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Abstract
Mathematical modeling of species transport in a Li-ion cell is important for understanding and optimizing the performance of Li-
ion cells in a wide variety of energy conversion and storage processes. Specifically, solid- and liquid-phase diffusion in the
electrodes is an important process that governs cell performance. Most analytical and numerical models developed in the past
have focused on a constant current boundary condition. However, time-dependent boundary conditions may be important in
many applications, where the applied charging or discharging current changes with time. This paper presents an analytical
solution for the solution-phase diffusion limitation problem for a composite electrode operating under time-dependent flux
boundary condition and arbitrary initial conditions using the Green’s function approach. Results based on the analytical solution
show good agreement with past work for constant current boundary conditions, as well as numerical simulation results. The
results are used to predict the concentration distribution for linear, periodic, and step-function variations in current density as a
function of time. Results from the step-function boundary condition address practical applications where sudden changes in the
magnitude and direction of the imposed current may occur. Results derived for periodic functions are also of practical signifi-
cance since other current profiles can be represented by series comprising periodic functions. This work expands the theoretical
understanding of diffusion in Li-ion cells, and provides the basis for understanding and optimizing important charge/discharge
processes in Li-ion cells.
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Nomenclature
a Specific interfacial area (m−1)
c Non-dimensional concentration, c = C/C0

C0 Reference concentration (mol m−3)
C Concentration (mol m−3)
D Diffusion coefficient of electrolyte in the solution

(m2s−1)
f(x) Non-dimensional initial concentration, f(x) = F(x)/C0

F(x) Initial concentration (mol m−3)
F Faraday’s constant (C mol−1)
g Non-dimensional generation or consumption
G Green’s function

I Current density (A/m2)
jn Pore wall flux, jn = -I/aFLc (mol m−2 s−1)
J Non-dimensional pore wall flux, J = -I(1-t+)Ls

2/
FDLcC0

k Non-dimensional constant
Ls Length of the separator (m)
Lc Length of the porous electrode (m)
r Ratio of electrode length to separator length, r = Lc/Ls
t Non-dimensional time, t = Dτ/Ls

2

t+ Transference number
x Non-dimensional lengthscale, x = X/Ls
X Lengthscale (m)
α Non-dimensional constant
ε Porosity
ω Non-dimensional frequency
τ Time (s)
λ Eigenvalues

Subscripts
c Cathode
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h Homogeneous problem
s Separator

Introduction

Li-ion batteries are among the most popular rechargeable bat-
teries for a wide variety of applications due to their promising
electrochemical characteristics [1–3]. Favorable characteris-
tics of Li-cells include high energy density, high power den-
sity, low self-discharge rate, stability, and long cycle life
[4–6]. The operation of Li-ion cells involves coupled thermal
and electrochemical processes such as kinetic reactions, mass,
charge, and thermal transport phenomena [7, 8].Mathematical
modeling of Li-ion cells is, therefore, necessary to fully un-
derstand the underlying processes towards design and optimi-
zation of electrochemical energy conversion and storage sys-
tems [9, 10].

Extensive research has been reported towards development
of theoretical models to predict electrochemical and thermal
transport in Li-ion cells subject to different operating condi-
tions [11, 12]. These electrochemical models solve the under-
lying charge, mass, and thermal transport equations, as well as
reaction kinetics [11–14]. Two most extensively used electro-
chemical models are the pseudo-2D model (P2D) and single
particle model (SPM) [11]. P2D model was constructed based
on the porous electrode theory introduced by Newman [15]
and the concentrated solution theory [16]. It solves the species
and charge transport in both solution and solid phases [11, 17].
P2D model is generally coupled and non-linear, resulting in a
large number of equations and significant computational time.
Thus, single particle model (SPM) was developed to reduce
the complexity associated with P2D model. In SPM, concen-
tration gradients in the solution phase are neglected, leading to
dominance of solid-phase diffusion in the porous electrode,
which can be represented by a single, one-dimensional parti-
cle [8, 18, 19]. At low discharge rates and for thin electrodes,
this may be a reasonable assumption [20, 21]. However, at
larger discharge rates or for thick electrodes, for example en-
ergy cells, when concentration gradient in the solution phase
cannot be neglected, the governing equations become coupled
and simplification is needed in order to derive an analytical
solution. Towards this, Doyle et al. [22] assumed a specific
form for the reaction rate distribution in the porous electrode,
leading to uncoupling of the governing equations. Based on
this approach, analytical solutions have been derived using the
separation of variables (SOV) method for three limiting
cases—solid phase, solution phase, and ohmically dominated
cell [22]. The governing equations in the solid phase were
defined based on Fick’s law, and the material balance in the
solution phase was defined using the concentrated solution
theory [22].

