65.5%) 
were between the ages of  50 and 64 years old. Table 
1 shows the prevalence of  CRN by different socio-
demographic variables. Females, African-Americans and 
Hispanics were more likely to report CRN. As expected, 
those without any insurance coverage for medications 
were significantly more likely to report CRN than those 
with coverage (38% vs 16%, P < 0.001). There also ap-
peared to be differences in CRN in survey respondents 
reporting no functional limitations compared to those 
with 1 or more limitations in ADLs or IADLs, with 
those with functional limitations more likely to report 
CRN (25% vs 15% for ADLs, P < 0.001; 23% vs 16% for 
IADLs, P < 0.001). Respondents with at least 1 overnight 
hospitalization in the past 2 years were also significantly 
more likely to report CRN compared to those who were 
never hospitalized (22% vs 16%, P < 0.001). Nursing 
home residents had a much lower rate of  CRN than 
community dwellers (5% vs 18%, P < 0.001). Diabetes 
patients covered by Medicaid were significantly less likely 
to report CRN (P < 0.001). Respondents who reported 
CRN had higher monthly out-of-pocket payments for 
prescription drugs (P < 0.001). 

Table 2 shows the independent risk factors of  CRN 
in the multivariate logistic regression model. Compared 
to respondents who were in the 65-74 years age group, 

those in the age group of  50-64 years were 118% more 
likely to report CRN. The likelihood of  CRN also de-
creased as patient age advanced. Patients residing in nurs-
ing home were 66% less likely to report CRN compared 
to patients living in the community, and patients without 
drug insurance coverage were 182% more likely to report 
CRN compared to those with drug insurance coverage. 
Patients covered by Medicaid were 66% less likely to re-
port CRN. 

Compared to those without any limitations, survey 
respondents with 1 or more limitations in ADLs or 
IADLs were much more likely to report CRN, although 
confidence intervals were wide for the categories with the 
highest number of  limitations so that having 6 or more 
limitations in ADLs or 3 or more limitations in IADLs 
were not statistically significant. 

Compared to those without any hospitalizations, hav-
ing any number of  hospitalizations increased the risk of  
CRN. The magnitude of  effect on the risk of  CRN in-
creased as the number of  hospitalizations increased, with 
a slight decrease for those with 4 or more hospitalizations.  

While the coefficients reflecting the effect of  each 
class of  medications were all positive in the multivariate 
logistic regression, in general, they were not statistically 
significant with the exception of  asthma (P = 0.01). 

DISCUSSION
We found that diabetes patients ages 50-64 years old were 
at increased risk for CRN. A recent report suggests that 
this age group is at increased risk of  being uninsured de-
spite being employed, and due to higher insurance premi-
ums based upon their age and health, it is more difficult 
for individuals to obtain health insurance elsewhere[21]. 
That CRN is increased in this age group in our multivari-
ate analysis, which controls for insurance status, suggests 
that there are other factors besides medication insurance 
coverage contributing to the higher risk. One factor 
could be the level of  out-of-pocket payments. Although 
the Affordable Care Act will expand Medicaid eligibility 
for poor individuals and families, and coverage cannot 
be denied based on pre-existing conditions, these find-
ings suggest the importance of  insurance benefit design 
so that high-value treatments in diabetes care can be ob-
tained with low out-of-pocket payments. In addition, it is 
also possible that pent-up demand may be another source 
of  delay in seeking medical care as patients approach the 
eligibility age of  Medicare. Further researches are needed 
to understand the patient behavior in this aspect. 

Our study also found that living in a nursing home is 
protective for CRN. The high rate of  Medicaid coverage 
among nursing home residents could explain this find-
ing in part as the out-of-pocket payments to medication 
are nominal for Medicaid beneficiaries. In addition, the 
administration of  medication by the nursing home staff  
may also reduce the costs of  obtaining the medication 
such as travel, time, and mobility. Overall, Medicaid cov-
erage significantly reduces CRN. 
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cost less of  a barrier. However, this is purely speculative 
and this result seems worthy of  further analysis.

The positive correlation between CRN and the num-
ber of  hospitalizations is notable because non-adherence 
can potentially increase the likelihood of  readmission, 
thus driving more expensive care. It is less clear from the 
data available whether the number of  hospitalizations 
increases CRN, CRN increases hospitalization rates, or 
both. Future research should be directed at assessing the 
causal relationship between hospitalizations and CRN in 
such a high-risk patient population.  

This study is limited in that while we have shown that 
a number of  factors may be affecting CRN, we do not 
have measures of  some key factors, such as insurance 
benefit design. As a result, the exact reason for CRN 
among those with drug insurance coverage is less clear. 
Also, the HRS survey does not give us any indication of  
how often participants did not take their medications due 
to cost, and only asks whether they had done so within 
the past 2 years. 

Diabetes is a major chronic condition that causes 
significant mortality and morbidity, requiring coordina-

We found the female were more likely to report CRN. 
Previous researches have reported the gender-specific dif-
ference in non-adherence behaviors although the causes 
of  non-adherence were not clear[22,23]. It was possible 
there was a difference in price-sensitivity to medication 
between the males and females. This highlighted the need 
for more researches in the gender difference in CRN in 
order to increase the adherence. 

There was a positive association between CRN and 
limitations in ADLs and IADLs. This is concerning from 
a health perspective, since non-adherence may worsen 
their functional status and their medical disease further. 
However, the weak evidence for increased CRN among 
patients with extreme functional limitations in both 
ADLs and IADLs is notable and surprising. One answer 
might be that patients who are severely limited in their 
ability to take care of  themselves tend to live in nursing 
homes and therefore likely to be covered by Medicaid, 
so that CRN is rare. However, we control for both these 
factors in our analysis. Another possibility is that the de-
pendency of  these individuals prompts others to provide 
them with assistance in obtaining medications that makes 
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Table 1  Prevalence of cost-related medication non-adherence by Socio-Demographics, Health Status and Usage of Medical 
Resources  n  (%)

All Reported CRN Did not report CRN P value

Full sample 4880 (100) 875 (18) 4005 (82)
Age 
  ≥ 50 and ≤ 64 2031 (100) 573 (28) 1458 (72)
  ≥ 65 and ≤ 74 1505 (100) 207 (14) 1298 (86)
  ≥ 75 and ≤ 84 1017 (100) 82 (8)   935 (92) < 0.001
  ≥ 85   329 (100) 13 (4)   314 (96) 
Gender 
  Male 2224 (100) 343 (15) 1881 (85)
  Female 2656 (100) 532 (20) 2124 (80) < 0.001
Race 
  White 3298 (100) 502 (15) 2796 (85) 
  African-American 1187 (100) 277 (23)   910 (77) 
  Other   393 (100)   94 (24)   299 (76) < 0.001
Ethnicity 
  Hispanic   883 (100) 189 (21)   694 (79)
  Non-Hispanic 3997 (100) 686 (17) 3311 (83)    0.003
Nursing Home 
  Living in NH   138 (100)   7 (5)   131 (95)
  Not in NH 4742 (100) 868 (18) 3874 (82) < 0.001
Insurance coverage for Rx
  Yes 4461 (100) 716 (16) 3745 (84)
  No   419 (100) 159 (38)   260 (62) < 0.001
Medicaid coverage
  Currently covered   349 (100) 24 (7)   325 (93)
  Not covered 4531 (100) 851 (19) 3680 (81) < 0.001
ADL limitations 
  No limitation 3455 (100) 519 (15) 2936 (85)
  1 or more limitations 1425 (100) 356 (25) 1069 (75) < 0.001
IADL limitations 
  No limitation 3442 (100) 547 (16) 2895 (84)
  1 or more limitations 1438 (100) 328 (23) 1110 (77) < 0.001
Hospitalization 
  No hospitalization 3081 (100) 486 (16) 2595 (84)
1 or more hospitalizations 1799 (100) 389 (22) 1410 (78) < 0.001
Monthly out-of-pocket payments for Rx
  Payments: $ (s.d.)     69 (2.4) 108 (6.9)      60 (2.5) < 0.001

P values by χ 2 tests, except for out-of-pocket payments for Rx, where t-test was performed. CRN: Cost-related medication non-adherence; ADL: Activities 
of daily living; IADL: Instrumental activities of daily living.
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tion of  care to treat the patient as a whole person[24]. It is 
a disease in which patient nonadherence to medications 
may be a result of  a number of  failures in social, eco-
nomic, behavioral, and managerial aspects of  care. Previ-
ous research suggests that insurance coverage alone does 
not guarantee high quality of  diabetes care to patients[25], 
and more research is much needed to understand the 
influence of  the hybrid of  factors influencing CRN, in 
order to prevent the well-known complications of  the 
disease that can debilitate patients further in the future.  

In conclusion, despite the limitations of  the study, the 
results imply that there are significant opportunities to reduce 
CRN and improve the effectiveness of  pharmacotherapy in 
diabetes patients through public policy and clinical practice. 
More research is needed to elucidate the causal relationship 
between functional limitations, hospitalizations, and CRN. In 
addition, interventions that aim to reduce cost-cutting behav-
iors such as generic medication substitution in these patients 
have the potential of  improving the effectiveness of  treat-
ment and reducing overall medical costs.

COMMENTS
Background
There is an increasing recognition of the importance of cost-related medication 
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ing home, repeated hospitalizations, and functional limitations. 
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These results suggest that expanding prescription coverage to uninsured, 
sicker, and community-dwelling individuals is likely to produce the largest de-
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Table 2  Results of Multivariate Logistic Regression Analysis of Cost-related Medication Non-adherence

OR P value 95%CI

Age
 Age 50-64 2.182 < 0.001 1.805-2.638
 Age 65-74 Reference - -
 Age 75-84 0.532 < 0.001 0.403-0.704
 Age ≥ 85 0.236 < 0.001 0.131-0.426
Residence
 Nursing home residence 0.335    0.011 0.145-0.775
Medicare insurance coverage
 No drug coverage 2.824 < 0.001 2.233-3.570
Medicaid coverage
 Currently covered by Medicaid 0.341 < 0.001 0.217-0.535
Functional limitations 
 Activities of daily living
  No limitation Reference - -
  1 limitation 1.431    0.005 1.113-1.840
  2 limitations 1.850 < 0.001 1.348-2.540
  3 limitations 1.813    0.003 1.229-2.674
  4 limitations 1.796    0.012 1.137-2.838
  5 limitations 1.776    0.023 1.083-2.911
  6 limitations 1.669    0.162 0.813-3.425
 Instrumental activities of daily living  
  No limitation Reference - -
  1 limitation 1.376    0.006 1.094-1.731
  2 limitations 1.494    0.014 1.084-2.060
  3 limitations 1.243    0.307 0.819-1.887
  4 limitations 0.872    0.651 0.482-1.579
Number of hospitalizations 
  No hospitalization Reference - -
  1 hospitalization 1.320    0.010 1.068-1.632
  2 hospitalizations 1.437    0.011 1.089-1.898
  3 hospitalizations 1.683    0.005 1.168-2.424
  4 or more hospitalizations 1.507    0.013 1.091-2.082
Medication use for common conditions  
  Cholesterol 1.118    0.202 0.942-1.327
  Pain 1.090    0.320 0.942-1.327
  Asthma 1.295    0.011 1.062-1.578
  Stomach 1.141    0.186 0.939-1.388
  Sleep 1.077    0.516 0.861-1.347
  Anxiety 1.082    0.453 0.880-1.330

Results from multivariate logistic regression analysis. 
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creases in CRN.
Terminology
CRN: Cost-related medication non-adherence. 
Peer review
The authors conclude that expanding prescription coverage to uninsured, 
sicker, and community-dwelling individuals is likely to produce the largest de-
creases in CRN. The findings are interesting.
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Abstract
AIM: To investigate the Wake Forest experience with 
pancreas transplantation in the new millennium with at-
tention to surgical techniques and immunosuppression. 