A variety of approximate analytical methods have been
developed, including the parabolic profile (PP) method [23,
24], state variable model (SVM) [25, 26], extended single
particle model (ESPM) [27, 28], proper orthogonal decompo-
sition (POD) [29], and electrode averaged model (EAM) [30].
Due to the coupled and non-linear nature of the underlying
equations, exact solutions are available only for a limited
number of problems. For example, an extended SOV tech-
nique has been used to predict concentration profile in both
solid- and liquid-phase diffusion problems in composite elec-
trodes under constant galvanostatic discharge boundary con-
dition and zero initial concentration [31]. An exact solution
has been presented for solid-phase diffusion in a spherical
particle under time-dependent flux boundary condition using
finite integral transform technique [32]. Material balance
equations in thin film, cylindrical, and spherical electrodes
under galvanostatic boundary condition have been solved
using integral transform method [33]. Exact solution for both
solid- and solution-phase diffusion with non-zero initial con-
dition has been developed using Laplace transformation tech-
nique [34]. Green’s function approach has been used to solve
the solution-phase diffusion in composite electrode for a con-
stant boundary condition [35].

The diffusion problem in Li-ion cells is inherently multi-
layer in nature, involving diffusion through the electrodes as
well as the separator. A number of papers have presented
analysis of multilayer diffusion problems through a variety
of theoretical methods, such as eigenvalue methods [36, 37],
Laplace transforms [38], and variable substitution followed by
use of Vodicka-type orthogonality [39]. Time-dependent
boundary conditions have been accounted for using
Duhamel theorem [40] as well as Laplace transforms [41].
For eigenvalue-driven approaches, computation of eigen-
values is often challenging for a multilayer geometry [36].

While these methods have been discussed for a variety of
applications such as heterogeneous porous media [38], geol-
ogy [42, 43], and semiconductor devices [44], there is a rela-
tive lack of similar work on multilayer diffusion in Li-ion
cells. Specifically, most of the past work in this field assumes
constant boundary conditions and constant generation/
consumption rate. While time-dependent boundary conditions
have been modeled for general problems [41, 45], there is a
lack of such work in the specific context of Li-ion cells. Time-
dependent boundary conditions may be important in practical
applications involving Li-ion cells, where the applied charg-
ing or discharging current changes with time. This could oc-
cur, for example, in an electric vehicle battery pack where the
discharge rate changes with time due to changes in the driving
load. In some cases, the cell may even switch between charge
and discharge. Only a few analytical and approximate solu-
tions have been presented to address such problems with time-
dependent boundary conditions. For example, finite integral
transform method has been used to develop an exact solution
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for solid-phase diffusion in a single spherical porous electrode
operation under arbitrary initial and boundary conditions [32].
Green’s function approach has been used to solve the solid-
phase diffusion in single layer and composite electrodes [46].
Approximate solutions have been presented for solid-phase
diffusion limitation single-layer electrode under time-
dependent boundary conditions [28].

In light of the relative lack of analytical solutions for prob-
lems with time-dependent boundary conditions, time-
dependent generation/consumption rate, and an arbitrary
space-dependent initial concentration, mathematical modeling
of such problems may be of much interest. A feasible approach
for providing solutions to such problems is the use of Green’s
function technique. Green’s functions have been used com-
monly for heat transfer problems with complicated geometry
and boundary/initial conditions [47], including the use of tech-
niques such as method of fundamental solutions [42] and sin-
gular boundary method [43]. Green’s function has been used
for solving multilayer problems in biotransport [48] and multi-
layer materials [49]. However, only limited use of Green’s
function approach exists for addressing species transport prob-
lems in electrochemical systems [35, 46].

This paper presents an analytical solution for Li-ion diffu-
sion in a composite porous electrode operating under time-
dependent flux boundary condition and arbitrary initial condi-
tions using Green’s function approach. Solid-phase diffusion
limitation is neglected and the solution-phase diffusion limi-
tation is dominant, which is one of the limiting cases of Li-ion
cell operation [22]. While the reaction term in the species
conservation equation is, in general, a function of both and
time, under solution-phase diffusion limitation, this term has
been treated to be a constant [22]. The present work general-
izes this by considering a time-dependent function, which
may occur when the external current changes with time, for
example during cyclic charge/discharge of the battery pack of
an electric vehicle. Also, note that the governing equations in
this study are presented for a single insertion electrode but the
results can be easily generalized to two insertion electrodes.
The analytical model presented in this paper provides a useful
mathematical tool to understand transport phenomena in a
porous Li-ion cell, which may improve the analysis and de-
sign of electrochemical energy storage and conversion
devices.

Mathematical Modeling

Green’s Function Approach for Composite Electrodes

Heat and mass transport are often governed by similar diffu-
sion equations. If the non-homogeneities in these equations
are arbitrary functions of time, the commonly used SOV
method may not be readily applicable. On the other hand,

Green’s function approach continues to be a powerful mathe-
matical tool for solving a wide range of linear partial differen-
tial equations with arbitrary time-dependent non-homogene-
ities in the governing equation and boundary conditions [47,
50]. Green’s function method can be used to address species
diffusion problems in single- or multi-layer bodies.

Consider diffusion in a M-layer composite body shown in
Fig. 1. In general, each layer may have different properties and
species consumption/generation due to reaction. In addition,
two time-dependent flux boundary conditions are considered
at the two ends. The governing conservation equation can be
written in non-dimensional form as:

αi
1

xp
∂
∂x

xp
∂ci
∂x

� �
þ αi

ki
gi x; tð Þ ¼ ∂ci

∂t
xi < x < xiþ1 ð1Þ

subject to the following general boundary and initial condi-
tions:

−k1
∂c1
∂x

� �
x¼x1

¼ q1 τð Þ at x ¼ x1 ð2Þ

ci x¼xiþ1 ¼ ciþ1

�� ��
x¼xiþ1

at interfaces i ¼ 1; 2;…;M−1 ð3Þ

ki
∂ci
∂x

� �
x¼xiþ1

¼ kiþ1
∂ciþ1

∂x

� �
x¼xiþ1

at interfaces i ¼ 1; 2;…;M−1

ð4Þ

−kM
∂cM
∂x

� �
x¼xMþ1

¼ qM τð Þ at x ¼ xMþ1 ð5Þ

ci ¼ f i xð Þ at t ¼ 0 ð6Þ
where x′p is the Sturm–Liouville weight function, and p = 0, 1,
and 2 for slabs, cylinders, and spheres, respectively. α and k
are constants and can be determined based on a specific prob-
lem. Here, Eqs. (3) and (4) represent continuity of species and
flux balance at the interfaces, whereas Eqs. (2) and (5) repre-
sent a balance between diffusion and mass flux at the two
ends. f is the initial condition, g is the generation or consump-
tion term, and q(τ) is the non-homogeneous boundary
condition.

The solution to this multi-layer diffusion problem using
Green’s function approach is given by [47]:

Fig. 1 Schematic of a M-layer composite electrode
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ci x; tð Þ ¼ ∑
M

j¼1
∫x jþ1

x0¼x j
Gij x; tjx0

; t
0

� �
t0¼0

f j x
0

� �
x
0p
dx

0
n

þ∫tt¼0∫
x jþ1

x0¼x j
Gij x; tjx0

; t0
� �α j

k j
g j x

0
; t0

� �
x0pdx

0
dt

0
�

þ ∑
m¼1;M

αm

km
∫tt0¼0 x

0p
Gim x; tjx0

; t
0

� �h i
x¼xb;m

qm t
0

� �
dt0

ð7Þ

where the summation in the third term is taken over all layers
with an external boundary. xb,m refers to the location of the
external boundary for the mth layer (referring to Fig. 1, xb,1 =
x1, and xb,M = xM + 1).

The first term in Eq. (7) accounts for the initial condition,
while the second and third terms represent contributions of
non-homogeneities in the governing equation and boundary
conditions, respectively. The solution represented by Eq. (7) is
particularly powerful in its ability to account for the effect of
arbitrary space-dependent initial condition, time- and space-
dependent generation/consumption, and time-dependent
boundary conditions.

A key step in deriving the Green’s function-based solution
for the specific problem under consideration is to determine
the Green’s function G(X, τ| X′, τ′) that appears in Eq. (7). To
do so, the corresponding homogeneous version of the problem
must be solved first. For a homogeneous problem, the only
non-zero term in Eq. (7) is the first term which represents the
contribution of the initial concentration. Thus, a comparison
between the first term in Eq. (7) and the solution to the homo-
geneous problem results in the evaluation of the Green’s func-

tion at t′ = 0, G x; tjx0
; t0

� 	
t0¼0. In order to determine the com-

plete Green’s function at any time, t, i.e.G(x, t| x′, t′), tmust be

replaced with (t − t′) in G x; tjx0
; t0

� 	
t0¼0

.

The next sections present the problem statement and deri-
vation of the solution for liquid-phase diffusion in a porous Li-
ion cell sandwich under an arbitrary time-dependent flux
using Green’s function method.