METHODS: A monocentric, retrospective review of 
outcomes in simultaneous kidney-pancreas transplant 
(SKPT) and solitary pancreas transplant (SPT) recipi-
ents was performed. All patients underwent pancreas 
transplantation as intent-to-treat with portal venous 
and enteric exocrine drainage and received deplet-
ing antibody induction; maintenance therapy included 
tapered steroids or early steroid elimination with my-

cophenolate and tacrolimus. Recipient selection was 
based on clinical judgment whether or not the patient 
exhibited measureable levels of C-peptide. 

RESULTS: Over an 11.25 year period, 202 pancreas 
transplants were performed in 192 patients including 
162 SKPTs and 40 SPTs. A total of 186 (92%) were 
primary and 16 (8%) pancreas retransplants; portal-
enteric drainage was performed in 179 cases. A total 
of 39 pancreas transplants were performed in African 
American (AA) patients; of the 162 SKPTs, 30 were 
performed in patients with pretransplant C-peptide 
levels > 2.0 ng/mL. In addition, from 2005-2008, 46 
SKPT patients were enrolled in a prospective study of 
single dose alemtuzumab vs  3-5 doses of rabbit anti-
thymocyte globulin induction therapy. With a mean 
follow-up of 5.7 in SKPT vs  7.7 years in SPT recipients, 
overall patient (86% SKPT vs  87% SPT) and kidney 
(74% SKPT vs  80% SPT) graft survival rates as well as 
insulin-free rates (both 65%) were similar (P  = NS). 
Although mortality rates were nearly identical in SKPT 
compared to SPT recipients, patterns and timing of 
death were different as no early mortality occurred in 
SPT recipients whereas the rates of mortality following 
SKPT were 4%, 9% and 12%, at 1-, 3- and 5-years 
follow-up, respectively (P  < 0.05). The primary cause 
of graft loss in SKPT recipients was death with a func-
tioning graft whereas the major cause of graft loss fol-
lowing SPT was acute and chronic rejection. The over-
all incidence of acute rejection was 29% in SKPT and 
27.5% in SPT recipients (P  = NS). Lower rates of acute 
rejection and major infection were evidenced in SKPT 
patients receiving alemtuzumab induction therapy. 
Comparable kidney and pancreas graft survival rates 
were observed in AA and non-AA recipients despite a 
higher prevalence of a “type 2 diabetes” phenotype in 
AA. Results comparable to those achieved in insulino-
penic diabetics were found in the transplantation of 
type 2 diabetics with detectable C-peptide levels. 

CONCLUSION: In the new millennium, acceptable 
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medium-term outcomes can be achieved in SKPT and 
SPTs as nearly 2/3rds of patients are insulin indepen-
dent following pancreas transplantation.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Pancreas transplantation; Portal-enteric; Rabbit anti-
thymocyte globulin; Simultaneous kidney-pancreas 
transplantation; Solitary pancreas transplantation; Ste-
roid elimination; Surveillance biopsy; Tacrolimus

Core tip: Vascularized pancreas transplantation is able 
to establish a chronic insulin-free state characterized 
by normoglycemia. In selected recipients with insulin-
requiring diabetes, simultaneous kidney-pancreas 
transplantation has become acknowledged as a favored 
alternative to kidney alone transplantation because 
of more intense glucose control, enhanced quality of 
life and improved long-term survival. The evolution in 
surgical technique, current patient management strate-
gies, and biopsy directed immunosuppression have re-
sulted in excellent outcomes, even in populations previ-
ously considered high risk, such as African-American 
recipients, patients with a “type 2 diabetes” phenotype 
and solitary pancreas transplants recipients.

Rogers J, Farney AC, Orlando G, Iskandar SS, Doares W, Gau-
treaux MD, Kaczmorski S, Reeves-Daniel A, Palanisamy A, 
Stratta RJ. Pancreas transplantation: The Wake Forest experience 
in the new millennium. World J Diabetes 2014; 5(6): 951-961  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
v5/i6/951.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i6.951

INTRODUCTION
Although first developed as a modality to re-establish 
endogenous insulin secretion (C-peptide production) re-
active to normal feedback controls, vascularized pancreas 
transplantation (PTx) has evolved over the past several 
years to complete β cell replacement that frees the pa-
tient both from the need to monitor serum glucose as 
well as the need to administer insulin in order to control 
diabetes. Patients who present following a total pancre-
atectomy for benign disease, or those with type 1 or type 
2 diabetes, both of  which require the administration of  
insulin, are appropriate candidates for PTx. In the search 
for a definitive treatment that restores normal glucose 
homeostasis in patients with complicated diabetes, and 
alleviates the risk of  severe hypo/hyperglycemia, PTx 
is currently the only procedure that can accomplish this 
objective and may avert, stabilize, or reverse progressive 
diabetic complications.

As of  December 2010, the International Pancreas 
Transplant Registry had received data on > 35000 PTxs 
whereas the Collaborative Transplant Study database had 
recorded nearly 9000 cases[1,2]. PTx in diabetic patients 

is separated into 3 chief  categories; those performed 
following either a successful living or deceased donor 
kidney transplant [sequential pancreas after kidney (PAK) 
transplant], those occurring in patients with preserved 
native renal function [pancreas transplant alone (PTA)], 
and most commonly, those performed simultaneous with 
a kidney transplant (SKPT). The former 2 categories are 
frequently analyzed together as solitary pancreas trans-
plants (SPT) because of  similar outcomes. Until 2004, 
the annual number of  PTxs progressively increased in 
the United States but has since declined, with particular 
reference to the PAK transplant category[1,3,4]. In the past 
10 years, both the number of  patients being added to the 
waiting list and the number of  pancreata being recovered 
from deceased donors have decreased whereas the pro-
portion of  recovered pancreata being discarded and time 
on the waiting list for recipients have increased. In addi-
tion, recipient age and body mass index (BMI) have in-
creased for PTx in the past decade concomitant with the 
proportion of  recipients who are either African Ameri-
can (AA) or characterized as having type 2 diabetes[1,3,4]. 

At present, about 9% of  PTxs are PTA, 16% PAK, 
and the remaining 75% are performed as SKPTs[1,3,4]. Suc-
cess rates for PTx have progressively improved, secondary 
to refinements in diagnostic and therapeutic technologies 
and surgical techniques, advancements in immunosup-
pression and anti-infective prophylaxes, new and effective 
techniques in organ retrieval and preservation technology 
and increased experience in the selection of  donors and 
recipients[1,3-5]. Over time, improvements in outcomes have 
occurred in all 3 PTx categories as a result of  a decrease 
in technical failures and immunologic graft losses. At pres-
ent, five-year patient survival rates are 89% in PTA, 87% 
in SKPT, and 83% in PAK transplant recipients. One-year 
patient survival is more than 95% in the cases of  recipi-
ents of  primary deceased donor PTxs whereas 10-year 
patient survival exceeds 70% in all 3 categories[1].

The definition of  PTx graft survival is variable but 
principally defined as absolute freedom from exogenous 
insulin therapy, concomitant with the absence of  atypi-
cal glycemic excursions, in contrast to other modalities 
utilized for the treatment of  diabetes. According to Reg-
istry data, one-year insulin-free rates are currently 78% in 
PTA, 80% in PAK, and 85% in SKPT recipients. These 
data indicate that we may now expect pancreas graft half-
lives approaching fourteen years in SKPT and ten years 
in SPT recipients[1,3-5]. The focus of  this study was the 
retrospective review of  PTx outcomes at our center in 
the emergent millennium.

MATERIALS AND METHODS
Recipient selection
Diabetes mellitus treated with exogenous insulin, the 
presence of  diabetic complications, and the ability to en-
dure the surgical procedure, were significant indications 
in the selection of  candidates for PTx. In addition, there 
existed the need for these recipients to be predictably 
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able to manage the requisite immunosuppression and 
expected follow-up, irrespective of  detectable C-peptide 
levels. The selection criteria for SKPT in type 2 diabetes 
have been previously reported[6-8]. Selection criteria for 
SPT were similar to SKPT except for renal function, in 
which the glomerular filtration rate (GFR), determined 
by the abbreviated Modification of  Diet in Renal Diseas-
es (aMDRD) formula, was > 70 mL/min in PTA (native 
renal function) and > 40 mL/min in PAK (renal allograft 
function) transplant recipients already on a calcineurin 
inhibitor. Donor selection was more stringent for SPT, 
including younger donors and a minimum of  a 2-3 hu-
man leukocyte antigen (HLA) match[7,9]. 

Technical aspects 
The history of  PTx has been essentially defined by the 
evolving trends in surgical techniques. We performed our 
first SKPT at Wake Forest Baptist Health (WFBH) on 
6/3/92[7]. The exocrine secretions were managed with 
bladder drainage using a short donor duodenal segment 
conduit. Although the patient initially did well with excel-
lent dual allograft function, she ultimately required enteric 
conversion on 12/20/07 for persistent difficulties related 
to bladder drainage including dehydration, episodes of  
gross hematuria requiring blood transfusions, metabolic 
acidosis and recurrent urinary tract infections. At 22 years 
follow-up, this pancreas allograft continues to exhibit 
acceptable function and the patient remains insulin-free. 
The next PTx at WFBH was not performed until the lat-
ter part of  2001. 

Since November, 2001, all PTxs were initially ap-
proached as intent-to-treat with portal-enteric drainage 
using an anterior approach to the superior mesenteric 
vein (SMV). Enteric drainage was performed by side to 
side duodeno-enterostomy to the recipient’s proximal ile-
um[7,10]. We used diverting Roux limbs infrequently, which 
were reserved for cases in which the allograft duodenum 
did not reperfusion well. Arterial inflow was usually 
based on the recipient’s right common iliac artery after 
the pancreas dual artery blood supply was reconstructed 
with a donor common iliac bifurcation “Y” graft. Relative 
“contraindications” to portal venous drainage have been 
previously reported[10]. In patients (particularly male) with 
a high BMI, the SMV can be quite deep in the mesentery 
and the donor common iliac artery bifurcation “Y” graft 
might not be long enough to reach the recipient’s iliac ar-
tery through a window in the distal ileal mesentery, even 
with the liberal use of  a donor artery “extension” graft. 
In these cases, systemic venous and enteric drainage were 
performed to simplify the procedure.

Of  the first 121 SKPTs, all but two were performed 
by transplanting the kidney to the left iliac vessels and 
the pancreas to the right common or external iliac artery 
through a midline intraperitoneal approach. However, 
since 7/30/10, nearly all SKPTs were performed with 
ipsilateral placement of  the kidney and pancreas to the 
right iliac vessels in order to reduce operating time and 

to preserve the left iliac vessels for future transplantation. 
All but 5 PTxs were performed from brain-dead donors; 
5 SKPTs were performed from donation after cardiac 
death donors at our hospital in which extracorporeal sup-
port was used to assist in management of  the donor after 
declaration of  death by cardio-circulatory arrest[11]. 