Governing Equations and Boundary Conditions

Figure 2 shows a schematic of a Li-ion cell sandwich com-
prising a porous electrode, separator, and Li-ion foil electrode.
The separator and porous electrode, referred to with subscripts
1 and 2, respectively, are initially at a non-uniform concentra-
tion of F1(x) and F2(x). The cell sandwich operates under a
time-dependent discharge boundary condition, q(τ) at X = 0.
Doyle and Newman presented governing equations for com-
posite Li-ion cell sandwich under a uniform current distribu-
tion [22]. Note that the reaction rate distribution in the elec-
trode is, in general, a function of both location and time, J(x,t).
However, under the solution-phase diffusion limitation, the
spatial distribution of the reaction term can be neglected
[22]. When the external current on the cell is a function of
time, as may be the case during cyclic charge and discharge of

a Li-ion cell in an electric vehicle, the reaction term is, in
general, a function of time. Neglecting solid-phase diffusion
limitation, conservation equations for the separator and porous
electrodes for this case can be written as:

D
∂2C1

∂X 2 ¼ ∂C1

∂τ
0 < X < Ls ð8Þ

Dε3=2
∂2C2

∂X 2 þ ajn τð Þ 1−tþð Þ ¼ ε
∂C2

∂τ
Ls < X < Ls þ Lc ð9Þ

Subject to the following boundary conditions:

D
∂C1

∂X

� �
X¼0

¼ −
I τð Þ 1−tþð Þ

F
at X ¼ 0 ð10Þ

C1 ¼ C2 at X ¼ Ls ð11Þ
∂C1

∂X

� �
X¼Ls

¼ ε3=2
∂C2

∂X

� �
X¼Ls

at X ¼ Ls ð12Þ

∂C2

∂X

� �
X¼LsþLc

¼ 0 at X ¼ Ls þ Lc ð13Þ

The initial conditions are:

C1 ¼ F1 Xð Þ at τ ¼ 0 ð14Þ
C2 ¼ F2 Xð Þ at τ ¼ 0 ð15Þ
where D, ε, and a refer to diffusion coefficient of the electro-
lyte, porosity of the electrode, and specific interfacial area,
respectively. I, jn, t

+, and F refer to current density, pore wall
flux, transference number, and Faraday constant, respectively.
Ls and LC are the separator and porous electrode lengths, re-
spectively. Note that Eqs. (8) and (9) describe diffusion in the
separator and material balance in the solution phase of the
porous electrode, respectively. Equation (10) describes the

Fig. 2 Schematic of the composite porous electrode consisting of Li-ion
foil, separator, and positive porous electrode
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time-dependent flux boundary condition. Equations (11) and
(12) ensure the continuity of concentration and flux at the
separator-electrode interface. Equation (13) ensures that no
ions diffuse through the back of the electrode, and finally,
Eqs. (14) and (15) represent the initial condition.

The current distribution is assumed to be time-dependent
and uniform throughout the electrode. While in general, the
reaction rate distribution might be quite complicated and non-
uniform [22], it has been shown that if the kinetic resistance
dominates ohmic resistance, the reaction rate distribution can
be considered as its average value throughout the electrode
[15].

Note that, in case of uniform initial concentration, the
two non-homogeneities driving this problem during dis-
charge are concentration flux into the separator (Eq. (10))
and species consumption due to lithium intercalation in the
cathode (Eq. (9)). The interplay between the two processes
over time determines how the concentration field changes
with time.

For a uniform current distribution, jn can be written as its
average value everywhere in the porous electrode [22] as fol-
lows:

jn τð Þ ¼ −I τð Þ
aFLc

ð16Þ

Using the non-dimensionalization scheme presented in the
Nomenclature section, and after some mathematical simplifi-
cation, the non-dimensional form of the governing equations
for the separator and electrode can be written as:

∂2c1
∂x2

¼ ∂c1
∂t

0 < x < 1 ð17Þ

ε1=2
∂2c2
∂x2

þ ε1=2

ε3=2
J tð Þ ¼ ∂c2

∂t
1 < x < 1þ r ð18Þ

where J tð Þ ¼ −I tð Þ 1−tþð ÞL2S
FDLcC0

. The associated boundary condi-
tions are:

∂c1
∂x

� �
x¼0

¼ J tð Þr at x ¼ 0 ð19Þ

c1 ¼ c2 at x ¼ 1 ð20Þ
∂c1
∂x

� �
x¼1

¼ ε3=2
∂c2
∂x

� �
x¼1

at x ¼ 1 ð21Þ

∂c2
∂x

� �
x¼1þr

¼ 0 at x ¼ 1þ r ð22Þ

The initial conditions for the separator and electrode are:

c1 ¼ f 1 xð Þ at t ¼ 0 ð23Þ
c2 ¼ f 2 xð Þ at t ¼ 0 ð24Þ

Comparison between Eqs. (17)–(24) specific to this prob-
lem and the general problem statement for Green’s function
solution given by Eqs. (1)–(6) indicate that, in this case,M = 2,
α1 = 1, k1 = 1, α2 = ε1/2, and k2 = ε3/2. Note that J in Eq. (19)
has a negative sign in its expression shown in the
Nomenclature section. This negative sign indicates species
flux into the separator during discharge, when the electrode
considered is the cathode.

Solution Procedure

In order to solve Eqs. (17)–(24), the Green’s function associ-
ated with this problem must be determined first. The general
form of the Green’s function for multi-layer geometries can be
written as follows [50]:

Gij x; t x0; t0jð Þt0¼0 ¼ ∑
∞

n¼1

1

Nn

k j

α j
Γ n tð Þψin xð Þψin x0ð Þ ð25Þ

Gij x; t x0; t0jð Þ ¼ ∑
∞

n¼1

1

Nn

k j

α j
Γ n t−t0ð Þψin xð Þψin x0ð Þ ð26Þ

where x′p is the Sturm–Liouville weight function, andNn is the
norm, given by:

Nn ¼ ∑
M

j¼1

k j

α j
∫x jþ1

x¼x j
xpψ2

jn xð Þdx ð27Þ

In order to construct the Green’s function associated with
this problem, Г(t) and ψ(x) are determined by solving the
corresponding homogeneous problem. Note that the term
J(t) in the governing equation, Eq. (18), and the boundary
condition, Eq. (19) becomes zero in the corresponding homo-
geneous problem. The SOV technique can be used to solve the
homogeneous problem; based on which, the concentration
profile in the separator and electrode for the homogeneous
problem can be written as follows:

ch;i x; tð Þ ¼ ∑
∞

n¼0
ψin xð ÞΓ n tð Þ ð28Þ

where i = 1, 2.
Equation (28) is then substituted back into the

governing equations, which results in two separate differ-
ential equations in space and time. The solutions for time-
dependent and space-dependent components of Eq. (28)
can be written as:

Γ n tð Þ ¼ exp −λ2
nt

� 	 ð29Þ

ψ1n xð Þ ¼ A1nsin
λnxffiffiffiffiffi
α1

p
� �

þ B1ncos
λnxffiffiffiffiffi
α1

p
� �

ð30Þ

ψ2n xð Þ ¼ A2nsin
λnxffiffiffiffiffi
α2

p
� �

þ B2ncos
λnxffiffiffiffiffi
α2

p
� �

ð31Þ
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Note that α1 and α2 are already defined in the previous
section. Using boundary conditions, a set of equations can
be written in a matrix form for the unknown coefficients Ain

and Bin as follows:

1 0 0 0

0 cos
λnffiffiffiffiffi
α1

p −sin
λnffiffiffiffiffi
α2

p −cos
λnffiffiffiffiffi
α2

p

0 Ksin
λnffiffiffiffiffi
α1

p cos
λnffiffiffiffiffi
α2

p −sin
λnffiffiffiffiffi
α2

p

0 0 cos
λn 1þ rð Þffiffiffiffiffi

α2
p −sin

λn 1þ rð Þffiffiffiffiffi
α2

p

2
666666664

3
777777775

A1n

B1n

A2n

B2n

2
664

3
775 ¼

0
0
0
0

2
664

3
775

ð32Þ

where K ¼ k1
k2

ffiffiffiffiffi
α2
α1

q
¼ ε−5=4. In order to determine the eigen-

values, λn, the determinant of the matrix in Eq. (32) must be
equal to zero, in order to result in a nontrivial solution. This
requirement results in a transcendental equation for the eigen-
values as follows:

tan
λnrffiffiffiffiffi
α2

p
� �

þ Ktan
λnffiffiffiffiffi
α1

p
� �

¼ 0 ð33Þ

Without loss of generality, any one of the non-vanishing
coefficients in Eq. (44) may be set to unity. In this case, B1n is
chosen to be equal to 1. Consequently, the coefficients, Ain

and Bin, are determined to be:

A1n ¼ 0 ð34Þ
B1n ¼ 1 ð35Þ

A2n ¼ cos
λnffiffiffiffiffi
α1

p sin
λnffiffiffiffiffi
α2

p −Ksin
λnffiffiffiffiffi
α1

p cos
λnffiffiffiffiffi
α2

p ð36Þ

B2n ¼ cos
λnffiffiffiffiffi
α1

p cos
λnffiffiffiffiffi
α2

p þ Ksin
λnffiffiffiffiffi
α1

p sin
λnffiffiffiffiffi
α2

p ð37Þ

This completes the derivation of the solution. Using Eqs.
(25) and (26), the concentration profile in the separator and
electrode layers can be written as:

c1 x; tð Þ ¼ ∑
∞

n¼0
∫x

0¼1
x0¼0

1

Nn
exp −λ2

nt
� 	

cos
λnxffiffiffiffiffi
α1

p
� �

cos
λnx0ffiffiffiffiffi
α1

p
� �

f 1 x0ð Þdx0
�

þ ∫x
0¼1þr
x0¼1

1

Nn
exp −λ2

nt
� 	

cos
λnxffiffiffiffiffi
α1

p
� �

A2nsin
λnx0ffiffiffiffiffi
α2

p
�� �

þB2ncos
λnx0ffiffiffiffiffi
α2

p
� ��

f 2 x0ð Þdx0 þ α2

k2
∫ττ¼0∫

1þr
X

0 ¼1

1

Nn
exp −λ2

n t−t0ð Þ� 	
cos

λnxffiffiffiffiffi
α1

p
� �

A2nsin
λnx0ffiffiffiffiffi
α2

p
� ��

þB2ncos
λnx0ffiffiffiffiffi
α2

p
� ��

J t0ð Þx0pdx0dτ 0 þ α2

k2
∫t
0¼t
t0¼0

1

Nn
exp −λ2

n t−t0ð Þ� 	
cos

λnxffiffiffiffiffi
α1

p
� �

A2nsin
λn 1þ rð Þffiffiffiffiffi

α2
p

� �� �

þB2ncos
λn 1þ rð Þffiffiffiffiffi

α2
p

� ��
−rJ t0ð Þð Þdt0Þ

ð38Þ
c2 x; tð Þ ¼ ∑

∞

n¼0
∫x

0¼1
x0¼0

1

Nn
exp −λ2

nt
� 	

A2nsin
λnxffiffiffiffiffi
α2

p
� �

þ B2ncos
λnxffiffiffiffiffi
α2

p
� �� �

cos
λnx0ffiffiffiffiffi
α1

p
� �

f 1 x0ð Þdx0

þ∫x
0¼1¼r
x0¼1

1

Nn
exp −λ2

nt
� 	

A2nsin
λnxffiffiffiffiffi
α2

p
� �

þ B2ncos
λnxffiffiffiffiffi
α2

p
� �� �

A2nsin
λnx0ffiffiffiffiffi
α2

p
� �� �

þB2ncos
λnx0ffiffiffiffiffi
α2

p
� ��

F2 x0ð Þdx0 þ α2

k2
∫ττ¼0∫

1þr
x0¼1

1

Nn
exp −λ2

n t−t0ð Þ� 	
A2nsin

λnxffiffiffiffiffi
α2

p
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where A2n and B2n are defined in Eqs. (36) and (37),
and Nn is defined in Eq. (27). Note that the zeroth terms
of Eqs. (38) and (39), as well as the norm for the zeroth
term, must be determined by calculating the limits of
these equations as λ→0. Furthermore, note that if initial

concentrations f1 and f2 are zero, there is some simplifi-
cation in Eqs. (38) and (39).

Next, the validation of the model and its applications in a
variety of realistic scenarios will be discussed. All plots in the
next section are generated for a cathode.
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Results and Discussion

Model Validation

Analytical model derived in the previous section is validated
against past work and numerical simulations. To the best of
our knowledge, no literature is available for solution-phase
diffusion under time-dependent flux boundary condition.
Therefore, comparison with past studies has been carried out
for a special case of galvanostatic boundary condition where
the applied current density is constant.

Green’s function-based model presented in this study is
compared against a past work by Subramanian et al. [51],
where an approximate method was used to solve the
solution-phase diffusion in the porous electrode [51]. Note
that their method was limited to galvanostatic boundary con-
ditions where the current density is constant. Thus, compari-
son of the present model against this previous study is carried
out for a special case of constant current density. For compar-
ison, a composite electrode comprising a porous cathode, sep-
arator, and Li-ion foil similar to Fig. 1 operating under a gal-
vanostatic discharge boundary condition is considered. The
parameters used for comparison are listed in Table 1, consis-
tent with Subramanian et al. [51]. Figure 3(a) plots the non-
dimensional concentration as a function of non-dimensional
time at the electrode/separator interface, x = 1, for multiple
values of current density for both the present model and pre-
vious work [51]. Figure 3(b) presents a similar plot at the
current collector, x = 1 + r for both models. Results show
excellent agreement between the Green’s function solution
and past work. These figures show, as expected, that concen-
tration at the separator-electrode interface increases with time,
while concentration at the end of the electrode decreases with
time. This is consistent with species consumption occurring
throughout the electrode and species flux into the electrode
only from the separator side. The rate of change of concentra-
tion increases with increasing current, and a steady-state con-
centration is reached in each case. As expected, the larger the

current, the greater/lower is the concentration at x = 1 and x = 1
+ r, respectively.