Anti-coagulation
Two thousand to three thousand units of  intravenous 
heparin (30-50 units/kg) were administered to SPT and 
selected SKPT recipients, as a bolus prior to implantation 
of  the pancreas. Following surgery and in the absence of  
bleeding, patients received a continuous heparin infusion, 
starting at 300 units/h on day 1, then 400 units/h on day 
2, and then 500 units/h on days 3-5 after which time it 
was terminated[12]. Indications for intravenous heparin in-
cluded SPT, preemptive SKPT, prolonged pancreas cold 
ischemia (> 15 h), small or diseased donor or recipient 
vessels, history of  thrombophilia or clotting disorder in 
the recipient, history of  prior pancreas graft thrombosis 
or extended donor criteria.

Immunosuppression 
From 1/02-12/03, 37 patients received depleting anti-
body induction therapy with 3-5 doses of  rabbit anti-
thymocyte globulin (rATG) (1.5 mg/kg per dose); 
maintenance therapy consisted of  tapered steroids, 
mycophenolate mofetil (MMF) and tacrolimus (TAC)[13]. 
Subsequently, 16 patients received multi-dose rATG in-
duction, 4 received alemtuzumab (Alem) and rATG, and 
5 patients were administered a single dose Alem (30 mg) 
at the time of  transplant. Six of  these patients underwent 
early steroid elimination during this transitional period. 

From early 2005 to late 2008, 46 SKPT recipients 
were part of  a prospective trial conducted at WFBH. 
This undertaking compared a single 30 mg intra-operative 
dose of  Alem to multi-dose rATG (1.5 mg/kg per dose 
starting intra-operatively) induction. On alternate days, 
rATG induction was administered (minimum of  3 doses; 
total cumulative dose 5-6 mg/kg). Both groups received 
maintenance therapy with early steroid elimination, half-
dose MMF (1 gm/d) initially, and full dose TAC (titrated 
to 12 h trough levels of  8-12 ng/mL)[14].  

After completion of  rATG, the dose of  MMF was 
doubled to two gm/day. In patients with gastrointestinal 
intolerance or myelosuppression, the MMF dose was 
reduced. Corticosteroids were withdrawn after 5 d unless 
the patient was identified as “high immunological risk”, 
defined by the presence of  delayed (kidney) graft func-
tion, retransplantation, AA patient < 40 years of  age, 
allosensitization [pre-transplant panel reactive antibody 
(PRA) level > 20%], or PTA. Since 2009, all patients who 
receive PTxs at our center (n = 74) have been given single 
dose Alem induction with MMF, TAC, and either rapid 
prednisone taper (dose reduction to 5 mg/d by 2 mo 
following PTx if  determined to be high immunological 
risk), or early steroid elimination[15]. 
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follow-up biopsy (persistent rejection) was usually an in-
dication for additional steroid therapy and a subsequent 
follow-up biopsy.

An unexplained rise in serum amylase, glucose or 
lipase levels provided clinical suspicion to the diagnosis 
of  rejection of  the pancreas graft. Following percutane-
ous biopsy of  the pancreas, the Maryland Classification 
System[17] was used, initially in the treatment of  rejection. 
More recently, the Banff  2007 schema was utilized[18]. 
Most grades of  pancreas allograft rejection were treated 
with rATG, while borderline and mild rejection epi-
sodes were treated with steroids. In order to document 
histological improvement and response to therapeutic 
intervention, follow-up pancreas allograft biopsies were 
performed. Until there were 2 consecutive biopsies con-
sidered as “normal”, following SPT, surveillance pancreas 
biopsies were performed every 3-4 wk[19]. Biochemical 
parameters were the determinants for clinical biopsies.

Statistical analysis
Both prospective and retrospective databases provided 
data for compilation. The chi-square test was applied for 
when variables were categorical, and, with limited data, 
Fisher’s exact test was used. Continuous data were por-
trayed as means and standard deviations and categorical 
data were portrayed as percentages and proportions. Sig-
nificance was ascribed to a two-tailed P-value of  < 0.05. 

RESULTS 
From 11/1/01 through 3/1/13, a total of  202 PTxs 
were performed in 192 patients, including 40 SPTs and 
162 SKPTs. The former category included 5 PTA and 
35 PAK transplants. 186 PTxs (92%) were primary and 
16 pancreas retransplants (10 of  which had their primary 
PTx performed at our center). All but 4 patients received 
kidney and PTxs either sequentially or simultaneously (one 
patient received a kidney following a PTA). In addition, 
6 patients (3%) underwent subsequent kidney retrans-
plantation. PTx with portal venous and enteric exocrine 
drainage was performed as intent-to-treat; however, in 23 
cases, systemic venous and enteric exocrine drainage was 
performed (11%) in which portal-enteric drainage was 
not deemed safe or possible. Indications for systemic-
enteric drainage were central obesity (7), difficult vascular 
anatomy (n = 7), and retransplant of  the pancreas (n = 
9), in which the prior PTx was performed with portal 
venous and enteric exocrine drainage). The incidence of  
systemic-enteric technique was 7.5% for primary PTxs 
(P < 0.0001) vs 56% for pancreas retransplants. The pro-
portion of  male recipients (70% vs 56%), rate of  early 
relaparotomy (48% vs 36%) and recipients ≥ 80 kg (30% 
vs 24%), were all slightly higher in patients undergoing 
PTx with systemic venous and enteric exocrine drainage. 
Rates of  early PTx thrombosis were 8% in portal-enteric 
PTxs vs 4% in systemic-enteric (P = NS). Comparable 
survival rates were found, with an average follow-up of  
4.5 years in systemic-enteric vs 5.5 years in portal-enteric 

Infection prophylaxis
Fluconazole, valganciclovir, and trimethoprim-sulfa-
methoxazole were administered to all patients as an 
anti-infective prophylaxis[7,14]. Cephazolin was used as a 
peri-operative antibiotic prophylaxis according to the fol-
lowing schedule: (1) A single pre-operative dose; (2) An 
intra-operative dose; and (3) 2-3 post-operative doses (1 g 
intravenous).

For at least 12 mo, every Monday, Wednesday and 
Friday, patients received single-strength trimethoprim-
sulfamethoxazole 1 tablet as prophylaxis for Pneumocys-
tis jiroveci. Oral fluconazole (50-200 mg/d) served as an 
anti-fungal prophylaxis for 1-2 mo. Oral valganciclovir 
450 mg/d for 3 mo was the drug of  choice as an anti-
viral prophylaxis. Dosage was adjusted for either leuko-
penia or renal dysfunction. If  the recipient was at risk for 
primary cytomegalovirus (CMV) exposure (donor CMV 
seropositive, recipient CMV seronegative), then oral val-
ganciclovir at a daily dose of  900 mg (with adjustments 
to dosage as above) was given for a period of  6 mo[7,14]. 

Peri-operative management
All patients received daily anti-platelet therapy with 81 
mg of  aspirin. For those patients requiring the post-op-
erative placement of  a tunneled central venous catheter, 
or those requiring prolonged vascular access, a low daily 
dose of  oral warfarin (1 mg) was given to reduce the risk 
of  catheter-associated thrombosis. After insertion of  
a tunneled subclavian venous catheter, the majority of  
patients were then sent home on a regimen that included 
oral electrolyte supplementation and intravenous fluids 
at home, for a time that was individualized for each pa-
tient. Patients were followed closely in the Transplant 
Outpatient Clinic (at least twice weekly) for the first 3 
mo post-transplant and other patient health conditions 
were treated as indicated. 

Diagnosis and treatment of rejection 
Elevation in the serum creatinine level of  > 0.3 mg/dL 
without obvious cause triggered the diagnosis of  renal 
allograft rejection, which was made by renal allograft bi-
opsy. The Banff  classification was used to determine the 
severity or grade of  rejection[16]. In addition to clinically 
indicated kidney biopsies, both immediate reperfusion 
and 1 mo protocol have been performed in SKPT recipi-
ents since March, 2008; this, unless there was a specific 
contraindication. Three steroid boluses and/or oral pred-
nisone recycle were used to treat Banff  grade Ia renal re-
jection episodes. For episodes of  acute rejection that did 
not respond (histologically or clinically) to bolus steroid 
therapy, rATG rescue therapy was used as the next treat-
ment. Antibody-mediated rejection episodes and Banff  
grades Ⅰb and Ⅱ grades of  rejection were also treated 
with rATG with the number of  doses based on clinical 
and biochemical parameters. A one month follow-up bi-
opsy was subsequently performed to confirm improved 
histopathologic changes. The presence of  inflammation 
either on the 1 mo surveillance (subclinical rejection) or 
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PTx recipients, respective patient survival (87% vs 86%), 
PTx graft survival (78% vs 62%, P = 0.165) and kidney 
graft survival (78% vs 77%). 

Pancreas retransplantation
Of  the 16 (8%) pancreas retransplants, indications for 
retransplantation were early thrombosis following SKPT 
(n = 9) or PAK (n = 1), primary PTx loss secondary to 
rejection (n = 4), primary nonfunction (n = 1), and recur-
rent auto-immunity (n = 1). Types of  pancreas retrans-
plants included PTx following SKPT (n = 10), second 
PAK (n = 3), second SKPT (n = 2), and second PTA (n 
= 1). Eleven patients underwent allograft pancreatectomy 
prior to retransplantation and 3 at the time of  pancreas 
retransplantation. There were no instances of  early PTx 
thrombosis in pancreas retransplants compared to an 
incidence of  8.6% in primary PTxs (P = NS). Six pa-
tients underwent kidney retransplantation for either early 
(thrombosis, n = 1) or late (chronic allograft nephropathy, 
n = 5, mean 61 mo) graft loss. With a mean follow-up of  
72 mo in retransplants vs 65 mo in primary PTx, respec-
tive patient survival (95% vs 86%), PTx graft survival (64% 
vs 65%) and kidney graft survival (82% vs 75%) rates were 
comparable. 

Prospective study of alemtuzumab vs rATG induction
In the prospective study of  Alem vs rATG induction 
in SKPT, 18 (39%) received rATG induction and 28 
patients (61%) received Alem. Enrollment in the two 
groups was not equal because the randomization schema 
also included concurrent patients undergoing kidney 
transplantation alone. Delayed kidney graft function, 
PRA > 20%, retransplantation, or young AAs (below age 
40) were used to identify patients as high immunologic 
risk, who were managed with chronic steroid therapy (n = 
11); all other patients were deemed low immunologic risk 
and underwent early steroid elimination (n = 35). Mean 
follow-up was 5.7 years. With reference to donor, recipi-
ent, or transplant characteristics, there were no significant 
differences between the 2 groups. No differences were 
noted in one- or five-year patient survival rates. Similarly, 
one- and five-year uncensored and death-censored kidney 
and pancreas graft survival rates were comparable. In 
early PTx thromboses (3.6% Alem vs 11% rATG), there 
were no differences. The same applied to readmissions 
and other surgical complications between groups. In the 
Alem group, the overall rates of  major infection (39.3% 
Alem vs 66.7% rATG, P = 0.13), CMV infection (0 Alem 
vs 16.7% rATG, P = 0.054) and acute rejection (21.4% 
Alem vs 44.4% rATG, P = 0.11) were slightly lower. In 
patients with functioning grafts, mean serum creatinine at 
1 year (1.1 mg/dL Alem vs 1.2 mg/dL rATG) and 5 years 
(1.4 mg/dL Alem vs 1.6 mg/dL rATG), mean calculated 
aMDRD GFR at 1 year (57 ± 16 mL/min Alem vs 55 
± 14 mL/min rATG) and 5 years (55 mL/min Alem vs 
52 mL/min rATG), glycohemoglobin at 1 year (5.2% 
Alem vs 5.1% rATG) and 5 years (both 5.4%), and mean 

C-peptide at 5 years (2.2 Alem vs 2.3 ng/mL rATG, all P 
= NS) levels were similar in the Alem and rATG groups.