To further validate the analytical model presented here,
a numerical simulation of solution-phase diffusion limita-
tion in the composite porous electrode is carried out. The
numerical method solves Eqs. (17)–(24) using a fully im-
plicit approach to discretize the governing equations and
boundary conditions in both separator and porous elec-
trode, resulting in m number of equations where m is the
number of nodes. Each equation contains three unknowns
including the concentration of the ith point and its two
neighbors for the next time, n + 1. Initial and boundary
conditions, on the other hand, provide the known values
for these equations. Spatial discretization is carried out in
a way that ensures that a node is always present at the
intersection between layers. Interface conditions are de-
fined to ensure the continuity of concentration and flux
at the separator/electrode interface. The resultant equa-
tions in the matrix form are solved using tri-diagonal ma-
trix (TDMA) algorithm instead of direct inversion to re-
duce the computational time. A total of 2000 nodes are
found to sufficiently ensure mesh independence of com-
puted results. Figure 4(a) compares the non-dimensional
concentration as a function of non-dimensional time at the
current collector, x = 1 + r, determined from the Green’s
function approach with numerical simulations. This com-
parison is carried out for multiple values of B for a linear
time-dependent current density, I(t) = I0(1 + B ∙ t) where
I0 = 60 Am−2. The plot shows very good agreement be-
tween the Green’s function-based model and numerical
solution for each case. Figure 4(a) shows that as the cur-
rent density increases over time due to the slope B, the
concentration at the back of the electrode, x = 1 + r,
decreases faster, which consistent with results from
Subramanian et al. [51]. The rate of reduction in concen-
tration is greater for higher values of B, as expected.
Figure 4(b) plots the non-dimensional concentration as a
function of non-dimensional distance, x, at multiple times
for the same current density profile as Fig. 4(a) and B =
1/30. Similar to Fig. 4(a), results show good agreement
between the present analytical model and numerical sim-
ulations. The concentration behavior agrees well with re-
sults presented in a study by Subramanian and White [31],
in which, an exact solution for solution-phase diffusion in
composite electrodes under galvanostatic boundary condi-
tions was derived. Results from the present work and [31]
both show that as time passes, concentration increases in
the separator due to the incoming flux from negative elec-
trode, while the concentration deceases at the back of the
electrode due to consumption of Li-ions.

Table 1 Electrochemical
and physical properties
used in this study

Properties Values Units

D 2.6 × 10−10 m2 s−1

F 96,487 C mol−1

t+ 0.2 -

ε 0.35 -

Ls 25 × 10−6 m

Lc 125 × 10−6 m

C0 1000 mol m−3

r 5 -
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Application of the Model

In this section, the Green’s function solution is used to address
a number of practical problems in which time-dependent
boundary conditions may occur. Among different possible
types of time-dependent functions, sinusoidal and step func-
tions may be particularly relevant to battery operation.
Sinusoidal functions are important since a reasonably well-
behaved time-varying function may be expressed in the form
of a Fourier series comprising sinusoidal functions. Another
important type of boundary conditions relevant to operation of
Li-ion cells is step functions, since sudden changes in charge/
discharge rate may be encountered in realistic settings.
Therefore, this section focuses specifically on problems with
sinusoidal and step function boundary conditions.

First, discharge process for a porous cathode is considered,
with a time-dependent sinusoidal current density, I(t) = I0(1 +
sin(2πωt) where I0 = 60 Am−2. Two different frequencies ω =
1/60 & ω = 1/30 are considered. All other problem parameters
are similar to previous figures and summarized in Table 1.
Figure 5(a) plots non-dimensional concentration as a function
of time at three different locations—x = 0, 1, and 1 + r—for
the two frequencies. Results show a periodic behavior for
concentration consistent with the sinusoidal current density.
Figure 5(b) presents a plot of non-dimensional concentration

as a function of non-dimensional distance at multiple times for
I0 = 60 Am−2 and ω = 1/30. Figure 5(b) shows an interesting
behavior with intersections at multiple points. The concentra-
tion in the separator region is maximum at t = 40, minimum at
t = 60, and in between at t = 20. This behavior reverses in the
region close to the back of the electrode, x = 1 + r. This can be
explained with the help of Fig. 5(a). For instance, in Fig. 5(a),
at t = 60, due to the periodic nature of the current density, the
concentration at the back of the electrode is close to its max-
imum whereas the concentration at x = 0 and 1 are close to
their respective minima. These figures show that the model is
successfully able to capture the concertation profiles under a
sinusoidal time-dependent current density.

In order to more comprehensively capture the concentation
profile throughout the composite electrode at different times,
Fig. 6 shows a colorplot of concentration as a function of time
and space, with the same current density profile as Fig. 5, and
ω = 1/15. It is seen that four maxima/minima occur up to t =
60, which is consistent with the frequency of the sinusoidal
current density.

Figures 7 and 8 present plots for applications where the
current density profile can be represented by step functions.
This scenario may occur, for example, in the battery pack of
an electric vehicle, where the discharge rate may suddenly
change due to changes in the external load. Furthermore, in

Fig. 4 Validation against
numerical simulation for a linear
current density I(t) = I0(1 + B ∙ t)
where I0 = 60 Am−2. a
Dimensionless concentration at
the current collector (x = 1 + r) as
a function of dimensionless time
for different values of slopes, B. b
Dimensionless concentration as a
function of dimensionless
distance at multiple times for B =
1/60

Fig. 3 Validation against
previous study [51] for a special
case of constant current density. a
Dimensionless concentration at
the electrode/separator interface
(x = 1) as a function of dimen-
sionless time for different rates of
discharge. b Dimensionless con-
centration at the current collector
(x = 1 + r) as a function of di-
mensionless time for different
rates of discharge
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several commonly used charge/discharge protocols, Li cells
may be cyclically charged and discharged at different rates, so
that the current density may change its magnitude and/or di-
rection over time. Two specific cases are presented in Figs. 7
and 8.