As a result of  this study, we switched from rATG to 
Alem induction therapy in all of  our PTx recipients since 
2009.

SKPT in AA recipients
Inferior outcomes following kidney transplantation may 
be a function of  AA ethnicity, but data are limited in 
PTx. From 11/01 to 3/13, a total of  39 PTxs (1 PTA, 
2 PAK and 36 SKPT) were carried out in AA recipients 
and the other 163 in recipients of  other ethnicities (1 
Hispanic, 1 Asian, and 161 Caucasian). 

Donor and recipient demographics are shown in 
Table 1. The AA group had a longer duration of  pre-
transplant dialysis (mean AA 32 mo vs 16 mo other), 
fewer preemptive transplants (5.5% AA vs 28% other), 
fewer SPTs (8% AA vs 23% other), more patients with a 
current PRA ≥ 10% (28% AA vs 10% other), more PTxs 
performed using the systemic-enteric technique (23% AA 
vs 9% other), more patients with 0-1 HLA matches (64% 
AA vs 42% other), and fewer patients who were CMV 
seronegative (28% AA vs 48% other, all P < 0.05). Fur-
thermore, the AA group had more patients with a body 
weight ≥ 80 kg (51% AA vs 24% other), more patients 
with diabetes for ≤ 18 years (38% AA vs 17% other) and 
more patients with pretransplant C-peptide levels above 
2.0 ng/mL (36% AA vs 14% other, all P < 0.05).

Outcomes are shown in Table 2. Actual patient (90% 
AA vs 86.5% other), kidney (67% AA vs 77% other) and 
pancreas graft survival (59% AA vs 66% other, all P = 
NS) rates were comparable with a follow-up mean of  67 
mo. Early PTx thrombosis rates (10% vs 7%) and early 
relaparotomy (46% vs 36%) were likewise comparable in 
the AA and other groups, respectively. Between groups, 
cumulative clinical acute rejection rates were similar (33% 
AA vs 27% other). 

In AA patients, death-censored dual graft loss was 
much higher (22% AA vs 6% other, P = 0.01). In addi-
tion, the death-censored kidney graft survival rate (70% 
AA vs 87% other, P = 0.03) was lower in the AA group. 
In AA patients who were pretransplant C-peptide posi-
tive (n = 14) vs C-peptide negative (n = 25), there were 
no differences in mortality (7% vs 12%), kidney graft 
loss (21% vs 36%), or pancreas graft loss (36% vs 44%) 
rates, respectively. Based on this analysis, we concluded 
that PTx in AA recipients was characterized by a higher 
frequency of  detectable HLA antibodies and C-peptide 
levels at the time of  PTx, less HLA-matching, fewer 
SPTs and PTxs with portal-enteric drainage, and more 
patients with a type 2 diabetes phenotype. Although rates 
of  survival, acute rejection and pancreas thrombosis were 
similar, AA patients were at an increased risk for kidney 
graft loss or dual graft loss compared to other patients in 
the absence of  mortality. This finding may imply either a 
greater risk for graft loss, better survival in the presence 
of  graft loss, or both, in AA patients. 
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SKPT in “type 2 diabetes”
Over an 11+ year period, we performed 162 SKPTs 
including 132 in patients with absent or low C-peptide 
levels (< 2.0 ng/mL, including 21 with measurable 
C-peptide) and 30 in patients with C-peptide levels ≥ 2.0 
ng/mL (mean C-peptide level 5.7 ng/mL, range 2.1-12.4). 
At the time of  SKPT, patients who were C-peptide posi-
tive had a later age of  onset of  diabetes mellitus (mean 
age 34 years C-peptide positive vs 16 years C-peptide 
negative, P = 0.0001), weighed more (mean 77 C-peptide 
positive vs 69 kg C-peptide negative, P = 0.27), had a 

higher proportion that were age 50 years or older (40% 
C-peptide positive vs 23% C-peptide negative, P = 0.06), 
and had more AAs (47% C-peptide positive vs 17% 
C-peptide negative, P = 0.001) compared to those with 
no or low C-peptide levels. In C-peptide positive patients, 
diabetes duration was shorter (mean 17 years C-peptide 
positive vs 25 years C-peptide negative, P = 0.01) but 
duration of  dialysis was performed over a longer period 
(median 40 mo C-peptide positive vs 14 mo C-peptide 
negative, P = 0.14). The 2 groups did not vary according 
to dialysis modality or history, sensitization, matching, or 
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Table 1  Donor and recipient characteristics in African-American vs  non-African-
American recipients

AA Non-AA P value

n  = 39 n  = 1631

Donor age (yr)   24.7 ± 10.2 25.2 ± 9.4 NS
Donor BMI (kg/m2) 23.6 ± 5.4 23.7 ± 2.8 NS
Cold ischemia time (h) 15.8 ± 4.6 16.3 ± 3.8 NS
5-6 HLA-mismatch        25 (64.1%)         68 (41.7%) 0.01
HLA-mismatch   4.8 ± 1.0   4.4 ± 1.2 NS
PRA > 10%        11 (28.2%)         17 (10.4%)   0.008
CMV Recipient negative        11 (28.2%)         78 (47.9%) 0.03
CMV D+/R-          7 (17.9%)         45 (27.6%) NS
Retransplant        2 (5.1%)       14 (8.6%) NS
Portal-enteric technique        30 (76.9%)       149 (91.4%) 0.02
SKPT        36 (92.3%)       126 (77.3%)
SPT        3 (7.7%)         37 (22.7%) 0.04
Recipient age 41.7 ± 9.8 43.0 ± 10.4 NS
Recipient gender: male        20 (51.3%)         94 (57.7%) NS
Recipient weight ≥ 80 kg        20 (51.3%)         39 (23.9%)   0.001
Recipient weight 70.9 ± 11.9   71.2 ± 12.7 NS
Dialysis history: SKPT hemodialysis 29/36 (80.6%) 54/126 (42.9%)
Peritoneal dialysis   5/36 (13.9%) 37/126 (29.4%)
None (preemptive) 2/36 (5.5%) 35/126 (27.8%)   0.004
Duration of dialysis: SKPT (mo) 31.8 ± 15.1   15.6 ± 17.8 0.02
Duration of pretransplant diabetes ≤ 18 yr        15 (38.5%)         27 (16.6%)   0.004
Duration of diabetes (yr) 19.7 ± 8.4 26.9 ± 8.6 0.03
Age of onset of diabetes 20 ± 8 16 ± 6 NS
SKPT waiting time (mo) 11.5 ± 6.4   9.7 ± 7.2 NS
C-peptide positive        14 (35.9%)       16 (9.8%)   0.001

1161 Caucasian, 1 Asian, 1 Hispanic ethnicity. AA: African-American; BMI: Body mass index; 
HLA: Human leukocyte antigen; CMV: Cytomegalovirus; PRA: Panel reactive antibody; SKPT: 
Simultaneous kidney-pancreas transplantation; SPT: Solitary pancreas transplantation; NS: Not 
significant.

Table 2  Outcomes in African-American vs  non-African-American recipients

AA Non-AA P value

n  = 39 n  = 1631

Patient survival      35 (89.7%) 141 (86.5%) NS
Death with functioning grafts      1 (2.6%) 14 (8.6%) NS
Kidney graft survival      26 (66.7%)  123/159 (77.4%) NS
Death-censored kidney graft survival     26/37 (70%)  123/143 (87%) 0.03
Pancreas graft survival   23 (59%) 108 (66.3%) NS
Death-censored pancreas graft survival     23/37 (62%)  108/148 (73%) NS
Death-censored dual graft loss 8/37 (21.6%)     9/142 (6.3%) 0.01
Follow-up (mo) 64.9 ± 38.2 69.8 ± 28.6 NS
Relaparotomy      18 (46.2%)   58 (35.6%) NS
Early thrombosis        4 (10.3%) 12 (7.4%) NS
Acute rejection      13 (33.3%)   44 (27.0%) NS

1161 Caucasian, 1 Asian, 1 Hispanic ethnicity. AA: African-American; NS: Not significant.
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other significant variables. 
With a mean follow-up of  5.5 years, patient survival 

(85% C-peptide negative vs 87% C-peptide positive), 
kidney graft survival (72% C-peptide negative vs 77% 
C-peptide positive), and pancreas graft survival (66% 
C-peptide negative vs 57% C-peptide positive, all P = NS) 
rates were comparable between groups. Death-censored 
kidney [both 85% and pancreas (77% C-peptide negative 
vs 61% C-peptide positive, both P = NS)] rates of  graft 
survival were similar between groups. In each group, 
death-censored dual graft loss occurred in 11%. Rates of  
early relaparotomy (36% vs 33%) and thrombosis (9.8% 
vs 3%) were the same in C-peptide negative and positive 
groups, respectively. In follow-up, at the five-year point, 
there were no differences in surgical complications, major 
infections, HbA1c and C-peptide levels, acute rejection 
episodes (29% vs 30%), readmissions, or renal functional 
parameters among the 2 groups. 

With these findings in mind, C-peptide positive dia-
betic patients undergoing SKPT appear to have a pheno-
type consistent with type 2 diabetes (more frequently AA, 
obese, older, longer duration of  pre-transplant dialysis 
and later age of  onset and shorter duration of  diabetes) 
compared to insulin deficient patients at the time of  
SKPT. However, survival outcomes were comparable. As 
a result, pretransplant C-peptide levels, provided that they 
are < 10 ng/mL, are not used solely by us to identify ap-
propriate patients for SKPT.

SKPT vs SPT
We compared outcomes in 162 SKPT and 40 SPT re-
cipients. Demographic characteristics for SKPT vs SPT 
were, in the majority, comparable (Table 3); notwith-

standing this, the SPT group had less HLA mismatching 
(SKPT mean 4.5 ± 1.2 vs SPT 2.7 ± 1.5), younger do-
nors (SKPT mean 27 ± 11 years vs SPT 22 ± 7.6 years), 
a lower incidence of  AA recipients (SKPT 22% vs SPT 
8%), shorter waiting time (SKPT mean 10 mo vs SPT 6 
mo) and an increased number of  retransplants (SKPT 
1.2% vs SPT 35%, all P < 0.05). Outcomes are shown in 
Table 4. With a mean follow-up of  5.7 years vs 7.7 years 
(P = NS), overall patient (86% SKPT vs 87% SPT), kid-
ney (74% SKPT vs 80% SPT) and pancreas graft survival 
(both 65%) rates were comparable. 

Mortality was nearly equivalent following either SKPT 
(13.6%) or SPT (13.2%). No differences in mortality 
occurred when comparing primary (13.6%) vs pancreas 
retransplants (6.25%, P = NS). However, patterns and 
timing of  death were different as no early mortality oc-
curred in SPT recipients whereas the rates of  mortality 
following SKPT were 4%, 9% and 12%, at 1-, 3- and 
5-years follow-up, respectively (P < 0.05). In SPT pa-
tients who died, none experienced death with both grafts 
functioning (DWBGF; 4 had previous kidney graft and 3 
previous pancreas graft loss) whereas 15/21 (71%) SKPT 
recipients experienced DWBGF. In the 26 patients who 
died, 15 died while both grafts were still functioning, 6 
died following pancreas failure, 3 died following kidney 
graft failure, and 2 died following asynchronous kidney 
and pancreas graft failure. Secondary to technical issues, 
3 SKPT patients died early (within 5 mo) of  infection. 
The remaining 23 deaths occurred at a mean of  53 mo 
post-transplant (range 6-90). Major causes of  late deaths 
were 7 infectious, 11 cardiovascular, 2 malignancy, and 
3 from miscellaneous causes (1 motor vehicle wreck, 1 
drug overdose, 1 dialysis withdrawal). Patients aged 50 
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Table 3  Donor and recipient characteristics according to pancreas transplantation category

SKPT SPT P  value

n  = 162 in 161 patients1 n  = 40 in 38 patients1

Donor age (yr)   27.3 ± 10.6    22 ± 7.6    0.004
Donor BMI (kg/m2) 23.9 ± 1.4 23.5 ± 6.8 NS
Donation after cardiac death donors 5 (3.1%) 0 NS
Cold ischemia time (h) 16.2 ± 7.4 14.8 ± 3.8 NS
HLA-mismatch   4.5 ± 1.2   2.7 ± 1.5 < 0.001
PRA > 10% 27 (16.7%)   8 (20%) NS
CMV Donor+/Recipient- 45 (27.8%)    11 (27.5%) NS
Retransplant 2 (1.2%) 14 (35%) < 0.001
Portal-enteric technique                147 (90.7%) 32 (80%)  0.09
Recipient age (yr)   42.7 ± 11.3 42.2 ± 8.7 NS
Patients aged 50 or older 42 (26.1%)      8 (21.1%) NS
Recipient gender: male 94 (58.0%) 19 (50%) NS
Recipient: AA 36 (22.2%)    3 (7.9%)  0.03
Recipient weight (kg)   71.1 ± 13.5   70.7 ± 12.8 NS
Dialysis history: hemodialysis 82 (50.9%) NA
Peritoneal dialysis 42 (26.1%)
None (preemptive) 37 (23.0%)
Duration of pretransplant diabetes (yr) 25.3 ± 9.8 26.7 ± 7.7 NS
Waiting time (mo) 10.1 ± 6.3   5.8 ± 7.2    0.002

1One patient had 2 SKPTs, two had 2 SPTs, and seven had SKPT followed by SPT. AA: African-American; 
HLA: Human leukocyte antigen; CMV: Cytomegalovirus; PRA: Panel reactive antibody; SKPT: Simultaneous 
kidney-pancreas transplantation; SPT: Solitary pancreas transplantation; NS: Not significant; NA: Not avail-
able; BMI: Body mass index.
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and older at the time of  PTx comprised 42% of  those 
who subsequently died compared to 23% of  survivors (P 
= 0.05). 

Pancreas graft loss was most commonly associated 
with death (with a functioning graft), (DWFG) in SKPT 
recipients whereas acute and chronic rejection accounted 
for the majority of  pancreas graft failures in SPT recipi-
ents. Rates of  early thrombosis were 8.6% in SKPT and 
5% in SPT patients. The overall incidence of  clinically 
evident, pancreas acute or biopsy proven kidney rejec-
tion in SKPT was similar to the incidence of  clinically 
evident, biopsy proven pancreas rejection in SPT (SKPT 
29% vs SPT 27.5%, P = NS). As a result of  this experi-
ence, we concluded that in the setting of  careful donor 
and recipient selection, HLA matching, antibody induc-
tion with either rATG or Alem, portal-enteric drainage, 
flow cytometry crossmatch testing, peri-operative anti-
coagulation, PTx biopsy monitoring, and TAC/MMF 
maintenance immunosuppression, similar results can be 
achieved in SKPT and SPTs.

Experience with allograft pancreatectomy
Of  the 202 PTxs, 70 PTx graft losses occurred, of  which 
21 (30%) resulted in allograft pancreatectomy. Allograft 
pancreatectomy was performed in 10% of  patients; indi-
cations were early thrombosis (n = 16), late thrombosis 
(n = 2), rejection (n = 1), infection (n = 1), and pancreati-
tis/uncontrolled leak (n = 1). The incidence of  allograft 
pancreatectomy was 12.5% in pancreas retransplants 
compared to 10% in primary PTxs. In addition, the inci-
dence was 13% with systemic-enteric drainage compared 
to 10% with portal-enteric drainage. With a mean follow-
up of  70 mo in patients with allograft pancreatectomy 
compared to 65 mo in PTx recipients without allograft 
pancreatectomy, respective patient survival (81% vs 87%) 
and kidney graft survival (67% vs 76%) rates were com-
parable. In summary, allograft pancreatectomy was per-
formed in 30% of  PTx graft losses, was usually related 
to early graft loss secondary to thrombosis, and did not 
appear to impact medium-term patient or kidney graft 
survival rates. 

Outcomes according to different measures of “success”
The definition of  PTx graft failure is not uniform and 

“success” following PTx may be measured by a number 
of  parameters, including freedom from exogenous insulin 
and dialysis, absence of  hyper/hypoglycemia, enhanced 
well-being and quality of  life, and improved life expec-
tancy. With 5.5 years being the mean follow-up, overall 
patient survival for the entire series (n = 192) was 86.5%. 
A total of  15 patients experienced DWFG whereas 3 pa-
tients died following kidney graft failure, 6 following PTx 
graft failure, and 2 following both kidney and PTx graft 
failure.

Censored kidney graft survival was 84% and uncen-
sored (actual) was 75%. Reasons for kidney graft failure 
(n = 49) included chronic allograft nephropathy (n = 12), 
DWFG (n = 21), polyomavirus nephropathy (n = 3), 
acute/chronic rejection (n = 11), and other (n = 2). Six 
patients underwent successful kidney retransplantation, 
therefore leaving a dialysis-free rate of  87.5% in those 
patients who survived. 

Censored PTx graft survival was 72% and uncensored 
(actual, insulin-free) was 65%. Reasons for PTx failure (n 
= 70) included acute or chronic rejection (n = 30), death 
with a functioning PTx (n = 18), early (n = 16) or late (> 
3 mo post-PTx, n = 3) thrombosis, and infection (n = 3). 
The insulin-free rate among surviving patients was 80%, 
in view of  the fact that a total of  8 patients underwent 
successful pancreas retransplantation. Among the 30 pa-
tients with rejection-based graft failure, 11 were without 
measureable C-peptide, 4 died, and 15 continued to have 
measureable C-peptide and had limited pancreas function 
notwithstanding the fact that all were insulin-requiring. 
Using the detection of  C-peptide for graft survival, the 
success rate in surviving patients (including pancreas re-
transplants) was 88% and the death-censored PTx graft 
survival rate was 80%. 

As a result, in patients with severe diabetes, excellent 5 
year outcomes following PTx were achieved, as > 86% of  
patients were still alive, > 87% of  survivors were dialysis-
free, 88% of  survivors had detectable C-peptide levels, 
and 80% of  patients who survived remained insulin-free. 

DISCUSSION
The Wake Forest PTx experience in the new millennium 
is documented herein and chronicles evolving aspects of  
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Table 4  Outcomes according to pancreas transplantation category

SKPT SPT P  value

n  = 162 in 161 patients1 n  = 40 in 38 patients1

Patient survival          133/154 (86.4%)            33/38 (86.8%) NS
Kidney graft survival 120 (74.1%)            28/35 (80%) NS
Pancreas graft survival 106 (65.4%) 26 (65%) NS
Follow-up (mo) 68.7 ± 96 92.1 ± 37 NS
Early thrombosis 14 (8.6%) 2 (5%) NS
Acute rejection   47 (29.0%)    11 (27.5%) NS
Death in first 4 yr post-transplant 10 (6.2%)                    0 NS
Death with functioning grafts 15 (9.3%)                    0 0.007

1One patient had 2 SKPTs, two had 2 SPTs, and seven had SKPT followed by SPT. SKPT: Simultaneous kid-
ney-pancreas transplantation; SPT: Solitary pancreas transplantation; NS: Not significant.
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recipient selection, technical considerations, immuno-
suppression, and recipient management protocols based 
upon numerous prospective and retrospective studies of  
our own outcomes. Improving outcomes in vascularized 
PTx are due to a number of  factors including reductions 
in both technical and immunologic graft losses as well 
as surgical complications. Even with antibody induction 
and contemporary immunosuppression, when compared 
to SKPT, SPT is associated with lower pancreas graft 
survival rates, and higher rates of  acute rejection and im-
munologic pancreas graft loss[1,3-5]. Urinary amylase and 
serum creatinine levels are unavailable for the diagno-
sis of  rejection in SPTs with enteric exocrine drainage. 
Moreover, monitoring pancreatic enzymes (lipase and 
amylase) may not always be reliable. Because of  the dif-
ficulties in detecting SPT rejection, we advocate protocol 
pancreas biopsies in these patients[7,19]. 

Others have reported the value of  performing sur-
veillance biopsies of  the pancreas allograft as a form of  
immunologic monitoring[20]. However, in spite of  efforts 
to detect solitary pancreas allograft rejection in a timely 
fashion, acute rejection episodes occurring late (> 1 year 
after transplant) are more common in SPT compared to 
SKPT. Furthermore, the presence of  acute rejection and 
SPT are the two most important risk factors for pancreas 
graft loss secondary to chronic rejection[21]. We believe 
that the use of  Alem induction coupled with surveil-
lance pancreas biopsy monitoring are reasons why we are 
able to achieve similar mid-term outcomes in SPT and 
SKPT[7]. Our data and the experience of  others suggests 
the safety and efficacy of  Alem induction in either SKPT 
or SPT[14,22,23].

A number of  recent reports, including our own, have 
demonstrated the safety and efficacy of  SKPT in patients 
with a type 2 diabetes phenotype[6,7,24,25]. In one series, 
94% of  recipients of  PTxs that were technically success-
ful became completely insulin-free[24]. Long-term results, 
in type 1 diabetic PTx recipients, were comparable in this 
study. Ten and twenty year outcomes have been reported 
by Light et al[25,26] from the Washington Hospital Center 
in either type 1 or type 2 diabetic patients undergoing 
SKPT. These groups were defined by the presence or 
absence of  C-peptide, respectively. In keeping with our 
experience, the type 2 diabetic patients were older at the 
onset of  diabetes, had a higher BMI, and contained a 
higher AA proportion. No differences, similar to our ex-
perience, were identified in long-term outcomes in these 
studies, suggesting that the presence of  C-peptide or 
“type” of  diabetes are not important factors in determin-
ing recipient selection for SKPT. 