Figure 7 presents concentration plots for a step-function
boundary condition, with changes only in the magnitude of
current, and not the direction. In this case, the current den-
sity function is a three-step discharge process at multiple
discharge rate of 60, 120, and 180 Am−2 corresponding to
C-rates of 1, 2, and 3, respectively. Figure 7(a) plots non-
dimensional concentration as a function of non-
dimensional time at three different locations, whereas
Fig. 7(b) presents the plot of non-dimensional concentra-
tion as a function of non-dimensional distance at multiple
times. It is seen from Fig. 7(a) that the concentration at the
back of the electrode decreases gradually and the rate of
this reduction increases with increasing magnitude of

current density. On the other hand, concentration in the
separator increases with time. This is due to concentration
flux into the separator during the discharge process, and
simultaneous depletion of species in the electrode due to
reaction. As expected from the current density profile, Fig.
7(b) shows that concentration at the back of the electrode is
lowest at the highest discharge rate and the concentration
in the separator is highest at the highest discharge rate.

Figure 8 considers a somewhat more complicated sce-
nario, in which the current density starts with a constant
discharge at 60 Am−2, switches directions to a 40-Am−2

charge at t = 20, and finally changes back to 120 Am−2

discharge at t = 40. Figure 8(a) plots the computed non-
dimensional concentration for this case as a function of
non-dimensional time at three different locations, x = 0,
1, and 1 + r. For reference, the current density profile as
a function of time is also plotted in the inset. It is seen that
concentration at the back of the electrode decreases in the
beginning for t < 20 (discharge), and increases as the cur-
rent density switches directions in the 20 < t < 40 period
(charge). Finally, the concentration at x = 1 + r decreases
again for t > 40 (discharge), consistent with the current
density profile. Concentration profiles at the other two lo-
cations, x = 0 and x = 1, exhibit the opposite trend, which is
consistent with concentration flux dominating over species
consumption due to intercalation in the electrode. Figure
8(b) presents a plot of dimensionless concentration
throughout the composite electrode at multiple times.
Concentration profiles are plotted at t = 20, 40, and 60.
Results in this plot are consistent with Fig. 8(a). The max-
imum concentration in the electrode occurs at t = 40, con-
sistent with the inset plot of current density.

Note that all results presented here are computed with
only five eigenvalues. This helps significantly reduce the
computational time, particularly when the operating con-
dition is a complicated function of time. The use of more
than five eigenvalues is found to result in no significant
change in the computed concentration distribution. It is
important to note that eigenvalues for this problem

Fig. 5 Application of the model
for a periodic current
density I(t) = I0(1 + sin 2πωt)
where I0 = 60 Am−2. a
Dimensionless concentration at
multiple location as a function of
dimensionless time for ω = 1/30
and 1/60. b Dimensionless con-
centration as a function of di-
mensionless distance at multiple
times for ω = 1/30

Fig. 6 Application of themodel for a periodic current density I(t) = I0(1 +
sin 2πωt) where I0 = 60 Am−2 and ω = 1/15. Three dimensional plot of
concentration as functions of space and time
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depend only on r and ε, and therefore, once the values of
these parameters are known, the eigenvalues can be cal-
culated once and be used for any arbitrary boundary con-
dition. Table 2 presents the first five eigenvalues for ε =
0.35 and multiple values of r.

Conclusions

In this paper, the Green’s function approach is used to
derive an analytical solution for solution-phase limitation
diffusion in composite electrodes under a wide variety of
time-dependent flux boundary conditions. The method is
applied to a composite electrode consisting of Li-ion foil,
separator, and porous electrode similar to the composite
Li-ion cell sandwich proposed by Doyle and Newman
[22]. Concentration profiles in the separator and porous
electrode are determined as functions of space and time.
The mathematical model is validated against previous
studies for the special case of galvanostatic boundary con-
ditions. Furthermore, Green’s function-based model is
validated by comparison with numerical simulations for
time-dependent boundary conditions. The mathematical
model presented in this study can be used to accurately
predict the transient behavior of solution-phase limitation

diffusion. The model is used to predict the concentration
profile for a number of realistic time-dependent current
densities such as sinusoidal and step functions that may
be encountered in practical energy conversion and stor-
age. The computational time associated with the present
model is lower than numerical simulations due to the low
number of eigenvalues required for convergence. This
work contributes towards the theoretical understanding
of species diffusion in Li-ion cells, and provides tools that
may be helpful for designing, predicting, and improving
the performance of electrochemical devices.
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