We present herein data on 202 PTxs performed at 
WFBH in the past 11+ years. During this time, we have 
chronicled a number of  changes including: (1) Switching 
to single dose Alem induction with early withdrawal of  
corticosteroids in combination with chronic immuno-
therapy with TAC and MMF dual therapy; (2) Advancing 
age both in donors and recipients; (3) Transplantation of  
both the pancreas and kidney on the right side; (4) Immu-

nosuppressive management based on histologic findings 
with planned implementation of  immediate reperfusion 
kidney biopsies, scheduled pancreas biopsies, as well as 
clinically indicated and follow-up biopsies; (5) Better un-
derstanding of  the role of  SKPT in patients with a “type 
2 diabetes” phenotype; and (6) Reduction in the volume 
of  PTxs in spite of  increases in the number of  kidney 
transplants being performed. 

Fewer PTxs being performed is not unique to our 
program but reflects a national trend. There are prob-
ably a number of  reasons why PTx activity has decreased 
over time including more restrictive donor selection (and 
fewer ideal donors), increasing prevalence of  obesity 
among donors and recipients, a number of  advances in 
the medical treatment of  diabetes (including new insulin 
analogues, more sophisticated insulin pumps and glucose 
sensor devices, better identification and follow-up), finan-
cial constraints, and difficulties with access to the waiting 
list[27,28]. In spite of  these drawbacks, whole organ PTx 
provides an auto-regulating endogenous source of  insu-
lin that is able to achieve euglycemia long-term, which 
in essence renders the patient “ex-diabetic”. The goals 
of  PTx include freedom from exogenous insulin, better 
health and well-being, and improved quality of  life and 
life expectancy. Achieving any of  these goals might be a 
reasonable measure of  success. 

For patients with end stage diabetic nephropathy, an-
nual mortality on the waiting list over the past decade 
has ranged from 7% to 10%[29]. Although PTx results in 
an insulin-free normoglycemic state, these benefits are 
offset by the potential for surgical complications and the 
short- and long-term sequelae of  chronic immunother-
apy, which results in a compression of  morbidity. In the 
future, PTx will remain a useful therapeutic intervention 
for “complicated” insulin-requiring diabetes because of  
its metabolic efficiency. Because islet transplant success is 
defined by C-peptide production and absence of  hypo-
glycemia rather than freedom from insulin therapy and 
usually involves > 1 donor pancreas, future comparisons 
of  PTx vs islet transplant should incorporate similar defi-
nitions of  graft failure, measures of  success, and empha-
size longer-term outcomes.

COMMENTS
Background
Vascularized pancreas transplantation (PTx) provides a self-regulating internal 
source of C-peptide that is consistently able to achieve an insulin-free condition 
with euglycemia. PTx in diabetic patients is performed in 3 major settings; either 
before (pancreas transplant alone), after (pancreas after kidney), or concurrent 
with a kidney transplant (simultaneous kidney-pancreas transplant). The goals 
of PTx include freedom from exogenous insulin therapy, better health and well-
being, and improved quality of life and life expectancy without the need for 
close glucose monitoring. 
Research frontiers
Important areas of research in PTx include targeted or individualized immuno-
suppression, development of better immune and graft monitoring, improving the 
donor organ supply, and gaining insights into the pathophysiology of rejection 
as well as all types of diabetes that result in specific microvascular and meta-
bolic complications.  
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Innovations and breakthroughs
Success rates for PTx have progressively improved in the past 4 decades, 
secondary to refinements in diagnostic and therapeutic technologies, improve-
ments in surgical aspects, advancements in therapeutic immunosuppression 
and anti-infective prevention, new and effective techniques in organ retrieval 
and preservation technology and increased experience in the selection of 
donors and recipients. The history of PTx has closely paralleled advances in 
immunosuppression and surgical techniques. 
Applications 
In the future, PTx will remain an effective therapy for “complicated” insulin-
requiring diabetes because of its metabolic efficiency until new treatments are 
developed that can achieve normoglycemia without either immunotherapy or 
major morbidity.
Peer review
Excellent descriptive manuscript of pancreas and kidney transplants.
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Abstract
AIM: To compare freeze-dried strawberry (FDS) bever-
age and strawberry-flavored drink effects on lipid profile 
and blood pressure in type 2 diabetic (T2D) patients.

METHODS: In a randomized, double-blind, controlled 
trial, 36 subjects with T2D (23 females; mean ± SE 
age: 51.57 ± 10 years) were randomly divided into two 
groups. Participants consumed two cups of either pure 
FDS beverage (each cup containing 25 g freeze-dried 
strawberry powder equivalent to one serving of fresh 
strawberries; intervention group) or an iso-caloric drink 

with strawberry flavoring (similar to the FDS drink in 
fiber content and color; placebo group) daily for 6 wk. 
Anthropometric measurements, 3 d, 24 h dietary recall, 
and fasting blood samples were collected at baseline 
and at weeks 6 intervention. After lying down and 
relaxing for approximately 10 min, each participant’s 
blood pressure was recorded in triplicate with 5 min in-
tervals; recordings were made at baseline and the trial 
end-point. Each participant’s lipid profile was assessed 
before and after intervention.

RESULTS: Assessment at the weeks 6 intervention 
showed a significant reduction from baseline in total 
cholesterol levels and total cholesterol to high-density 
lipoprotein cholesterol (HDL-C) ratio in the intervention 
group (179.01 ± 31.86 to 165.9 ± 32.4 mg/L; P  = 0.00 
and 3.9 ± 0.88 to 3.6 ± 0.082 mg/L; P  = 0.00 respec-
tively), but the change was not significantly different 
between the two groups (P  = 0.07, P  = 0.29 respec-
tively). Systolic blood pressure levels were significantly 
reduced from baseline in both the FDS and placebo 
drink groups (129.95 ± 14.9 to 114.3 ± 27.5 mmHg; 
P  = 0.02 and 127.6 ± 15.6 to 122.9 ± 14.47 mmHg; P  
= 0.00 respectively), but the reduction was not signifi-
cantly different between the two groups. Diastolic blood 
pressure was significantly reduced post-intervention in 
the FDS drink group compared to placebo group (78.7 
± 7.2 vs  84.4 ± 5.8; P  = 0.01), the reduction was also 
significant within the FDS drink group (84.2 ± 8.03 to 
78.7 ± 7.2; P  = 0.00). Triglycerides, HDL-C concentra-
tions and anthropometric indices showed no significant 
differences between or within groups. 

CONCLUSION: Short-term FDS supplementation im-
proved selected cardiovascular risk factors in subjects 
with T2D. Long-term effects on other metabolic bio-
markers need to be investigated in future trials.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Cardiovascular complications are the main 
cause of mortality in diabetes patients. Considering 
the role of flavonoids in modulating the latter compli-
cations, this study was designed to test the favorable 
impact of freeze-dried strawberry (FDS) drink, a flavo-
noid-rich beverage, on the metabolic profile of diabetes 
patients in a randomized, double-blind, placebo control 
trial. Lipid profile and blood pressure were improved 
in patients who consumed the FDS drink for 6 wk. Ef-
fects of the latter intervention on other atherosclerotic 
biomarkers have been discussed separately in Ann Nutr 
Metab  2013; 63: 256-264. This paper describes the fur-
ther analysis of other metabolic biomarkers.

Amani R, Moazen S, Shahbazian H, Ahmadi K, Jalali MT. 
Flavonoid-rich beverage effects on lipid profile and blood pres-
sure in diabetic patients. World J Diabetes 2014; 5(6): 962-968  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
v5/i6/962.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i6.962

INTRODUCTION
The increasing prevalence of  type 2 diabetes (T2D) all 
over the world has highlighted the importance of  cost-
effective interventions in mitigating the common com-
plications of  this devastating disease[1]. Elevated serum 
triglycerides (TGs), reduced high-density lipoprotein cho-
lesterol (HDL-C), increased blood pressure and enhanced 
fasting plasma glucose are among the most important 
complications experienced by patients with diabetes[2]. 
Diet is known to have a crucial impact on the main risk 
factors that are responsible for cardiovascular complica-
tions in T2D patients, exerting its effects by modulating 
plasma levels of  lipids and lipoproteins, blood pressure, 
energy balance and oxidative modification or protection 
of  plasma lipids and lipoproteins[3]. Higher consumption 
of  fruits and vegetables are among the dietary recom-
mendations for controlling common complications of  
T2D[4]. There is scarce evidence for the individual natural 
components, although flavonoids are thought to play a 
significant role in health effects of  plant-based diets. 

The proposed mechanisms underlying the protec-
tive role of  flavonoids include regulating postprandial 
glucose, delaying the gastric emptying rate, and reducing 
active transport of  glucose across intestinal brush bor-
der membrane. Inhibition of  intestine sodium-glucose 
cotransporter-1 (Na-Glut-1) along with inhibition of  
α-amylase and α-glycosidase activity makes flavonoids 
potential candidate factors in the management of  hy-
perglycemia[5,6]. Anthocyanins, a significant group of  
flavonoids in berries, have been shown to influence 
glucose absorption, insulin levels/secretion/action, and 
lipid metabolism, both in vitro and in vivo[7-9]. Due to high 
content of  essential nutrients and flavonoids, especially 
anthocyanins, strawberries seem to have relevant biologi-

cal impacts on human health. Few human investigations 
have been conducted on the cardiovascular effects of  
strawberries in T2D patients, despite these patients show-
ing relative risk of  cardiovascular disease (CVD) at rates 2- 
to 4-fold higher than those of  non-diabetic subjects[10]. 

The main aim in this study was to assess the changes 
in lipid profile and blood pressure in subjects with T2D 
after consuming a freeze-dried strawberry (FDS) bever-
age or placebo drink for 6 wk. A secondary aim of  this 
study was to provide more evidence on the beneficial ef-
fects of  adding natural flavonoid-rich sources to the diets 
of  diabetic patients and at achievable doses.

MATERIALS AND METHODS
Participants
In order to attribute the effect of  FDS beverage more 
precisely as compared to the flavonoids content of  it, a 
placebo formula was specifically designed with similar fi-
ber and calorie contents. A total of  40 subjects with T2D, 
aged between 35 and 60 years and with body mass index 
(BMI) of  less than 35 kg/m2, were selected from Goles-
tan Hospital in Ahavz, Iran for the present investigation. 
Participants were recruited via phone and advertisement. 
Patients with established T2D (i.e., for over 12 mo) and 
who had not received any lipid-lowering therapies were 
recruited to the study. Exclusion criteria consisted of  
being on medications for any chronic disease (cancer, 
CVD), smoking (current or stopped for less than 6 mo), 
lactose intolerance, alcohol consumption of  more than 1 
oz/d, ingestion of  antioxidant supplements and vitamins, 
being under medical care (including taking medication) 
for any other disorders. Antidiabetic therapies included 
metformin, sulfonylurea and glitazone. The basic charac-
teristics of  participants are summarized in Table 1. 

In order to detect a significance level of  P < 0.05 
and power of  80%, the sample size of  16 was calculated 
for each group. Considering a dropout rate of  20%, the 
sample size was increased to 20 for each group. Our in-
tervention was conducted according to the Declaration 
of  Helsinki and all procedures involving human subjects 

Amani R et al . Flavonoid-rich beverage and diabetes

963 December 15, 2014|Volume 5|Issue 6|WJD|www.wjgnet.com

Table 1  Baseline characteristics of the study participants1

Characteristic Intervention Control P 2

n  = 19 n  = 17
Age in years 51.9 ± 8.2     51.1 ± 13.8  0.710
Sex, M:F 6:13 5:12  0.433
Weight at study baseline in kg 75.79 ± 9.02     73.38 ± 11.98  0.550
Weight at end-of-trial in kg 75.84 ± 9.04     73.12 ± 11.89  0.750
BMI at study baseline in kg/m2 27.36 ± 4.23 28.58 ± 4.7  0.330
Duration of diabetes 5.96 ± 5.1   9.00 ± 7.2  0.120
Fasting blood glucose in mg/dL 160.5 ± 51.3   201.7 ± 89.2  0.090
HbA1C, %   7.2 ± 1.6     7.5 ± 1.9  0.740
Waist circumference in cm 99.13 ± 9.06 100.56 ± 8.06  0.680
Hypoglycemic agent use, n (%) 17 (89.5) 14 (82.3)   0.4233

Anti-hypertension agent use, n (%)     5 (26.13)     3 (17.46)   0.2533

1Values are mean ± SD, unless stated otherwise; 2Independent t-test, unless 
stated otherwise; 3χ 2 test.



were approved by the Medical Research Ethics Commit-
tee at Ahvaz JondiShapour University of  Medical Science.

Interventional design
This investigation was a double-blind, randomized, con-
trolled clinical trial. A block randomization method was 
used to randomly assign the matched participants into 
one of  two groups total. Patients were asked to refrain 
from ingesting flavonoid-rich foods (including other 
sources of  berries, green tea, cocoa and soy products, 
which were identified for each participant by a screening 
food frequency questionnaire modified for flavonoids) 
for 2 wk prior to the study and throughout the interven-
tion period. Subjects were instructed to consume daily 
either two cups of  the FDS beverage (as intervention; 
containing 25 g pure freeze-dried strawberry powder) or 
a flavored beverage (as placebo; containing 12 g lactose, 4 
g pectin and 4 g sugar-free instant strawberry drink pow-
der) for 6 wk (Table 2). The interval between ingestion 
of  the two cups was at least 6 h and all subjects were also 
instructed to avoid consuming the strawberry drink with 
any other snack, lunch or dinner. All participants were 
asked not to alter their lifestyle throughout the 6 wk trial. 
The FDS and placebo powders were identical in packag-
ing as well as in taste and color upon dissolving into a 
glass of  water. The researches distributed the FDS and 
placebo powder packs weekly to the participants. Com-
pliance with the beverage consumption instructions was 
monitored via phone interviews twice a week.

Dietary analysis
Nutrient intake was estimated using a 24 h dietary recall 
exercise conducted for 3 d at pre- and post-study periods 
(Table 3). The 3 d averages of  energy and macronutri-
ent intakes were analyzed by Nutritionist Pro software 

(version 3.2, 2007; Axxya Systems, Stafford, TX, United 
States). All data entry was performed by a trained dieti-
tian. Nutrient information was also obtained through 
food labels or recipes from participants. 

Assessment of variables
Body weight was measured using a scale (Seca, Hamburg, 
Germany), to 0.1 kg accuracy without shoes. Heights 
were measured using a stationary stadiometer (Seca), to 
0.1 cm accuracy. Systolic and diastolic blood pressures 
(SBP and DBP respectively) were measured using the 
Spot Vital Signs device (Welch Allyn, Skaneateles Falls, 
NY). Participants were asked to lie down and relax for 
approximately 8 to 10 min, after which three blood pres-
sure measurements were recorded with 5 min intervals.

Clinical analyses
Twelve hour overnight fasting blood samples were col-
lected between 8:00 and 9:00 a.m. Serum and plasma 
samples were separated by centrifugation at 2000 rpm for 
15 min using a 5810R centrifuge (Eppendorf, Hamburg, 
Germany). The serum samples were stored at -70 ℃ until 
further assay.

Lipid profiling
Serum concentrations of  total cholesterol (TC), TGs, 
and HDL-C were measured using the standard enzy-
matic assay kits (Pars Azmoon Co., Tehran, Iran); spe-
cifically, TC and TGs were assessed using the cholesterol 
esterase/cholesterol oxidase method and glycerol phos-
phate oxidase method, respectively; the HDL-C concen-
tration was measured after precipitation of  B-containing 
lipoproteins.

Supplementary powders, chemicals, and other materials
FDS (intervention) powder was purchased from Chaucer 
Foods Co. (Paris, France). The flavored beverage (placebo) 
powder was supplied by Tabriz Chemistry Co. (Tabriz, 
Iran). All laboratory chemicals were purchased from Far-
zan Teb Co. (Tabriz, Iran).

Statistical analyses 
Data were analyzed using SPSS for Windows (version 
16.0; SPSS Inc., Chicago, IL, United States) and the re-
sults are expressed as mean ± SE. Normality of  the dis-
tribution of  variables was determined by the Kolmogo-
rov-Smirnov test. The basic characteristics and nutrient 
intakes of  participants in both groups were compared 
using independent sample t-test and χ 2 test. The diabe-
tes medication use in both groups was compared using 
Mann-Whitney U test. Analysis of  covariance was used 
to identify any differences between the two groups post-
intervention, adjusting for baseline measurements and 
covariates. Changes in anthropometric measurements, 
nutrient intakes and blood lipid parameters of  the par-
ticipants pre- and post-intervention were compared by 
paired sample t-tests. P values less than 0.05 were consid-
ered as statistically significant.
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Table 2  Nutrient composition of freeze-dried strawberry and 
placebo powders

Nutrient composition of FDS powder Per 50 ga

   Carbohydrates in gram  27.1
   Protein in gram      4.05
   Energy in kcal 108.4
   Moisture, % 5
   Ash in gram       3.17
   Vitamin C in milligram 109.0
   Total phenolics in milligramb  2006.0
   Total anthocyanins in milligramc 154.0
   Phytosterols in milligram     50
   Total dietary fiber in gram 8
Nutrient composition of placebo powder Per 40 g
   Carbohydrates in gram     24
   Protein in gram  0
   Energy in kcal     98
   Total fiber in gram  8
   Sugar-free instant drink powder with strawberry flavoring 
   in gram

 8

aTen percent fresh weight; Chaucer Foods SA France. Subjects received 50 
g/d-approximately 500 g fresh strawberries; bExpressed as milligram gal-
lic acid equivalents; cExpressed as milligram cyanidin-3-glucoside equiva-
lents. FDS: Freeze-dried strawberries.
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wk post-intervention (Table 4). 

Blood pressure
SBP was significantly decreased in both the FDS and 
placebo groups, compared to baseline. DBP was also 
significantly reduced in the FDS group compared to the 
placebo group (Table 4).

DISCUSSION
The potential role of  berries, a natural source of  flavo-
noids, in improving lipid profile has been indicated by 
an emerging body of  evidence. Strawberry puree supple-
mentation in combination with other berries has been 
shown to increase HDL-C and decrease SBP (vs a control 
group) in subjects with cardiovascular risk factors[11]. Yet, 
scant human interventions have been carried out in order 
to prove this protective role of  berries in subjects with 
diabetes. In order to confirm the recommendation of  
adding two servings of  fruits with low glycemic index for 
proper control of  diabetic complications[12], we tested a 
50 g freeze-dried strawberry powder (equivalent to ap-
proximately 500 g or two servings of  fresh strawberries) 
to investigate the beneficial effects of  strawberries in a 
standard freeze-dried form on lipid profile and blood 
pressure levels in subjects with T2D. The effects of  FDS 
beverage consumption on glaciated hemoglobin and ath-
erosclerosis biomarkers in this study have been indicated 
in a separate paper[13]. 

In previous studies[11,14,15], plain water was mainly used 
as the placebo beverage; however, for better elucidation 
of  the role of  polyphenols content of  berries, we used 
a fiber- and energy-matched placebo powder. To our 
best knowledge, this is the first double-blind, placebo 
controlled trial carried out with iso-caloric/fiber placebo 
beverage, investigating favorable effects of  FDS beverage 
in T2D patients. Results from previous in vitro studies in-
dicate that anthocyanin might affect expression of  genes 
involved in cell cycling, signal transduction, and lipid and 
carbohydrate metabolism in adipose tissue cells[8,9,16]. 

Clinical trials involving cranberry and mixed ber-

Ethics approval
The study protocol was approved by the Medical Ethics 
Committee of  Ahvaz JondiShapour University of  Medi-
cal Sciences (Study No. ETH_393). The clinical trial reg-
istration number is IRCT201110117765N1.

RESULTS
All participants completed the study, but 4 people were 
excluded from the statistical analysis. Among those 4 
excluded patients, 3 from the placebo group experienced 
changes in medication or became uninterested in the taste 
of  beverage and 1 did not consume the FDS drink due 
to unwillingness to continue (Figure 1). Except for the 
temporary gastrointestinal discomfort reported by some 
patients in both groups, all cases of  which were alleviated 
during the first week, the participants demonstrated good 
compliance with the FDS and placebo beverage con-
sumption. 

Table 1 presents the baseline characteristics of  the 
participants in the study groups. The two groups were 
statistically similar in most baseline characteristics. Weight 
and BMI remained unchanged during the study for both 
groups. No statistically significant difference was seen 
within and between groups in micro- and macro-nutri-
ents dietary intake, except for polyunsaturated fatty acids 
intake at the beginning of  intervention and at the end of  
the study, for which the difference in terms of  dietary 
intake remained insignificant (Table 3). 

Lipid profile
The lipid profiles were not significantly different between 
the FDS and placebo groups at baseline. Results of  
covariance analysis showed statistically significant differ-
ences within the FDS group for TC (P = 0.000) and TC:
HDL-C ratio (P = 0.002) at the end of  study, adjusted for 
monounsaturated fatty acid intake (Table 4). FDS bever-
age consumption caused a 13.8% decrease in TC and a 
7.1% decrease in TC:HDL-C ratio compared to baseline 
(Figure 2). No significant differences in the lipid profiles 
were observed between the two groups at baseline and 6 
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Table 3  Dietary intake of study participants at baseline and throughout the study1

Run-in period Throughout the study
FDS supplement Placebo P 2 FDS supplement Placebo P 2

n  = 19 n  = 17 n  = 19 n  = 17
Energy in kcal/d 1760.36 ± 145.21 1697.04 ± 132.42 0.69 1784.03 ± 162.32 1624.42 ± 158.02 0.47
Fat in g/d 75.04 ± 5.17 69.88 ± 7.62 0.96 68.41 ± 4.68 73.21 ± 3.08 0.34
SFA in g/d 22.36 ± 1.65 21.62 ± 1.82 0.72 21.98 ± 1.60 21.23 ± 1.44 0.48
PUFA in g/d 19.39 ± 1.92 16.14 ± 1.51  0.023 19.79 ± 1.74   18.5 ± 1.81 0.46
MUFA in g/d 20.68 ± 1.70 21.32 ± 1.26 0.41 22.56 ± 1.51 21.98 ± 1.42 0.65
Cholesterol in mg/d 173.12 ± 14.23      158 ± 12.16 0.46 169.54 ± 12.50 160.02 ± 14.14 0.94
Dietary fiber in g/d 15.68 ± 1.20 14.73 ± 1.60 0.28 14.25 ± 1.83 14.21 ± 1.40 0.56
Vitamin E in mg/d   3.65 ± 1.72   4.51 ± 1.27 0.35   4.79 ± 1.50   4.15 ± 1.42 0.65
Vitamin C in mg/d   71.25 ± 25.02   68.42 ± 18.12 0.75   64.54 ± 16.32   69.47 ± 21.56 0.48
Zinc in mg/d   8.24 ± 1.32   9.80 ± 1.42 0.43   7.53 ± 1.25   8.67 ± 1.36 0.09

1Data are mean ± SD; 2Obtained from independent sample t-test; 3Significant difference between groups; SFA: Saturated fatty acid; PUFA: Poly-
unsaturated fatty acid; MUFA: Monounsaturated fatty acid; FDS: Freeze-dried strawberry.
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ries extract supplementations have led to improved 
dyslipidemia in T2D patients and patients with hyper-
lipidemia[17,18]. The 6 wk FDS supplementation also im-
proved glycated hemoglobin (HbA1c) in our intervention 
study[13]. However, in the present study, no significant 
changes were observed in low-density lipoprotein-choles-
terol (LDL-C) and HDL-C after the 6 wk supplementa-
tion with FDS or placebo beverage. These findings might 
be due to near-normal baseline levels of  LDL-C and 
HDL-C in our intervention and control groups. Decreas-
es in plasma TC and the TC:HDL-C ratio were signifi-
cantly greater in the FDS-supplemented group compared 
to the baseline (Figure 2). Our findings are similar to the 

previous studies reporting the effects of  freeze-dried 
strawberries in lowering TC and LDL-C in subjects with 
metabolic syndrome[11,14,15]. 

The change in lipid profile was not significant be-
tween the intervention and control groups in this study, 
which might be due to the similar fiber content of  the 
placebo drink and the FDS beverage. However, this study 
was specifically designed to assess the effects of  the 
flavonoids content of  the FDS beverage. Further inves-
tigations with a fiber-free placebo (as a third group) are 
needed to study the favorable effects of  the whole con-
tent of  berry products in diabetic patients. 

The FDS supplementation in this study significantly 
decreased SBP and DBP (Table 4). These findings are 
in agreement with the results from a study, in which the 
anti-hypertensive effects of  freeze-dried blueberries were 
assessed in obese subjects with metabolic syndrome or of  
mixed berry supplementation in those subjects with CVD 
risk factors[17,19,20]. Although, some studies have shown no 
significant changes in blood pressure after FDS supple-
mentation in subjects with metabolic syndrome, which 
might be due to smaller sample size and/or shorter dura-
tion of  intervention[14,15]. 

The impact of  berries or anthocyanin in mitigating 
hypertension has been explained as enhancing endo-
thelial nitric oxide synthase levels in endothelial cells, 
decreasing vasoconstriction via nitric oxide-mediated 
pathway, and reducing renal oxidative stress[16,17,21,22]. SBP 
was also significantly decreased in the control group at 
6 wk post-intervention (Table 4). The latter might be at-
tributable to the effects of  the soluble fiber content of  
the placebo drink, indicating the possible role of  fiber 
in FDS beverage, which could partially contribute to the 
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DBP1 SBP2,3 TC2 TC/HDL2

Control -2.6 -3.6 -6.2 -2.1
Treatment -6.5 -12 -6.8 -6.9

-15                      -10                        -5                         0

Figure 2  Percentage of change in total cholesterol, total cholesterol/high-
density lipoprotein-cholesterol, systolic and diastolic blood pressures af-
ter 6 wk post-intervention in both the freeze-dried strawberry and placebo 
group. 1Significant reduction in the FDS group compared to the placebo group; 
P = 0.003 vs P = 0.134; 2Significant reduction within the FDS group in TC, 
TC/HDL and DBP; P = 0.000, P = 0.002 and P = 0.023 respectively; 3Significant 
reduction within the placebo group, P = 0.007. TC: Total cholesterol; TC/HDL-C: 
Total cholesterol/high-density lipoprotein-cholesterol; DBP: Diastolic blood pres-
sures; SBP: Systolic blood pressures; FDS: Freeze-dried strawberry.
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Assessed for eligibility (n  =1200)

Excluded (n  = 1156) 
   Declined to participate (n  = 376) 
   Other reasons (n  = 780)

Randomized (n  = 40)

Allocated to control (n  = 20)Allocated to intervention (n  = 20)

Lost to follow-up (n  = 1)
   Complaining from nausea 

Lost to follow-up (n  = 3)
   Not interested in placebo 
   powder taste (n  =1)
   Insulin therapy (n  =2)

Analyzed (n  = 17)

Analyzed (n  = 19)

Figure 1  Summary of patient enrollment.
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reduction in SBP. 
It should be mentioned that the lack of  a dose-re-

sponse treatment in a cross-over intervention and of  the 
use of  more sensitive biomarkers are among our study’s 
limitations. Gastrointestinal discomforts were anticipated, 
considering the excessive fiber intake accompanying the 
placebo drink[6]. Those who completed the entire 6 wk 

study period experienced this temporary gastrointestinal 
discomfort during the first week, which was alleviated 
thereafter (but which equated to a 15% drop-out rate). 
However, the FDS beverage was well tolerated by par-
ticipants (with only a total 5% drop-out) rate. It is likely 
that the administration of  the FDS or placebo beverage 
in two equal doses throughout the day and the instruc-
tion of  participants to avoid consuming the drinks along 
with a main meal or other snacks contributed to the good 
tolerance. Precise adjustment for total fiber intake, longer 
duration of  intervention, and administration of  freeze-
dried berry products in three or four doses throughout 
the day could improve tolerability while exerting more 
beneficial effects in future investigations. 

In conclusion, our study suggests a cardio-protective 
role of  dietary achievable doses of  strawberries in sub-
jects with T2D. These findings justify further research to 
provide more evidence to support the inclusion of  straw-
berries as a part of  healthy dietary practices for diabetic 
patients.
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COMMENTS
Background
Increasing prevalence of type 2 diabetes (T2D) has lead to a great focus on 
reasonable interventions for mitigating its disease-related complications. Diet 
has a crucial impact on the main risk factors of cardiovascular complications in 
T2D patients. Flavonoids, as a natural component of a plant-based diet, might 
play a significant role in improving the complications of T2D. Still there is a need 
for more precise controlled trials on cardiovascular effects of these sources, 
such as berries, in diabetic patients.
Research frontiers
Strawberries, as a rich source of flavonoids, may have biological impacts on 
human health through their inhibition of the main mechanism in hyperglycemia 
and improving blood pressure. This study was aimed to provide more evidence 
to support the beneficial effects of adding natural flavonoid-rich food sources 
at dietary achievable doses in diabetic patients. The authors investigated the 
changes in lipid profile and blood pressure after consumption of a freeze-dried 
strawberry (FDS) beverage or placebo drink by diabetic patients.
Innovations and breakthroughs
Beneficial effects of flavonoids on cardiovascular complications have emerged 
as a subject of considerable research interest. This study, therefore, was 
carried out to investigate effects of FDS beverage on lipid profile and blood 
pressure in comparison to a placebo drink that was specifically designed to 
resemble the FDS beverage in taste, color, and fiber and energy content, after 
a 6-wk course of supplementation in patients with diabetes. This is the first time 
that a randomized controlled trial has been carried out on the effect of FDS on 
T2D complications.
Applications
Considering the favorable effects observed upon adding two servings of fruits 
with low glycemic index to the dietary plan of diabetic patients, this study might 
suggest a suitable method of supplementing the daily dietary plan of such pa-
tients with flavonoid-rich fruits and beverages.
Terminology
FDS is a term used to describe organic strawberries that have been dried us-
ing the freeze-drying technique, which is considered the most effective method 
for protecting the micronutrients and phytochemical content of fruits and veg-
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Table 4  Metabolic variables at baseline and 6 wk after flav
onoid-rich or placebo supplementation in both groups

Groups
Intervention Control P a

n  = 19 n  = 17
TC in mg/L
   Baseline   179.01 ± 31.86 196.35 ± 50.5 0.19
   6 wk   165.9 ± 32.4 183.29 ± 49.9 0.07
   Change 0-6 wk     -13.1 ± 16.45    -13.05 ± 42 0.80
   %CI for change -7.57 to 20.32 -8.5 to 34.67
   P for change within group    0.0001 0.216
LDL-C in mg/dL
   Baseline     95.84 ± 26.45 116.51 ± 48.8 0.13
   6 wk     92.96 ± 28.03 108.19 ± 40.2 0.19
   Change 0-6 wk   -2.87 ± 0.47     -8.3 ± 0.13 0.60
   %CI for change -6.8 to 12.53 -15.52 to -32.17
   P for change within group 0.54 0.46
HDL-C in mg/dL
   Baseline     47.38 ± 13.67     46.54 ± 12.32 0.84
   6 wk     48.36 ± 12.62       47.7 ± 12.26 0.88
   Change 0-6 wk   0.97 ± 2.4     1.2 ± 3.1 0.78
   %CI for change -2.1 to 0.18 -2.8 to 0.38
   P for change within group   0.098 0.12
TGs in mg/dL
   Baseline   184.6 ± 87.6   195.2 ± 84.2 0.81
   6 wk   166.37 ± 99.59   183.2 ± 84.4 0.65
   Change 0-6 wk -18.28 ± 58.7   -11.88 ± 90.56 0.80
   %CI for change -10.5 to 46.6 -34.6 to 58.4
   P for change within group 0.19 0.59
TC/HDL-C
   Baseline       3.9 ± 0.88     4.4 ± 1.5 0.19
   6 wk       3.6 ± 0.82     4.3 ± 1.2 0.29
   Change 0-6 wk   -0.28 ± 0.35    -0.35 ± 0.08 0.40
   %CI for change 0.11 to 0.45 -0.06 to 1.01
   P for change within group    0.0021 0.08
LDL-C/HDL-C
   Baseline      2.1 ± 0.68     2.6 ± 1.2 0.16
   6 wk      1.9 ± 0.62       2.3 ± 0.94 0.24
   Change 0-6 wk   -0.12 ± 0.36    -0.27 ± 0.06 0.57
   %CI for change 0.11 to 0.45 -0.06 to 1.01
   P for change within group   0.183 0.33
SBP in mmHg
   Baseline 129.95 ± 14.9   127.6 ± 15.6 0.74
   6 wk   114.3 ± 27.5     122.9 ± 14.47 0.25
   Change 0-6 wk   -15.94 ± 27.98   -4.7 ± 6.2 0.57
   %CI for change 2.45 to 29.43 1.49 to 7.91
   P for change within group    0.0231 0.0071

DBP in mmHg
   Baseline     84.2 ± 8.03 86.76 ± 6.3   0.168
   6 wk   78.7 ± 7.2   84.4 ± 5.8   0.0141

   Change 0-6 wk          -5.5 ± 7   -2.3 ± 6.7 0.16
   %CI for change 0.11 to 0.45 -0.06 to 1.01
   P for change within group    0.0031 0.134

1P value is regarded as significant; aP value between groups, P value < 0.05 
is regarded as significant. Values are mean ± SD. TC: Total cholesterol; 
LDL-C: Low-density lipoprotein-cholesterol; HDL-C: High-density lipopro-
tein-cholesterol; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; 
TG: Triglyceride.
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etables under drying conditions. Freeze-drying enables us to take advantage of 
using flavonoid-rich fruits and vegetables while sustaining the highest possible 
quality during every season. 
Peer review
This study is the first randomized control trial that has been carried out to study 
the effects of FDS on T2D mellitus complications. Lipid profile and blood pres-
sure were improved in patients who consumed the FDS beverage for 6 wk. The 
study is interesting because it demonstrates the efficacy of dietetic changes 
related to atherosclerosis in patients affected with T2D mellitus.
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